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C T I A P T E K I . 

HYDROKINEMATICS. 

1. T H E S C I E N C E O F H Y D R O D Y N A M I C S M A Y B E D I V I D E D I N T O T W O 

S E P A R A T E B R A N C H E S , V I Z . T H E M O T I O N O F L I Q U I D S A N D T H E M O T I O N O F 

G A S E S . T H E C H I E F I N T E R E S T A R I S I N G F R O M T H E L A T T E R B R A N C H O F T H E 

S U B J E C T I S D U E T O T H E F A C T T H A T A I R I S T H E V E H I C L E B Y M E A N S O F 

W H I C H S O U N D I S T R A N S M I T T E D , A N D C O N S E Q U E N T L Y T H E D I S C U S S I O N O F 

S P E C I A L P R O B L E M S R E L A T I N G T O T H E M O T I O N O F G A S E S B E L O N G S T O T H E 

T H E O R Y O F S O U N D R A T H E R T H A N T O H Y D R O D Y N A M I C S ; I T M U S T A L S O B E 

R E C O L L E C T E D T H A T I N O R D E R T O D E A L S A T I S F A C T O R I L Y W I T H M A N Y P R O B L E M S 

C O N N E C T E D W I T H T H E M O T I O N O F G A S E S , I T I S N E C E S S A R Y T O T A K E I N T O 

A C C O U N T C H A N G E S O F T E M P E R A T U R E A N D O T H E R M A T T E R S W H I C H P R O P E R L Y 

B E L O N G T O T H E S C I E N C E O F T H E R M O D Y N A M I C S . I N T H E E A R L I E R C H A P T E R S 

O F T H E P R E S E N T T R E A T I S E T H E G E N E R A L T H E O R Y O F T H E M O T I O N O F F L U I D S 

I S D I S C U S S E D , I N C L U D I N G T H O S E P E C U L I A R I T I E S O F M O T I O N W H I C H A R E 

A L I K E C O M M O N T O L I Q U I D S A N D G A S E S ; B U T T H E S U B S E Q U E N T C H A P T E R S 

A R E L I M I T E D A L M O S T E N T I R E L Y T O T H E C O N S I D E R A T I O N O F S P E C I A L P R O B L E M S 

R E L A T I N G T O T H E M O T I O N O F L I Q U I D S . 

I N A N C I E N T T I M E S V E R Y L I T T L E A D V A N C E I N H Y D R O D Y N A M I C S A P P E A R S 

T O H A V E B E E N M A D E . I N M O D E R N T I M E S T H E E A R L I E S T P I O N E E R S W E R E 

T O R R I C E L L I A N D B E R N O U L L I , W H O S E I N V E S T I G A T I O N S W E R E D U E T O T H E 

H Y D R A U L I C R E Q U I R E M E N T S O F I T A L I A N O R N A M E N T A L L A N D S C A P E G A R D E N I N G ; 

B U T T H E F I R S T G R E A T S T E P W A S T A K E N B Y D ' A L E M B E R T A N D E U L E R , W H O 

I N T H E L A S T C E N T U R Y S U C C E S S F U L L Y A P P L I E D D Y N A M I C A L P R I N C I P L E S T O 

T H E S U B J E C T , A N D T H E R E B Y D I S C O V E R E D T H E G E N E R A L E Q U A T I O N S O F 

M O T I O N O F A P E R F E C T F L U I D , A N D P L A C E D T H E S U B J E C T O N a S A T I S F A C T O R Y 

B A S I S . T H E D I S C O V E R Y O F T H E G E N E R A L E Q U A T I O N S O F M O T I O N W A S 

F O L L O W E D U P B Y T H E I N V E S T I G A T I O N S O F T H E G R E A T F R E N C H M A T H E ­

M A T I C I A N S L A P L A C E , L A G R A N G E A N D P O I S S O N , T H E F I R S T O F W H O M H A S 

L E F T U S a S P L E N D I D M E M O R I A L O F H I S G E N I U S I N H I S C E L E B R A T E D Theory 
of the Tides. 

B. 1 
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T H E N E X T A D V A N C E W A S M A D E B Y P O I S S O N 1 A N D G R E E N 8 ; T H E 

F O R M E R O F W H O M I N 1 8 3 1 D I S C O V E R E D T H E V E L O C I T Y P O T E N T I A L D U E 

T O T H E M O T I O N O F a S P H E R E I N A N U N L I M I T E D L I Q U I D , A N D T H E L A T T E R 

O F W H O M I N 1 8 3 3 , W I T H O U T A K N O W L E D G E O F P O I S S O N ' S W O R K , D I S C O V E R E D 

T H E V E L O C I T Y P O T E N T I A L D U E T O T H E M O T I O N O F T R A N S L A T I O N O F A U 

E L L I P S O I D I N A N U N L I M I T E D L I Q U I D . G R E E N ' S I N V E S T I G A T I O N W A S C O M ­

P L E T E D F O R T H E C A S E O F R O T A T I O N B Y C L E B S C H 3 I N 1 8 5 6 . 

T H E V E L O C I T Y P O T E N T I A L D U E T O T H E M O T I O N O F a V A R I E T Y O F C Y L I N ­

D R I C A L S U R F A C E S H A S A L S O B E E N D I S C O V E R E D D U R I N G T H E L A S T F I F T E E N 

Y E A R S ; H U T a S I M I L A R A D V A N C E H A S N O T B E E N M A D E A S R E G A R D S T H E 

M O T I O N O F T W O O R M O R E S O L I D S . T H E K I N E T I C E N E R G Y O F A L I Q U I D D U E 

T O T H E M O T I O N O F T W O C Y L I N D E R S W H O S E C R O S S S E C T I O N S A R E C I R C U L A R , 

H A S B E E N O B T A I N E D B Y H I C K S 4 A N D G R E E N H I L L 5 . T H E F O R M E R H A S A L S O 

W R I T T E N S E V E R A L V A L U A B L E P A P E R S O N T H E M O T I O N O F T W O S P H E R E S 8 , 

W H I C H H A V E P L A C E D T H I S P R O B L E M I N a P E R F E C T L Y S A T I S F A C T O R Y C O N ­

D I T I O N . A C O M P L E T E D I S C U S S I O N O F T H E M O T I O N O F T W O O B L A T E O R 

P R O L A T E S P H E R O I D S W H O S E E X C E N T R I C I T I E S A R E N E A R L Y E Q U A L T O Z E R O O R 

U N I T Y , W O U L D B E A N A T T R A C T I V E S U B J E C T F O R I N V E S T I G A T I O N , A N D W O U L D 

T H R O W L I G H T O N T H E M O T I O N O F T W O S H I P S S A I L I N G A L O N G S I D E O N E 

A N O T H E R . 

I N 1 8 4 5 P R O F E S S O R S T O K E S ' P U B L I S H E D H I S W E L L - K N O W N T H E O R Y O F 

T H E M O T I O N O F A V I S C O U S L I Q U I D , I N W H I C H H E E N D E A V O U R E D T O A C C O U N T 

F O R T H E F R I C T I O N A L A C T I O N W H I C H E X I S T S I N A L L K N O W N L I Q U I D S , A N D 

W H I C H C A U S E S T H E M O T I O N T O G R A D U A L L Y S U B S I D E B Y C O N V E R T I N G T H E 

K I N E T I C E N E R G Y I N T O H E A T . T H I S P A P E R W A S F O L L O W E D U P I N 1 8 5 0 B Y 

A N O T H E R 8 , I N W H I C H H E S O L V E D V A R I O U S P R O B L E M S R E L A T I N G T O T H E 

M O T I O N O F S P H E R E S A N D C Y L I N D E R S I N A V I S C O U S L I Q U I D . P R E V I O U S L Y T O 

T H I S P A P E R N O P R O B L E M R E L A T I N G T O T H E M O T I O N O F A S O L I D B O D Y I N A 

L I Q U I D H A D E V E R B E E N S O L V E D , I N W H I C H T H E V I S C O S I T Y H A D B E E N T A K E N 

I N T O A C C O U N T . 

S I N C E T H E T I M E O F L A G R A N G E T H E E S S E N T I A L D I F F E R E N C E B E T W E E N 

T H E M O T I O N O F A F L U I D W H E N A V E L O C I T Y P O T E N T I A L E X I S T S A N D W H E N I T 

D O E S N O T E X I S T H A D B E E N R E C O G N I S E D ; A N D A N O P I N I O N V E R Y G E N E R A L L Y 

1 Mem. de VAcad. des Sciences. Paris, vol. xi. p. 521. 
a Trans. Roy. Soc. Edinburgh, vol. xin. p. 54. 
3 Crelle, vol. i.n. p. 119. 
4 Quart. Journ., vol. xvi. pp. 113 and 193. 
6 Ibid. vol. X V I I I . pp. 356—362. 
« Proc. Camb. Phil. Soc, vol. ni. p. 276, vol. rv. p. 29, and Phil. Trans., 1880. 
7 Trans. Camb. Phil. Soc, vol. v m . p. 287. 
8 Ibid. vol. IX. part n. p. 8. 
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I N T R O D U C T I O N . 3 

prevailed that if at any particular instant some particular portion 
of the fluid were moving in such a manner that a velocity poten­
tial existed, the subsequent motion of this same portion of fluid 
would always be such that the component velocities of its ele­
ments wrould be derivable from a velocity potential. The first 
rigorous proof of this important proposition was given by Cauchy, 
and a different one was subsequently given by Stokes1, but until 
the year 1858 no complete investigation respecting the peculiari­
ties of rotational motion had ever been made. This was effected 
by Helmholtz2 in his celebrated memoir on Vortex Motion, which 
may perhaps be considered the most important step in hydro­
dynamics which has been made during the present century. The 
.same subject was subsequently taken up by Sir W. Thomson3 and 
the theory of polycyclic velocity potentials fully investigated. 
During the last six years important additional investigations on 
the theory of vortex rings have been made by Hicks4 and J. J. 
Thomson0. 

The last twenty years have witnessed a great advance in 
hydrodynamics, and numerous important papers have been written 
by many eminent mathematicians both British and foreign, 
which will be considered in detail in the present work. 

We shall now proceed to consider the definitions and principles 
of the subject. 

2. A fluid may be defined to be an aggregation of molecules, 
which yield to the slightest effort made to separate them from 
each other, if it be continued long enough. All fluids with which 
we are acquainted may be divided into liquids and gases; the 
former are so slightly compressible that they are usually regarded 
as incompressible fluids, whilst the latter are very highly com­
pressible. 

A perfect fluid is one which is incapable of sustaining any 
tangential stress or action in the nature of a shear; and it will be 
shown in the next chapter that the consequence of this property 
is, that the pressure at every point of a perfect fluid is equal 
in all directions, whether the fluid be at rest or in motion. A 

1 Trans. Camb. Phil. Soc, vol . v m . p. 305. 
2 Crelle, vol. L V . p. 25 ; translated by Tai t , Phil. Mag. (4) XXXIII . p . 485. 
3 Trans. Roy. Soc. Edin., vo l . xxv. p. 217. 
4 Phil. Trans., 1881, 1884 and 1885. 
0 Adams' Prize Essay, 1882. 

1—2 
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perfect fluid is however an entirely ideal substance, since all fluids 
with which we are acquainted are capable of offering resistance to 
tangential stresses. This property, which is known as viscosity, 
gives rise to an action in the nature of friction, by which the 
kinetic energy is gradually converted into heat. 

In the case of gases, water and many other liquids, the effects 
of viscosity are small; such fluids may therefore be approximately 
regarded as perfect fluids. It will therefore be desirable to com­
mence with the study of the motion of perfect fluids, reserving 
the consideration of viscous fluids for the second volume. 

There are certain kinematical propositions which are true for 
all fluids, and which it will be convenient to investigate before 
entering upon the dynamical portion of the subject. These 
propositions form the subject of the present chapter. 

3. The motion of a fluid may be investigated by two different 
methods, the first of which is called the Lagrangian method, and 
the second the Eulerian or flux method, although both are due to 
Euler. 

In the Lagrangian method, we fix our attention upon an 
element of fluid, and follow its motion throughout its history. 
The variables in this case are the initial coordinates a, b, c of the 
particular element upon which we fix our attention, and the time. 
This method has been successfully employed in the solution of 
very few problems. 

In the Eulerian or flux method, we fix our attention upon a 
particular point of the space occupied by the fluid, and observe 
what is going on there. The variables in this case are the 
coordinates x, y, z of the particular point of space upon which we 
fix our attention, and the time. 

Velocity and Acceleration. 
4. In forming expressions for the velocity and acceleration of 

a fluid, it is necessary to carefully distinguish between the 
Langrangian and the flux method. 

I. The Langrangian Method. 
Let ii, v, vj be the component velocities parallel to fixed axes, 

of an element of fluid whose coordinates are ie, y, z and x + Sx, 
y + Sy, z -f Sz at times t and t + St respectively, then 

u = dx/dt=x, v = y, w = i (1), 
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VELOCITY AND ACCELERATION. 5 

whore in forming x, y, z we must suppose x, y, z to be expressed in 
terms of the initial coordinates a, b, c and the time. 

If the axes, instead of being fixed, were moving with angular 
velocities 6 l t #2, 03 about themselves, the component velocities 
would be given by the equations, 

u = x - y 9 s + z O i t v = y — z 8 1 + x 6 s , w = z — x d i + y 8 r . . ( 2 ) . 

It should be noticed that x, y, z are the velocities of the fluid 
relative to the moving axes. 

The expressions for the component accelerations are 
f* = u = x , f v = y,f, = 'z (3) , 

when the axes are fixed, and 
fx = u - v 9 3 + w 9 i , f v = v - w 9 1 + uds,f<, = w - u92 + v 0 a . . . (4) 

when the axes are in motion. Here u, v, w must be supposed to 
be expressed in terms of a, b, c and t. 

II. The Flux Method. 

5. Let SQ be the quantity of fluid which in time Bt flows across 
any small area A, which passes through a fixed point P in the 
fluid ; let p be the density of the fluid, q its resultant velocity, and 
e the angle which the direction of q makes with the normal to A, 
drawn towards the direction in which the fluid flows. Then 

BQ = pq ASt cos e, 
therefore q = — —? . 

1 p A cos e at 

Now A cos e is the projection of A upon a plane passing 
through P perpendicular to the direction of motion of the fluid; 
hence SQ is the independent of the direction of the area, and is 
the same for all areas whose projections upon the above-mentioned 
plane are equal. Hence the velocity is equal to the rate per unit 
of area divided by the density, at which liquid flows across a plane 
perpendicular to its direction of motion. 

The velocity is therefore a function of the position of P and 
the time. 

6. We may therefore put u — F (x, y, z, i); whence if the axes 
are fixed, and if u + Bu be the velocity parallel to x at time t + B t 

of the element of fluid which at time t was situated at the point 
0. y, z \ 

Bu = F(x + uSt, y + vBt, z + wBt, t + Si) - F(x, y, s, t). 
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Therefore the acceleration, 

f — Y _ d u du ^ d u w ^ u 

~~ St dt dx dy d z ' 

Hence if d/dt denotes the operator 
d/dt + ud/dx + vd/dy + wd/dz, 

the component accelerations will be given by the equations 

When the axes are in motion let u + Su be the component 
velocity at time t + St, parallel to the new position of the axis of x , 
of the element which at time t was situated at the point x , y , z ; 
then if U, V, W be the component velocities relative to the axes, 

Su = F(x + USt, y + VSt, z + WSt, t + St) ~ F(x, y, z, t). 

Therefore 
Su _ d u jj du y du du 

St St dx dy d z ' 

where the values of U, V, W are given by (2). Hence if d/dt 
denote the operator djdt-r Ud/dx + Vd/dy + Wd/dz, the com­
ponent accelerations parallel to the moving axes are given by the 
equations 

Similarly it can be shown that if or, 8, z be cylindrical coordi­
nates, and u , v, w be the component velocities measured in the 
directions in which the former quantities increase, 

. _ du v* . _ dv uv j . _ dw 

dt -sr Ct vt 

where 
3 d d v d d 

dt dt dzr 'sr dO d z ' 

If ( r , 8, </>) be polar coordinates and u, v, w be the velocities 
measured in the directions in which these quantities increase, 

du + j . dv , uv w 2 

r 

r uu v -f w p uv uv w , n 

t r = ai • / « = 57 "I COlO, 
dt r J dt r 

. dw uw uv , . 

J V dt r r v ' 

vhere 
o d d v d 
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T H E E Q U A T I O N O F C O N T I N U I T Y . 7 

The Equation of Continuity. 
7. Before proceeding further, it will be convenient to intro­

duce the following lemma, which is a particular case of Green's 
Theorem, which will be considered more fully in Chapter IV. 

Let v, £ be any functions of x, y, z, which are finite and 
continuous at all points within a closed surface 8, then 

as ( I + % + S ) ^ * = / / « + + » » 

where the triple integral extends throughout the volume enclosed 
by S, and the double integral is taken over the surface of S, and 
I, m, n and the direction cosines of the normal at any point of 
S drawn outwards. 

Integrating the left-hand side of (9) by parts we obtain 

' D F jjj' j^dxdydz= jjgdydz 

where the brackets refer to the limits of integration. Now since 
the surface S is closed, it follows that any line parallel to x which 
enters the surface a given number of times must issue from it the 
same number of times, hence if I is positive at the point of 
entrance, it must be negative at the corresponding point of exit; 
hence 

where the integration with respect to 8 extends over the whole 
surface. Treating the other two terms in a similar manner we 
obtain the theorem in question. 

8. If the motion of a fluid be continuous, it is evident that 
the increase in the amount of fluid within a fixed space, which 
takes place during any given interval, must be equal to the amount 
which flows in across the boundaries of that space. 

Let p be the density of the fluid at time t, then the increment 
during an interval St in the mass of the fluid bounded by any 
fixed surface S, 

-III htdxdydz. 

The amount of fluid which flows into 8 across the boundary, 
= — Jjp (lu + mv + nw) ht dS, 

d ^ ) + i ^ +

 dJP^\8tdxdyd,, 
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by (9). Equating these two values of the increment, we obtain 

dp | d (pu) t d (pv) [ d (pw) = Q ^ 
oft cfa; cfy dz 

This equation is usually called the equation of continuity. 

In the case of a liquid p is constant, whence 
du dv dw _ 
dx dy dz ^ 

9. The same result is often obtained in a different manner, 
which we shall illustrate by finding the equation of continuity of a 
liquid referred to polar coordinates. 

Let u, v, w be the velocities in the r, 8, c£ directions, and let 
r2 sin 8 hr 88 8<p be a small element of volume. The quantity of 
liquid which in unit of time flows in across the face r2 sin 688&d> 

— pur'2 sin 8888(p. 
The quantity which flows out across the opposite face 

= pur2 sin 9888<p + p s m 8 (fu) 8r88 Sep. 

Hence the total loss 

= p S m 6 ^ 0 8r888^. dr 
Equating the total loss due to the flow across all the faces of 

the element to zero, we obtain 
. ad(fu) d(vsin8) dw 

dr d8 d<p 
If cylindrical coordinates are employed, the equation is 

d (tsu) dv dw n n o x 

-£T + de+vdi = 0 ( 1 3 ) -
10. In a large and important number of problems the quan­

tity udx + vdy + wdz is a perfect differential dtp, whence 
u = dcpjdx, v = dqb/dy, w = dep/dz ; 

hence if ds be a linear element drawn in any direction, and q be 
the velocity in the same direction q = dcj>/ds. The function tp 
is called the velocity potential. 

Substituting the above values of u, v, w in (11), we obtain 

m 
or Vaci = 0. 
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THE BOUNDING SURFACE. 9 

This equation is usually known as Laplace's equation, and the 
operator V 2 as Laplace's operator. 

The values of V 2 in polar and cylindrical coordinates are re­
spectively, 

cT . 2 d . 1 cf cot0 d_ 1 _ _cP . 

and 

d r 2 + 
1 

GMS7 UT aiTJ" H7 

r2 dff* 

1 d* 
7- ¿0 r* sin2 (9 Jo52 

d8' + dz° 
.(16). 

These results may be readily obtained by substituting the 
values of u , v , w in terms of nb in (12) and (13). 

11. The preceding forms of the equation of continuity are not 
convenient when the Lagrangian method is employed. To find an 
appropriate form, consider a small rectangular parallelepiped 
whose diagonal is P Q . Let a , b, c, a + Sa, b + Sb, c + Sc be the 
coordinates of P and Q respectively. At the end of a time t, the 
fluid of which the parallelopiped is composed will form a dif­
ferently situated oblique-angled parallelopiped. The volume of 
the latter =JSaSbSc, 

where J is the Jacobian of x , y , z and is equal to 

dx dy dz 

da ' da da 1 

dx 

db' 

dx 

do ' 

dy dz 

d b ' db 

dy 

do ' 

dz 

do 

Hence if p 0 be the initial density, and p the density at time t, 
the required equation is 

J P = Po (17). 

In the case of a liquid p = p 0 and therefore 

J=l (18). 

The Bounding Surface. 

1 2 . Besides the equations which must be satisfied within the 
interior of a fluid, it is necessary that certain other conditions 
should be satisfied at the boundary, which depend upon the 
special problem under consideration. 

If the fluid is bounded by a surface whose equation referred to 
axes fixed in space is F (*, y , z , i) = 0, the normal velocity of the 
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Lines of Flow and Stream Lines. 

1 3 . D E E . A line of flow is a line whose direction coincides 
with the direction of the resultant velocity of the fluid. 

The differential equations of a line of flow are 
dx dy dz 

u v w 

Hence if ^ (x, y, z, i) = a.v ^ (x, y, z, i) = a2 be any two in­
dependent integrals, the equations x1 = const., ̂ 3 = const., are the 
equations of two families of surfaces whose intersections determine 
the lines of flow. 

D E E . A stream line, or a line of motion, is a line whose 
direction coincides with the direction of the actual paths of the 
elements of fluid. 

The equations of a stream line are determined by the simul­
taneous differential equations, 

x = u, y — v, z = w, 

where x, y, z must be regarded as unknown functions of t. The 
integration of these equations will determine x, y, z in terms 
of the initial coordinates and the time. 

fluid at the surface must be equal to the normal velocity of the 
surface, hence the sheet of fluid of which the boundary is com­
posed must always consist of the same elements of fluid. 
Hence 

F (cc + uSt, y + vSt, z + wSt, t + St) = 0, 
and therefore 

dF dF dF dF n / 1 f A 

- ^ - . + u - r + v - r - + w - r = 0 ( 1 9 ) . 
at dx ay dz 

If the boundary is fixed, the condition becomes 

lu + mv + nw = 0 (20). 

If the axes be in motion, the condition is 

™ -
where U, V, W are the velocities of an element of fluid relative to 
the axes. 

It should be noticed that ( 1 9 ) or ( 2 1 ) must be satisfied by 
every surface which is composed of the same elements of fluid. 
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14. If through every point of a small closed curve lines 
of flow be drawn, they will enclose a mass of fluid which may be 
called a tube of flow. 

Let us apply the lemma of § 7 to a portion of liquid bounded 
by a tube of flow and two planes perpendicular to it. Putting 
u = v = 17, w = and taking account of (11), we obtain 

0 - / / / ( £ + 1 + d £ ) d x d y d z = / / ( l u + m v + n w ) d z -
At every point of the curved surface of the tube of flow, 

lu + mv + nw = 0 ; at the two ends this quantity is respectively 
equal to q1 and — q2, where ql and q2 are the velocities of the 
liquid at the ends. Hence the surface integral = qldSl — q?dS2 = 0 ; 
whence the product of the velocity of a liquid and the cross 
section of a tube of flow is constant throughout the length of 
the latter. 

In the next place, a line of flow cannot begin or end in any 
portion of a liquid throughout which the velocity is finite, but must 
either form a closed curve or have its extremities in the boundaries 
of the portion of liquid. 

For if a line of flow ended the liquid, it would be possible to 
draw a closed surface cutting a tube of flow once only. Hence 
lu + mv + nw would be zero at every point of the closed surface 
excepting where it cuts the tube of flow, and therefore the surface 
integral would not be zero. 

15. When a velocity potential exists, the equation 
udx + vdy -f wdz = 0 

is the equation of a family of surfaces, at every point of which the 
velocity potential has a definite constant value, and which may be 
called surfaces of equi-velocity potential. 

If P be any point on the surface, = const., and dn be an 
element of the normal at P which meets the neighbouring surface 
0 + S<f> at Q, the velocity at P along PQ will be equal to dq>/dn; 
hence dob must be positive, and therefore a fluid always flows 
from places of lower to places of higher velocity potential. 

The lines of flow evidently cut the surfaces of equi-velocity 
potential at right angles. 

16. The solution of hydrodynamical problems is much sim­
plified by the use of the velocity potential (whenever one exists), 
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since it enables us to express the velocities in terms of a single 
function d). But when a velocity potential does not exist, this 
cannot in general be done, unless the motion either takes place 
in two dimensions, or is symmetrical with respect to an axis. 

In the case of a liquid, if the motion takes place in planes 
parallel to the plane of xy, the equation of the lines of flow is 

udy-vda) = Q (22). 

The equation of continuity is 
du dv 

dx dy ' 

which shows that the left-hand side of (22) is a perfect differ­
ential d-ty, whence 

· - - £ W 

The function \/r is called Earnshaw's current function. 

When the motion takes place in planes passing through the 
axis of z, the equation of the lines of flow may be written 

or (wdiB- — udz) = 0 (24). 

The equation of continuity is 
d ( E T M ) dw _ 

dm dz ' 

which shows that the left-hand side of (24) is a perfect differential 
d-^r, whence 

w = - - ^ - , u = ~ (25), 

where yfr is Stokes' current function. 

17. The existence of a velocity potential function involves 
the conditions that each of the three quantities, 

dwjdy — dv/dz, du/dz — dw/dx, dv/'dx — du/dy, 

should be everywhere zero; when such is not the case we 
shall denote the above quantities by 2f, 2tj, 2f. The quantities 
|, -n, f, for reasons which will bo explained in the following 
chapter, are called the components of molecular rotation. They 
evidently satisfy the equation 

dJ + %L+§=0 (26). 
dx dy dz 
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FORMULAE OF TRANSFORMATION. 13 

Formulae of Transformation1. 

18. The equations connecting the components of molecular 
relation with the velocities are, 

9f:_(iu! dv _du dui <0y_dv du „ 

^ ~ d y ~ d z ' ^ ~ d z ~ d x ' l l = t e ~ T y { 

In order to obtain the equivalent equations when polar 
coordinates arc employed, let r, 8, <f> 
be the coordinates of P, and let 
u, v, w and u + 8u, v + Sv, w + 8w be 
the velocities at the points r, 8, <p 
and r + 8r, 8+89, <f> + 8cp respec­
tively, measured in the directions 
in which these quantities increase; 
also let u + 8u', v + 8v', w + 8w' be 
the velocities at the last mentioned 
point parallel to the directions of 
u, v, w. 

Let us choose the axes of x, y, z 
so as to coincide with the directions of r, 8, and <p respectively, then 

dx = dr, dy = rdd, dz = r sin 8d<fi, 

and therefore we at once obtain 
du' _ du dv' _ dv dw' _ dw 

dx dr ' dx dr' dx dr ^ '' 

Let Q be a point whose coordinates are r, 8 + 88, <f>; then 

du [ . dv 
du 

dy ' 

dv 

dy 

dw' 

dy 

r88 

1 du v 

r dd r 

dv 

.(29), 

v + dd cos 89+^u + 88} sin 88 —v 

r89 

1 dv u 

r d8 + r' 

1 dw 

r d§ 

•(30), 

.(31). 

1 Besant, Mess, of Math., vol. xi . p. 03. 
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Let 11 "be a point whose coordinates are r, 0, <p, + &<j); and let 
P0R = 8X, PTB = SX'; then 

8 ^ = sin &x = cos f?S<7). 

Hence 

du 
dz 

u + ^ S(£ j cos 8^ - ^ + ^ 80 ) sin 8^ — u 

r sin L9S0 

1 du 
r sin f o!(jj r 

dv 

.(32), 

dv' 
dz 

dw' 
dz 

r sin 88<p 

-.--cote .(33), 
r sin 0 d(j) r 

8 T ^ C O S 8 ( f r 4 - ^ I T + ^ 8d)̂  s i n 8 % + ^ + ^ ^ 0 ) s i n8^'—w 

r sin 6 8 0 
dw u v , . 

—^—5 ^ + - + - c o t 0 r sm f ao> r r 
1 

sii 

Hence 

.(34). 

dw 1 dw w , . = —-1— cot a — r do r 
1 dv " 

dy dz 
1 dw w , . = —-1— cot a — r do r •r sin 6 d$ 

du dw' 1 du dw w 
dz dx r sin Q d(p dr r -

dv du dv v 1 du 
dr r r dO dx dy 
dv v 1 du 
dr r r dO 

.(35). 2V = 

2? = 

19. If cylindrical coordinates CT, (?, z are employed ; let u, v, w 
and M + 8 M , T; + Su, w + Sw be the velocities at the points TO-, 6, z 
and •or-f 8 T S - , 0 + 8 0 , £ + Sz respectively; and let u + du, v •+ dv' 
be the velocities at the last mentioned point parallel to u and v. 

Then dx = d-us, dy = tsdO, 
du _ du dv' dv dw dw 
dx d-n' dx d'uT' dx d-ar 

du . . A / dv 

and •(36), 

/ du . . A 
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du dv' (v+reêe)cosB0+{u + d8 
dy 

se S0-; 

7se 

1 dv u 

TS dd •UT 

dw dw 

dy TxdO 

du' _ du dv _ dv 

dz dz ' dz dz 

Therefore 

1 dw dv 

•as- d8 dz 

du dw 

dz d-m 

dv v 1 du 

dzj "ST •sx dd 

.(38), 

.(39), 

.(40). 

.(41). 

EXAMPLES. 

1. Find the equation of continuity in a form suitable for air 
in a tube, and prove that if the density be /(at — x) when t is the 
time and x the distance from one end of a uniform tube, the 
velocity is 

of (at - x) + ( V - a) /(at) 

/(al—x) 

where V is the velocity at that end of the tube. 

2. If the motion of a liquid be in two dimensions, prove that 
if at any instant the velocity be everywhere the same in magni­
tude, it is so in direction. 

3. If every particle of a fluid move in the surface of a sphere, 
prove that the equation of continuity is 

^ cos 8 + (pa cos 8) + ^ (pa> cos 6) = 0, 

where p is the density, 8 and <p the latitude and longitude of any 
element, and a, œ the angular velocities of the element in latitude 
and longitude respectively. 
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4. In the last example prove that if the motion is irrotational 
the velocity potential is equal to 

/ (log tan \6 + i<f>) + F (log tanjtf - «/>), 
where t = . / — 1 and f and F are arbitrary functions. 

5. An infinite mass of liquid is bounded by the plane zx, on 
which are small corrugations given by y = cf> (x). The velocity of 
the liquid at an infinite distance from the plane is parallel to x 
and equal to V. Prove that the velocity potential is 

X 7 T J y' + (x-Xf 
6. In the general motion of a fluid, prove that if F is the 

normal acceleration at any point on a closed surface described in a 
fluid, 6 the expansion, co the molecular rotation, and £ the strain 
invariant 

fg + gh + Af — a2 — 62 — c2, where / = dujdx, 2a = dw/dy + dv/dz, 

then | p W S = j ] J ( ^ + <?s + 2co2 - 25f) cfc% dz. 

7. Fluid is moving in a fine tube of variable section k, prove 
that the equation of continuity is 

where v is the velocity at the point s. 

8. If F (x, y, z, t) is the equation of a moving surface the 
velocity of the surface normal to itself is 

- I where E* = (dF/dx)2 + (dF/dyf + (dF/dz)*. 

Hence deduce equation (19). 

9. If x, y and z are given functions of a, b, c and t, where a, 
b and c are constants for any particular element of fluid, and if 
u, v and w are the values of x, y, z when a, b, c are eliminated, 
prove analytically that 

d2x du du du du 
df dt dx dy dz ' 

10. Liquid which is moving irrotationally in three dimen­
sions is bounded by the ellipsoid (xjcif + (y/by + (s /c) 2 = 1, where 
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a ^ a2 + b* ' c' + tz" ' 
with similar expressions for v and w. 

11. If the lines of flow of a fluid lie on the surfaces of coaxial 

cones having the same vertex, prove that the equation of con­

tinuity is r\ji ^ r dr ^ U + c o s c c ^ ^ (pv) = 0-

12. Show that 

x'liakty + kf {{yjb)2 + {zjcY} = 1 
is a possible form of the bounding surface at time t of a liquid. 

13. The position of a point in a plane is determined by the 
length r of the tangent from it to a fixed circle of radius a, and 
the inclination 8 of the tangent to a fixed line. Show that the 
equation of continuity for a liquid moving irrotationally in the 
plane will be 

dty 1 d$ 1 d'd> a2 /d2 d> _ l t o a / d*d>_ _ 1 dab\ 
dr' + r dr + r2 dffs + r' [dr2 r dr) + r2 { drdd r dSj ~ 

Hence indicate a method of finding the motion of a liquid 
in the developable surface whose edge of regression is a right 
helix, pointing out any peculiarities of the motion. 

14. If the velocity potential of a liquid is of the form 
(f>=f(vT)F(0)'x(z), where rz, 0, z are cylindrical coordinates, 
prove that the equation of continuity is satisfied if ft F, satisfy 
the three equations 

^ « S + - % + ( « V - ° - w+»'F=°- S - = ° -

where n and k are constants ; and hence show that 

tp = £ A cosh k (z — c) cos n (8 — a) I cos («r sin at — nto) da>. 
' 0 

a, b, c are functions of the time, such that the volume of the 
ellipsoid remains constant. Prove that if the ellipsoid is rotating 
with angular velocities mlt < H 2 , « B 3 about its principal axes, and 
u, v, w are the component velocities of the liquid parallel to the 
principal axes, the equation of continuity and the boundary con­
ditions are satisfied if 

cir eu„ (a1 - b2) y co3 (c' - a2) z 

IRIS - LILLIAD - Université Lille 1 



18 H Y D R O K T N E M A T I C S . 

15. In the motion of a liquid in two dimensions, the velocity 
at any point is given by two components v, v along the directions 
which pass through two fixed points distant a from one another. 
Show that the equation of continuity is 

dv dv R S + r'2 — a2 fdv ^ dv'\ v v _ ^ 

dr dr 2rr \dr dr J r r ' 

where r, r are the distances of any point of the liquid from the 
fixed points. 
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C H A P T E R I I . 

ON THE GENERAL EQUATIONS OP MOTION OF A PERFECT 
FLUID. 

20. IT was stated in the preceding chapter, that the pressure 
at every point of a perfect fluid is equal in all directions, whether 
the fluid be at rest or in motion. It will now be shown that this 
property is the consequence of such a fluid being incapable of 
offering resistance to a tangential stress. 

Let ABCD be a small tetrahedron of fluid, and let p, p' be the 
pressures per unit of area upon 
the faces ABC and BCD. B 

By D'Alembert's Principle, 
the reversed effective forces and 
the impressed forces which act 
upon the volume of fluid, together 
with the pressures upon its faces, 
constitute a system in statical 
equilibrium. The first two vary 
as the volume, and the last vary as the areas of the faces of the 
tetrahedron; and therefore if the tetrahedron be made to diminish 
indefinitely, the former will vanish in comparison with the latter. 
Hence the tetrahedron will ultimately be in equilibrium under the 
action of the pressures upon its faces. 

Resolve the pressures upon the faces ABC and BCD parallel 
to AD. Since the projections of the two faces upon a plane 
perpendicular to AD are equal, the conditions of equilibrium 
require that p=p', which proves the proposition1. 

1 This proposition is true even in the case of viscous fluids, provided they are at 
rest. 

2—2 
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The Equations of Motion*. 

21. Lot X , Y, Z be the components per unit of mass of the 
impressed forces which act on the fluid; p its density, and q its 
resultant velocity. Describe any imaginary closed surface 8 in the 
fluid, and let e be the angle which the direction of q makes with 
the normal to S drawn outwards. 

The rate at which momentum flows into 8 , parallel to x , 
together with the rate of increase of the component of momentum 
parallel to x , of the fluid contained within iS', must be equal to the 
component parallel to x of the impressed forces which act on the 
fluid within S , together with the component parallel to x of the 
pressure upon the boundary of 8 . 

The rate at which momentum flows into S , parallel to x , is 

J T p<fl cos edS = JJ pu (lu + mv + nw) dS 

b , § 7 . 
The rate of increase of the component of momentum parallel 

to x of the fluid contained within S 
d -SL ^ ipu) dxdydz. 

The component parallel to x of the impressed forces 

= /// p X d x d y d z . 

The component parallel to x of the pressure upon the boundary 
of S, is 

• J J p l d S ^ - j f j f x d x d y d z . 

Whence 

which requires that 
„ dp _ d(pu) d(pu1) d(puv) d(puw) 

dx dt dx dy dz 

1 This method of obtaining the equations of motion is due to Prof. Greenhill. 
See Encyc. Brit., Art. Hydrodynamics. 
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Taking account of the equation of continuity § 8, (10) the 
right hand side of the last equation becomes equal to p du/dt, 

v dp du 
whence PX - ^ = p ^ . 

Two other symmetrical equations can be obtained, by consider­
ing the rate of change of momentum parallel to the other two 
axes, whence the equations of motion are 

1 dp _du du du w

 d u ~ \ 

p dx dt dx dy dz 

~,T 1 dp dv dv dv dv \ 

Y = + » y + t r + n , 
p dy dt dx dy dz 

2 1 dp _ dw ^ dw ^ dw ^ dw 

p dz dt dx dy dz J 
These equations together with the equation of continuity 

furnish four relations between the five quantities u, v, w, p , p . 
22. If the fluid be an incompressible liquid, p is constant, 

and the above mentioned equations together with the boundary 
conditions are sufficient to determine the motion; but in the 
case of a gas another equation is required, which is furnished 
by means of a relation which exists between p and p . 

When the motion of the gas is such that the temperature 
remains constant, we have by Boyle's Law the equation 

P = k P (2), 

where k is a constant. 
But when the motion is such as to cause a sudden compression 

or dilatation, an increase or decrease of temperature will be 
produced ; and if it is assumed (as is the case with sound waves), 
that the compression is so sudden that loss or gain of heat by 
radiation may be neglected, the required relation is 

P = V (3). 
where y is the ratio of the specific heat at constant pressure to 
the specific heat at constant volume1. This quantity for all 
gases has the approximately constant value 1'408. 

23. The expressions on the right hand of (1) are the ex­
pressions for the component accelerations of an element of fluid 
it therefore follows that if F and f be the component force and 

1 This equation will be proved in the Appendix. 
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acceleration in any direction, and dp/dh be the space variation of 
the pressure, the equations of motion are of the form 

p d h J -

Hence if the axes instead of being fixed are moving with 
angular velocities 9 i : 9 % , 6\ about themselves, the equations of 
motion will be obtained by employing the expressions for the 
accelerations given in § 6, (6), and are therefore, 

X — 

Y — 

1 dp du „ da , T da 

- J- = 17 + U J - + V ~T p dx dt ax ay 

1 dp _ dv jj dv ^ y dv 

p dy dt dx dy 

W 
du 

• v9, + wo 

W ? - w 
dz 

e l + u d 3 > . . . ( i ) . 

1 dp dw T T d w T r d w 

p az dt dx 

^ dW 

dy dz 
ud, + v9. 

24. Let us now suppose that the forces arise from a con­
servative system whose potential is V. Since p is a function of 
p, we may put 

Q = - f ^ - v . 
J p 

and the left-hand sides of (1), will be respectively equal to 
dQ/dx, dQ/dy, dQ/dz. If therefore we eliminate Q by diffe­
rentiating the second equation with respect to z and the third 
with respect to y , we shall obtain 

dp y.du dv ^dw . n 

d t = ^ d x + V d x + ^ d x - ^ ' 

where t), f are the components of molecular rotation and 
9 — du/dx + dv/dy + dwjdz. Eliminating 9 by means of the equa­
tion of continuity dpjdt + pO = 0, and taking account of the two 
other equations which may bo written down from symmetry, we 
shall obtain 

f dw N 

p dx I 
3_/f 
d t \ p 

d_ h 

d t \ p 

dt \ p 

f du 7/ dv 

p dx p dx 

Ç du y dv Ç dw j 
p d y p d y p dy ? 

f du if dv f dw 

p dz p dz p dz 

.(5). 

25. It was stated in Chapter I., that in many important 
problems the motion is such that a velocity potential exists. 
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M O L E C U L A R ROTATION. 23 

The condition that such should be the case is, that 77, £ should 
each vanish. We shall now prove, that when the fluid is under 
the action of a conservative system of forces, a velocity potential 
will always exist whenever it exists at any particular instant. 

Let us choose the particular instant at which a velocity poten­
tial exists as the origin of the time; then by hypotheses f, rj, £ 
vanish when t = 0 ; also the coefficients of these quantities in (5), 
will not become infinite at any point of the interior of the fluid; 
it will therefore be possible to determine a quantity L , which shall 
be a superior limit to the numerical values of these coefficients. 
Hence rj, £ cannot increase faster than if they satisfied the 

equations ~̂  ̂  = ~ (f + rj + f), &c. &c. 

But if f +1? + ? = t i p , we obtain by adding the above equations 

whence i l = A e 3 L t . 

Now fi = 0 when t = 0, therefore A = 0; and since fl is the 
sum of three quantities each of which is essentially positive, it 
follows that ij, f must always remain zero, if they are so at any 
particular instant. The above proof is due to Prof. Stokes1. 

26. There is, as was first shown by Prof. Stokes, an important 
physical distinction in the character of the motion which takes 
place, according as a velocity potential does or does not exist. 

Conceive an indefinitely small spherical element of a fluid 
in motion to become suddenly solidified, and the fluid about it 
to be suddenly destroyed. By the instantaneous solidification 
velocities will be suddenly generated or destroyed in the different 
portions of the element, and a set of mutual impulsive forces will 
be called into action. 

Let x , y , z be the coordinates of the centre of inertia G of the 
element at the instant of solidification, x + x , y + y ' , 3 + / those 
of any other point P in it; let u , v , w be the velocities of 67 along 
the three axes just before solidification, u' v , w the velocities of P 
relative to G ; also let u , v, w be the velocities of G , u l , v 1 , wl the 
relative velocities of P, and rj, f the angular velocities just 

1 " On the friction of fluids in motion," Section I I . Trans. Camb. Phil. Soc. 
vol. V I I I . 
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after solidification. Since all the impulsive forces are internal, 
we have 

U = W, V = V, w = w. 
We have also, by the principle of conservation of angular mo­

mentum, %m [y' (w1 — w) — z' (vl — v')} = 0, &c. 
m denoting an element of the mass of the element considered. 

But M , = 7}z — £y', and u is ultimately equal to 
du , du , du , 
dx dy^ dz ' 

and similar expressions hold good for the other quantities. Sub­
stituting in the above equation, and observing that 

%my'z = %mzx = 1,mx'y' = 0, and Xmx'2 = Smy" = Xmz'2, 
, j . fdw dv\ „ 

we have % = * (dy ~ dz) ' &C' 

We see then that an indefinitely small spherical element of 
the fluid if suddenly solidified and detached from the rest of the 
fluid will begin to move with a motion of translation alone, or 
a motion of translation combined with one rotation, according as 
udx + vdy + wdz is, or is not, an exact differential, and in the latter 
case the angular velocities will be determined by the equations 

dy dz' dz dx ' dx dy' 
On account of the physical meaning of the quantities rj, £ 

they are called the components of molecidar rotation, and motion 
which is such that they do not vanish is called rotational or vortex 
motion; when they vanish, the motion is called irrotational. 

In the foregoing investigations, it has been assumed that the 
pressure is a function of the density and also that the fluid is 
under the action of a conservative system of forces; it therefore 
follows that vortex motion cannot be produced, and consequently, 
if once set up, cannot be destroyed by such a system of forces. We 
shall presently show that the theorem is not true if the pressure 
is not a function of the density. If therefore by reason of any 
chemical action the pressure should cease to be a function of the 
density during any interval of time however short, vortex motion 
might be produced, or if in existence might be destroyed. 
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L A G K A N G E ' S E Q U A T I O N S . 25 

Lagrange s Equations. 
27. In Lagrange's method the initial coordinates a, b, c and 

the time are the independent variables, hence the equations of 
motion are 

dQ = . dQ = . dQ^ . 
dx dy ' dz 

Multiplying the preceding equations by xa! y„, za, where the 
suffixes denote partial differentiation with respect to a, b, c,we obtain 

Qb = uxb + vy„ + ibzb \ (6). 
Qc = uxc + vyc + wzc ] 

These equations together with the equation of continuity 
p j = p0, are Lagrange's hydrodynamical equations of motion. 

Weber's Transformation. 
28. Integrating the right hand side of the first of (6) between 

the limits £ and 0, the first term becomes 

( uxa dt = | xxa dt = {xx^) — T xxa dt 

= ™°-U°-\dda\fdt> 
where u0 is the initial value of u. If we treat each of the other 
two terms in a similar manner and put 

•I o 
where q is the resultant velocity of the liquid, we obtain 

dy 
uxa + vya + wza-u0 = ^ 
uxb + vyb + wzb - v0 = £ 

dy 
uxc + vyc + wz„ -wa=-^ 

These equations together with the equation of continuity and 
dyldt — Q + ^q*, give five equations for determining x, y, z, p, 
p being supposed to have been eliminated by means of (2) or (3). 

The above equations may be expressed in a different form, for 
multiplying by dJ/dx^, dJjdxb, dJjdxc and adding, we obtain 

1 / dJ dJ dJ\ dy 
u = j[u°d^+v°dx^w°dxJ + d i ( 8 ) ) 

,(7). 

with two similar equations. 
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29. Multiply (7) by da, db, do and add, and we obtain 
udx + vdy + wdz — uada — v0db — ui0dc =dx (9). 

If at any particular instant which we shall choose for the 
origin of the time a velocity potential exists, u0da + vadb + wadc 
will be a perfect differential; hence if p be a function of p, d% will 
also be a perfect differential, which proves that if a velocity 
potential once exists, it will always exist; but if p is not a function 
of p we cannot put Q = - V — \p~l dp, but must write 

£ J V -
for dx/da, in which case the right hand side of (9) becomes 

where d denotes space differentiation. The right hand side of (9) 
is no longer a perfect differential; hence udx + vdy + wdz is not a 
perfect differential. 

If therefore the pressure be not a function of the density, vortex 
motion can be generated or destroyed in a perfect fluid moving 
under the action of natural forces. 

Cauchys Integrals. 

30. Eliminating Q from the last two of (6), we obtain 
- ucxb + vbyc - vcy6 + wbza - wcz„ = 0. 

Integrate this equation with respect to t, and let ua, v0, w0 be 
the initial values of u, v, w ; then 

dw„ dvn 

u„xc - ucxb + vbyc - vcyb + wbzc - wczh = ^ - . 

„ du du du, . „ 
But U a = _ a ; a + _ y . + _ . ^ & c . & C . 

Substituting these values of ua, ub, &c, we obtain the equations 

dJ dJ dJ 
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.(10). 

c a u c h y ' s i n t e g r a l s . 27 

Multiplying these equations by xa, xb, xe and adding, and 
remembering that Jp = p„, we obtain 

Y = tea + V - + te* 

I 

These equations show that f, 77, f are always zero, if they are 
initially so. 

31. The equations of motion can be integrated whenever 
a force and a velocity potential exist; for putting 

Q = - [ F - V , 
•> p 

and multiplying (1) by dx, dy, dz respectively and adding, we 
obtain 

J r . du , dv , dw -. 
dQ=dtdx+dtdy+Ttdz-

Now in the present case 

du du du dv dw 
dt+Ud, ' 
d fdd> 

dt dt Udx"^ Vdx^ W dx 

where q is the resultant velocity. Integrating, we obtain 

j j + v + * + t f = F v > < n > ' 

where F is an arbitrary function. 

32. D E F . A vortex line is a line whose direction coincides 
with the direction of the instantaneous axis of molecular ro­
tation. 

The differential equations of a vortex line are thus 

dx _ dy _ dz 
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Clebsch's Transformation1. 

33. When a velocity potential docs not exist, a first integral 
of the general equations of motion can be obtained by means of a 
method which depends upon the analytical theorem, that if u, v, w 
are any given functions of x , y , z it is always possible to determine 
three quantities <f>, X, such that 

udx + vdy + wds =d<p + Xd% ( 12 ) . 

In order to prove the theorem, let u , v , w', <p be four quantities, 
such that 

u = u' + <fix, v = v' + d>v, iu = w ' - r t p c . 

Those equations involve three relations between the four 
quantities u', v , w , <p and are therefore insufficient to determine 
them as functions of u , v , i o ; we may therefore assume any relation 
between u', v , vf which may be convenient. Let us therefore 
suppose that 

u Cw'y — v'z) + v' (u!, — w'x) + w (vj — u'u) = 0. 

This is the condition that u d x + v'dy + w ' d z should have an 
integrating factor, we may therefore put this quantity equal to 
~Kd% which proves the proposition. It therefore follows that, 

u = ^ + XdJC, v = f + X

d X w =

 df + x

d J C ( I S ) . 
dx dx dy ay a z dz 

The components of molecular rotation are given by the 
equations 

The form of these equations shows that the vortex lines arc 
the intersections of the surfaces X = const., ^ = const. 

„ du d ,'dd} _ d y \ d \ dy 

N ° W ~ d t = T x ( d t + X d t ) + d t ^ - d t X -

Therefore 
du d fdd> , d y \ du dv dw ; d /dtp d y \ ^ d u ^dv ^ 

dt dx \ d t dt J dx dx dx 

1 GrelU, vol. L V I . p. 1. See also Hill, Quart. Journ. vol. xvn ; Trans. Camb. 
Phil. Soc. vol. xiv. p. 1 ; Phil. Trans. 1884, p. 363; Proc. Land. Math. Soc. 
vol. xvi. p. 171. 
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CLEBSCH'S T R A N S F O R M A T I O N . 29 

Putting H=-Q+*£ + \ ^ + tf (16), 

and substituting the values of du/dt and dQ/dx from (15) and (16) 
in (]) , we obtain 

dH dX dy „ . 

with two similar equations. 

Multiplying by f, i), f and adding, we obtain 

ydH dH y d B . 

If ds be an element of a vortex line, and a> be the resultant 
molecular rotation, the operator is equal to wdjds, whence in­
tegrating along a vortex line, we obtain 

W 

Writing for a moment P =d\/dt, R — dx/dt and eliminating H 
from (17), we obtain 

Multiplying these equations in order by A - , , \ x , \ and adding 
and taking account of (14), we obtain 

fP.+ i7P,+ fP. = 0 (20) . 
If x, y, z be any point on the surface X = A , where A is an 

absolute constant, and if f/&>, 77/0), f/w be the direction cosines of 
the vortex line at this point; equations (14) and (20) show that this 
vortex line lies on the surfaces X = A and A. + d\fdt. dt = A, which 
is impossible unless dX/dt — 0. Similarly d%/dt = 0 ; whence the 
surfaces X and ^ and therefore the vortex lines are always composed 
of the same elements of fluid. This important theorem was first 
established by Helmholtz1. 

Hence it follows from (17) that Hx, Hy, H, are each equal to 
zero, and therefore H is a function of the time alone; whence the 
pressure is determined by the equation 

1 Crelle, vol . L V . and Phil. Mag. (4) vol. xxxin. p. 485. 
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+ 

Omitting the triple integrals which refer to the boundary we 
see that the first three terms of SQ give rise to the terms 

JJJJ{(UX* + » X „ + « % ) B \ - ( u \ + v \ + w\) SX 
-0(S(f> + XSX)} dtdxdydz, 

which 

- / / / / { & - £ ) » - 1 - 1 ) 8 * - ' W + X 8 * > } 

, „ du dv dw 
where 0 = j - -f + -y-. 

ax ay dz 
Also the last three terms of BQ (omitting triple integrals) give 

rise to 

Whence 

jjjJBQdtdxdydz = 8X-0 (8<f> + \ S X ) J dtdxdydz 
+ triple integrals. 

In order that the quadruple integral should vanish, we must 
have 9 = 0, dX/dt = 0, d\/dt = 0, which by virtue of the equation of 
continuity and § 33 is obviously the case. 

34. Wc can now snow that in the case of a, liquid, the 
integral 

+ v ) d t d x d y d z (22)' 

is a maximum or minimum, where the value of pip + V or — Q is 
given by (21), and the time remains invariable. 

For 8Q = u8u + vSv + w8w + d ^ ^t^SX + X^, 
dt dt at 

A N D S M = ^ + % G X + X § X . 

dx ax ax 

Therefore 

fflfuSu dtdxdydz = fffu (Sep + X S ^ ) dtdydz 

"//(/"UXxSx ~ 'die ^ S * ~ S B c t > } dtdxdlJdz-
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K I N E T I C E N E R G Y . 3 1 

On the Application of the Principles of Energy and Least Action. 

35. Let S be any imaginary closed surface, which is fixed in 
the fluid. The work done during a small interval St upon the 
liquid contained within S, by the impressed forces which act 
upon its mass, together with the work done by the pressure upon 
the boundary of S, must be equal to the increase during the 
interval St of the kinetic energy of the liquid contained within S, 
together with the kinetic energy which, during the same interval, 
flows into S across the boundary. 

The work done by the impressed forces 

= - ///p (u i l + v %+w dl)u
 d x d y d z -

The work done by the pressure upon the boundary 

= — fjp (lu + mv + nw) St dS 

by § 7. Hence the total work done 

dQ , dQ dQ\ , , , 
~3x dy ~dz) dxdydz. 

Let T be the kinetic energy per unit of mass, so that 

T = \(u* + v2 + w2). 

The increase in the kinetic energy of the liquid contained 
within S 

<-~-rfj~ St dxdydz. 

The amount of kinetic energy which flows into S 

= \fpT(lu + mv + nw) St dS 

= j ( p u T ) + | - (PvT) + ± (pwT)} St dxdydz. 

Taking account of the equation of continuity § 9 (10) the total 
increase in the kinetic energy 

dT 
p - G ^ St dxdydz. 
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dT f d d d \ /dd> „ dy 
= U ^ + VTy + Wdz) U + 

The last two terms vanish by §33, whence (23) becomes 

(M dx ~*~V dy W dz) ^ dt ^~dt) ^' 
Now if ds be an elementary arc of a stream line u = qdx/ds, &c, 

and the operator is therefore equal to qd/ds. Integrating along a 
stream line, and restoring the values of Q and T, we obtain 

36. The equations of motion may be deduced, as Mr Larmor 
has shown, by means of the Principle of Least Action combined 
with the Lagrangian method. 

Let x, y, z be the coordinates at time t of an element of fluid 
whose initial coordinates are a, b, c; the Principle of Least Action 
requires that 

IIII[hp (*' + f + ¿1 - VP] dt dxdydz 
should be a maximum or minimum subject to the condition that 

J=d(x, y, z) = P„ 
d (a, b, c) p ' 

where the time of the motion is constant. 

Hence if A. represent an undetermined function of x, y, and z, 
we must have 

«////{* <* + sr + V-V--K } dt dadb do = 0. 

Taking the variation of the first two terms, we obtain 

jljj | ( ; C & E + yhy + zSz) - Sx + ̂  Sy +
 dJ- dt dadbdc. 

Whence J J J P - u G + „ | J - w F ) U dxdydz = 0 

which requires that 

dT dQ dQ dQ 

If we substitute the values of u, v, id from (13), we find that 

dT_( d_ 
dt \ dx dy 
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LEAST ACTION. 33 

Integrating by parts and omitting the triple integrals, this 

= - / / / / { ( * + S ) S * + ( * " + % ) 0 + - S F ) * 

If Mv Mt, Mt be the minors of dx/da, dx/db, dx/dc in J 

d(Sx, y, z) = M

 d%x

+M
 d S z + M — 

d (a, b, c) 1 rfa 2 ¿6 8 do ' 

whence, omitting triple integrals, 

. da di â?c / 

dX , , dX l l r d\\ 
da+M>db+M>dc) 8x dt da db de. 

The first term in brackets vanishes, and the second term is 
equal to JdX/dx, 

whence - fj|J\S dt dadbdc 

Sx + ~ Su + ̂  Jdtdadbdc. [dx dy a dz ) 

Hence the conditions of the problem require that 

dV p_0dX = n N 

p da; dx 

y + 
dV 
dy p dy < 
dV_p2d\_ 
dz p dz 

Now x, y, z are the component accelerations of the element 
whose coordinates are x, y, z, and are therefore equal to du/dt, 
dv/dt, and dw/dt respectively ; and when we interpret — \p0 which 
must represent the pressure, equations (24) are the equations of 
motion in the ordinary form. 

0 

.(24). 

On Steady Motion. 

37. When the motion is steady du/dt, dv/dt and dw/dt are 
each zero. In this case the general equations of motion can be 
integrated without having recourse to Clebsch's transformation. 
It will however be necessary to distinguish between irrotational and 
rotational motion. 

B. 3 
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The general equations of motion may be written, 

du __ du , d(f 
dt dt dx • 2vÇ+ 2wtj -• 

dQ^ 
dx 

Su=dv dq^_ dQ 
dt dt 2 dy b dy 
du __ dw j dç ! 

dt ~ ~dt + * ~dz' 
• 2uv + 2v£ = dQ 

dz 1 

When the motion is steady and irrotational u, v, w, g, 77, £" are 
each zero; whence, multiplying by dx, dy, dz, adding and inte­
grating, we obtain 

1 dp -+V+; c .(26). 

In this case the quantity C is evidently an absolute constant. 

When the motion is rotational, let ds be an element of a stream 
line, then 

dx 
U = *ds> 

dz 

Multiplying the general equations by u, v, w and adding, 

dQ_ d£ 
we obtain 

whence 

ds ds ' 

j d f + V + t f = A (27). 
This is Bernoulli's Theorem. 

Since we have integrated along a stream line, the quantity A 
is not an absolute constant, but a function of the parameter of a 
stream line: in other words if ip- = const., % = const, be two surfaces 
whose intersections determine the stream lines, A is a function 
of t]t and 

38. Let us now consider the steady motion of a liquid1 which 
is symmetrical with respect to the axis of z. The vortex lines 
will evidently be perpendicular to every plane through the axis 
of z, hence by § 19 (41) the molecular rotation w will be determined 
by the equation 

2 du dw 
ds d-as' 

1 Stokes, "On the steady motion of incompressible fluids," Trans, Camb. Phil, 

Sac. vol. T D , p. 439. 
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S T E A D Y M O T I O N . 35 

Substituting for u and w their values in terms of Stokes' 
current function ^, § 16 (25), we obtain 

J * + j - / + 2 c t 6 ) = 0 (28)-
dz dzs' •cr dzr 

The equations of motion are 
du du , d (a*) dQ 

din CJCT &a citsr 
dQ dw dw d (q2) 
dz dvr dz * dz 

Eliminating Q — \q*, we obtain 
dm da) U J — + —h co dz^ dz 

The equation of continuity § 9 (13) is 

whence (29) becomes 

dm da> fdu dw\ _ .„„. 
acr dz \dvs dzl 

du dw u . 
- j - + - j - + - = 0, 

da> dco uoj „ 
u 4- If = 0, air cte v sr 

/ d d\ a . , „ . . 
or M - T - + W - J - - = 0 (30). 

V tt'sr tisy in-
Substituting the values of u, w and a> in terms of ty, (30) 

becomes 

f f - ? d) \ v* & - - ?)}-0 •• 
dz dss d-& dz) (ss'Xdsr dz; •ss din J) 

A first integral of this equation is evidently 

whence by (28) 
2w+nfty) = 0 (33). 

When the motion takes place in two dimensions, we shall, in 
exactly the same way, arrive at the equations 

dK . .. d? _ n 
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a first integral of which is 

whence by (34) 
2 ? + / W = 0 (37). 

39. The subject of the steady motion of a liquid has been 
treated in the following manner by Clebsch1. 

Let b and c be any functions of as, y , z and t; then if the 
suffixes denote differentiation with respect to x , y and z , we may 
evidently put 

« = byc, - b,cy, v = b t c x - bxc„ w = bxcy - bycx (38), 

for these values of u , v and us satisfy the equation of continuity; 
From (38) we deduce 

vA. + v l , + wb. = 0 \ 

ucx + vcs + wcz = 0 ) v ' 

hence the stream lines are the intersections of the surfaces 
b — const., c = const. 

Putting 2T = M 2 + « 2 + i0 a, 

and multiplying equations (25) by dx, d y , d z respectively and 
adding, we obtain 

d Q - d T = M^dx + M^dy + Msdz (40), 

where M l = — v ( y x — u v ) + w { u z — w x ) = — 2 v £ + Zwn, 

with similar expressions for M 2 and M a . From the values of M v 

M t , M 3 it follows that 
Mvu + Mav + Msw = 0 (41). 

Eliminating u , v , its from (39) and (41), we obtain 

M l t b x , cx = 0. 

Hence we may put 
M1 = Bbx + Ccx 

M ^ B b y + Ccy 

M, = Bb + Co, 

where B and C are quantities whose values we shall hereafter 
determine ; (40) may now be written 

1 Crelle, vol. L i v . p. 293. 
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C L E B S C H ' S T R A N S F O R M A T I O N . 37 

d Q - d T = B (bxdx + bydy -f bzdz) + C (cxdx + cvdy + cxdz), 

or dQ - dT = Bdb + Cdc (43). 

Since the left-hand side of (43) is a perfect differential, the 
right-hand side must be so also, whence if F be a function of b and 
c, we must have 

*-%· c = f <«)• 
and therefore Q - T = F ( b , c ) (45) 

is an integral of the equations of motion. 

When the motion is irrotational, M { , M , M and therefore B 
and C are each zero, and therefore F is an absolute constant. 

40. Wc must now find the values of B and 0 . If we sub­
stitute the values of u, v and w from (38) in the expression for T 
and differentiate partially, we shall obtain 

d T 

dT 

d b t

 = - w c * + U G » 

d T 
— = - u c y + vcx, 

whence — ( d - \ d ( — ) - ( d T ) 
dx \ d b j dy \ d b j dz \ d b j 

= - c* K - v.) - c s [uz - wx) - cz (vx - uy) 

From the first two of equations (42), we obtain 

Bw = - Mtcx 

= 2c„ ( - v£ + wv) - 2 c x ( — w^ + u£) 

= 2w ( c j + c^n + c£) 

by (39). Therefore 

dF d f d T \ ± ( d T \ d _ ( d T \ _ _ n _ _ ^ . 

d x { d b j + d y \ d b j + d z \ d b j ~ n db — W -

Similarly 
d ( d T \ d / d T \ d f d T \ = r dF 

dxKdcJ^ dy\dcj + dz\do) ^ dc 
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41. By means of the preceding equations it can be shown 
that the conditions of steady motion make 

!JJ(T-F) dxdydz 
a maximum or minimum. 

dT 
For 8T=^8bm + &c, 

dbx 

aud W A h K d x d y d z = \ \ % x

h h d y d z - \ \ \ ^ i y h d x d y d z -
Whence, omitting the double integrals which refer to the 

boundary, we obtain 

- / / / £ ( D + 1 ( - ) + 1 (i)} 
d /dT\ ^/dT\ ±(dT\\ s 

dx\dcj dy\dcj dz\daj\ " 
^ Sb + ̂  Be | dxdydz 

by (46) and (47) ; whence 
fjj B(T-F) dxdydz = 0, 

which proves the proposition. 

Impulsive Motion. 
42. Let u, v, w and u', v', w' be the velocities of a fluid, just 

before, and just after the impulse ; p the impulsive pressure. Then 
if S be any closed surface, the change of momentum parallel to 
x, of the fluid contained within S, must be equal to the component 
parallel to x of the impulsive pressure upon the surface of S. 

Hence JJj p (u — u) dxdydz = — jfpl dS 

•Hi 

—^dxdydz. 

Therefore p(u — u) 

Similarly p(v' -V) 

p(w' — w) 

_ dp 
dx 

.(48). dp 
dy 

dzj 
Multiplying by dx, dy, dz and adding, we obtain 

_ dp _ ^ — u)dx + (v' — v) dy + (w — w) dz (49). 
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In the case of a liquid p is constant, whence differentiating 
(48) with respect to x , y , z respectively, and taking account of the 
equation of continuity, we obtain 

V 2 ^ = 0. 
If the liquid were originally at rest it is clear that the motion 

produced by the impulse must be irrotational, whence if <p be its 
velocity potential, we must have 

P = -P<f> (50). 

E X A M P L E S A N D A P P L I C A T I O N S . 

43. A mass of liquid whose external surface is a sphere of 

radius a, and which i s subject to a constant pressure U, surrounds a 

solid sphere of r a d i u s b. The solid sphere is annihilated, i t is 

required to determine the motion of the liquid. 

It is evident that the only possible motion which can take 
place is one in which each element of liquid moves towards the 
centre, whence the free surfaces will remain spherical. Let 11', R 
be their external and internal radii at any subsequent time, r the 
distance of any point of the liquid from the centre. The 
equation of continuity is 

5 . ( ^ = 0 . . 

whence r*v = F ( t ) . 
The equation for the pressure is 

1 dp dv dv 

p d r dt dr 

= _ F ( 0 _ i * L ' 
' ? 2 dr ' 

whence ? = A + — 4u2, 
p r 

when r = R ' , p = H , and when r — R , p = 0 , whence if V, V be 
the velocities of the internal and external surfaces 

Since the volume of the liquid is constant, 
R ' a - R s = a s - b " = c \ 

also F ' ( t ) = ^ V ) , 
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obtain N ( i Z ' - & ' ) = F , f 1 _ _ i 
pii 4 [(ija + c>)4 -Rj 

which determines the velocity of the inner surface. 

If the liquid had extended to infinity, we must put c = ao , and 

we obtain = IT ( F ) ' , 

whence if t be the time of filling up the cavity 
R * d R 

; = \ / | R I / o J V ^ R * 

R ( F ) 

R ( 1 ) " 

The preceding example may be solved at once by the Principle 
of Energy. 

The kinetic energy of the liquid is 
rS' fR' r l r 

27rpj r V d r = 2-n-p VR* J ^ 

= 2 7 r P F l R 4 U , 1 - [ . 
[R ( R 3 + C y > 

The work done by the external pressure is 

4 7 R L I J\2dr = invr (a8 - R's) 

= %Tl7r(bB-R°), 

whence §11 (b3 - R 3 ) = F 2 i fy j i - , 1 . 

44. The determination of the motion of a liquid in a vessel of 
any given shape is one of great difficulty, and the solution has 
been effected in only a comparatively few number of cases. If, 
however, liquid is allowed to flow out of a vessel, the inclinations 
of whose sides to the vertical are small, an approximate solution 
may be obtained by neglecting the horizontal velocity of the 

whence 

p d R y J \ r ^ + C"f R)
 5

 {(R' + rf 

Putting z = R * V ' \ multiplying by 2 R 2 and integrating, we 
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liquid. This method of dealing with the problem is called the 
hypothesis of parallel sections. 

Let us suppose that the vessel is 
kept full, and the liquid is allowed to 
escape by a small orifice at P . Let h 
be the distance of P below the free 
surface, and z that of any element of 
liquid. Since the motion is steady, 
the equation for the pressure will be 

Now if the orifice be small in comparison with the area of the 
top of the vessel, the velocity at the free surface will be so small 
that it may be neglected; hence if IT be the atmospheric pressure, 
when 2 = 0, p = U, v = 0 and therefore G=H/p. At the orifice 
p = II, z = h, whence the velocity of efflux is 

v = s/2gh, 

and is therefore the same as that acquired by a body falling from 
rest through a height equal to the depth of the orifice below the 
upper surface of the liquid. This result is called Torricelli's 

Theorem. 

45. Let us in the next place suppose that the vessel is a 
surface of revolution, which has a finite horizontal aperture, and 
which is kept full1. 

Let A be the area of the top A B of the vessel, U the velocity 
of the liquid there; let K , u ; Z, v be similar quantities for the 
aperture C D , and a section a b whose depth below A B is z : 
also let h be the depth of C D below A B . 

The conditions of continuity require that A ,B 
A U = K u = Zv, 

and since the horizontal motion is neglected, the 
equation for the pressure is 

dv 1 dp ___ dv 

p d z ~ 9 dt dz' 

Now U and u are functions of t alone, whilst Z 
is a function of z only, whence 

dv _ A d U _ I F du 

d i ~ Z ~ d t ~ Z d t ' 

' Beaant'a Hydromechanics. 
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r _ l g K C 

V m C-
u=, 

' + e - * c 

where C ia the constant of integration. Now initially U = 0 since 
the motion is supposed to begin from rest, therefore 0 = 1 , and we 
obtain 

¿7= tanh \ i t 

= ,y/^tanh t j g h m l a . 

The velocity of efflux is 

u =.y/(1 + 2m) ^ tanh £ Jghm/a. 

After a very long time has elapsed tanh t\f'ghmla becomes 
equal to unity, and if K be very small compared with A , m = oo, 
and we obtain Torricelli's Theorem 

u = sflgh. 

whence V~ = F (t) + gz-~A^fdf-

when z = 0, p = IT, v = U, therefore 

when z — h , p = \ l , v = u , whence if a = I Z ~ l d z , 
J 0 

^ = F ( t ) + g h - A a U - i u 2 , 

whence A a U = g h + \ ( £72 — w 2 ) 

Putting (AjKf - 1 = 2m, 2 j g h m = aa, and integrating, we 
obtain 
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EXAMPLES. 

1. A F I N E tube whose section k is a function of its length s, in 
the form of a closed plane curve of area A, filled with ice is moved 
in any m a n D e r . When the component angular velocity of the 
tube about a normal to its plane is 12, the ice melts without change 
of volume. Prove that the velocity of the liquid relatively to the 
tube at a point where the section is K at any subsequent time 
when tu is the angular velocity is 

where 1/c =fk lds, the integral being taken once round the tube. 

2. A centre of force attracting inversely as the square of the 
distance is at the centre of a spherical cavity within an infinite 
mass of liquid, the pressure on which at an infinite distance is OT, 
and is such that the work done by this pressure on a unit of area 
through a unit of length, is one half the work done by the attractive 
force on a unit of volume of the liquid from infinity to the initial 
boundary of the cavity; prove that the time of filling up the cavity 
will be 

a being the initial radius of the cavity, and p the density of the 
liquid. 

3. In the case of the steady motion of a gas issuing symmet­
rically and subject to no forces, neglecting changes of temperature ; 
prove the following relation between the velocity v and the 
distance r from the centre; 

where Q is the quantity of gas that issues per unit of time, k is 
the constant ratio of the pressure to the density, and u is the 
velocity at points where the pressure is k. 

4. In the steady motion in one plane of a liquid under the 
action of natural forces, prove that 

vV2u - vN2v = 0, 

2 Ac (12 - w) 

iTTvr* = Q exp (v1 - w2)/2&, 

where V 2 = d'jdrf + d'\dy\ 
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5. Jets of water escape horizontally from orifices along a 
generating line of a vertical cylinder kept always full. Show that 
(to axes inclined at an angle \tt to the vertical) the equation of the 
lines of equal action for unit mass of water is of the form 

\ i \ x + V = a · 
Show also that the line of equal time for particles of water 

issuing simultaneously from the orifices, is the free path of the 
water which leaves the vessel by an orifice at a depth below the 
surface equal to that time. 

6. A cistern discharges water into the atmosphere through a 
vertical pipe of uniform section. Show that air would be sucked 
in through a small hole in the upper part of the pipe, and explain 
how this result is consistent with an atmospheric pressure in the 
cistern. 

7. A mass of liquid is moving so that the velocity at any point 
is proportional to the time, and the pressure is given by 

p/P = fxxyz - \t (fz2 + z2x2 + x2f); 
prove that this motion may have been generated from rest by finite 
natural forces independent of the time, with suitable boundary 
conditions: and show that if the direction of motion at every point 
coincides with the direction of the impressed force, each particle of 
liquid describes a curve which is the intersection of two hyperbolic 
cylinders. 

8. Water is revolving with angular velocity co in a smooth 
fine circular tube of radius a which it completely fills, and which 
rests on a horizontal plane. If the tube be made to revolve with 
uniform angular velocity to' about a pivot 0 in its plane, show that 
the absolute angular velocity of the water round the centre C of 
the tube is unaltered. Also if be the average pressure of the 
water throughout the tube, show that the mean pressure of the 
water for a section through any pointP of the tube is nr + /mceo'!cos 8, 
and that the resultant pressure on the tube at P per unit of length 
is mi&lfia + ma<o + 2mca>'2 cos 8, where 8 is the angle between OP 
and 0(7 produced, c = 0C, m is the mass of water which would 
fill a unit length of the tube, and p, that of a unit volume of 
water. 

IRIS - LILLIAD - Université Lille 1 



* V {(x3 -t c3)* - x} = ( ~ +1 pcs) (a' - Xs) (cs + xf\ 

11. Prove that if w be the impulsive pressure, ob, <p' the 
velocity potentials immediately before and after an impulse acts, V 
the potential of the impulses, 

*s + p V + p — (p) — const. 

12. A mass of compressible fluid is arranged in concentric 
spherical layers round a point under its own gravitation. Show 
that if radial vibrations be set up, the displacement z of an element 
is given by 

1_ d2z dy + Ay dp 2\ dz _ g / 2 - y dp 1\ z 

kypy~l dtf dr* \p dr r) dr \ p dr r) r' 

the pressure and density being connected by the equation p = kpv, 
and p in the differential equation being the density of the element 
when at rest. 

13. If p denote the pressure at any point of a liquid moving 
irrotationally in two dimensions, under the action of a conservative 
system of forces, prove that 

V M o g V > = 0. 

14. The surface of a vessel consists of two equal right cones, 
height 2c, with coincident bases; it is fixed with its axis vertical 
and filled with water to half way up the axis of the upper cone, the 

9. Prove that the equations of motion of a fluid referred 
to moving axes may be expressed in the form 

1 dp „ du du du du „ _ 

p dx at dx dy dz 3 

- « + O ® - ( ¿ 3 - y + K + « 3 ™ , ) 2 = 

and two similar equations: where u, v, w are the component 
velocities of the fluid relative to the moving axes whose component 
angular velocities are o> 1, ojit co3. 

10. A solid sphere of radius a is surrounded by a mass of 
liquid whose volume is 47rc3/3, and its centre is a centre of attractive 
force varying directly as the square of the distance. If the solid 
sphere be suddenly annihilated, show that the velocity of the inner 
surface when its radius is x, is given by 

'2LT. . 2 

where p is the density, II the external pressure and p. the absolute 
force. 
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air above this level being initially at atmospheric pressure and the 
vessel closed. The water flows out of the vessel from a ring of 
apertures on the level of bisection of the axis of the lower cone. 
On the hypothesis of parallel sections, obtain a differential equation 
for the velocity of efflux, while the free surface is above the 
midway point, and show that one equation to find its maximum 
value in this stage is 

M z [ 1 - ( c / ( 2 c - « ) } 4 ] -2g(fi + x) = 2TT [ { C / ( 2 C - x)}3-1]p~\ 
where x = height of surface above midway point. 

15. If the motion of a homogeneous liquid be given by a 
single valued velocity potential, prove that the angular momentum 
of any spherical portion of the liquid about its centre is always zero. 

16. Homogeneous liquid is moving so that 
u = yx + ay, v = fix — yy, w = 0, 

and a long cylindrical portion whose section is small and whose axis 
is parallel to the axis of z is solidified and the rest of the liquid 
destroyed. Prove that the initial angular velocity of the cylinder is 

Bp - A* - 2Fy 

where A, B, F are the moments and products of inertia of the 
section of the cylinder about the axes. 

17. Liquid is contained between two parallel planes; the free 
surface is an elliptic cylinder whose axis is perpendicular to the 
planes, and the semi-axes of whose section are av All the 
liquid within a confocal elliptic cylinder, the semi-axes of wrhose 
section are a2, bT is suddenly annihilated; prove that if n be the 
pressure at the outer surface, the initial pressure at any point of 
the liquid is 

n l og jo^ fe ) - log (»,_+_&„) 
log(X-t-iv) - l o g (&, + &„)' 

where a and 6 are the semi-axes of a confocal cylinder through the 
point. 

18. Fluid is contained within a sphere of small radius ; prove 
that the momentum of the mass in the direction of the axis of x is 
greater than it would be if the whole were moving with the 
velocity at the centre by 

- g — ^PA + PyUy + p,U, + ipV'Ur 
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19. Obtain by means of Clebsch's transformation, § 39, the 
equations (33) and (37) of § 38. 

20. Prove that when the motion of a liquid is steady, it is 
possible to draw a series of surfaces P = const, each of which shall 
be covered with a network of stream lines and vortex lines. Prove 
also that at every point of such a surface 

dP 
= c/03 sin e, an * 

where q and OJ are the resultant velocity and molecular rotation, 
and e is the angle between their directions. 

21. A cylindrical vessel of any form which is rotating about its 
axis, is filled with liquid which is rotating as a rigid body. Prove 
that if the cylinder be reduced to rest, the resulting motion of the 
liquid will be steady. 

22. If the motion of a liquid be referred to axes moving with 
angular velocities 01, B2, 93 about themselves, prove that the com­
ponents of molecular rotation are determined by the equation 

with two similar equations; where u, v, w are the component 
velocities of the liquid parallel to the moving axes, and U, V, W 
are its component velocities relative to these axes. 
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C H A P T E E I I I . 

ON SOURCES, DOUBLETS AND IMAGES. 

46. W H E N the motion of a liquid is irrotational and symmet­
rical with respect to a fixed point, which we shall choose as the 
origin, the value of at any other point P is a function of the 
distance alone of P from the origin; and Laplace's equation 
becomes 

dr r dr 

Therefore cj> = — m 

r 
and 

d<p _m 
dr r2 ' 

The origin is therefore a singular point, from or to which the 
stream lines either diverge or converge, according as m is positive 
or negative. In the former case the singular point is called a 
source, in the latter case a sink. 

The flux across any closed surface surrounding the origin is 

/ J W . P T - " * 9 - - / / * 1 

- 47rm, 

where dCl is the solid angle subtended by dS at the origin, and e 
is the angle which the direction of motion makes with the normal 
to S drawn outwards. 

The constant m is called the strength of the source. 
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V E L O C I T Y P O T E N T I A L O F A D O U B L E T . 49 

47. A doublet is formed by the coalescence of an equal source 
and sink. To find its velocity potential; let there P 
be a source and sink at S and I I respectively, and 
let 0 be the middle point of SII, then 

* S P H P 

_ _ m £ H cos SOP 

OP" H 0 S 

Now let S I I diminish and m increase indefinitely, but so that 
the product m. S I I remains finite and equal to /i, then 

fi cos SOP 

* ' P " 

p.z 
= ~ P " ' 

if the axis of z coincides with O S . 
Hence the velocity potential due to a doublet is equal to the 

magnetic potential of a small magnet whose axis coincides with 
the axis of the doublet, and whose negative pole corresponds to 
the source end of the doublet. 

48. The velocity potential due to a sheet of doublets of 
strength m per unit of surface, which is such that the axis of each 
doublet coincides with the direction of the normal to the sheet at 
the point at which it is situated, is 

= -//»irfI2. 
If m be constant, ip = — 
Hence the velocity potential due to a doublet sheet is equal to 

the magnetic potential of a simple magnetic shell of strength — m. 

49. When the motion is in two dimensions, and is sym­
metrical with respect to the axis of z , Laplace's equation becomes 

dr' r dr 

Therefore <p = m log r, 
dd> _ m 

dr r 

D . 4 
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Theory of Images. 

50. Let ZTj, H s be any two hydrodynamical systems situated 
in an infinite liquid. Since the lines of flow either form closed 
curves or have their extremities in the singular points or bound­
aries of the liquid, it will be possible to draw a surface S , which is 
not cut by any of the lines of flow, and over which there is there­
fore no flux, such that the two systems H l , H^ are completely shut 
off from one another. 

The surface S may be either a closed surface such as an ellip­
soid, or an infinite surface such as a paraboloid. 

If therefore we remove one of the systems (say H 2 ) and sub­
stitute for it such a surface as S , everything will remain unaltered 
on the side of *S on which JET, is situated; hence the velocity of 
the liquid due to the combined effect of H , and iT s will be the 
same as the velocity due to the system I I 1 in a liquid which is 
bounded by the surface S. 

The system II2 is called the image of H i with respect to the 
surface S , and is such that if I I t were introduced and *S removed, 
there would be no flux across & 

The method of images was invented by Sir William Thomson, 

where r is the distance of any point from the axis. This value of 
dj represents a line source of infinite length, whose strength per 
unit of length is equal to m . 

If i/r be the current function, 
m 1 d-fr 

r r old 

Therefore i /r = mO 
V 

= m tan 1 - . 
x 

The velocity potential due to a doublet in two dimensional 
motion is 

nb = m log SP — m log HP 

S H A N T > IL cos S O P 
= — m , . - T - r cos b U P = 

VI r 

_ fXX 

~ ~ V 1 · 

IRIS - LILLIAD - Université Lille 1 



I M A G E O F A S O U R C E I N A S P H E R E . 51 

and has been developed by Helmholtz, Maxwell and other writers1; 
it affords a powerful method of solving many important physical 
problems. 

51. We shall now give some examples. 

Let 8, S' be two sources whose strengths 
are m. Through A the middle point of SS' 
draw a plane at right angles to SS. The 
normal component of the velocity of the 
liquid at any point P on this plane is 

- - J ! ^ cos PSA + ~n

pi cos PS'A = 0. 
) J I o r 

Hence there is no flux across AP. If therefore Q be any 
point on the right-hand side of AP, the velocity potential due to 
a source at S, in a liquid which is bounded by the fixed plane AP, 
is 

mm 
<P = ~SQ~S'Q-

Hence the image of a source S with respect to a plane is an 
equal source, situated at a point II on the other side of the plane, 
whose distance from it is equal to that of 8. 

52. To find the image of a source placed outside a sphere*. 

P 

Let S be the source, 0 the centre of the sphere, a its radius, 
0S=f POS=0, / i = cos 6. 

Then, if $ be the velocity potential due to the source, 

< ï > 
m 

ST~ (r*-2frf*+fy 
1 H e l m h o l t z , Creile, v o l . L V . 1 8 5 8 ; T h o m s o n , Reprint of papers on Electricity 

and Magnetism, p . 5 2 ; M a x w e l l , Proc. Boy. Soc, 1 8 F e b . 1 8 7 2 ; Electricity and 

Magnetism, v o l . i l . e . 1 2 . 
3 W . M . H i c k s , " O n t h e M o t i o n o f T w o S p h e r e s i n a L i q u i d , " Phil. Trans. 1 8 8 0 . 

4 — 2 
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52 S O U R C E S , D O U B L E T S , A N D I M A G E S . 

Now at all points in the neighbourhood of the sphere, r <f; 
hence <!> can be expanded in a convergent series of the form 

where P n (//.) is the zonal harmonic of degree n. 

At all points outside the sphere, the velocity potential of the 
image of S can be expanded in a series of the form 

Since the sphere is at rest, the surface condition is 

d® cM>' = 

dr dr ' 

when r = a. 

Therefore m2 1 ^ „ + r P„ + S„ 4 , v- P„ = 0; 

whence ^ 0 = 0, 

7 « A i / f f l \ n T 1 

mn 
" n + ï V / / 

therefore 

_ /wa v » c" „ »za *> c" P n 

where c = a*/f. Now if c < r, 

j 0 ( 7 - 2 - 2 X r - / i + X 2 ) i ° W n + 

Hence, adding and subtracting rua/fr from (1), the value of <S>' 
may be written 

__ ma 1 m F d\ 
F ' ( F - 2rCMI + c 2)* A ' O ( r 2 - 2Xr> + X 2 ) ' ' 

The first term represents a source of strength majf, situated at 
a point H such that 0H = c= a*lf, and which therefore coincides 
with the electrical image of S with respect to the sphere : the 
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I M A G E OF A D O U B L E T I N A SPHERE. 53 

second term represents a line sink of strength m / a per unit of 
length, extending from the inverse point I I to the centre of the 
sphere. 

53. To find the image in a sphere of a doublet whose axis 

passes through the centre of the sphere. 

P 

H H' 

Let 0 be the centre of the sphere, a its radius, S a source of 
strength / A , S' an equal sink, and let H , H ' be the inverse points 
of S, S'; also let 0 5 = / , IIP = r, P H S = 8 . Then, if j> be the 
velocity potential of the image, 

, _ fia \ fxa 1 p,HH' 

^ ~ ~ f - 7 l P + f ^ S 8 1 - H T P ~ ~aHP~-

But O i l . 0 S = O H ' . 0 S ' = a \ therefore 

HIT-OH'-OH-¿(-¿2-¡3) 

_ a'SS' 
- f t , 

also H ' P = H P — H H ' cos 8 . 

Therefore 

pa paf- SS'\ / a'Stf a \ fiaSS' 

Tr + frV + T ) ( 1 + 7 V ~ C 0 S É V - 7 > 

fjLSS'a" 

• cos 9. 

/ V 

Now fiSS' = m, where m is the strength of the original doublet, 
hence 

, fa\acos d 

This is the velocity potential of a doublet situated at the 

inverse point H , whose strength = — m (a//) 9-
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54. To final the image of a doublet whose axis is perpendicular 
to the line joining it with the centre of the sphere. 

Let S bo a source, S' an equal sink ; H, IT the inverse points 
8, S'. The image of S is a source of strength pa If at II, and a 
line sink of strength fija per unit of length from 0 to 77. 

SS'a* 
Now HIT = 

whence the source and sink at H, H' coalesce into a doublet at H 
of strength 

pSS'a" _ ma3 

where m is the strength of the original doublet. 

Let R, R' be any points on Oil, OH', such that 

OR . OS = OR'. OS'; 
SS'. OR' 

then RR' = - f 
and the two sink and source elements at R, R' coalesce into a 
doublet of strength 

_P JSS^O*" .OR 
a f of 

Hence the image of $ is a positive doublet at H of strength 
ma3/f3, together with a negative line doublet of strength —mOR/af 
per unit of length, extending from 0 to H. 

55. In the next place, let there be a source of strength m at 
a point P outside a sphere whose centre is 0 and radius a ; and a 
line sink from P to Q, (where Q is a point on OP which lies on 
the side of P remote from 0), of strength — m/PQ per unit of 
length1. Let R be any point between P and Q ; P', R'', Q' the 
inverse points of P, R, Q. Also let OR = x, OR' = y. 

1 W . M . Dicks, " O n the Problem of T w o Fulsating Spheres in a F lu id , " Proc. 
Camb. Phil. Soc. vol . in. p. 276. 
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The image of P consists of 

(1) a source at P' of strength majOP, 

(2) a line sink from 0 to P ' of strength — m / a per unit of 
length. 

The image of the line sink element dx at R produces 

(3) a sink at R ' , of strength 
rnadx _ mady 

~ P Q T x = ~ ~PQ~y ' 

and 
(4) a line source from 0 to R' of strength mdx/PQ. a per 

unit of length. 

In order to calculate the image of the line sink between P and 
Q, it will be convenient to consider first the portion of the image 
between 0 and Q', and secondly the portion between Q' and P'. 

Since every element of P Q produces an elementary line source 
of strength mdx/PQ. a between 0 and Q', the resultant is a line 
source between 0 and Q' whose strength per unit of length is 

r ° q mdx m 

.PQ~.a = a ' 

This line source cancels the portion of (2) which lies between 
0 and Q'. 

Only those elements of P Q which lie between P and R con­
tribute anything to the density at R ' , hence, adding the effects of 
(2), (3) and (4), the total strength at R ' is 

, mdy mady mPRdii (m, m O P \ , 

Therefore , _ + « | ) - -

But P Q - O Q - O P ^ " ' 1 ^ - P V . O P . O Q 

f 
J 0 

Therefore 

o p ' . o q 

ma 

p = - O P . P ' Q " 

Hence the image consists of a single source at P' of strength 
ma/OP, and a line sink from P' to Q' of strength — rna/'OP . P Q ' 

per unit of length ; that is, the image its an arrangement of the 
same form as the object. 
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Let S be a source situated outside a cylinder, H the inverse 
point. Then, if an equal source be placed at H, the normal velocity 
q due to the combined effect of both is 

q = ~ S J c o s 0 F 7 + W p c o s
 o p i l 

But since Off. O S = O P ' , the triangles O S P and O P H are 

similar, therefore 

q = ~ ï p C ° S ° P Y + H P OS ( S P + 0 P 0 0 3 0 P Y ) 

TO 
= 0 P ' 

Hence the image of a source at S is an equal source at the 
inverse point H , together with an equal sink at 0 the centre of 
the cylinder. 

Similarly the image of a doublet is an equal doublet, but of 
opposite strength, situated at iT. 

57. We shall conclude this chapter by applying the method 
of images to determine the velocity potential due to a source 
situated between two infinite parallel planes1. 

0 Ρ ρ, 

A Β 1 

1 W . M. Hick», Quarterly Journal, vol. xr. p. 27-1, 

56. To find the image of a source in a cylinder, the motion 

being in two dimensions. 
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S O U R C E B E T W E E N T W O P A R A L L E L P L A N E S . 57 

Let P be the source, and let the origin be the middle point 0 , 
of a line through P perpendicular to the two planes. 

The image of P in the plane B will be another source P v such 
that B P 1 = B P ; the image of P 1 in the plane A will be another 
source P 2 such that A P t = A P V and so on for an infinite series. 
Similarly the image of P in the plane A will be a source P \ , such 
that A P \ = A P , and the image of P \ in B will be a source P'a, 
such that B P \ = B P ' V and so on. The velocity potential of the 
motion of the liquid contained between the two planes due to the 
source P, will be equal to the velocity potential of P together 
with the velocity potential of the two infinite trails of images. 

Let 

then 

Similarly 

A B = 2 a , 0 P = £ 

OP1 = a + B P = 2 a - f , 

OP a = a + A P t = é a - l 

0 P 3 = a + 5 P 1 = 6 a - f , 

O P n = 2 n a - f. 

0P'„ = 2na + £ 

(i) Let the motion be in three dimensions, and let z , -a be 
the coordinates of any point Q of the liquid ; then 

+ 2 

1 
+ 

+ 2 , 

Therefore 

</> = 2° 

+ 
1 

• 4na)2 + ma{ 

1 
+ LViO* + f - 2a + 4»a) 2 + w2} V l ^ - £ + 4naf + 

Each of these expressions is of the form F (z, w), where 

F { z , o) = S _ . ^ - T ^ T ^ r r ^ . } · 

We proceed to find a finite expression for this series. If a is 
positive, 

1 2a [i« d8 
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2ra I 

V { 0 + 4>na,y + m 2 } — ~TT J „ 0 + 4 7 1 « ) " cos2 0 + CT* 

î r î i _ 

7rt J0 ](# 4- 4na) cos 0 — « r t + 4na) cos 69 4- isi\ 

Also s i n ^ = ^ ( l _ C ) . . . ( l - ^ ) , c c \ c J \ n c 1 

therefore, taking logarithms and differentiating, we obtain 

7T 7 T 0 _ 1 „ m 2<£ _ _ , « 1 

Therefore F [z, » ) 

1 f 1 1 

7ri J q x [z cos 6 — vsi -p- 4?ia cos 0 z cos 0 + •mi + 4?ia cos 6> 

7T 7T 1 
. . , cot — (z — wi sec 5) — cot — (z + mi sec 6) \ sec 0 d0 
4a¿ J„ ( 4a 7 4a v 7 J 

' sec # sinh (7r-nj sec 6/2a) d,0 
2 a J 0 cosh (7TS: sec 0/2a) — cos (7r.2/2a) 

1 d fi" 
= — - log (cosh (irm sec 0/2a) — cos (7r^/2a)l d 6 . 

it dtzj 0 

The first integral becomes infinite at the upper limit, but since 
the variable part of potential functions is the only part which it is 

1 rjir 

necessary to consider, we may subtract ^ - J sec 6 dO, which will 
make the integral finite, and we shall obtain 

„ , . 1 fs,r exp (— tt-gt sec 612a) — cos (irzl'ia) n l n 

F [ x , w) = - — - a k ^ - , '=> \ sec 6>dfl. 

2a J 0 cosh (TT-W sec 6/2a) — cos (Trz/za) 

And since cp = F {(z + f — 2a), ro-] + F [z — f, or}, we finally obtain 

exp (— 7rra sec 0/2a) + cos tt (z + f )/2a 

1 ^ 
9 = - 2, cosh (TTOT sec 6/2a) + cos 7r (z + f)/2a 

exp ( - 7TCT sec (9/2«) - cos it (z - g)/2a"j ^ ^ ^ 

cosh sec 0/2a) — cos i t (z — f )/2a J 

(ii) Let the motion be in two dimensions: writing x and y 

for z and w respectively, we obtain 

= i r J o g {(* + f - 2a + 4na)2 + 2/'} 

+ * S i . log {(* - r+4«a) 5 4-2/ 2 }. 

therefore 

1 2-m fi" d9 

IRIS - LILLIAD - Université Lille 1 



EXAMPLES. 

1, Prove that when the motion of a liquid is irrotational 
and symmetrical with respect to an axis, Stokes' current function 
satisfies the equation 

d*4r sin d d ( „ d-k\ „ 

and thence show that the current function due to a source of 
strength m is 

•v/r = — m cos 0 + const. 

Let f(x, y) = log lf_m {(a, + 4no)' + y*}, 
where the symbol TT denotes the infinite product for all positive 
and negative integral values of n including zero. 

N O W B M _ = _ ^ I _ _ , J 

c _ 0 0 v nc/ 
where II' denotes that the value n = 0 is excluded. Now 

H - * , ( 0 + " F O " - yl = N ^ C A + y + no) {x-y + na) 

- ( . + » > C - , > N : . . W ( . + ^ ) ( I + ^ * ) . 

therefore 

/ ( ^ 2 / ) = l o G N ' M

 4 ' N V + l o g ^ ± ^ N ' " f l + ^ L 

+ log — - r — ^ II 1 + — - . b 4a - » V 4na / 
The first term which is constant may be omitted; we therefore 

obtain 

f[x, y) = log sin — (x + iy) sin ~ [x - iy) 

= log (cosh iry/2a — cos TTX/2O) — log 2 ; 

whence, omitting constant terms, the value of (f> may be written 

4>=h log" [cosh iry/2a — cos TT (x — f)/2a} 
4 - 1 log (cosh Try/2a + cos 7 T (a1 + £)/2a}. 
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2. When the motion is in two dimensions, prove that the 
current function due to a source is m d , and apply this result to 
find the image of a source in a circular cylinder. 

3. The motion of a liquid is in two dimensions, and there is 
a constant source at one point A in the liquid and an equal sink 
at another point B ; find the form of the stream lines, and prove 
that the velocity at a point P varies as ( A P . B P ) ' 1 , the plane 
of the motion being unlimited. 

If the liquid is bounded by the planes x = 0, x = a , y = 0, y = a , 
and if the source is at the point (0, a ) and the sink at (a, 0), find 
an expression for the velocity potential. 

4>. The motion of a liquid in two dimensions is steady, and is 
due to the presence of any number of sources and sinks. If the 
mass of any source or sink be supposed equal to that of the liquid 
which it would generate per unit of time (the masses of the sinks 
being negative), show that any source has a tendency to move 
with an acceleration made up of accelerations from every other 
source and towards every sink, and proportional in each case to 
the numerical strength of the source and sink, and the inverse of 
its distance. 

5. Liquid is bounded by two perpendicular planes O X , O Y . 
A source is situated at a point whose distances from the planes 
are a and b respectively. Find the pressure at any point of either 
of the planes, (i) when the motion is in two dimensions, and (ii) 
when in three dimensions. 

6. The boundary of a liquid consists of an infinite plane 
having a hemispherical boss, whose radius is a and centre 0 . A 
doublet of unit strength is situated at a point 8 , whose axis 
coincides with O S , where O S is perpendicular to the plane. P is 
any point on the plane, O P = *r, O S = f . Prove that the velocity 
of the liquid at P is 

7. Prove that 
<p = f(t){(r' + as - 2a*)-* + (r3 + a 3 + 2az)^ - r"1} + yjr (t) 

is the velocity potential of a liquid, and interpret it. Find the 
surfaces of equal pressure if gravity in the negative direction of 
the axis of z be the only force acting. 
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8. Liquid enters a right circular cylindrical vessel by a supply 
pipe at the centre 0 and escapes by a pipe at a point A in the 
circumference ; show that the velocity at any point P is pro­
portional to PB/PA . P O , where B is the other end of the diameter 
A 0 . The vessel is supposed so shallow that the motion is in two 
dimensions. 

9. A source is placed midway between two planes whose 
distance from one another is 2 a . Find the equation of the stream 
lines when the motion is in two dimensions ; and show that those 
particles which at an infinite distance are distant l a from one of 
the boundaries, issued from the source in a direction making an 
angle 7 r / 4 with it. 

10. The boundaries of a liquid are given by 8 = ± 7r/2m, and 
a source of strength TO exists at the point 8 = 0 , r = a . Prove 
that the current function for twro dimensional motion is 

TO _j r ' n sin 2n8 

2̂ r r 2 n cos 2 n 8 ~ a m ' 

11. A quantity of liquid moves in that quadrant of the plane 
of x y in which x and y are both positive, and which is bounded by 
the planes y z , z x : at the point (a., 0) is a semicircular source of 
liquid, and at the origin a quadrantal sink. Assuming that the 
amount of liquid flowing out of the source per unit of time is equal 
to the amount which flows into the sink, and that the motion is in 
two dimensions; find the velocity potential, and prove that the 
general equation of the stream lines is 

(xQ + if)2 - a* (x2 - if) = \a?xy. 
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C H A P T E R I V . 

V O R T E X M O T I O N A N D C Y C L I C I R R O T A T I O N A L M O T I O N . 

58. THE most general kind of motion of which a fluid is 
capable is one which is a combination of rotational and irrotational 
motion ; that is to say, the component velocities may be regarded 
as consisting of two parts, uL, vv wL and u2, vr wv where the former 
quantities are derivable from a velocity potential, whilst the latter, 
which depend upon the molecular rotation, cannot he so derived. 
The peculiarities of the motion specified by the latter quantities, 
and which depend upon the molecular rotation, were first investi­
gated by Helmholtz1 and will now be considered. 

59. We have defined a vortex line to be a line whose direction 
coincides with the direction of the instantaneous axis of molecular 
rotation. If through every point of a small closed curve a series of 
vortex lines be drawn, they will enclose a mass of fluid which 
may be called a vortex filament, or shortly a vortex. 

We have shown that if the forces which act on the fluid have a 
potential, and the density is a function of the pressure, the motion 
of the fluid constituting the vortex can never become irrotational. 
It will now be shown that every vortex possesses the following 
three fundamental properties : 

(i) Every vortex is always composed of the same elements of 

fluid. 

(ii) The product of the angular velocity of any vortex into its 

cross section is constant with respect to the time, and is the same 

throughout its length. 

1 Crelle, vol . LV . p . 25; translated by Tait , Phi'!. Mag. (4) XXXIII . p . 485. 

IRIS - LILLIAD - Université Lille 1 



PROPERTIES OF V O R T E X F I L A M E N T S . 63 

(iii) Every vortex must either form a closed curve or have its 

extremities in the boundaries of the fluid. 

Let a, b, c be the initial coordinates of an element of fluid 
whose coordinates at time t are x, y, z. Then 

da _ db dc ds0 

?o Vo £o wo 

But dx = -j- da + -rr db + -=- dc 
da do dc 

(f. dx dx y dx\ 
= X { ^ d a + V a db + ^dc) 

_ e fpdu ^ dv ^ p dw\ 

p \ d x ^ dx dx) 

= p£d<S 

by § 30 (10); hence = pd" = e (1). 
Q ) 0 CO 

Let u, v, w be the component velocities at x, y, z ; and let 
u + du, v + dv, w + dw be the velocities at a neighbouring point 
x + dx, y + dy, z + dz on the same vortex line. Since 

dx dy dz ds e f V f ro p' 

; , , , e / ^ d u du „du therefore da = - \t —h v , - + c -T-
p \ dx dy dz 

du 

-•10 
by § 24 (5). 

The quantity du is the rate at which the projection of the 
element ds on the axis of x is increasing in length ; and since this 
projection is equal to ed{p'l^)jdt, the line ds still forms part of a 

vortex line. 
This proves the first theorem. 

To prove (ii) let o- be the area of the cross section at time t, 
then, since the mass of the element remains unchanged, 

Po°"o*>'„ = P^ds. 

Therefore by (1) ero&j0 = aco, 
which proves that aa> is independent of the time. 
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Also, by § 7 and § 17 (26), 

/J (,f + m v + „ o ^ =/// (g + g + g ) ^ = 0, 

or //to cos edS = 0, 
where e is the angle between the axis of rotation and the normal 
to S drawn outwards. 

Now if we choose S so as to coincide with the surface of any 
finite portion of a vortex of small section, together with its two 
ends, cos e vanishes except at the two ends; and is equal to + 1 at 
one end, and — 1 at the other; hence m1dSl - h,2dS^ = 0, 
which proves the second part of (ii). 

To prove the third theorem, we observe that if a vortex did 
not form a closed curve or have its extremities in the boundary, it 
would be possible to draw a closed surface cutting the vortex once 
only, and the surface integral would not vanish. 

The first theorem and the first part of the second theorem 
depend on dynamical considerations ; the second part of this 
theorem and the third theorem are kinernatical. 

60. Since every kind of motion may be regarded as a combi­
nation of rotational and irrotational motion, we may put dq\ d_N _d_M_ dx dy dz 

v_d<j> dL__dX dy dz dx ' rty dM_dL dz dx dy' 
where cf> is the velocity potential of that part of the motion which 
docs not depend on the molecular rotation. 

Hence in the case of a gas, _,,, du dv dw 1 dp dx dy dz p ot 
but in the case of a liquid V2cp = 0 : in addition to the. above 
equations which <p must satisfy at every point of the fluid, (p must 
also be determined so as to satisfy the boundary conditions. 

T dL dM dN If we put ./ = - + —j— + • - , - , 
dx dy dz 

IRIS - LILLIAD - Université Lille 1 



I N T E G R A T I O N O E T H E E Q U A T I O N S . 65 

, . . „ „ dw dv dJ „ . T we obtain 2 % = - , =- = ^ V L 
« 2 / « 2 · dx 

with two similar equations. Hence if 

J = 0 or a constant 

we have V 2X + 2 f = 0 , V 2 M + 2 V = 0, V N + 2 £ = 0 (2). 

It follows from (2) that if i f = 0 or a constant, the quantities 
L , M, iVare the potentials of distributions of matter whose densities 
are respectively equal to f/2?T, v/2ir, %/2TT ; hence if x , y , z be any 
point where molecular rotation exists, x , y , z any other point, a n d / 
the reciprocal of the distance between these two points, then 

L ^ ^ W l t f d x d y ' d z ' 

M = ¥n- Ifjv'fdx'dy'dz' 

N = — fdx'dydz' J 

(3), 

where -n', £' are the values of the components of molecular 
rotation at ( x , y , z') and the integrations extend throughout those 
portions of fluid where there is vortex motion. 

We have now to prove that the above values of L , M , N make 
J = 0 or a constant. 

„ . df df 
S I N C E / = - 7 T , 

dx dx 

W E have J = - A - ( ( \ { p % + + ? £ 

f (I? + m V ' + n£) dS 
__1 

The volume integral vanishes by § 17 (26), and if the vortices 
form closed rings the surface integral vanishes, since at the 
surface of each vortex lg' + m r \ + n%' = 0. 

Also, if the fluid extends to infinity and is at rest there, the 
surface integral will either vanish or be equal to a constant, since 
f, T / ' , f and f all vanish at infinity. But if the fluid is bounded 
either externally or internally, and some of the vortices extend to 
this boundary and then break off, we must suppose the boundaries 

B . 5 
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removed, and a hydrodynamieal system substituted for them, such 
that the velocity at points occupied by the boundary remains un­
changed. This hydrodynamieal system will necessarily consist, in 
part, of the continuations of these vortices, which must either 
extend to infinity or form closed curves, and in either case the 
surface integral taken throughout the vortices included in this 
larger region, as well as throughout those included in the original 
region, will vanish or be constant. 

61. If Su, Bv, Sw be the component velocities at a point x, y, z 
of a fluid due to an element dx'dy'dz' whose rotations are 77', 

then 

*U=L(?%-V%) dx'dy'dz', 
whence if r - 1 = / , we obtain 

Bu = ~zVr* W {-Z ~ ̂  ~? (y~ y')} dx'dy'dz, 
$v = I ? ' ix-x')- % (z - z')) dx'dy'dz, 

= W (y ~ y) ~v'(x- %')} dx'dy'dz', J 
Hence, if q is the resultant velocity due to the element, 

co sin e 

.(4). 

dx'dy'dz' (5), * 27T7- 2 

where e is the angle which r makes with the direction of the axis of 
rotation of the vortex element. It also appears from (4 ) , that this 
velocity is perpendicular to the plane containing the direction of 
r and the vortex element, and that its direction is that in which 
the point (x, y, z) would move if it were rigidly attached to a body 
moving with the vortex element. 

62. At all points external to a vortex the motion is irrota-
tional, and a velocity potential consequently exists. We shall 
now show that the velocity potential at any point, duo to a vortex 
of small cross section, is proportional to the solid angle subtended 
by the vortex at that point. 

Let x, y, z be the given point, x, y', z any point on the vortex, 
r the distance between (x, y, z) and (x, y, z'). Using polar co­
ordinates r, 6, x referred to (x , y', z) as origin, we have 

x — x = r sin 6 cos ^ , y — y~r sin 8 sin z — z' — r cos 8. 
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Now if fi be the solid angle subtended at (x, y, z) by the 
vortex, 

a = [j sm 9dddx 

= l(i-cose)dx 
r 

j 
cos 0 ds, ds 

where the integration with respect to s extends once round the 
vortex. 

N SC so 
ow , = cot y. 

y-y * 
Therefore (y — i / ) - r - — (x — x') ^f- = r 2 sin2 0 ̂  . 

™ u 1 ds s ' ds ds 
Therefore 

« =/dx - { ( y - y')d* - ( * - « 0 ^ } { x _ x J

d l { y _ y J · 

The first term is equal to 2tt or zero according as the vortex 
does or does not embrace the axis of z ; also 

dz - }\{y y) ds & X) ds\ r 3 • 

Now by (4) if w be the ^-component of the velocity due to a 
vortex of small cross section a, 

TT dob wo- d,il 1161106 dz=-^dz-' 
= - — " (6). 

LIT 
If the section of the vortex be of finite area, the velocity 

potential will be = - ~ Hwfldo- (7), 

^TT J J where the double integral extends over the cross section. 

Since the solid angle fl diminishes by 4TT, whenever the point 
x , y, z describes a closed curve in the positive direction, which 
embraces the vortex once, qb is a many valued or cyclic function. 

The product of the angular velocity and the cross section of a 
vortex filament, is called the strength of the filament. 

5 — 2 
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Vortex Sheets. 

63. If we have a sheet of thickness h, consisting of rotation-
ally moving liquid, and if a> increase and h diminish indefinitely 
but so that the product w h remains finite, equal to no', we ultimately 
obtain an indefinitely thin film of rotationally moving liquid 
whose molecular rotation is a>. Such a film is called a Vortex 

Sheet. 

By (3), if T]\ f be the components of a>\ the quantities L , M, N~ 
which determine the velocities are given by the equations 

where R is the distance between any point on the vortex sheet 
and the point [x, y , z), and the integration extends over the 
vortex sheet. 

64. It wyas first pointed out by Helmboltz1, that the equations 
of motion and the equation of continuity of a perfect fluid do not 
exclude the possibility of slipping taking place along a surface; 
for the only conditions to which the velocity must be subject are, 
that it must be finite at all points of the fluid, other than points 
where sources or sinks exist, and also that its normal component 
at all points of any surface drawn in the fluid must be continuous. 
The above conditions obviously do not require that tbe tangential 
component should be the same on both sides of such a surface, 
and hence the conditions to which the velocity must be subject 
will not be violated if slipping takes place. 

65. We shall now show that every surface of discontinuity 
over which slipping takes place has the properties of a vortex 
sheet. 

Let I, m , n be the direction cosines of the normal at any point 
P of such a surface of discontinuity; u , v , w ; u', v', in' the compo­
nent velocities on the positive and negative sides of the surface. 
It is evident that it will be possible to draw a line in the tangent 
plane at P such that the tangential components along this line of 
the velocities on both sides of the surface shall be equal. Let 
X', /jf, v be the direction cosines of this line; and let X, / A , V be those 

1 Phil. Mag. Nov. 1868. 
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of the line through P perpendicular to I, m, n and X.', / / , V, and 
which is therefore the line along which slipping must take place. 
Then I ( u — u) + m (v — if) + n (w — w) = 0, 

V ( M — u) + fi' (v — v) + v (w — w) = 0 ; 
also let A, (M — u) + fi (v — v) + v (w — w') = o-. 

From these equations we easily obtain 
u — u v —v w — w' . 

- x - = - 7 " = — = < T ( 9 ) -

Let L = h \ \ ^ d S ^ 
the integration extending over the positive side of the sheet only; 
then 

IJ \m (w — w) — n (v — v) dS 
B " 

Now the surface S may be regarded as the limit of the surface 
of a solid bounded by $ and another surface indefinitely near S 
whose distance from it is h; we may therefore write 

L = h Shw -nv) d S - ^ l l l { w d y j \ - v i s ) d x d y d z 

where the surface integral extends over the surface S and the 
surface indefinitely near it, and the volume integral extends 
throughout the volume enclosed by the two surfaces. The latter 
integral evidently vanishes in the limit. Integrating by parts we 
obtain 

1 f f ( l idw dv dxdydz 
4TT J J J M \dy dzj 

=L\\\idhdS 

h!!idS <n>-2 T T „ 

ultimately. 

Comparing (10) and (11), we obtain 

f' = Jo-X/, rf =\ap,', £ '= £oV, of = \<r. 
It therefore follows that the effect of the surface of discon­

tinuity is the same as that of a vortex sheet whose molecular 
rotation is |-o-, and that the direction of the vortex lines is perpen­
dicular to that of slipping. 
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Circulation. 

66. We have shown that the motion of a fluid may be 
separated into two kinds, rotational and irrotational motion; and 
it appears from § 62 that irrotational motion may be subdivided 
into two classes according as 0 is a single valued or a many valued 
function. In the former case the motion is called acyclic, and in 
the latter case cyclic irrotational motion. 

67. The line integral J"(wcfc + v d y + w d z ) taken along any 
curve joining a fixed point A , with a variable point P , is called 
t\\& flow from A to P . 

If the points A and P coincide, so that the curve along which 
the integration takes place is a closed curve, this line integral 
is called the circulation round the closed curve. 

If any surface which is bounded by a closed curve be divided 
into elementary areas by a series of 
lines drawn upon it, the circulation 
round the bounding curve is equal to 
the sum of the circulations round each 
of the elementary areas; for the flow 
along the sides of all the elements, 
except those sides which form part of 
the boundary, is taken twice over and 
in opposite directions. 

In the same way it can be shown 
that the circulation round any closed 

curve is equal to the sum of the circulations round its projections 
on the coordinate planes. 

68. Let us now determine the circulation for an elementary 
rectangle ABCD, whose sides are dy, 

d z , the positive direction being from 
the axis of y to that of z . 

Let x, y , z be the coordinates of 0 , 

the centre of inertia of the rectangle; 

u , v, w the velocities at 0 . 

The portion of the circulation due to the two sides B and D is 

(w + ^wy dy) dz — {w — £ w„ dy) dz = w y dydz 

and that due to the two sides C and A = — v.,dydz. 

0 

0 1 Î 

C 

B 
0 y 

A 
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Hence the circulation 
= ( w y ~ « 0 dydz. 

Hence, if d S be an element of a surface S whose projection on 
the plane y z is the rectangle A B C D , the circulation round the 
boundary of 5 

= //[(w„ - v,) dydz + (it, — wx) dzdx + (vx — uu) dxdy]. 

Hence we obtain the following important analytical theorem, 
which is due to Prof. Stokes1, viz. 

where the surface integral is taken over any surface bounded by a 
given curve, and the line integral is taken once round the curve. 

Substituting the quantities £, y , f, we obtain 

2//(Zf + m r , + nf) d S = f (udx + v d y + w d z ) (13). 

69. Several important consequences can be deduced from this 
theorem. 

If there are no vortices in the fluid, £, n, £ are everywhere zero, 
and the circulation vanishes. Hence in this case <p must be a 
single valued function. 

Since every vortex must either form a closed curve, or have its 
extremities in the boundaries of the fluid, it follows that if the cir­
culation be taken round a closed curve which embraces a vortex 
once only, the surface S must cut the vortex an odd number of 
times. Hence in this case the circulation will not vanish, but will 
be equal to twice the surface integral on the left-hand side of (13). 
Since f, 7], £ are zero at all points of 8 , except those which lie 
in the vortex, the value of the circulation is 2Jfco cos eda where da-

is an clement of that portion of S which is cut off by the vortex, &> 
the molecular rotation, and e the angle which its direction makes 
with the normal to cr drawn outwards. 

Hence the value of dS at any point P of a closed curve which 
embraces a vortex experiences a constant augmentation every time 
P travels round the curve to its original position, which is equal to 
twice the above-mentioned surface integral. This constant aug­
mentation is called the cyclic constant of cb. 

ffL/dw d v \ /du d w \ n ( d v d u \ \ 

] ] \ \ d y dzj \ d z dxj \dx dy/j 
dS 

= j(udx + vdy + wdz) (12), 

Smith's Prize Examination, 1854. 
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If the line integral is taken round a closed curve which does not 
embrace a vortex, S can be drawn so as not to cut any of the 
vortices ; if S cut any vortex once, it must cut it again, and by § 59 
the two portions of the surface integral cancel one another ; hence 
the surface integral and therefore the circulation round such a 
curve will be zero. 

Since the circulation taken round any indefinitely thin vortex 
filament is equal to twice the product of its angular velocity and its 
cross section, it follows from § 59 that the circulation is inde­
pendent of the time; and since every vortex of finite section can 
be divided into indefinitely thin vortex filaments, it follows that 
the circulation round a vortex of finite section is also independent 
of the time. 

70. It thus appears that whenever there is circulation the 
velocity potential is such as would be due to some distribution of 
vortices in the fluid. These vortices need not however have an 
actual existence, since in the case of a liquid it is possible for hollow 
spaces to exist in the liquid round which circulation takes place; 
or the vortices of which 0 is the velocity potential may lie beyond 
the boundaries of the fluid. For example, if 0 = tan^1 y t x = 6, 
0 is a two dimensional many valued velocity potential whose cyclic 
constant is 2TT for all circuits which embrace the origin, and zero 
for all other circuits: and it will be shown in the second volume, 
that if the pressure at a distance from the origin be properly adjusted 
by means of suitable boundary conditions, it is possible for the 
cylinder r = a to be a free surface, which forms the inner boundary 
of a liquid, and the space within which is devoid of liquid. It is 
also possible to have circulation round a fixed rigid cylinder, in 
which case ci will be the velocity potential of one of the possible 
motions of the liquid which may take place. 

71. Since a fluid always flows from places of lower to places of 
higher velocity potential, it follows that when the motion is acyclic 
the stream lines cannot form closed curves but must begin or end 
in the boundaries or singular points of the fluid ; but when the 
motion is cyclic some of the stream lines may be closed curves, 
whilst others begin and end in the boundaries of the fluid. 

72. The circulation round any closed circuit may be shown 
not to alter with the time as follows1. 

1 Sir W . Thomson, " V o r t e x Motion," Trans. Roy. Soc. Edin., vol. xxv. 
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Let AB be a curve joining two points A and Z? of a fluid which 
always passes through the same elements of fluid; also let f be 
the tangential velocity of the fluid at any point P of A B; then 

fds — udx + vdy + wdz; 
. 9 . . . . 9M , d (dx) . 

therefore * ( fds) = ^- dx + u — •+• &c. 

Letp^ be the projection of ds on the axis of x; u, u + du the 
component velocities of p and q parallel to x; then 

u = dx/dt, u + du = d(x+ dx)ldt; 
hence du = d. dx/dt, therefore 

J | (udx + vdy + wdz) = ̂ dx + ^ dy + C^-dz + udu + vdv + wdw, at J ' ot ct J dz 
= cZ(Q + i g a ) . 

9 fB 

Therefore ^ J (udx + vdy + wdz) =[Q + £g 2 ] B - [Q + %q*]A. 
Since Q and q are always single valued functions, the right-

hand side vanishes when the integration is taken round a closed 
curve, which proves the proposition. 

73. If at some particular instant, which we shall choose as the 
origin of the time, the motion is irrotational and acyclic, the cir­
culation will be zero round every closed circuit, and the preceding 
proposition shows that it will always remain zero. 

Hence we obtain another proof of the proposition that motion 
which is once irrotational is always so ; and also that irrotational 
motion which at any particular instant is acyclic, always remains so. 

Simply and Multiply-Connected Regions. 

74. Whenever the motion is cyclic, the flow between two 
points will not have the same value for two different lines joining 
them, unless the lines are such as are capable of being made 
to coincide, without cutting through any of the vortices or passing 
through the boundaries of the fluid. The latter class of lines are 
called reconcileable lines, the former irreconcileahle lines. 

75. We are thus led to consider the properties of simply and 
multiply-connected regions, which are defined as follows. 
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A simply-connected region, is one in which any two lines join­
ing two given points, may be made to coincide with one another, 
without passing out of the region in question. 

The spaces inside or outside an ellipsoid or paraboloid are simply 
connected regions. 

A multiply-connected region, is one in which two or more lines 
can be drawn connecting two points, which cannot be made to 
coincide with each other without passing out of the region in 
question. 

The space inside or outside an anchor ring, is an example of a 
doubly-connected region. 

A region in which n irreconcileable lines can be drawn, is called 
an n-ply connected region. 

Hence in a simply-connected region, every closed circuit is 
capable of being contracted to a point without passing out of 
the region. In an n-ply connected region, it is possible to draw 
n — 1 different circuits, which cannot be contracted to a point 
or be made to coincide with one another without passing out of 
the region. 

Any circuit drawn in a multiply-connected region, which is 
capable of being contracted to a point without passing out of the 
region, is called an evanescible circuit; and any two circuits which 
can be made to coincide with each other without passing out of the 
region, are called mutually reconcileable. 

76. Every n-ply connected region, may be reduced to a simply 
connected region, by drawing n~ 1 barriers or diaphragms, such that 
each diaphragm meets every simple non-evanescible circuit once 
only. For example, the space outside two circles which do not cut 
one another, is a triply-connected region in two dimensions; but 
if from a point on each of the circles, we draw two lines to infinity 
which do not cut one another, the region becomes simply-con­
nected. 

77. If (j> be a polycyclic velocity potential, the circulation round 
any closed curve, which does not cut any of the barriers is conse­
quently zero : if the circuit cuts all of the barriers once only, the 
circulation is KT + « a + &c. where ie1 , K2 are the cyclic constants 
corresponding to each barrier. The number of barriers which 
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must be drawn, in order to make the circulation round every 
closed curve vanish, is equal to the number of cyclic constants 
of 4 > . 

78. Every polycyclic function may be expressed as the sum 
of the same number of monocyclic functions, as the function has 
cyclic constants. For if the number of cyclic constants be n there 
will be n simple non-evanescible circuits round which the circulation 
does not vanish; hence if 

0 = /clni + « a x2 2 + + 
where flx) f!2 are monocyclic functions, whoso cyclic constants 
are unity; and which are such that the line integral 

/•/rffl. dx+dn„cfy + dCK dz\ d g 

J\dx ds dy ds dz dsj ' 
taken round any closed circuit is zero, except when the circuit cuts 
the barrier corresponding to KN, it follows that the circulations 
round each of the simple n non-evanescible circuits, are respectively 
equal to K V K2 , hence the circulation round a circuit which 
cuts each barrier once only is equal to « t + KT 4 + K „ -

Vorticity. 
79. Let a mass of rotationally moving fluid be divided up into 

elementary vortex filaments ; and let P be any point on the axis 
of one of these filaments, dm the mass of the filament which 
contains P, a> and dS the molecular rotation and cross section of 
the filament at P at time t. Then the quantity aidS/dm is called 
the vorticity of the fluid at the point P. 

This quantity has the same value at all points of the filament 
which contains P, and is constant with respect to the time, for if 
the suffixes denote the initial values of the quantities (or their 
values at some given epoch) and ds is an element of the axis 
of the vortex element, the vorticity 

wdS a>„dS0 &)Q 

~~ ~dm l0p0dS0 ~ l0pa' 
by § 59, (1); where l0 is the initial length of the filament. 

The aggregate vorticity of a mass M of rotationally moving 
fluid is equal to the sum of the vorticities of every filament, and 
therefore 

ta>dS 1 ff ,e 
= i r y - r = TW 11 °> cos eao, ZpdSds MJJ 
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where Mt is the mass of the inner ring, M3 that of the sheet, and 
&j, dS are the molecular rotation and cross section at any point of 
one of the elementary filaments of the sheet. Hence the aggregate 
vorticity is not necessarily proportional to the circulation. 

80. The following theorem, which is of great importance in 
Electricity and various branches of physics, is due to Green1. 

Let <f> and T|T be any two functions, which throughout the interior 
of a closed surface S are single valued, and 'which together with 
their first and second derivatives are finite and continuous at every 
point within S ; then 

where the triple integrals extend throughout the volume of S, and the 
surface integrals over the surface of S, and dn denotes an element of 
the normal to S drawn outwards. 

Green s Theorem. 

MaÜLematical Papers, p. 24. 

where dS is an element of any surface which cuts all the vortex 
filaments once only, and e is the angle between the direction of to 
and the normal to S drawn outwards. 

If the rotation ally moving fluid is surrounded by irrotationally 
moving fluid, and consists of an arrangement such as a circular 
vortex ring, which is resolvable into elementary circular filaments 
which are perpendicular to the meridian sections of the ring, the 
aggregate vorticity is equal to ^k/M, where k is the circulation 
round any closed circuit which embraces the ring once. But if 
the rotationally moving fluid consisted of the arrangement above 
described, together with an outer sheet which is resolvable into 
filaments lying in planes passing through the meridian sections of 
the ring, the circulation will remain unaltered, but the aggregate 
vorticity will be 
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Integrating the left-hand side by parts, we obtain 

Tx \t D X D Y D Z = 1 7 / * 2 » d y d z ] SI! * 3 ^ « ! 6 ) . 
where the brackets denote that the double integral is to be taken 
within proper limits. Now since the surface is a closed surface, any 
line parallel to X, which enters the surface a given number of times, 
must issue from it the same number of times; also the ^-direction 
cosine of the normal at the point of entrance, will be of contrary 
sign to the same direction cosine at the corresponding point of 
exit; hence the surface integral 

Treating each of the other terms in a similar manner, we find 
that the left-hand side of (1G) 

= ! ! ^ D S - \ \ \ ^DXDYDZ. 

The second equation (15) is obtained by interchanging <p 
and •uV. 

81. We may deduce several important corollaries. 

(i) Let </> be the velocity potential of a liquid, and lot = 1; 
then = 0, and we obtain 

0=ljj^DXDYDZ = jjD£DS (17). _ 
The right-hand side is the analytical expression for the fact 

that the total flux across the closed surface is zero; in other words 
as much liquid enters the surface as issues from it. 

(ii) Let (P and \JR be both velocity potentials, then 

• S * s - / / + S < s w 
(iii) Let <P = -^R, where d> is the velocity potential of a 

liquid ; then 

If we multiply both sides of (19) by |p, the left-hand side is 
equal to the kinetic energy of a liquid, and the equation shows 
that the kinetic energy of a liquid whose motion is acyclic and 
irrotational, which is contained within a closed surface, depends 
solely upon the motion of the surface. 
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82. Let us now suppose that liquid contained within such a 
surface is originally at rest, and let the liquid he set in motion by 
means of an impulsive pressure p applied to every point of the 
surface. The motion produced must be necessarily irrotational, and 
acyclic ; also if (¡3 be its velocity potential, it follows from § 42 (50) 
that p = — p4>- N O W the work done by an impulse, is equal to the 
product of the impulse into half the components in the direction 
of the impulse, of the initial and final velocities of the point to 
which it is applied ; hence the work done, 

and equation (19) asserts that the work done by the impulse is 
equal to the kinetic energy of the motion produced by it, which is 
a particular case of the Principle of Energy. 

83. Let us in the next place suppose that liquid is contained 
within a closed surface which is in motion ; and let the motion of 
the liquid be irrotational and acyclic; also let the surface be 
suddenly reduced to rest. Then if $ be the new velocity potential, 
d<pjdn = 0, and therefore 

whence d<p>jdx, dtp/dy, and d<p/dz are each zero, and therefore the 
liquid is reduced to rest. 

84. In proving Green's Theorem, we have supposed that the 
region through which we integrate, is contained within a single 
closed surface, but if the region were bounded externally and 
internally by two or more closed surfaces, the theorem would still 
be true, provided we take the surface integral with the positive 
sign over the external boundary, and with the negative sign over 
each of the internal boundaries. 

85. Let us suppose that the liquid extends to infinity and is 
at rest there, and is bounded internally by one or more closed 
surfaces SLT $ 2 &c, and let us calculate the value of T for the space 
bounded by 8X, $ 2 &c, and a very large sphere S whose centre is 
the origin. Then 

r - W / + s * , - " [ f / * £ ' B ' 
where the square brackets indicate that the integral is to be taken 
over each of the internal boundaries. 
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Now at the surface of S, cp will be of the order m/r, where m 
is a constant, and d<p/dn = dqS/dr = — m/r*; also if dVL be the solid 
angle subtended by dS at the origin, dS = r 2 dfl; therefore 

4<7rm s 

which vanishes when r=x. Hence the kinetic energy of an 
infinite liquid which is at rest at infinity, and which is bounded 
internally by closed surfaces is 

T = - l P chads' ^ dn .(20), 

where the surface integral is to be taken over each of the internal 
boundaries. 

The preceding expressions for the kinetic energy show that 
if the motion is acyclic and the internal boundaries of the liquid 
be suddenly reduced to rest, the whole liquid will be reduced to 
rest. 

86. When the motion takes place in two dimensions, Green's 
Theorem may be established in a similar manner. Let the liquid 
be bounded externally by a closed surface S, and internally by one 
or more surfaces Slt $ a.... Then 

- I F F V > dxdy, 

where y 2 = d?/da? + d'/dy* and the square brackets denote that the 
line integral is to be taken once round the circumferences of each 
of the internal boundaries. Now if w7e integrate round the 
boundary of the liquid in the contrary directions of the hands of 
a watch, the integration with respect to y will be in the same 
direction and that with respect to x in the opposite direction 
to s, whence the first integral becomes 

f /d(p dx d(j> dx\ ^ 
J \dx ds dy dsj ' 

also if dn be an element of the normal drawn outwards, 

dx/ds = — dy/dn, dy/ds = dx/dn, 
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whence dtp d^jr dtp dyjr 
+ dx dx dy dy 

-i 
-i* 

ijr^ds 
dn 
djr 
dn ds • 

dijr 
dn (fr^r- ds 

- ^V°<bdxdy ...(21), 

tffdxdy...(22). 

This is Green's Theorem for two-dimensional space. 

Hence the kinetic energy of the liquid is 

.(23). <p ds 
^ dn 

In this equation tp may be either the velocity potential or the 
current function. 

If the liquid extends to infinity and is at rest there, the value 
of tp if single valued, at a great distance from the origin, must 
be of the form 

A log r + r'1 (B cos 8 + C sin 0), 

and therefore when r is very large the first integral becomes equal 
to 2irpAt log r which becomes infinite when r=x unless A = 0 \ 
when this is the case, since all the other terms vanish, we obtain 

ÌP ds •(24), 

the integrations being taken round the internal boundaries only. 

87. All the results of the last article may be also obtained by 
means of Stokes' theorem § 68 (12), and they may be extended 
to the case of polycyclic velocity potentials in the same way as in 
the next article. It should however be noticed that if <p be a 
polycyclic function, it will contain terms of the form A8, and 
hence ifr will contain terms of the form A log r and will therefore 
be single valued. We may therefore, in the case of cyclic motion, 
employ the single valued current function, instead of the velocity 
potential; but when there is circulation it follows from the 
last article that the kinetic energy will be infinite if the liquid 
extends to infinity. We shall show how the difficulty thus intro­
duced may be evaded in Chapter VIII. 
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Thomson's Extension of Greens Theorem. 

88. The proof of Green's Theorem given in § 80 holds good 
only when <f> and ijr are single valued functions. If they are poly-
cyclic functions, the surface and volume integrals on the right 
hand side of (14) and (15) become indeterminate. The extension 
of this theorem when <p and i\r are- polycyclic functions is due to 
Sir W. Thomson1. 

Let us suppose that the region is multiply-connected, and that 
d> is a polycyclic function whose cyclic constants are * 2 . . . Let 
the region be made simply connected by drawing the requisite 
number of barriers. Since we am not allowed to cross any barrier 
during the integration, we must include the surface on both sides 
of the barrier in the surface integrals. Hence if dcri, d<r2...be 
elements of the different barriers corresponding to the quantities 

/c 2 . . . respectively 

i h ^ - n * ^ a * t ^ 
where on the right-hand side, the integration with respect to S 
extends over the boundaries, and that with respect to o-j over both 
sides of the barrier rrt. 

Now the values of d^fr/dn are equal in magnitude and of 
contrary sign at two contiguous points situated on different sides 
of the barrier, also the value of on the negative side exceeds 
that on the positive side by Kit therefore 

where the integration on the left-hand side extends over both 
sides of the barriers, and that on the right over the positive side 
only. 

Hence instead of JJcpd^}r/dn. dS, we must write 

1 " O n V o r t e x M o t i o n , " Trans. Roy. Soc. Edin., vol. x x v . p . 2 1 7 . 

B . G 
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Similarly if were a polycyclic function whose cyclic constants 
are K\, K ' 2 we must write instead of JFYDQB/DN .DS, 

Hence when (P and ^ are polycyclic functions and the region 
is a multiply-connected one, Green's Theorem becomes 

MRD±D± D±D± UD±\ D X 

JJJKDXDX DY DY DZ DZ J 3 

- / / • & * - [ [ / • £ + W J S * - + 

— JJJQBRFI}RDXDYDZ (25), 

-SHV<?DXDYDZ (26), 

where the first integrals on the right hand side are to be taken 
over the outer boundary, and the square brackets denote that the 
second integrals are to be taken over each of the internal bound­
aries. 

-Sh AN 

89. Putting cp=TJR, it follows that if the liquid extends to 
infinity and is at rest there, 

y = - ^ | > t d S ] + * * * J S £ ^ + ^ •••&). 

The first term represents the work done by the impulsive 
pressure which must be applied to the boundaries 8 in order to 
produce the actual motion from rest. The second term represents 
the work done by a uniform impulsive pressure KJ>, applied in 
the positive direction to every point of the barrier corresponding 
to KV Hence cyclic irrotational motion may be artificially gene­
rated by means of a proper impulsive pressure applied to every 
point of the boundaries, together with uniform impulsive pressures 
K ^ , K2P , applied respectively to every point of the barriers, 
which must be drawn in order to make the region occupied by 
the liquid simply connected. We may therefore generalise the 
theorem of § 85, by asserting THAT IF IRROTATIONALLY MOVING LIQUID 
OCCUPYING A MULTIPLY-CONNECTED SPACE, IS BOUNDED BY MOVING SURFACES, 
WHICH ARE SUDDENLY BROUGHT TO REST, THE WHOLE LIQUID WILL BE REDUCED 
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TO REST UNLESS ITS MOTION IS CYCLIC; AND THAT IN THE LATTER CASE, THE 
CYCLIC MOTION WHICH COULD HAVE BEEN GENERATED IN THE MANNER ABOVE 
DESCRIBED WILL NOT BE DESTROYED. 

90. The foregoing arguments show THAT IF THE BOUNDING SURFACE 
OF A LIQUID WHICH WAS ORIGINALLY AT REST, BE MADE TO VARY IN A GIVEN 
ARBITRARY MANNER, THE KINETIC ENERGY OF THE LIQUID AT EACH INSTANT, 
WILL BE LESS THAN IT WOULD BE IF THE LIQUID HAD ANY OTHER MOTION CON­
SISTENT WITH THE GIVEN MOTION OF THE BOUNDING SURFACE. 

Since the liquid is originally at rest, the motion which is 
caused by the variation of the bounding surface will be acyclic 
irrotational motion. But the most general kind of motion which 
is possible within the surface is a combination of acyclic, cyclic 
irrotational motion, and vortex motion. The first can be destroyed 
by means of a suitable impulsive pressure applied to every point 
of the boundary, but the two latter cannot be destroyed by any 
operations performed on the boundary alone. Hence the kinetic 
energy of the acyclic motion alone, must always be less than the 
kinetic energy of the most general possible motion. 

This theorem is due to Sir W . Thomson1. 

91. When the motion is rotational the kinetic energy cannot 
be obtained by Green's Theorem, since within a vortex there is no 
velocity potential. In this case 

T = \p III K + «" + w2) DXDYDZ, 

JJJ ( \DX DY DZ/ \DY DZ DX J 

FDD> DM DL\] , 7 

+ W [ D - Z + ^ - D Y : ) \ D X D Y D 2 -

by § 60. Integrating by parts, the terms involving $ 

— \PH<P{LU + MV + NW) DS, 
since the volume integral vanishes by virtue of the equation of 
continuity. The other terms 

= ipH{L (NV - MW) + M(LW- NU) + 1Y(MU - LV)} DS, 

1 " NoteB on Hydrodynamics," Gamb. and Dubl. Math. Joum., vol. iv. p. i )0 . 

G—2 

IRIS - LILLIAD - Université Lille 1 



If the liquid extends to infinity and is at rest there, and all the 
vortices are within a finite distance of the origin, the surface 
integrals will vanish and we obtain 

T=PJU(Zf + M T ) + JV0 DXDYDZ (28). 

92. Let us now suppose that wo have two closed vortices of 
small cross sections <RV cr2. Let DSV DS^ be elements of their lengths; 

K2 the circulations due to them ; then 

L P + M ^ - R N ^ D S , 
DST as, DSJ 1 

where the line integrals extend round each respective vortex. Now 

L=£ SI $ d< + ds* '&c-&c-
Therefore T=£- (AK.1 + 2BKIK% + CK*) 

0 7 T 

, , [[1 FDX DX DY DY DZ DZ\ 1 , , 
where A=11 R ( S ; 5 / + D { it; + S ; ^ · 

B — fP ( D X D X DY D^ D Z D Z \ DS DS 
J ] R \DST DSS DSL DS3 DSL DSJ 1 2' 

and G is obtained from A by changing SV SJ into s2, s2'. If e be the 
angle between the two elements DSLT DS2, these expressions may be 
written 

F /cos € F Çcos £ C Çcos Ê 
A = J I DSJLS/, B = I I DS^S^ C = J I —^- DS^DS^. 

The quantities .4 and C are evidently the coefficients of 
self-induction of two electric currents of unit strengths which 
coincide with the vortices itx and K 2 respectively, and the quantity 
B is the coefficient of mutual induction of two such currents. 
Hence the kinetic energy of the hydrodynamical system is equal 

to the electro-kinetic energy of two currents of strengths ( P / T T ) ^ 

and ^ ^ ( P / T T ) ^ respectively, which occupy the positions of the 
vortices. This proposition may easily be extended to any number 
of vortices. 
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93. Another expression for T may be obtained in the form 

T= 2PJJJ{U W-*V) + v ( z £ - + w ( x v - y^)}dxdydz.. .(29). 

For the first term 

fff f fdv du\ fdu dw\) , , , = Pilr \y U ~ dy) ~ *\dz ~ dx)\ 
= — p jjj^(vy + wz) ^ — M 2 | dxdydz, 

since the surface integral vanishes. Transforming the other terms 
in the same way, adding, and making use of the equation of 
continuity, we obtain 

P + V " + W * + X U S + Y V % + Z W S ) D X D Y D Z -

Integrating the last three terms by parts, the right hand side 
of (29) 

= i P + v* + w") dxdydz. 

9I. When the motion is symmetrical with respect to the axis 
of z , an expression for T may be obtained in terms of Stokes' 
current function: for 

Therefore 

^ = (tff dz + df d v ) _ [ 7 t f f t dz + *t d irp J raAcfcr dz J \J •srVaor dz 

where the first integral refers to the external, and the second 
integral to the internal boundaries of the liquid. 

Now in order that this kind of motion may be possible, it is 
necessary that the boundaries should be surfaces of revolution 
whose axes coincide with the axis of z . Let s be an element of 
the meridian curve of one of the boundaries, and let the inte­
gration with respect to s be taken from z to sr. Since the 
integration with respect to w will be in the same direction, and 
that with respect to z in the opposite direction to s, the first 
integral becomes 

R^R FDTY DN _D±DZ\DS=F±D^R D S 

•SR\DZ DS DTX DS) J -m DN ' 
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where DN is an element of the normal drawn outwards. The 
volume integral is equal to 

— 2 JJ^MD-SY DZ, 

where OI is the molecular rotation : whence 
R-IJR DTY 

DR, 
DS — IRP •NS dn + 2JJFA)DISDZ (30). 

If the motion is irrotational and the liquid extends to infinity, 
and is at rest there, 

" 'ty D^R 
J M DN 

DS .(31), 

where the integration is taken once round the meridian curves of 
each of the internal bouudaries. 

ON THE CONNECTION BETWEEN VORTEX MOTION AND ELECTROMAGNETISM. 

95. In § 60, we have shown that the velocity potential at P 
due to a single closed vortex filament of strength m, is 

0 = - MIL/2-RR, 

where 12 is the solid angle subtended by the vortex at P. 

This is the magnetic potential of an electric current of strength 
— m/27r, which flows round a closed circuit coinciding with the 
vortex (Maxwell, ELECTRICITY AND MAGNETISM, vol. I I . §§ 410 and 
484). Now the magnetic potential due to such a current is the 
same as that due to a simple magnetic shell of strength —M/2-!R 
which is bounded by the current; also by § 48, CP is the. velocity 
potential due to a doublet sheet of strength M/2-RR bounded by the 
vortex. Hence a vortex filament and a doublet sheet respectively 
correspond to an electric current and a magnetic shell, and a 
vortex sheet may be replaced by a doublet sheet in the same 
manner as an electric current may be replaced by a magnetic 
shell. 

The action of a vortex filament upon the surrounding liquid is 
determined by the quantities L, M, N, whence it follows from (3) 
that the molecular relation corresponds to an electric current: the 
quantities L, M, N to the components F, G, H of electromagnetic 
momentum; and the velocities U, V, W to the components a, /3, 7 
of magnetic force (see MAXWELL, § 616). 
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Also the magnetic potential of a magnetic shell, and the 
velocity potential due to a doublet sheet are essentially single 
valued functions, since the line integral of magnetic force and 
the circulation are zero for all circuits which do not cut the shell 
or doublet sheet, and which it is not permissible to cross; on the 
other hand the magnetic potential due to an electric current, and 
the velocity potential due to a vortex, although represented by 
the same quantities, are cyclic functions, the cyclic constant being 
equal to 2m, where m is the strength of the vortex. This cyclic 
constant is equal to the line integral Jd(j>/ds . ds taken once round 
a closed circuit embracing the vortex or current once; and in the 
former case it represents the circulation, and in the latter case 
the work which would have to be done in moving a magnetic 
pole once round the current in opposition to the magnetic force 
exercised by the current (Maxwell, § 480). 

The potential energy of a magnetic shell of strength — 1, 
placed in a magnetic field, the components of whose vector 
potential are F, G, H is (Maxwell, § 423) 

ffFf+Gdy + H^ds_ J\ds as ds) 
The flux through a closed vortex ring is, 

ff (lu + mv + nw) dS 
= (({ l (M*- ^ m - ^ „ _ ds Jj\ W y dz J \dz dx) \dx dy)) 

and this corresponds to the potential energy of the magnetic 
shell. 

The following table shows the connection between the two 
subjects: 
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Hydrodynamical Q uantities Electromagnetic Quantities 

Name Symbol Name Symbol 

Veloc i ty of L i q u i d u, v, w M a g n e t i c F o r c e a , A y 

M o l e c u l a r R o t a t i o n ft V, t Electr ic C u r r e n t U, V, U! 

L, M, N Elec tromagnet i c 

M o m e n t u m 

F, G, II 

V e l o c i t y Potent ia l 

due to V o r t e x 

-e- M a g n e t i c Po ten t ia l 

of C u r r e n t 

n 

V o r t e x F i l a m e n t Electric C u r r e n t 

D o u b l e t Sheet M a g n e t i c Shel l 

Circulat ion K W o r k done in 

m o v i n g a M a g n e t i c 

P o l e once r o u n d 

C u r r e n t 

F l u x t h r o u g h V o r t e x Potent ia l E n e r g y 

of M a g n e t i c Shel l 

In addition to the papers cited in the preceding chapter, we 
may refer to the following by Sir W. Thomson : " Vortex Atoms," 
Phil. Mag. (4) xxxiv. ; "Vortex Statics," Proa. Boy. Sou. Edin. 

1876 ; " On Maximum and Minimum Energy in Vortex Motion," 
Phil. Mag. (5) xxm. p. 529. 

The theory of rectilinear and circular vortices will be discussed 
in the second volume. 
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EXAMPLES. 

1. Liquid is contained in a simply-connected surface 8; if w 
is the impulsive pressure at any point of the liquid due to any 
arbitrary deformation of S subject to the condition that the 
enclosed volume is not changed, and VR' the impulsive pressure for 
a different deformation, show that 

2. If a sphere be immersed in a liquid, prove that the 
kinetic energy of the liquid due to a given deformation of its sur­
face, will be greater when the sphere is fixed than when it is free. 

3. If V be the attraction potential of a uniform circular 
lamina of unit density, in the plane of x y , prove that A>DV/DZ will 
be the velocity potential of a circular vortex filament coinciding 
with the boundary of the lamina. 

4. The boundaries of a liquid are two fixed concentric cylinders 
of radii A and c. Prove that if the motion of the liquid is irrotational 
and in two dimensions, the velocity potential must be equal to 
K8/2-JT, where K is the circulation round any closed circuit which 
embraces the inner cylinder once only; and that the kinetic 
energy is equal to (47r)_ 1 log ffi/c. 

5. Apply the equations of impulsive motion, to show that if 
liquid be contained within a closed surface, the circulation and the 
molecular rotation cannot be altered by any impulse applied to 
the boundary. 

6. A mass of ice is contained within an ellipsoidal case which 
is rotating in any manner about its centre : prove that if the ice 
be melted and the boundary be deformed in such a manner that 
it remains ellipsoidal, the resultant molecular rotation at any 
point is proportional to the diameter of the ellipsoid which is 
parallel to the tangent to the vortex line at that point. 
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C H A P T E R V . 

O N T H E M O T I O N O F A L I Q U I D I N T W O D I M E N S I O N S . 

96. T H E solution of questions relating to the motion of a 
liquid in two dimensions, can be most conveniently effected by 
means of Earnshaw's current function I ^ . This function when the 
motion is irrotational, which will be the case in most of the 
problems discussed in the present chapter, satisfies the equation 

+ (1) 

the solution of which is 

+ =f(x+iy) + F(x-ty) (2). 

Also „ = 4 * . * = (3). 
ay ax 

If the liquid is bounded by fixed surfaces, the normal component 
of the velocity must vanish at the boundaries. This condition 
requires that tfr = const, at all points of boundaries which are fixed. 

97. When the cylindrical boundary is in motion, the following 
conditions must be satisfied at its surface. 

(i) Let the cylinder be moving with velocity U parallel to the 
axis of x, and let 6 be the angle which the normal to the cylinder 
makes with this axis; then at the surface 

u cos 8 + v sin 0 = U cos 0. 
Now cos 8 = s dyjds ; sin. 8 = — dx/ds ; therefore by (3) 
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CONJUGATE FUNCTIONS. 

98. D E F . IF £ AND 77 ARE FUNCTIONS OF X AND Y SUCH THAT 

f + " j = / ( * + *y) (7) 

THEN £ AND IJ ARE CALLED CONJUGATE FUNCTIONS OF X AND Y. 

Differentiate (7) with respect to X and Y respectively, eliminate 
the function F and equate the real and imaginary parts in the 
resulting equation, and we shall obtain 

Ö J F DR\ DÌ; _^ __DSQ ,G. 

DX^ DY' DY DX 

Integrating along the boundary, we obtain 

I | R = UY + A (4), 

where A is a constant. 

(ii) If the cylinder be moving with velocity V parallel to the 
axis of Y, the surface condition in the same manner can be shewn 
to be 

ty = -VX + B (5). 

(iii) Let the cylinder be rotating with angular velocity u; 
then at the surface 

U cos 8 + V sin 6 = — COY cos 8 + COX sin 8 

D-Jr DR 
or -j- = — EOR - r - . 

DS DS 

Therefore ^ = - J wr2 + C (6), 

where R = JX2 + Y*. 

When there are any number of moving cylinders in the liquid, 
conditions (4), (5) and (6) must be satisfied at the surfaces of each 
of the moving cylinders. 

In addition to the surface conditions, ijr must satisfy the 
following conditions at every point of space occupied by the 
liquid; viz. T]T must be a function which is a solution of Laplace's 
Equation (1), and which together with its first derivatives must be 
finite and continuous at every point of the liquid. If the liquid 
extends to infinity and is at rest there, the first derivatives must 
vanish at infinity. 
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2n,=f{x+cy)-F{x-iy)) ( 1 2 ) ' 

whence £ — iw = F (x — ly). 

Hence if <p (x, y, c) = 0 be the equation of any family of 
curves which can be expressed in the form 

2 x ( C ) = 2 £ = / R > + i 3 , ) + J F > - . Y ) 

the equation of the orthogonal system of curves will be 
2iV = f { x + i y ) - F ( x - i y ) , 

where 17 is constant along each curve of the orthogonal system. 

Again we have 

d ^ f x d x + d y d ^ 

' dv 7 d-n 7 

d r i = d x d x + d y d y -

Therefore if ds be the distance between two adjacent points, 

J W = D F + D Y . 

Hence if dsf, dsv be small arcs of the curves f and TJ respec­
tively 

Jds£ = d-ij') 

100. If <f> and I|R are conjugate functions of F and TJ, then and 
•ty are conjugate functions of x and y. 

Now, if and be the velocity potential and current function 
of a liquid, it follows that if <f> and yjr are written for f and 17 
respectively, equations (8) are satisfied; hence <j> a n ( i ^ a r e 

conjugate functions of x and y. 

99. Again 

dx'dx dy' dy ^ 

ti'+®'-®+®'-* ™ 
V ' F = 0 , V » , = 0 ( 1 1 ) , 

where V S = d /̂da;1 + d'/df. 

Equation (9) shows that the curves f = const., rj = const, form 
an orthogonal system. Equations (2), ( 7 ) and ( 1 1 ) show that 

2£ = / ( * + ty) + F ( x - i } , ) [ 
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For $ + 1^ = F(Ç +IR]) 

and F + IRJ =/ (X 4- TY), 

therefore CP + T,-Y{R = y_ (X + I T / ) . 

101. Let p and g be the velocities perpendicular to F and 77 
in the directions in which these quantities increase, then 

DSQ D% DV 
(14). 

DS( DV DÇ, 

If we consider a small curvilinear rectangle bounded by the 
curves f, V ; f + , 7; + ST;, the difference between the fluxes over 
the faces F + S£ and 1 7 + §77, and those over the faces F and 9 7 is 

» - ( £ + 2 ) * * . 
but if we choose the two tangents to the curves F and 77 at their 
point of intersection as the axes of X and Y, the difference between 
these fluxes will be 

S72CPDXDY. 

w 
In the case of an irrotationally moving liquid, both sides of 

this equation must be zero; hence Laplace's equation when trans­
formed into any variables £, 77 which are conjugate functions of 
X and Y, becomes 

^ + ^ = 0 (16) 

If we assume as the value of -*JR any solution of (1) or (16) 
and substitute this value in any of the three equations (4), (5) 
or (6), we shall obtain a system of curves, any one of which would, 
by its motion in the prescribed manner, produce lines of flow 
determined by the equation IFR = const. 

102. We shall now give some examples. 

(i) Let ^=-IVA2(—— +-~^~) 
V ' R I \X + LY X — TYJ 

VA2X 
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When R = A, - u V = — VX; also the velocity is finite and con­
tinuous at all points outside the cylinder R = A, and vanishes at 
infinity; hence - u V is the current function when a circular cylinder 
of radius A is moving in an infinite liquid with velocity V parallel 
to Y. 

The velocity potential is 

2ip = VA* ( - 1 -
X + TY X — IY. 

<P = - - 7 ^ L (18> 

The paths of individual particles of liquid due to the motion 
of a cylinder along a straight line, have been calculated and traced 
by Clerk-Maxwell1. 

(ii) If the liquid instead of extending to infinity is bounded 
by a fixed concentric cylinder of radius c, the INITIAL motion of the 
liquid can be obtained as follows. 

Since (X ± TY)A is a solution of Laplace's equation, it follows 
that r" (A cos ND + B sin NFF) is also a solution, where N is any 
quantity positive, negative, real or complex. 

Hence if the inner cylinder be moved along the axis of X with 
initial velocity U, we may put 

<P = (AR + ^J cos 0. 

When R = A, D<P/DR = U cos 6, whence 

a" 

When R = c, DCPJDR = 0, whence 

o 

Therefore 4> = ~ T~-v (r + — ~) c °s 9. 
^ C — A \ RJ 

This is the expression for the initial value of the velocity 
potential. The motion at any subsequent time after the cylinders 
have ceased to be concentric will be determined in § 122. 

1 " On the Displacement in a case of Fluid Mot ion ," Proc. Land. Math. Soc. 
vol. i n . p. 82. 
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(iii) Let •F = ^A {{X + I,YF + (X- IY}'} 

= A(X"- 3a;?/8) = AR*cos 30. 

Substituting in (6) the equation of the boundary becomes, 

A (X"- 3XY°) + £ O J 0 S + F) = C (19). 

If we choose the constants so that the straight line X = A, may 
form part of the boundary, we find 

. CO „ 2WA? 
A = 6A-> G = -T-

Hence (19) splits up into the factors 

(X — A) ; X + YIJS + 2A ; X — Y^/S + 2A. 

The boundary therefore consists of three straight lines forming 
an equilateral triangle, whose centre is the origin. 

Hence •v/r is the current function due to liquid contained in an 
equilateral prism, which is rotating with angular velocity A> about 
an axis through the centre of inertia of its cross section. The values 
of -DR and (J>, when cleared of imaginaries, are 

T i r = | V cos 39, <6 = J V s i n 3 0 . T 6a T 6a 

(iv) Let v/r = \ A {(X + IY)2 + (X - LYF] 

= A(A?-tf). 
Substituting in (6) we find 

A(X*-Y*) + %A,(X* + Y>)=C (20). 

N I L . CO + 2A 1 W-2A 1 
Putting —2c- = D" - 2 C ~ ' = ¥ ' 

the equation of the boundary becomes 

•\|r is therefore the current function due to the motion of liquid 
contained in an elliptic cylinder, which is rotating about its axis. 

The preceding value of -\|r is also the current function, when 
the liquid is bounded by two concentric, similar aud similarly 
situated elliptic cylinders, 

IRIS - LILLIAD - Université Lille 1 



• (23), 
dy 

and V * x - 2 Q > = 0 (24). 

Let x = %{8 cos \ x + £ sin Xa;), 

where 9 and f are functions of y alone. Substituting in the first 
of (23) we obtain, _ 

Z 7 cos Xa + - sm Xtt = 0, 
\dy dy J 

therefore f = 0, 

X = (2 W + 1 ) £ . 

Hence x = S^„ + 1 cos (2n + 1) ^ (25). 

Substituting this value of ^ in (24), we obtain 

2 if* ~ ( 2 n + 1 ) a ^ K + i cos ( 2 n + 1 } E ~ 2 ( 0 = 0 -(26)-
Now cos 2n + 1) da; = 7^—J—,— , 

J - a 2a (2re + 1 ) TT 

and | cos (2m + 1) ̂  cos (2n. + 1) ^ da; = 0 or a, 
J _ a 2a 2a 

according as m is unequal or equal to N. 
1 Stokes, " On some cases of Fluid Motion," Trans. Camb. Phil. Sac. vol. v in . 

p. 105. Ferrers, " Solution of certain questions in Potentials and Motion of 
Liquids," Quart. Journ. vol . xv. p. 83. For the expressions for the component 
velocities of the liquid in terms of elliptic functions, see Greenhill, Quart. Journ. 
vol. xv. p. 144, 

103. To find the current function when liquid is contained in a 

rectangular prism which is rotating with angular velocity m about 

its axis1. 

If 2a, 2c bo the sides of the cross section of the prism, the 
boundary conditions are 

U _ D*JR _ when X= + A, 
dy J l 

V _ _ DJ£_ _ A when Y = + c. 
da; 

Also y 2 ^ = 0. 

Let X - i « r > ' = 

then ^ = 0, a; = + a 
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Multiplying (26) by cos (2n-f 11 irx/2a, and integrating between 
the limits a and — a , we obtain 

f > + l ) V f l _ ( - ) ' 8 « . 
dj/ 8 4a2 ( 2 / 1 + 1 ) ^ ' 

therefore 

^ = 4 « - C 0 B h + X> 2a +

 Sinh
 { 2 n +

 1} S - ( 2 ^ T ) $ • 

If we substitute this value of # 2 n + 1 in (25), and then substitute 
the resulting value of % in the second of (23), we obtain 

A = (-)"32a 2o> 
2 n + I (2n + 1)V 3 cosh (2n + 1) TTC/SM ' 

whence 

_ 32a2<» ^ ( - ) " cos (2n + l ) M / 2 a ^ c o s h (2n + Vyrry^a 
X ~ ' V 0 ' _ ~~(2n + T ) 3 cosh ( 2 ^ + I)~7RC/2a 

_ ^ a 2 ^ ^ (j-ycos {2n + 1) 7RA;/2a 
Z " (2n + l ) 3 -

Now if £ lies between ^7r and — ^ T T , 

1 9 , 1 K 7 T 3 7 T 2 2 

cos ^ — — cos + cos 5^ — = — —-; 

hence the second series is equal to a (a" — x 2 ) , and the value O F ijr 
is therefore 

yjr = - oja2 — J C O (a;2 — T / ' ) 

32o2fu <*> ( - ) " cos (2w + 1 ) ^ / 2 « cosh (2n + 1) -rryj2a 
+ ~ ^ ~ ° (2n -f l ) 3 cosh (27? + 1) irc/2a " 

A more symmetrical expression may be obtained from the 
consideration that i]r must B O unaltered when a and x are written 
for c and y ; making these changes and adding the results we 
obtain, 

= - I Q J (a 2 + c2) 

16a2m (—)" cos (2?i 4- 1) rrx\2a C O S H (2n + 1) iry!2a 

+ ^ T 7 ~ " ^ ° ^ T T I T C O S H P ^ I K C / ^ 

1 6 ? » (_)» cos (2m + 1) TRY /2c cosh ( 2 n + 1) 7R*/2c 
+ ~ ^ 3 ~ 0 ( 2 ? T + T ) 3 w s h ( 2 ^ + ^ 1 ) W 2 c ~ " 

B . ' 7 
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104. To find the velocity potential when liquid is contained in 
a cylinder whose cross section is the sector of a circle, which is 
rotating about an axis through the centre of the circle1. 

Let a be the angle of the sector, a the radius of the cylinder, 
co its angular velocity, then 

d24> 1 dab 1 dab _ 
dr*+r dr+r^d0~U 

and the surface conditions are 

J ^1 = 6 , , - , w hen 0 = 0 or a (28), 

^ = 0, when r = a (29), 

also (p must not become infinite when r = 0. 

Let qb = Ecos\ [6+(3), 
where R is a function of r alone. Substituting in (27) we obtain 

d2R 1 d,R RX2

 n 

- 5 - 5 + - - j T = 0> 
dr r dr r 

the solution of which is 
R=ArK+ Br~\ 

Hence since X has not at present been determined, the value of 
(p may be written 

0 = A a r2 cos 2 (0 + /30) + 2 [AT* + Br~K) cos X (0 + /3). 

Substituting in (28) we obtain 

2Aa r2 sin 2 (0 + /30) + 1 X (Ar* + Br~k) sin X (0 + /3) = - &>r-". 

This equation is satisfied, provided 

2 ^ 8 1 0 ( 2 5 + 2 ^ = - . , | w h c n , = 

2 X (ylr* + Br~K) sin X (0 + /3) = 0, J 
which requires that 

2 / 3 0 = 2 ^ - « . 2.A0cosa = -
/3=0 , X = (2n + l) 7 7 / 7 . 

1 Stokes, " O n the critical values of the snms of periodic series," Tram. Camb. 
Phil. Sue. vol . v i i i . p. 533. Greenkill, " F l u i d motion in a rotating semi-circular 
cylinder," Mess. Math. vol. v i i i . p. 42 ; " F l u i d motion in a rotating qnadrantal 
cylinder," Ibid. p. 89 ; " F l u i d motion in a rotating rectangle formed by two 
concentric circular arcs and two radii ," Ibid. vol . ix . p. 35 ; " O n the motion of a 
frictionless liquid in a rotating sector," Ibid. vol . x. p. 83. 
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Therefore 

c6 = „ W T sin (29 — a) 
r 2 cos a. 

+ S ^ y 2 " - " ^ + J ^ r - ^ + ^ c o s (In + 1) 7T0/a. 

Since <fi must not be infinite when r = 0, 7Jn = 0; substituting 
in (29), we find that for all values of 9 between a and 0, 

wa sec a sin (20 - a) + 7 7 ~f0An (2n + 1) a ^ 1 ^ cos (2n +1) 7r0/a = 0, 

whence by Fourier's theorem 

\irAn (2n + l ) A ! S » + I W * = - « , a

2 sec A["sin (26 - A)cos(2n+ \ )TT6J% d9 
·> 0 

4&>aV 
4a2 - (2w + l ) 2 7 R ! ' 

therefore A„ = — - J ^ , " . s — . „s A - < 2 « + I > / « 
7T (2?j + 1 ) {(2n + l ) 2

 7T — 4 A ' } 

and A = = r2 sin (20 — a) 
T 2 cos a 

o o v-™ /r\( 2 K+ 1 ' ' r/ ' 1 cos (2n + 1) 7 R 0 / A 
+ o w a a Z 0 f ' — - — - — 

7T (2n + 1) {(2TJ + l ) 2
 7 T 2 - 4a2 

105. The interpretation of this expression presents no difficulty 
so long as a < w, but when a > IT the velocity becomes infinite at 
the origin. The following explanation of the motion which takes 
place when this is the case, is given by Prof. Stokes: 

" Let OAB be a section of the sector made by a plane 
perpendicular to the axis, and cutting it 
in 0. Suppose the cylinder turning round 
0 in the direction indicated by the arrow. 
Then the liquid in contact with OA and 
near 0, will be flowing relatively to O A , 
towards 0, as indicated by the arrow at 0. 
When it gets to 0, it will shoot past the 
face OB; so that there will be formed a 
surface of discontinuity indicated by the dotted line, extending 
some way into the liquid, the liquid underneath this line and near 
O flowing in the direction A 0, while the liquid above is nearly 
at rest." 

7—2 
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Whenever a liquid is flowing past a sharp edge, the analytical 
expression for the velocity, calculated on the assumption that the 
liquid is perfect and flows according to the electrical law of flow, 
always becomes infinite at the edge; a result analogous to that 
which occurs in the theory of the distribution of electricity on 
conductors, where it is found that the analytical expression for the 
density upon a conductor having a sharp edge becomes infinite at 
the edge. 

The mathematical investigation of the discontinuous motion 
which takes place in such cases is one of great difficulty, but 
certain special cases will be considered in the next Chapter. 

106. The problem of finding the velocity potential and current 
function, when a cylinder whose cross section is a given curve, is 
moving in an infinite liquid, has been solved in comparatively 
few cases. The theory of conjugate functions affords a powerful 
method of attacking such problems, but the principal difficulty 
consists in finding a relation between the complexes £ + ¿77 and 
x + ly, such that the given boundary shall be represented by some 
particular value of one of the functions £ or 77. 

The principal solutions of this problem, which have hitherto 
been obtained, will be given in the following articles. 

107. Let x + iy = c cos (f - ¿77) (30), 

then x = c cos f cosh 77, 

y = c sin f sinh 77, 

and the curves 1 7 = const., f = const, are a family of confocal ellipses 
and hyperbolas. 

If a and b be the semi-axes of the cross section of the ellipse 
7j = 8, then 

a = c cosh 8, 

b = c sinh 8, 

a'-¥ = c\ 

Also J* = ^ — ^ (31). 
c (cosh 2w — cos 2f) v ' 

Here 77 may have any positive value, and f may have any real 
value whatever; when •n = 0, the ellipse becomes a double line 
joining the foci; and when 77 = 00 the curves become circles; also 
J vanishes at infinity. 
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Now yjr satisfies the equation 

and this equation is satisfied by the expression 

A v + S J V N " (An cos n% + Bn sin nf) (33), 

which is the proper form of a potential function outside an elliptic 
cylinder, since by (14) and (31), it makes the velocity vanish at 
infinity. 

To find the form of I / R inside the cylinder, we observe that (32) 
is also satisfied by the series 

CO 

£, (Aa cosh Tin cos + Bn sinh nv sin ni~ + Gn sinh ny cos ng 
+ Dn cosh nrj sin n£) (34). 

Now if we examine the components of the velocity in the 
neighbourhood of the line joining the foci, it will be found that 
they will be discontinuous, unless d^jr/dv and d^jr/di; either vanish 
or change sign in passing from one side of this line to the other; 
the last two terms of (34) are therefore inadmissible. Hence every 
potential function, which together with its first derivatives is finite 
and continuous inside an elliptic cylinder, must be of the form 

CO 

S 1 (_4ncosh ntj cos ri£ + ./3nsirih n v sin«£) (35). 

This value also makes the component velocities finite at the 

foci; for in the neighbourhood of these points Jc = (Si;s + S f 5 ) 2 , 
and from (35) both difr/dl; and d^jr/dij are infinitesimals of the first 
order. 

Hence, by (4) and (5) if I ^ , T/Ts be the current functions when 
the cylinder 1 7 = /3 is moving parallel to x and y with velocities 
U and V respectively, 

•fx= Ucs-i+P sinh¡3sin f | ^ 

TJRV = — Vce~*+f>
 cosh ¡3 cos f j 

Again, r2 = « 2 + y2 = \<? (cosh 2v + cosh 2f). 

Hence, if I | R A be the current function when the cylinder is 
surrounded with liquid and is rotating with angular velocity a>, we 
must put 

•f3 = Ae-'2[7'-^ cos 2?. 
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Substituting in (6) and putting 77 = B , we obtain 

A cos 2£ + i c V c o s h 2/3 + cos 2(f) = C. 
Hence C = \c?(o cosh 2/3, 

A = — \c?a>, 

and ^ 3 = - i c W 2 ^ cos 2? (37). 

The value of the velocity potential may be deduced from the 
preceding values of -ty or from the corresponding expressions for an 
ellipsoid, which will be given in Chapter V I I . and which were first 
obtained by Green1 and Clebsch2. The expressions in the text are 
due to Prof. Lamb". 

The motion of a liquid in a rotating cylinder, whose cross 
section is formed (i) by the arcs of confocal ellipses and hyperbolas, 
(ii) by arcs of confocal parabolas, has been investigated by Dr 
Ferrers4. 

108. We shall now solve the same problem for a cylinder 
whose cross section is the inverse of an ellipse with respect to its 
centre6. 

Let 

then 

x + iy = c sec ( f + 177 

cosh2 7] sinh2 n 

• (38), 

Vcos2 f sin2 f y ' 
whence the curves f = a, 7) = B are the inverses of a family of 
confocal hyperbolas and ellipses with respect to their common 
centre. 

cx 
Also 

cy 

r 2 

• cosh 7] cos f, 

: sinh 7) sin 

2c 

r 

J'1 

-Y = cosh 277 + cos 2£ , 

(cosh 277 + cos 2 £ ) 2 

2 c 2 (cosh 2 T , - c o s " 2 f ) I 

(39). 

1 Trans. Roy. Soc. Edin. vol . x m . p. 54. 
2 Crelle, vol, L I I . p . 119. 

3 " Some hydrodynamics! solutions," Quart. Journ. x iv. p. 40. 
4 Quart. Journ. X V I T . p. 2'27. 
6 Ibid. vol . s ix. p. 190, and vol . xxi . p. 336. 
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Hero 7) may have any positive value, and f any value positive or 
negative, but as the values of x and y are periodic with respect to 
it is only necessary to consider values of f lying between 0 and ztt. 

When 7I is large the curves 7/ = const, consist of small oval 
curves about the origin, with which they ultimately coincide when 
n = co ; and when 77 = 0 they become two double lines extending 
from the points x = + c to infinity in the positive and negative 
directions respectively. 

Also when 77 is large 

Hence, within the cylinder, every potential function must be of 
the form 

S^e-"* [ A n cos n% + B n sin n £ ) (40). 

Outside the cylinder, every potential function must be of the 
form 

2 t ( A n cosh nrj cos n% + B n sinh nr\ sin w|f) (41), 

for the velocities will be discontinuous along the two double 
lines, unless dyfr/dg and d^/dv either vanish or change sign in 
crossing from one side of these lines to the other, and (41) is the 
only form which satisfies these conditions. This form also makes 
the velocity at the points x = + c finite. 

Now x + ty = 0 sec (£ + iv) 

~~ 1 + 6 - 2 I J + 2 T F 

= 2c (e-i+'S - 6 - 3 " + 3 ^ + e - i h > + 6 * _ & c . ) ; 

therefore x = 2c ( - ) " 6 - ^ + 1 ^ cos (2n + 1) £ 

y = 2 c \ ( - ) " e-(2*+D 1 sin (2ra + 1) £ 

Hence, if ^jrx, \jrv be the current functions when the cylinder is 
moving with velocities U and V parallel to x and y respectively, 

where /3 is the value of 77 at the boundary. 
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•drx = - L'itct J cosecam I h A 

/2Kv 
— cosecam ^ h A j j + Cy. 

Putting 2 K ^ / i r 4 - K = 0 , 2Kr,/Tr = <p, d n 2 0 = a, sn* (cf>, k') =/3, 

and clearing of imaginaries, the term in brackets becomes 

2i (1 — a/3) A2 sn </> cn <f> cn 0 dn f? 
& = ~~ (1 - a) (1 - /b'2/3) + a/3 (1 - £) (a - A") ' 

the functions of being to modulus k ' . 

The denominator of S 

= (1 -a /3)( l + aj3 - a - k'2j3), 

a 2ik? sn <f> cn d> cn 0 dn 6 

therefore ¿3 = j - 2 - r — - j - T a — r r — 

dn <p — dn a cn <p 

_ 2ik"2 sn cp cn $ sn ^ 

1 - sns ^ dn2 £ ' 
w h o r e % = 2K^jir. 

Hence we finally obtain 

2 ^ ^ ^ g ^ ^ J P ) 
it 1 — sn2 ( zAf /TT) dn' (A 77//S) 

the functions of f being to modulus A, and those of 77 to modulus k'. 

Similarly 

. 1 , , „ , , f 2#M , 2Zr] T r Yy = — V K k c < secam + secam >- — Vx. 
7T [ 7T 7T J 

109. The two series (42) and (43) constitute the complete 
solution of the problem when the motion of the cylinder is one of 
translation. The results can however be put into a more compact 
form by means of elliptic functions. To do this, let 

| + l7j = u , £ — it] = v ; K/it = K'/2/3, so that q = e~2^; then 

^rx = 2 Uci S 0 > £ *- 2 B + 1- jcos (2n + 1) u - cos (2re + 1) T > | 

1 f /2JTw \ /2ffw • 
= - LiKci ^ cosecam — \ - K] — cosecam \- K 

77 ( V 7T J \ 7T 

— \ Uci (sec u — sec « ) ; 

therefore 
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Putting 2K^/ir=x, 2Kv/7r = <p, d n 2

% = s, sn2(<£, &') = & and 
clearing of imaginaries, the term in brackets becomes 

„ 2F (1 - a/3) cn 6 cn qb 
" (a - A") (1 - 6) + 0.3 (1 - a.) (1 - k'*B) ' 

The denominator 
= ( l - a / 3 ) {a-k"(l+aB-B)}, 

therefore S = ^cn^CD(^ . 
1 — sn"1 ^ dn <p 

Hence we finally obtain 

110. When the cylinder is rotating about its axis with angular 
velocity a, the surface condition is 

sinh 2/3 6 2 ^ + cos 2f 
Now 1 + cosh 2/3 + cos 2f cosh 2/3 + cos 2f 

1 1 

= 2 + 22r(-)"e^M 3cos 2nf, 
therefore 

1 2 ^ 

1»· = cosh 2/3 + cos 2f 
CO n o 

= c a cosech 2/3 + 2c2 cosech 2/3 2 , ( - ) n e - 2 '" 3 cos 2nf\ 
Therefore 

^r8 = — we2 cosech 2/3 

« i i ar>^™ / _2«s cosh 2wr) cos 2 ? L F . -2o,c 'cosech 2 ^ < - / . . . . ( 4 6 ) . 

111. If liquid is contained in a cylindrical cavity bounded by 
the curve TJ = /3, 

= - wca cosech 2/3 - 2toc 2 cosech 28 £°° ( - )" cos 2n£ 

= — cue2 cosech 2/3 — eoc2 cosech 2/3 — ———=. — 1 
Vcosh 2 / 3 + cos 2 F 

_ cam cosech 2/3 sinh 277 . ^ 
cosh 2 7 / + cos 2 | 
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112. The results of § 109 admit of various interpretations, by 
means of which we can obtain the solutions of several problems in 
other branches of physics. Thus the function i/r„ is 

(i) The potential without the cylinder, of the induced 
charge, when the cylinder is placed in a field of uniform electric 
force parallel to x . 

If we invert with respect to the origin, which is equivalent to 

putting c*x/r* for x, and x + ty = c cos (£ — irj), tyy is 

(ii) The potential of the induced charge within an elliptic 
cylinder which encloses an electric system whose potential is 
Vc'x/r*. 

(iii) is the temperature within a solid elliptic cylinder 
whose boundary is maintained at a temperature — Vc2x/r*. 

113. The equation 

x + vy = 2c sec" \ (f + 477) 

represents a family of confocal limaçons. The curves 77 = const, are 
the inverses with respect to a focus of a family of confocal ellipses, 
whilst the curves £ = const, are the inverses with respect to the 
same focus of the orthogonal family of confocal hyperbolas. The 
current functions due to the motion in an infinite liquid of a 
cylinder whose cross section is the curve 77 = ¡3, and also of liquid 
contained in a rotating cylindrical cavity of this form, may be 
obtained in a similar manner to that employed in §§ 109—111 (see 
Quarterly Journal, Vol. xx. p. 234). 

114. Let us now consider the system of curves given by the 
equation 

£+n7 = £ l o g v ^ . 

This is equivalent to the system 

{x* - y * - c 2) 2 + 4ary = cV* (48), 

~ if - c2 = 2xy cot 217 (49). 

(48) is the equation of a family of confocal lemniscates, the 
distance between whose foci is 2c ; and (49) is the equation of 
a family of rectangular hyperbolas, each of which passes through 
the foci of the lemniscates and cuts them orthogonally. 
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It is easily seen that 

2x = o {1 + e ^ - ' i ) 1 , * + c {1 + 

2iy = c {1 + e2(f+"i>p - c {1 + e a t f - " > } » , 

r a = c 2 (1 + 2e^ cos 2v + e « ) » , 

= — (1 + 2e-« cos 2« + e - ^ . 
c 

f and n may have any values whatever. At infinity, £ = oo, 
, 7 = 0 ; at either of the foci f = — oo and J" = e~2f/c = oo . When 
£ = 0 the curve becomes the lemniscate of Bernoulli (ra = 2c2 cos 26); 
v and ^ir + t) are the angles which the asymptotes of the hyperbola 
make with the axis of x, and in the first quadrant 77 varies from 
0 to \TT. 

Hence, for motion parallel to x, 

fx = - \~Uci [{1 + e-»«-s»-«>>}i - }1 + e-*(f-^+">)}i]...(50), 

and for motion parallel to y 

•fy = -^Vc[{l + c~W-*-«i)}i + (1 + c- 2 «-a"-+^)i i ] . . . (51) , 

where a is the value of f at the surface. 

115. Before dealing with the rotation of the cylinders, we 
shall make a short digression for the purpose of considering the 

1 

coefficients of cos nO in the expansion of (1 + 2c cos 8 + c 2 ) ' J , which 
we shall denote by Ln, where c < 1. 

Now 

(1 + 2c cos 8 + c 8 ) * = (1 + C 6 i 9 ) J (1 + c e - « ) 4 

= (1 + \ csie + Sjfe™ + ... Sncne~nie + ...) 
X (1 + i c e - w + Sjfe-™ +... Sac"e-ni9 + ...), 

, ( - ) - 1 1 . 3 . 5 . . . ( 2 n - 3 ) 
where S. = — ; 
therefore Ln = 2c" [Sn + 1 c 2 + £ a + 2 S>c* + S f t + 3 ^ + . . . } . 

The value of i n , however, may be put into a more convenient 
form for calculation, for 

i Z n + 1 = [" (1 + 2c cos 8 + c 2 ) 4 cos (m + 1) 8d8 

c [v cos nd - cos (n + 2)8 ,, 
! ? t t ^ - do. 
2 ( t i + 1 ) J 0 ( 1 + 2 c cos 9 + c')i 
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A , , ttfVfc) [ „ . . ; i , . d F ( c ) \ (1 + c) 
T H E R E F O R E = | P ( C ) + (1 + c) - L > \ . ^ -

fe(c)-(l-c)F(c) 
( l - C ) V C ' 

therefore ^ (k) = - (1 - c) P (c) ; 
1 -p C 

therefore i 0 = | {2# - (1 - C 2 ) (53). 

Again, 

\ t t L ^ = T ( 1 + 2c cos 0 + c 2 ) 2 cos 0cZ0 

_ J " C sin2 6 d 6 

0 (l + 2ccos0 + c ! ) 4 

„ , . , T , ,, „v [* cos 0d!0 
= cF (c) - ^ T T Z , + H i + C ) - — T ; 

1 J K (l + 2 c c o s 0 + O

2 ) 2 

T H E R E F O R E f T T / ^ = cP + {\-rrLa - (1 + c2) P ) ; 

T H E R E F O R E A = 3 ^ K 1 + C A ) ( 1 - c2) P] (54). 

Also 

. / T T . /•"• (l + 2ccos(9+0') r cosnff-cos (n + 2)0} J n 

i 7 r ( A B - L N + S ) = dd 

J o (1 + 2c cos 0 + csJs 

7T (1 + c2) (w + 1) cos ( w - l ) 0 - cos (n + 3) 0 7 . 
- - £ < + C 1 do 

u J o (1 + 2c cos 0 + c 8 ) 2 

7r (1 + c2) (n + 1 ) r , r . „. r , 
= — ^ 4,+, + T + + 2) X „ + , } ; 

therefore 

( 2 a + 5 ) 21 > + i + (2» - 1) Z . + ' f l + ^ f r + J ) Z > + 1 = 0... (52) . 

Also £TTZ 0 = [ " (1 + 2c cos 0 + c") 2 ¿0 

= ( l + c ) E (k, I T T ) , where k = ^ . 

Now E ( k ) = k " ( F + k d

d

F y 

Also P(A) = (l + c ) P ( c ) ; 

IRIS - LILLIAD - Université Lille 1 



H a v i n g o b t a i n e d t h e v a l u e s o f L 0 a n d L t h e v a l u e s o f t h e 

s u c c e s s i v e f u n c t i o n s c a n b e c a l c u l a t e d b y m e a n s o f t h e s e q u e n c e 

e q u a t i o n ( 5 2 ) . 

1 1 6 . T o f i n d t h e c u r r e n t f u n c t i o n d u e t o t h e r o t a t i o n o f t h e 

c y l i n d e r i n a n i n f i n i t e l i q u i d . 

( i ) L e t £ b e p o s i t i v e a t t h e s u r f a c e o f t h e c y l i n d e r a n d e q u a l 

t o a, t h e n 

r2 = c ! e 2 a ( 1 + 2 e " 2 ' 1 co s 2v + e'^)1 

= c V a S 0 Ln ( A ) c o s 2nr], 
w h e r e L n ( a ) i s p u t f o r L n ( e ~ 2 a ) . 

H e n c e ^ = - J U C ' E 8 ' 1Ln ( a ) e - ^ n ^ - a ) co s 2nv ( 5 5 ) . 

( i i ) W h e n £ i s n e g a t i v e a t t h e s u r f a c e , t h e c y l i n d e r c o n s i s t s 

o f t w o p o r t i o n s , w h i c h w e m u s t s u p p o s e t o b e r i g i d l y c o n n e c t e d 

t o g e t h e r ; i n t h i s c a s e l e t £ = — a a t t h e s u r f a c e , w h e r e a i s 

p o s i t i v e ; t h e n 

•v/r, = - 1q>c 2 £ ™ Z „ ( a ) e-Wt+«) cos2nV ( 5 6 ) . 

I n t h e c a s e o f a c y l i n d r i c a l c a v i t y f i l l e d w i t h l i q u i d , t h e v a l u e s 

o f T/T a r e 

- i B c ' E ^ S R ^ " " 5 A , ( « ) c o s 2 m j - 4 < B c " 6 8 a LQ ( A ) ( 5 7 ) , 

a n d - J ^ c 8 e 8 , l C a + f ) Z „ ( a ) c o s 2nv - i w c ' Z , , ( I ) ( 5 8 ) . 

1 1 7 . W h e n a = 0, a n d t h e c ross s e c t i o n b e c o m e s a l e m n i s c a t e 

o f B e r n o u l l i , t h e p r e c e d i n g f o r m u l a e b e c o m e m u c h s i m p l i f i e d . 

P u t t i n g u = x + iy, v = x — iy, w e o b t a i n 

* - * ^ F ^ B - ^ } ^ 

+-—wy=*+rf=& <6o>-
1 1 8 . T h e v a l u e s o f w h e n t h e c y l i n d e r i s r o t a t i n g a b o u t i t s 

a x i s m a y b e o b t a i n e d i n t h i s c a s e w i t h o u t h a v i n g r e c o u r s e t o t h e 

g e n e r a l f o r m u l a e o f § 1 1 6 , f o r t h e v a l u e o f r 2 a t t h e b o u n d a r y i s 

2 c 2 c o s 77, w h e n c e ^ = — « c 2 c o s 77. T h i s m a y b e e x p r e s s e d i n 

t h e f o r m 

* - - ^ y = ? * j ^ ? } (6i)-
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119. To find i / r when the liquid is contained in a cylindrical 
cavity formed by one of the loops of the curve, we observe that ijr 
cannot contain any lower power of e f than e2 f ( f being of course 
negative), otherwise the velocities would be infinite at the foci, 
where J = e _ 2 ^ / c . Now 

r* = 2c2 cos TJ ; 

also for all values of 77 between \ir and — \TT both exclusive, 

cos V = ivr + ^ . 

Therefore 

• \ | r = — 6 ) C 2 HIT + 
( - ) n-l (in+l)£ co3 (2n + 1) i ? 

2n + 1 

a / 1 £ , , C O S 7 7 ' 
= — we i : 7 r + eb cos 7 7 + i tan . , : 

\ sinh jf, 

120. Lastly, let us consider the equation 

x + ly — c tan ^ ( f + ¿ 7 7 ; . . . . 

Then tan £ = tan J (f + ¿ 7 7 + f - 177) 

2c# 
c —as —y 

Therefore 

Also 

Therefore 

Again, 

Therefore 

* ? + y2 + 2cx cot f - c 2 = 0.. 

t tanh 77 = tan | (£ 4 - L 7 } _ £ + i 7 7 ) 

2cvy__ 
c2 + « 2 + if ' 

+ y'2 — Icy coth 77 + c2 = 0 .. 

sin £ (g + t T ? ) cos^ ( g - » 7 ) 

X + 6 cos + tos ^ ^ - "?) 

= c 
sin f + t sinh 77 
cosh 77 -|- cos f 

c sin £ 
a; = — - - -

cosh 77 4 cos f 

c sinh 77 
y ~~ cosh 77 + cos £ J 

J =s ~ (cosh 17 + cos f) 

(62). 

.(63). 

• (64). 

.(65). 
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121. Equation (6-1) represents a family of circles whose cen­
tres lie on the axis of x, at a distance — c cot £ from the origin 0, 
and whose radii are equal to c cosec Each circle passes through 
two fixed points A and B on the axis of y, whose distances from 0 
are c and — c. 

y 

A J 

o \ 
X 

B \ 

The angle f is half the angle subtended by AB at the centre 
of the circle. Hence the curve £ = 0 represents the portion AB of 
the axis of y. When f has any positive value between 0 and TT the 
curve consists of that segment of a circle passing through A and B 
which lies on the positive side of the axis of y ; and when £ = 7r 
the curve becomes the whole of the axis y except the portion AB. 

When f has any negative value between 0 and = i t the curves 
consist of segments of circles described on AB, and which lie on the 
negative side of the axis of y. 

Equation (65) represents two families of circles whose centres 
lie on the axis of y, at distances + c coth tj from 0, and whose radii 
are equal to c cosech v. These circles do not cut the axis of x. 

When in — oo the curve reduces to the point A ; when i) has 
any positive value the curve represents a circle surrounding this 
point; and when i) = 0 the curve becomes the axis of x . When 
r) has any negative value the curve represents a circle surrounding 
the point B, with which it ultimately coincides, when 77 = — cc . 
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Let P be any point on one of the circles A , then 
AP2 = x2 + (y - c) 2 

= 2cy (coth y — 1 ) , 
BP2 = 2cy (coth ?/ + 1 ) ; 

AP/BP = e-i. 

Whence every circle of the system rj is such that the ratio 
AP/BP is constant along each circle; therefore A and B are the 
common inverse points of each circle of this system. In con­
sequence of this property the coordinates f and t) are called di­
polar coordinates. 

122. We can now find the current function when two circular 
cylinders are moving in any manner in an infinite liquid1. 

Letr/=a, v= — B be the equations of the two cylinders sur­
rounding the points A and B respectively; and let wlt y,\ x2, —y,2 

be coordinates of any point on the cylinders A and B respectively, 
then 

x1 + Lyt = c tan J ( f + to.) 

- a 

= ci (1 4- 2 2 * ( - ) n e~na (cos ng + i sin n f ) } ; 

therefore 2c 2 , ( - ) " e""" sin ng i 
CO f 

y, = c + 2c 2 j ( — ) n 6 - B * cos n£; 
Again, 

^ s - 'y a = c t a n £ (? - « 0 ) 

_ c 1 - e-'f-P 
- t i + e : ' f -3 

= 7 j 1 + 2 2 1

C ° ( - ) n e - » P ( c o s n? - i sin n%)\; 

therefore x2 — — 2c S : ( — ) n e~B p sin 

.(67). 

(68). 
y.t = c + 2c 2 j ( — ) « 6 " " 0 cos nf) 

Let M , v be the component velocities parallel to x and y of 
the cylinder A , and u, v those of Z? ; then 

i/r = wy: — vxl + const, at A j 
•̂ r = — ii'ya — + const, at 7? j 

1 Greenhill, "Functional Images in Cartesians," Quart. Journ., vol. xvm. pp. 
356—362. See also Hicks, Ibid. vol. xvi. pp. 113 and 193. 
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T W O C I R C U L A R C Y L I N D E R S . 113 

Hence 

^ = 2 c %*(-)» e-^^^^-^(ucoan^ + vànn^ R I v / smh TI (a +/3) 

„ sinh n (a — v) , , e~nP -. , — 7 (u cosnP- v sm nP)...(70) smhn(a. + 8) ^' v y 

If the cylinder a were moving inside the cylinder ¡3, we should 
obtain in the same manner 

•«/<•= 2c 2 . " ( - ) » e - » " S 1 D ! 1 ̂  ~ ^ (w cos ng + v sin n?) 

+ 2c 2 " ( - ) " e _ r e 3 — r — y — 1 — — K cos nP + v sin rc?) . . . ( 7 1 ) . 1 sinh (a — p) x 

123. We shall hereafter require an expression for the kinetic 
energy T of an infinite liquid in which two cylinders are moving. 
By Green's theorem, 

2T 
P 

Now 

= 2c Xi ( - )» r M (M cos n% + v sin w£), 

(¿77"")
 = ^ c ( _ )* n e ~ M t t c °th « ( a + /3) (u cos ng + v sin nf) 

+ 2c 2 ™ ( — ) » ne'*? cosech n (a + ¡3) (« ' cos n£ - ii' sin nf). 

Hence the first integral 

= 4TTCB (W2 + i>2) 2"ne" 2 "» coth n(a + 8) 

+ 4-n-c2 (wit' - vv') 2 " R I £ - " ( A + F F L cosech 7 1 (a + /3). 

Similarly the second integral is equal to 

- 4 T T C 2 (u2 + v") 2 1 °ne-2«/3 c o t h n (1 + ¡3) 

- 4TTC 2 (uu ~ vv) X'ne-^Vcosech n (a + B). 
Hence 

2 R = P ( M

a + v2) + Q (« ' 2 + z/2) + 2Z ( « « ' - vv') ( 7 2 ) , 

where P = 47rpc2 2 * 7 I E - 2 « » coth ri (a + B) \ 

Q = 47rpc2 2™ne~2^ coth n (a + ¡3) i (73^ 

L = Airpc* 2 . ne~»[a+W cosech 11 ( 2 + @ ) ' 
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1 2 4 . Before we can make use of the foregoing values of P, Q 
and L , it will he necessary to express them in terms of the radii 
a and b of the two circles and their coordinates. To do this, let 

1 +q2" 
P = 4nrc> 2 , n6 

1-cf 

= 4 T T C 2 V W 2 " + 2 n 2 N 0 ! " f 
n=X I m=l 

Now q+2q2+3qe + 

therefore, inverting the order of summation, 

p - W T I — + 2 * I V " ' 

^ ~ t u - ^ Y + C l - ^ g " - ) 1 

Now a = c cosech a = 2 C 0 ] ( / ( l - 8'); 

therefore P = vra2 | l + 2 2 , ^ y i £ , [ (74) 

Similarly Q = wfis j l + 2 2 T ^- 2 ; ? -

Again Z = 87TC 2 S, ^ an 

n = 30 m — <x> 
= 8 T T - C " 2 2 ? I ?

2 ' " " 

'2771 - 1 
= 2™&2 ( 1 ^ I I L » . 1 2 _ (76). 

m-l l i — <? ; 
Since the quantities 82 are functions of the respective 

distances of the circles a and /3 from the axis of y , these values 
of P, Q and Z- are of the required form. The coordinate x does 
not enter into the expressions for the coefficients. 

The kinetic energy of a liquid in which two cylinders are 
moving, was first obtained by Mr W. M. Hicks 1: the investigation 
given in the text is due to Prof. Greenhill2. 

1 " O n the motion of two cylinders in a fluid," Quart. Journ. vol. xvi. pp. 113 
and 193. 

5 "Functional Images in Cartesians," Quart. Journ. vol. xvin. pp. 356—362. 
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EXAMPLES. 

1. An. elliptic cylinder is filled with liquid which has molecular 
rotation f at every point, and whose particles move in planes 
perpendicular to the axis; prove that the lines of flow are similar 
ellipses described in periodic time 

7T (a1 + V) 

ab£ 

2 . A fixed cylinder whose cross section is any one of the 
lemuiscates rr' = c2, where c is any constant and 2 a is the distance 
between the points from which r, r are measured, is surrounded 
by an infinite mass of water in steady cyclic irrotational motion ; 
show that the stream lines are all lemniscates of the same system, 
and that the velocity along a stream line at any point varies as the 
distance from the centre. 

Prove also that the polar coordinates (referred to the centre) of 
a liquid particle in terms of the time t are given by 

r 2 = a2cn/x£ ± c2dn/j,£, 
2d = sim/at, k = a/c. 

3. The cross section of a cylinder is a sector formed by the 
circle r = a , and the lines 6 = ± a. Prove that if the cylinder be 
rotating with angular velocity to, 

. ,2cos26? „ , v « . , n + I ( r / « ) ( 2 M + l l T / 2 a c o S ( 2 n + l ) 7 r t 1 / 2 x 

Y 2 C O S 22 0 ^ ' (2?t -f- 1 ) 7T {(2/1 •+- 1 ) 7T — 16st } 

4. The transverse section of a uniform prismatic vessel is of 
the form bounded by the two intersecting hyperbolas represented 
by the equations 

V2 (x2 - y2) + a? + y 2 = a 2 , </2 (y2 - x*) + x 2 + f = b \ 

If the vessel be filled with water and made to rotate with 
angular velocity eu about its axis, prove that the initial component 
velocities at any point (x, y ) of the water will be 

{ 2 T / - 6Vy + V 2 ( a 2 - b * ) y } 

- a ~ { 2 ^ - 6 ^ 2 + V 2 ( 6 2 - a > } 

respectively. 
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ci = C + W s i n 2 0 + ^ -
0 7 r a 2 r ' y ] 0 r " - 2 a r c o s 9 + d 

(r* a J \ . a _,2arsinr9 ( r 
— 2 -» o sin 20 tan — - „ s 4 - 4 -

\ a r y a? - r 2
 \ a 

where r, 8 are polar coordinates of any point of the liquid, 

5. A cylinder whose cross section is the limaçon 

T 
— = cosz ¡¿8 sech2 \ B + sin2 \ 8 cosech2 \ B , 
AO 

is in motion in an infinite liquid with velocities U, V parallel to 
the lines 6 = 0, 6 = \TT respectively ; prove that 

•^r = 8 Uc%l ( — n e - n P cosech nB sinh riv sin ng 

— 8Vc%l ( — ) n _ 1 ne -"^ sech n/3 cosh nr\ cos 

where f and 77 are conjugate functions such that 

x + ty = 2c sec2 ^ (? + "?)· 

6. Prove that if the cylinder in the last example be rotating 
in an infinite liquid with angular velocity &>, 

T | T = — 8 < B C 2 cosech8
 0 {cosh /3+2cosh/321 (—)" e~nPsechnB coshnv cosng 

+ 2 sinh /3S, « (—)" e - " 3 sech n/3 cosh n v cos 

and that if a cylindrical cavity of this form be filled with liquid 
and made to rotate, 

_ 8 & J C 2 (cosh B sinh 77 sinh/3 (1 4-cosh 77 cos f) 
" sinh3 B |cosh 77 + cos |f (cosh 77 + cos f ) 2 

7. A circular cylinder is moving parallel to the axis of x\ 
prove that if there is cyclic irrotational motion about the cylinder 
the velocity potential is 

K8 a?x 

^ = ^ ~ ^ ' 

where K is the circulation round any closed circuit embracing the 
cylinder once. 

8. A hollow cylinder of radius a , closed at both ends, is 
divided into two parts by a plane diaphragm through its axis, and 
filled with liquid. If the vessel be made to rotate about its axis 
with angular velocity w, prove that the motion of the liquid 
relative to the vessel will be such that its velocity potential is 

7 ' 2 a2\ J . r24- 2arcos04-» 2 

- , + -„ cos 2 9 - 2 f l o g - ^ — 
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9. Prove that 
(x + af + y2 

gives a possible motion in two dimensions. Find the form of the 
stream lines, and prove that the curves of equal velocity are 
lemniscates. 

10. In the irrotational motion of a liquid, prove that the 
motion derived from it by turning the direction of motion at each 
point in one direction through 90° without changing the velocity, 
will also be a possible irrotational motion, the conditions at the 
boundaries being altered so as to suit the new motion. 

Discuss the motion obtained in this way from the preceding 
example, 

11. Liquid is moving irrotationally in two dimensions, be­
tween the space bounded by the two lines 9 — ± ^rr and the 
curve r 3 cos 30 = a". The bounding curves being at rest, prove 
that the velocity potential is of the form 

0 = r 3 sin 36>. 

12. The space between the elliptic cylinder (x/af + (y/b)* = 1, 
and a similarly situated and coaxial cylinder bounded by planes 
perpendicular to the axis is filled with liquid, and made to rotate 
with angular velocity eo about a fixed axis. Prove that the 
velocity potential with reference to the principal axes of the 
cylinder is a> (a 2 — 6s) xy/(a* + b2), and that the surfaces of equal 
pressure when the angular velocity is constant, are the hyperbolic 
cylinders 

y* 

3a" + b2 362 + a 
= 0 . 

13. If <f> = f ( x , y ) , = F ( x , y) are the velocity potential and 
current function of a liquid, and if we write 

^r), y = F(<p, I J R ) 

and from these expressions find $ and ^ ; prove that the new 
values of <f> and i / r will be the velocity potential and current 
function of some other motion of a liquid. 

Hence prove that if tf> = x 2 — y 1 , = 2 x y , the transformation 
gives the motion of a liquid in the space bounded by two confocal 
and coaxial parabolic cylinders. 
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14. In example 12 prove that the paths of the particles relative 
to the cylinder are similar ellipses, and that the paths in space are 
similar to the pericycloid 

15. Water is enclosed in a vessel bounded by the axis of y 
and the hyperbola 2 (%* — 3y2) + x + my = 0, and the vessel is set 
rotating about the axis of z. Prove that 

16. When the stream lines for steady motion are similar 
concentric and similarly situated ellipses, the motion of a particle 
is the same as if it were acted upon by a central force to the 
centre ; and if the potential of the impressed forces is a function 
of the distance from the centre, the lines of equal pressure are 
circles. 

17. The coordinates ( x , y) of a particle at time t are given by 

where A, B, X and n are constants with regard to x and y, but A 
and B functions of a and b. Prove that if the different particles 
corresponding to different values of a and b are the particles of a 
liquid, A and B must be conjugate functions of the complex 
a + ib[X. Under what conditions is a free surface possible ? 

18. The space between two confocal coaxial elliptic cylinders 
is filled with liquid which is at rest. Prove that if the outer 
cylinder be moved with velocity U parallel to the major axis, and 
the inner with relative velocity V in the same direction, the 
velocity potential of the initial motion will be 

where v = ft, TJ = a are the equations of the outer and inner 
cylinders respectively, and 2c the distance between their foci. 

<f> = 2 ( 3 < i / - y') + xy - l2m (x2 - y'), 

i j r = 2 (x3 - 3xy2) + \ ( x 2 - y2) + mxy. 

x = a + A cos 2mrt + B sin 2M7TT-, 

y = b + XA sin 2mr{ — XB cos 2mrt, 

<p = Uc cosh rj cos £ — Vc 
cosh (/3 — 7f) 
cosh (jS — a) sinh a cos £, 
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19. If in the last example the outer cylinder were to rotate 
with angular velocity H, and the inner with angular velocity at, 
prove that initially 

, a cosh 2 ( v — a) . „ cosh 2 (3 - rf\ . 
^ * smb. 2 ( 8 — 0.)

 s * smb. 2 (¡3 — a) * 

20. If u = x + i y , v = x — ty, and w be any positive real 
quantity, prove that when a cylinder whose cross section is the 
curve r" = 2c n cos n 9 is moving with component velocities U, V 
parallel to the axes, in an infinite liquid, the current function is 

_ 1 _ 1 

where ijrx = - J ci [v (v" - c") " - u [un - c") 

f s = - i c [v (vn - C " ) ~ " + u («" - cnf% 

Hence prove that if the cross section is the cardioid 

r = 2c(l 4-cos 6), 

T}TX = 2rc* s i n \ 6 (Jr - cos \ 8 ) (r + c - 2 J r c cos %fi)~2, 

-i /^ = — rc (r + c cos 6 — 2 J r c cos if?) (r + c — 2 j r c cos ^8)~*. 
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C H A P T E R V I . 

O N D I S C O N T I N U O U S M O T I O N . 

125. I N the preceding chapter, we obtained expressions for 
the velocity potential and the current function of a liquid which 
is flowing past an elliptic cylinder, and it might be thought that 
by making the minor axis of the cross section vanish, we could 
obtain the solution for a stream which is flowing past a rect­
angular plate. This however is not the case ; for if the minor 
axis be made to vanish, it will be found that the velocity of 
the liquid becomes infinite at the edges, and therefore the pressure 
becomes equal to — oc , which indicates that a hollow would be 
formed in the neighbourhood of the edges. In order that the 
motion represented by the formulae should be possible, it would 
be necessary that at every point of the liquid boundary of 
the hollow, the pressure should be constant, and therefore the 
liquid boundary would have to be a line of constant pressure 
as well as a stream line; but it is not difficult to show from 
the formulae that it is not possible for a line of constant pressure 
to coincide with a stream line, and hence the formulae fail when 
the cylinder degenerates into a rectangular plate. 

126. The problem of determining the steady motion of heat 
and electricity, is precisely the same as that of determining the 
motion of an irrotationally moving liquid subjected to the same 
boundary conditions, so far as the velocity potential is concerned; 
but there is an important distinction between the two problems, 
for in the former the pressure condition does not exist. Hence the 
solution of problems in the conduction of heat or electricity cannot 
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receive a hydrodynamical interpretation, unless the value of the 
pressure given by that solution never becomes negative at any 
point occupied by the liquid ;—in other words, whenever it is 
possible for the liquid to flow according to the electrical law of 
flow—; but when this is not the case, the hydrodynamical applica­
tion of such formulae would give results, which although in many 
cases approximately representative of the motion at a considerable 
distance from the region of negative pressure, certainly do not 
give correct results in the neighbourhood of this region. 

127. Wo have noticed in Chapter IV, that there is nothing 
in the nature of a perfect fluid to prevent slipping taking place 
between two contiguous layers, and we have shown that a surface 
along which slipping takes place is a surface of discontinuity, 
which possesses the properties of a vortex sheet; but the possibility 
of such slipping is not taken into account in the ordinary theory, 
which assumes that the liquid flows according to the electrical 
law. But in order to solve problems in which liquid is flowing past 
a sharp edge, it will be necessary to take into consideration the 
possibility of slipping; and we must therefore endeavour to obtain 
a solution, such that a certain surface of no flux which passes 
through the sharp edge shall also be a surface of constant pressure. 
This surface of no flux will either form the free boundary of the 
liquid, or will constitute a surface of separation between the moving 
liquid and a region of liquid at rest, and in the latter case will be 
a surface of discontinuity along which slipping must take place. 
The only problems of this class which have yet been solved are 
problems of two dimensional motion, and the method of solution 
is due to Kirchhoff1 and depends on the properties of complex 
variables. 

128. Any complex variable x+ty, may be represented geo­
metrically by means of a vector drawn from the origin to the 
point whose rectangular coordinates are (x, y ) . 

If we put x = r cos 8, y = r sin 6, the length of the vector will 
be r, and 8 will be the angle which its direction makes with the 
axis of x . The quantities r and 8 are respectively called the 
modulus and amplitude of the complex x + iy. 

The sum of two vectors x + iy and a + ib is x + a + i (y + b ) , 
which represents a vector drawn from the origin to the point 
(x + a, y + b). Hence the sum of two vectors is represented by 

1 Crelle, vol . L X X . ; and Vorles. iiber Math. Phy. Chapters xxi. , xxn . 
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the diagonal of the parallelogram of which the two vectors are 
adjacent sides. 

Similarly the difference between two vectors is represented by 
a line drawn from the origin, which is equal and parallel to the 
line joining the opposite extremities of the two vectors. 

The product of the two vectors is 

Whence the product of two vectors is a vector whose length is 
equal to the square root of the product of the two vectors, and 
whose direction is inclined to the axis of x, at an angle which is 
equal to the sum of the inclinations of its factors. 

Similarly the quotient of two vectors is a vector whose length 
is equal to the square root of the quotient of the two vectors, and 
whose direction is inclined to the axis of x, at an angle which is equal 
to the difference of the inclinations of the dividend and divisor. 

129. Let z and w denote the two complexes x + ty and <p + ii/r ; 
and let x and y be rectangular coordinates of a point P in a plane, 
which we shall call the plane of z ; and let tp and TJT be rectangular 
coordinates of a point P' in another plane which we shall call the 
plane of w. Then if w and z be connected by any relation 
w =f (z), it follows that if P trace out any curve in the plane of 
z, P' will trace out a corresponding curve in the plane of w. 

130. Every function of a complex has a differential coefficient, 

where 

Hence 

(x + ly) (a + ib) = ax — by + I (bx + ay) 
= R (cos <p + ¿ sin <p), 

R cos (p = ax — by, R sin <p = bx + ay. 
R* = {a2 + b2) (x2 + y2), 

for 

dw _ d<p + id-ty 
dz dx + idy 
(DTP/dx + ID^JR/dx) dx + {DQBJDY + IDYFRJDY) dy 

dx + IDY 

And since 

this ratio is independent of the ratio dyjdx. 
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131. In the class of problems which we are about to consider, 
the boundaries of the liquid consist partly of straight lines which 
constitute the fixed boundaries of the liquid, and along which the 
direction of the velocity is necessarily constant; and partly of the 
free surface of the liquid or of surfaces of discontinuity, which 
divide the moving liquid from the region of liquid at rest, and along 
which the pressure and consequently the magnitude of the velocity 
must be constant. Hence, if we choose the scale of measurement 
such that q = 1 along the latter surfaces, the boundaries will 
become transformed in the plane of f into an arc of a circle 
of unit radius, which corresponds to the free surface, or surfaces of 
discontinuity ; and into the radii of this circle, which correspond 
to the fixed boundaries. The points where the radii meet the 
circle correspond to the points where the fixed and free boundaries 
intersect; also since the velocity must not become infinite, can 
never vanish, and therefore the portion of the plane of £ external 
to this circle and included between the two radii, corresponds 
to the portion of the plane of w occupied by the moving 
liquid. 

Along the boundaries fixed and free, of the liquid in the plane 
of z , we must have -ty — at, and -^r = 0, where a and 0 are constants ; 
hence the corresponding portion of the plane of w consists of the 
space included between the two parallel straight lines ^r = a, 
+ = 0. 

We must therefore endeavour to connect f and w by a relation, 
such that the above mentioned portions of the two planes of 
f and w shall correspond; and also that certain points in these 
two planes shall correspond to certain points in the plane of z . 
Wrhen this has been effected, the relation between z and w, which 
determines qb and T|T in terms of x and y , must be obtained by 
integration. 

If qb and ijr be the velocity potential and current function of 
a liquid, 

dw deb d\lr 

dz dx dx 

Therefore = —-— = \ (u + vu) = (T (say), 
dw u - iv q2 v •= \ J/> 

where q is the resultant velocity of the liquid ; hence the vector f 
represents the reciprocal of the velocity of the liquid. 
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132. We shall define a lune as the space which is included 
between two circular arcs which meet but do not cross. 

The angle of a lune is the angle at which the arcs meet. 

Let z = x 4- ly, z = x + iy', where (x, y ) , (x', y ' ) are the rect­
angular coordinates of two points P , P ' in the planes of z , z 
respectively. We shall now show that if P trace out any lune of 
angle a in the plane of z , and P ' trace out another lune of angle a' 
in the plane of z', it is possible to connect z and / by a relation, 
such that the angular points of the two lunes shall correspond; 
and also that any third point on the perimeter of one lune 
shall correspond to any third point on the perimeter of the 
other. 

The equation 
A Z + B - D Z ' + B 

Z ~ C Z T B ° r Z - ~ C Z ' T A ( }' 

where A , B , C, D are complex constants, transforms any circle in 
the plane of Z into another circle in the plane of Z ' . For if the 
point P describe a circle about the point c = a 4 ib as centre, we 
must have 

mod (Z — c) = const (2) 

or (x — a f + (y— b ) 2 = const. 

Substituting the value of Z in terms of Z' from (1), (2) 
becomes 

mod \ K ^ — = const (3), 

where K , C 1 , C2 are new complex constants. Now if k , p i : are 
the moduli of if, Z' - C ± , Z ' - C 2 , (3) may be written 

—1 = const., 
P* 

whence P ' moves so that the ratio of its distances from the 
two fixed points C l t C 2 is constant, and therefore describes a 
circle. 

Since (1) contains three disposable constants, viz. the ratios of 
the three quantities A , B , C, to D , it follows that these ratios may 
be chosen, so that a circle passing through three given points in 
the plane of Z shall correspond to a circle passing through three 
given points in the plane of Z ' . 
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133. Let X + » F = 5 S = — - 1 (4) 
z - c2 

w h e r e cx = a + ib, c2 = a + iS. 

Let A and B be the points c, and c2. The vector 5 2 being 
the quotient of the two vectors A P and BP, is represented in the 
plane of 5 S by a straight line whose inclination to the axis of X 
is equal to A P B . Now if P describe a circle passing through A 
and B , the angle A P B is constant, hence every circle passing 
through the points A and B in the plane of z, corresponds to a 
straight line passing through the origin in the plane of SS. 
Also if P and Q are any two points on two different circles passing 
through A and B , the inclination of the two corresponding lines 
in the plane of SS is equal to B Q A — B P A , that is to the angle of 
the lune AQBPA. Hence ( 4 ) transforms any June in the plane 
of z into two straight lines in the plane of SS whose inclination is 
equal to the angle of the June. 

If we put Z = SS", 
the two straight lines in the plane of 5 2 become transformed into 
two straight lines in the plane of Z inclined at an angle n times 
as great; hence if a be the angle of the lune and n = TT/Z, the 
equation 

<«> 

transforms a lune in the plane of z whose angle is a and whose 
angular points are c t , c2 into a single straight line in the plane 
of Z. 

Similarly if z be any other plane, the equation 

transforms a lune in the plane of z whose angle is a.' and whose 
angular points are c/, c2' into a single straight line in the plane 
of Z'. 

If therefore we substitute the values of Z, Z' from (5) and (6) 
in (1), the resulting equation transforms any lune of angle a in the 
plane of z into a lune of angle a in the plane of z ; and by 
suitably choosing the ratios A : B : G : D , we may make any three 
points on the perimeter of one lune correspond to any three points 
on the perimeter of the other. 
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134. We must now notice some particular cases. 

(i) Let z = e

w or x + iy = e* + "" (7), 

whence x = e* cos ifr, y — e* sin ifr. 

When \js = 0 or IT, y = 0 ; hence (7) transforms the two parallel 
straight lines i|r = 0, = TT in the plane of w into the single 
straight line y = 0 in the plane of z. 

(ii) Let 2 = vw or x + iy = Jcfi + i-^r (8). 
Putting <p = R cos yjr = R sin ^ , 

we obtain a; = ^ i ? cos 1/ = *JR sin 

When JR sin | ^ = const. = c, y = c ; hence (8) transforms the 
confooal parabolas JR sin ^ = C in the plane of w into the 
parallel straight lines y = c in the plane of z. "Now if c = 0 the 
parabolas degenerate into a double line extending from the focus 
to oo . Hence (8) transforms a straight line in the plane of w ex­
tending from a fixed point to infinity, into the whole of the axis 
of x, in the plane of z. 

(iii) Let us now consider the portion of space bounded by 
the straight lines O A , O B in the plane of 
which is external to the circular arc A B . 

If 7 is the inclination of O A , O B , the 
equation f = g " , y transforms the two straight 
lines O A , O B in the plane of f into a single 

0 A straight line in the plane of ; and the 
arc A B into the semicircle a b . Hence the 

transformed region in the plane of is the portion of space lying 

on the upper side of a b , and which is bounded by the semicircle 
and the infinite straight lines a a , bb'. This region may be regarded 
as a lune of angle \ir, one of whose arcs is the semicircle a p b ; 
and whose other arc consists of the infinite lines a a ' , bb', which 
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v f ' + l y 

transforms this lune into a single straight line in the plane of z , 
hence the required transformation is 

r y + 1 
.(9). 

135. We shall now apply the preceding method to the solu­
tions of some special problems. 

A JET OF LIQUID ESCAPES BY A SLIT AB FROM A LARGE CISTERN OF 

WHICH THE SIDE IS X'X; REQUIRED THE MOTION, WHICH IS SUPPOSED TO 

BE IN TWO DIMENSIONS. 

x B Q 

w 

7 A P 

The figures show the corresponding lines in the planes of z , £ 
and W; corresponding points being represented by the same letters 
in each of the three planes, and the fixed and free boundaries and 
their corresponding lines by thick and thin lines respectively. 
The lines X ' A , BX along which the direction of the velocity is 
invariable, are represented in the plane of £ by the straight lines 
X ' A , B X ; and the free surface of the jet along which the magnitude 
of the velocity is invariable and equal to unity, by the semicircle 
APQB. The portion of the plane of £ lying above the line 
XBQPAX', corresponds to the space occupied by the liquid. In 
the plane of w this space corresponds to the region contained 

may be regarded as an arc of a circle whose centre is at infinity. 
By (5), the equation 
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between the parallel straight lines ic'AP and œBQ. Let T/T = 0, 
= 7T be the stream lines x ' A P , and x B Q : also let = 0 be the 

equipotential surface passing through A and B . 

In order to transform the region in the plane of £ to that 
in the plane of w, we must put 7 = TT in (9) and we obtain from (7) 
and (1) , 

/ g - i y _ A e w + B 

v . ? + 1 7 ~ U e ^ + JJ-

Since a liquid flows from places of lower to places of higher 
velocity potential, the following conditions must be satisfied : 

(i) <£ = - o c , £ = 0 0 , (ii) <j> = c c , Ç = - i , 

(iii) w = 0, f = l , (iv) w = t77, £ = — 1 . 

Of these (i) gives B = D ; (ii) gives A = — C ; and (iii) and (iv) 
both give A = — B ; whence 

lK-IV _ 1 - e w 

; 

or Ç = - - = 6 -w + > / e - a « _ 1 . 

Let 0 be the angle which the tangent to A P makes with A B ; 
along A P q = l, T]T = 0, and cp is positive ; hence 

cos 8 + t sin 8 = e~* + t ^/l — e~ 2*, 

whence cos0 = e~*, 

sin 0 = V T ^ T - 2 * . 

Also # = 1 , 
as 

therefore measuring s from ^4, we obtain 

s = <p 

dx 

and ^ - = cos0 = e - s , 
as 

therefore x = 1 - e _ s (10), 

A being the origin. When s = 00 , « = 1 ; also since the final 
width of the jet is TT, the width of the slit is IT + 2. 

The ratio of the final width of the jet to the width of the slit, 
is called the coefficient of contraction of the jet, which is there­
fore equal to 7 r / (7 r + 2) or "611. 
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Again ^ = sin 0 = J l - e - T s , 
as 

y = Jl-e~*> - I L O G (11). 
1 - J l - e - z s 

Eliminating s between (10) and (11), the equation of the 
free surface of the jet is 

y = J%x — x2 — J lo< 1 + J 2 x - x 2 

1 - J 2 x - x ' ' 

Also the radius of curvature is tan 0, which vanishes at the 
origin. 

If we put ^1" for f we obtain the solution when the boundaries 
x B , x A are inclined at an angle a. 

136. Let us now suppose that the conditions of the last 
example are varied by introducing a tube projecting inwards1. 

V 

A' 

The containing vessel is supposed to be so large that we may 
disregard what takes place at the sides. The motion will then be 
as follows. The liquid will flow along the side B ' B , and at B the 
direction of its velocity will begin to change, and the liquid will 
finally flow out in a stream whose section will be less than that of 
the tube. 

R. 

1 Helmholtz , Phil. Mag. Nov. 1868. 

9 
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Since the aperture of the tube is supposed to be small, the 
curve m the plane of f which corresponds to the free boundaries 
may be approximately regarded as a circle, and if we put £' = V£ 
the space bounded internally by this circle and the lines A A ' , 
B B ' , will be transformed into the region in the plane of £ in 
the last example. The solution in this case maybe obtained from 
the last example by writing *JÇ for and we obtain 

= 2 e ' 2 w ~ 1 + 2e - " s / e " 2 " ' - r l . 

Along the free surface of the jet, we have 

s = <p 

cos 6 + i sin 6 = 2e- 2* - 1 + 2ie~*JT -e~™, 

therefore ^ = cos 0 = 2e~5*—1, 
as 

x = 1 — s — e~2s, 

^ = sin 9 = 2e~'jT^ e"2*, 
as 

y = e~* J l — e _ 2 s + s in - 1 e~* + y , 

the middle point of AB being the origin. When 5 = 0 0 , y = y , 

so that 2 y is the final breadth of the stream and is therefore equal 
to 7r; when s = 0, y = \ir + y' = TT, whence A B ~ 2 i r , and the co­
efficient of contraction = J . 

137. Lord Rayleigh1 has shown that if the vessel were of 
finite dimensions, the coefficient of contraction must always be 
greater than | ; for let a " be the area of a section of the vessel so 
far removed from the orifice that the velocity over it is sensibly 
constant and equal to v". Let v , a ' be the ultimate velocity and 
section of the jet, a the section of the tube. The equation of 
continuity gives 

va' = v"a". 

By the principle of energy 

and by the principle of momentum 

pa = a v — a v . 

1 " T h e Contracted Vein ," Phil. Mag. Deo. 187G. 
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S T R E A M F L O W I N G P A S T A L A M I N A . 1 3 1 

From these equations we obtain 

2 1 1 
a it a 

which shows that the section of the tube is an harmonic mean 
between the sections of the cylinder and jet. When a" = c o , 
a ¡ 0 = \ as before. 

138. When a rectangular lamina is held fixed in a stream 
which meets it obliquely, there will be a region of dead water 
behind the lamina, which will be at rest, and the total pressure on 
the lamina will be due to the difference of pressures upon its 
anterior and posterior faces. 

The stream line ^ = 0 meets the lamina at some point 0 and 
then divides, each branch following the lamina to its edges, and 
afterwards forming the boundary between the moving liquid and 
the dead water behind the lamina. 

The portion of the plane of f corresponding to the moving 
liquid is that which lies below the semicircle AA'B'B and the two 
infinite lines Bb, Aa; and the points + 00 correspond to 0 . The 
whole of the plane of w corresponds to the portion occupied by the 
moving liquid, with the exception of the double lino shown in the 
figure, which may be regarded as the limiting form of a parabola. 

Let a be the angle at which the stream meets the lamina ; 
since the equation w = \Jw converts the double line in the plane 

9—2 
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G J w + B ' 

The conditions to be satisfied are 

(i) < £ = ± c c , F = cos A — T sin A , 

(ii) w = 0, f = oo . 

From (i) we obtain 

A = - C tan" Ja, 

and from (ii) B = D , whence 

f Ç - l \ " - C j w t t m ^ t + B 

Ç + l ) G j w + B 

0 

Let — = *JK (1 + ens u), a ~ K w , 
B 

and we obtain 
' \ - L i y = 1 ^ 0 - - cos a) Vg, 

Ç + l ) 1 + ( 1 + c o s A ) ' 

ç = n + J U T ^ i (12), 

where &l = cos A + -—. 

When the velocity of the stream at infinity is equal to V, which 
will be supposed to be the case in what follows, we must change 
£ into £ V , and (12) becomes 

Z V = n + j Q T - i (13). 

In the plane of z let 0 be the origin, O B the axis of x ; along 
A B f must be real and equal to iT1, and at A and B £ = V'1. 
Hence at all points of the lamina we must have 12 > 1, and at A 
and B , i l = — 1 and + 1 respectively. 

Let I be the breadth of the lamina, then since along A B 

K(j> = 6 j and d<f>/dx = u, 

L - / t t = J ( n + v W = L ) & O * ) . 

the limits of integration being determined by 

F L = cos A - I — 7 = ± 1 · 

of w , into a single straight line in the plane of w , we must 
put 

ft^-Vf _ A * J w + B 
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P = G-

P 

= £ 
p 

Hence the total pressure on the lamina is 

+ 4 
P 

= \ ( p - p ' ) d x = y ^ V < - u * ) d ± 

= P V W - l ) * - d < p 

T T T 7 ^ £p sin a 
= - . ' — . ( l o ) , 

4 + 7 r sin a 

which determines the resistance which the lamina offers to the 
stream, and shows that it depends partly upon the square of the 
velocity and partly upon the angle which the stream makes with 
the lamina. 

The moment of the pressure is 

G = , , 2 F p

3 j * x J T - p d B . 
A sin a ' v ^ 

Now by (14), 

\ V K x = / {cos a (/3 + cos a) + sin2 a + J l — /32 sin a} cosec* ad/3. 

Hence, if the origin be suitably chosen, the value of x will be 

_ ß ' cosa + 2ß + [ ß j l - ß' + sin"1
 ß]_ sina 

V K sin4 a 

If ß h a a new variable such that 

ß = J to sin8 SL — cos a, 

the limits of ß will be + 1, and we obtain 

£ V K l = ( [Q3 + cos a) cos a + sin" x + J l - 0* sin a} cosec4 a d/3. 
- 1 

Whence K = ^ 7 " t i s "— . 
Kt sin a 

Along the lines A A ' , B E ' the pressure p = p (G — £ V 2 ) , which 
must be equal to the hydrostatic pressure of the dead water. At 
the surface of the lamina, 
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The odd terms in ¡3 contribute nothing to the integral, and 

therefore 

£ = W ^ - T - P /32 JT^W* cos zd/3 
A sin' a J_/ 

_ irp cos a •ss cos a 
4Z" sin7 a = 4-K"Fsin\z' 

The distance of the middle point of the lamina from the origin 
is cos a/Vifsin 4 a ; hence the distance of the centre of pressure 
from line middle point is 

3 cos a 3Z cos i 
4.K'Fsin''a 4 (4 + TT sin a) ' 

If .̂ 7r > a > 0, the negative sign shows that the centre of pressure 
is on the upstream side of the middle point; hence if the lamina 
be free to turn about an axis parallel to its edges whose distance 
from the middle point is 

3Zcosct . . 
X = M 4 + ^ r s W ) ' ( l b ) ' 

it will be in equilibrium. If a = | 7 r , x = 0; and the lamina will 
set itself transversely to the stream. When a = 0, x is a maximum 
and is equal to 3£/16, in which case the axis divides the lamina in 
the ratio 1 1 : 5 . 

139. The results of equations (15 and 1G), which are due to 
Lord Rayleigh1, may be stated in another form as follows. "If the 
axis of suspension divide the width in a more extreme ratio than 
II : 5, there is but one position of stable equilibrium, that namely 
in which the lamina is parallel to the stream with the narrower 
portion directed upwards. If the axis be situated exactly at the 
point which divides the width in the ratio 11 : 5, this position 
becomes neutral, in the sense that for small displacements the 
force of restitution is of the second order, but the equilibrium is in 
reality stable. When the axis is still nearer the centre of figure, 
the position parallel to the stream becomes unstable, and is 
replaced by two inclined positions making with the stream equal 
angles, which increase from zero to a right angle as the axis moves 
towards the centre. With the centre line itself for axis, the lamina 
can only remain at rest when transverse to the stream although of 
course with either face turned upwards2." 

1 "On the resistance of fluids," Phil. Man. Dec. 1870. 5 Ibid. 
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140. Ia order to obtain the intrinsic equation of the surface 
of separation, we have along this surface 

Therefore = li = cos a + J · 

Now f = V, 
as 

therefore <£ = V (s + c), 
dx 1 

and therefore -=- = cos 0 = cos a + 
The constant c is to be determined from the fact that when 5 = 0, 

cos 8 = ± 1. In the case of perpendicular incidence, we have 
c = 1 / V K , whence 

dx I c 

or x = 2 (cs + c2)* + constant, 
from which it appears that x does not approach a finite limit as s 
increases indefinitely. 

The methods of this chapter only apply when the motion is in 
two dimensions; so far as I am aware, no problem of this class has 
been solved when the motion is in three dimensions. 

MISCELLANEOUS EXAMPLES. 

1. If u , v, w , (p are any functions of x , y , z , prove that 
udx + vdy + w d z — d(p has an integrating factor; hence show that 
if u, v, w be the velocities of a fluid, then along any vortex line 

udx + vdy + wdz = d<p. 

2. If in an infinite mass of homogeneous incompressible fluid 
in equilibrium under finite fluid pressure only, an indefinitely long 
cylindrical column be suddenly annihilated, prove that no motion 
will take place. 

3. Prove that the velocity potential due to a unit source 
placed outside a sphere of radius a, and at a distance f from its 
centre is 
<p = - (r 2 - 2 / r cos 0 + f 2 y i - a/"1 <V - 2c r cos 0 + c2)~* 

+ ^ i l o g [c - r cos 8 + ( r 2 - 2c r cos 6 + c 2) 4] - log r (1 - cos 0)}, 
where (7 · , 8) are polar coordinates referred to the centre of the 
sphere as origin, and c = a 2 / / . 
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136 D I S C O N T I N U O U S M O T I O N . 

4. Prove that the rate at which the energy of a mass of 
liquid, contained within an imaginary closed surface described in 
the liquid is increasing, is equal to 

jj(p + pV)q cos edS, 
where p is the pressure, V the potential of the impressed forces, 
q the resultant velocity at any point of S, and e is the angle 
between the direction of q and the normal to S drawn out­
wards. 

5. If a, b, c be curvilinear coordinates of any point (x, y, z) of 
a liquid, such that the lines of flow are the intersections of the 
surfaces b = const., c = const.; apply § 39 to prove that when the 
motion of the liquid is not steady, a first integral of the general 
equations of motion is 

?-+ V+iq2 + il^da=F(b, c, t), 

where J = i ^ > . 
d (x, y, z) 

6. If the molecular rotation of a mass of liquid which com­
pletely fills a rigid circular cylinder be equal to \r~l F' (r), where 
r'1 F'(r) is any function of r which does not become infinite 
within the cylinder; prove that the paths of individual particles 
of liquid are circles described in periodic time 

2 7 ^ 7 ^ 0 ) . 

7. In § 135, if v be the velocity at any point on the middle 
line of the jet, whose distance from the orifice is y, prove that 

1 . 1 + 1 ; 
V = log _, , 
V v bl-v 

the ultimate velocity of the jet being unity, and the scale of 
measurement being such that it + 2 is the width of the orifice. 
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C H A P T E R V I I . 

ON THE K I N E M A T I C S OF SOLID BODIES M O V I N G I N A 

L I Q U I D . 

141. I N the present chapter we shall obtain expressions for 
the velocity potential, in a variety of cases in which a liquid 
is bounded externally or internally by moving solids, when the 
motion is in three dimensions. We shall suppose that the motion 
of the liquid is irrotational and acyclic, and consequently the 
motion will be completely determined by means of a velocity 
potential (/> which must satisfy the following conditions ; 

(i) d> must be a single valued function, which at all points of 
the liquid satisfies the equation Vcft = 0 ; 

(ii) <p and its first derivatives must be finite and continuous 
at all points of the liquid, and must vanish at infinity if any 
portion of the liquid extends to infinity; 

(iii) At all points of the liquid which are in contact with a 
moving solid, dfyjdn must be equal to the normal velocity of the 
solid, where dn is an element of the normal to the solid drawn 
outwards; if any portion of the liquid is in contact with fixed 
boundaries, dep/dn must be zero at every point of these fixed 
boundaries. 

142. Let us now suppose that a single solid is in motion in an 
infinite liquid. 

Let Ox, Oy, Oz be three rectangular axes fixed in the solid, and 
let cf>L be the velocity potential when the solid is moving with unit 
velocity parallel to Ox, and let xl be the velocity potential when 
the solid is rotating with unit angular velocity about Ox. Let 
$a< Xv Xs D C similar quantities with respect to Oy and Oz. Also 
let ii, v, w be the linear velocities of the solid parallel to, and 
&>,, wa, <us be its angular velocities about the axes. 
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The velocit}' potential of the whole motion will be 

<f> = wft + v<b2 + wcf>3 + œ l X l + ^ X i + wsx3 (1). 

For if X , fi, v be the direction cosines of the normal at any 
point x , y , z on the surface of the solid, we must have at the 
surface 

d<pl _ ̂  d4>j _ d i 3 _ 

dn ' dn ^' dn V ' 

dy, dy„ „ dy„ 
- r - = vit — iiz, —f--1 = \ z - vx, —j- = ux — \ y . 
dn ^ n dn dn n J 

Hence ^ =
 ( M ~ y ( ' \ + z w

2 ) X + z a >

1 + xa>3)/j. + (w — xu>.2 4- yoi^) v 

= normal velocity of the solid. 

143. To find the velocity potential when a sphere of radius a is 

moving parallel to the axis of x 1 . 

Let u be the velocity of the sphere, a its radius, 6 the angle 
which the radius to any point on its surface makes with Ox, then 
at the surface, 

-J = u cos V, 
dn 

or ^ = u cos 8 (2), 

when r — a . 

Since the motion is symmetrical with respect to O x , and the 
velocity must vanish at infinity, cf> must be of the form 

4>^ + ̂  + ̂  + 

where P n is the zonal harmonic of degree n . Substituting in (2), 
we obtain 

a a 

whence A0 = A2 = &c. = 0, 

and At = — \uaf, 

tlierelore 9 = — i l i a — 

= - ^ « 8 p (3)· 

1 Poisson, "Mémoire sur les mouvements simultanés d'un pendule et de l'air 

environnant," ilém. de VAcad. des Sciences, Paris, vol. IX. p. 521. 
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j 44. If the sphere were moving with component velocities 
u, v, w, parallel to the axes, the velocity potential would be 

<p = — g 3 (ux + vy + wz). 

This expression is the velocity potential of a doublet situated 
at the centre of the sphere, whose axis coincides with and whose 
source end is turned towards the direction of motion of the sphere. 

145. The velocity potential may be determined by the method 
of images, when the solid, which is formed by the revolution about 
the line joining their centres, of two spheres which intersect at 
right angles, is moving parallel to its axis'. 

Let A and B be the centres of 
the two spheres, C a point on their 
circle of intersection; then if CS 
is perpendicular to AB, S is the 
common image of B and A with 
respect to the spheres A and B. 
Let AC = a, BC = b, 

AB = c = v V + b\ 
and let u be the velocity of the solid along A 7i; also let (r, 6), 
h\, 8\), 6T) be the polar coordinates of any point P referred 
to B, S and A respectively as origin. 

The velocity potential due to the motion of B alone is 

<r>i = - 2 7 c o s 6 > 

which is the same as that due to a doublet of strength at B. 

The image of this in A is a doublet at S of strength 

and the image of this in B is a doublet at A of strength 

ab V , „ 

AB.BSÌ Sua . 

This is precisely what is required to give the requisite normal 
velocity over A and B, whence 

• 5 « 
COS 8 d'b3

 cos 8, a3
 cos 6. ' 

+ r c r\~ r 2 ' 
1 Stokes, Math, and Plujs. I'ape.rz, vol . i. p. 
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146. The motion of two spheres will be discussed in Chapter 
XL, but when the space between two concentric spheres is filled 
with liquid, and the spheres are moved in any manner, the velocity 
potential of the initial motion can be obtained as follows1. 

Let a and b be the radii of the outer and inner spheres respec­
tively, 0 their common centre; and let the outer sphere be moved 
with velocity u along any direction OA, also let the inner sphere 
be moved with velocity v along a direction OB which is perpendi­
cular to OA. Let 6 be the angle which the radius to any point P 
makes with OA, the angle which the plane OAP makes with 
the plane OA B. 

The surface conditions are 

(! ̂)=ucoS0, ( ^ = „sin0oo8X ( 4 ) . 

The function 

4> = (Ar + cos 6 + (Cr + sin 6 cos x 

satisfies Laplace's equation. Substituting in the first of ( 4 ) we 
must have 

. 2 5 2D A s- = u, U =- = 0, a a 3 

and from the second of (4) 

. 25 n n 2D A--yr=0, 0- -p- =v, 

whence A = ua"/(as - b°), B = | «a ' ò 8 / (a3 - ¥), 

C = - vb3l(a" - F), D = - JWò'/ (ae - 63) 
j , ua3 [ If \ . vb* r a" \ . , 

a n d * = j r r p [r + 2 ? j C 0 S 6 ~ aF^b' [r+2?J B i n 0 C0S * 

147. The velocity potential due to the motion of an ellipsoid 
in an infinite liquid was first obtained by Green in 1833, for the 
case of translation only2 ; the solution was completed for the case 
of rotation by Clebsch in 1856 s. 

(i) Let the ellipsoid move parallel to the axis of x with unit 
velocity. 

1 Stokes, "On some cases of fluid motion," Trans. Camb. Phil. Soc, vni. p. 105. 
ä "Researches on the vibration of pendulums in fluid media," Trans. Roy. Soc. 

F.din., 1833. 

•J " Ueber die Bewegung einer Ellipsoids in einer tropfbaren Flüssigkeit," Creile, 

Liu p. 103. 
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where AK=2-7rabcl ,-^r"^VN „ &c. 

Il\ = irabc j 
•(7), 

P = { ( a 2 + f ) ( 6 2

+ ^ ) ( c ' + t ) J J , 

and we shall drop the suffix X, when these quantities refer to an 
internal point. 

If p is the perpendicular from the centre on to the tangent 
plane at x, y, z ; the surface condition is, 

d4\ = l=px 
dn a? ' 

x^dfr vd<p . z d^_ x 
a 2 dx+V dy + c2 dz a 2 W ' 

Since Axx is the a;-component of the attraction of the 
ellipsoid, this quantity obviously satisfies conditions (i) and (ii) of 
§ 142 ; we may therefore assume that 

fa = a A kx. 
Hence at the surface 

dd>, ( . 2irx dX -P=z[A r - r dx \ a dx 
ddij _ 2wax dX 
dy a2 dy' 
d<pi 2irax dX 

dz a" dz 

If V be the potential at an external point of a homogeneous 
ellipsoid of attracting matter of unit density, the equation of 
whose bounding surface is 

(x/ay + (y/by + (z/cy = i, 

where \ is the positive root of the equation 
X* y z2 

The potential at an internal point is obtained by putting 
X = 0 in the definite integral. We shall write this expression in 
the form 

V = | (Akx2 + Btf + CJ) -II, (6), 
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Differentiating (5) with respect to X, and then putting X = 0, 
we obtain 

eft _ 2XF DX _ 2YJ? D\ _ 2 T H 2 _ 

DX D2 DY B* ' DZ ~~ D' ' 

hence the left-hand side of (8) becomes 
AX (A — 4 7 R ) / a 2 , 

whence a = (A — 4 7 R ) ~ ' , 

and rf>. = — — . 
R I Y L — 4TT 

It therefore follows that if the ellipsoid is moving with 
velocities, U, V, W parallel to the axes 

AKUX BKVY GHWZ 
9 A - 4 7 R +

J B - 4 7 R + C - 4 7 R W 

(ii) Let the ellipsoid be rotating wdth unit angular velocity 
about OX ; then the surface condition is 

g = 0 , l ( ^ - m , ) = ^ ^ (10). 

Writing for a moment Y and Z for BKY and GKZ, it can easily 
be shown that the function ZY — YZ satisfies Laplace's equation, 

\DZDY DYDZL 

also at great distance from the origin Y and Z are at least of 
the order r~a, and therefore is at least of the order r - 1 and 
therefore vanishes at infinity. 

Let us therefore assume 
X L = *(ZY-YZ)=*'YZ(B>-CJ, 

then at the surface 
DJF^^(YD^_Z^+EDJY_YDZ-
DN V DN DN DN Y DN 

= ^F{(B~C)(V + c 2) + 4 R R (&2 - c 2)}. 

Substituting in (10) we obtain 

(B-G) Q? + c2) + 4 7 T (62 - c 2 ) ' 
^ , ffl-c2) (BK-GX)YZ 
therefore X l = J ^ C ) ^ + c

2 ) + W (V^CT) 

The functions %V X3 can be written down from symmetry. 
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file:///dzdy


' * (a2 + ^ . ) * (C» + ^ ) 

(a2 - <?f J " "* ( " ' - 1 ) ' 

if (a1 + \ ) è = (a1 - c 2 ; ^ ; therefore 

. 4 I R ( l - e « ) / , . + l 1\ 

^ — V - ^ L * L O E ^ Ï - I ; J ( 1 2 ) -

where e is the excentricity of the generating ellipse. Also 

* ( o ' + t ) 4 ( o " + t ) ' 

( l - e " ) f " dv r dv 

- ^ C - ^ R - I " ^ ) o*>. 

(ii) If wo put a = b> c, so that the surface becomes a 
planetary ellipsoid we obtain 

U (a2 4 I / r ) 2 ( c 2 4 ^ 

_ 4 7 R A 2 c r°° ¿ 1 / 

~ ( ^ T ^ " « J , ( 1 + V f 

if ( c

2 4 X ) * = ( a 8 - c 5 ) ^ ; therefore 

• ^ ^ ' V ' ^ ) W . 

C V = ^ — ( „ - C O T V ) ( L O ) -

It will be observed that in the case of an ovary ellipsoid 
v = e'~x, where e' is the excentricity of the generating ellipse of 
the confocal ellipsoid which passes through the point (x, y, z) ; 
and that in the case of a planetary ellipsoid 

148. The quantities A^, BK and G\ may be expressed in terms 
of elliptic functions of the first and second kinds; but the most 
important case is when the ellipsoid is one of revolution. 

fi) If we put b = c < a, the Eurface becomes an ovary ellipsoid 
and 

d\lr 
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149. If c = 0 the planetary ellipsoid becomes a disc, and 
(fjt = 0; hence a disc which moves parallel to itself cuts through 
the liquid without producing any motion. 

To find the velocity potential when the disc is moving perpen­
dicularly to its plane, we observe that at the surface v = 0 ; hence 
when c and v are small c = av, therefore 

„ . 4?7C ia , \ . life 
V — 4TT = i?r — 4TT = , a \c z 1 a 

therefore (h = — z (- — 
7T \v 

cot 

If /u,, v are elliptic coordinates, this equation may be written1 

0 = _ ^ (l _ „ co r 1 v) fx, (16), 

By § 99 (14) and § 110 (31), the velocity perpendicular to the 
hyperboloid p = const, is 

a V y2 + fj? d/x. 7T V u 4- /x 
At all points in the plane z = 0 which do not lie on the disc, 

/j. = 0, and the velocity perpendicular to this plane 

2w . . . 
= (1 — v cot V), 

which becomes infinite when v = 0. The velocity is therefore 
infinite at the edges, as we should expect since the liquid is 
supposed to move according to the electrical law of flow. 

The solution for a stream flowing past a fixed disc behind 
which there is a region of dead water, has not yet been dis­
covered. 

1 The function qn (v) is a spheroidal harmonic of the second kind, and is equal to 
Qn ( [„) where Qn(v) is a zonal harmonic of the second kind. The 

potential at an external point of any distribution of electricity upon an oblate 
spheroid which is symmetrical with respect to the axis of the spheroid, can be 
expanded in a series of terms of the type qn [p) Pn 
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R O T A T I N G E L L I P S O I D A L C A V I T Y . 145 

150. To find the velocity potential when liquid is contained in 
an ellipsoidal cavity which is rotating about its centre. 

Here ^ ^ K c ^ J 
Assume %, = Ayz. 

Then = d X l + - % 1 

dn b2 dy ca
 dz 

Equating these two values of dyjdn, we obtain 

A=h—* b2 + c2 • 
b2 — c2 

This value of y^ satisfies Laplace's equation, and is such that 
the velocities are finite and continuous at all points of the 
liquid. Hence 

, b2-c2 , c2-a2 a?-b2 

r 1 b' + c2
 * * c + a 8 a + 6 * 

151. Let us now suppose that the space between two 
concentric coaxial and confocal ellipsoids is filled with liquid, and 
that the inner and outer ellipsoids are suddenly moved with 
velocities U and V respectively parallel to the axis of z1. 

Let the accented and unaccented letters refer to the outer and 
inner ellipsoids respectively ; and let 

<f> = Mz + FCkz. 
The surface conditions are 

dd> _ jj.pz dep _ yP'z' 
dn c" ' dn c" 

From the first equation we obtain 
M + N [C - 4-TT) = U, 

and from the second 
M+N(C — 4TT) = V, 
U{G'-4nr) - V{G-4ir) whence M = 

N = 

C-0 
u-r 
C -G' 

1 Greenhill, "F lu id motion between confocal elliptic cylinders and confocal 
ellipsoids," Quart, Journ. vol. xv i . p, 227. 

R . 1 0 
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and therefore 
^ _ U{Q - 4 T T ) - V(C-4>RR) -(U-V) GK 

<P- C , _ C a 

If the outer ellipsoid were rotating about the axis of Z with 
angular velocity VT, and the inner with angular velocity A, the 
surface conditions would be 

We must therefore assume 

<J> = MXY + N(BX- XY. 

From the first equation we obtain 

[M + N { B - A)} ( I + - 4 7 T J V C - . - 1 « i U - . -

and from the second 

{M+N{B-A')}QRT + I . 4 7 R 2 V [ P . 
_1_ 

• » ( P - P ) 

(19). 

which determine the constants M and iV. 

152. We shall next investigate the motion of a liquid about 
an indefinitely thin spherical bowl 1. 

Let A be the radius of the sphere of which the bowl forms 
a part, 0 its centre, c the radius of the small 
circle which forms the rim of the bowl, A the 
pole of this circle which will be called the 
vertex of the bowl, Q any point on the bowl ; 
also let V be the potential at P of a distribu­
tion of matter of density <r on the bowl. Then 

' - / / I F -

Now PQ a = R2 + A1 -2AR cos R\. 

Therefore 

DV_ F FA (r — A cos Y) DS 
DR PQ3 ' 

_ 1 D(VR) _ [[tr cos EDS 
hence 

A DR JJ PQ2 ' 
where e = TT — OQP. The right-hand side of this equation is the 
magnetic potential at P of a complex magnetic shell of strength <x. 

1 Proc. Lond. Math. Soc. vol . xvi. p. 28G. 
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153. Let us now suppose that the motion of an infinite liquid 
is caused by any system of sources, sinks, or vortex filaments; let 
<3> be velocity potential due to this system (which we shall call the 
external system) when the bowl is absent; and let be the velocity 
potential after the bowl has been introduced. Then we may put 

<p=il + <Z>, 
where il is to be determined. 

If the bowl is fixed, which for the present we shall suppose to 
be the case, the surface condition is 

dCl _ d<& 
dr dr' 

when r = a. This condition is to be satisfied on both sides of the 
bowl. 

Now, if we remove the bowl, and substitute over its surface a 
sheet composed of doublets, whose axes are in the directions of the 
radii passing through them, and whose strength tr, per unit of area, 
is such that the normal velocity at every point of the sheet is 
equal and opposite to the normal velocity due to <J>, all the con­
ditions of the problem will be satisfied. But the velocity potential 
of such a sheet of doublets is analytically equivalent to the 
magnetic potential of a complex magnetic shell of the same 
strength, which occupies the position of the bowl, and whose 
positive side coincides with the sink side of the sheet of doublets ; 
hence the problem is reduced to finding the potential and strength 
of such a magnetic shell when the normal component of the 
magnetic force at the surface of the shell is given. 

Now we have shown that, if V be the potential of a surface 
distribution of matter upon the bowl of density <x, then 

a dr ' 
also, if Q0 and fl ( be the values of ft at two contiguous points just 
outside and just inside the shell respectively, then 

H 0—n. = 4VTG-. 

The magnetic force at the surface of the bowl is 
_dD, _ l _ f [ P r ) 

dr a dr3 

a-Id/' ^ d/M + 1 -tfcbpl ' 
by Laplace's equation. 

10—2 
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Now the value of the magnetic force at the surface of the bowl 
can always be expanded in a series of spherical surface harmonics 
YN ; hence, if 

_D£2 __ Y 
DR~ 

~N(N+L)' 

D£L 
and therefore if — = 2 , Y„ (20) 

DR 1 

at the surface, the corresponding value of V at the surface is 

V=A2%°L ~ ~ T , (21). 
1 N (N + 1) 

The formula (21) fails when N = 0 ; the only case, however, 
which is necessary for our purpose to consider, is when the mag­
netic force is symmetrical with respect to the axis of the bowl, and 
has a constant value F at its surface. In this case, 

F = - M 
DR 

1 D DV 
~~A'D^1 F L ) DP' 

therefore V= \FA2 log (1 - tf) + \A log \ ^ + B. 

Now Fmust not be infinite when /* = 1, therefore 

A=FA\ 

and the value of V may be written 

V = FA*LOG A (I +/*). 

But, if an infinite straight line extending from the centre of the 
bowl to — oo be electrified with line density FA2, its potential is 

= -FA2 logr (1 +FI). 

Hence V is the potential of the induced charge when the bowl 
is under the action of a positively electrified line extending from 
the centre to — oo . If, therefore, ^ be the potential of the howl, 
under the action of a positive charge of unit intensity, situated at 
a point on the axis distant U from the centre, and on the negative 
side of it, 

'=FA!f X DU . 
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dr 
(ii) Let the bowl be moving perpendicular to its axis with 

velocity v, and let the plane from which the angle 1 ·̂ is measured 
contain the direction of motion; then if tp' be the velocity potential, 

* ^ = D C O S I | C sin 9, 

therefore V = — \va? cos ijr sin 6 

at the surface. V is therefore the potential of the induced charge, 
when the bowl is placed in a uniform field of force perpendicular to 
a plane containing its axis. 

154. The preceding result enables us to find the velocity-
potential due to a source situated at the centre of the bowl. In 
this case 

. m 
<J> = 

r 

. díl m 
therefore = —,, dr a 

therefore d> = — — Í d du-—. 
r a J 0 dr r 

155. To find tha velocity potential due to the motion of the bowl 
in an infinite liquid. 

(i) Consider the case of motion parallel to the axis. 

If the liquid were flowing from right to left past the bowl, the 
velocity at infinity being equal to w, then 

4> = — wz 
and <p = Í1, — wz, 

whence ^ P " = w cos 9 
dr 

at the surface. 
Hence, if the bowl is moving parallel to its axis with velocity u, 

Now, by (21), V. = -% wo,2 cos 6 
at the surface. V, is therefore the potential of the induced charge, 
when the bowl is placed in a uniform field of force parallel to its 
axis whose potential is \waz + const., whence 

L D ( 7 , R ) 
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(iii) Let the bowl be rotating about an axis. 

It is clear that, if the bowl were rotating about an axis through 
the centre of the sphere of which it forms a part, the bowl would 
simply cut its way through the liquid without producing any 
motion. Now, a rotation about any other axis is equivalent to a 
rotation about a parallel axis through the centre, together with a 
velocity of translation perpendicular to the plane containing the 
centre of the bowl, and the original axis of rotation ; hence the 
motion of the liquid due to the rotation of the bowl is equivalent 
to that due to a properly chosen motion of translation. 

156. It thus appears from the preceding articles that the 
velocity potential due to the motion of the bowl in a liquid, 
depends upon the electro-static potential of an electrified bowl, 
which is placed in a field of force whose potential is known. We 
shall now show bow to find this potential, when the field of force 
is symmetrical with respect to the axis1. 

Let A C B be a section of the bowl through 
its axis, I the centre of the sphere of which 
the bowl forms a part, also let A l C = a, 
PJG = 6 , I A = a, AB = 2c. 

If in the equation 

— j = 1 + Pxh + PJi* + 
(1 - 2A cos 0 + h y 

we put h = e"1 and equate the real and imaginary parts of the 
resulting expressions, we obtain 

cos ̂  a. + P t cos fa + P 2 cos §a + = 1 
>J2 (cos a — cos 8)' 

sin ^ a + Pj sin fa + P 2 sin jja + = 0 

when 8 > a. But if 9 < a, the first series is zero, and the second 

series = {2 (cos 0 — cos a)} .̂ 

1 Ferrers, " On the distribution of electricity on a bowl," Quart. Journ. vol. X V I I I . 

p. 97. 
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(cos 61 — cos a) 
or 0, 

according as 6 < or > a. 

If we suppose 9 < a, and integrate both sides with respect 
to a, between the limits 7 R A N D a, we shall find that the scries 

1 2*= G C(2s + I) [ ~ s m ( " - s ) a | sin(w + g + l ) ' 
iir'a s = 0 |_ n — s n + s + 1 

1 
4 7 R A 

(2N + 1) P 
*J2 CN sin a cos J (2/i + 1) a 

1 + ^ R 
" V R J , 

D A .(24). 
(cos 8 — cos a) 

But if we suppose 8 > a and integrate with respect to a 
between the limits a and 0, we shall fmd that the series in 
question vanishes. It therefore represents the density of a certain 
distribution of electricity in the bowl. The potential of this 
distribution is 

7 = - - 2 
7T a - 0 

"sin (n - s) a sin (?i + s + 1) a] f a \ s + l 

.(25), 

if R > A; but if R < A we must interchange A and R and multiply 
the result by AJR. 

To find the value of V at the surface of the bowl, we must put 
R = A, and differentiate with respect to a ; we thus obtain 

DV 
- r - = 2cos 4 (2n -f 1) a {cos ^ a + PL cos 1 3a + PT cos J 5a + 

v /2cosi(2m + l )a 
7 T (cos a — cos 0) 

6 > a , 

= 0 

by (22). 

0 <a, 

Differentiating the second series with respect to a, we obtain 

cos \ a + 3P t cos \ i + 5 cos fa + 
= sina ^ o r Q ( 2 g ) j 

*J2 (cos 6 — cos a) 

according as 9 < or > a. 

Multiplying (23) by 2 cos | (2n + 1) a, we obtain 

cos na -t- cos (n + 1) a + 3P 1 [cos (ra— 1) a + cos (n + 2) a] + 
+ (2m + 1) P„ {1 + cos (2n + 1) a} + etc. 

\/2 sin a cos £ (2N + 1) a 
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V= — 
7T 

J2 ["cos A (2« + l ) a 1 

o [cos a — cos 8) 
= F(8) 0 < a . 

di 8 > a, 

To determine F (8), let a = IT in the series (25) for V and 
we obtain V= P„. 

The series on the right-hand side of (25) is the potential of 
the bowl when placed in a field of force whose potential at the 
surface of the bowl is equal to — Pn, and the density is given by 
(24); and since the potential of every field of force which is 
symmetrical with respect to the axis of the bowl can be ex­
panded in a series of zonal harmonics, we can determine the 
potential and density of the bowl when placed in any such field, 

157. In order to obtain the potential when the bowl is 
placed in a field of force whose potential is \waz, we must put 
n = 1 in the series (25) and multiply the result by — ^wa2, hence 

v=-wa z 
2TT , 

sin(s — 1) a sin(s + 2)a 
+ s~^2 .(26). 

In order to sum the first series, we have 

h* (1 - + h'f 

therefore const. - ^ + P, log h + P 2 h + . pjr-
' n-l 

+ &c 

-I, 
dh 

h2(l-2hfi. + h2)i 

, h~l - cos 8 
= - (1 - 2fih~1 + h-y - p , sinh"1

 s i n 0 · 

Putting h successively equal to aela/r and ae'^jr, subtracting, 
and putting St for the first series in (26), we obtain 

2w s a"1 Sx = ~ (a2 - 2ar>e~' a + r 2 e ~ ^ + (a 2 - arpeia + r2ciaf 

— a cos 9 
pCl sinh" 

i re 
sinh' 

_, re • a COS i 

Let 
a sin 6 " a sin 8 

a2 + r 2 cos 2a — 2or cos a cos 8 = A, cos 2%, 
r 2 sin 2a — 2a?" sin a cos 8 = X, sin 2%, 

r 2 + a2 — 2ar cos (a — 8) = p2, 

r2 + a2 — 2ar cos (a + 8) = q2. 

Hence 
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F ' = 2 . 
2c i 

r cos 0 sin 1 ± I [4c2 ~ (P ~ 

+ £ cos 0 sin- ^ ? ± i {4r2 sin2

 a - (p - q) f .(28). 

158. If the positive signs be taken, this is the potential at all 
points within the space bounded by the plane passing through the 
rim of the bowl, and that portion of the sphere passing through 
the centre and rim of the bowl, which lies outside the bowl. 

The potential for the space enclosed by the bowl and the 
plane through its rim is obtained by changing the inverse sine in 

Then X=pq 

and the first two terms of (27) 
= 2i Jx sin 

But 

ir* sin" a - (p - q)2 = 2 (X - a2 - r2 cos 2a + 2ar cos a cos 0) 

= 4X sin2 ^ . 

LTence the first two terms 

= ± t { 4 r , s i n 5 2 - ( p - 5 ) 2 } 2 . 

In order to find the value of the last two terms, let us denote 
the quantity in square brackets by — 2njr. 

Since 
cosh (sinh~'m — sinh_ 1n) = »J(l + m2) (1 + n 2 ) + m n , 

we easily obtain 
a2 sin2 0 cos 2 ^ = (r 2e 2 l t t - 2areUI cos 0 + a2)* 

x ( r 2

e - 2 l " - 2 a r < R l , , c o s 0 + a 2 ^ 
— (r2 + a" cos2 0 — 2ar cos a cos 0) 

= \ - ^ (p 2 + g2) + a 2sin 2 8, 

therefore -dr = sin - 1 „ ^ . ^ 
7 2a S I N E ? 

. 2r sin a 
= sin — , 

p + q 

therefore 
c , a <a s · 2 , n j i j , a 2eos0 . 2rsina = ± o—» {4r2 sin2 a - ( M - o VV H „- sm 1 . 

The second series can be summed in a similar manner, and we 
shall finally obtain, 

wa 
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the first term to IT — sin \ and taking the negative sign before 
the second term, and the positive sign before the fourth term. 

The potential for the remaining portion of space is obtained 
by changing the inverse sine in the third term to IT — sin-1, 
and taking the positive sign before the second term, and the 
negative sign before the fourth term. 

159. We cannot employ an analogous method for determining 
the potential when the bowl is placed in a field of force perpen­
dicular to a plane containing the axis, since no analytical theorem 
has been discovered for obtaining the potential of a bowl which is 
placed in a field of force whose potential is a tesseral harmonic 
sin (m<f> + ej P ~ (cos 8 ) . 1 

The solution can however be obtained by the following in­
direct method. If we put n = 0 in (25), and sum the resulting 
series, we shall obtain the potential of an uninfluenced electrified 
bowl. Invert the result with respect to a point P in the plane 
containing the rim of the bowl, whose distance from the centre is 
equal to f , and multiply the result by — m . We shall thus obtain 
the potential when the bowd is under the influence of a positive 
charge m at P . Now if wc place a negative charge m at 
a point P ' in P O produced such that O P ' = f , and make the two 
charges move off to infinity, whilst the product Vmjf* remains 
constant and equal to \ v a , the field of force will ultimately become 
a uniform field of force perpendicular to a plane containing 
the axis whose potential is \ v a sin 8 cos i / r , where yjr is the angle 
which the plane through the axis and the point (r, 8 , - \ | r ) makes 
with some fixed plane through the axis. The resulting expression 
for V will be the potential of the bowl when placed in this field 
of force. 

The result of this process is, 

ZTT 

- 2c _ 2c?" ,, . „ 
r sm —,— + -.— \(p + q) — 4c 

p + q (p+q) 
a" . _, 2rsina_ 2asc , , . „ , i + -5 sm — + — r 2 {(p + q y - 4r5 sin2 a 4 

r p + q r \p + 9) 

1 I f an electrified circular disc is placed in a field of force whose potential is 
F(r, 6) sin (<£ + e) , the potential of the induced charge can be obtained by Bcssel's 
Functions, see Proc. Camb. Phil. Soa. vol . Y . p. 425; and thence by inversion, we 
can obtain the potential of an electrified spherical bowl when placed in a field of 
force of the above form. 
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S O L I D O F R E V O L U T I O N . 155 

The inverse sines and the double signs before the second and 
fourth terms must be interpreted in the manner explained in the 
preceding article. (See Proc. Lond. Math. Soc. X V I . p. 296.) 

The preceding expressions for the velocity potential make the 
velocity infinite at the edge of the bowl, and therefore the 
motion represented by the formulae could only be approximately 
realised in practice. 

160. In order to obtain the motion of a liquid in which a 
solid is moving by means of the velocity potential, it is necessary 
to find a potential function cb which satisfies an equation at the 
surface of the solid which involves the first derivatives of <p, and 
this circumstance creates a difficulty which has proved insuperable, 
excepting in the case of an ellipsoid, an anchor ring1, and a 
spherical bowl. But if the solid is one of revolution which is 
moving parallel to its axis, the motion can be determined by 
means of Stokes' current function, which Rankine2 has shown has 
a definite value at the surface of the solid. 

Taking the axis of z as the axis of revolution, let w, u be the 
velocities of the liquid parallel and perpendicular to the axis of z; 
the surface condition is 

Iw + mu = IV, 
where V is the velocity of the solid, or 

1 difr dm 1 d-^r dz _ y d-m 
•us d-o; ds dz ds ds 

Integrating along a meridian curve, we obtain 

Vr = i * W (29). 

Now i |r satisfies the equation 
d > d?yjr ld^r_Q 

dz2 din* dra­
in this put i|r = yaj, and we obtain 

d*X + +

 1 _ 2C = o, 
dz' ' dsr' to- d-sr -m'1 

which shows that ^ sin <p is a solution of Laplace's equation ; hence 
(29) may be written 

^sin $ =%Vy. 
1 Hicks, " O n Toroidal Functions." l'hil. Trans. 1881, p. 609. 
a Phil. Trans. 1H71. 
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Hence if U bo the electric potential of the induced charge, 
when the solid is placed in a uniform field of force perpendicular 
to a plane containing the axis and whose potential is — \Vy, then 
UTS cosec will be the current function when the solid is moving 
with velocity V parallel to its axis. 

In the case of a sphere 

7T — V°?y _ "Pa'or sin $> 

Therefore = 

2r* 

2r3 2r 

EXAMPLES. 

1. An ellipsoidal shell is filled with liquid and rotates uni­
formly about a given diameter; prove that the path of every 
particle of liquid relatively to the ellipsoid will be an ellipse whose 
plane is conjugate to the given diameter; and that every particle 
will sweep out, about the centre of its elliptic path, equal areas in 
equal times. 

2. Liquid flows past the solid ellipsoid {xfaf + (y/b)2 + (z/c)*=l, 

the velocity at infinity being uniform and parallel to x. Prove 
that the lines of equal pressure on the surface of the ellipsoid are 
its curves of intersection with the cone y1jb* + z2'/'c*: = x''/A', where 
A is a variable parameter. 

3. Liquid is bounded by the ellipsoid (#/a)2 + (y/b)1 + (zjcf = 1. 
If the surface undergo a uniform torsion about a principal axis, 
prove that the instantaneous velocity potential is proportional to 
xyz for the liquid in the interior of the ellipsoid, and to 

for the external space, where 
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4. Prove that the velocity potential due to a source of 
strength m, placed at a point on the axis of a circular disc and 
distant / from it, at points on the side of the disc on which the 
source is situated, is 

f°° DP 

T J F DZ J (R 

where P is the potential of the induced charge when the disc is 
under the action of a charge m, situated at a point on the axis on 
the other side of the disc, and whose distance from it is f. 

5. The ellipsoid (XLAF + (Y/B)2 + (ZJCF = 1 is surrounded by an 
infinite mass of water and rotates about the axis of X. Prove that 
the component velocities of any particle of water parallel to the 
axes will be respectively proportional to 

D M _ D N DN _ D L D L _ D M 

DZ DY' DX DZ' DY DX ' 

where L - Fti_r <L_\ h x- £ *L.\ 
ixW + ty c2 + ^ ) \ a2 + ^ b2 + ^ c2 + ^J 

N=-2C2ZX !" 
J A 

where P = ^{A2 + - f ) (BS + YJR) (cs + •F), 

and \ is the positive root of the equation 

A? Y2 Z* 

1 V = 1 
a' + X b2 + X c2+X 

Prove also that if the ellipsoid be filled with water, the values 
of L , M , N with 0 instead of X for the inferior limit, will similarly 
determine the velocity of any internal particle of water. 

6. A sphere of radius a which is surrounded by an infinite mass 
of liquid, is strained uniformly so that e, f, g are the principal 
components of strain after unit time. Prove that the velocity 
potential of the initially resulting motion is 

DX2 J DY2 J DZ^J R ZR 
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7. A sphere of radius a is surrounded by an infinite mass of 
liquid. If the surface of the sphere be suddenly moved with 
normal velocity e y z + fzx + g x y , prove that the velocity potential 
of the resulting initial motion is 

- a" (eyz +fzx + gxy)/3r\ ' 

where r* = + y" + 

8. Given that 

x = a (cosh a + cos B — cosh 7), 

y = ia cosh \<x cos \8 sinh £7, 

z = 4>a sinh \ a sin \8 cosh J7, 

transform the equation of continuity into the form 

(cos B + cos 7) + (cosh 7 + cosh a) + (cosh a — cos 8) fj^ = 0, 
aj ap ay 

and show that the surfaces for which a, 8, 7 are constant are 
confocal paraboloids. 

Hence show that the velocity potential for infinite liquid 
streaming past the fixed hyperbolic paraboloid 8 = 8V with 
velocity V parallel to the axis of x at infinity, is given by 

(¡3= V (x — a 8 sin Bj, 
and write down the corresponding values of </> when the fixed 
surface is the elliptic paraboloid a = av or 7 = y v 

9. The axes of an ellipsoid which is filled with liquid vary 
with the time in such a manner that the volume of the ellipsoid 
remains constant; prove that the velocity potential of the 
liquid is 

<p = i (ax1 ja + by2lb + cz*/c). 

10. The axes of an ellipsoid which is surrounded by an un­
limited liquid vary with the time in such a manner that the 
ellipsoid always remains similar to itself; prove that 

cp = ~^abc (dla + bib + c/c) j ^ 
11. Determine the initial motion of liquid outside an ellip­

soid, when component velocities (i) px, p y , pz; (ii) pyz, pzx, p x y 
are imparted to every point of its surface ; where p is the perpen­
dicular from the centre on to the tangent plane at x , y , z . 
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C H A P T E R V I I I . 

ON THE G E N E R A L E Q U A T I O N S OF MOTION OF A SYSTEM 

OF SOLID BODIES M O V I N G I N A L I Q U I D . 

161. W H E N a number of solid bodies are moving in an in­
finite liquid, the motion of the solids is most easily determined by 
regarding the solids and liquid as constituting a single dynamical 
system, and then employing Lagrange's equations. But as the 
methods and formulae employed are different according as the 
motion of the liquid is cyclic or acyclic, it will be convenient 
to consider these twro cases separately. 

Acyclic Motion. 

162. The following notation will be employed ; let 
um< vm' wm> Pm> 1m' Tm the linear and angular velocities 

respectively of any solid Sm, along and about axes fixed in the 
solid. 

fm> < / > * " > 0 » " ' ; XJ> x/> xJ" t h c velocity potentials of the 
liquid, when the solid Sm is moving with unit linear and angular 
velocities respectively along and about axes fixed in Sm, and all 
the other solids are at rest. 

5>m the velocity potential due to the motion of 8m when all the 
other solids are at rest. 

^ the velocity potential of the whole motion. 

Mm the mass of S . 
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From § 142 (1) it follows that 

for at the surface of S , d^m/dn is equal to the normal velocity of 
$ , and is zero at the surfaces of each of the other solids : whence 

also, ¥ = (2). 

By § 85 (20) if ̂  he the kinetic energy of the liquid 

where the integration extends over all the solids; whence 

fd<$. d<J> CC /d<& d<P 

Substituting the values of ^ <!>,, <!>,... in this equation, it 
appears that © is a homogeneous quadratic function of the 
velocities. If J (umum), (um, vm) denote the coefficients of uj, umvm, 

&c. we obtain 

2(uluj = - p j j < P ; d ^ d S i - P j j < p / d ^ d S 1 > ...(3). 

&c. &c. 

These equations at once follow from Green's Theorem, and 
from the fact that dcfr/fdn is zero at the surfaces of all the solids 
except /S,. 

163. If all the solids are free, each solid will possess six degrees 
of freedom, and its position will therefore be determined by six 
independent coordinates. The velocities of each solid can be 
expressed in terms of these generalised coordinates and their time 
fluxes by means of the ordinary methods of Rigid Dynamics, and 
the kinetic energy of the liquid will therefore be expressible as a 
homogeneous quadratic function of the generalised velocities of 
the solids. The coefficients of the velocities will be functions of 
the generalised coordinates, and of quantities which determine the 
form and dimensions of the solids. Their values cannot be found 
without a knowledge of the velocity potential of the liquid, and 
they have been determined only in a few cases. 
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The kinetic energy of the solids can be found by the usual 
methods, hence if T be the kinetic energy of the solids and liquid, 

T = ® + W (4), 

from which it is evident that T is a homogeneous quadratic func­
tion of the velocities of the solids. 

164. Since the coordinates of individual particles of liquid do 
not enter into the expression for the kinetic energy, it will be ne­
cessary to establish the legitimacy of the employment of Lagrange's 
equations in the present case. The application of these equations 
is a particular case of the theory of Iguoration of Coordinates. 

Let the position of a dynamical system be determined by 
means of a system of coordinates 0 l t 8 2 . . . , % t, %2 . . . ; and let us 
suppose that the coordinates % do not enter into the expression 
for the potential and kinetic energies. Since 

f = 0 , f = 0 . 
dX dX 

Lagrange's equation corresponding to % will be 

a dr= 

dt dX ' 
dT 

whence = const. — K (5). 
dX 

The constant n is the generalised component of momentum 
corresponding to % ; and there will be as many equations of the 
type (5) as there are coordinates ^ . Now whatever the motion of 
the system at any particular period may be, it can evidently bo 
produced instantaneously from rest by the application of a system 
of impulsive forces, which must be equivalent to the momentum of 
the system at the particular period. If however the motion of the 
system is such that it could always be produced from rest or 
destroyed, without the application of the impulse components 
corresponding to —in other words if the velocities # could be 
produced or destroyed solely by means of impulsive forces arising 
from the connections of the system,—all the constants K will bo 
zero, and (5) becomes 

~ = 0 (6). 

By means of (6) all the velocities x can be eliminated from T; 
B . 11 
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if T' denote the result of this elimination, then since 8 and 8 
enter into T' through we have 

¿8 D8 DXL DD DXI DD 

= DT 

~ DD' 

by (6). Similarly 
DT DT 

D6 DD ' 

„ , , D DT DT D DT DT DV 
1 hereiore r = - = , 

DT DD DD DT DD DD DD 

which shows that when K = 0, we may employ the modified func­
tion T from which the have been eliminated in forming 
Lagrange's equations. 

Now if the dynamical system consists of a number of moving 
solids together with the liquid in which they are immersed, and 
which either extends to infinity or is bounded by fixed solids; and 
if the motion of the liquid is solely due to that of the solids 
moving about in it, we have shown in §§ 85 and 89 that its 
motion will be acyclic and irrotational, and that it could be 
instantaneously produced or destroyed by means of a proper 
system of impulsive forces applied to the solids and boundaries 
alone : also since neither the kinetic nor potential energy contains 
the coordinates of individual particles of liquid, the preceding 
investigation shows that the equations of motion may be obtained 
by forming Lagrange's equations by means of the expression for 
T given by (4), which contains the coordinates and velocities of the 
solids alone. 

If the momenta K are not zero, Lagrange's equations in their 
ordinary form cannot be employed. The modified function which 
must be used in this case will be determined in § 173. 

165. The system of impulsive forces which must be applied to 
the solids to produce the actual motion at any period, when com­
pounded into a single force and a couple about the line of action 
of the force, is called by Sir W. Thomson the " Impulse of the 
Motion." 

If all the solids are free and the liquid extends to infinity and 
is at rest there, the Impulse of the Motion is equal to the momentum 
of the system ; and if no impressed forces are in action, it must be 
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constant in magnitude and direction throughout the motion. But 
if the liquid has fixed boundaries, the impulse of the motion is 
equal to the difference between the momentum of the system, and 
the impulsive forces arising from the pressures exerted by the fixed 
boundaries. 

When there is circulation and the liquid extends to infinity 
and is at rest there, the impulse of the motion is equal to the 
impulse of the forces which must be applied to the solids, together 
with the impulses which must be applied to the barriers in order 
to produce the cyclic motion. 

1 6 6 . Let p be the pressure of the liquid, l1, m%1 the direction 
cosines of the normal to JS,; | , , 77,, £ ; \ L F pv v1 the force and 
couple constituents of the impulse which must be applied to St, 
in order to produce the actual motion from rest, then, 

. ( 7 ) . 

But d- = (uiu1)u1 + (u1vl)vl + 
dT 

Therefore %l~du' 
dT 

Similarly \, — - p - , &c. 
Since T is a homogeneous quadratic function of the velocities 

of the solids, 1 dul

 1 dvl 
= u1g1 + vlr]1+ ... 

Differentiating with respect to on the hypothesis that % l t 

wt are the independent variables, we obtain 

_ dT du1 , dvl 2 w r U i + ^ d i + v i ^ + -
Writing out (7) in full, we obtain 

f t = {17, + («,«,)} « , + (utvt) V,+ 

T>, = (M.TJ,) U, 4- {MX + (>V\)} TJ, + 

11—2 

IRIS - LILLIAD - Université Lille 1 



KIRCKHOFF'S EQUATIONS. 

167. When a single solid moves in an infinite liquid, the 
equations of motion may be obtained, as Kirchhoff has shown1, by 
expressing in an analytical form the fact that the rates of change 
of the component linear and angular momenta of the system along 
and about three rectangular axes fixed in the solid are respectively 
equal to the components of the impressed forces and couples along 
and about these axes. 

Since we are dealing with a single solid we may drop the 
suffixes and put a>1, &>a, &>3 for the angular velocities of the 
solid. 

If f, 7), £ be the component linear momenta along, and A, ¡1, v 
be the component angular momenta about three rectangular axes 
which are moving with angular velocities 6V 62, 0a about them­
selves, of any dynamical system whatever; and if X, Y, Z and 
L, M, N be the components parallel to and about the axes of the 
forces and couples respectively which act upon the system, it is 
known" that the equations of motion of the system are 

1 Varies, iiber Math. Phys. p . 60. 
2 Hayward, Trans. Camb. Phil. Soc. vol. x.; ace also Bcsant's Dynamics, § 232. 

Differentiating these equations with respect to GLT on the 
supposition that Vi a r e independent variables, we 
obtain 

1 = X + (U,M ,)} ^ | + (Vt) |r. 

o=(vx) · 
&c. &c. 

Multiplying these equations by M i ; .. respectively and adding, 

we obtain 
DU, DV, 

tt=f«^ + " ^ + --

Whence = ^ = ^ &c (8). 

Equations (7) and (8) are well-known dynamical relations. 
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•(9). 

Z - v 8 3 + i;ds=x 

\—WT}+V% — FJ,03 + i/6>2 = L 

FI-UT;+W%-V6L + \93 = M 

V-V!J + URI- A02 + FJ.9T = N J 

where U, V, W are the component velocities parallel to the axes, of 
the origin of coordinates. 

Since these equations are true for any dynamical system 
whatever, they will hold when the motion of the liquid in which 
the solid is immersed is cyclic or rotational or both ; but the 
analytical expressions for the momenta RJ, &c. will depend upon 
the particular kind of motion of the liquid. 

When the motion of the liquid is irrotational and acyclic, 
the momenta are determined by (7); also if the motion is 
referred to the principal axes of the solid 9L = OJ , , 6*2 

and the equations of motion become 
9 = , 

D_ DT 

DT DU 

D DT 

DT 

DV 

DT 
DT DV W L DW A' 

DT 
A,*DU+A,> 

D^DT 

DT DW 

D^ DT 

DT DW1 

D_ DT^ 
DT DCO2 

D_DT 
DT DA>„ 

DT 

DT= 

DW 

DT _ 

DU 

DT_ 

DV 

DT 

DV DW 3 

DT DT 
— U h W-7 CO 

AW DU 

Z 

DT 

DCOU 

DT 

DT_ 

DCO3 

DT 

= L 

7 + « 3 T T - = M 

DON, DW. 
DT DT DT DT AT 

DU DV 2 DCO, 1 DA-

.(10). 

These are Kirchhoff's equations of motion for a single solid 
moving in an infinite liquid. 

GEOMETRICAL EQUATIONS. 

168. We must now express the velocities in terms of the six 
coordinates, which determine the position of the solid. 

Let x , y , z be the coordinates of the centre of inertia 0 of 
the solid referred to three fixed rectangular axes. Through 0 
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draw O X , O Y , O Z parallel to the fixed axes, arid let O A , O B , 00 
be the principal axes of the solid at 0. 

The angular velocities are given by the equations (Routh's 
RIGID DYNAMICS, vol. I . § 256) 

co1 = 6 sin (p — IJR sin 8 cos (b "I 

(0^ — 6 cos qS + ^ sin 9 sin (b > (11), 

a>3 = <f> + I/R cos 9 ) 

Also the component velocity of 0 in the direction of O D is 

U cos <j> — V sin (jj = (x cos + Y sin -^) cos 8 — Z sin 8, 

and in the direction of O E is 

M sin <b + V cos = — x sin ty + Y cos T/T. 

Solving these equations, and observing that W is the component 
velocity of 0 in the direction of 00, we obtain 

U = X (cos 0 cos <f> cos 1^· — sin <P sin -KJr) 

+ Y (cos 8 cos sin + sin (/> cos ty) — Z sin 0 cos cb 

V = — x (cos 8 sin cos -\/R + cos ci sin YFR) [• (12). 

— ?/ (cos 0 sin 0 sin ^jr — cos 0 cos I/r) + i sin 0 sin 

W = X sin 0 cos ïfr + Y sin 0 sin + Z COS 0 

169. The preceding equations may be considerably simplified 
in the case of a solid of revolution. 

Let O C be the axis of revolution, O X , O Y , O Z three straight 
lines parallel to axes fixed in space, let W be the velocity of 0 
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along OG, u, v the velocities at right angles to OG in and perpen­
dicular to the plane Z O G . Then u = x cos -v/r cos 9 + y sin cos 6 — z sin 9 \ 

v = — i sin + y cos I (13). 
w = sb cos >|r sin 0 + 1/ sin T̂T sin # + i cos f? J 

Also if <»,, <u2, w3 he the angular velocities about O A , O B , O C A>1 = — -tysm6, m2=9, ws = (b + IJR cos 0 (14), 
where the plane G O E is fixed in the body. 

The velocities of each of the solids can be expressed in a 
similar manner by means of equations (11) and (12), or (13) and 
(14) ; hence if we can obtain the values of the coefficients in terms 
of the coordinates, the motion can be completely determined. 

Cyclic Motion. 
170. We must now consider the more general problem of the 

motion of any number of solids, each one of which has several 
apertures through which circulation takes place1. 

The following additional notation will be employed. Let 

cb = velocity potential of the whole motion. 
= do. due to motion of solids alone, 

n = do. due to cyclic motion. 

1 Pros. Cunib. Phil. Soc. vnl. v i . p. 117. 
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<7V> <pm", <!>„'"; X„> Xm"> Xm'"> the velocity potentials of the liquid, 
when the solid Sm is moving with linear and angular velocities 
respectively along and about axes fixed in Sm, and all the other 
solids are at rest and there is no circulation. 

aml erj, a-^... the areas of the apertures of Sm. 
KM, KM', KJ'... the circulations through them. 

B „ , a J, £om"... the velocity potentials due to unit circulations 
through the apertures of Sm, when all the solids are at rest. 

•\}rm, ijrm', i{rm"..- the fluxes through the apertures of Sm 

relative to Sm. 
the velocity potential duo to the motion of Sm and the 

circulations through its apertures, when all the other solids are 
at rest. 

By Thomson's extension of Green's Theorem, it is known that 
the motion at any period could be instantaneously produced from 
rest, by the application of suitable impulses to each of the solids, 
together with uniform impulsive pressures KJ), Kmp ... applied to 
every point of the barriers crm, am'... respectively. Let Xm, Ym, Zm; 
Lm, Mm, Nm be the force and couple components of the impulse 
along and about axes fixed in Sm, which must be applied to Sm. 

L e t £m, Vm> £ » ; ^ m . i " m , vm; £m', ij„'... be the components of the 

impulses which must be applied to each of the barriers of Sm; also 
let L = * L XM=XM + h &c, and let S . , | 9 m , S£m; % m , 

i ï ï m ) j â m be the generalised components corresponding to um, vm ... 
of the momentum of the cyclic motion, when all the solids are 
at rest. 

Let Hm be the mass of Sm, Œ the kinetic energy of the liquid, 
T that of the whole motion. It will be shown that T is the 
sum of two homogeneous quadratic functions of the velocities and 
circulations respectively. Let these be denoted by % and S 
respectively, and let -J- (umum), {umvm) denote the coefficients of 
uj, V « i fee-

Since the fo's are the velocity potentials due to unit circulations 
round circuits which cut the apertures to which they correspond 
once only, when all the solids are at rest, they must satisfy the 
following conditions. 

(i) At all points of the liquid Va> = 0, and eo and its first 
derivatives must be finite and continuous at all points of the liquid, 
and must vanish at infinity. 
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K I N E T I C E N E R G Y W H E N THERE IS C I R C U L A T I O N . 169 

(ii) At the surface of each solid DIO/DN = 0. 

(iii) to must be a monocyclic function whose increment is 
unity for all circuits which cut the barrier to which it corresponds 
once only, and zero for all circuits which do not cut this barrier. 

It therefore follows that 

* m = tVrV + VM' + w-kT +pMXM' + qmxJ' + R m X J + Kmcom 

and that 
(15), 

<B = 2<&1(l = V + Q. 

171. The kinetic energy of the liquid is 

where the first integral is taken over the surfaces of all the solids, 
and the second over all the barriers. Since D<I>M/DN at the surface 
of S M is equal to the normal velocity of S M , and is zero at the 
surfaces of each of the other solids, 

+ ) 
+*pHit ( S ^ 0 " 1 + " I ' D ( T * + " • * Z C Z O " 2 + " • ) • 

We can now show that 

The above equations can be at once established by Thomson's 
extension of Green's Theorem. For if in equations (25) and (26) 
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of § 88, we put $ = 0}^ 1 ^ = ^ ' , then since to, is a monocyclic 
function whose increment is unity for all circuits which cut the 
barrier ER1 once, and zero for all other circuits, and <PT' is a single 
valued function, we obtain 

Now DTPÎ/DN is zero at the surfaces of all the solids except 8V 

and DMJDN is zero at the surfaces of all the solids, whence the 
third of equations (16) follows at once. The others can be proved 
in a similar manner ; hence the products of velocities and circu­
lations do not enter into the expressions for the kinetic energy of 
the system, and we may therefore put 

where X is a homogeneous quadratic function of the velocities of 
the solids alone, and £ is a similar function of the circulations. 

172. If P be the pressure and LLT ML, the direction cosines 
of the normal to S L T 

where the summation refers to corresponding products, and ex­
tends to all the barriers; hence 

T = Z + 8 

But 
DUX 

(17). 

Also 

where LT, M1, ra, are the direction cosines of the normal to the 
barrier <RX ; whence 
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where the summation 5 t extends to the harriers of St only; also 

X ^ + t ^ - P J I ^ t W + l (18). 

From (17) we see that the component impulse corresponding to 
which must be applied to Sl in order to keep it at rest, when 

the cyclic motion is generated by the application of proper impulses 

to the barriers of all the solids is — p JJ dcp/jdn .% (icdcr); and 
therefore by (18) the generalised component of momentum Xt cor­
responding to w, of the cyclic motion when all the solids are reduced 
to rest, is 

3, = I ~ P J J $ 2 {Kda) = p/jX (Kid*) - P J J ^ 2 W . . ( 1 9 ) , 

dT 
whence X , + (20). 

1 du±

 1 

Similarly it can be shown that 

^ v * -
WhGre *.=^-p//^S(«Ar), ) (22)_ 
and X 1 = 2 X . 1 = p / /2 1 [«(r i?y—m^aV] j 

173. We must now obtain an expression for the modified 
Lagrangian function. 

Let the coordinates of a dynamical system be divided into two 
groups 8 and X , the latter of which does not enter into the 
expression for the energy of the system. Since the kinetic energy 
is a homogeneous quadratic function of the velocities 0 ... 
wo may put 

2T= (66)0 + 2 ( 6 6 , ) 6 6 \ + . . . 2 ( 6 X ) 0 X + . . . ( x x ) X * + 2 ( X X l ) X X l + . . . (23). 

In this expression none of the coefficients involve x , and 
Lagrange's equation corresponding to %, gives 

d T , x ^— = const. = K, &c. 
dX 

where « is the generalised component of momentum corresponding 
to x ; writing these equations out in full, we obtain 

* = ( f l x ) o + (0lX) e\ + (xx) x + ( X X l ) X l + -j 

*. = B + (0Md 0\+ (XXJ X + ( X X ) & + (24), 
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the number of equations being equal to the number of the co­
ordinates x . 

Let P, Pv be the portions of k. « i ; which do not 
involve the x s , then P, Pv are linear functions of the 0's 
alone, and (24) may be written 

(XX) X + (.XXi) X i + = * - P | 

If A denote the determinant 

(xx)< (XXil (xXzl 

(xxd> (xx)< (x%2), 
(XX*)> (XiX*)> (x*x,)> 

the solution of (25) may be written 

.(26). 

If therefore we put 
1 dA 

(kk) = • (KKt) = 
dA 

^d(.XxY v " " , / b d ( X X l ) 

V$ = {kk)P* + 1 ( k k 1 ) P P 1 + . . . 

2 £ = ( * * ) * 2 + 2 + 
(26) may be written 

d ® d$ . d £ _ d $ 
d K , dP, 

&c. 

(27), 

x ~ da d,P' X l " j ~ ~ ^rrr & c -

Let © be the portion of T which is independent of x ; 1 
since T is a homogeneous quadratic function of the velocities, 

(28). 

then, 

d8 dff * .7 • + X l ^ • + 

dT 

d8\ 

= 0 ^ + 4*5 + 
dO d9t 

dT 

dXt dXi 

+ 0 W x ) x + ( e X l ) X i + } 

+ "iK*,x)* + ( 0 l X l ) x 1 + } + . 
+ XK + X,", + 

= 2® + 2 j ? - 2 ^ + v fpd^_ ^ 
~ \ d K

 K dP) 
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Writing out the last term in full, it is easily seen from (27) 
that it vanishes; and therefore since *lj is a homogeneous quadratic 
function of the velocities 6 alone, it follows that T is equal to the 
sum of a homogeneous quadratic function of the velocities 6, 
together with a similar function of the momenta K. We may 
therefore put 

T= % + & (29), 

where % = (30). 
Let © be the generalised component of momentum correspond­

ing to 9, and let © be the value of 0 after the velocities 9 have 
been destroyed by means of proper impulses applied to the system. 
The momenta K will evidently be unaffected by these impulses, 
but the velocities x will be affected, since the impulse required to 
destroy 8 will produce reactions arising from the connections of 
the system which will change the values of the x's. Now dT ,„ . . . . 

whence 0 = + {6Xl)§- + (31), 

and therefore ^ = ^ + ® - 2 ( 0 X ) ^ 

~ dd X d9 olP 

whence ddT=ddX dM 
dt d6 dt dO dt y 1 

It appears from (31) that the momentum B is a function of 
the momenta K and the coordinates only. . . dT d% dSt Agam Te = d9 + aW 

Now since 9 enters into j? through K, we have 
dg dtf die dff d*, bffi d,6~ dn dd + dK, dd + '" dd' 
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whore the symhol TL/DD operates on the coefficients and not on 
the momenta K. Differentiating (26) with respect to 8, we obtain 

„ , , / DIE DP\ . , (D,K, , DP,\ 

+ (IE - P) JQ ( / « ) + (*, - PX) ~ (**,) + (34). 

Multiplying the system of equations of which (34) is the typo 

by K, « t . . . respectively and adding, we obtain 

DGDIE D&DK, + 

DKD8 D^DD 

DSTDP _DSDPI_ 

~ DIE "D8 D\D8 

+ D8~ DDDIE 'D9 DIE, 

Multiplying the equations of which (31) is the type by 0, 8T... 

respectively and adding, we obtain 

_ . VD&^PDR 

ij — • ^(DPD$\.*(P A D®\ 

whence DE*<®0) = *{D8 DIE) + * V D0 DIE~) ' 

therefore (3o) becomes ¿0 + ¿0 ~ ¿0 

We may now drop the symbol TS/DD on the understanding that 

the momenta « are to be treated as constants, and Lagrange's equa­

tions become 

<^DZ D& D% D$T D_SI(P.^,DV 

DT D 8 + DT~D0+D0 D 0 * [ K J A > + D9~°-

Since 0 and IT do not contain 8, the modified functiou is 

L = Z + X(&0)-ST+V (36). 

If the velocities f?... bo expressed in terms of new velocities U..., 
and X be the new momentum corresponding to U after the US have 
been destroyed, it can easily be shown that, 

* W = 2 ( 3 U ) . 
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For let 8 = Au + Atut + A^u2 + 
then do!du = A, d8/dut = Aiy &c. 
also by (32), 2 f 0 ^ (® —) - — 1 - — 

L , du) du du 
therefore 

a" (9 
+ &c. 

= 2 (ßff), 
whence (30) may be written 

L = % + 2 (3£u) - ffi + V (37). 

174. We have therefore obtained a form of Lagrange's equa­
tions, which can be employed when the kinetic energy is expressed in 
terms of the velocities corresponding to the coordinates by which 
the position of the system is determined, and the constant momenta 
corresponding to the time fluxes of the ignored coordinates. 
Now by § 89, when a liquid of density p occupies a multiply-
connected region, circulation K can be generated by means of a 
uniform impulsive pressure icp applied to every point of one of 
the barriers which must be drawn to make the region simply 
connected, and the circulation thus generated cannot be destroyed 
excepting by the same process as that by which it has been 
produced. It therefore appears that the product of the circulation 
and the density is a quantity in the nature of a generalised com­
ponent of momentum. 

Hence in order to determine the motion of a number of 
perforated solids in an infinite liquid, we must first calculate by 
means of (16) the quantities % and i?; the former of which is the 
kinetic energy due to the motion of the solids alone, and is 
therefore a homogeneous quadratic function of their velocities, and 
must be expressed in terms of the generalised coordinates and 
velocities of each solid; and the latter of which is a similar 
function of the circulations. The quantity 3£ in (37) is evidently 
the generalised component corresponding to u, of the momentum 
of the cyclic motion which remains after all the solids have been 
reduced to rest, and its value is given by (19) or (22), according 
as it is in the nature of a force or a couple. 

1 In this term T is supposed to be expressed in terms of the velocities 

u,,. and x . . . . 
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dn _dg dici' 
If therefore we put 

= = / / K 2 / -
 miz) d < T v h i = P-JKIP, C I =

 vJK

lP, 
we obtain 

+ - j - (38). 

p d/ct 
Now if 2 T bo expressed as a quadratic function of all the 

momenta 
1 dT = . p die 

dl 
But 2T = %u J~ + 2ff = tu (X - X) + 25E (39), 

by (20). Hence in order to obtain X l we must differentiate (39) 
with respect to xlt on the hypothesis that the momenta X are 
constant, and that u is a function of K1 ; whence by (19) and (22), ~. dT ^ du , , . 7 , \ d^ = ^ dudic~~ (aA + + 7lWl + a,Pl + A + ClVl'P 

fd¥ , , „ dSt 

175. We can now ascertain the physical meaning of the 
generalised velocity x which corresponds to the momentum «p. 

Let -i/z-j he the flux through the aperture cr1 of Sx relative to 
Sv Then if lv m v nt be the direction cosines of the normal to crl 

=ilcu d(Ti+!!'d7idrTi ~^+v'vi+w' ̂ + p^+ q^+ r^ I 
But p \\dy^ dcr1 = + (*!>0 + 

IRIS - LILLIAD - Université Lille 1 



APPLICATION" TO A S I N G L E SOLID. 177 

From (20) we obtain 
dv f[dcf>; 

where the summation extends to all the unsuffixed letters in­
cluding v = w,. Multiplying these equations by ut, v1... respec­
tively and adding we obtain 

„ d X du , . - . . ffdW , 
S du dV ( 3 l U l + ^ + 7 l W l + + l 5 f ' +

 ^ P ^ P ) U h i 1 = ' 

dT 

whence by (38) and (40) = p\]ri; 

whence X t = T^ . 

Hence the flux through the aperture rr1 relative to the solid 
is the generalised velocity corresponding to the momentum K ( p . 

This theorem was discovered by Sir W. Thomson1. 

176. We shall now apply the preceding results to determine 
the motion of a single solid having only one aperture. 

If u, v, w; &>i; &>2, &>3 be the linear and angular velocities of 
the solid, along and about axes fixed in the solid, and £1 the 
velocity potential due to the circulation 

where K = pjj^ d a . 

Also by (19) and (22) 

^=KpSS {ny ~mz ~ 1^) d a ' 
X + * &c (41), 

du 

L = X + Xu + $ v + 5Ew + %»l+£fo>t + & » M - S t + V. ..(42). 

1 Proc. Roy. Soe. lidin., vol . VIR. p. 608. 

a. 12 
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Ia this case the quantities 3£ ... are evidently constants, and 
we can either obtain the motion by expressing u, v ... in terms 
of a;... by (11) and (12), or by (13) and (14), and then employing 
Lagrange's equations; or since X, Y... are the components of the 
momentum of the system along and about the axes of the solid, 
we may substitute their values in (9) from (41), and thus determine 
the motion by KIrchhoff's equations. 

Motion of a System of Cylinders. 

177. If we endeavour to calculate the right-hand side of (37), 
in the case of the two-dimensional motion of a number of cylinders 
in an infinite liquid, when there is circulation round some or 
all the cylinders, it will be found that some of the terms become 
infinite. In order to avoid this difficulty, we must describe an 
imaginary fixed circular cylinder in the liquid, the radius of 
whose cross section is a very large quantity c, and then calculate 
the value of /> for the space contained between the moving 
cylinders and the outer one, omitting all the terms which vanish 
when c becomes infinite. It will then be found on substituting 
the value of L thus obtained in Lagrange's equations and per­
forming the differentiations, that all the terms which become 
infinite with c disappear, and we thus obtain the equations of 
motion of the cylinders1. 

178. The calculation of L can most easily be effected by 
employing the current function instead of the velocity potential, 
for the former function is always single valued unless any sources 
or sinks exist in the liquid. 

Let v0 be the component velocities of any cylinder St along 
rectangular axes fixed in the cylinder, its angular velocity, 

the circulation round any closed circuit which embraces this 
cylinder once only. 

Let the centre 0 of the cross section of the outer cylinder be 
the origin, and let xlt yx be the co-ordinates of the centre of inertia 
of the cross section of Sx referred to rectangular axes fixed in space; 
x \ > Vi ^ n e co-ordinates of the same point referred to moving axes 
through 0 which are parallel to the directions of ul, vv. Also let 

1 Proc. Camb. Phil. Soc, vol . VI. p. 135. 
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X be the current function, and il be the velocity potential of the 
cyclic motion when all the cylinders are at rest. 

In the figure let O A , CB be the axes of any one of the cylinders 
along which u,, v, are measured, then 

I , 
dX 

dx , dx' 

ds 
ds 

where the first integral is to be taken once round the circum­
ference of the cross section of the outer cylinder, and the square 
brackets denote that the second integral is to be taken once round 
the circumferences of the cross sections of each of the moving 
cylinders. 

At the surface of each of the moving cylinders x is constant, 
hence the second integral vanishes, therefore 

„ f dx 7 

Let (r, 9') be polar co-ordinates of a point referred to Ox as 
initial line, then at a sufficient distance from 0, % can be expanded 
in a series of the form 

X = - m log r ; cos 0' + 23, sin 8') • 

Therefore 

pc j2r^m log c + ^ (&, cos 0' + 23t sin 9') + ... j sin 0'd0l 

= - (43). 

Similarly dX dx'dy' -
dy' 

• ds 
X-f-ds 

(44). 
12—2 
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Again, if be the angular momentum about C of the cyclic 
motion, 

By Stokes' theorem the double integral 

The first integral = irpc'm, the second integral may be written 

hence 

J i , = Trpc'm - | p 

7· yn/ds.ds 

Also 

J r-37 d 

P c f \ ' ^ ^ + p2 ( K X ) 

*p(8L1x1'+13lyl') ( 4 5 ) . 

ds x — d s 

J a 

The integral 

= p i \m log c + - (3 cos 8 + 23 sin 0) 
Jo 

I 

x jm - - (& cos 0 + 23 sin 0)j d0 = 27rpm* log c. 

Whence ^ -= irpm2 log c + JpS (*;>/) (46), 

Hence we finally obtain 

L = % + TTOS (&t> - 23«) + 2 (¿3,0)) 
— 7rpm2 log c - | p 2 ( « ^ ) + V (47). 

If we substitute the preceding expression for L in Lagrange's 
equations and perform the differentiations, it will be found that 
the terms irpc'm in ¿3,, and 7rpm! log c disappear ; we may therefore 
write 

L = X + 7rpZ (&» - 23M) + 2 ( & » ) - £p2 + V (48). 

•Trp (a^ + 13y') (49). 
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179. The quantity £ which does not depend on the cyclic 
motion, can be obtained by the ordinary methods. With respect 
to the other terms we must first obtain the values of % and H; 
we must then draw from 0 a series of lines parallel to the 
directions of ul, w,2..., and take each of these lines successively 
as the initial line, and expand ^ in a series of the form 

x = — m l ogr — — (2t cos 0 + 23 sin 6) — ... 

which wrill determine the values of the gl's and 23's. 

The velocities u, v and the co-ordinates a;', y expressed in terms 
of x , y , the co-ordinates of C referred to fixed axes, and the angle 
0 which C A makes with Ox, are given by the equations 

u = x cos 8 + y sin 8, v = — x sin 8 + y cos 6 

x' = x cos 8 + y sin 6, y = — x sin 8 + y cos 8 

When there are several cylinders, the value of % at the surfaces 
of the different cylinders is a function of their forms and positions, 
and is therefore a function of the co-ordinates; when there is 
only one cylinder the value of % at its surface is an absolute 
constant. 
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C H A P T E R I X . 

ON THE MOTION OF A S I N G L E SOLID I N A N I N F I N I T E 

L I Q U I D . 

180. W H E N a s i n g l e s o l i d i s m o v i n g i n a n i n f i n i t e l i q u i d 

w h o s e m o t i o n i s i r r o t a t i o n a l a n d a c y c l i c , t h e k i n e t i c e n e r g y o f t h e 

s o l i d a n d l i q u i d i s a h o m o g e n e o u s q u a d r a t i c f u n c t i o n o f t h e c o m ­

p o n e n t v e l o c i t i e s o f t h e s o l i d ' a l o n e , a n d i s t h e r e f o r e o f t h e f o r m ; 

2 7 / = i V + QV2 + RW2 + 2P'VW + 2Q'WU + 2R'UV 

+ A<o2 + Bw2 +Ca>2 + 2A'ma>^ + 2 S V & J , + 2C'w™ 
1 A J o L ± 4 

+ 2&j 1 (LU + MV + NW) 

+ 2 o ) 2 (L'u + M'V + N'W) 

+ 2(o3 (L"u + M"V + N"W) (1), 
w h e r e u, V, w ; a>v <a2, &>8 a r e t h e c o m p o n e n t l i n e a r a n d a n g u l a r 

v e l o c i t i e s o f t h e s o l i d . 

I f t h e m o t i o n i s r e f e r r e d t o t h e p r i n c i p a l a x e s o f t h e s o l i d , t h e 

q u a n t i t i e s P , Q, R a r e c a l l e d t h e EFFECTIVE INERTIAS OF THE SOLID 

PARALLEL TO THE AXES; a n d t h e q u a n t i t i e s A , B, C a r e c a l l e d t h e 

EFFECTIVE MOMENTS OF INERTIA ABOUT THE AXES. T h e i r v a l u e s a r e 

d e t e r m i n e d b y t h e e q u a t i o n s 

P = M - PJFALDS &SC. &c. 

A = I 1 — PFFX^NY — MZ) DS & c . & c . 

w h e r e M i s t h e m a s s o f t h e s o l i d , 7 , i t s m o m e n t o f i n e r t i a a b o u t 

t h e a x i s o f x, a n d 4'1---, Xx--- t h e c o n s t i t u e n t s o f t h e v e l o c i t y 

p o t e n t i a l . 

T h e o t h e r c o e f f i c i e n t s d e p e n d s o l e l y u p o n t h e FORM o f t h e 

s o l i d a n d t h e DENSITY o f t h e l i q u i d ; t h e i r v a l u e s a r e g i v e n b y 

§ 1 6 2 . ( 3 ) . 
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181. When the form of the solid resembles that of an ellipsoid, 
which is symmetrical with respect to three perpendicular planes 
through its centre of inertia, and the motion is referred to the 
principal axes of the solid at that point, the kinetic energy must 
remain unchanged when the direction of any ono of the component 
velocities is reversed ; hence the kinetic energy cannot contain 
any of the products of the velocities, and must therefore be of the 
form; 

2T = Pu2 + Qv2 + Rw2 + A co* + Bco* + Ceo2 ( 3 ) . 

If in addition, the solid is one of revolution about the axis of z, 
the kinetic energy will not be altered if u is changed into v, and 
H , into co2, whence P ~Q, A = B , and 

2T=P {u2 + v2) + Rw2+A (co2 + co2) + Cco3

2 (4). 

Although every solid of revolution must be symmetrical with 
respect to all planes through its axis, it is not necessarily sym­
metrical with respect to a plane perpendicular to its axis. The 
solid formed by the revolution of a cardioid about its axis is an 
example of such a solid. In this case the kinetic energy will be 
unaltered when the signs of u, v or cos are changed, and also when 
u is changed into v and co1 into oi2; hence in this case 

2T=P(u2 + v2) + Rtv3 + A (co2 + co,2) + Ceo2 + 2Nw ( « , + « , ) . . . ( 5 ) . 

If the solid moves with its axis in one plane, (say zx)7 v and co^ 
must be zero, and the last term may be got rid of by moving the 
origin to a point on the axis of z whose distance from the origin 
is —N/B. This point is called the Centre of Reaction. 

We shall now consider some special cases. 

Motion of a Sphere. 

182. Let a sphere of radius a, density a, and mass M be pro­
jected with velocity V in an infinite liquid of density p ; and let 
the sphere be acted upon by a constant force Z perpendicular to 
the initial direction of projection. 

Let the axis of a; be in the direction of projection, and that of z 
in the direction of the force, then 

a' 

<b = — \ — (ux + we) 

2T=P(u2 + iu2), 
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where P = M-pfJ<f>ldS 

= M + •ivpa?\ cos!0 sin 6d6 
J o 

= M + p f , 

where i f is the mass of the liquid displaced. Therefore 

27/ = ( i f + \M') (f+z>) 

and Lagrange's equations give 

d _ d T = d d T 

d£ ' dt dz 

Integrating we obtain 

( i f + IM')x = const = ( i f + \M) V 

whence x = V (6), 

and ( i f + p f ) z = Zt 

hence ( i f t- p f ) z = \ Z f .., (7). 

Since x remains constant and equal to its initial value, it 
follows that if a sphere which is acted upon by no forces, is pro­
jected in any direction with given velocity, it will continue to 
move along that direction with the velocity of projection. The 
same result can also be shown to be true in the case of any solid 
which is symmetrical about an axis, and which is projected 
parallel to that axis. This however is altogether contrary to ex­
perience, and the reason of this discrepancy between theory and 
observation is, that we have assumed the liquid to be frictionless, 
whereas all liquids with which we are acquainted are more or less 
viscous. The viscosity gives rise to a retarding force by which the 
solid and liquid are gradually reduced to rest, and the kinetic 
energy is converted into heat. 

The motion of a sphere in a viscous liquid will t>e considered in 
the second volume. 

Equation (7) shows that the only effect of the- liquid is to pro­
duce an apparent increase in the inertia of the sphere, whose 
amount is equal to half the mass of the liquid displaced. 

When the sphere is moving under the' action of gravity 
Z = (M- i f ) g ; therefore 
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Hence the sphere will describe a parabola in the liquid with 
vertical acceleration ( a — p)/(tr + \p) 

183. In the preceding investigation we have assumed that the 
liquid always remains in contact with the sphere ; but it may 
happen that the pressure becomes negative at some point of the 
sphere, in which case a hollow would be formed in the liquid. 

If the sphere is moving with constant velocity V in a straight 
line, Va'x 

* = " 2 r 3 ' 

also since the origin to which fp is referred is in motion with 
velocity V, 

p p dx " 

where n is the pressure at infinity. Hence if 

U < $ V p , 

p will become negative when 8 lies between a. and -IT — n., where 
a < \TT, and a belt of liquid will be thrown off and violently dis­
turbed motion will ensue. For a discussion of the subsequent 
motion, see a paper by Sir W. Thomson, Phil. Mag., March, 1887. 

184. A sphere of radius a and mass M is contained within a fixed concentric sphere of radius c, and the intervening space is filled with liquid of density p which is initially at rest. Tf an impulse I be applied to the inner sphere, prove that its initial velocity w is equal to 
\ 3 (c3 - asj j 

Let <p = + Brj cos 8. 

Then d(f* _ ^ c o g Q W N E N R — A ar 
d4> n r. 

- , - = U when r = c. 

dr 
Grcenhill, Mathematical Tripos, 1877. 
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MOTION OF A CYLINDER. 

185. When a right circular cylinder is projected in an infinite 
liquid which is at rest, and no forces are in action, it will move 
(as will presently be shown) in a straight line with uniform velocity, 
and the only effect of the liquid will be to produce an apparent 
increase in the inertia of the cylinder, which is equal to the mass of 
the liquid displaced. There is however an important difference 
between the motion of a cylinder and of a sphere, since the space 
outside a cylinder is a doubly connected space, and hence circula­
tion round the cylinder is possible. 

We shall therefore consider the problem in its most general 
aspect1. 

Let A be the radius of the cylinder, (r, 0) the polar coordinates 
of any point referred to its centre ; (X, Y) the coordinates of the 
same point referred to FIXED axes, (a, /S) the coordinates of the 
centre of the cylinder, (U, V) its component velocities referred to 
the FIXED the circulation. Then 

A? . „ . . ted 
d> = (U cos 0 + V S I N 0) + s— 

U ( X - A ) + V ( Y - ¡3) K , y - / 3 

— ~~ a ~ t t : , / . . i ^ r " + - ^ - T A N (X - A)* + (Y - P F 2TT X - • 2 

1 L o r d Bayleigh, " On the irregular flight of a tennis ba l l , " Mess. Math., vol . vn . 

p. 14 ; Greenhill, " N o t e on previous paper," Mess. Math., vol . ix. p. 113. 

Therefore A = - g ^ _ q J ) , £ = - & _ ^ 

A N D * = - ? r ? ( 2 ? + R ) C O S F T 

Now if p be the impulsive pressure on inner sphere P = — p<£, 
therefore 

MW = I + PTFTP COS 0 D 8 

= i C H — i I cos 0 sin ADO 

C - A ' J 0 

_ 2 7 R P G 3 ( C 3 + 2 A 5 ) w 

3 ( C 3 - A 3 ) 
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(« sin 9 + v cos 0). 
2-rra 

Therefore when r = a 

q'= .•--„-{ (u sin 6 - v cos 8) + u2 + v2. 
2 4 ™ ira 

If gravity be the only force in action, and the axis of y be 
drawn vertically upwards, the pressure is determined by the 
equation 

p . 3 tc2 K 
— — a (ii cos 0 -\-v sin 0) + — (u2 + v2) + - , H (it sin 8 — v cos 0), 
p i oira ira 

— 2 (it cos 0 + w sin 0 ) 2 + g (3 + a sin 0) = const. 
Let X, Y be the forces parallel to the axes due to the pressure, 

then 
r'LN I " 2 T T 

X — — I up cos 0cZ0, y — up sin 0rf0, 
•'O 0 

whence omitting the terms which are independent of 0, and wrhich 
therefore vanish when integrated round the circle, we obtain 

f 217 ( K 

X— ap J j — (u sin 8 — v cos 0) — a(u cos 8 + v sin 0) 

— 2 (u cos 0 +1> sin 0) 2 + ga sin 0J cos 9d8, 

= — Kpv — ira1 pit (8). 
Similarly Y = Kpu — ira?pv -\-irgpa2 (9). 

Hence if a be the density of the cylinder, the equations of 
motion are 

iraa2u = X, 7raa2V = Y—Tra-ga2 

Now d = u, 8 — v, 

whence we easily find 
u fi" 2 a2 

(ji = — - (u cos 0 + v sin 0) + (u* + v2) 2 (u cos 9 + v sin Of 

+ (u sin 0 — v cos 0) 
2TT?-

and therefore when r — a 

<p = — a (u cos 8 + v sin 6) + u' + v2 - 2 (it cos 8 + v sin 9)* 
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which by (8) and (9) become 

^ . « = 0 I 
TTfl I 

(10). 

[a + a) Ù + 2 V = 0 
K r ira 

(p + a) v - ^ U + (a- - p) g = 0 
770. 

We draw the following conclusions from (10) ; 

(i) Let K = 0, g = 0. In this case the acceleration vanishes 
and the velocity is constant. Hence if the cylinder is projected 
with any velocity, it will continue to move along the direction of 
projection with this velocity, and the only effect of the liquid will 
be to produce an apparent increase in the inertia of the cylinder 
which is equal to the mass of the liquid displaced. 

(ii) Let K = 0. In this case the horizontal velocity is constant, 
and the cylinder will describe a parabola with vertical acceleration 

9 O - p)/0 + p)-

(iii) Let g = 0 : and let the initial velocity be parallel to y 
and equal to V. Putting Kpjira? (p + cr) = X, and integrating (10) 

we obtain, 
u = — V sin Xt, v = V cos Xt, 

a = VX~'cosXt, 0 = W ' s i n X i . 

If therefore the cylinder is projected with velocity V in any 

direction, and no external forces are in action, it will describe a 

circle in the same direction as that of the cyclic motion. 
(iv) When neither g nor K are zero, the integrals of (10) are 

u = - - Fsin Xt, v = Vcos Xt, 
(a + p)X 

a = . . + cos Xt, 0 = - sin Xt, 

(a + p)X X X 

and therefore the cylinder describes a trochoid moving from right 

to left with mean velocity (cr — p) g/(cr + p) X. 
186. The preceding results may also be obtained by Lagrange's 

equations ; for with the notation of § 178, 

also if { r , 8') be current coordinates 

X = - £ : {</ c o s e ' ~ + (*•' ^n 8' -
7T 

= — ^ log ?'' + A — — , (x cos & 4- V sin 8'), 
Z 7 r Arrr 

whence St = — icx/lir, 23 = — nyj'lir. 
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Taking for a moment the origin at the centre of the cylinder, 
the value of ¿2, is 

whence J££ is constant, and the value of L is 

L = ^T-C? (x2 + y2) + \icp (xy — yx), 

whence equations (10) at once follow. 

187. Let us now suppose that the cross section of the cylinder 
is any curve, which does not possess cusps projecting into the 
liquid1, and that there is no circulation. The kinetic energy will 
be a homogeneous quadratic function of the velocities u, v, to, and 
by changing the directions of the axes we can make the term wv 
disappear. We shall however for simplicity confine ourselves to 
the case in which the cross section is a curve (such as an ellipse), 
which is symmetrical with respect to two perpendicular straight 
lines through its centre of inertia. In this case all the products 
will disappear, and 

Let the liquid be initially at rest, and let the solid be set in 
motion by means of an impulse F. This impulse is equivalent to 
a linear impulse F applied at the centre of inertia of the cylinder, 
together with a couple about its axis. Let fl be the initial 
angular velocity due to the couple, 3 the angle which the direction 
of the impulse F makes with the initial direction of u. 

If 6 be the value of this angle at any subsequent time, the 
Principle of Conservation of Linear Momentum gives, 

= \tc (c2 - a"), 

2T=Pu* + Qv' + Au,2 (11). 

Pu = F cos 6, Qv = - F s i n 8 . 

Substituting in (11) we obtain 

or (12). 

1 Qreenhill, " O n the motion of a cylinder through africtiouless liquid under no 

forces," Mess. Math., vol. ix. p. 117. 
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Let Q^P; then if 
n-Fs[^\/QApi' 

8 will vanish, and the cylinder will oscillate ; but if 

a>Fsinß^A-
p, 

0 will never vanish, and the cylinder will make a complete 
revolution. 

Case I. When the cylinder oscillates, (12) may be written 

0 = 1 Jain" 0-sm'a (13), 

where I = F J (Q - P)/A PQ, F sin' B - W = P sin2 a. 

Equation (13) shows that 9 can never be < a nor > TT — a through­
out the motion, hence the axis of least effective inertia (i.e. the 
longest diameter of the cross section) will oscillate between the 
angles a and TT — a. The cylinder will therefore move so that 
its flattest side tends to turn itself towards the direction of 
motion. 

Let cos 0 = cos a sin <f>, 

then (13) becomes 

[*-
J \/(l - cos* a sin' <£) ' 

and therefore cos 8 = cos a sn (K + It) (14), 

and the period of oscillation is 4>KjI. 

Let (x, y) be the coordinates of the centre of inertia of the 
cross section referred to fixed axes, then 

x — u cos 6 — v sin 6, y = u sin 6 + v cos 0, 

(15)· 
w h e n c e x = ^ +

 P{jJ~ ̂  ̂  cos* ̂  

P Q y = FI— 7=; I sin 0 cos 0 
These equations show that the centre of inertia of the cross 

section of the cylinder moves along a straight line parallel to the 
direction of F with uniform velocity F/Q, superimposed upon 
which is a variable periodic velocity, and at the same time vibrates 
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perpendicularly to this line. This kind of motion frequently 
occurs in hydrodynamics, and a body moving in such a manner is 
called by Thomson and Tait a Quadrantal Pendulum1. 

Substituting the value of 8 from (14) in terms of t in (15), and 
integrating, we shall obtain the values of x and y in terms of t, 
and the equation of the path will be obtained by eliminating t 
from the resulting equations. 

Case II. When the cylinder makes a complete revolution, let 

then it is easily seen that k < 1, and (12) becomes, 

¿ = ^(1 - F c o s * 8)i 

whence cos 8 — sn (A'' — It/k), 

choosing the constant so that 0 vanishes with t. Hence the 
solution can be continued as before. 

Case III. This is the limiting case between I. and II. 

Here Ant = Ft^-^j sin2
 /3, 

and therefore 0 = I sin 8 

It = log tan \ 8. 
Therefore ^ = I A cos 9, 

IA . , 
V = p s in 8, 

dx F IA . „ 
d9 = TlG™Cc9- "F Sm e' 

F , . IA 
x = log tan \a + cos 8.. 

Putting IA/P^ C ; a n f j eliminating 6 we obtain the equation af 
the path, viz. 

natural Philosophy, vol. I. part I. §322. 
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The curves described by the centre of inertia of the cylinder 
in the three cases, have been traced by Greenhill and are shown in 
the figures 1, 2, 3 of the accompanying diagram. 

If the cylinder is projected parallel to the longest diameter of 
its cross section and bo slightly displaced, it appears from (12) that 
its motion will be the same as that considered in Case III. 

The values of P, Q, A for an elliptic cylinder arc, 

( laab ) 

whence Q < P. 
188. If the cross section is a curve such as a cardioid, which 

is symmetrical with respect to only one straight line through its 
centre of inertia, which we shall take as the direction of u, the 
kinetic energy will be 

2T = Pv? + Qv* + Aw* + 2Lcou, 

and if we transfer the origin to a point on the axis of y whose dis­
tance from the origin is — L / P , the kinetic energy will be 

and the previous results apply. 

Motion of an Ellipsoid1. 

189. If a solid which is symmetrical with respect to three 
planes through its centre of inertia, which are mutually at right 
angles, is set in motion along one of its principal axes, and there 
are no forces in action, it will continue to move along that direction 
with uniform velocity. Similarly if it be set in rotation about a 
principal axis, it will continue to rotate about that axis with 
uniform angular velocity, provided the solid does not contain any 
apertures through which circulation takes place. 

1 Greenhill, " Flnid motion between confocal elliptic cylinders and confocal 
ellipsoids," Quart. Journ., vol . xvi . p. 227. 

B . 13 
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194 M O T I O N O F A S I N G L E S O L I D , 

Let us now suppose that the solid is set in motion by means of 
an impulse F, whose direction is inclined at an angle a to the axis 
OC of the solid. 

If the axis of z coincides with the direction of the impulse, 
and no forces are in action, the component momentum parallel to 
z must be equal to F, and the components parallel to x and y 
must be zero throughout the motion, whence 

Pu = — F sin 9 cos 0, 
Qv = F sin 6 cos cp, 

Rw = F cos 9. 

Substituting these values of u, v, w in (3) we obtain, 

2T = F> j r i n - 9 + ̂  + ̂ } + A ^ + Ba,; + Co,;...(16). 

The motion is therefore the same as that of a rigid body 
rotating about its centre of inertia, under the action of a system of 
forces whose potential is 

i ^ { s i n ^ ( ^ +

 S ^ ) + C 0 ^ } . 

190. Let the solid be moving without rotation along one of its 
principal axes which coincides with the direction of the axis of x, 
and be slightly disturbed from its state of steady motion. 

Let u = w0 + u be the new velocity parallel to x after disturb­
ance. In the beginning of the disturbed motion, u', v, &c. are all 
small quantities, and Kirchhoff's equations give 

Pu. = 0, Qv = — Pu0a>s, Rw = Pw 0« 2, 

A r \ = 0, BAt = ( R - P ) u0w, P i , = ( P - Q) uav. 
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A' = 2-n-abc 

we obtain from § 147 

é r ^ . jjjdxdydz, 

= * + < ^ > 4 7 r - A 

by § 7 (9), where M is the mass of the liquid displaced. Similarly 

A - J, = \ M Qt2 + &) — pa'ffyz (ny - mz) dS, 

= J M (V + c2) - pa' fjj (f - z2) dxdydz, 

M (&2 - c2) (C - B') 
^ (È 2 + C2) + 4 ^ _ _ ^ + ^ 

Since C > B ' > A ' , it follows that _R> Q > P , whence in the 
case of the ellipsoid the least axis is the only direction of stable 
motion. 

192. When the motion is such that two of the axes always 
remain in a plane, the equations of motion can be integrated ; for 
if these axes be the directions of u and v, wre have w = 0, co1 = 0, 
a>2 = 0, and 

zT = Pv? + Qv* + CcoB', 

the kinetic e n e r g y "is therefore of the same form as in the case 
of the cylinder considered in § 187. 

13—2 

V IP _ 0) 

Hence Q v + [ u* v = 0, 

The motion will therefore be unstable unless P is greater than 
either Q or R. 

191. The only solid for which the quantities P, Q, B, A , B, G 

have been determined is the ellipsoid. 

From § 180 (2), 

P = M-pJf<p1 IdS, 

A = I l - p Jlx, (ny - mz) dS. 

Hence if we write 

dX 
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Under the same circumstances, when the solid is symmetrical 
with respect to two perpendicular planes through its centre of 
inertia, the kinetic energy is of the form 

27/ = P A 2 + QV2 + A < O 2 + ZLUWV 

which is reducible to the previous form. 

ON THE MOTION OF A SOLID OF REVOLUTION1. 

193. In considering the motion of a solid of revolution, it will 
be convenient to discuss the case of a ring through whose aperture 
there is circulation. If in our results we put K = 0, we shall 
obtain the motion of any solid of revolution ring shaped or not 
when there is no circulation. 

Let OR be the centre of inertia of a plane curve S , 0Z any 
fixed straight line lying in the plane of S , and let Off be per­
pendicular to 0Z. We shall assume S to be symmetrical with 
respect to O G , but otherwise it may bo of any form, provided 
there are no singular points capable of giving rise to sharp edges; 
and the ring will be supposed to be generated by the revolution of 
S about OZ. Then 0 will be the centre of inertia of the ring, 0Z 
its axis of unequal moment, which will be called the AXIS OF THE 

RING; and the circle described by G will be called the CIRCULAR AXIS 

OF THE RING. 

Let the ring be introduced into an infinite liquid which 
is at rest, and held fixed; let the circular aperture be closed up 
by means of a plane diaphragm, whose area is cr; and let cyclic 
irrotational motion be generated by applying to every point of this 
diaphragm a uniform impulsive pressure icp, where p is the density 
of the liquid, and then let the diaphragm be removed. 

The velocity potential of this cyclic motion will be 

<B = KD., 

where Q is a monocyclic function whose cyclic constant is unity, 
and K is the circulation, round any closed circuit, which embraces 
the ring once only. 

The resultant momentum of the cyclic motion will be parallel 

1 Proc. Cavib. Phil. Sac, vo l . vi . p. 47. 
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ffdil 7 = p 7 da, 
J J dv 

and N is the ^-direction cosine of the normal to the ring drawn 
outwards, and DS an element of its surface. 

If the ring be set in motion, the kinetic energy and momentum 
of the ring and liquid will be determined by the equations 

2 T = P <V + «*) + R V R 4- A « + w J) + Ceo* + KK1 (17), 

f = Pu, Y = BV, ^ R W + Z \ ( 1 8 ) 

\ = ^4(u1, P — Acov v = Ceo3 J 

Since the liquid is incapable of producing a couple about the 
axis of the ring, to3 = const. = to throughout the motion. 

Hence, if the ring be let go after the cyclic motion has been 
generated, it will remain at rest; for the only possible motion will 
be in the direction of its axis, and consequently 

2 r = RW* + 6 V + KK* = its initial value, 
therefore W = 0. 

194. Let the ring be set in motion BY means of an impulsive 
couple G about any diameter O B of its circular axis. 

The axis 0 C of the ring will evidently move in a fixed plane, 
which is perpendicular to the axis of the couple. Let 6 be the 
inclination of O C to O Z at time T; U, W the velocities of 0 along 
O A and O C . 

to the direction of the impulsive pressure on the diaphragm, and 
equal to j £ ; and the energy to %KK3, where 

= ICPCR — KPJJCLNDS, 
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(19). 

The principle of Conservation of Linear Momentum gives, 

- f sin 0 + £cos 0 = S&, 

f cos 6 + f sin 0 = 0, 

whence P u = — SS sin 0 

Pw = - (1 - cos 0)j 

If i, « be the velocities of 0 along and perpendicular to OZ: 

then 

ib = u cos 0 + w sin 0, 

i = w cos 0 — M sin 0. 
Therefore 

= 5S 
1 1\ . . 
2j — -p I sin 0 cos 0 — sin 0 

Also 2 T = P u s + Sui' + AÓ2 + KK2 = const. 

.(20). 

Substituting the values of u and w from (19) we obtain, 

¿0* = A » ' - ( ± + ^ ) + 2 J cos 0 + j £ 2 - J cos 20.. .(21) 

= / ( 0 ) say, 

where w is the initial value of 0. 

The character of the motion depends upon the roots of the 
equation f(9) = 0, which we shall now consider. 

The roots are 

cos 0 = 
R V 1 

\ P R 

Case I. Let R > P . 

In order that the roots may be real, we must have 

R 

A P ( R - P ) ' 

If this condition be satisfied, one root will be positive and < 1, 
and the other will be negative and less than — 1. Hence 0 will 
vanish when 0 has some value 8 lying between 0 and Jj7r, and the 
ring will oscillate between the angles 8 and — 8. 
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But if co > S2 yf- R 

A P ( R - P ) 

both roots will be imaginary, and 6 will never vanish. Hence the 
ring will make a complete revolution. 

Case II. Let P > R. 

In this case both roots are real, and one of them is positive and 
< 1 provided co is sufficiently small; but if co is sufficiently large 
both roots will be negative and < — 1 . In order that one root 
should not be < — 1, it is necessary that 

2 5 5 
CO < —. . 

J a r 

If this condition be satisfied, the ring will oscillate between the 
angles /3 and — ¿3, where /3 lies between 0 and tt ; but if 

2 5 S 

a > J A R ' 

the ring will make a complete revolution. 

195. In order to find the period of oscillation or revolution, 
as the case may be, we must express 9 in terms of t. 

Case I. R > P . 

(i) Let the roots be real and equal to p and - q, where 

q > 1 > p > 0 . 

Equation ( 2 1 ) may be written 

62 = M* (cos 9 -p)(cos 9 + q), 

where M!' = • ? ) . 

A 1 - D cos2 <f> 

where D = · 

2 *JD sin cbdcb 

Then at) — T ~ T T I 7 7 7 X A ~ > 

1 + JJ cos 0 

(cos 9 - p ) (cos 9 + q) = ( 1 ' * · S - 2 

where k* = ~V <} ~ P > . 
2 (p + q) 
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Therefore 

MDT = 
deb 

therefore 

where 

Therefore 

< / ( L + P ) (1 + 3) V U a i n » 

FF> = am IT, 

7 = ^ ( 1 + 1 0 ( 1 + ?). 

cos 
L + V + ( L - P ) CU"IT' 

+ P + 0 - -P)' 

and the period of a complete oscillation is 4<K/I. 

(ii) Let the roots be imaginary and equal to P + TQ. 

Then 

Let 

Then 

0* = ^ ' { ( c o s ö - j ? ) , + 5! 

_ 1 - D + (1 + D ) cos 0 
C 0 S " _ 1 + 7J + (1 - / ) ) cos EF> ' 

¿0 = 
2 •dB deb 

and 
1 + D + (1 - X») cos <?> ' 

{ ( cos0 -^ ) 2 + Q*} {1+ /J + (1 - Z > ) CO S ( ? J] = [1 — B — P (1 + 2)) ] 2 + 9

2 ( l 

+ 2 cos <P [(1 - p ) 2 + Q* - B> {(1 + P ) ' + ? 2j] + [{1 + D - P (1 _ J))}* 

+ Q' (1 - DF] cos2 0. 

Hence if 7>2 = ( 1 - - P Y + ? 

the coefficient of cos^> will vanish; substituting this value of D , 
we obtain, 

D9 1 DEB 

V{(cos 9 - P F + Q°} ~ {(1 + F

2 + Q 2 ) 2 - 4 P F V ( l - * W 0 ' 

1 + 
1 - ^ 

{ ( l + / + ? 2 ) 2 - 4 i 3

2 } s J 

Hence $6 = am FT, 

where 7' = Jf [(1 + ^ 2 + 5

2 ) 2 - 4P*}$ ; 

and we finally obtain 

tan 2 |0 = K 1 - ^ + ^ . 1

1 - C n ^ I 

l ( i + P T + <I J 1 + c r i / * 

and the time of a complete revolution is 4>KJI'. 
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D = 
1+jp 

1 — p ' 

, , D(q - 1 ) ( q - l ) ( l - p ) 

l + q + D ( q - l ) • 2 ( q - p ) " 

(iii) Let the roots be — p and — q, where q > p > 1. 

I T T , , a 1 — D sin2 c3 
We must put c o s o = - pr^-,-^-, 

1 1 + D sin1
 (h 

where D = —^ , 
p + l 

( p - l ) ( q - l ) 

In order to obtain the path described by the centre of inertia 
0 of the ring, we must substitute the value of 8 in terms of t in 
(20), and integrate the result. 

We can however ascertain the character of the motion of 0 
without integrating (20). For differentiating (21) we obtain 

9 2 
S I N a — I 

Therefore x = , 

A 

and cc = ^ ( 8 — &>) 

Also the value of i may be written 

A 8 = - ^ sin 6 - 9 2 (~ - ) sin 8 cos 9. 

. 96 
Z = P ^(J-i)cos^ + f C O S 0 

Case IT. P > R. 
In this case both roots are real, and one root is always negative 

and numerically greater than unity. 
(i) Let the roots be p and — q, where q > l > p > Q . The 

transformation is the same as in Case I. sub-case (i). 

(ii) Let the roots be — p and — q, where q > 1 > p > 0. 

Then 82 = M 2 ( c o s d + p ) ( c o s 6 + q \ 

where M* = j^)R(P - R). 

In this case we employ the same transformation, but must put 
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The term in square brackets has its greatest value when 0 = 0, 
in which case z = 0; hence z can never become negative. The 
motion of 0 is such that 0 moves along the initial direction of the 
axis of the ring with a uniform velocity, superimposed upon which 
is a variable periodic velocity; and at the same time vibrates 
perpendicularly to this line. 

196. Since the momentum due to the circulation alone is 
always perpendicular to the plane of the ring, it follows that if a 
ring initially at rest be set in motion by means of a couple about a 
diameter, the direction of this momentum will be changed; and 
the opposition which the liquid exerts against this action on the 
part of the ring, will produce a couple tending to oppose the rotation 
of the ring. Also, since the impressed couple can produce no effect 
on the linear momentum of the system, it follows that the effect of 
changing the direction of the momentum due to the circulation, 
will be to cause the ring to move with a velocity of translation, 
which gives rise to a linear component of momentum of the wbole 
system, such that the resultant of the latter and (whose direction 
has been changed) must be a momentum equal to j § , and whose 
direction coincides with the original direction of SS. 

197. We shall now investigate the stability of the motion of a 
ring, which is moving parallel to its axis in the direction of the 
cyclic motion. 

When the motion is steady 

In order to obtain the disturbed motion, we must have recourse 
to Kirchhoff's equations of motion; we shall also suppose that the 
co-ordinate axes are fixed in the ring. 

Putting for shortness 

the equations of disturbed motion are, 

f = Rw + 5S = const. = 7, 
v — Ca>3 = const. = CXI, 
£ = v7 = X = ^ = 0. 

Pu — PD,v + 7&>2 

Pv 

Awi + Zv + (G — a) 0&)2 

-4(u2 — Zu — (G — a) flco, 

0, 
0, 
o, 
0. 
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= 0, 

Putting u — itV, &c. the equation for determining p is, 

Pp - P i l 0 7 

PD, Pp - 7 0 

0 Z Ap ( C - A ) Q , 

- Z 0 - { G - A ) H Ap 

or 

A2F>pi+P[2ZAy+t{(G-Ay+Ai}Pn.*]p* + { P ( C - A ) W + Z y y = 0 . 

If Zy is positive both values of p 1 are real and negative, and 
the motion will be stable; but if Zy be negative, the motion will 
be unstable unless 

If 12 = 0 the roots are 

and the criterion depends altogether on the sign of Zy. Now 

Zy = y* — PyW. 

(i) Hence if K and w are both positive, y will be positive and 

Z y > 0 if R > P , 

but if R < P, Zy will not be positive unless 
S S > ( P - P ) w. 

(ii) If K is positive and w negative = — w, y = 5& — Rw'; 
hence if 5 S > Rw', then Zy > 0 ; but if 5 S < Pw', Zy will not be 
positive unless 

( R - P ) w>5&, 

which requires that R > P. 
(iii) If K = 0 and O is not zero, 

Zy = R ( R - P ) w \ 

Hence if R > P the motion will be stable; but if R < P the 
motion will be unstable unless 

2 A R ( P - R ) 

P { ( G - A f + A \ ' 

108. Another kind of steady motion may be obtained by setting 
the ring in motion by means of a couple G about a diameter of its 
circular axis, and at the same time applying an impulse 5 S in the 
opposite direction to that of the cyclic motion. 
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The effect of the latter impulse is to destroy the linear 
momentum of the system, hence 

f = 0 , ? = 0 . 

Therefore U = 0, W = —^ . 

Kirchhoff's 5th equation gives 

fj. = const. = G — A8. 

The motion of the ring is such that its centre of inertia 0, 
describes a circle about a fixed axis parallel to the axis of the 
couple, through which the plane of the ring always passes. If r 
be the distance of 0 from this axis, 

5S A GR - = -w = rB=-, 
th erefore R = . 

In order to determine the stability, we must put 

f = PU, V = PV, £ = RW, 

\=AWV P, = G-SRAWI, V = 0, 

SS G 7 

W=--JI+W, a>2 = - -J + co2, 

in Kirchhoff's equations of motion, where the quantities u, v, &c, 
on the right-hand sides of these equations, are small quantities in 
the beginning of the disturbed motion. Also, if the axes are fixed 
in the ring, 

= * . = ! + » , . *a = o, 

and the equations of disturbed motion are 

PU H—-— w = 0, 
A 

PV = 0, 

RW — U = 0, 

¿ ^ + ^ « = 0, 

PTT 
AOJ2-±-^U = 0. 
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From the first and third equations we obtain 

w = w sin 

+ a 

u = cos Gt + a 

Gt 
The fifth equation gives Zw' 

» . = - ^ - ^ U 

The second and fourth give 
v = const., 

4- + c o n s t . 

vt + const. These equations show that the motion is stable for all displace­
ments which do not tend to remove the centre of inertia from the 
plane of its motion; but the motion is unstable for all displacements 
which tend to produce this effect. If the disturbance is such that 
v = 0, the disturbed motion will still be stable, but the axis of 
rotation will be shifted through a certain angle. 

199. A third kind of steady motion, which is helicoidal, is 
obtained by first communicating to the ring an arbitrary angular 
velocity 12 about its axis; secondly by applying an impulsive 
couple & about an axis inclined at an arbitrary angle a to the axis 
of the ring; and thirdly by applying a determinate impulse in the 
plane of the axes of the ring and couple. 

In order that steady motion may be possible, it is necessary 
that v and therefore rj should be zero throughout the motion. This 

Z 

condition may be secured by means of an impulsive force whose 
components in the direction of X and Z are — 5S sin a, and F. 
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C W > 4ZA cos a 1 1 V 
R . - P ) Z C 0 * * - ~ R 

.(29). 

Hence, if R > P steady motion will always be possible, but if 
P > R , steady motion will be impossible unless the condition (29) 
is satisfied. 

The equations of momentum are 

cos 0 + f sin 6) cos -^r — 77 sin -^r = 0, 
(f cos 6? + fsin 0) sin -<|r 4- 77 cos i/r = 0, 

- £ sin r? + f cos 0 = P + 5S cos 1; 

•whence 
£ = - ( P + S S c o s * ) sintTl 

i? = 0 (23). 

f = (P+SScosa) cosfl J 
Since the components of momentum parallel to the axes of X 

and Y (which are fixed in direction, but not in position because 0 
is in motion) are zero throughout the motion, the angular momen­
tum about O Z is constant, whence 

- A c o l s m 6 + CD,cos9 = G + CHcosa (24). 

The equation of energy gives 

Pu2 + RW2 + A « + 92) = const., 

putting Z = F + J S C O S a, this becomes 
Z2 sin2 6 {Zcosti-%,}2 { G + CD. (cos a - cos 9)}' 

P + E + A sina 6 
+ A & 2 = const. = its initial value (25). 

This equation determines the inclination 6 of the axis. 

200. So far our equations have been perfectly general, we 
shall now introduce the conditions of steady motion. These are 

6 = a, ir = fi, 6 = 6 = 0 (26), 

whence (24) becomes 
A ( i sin's = G (27). 

Differentiating (25) with respect to t, and using (26) and (27), 
we obtain 

cos a - Cfl/* + - Z* cos a - ~ = 0... (28). 

In order that steady motion may be possible, we must have 
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5S 
p ; c o s a - p | s i n a s i n ^ 

i r7/i i\ 521 . 
y = — | x ^ — p j c o s a ~ J s i n a c o s t"', 

f „ /sin* a cos2 a\ SS cos a) . Z=\Z{-jr + -R-) i 2 ~ } « • 
This last result may be at once obtained from the fact that the 

impulse of the motion must consist of wrench about a fixed axis1. 

201. To examine the stability differentiate (25) with respect 
to t, we thus obtain A6+f{6) = Q. 

Hence the motion will be stable or unstable according as / ' (a) 
is positive or negative. 

Now 

Z5£ sin 8 / ( 0 ) = ^ ^ - i ) s i n 2 0 + ' 

R 
+ ~r^a iG+Cii(cos a - cos0)} - [Q + C& (cosa - cos 8)}*; Asm81 A sin 8 L v ' 
therefore 

p> = / ' («) = Aft* (1 + 2 cos2 a) 

- cos a + —j Z21 -g - j cos 2a + p - cos cz. 

Eliminating D, by means of (28) we obtain 

j i ' p V = A V + -AffZ \z - P ) (1 - 3 cos£ a) + ?J cos a j 
+ M * ( 2 - 7 ) 0 0 " - § F -

1 An elementary demonstration of the results of this article when there is 
no circulation, hae been given by Grecnhjl l ; Quart. Jour., vol. xvii . p . 8G. 

If x, y , z be the co-ordinates of 0, we have 

x = ( u cos 8 + w sin 8) cos •v/r = Z — p j cos a — ̂  j sin a cos fit, 
y=(u cos 5 + w sin 0) sin \Jr = jz ^p — -ĵ  cos a — ̂  j sin tz sin /x£, 

. , „ /sin2 a cos2 a\ JS cos a 
z = W cos 0 — u sin 0 = Z [ —p 1 -g— J ; 
whence the centre of inertia describes the helix 

IRIS - LILLIAD - Université Lille 1 



GENERAL MOTION OF A SOLID. 

202. Having discussed the preceding special cases of motion 
we shall pass on to discuss certain general theorems relating to 
the motion of a single solid. 

If the form of the solid is similar to that of a two bladed screw 
propeller of a ship, which is symmetrical when turned through two 
right angles about the axis of Z, the kinetic energy must be 
unaltered when the signs of U, V, CAV A>2 are all changed, whence 

2T = PU* + QV* + RV? + 2R'UV + AU? + BM2 + CCO3

2 + 2(7 c o ^ 

+ 2 ^ (LU + MV) + 2W2 (L'U + M'V) + 2N"WAW (30). 

If the solid resembles a four bladed screw propeller which is 
symmetrical when turned through any multiple of a right angle, 
the kinetic energy must be unaltered when — V, U, — <ua, are 
written for U, V, A>„ tu2 respectively, whence 

2T = P (M 2 + tf) + RUF + A « + a,') + c < 
+ 2L (TOP + TO3V) + 2M(M1V — COSU) + 2N"A\W (31). 

In this expression the term W{0 — A>2U can be got rid of by 
moving the origin along the axis of Z. 

The condition that p* should be positive is easily found to be 
that 

{ f + Z {R - i) C 1 - 3 c o s ">} { ? -
 z {I ~ R) C1 + 3 c o s '>} 

should be positive. 

If there is no circulation j£ = 0, Z = F, whence the condition 
becomes 

F 2 ( p - : p ) ( ! W a - 1 ) > 0 ' 

which requires that a should lie between cos~' ̂  aud 0, or between 
7r — cos - 1 £ and TT. 

The azimuthal motion of a solid of revolution when there is no 
circulation, has been worked out by Prof. Greenhill in the QUART. 

JOUR., vol. X V I . pp. 247—254 ; and another investigation by him 
by means of Weierstrass's Functions will be found in the 
Appendix. 
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If the solid is symmetrical with respect to itself when the axes 
of x and y are turned through any given angle a in either direction, 
it can be shown that if (1) be transformed by putting 

u=u' cos 0 — v' sin 9, = <¿¡¿ cos 9 — <u2' sin 6, 

v = u sin 9 + v cos 0, o)2 = ajj' sin 9 + a¡ cos 0, 

the condition that the transformed expression for T should be 
unaltered when 0 is put equal to a. or — a, is that T must be of the 
form (31). 

This kind of symmetry is called helicoidal symmetry. 

Let us now suppose that there is another axis situated anywhere, 
with respect to which the solid possesses helicoidal symmetry. 
Since the form of (31) is not affected by turning the axes of x and y 
through any angle, we may suppose them placed so that the other 
axis of helicoidal symmetry lies in the plane xz. Turning the 
axes of x and z round that of y through a certain angle <p, the 
new axis of x will be the axis of helicoidal symmetry, and the 
expression for the energy will be of the form (31) but with the axes 
of x and z interchanged ; whence 

2T = P (w2 + v* + v?) + A « + <o? + w¡) 

+ 2L (uwl + utoj + W 6 ) s ) (32). 

A solid of this kind is called by Sir W. Thomson an isotropic 
helicoid1. 

203. When a solid is set in motion along a given direction, it 
will not in general continue to move along that direction : similarly, 
if the solid be set in rotation about a given axis, it will not in general 
continue to rotate about that axis. We shall however show that 
there are always three directions mutually at right angles, such 
that if the solid is set in motion along any one of them without 
rotation and then left to itself, it will continue to move along this 
direction with uniform velocity. 

When there are no impressed forces, Kirchhoffs equations of 
motion, § 167, are satisfied by putting OJÍ = OJ1 = o)a = 0, and u, v, w 
all constant, and 

l d T _ l d T _ l d T 

u du v dv w dw' 

1 Proc. Roy. Soc. Edinburgh, vol. vn. p. 384. See aleo, Larmor, " On 

HydroliinetLC Symmetry," Quart. Journ. vol. xx. p. 2fil. 

B . 1 4 
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'whence 2T = Pu? + Qv" + Ru? + IP'vw + 2Q'wa + 2R'uv, 
. Pu + Rv+Q'w R'u + Qv + Pw Q'u+ P'v + Rw 

and = = . 
U V w 

These equations show that the resultant velocity must he 
in the direction of one of the principal axes of the ellipsoid 

Px3 + Qy* + Rw2 + 2P'yz + 2Q'zx + 2R'xy = const., 
which proves the proposition. 

204. It is shown in treatises on Statics that every system of 
forces is reducible to a wrench; that is to say a single force, and 
a couple whose axis coincides with the direction of the force. The 
ratio of the couple to the force is called the pitch of the wrench. 

Similarly the motion of every rigid body is reducible to a twist 
about a certain screw; that is to say a velocity of translation 
along a certain line which is called the axis of the screw, together 
with a rotation about that axis. The ratio of the linear to the 
angular velocity is called the pitch of the screw. 

If in § 203 the axes of coordinates coincide with the three 
directions of permanent translation, the impulse is determined by 
the equations 

t dT dT 
an aa,x 

and therefore consists of a wrench of pitch L/P. 

205. The above motion is not the only permanent steady 
motion of which the solid is capable : for if the velocities and there­
fore the momenta are constant, Kirchhoff's first three equations 
of motion give 

- £ = ^ = ! = A (33), 
( B , (Uj ( U 3 

and the last three combined with these give 

\ — hu u, — hv v — hw . . ,. = — • = = k (34). 
f i ) | & ) 2 C03 

Equation (33) expresses the condition that the axes of the screw 
and wrench should be parallel, the condition that they should be 
coincident is 

Xiol — gu _ fj.a>2 — T j T j va>3 — £w 
W l 2 & ) 2

2 & > 3

2 

which by (33) is equivalent to (34). 
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Hence there exists a simply infinite system of possible steady 
motions, each of which consists of a twist about a certain screw. 

The pitches of the screw and the wrench are in general 
different; if K be that of the former and K that of the latter 

\ f 4- (xrj + vX, wxu 4- O J 2 U 4- a>3w k 

whence k = h(jc — K). 

And the expression for the kinetic energy becomes 

2T = £u + rjv + £iw + A . O J 1 4- fj.co2 + va>3 

= (K + K.') hro2, 
where w is the resultant angular velocity. 

The values of h and k are not independent, for if the three 
directions of permanent translation be chosen for the axes of 
coordinates, and we substitute in (33) and (34) the values of f, v, f 
&c. obtained by putting P', Q', PJ equal to zero, we shall have the 
following system of equations 

(A - k) &>! + Ca>, + B'OJ3 + (L-h)u + Mv 4- Nw = 0 ~ 

&c. &c. 
(L — h) a)i + L'oj2 4- L"a)3 + Pu = 0 
&c. &c. 

..(35). 

Substituting the values of u, v, w from the last three equations 
in the first three, it will be found that (35) are of the form 

C M , + 7 ' w 3 4 - B'm3 = kmit 

+ /9&)2 4- a'aj3 = ka)2, 
/6'ojj + a'oj 2 4- 7 & ) 3 = !ca)a, 

whence k is determined by the equation 

C L - K , 7 ' , B' 
7 ' , B-k, a = 0 . 

B', a', 7 — A 

The roots of this equation are all real; hence to every value of 
h there are three values of k, which are all real; and the axes 
of the three screws are mutually at right angles but do not in 
general intersect. 

14—2 
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206. We shall now show that when the impulse of the motion 
consists of a couple only, the motion of the solid consists of a 
motion of translation combined with a motion of rotation, which is 
the same as that of a certain ellipsoid which rolls upon a certain 
moveable plane. 

Taking the axes of permanent translation as the axes of 
coordinates, we have f = RJ = f = 0 throughout the motion; hence 

Pu + Lm1 4 - X ' A I , 4 L"a>3 = 0 &c. &c. 
Aa>t + C'wj + B'a>3 4 - Lu + Mv + Nw = \ &c. &c. 

If we eliminate u, v, w from the last three equations by means 
of the first three, it will be found tbat 

where 

20 = ^ A > , 2 4 4 - 3Xa>3' + 2$ '« ,» . , 4 2 ® ' « ^ , + 2 H ' » 1 u 1 . . . ( 3 0 ) , 

. L* M2 N2 

W=A - - p Q ^ - & c . , & c . 

The equations of motion are 

% = (Hj/x — to2v &c. &c (37). 

In equations (37) let us change the directions of the axes 
which are fixed in the body, so that they coincide with the principal 
axes of the quadric 

^ x 2 + (Sky2
 4 - £ U A 4 - 2^'yz + 2<QLZX 4 2Wxy = const. 

If this be done, and the equation of the quadric referred to 
these axes is 

ax2 4 - 8y2 + yz2 = 1 , 

we shall have 

and ( 3 7 ) becomes 
aa>{ — (8 — 7 ) a>s' a>3' = 0, &c. 

whence the motion of rotation is obtained by making the above 
mentioned quadric roll on the plane 

\x + ny + vz = const., 
whose direction is fixed in space (since ~K, fi, v are constant), with 
an angular velocity proportional to the length 01 of the radius 
vector drawn from the origin to the point of contact I. 
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The motion of translation is obtained by making the plane and 
quadric move through space with a velocity whoso components are 
given by £ = 0 , 7 7 = 0 , f = 0 . 

The theorems of the last two articles are taken from a paper 
by Prof. Lamb, Proc. Loncl. Math. Soc. vol. vin. p. 273. 

1. Apply Lagrange's equations to determine the equations of 
motion of an anchor ring; and thence obtain the theorem that the 
flux through the aperture relative to the ring, is the generalized 
velocity corresponding to the product of the circulation and density 
of the liquid. 

2. If A and B be the forces required to act per unit of time, in 
order to generate unit velocity perpendicular and parallel respec­
tively to the axis of an ellipsoid of revolution in an infinite liquid, 
and if G be the couple required to act per unit of time in order to 
generate unit angular velocity about an equatoreal axis, prove that 
the kinetic energy of the ellipsoid and the liquid is 

with Euler's notation, C being the polar moment of inertia of the 
solid. 

Express T in terms of Lagrange's coordinates x , y , z , 6, <b, ; 
and prove that if the axis of z be parallel to the impressed impulse 
F, then 

EXAMPLES. 

( \Au* + Av* + Bw* + Geo* + Geo-

X i — — F l - . — s i n 8 cos 8 cos yjr, 

y = — F I -: j sin 8 cos 8 sin 
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3. In the midst of an infinite mass of liquid at rest, is a sphere 
of radius A, which is suddenly strained into a spheroid of small 
ellipticity. Find the kinetic energy due to the motion of the 
liquid contained between the given surface, and an imaginary 
concentric spherical surface of radius c; and show that if this 
imaginary surface were a real bounding surface which could not 
be deformed, the kinetic energy in this case would be to that in 
the former case in the ratio 

c 5 (3a 6 + 2c5) : 2 (c 5 - aB)2. 

4. A pendulum with an elliptic cylindrical cavity filled with 
liquid, the generating lines of the cylinder being parallel to the 
axis of suspension, performs finite oscillations under the action of 
gravity. If I be the length of the equivalent pendulum, and I' the 
length when the liquid is solidified, prove that 

, RNAV 
H J i + m ) (a? + b') ' 

where M is the mass of the pendulum, m that of the liquid, H the 
distance of the centre of gravity of the whole mass from the axis of 
suspension, and A, b the semi-axes of the elliptic cavity. 

5. Find the ratio of the kinetic energy of the infinite liquid 
surrounding an oblate spheroid, moving with given velocity in its 
equatoreal plane, to the kinetic energy of the spheroid ; and denot­
ing this ratio by P, prove that if the spheroid swing as the bob of 
a pendulum under gravity, the distance between the axis of the 
suspension and the axis of the spheroid being c, the length of the 
simple equivalent pendulum is 

( 1 + P) o + Sffl'/ac 

where A is the equatoreal radius, <r and P the densities of the 
spheroid and liquid respectively. 

6. A pendulum has a cavity excavated within it, and this 
cavity is filled with liquid. Prove that if any part of the liquid 
be solidified, the time of oscillation will be increased. 

7. Prove that if a number of solids be moving freely under 
their mutual attractions in an unbounded liquid, the impulse of 
the motion remains constant. 
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8. The space between two infinitely long coaxial cylinders of 
radii a and b respectively, is filled with liquid of density p, and the 
inner cylinder is suddenly moved with velocity IT perpendicular to 
the axis, the outer one being kept at rest. Show that the resultant 
impulsive pressure on a length I of the inner cylinder is 

9. An elliptic cylindrical shell, the mass of which may be 
neglected, is filled with water, and placed on a horizontal plane 
very nearly in the position of unstable equilibrium with its axis 
horizontal, and then let go. When it passes through the position 
of stable equilibrium, find the angular velocity of the cylinder, (i) 
when the horizontal plane is perfectly smooth, (ii) when it is 
perfectly rough; and prove that in these two cases, the squares of 
the angular velocities of the cylinder are in the ratio 

(a* _ bj + W (a2 + b2) : (a2
 - b2)2, 

2a and 26 being the axes of the cross section of the cylinder. 

10. A solid ellipsoid of density A is placed inside a fixed con­
centric, confocal, and similarly situated ellipsoidal shell, and the 
space between them is filled with liquid of density P. Supposing 
that the whole matter attracts according to the Newtonian law, 
and that er > P, show that when the solid ellipsoid is slightly 
displaced parallel to its greatest axis, the time T of a small 
oscillation is given by 

T 2 P ( o - - P) AL2IR = A + P - - = - — ^ ~ % - R ^ J T , 

r v r / ' r abc (2 — A)- abc (2 -^4) 
where a, b, c and a', b', a are the semi-axes of the outer and inner 
ellipsoids, and 

abcd\ 
11. The space between two coaxial cylinders is filled with 

liquid, and the outer is surrounded by liquid, extending to infinity, 
the whole being bounded by planes perpendicular to the axis. If 
the inner cylinder be suddenly moved with given velocity, prove 
that the velocity of the outer cylinder to that of the inner will be 
in the ratio 

2BVP : P (a2b2 - a2c2 + b*+ bV) + A(a2- b2) (b2
 - c 2), 

where a and b are the external and internal radii of the outer 
cylinder, A its density, c the radius of the inner cylinder and P the 
density of the liquid. 
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12. The ellipsoid (a; fa? + (y/bf + (z/c)2
 = 1, is filled with liquid 

originally at rest, arid rotates uniformly about an axis through its 
centre of inertia: prove that the surfaces of equal pressure are 
given by the equation 

(A,B,C,A; B \ o(x,y, *y=x 
where 

( c 2 - q 2 ) ( 3 c 2 + B 2 ) m,' _ ( a 2 - b2) (3Z>2 + a2) < (t? + dy (a' + by 
bV + + a'P- 3a* 

(c2 + a')(tf + b2) 
and tov io2, w3 are the component angular velocities of the ellipsoid. 

13. In the last example prove that if the ellipsoid be set in 
rotation and then left to itself, the components of the velocity of 
the liquid relatively to the ellipsoid are 

2a2w3iy 2a2a>^z 
X = ~o'~+6* ~ ̂ f c 2 ' . _ 2b2co,z _ 2Wasx y-tf + c* lF+a2' 

2fi2ta^ _ 2 C S < B , I / 

c 2 + V c2+b2' 
and that if the ellipsoid revolves about a fixed axis after 

revolutions of the ellipsoid, every particle of liquid will be in the 
same position relatively to the ellipsoid. 

14. A closed vessel filled with liquid of density p , is moved in 
any manner about a fixed point 0. If at any time the liquid 
were removed, and a pressure proportional to the velocity potential 
were applied at every point of the surface, the resultant couple 
due to the pressure would be of magnitude G, and its direction in 
a line OQ. Show that the kinetic energy of the liquid was pro­
portional to \pu>G cos 6, where a> is the angular velocity of the 
surface, and 6 the angle between the direction of a and OQ. 

15. A solid cylinder of radius a immersed in an infinite liquid, 
is attached to an axis about which it can turn, whose distance 
from the axis of the cylinder is c, and oscillates under the action 
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of gravity. Prove that the length of the simple equivalent 
pendulum is 

\a% + c' (1 + p/a) 

c (1 - pja) 

cr and p being the densities of the cylinder and liquid. 

Ifi. A light cylindrical shell whose cross section is an ellipse 
filled with water is placed at rest on a smooth horizontal plane in 
its position of unstable equilibrium. If it is slightly disturbed, 
prove that it will pass through its position of stable equilibrium 
with angular velocity a, given by the equation 

' °~ a ' + fc' 
w = 8 g ( a + by(a~b)-

17. A quantity of heavy heterogeneous liquid is placed inside 
an ellipsoid, which is then moved so that the density of the liquid 
is always the same function of the depth. Prove that a certain 
cone coaxial and concyclic with the reciprocal ellipsoid, moves so 
as always to have one of its generators vertical. 

18. Liquid of density p is contained between two confocal 
elliptic cylinders and two planes perpendicular to their axes. The 
lengths of the semi-axes of the inner and outer cylinders are 
c cosh a, c sinh a, c cosh 8, c sinh 8 respectively. Prove that if the 
outer cylinder be made to rotate about its axis with angular 
velocity 12, the inner cylinder will begin to rotate with angular 
velocity 

flp cosech 2 ( 8 — a) 
p coth 2 ( 8 — a) + \<r sinh 4a ' 

where o- is the density of the cylinder. 

19. A circular cylinder of mass M, whose centre of inertia is 
at a distance c from its axis, is projected in an infinite liquid under 
the action of gravity. Prove that the centre of inertia of the 
cylinder and the displaced liquid will describe a parabola, while 
the cylinder oscillates like a pendulum of length {(M + M') ¥ + We\'j2M'c, 
where M' is the mass of the liquid displaced, and k is the radius 
of gyration of the cylinder about its axis. 

20. The space between two coaxial similar and similarly 
situated elliptic cylinders is filled with liquid, and the cylinders 
are rotating with uniform angular velocity a>. Find what would 
be the new angular velocity if the liquid were suddenly solidified. 
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21. A hollow vessel of the form of an equilateral prism filled 
with liquid, is struck excentrically by a given blow in a plane 
perpendicular to the axis and bisecting three edges; find the 
initial motion of the vessel. 

22. A cylinder whose cross section is an ellipse is moving in 
an infinite liquid. Prove that when there is circulation round the 
cylinder, its equations of motion are 

where (x, Y) arc the coordinates of the centre of the cross section, 
X, Y the components of the impressed forces parallel to fixed 
axes, N is the impressed couple about the axis of the cylinder, u, v 
are the component velocities of the cylinder parallel to the major 
and minor axes of its cross section, and 6 is the angle which the 
major axis makes with the axis of x. 

23. Prove that helicoidal steady motion is always possible 
when a planetary ellipsoid is moving in an infinite liquid; but it 
is not possible in the case of an ovary ellipsoid, unless the ratio of 
the angular momentum of the ellipsoid about its polar axis, to its 
component velocity along this axis is greater than 2jRA (I — R/P); 
where R and P are the effective inertias of the ellipsoid about its 
polar axis, and an equatoreal axis and A is its effective moment of 
inertia about the latter axis. 

24. A solid of revolution of mass M, is rotating in any 
manner about its centre of inertia, in an infinite liquid. Prove 
that if it is allowed to descend under the action of gravity, its 
vertical velocity at time t will be equal to 

where ilf is the mass of the liquid displaced; and 6 is the 
inclination of the axis of the solid to the vertical at time t. 

Obtain the differential equation for determining d6/'dt. 

d 
dt (Pu cos 6 — Qv sin 6 + KPY) = X, 

(Pu s in 9 + Qv co s 9 — KPX) = Y, 
dsf) 
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C H A P T E R X . 

ON THE MOTION OF T W O CYLINDERS. 

207. W E have shown in Chapter V . that, when two cylinders 
are moving in a liquid of density p , the kinetic energy of the 
whole motion is 

2T=(M+P) (V + vs) + (M' + Q) [ u 1 + v") + 2L(uu - vv), 

where M, M' are the masses of the cylinders ; u, v, u, v' their com­
ponent velocities perpendicular to and along the line joining their 
centres. The values of the coefficients are given1 by equations ( 7 3 ) 
of § 123 or (74 ) , ( 7 5 ) and ( 7 6 ) of § 124 ; and are functions of the 
distance between the cylinders alone. 

208. We shall now apply these formulae to the consideration 
of the motion of a cylinder in a liquid bounded by a fixed piano, 
when there is no circulation2. 

When two equal cylinders are projected with equal velocities 
perpendicularly to the line joining their centres, it is clear that 
during the subsequent motion, the velocities of each cylinder 
perpendicular to this line will remain equal, and that their veloci­
ties parallel to this line will be equal and opposite. Hence the 
plane which is perpendicular to this line and bisects it will be fixed 
in space, and there will be no flux across it. One of the cylinders 
may therefore be removed, and the above mentioned plane sub­
stituted in its place ; we shall thus obtain the motion of a cylinder 
in a liquid which is bounded by a rigid plane. 

1 See Errata. 
2 Hicks, " On the motion of two cylinders in a fluid," Quart. Journ., vol. xvi. 

p. 133. 
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Let the axis of x lie in the plane, and be perpendicular to the 
axis of the cylinder; the kinetic energy of the liquid will be ob­
tained by putting a = 8, 6i = 02 = Jq ; u = u', v = — v in equations 
( 7 4 ) , ( 7 5 ) and ( 7 6 ) of § 124 and halving the result. Hence if 
a- be the density of the cylinder, and a its radius 

27/ = { ( P +L) + T T O V } (u* + vq) 

= P ( y + * / ) ( i ) , 

where1 R = mfp j l + 22" | j ~
 qJ$^ + ™*<r. 

If no external forces act upon the system, the energy, and also 
the momentum parallel to x , are constant; the latter condition gives 

dT

 f r = const. = CT, 

aw 
or Ru=G ( 2 ) . 

Since T and G are both constant, the equations of motion may 
now be written 

R U = G \ . ( 3 ) 
P ( w ! 4 V ) = 2 7 / j ^ 

Differentiating with respect to t and remembering that R is a 
function of y alone, we obtain 

i + m - d y ^ = 0 ( 4 ) -
Now R is necessarily positive; also y = a cosh a = \a (1 + q)\q^, 

therefore R decreases as y increases; hencedR/dy is negative, and 
therefore v has always the same sign as — u". Let U be the 
resultant velocity, <p the angle which its direction makes with the 
axis of y, then 

V ^ - 2 R d y - C ° s 2 ^ 

If therefore the direction of motion makes with the axis of yan 
angle lying between \ir and \ir, the acceleration from the plane 
will be negative and the cylinder will be attracted towards the 
plane, but if this angle lies between 0 and \TT or \nr and IT, the 
acceleration will be positive, and the cylinder will be repelled from 
the plane. 

Also since u = GJR, and R decreases as y increases, u increases 
as the cylinder moves from the plane, and vice versa. 

J The value of P + L in terms of elliptic functions will be given in the Appendix. 
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C Y L I N D E R M O V I N G P A R A L L E L T O A P L A N E . 221 

T f * U ' d R / If we put ~2Rdy=f 

the component accelerations are 

u = f &\n. 2<b, i> = f cos 2<f>. 
209. If the cylinder be initially in contact with the plane, 

and be projected perpendicularly from it, u = 0, and 

v- = 2T'iR = v:RJR, 
where the suffixes denote the initial values of the quantities. 

Since q = 0 when y = oo , the limiting value of R is ira (p + a). 
When y = a, q = 1; in order to find the value of Ra, let q = 1 — \ , 
where X is a small quantity which ultimately vanishes : then 

RjTTO? = p jl + 2 (1 + ̂  + |j + ...)J + a 
= p(l 7 r '-l) + £r. 

Whence the ratio of the initial to the terminal velocity is 

(° + p) 
210. When the direction of projection is not perpendicular to 

the plane, the direction of the velocity at any subsequent time is 
given by the equation 

cot <f> = v/u,= ± J lip — 1, 

where p = 2TllGrL, and the upper or lower sign must be taken 
according as the initial value of <b is < or > %TT. Let cot <b be 
initially positive, so that the cylinder is projected from the plane, 
then since R diminishes to the limit ira? (p + <r) it follows that if 
7ra2p (p + a) < 1, there will be some point which is determined by 
the equation Rp = 1, at which cot <b = 0, and where the cylinder will 
consequently be moving parallel to the plane. During the subse­
quent motion cot <p will be negative, and the cylinder will approach 
the plane and R will increase. The quantity JRp — 1 continually 
increases as R increases, and hence cb will increase from \ir and the 
cylinder will ultimately strike the plane. Hence the cylinder will 
or will not strike the plane according as ira'p (p + cr) < or > 1. 

If ircfp (p + a) = 1, and a. be the initial value of cp, 
cot a = >J~ (Ro/'-n-a1 — p - <r)/(p + a) ; 
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we obtain 

D DT_DT = 

DT DR DR ' 

Let U be the resultant velocity, (p the angle which its direction 
makes with the radius vector; the radial acceleration 

, U2 DR _ , 

Since R decreases as r increases DR/DR is negative; hence the 
cylinder will be repelled when <P lies between 0 and \-IR or between 
\IV and IT ; and will be attracted if c/> lies between \TT and \IR. 

212. If the cylinders be initially in contact, and one of them be 
projected with velocity I7* along the line joining their centres, then 

R2 = 2T/R, V = 2T/R0. 

rpi , R„ M+P0 

lherefore V

2 = R = M + P -

whence a cylinder projected at an angle > a will meet the plane at 
an angle 

tan - 1 ^[IRCFP (±Tr*p + <R — p) - 1}, 

and a cylinder projected at an angle < a will move, when at an 
infinite distance from the plane in the direction 

cot - 1 <J{7RA'P ( p + c r ) - 1}. 

If the direction of projection is equal to a, the cylinder when 
at an infinite distance will move parallel to the plane. 

211. Let one of the cylinders be fixed whilst the other moves 
independently. 

Let (r, 6) be polar coordinates of the centre of the moving 
cylinder referred to the centre of the fixed cylinder as origin; if 
R = P + M; then 

2T = R(R2 + R202). 

Since R is independent of 6, we must have 

dT 
—R — const. = H, 
de 

or RR28 = H. 

Also since 
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If the cylinders are equal it can be shown in a similar manner 
as before, that 

p 0 - ™ a r>« - 1 ) p, 
or Px=Trap, 

w h e n c e r = . / - . 
V V <r + p 

Cyclic Motion. 

213. Let us now consider the motion of two equal cylinders 
round which there is circulation in opposite directions, and which 
are initially projected with equal velocities parallel to O x . 

Let A and B be the common inverse points of the two cylinders, 
a the radius of either of them, u, v and u, — v their velocities 
parallel and perpendicular to Ox, y the ordinate of the centre of 
the cylinder A ; also let the circulation round A be in the contrary 
directions of the hands of a watch. 

It is known from the theory of rectilinear vortices, which will 
be explained in Vol. II., that the cyclic motion is the same as 

would be produced by two rectilinear vortices of circulations « 
and — K situated at A and B , hence with the notation of § 178, 
the value of % will be 

« . AP 

by §121. . 
BP 2 V 
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Also, if a be the value of IJ at the surface of the cylinder A , 
and A B = 2c, 

<z=ccosecha, ;y = ccotha (5), 

and £ (*X) = i^ajir. 

Since this kind of cyclic motion could be produced by applying 
a uniform impulsive pressure Kp to every point of that portion of 
AB which lies between the cylinders, we must have | 9 = 0. Let 
(r, 6) be the polar coordinates of P referred to 0, then 

K , r 2 + c2 — 2rc sin 6 KC . N „ 

y — — — log , . ,—^ —-•—„ = — sin 0 + &c, 

X 4 7 T ° R 2 + C + 2rc S I N 6 irr ' 

whence = 0, 23 = - KC/TT. 

Therefore L = X + 2iccpu — icpife-K + V 

Also if M, M' be the masses per unit of length of either of the 
cylinders, and of the liquid displaced, 

X = R ( u 2 + v2). 

R = M' jl + 2 (1 - qy%~ ( 1 | + ,v 
where = e" 2". 

If we suppose the cylinder B to be replaced by the fixed plane 
Ox which forms the boundary of the liquid, the value of L must 
be halved, and the equations of motion of the cylinder A will be 

U^+^)=x ^ 
1 d dX x dX dc K2 do. „ „ 

2 dt dv ~ 2 dy ~ K p U dy +
 4 T T dy = * 

From (5) we obtain 

c = J y 2 — a* and y = a cosh a, 

,, dc da 1 
therefore -7- = coth a , 7— = - , 

rfy ay c 
whence (7) becomes 

. d dX , ¿3; , , K2 , , / D , 
A -,- i -, /COM coth a + 7 — = Y (8). 
2 dt dv A dy R 47RC V ' 

Let us now suppose that gravity is the only force in action, and 
that the plane boundary Ox is horizontal, forming, so to speak, the 
bed of the ocean; (6) and (8) respectively become 

Ru + Kpc = const. = h ] 

JU + 1 (y _ u *) ^ _ K p u Coth a + £jL = - ( M - M ' ) g j ^ 
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These equations are satisfied by v = 0, u and y constant, pro­
vided u satisfies the quadratic 

pu* - KPU coth a + 0 + (M - M') g = 0 (10), 

where p — — \dRjdy. The roots of this quadratic will be real 

provided * y coth* a >p + 4 (M-M')g^ (11). 

CASE (i). Since p is positive the roots will always be real if 

M' > M 

and K*p < ire (M' - M) g. 
In this case the liquid is denser than the cylinder, and one of 

the roots of (10) will be positive and the other negative, and the 
positive root will be numerically greater than the negative root. 
Hence there will be two cases of steady motion, in one of which 
velocity of the cylinder will be in the same direction as that of 
the liquid, due to the circulation at points between the cylinder 
and plane ; and in the other the velocity will be in the opposite 
direction ; also the velocity in the former case will be greater than 
in the latter. 

CASE (ii). M' > M, Jp > Aire (M - M) g. 

In this case the roots of (10) will be both real and positive 
provided (11) is satisfied; hence the velocity in the two cases of 
steady motion will be in the same direction as that due to the cir­
culation. 

CASE (iii). M > M'. 

In this case the cylinder is denser than the liquid, and the 
roots of (10), if real, must be both positive, hence the two 
velocities must be in the same direction as that due to the cir­
culation. 

CASE (iv). If either g= 0 or M = M', (11) becomes 

irpc coth* a > p. 
Here both roots of (10) are positive, and the two velocities 

must be in the same direction as that due to the circulation. 

This case has been discussed by Mr W. M. Hicks1. 

B . 

Quart. Journ. vol . x?ir. p. 104. 

15 
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C A S E ( V ) . Suppose that the cylinder is reduced to rest, and then 
let go. Since u and v are initially zero, the initial acceleration is 

* = " 4 i L { i 7 r 0 ( M ~ M ) 9 + K * p } ( 1 2 ) ' 

Hence if the liquid is denser than the cylinder it is possible 
for the right-hand side to vanish; in which case the cylinder will 
remain in equilibrium under the combined action of gravity 
and the pressure due to the cyclic motion. 

If the plane formed the upper boundary of the liquid the sign 
of g in these five cases would have to be reversed. 

215. The results of the last two cases may be inferred from 
general reasoning. 

We have shown in § 14, that the product of the velocity of a 
liquid and the cross section of a tube of flow, is constant through­
out the length of the latter. Now in Case v. where the cylinder is 
at rest, the tubes of flow are circles, and those portions of them 
which lie between the cylinder and the plane will be more com­
pressed than the portions which lie on the remote side of the 
cylinder; hence the velocity of the liquid at points between the 
cylinder and the plane will be on the whole greater than at points 
which lie on the opposite side of the cylinder, and consequently 
the pressure on the side of the cylinder nearest the plane will he 
less than that on the remote side, and therefore the cylinder will 
be attracted towards the plane. If the cylinder is less dense than 
the liquid, and the plane forms the lower boundary of the liquid, 
the effect of gravity will be to repel it from the plane, and hence 
there must be a certain position in which the two forces balance 
one another, and in which the cylinder will be in equilibrium. 
If on the other hand the plane forms the upper boundary of the 
liquid, there will be a position of equilibrium, provided the 
cylinder is denser than the liquid. 

216. In Case iv. let the cylinder be moving with a small 
velocity u parallel to the plane, and in the same direction as that 
of the circulation between the cylinder and the plane. Let the 
cylinder be reduced to rest by impressing on the whole liquid a 
velocity u equal and opposite to that of the cylinder. At points 
between the cylinder and the plane, the reversed velocity u of the 
liquid and the velocity due to the circulation wdll be in opposite 
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directions, whilst at points on the other side of the cylinder they 
will be in the same direction. Also by § 14 each velocity will 
be on the whole greater at points between the cylinder and plane, 
than on the opposite side of the cylinder. Hence if u be small 
enough, the cylinder will be attracted towards the plane, and 
therefore if u increase from zero, a certain critical value will be 
reached, at wdiich the cylinder is neither attracted nor repelled, 
but will be in equilibrium. In this case the resultant velocity at 
points between the cylinder and plane, will be in the opposite direc­

tion to that on the other side of the cylinder. 

If u continue to increase, the cylinder will at first be repelled 
from the plane, but ultimately a second critical value w 2 will be 
reached, at which the resultant of M 2 and the velocity due to the 
circulation at points between the cylinder and the plane will on 
the average be equal to the same quantity on the opposite side of 
the cylinder, and there will be another position of equilibrium. In 
this case the resultant velocity of the liquid at points between the 
cylinder and the plane will bo the same direction as that on the 
other side of the cylinder. 

If u exceeds this second critical value the cylinder will thence­
forth be attracted. The two critical values of u are evidently the 
roots of the quadratic obtained by putting g = 0 in (10). 

EXAMPLES. 

1. A cylinder of radius a is surrounded by a concentric 
cylinder of radius b , and the intervening space is filled with 
liquid. The inner cylinder is moved with velocity u and the 
outer with velocity v along the same straight line; prove that the 
velocity potential is 

li'v — a%u n (v — u) a7b2 cos 6 
<6 = — i - r cos V + - — J J T , « 7 . 
r bl - aa (b2 - a2) r 

2. A long cylinder of given radius is immersed in a mass of 
liquid bounded by a very large cylindrical envelope. If the 
envelope be suddenly moved in a direction perpendicular to the 
cylinder with velocity V, the cylinder will begin to move with 
velocity provided the density of the cylinder be three times 
that of the liquid. 

15—2 

IRIS - LILLIAD - Université Lille 1 



3. Two infinite parallel cylinders in an infinite liquid are 
projected with given velocity; (i) in opposite directions along a 
line at right angles to their axes, (ii) in the same direction per­
pendicular to this line. Prove that they experience in the first 
instance a repulsion from one another, and in the second instance 
an attraction towards one another. 

If their radii are indefinitely small in comparison with one 
another, prove that their motion is initially the same as that of 
two rectilinear vortices of equal and opposite strengths. 

4. A solid cylinder with flat ends is fixed between two parallel 
planes, and a cylindrical shell of the same length can slide freely 
between the planes. If the space between the cylinder and shell 
is filled with liquid, and the shell is placed so as to be coaxial 
with the cylinder and then jerked in any direction with velocity 
V, prove that the resultant impulse on the cylinder is 

2MVb* (a9 - V), 

where a and b are the radii of the cylinder and shell, and M is the 
mass of the liquid which the cylinder displaces. 

5. The space between a moveable cylinder and a fixed excentric 

cylinder is filled with liquid. If the moveable cylinder be initially 
projected with given velocity, perpendicular to the line joining its 
centre with that of the fixed cylindrical boundary, determine its 
motion, (i) when there is no circulation, (ii) when there is circu­
lation. 

6. Examine the stability of the steady motion of a cylinder 
parallel to a fixed plane, discussed in § 214. 
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C H A P T E R X L 

O N THE MOTION OF T W O SPHERES 1 . 

217. "WHEN two spheres are in motion in an infinite liquid, 

the velocity of each sphere may be resolved into three components 

vv vv wx, M 2 , i>2, w 2, where uv u2 are the component velocities of 

the spheres along the line joining their centres; and vv w ; vv w1 

are the component velocities parallel to two straight lines at right 

angles to one another, which are perpendicular to the line joining 

the centres of the two spheres. I t would therefore at first sight 

appear, that the kinetic energy of the liquid must contain twenty-

one terms, but it can easily be shown that twelve of these terms 

must vanish. For let us suppose that vv wv v2, i>2 are each zero, 

and consider the term involving u^w^. The kinetic energy on 

1 The present chapter has been taken from the following papers by Mr Hicks : 

" On the Motion of T w o Spheres in a F lu id , " Phil. Trans. 1880, p. 455. 

" O n the Problem of T w o Pulsating Spheres in a Fluid," Proc. Camb. Phil. Soc. 

vol. in. p. 277, and vol . iv . p. 29 ; 

and a paper by the author, 

" On the Motion of T w o Spheres in a Liquid and allied Problems," Proc. Lond. 

Math. Soc. vol . X V I I I . p . 369. 

Eeferences may also be made to the following papers : 

Stokes. " On some Cases of Fluid Mot ion , " Trans. Camb. Phil. Soc. vol . v m . 

p. 105. 

Bjerknes. Forhand. Skand. Naturfors, Christiania 18C8, and Forhand. Vidensk., 

Christiania 1871 and 1875. 

G. Forbes. " Hydrodynamic analogies to Electricity and Magnetism," Nature, -

vol. xxiv. p. 360. 

Bertin. " Phénomènes Hydrodynamiques inversement analogues à ceux de 

l'Électricité et du Magnét isme," Ann. de Chimie et de Phys. (5) xxv. p. 257, 1882. 

Pearson, " On the Motion of Spherical and Ellipsoidal bodies in Fluid Media ," 

Quart. Journ. vol . xx. p. 60. 

Herman. " O n the Motion of T w o Spheres in a Fluid and allied Problems," 

Quart. Journ. vol . xxn . p. 204. 
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account of the symmetry of the motion, must clearly be unaltered 
if the direction of w a be reversed, and this requires that the 
coefficient of utw;2 should be zero. By similar reasoning it can be 
shown that all the other coefficients must vanish, except those 
of u*, u*, v', v*, w*, w*, u t u 2 , v^, W!jW2 ; and also that the co­
efficients of v*, v2, vtv2 must be respectively equal to those of 

Hence the kinetic energy of the system may be written 

T = \ (Au? - 25« ,« , + C < ) + $ A ' (v* + w ? ) 

+ E ( v ^ + wtwa) + \ C (v* + O , 

where the six coefficients are functions of the distance between 
the centres of the two spheres and their radii. 

The values of A , B and G must be determined by supposing 
that the motion of the spheres is along the line joining their 
centres, and those of A ' , B', 0' by supposing that the motion is 
perpendicular to this line. 

Motion along the Line of Centres. 

218. Let A and B be the centres of the spheres, a and b their 
radii, c the distance between their centres. 

Let <f>l be the velocity potential when A is moving with 
velocity « , along BA and B is at rest ; <p8 the velocity potential 
when B is moving with velocity w2 along the same direction and 
A is at rest. By § 162 the velocity potential of the whole motion 
is <pl + (pv and the kinetic energy of the liquid is 

« - - » , / / • . * ^ - , //#. £ <B, - j , //#. % is. 
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In order to find the value of we shall employ the method of 
images. 

If B were absent, the velocity potential due to the motion of 
A , would be the same as that of a positive doublet1 at A of 
strength ^U^A3, whose axis coincides with B A . By § 53 the 
image of this in B , is a negative doublet situated at the inverse 
point F , where B F . B A = 62, and whose strength is - M 1a

sfi 3/2c 3. 
This latter doublet will have an image in A , and so on ad infi­
nitum. Hence the kinetic energy of the liquid due to the motion 
of the sphere A , will be the same as that due to two infinite 
systems of doublets, both of which lie respectively within each 
sphere. 

219. Let p n be the distance of the nth image in A from A , FIN 

its strength ; and let <RK be the distance of the nth image in B 
from A , VN its strength. The part of TN due to P,N will be 

' U. (A cos 6 + O „ ) sin 8 cos 8 DD 

(aa + PN* + 2APN cos Ö)5 

( p „ + AX) XDX 

( A ' + P ; + 2AP!IX) J - l (A -

But 
1 (r 4- AX) XDX _ d [' XDX 

DRJ_X (a2 4- r2 + 2ARXF DRJ_1^ + 1F + 2 A R X ^ 

±(A-R) (a5 + R* + AR)}. 

When R = P A < A , the integral is equal to 

(2) 

But when R = > A, it equals 

d^ 2a _ 4a 
DR~3R* 3r3 W -

Therefore T U = f IRPU£ PA - f IRPA\2.~ 

Now /x 0 = J a \ , FTN = - ASVA*~\ 

1 A doublet is considered positive when its source end is at the positive 

extremity of its axis. I f m be its strength, its velocity potential is - mr~2 cos 9. 
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Hence if Mx be the mass of the liquid displaced by the 
sphere A , 

T ^ l M r f ^ + tt'^ (4). 

This is the kinetic energy due to the surface integral of A ' a 
motion over itself. 

Again, 

v. = - 6>-- 1/(c - P „ - , Y , P» = « 7 o - „ . c - 0 - , = &7(c - p „ _ , ) . . ,(o), 

whence f t « = 

PJ>„-

W {(O-P^UC-P^ 

Eliminating crn from ( 5 ) we obtain 

, ( c - P i ) c 
.(6). 

.(7). 

220. The formulae of the preceding section enable us to 
obtain an approximate value of Tn as far as c ~ 1 2 without much 
difficulty, but in order to obtain the complete solution we must 
solve (7). To do this, put p n = u n + x , and choose x so as to make 
the constant term vanish, and we obtain 

c x 2 - ( a 2 + c 2 - b 2 ) x + a2c = 0 .(8). 

Let F, F2 be the common inverse points of the two spheres, 0 
the middle point of FF2; also let FFt = 2 \ , O A = r l t 0B = r2, then 

r ' - \ 2 = A F 2 . A F = a 2 ' 

therefore r* -r* = a2 - o 2 ; [ (9). 
also r t + r a = c, 
therefore rt = (a2 + c" — b2)/2c 

Let P be any point on the sphere A , and let the constant 
ratio F2PjFP be denoted by q v and let q2 bo the similar constant 
for the sphere B. Then since the triangles PFaA and FPA are 
similar, 

& = F ^ / a = (r, + \ ) / a = a/(r1 - X), 

and (8) becomes 
a;2 - 2r1x + a

2 = 0, 
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n x, (c - x2) xx (c - x2) 

In this equation 
c — x, r„ — X , 

= — = Q , 
c ~ x z ra + \ ^ 

xx = r , + X = , 
a, r , - \ h ' 

x, (c - «,) (r4 + X) (r, + X) 

Whence putting g = q.Jqv we obtain 

v — Q3v = • 

the solution of which is 

hence pn = ag, + (EqSn - £ X" 1)" 1. 

But /n = 0 when n = 0, therefore 

1 1 r , - \ 1 

therefore p n = a?, — 

2X r , + X 2X ( r , + X) 2X3 , * ' 

2X 

Also c - p . = r, + r 2 - - X + 2X / (1 - 3'" g 2 ) 

therefore /* = { g B ^--^-J^-P?)^ 

the roots of which are x l = r 1 + X, a;2 = r, — X. Putting pn 

equation (7) may now be written 

V „ - . ~ K - " Y C ) % + ( X i -
 AVC) Un-X = 0. 

Now a2 = x

i

x . i , whence, writing v ^ 1 for u n , we obtain 
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If therefore we put 

Q ( a r > ? ) = ( I - vD* K ( I — G . " ^ - . ) ' ( 1 0 ) ' 

we obtain T a = {1 + SQ {q? 1 , q)} (11). 

Similarly if the sphere B were moving with velocity M2 along 
BA whilst A is fixed, it can be shown that 

2 , » = ^ V , « 1

, { 1 + 3 Q ( 7 „ 2 ) } ( 1 2 X 

221. We must now calculate the quantity T l2 which is the 
surface integral of B's motion taken over A, and which by Green's 
theorem is equal to the surface integral of A's motion taken over 
B , We thus obtain, 

T i 2 = — \ p JF$2 \fl — ~ irpa'Utj cb^ sin 8 cos 8d8. 

Let PU' denote the distance from A of the nth image of B 
in A, fin' its strength ; also let crn' denote the distance of the nth 
image in B from A, v n' its strength ; then remembering that the 
original doublet is in B, we obtain 

/ * . ' = - < * / < 0 ' / * / = - < « / < 0 " = - .. .(13). 

Hence 

r i 2 = - ^ P a \ 20 Q^,3) + | T T P M 1 2, P.„' 

= 27RPML F T ̂ / = - i r p u ^ a £ - 2^ (14). 

Also 

P l' = a'/c, < = 6'/(c - P^, p ; = a'l(c - (15), 

whence, proceeding as before, it will be found that 

^ ~ T « ( < R - p ' . - 1 ) R - 1 

W 1 ( C - P ' „ _ , ) (c-f t ' )J * 

and it can be shown as before that 

P > N ? 1 + ( & F - U ~ T L . 
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bp; q ( l - q * ~ ) 

Therefore ^ ' = | 1 L _ ^ | 

Now from (9) we obtain 

therefore 1 — q2 2Xc 2Xcv/ 

(r , + X) (r , + X) a6 

If therefore we put 
2X g " N = 

Q.fo) = s . (RZ^J ( 1 7>. 
we obtain 

T ^ - i r p u p M q ) (18). 

Hence, if m,, wi2 be the masses of the two spheres, the kinetic 
energy of the whole motion when the .spheres are moving along 
the line joining their centres is 

T = t ( A u l ' - 2Buxut + Cu2) (19), 

where A = m1 + \MX \\ + 3Q ( q ; \ q ) } \ 

C = m a + | ï l f s { l + 3 Q ( ? 2 > ç ) } (20). 

B = 2 ^ p u 1 u î Q l ( q ) I 

The three coefficients A , B, G can be shown to diminish as the 
distance between the spheres increases ; for when c and therefore 
X is large, 

«7,= 6/(r, + \ ) = 6/2\, 

q = a&/4X", 

ultimately, and therefore A , B, and 0 diminish as c increases. 
Also, since T is essentially a positive quantity, AG > B2. 

Whence, determining E by the condition that p/ = a2jc, we 
shall find 

P ; = aqt - 2X (1 - = (r , - X) , 
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whence 

also from (6) 

From (7) P2(CPL-C
2 + B2) = -A2(C- PL), 

P 2 _ A2 _ A*(C2~B2) therefore 
C-PL C2-B*-CPL ( c " -6" ) " - aV 

whence & = I . , , ¡ 1 * (22). 

The last expression varies as c - 1 2 , whence expanding the values 
of /J-JFJ-N, MsZ/A) m powers of C1, and neglecting higher powers than 
C~12, we obtain 

, _ r f 3a3S3 / 36* 654 1168\) 

and the value of 0 can be obtained by interchanging A and B. 

To determine .B to the same order, we obtain from (16) 

whence 5 = ! L + < ™ + ^ (A2

+B^ _ 

Collecting our results, the values of A, B and G as far as 
C~12 are 

27rpa363 f., , a-V , 3ASBS (A2 + ¥)} 

222. The general formulae (20) are too complicated to be of 
much use, we shall therefore obtain approximate values of A, B 
and C as far as C12. 

From (5) and (6) we obtain 
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Motion perpendicular to the Line of Centres. 

223. When the spheres are moving perpendicularly to the line 
joining their centres, the kinetic energy may be determined by 
the method of images without much difficulty, provided we 
neglect powers of c _ I higher than the eighth; but if it is desired to 
carry the approximation to a higher degree, the successive images 
become exceedingly complicated, and it is better to employ a 
different method, which will be explained later on. 

224. Let vlt va be the velocities of A and B perpendicular 
to AB. If B were absent the velocity potential due to A's motion 
would be the same as that due to a positive doublet at A , of strength 
Ivfl3, whose axis is perpendicular to A B . By § 54 the image 
of this in B, is a positive doublet of strength ^vflVc'3 situated 
at the inverse point F, together with a negative line doublet 
extending from F to B, whose strength at any point P is 
— ^v^BP/bc per unit of length. Hence the successive images 
consist of a series of single doublets and line doublets, and 
evidently become exceedingly complicated. 

Let x be the angle which any plane through AB makes with 
the direction of motion of the spheres, r the distance of any 
doublet element from A , p , its strength. The kinetic energy will 
be given by an expression of the same form as (1), whence 
the part of Tn depending on p , will be 

JI*!5' v^/j, sin*6cos*xdudx 

KK (r2 + a' + 2ar cos 6)1 

, . r &m36dO 

h (r3 + a2 + 2ar cos 0) 1 

The value of this integral is 

r2 + a2 _ 1 

- g p - [r + a + ( r - a)} - ^ {(r + a) 3 + (r - a) 3}, 

in which the upper or lower sign is to be taken according as 
r > or < a . Hence the value of the integral is 

|a~a, a > r ; and f r s , r > a 

and therefore the part of Z ' u depending on fj. is \irppx1 or 
'{vpuvp^lr3, according as r < or > a. 
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Let v and a be the strengths and distances from A, of the 
doublets within B due to A's motion, and /J. the strengths of the 
doublets within A. Then 

Now every v produces in A an image consisting of a doublet 
of strength va3j<r3

 at a distance a*/cr from the centre of A, together 
with a negative line doublet extending from the doublet image to 
the centre of A, and whose line strength at a point whose distance 
from A is x, is — vx/aa. Hence the whole amount of the image 
is 

\crj 2acr\crJ 2 \aj 
Also every p, except ft0 forms part of an image of some 

particular v, hence 

Therefore 
~ a3

 " a 3 a3 

= ^ { 1 + 3 ^ ( ^ ) 1 (25). 

225. In order to find the term involving we must find 
the portion of the kinetic energy due to B's motion over A and 
double the result. 

Since the original doublet is in B, every v except v0 forms part 
of an image of some fi, whence if the accented letters refer to 
the images of B's motion 

Z l a 3 ' 

hence Ta = f T T ^ , 2 + f/j 

CO 

= W a & 8 ^ ^ (26), 
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CALCULATION OF T H E IMAGES, 

and we therefore obtain 

whe 

\v,, 
•(27). C" = m2 + p / - a | l + 3 < f^' 

226. We shall now calculate the values of the coefficients 
when all the images are omitted except fi„ v,, jtt/. 

The image of A in B consists of a doublet of strength fJ-ab3/cs at 
F, together with a negative line doublet from F to B of strength 
- u0xjbc per unit of length ; also BF = b*/c, A F = (c* - &2)/c. 

The image in A of the doublet at F is a doublet at a point F ' 
whose strength is 

jj.0asbs __ /j.„asbs . > 

c 3 A F 3 ( c * - b y K >' 

where A F ' = a3c/(o5 — J2), together with a negative line doublet 
from F ' to J. whose whole amount is 

_ ^ { A F ' j d y _ t o a V _ 

c* J 0 a A F 2 ( c 2 - b y K i J ) ' 

In order to find the whole amount of the image of the line 
doublet between B and F , let P be any point in B F , Q a point on 
A F ' such that A P . A Q = a 2 ; also let B P = x , A Q = y ; then 
y (c — x ) = a2. The doublet element — fj,axdx/bc at P , produces a 
doublet element — fi„xa3dx/bc (c — » ) ' at Q, together with a line 
doublet from Q to A whose whole amount is 

fj.„xdx r 
J 0 

ydy _ fi0a3xdx a (c — x) 2bc (c — x f ' 

Therefore the whole amount of the line doublet is 
xdx P<f?V 

!n T O 3 A<r> 
0 

2br. . 26c J 0 ( c - x f 4c 2 (c 2 -& 2 ) 

adding (28), (29) and (30) we obtain 

/ I J _ , if ab 

Agaii = -
'a*lc xdx _ v0'aa 

~a~c~~ 2c3 " 

.(30), 

• (31). 

.(32), 

IRIS - LILLIAD - Université Lille 1 



whence substituting from (31) and (32) in (27), we obtain 

+ 

3a3o3 " 

' -by. 
_ 3a"b" 

c ' - o V ^ 4 c s ( c 2 - a 7 . 

ab 

rF^b' 
ab 

— c3 

.(33). 

The second ratio pj^ is of the order c~12, and the next term in 
B' is of the order c - 9 . Hence (33) gives the correct values of .A' 
and C as far as c - 1 0 , and the expression for the kinetic energy 
derived from (33) is correct as far as c~8. 

227. We shall now explain a different method for obtaining 
approximate values of the coefficients1. The approximation is 
carried as far as c~18, but it could without much additional labour 
be carried to a higher order if desired. 

It will first be necessary to establish the following proposition. 

In the figure, let PM = w, AM = z, BM = z, AB = c, cos 6 = p., 
cos & = p! ; also let P" (p) be an associated function of degree n 
and order m, whose origin is A, and axis is AM; and let P'™(p') 
denote a similar function having the same axis and whose origin is 
B. Then we shall prove that, when r < c , 

p'm. r m 

V^~l = ( n - r n ) \ c n ^ 

and when r' < c, 

(~rmp: 

r~(ra + m) \ p „ 

L 2m! ' 
(n + m + 1)1 r m 

( 2 m + l ) ! c "' + 

+ (-)'(w + m + s) 
(2m + s)\ 

(34), 

(n — m)! c" 
(n + m)\ (n + m + 1)! r „, 

2?7i! m (2m + l)Y c ' 
(?i + m + s)! / r V 

(2m+ s)! \ c ) ro+si" 

1 Proc. Land. Math. Soc. vol . x v m . p. 371. 
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" J G + t w cos A)" + 

, sin*" Add 
[C + R{fL + - 1 cos A}]" 

whence, if X = p + — 1 c o s a n -d r < c, 

PT(AO i f ^ ' f L , , . r X ( n + » i + l ) ( 7 i + « i + 2 ) / r X -
^ 7 i + r - * C„ + M + 1 J ^ |1 - ( » + m + 1 ) — + 2] U 

. . . + ( d > + + • • ( " + m ± j ) + .. . | sin2" A ; 

whence, by the first form of PI, we obtain 

P" r m 

r n n ( n ~ w ) ! c n 

(?M-m)! p „ _ (rt + m + 1); r , 
2m! m ( 2 m + 1 ) ! c ' + 

(2m + S)L [CJ ™ 
In order to obtain the second equation, let us change 6 and 6' 

into their supplements ; then, since 

K ( c o s ( T T - £1)] = (-)"-"PT (cos 0), 
we obtain 

(JI - m)! c"+""+1 

"(» + IN)! (w + m + 1)! r' „ , „ 
2m! ™ ( 2 m + l ) ! c m 

(n + m + s) S / rV „ ,„ 
"' (2m + s ) ! A c / m + ' + " ' 

The corresponding formulae when r > c or r' > c could be easily 
obtained, but they are not required for the present investigation. 

1 These formulae will be proved in the second volume. See also Heine, Kuge-
functionen, ch. iv. : Mess, Math., vol. xm. , p. 147. 

B . 10 

It is known that P" can be expressed in either of the forms1 

i f (1 - / * • ) » " j {/. + JPJ^L cos A } - " sin21" <BD<P, 
0 

.->*», [ ' sin^AdA 

where M = -T 

( n - w i ) ! 1 . 3 . . . ( 2 r 7 i - l ) 7 r 

Therefore 
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228. Let cb1 be the velocity potential of the liquid when A is 
moving with velocity vv whilst B is kept at rest, and let <p2 be the 
velocity potential when B is in motion and A is fixed. Then if <p 
be the velocity potential of the whole motion, 

* = (36)· 
The problem is therefore reduced to the determination of 

for when this is known, <p2 can be written down by symmetry. 

Let x be the angle which a plane through AB and any point P 
makes with the plane through AB which contains the directions 
of motion of A and B; also let Qn, Qn' be written for P n

J and P'n\ 
Then, in the neighbourhood of A , must be expressible in the 
form of the series 

* = { - + A { r + £ ) Q > + A ( ' + & > • · • } - % m 

for this value of tf>1 satisfies the surface condition 

s i n b cos ^. 

In the neighbourhood of B, <b1 must be expressible in the 
form 

h = ( r ' + ^ ' + (r" + 5*) c o s X ( 3 8 ) -

for the value of <pl satisfies the surface condition 

dr J6 

The series consisting of powers of r _ 1 and r ' - 1 are convergent at 
all points outside the two spheres, but the series consisting of 
powers of r and r will be divergent if r and r be sufficiently 
great; but we shall only require these latter series in the neigh­
bourhood of the two spheres where they are convergent. 

The kinetic energy consists of a series of terms of the form 

f2" f f1 dP 
d-X Q^a* cos* x sitf 6dU = T r a \ \ (\ — p ? ) d p 

J 0 - 0 J -1 dfL 

- 2 7 r a \ J pP^dfj. 

J -1 

= w « 1 ( n = 1 ) ( 3 9 ) < 

= 0 (n any other value). 
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Hence the terms involving Q2, Qa, &c. contribute nothing to the 
energy, and we may therefore, in writing down the final value of 
(f>1, reject all terms except those involving Qx or Qx. 

229. Dropping the factor cos^ for the present, we should 
have, if B were absent, 

Putting m = 1, « = 1 in (35), the value of this near B is 

From (38) it follows that, in order to make the velocity at B 
vanish, we must add the series 

Transforming this latter series back again to A by (34), and 
retaining the important terms only, the value of (px near A becomes 

v.a'Q. vxasb3 fl b* 9&4 468\ _ vnsb* _ , 

In order to satisfy the surface condition at A , add the terms 

Neglecting powers of c 1 higher than the twelfth, the value of 
these added terms near B is 

96* 46' 
4c* + c8 

W\ Qxa» vxa°VQ, 

â l 2ra + 6cVa 

Adding the terms 

(40), 

omitting Q2', &c, and restoring cos the value of the velocity 
potential near B becomes 

The first term of (40) on transformation becomes 

-vxa6b6Qxr/16c12, 

16—2 
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4 o" ' 4c1 16c8 

.(42). 

The values of <pa at A and 5 can be written down by symmetry; 
whence, if T be the kinetic energy of the system 

2 T = A \ t + 2 B \ v t + C \ \ 

where 

4 ' = TO 

3« s 6 3 fl V 9i 4 6" (a 3 + 646")' 
+ ^ 1 4 + c 2 + 4 c 4 + 16c6 

(7' = 7 7 1 , + ^ , 
' 3asbs(l a1 9a4 a s(6 3 + 64as) 

c 6 4 c" 4c4 16c8 
..(43), 

d« 

_ 7 T P A W f a V aa63 (a 1 + 6'» 
~ c3 | + 4c8 + c8 | 

where ra , ra2 are the masses of the spheres 4 and B; I L F J , # S 

those of the liquid displaced by them, and p is the density of the 
liquid. 

The values of A ' , B', C have been calculated by Mr Herman 
as far as c~15. 

230. We shall now apply the preceding results to obtain the 
solution of some problems. 

If a sphere is projected in a liquid which is bounded by a fixed 
plane, we must put a = b, u1 = ~u2 = u, v1 = ua = v; then 

2T=(A + R)u° + (A' + B') v\ 

and, if higher powers than c~a be neglected, we obtain from ( 2 4 ) 
and (43) 

A + B = <m + \M\ \ + — + 
3a3 3cA 1 

3a3 3al 

2c3 4ce 

whence the value of cpl near A is 

i\a*Q, v,o"6'fl 6' 9&4 (a3 + 64?/)fr 
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where \c is the distance of the sphere from the plane. Lagrange's 
equation 

dt du dc 

gives (A + B) Ù = v2 ~ ( A ' + B ' ) - u2 ^ (̂ 4 + B ) . 

Also, since the momentum parallel to the plane is constant 

( A ' + B ' ) v = const. = 67. 

Let P"be the resultant velocity of the sphere, 6 the angle which 
its direction makes with the normal to the plane, then 

(A + B) ù = V2 jsin2 6 ̂  ( A ' + B ' ) - cos2 d ^ (A + B) j 

If, therefore, 
12 {& + 2a3) 

' ~ V ' c3 + a3 ! 
tan a ; 

it follows that, whenever the direction of motion makes with the 
normal to the plane an angle which is < a or > IT — a, the sphere 
will be repelled from the plane; but, wdienover this angle lies be­
tween a and IT — a, the sphere will be attracted. Also, since A ' + B 
increases as c diminishes, the velocity parallel to the plane will be 
accelerated when the direction of motion lies between a and IT — a ; 
and retarded when this direction makes with the normal an angle 
<a or > 7 r —or. If, therefore, the sphere be projected parallel to 
the plane, it will ultimately strike it. 

We have shown in § 208 that in the case of a cylinder a = \TT, 
hence in the case of a sphere a >\TT. The discussion of the sub­
sequent motion of a sphere projected in any given direction in a 
liquid bounded by a fixed plane, can be carried on in the same 
manner as in the corresponding case of a cylinder, but it must be 
recollected that the preceding values of the coefficients may not 
give correct results if the sphere gets too close to the plane. 

231. Let X, Y be the forces upon the sphere, arising from 
the pressure of the liquid, then 

X = mà = m ju! d

c ( A ' + B ' ) - u 2

d

d

c ( A + B) 

Y = m v = - 2 m u v ~ c ( A ' + B').l(A' + B'). 

. / ( A + B ) , 
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From (44) we obtain 

d , . , 9Ma3 / , 2a! 

dc 

, n , s tiMa° a°\ 

whence neglecting higher powers than c - 7 we obtain 

9 i W f 2 a3 [M» (4m - AT) + v* {M-m)] 

(2m + Jlf) c4 ( ¥ (2m + M) c3 

„ _ QMmuva* L {4>m-M)a? 

(2m + il/) c4 ( 2 (2m + M) c3j ' 

232. Let us now suppose that the sphere A is a pendulum 
performing small oscillations along AB about its mean position, 
whilst the sphere B is free to move. 

Let A be the mean position of A , B the initial position of B: 
A ' , B' their displaced positions, and let A A ' = x , BB' — y , AB = c ; 
A ' B ' = p . Then p = c + x — y and if — fix is the force required to 
maintain the oscillation of A , the equations of motion are 

A'x - B y - (xy - J*) ^ + f | * - & *jL + px = 0, 

where the accents denote the values of .4, B, G at time £. 

To obtain a first approximation, neglect squares and products 
of small quantities, and we find 

( A C - B * ) x + fLCx = 0, 

C y - B x = 0. 

If therefore the sphere A is initially displaced to a distance 
x 0 and then let go, the integrals are 

x = xo cos kt, 

y = ^ ( j ( c o s k t - l ) , 

where ¥ = pG'/(AG - Bs). 

Since y is negative and increases numerically so long as x lies 
between x 0 and — x g J it follows that to a first approximation B 
is repelled from 4 so long as A is moving away from its initial 
position A ' , and attracted when A is returning to A ' . 
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233. In order to obtain a second approximation, we must 
take into account the squares of small quantities. Let 

Bx 
y = -jy (cos kt—l) + z, 

where z is at least of the order x( 

- 0 
Then 

(B 7 , Bxn x0 cos kt + - 7 = p + z, 
A' =A + {x-y) dA dc &c. 

C+(X-y)^Uji-?^ CO* kt 
Therefore B's equation of motion becomes 

dC 
dc]\Z

 G 

+ {b + (X-y^-xj? cos let-xc'k> - I ^ ) sin2 kt 
Neglecting cubes of small quantities, this equation may be 

written 

Cz =f-r L cos kt + M cos 2kt, 

k\* (dA 25 dB B1 dC 
where / = .-[-3 - 7 - + — - 7 -

4 V do c do c dc 
4 dc{ GJ-

If we only take into account the first terms in A and B, which 
is equivalent to neglecting the twelfth and higher powers of c - 1 , 
we obtain from (4) and (21) 

A . 3M.fi,, A = mt + $Mt + —J=i (c'-ty 
therefore 

therefore 

dA__U7rpaVc dc~ (c'-Vy' 
B*_ GirpW 
G (2O-+/>)c6' 

dc G (2O- + p) c " 
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where a is the density of the sphere B; whence 

The term f indicates that the sphere B, in addition to its 
vibratory motion, will be attracted towards or repelled from the 
sphere A , according as f is positive or negative. Hence there 
will be repulsion when 

3D CS 

— -— > 

i.e. when c > 

2o- + P ' (c2 - b j ' 

b 

( i - y H H + i ) ! ' ' 
which can only happen when a < p or the density of the sphere B 
is less than that of the liquid. 

If therefore the sphere B is denser than the liquid it will in 
general be attracted, but if the density of the sphere is less than 
that of the liquid there will be a critical point, beyond which 
there will be repulsion, and within which there will be attraction, 
this critical distance is given by 

_ _ b 

Since this result has been obtained on this assumption that c 
is so large compared with a and b, that powers of cf1 above the 
twelfth may be neglected, it fails to give a correct result if with a 
given density, c comes out nearly equal to b. If cr/p = '9 then 
c = 7-6486. 

This theorem is due to Sir W. Thomson; the preceding 
demonstration is due to Mr Hicks. 

On the Pulsations of Two Spheres. 

234. The term pulsation is applied to denote a periodic 
change of volume; and the problem which we shall now investi­
gate is the following :—Let there be two spheres in a liquid, wdiose 
centres are fixed, and which are composed of some elastic material 
such as india rubber; let each sphere be compressed or expanded 
into a concentric sphere and then let go ; it is required to deter­
mine the motion. 
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If the spheres were composed of some highly elastic material, 
the inequality of ihe pressure of the liquid upon their surfaces 
would produce a deformation which would cause their surfaces to 
cease to be spherical; we shall therefore suppose the rigidity of 
the spheres to be sufficiently great to render such deformations 
inappreciable. 

235. If <b1 be the velocity potential of the liquid when the 
sphere A pulsates, and B does not; and CB2 be the similar quantity 
when A and B are interchanged, 

Let a and b be the radii of the spheres A and B, c the distance 
between their centres. If B were absent the value of cbi would be 
— a'd/r, for this value of cf>1 satisfies the boundary condition 
dcbjdr = d. This is the velocity potential due to a source of 
strength a ' d situated at the centre of A , and by § 52 the image of 
this in B will be a source of strength a2bdjc at the inverse point P, 

together with a line sink extending from the inverse point to 
the centre of B, of strength a*d/b per unit of length. Putting 
m = a2bd/c, f = b2/o, the strength of the source at P is m, and that 
of the line sink from B to P is — m/f per unit of length ; and by 
§ 55 the image of these in A is an arrangement of the same kind. 
Hence cf>i and cb2 will be the velocity potentials of two infinite 
systems of sources and line sinks, which respectively lie within 
each of the spheres. 

236. Taking the density of the liquid as unity, let F2 be the 
resultant of the pressure of the liquid on B towards A , then 

F3 = -JJp cos BdS 

where V is the velocity of the liquid at the surface of B ; let 
0 

0 

Q = ft sin 20DO. 
- 0 

Then 
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B u t 

2 J " cos 26> <pdf0d9 = j"<b*sin 29d9 + [ < / J 2 ] ; = Q+ [ep'T0, 

and 

w h e n c e I = F - Q + \V , 

and Fi=w{^p +
 V

lP-TQ + W

D ^ ( 4 6 ) 

w h e n r = b. 

2 3 7 . L e t P j b e t h e p a r t o f P d u e t o ebx, t h e n i f /x„ b e t h e 

s t r e n g t h o f a n y i m a g e w h o s e d i s t a n c e f r o m B i s r, t h e p o r t i o n o f 

P j d u e t o t h i s i s 

/ A l s i n # c o s 8d8 
o C&2 • ( & 2 + r ! - 2 6 r cos 6f 

w h i c h i s e q u a l t o 

W > . , j 4ur _ , 

I n o r d e r t o f i n d t h e p o r t i o n o f Ft w h i c h d e p e n d s u p o n F 2 , l e t 

v — Vb, t h e n V%
 = v,/bi + (deb!bd,8f ; a n d s i n c e v i s c o n s t a n t o v e r 

t h e s u r f a c e o f B, t h e p o r t i o n o f F2 d e p e n d i n g u p o n i t is z e r o , 

w h e n c e , d e n o t i n g t h e p o r t i o n o f t h e p r e s s u r e d e p e n d i n g u p o n V1 

b y / , w e h a v e 

I=lwVJ"V'Na 28de = \IT j" (^Jmn29d9 
= -±irjy(^t+ 2<pjsin 2 6 5 d d - [ < T J 2 ] „ . 

B y L a p l a c e ' s e q u a t i o n 

0?eb deb d2<b ^a deb 
in w d i i c h r i s t o b e p u t e q u a l t o b a f t e r t h e d i f f e r e n t i a t i o n s h a v e 

b e e n p e r f o r m e d . H e n c e deb/dr = v/b*, so t h a t 

/ = i , r £ eb {(^ + b*6^ - 2eb) s i n 29 + 2 c o s 2 9 ^ d9 - ±v [eb% 
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Hence if p n be the strength of the nth source image in A from 
A , and p ' n that of the other extremity of the line sink image ; the 
part of PL due to p n is 

ÏTT. \I+ ~ ~ 
3 ( c - p J '

 f /p . (p„-p ' n ) [C-XY 

3 ( C - P . ) " ( C ~ P ' J 

Let z>n denote the strength of the nth image in B , TTN, a n the 
distances of its extremities from B ; then the part of P, due to vn is 

Y ' - _ I Y N ° « _u 4 F " 

N IN o w 

" " " C - P . ' " " c - p „ ' ' " " C - P ' , , ' 

therefore X „ ' = - ^ M P ^ s ) (49). 

Adding (47) and (49) and summing for all integral values of n 
from oo to 0, we obtain 

238. In order to find the portion P 2 of P due to ^>2, we must 
remember that the original source is now in B . Let un, er'n denote 
the distances of the extremities of the nth image in B from B , due 
to <£2, then expressing p n , p n , p'„ in terms of vn, <rn, <r'a we shall 
obtain 

V _ 9 V 0 0 "» (°"» ~ O 
Z A » " ¿8 ' 

Hence P - - ^ " P'J _ 22" ~ O f 5 n I l e n c e R ~ A \ ( q _ ^ , ( f l _ ^ ^ . . . ( M ; , 

where pn, p' n refer to the images of A ' s motion, and v„, o-„, cr'n 

to those of P<'s motion. 
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By direct calculation we easily find 

PO = °. P'O = 00 

Pl = 

-Ò2' PL = 
o ' c ^ - o ^ - b2) , _ a2 (c2 - a2) 

9 2 (c2 - b2)2 - o V ' P 2 ~ c (c 2 - a2 - b2) 

also if m1 be the mass of the liquid displaced by A , 

abm_, a2b2m. 
•(53). 4TT { ( C 2 - b j - a2c2} 

The v ' s and o-'s can be obtained by symmetrically interchanging 
a and b and putting m2 for m1. If we write Jf2, JV for the two 
series in the right-hand side of (51), we shall find that 

M. 
m,6 

47TC2 
1 + 

a363 

+ 

(c2 - a2) (c2 - a8 - &8)2 

{(o2 - a2)2 - bV\ {(c2 - 62)2 " 2a2c2 + a2 (a2 + ft')}1 J 
. (54 ) , 

4VTC _(c 2 - a 2 ) 

+ . (55) , 
(c2 - a2 - V) {(c2 - a 2) 2 - 6V} 2 

and P = - 2 (il/2 + A;) (56). 

From the above formulae it appears that M2 is of the order CT2, 
and iV„ of the order c~5. 

239. The value of the portion of F2 which depends on the 
square of the velocity is more difficult to obtain, and we shall 
content ourselves with obtaining an approximate value as far as 
the term c 6. 

Let us now put u = a2d, v = b 2 b , and let P n denote zonal har­
monics when the origin IS at A and axis BA, and P ' n similar 
quantities when the origin is at B. 

Near the surface of B 

(RI + 1) R" 

v *> f ft2"+1 

P' + const. 
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Dropping the accents for the present and writing Cn for the 
coefficient of Pn* in the value of <p, we obtain 

Q = 2 ( 2 C „ P J M x . 
J -1 

Since P„' is unchanged when — /x is written for fi, f P\ fidfi = 0. 
Hence Q = 42 CmCn f PmPn pdp, 

the summation extending to all positive integral values of m, n 
except m = n. Let 

Then ^ P m P„ ^ = f ^ PJ\ + f * <^ 

$ rf/x. 

Now (Ferrers' Spherical Harmonics, § 2-1), 

*= 1 f ^ + l ) p ( P _ P ) 
(m-w) (m + w+1) [ 2« + l v " + 1 

_ m (m+1) P . P _ P 

2m + 1 " ^ m + 1 

Hence |" <&dfj. vanishes unless m = n + l or n — 1 and its values 
^ - 1 

in the two cases are 
2 (m + 1) , 2m 

v ' and ,-
(2m+ 1) (2m+ 3) ( 2 m - l ) ( 2 m + l ) 

240. Putting m = 0, / = R in (34) and (35) we obtain 

. . . . (57) . 

P ; _ P 0 _ + 1 ) P > (n + 1) (n + 2) P/ 
c" + 2 2 ! c ^ 3 

(-TP,, _P\, (n + l ) P / P ( » + 1 2 | P a f f 

c" + 1 c n + z + 2! c" + 8 J 
Now if B were absent, the value of <bi would be 
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<P>> = -t-v u va3 3b tu va3\ p, 5ub* „, 
also 

b c 2c4 2 Vc" 2cV 1 3c: 

.dR*)t b3 b Vc2 2cV 1 c* 2 

Therefore Q = 2 I " 0 V < * V 
- 1 

The value of this near B is 

u/„, P;R P:RI 

In order to make the velocity at the surface of B vanish, we 
must add the series 

c* l.2P2 + 3cR5 +
 4 c 2 P 4 + " ' 

Transforming each term of the last series by means of (57), the 
value of <pl near A becomes 

u ub3 {_ Pr 
Adding the proper series, the value of <bl near A becomes u ub" ub3 f a3\ „ 
The added term produces at B a constant term of the order 

c~7, which contributes nothing to the pressure, hence the value of 
$ t near B is 

c c2 

Changing P , into — P / , it follows from (58) that the value of 
rp2 near B is 

whence the value of $ near B is 

— &c... . 
Putting in this P = 6, we obtain 

IRIS - LILLIAD - Université Lille 1 



F I N A L V A L U E O F T H E P R E S S U R E . 255 

Also by (45) 

dR 

2uv vV 8jM' 

6'c* + be3 + b'<f + 3cc 

Restoring the values of u and v, we obtain 

Vd?Q i n „,(2db , aVl* 

By (54), (55) and (56) 

2a26d 2a5636' . . . , _, 
1 — 5 s higher powers of c . 

c c 
Therefore by (46) the force depending on the square of the 

velocity 
i r s W . . . . 

= - T (61)' 
which varies as c - 5. 

d a'b*b2 

Hence Ft = - 2-rrb* * (if, + JV„) - ^ . 

The value of Ft the force on A towards B, can be obtained by 
symmetrically interchanging a and b. 

241. If we neglect all powers of c " 1 above the second 

27r6 s d . „ , .. 
- a ( « • & » ) • 

Let a = a + a sin - y , 

27T 
b = 6 4- /3 sin ^ (t - e), 

so that a, b denote the mean values of the radii. The mean value 
of Ft will be 

= y y ( a & ) a £ J c o s ~Y COS ~ E) * 

IRIS - LILLIAD - Université Lille 1 



Hence if the spheres are pulsating in the same periodic time 
they will attract one another when their phases differ by less than 

a quarter of a period; but if the phases differ by more than a 

quarter and less than three quarters of a period, they viill repel one 

another. 

EXAMPLES. 

1. An infinite liquid contains a fixed sphere of radius b , and a 
sphere of radius a and mass M fastened to a spiral spring per­
forming small oscillations in the line joining the spring to the 
centre of the sphere. Prove that if a and b are so small (or c so 
large) that we may neglect powers of a l e and bjc above the sixth, 
the time of oscillation is 

where MX is the mass of the liquid displaced by the moving 
sphere, T the time of oscillation if the fixed sphere were removed 
from the liquid, and c the mean distance between the centres of 
the spheres. 

2. An infinite mass of liquid is divided into two parts by an 
infinite rigid plane, and a sphere is moving in the liquid in a line 
perpendicular to the plane. Explain by general reasoning what 
will be the effect of making a circular opening in the plane with 
its centre in the line of motion of the sphere, when the sphere is 
moving (i) towards the plane, (ii) from the plane. 

3. Two equal small spheres of mass m and radius a, which 
attract each other with a force equal to the product of their 
masses divided by the square of the distance between them, move 
in a straight line towards each other in an infinite liquid. If X is 
the ratio of the density of the liquid to that of the spheres, and x 
the distance between their centres ; prove that so long as (a/x)1 

and higher powers can be neglected, the velocity of either sphere is 

x Jm (1 + | \ ) 
\x3 + £K (X" + 3a3)}'' 

the motion beginning when the spheres are at an infinite distance 
apart. 
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4. If a spherical vessel of radius a contain a concentric sphere 
of radius b and density a-, the intermediate space being filled with 
liquid of density p , prove that if the vessel be moved with velocity 
U, the concentric sphere will move forward with relative velocity 

(p-v) U 

| /rj(a s + 26 3 ) / (a s -6 3 ) + 0 - ' 

5. An impulse I is applied to one of two spheres, perpen­
dicular to the line joining their centres. Prove that with the 
notation of § 229, both spheres will begin to move parallel to the 
direction of the impulse and in opposite directions, and that their 
velocities vt, vi are determined by the equations 

v i _ v« _ I 

6. Liquid of unit density fills the space between two con­
centric spheres. The outer one whose radius is b and the inner 
one whose radius is a, is suddenly distorted in such a manner that 
the velocity at any point of its surface is c F ( d , <p), with the 
condition that its volume remains unaltered. Find the velocity 
potential of the liquid, and prove that when F ( 9 , <j>) is a zonal 
harmonic of degree n, the kinetic energy of the'liquid is 

2a3 {nb2"+1 + (n+ 1 ) / > c ' 

n (n + 1) (2« + 1) (6 2"+ 1 - a 2 n + 1 )" 

7. Liquid is confined within a sphere of radius b ; and a solid 
sphere of radius a is moving with velocity v along a radius 
of the fixed sphere. Prove that if the distance x between the 
centres of the two spheres is small compared with b , the velocity 
potential is approximately equal to 

- | ( p + coB& + ai(p + ̂ 5) (3 cos2 6 - 1)J , 

the origin being the centre of the fixed sphere. 

8. The space between a spherical envelope and a solid 
concentric sphere is filled with liquid which is at rest. If the 
outer surface is moved so that at each point its velocity is a 
spherical surface harmonic YH, prove that the solid sphere will 
remain at rest, unless n = 1. 

B . 17 
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9. Prove that the augmented inertia of a ball pendulum of 
radius a oscillating in a spherical envelope of radius b is 

pf(2a 3
 + 6 3 ) / (& 3 -a a ) 

where M is the mass of the liquid displaced. 

10. A string of length / — a is attached to a sphere of radius 
a and mass m, by means of some mechanical arrangement which 
prevents the sphere from rotating. The other end of the string is 
attached to a fixed point, and the system is surrounded by a 
liquid of unlimited extent, which is bounded by a fixed plane. 
Prove that if the string is initially at right angles to the plane, 
and sphere is projected perpendicularly to the string, with velocity 
V, the tension of the latter will be equal to 

J (1 - cos 8) + (1 - — cos 8) sin" 8\ 
m 

f 
1 2 (2m 4- M) c s 

V2 

9MV2mas cos3 8 

2 (2m + M) c" ' 

where \c is the distance of the fixed point from the plane, 8 
the angle which the string makes with its initial position, M 
the mass of the liquid displaced by the sphere, and powers higher 
than c~4 are neglected. 
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A P P E N D I X . 

I. To prove the equation 
p = kpy. 

T h e l a w s of B o y l e a n d Char les show that the pressure, vo lume, and 

temperature of a gas are connected b y the relation 

pv = £0 ( 1 ) , 

where R is a constant, a n d 6 is the t emperature measured from the 

absolute zero of the air thermometer , i.e. f rom — 270° 0. 

L e t a quant i ty dll of heat b e communicated to the g a s ; the effect of 

communicat ing this a m o u n t of heat wi l l he to change the pressure, 

volume, a n d temperature of the gas, and since b y (1 ) the volume is a 

function of the pressure a n d temperature we m a y p u t 

dH=Xpd6 + \dp ( 2 ) , 

where Kp is the specific heat at constant pressure. F r o m ( 1 ) w e have 

d& dp dv 
J = 7 + V W> 

whence e l iminat ing dp f rom ( 2 ) w e obtain 

whence if Kv b e the specific heat at constant vo lume 

*.= * , + ^ W. 
L e t us n o w suppose that the gas experiences a small change of 

volume b u t w i t h o u t loss or ga in of heat, then dll=0, a n d ( 2 ) becomes 

Kpd6 + Xdp = 0. 

E l i m i n a t i n g 8 a n d A b y means of ( 3 ) and ( 4 ) , a n d put t ing y = KPLK„ 
we obtain 

dp dv —+ y — = 0 y ) . 
p v w 

N o w it is an exper imenta l fact that y is independent of the pressure, 

temperature or volume, whence integrat ing (5 ) w e obtain 

pvy = const., 

or p = kpy, 

where p is the density. 
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—s- cosecam' 
7TJ Adding we obtain 

^ 2 (/c 2 sn 2 KXJTT + c o s e c a m 2 KXJIR) = ^ ^ f (K — E) — 2 2 — ^ — - ^ [ - cos ma;. 
-2 

Also §'« (1 + ff") cos nx= — \ cosec2
 Ix + + qfcos 2q) ^ 

N * * (1 — 25-0033;+ q 1 ) 2 

Therefore 
2 : - « (1 + *»)} cos „s = M (X-

A'2/,. ,ir , - „ , N n 21 ?{(l + 2'2)cosa:-2i7} 
(Ar sn̂ Ax/Tr + cosecam'1 KXITT) + I cosec2kx - ,\ —s s,v...(o). 

7 T L I T T (l-2qcosx + q2)2 v 7 The required series is equal to the limit of the right-hand side of (3) when x = 0, that is 1? < K - E ) - J L 
1 

III. Professor Greenhill has kindly worked out the following investigation of the Motion under no forces of a Solid of Revolution in. Infinite Liquid, by Weierstrass's functions. 
Taking the expression (4) for the kinetic energy T of the solid of revolution and of the surrounding infinite frictionless liquid given in §181, but writings, q, r instead of wI; u2, cu3 respectively, then 

T - \P ( M 2 + v-) + \Ru? + \A (j? +qr) + \Cr2 -

II. To express the value of R {see page 220) in terms of elliptic 

functions. 

The value of R is 
* = «p{l + 2 S l - g ^ l (!) 

and we have to express this series in terms of elliptic functions. From § 124 it follows that the value of R or {P + L) p~r is 
„ nq" (1 + q2n) + 2nqM °° n (1 + QN) QN 

4 M 2 I 1 ^ 7 » = W S L 

= 4 « ? S R » { Y ^ - J ! - L - « - } . . . ( 2 ) . 

Now — sn2 KxU = —, IK-E)-2% , ^ cos nx. 
7i ' 7T X 1 — QM 

Changing X into X + LTTK'/K we obtain 
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and employing this in the equations of motion of § 167, supposing there are no impressed forces ; then since 
dT dT p dT 
- y - = Pu, - - = P v , = Rw; 
du dv aw 

dT . dT . dT _ 

the equations of motion become 
P ^ - P v r + Rwq = 0 (1), 

-Rwp + Pur =0 (2), 
R ^ - P u q + Pvp =0 (3), 

A ^ - (A - C) qr - (P-R) mo = 0 (4), 
+(A-O)pr + (P-R)uw--0 (5), 

°7S =° Equation (6) shows that r is constant during the motion; and from the other equations we can obtain three first integrals of the equations of motion. 
„ . , „ / du dv\ 7 , dw . / dp dq\ „ dr „ First, P i u - r + v^-) + Rw + A [p -f + q -f) + Cr = 0, 

' \ dt dtj dt V dt * dtj dt ' 

so that IP (w» + if) + ^Rw2 + \A (p2 + q2) + %Cr> = P (7), 
a constant, the constant value of the kinetic energy during the motion. 

Secondly, P2 (u ̂  4- v J ) + R*w ̂  = 0, 
so that F2 (?*2 + v2) + R?v? F2 (8), a constant; and then F represents the resultant linear momentum of the system. Thirdly, AP + u dß + ̂  g + v *f) + CR ^ r = 0, 

J \ d t r dt dt* dt) dt 

so that AP (up + vq) + CRwr = G (9), 
a constant; and then G may be taken to represent the constant angular momentum of the system. From equations (7), (8), (9), 

P2 (u* + v2) - F * - RT-w\ 

A (p2 + q2) = 2 T - Cr2 - R w ' - P (u2 + v2), 
F'2 / 1 1 \ 

= - 9 T - Cr'1 - - I - ~ \ 

v p \ R p; ' 
. G - CRwr 

P (UP + '<•'?) = ^— ; 
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262 A P P E N D I X , 

so t h a t f r o m e q u a t i o n ( 3 ) 

^(^y=P*(uq-vpY 
= P2 {(u2 + v2) (P2 + q2) - (up + VQ)2\ 

- r - - 7 - G - 3 0 - (-$*")· 
a q u a r t i c f u n c t i o n o f LLW, so t h a t RW is a n e l l i p t i c f u n c t i o n of t h e t i m e 

I, w h i c h w e sha l l p r o c e e d t o e x p r e s s b y m e a n s of t h e n o t a t i o n of 

W e i e r s t r a s s . 

P u t t i n g , fo r t h e m o m e n t , ? ^ — x — cos 6, t h e n 

= ~A " p) ^ ^ ^ " ^ ^ ~ X 2 > (X ~ ^ 

"where x0, x a X.2, x3 d e n o t e t h e r o o t s of t h e q u a r t i c i n X, a r r a n g e d in 

d e s c e n d i n g o r d e r o f m a g n i t u d e ; a l so 

xa + xx + xs + xs = 0. 

i N o w p u t X — &o = g—^ i 

D S - E, 
then x — X , = ; -= , 

S — A A — E1 

D s — e2 

x — x%~ , -j , 
s - a a — e 2 

D S — e 3 

S — A A — e 3 

w h e r e e,., « » , e 3 a r e t h e r o o t s of t h e d i s c r i m i n a t i n g c u b i c of t h e q u a r t i c 

IS3 - G2S -G3=0, 

G2 a n d GS b e i n g t h e q u a d r r n v a r i a n t a n d t l i e c u b i n v a r i a n t . 

T h e n - *™ (1 - ^ Z>« ^ r 9JS - ?» 4D3-GJI-G3' 

a n d w e m a y choose D, so t h a t 

a n d t h e n g)* = ^ (| - J) ( 4 s 3 - ^ -

so t h a t n o w , w i t h W e i e r s t r a s s ' s n o t a t i o n ( H a l p h e n , TRAITE DES JONCTIONS 

ELLIPTIQUES ET DE LEURS APPLICATIONS, P a r i s , 1 8 8 6 ) , 

S = p (TW^JR 4- w 3 ) , 

ciij a n d (ii3 d e n o t i n g t h e r e a l a n d i m a g i n a r y ha l f p e r i o d s of t h e e l l i p t i c 

func t ions , a n d T t h e t i m e of o s c i l l a t i o n ; t h e i m a g i n a r y h a l f p e r i o d <N3 

b e i n g a d d e d i n o r d e r t o m a k e S o s c i l l a t e b e t w e e n e 2 a n d E3, a n d t h e r e f o r e 
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— p'c pw-e 2 

2 P M — pc pc — « 2 ' 

x x •= ~ P ' C P M ~ e ; i . 
3 pw- pc pc - e3 ' 

and then, as explained in the Proceedings of the London Mathematical 

Society, vol. xvn., p. 279, 1886, introducing the function defined by 

d 

a % = 2 f C - C 2 C = - I G , P 
p" (e uif) _ 

a^— A , a?2 — ..., œ3 — ..., 
P (C + <DI) 

and p2c, p'2c are the coefficients of a;2 and x respectively in the quartie 

(x — x0) (x — KJ) (x — œ2) (a: — xs) ; 

also a; = £ (w + c) - I (u - c) - £2c = l — °X—- . 
v ' y 1 * 2 p (u - c) - p2c 

Taking the axis OZ in the direction of the resultant impulse F 
(fig. p. 166), then 

Pu = — F sin 0 cos <£, P « = P sin 6 sin = F cos 6, 

and P (-IIJO + vq) = P sin 6 (— p cos + g sin cf>), 

dt ' 

AF sin* 6 ^ = G - CKwr, 

so that equation (9) becomes 

dt 

= G - CFr cos 6, 

or, using x to denote cos 6, 

d^ G - CFrx CFr 1 1 G^-CFr 1 

eft " ^ ( l - a r 1 ) - 2 " "i-F 1 + z + 2 ~ 1 L P ~ ~ 

the equation to determine the azimuthal motion ij/. 

T h e n t h e t i m e o f o s c i l l a t i o n T i s g i v e n b y 

wi>_ F*_ n _ i \ 
T 2 _ 1 \R ~ PJ ' 

W e may write pc instead of d ; and use pw instead of p (ti^jr + 0)3) 

for brevity, and then D = - P 'c, and 

- ~ P ' f f 

P M — PC 

— p'c pw-e, 
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Then 2 

A s exp la ined in the Proc. London Math. Soc, vol. x v n . p. 280, 

w r i t i n g u for TTAJR + <n3, this equat ion becomes 

dx)/ x . p'a(pu~ pc ) j . p ' 5 ( p w — pc) 

du 2 ( p a — pc) ( p w - p a ) 2 ( p i — pc) ( p w - p 6 ) ' 

a a n d 6 b e i n g the va lues of u w h i c h m a k e cos 0 — — 1 or + 1 , respectively. 

difr __ p'a p 'a p'b p'b 

diu p a — pc pw — p a p& - pc pi* — p6 ' 

^ £ (a + c) + £ ( a - c) - 2£a - £ ( M + a) + £ ( « . - a) + 2£a 

+ £ (6 + c) + £ (b - c) + 2£i - £ ( M + 6) + £ ( M - J) - 2£5, 

* 2 go-(U + a)<r(u + b) + *^U> 

w h e r e P — £ (a + c) + £ ( a — c) + £ (6 + c) + £ (6 - c) , 

a n d e ^ = e - ^ 
¿4, _ a-lPu / o - ( M + a ) o- ( M + b) 

• (?t — a) <R {u — b)' 

T a k i n g a point on the ax i s OC a t uni t distance f r o m 0, the pro­

ject ion of the motion of this po int on a p lane t h r o u g h 0 perpendicular 

to OZ w i l l b e g i v e n b y 

X + iy = sin QI^, 

a-(u + a) a-(u+ b) 
= U / \—7 f e x P ( - H F U ) -

o- (u + C) o- (u - GJ V 2 ' 

I n a s imilar manner , b y means of the equat ion 

-dt log ( « + .«) = i - log ( „ • + « · ) + . . ^ — j - , 

= A - r - log (F2 — H'VR) — VR + I ™ ™ — „• — r - , 

* dt a y ' F 2 - R2VJ2 A ' 

w e can express u + iv b y means of Weiers trass ' s o- func t ions ; a n d the 

same method can b e appl ied to the expression of p + iq a n d also of 

X + iy, X a n d y n o w denot ing the coordinates of 0 w i th respect to fixed 

axes in a p lane perpendicu lar to the direction of the resul tant impulse F. 

I t w i l l b e noticed that the letter u has been used in t w o senses, 

first as express ing a component velocity of translat ion, a n d secondly as 

a n abbrev ia t ion for taijr + u 3 ; this w a s u n a v o i d a b l e in order to reconcile 

the different notations, b u t wi l l not b e found to lead to confusion. 

C A M B R I D G E : P R I N T E D B Y C . J ^ t ^ i J ^ i i k ' . &''s(fe',}^>NrHE U N I V E R S I T Y P R E S S . 
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A CLASSIFIED LIST 
O F 

E D U C A T I O N A L W O R K S 
P U B L I S H E D B Y 

GEORGE B E L L & SONS. 
Full Catalogues will be sent post free on application. 

BIBLIOTHECA CLASSICA. 
A Series of Greek and Latin Authors, with English Notes, edited by 

eminent Scholars. 8vo. 

jEachylus. By F . A . Paloy, M . A . 18s. 
Cicero's Orations. B y G. Long, M . A . 4 vols. Ids., lis., 16»., 18«. 
Demosthenes. By K . Whiston, M . A . 2 vols. 16s. each. 
Euripidea. By F. A . Paley, M . A . 3 vols. 16s. each. 
Homer. By F . A . Paley, M . A . Vol . I . 12s.; Vol . I I . 14». 
Herodotus. By Rev. J. W . Blakesley, B .D. 2 vols. 32s. 
Hesiod. By F . A . Paley, M . A . 10«. 6d. 
Horace. By Kev. A . J. Macleane, M . A . 18s. 
Juvenal and Persius. B y Bev. A . J. Macleane, M . A . 12s. 
Lucan. The Pharsalia. By C. E . H.iskins, M . A . [In the press. 
Plato. By W . H . Thompson, D .D . 2 vols. 7s. 6d. each. 
Sophocles. Vol . I . By Rev. F. H . Blaydes, M . A . 18s. 

Vol . I I . Philoctetes. Electra. Ajax and Traohinise. By 
F . A. P s l e y , 1T.A. ]2.s. 

Tacitus: The Annals. By the Rev. P . Frost. 15s. 
Terence. By E. St. J. Parry, M . A . 18s. 
Virgil. By J. Conington, M . A . Revised by H . Kettleship. 3 vols. 

14s. eafch. 
A n Atlas of Classical Geography; Twenty-four Maps. By 

W. Hturhee and Georfje Long, M.A. New edition, with coloured Outlines. 
I m p e r i a l 8vo. 12s. 6d. 

Uniform with above. 
A Complete L a t i n Grammar. By J. W . Donaldson, D . D . 3rd 

Edition. 14s. 

GRAMMAR-SCHOOL CLASSICS. 
A Scriesof Greek and Latin Authors, withF.nglish Notes. Fcap.Qvo. 
Ceesar : De Bello Gallico. By George Long, M . A . 5s. 6d. 
• Books I . - H I . For Junior Classes. By G. Long , M . A . 2s. 6<2. 

Books I V . and V . Is . 6d. Books V I . and V I I . I s . Gd 
Catullus, Tibullus, and. Propertius. Selected Poems. With Life. 

B j Bev. A. H. Wratislaw. 3s. 6d. 
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Cicero: De Senectute, De Amicitia, and Select Epistles. By 
GEORGE L O N G , M . A . 4S. 6D . 

Cornelius Nepos . By Bev. J. F . Maemiehael. 2s. 6d. 
H o m e r : Iliad. Books I . - X H . By F. A.Paley, M . A . 6a. Gd. 
Horace . With Life. By A . J. Macleane, M . A . 6s. 6 i . [ l a 

2 parts, 3S. GD. each.] 
Juvenal: Sixteen Satires. By H . Prior, M . A . 4s. Gd. 
Mart ia l : Select Epigrams. With Life. By F. A. Paley, M . A . 6s. Gd. 
Ovid: the Fasti. By F. A . Paley, M . A . 5 S . Books I . and I I . 

I S . Bd. BOOKS I I I . A N D I V . I S . 6D. 

Sallust: Catilina and Jugnrtha. With Life. By G. Long, M . A . 
AND J. ( 1 . FRAZER. 5S., OR SEPARATELY, 2S. 6(2. EACH. 

Tacitus : Germania and Agricola. By Bev. P. Frost. 3s. Gd. 
Virgi l : Bucolics, Georgics, and iEneid, Books I . -TV. Ahridged 

F R O M PROFOSBOR OONINSRTON 'B E D I T I O N . 5S. 6 D . — J E N E I D , COOKS V . - X I I . 5S. Gd. 
ALRIO I N 9 SEPARATE VOLUMES*, I S . EACH. 

Xenophon: The Anabasis. With Life. ByEev. J.F.Maemiehael. 5s. 
Also I N 4 SEPARATE VOLUMES, I S . %d. EACH. 

The Cyropsedia. By G. M . Gorham, M . A . 6s. Books I . 
A N D I I . I S . 6D. 

• Memorabilia. By Percival Frost, M . A . 4s. Gd. 
A Grammar-School Atlas of Classical Geography, containing 

T E N SELECTED M A P S . I M P E R I A L R\O. 5S. 

Uniform w i t h the Series. 

The N e w Testament, in Greek. With English Notes, &a. By 
R E V . J. F. M A E M I E H A E L . 7S. CD. 

C A M B R I D G E G R E E K A N D L A T I N T E X T S . 
•ffisehylus. By F. A. Paley, M . A . 3s. 
Csssar: D e Bello Gallico. By G. Long, M . A . 2 s . 
Cicero : D e Senectute et de Amicitia, et Epistoto Selectas. By 

Ot. L O M R , M . A . I s . 6D . 

Ciceronis Orationes. Vol. I . (in Verrem.) By G. Long, M . A . 3s. Gd. 
Euripides. By F. A. Paley, M . A . 3 vols. 3 s . Gd. each. 
Herodotus. By ,T. G. Blakesley, B . D . 2 vols. 7s. 
Homeri Bias. I . - X I I . By F. A . Paley, M . A . 2s. Gd. 
Horatius. By A. J. Macleane, M . A . 2s. Gd. 
Juvenal et Persiua. By A. J. Macleane, M . A . I s . Gd. 
Lucretius. By H . A . J. Munro, M . A . 2 s . Gd. 
Sallusti Crispi Catilina et Jugurtha. By G. Long, M . A . I s . Gd. 
Sophocles. By F. A. Paley, M.A. 3 s . Gd. 
Terenti ComcedisB. By W . Wagner, Ph.D. 3s. 
Thuoydidea. By .1. G. Donaldson, D . D . 2 vols. 7s. 
Virgilius. By J. Conington, M . A . 3 s . Gd. 
Xenophontia Expeditio Cyri. By J. F. Maemiehael, B . A . 2s. Gd. 
N o v u m Testamentum Greece. By F. H . Scrivener, M . A . 

4S. 6D. A N EDITION W I T H W I D E M A R G I N FOR NOTES, half bound, 12S. E d i t i o 
M a j o r . 7s . Gd. SEE PAGE 1 1 . 
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CAMBRIDGE TEXTS WITH NOTES. 
A Selection of the most u s u a l l y read of the Greek and Latin Authors, Annotated for 

Schools. Fcap. Svo. I s . fid. each, with exceptions. 
Euripidea. Alcestis.—Medea.—Hippolytug.—Hecuba.—Bacchso. 

I o n . 2s. — O r e s t c a . — P h o e m s s s e . — T r o a d e s . — H e r c u l e s 2Turens. • — A n d r o ­
m a c h e . — l p l i i g e n i a i n T a u r i s . B y F. A . P a l e y , M.A. 

•ZEschylus. Prometheus Yinctus.— Septem contra Thebas.—Aga­
m e m n o n . — P e r s s B . — E u m e n i d e s . E y F . A . P a l e y , M . A . 

Sophocles. (Edipus Tyranuus.— (Edipus Culoneus. — Antigone. 
By F . A. P a l e y , M . A . 

Homer. Iliad. liook I. By F. A. Paley, M.A. 1*. 
Terence. Andria.—Hauton Timorumenos.—Phormio.—Adelphoe. 

3y P r o f e s s o r W a r n e r , P h . D , 
Cicero. De Senectute, De Amicitia, and Epistolse Selectaa. By 

G . L o n g , M . A . 

Ovid. Selections. By A . J. Maclcane, M . A . 
Others in preparation, 

PUBLIC SCHOOL SERIES. 
A Series of Classical Texts, annotated bywell-known Scholars. Cr. 8vo. 

Aristophanes. The Peace. Ey F. A . Paley, M . A . 4s. 6d. 
The Acharnians. Ey i\ A . Paley, M . A 4s. 6d. 

• The Frogs. By F. A. Paley, M . A . 4s. 6<2. 
Cloero. The Letters to Atticus. Bk. I . By A . Pretor, M . A . 4s. 6d. 
Demosthenes de Falsa Legations. Ey B . Shilleto, M.A. 6s. 

The Law of Leptines. By B. W . Beataon, M.A. 3s. 6d. 
Livy. Book X X I . Edited, -with Introduction, Notes, and Maps, 

b y t h e H e y . L . D . D o w d a l l , M . A . , B.U. 3s. 6d . 
Plato. The Apology of Socrates and Crito. By W . Wagner, Ph.D. 

8th E d i t i o n . 3s. 6d. C h e a p E d i t i o n , l i m p c l o t h , 2s. 6d. 
The Phredo. 9th Edition. Ey W . Wagner, Ph.D. 5*. 6d. 
The Protagoras. 4th Edition. By W . Wayte, M.A. 4s. 6d. 
The Euthyphro. 3rd Edition. Bv G. H . Wells, M . A . 3s. 
The Euthydemug. By G. H . Wells, M . A . 4s. 
The Republic. Books I . & I I . By G. H . Wells, M . A . 2nd 

E d i t i o n . 5s. Bd. 

Plautus. The Aulularia. By W . Wagner,Ph.D. 3rdEdition. is.6d. 
• • Trinummus. By W . Wagner, Ph .D. 3rd Edition. 4». 6d. 

The Menaechmei. By W . Wagner, Ph.D. is. 6d. 
• The Moytellaria. By Prof. E, A. Sonnenschein. 5s. 
Sophoclia Traohinise. By A . Pretor, M.A. is. 6d. 
Sophocles. Oedipua Tyrannus. By B . H. Kennedy, D . D . 5s. 
Terenoe. By W . Wagner, Ph.D. 10s. 6d. 
Theocritus. By F. A . Paley, M . A . 4s. 6d. 
Thucydides. Book V I . By T. W . Dougan, M.A. , Fellow of St. 

J o h n ' s C o l l e g e , C a m b r i d g e . 6s. 
Others in p r e p a r a t i o n . 

CRITICAL AND ANNOTATED EDITIONS. 
iEtna. By H . A. J. Munro, M.A. 3s. 6d. 
Aristophanis Comcedias. By H . A. Holden, L L . D . 8vo. 2 vols. 

23?. 6d. P l a y s sold s e p a r a t e l y . 
Pax. By F. A. Paley, M.A. Fcap. 8vo. is. 6d. 
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Calpurnius Siculus. By C. H . Keene, M . A . Crown 8 v o . 6s. 
Corpus Poe t a rum La t ino rum. Edited by Walker . 1 vol. 8vo. 18«. 
H o r a c e . Quinti Horatii Flacci Opera. By H . A . J. Munro, M . A . 

Larg-e 8vo. 1 1 . IF.. 
Livy. The first five Books. By J. Prendevilla. 12mo. roan, 5s. 

Or Books I . - I I I . a?. 6d\ I V . and V . 3s. 6d. 
Lucre t ius . W i t h Commentary by H . A . J. Munro. 4 t h Edit ion. 

Vols . I . and I I . Introduction, T e x t , and Xotes . 18s. V o l . I I I . Trans­
lation, (is. 

Ovid. P. Ovidi iNasonisHeroidesXTV. By A . Palmer, M . A . 8vo. fis. 
• P. Ovidii Nasonis Ars Amatoria et Amores . B y the B.ev. 

H . Wil l iams, M . A . 3s, 6d. ' ) : I D . 
- m Metamorphoses. B o o k X I I I . By Chas. Haines Keane, M . A . 
Propertiua. Sex Aurelii Propertii Carmina. By P . A . Paley, M . A . 

8 Y O . Cloth, 8s. 
S8x Propertii E leg ia rum. Libr i TV. By A . Palmer. Fcap. 8vo. 5s. 
Sophocles. The A j a x . By C. B . Palmer, M . A . 4s. 6rZ. 

T h e Oedipus Tyrannus . By B . H . Kennedy, D . D . Wi th 
a Coinmentaiy, containing selected Notes by the late T . H . Steel, M . A . 
Crown 8vo. 8s. 

Thucyd ides . T h e History of the Peloponnesian War . By Richard 
Shil leto, M . A . Book I . 8vo. 6s. G& Book I I . 8 T O . 5 S . 6d. 

L A T I N A N D G R E E K C L A S S - B O O K S . 
Firs t L a t i n Lessons . By A. M . M . Steaman, M . A . I s . 
A L a t i n P r i m e r . By K e v . A . fi. C l a p i n , M . A . I s . 
Auxi l ia La t ina . A Series of Progressive Lat in Exercises. By 

M. J. B . B a d d e l e y . M . A . Fcap.8vo. P a r t i . Accidence. 2ndKdit ion, revised. 
2s. P a r t I I . 4th Edition, revised. 2s. K o y to Pa r t I I . 2s. Gd. 

Scala La t ina . E l e m e n t a r y Lat in E x e r c i s e s . By Rev . J. W . 
Davis, M . A . K e w Edit ion, wi th Vocabulary. Fcap. 8vo. 2s. Gd. 

Iiatin Prose Lessons. By Prof. Church, M . A . 7th Edit. Fcap. 8vo. 
2s. €D. 

Latin Exercises and Grammar Papers. By T . Collins, M . A . 5th 
Edit ion. Fcap. 8vo. 2s. Gd. 

Unseen Pape r s in Lat in Prose and Verse. W i t h Examination 
Questions. B y T . Collins, M . A . 4th Edi t ion. Fcap. 8vo. 2s. 6d. 

in Greek Prose and Verse. W i t h Examination Questions. 
B y T . Collins, M . A . 2nd Edition. Fcap. 8vo. 3s. 

Tales for L a t i n P r o s e Composi t ion . W i t h Notes and Vocabu­
l a ry . By 0 . H . Wel ls . M . A . 2s. 

L a t i n E x a m i n a t i o n Pape r s in G r a m m a r and I d i o m . By A . 
M. M . Stedman, M . A . Grown Svo. 2s. 6d. 

L a t i n Vocabular ies for Repe t i t ion . By A . M . M . Stedman, M . A . 
Foap. Svo. I s . 6d. 

Analytical Latin Exercises. By C. P . Mason, B . A . 4th Edit. 
P a r t I . , Is. 6d. Par t I I . , 2s. 6I. 

L a t i n M o o d Construction, Outlines of. Wi th Exercises. By 
the K e v . O. E . C. Casey, M . A . , F . L . S . , F .G .S. Small post 8vo. Is . 6d. 
L a t i n of tke Exercises. Is . Gd. 

Soala Grseea: a Series of Elementary Greek Exercises. B y B e v . J . W . 
Davis, M . A . , and I t . W. Baddeley, M . A . 3rd Edition. Feap. 8vo. 2«. 6d. 

Greek V e r s e Composi t ion. By G. Preston, M . A . Crown 8vo.4s. fid. 
G r e e k Par t ic les and their Combinations according to Attic Usage. 

A Short Treatise. B y F. A . Pa ley , M . A . 2s. 6d. 
G r e e k Tes t amen t Select ions. By A . M . M . Stedman, M . A . 

Fcap. 8vo. Is . 6d. 
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B Y T H E B E V . P. F R O S T , M.A. , S T . J O H N ' S C O L L E G E , C A M B R I D G E . 

Eologffl Latinos; or, First Latin Beading-Book, with English Notes 
and a Dict ionary. N e w Edition. Fcap. 8vo. 2s. 6d. 

Materials f o r Latin Prose Composition. New Edition. Fcap. 8vo. 
2s. 6d. K e y , 4s. 

A Latin Verse-Book. An Introductory Work on Hexameters and 
Pentameters . N e w Edi t ion. Fcap. 8vo. Us. K e y , 5s. 

Analecta Graeca Minora, with Introductory Sentences, English 
Notes , and a Dict ionary. N e w Edi t ion. Fcap. 8vn. 3s. fid. 

Materials f o r Greek Prose Composition. New Edit. Fcap. 8vo. 
3s. 6 4 K e y , 5s. 

Florilegium. Poettcum. Elegiac Extracts from Ovid and Tibullus, 
N e w Edit ion. With Notes . Fcap. 8 v o . 3s. 

Anthologia G r s B e a . A Selection of Choice Greek Poetry, with Notes. 
By F. St. John Thackeray. 4/,/i and CTi^iper Edition.. 16nio. 4s. Gii-

Anthologia Latina. A Selection of Choice Latin Poetry, from 
Nsevms to Boethius .with Notes . B y B e v . F. St . John Thackeray. Revised 
and Cheaper Edition. 16mo. 4s. 6d. 

B Y H . A. H O L D E N , L L . D . 

Foliorum Silvnla. Part I . Passages for Translation into Latin 
Elegiac and Hero ic Verse . 10th Edit ion. Post Svo. 7s. 6d. 

Part I I . Select Passages for Translation into Latin Lyrio 
and Comic Iambic Verse . 3rd Edit ion. Post 8vo. 5s. 

Part I I I . Select Passages for Translation into Greek Verse. 
3rd Edit ion. Post 8 7 0 . Ss. 

Folia Silvulsa, sive Ecloga^ Poetarum Anglicorum in Latinum et 
Grpscum converse . 8vo. V o l . I I . 12s. 

IToliorum Centurise. Select Passages for Translation into Latin 
and Grreek Prose. 9th Edi t ion. Pos t 8vo. 8s. 

T R A N S L A T I O N S , S E L E C T I O N S , &c. 
\ * Many of the following hooks are well adapted for School Prizes. 
•23scliyhrs. Translated into English Prose by F. A . Paley, M . A . 

2nd Edit ion. Bvo. 7s. 6d. 
Translated into English Verse by Anna Swanwiek. 4th 

Edition. Post 8vo. 5fl. 
Horace. The Odes and Carmen Sasculare. In English Verse by 

J. Conintrton, M . A . 9th edition. Fcap. 8vo. 5s. fid. 
• Tho Satires and Epistles. In English Verse by J. Coning-

ton, M . A . 6th edition. 6s. 6d. 
Propertius. Verso Translations from Book V . , with revised Latin 

T o x t . By F. A . Pa ley , M . A . Fcap. 8vo. 3s. 
Plato. Gorgias. Translated by E . M. Cope, M . A . 8vo. 7s. 

Philebus. Translated by F. A. Paley, M . A . Small 8vo. 4s. 
Theaatetus. Translated by F. A . Paley, M . A . Small Svo. 4s. 
Analysis and Index of theDialogues. B y D r . D a y . Post8vo.5s. 

Reddenda Reddita : Passages from English Poetry, with a Latin 
Verse Translation. By F . E. Grretton. Crown Svo. 6s. 

Theocritus. In English Verse, by C. S. Calverley, M . A . New 
Edition, revised. Crown 8vo. 7s. 6d. 

Translations into English and Latin. By C. S. Calverley, M . A . 
Post 8 T O . 7 S . 6d. 
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Transla t ions into Greek and Lat in Terse. By E . C. Jebb. 4to. 
clutli uilt. 10s. 6d. 

into English, Latin, and Greek. B y R . C. Jebb, M . A , 
H. Jactaon, Litt.D., and W. E. Onrrey, M.A. Second Edition. 8s. 

Extrac ts for Transla t ion. B y R . C. Jebb, M . A . , H . Jackson, 
Litt. D., and W. E. Currey, M.A. 

B e t w e e n W h i l e s . Translations by Rev . B . H . Kennedy, D.D. 
2nd Edition, revised. Crown Hvo. 5s, 

R E F E R E N C E V O L U M E S . 
A L a t i n Grammar . 13y Albert Harkness. Post 8vo. 6s. 

Ey T . H . K e y , M . A . 6th Thonsand. Post 8vo. 8s. 
A Short L a t i n Grammar for Schools . B y T . H . Key , M . A . 

F.R.S. 15th Edition. Post 8vo. 3s. Gd. 
A Gu ide to tho Choice of Classical B o o k s . By J. B . Mayor, M . A . 

3rd Edition, -with a Supplementary List. Crown Hvo. is. 6d. Supple­
mentary List, Is. 6d. 

T h e T h e a t r e o f the Greeks . By J. W . Donaldson, D . D . 8th 
Edition. Post 8vo. 5.s. 

Keigh t l ey ' s M y t h o l o g y of G r e e c e and I ta ly . 4th Edition. 5s. 

C L A S S I C A L T A B L E S . 
L a t i n A c c i d e n c e . By the R e v . P . Frost, M . A . 1J. 
L a t i n Versif icat ion. Is . 
No tab i l i a Quasdam; or the Principal Tenses of most of the 

Irregular Greek Verbs and Elementary Greek, Latin, and French Con­
struction. New Edition. Is. 

R i c h m o n d Rules for the Ov id ian Dist ich, Ac . By J, Tate , 
M.A. Is. 

T h e Pr inc ip les o f L a t i n Syntax. 1». 
Greek V e r b s . A Catalogue oi "Verbs, Irregular and Defective; their 

leading formations, tenses, and inflexions, with Paradigms for conjugation. 
Rules for formation of tenses, &o. &o. By J. S. Baird, T.C.D, 2s. 6d. 

Greek A c c e n t s (Notes o n ) . By A . Barry, D . D . New Edition. 1». 
H o m e r i c Dialect . I ts Leading Forms and Peculiarities. By J. S. 

Baird, T.C.D. Now Edition, by W. G. Rutherford. Is. 
Greek A c c i d e n c e . B y the Rev . P . Frost, M . A . N e w Edition, l i . 

C A M B R I D G E M A T H E M A T I C A L S E R I E S . 
Ar i thme t i c for Schools . By C. Pendlebury, M . A . 4s. Gd. 
A l g e b r a . Choice and Chance. By "W. A . Whitworth, M . A 4th 

Edition. 6s. 
E u c l i d . Books I . - V I . and part of Books X I . and X I I . By H . 

Deighton. 4s. Gd. 
Euc l id . Exercises on Enclid and in Modern Geometry. By 

J. McDowell, M.A. Srd Edition. - 6s. 
T r i g o n o m e t r y . Plane. By Rev. T . V y v y a n , M . A . 3rdEdit . 3s. 6d. 
Geomet r i ca l Con ic Sect ions. By H. G . Wil l i s , M.A. Man­

chester Grammar School. 7s. 6d. 
Conies . The Elementary Geometry of. 4th F,dition. By C. Taylor, 

D.D. 4s. 6d. 
Sol id Geomet ry . B y W . S. Aldia, M . A . 3rd Edit , revised. 6s. 
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Geometrical Optica. By W . S. Aldis, M.A, 2nd Edilicn. 4s. 
Rigid Dynamics. By W . S. Aldis, M.A. 4s. 
Elementary Dynamics. By W . Garnett, M.A. 4th Edition. 6s. 
Dynamics. A Treatise on. By YV. H . Besant, D .Sc , F.E.S. 7s. 6d. 
Heat . An Elementary Treatise. By W . Garnett, M.A. 4th Edit. 
Hydromechanics. By W . H . BeBant, M.A. , F .B .S . 4th Edition. 

Part I. Hydrostatics. 5s. 
Mechanics. Problems in Elementary. By W . "Walton, M.A. 6s-

CAMBRIDGE SCHOOL AND COLLEGE 
TEXT-BOOKS. 

A Series of Elementary Treatises for the use of Students in the 
Universities, Schoah, and Candidates for the Public 

Examinations. Fcap. 8vo. 
Arithmetic. By Kev. C.Elsee, M.A. Fcap. 8vo. 12th Edit. 3s. 6d. 
• By A. Wrigley, M.A. 3s. (id. 
— A Progressive Course of Examples. With Answers. By 

J. W a t s o n , M . A . 6 t h E d i t i o n . 2s. 6 d . 

Algebra. By the Bev. C. Elsee, M.A. 7th Edit. 4s. 
Progressive Course ol Examples. By Bev. W . F. 

M , M i o h a e l , M . A . , a n a B , . P r o w d e S m i t h , M . A . 4 t h E d i t i o n . 3s .6d . W i t h 
A n s w e r s . 4s. 6d. 

Plane Astronomy, An Introduction to. By P. T. Main, M.A. 
5 t h E d i t i o n . 4s. 

Conio Sections treated Geometrically. By W . H . Besant, M.A. , 
5 t h E d i t i o n . 4s. 6 d . S o l u t i o n t o t h e E x a m p l e s . 4s. 

Elementary Conio Sections treated Geometrically, By W . H . 
Besant, M.A. [In the press. 

Conies. Enunciations and Figures. By W . H . Besant, M.A. Is. 6d. 
Statica, Elementary. By Bev. I I . Goodwin, D .D . 2nd Edit. 3s. 
Hydrostatics, Elementary. By W . H . Besant, M.A. 12th Edit. 4s. 
Mensuration, An Elementary Treatise on. By B . T . Moore, M.A. 6s. 
Newton's Prmcipia, The Ffrst Three Sections of, with an Appen­

d i x ; a n d t h e N i n t h a n d E l e v e n t h S e c t i o n s . B y J . H . E v a n s , M . A . 5th 
E d i t i o n , b y P . T . M a i n , M . A . 4s. 

Optica, Geometrical. With Answers. By W . S. Aldis, M.A. 3s. &d. 
Analytical Geometry for Schools. ByT.G.Vyvyan. 4th Edit. 4s.6ii. 
Greek Testament, Companion to the. By A C. Barrett, A . M . 

5 t h E d i t i o n , r e v i s e d . F c a p . 8 v o . 5s. 

Book of Common Prayer, An Historical and Explanatory Treatise 
o n the. B y W . Q . H u m p h r y , B.TJ. 6 t h E d i t i o n . F c a p . 8 v o . 2s. 6i. 

Musio, Text-book of. By H . C. Banister. 12th Edit, revised. 5s. 
Concise History of. By Kev. H . G. Bonavia Hunt, B. Mus. 

O x o n . 7 t h E d i t i o n r e v i s e d . 3s. 6 d . 

ARITHMETIC AND ALGEBRA. 
See the two foregoing Series. 
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G E O M E T R Y A N D E U C L I D . 

Euc l id . Books I . - V I . and part of X I . and X I I . A New Trans­
lation. By H . Deighton. Crown 8vo. 4s. 6d. 

The Definitions of, with Explanations and Exercises, 
and an. Appendix of Exercises on the First Book. B y I t . Web b , ALA.. 
Crown 8vo. Is . 6d. 

• Book I . W i t h Notes a n d Exercises for the use of Pre­
paratory Schools, &c. By Braithwaite Arne t t , M . A . 8yo. 4s. Gd. 

The First T w o Books explained to Beginners. By C. P, 
Mason, B . A . 2nd Edit ion. Fcap. 8vo. 2s. 6d. 

T h e Enuncia t ions and Figures t o Eucl id ' s E l emen t s . By Bev . 
J. Brasso, D . D . N e w Edit ion. Fcap.Svo. I s . On Cards, in case, 5s. 
Wi thout the Fifrures, Gd. 

Exerc i ses on Euc l i d and in M o d e r n G e o m e t r y . B y J. McDowell , 
B . A . Crown 8vo. 3rd Edi t ion revised. 6s. 

Geomet r i ca l Con ic Sections. B y H . G-. Wil l i s , M . A . 7s. 3d. 
Geomet r ica l Conic Sections. By W . H . Besant, M . A . 5 t h Edit , 

Is . 6cL Solution to the Examples. 4s. 
E l e m e n t a r y Geomet r i ca l Conic Sections. By W . H . Besant, 

M . A . [In the press. 
Elemen ta ry G e o m e t r y of Conica. By C. Taylor, D . D . 4th Edit . 

8vo. 4s. 6d. 
A n In t roduc t ion to A n c i e n t and M o d e r n G e o m e t r y o f Conica. 

By C. Tay lor , M . A . 8 ™ . 15s. 
Solutions of Geomet r i ca l P rob lems , proposed at St. John's 

College i r o m 1830 to 1846. By T . Gaskin, M . A . 8vo. 12s. 

T R I G O N O M E T R Y . 
Tr igonome t ry , Introduction to Plane. By Bev. T . G. Vyvyan, 

Charterhouse. 3rd Edit ion. Or. 8yo. 3s. 6d. 
A n E l e m e n t a r y Trea t i se on Mensurat ion. By B . T . Moore, 

M . A . 5s. 

A N A L Y T I C A L G E O M E T R Y 
A N D D I F F E R E N T I A L C A L C U L U S . 

A n In t roduct ion to Ana ly t i ca l P i ano G e o m e t r y . B y W . P. 
Turnbull , M . A . 8vo. 12s. 

Prob lems on the Pr inc ip les o f P l a n e Co-ordinate G e o m e t r y . 
By W . Wal ton , M . A . 8yo. 16s. 

Tri l inear Co ordinates, and M o d e r n A n a l y t i c a l G e o m e t r y o f 
T w o Dimensions. By W . A . Whi twor th , M . A . 8vo. 16s. 

A n E l emen ta ry Trea t i se on Sol id G e o m e t r y . By W . S. Aldis, 
M . A . Urd Edi t ion revised. Cr. 8yo. 6s. 

Elemen ta ry Trea t i se on the Differential Calculus. By M . 
O'Brien, M . A . 8vo. 10s. Bd. 

El l ip t io Funct ions, E l emen ta ry Trea t i se on. By A . Cayley, M . A . 
Demy 8 T O . 15S . 

M E C H A N I C S & N A T U R A L P H I L O S O P H Y . 
Statics, Elementary. By H . Goodwin, D.D. Fcap. 8 v o . 2nd 

Edition. 3s. 
Dynamics , A Treatise on Elementary. By W . Garnett, M . A . 

1th. Edition. Crown 8vo. 6s. 
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Dynamics. Eigid. By W . S. Aldis, M . A . 4s. 

Dynamics. A Treatise on. By W . H . Besant, D . S c . F . R . S . 7s.6d. 
Elementary Mechanics, Problems in. B y W . Walton, M.A. New 

E d i t i o n . C r o w n 8 v o . 6 s . 

Theoretical Mechanics, Problems in. B y W . Walton, M.A. 3 r d 
E d i t i o n . D e m y 8 T O . 1 6 S . 

Hydrostatics. ByW.LT.Besant ,M.A. Fc.ap.8vo. 12thEdition. 4s. 
Hydromechanics, A Treatise on. By W . TT. Besant, M.A. , F.B.S. 

8 v o . 4 t h E d i t i o n , r e v i s e d . P a r t I . h y d r o s t a t i c s . 5 s . 

Optics, Geometrical. By W . S. Altlis, M.A. Crown 8vo. Hnd 
edition. 4s. 

Double Refraction, A Chapter on Fresnel's Theory of. By W . S. 
A l d i s , M . A . 8 v o . 2 s . 

Heat, An Elementary Treatise on. B y W . Garnett, M.A. Crown 
8 v o . 4 t h E d i t i o n . 

Newton's Principia, The First Three Sections of, with an Appen­
d i x ; a n d t h e N i n t h a n d E l e v e n t h S e c t i o n s . B y J . H . E v a n s , M . A . 5 t h 
E d i t i o n . E d i t e d b y P . T . M a i n , M . A . 4 s . 

Astronomy, An Introduction to Plane. By P. T . Main, M.A. 
F c a p . 8 v o . c l o t h , nth E d i t i o n . 4 s . 

Astronomy, Practical and Spherical. B y E. Main, M.A. 8vo. 14» 
Astronomy, Elementary Chapters on, from the ' Astronomia 

P h y s i q u e ' of B i o t . B y H . G o o d w i n , D . D . 8vo. 3 s . 6d. 

Pure Mathematics and Natural Philosophy, A Compendium of 
F a c t s a , n d F o r m u l a e i n . B y G . I t . S m a U e y . 2 n d E d i t i o n , r e v i s e d b y 
J . M c D o w e l l , M . A . l e a p . 8 v o . 3 s . 6d. 

Elementary Mathematical Formulae. By the Bev. T . W . Open-
s h a w . I s . 6 d . 

Elementary Course of Mathematics. By H . Goodwin, D .D . 
6 t h E d i t i o n . H v o . 1 6 s . 

Problems and Examples, adapted to the ' Elementary Course of 
M a t h e m a t i c s . 8 3 r d E d i t i o n . B v o . 5 s . 

Solutions of Goodwin's Collection of Problems and Examples . 
B y W . W . H u t t , M . A . 3 r d e d i t i o n , r e v i s e d a n d e n l a r g e d . 8 v o . 9 s . 

Mechanics of Construction. With numerous Examples. By 
S . l e n w i c k , F . R . A . S . 8 v o . 1 2 s . 

TECHNOLOGICAL HANDBOOKS. 
Edited by H . T B U E M A N W O O D , Secretary of the 

Society of Arts. 
1. Dyeing and Tissue Printing. B y W . Crookes, F.K.S. 5s. 
2. Glass Manufacture. By Henry Cbance, M.A.; I I . J.Powell, B. A.; 

a n d H . G . H a r r i s . 3 s . 6 d . 

3 . Cotton Manufacture. By Bichard Marsden, of Manchester. 
2 n d E d i t i o n , r e v i s e d . 6 s . 6 d . 

4 . Chemistry of Coal-Tar Colours. By Prof. Bcncdikt. Trans-
l a t e d b y l)r. K n c c h t o f B r a d f o r d . 5 s . 
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HISTORY, TOPOGRAPHY, &c. 
Borne and the Campagna. By R. Burn, M.A. "With 85 En­

gravings and 26 Maps and Plana. With Appendix. 4to. '61. 3s. 
Old Home. A Handbook for Travellers. By B. Burn, M.A. 

With Maps and Plans. Demy 8vo. 10.s. 6d. 
M o d e r n Europe. B y Dr. T. I I . Dyer. 2nd Edition, revised and 

continued. 5 Tola. Demy 8vo. 21. 12s. 6<L 
The History of the Kings of Rome. By Dr. T. H . Dyer. 8vo. 16s. 
T h e History of Pompei i : its Buildings and Antiquities. By 

T. H. Dyer. 3rd Edition, brought down to 1874. Pos t 8vo. 7s. (id. 
The City of Rome : its History and Monuments. 2nd Edition, 

revised by T. II. Dyer. 5s. 
Ancient Athena: its History, Topography, and Remains. By 

T. H. Dyer. Super-royal 8vo. Cloth. 11. 5s. 

T h e Decline of the Roman Republic. By G . Long. 6 vole. 
8vo. 14s. each. 

A History of E n g l a n d during the Ear ly and Middle Ages . By 
0. H. Pearson, M.A. 2nd Edition revised and enlarged. 8vo. Vol. I. 
16s. Vol. II. 14s. 

Historical M a p s of England. By C. H . Pearson. Folio. 3rd 
Edition revised, 31s. 6d. 

History of Eng land , 1800-15. By Harriet Martineau, with new 
and copious Index. 1 vol. 3s. 6d. 

History of the Thirty Years' Peace, 1815-16. By Harriet Mar­
tineau. 4 vols. 3s. 6d. each. 

A Praotioal Synopsis of English History. By A . Bowes. 4th 
Edition. 8vo. 2s. 

Lives of the Queens of England. By A. Strickland. Library 
Edition, 8 vols. 7s. 6(2. each. Cheaper Edition, 6 vols. 5s. each. Abridged 
Edition, 1 vo l . 6s. 6d. 

Eginhard's Life of Kar l the Great (Charlemagne). Translated 
with Notea, by W. Glaister, M.A., B.C.L. Crown 8vo. is. 6d. 

Outlines of Indian History. By A. W . Hughes. Small Post 
8vo. 3». Si. 

The Elements of General History. By Prof. Tytler. New 
Edition, brought down to 1874. SmaU Post 8vo. 3s. 6d. 

A T L A S E S . 

A n Atlas of Classical Geography. 24 Maps. By W . Hughes 
a n d Gk Long, M.A. New Edition. Imperial 8vo. 12s. 6d. 

A Grammar-School Atlas of Classical Geography. Ten Maps, 
Belec ted from the above. New Edition. Imperial 8vo. 5s. 

First Classical M a p s . By the Bev. J. Tate, M.A. 3rd Edition. 
Imperial 8vo. 7s. 6d. 

Standard Library Atlas of Classical Geography. Imp. 8vo. 7s. 6d. 
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PHILOLOGY. 
W E B S T E R ' S D I C T I O N A R Y O F T H E E N G L I S H L A N -

G U A G E . W i t h Dr . Mann's E tymology . 1 vo l . 1628 pages, 3000 I l lns . 
trations. 21s. W i t h Appendices and 70 additional pages o f Il lustra­
tions, 1919 pages, 318. 6d. 

' T u x B J C S T P R A C T I C A L E N G L I S H D I C T I O N A R Y EXTANT.'—Quarter ly Eeuien:, 1873. 
Prospectuses, wi th specimon pages, post free on application. 

R i c h a r d s o n ' s P h i l o l o g i c a l Dictionary of trie English Language. 
Combining Explanation with Etymology, and copiously illustrated by 
Quotations from the best Authorit ies. W i t h a Supplement. 2 vols. 4 to . 
41.14«. 6d., half russia, 51. 15s. 6d.; russia, 61.12s. Supplement separately. 
4to. 12s. 

A n 8vo. Edit , wi thout tho Quotations, 15s. j half russia, 20s.; russia, 24s. 
Brief History of the E n g l i s h Language. By P r o f . James Hadley, 

L L . D . , Y a l e College. Fcap. 8vo. Is. 
The Elements of the English Language. By E. Adams, Ph .D . 

21st Edit ion. Post 8vo. 4s. 6d. 

Philological Essays. By T . H . Key, M.A. , F .B .S . 8vo. 10s. 6(2. 
Language, its Origin and Development. By T . H . Key, M . A . , 

F . R . S . 8vo. l i s . 

Synonyms and Antonyms of the English Language. By Arch­
deacon Smith. 2nd Edi t ion. Pos t 8vo. 5s. 

Synonyms Discriminated. By Archdeacon Smith. Demy 8yo. 
2nd Edit ion revised. 14s. 

Bible English. Chapters on Words and Phrases in the Bible a n d 
Prayer Book. By Rev . T . L . (J. Davies. os. 

The Queen's English. A Manual o f Idiom and Usage. By the 
late Dean Al fo rd 6th Edition. Fcap. 8vo. 5s. 

A History of English Rhythms. By E d w i n G u e s t , M . A . , D . C . L . , 
L L . D . Mew Edition, by Professor W . W . Skeat. Demy 8vo. 18s. 

Etymological Glossary of nearly 2 5 0 0 English "Words de­
r ived from the Greek. B y tho Rev . E . J. Boyoe. Fcap. 8vo. 3s. 6d. 

A Syriao Grammar. By G. P h i l l i p s , D . B . 3 r d Edition, enlarged. 
8vo. 7s. 6d. 

See also page 14. 

D I V I N I T Y , MORAL PHILOSOPHY, &c. 
N o v u m Testamentum G r a c e . E d i t i o m a j o r . By F . H . S c r i v e n e r , 

A . M . , T.T..D., D . C . L . Bein^ an enlarged Edition, containing the Readings 
of Westeott and Hor t , and those adopted by the Revisers, &c. 7s, 6d. 
For other Editions see page 2. 

By the same Author. 

Oodex BezEB Cantabrlgiensis. 4 t o . 26s. 

A Plain Introduction to the Criticism of the N e w Testament. 
W i t h For ty Facsimiles from Ancient Manuscripts. 3rd Edit ion. 8vo. 18s. 

Six Lectures on the Text of the N e w Testament For E n g l i s h 
Readers. Crown 8vo. 6s. 

T h e N e w Testament for English Readers. By t h e l a t e H . A l f o r d , 
D . D . Vo l . I . P a r t I . 3rd Edit . 12s. V o l . I . P a r t I I . 2nd Edi t . 10s. 6d. 
V o l . I I . Pa r t I . 2nd Edi t . 16s. V o l . I I . Pa r t I I . 2nd Edit . 16s. 

T h e Greek Testament. By t h e l a t e H . A l f o r d , D . D . Vol. I . 6 t h 
Edi t . 11. 8s. V o l . I I . 6th Edi t . 11. is. V o l . I I I . 5th Edi t . 18s. V o l . I V . 
P a r t I . 4th Edi t . 18s. V o l . I V . P a r t I I . 4th Edit . 14s. V o l . I V . 11. 12s. 
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Companion to the Greek Testament. By A. C. Barrett, M . A . 
5 t h E d i t i o n , r e v i s e d . F c a p . 8 v o . 5 s . 

The Book of Psalms. A New Translation, with Introductions, &o. 
B y t h e V e r y R e v . J . J. S t e w a r t P e r o w n e , D.D. 8 v o . Vol. I. 6 t h E d i t i o n , 
1 8 s . Vol. I I . 6 t h E d i t . 1 6 s . 

Abridged for Schools. 5th Edition. Crown 8vo. 10s. 6d. 
History of the Articles of Religion. By C. H . Hardwick. 3rd 

Edition. P o s t 8 v o . 5 s . 
History of the Creeds. By J. B . Lumby, D . D . 2nd Edition. 

C r o w n 8 v o . 7 s . 6 d . 

Pearson on the Creed. Carefully printed from an early edition. 
W i t h A n a l y s i s a n d I n d e x b y E . W a l f o r d , M . A . P o s t 8 v o . 5 s . 

Liturgies and Offices of the Church, for the use of English 
B e a d e r s , i n I l l u s t r a t i o n of t h e B o o k o f C o m m o n P r a y e r . B y t h e R e v . 
E d w a r d B u r b i d g e , M . A . C r o w n 8vo. 9 s . 

A n Historical and Explanatory Treatise on the Book of 
C o m m o n P r a y e r B y R e v . W . Q - . H o r n ? h r y f B . D . 6 t h E d i t i o n , e n l a r g e d . 
S m a l l P o s t 8 v o . 52s. 6 d . ; C h e a p E d i t i o n , I s . 

A Commentary on the Gospels, Epistles, and Acts of the 
A p o s t l e s . B y R o v . W . D e n t o n , A . M . N o w E d i t i o n . 7 v o l s . 8 v o . 1 8 s . 
e a c h , e x c e p t V o l . I I . o f t h e A c t s , 1 4 s . S o l d s e p a r a t e l y . 

Notes on the Catechism. By Bt. Eev. Bishop Barry. 7th Edit. 
F c a p . 2 s . 

Catechetical Hints and Helps . By Eev. E . J. Boyoe, M . A . 4th 
E d i t i o n , r e v i s e d . F c a p . 2 s . 6 d . 

Examination Papers on Religious Instruction. By Be v. E . J. 
B o y c e . S e w e d . I s . 6 d . 

The W i n t o n Church Catechist. Questions and Answers on the 
T e a c h i n g o t t h o C h u r c h C a t e c h i s m . B y t h o k i t e R o v . J . S . B, M o n s e l l , 
L L . D . 4 t h E d i t i o n . C l o t h , 3 s . ; or i n F o u r P a r t s , s e w e d . 

The Church Teacher's Manua l of Christian Instruction. By 
R o v . M . E . S a d l e r . 3 4 t h T h o u s a n d . 2 s . 6 d . 

E a s y Lessons cn the Church Catechism, for Sunday Schools. 
B y R e v . B . T . B a r n e s . I s . 6 d . 

FOREIGN CLASSICS. 
A Series for use in Schools, with English Notes, grammatical and 

explanatory, and renderings of difficult idiomatic expressions. 
Fcap. 8vo. 

Schiller's Wallenstein. By Dr . A . Buchheim. 5th Edit. 5s. 
Or t h e L a ^ e r a n d P i e c o l o m i n i , 2 s . 6 r t . W a l l e u s t e i n ' s T o d , 2 s . 6 d . 

M a i d of Orleans. By Dr . W . Wagner. 2nd Edit. Is. 6J. 
Maria Stuart. By V . Kastner. 2nd Edition. Is. 6d. 

Goethe's H e r m a n n and Dorothea. By E . Bell, M . A . , and 
E . W o l f c l . I s . 6 d . 

German Ballads, from Uhland, Goethe, and Schiller. By C. L . 
B i e l e f e l d . 3 r d E d i t i o n . I s . 6 d . 

Charles X I I . , par Voltaire. By L . Direy. 7th Edition. Is. 6d. 
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Aventures de Tôlémaque, par Fénélon. B y C. J. Deli l lc . 4th 
Edition. 2s. 6d. 

Seleot Tables oi L a Fontaine. By F . E . A.Gaac. 18t l iEdi t . ls.ëd. 
Piooiola, by X . B . Saintine. By Dr. Dubuo. 15th Thousand. Is . 6d. 
Lamar t ine ' s L e Ta i l l eur de P ie r res de Sain t -Point . Edited, 

•with Notes, by J. Boie l le , Senior l^rench. Master , Dulwich Col lege. 4th 
Thousand. Fcap. 8vo. ls . 6(2. 

I t a l i an Pr imer . B y Rev. A . C. Clapin, M . A . Fcap. 8vo. l s . 

F R E N C H C L A S S - B O O K S . 
F r e n c h G r a m m a r for Public Schools. By Bev . A . G. Clapin, M . A . 

Fcap. 8vo. 11th Edi t ion, revised. 2s. Bd. 
F r e n o h Pr imer . By Eev. A . C. Clapin, M . A . Fcap. 8vo. 7th Edi t . 

Is. 
P r i m e r of F r e n o h P h i l o l o g y . B y Bev. A . C. Clapin. Fcap. 8vo. 

2nd Edit. l s . 
L e N o u v e a u T r e s o r ; or, French Student's Companion. By 

M. E. 8. 18th Edit ion. Fcap. Bvo. ls . 6d. 
F r e n c h Examina t i on Papers in Miscellaneous Grammar and 

Id ioms. Compiled by A . M . M . Stedman, M . A . Crown Bvo. 2s. Gd. 
Manua l of F r e n c h Prosody . By Arthur Gosset, M . A . Crown 

8vo. 3s. 
F . E . A . GASC 'S F E E N C H C O U R S E . 

F i r s t F r e n c h B o o k . Fcap. 8vo. 96th Thousand, l s . 6<Z. 
Second F r e n c h B o o k . 42nd Thousand. Fcap. 8vo. 2s. 6d. 
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