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PREFACE.

IN the present Treatise 1 have endeavoured to lay before the
reader in a connected form, the results of the most important in-
vestigations in the mathematical theory of Hydrodynamics, which
have been made during modern times. The Science of Hydro-
dynamics may properly be considered to include an enquiry into
the motion of all fluids, gaseous as well as liguid ; but for reasons
which are stated in the introductory paragraph of Chapter L,
the present treatise is confined almost entircly to the wmotion
of liquids. The progress of scientific knowledge in all its
branches has been the peculiar feature of the present century,
and it is therefore not surprising that during the last fifty years
a great increase in hydrodynamical knowledge has taken place;
but many of the most important results of writers upon this
subject have never been inscrted in any treatise, and stall lie
buried in a variety of British and foreign mathematical periodicals
and transactions of lcarned Soeicties; and it has been my aim to
endeavour to collect together these investigations which are of
most interest to the mathematician, and to condense them into a
form suitable for a treatise.

The present work is divided into two volumes, the first
of which deals with the theory of the motion of frictionless
liquids, up to and including the theory of the motion of solid
bodies in a liquid. In the second volume, a considerable portion
of which is already written, it is proposed to discuss the theory of

rectilinear and circular vortices; the motion of a liquid ellipsoid
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iv PREFACE.

under the influence of its own attraction, including Professor
G. II. Darwin’s important memoir on dumb-bell figures of cqui-
librium ; the theories of liquid waves and tides; and the theory

of the motion of a viscous liquid and of solid bodies therein.

References have been given throughout to the original autho-
rities which have been incorporated or consulted ; and a collection
of examples has becn added, most of which have been taken from
University or College Examination Papers, which have been set
during recent years.

The valuable report of Mr W. M. Hicks on Hydrodynamics, to
the British Association in 1881—2, has proved of great serviee in
the difficult task of collecting and arranging materials. I have
also to express my obligations to the English treatiscs of Dr
Besant and Professor Lamb, from the latter of which I have
reecived considerable assistance in Chapters IV, and VL; and also
to the German treatise of the late Professor Kirchhoff,

T am greatly indebted to Professor Greenhill for his kindness
in having rcad the proof sheets, and also for having made many

valuable suggestions during the progress of the work.

In a treatise which contains a large amount of analytical
detail, 1t is probable that there are several undetecled errors;
and [ shall esteem it a favour if those of my readers who discover
any errors or obscurities of treatment, or have any suggestions to

make, will communicate with me.

Unitep Uxiversiry CLus,
Parn Many, East.
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CHAPTER L

HYDROKINEMATICS.

1. THE science of Hydrodynamics may be divided into two
separate branches, viz. the motion of liquids and the motion of
gases. The chief interest arising from the latter branch of the
subject is due to the fact that air is the vchicle by means of
which sound is transmitted, and consequently the discussion of
special problems relating to the motion of gases belongs to the
theory of sound rather than to hydrodynamics; it must also be
recollected that in order to deal satisfactorily with many problems
conuected with the motion of gases, 1t 1s necessary to take into
account changes of temperature and other matters which properly
belong to the science of thermodynamics. In the carlier chapters
of the present treatise the general theory of the motion of fluids
is discussed, including those peculiarities of motion which are
alike common to liquids and gases; but the subsequent chapters
are limited almost entirely to the consideration of special problems
relating to the motion of liquids.

In ancient times very little advance in hydrodynamics appears
to have been made. In modern times the earliest pioneers were
Torricelli and Bernoulli, whose investigations were due to the
hydraulic requirements of Italian ornamental landscape gardening;
but the first great step was taken by D’Alembert and Euler, who
in the last century successfully applied dynamical principles to
the subject, and thereby discovered the general equations of
motion of a perfect fluid, and placed the subject on a satisfactory
basis. The discovery of the general equations of motion was
followed up by the investigations of the great KFrench mathe-
maticians Laplace, Lagrange and Poisson, the first of whom has
left us a splendid memorial of his genius in his celebrated Theory
of the Tides.

B. _ 1
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2 HYDROKINEMATICS.

The next advance was made by Poisson' and Green®; the
former of whom in 1831 discovered the velocity poteuntial due
to the motion of a sphere in an unlimited liquid, and the latter
of whom in 1833, without a knowledge of Poisson’s work, discovered
the velocity potential due to the motion of translation of an
ellipsoid in an unlimited liquid. Green’s investigation was com-
pleted for the case of rotation by Clebsch?® in 1856.

The velocity potential due to the motion of a variety of cylin-
drical surfaces has also been discovered during the last fifteen
years; but a similar advance has not been made as regards the
motion of two or more solids. The kinetic energy of a liquid due
to the motion of two eylinders whose cross sections are circular,
has becn obtained by Hicks* and Greenhill®. The former has also
written several valuable papers on the motion of two spheres®
which have placed this problem in a perfectly satisfactory con-
dition. A complete discussion of the motion of two oblate or
prolate spheroids whose excentricities are nearly equal to zero or
unity, would be an attractive subject for investigation, and would
throw light on the motion of two ships sailing alongside one
another.

In 1845 Professor Stokes® published his well-known theory of
the motion of a viscous liquid, in which he endeavoured to account
for the frictional action which exists in all known liquids, and
which causes the motion to gradually subside by converting the
kinetic energy into heat. This paper was followed up in 1850 by
another®, in which he solved various problems relating to the
motion of spheres and cylinders in a viscous liquid. Previously to
this paper no problem relating to the motion of a solid body in a
liquid had ever been solved, in which the viscosity had been taken
into account,

Since the time of Lagrange the essential difference between
the motion of a fluid when a velocity potential exists and when it
does not cxist had becn recognised ; and an opinion very generally

1 Mém. de I'Acad. des Sciences. Paris, vol. x1. p. 521.

? Trans. Roy. Soc. Edinburgh, vol. 3IIL p. 54.

3 Crelle, vol. rrr. p. 119.

4 Quart. Journ., vol. xvi. pp. 113 and 193.

5 Ibid. vol. xvim. pp. 356—362.

¢ Proc. Camb. Phil. Soc., vol. rir. p. 276, vol. 1v. p. 29, and Phil. Trans., 1880.
? Trans. Camb. Phil. Soc., vol. vim. p. 287.

& Tvid. vol, 1x. part . p, 8.
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INTRODUCTION. 3

prevailed that if at any particular instant some particular portion
of the fluid were moving in such a manner that a velocity poten-
tial existed, the subsequent motion of this same portion of fluid
would always be such that the component velocities of its ele-
ments would be derivable from a velocity potential. The first
rigorous proof of this important proposition was given by Cauchy,
and a different one was subsequently given by Stokes!, but until
the year 1838 no complete investigation respecting the peculiari-
tles of rotational motion had ever been made. This was effected
by Helmholtz® in his celebrated memoir on Vortex Motion, which
may perhaps be considered the most important step in hydro-
dynamics which has been made during the present century. The
same subject was subsequently taken up by Sir W. Thomson® and
the theory of polyeyelic velocity potentials fully investigated.
During the last six years important additional investigations on
the theory of vortex rings have been made by Hicks* and J. J.
Thomson®,

The last twenty years have witnessed a great advance in
hydrodynamics, and numerous important papers have been written
by many eminent mathematicians both British and foreign,
which will be considered in detall in the present work.

We shall now proceed to consider the definitions and principles
of the suhject.

2. A fluid may be defined to be an aggregation of molecules,
which yield to the slightest effort made to separate them from
each other, if it be continued long enough. All fluids with which
we are acquainted may be divided into liquids and gases; the
former are so slightly compressible that they arc usually regarded
as incompressible fluids, whilst the latter are very highly com-
pressible.

A perfect Huid is one which is incapable of sustaining any
tangential stress or action in the nature of a shear; and it will he
shown in the next chapter that the consequence of this property
is, that the pressure at every point of a perfect fluid is equal
in all directions, whether the fluid be at rest or in motion. A

1 Trans. Camb. Phil. Soc., vol. vioL, p. 305.

2 Crelle, vol. Lv. p. 25; translated by Tait, Phil. Mag. (4) xxx1r. p. 485,
8 Trans. Roy. Soc. Edin., vol. xxv. p. 217.

4 Phil, Trans., 1881, 1884 and 1885.

5 Adams’ Prize Essay, 1882,
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4 HYDROKINEMATICS.

perfect fluid is however an entirely ideal substance, since all fluids
with which we are acquainted are capable of offering resistance to
tangential stresses. This property, which is known as viscosity,
gives rise to an action in the nature of friction, by which the
kinetic energy is gradually converted into heat.

In the case of gases, water and many other liquids, the effects
of viscosity are small; such fluids may therefore be approximately
regarded as perfect fluids. It will therefore be desirable to com-
mence with the study of the motion of perfect fluids, reserving
the consideration of viscous fluids for the second volume.

There are certain kinematical propositions which are true for
all fluids, and which it will be convenient to investigate before
entering upon the dynamical portion of the subject. These
propositions form the subject of the present chapter.

3. The motion of a fluid may be investigated by two ditferent
methods, the first of which is called the Lagrangian method, and
the second the Eualerian or flux method, although both are due to
Euler.

In the Lagrangian method, we fix our attention upon an
element of fluid, and follow its motion throughout its history.
The variables in this case are the initiul coordinates a, b, ¢ of the
particular element upon which we fix our attention, and the time.
This method has been successfully employed in the solution of
very few problems.

In the Eulerian or flux method, we fix our attention upon a
particular point of the space occupied by the fluid, and observe
what is going on there. The variables in this case are the
coordinates z, v, z of the particular point of space upon which we
fix our attention, and the time,

Velocity and Acceleration.

4. In forming expressions for the velocity and acceleration of
a fluid, it is necessary to carefully distinguish between the
Langrangian and the flux method.

I The Langrangian Method.

Let u, v, w be the component velocities parallel to fixed axes,
of an element of fluld whose coordinates are @, v, 2z and « + &,
y+ 8y, z-+ 8z at times ¢ and ¢ + 8t respectively, then

u=dz/dt=2 v=0, W=2F......c..c....... (1),
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VELOCITY AND ACCELERATION. 5

where in forming %, 4, 4 we must suppose z, ¥, z to be expressed in
terms of the initial coordinates a, b, ¢ and the time.

If the axes, instead of being fixed, were moving with angular
velocities 6, 8,, 6, about themselves, the compovent velocilies
would be given by the equations,

u=&—y0,+20,, v=9—20 +xb, w=2—x0,+y0,...(2).
It should be noticed that 4, g, 2 are the velocities of the fluid
relative to the moving axes.

The expressions for the component accclerations are

Je= 0=, [=0, =% covrivrrirninenns (3),

when the axes are fixed, and
So=u—v0, +wl,, f,=0—wl + ub,, f,=w —ub, + v0,...(4)

when the axes are in motion. Here u, v, w must be supposed to
be expressed in terms of @, b, ¢ and &

II. The Flux Method.

5. Let 8Q be the quantity of fluid which in time 8¢ flows across
any small area 4, which passes through a fixed point P in the
fluid ; let p be the density of the fluid, ¢ its resultant velocity, and
¢ the angle which the direction of ¢ makes with the normal to 4,
drawn towards the direction in which the fluid flows. Then
8Q = pg Abt cos e,

! de
1= pdcose dt-

Now Acose is the projection of 4 upon a plane passing
through £ perpendicular to the direction of motion of the fluid;
hence 8@ is the independent of the direction of the area, and is
the same for all areas whose projections upon the above-mentioned
plane are equal. Hence the velocity is equal to the rate per unit
of area divided by the density, at which liquid flows across a plane
perpendicular to its direction of motion.

therefore

The velocity is therefore a function of the position of P and
the time.

6. We may therefore put w=F (=, y, 2, ¢); wheuce if the axes
are fixed, and if u + 8u be the velocity parallel to x at time ¢+ 8¢
of the element of fluid which at time ¢ was situated at the point
(w’ y’ Z)'

du = F(x + udt, y + v, z + wdt, t + 6t) — F(z, y, 2, 1).
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6 HYDROKINEMATICS.

Therefore the acceleration,
T Su du du du du
i i o = u%+1}dy+wd—z.

Hence if 9/t denotes the operator
d/dt + ud/dz + vd/dy +wd/dz,

the component accelerations Will be given by the equations

L= g f,=%i;’ .................. ).

When the azes are in motion let % + 6u be the component
velocity at time ¢ + 8¢, parallel to the new position of the axis of «,
of the element which at time ¢ was situated at the point z, 4, z;
then if U, V, W be the component velocities relative to the axes,

=F(z-+ Udt, y+ V&t, 2+ Wét, t+6t) — F(a, y, 2, t).

Therefore

ou du du

s-a Tt Ud +V +W—
where the values of U, V, W are glven by (2). Hence if 9/0t
denote the operator d/d¢+ Ud/dz + Vd/dy + Wd/de, the com-
ponent accelerations parallel to the moving axes are given by the

equations
_ﬂ:%‘—v93+w92,]‘;= —wl, +ub,, f,= - —ub, +v6,...(6).

Similarly it can be shown that if =, 6, 2 be cylindrical coordi-
nates, and u, v, w be the component velocities measured in the
dircetions in which the former quantities increase,

o 2 av w ow
fo= _u E , fo= +2 fi= T ),
where
d d v d
- da T d 7 R P

If (r, 8, ¢) be po]ar coordinates and u, v, w be the velocities
measured in the directions in which these quantities increase,

du v 4w’ ov  uw
fom e TEY

r

2
-~ Ecot 0,

fom aa@tu w+,, ot f......... 8,

where
§ d d v d w d

at_d7t+udr+¥29+rbm€d¢
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THE EQUATION OF CONTINUITY. 7

The Egquation of Continuity.

7. Before proceeding further, it will be convenient to intro-
duce the following lemma. which is a particular case of Green’s
Theorem, which will be considered more fully in Chapter IV.

Let £, n, L be any functions of =, y, 2, which are finite and
conttnuous at all points within a closed surface S, then

fﬁ <d§ %+§§) dxd!/dz:f (IE + my +n&)dS...09),

where the triple integral estends throughout the volume enclosed
by S, and the double tntegral is taken over the surface of S, and
I, m, n and the direction cosines of the normal at any point of
S drawn outwards.

Integrating the left-hand side of (9) by parts we obtain

f/f leg dodyds = Ufgdydz],

where the brackets refer to the limits of integration. Now since
the surface 8 is closed, it follows that any line parallel to z which
enters the surface a given number of times must issue from it the
same number of times, hence if ! is positive at the point of
entrance, it must be negative at the corresponding point of exit;

hence
[JfEdydz] =[] LEAS,
where the integration with respect to S extends over the whole

surface. Treating the other two terms in a similar manner we
obtain the theorem in question.

8. If the motion of a fluild be continuous, it is evident that
the increase in the amount of fluid within a fixed space, which
takes place during any given interval, must be equal to the amount
which flows in across the boundaries of that space.

. Let p be the density of the fluid at time ¢, then the increment
during an interval 6/ in the mass of the fluid bounded by any

fixed surface S,
dp :
——'Uf pr Stdadyde.

The amount of luid which flows into S across the boundary,
= — [fp (lu + mv + nw) &t dS,

-]l {d o) 4 (p 2, —d—g’;’—)} Stdadyds,
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8 HYDROKINEMATICS.

by (9). Equating these two values of the increment, we obtain
do_ d(pn)  d(p)  diow) _|,

‘ a’t dx dy dz‘ = U chiiiiannes (10)
This equation is usually called the equation of continuity.
In the case of a liquid p 1s constant, whence
du dv  dw
dn + ay + P O, 1n

9. The same result is often obtained in a different manner,
which we shall illustrate by finding the equation of continuity of a
liquid referred to polar coordinates.

Let u, v, w be the velocities in the 7, 8, ¢ directions, and let
7*sin 08r808¢ be a small element of volume. The quantity of
liquid which in unit of time flows in across the face 7*sin 863¢

= pur® sin 86 5¢.

The quantity which flows out across the opposite face
= pur’ sin 8863 + p sin 6 d%‘ (r*u) 8rd03¢.
Hence the total loss
—psin 6 @%:@ §r805.

Equating the total loss due to the flow across all the faces of
the element to zero, we obtain
d (7‘21/,) d (1) sin 0) dw
TAYER T — =0 ...
gt g 3 (
If cylindrical coordinates are employed, the equation is

d(wu)  dv dw
de d8 T® dz

sin 6

10. In a large snd important number of problems the quan-
tity udz + vdy + wdz is a perfect differential d¢, whence
u=dd/de, v=d¢/dy, w=d¢/dz;
hence if ds be a linear element drawn in any direction, and g be
the velocity in the same direction ¢=d¢/ds. The function ¢

is called the wvelocity potential.

Substituting the above values of w, », w in (11), we obtain
'  d¢ b _
det Ty T s =0

or VE(I) = 0.
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THE BOUNDING SURFACE. 9

This equation is usually known as Laplace’s equation, and the
operator V* as Laplace’s operator.

The values of V* in polar and cylindrical coordinates are re-
spectively,

o, 2d 1& coto0d 1 &

“atratrat o @t rsweag (Y
g 14 1 & &

d‘m’z +;:-¢E-+?d'9“+az’ .............. cheramn (16).
These results may be readily obtained by substituting the

values of u, v, w in terms of ¢ in (12) and (13).

and Vi=

11. The preceding forms of the equation of continuity are not
convenient when the Lagrangian method is employed. To find an
appropriate form, cousider a small rectangular parallclopiped
whose diagonal is PQ. Let a, b, ¢, a+38a, b+ 8b, ¢+ 8¢ be the
coordinates of P and @ respectively. At the end of a time ¢, the
fluid of which the parallelopiped is composed will form a dif-
ferently situated oblique-angled parallelopiped. The volume of
the latter =Jdadbdc,
where J 1s the Jacobian of z, ¥, z and is equal to
de dy dz
da’ da’ da
de dy dz
db’ db’ db
de dy dz
de’ de’ de

Hence if p, be the initial density, and p the density at time ¢,
the required equation is

Jp=py e (17).
In the case of a liquid p = p, and therefore
=1 (18)

The Bounding Surface.

12. Besides the equations which must be satisfied within the
interior of a fluid, it is necessary that certain other counditions
should be satisfied at the boundary, which depend upon the
speclal problem under consideration.

If the fluid is bounded by a surface whose equation referred to
axes fixed in space i1s F (2, ¥, 2, t) = 0, the normal velocity of the
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10 HYDROKINEMATICS.

fluid at the surface must be equal to the normal velocity of the
surface, hence the sheet of fluid of which the boundary is com-
posed must always consist of the same elements of fluid.
Hence

F(x+ubl, y+udt, z+wdt, t +8t) =0,

and therefore

aF W Wi 19)
dt+ dm-f-’{}dy-f-’l,U'd—z'— ............ ( A

If the boundary is fixed, the condition becomes
lu+mev+nw=0.........cooevene. (20).

If the axes be in motion, the condition is

dF . dF . dF _ dF _
dT*LU%‘LVdTﬁWE:O' ............ (21),

where U, V, W are the velocities of an element of fluid relative to

the axes.
It should be noticed that (19) or (21) must be satisfied by
every surface which is composed of the same elements of fluid.

Lines of Flow and Stream ILines.

13. DEr. A lne of flowis a line whose direction coincides
with the direction of the resultant velocity of the fluid.

The differential equations of a line of flow are
de _dy dz
Y Twe
Hence if x (#, y, 2 )=a, x,(z, ¥ 2, t) =a, be any two in-
dependent integrals, the equations y, = const., y, = const., are the
equations of two families of surfaces whose intersections determine
the lines of flow.

DEr. A stream line, or a line of motion, is a line whose
direction coincides with the direction of the actual paths of the
elements of fluid.

The equations of a stream line are determined by the simul-
taneous differential equations,

T=u y=9v z=u,
where z, y, 2z must be regarded as unknown functions of & The
integration of these equations will determine #, y, 2 in terms
of the initial coordinates and the time.
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LINES OF FLOW. 11

14. If through every point of a small closed curve lines
of flow be drawn, they will enclose a mass of fluid which may be
called a tube of flow.

Let us apply the lemma of §7 to a portion of liquid bounded
by a tube of flow and two planes perpendicular to it. Putting
u=E, v=19, w=_{ and taking acecount of (11), we obtain

0= fﬂ( ZZ d)dxdydz_ff(zu+mu+nw)dz

At every point of the curved surface of the tube of flow,
lu+mv+nw=0; at the two ends this quantity is respectively
equal to ¢, and —gq,, where ¢, and g, are the velocities of the
liquid at the ends. Hence the surface integral = ¢,dS, — ¢,dS, = 0;
whence the product of the welocity of a liguid and the cross
section of a tube of flow s constant throughout the length of
the latter.

In the next place, a line of flow cannot begin or end in any
portion of a Liguid throughout which the velocity is finite, but must
etther form a closed curve or have its extremities in the boundarics
of the portion of liquid.

For if a line of flow ended the liquid, it would be possible to
draw a closed surface cutting a tubc of flow once only. Hcnce
lu + mv +nw would be zero at every point of the closed surface
excepting where it cuts the tube of flow, and therefore the surface
integral would not be zero.

15. When a velocity potential exists, the equation
udz + vdy + wdz =0
is the cquation of a family of surfaces, at cvery point of which the
velocity potential has a definite constant value, and which may be
called surfaces of equi-velocity potential.

If P be any point on the surface, ¢ =const., and dn be an
element of the normal at 2 which meets the neighbouring surface
¢ + 8¢ at @, the velocity at P along PQ will be equal to d¢/dn;
hence d¢ must be positive, and therefore a fluid always flows
from places of lower to places of higher velocity potential.

The lines of flow evidently cut the surfaces of equi-velocity
potential at right angles.

16. The solution of hydrodynamical problems is much sim-
plified by the use of the velocity potential (whenever one exists),
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12 HYDROKINEMATICS.

since it enables us to express the velocities in terms of a single
function ¢. DBut when a velocity potential does not exist, this
cannot in gencral be done, unless the motion cither takes place
in two dimensions, or is symmetrical with respect to an axis.

In the case of a liquid, if the motion takes place in planes
parallel to the plane of &y, the equation of the lines of flow is

udy —vdz=0....ccceiiiiiiiiiin. o (22).
The equation of continuity is
du | dv
% + @ = 07

which shows that the left-hand side of (22) is a perfect differ-
ential dyr, whence

%’, v Z;” .................. (23).

The function ¥ is called Earnshaw’s current function.

U =

When the motion takes place in planes passing through the
axis of 2z, the equation of the lines of flow may be written

w(wde —udz)=0............ooel L. (24).
The equation of continuity is

d (wu) dw

Tdw L 0

which shows that the left-hand side of (24) is a perfect differential
dJr, whence

w

___1@ v Ld¥ (25)

U= " == 7  ciiitsiriaannes
w da’ w dz

where yr is Stokes’ current function,

17. The existence of a velocity potential function involves
the conditions that each of the three quantities,

dw/dy — dv/dz, dujdz—dw/dz, dv/dz— du/dy,
should be everywhere zero; when such is not the case we
shall denote the above quantities by 2§, 27, 2¢. The quantities
E m, & for reasons which will be explained in the following

chapter, are called the components of molecular rotation. They
evideutly satisfy the equation
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Formulae of Transformation’.

18. The equations connecting the components of molecular

relation with the velocities are,
dw dv du dw dv  du

QEZd—y_E’ (Al Sl 2§=E;c—g:—y .......

In order to cbtain the equivalent equations when polar

coordinates arc employed, let r, 6, ¢

be the coordinates of I°, and let

u, v, w and u + du, v+ v, w+ dw be

the velocities at the points r, 8, ¢

and r+8r, 0486, ¢+8¢ respec-

tively, measured in the directions

T

in which these quantities increase; A
also let u+ uw’, v+ 00, w+ dw' be
the velocities at the last mentioned
point parallel to the directions of ,

! X
u, v, w. —
—

Let us choose the axes of #, v, 2 ~——
so as to coincide with the directions of r, §, and ¢ respectively, then
de =dr, dy=rdf, dz=rsin §d,

and therefore we at once obtain

du' du dv dv dw dw

?d‘—”—z—d—y" Em=$" %=m .................. (28).

Let @ be a point whose coordinates are r, -+ 86, ¢; then

du,_(u-{-g—gSG)cosSH—<v+%89>sin89—u

dy 760

= ; leig - g .............................................. (29),
o (o4 v 40) cos 80 + (e T 56) sin 80—
dy = 730

S e (30),
‘%' e 31).

1 Besani, Mess. of Math., vol. x1. p. 63.
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14 HYDROKINEMATICS.

Let 2 be a point whose coordinates are 7, 8, ¢ + 8¢ ; and let
POR=38y, PTR =38y'; then

8y =sin 08¢, &y = cos O3¢.

Hence
du o,
& (u + (ﬁ 84)) cos Sy — (fw + al7>8¢> sin Sy —u
dz rein 05
1 du w
— OE = (32),
dw } ,
do <v + — 8¢> cos 8y’ — (w + E1$ qu) sin 8y’ — v
&z 7 sin 00
1 dv w
:’)"Sined&)—_c ta .......................................... (33),
duw' ( d¢ ¢)Cos$¢+< d¢ 8¢> s1n3x+( Frs ¢> sin &y’ —w
dz 750 630
1 dw
Ty dd + + L 00U <ot (34).
Hence
dw' _dv’ ldw w 1 dw
25_(1 Tdz r@_‘_;co‘og—rsineﬁ
du'  dw 1 du dw w 3
M= e T do T ren@dp dr 7 (35)

@ _dv v 1du
dz dy dr ' r rdf J

19.  If cylindrical coordinates =, 6, #z are employed ; let w, v, w
and u + 8u, v+ 8v, w + dw be the velocities at the points w, 8, z
and =+ 8w, 0 + 86, z+ 32 respectively; and let u + du’, v+ dv’
be the velocities at the last mentioned point parallel to « and w.

Then dz =dw, dy==d0,

dv du dv dv dv' dw ,
and d,q;':E;, d—mZ%, '(];-——‘E’m_ ............... (36),

du dv ]
(5 50) cos 86 — <v+d_980> sin 80— u

also 2= =

1Tdu v

= ; d’g - :5—)'_ ............................................. (37))
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"y (11-{-%59) c0389+<u+%86’> sin 80 — u

dy wod
= ; (% +;ﬁr .............................................. (38),
%’— jg’g ................................................... (39),
and ‘f;z‘ = %, Eg - %g ........................ (40).
Therefore

9 = fl_;‘ — ;'% .................. (41).

2t = :j—:; o= ‘%%J

EXAMPLES.

1. Find the equation of continuity in a form suitable for air
in a tube, and prove that if the density be f(af —z) when £ is the
time and z the distance from one end of a uniform tube, the
velocity is

of (@t =) + (T—a) f(at).
f(at—x)
where ¥V is the velocity at that end of the tube.

2. If the motion of a liquid be in two dimensions, prove that
if at any instant the velocity be everywhere the same in magni-
tude, it is so in direction.

3. 1If cvery particle of a fluld move in the surface of a sphere,
prove that the equation of continuity is

(cilt cos & +3 (pw cos 8) + — (pw’ cos ) =

d¢
where p is the density, 6 and ¢ the latitude and longitude of any

element, and w, @’ the angular velocities of the element in latitude
and longitude respectively.
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16 HYDROKINEMATICS.

4. In the last example prove that if the motion is irrotational
the velocity potential is equal to

f (log tan 36 + 1) + F (log tangf — e),
where ¢ =/ —1 and fand F are arbitrary functions.

5. An infinite mass of liquid is bounded by the plane zz, on
which are small corrugations given by y = ¢ (2). The velocity of
the liquid at an infinite distance from the plane is parallel to
and equal to V. Prove that the velocity potential is

Ve (z—=A)p(\)dr
Vﬂ’)'*‘; »m_——yz—k(m—h)z .

6. In the general motion of a fluid, prove that if ¥ is the
normal acceleration at any point on a closed surface described in a
fluid, 8 the expansion, o the molecular rotation, and 3 the strain
invariant

J9 +gh+ hf—a&® — b* — ¢, where f=du/dz, 2a = dw/dy + dv/dz,
then .UFdS=f-U(%§+€°+ 2m“—22>dxdydz.

7. Fluid is moving in a fine tube of variable section «, prove
that the equation of continuity is

d d
7z (kP + g5 (kpv) =0,
where » 1s the velocity at the point s.

8 If F(z y, 2 t) is the equation of a moving surface the
velocity of the surface normal to itself is

_1dF

R dt

Hence deduce equation (19).

, where B = (dF/dx)? 4 (dF/dy)* + (dF/d2)".

9. If «, v and z are given functions of a, b, ¢ and ¢, where a,
b and ¢ are coustants for any particular element of fluid, and if
u, v and w are the values of &, 9, # when a, b, ¢ are eliminated,
prove analytically that

d=_du  du  du  du
" dt " Yde " Vdy T Ydz

10. Liquid which is moving irrotationally in three dimen-
sions is bounded by the ellipsoid (z/a)*+ (y/b)* + (z/c)’ =1, where
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a, b, ¢ are functions of the time, such that the volume of the
ellipsoid remains constant. Prove that if the ellipsoid is rotating
with angular velocities @, ®,, @, about its principal axes, and
u, v, w are the component velocities of the liquid parallel to the
principal axes, the equation of continuity and the boundary con-
ditlons are satisfied if

az | w, (@’ =)y
a a’+ b

@, (¢*— a’) z

u =
c+ad

+
with similar expressions for v and w.

11. If the lines of flow of a fluid lie on the surfaces of coaxial
cones having the same vertex, prove that the equation of con-

T dp d d _
tinuity is T ar (up) + 2pu + cosec 8 d$ {pv) = 0.

12. Show that
a*/(akt’)* + k€ {(y/b)* + (2/c)"} =1

is a possible form of the bounding surface at time ¢ of a liquid.

13. The position of a point in a plane is determined by the
length » of the tangent from it to a fixed circle of radius @, and
the inclination & of the tangent to a fixed line. Show that the
equation of continuity for a liquid moving irrotationally in the
plane will be

d’¢ ldp  1d°¢ a (d“’q& 1c1q5) L@ (2 di¢ 1 d¢>

e T rae T e \ar e de) T \*ardo T e do

Hence indicate a method of finding the motion of a liquid
in the developable surface whose edge of regression is a right
helix, pointing out any peculiarities of the motion.

14. If the velocity potential of a liquid is of the form
=1 (=) F(9)x (z), where =, 6, z are cylindrical coordinates,
prove that the equation of continuity is satisfied if f] F, y satisfy
the three equations

. & df d'F

dw2+wd?+(xzwﬂ_nz)f= 0, ’d—eg‘{"nze(), %_x2x=0,

where n and « are constants; and hence show that

w

b =3A coshx(z—¢c)cosn (8 —a) frcos (k7 sin @ — nw) do.
B. . 2
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18 HYDROKINEMATICS.

15. In the motion of a liquid in two dimensions, the velocity
at any point is given hy two components v, ¥ along the directions
which pass through two fixed points distant o from one another.
Show that the equation of continuity is

dv dv r+r7—a® rdy dv') v v

$~+E? 2rr’ (dr’+d7' +’7'+7"'_O’
where r, 7" are the distances of any point of the liquid from the
fixed points.
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CHAPTER IL

ON THE GENERAL EQUATIONS OF MOTION OF A PERFECT
FLUID.

20. It was stated in the preceding chapter, that the pressure
at every point of a perfect fluid is equal in all directions, whether
the fluid be at rest or in motion. It will now be shown that this
property is the consequence of such a fluid being incapable of
offering resistance to a tangential stress.

Let ABCD be a small tetrahedron of fluid, and let p, p” be the
pressures per unit of area upon
the faces ABC and BCD. 8

By D’Alembert’s Principle,
the reversed effective forces and
the impressed forces which act A 0
upon the volume of fluid, together I
with the pressures upon its faces, \V
constitute a system in statical 3
equilibrium. The first two vary
as the volume, and the last vary as the areas of the faces of the
tetrahedron ; and therefore if the tetrahedron be made to diminish
indefinitely, the former will vanish in comparison with the Iatter.
Hence the tetrahedron will ultimately be in equilibrium under the
action of the pressures upon its faces.

Resolve the pressures upon the faces ABC and BC7) parallel
to AD. Since the projections of the two faces upon a plane
perpendicular to 4D are equal, the conditions of equilibrinm
require that p = p’, which proves the proposition®.

! This proposition is true even in the ease of viscous fluids, provided they are at
rest.

2—-2
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20 EQUATIONS OF MOTION.

The Equations of Motion".

21. Let X, Y, Z be the components per unit of mass of the
impressed forces which act on the fluid; p its density, and ¢ its
resultant velocity. Describe any imaginary closed surface S in the
fluid, and let € be the angle which the direction of ¢ makes with
the normal to S drawn outwards.

The rate at which momentum flows into S, parallel to =,
together with the rate of increase of the component of momentum
parallel to z, of the fluid eontained within &, must be equal to the
component parallel to 2 of the impressed forces which act on the
fluid within 8, together with the component parallel to & of the
pressure upon the boundary of S.

The rate at which momentum flows into S, parallel to =, is

[ el cos edS = [f pu (T + mw + nw) dS

:'{"[{{d(;;a?)+d(§;w)+d(§uw)}d dydz

by § 7.

The rate of increase of the component of momentum parallel
to # of the fluid contained within §

=fff Edt (p) dzdydz.

The component parallel to « of the impressed forces

= [[fpXdzdydz.

The component parallel to # of the pressure upon the boundary
of §, Is

d
[ pldS = —ﬁ[fai dudyde.
‘Whence

[U( )dxd dz Uf{d(pu) d(Pl‘”)+d(§:b)+d(PMW)}d wdydz,

which requires that

_dp_d(m) | dlpnt) _d(om) _d(pur)
Tdz dt ' dz dy dz

! This method of obtaining the equations of motion is due to Prof. Greenhill.
See Encyc. Brit,, Art. Hydrodynamics.
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EQUATIONS OF MOTION. 21

Taking account of the equation of continuity § 8, (10) the
right hand side of the last equation becomes equal to pdu/dt,

dp  ou
Tdz Pat

Two other symmetrical equations can be obtained, by eonsider-
ing the rate of change of momentum parallel to the other two
axes, whence the equations of motion are

ldp _du_ du  du_  du)
“eds @t d Pyt dz

whence p

ldp _dv dw dv dv
_;dy__%_*_u&_lrv@-i-wdz? ......... (1).

ldp_dw  dw v, dv

pdz  dt da dy dz |

These cquations together with the equation of continuity
furnish four relations between the five quantities u, v, w, p, p.

22. If the fluid be an incompressible liquid, p is constant,
and the above mentioned equations together with the boundary
conditions are sufficient to determine the motion; but in the
case of a gas another equation is required, which is furnished
by means of a relation which exists between p and p.

When the motion of the gas is such thgt the temperature
remains constant, we have by Boyle’s Law the equation

where % 1s a constant.

But when the motion is such as to cause a sudden compression
or dilatation, an increase or decrease of temperature will be
produced ; and if it is assumed (as is the case with sound waves),
that the compression is so sudden that loss or gain of heat by
radiation may be neglected, the required relation is

P=Ep" @A),

where « is the ratio of the specific heat at constant pressure to
the specific heat at constant volume'. This quantity for all
gases has the approximately constant value 1-408.

23. The expressions on the right hand of (1) are the ex-
pressions for the component accelerations of an element of fluid:
it therefore follows that if # and f be the component force and

1 Thig equation will be proved in the Appendix.
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22 EQUATIONS OF MOTION,

acceleration in any direction, and dp/dh be the space variation of
the pressure, the equations of motion are of the form
1dp
“pdn ™/

Hence if the axes instead of being fixed are moving with
angular velocities 6, 6,, 6, about themselves, the equations of
motion will be obtained by employing the expressions for the
accelerations given in § 6, (6), and are therefore,

1dp du du o du

X — dx dt+Ud +Va—+wd v8+w0
ldp dv dv -
—@ d{+Ud;+V—y+W4—w9+u0 ().

ldp dw dw dw dw
TodsT dt Da—ﬁ—VEZ—r Wdz ub, + v,

24. Let us now supposc that the forces arise from a con-
servative system whose potential is V. Since p is a function of
p, we may put

Q=-[2-v,
P
and the left-hand sides of (1), will be respectively equal to
dQ/de, dQ/dy, d@/dz. If therefore we eliminate @ by diffe-
rentiating the second equation with respect to z and the third
with respect to y, we shall obtain

o€ _ dv
P E Edw £o,

where £, 9, & are the components of molecular rotation aud
8 = du/dz + dv/dy + dw/dz. Eliminating € by means of the equa-
tion of continuity 0p/ot + pf =0, and taking account of the two

other equations which may be written down from symmetry, we
shall obtain

“odzt odz T o da
o (m\_Edu ndv  §dw
=l-)=25"4+-"5 +2 =\ 5).
9t(> pdy pdy pdy )
4 Q)_ﬁ@ pdv  Ldw
Dt(p Tpdz pdz ' pdz

g_t<§>_§du+ndv ¢ dw

———

25. It was stated in Chapter I, that in many important
problems the motion is such that a velocity potential exists.
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MOLECULAR ROTATION. 23

The condition that such should be the case is, that € », ¢ should
each vanish, We shall now prove, that when the fluid is under
the action of a conservative system of forces, a velocity potential
will always exist whenever it exists at any particular instant.

Let us choose the particular instant at which a velocity poten-
tial exists as the origin of the time; then by hypotheses £, 7, §
vanish when {=0; also the coefficients of these quantities in (5),
will not become infinite at any point of the intcrior of the fluid;
it will therefore be possible to determine a quantity L, which shall
be a superior limit to the numerical values of these coefficients.
Hence £, #, ¢ cannot increase faster than if they satisfied the

. or&\ L
equations — (—) =Z(E+ 9+ b)), &e. &ec.
q 5E) -2+
But if £+ 7+ &= Op, we obtain by adding the above equations
002
T 3L0,
whence O =46

Now Q=0 when t=0, therefore A =0; and since Q is the
sum of three quantities each of which is essentially posttive, it
follows that €, %, £ must always remain zcro, if they are so at any
particular instant. The above proof is due to Prof. Stokes™.

26. There is, as was first shown by Prof. Stokes, an important
physical distinction in the character of the motion which takes
place, according as a velocity potential does or does not exist.

Conceive an indefinitely small spherical element of a fluid
in motion to become suddenly solidified, and the fluid about it
to be suddenly destroyed. By the instantancous solidification
velocities will be suddenly generated or destroyed in the different
portions of the element, and a set of mutual impulsive forces will
be called into action.

Let #, g, 2z be the coordinates of the centre of inertia G of the
element at the instant of solidification, z 4+ &', ¥ + %', 2 + 2 those
of any other point P in it; let u, », w be the velocities of G along
the three axes just before solidification, »' ¢/, w’ the velocities of P
relative to G ; also let 4, 4, @ be the velocities of G, u,, v, w, the
relative velocities of P, and £, 5, ¢ the angular velocities just

1 ¢ 0On the friction of fluids in motion,” Section 1I. Trans. Camb. Phil. Soc.
vol. vIiI.
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24 FQUATIONS OF MOTION,

after solidification. Since all the impulsive forces are internal,
we have '

U=u, v=10 wW=w.

We have also, by the principle of conservation of angular mo-
mentu1n, Sm iy (w,—w)—2 (v, =)} =0, &c.
m denoting an clement of the mass of the element considered.

But u,=72"— &y, and %’ is ultimately equal to
(Lu ‘z-’ -+ d)u 4 -+ dﬁ Z’
da dy Y%
and similar expressions hold good for the other quantities. Sub-
stituting in the above equation, and observing that

Smy's =3m'7xd =Zma’y' =0, and Zmaz” = Smy® = Smz”,

dw dv
we have f=§(@—&), &e.

We see then that an indefinitely small spherical element of
the fluid if suddenly solidified and detached from the rest of the
fluid will begin to move with a motion of translation alone, or
a motion of translation combined with one rotation, according as
udx + vdy + wdz 1s, or is not, an exact differential, and in the latter
case the angular velocitics will be determined by the equations

2&':@_@ _du_dw §=@_dﬂ
dy dz’ dz dx’ de  dy’ ‘

On account of the physical meaning of the quantities &, 9,
they are called the components of molecular rotation, and motion
which is such that they do not vanish is called rotationel or vortex
motion; when they vanish, the motion is called ¢rrotational.

In the foregoing investigations, it has been assumed that the
pressure is a function of the density and also that the fluid is
under the action of a conservative system of forces; it therefore
follows that vortex motion cannot be produced, and consequently,
if once set up, cannot be destroyed by such a system of forces. We
shall presently show that the theorem is not true if the pressure
is not a function of the density. If therefore by reason of any
chemical action the pressure should cease to be a function of the
density during any interval of time however short, vortex motion
might be produced, or if in existence might be destroyed.
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LAGRANGE'S EQUATIONS. 25

Lagrange's Equations.

27. In Lagrange’s method the initial coordinates a, b, ¢ and
the time are the independent variables, hence the equations of
motion are 40 20 20

ik dy b =W

Multiplying the preceding equations by =,, ¥., 2z,, where the

suffixes denote partial differentiation with respect toa, b, ¢,we obtain
Q= vz, + 7Y, + vz,
Q= tmy + Ty, + W2y ) «vevnrererniianias (6).
Q. = ux, + vy, + wz,

These equations together with the equation of continuity
pJ = p,, are Lagrange’s hydrodynamical equations of motion.

Weber's Transformation.
28. Integrating the right hand side of the first of (6) between
the limits ¢ and 0, the first term becomes

fmadt=f&;-xadt=(¢xa):—fma dt

where u, is the initial value of u. If we treat each of the other
two terms in a similar manner and put

t
x=[ @+igd
0
where ¢ is the resultant velocity of the liquid, we obtain

dx
ux, + vy, + wzn—u(,:%

UL, + vy, + we, — v, = d)bc .................. (7).

dx
ur, + vy, + wz, —w,= dc
These equations together with the equation of continuity and
dy/dt = Q@ + }¢*, give five equations for determining z, v, 2, p, x;
p being supposed to have been eliminated by means of (2) or (3).
The above equations may be expressed in a different form, for
multiplying by dJ/d=,, dJ/dz,, dJ/dx, and adding, we obtain
1 dJ dJ dJ\ dx
j (Zlad_xn'*"l)o’d:;b"F ’wogd;> + CE ............ (8),

with two similar equations.
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96 EQUATIONS OF MOTION.

29. Multiply (7) by da, db, dc and add, and we obtain
vdea +vdy + wdz — uda —udb —wde =dy......... (9).

If at any particular instant which we shall choose for the
origin of the time a velocity potential exists, udu + v,db +w,dc
will be a perfect differential ; hence if p be a function of p, dy will
also be a perfect differential, which proves that if a velocity
potential once cxists, it will always exist; but if p is not a function
of p we cannot put Q =— V—[p™ dp, but must write

vl Ga-a-[ 1%

for dy/da, in which case the right hand snle of (9) becomes
t trdp
df i —V (zzﬁj (L) a
0 & ) ° \ P
where d denotes space differentiation. The right hand side of (9)

1s no longer a perfect differential ; hence udz +vdy + wdz is not a
perfect differential.

If therefore the pressure be not a function of the density, vortex

motion can be generated or destroyed in a perfect fluid moving
under the action of natural forces.

Cauchy's Integrals.

30. Eliminating @ from the last two of (6), we obtain
W, — ULy + VY, ~ DYy + W2, — W2, = 0.

Tntegrate this equation with respect to ¢, and let w,, v, w, be
the initial values of u, v, w; then
dw, du,
W de

U, — Wy VY, — VY + W2, — W2y =

du du du
But Uy = -, F y Yat g, 2o &e. &e.
Substituting thesc values of u, ub, &c., we obtain the equations
dJ dJ
fin, "y " e, T

dJ dJ dJ
dz, +"dy E@:%’

aJ dJ dJ
EEE tm du1+ Az = &
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CAUCHY'S INTEGRALS. 27

Multiplying these equations by «,, z,, #, and adding, and
remembering that Jp= p,, we obtain

f%g = onu + 1% + goa"c

f%? = EYaF N+ Ll oo (10).

p;)g = Eoza + nozb + ;’ozc

These equations show that E, 4,  are always zero, if they are
initially so.

31. The equations of motion can be integrated whenever
a force and a velocity potential exist; for putting

o--[%-v,

and multiplying (1) by da, dy, dz respectively and adding, we
obtain

dQ= atd +a”d +ai”dz

Now in the present case

ou du du dv dw
=@t T e T e T e

)

where ¢ is the resultant velocity. Integrating, we obtain
dp dé | 2_
IF+V+87+EQ —F () e, S (1),
where F is an arbitrary function.
32. Drr. A vortex line is a line whose direction coincides

with the direction of the instantaneous axis of molecular ro-
tation.

The differential equations of a vortex line are thus

de _dy d=z
Eon
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28 EQUATIONS OF MOTION.

Clebsck's Transformation’.

33. When a velocity potential docs not exist, a first integral
of the gencral equations of motion can be obtained by means of a
method which depends upon the analytical theorem, that if u, #, w
are any given functions of @, ¥, z it is always possible to determine
three quantities ¢, A, , such that
uds +ody +wdz =dd +Ady ..ot (12).

In order to prove the theorem, let w’, v/, w', ¢ be four quantities,

such that
u=w-+¢, v=v'+¢, w=w+d,

These equations involve three rclations between the four
quantities ', ¥, w’, ¢ and are therefore insufficient to determine
them as functions of u, v, w ; we may therefore assume any relation
between u', ¢/, @’ which may be convenient. Let us therefore
suppose that

ww, =) +v (W, —w,)+w (@ —u,)=0.

This is the condition that «'dz + v'dy + w'dz should have an
integrating factor, we may therefore put this quantity equal to
Ady which proves the proposition. It therefore follows that,

‘;?;, u=%z+x%, w=c£+kdx (13).

The components of molecular rotation are given by the
equations

2E=Mx.— A
PR N W, VA S (14).
28= AXy — M X

The form of these equations shows that the vortex lines arc

the intersections of the surfaces A = const., y = const.

duv d rd¢ x\ | A dy
Now = qe\as T dt)+dtx ~dr
Therefore
Bu dé dy du | dv dw
dm( +A a’t) e et Y e
oA 8X -
+ gz X: at )\ ............... (10)

1 Crelle, vol, nvi. p. 1. Seec also Hill, Quart. Journ. vol, xvir; Trans. Camb.
Phil. Soc. vol. xtiv. p. 1; Phil. Trans. 1884, p. 363; Proc. Land. Math. Soc.
vol. xvr. p. 171,
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CLEBSCH'S TRANSFORMATION. 29

Putting H_—Q+']¢+ xd;‘+ 10 v (16),

and substituting the values of tu/ot and d@Q/dz from (15) and (16)
in (1), we obtain
dH o 0 -
e X = A =0 (17),
with two similar equations,

Multiplying by & %, € and adding, we obtain

di  dH  dH
€ 1 qy +HE =0 (18).

If ds be an element of a vortex line, and @ be the resultant
molecular rotation, the operator is equal to wd/ds, whence 1n-
tegrating along a vortex line, we obtain

f‘?+]7+i‘f+7\,~+%g Fit, %) (19).

Writing for a moment P =0A/0¢, R = 0y/0t and eliminating H
from (17), we obtain
PX — R, — Py, +Bx =0
IX' R X sz + Ry)\’l = 0
Poy,—BX, —P,x.+Ex =0
Multiplying these equations in order by A, A,, A, and adding
and taking account of (14), we obtain

EP, + nP, + P, =0 .cooviernnn... (20).

If = vy, z be any point on the surface A = 4, where 4 is an
absolute constant, and if §/w, n/w, {/w be the direction cosines of
the vortex line at this point; equations (14) and (20) show that this
vortex line lies on the surfaces A = 4 and A\ -+ OA/0t. dt = 4, which
is impossible unless oA/ot=0. Similarly ox/ot = 0; whence the
surfaces A and  and therefore the vortex lines are always composed
of the same elements of fluid. This important theorem was first
established by Helmholtz®,

Hence it follows from (17) that H,, I, H, arc each equal to
zero, and therefore H is a function of the time alone; whence the
pressure 1s determined by the equation

fdp+V+ ? xd7f+1q*=lv'(t) ............ (21).

1 Crelle, vol. Lv. and Phil. Mag. (4) vol. xxxir1. p. 485.
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30 EQUATIONS OF MOTION.

34. We can now show that in the case of a liquid, the

integral
ff[f (% + V) dtdzdydz....ccoviiinnn. (22),

is a maximum or minimum, where the value of p/p+ Vor — Q is
given by (21), and the time remains invariable.

dd¢ dx de
For 8Q = udu + vdv + wow + a T d A+ a

and ou= d8¢ dx oA + A dSX
dx dz

Therefore
Jffubu dtdedydz = [[fu (8¢ + Noy) dtdydz

d du
+ﬁﬂ {“an" - 5, ) 8 — - 8y dtdadyda.

Omitting the triple integrals which refer to the boundary we
see that the first three terms of 8§ give rise to the terms

JIT{Cus + vy, + wx) SN — (uh, + 0N, +wd,) Oy
— 8 (8¢ + A8y)} dtdzdydse,

which
5015 o
dw
Also the last three terms of 3@ (omitting triple integrals) give
rise to
[ on— B o) avdvayds.
‘Whence

fﬂ Sthd”d?/dZ—fﬂf{ax&— 3%—3(3¢+18x)} dtdadydz

-+ triple integrals.

Tn order that the quadruple integral should vanish, we must
have 0 =0, 3y/0t = 0, 9r/dt = 0, which by virtue of the equation of
continuity and § 33 is obviously the case.
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On the Application of the Principles of Energy and Least Action.

35. Let S be any imaginary closed surface, which is fixed in
the fluid. The work done during a small interval & upen the
liquid contained within S, by the impressed forces which act
upon its mass, together with the work done by the pressure upon
the boundary of S, must be equal to the increase during the
interval 8t of the kinetic energy of the liquid contained within S,
together with the kinetic energy which, during the same interval,
flows into S across the boundary.

The work done by the impreqsed forces

fff ( d;’+ ‘jlv) 8t dodydz.

The work done by the pressurc upon the boundary
= — [[p (Qu+ mv+ nw) 6t dS

_ P W dp) ,
—f'fj’(u am-H) dy+wﬂ St dzdydz,
by § 7. Hence the total work done
d
SIE ( 3—+v— 3% 5t dedyde.

Let T be the kinetic energy per unit of mass, so that
T = 3" + 0" + w’).

The increase in the kinetic energy of the liquid contained

within S
(T
=fff——(#’-)8t dwdydz.

The amount of kinctic energy which flows into S

=j'pr(lu+mv+nw)3tdS

Uf{d (puT)+ (va)+ (pr)}Btddedz

Taking account of the equatmn of continuity § 9 (10) the total
increase in the kinetic energy

f_Up Stdxdyda.
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32 EQUATIONS OF MOTION.

. dQ  dQ D
Whence _U[p vdy @) Stdzdydz =0
which requires that
oT _ 49 Q dQ
‘gz % + v y w dz .................. (23)

If we substitute the values of u, v, w from (13), we find that

%%( = dd?ﬁw*) (d¢+"a‘c>

dx
+ (uxs + vy + wx.) T — (uA, + VA, +wx)dt.

The last two terms vanish by § 33, whence (23) becomes

(u%Md‘Z )(Q T2 ‘fi’g)=o.

Now if ds be an elementary arc of a stream line u = gdz/ds, &c.,
and the operator is therefore equal to gd/ds. Integrating along a
stream line, and restoring the values of @ and 7, we obtain

dt

36. The equations of motion may be deduced, as Mr Larmor
has shown, by means of the Principle of Least Action combined
with the Lagrangian method.

dé  \Ix _

Let @, y, 2 be the coordinates at time ¢ of an element of fluid
whose initial coordinates are a, b, ¢; the Principle of Least Action
requires that

[li7{3p (#* + 9"+ &) — Vp] dit dedydz

should be a maximum or minimum subject to the condition that

_2®y,2) _p
“d(a, b)) p’

where the time of the motion is constant.

Hence if A represent an undetermined function of #, y, and 2,
we must have

sffff{ @+ + 8~V — xg((“ ;)’Z;}dtdadbdc=0.

Taking the variation of the first two terms, we obtain

'}’f/{(wSm—rySwazSz) (dV +—8 + SZ)}dtdadbdc.
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LEAST ACTION, 33

Integrating by parts and omitting the triple integrals, this

__fm{“_ )82 +(y+dV)8y+( F‘g)sz}dtdadbdc.

If ¥,, M,, M, be the minors of dx/da, dz/db, dz/de in J

d (%, y, 2) ddz d&z ddz
d@bo gt g Mg

whence, omitting triple integrals,

[ asamae== [[[[[2 G+ + 22)

+(ar L7 dc)] 8w di dadbd.

tda 2 db
The first term in brackets vanishes, and the second term is
equal to JdA/dz,

whence —Uf )»83((” :g’ Z; dt dadbdc

_Mf{_s +A By -+ Bz}.]dtdadbdc

Hence the conditions of the problem require that

oy 4V _podh
de pdzr
av pd?\
—— = =0} i, 24).
&y " pdy @4
aV _ p, dn
dz  pdz

Now &, i, Z are the component accelerations of the element
whose coordinates are @, y, 2z, and are therefore equal to ou/ot,
ov/ot, and Ow/t respectively; and when we interpret — Ap, which
must represent the pressure, equations (24) are the equations of
motion in the ordinary form.

On Steady Motion.

37. When the motion is steady du/dt, dv/df and dw/d: are
each zero. In this case the general equations of motion can be
integrated without having recourse to Clebsch’s transformation.
It will however be necessary to distinguish between irrotational and
rotational motion.

B. 3
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34 EQUATIONS OF MOTION.

The general equations of motion may be written,

ou dg _dg

Bt 1} — 2vE+ 2un = 7d

du

=l =L L 25).
5 dt +§ —2wE+ 2ufl= d . (25)
ou Q

_dw dg dQ
87—E+%d 2u77+2v§_
When the motion is steady and irrotational 4, 4, w, £ #», § are
each zero; whence, multiplying by dz, dy, dz, adding and inte-
grating, we obtain
Q=1¢—-0C

or f—ier V+ig*=0 .., (26).

Iu this case the quantity C is evidently an absolute constant.

When the motion is rotational, let ds be an element of a stream

line, then
dz dy dz

=9y VT Og P gy
Multiplying the general equations by u, », w and adding,

" dQ_ , d¢°
we obtain a5 = %% ,
whence f%’ + V=4 . 7).

This is Bernoulli’s Theorem.

Since we have integrated along a stream line, the quantity 4
is not an absolute constant, but a function of the parameter of a
stream line: in other words if 4r=const., v = const. be two surfaces
whose intcrsections determine the stream lines, 4 is a function

of ¥~ and y.

38. Let us now consider the steady motion of a liquid* which
18 symmetrical with respect to the axis of z. The vortex lines
will evidently be perpendicular to every plane through the axis
of z, hence by § 19 (41) the molecular rotation w will be determined

by the equation
du dw

dz dwo’
1 Stokes, **On the steady motion of incompressible fluids,” Zrans, Camb. Phil.
Soc. vol. vor. p. 439,

20 =
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STEADY MOTION, 35
Substituting for % and w their values in terms of Stokes’
current function ¥, § 16 (25), we obtain
de  d  1dy
a;g + d;_g —; d + 2m'm ............. (28)
The equations of motion are

dQ du du. d(q’)
dw = d—z:r %

dQ dw dw ,d (q’)
Ydi T ds

+ 2w,

dz ~“de Tz — Zue.

Eliminating @ — 4¢°, we obtain

d dw du  dw
u +wdz+w(%+32)=o ............ (29).
The equation of continuity § 9 (13) is
du dw u
g s o M 0,
W Z w
whence (29) becomes
dw do uw
d d\ ®
or (ud:_-%wa;) 20 i (30).

Substituting the values of u, w and @ in terms of +, (30)
becomes

(djf d _dy d){ (‘W ey 1 d“’)}:O...(m.

dz dw  dw dz 172 Vi "= do

A first integral of this equation is evidently
ay & 1d
St et W)

W ‘m’dﬁf

whence by (28) 20 + af (Y) = 0 (33)

When the motion takes place in two dimensions, we shall, in
exactly the same way, arrive at the equations

d¢,  df
ud +v @— 0,
d d*
and d“: d‘@ T SO (34),
dr d _dyr d (dy | diY
whence (dy iz dr dy) (dw’ + dy") =0...ciinn, (35),
3—2
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36 EQUATIONS OF MOTION.

a first integral of which is

| A
a2 T ay = () e (36),
whence by (34)
204+ (P)=0 cevririiiniiiirein (37).

39. The subject of the steady motion of a liquid has been
treated in the following manner by Clebsch®,

Let b and ¢ be any functions of #, ¥, z and ¢; then if the
suffixes denote differentiation with respect to , ¥ and 2, we may
evidently put

u=be,—bge, v=">bc,—be, w=be,—be,...... (38),
for these values of u, v and w satisfy the equation of continuity.
From (38) we deduce

ub,+vby+wb,:0}

uc, + ve, +we, = 0
hence the stream lines are the intersections of the surfaces
b =counst., ¢ = const.

Putting 2T =u® + v* + w®,
and multiplying equations (25) by dw, dy, dz respectively and
adding, we obtain
dQ—dT=Mde+Mdy+ Mdz ............ (40),

where M=—v@,—u)+tw(u—w)=—20f+ 2wy,
with similar expressions for M, and M,. From the values of M,
M,, M, it follows that

Mu+My+Mw=0 .................. (41).

Eliminating u, v, w from (39) and (41), we obtain

M, b,, c|=0.
M, b, c
Ms’ bz’ cz

Hence we may put
M, = Bb, + Ce,
M,=Bb,+ Cc,
M, = Bb, + Cc,

where B and C are quantitics whose valucs we shall hereafter
determine ; (40) may now be written

1 Crelle, vol. Lv. p. 293,
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CLEBSCH'S TRANSFORMATION. 37
d@-dT=2D(bdz + bdy + bdz) + C(cdz+ c,dy + cdz),
or dQ—dT=Bdb+ Cde.......oovvivvininnn, (43).

Since the left-hand side of (43) is a perfect differential, the
right-hand side must be so also, whence if F be a function of b and
¢, we must have

dl dr
B= b’ C= P 7SRLRLECI T PP RIS (44),
and therefore RQ—T=F®,c) .c..cevviiiinnnnn, (45)

is an integral of the equations of motion.

When the motion is irrotational, M, M , M, and therefore B
and (' are each zero, and therefore F is an absolute constant,

40. We must now find the values of B and C. If we sub-
stitute the values of u, v and w from (38) in the expression for T
and differentiate partially, we shall obtain

dT

ap. = Vet we,

T e+
b, we, + uc,
ar
d—bz = —uc, + e,
d dT\ d ATy d dT
wheace do (Ez?,) tay (db) t (db,)

o (w,— ) — o, (= w,) —c, (1, —u,)
==2(cE+cy+cd)
From the first two of equations (42), we obtain
Bw=Mc,— Mg,
=2¢, (—v&+ wn) — 2¢, (— wE + ul)
=2w (c.E+cm+cb)
by (39). Therefore

ddry ddTy  d T\, dF

d—m(rzb)+@(a@)+d2(ab,)*“3“% o (46)
Similarly

d dry  d Ty d@dly ., dF

)+ iy o) e ) == 0= =G
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38 EQUATIONS OF MOTION.

41. By means of the preceding equations it can be shown
that the conditions of steady motion make
[[[(T— F)dzdydz

a Imaximum or minimum,

For 3T~%8b + &,

and fffz—g,%,dwdydz_[ (“'Bbd ds fffa, ( )demd_ydz.

Whence, omitting the double integrals which refer to the
boundary, we obtain

[[[orasayas - [[] {2 (2) + & (3T)+ ;Z@T)}abdxdydz
- () +dj(“%) + 5 (G odsdyas

_ f I {dﬁ’ sb+ 80} dzdyds

by (46) and (47); whence
[ (T - F)ydzdydz =0,

which proves the proposition.

Impulsive Motion.

42. Let u,v, w and ', v, ' be the velocities of a fluid, just
before, and just after the impulse ; p the impulsive pressure. Then
i S be any closed surface, the change of momentum parallel to
z, of the fluid contained within S, must be equal to the component
paralle]l to x of the impulsive pressure upon the surface of S.

Hence [Tp (W —u)dedydz =— [[pldS
f f f - dzdydz.
Therefore p (W —u)=— %
Similarly p(¥ —v)=— (% .................. (48).
dp

p (' —u)=—2
Multiplyinor by d=, dy, dz and adding, we obtain
— =W —-wyde+@ —v)dy + (W' —w) da...... (49).
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In the case of a liquid p is constant, whence differentiating
(48) with respect to @, y, z respectively, and taking account of the
equation of continuity, we obtain

Vip=0.

If the liquid were originally at rest it is clear that the motion
produced by the impulse must be irrotational, whence if ¢ be its
velocity potential, we must have

== PP i (50).

EXAMPLES AND APPLICATIONS.

43. A mass of liquid whose external surface v o sphere of
radius a, and which is subject to a constant pressure 11, surrounds a
solid sphere of radius b. The solid sphere s annihilated, 1t is
required to determine the motion of the liquid.

It is evident that the only possible motion which can take
place is one in which each element of liquid moves towards the
centre, whence the free surfaces will remain spherical. Let I¥', B
be their external and internal radii at any subsequent time, # the
distance of any point of the liquid from the centre. The
equation of continuity is .

d . .
d_,r(’r V):O,

whence rv=F(1).

The equation for the pressure is

B
- 2dr’
whence P44 @) _ 37,
[ r

when r=R', p=1II, and when »= &, p=0, whence if ¥V, V"' be
the velocities of the internal and external surfaces

II 1 1

2 s V-1 2 __ P,

=T O(g-5) -1 0"=7)
Since the volume of the liguid is constant,

RPF—R=a"-b"=¢,
7 o 1 b}
also F () _dt(R ),
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40 EQUATIONS OF MOTION.

whence

I_pd

1 1 R A
R“V{H‘A—W}— V“{ , ~1}.
p dR( ) (lﬂg »y R % (R5+CS)¥ ?
Putting z=R'V* multiplying by 2R* and integrating, we

. IR -5 { 1 1}
bt 2 — =V S O
obtain 3 pR ( B+ 03)’3 R

which determines the velocity of the inner surface.

If the liquid bad extended to infinity, we must put ¢ = o0, and

2
we obtaln 211 - By =R <d£) ,

3p
whence if ¢ be the time of filling up the cavity
\/ » RYdR
f JE— R

_b\/"rP F(s
6IL I' (3

The preceding example may be solved at once by the Principle
of Energy.

The kinetic energy of the liquid is

R R
2mp f vy = 2mp VAR f dr
R RT
_ 2mp VR {3 o1 75} .
- R (RS+ CS)

The work done by the external pressure is
4TI f " Pdr = 41l (@ — R
R
~ 410 (b° — I°),

whence I (B°— R°) = VER*p {1% - ;%} .
(B +c%

44. The determination of the motion of a liquid in a vessel of
any given shape is one of great difficulty, and the solution has
been effected in only a comparatively few number of cases. If,
however, liquid 1s allowed to flow out of a vessel, the inclinations
of whose sides to the vertical are small, an approximate solution
may be obtained by neglecting the horizontal velocity of the
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HYPOTHESIS OF PARALLEL SECTIONS. 41

liquid. This method of dealing with the problem is called the
hypothesis of parallel sections,

Let us suppose that the vessel is l
kept full, and the liquid is allowed to
escape by a small orifice at P. Let A
be the distance of P below the free
surface, and z that of any element of

l
liquid. Since the motion is steady, i}\
the equation for the pressure will be \_/\\

%—gz+1}v’=a

Now if the orifice be small in comparison with the area of the
top of the vessel, the velocity at the free surface will be so small
that it may be neglected ; hence if IT be the atmospheric pressure,
when 2=0, p=1I, v=0 and therefore O =TI/p. At the orifice
p=1I, z=h, whence the velocity of efflux is

v =42k,
and is therefore the same as that acquired by a body falling from
rest through a height equal to the depth of the orifice below the
upper surface of the liquid. This result is called Torricelli’s
Theorem.

45. Let us in the next place suppose that the vessel is a
surface of revolution, which has a finite horizontal aperture, and
which is kept full®.

Let A be the area of the top A B of the vessel, U the velocity
of the liquid there; let K, u; Z, v be similar quantities for the
aperture U0, and a section ab whose depth below AB is e:
also let & be the depth of CD below 4B

The conditions of continulty require that A B

AU = Ku = Zv,
and since the horizontal motion is neglected, the
equation for the pressure is
1dp dv  dv
hiz= 9w d

Now U and u are functions of ¢ alone, whilst Z

is a function of 2z only, whence
dv A dU Kdu
di~ Zdt Zdt’

1 Besant’s Hydromechanics.,

2
@
©

o~
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42 EQUATIONS OF MOTION.

p_ _a%Ude
whence 0 F(@)y+gz Adton L
when z =0, p = II, v = U, thercfore
1
RACEEL

'
when z="4, p=1I, v=u, whence if a =f Zde,
Q

%:F(t)+gh——Aa,U—%ug,

whence AalU = gh + 5 (U = u)
Al

- e (1 -4
gh+3U (1 ]P)'

Putting (4/K)* —1=2m, 2J/ghm =aa, and integrating, we
obtain

U— gh C— et

m O+ e’
where (' is the constant, of integration. Now initially U =0 since
the motion is supposed to begin from rest, therefore =1, and we

obtain
U= &/ g_h tanh lat
m

= \/‘(ZLL tanh tJ/ghm/a. -
m a
The velocity of efflux is
u :.\/(1 + 2m) fnh tanh t /ghm/a.

After a very long time has elapsed tanh #ghm/a becomes
equal to unity, and if K be very small compared with 4, m = oo,
and we obtain Torricelli’s Theorem

w = J3gh.
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EXAMPLES.

1. A FINE tube whose section & is a function of its length s, in
the form of a closed plane curve of area A, filled with ice is moved
in any manper, When the component angular velocity of the
tube about a normal to its plane is (), the ice melts without change
of volume. Prove that the velocity of the liquid relatively to the
tube at a point where the section is A at any subsequent time
when  is the angular velocity is

where 1/c = fk7'ds, the integral being taken once round the tube,

2. A centre of force attracting inversely as the square of the
distance 1s at the centre of a spherical cavity within an infinite
mass of liquid, the pressure on which at an infinite distance is =,
and is such that the work done by this pressure on a unit of area
through a unit of length, is onc half the work done by the attractive
force on a unit of volume of the liquid from infinity to the initial
boundary of the cavity; prove that the time of filling up the cavity

will be B
Py (3
T \/m {2 (2> },

a being the initlal radius of the cavily, and p the density of the
liguid.

3. In the case of the steady motion of a gas issuing symmet-
rically and subject to no forces, neglecting changes of temperature ;
prove the following relation between the velocity » and the
distance 7 from the centre;

4aror® = Q exp (v* — u*)/2k,
where @ 1s the quantity of gas that issues per unit of time, % is

the constant ratio of the pressure to the density, and u is the
velocity at points where the pressure is k.

4. Iu the steady motion in one plane of a liquid under the
action of natural forces, prove that

wWVWiu — uVi =0,
where V? = d*/da’ + o /dy.
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44 EQUATIONS OF MOTION.

5. Jets of water escape horizontally from orifices along a
generating line of a vertical cylinder kept always full.  Show that
(to axes inclined at an angle 47 to the vertical) the equation of the
lines of equal action for unit mass of water is of the form

2 +yt=all

Show also that the line of equal time for particles of water
issuing simultaneously from the orifices, is the free path of the
water which leaves the vessel by an orifice at a depth below the
surface equal to that time.

6. A cistern discharges water into the atmosphere through a
vertical pipe of uniform section. Show that air would be sucked
in through a small hole in the upper part of the pipe, and explain
how this result is consistent with an atmospheric pressure in the
cistern.

7. A mass of liquid is moving so that the velocity at any point
is proportional to the time, and the pressure is given by

Plp = pays = 4 (Y2 + 22+ a7y
prove that this motion may have been generated from rest by finite
patural forces independent of the time, with suitable boundary
conditions : and show that if the direction of motion at every point
coincides with the direction of the 1mpressed force, each particle of

liquid describes a curve which is the intersection of two hyperbolic
cylinders.

8. Water is revolving with angular velocity « in a smooth
fine circular tube of radius @ which it completely fills, and which
rests on a horizontal plane. If the tube be made to revolve with
uniform angular velocity o about a pivot O in its plane, show that
the absolute angular velocity of the water round the centre C of
the tube i1s unaltered. Also if @ be the average pressure of the
water throughout the tube, show that the mean pressure of the
water for a section through any point P of the tube is= 4+ pacw®cos 8,
and that the resultant pressure on the tube at P per unit of length
1s mw/ua + maw® + 2mew” cos 8, where 6 1s the angle between OP
and OC produced, ¢=0C, m is the mass of watcr which would
fill & unit length of the tube, and p that of a unit volume of
water.
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9. Prove that the equations of motion of a fluid referred
to moving axes muy be expressed in the form

1dp du du du du
pde Xttt Y Gt g Y 6

— (0} + o))z~ (b, — w,w,)y + (3, + 0,w)z=0,

— 2w, + 2we,

and two similar equations: where u, v, w are the component
velocities of the fluid relative to the moving axes whose component
angular velocities are w,, w,, o,.

10. A solid sphere of radius @ is surrounded by a mass of
liquid whose volume is 47r¢%/3, und its centre is a centre of attractive
force varying directly as the square of the distance. If the solid
sphere be suddenly annihilated, show that the velocity of the inner
surface when its radius is «, is given by

#2 (4 ) = o= (g ) (=) @+ )

where p is the density, IT the external pressure and p the absolute
force.

11. Prove that if @ be the impulsive pressure, ¢, ¢  the
velocity potentials immediately before and after an impulse acts, V
the potential of the impulses,

@4 pV +p (¢ — ) = const.

12. A mass of compressible fluid is arranged in concentric
spherical layers round a point under its own gravitation. Show
that if radial vibrations be set up, the displacement z of an element
is given by

1 &2 d% ydp  2\dz 2—wydp 1\ z

feypr det W+<; EWL}) dr‘2<7 d;+7~> ”

the pressure and density being connected by the equation p = kp?,

and p in the differential equation being the density of the element
when at rest.

H

13. If p denote the pressure at any point of a liquid moving
irrotationally in two dimensions, under the action of a conservative
system of forces, prove that

Vilog Vi p=0.

14. The surface of a vessel consists of two equal right cones,
height 2¢, with coincident bases; it is fixed with its axis vertical
and filled with water to half way up the axis of the upper cone, the
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46 EQUATIONS OF MOTION.

air above this level being initially at atmospheric pressure and the
vessel closed. The water flows out of the vessel from a ring of
apertures on the level of bisection of the axis of the lower cone.
Oun the hypothesis of parallel sections, obtain a differential equation
for the velocity of efflux, while the frec surface is above the
midway point, and show that one equation to find its maximum
value in this stage is :
w'[1—{0/(20 — 2)}*] — 29 (¢ + &) = 2 [{¢/(2c — &)1’ — 1] p7%

where x = height of surface above midway point.

15. If the motion of a homogeneous liquid be given by a
single valued velocily potential, prove that the angular momentum
of any spherical portion of the liquid about its centre is always zero.

16. Homogeneous liquid is moving so that
u=nz+ay, v=LRr—yy, w=0,
and a long cylindrical portion whose section is small and whose axis
is parallel to the axis of 2z is sclidified and the rest of the liquid
destroyed. Prove that the initial angular velocity of the cylinder is
BB — Az — 2Fy
A+ B ’
where A, B, ¥ are the moments and products of inertia of the
section of the cylinder about the axes.

17. Liqguid is contained between two parallel planes; the free
surface is an elliptic cylinder whose axis is perpendicular to the
planes, and the semi-axes of whose section are a, b,. All the
liquid within a confocal clliptic cylinder, the semi-axes of whose
section are a,, b, is suddenly annihilated; prove that if II be the
pressure at the outer surface, the initial pressure at any point of
the liquid is

log(a +b)—1og(a,+0,)

log (a,+b,) ~log (a,+b,)’
where @ and b are the semi-axes of a confocal cylinder through the
point.

18, Fluid is contained within a sphere of small radius; prove
that the momentum of the mass in the direction of the axis of @ is
greater than it would be if the whole were moving with the
velocity at the centre by

Ma?
75F {Pmuz + oty + pitt + %Pvzu} .
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19. Obtain by means of Clebsch’s transformation, § 39, the
cquations (33) and (37) of § 38.

20. Prove that when the motion of a liquid is steady, it is
possible to draw a series of surfaces P = const. each of which shall
be covered with a network of stream lines and vortex lines. Prove
also that at cvery point of such a surface

dP
dn

where ¢ and w are the resultant velocity and molecular rotation,
and e is the angle between their directions.

=qosine,

21. A cylindrical vessel of any form which is rotating about its
axis, is filled with liquid which is rotating as a rigid body. Prove
that if the cylinder be reduced to rest, the resulting motion of the
liquid will be steady.

22. If the motion of a liquid be referred to axes moving with
angular velocitics €, 8,, 6, about themselves, prove that the com-
ponents of molecular rotation are determined by the equation

dE dE dE df _.du du . du
ai Mt O UG AV o AW =t gy e

with two similar equations; where u, », w are the component
velocities of the liquid parallel to the moving axes, and U, V, W

are its component velocities relative to these axes,
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CHAPTER IIIL

ON SOURCES, DOUBLETS AND IMAGES.

46. WHEN the motion of a liquid is irrotational and symmet-
rical with respect to a fixed point, which we shall choose as the
origin, the value of ¢ at any other point P is a function of the
distance alone of P from the origin; and Laplace’s equation
becomes

d’c,b 2 d¢
dar Yrar 0.
Therefore =T ,
r
dp m
and e T

The origin is therefore a singular point, from or to which the
stream lines either diverge or converge, according as m is positive
or negative. In the former case the singular point is called a
source, in the latter case a sink.

The flux across any closed surface surrounding the origin is

ff‘“’dg fmmsfds_ fdn

= 4mm,

where d{) is the solid angle subtended by dS at the origin, and e
is the angle which the direction of motion makes with the normal
to S drawn outwards,

The constant m is called the strength of the source.
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47. A doublet is formed by the coalescence of an equal source
and sink. To find its velocity potential; let there P
be a source and sink at 8 and H respectively, and /
let O be the middle point of SH, then /

" m
$=-sptmp
__mSH cos SOP / L
or o

Now let SH diminish and m increase indefinitely, but so that
the produet m . SH remains finite and equal to g, then

if the axis of z colncides with OS.

Hence the velocity potential due to a doublet is equal to the
magnetic potential of a small magnet whose axis coincides with
the axis of the doublet, and whose negative pole corresponds to
the source cnd of the doublet.

48. The velocity potential due to a sheet of doublets of
strength m per unit of surface, which is such that the axis of cach
doublet coincides with the direction of the normal to the sheet at
the point at which it is situated, 1s

¢ =— Uﬁ’ﬁ*ﬁ I
=— [fmd(}.
If m be constant, ¢ =—mid.
Hence the velocity potential due to a doublet sheet 1s equal to

the magnetic potential of a simple magnetic shell of strength — m.

49. When the motion is in two dimensions, and is sym-
metrical with respect to the axis of 2z, Laplace’s equation becomes

d’ 1d
d?di ty 7 d? 0.
Therefore ¢ =mlogr,
dp m
dr 7’
B 4
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50 SOURCES, DOUBLETS, AND IMAGES.

where r is the distance of any point from the axis. This value of
¢ represents a line source of infinite length, whose strength per
unit of length is eqnal to .

If 4 be the current function,

m_1dy
r rdf
Therefore Y =mb
= m tan™ y .
x

The velocity potential due to a doublet in two dimensional
motion is

p=mlog SP —mlog HP
SH __pecos SOP

Theory of Images.

50. Let I[,, H, be any two hydrodynamical systems situated
in an infinite liquid. Since the lines of flow cither form closed
curves or have their extremities in the singular points or bound-
aries of the liquid, it will be possible to draw a surface S, which is
not cut by any of the lines of flow, and over which there is there-
fore no flux, such that the two systems H,, H, are completely shut
off from one another.

The surface S may be either a closed surface such as an ellip-
soid, or an infinite surface such as a paraboloid.

If therefore we remove one of the systems (say H,) and sub-
stitute for it such a surface as S, everything will remain unaltered
on the side of S on which I, is situated; hence the velocity of
the liquid due to the combined effect of H, and If, will be the
same as the velocity due to the system 7, in a liquid which is
bounded by the surface S.

The system H, is called the vmage of H, with respect to the
surface S, and is such that if If, were introduced and S removed,
there would be no flux across S.

The method of images was invented by Sir William Thomson,
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and has been developed by Helmholtz, Maxwell and other writers?;
1t affords a powerful method of solving many important physical
problems.

51. We shall now give some examples,

Let 8, 8 be two sources whose strengths 4
are m. Through A the middle point of 88
draw a plane at right angles to SS. The
pormal component of the velocity of the
liquid at any point P on this plane is § A s
~ gy €08 PSA + ), cos PS4 =0,

Hence there 1s no flux across AP. If therefore @ be any
point on the right-hand side of AL, the velocity potential due to
a source at S, in a liquid which is bounded by the fixed plane AP,

18
m m

PRI
Hence the image of a source & with respect to a plane is an
equal source, situated at a point I on the other side of the plane,
whose distance from 1t 1s equal to that of 8.

52, To find the image of a source placed outside a sphere®.

P -

Let S be the source, O the centre of the sphere, a its radius,
0S=f POS=0, u—=cosé.

Then, if & be the velocity potential due to the source,

m m

P = 9frus O

! Helmholtz, Crelle, vol. Lv. 1858; Thomson, Reprint of papers on Electricity
and Magnetism, p. 52; Maxwell, Proc. Roy. Soc., 18 Feb. 1872; Electricity and
Magnetism, vol. 11. c. 12,

2 W. M. Hicks, “On the Motion of T'wo Spheres in a Liquid,” Phil. Trans. 1880.

4—2
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Now at all points in the neighbourhood of the sphere, r < f;
hence @ can be expanded in a convergent series of the form

oom omoge(r\"
<I>———f——7. 3, \:f) P, (p),

where P, (1) 1s the zonal harmonic of degree =,

At all points outside the sphere, the velocity potential of the
image of S can be expanded in a series of the form

=134 (‘;‘) P,

r
Since the sphere is at rest, the surface condition is

do  dd’

ar T dr =0
when r=a.
Therefore  mX, fﬂﬂ P +3 A (7”'1)11 =0;
whence A4,=0,
mn Q n+1l
a=- ()
therefore
a2n+l
mE

n+1(fq,‘)n+lp

ma = " ma > ¢t P,

:——S‘ '*,ﬁjP"-}'*‘.Z‘

fr 7 r
where ¢c=a?/f. Now if¢c<r,
[c_—dx__._x = zm (G\ Ini .
o (17— 2Arp + A7) r/oon+t

Hence, adding and subtracting ma/fr from (1), the value of @’
may be written
Mo 1 m [ dr
+2 !

Y= — —_—
f (* — 2rou + c"’)é o (7 — 2Aru + )\.2)%

The first term represents a source of strength ma/f, situated at
a point H such that OH =c=«’/f, and which therefore coincides
with the electrical image of S with respect to the sphere: the
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second term represents a line sink of strength m/a per unit of
length, extending from the inverse point I/ to the centre of the
sphere.

53. v find the image in a sphere of o doublet whose aans
passes through the centre of the sphere.

0
0 H H s 8

Let O be the centre of the sphere, @ its radius, S a source of
strength p, 8" an equal sink, and let I, H" be the inverse points
of 8, §'; also let OS=f, HP=r, PHS=6. Then, if ¢ be the
velocity potential of the image,

go—te 1w 1 pHI
ST IPY7=SS HP oHP’
But 011, OS= OH' . O8 =d?, therefore

HE=OH—0H=M(1—1)

08~ 08
a’SS’
= e
also HP=HP - HH cos 8.
Therefore

ot (| SSY(1 0SS ) _paSS
B fr+fr<1+7 (1+ fr 08 Sfr
= ’L}gi—f cos 6.

Now wuSS' = m, where m is the strength of the original doublet,
hence
a\*cos 8
#=m(G) 5
This is the velocity potential of a doublet situated at the
inverse point H, whose strength = —m (a/f )
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54.  To find the image of a doublet whose awis s perpendicular
to the line joining it with the centre of the sphere.

0 R H 8

Let S be a source, 8" an equal sink; H, II' the inverse points
S, 8. The image of S i3 a source of strength ua/f at I, and a
line sink of strength p/a per unit of length from O to I1.
S8t
o
whence the source and sink at H, H coalcsce into a doublet at H
of strength

Now HH =

w88 ma’

fx f-a 3

where m is the strength of the original doublet.
Let B, B be any points on OH, OIf’, such that
OR.0S=0R.08;
_SS".OR
VA

and the two sink and source elements at B, R’ coalesce Into a
doublet of strength

then R

SAS" .OR m
—=——.0L.
S af
Hence the image of § is a positive doublet at H of strength
ma®/f?, together with a negative line doublet of strength —m OR/af

per unit of length, extending from O to Z1

|IK

55. In the next place, let there be a source of strength m at
a point P outside a sphere whose centre is O and radius ¢; and a
line sink from P to ¢, (where @ is a point on OF which lies on
the side of P remote from 0), of strength —m/PQ per unit of
length', Let R be any point between P and Q; P, IV, @ the
inverse points of P, R, Q. Alsolet OR =2, OR =y.

1 W. M. Hicks, ¢“On the Problem of Two Pulsating Spheres in a Fluid,” Proc.
Camb. Phil. Soc. vol. ux. p. 276,
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The image of P consists of
(1) a source at P’ of strength ma/0P,

(2) a line sink from O to P’ of strength —m/a per unit of
length.

The image of the line sink element dz at R produces
(3) a sink at B, of strength
madz mady

~PQz T PQy’
and
(4) a line source from O to B of strength mdz/P(Q).a per

unit of length.

In order to calculate the image of the line sink between P and
(), it will be convenient to consider first the portion of the image
between O and @', and secondly the portion between @ and P'.

Since every element of Q) produces an elementary line source
of strength mdz/PQ.a between O and @', the resultant is a line
source between O and () whose strength per unit of length is

% mdz m

rPQ.a o
This line source cancels the portion of (2) which lies between

0 and §".

Only those clements of PQ which lie between P and R con-
tribute anything to the deunsity at £, hence, adding the effects of
(2), (3) and (4), the total strength at 'is

__mdy mady  mPRdy  /m  mOP
Pl === ~Po.oRt apg =~ (E + m@) dy.

Therefore p=- ZZ (1 + 10%5) = 1:](33
Therefore p=— %@’ .

Hence the image consists of a single source at I’ of strength
ma/OP, and a line sink from " to " of strength —ma/OP. P'Q’
per unit of length; that is, the image is an arrangement of the
same form as the object.
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56 SOURCES, DOUBLETS, AND IMAGES.

56. To find the vmage of a source in a cylinder, the motion
betng in two dimensions.

Let 8 be a cource situated outside a cylinder, 7 the inverse
point. Then, if an equal source be placed at I/, the normal velocity
q due to the combined effect of both is

_m m 2]
SPCOS ()PY+HP cos OPH.
But since OH .08= 0P the triangles OSP and OPH are
similar, therefore
B m y .
q= —%)cos OPY + 5 p g (SP+ OP cos OFY)

_ m
= 0P
1lence the image of a source at S is an equal source at the
inverse point H, together with an equal sink at O the centre of
the cylinder.
Similarly the image of a doublet is an equal doublet, but of
opposite strength, situated at H.

57. We shall conclude this chapter by applying the method
of images to determine the velocity potential due to a source
situated between two infinite parallel planes®.

!
|

40
1e
1™

v

bW M. Hicks, Quarterly Jowrnal, volo xv. p. 274,
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SOURCE BETWEEN TWO PARALLEL PLANES, 57

Let P be the source, and let the origin be the middle point O,
of a line through P perpendicular to the two planes.

The image of P in the plane B will be another source P, such
that BP = BP; the image of P, in the plane 4 will be another
source I’, such that AP, = AF , and so on for an infinite series.
Similarly the image of P in the plane A will be a source P’ such
that 4P, = AP, and the image of P’ in B will be a source P,
such that BP', = BF’,, and so on. The velocity potential of the
motion of the liquid contained between the two planes due to the
source P, will be equal to the velocity potential of P together
with the velocity potential of the two infinite trails of images.

Let AB=2a, OP=E,
then OP,=a+ BP=2a—E,
OP,=a+ AP, = 4a -,
OP,=a+ BP,=6a-§,
0P, =2na— £
Similarly OF =2na+ &

(i) Let the motion be in three dimensions, and let z, w be
the coordinates of any point @ of the liquid ; then

1 = 1
(e e L/{(HE—?&— dna)t + @'

1
+ Vilz+ E+ 2a + 4na)’ + m“}}

< 1 1
i [m — &+ dna) + @ * Vi(z—& —4na)2+m"}] ’
Therefore

-3 1 1
=t [’\/‘[(Z-% £ — 20+ 4na) + =’} + V{(z — E+ dna) + WZ}] .

Each of these expressions is of the form ¥ (2, #), where

© 1
P m =20 ST tnap v =
We proceed to find a finite expression for this series. 1f ais
positive,
1 %2 {h a6
a’+ b* cos® 0

N (a® + b%) = )

0
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58 SOURCES, DOUBLETS, AND IMAGES.

therefore
1 2w [i7 da )
Ve +4na) + =) o _/o (¢ + 4na)* cos* 0 + =

_1 "”{( 1 1 }do.

T ), (zt4na)cosf —me (2 + 4na) cos 6 + =i
2 2
Also sin@=w—d>(1—?2>...(1—iiz>,
o c ¢ n'e
therefore, taking logarithms and differentiating, we obtain

T w1 2 = 1
e Tt R o T Y e e

Therefore F (z, =)

1 [inge 1 _ 1 0
T a), T |lzcos @ —w +4nacos @ zcosd + @i+ dna cos O

1 [i" T T
=in fo {cot[ra (z——mtsecB)—cotE (z+ = sec@)} sec § dY
1 [ T"sec@sinh (rw sec 6/2q) df
" 2a), cosh (w= sec 8/2a) — cos (mwz/2a)
_ladrp

T rde 0

) log {cosh (7= sec 8/2a) — cos (7z/2a)} d.

The first integral becomes infinite at the upper limit, but since
the variable part of potential functions is the only part which it is

L

necessary to consider, we may subtract ;;f sec 8 df, which will
0

make the integral finite, and we shall obtain

1 (mexp (—wwsec/2a) — cos (7z/2a)

Pz @)= 2a), cosh (7w sec 0/2a) — cos (7z/2a) sec 6 do.

And since ¢=F {(z + £ —2a), w} + F [z — &, =}, we finally obtain
B *Ih exp (— 7w sec 8/2a) 4 cos 7 (2 + £)/2a

~ 2a), | cosh (7w sec 8/2a) + cos 7 (2 + E)/2a

exp (— 7w sec 6/2a) — cos T (2 — E)/.‘Z_a] 9

cosh (7= sec 02a) — cos 7 (z — £)/2a sec 0 df.

(ii) Let the motion be in two dimensions: writing # and y
for z and = respectively, we obtain
=427, log ((z+ &~ 2a+ 4na) + 3}
+137 log{(z - £+ 4na) + ¥
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Let Sz, y)=log H:o {(z+ 4na) + 97,

where the symbol TI denotes the infinite product for all positive
and negative integral values of n including zero.

Now Sin”r_e = 7—7-—@ (1 — gg> ...... (1 — ’62k2)
¢ c c ne
=7L_9n"fm (1 + ﬁ) ;
c ne

where II' denotes that the value n = 0 is excluded. Now

07 {(@+na) -} = 17 (2 +y +na) (& —y + na)

=(z+7y) (x—1v) H"‘_"mneaa (1 + %Zﬂ) (1 + 33;3{))

na
therefore
_ P 4a 2 4 (x + ) (e $+Lg/>
Sz, y)=logIl'__4*n*a’ + log iz 11 _m(l + e
o &x — Ly , €T — Ly
+log T T _m(l + It )

The first term which is constant may be omitted; we therefore
obtain

.o .o
Sz, y) =log sin v (z + ) sin iz (z — wy)
= log (cosh 7y/2a — cos ma/2a) —log 2;
whence, omitting constant terms, the valuc of ¢ may be written

¢ =4 log {cosh 7y/2a — cos w (z — £)/2a}
+ 4 log {cosh my/2a + cos 7 (z + E)/2¢}.

EXAMPLES.

1. Prove tbat when the motion of a liquid 1s irrotational
and symmetrical with respect to an axis, Stokes’ current function
satisfies the equation

d~p sin 8 d dry
W + \TTJ@ (COSQC 6 *d-9> = 0,
and thence show that the current function due to a source of

strength m is :
Y =~ mcos @ + const,
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60 SOURCES, DOUBLETS, AND IMAGES.

2. When the motion is in two dimensions, prove that the
current function due to a source is md, and apply this result to
find the image of a source in a circular cylinder.

3. The motion of a liquid is in two dimensions, and there is
a constant source at one point A4 in the liquid and an equal sink
at another point B ; find the form of the stream lines, and prove
that the velocity at a point P varies as (AP. BP)™, the plane
of the motion being unlimited.

If the liquid is bounded by the planes s=0,z=0a, y=0, y=q,
and if the source is at the point (0, ¢) and the sivk at (a, 0), find
an expression for the velocity potential.

4. The motion of a liquid in two dimensions is steady, and is
due to the presence of any number of sources and sinks. If the
mass of any source or sink be supposed equal to that of the liquid
which it would generate per unit of time (the masses of the sinks
being negative), show that any source has a tendency to move
with an acceleration made up of accelerations from every other
source and towards every sink, and proportional in each case to
the numerical strength of the source and sink, and the inverse of
its distance,

5. Liquid is bounded by two perpendicular planes 0X, OY.
A source is situated at a point whose distances from the planes
are a and b respectively. Find the pressure at any point of either
of the planes, (1) when the motion 1s in two dimensions, and (ii)
when in three dimensions.

6. The boundary of a liquid consists of an infinite plane
having a hemispherical boss, whose radius is @ and centre 0. A
doublet of unit strength 1s situated at a point S, whose axis
coincides with 08, where 08 is perpendicular to the plane. P is
any point on the plane, OP = w, 0S=/. Prove that the velocity
of the liquid at P is

()'fm'{ « L —— 1 ,,}.
@/ (fret

7. Prove that
d=f)i(r"+a’ ~ 202t 4 (P + a* + 2a2) 7 — Y £ 4 (8)
is the velocity potential of a liquid, and interpret it. Find the

surfaces of equal pressure if gravity in the negative direction of
the axis of z be the only force acting.
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8. Liquid enters a right circular cylindrical vesscl by a supply
pipe at the centre O and escapes by a pipe at a point 4 in the
circumference ; show that the velocity at any point P is pro-
portional to PB/PA . PO, wherc B is the other end of the diameter
A0. The vessel i8 supposed so shallow that the motion is in two
dimensions.

9. A source is placed midway between two planes whose
distance from one another 1s 2¢. Find the equation of the stream
lines when the motion is in two dimensions ; and show that those
particles which at an infinite distance are distant }a from one of
the boundaries, issued from the source in a direction making an
angle 7/4 with it.

10. The boundaries of a liquid are given by 6= £ /2, and
a source of strength m exists at the point 8=0, r=a. Prove
that the current function for two dimensional motion is
Mot 7" sin 2n0
2 7" cos 2nd — o™’

11. A quantity of liquid moves in that quadrant of the plane
of 2y in which # and y are both positive, and which is bounded by
the planes yz, zz: at the point (g, 0) is a semicircular source of
liquid, and at the origin a quadrantal sink. Assuming that the
amount of liquid flowing out of the source per unit of time is equal
to the amount which flows into the sink, and that the motion is in
two dimensions; find the velocity potential, and prove that the
general equation of the strcam lines 1s

(#* + y) — a* (@ — ") = Aa'wy.

IRIS - LILLIAD - Université Lille 1



CHAPTER IV.

VORTEX MOTION AND CYCLIC IRROTATIONAL MOTION.

58. THE most gencral kind of motion of which a fluid is
capable is one which is a combination of rotational and irrotational
motion ; that 1s to say, the component velocities may be regarded
as consisting of two parts, u, »,, w, and u,, v, w,, where the former
quantities are derivable from a velocity potential, whilst the latter,
which depend upon the molecular rotation, cannot be so derived.
The peculiarities of the motion specified by the latter quantities,
and which depend upon the molccular rotation, were first investi-
gated by Helmholtz and will now be considered.

59. We have defined a vortex line to be a line whose direction
coincides with the direction of the Instantaneous axis of molecular
rotation. If through every point of a small closed curve a series of
vortex lines be drawn, they will enclose a mass of fluid which
may be called a vortex fillament, or shortly a vortex.

We have shown that if the forces which act on the fluid have a
potential, and the density is a function of the pressure, the motion
of the fluid constituting the vortex can never become irrotational.
It will now be shown that every vortex possesses the following
three fundamental properties:

(1) Every wortex is always composed of the same elements of
Slurd.

(1i1) The product of the angular velocity of uny wortes into its
cross section is constant with respect to the time, and is the same
throughout <ts length.

1 Crelle, vol. Lv. p. 25; translated by Tait, Phil. Mag. (4) xxxu1. p. 485,
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PROPERTIES OF VORTEX FILAMENTS. 63

(i) Ewery wortex must either furm a closed curve or have its
extremilies in the boundaries of the fluid.

Let a, b, ¢ be the initial coordinates of an element of fluid
whose coordinates at time ¢ are z, y, 2. Then

gg:dj_dg_dso_)\
E m, & @

dx dx dx

de  de . d
Y (Eod§+md§+§uﬁ)

But do = de

— Pugdf‘g
 pe,
by § 30 (10); hence Pty _PIS ] (1).

(Do (O]

Let u, v, w be the component velocities at z, y, z; and let
u+du, v+dv, w-+dw be the velocitics at a neighbouring point
2+ dz, y +dy, z+dz on the same vortex line.  Since

de_dy_dz_ds_e
E n & o p’

~ therefore du =

by § 24 (5).

The quantity du is the rate at which the projection of the
element ds on the axis of @ is Increasing in length; and since this
projection is equal to ed{p*£)/ot, the line ds still forms part of a
vortex line,

This proves the first theorem.

To prove (i1) let o be the area of the cross section at time ¢,
then, since the mass of the element remains unchanged,

p.oods, = pods.
Therefore by (1) oW, = 0w,

which proves that ce is independent of the time.
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64 VORTEX MOTION AXND CYCLIC IRROTATIONAL MOTION.
Also, by § 7 and § 17 (26),
_ d€ dy d§> ‘ _
1T (& +mn +nd) dAg_fff(ﬂ+d§+(TZ drdydz =0,

or [fw cosedS = 0,

where € is the angle between the axis of rotation and the normal
to S drawn outwards.

Now if we choose S so as to coincide with the surface of any
finite portion of a vortex of small section, together with its two
ends, cos € vanishes except at the two ends; and is equal to +1 at
one end, and — 1 at the other; hence

0,48, — w,dS,=0,
which proves the second part of (11).

To prove the third theorem, we observe that if a vortex did
not form a closed curve or have its extremities in the boundary, it
would be possible to draw a closed surface cutting the vortex once
only, and the surface integral would not vanish.

The first theorem and the first part of the second theorem
depend on dynamical considerations; the sccond part of this
theorem and the third theorem are kincmatical.

60. Since every kind of motion may be regarded as a comnbi-
nation of rotational and irrotational motion, we may put

L AN
Tdr " dy  dz’
Cdg Al AN

v dg/+ dz  dz’
w d¢ + dM dL
dz  dx dy’
where ¢ is the velocity potential of that part of the motion which
docs not depend on the molecular rotation.

Hence in the case of a gas,

du N dv n dw _ 10p
de " dy  dz  pot’

but in the case of a liquid V®¢ =0: in addition to the above
equations which ¢ must satisfy at every point of the fluid, ¢ must
also be determined so as to satisly the boundary conditions.

dL N dM N AN
de ~ dy

Ve =

If we put J=

’

dz
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INTEGRATION OF THE EQUATIONS. 65

dw dv dJ
28= dy  dz dz

with two similar equations. Hence if

we obtain - VL,

J =0 or a constant
we have VL 4-28=0, VM +27p=0, VN +2{=0......... (2).

It follows from (2) that if /=0 or a constant, the guantities
L, M, N are the potentials of distributions of matter whose densities
are respectively equal to &/2m, n/2m, £/2m ; hence if &, ¥/, 2’ be any
point where molecular rotation exists, #, y, z any other point, and f
the reciprocal of the distance between these two points, then

1 NN
L_;Eﬂfgfdxdydz
1 " ’ 7 ! ’
M:Erﬂfnfdwdydz — 3),
1 18 ’ 7 '
N=ﬂﬁ ¢fiddyds
where £, %, & are the values of the components of moleccular

rotation at («,y, 2') and the integrations extend throughout those
portions of fluid where there 1s vortex motion.

We have now to prove that the above values of L, M, N make
J =0 or a constant.

. df  df
Since dm——ﬂ’
we have =——— ff(g ,+§’ f) do' dy' de’
" dy

oo [|7 08+ +nt) as

1 dg’  dny  df
+27rfff(@+dy' e )pd.zclydz

The volume integral vanishes by § 17 (26), and if the vortices
form closed rings the surface integral vanishes, since at the
surfuce of cach vortex &'+ mn +xf =0.

Also, if the fluid extends to infinity and is at rest there, the
surface integral will either vanish or be equal to a constant, since
&, 7, ¢ and f all vanish at infinity. But if the fluid is bounded
cither externally or internally, and some of the vortices extend to
this boundary and then break off, we must suppose the boundaries

B. 5
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66 VORTEX MOTION AND CYCLIC IRROTATIONAL MOTION.

removed and a hydrodynamical system substituted for them, such
that the velocity at poiuts occupied by the boundary remains un-
changed. This hydrodynamical system will necessarily consist, in
part, of the continuations of these vortices, which must either
extend to infinity or form closed curves, and in either case the
surface integral taken throughout the vortices included in this
larger region, as well as throughout those included in the original
region, will vanish or be constant.

61. If Su, dv, dw be the component velocities at a point x, ¥, z
of a fluid due to an element dz'dy'dz” whose rotations are &, 7/, {';

then
_ Y df dfN L

whence if ? = f, we obtain

1 . . ) , Paag
3u=%s{ﬁ (z-2)—8 (y—y) da’dy d,

1 ’ I s oy ’ 2
8'U=2’7r;a{§ (g—a')—E (-2} da'dy'de, ¢ ...... (4).

1 14 ! ! ! ’ ! !
Sw=g—5{E(y—y)—n'(z—a)) da'dy dZ:J
Hence, if ¢ is the resultant velocity due to the element,
o s1n €

g= dz'dy’dz’co.viiiniininn.. (50

2mrrt

where ¢ 1s the angle which r makes with the direction of the axis of
rotation of the vortex element. It also appears from (4), that this
velocity is perpendicular to the plane containing the direction of
r and the vortex eclement, and that its dircetion is that in which
the point (z, ¥, z) would move if it were rigidly attached to a body
moving with the vortex element.

62. At all points external to a vortex the motion is irrota-
tional, and a velocity potential comsequently exists. We shall
now show that the velocity potential at any point, duc to a vortex
of small cross section, is proportional to the solid angle subtended
by the vortex at that point.

Let z, y, 2 be the given point, @', ¥, 2’ any point on the vortex,
r the distance between (=, ¥, 2) and (', %/, ). Using polar co-
ordinates r, 8, x referred to («, 3, 2/) as origin, we have

z—a =7rsinfcosy, y..y':rsinesinx, z—z =rcosf.
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Now if Q be the solid angle subtended at (=, y, 2) by the

vortex,

Q = [fsin 0dfdy
=f(1—cos€)dx

—fdx cos@—ds,

where the integration with respect to s extends once round the
vortex.

Now w_w,zcot 2
y—y X
Therefore -9 (é—f - (x =) G(li% =r¥sin® @ é’ﬁ .
Therefore
Z—Z’ ’ dw’ dS

The first term is equal to 27 or zero according as the vortex
does or does not embrace the axis of z; also

, dy d.
- lo-nG - Y1 E.

Now by (4) if w be the z-component of the velocity due to a
vortex of small cross section o,

dd) _ wo ; dx’ , dy' ds
dz w—%f{(y—y)gg—(w—w)%}r—

dp  wodd
Hence d—z——‘2—7;-d—z,
or 1 TR (6).

If the section of the vortex be of finite area, the velocity
potential will be

where the double integral extends over the cross section.

Since the solid angle O diminishes by 4, whenever the point
@, ¥, z describes a closed curve in the positive direction, which
embraces the vortex once, ¢ is a many valued or eyclie function.

The product of the angular velocity and the cross section of a
vortex filament, is called the strength of the filament.

5—2
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68 VORTEX MOTION AND CYCLIC IRROTATIONAL MOTION.

Vortex Sheets.

63. If we bave a sheet of thickness £, consisting of rotation-
ally moving liquid, and if w increase and h diminish indefinitely
but so that the product wh remains finite, equal to w’, we ultimately
obtain an indefinitely thin film of rotationally moving liquid
whose molecular rotation is . Such a film is called a Vortezx

Sheet.

By (8),if £, 7', { be the components of @', the quantities L, M, N
which determine the velocities are given by the equations

_ 1 ((¥ _ 1 _ 1t
L"ﬂﬂ'ﬁds’ M—%ﬂRdb’ N"zv‘rURdS'“(S)’

where B is the distance between any point on the vortex sheet
and the point (#, ¥, 2), and the integration extends over the
vortex sheet.

64. It was first pointed out by Helmholtz®, that the equations
of motion and the equation of continuity of a perfect fluid do not
exclude the possibility of slipping taking place along a surface;
for the only conditions to which the velocity must be subject are,
that it must be finite at all points of the fluid, other than points
where sources or sinks exist, and also that its normal component
at all points of any surface drawn in the fluid must be continuous.
The above conditions obviously do not require that the tangential
component should be the same on both sides of such a surface,
and hence the conditions to which the velocity must be subject
will not be violated if slipping takes place.

65. We shall now show that every surface of discontinuity
over which slipping takes place has the properties of a vortex
sheet.

Let I, m, n be the direction cosines of the normal at any point
P of such a surface of discontinuity; w, », w; «, ', w’ the compo-
nent velocities on the positive and negative sides of the surface.
It is evident that 1t will be possible to draw a line in the tangent
planc at P such that the tangential compenents along this line of
the velocities on both sides of the surface shall be equal. Let
A, ¢, v be the direction cosines of this line; and let A, u, » be those

1 Phil. Mag. Nov. 1868.
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of the line through P perpendicular to [, m, n and A/, ', »/, and
which is therefore the line along which slipping must take place.

Then lu—uw)+m@—-v)+n@w—w)=0,
N (=) + (9 — ) + ¥ (0 — ) = 0;
also let Au—u)Y+p (v=2)+v (w—w)=o0.

From these equations we easily obtain

u—u 'U—’U 'bU 'll)'

Let L= i f TN IS e (10),

the integration extending over the positive side of the sheet only;
then
1 a
—Z;ff(vm—;m)l—%ds

=£;rfj{m(w-w')—n(v—v’)}%g

Now the surface § may be regarded as the limit of the surface
of a solid bounded by § and another surface indefinitely near S
whose distance from it is A; we may therefore write

L=41—7rf(mw—'nv)d5'— ['U‘( dtglyll?, LT )dwdydz

where the surface integral extends over the surfuce S and the
surface indefinitely near it, and the volume integral extends
throughout the volume enclosed by the two surfaces. The latter
integral evidently vanishes in the limit. Intcgrating by parts we

obtain
= o I (G~ 22) ey
-, 1;r f f f’R dhds
- %r f f % DS oo 11),
ultimately.

Comparing (10) and (11), we obtain
E=laN, 7 =1ion, §=1}ov, o =}o
It therefore follows that the effect of the surface of discon-
tinuity is the same as that of a vortex sheet whose molecular

rotation is {0, and that the direction of the vortex lines is perpen-
dicular to that of slipping.
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Crirculation.

66. We have shown that the motion of a fluid may be
separated into two kinds, rotational and irrotational motion; and
it appears from § 62 that irrotational motion may be subdivided
into two classes according as ¢ is a single valued or a many valued
function. In the former case the motion is called acyclic, and in
the latter case cyclic irrotational motion,

67. The line integral [(udz + vdy+ wdz) taken along any
curve joining a fixed point A, with a variable point P, is called
the flow from 4 to P.

If the points 4 and P coincide, so that the curve along which
the integration takes place is a closed curve, this line integral
is called the circulation round the closed curve.

If any surface which is bounded by a closed curve be divided

into elementary areas by a series of

[ <— lines drawn upon it, the circulation
l T round the bounding curve is equal to
— the sum of the circulations round each

a of the elementary areas; for the flow

l Tl 1 along the sides of all the elements,

— except those sides which form part of

the boundary, is taken twice over and
in opposite directions.

In the same way it can be shown
that the circulation round any closed
curve is equal to the sum of the circulations round its projections
on the coordinate planes.

68. Let us now determine the circulation for an elementary
2 rectangle ABCD, whose sides are dy,
c dz, the positive direction being from
the axis of y to that of 2.
0 y Let @, y, 2 be the coordinates of 0,
y) the centre of inertia of the rectangle;
u, v, w the velocities at O.

The portion of the circulation due to the two sides B and D is

(w+dw,dy) dz— (w — tw,dy) dz = w, dydz

and that due to the two sides C and 4 = —», dyd=.
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Hence the circulation
= (w, — v,) dyda.
Hence, if dS be an element of a surface § whose projcction on
the plane yz is the rectangle ABCD, the circulation round the
boundary of §

= [[[(w, — v,) dydz + (u, —w,) dzdz + (v, — w,) dzdy].
Hence we obtain the following Lmportant analytical theorem,
which is due to Prof. Stokes?, viz.

[T G —2) o (3= )+ (- ) 0
= [(udz + vy + wda) «.corverrannnnn, (12),

where the surface integral is taken over any surface bounded by a
given curve, and the line integral is taken once round the curve.

Substituting the quantities §, #, {, we obtain
2 [[(IE + mn + ng) dS = [(udz +vdy + wdz) ...... (13).

69. Several important consequences can be deduced from this
theorem,

If there are no vortices in the fluid, & 7, ¢ are everywhere zero,
and the circulation vanishes. Hence in this case ¢ must be a
single valued function.

Since every vortex must either form a closed curve, or have its
extromities in the boundaries of the fluid, it follows that if the cir-
culation be taken round a closed curve which embraces a vortex
once only, the surface S must cut the vortex an odd number of
times. Hence in this case the circulation will not vanish, but will
be equal to twice the surface integral on the left-hand side of (13).
Since E, #, § are zero at all points of S, except those which lie
in the vortex, the value of the circulation is 2[fw cos eda where do
is an clement of that portion of 8 which is cut off by the vortex, w
the molecular rotation, and ¢ the angle which its direction makes
with the normal to o drawn outwards.

Hence the value of ¢ at any point P of a closed curve which
embraces a vortex experiences a constant augmentation every time
P travels round the curve to its original position, which is equal to
twice the above-mentioned surface integral. This constant aug-
mentation is called the cyclic constant of ¢.

1 Smith’s Prize Examination, 1854,
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If the line integral is taken round a closed curve which does not
embrace a vortex, S can be drawn so as not to cut any of the
vortices; if 8 cut any vortex once, it must cut it again, and by § 59
the two portions of the surface integral cancel one another ; hence
the surface integral and therefore the circulation round such a
curve will be zero.

Since the circulation taken round any indeflnitely thin vortex
filament is equal to twice the product of its angular velocity and its
cross section, it follows from § 59 that the circulation is inde-
pendent of the time; and since every vortex of finite section can
be divided into indefinitely thin vortex filaments, it follows that
the circulation round a vortex of finite section is also independent
of the time.

70. It thus appears that whenever there is circulation the
velocity potential is such as would be due to some distribution of
vortices in the fluid. These vortices need not however have an
actual existence, since in the case of a liquid 1t is possible for hollow
spaces to exist in the liquid round which circulation takes place ;
or the vortices of which ¢ is the velocity potential may lie beyond
the boundaries of the fluid. Kor example, if ¢ =tan™ y/z=46,
¢ is a two dimensional many valued velocity potential whose cyclic
constunt 1s 27 for all circuits which embruace the origin, and zero
for all other circuits: and it will be shown in the second volume,
that if the pressure at a distance from the origin be properly adjusted
by mecans of suitable boundary conditions, it is possible for the
cylinder »=a to be a free surface, which forms the inner boundary
of a liguid, and the spuce within which 1s devoid of liquid. It 1s
also possible to have circulation round a fixed rigid eylinder, in
which case ¢ will be the velocity potential of one of the possible
molions of the liquid which may tuke place.

71. Since a fluid always flows from places of lower to places of
higher veloeity potential, it follows that when the motion is acyclic
the stream lines cannot form closed curves but must begin or end
in the boundaries or singular points of the fluid ; but when the
motion is cyclic some of the stream lines may be closed curves,
whilst others begin and end in the boundaries of the fluid.

72. The circulation round any closed circuit may be shown
not to alter with the time as follows™.

1 8ir W. Thomson, ** Vortex Motion,” Trans. Roy. Soe. Edin., vol. xxv.
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Let 4B be a curve joining two points 4 and B of a fluid which
always passes through the same clements of fluid; also let f be
the tangential velocity of the fluid at any point P of AB; then

fds = udx + vdy +wdz;
4 (da)
di

Let pg be the projection of ds on the axis of z; w, u+ du the

component velocities of p and ¢ parallel to #; then
u =dz/dt, v+ du=d (@ + dz)/dt;
hence du = d . de/dt, therefore

0 ou
therefore oy (fds) = 5= de +u + &e.

K udz + vdy + wdz) = %—Z’dw + %)dy + %da+udu+vdv + wdw,

5 ¢
L d(Q+1g)
Therefore 8%_[4 (udz +vdy + wde) =[Q + 9715 — [Q + $¢") &

Since @ and ¢ are always single valued functions, the right-
hand side vanishes when the integration is taken round a closed
curve, which proves the proposition.

73. If at some particular instant, which we shall choose as the
origin of the time, the motion is irrotational and acyclic, the cir-
culation will be zero round every closed circuit, and the preceding
proposition shows that it will always remain zero.

Hence we obtain another proof of the proposition that motion
which is once irrotational 1s always so; and also that irrotational
motion which at any particular instant is acyclic, always remains so.

Simply and Multiply-Connected Regions.

74. Whenever the motion is cyclic, the flow between two
points will not have the same value for two different lines joining
them, unless the lines are such as are capable of being made
to coincide, without cutting through any of the vortices or passing
through the boundaries of the fluid. The latter elass of lines arc
called reconcileable lines, the former trreconcileable lines.

'75. We are thus led to consider the properties of simply and
multiply-connected regions, which are defined as follows.
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A stmply-connected region, is one in which any two lines join-
ing two given points, may be made to coincide with one another,
without passing out of the region in question.

The spaces inside or outside an ellipsoid or paraboloid are simply
connected regions.

A multiply-connected region, is ope in which two or more lines
can be drawn connecting two points, which cannot be made to
coincide with each other without passing out of the region in
question.

The space inside or outside an anchor ring, is an example of a
doubly-connected region.

A region in which # irreconcileable lines can be drawn, is called
an n-ply connected region.

Hence in a simply-connected region, every closed circuit is
capable of being contracted to a point without passing out of
the region. In an n-ply connected region, it is possible to draw
n— 1 different circuits, which cannot be contracted to a point
or be made to coincide with one another without passing out of
the region.

Any circuit drawn in a multiply-connected region, which is
capable of being contracted to a point without passing out of the
region, is called an esanescible circuit; and any two circuits which
can be made to coincide with each other without passing out of the
region, are called mutually reconcileable.

76. Every n-ply connected region, may be reduced to a simply
connccted region, by drawing n~ 1 barriers or diaphragms, such that
each diaphragm meets every simple non-evanescible circuit once
only. For example,the space outside two circles which do not cut
one another, is a triply-connected region in two dimensions; but
if from a point on cach of the circles, we draw two lines to infinity
which do not cut one another, the region becomes simply-con-
nected.

77. If ¢ be a polycyelie velocity potential, the circulation round
any closed curve, which does not cut any of the barriers is conse-
quently zero: if the circuit cuts all of the barriers once only, the
circulation i1s «, + &, + &c. where «,, %, arc the cyclic constants
corresponding to each barrier. The number of barriers which
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must be drawn, in order to make the circulation round every
closed curve vanish, is equal to the number of cyclic constants

of ¢.

78. Every polycyclic function may be expressed as the sum
of the same number of monocyclic functions, as the function has
cyclic constants. For if the number of cyclic constants be n there
will be % simple non-evanescible circuits round which the circulation
does not vanish ; hence if

where (0, O, ...... are monocyclic funetions, whose cyclic constants
are unity ; and which are such that the line integral

(@0 e 0y i 2,
de ds dy ds dz ds/

taken round any closed circuit is zero, except when the circuit cuts
the barrier corresponding to «,, it follows that the circulations

round each of the simple nnon-evanescible circuits, are respectively

equal to &, Kgeeies , hence the circulation round a circuit which
cuts each barrier once only is equal to #, + #, 4+ ...... + K,
Vorticity.

79. Let a mass of rotationally moving fluid be divided up into
elementary vortex filaments; and let P be any point on the axis
of one of these filaments, dm the mass of the filament which
contalns P, o and dS the molecular rotation and cross section of
the filament at P at time £ Then the quantity wdS/dm is called
the worticity of the fluid at the point P.

This quantity has the same value at all points of the filament
which containg P, and is constant with respect to the time, for if
the suffixes denote the initial values of the quantities (or their
values at some given epoch) and ds is an element of the axis
of the vortex element, the vorticity

_wdS__ edS, o
S dm - LpdS,  lp,’
by § 59, (1); where [, is the initial length of the filament.

The aggregate vorticity of a mass M of rotationally moving

fluid is equal to the sum of the vorticitics of every filament, and

therefore s
wdS 1 v
" SpdSds T M f / @ cos e
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where dS is an element of any surface which cuts all the vortex
filaments once only, and e is the angle between the direction of
and the normal to S drawn outwards.

If the rotationally moving fluid is surrounded by irrotationally
moving fluid, and consists of an arrangement such as a circular
vortex ring, which is resolvable into elementary circular filaments
which are perpendicular to the meridian sections of the ring, the
aggregate vorticity is equal to Jx/M, where « is the circulation
round any closed circuit which embraces the ring once. But if
the rotationally moving fluid consisted of the arrangement above
described, together with an outer shect which is resolvable into
filaments lying in planes passing through the meridian sections of
the ring, the circulation will remain unaltered, but the aggregate

vorticity will be
‘ f f ds
o, ar, )] 29

where M| is the mass of the inner ring, M, that of the sheet, and
w, d8 are the molccular rotation and cross scction at any point of
one of the elementary filaments of the sheet. Hence the aggregate
vorticity is not necessarily proportional to the circulation.

Green’s Theorem.

80. The following theorem, which is of great importance in
Electricity and various branches of physics, is due to Green®.

Let ¢ and 4r be any two functions, which throughout the interior
of a closed surface S are single valued, and which logether with
their first and second derivatives are finite and continuous at every
point within 8 ; then

(02258 1208y

ff¢ S - ff/¢v¢dmdydz . (14),
=f[\lf§%d8—f_j\pv“¢dxdydz e (15),

where the triple integrals extend throughout the volume of S, and the
surface integrals over the surface of S, and dn denotes an element of
the normal to S drawn outwards.

1 Mathematical Papers, p. 24.
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Integrating the left-hand side by parts, we obtain

f‘? ‘é‘j dadydz = LU(# dydz} fffd; dg\l’d&adydz(l(i)

JI

where the brackets denote that the double integral is to be taken
within proper limits. Now since the surface is a closed surface, any
line parallel to , which enters the surface a given number of times,
must issue from it the same number of times; also the z-direction
cosine of the normal at the point of entrance, will he of contrary
sign to the same direction cosine at the corresponding point of
exit; hence the surface integral

_f ¢d"’5ds

Treating each of the other terms in a similar manner, we find
that the lefi-hand side of (16)

—f[:f) ds — ffzﬁvx[rdwdydz

The second equation (15) is obtained by interchanging ¢
and .

81l. We may deduce several Important corollaries.

(i) Let ¢ be the velacity potential of a liquid, and let =13
then ¢ = 0, and we obtain

0= [‘Uv% dmdydz:ffg% dS8 ...l 1.

The right-hand side is the analytical expression for the fact
that the total flux across the closed surface is zero; in other words
as much liquid enters the surface as issues from it.

(ii) Let ¢ and ¢ be both velocity potentials, then

ffrb dsS = ff«}r“’d& ............... (18).

(iii) Let ¢=+, where ¢ is the velocity potential of =
liquid ; then

Uf{(%)g + (%’)2 + (%’)ﬂ} dwdyde = ffqb g—‘fds..(w).

If we multiply both sides of (19) by 1p, the left-hand side is
equal to the kinetic energy of a liquid, and the equation shows
that the kinetic energy of a liquid whose motion is acyclic and
irrotational, which is contained within a closed surface, depends
solely upon the motion of the surface.
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82. Let us now suppose that liquid contained within such a
surfuce 1s originally at rest, and let the liquid be set in motion by
means of an impulsive pressure p applied to every point of the
surface. The motion produced must be necessarily irrotational, and
acyclic ; also if ¢ be 1ts velocity potential, it follows from § 42 (50)
that p =—pd. Now the work done by an impulse, is equal to the
product of the impulse into half the components in the direction
of the impulse, of the initial and final velocities of the point to
which it is applied ; hence the work done,

— ﬂp~ds gp/f¢d¢ds

and equation (19) asserts that the work done by the impulse is
equal to the kinetic energy of the motion produced by it, which is
a particular case of the Principle of Energy.

83. Let usin the next place suppose that liquid is contained
within a closed surface which is in motion; and let the motion of
the liquid be irrotational and acyclic; also let the surface be
suddenly reduced to rest. Then if ¢ be the new velocity potential,
d¢/dn =0, and therefore

/I {(%)2 + (dj) + ( ?) } dadyde -

whence de/dz, dp/dy, and dd/dz are each zero, and therefore the
liquid is reduced to rest. :

84. In proving Green’s Theorem, we have supposed that the
region through which we integrate, is contained within a single
closed surface, but if the region were bounded externally and
internally by two or more closed surfaces, the theorem would still
be true, provided we take the surface integral with the positive
sign over the external boundary, and with the negative sign over
each of the internal boundaries.

85. Let us suppose that the liquid extends to infinity and is
at rest there, and is bounded internally by one or more closed
surfaces S,, S, &c., and let us calculate the value of T for the space
bounded by 8,, 8, &c., and a very large sphere S whose centre is
the origin. Then

r=tp[[ ¢ Eas—1o[[[o P us],

where the square brackets indicate that the integral is to be taken
over each of the internal boundaries.
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Now at the surface of S, ¢ will be of the order m/r, where m
is a constant, and d¢/dn =dd/dr = — m/r* ; also if dQ be the solid
angle subtended by dS at the origin, dS =7r*dQ ; thercfore

[[42as— 7 [fan - -4

which vanishes when r=oc. Hence the kinetic energy of an
infinite liquid which is at rest at infinity, and which is bounded
internally by closed surfaces is

T=_}3p Uf¢d¢ds] ............... (20),

where the surface integral is to be taken over each of the internal
boundaries.

The preceding expressions for the kinetic energy show that
if the motion is acyclic and the internal boundaries of the liquid
be suddenly reduced to rest, the whole liquid will be reduced to
rest.

86. When the motion takes place in two dimensions, Green’s
Theorem may be established in a similar manner, Let the liquid
be bounded externally by a closed surface S, and internally by one
or more surfaces S, S,.... Then

(G 2+ 50) dwdy = f#f(d¢dy+d¢d>

Uq, L dy +rdwﬂ—ff\1»v“¢dwdy,

where ¢° = d’/d2’ + d’/dy” and the square brackets denote that the
line integral is to be taken once round the circumferences of each
of the internal boundaries. Now if we integrate round the
boundary of the liquid in the contrary directions of the hands of
a watch, the integration with respect to y will be in the same
direction and that with respect to z in the opposite direction
to s, whence the first integral becomes

dp dz d¢ dz
f‘}’(dmds dyd)ds
also if dn be an element of the normal drawn outwards,

dz/ds = —dy/dn, dy/ds = da/dn,
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wheneo [[(G2E +35 3)

_f«pdd’d - U‘qub ds} —ﬁ\pvwdmdy .(21),

=f¢‘fi‘£d - U¢‘%d{| - [[# v dody...22)

This is Green’s Theorem for two-dimensional space.

Hence the kinctic energy of the liquid is
7= épf(#dd’da— U¢d¢db} ......... (23).

In this equation ¢ may be either the velocity potential or the
current function.

If the liquid extends to infinity and is at rest there, the value
of ¢ if single valued, at a great distance from the origin, must
be of the form

Alogr++7 (B cosb+ CUsin b),

and therefore when » is very large the first integral becomes equal
to 2mrp 4% log » which becomes infinite when r= 2 unless 4 =0;
when this is the case, since all the other terms vanish, we obtain

T——1p [ é ‘;ﬂ QS eeeenererrier e, (24),

the Integrations being taken round the internal boundaries only.

87. All the results of the last article may be also obtained by
means of Stokes’ theorcm § 68 (12), and they may be extended
to the case of polycyclie velocity potentials in the same way as in
the next article. It should however be noticed that if ¢ be a
polycyclic function, it will contain terms of the form A6, and
hence + will contain terms of the form 4 log » and will therefore
be single valued. We may thercfore, in the case of cyclic motion,
employ the single valued current function, instead of the velocity
potential ; but when there is circulation it follows from the
last article that the kinetic energy will be infinite if the liquid
extends to infinity. We shall show how the difficulty thus intro-
duced may be evaded in Chapter VIIL
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Thomson's Eztension of Green's Theorem.

88. The proof of Green’s Theorem given in § 80 holds good
only when ¢ and 4 are single valued functions. If they are poly-
eyclic functions, the surface and volume integrals on the right
hand side of (14) and (15) become indeterminate. The extension
of this theorem when ¢ and + are- polycyclic functions is due to
Sir W. Thomson™,

Let us suppose that the reglon is multiply-connected, and that
¢ is a polycyclic function whose eyclic constants are «,, «,... TLet
the region be made simply connected by drawing the requisite
number of barriers.  Since we arc not allowed to cross any barrier
during the integration, we must include the surface on both sides
of the barrier in the surface integrals. Hence if do, do,...be
elements of the different barriers corresponding to the qunantities
K, «,... respectively

[[¢%% as= f¢ Yase (oW s+ ......

where on the right-hand side, the integration with respect to 8
extends over the boundaries, and that with respect to o, over both
sides of the barrier a,.

Now the values of dy/dn are equal in magnitude and of
contrary sign at two contiguous points situated on different sides
of the barrier, also the value of ¢ on the ncgative side exceeds
that on the positive side by «,, therefore

[[oan=[[o5k dr=[[@+e2 Gt
= =s/[ ko

where the integration on the left-hand side extends over both
sides of the barriers, and that on the right over the positive side
only.

Hence instead of [f¢pdyr/dn. dS, we must write

ff‘ﬁdﬂpds""ff?l?:ddl—fc,ﬁ{%da:— ......

! “0On Vortex Motion,” Trans. Roy. Soe. Edin., vol. xxv. p. 217.
B. 6
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Similarly if 4 were a polycyclic function whose eyclic constants
are &, &g, we must write instead of [[Yd¢/dn.dS,

[[# 5t as -, [ as,~ <, [ o .....

Hence when ¢ and 4 are polycyelic functions and the region
is a multiply-connected one, Green’s Theorem becomes

dtbd\fr de dyr  dd dir
.U. dac dx dy dy tds dz) dodydz

_H"’d‘kds Uf‘f’d\!rds} 1ff%d%+xsz%%da,+ .....

— [[fpv*yrdzdyda............ (25),
[y 8as [y ) 2 1S e
— [ pdedyde............ (26),

where the first integrals on the right hand side are to be taken
over the outer boundary, and the square brackets denote that the
second integrals are to be taken over each of the internal bound-
aries,

89. DPutting ¢ =+, it follows that if the liquid extends to
infinity and is at rest there,

T=—%p[f ¢ i(z dS} + %xlpffooll—tda'l+%xﬂpffi—ida',+...(27).

The first term represents the work done by the impulsive
pressure which must be applied to the boundaries S in order to
produce the actual motion from rest. The second term represents
the work done by a uniform impulsive pressure «,p, applied in
the positive direction to every point of the barrier corrcsponding
to k.. Hence cyclic irrotational motion may be artificially gene-
rated by means of a proper impulsive pressure applied to every
point of the boundaries, together with uniform impulsive pressures
.0, Kennn.. , applied respectively to every point of the barriers,
which must be drawn in order to make the region occupied by
the liquid simply connected. We may therefore generalise the
theorem of § 85, by asserting that if wrrotationally moving liguid
occupying a multiply-connected space, is bounded by moving surfuces,
which are suddenly brought to rest, the whole liquid will be reduced
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to rest unless its motion is cyclic; and that in the latter case, the
eyclic motion which could have been generated in the manner above
described will not be destroyed.

90. The foregoing arguments show that if the bounding surface
of a liqguid which was originally at rest, be made to vary in a given
arbitrary manner, the kinetic energy of the liquid at each instant,
will be less than it would be if the liquid had any other motion con-
ststent weth the given motion of the bounding surface.

Since the liquid 1s originally at rest, the motion which 1s
caused by the variation of the bounding surface will be acyclic
irrotational motion. But the most general kind of motion which
is possible within the surface is a combination of acyclie, cyclic
irrotational motion, and vortex motion. The first can be destroyed
by means of a suitable impulsive pressure applied to every point
of the boundary, but the two latter cannot be destroyed by any
operations performed on the boundary alone. Hence the kinetic
energy of the acyclic motion alone, must always be less than the
kinetic energy of the most general possible motion.

This theorem is due to Sir W. Thomson'.

91. When the motion is rotational the kinetic energy cannot
be obtained by Green’s Theorem, since within a vortex there is no
velocity potential. In this case

T=1p[J] W'+ + o) dedyde,
“te [ (G - @) (3 - )

dp dM _dL
+w ( . dy)}d dydz,

by § 60. Intcgrating by parts, the terms involving ¢
=3p I ¢ (lu+ mv + nw) dS,

since the volume integral vanishes by virtue of the equation of
continuity, The other terms

=4p [[{L (ne —mw) + M (lw — nu) + N (mu — lv)} dS,
i o) () B

} ¢ Notes on Hydrodynamics,” Camb. and Dubl. Math. Journ., vol. 1v. P. 90.
6—2
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If the liquid extends to infinity and is at rest there, and all the
vortices are within a finite distance of the origin, the surface
integrals will vanish and we oblain

T=p[[f(LE+ My + N dodyda............ (28).

92. Let us now suppose that we have two closed vortices of
small cross sections o, o,, Let ds,, ds, be elements of their lengths;
K, K, the circulations due to them ; then

1

_ dx dy dz
7= gx,pf(L it M(Tsl* Na;l) ds

thep (L de % dz) ds,
2
where the line integrals extend round each respective vortex. Now
1d 1
L= dx‘ + — 377, ds;’; &e. &e.
Therefore 7= sf’—w (Ar?+ 2Br ik, + Cr%)

dz dz dy dy  dz dz ,
where A= ff (ds ds. ds‘ ds'+d—sl ds{) ds, ds,,

1 /dz dz de?/ dz dz
B= ff (ds ds, ds, ds, +ds‘ﬁs‘>dsld%

and Cis obtained from A by changing s,, s, into s, s,. If € be the
angle between the two elements ds,, d32 these expressions may be

written

CO§ € CO8 € COS €

4= dsds/, B= f—dslds2, O =[5 asds..
The quantities A and C are evidently the coefficients of
self-induction of two electric currents of unit strengths which
coincide with the vortices #;, and &, respectively, and the quantity
B is the coefficient of mutual induction of two such currents.
Hence the kinetic energy of the hydrodynamical system is equal

to the electro-kinetic energy of two currents of strengths 4, (p/'rr)i

and %Kz(p/’n’)% respectively, which occupy the positions of the
vortices. This proposition may easily be extended to any number
of vortices.
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93. Another expression for 7 may be obtained in the form

T=2p[f{u (y§—29) + v (2& ~ 28) + w (zn — y€)}dzdydz...(29).
For the first term

o[l o)

= - pfff{(vy-f-wz) (CZZT/ - u’} dzdydz,

since the surface integral vanishes. Transforming the other terms
in the same way, adding, and making use of the equation of
continuity, we vbtain

fﬂ‘(u + 07 4w’ +mud —+ Y ?+zw§——) dedyds.

Integrating the last three terms by parts, the right hand side
of (29)
=% p [[[ (@' + o + w*) dzdyda.

94. When the motion is symmetrical with respect to the axis
of z, an expression for 7' may be obtained in terms of Stokes’
current function; for

- wff (688 + (8w

Therefore
mo= [ LGk vt ao) = [ [LGE ae+ G as)
ff*(f—;ﬁ—”‘” 7+ ) dsds

where the first integral refers to the external, and the second
integral to the internal boundaries of the liguid.

Now in order that this kind of motion may be possible, it is
necessary that the boundaries should be surfaces of revolution
whose axes coincide with the axis of 2z, Let s be an element of
the meridian curve of one of the boundaries, and let the inte-
gration with respect to s be taken from 2z to =. Since the
integration with respect to = will be in the same direction, and
that with respect to 2z in the opposite direction to s, the first
integral becomes

'\Ir d\pdw d\pdz ds=f%%ds,

dz ds  dw ds
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86 VORTEX MOTION AND CYCLIC IRROTATIONAL MOTION.

where dn is an element of the normal drawn outwards. The
volume integral is equal to

— 2o de dz,

where o 1s the molecular rotation : whence
. d d
T =mpf¥ T as - WPU;% s ds:l +2[[yoduds....(30)

If the motion is irrotational and the liquid cxtends to infinity,
and is at rest there,

I=- wp[f%%ds} ...................... (31),

where the integration is taken once round the meridian curves of
each of the internal boundaries.

On the Connection between Vortex Motion and Electromagnetism.

95. In § 60, we have shown that the velocity potential at P
due to a single closed vortex filament of strength m, is

= — mQ)/2m,
where () is the solid angle subtended by the vortex at P.

This is the magnetic potential of an electric current of strength
—m/2m, which flows round a closed circuit coinciding with the
vortex (Maxwell, Electricity and Magnetism, vol. 1. §§ 410 and
484). Now the magnetic potential due to such a current is the
same as that due to a simple magnetic shell of strength —m/2mx
which is bounded by the current; also by § 48, ¢ is the velocity
potential due to a doublet shect of strength m/27 bounded by the
vortex, Hence a vortex filament and a doublet sheet respectively
correspond to an clectric current and a magnetic shell, and a
vortex sheet may be replaced by a doublet sheet in the same

manner as an electric current may be replaced by a magnetic
shell.

The action of a vortex filament upon the surrounding liquid is
determined by the quantities L, M, N, whence it follows from (3)
that the molecular relation corresponds to an electric current: the
quantities L, M, NV to the components ¥, ¢, H of electromagnetic
momentum ; and the velocities u, v, w to the components a, 8, v
of magnetic force (see Mazwell, § 616).
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Also the magnetic potential of a magnetic shell, and the
velocity potential due to a doublet sheet are essentially single
valued functions, since the line integral of magnetic force aud
the circulation are zero for all circuits which do not cut the shell
or doublet sheet, and which it is not permissible to cross; on the
other hand the magnetic potential due to an electric current, and
the velocity potential due to a vortex, although represented by
the same quantities, are cyclic functions, the cyelic constant being
equal to 2m, where m is the strength of the vortex. This cyelic
constant is equal to the line integral [d¢/ds . ds taken once round
a closed circuit embracing the vortex or current once; and in the
former case it represents the circulation, and in the latter case
the work which would have to be done in moving a magnetic
pole once round the current in opposition to the magnetic force
exercised by the current (Mazwell, § 480).

The potential energy of a magnetic shell of strength —1,
placed in a magnetic field, the components of whose vector
potential are F, G, H is (Mazwell, § 423)

f(pgi” G§g+H‘§2)d

The flux through a closed vortex ring is,

I {u + my + ww) dS

- om0
[ Zeu® s w % as

and this corresponds to the potential cnergy of the magnetic
shell.

(-4}

The following table shows the connection between the two
subjects :
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88 VORTEX MOTION AND CYCLIC IRROTATIONAL MOTION.

Hydrodynamical Quantities

Flectromagnetic Quantities

due to Vortex
Vortex Filament
Doublet Sheet

Circulation

Flux through Vortex

Name Symbol Name Symbol
Velocity of Liquid U, v, W Magnetic Force a, B, vy
Molecular Rotation | & #, ¢ Electric Current U, ¥, W
L M, N Electromagnetic roa, 1
Momentum
Velocity Potential b Magnetic Potential Q

of Current
Electric Current
Magnetic Shell
‘Work done in

moving a Magnetic
Pole once round
Current

Potential Energy
of Magnetic Shell

In addition to the papers cited in the preceding chapter, we

may refer to the following by Sir W. Thomson : “ Vortex Atoms,”
Phil. Mag. (4) xxx1v.; “ Vortex Staties,” Proc. Roy. Soc. Edin.
1876 ; “On Maximum and Minimun Energy in Vortex Motion,”
Phil. Mag. (5) XX1L p. 529.

The theory of rectilincar and circular vortices will be discussed
in the second volume.
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EXAMPLES.

1. Liquid is contained in a simply-connected surface §; if &
is the impulsive pressure at any point of the liquid due to any
arbitrary deformation of S subject to the condition that the
enclosed volume is not changed, and = the impulsive pressure for
a different deformation, show that

=’ , dor '
[[=F as=[[="7 as.
2. If a sphere be immersed in a liquid, prove that the

kinetic energy of the liquid due to a given deformation of ifs sur-
face, will be greater when the sphere is fixed than when it is free.

3. If V be the attraction potential of a uniform circular
lamina of unib density, in the plane of zy, prove that wd V/dz will
be the velocity potential of a circular vortex filament coinciding
with the boundary of the lamina.

4. The boundaries of a liquid are two fixed concentric cylinders
of radii @ and ¢. Prove that if the motion of the liquid is irrotational
and in two dimensions, the velocity potential must be equal to
x0/2w, where « is the circulation round any closed circuit which
embraces the inner cylinder once only; and that the kinetic
energy is equal to «* (47)™" log a/c.

5. Apply the equations of impulsive motion, to show that if
liquid be contained within a closed surface, the circulation and the
molecular rotation cannot be altered by any impulse applied to
the boundary.

6. A mass of ice is contained within an ellipsoidal case which
is rotating in any manner about its centre: prove that if the ice
be melted and the boundary be deformed in such a manner that
it remains ellipsoidal, the resultant moleeular rotation at any
point is proportional to the diameter of the ellipsoid which is
parallel to the tangent to the vortex line at that point.
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CHAPTER V.

ON THE MOTION OF A LIQUID IN TWO DIMENSIONS.

96. THE solution of questlons relating to the motion of a
liquid in two dimensions, can be most conveniently effected by
means of Earnshaw’s current function 4.  This function when the
motion is irrotational, which will be the case in most of the
problems discussed in the present chapter, satisfies the equation

& | By _
gt + lei =0 it s (1),
the solution of which 1s
V=flx+wy)+F(@—w)................ (2)
d d
Also UZE\.’Z’ v=— (—i% ..................... (3)

If the liquid isbounded by fixed surfaces, the normal component
of the velocity must vanish at the boundaries. This condition
requires that 4» = const. at all points of boundaries which are fixed.

97. When the cylindrical boundary is in motion, the following
conditions must be satisfied at its surface.

(i) Let the eylinder be moving with velocity U parallel to the
axis of z, and let 6 be the angle which the normal to the cylinder
makes with this axis; then at the surface

wecos B + vsin 8 = Ucos b

Now cos 8 =dy/ds; sinf = — dz/ds; therefore by (3)
dyr dy
2= Uds
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Integrating along the boundary, we obtain

where 4 is a constant.

(i1} If the cylinder be moving with velocity V parallel to the
axis of y, the surface condition in the same manner can be shewn
to be

Mr=—Va+B......ocooooiii (5).

(ii1) Let the cylinder be rotating with angular velocity e
then at the surface

ucos @ +vsin = — wy cos f + wzsin f
dr dr
or Es‘ = — r $.
Therefore Yy=—1tor"+0C ... (6),

where r= /2 + ¥
When there are any number of moving cylinders in the liquid,

conditions (4), (5) and (6) must be satisfied at the surfaces of each
of the moving eylinders.

In addition to the surface conditions, ¢» must satisfy the
following conditions at every point of space oceupied by the
liquid ; viz. 4r must be a function which is a solution of Laplace’s
Equation (1), and which together with its first derivatives must be
finite and continuous at every point of the liquid. If the liquid
extends to infinity and is at rest there, the first derivatives must
vanish at infinity.

Conjugate Functions.

98. DEer. If & and n are functions of & and y such that

Etm=f(@+ ) i, (N
then £ and n are called conjugate functions of © and y.

Differentiate (7) with respect to z and y respectively, climinate
the function f, and equate the real and imaginary parts in the
resulting equation, and we shall obtain

df _dn dE_ _dy (8).

= =

&= dy dy g e
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99 MOTION IN TwWO DIMENSIONS.

Now, if ¢ and y be the velocity potential and current function
of a liquid, 1t follows that if ¢ and +r are written for £ and g
respectively, equations (8) are satisfied; hence ¢ and 4 are
conjugate functions of @ and y.

99, Again J
dg dn | dE dn_
alm/ . % d_:-[/' . @— 0 --------------------- (9),
dEN' | dENT_ rdm\' | dm\t_
(dx> 4_<dy> __<d5) 4_(dy) o (10),
VE=0, V=0 .cooorririris (11),
where V= d'/da" + d*/dy’.

Equation (9) shows that the curves £ = const., % = const. form
an orthogonal system. Equations (2), (7) and (11) show that

28 = f(x+ )+ F(z — uy)
%y = f (w+ i) —F(w—ny)} ............... (12),
whence E—up=F(x—w)

Hence if ¢ (7, y,¢) =0 be the equation of any family of
curves which can be expressed in the form

2x () = 28 =f(2+ ) + F (& — 1)
the equation of the orthogonal system of curves will be
2 =f(z+w) - F(z—1y)
wherc 7 is constant along each curve of the orthogonal system.
Again we have

dg = gﬁ dz + d:g dy,

d
@=£m+$@

Therefore if ds be the distance between two adjacent points,
Jids* = dE* + dn’.
Hence if dsg ds, be small arcs of the curves § and 5 respec-
tively
JdSE = dﬂ}
Jds, = dE

100. Tf ¢ and yr are conjugate functions of £ and #, then ¢ and
¢ are conjugate functions of # and y.
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For ¢+ =F(E+m)
and E+un=f(z+ ),
therefore ¢+ oy =ry(z+1y)

101. Let p and g be the velocities perpendicular to £ and 9
in the directions in which these quantities Increase, then

_db_ ,dé_ L d¥

Fraall ikl 1)
A
=@ an

If we consider a small curvilinear rectangle bounded by the
curves £ n; £+ 8 m + 89, the difference between the fluxes over
the faces £ + 8¢ and % + 87, and those over the faces £ and 7 is

d’P d’¢ 2 d*d) d'¢
(df )d‘fd = (df“ )d”dy’
but if we choose the two tangents to the curves £ and % at their

point of intersection as the axes of # and y, the difference between
these fluxes will be

Vipdady.
Hence V"’([) J"‘((f;; dld)) .................... (15).

In the case of an irrotationally moving liquid, both sides of
this equation must be zero; hence Laplace’s equation when trans-
formed into any variables E, # which arc conjugate functions of
z and y, becomes

§;+d¢ O (16).

If we assume as the value of 4 any solution of (1) or (16)
and substitute this value in any of the three equations (4), (5)
or (6), we shall obtain a system of curves, any one of which would,
by its motion in the prescribed manner, produce lines of flow
determined by the equation r = const.

102. We shall now give some examples.

() Let Y=} Vo ( T )

Tty xT— 1y
Va'z
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94 MOTION IN TWO DIMENSTONS.

When r=a, Yy»=— Vz; also the velocity is finite and con-
tinuous at all points outside the eylinder » =a, and vanishes at
infinity ; hence 4 is the current function when a circular cylinder
of radius @ is moving in an infinite liquid with velocity V parallel
to .

The velocity potential is

Va'y

,r'l

or ¢=-

The paths of individual particles of liquid due to the motion
of a cylinder along a straight line, have been calculated and traced
by Clerk-Maxwell®,

(ii) If the liquid instead of extending to infinity is bounded
by a fixed concentric cylinder of radius ¢, the initéal motion of the
liquid can be obtained as follows.

Since (z + :y)" is a solution of Laplace’s equation, it follows
that 7" (4 cos nf + B sin nd) is also a soclution, where n is any
quantity positive, negative, real or complex.

Hence if the inner cylinder be moved along the axis of # with
initial velocity U, we may put

¢= (Ar+f> cos 8.
When r=a, d/dr = U cos 8, whence
4-B_7
)
When r=c¢, d$/dr = 0, whence

4-B_o

c
7.2 2
Therefore =— Ua (r + —%) cos 6.

¢ —a’

This is the expression for the initial value of the velocity
potential. The motion at any subsequent time after the cylinders
have ceased to be concentric will be determined in § 122.

1+« On the Displacement in a case of Fluid Motion,” Pro¢c, Lond. Math. Soc.
vol, 111, p. 82,
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(ii)) Let V=34 {(x+ )’ + (2 — )}
= A(2* — 3xy*) = Ar° cos 36.
Substituting in (6) the equation of the boundary becomes,
A@E -3z )+ (@ +y)=C.....ce... (19).

If we choose the constants so that the straight line x = @, may
form part of the boundary, we find

© 2wa’
A_()"a,’ C= 5

Hence (19) splits up into the factors
(x—a); z+yy3+2a; o —yv3 + 2a.

The boundary therefore consists of three straight lines forming
an equilateral triangle, whose centre is the origin.

Hence ¥ is the current function due to liquid contained in an
cquilateral prism, which is rotating with angular velocity @ about
an axis through the centre of inertia of its cross section. The values
of Yr and ¢, when cleared of imaginaries, are

_® s L B
yr =g, " cos 30, ¢ 6q" Sin 30.
(iv)  Let v=34{(@+ )+ (@~ w)
=4 (& —y").
Substituting in (6) we find
AP —PH)+ie(@E+y)=C.nnnill (20).
: w+24 1 w—24 1
Putting 20 & 20
the equation of the boundary becomes '
P 1/_2 B
Sl DI (21),
oad— b .
and 1[/-=—§m(z’—y) .................. (22),

vr is therefore the current function due to the motion of liquid
contained in an elliptic eylinder, which is rotating about its axis.

The preceding value of 4 is also the current function, when
the liquid is bounded by two concentric, similar and similarly
situated elliptic cylinders,
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96 MOTION IN TWO DIMENSIONS.

103. To find the current function when liquid is contained in a
rectangular prism which is rotating with angular velocity w about
ils axis’.

If 2a, 2¢ be the sides of the cross section of the prism, the
boundary conditions are

u=2¥_

4y~ w, when z=+gq,
d
v:—%:wx, when y=+c
Also v = 0.
Lot x 4o (@ +y)=¥;
then UEX =0, z=+ta
dy :
e R (23),
Ei%% =0, y=+*%c¢
and Viy —20=0.....c.c.oiviiinninnn. (24).
Let x = 2 (0 cos Ax + {sin \z),

where 6 and ¢ are functions of y alone. Substituting in the first
of (23) we obtain,

dg sin Xa) =0,

d8
b (dycosMai dy

therefore £=0,
w
Hence x=20,,cos(2n+1) ;%a .................... (25).
Substituting this value of x in (24), we obtain

. T L _
b {Ef —(2n+1) W}G““ cos (2n+1) ;= — 20=0 ...(26).

2a
a mx ,  (—=)4a
Now f_acos (2n+ 1) B dw—@;n_{_l)r,
@ e T
and f_acos (2m + 1) g 0 (2n + 1) % dx=0 or a,

according as m is uncqual or equal to n.

1 Stokeg, ¢ On some cages of Fluid Motion,” Zrans. Camb. Phil. Soc. vol. vim.
p. 105. Ferrers, * Solution of certain questions in Potentials and Motion of
Liquids,” Quart. Journ. vol. xv. p. 83. For the expressions for the component
velocitics of the liquid in terms of elliptie functions, sec Greenhill, Quart. Journ.
vol, xv. p. 144,
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Multiplying (26) by cos (2n + 1) mra/2a, and iutegrating between
the limits @ and — a, we obtain

d292n+1 _ @i"*’ 1)'x* _ (=)"8w -
dy® 4a’ it On4 w7
therefore
Y . my (= )"32d%w
0,.,=4,,.,cosh(@n+1) 9% +B,,,,sinh (2n + 1) o0 (va—rH-.l)’?

If we substitute this value of 0, ,, in (23), and then substitute
the resulting valuc of x in the sccond of (23), we obrain

B =0,
p B (—)"32d%w
W+ (9 + 1)’ cosh (20 + 1) we/2a’
whenee
_ 320" = (=) 208 (2n+1)ma/2a . cosh (2n + 1) my 20

T %o (2n + 1)° cosh (2n + 1) 7c/2a

_ 32d%0 = (—)"cos 2n+ 1) mz/20
7 e (2n + 1) ’

Now if 2 lies between 7 and — L,

m wet

cos cos 3 1 5 =
08z — 33 08 z+5qcos 2= aieins =357 g

hence the second series is equal to o (a®—2%), and the value of 4

is therefore
= 0t~ bo (@ — 1)

32a%w 5 (— )" cos(2n+ 1) wz/2a cosh (2n + 1) 7ry/2a,
T (2n + 1)*cosh (Zn + 1) 7c/2a

A more symmetricul expression may be obtained from the
consideration that {r must be unaltered when a and  are written
for ¢ and y; making these.changes and adding the results we

obtain,
Y=o+
16a w ()" cos (2n+ 1) mz/2a cosh (2n + 1) wy/2a
(@n+ 1) cosh 2n+ 1) we/2a

16c°w 5° (=)"cos (2n + 1) my/2c cosh (2n + 1) ma/2c
: at (2n + 1)’ cosh (2n + 1) wa/2¢
B. 7
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104. To find the velocity potential when liguid is contained in
a cylinder whose cross section 1is the sector of a circle, which is
rotating about an awxis through the centre of the circle.

Let 2 be the angle of the sector, @ the radius of the cylinder,
o its angular velocity, then
d'¢ 1do 1dd
dr +;'d;+rs ZM;O ..................

and the surface conditions are

%Z—(g=wr, when 8=0ora.........(28),
de -
ar = 0, when 7=a...ccoceirinniinnnd (29),
also ¢ must not become infinite when 7= 0.
Let d=LcosA(0+08),

where R is a function of 7 alone. Substituting in (27) we obtain
SR 1IR_RY
dr* " r dr 7 ’
the solution of which is
R=Ar"+ Br=*
Hence since A has not at present been determined, the value of
¢ may be written
¢p=2Ad,r"cos2 (0 +B)+Z(Ar*+ Br-*) cos A (8 + ).
Substituting in (28) we obtain
24,7 sin 2(0 + B+ I (A + Br-3)sinn (6 + B) = — wr™.
This equation is satisfied, provided
24,sin (20 + 28,) = — w,
SA(Ar*+Br-NsinA (6 +8) =0,
which requires that
28, = 4w —a, 24 ,cos0 = —w,
B=0, A=En+1) /2

} when 8=a or 0,

1 Stokes, **On the critical values of the sums of periodic series,” Trans. Camb.
Phil. Suc. vol. viir. p. 538. Greenhill, ¢‘Fluid motion in a rotating semi-circular
cylinder,” Mess. Math. vol. vur. p. 42; ““Fluid motion in a rotating quadrantal
cylinder,” Ibid. p. 89; “‘Fluild motion in a rotating rectangle formecd by two
concentric circular arcs and two radii,” IHid. vol. 1x. p. 35; **On the motion of a
frictionless liquid in a rotating sector,” Ibid. vol. x. p. 83.
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Therefore
wr’ .. ]
=5 cos 2 S0 (20 —«)

+ E:{A”r@"“)"/“ + B r-CrtUrlalogs (90 4 1) 76/a.

Since ¢ must not be infinite when =0, B, =0; substituting
in (29), we find that for all values of 8 between « and 0,

wa sec a 8in (20 —a) + gE:An (2n + 1) a@ D2 cog (2n +1) w2 =0,

whence by Fourier’s theorem

1w 4, (2n + 1)ag@rtlinle = — wa® sec afmsin (20 — a)cos(2n+1)wf/zdf
0

dowa’s’

Tdat— (2n 1)

Swa’u

heref = 2% . g-@nidrla
therefore 4= o ¥ 1) [(@n + 1) — 4} @ '
w 5 =
and ¢= Soosq” S0 (26 —a)
© (2n+1)m/a )
2 57 (T _ cos(2n+1) b]a
+8wa'a 2, @ 2o+ 1) {2n + 1) 7 — 42’}

105, Theinterpretation of this expression presents no difficulty
so long as a <=, but when a > 7 the velocity becomes infinite at
the origin. The following explanation of the motion which takes
place when this is the case, is given by Prof. Stokes:

“Let OAB be a section of the sector made by a plane
perpendicular to the axis, and cutting it
in 0. Suppose the cylinder turning round
0 in the direction indicated by the arrow.
Then the liquid in contact with OA and
near O, will be flowing relatively to 04,
towards O, as indicated by the arrow at O.
When it gets to O, it will shoot past the
face OB; so that there will be formed a
surface of discontinuity indicated by the dotted line, extending
sorne way into the liquid, the liquid underneath this line and near
O flowing in the direction 4 0, while the liquid above is nearly
at rest.”

7—2
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Whenever a liquid is flowing past a sharp edge, the analytical
expression for the velocity, calculated on the assumption that the
liquid is perfect and flows according to the electrical law of flow,
always becomes infinile at the edge; a result analogous to that
which occurs in the theory of the distribution of electricity on
conductors, where it is found that the analytical expression for the
density upon a conductor having a sharp edge becomes infinite at
the edge.

The mathematical investigation of the discontinuous motion
which takes place in such cases is one of great difficulty, but
certain special cases will be considered in the next Chapter.

106. The problem of finding the velocity potential and current
function, when a cylinder whose cross section is a given curve, is
moving in an infinite liquid, has been solved in comparatively
few cases. The theory of conjugate functions affords a powerful
method of attacking ench problems, but the principal difficulty
consists in finding a relation between the complexes £+ iy and
« + ¢y, such that the given boundary shall be represented by some
particular value of one of the functions £ or .

The principal solutions of this problem, which have hitherto
been obtained, will be given in the following articles.

107. Let ety =ccos(E—um) eveviiniiinnn... (30),
then x = ¢ cos £ cosh 7,
y = ¢sin £ sinh n,

and the curves n =const., = const. are a family of confocal ellipses
and hyperbolas.

If ¢ and b be the semi-axes of the cross section of the ellipse
n=p3, then

a = ¢ cosh 3,

b= ¢ sinh B,

@t = =c
. 2

AlSO = CWM .................

Here 7 may have any positive value, and £ may have any real
value whatever; when =0, the ellipse becomes a double line
joining the focl; and when =0 the curves become circles; also
J vanishes at infinity.
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Now 4 satisfies the equation

&y d*«p o
dE + gt = O (32),

and this equation is satisfied by the expression

An+3. e ™ (4, cosnE+ B, sinnf) ......... (33),

which is the proper form of a potential function outside an elliptic
eylinder, since by (14) and (31), it makes the velocity vanish at
infinity.

To find the form of 4 inside the cylinder, we observe that (32)
is also satisfied by the series

ZT(A,. cosh n7 cos nE + B, sinh ny sin n§ + €, sinh ny) cos né
+ D, cosh ny sin né) ...... (34).

Now if we examine the components of the velocity in the
neighbourhood of the line joining the foci, it will be found that
they will be discontinuous, unless dyr/dy and dy/d§ either vanish
or change sign in passing from one side of this line to the other;
the last two terms of (34) are therefore inadmissible. Hence every
potential function, which together with its first derivatives is finite
and continuous inside an elliptic cylinder, must be of the form

ET(A" cosh nn cos nE + B, sinh ny sinnf)......... (35).

This value also muakes the component velocities finite at the

foci; for in the neighbourhood of these points Jc:(31]2+552)—é,
and from (35) both dir/d€ and dyr/dy arc infinitesimals of the first
order.

Hence, by (4) and (5) if 4, ¢, be the current functions when
the cylinder 7 =28 is moving parallel to z and y with velocities
U and V respectively,

Y= Uce*Fsinh §sin§ )
yr, = — Vee~7t# cosh B cos & )

Again, 7" = a* + y* = }¢’ (cosh 29 + cosh 2§).

Hence, if 4, be the current function when the cylinder is
surrounded with liquid and is rotating with angular velocity o, we
must put

yr, = Ade=¥17 A cos 2.
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Substituting in (6) and putting n =3, we obtain
A cos 28 + fc*w(cosh 28 + cos 28) = C.
Hence C = }c’w cosh 23,
A =—-1dw,
and VYo =—1cCwe T2 cos 2E ...l (37).

The value of the velocity potential may be deduced from the
preceding values of 4 or from the corresponding expressions for an
ellipsoid, which will be given in Chapter vII. and which were first
obtained by Green® and Clebsch® The expressions in the text are
due to Prof. Lamb?®

The motion of a liquid in a rotating cylinder, whose cross
section is formed (1) by the ares of confocal ellipses and hyperbolas,
(ii) by arcs of confoeal parabolas, has been investigated by Dr
Ferrers®,

108. We shall now solve the same problem for a cylinder
whose cross section is the inverse of an ellipse with respect to its
centre®,

Let zHwy=csec(E+ 1) uiiiiiiiniiinn... (38),
2 2
then rt=c (Lz + L) ,
cosh’n ~ sinh*py

4 2( z” y2 )
T c - 27 - —#— >
cos®E  sin®§)
whence the curves £=a, =03 are the inverses of a family of

confocal hyperbolas and ellipses with respect to their common
centre.

N
Also (;f =coshn cos &,
[;‘% =ginh 7 sin §,

2 ST (39).

2} = cosh 27 + cos 2§,

Jr_ (cosh 27 -+ cos 2E)°
~ 2¢* (cosh 27 — cos 2§) )

Trans. Roy. Soc. Edin. vol. xu1. p. 54,

Crelle, vol, LiL. p. 119,

i Some hydrodynamical solutions,” Quart. Journ. x1v. p. 40.
GQQuart. Journ. xvir. p. 227.

Ibid. vol. 31x, p. 190, and vol. xx1. p. 336.

o R W o e
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CROSS SECTION THE INVERSE OF AN ELLIPSE. 103

Here n may have any positize value, and £ any value positive or
negative, but as the values of z and y are periodic with respect to £,
it 18 only necessary to consider values of € lying between 0 and 27,

When 7 is large the curves #n=const. consist of small oval
curves about the origin, with which they ultimately coincide when
n=ow; and when =0 they become two double lines extending
from the points #=4¢ to infinity in the positive and negative
directions respectively. .

Also when 7 1s large
J=4e"/c.
Hence, within the cylinder, every potential function must be of
the form

Srem (A, cosnE + B Sinng).uerreierann.. (40).
Outside the eylinder, every potential function must be of the
form
ET(A,. cosh ny cos nE + B, sinh ny sin 2E)......... (41),
for the velocities will be discontinuous along the two double
lines, unless dy/d¥ and dvr/dn either vanish or change sign in
crossing from one side of these lines to the other, and (41) is the
only form which satisfies these conditions. This form also makes
the velocity at the points # = £ ¢ finite.
Now -+ =csec (E+ )
2ce~
T l4emtu
=2 (71t — e ITHBE 4o —InHRE_ &)
therefore z=2 210 (=) e~@r+Dncos (2n+ 1) &,
y =205, (-) e=rtlngin (20 + 1) £

Hence, if 4, 4, be the current functions when the cylinder is
moving with velocities U and ¥ parallel to £ and y respectively,

L €I sinh (204 1) psin (204 DE
T ginh @n+1)@8

e~(n*DB cosh (2n + 1) 9 cos(2n+ 1) E

L e G S 1) I LY

Yo= 2UcS (=) . (42),

where 8 is the value of 7 at the boundary.
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104 MOTION IN TWO DIMENSIONS.

109. The two series (42) and (43) constitute the complete
solution of the problem when the motion of the cylinder is one of
translation. The results can however be put into a more compact
form by means of elliptic functions, To do this, let

E+wm=u E—m=1v; K/m=K/28, so that g=¢"%; then

_ oS VT Lo (20 4 1) w— cos (20 + 1
Y= t 0] = g cos (2n+ 1) »

= 1 UKct {cosecam (2KE +- K) — cosecam (glﬁ) + K)}
™ w m

—3 Uce (secu —secv) ;

therefore

Y, = 1 UKec: {cosecam (%K'-u -+ K)
™

=
— cosccam (2—‘;{—” + K)} + Uy
Putting 2KE/m+ K =0, 2Kn/mr=¢, dn* 8 =a, sn® (¢, k) =0,
and clearing of imaginaries, the term in brackets becomes

2t(1—aB)i’snpenpen fdn b
(1—a)(1—&"B) +aB(1—8) (a—£k)’

the functions of ¢ being to modulus %

S=-—

The denominator of S
=(1-aB)(1+aB—a—-£k"B),
2u*snpengenfdnd

thercfore S=- —mmm
_2d*sndpendsny
~ 1—sn'ydn®¢
where v =2KE/m.

Henee we finally obtain

st (QUKE/r) s (K" B)en (')
1 —sn® (2KE/m) dn* (K'n/B8)

the functions of £ being to modulus %, and those of  to modulus %'

Vo= — 2 UKK% . + Uy (44),

Similarly
VY, = ! VK/c’c{secam 2Ky + secam
T

Voo

QKEI — Va.
7 )
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Putting 2KE/m =y, 2Kn/w = ¢, dn’*y =a, so*(¢, &) =4, and
clearing of imaginaries, the term in brackets becomes
2" (1 —aB)cenfen ¢
@—F) A1 -8B +aB(1l—a) (1 -k*8)’

The denominator

= (1-af) {a—k*(1 +aB-B)},

S=

_ Zcnycng
therefore S = 1——SY]2XT14) .

Hence we finally obtain

en (2KE/m) on (K'n/8)
1= su* QK Em) dn*(K'n)g) ~ V%~ (45)

¥y = 2 VEWe.

110. 'When the cylinder is rotating about its axis with angular
velocity , the surface condition is

Y, =— tor® + C.
sinh 28 € + cos 2
Now 1+ cosh 28 + cos 2 cosh 283 + cos 2§
1 1
= {n el T iEed
1+e 1+e¢
=2+ 22:0 (= )" e * cos 2nf,
therefore

= ¢
cosh 20 + cos 2§
= ¢’ cosech 28 + 2¢* cosech 28 E:ﬂ (=)™ e 2% cos 2nk.

Therefore
Vr, = — wc” cosech 283

_ . s® ; _\n —2np CO8D 207 cos 2nE
2 wc®cosech 283, (— )« ~cosh 28 . (46).

111. If liquid is contained in a cylindrical cavity bounded by
the curve 77 = 3,
¥ = — wc? cosech 28 — 2wc” cosech 23 ZT (—)" e ¥ cos 2nE

- — o — ol 9g(__ sinh2y >
= — wc® cosech 23 — wc’ cosech 28 (cosh 98 1 cos 2E 1

2 ] P
¢’w cosech 23 sinh 27 (47).
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106 MOTION IN TWO DIMENSIONS.

112. The results of § 109 admit of various interpretations, by
means of which we can obtain the solutions of several problems in
other branches of physics. Thus the function 4Jr, is

(i) The potential without the cylinder, of the induced
charge, when the cylinder is placed in a field of uniform electric
force parallel to .

If we invert with respect to the origin, which is equivalent to
putting c®»/r® for x, and =+ ¢y = ¢ cos (£ — un), ¥, 18

(ii) The potential of the induced charge within an elliptic

cylinder which enclosecs an electric system whose potential is
Via/r'.

(iii) 4, is the temperature within a solid elliptic cylinder
whose boundary is maintained at a temperature — Ve'sz/r,

118. The equation
2+ =2csec® } (E+ )

represents a family of confocal limagons. The curves 5= const. are
the inverses with respect to a focus of a family of confocal ellipses,
whilst the curves &= const. are the inverses with respect to the
same focus of the orthogonal family of confocal hyperbolas. The
current functions due to the motion in an infinite liquid of a
cylinder whose cross section is the curve n = 8, and also of liquid
conlained in a rotating cylindrical cavity of this form, may be
obtained in a similar manner to that employed in §§ 109—111 (see
Quarterly Journal, Vol. XX. p. 234).

114, Let us now consider the system of curves given by the
equation

E+ m—%log(————m+”/) —¢
This is equivalent to the system
(@ -y =P’y = (48),
=P —c'=2zycot 2y......ociiieeill (49).

(48) 1s the eqguation of a family of confocal lemuiscates, the
distance between whose foci is 2¢c; and (49) is the equation of
a family of rectangular hyperbolas, each of which passes through
the foci of the lemniscates and cuts them orthogonally.
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It is easily seen that
9z =c¢ {1 + 62(4’*"1)}& + ¢ {1 4 e2E-mp
2y =c {1 + &EFmli — ¢ {1 4 26—,
r?=¢* (1 + 2¢¥ cos 2n + e¥)},
re~2%
¢*

J =

—£
= ET (14 2e~2% cos 29 + e %01,

£ and 5 may have any values whatever. At infinity, £ = o,
J=0; at elther of the foci f=— o and J=¢%¥/6=0. When
£=0 the curve becomes the lemniscate of Bernoulli (+* = 2¢* cos 26) ;
n and 7 + 7 are the angles which the asymptotes of the hyperbola
make with the axis of z, and in the first quadrant 5 varies from
0 to $m

Hence, for motion parallel to z,

v, =—§Uct [{1 + g 2¢-2e—mli _ (] 4 g 2E-2etm]i]  (50),
and for motion parallel to y
9= = FVO (L4 o HE-moifh 4 (1 omsmmil].(51),

where a i1s the value of £ at the surface.

115. Before dealing with the rotation of the cylinders, we
shall make a short digression for the purpose of considering the
coefficients of cos 8 in the expansion of (1 + 2¢ cos  + ¢7)?, which
we shall denote by L, where ¢ < 1.

Now
(1 + 2¢ cos 0+ ¢*)? = (1 + cei?) (1 + ce)*

=(1+73ce? + 8,7+ ... Scle ™0 4 )
X (L+3ce ® 4+ 8% %+, Sctem 4...),
—_— n-1 —_—
where S=( ) 1.3;l5...(2n 3);
" 2" . nl

therefore L,=2c {8, +58,,,+8,,,8c+8, ., 855+ ...}

a+2 2
The value of L, however, may be put into a more convenient
form for calculation, for

L., f(l+20cos€+c) cos (n + 1) 8d6

¢ (™ cos nf — cos (n+ 2)6
T 2(n+ 1).} 40

0 (1 + 2 cos 8 + ¥}
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Also
™ (1 4 2¢ cos 8 4-¢*) [cos nf —cos (n+2) 8
%277' (‘Ln_ n+2) :4{. ( ) ( ) }
1 + 20 cos 6 + ¢*)*

_m(1+¢) (n+1) I +Gf cos (n—ilwﬁ—cos(n+3)6d6
¢ " 0 (1+2¢ cos@+c’)‘

= M(w Ln+l + {nLn + ('ﬂ + 2) Ln-#-z} 7
therefore
(@ +5) L. +@n—1)L, + w L. =0...(52).
Also  $wl = j." (1 +2ccos 6+ c")é dé
0
— (1 +0) B (k, br), where & = ILfC.
w (. . AF
Now E@) =k (ﬁmdk).
Also Fy=>1+c¢) F (c);
d¥ (k) | dF (¢)] (1 +¢)*y/c
therefore —dk IF( +(14¢)= 771 |
1+ )"
- {E ©) ~(1—~0) F(c)} (1( c)*)«/o'
therofore E®) = ?@ (1= 0) F(o);
therefore L,= - {2E —A-AF} (53).
Again,
ymL, = f " (1 +2¢ cos 0 + )t cos 640
_f ¢ sin® 8d0
(1+20c059+c)
_ oF (o) — 47—L+§(1+c)f cos 8d -
(1+2¢ccosf+c*)
1+ )
therefore Ll =ckH + 40 {3mL,— (1 + &%) ¥}
therefore L= 2 {AQ+HNE-(1—=) Flooinn. (54).

3me
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Having obtained the values of L, and L, the values of the
successive functions can be calculated by means of the sequence
equation (52).

116. To find the current function due to the rotation of the
eylinder in an infinite liguid.

(1) Let £ be positive at the surface of the cylinder and equal
to a, then

r*=c%* (1 + 2¢~2* cos 29 + ety
=™ 2‘: L (a) cos 2nn,
where L_ (a) is put for L_ (e2).
Hence Y, =—twc’e* XL (a) e 2n¢-* cos 2ng......... (55).

(i) When £ is negative at the surface, the cylinder consists
of two portions, which we must suppose to be rigidly connected

together; 1in this case let £ =—2z at the surface, where a 1s
positive; then
Yy =—3wc? ED: L (a) e 2%¢+a) cos 2np wavinennnnn. (56).

In the case of a cylindrical cavity filled with liquid, the values
of 4 are

— 3o S TN L (a) cos Onm — bac’e™™ Ly (@).eun. (5'7),
and — tac? Sxm ey, (@) cos 2ny — rewc® Ly (v, (58).
117. When a = 0, and the cross section becomes a lemniscate

of Bernoulli, the prceeding formulae become much simplified.
Putting w ==z + 1y, v = z — 1y, we obtain

V. = — Vo l[ﬁvf_& - JM%CQ} ............ (59),
Y=—4Ve {~Lc + l“—} ............ (60).
¢ o

118. The values of 4 when the cylinder is rotating about its
axis may be obtained in this case without having rccourse to the
general formulae of § 116, for the value of 7* at the boundary is
2¢* cos 7, whence Yr, = — wc’ e~fcos . This may be expressed in
the form

—— {:/T]f; + JU;__:(?} ............ (61).
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110 MOTION IN TWO DIMENSIONS.

119. To find 4 when the liquid is contained in a cylindrical
cavity formed by one of the loops of the curve, we observe that +
cannot contain any lower power of ¢ than & (£ being of course
negative), otherwise the velocitics would be infinite at the foei,
where J = e %¥/c. Now

r*=2¢" cos g ;
also for all valucs of # between 17 and — 47 both exclusive,

n=w (_\n"1
cosn=imwr+ 3 (—)""cos (277,-{_]7),"
n=1

2n+1
Therefore
o, @ (=) e cos (2n+ 1)
Yr=—wc {i'rr+21 on 1
; _, Co8
=—awc? (;177' + ¢ cos n+ 4 tan™ sinh”%) ............ (62).

120. Lastly, let usconsider the equation

T+ey=ctan g (E+im)einnnininnenn. (68).
Then tan E=tan 4 (E+ iy + £ —17)
B 2cx
- 02 _w2 _ y‘l .
Therefore '+ y' 4+ 2cx cot E—¢*=0..00uinnennnn (64).
Also stanhg =tand (E+ — £+ 7))
__ 2oy
T4 Ay
Therefore 2yt — 20y coth g+ =0 (65).
. _sin§(E+um)cos (E—m)
Again, e =0 o (E v ) cosd (E— )

sin £+ ¢tsinh g
=¢-— — .
coshz+ cos £

sin
Therefore L= EO;BhC’I)ffOQ\f
R PR (66)

¢sinh 9
cosh n + cos &
1 (cosh 5 +cos £).

Y=

J=

[+
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121. Equation (614) represents a family of circles whose cen-
tres lie on the axis of z, at a distance — ¢ cot £ from the origin O,
and whose radii are equal to ccosec £ Each circle passes through
two fixed points 4 and B on the axis of y, whose distances from 0
are ¢ and — c.

The angle £ is half the angle subtended by AB at the centre
of the circle. Hence the curve £ =0 represents the portion AB of
the axis of y. When £ has any positive value between 0 and 7 the
curve consists of that segment of a circle passing through 4 and B
which lies on the positive side of the axis of y; and when §==
the curve becomes the whole of the axis y except the portion AB.

When £ has any negative valuc between 0 and = 7 the curves
consist of segments of circles deseribed on 4 B, and which lie on the
negative side of the axis of .

Equation (65) represents two families of circles whose centres
lie on the axis of ¥, at distances + ¢ coth # from 0, and whose radii
are equal to ¢ cosech 9. These circles do not cut: the axis of .

When % = o« the curve reduces to the point 4; when 5 has
any positive value the curve represents a circle surrounding this
point ; and when %= 0 the curve becomes the axis of 2.  When
7 has any negative value the curve represents a circle surrounding
the point B, with which it ultimately coincides, when = — oc .
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Let P be any point on one of the circles 4, then
APP=2"+ (y—c)
= 2cy (coth n — 1),
BP*=2cy (cothy + 1);
AP/BP =¢.

Whence every circle of the system 5 is such that the ratio
AP/BP is constant along each circle; therefore A and Z are the
common inverse points of each circle of this system. In con-
sequence of this property the coordinates £ and 5 arc called de-

polar coordinates.

122, We can now find the current function when two circular
cylinders are moving in any manner in an infinite liquid’,

Let n=a, 7 =— 8 be the equations of the two cylinders sur-
rounding the points 4 and B respectively; and let #,, ¥, #,, — ¥,
be coordinates of any point on the eylinders 4 and 5 respectively,

then
x, + oy, =ctan } (£ + 12)

1%
=Ci T F=a
1+e
=c {1+ 22:0(— e (cos nf + e sinnE)};
therefore z, =— 2 Elm( — )m e megin nf} . (67)
y1=c+2c2:°(-)"e—"dcosnf . o
Again,
z, —wy,=ctan (£ — 3)
_el—eie
TulqedR
=—(: {1 + 22:0 (—=)*e "B (cos nE — ¢ sin n‘g’)},
therefore r,=—2¢ E:o (—=)r e m8sin nf} (68)
y2:0+202:°(~)"s-"ﬂcosn§ ...... -

Let u, v be the component velocities parallel to z and y of
the cylinder A4, and «’, v’ those of B; then

¥ =wuy, —va, + const. at 4 } (69)
= — u’y, _ U’xﬂ + const. at B -

1 Qreenhill, *' Functional Images in Cartesians,” Quart. Jowrn., vol. xviI. pp.
856—362, See also Hicks, Ibid. vol. xvr. pp. 113 and 193.
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Hence
© inh .
Y=2c%, (—)”e-MZ%IZ—E;%g(u cos nf 4 v sin nf)
h z r .
—-2c3, ( n ¢—nf Ziih Z((:+ g; (' cos nE — v sin nf)...(70).

If the cylinder o were moving inside the cylinder B, we should
obtain in the same manner

sinh (n — 8)
sinh (2 — 83)
sinh (& —7)
sinh (a — 8)

¥=203] (= e

(u cos nf + vsin nf)

+23 (—)nen (W cos nE + v sin nE) ...(T1).

123. Woe shall hereafter require an expression for the kinetic
encrgy 7' of an infinite liquid in which two eylinders are moving.
By Green’s theorem,

2 v Sae| ~|[ e -
Now

Y. =2¢c 2:0 (=) e~ (y cos nE + vsin nf),
(g%) =9 2:': (= )*nenecoth n (@ + B) (ucos nE +v sin nf)

+ 2 2:0 (— )" ne="8 cosech n (a + B) (u cos nE — o' sin nf).
Hence the first integral
=47 (u* + %) 2:0 ne~ 2 coth n (a + 9)
+47c® (un’ — vv) 2:0 ne=n@+® cosech n (a + B).
Similarly the second integral is equal to
— darc® (w2 + v) Elmns"%ﬂ cothn (z + )
—47rc® (uw’ — ) EO: ne-"= 8 cosech n (a + B)-
Hence
2T =P (u* + ")+ Q (u® +v") + 2L (' — ') (72),
where P = 4mrpc® 3, me- coth n (a+ B)
Q= 4mpc® S me-mpeothm(a+B) o
L = 4mpc’ ET ne~nie+b) cosech n (2 + B)
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124. Before we can make use of the foregoing values of P,
and L, it will be necessary to express them in terms of the radn
a and b of the two circles and their coordinates. To do this, let
0 =¢2 0,=¢"P, g=e2"F; then
1+g¢"

P =dxnc 21 -n912" 1= qm

— 43, {nﬁf" + 'S, nfe" q"’"‘“} .

n=1 m=1
Now g+2¢"+3¢"+...... =1

therefore, inverting the order of summation,

_ ;n:‘m 91 2912 2m
P_47.—oz{u gt }

=1 (l _ 0 2 zm)z
Now a=ccosecha=2¢6 /(1 —-67);
2 2. .2m
therefore P =xa {1 + 2 2 ((1 _—Z ,qf‘i‘)g} ............... (74).
w (] — 0 2)2g"
Similarly Q== {1 +22 8— 2) m)) ............ (73.)
. L ® n 2n
Again L =8nc%, 1 _qq,,,
= 8t n§ mg ng™"
n=1 m=1
Zmim q'im
= 87TC Z om\2
m=1 (1 - q )
moo(1—67) (1= 07 g _
— N _
= 27rab7:=1 (1 (127,.) ............ (16)

Since the quantities ¢, 0, are functions of the respective
distances of the circles « and 8 from the axis of vy, these values
of P, Q and L are of the required form. The coordinate  does
not eunter into the expressions for the coefficients,

The kinetic energy of a liquid in which two cylinders are
movmg, was first obtained by Mr W. M. Hicks®: the investigation
given in the text is due to Prof. Greenhill?®

1 ¢« (On the motion of two eylinders in a fluid,” Quart. Journ. vol. xvr. pp. 113
and 193.
? «Junctional Images in Cartesians,” Quart. Journ. vol. xvir. pp. 356—362.
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EXAMPLES.

1. An elliptic cylinder is filled with liquid which has molecular
rotation ¢ at every point, and whose particles move in planes
perpendicular to the axis; prove that the lines of flow are similar
ellipses described in periodic time

 (a* 4 b¥)
abf

2. A fixed cylinder whose cross section is any one of the
lemniscates 7’ = ¢%, where ¢ is any constant and 2¢ 1s the distance
between the points from which 7, 7' are measured, is surrounded
by an infinite mass of water in steady cyclic irrotational motion;
show that the stream lines are all lemniscates of the same system,
and that the velocity along a stream line at any point varies as the
distance from the centre,

Prove also that the polar coordinates (referred to the centre) of
a liquid particle in terms of the time ¢ are given by
7’ = a’enut + *dnut,
20 = amut, k=a/c.

3. The cross section of a cylinder is a sector formed by the
circle r=a, and the lines 6 = + 2. Prove that if the cylinder be
rotating with angular velocity w,

, cos 26 o (rfa) @A T2 008 \2n+1)7r¢9/"1

Y= bor o~ Baaa¥] ()"

(2n+1) 7 (20 + 1)* 7* — 164

4. The transverse section of a uniform prismatic vessel is of
the form bounded by the two iutersecting hyperbolas represented
by the equations

\/2 (wﬂ_ yﬂ) + ‘7;2 +y'z =a2, v2 (yz _wz) + wz + yﬂ — bEl

If the vessel be filled with water and made to rotate with
angular velocity w about 1ts axis, prove that the initial component
velocities at any point (z, y) of the water will be

o 9,8 _ 2 2_ 72
gy 12— 6y + V2 (=) )

b2{2x—6z_/ + /2 (" — a®) z}

respectively.
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5. A cylinder whose cross section is the limagon

r . .
9, = cos® $0 sech® } B +- sin® 16 cosech® 13,

is in motion in an infinite liquid with velocities U, V parallel to
the lines @ = 0, @ = 47 respectively ; prove that
=8 UGET (—)""* me~m8 cosech n@ sinh ny sin nf
- SVCE:G (—)*"* ne~7f sech nf3 cosh ny cos nf,
where £ and % are conjugate functions such that

o+ oy =2csec’ 3 (€ +um).

6. Prove that if the cylinder in the last example be rotating
in an Infinite liquid with angular velocity o,

\}r=—8r‘>cgcosech”ﬁ{cosh/3+2czoshﬁﬁln (—)"e "PsechnBcoshnncosnk
+ 2 sinh BE:Q n (—)" e="® sech nf cosh ny cos nf},
and that if a cylindrical cavity of this form be filled with liquid

and made to rotate,

8wc® [cosh 8sinhg  sinh B8 (1 + cosh 7 cos f)}

¥ =~ s’ B loosh 5 = o0s £ (cosh n + cos £)*

7. A circular cylinder is moving parallel to the axis of =;
prove that if there is cyclic irrotational motion about the cylinder
the velocity potential is
kb 'z
27’
where « is the circulation round any closed circuit embracing the
cylinder once.

8 A hollow cylinder of radius a, closed at both ends, is
divided into two parts by a plane diaphragm through its axis, and
filled with liquid. If the vessel be made to rotate about its axis
with angular velocity w, prove that the motion of the liquid
relative to the vessel will be such that its velocity potential 1s

2

2 2 2 2
d=C+Lwr’sin20 + et [{(2 + 0‘2) cos 20 — 2} logr + 27 cosf+a
8 a

r— 2arcosf+a’

2 N .92 in 8
_3 (12_‘12) ¢in 20 tan™? Lrsmg —4(i+a> 0050],
a? 7 a — e r

T

where 7, 0 are polar coordinates of any point of the liquid.
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9. Prove that

(z+a) + ¥

=1

=18 Ty

gives a possible motion in two dimensions. Find the form of the
stream lines, and prove that the curves of equal velocity are
lemniscates.

10. TIn the irrotational motion of a liquid, prove that the
motion derived from it by turning the direction of motion at each
point in one direction through 90° without changing the velocity,
will also be a possible irrotational motion, the conditions at the
boundaries being altered so as to suit the new motion.

Discuss the motion obtained in this way from the preceding
example.

11. Liquid is moving irrotationally in two dimensions, be-
tween the space bounded by the two lines 0=+ 4w and the
curve r°cos 30 =a’. The bounding curves being at rest, prove
that the velocity potential is of the form

¢ =7r°sin 36.

12. The space between the elliptic cylinder (z/a)* + (y/b)* =1,
and a similarly situated and coaxial cylinder bounded by planes
perpendicular to the axis is filled with liquid, and made to rotate
with angular velocity @ about a fixed axis. Prove that the
velocity potential with reference to the principal axes of the
cylinder is w (a® —b%) zy/(a® + &%), and that the surfaces of equal
pressure when the angular velocity is constant, are the hyperbolic
cylinders

NI
3a’+b 8b+a

13. If ¢ =f(x, y), ¥r=F (z, y) are the vclocity potential and
currcnt function of a liquid, and if we write

z=f($, ¥), y=F($ V)
and from these expressions find ¢ and +r; prove that the new
valucs of ¢ and 4 will be the velocity potential and current
function of some other motion of a liquid.

Hence prove that if ¢=a"—y% ¥ =2zy, the transformation
gives the motion of a liquid in the space bounded by two confocal
and coaxial parabolic cylinders.
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118 MOTION IN TWO DIMENSIONS.

14. In example 12 prove that the paths of the particles relative
to the cylinder are similar ellipses, and that the paths in space are
similar to the pericycloid

2
= (a+ b) cos 8+ (a— b) cos (ng) 9,

y=(a+b)sin b+ (a —b)sin (—Z—i;) 0.
15. Water is enclosed in a vessel bounded by the axis of y
and the hyperbola 2 (a® — 33®) + x4+ my =0, and the vessel is set
rotating about the axis of z. Prove that

b =232 — ") + @y — Lm (& — "),
¥ =2 (@ — Bay) + } (& — o) + may.

16. When the stream lines for steady motion are similar
concentric and similarly situated ellipses, the motion of a particle
is the same as if it were acted upon by a central force to the
centre; and if the potential of the impressed forces is a function
of the distance from thc centre, the lines of equal pressure are
circles.

17. The coordinates (z, y) of a particle at time ¢ are given by
z=a+ A cos 2nmwt+ Bsin 2nt,
y =b+ rd sin 2nwt — A B cos 2nt,

where A, B, A and n are constants with regard to # and y, but 4
and B functions of @ and b. Prove that if the different particles
corresponding to different values of @ and & are the particles of a
liquid, 4 and B must be conjugate functions of the complex
a+b/A. Under what conditions is a free surface possible ?

18. The space between two confocal coaxial elliptic cylinders
is filled with liquid which is at rest. Prove that if the outer
cylinder be moved with velocity U parallel to the major axis, and
the inner with relative velocity V in the same direction, the
velocity potential of the initial motion will be

cosh (8 — %)
cosh (8 — a)
where =03, 7=a are the equations of the outer and inner
cylinders respectively, and 2¢ the distance between their foel.

¢ = Uccoshncos E— Ve

sinh @ cos £,
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19. If in the last example the outer cylinder were to rotate
with angular velocity ), and the inner with angular velocity o,
prove that initially

pcosh 2 (9 —a)

_ Lcosh 2 (B—n) .
¢=200 1 (8=u)

suh 2 (8 —a) S0 26

sin 28 — ¢

20. If u=a2+:y, v=2 — ¢y, and n be any positive real
quantity, prove that when a cylinder whose cross section is the
curve 7" =2c¢" cos nf is moving with component velocities U, V
parallel to the axes, in an infinite liquid, the current function is

¥= Ut T,
-1 21
where Y.o=—3eav(@—c)"—u@—c) ",
1 _1
Vy,=—2%clp@—¢) "+u@w —c) "L
Hence prove that if the cross section is the cardioid
r=2¢ (1 +cos 6),
Y, = 9rctsin 16 (vr — Ve eos 16) (r+ ¢ — 2 Jrccos $6)7,

¢V=—rc(r+ccos9—-¢/70005 10) (r + ¢ — 2 Jrc cos 16,7
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CHAPTER VL

ON DISCONTINUOUS MOTION.

125. 1IN the preceding chapter, we obtained expressions for
the velocity potential and the current function of a liquid which
is flowing past an elliptic cylinder, and it might be thought that
by making the minor axis of the cross section vanish, we could
obtain the solution for a strecam which is flowing past a rect-
angular plate. This however 1s not the case; for if the minor
axis be made to vanish, it will be found that the velocity of
the liquid becomes infinite at the edges, and therefore the pressure
becomes equal to —oc, which indicates that a hollow would be
formed in the neighbourhood of the cdges. In order that the
motion represented by the formulae should be possible, it would
be necessary that at every point of the liquid bouudary of
the hollow, the pressure should be constant, and therefore the
liquid boundary would have to be a line of constant pressure
as well as a strcam line; but it is not difficult to show from
the formulae that it is not possible for a line of constant pressure
to coincide with a stream line, and hence the formulae fail when
the cylinder degenerates into a rectangular plate.

126. The problem of determining the steady motion of heat
and electricity, is precisely the saume as that of determining the
motion of an irrotationally moving liquid subjected to the same
boundary conditions, so far as the velocity potential is concerned;
but there is an important distinction between the two problems,
for in the former the pressure condition does not exist. Hence the
solution of problems in the conduction of heat or electricity cannot
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receive a hydrodynamical interpretation, unless the value of the
pressure given by that solution never becomes negative at any
point occupied by the liquid ;—in other words, whenever it is
possible for the liquid to flow according to the electrical law of
flow—; but when this is not the case, the hydrodynamical applica-
tion of such formulae would give results, which although in many
cases approximately representative of the motion at a considerable
distance from the region of negative pressure, certainly do not
give correct results in the neighbourhood of this region.

127. We have noticed in Chapter IV, that therc is nothing
in the nature of a perfect fluld to prevent slipping taking place
between two contiguous layers, and we have shown that a surface
along which slipping takes place 1s a surface of discontinuity,
which possesses the properties of a vortex sheet ; but the possibility
of such slipping is not taken into account in the ordinary theory,
which assumes that the liquid flows according to the electrical
law. Butin order to solve problemsin which liquid is flowing past
a sharp edge, it will be necessary to take into consideration the
possibility of slipping; and wc must thercfore endeavour to obtain
a solution, such that a certain surface of no flux which passes
through the sharp edge shall also be a surface of constant pressure.
This surface of no flux will cither form the free boundary of the
liquid, or will constitute a surface of separation between the moving
liquid and a region of liquid at rest, and in the latter case will be
a surface of discontinuity along which slipping must take place.
The only problems of this class which have yet been solved are
problems of two dimensional motion, and the method of solution
is due to Kirchhoff' and depends on the propertics of complex
variables.

128. Any complex variable z+ vy, may be represented geo-
metrically by means of a vector drawn from the origin to the
point whose rectangular coordinates are (z, y).

If we put #=rcos 8, y =rsin 6, the length of the vector will
be r, and € will be the angle which its direction makes with the
axis of # The quantities » and 8 are respectively called the
modulus and amplitude of the complex z + 1y.

The sum of two vectors z+ ¢y and a + b is # + @+ ¢ (¥ + b),
which rcpresents a veetor drawn from the origin to the point
(x+a, y+0). Hence the sum of two vectors is represented by

1 Crelie, vol. 1.xx.; and Vorles. iber Math. Phy. Chapters xx1., Xx11,
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122 DISCONTINUOUS MOTION.
the diagonal of the parallelogram of which the two vectors are
adjacent sides.

Similarly the difference between two vectors is represented by
a line drawn from the origin, which is equal and parallel to the
line joining the opposite extremities of the two vectors.

The product of the two vectors is
(z+ ) (@ + ) =az—by + ¢ (bz + ay)
= R (cos ¢ + ¢ sin ¢),

where Reosp=az—by, Rsin¢=>0bx+ay.
Hence L= (2" + V%) (2" 4+ ¥,
_bla+yle
tan¢— I—b:l//(;ﬂ

Whence the product of two vectors is a vector whose length is
equal to the square root of the product of the two vectors, and
whose direction is inclined to the axis of z, at an angle which 1s
equal to the sum of the inclinations of its factors.

Similarly the quotient of two vectars is a vector whose length
is equal to the square root of the quotient of the two vectors, and
whose direction is inclined to the axis of #, at an angle which is equal
to the difference of the inclinations of the dividend and divisor.

129, Let z and w denote the two complexes z + ¢y and ¢ + ¢y ;
and let # and ¥ be rectangular coordinates of a point P in a plane,
which we shall call the plane of z; and let ¢ and 4 be rectangular
coordinates of a point P’ in another plane which we shall call the
plane of w. Then if w and 2z be connected by any relation
w = f(2), it follows that if P trace out any curve in the plane of
2, P’ will trace out a corresponding curve in the plane of w.

130. Every function of a complex has a differential coefficient,
for

_dw _dd+udyr
S ) T dz do+udy
_ (dp/dx + udif/da) do: + (dep/dy + edip/dy) dy
N dz + «dy )
: dp  dy  /dp | dy
And since dg-i-b—d—g;_L(%jL,,m),

this ratlo is independent of the ratio dy/da.
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If ¢ and 4 be the velocity potential and current function of
a liquid,

dw _dé dy
dz_(ﬂ_ktd'_u w.
dz 1 1
Therefore o= a—w= q—z(u+w)=;’(bay),

where ¢ is the resultant veloeity of the liquid ; hence the vector &
represents the reciprocal of the velocity of the liquid.

131. In the class of problems which we are about to consider,
the boundaries of the liquid consist partly of straight lines which
constitute the fixed boundaries of the liquid, and along which the
direction of the velocity is necessarily constant; and partly of the
free surface of the liquid or of surfaces of discontinuity, which
divide the moving liquid from the region of liquid at rest, and along
which the pressure and consequently the magnitude of the velocity
must be constant. Hence, if we choose the scale of measurement
such that ¢=1 along the latter surfaces, the boundarics will
become transformed in the plane of ¢ into an arc of a circle
of unit radius, which corresponds to the free surface, or surfaces of
discontinuity ; and into the radii of this circle, which correspond
to the fixed boundaries. The points where the radii meet the
circle correspond to the points where the fixed and free boundaries
intersect ; also since the veloeity must not become infinite, £ can
never vanish, and therefore the portion of the plane of ¢ external
to this circle and included between the two radii, corresponds
to the portion of the plane of w occupied by the moving
liquid.

Along the boundaries fixed and free, of the liquid in the plane
of z, we must have ¥ = a, and +}» = 3, where a and 3 are constants ;
hence the corresponding portion of the plane of w consists of the
space included between the two parallel straight lines +r=a,
=2

We must therefore endeavour to connect ¢ and w by a relation,
such that the above mentioned portions of the two planes of
¢ and w shall correspond; and also that certain points in these
two planes shall corrcspond to certain points in the plane of 2.
‘When this has been effected, the relation between z and w, which
determines ¢ and 4 in terms of # and y, must be obtained by
integration.
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132. We shall define a lune as the space which is included
between two circular ares which meet but do not cross.

The angle of a lune is the angle at which the arcs meet.

Let z=a+.1y, 2 =a"+ .y, where (2, y), («, ¥') are the rect-
angular coordinates of two points P, P’ in the planes of z, 2
respectively. We shall now show that if P trace out any lune of
angle a in the plane of 7z, and P’ trace out another lunc of angle o’
in the plane of 2’, it is possible to connect z and 2/ by a relation,
such that the angular points of the two lunes shall correspond;
aud also that any third point on the perimeter of one lune
shall correspond to any third point on the perimeter of the
other.

The equation
, AZ+ B _~-DZ+B
Z —6ZTD or Z—*Oz,ﬂ ............... (1),

where A, B, 0, D are complex constants, transforms any circle in
the plane of Z into another circle in the plane of Z’. For if the
point P describe a eircle about the point ¢ =a + b as centre, we
must have

mod (Z —c)=const. ...ooviiiiiiiinn. (2)
or (x — a)’ + (y — b)* = copst.

Substituting the value of Z in terms of Z from (1), (2)
becomes
(4= C)N
mod kK Z,I_Cf) =const. ..iiiiiiniiiaienn (3),

2

where K, C,, C, are new complex constants. Now if £, p,, p, are
the moduli of K, Z' — C,, Z' — C,, (3) may be written

ko

P2

1 = const,,

whence P’ moves so that the ratio of its distances from the
two fixed points C,, C, is constant, and therefore describes a
circle.

Since (1) contains three disposable constants, viz. the ratios of
the three quantities 4, B, C, to D, it follows that these ratios may
be chosen, so that a circle passing through three given points in
the plane of Z shall correspond to a circle passing through three
given points in the plane of 2,
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133. Let X+ ¥ =Z="=2 s (4
where c,=a+ih, c,=a+:6.

Let A and B be the points ¢, and ¢, The vector % being
the quotient of the two vectors AP and BP, is represented in the
plane of 2 by a straight line whose inclination to the axis of X
is equal to APB. Now if P describe a circle passing through A4
and B, the angle APB is constant, hence every circle passing
through the points 4 and B in the plane of z, corresponds to a
straight line passing through the origin in the plane of %
Also if P and @ are any two points on two different circles passing
through 4 and B, the inclination of the two corresponding lines
in the plane of 5 is equal to BGA — BPA, that is to the angle of
the lune AQBPA. Hence (4) transforms any lune in the plane
of z into two straight lines in the plane of % whose inclination is
equal to the angle of the lunc.

If we put Z =",
the two straight lines in the plane of % become transformed into
two straight lines in the plane of Z inclined at an angle n times
as great; hence if « be the angle of the lune and % =r/a, the
equation

T

Z = C{ z)_ ........................ ®)

transforms a lune in the plane of z whose angle is a and whose
angular points are ¢,, ¢, into a single straight line in the planc

of Z.

Similarly if 2° be any other plane, the equation

Ld

. Z—c/ o
Z (Z;, - 02,) ........................ (6)

transforms a lune in the plane of 2 whose angle is «” and whose
angular points are ¢, ¢, into a single straight line in the plane
of Z'.

If therefore we substitute the values of Z, Z from (5) and (6)
in (1), the resulting equation transforms uny lune of angle a in the
plane of z into a lune of angle &’ in the plane of £'; and by
suitably choosing the ratios 4 : B : (': D, we may make any three
points on the perimeter of one lune correspond to any three points
on the perimeter of the other.

IRIS - LILLIAD - Université Lille 1
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134. We must now notice some particular cases.
(i) Let 2= or =Y {7),
whence z=¢® cos ¥, y= ¢ sin V.

‘When 4y =0 or 7, y=0; hence (7) transforms the two parallel
straight lines 4¥r=0, Y =7 in the plane of w into the single
straight line ¥ =0 in the plane of 2.

(i) Let z=ywor z4y=Jo+ur cooeeerrrr.n. (8).
Putting ¢=Recosy, +Yr=IDIsiny,
we obtain z=sRcosty, y=+Rsiny.

When /R sin y = const. = ¢, y = ¢ ; hence (8) transforms the
confocal parabolas JR sin ¥ =c¢ in the plane of w into the
parallel straight lines y=c¢ in the plane of z. Now if ¢=0 the
parabolas degenerate into a double line extending from the focus
to co. Hence (8) transforms a straight line in the plane of w ex-
tending from a fixed point to infinity, into the whole of the axis
of #, in the plane of 2.

(iii) Let us now consider the portion of space bounded by
the straight lines 04, OB in the plane of ¢,
which is external to the circular arc 4B.

B If 4 is the inclination of 04, OB, the

equation ¢ = ¢™” transforms the two straight
v lines OA, OB in the plane of ¢ into a single

0 A straight Line in the plane of ¢’; and the
arc AB into the semicircle ab. Ilence the

transformed region in the plane of ¢’ is the portion of space lying

, P
¢

on the upper side of b, and which i1s bounded by the semicircle
and the infinite straight lines au’, b&". This region may be regarded
as a lune of angle }=, one of whose arcs is the semicircle apb;
and whose other arc consists of the infinite lines aa’, b, which
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may be regarded as an arc of a circle whose centre is at infinity.
By (5), the equation
’ 2
(e
g+1

transforms this lune into a single straight line in the plane of ¢,
hence the required transformation is

2= @W/:J:i) ........................ ).

135. We shall now apply the preceding method to the solu-
tions of some special problems.

A jet of liquid escapes by a slit AB from « large cistern of
which the side is &'z ; required the motion, which is supposed to
be in two dimensions.

w

X A P

The figures show the corresponding lines in the planes of 2, ¢
and w; corresponding points being represented by the same letters
in each of the three planes, and the fixed and free boundaries and
their corresponding lines by thick and thin lines rcspectively.
The lines 2’4, Bz along which the direction of the velocity is
invariable, are represented In the plane of ¢ by the straight lines
#'A, Bz ; and the free surface of the jet along which the magnitude
of the velocity is invariable and equal to unity, by the semicircle
APQB. The portion of the plane of ¢ lying above the line
zBQPAx, corresponds to the space oceupied by the liquid. In
the plane of w this space corresponds to the region contained
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between the parallel straight lines #’AP and 2B@. Let ¥ =0,
4Yr = be the stream lines &’ AP, and xBQ: also let ¢ =0 be the
equipotential surface passing through 4 and B.

In order to transform the region in the plane of § to that
in the plane of w, we must put y = in (9) and we obtain from (7)

and (1),

<§—l)2;Asw+B
Z+1 “Cev+ D

Since a liquid flows from places of lower to places of higher
velocity potential, the following conditions must be satisfied :

@O ¢=—w, f{=n, () ¢=owx, =~
(i) w=0, t=1, (v) w=uwm, E=—-1.

Of these (1) gives B=D; (ii) gives 4 =— C; and (iii) and (iv)
both give 4 =— B; whence

5;1>2_1;,€“’
<§+1 T 14 e
dz

ar §=Z{E—€'w+.f6‘2w—l.
Let 6 be the angle which the tangent to AP makes with AB;
along AP g=1,4 =0, and ¢ is positive ; hence
cosf+isinf@=eb4,,/1 —e2,
whence cos@=e 9,

sin @ =./T — 20,

Also ELZZL: =1,
therefore measuring s from A4, we obtain
s=¢
and d‘xzcosﬁze",
ds
therefore =1 = €% i (10),

A being the origin. When s=ow, #=1; also since the final
width of the jet is 7, the width of the slit is o + 2.

The ratio of the final width of the jet to the width of the slit,
is called the coefficient of contraction of the jet, which is there-
fore equal to 7 /(m + 2) or "611.
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Again %g=5in9=‘\/1 EpeTy
T 1+J/1-e2
y=~/1—e_2’—%logmr_—é:z£ ............ (11)

Eliminating s between (10) and (11), the equation of the
free surface of the jet is
1+4/20—2*
1—25 -2

Also the radius of curvature is tan #, which vanishes at the
origin.

y=+20—a -} log

If we put &/= for £ we obtain the solution when the boundaries
@B, # A are inclined at an angle a.

136. Let us now suppose that the conditions of the last
example are varied by introducing a tube projecting inwards.

w

B’ B

The containing vessel is supposed to be so large that we may
disregard what takes place at the sides. The motion will then be
as follows. The liquid will flow along the side BB, and at B the
direction of its velocity will begin to change, and the liquid will
finally flow out in a stream whose section will be less than that of
the tube.

1 Helmholtz, Phil. Mag. Nov. 1808.
B. 9

IRIS - LILLIAD - Université Lille 1



130 DISCONTINUOUS MOTION,

Since the aperture of the tube is supposed to be small, the
curve 1 the plane of & which corresponds to the free boundaries
may be approximately regarded as a circle, and if we put {' = /&
the space bounded internally by this circle and the lines 4.4’,
BE', will be transformed into the region in the plane of ¢ in
the last example. The solution in this case may be obtained from
the last example by writing +/{ for § and we obtain

%Z: = (E—W + Ji—zwﬁ)’,

=271 4 2w /e — 1.
Along the free surfuce of the jet, we have
s=¢
cos @+ 5N 0 =22 —1+4 et/ _ 2,

therefore dvm:cose=2€—ﬂs_1,

ds

z=1—5— ¢,
dl =sin 6=26_5\/1 _E—Zs,
ds

y=e€"* \/1——_6__-2; +sin"le™ 4 Y,
the middle point of AB being the origin. When ¢=o00, y=1/
so that 2y’ is the final breadth of the stream and is therefore equal
to w; when s§=0, y=4m +y =, whence AB =27, and the co-
efficient of contraction = §.

137. Lord Rayleigh' has shown that if the vessel were of
finite dimensions, the coeflicient of contraction must always be
greater than }; for let ¢” be the area of a section of the vessel so
far removed from the orifice that the velocity over it is scnsibly
constant and cqual to ¢”. Let ¢/, ¢’ be the ultimate velocity and
section of the jet, o the section of the tube, The equation of
continuity gives

o n

v'e' =v'a",
By the principle of energy
=16,
and by the principle of momentum

’ 7 2
po=av? — gV

1 +The Contracted Veir,” Phil. Mag. Dec, 1876.
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From these equations we obtain

2 1 1
=4

"y
a a a

which shows that the section of the tube is an harmonic mean
between the sections of the cylinder and jet. When "=,
o'/o =1} as before.

138. When a rectangular lamina is held fixed in a stream
which meets it obliquely, there will be a region of dead water
behind the lamina, which will be at rest, and the total pressure on
the lamina will be due to the difference of pressures upon its
anterior and posterior faces.

The stream line Y»=0 meets the lamina at some point O and
then divides, each branch following the lamina to its edges, and
afterwards forming the boundary between the moving liquid and
the dead water behind the lamina.

The portion of the plane of ¢ corresponding to the moving
liquid is that which lics below the semicircle 4 4" BB and the two
infinite lines Bb, Aa; and the points + o correspond to 0. The
whole of the plane of w corresponds to the portion occupied by the
moving liquid, with the cxeception of the double line shown in the
figure, which may be regarded as the limiting form of a parabola.

Let a be the angle at which the stream meets the lamina;
since the equation w’ = 4/w converts the double line in the planc
9—2
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of w, into a single straight line in the plane of w', we must
put

() -0

The conditions to be satisfied are
(i) ¢=tw, E=cosa~—sina,
(i) w=0, =,
From (i) we obtain
A = — (Ctan® §q,
and from (ii) B= D, whence
<§i)"’ _—COywtan’$2 4

t+1 Cyw+DB
Let %_—_—;\/K(l +eosa), o= Kw,
and we obtain (g{j})z = %gi_z%m,
or E=Q+JO —1.................... (12),
where O =cosa+ ,:/1;

When the velocity of the stream at infinity is equal to V, which
will be supposed to be the case in what follows, we must change
¢ into £V, and (12) becomes

V=04 J0 1o (13).

In the plane of 2z let O be the origin, OB the axis of z; along
AB ¢ must be real and equal to ™ and at 4 and B &=V
Hence at all points of the lamina we must have Q>1, and at 4
and B, 0 =—1 and + 1 respcctively.

Let I be the breadth of the lamina, then since along AB
K¢ =w and dp/de=u,

d [ - dw
l='[§:j(&2+~/u’—l)ﬁ ............. (14),
the limits of integration being determined by
Q:(}osa+—1~ =+ 1.

Iv42)
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If B he a new variable such that
B= \/;) sin®a — cos a,
the limits of B will be + 1, and we obtain
1
LVKI =f {(B + cos ) cos z +sin® 2+ ,/1 — B sina} cosec* a dB.
-1

4+ rsina

Whence K= 7mn4 : .

Along the lines A 4’, BB’ the pressure p' = p (C'— § V), which
must be equal to the hydrostatic pressure of the dead water. At
the surface of the lamina,

Py
p

P 2 2
=L L 3 (V*—ud).
p 3 ( )
Hence the total pressure on the lamina is,
7 2 d
v = [(p—p) do=tp| (7" — ) °¢

=pV (@ -1} do

_ 2Vp Voe——, _ 7mVp

= kawa) VTR = 0k
_wV'lpsina )
—'m ................................... (11)),

which determines the resistance which the lamina offers to the
stream, and shows that it depends partly upon the square of the
velocity and partly upon the angle which the stream makes with
the lamina.

The moment of the pressure is

2V t 7'71
G = Kisiinaaf_lm"/l — AR,

Now by (14),
1VEax = [{cosa (B +cosa) + sin”a+ /1 — & sin a} cosec* adf.
Hence, if the origin be suitably chosen, the value of z will be

Bicosa+28+(B \/1 — B +sin™ B} sina

VK sin*a .
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The odd terms in B contribute nothing to the integral, and

therefore
G=—2/—)——f B8%J1 =B cos 2dB
K*sin" a/_,
_ TpCOSA _ wCoSa

T 4K*sin"a  4KVsin'a®

The distance of the middle point of the lamina from the origin
1s cos «/ VA sin*a; hence the distance of the centre of pressure
from line middle point is

~Scosa 3lcosa
4KVsin*'a 4 (4+wsina)’

If lm >a >0, the negative sign shows that the centre of pressure
is on the upstream side of the middle point; hence if the lamina
be free to turn about an axis parallel to its edges whose distance
from the middle point is

3lcosa .
Z—I(mm), ..................... (16),

it will be in equilibrium. If a=}#, #=0; and the lamina will
set itself transversely to the stream. When a=0, # is a maximum
and is equal to 8//16, in which case the axis divides the lamina in
the ratio 11 : 5.

139. The results of equations (15 and 16), which are due to
Lord Rayleigh', may be stated in another form as follows. “If the
axis of suspension divide the width in a more extreme ratio than
11 : 3, there is but one position of stable cquilibrium, that namely
in which the lamina is parallel to the stream with the narrower
portion dirccted upwards. If the axis be situated exactly at the
point which divides the width in the ratio 11 : 5, this position
becomes neutral, in the sense that for small displacements the
force of restitution is of the second order, but the equilibrium is in
reality stable.  When the axis is still nearer the centre of figurs,
the position parallel to the stream becomes unstable, and is
replaced by two inclined positions making with the stream equal
angles, which increase from zero to a right angle as the axis moves
towards the centre. With the centre line itself for axis, the lamina
can ouly remain at rest when transverse to the stream although of

PR

course with either face turned upwards®

1 «On the resistance of fluids,” Phil. Mag. Dec. 1876. 2 Ibid.
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140. In order to obtain the intrinsic equation of the surface
of separation, we have along this surface
V=0+4/1-0~%
1

n
Therefore V—Q—cosa +,JK¢'
dé _
NOW El‘; = V;
therefore o=V (s+¢),
dz 1
and therefore i cosf@=cosa+ m

The constant ¢ is to be determined from the fuct that when s =0,
cos?=+1. In the case of perpendicular incidence, we have
¢=1/VK, whence

dr _ ¢
ds s+c¢’
or z=2 (cs+ c'l)é‘ + constant,

from which 1t appears that # does not approach a finite limit as s
increases indefinitely.

The methods of this chapter only apply when the motion is in
two dimensions; so far as I am aware, no problem of this class has
been solved when the motion is in three dimensions.

MISCELLANEOUS EXAMPLES.

1. If w, v, w, ¢ are any functions of z, ¥, z, prove that
udz + vdy + wdz — d¢ has an integrating fuctor; hence show that
if u, v, w be the velocities of a fluid, then along any vortex line

udz +vdy + wdz = d¢.

2. If in an infinite mass of homogeneous incompressible fluid
n equilibrivm under finite fluid pressure only, an indefinitely long
cylindrical column be suddenly annihilated, prove that no motion
will take place.

3. Prove that the velocity potential due to a unit source
placed outside a sphere of radius @, and at a distance f from its
centre is

¢=—(r"—2frcos 8 +fz)‘* —af (1~ 2crcos B +¢?) 7t

+a {log[c — rcos B+ (7* — 2e 7 cos 0 + )] — log r (L — cos 6)},
where (, 0) are polar coordinates referred to the ceutre of the
sphere as origin, and ¢ = a*/f
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136 DISCONTINUQUS MOTION.

4. Prove that the rate at which the energy of a mass of
liquid, contained within an imaginary closed surface described in
the liquid is increasing, is equal to

[f(p+pV)qcos edS,

where p is the pressure, V the potential of the impressed forces,
q the resultant velocity at any point of S, and e is the angle
between the direction of ¢ and the normal to § drawn out-
wards.

»

5. If a, b, ¢ be curvilinear coordinates of any point (z, vy, 2) of
a liquid, such that the lines of flow are the intersections of the
surfaces b = const., ¢ =const.; apply § 39 to prove that when the
motion of the liquid is not steady, a first integral of the gencral
equations of motion is

P ey (292 4,
P+V+§g+{;detda F ¢ 0,

_d(ab0)
J_d(x,y,z)'

6. If the molecular rotation of a mass of liquid which com-
pletely fills a rigid circular cylinder be equal to 377" #7 (r), where
v F’ (r) is any function of r which does not become infinite
within the cylinder; prove that the paths of individual particles
of liquid are circles described in periodie time

2mr? | F (r).

where

7. In § 135, if v be the velocity at any point on the middle
line of the jet, whose distance from the orifice is %, prove that

11t
Y=y g1

the ultimate velocity of the jet being unity, and the scale of
measurcment being such that 7 + 2 is the width of the orifice.
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CHAPTER VIL

ON THE KINEMATICS OF SOLID BODIES MOVING IN A
LIQUID.

141. IN the present chapter we shall obtain expressions for
the velocity potential, in a variety of cases in which a liquid
is bounded externally or internally by moving solids, when the
motion is in three dimensions. We shall suppose that the motion
of the liquid is irrotational and acyclic, and consequently the
motion will be completely determined by means of a velocity
potential ¢ which must satisfy the following conditions;

(i) & must be a single valued function, which at all points of
the liquid satisfies the equation V¢ =0;

(ii) ¢ and its first derivatives must be finite and continuous
at all points of the liquid, and must vanish at infinity if any
portion of the liquid extends to infinity;

(i) At all points of the liquid which arc in contact with a
moving solid, d¢/dn must be equal to the normal velocity of the
solid, where dn 1s an element of the normnal to the solid drawn
outwards; if any portion of the liquid is In contact with fixed
boundaries, d¢/dn must be zero at every point of these fixed
boundaries.

142, Let us now suppose that a single solid 1s in motion in an
infinite liquid.

Let Oz, Oy, Oz be three rectangular axes fized in the solid, and
let ¢, be the velocity potential when the solid is moving with unit
velocity parallel to Oz, and let y, be the velocity potential when
the solid is rotating with unit angular velocity about Oz. Let ¢,
¢y X Xs D¢ similar quantities with respect to Oy and Oz, Also
let u, », w be the linear velocities of the solid parallel to, and
@, w,, w, be 1ts angular vclocities about the axes,
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138 KINEMATICS OF MOVING SOLIDS.

The velocity potential of the whole motion will be
b =up, +vd, +wh, + @y, + X, F WX een (1).

For if A, g, » be the direction cosines of the normal at any
point #, ¥, z on the surface of the solid, we must have at the

surface
dp, _ db,_  dd, _
dn = TR TP
dx. _ dax. _ dx; _
dn VY ke g = Az — vZ, an = px — NY.
dé
Hence dn =(u—yw,+ 20, A+ (1 —20 + 2w )+ (W — Bw, + Yo ) v

=normal veloeity of the solid.

143. 1o find the velocity potential when a sphere of radius a s
moving parallel to the azis of o'

Let w be the velocity of the sphere, ¢ its radius, 6 the angle
which the radius to any point on its surface makes with Oz, then

dé

at the surface,

dn = weos 8,
dg _
or g = U cos O 2),

when r=a.

Since the motion is symmetrical with respect to Oz, and the
velocity must vanish at infinity, ¢ must be of the form

A, AP, AP
¢: 1

4+
r r T

where P, is the zonal harmonic of degree n. Substituting in (2),

we obtain

A
_;a;_mlb*sg_&c,=ucosg,
whence Ad,=4,=&e =0,
and A, = —jud’,
therefore ¢ =—3ud 00116
=—1ud® S . (3)

1 Yoisson, “Mémoire sur les mouvements simultanés d’'un pendule ef de l'air
environnant,” Mém. de I’ dead. des Sciences, Paris, vol. 1%. p. 521.
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TWO SPHERES CUTTING ORTHOGONALLY. 139

144. If the sphere were moving with component velocities
u, ¥, w, parallel to the axes, the velocity potential would be

3

a
4):—‘311“ (uz + vy + w2).

This expression is the velocity potential of a doublet situated
at the centre of the sphere, whose axis coincides with and whose
source end is turned towards the direction of motion of the sphere.

145. The velocity potential may be determined by the method
of images, when the solid, which 1s formed by the revolution about
the line joining their centres, of two spheres which intersect at
right angles, is moving parallel to 1ts axis’.

Let 4 and B be the centres of e
the two spheres, € a point on their
circle of intersection; then if CS
is perpendicular to AB, S is the
common image of B and A with
respect to the spheres 4 and B.
Let AC =a, BC=b, PR 5

AB=c¢c=Va* + b,

and let 4 be the velocity of the solid along AR also let (r, 6),
r, 8), (r,, 6,) be the polar coordinates of any point P referred
to B, S and A respectively as ?rigin.

The veloeity potential due to the motion of B alone is

13
ub
¢, =— g, COS 0,

which 1s the same as that due to a doublet of strength Lub® at B.

The image of this in 4 is a doublet at § of strength

— Lub® (A’BY

and the image of thisin B is a doublet at 4 of strength

(AB Bb’\ -

This is preecisely what is required to give the requisite normal
velocity over 4 and B, whence

b——lu (63 cos® a’’cos b, a’cos 6_,)

D) - 3.2 2
1 Stokes, Math. and Phys. Papers, vol. 1. p. 230.

1 b?

=

7 cry 7y
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140 KINEMATICS OF MOVING SOLIDS.

146. The motion of two spheres will be discussed in Chapter
XI, but when the space between two concentric spheres is filled
with liquid, and the spheres are moved in any mannecr, the velocity
potential of the endtial motion can be obtained as follows'.

Let @ and b be the radii of the outer and inner spheres respec-
tively, O their common centre; and let the outer sphere be moved
with velocity u along any direction 04, also let the inner sphere
be moved with velocity v along a direction OB which is perpendi-
cular to OA4. Let 8 be the angle which the radius to any point P
makes with 04, y the angle which the plane OAP makes with
the planc OAB.

The surface conditions are

(%f)u = cos 8, Cgf)b =vsin 0cosy........u.. (4).

The function
¢=(4Ar +£) cos 8 + <07- + g) sin & cos ¢

satisfies Laplace’s equation. Substituting in the first of (4) we
must have

4 - 2~§ =u, C- —2—2= 0,
a @
and from the second of (4)
2B 2D
A—‘F;ZO, C’—*Z)T—_—U,

whence A=wud’/(a’ — b, B = Jua'b*/ (&’ - b*),
C — vbﬂ/(aﬂ —- b3)7 D — Jz_vasb5/ (aﬂ — bﬂ)

ua®

and ¢=m(r+2iw)cos6—aﬁv)f_v('r+;—;,> sin @ cos y.

147. The velocity potential due to the motion of an ellipsoid
in an infinite liquid was first obtained by Green in 1833, for the
case of translation only®; the solution was completed for the case
of rotation by Clebsch in 1856°

(i) Let the ellipsoid move parallel to the axis of x with unit
velocity.

1 Stokes, **On some cases of fluid motion,” Trans. Camb. Phil. Soc., viu. p. 105.

2 «Researches on the vibration of pendulums in fluid media,” Trans. Roy. Soc.
Edin., 1833.

4 « Ueber die Bewegung einer Ellipsoids in einer tropfbaren Fliissigkeit,” Crelle,
L1t p- 108,
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AN ELLIPSOID. 141

If V be the potential at an external point of a homogeneous
cllipsoid of attracting matter of unit density, the equation of
whose bounding surface is

(@/ay + (y/b)* + (z/c)* =1,
2 dyr
V=mab e 4 —1 ,
o @ eyt el e
where \ is the positive root of the equation
a’ y* z

Feate T e T ()

The potential at an internal point is obtained by putting
A =0 in the definite integral. We shall write this expression in
the form

= l (AACUZ + Bhy‘z + 0,\22) - II,\ ............... (6),
where A= 27rabcf @+ ‘P) P 1
............. ),
e / ™
H, = mabe J = ]
A

P=[@+9) @+ )+ i
and we shall drop the suffix A, when these quantities refer to an
internal point.
If p is the perpendicular from the centre on to the tangent
plane at z, 3, z; the surface condition is,

d¢, ! _px
T
or T dp, ydo, zd z ).

3 dy b’dy+ Bda SR

Since A,z is the a-component of the attraction of the
ellipsoid, this quantity obviously satisfies conditions (i) and (ii) of
§ 142; we may therefore assume that

b, =ad \x.

Hence at the surface

B _, (420 D)
dx

a’® dz

dey 2mrax dA

dj/ “2 d‘y,
d¢, _ _2maz di
dz ~ o dz’
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142 KINEMATIC3 OF MOVING SOLIDS.

Differentiating (5) with respect to @, and then putting A =0,

we obtain
dn _ 2up° d_k 2yp* dn_ 22p"

de o ' dy b ° dz ¢’
hence the left-hand side of (8) becomes
az (A — 47)/a?,

whence a=(4—4m)",
and ¢, = A{\Zﬂ' .

It therefore follows that if the ellipsoid is moving with
velocities, u, v, w parallel to the axes
_ ,\'UAZ' B,\'U:l/ C)\wz_
b= A—dr T B am T O (
(ii) Let the cllipsoid be rotating with unit angular velocity
about Oz ; then the surface condition is

2 _ 2
%ilf =m, (ny —mz) = ""pyzbgg S (10).
Writing for a moment Y and Z for B,y and C,z, it can casily

be shown that the function 2 ) — yZ satisfies Laplace’s equation,

9).

for V(Y ~ J7)_2(‘f; zy
@V ,Cf,V)_O
<dzdy—dydz o

also at great distance from the origin ¥ and Z are at least of
the order 7% and therefore y, is at least of the order ' and
therefore vanishes at infinity.
Let us therefore assume
xi=@ (2Y —yZ)=a'y2 (B\ - C,),
then at the surface
dy, < dz dy+ dy dZ)

an Y Zantdn Y dn

=B B -0+ )+ 4r - ),
Substituting in (10) we obtain
, -
(B C) (B* + &) + 4w (B — )’
G- (B-Cyys |
......... 1).
therefore = B0y O + &) + & (b= &) (11)
The functions X» Xs can be written down from symmetry.

a
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ELLIPSOIDS OF REVOLUTION. 143

148. The quantities 4,, B, and Cx may be expressed in terms
of elliptic functions of the first and second kinds; but the most
important case is when the ellipsoid is one of revolution,

(1) If we put b =c¢ < a, the surface becomes an ovary ellipsoid

and
A= 27Tacﬂf d;?
*(a’ +x1r) (c’+~ir)
_ 47ract J’
(@ —c*) * (v — l)
if (a"+ 7\)3 (a*— c"‘)év; therefore

a=tTOm D (g 1Y) (12),

where e is the excentricity of the generating ellipse. Also

.B)‘ = U= 27r 2
L ey

_dr(l=€) (" dv
- (}B f" (Ve_l)i

_2r (1—¢") v v+ 1
N (vz—l_%logu-—l

eS

(i) If we put a=b>¢, so that the surface becomes a
planetary ellipsoid we obtain

.A;\=BA:2‘7I‘GBC’[ 2 d:p‘ 3
A (a4 ) (c +)
— 4”“3,jm,jz‘,
(@t — )ty (L+ )Y
if (@+ni= (a® —c)% v; therefore
(1 —e?, v -
A= (coh Fﬁ) ............ 14),
4r (1—-et 1 .
O\ = —— <v cot™ ) .................. (15).

It will be observed that in the case of an ovary ellipsoid
v=¢"", where ¢ is the excentricity of the generating ellipse of
the confocal ellipsoid which passes through the point (@, ¥, 2);

and that in the case of a planetary ellipsoid

v=J1=é%e.
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144 KINEMATICS OF MOVING SOLIDS.

149. If ¢=0 the planetary ellipsoid becomes a dise, and
¢,=0; hence a disc which moves parallel to itself cuts through
the liquid without producing any motion.

To find the velocity potential when the disc is moving perpen-
dicularly to its plane, we observe that at the surface » =0; hence
when ¢ and » are small ¢ = av, thercfore

0—47r:4—“<9—%7r>—47r=—219,
a [ a

2
therefore b=— :;U z (1 —cot™ v> .
v

If w, v are elliptic coordivates, this equation may be written*

4,:_:2%*(1—1;(:0511;)“ ............... (16),

—— 2 g ) P, ().

By § 99 (14) and § 110 (31), the velocity perpendicular to the
hyperboloid p = const. is

— 3 2
l\/lz ”_2@=_2i0 «/12 K (1 —vcot™w).
al v+ utdu T vt

At all points in the plane z =0 which do not lic on the disc,

u =0, and the velocity perpendicular to this plane
=— 2w (1 —vecot™ ),
wy

which becomes infinite when »=0. The velocity is therefore
infinite at the edges, as we should expect since the liquid is
supposed to move according to the electrical law of flow.

The solution for a stream flowing past a fixed disc behind
which there is a region of dead watcr, has not yet been dis-
covered.

1 The function g, (v) is & sphercidal harmonie of the second kind, and is equal to
(-1)“"“‘ Q, (tv) where Q,(v) iz a zonal harmonic of the second kind. The
potential at an external point of any distribution of electricity upon an oblate
spheroid which 18 symmetrical with respect to the axis of the spheroid, ecan be

expsnded in a series of terms of the type ¢, (») P, (u).
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ROTATING ELLIPSOIDAL CAVITY. 145

150. To find the velocity potential when liguid is contained in
an ellipsoidal cavity which is rotating about its centre.

dy, _. /1 1
Here o ' = pyz <(j-2 B bz) .
Assume ¥, = Adyz.
Then dx, _py dy, L P2 Ay

dn b dy ' ¢ dz

11
= Apys (bﬁ ;) :

Equating these two values of dy,/dn, we obtain

b — ¢
A=
H r—c
ence X1 = ZZTC;" Yyz.

This value of 4, satisfies Laplace’s equation, and is such that
the velocities are finite and continuous at all points of the

liquid. Hence

2 ] 2 2 2

¢=m1%yz+ngszzzm+w

151. Let us mnow suppose that the space between two

concentric coaxial and confocal cllipsoids is filled with liquid, and

that the inner and outer ellipsoids are suddenly moved with
velocities U and V respectively parallel to the axis of 2%

Let the accented and unaccented letters refer to the outer and

inner ellipsoids respectively; and let
p=Mz+ NC,z.

The surface conditions are

dp_ gpz  dp_ pp?
dnﬁUc’“ dn_Vc"'
From the first equation we obtain

M4+ N({C—4m)="U,

and from the .second
M+ N —4m)=1V,

U —A4m) =V (C—4m)

whence M= oo
Uv-v
N==¢-c

1 Greenhill, “Fluid motion between confocal elliptic cylinders and confocal
ellipsoids,” Quart, Journ. vol. xvi. p. 227.

B. 10
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146 KINEMATICS OF MOVING SOLIDS.

and therefore

o= U0 —4m) - Véa %’r) (U=VC, a3

If the outer ellipsvid were rotating about the axis of z with
angular velocity {2, and the inner with angular velocity o, the
surface conditions would be

d 1 1 d 1
=y (). F=0pa (b’ )
We must therefore assume
¢=Mzy+ N (B,—4,) zy.
From the first equation we obtain

=01 (3 4) s =)< (31

a
and from the second (19),

Nl )V e 20 (2

which determine the constants M and .
152. We shall next investigate the motion of a liquid about
an indefinitely thin spherical bowl®

Let a be the radius of the sphere of which the bowl forms
a part, O 1ts centre, ¢ the radius of the small

P circle which forms the rim of the bowl, 4 the
. pole of this circle which will be called the
R vertex of the bowl, ¢ any point on the bowl;
also let V be the potential at P of a distribu-
tion of matter of density o on the bowl. Then
adS
Q V= PQ-
Now PQ*=r*+a*—2arcos.
Therefore
0 f (r—-acosn)dS
PQ”
b ( ) f T Co8 edS
ence o dr regs

where e = — OQP. The right-hand side of this equation is the
magnetic potential at P of a complex magnetic shell of strength .

1 Proc. Lond, Math. Soec. vol. xv1. p. 286.
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153. Let us now suppose that the motion of an infinite liquid
is caused by any system of sources, sinks, or vortex filaments; let
P be velocity potential due to this system (which we shall call the
external system) when the bowl is absent; and let ¢ be the velacity
potential after the bowl has been introduced. Then we may put

¢=0+ b,
where Q is to be determined.

If the bowl is fixed, which for the present we shall suppose to
be the case, the surface condition is
dQ  dP
dr dr’
when » = @. This condition is to be satisfied on both sides of the
bowl.

Now, if we remove the bowl, and substitute over its surface a
sheet composed of doublets, whose axes are in the directions of the
radii passing through them, and whose strength &, per unit of area,
is such that the normal velocity at every point of the sheet is
~ equal and opposite to the normal velocity due to @, all the con-
ditions of the problem will be satisfied. But the velocity potential
of such a sheet of doublets is analytically equivalent to the
magnetic potential of a complex magnetic shell of the same
strength, which occupies the position of the bowl, and whose
positive side coincides with the sink side of the sheet of doublets;
hence the problem is reduced to finding the potential and strength
of such a magnetic shell when the normal component of the
magnetic force at the surface of the shell is given.

Now we have shown that, if ¥ be the potential of a surface
distribution of mattcr upon the bowl of density o, then

0o 1407
also, if 2, and O, be the values of Q at two contiguous points just
outside and just inside the shell respectively, then

Q,—Q,=4ma.
The magnetic force at the surface of the bowl is
_do 1 (m
dr  a dr

1(d ndV Vi_if}
___u4du(y_#)d#_+l_ﬁﬁdw2,
by Laplace’s equation.
10—2
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148 KINEMATICS OF MOVING SOLIDS.

Now the value of the magnetic force at the surface of the bowl
can always be expanded in a series of spherical surface harmonies

Y ; hence, if

dQ
- d_,r - Yn ’
_a¥Y, |
T n(n+1)’
and therefore if L VTR 20)
dr
at the surface, the corresponding value of V at the surface is
© ¥,
—_— 2 n <
V=a'3, ATy (21)

The formula (21) fails when n = 0; the only case, however,
which is necessary for our purpose to consider, is when the mag-
netic force is symmetrical with respect to the axis of the bowl, and
has a constant value F at its surface. In this case,

aQ
F=—
1d n &V
=—E@(1—#)W1
\ . 1+p
therefore V=4Fa'log (1-4n%)+14 logITy+B'

Now V must not be infinite when u =1, therefore
A =Fa’,
and the value of ¥ may be written
V="Fdlog a(1+ p).
But, if an infinite straight line extending from the centre of the
bowl to — o be electrified with line density #4? its potential is
=—Fa® logr (1 4 p).

Hence V 1is the potential of the induced charge when the bowl
is under the action of a positively electrified line extending from
the centre to — . If, therefore, )y be the potential of the bowl,
under the action of a positive charge of unit intensity, situated at

a point on the axis distant u from the centre, and on the negative
side of it,

V= Fa[mx du.
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154, The preceding result enables us to find the velocity
potential due to a source situated at the centre of the bowl. In
this case

m

o=-",
r

therefore dﬂ m

therefore =_"7 f d('rx) du—

155. T find the velocity potential due to the motion of the bowl
in on infinite liguid.
(1) Consider the case of motion parallel to the axis.

If the liquid were flowing from right to left past the bowl, the
velocity at infinity being equal to w, then

D=— ez
and ¢ =0, —wz,
whence @Q' = w cos &

dr

at the surface.

Hence, if the bowl is moving parallel to its axis with velocity u,
¢, =,

Now, by (21), V,=—13 wa’cos 0
at the surface. V,is therefore the potential of the induced charge,
when the bowl is placed in a uniform field of force parallel to its
axis whose potential is 4waz + const.,, whence

b= 1d72),

a dr

(1) Let the bowl be moving perpendicular to its axis with
velocity », and let the plane from which the angle +r is measured
contain the direction of motion; then if ¢’ be the velocity potential,

L4
dr =V cos r sin 6,
therefore V'=—1va" cos 4 sin 8

at the surface. ¥V’ is therefore the potential of the induced charge,
when the bowl is placed in a uniform field of force perpendicular to
a plane contalning its axis.
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150 KINEMATICS OF MOVING SOLIDS.

(iii) Let the bowl be rotating about an axis.

It is clear that, if the bowl were rotating about an axis through
the centre of the sphere of which it forms a part, the bowl would
simply cut its way through the liquid without producing any
motion. Now, a rotation about any other axis is equivalent to a
rotation about a parallel axis through the centre, together with a
velocity of translation perpendicular to the plane containing the
centre of the bowl, and the original axis of rotation; hence the
motion of the liquid due to the rotation of the bowl is equivalent
to that duc to a properly chosen motion of translation.

156. It thus appears from the preceding articles that the
velocity potential due to the motion of the bowl in a liquid,
depends upon the electro-static potential of an electrified bowl,
which is placed in a field of force whose potential is known. We
shall now show how to find this potential, when the field of force
is symmetrical with respect to the axis®

Let ACB be a section of the bowl through
its axis, / the centre of the sphere of which

the bowl forms a part, also let 470 =aq,
PiIC=60,IA =a, AB=2c.

If in the ecquation
1
(1 —2hcos 0+ h“)%

=14+Ph+DPh+......

we put A =¢" and equate the real and imaginary parts of the
resulting expressions, we obtain

1
_VQ (cos a —~ cos 0)é ... (22),
sin § @+ P,sin 2+ P,sin §a+ ...... =

cospa+ I’ cosfa+ P cosfat ... ..

when 6 > 2. But if 8 <a, the first series is zero, and the second

serics = {2 (cos 8 — cos a)} B

1 Ferrers, * On the distribution of electricity on a bowl,” Quart. Jouri. vol. xvuiL
p. 97.
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Differentiating the second series with respect to a, we obtain

cosda+ 3P cosda+5cosfa+.........
- sna Gor0 .. (28),
v2 (cos 6 — cos @)

according as 8 < or >a.
Multiplying (23) by 2 cos § (2r + 1) a, we obtain
cosna +cos(n+1)a+ 3P {cos(n—1) a+cos(n+2)a} + ... ..
+ (2n+1) P, {1 +cos(2n+ 1) a} + etc.
__W2sinacos § (2n+1) «

= 0'
{cos 8 —cos m)51

according as < or > a.

If we suppose € <a, and integrate both sides with respect
10 @, between the limits 7 and z, we shall find that the series

1 o= o [sin(n—8)a  sin(n+s+1)
L il LS ol T P
4<7r‘2a28: (2S+1)\: n—s T n+s+1 ‘

471*a l:(2n +1)P “/Zf sinacos ) @n+ 1) da] ...... (24).

(cos 8 — cos )}

But if we suppose €>a and integrate with respect to «
between the limits « and 0, we shall {ind that the series in
question vanishes. It therefore represents the density of a certain

distribution of electricity in the bowl. The potential of this
distribution is

c [aim (o e +1
v :717:23 [sm (n—38)a L sin{nts+ I)E] (g).s P 25),

gm0 n—S§ n+s+1 r

if > a; but if » <a we must interchange ¢ and » and multiply
the result by a/r.

To find the value of V at the surface of the bowl, we must put
r =, and differentiate with respect to a; we thus obtain
i
%:= 2co84 (2n + 1) a {cos fa+ P, cos § 3a+ Fycos L 52 +
_NZ2cosy(2rn+1)a
7 (cos a — cos 9)é
=0 0 <a,
by (22).

6> aq,
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0 > a,
T

Ve ,‘/Zj“cos?z 2n+1)a +l)a da
(cosa — cos 8)
= F (6) 0 <a,

To determine ¥ (6), let a == in the series (25) for ¥V and
we obtain V=P,

The series on the right-hand side of (25) is the potential of
the bowl when placed in a field of force whose potential at the
surface of the bowl is equal to — P, and the density is given by
(24); and since the potential of every field of force which is
symmetrical with respect to the axis of the bowl can be ex-
panded in a series of zonal harmonics, we can determine the
potential and density of the bowl when placed in any such field.

157. In order to obtain the potential when the bowl is
placed in a field of force whose potential is waz, we must put
n=1 in the series (25) and multiply the result by — 3wa®, hence

V- _wa’ zs O l:sm (s—1)a + sin (s + 2) a:l (%)MP. ...... (26).

2T 9 s—1 s+ 2

In order to sum the first series, we have
L L Pp o PET e,
R I S LA

therefore  const. —}% + Plogh+ P h+...... i”ﬁ 1t &e.
_ dh
B (1 — 2hu+ ho)?

N . ! —cos @
T s

Putting kb successively equal to ae™/r and ae™*/r, subtracting,
and putting S, for the first series in (26), we obtain

2 a7 8, =— (a* — 2arpe” “ e RN 4 (0 — arpe® + ™)
n o

B . oare " —acosf . . _ re"—acosf 9
pa [smh asnd sinh R :l( 7).
Let a’ + 7° cos 2a — 2ar cos a cos € =X cos 2y,

r* sin 2a — 2ar sin « cos @ = A sin 2y,
"+ a®— 2ar cos (a — 8) = p*,
r* +a*— 2arcos (a + 60) = ¢*
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Then A=pq
and the first two terms of (27)
= 2¢4/Asiny.
But
4r'sin*a — (p—q)' =2 (A — &® — r* cos 22 + 2ar cos z cos 6)
=4\ sin® 1y,

Hence the first two terms
=4 {4r'sin* 2 —(p— q)z}é.
In order to find the value of the last two terms, let us denote
the quantity in square brackets by — 2um~.
Since
cosh (sinh™ m —sinh™n) = /(1 + m%) (1 + »*) + mn,
we easily obtain
a*sin® @ cos 2y = (r'e®** — 2are** cos 0 + a®)?

-2 -
x (r'e ™" — 2are

: 3

*cos 84 a?)
— (¥ + @’ cos® @ — 2ar cos z cos )
=A—13 (P*+ ¢ +a*sin® 6,

et TP
therefore 4 =sin S snf
= sin 275 2
p+yq’
therefore
a - nd , @Pevsd . 2rsina
S =+ g, {47 sin’a — (p — ¢q)*} +-—s sin tg

The second series can be summed in a similar manner, and we

shall finally obtain,

__wa int 20 *_ (p— gy
V.= 27r[rcosgsm ¥y +il4c—(p—q)7

3

a . 4 2rsina
+ —cosfsin ————
r

1
+ & {dr®sin®a — (p — g)*% | ...(28).
LY (-} | 28)

158. If the positive signs be taken, this is the potential at all
points within the space bounded by the plane passing through the
rim of the bowl, and that portion of the sphere passing through
the centre and rim of the bowl, which lies outside the bowl.

The potential for the space enclosed by the bowl and the
plane through its rim is obtained by changing the inverse sine in
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154 KINEMATICS OF MOVING SOTLIDS.

the first term to 7 —sin™, and taking the negative sign before
the second term, and the positive sign before the fourth term.

The potential for the remaining portion of space is obtained
by changing the inverse sine in the third term to = —sin™,
and taking the positive sign before the second term, and the
negative sign before the fourth term.,

159. We cannot employ an analogous method for determining
the potential when the bowl is placed in a field of force perpen-
dicular to a plane containing the axis, since no analytical theorem
has been discovered for obtaining the potential of a bowl which is
placed in a field of force whose potential is a tesseral harmonic
sin (me + e,,) .. (cos 6).*

The solution can however be obtained by the following in-
direct method. If we put =0 in (25), and sum the resulting
series, we shall obtain the potential of an uninfluenced electrified
bowl. Invert the result with respect to a point I> in the plane
containing the rim of the bowl, whose distance from the centre is
equal to f, and multiply the result by — m. We shall thus obtain
the potential when the bowl is under the influence of a positive
charge m at P. Now if we place a negative charge m at
a point P’ in PO produced such that OP'=f and make the two
charges move off to infinity, whilst the product 2m/f* remains
constant and equal to {va, the ficld of force will ultimately become
a uniform field of force perpendicular to a plane containing
the axis whose potential i3 fva sin 8 cos 4, where r is the angle
which the plane through the axis and the point (r, 6, ) makes
with some fixed plane through the axis. The resulting expression
for V' will be the potential of the bowl when placed in this field
of force.

The result of this process is,

2¢ 2cr
V' =— "% cosyrsin @ \:'r sin~* +¢)y—4
o COSY pig T (pgr @O 4
a® . _ 2rsin a 2a’c . 5:|
4+ S sin™t 2 1(p+ )P —4r'sin®al? |,
o P oFq q 7‘ (p 9 {(P q) }

1 If an clectrified circular disc is placed in a field of force whose potential is
F (r, §) siv (¢ +€), the potential of the induced charge can be obtained by Boessel's
Funetions, see Proc. Camb. Pkil, Soc. vol. v. p. 425; and thenee by inversion, we
can obtain the potential of an electrified spherical bowl when placed in a field of
force of the above form.
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The inverse sines and the double signs before the secand and
fourth terms must be interpreted in the manner explained in the
preceding article.  (See Proc. Lond. Math. Soc. XvI. p. 296.)

The preceding cxpressions for the velocity potential make the
velocity infinite at the edge of the bowl, and therefore the
motion represented by the formulae could only be approximately
realised in practice.

160. In order to obtain the motion of a liquid in which a
solid is moving by means of the velocity potential, it is necessary
to find a potential function ¢ which satisfies an equation at the
surface of the solid which involves the first derivatives of ¢, and
this circumstance creates a difficulty which has proved insupcrable,
excepting in the case of an ellipsoid, an anchor ring’, and a
spherical bowl. But if the solid is one of revolution which 1is
moving parallel to its axis, the motion can be determined by
means of Stokes’ current function, which Rankine?® has shown has
a definite value at the surface of the solid.

Taking the axis of z as the axis of revolution, let w, u be the
velocities of the liquid parallel and perpendicular to the axis of z;
the surface condition is

w4+ mu =1V,
where V is the velocity of the solid, or

1d\}rdm 1d\[rdz Vdm
wdw ds  wdzds = ds’

Integrating along a meridian curve, we obtain

Now + satisfies the equation
d*yr + dy  ldy _
d2? T de' T @ dw
In this put ¢ = y=, and we obtain
d?
XrOx, 10 x
dz* " do' " wdw 2w
which shows that -y sin ¢ is a solution of Laplace’s equation ; hence
(29) may be written

=0,

x sin ¢ =

! Hicks, **On Toroidal Functions.” Phil. Trans. 1881, p. 609.
2 Phil. Trans, 1871.
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156 KINEMATICS OF MOVING SOLIDS.

Hence if U be the electrie potential of the induced charge,
when the solid is placed in a uniform field of force perpendicular
to a plane containing the axis and whose potential is — {Vy, then
U= cosce ¢ will be the current function when the solid is moving
with velocity V parallel to its axis,

In the case of a sphere

7= Va'y _ Va'w sin ¢

2 2
3 2 3 2
Therefore yr :%:7— = Ka;_;ng
EXAMPLES.

1. An ellipsoidal shell is filled with liquid and rotates uni-
formly about a given diameter; prove that the path of every
particle of liquid relatively to the ellipsoid will be an ellipse whose
plane is conjugate to the given diameter; and that every particle
will sweep out, about the centre of its clliptic path, equal areas in
equal times.

2. Liquid flows past the solid ellipsoid (z/a)’ + (y/b)* + (2/c)*=1,
the velocity at infinity being uniform and parallel to =z Prove
that the lines of equal pressure on the surface of the ellipsoid are
its curves of intersection with the cone y%/b* + 2%/c* = «*/A*, where
A is a variable paramcter.

3. Liquid is bounded by the ellipsoid (z/a)® + (3/b)* + (2/c)* = 1.
If the surface undergo a uniform torsion about a principal axis,
prove that the instantaneous velocity potential is proportional to
ayz for the liquid in the interior of the ellipsoid, and to

{(b“ — % V(¢ — ) 3(‘)2 (@ — b gg’} ayz,

for the external space, where

"’ dar
o= | s T
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4. Prove that the velocity potential due to a source of
strength m, placed at a point on the axis of a circular disc and
distant f from it, at points on the side of the disc on which the
source 1s situated, Is

© dP m
L P PR A S T
where P is the potential of the induced charge when the disc is

under the action of a charge m, situated at a point on the axis on
the other side of the dise, and whose distance from it is £,

5. 'The ellipsoid (z/a)* + (y/b)* + (#/c)* = 1 is surrounded by an
Infinite mass of water and rotates about the axis of . Prove that
the component velocities of any particle of water parallel to the
axes will be respectively proportional to

dM dN dN dL dL dM
dz dy’' de de’ dy dz’

where L= f {b"‘+1{r cf\P)(l—ﬁ"Zﬂ'j—«p'E ﬂllr)
2(b22-y«p)2+2(c’f\# T

g [ dy
M=y [ P

N +

e[ ¥
e N e Tceror]
where P =wf(a®+ ) (B + ) (¢ + ),

and A is the positive root of the equation

o P 2

@'+ A bz+)u+(/‘+h L

Prove also that if the ellipsoid be filled with water, the values
of L, M, N with O instead of A for the inferior limit, will similarly
determine the velocity of any internal particle of water.

6. A sphere of radius @ which is surrounded by an infinite mass
of liquid, is strained uniformly so that e, f, g are the principal
components of sirain afler unit time. Prove that the velocity
potential of the initially resulting motion is

s/ d d N\ 1 (15(e+f+g)
—§“ (edix2+fdy2+ga?>i_ Jl"
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15H8 KINEMATICS OF MOVING SOLIDS,

7. A sphere of radius ¢ is surrounded by an infinite mass of
liquid. If the surface of the sphere be suddenly moved with
normal velocity eyz + fzz + gxy, prove that the velocity potential
of the resulting initial motion is

— o’ (eyz + fzz + gxy)[3r°, '
where r=a+y + 2

8 Given that
o = a (cosh a + cos 8 — cosh ry),
y = 4a cosh 4a cos 13 sinh Lny,
z = 4asinh {a sin 28 cosh 3+,
transform the equation of continuity into the form

d’¢

(cos B+ cos1y) 7i_15+(005h7+008h a) 3;—*— (cosh 2 — cos B) d¢ =0,

dy?
and show that the surfaces for which «, B, y are constant are
confocal paraboloids.

Hence show that the velocity potential for infinite liquid
streaming past the fixed hyperbolic paraboloid 8 =@, with
velocity V parallel to the axis of # at infinity, is given by

o=V (x~afBsinf),
and write down the corresponding values of ¢ when the fixed
surface 1s the elliptic paraboloid a = a,, or y =1,

9. The axes of an ellipsoid which is filled with liquid vary
with the time in such a manner that the volume of the ellipsoid
remains constant; prove that the velocity potential of the
liquid is

$ =} (da*/a + by lb + é¥o).

10. The axes of an ellipsoid which is surrounded by an un-
limited liquid vary with the time in such a manner that the
ellipsold always remains similar to itself; prove that

; a7 dyr
=—1labc d’a+b’b+ccf . - .
Bl bb o0 |, TE T P+ R )

11. Determine the initial motion of liquid outside an ellip-
soid, when component velocities (1) pz, py, pz; (1) pyz, pzz, pry
are imparted to every point of its surface ; where p is the perpen-
dicular from the centre on to the tangent plane at «, ¥, 2
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CHAPTER VIIL

ON THE GENERAT, EQUATIONS OF MOTION OF A SYSTEM
OF SOLID BODIES MOVING IN A LIQUID.

161. WHEN a number of solid bodies are moving in an in-
finite liquid, the motion of the solids is most easily determined by
regarding the solids and liquid as constituting a single dynamical
system, and then employing Lagrange’s equations. But as the
methods and formulae employed are different according as the
motion of the liquid is eyclie or acyclic, it will he convenient
to consider these two cases separately.

Acyclic Motion.

162, The following notation will be employed; let

Uy Vo W5 Pr» Gms T De the linear and angular velocities

respectively of any solid S, along and about axes fized in the
solid.

& D) . Xy X Xw the velocity potentials of the
liquid, when the solid S, is moving with unit linear and angular
velocities respectively along and about axes fixed in S, and all
the other solids are at rest. '

& the velocity potential due to the motion of S, when all the
other solids are at rest.

¥ the velocity potential of the whole motion.
M the mass of S,,.
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From § 142 (1) it follows that

(bm = Up ¢m’ + Um ¢m” + wm¢m’” + mem‘ + qme” + Tmem' * '(1):
for at the surface of S, d®,/dn is equal to the normal velocity of
S,,, and is zero at the surfaces of each of the other solids; whence

also, W =30 i (2).
By § 85 (20) if @ be the kinetic energy of the liquid
av
@::-%,)Hw%azb,
where the integration extends over all the solids; whence
d®, ,, , dD,
@Z——majjq’(% ds,+ 22 ds, + )

Substituting the values of ¥, ®,, ®,... in this equation, it
appears that @ is a homogeneous quadratic function of the
velocities. If §(u u,), (4, v,) denote the coeflicients of w,% v
&e. we obtain

m?

() =—p [[6, % as, 7’
2(u1u2)=—~pff¢2'%dsl—pff¢lld‘%’ a8, (3.
o oo

&e. &e.

These equations at once follow from Green’s Theorem, and
from the fact that d¢,’/dn is zero at the surfaces of all the solids
except S,.

163. If all the solids are free, cach solid will possess six degrees
of freedom, and its position will therefore be determined by six
independent, coordinates. The velocities of each solid can be
expressed in terms of these generalised coordinates and their time
fluxes by means of the ordinary methods of Rigid Dynamics, and
the kinetic energy of the liquid will therefore be expressible as a
homogeneous quadratic function of the generalised velocities of
the solids. The coefficients of the velocities will be functions of
the generalised coordinates, and of quantities which determine the
form and dimensions of the solids. Their values cannot be found
without a knowledge of the velocity potential of the liquid, and
they have been determined only in a few cases.
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The kinetic energy @ of the solids can be found by the usual
methods, hence if 7" be the kinetic energy of the solids and liquid,

from which it 1s evident that 7" is a homogeneous quadratic func-
tion of the velocities of the solids.

164. Since the coordinates of individual particles of liquid do
naot enter into the expression for the kinetic energy, it will be ne-
cessary to establish the legitimacy of the employment of Lagrange’s
equations in the present case. The application of these equations
is a particular case of the theory of Ignoration of Coordinates.

Let the position of a dynamical system be determined by
means of a system of coordinates 8, 6,..., v,, %, ..-; and let us
suppose that the coordinates y do not enter into the expression
for the potential and kinetic energies. Since

aT 4
dx =0, e 0.
Lagrange’s equation corresponding to y will be
d dT
dt dy %
whence g—g =Const = K.oot i (5).

The constant x is the generalised component of momentum
corresponding to x; and there will be as many equations of the
type (5) as there are coordinates y. Now whatever the motion of
the system at any particular peried may be, it can evidently be
produced instantaneously from rest by the application of a system
of impulsive forces, which must be equivalent to the momentum of
the system at the particular period. If however the motion of the
system 1s such that it could always be produced from rest or
destroyed, without the application of the impulse components
corresponding to x,—in other words if the velocities x could be
produced or destroyed solely by means of impulsive forces arising
from the connections of the system,—all the constants & will be
zero, and (5) becomes

By mecans of (6) all the velocities ¢ can be eliminated from 7';

B. 11
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it 1" denote the result of this elimination, then since 6 and @
enter into 7" through , we have
ar_ar ariy ar g,
do  df dy, df dyx, df
_ar
ag’
ar _ar
dg — do-
adr dT" JddT dT dV
Therefore — =— — = =T
dt d¢ df dtdd df do
which shows that when « =0, we may employ the modified func-
tion 7" from which the ¥’s have been climinated in forming
Lagrange's cquations.

by (6). Similarly

Now if the dynamical system consists of a number of moving
solids together with the liquid in which they are immersed, and
which either extends to infinity or is bounded by fixed solids; and
if the motion of the liquid is solely due to that of the solids
moving about in it, we have shown in §§ 85 and 89 that its
motion will be acyclic and irrotational, and that it could be
instantaneously produced or destroyed by means of a proper
system of impulsive forces applied to the solids and boundaries
alone : also since neither the kinetic nor potential energy contains
the coordinates of individual particles of liquid, the preceding
investigation shows that the equations of motion may be obtained
by forming Lagrange's equations by means of the expression for
T given by (4), which contains the coordinates and velocities of the
solids alone.

If the momenta « are not zero, Lagrange’s equations in their
ordinary form cannot be employed. The modified function which
must be used in this case will be determined in § 173.

165. The system of imnpulsive forces which must be applied to
the solids to produce the actual motion at any period, when com-
pounded into a single force and a couple about the line of action
of the force, is called by Sir W. Thomson the “Impulse of the
Motion.”

If all the solids are free and the liquid extends to infinity and
is at rest there, the Impulse of the Motion is equal to the momentum
of the system; and if no impressed forces are in action, it must be
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constant in magnitude and direction throughout the motion. But
if the liquid has fixed boundaries, the impulse of the motion is
equal to the difference between the momentum of the system, and
the impulsive forces arising from the pressures exerted by the fixed
boundaries.

When there is circulation and the liquid extends to infinity
and is at rest there, the impulse of the motion is equal to the
impulse of the forces which must be applied to the solids, together
with the impulses which must be applied to the barriers in order
to produce the cyelic motion.

166. Let p be the pressure of the liquid, {, m,, n, the direction

cosines of the normal to S;; &, 7, & Ay #y 7, the force and
couple constituents of the impulsec which must be applied to S,

in order to produce the actual motion from rest, then,
£, = Mu, + [[pldS,
do/
=M~ p [ ¥ %0 as,

But (flgﬂ—(u D+ (wp) v, + .
——pf vl 9. 43,
Thercfore E= Z_g , &e.
g e (7).
Similarly A, = dp.’ &e.

Since 7 is a homogeneous quadratic function of the velocities
of the solids,
ar ar
27 = U, E + A d’U
=uf, + v, + .-
Differentiating with respect to & on the hypothesis that £,
/N are the independent variablcs, we obtain
dT dv,
dg = U, + El dE UN d'rll +.
Writing out (7) in full, we obtain
E ={M, + (uu)} v, + @) o+ ...
= (ulv‘) u, + {‘Mx + ("xvx)} vt

+.
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Differentiating these equations with respect to £, on the
supposition that &, #;...... are the independent variables, we
obtain

={M,+ (ulul)} + (49) & 7E E

0= (uo) G + WL+ (o)} §
&c. &c.

Multiplying these equations by w,, v,... respectively and adding,
we obtain

dé’l

du, dv,
U= EXE-*-’,]‘J;I“*-“"
arT aT
‘Whence g~ U, F P& i (8).

Equations (7) and (8) are well-known dynamical relations.

Kirchhoff’s Equations.

167. When a single solid moves in an infinite liquid, the
equations of motion may be obtained, as Kirchhoff has shown?, by
expressing in an analytical form the fact that the rates of change
of the component linear and angular momenta of the system along
and about three rectangular axes fixed in the solid are respectively
equal to the components of the impressed forces and couples along
and about these axes.

Since we are dealing with a single solid we may drop the
suffixes and put o,, w,, o, for the angular velocities of the
solid.

If £ 7, £ be the component linear momenta along, and A, p, »
be the component angular momenta about three rectangular axes
which are moving with angular velocities 6,, 6,, 6, about them-
selves, of any dynamical system whatever; and if X, ¥, Z and
L, M, N be the comuponents parallel to and about the axes of the
forces and couples respectively which act upon the system, it is
known? that the equations of motion of the system are

1 Vorles. iiber Math. Phys. p. 60,
2 Hayward, Trans. Camb. Phil, Soc. vol, %.; sce also Besant's Dynamics, § 232,
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g_n03+§62=X ]

7 —80,+£6,=Y

- 0 0. =7

&—E0,+ 70, S, 9),

A—wn+ol—pb,+v0,= L

p—ult+wk—vl +20,=M

13—?)§+’£L7]—K92+/L912N J
where u, v, w are the component velocities parallel to the axes, of
the origin of coordinates.

Since these equations are true for any dynamical system
whatever, they will hold when the motion of the liquid in which
the solid is immersed is cyclic or rotational or both; but the
analytical expressions for the momenta §, 5, &c. will depend upon
the particular kind of motion of the liquid.

When the motion of the liquid is irrotational and acyclic,
the momenta are determined by (7); also if the motion is
referred to the principal axes of the solid 6, =w,, 6,=w,, 6,=w,
and the equations of motion become

d dT aTr a7 x

@ d % et g

d dT ar ar

dids P dwt%q =Y

d dT dT ar

didw ™ %du T gy =2

d dT d7 dT arT dT

gidfjl—w% U@_w"d—w? w"’d_m—s=L

d dT ar . dT dT aT

dido, “dwt Y du T P de, T a1

d dT aT aT dr dT

Gido, "du TV Vide, TV de, ]
These are Kirchhoff’s equations of motion for a single solid

moving in an infinite liquid.

[ .....(10).

Geometrical Equations.

168. We must now express the velocities in terms of the six
coordinates, which determine the position of the solid.

Let z, v, z be the coordinates of the centre of inertia O of
the solid referred to three fiwed rectangular axes. Through O
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draw OX, 0Y, OZ parallel to the fixed axes, and let 04, OB, 0OC
be the principal axes of the solid at 0.

The angular velocities are given by the equations (Routh’s
Rigid Dynamics, vol. 1. § 256)
w, = 0 sin ¢ —jr sin € cos ¢
w, =6 cos +sin fsing
@, =¢ +rcos 8
Also the component velocity of O in the direction of O D is
% cos ¢ — v sin ¢ = (£ cosr + 7 sin Jr) cos § — Zsin G,
and in the direction of OX is
% sin ¢ + v eos ¢ = — & sin Y+ 7 cos .
Solving these equations, and observing that w is the component
velocity of O in the direction of OC, we obtain
w =2 (cos & cos ¢ cos Y —sin ¢ sin 4r)
+ g (cos 6 cos ¢ sinr + sin ¢ cos Yr) — £ sin 6 cos ¢
v = — & (cos 0 sin ¢ cos Yr + cos ¢ sinyr) (12).
— g (cos @ sin ¢ sinyr — cos @ cos Yr) + Zsin @ sin ¢
w=2d 5in 8 cos Yr + g sin & sin §r + £ cos &

169. The preceding equations may be considerably simplified
in the case of a solid of revolution.

Let OC be the axis of revolution, OX, OY, OZ three straight
lines parallel to axes fixed in space, let w be the velocity of O
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along OC, u, v the velocities at right angles to OC in and perpen-
dicular to the plane ZOC. Then

u=acosyrcos f+ 7 sinyrcos§—4sinf
v=—2gsinyr+ycosy ... (13).
w=d cosyrsin b +y sin Y sin & + 2 cos 0

E

Also if w,, w,, o, be the angular velocities about 04, 0B, OC
w,=—sinb, w,=0, o,=¢+ycosh..... (14),
where the plane COF is fixed in the body.

The vclocities of each of the solids can be expressed in a
similar manner by means of equations (11) and (12), or (13) and
(14); hence if we can obtain the values of the coefficients in terms
of the coordinates, the motion can be completely determined.

Cyclic Motion.

170. We must now consider the more general problem of the
motion of any number of solids, each one of which has several
apertures through which cirenlation takes place™.

The following additional notation will be employed. Let

¢ = velocity potential of the whole motion.
V= do. due to motion of solids alone.

Q= do. due to cyclic motion.

1 Proc. Cumbd, Phil. Soc. val. vi. p. 117.
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77

Des P s D3 X X » X » the velocity potentials of the liquid,
when the solid S, is moving with linear and angular velocitics
respectively along and about axes fixed in S, and all the other
solids are at rest and there is no eirculation.

o, 0, o, ... the areas of the apertures of S,,.

m? m m

Kps Ky £, .. the circulations through them.

Oy @, , @, ... the velocity potentials due to unit circulations
through the apertures of S,,, when all the solids are at rest.

¥, ¥y v,7-.. the fluxes through the apertures of S,
relutive to S,

®,, the velocity potential due to the motion of S, and the
circulations through its apertures, when all the other solids are
at rest.

By Thomson’s extension of Green's Theorem, it is known that
the motion at any period could be instantaneously produced from
rest, by the application of suitable impulses to each of the solids,
together with uniform impulsive pressures «,p, «,.p ... applied to
every point of the barriers o, o, ... respectively. Let X, Y,., Z.;
L ,M,, N, be the force and couple components of the impulse
along and about axes fixed in S,,, which must be applied to S,.

Let £, 1,5 &3 Ay B> Y3 Em's 7 -+~ b€ the components of the
impulses which must be applied to each of the barriers of S_; also
let £,=3¢, &c; X,=X,+E, &, and let X, B,., Z,; L,
{9, 32, be the generalised components corresponding to u,,v,, ...
of the momentum of the eyclic motion, when all the solids arc
at rest.

Let M, be the mass of S, @ the kinetic energy of the liquid,
T that of the whole motion. It will be shown that 7' is the
sum of two homogeneous quadratic functions of the velocities and
circulations respectively. Let these be denoted by T and &
respectively, and let % (u,u,), (u,v,) denote the coefficients of
u,>, U, &c.

Since the w’s are the velocity potentials due to unit circulations
round circuits which cut the apertures to which they correspond
once only, when all the solids are at rest, they must satisfy the
following conditions.

(i) At all points of the liquid Ve =0, and o and its first
derivatives must be finite and continuous at all points of the liquid,
and must vanish at infinity.
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KINETIC ENERGY WHEN THERE IS CIRCULATION. 169

(i) At the surface of each solid dew/dn = 0.

(iii) ® must be a monocyclic function whose incrcment is
unity for all circuits which cut the barrier to which it corresponds
once only, and zcero for all circuits which do not cut this barrier.

It therefore follows that

q)m = um¢ml + ’Umd)m” + wm¢m’/' +mem’ + q'nXm” + r'me + Kmm"l
o, o (15),

"

and that
¢=2b, =V + Q.

171. The kinetic energy of the liquid is
=—%pff¢d¢ds+l2 f/¢da

where the first integral is taken over the surfaces of all the solids,
and the second over all the barriers. Since d®,,/dn at the surface
of 8 is equal to the normal velecity of 8, and is zero at the
surfaces of each of the other solids,

dd, ., d,
T=—tp[[@ (T as,+ S a5, + ...

+ %pff%i (/clcla’1 +x/do + ... xdo, + .. ) .
‘We can now show that

wu) =~ p[[ 0! %x as,, ]

2 (uu)=—p[[4; ¢"dSI—pff¢,’c%dS2
:_prf% 9/ s,

2 (upe) = — p” 1dS+ jgﬂda;o, ... (16).

2(ufcz)=—pff

(ese) =p [ do,,

, dw,’ dw, , , do,/
2(","1):Pf%‘d‘71+Pffﬁd°}=2Pff I %o |

The above equations can be at once cstablished by Thomson’s
extension of Green’s Theorem. For if in equations (25) and (26)
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of § 88, we put ¢ =w,, ¥ =¢/, then since o, is a monocyclic
function whose increment is unity for all circuits which cut the
barrier o, once, and zero for all other circuits, and ¢," is a single
valued function, we obtain

[[o. D5 as— [0 4o, = [[ %0 as.

Now d¢,'/dn is zero at the surfaces of all the solids except S,
and dw /dn is zero at the surfaces of all the solids, whence the
third of equations (16) follows at once. The others can be proved
in a similar manner; hence the products of velocities and circu-
lations do not enter into the expressions for the kinetic cnergy of
the system, and we may therefore put

T=%T+8&

where ¥ is a homogeneous quadratic function of the velocities of
the solids alone, and & is a similar function of the circulations.

172, If p be the pressure and {,, m,, n, the direction cosines
of the normal to S,

X, =My, + f f PlLds,
d [
~Ma—p [ ¢ s,
4T
du, (ug)u, + (uw) v+ .oonee
’ 1 d 1’
=—pﬂ(ul¢l T+ ) D as,
d /7 d ’
=—r [[oG; as.vo[[oFras,

=_pﬁ¢@d5dsl+pﬂ%2(xd0),

where the summation refers to corresponding products, and ex-
tends to all the barriers; hence

But

o AT ([,
X Hdez L W an.
Also E= Klpfflld(f, &c. &c.

where [, m,, n, are the direction cosines of the normal to the
barrier o, ; whence

£ =36=p [, (cldo),
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where the summation X extends to the barriers of S, only; also
o d -
X, =X +E = dq_t—pf[ d‘%E(mdo—)-}—’g’x........(lS).

From (17) we sce that the component impulse corresponding to
#,, which must be applied to S, in order to keep it at rest, when
the cyclic motion is generated by the application of proper impulses

to the barriers of all the solids is —pﬂ.dcpl’/dn.z(xda-); and

therefore by (18) the generalised component of momentum X, cor-
responding to u, of the cyclic motion when all the solids are reduced
to rest, is

% =F—p ff U5 (kde) = p f S (ddo)— p f f 9B) 3 (eder)..(19),
T

whence X, = du, X (20).
Similarly it can be shown that
ar
L = = dp, + 8, (21),
where L = ?»1 —p f ?; % (edo), } (22)
and N, =3\, =p[[3 [« (ny—mz)da)

173. We must now obtain an expression for the modified
Lagrangian function.

Let the coordinates of a dynamical system be divided into two
groups @ and v, the latter of which does not enter into the
expression for the energy of the system. Since the kinetic energy
is a homogeneous quadratic function of the velocities §... x ...,
we may put

2T=(00)642(06,)06 +...2(0x)0x% + ... (xx) X+ 20xx )50+ - - (23).
In this expression none of the coefficients involve y, and
Lagrange’s equation corresponding to x, gives

d .
‘E = const. = «, &c.

where « is the generalised component of momentum corresponding
to x; writing these equations ont in full, we obtain

k=) 0+ (0,%) Oy +.ooee(xx) X+ (XKD Hy +evene

#,=(O%) 0+ (B,x,) O, 4 a(X) X+ (XX Ky Fevveenbonnnne (24),
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172 EQUATIONS OF MOTION OF A SYSTEM OF SOLIDS.

the number of equations being equal to the number of the co-
ordinates .

Let I, P, ...... be the portions of #, «, ...... which do not
involve the y's, then P, P, ...... are linear functions of the @'s
alone, and (24) may be written

(XX) X+ (XXI) p. A o TIPS =x—P
(X)) X+ 00X %ot e =k, P (25)
If A denote the determinant
xx)  (xx) (), e
A — (XXI)’ (XxX‘L)’ (XIXZ)? ------
(XXQ)’ (XIXQ)’ (XQX'), ......
the solution of (25) may be written
dA dA ]
Ay=——(k—DP)+ 57—k, — P+ ......
X=T0oo0 " T T s IO |
dA da O . (26)
X1 d(X 1)( ) + d( ) 1) (’C1 P,_) B J

If therefore we put
_1 da 1 dA
“=Ndt) = AT

20 = («x) P* +2 (ki) PP +... o7
2.@ =(I€IC) ’C2+2(ICM1) KIC1+ . } ......... ( ),
(26) may be written
. d® dB . dg d
X=de dP’ X1=’d;1—(27)a§&0 ............. (28).

Let @ be the portion of 7' which is independent of y ; then,
since 7'is a homogeneous quadratic function of the velocities,

. AT 4 dT
2T =0 = +6,— +...... X@*T'*X:@TJF ......
dé dgl Xm dX1

—09C 49T,
a6 Ot
+0{(0%) %+ 0x,) %, + ......}
+ 6, {(6:) X + (8,x,) R T |
+oxe et
=2+ e+ P)X + (e, + P) g, + ...
=2 20 — 2Py (paft _ A
( dk de)'
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Writing out the last term in full, it is easily seen from (27)
that it vanishes; and therefore since J3 is a homogeneous quadratic
function of the velocities 6 alone, it follows that T is equal to the
sum of a homogeneous quadratic function of the velocities 6,

together with a similar function of the momenta x. We may
therefore put

where T=T—-P....ooin, (30).

Let ® be the generalised component of momentum correspond-
ing to 6, and let ® be the value of @ after the velocities § have
been destroyed by means of proper impulses applied to the system.
The momenta « will evidently be unaffected by these impulses,
but the velocities ¢ will be affected, since the impulse required to
destroy @ will produce reactions arising from the connections of
the system which will change the values of the x’s. Now

®= (f;g d@:+( Oy x+Ox) et oonnonen.
=%“;+(0 )(Zf ‘ﬁi% .........
whence 6=(00" +(0x,) a? oo (31),
and thercfore % = dd@; 0-3 (Gx dS‘B
r .
= % O (32),

4dT_ddy e

G @ ap Td
It appears from (31) that the momentum ® is a function of

the momenta « and the coordinates only.

ar_das _as

46~ de Tag-

Now since # enters into & through «, we have

I8 _dtdx dRde
df  dx d@ de, df T dE”

whence

Again
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where the symbol d/df operates on the coefficients and not on
the momenta «. Diffcrentiating (26) with respect to 8, we obtain

0= (xx) (%—%) + (x&,) ((-;% +Cf71;~1) + ...

+ («—P) 6%9 (k) + (2, = P)) C% (kr) F cenra (34).

Multiplying the system of equations of .which (34) is the type
by «, &,... respectively and adding, we obtain
dft dre | A dx,
dic d8 T dx, df
i@ dl dt db, _

Tde d0 7 dr, d9

3 L pdf p ¥ AR, 35).

+2 45~ P g a 110 d, ©

ich (31) is the type by 6, 6....

Multiplying the equations of‘Wh
respectively and adding, we obtain

. dR pdf
(@) =P 7+ Pige T
. _pds 2 dg
whence d62(®g)=2(a—g d/c) E( dé d >’

therefore (35) becomes %%'F 40 db

AT d% ¥ Vs &4
whence E@=E?—d9+d02 (®6).

We may now drop the symbol 3/df on the understanding that
the momenta « are to be treated as constants, and Lagrange's equa-
tions become

dd¥ d0 d¥ df dg* av
¢ g, av_ a2 T 3 (00)+ - =0.
Gigeta—agTdp do= Ot =0
Since ® and £ do not contain 6, the modified function is

L=S+3 @) -8+ V. vrrrrerennen. (36).

If the velocities ... bo expressed in terms of new velocities u...,
and X be the new momentum corresponding to u after the «’s have
been destroyed, it can easily be shown that,

2 (00) =3 (Xu).
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Tor let 8=Au+ Adu + Au,+......
then db/du=A, dfjdu =4, &ec.
—di\ d7T' d¥
also by (32), 2(0 (E)Zﬂ—u _E_x’
therefore
dé df _ 7 dé
E(Xu):@(ucal+u,d‘l—[1 +)-§-®l (uafj+ ...... )+&(,.
=3 (84),
whence (36) may be written
L=FT+3Xu)—8+V.iiiia.n. (37).

174. We have therefore obtained a form of Lagrange’s equa-
tions, which can be cmployed when the kinetic energy is expressed in
terms of the velocities corresponding to the coordinates by which
the position of the system is determined, and the constant momenta
corresponding to the time fluxes of the ignored coordinates.
Now by § 89, when a liquid of density p occupies a multiply-
connected region, circulation x can be geverated by means of a
uniform impulsive pressure x#p applicd to every point of one of
the barriers which must be drawn to make the region simply
connected, and the circulation thus generated cannot be destroyed
excepting by the same process as that by which it has been
produced. It therefore appears that the product of the circulation
and the density is a quantity in the nature of a generalised com-
ponent of momentum,

Hence in order to determine the motion of a number of
perforated solids in an infinite liquid, we must first calculate by
means of (16) the quantities ¥ and &; the former of which is the
kinetic energy due to the motion of the solids alone, and is
therefore a homogeneous quadratic function of their veloeities, and
must be expressed in terms of the generalised coordinates and
velocities of each solid; and the latter of which is a similar
function of the circulations. The quantity X in (37) is evidently
the generalised component corresponding to w, of the momentum
of the cyclic motion which remains after all the solids have been
reduced to rest, and its value is given by (19) or (22), according
ag it is in the nature of a force or a couple.

1 In this term T is supposed to be expressed in terms of the velocities
t.. and x....
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175. We can now ascertain the physical mcaning of the
generalised velocity x which corresponds to the momentum «p.

Let 4, be the flux through the aperture e, of 8, relative to
S,. Then if I, m,, n, be the dircction cosines of the normal to o,

¥, = f f i%iz =1 (u +qz—ry —m, (v, +rz—pe)

-n (wl +pY - qg:)} do—l

‘I/ dQ
:f {an f —(w,E v+ w4+ PN+ g+ )/ Kp
d N
But p = dzr (rye,) e, + (kY e+ oone
_d&
d/c

If therefore we put

a = E1/’Cxp :f Zxdau '81 =771/pr: Y= Cx/’cxp’

a, = 7H/'clp = ff(nly - mlz) da’v bl = Iu‘l/lclp’ c,= yl/xlp’

we obtain

d¥
=f‘[%dax_a1ul— MY, ap _b Gy

Now if 7" be expressed as a quadratic function of all the
momenta

147 _
p dx X
But 27 =3u 'Zl—; +28 =3u(X —X)+28 ......... (39),

by (20). Hence in order to obtain y, we must differentiate (39)
with respect to &, on the hypothesis that the momenta X are
constant, and that « is a function of #,; whence by (19) and (22),

dT dz d
dlCl = 2 - —‘u (axul + B + W, + a,p, + bex + Cl/rl)p
a
+ p“fdnfdol-%?df’c; .................. (40),
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From (20} we obtain

’

d d
0=Z(u,v) d—i—#—cﬁp——p j‘dzl do,,
1

where the summation extends to all the unsuffixed letters in-
cluding v=wu,. Multiplying these cquations by u,, v,... respec-
tively and adding we obtain

d¥ du
z du a"-x + (a1u1 + 61”1 + 7, + a,p, + lel + 017. ) PP /.{74 do— - 0

whence by (38) and (40) —d$=p\}-rl,

R

whence ¥, = \{r‘.

Hence the flux through the aperture o, relative to the solid
S, is the generalised veloeity corresponding to the momentura «,p.
This theorem was discovered by Sir W. Thomson'.

176. We shall now apply the preceding results to determine
the motion of a single solid having only one aperture.

If u,», w; @, m,, o, be the linear and angular velocities of

the solid, along and about axes fixed in the salid, and Q the
velocity potential due to the circulation

T=3+ 1K«
where K=p %2 do.

Also by (19) and (22)

X= KP_U( ——-7> do, &e.
1= Kpf/(ny — mz — %} da,

X=j—T+3€ &C. e (41),

L=T% 4 Xu+ Pv+ Zw + Lo, + o, + Po,— &+ V...(42).

1 Proc. Roy. Soc. Edin., vol. vir. p. 668.
B. 12
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In this case the quantities X ... are evidently constants, and
we can either obtain the motion by expressing u, v... In terms
of &... by (11) and (12), or by (13) and (14), and then employing
Lagrange’s equations; or since X, Y ... are the components of the
momentum of the system along and about the axes of the solid,
we may substitute their values in (9) from (41), and thus determine
the motion by Kirchhoff’s equations.

Motion of a System of Cylinders.

177. If we endeavour to calculate the right-hand side of (37),
in the ease of the two-dimensional motion of a number of eylinders
in an infinite liquid, when there is circulation round some or
all the cylinders, it will be found that some of the terms become
infinite. In order to avoid this difficulty, we must describe an
imaginary fixed circular cylinder in the liquid, the radius of
whose cross section is a very large quantity ¢, and then calculate
the value of /. for the space contained between the moving
cylinders and the outer one, omitting all the terms which vanish
when ¢ becomes infinite. It will then be found on substituting
the value of I thus obtained in Lagrange’s equations and per-
forming the differentiations, that all the terms which become
infinite with ¢ disappear, and we thus obtain the equations of
motion of the cylinders’.

178. The calculation of L can most easily be effected by
employing the current function instead of the velocity potential,
for the former function is always single valued unless any sources
or sinks exist in the liquid.

Let u,, v, be the component velocities of any cylinder S, along
rectangular axes fized in the cylinder, », its angular velocity,
&, the circulation round any closed circuit which embraces this
cylinder once only.

Let the centre O of the cross section of the outer eylinder be
the origin, and let «,, v, be the co-ordinates of the centre of inertia
of the cross section of S, referred to rectangular axes fized tn space;
z/, y, the co-ordinates of the same point referred to moving axes
through O which are parallel to the directions of w,, v, Also let

1 Proe. Camb. Phil. Soc., vol, vi. p. 135,
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x be the current function, and Q be the velocity potential of the
eyclic motion when all the cylinders are at rest.

<

0 X
In the figure let CA, OB be the axes of any one of the cylinders

along which u, v, are measured, then

d o
X= pffdgf,dacd_y

dz’ dz’
=‘PfX£dS+PUXE;dS]

where the first integral is to be taken once round the circum-
ference of the cross section of the outer cylinder, and the square
brackets denote that the second integral is to be taken once round
the circumferences of the cross sections of each of the moving
eylinders.

At the surfuce of each of the moving cylinders y is constant,
hence the second integral vanishes, therefore

dz’
f‘:—Pfxds ds.

Let (', ") be polar co-ordinates of a point referred to Oz as
initial line, then at a sufficient distance from 0, ¥ can be expanded
in a series of the form

x =~ mlogr' = (@, cos € +13,5in 6)— ..

Therefore
X == pcfzr{m loge + % (A, cos & + 23, sin ) + .. } sin 8'd¢
0
=—pAB, e (43).
imi d s dy'
Similarly P,=-» d_‘zf' de'dy’ = _,[X;Z? ds
L O R (44)
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Again, if 2, be the angular momentum about C of the cyclic
motion,

’ ,d ’ ’ d ’ ’
ﬁ,:*pff{(m —)) 5+ —yl)ﬁx} di' dy

,d
=—p {f{ dxx+y Xm' dxdy — TP (a1x1 +33 Jx)
By Stokes’ theorem the double integral

.d .d
=—épfr d%ds+ép l:j Enxds].

The first integral = mpc*m, the second integral may be written
—1p [ Jranas. ds] ,
hence
2 2 dQ ’ ’ =
P =mpm—itp| |r Hs_ds —mp (R, + B,y (43).
d d
Also 2R=pfx8%ds—p[fxd—ifds]

= pc x%xd9+p[fx—-ds]

=pcf0 xd%ﬂdaﬂz(xx).

The integral

=pf2"{'mlogc—i—1(%0089—ka.’,’;sinﬁ)1
0 4 J

X {'m —% (A cos O + 23 sin 6)} df = 2mpm’ log c.

Whence R =mpm*logc+ 3p% (kx) «oiiiiiiniennns (46),
Hence we finally obtain
L=3+ 7% (Av—Bu) + 2 (Hw)
—mpmilogc—pZ (k) + V ...l 47).
If we substitute the preceding expression for L in Lagrange’s

equations and perform the differentiations, it will be found that

the terms rpc®m in 2, and 7pm® log ¢ disappear ; we may therefore
write

L=T +7p% (Av—Bu) + 3 (Do) —1pZ (k) + ¥V oeen. (48).
P=—1p ‘:J{r’ %? dsjl —p (B« + By) ...... (49).
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179. The quantity ¥ which does not depend on the cyclic
motion, can be obtained by the ordinary methods. With respect
to the other terms we must first obtain the values of y and Q;
we must then draw from O a series of lines parallel to the
directions of u,, u,..., and take each of these lines successively
as the initial line, and expand y in a series of the form

=——mlogr—%(§3cosﬁ+§3sin 9 —...

which will determine the values of the @’s and 33’s.

The velocities %, v and the co-ordinates ', 4 expresscd in terms
of z, y, the co-ordinates of C referred to fixed axes, and the angle
@ which C4 makes with Oz, are given by the equations

u=acosf+9ysind, wv=—#sinf+ ycosd
2'=zcosf@+ysinf, 5 =—zsinfd+ycosd

When there are several cylinders, the value of x at the surfaces
of the different cylinders is a function of their forms and positions,
and is therefore a function of the co-ordinates; when there is
only one cylinder the value of y at its surface is an absolute
constant,
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CHAPTER IX.

ON THE MOTION OF A SINGLE SOLID IN AN INFINITE
LIQUID,

180. WHEN a single solid is moving in an infinite liquid
whose motion is irrotational and acyclic, the kinetic energy of the
solid and liquid is a homogeneous quadratic function of the com-
ponent velocities of the solid alone, and is therefore of the form;

27 = P’ + Qv* + Rw’ + 2P vw + 2Q'wu + 2R "wv

+Aw’+ Bo+Co’+ 24 0,0, + 2B'w,0, + 2C0,0,

+ 20, (Lu + My + Nw)

+ 20, (L'u+ M'v + N'w)

+ 2w, (L"u+ M0+ N'W) coviviiiiiiniiiiieenn, D),
where u, v, w; @, o, w, are the component linear and angular
velocities of the solid.

If the motion is referred to the principal axes of the solid, the
quantities P, @, R are called the effective inertius of the solid
parallel to the azes; and the quantities 4, B, C are called the
effective moments of tnertia about the axes. Their values are
determined by the equations

P=M— pfi$,ldS &c. &e.

A =1 —pffx,(ny —mz)dS &e. &c.}
where M is the mass of the solid, 7, its moment of inertia about
the axis of z, and ¢,..., ¥,... the constituents of the velocity
potential.

The other coefficients depend solely upon the form of the
solid and the density of the liquid; their values are given by
£ 162. (3).
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181. When the form of the solid resembles that of an ellipsoid,
which is symmetrical with respect to three perpendicular planes
through its centre of inertia, and the motion is referred to the
principal axes of the solid at that point, the kinetic energy must
remain unchanged when the direction of any ane of the component
velocities is reversed ; hence the kinetic energy cannot contain
any of the products of the velocitics, and must therefore be of the
form ;

2I'=Pu' + Qv+ Bw' + Ao+ Bw + Cu,* ......(3).

If in addition, the solid is one of revolution about the axis of z,
the kinetic energy will not be altered if » is changed into v, and
w, Into w,, whence P =@, 4 = B, and

2T=P (' +9") + R+ 4 (w'+ »}) + Col ...... (4).

Although every solid of revolution must be symmetrical with
respect to all planes through its axis, it is not necessarily sym-
metrical with respect to a plane perpendicular to its axis. The
solid formed by the revolution of a cardioid about its axis is an
example of such a solid. In this casc the kinetic energy will be
unaltered when the signs of u, v or w, are changed, and also when
% is changed into » and o, into @,; hence in this case

2T=P*++v")+ B+ 4 (0* + )+ Co,+2Nw (0, + w,)...(5).
If the solid moves with its axis in one plane, (say 2zz), v and o,
must be zero, and the last term may be got rid of by moving the

origin to a point on the axis of z whose distance from the origin

is —N/R. This point is called the Centre of Reaction.

‘We shall now consider some special cases.

Motion of a Sphere.

182, TLet a sphere of radius a, density o, and mass M be pro-
Jected with velocity V' in an infinite liquid of dencity p; and let
the sphere be acted upon by a constant force Z perpendicular to
the initial direction of projection.

Let the axis of z be in the direction of projection, and that of z
in the direction of the force, then '

¢=—§%:(ux+ wz)

2T =P (& +w),
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184 MOTION OF A SINGLE SOLID.

where P=M—pffdldS
=M+ wpa“f” cos’0 sin 8d0

= M43,

where M’ is the mass of the liquid displaced. Therefore
2T = (M + M) (&*+ &)

and Lagrange’s equations give

ddT_ . ddT _
dide” " dtdz

Integrating we obtain

(M + § M) = const = (M + 4y M) V

whence Z=V i (6),
and (M+3M)e =12
hence M y3Myz=5Z8 v iiiriiiennne. (7).

Since # remains coustant and equal to its initial value, it
follows that if a sphere which is acted upon by no forces, is pro-
jected in any direction with given velocity, it will continue to
move along that direction with the velocity of projection. The
same result can also be shown to be true in the case of any solid
which is symmetrical about an axis, and which is projected
parallel te that axis. This however is altogether contrary to ex-
pericnee, and the reason of this discrepaney between theory and
observation is, that we have assumed the liquid to be frictionless,
whereas all liquids with which we are acquainted are more or less
viscous. The viscosity gives rise to a retarding force by which the
solid and liquid are gradually reduced to rest, and the kinetic
energy is converted into heat.

The motion of a spliere in a viscous liquid will be considered in
the second volume.

Equation (7) shows that the only effect of the liquid is to pro-
duce an appareunt increase in the inertia of the sphere, whose
amount 1s equal to half the mass of the liquid displaced.

When the sphere is moving under the action of gravity
Z=(M- M)g; therefore
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Hence the sphere will describe a parabola in the liquid with
vertical acceleration g (o — p)/(o + p) .

183. TIn the preccding investigation we have assumed that the
liquid always remains in contact with the sphere; but it may
happen that the pressure becomes negative at some point of the
sphere, in which case a hollow would be formed in the liquid.

If the sphere is moving with constant velocity V in a straight
line,

¢__Vax

also since the origin to which ¢ is referred is in motion with

velocity V,

p_I, pdé_ .
o= pVanTH
I

==+ V*(Qcos’d — })
p

where TI is the pressure at infinity. Hence if
II < 3V,

p will becorme negative when 6 lies between a and 7 — 2, where
a < }m, and a belt of liquid will be thrown off and violently dis-
turbed motion will ensue. For a discussion of the subsequent
motion, see a paper by Sir W. Thomson, Phil. Mag., March, 1887.

184. A sphere of radius a and mass M is contained within a
Siwed concentric sphere of radius c, aned the intervening space s filled
with liquid of density p which ds inttially af rest. If an impulse 1
be applied to the inner sphere, prove that its initial velocity w s
equal to

I {Zl[+ 2mwpa® (¢* + 2a3)}"‘-
3 (c*—
Let ¢ = < +Br> cos 6.
Then d.¢ =w cos 6 when r=aq,
de -
Ir =0 whenr =c.

Greenhill, Mathematical Tripos, 1877,
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3.3 3
4w __ wa
Therefore 2(c —a’)’ P
wa® (¢
and b =— i (;2;4 + 7') cus 6.
Now if p be the impulsive pressure on inner sphere p = — p¢,

therefore
Mw =1+ p[f$ cos 8dS

mpwa’® (¢® + 2a%)
i S A
¢ —a

fr cos’@ sin 0d8

27pa’ (¢° + 2a°) w

=I- 3(c—a)

Motion of a Cylinder.

185. When a right circular cylinder is projected in an infinite
liquid which is at rest, and no forces are in action, it will move
(as will presently be shown) in a straight line with uniform velocity,
and the only effect of the liquid will be to produce an apparent
increase in the inertia of the cylinder, which is equal to the mass of
the liquid displaced. There is however an important difference
between the motion of a cylinder and of a sphere, since the space
outside a cylinder is a doubly connected space, and hence circula-
tion round the cylinder is possible.

We shall therefore consider the problem in its most general
aspect’.

Let a be the radius of the cylinder, (7, 8) the polar coordinates
of any point referred to its centre; (2, y) the coordinates of the
same point referred to fized axcs, (2, B) the coordinates of the
centre of the cylinder, (u, v) its component velocities referred to
the fized axes; k the circulation. Then

a? . x0
¢>=—7 (ucost9+'usm0)+%

__pule—at+oly -8 « . y—B8
¢ ( —a)'+ (y — B) +Wrtan z—a’

1 Lord Rayleigh, ** On the irregular flight of a tennis ball,”” Mess. Math., vol. vir.
p. 14; Greenhill, ** Note on previous paper,” Mess. Math., vol. 1x. p. 113.
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Now a4 =u, B=mu,

whence we easily find
. a. al o e 207 .
¢——;(1tcos€+vbm9)+r,(u + ) 2 (wcos 8 +vsin 8)

+ (u sin 8 — v cos 6)

,K,,
Qmrr
and therefore when r =g
¢ =—a (ucos @+ isin )+ u® +v* — 2 (u cos § +wsin 4)°

+g a(usme-f-vcosﬂ)
‘ . dd) 1 dd\?
Also q'= < ) ¥ dﬂ)

Thercfore when r =a
IC2 X .
q'= P +;L(usm€—vcos€}+u”+v“.

Tat

If gravity be the only force in action, and the axis of y be
drawn vertically upwards, the pressure 1s determined by the
equation

P g(icosd s B+ 4+ (wsinb—u
0 a(u0056+1,51n9)+2(u+v)+87m2+7m(usm0 © cos ),
— 2 (ucos 8+ vsin 8)° + g (3 + a sin 8) = const.

Let X, Y be the forces parallel to the axes due to the pressure,
then

va d 2
X = —f ap cos 8d9, Y= —j up sin 86,
[} ]

whence omitting the terms which are independent of 8, and which
therefore vanish when integrated round the cirele, we obtain

[ 2r
X=apj {7% (wsin 6 —v cos 8) — a (4 cos 6 + v sin 6)
—2(ucos 8 4+ vsin 8)* + ga sin 0} cos 68d6,

= — kP — AP e, (8).
Similarly Y =kpu—ma'pt + mgpa® ..o, (9.

Hence if o be the density of the eylinder, the equations of
motion are

moa'u = X, woa’y = ¥ — woga’

IRIS - LILLIAD - Université Lille 1


file://-/-irgpa2

188 MOTION OF A SINGLE SOLID,

which by (8) and (9) become

(p—i—a’)d—{»-%U:O
: ............ (10).
(p+o)@—wg,u+(«r—p)g=0j

We draw the following conclusions from (10),

(i) Let x=0, g =0. Iun this case the acceleration vanishes
and the velocity is constant. Hence if the eylinder is projected
with any velocity, it will continue to move along the direction of
projection with this velocity, and the only effect of the liquid will
be to produce an apparcnt incrcase in the inertia of the cylinder
which 1s equal to the mass of the liquid displaced.

(i) Let x = 0. In this case the horizontal velocity is constant,
and the cylinder will describe a parabola with vertical acceleration
g(e—p)/(e+p)

(ii1) Let g = 0: and let the initial velocity be parallel to y
and equal to V. Putting «p/ma®(p + o) = A, and integrating (10)

we obtain,
u=— Vsin At v =V cos AL,

a= VA7 cos A\, B= VA 'sinAt
If thercfore the cylinder is projected with velocity ¥ in any
direction, and no external forces are in action, it will describe a
circle in the same direction as that of the cyclic motion.

(iv) When neither g nor « are zero, the integrals of (10) are

w= (0-pg _ V'sin A, v = VcosAt,

(@+p)™
_(a=p)gt ¥ Vg
a_(g-+p)7\,+)\,COSXt’ B—KsmM,

and therefore the eylinder describes a trochoid moving from right
to left with mean velocity {o — p) g/(c + p) A

186. The preceding results may also be obtained by Lagrange’s
equations ; for with the notation of § 178,
T =imd’ (p + o) (¢ +¥°),
also if (7', 8') be current coordinates

X = 2% log {(# cos & — z)* + (+' sin ' — y)n}b

« , . K . -
:_27_"—_logr +277;,(ch59 + y sin 6),

whence A =—rax)2m, B =-—xy/2n.
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Takiug for a moment the origin at the centre of the cylinder,

the value of {D, is
o P dx . .
= .U- ar " drd8

K
:é;ffrobda

= lx (¢ —a’),
whence {0, is constant, and the value of L is
L= yma* (& +57) + o (ay — o),

whence equations (10) at once follow.

187. Let us now suppose that the cross section of the cylinder
is any curve, which does not possess cusps projecting into the
liquid’, and that there is no circulation. The kinetic energy will
be a homogeneous quadratic function of the velocities ¥, v, », and
by changing the directions of the axes we can make the term ww
disappear. We shall however for simplicity confine ourselves to
the case in which the cross section is a curve (such as an ellipse),
which is symmetrical with respect to two perpendicular straight
lines through its centre of inertia. In this case all the products
will disappear, and

QT = Pu + Qv 4+ A’ oo (11).

Let the liquid be initially at rest, and let the solid be set in
motion by means of an impulse #. This impulse is equivalent to
a linear impulse F applied at the centre of inertia of the cylinder,
together with a couple about its axis. Let Q be the initial
angular velocity due to the couple, B the angle which the direction
of the impulse & makes with the initial direction of .

If 8 be the valuc of this angle at any subsequent time, the
Principle of Conservation of Linear Momentum gives,

Pu=Fcos0, Qu=—Fsin6.
Substituting in (11) we obtain

9 s .2 R 2 T2
Fe (“%9 + Sig—e) A= (90%3 + S‘% ‘?) + A"

; , 1 1y, . .
or AP =AQ* 4 F* (F - Q’) (sin* @ — sin*B) ...... (12).
1 (ireenhill, *“ On the motion of a cylinder through a frictionless liquid under no
forces,” Mess. Math., vol. 1x. p. 117.

IRIS - LILLIAD - Université Lille 1



190 MOTION OF A SINGLE SOLID.

Let Q> P; thenif

D <FsinfB \/APQ

6 will vanish, and the cylinder will oscillate ; but if

Q-—r

APQ

§ will never vanish, and the cylinder will make a complete
revolution.

Q>FsinB

Case I. When the cylinder oscillates, (12) may be written
G=T./8in" 0 —8I0% & ceveeereiniee e, (13),
where I=F.J(Q—-P)/APQ, IP’sin*B— 0= I*sin’*a.

Equation (13) shows that 8 can never be < 2 nor > 7 — a through-
out the motion, hence the axis of least effective inertia (ie. the
longest diameter of the cross section) will oscillate between the
angles & and 7 —a. The cylinder will therefore move so that
its flattest side tends to turn itself towards the direction of
motion.

Let cos = cos a sin ¢,

then (13) becomes

_* dé
1t __/;,, V(1 — cos®asin® )’
and therefore cosf=cosasn(K+1It) .....ooinnn (14,

and the period of oscillation is 4K/1.

Let (z, y) be the coordinates of the centre of inertia of the
eross section referred to fixed axes, then

Z=ucos@—vsinb, y=usnb +wvcosb,

whence g+ F(l’_ Q) cos’ B ]I

g = F(P Q)smﬁcosﬂJ>

These equations show that the centre of inertia of the cross
section of the cylinder moves along a straight line parallel to the
direction of F with uniform velocity F/Q), superimposed upon
which is a variable periodic velocity, and at the same time vibrates
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perpendicularly to this line. This kind of motion frequently
occurs in hydrodynamics, and a body moving in such a manner is
called by Thomson and Tait a Quadrantal Pendwlum®

Substituting the value of 8 from (14) in terms of ¢ in (15), and
integrating, we shall obtain the values of # and y in terms of ¢,
and the equation of the path will be obtained by eliminating ¢
from the resulting equations.

Case II. When the cylinder makes a complete revolution, let

AQ’—}-F“(})—%)cos’ﬁzé?(%-—%) ,
then it is easily seen that £ < 1, and (12) becomes,
6:%(1 — k® cos® Gy
whence cos 8 =sn (K — It/k),
choosing the constant so that @ vanishes with ¢ Hence the
solution can be continued as before.

Case III.  This is the limiting case between L and IL

Here A0 = F? (P - Q) sin® 8,

and therefore f=17Isin @
It =log tan 16.

Therefore gz ‘;‘,4 cos B,
y= I;% sin 6,
de ¥

14 .
d9= FIco%ccH—T sin 8,

Al

T = PFIIOg tan 16 + %é cos §.

Putting TA/ P« ¢, and eliminating 6 we obtain the equation of
the path, viz.

F
T =
I)Il C+ /c +'\/C—

1
Natural Philosophy, vol. 1. part 1. §322,
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Fra. 1
Fie, 2.
Fia. 3. =
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MOTION OF AN ELLIPSOID. 193

The curves described by the centre of inertia of the cylinder
in the three cases, have been traced by Greenhill and are shown in
the figures 1, 2, 3 of the accompanying diagram.

If the cylinder is projected parallel to the longest diameter of
its cross section and be slightly displaced, it appears from (12) that
its motion will be the same as that considered in Case III.

The values of P, @, A for an elliptic eylinder are,

P=M(1+£€),Q=M(I+Z—Z),

_ 2 2 P@f_be)?
A_iM{a+b+ doab |

whenee @ < P,

188, If the cross section is a curve such as a cardioid, which
1s symmetrical with respect to only one straight line through its
centre of inertia, which we shall take as the direction of w, the
kinetic energy will be

27 = Pu'+ Qv* + Aw® + 2 Loy,

and if we transfer the origin to a point on the axis of y whose dis-
tance from the origin is — L/ P, the kinetic energy will be

9T = Pl + Qi + (A _ %) o

and the previous results apply.

Motion of an Ellipsoid’.

189. If a solid which is symmectrical with respect to three
planes through its centre of inertia, which are mutually at right
angles, is set in motion along one of its principal axes, and there
are no forces in action, it will continue to move along that direction
with uniform velocity. Similarly if it be set in rotation about a
principal axis, it will continue to rotate about that axis with
uniform angular velocity, provided the solid does not contain any
apertures through which circulation takes place.

1 Greenhill, *Fluid motion between confocal elliptic cylinders and confocal
ellipsoids,” Quart. Journ., vol. xv1. p. 227,

B, 13
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Let us now suppose that the solid is set in motion by means of

an impulse F, whose direction 1s inclined at an angle a to the axis
OC of the solid.

£ A

If the axis of z coincides with the direction of the impulse,
and no forces are in action, the component momentum parallel to
z must be equal to ¥, and the components parallel to z and y
must be zero throughout the motion, whence

Pu=— Fgin 8 cos ¢,
Quv=Fsin 0 cos ¢,
Rw= Fcos 6.
Substituting these values of %, », w in (3) we obtain,

The motion is therefore the same as that of a rigid body
rotating about its centre of inertia, under the action of a system of
forces whose potential is

. cos’ sin’® cos’d
%F?{smzﬁ(T,d—)-i- ,Q‘i’) + 5 }

190. Let the solid be moving without rotation along one of its
principal axes which coincides with the direction of the axis of «,
and be slightly disturbed from its state of steady motion.

o7 = F* {singﬁ <(LOISJ¢ +

Let w=wu,+u" be the new velocity parallel to # after disturb-
ance. In the beginning of the disturbed motion, «', », &c. arc all
small quantities, and Kirchhoff’s equations give

Pi =0, Qv =— Puo, Ri= Puo,
A, =0, Bo,=(R—-P)uw, Co,=(DL—Q)up.
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Hence Qv + -IM u, v =0,
Rw + -B(P-C—vR/)u:w: O'

The motion will therefore be unstable unless P is greater than
either Q or R.

191. 'The only solid for which the quantities P, @, B, 4, B, C
have been determined is the ellipsoid.
From § 180 (2),
P=M-p [[¢$ 1dS,
A =1 —p [l (ny—mz)dS
Hence if we write

. ® I\
4'= 2”“b°fo (@ + AT+ )+ A
we obtain from § 147

P:M-pﬁffl”l ds,

"— 47
A'p
_M_A,_%ﬂfdxdydz,
MA
=M 4

by § 7 (9), where M is the mass of the liquid displaced. Similarly
A-I, =3 M+ ) — pa [[yz (ny — mz) dS,
— M+ &) - pa [ (5 — 2) dodyds,
M- (- B)
— 1 2 2 . _ .
E{M(” T e =+ B -0 B+ )
Since C'> B > A", it follows that B> @ > P, whence in the

casc of the ellipsoid the least axis is the only direction of stable
motion.

192. When the motion is such that two of the axes always
remain in a plane, the equations of motion can be integrated ; for
if these axes be the directions of 4 and #, we have w=0, w, =0,
w,=0, and

2T = P’ + Qv* + Co ',
the kinetic energy is therefore of the same form as in the case
of the cylinder considered in § 187.

13—2
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Under the same circumstances, when the solid is symmetrical
with respect to two perpendicular planes through its centre of
inertia, the kinetic energy is of the form

2T =P0 + Q¥+ dw, + 2Luw,,

which is reducible to the previous form.

On the Motion of a Solid of Revolution'.

193. In considering the motion of a solid of revolution, it will
be convenient to discuss the case of a ring through whose aperture
there 1s circulation. If in our results we put « =0, we shall
obtain the motion of any solid of revelution ring shaped or not
when there is no circulation.

Let G be the centre of inertia of a plane curve S, OZ any
fixed straight line lying in the plane of S, and let OG be per-
pendicular to OZ We shall assume S to be symmetrical with
respect to OG, but otherwise it may be of any form, provided
there are no singular points capable of giving rise to sharp edges;
and the ring will be supposed to be gencrated by the revolution of
S about OZ Then O will be the centre of inertia of the ring, OZ
its axis of unequal moment, which will be called the azis of the
ring; and the circle described by G will be called the circular axis
of the ring.

Let the ring be introduced into an infinite liquid which
is at rest, and held fixed; let the circular aperture be closed up
by means of a plane diaphragm, whose area is ¢; and let cyclic
irrotational motion be generated by applying to every point of this
diaphragm a uniform impulsive pressure xp, where p is the density
of the liquid, and then let the diaphragm be removed.

The velocity potential of this cyclic motion will be
b=x{,
where Q is a monocyclic function whose cyclic constant Is unity,

and x is the circulation, round any closed circuit, which embraces
the ring once only.

The resultant momentum of the cyclic motion will be parallel

1 Proc. Camb. Phil. Soc., vol. v1. p. 47.
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to the directlon of the impulsive pressure on the diaphragm, and
equal to % ; and the energy to 3 K«*, where

L = kpo — kp[[OndS,
dQ
dy

and n is the z-direction cosine of the normal to the ring drawn
outwards, and dS an element of its surface.

K=p do,

If the ring be set in motion, the kinctic energy and momentum
of the ring and liquid will be determined by the equations

2T=P+v)+ Lw'+ A (0} + ) +Col+ Ke'...... (17),
E=Pu, n=DBv, (=Rw+%)
r=Aw, p=Adeo, v=~Co,

Since the liquid 1s incapable of producing a couple about the
axis of the ring, w,=const. =w throughout the motion.

Hence, if the ring be let go after the cyclic motion has been
generated, it will remain at rest ; for the only possible motion will
be in the direction of its axis, and consequently

27 = Ruf + Cw® + Kx*=1ts initial value,

therefore w=0.

194. Let the ring be set in motion by means of an impulsive
couple G about any diameter OB of its circular axis.

Z
c

LN
}

A

The axis OC of the ring will evidently move in a fixed plane,
which 1s perpendicular to the axis of the couple. Let 6 be the
inclination of OC to OZ at time ¢; », w the velocitics of O along

OA and OC.

IRIS - LILLIAD - Université Lille 1



198 MOTION OF A SINGLE SOLID.

The principle of Conservation of Linear Momentom gives,
— Esin 6+ L cos 8=,
Ecos B+ &sind =0,
whence Pu=—55sin 8
Bw=—% (1 — cos 6)}

If 2, 2 be the velocities of O along and perpendicular to 0Z,
then
&=1wucos 8+ wsin B,
Z=wcos 8§ —usin b
Therefore

a‘c_%<R P)smﬂcos{?—%sin()

=%+%(}€——115> cosW—%cosHJ ........

Also 97 =Pu* + Bw* + A9 + K«* = const.

Substituting the values of % and w from (19) we obtain,

= Aw® ~ L2 (P R)+g%2(msg+zﬂ (—————) cos®f...(21)

P R
=1 (0) say,
wherc o is the initial valuc of 6.

The character of the motion depends upon the roots of the
equation () = 0, which we shall now consider.

s e ob)

=00

The roots are

cos 8=

Case . Let R>P.

In order that the roots may be real, we must have

R
m(%«/ZP*(R——_P).
If this condition be satisfied, one root will be positive and <1,
and the other will be negative and less than — 1. Hence 6 will

vanish when @ has some value 8 lying between 0 and 4, and the
ring will oscillate between the angles 8 and — 8.
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. R
But if w>%,\/m

both roots will be imaginary, and 8 will never vanish. Hence the
ring will make a complete revolution.

Case II. Let P> R.

In this case both roots are real, and one of them is positive and
<1 provided w is sufficiently small; but if w is sufficiently large
both roots will be negative and <—1. In order that one root
should not be < —1, it is necessary that

w< 22
JAR'
If this condition be satisfied, the ring will oscillate between the
angles 8 and — 8, where 8 lies between 0 and = ; but if
2%,
w > m ,

the ring will make a complete revolution.

195. In order to find the period of oscillation or revolution,
as the case may be, we must express 0 in terms of .
Case I. R>D.
(i) Let the roots be real and equal to p and — g, where
g>1>p>0.
Equation (21) may be written
6* = M? (cos 8 — p)(cos 8 + q),

where M= 21—]—:7% (R-1D).
Let cos 0= %ﬁ;ﬁ ,

where D= %}g .
Then dd = 2y D sin ddg

T+J)cos"¢ ?

(cos 0 —p)(cos 6+ ¢) = 8’:’}}%}4@ (1— & sin’ ¢),
pole=01-p)

where S+ )
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Therefore
2 d
Mdt = -
V(IL+p)(1+q) /{1~ ksin*@)’
therefore ¢ =am It
where I=IMJA+p) (A +9).
Therefore

1+p+(1—p)enlt’
and the period of a complete oscillation is 4K/ 7.

-— J— 2
COSH:MCH It

(ii) Let the roots be imaginary and equal to p + «¢q.

Then 6* = M? {(cos 0 — p) + ¢'}.
1-D+(1+D)ecos
Let cos 8 = ITDT@A—D)?STIJ
_ . 2yDdg
Then dg—],-f—l)-f-(l—l))cosq’)’

and
{(cosf—p)*+ "} {1+ D+ (1—=D)cosp}={1—-D—p(1+D)}*+¢*(1+ D)’
+2cos¢[(1—p)*+ o' = D" [(1+p) + g1 +[1+D~pA - D)
+q* (1 = D)7 cos® ¢

. . 1 -2 40
Hence, 1f D? = %ﬁﬁ;?g”

the coefficient of cos¢ will vanish; substituting this value of D,

we obtain,
a9 _ 1 de
Vi{cos 0—pl+ ¢} {A+p+@)V— 4P A~ sintg’
where B = % [1 + lg_p:: 7 - %:, .
{1 +p*+ ") — 4p°)
Heunce b=am ',
where =M1+ p*+¢) — 4p"’}* ;

and we finally obtain

. 1—py 4+ 1—col
tan ;9:{( - P) 9} L

Q4+p)P+q¢) 14cenlt’

aud the timc of a complete revolution is 4&/7".
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Case II. P> R.

In this case both roots are real, and one root is always negative
and numerically greater than unity.

(1) Let the roots be p and —¢q, where ¢>1>p>0. The
transformation is the same as in Case I. sub-case (1).

(ii) Let the roots be —p and — g, where g>1>p>0.

Then 6% = M* (cos 8 + p) (cos @ + q),
. _ L
where ME = APR (P—R).
In this case we employ the same transformation, but must put
D= 1+p ,
1-p
w__ D=1 _@-1-p

T1+g+D(@@-1) - 2(y-p)

(iii) et the roots be —p and — g, where g > p>1.

_1—-Dsin*¢
‘We must put cos 0 = 15 Dsin¢”
where D= _p-1 ,
p+1

o (p=Dlg—-1)
(p+D@g+D)
In order to obtain the path described by the centre of inertia

O of the ring, we must substitute the value of @ in terms of ¢ in
(20), and integrate the result.

‘We can however ascertain the character of the motion of O
without integrating (20). Kor differentiating (21) we obtain

.e ./2
Agz_% 51113—2’,"(%——»}13)511160036.
Therefore T = %,
and x= )%; (é — ).

Also the value of 2 may be written

z'=%— [%(%—;) c0s29+% COSG]-
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202 MOTION OF A SINGLE SOLID.

The term in square brackets has its greatest value when § =0,
in which casc #2=0; hence # can never become negative. The
motion of O is such that O moves along the initial direction of the
axis of the ring with a uniform velocity, superimposed upon which
i1s a variable periodic velocity; and at the same time vibrates
perpendicularly to this line.

196. Since the momentum due to the circulation alone is
always perpendicular to the plane of the ring, it follows that if a
ring initially at rest be set in motion by means of a couple about a
diameter, the direction of this momentum will be changed; and
the opposition which the liquid exerts against this action on the
part of the ring, will produce a couple tending to oppose the rotation
of the ring. Also, since the impressed couple can produce no effect
on the linear momentum of the system, it follows that the effect of
changing the direction of the momentum due to the circulation,
will be to cause the ring to move with a velocity of translation,
which gives rise to a linear component of momentum of the whole
system, such that the resultant of the latter and 5 (whose direction
has been changed) must be a momentum equal to %5, and whose
direction coineides with the original direction of %5.

197. 'We shall now investigate the stability of the motion of a
ring, which is moving parallel to its axis in the direction of the
cyclic motion.

When the motion is steady
¢ = Rw + % = const. =1y,
v =(Cw, = const. = 01,
E=n=A=pu=0.
In order to obtain the disturbed motion, we must have recourse

to Kirchhoff’s equations of motion; we shall also suppose that the

co-ordinate axes are fixed in the ring.
Putting for shortness
PGB =)
=yt —p

L

the equations of disturbed motion are,
Pi— PQv + yw, =0,
Py — yo, + PQu =0,
Ao, + Zv+ (C—a) Qw,=0,
Ao, —Zu—(C—a) Qw,=0.
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Putting u = w'e”, &c. the equation for determining p is,

Pp —PQ 0 ¥
PO Pp —y 0
0 Z Ap ©-4y0 |=9%
~-Z 0 —(C-4)Q Ap

or
APt P [QZAW/—F"{(C—A)2 + AN POY p* +{P (C—4)Q+ Zy}*=0.
If Zy is positive both values of p® are real and negative, and

the motion will be stable; but if Zy be negative, the motion will

be unstable unless
247y

2 5
Q >_P{(O—A)"+A“‘} .................. (22).
If & =0 the roots are
p==*: —Zl
— Al)l

and the criterion depends altogether on the sign of Zy. Now
ny = ry’z - .Pfyw.
(i) Hence if « and w are both positive, ¢ will be positive and
Zy >0 if R>P,
but if R < P, Zy will not be positive unless
Z>(P-Ryw
(i) If « is positive and w negative=—w', y=5— Ruw/';
hence if & > Rw', then Zy > 0; but if ¥ < Rw', Zy will not be

positive unless

(R=P)u > %,
which requires that R > P.
(i) If x =0 and £ is not zero,
Zy=R (R —P)u’

Hence if B> P the motion will be stable; but if B < P the
motion will be unstable unless

2AR (P — R)
\/ P{C—-Ap+ 4%}
198. Another kind of steady motion may be cbtained by sctting
the ring in motion by means of a couple G about a diameter of its

circular axis, and at the same time applying an impulse %5 in the
opposite direction to that of the cyelic motion,
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204 MOTION OF A SINGLE SOLID.

The effect of the latter impulse is to destroy the linear
momentum of the system, hence

£E=0, ¢=0.

N

Therefore u=0, w=-— 7

Kirchhoff’s 5th equation gives

u=const.= G =A8.

The motion of the ring is such that its centre of inertia O,
describes a circle about a fixed axis parallel to the axis of the
couple, through which the plane of the ring always passes. If r
be the distance of O from this axis,

o w=re=C",
R-YTTT 40
AS
therefore T="po-
In order to determine the stability, we must put
§="Pu, n="Lv, = Iow,
A=Ao, p=G+A4o0, v =0,
b4
w=—7i+w, w2=—z+w2,

in Kirchhoff’s equations of motion, where the quantities u, v, &ec,
on the right-hand sides of these equations, are small quantities in
the beginning of the disturbed motion. Also, if the axes are fixed
in the ring,

b.-w, 6-C40, 6,-0,

1 1 A
and the equations of disturbed motion are
Pu+ RTG w=10,
Pyp=0,
R — % u=0,
. P
Awl + —7]:— U= 0,
sz

2

Ao —Tu=0.
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From the first and third equations we obtain
w=1 sin (Cﬁ + a>
= 1 ,
R’ Gt
u=-—7 cos (Z +a>.
The fifth equation gives
w,= L sin (G
' _@4
The second and fourth give
v = const.,

At + a) + const.

&

74
v, == 4p vt + const.

These equations show that the motion is stable for all displace-
ments which do not tend to remove the centre of inertia from the
plane of its motion; but the motioun is unstable for all displacements
which tend to produce this effect. If the disturbance is such that
v=0, the disturbed motion will still be stable, but the axis of
rotation will be shifted through a certain angle,

199. A third kind of steady motion, which is helicoidal, is
obtained by first communicating to the ring an arbitrary angular
velocity ) about its axis; secondly by applying an impulsive
couple @ about an axis inclined at an arbitrary aungle « to the axis
of the ring; and thirdly by applying a determinate impulse in the
plane of the aves of the ring and couple,

In order that steady motion may be possible, it i1s necessary
that » and therefore 9 should be zero throughout the motion., This

7z
\\F
C"
0
0 _
B\ L A

condition may be secured by means of an impulsive force whose
components in the direction of X and Z are — Z5sina, and P,

X
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206 MOTION OF A SINGLE SOLID.

The equations of momentum are
(Ecos @+ ¢sinf) cosyr —psindp=0,
(Ecos 8+ Esinf) sinyr + ncos =0,
—Esin @+ Leosb=F+ Hcosa;
whence
E=— (F'+ %5 cos2) sin
=0 . (23).
¢=(F+ Z5cosa) cos
Since the components of momentum parallel to the axes of X
and Y (which are fixed in direction, but not in position because 0

1s in motion) are zero throughout the motion, the angular momen-
tum about OZ is constant, whence

—Aew,sinf+ CQcos =G+ CQcos a......... (24).
The equation of energy gives
Pu*+ Ru + A (0, + 6%) = const,,
putting Z = F + % cos a, this becomes

Z*sin® 0 + {Z cos @ — Z)° + {G+ CQ (cos a — cos §)}*
P i A sin* @
+ A6 = const. = its initial value............... (25).

This equation determines the inclination 8 of the axis.
200. So far our equations have been perfectly gencral, we
shall now introduce the conditions of steady motion. These are
0=a, dr=p, H=6=0....cc....... (26),

whence (24) becomes

Differentiating (25) with respect to ¢, and using (26) and (27),
we obtain

Apfeosa— CQu -+ (% —%) Z? cosa — %%: 0...(28).

In order that steady motion may be possible, we must have

C*OV'>4ZA cosa l:<—1 - l) Z cosa —%:’ ......... (29).

Hence, if B> P steady motion will always be possible, but if
P> R, steady motion will be impossible unless the condition (29)
is satisfied.
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If z, y, z be the co-ordinates of O, we have
, . 1 1 Z,
&= (ucos B +wsin @) cos 4r = { (R P) cosz — f} sin a cos ut,

g]=(ucos9+wsin())sinx[r={ (; R)cc)sa %}sinasin,u.t,

,_ - o p(sin’a  cos'a) Zicosa
z-—wcos&—usmﬂ_z( 2 +fRﬁ>_~R_,

whence the centre of inertia describes the helix

—I{Z 1 1) ARE .
X = (R P cosa—ﬁ}smasmpt,

1 1 :
y=— ;{Z(ﬁ—j,)cosa—%} sin a cos uf,

= (P ) - E

This last result may be at once obtained from the fact that the
impulse of the motion must consist of wrench about a fixed axis®,

201. To cxamine the stability differentiate (25) with respect
to £, we thus obtain

A6+ f(8)=0.

Hence the motion will be stable or unstable according as f” («)
is positive or negative.

Now

I T SO Y
FO)=42*(— ;) sin20 + =200

cQ
s 0{G+Cﬂ(cosa—0089)} o 6 {G+Cﬂ(cosa—cos 6
therefore
r=f ()= Ap’ (1 +2cos*a)

cQ
—-3CQucosa+ T —Z2<R P)cos21+—ZI%cosa.

Eliminating ) by means of (28) we obtain

] 11 :
AP’ =A% +A#Z{Z(R—P)(1—30052a)+2—%Cosa}

£

7)1
+ 737 ) cos z — .
R P R
1 An elementary demonstration of the results of this article when there is
no circulation, has been given by Greenhill ; Quart. Jour., vol. xvir. p. 86.
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208 MOTION OF A SINGLE SOLID.

The condition that p* should be positive is easily found to be
that
25 1 Iy, 25 1 1y
{7{ +7 (R_P> (1 —3005&)}{ B Z(R_l_’/ (1+300sa)}
should be positive.

If there is no circulation %5 =0, Z = ¥, whence the condition
becomes
T2 1 1 2
k (R_7’>(9005 a—1)>0,
which requires that a should lie between cos™ § aud 0, or between
7 ~cos '} and .

The azimuthal motion of a solid of revolution when there is no
circulation, has been worked out by Prof. Greenhill in the Quart.
Jour., vol. XVI. pp. 247—254; and another investigation by him
by means of Weilerstrass’'s Functions will be found in the
Appendix.

General Motion of a Solid.

202, Having discussed the preceding special cases of motion
we shall pass on to discuss certain general theorems relating to
the motion of a single solid.

If the form of the solid is similar to that of a two bladed screw
propeller of a ship, which is symmetrical when turned through two
right angles about the axis of 2z, the kinetic energy must be
unaltered when the signs of w, v, @, w, are all changed, whence
T=Pi+ Q'+ R+ 2R w+ Ao+ Bojl+ Co’+ 200w,

+ 20, (Lu+ Mv) + 2w, (L'u+ M'v)+ 2N 0 w...... (30).

If the solid resembles a four bladed screw propeller which is
symmetrical when turned through any multiple of a right angle,
the kinetic energy must be unaltered when —wv, 4, —w
written for %, », w,, w, respectively, whence
2T=P@ +v")+ R+ A (0 + )+ Co.]

+2L (wu+ o)+ 2M (wp — ou)+ 2N o w...... (31).

g @, are

In this expression the term ww — w,u can be got rid of by
moving the origin along the axis of 2.
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If the solid is symmetrical with respect to itself when the axes
of z and y are turned through any given angle a in either direction,
it can be shown that if (1) be transformed by putting

uw=1u cos @ —v'sin @, w; =, cos f —w, sin G,
v=1u sin 8+ v cos 8, w,=w,'sin 0 + w, cos 6,

the condition that the transformed expression for I’ should be
unaltered when @ is put equal to a or — g, is that 7' must be of the
form (31).

This kind of symmetry is called helicoidal symmetry.

Let us now suppose that there isanother axis situated anywhere,
with respect to which the solid possesses helicoidal symmetry.
Sinee the form of (31) is not affected by turning the axes of zand y
through any angle, we may suppose them placed so that the other
uxis of helicoidal symmetry lies in the plane zz. Turning the
axes of # and 2z round that of y through a certain angle ¢, the
new axis of z will be the axis of helicoldal symmetry, and the
expression for the encrgy will be of the form (31) but with the axes
of z and 2 Interchanged ; whence

2T=P W+ v+ uw)+ A (o’ + 0+ 0,)
+ 2L (uw, + v, + wo,)...... (32).

A solid of this kind is called by Sir W. Thomson an isotropic
helicoid™.

203. When a solid is set in motion along a given direction, 1t
will not in general continue to move along that direction : similarly,
if the solid be set in rotation about a given axis, it will not in general
continue to rotate about that axis. We shall howcver show that
there are always three directions mutually at right angles, such
that if the solid is set in motion along any one of them without
rotation and then left to itself, it will continue to move along this
direction with uniform velocity.

Whea there are no impressed forces, Kirchhoff’s equations of
motion, § 167, are satisfied by putting w, = w,=w,=0, and u, v, w
all constant, and

14T _1d7T _1dT
wdu vdy wdw’
1 Proc. Roy. Scc. Edinburgh, vol. vii. p. 384. See aleo, Larmor, *“On
Hydrokinetic Symmetry,” Quart. Journ. vol. xx. p. 261.

B. 14
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210 . MOTION OF A SINGLE SOLID,

‘whence 2T = Pu*+ Q' + Ru* + 2Pvw + 2Q'wu + 2 R'uv,
Pu+Ro+Qw _Ru+Qu+Pw _Qu+ Pv+ Rw

u v w

and

These equations show that the resultant velocity must be
in the direction of one of the principal axes of the ellipsoid

Pa’ + Qy' + B+ 2P yz+ 2Q'zx + 2R zy = const,,

which proves the proposition.

204. It is shown in treatises on Statics that every system of
forces is reducible to a wrench; that is to say a single force, and
a couple whose axis coincides with the dircetion of the force. The
ratio of the couple to the force is called the pitch of the wrench.

Similarly the motion of every rigid body is reducible to a twist
about a certain screw; that is to say a velocity of translation
along a certain line which is called the axis of the screw, together
with a rotation about that axis. The ratio of the linear to the
angular velocity is called the pitch of the screw.

If in § 203 the axes of coordinates coincide with the three
directions of permancnt translation, the impulse is determined by

the equations

a7 dT
==t =g,

and therefore consists of a wrench of pitch L/P.

=Ly,

205. The above motlon is not the only permancnt steady
motion of which the solid is capable : for if the velocities and there-
fore the momenta are constant, Kirchhoff's first three equations
of motion give

E_n_£§_
o= o, =0 T (33),
and the last threc combined with these give
Mohw _p—te _w—hw_,o o (34)

@y @y 0y
Equation (33) expresses the condition that the axes of the screw
and wrench should be parallel, the condition that they should be
coincident is
Ao —Eu pw,—qv veo,— lw
e e el

which by (33) is cquivalent to (34).
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Hence there exists a simply infinite system of possible steady
motions, each of which consists of a twist about a certaln screw.

The pitches of the screw and the wrench are in general
different ; if & be that of the former and « that of the latter
, A+ pp4+ v wutorteow k
K = g ) = 5 2 =t
E+n'+ ¢ 0, +w, + @, h

whence k=h(x— k)
And the expression for the kinctic energy becomes
2T =Eu+mv+ tw 4+ Aw, + po, + o,
= (¢ + &) ho',
where w is the resultant angular velocity.

The values of b and % are not independent, for if the three
directions of permanent translation be chosen for the axcs of
coordinates, and we substitute in (33) and (34) the values of &, %, §
&c. obtained by putting P’, ', R’ equal to zero, we shall have the
following system of equations

(d=k) w + Cw,+Bo,+(L—k)u+ Mo+ Nw=0

&e. &e. as
(L—h) w1+Llwz+L”m3+Pu=0 ‘ ..(l )
&e. &e.

J

Substituting the values of «, », w from the last three equations
in the first three, it will be found that (85) are of the form

o, + 5o, +Bw,=ko,
Yo, + Bw, + dw, = ko,
Blo,+dw,+ o, = ko,
whence k is determined by the equation
a—k, v, 8
v, B—k o |=0.
A o, o—k
The roots of this equation are all real; hence to every value of
b there are three values of %k, which are all real; and the axes
of the three screws are mutually at right angles but do not in

general intersect.

14—2
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212 MOTION OF A SINGLE SOLID.

206. We shall now show that when the impulse of the motion
consists of a couple only, the motion of the solid consists of a
motion of translation combined with a motion of rotation, which is
the same as that of a certain ellipsoid which rolls upon a certain
moveable plane.

Taking the axes of permanent translation as the axes of
coordinates, we have £ = = { = 0 throughout the motion; hence

Pu+ Lo, + Lo, + L'o,=0 &e. &e.
Ao, + Cw,+ Bo,+ Lu+ Mo+ Nw=A &c &

If we eliminate u, v, w from the last three equations by means
of the first three, it will be found that

@ _d®  _de

Ao P Tde, VT dey
where
20 =Po+ Qo,"+ Beo; + 2P 0,0, + 200w, + 28w, w,...(30),
2 2 2
r_w_y &e., &e.,

v_g L MM NN,
%—A—T_»Q——‘Er&c"&c'

The equations of motion are
A=wpu—op & &covvereeienirieenne. (37).

In equations (37) let us change the directions of the axes
which are fixed in the body, so that they coincide with the principal
axes of the quadric

P=* + A+ W+ 2P yz + 202z + 2R 'zy = const.

If this be done, and the eguation of the quadric referred to

these axes 1s
az’ + Byt + 4zt =1,
we shall have
N=aw/, p=pw, V=yu,,
and (37) becomes
ao, — (B~7) o, v =0, &ec.

whence the motion of rotation is obtained by making the above
mentioned quadric roll on the plane

Az + py + vz = const,,

whose direction is fixed in space (since A, g, v are constant), with
an angular velocity proportional to the length O of the radius
vector drawn from the origin to the point of contact 1.
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The motion of translation is obtained by making the plane and
quadric move through space with a velocity whose components are
given by £=0,7=0, £=0.

The theorems of the last two articles are taken from a paper
by Prof. Lamb, Proc. Lond. Math. Soc. vol. VIIL p. 273.

EXAMPLES.

1. Apply Lagrange’s equations to determine the equations of
motion of an anchor ring ; and thence obtain the theorem that the
flux through the aperture relative to the ring, is the generalized
velocity corresponding to the product of the circulation and density
of the liquid.

2. If A and B be the forces required to act per unit of time, in
order to generate unit velocity perpendicular and parallel respec-
tively to the axis of an ellipsoid of revolution in an infinite liquid,
and if G be the couple required to act per unit of time in order to
generate unit angular velocity about an equatoreal axis, prove that
the kinetic energy of the ellipsoid and the liquid is

3 (du® + Av* + Bw® +- Gmf + ngg + Cw;)
with Euler’s notation, €' being the polar moment of inertia of the
solid.

Express T in terms of Lagrange’s coordinates o, y, 2, 0, ¢, ¥
and prove that if the axis of z be parallel to the impressed impulse
I, then

1
= F(A B) sin @ cos 6 cos 4,

J__F(A B) sin @ cos @ sin ),

é=F<51;110+00% 6)

Gyrsin® 0+ Co,cos 0 = E (a constant),

¢>+1p'0059—w

sin?d cos*d

+~BJ)=2T.

G9’+G\[r“sm 0+ Cowf +I”(
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3. In the midst of an infinite mass of liquid at rest, is a sphere
of radius @, which is suddenly strained into a spheroid of small
ellipticity. Find the kinetic encrgy due to the motion of the
liquid contained between the given surface, and an imaginary
concentric spherical surface of radius ¢; and show that if this
imaginary surface were a real bounding surface which could not
be deformed, the kinetic energy in this case would be to that in
the former case in the ratio

¢ (Ba® +26%) : 2(F —a’)%

4. A pendulum with an elliptic cylindrical cavity filled with
liquid, the gencrating lines of the cylinder being parallel to the
axis of suspension, performs finite oscillations under the action of
gravity. If [ be the length of the equivalent pendulum, and ¢ the
length when the liquid is solidified, prove that
L
TR (M4 m) (@ + b’
where J7 is the mass of the pendalum, m that of the liquid, A the

distance of the centre of gravity of the whole mass from the axis of
suspension, and a, b the semi-axes of the elliptic cavity.

Ur—1

5. Find the ratio of the kinetic energy of the infinite liquid
surrounding an oblate spheroid, moving with given velocity in its
equatoreal plane, to the kinetic energy of the spheroid ; and denot-
ing this ratio by P, prove that if the spheroid swing as the bob of
a pendulum under gravity, the distance between the axis of the
suspension and the axis of the spherold belng ¢, the length of the
simple equivalent pendulum is

(1+ P)ec+2a%/de
1— p/a‘
where a is the equatoreal radius, o and p the densitics of the
spheroid and liquid respectively.

6. A pendulum has a cavity excavated within it, and this
cavity is filled with liquid. Prove that if any part of the liquid
be solidified, the time of oscillation will be increased.

7. Prove that if a number of solids be moving freely under
their mutual attractions in an unbounded liquid, the impulse of
the motion remains constant. -
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8. The space between two infinitely long coaxial cylinders of
radii ¢ and b respectively, is filled with liquid of density p, and the
inner cylinder is suddenly moved with velocity U perpendicular to
the axis, the outer one being kept at rest. Show that the resultant
impulsive pressure on a length { of the inner cylinder is

b +a’

mpa*l U g

9. An elliptic cylindrical shell, the mass of which may be
neglected, is filled with water, and placed on a horizontal plane
very nearly in the position of unstable equilibrium with its axis
horizontal, and then let go. When it passes through the position
of stable equilibrium, find the angular velocity of the cylinder, (1)
when the horizontal plane is perfectly smooth, (i1) when it is
perfectly rough ; and prove that in these two cases, the squares of
the angular velocities of the cylinder are in the ratio

((LZ_ b2)2 + 4[12 (a‘z + b?) . (a2_ b?)i,
20 and 2b being the axes of the cross section of the eylinder,

10. A solid ellipsoid of density o is placed inside a fixed con-
centric, confocal, and similarly situated ellipsoidal shell, and the
space between them Is filled with liquid of deusity p. Supposing
that the whole matter attracts according to the Newtonian law,
and that ¢ > p, show that when the solid ellipsoid is slightly
displaced parallel to its greatest axis, the time 7' of a small
oscillation is given by
2pabe
Tplo=—p)Af2r=c+p- 3 —Zl')pf&’b’c’ @4y’
where a, b, ¢ and o/, b’, ¢’ are the semi-axes of the outer and inner
ellipsoids, and

Y . —
Jo {(@® + AP (B +0) (@ + )

11. The space between two coaxial cylinders is filled with
liquid, and the outer is surrounded by liquid, extending to infinity,
the whole being bounded by planes perpendicular to the axis. If
the inner cylinder be suddenly moved with given velocity, prove
that the velocity of the outer cylinder to that of the inner will be
in the ratio

26°% ¢ p (@D — o+ B+ D7) + o (a0 = ) (O — &%),
where ¢ and b are the external and internal radii of the outer
c¢ylinder, ¢ its density, ¢ the radius of the inner cylinder and p the
density of the liquid.
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12. The ellipsoid (z/a)* + (y/b)" + (z/c)" =1, s filled with liquid
originally at rest, and rotates uniformly about an axis through its
centre of inertia: prove that the surfaces of equal pressure are
given by the equation

(4,B,C 4, B, C)z y, 2’ =)\

where
4 _(@=a)(Bc+ ) o) (& -b)(BV +a”) e
- (c-) + az)z (az+ b-z)z ]
2.2 2 2 202 _ 94
A,=bc+ca + a’b ﬁamm’

and w,, w,, w, are the component angular velocities of the ellipsoid.

13. In the last example prove that if the ellipsoid be set in
rotation and then left to itsclf, the components of the velocity of
the liquid relatively to the ellipsoid are
i 200y 20°0,2

- az + bz az + Cz:
. Wer 2esr
Y= bt +’_ c? btaz ’
5o 2w, 2¢%w,y

T ct4at 4 b

and that if the ellipsoid revolves about a fixed axis after

2bcw, \* | (2c00,\" | [ 2abw,\?) "}
{<b2 + c“) + (C"ﬂ”) + (a" + b'é)

revolutions of the ellipsoid, every particle of liquid will be in the
same position relatively to the ellipsoid.

14. A closed vessel filled with liquid of density p, is moved in
any manner about a fixed point O. If at any time the liquid
were removed, and a pressure proportional to the velocity potential
were applied at every point of the surface, the resultant couple
due to the pressure would be of magnitude @, and its direction in
a line 0Q. Show that the kinetic energy of the liquid was pro-
portional to lpw( cosf, where o is the angular velocity of the
surface, and € the angle between the direction of @ and 0Q.

15. A solid cylinder of radius @ immersed in an infinite liquid,
is attached to an axis about which it can turn, whose distance
from the axis of the cylinder is ¢, and oscillates under the action
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of gravity. Prove that the length of the simple equivalent

pendulum is
3a*+ (1 +p/a)
c(1—p/o)

o and p being the densities of the cylinder and liquid.

16, A light cylindrical shell whose cross section is an ellipse
filled with water is placed at rest on a smooth horizontal plane in
its position of unstable equilibrium. If it is slightly disturbed,
prove that it will pass through its position of stable equilibrium
with angular velocity w, given by the equation

2 o? + b
Yy a b

17. A quantity of heavy heterogeneous liquid is placed inside
an cllipsoid, which is then moved so that the density of the liquid
is always the same function of the depth. Prove that a certain
cone coaxial and concyclic with the reciprocal ellipsoid, moves so
as always to have one of its generators vertical.

18. Liquid of density p is contained between two confocal
elliptic eylinders and two planes perpendicular to their axes. The
lengths of the semi-axes of the inner and outer cylinders are
ccosha, csinh a, ccosh B, csinh B respectively. Prove that if the
outer cylinder be made to rotate about its axis with angular
velocity €2, the inner c¢ylinder will begin to rotate with angular
velocity

0p cosech 2 (8 — )
pcoth2 (8 —a) + 1o sinh 42’

where ¢ is the density of the cylinder.

19, A circular cylinder of mass M, whose centre of inertia is
at a distance ¢ from its axis, is projected in an infinite liquid under
the action of gravity. Prove that the centre of inertia of the
cylinder and the displaced liquid will describe a parabola, while
the cylinder oscillates like a pendulum of length

{(M+ M) P+ M'¢*}2M e,
where M is the mass of the liquid displaced, and % is the radius
of gyration of the cylinder about its axis.

20. The space between two coaxial similar and similarly
situated elliptic cylinders is filled with liquid, and the cylinders
are rotating with uniform angular velocity @, Find what would
be the new angular velocity if the liquid were suddenly solidified.
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218 MOTION OF A SINGLE SOLID.

21. A hollow vessel of the form of an equilateral prism filled
with liquid, is struck excentrically by a given blow in a plane
perpendicular to the axis and bisecting three edges; find the
initial motion of the vessel.

22. A cylinder whose cross section is an ellipse is moving in
an infinite liquid. Prove that when there 1s circulation round the
cylinder, its equations of motion are

%(Pucos&—stinH-’rxpy):X,

ddt(Pu sin 8 + Qv cos 8 — xpx) = ¥,

220
0ln—(P-Qu=1,

where (, y) arc the coordinates of the centre of the cross scetion,
X, Y the components of the impressed forces parallel to fixed
axes, IV is the impressed couple about the axis of the cylinder, u, v
are the component velocities of the cylinder parallel to the major
and minor axes of its cross section, and # is the angle which the
major axis makes with the axis of 2.

23. Prove that helicoidal steady motion is always possible
when a planetary ellipsoid 1s moving in an infinite liquid ; but it
is not possible in the case of an ovary ellipsoid, unless the ratio of
the angular momentum of the ellipsoid about its polar axis, to its
component velocity along this axis is greater than .?JRAi(l\—iﬂ/Apj;
where R and P are the effective inertias of the ellipsoid about its
polar axis, and an equatoreal axis and 4 is its effective moment of
nertia about the latter axis.

24. A solid of revolution of mass M, is rotating in any
manner about its centre of inertia, in an infinite liquid. Prove
that if it is allowed to descend under the action of gravity, its
vertical velocity at time ¢ will be eqgual to

in*8 *A
@ -1 (%57 + %57 ) ot
where M’ is the mass of the liquid displaced; and @ is the
inclination of the axis of the solid to the vertical at time £.
Obtain the differential equation for determining dd/dt.

IRIS - LILLIAD - Université Lille 1



CHAPTER X

ON THE MOTION OF TWO CYLINDERS.

207. 'WE have shown in Chapter V. that, when two eylinders
arc moving in a liquid of denmsity p, the kinetic energy of the
whole motion is

T =(M+P) W+ ") + (M + Q) (v +v*) + 2L (uw' — ),
where M, M’ are the masses of the cylinders ; u, v, 4, %" their com-
ponent velocities perpendicular to and along the line joining their
centres. The values of the coefficients are given' by equations (73)

of § 123 or (74), (75) and (76) of § 124 ; and are functions of the
distance between the cylinders alone.

208. We shall now apply these formulae to the consideration
of the motion of a cylinder in a liquid bounded by a fixed plane,
when there 1s no circulation?

When two equal cylinders are projected with equal velocities
perpendicularly to the line joining their centres, it is clear that
during the subsequent motion, the velocities of each cylinder
perpendicular to this line will remain equal, and that their veloci-
ties parallel to this line will be equal and opposite. Hence the
plane which is perpendicular to this line and bisects it will be fixed
in space, and there will be no flux across 1t. Oue of the cylinders
may therefore be removed, and the above mentioned plane sub-
stituted in its place; we shall thus obtain the motion of a cylinder
in a liquid which 1s bounded by a rigid plane.

1 See Errata.

2 Hicks, *“ On the motion of two eylinders in & fluid,” Quart. Journ., vol. xv1,
p. 193,
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220 MOTION OF TWO CYLINDERS.

Let the axis of « lie in the plane, and be perpendicular to the
axis of the cylinder; the kinetic energy of the liquid will be ob-
tained by putting a =8, 6, =6, =,/g; w=1u/,v=— v in equations
(74), (75) and (76) of § 124 and halving the result. Hence if
a be the density of the cylinder, and a its radius

= {(P+ L)+ ma’a} (u* 4+ 2"

1 2 (1—q)’q¢" 2
where R =md’p 1+22(Tﬁ + md’e.
If no external forces act upon the system, the energy, and also
the momentum parallel to 2, are constant ; the latter condition gives

T
— = const. = @,

du
or Bu=G .iciiiiiiiiiiiiiiiin, (2).

Since 7 and G are both constant, the equations of motion may
now be written
Ru=4@4
v A DA o

Differentiating with respect to ¢ and remembering that R isa
function of y alone, we obtain

1 dR .
v-}-zR dy @P—u") =0 oo, (4).

Now R is necessarily positive; also ¥ =a cosh a = }a (1 + ¢)/¢?,
therefore & decreases as y increases ; hence d/dy is negative, and
thereforec v has always the same sign as +* —«". Let U be the
resultant velocity, ¢ the angle which its direction makes with the
axis of y, then

PdR
2R dy

If therefore the direction of motion makes with the axis of yan
angle lying between {mw and m, the acceleration from the plane
will be negative and the cylinder will be attracted towards the
plane, but if this angle lies between 0 and 17 or 7 and 7, the
acceleration will be positive, and the eylinder will be repelled from
the plane,

D= —

cos 2¢.

Also since u = G/R, and R decreases as y increases, # Increases
as the cylinder moves from the plane, and vice versi.

1 The value of P+ L in terms of elliptic functions will be given in the Appendix.
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CYLINDER MOVING PARALLEL TO A PLANE. 221
_rar_

21t dy a
the component accelerations are

u=fsin 2¢, = fcos 2¢.

If we put

209. If the cylinder be initially in contact with the plane,
and be projected perpendicularly from it, « =0, and

v=2T/R=2v'R /R,
where the suffixes denote the initial values of the quantities.
Since ¢ = 0 when y = @, the limiting value of Z is wa’ (p + o).

When y =a, ¢=1; in order to find the value of R, let g=1—-A,
where A is a small quantity which ultimately vanishes: then

1 1 1
Ro/'n'a,2=p {1-}- 2 (§2+§)+4? + ...)}+0’

—p (7 =D+ .
Whence the ratio of the initial to the terminal velocity 1s

3T+ (@ —p)
(e+p)

210. When the direction of projection is not perpendicular to
the plane, the direction of the velocity at any subsequent time is
given by the equation

cot p=v/u= iJRp—l,

where p=2T/G®, and the upper or lower sign must be taken
according as the initial value of ¢ Is < or > 4. Let cot ¢ be
initially positive, so that the cylinder is projected from the plane,
then since I diminishes to the limit wa® (p + o) it follows that if
wa'p (p+ @) < 1, there will be some point which is determined by
the equation Ep =1, at which cot ¢ = 0, and where the cylinder will
consequently be moving parallel to the plane. During the subse-
quent motion cot ¢ will be negative, and the cylinder will approach
the plane and R will increase. The quantity ~/Zp — 1 continually
increases as R increascs, and hence ¢ will increase from 47 and the
cylinder will ultimately strike the plane. Hence the cylinder will
or will not strike the plane according as wa’p (p + o) < or > 1.

If 7a’p (p + o) =1, and a be the initial value of ¢,
cot a = (R/ma*—p—a)/(p +o);
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222 MOTION OF TWO CYLINDERS.

whence a cylinder projected at an angle > « will meet the plane at
an angle

tan” {ma'p (4 + o —p) — 1},
and a cylinder projected at an angle < a will move, when at an
infinite distance from the plane in the direction

cot™ y/{ma'p (p + o) — 1}

If the direction of projection is equal to a, the cylinder when
at an Infinite distance will move parallel to the plane.

211. Let one of the cylinders be fixed whilst the other moves
independently.

Let (, 0) be polar coordinates of the centre of the moving

cylinder referred to the centre of the fixed cylinder as origin; if
B =P+ M; then )
2T = R (F* + 7°6"%).

Since R 1s independent of 8, we must have

— = const. = A,
dé
or Rr@=h.
Also since
dar_ar_,
& v~ dr =
we obtain
o 2 __ 1 dit -2 2 2
7 ~rld =~9R w(r — 0%,

Let U be the resultant velocity, ¢ the angle which its direction
makes with the radius vector; the radial acceleration
U dR
S="SRadr
Since £ decrcases as 7 increases dR/dr is negative; hence the
cylinder will be repelled when ¢ lies between 0 and }7 or between
3w and 7 ; and will be attracted if ¢ lies between {7 and }=.

cos 2¢.

212. If the eylinders be initially in contact, and one of them be
projected with velocity V along the line joining their centres, then

P =2T/R, V*=2I/R,.

# R, M+P,

Therefore R T
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If the cylinders are equal it can be shown in a similar manner
as before, that
P,=ma* (j" —1)p,

or P =ma’p,
whence T iTpto-p
V o+p ’

Cyclic Motion.

213. Let us now consider the motion of two equal cylinders
round which there is circulation in opposite directions, and which
are initially projected with equal velocitics parallel to O.

Let 4 and B be the common inverse points of the two cylinders,
a the radius of either of them, u, v and u, —v their veclocities
parallel and perpendicular to O, ¥ the ordinate of the centre of
the cylinder 4 ; also let the circulation round A be in the contrary
directions of the hands of a watch.

It is known from the theory of rectilinear vortices, which will
be explained in Vol. IL, that the cyclic motion is the same as

/]

¥

would be produced by two rectilinear vortices of circulations «
and — « situated at A and B, hence with the notation of § 178,
the value of  will be
X AP «n
X=" 97 %8 Bp = 2
by § 121
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224 MOTION OF TWO CYLINDERS.

Also, if a be the value of 5 at the surface of the cylinder 4,
and AB = 2c,

~

a=ccosechz, y=ccotha .................. (5),
and 3 (kx) = £*a/m.
Since this kind of eyclic motion could be produced by applying
a uniform impulsive pressure xp to every point of that portion of
AB which lies between the cylinders, we must have 39 =0. Let
(r, ) be the polar coordinates of F referred to O, then
K r+¢"—2rcsin § ke .
X" 4r 8 ¢+ 2osin 6w sinf +&e,
whence A =0 BW=—«c/m
Thercfore L=3 4 2kcpu — £’pa/2m+ V
Also if M, M’ be the masses per unit of length of either of the
cylinders, and of the liquid displaced,

T =R +°.
R=M {1+2(1 _gpny

qm
7 mmar + M
(1—¢"") } ’
where g=¢" %,
If we suppose the cylinder B to be replaced by the fixed plane
Oz which forms the boundary of the liquid, the value of L must

be halved, and the equations of motion of the cylinder 4 will be

d /., d¥
& (gf s xpc) I (6),
pddr_,d3 do & da_ (7).

Sdtds fdy POyt awdy™
From (5) we obtain

c=ay"—a* and y=acosha,

therefore dﬁ = coth a, dﬁ - 1 ,
dy dy ¢
whence (7) becomes
d d¥ d¥ ?
%%%—%@—xpucotha-f—l;;c:y' ......... (8)

Let us now suppose that gravity is the only force in action, and
that the plane boundary Oz is horizontal, forming, so to speak, the
bed of the occan; (6) and (8) respectively become

LRy + kpc=const. = 4
dR } ...... ©)
dy

Ri+ 4 (@ =) 5 = kpu coth a + ;‘—7% ——(M=-M)g
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These equations are satisfied by v=0, » and y constant, pro-
vided u satisfies the quadratic

pu’ — kpu coth a + £P 4 (M-MYg=0......... (10),
4erc
where p=—3dR/dy. The roots of this quadratic will be real
provided kp*coth®a > p {:rs +4(M-N) g} ............ (11).
CAske (i). Since p is positive the roots will always be real if
M>M
and wp <me (M — M)g.

In this case the liquid is denser than the cylinder, and one of
the roots of (10) will be positive and the other negative, and the
positive root will be numerically greater than the negative root,
Hence there will be two cases of steady motion, in one of which
velacity of the cylinder will be in the same direction as that of
the liquid, due to the circulation at points between the cylinder
and plane ; and in the other the velocity will be in the opposite
direction ; also the velocity in the former case will be greater than
in the latter.

Case (it). M >M Kp>dme (M —M)g.

In this case the roots of (10) will be both real and positive
provided (11) is satisfied; hence the velocity in the two cases of
steady motion will be in the same direction as that due to the cir-
culation,

CasE (iii). M>M.

In this case the cylinder is denser than the liquid, and the
roots of (10), if real, must be both positive, hence the two
velocities must be in the same dircction as that due to the cir-
culation,

CasE (iv). If either y=0 or M =M, (11) becomes

apc coth® a > p.

Here both roots of (10) are positive, and the two velocities
must be in the same direction ag that due to the circulation,

This case has been discussed by Mr W, M. Hicks'.

L Quart. Journ. vol. xvIr. p. 194,
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CASE (v). Suppose that the cylinder is reduced to rest, and then
let go. Since u and » are initially zero, the initial acceleration is
_ L

4Rmc

Hence if the liquid is denser than the cylinder it is possible
for the right-hand side to vaunish ; in which case the cylinder will
remain in equilibrium under the combined action of gravity
and the pressure due to the cyclic motion,

v =

{dme (M~ M) g + £°p}......... (12).

If the plane formed the upper boundary of the liquid the sign
of g in these five cases would have to be reversed.

215. The results of the last two cases may be inferred from
general reasoning.

We have shown in § 14, that the product of the velocity of a
liquid and the cross section of a tube of flow, is constant through-
out the length of the latter. Now in Case V. where the cylinder is
at rest, the tubes of flow arc circles, and those portions of them
which lie between the cylinder and the plane will be more com-
pressed than the portions which lie on the remote side of the
eylinder; hence the velocity of the liquid at points between the
cylinder and the plane will be on the whole greater than at points
which lie on the oppoesite side of the cylinder, and consequently
the pressure on the side of the cylinder nearest the planc will be
less than that on the rcmote side, and therefore the cylinder will
be attracted towards the plane. If the cylinder is less dense than
the liquid, and the plane forms the lower boundary of the liquid,
the effect of gravity will be to repel it from the plane, and hence
there must be a certain position in which the two forces balance
one another, and in which the cylinder will be in equilibrium.
If on the other hand the plane forms the upper boundary of the
liquid, there will be a position of equilibrium, provided the
cylinder is denser than the liquid.

216. In Case 1v. let the cylinder be moving with a small
velocity u parallel to the plane, and in the same direction as that
of the circulation between the cylinder and the plane. ILet the
cylinder be reduced to rest by impressing on the whole liquid a
velocity w equal and opposite to that of the cylinder. At points
between the cylinder and the plane, the reversed velocity » of the
liquid and the velocity due to the circulation will be in opposite
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directions, whilst at points on the other side of the cylinder they
will be in the same direction. Also by § 14 each velocity will
be on the whole greater at points between the cylinder and plane,
than on the opposite side of the cylinder. Hence if u be small
enough, the cylinder will be attracted towards the plane, and
therefore if « increase from zero, a certain critical value u, will be
reached, at which the cylinder is neither attracted nor repelled,
but will be in equilibrium. In this case the resultant velocity at
points between the cylinder and plane, will be in the oppostte direc-
teor to that on the other side of the cylinder.

If u continue to increase, the cylinder will at first be repelled
from the plane, but ultimately a second critical value u, will be
reached, at which the resultant of », and the velocity duc to the
circulation at points between the cylinder and the plane will on
the average be equal to the same quantity on the opposite side of
the cylinder, and there will be another position of equilibrium. In
this case the resultant velocity of the liquid at points between the
cylinder and the plane will be the same direction as that on the
other side of the cylinder.

If u excecds this sceond eritical value the cylinder will thence-
forth be attracted. The two critical values of u are evidently the
roots of the quadratic obtained by putting g =0 in (10).

EXAMPLES.

1. A cylinder of radius @ is surrounded by a concentric
eylinder of radius b, and the intervening space is filled with
liquid. The ioner cylinder is moved with velocity w and the
outer with velocity v along the same straight line; prove that the
velocity potential is

¢ = b——g)‘, ~Z,u rcos O + C-wab (b%)_a;i)*—‘ios f

2, A long cylinder of given radius is immersed in a mass of
liquid bounded by a very large cylindrical envelope. If the
envelope be suddenly moved in a direction perpendicular to the
eylinder with velocity V, the cylinder will begin to move with
velocity 3V, provided the density of the cylinder be three times
that of the liquid.

15—2
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228 MOTION OF TWO CYLINDERS.

3. Two infinite parallel cylinders in an infinite liquid are
projected with given velocity; (1) in opposite directions along a
line at right angles to their axes, (il) in the same direction por-
pendicular to this line. Prove that they experience in the first
instance a repulsion from one another, and in the second instance
an attraction towards onc another.

If their radii are indefinitely small in comparison with one
another, prove that their motion is initially the same as that of
two rectilinear vortices of equal and opposite strengths.

4. A solid cylinder with flat ends is fixed between two parallel
planes, and a eylindrical shell of the same length can slide freely
between the planes. If the space between the cylinder and shell
1s filled with liquid, and the shell is placed so as to be coaxial
with the cylinder and then jerked in any direction with velocity
V, prove that the resultant impulse on the cylinder is

2MVE (a® —bY),
where @ and b are the radii of the cylinder and shell, and M is the
mass of the liquid which the cylinder displaces.

5. The space between a moveable cylinder and a fixed excentric
cylinder is filled with liquid. If the moveable cylinder be initially
projected with given velocity, perpendicular to the line joining its
centre with that of the fixed cylindrical boundary, determine its
motion, (i) when there is no circulation, (ii) when there is circu-
lation.

6. Examine the stability of the stcady motion of a cylinder
parallel to a fixed plane, discussed in § 214.

IRIS - LILLIAD - Université Lille 1



CHAPTER XI.
ON THE MOTION OF TWO SPHERES.

217. 'WHEN two spheres are in motion In an infinite liquid,
the velocity of cach sphcre may be resolved into three components
u, v, W U, ¥, w, where u, u, are the component velocities of
the spheres along the line joining their centres; and v, w, ; v, w,
are the component velocities parallel to two straight lines at right
angles to one another, which are perpendicular to the line joining
the centres of the two spheres. It would therefore at first sight
appear, that the kinetic energy of the liquid must contain twenty-
one terms, but it can easily be shown that twelve of these terms
must vanish. For let us suppose that ¢, w, u,, v, are each zero,
and consider the term involving ww,. The kinetic energy on

1 The present chapter has been taken from the following papers by Mr Hicka:

“On the Motion of Two Spheres in a Fluid,” Phil. Trans. 1880, p. 455.

“0On the Problem of Two Pulsating Spheres in a Fluid,” Proc. Camb. Phil, Soe.
vol. ur p. 277, and vol. 1v. p. 29 ;
and a paper by the author,

*0On the Motion of Two Spheres in & Liquid snd allied Problems,” Proc. Lond.
Math, Soc. vol. xviir, p. 369.

References may also be made to the following papers:

Stokes. “ On some Cases of Fluid Motion,” Trans. Camb. Phil. Soc. vol. vim.
p. 105.

Bjerknes. Forhand. Skand. Naturfors, Christiania 1868, and Forhand. Vidensk.,
Christiania 1871 and 1875,

G. Forbes, ‘ Hydrodynamic analogies to Electricity and Magnetism,” Nature, «
vol. xx1v. p. 360.

Bertin.  *Phénoménes Hydrodynamiques inversement analogues & ceux de
I'lectricité et du Magnétisme,"” Ann. de Chimie et de Phys. (5) 3xv, p. 257, 1882.

Pearson, ¢ On the Motion of Spherical and Ellipsoidal bodies in Fluid Media,”
Quart. Journ. vol. xx. p. 60.

Herman. **On the Motion of Two Spheres in a Fluid and allied Problems,”
Quart. Journ. vol. xx11. p. 204,
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account of the symmetry of the motion, must clearly be unaltered
if the direction of w, be reversed, and this requires that the
coefficient of u,w, should be zero. By similar reasoning it can be
shown that all the other cocfficients must vanish, except those
of uf, wt v} v}, w' w', uu, vy, ww,; and also that the co-
efficients of ¢, ¢, vy, must be respectively equal to those of
w?, wr, waw,.
Hence the kinetic energy of the system may be written

T=}% (4w’ — 2Buu, + Cuf)y+ 1 A" (v*+wf)

+ B (v, + ww,) + 3C (0,7 + w,’),
where the six coefficients are functions of the distance between
the centres of the two spheres and their radii.

The values of 4, B and ¢ must be determined by supposing
that the motion of the spheres is along the line joining their
centres, and those of A’, B, (' by supposing that the motion is
perpendicular to this line.

Motion along the Line of Centres.

218. Let A and B be the centres of the spheres, a and b their
radiy, ¢ the distanee between their centres.

Let ¢, be the velocity potential when A4 1is moving with
velocity u, along BA and D is at rest; ¢, the vclocity potential
when B is moving with velocity w, along the same dircction and
4 is at rest. By § 162 the velocity potential of the whole motion
is ¢, + ¢,, and the kinetic energy of the liquid is

T=—tp [[6. 5 as—p [[5, % 5.~ 10 [0, Pras,
=T, +2T,+ 7T,

(1),
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In order to find the value of @ we shall employ the method of

images.

If B were absent, the velocity potential due to the motion of
4, would be the same as that of a positive doublet' at 4 of
strength 3w, whose axis coincides with BA. By § 53 the
image of this in B, is a negative doublet situated at the inverse
point I, where BF.BA =1 and whose strength is — u,a’b%/2¢",
This latter doublet will have an image in 4, and so on ad infi-
nitum, Hence the kinetic energy of the liquid due to the motion
of the sphere A4, will be the same as that due to two infinite
systems of doublets, both of which lie respectively within each
sphere.

219. Let p, be the distance of the nth image in 4 from A, u,
its strength ; and let o, be the distance of the nth image in B
from 4, v_ ils strength. The part of T, due to u, will be

p— f”;&" (acos § + p,)sin 6 cosg@ do
o (a'+p,* +2ap, cos )
! .+ azx) xdz
= 'n'pa?ulp,nf 79)7“2*)—& .
-1 (@' + p,* + 2ap,7)
But
f (r + az) zdz :_if xdz
@+t 4 2‘"-’«'),& dr)_, @+ + Q(M"m)é
d 1
= dr gor (@) (07— =)
1 (a—7r) (@’ + 7 +ar)l
When r=p_<a, the integral is equal to

d 2r 2

(i;' 3?= :‘3—(112 ........................ (2).
But when r =¢_, > ¢, it equals
d 2a 4a
g7 il ye BETITTITTTIRNPRPEITE 3).

a ao
— 9 8 B -3
Therefore T, = 2mwpu2; w, — Smpa’y,S, vo, ™
. — 8 — q -3
Now Ho=3%0a", p,=—adv o

1 A doublet iz considered positive when its source end is at the positive
extremity of its axis. If m be its strength, its velocity potential is —mr~2cos 4.
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Hence if M, be the mass of the liquid displaced by the
sphere 4,

T= M (1495 ) (4).

This is the kinetic energy due to the surface integral of A's
motion over itself.

Again,
Vg =— bsﬂ'"-—l/(c _pn-l)al Pn = a’/a-", c— o-n = b'l/(c - p"—l)' ‘ '(5)’

R N
g:zs (G - Pn—1)3 B al (G - Pn—l)s

@ et i

Eliminating ¢, from (5) we obtain

whence p,=

PP, — (=0 p, —ap, +ac=0............ (D).

220. The formulae of the preceding section enable us to
obtain an approximate value of T, as far as ¢**
difficulty, but in order to obtain the complete solution we must
solve (7). To do this, put p, =u, + =, and choose  so as to make
the constant term vanish, and we obtain

2 — (@ + A ~b)x+ac=0 ............... {8).

without much

Let F, F, be the common inverse points of the two spheres, O
the middle point of FF,; also let FF,=2\, 04 =7r,, OB=r,, then

rt—A=AF,. AF =a

rr— AT =07
therefore rl-rl=a-b; (9).
also r+r,=c
therefore r,=(a" +¢" —b")/2c

Let P be any point on the sphere 4, and let the counstant
ratio £,/ F'P be denoted by g¢,, and let ¢, be the similar constant
for the sphere B. Then since the triangles PF,4 and FPA are

similar,
"= F_‘,A/(Z = (’rl + 7\,)/(1 = a//(,)‘l - A‘))
g, =b/(r,+ M) = (r,=\)/b,
and (8) becomes
.Z‘Q -~ 27'1,CC =+ ([/2: 0,
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MOTION ALONG THE LINE OF CENTRES, 233

the roots of which are o, =7, + A, r,=r — A Putting pn=1u, +a,
equation (7) may now be written

u, , — (,—a'fe)u, + (o, — a’fe) u,_, =O.
Now o = zz, whence, writing v, for u,, we obtain
y — e (c— z,) » = ¢
v (e—ax) " z (c—wx,)’
In this equation
9—“’1=’a‘7‘=q=
cC—&, T,+A z
r r+A ¢
z, T,—x T
C [

wz(c_wa)z (r,+A) (T2+A’) ‘
Whenee putting ¢ =g,/g,, we obfain

%y o ¢
a = 2 (r,+n) ()7
the solution of which is

v, =Eg" — A7,

hence o= 0g, + (Eg™ — A7)
But p =0 when n =0, therefore
_ l _ 1 r,—X\ 1
Ton A 2k(r ) 2agr’
2
thel'ef()re p" = aql b W
qﬂn
=(r,—x
)1 1 -g*q,”
Also C—p. =T, +'r—'r—?\.+2)»/(1—q7"q“”)
qﬂm‘?
=(r,+A
5 ) -q7q,"
bp 9 (1—-¢""97) _ qp,.
therefo — e =—~——‘ *1 (say);
relore  Ge=py T I=grgt — p, Y
3
therefore M, = {9" PosP ”ﬁ:%}
Prlngessse P, Ho
_ (A= q.f”)(f}“
{ g‘zvlq P
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234 MOTION OF TWO SPHERES.

If therefore we put

)= (1 —g P S (»—q:n— ) ......... 10),
Q0= (=g % (7 g (10)
we obtain T,=tMul{1+3Q (g, @} eeeeirninnnn, ).

Similarly if the sphere B were moving with velocity , along
BA whilst 4 is fixed, 1t can be shown that

To=3Mul14+3Q(q, O cvovervininns (12).

221. We must now calculate the guantity 7}, which is the
surface integral of B’s motion taken over 4, and which by Green's
theorem is equal to the surface integral of A’s motion taken over

B. We thus obtain,
r,=- %Pf{% %ﬁ‘ dS, = rpaﬂulfr% sin 6 cos 8d6.
Y 0

Let p, denote the distance from A of the nth image of B
in 4, p,’ its strength ; also let o, denote the distance of the nth
image in B from A4, v its strength ; then remembering that the
original doublet is in B, we obtain

pl=—(aa, Vv, = —(ajef v, = = 1abc g ... (13).

Ience
x V ! x ’
Ty=—4mpa’u, 3, ((rn’:i) + 3mou, 2 p,
» , ﬂbﬁ @ ’
=2mpu, 2 p ' = —wpun, ¢ 2 <‘L",> ...... (14).
n C /"1
Also

Plv = ag/c’ 01’ = be/(c - Pl’)’ Pzr = az/(c - 0-1’) """ (15)1

whence, procecding as before, it will be found that
. (b } ,
B = {(L (C - p,n-l) Honet
b)“‘“‘j P Plagere-e- P, }’ .
== — "’ -1 2 IN[ Mg mrrEsacen 16 )
<a’ (Rl B (¢c=p,) H (16)

and it ean be shown as before that

b, = am + (Bg™ — ™
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Whence, determining & by the condition that p, = a®/c, we
shall find

po =ag,— 22 (1 —¢")" =(r, —x); - ,qfq; ,

9
¢ Fra= (AN T
b, _a(l=g")
ac—p,)  1-g¢"
Therefore @, = {(11—%22?::}8 e

Now from (9) we obtain
s (=M (r, =)
CEEOICE
) _a_ 2rc _ 2xeq
therefore 1-¢*= CESNICES T

If therefore we put
o« 2)\’qn 3
1 = El (‘—.,"> ..................... 17 )
0. =% (2L an

T,=—mpua, Q (@ ecvieiiininiiinnn. (18).

Hence, if m,, m, be the masses of the two spheres, the kinetic
energy of the whole motion when the spheres are moving along
the line joining their centres is

we obtain

T=4(Au’—2Buu,+ Cu) .ccouenn. (19),
where A=m +3M {1+3Q (g7, ¢)}
C=m,+ M, {1 +3Q(0,, @} [ «evovevrnnnnn (20).

B = 2mpu,u, €, (9)

The three coefficients 4, B, C can be shown to diminish as the
distance between the spheres increases; for when ¢ and therefore

M is large,
9, = (7'1 + 7\)/6L = 2)\/&,

%= b/,('rn +2) =b/2,
q = ab/4\},

ultimately, and therefore 4, B, and C diminish as ¢ increases.
Also, since 7 is essentially a positive quantity, AC' > B%

IRIS - LILLIAD - Université Lille 1



236 MOTION OF TWO SPHERES.

222, The general formulae (20) are too complicated to be of
much use, we shall therefore obtain approximate valucs of A, B

and C as far as ¢ 2
From (5) and (6) we obtain
po= /(e ~ B,

3 3
whence L g (b—p‘> =( gai—,> .................. (21y;
Mo N\GC ' —b
b? 3
also from (6 i {—,—p‘L} .
© u, (e —p)
From (1) p,(co,— " +5)=—a*(c—p),
P a? __a(@=1l)
therefore o T F = . = b —d'
‘262 3
whence B {—”J—ﬂl ..................... 22).
PR s @

The last expression varies as ¢™%, whence expanding the values
of p,/py, o/, In powers of ¢, and neglecting higher powers than
¢, we obtain

3.8 2 4 6
A =m, + 4, {1 TR IR )}

and the value of (' can be obtained by interchanging « and b.

To determine B to the same order, we obtain from (16)

#y - be, }3 - a’b? 7 03
Pll {a (C _ pll) (cz _ a/z . bz)s ............ ( 3 ),
whence =AYV () O SOV L]

. C ¢

Collecting our results, the values of 4, B and C as far as
12

c are

A=m LM, {1 +

378 2 4 8:
C=m,+ 1M 1+3ab l+3a +6Lf+11? ... (24).
2 [4 c

C Cc

b 36 6b*  11%°
:ﬁle 1+ I-)T+64 + e
4 c

c* ¢
2mpa™® (. a'®®  3a’®(a® 4+ b%)
B = TR L4 g B
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Motion perpendicular to the Line of Centres.

223. When the spheres are moving perpendicularly to the line
joining their centres, the kinetic energy may be determined by
the method of images without much difficulty, provided we
neglect powers of ¢™ higher than the eighth; but if it is desired to
carry the approximation to a higher degree, the successive images
become exceedingly complicated, and it is better to employ a
different method, which will be explained later on.

224. Let v, v, be the velocities of A and B perpendicular
to AB. If B were absent the velocity potential duc to 4’s motion
would be the same as that due to a positive doublet at 4, of strength
1v,a’, whose axis is perpendicular to AB. By § 54 the image
of this in B, is a positive doublet of strength fv,a®’c™ situated
at the inverse point F, together with a negative line doublet
extending from ¥ to B, whose strength at any point P is
~3v,a°"BP/bc per unit of length. Hence the successive images
consist of a series of single doublets and line doublets, and
evidently become exceedingly complicated.

Let ¢ be the angle which auny plane through 45 makes with
the direction of motion of the spheres, 7 the distance of any
doublet element from A4, g its strength. The kinetic energy will
be given by an expression of the same form as (1), whence
the part of T, depending on u will be

1 J"[z” v,pa’u sin’ 0 cos® x dOdy
o/0  (r’+a’+ 2arcos 9)3

=1}7rpa3v Mj" sin®6dd y
e (® + @' + 2ar cos 6
The value of this integral is
"+ _ 4 —
e e -l - g {r+al F - )},

in which the upper or lower sign Is to be taken according as
7>or <@g Hence the value of the integral is

4a® a>r; and 4% r>a

and therefore the part of 7', depending on u is §wpur, or
$mpuv,a’fr®, according as r < or >a.
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238 MOTION OF TWO SPHERES.

Let » and o be the strengths and distances from A, of the
doublets within B due to A’s motion, and g the strengths of the
doublets within 4. Then

T, = 3gmpy, 3 (u+ va’a )
_ ® v
=iM v = (a“ + 0_3) .

Now every v produces in 4 an image consisting of a doublet
of strength »a’/c® at a distance a’/o from the centre of 4, together
with a negative line doublet extending from the doublet image to
the centre of A, and whose line strength at a point whose distance
from A4 is z, is — vz/ac. Hence the whole amount of the image

is () o () =12

Also every u except p, forms part of an image of some
particular », hence

Therefore

225. In order to find the term involving v, we must find

172’

the portion of the kinetic energy due to B's motion over 4 and
double the result.

Since the original doublet is In B, every v except v, forms part
of an image of some p, whence if the accented letters refer to
the images of B’s motion

a ‘
hence T,=3mpv, % (1}? + p.)
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and we therefore obtain
T=% (A +2Bvv,+ (),

I e

r * yn\
O =m0, {1435 (% o e o).
oo ()

0

226. We shall now calculate the values of the coefficients
when all the images are omitted except p,, v, g,

The image of 4 in B consists of a doublet of strength p,b%/c® at
F, together with a negative line doublet from # to B of strength
— poz/be per unit of length ; also BF =b%c, AF = (c* —b*)/c.

The image in 4 of the doublet at #'is a doublet at a point ¥
whose strength is
ﬂoasbar =¥Mna3£ (28)
GAFS (g — G ,
where AF = oc/(c® — &%), together with a pegative line doublet
from F’ to 4 whose whole amount is

pb® (A ydy _ pal :
T e (29).

[+]

In order to find the whole amount of the image of the line
doublet between B and ¥, let P be any point in BF, @ a point on
AF' such that AP . AQ =a*; also let BP =2, AQ =y ; then
y (¢ —x)=a" The doublet element — p xda/bc at P, produces a
doublet element — wa’de/be (¢ — «)* at @, together with a line

doublet from @ to A whose whole amount is
ai

pordz f E_ydy _ madr
be ), a(c—a) 2bc(c—x)*”

Therefore the whole amount of the line doublet 1s
il AL,

] e (30),
adding (28), (29) and (30) we obtain
By f(oab N ab .
by {(G oL bg> T W} ............ 31).
. . vjd, (rade v/ ]
Again p= Y f do 9 e (32),

]
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240 MOTION OF TWO SPHERES,

whence substituting from (31) and (32) in (27), we obtain

3 313
wmm i frag (2 - B

o_m+2Mf1+g< ab )_Lb—} ..(33).

¢ —a 4 (¢ —a*)

The second ratio w,/u, is of the order ¢ and the next term in
B'is of the order ¢™®. Hence (33) gives the correct values of A’
and € as far as ¢, and the expression for the kinetic cnergy
derived from (33) is correct as far as ¢™.

227. We shall now explain a different method for obtaining
approximate values of the coefficients’ The approximation is
carried as far as ¢ but it could without much additional labour
be carried to a higher order if desired.

It will first be necessary to establish the following proposition.

A M

In the figure, let PM ==, AM =2 BM=2, AB=c, cos § =p,
cos @ = ; also let P2 (u) be an associated function of degree n
and order m, whose origin is A, and axis 18 AM ; and let P’ (u)
denote a similar function having the same axis and whose origin is
B. Then we shall prove that, when r <,
rr A (r+m)l 1y, (n+m+1)ir
o ntl ntitl [—W m (2m+ l)‘ c

T (n —m)lc
(—)‘((2n W:r:%s;,sﬂ (C) o ] ......... (34),

Pm

and when 7 <¢,

() M " (ntm)! pm (e tmt )i
™ T (r—m)t ™ | 2ml ks @m+ 1) ¢ ™
(e ms 9t ,
+ (2’7714 + S)I (C Pmﬂ-i‘ ............ (30)

1 Proc. Lond. Math. Soc. vol. xviir p. 371.
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It is known that P can be expressed in either of the forms'

M1 - /L’)”"'f (e +Ju*=1cos $}" ™ sin™ ddd,
™ gin®™ & dd
1 R imj - ,
or M( ©) o{l“‘*‘\/#u—lCOS(b}M“ﬂ
where M (n+m)!

Tm-mIL.8. Em-)x"

Therefore

}1@ _ Mw"‘f’r (Zﬁ sin?™ Md’

paH -+ vz cos d;)"*%i
w sin®™ ¢ dep
L S
=) Lo+l + it — 1 cos g
whence, if A= u+./u* —1cos ¢, and r < ¢,

P _ Mz™(r A A\
r"‘(*/f tcm:‘rﬂ {1_(n+m+1)r_c+(n+rn+1)2(?+m+2)<%>m

+(_°)'(n +m+1)...(n+ m +5s) (Q\)'+ } sin™ ¢ dep ;

! ¢

St
whence, by the first form of P7, we obtain
D " [@tm)l . (tml)
i 2ml "™ (2m+ 1

r mﬁ
(=) (n+m+s)irry
+ 2m +3)! (5) P::"+'“:| '

Y A
EP"‘“ + ...

- In order to obtain the second equation, let us change 8 and €'
into their supplements ; then, since

7 {cos (m — 6)] = (=)™ P7 (cos 0),

we obtain
Pl w) _ _ ™ (a4 m)! L i IR P
i m—m)le™ | T2l T m T Qmy 1)) ¢ ™

(nt+m+sy! PN s
...+m‘<€> PM'-{—...J .

The corresponding formulae when 7> ¢ or # > ¢ could be easily

obtained, but they are not required for the present investigation,

1 These formulae will be proved in the second volume. See also Helne, Kuge-
functionen, ch. 1v. : Mess, Math., vol. xrx., p, 147.

B. 16
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228. Let ¢, be the velocity potential of the liquid when 4 is
moving with velocity »,, whilst B is kept at rest, and let ¢, be the
velocity potential when B is in motion and 4 is fixed. Then if ¢
be the velocity potential of the whole motion,

D=p, + Ppeerrniii (36).

The problem is therefore reduced to the determination of ¢,,
for when this is known, ¢, can be written down by symmetry.

Let x be the angle which a planc through AB and any point 7
makes with the plane through A8 which contains the directions
of motion of 4 and B; also let ¢, ¢ be written for P and P’
Then, in the neighbourhood of A4, ¢, must be expressible in the
form of the series

3 S 2 b
b= Ul a, (1 55) @ 4, (74 ) o eos 30
for this value of ¢, satisfies the surface condition

déy\ .
( o )a— v, 8in @ cos .

In the neighbourhood of B, ¢, must be expressible in the
form

b, = {B (’r‘ + . 2)Q + B, ( b;) Q2'+...}cosx ...... (38),

for the value of ¢, satisfies the surface condition

(a),-o

The series consisting of powers of ' and "™ are convergent at
all points outside the two spheres, but the series consisting of
powers of » and # will be divergent if » and »* be sufficiently
great; but we shall only require these latter series in the neigh-
bourhooed of the two spheres where they are convergent.

The kinetic encrgy consists of a series of terms of the form

2

dy {" Q.02 cos® y sin® 640 = wagvlf (1- 2) i dr, du
= 2ma’y, f ' wP du
-1
4”i”‘( Doveeirnnnn (39),

=0 (n any other value).
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Hence the terms involving @),, ,, &ec. contribute nothing to the
energy, and we may therefore, in writing down the final value of
$,, reject all terms except those involving @, or Q.

229. Dropping the factor cosy for the present, we should
have, if B were absent,

v,a
b =- 27‘91'

Putting m=1, n =1 in (35), the value of this near B is
/2 TVB 7 T/q ’
¢, =- < rQ, + Q —c?—’+TQ‘—+>

From (38) it follows that, in order to make the velocity at B
vanish, we must add the series

_wat (BQ, 2Q)  BKQ,
20° < 2" T Ber’® T 4t

40°Q,
5 3 '5 + )
Transforming this latter series back again to A by (84), and
retaining the important terms only, the value of ¢, near 4 becomes
v.a’ 2.a°h* /1 b*  9b*  4b° L e a“b .
1 Ql _ 5 ( )Q Q

$==Ter T atattw

In order to satisfy the surface condition at 4, add the terms

v,a’h® o 9t 458% Qo vasbsQ
(4+ +4c ) 27 6c’'r?

¢*

Neglecting powers of ¢™ higher than the twelfth, the value of
these added terms near B is

va® (1 B el
T Tgg (‘i+’ci>Q1 - 211 Qr

Adding the terms

_ 0,0’ b o™\ Qb
o (4+ + ) LA (40),

omitting @, &c., and restoring cosy, the value of the velocity

potential near B becomes

z,a° @ PP (D)L, BN,
¢1 _— E? {1 + 406 + __(cs—)}<’r + WE) Ql CcOS X(él)

The first term of (40) on transformation becomes

— v,a®0°Q r/16¢"™,
16—2
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whence the value of ¢, near 4 is

__ne’Q, _pa’d (L6 9 (a4 6407 b
L {‘i tatae 16¢°

a,B
X <’I" + yg)
The values of ¢, at A and B can be written down by symmetry;
whence, if T be the kinetic energy of the system

207 = A"+ 2B'vy, + C'v},

where

A’zm'l_pff(i)l(fj;: dSl

3% (1 B 9B B (a® + 640
=mx+%Ml[” & {rww T6¢° }]
3a®* (1 o 9a* (b + 64
¥ — 4 3] R LN S Gl 20 O ) (T
0" =m0, 1+ 20 £ B0 CORZO e,
dé,
=—p[[9.Fas,
_ mwpa'h’ 1 a'b’ | o' (o' + %)
¢ 4¢° ¢ J

4

where m,, m, are the masses of the spheres 4 and B; M, M,
those of the liquid displaced by them, and p is the density of the
liquid.

The values of A’, B, C" have been calculated by Mr Herman

as far as ¢ ™.

230. We shall now apply the preceding results to obtain the
solution of some problems.

If a sphere is projected in a liquid which is bounded by a fixed

plane, we must put a =8, 4, = —u, =u, ¥, = v,=v; then
2T=(4 + Byuw" + (A" + B) v,
and, if higher powers than ¢™® be neglected, we obtain from (24)
and (43)

B 3 3 ‘6 bl

A+B:m+§ﬂ[(l +S%C§ +\Z;> }

¢

3a®  3a’
4 [ 1 iy i
A+ B _m+2M<1+ 203+M>J
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where ¢ is the distance of the sphere from the plane. Lagrange’s
equation

dar_,ar_
dt du de ~
gives 4+ B)ys=12° d (A'"+B) - u?—d— (4 +B).
de dc

Also, since the momentum parallel to the plane is constant
(4’ + B') v = const. = G.
Let V be the resultant velocity of the sphere, 8 the angle which
its direction makes with the normal to the plane, then

R TP A 2g @
(A+B)u—V{sm 6% (4 +B)—cos€dc(A+B)}

2,8 3 i
UV {(1 + 2%)00529—%<1+%> sinﬁﬁ}.

2t e
If, therefore,

3 3
tana=,\/-2(i+2a);

Cﬂ+a3

it follows that, whenever the direction of motion makes with the
normal to the plane an angle which is < or > 7 — «, the sphere
will be repelled from the plane; but, whenever this angle lies be-
tween a and 7 — a, the sphere will be attracted. Also,since 4"+ B
increases as ¢ diminishes, the velocity parallel to the plane will be
accelerated when the direction of motion lies between « and 7= — «;
and retarded when this direction makes with the normal an angle
<a or >m—a. If, therefore, the sphere be projected parallel to
the plane, it will ultimately strike it.

We bave shown in § 208 that in the case of a eylinder a = }m,
hence in the case of a sphere a > 1w, The discussion of the sub-
sequent motion of a sphere projected in any given direction in a
liquid bounded by a fixed plane, can be carried on in the same
manner as 1n the corresponding case of a cylinder, but it must be
recollected that the preceding values of the coefficients may not
give correct results if the sphere gets too close to the plane.

231. Let X, Y be the forces upon the sphcre, arising from
the pressure of the liquid, then

N 2d ! 4 Zdi /
X=mu=m {1) dc(A +B)—u HC(A+B)}.,(A+B),

Y= mi = — 2muv (4 + B[4+ B).
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From (44) we obtain

d 9 Ma? 2a°
(%(A+B)__' 2c (1 c”)’
d , , 9Ma? a?
LA B =—— (1 _s>,

whence neglecting higher powers than ¢ we obtain

_ 9YMma* @’ [u' (4m— M) 4 o* (M - 'm)]}
T @Em+ M) @m+M)e ’
> 9Mmuvda® { (4m — M) o }

= @m+ M)t 2 @m+ M)¢

X {uz — L+

232. Let us now suppose that the sphere 4 is a pendulum
performing small oscillations along AB about its mean position,
whilst the sphere B is free to move.

Let 4 be the mean position of A, B the initial position of B:
A', B their displaced positions, and let A4'=z, BB =y, AB=¢;
A'B =p. Then p=c+ax—y and if — pr is the force required to
maintain the oscillation of 4, the equations of motion are

— d4’ 4B ., dC’
P RN (i 158 .o WO v —
A'é—B'y — (g zm)d' + 7 p 19 dp+/w 0,
d4A' ,,dB dC’

iy e 1.2 L 1R — —
C'y—Bi+ la dp & i Qy* — i) dp 0,

where the accents denote the valucs of 4, B, C at time ¢.

To obtain a first approximation, neglect squares and products
of small quantities, and we find

(AC-B%+ plz=0,
Cij— Bz=0.
If therefore the sphere A is initially displaced to a distance
%, and then let go, the integrals are
x =z, cos kt,
y =%’ (coskt —1),
where k* = uC/(4C — B*).
Since y 1s negative and increases numerically so long as « lies
between x, and — z,, it follows that to a first approximation B

is repelled from A so long as 4 is moving away from its initial
position A’, and attracted when 4 is returning to 4"
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233. In order to obtain a second approximation, we must
take into account the squares of small quantities. Let

y= Z%’(cos kt—1)+ 2,
where 2 1s at least of the order #”. Then

p=c- (g—l)xucoskt+ 1%—°+z,

A=A+ (a/,'—g/)o(lii;1 &e.
Therefore B’s equation of motion becomes

{0+(w—y)%§} {2’— Baé,”y cos kt}

+{B +(z—y) (Z—f} 2" cos kt — z'K? (%; - 121‘%> sin® &z

c
B* B\dC .
_ e P D)GY 27
z 'k (20, C) 7o S kt=0.
Neglecting cubes of small quantities, this equation may be
written
CzZ=f+ L cos kt + M cos 2kt,

Kz} (dA 2B dB B"dC’)
P (42043, Ddy

& o do T 7 do
Eaxl® d B

—-tp (A - '6) .

If we only take into account the first terms in A and B, which

is equivalent to neglecting the twellth and higher powers of ¢™,
we obtain from (4) and (21)

where f=-

A=m +3M + 82,
2 Q
_ 2mpa’t’
=m, +3M + =5y
dA 127pa’b’c
therefore =T — o)

B 6mp’a’l’
C (Qa+p)c’
d A* 56mp’a’h’®

therefore o= o ¥ P)_? ,
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where o is the density of the sphere B; whence

— 8291.2,,2 _ ¢ — :gp B
f— 37rpa b’% Zy {(62 _ bu)?z (20_ +P) 07} :

The term f indicates that the sphere I3, in addition to its
vibratory motion, will be attracted towards or repelled from the
sphere 4, according as f is positive or negative. Hence there
will be repulsion when

| B O

20__+_P> (Cﬂ—- bz)u
b
> —
(1= 43 @o/p+ 1)
which can only happen when o < p or the density of the sphere B
1s less than that of the hiquid.

i.e. when ¢

If therefore the sphere B is denser than the liquid it will in
general be attracted, but if the density of the sphere 1s less than
that of the lquid there will be a critical point, beyond which
there will be repulsion, and within which there will be attraction,
this critical distance 1s given by

o b
1-¥} Qoo+ 1)t

Since this result has been obtained on this assumption that ¢
is so large compared with @ and b, that powers of ¢ above the
twelfth may be neglected, it fails to give a correct result if with a
given density, ¢ comes out nearly equal to b. If a/p =9 then
c=T648b.

This theoremn is due to Sir W. Thomson; the preceding
demonstration is due to Mr Hicks.

On the Pulsations of Two Spheres.

234. The term pulsation is applied to denote a periodic
change of volume; and the problem which we shall now investi-
gate is the following :—Let there be two spheres in a liquid, whose
centres are fixed, and which are composed of some elastic material
such as india rubber; let each sphere be compressed or expanded
into a concentric sphere and then let go; it is required to deter-
mine the motion,
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If the spheres were composed of some highly elastic material,
the inequality of the pressure of the liquid upon their surfaces
would produce a deformation which would cause their surfaces to
cease to be spherical; we shall therefore suppose the rigidity of
the spheres to be sufficiently great to render such deformations
inappreciable.

235. If ¢, be the velocity potential of the liquid when the
sphere 4 pulsates, and B does not; and ¢, be the similar quantity
when A and B are interchanged,

¢=¢1+¢2'

Let @ and b be the radii of the spheres A and B, ¢ the distance
between their centres. If B were absent the value of ¢, would be
—d'afr, for this value of ¢, satisfies the boundary condition
dd /dr=d. This is the velocity potential due to a source of
strength a’d situated at the centre of 4, and by § 52 the image of
this in B will be a source of strength a’bd/c at the inverse point P,
together with a line sink extending from the inverse point to
the centre of B, of strength a’i/b per unit of length. Putting
m=a’hafe, f = b/, the strength of the source at P is m, and that
of the line sink from B to P is —m/f per unit of length: and by
§ 55 the image of these in A is an arrangement of the same kind.
Hence ¢, and ¢, will be the velocity potentials of two infinite
systems of sources and line sinks, which respectively lie within
each of the spheres.

236. Taking the density of the liquid as unity, let F, be the
resultant of the pressure of the liquid on B towards 4, then

F,=— [fpcos 8dS
= | "(é + 3 V?) sin 2049,
]
where V is the velocity of the liquid at the surface of B let

P :f"gb sin 206,
Q

Q= F(ﬁ“ sin 26d86.
“0

Then [”(j) sin 20 = P.
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In order to find the portion of F, which depends upon V7 let
v="0%, then V?=14"/b"+ (d$/bdf)"; and since v is constant over
the surface of B, the portion of F, depending upon it is zero,
whence, denoting the portion of the pressure depending upon V?
by I, we have

Ll f V*sin 2646 = 3 f (%) sin 200

=‘%"f (¢ g £ K
— i f (?qu + 2¢) sin 2040 — 3 [¢".

By Laplace’s equation

_ D _ . d'¢ dé
ah Zbd +b S E oot 057

in which r is to be put equal to b after the differentiations have
been performed. Hence d¢/dr = v/l? so that

I=J5wf”¢>{(b +bzd‘§ 24)) sin 20 + 2 cos* 0 ‘1’}(10 [

2[ cos 9¢d0d6 f ¢*sin 20d6 + [$*]7 = @ + [¢°];,

f(/) - sin 25d0—[ ( (fité Zj)sn29d€ %d,... (45)

whence =%~ (— -P—Q+ 3 Q)
and Fy=n (8P4 P—4Q+ 1 Q) ............ (46)
when »=10.

237. Let P, be the part of P due to ¢, then if u, be the
strength of any image whose distance {rom B is r, the portion of
P, due to this 1s

1

_2]'” ~ p, §in 6 cos 648
o (b° + r* — 2br cos 6)5

which is equal to

—‘ler’;b,r>b; and—%‘é‘%, r<b.
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Hence if u, be the strength of the nth source image in A4 from
4, and p', that of the other extremity of the line sink image; the
part of P, due to u, is

:m b ,u,,,bdw
X =
i pn)“ éfp-(Pn (C—-’U)
Apab (9 =) 7).

- 3 (C — pn)z (C _ p,") ...........................

Let v, denote the strength of the nth image in B, o, ¢, the
distances of its extremities from B; then the part of P, due to v, is

. v.xdr
X=- ‘31)‘ +-’ff (o—o' )b
2”" (aﬂ —o ’l)
= BT s (48)
Now
b/-l«“ _ 76277 ' b2
"e—p) " o=p) " e=pl)

LA 2/"nb (Pn u)

therefore X '= TS omplomp) (49).

Adding (47) and (49) and summing for all integral values of =
from o to 0, we obtain

os® b (pa—p)
L I T CE (50).

238. In order to find the portion P, of P due to ¢, we must
remember that the original source is now in B. Let o, ¢, denote
the distances of the extremities of the nth image in B from B, due
to ¢, then expressing p,, p,, p» in terms of v, ¢, ¢’ we shall
obtain

P,=— ox] (20,

Hence P =— 323, (G""Z;fg’"(c_”p) )—22f ’ﬁ"—bf;‘")...(sl),

where u, p,, p', refer to the images of A’s motion, and v, o, o,
to those of B’s motiom.
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By direct calculation we easily find

po=0, plo=® )
a’c , at
Pz e Pi= . (52),
ac(c —a'=b) . a* (& — a%)
Pe= bz)z PR Psz:Wu_mz)J

also if m, be the mass of the liquid displaced by 4,

7, abm, a’tn,

_2h L .
M= TS MT @) M @ by —ae) O

The v’s and ¢’s can be obtained by symmetrically interchanging
a and b and putting m, for m,. If we write M, N, for the two
series 1n the right-hand side of (51), we shall find that

b a’b’
ﬂ'[ - Wg [1 + (02 — az) (Cﬂ —a® = ba')‘z

a’b® 7 ) + 54
H Gar N Gl e T Tl G

m,o’h 1
¥- e Loy

4arc
- af’bs o (-—
i (& —a—b) i —a’) = b + R h5),
and P=—2(M,+Njeoeiiiiiiiiinnnn. (56).

From the above formulae 1t appears that M, is of the order ¢

and JV, of the order ¢™.

239. The value of the portion of ¥, which depends on the
square of the velocity is more difficult to obtain, and we shall

content oursclves with obtaining an approximate value as far as

the term ¢ 5

Let us now put u=a%d, v=~4b, and let I’ denote zonal har-
monlcs when the origin 18 at 4 and axis B4, and I, similar
quantities when the origin is at B.

Near the surface of B

o0 2n+1
¢, =3, 4, {R" + (_ +b1\ R"“} P+ counst,
v % ( b2n+1
and ¢, = — Bt = B, IR’I + mﬁ} P’ + const.
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Dropping the accents for the present and writing C, for the
coefficient of P ? in the value of ¢, we obtain

Q-2 (20,P) udn
-1

Since P,* is unchanged when — u is written for g,

1

f P udp = 0.
-1
1

Hence Q=430,0, f PP udp,

the summation extending to all positive integral values of m, n
except m=mn. Let

1
o= [ PP, du
Jun
Then f PP, udp =f P P du -+-f b du
= f D du.
-1
Now (Ferrers' Spherical Harmonics, § 24),
_ 1 n(n+1)
= i mEatD) {m Fo Brn =L,
m (m+ 1)
- 72,711 ﬁ Pn ('Pm-H - Pmol)} -

1
Hence { ®dp vanishes unless m =n+ 1 or n —1 and its values

Y1

in the two cases are

2 (m +1) 2m
@m+1) Zm+3) 0 @m—1)@m+ 1)’

240. Putting m =0, ¥ = R in (34) and (35) we obtain
P P, +)Pr (+L)(n+2)Pr

RT—H = et - 7(|‘n+r' + 91 onts T
: ) (5T
()P, P, (n+1)P/R (n+1)(n+2) PR (57)
e T om T e b g e )‘
Now if B were absent, the value of ¢, would be
%
¢1 T
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The value of this near B is

¢l———(P +

In order to make the velocity at the surface of B vanish, we
must add the series

b (P’ 2Pb*  3D.b* )

BR,EE, ),

t

st T Bk T acR T

Transforming each term of the last series by means of (57), the
value of ¢, near A becomes

w  ub’ Pr
ot -t

Adding the proper series, the value of ¢, near 4 becomes

u ub® ubs .
¢1=_;_20 (+ >P+ ............ (58).

The added term produces at B a constant term of the order
¢, which contributes nothing to the pressure, hence the value of
¢, near B is

U u b LUy 2V p .
4’1:_6_?(1”21?’)1)‘"?’(3 SRJP ...... (59).

Changing P, into — P/, 1t follows from (58) that the value of
¢, near B is

va®  va® b* ,
R 2?(1” )11 ............ (60),

whence the value of ¢ near B is

v o u va® Ju 5 Uy 20
¢=‘R_E_§c4_< +20>(R+2R‘> E(R+3R5>P2
— &e. ...

Putting in this B =5, we obtain

v u va® 3b/u . bub?
b=y (o) B G P
¢\ _ 20 3/u  wva\ 5, 10u,,
also (m)b—'—bs b(“ )P ———P

1
Therefore Q= Qf P udu

u 2b v*a 8u,’b’
- 4( + 2¢° ) +- 3¢
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Also by (45)
d’Q
o 4] b 2%
[ v s
=ttt 30
Restoring the values of u and v, we obtain
b? fQ <2ab abEZf)
4 dR? ¢/
By (54), (55) and (56)

27 s 3737
P=— 2{1Tba - 2‘10#) — higher powers of ¢

;Q = bt

Therefore by (46) the force depending on the square of the
velocity

which varies as ¢

374712
Hence Fz=—27rbﬂ (M + V) — bb

The value of F, the force on A towards B, can be obtained by
symmetrically 1nterchanging o and b.

241. If we neglect all powers of ¢ above the second
F=-"0 0 @l
¢’
Let a=d+asin2;t,

b=>+Bsin —217,r(t—e),

so that g, b denote the mean values of the radii. The mean value
of F, will be

o 2r(T.,d .
7 ——T—czjoba(a,ab)dt

2

2
;”ci ] abrabdt
[}

T
11(,;.:: (ab) ,8.[ cos %;Tt cos%",r (t—e)dt

_ 87 a’d’ af3 -

T.z ) Ccos T 1
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Hence if the spheres are pulsating in the same periodic time
they will attract one another when their phases differ by less than
a quarter of a period; but if the phases differ by more than a
quarter and less than three quarters of a period, they will repel one
anovther.

EXAMPLES.

1. An infinite liquid contains a fixed sphere of radius b, and a
sphere of radius ¢ and mass M fastened to a spiral spring per-
forming small oscillations in the line joining the spring to the
centre of the sphere. Prove that if e and b are so small (or ¢ so
large) that we may ncglect powers of a/e and b/c above the sixth,
the time of oscillation is

M ab\%) ¢
g _ My (%Y
T{l M Ess (c) } ’
where M, is the mass of the liquid displaced by the moving
sphere, T’ the time of oscillation if the fixed sphere were removed

from the liquid, and ¢ the mean distance between the centres of
the spheres.

2. An infinite mass of liquid is divided into two parts by an
infinite rigid plane, and a sphere 18 moving in the liquid in a line
perpendicular to the plane. Explain by general reasoning what
will be the effect of making a circular opening in the plane with
its centre in the line of motion of the sphere, when the sphere is
moving (i) towards the plane, (ii) from the plane.

3. Two equal small spheres of mass m and radius @, which
attract each other with a force equal to the product of their
masses divided by the square of the distance between them, move
in a straight line towards each other in an infinite liquid. If Ais
the ratio of the density of the liquid to that of the spheres, and =
the distance between their centres; prove that so long as (a/z)!
and higher powers can be neglected, the velocity of either sphere 1s

zJm (1l + 3N
{@ + Ir (@ + 3a)P
the motion begivning when the spheres are at an infinite distance
apart.
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4. If a spherical vessel of radius @ contain a concentric sphere
of radius b and density o, the intermediate space being filled with
liquid of density p, prove that if the vessel be moved with veloeity
U, the concentric sphere will move forward with relative velocity

(p=a) U
3p (0’ + 26)/(a’ — b)) + o

5. An impulse 7 is applied to one of two spheres, perpen-
dicular to the line joining their centres. Prove that with the
notation of § 229, both spheres will begin to move parallel to the
direction of the impulse and in opposite directions, and that their
velocities v,, v, are determined by the equations

vq I
C TAC-B*

6. Liquid of unit density fills the space between two con-
centric spheres. The outer one whose radius is b and the inner
one whose radius is a, is suddenly distorted in such a manner that
the velocity at any point of its surface is cF (8, ¢), with the
condition that its volume remains unaltered. Find the velocity
potential of the liquid, and prove that when F (8, ¢) is a zonal
harmonice of degree n, the kinetic energy of the liquid is

2@5 {nb'zrﬂ-l + (ni1)£2ﬂ+l} WCi
n (n ¥ 1) (2’)2 + 1) (b-znﬂ _ a2ﬂ+1) .

7. Liquid is confined within a sphere of radius b; and a solid
sphere of radius o is moving with velocity v along a radius
of the fixed sphere. Prove that if the distance # between the
centres of the two spheres 1s small compared with b, the velocity
potential is approximately cqual to

— dud® {(%fkgs) cos 9+w§1 265> (3 cos’ 9—1)}

the origin being the centre of the fixed sphere.

8. The space between a spherical envelope and a solid
concentric sphere is filled with liquid which is at rest. If the
outer surface is moved so that at each point its velocity is a
spherical surface harmonic Y, prove that the solid sphere will
remain at rest, unless n=1.

B. 17
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9. Prove that the augmented inertia of a ball pendulum of
radius o oscillating in a spherical envelope of radius b is

§M (20° + 6°)/(0° — o)
where M is the mass of the liquid displaced.

10. A string of length f— @ is attached to a sphere of radius
a and mass m, by means of some mechanical arrangement which
prevents the sphere from rotating. The other end of the string is
attached to a fixed point, and the system is surrounded by a
liquid of unlimited extent, which is bounded by a fixed plane.
Prove that if the string is initially at right angles to the plane,
and sphere is projected perpendicularly to the string, with velocity
V, the tension of the latter will be equal to

m l: 3Ma?

3f 3f T2 2
f _mm+M)(?’{c (1 —cos 8) + (1 — == cos §) sin 9}]17

¢
IMV*ma’ cos® 6
20@m+ M)’
where 1c¢ is the distance of the fixed point from the plane, 6
the angle which the string makes with its initial position, M

the mass of the liquid displaced by the sphere, and powers higher
than ¢™ are neglected.
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I. 7o prove the equation
p=kp".
The laws of Boyle and Charles show that the pressure, volume, and
temperature of a gas are connected by the relation

where R is a constant, and 8 is the temperature measured from the
absolute zero of the air thermometer, i.e, from —270°C.

Let a quantity d/7 of heat be communicated to the gas; the effect of
communicating this amount of heat will be to change the pressure,
volume, and temperature of the gas, and since by (1) the volume is a
function of the pressure and temperature we may put

dH =K di+Adp ... (2),

where K, is the specific heat at constant pressure. From (1) we have
df dp dv

= e, (3),

whence eliminating dp from (2) we obtain
df dv
2 ?) ’

whenee if K, be the specific heat at constant volume

dH = Kdf + \p (

K,=K,+ %7’ .............................. (4).

Let us now suppose that the gas experiences a small change of
volume but without loss or gain of heat, then ¢4 =0, and (2) becomes
K, df + Xdp = 0.

Eliminating 6 and A by means of (3) and (4), and putting y= K,/ X,
we obtain
d, dv
ARk
Now it is an experimental fact that y is independent of the pressure,
temperature or volume, whence integrating (5) we obtain
pv¥ = const.,
or p= e,
where p is the density.
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II. Do express the value of R (see page 220) in terms of elliptic
Junctions.

The value of R is

B = ra? {1 Lo3” ((11 - 9,?:1')"} .................. (1)

and we have to express this series in terms of elliptic functions. From
§ 124 it follows that the value of & or (P + L) p~ is

1 ™) 4 Ongn . 1 Y o
tresy (1 irz + 209" s ﬂl%%;?i

1+ g™ )}
—4(:21 —1—qg";...(2).
TS, {—Q QJ ()

K2 X w
Now — snzKac/-rrz;r—g(K—E)—QEl 16(1

P COs nx.

Changing z into z + urK'/K we obtain

2 o0
f—‘—a cosecam® Ku/m = lK(K E)-3, ngl—;ql COoSs 7.

Adding we obtain

2
w

1{2 (k* sn® Kz | m + cosecam® Kx/m) = i (K Ey- s n(l qq )coqm

q{(1+q)cosm 2q}

Also Zn (1 +¢™) cos nw =— § cosec® Ju + (1—Zqoosz+ g’ °

Therefore
ond+q) ") 2
El( =g n(1+q)jcosnm #(K £)
K2 . . . 51 g{(1+¢*cosr—2g}
: (k* su* Kx/m + cosecam?® Kz/w) + ) cosec? Ja — (1= 2gcosa+ @) <(3).

The required series is equal to the limit of the right-hand side of (3)
when =0, that is

R = dnc® {215(1{ £) _(T_%y}.

I1I. Professor Greenhill has kindly worked out the following
investigation of the Motion under no forces of a Solid of Revolution in
Infinite Liquid, by Weierstrass’s functions,

Taking the expression (4) for the kinelic energy 7’ of the solid of
revolution and of the surrounding infinite frictionless liquid given in
§ 181, but writing p, ¢, = instead of w;, w,, wy respectively, then

T Y2 (4 )4yl + JA (2 47) + LOr%
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and employing this in the equations of motion of § 167, supposing there
are no impressed forces; then since

%:Pu, %:Pv, ZZ;:IMJ;
g:AP, %;—,=Aq, %—f*(/’r;
the equations of motion become

P% ~ Pur + Ruyg S | (1),

P 7& — Rwp + Pur =0, (2),

BYY _ Pugs Prp O, (3),
4% (4= 0)gr — (P B)ow =0 (4),

Aa+(A—U)pT+(I’—If)uw—/O .................. (5),

o O e, (6).

Equation (6) shows that r is constant during the motion ; and from
the other equations we can obtain three first integrals of the equations
of motion.

- du dv dr

First, P(u%wu dt) Rw 20+ 4 (p wte >+ Cr i 0,
so that 2P (WP + V%) + S Bw + %A (PP+g)+4Cr=T......... (M
a constant, the constant value of the kinetic energy during the motion.

du dv dw

Secondly, P (u o a) + B " =0,
so that Prd+ot)+ B = F2 o (8),
a constant; and then # represents the resultant linear momentum of
the system.

du dp dv dq dw

Thirdly, AP(dt‘p+ di+%q+vdt>+01fa—r—0,

so that AP(up+vg)+ CBuwr =G ..................... (9),

a constant; and then & may be taken to represent the constant angular
momentum of the system.
From equations (7), (8), (9),
P2 (uw? + %) = F* — B,
A (p*+¢Y)=2T—Cr*— Buw® — P (u*+ %),

Fros1 1
—om_ 2 _ Y 2,
27— Cr - (13 1)>lfw*
- Cliwr
Plup +vg) = T =
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so that from equation (3)
dw\?
2 N _ 2
B dt) P* (ug — vp)
= P+ ) (0" + ¢°) — (up +vq)?}
(F— R F'or1 1N L, ) (0= CRwr\?
G N -(-8) ) - ()

a quartic function of Zw, so that Rw is an elliptic function of the time
¢, which we shall proceed to express by means of the notation of
‘Weierstrass.

. R
Putting, for the moment, —17; —x — cos 0, then

dx\2 F?s1 1

() =4z p) - 2)E-a) @) @-=),
where ), , @, x; denote the roots of the quartic in z, arranged in
descending order of magnitude ; also

Ty + Xy + Xy + 25 = 0.

D
Now put L—Bo= s

D s—
then Lo = d(bl Zl,
- — Y
D 5—€
T _dd—e’
. w_,“D s—e;
P s—dd—e’

where e, €, €; are the roots of the discriminating cubic of the quartic
48° — g8 — g5 =0,
g, and g, being the quadrinvariant and the cubinvariant.
ds\* I?s1 1 48 — g5 —
mee (@) =4 (e B e gy
and we may choose D, so that
D®—4d? — g, d ~ g3,

ds\2 Frs1 1 ,
and then (di) oy (E’ - 7,) (48 — g.5 — g3
so that now, with Weierstrass’s notation (Halphen, Traité des fonctions
elliptiques et de leurs applications, Paris, 1886),

s$=7p (tml/-r + m3),
w, and w, denoting the real and imaginary half periods of the elliptic
functions, and r the time of oscillation ; the imaginary half period o,
being added in order to make s oscillate between e, and ey, and therefore
z between x, and ;.
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Then the time of oscillation T is given by

wIZ—F‘Z 1 1)
S50

We may write pe instead of d; and use pu instead of p (fwy/r + ws)
for brevity, and then D = — p'e, and

T — 2Ly~ —P° ’
pu—pc

€ -z, — i Pu__el’
pu—pcpec e

I U 7Y
pu—pe pe — &,

x—x,— —pe¢ pu_ex;
pu—Ppc pc— &

and then, as explained in the Proceedings of the London Mathematical
Society, vol. xviL, p. 279, 1886, introducing the function {u, defined by

d
dué'u=—pu,
HC
x0:2§c_gzc=,§%c,,
o p”(c+(u1) _ _
“ %P'(ca«ml)’ Tp= s W=

and p2¢, p'2¢ are the coefficients of «? and x respectively in the quartic
(2 — ) (% — ) ( ~ ) (2 — ) 5
_ Cf(w—o)—f2e—y P (Wm0 —P

also x={(u+c)—¢(w—c)— {2 P (4 —c)=plo "

Taking the axis OZ in the direction of the resultant impulse #
(fig. p. 166), then

Pu=_Fsinflcosp, Po=FsinOsing, Lw=Fcosb,
and P (up +vg) = I sin 0 (— p cos ¢ + g sin ¢),
<, d
= F'sin? 6 —% 5
50 that equation (9) becomes
AF sin® 6 %‘f — @ - CRuwr,
=G ~ CFrcos,

or, using « to denote cos 6,
&y G-CFre | G+CHr 1 +1G’—C’F7' 1
dt  AF(l-a)" 2 AF 14z ? 4F 1-—p

the equation to determine the azimuthal motion y.
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264 APPENDIX.
As explained in the Proc. London Math. Soc., vol. xviL p. 280,

writing « for fw,/r + @y, this cquation becomes

dd’,li p'a(pu—pc)7+li p'd (pw — pe)

du” " (pa—pe)(pu—pa) " * (pb—pe)(pu - pb)’
a and & being the values of « which make cos § =—1 or + 1, respectively.
Then 2d¢ _rPe P2 pe___pt ,
diw pa—pc pw—pa pb-pc pu—pb

—=fla+cy+l(a—c)~2la—L(u+a)+&(uw—a)+2a
+EG+e) + L(h—e)+ 20— L (w+b)+ L (u—0)— 20,

., (u—-a) o (u —b)

Y=g Og (u+u) (u'Tbj-FzLPu
where P=f(at+c)+L(a—c)+L(b+c)+{(b—c),
W _—3Pu a(u+a)rr(u+b)

and =¢ P\/m.

Taking a point on the axis OC st unit distance from O, the pro-
jection of the motion of this point on a plane through O perpendicular
to 0Z will be given by

@ + iy = sin fe’¥,
o(u+a)o(u+tbd) exp (= 3 Pu).
c(u+c)o(u—c)

In a similar manner, by means of the equation

d d UG — U
o log(u+n)_.2d log (u? +¥*) + ¢ - et
d . .up+vq Rw
—1% 2 4 47 4
=t log (u*+ 1% WA P
d . G — CRwr Rw
=4 log (B = Bow) —tr + 4 gy 5 s

we can express % + v by means of Weilerstrass’s ¢ functions; and the
same method can be applied to the expression of p+4g and also of
z + 9y, = and ¥ now denoting the coordinates of O with respect to fixed
axes in a plane perpendicular to the direction of the resultant impulse Z.

It will be noticed that the letter « has been used in two senses,
first as expressing a component velocity of translation, and secondly as
an abbreviation for fw,/r + wy; this was unavoidable in order to reconcile
the different notations, but will not be found to lead to confusion.

_ e J,
CAMBRIDGE : PRINTED BY C. J, TL3 S &) S‘f_}\‘s,\g HE UNIVERSITY PRESS.

IRIS - LILLIAD - Université Lille 1



February 1887.
A CLASSIFIED LIST

OoF

EDUCATIONAL WORKS

GEORGE BELL & SONS.

Full Catalogues will be sent post free on application.

BIBLIOTHECA CLASSICA.

‘4 Series of Greek and Latin Authors, with English Notes, edited by
eminent Scholars. 8vo.
ZAigchylus. By F. A. Paley, M.A. - 18s,
Cicero's Orations. ByG. Long, M.A. 4 vols. 16s.,14s,,16s.,18s,
Demosthenes. By R. Whiston, M.A. 2 vols, 16s. each.
Furipides. By F. A, Paley, M.A. 3 vols, 16s. each.
Homer. By F. A. Paley, M.A. Vol. L 18s.; Vol. II. 14s,
Herodotus. By Rev. J. W. Blakesley, B.D. 2 vols. 32s.
Hesiod. By F. A, Paley, M.A,  10s. 64.
Horace. By Rev. A. J. Macleane, M.A. 18s,
Juvenal and Persius. By Rev. A. J. Macleane, M.A.  12s.
Lucan. The Pharsalia. By C. E. Haskins, M.A.  [In the press.
Plato. By W. H. Thompszon, D.I). 2 vols. 7s. 6d. each.
Sophocles. Vol. I. By Rev. F. H. Blaydes, M.A. 18s.
VYol. II. Philactetes. Electra. Ajax and Trachinis. By
F. A. Paley, M.A, 12s
Tacitus: The Arnnals. By the Rev. P. Frost. 15s.
Terence. By E. St. J. Parry, M.A. 18s.
Viriil. Bly; J. Conington, M.A. Revised by H. Nettleship. 8 vols.
S, eachn.
An Atlas of Classical Geography; Twenty-four Maps. By

W. Hurhes and George Long, M.A, New edition, with coloured Outlines.
Ymperial 8vo. 12s. 6d.

Uniform with above.

A Complete Latin Grammar. By J. W. Donaldson, D.D. 3rd
Edition. 14s.

GRAMMAR-SCHOOL CLASSICS.
A Seriesof Greek and Latin Authors, with English Notes. Fcap. 8vo.
Cepsar: De Bello Gallico. By George Long, M.A. 5s. 6d.
Books I,-II1. For Junior Classes. By G. Long, M.A. 2. 6d.
Books IV, and V. 1s.6d. Books VI. and VIL 1s. 6d

Catullus, Tibullug, and Propertius, Selected Pocms. With Life,
By Rev. A. H. Wratislaw, 3s. 6d

IRIS - LILLIAD - Université Lille 1



2 George Bell and Sons’

Cicero: De Senectute, De Amicitia, and Select Epistles. By
George Long, M.A. 4s. 6d.

Cornelius Nepos. By Rev. J. F. Macmichael. 2s. 6d.
Homer: Iliad. Books I..XII, By F.A.Paley, M.A. 6s. 6d.

Horace. With Life. By A. J. Macleane, M.A.  6s. 6d. [In
2 parts, 3s. 6d. each.]

Juvenal: Sixteen Salires. By H. Prior, M.A. 4s. 6d.

Martial : Select Epigrams. With Life. By . A. Paley, M.A. 6s.6d.

Ovid: the Fasti. By F. A. Paley, M.A. 5s. Books L and II.
1s. 6d. Books I1L and IV. ls. 6d.

Sallust: Catilina and Jugurtha. With Life. By G. Long, M.A.

and J. (. Frazer. 5s., or separately, 2s. 6d. each.
Tacitus: Germania and Agricola. By Rev. P. Frost. 3s. 6d.

Virgil: Buecolics, Georgies, and ZAneid, Books I.-IV. Abridged
from Professor Conington’s Edition. 5s. 6d.—2neid, Gooks V.-XIT1. 5s, 6d.
Alsoin 9 separate Volumes, Is. 6d. each.

Xenophon: The Anabasis. With Life. By Rev.J.F.Macmichael. bs.
Algo in 4 separate volumes, 1s. 64. each.

The Cyropzdia. By G. M. Gorham, M.A. 6s. Books L.
and IT, 1s. 6d.

Memorabilia. By Percival Frost, M.A. 4s. 6d.

A Grammar-School Atlas of Classical Geography, containing
Ten sclected Maps. Imperial Bvo. 5s.

Uniform with the Series.
The New Testament, in Greck. With English Notes, &e. By
Rev. J. F. Mucmichael. 7s. 6d.

CAMBRIDGE GREEK AND LATIN TEXTS.
Zschylus. By F. A. Paley, M.A. 3s.
Csmsar: De Bello Gallico. By G. Long, M.A. 2s.
Cicero: De Senectute et de Amicitia, et Fpistoles Selectee. By

G. Long, M.A., 1s. 6d.

Ciceronis Orationes. Vol. I. (in Verrem.) By G. Long, M.A. 3s.6d.
BEuripides. By F. A. Paley, M.A. 3 vols. 3s. 64. each.
Herodotus. By J. G. Blakesley, B.D. 2 vols. 7s.
Homeri Tias. I.-XII. By F. A. Paley, M.A. 2s. 6d.
Horatius. By A. J. Macleane, MLA. 2s. 6d.
Juvenal et Persius. By A. J. Macleane, M.A. 1s. 6d.
Lucretius. By H. A. J. Munro, M.A. 2s. 6d.
Sallusti Crispi Catilina et Jugurtha. By G. Long, M.A. Is. 6d.
Sophocles. By F. A. Paley, M.A. 3s. 64d.
Terenti Comeedise. By W, Wagner, Ph.D. 3s.
Thucydides. By J. G. Donaldson, D.ID. 2 vols. T7s.
Virgilius. By J. Conington, M.A. 3s. 6d.
Xenophontis Expeditio Cyri. By J. F. Macmichael, B.A. 2s. 6d.

Novum Testamentum Grzec. By F. H. Scrivener, M.A.
4s. 6d. An edition with wide margin for notes, half bound, 12s. EbpIrTIio
MaJoRr. 7s. 6d. See page 11,

IRIS - LILLIAD - Université Lille 1



Educational Works. 3

CAMBRIDGE TEXTS WITH NOTES.
A Selection of the most usually read of the Greek and Latin Authors, dnnotated for
Schools. Fcap. 8ve. 1s. 6d. each, with ezceptions.

Euripides. Alcestis.—Medea.—Hippolytus.— Hecuba.— Bacehsm,
Ton. 2s. —Orestes. — Phoenissee. — Troades. —Hercules Furens. — Andro-
mache,—lphigenia in Tauris, By F. A. Paley, M A.

Zgchylus. Prometheus Vinctus.-— Septem contra Thebas.—Aga.-
memnon.—Persm.—Eumenides, By F. A. Paley, M. A,

Sophocles. (Hdipus Tyrannus. — (Edipus Coloneus.— Antigone.
By F. A. Paley, M_A.

Homer. Jliad. Book I. By F. A. Paley, M.A. 1ls.

Terence. Andria.—Hauton Timorumenos.—Phormio.—Adelphoe.
By Professor Wagner, Ph.D, "

Cicero. De Senectute, De Amicitia, and Epistole Selects. By
G. Long, M. A.

Ovid. Seleetions, By A. J. Macleane, M.A.

Others in preparation,

PUBLIC SCHOOL SERIES.
A Series of Classical Texts, annotated by well-known Scholars. Cr. 8vo,
Aristophanes. The Peace. By F. A. Palcy, M.A. 4s. 6d.
The Acharnians, By F. A. Paley, M.A, 4s. 6d.
The Frogs. By F. A. Paley, M.A. 4s¢. 6d.
Cleero. The Letters to Atticus. Bk. 1. By A.Pretor, M.A. 43.6d.
Demosthenes de Falsa Liegatione. By R. Shilleto, M.A. 6s.
The Law of Leptines. By B. W. Beatson, M.A. 3s, 6d.
Livy. Bock XXI. Edited, with Introduction, Notes, and Maps,
by the Rev. L. D. Dowdall, M,A., B.D. 3s. 6d.
Plato. The Apology of Socrates and Crito. By W. Wagner, Ph.D.
8th Edition. 8s. 6d. Cheap Kdition, limp cloth, Zs. 6d,
The Pheedo. 9th Kdition. By W. Wagner, Ph.D. bs. 6d.
The Protagoras. 4th Edition. By W. Wayte, M.A. 4s. 6d.
The Euthyphro. 3rd Edition. By G. H. Wells, M.A, 3s.
The Euthydemus. By G. H. Wells, M.A. 4s.

The Republic. Books I. & II. By . H. Wells, M.A. 2nd
Edition. 5s. 6d.

Plautus. The Aulularia. By W. Wagner, Ph.D. 3rd Edition. 4s.6d.
Trinummus. By W. Wagner, Ph.D, 3rd Edition. 4s, 6d.
The Menaechmei. By W. Wagner, Ph.D. 4s. 64d.
The Mostellaria, By Prof. E, A, Scnnenschein,  5s,
Sophoclis Trachiniss. By A. Pretor, M.A. 4s. 6d.
Sophocles. Oedipus Tyrannus. By B. H. Kennedy, D.D. 5s.
Terence. By W. Wagner, Ph.D. 10s. 6d.
Theocritus. By F. A. Paley, M.A. 4s. 6d.
Thucydides. Book VI. By T.W. Dougan, M.A,, Fellow of St.

John's College, Cambridge,  6s.

Others in preparation.

CRITICAL AND ANNOTATED EDITIONS.
Ztna. By H. A. J. Munro, M.A. 3s. 6d.

Aristophanis Comcediee. By H. A. Holden, LL.D. 8vo. 2 vols,
233, 6d. Plays sold separately.
Pax, By F. A. Paley, MLA, Fcap, 8vo, 4s. 6d.

1

IRIS - LILLIAD - Université Lille 1



4 Reorge Bell and Sons’

Calpurnius Sieculus. By C. H, Keene, M.A. Crown 8vo. 6s.

Corpus Poetarum Latinorum. Edited by Walker. 1vol. 8vo. 18s,

Horace. Quinti Horatil Flacei Opera. By H. A. J. Munro, M.A.
Large 8vo. 11, 1s.

Livy. The first five Books, By J. Prendeville. 12mo, roan, 5s.
Or Books I.-TI1. 3s. 6d. IV, and V. 3s. 6d.

Lucretius. With Commentary by H, A. J. Munro. 4th Edition.

Volg. I. and 11. Introduction, Text, and Notes. 18s. Vol. II1. Trans-
lation. fis.

Ovid. P.Ovidii Nasonis Heroldes XIV. By A.Palmer, M.A. 8vo.6s.
P. Ovidii Nasonis Ars Amatoria et Amores. By the Rev.
H. Williams, M.A. 3s, 6d. Tode

. Metamorphoses. Book XITI. By Chas. Haines Keane, M. A.

Propertius. Sex Aurelii Propertii Carmina. By F. A. Paley, M.A,
8vo. Cloth, 9s.

Sex Propertii Elegiarum. Libri IV. By A.Palmer. Feap.8vo. 5s.

Sophocles. The Ajax. By C. E. Palmer, M.A, 4s. 6d.

The Oedipus Tyrannus. By B, H. Kennedy, D.D. With
a Commentary, containing selected Notes by the late T. H. Steel, M.A.
Crown 8vo. 8s.

Thucydides. The History of the Peloponnesian War. By Richard
Shilleto, M.A. Book I. 8vo. 6s. 6d. Book II. 8vo. b5s. 6d.

LATIN AND GREEK CLASS-BOOKS.

First Latin Lessons. By A. M. M. Stecaman, M.A, Is.

A Latin Primer. By Rev. A. C. Clapin, M.A. 1s. :

Auxilia Latina. A Series of Progressive Latin Exercises. By
M.J.B.Baddeley,M.A. Feap.8vo. PartI. Accidence. 2nd Kdition, revised.
2s. Part II. 4th Edition, revised. 2s. Key to Part I1. 2s. 6d.

Scala Latina. Elementary Latin Exercises. By Rev. J. W.
Davis, M.A. New Edition, with Vocabulary. Feap. 8vo. 2s. 6d.

Latin Prose Lessons. By Prof. Church, M.A, 7th Edit. Fcap. 8vo.
2s. 6d.

Latin Exercises and Grammar Papers. By T. Colling, M.A. 5th
Edition. Fcap. Bvo. £s. 6d.

Unseen Papers in Latin Prose and Verse. With Examination
Questions. By T. Collins, M.A. 4th Edition. Fcap. 8vo. 2s. 6d.

“in Greek Prose and Verse. With Examination Questions.
By T. Colling, M.A. 2nd Edition. ¥ecap.8vo. 3s.

Taleg for Latin Prose Composition. With Notes and Vocabu-
lary. By G. H. Wells, M.A, 2s.

Latin Examination Papers in Grammar and Idiom. By A.
M., M. Stedman, M.A. Crown &vo. 2s. 6d.

Latin Vocabularies for Repetition. By A. M. M. Stedman, M.A.
Feap. 8vo. 1s. 6d.

Analytical Latin Xxercizses, By C. P, Mason, B.A. 4th EJit.
Tart 1., 1s. 6d. Part I1., 2s, 6d.

Latin Mood Construction, Qutlines of. With Fxercises. By
the Rev. G. E. C. Casey, M.A., F.L.8,, F.G.8. Small post 8vo. 1s. 6d.
Latin of the Exercises. 1s. 6d.

Soala Graeca: a Saries of Flementary Greck Exercises. By Rev. J. W.
Davis, M.A,, and R. W. Baddeley, M_A. 3rd Edition. Fcap.8vn. 2s. 6d.

Greek Verse Composition. By G. Preston, M.A. Crown 8vo.4s.6d.

Greek Particles and their Combinations according to Aitic Usage.
A Short Treatise. By F. A. Paley, M.A. 2s. 6d.

Greek Testament Selections, By A. M. M. Stedman, M, A.
Feap, 8vo. 1s. 6d.

IRIS - LILLIAD - Université Lille 1



Educational Works. 5
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Florilegium Poetleum. Elegiac Extractsg from Ovid and Tibullus,
New Edition. With Notes. Fcap. 8vo. 8s.

Anthologia Grseea. A Selection of Choice Greek Poetry, with Notes.
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Latin Versification. 1s.
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struction. New Kdition. 1s.

Riehmond Rules for the Ovidian Distich, &e. By J, Tate,
M.A, 1s.

The Principles of Latin Syntax. 1s,

Greek Verbs. A Catalogue of Verbs, Irregular and Defective; their
leading formations, tenses, and inflexions, with Paradigms for conjugation,
Rules for formation of tenses, &¢. &c. By J. 8, Baird, T.C.D. 2s. 6d,

Greek Accents (Notes on). By A. Barry, D.D. New Edition. ls.

Homeric Dialect. Its Leading Forms and Peculiarities. By J. S.
Baird, T.C.D. Now Edition, by W. G. Rutherford. ls.

Qreek Accidence. By the Rev. P. Frost, M.A. New Edition. 1s.

CAMBRIDGE MATHEMATICAL SERIES.
Arithmetic for Schools. By C. Pendlebury, M.A. 4s. 6d.
Algebra. Choice and Chance. By W. A. Whitworth, M.A, 4th

Edition. 8s.

Euclid. Books 1-VI. and part of Books XT. and XII. By H.

Deighton. 4s. 6d.

Euclid. Exzercises on Euclid and in Modern Geometry. By

J. McDowsll, M.A. 8rd Hdition. " 6s.

Trigonometry. Plane. By Rev.T.Vyvyan,M.A, 3rd Edit. 3s.6d.

Geometrical Conic Sections. By H. G. Willis, M\A. Man-
chester Grammar Bohool. 7s. 6d.

Conies. The Lllementary Geometry of. 4th Edition. By C. Taylor,

D.D. 4s. 6d.

Solid Geometry. By W. S. Aldis, M.A. 3rd Edif. revised. 6s.
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Geomstrical Optics. By W. S. Aldis, M.A, 2nd Edition. 4s.
Rigid Dynamics. By W. 8. Aldis, MLA. 4s.

Elementary Dynamics. By W. Garnett, M.A. 4th Edition. 6s.
Dynamics. A Treatise on. By W. H. Besant, D.Se., F.R.8. Ts. 6d.
Heat. An Elementary Treatise. By W, Garnett, M.A. 4th Edit.

Hydromechanics. By W, H. Besant, M,A., F.R.S. 4th Edition.
Part I. Hydrostatics. 5s.

Mechanics. Problems in Elementary. By W. Walton, M.A, 6s.

CAMBRIDGE SCHOOL AND COLLEGE
TEXT-BOOKS.

4 Series of Elementary Treatises for the use of Students in the
Universities, Schools, and Candidates for the Public
Ezaminations. Fcap. 8vo,

Arithmetic. By Rev.C.Elses, M.A. Fcap, 8vo, 12th Edit. 3s.6d,

By A. Wrigley, M.A. 3s. 6d.

A Progressive Course of Examples., With Answers, By
J. Watson, M.A. 6th Edition. 2s.6d.

Algebra. By the Rev. C. Elsee, M.A. 7th Edit. 4s.

Progressive Course of Examples. By Rev. W. F.

M'Michael, M.A., and R. Prowde Smith, M.A. 4th Edition. B3s.6d. With
Angwers. 4. 6d.

Plane Astronomy, An Introduction to, By P. T. Main, M A.
5th Edition. 4s.

Conic Sections treated Geometrically. By W. H. Besant, M.A.
S5th Edition. 4s. 6d. Bolution to the Examples. 4s.

Elementary Conle Sections treated Geometrically, By W. H.
Besant, M.A. [ In the press.

Conics. Enuneciations and Figures. By W. H. Besant, M.A. 1s.6d.

Statics, Elementary. By Rev. II. Goodwin, D.D, 2nd Edit.  3s.

Hydrostatics, Elementary. By W. H. Besant, M.A. 12th Edit. 4s.

Mensuration, An Elementary Treatise on. By B.T. Moore, M.A. 6s.

Newton's Principia, The First Three Sections of, with an Appen-
dix; and the Ninth and Eleventh Sections. By J. H. Evans, M.A. 5th
HKditicn, by P. T. Main, M.A. 4s. -

Optics, Geometrical, With Answers, By W. 8. Aldis, M.A, 3s. 6d.

Analytical Geometry for Schools, ByT. &.Vyvyun, 4th Edit, 4s.6d.

Greek Testament, Companion to the, By A. C. Barrett, A M,
5th Rdition, revised. Fcap. Bvo. B5s.

Book of Common Prayer, An Historical and Explanatory Treatise
on the. By W. G. Humphry, B.D. 6th Edition. Feap. 8vo. 2s. 6d.

Musie, Text-book of, By H, C, Banister. 12th Edit. revised. G&s.
Concise History of. By Rev. H. G. Bonavia Hunt, B. Mus.
Oxon. 7th Edition revised. 3s. 6d.

ARITHMETIC AND ALGEBRA.

See the two foregoing Series.
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GEOMETRY AND EUCLID.

Euclid. Books I.-VI. and part of XI. and XII. A New Trans-
lation. By H. Deighton. Crown 8vo. 4s. 6d.

The Definitions of, with Explanations and Exercises,

and an Appendix of Hxercises on the First Book. By R. Webb, M.A,

Crown 8vo. ls. 6d.

Book 1. With Notes and Fxercises for the use of Pre-

paratory Schools, &c. By DBraithwaite Arnett, M.A. 8vo. 4s. 6d.

The First Two Books explained to Beginners. By C. P,
Mason, B.A. 2nd Edition. Fcap. 8vo. 2s. 6d.

The Enunciations and Figures to Buclid's Elements. By Rev.
J. Brasse, D.D. New Edition. Fcap.8vo. 1s. On Cards, in case, 5s.
‘Without the Figures, 6d.

Exercises on Euclid and in Modern Geomstry. ByJ, McDowell,
B.A. Crown 8vo. 3rd Edition revised. 6s.

Geometrical Conic Sections. By H. G. Willig, M.A. 7s. 84,

Geometrical Conic Sections. By W. H. Besant, M.A, 5th Edit,
45, 64. Solution to the Kxamples. 4s.
Elementary Geometrical Conic Sections. By W, H. Besant,

M.A. [In the press.
Elementary Geome‘l.ry of Conica. By C. Taylor, D.D. 4th Edit,
8vo.

An Iutroductzou. to Ancient and Modern Geometry of Conics.
By C. Taylor, M.A. 8vo. 15s.

Solutions of Geomelrical Problems, proposed at St. John’s
College from 1830 to 1846. By T. Gaskin, M.A. 8vo. 12s,

TRIGONOMETRY.

Trigonometry, Infroduction to Plane. By Rev, T. G. Vyvyan,
Charterhouse. 3rd Kdition. Cr. 8vo. 3s,6d.

An Elementary Treatise on Mensuration. By B. T. Moore,
M.A. bs.

ANALYTICAL GEOMETRY
AND DIFFERENTIAL CALCULUS.

An Introduction to Analytical Plane Geometry. By W. P.
Turcbull, M.A, 8vo. 12,

Problems on the Prineciples of Plane Co-ordinate Geometry.
By W. Walton, M.A. B8vo. 16s.

Trilinear Co-ordinates, and Modern Anslytical Geometry of
Two Dimensions. By W, A. Whitworth, M.A. 8vo. 16s.

An Elementary Treatise on Solid Geometry. By W. S. Aldis,
M.A. Urd Hdition revised. Cr. 8vo, 6a.

Elementary Treatise on the Differential Caleulus. By M.
(’Brien, M.A. 8vo. 1Us. 6d.

Elliptic Functions, Elementary Treatise on. By A. Cayley, MLA.
Demy 8vo, 15s.

MECHANICS & NATURAL PHILOSOPHY.

Statics, Elementary., By H. Goodwin, D.D. Fecap, 8vo. 2nd
Edition. 3s. ;

Dynamics, A Treatise on Elementary. By W. Garnett, M.A.
4th Edition, Crown 8vo. 6s.
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Dynamics. Rigid. By W. 5. Aldis, M.A. 4s.

Dynamics. A Treatise on. By W.H. Besant, D.Se.,F.R.S. 7s, 6d.

Elementary Mechanics, Problemsin, By W. Walton, M.A. New
Edition. Crown 8vo. 6s.

Theoretical Mechanics, Problems in. By W. Walton, M.A.  3rd
Edition. Demy 8vo. 16s.

Hydrostatics. By W.II.Besant, M.A, Feap.8vo. 12th Edition. 4s.

Hydromechanics, A Treatise on. By W.H. Besant, M.A., F.R.S.
8vo. 4th Edition, revised. Part I. Uydrostatics. 5s.

Optics, Geometrical. By W. 8. Aldis, M.A, Crown 8vo. 2und
Edition. 4s.

Double Refraction, A Chapter on I'resnel’s Theory of. By W, 8.
Aldig, M.A. Bvo. 2s.

Heat, An Elementary Treatise on. By W. Garnett, M.A, Crown
8vo. 4th Kdition.

Newton’s Principia, The First Three Sections of, with an Appen-
dix ; and the Ninth and Eleventh Sections, By J. H. Evans, M.A. 5th
Edition, KEdited by P. T. Main, M.A. 4s,

Astronomy, An Introduction to Plane. By P. T. Main, M.A.
Feap. 8vo. cloth. 5th Edition. 4s.

Astronomy, Practical and Spherical. By R. Main, M.A, 8vo. 14¢
Astronomy, Elementary Chapters on, from the ¢Astronomie
Physique’ of Bict. By H. Goodwin, D.D. 8vo, 3s, 6d.

Pure Mathematics and Natural Philosophy, A Compendium of
Facts and Formule in. By G. R. Bmalley. 2nd Edition, revised by
J. McDowell, M.A. Fcap. 8vo. 3s. 6d.

lementary Mathematical Formulze. DBy the Rev. T. W. Open-
shaw. 1s. 6d.

Elementary Course of Mathemasatics. By H. Goodwin, D.D.
6th Edition. Bvo. 16s.

Problems and Examples, adapted to ‘the fllementary Course of
Mathematics.’ 3rd Edition. 8vo. 5s.

Solutions of Groodwin’s Collection of Problems and Examples.
By W. W. Hutt, M.A. 3rd Edition, revised and enlarged. 8vo. 9s.

Mechanics of Construction. With numerous Examples. By
S. Fenwick, F.R.A.8, 8vo. 1s,

TECHNOLOGICAL HANDBOOKS.
Edited by H. Truvemaxy Woop, Secrctary of the
Socicty of Arts.,
1. Dyeing and Tissue Prinling. By W. Crookes, F.R.S. 5s.

2. Glass Manufacture. By Henry Chance, M.A.; 1L J. Powell, B.A.;
and K. G, Harris. 3s. 6d.

3. Cotton Manufacture. By Richard Marsden, of Manchester.
2nd Edition, revised. 6. 6d.

4. Chemistry of Coal-Tar Colcwrs. Dy Prof. Benedikt. Trans-
lated by Lr. Knecht of Bradford. &s.
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HISTORY, TOPOGRAPHY, &c.

Rome and the Campagna. By R. Burn, M\A. With 85 En-
gravings and 26 Maps and Plans. With Appendix. 4to. 3. 3s.

Old Rome. A Handbook for Travellers. By R. Burn, M.A,
With Maps and Plans. Demy 8vo. 10s. 6d.

Modern Europe. By Dr. T. H. Dyer. 2nd Edition, revised and
continued. 5 vols. Demy 8vo. 2L 12s. 6d.

The History of the Kings of Roms. ByDr, T. H, Dyer, 8vo.16s.

The History of Pompeil: its Buildings and Antiquities. By
T. H. Dyer, 3rd Edition, brought down to 1874, Post 8vo. 7s. 6d.

The City of Rome: its History and Monuments, 2nd Editicn,
reviged by T. H. Dyer. 5s.

Anclent Athens: its History, Topography, and Remains, By
T. H, Dyer. Super-royal 8vo, Cloth. 1i. 55

The Decline of the Roman Republie. By G. Long. & vols,
8vo. 14s. each.

A History of England during the Early and Middle Ages. By
0. H. Pearson, M.A. 2nd Kdition revised and enlarged. 8vo. Vol I.
16s. Vol. II. 14s,

Historlecal Maps of England. By C. H, Pearson. Folio. 3rad
Edition revised, 31s. 6d.

History of England, 1800-15. By Harriet Martinean, with new
and copious Index. 1 vol. 3s. 6d.

History of the Thirty Years’ Peace, 181546, By Harriet Mar-
tinean. 4 vols. 3s, 6d. each.

A. Praoctical Synopsis of English History. By A. Bowes. 4th
Edition. 8vo. 2s.

Lives of the Queens of England. By A. Strickland. Library
Edition, 8 vols. 7s. 6d. each. Cheaper Edition, 6 vols. 5s. each. Abridged
KEdition, 1 vol. 6s. 6d.

Eginhard's Life of Karl the Great (Charlemagne). Translated
with Notes, by W. Glaister, M.A., B.C.L. Crown 8vo. 4s. 6d.

Outlines of Indian History. By A. W. Hughes. Swmall Post
8vo. 3s. 6d.

The Elements of General History. By Prof. Tytler, New
Edition, brought down to 1874, Small Post 8vo. 3s. 6d.

ATLASES,
An Atlas of Classical Geography. 24 Maps. By W. Hughes
and &. Long, M.A. New Edilion. Imperial 8vo, 12s. 6d.

A Grammar-School Atlas of Classical Geography. Ten Maps,
eelocted from the above. New Edition. Imperial 8vo. 5s.

Firat Classical Maps. By the Rev. J. Tate, M.A. 3rd Edition.
Imperial 8vo. 7s. 6d.

Standard Library Atlas of Classical Geography. Imp. 8vo.7s.6d.
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PHILOLOGY.

WEBSTER'S DICTIONARY OF THE ENGLISH LAN-
GUAGE. With Dr. Mahn’s Ftymology. 1 vol. 1628 pages, 3000 Illus.
trations. 2ls. With Appendices and 70 additional pages of Illustra-
tiong, 1919 pages, 31s. 64,

¢Trk BEST PRACTICAL ENGLISH DICTIONARY EXTANT.'—Quarterly Review, 1873,

Prospectuses, with spacimen pages, post free on application.
Richardson’s Philological Dictionary of the English Language.
Combining Explanation with Rtymology, and copiously illustrated by
Quotations from the best Authorities. With a Supplement. 2 vols. 4to.
4l. 14s. 6d.; half russia, 5. 158, 6d.; russis, 6. 12s. bupplement separately.
4t0. 12s.
An 8vo. Edit. without tho Quotations, 15e.; half russia, 20s.5 russia, 24s.
Brief History of the English L.anguage. By Prof. James Hadley,
LL.D., Yale Collega. Fcap. 8vo. 1s.
The Elements of the English Language. By E. Adams, Ph.D.
21st Edition. Post 8vo. 4s. 6d.
Philological Essays. By T. H. Kay, M.A., F.R.8. 8vo. 10s. 6d.
Language, its Origin and Development. By T. H. Key, M.A,,
F.R.8. 8vo, l4du.
Synonyms and Antonyms of the English Language. By Arch-
descon Smith. 2nd Edition. Post 8vo. 35s.
Synonyms Discriminated. By Archdeacon Smith. Demy 8vo.
2nd Edition revised. lds.
Bible English. Chapters on Words and Phrases in the Bible and
Prayer Book. By Rev. T. L. U. Davies. 5s.
The Queen’s English. A Manual of Idiom and Usage. By the
late Dean Alford 6th Edition. Feap. 8vo. 5s.
A History of English Rhythms. By Edwin Guest, M.A.,D.C.L.,
LL.D. New Edition, by Professor W. W. S8keat. Demy 8vo. 18s.
Etiymological Glossary of nearly 2500 English Words de-
rived from the Groek. By the Rev. E. J. Boyce. Fcap. 8vo. 3s. 6d.
A Syriac Grammar. By G. Phillips, D.D. 3rd Edition, enlarged.
8vo, 7s. 6d.
See also page 14.

DIVINITY, MORAL PHILOSOPHY, &e.

Novum Testamentum Grece. Editio major. By F. H. Scrivener,
AM,, L.I.D, D.C.L. Being an enlarged Edition, containing the Readings
of Westeott and Hort, and those adopted by the Revisers, &c. 7s, 6d.
For other Editions see page 2.

By the same duthor.

Codex Bezm Cantabrigiensis. 4to. 206s.

A Plain Introduction to the Criticism of the New Testament.
‘With Forty Facsimiles from Ancient Manusoripts. 3rd Edition. 8vo,18s.

Six Lectures on the Text of the New Testament. For English
Readers. Crown 8vo. 6s. s

The New Testament for English Readers. By thelate H. Alford,
D.D. Vol. L. Part 1. 3rd REdit. 12s. Vol. I. Part II. 2nd Edif. 10s. 6d.
Vol. IT. Part I. 2nd KEdit. 165, Vol. I1. Part I1, 2nd Edit. 18s,

The Greek Testament. By the late H. Alford, D.D. Vol I. 6th
Edit. 11. 8s. Vol. IT, 6th Edit. 11. ds. Vol. III. 5th Edit. 18s, Vol. IV,
Part 1. 4th Edit. 18s, Vol.1V. Part II, 4th Edit. 14s. Vol. 1V. 1i. 12s.
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Companion to the Greek Testament. By A. C. Barrett, M.A.
5th Edition, revised. Fcap. 8vo. &s,

The Book of Psalms. A New Translation, with Introductions, &e.
Ry the Very Rev. J. J. Btewart Perowne, D.D. B8vo. Vol. I. 6th Edition,
18s, Vol. I1. 6th Edit. 16s.

Abridged for Schools. 5th Edition. Crown 8vo, 10s. 6d.

History of the Articles of Religion. By C. H. Hardwick. 3rd
Hdition. Tost 8vo. Bbs.

History of the Creeds. By J. B. Lumby, D.D. 2nd Edition.
Crown 8vo. 7s. 6d,

FPearson on the Creed. Carefully printed from an early edition.
With Analysis and Tndex by E. Walford, M.A. Post 8vo. 5s.

Liturgics and Offices of the Church, for the use of English
Readers, in Illustration of the Book of Common Prayer. By the Hev.
Tdward Burhidge, M.A. Crown Bvo. 9s.

An Historical and Explanatory Treatise on the Book of
Common Prayer By Rev. W. &. Humohry, B.D. 6th Edition, enlarged.
Small Post 8vo. ¥s. 6d. ; Cheap Hditicn, s,

A Commentary on the Gospels, Epistles, and Acts of the
Apostles. By Rov. W. Denton, A.M. New Edition, 7 vols. 8vo. 18s.
eacl, except Vol. IL. of the Acts, 14s.  BSold separately.

Notes on the Catechism. By Rt. Rev. Bishop Barry. 7th Edit,
Feap. 2s.

Catechetical Hints and Helps. By Rev, E. J. Boyce, M.A, 4th
Kdition, revised. Fcap, 2s.6d.

Examination Papers on Religious Instruction. By Rev. E. J.
Boyce. Bewed. 1s.6d.

The Winton Church Catechist. Questions and Angwers on the
Teaching of the Church Catechism. By the late Rov. J. S. B, Monsell,
LL.D. 4th Edition. Cloth, 3s.; or in Four Parts, sewed.

The Church Teacher's Manual of Christian Instruction. By
Rev. M. F. Sadler. 34th Thounsand. 2s. 6d.

Easy Lessons cn the Church Catechism, for Sunday Schools.
By Rev. B, T. Barnes. 1s.6d.

FOREIGN CLASSICS.

4 Series for use in Schools, with English Notes, grammatical and
explanatory, and renderings of difficult idiomatic expressions.
Feap. 8vo.

Schiller's Wallenstein. By Dr. A. Buchheim. 5th Edit. 5s.
Or the Lager and Piccolomini, 2s. 6d. Walleustein’s Tod, 2s. 6d.

Maid of Orleans. By Dr. W. Wagner. 2nd Edit. 1s, 6d.

Maria Stuart. By V. Kastner. 2nd Edition. 1s. 6d.

Goethe's Hermann and Dorothea. By E. Bell, M.A., and
E. wWolfel. ls. 6d.

German Ballads, from Uhland, Goethe, and Schiller. By C. L.
Bielefeld. 3rd Edition. 1s. 6d.

Charles XTI, par Voltaire. By L. Direy. 7th Edition. 1s. 6d.
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Aventures de Télémaque, par Fénélon. By C. J. Delille. 4th
Edition, 2s. 6d.

Select Fables of La Fontaine. By F.E. A.Gasc. 18th Edit. 1s. 6d.

Pioclola, by X.B. Saintine. By Dr. Dubue. 15th Thousand. 1s. 6d.

Lamartine’'s TL.e Tailleur de Pierres de Saint-Point. LEdited,
with Notes, by J. Boielle, Senior French Master, Dulwich College. 4th
Thousand, Feap. 8vo.ls. 6d.

Italian Primer. By Rev. A. C. Clapin, M.A. Fecap. 8vo. 1s.

FRENCH CLASS-BOOKS.
French Grammar for Public Schools. By Rev. A. C. Clapin, M.A.
Feap. 8vo. 11th Rdition, revised. 2s. 6d.
French Primer. By Rev. A. C. Clapin, M.A. Fecap. 8vo. 7th Edit.

1s,

Primer of French Philology. By Rev. A. C. Clapin. Feap. 8vo.
2nd BEdit. 1s.

Le Nouveau Trésor; or, French Student’s Companion. By
M. E. 8. 18th Edition. Fcap. 8vo. 1s. 6d.

French Examination Papers in Miscellaneous Grammar and
Jdioms. Compiled by A. M. M. Stedman, M.A. Crown 8vo. 2s. 6d.

Manual of French Prosody. By Arthur Gosset, M.A. Crown

8vo. 3s.
o F. E. A, GASC’S FRENCH COURSE.
Firgt French Book. Fcap. 8vo. 96th Thousand. 1s. 64d.
Second French Book. 42nd Thousand., Feap. 8vo. 2s. 6d.
Key to First and Second French Books. 5th Edit. Fep. 8vo. 3s. 6d.
French Fables for Beginners, in Prose, with Index. 15th Thousand.
12mo. 2s,
Select F'ables of Lia Fontaine. 18th Thousand. Feap. 8vo. 3s.
Histoires Amusantes et Instructives. With Notes. 15th Thon-
gand. Feap. 8vo. 2s 6d
Practical Guide to Modern French Conversation. 16th Thou-
sand. Feap. 8vo. 2s. 6d.
French Poetry for the Young. With Notes. 5th Edition. Feap.
8vo. Zs.
Materials for French Prose Composition; or, Selections from

%us bgst English Prose Writers. 18th Thousand. Feap. 8vo. 4s. 6d.

ey, 6s.

Prosateurs Contemporains. With Notes. 9th Edition, re-
vised. 12mo. 5s.

Le Petit Compagnon; a French Talk-Book for Little Children.
11th Thousand. 16ma. 2s. 6d.

An Improved Modern Pocket Dictionary of the French and

English Languages. 38th Thousand, with Additions. 16mo. Cloth. d4s.
Also in 2 vols. in neat leatherette, 5s.

Modern French-English and English-French Dictionary. 3rd
and Cheaper Hdition, revised, In 1 vol. 10s. 6d.

The A B C Tourists' French Interpreter of all Immediate
Wants., By F. E. A, Gase, ls.
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GOMBERT'S FRENCH DRAMA.

Being a Selection of the best Tragedies and Comedies of Molidre,
Racine, Cormeille, and Voltaire. With Arguments and Notes by A.
Gombert. New Edition, revised by F. E. A. Gase. Fcap, 8vo, 1s. each;
sewed, 6d. CoNTENTE,

MorierE :(—Le Misanthrope. L'Avare. Le Bourgecis Gentilhomme. Le
Tartuife, Le Malade Imaginaire. Les Femmes Savantes. Les Fourberies
de Scapin. T.es Précieuses Ridicules. L’Ecole des Femmes. L'Hcole den’
Maris. Lo Médecin malgré Lui.

RaciNg :—Phédre.  Xisther. Athalie. Iphigénie. T.es Plaidenrs. La
Thébaide; ou, Les Fréres Ennemis. Aundromaque. Britannicus.

P. CorNEILLE;—Le Cid. Horace. (inma. Polyeuncte.
VoLTAIRE :—Zafre.

GERMAN CLASS-BOOKS.

Materials for German Prose Composition. By Dr. Buchheim.
10th Edition, thoroughly revised. Feap. 45.6d4. Key, Parts 1. and LI, 3a.
Parts IT1. and IV, 4s.

Advanced German Course. Comprising Materials for Trans-
lation, Grammar, and Conversation, By F. Langc, Ph.D., Professor
R. M. A. Woolwich. Crown 8vo- 1s. 6d.

Wortfolge, or Rules and Exercises on the Order of Words in
German Sentences. By Dr. F. Stock. 1s.6d.

A German Grammar for Public Schoolse. By the Rev. A. C.
Clapinand F. Holl Muller. 4th Edition. Fcap. 2s. 6d.

A German Primer, with Exercises. By Rev. A, C. Clapin. 1s,
Kotzebue's Der Gefangens. With Notesby Dr. W. Btromberg. 1s.

German Examination Papers in Grammar and Idiom. By
R. J. Morich. [In the press.

MODERN GERMAN SCHOOL CLASSICS.
Meister Martin, der Kiifner. FErzihlung von E. T. A. Hoffman.
By Prof. F. Lange, Ph.D. Fcap. 8vo. 1s. 6d.
Hans Lange. Schauspiel von Paul Heyse. By A, A, Mae-
donell, M.A,, Ph.D. Fcap. 8vo. Zs.
Auf Wache. Novelle von Berthold Auerbach. DerR GEFRORENE

Kvuss. Novelle von Otto Roquette. By A. A. Macdonell, M.A. Feap.
8vo. 2s.

Der Bibliothekar. Lustspiel von G. von Moser. By Prof. F.
Lange. Ph. D. Awuthorised edition. 2s.
Die "Journalisten. Lustspiel von Gustav Freytag. By Pro-
fessor F. Lange, Ph.D. 2s. 6d.
Eine Frage, Idyll von George Ebers, By F. Storr, B.A,,
Chief Master of Modern Subjects in Merchant Taylors’ Bchool.
[ Nearly ready.

ENGLISH CLASS-BOOKS.

A Brief History of the English Language. By Prof. Jas. Hadley,
LL.D., of Yale College, Fcap. 8vo. 1s.

Comparative Grammar and FPhilology. By A. C. Price, M.A.
2s. 6d.

The Elements of the English Language. By E, Adams, Pu.D.
21st Kdition. Post 8vo. 4s. 6d.
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The Rudiments of FEnglish Grammar and Analysis. By
E. Adams, Ph.D. 16th Thousand. Fcap. 8vo. 2s.

A Concise System of Parsing. By L. E. Adams, B.A. Feap. 8vo.
1s, 6d.

By C. P. Mason, Fellow of Univ. Coll. London.

First Notions of Grammar for Young Learners. Feap. 8vo,
24th Thousand. Cloth. 8d.

First Steps in English Grammar for Junior Clagses. Demy
18ma. 41st Thousand. 1s.

QOutlines of English Grammar for the use of Junior Classes.
53rd Thousand. Crown8vo. 2s

English Grammar, including the Principles of Grammatical
Anmnalysis, 28th Kdition. 110th Thousand. Crown 8vo. 3s. 6d.

A Shorter English Grammar, with copious Exercizes. 26th Thou-
gand. Crown 8vo. 3s. 6d.

English Grammar Practice, being the Exercises separately. 1s.

Code Standard Grammars. PartsI. and IL. 2d, each, PartsIIT.,
1V.,and V., 3d. each.

Notes of Lessons, their Preparation, &e. By José Rickard,
Park Lane Board School, Leeds, and A. H. Taylor, Rodley Board
School, Leeds. 2rd Edition., Crown 8vo. 2s.6d.

A Syllabic System of Teaching to Read, combining the advan-
tages of the © Phonice’ and the f Look-and-Say’ Bystems. Crown 8vo. 1s.

Practical Hints on Teaching. By Rev. J. Menet, M.A, 6th Edit.

revised. Crown 8vo. cloth, 2s. 6d. ; paper, 2s.

How to Earn the Merit Grant. A Manual of School Manage-
ment. By H. Major, B.A,, B.8c. 2nd Edit. revised. Part I. Infant
School, 3s. Part I1. 4s. Complate, 6s.

Test Lessons in Dictation. 3rd Edition. Paper cover, 1s. 6d.
Drawing Copies. By P. H. Delamotte. Oblong 8vo. 12s. Sold

also in parts at 1s. each.
Poetry for the Schoolroom. New Edition. Feap. 8vo. 1s. 6d.
The Botanist's Pockot-Book. With a copious Index. By W. R.
Hayward. b5th Edition, revised. Crown 8vo. cloth limp. 4s, 6d.

Experimental Chemistry, founded on the Work of Dr, Stéckhardt.
By C. W. Heaton. Post 8vo. B5s.

Picture School-Books. In Simple Language, with numerous
Tllustrations. HKoyal 16mo.

The Infant’s Primer. 3d.—School Primer. 6d.—School Reader. By J.
Tilleard. ls.—Poetry Book for Schools. 1s.—The Life of Joseph. 1s.—The
Scripture Parables. By the Rev. J. K. Clarke. 1s.—The Scripture Miracles.
By the Rev. J. E. Clarke. 1s.—The New Testamont History. By the Rev.
J. G. Wood, M.A. 1s.—The 0ld Testament History. By the Rev. J. G.
Wood, M.A. 1s.—The Story of Bunyan’s Pilgrim’s Progress. 1s.—The Lifs
of Christopher Columbus. By Sarah Crompton. Js.—Tho Life of Martin
Luther. By Sarah Cromptou. ls.
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BOOKS FOR YOUNG READERS.

A Series of Reading Books designed lo facilitate the acquisition of the power
of Reading by very young Children. In9 wols. limp cloth, 6d. each,

The Old Boathouge. Bell and Fan; or, A Cold Dip.

Tot and the Cat. A Bit of Cake. The Jay. The

Black Hen’'s Nest. Tom and Ned., Mrs. Bee. Suitable
The Cat and the Hen. Sam and his Dog Red-leg. for
Bob and Tom Lee. A Wreck. Inja.nts.‘

The New-born Lamb. The Rosewood Box. Foor
Fan., Shesp Dog.

The Story of Three Monkeys.

Story of a Cat. Told by Herself.

The Blind Boy. The Mute Girl. A New Tale of

Babes in a Wood. Buitable
The Dey and. the Knight. The New Bank Note. or

The Royal Vieit. A King's Walk on a Winter’s Day. Standards
Queen Bee and Busy Bee. L &1L
Gull's Crag.

A First Book of Geography. Bythe Rev.C. A.Johns.
Illustrated. Double size, 1s.

BELL’S READING-BOOKS.
FOR SCHOOLS AND PAROCHIAL LIBRARIES.

Now Ieady. PostBvo. Strongly bound in cloth, 1s, each.

*3rimm's German Tales. (Selected.) ’ 4
*Andersen's Danish Tales. Illustrated. (Selceted.) Suitable
Great Englishmen. Short Lives for Young Children. or
Great Englishwomen. Short Lives of. Standards
Great Scotsmen. Short Lives of. UL & 1¥.

*Masterman Ready. ByCapt. Marryat. Tlus. (Abgd.)
*Friends in Fur and Feathers. By Gwyn ryn
The Story of Little Nell. Abridged from the ¢ The 01d
Curiosity Shop.’
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