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PREFACE. 

T H E  material of the present volume consists of the substance 
of lectures delivered, from time to time, during my tenure 

of the Sadlerian professorship of pure mathematics in the University 
of Cambridge. The last occasion, when such lectures were given 
by me, was during the Michaelmas Term of 1909. 

As the volume does not pretend t o  be a complete treatise on 
differential geometry, and as i t  is restricted to the contents of my 
lectures, readers will find that  not a few sections of the vast range 
of the subject are discussed only shortly and that some are left 
undiscussed. I n  lectures, my aini was to expound those elements 
with which eager and enterprising students should become ac- 
quainted; they could thus, in my opinion, be best prepared for 
the penetrating consideration, which is suited for the private study 
rather than for the lecture-room or the examination-room. No 
lack of individual interest was implied in omitted branches of the 
subject ; t.o give an instance of a purely persona1 kind, my lectures 
never even mentioned the application of Lie's theory of continuous 
groups t o  the construction of the differential invariants for space 
and for surfaces in space-a matter to  which, elsewhere, 1 had 
devoted some attention. One of my ideals, in lecturing t o  students, 
was to  provide them with sorne of the instruments for research; 
consequently this volume is mainly intended for students who, 
later, may devote themselves to original work. 
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vi PREFACE 

The book can be regarded as composed of three main sections ; 
its divisions are only partially indicated by the chapters, which are 
numbered consecutively. Througliout, it deals solely with con- 
figurations in ordinary Euclidean space. 

I n  the first section, consisting of a single chapter, the properties 
of skew curves and of their associated lines and planes are ex- 
pounded, without regard to any family or families of surfaces upon 
which the curves may happen to lie. 

In the second section, consisting of chapters II-VI, the subject- 
matter is the properties of curves upon any general surface in space. 
Some classes of these curves (e.g. lines of curvature) are organically 
connected with the surface ; tliey are completely determined by 
the elements of the surface to which they belong. Other curves, 
such as geodesics, have an equally organic relation with the surface; 
but they are not detemined solely by the elements of the surface, 
for they can satisfy some arbitrarily assigned condition or conditions. 
Again, quite arbitrary curves and families of curves can be assumed 
upon a surface; not a little attention has been devoted to methods 
for constructing differential invariants which, being in value in- 
dependent of parameters of reference, express the geometrical 
magnitudes of the curves, subject, of course, t o  the dominance 
of the intrinsic magnitudes of the surface containing the curve 
or curves. 

In the third section, consisting of chapters VII-XI, the subject- 
matter is surfaces in general, rather than particular configurations 
on surfaces. The most ordinary methods of point-to-point corre- 
spondence and cornparison of surfaces are explained. Surfaces, 
which are defined (wholly or partially) by intrinsic properties, 
are considered, special attention being paid to minimal surfaces. 
Families of surfaces are discussed, according to the respective 
definitions that ultimately establish the families; the most 
obvious instance relates to those surfaces which have plane or 

spherical sets of lines of curvature. Lastly, a brief sketch of 
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PREFACE vii 

the simplest fundamental properties of triply orthogonal systems 
is given. 

The book concludes with a single chapter that contains an 
introduction to the elementary theory of congruences of curves, 
specially of straight lines and of circles. 

Scattered throughout the book, examples (over two hundred 
in number) will be found; many of them are extracted from 
memoirs by various authors. A t  the end, there is a set of 
miscellaneous exarnples collected from Cambridge examination 
papers in recent years; for the collection, 1 am indebted to 
Mr R. A. Herman. 

To facilitate reference, 1 have constructed a customary table 
of contents a t  the beginning of the book and a customary subject- 
index at the end ; and, because a more or less persistent significance 
is assigned to many of the symbols that are used, 1 have given (at 
the end of the table of contents) a list of these symbols with the 
passages where the significance is first stated. 

From the frequent references throughout, as well as in the 
references in the brief half-historical introductions to most of the 
chapters, it will be seen that one of my special desires has been to  
direct students to the work of the mathematician who, 1 think, 
would be generally hailed as the greatest living master of the 
subject. The treatise by Darboux must rernain, a t  least for this 
generation, the classical exposition of Differential Geometry. 

I n  exposition, i t  may have been rash on my part to restrict 
myself throughout to a treatment, which is based mainly upon the 
ana,lysis used by Gauss and by those who followed him in its use. 
Certainly 1 have made no attempt to give what could only have 
been a rather faint reproduction of Darboux7s treatment, which 
centres round the tri-rectangular trihedron a t  any point of a curve 
or surface or system. My hope is that students may experience 
an added stimulus of interest when they find that different methods 
combine in the development of growing knowledge. 
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viii PREFA-CE 

Of course, in so extensive a subject, indebtedness naturally is 
not confined to one great worker alone. The names quoted in the 
course of my pages (and al1 have been quoted, whose work has 
been used by me) will give some hint of the multitude of workers 
who, through the long sequence of years, have constructed the 
immense fabric of acquired knowledge. Great as many of those 
names are, 1 wish here t o  place on record my own sense of gratitude 
to Darboux and t o  his work. My tribute of homage is gladly 
rendered in this year, the jubilee of his doctorate a t  Paris. 

For valuable help given to me in many ways during the revision 
of the proof-sheets, as well as for suggestions and criticisms that 
proved useful to me, 1 tender my most cordial thanks to my 
friend Mr R. A. Herman, Fellow and Lecturer of Trinity College, 
Cambridge, and University Lecturer in Mathematics. 

Finally, in past years and on other occasions, i t  has been my 
good fortune to  receive the unfailing assistance of the staff of the 
University Press at Cambridge. On this occasion, their assistance 
has been forthcoming in the same generous and unstinted nieasure 
as before. To them, as only is their due, my thanks once more are 
given. 

A. R. F. 
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SYMBOLS USED, AND THEIR SIGNIFICANCE. 

THE following list of symbols has been framed for convenience of reference. The 
meanings assigned are those which are most frequently used; they are given in the 
defhitions on the respective pages indicated by the numbers. It should be understood, 
however, that other meanings are occasionally and temporarily assigned to them ; and it 
will be found that some symbols, such as those which have a significance limited to  a 
special investigation, are not included. 

A binary form connected with the curvature of a normal section, 190. 
A magnitude for a ruled surface, 380. 

A, B, =EN-FL,  EN-GL, FN-GM, 95. 

A, B, G, F, O, B quantities connected with triply orthogonal systems, 432. 

a, a', a" 

a, 4 c 

a, b, c 
a, b, b; c 

B 

B, B' 
b, b', b" 
c, c: d' 

D 
D 

Dl 4,4 
E, 4 
E, F, (3 

E', F', G' 

Q 

% A  s 
% A  s 
f 
fi 
(f, 4 
f=O, g=o 

9 
ET 

direction-cosines of the tangent to a skew curve, 20. 

parametem of plane or spherical lines of curvature, 310. 

direction-cosines of generator of a ruled surface, 380. 

quantities connected with a rectilinear congruence, 475. 

magnitude for a ruled surface, 380. 

[B = d$/dn = {A (c#I)}$, covariants, 219, 230. 

direction-cosines of the principal normal to a skew curve, 20. 

direction-cosines of the binormal to a skew curve, 20. 

multiplier connected with geodesic polar coordinates, 89. 

magnitude for a ruled surface, 380. 

quantities in  the equations of geodesics, 190. 

fundameutal magnitudes of the first order for a surface, 33. 

fundamental magnitudes of first order for first sheet of centro-surface 
110. 

fundamental magnitudes of 6rst order for second sheet of centro 
surface, 110. 

excess-function in calculus of variations, 127. 

fundamental quantities for a spherical image, 254. 

quantities conneded with a rectilinear congruence, 476. 

a relative invariant, 210. 

critical function for range of geodesics, 126. 

Jaobian  magnitude in partial differential equations, 175. 

equations of congruences of curves, 467. 

multiplier connected with geodesic polar coordinates, 89. 

mean curvature of a surface a t  a point, 44. 
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L', M', N' 

4 m, n 
m, m', m" 

measures of mean curvature for centro-surface, 111. 

magnitudes for triply orthogonal surfaces, 410. 

binary form connected with two curves on a surface, 230. 

magnitudes for triply orthogonal surfaces, 409. 

zero or unity, in connection with a binary form, 190. 

au invariant connected with a curve, 217. 

geodesic contingence of a c u v e  on a surface, 149. 

angles between geodesic and parametric curves, 148. 

Jacobian in a congruence, 470. 

binary form connected with a curve on a surface, 230. 

three binary forms connected with a curve, 217, 218, 229. 

Jacobian for two sets of parametric variables, 204. 

specific (or Gauss measure of) curvntiire of a surface a t  a point, 44. 

measures of specific curvature for centro-surface, 111. 

parameter of plane or spherical lines of curvature, 310. 

focal lengths along a ray, 480. 

fundamental magnitudes of the second order for a surface, 38. 

fundamental magnitudes of second order for drst sheet of centro-surface, 
111. 

fundamental magnitudes of second order for second sheet of centro- 
surface, 111. 

direction-cosines of binonnal of a skew curve, 5. 

derivatives of magnitudes of first order for a surface, 44. 

differentiation along geodesic normals to curves on a surface, 218, 230. 

derivatives of magnitudes of first order for a surface, 44. 

(sometimes) an arbitrary function of p only. 

quantities proportional to direction-cosines of the normal to a plane, 
16, 60. 

parameters of a current point on a surface, 32. 

parameters of congruences of curves, 468. 

coordinates of point on directrix curve of a ruled surface, 380. 

derived magnitude3 of third order for a surface, 56. 

(sometimes) an arbitrary function of p. only. 

radius of spherical curvature of a skew curve, 7. 

distance of a point on a surface of revolution from the axis, 82. 

second derivatives of z with respect t o  x and y, 60. 

element of arc in a spherical image, 254. 

arc along a curve, 2. 

element of arc along a curve, in space, 2, on a surface, 33. 

differentiation along curves on a surface, 218, 230. 

=(LN- Jf9)4, a magnitude of the second order for a surface, 38. 
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tangential coordinate of a surface, 260. 

parameter along a curve, 2. 

differentiation along a geodesic tangent t o  a curve on a surface, 223. 

distances along a ray, 478, 479. 

length along generator of ruled surface, 380. 

parameter of plane or spherical lines of curvature, 310. 

shortest distance between two consecutive raya in a congruence, 477. 

binary forms connected with a curve, 229. 

double-suffix notation for derivatives, 210. 

derivatives of u, 409. 

parameters of triply orthogonal surfaces, 409. 

Weierstrass parameters for minimal surface, 280, 291 foot-note. 

connected with Lamé relations, 419. 

connected with Lam6 relations, 419. 

parameters of nul lines (symmetric variables) on a surface, 76 ; or lines 
of curvature, 93. 

= ( E G - p ) + ,  a magnitude of the first order for a surface, 34. 

a fundamental quantity for a spherical image, 257. 

binary forms connected with a curve on a surface, 230. 

binary form connected with lines of curvature, 190. 

binary form connected with two curves, 229. 

a complex variable in a relation F(w, 2) =O, 238. 

four binary forms connected with a curve, 217. 

derivatives along a curve with regard to  the arc, 2. 

derivatives with regard to parameters, 33. 

derivatives of x, 409. 

direction-cosines of the normal to a surface, 36, 471, coordinates in  
spherical image, 254, tangential coordinates, 260. 

(sometimes) functions of z alone, of ,y alone, of z aloue. 

direction-cosines of a ray in  a congruence, 475, 484. 

elements for infinitesimnl deformation of a surface, 394, 396. 

coordinat- of a point on a curve or a surface. 

point on an adjoint minimal surface, 298. 

(=x + iy, .c -iy) conjugate complex variables in a plane, 236. 

radius of curvature of surface along one line of curvature, p=constant, 
64. 

direction-angles of the tangent to a skew curve, 17. 

parameters of plane or spherical lines of curvature, 310. 

derived magnitudes of the fourth order for a surface, 57. 

radius of curvature of surface along one line of curvature, p=constant, 
64. 
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Y', Y" 

A, A', A" 

A+ 

Aa (4)  
v 
A (+, +C.) 
8, 8' 

8, 8', 8" 

e 
(4 43) 

A 

h 

h 

h 

A, A', A", A"' 

A, x', A'; A'" 

quantities connected with magnitudes of h s t  order for a surface, 45. 

radius of geodesic curvature of any curve, 149, 192. 

quantities connected with fundamental quantities for a spherical 
image, 259. 

radii of geodesic curvature of parametric curves, 150. 

quantities connected with magnitudes of first order for a surface, 45. 

Beltrami's first differential parameter, 164. 

Beltrami's second differential parameter, 207. 

binary form connected with two curves, 229. 

a covariant intermediate to  two curves, 206. 

two binary forms connected with a curve, 217. 

quantities connected with fundamental quantities for a spherical 
image, 259. 

angle of contingence of a skew curve, 4. 

= (E#$- ~ F + ~ + ~ + G $ I ~ ~ ) * ,  153. 

angle between tangent to a curve on a surface and a line of curvature, 
192. 

inclination of generator of ruled surface to directrix ourve, 380. 

critical function for range of geodesics, 126. 

binary form connected with two curves on a surface, 230. 

quantity of first order when a surface is referred to its nul lines, 80. 

angle a t  which two curves intersect, 230. 

parameter of plane or spherical lines of curvature, 314. 

quantities connected with derived magnitudes of the third order for a 
surface, 59. 

quantities connected with derived magnitudes of tine third order for a 
surface, 59. 

direction-angles of the binormal to a skew curve, 17. 

derivatives of fundamental quantities for a spherical image, 259. 

derivatives of fundamental quantities for a spherical image, 259. 

direction-angles of the principal normal to a skew curve, 17. 

centre of curvature on first sheet of centro-surface, 108. 

centre of curvature on second sheet of centro-surface, 108. 

quantities in infinitesimal transformation, 210. 

radius of circular curvature of a skew curve, 4, of a curve on a surface, 
192. 

radius of curvature of a normal section of a surface, 41. 

radius of curvature of normal section of a surface, 151, 192. 

radius of curvature of a second normal section of a surface, 230. 

quantities connected with derived magnitudes of the third order for a 
surface, 59. 

radius of torsion of a skew curve, 5, of a curve on a surface, 192. 

radius of torsion of geodesic tangeiit, 192, 230. 
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angle of torsion of a skew curve, 5. 

angle of torsion of geodesic tangent to a curve, 154. 

parameter of plane or spherical lines of curvature, 314. 

quantity connected with geodesics, 191. 

azimuth of point on a surface of revolution, 132. 

central function in Weingarten deformations, 401. 

familj of geodesic parallels, 165. 

equation of curve on surface, 34, 194, 210. 

a covariant intermediate to  two curves, 207. 

family of geodesics, 166. 

angle of screw curvature of a skew çurve, 12. . 
binary cubic connected with variation of curvature, 192. 

angle between parametric curves on a surface, 34. 

inclination of principal normal of curve on a surface to normal of the 
surface, 151,192. 

angle between parametric curves in a spherical image, 257. 

IRIS - LILLIAD - Université Lille 1 



ERRATA 

p. 371. The two sets of equations in the last three lines should be 

d q + ~ d v - ( ~ t ~ i ) d U = o  a q + ~ d v - ( ~ - ~ 4 j d u = o  

a p - ( ~ - ~ ~ ) d v + c d u = o  , ~ ~ - ( B + A ~ ) ~ V + C ~ U = O  . 
dz -qdv  -pdu=O 

1 
dz-  qdw -pdu=O ) 

p. 372. The two sets of equations after the seventh line should be 

p. 290, line 17. For 2 oosh z read 2 oosh $2. 
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CHAPTER 1. 

A.MONG the books to be consulted on the matter of this chapter, one is the classical 
tmtise by Monge, Applications de l'analyse d b géométrie ; the most useful edition is that 
by Liouville (1850), which also contains the famous memoir by Gauss on the general 
theory of surfaces, as well as various Notes by Liouville, Serret, and others. 

The portions of Darboux's great treatisey Théol-ie générale des surfaces, that should be 
consulted, are the first four chapters of the first volume and Note IV appended to the 
fourth volume. Of Bianchi's treatiset, Lezioni di geornetria dzyerenziak, which also is 
excellent, the first chapter will repay reference in the present connection. 

This chapter deals solely with real curves in space. Certain imaginary curves in 
space (such as minimal or nul lines, and some curves of constant torsion) have important 
relations with real surfaces. The consideration of such curves, other than nul lines, 
belongs to a discussion of differential geometry more extensive than is hem possible ; but 
nul lines will be considered later (§§ 55-59) in connection with surfaces. 

1. Curves in space, when they are not plane, are called skew, or twisted, 
or curves of double curvature (of flexion or circular curvature, and of torsion) ; 
when an epithet is necessary, the word skew will be used. 

Skew curves occur in various manners. The two simplest of these modes 
arise by analytical deibition and by the expression of organic properties. 

When a curve is defined analytically, the coordinates of a current point 
are usually expressed in  terms of a variable parameter. Sometimes a n  
equivalent (but more cumbrous) definition is adopted when the curve is 
the whole, or a part, of the intemection of two surfaces; i t  is then given 
by combining the equations of the surfaces. 

When a curve is defined by an  organic property, that property is often 
relative to some surface upon which the curve lies. Thus lines of curvature, 
asymptotic lines, geodesics, are families of curves, characterised by their 
respective relations to the surfaces on which they exist. Consequently it is 
necessary to  deal with surfaces in general, before the adequate expressions 

* It wiii usndy be cited u Th6wie générale or as Darbous. 
t I t  will usuaiiy be cited as Geometria diferenziale or as Bianchi; the references will be to 

the second (Italian) edition. 

F. 1 
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2 LINES AND PLANES [CH. I 

for curves defined by organic properties can be obtained ; only the elements 
of the general theory are required for the purpose. 

We shall be concerned with intrinsic properties of curves and of surfaces, 
almost without exception. The position in space, and the orientation, of 
curves and of surfaces retain in this theory nothing of the significance and 
the importance that usually belong to them in algebraic geometry. The 
properties and relations are obtained by means of the differential coefficients 
of the magnitudes connected with the curves and the surfaces; hence the 
subject is often called differential geometry. 

Moreover, except in rare instances, we shall avoid singular points of al1 
kinds on curves and surfaces, and also singular lines on surfaces, in spite of 
their importance in other branches of geometry and in the theory of 
algebraic functions. Our purpose is the formulation of the fundamental 
properties of the curves and surfaces within a range of the geometrical 
configuration that is devoid of singularities. 

Principal Lines and Planes of a Cunre. 

2. Let t he  coordinates of a current point on a skew curve be expressed 
in terme of a parameter t in the form 

x = x (t), y = y (t), z = z (t). 
As we are dealing with an ordinary range of the curve, the functions x(t), 
y (t), z (t) are taken to be regular throughout the range of the parameter ; 
and we assume the positive direction of currency along the curve to be that 
which is given by increasing values of t. 

The arc measured along the curve from some fixed point is denoted by s ; 
we have 

where the positive sign is taken for the square root. Occasionally the arc s 
is the dependent variable in an investigation; then i t  is usually convenient 
to keep s a function of t. Othenvise, there is convenience in  making the 
arc s the actual parameter; in al1 such cases, we denote the first derivatives 
of x, y, z by x', y', 2';  and similarly for derivatives of higher orders. Clearly 

$'2 + y's + 2'" 1. 

If E, q, C are the coordinates of a point Q on the curve, whose arc-distance 
from P is u, then 

E = x + m' + &Px'' + &usx"' + . . .) 
7 = y +  uy'+ +u2yf'+ gu3y'" + ... , 
f: = z + wf + +u2zff + gu3zfff + . . . i 

where the coefficients of the powers of V L  are the values of the derivatives a t  P. 
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31 CONNECTED WITH A SKEW CURVE 3 

3. The tangent is the limiting position of a secant through P and a 
consecutive point; hence the equations of the tangent are 

X - x  Ir-y 2-2 -- - -- 
xr Y' zr ' 

where X, Y, Z are current coordinates along the line. The direction-cosines 
of the tangent a t  P are x', i, z' ; the positive direction of the tangent is taken 
to be that in which s and t increase. 

The plane through P perpendicular to the tangent at  P is the normal 
plane; its equation is 

( X - x ) x l + ( Y -  y)y l+(Z-z)z '=O.  
Every line passing through P in this plane is a normal to the curve. 

Any number of planes pass through the tangent a t  P ;  their general 
equation is 

( X - x ) l + ( Y -  y ) m + ( Z - z ) n = O ,  
with the condition 

lx' + my' + nz' = 0. 

The osculating plane a t  P is defined as the one of these planes through the 
tangent a t  P which also contains the tangent a t  a consecutive point; as 
the direction-cosines of this consecutive tangent are proportional to 

x'+mr'+ ..., y'+uyJ'+ ..., B'+uz"+ ..., 
we have, for the osculating plane, 

that is, using lx' + my' + nd = O, we have 
lx" + my" + nz" = O 

in the limit. Hence the equation of the osculating plane is 

As the tangent at  P is the limiting position of a secant through P and a 
consecutive point P', and the tangent a t  P' is the limiting position of 
a secant through P' and another consecutive point P ,  the osculating plane 
at  P is the limiting position of a plane through P and two consecutive 
points. Three points usually suffice to determine a plane uniquely ; and so 
the osculating plane a t  P is the plane which, of al1 the planes through P, 
has the closest contact with the curve. Moreover, through three points a 
unique circle can be drawn ; hence, lying in the osculating plane, there is a 
circle which is the limiting position of the circle through P and two points 
on the curve consecutive to P. I t  is sometimes called the osculating circle ; 
its radius is definite in position and magnitude, and is called the radius of 
circular curvature (sometimes the radius of flexion, sometimes the radius of 

1-2 
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4 CURVATURE [CH. 1 

curvature simply), while the curvature of the circle is called the circular 
curvature of the curve (sometimes the flexion, sometimes the curvature 
simply). 

It is easy to see that the intersection of two consecutive osculating planes 
is a tangent to the curve. 

4. Among the normals a t  P to the curve, there is one which lies in 
the osculating plane; it is called the principal normal. The centre of 
circular curvature lies on this principal normal, and is the intersection of 
two consecutive normal planes and the osculating plane; hence i t  is 
given by 

( I : - x ) x f + ( q - y ) y 1 + ( 5 - z ) d = O ,  
( ~ - x ) x " + ( ~ - ~ )  y"+(f .-z)z"=x'~+ y'"d2=1, 
(E - x) (y'z" - dy") + (q - y) (z'xl' - x'z") + (3- 2) (x'y" - y'x") = O. 

I t  follows that 

and therefore, denoting the radius of circular curvature by p, so that 

we have 
~ " ( f - $ Y + ( ? -  y)e+(c-zy, 

We select the positive sign for (x"~ + yV2 + - f as giving the value of p. 
The positive direction of the principal normal is taken as towards the centre 
of curvature from the point on the curve ; and therefore the direction-cosines 
of the principal normal are px':", py", pz". 

Further, let de be the angle between two consecutive tangents a t  P and 
P', and let ds denote the arc PP. Then 

so that 

1 de -=- 
P ch' 

The angle de, being the angle between consecutive tangents, is sometimes 
called the angle of contingence; and the circular curvature is sometimes called 
the curvature of contingence. 

5. Among the normals at  P to the curve, there is one which is perpen- 
dicular to the osculating plane; as i t  is perpendicular to two consecutive 
tangents, i t  is called the binormat. The equations of the binormal a t  P are 
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and its direction-cosines are 

+ p (Y'Z" - ztyl'), + p (z'x" - x'z"), f p (x'y" - y'x"). 

The direction-cosines of any line are customarily taken to be the direction- 
cosines of its positive direction. For the tangent and for the principal normal. 
these have been settled; the binormal is merely perpendicular to the 
osculating plane, and so the choice between the two possibilities for the 
positive direction is a matter of convention. We shall choose the positive 
direction of the binormal so that the positive direction of the tangent PT, 
the positive direction of the principalnormal PN (the curve being concave 
to N), and the binormal PB, stand to one another in the same way as do 
the coordinate axes Ox, Oy, Oz in the usual rectangular configuration; and 
then the direction-cosines of the binormal are 

The figure formed by the three lines and the three planes is called the 
trihedron of the curve a t  P (sometimes the principal trihedron, sometimes 
the moving trihedron) ; and the lines are sometimes called the principal axes 
or lines of the curve a t  the point. , 

6. The angle of torsion is the angle between consecutive osculating 
planes or between consecutive binormals. If this angle be denoted by d ~ ,  
the quantity d ~ l d s  measures the rate per unit of arc a t  which the 
osculating plane turns round the tangent. I t  is usually denoted by l /u ,  
so that 

and u is usually called the radius of torsion, while 1/u is often called the 
curvature of torsion, or simply the torsion. But there is no circle of torsion 
associated with the curve in the same kind of way as the circle of curvature; 
the radius of torsion is devoid of direction, though the torsion itself has 
a sign that will be used (§ 9) with the foregoing convention. If Z, m, rn be 
the direction-cosines of the binormal a t  P, and I + dl, m + dm, n + dn be 
those of the consecutive binormal, then 

sin2 dr  = 'I: {m ( n  + dn) - n (m + d ~ n ) } ~ ,  
that is, 

---- ' - dT - {(mnl - n iny  + (nt' - n?). + (lm' - t?'m~]*. 
a ds 

Now 
m = p (zl& - x'z"), = p (z '~" '  - x ' y )  + p' (z'x" - x'z"), 
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6 TORSION OF A CURVE [CH. 1 

hence 
- = - x'z") - y'x'll) - - (zlx"l - xrz"l)} 

x ' ,  y', 2 ' .  

x y" , 2" 

I l ,  y/l/, zl/' 

Similarly for the other two quantities in the expression for l/a. Substituting, 
and taking the positive sign for the square root, we have 

2' = p (ytz'" - dy"') + p' (y'z" - 
and so for the others ; substituting, and èvaluating, we have 

1 

another expression for U, which will be deduced otherwise in another 
connection. 

-- - 
p2fJ 

7. These particular results as regards the expressions for de and dr, 
and other results specially relating to inclinations of lines organically related 
to any curve, c m  be obtained by the use of the spherical indicatrix. Through 
the centre of a sphere of radius unity, let a radius be drawn parallel to a 
line whose direction-cosines are a, 8 ,  y; the extremity of the radius can be 
regarded as representing the line. Thus, corresponding to al1 the tangents 
of the curve, there will exist a continuous curve upon the sphere which 
consequently provides an image of the sheaf of tangents. 

' 9 y' , z' 

xl' , yl' > 2'' 

x'/', y/!J, zll/ 

Let another radius be drawn parallel to a consecutive line whose 
direction-cosines are a + da, + dB, y + dy. The angle between this line, 
and the line that has a, p, y for its direction-cosines, is equal to the length 
of the arc between the representative points on the spherical indicatrix; 
hence i t  is equal to 

{(da)e + ( d u  + (ciy)$.  
Thus the angle of contingence is 

thus leading to an expression for the torsion, 

Also, as 21' + mm' + nn' = O, we have 

1 
- = (1'2 + m'a + n*a)9 
O- 

Now 
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and the angle of torsion is 

8. Through the circle of curvature at  P, any number of spheres can be 
drawn; their centres lie on a straight line, through the centre of curvature 
at P and perpendicular to the osculating plane; and each of the spheres 
contains the three consecutive points which determine the circle of curvature. 
A sphere is, in general, uniquely determined by four points ; hence, when we 
choose that one of the spheres which passes through four consecutive points 
on the curve, we have the sphere which has the closest contact with the 
curve. I t  is called the sphere of cwvature; its centre is called the centre 
of spherical curvature; and its radius is the radius of spherical curvature. 
Let Xo, Y,, Zo be the centre of the sphere of curvature, and R its radius; 
then the equation 

( X -  X,)'+ (Y-  Y,)"+ ( 2 -  Zay= R2 

inust be satisfied a t  P and a t  three points consecutive to P. Thus 

(x - XO) x' + (y - Y,,) y' + (2 - 2,) 2' = O, 

(x-X,)xt' + (y -  YJy" +(z-Z,)zU =-x'2-y '2-Z'p=- 1, 

(x - X,) x"' + (y - Y,) y"' + (z - 2,) z'" = - $'& - Y'Y" - = o. 
From the last three equations, we have 

- 0 ,  y', z' 1 xP' , y" , z'! , $y, y'/l, p 

that is, 
x - 1, = pgu (y'z"' - 2'f') ; 

and similarly 
y - Y. = p20 (z'xl" - x'3"f), 

= O, y f ,  

-1 ,  y", 

0, y"', 

IRIS - LILLIAD - Université Lille 1 



8 

because 

SPHERE OF CURVATURE 

so that 

If G be the centre of circular curvature at P and S be the centre of spherical 

= 

curvature, 
CS = upl, 

numerically, since Ch' is the perpendicular through C to the osculating plane 
at P. 

Bx'2 , x 2s '~'" 

x ' x " ,  ÇXff2 , ~x'lx"i  

, x " x ' f f ,  -jx'"2 

9. The perpendicular distance of a point Q on the curye from the plane 
through the tangent and the binormal (commonly called the rectifying plane), 
the arc-distance of Q from P being u, is 

( E - ~ > p x ' ~ + ( t l - y ) p y " + ( t - z ) p E  
ua 

= - + higher powers of u ; 
2~ 

u3 
= 4 - + higher powers of u : 

P" 

that is, the curve at  P lies entirely on one side of the rectifymg plane. 
The perpendicular distance of the point Q on the curve from the 

osculating plane at P is 

= (E - x )  p (y'z" - z'yf') + (v - y)  p (dx" - x'z") + (c - z )  p (&y" - y'x") 

that is, the curve crosses its osculating plane at  P. 

= &uap x' y', d 
xff , y", Zr' 

,t//, ;/' 

+ higher powers of u 
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91 oRDERs OF CONTACT 9 

- - 

Now 

The normal distance of the point Q on the curve from the sphere of 
curvature at P being n, we have 

(R + n)2 = ( f :  - X,)" + (7 - Y$ + (c  - Z$. 
Retaining only the lowest power of n, and the lowest power of .u that is 
significant, we find 

2Rn. = u4p, 
where 

xf , y ' ,  z' 
xfff,  $I/ 

xfllf, yfffl, dl// 

Zx'" Zx'xff , 
Cx'd" , 8x"xf" ,  

C x k n f f  , 2x"x/"', 

p = p2u 

= p"/p5ua + pfu'/p5u3 + 1/p4u4 + l /pau2; 

and therefore 
p = pl'/p + plu'/pu + l /a2 

Hence the normal distance of Q from the surface of the sphere of 
curvature at  P is 

Denoting this determinant by D, we have 

, yf , 2' 
xff/ ,  f / ,  z/ f f  

xf / / / ,  

that is, the curve at P lies entirely on one side of the surface of its sphere of 
curvature a t  the point. 

- l /pz .  

When P is taken as an origin, and the three principal lines a t  P are 
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taken as axes of reference, the most important terms* in the expressions for 
the coordinates of Q are 

When u is positivc, the current point of the curve passes a t  P from the 
negative to the positive side of the osculating plane; when u is negative, 
the passage of the current point is from the positive to the negative side of 
that plane. 

Routh's Diagram. 

10. The association of the kinematics of a rigid system with geometry 
is of ancient occurrence ; and i t  has been much used by writers on geometry, 
very specially by Darbouxt. A simple and effective use of the notion in 
discussing the properties of skew curves has been made by Routh;. 

I n  the accompanying figure, drawn for the case of positive torsion, 
PT,  PN,  P B  are the tangent, the principal normal, and the binormal, of a 
curve at a point P ,  so that B P N  is the normal plane, T P N  is the osculating 
plane, and TPB is the rectifying plane; C is the centre of circular curva- 
ture, and S is the centre of spherical curvature, so that CS is perpendicular 
to the osculating plane TPN. The principal normal a t  a consecutive point 
Q distant ds from P is QC', which does not meet P C  because i t  lies in the 
consecutive osculating plane a t  Q ;  the centre of circular curvature a t  Q is 
Cf ;  and PQC' is the osculating plane at Q. The centre of spherical curvature 
a t  Q is 8' ;  so that C'Sr, which is the intersection of two consecutive normal 
planes at Q (and therefore passes through SI the intersection of three 
consecutive normal planes at P), is perpendicular to the plane PQC'; thus 
S, CI, Cl P lie on a circle, for both the angles SCP and SC'P are right. 
Then 

P C = p ,  QCr=p+dp=PC ' ,  KC'=dp, 
neglecting powers of small quantities higher than those retained. Also 

de = angle of contingence 

= inclination of the consecutive normal planes SC'P, SC'Q 

= angle PC'Q, ' 

and 
d s  = angle of torsion 

= inclination of the consecutive osculating planes CPQ, C'PQ 

= angle CPC' = angle CSC'; 

* For higher terms, see Mathews, Quart. Journ. Hath., vol. xxvi (1893), pp. 27-30. 
i. It is made fundamental in his treatment of the subject : see, passim, his treatise Theorie 

générale. 
S Quart. Journ. Math., vol. vii (1866), pp. 37-44. 
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101 DIAGRAM 

and therefore 
K C  = p d r  = pds/u, 

CS = KCr]angle CSC' = dp1d.r = op'. 

Further, PX = R, so that 
R2 = PC2 + CSe = pz + 8 p i ,  

while 
tan CPS = apl/p. 

Again, as regards the locus of S, we have 

d E  = its angle of contingence 
= CSC' = d7, 

dl' = its angle of torsion 

= inclination of CSC' (a normal plane) to the consecutive normal plane 
= de. 

Further, taking #Y parallel to CP and PM ~arallel to C'S', we have 

d2p Y'M = SIC' - SC = variation of SC = - d ~ ,  d r 2  
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and therefore. for the locus of S. 
d2 P the radius of circular curvature (p,j = p + a, 

the radius of torsion (a,) 

11. The use of the diagram can be developed. Thus PC and QC' do not 
intersect; so the principal normals of the curve have no envelope. Let dc 
be the arc-element of the locus of C ;  then 

( d ~ ) ~  = (C'Ky + (C'Ky = (pdry+ ( d ~ ) ~  = R = ( ~ T ) ~ ,  
so that 

while, if + denotes the inclination of the tangent CC' to the principal normal 
a t  P (being equal to the angle CSP), we have 

cot + = up'lp. 

Next, denoting by d~ the angle between PC and QC', we have, from the 
spherical indicatrix, 

d~ = {(dey + (O?+)*, 
and so 

a magnitude sometimes called the screw curvature of the curve a t  the point. 

12. Two consecutive normal planes at  P intersect in the line CS, which 
is called the polar line. The plane TPB, perpendicular to the principal 
normal PC, is called the rectifying plane; i t  contains the binormal PB, but 
two consecutive rectifying planes do not intersect in the binormal. Their 
intersection, a line PR through P, is called the rectifying line; it can be 
obtained as follows. The equations of QC', the radius of curvature a t  Q, are 

and therefore the equation of the rectifying plane a t  Q, which is perpendicular 

Where this plane cuts Y = 0, the rectifying plane a t  P, we have 
-(X-ds)de+Zdr=O, 

or, ultimately, 
-Xde+Zdr=O; 

hence the equations of the rectifying line PR are 

Y = O, = Xdf1d.r = Xa/p. 

Thus the inclination of PR to the binormal is tan-' (p/u). 
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ASSOCIATED DEVELOPABLES 

Associated Developab les. 

13. The equation of any plane, organically connected with a skew curve, 
contains a single parameter ; the envelope of the planes is therefore a develop- 
able surface. Among these, the most interesting are the envelopes of the 
principal planes of the curve. 

On the surface, which is the envelope of the osculating planes, the original 
curve is the edge of regression (or cuspidal locus). To the consideration of 
this developable we shall return in § 16. 

The envelope of the normal plane is calledY the polar deveiopable. I t s  
equation is obtained by eliminating the parameter between 

( X - x ) x f  + ( Y - ? / ) y 1  + ( 2 - z ) z f  =O, 
( X - x ) x l '  + ( Y -  y )  yf'+ ( 2 - z ) z f f  = x f 2 +  yf2+zf2= 1. 

When these equations are taken together, without elimination of the variable, 
they are the equations of the polar line; they can be changed into the 
form 

.X - (x + p2xff) - Y - ( y  + pzy'f) Z - (2 + p2df )  - - - Z'yff - zfxff - zfz'f x'Yfl - Y'x'~ ' 
verifying the property that i t  passes through the centre of circular cur- 
vature and is perpendicular to the osculating plane; and any point on i t  
is a pole of the circle of curvature. Moreover, being the intersection of two 
consecutive planes which are tangent planes to the polar developable, the 
polar line is a generator of that surface. 

The edge of regression of the polar developable is the locus of the centres 
of spherical curvature ; and therefore (by 5 8) its equations are 

x-x y-Y - 2 - 2  - z ly f f /  - zfz,ff - xfd/# - x fy f f f  - ~ a f f l  = - par. 

Also, the osculating plane of the edge of regression at  X, Y, Z is the normal 
plane of the original curve at  x,  y, z ;  and the normal plane of the edge 
of regression a t  X, Y, Z is parallel to the osculating plane of the original 
curve a t  x, y, a. 

14. The envelope of the rectifymg plane TPB is usually called the 
rectifying developable. 

The reason for using the epithet arises from an intrinsic property of the 
surface. The principal normal of the original curve is PX, perpendicular to 
the plane TPB, and therefore coinciding with the normal to the rectifying 
developable; hence the original curve is a geodesic (a line of shortest 
distance) upon the surface. When a surface is deformed without stretching 

* The names of the various surfaoes were essigned by Monge, Applications de l'analyse à ia 
géométrfe (1795), quoted on p. 1. 
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14 ASSOCIATED [CH. 1 

or tearing, there is no change in the length of any portion of any curve; 
when a developable surface is developed into a plane, every geodesic becomes 
a straight line. Thus, when the rectifying developable is developed into 
a plane, the original curve becomes a straight line; hence the name of 
the surface. 

The equation of the surface can be obtained by eliminating the parameter 
between the equations 

When these equations are taken together, without elimination of the variable, 
they are the equations of the rectifying line through P. They can be taken 
in the equivalent form 

the cosine of the inclination of the rectifying line to the tangent is 

1 xtff, ?y, zl" 1 
which is equal to p + 9) -i, agreeing with a former result, 

The edge of regression of the rectifying developable is given by the 
equations 

( X - X ) X "  + ( Y - y ) y I f  + ( Z - z ) z f '  = O ,  

( X  - x )  xf" + (Y - y )  y"' + ( 2  - 2 )  2"' = a'x" + yfy" + z'z" = O, 

( X  - x )  xMf' + (Y - y) if/' + ( 2  - z )  d"' = xfx"' + y'y'" + zlz"' = - l l p 2  ; 

and therefore the point corresponding to P is given by 

x - x  y- Y 2 - z  1 
YnZ/f f  - Z f f y f f f  = Z~vI_xla,l = xffy / f f  - f x w  =-- 

p2E' 

where E is the determinant 

5'' , y'' , 2'' 

f ,  dl', zfll 

xrrfr ,  y f f f f ,  Z f / f I  

. 
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151 DEVELOPABLES 15 

The value of E can be found in the same way as the value of D in 5 9. 
We have 

1 
Ç,zl&l, Cz1'2 , xxllzll' . 
rx'x"l > x f x ' ,  -&'/'2 

When the values of the constituents in this determinant 
find * 

are substituted, we 

16. The rectifying developable can be usedt to determine curves the 
ratio of whose curvatures is a h o w n  variable$ function of the arc. 

Take any such curve, and construct its rectifying developable. The 
curve is a geodesic upon this surface and cuts the rectifying line at an 
angle +, where 

p = cr cot +, 
while the recti5ing line is a generator of the developable. 

Now suppose the surface developed into a plane. The assumed curve 
remains a geodesic and so becomes a straight line; take this straight line 
for the axis of x. The edge of regression becomes a curve in the plane; 
and the tangents to this curve are the developed 
tangents to the edge of regression, that is, are the 
developed rectifying lines. Let the initial point for 
measuring the arc along the assumed curve be taken 
as origin; let this be A, let P be the current point, 

edge of regression where the rectifying line at P 
touches the curve. Then for the plane curve, we 
have 

dyldx = p = tan +, 

"-I and let (x, y) be the point R on the developed 
A 

and for the distance s (which is AP) we have 

Y s = x - - .  
P 

But along the curve, we are to have alp equal to some given variable function 
of s ;  let this be expressed by the relation 

The value aleo can be obtained from the Routh diagram (p. Il), by noting that the distance, 
ds cos i from P along PR,  of the point on the edge of regression is - 

di 
, where i, = t a s 1  (plu), 

is the inclination of the rectifying line to the binormal. 
1. Pirondini, Grelle, t. cix (1893), p. '238, Ann. di Mat., 2. Ser. t. xix (1892), p. 213. 
: The case when the ratio is constant ie treated in a different manner : see 5 20, post. 
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16 OSCULATINQ DEVELOPABLE [CH. 1 

Then the plane curve into which the edge of regression has been developed 
satisfies the equation 

The primitive of this Clairaut equation is 

y - m - c G ( c ) ,  

giving the aggregate of tangents; and the singular solution, being their 
envelope, is given by the equations 

y=cx-cG(c)  1 
O=Z- G(C)-CG'(C)J'  

which thus is the equation of the developed edge of regression. Hence we 
have the result :- 

To cowtruct skew Cumes satisfying the relation s = G (a/~), form the pEarle 
curve 

= a ( C I  + CG' ( C I ,  y = C~ G' (c) ; 

bend the plane about the tangents to this curve, according to any ussigned 
law, so as to forrn a developable surface; the original m i s  of x in  the plane 
becomes, 071 the developalile surface, a slcew curve having the required property. 

16. The osculating developable is the envelope of the osculating plane 
of the curve. Its generators are the tangents to the curve; and its edge 
of regression is the curve itself 

T h i ~  property suggests another method of analytical definition of a curve 
in which the initial element is not a point of the curve as in the preceding 
investigations, but is the variable osculating plane. This method was adopted 
by Serret *, who has deduced by its means a number of results. The equation 
of the osculating plane is taken in the form 

where p and q are functions of the single parameter u. The envelope is, of 
course, a developable surface ; its generators are given by the equations 

which thus are the equations of the tangent to the curve; and its edge 
of regression is given by the equations 

z = p x + q y - u  

O = p'x + q'y - 1 . 
O = pf'x + q"y 

1 
l 

* Liouville's Journal, t. xiii (1û48), p. 353. 
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171 OscuLAïTNG DEvELoPABLE 

Thus the current point on the curve is given by the equations 

Y -=-- z + u  - - 1 , f f - ,n - Pq'f - qp" p'p" - ' 

Let 
A = ( q f y  - pllqflJ) (pfprr - qy)-a, T = ipfa + p + (pqf - qpfyj3 ; 

then 
dz dy-- dz ds ,,=O, -- p'A, -=(pqd-qpfjA, -=TA,  

du du du 
Hence the direction-cosines of the tangent are given by the equations 

cos a = q'/T, cos fl = - pl/T, cos y = (pqf - qpf)/T, 
and the direction-cosines of the binormal by the equations 

cos X cos p cos v -- --- (1 + p +  +a)-% 
-P -!7 1 

We a t  once find 

dcosX d c o s p  dcos v a ( +  d;-)2+(d;-) = ( l + p Z + q 2 ) + P ;  

and therefore (§ 7) the radius of circular curvature is given by 

p = TaA(1 + p a  + q2)-i(pfqf'- p'p")-1, 

while the radius of torsion is given by 

a=(1 + p a + p ) A .  

Serret-Frenet formulce. 

17. The preceding results are conclusions derived from the analytical 
definition of a curve by means of the coordinates of a current point. Another 
method is founded upon certain differential relations belonging to al1 curves ; 
and these relations are made precise, generically for families of curves, 
individually for partlcular curves, by the assignrnent of some intrinsic 
property or properties. 

These generai relations exist between the derivatives of the direction- 
cosines of the edges of the principal trihedron a t  any point: sometimes 
they are called * after Serret, sometimes after Frenet. They can be obtained 
as follows. 

The direction-cosines of the principal lines a t  any point of the curve 
possess many notations; we shall take 
COS a, COS ,û, COS y, (and a, a', a") as the direction-cosines of the tangent, 
cos E, cos q, cos <, (and b, b', b") ,, ,I ,, principal normal, 
COS A, COB p, COS V, (and c, d, c") >1 ,, ,, binormal, 

They are given in a memoir by Serret, Liouville's Journal, t. xvi (1851), p. 193 : al80 in a 
memoir (whioh haà been a thesis) by Frenet, ib. ,  t. xvii (1852), p. 437. 

P. a 
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cos a, cos f, cos x are the direction-cosines of the axis of x, 

with the convention already adopted (§ 5), whereby these lines could be 
displaced into coincidence with a set of coordinate axes without changing 
the sense of any line*. Then 

COS ,%, cos q, COS p ,, $9 >> 97 Y1 

cos "/ ,008 Cs cos v ,, >> 72 99 Z, 
when the principal lines of the curve are taken as the axes of reference. Now 

COS a, cosp, COS y 

cos f, cosr], cos g 
cos& cos p, COS v 

hence 

= 1 ; 

COS a = x', COS = pxf' ; 

and each constituent of the determinant is equal to its rninor. Also 

d cos a - cos 

ds P ' 
together with two similar relations for the derivatives of the other two 
direction-cosines of the tangent. Again, we have 

cosa cosX+cost9cosp + cos ycosv = 0, 
so that, because 

cos ~ c o s h + c o s q c o s p  + c o s ~ c o s v =  0, 
i t  follows that 

d cos X d cos p d cos Y 
COS a - ds 

+ cosp - 
ds 

+cos y-=o. 
ds 

Also 
d cos X d COS p 

cos X - d cos v 
&s 

+c08p- ds +COSU-=O; ds 
hence 

d cos X 1 -...=...= 0, 
ds cos p cos y - cos v cos ,% - 

that is, 
1 dcosX - 1 dcosp 1 ~ C O S V  =---- - B. 

cos f ds cos r ]  da cos ds 
But 

cps X = p (y'z" - z'y") ; 
hence 

p (yl~' '~ - ~ ' y ~ ' ~ )  + p' (y%'' - 25") = Bpxf', 

Multiplying by x", y', z" respectively, and adding, we find 

* The alternative convention leads to a change in the sign of u throughout. 

0 =- 
P 

- p  a', y', zf 
x yff , If 

yw, z"' 
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so that 

hence 

together with two similar relations for the derivatives of the other two 
direction-cosines of the binormal. Further, 

cos f = COS p COS y - COS v COS B, 
and therefore . 

d cos f -- d cos y d cos ,8 d cos p d cos v 
-cosp-- COS v -- + cosy-- 

ds ds ds ds cosflT 
1 1 

= - (cos p COS g - COS V COS 9,l) - - (COS y COS q - COS p cos 5.) 
P u 

cos a cosk = - -- 
+-7 

P u 

together with two similar relations for the derivatives of the other two 
direction-cosines of the principal normal. 

These are the Serret-Frenet .formula satisfied by the derivatives of the 
direction-cosines of the principal lines. They are taken by Darboux in the 
form * 

d a  b db c a dc b -- - - ds-p '  z-,,-p, &--,. 

Particular sets of simultaneous solutions of these equations are 
a, b, c = cos a, cos f ,  COS A, 

a, b, c = cos 6 ,  cos q, cos p, 

a, b, c = cos y, cos t cos v. 
The complete resolution of the equations can be made to depend upon 
that of a single equation. Let? 

a + ib E = -  
1 - c '  

where i denotes d - 1 ;  then 
1 ( d a  - + % -  .3 +---- u + i b  dc 

ds -1 -c  ds (1 - cy ds 

As compared with Darboux's earlier form, there is a change of the sign of a (or of c), due 
to the convention concerning the axes. But Darboux's later preference, Théorie générak, t. iv, 
p. 428, is for the form hem adopted. 

t This combination of direction-cosines is of frequent use in differential geometry ; its effec- 
tive introduction appears to be due to Weierstrass, though it occurs earlier in the work of 
Lagrange and of Gauss on the conformal representation of a spherical surf- upon a plane. 

2-2 
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SERRET-FRENET FORMULX [CH. I 

which is an equation for Z of the Riccati form*, when p and a are regarded as 
known functions of S. When Z is known, however i t  has been obtained, the 
complex quantity conjugate to 1 is known; hence, writing 

a+ib 1 a- ib  1 = - --=- 
1 - c '  m 1 - c '  

we have 
1 - lm  a=- l + l m  b=i- 1 + Wb 

G=- 
1 - m  ' 1 - m '  1 - m .  

18. These Frenet-Serret formulze can be obtained by another processt, 
which is based directly upon their significance in relation to the curvature 
and the tortuosity. 

We Lake the direction-cosines of the principal lines at  a point according 
to the tableau 

( a ,  a', a " ) .  

b, b', b" ; c, cf. ç 

The direction-cosines of the principal lines at  a consecutive point, referred to 
the principal lines at  the original point, are given by 

1 , de , 0 ,  for the tangent, 

-cl€, 1 , d ~ ,  ,, ,, principal normal, 

O , - dr, 1 , ,, ,, binormal. 
Hence 

a+ da= a+bde, 

c+dc = -bd r+c ;  
and therefore 

d a  b db c a dc b -- --- & - p ,  zs=;-p> &- a >  

with similar relations between a', b', c'; and a", b", c". 

These relations are of fundamental importance in the theory of skew 
curves. The present process of establishing them is independent of the 
earlier analysis ; and so they can be used to obtain, easily, many of the results 
already given. Thus . 

dx a =  a'= del clZ a 

ds' a s ,  d f = p  
and therefore 

d2x d2y - d2z 
b = p - = ps'f, b' = p - py", b" = p - = p", dsa dsa - dsz 

For some of the properties of this equation, eee my Treatise on Diflerential Equations, 
(3rd ed.), 5 110. 

t 1 am indebted to Mr R. A. Herman for this process. 
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191 APPLICATIONS 

dnx 
Manifestly - can be expressed in a form wu, + bv, + cw,, where un, v,, , wn 

dsn 

and so for y"' and 2"'; thus 

are determined by the equations 

xf , ,  Y' , d 
xf' , y", Z" 

x t f f ,  , f f ,  

z"' 

and so for the derivatives of y and of z. 

19. We proceed to make some applications of the Serret-Frenet 
formulæ. 

= 

A curve is uniquely de$ned, except as to position and orimtatim in space, 
when ita two curvatures are given as functions of i ts  arc. 

a ,  a', a" 

b, b', b" 

c, c f ,  c" 

Let there be two such curves, different if possible; denote the radii for 
one of the curves by p and cr, and for the other curve by and a', so that we 
have 

p r = p >  u'=u.  

At the current point on the one curve detennined bÿ the arc s, we have 

d cos a cos f d cos 5 cos a cosx d cosX cos 5 -  --- -- - - - +- -- 
ds - 

--- 
P ' ds P Q ' ds u 

and at  the current point on the other curve determined by the same arc s, 
we have 

d COS a' COS f f  d COS t' COS a' cash' d COS A' COS E' -- -- - ---- +- -=-P. 
ds P ' d s  P  u ' a s  u 

Hence 
d 
- (cos a cos a' + cos cos E' + cos h cos X') = 0, 
ds 

and therefore 

cos a cos a' + cos E cos E r  + cos X cos x' = constant. 

Now suppose the two curves so placed in space that the two respective 
initial points from which the arcs are measured coincide; and suppose the 
two curves to be so orientated a t  that point that their principal lines coincide 
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22 INTRINSIC DEFINITION OF A CURVE [CE. 1 

there in direction. Then a t  the point we have a, = a,', fo = E,', ho = &,', and 
so the constant is equal to unity at  the point; that is, 

COS a cos a' + cos 4: cos f '  + cos h cos h' = 1. 
Also 

cosa a + cos2 4: + cosa X = 1, 

cosP a + cose f'+cosZX' = 1 ; 
hence 

COS a = COS a', COS 4: = COS f l ,  COS X = COS X', 

the first of which is 
dx dx' -=- 
ds ds ' 

Similarly, we have 
bi = dy' * - dz' . 
ds d s '  d s - d s '  

and therefore 

x - x' = constant, y - y' = constant, z - 2' = constant. 

The initial point has the same coordinates for the two curves, so that each 
of these constants is zero; hence 

and therefore the two curves everywhere coincide. But the only changes 
made in the second curve were in its position a.nd its orientation in space; 
thus the two curves were originally the same, save for position and 
orientation in space. Hence the proposition. 

We can a t  once infer one result. It is known that both the curvatures 
of a helix on a circular cylinder are constant ; hence every curve, which has 
both its curvatures constant, is a helix on a circular cylinder. 

More generally, i t  follows that al1 magnitudes, intrinsically belonging to 
the curve, can be expressed in terms of p and a and of their derivatives. 

The main inference from the general proposition is that, for the intrinsic 
and unique specification of a curve, we need to have the values of p and o given 
as functions of s ;  any complete equivalent of such data would also be needed, 
if they were not provided ; and the data are sufficient. I f  then only a single 
equation is given, of any form, between p, u, s, we must expect some arbitrary 
element to exist in the equations of the most general curve which satisfies 
the condition implied by the single equation. In  other words, we shall have 
a family of curves: and a curve will be selected from the family by the 
assignment of some special form to the arbitrary element. 

Thus it has been seen that curves can be constructed satisfying an 
equation s = #(a/p). For the purpose, i t  is sufficient to have a family of 
developable surfaces bound by the property that, when the surfaces are 
developed, the edges of regression become one and the same curve in the 
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201 SPECIAL FAMILIES OF CURVES 2 3 

plane ; and the curves, satisfying the equation, are given by taking one curve 
upon each member of the family of surfaces. 

We shall now take a number of other examples* of this general result. 

Curves having their Curvatures in a Constant Ratiot. 

20. Let = l = tan A,  suppose, where A is a constant. The Serret- 
Frenet equations now are 

which are linear in a, b, c ; hence 
d a 
-(acosA-csinA+ib)=---- ds p cos A (a cos A - c sin A + ib). 

Let 

so that u is a real quant i t~ ,  being a function of s ; then 

a cos A - c sin A + ib = Reiu,  

where R is an arbitrary constant. We must suppose that R is complex ; let 
R = Pe-", 

where P and 6 are real ; then 
a cos A - c sin A -t i b  = Pe-i'u+6~. 

Consequently 
a cos A - c sin A - ab = Pet[U+Q ; 

and a2+ b2+ c2= 1. 

Solving these three equations, we find 
acos A -csin A = P cos(u+6) =sinpcos(u +6) 

- b = P s i n ( u + S ) = s i n p s i n ( u + 6 )  , 
a sin A + c cos A =  (1 - P+ =cosp I 

giving the values of a, b, 'c,  the cosines of the inclinations of the three 
principal lines to the axis of 8. 

Similarly, let p' and 6' be the constants of integration for a', b', cf, and 
p" and 6" be the constants of integration for a", b", c", the respective cosines of 
the inclinations of the three principal lines to the axis of y and the axis of z. 

The reader would do well to consider Darbonx's treatment of these examples, and of others, 
in his Théorie générale, t. i, §§ 6 1 2 ,  32-39. 

t. This is  the one case not covered by the example in 5 15. I t  appears to have been discussed 
fhst by Puiseux, Liouville's Journal, t. vii (1842), pp. 65-69. The analysis, which follows, is more 
detailed than the treatment in Darboux and in Bianchi ; it is given so as to secure the most 
explicit form of the analytical definition of the curves. 
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Then 

a'cosA-c'sinA=sinp'cos(u+ô') d'cosA-c"sinA=sinp"cos(u+6") 

- b' = sin p' sin (u + 6') , 1 - b" = sin p" sin (u + 8") . 
a'sin A+ c'cos A=cosp' .''sin A + C''COS A = cosp" 1. 
The primitive of al1 the three sets of equations, in this form, apparently 
involves six constants; but they reduce to three. The three lines having 
a, b, c ;  a', b', c'; a", 6", c" ; for their direction-cosines are perpendicular 
to one another; the necessary conditions are satisfied by the relations 

cot p cot p' cot p' cot p" - cot p" cot p =- 1. 
cos@- 6') =cos(6'-6'1-cos (8"- 6) 

To obtain the analytical definition of the curve, we note that 

a = cos A sinp cos (u + 6) + cosp sin A, 
so that 

x-x,,=s cosp s inA+cosA sinp 

and similarly I 
y - y, = 8 eospl sin A + cos A sinp' /cos (u + ds : 

r - 6 = scosp" sin A + cos A sinp'' lcos (u + 6'') ds J 
where 

and x,, 
IC,, 90, 20 

6, 6', 8" 

y,, zo are arbitrary constants. The new arbitrary constants 
affect the position of the curve in space: the surviving constants 
affect its orientation. 

There is nothing in the problem to limit the value of p. Hence it may 
be taken to be an arbitrary function of s; and so, for the range of variation of 
this arbitrary function, we have a family of curves intrinsically distinct from 
one another. But al1 the curves of the family have two properties in common. 
We have 

asinA+ccosA=cosp,  alsinA+c'cosA=cosp', a"sinA+c"cosA=cosp"; 

hence 
sin A = a cos p + a' cos p' + a" cos pl1, 
COS A = c COS p + C' COS p' + c" COS pl1. 

The first of these two relations shews that the tangent to the curve is at  a 
constant inclination AT - A to the line whose direction-cosines are cosp, 
cosp', cosp" (for Z cosap = l), that is, to a fixed line ; and the second shews 
that the binormal is a t  a constant angle A to the same line. Moreover 

O =  b cosp+ b'cospf+ b"cospl', 
that is, the principal normal is perpendicular to the same line. I t  therefore 
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follows that this line is the rectifying line of the curve : that is, dong  any 
curve the rectifying line has a constant direction, and the rectifyZng develyable 
i s  a cylinder. The generators are the rectifying lines: and the curue i s  a 
geodesic on the surface. 

A curve on a surface which makes a constant angle with a fixed direction 
is called a helix. It therefore follows from the preceding investigation that 
a curve, having the ratio of its curvatures constant, is a helix. The establish- 
ment of the converse proposition-that a helix has its curvatures in a constant - - 

ratio-is left as an exercise. 

Curves having assigned Torsion, variable or constant. 

21. Let the torsion be given as a function of the arc. With a, a', a";  
6, b', b"; c, c', c"; as the direction-cosines of the principal lines, we have 

dc' b' dc" b" 
a = b'c" - WC', - = - - - = - - 

ds C '  ds  a '  
Therefore 

with two similar equations ; so that 

d x  = ads  = - a (c"dc' - c' dc") 

d y  = a'ds = - u (C dc"- ~ " d c  ) . 
dz = a"ds = - u(c' dc -c dc')  

Also we have 
ca + + C"2 = 1 ; 

1 
and from the value of the torsion in general, we have 

dc' dc" V G Y +  (z) + (z) -0.. 
Now, when the torsion is given, u is a known function of s ;  and therefore 
the quantities c, c', c" are three functions of s,  subject to these two equations, 
that is, one arbitrary element survives among the three functions. 

The first of the equations is satisfied by taking 

c = sin 8 COS +, c' = sin 8 sin 4, cf' = cos 0, 
for any values of 8 and + ; and then the second of the equations is satisfied, 
provided 

With these values, we have 

d x  = - O- (cos 6 COS + sin dd+ + sin +dB) 

d y  = - u(cos8sin+sin8d+-cos+d8) 1 . 
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A11 the magnitudes involved are functions of one parameter, which can be 
chosen a t  will ; we choose z to be the parameter. As already indicated, an 
arbitrary element will remain in the equations ; accordingly, we assume 

tan # =f ( 4 ,  

where f is an arbitrary function of z. Then 

l +fZ cos2 ,g = of'-1-f2. 
sin2 8 = - 

of' ' of' > 

and therefore 

Consequently 

a relation between z and s, involving the arbitrary function f ;  in particular, 
i t  expresses dsldz in terms of z and S. Also 

dx + idy = - ei+ cot 6 (dz - iu tan Bdû) 

dz  - idy = - e-@ cot 6 (dz + iu tan ûdû) 

which are the (integrable) analytical equations of the curve when substitution 
is made for +, tan 8, dû; and they involve an arbitrary function f, while z is 
the parameter of the equations. 

As is to be expected, the simplest case arises when the torsion is ccnzstant. 
It is not necessary, for the construction of the analytical equations of the 
curve, that the equation giving dsldz should be retained. We have 

dx + idy = - ei" f" (1 + f") - Zff'" 

9 

dx - idy  = - e-i4 (d;-:ff 3' {i - tic f " ( l +  f">- 2ff" 
(cf'-1-fZ)f' 

as the equations of the curve ; or, substituting for $, we find 

dx = - 
~ f ' ~ - f ' - & r T f f " ~ ~  

y(.-f'-1- f")" 

dy = - + f " - f  d, 
f'(afl-1- ff)& 

as the analytical equations of curves of constant torsion l / a ,  where f, = f (z), 
is arbitrary in the equations*. 

* This is Serret's form of the equations of curves of constant torsion: see Liouviiie'e edition 
of Monge (quoted p. l), p. 566. 
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Curves of constant torsion have formed a subject of many investigations 
in comparatively recent years, especially those which are algebraic curves. 
Thus taking the formule 

where o now is supposed constant, Fabry assumes that c, c', c" are integral 
functions of sines and cosines of integer multiples of a parameter t, such that 
each of the quantities on the right-hand side is devoid of a term not involving 
sines or cosines when expressed as a sum of terms each involving only one 
sine or cosine. Again, Fouch6 takes the Weierstrass expressions (5 17) 

with a and /3 as algebraic functions of a parameter: and imposing the 
conditions that dx, dy, dz must be the exact differentials of some algebraical 
functions, he obtains a critical equation that admits many evident solutions*. 
And frorn the relation 

i t  can be proved that no algebraic curve of constant non-zero torsion exists 
on a sphere. 

Curves hawing assigned Circular Curvature. 

22. Let the radius of circular curvature be given as a fiinction of the arc. 
Then the quantities a, a', a" satisfy the relations 

da' a da" 1 (2)'. (z) + (dd) =p" 

where p is a known function of s;  and therefore a, a', a" are three functions 
of s, subject to these two equations, that is, one arbitrary element survives 
among the three functions. Also 

where S is a new parameter related to s by the equation 

References to the memoirs by Fabry and by Fouch6 as well as to other papers on the 
subject are given by Darboux, Thlorie géné~ale, t. iv, p. 429, in the course of a Note on the 
torsion of skew curves, which is specially commended to the reader's attention. 
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and then 

where a, a', a" are functions of S such that 

fda" ($)" ((3'. (-) = 1. 
dS 

The case, when p 
simpler than the case 

is constant and equal (say) to lc, is not analytically 
when p is variable; the parameter S is merely s/k. 

EX AMPLES. 

1. When the circular curvature of a curve is zero at  al1 points, the curve is a 
straight line ; and when the curvtlture of torsion is zero rtt al1 points, the curve is plaue. 

2. Shew that the determinant 
x" , y" , z" 
$ w ,  Y,i>, 24* 

LÇm', ,Il 

vanishes for a helix ; and conversely. 

3. Prove that the radius of circular curvature of the locus of the centre of spherical 
dR curvature of a curve is R -; and indicate analogies between the formulæ of plane 
dp 

curves, connecting the magnitudes usually denoted by r, p, $, +, p, with the formula of 
skew curves connecting the magnitudes denoted in the text by R, p, $, T, p l .  

Prove that, for any curve drawn upon A sphere, the reiation 

is satisfied. 

4. A helix is drawn on a circulas cylinder of ritdius a and cuts the generators at  a 
constant angle a ; shew that both the circular curvature and the toraion are constant, that 
the rectifying liue at  any point is the generator of the cylinder, and that the locus of the 
centre of circular curvature is another helix upon a coaxial cylinder. 

Hence shew how to construct the circular cylinder which'containx the helix having a t  
a point the closest (three-point) contact with a curve. 

5. Prove that, if a curve be drawn so that itu tangent has a constant inclination to a 
fixed direction in space, the ratio of its curvaturcs is constant. 

6. Shew that, for a spherical helix, 

p = a sec a (cos2 a - cos2 8)*, u = a cosec a (cos2 a - cos2 8)&, 

and that the cross-section of its rectifying developable is an epicycloid. 

7. A loxodrome is drawn on a sphere of radius a, cutting a set of meridians a t  
a constant angle a. Shew that, a t  an angular distance û from the pole, its radius of 
circular curvature is a (1 - cos2 8 CO$ a) - 4 sin 8, and its radius of torsion is 

a (1 - cos2 0 cosZ a) sec a cosec a. 
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8. Prove that the radius of circular curvature of the edge of regression of the redi- 

fying developable a t  the point corresponding to P is sec i 

inclination of the rectifying line to the binormal a t  P ; and that the radius of torsion is 

9. Prove that the circular curvature of the locus of the centre of circular curvature of 
a skew curve i8 

[("O R3 ds " (5) - ilz+ eJ. 
10. Obtain the direction-cosines of the rectifying line in the forrn 

{p~'+pu(y'z"-dy")} (p2+~Z)-*,  
with two similar expressions. 

d C  
11. Denoting da, by XZ, and similarly for derivatives of y and z, prove that 

12. Shew that the torsion of the curve 

 ab (a-b)) ( (a - t )  (b -f))-*dt ) 
is constant. Indicate the character of the spherical indicatrix of its tangents and of its 
binormals. 

13. Prove that the radii of curvature and torsion of an involute of a curve are 

u p2 + o2 

(,.+,2]t s> P (.pl-pu') 

14. Jn the Serret-Frenet formulæ, let 

where r denotes the integral ( p - l ~ ;  shew that v satisfies the equation 

15. I n  a particular curve, the direction-cosines of the binormal are given by 
c=Xcos 8+pcos38, e'=Afsin B+Psin 30, cU=r+2d cos20, 

where B is a current parameter, and X, X', p, K ,  d are constants such that 

da+ 6de$+ 6d4p4 - 2dZCL6- 3pS=4dap4. 

Prove that the curve, if of constant torsion, is  algebraic. 
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16. Curvea (often called Bertmnd curves*) are such that the relation 

is satisfied, where rn and n are constants : shew that the curve is analytically defined by 
the relations 

dx= mAdS-n (AUdA'- A'dA") 
dy= mA'dS-n (A dA" - A"dA ) , 
dz=mAUdS-n(A1dA -AdAt  ) 

A2+A'2+A"2=1, 

1 
where A ,  A', A" are three functions of a parameter subject to  the conditions 

(dS)2 = (dA)2+ (dAf)2+ (dAU)2. 

17. Proye that, if two curves have the same principal  normal^, their osculating planes 
cut a t  a constant angle a ; and shew that they are Bertrand curves. 

Also prove that, if c denote the common distance of corresponding points, 

= c2 coseca a. 

18. Shew that a curve, intrinsically defined by the equations 

p=ks, o=ls, 

where k and 1 are constants, lies on a circular cone, and is a helix on that cone. 

19. Prove that, for sny skew curve, 

1 ' 1  
%lu'= - -&J- P x" + 0 (y'd' - z'y"), 

PZ P 
with corresponding expressions for y"', z"' ; aiso 

with corresponding expressions for y"", d"' ; and indicate a method of obtaining the 
general form of the expressions for the nth derivatives of x, y, z with regard to  S. 

Shew that the value of 2""2+5/"'2+d"'~ is 

20. Denoting four consecutive points, a t  equal small intervals ds on a curve, by 1,2, 
3,4, by iZ the chord joining the points 1 and 2, and so for the other chords, prove that 

21. A helix is drawn on a surface making a constant angle a with the axis of z. Shew 
that its curvature is given by the equation 

sin a=nl 

where RI and Ra are the radii of curvature of the principal sections, nl and % are the 
direction-cosines with regard to  the axis of z of the tangents to the sections, and x is given 
by the equation 

cosasin X=n3, 

where cos-' n3 is the angle between the axis of z and the normal to  the surface. 

* After Bertrand's memoir, Liouville's Journal, t. xv (1850), p. 332. 
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22. The six coordinates of the principal lines of s curve with regard to 6xed rect- 
angular axes are a, a', a", a, a', a"; b, b', b", 8, @, ,Y' ; c, dl  c", y, y', y" ; the b s t  three, in 
m h  case, being the direction-cosines. Prove that 

23. A curve is given as the intersection of two 'surfaces 

@ (4 Y, 4=0, Jr (x, Y1 4 -0 ; 
the quantities Dl El F denote the determinants 

"' " "= II " ,, . 
k denotes ( D Z + E ~ + F Z ) - ~ ,  and a derivative of any quantity U is denoted by Ur, 
where 

Obtain the following results* for the curve at any point :- 

(i) The equation of the osculating plane is 
(X-x)(EF1-EtF)+(P-y)(FD1-FID)+(Z-z) (DE'- D'@=CI; 

(ii) The radius of circular curvature and the radius of torsion are given bp the 
relations 

1 -k6{(EF1- E'F)z+(FD'-F'D)2+(DE' - 
$2 - 

* Other results are given by Frost, Solid Geomely, (3rd ed., 1886), $8 628 et seq. 
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CHAPTER II. 

MUCH of the present chapter is founded upon the memoir by Gauss, Dbquisitwaea 
generales &cm superjcies curvas, (Cies. Werke, t. iv, pp. 217 e t  seq.) ; and some account of 
the memoir is given in Salmon's Analytical G e m t r y  of Three Dimemions. 

Frequent reference should be made to portions of the firat volume and the third 
volume of Darboux's treatise. Much of chapter III and chapter IV of Bianchi's treatise 
will be found useful, as also will the first ~ection of Knoblauch's Einleitu7zg in die 
allgerneine Thewie der hummen Flachen. 

It is unnecessary to  give copious references in detsil; the subject-matter is bound to 
be treated in any book on differential geometry. 

Fundamental Magnitudes of the Pirst Order. 

23. I n  the discussion of the intrinsic properties of a surface, the position 
of the surface relative to coordinate axes is not of importance ; and therefore 
there is convenience in substituting, for the equation of the surface in 
Cartesian form, other equivalent equations that shall have more direct refer- 
ence to variation upon the surface itself This usually is effected by expressing 
the coordinates of any point on the surface in terms of two independent 
parameters p and q, through relations 

x=x(p ,q ) ,  y = y ( p j q ) ,  z = z ( p , q ) ;  
the elimination of p and q between these relations leads to the equation 
of the surface, if i t  should be required. We shall assume, unless there is 
explicit statement to the contrary, that we have to deal with surfaces or 
portions of' surfaces, which are regular in character, and within the range of 
which no singularities (whether of point or line) occiw. The parameters p 
and q are not necessarily real ; often it will be expedient to take conjugate 
or other complex variables as the parameters of reference. Within the 
range considered, the functions z (p, q), y ( p ,  q), z (p, p) 'are finite and 
continuous, usually uniform ; if they are multiform, we shall usiially restrict 
the variations to regions which admit no interchange of branches of 
the functions. Also, a representation in terms of two parameters is not 
unique; for if we make p and q two independent functions of two new 
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parameters p' and q', we shall have x, y, z given as functions of p' and q', of 
the same type as before. 

A curve drawn upon the surface can be represented by some relation 
between p and q, say 

$ ( P I  !?)=O, . 

whether the relation be integral or differential. Sometimes the curve can 
be obtained by making p and q functions of a single parameter ; for instance, 
geodesics are discussed by this method of representation among others. 

A notation for derivatives with respect to p and q will be required; 
we write 

ax ax 
ap=xl' aq -- - $a' 

and so on, with corresponding symbols for derivatives of y and of z. The 
notation will occasionally be used for derivatives of other magnitudes as 
they arise. 

24. Take any point on the surface, determined by p and q ;  and consider 
a neighbouring point, also on the surface, determined by the values p + dp and 
q + dq. When we retain only the first powers of small quantities, the distance 
between the two points measures the infinitesimal arc on the surface ; denoting 
it by ds, we have* 

ds2 = dx2 + dy2 + dza 

= Edp2 + 2Pdpdq + Gdqz, 
where 

These quantities E, E", G are independent of the particular selection of 
perpendicular coordinate axes; for when we effect an orthogonal trans- 
formation 

x'=a+b +py +vz, 

2' = c + X1'x + + Üz, 
we have 

E' = 23;' 
= x;"ZAq 2xlyi Zkp + 2%z1 Zhu + y? Xp2 + 2y1q Çpu + z? 22 
=rçla+y?+zi=E, 

We shall always write aha instead of (dx)2, and similarly for other powers and for other 
quantities. 

F. 3 

IRIS - LILLIAD - Université Lille 1 



34 ELEMENTARY RESULTS [CH. II 

and similarly for F and G. Hence E, F, G are often called the funda- 
mental magnitudes of the $rd order, sometimes the primary quantities. I t  
is convenient to have a symbol for EG - Fa ; accordingly, we write 

V" E G  - Fa, 

so that E, G, V2 are greater than zero, while we take V to be positive, on a 
real surface when p and q are real. And, unless there is a specific state- 
ment to  the contrary, we shall assume that p and q are real. 

25. Any curve upon the surface can be represented by an equation 
+ (p, q) = O. The simplest of such equations are 

p = constant, q = constant ; 

the curves, thus represented, are called the parametric curves. We take the 
positive direction along the curve p = a at  any point to be that in which 
q increases, and the positive direction along the curve q = b a t  any point to 
be that in which p increases. 

The elernent of arc along p = a  is G*dq, and its direction-cosines are 
x ~ G - ~ ,  %G--; the sign of G+ being taken positive. 

The element of arc along q = b is d d p ,  and its direction-cosines are 
x1B-), y l ~ - 3 ,  Z,E- ; ;  the sign of ES being taken positive. 

The angle a t  which the parametric curves cut is usually denoted by w ;  

then 
cos ,=zs~-+.x ,~-f r= F(EG)-4, 

sin w = V (EG) -9 ,  tan w = VIF. 
Let dS  be the element of area of the surface bounded by the para,metri~ 
curves p, q, p + dp, q + dq, each constant ; then 

d S  = E i d p .  ~ i d q .  sin o= Vdpdq. 

26. Let P C  be the curve defined by 

and let ds be the element of arc along PC;  then 

91dp +$%dq=O, 
ds2 = Edp2 + 2 F  dp dq + G dq2, 

kc 
P &a 

The direction-cosines of the tangent a t  P to P C  are 
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and 80, if 8 is the angle (taken as in the figure) at  P between PO and p = a, 
we have 

Similarly, if 8' 
and q = b, so that 

we have 

be the angle (taken as in the figure) a t  P between PC 

e+e'=o, 

= (E42  - B A )  IE ( q J B  - 2J'9,42 + G+i1)} -4  
dq s i n & =  E - 4  V- 
ds 

= - V+, {E (E+," - 2B9,4, + G+?)}-&. 

Next, let another cuve  PC' be qven by 
I 

and let as, Sp, 6q represent small variations along the curve at  the point P 
Let x denote the angle at  Y between PC and PC' ; then 

ds 6s cos x = Fi (x, dp + x2 dq) (xl  6p + x2 6q)  

= E d p 6 p  + F ( d p  6q +dq6p)+ Gdqsq, 

ds 6s sin x = V(dp 69 - 6p dq), 

I t  follows that two directions, given by dp : dq, and 6p : 6q, are perpm- 
dicular, .if 

E d p 6 p  + F(dp6q  +dq6p)  + Gdq6q= 0 ;  

and that, if two directions are given by the quadratic equation 
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their inclination x is given by 

so that they are perpendicular if 

h T - 2 F @ + G O = O .  

Thus the curves orthogonal to a family f (p, q) =a,  for varying values of 
a, are given by the differential equation 

27. Let X, Y ,  Z be the direction-cosines of the normal to the surface 
at  P. It is perpendicular to every tangent line to the surface and therefore, 
in particular, to the tangents at  P to the parametric curves ; hence 

XXI  + Y P  + 2.1 = O, Xxa + Yy2 + Zz2 = O. 
Also 

X 2 +  Y 2 + Z 2 = 1 ;  
consequently * 

X = (y1 2, - y, 2,) V-l, Y = (zl x2 - z2 xl) V-l, Z = (x1 y, - x2 y,) V-1, 

or, with a customary notation, 
1 x, Y, Z= - v 

The following relations, capable 
Euture use: 

Il X l ,  Yi, 2 1  

s, ya, 2 2  II 
of easy verification, may be noted for 

* As Vis  taken positive, the signs given to X, Y, Z are effectively a definition of the positive 
direction of the normal. 

IRIS - LILLIAD - Université Lille 1 



281 RELATIONS 

-"Y) "-- v a ~ -  ax2 a ~ ,  - E X ~ )  

v - -  a2v -, -,, a2 v 
3x1 ay, 

V - = - v z - F x Y  
ax2 ayl 

ay, az2 
V = = V X - F Y Z  - - vx - FYZ 

An equation of the surface, in differential form, can be obtained at once. 
Let any direction at P in the tangent plane to the surface be denoted by 
dx, dy, d z ;  then, as it is perpendicular to the normal, we have 

X d x + Y d y  + Z d z =  0, 
which is the differential equation indicated. 

When x, y, z are given (and therefore X ,  Y, Z are deduced) as functions 
of p and q, the equation is satisfied identically-a result to be expected 
because the integral equation is implicitly contained in the expressions 
for x, y, z. 

When X, Y, Z are given as appropriate functions of x, y, z, the "condition 
of integrability " must be satisfied*. A verification that i t  is satisfied will be 
given in 5 30; assuming this, we have (on integration) an integral of the 
surface in a forrn 

17 = constant. 
Manifestly, 

Fundamental Magnitudes of the Second Order. 

28. The primary quantities are constructed from the h t  derivatives of 
x, y, z with respect to p and q. We now proceed to construct quantities that 
involve their second derivatives. As before, denote small independent 

See my Treatise on Différentia1 Equations, (3rd ed.), 3 152, for the condition, and for the 
method of integration of the equation when the condition is satisfid. 
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variations of p and q by dp  and d q ;  then the value of x belonging to 
p + dp, q + dq has two forms, viz. 

x +  d x +  ad% ++dSx+ ..., 
and 

x + (xi dp + d q )  + & (xl,dp2 + 2xlZdpdq + zmdq2) + . , . ; 
and so, taking the small quantities of the second order, we have 

d2x = xlldpa + 2x12dpdq + xEdqz. 
Similarly 

d2y = y1idp2 + % 1 & 4  + y&qa, 
d2z = z,,dp2 + 2z12dpdq + z,dq2. 

The fundamental magnitudes of the second order (sometimes called the 
secondary quantities) are defined by the expressions 

L = X%l+ yyi, + Zz11 
M = X ~ i a  + Yyl2 + 2 2 1 9  . 
N = X x E  + Y y ,  + Zz, 

LN-  M 2 = T 2 .  

1 
I t  is convenient to have a symbol* for L N  - Ma; we write 

Though LJ JI, N are real on a real surface when p and q are real, it is not the 

These secondary quantities, like the primary quanthies, are independent 
of the particular selection of perpendicular coordinate axes ; for when we effect 
the same orthogonal transformation as before (5 24), we have 

fact that T2 is necessarily positive. 

Manifestly we have 

* The reader should be warned that, for the various quantities, there is no notation in 
general use by writers on the mbjeot. 

X I  , y, , z1 

Ir; , y2 , 2 2  

Xia,  Yi27 212 

, VM = TJL = 

X I  > y1 2 2 1  

2 2  > y2 1 zz 

x l ~  J y119 ' 1 1  

T L 1  = 

= 

gl , yl , z1 

a2 , y2 > 2 2  

XI I ,  y11, Zll 

= 1 .TL ,  
when the sets of axes are of the same type. Therefore 

L ' = L ;  
and similarly for M and N. 

x,', y,', 2; 

%', y;,  22' 

xl;, yll', ~ 1 , ~  

h J  p ,  V 

, , v1 
X I t ,  /.dr J Ù1 
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29. The quantities X ,  Y, Z are functions of p and q ; their first derivatives 
with respect t o p  and q can be expressed by means of L, M, N. For 

Xx1 + Yy1 + Zz1 = O, 
and therefore 

x 1 x ,  + YI y1 + z,z, = - (Xx11 + Yy,, + 22,) = - L. 

Similarly, from Xx* + Y y 2  + 2.2, = O, we have 

X1x2 + Y1y2 + z1z2 = - (Xx12 + Yylz + Z&) = - M ;  

and, as X+ Y2 + Za = 1, we have 

X,X+Y,Y+Z,Z= o. 
Solving these three equations for X I ,  Y,, Zl, we have 

and therefore (§ 27) 

X,Vz= - L(x1G -x$) -M(-x1F+ x ~ E )  
= X ,  (FM - GL) + $9 (- EM + FL) 

and similarly 
YI V" yl (FM - GL) + yz (- EM + FL) 
Z,V2 = z1 (FM - GL) + z,(- E M  + FL) 

I n  the same way, we find 

X 2 V z = ~ l ( F f l -  GM)+x2(- E N +  F M ) )  
Y,V2=yl(FN-GM)+yz(-EN+FM) 
Z2V2=~1(FN-QM)+~z(-EN+FM) 

Froin these, we have 

xlT2 = XI (- E N  + FM) + X, (EM - FL), 
xzTa = Xl (- FN + GM) + X2 (PM - GL) ; 

and similarly for y, and y, in terms of P, and Y2, and for zl and 2, in terms 
of Zl and 2,. 

Also we have 

and so for the others; thus 
V(P,Z2 - YZZJ  = TaX 
V(ZlX2-ZzX,)=T2Y 
V ( X l  Y, - X ,  Y,) = T2Z 
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Again, writing 
V2e = EM9- 2FLM + CSL2 
Vzf=EMN-B(LN+M2)+GLM 
V2g = ENa - 2 F M n  + GM2 

me similarly prove 

Ta (YIZ - YZl) = V ( fX1 - exa) t Ta ( Y2Z - YZ,) = V (gXl - fXz) 
T2 (2, X - 2x1) = V (f Y, - e Y,) , T"&X - ZXJ = V ( g  Y, - f YJ 
Ta (X,Y - X Y,) = V (  fZ, - eZ2) T2(X2Y--W2)= V(gZl - fZ2) 

by using the above expressions for YlZ2 - Y&, 2, X ,  - Z,Xl, X ,  Y, - X,Fl. 

results which will be useful when we corne to deal with tangential coordinates. 
Lastly, 

30. We now formally prove that, if X, Y ,  Z are given as functions of 
X, y, z and not as functions of p and q, the condition of integrability of the 
equation Xdx + Ydy + Zdz = O is satisfied. For then we have 

X ,  Y ,  Z 
XI, Yl, 21 

x, ,  y,, 1 2  

and 

=TyV,  

hence 

that is. 
ax ax Y - - z - = v-l (x2X1 - x1X2). a~ ay 

Similarly, 
ay ay z - - x - = v-l (y,Y1 - y1 Y,), a~ az 

az az x -- - Y - = V-l (Z2zl - 21&) ; ay a. 
and therefore 

which is the required condition of integrability. 
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Curvature: the Gauss Measure and Charucteristic Equat.ion. 

31. The primary quantities involve only the first derivatives of x, y, z ; 
hence they can only be concerned with arc-lengths upon the surface, and with 
tangential properties. The secondary quantities involve the second derivatives 
of x, y, z ; hence i t  is to be expected that they will be concerned with curvature 
properties, among others. Their simplest occurrence is in connection with 
the curvature of the normal section of the surface. 

Let a normal section of the surface be drawn through any tangential 
direction at a point. I t  is a plane curve ; and so its radius of curvature lies 
in that plane and is perpendicular to the tangent, that is, it lies along 
the normal to the surface. Instead of taking the radius of curvature to be 
always positive (as in 5 4), let us assume it t o  be positive, when the normal 
section is concave to the side of the surface which is taken as positive, and 
assume i t  to be negative, when the normal section is convex to that side 
of the surface. Then, denoting the radius of curvature by p, we have always 

pxff = X, py" = Y, pz" = 2, 
and therefore 

1 
- = Xxff + Yy'f + 2.". 
O 

Now 
x"= xl,pfa + 2x1,pfqf + xzp + x,pFf + x2q1', 

and similarly for y", zff ; consequently 
1 - = Xx" + Yi' + 22'' 
P 

= LpJ2 + 2 Mp'q' + NqP2 

thus giving the curvature of the normal section of the surface through the 
direction dp : dq. 

32. It is known from the elementary properties of surfaces that the 
normals at contiguous points do not necessarily intersect; and that, at  an 
ordinary point, there are two directions on the surface such that normals at  
contiguous points in either of those directions meet the normal at the point. 
Proceeding thus from point to point in a continuous direction at  each point, 
we obtain a locus upon the surface; this locus is called a line of curvature. 
Through an ordinary point there pass two lines of curvature; and on the 
surface there are two systems of lines of curvature. But while the normals 
to the surface at  successive points along a line of curvature intersect, they are 
not necessarily (nor even generally) the principal normals of the curve; in 
other words, the osculating plane of a line of curvature does not, in general, 
give a normal section of a surface. 
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The intersection of consecutive normals along a line of curvature is called 
a centre of cumrature of the surface; a ~ i  there are two lines of curvature at 
each point, there are two centres of curvature and both of them lie upon the 
normal. As we pass over the surface, we have two such points associated 
with each point on the surface ; the locus of these points is called the surface 
of centres. The distance between the point and a centre of curvature, with 
its proper sign, is called a rudius of curvat.ure of the surface ; thus at any 
point there are two radii of curvature, sometimes called the principal radii. 
They are the radii of curvature (as defined in 3 31) of normal sections 
through the respective directions. 

At a point x, y, z, let r be a radius of curvature, and let f,  7, I: denote the 
corresponding centre of curvature ; then 

For a normal at  a consecutive point on a line of curvature, the quantities 
f, 7, c, r are unaltered ; hence fimt variations along the line of curvature are 
such that 

O=dx+rdX,  O=dy+rdY,  O=dz+rdZ,  

and therefore, for the line of curvature, we have 

O = (xl + rXl) dp + (xz + rX,) dq, 

0 = (y1 + r Y,) dp + (y, + rY2) dq, 
O = (2, + rZ,) dp + (2, + rZ,) dq. 

These are apparently three equations ; in reality, they are equivalent to only 
two equations because, multiplying them by X ,  Y, Z respectively and adding, 
we have a nul result. 

Multiplying the equations by xl, y,, zl respectively and adding, we have 

O = ( E  + rZxlXl) dp + (Fi -  rZqX,) dq 
= ( E - r L ) d p + ( F - r M ) d q ;  

and multiplying them by x2, y2, z, respectively and adding, we have 
O = ( F + r 8 x 2 X l ) d p + ( C +  rXxzX,)dq 

=(F- rM)dp+(G-rN)dq ,  

so that along any line of curvature we have 
O=(E-rL)  d p + ( F - r M ) d q  
O=(F-rM)dp+(B-rN)dq 1 

These two equations, combined, determine the directions of the lines of 
curvature and the radii of curvature at any point. 

For the directions, we have 

O =  Edp + Fdq - r (Ldp  + Mdq), 
O=Fdp + Gdq -r (Mdp+Ndq);  
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Unless the equation is evanescent, i t  is quadratic in the ratio dpldq; and 
therefore a t  any point of a surface there are generally two lines of curvature. 
Moreover, as 

E ( F N -  C M ) -  F ( E N -  C L ) +  G ( E M - F L )  = 0, 

they are given by 

the two lines are perpendicular to one another (§ 26) a t  the point. 

E d p  + Fdq , F d p  + Gdq 
L d p  + Mdq, Mdp + N d q  

Exception to the conclusion, that there are two lines of curvature at  

= O, 

- 
a point, occurs when the equation giving those directions is evanescent. 

that is, by 
( E M  - FL) dpe + ( E N  - GL) dp dq + (FN - G M )  dqa = 0. 

We then have 
L M N  1 E=p=a,' , ,  

say. The radius of curvature of a normal section of the surface through any 
direction, being 

Edpa + 2Fdpdq + Gdq2 
Ldp2 + 2Mdpdq + N@'  

is equal to K, independent of the direction and therefore the same for al1 
directions through the point. Such a point is an umbilicus on the surface; 
the character of the surface in the vicinity of such a point will be considered 
later. 

so that there are two values, respectively corresponding to the two directions. 
These must be associated correctly. Should a value of r be given, the value 
of dpldq (which determines the direction) is equal to either of the fractions 

To determine the magnitude of the radii, we eliminate dpldq between 
the equations. Then 

Should a direction be given, the radius of curvature of the surface (which, in 
general, is not equal to the radius of curvature of the curve) is equal to either 
of the fractions 

E d p  + Fdq Fdp + Gdq 
Ldp + Mdq ' Mdp + Ndq ' 

E - r L ,  F - T M  
F- rM,  G-rN 

= O ,  

that is, 
Ta? - (GA - 2 F M +  E N ) r  + V" O, 
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33. A pair of symmetric combinations of the radii are of importance. 
These are the mean curvaEure ET, where 

and the total curvature (or the specifi curvature or Gauss measure) K, where 

the quantities a and p denoting the two radii. I t  will be proved that T a  is 
expressible in terms of derivatives of E, F, G, so that the total curvature 
depends only upon the fundamental magnitudes of the first order. The same 
property does not belong to the mean curvature. 

Later, i t  will be seen that, for a minimal surface (that is, the surface of 
least area with any assigned boundary), the mean curvature H is zero, so that 
the equation 

G L - 2 P M + E N = O  

is characteristic of a minimal surface. But this equation may be satisfied 
along a line or lines, on any surface. 

The Gauss measure of curvature is positive for a synclastic surface or for 
the synclastic portions of a surface, that is, a t  places mhere al1 the surface near 
the point lies on the same side of the tangent plane; familiar instances of 
synclastic surfaces are provided by the inside of a bowl, a closed soap-bubble, 
and the palm of a hand. The Gauss measure of curvature is negative for an 
anticlastic surface or for the anticlastic portions of a surface, that is, a t  places 
where different adjacent parts of the surface lie on different sides of the tangent 
plane ; familiar instances are provided by a saddle-back, the top of a mountain 
pass, and a ridge between two fingers of a hand. The Gauss measure of 
curvature is zero for a developable surface ; familiar instances are provided by 
the rolling shutter of a desk, and a crumpled piece of paper. 

34. To establish the result just stated as regards the total curvature, as 
well as to establish the intrinsic significance of the six fundamental magni- 
tudes which have been introduced, it is necessary to obtain further relations ; 
and then i t  will appear that the six magnitudes are not functionally 
independent of one another. Let quantities m, m', mu, n, PZ', nn" be defined 
by  the equations 

m = xlxl1 + yl yll + z1zll = BEl 
m' = &XI, + y1 y12 + z1z12 = w 2  

m"= x,x= + ylym + Z I Z ,  = F2 - &G, 
n = + 2 ~ 1 1 +  yayu + z,zn = Fi - BEa 
n1 = x2x12 + y? ylz + Z Z Z I Z  = &Gl 
nu = x2xs + y,y, + z,z, = 4G2 
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other quantities l?, I", Fr'; A, A', A"; will be required, as defined by the 
equations 

var = r n ~  - n ~  V2A = nE - mF 
V2r' = m'G - n'F F A '  = n% - m'F 
Var'' = m"Q - V2A" = nr'E - 

Solving the equations 

Xx11 + yy11+ Zz11 = L, 

that is, 
= L x + x 1 r  + X ~ A .  

Similarly for y,, and zll ; the values are 

We proceed in the same way to obtain the other second derivatives of 
x, y, z ; their values are 

al, = MX + x~I" + xJ' 
yla = MY + y 1 r f +  yQA' , 
zm = MZ + zlI" +&A' 1 
x2, = N X  + xll?"+ x2A" 
y* = N Y  + y1r" + y2A" . 
zzz = NZ + Z, rrf + Z,A/~ 1 

For the moment, let 
1 = XllX22 + y11y.22 + zl,z,, 

and the common value gives 

1' - z = * (E,  - 2F12 + Cl,). 
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Now 

= LN + {Ennff - P (nm" + n"m) + Gmm"} V-2 
= LN + {EI'I'" + F (FA1' + P A )  -1- GAA:} ; 

hence 
LN - M 2  + { E  (nn" - da)  - F (nmff - 2n'm' + n"m) + G (mm" - m'a)} V+ 

= l - I '  

= - 9 (E% - 2F1a + Qll), 
and therefore 

LN - .Ma = V 2 K  = - & (E% - 2F12 + Gll) 
- { E  (nn" - nf2)  - P(nm" - 2n'm1 + n"m) + G (mm" - ml2)} V-% 

= - &(E,-2Fn+ Gll) + (E, F, GEFI, - (E, Y, G g r ,  AZI'", A"). 

This is sometimes called* the Gauss ch,aracteristic equation. Its chief 
significance lies in the fact that LN- M2 is expressible in terms of E, F, G 
and their derivatives of the first and the second order; hence it follows 
that the total curuature 2s expressible in terrns of the fundamental magnitudes 
of the Jirst order and their deriuatives, a result that is important in connection 
with the deformation of surfaces. 

Muinardi-Codazzi relations, 

35. There are also two relations of a differential type. We have 

and so, substituting for & and q, their values that are linear in X ,  xl, x2 
(5 34), we find 

LX2 + XII '$  + xBA~ + XL2 +' 3 3  I' t x Q ~  A 

On substitution for X,, X,, cc,,, x,,, zm in terms of X ,  X I ,  xs (($ 29, 34), this 
equation becomes 

XO + XI@' + x2@" = 0, 

It was obtained &st by Gauss in hi8 oelebrated memoir of 1827 alread~ (P. 32) quoted. 
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where 
O = L a - M , + M r + N A - L r ' - M A '  

O' = FK + l?, - + F"A - I"Af 

O " = - E K +  A, - A l 1 +  FA'-I"A + AA"- Ara 1 
Proceeding similarly from y,, and y,,, and from z,, and z,,, we have 

I t  follows, from these three relations linear in O, @', O", that 

@=O, @ ' = O ,  @"=O, 

as their determinant is not zero. 

When the same process is applied to xl, and xa ; to yl, and y*; and to z,, 
and 2,; three relations are obtained which similarly lead to 

Apparently, there are six relations; we proceed to shew that al1 of them 
are satisfied in virtue of 

(i) the Gauss equation, 

(ii) the relations O = 0, @ = 0, 
(iii) necessary identities. 

The last are comected with the derivatives of various quantities that occur, 
and they are as follows. 

Because 
+El = m = Er + FA, +E, = m' = Er' + PA', 

i t  follows that 
a a 
- (ET + FA) = - (ETf  + PA'). 
aq ap 

When this is expanded, and we substitute for r2 - r,' and A, - Al' in terms 
of 0' and W, we find 

EO' + PO" = O. 

Similarly, proceeding from 

4 G, = n' = Fr' + GA', &G2 = n" = Pr" + GA", 
we find 

FW + GWf = O. 
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Again, because 
n,-%'=~12-3Em-%G1,, 

when we expand the left-hand side and use the Gauss equation, we find 

FO1+GW=0. 
Lastly, because 

m," - m,l= FI,- &E, - +Gu, 
when we expand the left-hand side and use the Gauss equation, we find 

E W +  F W  = 0. 

Hence, retaining the Gauss equation, we have the relations 

EOJ+FW"'O EW+FW'=O 
FO1+GO"=0 > F@'+GW=O 

which are satisfied in virtue of Our necessary identities ; that is, we have 

0' =O, 0" =O, a'= O, c$P = O, 

because PZ, = E G  - FZ, is not zero. 

I t  therefore follows that the relations to be retained are the Gauss charac- 
teristic equation, together with the relations 0 = 0, @ = O. These two 
iiew equations are 

L, + r M  + A N  = M , + r l L  +AIM 
M, + r l M +  AIN =NI + I"'L+ AJ'M 

they frequently are called the Mainmdi-Codazzi relations*. In  all, therefore, 
there are three differential equations which the six fundamental magnitudes 
of the first and the second order must satisfjr. I t  remains to be seen what 
element, if any, of generality is possessed by a surface if and when i t  is 
determined by six magnitudes, which are given initially and which satisfy 
the three differential equatiom. 

The Mainardi-Codazzi relations can be expressed in a different (but 
equivalent) form. We have 

They were given, though not in the adopted form, by Mainardi, Ciom. Ist. Lomb., t. ix 
(1856), p. 395; and, in the adopted form, by Codazzi, Ann. di Mat., t. ii (1868), p. 273. 
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hence 
a~ a i v  i L M (-) --(-) = F ( ~ 2 - ~ l ) - - ( I ' f + ~ ) + T ( I ' + ~ 1 )  . & v  a p v  Y 

and similarly 

which are the Mainardi-Codazzi relations in another form. 

36. The necessary identities used in establishing the relations can be 
used also to obtain two other results, connected with the angle w between 
the parametric lines. We have 

VA -- V VA' V A  TA' - ( I ' r + A " ) + - ( A 2 - A , f ) - - ( I ' + A f )  - - E s + - - E l  E E E2 E" 

Similarly, in virtue of @" = O, we have 

Now the angle w between the parametric lines is given by tan w = VIF; 
hence 

do = 
FdV- V d F  

EG 

=- l (FGdE - 2EGdF + EFdG). 
BEC V 

Consequently 
2 E G V w ,  = FGE, - 2EG& + EFG1 

= - (2EF' + 2GA) Vz, 
and therefore 

V A  vrf  
and similarly 

vro 
so that 
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Moreover, 

and 

which are the two results in question. The second of them gives Liouville's 
form for the total curvature. 

Bonnet's Theorem. 

37. We now corne to the theorem which is the essential jiistification for 
considering the differential geometry of surfaces in connection with the six 
fundamental magnitudes. I t  was proved * first by Bonnet, and may be 
enunciated as follows :- 

When six fundamental magnitudes are given, and when they sathfy the 
Qauss characteristic equation and the two Mainardi-Codazzi relations, they 
deterrnine a surface uniquely Save as to its position and orientation in space. 

The equations, satisfied by X, ~ç,, x2 when they are regarded as three 
dependent variables, are 

XI 
1 

- - ( F M - G L ) &  v2 va 
X I ,  - LX - rz, 
xI2 - MX - r"zl 

and 

P = x, 1 1 
va V" 

- r 'x ,  

- - ( F A T - G M ) x , - - ( -  E N + F M ) x 2 =  0 

Q = x,, - MX - Atx9 = O . . .(ii). 
R= x*, - NX - IVx1 - A g 2  = O 

Both sets are linear in the dependent variables ; derivatives with regard to p 
occur only in set (i) and with regard to q only in set (ii). 

The primitive? of the linear set (i) is of the form 

x = E A + q B + C C  I . . . ., = &h+ qb, + cc, ......................... ..(111), 

x2 = ta2  + ~ b ,  + Cc, 1 
+ Journ. Éc. Polytech., csh. xlii (1867), p. 31. 
-f See my Traatise on Diferential Equatiom, (3rd ed.), $173. 
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where [, q, (are arbitrary constants so far as concerns derivation with respect 
top, that is, are arbitrary functions of q so far as concerns set (i). Also 

are particular sets of integrals of the equations, linearly independent of one 
another; and any linear combination of them with coefficients, that are inde- 
pendent of p and that combine them as in (iii), is also a set of integrals of the 
equations (i). 

But the equations (ii) are to be satisfied simultaneously with (i). Con- 
sequently they must be satisfied by the quantities (iii); and the variables a t  
Our disposa1 for this purpose are t ,  7, (;, which are functions of q alone. 
Accordingly, for the equations (ii), f,  7, (; become the dependent variables 
while q is the independent variable. Let 

P, Q, 1-i take values* Pl,  QI,  II ,  when X ,  x,, x2 = A, a,, u2; 
........................ P , , Q 2 , R  ,.................. = B , b l , b 2 ;  
........................ P,, Q3, R3 .................. - -c,  C I ,  h; 

then when the expressions (iii), which must satisSr the equations (ii), are 
substituted in those equations, we have 

a,-+bl-+c1-= dt d' dT - ( 5 ~ ~  + 7&, + CQJ } ............ 
dq  dq dq 

(i v). 

d t  drl d r  a,-+b,- +c,-= - (,$R 
dq dq dq  1 + 7x2 + CR,) 1 

These equations (iv), regarded as determining E, 7, C, must provide a primitive 
involving those quantities and expressing theni as functions of q alone, even 
though the coefficients in these equations involve the quantity p, which now 
is parametric. The requirenient will be met if the values of f,  9, 5; as given 
by (iv), also satisQ the relations 

a A  d4: aB dq ac dl: -- +--+- -=- ap, ap, ap, 
ap dq ap dq ap dq (E-+s-++)) ap ap ap 

au, --+--=-+2-=- de  ab dq ac d c  
a~ dq ap dq dpdq  

and these relations will be satisfied if it can be shewn that they are conse- 
quences of equations (iv) and of the earlier equations, regard being paid to 
the three differential relations satisfied by the fundamental magnitudes. 

* The valiies QI, Q2. Q3 actually are zero becauae the third equation in (i) ia the same as 
Q=O ; the symbols are retained for symmetry. 

4-2 
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5 2 BON NET'S [CH. II 

The three equations in (v) can be taken separately and the process is 
mainly the same for each of thern; we therefore set out the details in con- 
nection with the first. 

Because of the first of equations (i), we have 

Multiply the second of the equations in (iv) by s, the third by t, add, and use 
the immediately preceding results ; we have 

This will be the same as the first of the equations (v)-which accordingly 
will be a consequence of earlier equations-if 

We proceed to shew that these relations are satisfied. We have 

- aA 1 ---- y ,  (s'a1 + t'az), 
Say ; and, simiMy, 

8% Q - - - M A  - I"a1 - Afa2, 
l -  aq 
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and therefore 

THEOREM 

s ' t ' -, (LA + pal + AL*) -y, (MA + r'a, + A ' ~ J  

When the coefficient of a, is evaluated, i t  is found to vanish in virtue of the 
Mainardi-Codazzi relations. The coefficient of a, vanishes in the same way. 
And the coefficient of A vanishes identically. Hence 

Similarly 

Consequently, the first of the equations in (v) is satisfied in virtue of 
earlier equations and of the differential relations among the fundamental 
magnitudes. 

Next, to obtain the second of the equations in (v), we multiply the three 
equations in (iv) by L, r, A, and add. After corresponding calculations 
similar to those just given, and by using the relations in § 35, satisfied in 
virtue of the Gauss equation and the Mainardi-Coduzzi relations, we find 
that the result reduces to the required second equation in (v). 

And to obtain the third of the equations in (v), we multiply the three 
equations in (iv) by M, F', A', and add. Calculations similar to those for the 
second equation are required; the result reduces to the required third 
equation in (v). 

Thus the equations (v) are satisfied, in virtue of earlier equations that 
are retained, and in virtue of the differential relations among the fundamental 
magnitudes. Consequently the equations (iv) possess a primitive which 
expresses t, 7, as functions of q alone even though the coefficients in the 
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equations, in the fornl in which they actually occur in the general investiga- 
tion, may involve p parametrically. This primitive is of the type 

f = X & + p & + + &  

9=Aq1+wa+vr]3 , 
r= Ar1 + rr2 + v t  1 

where A, p, v are arbitrary constants; &, rl1, ci, being functions of q alone, 
are a special set of integrals; and likewise for &, q,, Ca; &, r],, c,; the three 
special sets being linearly independent. When these values of f, q, are 
substituted in the expressions (iii), we have 

X = h A + p B  + v C )  

xl = Xa, + pb, + vcl ...................... . . ( ~ i ) ~ ,  

xa = Xa, + pb, + UC, 

where 
A = &A + 71B + Clc, 
a1 = &a1 + 7lh + clcl, 
a, = Ela2 + 71bz + cl%, 

and so for B,b,,b,;  and C,c,,c,. Thus & a , , % ;  B,b , ,b , ;  C,c,,c,;  are 
three particular sets of solutions of the original six differential equations to 
be satisfied ; and the values of X, x,, x2 in (vi), constitute the primitive of the 
six equations. 

The equations, determining Y, y,, y,, are precisely the same in form as the 
six which determine X, xl, x2; and likewise those for 2, z,, z,. Hence the 
primitive of the equations for Y, yl, y, is 

Y = L'A + pfB + v'C 

i ........................ y, = X'a, + pfbl + V'C, ( 4 2  ; 
y2 = X'a, + p'b2 + v'ca 

and the primitive of the equations for 2, z,, z, is 
Z = h"A + + v"C 

zl = L"a, + ,dfb1 + v"c1 ....................... .(vi), ; 

Z, = L'/a, + p"b, + v"c2 1 
where, in (vi),, h', p', v'; and, in (vi),, A", p", y"; are arbitrary constants. 

38. Thus the complete primitive appears to contain nine arbitrary 
constants which are produced in sets of three by the integration of the 
equations. But these equations are themselves merely inferences from 
earlier fundamental equations, among which are 

Xa + Y2 + Z Z  =1, x: + y: + z,2 =E, 
Xx, + Yyl + Za, = O, xlx2 + y, y, + z,z2 = F , 
Xx2+Yya+Zz2=0,  $2 + y2 + 22 = G ;  

and therefore these equations m u t  be satisfied. 
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381 BONNET'S THEOREM 55 

Now, substituting in XS + Y2 + 22 = 1 the values given by the primitives, 
we have 

A ~ C X ~ +  2ABZkp + B2Zpa+2ACZXv + 2BCZp.v + C2Zua= 1. 

But A = X, B =Y, C = Z are particular solutions, so that 

A Z + B 2 + C 2 = 1 .  
Hence writing 

we have 
Aakl + 2ABk, + B2& + 2ACk4 + 2BCk, + C2k6 = 0. 

Similarly from Xx, +Yy, + 22, = O, we have 

and from the other four relations in turn, we have 

Thus there are six equations linear and homogeneous in the six constants k. 
The determinant of the coefficients on the left-hand sides is equal to 

that is, to V4, and so it does not vanish. Hence al1 the constants k are zero, 
that is, 

z x a - 1 = 0 ,  Zpv=O,  

and therefore the nine constants A, p, v are the direction-cosines of three 
perpendicular lines. 

Finally, we have, for the surface itself, 

and similarly 
y-1' =X'u +plv +v'w, 

z - 2" = hl'u + p"v + ~"zu,  

where 1, E', E" are additive arbitrary constants of integration. 
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The relations between the constants X leave the orientation of the surface 
undetermined ; the existence of the constants 1, I: l" leaves the position of the 
surface undetermined. 

And so we have Bonnet's theorem as enunciated. 

39. It follows from this theorem that the six fundamental magnitudes 
E, F, Q, L, M, N,  together with their derivatives, are suacient for the 
expression and the determination of al1 magnitudes and al1 properties that 
are intrinsically possessed by the surface. Later we shall see that, as is to be 
expected, some properties are common to al1 those surfaces which (roughly 
at the moment) may be described as having E, F, G in  common without any 
regard to L, M, N other than the Gauss characteristic equation. At present, 
the important result is that the six magnitudes give uniquely the intrinsic 
determination of a surfàce and that therefore they suffice for the expression 
of al1 properties of the surface which are independent of its position and its 
orientation. 

Derived Magnitudes. 

40. I t  has just been stated, as an inference from Bonnet's theorem, that 
properties and magnitudes intrinsically possessed by a surface are expressible 
in terms of the three fundamental magnitudes 23, F, G of the first order, 
of the three fundamental magnitudes L, M, N of the second order, and 
of their derivatives. Now it happens, as might be expected, that certain 
combinations involving first derivatives of L, M, N have relations with deri- 
vatives of z, y, z of the third order similar to those possessed by L, M, N with 
derivatives of x, y, z of the second order. Similarly certain combinations 
involving second derivatives of L, M, N have corresponding relations with 
derivatives of x, y, z of the fourth order; and so with the respective orders 
in succession. The combinations, which thus arise, are sometimes called 
fundamental magnitudes; having regard to the essential significance of the 
fundamental magnitudes of the first order and the second order, the new 
combinations may be called derived magnitudes of the various orders. 

The derived magnitudes are perhaps most simply defined in connection 
with the variation of the curvature of the normal section of the surface 
along a curve *. In  particular, those of the third ordw are defined by the 
relation 

(A) = P@ + 3Qp'zq' + 3Rp'qta + S q .  
as P 

The values of P, Q, R, S are obtained as follows. As before (5  31), we have 

This will be seen, at a later stage, to imply the oonsideration of geodesio tangents to the 
cnrve. 
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with two similar equations. Multiplying them by a,, Y I ,  z,, and adding, we 
have 

%" + Fp" + mp'2 + zmyq' + = 0 ; 
multiplying them by q, y,, z,, and adding, we have 

Pp" + Gq" + np'a + 2nly'p' + nffq'2 = 0. 
Hence 

-pjf = rpp2 + Zr' f 

- q" = Apf2 + 2Afpiqf + AfJq'2 
Now 

and therefore 

(:) = k@ + (L ,  + 2M,)p'yf+ ( 2 N  + N,)p'q3 + N,qQ 

+ 2 (Lp' + Mqf)p" + 2 (Mp' + Nq') q" 
= (L ,  - 2LI' - 2MA)p18 

+ (L, + 2M, - 4 L r f  - 2MT - FMA' - 2NA)p'"' 
+ (2M, + NI  - 2Lr" - 4MT' - 2MA" - ~ N A ' ) P ' ~ ' ~  

+ ( I f2  - 2Mrf'- 2NA") q", 

on substitution for p" and q". Having regard to the Mainardi-Codazzi 
relations, and reverting to the definitions of P, Q, R ,  8, we have values of the 
del-ived magnitudes of the third ordw in the form 

Q = L, - 2(LT1+ MA') 
= M, - ( L r f  + MA') - ( M r  + NA) 

R = M, - (MF'  + NE)  - (mu + MA) 
= NI - 2 (MI" + NA')  

S = - 2 (MI'" + NA") j 
It is not difficult to verify that these derived magnitudes of the third order 
satisfy the differential relations 

P2-Q1=2(Pl"+QAf )  -2(QI' + R A ) +  2 K ( F L  -EM),  
Q,-R,=PI'" +&A" - (RI' +#A)  + K ( G L - E N ) ,  
& - SI = 2 (QF" +RAn) - 2 (RF' + SA') + 2 K  (CM - FN).  

41. The derived magnitudes of the fourth order are defined* in con- 
nection with the second derivative of the ciirvature along the normal section 
from point to point of any curve ; they are such as to give 

See a paper by the author, illessengw qf Math. ,  vol. xxsii (1903), pp. 68-80. 
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By a process similar to that used for the investigation of the values of 
P ,  Q, R, S, we find 

a = P , - 3 ( P r  +QA) 

p= P z - 3 ( P r J +  QA') - # K ( F L  - EM) 
= Q I -  2 (QI' + RA) - (PI" + QA') + 4 K (FL - EM) 

y = Q, - 2 ( Q r l  + RA? - (PrJ1+ QU) - 4s (GL - EN) 

= Ri - 2 (QI" + RA') - (RF + SA) + i K  (GL - E N )  
8=R2-2(Qr1+RA")-(RrJ+SA') - + K ( G M - F N )  
= Sl - 3 ( R r '  + SA') + $ K ( G M - F X )  

e = S2 - 3 (RFJJ+ SA") 
The derived magnitudes of any order m, thus defined, involve derivatives 

of x) y, z of order m. 

42. The first derivatives of the Gauss measure of total curvature, and of 
the measure of mean curvature, can be expressed in terms of the derived 
magnitudes of the third order. We have 

V 2 K =  LN-  M 2 ;  
and therefore 

Vl V2K,=LlN+LN,-2MM,-21 , (LN-M".  

When we substitute for LI, Ml, N, in terms of P ,  Q, R and other magnitudes, 
also for VI, and reduce, we find 

V2Kl = NP - 2MQ + LR 
and, similarly, 

V2K2 = ATQ - 2MR + LS 
I n  the same way for H, the measure of mean curvature, we find 

PHl = G P  - 2FQ + ER] 
VzH2 = GQ - 2FR + ES 

Cor. When a surface has the property that there is a functional relation 
between its principal radii of curvature, the relation can be expressed in 
a form 

f ( H ,  K )  = O, 
or in the Jacobian form 

HIK, - H,K, = O ; 

thus its fundamental magnitudes must satisfy the equation 

Such a surface is usually called a Weingarten surfme, and referred to as 
a surface W :  some of the properties will be discussed hereafter ($ 203- 
208). 
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43. The derivatives of x, y, z of the third order can be expressed as 
linear functions of X, xi, x2; Y, y,, y,; 2, z,, z,, the coefficients involving the 
derived quantities of the third order and derivatives of E, F, G. Taking the 
equation 

= LX + + X ~ A ,  

differentiating with respect to p, and substituting for Xi, xll, x,:,, in terms of 
X, x,, x2, we have 

xll, = AX + xlX + xzp ; 

and so for the other derivatives. The results, after reduction, are as follows : 

xll1 = AX + + $ 9 ~  1 xl12 = ArX + x1hr + xzp' 

yiii = A Y + yix + yzp , y112 = A' y + yiXf + 
zin = A Z  + ZIA + ~ Z P  Z ~ Q  = R'Z + z1Xf + z2p' 

where the coefficients are given by the equations 

A = P + J ( L T + M A )  
A' = Q  + M I ' + N A + 2 ( L I " + M A 1 )  
A'' = R + ~ ( M I " + N A ' ) +  LI'"+ Ma" 
A"' = S + 3 (MI"'+ NA") 

1 
EX'  + Tpf = m2 - LM - -- {Enn' - F(nmr + n'm) + Gmm'j va 

1 
F X '  + Cfp'  = m, - LN - - {Enn" - F(nm" + n"m) + Gmm"} v2 
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I t  is easy to see that the derivatives of x, y, z, of any order greater than 
unity, can be expressed similarly as linear combinations of X, x ~ ,  x,; the 
coefficients in the combinations involve the derived magnitudes and derivatives 
of the fundamental magnitudes E, F, G. 

EXAMPLES. 

1. Two directions a t  a point P on a surface are given by 

edp~+2@dpdq+udq2=0, 

and a third direction is given by Bp, 6q, 69, making angles a and ,û with the former 
directions. Shew that, if 

J= (E6p + F6q)2 9 - 2 (E6p + Fitq) ( P ~ P  + G 6q) + + (F6p + G 6q)Z 8, 

I = { ( E ~  -21ia + G ~ ) z -  4 (EG - P ) ( ~ Q  - 6$, 
then 

Ssbos a cos ,9 =.J/I, 

and 

W s i n  

2. Shew analytically that, if L, M, N vanish everywhere on a surface, the surface is 
plane. 

3. A siirface is given by a Cartesian equation in the form 

z=f(x, Y) : 
the partial derivatives of z are denoted, as usual, by p, q ; r, s, 2. Shew that 

and obtain expressions for the derived magnitudes of the third order. 

4. A surface is given by the equation F ( z ,  y, 2)  =O, ao that the direction-cosines of 
the normal are given by 

1 aF i aF i ap 
x&= F2/=zaz= 

Shew that the mean curvature H is 
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with two sirnilar expressions, and the total curvature K is 

with two similar expressions. 

5. The parametric curves are orthogonal, and a curve is drawn on the surface making 
a constant angle a with the curve p=constant ; shew that the differential equation of the 
curve is 

"- = y)' tan .. 
& 7 Ë  

6. Obtain the equation of the liues of curvature in the form 

and shew that, if 
u = @ - z y ,  v = z X - x z ,  w=xY-yx,  

(so that X, Y, Z, U, v, w are the six coordinates of the normal), the differential eqnation of 
the lines of curvature is 

dudX+dvdY+dwdZ=O. 

7. Shew that, a t  any point of a surface, 

~ x ~ ~ ~ ~ = A ~  +EXZ +2FXp + Gp2 
ExlIz2= A" + EX2 + 2FA'p' + Gpt2 
 EX^^^^ = A'I2 + EA"2 + 2FX"p" + Gp"2 
zZB2z = Am + EXW + 2m~r1~tu + 

where the symbols on the right-hand aide have the same significance as in $ 43. 

S. A surface is given by the equations 

s h e l  that the equations of the lines of curvature are 

(1 - 2 a ~ ~ ~ 4 ) - *  du 2 (1 - 2av9+~)-4 CIV=O, 

where a=(a2- 2b2+c2)/(aa+cz) ; and obtain a n  expression for the total curvature. 

9. A skew surface is generated hy the binormals of a curve. Prove that, a t  a point 
on a generator distant d from the curve, the total curvature is - d (0% + CP)-~ ; and that, 
at the curve itself, the principal radii of curvature of the surface are given by the 
equation 

7 2  T a,+--l=o. 
P 

10. A skew surface ia generated by the radii of spherical curvature of a curva Shew 
that, a t  the centre of spherical curvature of the curve, the total curvature of the surface 
is - ul-a, where ml is the radius of torsion of the locus of the centre of spherical curvature. 
Shew also that, a t  the curve itself, the total curvature of the surface iu - u12R-4, where 
R is the radius of spherical curvature. 
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11. A surface is generated by straight lines which meet the lines y= +_zizino, 
z= + & c ;  and the intercepts between the axis of z and the points where the generator 
meeta the lines are u and v, functions of a parameter. Shew that, a t  a pomt on the 
surface in the plane of q, the total curvature is 

- 16c2u'%'%in2 2a 
{CS (u1a+2u'v' cos 2a +vI2) + (ud + ~ ' v ) ~  sin2 2aY ' 

and that, a t  a point on the surface in the first line, the principal radii of curvature are 
given by the equation 

1 2csin 2a u-v cos 2a dv ZsinQa 
- +- - - 
r.2 T (62 + v2 sin2 2a)# du (CS + v2 sin2 2a)2 du 

12. A surface is given by the equations 
x = sin u (coshz v - cos a cos u cosh v - 2 cos2 a), 

y=sinh v (cos2 a cos2 u - cos a cos u cosh v - 2), 

z- sin a cos u cosh v (cosh v -cos a cos u). 

Prove that the curves of reference are the lines of curvature, and that  the principal 
radii of curvatiire are 

(2 cos a cos u - cosh v) (cosh v+ cos a cos u)2 C O ~ C  4 

(2 cosh v - cos a cos u) (cosh v+ cos a cos u ) ~  cosec a. 
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CHAPTER III. 

THE present chapter is occupied with an account of the chief curves upon a surface, 
with which they have organic relations a s  being determined, mainly or partly, by the 
nature of the surface itself. There will be no elaborate discussion of the properties and 
char acte ris tic^ of any of theni, though a more detailed treatment of two classes of them, 
vie. lines of curvature and geodesics, will be found in later chapters. 

For the immediate purpose, reference niay be made to the first volume of Darboux's 
treatise, particularly to the first three chapkrs of the second Book. The subject-matter 
is discussed in the third chapter of Bianchi's treatise, and in the second section of 
Knoblauch's treatise, as  well as in the first section of Stahl and Kommereii's Die 
Grundfomln  der allgem'nen Flachentheorie. 

Orthogonal Curves. 

44. We have seen (5 25) that the angle o between the parametric 
curves at  a point on a surface is given by 

cos o= F(EG)-3 .  
Hence the curves are perpendicular at  a point if F =  0 a t  the point; and 
they are perpendicular everywhere if F = O over the surface. 

I n  the latter case, they often are called an orthogonal system ; and F = O 
is the sole condition, necessary and sufficient to seciire that the parametric 
curves form such a system. 

45. When the surface is referred to any system of parametric curves 
p = const., q = const., and when the fundamental magnitudes of the surface 
of the first order and the second order are denoted by E, F, G;  L, M, N; 
the directions of the lines of curvature through a point upon the surface are 
given by 

Edp + F d q  , Fdp + Gdq 1 = O. 1 l d p  + Mdp, Mdp + Ndg 
If the parametric curves are themselves lines of curvature, the foregoing 

equation must (as an equation for directions) be equivalent to 
dpdq = o. 

IRIS - LILLIAD - Université Lille 1 



[CH. III 

Hence we must have 
EN- G L f 0 ,  

From the last two equations, Ive have 

(EN- GL)M=O, (EN- GL)F=O, 
and therefore 

M=O, P=O,  

are the conditions that the parametric curves should be lines of curvature. 

When the conditions are satisfied, the radius of curvature for p = constant, 
say a, and the radius of curvature for q = constant, say ,8, are 

a = GIN, P = EIL. 

The conditions P= O, M = O, are necessary and sufficient to secure that 
the parametric curves are lines of curvature. The condition F = O makes the 
parametric curves an orthogonal system; the new condition M =  O makes 
them the special orthogonal system constituted by lines of curvature. 

46. Two well-known theorems can be stated in connection with the 
general formulæ of the preceding chapter. 

Take any curve on the surface. Let l lr be its circular curvature; and 
let l / p  be the curvature (defined as in 5 31) of the normal section of the 
surface through the tangent to the curve. The direction-cosines of the 
principal normal to the curve are rx", y", rz"; hence, if 6 be the angle 
between this principal normal and the normal to the surface, we have 

COS O =  X . r x n + Y . r y " +  Z,rz l ' .  
But 

xf' = xlip'2 + 2xmp1qt $ x=q' + xlpt /  + x2q1> 

and similarly for y" and z" ; hence 

cos e -- 1 - Xx" + Yy" + Zz" = Lpta + 2Mp1q' + Nqi = - . 
r P 

This is Meunier's theorem. 

Next, at any point take a normal section of the surface through a direction 
making an angle 1JF with the line of curvature p =constant. Let the surface 
be referred to the lines of cumature as parametric curves, so that F =  0, 
M = O ;  then 

The radius of curvature of the normal section is given by 
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which is Euler's theorem on the curvature of a normal section through any 
direction not coinciding with a line of curvature*. 

The relations of the indicatrix 

to the curvature are at  once suggested; they are discussed in text-books on 
solid geometry. Only one remark need be made here, for ulterior use. If the 
indicatrix is an ellipse, p is finite for every normal section. I f  the indicatrix 
is n hyperbola, p is infinite for each of the directions + = tan-] (-DIU)*, which 
are the directions of the asymptotes of the indicatrix. 

The detailed development of the analysis connected with lines of curvature 
and with associated properties will be deferred until the next chapter. 

Conjugate Directions. 

47. The familiar notion of conjugate diameters (or conjugate directions) 
in a central conic can be extended, through the indicatrix, so as to give rise 
to the notion of conjugate directions (and conjugate lines) on a surface?. In  
the case of a conic with centre C, a direction given by two points P and Q on 
the curve is conjugate to CR, where the tangents a t  P and Q intersect in R ; 
and the definition makes an asymptote of the conic conjugate to itself. 

I n  the case of a surface, let a line P R  be drawn through a point P 
parallel to the intersection of the tangent plane a t  P with the tangent plane 
at a point Q ;  when Q tends to coincide with P (or becomes a point con- 
secutive to P), the limiting positions of PQ and P R  are called conjugate 
directions at  P. 

The condition that two directions dp, dy ; and dp', dq'; are conjugate can 
be deduced from the definition. Let PQ be the direction dp, dy ; and let PR 
be the direction dp', dq', so that PR is parallel to the ultimate intersection 
of the tangent planes a t  P and a t  Q. Let P be the point x, y, z ; the tangent 
plane at  P is 

( E - x ) X + ( T -  y)Y+( r -z )Z=O,  
where E, 7, are current coordinates. The tangent plane at  Q, Say x + dx, 
y + dy, z + dz, is 

(E-x-  dx)(X+ dX)+(q  -y -dy ) (Y+ dY)+(c -z  - dz)(Z+ dZ)=  O. 

But 
Xdx+Ydy+Zdz=O,  

and therefore the latter equation can be taken in the form 

2 {(t - x) (X + dX) - h d X ]  = 0. 
* The result can be established £rom the quite general formule, without any speaial choice of 

parametria curves. 
t The extension originated with Dupin, Développements de géométrie (1813), P. 91. 
F. 5 
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The quantity d x d X  is of the second order; hence the line of intersection of 
the two planes is given by 

( f - x ) X  + ( T l - y ) Y  +(f;-z)Z = O  
( f - x ) d X + ( q - y ) d Y + ( c - z ) d Z = O  1. 

Let a point x + dx', y + dy', z + dz' be taken on the surface, so that it lies 
ultimately on the direction PR ; thus dx', dy', dz' determine the direction PR, 
and for that direction 

5 - x :  7 -  y : f ; -Z= dz ' :  dy':  dz'. 
The first equation is satisfied identically. The second equation is 

dx'dX + d y ' d Y + d z ' d Z =  0, 
which accordingly is the equation to be satisfied by the direction conjugate 
to PQ. Now 

dxt=x,dp'+x2dq', d X = X l d p + X a d q ;  
and therefore 

( e x l  X I )  dp dp' + (Xx2 X,) dp dq' + (dx l  X,) dq dp' + (Zx2 X 2 )  dq dq' = 0, 
that is, 

Ldpdp' + M (dpdq' + dqdp') + Ndqdq' = 0. 

This is the condition that the two directions should be conjugate to one another. 
As the analysis manifestly is reversible, the condition is seen to be sufficient 
as well as necessary. 

The symmetry of the condition between dp, d q ;  and dp', dq'; justifies the 
assumption in the phraseology that the conjugate property is reciprocal. 
When written in the form 

( L d p  + Mdq) dp' + (Mdp + Ndq) dq' = 0, 
the condition shews that the two directions are conjugate diameters of the 
indicatrix ; for the equation of the indicatrix is 

Thus only a single condition requires to be satisfied in order that two 
directions may be conjugate. Hence one direction can be taken arbitrarily, 
and the other is then determined by the condition ; and it is uniquely deter- 
mined, for the condition is lineo-linear in the quantities dpldq, dp'ldq'. Thus 
let a curve be + ( p ,  q )  = constant, 
so that we have a family of curves when the constant is parametric; the 
direction of the curve at  a point is given by 

But the direction dpldq, conjugate to 6p/6q, is given by 

( L d p  t Mdq) 8p + ( M d p  + N d q )  S q  = 0 ;  
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that is, the conjugate direction at the point satisfies the equation 

a+ a+ ( L d p  + Mdq) - - ( M d p  + Ndq)  - = 0, 
aq ap 

or, what is the same thing, 

an ordinary differential equation of the first order, the primitive of which 
gives a family of lines conjugate to the family + (p, q)  = constant. If this 
conjugate family be + ( p ,  q )  = constant, then 

48. When two directions 6p, 6q ; 6p1, 6q'; satisfy an equation 

and therefore the condition that the two directions should be conjugate is 
C L -  2BM+ A N = 0 .  

The condition is suficient, as well as necessary, to secure the conjugate 
character. 

The parametric curves p = a, q = b, where a and b are constant, are 
given by 

dpdq = 0. 
Taking A =O, C= 0, and B not zero, we infer that the condition necessary 
and sufficient to make the paramet& curves a conjugats system is 

In particular, the lines of curvature are conjugate to one another. This is a 
consequence of the fact that when the lines of curvature are made parametric 
curves, then one of the conditions is M= O, which makes them conjugate ; and 
it can also be verified from their general equation 

( E M  - F L )  dp2 + ( E N  - G L )  dpdq + ( F I -  GM)  d q k  O ,  

by making A, B, C = E M  - F L ,  EN - GL, PN- GM, respectively, in the 
foregoing relation. 

The direction dp', dq', which is conjugate to dp, dq, is given by 

dp' = dq' 
M d p  + Ndq - ( L d p  + Mdq) = O' 

Say, where 
-- ds'' - (EM a - 2FLM + GLa) dpa 
tJ2 

+ 2 (EMN - F L N -  FM2+ G L M )  dpdq 
-t (EhTs - 2FMN + GMa) dqa = Oz, 

6-2 
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so that 

Let x denote the angle between the two conjugate directions; then 

dsdd cos x = Edpdp' + F (dpdq' + dqdp') + Gdqdq' 

= e + m q )  ( M ~ P  + i vdq)  - ( F ~ P  + ~ d q )  ( m p  + M ~ Y ) } ,  
that is, 

Ods  cos x = (EM - F L )  dp2 + (EN - GL) dpdq + (FN - G M )  dq2. 

Manifestly the only conjugate directions perpendicular to one another are the 
lines of curvature. 

49. The equations relating to surfaces in general, as obtained in the 
preceding chapter, were constructed for any unspecified system of parametric 
curves. When any particular specification is introduced, some corresponding 
simplification in the equations may be caused. When the parametric curves 
are conjugate, we have 

M = O  
in al1 the equations. This causes a special simplification in three of the 
partial differential equations (of 5 34) satisfied by the coordinates, via. those 
involving xl,, y,,, z,,. When the parametric curves are conjugate, these 
equations are 

X ~ ~ = X ~ I " + X ~ A ' ,  yia=ylI"+yzA', zl2=ziI"+zzA'; 

that is, x, y, z are three solutions of the equation 

This is a linear partial differential equation of the second order, and usually 
is called Laplace's equation, being written in the form (with the customary 
notation for partial differential equations) 

s = ap + bq, 
where a and b are functions of the independent variables. 

The primitive* of this equation involves two arbitrary functions; hence 
the most general values of x, of y, and of z, obtained solely as integrals of the 
equations, are expressions each of which involves linearly an arbitrary function 
of p and an arbitrary function of p. The arbitrary functions are not unrelated ; 
for assuming r' and A' known, we have 

VaI"=&GE9-+FGl, V2A'=&EG1-&FE2, 

as well as the Gauss characteristic equation and the Mainardi-Codazzi 

* For the general theory of Laplace's linear equation, and for the special construction of the 
primitive when the latter Gan be expressed in finite terms involving the two arbitrary functions, 
see the author's Theoly of Differential Epuatiom, vol. vi ,  chap. xiii. 
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relations; and al1 these conditions must be satisfied when the values of 
x, y, z are substituted. 

Even so, a large amount of arbitrary generality will survive in the 
complete solution which, through this stage at  least, is rather an investigation 
in partial equations than in geometry. Geometrical applications arise by the 
assignment of further conditions ; and illustrations of these, in connection 
with particular surfaces or families of surfaces, will be given from time to 
time. 

The amplest discussion of the equation, together with many compre- 
hensive applications to surfaces, will be found in the second volume of 
Darboux's treatise. 

50. One particular family of surfaces, referred to conjugate lines as 
parametric curves, is instanced by Darboux* in the form 

where A, a, B, b, C, c, m, n are constants. I t  is easy to verify that 

so that, multiplying these equations by X, Y, Z respectively, and adding, we 
have 

N = O ;  

and therefore the parametric curves given by p = constant, q = constant, are 
conjugate. 

More generallÿ, the direction on the surface given by 6p, 6q is conjugate 
to the direction given by dp, dq, if 

The family includes many important sets of surfaces. When m = n, we 
have the " tetrahedral " surfaces 

special cases of which arise, in Steiner's surface for m = n = 2, in a well- 
k n o m  cubic surface for m = n = - 1, and in the trivial plane for nl = n = 1. 
When m = $, n = 4, we have (as will be seen later) the surface of centres of 
the ellipsoid; when m = 9, n = 9, we have an ellipsoid ; and so for other 
special values of m and n. 

* Théorie générale, t. i, p. 142. 
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A symptotic Lines. 

51. Various definitions of asyrnptotic lines are g-iven, according to the 
property selected to characterise them. They are associated simply with 
conjugate directions; an asymptotic line is then defined as a curve on the 
surface whose direction at  any point is self-conjugate, The direction dp'ldq' 
must then be the same as dpldq; that is, a self-conjugate direction is given 
by either of the equations 

dxdX + dy dY + dzdZ = 0, 
Ldp2 + 2Mdpdq + NdqZ = 0. 

Consequently there are generally.two asymptotic directions at  any point of 
a surface. When the total curvature is positive (90 that L N  >ICI2), the 
directions are imaginary and different; when i t  is negative, they are real 
and different ; when i t  is zero (so that the surface is developable), there is 
only a single asymptotic line through a point, and i t  is the generator. 

The curvature of the normal section of a surface through the tangent to 
an asymptotic line, being 

LpTa + 2 Mp'q' + Nq'a, 

is zero. The tangent to the line then coincides with an asymptote of the 
indicatrix at  the point; hence the name. 

Consider the tangent plane a t  a point (E, y, z) on the surface. The 
distance of a neighbouring point x + dx, y + dy, z + dz from that plane 

= Xdx + Ydy + Zdz 

= + (Ldp" 221Mdpdq + Ndq" + other terms, 

the other terms being of the third and higher orders in dp and dg. Thus 
any tangent to the surface, being a straight line in the tangent plane, meets 
the surface in two consecutive points; but a tangent to the surface in the 
direction of an asymptotic line meets the surface in three consecutive points. 
The directions of the asymptotic lines are therefore often called the in$exion.al 
tangents a t  the point. 

Another method of stating the last result is to declare that the asyinptotic 
directions are the tangents to the curve of intersection (which has the point 
for a double point) of the surface by its tangent plane. On a hyperboloid of 
one sheet, they are of course the generators. 

Let x denote the angle between the asymptotic lines 
Ldp2 + 2Mdpdq+Ndq2=0 

at any point ; then ( 5  26) 

tan x = 
~ v ( M ~ - L N ) &  

EN-  2E'M + GL 
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where a and ,% are the principal radii of curvature at  the point, we have 

a + P  cos X = - 
a - P '  

If the asymptotic lines are everywhere perpendicular on a surface, so that 
x = 47, then 

EN-2FM+GL=O,  
that is, the surface is minimal. 

52. The analytic determination of the asymptotic lines upon a surface 
can be made to depend upon the integration of the differential equation 

Ldp2 + 2Mdpdq + Ndq2 = 0, 

of the first order and second degree. For any surface, what is required in 
this mode of determination of the asymptotic lines is the preliminary con- 
struction of the quantities L, M, Ar. 

Ex. 1. On a sphere, we can take 

and then, by simple calculations, we have 

L= -1, M=O, N= -1, 

RO that the asymptotic directions (being imaginary, for the sphere is synclautic) are given by 
. , dp" dq2=0, 

that is, they are 
p + iq = const, p - ig=const. 

Ex. 9. Prore that, a t  the origin on any surface 

2 z = d + 2 & y $  bya+ terrns of higher order in x and y, 
the asymptotic directions are 

d + S h y + b y ' = O .  

Ex. 3. As a iast example, consider the asymptotic lines on Fresnel's wave-surface* 

where 9 = 9 +y2+z2. We have 

and so we take 

- a 9  --+-+-=- by2 cza abc (8-p)(B-q) 
0 - a  0-b O-c p (O-a)(O-b)(O-c)' 

as equations defining the parameters p and p, the latter equation being satiefied identically 
for al1 values of B. 

For a full discussion, see Note VIII at the end of Darboux's fourth volume. 
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We then have 

with similar expressions for y and z; hence 

%= 1 a 

x 4p(.-p)(a-d > 
1 1  -i=--- 

x 4 (a-  qj2 i 
Xx= W ( b -  c){bc- (b+c)p+pqJ(a-p)(a-q) ,  

where W is a multiplier, common to X, Y,  2, the value of which is immaterial a t  present. 
Then, writing 

U=(a-6)(b-c) (c-a), 
we have 

L = zXx1, 

Inserting the values of L, M, fl, we a t  once have the differential equation for the 
asymptotic linea 

Darboux (1.c.) shews that, by introducing a parameter s in place of p, defined by the 
relation 

P ( P - ~ ) ( P - ~ ) = ( P - ~ ) ( P - ~ ) ( P - ~ ) ,  
the differential equation can be obtained in the form 

the primitive of which can be expressed algebraically. 

53. The conditions that the parametric curves should be asymptotic 
lines are easily derived from their general equation 

L dp2 + 2Mdpdq + NdqZ = 0. 

If these are the parametric curves p = a, q = b, the equation must effectively 
be the same as 

dpdq = 0, 
and therefore we must have 

L=O, N=O, M + O .  
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(The complete difference between the condition, that the parametric curves 
should be two different conjugate directions, and the conditions, that they 
should be two self-conjugate directions, will be noticed.) 

Moreover, as the analysis manifestly is reversible, the conditions are 
sufficient as well as necessary. 

As the asymptotic lines are a couple of systems of curves distinct from 
one another on al1 surfaces which are not developable, i t  frequently is 
convenient to choose them as the parametric curves of reference. I n  that 
choice, we make L = O and N =  O in al1 the general equations which have 
been obtained; consequently there is much simplification in the forms of 
those equations. Thus the Mainardi-Codazzi relations take the form 

Ml = ( r  - A') M, M, = (A" - r ' )  M. 
The equation of the lines of curvature (on dropping the non-zero factor M) 
becomes 

Edp2 - Gdq2 = 0. 
We have 

always, and therefore (for this particular reference) 

while, as always, 

and the measures of curvature are 

64. To illustrate the use of asymptotic lines as curves of reference, 
consider surfaces of constant negative total curvature (often called pseudo- 
vherical). The asymptotic lines are real and, assuniing the measure not 
to be zero, are distinct from one another; so they are convenient curves 
of reference. We have, from the definition, 

where p is a real constant; hence 
M l  
- 

so that 
v = i 9  

---= O, that is, A' = 0, 
M V  
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and 

M' - 0, that is, F' = O. z-7- 
Reverting to the definitions of I" and A', we have 

m'G-n%=O, n'E-mlF=O, 
and therefore 

m'= O, nt= O, 
that is, 

E, = O, G1 = o. 
Consequently E is a function of p only; by changing the variable p to p' 

where E ~ ~ J I  = dp', the new quantity in place of E is unity, and therefore 
without any loss of generality, we can take E = 1 for the surface. Similarly, 
as G is a function of q only, we can take G = 1 without any loss of generality 
for the surface. 

The angle between the parametric curves has been denoted by w ; hence 
in the present case 

F = cos w, V =  sin o, 
and therefore 

Now for any surface we have ($36) 

and therefore, in the present case, we have 

aZo 1 . -- - - sin o, 
apaq p2 

where p is a real constant. 

Upon the integration of this equation, the determination of the most 
general pseudosphere rests. When any solution is found giving o in terms 
of p and q, we then know 

E ( = l ) ,  G(= l ) ,  L(=O), N(=O), F(=cosw), M(=p-Isino); 

that is, by Bonnet's theorem, we have n pseudosphere completely determined 
Save as to position and orientation. Thus, as so often happens in the 
differential geometry of surfaces, the solution of the problem depends upon 
the integration of a partial differential equation of the second order. The 
primitive of the equation 

aZo 1 
w q = p  sin w 

has not yet been obtained. 
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The lines of curvature upon the pseudosphere are given by 
dp2 - dq" O, 

that is, they are given by 
p + q = u = constant, p - q = v = constant. 

When the surfiace is referred to the lines of curvature as parametric 
curves instead of the asymptotic lines, so that u and v are the variables of 
reference, the preceding differential equation of the surface becomes 

aZw aZw i . 
- = - sin W .  D- ava 

Nul Lines. 

55. The nul lines (or minimal lines) on a surface are defined in connection 
with arcs of zero length ; they are given, as to their variables, by 

Edp" 2Fdpdq + Gdqz = O. 

On ariy real surface, the nul lines are imaginary ; and their parameters are 
conjugate complex varir~bles, unless V is zero, a case which usually is 
excluded* from consideration. But it will appesr that, though the variables 
are imaginary, they have definite and important relations with real isotherinic 
systems of lines upon the surface. 

In order that the parametric curves may be nul lines, the equation 

Edp2 + 2Pdpdq + G dqa = 0, 

which is the defining equation of such lines, must effectively be the same as 

dp dq = 0, 
which is the general equation of parametric curves. Hence 

E = O ,  G = O ,  P+O, 

(and therefore V +  O). The expression for any arc then becomes 

dsZ = 2Fdp dq. 
To determine the nul lines on a surface when they are not the parametric 

curves, we have to integrate the equation 

Edp2+2Pdpdq+  Gdq2=0, 
that is, the equations 

Edp+(F- t iV)dq=O,  Edp+(F- iV)dq=O,  

where we shall assume that p and q are real. Let the primitive of the first 
of these two equations linear in dqldp be 

u = $I @, q) = constant, 

so that u is a complex function o f p  and q. I f  v is the conjugate to U,  

v = + (p, q )  = constant 

* Darboux (t. i, p. 148) shews that, when V=O, the surface ia a developable circumscribed to 
the imaginary circle at infinity. 
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is the primitive of the second of the eqiiations linear in dqldp. Then 

d u = p { E d p + ( F + i V ) d q } ,  
dv = v {Edp  + ( F - i V )  dq}, 

where p and v are conjugate quantities ; hence 
ds2 = Edp2 + 2Fdpdq+ Odq2 

where X is a real quantity on a real surface. 

The nul lines then are given by the equatiom 

These variables u and v are often called the symmetric variables. Later it 
will be seen that, while synzmetric variables are not unique for a surface, 
the choice of such variables possessing the symmetric character is narrow. 

56. When a surface is referred to nul lines as parametric curves, the 
various equations in the general theory are much simplified. We then have 

E= O, G = 0 ,  V2=-Fa; 
F F  r = o ,  rff=o, 
A = O, A'= O, A" = F2/F. 

The Mainardi-Codazzi relations becoine 

which can be written 

and the Gauss equation becomes 

The mean curvature is 

and the total currature is 

K =  LN - M" 
- F 2  
1 a2 
p ap aq (log 0 

The differential equation of the lines of curvature is 

- Ldps + Ndqs = O ; 

and the equation of the asymptotic lines is unaffected, being 

Ldp2+2Mdpdq + +dq2 = 0. 
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I t  will appear that the discussion of the geodesics upon a surface is 
simplified, so far as their equations are concerned, by referring the surface to 
nul lines as parametric curves ; for only a single fundamental magnitude (F) 
of the first order then occurs in the equations, instead of al1 three when the 
parametric curves are any general unspecified curves. 

57. As a passing example of the use of nul lines as parametric curves, 
consider surfaces with a constant mean measure of curvature, Say 2/h, where 
h is a constant. Then 

so that 
M h  = F. 

From the Mainardi-Codazzi equations, we have 

L2 = O, NI = O. 

Thus L is a function o f p  only, if i t  is not zero; when we change the variable 

to p' where ~ * d ~  = dp', the new qiiantity L is iinity, that is, we can take 
L = 1 without loss of generality. Similarly we can take N =  1 without loss 
of generality, when i t  is not zero. 

The Gauss equation now becomes 

that is, 

a partial equation of the second order to determine* F. Suppose that some 
integral of this equation is known; i t  gives F, and therefore also M which 
is equal to F/h. Thus we know E, F, G, L, M, N; that is, by Bonnet's 
theorem, there is a surface uniquely determined by these quantities, Save as 
to position and orientation in space. 

The lines of curvature upon the surface satisfy the equation 

- d p 2 + d q 2 = 0 ;  
that is, they are given by 

p + q = constant, p - q = constant. 

Writing 
F= heei, h = - 24~2, 

the equation beoomes 
a2e 1 - - - sin 8,  

ap aq - pz 

which is the same equation as occurred (5 54) in the discussion of surimes having the Gaussian 
messure of curvature constant. 
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The asymptotic lines on the surface satisfy the equation 

that is, they are given by the equations 

h d p + { F &  ( ~ ~ - h ~ $ ] d ~ = 0 .  

58. I t  is possible to have nul lines in space, as well as nul lines on any 
given surface; and they possess the important property that, from them, it is 
possible to construct minimal surfaces analytically. 

One method of constructing nul lines in space is given by Lie as follows. 
Take any plane 

t X + u y + v z = l ,  
subject to a specific relation 

t 2+u2+v2=0 

and to any arbitrary non-homogeneous relation 

f ( t ,  21, 'u) = O. 

The two relations determine (say) u and v as functions of t ;  thus the 
equation of the plane contains only a single parameter, and therefore the 
envelope of the plane is a developable surface. The edqe of regression of 
this surface i s  a nul line; and so, by taking any number of different relations 
f = O, we have any number of nul lines. 

The verification of the statement is easy. A point on the edge, of 
regression is given by 

t x +  u y +  v z = 1  

x + u'y + v'z = O , 
u"y + vl'z = O 

with the conditions 
J 

and these equations give 3;', y, z  BS variable functions of t,  so that dx, dy ,  dz 
are not zero. But along the edge, we have 

t d x  + u d y  + vdz  + (x + u'y + v'z)dt = 0 ,  

d x  + u'dy + v'dz + (u"y + v"z) dt  = 0, 
that is, 

tdlc + u d y  + v d z  = 0, 

dx  + uldy + v'dz = O. 
and therefore 

d x  -- = -- - d z  d y  
U V )  - ufu v - tu' tuf  - U - P? 
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where ,u is not zero because x, y, z are variable quantities. Hence the 
element of arc ds is given by  

1 
- as2 = (UV' - u'v)~ + (v - tu'y + (tu' - u y  

on substituting - (uu' + vu') for t. The second factor is 

and so 

thus verifying* the statement that the edge of regression is a nul line in 
space. 

59. These nul lines in space are usedf by Lie to construct minimal 
surfaces, according to the theorem : 

Let iVl and N, be two nul lines in space; let Pl be any point on NI, and 
P, any point on N2;  then the locus of the middle point of the straight line 
PIP, is a minimal surface. 

The coordinates of P, can be represented by 
xl=2A1(t)=2Al, yl=2B,(t)=2B,, z1=2Cl(t)=2G, 

where 
A:+ B:+ Ci2= 0, 

because Nl is a nul line. The coordinates of Pz can be represented by 

x2 = 2A2(B) = 2A2, y, = 2B2(8) = 2B2, z,= 2C2(0)= 2C2, 
where 

A;2 + Bis+ C? = 0, 

because N, is a nul line. The coordinates of the middle point of PIP,  are 

and therefore, for its locus, we have 

* For the purpoeie, the Serret formula of 5 2 1  can also be used ; in them, we write 

while the u of those formulse now becomes - llv. Then we verify that T, which is equal to 

{ p l a  +qq+  (pql -pM2}*,  
vanishes ; and so &=O. 

t Math. Ann., t. xiv (1879), p. 337. Lie cliooses the middle point; the locus of a point, t h ~ t  
divides PlPz in any constant ratio, also is a minimal surface. 

IRIS - LILLIAD - Université Lille 1 



80 MINIMAL SURFACES AND NUL LINES 

Also 
312 = 0, y12 = 0, Zia = 0, 

and therefore 
M=O. 

Consequently 
EN-2FM + GL= O, 

the equation characteristic of a minimal surface. 

I t  thus appears that minimal surfaces can be derived from any two 
minimal curves. 

If A,, B,, Cl are algebraic functions, and also A,, B,, C, are algebraic 
functions, then x, y, z are algebraic functions of t and 8 ; that is, the minimal 
surfaces then are algebraic. Hence if the arbitrary relation f (t, u, v)= O 
be chosen as an algebraic function in each case, we shall have a succession 
of algebraic nul lines ; and thence a succession of algebraic minimal surfaces 
can be constructed. 

In particular, if A, (t) and A,(8), B, ( t )  and Il,(@, C, (t) and C, (8) are 
conjugate pairs of complex quantities, the minimal surface is real though 
both the initiating nul lines are imaginary. For instance, let 

where a and are real. An algebraic minimal curve is given by 
x1 = 3t - t3, $= - i (3t + tg), zi = 3t2, 

and another by 
x2 = 38 - 03, y2 = i (38 + 89, zz = 302 ; 

the minimal surface derired from these as initiating curves is Enneper's 
minimal surface* (also algebraical, and of order 9) 

x=3u+3aP"-u3, y=3P+3u2f l -p ,  z=3(a2-p) .  

60. In  connection with the determination of nul lines upon a surface, we 
saw that the element of arc could be taken in the form 

ds2 = X dudv, 
where X is a real constant, 

d u = p  {Edp + (P+iV)dq}, du= Y {Edp +(Y- i V )  dq}, 
p. and v being magnitudes independent of differential elements. On a real 
surface, these symmetric parameters are conjugate complex variables ; 80 we 
can take 

u=P+iQ, v=P-iQ, 
where P and Q are real variables. We now have 

d s a = X ( d P + d & a ) ;  

and the curves P = constant, Q = constant, are parametric and real. 

* First obtained by Enneper, Zeitschr. f. Math. u. Physik, t. ix (1864), p. 108. 
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Because there is no term in c l s a  which involves dPdQ, the parametric 
curves are orthogonal to one another. 

Now take a number of parametric curves in succession, such that the 
variations d P  and dQ in passing from any curve to the next curve are 
equal to one another, the common value of al1 of them being K. Then the 
element of arc along Q = constant intercepted between two successive 
P-curves is equal to ~ I C ,  and the element of arc along P =constant 
intercepted between two successive Q-curves is also equal to X ~ K ;  and 
the curves are orthogonal to one another. Thus the selected rectangle is a 
square; and so, by the parametric curves as chosen, the surface is divided 
into small squares. Such a system of parametric curves is called hometric, 
sometimes isothermic, sometimes orthogonal and isometric, the division of 
the surface into small squares being the distinguishing property. 

61. Isometric variables are not unique. Take any function, Say 
f (P + iQ), of two variables given as isometric for a surface ; and separate 
f ( P  + iQ) into its real and imaginary parts, so that 

f (P+iQ)=P '+iQ1.  

Let g ( P  -iQ) be the conjugate of f ( P  + iQ)-should al1 the coefficients in 
f (P + iQ) be real, y ( P  - iQ) is f (P - iQ) ; then 

g(P-iQ)=P'-iQ'.  
Hence 

(dP + idQ) f ' (P + iQ) = dP' + id&', 

(dP  - idQ) g' (P - iQ) = dP' - id&' ; 
and therefore 

ds" x (dPa +cl@) 

where 

so that X' is a real quantity. Consequently, the new parametric curves 
P' = constant, Q' = constant, are an orthogonal isometric system. 

Moreover P' and Q' constitute the aggregate of isometric variables when 
complete variety of form is permitted to the functionf, a property which can 
be established as follows. Reverting to the initial symmetric variables u and 
v, connected with the isometric variables P and Q, we have the element of 
arc upon the surface in the form 

Let any other reduction for the arc-element, expreased by means of symmetric 
variables connected with other isometric variables, be represented by 

d.9 = h' du' du'. 
F. 6 
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Then d and v' are independent functions of the first parametric variables; 
hence we must have 

avl 
dv)r&du+a;dv),  

for al1 variations of u and v. Consequently 

hence either 
aup 

(i) - = O, so that U is a function of u only, and then - = O, so that vf 
av au 

is a function of v only ; or 
au' au' 

(ii) - = O, so that u' is a function of v only, and then - = O, so that v' 
au av 

is a function of u only. 

The two cases differ only in an interchange of variables ; effectively they are 
only a single case, represented by 

2; = f (u), v1 = g (v). 
As u' and v' are conjugate variables, g (v) is the conjugate of f (u). The 
foregoing relations between P + iQ and P' + i&' therefore produce the 
aggregate of isometric variables. 

It will appear later, in the discussion of the representation of a surface 
upon other surfaces, that the relations express the conforma1 representation 
of the surface upon itself; and further, that the reference of a surface to an 
isometric surface implies the conforma1 representation of the surface upon 
a plane, the coordinates in the plane being the parametric variables. 

62. .Simple systems of isometric lines are provided by the lines of 
curvature upon a surface of revolution and by the lines of curvature upon 
a central quadric. 

For a surface of revolution, the lines of curvature are the meridians and 
the parallels of latitude. Let r denote the distance of any point from the 
axis of revolution, C#I its longitude from some meridian of reference, and let 

=f (Y) 
be the equation of any meridian curve ; then 

ds2=dP+rad@+dza  
= (1 + f 12) dd.1'2 + rZ d ~ # ~ .  

Let 

An isometric system is therefore provided by the curves C#I = constant (which 
are the meridians) and Y = constant (which are the parallels). 
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I n  the second case, it is known, from the theory of confocal central 
quadrics, that the coordinates of any point on the surface 

Ir;a/a + ya/b + za/c = 1 

can be expressed in the form 

where a, p, y = b - G, G - a, a - b. Then 

so that the curves p = constant, q = constant (that is, the lines of curvature) 
are an isometric system. 

63. The conditions that any original parametric curves should be an  
isometric system are easily obtainable. 

In  the first place, they must be orthogonal; hence 
F =  o. 

Next, the element of arc must be expressible in the form 

A ( d P  + a&"), 
and p = constant, q = constant, are to be the same effectively as P = constant, 
Q = constant ; hence 

E = hf (p ) ,  G = Ag (q ) ,  
where f and y are any functions of p and q respectively. Thus 

and therefore 

which is the other necessary condition. 

When an element of arc is given in the form 

Edp2+ a@, 
and the necessary condition is satisfied, an appropriate change in the variables 
leads to the form 

? L ( d P + d @ ) ;  

and then the necessary condition is 
E =  G. 

But it must be remembered that, for this form of the condition, one special 
isometric system has been chosen. 

6-2 
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Assuming this special choice made, the conditions are 
P = O ,  E = G = X .  

We then have 

The Mainardi-Codazzi equations are 

lx, NI-M,=--(L+N).  2 X 
The Gauss equation is 

1 1 LN- M2= --(A1,+ A,)+- (X,2 +ka") 
2 2X 

The mean curvature is given by 
1 

H = h ( L + N ) ;  

and the total curvature is given by 

64. The reference of any surface to isometric lines as parametric curves 
affects the form of the expression for the arc, and therefore affects the forms 
of E, F, G ;  but, beyond the necessity of satisfying the Gauss equation 
which gives a value for LN- Ma, no condition is thereby imposed upon 
the determination of L, M, N ;  consequently we cannot expect to have any 
unique determination of a surface. Any postulation of further conditions, 
of course, modifies the problem. 

Accordingly (and especially after the two examples just given in 5 62) 
we proceed to consider those surfaces whose isometric curves include the 
linea of curvature., Let the surface be referred to the special isometric 
lines such that we can take 

E = G = A ,  

of course with the condition F =  O. As the parametric lines now are lines 
of curvature, we have (5 45) both F = O, M = O ; thus the aggregate of 
conditions is 

E = G = X ,  F=O, M=O. 
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What is required is the determination (as far as may be possible) of the 
quantities X, L, N. The equations which they have to satis5 are 

so that 1 

we have 

we must eliminate A and B between these three equations. Now 

But 

- - 

ôzA 
hence, equating these values of - aB aA 

substituting for - and -, and 
ap aq ' 3~ aq 

reducing, we h d  

then 

Also 

Hence taking 

we have 
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Using the values of A and B just obtained, taking account of the value of 
A, and reducing, we find that only two independent relations survive, viz. 

a D D - A  -- -- 2 1  D - A  I a p  eJA - ~29 - - 9% - - A  D + A J A  A 

From these, by the relation 
A' = D' - 41JS2, 

we have 
a A D + A  2 J D + A  J - -= /119- -9%,- -  J I + - -  
ap 210 D D D - A I D  

a A D - A  ---= 2 1  D - A  I  
b9- -%?rz+- -  aq 2JD D  D + A J D  

For either pair, we thus have two simultaneous partial differential 
equations ; they are of the fifth order in  the derivatives of A. When a value 
of is known, we find A and B from the equations 

2 A I = D + A ,  2 B J = D - A .  

Then E (= a), P (= O), O (= A), L, M (= O), N, are known; and so, by Bonnet's 
theorem, the surface is determinate-save as to position and orientation. Thus 
the solution of the problem depends upon the resolution of the two equa- 
tions of the fifth order. 

I n  connection with surfaces of this character, reference may be made 
to a memoir* by Weingarten and to $ 435-4137 (vol. ii) of Darboux's 
treatise. 

As an example, we can verify that a surface of constant mean curvature has the 
specified character. 

We have seen ( 5  57) that, when B surface of constant mean curvature is referred to its 
nul lines as parametric cuves, so that its arc-element is given by 

ds2 = ZFdpdq, 
the lines of curvature are given by the equations pIq=constant. Write 

p+q=2u, p-q=t iv;  
then u and v are parameters of the lines of cu~a tu re ,  and 

ds2 = 2 F (du2 + d+), 

shewing thet the lines of curvature are a pararnetric system. 

* Sitzungsb. Berl., t. ii (1883), p. 1163. 
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Qeodesics. 

65. Among the important lines upon a surface, one class is constituted 
by the curves called geodesics. Unlike lines of curvature, asymptotic lines, 
and nul lines, they are not determined iiniquely or in pairs at  a point by 
the surface itself. A direction taken at a point determines uniquely a 
geodesic having that direction at  the point. The detailed consideration of 
their properties will be deferred until a later chapter. They are mentioned 
here solely because they provide a system of coordinates for the representation 
of the surface, corresponding in notion to the system of polar coordinates in 
a plane; in consequence, these are sometimes called geodesicpolar coordinates, 
sometimes geodesic orthogonal coordinates. 

The original definition of a geodesic on a surface is that it is the shortest 
distance measured along the surface between t a o  points on its course. It 
is therefore a curve along which a tightly stretched string would lie a t  rest 
between the two points on a smooth surface. At any element, the interna1 - 
forces due to the tensions a t  the two extremities lie in the osculating plane 
of the curve, while the external force is the pressure which acts along the 
normal to the surface; as these balance because the string is at  rest, the 
osculating plane of the curve a t  any point contains the normal to the surface 
a t  the point. This property, characteristic of geodesics, will later be derived 
also from non-statical considerations. 

Later (Chap. V) we shall see that there may be a limit to the range of the 
curve when i t  is to be the shortest distance fiom any initial point to every 
other dong its course. When such a limit exists, each extremity of the 
range is called the conjugate of the other; and then, as will also be seen, i t  
is possible to draw more than one geodesic between two points when either 
lies beyond the conjugate of the other. For our immediate purpose, we shall 
assume the domain of the surface in the vicinity of a point to be so far 
restricted that i t  shall not include the conjugate (if any) of the point along 
any geodesic. 

66. Without waiting for the full discussion of the general equation of 
geodesics, it is desirable to notice one simple and important property, viz. 

a geodesic be a plane curve (which is not nterely a straight line), or if i t  
be a line of curvature, then i t  is both a plane cume and a line of curvature. 

When a geodesic is a plane curve, its principal normals intersect, save 
only when i t  is a straight line. These principal normals are the normals to 
the surface along its course; they therefore intersect, and so the curve is 
a line of curvature. 
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Next, let a geodesic be a line of curvature. Take four consecutive points 
on the curve, Say A, B, C, D. The normals to the surface at B and C 
intersect in some point, Say 0 ; these are the normals in an osculating plane 
of the curve at  B, so that the points A, B, C, O lie in one plane. Similarly, 
the points B, 4 D, O lie in one plane. Hence the points A, B, Cv, D lie in 
one plane, and so for points in succession; that is, the curve is a plane 
curve. 

But the converse is not true; that is, a plane line of curvature (e.g. a 
parallel on a surface of revolution) is not necessarily a geodesic on the 
surface. 

67. Adopting for the moment the definition relating to the shortest 
distance, and having regard to the statement at  the end of 3 65, consider 
two geodesics through a point O making an infinitesimal angle 
with one another a t  O. Along them measure any the same 
dietance to points A and B, so that OA= OB; then* the small 
rectilinear arc A B  is perpendicular to both the geodesics. 

If not, take BG = A B  sec ABG; then BAG is a right angle, 
while ABC is an infinitesimal plane triangle and GA, one of the 
sides, is les8 than GB, the hypotenuse. Thus 

OG+GA< O G t  GB O ? 
< OB 

< OA, 

for OB and OA are equal. Then the path in the surface along OG and GA 
is shorter than the path along 08 ,  in opposition to the fact that OA is the 
geodesic between O and A. Hence the angles OAB, OBA are right angles. 

Now take any number of consecutive geodesics through 0 ;  and along 
them measure any the same distance, obtaining points A, B, C, . . . . We shall 
thus obtain a curve as the locus of points a t  a given distance from O measured 
in the surface along geodesics through O. The curve is sometimes called a 
geodesic circle; and sometimes, because i t  is orthogonal to the geodesics, an 
orthogonal trajectoy of the geodesics ; and sometimes a geodesic parallel, 
though the terni geodesic parallels includes the orthogonal trajectories of any 
family of geodesics, whether concurrent or  not. But i t  must not be assumed, 
and it is not in  fact the case, that a geodesic circle is itself a geodesic on the 
surface. 

68. The property makes a point, and a geodesic distance, and the inclina- 
tion of this distance to a geodesic of reference through the point, correspond 
to an origin, and a radius vector, and the angle between this radius vector and 

* The proposition is due to Gauss. 
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an initial line in a plane. The associated variables (the geodesic distance 
and the inclination to the geodesic of reference) are called geodesic polar 
coordinates. 

Accordingly, take any number of consecutive geodesics through an origin 
0; and let two of them meet any curve in points P and Q. Let OA, any 
fixed geodesic, be used for reference; let the 
angles a t  O be 

AOP = q, AOQ = q + dq, PO& = dq. 

Along OQ, measure 0.M from O equal to O P ;  
then the small rectilinear arc PM is perpendicu- 
lar to O& at  N. Also PM vanishes when P and 
Q coincide, that is, when dq vanishes; hence, as 
PM and dq vanish together, we can take O 

P M  = Ddq, 

where D naturally will depend upon the geodesic distance OP and may (and 
usually will) depend upon the variable q. Also, let 

O P = p ,  O Q = p + d p ;  

MQ = dp. 

Thus the arc PQ of the curve (being any arc on the surface) is given by 

ds2 = (&MY + (MP)a 

= dp + Dadq= ; 

so that we have an expression for the elementary arc in terms of geodesic 
coordinates ; and the magnitude D is a function of p and q. Sometimes the 
expression for the arc is taken in  the form 

When we compare this expression for ds2 with the general expression 

the line p = constant being a geodesic circle, and the line q = constant being 
a geodesic, we see that the conditions, necessary and sufficient to secure that 
the general expression for any arc should have reference to geodesic polar 
coordhuxtes, are 

E = l ,  F = 0 .  

On a real surface, B = 9, =Da, and is therefore a positive quantity. 

I n  establishing the expression for the arc, no account was taken of 
secondary magnitudes a t  P or of curvature properties ; and so the geodesic 
polar coordinates do not, of themselves (as do the asymptotic lines, for 
example), lay any limitation upon the secondary magnitudes. But, of 
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course, the Gauss equation and the Mainardi-Codazzi relations must be 
satisfied. We have 

r = o ,  rf=o, r l '=-ggl ,  

so that the Mainardi-Codazzi relations are 

The Gauss equation is 
1 1  

LN-Ma=-2gll+-gia; 
9 

and therefore the total curvature is 

1 K = - (LN- M2) 
$ 

When we use the quantity D in place of g, and we write K = 1, where a and 
ab 

6 are the principal radii of curvature at  the point, the last equation becomes 

a property first established by Gauss. 

The mean curvature is given by 

One property of the quantity D may be noticed. When P is near 0, the 
geodesic OP is appreciably a straight line so that P M = p d q ;  hence, when 
p is very small, we have 

D = p  + higher powers of small quantities, 

and so, at O, we have 
aD 
- = 1. 
ap 

As already stated, the detailed developments of the analysis, connected 
with geodesics and their properties, will be deferred until Chapter v. 

IRIS - LILLIAD - Université Lille 1 



SUMMARY OF RESULTS AS TO CURVES 

69. I t  may be convenient to make a summary statement of the different 
sets of conditions satisfied by the fundamental magnitudes when the para- 
metric curves belong to one or other of the various classes of curves 
considered in this chapter. The curves are 

(i) orthogonal, if F = O ; 

(ii) lines of curvature, if P = O, M = 0 ; 

(iii) conjugate, if M = O ; 

(iv) asymptotic, if L = O, N =  O ; 

(v) nul , i fE=O, G = 0 ;  

(vi) isometric (or isothernzic) orthogonal, if E = G, .F = O (with a special 
selection among the variables); if the special selection is not 

aa 
made, then F =  0, - log (EIG) = O ; 

ap aq 

(vii) geodesic polar, if E = 1, P= O. 

EX AMPLES. 

1. Obtain an equation of asymptotio lines of the snrface given by the equations 

xZ=(b-c)(p-a)(q-a), ya=(c-a)(p-b)(q-b), z2=(a-b)(p-c)(q-c). 

2. Shew that the asymptotic lines of the tetrahedral surface 

(x/aIm+ ( ~ / b ) ~ +  (z/c)"= 1 
are determined by the equation 

a(x/a)"+~ (y/b)f " S  y (z/c)tm=O, 
where a, B, y are arbitrary constants such that Q ~ + B ~ + ~ Z = O .  

3. Prove that a conjugate system of curves on a surface remains conjugate when the 
surface is submitted to  any projective transformation. 

4. Prove that the condition, necessary and sufficient to secure that the parametric 
curves are conjugate, is that al1 the four coordinates in a homogeneous system should 
satisfy an equation 

EH+AEi+BEZ+ C=O, 
where A, B, C are functions of p and q only. 

Shew that an equation of the same form (though with different values of A, B, C)  
must be satisfied by each of the coordinates in a tangential system. 

5. Two families of spheres are defined by the equations 

.2"+y2+z2-plx-pgy-p3z-p4=o, ~ ~ + y ~ + 2 ~ - q ~ x - q ~ y - q ~ z - q ~ = 0 ,  
where pl ,  .. . , pl are functions of p only and ql, . .., q4 are functions of g only ; shew that 
the envelope of the radical plane of any sphere of the first system and any sphere of the 
second system is a surface possessing two families of conjugate plane curves. 
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6. A sphere of radius unity is referred to nul lines es parametric curves. Shew that 
the parameters u and w can be chosen so as  to give 

F=2(1+uv)-2= -N, L=O, N=O; 
so that the nul lines are also asymptotic, and the equation for the lines of curvature ia 
evanescent. 

Prove alao that the equations of geodesics on the sphere then are 

where ul=du/ds and v'=dw/ds; and obtain a primitive, other than the integral 
4u1d = (1 +UV)< in the form 

au+bv=uv- 1. 

Verify that the c m e  so determined is  part of a great circle. 

7 .  Shew that the only developable surfaces which have isometric lines of curvature 
are either conical or cylindrical. 

8. Shew that the variables of the nul lines satisfy the equation 

9. A surface is given by the equation 

dsa={f(P+q)-g(p-9))dpdq;  
and ik Cfaussian measure of curvature is constant, and not zero. Prove that either 

(il f ( p + d = 4 ' ( p + q ) ,  g(p-q)=4'(p-q), 
where p denotes the Weierstrass elliptic function; or 

(ii) f(p+q)=rcoseca(p+q), g(p-q)=~coseca(p-p); or 

( 3  f ( ~ + q ) = r : ( ~ + q ) - ~ ,  9@-q)=~(11-9)-~.  

10. Shew that the developable surfaces, given by the equation 

dsB={f (~+!z) -9(P-d)d~dg . ,  
can have one or other of the following expressions : 

11. Shew that the circumference of a small geodesic circle of radiusp is 2mp (1 - +Kop2), 
and that its area is spZ(l -2zizR,$), where Ko is the total curvature of the surface at  the 
centre of the circle. 
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CHAPTER IV. 

CONCERNINQ the topics about to  be discussed-via., the determination of the lines of 
curvature on a surface, the configuration of the lines of curvature near an ordinary 
umbilicus on a surface, and some properties of the double-sheeted centro-surface belonging 
to an ordinary region of any surface,-some references are given in the course of the 
chapter. The student should also consult Darboux's treatise, t. iii, pp. 334-356, and 
Bianchi's treatise, chapter IX. 

70. Some of the immediate and elementary characteristics of lines of 
curvature have already been given, mainly to fix them individually in the 
scheme of organic curves upon a surface. Among these are the properties 
that, along a line of curvature, consecutive normals to the surface intersect ; 
that, a t  any general point, there are two lines of curvature which are perpen- 
dicular to one another, and that there is a centre of curvature for each of the 
lines a t  each point of the surface; that there is a surface of centres, being the 
double-sheeted locus of the centres of curvature; and so on. We now proceed 
to consider some developments of such results, as well as other properties of 
the surface which are specially controlled by the lines of curvature. 

In the first place, i t  is important to obtain an integral equation or integral 
equations for their analytical expression. We know.that, when the surface 
is referred t o  two parametric curves, the directions of the lines of curvature 
at any point satis@ the equation 

(EM - PL) dpZ + ( E N  - GL) dpdq + (FN - G M )  dqB = 0, 
which is definitely non-evanescent except at  an umbilicus. Accordingly, i t  is 
necessary to integrate (directly or indirectly) this equation which, being of 
the first order and the second degree, is equivalent to the two equations 

~ ( E M - F L ) ~ ~ + { E N - G L - V ~ ( H ~ - ~ E ) * } ~ ~ = O ,  
2 (EM - 3%) dp + {EN - GL + .CTS (Ha  - 4 ~ ) * }  dp = 0, 

each being of the first order and the first degree. Let the respective 
primitives of these equations be 

u = constant, v = constant ; 

then these primitive equations give the lines of curvature. Thus the deter- 
rnination depends upon the solution of a couple of ordinary equations of the 
first order, when we know a parametric representation of the surfaces. 
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The same result can otherwise be expressed in terms of partial differential 
equations of the first order. When a line of curvature is given by 

u = constant, 

its direction at  any point is given by 

and the ratio of dpldq thus determined must satisSr the general equation. 
Hence 

(FA' - GM) %2 - (EN - GL) U,U, + (EM - PL) u: = 0. 
The same equation is satisfied by v, when the other line of curvature is 
given by 

v = constant. 
Hence the lines of curvature are given by two functionally independent 
integrals of 

(FN - G M) 8: - (EN - GL) 8,e2 + (EM - FL) 89 = 0, 
which is a partial differential equation of the first order, in two independent 
variables. This has to be integrated (say) by Charpit's method; when the 
solution admits analytical completion, we have equations for the lines of 
curvature. 

Umbilici. 

71. The equation for the directions of the lines of curvature thus leads 
definitely to equations for the lines after some process of integration, always 
on the assumption that the equation exists. But the result cannot be inferred 
when the equation ceases to exist through becoming evanescent ; and so this 
possibility must be considered further. 

At  such a place on a surface, called an umbilicus, u-e have 
L M N  1 -- = - E - J % = p  K ,  

Say. The curvature of a normal section of the surface through any direction 
dpldq, being 

L d p  +2Mdpdq + Nd@ 
Edp2 + 2Fdpdq + Gdqa ' 

there becomes l l ~ ,  and consequently is independent of the direction. Thus 
the two principal radii of curvature a t  the point become l / ~ - i t  will be 
remembered that a principal radius of curvature of the surface usually is not 
the radius of circular curvature of the corresponding line of curvature itself- 
and the radius of curvature of every normal section also is l/tc. Thus there 
seems no specific line of curvature a t  the point ; and so we inquire into the 
form of the lines of curvature in the immediate vicinity*. 

* The subject was first investigated by Cayley, for the umbilious of an ellipsoid, 0011. Math. 
Papers, vol. v, pp. 115-130: and more generally by Darboux, in Note VII, at the end of the fourth 
volume of bis treatise. See also, in a note by the author, Messenger of Math., vol. xxxii (1903), 
pp. 75-80. 
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72. At first sight, it might appear convenient to take the lines of curva- 
ture as parametric curves, because F and M would then be zero over the 
surface and the equations would be simplified. But the lines of curvature a t  
and near an umbilicus have not yet been determined, and their determination 
is the matter at  issue; we must therefore choose other parametric curves. 
It is equally impossible to choose asymptotic lines for the purpose; being 
the asymptotes of the indicatrix-conic, which is a circle a t  an umbilicus, 
they are not definite there. We might choose isometric orthogonal lines. We 
shall however leave the parametric curves quite general and unspecified, 
merely noting the simpliilcation which would arise had isometric orthogonal 
lines been chosen. 

Writing dpldq = t, and 
A = E M - F L ,  B = E N - C L ,  C=FX-GM,  

so that A, B, C vanish at  an umbilicus p,, q,, we have 
At"Bt+C=O 

as the equation of the lines of curvature. At  a point p, + p ,  q, + q, very near 
an umbilicus, we have 

A = Alp  + A,q + 4 (AIlp2 + 2A,,pq + ABq2) + + . . , 
B = B i p  + Bzq + 4 (Bnp2 + 2Bmpq + Bnq2) + .-. 2 

c= 4 p  + C2q +S(C11p2 +2C1zpq +C22q2)+..., 
where the coefficients of the various powers of p and q are the values, at the 
umbilicus, of the derivatives of A, B, C. For the present purpose, the first 
derivatives are critically important. Now 

A, = EIM + EMl- FIL- FL, 
= EQ - E'P, 

on substituting for M, and L1 in terms of the derived magnitudes of the third 
order (5 40) and using the umbilical relations LIE = MJP = N/G; and similarly 

A,= ER- FQ, 
B l = E R - G P ,  E2=ES-GQ,  
C;=FR-GQ, C2=E"S-GR. 

We have, always, 
E C - F B + G A = O ;  

and therefore, a t  an umbilicus, 
ECl-FB,+GAl=O, EC,-FB,+GA,=O. 

(Had special isometric orthogonal lines been chosen as parametric curves, we 
should have had E = G, F = 0 ; and then A, + Cl = O ,  A, + C, = O. These 
special relations give no essential simplification.) 

Owing to the forrn of the occurrence of t in the differential equation and 
to the fact that full variation of some variable is needed, we make t the 
independent variable. Following Darboux, we use a contact-transformation 

qt - p  = E, 
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so that q = dtldt, p = t dqd t  - f : ;  and p and q are to be expressed as functions 
of t. We are to have p and q small; and so f: and df/dt must be small. 
Substituting in the differential equation, we find 

where the unexpressed terms contain squares and higher powers of f: and 
dt ldt ;  and therefore the terms of lowest order in the equation* are 

Consequently, when we require values of f: that are small (given in the 
present case by having an arbitrary constant small), so that we keep in 
the immediate vicinity of the umbilicus, the governing part of f satisfies the 
equation 

dS !Ait3 + (B1 + A,) t2 + (C,  + B2) t + C2j - = (Aita + B t d t  1 + 4) f:. 
Let 

A1t3 + (Bi + A 2) t2 + (Cl + BZ) t + C2 = Al (t - 4) (t - ta) (t - t,) ; 

and suppose that the quantities tl, f ,  t, are unequal, and that no one of them 
is a root of Alt2 + Bit + Cl. Then let 

we have 
ml+m2+m3=1.  

The governing part of & Say & is then given by 
= G (t - tJml (t - t,)m (t - t8)m~, 

where c is an arbitrary constant ; and, as f is to  be small for the investigation, 
we take c to be small. Then 

it being always remembered that c is a small quantity. 

* For the general propertiea of such equations, see the author's Theory of DiJe~efztial Equa- 
tions, vol. ii, chap. v. 
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73. The configuration of the lines depends upon the values of m, m,, m,, 
which satisfy the relation 

ml+mz+m,=l. 

First, suppose that the quantities nt are real. Then they also satisfy the 
inequality 

mmzm, > 0, 

which can be verified as follows. We have 

But 

and so for m,, m, ; hence 

and therefore q m , m 3  is a positive quantity, as stated. As q, m, m, are 
real, there are two general possibilities, viz. 

(a)  al1 the quantities ml, m,, m, are positive and less than 1 ; 

(p) one of the quantities, Say q ,  is positive and greater than 1, while 
the other two are negative. 

When a quantity ml is positive and greater than 1, then for values of 
t  nearly equal to t,, we have 

q = n, ( t  - t1)"'l-l + higher powers of t - 6,  

p - qt, = ~c, (t - + higher powers of t - 4, 
and therefore p and q remain small for such values of t ,  while 

'ml - 
p - qt, = rcql121-l Zm1 Fig. i. 

near the origin. The lines of curvature therefore are as in fig. i. 

When a quantity ml is positive and less than 1, then (in "21 

spite of the small factor G in E) both p and q tend to become 
large while p - qt, remains small ; that is, the line p - qt, = O 
is an asymptote to the curves. The lines of curvature there- 
fore are as in fig. ii. 

788 ii. Pig. 

F. 7 
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When a quantity m, is negative, then (again in spite of the small factor 
c in E )  both p and q, as well as p -24, tend 
to become large for values of t nearly equal to 
t,, while near the point 

1121 
p - qt2 = aqm,-l, 

Na2 

m,/(m - 1) of course being positive ; that is, 
we have a parabolic asymptote. The lines of / 
curvature therefore are as in fig. iii. 

Combining these results, the whole arrange- Fig. iii. 
ment for (a). is shewn in fig. iv, and the whole 
arrangement for (p) is shewn in fig. v, these giving the dispositions of the 
lines of curvature near the umbilicus. 

Fig. iv. Pig. v. 

The results and the diagrams were given first by Darboux. 

The preceding investigation is the same as Darboux's, already cited (§ 'Il), 
in substance though i t  is formally different in analysis. Darboux refers the 
surface to the tangent plane a t  the umbilicus, so that its equation has the 
form 

z = @ ( d +  y2) +&(&+3bx2y+3b'xy2+a'y3) + .... 
The equation for the values of t is 

b f f + ( 2 b - a ' ) t 2 + ( a - 2 b ' ) t - b = 0 ;  
and 

with similar values for m2 and m,. 

74 It was assumed that w, m, m, were al1 real. The alternative is that 
only one of them, Say %, is real; then m, and m, are conjugate. As 
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it follows that mlmjm, is negative. Now mm3 is the product of two con- 
jugate quantities and therefore is positive; hence ml is negative. 

Then for values of t nearly equal to t,, we have p, q, p - tlq al1 large, . - 

while there is a parabolic asymptote 

and so the configuration of the lines of curvature is as in fig. vi. 

Fig. vi. 

75. The suggested determination of the lines of curvature, by means of 
the differential equation of the first order which they satisfy, presupposes 
a knowledge of the fundamental magnitudes ; and this may be neither given 
nor obtainable easily in the absence of obviously suitable parameters. Yet 
it may be necessary t o  have some integral equation giving the lines of curva- 
ture ; and we can then proceed in one or other of two modes. 

By the first, we make two of the Cartesian coordinates the parameters- 
Say x and y ; the parametric curves are then not orthogonal (save at special 
places), though their projections on the plane of z are orthogonal. Then 
with the usual notation for derivatives of z with respect to x and y, the 
fundamental magnitudes* are 

E = l + p 2 ,  F=pq ,  G = l + q 2 ,  

L M N  -=-=-= 
r s t  (1 +P"q~)-+; 

and so the differential equation of the lines becomes 

{(l+p2)s-pqr)  d9+{(1+p2) t - (1  +qa)r] h d y + { p q t - ( 1  +q2)s}dy2=0. 

The primitive of this equation will give the projection of the lines of curva- 
ture upon the plane z = 0 ;  when i t  is combined with the equation of the 
surface, we have equations sufficient for the analytical expression of the lines 
of curvature. 

See Ex. 3, p. 60. 

7-2 

IRIS - LILLIAD - Université Lille 1 



100 INTEGRAL EQUATIONS OF THE [CH. IV 

76. The other mode of proceeding depends upon the use of another form 
of the equation ; and it is effective with some special classes of surfaces. 

Let zc, v, w denote three quantities proportional to the direction-cosines 
of the normal, so that 

if the equation of the surface is I# (x, y, z) = O ; then any point on the normal 
is given by 

f = x + l u ,  q = y + l v ,  C=z+lw, 

where 1 is a variable parameter. Take the consecutive normal at  a point 
along a line of curvature ; denote by f ,  7, i- the point where the two normals 
meet, and by E + dF, q + dq, <+ d r  the point where the second normal is 
met by the normal at  a second consecutive point along the line of curvature. 
Then df, dq, dg is an element of the normal, so that 

dF -=-=-- dll di- 
u 2) w - p 9  

Say ; hence 
pu = dx + Zdu + udl, 

that is, 
O=dx+ l d ~ + u ( d l - ~ ) ;  

and similarly 
O=dy+ ldv ++(d l -p ) ,  

Hence 

an equation satisfied in connection with variations along a line of curvature ; 
i t  is a differential equation of the lines of curvature. 

dx, dy, dz 
du, dv, dw 

If, with the concurrent use of 4 (x, y, z )  = O and derivatives from it, we 
can obtain a couple of independent integrals 

= 0, 

where p and q are arbitrary quantities, these are the equations of the lines of 
curvature ; p and q are the parametric variables of the lines. The difficulty, 
of course, lies in obtaining such integrals ; there is no general process by 
which the integration is reduced t o  mere quadratures. 

As an example, let us find equations for the lines of curvature on the cubic surface 
q z =  1. 

We c m  take 
1 u= - 1 1 
a' 'y-  u<=- 

Y' 2' 
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The differential equation is 

I d x ,  d y ,  d z / = O ,  

and so  quantities A and B exist such that 

that is, if B=AA, 

But any direction on the surface is such that 

Hence there are two values of A, each associated with a line of curvature ; and they are 
given by the equation 

Take the line of curvature d'x, d'y, d'z which is perpendicular to  dx, dy, à.. so thtlt 

then, along that line, 
xd'x yd'y + zd'z 
$+~+~"fh z2+h- 

Also 

adding and effecting a quadrature, we have 

Let X1 and X ,  denote the roots of the equation 

regarded as a quadratic in A ; then the lines of curvature on the surface q z =  1 are given 

'v 
( 9 + X l )  (y2+Al) (z2+X,)=p 
(x" Az) @'+ A*) (a2 + Xz) = q 

whercp and q are the parametric variables. 

Changing p and q into 4p and 49, Cayley shewed that these equations are equivalent 
to 

$ + O Y ~ + O ~ Z ~ = ~ ( ~  

&?+oeye+oz~=3@* -$)l 
mhere o is an imaginary cube mot of unity. 
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77. We have already seen that the conditions necessa ry and sufficient 
to make the parametric curves lines of curvature are 

P=O, M = O ,  
the first of which makes them perpendicular and the second of which makes 
them conjugate. We then have 

Also, since M = O, we have 
X ~ ~ = X ~ ~ ~ + X ~ ~ ,  

Hence, if 0  denote any one of the three coordinates x, y, z, the equation 

a2e 1 i a E a e  iiaaae 
~ q - ~ ~ ~ s - a a ~ j ~ = o  

is satisfied, when the parametric variables p and q belong to the lines of 
curvature, a result first given by Lamé. We can verify a t  once that 
8 = d + ya + za also satisfies the equation. 

But the fact that x, y, z satisQ an equation 

is not a consequence that cornes only when lines of curvature are parametric 
curves. The equation is of the same form when the parametric curves are 
merely conjugate, without being perpendicular; in the latter case, however, 
the values of h, and p (being r' and A') have the general form given in 5 34 
and not the above special form ; and 8 = d + y2 +za does not satisfy the 
equation. 

The Mainardi-Codazzi relations, when F = O and M = O, become 

The principal radii of curvature are a, along p = constant, and p, along 
- - - 

q = constant ; thus 
G  E a = N ,  p= z, 

so that e 

i i ~ ~  H = - +  -= -+-  1  LN 
a G '  II=-=- ap E G '  
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But 

PARAMETRIC CURVES 

and similarly 

hence the Mainardi-Codazzi relations can be written 

The Gauss characteristic equation is 
1 1 

L N =  -+(E,+  c f , , )+ - (E ,G~+  G,Z) + -(E,G,+ ,y;). 4G 
But 

4E 

and therefore the Gauss equation becomes 

E+G* =-- 
~ f i  ' 

which can also be obtained directly from Liouville's form (5 36). 

The derived magnitudes of the third order are 
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78. Consider, in particular, the formulae for a central quadric 

d y2 9 - + - + - = 1 ;  
a b c  

they will be required later in dealing with its surface of centres. We know 
that the lines of curvature are the intersections of the quadric with the 
confocal quadrics 

so that p and q are the parametric variables of the lines of curvature upon 
the given quadric. The coordinates of a point on the quadric are given by 

where 

Then, if r is the distance of a point on the quadric frorn the centre, and 
if w is the perpendicular from the centre on the tangent plane a t  the point, 

1 & ya za pq -=-+-+-=- 
ma a2 b2 c2 abc 

We have 

Also 

and 
1 abc 4 L = -  (-) P 
4 PP ( ~ + P ) @ + P ) ( ~ + P )  
1 abc 8 N = -  (-) 
4 Pq @ + q ) ( b + d ( c + q )  

M = O  
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The principal radii of curvature (say a' and p') are 

The umbilici are given by 
p = q ;  

but the quantities p and q are separated in general by - a, - b, - c, according 
to the values of these &antities ; and so, at an umbilicus, p = q = - a or - b 
or - c. Thus, on an ellipsoid for which a > b > c > 0, the umbilici are given 
byp=p=-b.  

The magnitudes of the third order are 

79. Among the many simple properties of relation between a surface 
and the surfaces derived from i t  by inversion, we have the property* that 
when a surface is  inuerted, i ts  1.ine.s o f  curvature are transformed into lines of  
curvature. 

Let c be the radius of inversion, and take the centre of inversion as origin. 
Denoting by t ,  7, f; the point which is the inverse of x, y, z, we have 

with similar values for v1, q2, ri, f;2; while 

~r l=xxl+yy,+za , ,  m;=xxP+yy,+zz,. 

Hence, for the inverse surface, 
c4 Ef=4;1+7:+f;la=-E, 
14 

c4 
G'=E2++7]++7]=- 9 O ;  

and therefore 
6' v=- v. 
1.4 

It appears to  have been noted first by Hirst, Ann. di Mat., t. ii:(1859), p. 164. 
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For the direction-cosines X', Y', 2' of the normal to the inverse surface, we 
have 

1 2 x r = - ( q  t q t ) - p w - 1 ,  v' l 2 -  2 1 -  

where 
W=xX+yY+flZ, 

and W is the perpendicular from the origin on the tangent plane. Also 

Again, 
$11 81 c2x cax &l=c" -4c9-r1+6 - r: - 2 -rll, 
ra r3 r4 rS 

with corresponding values of qll, r,,, while 

rrii = xxli + yyll + zz,, + E - r,l ; 
hence 

L' = X'&+ Y'rlll+ Z'f;, 

Similarly 
2c2 W c2 M'=-- P - -  2c2W c2 

rP 
N ' = - -  

r' 9 
G--N. 

r2 

Consequently 
c6 

E'M' - F'L' = - - (EM - FL), r6 
ce 

E'N' - G'L' = - 2 (EN - CL), 

and therefore the lines of curvature of the inverse surface, being given by 
(E'M' - F'L') dp2 + (E'iV' - G'L') dp dp + (F'N' - Cf'M') dq" O, 

that is, by 
(EM - FL) dp2 + (EN- GL) dp dq + (FN- GM) dq2 = 0, 

are the same as the lines of curvature upon the original surface. The pro- 
position therefore stands. 
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We may further note that 

(i) the angle betwee~t any two curves i s  unaltered by inversion ; 

(ii) nul lines are inverted into nu1 lines ; 
(iii) conjugate lines are not generally inverted k t o  conjugate lines ; 

(iv) asymptotic lines are not generally inverted into asymptotic lines. 
Let the principal radii of curvature of the new surface be a', along p = con- 
stant, and ,@, along q = constant. Then 

1  N' P l  W -=--- --- 1 L' - P l  W ---- ---- 2 - .  a' a / -  c ~ g l  2 ~ >  pl-23'- c a p  cz '  

so that 

and therefore umbilici are inverted into umbilici. For any normal section, 

The mean measure of curvature of the new surface is 

and the total curvature of the new surface is 

Surface of Centres. 

80. We have already defined the surface of cent~es of a surface (some- 
times called its evolute, sometimes its centro-surface) as the locus of the 
centres of curvature along the lines of curvature given by the intersection of 
consecutive normals. Usually i t  is a two-sheeted surface which may have 
singular lines even when the original surface is free from singularities ; but in 
the case of a surface of revolution one of the sheets degenerates into the axis 
of revolution; in the case of a developable surface one of the sheets lies 
entirely at  i d n i t y ;  and similarly for some other surfaces. We proceed to 
consider some of the simpler results belonging to centro-surfaces. 

Let P be any point on a surface, referred to its lines of curvature as 
parametric curves ; let PQ be the line p = constant, PR the 
line q = constant; and let QT, RT be the other lines of 
curvature through the consecutive points Q and R. The 
lines PAB, QAB', RA'B, TA'B' are the normals to the 
surface at  P, Q, R,  T, intersecting as in the figure. 

Because the consecutive normals along a line of curvature 
intersect, the normal planes to the surface through the 
tangents to a line of curvature have, as their envelope, a 
developable surface of which the normals are generators. 
The edge of regression of the developable surface is the locus 
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of the intersection of the normals, that is, a curve upon the centro-surface, 
and so i t  is the intersection of the centro-surface and the developable 
surface. At the point P, we have 

I t  will be convenient to cal1 the sheet of the centro-surface given by the 
centres of curvature along the lines p = constant the jirst sheet, this being 
the locus of the points A for al1 the points on al1 these lines ; and similarly 
the sheet for the centres of curvature along the lines q=constant will be 
called the second sheet, this being the locus of the points B. 

The normals a t  P and R, meeting a t  a point B on the second sheet, toucli 
the first sheet a t  A and A' respectively ; thus AA' is a tangent line to the 
first sheet. Also P A B  is a tangent line to the first sheet ; consequently the 
plane PBR is the tangent plane a t  A to the first sheet. The normal at A 
to the first sheet is perpendicular to this plane and is therefore parallel to 
PQ a t  P. Similarly the plane PA& is the tangent plane at  B to the second 
sheet; and the normal at B to the second sheet is parallel to PR at P. 
Hence the normal at  any point on either sheet is parallel to the tangent to 
the corresponding line of curvature ; and the normals to the two sheets at 
the two centres belonging to any point on the surface are perpendicular to 
one another. 

But AA' is not necessarily nor generally parallel to PR, nor is BB' 
necessarily or generally parallel to PQ. We are not therefore in a position 
to assert that AA' and B E  are perpendicular to one another ; as will be seen 
later, i t  is only exceptionally (in one or other of two directions on the surface 
at P) that associated arcs on the two sheets of the centro-surface are perpen- 
dicular. 

Next, consider the osculating plane of the edge of regression at  A. I t  
contains two consecutive tangents to that edge; that is, i t  contains two consecu- 
tive normals to the original surface along the line of curvature and therefore it 
contains the tangent to its line of curvature. But a t  the point on the sheet, 
the normal to the sheet is parallel to that tangent to the line of curvature. 
Consequently, the osculating plane a t  any point of the edge of regression 
that lies on the first sheet contains the normal to the sheet; i t  is therefore 
(§ 65) a geodesic on the sheet. The same holds for the second sheet. Hence 
the edge of regression on the developable surface generated by the normals 
to the given surface along a line of curvature is a geodesic on the corre- 
sponding sheet of the centro-surface. 

81. As regards the analytical formulæ, let f ,  7 ,  be the coordinates of 
A,  a point on the first sheet; and let f', v', be the coordinates of B, a point 
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on the second' sheet ; A and B being the associated centres for P. Then 
we have 

+ P X l =  0, X ,  + a x a  = 0, 

But 
.$-=x+aX, . y = x + p x ;  

hence 
dE = (xl + a X l )  d p  + Xda 

and 80 

a 
d e = q ( i - B ) d p + ~ d a  

d r = z l ( l  - ; ) d p + z d a  

d T = y , ( l - i ) d p + ~ d u  

In the first place, we notice that 

d f d f 1 + d q d q ' + d 5 d r =  dudB ; 

and therefore associated arcs on the two sheets are perpendicular only if du 
or dB is zero, that is, only for directions 

on the original surface ($ 77). 

I n  the second place, we notice that along the geodesic on the first sheet, 
which is the edge of regression of the developable surface generated by the 
normals along p = constant, we have 

6f = XSa, Sv = YSa, 6f: = Z8a. 

If the orthogonal t r a j e c t o ~  of this curve on the sheet be given a t  the point 
by the foregoing values of d& d ~ ,  df:, then the necessary and sufficient 
condition 

+ dq6q + d P r =  O 
leads to 

da=O; 

that is, the orthogonal trajectories of the regressional geodesics are given by 
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the curves on the sheet corresponding to the loci on the surface at which the 
curvature of the associated line of curvature is constant. 

We can a t  once verify from the formulæ that the normal at  any point to 
a sheet is parallel to the tangent to the associated line of curvature. Thus, 
for the first sheet, we have 

a t  the point, the direction-cosines of the normal to the sheet are propor- 
tional to 

that is, to 

that is, to x2, y,, z,, which are proportional to the direction-cosines of the 
line of curvature p =constant. Similarly, for the other sheet. Let these 
direction-cosines be A, B, C for the first sheet, and be A', B', C' for the second 
sheet; then 

A = G - * ~ ~ ,  B =  G+,, c=c-L, 
A E - ~ ,  B*= ~ - à ~ , ,  C ' = E - S ~ ,  

Let do denote an elementary arc on the first sheet, and E, F, G denote 
the fundamental magnitudes of the f in t  order for that sheet; and let da', 
E', Fr, G' have the similar significance for the second sheet. Then 

It is to be noted, from the form of the expression for dg, that the curves 
p = constant are geodesics upon the first sheet, while the curves a = constant 
are their orthogonal trajectories-in agreement with former results; and 
similarly for the curves g = constant and P = constant on the second sheet. 
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Let L, M, N denote the fundamental magnitudes of the second order for 
the first sheet ; and let L', M', N' have the similar significance for the second 
sheet. Then 

and similarly for L', M', N'. The whole set of values is 

The values of the fundamental magnitudes for either sheet are deduced 
from the set for the other sheet by interchanging simultaneously p and q, 
E and G, L and N, a and p. 

Manifestly, neither F = O nor F' = O save in the special circumstances 
that a principal radius of curvature is a function of one of the parameters 
only. But M = O and M' = O ; hence the two curzies on either sheet, that 
correspond to lines o f  curvature on the original surface, are conjugate to one 
another, but i n  general are not lines of curvature on the sheet. 

The total curvatures for the two sheets are 

1 g2 K=-- K'= - 1 -- . 
(a- @)a % '  (a - P)a Bi ' 

and the measures of mean curvature are 

82. The lines of curvature on the first sheet, being in general 

(EM - FL) dpa + (EN - GL) dp dg + ( F N  - GM) dpt = 0, 

are, on substitution, given by the equation 

a:& 1 dpdq = 0. 
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The lines of curvature on the second sheet similarly 'are given by the 
equation 

These two equations are the same if the coefficients are proportional to one 
another. Writing them momentarily in the form 

adpa + bdpdq + cdqa = 0, 

a'dpl + b'dp dq + c'dqa = 0, 
we have the necessaxy conditions given by 

c' a' 
The condition - = - leads to a relation 

c a 
Pz- Bl.  --- 
a, 6 ' 

b' d 
and, when this relation is used, the condition - = - leads to a relation 

b a 
a l = a ;  . 

that is, we have 
a,-&=O, &-Pa=O. 

Consequently we must have 
a - ,û =constant, 

and so we have the theorem due to Ribaucour*: 
When, the lines of curvature on one sheet of the centro-surface correspond 

to the lines of curvature on the other sheet (that is, when they are determined 
by the same analytical relation for the two sh.eets), the diference of the principal 
radii of curvature of the original surface is constant. 

Moreover, we then have 

. . .  

that is, the Gauss measure of curvature is constant and negative and the 
same everywhere on each of the sheets. 

83. The asyinptotic lines on the first sheet, being in general 
Ldpa + 2Mdpdq + Ndqa = 0, 

are, on substitution, given by the equation 

EayP,pa - G@u,dq2 = 0. 

Those on the second sheet are given by 

EayP,dp2 - Gpu, dq2 = 0. 

* Comptes Rendus, t. lxxiv (1872), p. 1399. 
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These two equations are the same if 

4 2  - C(I Pl = O ,  
that is, if a relation 

f (.,Pl = O  
subsists between the principal radii of curvature of the original surface 
without the occurrence of other variable quantities. Such surfaces are called 
Weingarten surfaces (3 42) and are to be discussed later. Meanwhile, we 
have the result* that the asymptotic lines on the two sheets of the centro- 
surface of a Weingaq-ten surface correspond to one another; and, conversely, 
if the asymptotic lines on the two sheets of a centro-surface correspond to one 
another, the original surjiace is a Weingarten surface. 

84. As an example of the general theory, consider the centro-surface of 
an ellipsoid 

x= ya z2 
-+-+-=1,  
a b c  

and suppose that a > b >c,  al1 three quantities being positive. The expressions 
for x, y, Z, X, Y, Z. and for the principal radii of curvature have already (§ '18) 
been obtained. The rôbii of curvature are positive on the concave side of 
the surface (3 31); hence the centres of curvature are 

Elimination of p and q among the values of &, 7, f: leads to  a relation 
between &, q,  which is the equation of the first sheet. But elimination of 
p and q among the values of F I ,  q', f:' manifestly le'ads to the same equation ; 
that is, there is a single equation representing the two sheets of the surface. 

Now we have 

The result i u  al80 due to Ribaucour (1.c.). 
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and the equation would be obtainable by the elimination of p between these 
two relations. The elimination can be eflected as follows. Take the 
equation 

+- t Y" t q a + - = t + * ,  
a + t  b+ t  c + t  

where 8  is a disposable parameter. I t  is a quartic in t ;  and the two pre- 
ceding equations express the two conditions that the quartic should have a 
triple root. Write the quartic in the form 

t4 + 4 h t 8  + 61c2t2 + 4& + k4 = O, 
where 

A = a +  b + c ,  

B=bc+ca+ab, 

C = abc, 

The conditions that the quartic should have a triple root are that the quadrin- 
variant and the cubinvariant should vanish ; hence 

k, - 4k1h3 + 31c,a = O, 

1, Fc,, ka 
h, h2, h3 
ha, h, k4 

Xo, L, X4, 0 ,  0 
0 , Xo,  b, L 0 
O ,  O ,  ho, h, X 4  

PO, b r  PI ,  p6, 0 
O ,  t h  CLq> P6 

=o. 

= O  

The former gives 
X,Bn + h,e + X, = 0, 

and the latter gives 
p0d3 + p282 + p4e + = O, 

where X, and po are of degree O, ha and of degree 2, h4 and p4 of degree 4, 
and y of degree 6, in the variables, each of them being an even function in 
its own degree. Eliminatjng 8, we have 

as the equation of the centro-surface. Manifestly i t  is a surface of the twelfth 
order. 
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To obtain a notion of the form of the centro-surface, consider i t  near the 
plane c= O and, in particular, its section by that plane. I n  that plane we 
must have - p  = c, or - q = c. When - p  = c, then 

- (a  - c)3 ( a  + q )  = - ,@(a + q), 
- byarl" ( b  - c)S (b  + q )  = as ( b  + q), 

so t h 3  
b719 e+-=IJ 

p Cr2 

an ellipse, being the locus of points where the normal to the ellipsoid along 
the principal section is met by the normal a t  an adjacent point on the other 
line of curvature. For small values of c near that ellipse, we take c + p = -Y 
where P is small ; then, approximately, 

so that there is a cuspidsl edge of the centro-surface a t  the ellipse. When 
- q = c, then 

( a y ~ ) *  = a + p, (- byqe)4 = b + p, 
so that 

(a?)* + (bT2)* = y ] ,  

the evolute of the principal section of the ellipsoid. For small values of 
near that evolute, we take c + q = - Q where Q is small ; then 

- a@~&(a  +PY (-16-Q), - byaqa = ( b  + P ) ~  (a - Q), -cap? = - (c +p)3 Q, 
so that the plane c= O is normal to the surface and the evolute section is an 
ordinary curve upon the surface. As regards the degree of the intersection, 
the degree of the ellipse must be counted thrice because of the cuspidal edge, 
and the degree of the evolute is six; hence the degree of the intersection is 
twelve, as is to be expected. 

Similarly for the other coordinate planes. The sections are : 

The form of the two sheets of the surface in the positive octant is as shewn 
in the figures. In  the left, a + c > 2b ; in the right, a + c < 2b. Tht: point G 

8-3 
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corresponds to an umbilicus on the ellipsoid. The dotted line G H  is a nodal 
curve mhere the sheets intersect ; and they touch one another at  G .  

The nodal curve is given by the equality of &, q, I; for one set of v: 
of p and q to f ' ,  qf,  cf for another set of values p' and qf. Thus 

( a  +pl3 ( a  + q )  = ( a  + pl) ( a  + q'Y, 
*(b + p y  (b + q)  = (b +p')  (b + q')", 

(c + p)3 (c + q )  = (c 3.1)') (c + q')" ; 

Removing a non-vanishing factor (a - b) (b - c) ( c  - a) ( p  - q'y, and writing 

and sop, q,p' could be expressed in terms of q' ; or al1 four quantities p, q,pl, q' 
could be expressed in terms of one parameter. As q and p' occur linearly in 
the equations, they can be eliminated at  once ; we have 

A = a + b + c ,  B=ab+bc+ca ,  C=abc, 
we find 

3pq' ( p  + q') + A{(p + + 2pq') + 3B ( p  + q') + 2C= 0, 

a(a+q')"-a(a+p)",  (a+q1)3, (a+pY 
b(b+q1)5-b(b+p)",  (b+ql)", @+y)" 

G (C + pl)' - C (C f p)3, ( C  + (C f p)3 

as a relation giving p in terms of q'. To express thern in terms of a single 

= O .  

parameter u, we take 

3 p q 1 + A ( p + q ' ) + B = 2 u ,  
and then 

A ~ ~ ' + B ( ~ + ~ ' ) + C = - u ( p + q 1 )  
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that is, 
A p q ' + ( B + a ) ( p + q ' ) + C = d .  

Hence 

thus p and q' are the roots of the equation in P 

The values of q and p' are then given linearly by the original equations; 
they are 

9 - P' 
C ( 2 q 1 - p )  - ( A  + p  + q ' ) q f S - C ( 2 p  - q') - ( A  + p  +q')p3 

- - 3B - A" 3u 
(3C- A B + 2 A a )  a' 

There are two nodal lines, each closed, each passing through the centres of 
curvature at  two umbilici; they are symmetrical with reference to the surface; 
and they do not intersect upon the centro-surface unless n + c = 2 4  in which 
case they touch a t  two points. 

For further details and properties of the centro-surface of an ellipsoid, a 
memoir* by Cayley may be consulted. 

Derived Surfaces. 

85. In addition to the surface of centres, there are various surfaces 
specially connected with the centres of curvature which suggest themselves 
for consideration. Thus there is the rniddle evolute, which is the locus of the 
point midway between the two centres. There are also the parallel surfaces, 
being the loci of points taken a t  a constant distance along the normal from 
the given surface. 

Consider, generally, a derived surface obtained by measuring along the 
normal a variable distance 1 from the surface ; thus Z will be a function of p 
and q  and, unless the surface be a Weingarten surface, 1 can be regarded as a 
function of a and p. Let the point thus associated with x, y, z be denoted by - - -  
5, y, f; then 

-g=x+zx, q = y + l Y ,  L = z + l ~ .  
We have 

* Coll. Math. Papers, vol. viii, paper 520, mhere other references are given. 
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and similarly for derivittives of .ri and c. Let 2, P, denote the fundamental 
magnitudes of the first order; then 

- - -  
Also let X, Y, Z be the direction-cosines of the normal to the new surface, 
and write 

When the normitl to the derived surface coincides with the normal to the 
original surface, we have X = X, Y= Y, Z= Z; and so 

1, = O ,  1, =O, 

except for special surfaces and special values of 1 such that 

Thus, in general, 2 = constant ; or a surface parallel to the given surface is 
the only surface, which is derived by taking points along the normal and has 
its tangent plane parallel to the original tangent plane. 

When the normal to the derived surface is perpendicular to the normal 
to the original surface, we have X X  + YP+ ZZ = O ; and so 

(1 - a) (1 - ,El) = O. 

The centro-surface is therefore the only surface thus derived, which has its 
tangent plane perpendicular to the original tangent plane. 

And generally, the inclination + of the two normals to one another is 
given by 

v 
vcos + = - (2 - a) (1  - ,B). 

aB 
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- - -  

For the fundamental magnitudes of the second kind, Say L, M, N, we 
have 

El z-p 1, 1 
- X I  - - $2--- Ez 1 - B  } { 2 E  P p @ p 1 ] + x 2 2 0 S y  

on reduction (g 34, '7'1) ; also 

with corresponding values for the second derivatives of q, c. Thus --- --- vz = VX&l + VYii,, + vzr,, \ 

It is clear that, in general, the lines on a surface thus derived, which 
correspond to the lines of curvature, are not perpendicular, for P is not zero ; 
and they are not conjugate, for -@ is not zero. If however 1 is a function of 
only one of the two parametric variables, then P is zero while 2 is not zero ; 
then the lines, which correspond to the lines of curvature on the original 
surface, are perpendicular to one another. And if Z be constant, so that the 
derived surface is a parallel surface, then both P and M are zero ; that is, the 
lines of curvature on al1 parallel surfaces correspond to one another. 

86. Various simplifications arise in regard to these derived surfaces when 
special values are assigned to the quantity 1. 

We have already considered the cases when 1 is made equal to one or 
other of the principal radii of curvature; the derived surface is the centro- 
surface. 
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When 1 = g  (a  + a), the derived surface is the middle evolute; i t  was 
apparently first considered by Ribaucour* and discussed subsequently as 
to its- properties by Appel1 and by Goursat. The latter, in particular, dis- 
cussed the inverse problem of determining a surface or surfaces which have 
an assigned surface as their middle evolute; the resolution of the problemt 
depends, as many inverse problems in differential geometry depend, upon 
a knowledge of the rnost general integral of a partial differential equation 
of the second order. 

For a Weingarten surface such that a + /3 = constant, the middle evolute 
1s a parallel surface. A minimal surface is its own middle evolute. But for 
surfaces not of special character such as Weingarten surfaces, the properties 
of the middle evolute are not of conspicuous importance. 

87. One property of parallel surfaces-the persistence of the lines of 
curvature through al1 the surfaces which are parallel to a given surface- 
has already been indicated. The normals at  associated points coincide ; and 
the lines of curvature on the two surfmes correspond. But the asymptotic 
lines do not correspond, nor do the nul lines. 

As regards the measures of curvature, we have 

The principal radii of curvature, being GIN and E/L, are a - 1 and fi - 1, as 
is to be expected. Also 

- 1 1 H=-+- H - 2EK 
a - z  ~ - Z = ~ - I H + P K ~  

I n  particular, if K be constant and equal to l/aa, and we take 1 = f a, 
then 

that is, a surface parallel to a surface of constant total curvature llag at 
a distance a is a surface of constant rnean curvature. This result, one more 
link between surfaces having constant measures of curvature, is due to 
Bonnet. 

Liouville's Journal, 4me Sér. t .  vu (1891), pp. 5-108, 219-270. Other references are given 
by Darboux, Théorie générale, t .  iv, p. 327. 

t Goursat, Amer. Jou~n. Math., vol. x (1888), p. 187. 
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EXAMPLES. 

1. Obtain the lines of curvature on the surface q = a z ,  where a is constant, in  the 
form 

2. Shew that the lines of curvature upon the surface 

xZym.P= a, 

where 1, rn, n are constant, and a is a parameter, are given by the equations 

where h and p are the roots of the equation 

regarded as a qnadratic in O, the parametric variables of the lines of curvature being 
p and q; and prove that the principal radii of curvature are pk  and qk, where 
k = (Z2/$ + m2/$ + 7~2/~2)4. Prove a l ~ o  that the surfaces a =constant, p = constant, 
q = constant, are orthogonal to one another. 

3. Shew that the ellipsoid x2/a2+y2/b2+z2/c2=l has real umbilici a t  the points 

c2 (b2 - ~ 2 )  a2(a2-W y=O, $9- ' a2-c2 ' 
on the aeaumption that a > b  >c. Discuss the lines of curvature in  the vicinity of any 
one of these points; and shew that they have the configuration in fig. vi (p. 99). 

4. Verify that the lines of curvature on the quadric 

are the intersections by the confocal quadrics 

y2 22 
- + - =4 (x -p).  
a - p  c -p  

Trace their course upon the surface ; and find the principal radii of curvature in terms of 
the parameters of the confocal quadrics. 

5. A surface is inverted with respect to any centre. Shew that the quantity T / ~ + ~ / T  

is unaltered, save as to sign, where r is the distance of a point from the centre of inversion, 
p is the perpendicular upon the tangent plane, and lJp is the curvature of the normal 
section a t  the point in any direction. 

6. A surface is referred to its lines of curvature as the parametric curves ; shew that 

with corresponding formida for derivatives of Y and Z. 
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7. A sphere of diameter a rolls on the outside of a closed oval surface of volume P 
and area 8; and the parallel surface, which is its outer envelope, has volume V' and area S'. 
Shew that 

V'- V=+a(St+S)- 3aa3. 

8. A surface, parallel to  a given surface, is generated as  the envelope of a sphere of 
constant diameter a rolling ou the surface. With the customary notation for magnitudes 
on the given surface, shew that the fundamental magnitudes for the parallel surface are 

9. A distance I ,  q u a 1  to the harmonic mean of the principal radii of curvature, is 
measured along the normal to the surface; and du denotes an elemeutary arc on the 
surface, which is  the locus of the point so obtained. Prove that  

do2= dl' + ( 5 ; y d ~  ; 

and give a geometric interpretation of the result. 

10. Prove that each sheet of the evolute of a pseudo-sphere is applicable to a catenoid. 
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CHAPTER V 

THE literature connected with geodesics is very copious. Only a few important 
references will be given here ; fuller references will be found in the authorities quoted. 

For geodesics on surfaces of revolution in particular, a full treatment will be found in 
the first chapter of the sixth book in vol. iii of Darboux's treatise ; and reference should 
also be made to Halphen's Fonctions elliptiques, ch. vi. 

For the general proprties of geodesics and the use of the notion of geodesic curvature, 
the fundamental memoir is that of Gauss*; and full treatment is given, as  usual, by 
Darboux t. 

The method of determining geodesics by means of the solution of partial differential 
equations of the first order is expounded by Darboux in his third volume, pp. 1-39 and 
pp. 66-85. At the end of the fourth volume he has appended a Note (II) by Kœnigs, 
dealing specially with geodesics which can be obtained through quadratic integrals and 
summarising a number of results deduced in another mernoir$. 

One portion of the subject-matter hm been omitted deliberately-the analogy between 
theoretical dynamics and the theory of geodesics. It was developed first by Jacobis ; and 
an excellent account is given by Darboux in the last two chapters of the second volume of 
his treatise. 

Reference may also be made throughout to the sixth chapter of Bianchi's treatise. 

At the beginning of this chapter, various propositions from the calculus of variations 
are stated. In their application to the theory of geodesics, they are used especially in 
connection with the range dong which a geodesic is actually the shortest distance on the 
surface. 

88. The definition and a few elementary properties of geodesics have 
already been given; these curves will now be discussed in fuller detail, and 
three main methods of discussion will be indicated. 

A geodesic upon a surface has been defined as a curve of shortest length 
measured in the surface between two points; and a descriptive property was 
deduced to the effect tha t  the osculating plane of the curve contains the 
normal to the surfCace. The curve may be produced to any length on the 

* Dispuisitiones generales circa super$cies euruas, Ges. Werke, t .  iv, pp. 217-258. 
+ See, in particular, the second volume of his treatise, pp. 402-437 ; and the third volume, 

pp. 113-192. 
; Mém. des Sav. Etr., t .  xxxi, No. 6, (1894). 

See his Vorlesungen über Dyuamik. 
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surface, and the deduced descriptive property will be possessed at  every 
point; but the curve is not necessarily the shortest distance between any 
two points however far i t  is produced. Thus on a sphere a great circle is 
a geodesic curve ; the shortest distance on the sphere between two points is 
the smaller arc of the great circle through the points, and not the greater 
arc, though the latter everywhere possesses the dediiced property. Hence 
we must possess some method of determining the limits, if any, between 
which a geodesic curve is actually the shortest distance, and outside which it 
may cease to be the shortest distance, though i t  possesses everywhere the 
deduced property. For this purpose (as for other connected purposes) the 
calculus of variations will be used; fortunately, the expression of an arc 
involves only derivatives of the first order, and so only the simplest 
propositions will be required. 

I n  a second range of investigation, the property (which will sometimes be 
called the geodesic property) that the osculating plane of the curve contains 
the normal to the surface is used, initially to obtain equations for the geodesic, 
and later to determine their properties, especially when the geodesics are 
drawn as tangents to non-geodesic curves. For this purpose (as also for 
other connected purposes), the Gaussia,n analysis for surfaces will be used. 

In a third range of investigation, the analytical association with theoretical 
dynamics is used. Thus, to take only the simplest instance, we know that a 
particle, moving on the concave side of a smooth surface under the influence - 
of no forces other than the pressure, describes a geodesic. More generally, 
the Lagrangian equations of motion of a particle in  a conservative field 
have the form characteristic of the equations of a geodesic as deduced by 
the calculus of variations. The theory of partial differential equations of the 
first order is much used in the developments of those Lagrangian equations ; 
and so it may be expected that the theory will be useful in deriving some 
properties of geodesics. Sonie illustrations, especially as connected with the 
actual determination of the curves, will be given in due course. 

Application of the Calculus of Variations. 

89. Without pretending to give a full summary of the results obtained 
in the calculus of variations for problems of the first order, i t  will be sufficient 
for our purpose to state the essentially useful propositions, as they can be 
applied to geodesics on a surface*. It is the length of the arc between two 

* The proofs wiil be fonnd, with varying elaboration, in auy one of the more modern text- 
books on the Calculus of Variations, suoh as those by Bolza, Hadamard, Hancook, Kneser. 
Some of the propositions are of old standing. Thus the simplest case of the first (or, what is the 
same thing, the fifth) is  due to Euler. The second is due to Legendre, and the third to Jacobi. 
The fourth is due to Weierstrass, who reconstructed the subject and whose lectures, in authorita- 
tive form, are not yet published. 
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points on the surface which is to be made a minimum; so we have to consider 
integrals 

/ (E~ 'Z  + 2Fp'q' + G~")*  dt ,  /(E + 2FO + G B ~ ) ~  dp,  

where, in the first, p and q are to be made appropriate functions of t, while 
p' = dp/dt  and q' = dqldt ; and, in the second, 0 = dqldp, and q is to be made 
an appropriate function of p ;  always so as to secure the minimum. The 
propositions are as follows. 

1. When the quantity to be made a minimum is 

where the function f is homogeneous, and of the first order, in p' and q', the 
quantities p and q must satisfy the equations 

Because f is homogeneous and of the first order in p' and q', these two 
equations are equivalent to the single equation 

owing to the relations 

the quantity f, being 
i ay f 

l -  p'q' apr a ~ '  ' 

Thus either equation can be treated alone. I n  any of the forms, i t  is the 
characteristic equation; the primitive gives a possible minimum. 

I t  is an addition to the proposition that, even if the curve should suffer a 
sudden change of direction a t  a fiee (and not fixed) point in its course, the 
values of ôf/apl and af/aq' are continuous in the passage through the free 
point. 

II. The preceding quantity f, must be positive everywhere along the 
curve if a minimum is to exist. 

This condition is necessary, though not sufficient, to make the second 
variation positive. The preceding condition is necessary and sufficient to 
make the first variation zero. 

III (i). When the primitive of the characteristic equation can be deter- 
mined, let it be denoted by 

p = 4 ( t ,  a,  b), q = + ( t ,  a, b), 
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where n and b are arbitrary constants ; and write 

and take the independent variable t as increasing throughout the range of 
integration. Then a range of integration, beginning a t  t,, must not extend 
so far as the root of O (t, ta) = O  which is next greater than ta. 

A geometric expression of the condition is due to Jacobi. Take a curve 
satisfying the characteristic equation and passing through the lower limit of 
the integral represented by t, ; and take a consecutive curve (that is, one which 
makes an  infinitesimal angle at  t, with the preceding curve) also satisfying the 
characteristic equation and passing through the same initial point. Let the 
first point after the initial point a t  which these two curves ultimately inter- 
sect (if they do intersect) be called the conjugate of the initial point. Then 
the range must not extend as far as the conjugate of the initial point. 

III (ii). When the primitive of the characteristic equation is not known, 
it may happen that some special integral is known. In that case, the critical 
function O (t, t,) must be obtained by another process. Let 

and form the equation 

where u is the dependent variable, inserting the values of p', q', pH, q" derived 
from the special integral. This linear equation in u of the second order has 
to be completely integrated; its primitive is 

where c and c' are arbitrary constants. The critiral function is O (t, t,), 
where 

@ (t, td = Xi 0 )  X2 (ta) - X2 (t) XI (4) ; 

the condition, as regards the range of integration, has already been stated. 

IRIS - LILLIAD - Université Lille 1 



891 CALcuLus OF VaiiIATIoNs 

IV. Let 

and construct the function @ such that 

@ = {YI (P, q, P', Q') - 9, (P> q, P', q')I P' 
+ Iyz (p, q, P', Q') - Yz ( p ,  p . 2  P', q')} Q'. 

This function @ must be positive everywhere along the geodesic curve for al1 
directions given by P' and Q', other than Pt =p' and Q' = q'. The functions 
g, and g, are homogeneous of order zero in p' and p'; for the function @, the 
independent variable can be taken to be s, the arc of the curve. 

These tests are sufficient and necessary to secure that the curve provides 
a minimum; that is, the integral receives a positive increment for small 
variations of p and q. These variations are called weak, when Sp, 6q, Sp', Bq' 
are small and tend to zero; they are called strong when ôp' and 6q' are 
not small, though 6p and 6q are small and tend to zero. The first three 
tests are sufficient to secure the minimum property for weak variations ; the 
additional fourth test (the excess-function test) is necessary and sufficient to 
secure the minimum property also for strong variations. 

V. When the integral, which has to be made a minimum, has the form 

where 0 = dqldp, the first three tests have a simpler form; and they represent 
the older stage of the calculus of variations, when the variations considered 
admissible were of the type called weak. 

The characteristic equation in (1) is 

The test contained in (II) is that the quantity 
az w - 
aea 

must be positive everywhere. 

For the test in (III), let the primitive of the characteristic equation be 

q = 9 ( p ,  a, b). 
Then the quantity 

aC9+fi 
aa a b '  

where A and B are arbitrary constants, must not again acquire in the course 
of the range the value that i t  has at  the beginning; so that the range is thus 
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limited. But if the primitive is not known, while some special integral is 
known, then the equation 

(when for q and 0 their values derived from the special integral are substi- 
tuted) must be completely integrated. Let the primitive be 

u = Au, +Bu2. 

Then the quantity Au, + Bu, must not again acquire in the course of the 
range the value that i t  has at  the beginning. 

Such are the tests needed for our purpose. We proceed to apply them, 
first, in general to al1 geodesics as far as possible and then, later, to some 
particular geodesics when they can be applied only upon a knowledge of 
details. 

90. The element of arc upon the surface is, as usual, 

ds2 = Edpa + 2Fdpdq + Gdq2. 

When the curve is a geodesic, some relation must exist between p and q so 
as to define the curve; or, what is the same thing, p and q must be expressible 
in terms of a single parameter, Say t. Then if p' = dpldt, q' = dqldt, 9 = dqldp, 
the arc is given in either of two forms, viz. 

ds" (EpJa + 2Fp'q' + Gqf2) dt2, ds2 = ( E  + 2Fb' + GdY) dp2 ; 

and therefore, when the arc on the surface between two points has a minimum 
length, the integrals 

must satisfy the minimum tests provided by the calculus of variations. 

Two of the tests are satisfied for al1 geodesics on al1 surfaces, it being 
remembered that we are dealing with portions of surfaces which are devoid 
of singularities. 

Consider the test in (II). When we wnte 

f = f (p, y, pl, q') = (Epla + Wp'p' + ~ q ' ~ ) * ,  
where we naturally take the positive sign for the real radical, we have 

on reduction This is always positive on a real surface ; and so the necessary 
condition is satisfied. 
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When we write 
W = W ( p ,  q, 0 )  = ( E  + 2PB + ~ 0 ~ ) * ,  

again taking the positive sign for the real radical, we have 

which always is positive; so that the condition is satisfied for this form also, 
as is to be expected when i t  is satisfied for the other form. I t  follows that, 
in the discussion of geodesics, we need pay no further attention to the test 
in (II). 

Next, consider the excess-function test in (IV). We have 

9, = 
F ~ ' + G q ' = ~ d p + ~ 9 .  

. f ds ds' 
and therefore 

(9 = {EP' + FQ' - (Ep' + Fqf)j P + {FP' + GQ' - (Fp' + Gy')] Q' 

where Cl is the angle between the direction p', q' and the direction P', Q'. 
Thiis the excess-function is positive for al1 directions given by P' and Q', other 
than P'=p' and &'= q'. The test is satisfied for al1 geodesics on al1 surfaces; 
and therefore we need pay no further attention to the test in (IV). 

Accordingly, we now have only to consider the characteristic equation 
and the determination of conjugate points. 

91. When we develop the characteristic equation 

where f = (Epr2 + 2Fp'qf + G&, we have 
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Similarly, when we develop the characteristic equation 

we find 

These two equations are the equations of geodesks i n  general. They serve 
to determine p and q in terms of s, taken as a parameter; when s is 
eliminated between the determinate values of p and q, a single relation 
survives which is the integral equation of geodesics on the surface. 

As regards the significance of the equations, we note that 

with similar expressions for d2y/ds2 and d2z/ds2, these relations holding for 
any curve. Hence 

when the curve is a geodesic ; and similarly 

Hence 
1 dBx - 1 CE2 Y= 1 d2z -- 

y1z2 - ziya dsZ z1x2 - Z1Z2 ds2 XI  y2 - Y1Z2 dSZ ' 
that is, 

1 d2x 1 d2y 1 d2z 
x & i = j ? z = Z z >  

so that the principal normal of the curve coincides with the normal to the 
surface, in accordance with the earlier inference (5 65) that the osculating 
plane of the curve contains the normal to the surface. 

We may remark here that this property is sometimes made the basis 
of a dehi t ion  of a geodesic. 

92. Other forms can be given to the general equations. I n  their first 
form, they are 

d-p d2q P - + G - = - n  l d p  - 212t d~ - d q  - - nu da' ds2 & )  d s d s  
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d2p dZq 
when they are resolved for - and -, we find 

ds2 dsP 

These a190 are therefore general equations of a geodesic, and they prove more 
useful than the general equations in their initial form. 

Moreover, we are to expect that the two characteristic equations are 
equivalent to one only ; and we know that the integral equation of a geodesic 
is a single relation between p and q, so that the single characteristic equation 
ought to be a relation between P and q which (owiug to the form of the 
general equations) should be an ordinary differential equation of the second 
order. Now 

bpao_bo ( @ ) ' g q _ - ~ d = q  d 0 - P .  
d s  d p  ds '  ds  dpa ds  ds2 d s  ds2' 

hence 

which is the (single) general equation of geodesics on a surface. 

One important inference can be made from this form of the equation. 
Consider a region of the surface devoid of singularities; then the quantities 

r', F", A, A', A" are finite and (even when they are not uniform functions 
of p and q)  have regular branches in that region. I t  is known* that a unique 
solution of an ordinary differential equation of the foregoing form exists, which 
gives q as a.uniform function of p and is such that, for an assigned value of p, 
both q and dqldp have arbitrarily aasigned values ; in other words, a geodesic 
through any ordinary point on a surface i s  uniquely determined by its direction 
through the point. Thus we have a justificatiori (among other things) for the 
use of geodesic polar coordinates. 

It is to be noted that al1 the forms of the general equations of geodesics 
involve, among the fundnmental magnitudes of the surface, only those of the 
first order and their derivatives. Hence when a surface is deformed in any 
way, without stretching and without tearing, so that the arc-element is 
unaltered, the geodesics remain geodesics on the deformed surface; for the 
quantities E, F, G are unaltered during any such process. And the result is 
essentially contained in the deformations of the type indicated. 

Further, i t  is to be expected that the nul lines on a surface will possess 
analytically the geodesic property of being the shortest distance between two 
points on a surface ; thus the relation 

f = (Epr3  + 2Pptq' + G ~ ' ~ ) *  = O 
* See the author's I'heory of Diferential Equatioits, vol. iii, 5 209. 

9-2 
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should satisfy the characteristic equations. It is easy to verify that, from the 
first form of the characteristic equations, we have 

which clearly are satisfied by 
f=O, 

that is, by the nul lines on the surface. 

Geodesics on Surfaces of Revolution. 

93. The general equation of geodesics does not appear to admit of 
integration in finite terms for al1 surfaces. But i t  is possible to integrate, 
wholly or partially, the equation for many classes of surfaces; and special 
methods, sometimes individual to a class of surfaces, sometimes general in 
scope and effective in particular cases, are used to obtain the primitive. 
If by any method we can obtain an integral equntion containing two 
independent arbitrary constants, i t  is effectively the primitive of the general 
characteristic equation. Al1 that then remains, in order to complete the 
process a t  present under consideration, is the determination of the range 
between conjugate points. 

Among surfaces which thus admit integral expression for their geodesics, 
one conspicuous class is constituted by surfaces of revolution. We proceed 
to consider them briefly in this regard. 

Take the axis of z as the axis of revolution; and let the equation of the 
surface be 

ra=&+ya=2u(z)=2u. 

Let x = r cos +, y = r sin 4, so that 4 is the azimuth of a point on the 
surface; and let the geodesic cut the meridian a t  an angle +; then 

Also, we have 
r dr = uldz, 

so that 
ds" dra + r 2 d p  + dz2 

Thus, for the characteristic equations in 4 and z, we have 
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This quantity f does not involve + explicitly, so that ôfia4 - O; thus the 
characteristic equation in + becomes 

hence 

that is, 

where h is an arbitrary constant. (When we are dealing with the motion 
of a particle upon the surface, as indicated in § 88, the quantity h is a 
constant multiple of the moment of its momentum round the axis.) We 
thus have a first integral of the equations ; i t  can also be written 

r sin + = h. 
Further, we have 

and therefore 
2u + ur2 r2 + u'2 cis = (-)i riz = (-y r2 - h2 dZ. 

Hence 
h 

d+ = -p ds 

so that 

Say, where y is an arbitrary constant of integration. We now have an 
integral equation containing two independent arbitrary constants h and y ; i t  
is the general integral equation of geodesics on surfaces of revolution. 

When a geodesic curve between two given point8s on the surface is 
required, the constants h and y for the curve are obtained from the 
conditions which result from substituting the coordinates of the points in the 
integral equation. 

I n  order that the curve may be real, we must have 
r 2 h. 

If and when r = h, we have 
sin + = 1 ; 

that is, the geodesic touches the parallel a t  the point which thus is a highest 
point or a lowest point on the geodesic. 
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Moreover as r may not be less than h, i t  is necessary to take account of 
the range of values of h. 

94. First, consider the vicinity of a parallel of minimum radius c ;  we 
there have a neck of the surface, the parallel itself being a geodesic. 

1. Let h = c. Near the neck, let the surface be 

rg = c2 + &.z2 + . i ., 
there being no first power of z because of the neck ; then 

u'=h2z+ ..., 
r 2 + ~ ' 2 = ~ 2 + ( & + h : ) ~ a +  ..., 

and so 

1 1  = (- + positive powers) dz, 
h2Z 

so that qb becomes large; that is, the geodesic on such a surface near the 
neck-circle is asymptotic to that circle. Such is the fact at the neck of a 
hyperboloid of one sheet. 

II. Let h > c. Then as we are to have r 2 h for reality, we must have 
r  > c, so that the geodesic never meets the neck-circle. I t  touches the 
parallels given by r = h ; and otherwise lies above the upper parallel or below 
the lower parallel as in the figure. 

III. Let h < c. Then as r c, we have r > h, and so sin $r is never 
unity ; thus the geodesic crosses the neck-circle, cutting i t  a t  a finite (non- 
zero) angle. 

Hence near the neck of a surface there are three kinds of possible 
geodesics. The first of the classes indicated is a boundary between the 
second and the third of the classes. 

95. Next, consider the vicinity of a parallel of maximum radius a ;  when 
the surface is symmetrical with respect to the plane of the parallel, we have 
an equator. 

As sin $r = h/r, and r cannot be greater than a, i t  follows that h cannot be 
greater than ci. 
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1. Let h = a. Then a is the only possible value of r, in order that the 
curve may be real; we have the parallel of maximum radius a, which is 
itself a geodesic. 

II. Let h < a. Then 9 is real so long as r is not less than h ;  i t  is &T 

when r = h, that iso the geodesic touches the parallel 
or parallels given by r = h ; and it is sin-' (hla) at  
the parallel of greatest radius. Also, as r changes con- 
tinuously from h to a, + decreases continuously from 
BIT to sin-' (hla); and as r then changes continuously 
from a to h, + increases continuously from sin-l(h/a) 
to &n-. Thus the geodesic undulates between the 

radius. 

a 
two parallels, which are given by r = h, nearest to the parallel of greatest 

Take the plane of the parallel r = a as the plane z = O. Above the 
plane r2 = 2 u  (z), and below the plane ra = 2u (- 2)  ; hence, as 

the difference of longitude, Say D, between a place of highest latitude and 
the nearest place of lowest latitude is 

If the parallel r =  u is an equator, so that the surface is symmetrical with 
respect to its plane, then 

Such a geodesic is not usually a closed curve ; but i t  is a closed curve* if 
D is coinmensurable with T, that is, if 

where rn is a commensurable number. Take the latter symmetrical case. 
Let a new variable t for integration and a new constant g for a limit of 
integration be defined by relations 

and write 

For this investigation, see Derboux's treatise, t. iii, 582. 
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Now m is purely numerical ; consequentlyY we must have 

rZx (t) = mt-i, 
that is, 

a2ra . 

and therefore 

But z is a maximum or minimum (so that dz = 0) when r = h ;  hence m is 
less than unity, and 

di3 rz - ha 
(%) = 

which is the equation defining the surface of revolution that possesses closed 
geodesics undulating across the equator. 

As regards this surface, its element of arc ds is 

ds2=dr2 + F d @  +dz2 

NOW h Z = a a ( l - m " ;  let 
r = a s i n u ,  +=m+'; 

then 
ds2 = m2a2 (du2 + sin2u d$P). 

But the last expression is the square of the arc-element on a sphere of radius 
ma.; hence the surface of revolution in question is deformable into a sphere, 
which is Darboux's result. 

96. But i t  may happen that, in the vicinity of the parallel of maximum 
radius a, there is no parallel given by r = h ;  as our only condition is that 
h < a, i t  might happen that on the whole surface there is no parallel given 
by r = h. In  either case, the geodesic crosses the parallel given by r = a at 
a finite non-zero angle ; in its march away from that parallel across parallels 
of decreasing radius, i t  crosses the meridians at  a constantly iiicreasing angle, 
which however remains less than a right angle unless and until i t  reaches 
a parallel given by r = h. 

97. I t  now becomes necessary to investigate the range along the geodesic 
curve for which the curve is actually the shortest distance between the 
extreme points, or, what is the same thing, to determine the conjugate of 
a given point. 

The result can easily be established. It is  an example of a theorem given by Abel (U3uv~es 
complètes, 1881, vol. i, pp. 14, 15) in a memoir now regarded as a pioneer in the subject which, 
under the name integral eqzcations,, has attracted man7 investigators in recent years. 

IRIS - LILLIAD - Université Lille 1 



971 CONJUGATE POINTS ON GEODESICS 137 

There are two cases to consider. I n  the first, h is not zero and the curve 
is not a meridian ; in the second, h is zero and the curve is a meridian. 

provided that the geodesic cilrve is not given by the very special case r = h, 
dz= O, that is, provided i t  is not a parallel of maximum or minimum radius 
(in which event, the method of treatrnent is similar to that adopted for the 
case of geodesic meridians). Then 

and the condition is that, in the range, the quantity 

shall not again attain the value which i t  has at  the beginning of the range ; 
that is, the quantity 

niust not again attain its initial value. 

Suppose that there is no parallel given by r = h (so that every point on 
the surface is a t  a distance from the axis greater than h). Then the subject 
of integr~tion in a+/ah is always finite and positive, and dz has the same sign 
along the curve ; thus a+/ah is always increasing or always decreasing along 
the geodesic, and so it cannot again acquire its initial value. There is no 
finite limit to the range of shortest distance alo'ng the curve ; no point on the 
geodesic has a conjugate at  a finite distance. 

Suppose that there is a parallel given by r = h. Then from the initial 
point of the range until the parallel is neared, the subject of integration is 
finite and of the same positive sign while dz is of uniform sign. I n  passing 
through contact with the parallel, the relations 

shew that - passes through an infinite value and always increases as 4 
ah 

84 increases in passing through the contact; that is, - changes its sign in 
ah 

passing through the i n h i t e  value and begins to increase from - a,. After 
some stage i t  will increase to its initial value; a t  that stage, we have the 
conjugate of the initial point. But the actual analytical determination of the 
conjugate in precise expression depends upon the particular surface. 
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The same result can be obtained by regarding the conjugate of the 
initial point as the ultiinate position of the next intersection with a con- 
secutive curve through the initial point. I n  order to have such a consecutive 
curve, we need values h + dh, y +  dy of the arbitrary constants; in the 
figure, let this curve be represented by the dotted lines (for positive and 

negative values of dh respectively), while the original curve is represented 
by the continuous line. Then the point C is the conjugate of A for the 
direction AC;  and a range along the geodesic, beginning at  A, is the shortest 
distance for a11 points from A to C short of C. Siinilarly B is the conjugate 
of A for the direction AB. 

Note. I n  dealing with the critical function 

i t  proves necessary to exercise care in the choice of the current variable for 
the integral, so that i t  shall admit of continuous increase (or continuous 
decrease) throughout the range of integration that corresponds to the con- 
tinuous range of the curve. 

98. Consider, for example, the non-meridian geodesics on an oblate 
spheroid*. The surface is 

so that we can take 

* See two notes by the author, Messenger of Math., vol. xxv j1896), p. 84, p. 161. Referenoes 
to Jacobi, Halphen, and Cayley are given on pp. 94, 95, ( L e . ) .  
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We know that a non-meridian geodesic undulates between two parallels; 
so let E be the highest   oint of Our geodesic EP, 
and let CE, CP be the meridians through E and P. c 
We thus have a geodesic triangle CEP, right-angled 
at E ;  the angle E C P  is 9. Let CPE = +; and let 
a be the value of 0 a t  E. Then ($5 93, 95) 

a2 
- sin2B. 4' = h ; 
f 

and therefore 

n sin20 3 = sin 4 
ds 

which is a first integral of the characteristic equation. 

This leads to 

(1 - ea sin20)isin a 
d'$ = 

(sin2B - sin2 a)& sin 0 
dB, 

which can be regarded as the differential equation of the geodesic. The 
explicit integration requires elliptic functions and can be effected as follows. 
Let 

COS B = cos a cn u, 

where u is a new variable vanishing when 0 =a, and where the nlodulus Ic 
of the elliptic functions is given by 

= e2 cos2 a 
1 - eZ sin% a' 

Then 
(1 - ea sina a)* dna u 

d+ = - du, sin a 1 + cota a sn2 u 
so that 

The general equation of geodesics, without the initial choice of the 
meridian of reference, would be 

containing two arbitrary constants a and y. 

As regards the arc of the geodesic, we have 

ds sin2 0 -- -- 
a sin a d'$ 

= (1 - e2 sin2 a)+ dnz u du, 
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and therefore 
s = a (1 - ea sin' a)* E (u), 

where E is the second elliptic integral; the arc being measured from the 
place zc = O, that is, from the point E. 

As CPE = +, we have (5 93) 

hence 

Hence 

and 

sin B sin jr = sin a. 

sin a - tan a 
tan jr = 1-- 

(sin2 8 - sin2 a)T Sn ' 

tan B cos + = tn u. 

Manifestly, some of the relations for the parts of the geodesic triangle 
CPE on the spheroid are similar to those of a right-angled triangle on a 

sphere; for the respective surfaces they are 

But it should be noted that, on the spheroid, 8 is not the angle subtended 
by CP at  the centre, as it is on a sphere; nor is a the angle subtended by 
CE at the centre, as it is on a sphere. 

sin 8 sin jb = sin a sin 8 sin + = sin a 

cn u cos u = COS 8 cos cos a = e 
t a n + s n u = t a n a  tan jr sin u = tan a . 

On the auxiliary sphere of the spheroid (that is, a sphere having the same equator), 
take the projection of the spheroid orthogonal to the equator. Let C', E', P' be the 
projections of C, E, P ;  the great circles C'P' and C'El are the projections of the meridians 
CP and CE; while E'P', the projection of the geodesic EP, is not a great circle. The 
angles subtended by C'E' and C'Pt a t  the centre are a and 8 ;  also E'C'P' is I#I, and 
C'E'P' is a right angle. Let the angle flPfC' be denoted by +', and the arc E'P' by s'; 
then we have the equations 

s'=a (1 -eesinza)& am zr, 

sinBsin+'=sinadnu, 

tan +' sn u = (1 - e2 sin2 a)* dn u tan a, 

tanecos+= tn u 

tan 8 cos #= (1 - e2 sin") - 6  tn  u. 

tandeos+= tanu 

The establishment of these relations is left as an exercise. 

s ( 1 - k s i n a a ) - * = a ~ ( u ) ,  S =  au 1 
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Also, we have 
'tn u 1 " d n u - d n 2 u  

+( l -&~in~a)-&=tan-~[- ) - - /  sin a 
sin a 1 + cot2 a sna u du 

on the spheroid, and 
tan u + = tari,(-) sln a 

on the sphere. 

The geodesic undulates between the two parallels determined by 8- a, 
8 = rr - a Where i t  cuts a parallel determined by 8 = 8, we have 

cosp  =cos a c n u ;  

thus the successive points are u = u,, u = 4K - q, u = 4K + u,, and so on. 
The difference in longitude between the highest point and the nearest lowest 
point of the geodesic is 

1 2Kdnu-da% 
(1 - e2 sin2 a)$ {r - 

sin a 1 + cota a sn2 u 
and is therefore less than r. 

To find the conjugate of any point on the geodesic, we take the general 
integral equation in thé form 

(1 - 8 sin2 O)& sin a 
de = 1. 

6, - sin2 a)+ sin tî 

a+ ar a+ --- 
aa-  au' & = 1. 

a4 a+ The critical function A - + B - is not again to acquire its initial value, that 
aa ay 

ar 
is, - is not again to acquire its initial value. Now 

au 

- - (1 - ea sin2 a)$ 
cos a sn2 u 

on introducing the elliptic functions; and 

c n u d n u  
sn u 

Hence, if u, be the conjugate of u,, we have 

so that 

E (u, - %) - pz (ul - uo) = '"(>11- 5) 
sn u1 sn u, 
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The required value of u, is the root of this equation, regarded as an equation 
in u,, which is next greater than u,. 13y tracing the curves 

it is easy to verify that, when O < u, < 2K, then 

4K>u,>uo+2K. 

99. In  the second case mentioned in Cj 9'1, when the curve is a.meridian, 
h is zero, and r$ is constant. We cannot deduce the critical function from 
the value of +, and must proceed to obtain i t  as the primitive of the linear 
equation of the second order given in 5 89, III (ii). Returning to the general 
surface of revolution, we have always 

. 

the arc being f dz ; hence, denoting d+/dz by +', we have J 

for f does not explicitly involve 4 ; and 

when we insert the zero value of $. The equation for the critical function 
U is 

and therefore 

The range is limited by the condition that U must not again acquire the 
value which it has a t  the beginning of the range; in other words, the, 
quantity 

nlust not again in the range acquire its initial value. 

Another form of the function is 

It will be noticed that the form of the function coincides with the critical 
function in the earlier case when h is made zero therein. 
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Note. As before, so here, in dealing with the critical function 

it proves necessary to exercise care in the choice of the current variable for 
the range of the integral, so that it may incrense continuously (or decrease 
continuously) throughout the range. 

Ex. 1 In  the case of a circular cylinder r = constant, %'=O ; the critical function is 

5 and along a (rectilinear) meriditln this function never resumes its initial value. There 
a2 ' 
is no limit to the shortest-distance property. 

Similarly for a circular cone. 

Ex. B. In  the case of a sphere, we have 

1 
that is, - tan-'5. Hence the conjugate of any point z, on the meridian is given by zo+ar, 

a 
that is, the diametrically opposite point on the meridian ; and therefore (as is to be 
expected) a great circle is the shortest distance for any length less than half the circle. 

Ex. 3. In  the case of a paraboloid of revolution, the axis of the parabola being the 
axis of revolntion, we have 

r== 212, uU)=l, 
so that the critical function is 

that is, 
(t"T2)S -- 1 + - sinh-1 T . 

rl 1 2 
Hence any arc OF the meridian, whatever its length when it does not include the 
vertex, is a shortest distance. When an arc of a meridian does include the vertex, and rl 
is the distance of any point from the axis, then the shortest distance along the arc must 
not extend so far as  a point distant r, from the axis, where 

Ex. 4. In  the case of an anchor-ring, we h a w  

z=a sin O, r=c+acos 8. 

\ which is The critical fuuction becomes (c + a cos , 
a -- (cJ. - a sin +), 

(C2 - a2)P 
where 
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and, in the function, Jr has to lie between - +r and +Sn. I n  the mach of the function 
with the increase of 8, the angle + increases; when it increases beyond 48, we must take 
+ - s in its place. 

Thus the conjugate of a point on the meridian is the point half-way round the 
meridian. 

Ex. 5. A meridian is drawn on an oblate spheroid ; and any point on it is denoted by 
T = a sin 8, z = c cos 8. Shew that, if 8, be the conjugate of do, then 

E(a l -a , )= ( l - e z ) (q -uo)+  (îll-uO) sin dl sin 8, ' 
where 

amul=B1, amq=8,,, 
and where e, = (a2 -8)$/a, is the modulus of the eiiiptic functions. 

The Gauss Theory of Geodesics. 

100. We proceed now to the discussion of geodesics upon a surface and 
their relation to other curves on the surface, without any special regard to 
the range within which they are the shortest distance between two points. 
The fundamental property is that the principal normal of the curve coincides 
with the normal to the surface a t  any point. This property is sometimes used 
as the explicit definition of the curve (§ 91) ; i t  has been derived (5 65) from 
statical considerations; i t  h a  been shewn to be a consequence (§ 91), under 
the calculus of variations, of the definition by the shortest arc-distance. 

Under the last method, it was deduced from the characteristic equations 
in the calculus of variations. I t  is important, however, that the'establish- 
ment of these characteristic equations should not be based solely upon that 
method ; so, accepting the geodesic property (whether as a definition, or as 
derived from statical considerations), we can establish the general equations 
as follows. Now 

xl/ = Lq1pr2 + 2xl2p1q' + xaqf2 + x 1 pl1 + $2 f ,  
where dashes now denote differentiation with regard to s ; and therefore, on 
the assumption of the characteristic property, and taking the sign of the 
radius of curvature of a normal section as in 5 31, we have 

X 
- = xil plZ + 2Xl2p14, + x=qh + x1 pl1 + xz ql/, 
D 
I 

and similarlv 

Multiplying by X, Y, 2, and adding, we have 
1 
- = LpI2 + 2MPlqf + Nq12, 
P 

the customary formula for the curvature of a normal section; i t  therefore 
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gives the circular curvature of the geodesic at  the point. Again, multiplying 
by zl, y,, z,, and adding; and multiplying by x2, y%, z,, and adding; we have 

which are the general equations of a geodesic on a surface. 

From these, as before (5 91, 92)' we have 

as the single general equation of geodesics on the surface. 

In  al1 the forms of the equatians as given in § 92, the parametric variables 
are general and the parametric curves are completely unrestricted. Some 
simplification arises when the parametric curves are specialised. 

101. As an example, consider the geodesics upon the quadric* 

xa y2 za - + - + - = l .  
a b c  

Let the quadric be referred to its lines of curvature as usual; then (5 7 8 )  

where P' = d w p ,  Q'= dQ/dq. Writing 

we have the equation of the geodesics in the form 
Q'q' P' 

2 ( p  -d P Q d f  = (&da- P ) ( Q q 1 - P ) -  (P  - d P Q d  (T - ?). 
To integrate this equation, introduce a new quantity u such that 

P Qqf2 - Qqf2 - P -- ---- 
U + P  u + q  q-2' 

For a discussion of geodesics upon quadrics not of revolution, see a paper by the author, 
Proc. Lond. Math. Soc., vol. xxvii (1896), pp. 250-280. 

F. 10 
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Substituting for u, and inserting the value of q" from the differential equation, 
we have 

that is, 

and so 
u' = O, 

u = constant = 8. 

Thus a first integral of the equation of geodesics on the quadric is 

Pdp2 Qdq2 -=- 
8 + p  * + p .  

Let 
~ ( p ) = p ( a + p ) ( b + p ) ( c + ~ ) ( f l + P ) ,  

then the equation is 

where the lower sign is chosen for a geodesic dong which p  and q increase 
together or decrease together, and the upper sign is chosen in the alternative 
cases. Now 

Let the upper sign be chosen ; then 

Accordingly, the first integral of the equation of the geodesics can be taken in 
the form 
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being the canonical equations for hyperelliptic integrals ; and * 
ds = - pq du. 

Also we have 

= (bc - pq) du, 
so that 

ds = dT - bcdv, 
that is, 

S-s0=T-bcv .  

The integration of the equations thus requires the use of hyper- 
elliptic functions of the simplest classi-, just as elliptic functions are required 
for the oblate spheroid, and circular functions are required for the sphere. 

Let the quadric be an ellipsoid, so that a, b, c are positive ; and suppose 
that 

a > b > c .  
Then we have 

a > - p > b > - q > c .  

The curves, p =constant, are the intersection of the ellipsoid with the 
confocal hyperboloids of two sheets ; and the curves, q = constant, are the 
intersection of the ellipsoid with the conf'ocal hyperboloids of one sheet. To 
secure real values, we must have R (p) 2 O, R (q) 2 O ; hence 

and so 

Because 8 and b lie between -p and - q, there are three cases according 
as 0 = b ,  8 < b ,  B>b.  

(i) When 8 = b, the geodesic passes through an umbilicus and, when 
continued, through the diametrally opposite umbilicus. 

(ii) When 8 t b, the geodesic touches (but does not cross) a line of 
curvature given by 8 = - q ; it undulates between the two lines of cuwature 
given by q = - 0, and these are lines upon the confocal hyperboloid of one 
sheet. 

(iii) When 8 > b, the geodesic touches (but does not cross) a line of 
curvature given by 8 = - p  ; i t  undulates between the two lines of curvature 
given by p = - 0, and these are lines upon the confocal hyperboloid of two 
sheets. 

This agrees with the form given by Weierstrass in 1861 ; Ges. Werke, t. i, p. 262. See also 
Cayley, COU. Math. Papers, vol. vu, p. 493, vol. viii, p. 156, p. 188. 

f The expressions for the coordinates and the length of the arc in terms of the current 
parameter v are given in the author's paper, aiready quoted. It may be added that only elliptic 
functions are required for the equations of umbilical geodesics. 

10-2 
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Ex. Let w denote the perpendicular from the centre of the dlipsoid upon the tangent 
plane a t  any point ; and let D', D" denote the semi-diameters of the ellipsoid, parallel to 
the respective directions of any geodesic through the point and of a line of curvature 
through the point. Prove that wD' is constant along the geodesic and that WB" is 
constant along the lin; of curvature. 1s the converse true for either line or for both? 

Discuss the configuration of the curves 

wD=ka, 

where k is a parametric constant, and D is the semi-diameter of the ellipsoid parallel to 
the tangent to the curve a t  the point. 

102. Returning now to the general equation of geodesics, let i denote the 
angle, made by a geodesic with the parametric curve q = b through the point, 
and rneasured towards the curve p =a. Then ($ 26, 8' now being denoted 
by i, and 8 later by j), we have 

~ f r  cos i = Ep' + Fq', 
and therefore 

d d i  
- (Ep'+ Fq') = *E-+(Elp' + E,qr) cos i - E* - sin i ds ds 

1 di  
= , (Elpf + E2q') (Ep' + 3 ~ ' )  - vq' ; 

consequently, along a geodesic, we have 

1 di 6 (E1pt2 + 2Flp'q' + G, q") = a (E,P' + ~ ~ q ' )  (Ep' + Fq') - Vq' dd . 
Hence 

d i  1P 1 V - =  - -E 1 
d~ (2 E ,+, E , - F , ) ~ + ( ~ ~ E ~ - , G , ) ~ '  

Thus, along a geodesic, we have 

E 
- di  = - Adp - Udq, v 

together with 

dscosi = E - * ( E ~ ~  + Pdq), = E-*vdq, 

where i is the inclination of the geodesic to the parametric curve q = b. 
Similarly, if j is the inclination of the geodesic to the parametric curve 
p = u through the point, measured towards the curve q =  b, we have 

G 
T d j = - r f d p  -I'"dq, 

together with 

d ~ ~ o s j = ~ - ~ ( J ' d ~ + ~ d ~ ) ,  dssinj=@-4vdP.  
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These results are in accord with the relation (§ 36) 

for the variation of the angle between the parametric curves. 

Geodesic Curvature of Ourues. 

103. We now are in a position to develope a notion as to another curvature 
of curves on a surface. We have already considered the circular curvature 
and the torsion of any twisted curve, and therefore of any curve upon a 
surface. In  the case of a plane curve, we regard the curvature in connection 
with the deviation of the curve from its tangent. Geodesics on a surface - 
have much annlogy with straight lines in a plane, even when the surface is 
not developable; and so i t  is natural to consider a curvature of a curve 
upon the surface in connection with the deviation of the curve from its 
geodesic tangent. 

Accordingly, let a curve at  any point cut the parametric curve q = b at  an 
angle i ;  and at  the point draw the geodesic tangent to the curve. At a 
consecutive point on the curve, let i + d i  be the inclination of the curve to 
the parametric curve, q =constant, through the point; and let i + 2% be the 
inclination of the consecutive geodesic tangent at  the consecutive point to 
that consecutive parametric curve. Then the angular deviation (measured 
from the parametric curve q = b towards the curve p = a )  of the curve from 
its geodesic tangent is d i  - si, that is, 

This is called the angle of geodesic conti,ngence of the curve ; the rate of arc- 
variation of this angle is called its geodesic curvature. Denoting* the latter 
by lIy, we have 

ds -=di+-dp+ T A  VA' -dg. 
Y E E 

Similarly, we have 
ds T T r  
-=- 
9' 

where j is the inclination to the parametric curve p = a, and the geodesic 
contingence as measured from that curve is 8j - dj. 

Of course, when the curve itself is a geodesic, its geodesic curvature is 
zero ; hence 

d i  - + - - + - - = O  V A  d p  VA' dq 
ds E ds  E ds  

* Sometimes the symbol p, is nsed, instead of y. 
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is the equation of a geodesic. When the value of i is inserted, this equation 
reduces to the earlier general equation of geodesics. 

Let 1/./" be the geodesic curvature of p = a, and be the geodesic 
curvature of p = b. The element of arc along p = a is G* dq; hence 

G h i q  - -VAt 
- = do + dq, 

Y" 

that is, 

Similarly, 

Now, in general, we have 

The simplest case arises when the parametric curves are orthogonal. Then 

and so 
1 di cosi s in i  --- -*+7+- 
Y 7 Y'/ ' 

which effectively is Liouville's formula*. 

Further simplification would occur if we could choose the parametric 
curves so that l/y' and I/y" are zero, that is, if there were two orthogonal 
families of geodesics on the surface. In that case G, = O, E, = O ; that is, E 

In his edition of Monge's Application de l'Analyse à la Géométrie, p. 575. The signs of 
y, y', y" in the text differ from those in Liouville's formula ; they agree, when the geodesia 
contingence is taken to be 8i - di instead of di - 8i. 
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is a function of p only which can be absorbed into dp2, "hile CS is a function 
of q only which can be absorbed into dq2 ; thus 

ds2 = dp2 + dq2, 

and so the surface is a developable surface*. Thus the suggested simplifica- 
tion cannot be effected in general. 

104. We can obtain another expression for the geodesic curvature by a 
different method, due to Liouville also. 

Let AB, BC be two consecutive equal elements of arc, which can be taken 
as infinitesimal straight lines. Produce the line 
AH t o  D so that BD= AB, and let DE be the 
normal to the surface a t  E; join BE, EC. 

Then ABE is the geodesic having the arc- 
element A B  in common with the curve; that 
is, i t  is ' the  geodesic tangent to the curve. 
Also ABDC is the osculating plane of the 

surface. curve; and Hence ABDE is the normal plane to the / A 

angle EBC = angle of geodesic contingence, 

. . . . . . DBC = angle of circular contingence, 

. . . . . . DBE = angle of contingence for normal sectiori, 

Let m denote the angle between the principal normal of the curve and 
the normal to the surface, measured from the former towards the latter, so 
that m can range from + rr to -T; in the figure?, the angle CDE = m. Also, 
now let 

p = radius of circular curvature of the curve, taken positive as in $ 4  ; 

y = . .. . . . . . . geodesic . ... . . . . . . . . . . .. . . . . . . .... .; 
p'= ......... curvature of normal section of the surface, taken as in $ 31. 

* See also 8 114. 
t The figure obviously assumes that the normal section is  such as to give p' positive and 

that Oc w<+r. The figures for the possible alternatives are easily constructed ; they lead to 
the same analytical results, regard being had to the sign of p' and the range of w, 
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But 

hence 
1 cosw 1 sin a - - =- 
P' P ' Y  P '  

The first of these two results is Meunier's theorem. The second is a new 
expression for the geodesic curvature. 

The direction-cosines of the binormal of the curve are 

p (yfz" - zfy"), p (z'xff - z'zlf), p (x'ylf - y'x"), 

and the direction-cosines of the principal normal are pz", py", ; hence 

so that 
COS m = Xpxl' + Ypy" + Zpz", 

1 cos a 

P'=P 
= X d l +  Y#+Zz" 

the farniliar result. Also 

sin m = Xp (y'z" - z'y") + Y p  (dxf l  - x'zl') + Z p  (2'7~~' - y ' ~ f f ) ,  

on substitution and reduction. 

so that 
1 sin P -=- 
Y P  

The expression on the right-hand side is 

= 

and so vanishes when the curve is a geodesic. Also m=0 or T, when the 
curve is a geodesic. Thus al1 the foms are verified in connection with the 
necessary property that lIy is zero for a geodesic. 

x, Y,  2 
x' , y', 2' 

x , y", 2'' 

105. Two expressions for the geodesic curvature have been obtained, 
viz. 

dl + PA d p  VA' dq - -- 
ds E d s + ~ d s '  

V { p f f  - q'p" + Ap" + (2Af - I?)p"q1 + (A'' - 2 r f )  p'qf2 - I'"qfs}, 
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and these should be equal to one another. Nom 

& COS i = E ~ '  + Fql, & sin i = Vq' ; 
hence 

Ep" + Fq" = - Elp12 - (E2 + FI) p'q' - li'zq1a 
. .di + BE-* (E,p' + E2q1) cos i -&sin z ds - , 

4 .di Pq" = - V,prq' - P,qrz + E - (E1pr + E2qf) sin i + E cos 3 &. 

Multiply the latter by d cos i, the former by Id sin i, and subtract ; then 

di E T  (p'q'' - q'p") = E ds - (Vlplq' + Vzq'2) (Ep' + Fq') 

+ {El p" + (Ez + FI) p'q' + Fz q"} Vq'- 

El = 2 ( E r  +FA), & = Er' + F (r + A') + GA, 

substituting and reducing, we find 

di ET (p'q" - q'p") = E + VAp' (2Fp'q1 + Gq4) + PA?' (EpIa + 2Fp1q' + Gqf2) 

- E V (BA' - ï) pt2q' - E P (A" - 2r') p'qr2 + E Vr"q'$, 

which proves the equality of the tmo expressions for the geodesic curvature. 

Another expression, due to Bonnet, for the geodesic curvature of a curve 
is required when the equation of the curve is given in the form + (p, q)  = 0. 

Let O denote the positive square root of E$,8 - 2F+1$2 + G+12; then, as 

we take 

thus assigning the direction along the curve that is positive. Also 

$ 1 ~ "  + $zq" + +llp'2+ 2$,,pfq' + +=qt2 = 0, 
and therefore 

@ (p'q" - q'p") + $llp's + 2$12pfq' + +22q12 = 0- 
Now 
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on using the preceding relations; and therefore 

which is Bonnet's expression for the geodesic curvature* of the curve 

106. From the two relations 

we have 

consequently, inserting the values of p' and y that have been obtained, we 
have an expression for the circular curvature of any curve on the surface. 
Thus, for the curve p = a, we have 

+- 
and for the curve q = b, we have 

The curvature of torsion of the curve could be derived froin the formula 

but the expression is complicated, requiring the use of the derived magnitudes 
of the third order. Another and more convenient (but equivalent) expression 
for the torsion, connecting it with the torsion of the geodesic tangent to the 
curve, can be obtained as follows. Let d ~ '  be the angle of torsion for the 
geodesic tangent; so that, in passing to a consecutive point, its osculating 
plane (being the normal plane. to the surface) turns through an angle d i  
about the tangent. The inclination of the osculating plane of the curve at 
the point to the osculating plane of the geodesic is m ;  the inclination at 
a consecutive point is m +dm, so that the osculating plane of the curve has 
turned, round the tangent, through an angle dm relative to the osculating 
plane of the geodesic; and these rotations are in the same sense. Hence 
the angle through which the osculating plane of the curve has turned in 
space round the tangent is d+- dm;  and therefore 

1 d7' dm -- ---- 
cr ds ds ' 

the expression in question. 
See al80 55 135, 142. 
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d7' 107. The quantity - is the torsion of the geodesic ; sometimes (but less 
ds 

often than formerly) i t  is called the geodesic torsion of the curve. The analogy 
of this name with the geodesic curvature of a curve (which is the arc-rate of 
deviation of the curve from its geodesic tangent) is not justified by any 
intrinsic property of the magnitude; so we shall not use this descriptive 
name which implies that the magnitude specifically belongs to the curve. 

The actual magnitude of the torsion of the geodesic can be exyressed 
analytically in a simple form as follows. At a point on the surface, let the 
configuration be referred to the indicatrix with the lin& of curvature as the 
directions at the point of the axes of reference ; and suppose (as in 5 46) that 
the geodesic makes an angle + with the line of curvature associated with 
the principal radius a. The circular curvature of the geodesic (being the 
curvature of the normal section through the tangent) is given by 

The equation of the surface in the vicinity of P is 
x2 y2 

22 = - + - + higher powers. 
a P  

The direction-cosines of the tangent to the geodesic a t  P are cos +, sin +, 0 ; 
the direction-cosines of its principal normal (being the normal to  the surface) 
are 0, 0, 1 ; hence the direction-cosines of the binormal are sin #, - cos +, 0. 
The direction-cosines of its principal normal a t  a neighbouring point, distant 

hence the direction-cosines of the consecutive binormal (which, of course, is 
perpendicular to the first tangent) are 

sin 9, - COS +, ds - - - sin + cos jr. e B) 
The last of these direction-cosines is cos ($T + d~ ' ) ,  when we take the tangent 
to the curve, the positive direction (5 31) of the normal to the surface, and 
the binormal to the geodesic as a set of lines similar to the customary 
rectangular configuration. Hence 

dr' 1 1  = - .) cos + sin +, 
which is the expression for the torsion of the geodesic. 

Manifestly the torsion vanishes a t  a point on a geodesic where the 
geodesic touches a line of curvature; and i t  vanishes at  an umbilicus for 
every geodesic through the umbilicus. Manifestly a190 two geodesics a t  
right angles have equal and opposite torsions. 
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Families of Geodesics and Geodesic Yarallels. 

108. We have seen that, when geodesic polar coordinates are used upon 
a surface, the element of arc on the surface can be expressed in the form 

in this form, the parametric lines q = b are a family of geodesics. But it 
so happens that, in the deduction of this form, the geodesics are a family of 
concurrent curves; and i t  might be desirable to have one set of parametric 
curves composed of a family of non-concurrent geodesics. 

Accordingly, consider generally the possibility of having one set of para- 
metric curves, say q = constant, constituted by geodesics. Then the relations 

q=b, +E- f ,  

where b is an arbitrary constant, must satisQ the general equations, which 
are characteristic of geodesics, viz., 

The former becomes an identity. The second equation gives 

and therefore some function 0 o f p  and q exists such that; 

Thus, for the element of arc on the surface, we have 

d@= Edpa + 2Fdpdq + Gdqa 

where 

I t  is manifest, from the form of the expression for the arc, that the curves 

8 = constant, q = constant, 

are perpendicular to one another. The curves q = b are geodesics ; the curves 
0 = a are the orthogonal trajectories of t.he geodesics. But, further, the 
element of arc along any geodesic q = b is given by 

as= d e ;  
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that is, the geodesic distance between two O-curves, given by 
e=o,, O=oO, 

is O, - O,, and so is the sarrie for al1 geodesics q = constant (which, of course, 
cut the O-curves orthogonally). The curves 8 = a are called a family of 
geodesic parallels. The members of the family are given by the parametric 
values of a ; and the geodesic distance between two members of the family 
is the difference between the values of their parameters. 

The equations are thus the same as when we use geodesic polar CO- 

ordinates. I n  other words, the arc-element and ~verything that depends 
upon the expression for the arc-element are the same whether the geodesics 
are concurrent or not concurrent; and the orthogonals of the geodesics are, 
in both cases, geodesic parallels. 

Note. The question as to whether the orthogonal geodesics of any family 
of geodesic parallels are, or are not, concurrent, can be settled by proceeding 
to form their envelope, if any. They are concurrent, if the envelope is a point. 
Thus it is found that, on the surface 

d9 = 4f ( p  - q)  dpdq, 
geodesic parallels are given by 

a @ + q) -/{a2 - f (t)P dt = constant, 

where a is an arbitrary constant; the orthogonal geodesics are 
1 - ( p  + q )  -/{a2 - f (t)] -!J dt = constant ; 
a 

where, in both equations, t denotes p - q. 
Along the geodesics, we have 

anr the differential equation of the first order, satisfied by geodesics. The 
envelope (if any) of the curves is obtained by assigning equal roots to 5 ;  
hence it is given by 

f = a2, 
which in general is a curve (real or imaginary) and not a point. Thus the 
geodesics in the family indicated are not concurrent in general; when they 
happen to be concurrent, we have geodesic polar coordinates. 

The meridians on a surface of revolution are a family of concurrent 
geodesics when the axis of revolution meets the surface in real points. 

109. One remark, partly in connection with the general notion of parallel 
curves on a surface, may be made here. I t  is not possible to take any 
arbitrarily assigned family of curves e (p ,  q )  = a, where a is the parameter, as 
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a family of geodesic parallels; and the reason is simple. Measure a small 
distance Sn along the surface normal to any curve of the farnily 8 (p, q) = c ; 
as the tangential direction along the curve is given by B1dp + &dg = 0, the 
direction of the normal distance 6n is given by 

I f  the otber extremity of this normal distance lies on a curve of the same 
family, then, as 

B ( P + ~ P ,  q - t W = e ( p ,  q)+0,Sp+@dq 
6n 

= c + (ES: - 2Fdl8, + Ge:)? 

we must have 
1 
- (E6; - 2 F 4  6, + GO:)+ = function of 8, v 

in order that i t  may belong to the same family. This condition is not 
generally satisfied, either by the equation of a family of curves, or by the 
equation of any member of the family taken in the foregoing form. 

The matter however suggests the general idea of curves, parallel to any 
assigned curve of the family; but the parallel curves, thus derived from 
any curve, form another distinct family which, as will be seen, are geodesic 
parallels. 

110. Take any curve ; and through successive points on the curve draw 
the geodesics which cut i t  orthogonally. When 
we measure a length t along the curve from a 
fixed point 0, Say to M, and take a length 1 
along the geodesic normal at  M, say to P, we 
have a uniquely determined point P on the 
surface. The locus of P, for a constant length 1 
measured along the geodesic normals, is said to 
be para2lel to the original curve ; and, by taking 

to the original arbitrarily assumed curve. 

> 
any number of different lengths Z, we obtain any number of curves parallel 

Al1 these parallel curves eut orthogonally the geodesic lines drawn as 
normals to the original curve; and so the parallel curves form a family of 
geodesic parallels. The property can be established as follows. 

Let a consecutive point N be taken; and along the geodesic normal at 
N, let another length 1 + dl be measured, so that MN = dt, QN = 1 + dl. 
Taking RN= 1, we have QR =dl. Denote the angle QRP by o ;  and let 
PR, which is not necessarily equal to MN, be denoted by rdt,  where the 
variable quantity r is equal to unity when 1 = O .  Then the arc PQ on the 
surface is given by 

dss = dl2 - 2rdt dl cos w + Fdt2. 
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Now the equation t = constant;, under our construction, gives a geodesic ; 
hence as E = 1, the condition in $108 becomes 

so that r cos o i s  a function of t alone. To find this function of t ,  consider 
the position a t  M ; we there have O = +rr, r = 1, so thrtt the function of t is 
zero. Thus O = AT, and the locus of P is normal to the geodesics MP. 
Moreover, 

ds" = dla + rzdta ; 

thus the curves 1 = constant, being the curves parallel to the original curve, 
are a family of geodesic parallels. 

Ex. Consider a sphero-conic given by 
$+yB+z2=r2, ax~+by2+cza=o, 

assuming that no one of the quantities a, y (= b -c, c -a, a - b respectively) vanish~s. 
On the sphere, draw great circles orthogonal to the sphero-conic ; and along the great 
circles measure any the same distance subtending an angle 16 a t  the centre of the sphere. 
A nem curve is thus obtained, parallel to the sphero-conic ; let x', y', 1 denote the point 
on the parallel curve corresponding to the point x, y, z on the sphero-conic ; prove that 

and verify from these equations that the locus of x', y', 1 cuts orthogonally the great 
circles orthogonal to  the sphero-conic. Shew also that the locus of d,  y', z' is not a 
sphero-conic ; so that the family of curves on the sphere, paraiiel to  the sphero-conic, are 
not a family of sphero-conics. 

I t  thns appears that any assigned curve can be taken as initiating a 
family of geodesic pzrallela. The result is not in contradiction with the 
result of § 109; for the locus of P is given by an equation of the family of 
parallels, while the equation of the original curve is not generally, as given 
i~itially, some particular case of this equation. Let the equation of the 
original curve be 0 (p, q) = 0 ;  and let the equation of the family of parallels 
be + (p, q) = 1, where 1 has the same significance as before. The equations 
0 =  0, $1-0, can be simultaneously satisfied, though there is no functional 
relation between B and + alone; the condition of 5 109 is satisfied for 
+ = 2 or O, while i t  usually is not satisfied for 6 = 0. 

Ex, In a plane, E=l, F=O, G=l .  The equation of a parabola 8 = 9 -  4x=0 does 
not satisfy the condition of 109, for 81a+822 is not a function of 8 alone. 

Let the curves parallel to the parabola be drawn ; the curve at  a distance c is given by 
the equations 

/.L3+/.L(2-4-y=o, p2(2-x)-3py+x~+y2-c2=o, 
p being a parameter, and also by the equation 

c6-uid'+~c"~2-4x)2{y2f (2-1)3=0, 
where the values of u1 and ua, polynomials in x and y, are not immediately important. 
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The equation of the family of parallela is c=+ (x, y). It can be verified directly (with less 
labour from the two equations than from the single equation) that 

for al1 values of c. Manifestly the original parabola is given by c=O; we then have 
+ (x, y)=O, which is satisfied solely through the real curve B=ya-&=O, though there 
is no functional relation between I#I and B alone. 

It will appear later (5 115) that the necessary and sufficient condition, in 
order that a family of curves 0 (p, q) = a may be geodesic parallels, is that 

E0:-2FB,8,+ GO:= EG-  F? 

111. We have seen that when a family of geodesics (whether concurrent 
or not) and their orthogonal geodesic parallels are taken as parametric curves, 
the arc-element is given by 

dsa = dp2 + Dedqe; 
and so ( 5  68) the Gauss measure of curvature is 

1 1 a2D 
aIa=-=P- 

Consider any closed area on the surface; when an infinitesimal element dS 
of this area is taken, its total curvature is 

d S  
3; 

and so the total curvature of the closed area on the surface is 

the double integral extending over the whole of that area. We proceed to 
obtain the expression, due to Gauss, for the- total curvature of a geodesic 
triangle on the surface. 

112. A preliminary property of geodesics must first be established. 
When the element of arc on the surface has 
the form 

dsa = dpa + D"qa, 
we have (§ 68) 

F=O,  I " = O ,  r u = - D D l ,  
A = O, A' = DJD, A" = DJD ; A A 

and so (5 92) the general equations of geodesics are 

Let A be an angular point of our geodesic triangle, and TP the opposite 
geodesic side; and let A P  be a geodesic (q =constant) from A to a curent 
point P on the opposite side, so that AP =p. Then if + be the angle APT, 
we have 
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and therefore the first of the two equations becomes 

that is, 
ôD 

d + = - D , d q = - ^ d q ,  
dP - 

which is the property in question. The second equation (as may easily be 
veded) leads to the same result. 

113. Now consider a geodesic triangle ABC; we shall use geodesic 
polars. An element of area is d p .  Ddq  ; 
and so the total curvature of the geodesic c 
triangle is X' 

= -II"dpdp.  
apa 

Integrating with respect to p, and re- 
aD 

membering (§ 68) that, at  A, - is equal 

to unity, we have 
ap 

as the integral ; that is, the integral is equal to 

Now dq, for the triangle, is equal to the angle A; and d+, for the triangle, I I 
is x'- X, that is, C -  (T - B). Hence the total curvnture of the geodesic 
triangle is 

A + B + C - T ,  
a result first established by Gauss. 

When the surface is a sphere, the result is Girard's theorem on the area 
of a spherical triangle. When the surface is everywhere synclastic, the specific 
curvature is positive ; when the surface is developable, the specific curvature 
is zero; and when the surface is everywhere anticlastic, the specific curvature 
is negative. Thus the quantity A + B + C - T is positive, zero, or negative, 
according as the surface is synclastic, developable, or anticlastic. Two 
geodesics, diverging from a point on an anticlastic surface, cannot again 
intersect; the range ( 5  89) of a geodesic on such a surface is unlimited. 

If the surface is such that we can take a closed geodesic returning upon 
itself, and if we stop a t  the point of return, we have a special case. Then 

Idq = 2 r  ; and X' = X, because jb returns to its initial value ; hence the total 
J 

curvature is 27r, that is, one-half the surface of the indicatrix sphere. 
F. 11 
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114. I t  is reasonable to expect that, through the notion of geodesic 
distance, it will be possible to construct for a surface relations which have 
some analogies with relations in a plane. 

Thus, suppose a family of geodesics given, and let them be cut by any 
two curves. Let PQ and P'Q' be two neighbouring 
geodesics of the family, cut by the curves PP' and QQ'; 
and let the geodesic parallels through P and Q be PM 
and QN. Then if p and p + dp be the geodesic-distance 
coordinates for P and P', while po and po + dp, are those 
for Q and Q', we have 

P Q  = p  -po  = MN, 
ds=PQ' -PQ 

= dp - dp,. 

But if PP' = dt, QQ' = dt,, we have 

dp  = P'M = dt cos PP'M, dp, = Q'N = dt, cos QQ'N ; 

and therefore 
ds = dt cos PP'M - dt, cos QQ'N, 

being the expression for the increment of the geodesics cut by the curves. 

Again, let P be any point on the surface; and from P drop two geodesic 
perpendiculars P M  and PX upon a couple 
of selected curves, one belonging to one 
given family of geodesic parallels and the 
other belonging to another given family 
of geodesic parallels. When P describes 
a locus on the surface such that 

P M  + PN 
is constant, then, if P' be a consecutive point on the locus, we have 

dPM + dPN= O, 
so that 

PP' cos PP'M' + PP' cos P'PN = O, 
and therefore 

cos PP'M' + cos P ' P N  = 0. 

Hence the tangent in the surface to the locus of P bisects the angle MPN, 
either externally or internally. Such loci are known as geodesic ellipses (for 
e~ te rna l  bisection) and geodesic hyperbolas (for interna1 bisection). 

To give analytical expression to this descriptive property, we choose 
initially, as coordinates of P, the geodesic distances u and v from the two 
curves; then 

dsa = edu" 2fdudv + gdv3. 
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Let ut= constant represent the geodesics which are orthogonal to the geodesic 
parallels u = constant ; then we have 

d 9  = dua + Dadd2, 

so that dsa - dua is a perfect square, when regarded as a function of the 
differential elements, that is, 

(e- l )du4+  2fdudv+gdva 

is a perfect square, when regarded as a function of du and du. Hence 

f" =g(e- 1). 

Similarly, because v is a geodesic distance, 

f"=e(g-1). 
Consequently 

e=g ,  f a=e(e -1 ) ;  

and thus, taking e = cosec2 o, so that f = cos w coseca o, the arc-element 
becomes 

dsa = (dua + dv9 + 2dudv cos o) coseca o. 

To indicate more explicitly the analogy between ellipses in a plane and 
geodesic ellipses, we take 

u + v = 2 u ,  u - v = 2 P ;  

then the arc-element takes the form 

The quantity o depends upon the particular geodesic parallels chosen as the 
base of the geodesic perpendiculars, as well as upon the surface itself 

We have a special result (originally due to Liouville) to the following 
effect : if a surface adrnits two families of geo&sics which cut at  a constant 
angle, the surface is developable. Por if o is constant, e, f, g are constant; 
their derivatives are zero, and so LN- Ma vanishes; that is, the specific 
curvature vanishes, which establishes the result. 

The Equation A+ = 1. 

115. We have seen that, in one method of determining the integral 
equation of geodesics upon a surface, it is necessary to integrate the general 
equation, which is an ordinary non-linear ordinary differential equation of the 
second order between p and p. But the fact, that the arc-element on the 
surface can be expressed differentially in a form which mises most simply 
when geodesic polar coordinates are used, can be employed to determine 
systems of geodesic parallels and the associated systems of orthogonal 
geodesics. 

11-2 
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Let a family of geodesic parallels on a surface be represented by the 
equation 

4 (p, q )  = constant ; 
and let the equation + ( p ,  q )  = constant 

represent the family of orthogonal geodesics. Then, after preceding ex- 
planations, we know that the arc-element on the surface can be expressed - 

in the form 
d q  + D a d p ,  

where D is free from differential elements ; hence 

Edp2 + 2Fdpdq + Gdq2 = d@ + Dd7/ra, 
and therefore 

E = +,a + D2+,a, 

we have 
A+ = 1, 

as a necessary condition. 

I t  is also a sufficient condition. For, when the relation 

(E-+?)(G-+,")- (F-+,+%)"=O 
is satisfied, we have 

The right-hand side, regarded as a function of differential elements, is a 
perfect square because of the relation; and therefore 

The condition therefore is sufficient as well as necessary; and so we have the 
result :- 

The gelteral solution of the equation A+ = 1 determines a family of geodesic 
paralkls eut orthogonally by a family of geodesics. 

The function A+ is called* the Jirst d i f e r e k d  parameter of the 
function +. 

Now this equation A+ = 1 is a partial differential equation of the first 
order in two independent variables. To integrate it, we can always use 
Charpit's method, though in special cases we may use simpler methods al1 

* After Beltrami who introduoed it in Lis Bologna memoir of 1869, hereafter to be quoted. 
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of which can be exhibited as special standard forms of the general method*. 
The procedure in the general method is as follows. The subsidiary set of 
equations 

d7, - dy - d41 - d$2 
2 - 2 a a 
p (G+1- F4d p (E42 - q l )  - - (A$) - - (A+)  

ap aq 
is constructed. One integral of the set is reqiiired which, while distinct from 
A+ = 1, must contain $, or 4 ,  or both ; let i t  be 

f ( p ,  q ,  $ 1 ,  + , )=a.  
This relation is combined with A+ = 1 to express $, and +, in terms of p and 
q ;  when their values are substituted in 

the right-hand side becomes an exact differential; and the integral of this 
equation is obtained, by quadratures merely, in the form 

4 = $ (P ,  P; a)  = b. 
Here a and b are arbitrary constants. Our desired geodesic parallels are 
given by 

+ ( p ,  4, a )  = b. 
I t  will be noticed that, for their complete expression, we need one integra- 
tion of a set of ordinary equations and one quadrature. 

116. When a family of geodesic parallels, satisfying the equation A$ = 1, 
has been obtained, the family of orthogonal geodesics can be constructed in 
two ways. 

It might happen that a somewhat special fainily of geodesic parallels is 
obtainable in a form 

d (P, Q) = 4 
where #I contains no arbitrary constant a. Then 

DJh = ( E  - $,a)+, Dy52 = (G  - $29 ; 
and so the coiresponding family of orthogonal geodesics, + = constant, is 
given by 

(E - +la)* dp + ( G  - +,a)* dq = 0. 
The integral equation of the special family of geodesics is then obtained, not 
by a mere quadrature but by the integration of this equation. 

When, however, i t  happens that the general families of geodesic parallels 
are obtained in the form 

d ( p ,  y ,  a )  = b, 
where $ now contains an arbitrary constant a., the orthogonal geodesics can 
be constructed by a direct process. We have 

ds2 = d$P + D2dq2.  
* See the author's Treatise on IXJerentia2 Equations, 3rd ed., S 201. 

IRIS - LILLIAD - Université Lille 1 



166 GEODESICS DETERMINED THROUGH [CH. V 

On the right-hand side occur the quantities p, q, dp, dq, which are current 
variables, and also a, which is a parametric variable; while ds2 does not itself 
explicitly involve a. Hence 

al1 over the surface. Along each geodesic, we have 
d+=O; 

and therefore, along each geodesic, we have 

so that 

Now we cannot have d+=O and d$ = O together, for + and 4 are 
functionally independent of one another. We therefore have 

34 simultaneously ; so that + is a function of - alone. Merging the derivative 
aa 

function in the multiplier D, we can take 

in other words, the geodesics, which are orthogonal to the general families 
of geodesic parallels + ( p ,  q, a)  = b, are given by 

a4 -- 
aa - C' 

where c .is nn arbitrnry constant. Moreover, as a is not a purely additive 
constant in +, this equation of the orthogonal geodesics contains two arbitrary 
constants a and c. 

Further, the inference has already been d r a m  (5 92) from the theory of 
ordinary equations of the second order that a geodesic throzcgh a.n ordinary 
poVit on the surface is uniquely determined by its direction at the point. The 
inference can be established as follows, without recourse to that theory. 
For the purpose, i t  will be sufficient to shew that the geodesic parallel 
+ (p, q, a) = b can be made, at  the point, to adopt an assigned direction- 
of course, perpendicular to the assigned direction of the geodesic. The 
direction of the geodesic parallel is settled by the ratio +,/+,; if this ratio 
were independent of a, so that 

91 = 

where is a function of p and q alone and is not a function of a, the two 
equations 

A#=& +,=+A 
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would determine +, and +, as quantities independent of a ;  and then 
+ (p, q, a)  would not involve a, contrary to hypothesis. Thus +1/+, involves 
the arbitrary constant a ;  this ratio can be made to assume any value, by 
taking al1 possible values for a ;  and so the geodesic parallel (and conse- 
quently the geodesic) through the point can be made to lie in any assigned 
direction a t  the point. 

As regards the multiplier D, we have 

everywhere on the surface. But 

substituting, and dividing out by d+, we have 

on the surface. Hence 

a~ a+, O=+,+ D , - + D 2 -  
da aa ôaa ' 

and therefore, writinp 

and so on. we have 

where J(u ,  v) is the Jacobian of u and v with respect to p and q. Con- 
sequently 

and therefore 
3J(+ ,  +? J(+l, +'Il  = J(+ ,  +') J(+" +/'O. 

A first integral, proper to the surface, of this equation of the third order 
in a. is 

which can be established independently. 

I t  is easy to verify that the curves 

+ = constant, %= constant, 
an 

are orthogonal. The direction dpldq of the former is such that 

+,dp + +,dq = 0. 
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The direction 6p/6q of the latter is such that 

These directions on the surface are perpendicular if 

But we have 
E$9 - 2F9, & + G+? = Fa, 

and E, F, Cf, V do not contain a ;  hence the condition, necessary for ortho- 
gonality, is satisfied. 

117. One other result may be noted. Suppose that the general equation 
of geodesica is given in the form 

where a does not occur in a merely additive form in + ; it is desirable to have 
the geodesic parallels. Now along any geodesic, we have 

+ i s ~ + + z Q =  0; 
consequently the orthogonal direction dpldq, being that of the geodesic 
parallel, is given by 

(E+2 - P+1) dp + (F+z - G+l) dq = 0. 
Thus a quantjty p, independent of differential elements, must exist such 
that 

P I(E+2 - -+Il dp + ( W 2  - G+l) dq} = d$ ; 

so that, with these values inserted, the equation 

represents the geodesic parallels, w h n  + = c represents the orthogonal geodesics. 

A quadrature alone is necessary in order to have the integral equation 
+ (P, q,  a)=b. 

A simple equivalent form can be given to the expressions for 4, +1 and +2. 

Along the geodesic we have 
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Hence 

and therefore 

where q', = - +,/yb2, gives the direction of the geodesic. Now q' involves a 
and therefore the integral involves a ;  thus 

- \ - ' - - Y  - x  
If then we regard 

as a first integral of the general equation of geodesics, a second integral (and 
therefore the primitive) is given by 

c=9= vB a - e (dq - Bdp). + 2 Be + G&)% 
This is a known theorem of Jacobi's connected with the theory of the last 
multiplier +. 

Ex. 1. Consider surfaces such that E, P, G are functions of only one of the parametric 
variables, Say p. Let 

e = EG2' - 2F+1$2 + - (EG - F2) =O. 

The subsidiary system for the integration of e=0 is 

ae 
In the present case, -=O ; hence we must have d~&=0 in the subsidiary system, that is, au 
an integral is G2=a. * (The integral can be obtained by expressing the equation 8=0 ,  for 
the present case, in one of the standard forms indicated in § 115.) This integral is to be 
combined with 8 =O; ao we find 

G+,=aF+ v(G-a2)4. 
Consequently, 

and therefore the geodwic parallels are given bg 

where a and b are arbitrary constants. 

* See the author's Treatise on Diferential Equations, 3rd ed.,  § 174, Ex. 3. 
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The orthogonal geodesics are 

that is, 

where a and c are arbitrary constants ; and this equation accordingly is the general 
equation of geodesics upon the particular surface. 

Let 

then the element of arc on the surface becomes 

ds2 = du2 + G dv2, 

where G, a function of p alone, is a function therefore of u and not of v. Thus the surface 
is deformable into a surface of revolution. 

The equation of the geodesics becomes 

Let o be the angle a t  which the geodesic cuts the meridian ; then 

so that 

or 

ds sin o = ~ - f  dv, ds cos o = du, 

G$ sin o =a, 

which (S 93) was the former first integral of geodesics on a surface of revolution. 

Ex. 2. Consider the geodesics on the Liouville surfaces given by 

ds" ( P  - Q )  (B d@ + Sa dqa), . . 

whore P and R are functions of p only, while Q and S are functions of p only. (It is 
clear that the parametric curves yield an isometric system.) 

The differential equation A+ = 1 is now 

so that 

a standard form of equation. An integral is known to be 

this result being derivable also from the subsidiary system in 5 115. Hence 

+1= R ( P  - a)&, ~ Z = S  (a-  Q ) ~  ; 
therefore 
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The general equation of geodesics, being a$/aa=constant, now becomes 

where a and c are arbitrary constants. This is the primitive of the general equation of 
the geodesics ; a first integral is 

Let w be the angle a t  which the geodesic c u h  the parametric curve, q=constant; 
then 

d s c o s o = R ( ~ - & ) * d ~ ,  d s s i n o = ~ ( P - & ) + d g ,  

and therefore, along the geodesic, we have 

cos o sin o 

that is, 

which may be regarded as a 6rst integral of the general differential equation of the 
geodesics. 

Further, we have 

~ $ = R ( P - a ) i + + S ( a -  &)idq, 
so that 

dG2+(P-a) (a- Q)diC12=(P-Q) (R2dp2+X2dq2) 

= ds2, 

which puts inevidence the fact that  the curves, +=constant, are a 
while the curves, $=constant, are their orthogonal geodesic parallels. 

family of geodesics 

It is manifest that the geodesic curve touches a parametric curve given by P=a, if this 
equation has real roots, and a parametric curve given by (S-a, if this equation has real 
root"3. 

Note. The surfaces include, as special cases, planes, spberes, central quadrics. The 
applications to these surfaces are developed by Darboux? 

Ex. 3. Obtain, by Charpit's method, an integral equation of geodesic parallels on the 
surface 

in the form 

and an associated integral equation of geodesics in the form 

q - ~ ~ o s ~ o + p - ~ s i n 3 0 = c ,  

where a and c are arbitrrtry constants, and is the angle at which a geodesic cutv the 
parametric curve, q=constant. 

* In  his treatise, vol. iii, pp. 12-16. 
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118. Much simplification is introduced into the analysis conpected with 
this branch of the theory of geodesics by referring the surface to its nul lines 
as parametric curves. The arc-element then (§ 56) has the form 

ds2 = 4Xdpdq. 

The ordinary equations for geodesics become 

The partial differential equation for geodesic parallels is 

$142  = z$P = A. 

Consider, however, the ordinary equation for a geodesic. Along the curve, 
let t denote dqldp; and suppose that a first integral has been obtained in a 
form 

t =y (p, q, a), 

where a is an arbitrary constant. Now 

hence, as the ordinary equation of the second order has to be satisfied in 
connection with the supposed first integral t = g ,  me have 

and therefore 

satisfied along the geodesic. Now, along any arc on the surface, we have 

dsa = 4X dp dq. 

Along a geodesic, the element of arc is given by d+, so that (as tdp = dq) 

h fr 
= (kt)* dp + (?) dq. 

The last expression is a perfect differential because of the relation 

which has just been established ; hence the element of arc is given by d+, so 
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Thus the value of $I can be obtained by quadratures; and we manifestly 
have 

in accord with the partial differential equation of the geodesic parallels 

+i+a = A. 

Hence we have the theorem*:- 

When. a Jirst integral of the charactem'stic ordinary equation of a geodesic 
is Icnown, the geodesic parallels can be obtained merely by quadratures. 

Further, the theorem of $116 can be deduced a t  once. Let 

be the general equation of geodesics; then along any member of any of the 
families, we have 

But 

so that 

Consequently 

so that 

As this Jacobian does not vanish in virtue of + = c' because c' does not 
occur, i t  must be satisfied identically ; there is therefore a functional relation 

a4 between + and - , Say 
aa 

Hence the geodesics are given by 

where c is an arbitrary constant; and so we have again the known theorem 
for the derivation of the general integral equation of geodesics from the 
general integral equation of geodesic parallels. 

It hermonises with the theorem of Jacobi's on the lest multiplier (§ 117) and was enunciated 
by Beltrami in this form, Opere Mat., t. i, pp. 3%-373. 
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Ex. 1. Consider the surface for which 

X = f  (P-4). 
The general ordinary equation for the geodesics becomes 

while 
d 
- ( p - q ) = l - t ;  

hence 
d f'- 1 - t  dt 
-{logf(p-q)}=(l-t) -- -- - 

f t q t d p  
and therefore 

( l+V a 
4t -f' 

where a is an arbitrary constant. Hence 

consequently 

so that the arc dong the geodesic is given by 

where 8=p- q, e=f (8). Thus the geodesic parallels are 

and the geodesics themselves are given by 

Ex. 2. Obtain the integral equation of the geodesics on the surface 

i n  the form 
ds2= 4f ( P d  d p  

where 8=pq, e= f (0) ; and deduce the equation of the geodesic parallels. 

Ex. 3. Shew that the geodesics on the surface 

ds"4 V(P -4)-Y (P+P)} dp d9 
are given by the equation 

Note. This form, together with al1 derived from it by transformation of the variables, 
includes the cases, a t  present known, in which an integral equation of the geodesics can be 
expressed in finite terms. 
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119. We have seen that geodesics can always be deduced from a 
primitive integral equation of geodesic parallels. The latter can be obtained 
if we have an equation 

f($i, $23 P, q ) = %  
where a is an arbitrary constant, together with the equation 

The condition of coexistence is the Jacobian relation 

and any integral of the subsidiary systeni (being the subsidiary system in 
Charpit's method, 5 115) 

which involves +, or +, or both, can be used for the t n c t i o n  f (+,, +,, p, q). 
The two equations A = O, f = a are to coexist ; so the form off is always 
modifiable by means of the equation A = 0. 

Now the number of cases in which an integral of the subsidiary system 
can be obtained (by which we usually mean that i t  can be obtained in  finite 
terms) is comparatively small. Among these, some special attention has 
been devoted* to the cases when f is polynomial in 9, and 4,; the conditions, 
necessary and su5cient for the existence of such a function f, can be obtained 
in the simplest instances. 

Accordingly, suppose that f is polynomial of order n in 6 and +,; and let 
the terms in f of the same order m be gathered together and denoted by f,, 
so that f is expressible in a form 

where the coefficients in f,, fn-,, . .. are (or may be) functions of p and q. 
The actual expression of f can be modified by the use of the equation 
A+ = 1 ; as Ar$ is quadratic in +, and r$,, a set of even terms in f will remain 
even, and a set of odd terms will remain odd, after such modification. The 
equation 

(5 N = O  

See Darbonx's treatise, vol. iii, pp. 23-39, 6645, where (p. 66) references are given; and 
a note by Kœnigs ab the end (pp. 368404) of the fourth volume. 

IRIS - LILLIAD - Université Lille 1 



176 POLYNOMIAL INTEGRALS OF THE [CH. v 

is to be satisfied, always concurrently with the equation A+ = 1 ; that is, the 
equation 

(fn, A) + (fn-i, A) + (fn-2, A> + = O 

is to be satisfied concurrently with A+ = 1. Hence the even terms in f by 
themselves satisfy the equation, and the odd terms in f by themselves satisfy 
the equation, in the form 

each concurrently with A+ = 1. Consequently, the odd powers off taken 
together constitute an  integral, and the even powers of f  taken together 
constitute an  integral. 

Consider the aggregate of even powers 

f o + f a + . L +  ...+ fw; 

it can be transformed into 

that is, into a homogeneous polynomial of even order 2 p  Similarly the 
aggregate of odd powers 

, f l + f 3 + f 5 +  +f2,tfl 

can be transformed into 

fi(A+Y +f3(A+>.-'+f5(A+)~~-~+ - - *  +fWfl> 

that is, into a homogeneous polynomial of odd order 2/1+1. We are 
therefore led to inquire what are the integrals f, in the form of homogeneous 
polynomials in 41, and +,, of the lowest orders in succession. 

We do not consider the case (if any) when f is of order zero, that is, when 
it does not involve 4, or 4,. I t  cannot effectively be combined with A+ = 1 to 
determine +, and +,, so as to lead to the quadrature necessary for the 
determination of +. 

As in 5 118, we refer the surface to its nul lines, so that the arc- 
element is 

ds2= 4Xdpdq; 
and then 

so that the differential equation for geodesic parztllels becomes 

When 
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is an equation to be associated with A = O, the condition of coexistence 
Cf, A) = O becomes 

We are concerned with integrals of this equation that are polynomial and 
homogeneous in 4, and +,. 

120. When there is a linear integral, homogeneous in +, and +,, it must 
be of the form 

f = a91 + rB+2 = 2% 

where a  and @ are functions of p and 2. I n  order that it rnay be an integral, 
the equation 

a h  + rBXa + 4 2  (al41 + Pd2) + $1 (%A + = 0 

must be satisfied concurrently with 

From the first two, we have . 

a = P ,  B=Q, 

where P is a function of p only and Q is a function of q only. Now a occurs 
a+ in the combination a+,, that is, a - ; hence, if P is not zero, by taking 
ap - 

a new variable dp l=  dp/P, we do not alter the character of the arc-element 
and we make the new a equal to unity. Similarly, if Q is not zero, we can 
change the variable so as to make ,B equal to unity without altering the 
character of the arc-element. Also, P and Q do not vanish together, for 
othenvise f would be evanescent. Hence there are two cases effectively, viz., 

(i), a = P = l ,  ,8=&=1, 
(ii), a =  P=O, P=Q=l.  

For (i), the third condition becomes 

h,+h,=O, 
so that 

x = I c ( p - q ) ;  
hence 

dsa = 416 ( p  - q)  dp dq. 
We have 

4 , + $ 1 ~ = 2 a ,  +,+,=h=k; 
hence 

&-+= &2(a2-k) i ,  
and so 

d+ = { a  f (a" - k)*) dp + (a  T (aa - k)$] dp. 
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Consequently the geodesic parallels are given by 

and the geodesics are given by 

p + q f a  (a2-II)-S(dp-dq)=c. 

Moreover, writing 
I 

p = 4 (v + iv), q = 8 (v - il)), {k (i7)]* dv = du, b (iv) = U, 
the arc-element is 

dsg = duz + Udv2, 

so that the surface can be deformed into a surface of revolution; and with 
these variables, the geodesic parallels and the geodesics are given by the 
respective equations 

1 du 1 du - 
(U-a') '-=b, u w T a / ( ~ - a ~ ) - ~ - - c .  u 

For (ii), the third condition is & = O ,  so that h = P(p),  a function of p 
only. Writing 

P (p) dp = dp', 
(for modification of the variable p still is possible), we have the arc-element in 
the form 

ds2 = 4dp'dq. 
This is a special form of the preceding case. Thus the surfaces which 
provide a linear integral of the equation (f, A) = O are dejiormable into 
surfaces of revolution. 

121. When the equation (f, A) = O has a quadratic integral other than 
A+, let i t  be 

f = a+? + 2P+,+, + y+: = 4a. 
In  order that i t  may be an integral a t  all, the equation 

2 (a+, + B+2) hl + 2 (PA + 742) ha 
+ +2(a1+? + 2P1+1+,+y1+2)+ +l(%+ia+ 2P2+1+2+~2+:)=O 

must be satisfied concurrently with +,4, = ; the necessary conditions are 

2pX1 + 2yX2 + 2hP1 + hy, = 0. 
Hence 

a = P ,  y =  Q, 
where P is a function of p only and may be zero, and Q is a function of q 
only and rnay be zero ; but a and y do not vanish together, for then f would 
be a multiple of A+-a possibility which is to be excluded. Thus there are 
two cases :- 

(i), a = P, not zero ; y = Q, not zero ; 

(Il), a = Pl not zero ; y = 0. 
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Case (i). The other two conditions are 

hence 

Let 

then the equation is 
aZp asp -- -- apf= ap , 

so that 
cl = g (P' + QI)  + h (P' - q'), 

where g and h are any functions whatever. Also 

The element of arc is 

and 
= 4 Ig (P' + q') + h (p' - q')) dp'dq', 

+;+al = p = g ( p P  + q') + h(p'-q'). 
Also, as 

sa= f=P+:+ Q#2" + 2XP 

= (a + g (pl + q')li (dP1 + dq') + 1 (a - h (p' - q')]* (dp' - dg?. 
Consequently the geodesics are 

dp' - dq' Ira d:'>i* + lia - h (pl - = c, 

where a and c are arbitrary constants, and the radicals clearly can have 
sign. 

Surfaces, which have their arc-eletnent of the foregoing form, are often 
called Liouville surfaces (Ex. 2, $ 117). 

12-2 
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Case (ii). The other two conditions now are 

Changing the variable p so that 

~ - + d p  = a- f dp = dp', 
we have 

X a i  = p'Q' + Q = p, 

where Q and Q are any functions of q. Thus 

ds" 4 (p'Q' + g) dp'dq, 

a surface first given by Lie* ; and 

= p'Q1 + Q. 
Consequently 

# =I<Vd 1 P'+ +a@) 

O 
= ( . + ~ Q ) + P / + / ( ~ +  2Q)t dqi 

and therefore the geodesics are 

where a and c are arbitrary constants. 

Note. If the surface is real, then ds2 must be real and positive; hence p' 
and q are conjugate variables, and 

P'Q' + C? = ~ Q ~ I +  Qo 

where Q, is the conjugate of 0 and Q,' is the conjugate of Q'. Each side of 
the equittion manifestly niust be bilinear in p' and q ; hence 

where a and e must be real, while b and c are conjugate. When a is not 
zero, linear transformations lead to 

p=prq + 1 ;  
writing 

p' = u e c ~ ,  p = ue-i~, 
we have 

ch2 = 4 (,u2 + 1) (dua .+ uadv2). 

* In  hie investigations on geodeeics that admit infinitesimal transformations, kfath. A m i  
t. xx (1882), pp. 357-454. 
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When a is zero, linear transformations lead to 

writing 

we have 

p = p l + q ;  

p' = u + iv, q  = u - iv, 

d 9  = 8u (du2 + dv2). 

Both surfaces are deformable into surfaces of revolution. 

122. Returning to the Liouville surfaces, which constitute the more 
general case, we have 

a = P, y = Q, p-*dP = dpl, &-Baq = dq> 

h p f r ~ f r  = 9 (p' + q') + h (p' - q'), 

The simplest instance of al1 arises when cc = 1, y = 1, so that p' = p ,  q' = q ; 
and then 

h = g ( p +  q)  + h ( p - q ) .  

The geodesics are now given by 

Conversely, when x is given in the form 

x = g ( p + q ) + h ( p - q ) ,  
we manifestly can have 

a = l ,  y=l, X P = - g ( p + q ) + h ( p - 9 1 ,  

as a set of coefficients satisfying al1 the conditions for the existence of a 
quadratic integral of the equation (f, A) = 0, and so leading to the deter- 
mination of general families of geodesics. But the question arises:-can 
there be more than one set of coefficients a, P, y satisfying al1 the conditions 
for the existence of a quadratic integral, so that there would be more than 
one set of general families of geodesics upon the surface ? To answer the 
question, we return to the conditions ' 

eliminating 6, we have 

This equation, in which 
X = g ( p + q )  + h ( p - q ) ,  

is to be satisfied by a = P, y = Q, where P is a function of p  alone, and Q 
a function of q  alone. 
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For the full discussion of this relation, reference should be made to the 
investigations by Kœnigs already (p. 123) quoted. Some simple examples 
may be adduced. 

1. Let 
x = ( p  + dm, 

where m is a constant. Then the equation becomes 

2m ( m  - 1) (a  - y)  + 3m (a' - y') ( p  + q )  + (a" - y'') ( p  -t q)' = 0, 

where a' is written for a, and y' for y9. Operating twice in succession with 

As a = y when p + q = 0, the last relation gives 

a = cop4 + 4c,p3 + 6 ~ 9 %  4~31) + c,, 

y = coq4 - 4clq3 + 6c2qZ - 4c3q + cd. 

When these are substituted in the last relation but one, we find 

and then the critical equation is satisfied without any further condition. 
Hence on a surface for which 

in other words, there are five distinct sets of coefficients for quadratic 
integrals of the equation (A A ) =  O for this surface, and there are five 
distinct general families of geodesics. Also 

in this case ; so that the quadratic integral is 

P+: - ~ P $ Q * + ~  +1 + Q+: = a, 
that is, i t  is the square of a linear integral; nevertheless, the five constants 
co, 4, c,, c8, c4 remain unconditioned. 

II. Let 
~ = P ( P + ~ ) - P ( P - ~ ) ,  

where p denotes the Weierstrass elliptic function. The critical equation is 
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it is satisfied by a = 1, y = 1. It is not difficult to verify that the equation 
is also satisfied by 

a=P(p), r = @ ( q ) ;  

and therefore, when regard is paid to the periodicity of A, the equation is also 
satisfied by 

a = p (2) + w,), y = p (q + mi), 

in other words, we can take 

The five constants c,, cl, c,, c,, c, are unconditioned ; they occur in the general 
integral equation, which therefore includes five distinct general families of 
geodesics. 

Ex, 1. Shew that, on a surface for which 

ds2 = { ( ~ - q ) - ~ + b }  dpdq, 
where b is a constant, 

a = c o + ~ l p + c & ,  y = c o + c ~ q + c ~ ~ ~ .  

Ex. 2. Shew that, on a surface for which 

we have 

Note. These examples are due to Kœnigs, who gives tables of the 
various cases. Al1 these surfaces, which admit five distinct families of 
geodesics, have their specific curvature constant (or zero). 

123. The peceding investigation has related to the use which can be 
made of a single integral of the subsidiay system of ( f ,  A) = 0 in the 
construction of the function c$ which determines the geodesic parallels and 
the geodesics. It is conceivable that two integrals of that subsidiary system, 
f and II, both involving 4, and +?, should be known and that they could 
coexist. In that case, they must satisfy not merely the relations 

as they will unconditionally because they are integrals of the subsidiary 
system, but the further relation 
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which is the condition of coexistence* off and k. We then should have 
three equations 

A + = l ,  f=a ,  k = b ,  
which coexist ; eliminating +, and +,, we obtain a relation involving two 
arb i t ra r~  constants which would be an equation of geodesic parallels. 

But can the combination occur ? We have seen that distinct quadratic 
integrals can exist for an appropriate surface; they will coexist if the 
Jacobian condition (f, k) = O is satisfied. 

Accordingly, consider the surface 

d 9 = 4 ~ d p d q = 4 { g ( p i - q ) + h ( p - q ) } d p d q .  
We know that there is a quadratic integral 

where 

Let another quadratic integral be 

k = a + 1 2 + 2 p + l + , + y ~ ,  
vhere a = P, y = Q, and 

2% + alX + 2 (Xp, + h,p) = 0, 

I f  f and k coexist, then ( A  k) = 0 ; that is, 

From the first two of these we have 

a = constant = a', y = constant = b'. 

The relations, which allow L to be an integral, are now 

a 
a'Xl + - (hp) = O, brX, + 

and therefore 
a9 

* We are not here dealing with the question of merely distinct integrale of (f, A)=(), but of 
coexistent integrals. When the integrals f=a,  k= b are distinct but not coexistent, the relations 

lead to one family of geodesic parallels, while the reiatione 

A,p=l, k= b 
lead to another family. 
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But hl, = X, ; hence * 

al=b',  =c, 
say. Thus we have 

a a 
c h  + - ( h p )  = O, C& + - (hp) = O ,  

and therefore 
aq 3~ 

so that 
X P = - ~ g ( p + q ) + c h ( p - ~ ) = c h p ,  

p = c@. 

The remaining conditions for the coexistence off and g are satisfied. But 

therefore the integrals, when they coexist, are not independent. 

It therefore follows that, if there are two independent quadratic integrals, 
they cannot be combined to give the equation of geodesics. Each of them, by 
itself, leads to a family of geodesics ; the two integrals determine two distinct 
families of geodesics. 

124. As another example, leading to a similar conclusion, consider the 
surface 

dS2 = 4hdpdq = 4f ( p  - q) dpdq. 

I t  possesses a linear integral 
g = 61 + $2. 

Can it possess a quadratic integral, independent of +,+,/h, and of g2 ? If so, 
let it be 

h = 4: + W+1+2 + y+;, 
where a = P ,  v =  Q, 

2cIX,+ &1X + 2 (ph, +ha,) = 0, 

2 y h  + y& + 2 (Ph1 + Xpl) = o. 
The condition of coexistence is (9, h) = O ; that is, the equation 

al+? + 2P1 4162 + ry,+2 + 2Pp+1+2 = 0, 
must be satisfied concurrently with +,+, = h. Hence 

From the first two, we have 

a = constant = a', y = constant = 6'. 

Now X, + & = O ; hence the earlier conditions give 

d=b l ,  =c, 
say. Then 

cX1+ ph, + xp, = O, 
that is, 

c h =  P b  + h&; 
and 

c h  + P X 1  + ABl = O, 
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that is, 
c h =  m,+ xp,; 

thus 
p X = c X $ k ,  

where Ic is a constant. Hence 

in other words, h is not independent of g and A+. 

It follows that the coexistent integrals are not independent. The in- 
dependent integrals determine distinct families of geodesics ; but they cannot 
be combined to determine one and the same family. 

EXAMPLES. 

1. Representing the surface of an anchor-ring by the equations 

obtain the equation of geodesics in the form 

G?+ = 
ahdr 

r (PL h2)t {a2 - (r - c)~}& ' 
where h is an arbitrary constant; and find an equation for determining the conjugate of 
any point on the geodesic. 

2. Discuss the geodesics on a hyperboloid of one sheet, not of revolution; and describe 
their course on the surface. I n  particular shew that, when the parameter 0 of integration 
(S 101) vanishes, the geodesics are the generators of the surface. 

3. On an ellipsoid taken w in 5 101, a geodesic through an umbilicus cuts the section 
of the surface through the real umbilici a t  an angle v ; shew that the arc-element at any 
point on the surface can be expressed in the form 

y2 ds2 = du2 + -_ dv2, s1n2 v 

where y is the distance'of the point from the urnbilical section, end 

Shew that an umbilical geodesic does not return upon itself ; and obtain equations for 
the lines of curvature through a point in the form 

tan Sv tan +!=constant, tan Sv cot +vl=constant, 

where v and v' are the angles a t  which the geodesics from the point to two umbilici, that 
are not diametrically opposite, cut the umbilical section. 
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g Obtain a first integral of the equation of geodesics on the quadric 

y2/a + z2/c = 43 
in the form 

P-*pdp+ ~ - * ~ d q = 0 ,  ~-*pzdp+ ~ - * ~ 2 d q = d s ,  
where 

(c-a)y2=4a(a+p)(a+q), (a-c)zz=4c(c+p)(c+p), 

P=P(~+P) (c+P) (~+P) ,  Q=q(a+q)(c+q)(e+q), 
8 being a constant of integration. 

Trace the geodesics. 

5. Shew that, through any point on a surface, there passes a t  least one geodesic such 
that four consecutive points of the curve lie on its circle of curvature; and obtain an 
equation for the direction in the form 

Pdp"+3Qdp%-Zq+3Rdpdpz+Sdp"=O, 
where P, Q, R, X are the derived magnitudw of the third order. 

6. Shew that an equation of geodesics on the surface 

&,- +- %2 
ap+bp a p + b q  

is given by 

6 {(a) + b'q) - 4  cos o - t, (ap + bq) - 4 sin constant, 
c=1 

where w is  the angle at which the geodesic cuts the curve p=constant, and t , ,  tz, t3,  
ai, az, as are constants such that 

7. Let the equation ÿ, A)=O have a cubic homogeneom integral of the subsidiary 
system in the form 

A+?+ B#$+ 3a+la@2+3ki#,~22=a, 
the equation A = O  being $i+a - h =O. Shew that 

A=P, B=Q, 

where P ia a function of p only and Q is a function of q only, which may not vanish 
together for a proper cubic integral. 

When neither P nor Q vanishes, so that new variables p' and q' can be taken in the 
form 

P- )+=dpf, Q- gdQ=dp: 
shew that 

a% ~ , p - ~ , - ~  X p 4 ~ 4 = -  x p ~ - B = - -  azu 
apr2 ) aplag , apf2 

where u aatisfies the equation 

When Q vanishes but not P, so that a new variable p' can be taken in the form 
P - hP=dp1, shew that 

w=8 
where 4 is d function of g only. Shew alm that - ~ 

av X P ~ =  - - av ~ ~ p - 4  = - 
%' apt 

where v satisfies the equation a av av a - av 
(b 3 +% (Q aT)=0- 
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8. The equation (f, A)=O has a quartic homogeneous integral of its subsidiary system 
in the form 

$?+4fl$i9+2+ 6y$i2+z2+4B'+1+2++z4=a, 
the equation A=0 being +,$,-A=O. Shew that, if 

so that u satisfies an equation of the fourth order. 

If the equation has a quartic integral of its subsidiary system in the form 

$14+4B+13$2 + 6 y + i ' 2 z +  = a ,  
then, denoting Azy by r, shew that 

where Q is a function of q only, u satisfying an equation of the third order. 

9. The equation (f, A) =O has a polynomial integral of i ts  subsidiary system ex- 
pressible in the form 

an+ln+c,+zn+a, -2$,n-2+r,-2+2n-2+... =constant, 
the equation A=O being $l+z=A. Shew that an cannot involve q, and that c, cannot 
involve p ; and obtain the relations satisfied by the remaining coefficients in the integral. 

10. Wheu the equation (,fi A) = O, where A=$, +, - A = O, h m  an integral of its sub- 
sidiary system in the form 

4 1  + P b  - a, 
~ + l  + $2 

where no one of the quantities a, p, y vanishes, shew that 

a-Py, fi=&, 

P being a function of p only, and Q a function of q only. Shew also that h and y satisfy 
the equations 

and obtain the geodesic parallels in the form 
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CHAPTER VI. 

THE present chapter consists of two connected parts, and relates to curves that have 
no particular organic relation to the surface but are specified by some assigned analytical 
definition. 

I n  the first part, the expressions for the various geometric magnitudes are obtained 
in connection with simidtaneous binary forms, associated a t  once with the curve and the 
surface ; and i t  proves possible to obtain some relations among the magnitudes. 

I n  the second part, there is a discussion of certain functions called differential in- 
variants (snmetimea differential parameters). They maintain their values unaltered 
through al1 changes in the superficial variables of reference, and so they represent 
geometrical magnitudes of the curve and the surface. Their expressions are constructed, 
and their geometrical significance is established. 

Various methods have been devised for these differential invariants ; and references to 
some of the authorities are given in $ 133. The method here adopted is based upon Lie's 
theory of continuous groups and, in the form adopted, was the subject of a memoir by the 
author which is quoted in $ 133. The reason for the adoption of this method, in spite of 
its laborious detail, which however becomes mechanically easier as soon as  its algorithm 
is recognised, and in spite of its initial non-geometrical aspect, lies in its compelling 
quality. Besides giving the expressions of the covariants, i t  indicates how many of them 
are independent, and indicates also a merely algebraical method of expressing aii the 
covariants in  tarms of an algebraically independent set ; consequently, when once the 
geometrical significance of al1 the covariants is established, we know how many of the 
geometrical magnitudes are independent and we have al1 the relations (up to any order 
of derivation) that  exist among the magnitudeu. 

General Curves on a Surface. 

125. We now proceed to consider general curves on the surface, rather 
than special curves as in preceding chapters, especially for the purpose 
of obtaining the analytical expressions for the more important geometrical 
magnitudes. As the actual values of these magnitudes for a given curve 
must be the same whatever system of superficial coordinates be adopted, it 
follows that the various expressions must have an invariantive character 
under al1 changes of the coordinates. Hence connected with the surface, 
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and with a curve or curves on the surface, there will exist covariants and 
invariants persisting through al1 transformations of the parameters; so it 
becomes necessary to construct al1 such invariantive functions and to establish 
their geometric significance. 

As before, we use p and q to denote the current parameters on the 
surface; the parametric curves are not assumed to be an orthogonal system. 
A curve on the surface can be selected either by some relation between p 
and q of the form 

4 (pl P) = 0, 

or by having p and q given, explicitly or implicitly, as functions of some 
parameter, say s, the arc of the curve measured from a fixed point. We shall 
use the latter rnethod first, and shall denote derivatives of p and q with 
regard to s by p', p", ..., q', q", . .. . 

I t  is convenient to recall some earlier results. Let 

I = Epl2 + 2 Fp'q' + Gq'z, 

A = Lp'a + 2Mp'q1 + Np> 

W = - Ep' + Fq', ' 1 Lp' + Uq', Mp' + Nq' 

D, = rpla + 2 r y q 1  + ~~~a +PI', 

D, = AP'~ + 2A1p'q' + A"q'2 + q", 

D = V(p'Da - q'DJ 

= V {p'q" - q'p" Ç Api3 + (26' - T)p'2q' + (A" - 2r') p'qJ2 - Yq"}, 
Va = E G  - Fa, 

U=EiV- 2PM+ GL; 

and write, temporarily, 
vw=c. 

Also we have 

so that 
(EP' + Fg') D, + (Pp' + Gp') Da = 0 ; 

hence 
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so that 
D D 

D , = ( E P ' + F ~ ' ) ~ ,  Dl=-(Q'+Gql)-' v ' 
and therefore 

Dz = ED1+ 2 FD1 D2 + GD:. 

Now I and A are a couple of simultaneous quadratic forms; and their 
asyzygetically complete concomitant system (that is to say, the aggregate of 
linearly independent quantities that are invariantive for linear transformations 
of pl and q') is constituted by the set 1, A, C, V2, T2, U. By a known result- 
which also can easily be verified directly-in the theory of binary forms, we 
bave 

C' = I A  17 - T"1" - V'A: 

so that (introducing the mean rneasure of curvature and the Gaussian 
measure) 

W h  IAH - ICIZ -A% 

Thus, in the case of nul lines (the importance of which is analytical), we 
have 

W = * i A .  

In the case of asymptotic lines, we have 

w = f i ~ * =  f ~ T I V .  

In  the case of al1 lines, otber than nul lines, we have 

V a = - A a + A H - K  

Again, we have 

where 

Also 

Y = (Q' + Fq3 D, + (Fp' + Gq') D, = O, 

= (Lp' + Mq') Dl + (Mp' + Nq') D, 

=pl3 (LI? + MA) + pr2q' (2LI" + 2MA' + MT + NA) 

+p'qta (LIY' + MA'' + 2MI" + 2NA') + q'9 (MI"' + NA") 

+ (Lp' + Mql)p" + (Mp' + Np3 q". 

dA - = 2 (Lp' + Mq') pu + 2 (Mp' + Nq') q" 
ds 

+ p"L, + p3q' (L, + 2 Ml) + p'q'= (2 M, + NI)  + q'sN2 ; 
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and therefore 

Say, on reduction and after introducing the derived magnitudes of the third 
order. We thus have 

DW=@, 

where ln now is a cubic form associated with the former system. 

126. The circular curvature and the torsion of the curve, the circular 
curvature and the torsion of the geodesic tangent to the curve, and the 
geodesic curvature of the curve, can be brought into analytical relation with 
the foregoing magnitudes. These geometrical quantities will be denoted by 
the following symbols, al1 the conventions (5s 103, 104) as to signs of magni- 
tudes and as to directions in which angles are measured remaining una1tered:- 

p = radius of circular curvature of the curve 

cr = radius of torsion of the curve 

pl= radius of circular curvature of the geodesic tangent, being the 
radius of circular curvature of the normal section of the surface 
through the tangent, 

o' =radius of torsion of the geodesic tangent, 

y =radius of geodesic curvature of the curve. 

Also we write 

P = inclination of the principal normal of the curve to the normal to the 
surface, 

8 = inclination of the tangent of the curve to the line of curvature for 
which l /a is the principal curvature of the surface. 

Now 
x" = xllpJa + 2x1,p1q' -k xBqra + xlpJ' + x2q1' 

= A X  + xlD,+x2D2, 

on substituting for xl,, xl,, x,, their values (5 34) in terms of X, xl, x2; and 
similarly 

y" = AY + ylDl + y2D,, 

2" = AZ + z,D, + za,. 

By Meunier's theorem, we have 

cos m 1 -- - , = A .  
P P 
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Let h, p, v be the direction-cosines of the binormal of the curve; then 

x = p (y'z" - z'y") 

= pA (Zy' - Yz') + pDl ( i z l  - z'y,) + pD, (y'zz - Z ' Y ~  

A 
= k (Fp' + Gq') - x2 (Ep' + J'q')) + pXD, 

on reduction ; and similarly for p and v. Hence 

so that 
1 sin P -=- = D. 
Y P 

To obtain the torsion of the curve, we  use the third Serret-Frenet formulæ 

where 1 = PX", rn = py", n = pz". Now 

hence 
d m  d h  dX 

C O S P - = ~ ~  ds - + Z X  ds ds - 

COS rn - 
u 

+ p 1 8 x X ,  + q'LhX,. 

But with the values of X ,  and X,, as given in 5 29, we have 

PA %Xi = { M  (Ep' + Fq') - L (Fp' + Gq')}, 

PA Zxxg = 7 { N  (Ep' + Fq') - M (Fp' + Gq')} ; 

and therefore 
dm COS a pA COS a 

COS=-=--  
d8 

+- vw=-- + W cos m. 
u v O 

Proceeding similarly from the equation 

cos = = X I  + Ym+Zn,  

and using the second Serret-Frenet formulae, we find 

. dm sinm pDvW- - s1n p -- 3 - - -- sin P 

ds u V W sin W. 
O- 

Thus, from these relations, we have 
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1 dm Further, this result shews that - + - is the same for al1 curves through 
Cr ds 

the point on the surface which have the same tangent as the given curve. 
1 Take the geodesic tangent ; for that particular curve, w is always zero, and , 
a 

is the torsion of the geodesic; hence 

1 dw 
a ds u' 

in agreement with the result of 5 106. 

&O, we have 
1 cos2 6' sin2 8 
P'=T 
1 1 1  
- - (B - --J cos B sin 8 1 
Q' - 

For the radius of spherical curvature, we have 

Again, from the equation 

COS tZ -- - A ,  
P 

we have 

and therefore 

127. We shall need the expressions for the various geometrical tnagni- 
tudes belonging to the curve when it is given by an equation between 
p and q, Say 

d (P, 9) = 0. 
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we obtained (§ 105) an expression for the geodesic curvature in Bonnet's 
form 

Later, i t  will appear that this relation can usefully be taken in the modified 
form 

- = 1 (a+; - zag,m, + c+~~):), 
y O" 

where 

Thus the geodesic curvature is expressible, Save for the factor - V@-" as an 
algebraic quantity, homogeneous in +, and +,, with coefficients that depend 
upon the curve and the surface. 

Further, we have 
1 
- = Lpf2  + 2Mp1q' + Nq'e 
P ' 

W = - Ep' + Pq', 1 p + M ,  Mpf + ïVq' 

P' tan a =.- . 
Y 

With these values of m and W, the torsion of the curve is given by 

while the torsion of the geodesic tangent is given by 

Thus various magnitudes belonging to the curve and its geodesic tangent 
can be expressed, Save for factors involving a power of V and a power of O, 
as algebraic quantities, homogeneous in +, and +,, with coefficients that 
depend upon the curve and the surface. 

13-2 
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Consider the specid forme for the parametrio curves; it ia convenient to record the 
values of al1 the magnitudea. 

For the c u v e  p = a, we have 

+1-1, &=O, d $ = ~ * d %  

so that 8 = - G& ; thus 

cos za N 1 sin w Vr" -- 
P - G '  - = = - -  Y P  GB 

--- l -  l (FLV- GM). 
u' GV 

For the curve q = b, we have 

so that 8= E* ; thus 

1 - - (hW- FL). 
d - E V  

Some Properties of Organic Cumes. 

128. One of the advantages of the preceding general forms is that, for 
particular curves such as those organically related to the surface, one or other 
of the covariants vanishes; the resulting relation frequently leads to geometric 
properties. We shall consider the lines in turn. 

Consider, first, the lines of curvature on the surface. We have 
W-O; 

thus the torsion of the geodesic tangent is zero. 

Again, the torsion of the line of curvature is given by 

hence, if a line of curvature is plane, its plane cuts the siirface at a constant 
angle-a theorem due to Joachimsthal. 

IRIS - LILLIAD - Université Lille 1 



1281 LINES OF CURVATURE 197 

Again, if the line of curvature be also a line of curvature on another 
surface so that i t  is the intersection of two surfaces, we have 

1 - dm 1 dm' - -=- 
u d s '  u d s '  

for the two surfaces. Then 
m1 - m = constant ; 

hence the two surfaces cut at  a constant angle-a theorem a190 due to 
Joachimsthal. 

Similarly, if two surfaces cut at  a constant angle, and if the curve of 
intersection be a line of curvature on one surface, it is a line of curvature on 
the other also. For, as 

m' - m = constant, 
we have 

dm' - dm 
ds ds ' 

and therefore 

so that 
W ' =  W. 

If then either W or W' vanishes, both vanish-which establishes the pro- 
position. 

Further, if a plane cut a surface at a constant angle, the curve of inter- 
section is a line of curvature on the surface. For 

owing to the constancy of the angle, and 

1 
- = O, 
u 

because the curve is plane ; hence 
W =  O, 

shewing that the curve is a line of curvature. 

We have seen that inversion with respect to any centre conserves lines 
of curvature (5 79); and we know that inversion changes a plane into a 
sphere. Hence we may expect some properties of spherical lines of curvature 
similar to the preceding properties of plane lines of curvature. 

Suppose, then, that a line of curvature lies on a sphere. Its geodesic 
tangent is a great circle, that is, a plane curve ; and therefore the torsion of 
the geodesic tangent is zero, so that, on the sphere, we have 
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As the curve is a line of curvature on the surface, 

hence 
m' - m = constant, 

or the sphere and the surface cut a t  a constant angle. 

Similarly, if a sphere cuts a surface at  a constant angle, the curve of 
intersection is a line of curvature on the surface. For 

that is, 

and therefore 

dm' d m  --- - 
ch ds ' 

1 1  ---- - w, 
O- Q 

W=O,  
proving the proposition. 

129. Consider, next, the asymptotic lines on the surface. For them, 

A = 0, 

that is, their directions are given by 

Lp'" 2 Mp'ql + Nq" = O. 

For one of the asymptotic lines, we have 

where 

Now 

Sim 

p. {2EW - 2FLM - ELN + GL2 + 2iT (EM - TL)}  = 1. 

Lp' + Mq', Mp' + Np' 

ilarly, for the other asymptotic line 

we have 
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Both results are in accord with the relation 

Now, because A = O for the asymptotic lines, we have 

COS P -- = 0. 
P 

Hence, when the lines are not linear generators, we have 

m-= 37r. 

In that case, we infer the following properties :- 

(i) the geodesic curvature of an asymptotic line is equal t o  .the ci iular  
curvature ; 

(ii) the torsion of an asymptotic line is equal to the torsion of its 
geodesic tangent ; 

(iii) the square of the torsion of an asymptotic line is equal to the 
specific curvature of the surface with its sign changed, so that 
the asymptotic lines on a surface of constant specific curvature 
have constant torsion ; 

(iv) the torsions of the two asymptotic lines a t  any point are equal and 
opposite. 

Next, consider a section of the surface made by any plane drawn through 
the tangent to an asymptotic line. At the point on this plane section, p' and 
q' are the same as for the asymptotic line; and so, there, we have 

Hence, for the plane section, we have 

COS Pl - = o. 
Pi 

This condition can be satisfied in two ways. 

We may have 
2 QT, p l =  a; 

so that then, for any plane section of the surface other than its section by its 
tangent plane, the point of contact is a point of inflexion. 

Or we may have 
al = a7, 

and then p, can be merely finite ; but zz, is equal to 4 T only at  the point and 
not everywhere along the plane curve, so that the quantity dw,/ds does not 
vanish. Now, in general, we have (5 126) 
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so that, for the asymptotic line, we have 

At  the point, 0 is the same for the asymptotic line and the plane section, 
being PP'~ + 3Qpt2q' + 3Rp'qf2 + Sq'a ; and for the plane section, me have 
1/u1 = O. Hence, for the plane section, 

so that 

Again, a t  the point, W is the same for the asymptotic line and the plane 
section. Hence for the asymptotic line 

and for the plane section 

so that 

- 1 &EL- 
ds a' 

Consequently 
2pi = 3p, 

a result due to Beltrami. 

130. Consider, next, geodesics on the surface. We then have 

No value of the ratio p'lq' is determined by these equations ; but we know 
($92) that any value of the ratio a t  the point determines uniquely a geodesic 
on a part of the surface enclosing no singularity. 

The direction of the geodesic through the point having maximum or 
minimum curvature is obtained by making 

where =pt/q', a maximum or minimum. The necessary condition is 

E p t F ,  F p + G  ]=O, 
L P + M ,  M ~ + N (  

that is, 
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so that the directions of the particular geodesics are those of the lines of 
curvature-a known result. Further, the torsion of a geodesic is always 
given by 

hence 

(i) at  a point of contact 
torsion is zero ; 

of a geodesic with a line of curvature, the 

(ii) if a geodesic be either a plane curve or a line of curvature, i t  is 
both ; 

both being known propositions (g 129, 66). Also, as A = I lp for geodesics, 
we have 

1 1 1 1  = (i - -) (- - -) 
P P P  

as before. Manifestly the geodesic of maximum torsion bisects the angle 
between the lines of curvature. 

As regards nul lines on a surface, being conjugate imaginaries on a 
real surface, their pr~pert~ies are entirely analytical. As I= 0 for nul lines, 
the relation 

Let r and r' be the analytical quantities corresponding to the radii of 
curvatiire of normal sections of the surface through the tangents to the 
nul lines, and let s and s' be the analytical quantities corresponding to the 
radii of torsion of the nul lines ; then 

and therefore 
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131. We have seen that a geodesic can be a line of curvature, and then 
the curve is plane. I t  is natural to inquire what analytical combinations of 
characteristics among lines of curvature, asymptotic lines, geodesics, and nul 
lines are possible. 

(i) When a curve is a line of curvature and asymptotic, then 

A=O, W=O, 

so that either I = O or K =  O. When we restrict ourselves t o  real curves on 
real surfaces, we must have K = O ; the surface is developable, and the curve 
is a generator. Without that restriction, we could have I =  O, so that the 
curve is a nul line. 

(ii) When a curve is a line of curvature and geodesic, then 
W=O, D=O, D,=O, D,=O. 

Thus w = O, so that 

the curve is plane, and i t  arises as a normal plane section of the surface. 

(iii) When a curve is a line of curvature and a nul line, then 
W=O, I = O ;  

and therefore A = O. We again have part; of case (i). 

jiv) When a curve is asymptotic and geodesic, then 

A=O, D=O. 
Thus 

the curve is a straight line, being a generator of a ruled surface. 

(v) When a curve is asymptotic and nul, then 

A=O, 1-0; 
hence W = O. We have case (iii). 

(vi) When a curve is geodesic and nul, then 
I=O,  D=O. 

Hence 
W = i A ,  m = O .  

The analytical quantities corresponding to the circular curvature and the 
torsion of the (imaginary) curve are connected by the relation 

(vii) When a curve is a line of curvature, a geodesic, and is asymptotic, 
then 

W=O, D = 0 ,  A=O, 

so that either I= O or K = O. We again have case (i). 
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Difei-ential Invariants. 

132. The preceding results shew that many of the quantities connected 
with a surface and with curves on the surface are expressed as functions 
connected with binary forms. But a set of parameters on a surface can be 
changed at will, while the quantities themselves are unaltered in value; 
hence the expression in terms of the new paraineters must be equal to the 
enrlier expression. I n  other words, we have an invariant or a covariant of 
the forms. 

Now i t  is important to know a;ll the invariants and covariants which eau 
occur, as well as their geometrical significance. It is equally important to 
know what relations may exist among them, for these will be relations 
arnong the geOmetrical quantities themselves. Moreover, i t  is desirable to 
know the tale of invariants of different kinds, such as those involving the 
fundamental magnitudes of the surface without reference to any assigned 
curve, and those involving the fundamental magnitudes of the first kind 
(but not the magnitudes of the second kind) and any assigned curve or 
curves on the surface. 

Differential invariants (or differential parameters) were introduced by 
Lamé for relations of space. The association with the theory of surfaces 
was first made* by Beltrami,, to whom many of the early results are due. 
Another method, based more definitely on the pure algebra of the theory 
of forms, was initiated by Christoffel?, and has led the way to many 
investigations:. 

Differential invariants of the type considered must belong to the general 
class of differential invariants which constitute Lie's generalisation of the 
theory of the concomitants of homogeneous forms. It proves possible to 
adapt Lie's methods, used in the theory of continuous groups, for the con- 
struction of the functions requireds; and so, as the process also indicates the 
amount of independence among the magnitudes constructed, we shall use i t  
for the immediate purpose. 

* In his memoir, Memr Acc. Bologna, 2'3' ser., t. viii (1869), pp. 549-590. Beltrami there 
givea alao a sketch of the early history of the anbject. An account of the theory, developed on 
the basis of Beltrami's researches, is given by Darboux in his tiiird volume, pp. 193-217. 

t Crelle, t. lxx (1869), pp. 46-70. 
$ Special mention shonld be made of a memoir bg R i c ~ i  and Levi-Civita, Math. A m . ,  t. liv 

(1901), pp. 125-201. 
$ I t  was first effected by iorawski for one class of the invariants; see his memoir, Acta 

Math., t. xvi (1893), pp. 1-64. The method was modified to some extent, and the construction 
of al1 classes of the invariants np to a certain order, was effected in a memoir by the author, 
Phil. Tram., (1903), pp. 329-402 ; and certain new reiations among the geometrical magnitudes 
of a surfaee are there given. 
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133. Some simple examples \vil1 indicate the kind of invariance which 
is to be characteristic. 

Let the parametric variables p and q be changed to other independent 
parametric variables p' and q'; and write 

so that J does not vanish. Let E', P', G' denote the fundamental magni- 
tudes of the first kind with the new variables; and similarly for the other 
magnitudes. Then 

Edp' + 2Fdpdq + GdqZ = ds2 
= E'dp'z + 2F'dp'dq' + G'dqI2, 

and therefore 
E = E'p,'2 + 2Ffp;q,' + Gfq,"6, 

s = E p ; ~ a  + (PX + q l ~ a l )  + ~)q;q; ,  
G = E'p12 + 2 B'paq; + G'q2. 

Hence va = v 2  J 2  ; 

that is, the function V"'2 is equal to the function V 2  Save for multiplication 
by a power of J. We cal1 Va a relative invariant. 

Again, we have 
1 1 

x = 7 ( ~ 1 ~ 9  - ~ 2 ~ 1 )  ; 
hence 

and similarly Y' = Y, Z' = Z. Quantities like X ,  Y, Z are absolute invariants, 
or (more simply) invariants. 

Further, 

= L'dpl2 + 2 M'dp'dq' + N'dq'2, 

so that the relations between L', M', N' and L, M, N are the same as those 
between E', B', G' and E, E: G. Similarly for the derived quantities of the 
third order ; we have 
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Z 
- (LN - M') = 
Va 

so that 
P = Pp113 + 3Q'p;2ql1 + 3R'p,'q? + S'qlls, 

Q = P ' P ~ ' ~ ~ :  + Qf (2p1'p2'ql' + pl'aq2') + R' (pz'q,'" +pi'qlfq;) + Sfq1'2qz', 
R = P'p,' p,'" + Q' (2pi'p;qz' +pz'2ql') + R' (~ l 'q , '~  + 2 p ~ q i ' q ~ )  + Sfq l f  pl2, 
S = Pj3,'3 + 3&P2q; + 3R'y;q? + Sfq,'3. 

Then 
LN - M a  = (L'N' - Mt') J2, 

E N  - 2FM + G L  = (E'N' - 2F'M' + G'L') J: 

1 1 
- ( E N  - 2FM + G L )  = - (E'N' - 2F'Mf+ G'L'), v2 Pz 

P, 2Q, R, O 

0, P ,  2Q, R 
&, 2R,  fi, 0 

0, Q, 2& S 

are invariants, being the two measures of curvature of the surface ; and 

1 

0, P ,  2Q, R 

O, Q, 2R, s ' 

also is an invariant of the surface. 

the la& being the discriminant of the cubic form ; thus 

But we also have covariants, as well as invariants. Let 

J4, = 

w = E d p  + FdqJ 

l I L d p  + Mdq, Mdp Fdp + + N d q  Gdq 1 y 

where W = O is the equation for the lines of curvature. From the foregoing 
relations, we have 

E d p  + Fdq = E$:dp' + F' (p;dq1+ qidp') + G'qi'dql 
= (E'dpf  + P1dq')pl' + (Fdp' + Gdq') qA 

and so for the other constituents in W ;  hence 

P ' , 2 Q 1 ,  R', O 

O, P', 2 Q f J  R' 
Q', 2R', S', O 

O ,  Q', 2~', S' 

1 W = - E'dpf + P'dq', P'dp' + G'dp' p,', y,' v 1 L1dp'+ M'dq', M'dp'+ Nrdqt 1 1 p i ,  q i  1 
= 

( Lfdp' + M d q  ', M'dpf + N'dp' 
= W f .  
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Thus W is an absolute covariant or (more sinîply) a covariant. The in- 
variantive character of W is to be expected; for the lines of curvature mixst 
be the same, whatever parameters be used. 

134. But there are other types of covariants. Take any curve 

+ ( p ,  q)  = constant ; 

in the new variables, let i t  be 

6 = +,'pi + +;ql, 
and therefore 

Consequently 

and therefore, if 

then A (4) is an absolute covariant, connected with the curve upon the surface. 
It is Beltrami's $rst differential parameter. 

As A(+) is an absolute covariant, so also is A (+ + A+) for al1 arbitrar~ 
constant values of A. Now 

Hence A($, $) is another absolute covariant, connected with two curves, 
+ = constant and = constant, upon the surface. Sornetimes i t  is called an 
intermediate covariant, sornetimes a mixed covariant. 
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Further, let 

so that (+, +) is another absolute covariant, intermediate to the two curves. 
But i t  is to be noted that the covariants so far obtained are not algebraically 
independent of one another ; they are connected by the relation 

Again, we have 

= Jq; (G'+; - Pt+;) + Jp; (Ft+,' -Et+;), 
so that 

Hence 

on reduction and substitution. Let 

that is, &(+) is an absolute covariant. I t  is Beltrami's secoud d i f e ~ e n t i a l  
parameter. 
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By repeating the operations, we have other covariants 

A  (A+>, A  (+> A+), @ (+, A$)), 
and so on, to any extent. Darboux proves * that any covariant, which involves 
two or more functions $), +, . . . and their derivatives, with E, F, G and 
their derivatives, can be obtained through the adequate repetition of the 
symbolical operations A  and @. 

135. To illustrate the use of these differential parameters and other 
covariants, let p' = + ( p ,  q), q'= + (p, q), be taken as new parametric 
variables; then any arc-element upon the surface can be expressed in the 
form 

ds2 = Zd+2 + zE?d+d+ + Qdp.  
Now 

A (4) = G/ 'vz, A ( 9 )  = Ë/ Va, A (+, 9 )  = - F/ 8: 
on substitution ; then 

Consequently the arc-element upon the surface becomes 

When the new parametric curves are nul lines for the surface, we must 
have 

A ( + ) = %  A($))=O; 
that is, the nul lines for a surface are obtajnable by taking two functionally 
independent solutions of the equation 

A  (x)=O. 
When the new parametric curves are an orthogonal isometric system for 

the surface, we must have 

A ( + > = A ( + ) ,  A ( + , + ) = O ;  
that is, an  orthogonal isometric system for a surface is obtainable by taking 
two functionally independent solutions of the equations 

A ( e ) = A ( S ) ,  A ( B , S ) = O ;  

and then the arc-element is given by 

Treatise, t. iii, pp. 203, 204. 
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The variables for the isometric system are connected with the variables for 
the nul lines by the customary relation (§ 60) ; for, writing x = 6 + z 3 ,  where 
6 and % are real, we have 

A (x) = A (8) - A (%) f 2iA (8, %), 

so that the equation for the variables of the nul lines leads to the equations 
for the variables of the isometric lines. 

Again, by direct substitution in the expression for the second differential 
parameter, we have 

A,(@)=O, A,(%)=O; 

thus both the parametric variables for an orthogonal isometric system satisfy 
the equation A, ( p )  = O. 

Ex. Taking the arc-element on a surface in the form 

ds2=(1 + p 2 )  ds+2pqdxdy+ (1 +pz) dya, 

prove that pparallel planes cut a minimal surface in isometric curves. 

Lastly for the purpose of immediate illustration, we can prove, by the 
method adopted in 5 134 for AB(+), that 

where O denotes (E+2 - 2F+& + G+~~)*, is an absolute covariant. In  order 
to obtain its geometrical signifkance, we specialise one of the new parametric 

curves, and we take + ( p ,  4) = 9. Then +, = 0, +, = 1, 8 = d ;  the absolute 
covariant becomes 

that is, VAE-2.  But (§ 127) this quantity is the geodesic curvature of the 
curve q = constant ; hence we again have Bonnet's result 

136. The results in $ 134 stir a larger question. We are challenged 
with the problem of finding and interpreting al1 the invariants upon a surface, 
and al1 the covariantive functions, which are connected with curves upon the 
surface and involve E, E: G, L, M, N as well as their derivatives. Merely for 
purposes of finite enumeration, we shall take derivatives only up to a finite 
order; and for purposes of precise illustration, we shall take only low orders 
of the derivatives of the various quantities. Moreover, we only want those 
covariants which are algebraically independent of one another; Our quest 
is not for an asyzygetically complete system. 

F. 14 
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As regards the quantities to be included, we shall take E', .F, Q and their 
derivatives of the first order ; in place of these derivatives, me shall take the 
six equivalent quantities l?, A, r', A', r", A" of § 34, as convenient for Our 
purpose, though not convenient if higher derivatives were required. The 
transformations of these quantities under the transformations of the variables 
involve the first and the second derivatives of p' and q' with respect to p 
and q. The laws of change for L, M, N are the same as those for E, F, G ;  
and therefore to the retained order of derivatives of p' and q', we take 
L, M, N and their derivatives of the first order. But the last are not inde- 
pendent of one another, owing to the Mainardi-Codazzi relations ; in place of 
them, we shall take the four derived magnitudes of the third order P, Q, R, S. 
We can take one curve, +=constant, on the surface; or we can take two 
independent curves, 4 = constant, and t,b = constant, on the surface ; i t  is no 
use taking three curves 4, 16; x = constants, for there is a functional relation 
between three functions of two variables. I n  the first instance, we shall 
take one curve, 4 = constant, for the present purpose. The quantity 4 itself 
will not occur; the relation 4 = +' contains no derivatives of p' and q', but it 
provides the means of obtaining relations between the derivatives of Q, and 4'. 
Clearly we shall have derivatives of + of the first and the second orders, 
as these involve the retained order of derivatives of p' and q'. Thus our 
invariantive functisns involve El F, G, r ,  A, I", A', Y, A ,  L, M, N, P, Q, R, S, 

for al1 quantities u, and for al1 values of m and n. 

Ultimately we require absolute invariants. These can be obtained as 
ratios of relative invariants ; as the analysis for relative invariants is simpler 
than for absolute invariants, we construct the relative invariants. If f be 
any such function, and if y be the same function under the new variables, 
our definition is that the relation 

f = JPf' 

must be satisfied for some integer value of the index p. 

137. To utilise this equation we have recourse to Lie's theory of con- 
tinuous groups, particularly to the fundamental propositiont that a continuous 
group is determined by the aggregate of infinitesimal transformations which 
it contains. Accordingly, we shall deal only with infinitesimal transformations 
of p and q which (in Lie's notation) are 

Thia double-suffix notation is oonvenient for the expression of derivatives of d l  orders, 
though i t  is leas convenient than the earlier notation for derivatives of the first order alone. 

+ Theorie der BerQhrungstransfownationen, vol. iii, p. 597; see also Campbell, Continuous 
groups, p. 80. 

IRIS - LILLIAD - Université Lille 1 



13'71 CONCOMITANTS 21 1 

where powers of dt above the first are neglected; and then, to secure al1 
kinds of relations between p', q', p, q, we take & and q to be completely 
arbitrary functions of p and p. As the quantities retained for our invariants 
involve derivatives of p' and q' up to the second order, we shall have deri- 
vatives of & and q of the first and second orders. 

As regards J ,  we have 

J = ( 1  + E l 0 4  (1 + ~Oldt) - EOldtl;l,dt 
= 1 + (60 + 701) dt, 

on neglecting dta. Also 
d f  f ' = f + - & d t ;  

hence our defining relation becomes 

which is to be satisfied for al1 functions f and q. We thus need the increment 
o f f ;  and this arises through the increments of the various quantities it 
contains. 

We have + = +', and therefore 

$1, =pl&' + ql'+ol' = (1 + tlO:,,dt) +Io' + %Odt+Ol', 
a a 

+m = {(l +t l0d t )  +>id ((1 + t"W ho' + qlodt+oij 

= (1 + 2Flodt) +zo' + 2710 dt 411' + ( f m  ho' + 7 ,  +O;) dt, 
on neglecting squares of dt, and so for other derivatives of +. Heme 

1 

$10' - $10 = - (t10+1O1 + q 1 0 + 0 1 1  dt. 
On the right-hand side we can replace 4,' and +,; by 9, and respectively, 
as we neglect squares of dt ; hence 

--- d+10 - _Io +m + ao +ois dt 
Similarly for the other derivatives ; the required tale of results is :- 
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To obtain the increments of the magnitudes of the surface, we proceed in 
the same way. We have 

E = E'p,'2 + 2F'pi'q; + G'qP 

= (1 + 2Elodt) E t +  2q,odtF', 

which a t  once gives dE/dt.  Similarly for al1 the magnitudes ; the required 
tale of results is :- 

To obtain the increments of l?, A, I", A', I'", A", we can proceed from the 
equations of the type 

gH = LX + xl0r + g o l ~  

in 5 34, noting that X ,  Y, Z are invariants, and using the preceding results. 
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138. The arguments that can occur in a covariantive function f are 
twenty-one in number, viz. +,,, +,, $,, +,; E, E: G, r, A, I", A', r", A"; 
L, M, If; P, Q, R, S. Denoting any one of them by u, we have 

du 
The value of - has been obtained for each argument; hence the critical 

dt 
equation becomes 

The equation must be satisfied for al1 arbitrary functions f and 7 whatever ; 
and therefore the coefficients of al1 the derivatives of E and of q on the two 
sides must be respectively equal to one another. We thus obtain ten 
equations in all, arising through the coefficients of ho, Eoi; vlo, 7 0 1 ;  tao, hl, Eoz; 
qlo, 911, vos. They are :- 

IRIS - LILLIAD - Université Lille 1 



214 THE CHARACTERISTIC 

coming from the coefficients of &O and 701 respectively; and 

af af O = - + +  - ........................... ar' 'Oa+,, (IV), 

coming from the remaining coefficients. This is the aggregate of equations 
arising out of the critical equations. 

Conversely, a function f, that satisfies these equations in connection with 
a suitable integer value of p, posaesses the property 

that is, i t  is a covariant. Hence what is required for our purpose is the 
aggregate of algebraically independent functions satisfying these ten equa- 
tions, the last eight of which are homogeneous and linear in the derivatives 
of f. 
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The theory of such equations, as well as the method of integration, is 
known*; so we proceed first to integrate them, and then apply the theory to 
indicate an independent aggregate. 

139. Consider the last six of the equations, viz. (111)-(VIII), by them- 
selves. Al1 the Poisson-Jacobi conditions of coexistence are satisfied 
identically. Hence they form a complete Jacobian system. The total number 
of variables, with respect to which derivatives off occur, is nine-viz., the 
three second derivatives of +, and the six quantities r, A, I", A', Fu, A". 
Thus the total number of algebraically independent integrals, involving 
some or other of these nine variables, is three; for the number of such 
integrals is the excess of the number of such variables over the number of 
eqiiations in a complete Jacobian system. Now it is easy to verify that the 
quantities 

satisfy the equations ; and it is manifest that they are algebraically inde- 
pendent of one another. Hence, writing 

we have a, b, c as the three integrals above indicated. 

If, then, we take f to be any function of u, b, c, and of E, F, G, 
L, M, N, P, Q, R, 8, then the six equations are satisfied; and the most 
general function of those arguments is the most general integral of those six 
equations. We therefore now limit f to be a function of those arguments; 
and we need take no further notice of the six equations. To avoid confusion, 
we denote the functionf, in its new form, by g. 

Let the equations (i), (ii), (1), (II) be written 

We easily find 

* See the author's Themy of Diferential Equations, vol. v, chap. Üi. 
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Then as f, now denoted by g, has become a function of a, b, c, $,,, +,,, 
E, F, G, L, M, N, P, &, R, S only, the four equations take the form 

These four equations satisfy the Poisson-Jacobi conditions of coexistence, and 
so they are a complete system. When we take 

equation (i) - equation (ii) = O 

with (1) and (II), we have a complete Jacobian system, each being linear and 
homogeneous in the derivatives off.  The arguments, with respect to which 
derivatives are taken, are fifteen in number; this complete Jacobian system 
contains three equations; and therefore, by the customary theorem, there are 
twelve algebraically independent solutions. 

Further, we take a new equation, given by 

equation (i) + equation (ii) = O, 

so that we have substituted two equivalent equations for (i) and (ii). The 
solutions to be obtained will be homogeneous in certain groups of the 
quantities ; let any one of them be 

of degree n, in E, F, G, 

............ 3 ... L , M , N ,  

............ n, ... P,Q,R,iS, 

............ n4 ... a,b,c ,  
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then this new equation is satisfied if 

2p= 2n1+ 271, +3n, +2n4+n,, 

so that n, + n, must be an even integer. 

140. Now the three equations 

(1), (II), equation (i) - equation (ii) = O, 

are the complete Jacobian system of the differential equations for the 
invariants and covariants of the simultaneous system of binary forms 

ZUa = (E, E: fa401, - 410)5, 

w2' = (4 M, N31+01, - +,DY, 

w," = (a, b, c$+o,, - +mY, 

w, = (P, Q, R, sa +ol, - + 1 0 ~  ; 

and we therefore require an algebraically complete (not an asyzygetically 
complete) set of concomitants of these binary forms, the set to contain twelve 
members. An algebraically complete set is not unique; i t  can be modified 
by exclusion and inclusion, provided it remains an algebraically complete 
set of twelve members. 

Such a set can be taken initially as follows :- 

~a = (E, F, G$+ol, - &Y, 

V ' = E G - F a ,  

w,' = (L, M ,  qM01,  - +10)2, 

Ta = LN - Ma, 

= (Eb - Fa) - (Ec - Ga) $ol+lo -t- (fi - Gb) 

W, = (P, Q, R ,  S3+01, - +ioY, 

8 = (E* - 3EFR + (EG + 2F2) Q - PGP) +,, 
- {El%'- (EG + 2P2) R + 3FGQ - G T }  +,,, 

g =  (ER - 2PQ + GP) 4 0 ,  - (ES - + GQ) $10, 
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In  terms of the members of this algebraically complete set, every other 
concomitant of the system can be expressed; and each member of the set 
is a relative invariant or covariant. 

To obtain the absolute invariants and covariants, we require the index p 
of each of the foregoing quantities, as given by 

p=nl+n,+n4++(3n,+n,) .  
We easily h d  

p = 2, for w,, V2, w;, Ta, WC, I ; 

p = 3, for J, J', w,, 6' ; 

p = 4, for 6, J" ; 

and therefore an algebraically complete set o f  absolute invariants and 
covariants, eleven in number, zs given by 

As already indicated, the system can be modified by the excliision of 
sorne of the retained concomitants and the subsequent inclusion of some of 
the omitted concomitants, the same in number, and independent of one 
another when the set is restored to completeness. 

Some instances of concomitants, omitted from the system and expressible 
in terms of its members, can easily be given ; they will be deferred until the 
geometrical significance of the retained concomitants has been established, so 
that their geometrical significance can be given simultaneously. 

141. Two directions a t  any point of a curve on a surface are specially 
determined by the curve, viz. the tangent to the curve, and the direction 
which lies in the tangent plane to the surface and is normal to the curve. 

- 

dp dq These two directions may be denoted by - - ; and b- 9 - respectively. 
cis ' ds dn' dn '  

Now we have, for the tangent, 

together with the universal equation 

IRIS - LILLIAD - Université Lille 1 



1411 GEOMETRICAL INTERPRETATION 

as in $ 26, 105, we take 

Again, for the direction of the normal in the tangent plane, we have 

and, as dn is an element of arc on the surface, we have 

Before proceeding to the identification of the invariants, we obtain the 
simple interpretation of the Beltrami operators A and @. We have 

Next, we have 

so that, writing 

we have 

where w,/Va is Beltrami's first differential parameter A (+). Also, for any 
other quantity +-such as, for instance, occurs in the equation of a curve, 
+ = constant-we have 
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d s  and dn in the differentiation being determined by the curve + = constant. 
Hence (except as to the invariant factor - B) Beltrami's invariant (4, $) is 

d+ 9 and (except as to the factor B) his invariant A (9, +) is and 
d s '  d n  ' 
repetitions of the Beltrami differential operators @ and A are, effectively, 

d d 
repetitions of the operators and - Moreover, we have ds dn' 

Hence we infer at  once the theorem (5 134) of Darboux, that any covariant, 
which involves two or more functions +, +, ... and their derivatives, with 
E, E: G and their derivatives, can be obtained through the adequate 
repetition of the symbolical operations A and a. 

142. Coming more directly to the significance of the invariants in the 
retained complete aggregate, we shall denote the varioiis geometrical magni- 
tudes by the same symbols as in 5 126. We already have 

and therefore 
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Next, 

the Gaussian measure of curvature. Further, 

J = (EM - PL) 6: - (EN - GL) $ol$lo + (PN - G M )  $1: 

Hence, using the symbol D of 5 125, we have 

+ $204)": - 2$,1+0i+iO + +oa+IO = 0: 
and therefore 

sD 
W22- + w / = o .  v 

Consequently, 
w /  -=-  w# 
va D L  V S  

1 
where - is the geodesic curvature*. 

9' 
Next, we have 

d a p a  a q a  =-- +--  & ds ap ds aq 

* See $105. 
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BO, operating on the equation 
wa B2=- v2 ' 

we have 

2 - - -- J', 
T'" 

on reduction. Consequently 

Similarly, we have 
d dp a dq a +--  dn=dn& dnaq' 

so, operating on the equation 

B=!5 va' 
we 6nd 

on reduction*. Hence, substituting for w, and WC, we have 

-- va- &-- Y' 
It is easy also to verify, as regards Beltrami's second differential parameter, 
that 

In order to interpret w,, we must return to the initial definition ($40) 
of the derived magnitudes of the third order whereby they were connected 
with the variation of the curvature of the normal section of the surface 
through the tangent to the curve, that is, with the variation of the circular 

* I n  making the reduotiona, here and elsewhere, the algebra Gan be greatly abbreviated 
by using the known property of covariants that they are uniquely determined by their '' lesding 
terms." Thus in the foregoing reduction, i t  is sufficient to take account of the highest power of 
&loi> when once the quantity I (which is the intermediate invariant of wz and w f i  hm been 
segregated. 
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curvature of the tangent geodesic. Accordingly, let arc-variation along the 
d 

geodesic be denoted by ; if a quantity u does not relate to contact, then dt 

because the curve and the geodesic touch; if u relates to contact of any 
order, then 

d u  du --- 
d s  dt 

is usually not zero because usually there is a non-vanishing geodesic con- 
tingence. Examples will occur later. Meanwhile, we have 

- 8  =w, 'W,; 
and therefore 

Next, for H, which denotes the ineasure of mean curvature of the 
surface, we have ($ 42) 

aH aH 
' V2-=GP-2FQ+ER, V2-=G&-WR+ES. 

ap 
Hence 

aq 

d~ aH aH &-= 
ds $01- - $10 - 

ap aq 

and therefore 

and therefore 

Proceeding as before, we have 
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on reduction, so that we have no unidentified covariant on the right-hand 
side. But, substituting the values of dl the covariants as known, we have 

an illustration of the foregoing statement that arc-variation of a quantity, 
connected with the contact between a curve and its geodesic tangent, is 
not the same along the curve as along the geodesic tangent. 

The result could also have been derived from the relation 

given in 5 125 ; for when the values of A, Cl, D, W are inserted, we have 

Similarly, we have 

Substituting the values of the covariants already known, we find 

This result completes the establishment of the significance of the covariants 
in the algebraically complete set as retained. 

The following is the aggregate of the results which have been obtained :- 
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d 1 
W 3 , ~ 8 -  - =B8 - - -- 
Vs dt (O {ds (p') y2d} ' 

J" d 1 BadB - = B 3 + ) + 2 - - .  V 4  d n p  d d s  

143. To illustrate the theorem that, to the order of derivation included, 
this system is algebraically complete, some examples will be taken. 

The quantity EN - 2FM + GL is the intermediate invariant of w, and 
w,', and its index is 2 ; so we write 

1 H = - ( E N - 2 F M +  GL), va 
H being the mean curvature as usual; thus H is an absolute invariant. 
Now 

Ja = (EN - 2FM + QL) w,w,' - Tawp - Vsw2 ; 
and therefore, when the values of the quantities are substituted from the 
above set, and a factor B4V6 is removed, 

1 H  -- 1  

da - 7 - K-- pi 
shewing that H  is expressible in terms of the retained quantities. A more 
familiar form of the relation is 

The quantity Lc - 2Mb + l'fa is the intermediate invariant of w,,' and WC, 
with index 2 ; thus (Lc - 2Mb + Na) V-' is an absolute invariant. Now 

2 2  W, (Lc - 2Mb + Na) = Iw,' + Hvaw/ - - JJ' - - V2wzu,',", 
Wa Wa 

and H is expressible as above; consequently the new absolute invariant is 
expressible in terms of members of the system. When the values of the 
invariants are inserted, we find 

The quantity ac - b9 is the one invariant of w,", regarded as a binay 
form, and its index is 2  ; hence (ac - ba) V4 is an absolute invariant of the 
system. Now 

J'" IW~W/ - ( a ~  - b9) w? - V~W,": 
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so that (ac - b2)V-a is expressible in terms of members of the system. When 
their values are inserted, we find 

1 dB a B dB 
- (ac - b3) = - (z) - - - 
Va y dn' 

and H is expressible in terms of members of the system. When the values 
of the invariants are inserted, we find 

There is an invariant intermediate to w,, wa, w,", viz., 

The cubic w8 has the quadricovariant H,, where 

Ha = (PR - &") 40; - ( P S  - QR) $01 +lO + (QS - RZ) 412, 
and its index is 4. Now 

Ta = waw38' - V2w: - w;H3, 
and therefore 

EJ PJ G 
L, M, N 
a, b, c 

Similarly, it has a cubicovariant CD,, where 

CD, = ( P a s  - 3PQR + 2&0 $0: - (3PQS - 6PRa + 3Q2R) +,l2+1o 

+ (- 3PRS + 6Q2S - 3QR2) c#I,,+,~ - (PS2 - 3QRS + ZR3) c$103, 

and its index is 6. Now 
w,Sip, = w,w:S - 3w2w8ô'Jr' + 2'Fraw2J" - 2 T s ;  

insertion of the values of the known covariants leads to the value of CD,. 

J 

144. These examples indicate a way of obtaining the value of a covariant 
of the system. I t  is sufficient to express the covariant in terms of the 
fundamental members of the algebraically complete system and then to 
substitute, in the expression, the values of those members which occur. 

and its index is 3. It must be expressible in  terms of members of the 
system; in fact, 

IJ 2 1 2 V%w,'J' - - V a J '  - P J w / ,  
W2 Wa 

But the process can be used, in the same way, for another purpose. I t  
may happen that geometrical magnitudes exist, which lie within the order 
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of derivation retained and which do not occur in the set of those which have 
occurred. They necessarily are covariants of the system, and consequently 
are expressible in terms of members of the system; thus they can be 
evaluated in terms of the set of magnitudes retained. Hence we are led 
to relations among the geometrical magnitudes. 

AH an example, consider the Gaussian measure of curvature K. Both 
the quantities dK/ds  and dK/dn lie within the order of derivation retained. 
Now 

so that (5 42) 

Also 

& dK w,- V3 - = {SEL - R (2EM + FL) + Q (EN + 2FM) - PFA3 # J ~ ~  

dn 
- {SFL - R (2FM + CL) + Q (FN + 2GM) - PGN] 

When we express these covariants in terms of the members of the complete 
system, we have 

Substituting the values of the covariants which are known, this gives 

the relation required. Other forms can be given to it. We have 

and therefore 

that  is. 
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dK Proceeding similarly with the covariantive expression for w)va- 
dn ' 

we find 
d K  1 dH -- 2 d 1  2 d 1  + H - -  --- ( ,Ji&J+aa~(~) dn  p' dn 

4 dB 2 dH 2 8  dB -- + - 
B ~ ~ Q I ~ S  a ds ~d d s 3  

and this can similarly be changed to a relation 

And so for other instances *. 
145. The preceding investigation is concerned with invariants which 

arise in connection with a single curve upon the surface. It was pointed out 
( 5  136) that we might consider two, but that we could not consider profitably 
more than two, independent curves upon the surface. The method adopted 
for invariants connected with a single curve is applicable to the construction 
of invariants connected with two curves 

+ = constant, $r = constant. 
We shall develop the results only for the simplest case-when the order of 
differentiation among the equations of transformation is only the first, instead 
of the second as in the preceding analysis. 

I n  that simple case, the arguments which can occur in an invariant f are 
E, F, G, L, M, N, +,,, +,,, +,,, +,,. Every such invariant f satisfies four partial 
equations constructed in the same way as the ten equations in 5 137; the 
four equations are 

These equations satis@ the Poisson-Jacobi conditions of coexistence. Taking 
the equation, which arises from the difference of the first two equations, and 
associating i t  with the last two, the set of three equations thus constituted 
is a complete Jacobian system. The number of variables, with respect to 
which differentiation occurs, is ten, being the total of the arguments which 
can occur in f ;  hence the number of independent solutions is seven, being 
the excess of the number of variables over the number of equations in the 
complete Jacobian system. Every solution of the equations, that is, eveq 

* Several are given in the memoir by the author already ($ 132) oited. 
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covariant within the order of differentiation of the relations of transformation, 
can be expressed in terms of those seven solutions. Moreover, if a solution - 

is homogeneous and 
of order ml in E,  F, G, 
......... m, ... L, M, N, 

......... m4 ... qPl0, %/rO1, 

the equation, which arises by taking the sum of the first two equations, is 
satisfied if 

p =ml+ m, + 4 (m,+m,). 
Now the four equations shew that every solution is a concomitant of the 

system of binary forrns 
(E> F> Ga+Dl J - $ID>.> 

(4 M, W l + O l 3  - + l O Y ,  

($10, #01$&, - +IO)> 
or, what is the same thing in an algebraically complete system, is a con- 
comitant of the system of binary forms 

(E, y ,  cwo1 - qlOy, 
(L, M, NE+01> - +10)2, 

($10, dOI$+Ol> - +IO). 
We shall take them as concomitants of the first of these two systems. 

An algebraically complete set of solutions (each one of which is a relative 
covariant) is made up of the set : 

= (E, F, Gjl+al, - 
u' = (4 M, N$$,, - 
Va = EG- Fa, 

T a = L N - M 2 ,  

w = (#m, +01g+01, - +,O>, 

For these relative covariants, we find 
p=l ,  for w, 
p = 2, for u, u', P, T2, V, 
p  = 3, for J: 

and therefore an algebraically complete set of absolute covariants within the 
order retained is made up of the six functions 

w u  u ' T a V  J 
- v, j%' p* 7,  
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146. The symbols already used to denote the geometrical quantities 
related to the curve 4 =constant, will be retained. An elementary arc along 
the curve +=constant will be denoted by ds', and one in the surface normal 
to that curve will be denoted by dn'. We mi t e  

d+ . BI=- 
dn' ' 

and take 

p"= radius of circular curvature of the geodesic tangent to the curve 
+ =constant, 

ufl = radius of torsion of that geodesic tangent, 

= angle between the two Cumes, 4, + = constants. 

Also other simple covariantive forms occur, within the order of variation 
retained ; among them, we note the following :- 

v = (E,  F, GWOl - +,O)", 

vl= (L, M, flj.&n> - +,O)", 

h = L+oi+ol- M(+oi+io + $io+m) + f l+1o+lop 

A = (EM- FL) +,+al - 5 ( E N -  GL) (+oiI,blo + +io+ol) + ( F N -  GM)  +lo+io. 

Each of these must, of course, be ex~ressible in terms of the members of the 
algebraically complete set already retained. 

In proceeding to the geometrical interpretation of the foregoing covariants, 
we shall as far as possible use the earlier results applying in the case of a 
single curve. 

As before, we have 

dq = f (E+,, - FI,~,,). dp ' (- P+Ol+ G+lO), &, 
dn' - vv8 Vv- 

Then (5 142) we have 

1 1 1  -=(i-7)(;-L); u'= 
P P P  
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and similarly for the curve + =constant, we have 

Also 

hence 

Similarly 

hence 

I t  follows at  once that 

v 
- = B a  cos X. v 

W - y = - BB' sin X. 

giving the expression for v in terms of the menibers of the algebraically 
complete aggregate. 

Again, we have 
u2v'= d V a -  2wJV - w2u'P + uw2(EN- 2FM+ GL);  

when the values of the various quantities are inserted, the equation 

Sirnilarly, we have 

u?J= J V 2 + V w  {2Vau' -u  (EN-  2FM+ GL)} - V2JuP; 
when the values of the various quantities are inserted, the equation reduces to 

Both these results can be verified, by using Euler's theorem on the curvature 
of a normal section and the equation for the torsion of a geodesic given 
in 5 107. Moreover, we at once have 

cos X sinX cos X sin X ----- - 
P" d' p' 

+ T ,  
(r 
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Next, we have 
uh=uJV - Jw, 

and therefore 
-- vz 

We also have 
vh = v'V + Jw, 

leadiw to 

the two expressions for h being equal. 

Also 
UA= J V +  VBwur-+wu(EN-2FM+GL), 

and therefore 

We also have 
v ~ = b V -  Vawv'+iwv(EN-2FM+GE), 

and therefore 

the two expressions for A being equal. 

Some of the corresponding results relating to differential invariants 
within the next order of derivation of the equations of transformation of the 
independent variables, which lead to relations between the geometrical 
magnitudes involved, are given in the author's memoir cited (5 132). And 
further results are derivable, in this field of research, by the use of the same 
method. 

EX AMPLES. 

1. Shew that, if two systeins of orthogonal curves have constant geodesic curvatures, 
they are isometric curves. 

2. With the notation adopted in 5 146, for the circular curvature and the torsion of 
two curves $=constant and +=constant, and for other magnitudes connected with the 
cuwes, prove that 

3. The orthogonal trajectories of the curves 4 (p, q) = c  are drawn ; denoting by 117 
the geodesic curvature of one of these trajectories, prove that 

y'= -B3v3, 
where J' ie the covariant of $ 142. Interpret this result for the case when the curves 
$ = e are geodesic parallels. 
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4. Prove that 

where Y is any absolute invariant of the surface, 117 is the geodesic curvature of the 
orthogonal trajectory of the curves $ =constant, and the other quantities in the equation 
have the customary significance. Prove the result also when Y = B. 

5. Shew that, if 'Y denotes any quantity (such as H or R), which is related to any 
position on the surface and the expression of which is independent of any direction 
through that position, 

d 2 Y  day l d y  ---=- 
ds2 dt2 y&'  

where ds, dn, dd are elementary arcs, along any curve, normal to the curve, and along its 
geodesic tangent, respectively. 

6. With the notation of 142, whereby d/ds denotes arc-variation along any curve, 
+=constant, while d/dt denotes arc-variation along its geodesic, shew that 

where the quantities p', u', y have the customary significance in connection with the curve 
and the surface. Shew also that 

(L,  M, LI'~, ~ 2 ) ~  = V4Bz E - - ; ( 3 
(E, F, a%', vv,')a= V4B2 -, - K ; c ) 

P. (EN- FL, EN- QL, FX- G M ~ % ,  4 2 =  - Vb d ,  

(Lb-Ma, &-Xa, M C - N ~ ~ + ~ ~ , - + ~ ~ = V ~ ( ~ ~ + ~  ,dB 7 ; 
(P, Q, R, SI%, v#=-V6 

(LQ-MP, 2LR-YQ-NP, LS+MR-2NQ, M ~ ~ - N R ~ ~ O I , - $ I O ) ~  

Evaluate also the following covariantive magnitudes :- 

{L2S - 3LMR + (LN+2M2) Q - MNP} +,, - {LMS - (LN+ 261') R + 3MgQ - N2P} $,O ; 

(P, Q, R, Si[%', %')' ; 

(UR-ZbQ+cP) $o,-(aS- 2bR+cQ)$i0 ; 
and the discriminant (5 133) of the cubic form (P, Q, A, ~I[$OI, - 
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CHAPTER VII. 

THE present chapter deals with three methods used for the comparison of surfaces. 

The process of conforma1 representation had its origin in Lagrange's theory of maps of 
surfaces of revoliition. It was generalised by Gauw, and now ha8 become an important 
feature in  the theory of functions of a complex variable*. 

The theory of geodesic representation of surfacas, whereby geodesics are to  be 
conserved, proves to be of somewhat limited range. It was initiated hy Beltrami, and 
hm been developedt by Dini and Darboux. 

For spherical representation of surfaces and for the use of tangential coordinatea, 
special reference should be made to Darboux's Treatise (Book ii, ch. vii, in vol. i ;  and 
Book viii, ch. viii, in VOL iv) and to Bianchi (ch. v, in  vol. i). 

147. We now pass from the discussion of curves on surfaces to the more 
direct consideration of surfaces themselves; and we begin with the repre- 
sentation of surfaces on one another. This comparison of surfaces is important 
alike in practice and in theory. In practice, i t  includes the whole matter of 
maps, on whatever principle they are constructed. In  theory, it admits the 
derivation of classes of properties of a surface, by assigning one or other of 
the sitnpler surfaces on which a surface can be represented under postulated 
laws and conditions. 

In  al1 the representations, that will be considered, a surface and its 
representation correspond point by point ; and even of such representations, 
only some will be discussed. Such theories as those of inversion and polar 
reciprocation belong mainly to the domain of non-differential geometry, and 
will find no place here. We shall liinit the immediate discussion to three 
kinds of representation, called conformal, spherical, and geodesic respectively. 

In conforma1 representation, the aim is to secure the detailed arrangement 
of two surfaces so that, when they are compared, there shall be the greatest 
amount of sirnilarity possible. Thus two spherical surfaces can be coordinated 
so that the only element lacking from complete similarity is the scale ; and 
even the scale is uniform. But a spherical surface and a plane cannot be 
coordinated to that degree of similarity. 

For referenoes, see the chapters on conforma1 representation in the suthor's T h e q  
of funetiona. 

t References are given in 154, 156. 
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In  the geodesic representation of one surface upon another, the purpose 
is to relate the surfaces in such a way that geodesics on one of thern always 
correspond to geodesics upon the other. Thus if a surface can be geodesically 
represented upon a plane, its geodesics are derived from straight lines by the 
equation of relation. But, as will be seen, it is not always possible to make 
any two surfaces geodesic representatives of one another. 

Of spherical representation, we have already had one particular instance 
in the spherical indicatrix connected with a skew curve. General attention 
is concentrated more upon the t<angent plane a t  its point of contact than 
upon the point itself; for we draw, through the centre of a sphere of radius 
unity, a line parallel to the normal, and we take the point, where this line 
cuts the spherical surface, as the image of the point on the surface. Thus 
any configuration on the original surface will have its representation in a 
configuration on the spherical surface ; and the question has to be solved as 
to how far a spherical image can be substituted for the original configuration 
or can determine it. It will appear (5 159), however, that developable 
surfaces do not admit of spherical representation. 

There is still one other correspondence of surfaces of the utmost 
importance; it occurs when a surface is deformed in any manner that 
excludes stretching or tearing. The theory of deformation is reserved for 
a separate chapter. 

148. In general, i t  is impossible to depict two surfaces so that al1 the arcs 
upon one of them correspond exactly to al1 the arcs upon the other; the 
relation would require that, subject to a uniform scale of change, the one 
surface would be deformable into the other. But it is possible to bring them 
into relation with one another so that al1 the infinitesimal arcs at a point on 
one shall correspond to al1 the infinitesimal arcs at  a point on the other, the 
magdication between the arcs being the same for al1 of them at the two 
points. The magnification will, however, Vary from point to point; so the 
similarity between the surfaces exists between infinitesimal areas, and is not 
uniform over the whole surface. It follows from elementary geometry that, 
because of the uniform magnification at a point, the angle between two 
corresponding infinitesimal arcs is unaltered; in other words, the indicated 
relation conserves angles. This relation is called a conforma1 representation. 
It is essential to the constitution of a geographical map, made as perfect as 
possible ; it secures similarity in detail, even when similarity a t  large cannot 
be obtained. 

When two surfaces are conformally related to one another, and one of 
them is conformally related to a third, the other also is conformally related 
to that third surface, because at corresponding points the three surfaces are 
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similar to one another. Hence, in order to bring any two surfaces into 
conforma1 relation with one another, i t  is sufficient to have each of them 
coiiformally related to some standard surface ; and the simpler this standard 
surface is, the simpler the equations for conformation. We therefore take a 
plane as the standard surface ; and so Our problem is the construction of an 
equation (or of equations) which shall represent a surface conformally on 
a plane. 

Accordingly, a t  a point P take any arc ch on the given surface; and in 
the plane at a point Pr, made arbitrarily to correspond with P ,  take any arc 
ds'. Then if 

mds = ds', 

where the magnification m is some function of position, not involving the 
differential elements ds or ds' in any way, and if this relation holds for al1 
arcs a t  P and Pr, we secure detailed similarity a t  the points between the 
surface and the plane. It is a differential equation ; its integral gives a 
conforming relation; and we have to see what elements of generality it 
contains that may be a t  Our disposal. Denoting the point in the plane by 
x and y, the equation is 

I n  the first place, i t  is clear that the lines x = a', y = b', give a double set of 
orthogonal isometric lines ; and me therefore, in effect, have to determine the 
orthogonal isometric lines of the surface as a practically equivalent problem. 

Let u =a, v = b be nul lines through P ,  so that (5 60j 

where p and po are free from differential elements ; then u and v are conjugate 
complex variables ; and p and p, are conjugate magnitudes, which may be 
entirely real in special cases. Also, let 

then Our differential equation has the form 

where h is a real positive quantity. 

When du vanishes, dzdz, also vanishes, that is, either dz vanishes or 
dz,, vanishes. Suppose that du and dz vanish together ; then .u and z are 
constant together. But u is a function of two variables p and q, and z is a 
function of two variables x and y;  hence u and s c m  be constant together, 
only if some functional relation of the form 

u =f ( 4  
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exists, f denoting any unrestricted function of its argument. Let g(zo) be 
the conjugate off  ( 2 ) ;  then 

v = g (zd, 
which now is a consequence of the relation between the complex variables 
u and z. 

Had we taken dzo instead of dz as the magnitude vanishing with du, we 
should have had a relation 

u = J' ( 4 ,  

with a conjugate consequence v = G (2). The effect is only to change the 
sign of y, or to take a reflexion of the configuration in the axis of x-a process 
that does not affect conformation ; and so we can regard the first relation as 
covering both cases. 

Moreover, as regards the result, no limitation has been imposed on the 
function 3 Hence we have the theorem :- 

A surface is conformally represented on a plane by t h  relation 

whre  f is any function whatever, and u is a parameter of nul lines of 
the surface. 

And we infer that every conforma1 representation of the surface must be 
derived through some appropriate form of the functionf. Also, we have 

where g is the conjugate of f ;  hence 

du du = f' (x + iy) g' (x - iy) (d& + dya), 
so that 

1 PPo I - = E  f (~+@/)g'(~-iy), 
m4 

giving the magnitude m. amociated with the functionf. 

Different functions f give different conforma1 representations of the 
surface on the plane. Al1 these representations on the plane are conformal 
with one another ; that is, different functions f lead to conforma1 representa- 
tions of the plane upon itself. 

In the above result, the function f is generaL It may be made special 
by the assignment of appropriate conditions or requirements, additional to 
the conformal quality of the representation. 

Ex. Consider the surface 
d.9 = (O!@ + e%Zpa), 

manifestly deformable into a surface of revolution, p being a constant. The Gaussian 
measure of curvature is -p -q  so that the surface is a pseudo-sphare (5 54). 
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The nul lines are given by 
dp+iePdq=O ; 

that is, we may take 
e-P+iq=f (x+iy), 

for any form of the function f ;  and then we have a copy of the surface on the plane. 

The general equation of geodesics on the surface is easily found, by the method of 
§$ 115, 116, to be 

e-2P+(q-a)2=b, 

where a and b are arbitrmy constants. 

If we h k e  f (x+iy)=x+iy, then the figures in the map wrresponding to geodesics are 

x2+ (y-a)a=b, 

that is, circles having thoir centres on the axis of y. 

149. The simplest class of cases, in its analytical aspect, arises when the 
surface to be represented conformally on a plane is itself a plane. When w 
is the complex variable of any point in the plane to be represented, the 
conforming relation is 

w =f (2) ; 
or, as f is any function of its argument, the conforming relation can be taken 
to be 

F (w, z) = O, 

where F is a quite general function of its two arguments. 

Round this equation, and specially connected with the particularisation 
of the function F, so as to satisfy one or other of special conditions, there has 
grown a vast body of investigations belonging to the theory of functions of 
complex variables; and a multitude of functional properties find their 
elucidation throiigh the conformal representation of the two planes of w and 
of z. As such investigations really belong to the theory of functions and 
only secondarily to differential geometry, an account of them must be sought 
elsewhere*. 

150. An extensive class of important cases, which really were the base 
of Lagrange's investigations into maps and map-making, is provided by 
surfaces of revolution. 

Let r denote the distance of a point on the surface from the axis of 
revolution, z its height above 'some plane perpendicular to the axis of 
revolution, + the longitude (relative to some fixed meridian) of the meridian 
through the point, and da the element of arc of the meridian a t  the point. 
We have 

d d  = dra + dz2, 

An aacount of the functional theory of conformal representation of planes will be found in 
the anthor's Theory of functiono of a cornplex vaeabb, (2nd ed.), chapters six and xx. 
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so that T, z, du are functions of the current parameter of the meridian ; and 

where 

so that + is a function of the current parameter of the meridian only. Then 
the relation + + é q  = f (x + iy), 
for any form of the function f, gives a conforma1 representation of the surface 
of revolution upon the plane ; and the magnification m, being the ratio of an 
elementary arc on the surface to an elementary arc on the plane, is given by 

1 = m29f'(x+iy)g'(x-iy), 

where g (x - éy) is the conjugate of f (x + éy). 

If we take the conforming relation to be 

Manifmtly the lines in the map, that represent the meridians on the surface, 
are given by the equation 

f (x+iy) +g(x - éy) = constant; 

and the lines in the map, that represent the parallels of latitude on the 
surface, are given by the equation 

f (x + iy) - y (x - iy) = constant. 

151. The surface of revolution which occurs most frequently in this 
connection, through geographical and astronomical problems, is the sphere. 
The natural cnrrent parameter to choose for the meridian is the latitude X, 
so that 

r = a COS )LI du = adk, 

where a is the radius of the sphere ; and then 

so that 

the constant of integration being chosen so that X and 9 vanish together. 
The conforming relation is 

+++= f(x+iy); 
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the magnification m is given by 

and various conforma1 representations are given by various forms of the 
function $ 

There are three forms of f which are of special importance-two for 
geographical maps, and one for star-maps. 

For the first form, we take f (u) = u/k,  where k is a real constant ; then 

so that 

Thus the meridians (+ = constant) and the parallels of latitude (II/. = constant) 
are two sets of straight lines in  the map ;. they are perpendicular to one 
another, as is to be expected under the conservation of angles. Meridians, 
with a constant difference of longitude, become equidistant parallel straight 
lines. Parallels of latitude, with a constant difference of latitude and lying 
on the same side of the equator, become parallel straight lines whose distance 

1 
from one another increases towards the pole. Also g (x - iy) = (x - iy) ; 

hence 
k 

m=-sech.  
a 

Thus the magnihation is uniform along a parallel of latitude; and it 
increases along a meridian away from the equator, the increase being very 
rapid towards the pole. This map is known as Mercator's projection. 

But though the meridians become straight lines, no other great circles 
become straight lines. 

For the second form, we take 

SO that 

Also 

= ,&-++Ml 

x = ke-* cos +, y = b - s  sin +. 

so that 

hence 
maaa cosa X = & + ya, 

and therefore 
k . 1 1 2 1 -  

k 1 e-$ sec X = -  
a a l + s i n X m  
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The meridians (+ = constant) are represented by the concurrent straight 
lines 

y = x tan +. 
The parallels of latitude (+ = constant, h = constant) are the concentric 
circles 

2 + y2 = g e - P $  = k 2  -sin 
1 + sin X ' 

of course orthogonal to the concurrent nieridian lines. This map is known 
as the stereographic projection; the South pole is the origin of projection. 

For the third form, we take 

where k and c are real constants; and c is different from unity, being a 
disposable constant used to secure some property or to satisfy some special 
condition. We have 

x = ke+ cos c+, y = k e - ~ $  sin c+. 
Also. 

1 x + i y  , log 7 = f (x + iy), 

1 x - i y  
+-i+=-Tlog--- L = g(x - iy); 

ZC 

hence 

so that 
CL 

m = - e-e$ sec h 
a 

- -- ck (1 - sin A.)B ('- l) 
a (1 + sin x)* WU ' 

The rneridians (+ =constant) are the concurrent straight lines 

the parallels of latitude (A = constant) are the concentric circles 

1-sinX 
aa + y 2  = JC2e-W = h 2  - 

(1 + sin J < 

of course orthogonal to the concurrent meridian lines. 

The representation is used for star-rnaps; and the constant c is deter- 
mined, for any one map, by making the magnification the same a t  the 
parallels of highest and lowest latitude on the map. But these parallels 
must not be equidistant from the equator. 

F. 16 
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152. The conforma1 representation of a surface of revolution on a plane 
was first effected by Lagrange*. The general conforma1 representation of any 
surface upon sny other surface is d u e t  to Gauss, who obtained the necessary 
results for a number of problems and applied them to geodesy. There are 
many memoirs on the subject by other investigators; but the geometrical 
relations of the surfaces considered soon become merged in the analytical 
results,. and the subject passes into the range of the theory of functions. 

Some results are appended as examples. 

Ex. 1. A plane rnap is made of a surface of revolution; shew that  the curvature in 

the rnap of a meridian a t  a point JI is 2 , and that the curvature in the map of a a+ (z) 
parallel of latitude at a point $I is 

Ex. 2. A plane rnap is made of a surface of revolution, so that the meridians and the 
parallels of latitude are circles. Shew that, if r and 0 are the polar coordinates of the 
point in the rnap which represents the point 4, (G on the surface, 

cos e -= - 2ac {aeZe* cos 2 (CG +g)+ b cos (g+ A)}, r 

sin 6 - 
- - 2ac {aeec* sin 2 (c$ +g) + b sin @+ h)}, 

where a, b, c, y, h are constants: and prove that the centres of the meridians and the 
centres of the parallels of latitude in the map lie on two perpendicular straight lines. 

Ex. 3. Shew that, if x, y, z be a point on a sphere of radius a, every conforma1 repre- 
sentation of the sphere on the plane d, .y' is given by 

for varying forms of the function f. 
C m  f be determined so that al1 gr& circles become straight lines in the rnap 1 

Ex. 4. Shew that rhumb lines of the meridians on a sphere become straight lines 
in Mercator's projection and equiangular spirals in a stereographic projection. 

Ex. 5.  In  a star-map (§ 151), shew that the magnification is a minimum for the 
parallel of latitude sin-lc; and obtain an expression for the deviation of this parallel 
from the middle parallel of the map. 

Ex. 6. A point on an oblate spheroid of eccentricity e is determined hy its longitude 
+ and i ts  geographical latitude A. Shew that a rnap of the surface on the plane is 
given by the equation 

x+iy=f ($I+i9), 
where 

9 =sech-' (cos A) - e tanh -1  (e  sin A). 

Discuss the maps for the forms off which correspond ta the Mercator's projection, the 
stereographic projection, and the star-map for the iphere, especially in the cases where 
powers of e higher than the  second can be neglected. 

See his collected works, vol. iv, pp. 635-692. 
t Ges. Werke, t. iv, pp. 2 5 9 4 4 0 .  
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153. I t  may be added that, for practical purposes, various other pro- 
jections of the sphere are adopted; but they do not possess the conforma1 
property., .Three of them are more important than the rest*. 

Thus there is a perspective projection. An origin, not on the surface of 
the sphere and not its centre, is joined to every point of a curve on the 
sphere ; we obtain a perspective projection of the curve on a plane, when we 
take a section of the cone by the plane. (When the origin is taken on the 
sphere and the plane of section is parallel to the tangent plane a t  the origin, 
we have a stereographic projection.) 

There is an orthographie projection. I t  is the special case of a perspective 
projection when the origin of perspective moves off to i n h i t y :  so that, in 
effect, we have projection by a cylindei: 

There are central (or gnomonic) projections. The origin of projection is 
taken to be the centre of the sphere ; the same construction as for perspective 
projection is made, and the plane of projection is a tangent plane. When 
the tangent plane is taken a t  the pole, the projection is called central polar. 
When the tangent plane is taken a t  a point on the equator, the projection 
is called central equatorial. 

Geodesic Representation. 
154. The fundamental property of conformal representation-that a 

surface and its map should be similar to one another in minute detail a t  
every point, though the similarity cannot be secured for any full extent 
owing to the variation of the magnification-is not the only useful quality 
that may be required in the comparison of surfaces. Whether for charts, 
or for deformations of surfaces, or for other purposes of representation of a 
surface, it is manifestly desirable to know the possibilities of ranging two 
surfaces together in such a fashion that geodesics upon one of them corre- 
spond to geodesics upon the other-in general, that is to Say, and not merely 
some special family. Thus to take the simplest instance, consider a central 
projection of a sphere, which has just been mentioned; the great circles, 
which are geodesics on the sphere, are projected into straight lines, which 
are geodesics on the tangent plane, a property that is of manifest importance 
in maps of the heavens. We thus are faced with the question of the geodesic 
representation of two surfaces upon one another, such that they correspond 
point by point; and the simplest form of the question arises when we seek 
for the reprosentation of such surfaces (if any) as will allow the image of 
their geodesics to become straight lines upon a plane. In  this limited form, 
the question was propounded by Beltrami; he shewedt that the only surfaces 
which can be thus represented are those of constant curvature. The result 
can be established as follows. 

A number are set out by Tisnot, Comptes Rendus, t. 1 (1860), p. 47.5. 
t Ann. di Mut.. t. vii (1866), p. 185. 

16-2 
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Choose a family of geodesics and the orthogonal geodesic parallels as the 
parametric curves on the surface ; then the arc-element has the form 

dsz = dp2 + D2dq2, 

and the general equation of geodesics becomes ($ 68, 92) 

9 = - D D l @ ) a ) ' _ % ( d ~ ) ' - 2 ~ l d q  dp2 a 

D G  D d p  

Among the geodesics on the surface are the family q = constant ; and al1 the 
geodesics are to become straight lines on the plane of representation. Thus 
we can take q  as one of the variables in this plane; if w denotes the other 
variable, the equation 

A w + B q + C = O  

is to represent geodesics, that is, this equation is to be the primitive of the 
differential equation of al1 the geodesics for an appropriately determined 
magnitude w, as a function of p and q. Now 

and therefore 

that is, 

This differential equation is equivalent to the postulated integral equation, 
and so it must be the same as the general equation of the geodesics. Hence 

From the third of these relations we have 

where Q is any function of q alone; and from the second of the relations 
we have 

where P is any function of p alone. Hence 

and therefore 
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where Q, is any fnnction of q alone. In  order that the first relation may be 
satisfied, we must have 

and in this form the relation must be satisfied identically, for otherwise there 
would be a relation between the independent variables. Differentiating 
with respect t op ,  we have 

that is, 
d P' e " ~ , l =  - P -  (-) , 

dp p 

and so each side of this equation must be equal to a constant, say a. Thus 

and therefore 

where b is a, constant ; hence 
P " = b P a -  a, 

and so 
P" = bP. 

The Gauss measure of curvature of the surface is given by 

and so is constant; hence we have Beltrami's result that the only surfaces, 
whkh can be geodesicdly represented on a plane, are those with a constant 
measure of curvature. 

155. There are three cases to consider, according as the constant measure 
is zero, positive, or negative. 

First, let the constant measure be zero. Then 

and so 
F'" = O, 

P = a'p, 
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where a' is a constant; no generality is lost by making the unexpressed 
additive constant of integration equal to zero. Also 

&3Qf' = - Pp" + P'2 = a'), 
and therefore 

are & l a = - - + C ' .  
& " '  

hence 
(clQe - n'a)* = dg, 

again making the additive constant of integration equal to zero without any 
loss of generality. Hence the surface is 

'Z '2 2 

ds" dp2 + PfZ ,dg" 
(d2q2 + a ) 

= dpa + p2d ia ,  

on changing the variable q. Also we  had 

which, on substitution for P and &, gives 

Q," = O, 
so that 

QI = a"q + b". 
But Q, is an'additive part of W, which appears in the equation 

hence no generality is lost by taking a"= O, b" 0. Thus 

Now 

that is, 

and 
c'q = a' tan q', 

CI@ = al2 sec? 9'. 

Hence, except as to constant factors, 

and therefore the geodesics on the surfaces, having their arc-element in the form 

ds2 = dp2 + p2dq1z, 
are given by the equation 

A w + B q + C = o ,  
that is, by the equation 

A'psinq'+B.'pwsqf+C'=O. 
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Secondly, let the measure of curvature be positive and equal to a-2. 
Then ' 

1 ôaD 1 --=-- 
D ap2 aa ' 

so that . 

P P D = Q, sin - + Q4 cos - . 
a a 

But 
P 

==@; 
no generality is lost by taking 

1 P 
Q, = 0, Qs = - P = sin - . 

Q2' a 
Also 

1 QqJ1 = - pptt + pla = - 
a2 ' 

and therefore 
1 pz--+ 

a1Q2 c', 

a%'@ = 1 + (ac'q + l ~ ' ) ~  

without loss of generality. Let 

, l d q  dq = - - = 
acldq 

a 1 + a2C'aq8' 
so that 

ac'q =tan q', 

a2c1@ = sec2 q'. 
Write 

p = ap'; 
then the arc-element is 

P 
dsa = dpa + - dq2 Q 

= a; (dp'% + sina p' dq'2). 
Also 

P' Q u  v/bp=--3 
l + Pz PQ ' 

which, on substitution for P and Q, gives 

Q1" = o. 
As Q, is an additive part of w, no loss of generality (so far as the geodesics 
are concerned) is incurred by taking Q, = O. Then 

dp 
W = Q , + Q / ~  

= - a& cotz = - aQ cot id. 
a 
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The geodesics on the surfaces, having their arc-element in the form 

dsZ = aa (dpfe + ~in~p'dq'~), 

are given by the equation 

A' sin q' sin p' + B' cos q' sin p' + Cf  cos p' = 0. 

The sphere, of course, is one of the included surfaces ; the last equation shews 
that the geodesics on the sphere lie on planes through the centre, that is, 
are great circles. 

Thirdly, let the measure of curvature be negative and equal to a+. The 
analysis is the same as for the second case, Save that hyperbolic functions 
occur instead of circular functions. The result is that geodesics on the 
surfaces, having their arc-element in the form 

dse = aa (dpt2 + ~inh~p'dq'~), 

are given by an equation 

A' sin q' sinh p' + B' cos q' sinh p' + 6" cosh p' = 0. 

The Cartesian coordinates for the plane upon which the geodesics are 
represented as straight lines are 

x = p sin q', y=pcosq'; 

x = sin q' tan p', y = cos q' tan p'; 

x = sin q' tanh p', y = cos q' tanh p'; 

in the respective cases. 

156. I t  thus appears that the variety of surfaces which can be represented 
geodesically upon a plane is gravely limited; and so i t  is natural to enquire 
what surfaces can be represented geodesically upon one another, without any 
restriction to a particular surface as that upon which the representation is to 
be effected. A solution of the problem, though initially not complete, was 
given* by Dini; a lacuna was supplied 1- by Lie; and another solution has 
been given $ by Darboux. 

In order to effect the geodesic representation of one surface upon another, 
it is necessary and sufficient to secure that the general equation of the 
geodesics, viz., 

should be the same for the two surfaces. This requires that the quantities 

I"', 2r' - A", I'- 2A1, A, 
Ann. di Mat., 2* Ser., t. iii (1869), pp. 269-293. 

t Math. Ann., t. xx (1882), p. 421. 
:: In the chapter, pp. 40-65, of the third volume of his treatise. 
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should be the same for the two surfaces. The equations thus obtained are 
considerably sitnplified, if the same parametric curves are orthogonal on either 
surface; still greater is the simplification if those parametric curves are 
orthogonal on both surfaces. 

But is this possible ? The answer to the question is to be found in the 
following theorem, due* to Tissot :- 

In any birational correspondence between the real points of two real 
surfaces, an orthogonal system on one surface eeists having an orthogonal 
system on the other as its homologue; and the system i s  unique, unless the 
correspondence .is conformal, or unless nul lines are hornologous to nul lines. 

Let the arc-elements on the two surfaces be 

When the correspondence between the surfaces is a conforma1 representation, 
we must have 

ds" = m2&, 

where m is independent of the differential elernents; hence, in that case, we 
should have 

or, if we write 

F 'G-FGf=A,  G%-GE'=B, EE'F-EF=C,  
the conditions for conforma1 representation are 

A=O, B=O, C = O .  
When the nul lines of one family on the first surface are homologues of 

the nul lines of one family on the second surface, the equations ds2 = O  and 
ds'a = O have one root dpldq common ; its value is given by 

dp2 - 2dpda dq2 
B'G-FG~-G'E-GE~=E'F-EY 

that is, by 
dp2 - 2dpdq - -- dq2. 
A B  C '  

and the condition is 
B - 4 A C =  O. 

We need not consider the case when both families of nul lines are homologous 
with both families of nul lines ; for then 

would be the same equations, and we should have 
E' F' G' --- E - = Q '  

that is, we should have the preceding case of conformal representation. 

Nouv. Ann. Math., 2m* Sér., t. xvii (1878), p. 151. 
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If possible, then, let 8p, Sq; and S'p, ô'q; represent an orthogonal pair of 
directions on both surfaces. We have 

E 6pô'p + P (Sp6'q + 6q 6%) + G Sq6'q = 0, 

E'6p 6'p + F1(Sp 6'q + Sq 8'p) + G'Sq 6'q = 0 ; 
and therefore 

8p '23p = 8A, 

8p6'q + Sqô'p = OB, 

Hence the directions Sq/Sp and S'q/8p are the roots of the quadratic 

We thus have a unique pair of orthogonal corresponding lines, unless either 
the quadratic is evanescent so that A, B, C vanish, or the quadratic has equal 
roots so that Ba=4AC. The former exception gives rise to conforma1 
representation. The latter requires that one set of nul lines should be 
homologous, a correspondence that is imaginary for real surfaces. Hence we 
have Tissot's theorem. 

157. Deferring for the moment ' the  two possible exceptions, let us 
assume that the two surfaces have, in common, a unique system of orthogonal 
curves. We take them as parametric curves, so that the arc-elements on the 
two surfaces are 

dst = Edpa + G dqa, ddB = E'dpa + G'dqa. 

The general equation of geodesics on the first surface is 

and the general equation of geodesics on the second surface has the sarne 
form. If the two surfaces can be represented geodesically upon one another, 
the two general equations must be the same ; so the necessary and sufficient 
conditions are 

G, a,' z=E" 

E, G, E,' 01' 

From the second of these, we have 
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where P is a function o f p  only ; and from the third, we have 

where Q is a function of q only. Thus 

E=E'P2Q, G=G'PQ5. 

When we substitute these values of. E' and C' in the first condition, i t  
becomes 

G,(P- Q)= GP,; 
and then 

G = @ ( P - Q ) ,  

where is a function of q only. When the values of E' and G' are substi- 
tuted in the last of the conditions, i t  becomes 

and then 
E y ( Q  - P) = EQ,; 

E =  P 2 ( P -  Q), 

where B is a function of p only. 

Hence the two surfaces are 

d9  = (P - Q) (PUp" @dq2), 

and these are Liouville surfaces ($ 117, 121). Consequently, n Liouville sur- 
face can be represented geodesically upon an associated Liouville surface. 

We have seen (p. 171) that geodesics on the first are given by 

This equation is unaltered if we change P into -Pl, Q into - Q-', 
P into P P - 4 ,  g into QQ-\ a into - 1/ar. These changes turn the first 
surface into the second; and so there is a direct verification that the two 
Liouville surfaces can be represented geodesically upon one another. 

158. We have to deal with the two exceptions to which Tissot's theorem 
does not apply. 

In the first of them, there is conformal representation, so that 

ds' = m ds. 

Thus the nul lines on the two surfaces are the same. Let them be chosen 
as the parrtmetric curves ; then 

ds2 = 4X dp dq, dsta = 4X'dp dq, 
and therefore 

X' = m2 X .  
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The general equation of geodesics on the former surface is 

and on the latter it is 

When the two surfaces can be represented geodesically on one another, these 
two general equations must be the same; hence 

and therefore 
X' - - 
h 
- constant, 

that is, m is constant. Thus the two surfaces are similar to one another in a 
constant tuapification. 

I n  the second of the exceptions not included in Tissot's theorem, the 
homologues of a family of nul lines on one surface are a family of nul lines 
on the other. 

Let one surface be referred to its nul lines as parametric curves; its 
arc-element is 

ds" = 4Xdpdq. 

Let q = constant be the family of nul lines, of mhich the homologues are a 
family of nul lines on the other surface ; then its arc-element has the form 

For the latter surface, we have 

and the general equation of geodesics is 

On the former surface, the general equation of geodesics is 
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When the two surfaces c m  be represented geodesically on one another, these 
two general equations are the same ; hence 

The third of these conditions yields the relation 

where Q is a function of q only. When this relation is substituted in the 
second condition, the latter becomes 

G, = $Ag'. 

The first condition now gives 
a, x2 2 Q' + - - ,  2 ~ = h  3 &  

so that 
G = ~ A ~ Q + P ,  

where, so fat- as the condition is concerned, P is a function of p only, and a is 
a disposable constant. Substituting this value of G in the modified form of 
the second condition, we find 

hence 

where 0 is a function of q only. 

Now let 
Pdp=du,  A.=pP, & = l e s ,  

so that R is a function of q only, and u is a new variable ; then 

1 r = Q - a ~ ~ ,  
or, choosing a = - 1, 

~ = Q + u R ' .  
Also 

P = pPB-8, 

a = - PR-4. 
Thus the first surface is 

ds' = 4pdudq 
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where Q and R are any functions of q alone ; and the second siirface* is 

where 

These two surfaces can be represented upon one another so that their 
geodesics correspond. Now (5  121) the geodesics on the surface 

d s 2 = 4 ( Q  +uRr)dudq 

are given by the equation 

where a and c are arbitrary constants ; this equation therefore gives also the 
geodesics upon the geodesically associated surface. 

Spherical ltepresentution ; Tan.gentiu1 Coordiwtes. 

159. We now corne to the representation of a surface on a sphere, 
already indicated in § 147 ; i t  frequently is called the spherical representation 
of the surface, and it is due to Gauss originally. We take a sphere of radius 
unity and through its centre draw a line parallel to the positive direction of 
the normal to the surface ; the point on the surface has its image in the point 
where the sphere is cut by the line. I t  thus follows that, in the represen- 
tation, we are partly considering the tangent plane to the surface; and so, in 
using the direction-cosines of the normal, we are in effect using three of the 
tangential coordinates of the surface. We shall therefore find it convenient 
to deal with eqiiations, expressed as far as possible, in terms of tangential 
coordinates; for they are essentinl to the resolution of the question as to 
how far a surhce is determined by a given spherical representation. 

The coordinates of the spherical image of a point on the surface, where 
the direction-cosines of the normal are X, Y, Z, are themselves X, Y, Z, which 
are subject to the condition X2 + Y2 + Za = 1. Let dS be an arc-element on 
the sphere ; then 

dS2  = ddXz + d Y Z  + dZ2 = edpa + 2fdpdq + gdqa, 
where 

e= X,2 + Y:+ Ka = - E K + L H ,  
f = XIX,+ YIY,+Z,Z, = - FK+ MH, 

on substituting the values of the derivatives of X, Y, Z given in 5 29. 
We have 

- f" 

The result is due to Lie ; see 5 156. 
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and therefore, as eg - f2 > 0, the surface to be represented cannot be a 
developable surface. 

Manifestly we have 
ds2 UZ=- K d s z + H - ,  
P 

with the usual notation for the curvature of the normal section. Now 

where + is the angle between the tangent to the curve and a line of 
curvature ; and therefore 

Hence th spherical image usuully is xot  a conformal representution. But 
there are two classes of surfaces for which spherical representation is con- 
formal. For one class, we have a = P ;  its Cartesian equation, in the most 
general range, is 

where 4 and + are arbitrary functions. For the other class, we have 
a + P = O ; they are minimal surfaces, and will be discussed later (in 
Chap. VIII). 

160. Sorne simple properties c m  be established a t  once. 

1. When the parametric curves on the surface are orthogonal, we have 

F= O. 

When they are orthogonal on the sphere also, then 

f = O ;  

and therefore, unless H = O, we have M = O. 

Further, when F =  O, M =  O, we have f = O whether H vanishes or not. 
Hence the spherical image of the lines of curvature is an orthogonal system ; 
and the lines of curvature are the only orthogonal system whose spherical 
image is orthogonal, unless the original surface is a minimal surface-in 
which case the spherical representation happens to be conformd also, so that 
any orthogonal system remains orthogonal in the representation. 

II. But further, the spherical image of a line of curvature is parallel 
(directly or reversely) to the line; and if the spherical image of a curve is 
parallel to the curve, then the curve is a line of curvature. 
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For the .first part, take the lines of curvature as the parametric curves, 
so that 

F = O ,  M=O. 
We then have (§ 29), for the respective lines, 

proving the statement. 

For the second part, keep the parametric curves general; and suppose 
that the spherical image dX, d Y, dZ of dz, dy, dz is parallel to it. Then 

Let the common value of these fractions be p ;  then 

Multiply these equations by x,, y,, z, respectively, and add; and by x2, y2, 2, 
respectively, and add ; we have 

- Ldp - Mdy = p (Edp + Fdq), 

- Mdp - Ndq = p (Pdp + Gdq) ; 
and therefore 

(EM - FL) dp" (EhT- GL) dpdq + ( F N -  CM) dq2 = 0, 

giving the directions of the lines of curvature. 

III. A direction dx', dy', dz' on the original surface, which is conjugate 
to a given direction dp, dq, is such (5  4'1) that 

dx'dX + dy'd Y + dz'dZ = 0, 

where dX, dY, .dZ are determined by dp, dq, that is, are the spherical image 
of the given direction. It therefore follows that, when two directions are - 

conjugate on the surface, the spherical image of each direction is perpen- 
dicular to the other direction. 

Moreover, as an asyrnptotic line is self-conjugate, it follows that the 
spherical image of an asymptotic line is perpendicular to the line. 

IV. The preceding result, relating to conjugate lines, can be stated in 
another form, viz. the inclination of the spherical images of two conjugate 
lines is either equal to, or supplementary to, the inclination of the conjugate 
lines. 
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This can be established independently as follows. Taking the conjugate 
lines as the parametric curves, we have M = O ; and therefore 

f = - FK. 
As usiial, denote by o the inclination of the parametric curves on the surface 
which now are conjugate ; and denote by a>' the inclination of their spherical 
images. Then (5 25) 

Now 
cot o =  F/V, cot of= f ( e g -  fa)-&. 

and we take v positive, just as V has been taken positive (5 24) ; hence 
v = +  VK, 

the upper or the lower sign being used, according as the surface is synclastic 
or anticlastic. Thus 

cot o' = f f/ VK, 
that is, 

cot o' = i cot O, 

which gives the property in question. 

V. We can, by means of the spherical representation, prove Joachim- 
sthal's theorems (§ 128) as to plane lines of curvature and spherical lines of 
curvature. 

In the case of a plane line of curvature, let a, b, c be the direction- 
cosines of the normal to the plane. If at  any point, a is the angle between 
the normal to the surface and the principal normal t o  the curve, we have 

s inm=aX+bY+cZ;  
and therefore 

a .  
&(sinm)= 

because the spherical image of a line of curvature is parallel to the line. 
Now a, b, c are the direction-cosines of the normal to the plane in which 
the line of curvature lies; thus 

Consequently, sin m = constant ; or the plane and the surface cut everywhere 
at a constant angle-which is the theorem as to plane lines of curvature. 
Moreover, the equation 

aX+bY+cZ=sincr  

now shews that the spherical image of the line of curvature is a small circle, 
unless the line of curvature is also a geodesic, in which case its spherical 
image is a great circle. 

F. 17 
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Also, if a family of lines of curvature is composed of plane curves, their 
spherical image is a family of sinal1 circles. If both families of lines of 
curvature are plane curves, then (because the spherical image of two lines of 
curvature is two orthogonal lines) the spherical images are two families of 
orthogonal small circles. We shall return later ($$ 197, 198) to this niatter. 

Next, consider a spherical line of curvature. Let the sphere be of radius r 
and have its centre a t  xo, y,, zo; then, denoting by x the angle between the 
normal to the surface and the normal to the sphere at  a point on the line of 
curvature, we have 

x- x o + + Y - Y o  + ZZ> cos X = X - 
r r r 

Consequen tly 
d dx dy dz df4 d X x - x o  d Y y - y ,  
-(cosx)=- X-+Y-+z- )  +-(- ds X ds ds. de d B T + a r  +-? dfi r 

because the spherical image of a line of curvature is parallel to the line. 
The quantity within the brackets on the right-hand side is zero because the 
line of curvature lies on the sphere ; hence 

COS x = constant, 
and therefore the sphere and the surface cut a t  a constant angle along the 
line of curvature-which is the theorem as to spherical lines of curvature. 
(The angle x is the angle a' - rn of 5 128.) 

161. The fundamental magnitudes of the second order, Say L', M', ïV', 
for the sphere can be obtained simply. Denoting the direction-cosines of 
the positive direction of the normal to the sphere by X', Y', Z', we have (in 
accordance with $5 2'1, 29) 

according as the surface is synclastic or anticlastic; and similarly Y'= t Y, 
2' = I 2, the upper signs being used together and the lower signs being used 
together. Thus 

L' = X'X,,  + YfY1l + Z'Z,, 
= I (XX,, + YYll+ ZZll) 

= T e;  

and similarly M' = Tf, N'  = T.g. The radius of curvature of any normal 
section of the sphere, being 

edpa + 2fdpdq + gdqa 
.L'dpa + 2M'dpdq + N'dq2 ' 
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is numerically equal to unity, as was to be expected; it is positive or negative, 
according as the normal to the positive side of the sphere has to be drawn 
inwards or outwards. 

Thus only the fundamental magnitudes of the first order for the sphere 
need be taken into account. It is convenient to have the relations between 
them and the fundamental magnitudes of the surface. Substituting for K 
and H in the expressions for e,f, g ,  we find (see also § 29) 

P f  = EMN - F  (LN + M2) + +LM, 

and therefore 
vzE = eMZ - 2fLM + gL2, 

v2F = e M N  - f  (LN + MZ) + gLM, 

v2G = 8x2- 2fMN+ gM2. 

We require quantities corresponding to ï, I", I'", A, A', A". Let 

and we thus have the quantities required. Moreover, they give 

corresponding to the relations in § 34. 

As the values of the quantdies e , f ,  g involve al1 the magnitudes E, F, G, 
L, M, IV, these quantities p, pu', r/', v, v', di must be expressible in terms of 
the derived magnitudes of the third order for the surface. We have 

-=- 1 " ' {2mM2 - 2  (n + m')LM+ 2n'La) +p{2M,(EM-  FL) + 2 4 ( G L  - FM)} a v9 
2 

- - (I'+ A') (EMS - 2FLM + GLa) 
v2 

2 
= - { (GL-FM)P+(EM-J 'L)Q+ va(d'+ fA)}; V" 
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and similarly for the others. The aggregate of results is :- 

1 
P' = p KGL - FM) Q + (EM - FL) R} + eI" + fX 

and i t  is easy to shew that 

VaK(y -I' ) = P N - Q M  V2K(6 - A  ) = - P M + Q L  
V a K ( ~ '  -I")=QN-RM , V2K(%r -A1)=-QM+RL 
V 2 K ( f - r " ) = ~ ~ - s & f j  v 2 q r - u ) = - m + s L  

162. The tangential coordinates connected with the surface are defined, - 
as usual, in connection with the tangent plane. Let E, y, z be the coordinates 
of any point on the surface, and let T (with, of course, a new significance for 
the symbol, different from the significance adopted in 5 28) be the distance* 
of the tangent plane from the origin; then the equation of the plane is 

E X +  yY+zZ=T.  
The quantities X, Y, Z, T are the tangmtial coordinates of the surface. 

* Bometimes W is used (as in 5 79, and regulerly by Bianohi). 

We require various quantities, and some of our established equations, 
expressed in terms of the tangential coordinates. For x, y, z, we have 

EX + y Y + z Z  = T ,  

 EX^ + yY, + zZl = Tl, 
xXp + yYs + zZa = Ta. 

Now (5 29) 
X ,  Y ,  z 
Xl, Pl, Zl 

X2, Ya, 2 2  

=VK,  

Y, Za - Y, Zl = VKX, 
1 - y '2 = TK (gxl  - f X'd), 
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hence 

COORDINATES 

giving the point-coordinates of the surface in terms of the tangential 
coordinates. 

I t  therefore follows that, when the tangential coordinates are given, the 
surface is completely determinate even as to position and orientation. 

163. Again, we have (5 161) 

XX,, + YY, + ZZ,, = - e. 

Also, fiom the definitions of the quantities p and v, it follows that 

and similarly for Y,,, Z,,. Thus 

XI, = - e x  + yX, + SX, 
Y,=-eY+yY1+6Y2 . 
Zll = - eZ + yZ, + 62, 

Similarly 
1 

x, = - f x + ,lx, + FX, 
Y,=- fP+yT,+8Y2 , 
21, = - f z + ,/z, + 8'2, 

and 

YB= -$Y+ y"Y1 + 6"Y2 

1 
x,=-gX+y"x,+s"X, 

z, = - gz + ,"Z1 + 61'2, 1 
These are the equations of the second order satisfied by X, Y, Z. 

There are corresponding equations for T. We proceed from 
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164. We have seen that, when the tangential coordinates X, Y, 2 ,  T are 
known as functions of two parameters, the surface is completely determinate; 
and that when e, f, g, T are known, the surface is uniquely determinate Save 
cm to orientation and position. The data required for these inferences are- 
a knowledge of X, Y, 2, in the one case, and a knowledge of a spherical 
representation in the other case-together with a knowledge of T, which 
is quite independent of the sphere. 

Similarly for Tia, Tga  ; the results are 

T u - r  Tl -8  T , + e T = - L  

T,z-y 'Tl-6 'Tz+fT=-M . 
Tm-y"T,-6/'T,+gT=-N 1 

It therefore follows that E, F, G, L, M, N are directly expressible, without 
any inverse operations, in terms of e, f, g, T, and their derivatives. Rence, 
when T and a spherical representation are known, the surface is uniquely 
determinate save as to orientation and position. The organic lines on the 
surface are expressible in terms of these quantities ; i t  is easy to verify that 
the quantities A and W of 5 125 are given by 

The question then arises as to how far a surface is defined by means 
solely of X, Y, 2 ,  supposed given; or solely of a spherical representation, 
supposed given. I n  the one datum, we assume that X, Y, Z are known 
functions of p and q, subject to the condition X2+ Y2 + 2 2  = 1 ; in the other, 
we assume that e, f, g are known functions of p and q, subject to Gauss's 
characteristic equation when it gives unity as the measure of curvature. The 
answer to the question depends upon the determination of the quantity T. 

When the values of L, M, N, which have just been obtained, are substi- 
tuted in the expressions 

@E = eMB- 2fLM + gL2, 
v 2 F  = eMN - f (LN + Ma) + gLM, 

vaG = e x a  - 2fMN+ gMa, 

, 

, 

- A VK = 

v" W = 

where A = O  is the equation of the asymptotic lines, and W = O is the 
equation of the lines of curvature. 

Tllpta + 2T12ptq' + TB$', Tl, T2, T 
X,,P'~ + 2X,2pfq' + X,P? XI, x,, x 
y,lpra + 2 Y12 p'q' + Y&'*, Y,, Y,, Y 
Z11pf2 + 2212 plq'+ Z,qfO, 21, ZB, 

T1,p1 + Tld', T,,pf + T,qf, Tl, T, 
XI$' + X,2q1, X12pJ + X&', XI 9 1 2  

Klp' + %b, %(P' + Yap', 1 ,  YB 
Znp' + Z1,q', Z12p' + Z,qB, z, , zz 
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the quantities E, F, Q become functions of known quantities, of T, and of 
the derivatives of T up to the second order inclusive. Now, for every surface, 
the six fundamental magnitudes must satisfy the Gauss characteristic equation 
and the two Mainardi-Codazzi relations, viz. 

1 - - {E' (nn" - n'a) - F (nrn" - 2nrmr + n"m) + Q (mm" - ntr2)}, v2 

When the foregoing values of E, F, G are substituted in these equations- 
the algebra is exceedingly laborious-and then, when substitution is made for 
L, M, N i n  terms of the quantity T and the given magnitudes, the first of 
these relations gives a partial differential equation for T which is of the 
third order. (Owing to the presence of E,, - 2F12 + G,,, the equation might 
have been expected to be of the fourth order; but the terms of that order 
cancel.) The second of the relations gives another partial differential equation 
for T of the third order; and the last of them gives yet another partial 
differential equation for T of the third order. (In both of these equations, 
the terms of the third order disappear fmm L, - Ml, and N2 - NI, respectively; 
but they arise from the values of I', I", I'", A, A', A", and they do not 
disappear.) 

Thus in general, when a spherical representation of a surface is given, i t  
is necessary to solve three simultaneous partial equations of the third order 
if the surface itself is to be determined thereby. 

165. But simplifications of this complicated result can be secured by the 
assignment of particular conditions-these conditions really being limitations 
upon some of the arbitrary functions that occur in the primitive of the three 
simultaneous partial equations of the third order. 

Let there be an' assigned condition that the parametric curves on the 
sphere shall be the images of asymptotic lines on the surface. Instead of 
dealing with the specialised forms of the equations of the third order, i t  is 
simpler to deal with the original equations that are fundamental; so we 
assume the condition that the asymptotic lines are to be parametric, viz., 

and then the Mainardi-Codazzi relations are 

Moreover, we have 

( r + A f )  V =  VI, (A"+ I") V= 7 2 ;  
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so that 

SUPPLEMENTABY 

differential relations which, of course, are isolated under the special system 
of parametric curves. 

Having regard to these curves, the values of P, Q, R, S (as given in 5 40) 
are 

P=-2MA, Q=-2MA1, R=-2Mr1, S=-21MTf'. 

Also we now have 
vaE = eMe, vaF = - fM: vaQ = gMa, 

so that 
vV= M: 

and 
-M2 v K=-=--- va 
va v--M"* 

As regards the quantities y, y', y", 6, 8, ô", there are simple relations 
connecting them with r, I", I'", A, A', A" under this system. We have 
(§ 161) 

1 y -r  = - - Q & Q = - 2 ' y ,  
VaK M 

1 8') - A" = - FK R AM=-  =- 2r'; 
M 

and therefore 
y = r -  2A1, S"=A''- 2r1, 

Consequently we also have (always under this system of parametric curves) 
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as relations identically satisfied ; thus the spherical representation cannot be 
chosen arbitrarily. Also 

therefore the arc-element on the surface is expressible in the form 

And then the quantity T is an i n t e p l  comrnon to the two equations of the 
second order 

Tl, - y T, - 6 2: + eT = O 
TB - y"Tl - s"T,+gT= O 

Ex. Let these results be applied to a pseudo-spherical surface. We have, for aii 

surfaces referred to  asymptotic lines as parametric curves (S 42), 

VeKl = - 2MQ, V2E2= - 2MR ; 
and therefore, for a pseudo-sphere, 

Now 

1 2 V T = E z f f - f f l F = - e ( e z g + g l f ) ,  K 
in this case; and sr, 

ez=O, gl=O. 

The same inferences foilow from the conditions a= A'= O. Hence e is a function of p 
only ; i t  can therefore be made unity, because it can be absorbed into the term edp'. 
Similarly g is a function of q only; it can therefore be made unity, because it  can be 
absorbed into the term gdqa. Thus the arc-element on the sphere is 

and on the pseudo-sphere is 
1 

a%'= - - (dpz- Zdpdq cos o+dpz). K 

The parametric curves are asymptotic lines; so that, over an ordinary region of the 
surface, asymptotic lines of the same family do not meet. We thus do not have an 
asymptotic triangle (like a spherical triangle on a sphere, or a geodesic triangle on any 
surface); but we do have an asymptotic quadrilateral. If a> 

denote the angle between the parametric curves, we have (3 36) 
in general 

and therefore, in the present oase, / 1 
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Now the area of the quadrilateral is 

where S i s  the sum of the interna1 angles of the quadrilateral on the surface. 

Other simplifications can be suggested; the results are left for detailed 
working. 

When the parametric curves are required to be orthogonal on the surface, 
we must have P = O, that is, 

e M N -  f ( L N +  M 2 )  + g L M = 0 :  
When the values of L, M, N in terms of T and its derivatives are substituted, 
we have a non-linear partial equation for T of the second order. 

When the parametric curves are required t o  be conjugate on the surface, 
we have M = O, that is, 

Tl, - y 'Tl - 6'T2 + fT = O. 

We have a linear partial equation of the second order; it is of the Laplace 
type *. 

When the parametric curves are required to be both orthogonal and 
conjugate on the surface, that is, are required to be lines of curvature on 
the surface, we have E"= O, M = O. Then 

and the linear partial equation for T is 

again of the Laplace type. When T is known, then 

See the author's Theory of Diffwential Equations, vol. vi, chap. xiii. 
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When the surface is to have its niean curvature constant, then the partial 
equation for T is 

(LN-  My) H =  eN-  2fM+gL,  

of the second order and the Monge-Ampbre type. 

In al1 these cases, we have to integrate a partial differential equation of 
the second order. I t s  primitive contains two arbitrary functions ; and so 
there is, in each instance, a double family of surfaces with the assigned 
spherical representation. 

EXAMPLES. 

1. Any two stereographic projections of a sphere are inverses of each other, the origin 
of inversion in either being the origin of projection for the other. 

2. Shew that the spherical images of the asymptotic lines on a minimal surface, as 
well as the asymptotic lines themselres, are an orthogonal isometric system. 

3. Two surfaces have the same spherical representation. A family of spheres is  
drawn having their centres on one of the snrfaces and the envelope of the spheres is 
constructed; shew that the other surface is normal to the chords of contact. 

4. Shew that, if 

the lines of curvature on the original surface are given by 

Also shew that, if another surface is given by the equations 

its asymptotic lines are given by the foregoing differential equation. 

5. Prore that, when e, f, g, Tare  known, the lines of curvature on the original surface 
are given by the equation 

-dqdp , dp2 
f , 9 

Tll-yTl-%TZ, Tl,-$Tl-8T2, TB-y"Tl-%'rT2 

6. Shew that the surfaces, which have one system of liiies of curvature in  parallel 
planes, are given by the equations 

x =; f (v) COS v - f' (v) sin v + {g (u) sin u+gl (u) cos u} cos tq, 

y = f ( v )  sin v + f' (v) cos v + {g (u) sin u+g' (u) cos u} sin v, 

z=g(u)cosw-g'(u) sin u, 

where f and g are any functions whatever. 
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CHAPTER VIII. 

THE amount of mathematical literature, devoted to the subject of minimal surfaces, is 
of vaat extent. 

The theory was initiated by Lagrange, mainly in his non-geometrical treatment of the 
stationary values of double integrals. I t  attracted the fruitful attention of other great 
mathematicians such as Monge, who was the h t  to give a general solution of the 
question ; and of Legendre, who first applied what now is called a contact-transformation 
to the partial differential equation of the second order that is characteristic of the surfaces. 
Al1 this work belonged to the later part of the eighteenth century. I ts  progress continued 
intermittently in the earlier half of the nineteenth century until the researches of Bonnet, 
published in 1853 and later, which marked an entirely new development in the deter- 
mination of real surfaces. Soon there followed the investigations of Weierstrass, who 
gave the useful forms to the equations obtained by Monge and from them constructed 
the generalities of the theory of minimal surfaces that are real and of surfaces that are 
algebraic; the significance of the theory of real surfaces being due to the fact that the 
analysis is bound up with functions of complex variables. Moreover, the researches of 
Weierstrass inspired the work of Schwarz who hm contributed many important develop- 
menta to the subject, on its geometrical aide and its functional side. And Lie's work added 
substantially to the theory of algebraic minimal surfaces that are subjected to assigued 
conditions. 

Mention also should be made of the memoirs of Beltrami who made notable additions 
to the subject and, in one of his early memoirs, gives a survey of the progreas made down 
to 1860. 

Above all, there is the section (Book iii, vol. i) in Darboux's treatise dealing with the 
whole matter, its history, its development, its later issuea, problems half-solved or unsolved. 
That section is practicaliy a complete treatise at the time of its publication (1887) ; what- 
ever advances in detail may have been made since that date, Darboux's exposition should 
be studied carefuiiy by every student of the subject. 

The Critical Equation H = 0. 

166. We now proceed to consider one particular class of special surfaces, 
usually called mhimal surfmes. For many reasons, they are important. 
They are related to the calculus of variations, as providing the simplest 
significant example of a condition for the minimum of a double integral; it 
was in this relation, that they arose in investigations of Lagrange. They are 
related, in their analytical expression, to the theory of functions of a complex 
variable; implicitly beginning in results due to Monge, the association has 
been developed in many researches that have their foundation in some 
memoirs of Weierstrass, supplemented by the work of Schwarz and of Lie. 
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They are connected with problems in mathematical physics, of which the 
most picturesque is that of the soap-bubble. 

Let surfaces be drawn so as to pass through an assigned closed curve 
(whether continuous in direction or not) and be required, along the curve, to 
touch an assigned developable surface passing through the curve. For the 
moment we are not concerned with the limitations imposed upon surfaces by 
these requirements, or with the extent of further condition that may be 
imposed simultaneously with the limitations. Among al1 these surfaces, let 
a surface be selected such that its area is a minimum-in the sense that, 
when srnall variations of any kind upon the surface are effected subject to 
the limitations, the result is to give an increase of area for the modified 
surface. The original surface is called minimal. It may or may not be 
unique. I t  may even be non-existent, owing to the complication of the 
conditions. 

We have seen (5 25) that the element of area on the surface can be 
represented by the quantity Tdpdq;  and therefore the area of the surface 
bounded by some assigned curve is 

where the double integral is taken over the range limited by the curve. If 
then the area of the surface is to be a minimum among the areas of al1 
surfaces which can be drawn through the curve, this double integral must be 
a minimum. 

The conditions that the first variation should vanish (a condition which 
secures a stationary value for the double integral) are that the equations 

a av --- - -- 
av a~ ap '(y) a ~ ,  aq (-)=O, a ~ ,  

- 

should be satisfied. Now, as a function of the variables, V explicitly involves 
xl, x2, y,, y,, z,, z,; but it does not involve x, y, or z, so that 

hence the first equation becomes 
y,&- z J 1 -  yiz,+ z1Y,= O, 

that is, on substitution for the derivatives of Y and Z (5 29), 
V X  (EN - 2FM + GL) = O. 
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The second and the third equations similarly give 
VY (EN - 2FM + GL) = O, VZ(EN - 2FM + GL) = O ; 

hence al1 the conditions, required in order to make the first variation vanish, 
are satisfied by the single relation 

EN-2FM+ CfL=O. 
Thus H, the mean measure of curvature, vanishes ; the two principal radii of 
curvature are equal and opposite, and therefore the indicatrix is a rectangular 
hyperbola. 

When, instead of parametric curves, the coordinate axes are used for 
reference, the area is 

where p and y  now denote the derivatives of z. The condition for a stationary 
- .  

value is 

which becomes 
(1+q2)r -2pqs+(1+p2) t=0,  

in accordance with the preceding relation when the values (Ex. 3, p. 60) of 
the fundamental magnitudes are inserted. 

167. The result can also be obtained without recourse to the general 
formulæ of the calculus of variations; and the process* leads ta one condition, 
critical as regards a minimum, which is important for weak variations ($ 89) 
of the variables a, y, r of a point on the surface; 

Let a length 1, chosen as an arbitrary function of p and y, be measured 
along the normal to any surface; and suppose the surface referred to its 
lines of curvature. Then (5 85) the quantity Pfor  the surface, derived as the 
locus of the extremity of this length 1, is given by 

- v ~ = , ( z - ~ ( z - ~ P + z : ( - - )  EG 1-a G + z : ( ~ )  z - p 9  E. 
a B  

For the present purpose, the length 1 determines a small variation under 
which the surface is to be minimal; hence 1 itself is small, and (when we 
assume the small variation to be weak) the quantities 1, and 1, are small, of 
the same order as Z. Expanding 7 in powers of the small quantities 1, l,, l,, 
and neglecting powers of these quantities higher than the second, we have 

so that 

* It i~ substantially due to Derboux, t .  i, 5s 184, 185. 
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The area of the derived surface, corresponding to an area V d p d q  of the II 
original surface, is \ / ~ d ~ d ~  ; hence the variation of area, being 

is given by the expression 

Vdp  dq. 

must be positive for al1 If the original surface is to be minimal, this quantity 
arbitrary small quantities 1, on the understanding that 1, and l, also are small 
of the same magnitude as 1. I n  the expression, the term of the first order 
govems the rest unless i t  vanishes; and when i t  does not vanish, we can 
make the sign of the term positive or negative a t  will by changing the sign 
of 1, and then the condition for a minimum would not be satisfied. Hence 
the term of the first order must vanish; as 1 is arbitrary, this requirement 
can only be satisfied if the equation 

H=O 
holds everywhere on the surface. (If H does not vanish everywhere, we can 
make the first term positive or negative at  will, by choosing 1 everywhere of 
the same sign as H or everywhere of the opposite s ip . )  We thus have the 
former result as to the equation, which is characteristic of minimal surfaces. 

Thus for weak variations of minimal surfaces, the most important term in 
the variation of the area (it is usually called the second variation) is 

In this expression E, G, V are positive, while K is negative; in order that 
the surface may be a real minimum, the quantity must be positive for al1 
non-vanishing weak variations. As 1 is arbitrary, subject only to the 
condition that it must vanish along the closed curve through which the 
minimal surface is bound to pass, the requirement of a positive sign for the 
second variation provides a test for a real minimum. 

I t  is easy to prove that, when general parametric curves are selected 
instead of the lines of curvature, the second variation is 

Ex. Taking weak variations x+[, y+q, z+ [ of x, y, z, so that 6, y, [ and their 
derivatives are small, substituting and using the formula of 5 27, shew th& the second 
variation of the area can be expressed in the form 
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We shall see (in 5 188) that the requirement of a positive sign for the 
second variation, in order to secure a real minimum, causes a limitation of 
the range over which the integration can extend; we shall have the conjugate 
of an  initial curve, when i t  is associated with an initial tangent developable. 
But  its discussion nlust be deferred until we have indicated other conditions 
which make a minimal surface precise. 

UThen strong variations are taken into consideration (that is, variations 
which keep E, q, small and do not demand that f,, f2, qi, qa, 6, shall be 
small), it is necessary to construct the excess-function, as in 5 89, IV. 

Both investigations, in their general form, belong more to the domain of 
the calculus of variations* than to that of differential geometry ; it may 
suffice to mention that the excess-function for a surface given by H=O is 
positive, and so the minimal surface satisfies another test for a true minimum. 
Bor our purpose, the important property is that the relation 

H = E N - 2 P M + G L = O  
is satisfied a t  every point of a minimal surface. 

Som General Properties. 

168. Before proceeding to obtain integral equations, which shall be 
equivalent to the characteristic equation H = O, whether they give the surface 
intrinsically or express the coordinates of a point explicitly, i t  is worth while 
to notice some simple properties generally common to al1 minimal surfaces. 

(i) The nul lines on a minimal surface are conjugate. Let them be 
taken as the parametric curves for the surface ; then E = O, G = 0, and F k 
not zero. But always 

EN-2FM+GL=O; 
hence, in t hk  representation, M = O. Thus the parametric curves, being the 
nul lines, are conjugate. 

(ii) The asymptotic lines on a minimal surface are perpendicular. Let 
them be taken as the parametric curves for the surface; then L = O, N = 0, 
and M is not zero. Again, always 

EN-2FM+GL=O;  

J J 

was first given by Kobb, Acta Math., t. xvi (1893), pp. 65-140. The particular result in the text 

rgrees with Robb's general resnlt ( I . c . ,  p. 114) when the integral is ( [ v d p d q  ; his quantilies 

Aiso, the excess-funotion (Z.C., pp. 121-1223. 139) becomes equal to 1 - cos 6, where 6 denotes the 
angle at which the strong-variation surface outs the minimal surface. Thus of the full tale of 
three tests-vie., the characteristio equation, the positive aigu of the second variation, and the 
positive sign of the exceas-funotion-there remains only the test as regards the second variation; 
it wiil be considered in g 188. 
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hence, in this representation, F= O. Thus the parametric curves, being the 
asymptotic lines, are perpendicular. 

The property follows also from the fact that the asymptotic lines are 
always the asymptotes of the indicatrix which, in the case of a minimal 
surface, is a rectangular hyperbola. 

(iii) The converses of the two preceding propositions are valid; that is, 
if the nul lines are conjugate, or if the asymptotic lines are perpendicular, the 
surface is minimal. The result is obtained by verifying that the relation 

EN-2FM+GL=O 
holds in each case. 

(iv) Let the lines of curvature on a minimal surface be taken as the 
parametric curves. We then have F = O, M =  O ;  and the characteristic 
equation of the surface becomes 

EN+ CL= O, 
that is, 

Now, with this representation, the Mainardi-Codazzi relations are 

Hence 
L,=O, N,=O; 

that is, L is a function of p only and N is a function of q only. As 

we now have 

which is the condition th& the parametric curves are isometric ($ 63). 
Thus the lines of curvature on a minimal surface are isometric. 

But, as is known ($ 62, 64), the converse is not valid ; that is, a surface 
can have its lines of curvature an isometric system without being minimal. 
Thus it may be a surface of revolution, or a central quadric, or a surface of 
constant (non-zero) mean curvature. 

169. Some properties of a simple character belong to the spherical 
representation of a minimal surface. 

The fundamental quantities e, j, g in any spherical image are given by 
e = - E K + L H ,  f = - F K + M H ,  g = - G K + N H ;  

hence, for the image of a minimal surface, we have 
. e = - E K ,  f = - F K ,  g = - G K .  

The following propertiea may be noted. 

F. 18 
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(i) -The spherical image of a minimal surface is a conforma1 representa- 
tion of the surface (5 159). For the arc-element on the surface is given by 

and the arc-element in the spherical image is given by 

hence 

Thus the magnificntion is the same in al1 directions a t  a point-which is the 
test for conforma1 representation. 

(ii) The converse of the last proposition is partly valid; that is to Say, 
if the spherical image of a surface is a conformal representation, the surface 
either is minimal or has its principal radii of curvature equal to one another. 

When the spherical image of a surface is a conforma1 representation, we 
have 

- E K + L H = p E ,  - T K + M H = p F ,  - G K + N H = p G ,  

where p is independent of the differentials in the arc-elements ; hence 

Multiply by N, - 2M, L, and add ; we have 

that is, 
2 K H  = H ( K  + p), 

H(p-K)=O.  

Multiply by G, - 2l7, E, and add ; we have 

H 2 = 2 ( K + p ) .  
Hence either 

H=O, p = - K ;  

so that either the surface is minimal, or 

and so 

that is, the surface has its principal radii of curvature equal a t  every point. 

The latter alternative follows at  once from the original equations. For, 
when /I is not equal to - K, they give 

L M N  -=-=-. 
E 3' G '  

and therefore, a t  every point, the curvature of the normal section is inde- 
pendent of the direction of the section. This can. happen only when the 
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principal radii ;f curvature are equal to one another a t  every point of the 
surface. I t s  integral equation* has already (5 159)heen given in the form 

the only real surface with the property is the sphere, and i t  is given by 
taking 

+ ( p ) = b + a p + ~ ( l + p ~ ) * ,  $ ( p ) = c - i ~ ~ - i a ( l + ~ ~ ) ~ ,  

where a, b, c, R are real. 

Hence, if there be a restriction to real surfaces, we c m  declare that, when 
the spherical image of a surface is a conformal representation of the surface, 
the surface is either minimal or spherical. 

(iii) The spherical images of nul lines on a minimal surface are nul lines 
on the spherical image. 

Taking nul lines as parametric curves on the original surface, we have 

E = 0 ,  @=O. 

Hence, in the spherical image of a minimal surface, we have 

that is, the parametric curves are nul lines on the spherical image. 

(iv) The nul lines are a130 asymptotic lines in the spherical image. For, 
taking them as parametric curves, we have (§ 161) 

that is, the parametric curves (being the nul lines) are asymptotic lines in 
the spherical image. 

(v) The converse of the proposition in (iii) is partly valid; that is to 
Say, if the spherical images of nul lines on a surface are themselves nul lines, 
the surface either is minimal or has its principal radii of curvature equal to 
one another. 

Take the nul lines on the surface as the parametric curves ; then E = O, 
G=O. Now 

e=-EiK+LH,  g = -  G K + N H ;  

hence, when these parametric curves are nul lines on the sphere, we have 

LH=O, NH=O. 

We may have H =  0 ; the surface then is minimal. Or we may have H not 
zero ; and then 

L=O, N=O. 

See a note by the author; Mcssmger of Math., VOL xxvii (1898), pp. 129-137. 

18-2 
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hence 
H a - 4 K = 0 ,  

and the principal radii of curvature are equal. 

The same remark about the latter alternative, as was made at  the end of 
the discussion of the property in (ii), holds in the present case. 

(vi) The images of isonletric lines on a minimal surface are themselves 
isometric lines. 

Take the isometric lines as the parametric curves for the surface ; then 

where P is a function of p only, and Q is a function of q only. Hence, in the 
spherical image of the minimal surface, we have 

that is, the parametric curves in the spherical image of the minimal surface 
are isometric lines. 

The property also follows as an  immediate consequence of the fact that 
the spherical image of a minimal surface is also a conforma1 representation of 
the surface. 

(vii) The converse of the proposition in (vi) is partly valid; but the 
range of alternatives, when no extra condition is imposed, is wider than in 
the preceding converse propositions. 

Suppose that the spherical images of isometric lines on a surface are 
themselves isometric lines. On the surface, take isometric lines as parametric 
curves; then 

where P is a function of p alone, and Q is a function of q alone. As the 
parametric curves are isometric in the spherical image, we have 

e 9 f = O ,  -=- 
Pl Ql' 

where Pl is a function of p alone, and Ql is a function of q alone. Let 

E = P L ,  G=Q& e=Plp ,  g=Q1p; 
then we have 

Plp=-PLK+LH, 
O=MH, 

Qlp = - QLK+ NB. 
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The middle relation can be satisfied by H = O; and the other two relations 
can then be satisfied by 

The surface is minimal; but there must be a specialised relation between 
the isometric lines on the surface and the isometric quality of their image. 

When the surface is not minimal, so that H is not zero, we must have 
M=0. As P= O, M=O, the isometric lines are lines of curvature on the 
surface; the surface accordingly belongs to the class of surfaces which have 
isometric lines of curvature ( 5  64). The other two conditions remain ; they 
impose limitations upon these surfaces. 

As an illustration of the latter case, consider the specialised relation 
between the isometric lines on the surface and the isometric quality of 
their image given by 

3-%- - - constant ; 

we shall have once more the class of surfaces with their principal radii of 
curvature equal. For, choosing the special isometric system (5 63) such that 

P = i ,  Q = i ,  
we then have 

Pi= c, Q, = C, 

where c is a constant. The two conditions now are 

and, by the present hypothe&, H is not zero. Hence 

Thus E = G, P =  O, L = N, M = 0 ; and then the principal radii of curvature 
are equal. 

In  the last alternative, the same remark applies as in (ii) and in (v). 

170. The general intrinsic equations of minimal surfaces can be deduced 
from some of the preceding results. After Bonnet's theorem, we know that 
any surface is determinate intrinsically (that is, Save as to orientation and 
position) when the six fundamental magnitudes, satisfj&g the necessary 
equations of universal condition, are known. 

Let the nul lines be taken as the parametric curves ; then 

E=O,  G - 0 ,  

and, because the surface is minimal, 
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Then (5 56) the Mainardi-Codazzi equations are 

L2=0 ,  N 1 = 0 ;  
consequently 

L = P ,  N = Q ,  

where P is a function of p alone, and Q is a function of q alone. Also the 
specific curvature is 

that is, 

Let F=PQ@; 

then the equation for @ is 

This is a well-known partial equation of the second order; its primitive (first 
given by Liouville) is 

--- l 2  Pl'Ql' 
@ -  (Pl + QJ2 ' 

where Pl is any arbitrary function of p alone and Ql is any arbitrary function 
of q alone. Thus 

We now have the values of E, F, Q, L, M, N; hence the surface is intrinsically 
determinate. , 

The arc-element 
= 2Fdpdq 

The lines of curvature are given by the equation 

and the asymptotic lines are given by the equation 

in the case of both systems of lines, the integral equation is obtainable by 
quadrature. 

Denoting by r and - r the principal radii of curvature, we have 
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so that 

If we change the parametric variables so that 

P Q 
-, dp = id& -, dq = idq, Pl = 8, QI = H, 
Pl QI 

the arc-element is given by 
ds" = (Z + HY dEdq, 

the form used by Bonnet. 

Integral Equations, after Monge and Weierstrass. 

171. We now proceed to a more explicit determination of the integral 
equations of the minimal surface, by obtaining expressions for the Cartesian 
coordinates of a point upon i t  in terms of two parameters. These expressions 
have a variety of useful forms. 

Still taking the nul lines as parametric curves, we have 

Y = 0 ,  A 1 = 0 ;  

and so three of the equations (5 34) satisfied by the Cartesian coordinates are 

xla = MX, y,, = M Y ,  z,, = MZ. 
When the surface is minimal, and the nul lines are parametric, 

M = O ;  
and therefore the equations are 

where VI, U,, U8 are functions of p alone, and VI,  Va, V3 are functions of q 
alone, al1 arbitrary so far as the particular equations of the second order are 
concerned. But we must have E = O ,  Q! = O, al1 the equations of the second 
order having been deduced from values of E, F, G among other relations; hence 

Subject to these two relations, the functions 27 and V are arbitrary functions 
of p and q respectively. 

These equations have already ( 5  59) been obtained, though in the inverted 
sequence, during the establishment of Lie's theorem that a minimal surface 
is the locus of the middle point of a straight line joining any point on one 
nul line in space to any point on another nul line in space. That theorem, 
indeed, is the interpretation of the preceding equations and conditions. 
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The variables p and q are the parametric variables of the nul line; but 
we can take any function of p ,  instend of p itself, and any function of q, 
instead of q itself, and still have parametric variables of the nul lines. Thus 
p and q are not uniquely determinate quantities ; and so some simplifications 
can be introduced by making the variables more precise. Accordingly, take 

u ,=p,  K = q ,  17,=+(p)=+, V*=+(q)=+; 

then the conditions are satisfied if 

Then the integral equations become 

where + is any function of p alone and iJr is any function of q alone, both of 
them arbitrary. This form of the integral equations of a minimal surface is 
usually associated with the name of Monge, by whom they were first 
obtained *. 

172. Another method of satisfying the two conditions, to which the 
functions U and Q are subject, is as follows. Let a new variable u be 
introduced, defined by the relation 

u;+io,'=-uu;; 

manifestly u can be taken as the parametric variable for one set of nul lines. 
The condition among the functions U is satisfied if 

which accordingly can be used instead of the condition. From these two 
linear equations, we have 

VI' u,' -=-- --- du " - $B' (u) - , 
1-uZ i ( l + u 2 )  221 d~ 

Say; as the one relation affecting t h e  quantities U (which are arbitrary 
functions of p) is satisfied, the function F(,u) is arbitrary. Thus 

U, =t/(i - u2)J'(u)du, 

U, =+il (1 + u2) F(u)  du, 

0, =J' U F ( U ) ~ U .  

Application de FAmZyse a la g8o&h-ie, p. 211. 
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Next, let a new variable u, conjugate to u, be introduced by the relation 

v; -iv,,= - Ur;, 

which is conjugate to the former relation ; manifestly v can be taken as the 
parametric variable for the other set of nul lines. The condition governing 
the functions V is satisfied if 

1 V,l+ i V ,  = - V,l, 
V 

which accordingly can be used instead of the condition. Proceeding as 
before, we have 

v, = 4 [(l - v2) G (v) du, 

v, = j vG (v) du, 

where the function G(v) is arbitrary. Hence the integral equations of the 
minimal surface become 

where F ( u )  is any arbitrary function of u alone, and G (v) is any arbitrary 
function of v alone. 

If x, y, z are to be real-that is, if we are to deal with only the real sheets 
of the surface-@ (v) must be the conjugate of F(u). Denoting by Rw the 
real part of a complex variable w, we can write the foregoing equations in 
the form 

Both forms suffer from the disadvantage of appearing to require quadra- 
tures; but the disadvantage can be removed by changing the arbitrary 
functions. Let 

F (u) = f "' (u), O (v) = 9"' (v), 
where f (u) and g (v) are new arbitrary functions of u alone and of u alone 
respectively ; then the quadratures can be effected, with the result 

z = 4 (1  - u"f" (u) + uf' (u) - f (u) 
+ S (1 - 3) 9" (v) + vg' (VI - 9 (v) 

y = + i ( l  +u2) ft'(u) -àuf' (u) + if (u) 
1 

- & i ( l  + v"g" (v)+ ivg'(v) - ig(v) 

a = uf" (u) - f1 (u) + ug" (v) - g' (v) I 
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As before, if x, y, z are to be real, so that then we should be dealing with 
only the real sheets of the surface, g (v) must be the conjugate off (u). In 
that case, the laat set of equations can be written in the form 

x = R {(l - u2) f" (u) + 2uf' (u) - 2f (u)) 

y = R {i (1 + ua) f" (u) - 2iuf' (21) + 217 (u); . 
z = R {2uf" (u) - 2f' (u)} 1 

Al1 these forms are due* to Weierstrass, though the first suggestion of 
satisfying the conditions for the functions U and T in the preceding manner 
was madet by Enneper. 

173. Before proceeding to use these forms of the integral equations of a 
minimal surface, i t  should be noticed that one assumption has tacitly been 
made and two possible exceptions have tacitly been ignored. I t  has been 
assumed 

(i) that the nul lines are distinct ; 
(ii) that u, as defined, is variable and not constant ; 
(iii) that v, as defined, is variable and not constant. 

Account must be taken of the cases, if any, in which these assumptions are 
not justified. 

(i) Let us enquire whether i t  is possible to have a minimal surface on 
which the nul lines are coincident. When the arc-element, as usual, is 

ds2 = Edp2 + 2Fdp dq + Gdq2, 

the condition that the nul lines should coincide is 

EG- FZ=O. 

Let this single direction be taken for the parametric curve q = constant ; in 
order that this curve m a i  be a nul line, we must have 

E=O.  
The former condition thus gives 

F= O. 
As-the surface is minimal, we have 

E N - 2 F M + G L = O ;  

and therefore, as G is not zero because the arc-element is given by 

we have 

that is, 

* B e ~ 1 .  Monatsber., (1866), pp. 612-625, 855-856. 
t Zeitschrift f. Muth. u. Piysik,  t .  ix (1864), pp. 96-125. 
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Then r = 0 ,  r"=0, r " = - & C G , ;  A = 0 ,  A'=O, A1'=0; and so one of the 
sets of equations in 5 34 becomes . . 

q1 = O, y, = O,  z,, = o. 
Hence 

x = p A ,  + A,, y=pBl+ B,, z=pCl+C2,  

where the functions A, B, C are functions of q alone. But we are to have 

hence 

A, (PA,' + A i )  + B1 (PB,' + B,') + cl (pc,' + Cd) = O. 

From the former we have 

A,A,' + B,B,' + C,C,' = 0 ; 

and so the latter becomes 

AlAi + BlBi + ClC,'= O. 

By another of the sets of equations in 5 34, we have, for the present case 

MX = x12 = A,' 

MZ= z,, = C,' 

so that the direction-cosines of the tangent plane to the surface are propor- 
tional to A,', B,', C,'. Let the current Cartesian coordinates in space be 
momentarily denoted by e, 3, c ;  then the Cartesian equation of the plane is 

( ~ - X ) A ~ + ( ~ - Y ) B , ' + ( ~ - Z ) C , ' = O ,  
that is, 

[ A i  + ?B,' + CC,' = A,A,' + B,B,' + CaCi. 

Thus the equation to the tangent plane to the surface contains only one 
parameter. Hence the surface is a developable; and manifestly it is 
imaginary. 

= O, 
in the present case; hence 

xa+ Ys+ 2" O, 
that is, 

A,'$+ B,"+ C,'a =O; 

or the imaginary devdopable surface touches the circle a t  infinity*. 

See 8 55, note. . 
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(ii) Next, suppose that one (but not both) of the quantities u and a is 
constant. Let u be constant ; then take 

where P is a function of p only. The integral equations of the minimal 
surface become 

The curves, v= constant, on the surface are straight lines meeting the circle 
a t  infinity; the surface is an imagina7 cylinder. 

(iii) Lastly, if both u and v are constant, we find similarly 

The surface manifestly is a plane. 

174. These exceptions may now be set aside. We return to the general 
integral equations of a minimal surface ; when i t  is referred to nul lines as 
parametric curves, these equations are 

x = + (1 - u Z ) j  " (a) + u y  (u) - f (u) 

+ (1 - v2) 9'' (v) + vgf (u) - g (v) 
y = 4; (1 + u2)fn (u) - iufl (u) + 

- 8 i (1 + v') 9'' (0) + ivg' (v) - ig (v) 
z=uf"(u)- f l (u )  +vgf' (21) -gf(v) 

where, for the present, the arbitrary functions f (u) and g (v) will not be 
limited by the condition of being conjugate to one another. 

We wnte xl for ax/au, x2 for ax/av, and so for al1 the derivatives. We 
have 

xl=+(l-u2)>f', yl= +i(l+us)f"', z , = u f ,  

x2 = 4 (1 - v9) g"', y, = - ai (1 + va) g"', 2, = vg"' ; 

and therefore 
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thus the arc-element is 
dsa = (1 + UV)' f l'lg"'d~dv. 

Further, 

and therefore 

giving another significance to u and v in connection with the normal to the 
surface *. 

The fundamental magnitudes of the second order are 

Also 

The derived magnitudes of the third order are 

175. The lines of curvature on the surface, being 

in general, now are 
f '"du= - g'"d$ = 0. 

Edu + Fdv, Fdu  + Gdv 

L du + Mdv, Mdu + Ndv 

The asymptotic lines are 

f "'dua + g"'dva = 0, 

= O  

and manifestly are perpendicular to one another. 

The nul lines are the parametric curves. 

These are the oonjugete oomplex oombiietione aiready mentioned in g 17. 
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The geodesics on the surface are given ($118) by 

d2v Fa d v z  F,dv ) + - -  
dua P du F du' 

(The equations are satisfied by - 

u = constant, v = constant, 

thus verifying the theorem (5 92) that the nul lines satisQ the equations for 
geodesics.) When the value of F is inserted, the third of the equations 
becomes 

The lines of hyperosculation are 

176. Three of the tangential coordinates, X, Y, 2 ,  have been obtained 
in terms of u and v. For the remaining coordinate T, we have 

on substitution and reduction. 

For the spherical representation of the minimal surface, we have 

and therefore constructing the coefficients in dB: which gives the element of 
arc on the sphere, we find 

dS* = - dudv. 
(1 +UV)= 

The spherical representation is manifestly conformal, as is known; the 
fr magnification m of the surface on the sphere, being (-K) , is such that 

Also 
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and so (5 163) X, Y, 2, T are four solutions of the equation 

Since the foregoing expression for T involves two arbitrary functions, the 
primitive of this equation is given by 8= T. The quantities X, Y, Z are 
special solutions, derivable by assigning special forms to the arbitrary 
functions f and g in T; thus 

Moreover, the tangential equation of the minimal surface can be obtained 
at once ; for 

so that 

being the tangential equation in question. 

When we deal with only the real sheets of real surfaces, u and v are 
conjugate, while f tu) and g (v) also are conjugate ;' and then some simplifi- 
cation srises in the expression of the tangential equation. Thus for 
Enneper's surface ($177) ,  given by 

we have 

an equation of the sixth class, when made hornogeneous and rational; for 
Henneberg's surface (5 177), given by 

we have 
(T - 4 2 )  (Xe + Ya)5 = 4 2  (X' - Y 9) (3x2 + 3 YS + 2Z2), 

an equation of the fifth class. 

177. Some special examples of minimal surfaces may be taken in 
illustration of the formulæ. 
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Ex. 1. Enneper's surface* h m  already (3 59) been mentioned. We take 

and so 

Since the expressions for x, y, z in termù of the parametem are algebraic and rational, the 
surface i u  algebraic and unicursal. When the parameters are eliminated, the Cartesian 
equation of the surface is found t o  be 

and the surface (known to be of the sixth class) is clearly of the ninth order. 

The equation of the lines of curvature is d$ - d 9 = 0  ; hence when we write 

the quantities a and ,8 are the parameters of the lines of curvature. We then have 

These give 

these are the equations of the lines of curvature, which are plane. 

The equation of the tangent plane is 

2~~+2&4+(a2+$- l)z=2a4-2@+6a2-6b2; 
and therefore 

Taking the plane lines of curvature as parametric curves, we find 

E=G=36 ( l + ~ z + / 3 ~ ) ~ ,  F=O ; 

L= -12, M=O, N=12. 

The asymptotic lines are given by dua+dvLO, that  ie, by 

where cl and c2 are constants; along the former, we have 

~ = 6 ~ ~ - 2 ~ ~ ~ - 6 ( 1 - c i $ ) @ - 4 , V ,  

- y = 6  ( 1 + ~ ~ ~ ) ~ - 1 2 ~ , ~ ~ + 4 ~ 3 ,  

z=6cl2- 12c& 

so that  the line is a twisted cubic, and similarly for the other ; and their spherical image@ 
are small circles 

X+Y=c,(l-Z), X - Y = s ( l - 2 ) .  

The spherical images of the linas of curvature are the small circles 

Zeitschrift f. Math. u. Phymk, t .  ix (1864), p. 108. 
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Ex. 2. Henneberg's surface * is given by 
1 1 

f(u)=--(1-~2)" q(v)=-(l-02)a; 

and the integral equations are 

The surface is manifestly algebraical. I t s  fundamental magnitudes are 
E=O, G=0,  F = 1 8 ( 1 - ~ ~ 4 ) ( 1 - l t l ) ( l + ~ v ) 2 u - 4 ~ - 4 ,  

The lines of curvature are algebraical, being given by the algebraical equation which is 
the equivalent of the differential equation 

and the a~ymptotic lines also are algebraical, being given by the algebraical equation 
which is the equivalent of the differential equation 

du du (1 - u 4 $  -+(*(li)* p = ~ .  
ue - 

Ex. 3. Prove that the order of Henneberg's surface is 16. 

Ex. 4. As another particular surface, let 

ff"(u)=~(u)=e%-',  g"'(u)=~(v)=e-"v-a; 

and, assuming u and v to be conjugate, write 

w, mie, v = ~8 - ie. 
Then 

1 
-y=rsin(O+a)+-sin(8-a) ' 
-z=28sina- 2(logr)cosa 

giving a helicoidt. We have 

t 
so that the arc-element is independent of a ; consequently, the surfaces in the family, 
constituted by d l  parametric values of a, are deformable into one another. Also 

Ann. di Mat., ad. Yer., t. ix (1878, Q), pp. 54-57. 
t Frost, Solid Geometry, (3rd Rd., 1886), p. 218. 
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so that, a t  corresponding points determined by the same values of T and 8 on the family 
of surfaces, the tangent planes are parallel ; and so the surfaces have the same spherical 
representation. Also 

2 2 L=--cosa, dl=-sina, N = 2 m s a ;  
pz 

and therefore, as 
4 LN-Jp= -- 
t-2' 

the Ciaussian memure of curvature is the same for al1 the surfaces at corresponding 
points-which will appear as a property of surfaces deformable into one another. 

The lines of ourvature are given by 

d r  - - + (cota f C O S ~ C ~ )  dt9 = 0, 

and the asymptotic linea by - - (cet o f coseca) d~ = O. 
9' 

Note. Among the family of surfaces, there are two important special members. 
When a = + s ,  the surface is 

When a=O, the surface is 

the catenoid; it  is a surface 

(x2 +,y$ = 2 cosh z, 

of revolution. 

Ex. 5. The catenoid is the only minimal surface of revolution. For any surface 
of revolution, we have 

x=rcos8, y=rsin8,  z=R, 
where R is a function of r only ; so 

E=l +Ra, F = O ,  G=T~,  

L = R " ( ~  +RI+, N=O, N=TR(L+P)-~. 
When the surface is minimal, we have 

rR' (1 + Ra)* + t-2 Rf' (1 +RIZ)-* = O. 
Then 

RI= a (f -a2)-*, 
where a is an arbitrary constant; and so 

r=acosh (R-c)=acosh (z-c), 

where c is an arbitrary constant. This surface ia the catenoid in question. 

Real Surfaces; Algebraic Surfaces. 

178. The analytical connection, between the forniulæ giving a minimal 
surface and the general formulæ in the theory of functions of a complex 
variable, is too obvious to require any laboured discussion. Two initial 
questions, to which in special cases some special answers have been given, 
present themselves' . I n  what circumstances is a, minimal surface algebraic ? 
What are the conditions that i t  should be real ? 
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Two arbitrary (and therefore disposable) functions occur in Weierstrass's 
formulæ for a minimal surface. If these functions f and g are algebraic, the 
formulæ express x, y, z a s  algebraic functions of u and v ; when the parameters 
are eliminated between the three equations, the eliminant is an algebraic 
relation between x, y, z ;  that is, the minimal surface is algebraic. 

The converse also is true ; that is to Say, when a minimal surface is 
algebraic, the functions f and g are algebraic. Consider the nul lines on the 
algebraic surface ; they are given by 

d*+dya+dzz=O, d ~ = p d x + ~ d y .  
Now p and q are algebraic functions of x, y, z, that is, owing to the equation 
of the surface, they are algebraic functions of x and y;  hence these equations 
for the nul lines determine two sets of values for dx : dy : dz, each of which 
is composed of algebraic functions of x and y. But the surface is also 
minimal ; so we have 

from the Weierstrass equations*. One direction of nul lines is given by 

q d u  : yldu : qdu, 
that is, by 

XI : Yi : 2,. 

The direction has just been proved to be expressible by algebraic functions 
of x and y ;  hence u is an algebraic function of x and y. Similarly for v. 
Thus u and v are algebraic functions of x and y ; consequently x and y (and 
therefore z also, owing to the equation of the surface) are algebraic functions - of u and v. 

Now each of the coordinates x, y, z is expressed, by Weierstrass's formu18 
in a form 

e(u) +%(VI; 
hence, as each of them is an algebraiç function of u and v, we have a relation 

A {O (u)  + 9 (v), U, v) = 0, 
where A is algebraic. In this equation, let ariy constant value be assigned 
to v ; then 4 (v) also is constant ; and so the equation determines 0 (u) as an 
algebraic function of u. Similarly i t  determines 9 (v) as an algebraic function 
of W. 

The quantities 0 (u) in the expressions for x, y, z respectively are 

E =  J(1-ua)f"+uf'-f, 
q = ~ i ( 1 + u 2 )  f"-;ufl+;f, 
c= ufl'-f'; 

* As (xl+iyl)/al has the same value whatever parameter of the nul line is used, being 
(dx +idy)/dz for the line, the expression determines the ectual value of u for a given minimal 
surface. Similarly for W. 

19-2 
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and each of these is an algebraic function of u. But 

f = - $ {(l - ua) 1: + i (1 + u?) q + 2 2 4  ; 

and therefore f is an algebraic function of u. Similarly g is an algebraic 
function of W. 

Hence in order to have an algebraic minimal surface, i t  is necessary that 
the functions f and g should be algebraic functions of their arguments. 

179. To discuss the reality of a minimal surface, it is simplest to proceed 
fiom the equations 

When the paths of integration for u and for v are such as to give conjugate 
complex variables at correspondhg points, and when F ( u )  and G(v) are 
conjugate, then x, y, z are real and the surface is mal. The converse is tme. 
The nul directions, as given by 

daY+dya+dzs=O, dz=pdx+qdy,  

are given by conjugate complex variables on a real surface ; as they also are 
given by 

it follows that u and w are conjugate. Also 

xl - iyi = F (u), xg + iy, = G (v), 
and gl -iy,, x2 + iy, are conjugate; hence F(u)  and G(v) are conjugate, 
shewing that the conditions for reality are sufficient. 

The reason, why i t  is simpler to discuss the last matter through the 
functions P and G rather than through f and g, is that, as the functions are 
defined by the relations 

f"' (u) = F (u), 9''' (v) = Cl (u), 
the functions f (u) and g (v) are not definite but are subject to additive terms 

aua + 2bu + cl a'va + 2b'v + c', 
respectively. The effect of such additive terms is to add to  x, y, z respectively 
the constants 

a-c+a'-c' ,  *i(a+c-a'-c'), -2%-2b'; 
and these can be zero without making aua + 2bu + o and a'va + 2b'v + c' 
conjugate, that is, without keeping f (u) and g (v) conjugate. 
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180. I t  is clear that, when functions F ( u )  and O(v) are given, the 
values of x, y, z are determinate and unique Save as to additive arbitrary 
constants that arise in the quadratures; hence given functions F and CS 
determine a minimal surface uniquely save as to its position in space. 

I t  is not, however, the fact that a minimal surface leads to a unique 
determination of functions F(u)  and G (v), in connection with nul lines as 
parametric curves. The quantities u and v are detemined as a pair of 
magnitudes, being the joint parameters of the nul lines. Accordingly, let 
,u' and v' be another pair of magnitudes as parameters of nul lines, and let 
A (u') and B (v') be the corresponding functions in the expressions for x, y, z. 
Then we have two cases :-(i) when u' is a function of u, and v' is a fiinction 
of v ;  (ii) when u' is a function of v, and v' is a function of u. 

In the former case, we have 

(1-ua)F(u)du=(l-ufa)A(u')du' ,  (1-v2)G(~)dv=(1-v'2)B(v')dv', 

(1 + ua) B ( u )  du = (1  + u'3 A (u') du', (1  + va) G (v) dv = (1  + da) B (v') du', 

u F (4 du = u f A  (u') du1, vQ (v)  dv = v'B (v') dv'; 

and these relations can only be satisfied if 

u = u', F (u) = A (u'), v = v', G (v)  = B (v'). 

No new expressions for z, y, z are given in this case. 

In  the latter case, we have 

(1  - ua) F ( u )  du = (1  - v ' ~ )  B (v') dv', ( 1  - v2) Q (v) dv = ( 1  - u ' ~ )  A (u') du', 

( 1  + u2) F(u)  du = - (1 + v'=) B (v') dv', (1  + va) G (v )  dv = - (1 + d a )  A (ut) du', 

uF (u)  du = v'B (v') dv', vG (v) dv = u'A (ul)  du'; 

and these relations can only be satisfied if 

uVf = - 1, F ( u )  = - v"B (v'), ulv = - 1, Q (v)  = - ut4A (u'). 

When the surfaces are real, F and Ci are conjugate, and A and B are 
conjugate ; and 

1 
A (u') = - - G (21) 

ur4 

Thus there are two forms of function, F (u) with its conjugate, and 
1 - - G (- l) with its conjugate, for the expressions of z, y, .z as s point on a 
u" u' 

given real minimal surface. 
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Consider, further, this double analytical representation of a real minimal 
surface. The direction-cosines of the normal in the first representation are 
given by 

u + v  v - U  X= - y =  i- U V -  l .  z=- 
l + u v '  1 +UV'  1  t u v '  

and in the second representation the direction-cosines of 
given by 

u' + v' . v' - U' X f = -  - - u'v' - 1 2'-- 
1 + ufvf ' 1  + u'vf ' 1 + u'v' 

But 
U V ' = -  1, u f v = - 1 ;  

hence 
x'=-x, y/=- y, Z1=-Z:  

the normal are 

Consequently, the normals are in opposite directions in the two repre- 
sentations. 

Double Surfaces. 

181. One interesting set of surfaces aises when the functions in the 
expressions for a real minimal surface are such that 

being of course only a single relation. The first representation then gives 

2&= ( 1 - d ) F ( u ) d u +  ( 1 - v z ) G ( v ) d v  

2 d y = i ( l + u a ) F ( u ) d u - i ( l  +v2)G(v)dv  , 

dz  = u P ( u )  du + vQ ( v )  dv 1 
The second representation then gives 

2dx = ( 1  - kY) A (u') du' + ( 1  - v'" B ( v f )  dv' 

= (1 - dt) F (u') du' + ( 1  - d a )  G (VI) dv', 

and similarly for the others ; that is, the second representation gives 

2da = ( 1  - d a )  F (u') du' + (1  - d a )  G (v') du' 

dz = ulF (a') du' + v' G (v') dvf 

1 2dy = i ( 1  + uT2) F (ut)  duf - i ( 1  + d 2 )  G  (v') dv' . 
J 

Now 

and therefore the surface, in the vicinity of the point u, v, has exactly the 
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1 1  same variations as in the vicinity of the point - -, - -. The values of the 
u 21 

parameters a t  any point are determinate functions of the position of the 
point ; hence, when the integration for x, y, z is effected, either 

(i) the values of x, y, z in the first representation differ from those in the 
second by constants ; or 

(ii) the values of x, y, z in the first representation are the same as those 
in the second. 

In the first case, a suitable bodily translation (determined by the constants) 
will make the two sets of values of x, y, z the same ; that is to Say, a suitable 
translation of the surface will bring the part of the surface in the vicinity of 
the point u, v to coincide with the part of the surface in the vicinity of the 

point - 1 - 1. Such a surface is periodic and therefore not algebraical. 
v '  U 

In the second case, the part of the surface in the vicinity of the point u, v 
coincides (without any translation) with the part of the siirface in the vicinity 

of the point --, -- l. When the function F is algebraical, such a surface F 
v u 

is algebraical. 

Now the normals a t  these two different parametric points, which geo- 
metrically coincide on the surface, lie in opposite senses on the same line. 
Accordingly if we trace a path on the surface from the point u, v to the point 

* 7 
1 1  

- - --, we return to the same geometrical position on the surface while, 
v '  U 

at the end of the path, the normal assumes a position directly opposite to its 
initial position. Thus i t  is possible, without any breach of continuity, to 
pass from any position to the same position as though the surface were 
pierced a t  that place ; in other words, the surface hm only one side*, instead 
of the familiar two sides. The notion of these minimal surfaces is due to 
L ie t  who cdled them double surfaces. The test that a surface should be 
double is that, if F and (7 are conjugate functions in the quadrature 
expressions for the coordinates of a point on a real minimal surface, the 
relation 

should be satisfied identically. 

The simplest example, in mode1 form, of a one-sided surface occurs when a long rectangular 
strip of paper ABCD (of which AC and BD are the diagonala) is twiated once, or an odd 
number of times, and then joined into a twisted ring by making the edge AB coincide with the 
edge CD so that A mincides with C and B with D. 

t Math. Ann., t. xiv (1878), pp. 331-416 ; ib., t. xv (1879), pp. 4 6 5 6 0 6 .  
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182. Special examples of double surfaces can be obtained directly by 
solving (either generally or specially) this functional equation. Let 

and let +, be the function conjugate to 4 ; then the equation is 

A solution of this equation is given by 

#I ( t )  = ia, 
where a is a real constant ; then 

and we have the helicoid (§ 177, Ex. 4), a periodic surface. 

Another solution is given by 

4 ( t )  = a ( t  + f) > 

where n is a real constant; then 

and we have another periodic surface. 

Another solution is given by 

where a is a real constant; then 

and then we have Henneberg's algebraic surface (5  17'1, Ex. 2). 

The general solution is given by 

+ c,, (tzmei'w - t-ane-.icih, 
m = l  

), 

where the quantities c and a are real. 

183. We have already (5 59) dealt with Lie's method of generating 
minimal surfaces by taking them as the locus of the nliddle point of the 
chord joining any point on one nul line in space to any point on another nul 
line in space. This method of generation (which really is an interpretation 
of the Monge formulæ and the Weierstrass formulæ) is the foundation of Lie's 
researches on minimal surfaces. 
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When the nul lines are one and the same, the chord comes to be a chord 
joining any two points on the nul line in space ; the locus of its middle point 
still is a minimal surface; and it is the fact that this minimal surface is a 
one-sided or double surface. The proof of this theorem, which is due to 
Lie, is left as an exercise. 

Deformation of minimal surfaces. 

184. The general discussion of the deformation of surfaces has been 
reserved for a separate chapter. But the deformation of minimal surfaces, 
limited by the restriction that the surface is to remain minimal, is so 
particular th& i t  may fitly be discussed here, especially as the detailed 
results lead to other issues. 

Accordingly, let a minimal surface be deformed without stretching or 
tearing so as to remain minimal if that be possible. The arc-element must 
remain unaltered ; and therefore, if u, and v, be the parameters of the nul 
lines in any deforrned configuration, we must have 

( 1  + uv)l BOdu dv = ( 1  + u,v,)P FIGl du,dv,, 

where F and G are the functions in the Weierstrass equations, being func- 
tions of u alone and v alone, respectively, and likewise for FI and G, with 
regard to v, and v, respectively. Now 

8% 8% av, aw=,au+-d~, du av dv,=-du+-du; au av 
and therefore 

Hence either u, is a function of 'U only and v, is a function of v only, or zc, is a 
function of v only and v, is a function of u only. The alternatives are 
effectively the same ; so we take 

u,=X(u)=X,  q = p ( v ) = p ,  
and then 

( 1  + UV)" FG = ( 1  + hp)a FIGlh'c'. 
a= Taking logarithms of both sides and then operating with -, we find auav 

that is, 
dudv 

4  = 4  d%dv, 
(l+uv>l (1+u,vI)B' 

Hence the arc-elements in the spherical representations of the minimal 
surface in its different stages are the same ; and so the spherical representa- 
tions either are equal to one another or are symmetrical. But the deformation 
is continuous and the spherical representations begin by being the same; 
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hence the spherical representation a t  any stage is equal to the initial 
spherical representation. Consequently, choosing an appropriate location of 
the two forms of the minimal surface, we have 

that is, 

Then 

Now F and li: are functions of u alone, while Q and Cfl are functions of v 
alone ; hence 

$2 - constant = ek, 
P Gl - 

Say, where a is any constant; that is, 

& = Fek, û, = Geia. 

Minimal surfaces thus determined are called surfaces associated with the 
minimal surface; and so we have Bonnet's theorem that the only minimal 
surfaces, which can be deformed into a given minimal surface, are its 
associated surfaces. 

185. Among the associates of a minimal surface, there is one of special 
importance. It is given by taking a = g r ,  so that 

F1=iF,  G1=-àG; 

and i t  is called the adjoint surface (sometimes Bonnet's adjoint surface). 
Let xo, y,, zo be the point on i t  which corresponds to the point x, y, z on the 
original minimal surfâce ; then, writing 

x=A(u)+A'(v), y=B(u)+Bf(v) ,  z=G(u)+C'(v) ,  
we have 

xo = iA (u) - iAr  (u), y. = iB (u) - iG) (v), z, = iC (u) - iC' (v). 

When the original minimal surface is real, the adjoint surface is real. 
The two surfaces are algebraical together. And the same holds for every 
associate of a minimal surface. 

The adjoint of the adjoint is not the original minimal surface; it is 
syrnmetrical with that original through the origin of coordinates. 

The adjoint surface is not definite in position. For we can write A(u) t a  
and A' ( w )  - a in place of A (u) and A' (v), without altering the original 
surface; but the effect is to add a terrn 2ia to xo. Similarly for y, and 2,. 

And the same holds for every associate. 

We have 
x-%=2A(u),  y-iyo=2B(u), z- . iz ,=2C(u),  

~+iq ,=2A ' (v ) ,  y+&=2B'(v), z+izo=2C'(u); . 
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and therefore, if 5, 7, r a r e  the coordinates of the point which, on the associate 
determined by a, corresponds to x, y, z, we have 

f =  A (u)ek+ A'(v)e4 
= xcos a+xos ina  

q = y COS a + y, sin a . 
~ = z c o s a + z , s i n a  

Again, we have 
1 

dx, = iq du - ix2dv. 

But (3 27) we have, in general, 

Pzl - Zy, = (x2 E - xlF) V-l, Yz, - Zy, = (x9F - xl G )  T-] ; 

and therefore, in the present case, as E = O, # = O, V =  iF, 

Pz,-Zy,=iq, Yz,-Zy,=- k2. 
Consequently 

dxo = (Pz, - Zyl) du + (ET.= - 2%) du 

= Ydz - Zdy, 

and similarly for the others ; that is, we have 

dx,, = Ydz - Zdy 
dy, = Zdx - Xdz . 
dz, = Xdy - Ydx 1 

These results are due to Schwarz; and they again shew that the adjoint 
surface, being obtainable through quadratures, is not definite in position. 

Further, we have 

and similarly for the other coordinates ; hence the direction-cosines of the 
normal to the adjoint surface are the same as those of the normal to the 
original surface, that is, the tangent planes to the two surfaces are parallel. 
Also 

dxdxo + dy dy, + dzdz, = O, 

on substituting the values of dx,, dy,, dz,; that is, corresponding curves on e 
minimal surface and its adjoint are perpendicular to one another at  corre- 
sponding points. 

The first of these results (but not the second) holds for any associate 
surface. For 

and similarly for the other coordinates; thus the direction-cosines of the 
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normal to the associate are the satne as for the original minimal surface, 
and so the tangent planes are parallel. But 

d x d t  t dydq + dzdr  = (Zdz9) cos a + (Zdxd.~,,) sin a 

which vanishes only if a = 37r ; and 

= ds%in a, 

which vanishes only if a is O or T. 

The lines of curvature on the original minimal surface are 

Fdu2 - Gdv2 = O 

(F and G being the functions in Weierstrass's expressions), and its asymptotic 
lines are 

Fdus + Gdv2 = O. 

On the adjoint surface the lines of curvature are 

iFdua - (- iG) du2 = 0,  

which therefore correspond to the asymptotic lines of the original ; and the 
asymptotic lines are 

iPdu2  - iGdv2 = 0, 

which therefore correspond to the lines of curvature of the original. And so 
for other properties. 

Minimal surfaces under assigned conditions. 

186. The special results just proved and due to Schwarz, which relate to 
the adjoint surface and determine i t  by a process of quadrature, have been 
applied by him to a problem of greater importance in the theory of minimal 
surfaces. 

From any of the integral equations of a minimal surface, it appears that 
they contain a couple of arbitrary functions in their expression; and it is 
natural to consider alike the character and the extent of the conditions which 
the functions can help to satisfy. On the other hand, we know that the 
differential equation of minimal surfaces is substantially a partial differential 
equation of the second order, whether i t  occurs in the intrinsic form 

E N -  2FM+ GL=O, 
or in the explicit form 

with the customary notation. 
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Now as regards such partial equations of the second order, the funda- 
mental existence-theorem* (due to Cauchy) establishes the result that a 
unique uniform integral z of the partial equation exists which is determined 
by the conditions :- 

(i) that, along any assigned curve (not being one of the ' characteristic' 
curves), the quantity z assumes an assigned value, and 

(ii) that, along the same assigned curve, one of the derivatives of z 
assumes an assigned value. 

In the case of the partial equation for minimal surfaces, the characteristic 
curves are given by 

(1 + q2) dy2 + 2pqdxdy + (1 + p2) d& = O, 
that is, by 

dzS + aya + dza = 0, 

which are the nul lines on the surface. Therefore, in applying Cauchy's 
theorem, it is necessary to exclude the nul lines from the curves along which 
external conditions can be assigned. Further, along any non-excluded curve 
the value of z is given, as also is that of one of its derivatives, Say p ; thus, as 
we everywhere have 

dz = pdx + qdy, 

and as we are given z and p along the curve, we know q also ; that is, we 
know p and q dong the curve. Now at  any point on the surface, the 
quantities p and q determine the direction-cosines of the normal to the 
surface, and therefore determine the tangent plane. We therefore can 
restate Cauchy's general theorem for partial equations of the second order, 
when it is applied to the equation of minimal surfaces, as follows :- 

A minimal surface is uniquely determinate by the condition that it passes 
through an assigned curve and that, along the curve, it touches an assigned 
developable surface through the cumie, provided the curve is not a nul line upon 
the surface. 

To have the surface explicitly determinate, it is necessary to find the 
forms of the arbitrary functions which shall satisfy the assigned conditions ; 
for that end, Schwarz's results can be used. 

187. Without entering into al1 the cases, let us assume that the assigned 
curve is such that, along its range, the coordinates of a point x, y, z and the 
direction-cosines X,  Y, Z of the tangent plane to the msigned developable 
surface, can be expressed in terms of a current parameter. We have :. 

x - k o = 2 A ,  ~c+ix~=2A', 

See the author'e Theory of Differential Equutions, val. ri, ohepe. xii, xx. 
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and similarly 

These equations, when substitution is made for the values of z, y, z, X, Y, Z 
dong the curve, determine the forms of the functions A, BI 0, A', B', C'; and 
then taking two parameters p and q, conjugate for real surfaces, we have the 
integral equations of the minimal surface in the form 

x=A(p)+Af (q ) ,  y=B(p)+Ef(q) ,  z=C(p)+C ' (q ) ,  
that is. 

2z = (2 (p) + z (q) ]  - i p x d v  rd4 
4 J 

One remark, by way of warning, must be made, because the analysi~ will 
not be developed further. The nul lines can remain as parametric curves, 
when any arbitrary functions of the parameters are substituted for the 
respective parameters; and i t  must not therefore be assumed (it is not the 
actual fact) that the variables p and q in the preceding analysis are the 
variables u and v in the Weierstrass equations for a mininml surface. 

Some examples will illustrate the working in detail. But it soon appeam 
that the determination of a minimal surface in connection with assigned 
conditions becomes a problem in the theory of functions and differential 
equations; a full exposition is given in Darboux's treatise. 

Ex. 1. Let it be required to find the minimal surface, which passes through a circle 
of radius unity lying on a right circuiar cone of semi-vertical angle and touches the cone 
along that circle. 

Along the circle, we have 

x=cm 8, y =sin 8, z=cot a, 

X=coe.Bcost~, Y=sinecosa, 2s-s ina ;  
and therefore 

Ydz-Zdy=sin acos @dB, 

Zdx - Xdz=sin a sin 8 dB, 
Xdy-IT&-eo~adB. ~- '- 
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Hence 

x= A (P)+A'(~)  

- ,& j cosp+cos~)+&is in  a(sin q-sinp) 
=cm 4 ( p  +p) (cos + (p -p )+  i sin a sin 4 (q -p)}, 

~ = B W S W ~ )  
=sin+(p+q) {COS *(q-p)+isin asin 4 (p-p)}, 

e=G(p)+C(q)  
=cet a + j i ( q - p )  cos a. 

When p and q are eliminated between these three equations, the resulting equation (being 
that of the minimal surface) is 

1% { (d +y2)t+($+y2-~~2 a) 
1 +sin a 

The surface is a catenoid. 

Ex, 2. Find the minimal surface which touches an eiiipsoid dong a line of ciirvature. 

Take the line of cumature as  given bg 

Along the line in question, the quantities x, y, z, X, P, Z are the same for the minimal 
surface as for the ellipsoid ; hence, writing 

we have (S 78) 

Then 
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and therefore, after the investigatiou in the text, the coordinates of the curreiit point on 
the required minimal surface are given 5y 

Ex. 3. A minimal surface is drawn through a helix of pitch tan-1 c upon a circidar 
cylinder of radius unity having its axis along the axis of z; and the minimal surface 
touches the cylinder along the helix. Prove that its equation can be exprevsed in the 
form 

Ex. 4. Suppose that a minimal surface is such that a real straight line can be drawn 
upon it. 

Take the straight line for axis of s ;  then along this iine we have 

$=O, y=o, z=o; 
and so the equations of the minimal surface are 

where X and Y are appropriate functions of 2 subject to the relation 

When u and v are interchanged, the value of z remains unaltered, while x and y change 
their signs but otherwise are unaltered; hence the axis of z is an axis of symmetry for the 
surface. In  other words, when a straight line can be drawn upon a minimal surface, it is 
an axis of symmetry-a result due to Schwarz. 

Ex. 5. As another example-(the investigation is due to Lie)-consider the possibility 
of a minimal surface having a plane line of curvature. We know (g 128) that the plane 
cuts the surface a t  an angle that is constant along the line ; and that, conversely, if the 
angle be constant, the line of intersection is a line of curvature. Let this constant angle 
be denoted by a 

Take the plane for the plane of x, y. The values of X, Y, Z along the curve are 

and along the curve, we have 
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Then the equations of the minimal surface are 

The surface is algebraical if, and only if, x (s) and y (s) are algebraical. 

N o t e  on the range  of a minimal surface. 

188. We now proceed to the deferred consideration of the single remain- 
ing test ($ 16'1) that applies to the second variation. The test nlust be 
satisfied if the minimal surface, which passes through an assigned curve and 
touches an assigned developable along the curve, is to provide an actual 
minimum. For the complete consideration of this criterion, some of the 
laborious analysis in the calculus of variations would be needed; here, the 
discussion will be restricted to the case of weak variations, so that we shall 
require a positive sign for the value of u, where u denotes the second varia- 
tion. We have 

where K, now necessarily negative, is denoted by - l/aa; the length 1 
(measured normal to the surface) is an arbitrary function of p and q, subject 
to the condition of vanishing along the assigned curve. It will be proved 
that the requirement of a positive value for u imposes a possible limitation 
upon the range over which the surface provides an actual minimum, just as 
there is a possible limitation upon the range for which a geodesic ($ 89) 
provides an actually shortest distance on a surface. 

The expression for u must be modified. We take any two variable 
quantities A and B, functions of p and q, reserving their assignment for 
subsequent use. The value of the double integral 

extended over a region of the variables bounded by the assigned curve a t  
one limit, and by any other curve at  some other limit (the latter merely 
indicating a range of the minimal surface to be considered), is zero ; because, 
for the weak variations adopted, we assume that E vanishes a t  each boundary 
of the range. Adding this zero integral to 2u, we have 
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where 
1 U =  y(E l~ -2F l lZ ,+GZ~)+ l  

and U is expressible in the form 

provided the quantities h, A, B satisfy the relations 

Fx,  Q x ,  A =  ----- 
V x  V k '  

EX, P X ,  B = - - - + - -  
V h  V A '  

Obviously A and B can be regarded as known, when h is known. Eliminating 
A and B between the three relations, we have the equation for h in 
form 

the 

that is, 

Eh, - 2 F L  + GA,, - (Er" - 2FI" + Gr) h, 

a partial differential equation of the second order. 

The characteristics for the solution of this equation are 

Edp" 2Fdpdq + Gdqa = 0, 

that is, are the nul lines of the surface, neither of which (5 186) can be an 
assigned bonndary of the surface. Hence, by Cauchy's theorem already 
quoted (5 186), a unique regular integral of this equation exists, satiseing 
the conditions :- 

(i) the magnitude X ~hall,  like 1, vanish along the assigned curve 
through which the minimal surface must pass ; 

(ii) along the assigned curve, h, and & shall differ from I, and 1, 
respectively by relatively infinitesimal quantities. 

When is thus determined, the equation A = x (p, q), for parametric values 
of X, gives curves on the surface, one of them coinciding with the assigned 
curve when X = 0. 

The subject U, in the modified integration for the second variation, is 
everywhere positive for real surfaces, because 

E>O, G > O ,  V>O, 

IRIS - LILLIAD - Université Lille 1 



1881 MINIMAL SURFACE 

unless it should happen that the quantities 

could vanish together, that is, unless the relation 

z =  ch 

(where c is a pure constant) could hold, for variations 1 over the considered 
range of the surface. The relation holds at  the initial stage of the range, 
because both 1 and X vanish there. If, therefore, after the initial stage, 
h could again vanish either a t  or before the final stage, the relation could 
hold over the whole considered range of the surface. The second variation 
then would be zero, for an assumed choice 1 = cX; disregarding variations 
of higher orders, we could not declare that the included range of the minimal 
surface provides an actual minimum area. 

Accordingly, we trace upon the surface the family of curves 

X(P, q ) = h  
for parametric values of X ;  we call the assigned curve, given by h = O a t  the 
boundary of the integral, the initial curve. As h varies, positively and 
negatively, it may again assume a zero value upon the surface ; we call the 
curves, nearest to the initial curve in either sense along the surface, conjugate 
to the initial curve. We therefore infer the result :- 

In  order that an actual minimum area may be provided by a minimal 
surface, which is required to pass through an assigned curve and to touch an 
assigned developable dong the curve, the range of the surface must not extend 
so fur as the conjugate (ij amy) of the assigned curve on the surface. 

It follows therefore that the range of a minimal surface must not extend 
so far as the conjugate of any curve upon it, if the area of the surface is to be 
an actual minimum for small variations. If only the descriptive property- 
that the mean curvature is zero-is required, it would be possessed by the 
surface over its whole extent; just as in the case of geodesics, the geodesic 
property-that its principal normal is the normal to its surface-is possessed 
along its whole course without any reference to conjugate points. 

The more detailed consideration of the conjugate of any curve on a 
minimal surface belongs to the region of the calculus of variations. 

EXAMPLES. 

1. Shew that the surface 
COS ax 

eag = - 
cos ay 

is minimal ; that i t  is the locus of the middle of a chord joining any two pointa on 
a particular nul curve in space ; and that it is the only minimal surface such that 

z = f  ( 3 + 9  (y). 
20-4 
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Obtain the equation of the adjoint surface in  the form 

sin az=sinh ax sinh ay. 

2. Two surfaces can be deforrned into one another, and their tangent planes at 
corresponding points are parallel; shew that they are associated minimal surfaces. 

3. Two surfaces can be deformed into one another and corresponding arc-elements 
are inclined to one another at  a constant angle ; shew that they are associated minimal 
surfaces. 

4. Shew that for a minimal surface, given by the equations 

2z( l  -c2)9=c(8++)+sin tJ+sin 4 
2y(l-c2)*=i(0-++c(sinB-~in+)} , 

22= -cose-cos l#l 1 
the lines of curvature become two families of circles in the spherical representation. 

5. In Weierstrads equations for a minimal surface, take 

F (u) = a d ,  G (v) = a'vk, 

where k is a real constant, while a and a' are conjugate constants ; shew that the surface 
can be deformed into a surface of revolution. 

6. A minimal surface possesses a plane geodesic ; shew that the plane of the geodesic 
is a plane of symmetry for the surface. 

7. A minimal surface (Catalan's) is given by the equations 

x = sin2 u + sin2 v, 

y = 2i (sin u -sin u), 

2z=2u+sin 2u+2v+sin 2v ; 

shew that i t  contains one geodesic which is a parabola, and another which is a cycloid. 

S. Shew that the (Henry Smith) surface 

z ($+y2)=z2 
has only one side. 

9. I n  Weierstraus's equations for a minimal surface, take 

F(u)  = (; - (A + u)" , 
where j3 is an odd integer ; shew that the minimal surface is a '' double " surface. 

10. Given two 'ssociated minimal surfaces; shew that the lines of curvature on 
either of them correspond to isogonal trajectoriea of the lines of curvature on the other. 

11. On two adjoint surfaces, corresponding geodesics are drawn; shew that the 
circular curvature of one a t  any point is equal to the torsion of the other at the 
corresponding point. 

IRIS - LILLIAD - Université Lille 1 



CHAPTER IX. 

THE present chapter is devoted to some special classes of surfaces, other than minimal 
surfaces. The vast variety of modern investigations leads to  a n  extraordinary amount 
of detailed result. Here, we shall deal with only some of the principal classes of such 
surfaces. 

Liouville surfaces have already been discuased, from the point of view of their most 
important property-that they can be geodesically represented upon one mother, and 
that (for the explicit equation of their geodesics) they admit quadratic integrals of the 
critical equation of geodesics (5 157). 

Reference (to the extent of constructing the essential partial differential equation of 
the second order which serves for their construction) has also been made to surfaces 
having a constant measure of curvature-whether the Gauss memure, or the mean 
memure (55 54, 57). 

We have also dealt, briefly, with surfaces which possess lines of curvature of the 
isometric type ($ 64). They will occur, later, under the discussion of triply orthogonal 
systems of surfaces in space. 

Thus, for various reasons, a selection of two special systems of surfaces is made for the 
prasent chapter. 

One of these systems is characterised by the property that the lines of curvature (in 
either or in both the sets) are composed of plane curves or of curves that lie upon a 
sphere. The special restriction to plane curves or to  spherical curves is due to a 
theorem of JoachimsthalJs (S 128) which facilitates the construction of integral equations 
of the surfaces. The subject has been the cause of many investigations in the paat; 
special note should be made of the memoirs by Serret*, Cayley t, Rouquet $, of portions 
of Darboux's treatises, and of Bianchi's treatisell. The literature of this part of the 
subject is so great that no attempt a t  a comprehensive bibliography can here be made; 
many references will be found in the authors just quoted. 

Liouville's Journal, t. xviii (1853), pp. 113-162. 
1. COU. Math. Pupers, vol. xii, pp. 601-638. 
$ Mém. de PAc. des Sciences, Toulouse, 8' Ser., t. ix (1887), t. x (1888). 
S Vol. i, pp. 114-118; vol. iv, pp. 198-266. 
II Vol. ii, chap. xxi. 
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The other of the systems of surfaces is characterised by the property that a functional 
relation-as arbitrary as can be chosen-exists betweeri the principal radii of curvature. 
Such surfaces are called Weingarten swfaces ; special instances, such as those which have 
one or other of the measures of curvature equal to a constant, are already known; the 
more general investigation of such surfaces is due to Weingarten, to whose memoirs (as 
to  other investigations) detailed reference is given in Darboux's sections dealing with the 
~iubject* 

Swfaces with Plane or Spherical Lines of Curvature. 

189. We have seen (§ 129) that, if a line of curvature on a surface is a 
plane curve, the plane cuts the surface a t  a constant angle; and that, if a 
line of curvature is a spherical curve (that is, if i t  lies on a sphere), the 
sphere and the surface cut at  a constant angle; the two results being 
connected with one another owing to the property (5 79) that inversion 
conserves Lines of curvature. In  each case, the constancy of the angle is 
maintained along the particular line of curvature. When there is a family 
of plane lines, or when there is a family of spherical lines, the angle that is 
constant along any one line can (and usually does) Vary from one line to 
another. The simplest illustration is provided by surfaces of revolution. 

The property, originally discovered by Joachimsthal, can be used to 
obtain a first integral of some associated differential equations of the surface ; 
and the two cases-according as the lines of curvature are plane or are 
spherical-n be treated together analytically. 

Let an equation 

be taken; i t  represents a sphere if k= 1, and a plane if k =  O. I t  is to be 
the sphere or the plane, as the case may bel containing the line of curvature ; 
and therefore the quantities a, b, c, u will be functions of one parameter, 
which will be constant along the line and will Vary from one line to another. 
The property, that the sphere or the plane cuts the surface a t  a constant 
angle, is analytically expressed by a relation 

where 1 is constant along the line of ciirvature and usually varies from one 
line to another; that is, 1 also is a function of the parameter of the lines of 
curvature in the family. 

See his treatise, vol. iii, Book vii, chsps. vii, ix, x. 
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190. Before proceeding further with the discussion of the problem, we 
may note one reason (chietly of manipulative ease) why consideration is 
restricted mainly to those classes of lines of curvature which are either plane 
or spherical. It is not inconceivable that a family of lines of curvature 
should be curves lying on a family of quadrics; thus they might be helices 
on a family of circular cylinders. The analysis, however, in al1 such cases 
becomes more complicated ; for the first integral, similar to the Joachimsthal 
property for planes and spheres, appears to be unobtainable. 

To see the distinction between the cases, let the surface be referred to its 
lines of curvature as parametric curves. We then have 

F = O ,  M = O ;  
and then (§ 29) 

EX,=-Lx,, EY,=-  Lyl, EZ,=-  Lz,, 

Now suppose that the line of curvature, given by p = constant, lies upon a 
surface 

4 (4 y, 2, p )  = o. 
The direction-cosines of the line at any point are proportional to x2, y2, a,; 
so we have 

along the line, that is, we have 

along the line. What is required, to secure some progress in the investigation, 
is some less differentiated equivalent relation. 

Let the surfaces + (x, y, z, p) = O be a family of planes 

where a, b, c, u are functions of p only ; the foregoing equation is 

aX, + bY, + cZ, = O, 

and therefore an integral is 

a X + b Y + c Z = 2 ,  

where 1 is a function of p only. This gives Joachimsthai's theorem concerning 
plane lines of curvature. 

Next, let the surfaces 4 (x, y, z, p) = O be a family of spheres 

d + y 2 + C - 2 ~ ~ - 2 b y - 2 c z - 2 ~ = 0 ,  
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where again a, b, c, u are functions of p only ; the foregoing generai equation 
becomes 

( x - a ) X a + ( y -  b ) Y , + ( z - c ) Z a =  0. 
But we always have 

x x , +  Yy2+ Zz,= O ;  
hence 

1 

and therefore 
( x - a ) X + ( y - b ) Y + ( z - c ) Z = l ,  

where 1 is a function of p only. This gives Joachimsthal's theorem concerning 
spherical lines of curvature. 

I n  each case, the surface of which the line in question is a line of 
curvature, and the surface (plane or spherical) on which the line lies, cut 
a t  an angle that is constant along the line. If there were the same integral 
for any other surface, we should have 

where the factor {("$y + ($y + @)'i -* rnay be capable of ~implifieation 

by the relation + (x,  y, z, p)  = O ; but the plane and the sphere appear to be 
the only surfaces which allow the integral. 

It is conceivable that we could have an integral 

a+ a4 a4 X - + Y -- + Z  - = function of p only, ax ay a~ 
equivalent to the general relation 

I n  that case, we must have 

Now this equation will be satisfied if a quantity p exists such that 
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When the surfaces + (x, Y, 2, p)  = O are quadrics, Say 

a ~ + ~ + c z a + 2 f ~ ~ + 2 g z x + 2 h x y + 2 2 1 x + 2 m y + 2 n z + u = 0 ,  

where the coefficients are functions of p alone, we have 

so that p is a function of p only. In  the case of a plane, the three equations 
are evanescent, for p = O. I n  the case of a sphere, we have 

the three equations are satisfied identically. I n  other cases, the three 
equations, combined with 

X 2 + Y B + Z ~ = 1 ,  

determine X, Y, Z as functions of p alone. Thus 

x , = o ,  Y2=0,  & = O ,  
and so 

i!Jx,=O, Ny,=O: Nz,=O; 

and therefore as we cannot have x2, y2, z, al1 zero (for the surface would then 
be a curve), we must have 

N = 0 ,  

in addition t o  M = O. The Mainardi-Codazzi relations become 

I ; , = ~ ' L ,  O =  r fx ,  
and we cannot now have L = O  ; hence F" = O, that is, C f ,  = O so that O is a 
function of q only which can easily be made unity. Thus the arc is 

ds2 = dqa + Edp2, 

and the surface is developable; the lines of curvature, p=constant, are 
geodesics and so are plane. There is no new case. 

We thus, in the main, restrict ourselves for the present purpose to lines 
of curvature that are plane or spherical. 

191. Two remarks may be made in passing. 
In  the case of a developable surface (but not in the case of any other 

ruled surface) one system of lines of curvature is made up of the generators, 
al1 of which touch the edge of regression ; and the other system is made up 
of their orthogonal trajectories, which are the superficial involutes of that 
edge. A generator, however, does not lie in a definite plane; and so i t  is 
simpler to consider developable surfaces apart. 

Again, one system of lines of curvature may be cimles. When a circle is 
regarded as a plane curve, its plane is definite; when i t  is regarded as a 
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spherical curve, its sphere may be indefinite. Accordingly, unless the family 
of spheres is given, i t  is usually simpler to discuss circular lines of curvature 
as plane curves than to discuss them as spherical curves. 

Sewet-Cayley Treatment of the Two Cases. 

192. We now resume the analysis of § 189; and we assume that the 
other system of lines of curvature also is composed of curves that are plane 
or spherical. Let the family of surfaces, upon which they lie, be 

where K is either O or 1, and where a, fi ,  y, v are functions of q alone; then 
we have 

(Kx - a ) x  +(/Cycy/3)Y+ (KZ- 'y) Z = h ,  

~ h e r e  k and K are O or 1 independently of one another, a, b, c, zc, 1 are 
functions of p alone, and a, fi, y, v, X are functions of q alone. The first 
five of these equations determine five of the quantities x, y, z, X, Y, 2, p, q 
in terms of the other three, Say X, Y, Z, p, q in terms of x, y, z. When the 
values are substituted in the sixth and i t  is integrated-we shall prove that 
the " condition of integrability " (5 30) is satisfied-we have a new equation 
1 = 0, Say ; we then have six equations and can regard them as determining 
x, y, B, X, Y, Z in terms of p and p. We thus require this integrated 
equation. 

where X also is a function of q alone. Hence, for the whole surface, we have 
the equations 

O = k ( Z +  ya+z2) -2ax -2by-2cz -2~ \  

Let the direction-cosines of the two lines of curvature through a point 
E, y, z on the surface be proportional to dx, dy, dz for the line along which p 
is constant, and to 8x, 8y, 6.2 for the line along which q is constant. Then 

E = ( k x - a ) X + ( k y - b ) Y + ( k z - c ) Z  

O=K($+y2+ ~ ~ ) - 2 a 5 - 2 / 3 ~ - 2 ~ z - 2 ~  

h = ( x x - a ) X + ( ~ y - p ) Y + ( r z -  'y)Z 

1 =X"Y2+Z2 

( k x - a ) d x + ( k y - b ) d y + ( I c z - c ) d z = O ,  

xax + Ydy + Zdz = 0, 
and therefore 

' 2 

d x : d y : d z =  kx-a, ky-b, kz-c  1 .  I I  x ,  y ,  2 I I  

O=X&+Ydy+Zdz  1 
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Similarly 

The two directions are perpendicular to one another ; hence 

( X 2  + Y2 + Za) {(kx - a)  (FEZ - a) + (ky  - b) ( K Y  - p) + (kz  - c )  (FEZ - ?)) 

= { X ( k x - a ) +  Y (ky -b )+Z(kz - c ) }  { X ( K X - a ) +  Y ( r c y - ~ ) + Z ( F E Z -  y)}. 

K Y - / $  rcz-y 

Consequently 

= O ,  

+ &k { r c ( & +  y2+z2) - 2ax -2/3y- 2n/z} +aa+b@+cy=lX; 
and so 

aa+bP+cy+urc+kv=R 

and therefore 

I t  therefore appears that the parametric coefficients in the equations of the 
two families of surfaces, upon which the lines of curvature lie, cannot al1 be 
taken arbitrarily. 

193. As regards the integrability of the equation, when X, Y ,  Z are 
determined by the first five of the equations, we have 

(kx - a )  d X  + (ky - b) d Y  + (kz - c)  dZ = (Xa ,  + Yb, + Zc, + 2,) dp, 
and 

( kx -a )  dx  +@y--)  d y + ( k z - c ) d z =  (xa, +yb,+zc,  + w ) d p ;  

hence, writing 

A =  Xa,  + Yb, + Zc, + 1, 
xn, + yb, + zc, + u, ' 

we have 

( h - a ) d X +  (Fcy - b ) d Y + ( k z -  c) dZ  

= A {(kx - a )  dx + (ky - b)  dy  + (kz - c) dz) 

= U, 
say. Similarly we have 

Say, where 
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And 

Let 
X d X  + Y d Y  + ZdZ = 0. 

where fl is not zero (for otherwise the normal to the surface would be 
coplanar with the normals to the parametric surfaces); then 

n d x =  U { ( K Y - ~ )  z-(Kz-?) Y ~ + v ~ - c )  ~ - ( k ~ - b ) z j ,  

i 2 d Y  = U {(KZ -?)X-(ICX- a) Z} + V{(Icx- a) 2-(FGZ -c)X}, 

ndZ = U{(KX - 01) Y - (KY -P) XI} + V {(JCY - b) X-(I~x - a) Y / .  

fl= 

Hence 

Let 
P = ( ~ x -  U)(ICX-a)+(ky- b ) ( ~ y  -6) + ( k - C )  (KZ-y) 

Icx-a, ky-b, kz -c  
KX-a, K Y - p ,  16.2-y 

x ,  Y ,  z 

as before ; then 

, 

Similarly 

Multiplying by X ,  Y, Z respectively and adding, we have 

But the analytical expression of the orthogondity of the lines of curvature 
was shewn to be 

P = Ex, 
and fl is not zero ; hence 

The condition of integrability (§ 30) of the equation Xdx + Ydy + Zdz = O in 
Our set of six equations is therefore satisfied. 
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The foregoing analysis shews that the necessary relation 

a a + b ~ + c y + k v + u ~ = l X  
gives the orthogonality of the lines of curvature and the condition of 
integrability; also i t  shews that these two properties are analytically 
equivalent to one another. 

It  is the resolution of this relation, combined with the general equations, 
that gives rise to the various surfaces. 

Surfaces with Two Plane Systems. 

194. In  the first place, consider surfaces hnving plane curves for both 
their systems of lines of curvature. Shen 

k = O ,  x = o ;  

the equations involving the determination of X, Y, Z  are 

ax + b y + c z = u ,  a x + p y  + y z = v ,  

a X + b Y + c Z = l ,  ~ x + f l Y + ~ Z = h ,  

xa+ yz+z2=1, 

au + b,B + cy = ZX, 

while a differential equation of the surface as usual is 

Xdx + Y d y  + Zdz = 0. 

Sometimes it will prove convenient to denote the first derivatives of z with 
regard to x and y by p and q ; so a change of notation will be made. On the 
surface, we shall take m and p as the current parameters of the lines of 
curvature; and we shall assume that a, b, c, u, 1 are functions of m alone, 
while a, f i ,  y,  v, h are functions of p alone. 

1. If possible, let 2 = O,  X = O,  so that the plane of every line of curvature 
is perpendicular to the tangent plane of the surface; thus al1 the lines of 
curvature are geodesics. Hence there are two families of geodesics cutting 
at  right angles ; therefore (5 114) the surface must be developable. Then 

au+ bp+cy=O.  

Now a, b, c  cannot al1 vanish ; let a  be different from zero, so we can make i t  
unity, and the relation becomes 

a + b B + c y = O .  

Also ,L3 and y  cannot both vanish, for then a  would vanish also; so let f i  be 
different from zero. Then we can take* @ = 1, and thus the relation becomes 

a + b + c y = O .  

* In effect, we can divide by a in the former case and by ,9 in the latter case; the homogeneous 
equations are substantially unchanged. 
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In  this relation, b and c at the utrnost are functions of m alone, while a and y 
at the utmost are functions of p alone. Hence :-either b is a pure constant, 
c is a pure constant, and u+cy is a pure constant; or a and y are pure 
constants, and b + cy is a pure constant. The alternatives are interchanged 
by an interchange of parameters ; we choose the first. Thus one family of 
the planes is 

X + by + CZ = 26, 

that is, by a change of axes, it is 
x = U, 

so that we can take b = O, c = O. The relation now gives a = 0 ; and so the 
other family of planes is 

y +  yz=u, 

where y and v are functions of p alone, or (what is the same thing) where v 

is a function of y, say 

u = (1 + F' (Y). 
The equations for X, Y,  Z now are 

hence the differential equation Xdx + Ydy + Zdz = O of the surface now is 

that is, 

Thus 

The tangent plane to the surface is perpendicular to the planes 

at the point ; hence its equation is 

containing one parameter. The surface is a cylinder, having its generators 
perpendicular t o  the plane x = 0;  its section by the plane x= O, or by any 
plane parallel to x =  0, is the envelope of the straight line 

II. In  the second place, let only one of the two quantities 1 and X 
vanish. Let 1 be zero; so that the planes of the lines of curvature in that 
system contain the normal to the surface, and the lines of curvature in the 
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system are geodesics. The most obvious example is that of a surface of 
revolution. 

The analysis of the preceding case applies in its initial stage; Ive can 
take a =  1, @ = 1, and the critical relation is 

a + b + c y = O .  

Now consider the alternative rejected in the preceding case; without loss of 
generality, we take 

a=O, y = 0 ,  b=O;  
the equations become 

x+cz=u,  y = v >  

x + c Z = o ,  Y = &  

where u and c are functions of m alone, while v and A. are functions of p 
alone. Thus we can regard u as a function of c,  and v as a function of X, Say 

u = f (c) = (1 + C"%P' (c), v = g (A) = (1 - ~z)%G' (A,). 

Then 

and so the equation of the surface, Xdx + Ydy + Zdz = O, becomes 

that is, 

on substituting from x + cz = f (c). Integrating, we have 

this equation, and 
Iç + CZ = f (c) = (1 + C~)#FI(~), 

y = g (A) = (1 - A,l)$ G' (A), 

are the equations of the surface. 

When we take 

z - C X  T=--- + B (c) + G (k), 
(1 + cap (1 - A.$ 

the equations of the surface are 
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giving i t  as the envelope of its tangent plane, the equation of which contains 
two parameters. 

The special case, when F(c) = O, gives the general surface of revolution. 

Some exceptional cases must be noted. I t  might happen that X is a 
constant. The equation of the surface then is 

c h  - dz X 
+ + - - d y = 0 ,  

(1 + cZ) (1 - P)*  
leading to 

X 
z (1 + cz)+ = c (1 + cz)"'(c) - F (c) + - 

(1 - X2)+ 
Y, 

together with 

x + CS = (1 + ca)* F' (c). 
When we take 

the surface is given by 

i t  is the envelope of a plane containing one paraineter, and therefore it is a 
developable surface. 

I t  might happen that c is a constant. The equation of the surface then is 

cx - 2 + X(1 -X"Gf(X)- G(h.)=O, 
(1 + c2)" 

together with 
B 

y = (1 - X2)2 G' (X). 
When we take 

cz - Z T"= - +-- hy G (A), 
(1 + ez)+ (1 - XZ)+ 

the surface is given by 

and so i t  is a developable surface. 

III. Now suppose that neither 1 nor X vanishes; the critical relation is 

As a, b, c cannot al1 vanish, suppose that a is not zero ; we can take it equal 
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to unity, as before. Also, as a, ,B, y cannot al1 vanish, suppose that B is not 
zero; we can take i t  equal to unity as before. Thus 

where b, c, 1 are functions of one parameter rn, and a, y, h are functions of the 
other parameter p. 

We have 
b' + c'y = E'a, 

c'y' = th', 

where b' is the derivative of b; and similarly for the other quantities. If c' is 
not zero and y' is not zero, we have 

Y, II  = 7 c', 
h 

Hence h f - y is a constant or is zero, and so there is a linear relation 
A' 

between b and c. Thus either c is constant, or y is constant, or there is a 
linear relation between b and c ; that is, the planes of one of the families are 
parallel to a fixed line. Let i t  be the family determined by the parameter m, 
and take the fixed line for axis of y ; then 

and the critical relation becomes 

Hence 
a+  cy=  EX. 

c'y = 1%. 

If c were constant, we should either have h = O, which is excluded, or 1' = O,  so 
that the family of planes would be only a single plane ; thus 

Hence 

and each must therefore be a constant; so the planes of the second family 
are parallel to a line in the plane of xz. Take this line as the axis of x ;  
then we have a = 0, and the critical relation becomes 

cy = Eh, 
2 1 
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that is, 

1 
where g  is a constant. Writing f = -, we now have the equations 

9 

and 

Let 

the equation 
c y g - Z ) 2 + r y 2 ( f  -Q+ z== 1 

gives 
f C - g r .  z = -  C-r ' 

and then 

Now 

and the differential equation of the surface is 
Xdx + Y d y  + Zdz = 0, 

that is, 

- c ~ d x -  yl?dy+f-dz=O. 
f-Y 

Substituting for dx and dy, and reducing, we find 

To have the integral free from quadratures, let 

F' @ ' 
"=g@. v = f p  

where F i s  any function of c  alone, and is any function of y alone, so that 
the generality of u and of v is conserved ; then we have 
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Substituting this value of z in the equations 

F' a' 
"+ ~z-g-~, y +  yz= f - c rS' 

we find 

These three equations for x, y, z are the parametric equations of the surface. 

Other forms can be given to them. Eliminating F', a' ; and F, W ; and 
P', @ ; in turn, we have 

equations which represent the surface as the envelope of the plane P= O. 
Moreover, the equations 

ap -- al' 
a u - O ,  - = O  au 

are the planes of the lines of curvature of the two systems; the inclination 
of the former to the tangent plane a t  m, y, z is 

and the inclination of the latter to that tangent plane is 

f v  cos-' ---- 
(1 + lP)i ' 

while the inclination of the two planes to one another is 

When we take new parameters a  and 8, and new functions A and B of 
them respectively, where 

k a = - C C ,  W=-yr ,  F=hA,  Q = k B ,  

IRIS - LILLIAD - Université Lille 1 



the plane P = O becomes 

The surface is the envelope of this plane, a and P being the parameters. 

The earlier form is the form obtained by Serret and Cayley; the later is 
the form obtained by Darboux. 

Dupin's Cyclides. 

195. One of the most interesting examples of surfaces, having both its 
systenis of lines of curvature in the form of plane curves, is provided by 
Dupin's cyclide? The name cyclide was originally given to surfaces al1 
whose lines of curvature are circles; i t  now is given to al1 surfaces of the 
fourth order which have the circle a t  infinity for a double line, and to al1 
surfaces of the third order which contain the circle at idni ty .  

Dupin's cyclide is defined as the envelope of a sphere which has its centre 
on one conic and passes through any one assigned point on another conic; 
the two conics are to lie in perpendicular planes, and each of thern is to puis 
through the foci of the other. Also, the generation is double; either of the 
conics c m  be taken as the locus of the centre of the moving sphere, but 
there is a relation between the fixed points on the respective conics through 
which the moving spheres are required to pass. 

That the envelope surface, under the double generation, has circular lines 
of curvature can easily be seen. Take either generation. Where the surface 
envelopes a sphere, the normals to both are the same; because they are 
normals to the sphere, they interuect ; and so, as these normals to the surface 
meet one another, the curve of contact is a line of curvature. The curve of 
contact is the intersection of two consecutive spheres, and therefore it is 
a circle; and so the lines of curvature in the system are circular. Similarly 
for the lines of curvature in the other system. 

The analysis is simple. Let the two conics be 

the condition that each of them passes through the foci of the other is 

SeeDupin's Applicotiom de géométrie et de méchanique, p. 200; Cayley, Colt. Nath.  Papers, 
vol. ix, pp. 64-78; Darbonx, Leçons sur  le^ systèmes orthogonaux, 2me Bd. (1910), pp. 481-498. 
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Denote by a cos 8, b sin 8,0, the centre of the sphere on the first conic, and by 
a, O, y, the fixed point on the second conic through which the sphere is to 
pass; the equation of the sphere is 

x ~ ~ + z ~ - 2 ( a - a ) a c o s 0 -  2bysinB - 2 - y  =-O0 .  - 

The envelope of the sphere is 

(9+y2+z2-a2-ya)l=4u2(x-ay+4baya; 

thus one system of the circular lines of curvature, being the intersections of 
these consecutive spheres, is given by the equations 

For the other generation of the cyclide, denote by ccos +, 0, i b  sin +, the 
centre of the sphere on the second conic, and by a', B', 0, the fixed point on 
the first conic through which the sphere is to pass; the equation of the 
sphere is 

~ ~ + y ~ + z ~ - 2 ( ~ - a ' ) c c o s ~ - 2 i b z s i n + - a ' ~ - ~ = O .  

The envelope of the sphere is 

 ça + y2 + z2 - a'a - Bf2Y = 4c2 (x - u')~ - 4bV ; 

thus the other system of circular lines of curvatiire, being the intersections of 
these consecutive spheres, is given by the equations 

Ica+ya+z2- 2 ( ~ - a ~ ) c c o s + - 2 i b z s i n + - a ' ~ - p l B = O  

(x-al)csin+-ibzcos+=O 

Moreover, among the constants, we have the relations 

The two envelopes of the two sets of moving spheres are to be one and the 
same surface. When the two equations are compared and these relations are 
used, we find that the two equations are the same, provided the additional 
relation 

aaa = cad 

is satisfied. We take a new quantity p such that 

and then the equation of the cyclide has the equivalent forms 

(x2 + y" + za - p2 + b2)i = 4 (IXZ - cP)2 + 4bay2 
( @ + + ~ + ~ 2 - ~ 3 -  ba)n=4(m -ap)'- 4b2zg 
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Let p, be the radius of the circle 

Z+ ya+za-pa+ b2- 2(ax-cp) cos8- 2bysin 8= 0, 

(m-cp)sinB- by cosB=O, 

which are the equations of one system of lines of curvature; and let O be 
the inclination of the radius to the normal to the cyclide, O being constant 
(by Joachimsthal's theorem) along the line. Then 

(p-  ccos 8) b 
Pe = 

(a2 sin2 0 + b2 cos")* ' 

and therefore the principal radius of curvature of the cyclide along this line 
of curvature is given by 

R,=p-ccosd.  

In the equations of the other system of lines of curvature, the quantity C$ 

is imaginary ; taking real arguments, write 

cos+=secJr, s i n + = i t a n + ;  

then the eqiiations of the lines are 

(cx - ap) sin + - bz = O. 

Let p9 be the radius of this circle, and let be the inclination of its radius 
to the normal to the cyclide, V being constant along the line ; then 

and therefore the principal radius of curvature of the cyclide along this line 
of curvature is given by 

R $ = p - a s e c q .  

The coordinates of any point on the surface, given as the intersection of 
two lines of cumature, are 

b (a- pcosJr) 
~= . - ccosecos+  

~ ( C C O S  6 -  p) 
z = a - c  cos Bcos$ 

sin 9 J 
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The fundamental quantities of the first order are 

( a x y  (ay). ( a ~ y  b y p - c c 0 ~ o y  # = - + -  + -  = a+ a+ d+ (a -CCOS 

P= O ;  

and the fundamental quantities of the second order are 
E b2(pcos+-a)cosyb L = - = -  
Rb (a - ccos 8 cos ' 
G b= (P - e) fi=-= 
Re ( a - c c o ~ B c o s ~ ) ~ '  

M=O. 

The direction-cosines X, Y, Z of the normal to the cyclide, being the same as 
those of the enveloped sphere at  the point, are 

a c o s B c o s ~ - c  X =  
a -  ccos 0 cos*' 

y= b sin 0 cos + 
a - c ~ o s f ? c ~ s + '  

- b sin + z= 
a-ccos6icos+' 

Two spheres of different systems touch; the centre of one of them is 
a cos 8, b sin 8, 0, and its radius is / p- c cos 8 1 ;  the centre of the other of 
them is c sec +, 0, - b tan +, and its radius is j p -  a sec yb[; and so the distance 
between the centres is equal to the difference of the radii. The point of 
contact is a point on the surface, which therefore lies on the line joining the 
centres; and this line is normal to the spheres and therefore normal to the 
surface. (I t  is easy to verify that its direction-cosines are X, Y, 2.) Hence 
any straight line, meeting the initial ellipse and the initial hyperbola, is a 
normal to the cyclide. 

For other properties of Dupin's cyclides, reference may be made to the 
authorities already quoted. 

Ex. Shew that, for parametric values of p, the Dupin cyclides are a family of parallel 
surfaces. 

196. A limiting case of the preceding investigation has to be notcd ; and 
one case has not been included. The results will merely be stated, and 
their establishment left as an exercise. 

The limiting case arises, when the ellipse becomes a circle and the 
hyperbola degenerates into the straight line through the centre of the circle 
perpendicular to its plane. The cyclide then becomes an anchor-ring, of 
which the circle is the central thread ; and the only parametric element in 
the equation of the surface is the radius of the core. 
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The non-included cMe arises when the conics, which supply the foundation 
of the construction of the surface, are parabolas-of course, in perpendicular 
planes and each passing through the focus of the other. When the equations 
of these parabolas are taken in the form 

y2 = 41 (x + 1)l  
z = o  

the equation of the cyclide (with the double generation as before) is 

x(x2+ y2 +z"+(x2 + y2)(I -/L) -zZ(I+/L) - (8- 1-/k)(I +/Ly=o, 
a surface of only the third order. The coordinates of a point on the surface 
can be expressed in the form 

~ ( l + t ~ + 0 ~ ) = 1 ( 6 ~ - t ~ + 1 ) + ~ ( 8 ~ t ~ + l ) ,  
y ( 1  + t 2 +  e2)= 21(Ba+ l ) t +  2/Lt, 

(1 + t2 + 82) = 21eta - 2pe, 

where t and 0 are the parametric variables of the lines of curvature; and the 
principal radii of curvature of the surface are 

p-lt2, p+1(1+82). 

Rouquet's Method, by Xpherical Representntion. 

197. Some of the foregoing results can be obtained* simply, from the 
properties of the spherical image of the surface when the latter has a double 
plane system of lines of curvature. 

I t  has already been proved (5 160) that the spherical image of a plane 
line of curvature is a small circle, and that the line of curvature and its image 
are parallel to one another a t  corresponding points; also that the latter 
property suffices to secure the result that the curves are lines of curvature. 
Hence, on the surface of the sphere, there are two series of small circles 
cutting one another orthogonally. 

Consider two such circles, intersecting O 
in m ;  let O and P be the vertices of the 
cones that circumscribe the sphere along 
the circles. Then mO is a tangent at m 
to the circle dmb; that is, the locus of O 
for al1 the circles amc lies in the plane P 
dmb. Similarly, the locus of O for al1 the 
circles amc lies in the plane of any other 
small circle of the series to which the circle 
d.mb belongs; and therefore i t  is a straight 
line. Hence al1 the planes of the series of 
small circles dmb pass through a straight 
line. Now the planes amc are polars of 

* Bouquet, Toul. Mgrn., 8e SBr., t. ix (1887), t. x (1888). 
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points O on this straight line; hence they al1 pass through the conjugate 
line. Thus the two systems of planes pass through two straight lines which 
are conjugate to one another ; the latter are necessarily perpendicular to one 
another, and the product of their distances from the centre of the sphere 
is unity. ' 

Take one of the lines in the plane of YZ, and let OA = y ;  then any plane 
through that line is 

where c is a parameter varying from plane to 
plane, that is, it is the parameter of the spherical 
images of the lines of curvature in the family. 
Take the conj~~ate ' l ine in the plane of XZ, and 
let OB=J; so that 

f g = l ;  

then any plane through that line is 

Y + y ( Z -  f )=0 ,  

shere y is the parameter of the spherieal images / 
of the lines of curvature in the other plane Y 

family. 

Any point on the sphere is thus given by the equations 

being effectively the same relations as in 5 194; hence 

where 
1 1 

* = f + ( f - y ) c a ,  F = ~ ( ~ - f ) 4  
Let 

f  = cos a, y  = sec a, 

c  tan a = tanh u, y  sin a = tan v, 

so that u and v are a couple of new parametem ; then 

c = (cos a)-* cosh u, r = (cos a)* cos v. 
Hence 

sin a sinh u sin a sin v COS a cash u - COS v X =  Y= Z =  
cosh u - cos a cos v ' cosh 16 - COS z COS v ' coshu -COSUCOSV'  

The tangent plane to the sphere a t  the point, determined by u and v, has 
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for its equation; and therefore the equation of the tangent plane to the 
surface (which is parallel to this plane) iq 

x sin a sinh u + y sin a sin v + z (cos a cosh u - cos v) = F (u, v), 

where F(u, v )  is some function of u and v. The point x, y, z on the surface 
is given by combining this relation with 

aP y sinacosv+zsinv=-- .  
av 

But 
sin a sin v sin2 u cos v Y, = - sinh u 2, = sinh u, 

(cosh u - cos a cos v ) ~  ' (cosh u - cos a cos v ) ~  

so that 
Y,sinacosv +Z, sinu= 0. 

The parametric curves are lines of curvature, so that 

EXl=-Lxl ,  EY,=-Ly,, EZ,=-Lz,; 
hence 

qsinacosv+z,sinv=O. 

Hence, from the third of the equations that give the values of x, y, z, we have 

and the same result follows froni constructing X ,  and Z,, and using the 
second of those equations. Thus 

F= U+ V, 

where U is a function of u only, and V i s  a function of v only ; and now the 
equations of the surface are 

which are easily seen to be in accordance with the results previously 
obtsined (5 194). 

The second and the third of these equations, taken separately, are the 
equations of the planes of the lines of curvature. 

Note. We may also proceed from the equations for the tangential 
coordinates, as given in 5 163. 

I t  is easy to prove that 
sin" 

e =  =y, f = O ;  
(cosh u - cos a cos v)= 

IRIS - LILLIAD - Université Lille 1 



198) METHOD 

and so, with the equation 
x X + y Y + z Z = T  

in general, and the equation 
T,, - y'T, - 6'T, = O 

in this case, where 

we have 
a2 
- (DT) = DT12 + D,T1+ DIT2 + TD,, au av 

= O, 
when 

D = cosh u - cos a cos W. 
Thus 

D T =  U+ 7, 

where U is a function of u only, and V is a function of v only ; that is, the 
equation of the tangent plane to the surface is 

as before. 

Ex. Shew that, if 
U = a s i n h u + b c o s h u f  c, V=ksinv+lcosv,  

where a, b, c, k, 1 are constants, the equation of the surface is 

{(b - z cos a)z - (Z sin a - a)?+ +{(y sin a - k)z+ ( Z  + E)~}&+ c = 0. 
Prove that the surface is a Dupin cyclide, having its centre at  the point 

a cosec a, k cosec a, ( I +  b cos a) cosec2 a ; 

and find the smallest value of 1 c / which allows the cyclide to be real. (When c=O, the 
surface is a point-sphere duplicated.) 

198. The general result is ineffective in the special case when 
f =g = 1. 

The equations then are 
X + c ( Z - 1 ) = O ,  Y + y ( Z - l ) = O ,  x a + y 2 + z 2 = 1 ;  

so that 
X Y ---- - Z  - - 1 
2c-2 - /  c 2 + y 2 - 1  ~ 2 + ~ Z + 1 .  

The tangent plane of the surface is 

2 c x + 2 y y + ( c 2 +  y a - l ) z = P ( c ,  y), 
where P is some function of c and y. The coordinates of a point on the 
surface are obtainable by joining this equation to the other two equations 
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Also 

ONE PLANE SYSTEM WITH 

so that 

Hence 

and therefore 

Hence P is of the f o m  C + ï, where C is any function of c alone, and r is 
any function of y alone ; and now the equations of the surface are 

The second and third of these equations are, as before, the planes of the two 
systems of lines of curvature. 

Ex. 1. Shew that the surface 
xs +Y"-, 

a-z  b-2- 

has plane curves for its systems of lines of curvature. 

Ex. 2. Shew that, in the general case for any values of C and of r as functions of c 
and of y respectively, the surface can be generated as  the envelope of spheres having their 
centres on the parabola 

y=o, $=+-22, 

and a s  the envelope of spheres having their centres on the parabola 

Obtain the relation between the two families of spheres when both generations are 
effective. 

One Plane Systern and one Spherical System. 

199. The preceding discussion of surfaces, when both systems of lines 
of curvature are plane curves, gives a sufficient indication of one of the 
methods of proceeding in the case of surfaces, having one or both systems of 
lines of curvature given as spherical curves. For the full detail of cases, 
reference may be made to the memoirs of Serret* and of Cayley?; the 
developments, naturally; are mainly of an analytical character. 

* Liouville's Journal, t .  xviii (1853), pp. 113-163. 
t Coll. Math. Papere, vol. xii, pp. 601-638. 
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In particular, when we deal with surfaces having a set of plane curves for 
one system of lines of curvature and a set of spherical curves for the other 
system, there are seven substantially distinct cases to be set out, according to 
Serret's investigations. The fundamental equations (with merely changes of 
sign from the general case) are 

X 2 + Y 2 + Z 2 = 1  
a X t b Y t  cZ+l=O 1 

m + b y + c s + u = O  , 
&+ya+za-2ax-2/3y-2yz-2v=O 

( x - a ) X + ( y - 6 )  Y+(z-ry)Z- h=O.  1 
where a, b, c, 1, u are functions of one parameter m, and a, fi, y, X, v are 
functions of the other parameter p ;  and the double condition, at  once of 
orthogonality for the lines of curvature and of integrability for the equation 
of the surface, becomes 

aa+b/3+cy-Zh+u=O. 

The seven cases of the critical equation just indicated are as follows, 
account always being taken of simplification without loss of generality :- 

1, l=O, u=O, a = 0 ,  /3=0, y = O ;  

II, u=rnl, X = m ;  

III ,  1=-mc, u=O, a=O, p=O, y=mX; 

IV, c=O, u=ml, a=O, P=O,  X=m; 

v, c=o,  1=0,  u = o ,  u = o ,  p = o ;  

VI, a=O, c=O, u=nzl, @=O, h = m ;  

VII, c=O, l = m a ,  u=O, P=O, a=-mX;  

where, throughout, nz denotes an arbitrary constant, and so remains an  
arbitrary function of its argu~nent. 

200. Among these, consider specially the case where 

(i) the quantities a, b, c, are unrestricted by conditions, while u = 0 ; 

(ii) the quantities a and /3 vanish. 

The critical equation of orthogonality becomes 

cly = lx, 
and therefore we may take 

where k: is an arbitrary constant. I t  nlay be zero, or i t  may be infinite ; the 
latter case is merged in the former, by interchange of parameters. The lines 
of curvature of one system lie on concentric spheres. 
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1. Take the special sub-case, when the constant k is zero. The funda- 
mental equations then are 

X2+ Y Z + Z Z =  1, 

aX+bY+cZ=O,  xX+yY+zZ=X,  

ax + by +cz = O ,  x2 + y2 + z a = v ;  

and the critical equation is satisfied. 

The equations are honiogeneous in a, b, c ; so we may assume 

Also, a, b, c being functions of u alone, let 

thus 

Further, if 

we have 
aaf' + bb" + cc" = O, 

afa" + b'b" + c'c" = 0, 
+ b'f2 + = 1, 

The aggregate of relations is 

X2+Y2+Z2=1,  a X +  bY+ & = O ,  

+ b''2 + C1f2 = 1, a"a' + Vbf + = 0, 

a2 + b2 + ca = 1, ara + b'b + c'c = 0. 

Hence we may take 

X=alcost -a"s in t ,  Y=b'cost-bUsint, Z=cfcost-cf'sint, 

where t is a new variable ; these satisfy the two equations in which X, Y, 2 
occur. Take other three magnitudes 

which obviously are such that 

X'=+ Y'2+Z'2= 1, a X r +  bY'+ c Z ' = O ;  
moreover, 

X X ' +  YY'+ ZZf=0. 

Now consider quantities 
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of + bv + cg = O. 
Comparing these with 

xX+ yY+ z Z = X ,  

and writing 

we have 

Thus 

which are expressions for x, y, z involving three variables, viz. na (through 
the quantities a, b, c), p (through X and v), and t (through X, P, 2 ,  X', Y', 2 ' ) .  
These three variables can be reduced to two as follows. 

We have 

auda + b"db + cUdc = (ana' + b b '  + cnc') (a: + b: + c,l)j du 

hence, as d'a. + b"b + c"c = O ,  it follows that 

Also 
ada" + bdb" + cdc" = 0. 

a"da" + b"db" + c"dc" = 0. 

Consequently 
da I f  - - db" - dc" 

bc" - b I c  Caf' - c'fa - ab" - a"b ' 
that is, 

da" db" dc" -=---  
a' b' - c' 

say, where 19 is a function of m only. Thus 

a'dd' + b'db" + cfdc' = dB; 
and therefore 

a"daf + bl'db' + c"dcf = - dB. 
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Hence 
XXdu' = d û .  sin t ,  

8Xda" = dû . cos t ,  

ÇXdX' = ZX (Xd t  + da' .  sin t + du". cos t )  

= di! + dû. 

Now dong the surface, we have 

Xdx+  Ydy  + Z d z = O ;  

and the foregoing values of x, y, z must satisfy this relation. Substituting 
we find 

+ ( U  - XZ)* (at + de)  = O,  
that is, 

- dt = (v - h2) - i dk  + de. 

With this value of t, the equations of the surface are 

x = {a" (u - ~4); + dhj COS t + {d ( u  - X Z ) ~  - a'%} sin t  
y = { b " ( ~ - h ~ ) ~ + b ' h } c o s t + { b ' ( v - h ~ ) ~ - b " h } s i n t  

z = {c" (U - k2)4 + c h )  COS t + {c' (u - hz)i - c " ~ }  sin t 

II. Now take the less special case, when the constant h is not zero. 
The equations are 

X 2 +  Y 2 + Z 2 = 1  
a X + b Y + c Z = - c h  

x X + y Y + ( z - k A ) Z = X  

The equations are homogeneous in a, b, c  ; so we can take c  = - 1 .  Following 
Serret *, let 

x=- p ( l + p 2 + q ~ ) - 4  ~ = - ~ ( l + ~ z + ~ ~ ) - f r ,  z = ( l + p 2 + q 2 ) - h ,  

where p  and q now denote the derivatives of z with respect to x and y. The 
first equation is satisfied identically. The remaining equations become 

where and v are functions of p, so that is a function of v. From the 
second of these, we have 

- x d p -  ydy= { k + ( l  +p'd+q2)4~X1dv+(1  + p z +  q z ) - * ~ ( p d p + q d q ) ;  
* Liouville's Journal, t. xviii (1853), p. 141. 
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so that, when p and q are taken as the pammetric variables, we find 

and take account of the first equation ; then 

au au 
( a - p ) -  + ( b -  q)- = O .  

Substitute also in 
8~ a9 

au a ,  = {k + ( 1  + p2 + @$J2 {r;)' + @). + ( p  ap + q a,) } Xr2 = (V - 1) A* + 2v. 

Consequently, 

where 

~ ~ ' = { ( k l - l ) h ~ + 2 v ) * ( l + ~ ~ +  q2)-*(a2+ba+1 -P) -4 (k+( l+p2+q2) ) ] -1 .  

The relation 

for the detemination of v, now becomes 

together with 
a p + b q + l  = - k ( 1 + p 9 + q 2 ) g  

As the left-hand side of the differential telation is a perfect differential, the 
right-hand side also must be a perfect differential. To evaluate it, write 

sin + = 
a2+ bZ+ 1 -Ica * 1 + k ( l  + p z +  @)*- 
( a2+b2 ) l ~ + ( l + p ~ + ~ ~ ) *  

then, after reduction, we find 

X'dv (a'b - ab') dm + + ( l -  k a ) - i d + =  O* 
[ ( ~ - 1 ) ~ 2 + 2 v } *  (aa+@)(a2+&+1-ky)* 
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where the variables are separated. We thus have r$ as a function of m and II; 
and then from the equation for sin+, together with the relation between 
a, b, p, q, we have p and q as functions of m and v, that is, we have x, y, z 

expressed as functions of m. and v, which are the parametric variables of the 
lines of curvature. 

For a more detailed development of this result, reference may be made to 
the memoir by Serret already quoted* and to the mernoir? by Cayley. 

Ex. 1. Shew 'that, when %=ml, X=m, a=O, @=O, y =O, where m is a constant, the 
surface is developable. 

Ez. 2. Shew that, when al1 the quantities c, 2, u, a, @ vanish, the surface i~ one of 
revolution. 

Ex. 3. Shew that, when the relations 
a=O, c=O, %=ml, @=O, h=m, 

are satisfied, the surface is tubular. 

General Equatioîts for Arbitrarily Assigned Gurues. 

201. In the preceding discussion of surfaces possessing assigned classes 
of curves as their lines of curvature, there has been a limitation to curves 
that are plane or spherical; the main reason (other than the comparative 
simplicity of the curves) for the limitation was that it facilitated the 
construction of integral results by the method of investigation adopted. It  
is at  least. worth while formulating the problem in its most general type, 
when the assigned lines of curvature are any two families of curves whatever, 
subject of course to such necessary conditions as are demanded by the 
equations. 

Let the surface be referred to the lines of curvature as parametric curves, 
so that 

P=O, M=O; 
then the Gauss characteristic equation is 

4LATEG = E (&a2+ G,") + G (ElCl + E,') - 2EG (E;, + B,), 
while the Mainardi-Codazzi relations are 

Let s denote the arc along the line of curvature, p = constant, the arc being 
measured from some director curve; and let t denote a similarly measured 
arc along the line of curvature, q = constant ; then 

Ler, p, 144. 
t Coll. Math. Papem, voE xii, p. 624. ' 
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The lines of curvature are to belong to known families of curves, so that (5 19) 
it is sufficient to know the circular curvature Ilp and the torsion l/a. Then p 
and o will be functions of s and, as they may Vary frorn line to line, they may 
be functions of p also ; let 

Further, a t  the point in question, let m denote the angle between the normal 
to the surface and the principal normal to the line of curvature ; then (§ 126) 

and therefore, as 

we have 
d a  G* G* ---=-=- .............................. (ii). 4l @ h(s3 P) 

By the known results, giving the curvature of a normal section of the surface 
through the tangent to p=constant and the geodesic curvature of the line 
p = constant (§ 12P), we have 

N cos TÀI COS a - =--- ........................... (iii), a. p -f (3, P) 

Gl sin w 
--I-- ............................ ...,,( iv). 
W E ~  f(sl P) 

Denoting the circular curvature and the torsion of the other family of 
lines of curvature by l/p' and llu', we have p' and of as functions of t and q, 
&Y 

p' =y (t, q), a' = k (t, q). 

Also, at  the point in question, y e  denote by m' the angle between the normal 
to the surface and the principaI normal to the line of curvature; then we 
have the relations 

da' E* --=- ..........................-... (vi) . 
dlp . (6  q) 
L - cos P' 
~=~(t,q) .............. .. .............. ( v ~ ) ,  

... E2 sin P' ........................... 
S = - g ( t , )  

(v1ll). 

In the last eight eyuations, there are initially eight unknown quantities, viz. 
s, UT, t, mf, El U, L, N, the independent variables being p and q ; the equations 

28-4 
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are potentially sufficient for the determination of the magnitudes, and will 
give expressions that involve arbitrary elementu. But the quantities E, G, 
L, N must satisfy the characteristic equation and the Mainardi-Codazzi 
relations; and so there will be conditions to be satisfied not merely by the 
arbitrary elements, but also by the quantities f, h, g, Ic, m, a'. In the 
simplest instance, when the two families of lines of curvature are plane or 
spherical, we saw that the parameters and other magnitudes connected with 
the lines are certainly subject to one relation and so cannot al1 be taken 
arbitrarily; the relation is additional to the limitation that the curves are 
plane or spherical. A fortiori i t  is to be expected that, when curves are 
assigned initially without the specialising limitation, they will have to satisfy 
some condition or conditions, in order that they may provide the two systems 
of lines of curvature for a surface. 

Ex. 1. To illustrate the analysis, let it be required to determine surfaces having 
circles for both sets of lines of curvature. Then 

hence 

Consequently 

p1=q (q), ur-'=O; 

where P is a function of p only that may be constant or zero, and Q is a function of q 
only that rnay be constant or zero; these two results are, of course, JoachimsthalJs 
theorem on plane lines of curvature. 

Suppose that neither P nor Q vanishes in general. The special equations (other than 
the intrinsic relations for all surfaces) are 

N cos P -=- ( p )  ........ .. ........................ ........ (iii)', 
QI sin P ............. f(p) " ....................... 

=4=-- (iv): 

E2 sin Q -=-- (pl .................................... (viii): 
2 ~ ~ 4  

potentially sufficient t o  determine L, N, E, G. The equations (iv)' and (viii)' s a c e  to 
determine E and G ; their primitive is 

sin Q G - ~ R ' = ( H + K ) -  s (9) ' 
where H is an arbitrary function of p and EI' is its derivative, while R is an arbitrary 
function of q and K' is ita derivative. Then L is determined by (vii)' and 3 by (iii)'. 
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These quantities are to  satisfy the intriiisic equations common to al1 didaces. 

Substituting in the Mainardi-Codazzi relation 

we have 
CWP - - cos -- Q __EbroaQ}. 
f (P) s(d 9' 42 9 (p.) 

AB if is a function of p only and K of p. only, while p and q are independent variables, we 
must have 

Say; and the foregoing equation then gives 

Each side of this equation mu& be a constant, say -8 ; then 

cos P E= a--& 
f (P) 
cos Q K = - a -  +& s (9)  

which satisfy al1 theae equations. The same result follows from substituting in the other 
Mainardi-Codazzi relation. 

There remains the Gauss characteristic equation. Writing 

and substituting in the Gauss equation, we have 

so that A is a function of p only, an& B is a funotion of q only. Hence 

From the last of these derived relations, we have 
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where a' is a constant ; and therefore 

Qa' Pa' Q ~ + Q ~ ~ = a ' & ~ + l f ,  Pz-,=-atP1+é, Pi 

where b' and c' are constants. ~ o n s e ~ u e n t l i  

Instead of using the other derived relationti, we substitute these values in the modified 
form of the Gauss equation ; it becomes 

so that 
bfP1 + c'QI = - c'Pl - b'Ql - (m + nt'), 

b'=-ci, rn+mr=0. 

Accordingly, al1 the necessary equations are completely satisfied by the set of values 

Qlz+ Qa2= a1Q1%- 2ciQl+m 

P22= -a'P12+2c'Pi- m 
H= aP,-8 
K.= -a&L+8 

appear. 

i- 
These values are required for the e x p k i o n s  of E, (7, L, A? When these are formed, 
a and f i  disappear; so that, in the forms obtained, three arbitrary constants a', e', m 

The expressions can be simplified by changing the indepeudent variablw. Let new 
variables 4 and B Le introduced, defined by the equations 

then 

provided 

The last conditions are satisfied, providecl 
P=p'J &'=aa-bZ; 

and thus, instead of the three constants a', 8, p, we have four constants a, b, c, p, tied by 
the relation 

@=az- b9 

Let Ë and G, S and be the fundamental quantities when $ and B are made the 
independent variables, instead of p and q ;  then 

and so for the others. After simple reduction, we find 

E = - @  (p  - c cos 4 2  

( a c o s ~ - ~ c o s B ) ~ ~  
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These (together with F=O, M=0) are the fundamental magnitudes, of the fimt order and 
the second order, belonging to a Dupin cyclide. Hence, by Bonnet's theorenl (§ 37), the 
surface is a Dupin cyclide. 

Ex. 2. In the preoeding analysis, it hm been assumed that both P and Q are generally 
different from zero. . - 

Shew that, when one of the two quantities ranishes, sny P=O, the surface is an anchor- 
ring, given by the intrinsic equations ' .. 

Ex. 3. Shew that mhen both P and Q vanish, the surface is a developable surface? 

202. On the main line of development, especially when one of the 
farnilies of lines of curvature is plane, much simplification cornes when 
l/o is zero, so that P is constant and may be zero. The most direct 
illustration arises in connection with tubular surfaces; that is, surfaces 
which are the envelopes of spher&, having their centres on any given curve 
in space, and,having their radii any assigned continuous function of the arc. 

Reference in general to surfaces, having one (but only one) system of 
plane lines of curvature, may be made to Darbouxt and to Bianchit. 

Weingarten Surfaces. 

203. One or two incidental references to Weingarten surfaces have 
already been made; and some special examples have arisen, particularly 
surfaces having a constant Gaussian measure of curvature and surfaces 
having a constant mean curvature (including minimal surfaces). We proceed 
to obtain some properties of these surfaces in general, defining them as 
surfaces whose principal curvatures are connected by some functional relations 

.' F(a,@=O. 

WL refer the surface to its lines of curvature, so that 

F = 0 ,  

The Mainardi-Codazzi relations are 

* As regirrds these results, a qote by the author, Messenger of Math., vol. xxxviii (1909), 
pp. 33=44, may be oonsulted. 

'b See his treatise, t. iv, pp. 198-266. 
: Geometria DiJ'erenaiale, t .  ii, chap. xxi. 
S They were first discussed in general by Weingarten, Crelle, t. lxii (1862), Pp. 160-178. 
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Now 

hence 

and therefore 

so that 

where P is a function of p only. Taking a new variabIe p' such that 

dpf = ~ b d p ,  we effectively make P equal to unity; so we c m ,  without loss 
of generality, write 

a àa 
E =  q. 

Similarly, we can take 
2% 

Q = e as-.. 

thus the fundamental magnitudes of the surface are known, because the 
integrals in E and G are complete through the relation F(a, P) = O. 

Ex. 1. In  the case of a minimal surface, we have 

so that 

The linea of curvature are the parametric curves; the asymptotic lines are given b~ 

dp2 + dq2 = 0. 

Ex. 2. In  the case of a surface having its Gaussian measure of curvature qua1 to a, 
constant, we have 

@=c, 
where c is constant ; then 

so that the fundamenhl magnitudes are known in terms of a and B As before, the lines 
of curvature are the parametric curves; the asymptotic lines are given by 

d33"-&p=O. 
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Ex. 3. I n  the case of a, surface having its mean measure of curvature constant (but 
not zero), so that 

we have 

As these satisfv the condition that 

the lines of curvature form an isometric system*-a known property of surfaces having a 
constant rnean meaiire of curvature (§ 64). 

204. Returning to the general equations for the Weingarten surface, we 
can express the fundamental magnitudes in terms of a single parameter. Let 

so that 

and therefore 

Now we easily find 
21"" 

da 

E = B c  a-@, Q = &teEea!=, 

so that 

hence 

Q a N=-=- 
a 02' 

Moreover, we have 
P(a, P) = 0 

For Weingarten surfaces in general, on which the lines of curvature are an isometric 
~yatem, see a memoir by Demartres, dnn. de Toulouse, 2- Sér., t. iv (1902), p. 341. The 
complete solution of the problem requires the integration of an ordinary non-linear equation of 
the third order. 
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in general, Say 

then we have 

that is, 

The arc-element of the surface is 

where 0 is a function of p and q. 

But the resolution of the equation F(a,  @=O in the foregoing form 
p= f (a) may not be possible, even when F is a rational function. In that 
case, the simplest instances would lead to Abelian integrals and algebraic 
functions in the expressions for E and G ;  some of them might be worth 
investigation. 

Ex, 1. Let a=& P ;  then 
da +f (Q)=a-ûa= -Se$ 

so that 
a+B=O; 

the surface is minimal. We have 

E+û2, @=te:  
so that the element of arc is given by the equation 

d82 =p' (dpa + dg2), 

the lines of curvature being an isometric system. When we substitute in the Gaussian 
characteristic equation, we find 

or, with the transformation 8= eu, we have the equation 

ull+uz2=e-%. 

Consider the aurface of centrea of th4 surface. The arc-elementa on the two sheete 
are (§ 81) given by the relations 

d U 2 = c M ~ ~  (l -;)'dp2, 

in general for any surface ; i n  the present case, we have 

dm2= Be (de2 + dpZ), 

d E  = 82 (de2 + dg2), 
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so that, on one sheet, the lines 6 =constant and p =constant (that is, the lines a = constant 
and p=constant), and, on the other sheet, the lines d=constant and q=constant (that is, 
the lines /3=constant and p=constant), are isometric orthogonal systems on the surface of 
centres. 

Ex. 2. Let 

so that 

Then 
do=$~os~+mdo=) ( l+coso)do ,  

and therefore 

Similarly 

Hence the functional equation of the Weingarten surface is 

and the arc-elements on the sheets of its centro-surface are 

Ex. 3. Obtain exprwsions for the principal radii of curvature in terms of a single 
parameter for each of the surfaces 

205. It follows from the functional equation F(a ,  p)  = O, defining a 
Weingarten surface, that 

al& -azP1 =o. 
As regards its two-sheeted surface of centres, the Gaussian measure of 
curvature for one of them is (§ 81) 

and for the other of them is 

hence for the Weingarten surface the product of the specific curvatures for 
the sheets of its centro-surface is such that 

Again, assumîng that the original surface is referred to its lines of 
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curvature as parametric curves, we have the asymptotic lines on the fiwt 
sheet given by the equation ( 5  81) 

and the asymptotic lines on the second sheet given by the equation 

When the original surface is any Weingarten surface, these two equations 
are the same; hence the asymptotic lines on the two sheets of the centro- 
surface of a Weingarten surface correspond to one another-a result due to 
Ribaucour (5 83). 

The asymptotic lines on the original surface are given by 

Lap" +aq2 = O, 
that is, 

I f  the asymptotic lines on the centro-surface correspond to the asymptotic 
lines on the original surface, their equations must substantially be the same ; 
that is. 

and therefore . -  . . 

a/3 = constant. 

Hence the only Weingarten surfaces, such that the asymptotic lines on the 
centro-surfaces correspond to the asymptotic lines on the original surfaces, 
are those which have a constant Gaussian measure of curvature. 

As another result, also due to Ribaucour (§ 82), we have the theorem 
that the only surface, such that the lines of curvature on the centro-surface 
correspond to one another, is a Weingarten surface such that 

a - /3 = constant ; 

but these lines of curvature are easily seen, from the analysis used (1. c.) in 
establishing the result, not to correspond to the lines af curvature upon the 
original surface. 

206. Consider any elementary arc on either sheet-say the first sheet- 
of the centro-surface of a Weingarten surface. I n  general, (§ SI), i t  is 
given by 

and therefore, for the Weingarten surfaces F (a, P) = O, we have 

das = daa + f (a) dp9; 
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where f (a) is a definite function of a, the form of which depends upon the 
forrn of F. Also 

any additive constant being absorbed into the integral ; so that the element 
of arc on the first sheet of the centro-surface is 

2 J A  
da2 = das + e a-@ dpe = daa + f (a)  dp? 

Similarly, the element of arc on the second sheet of the centro-surface is 

Both these arc-elements are characteristic of a surface of revolution; 
hence either sheet of the centro-surface of a Weingarten surfuce is deforn~able 
into a surface of revohtion, a theorern first enunciated* by Weingarten 
himself To consider in slight detail the surface of revolution into which we 
can deform the sheet having 

duz = daa + f (a) dp2 

for its arc-element, let the equation be 

z = P ( r ) = P ,  

where the axis of a is the axis of revolution, and r is the distance of a point 
on the surface from the axis. I ts  arc-element is 

and therefore, under deformation, we have 

(1 + ppa)*dr = da, 

d+ = dp, 
r" = f (a). 

From the last, we have 
d r  = & f-* f'da, 

and therefore 
f 1-t PIa=4,,. 

Consequently 
f 
f'"4 

P = p r d r  =/(l- q) d a ;  

Crelle, t. lix (1861), p. 387. 
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an equation which, in conjunction with 

determines the surface of revolution 

Thus, for the minimal surface a + P = O, the surface of revolution is 
given by 

9z2=(x2+ yY2 - 1)s; 

and, for the surface having its Gaussian measure of curvature constant, the 
surface of revolution is a catenoid. 

Ex. Obtain the surface of revolution, to which the centro-surface of the Weingarten 
surface 

a+cB=k, 

can be deformed; discussing, in particular, the Ribaucour surface for c = - 1. 

207. A sort of , converse of the preceding theorem, also due* to 
Weingarten, can be enunciated as follows :- 

Any surface, that i s  defoivnable into a surface of revolution, calz be regarded 
in general as a centro-surface of a Weingarten. surface. 

The theorem is little more than an interpretation of a different arrange- 
ment of the preceding analysis. When the surface of revolution is given, 
we have 

da = (1 + ~ ' j *  dr, 

for the purposes of the theorem ; so that, as P' is known, we can regard a as 
a known function of r, determined by the relation 

Also 

hence 

and therefore 

= - / ~ P P  (1 + ~ z ) - * d r .  

Thus a and 6 are functions of r alone ; the surface is a Weingarten surface. 
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208. We must note Lie's theorem* that the lines of curvatnre on any 
Weingarten surface c m  be obtained by quadratures. 

The equation of the lima of curvature on any surface can be taken in the 
form 

V W =  E d p  + Fdq, Fdp+Gdq  =O. 

( Ldp + Mdq, Mdp + Ndq / 
We have seen ( $133 )  that W is an absolute covariant for al1 changes of the 
independent variables; hence, taking the parameters (say u and v) of the 
lines of curvature as the independent ~ariables, so that 

we have 

= +dudu, 
sav. Now 

= O, 
and similarly 

- l a+-o. -- 

Hence 
$J av  

+ = constant = 1, 
Say, so that 

W = dudv. 

Returning to the original form for W, we have 

1 W = - {(EM - FL) dp2 + ( E N  - CL) dpdq + (FN - C M )  dqsj 
V 

1 
= - ( E M -  PL) (dp + pdq) (dp + p'dq) V . 

where p, $, S are known quantities. Comparing the tmo expressions for W, 
we take 

du = R (dp + pdq), du = R' (dp + p'dq), 
where 

RR' =S. 

Darb. Bull., 2m Sér., t. iv (1880), p. 300. 
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As the expressions for du and dv must be perfect differentials, we must have 

that is, 

Also 

1 aR 1 a ~ '  
hence - - and - are expressible in terms of known quantities. The 

R ap R ap 
1 aR 1 a ~ '  earlier equations then give - - and -; - in terms of known quantities, 
R aq R aq 

so that R and R' are determinable by quadratures. When their values are 
known, and are substituted in du and dv, then u and v are determinable 
by quadratures-which is Lie's theorem. 

EXAMPLES. 

1. A surface has both its systems of lines of curvature plane or spherical. At any 
point the plane (or sphere) of one system cuts the surface a t  an angle ai,, and the plane (or 
sphere) of the other system cuts the surface at  an angle a>z, while the one plane (or sphere) 
cuts the other plane (or sphere) a t  an angle aiiz; prove that 

2. Shew that the spherical image of a Weingarten surface is given by the equation 

where the principal radii of curvature are connected by the relations 

3. Shew that the asymptotic lines of the centro-surface of a Weingarten surface 
correspond to nul lines in the sphericd representation when 

and that they correspond to nul lines on the surface when 
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4. Shew that, for a Weingarten surface 

the geodesic curvature of the parametric curve p=constant on the first sheet of its ceiltro- 
surface and the geodesio curvature of the pararnetric curve q=constant on the ~econd 
sheet of its centro-surface are q u a 1  to one another, the common value being l/c. 

5. The arc-element on a c h s  of surfaces, referred to  lines of curvature as parametric 
curves, is such that 

G+=#(E$ ,  

and the Gauss measure of curvature is given by 

O (& {O ( ~ $ 1 -  E$G$ ; 

prove that the surfaces are of the Weingarteil type. 

6. Shew that, if a minimal surface h m  plane curves for one system of lines of 
curvature, its other system of lines of curvature also is plane. Illustrata the result 
in connection with Ennepds  minimal surface by shewing that every line of curvature 
is a plane cubic; and verify that its asymptotic lines are skew cubics. 

7. A surface has one system of its lines of curvature spherical; pi-ove that the 
radius of circular curvature of the lines is 

P+ ~ g - h ,  

where P and Q are functions of the parameter q of the liues, while e and g belong to the 
spherical image of the surface which is supposed referred to its lines of curvature as 
parametric curves. 
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CHAPTER X. 

TEE problem of the deformation of surfaces has attracted many investigators. In 
its mostgeneral form, the discussion was initiated in the famous memoir-bg Gaus, 
so often quoted; and other investigations of the utmost importance for surfaces in 
general are due to Bour, Bonnet, Darboux, and Weingarten, among others. References 
to the original authorities wiil be found i n  Darboux's treatise, vol. iii, Book vii, 
chaptera ii--iv. Reference may also be made to chapter vii in vol. i of the treatise by 
Bianchi ; and important analytical developments are contained in the third volume of 
this treatise, published in 1909. 

Among surfaces that are subjected t o  deformation, special interest attaches to the c l m  
of ruled surfaces. This problem seems first to have been considered by Minding*; among 
later writers, special mention should be made of Bonnet t and Beltrami 1. References are 
given by Darboux 5 and by Bianchi 11. 

Among the deformations of surfaces which have secured much attention from 
mathematicians, there is one considerable class, viz. infiniteaimal deformatiom, important 
alike on account of their intrinsic interest and the variety of results (as well as of methods) 
connected with them. Moreover, while some of the results are of long standing, much of 
the body of known doctrine belongs t o  more recent years. Full references are given by 
DarbouxT and by Bianchiw, both of whom have made important contributions to the 
subject ; and no lack of appreciation of the work of Beltrami, Ouichard, Kœnigs and 
Ribaucour is implied, because a special reference is made solely to two memoirstt by 
Weingarten. Only the briefest account of the elements of this interesting part of the 
theorj will be given in this chapter; the authorities just quoted should be consulted 
for fuller discussion. 

Crelle, t .  xviii (1838), pp. 297-302. 
t Jm. de l'Éc. Poly., cah. xlii (1867), pp. 1-151. 
f Ann. di Mat., t. vii (1865), pp. 105-138. 
5 In the chapter occupying pp. 293-315 of vol. iii of his treetise. 
II See his treatise, ch. viii. 

TT Treatise, practicmlly throughout, vol. iv. 
** Geometfia DifereneiaEe, vol. ii, pp. 1 et sep., 172 et seq. 
fi- Crelle, t. c (1887), PP. 296-310 ; de ta  Math., .t. xx (1897), pp. 159-200. 
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Deformation and Applicahility ; Initial Conditions. 

209. Let a surface be supposed flexible; and let it be changed in any 
manner and within any limits, provided there is neither stretching nor 
tearing. Any such change is called a defomnatiow of the surface. 

Again, let two surfaces be given such that either of them can suffer a 
deformation into the other, or (what is the same thing) that both of them can 
suffer deformations into some one and the same third surface. The two 
given surfaces are said to be applicable to one another. The mathematical 
theory of the applicability of two surfaces is usually (but not always) the 
same as that of the deformation of one surface; so i t  will usually be 
convenient to speak of the latter alone. 

Imagine any curve or curves drawn upon a surface; and let the surface 
be deforkcd. AS there is no stretching or tearing, the distance between any 
two points on a curve remains unaltered when the distance is measured 
along the curve; in particular, any infinitesimal arc a t  a point remains 
unaltered. The angle between two curves through a point remains unaltered 
-a property secured by having every infinitesimal arc a t  a point conserved 
in length throughout a deformation. If, then, an arc-element on a surface is 
given by 

ds2 = Edpa + 2Fdpdq + Gdqa, 

and the deformed arc-element on the surface, however deformed, is given by 

the necessary and sufficient condition is that, for al1 variations of the 
parameters, we must have 

ch=&. 

This comprehensive condition must be translated into more amenable forms. 

Manifestly, geodesics (being the shortest distance on a surface between 
two points) remain geodesics through any deformation; and similarly, the 
geodesic curvature of any curve (being the arc-rate of deviation of the curve 
from a geodesic tangent) remains unaltered. I n  fact, any absolute covariant, 
which involves only the equation of a curve or curves and the fundamental 
magnitudes of the first order (being those which occur in the arc-element), 
remains unaltered in a deformation. In  particular, the Gaussian measure of 
curvature of a surface is expressible in terrns of E, F, G and of their 
derivatives of the first and second orders ; accordingly, i t  remain~ unaltered 
during al1 deformations. The latter property is a condition necessary to 
secure that one surface can be deformed into another; i t  is not, however, 
a generally sufficient condition. But it is sufficient to prevent a sphere or 
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a hyperboloid of one sheet from being deformed into a developable surface; 
snfficient, also, to prevent an ellipsoid or a spheroid from being deformed 
into a sphere. Even a surface of constant curvature cannot be deformed into 
another surface of constant curvature, unless the constants are the same. 

210. As an example of the deformation of one surface into another, 
tested by the invariability of the arc-element, consider the catenoid of revolu- 
tion 

2 
r = ( 8 + y 2 ) 8 = ~ ~ ~ ~ h - i  c 

Taking 
g=rcos+ ,  y = r s i n + ,  

we have 
dsz = dra + ?d@ + dz2 

Let 

then 

Now consider the helicoid 

Taking 
y=us inv ,  x=ucosv,  z=av,  

we have 
ds" = d g  + (uZ + aZ) dua. 

Manifestly the arc-eleinents are the same, for al1 variations, if 

in other words, the catenoid 
2 

r s c c o s h -  
c 

can be deformed into the helicoid 

We leave, as an exercise, the verification of the property that the Gaussian 
measure of curvature is the same for the two surfaces at  corresponding points. 

211. Owing to a specially individual property of surfaces of constant 
Gaussian measure of curvature-that such a surface is applicable upon itself 
in an infinite variety of ways-, we shall discuss them first of all. 
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Take such a surface; and choose, for its parametric curves, a family of 
concurrent geodesics and the family of their geodesic parallels. Then the 
arc-element of the surface is given by 

ds" dp2 + Pdp,  

where the curves q =constant are the geodesics, and the quantity p is the 
distance along the geodesic mensured from any selected directrix geodesic 
parallel. Then, if K be the Gaussian measure of curvature, we have (5  68) 

moreover, when p = 0, the general conditions (5 68) require the limitations 

for any non-singular part of the surface. When K is constant, there are 
three typical cases according as K is zero, positive, or negative. 

When K= O, we must have 
Ci2D 
a j  = O, 

so that 
D = P+ (n) + +(da 

The conditions, when p = O, require that + (q) = 1, + (q) = O ; thus 

D =p. 
Hence the arc-element is given by 

When K is positive, let its value be lla2; then 

1 a2D 1 = - -  
D apz az ' 

so that 
P ~ = + ( ~ ) m s a + + ( ~ ) s i n  &. 

The conditions, when p = O, require that 

The arc-element is given by 

or (what effectively is the same thing) by 

When K is negative, let its value be - l /a2;  then 
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so that 
P c =  +(q)cosh-++(~)sinh-.  
a a 

The conditions, when p = O,  require that 

Henoe the arc-element is given by 

ds" = dp2 + a2 sin h2 2 d e  a 
or (what is effectively the same thing) by 

OP' = a2(dp2 + sinh2pdq2). 

Thus (as before, 5 155) the surfaces of constant curvature have their arc- 
element of one or other of the forms 

ds2 = dp" p2dq2, 

ds9 = aa (dpa + sin2pdq2), 
dsa = a2 (dpa + sinhzpdqz). 

212. Now take two surfaces of the same constant Gaussian curvature. 
On them choose any two points O and 0'; and through each of these points 
draw a geodesic in any direction, measuring any distance p along the two 
geodesics. Let the surfaces be referred to tihe geodesics and geodesic parallels 
as parametric curves; the elements of arc on the two surfaces are given by 

ch2 = dpa + f (p) dq2, dd2 = dp2 + f (p) dqa, 

for one or other of the three forms off (p). The arc-elements will be equal, 
and so the two surfaces will be applicable to one another, if 

dq2 = dq'", 
that is, if 

q-qo=qJ-qo: 

a relation which conserves the angle between corresponding pairs of geodesics 
through O and 0'. 

Hence two surfaces of the same constant Gaussian curvature are applicable 
to one another, by making an arbitrary point on one coincide with an arbitrary 
point on the other and a second arbitrary point on the first coincide with a 
second arbitrary point on the second, the geodesic distances between the 
point.-pairs on the two surfaces being the same. Thus two surfaces of the 
saine constant Gaussian curvature are applicable to one another in an 
infinitude of ways. In particular, a surface of constant Gaussian curvature 
can be deformed over itself in an infinitude of ways. 

213. Among the surfaces of constant Gaussian curvature, which thus 
are deformable each upon itself, i t  is convenient to know those that are 
surfaces of revolution. We refer the surface to its meridians and parallels of 
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latitude ; the former are geodesics which are not necessarily concurrent, and 
so the analysis in § 211 does not apply ; we take the arc-element in the forni 

ds" du2 + r2 dv2, 
where du is the arc-elenient of a meridian and r ,  the distance of a point on 
the surface from the axis, is a function of u only. Denoting by K the measure 
of curvature, we have 

and therefore, for a pseudo-sphere having - l / a 2  for its measure of curvature, 
we have 

so that 

where A and B are constants. There are three cases :- 

(i) when A and B have the same sign ; by adding a constant to u (which 
only means changing the origin of measurement along the meridian), 
we can make A = B, and then the arc-element is 

while 

also 

so th& 

(ii) when A and B have opposite signs; in the same way as in the first 
case, we can take A = - B, and then the arc-element is 

while 
'IL 

r = c sinh - 
CC ' 

and 

(iii) when one of the two constants A and B vanislies (both cannot 
vanish); let B = 0, and (as is permissible in the same way as 
before) take A = 1 ; then the arc-element is 

23 

ds" du2 $ e a dv2, 
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while 

DEFORMATION OF 

21 
r = ea = a sin 4, 

= a (log tan fr+ + cos +), 

which is the curve known as a tractrix. 

In  the first case, we have 

so that r varies between c and (aa+ca)*; the quantity z is expressible in 
elliptic functions in the form 

z = (aa + c2)B [ E  (8 )  - 81, 
where 

1 
r = (a2 + c2)2 dn 8, k (a2 + c2)i = a. 

In the second case, we have 

so that r varies between O and (aa-CS)*; the quantity a is expressible in 
elliptic functions in the form 

z = a { E ( 8 )  - O } ,  
where 

I n  the first case, the pseudo-sphere (said then to be of the hyperbolic 
type) has its meridian curve as in the figure on the left, the range being 
there from - K to + K; and any part between (2m - 1) K and (2m + 1) K is 
t,he same as the part drawn. 

In  the second case, the pseudo-sphere (said then to be of the elliptic type) 
has its meridian cnrve as in the middle figure, the range between the levels 
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of the cusps being from O to 2K; and any part between 2mK and (2na + 2) K 
is the same as the part drawn. 

In the third case, the pseudo-sphere (said then to be of parabolic type) has 
its meridian curve as in the figure on the right; it has cusps for 4 = &r, and the 
axis of z is an asymptote, the range for the curve being from + = O to 4 = W .  

214. The formulæ for surfaces of revolution, as regards those deformations 
which always leave them surfaces of revolution, can be obtained very simply 
as follows*. Denoting the element of meridian arc by da ,  and the axial 
distance by r, we have 

dg2 = dF + dz2, 

ds2 = d d  + F d p .  
For the deformed surface, when it remains a surface of revolution, we have 

dsa = d d a  + r'2d+'2. 
Al1 arcs are to correspond ; hence 

~ ' d + ' = ~ d + ,  dol=da.  
The former is satisfied by 

r' = kt; 

1 
+'=,+; 

and the latter gives 
dzf2 + d?rl* = d e  + dzP, 

that is, 
dzf2 = dze + ( 1  - Ica) dP. 

The required surfaces of revolution are given by 

Thus in the case of a sphere, z = sin 8, r = cos 8 ; so 

r1=k:cos8, 

z' = ( 1  - k2 sinZ O)$ dB, J 
in agreement with the preceding result. 

Ex. Obtain the deformations of a hyperboloid of revolution of one sheet, discussing 
the configuration of the generators. 

Defornation ; General Equations. 

215. Prom the essential property, that geodesics remain geodesics 
throughout any deformation of the surface, we can deduce one equation 
relating to al1 deformations. 

Let the arc-element on the surface be given by 
ds2 = dua + gedt?, 

* Frost, Solid Geonwtiy, p. 350. 
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where g may be regarded as a known function of .id and v such that, for small 
values of u, we have 

9 = u - &Kou3 + ..., 
where K, is the measure of curvature at  the geodesic pole u = O. In nny 
deformation, let the arc-element be given by 

dsJt = d Ua + G2d P; 
then we miist have 

d U 2  + G2d V2 = du2 + g2dv2, 
and the deformations will be given by the knowledge of al1 values of U, V, G 
which satisfy this relation. We must have 

auau avav 
- - + G2- - - = O  

av au a v  

three relations involving the three quantities U, V, G. When we eliminate 
G and the derivatives of V, we find 

a partial equation of the first order for U containing the function g. 
Should, however, g be iinobtainable, some other method must be used; 

accordingly, we shall adopt a more generally effective method. 

216. By Bonnet's theorem (5  37) we know that, when the magnitudes 
E, F, G, L, M, N are known, the surface is determinate Save as to position 
and orientation. But if only E, F, G are known, so that the am-element is 
given, the surface is determinate Save as to position, orientation, and deforma- 
tion. We proceed to indicate the equations for this limited determination of 
the surface. 

We have 
x l , - x l r  - X A  =LX, 

x,z - - X ~ A J  = MX, 
xB - X ~ A "  = N X ,  

L N - M ' =  KV', 
where the quantities T', I", r", A, At, A". Ii, V are known functions of E, F, G 
and their derivcttives. Also 

TZF = (y1z2 - ~ 2 4 ) ~  

= (y? + 212) (Y: + 212) - ( ~ 1 ~ s  + zizJ2 

= ( E  - 2:) (G  - x:) - (F  - fil X$ 

= V2 - (Gx: - 2Fx1x2 + EG~). 
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Consequently we have 

= (LN - M2) Xe 

a partial differential equation, of the second order and the Monge-Ampère 
type, for the determination of x. 

The same partial differential equation is satisfied by y and by 2. 

Connected with the solution of an equation of this type, and especially 
with the process of obtaining an integral to satisfj assigned conditions, there 
is a subsidiary equation (commonly called the equation of characteristics* 
of the differential equation) which is of fundamental importance. Denote an 
equation by 

. n=o; 
its characteristics are given by 

Thus, for our equation, the characteristics are 

and similarly for the equations satisfied by y and by z ; that is, the charac- 
teristics are given by 

Ldp" 2Mdpdq + Ndq2 = 0. 

Hence the characteristics of the equation for the determination of the surface 
are its asymptotio lines, a result that will be seen to bring these lines into 
specially significant relation with conditions that may be assigned as governing 
al1 deformations of the surface. 

217. Some forms of the equation are of special importance; we shall 
consider three of these forms. 

1. Let the equation of the surface be 

and give to p, q, r, s, t their customary significance as the first and the 
second derivatives of z with respect to x and y. We require the equation of 
the second order, satisfied by every surface into which the given surface can 
be deformed ; so me take x and y to be the independent variables throughout, 
and we denote by Z the ordinate of the deformed surface, and by P, Q, R, S, T 

* See the author's T h e o y  of Diferential Equntions, vol. vi, chap. xx. 
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its first and its second derivatives with respect to x and y. Now, for the 
given surface, we have (p. 60) 

E = l + p "  F=pq, G = 1 + q 2 ,  ' V " = l + p 2 + g 2 ,  

vzr v2r1 =ps, vartt = pt, 

V2A = qr, P A '  = qs, V2A" = qt, 

hence the equation, which is 

(R - PF - QA) (T - P r w  - QA") - ( S  - P r 1  - Q A / ~  

=K{V2- (GP-2FPQ+R&2) ] ,  
becornes 

(RT-Ll2)(1 +p2+q2)-(rT+tR-2sS)(pP+qQ)+(P2+&2-1)(1-t-s~)=0. 

The general value of 2, satisfying this equation, will give the general set of 
surfaces derivable from 

z = f  (x> Y> 
by deformation. It ought to include (and manifestly i t  does include) the 
possibili ty 

II. Let the surface be referred to nul lines as parametric curves. The 
arc-element then has the form 

d 9  = 4hdudv ; 
also 

1 rt= O, ru = O, r=- 
h ' 

1 a2 log h K=--- 
2h auav 

Then, using 0 to denote x, y, or z, w e  have the equation for 0 in the form 

To adopt the customary notation for p~ r t i a l  differential equations with two 
inclependeiit variables, we write 

0 , = p ,  &=q, B, ,= I - ,  8,,=s, & = t ;  
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and then, if 

onr equation for surfaces, deformable into a given surface, is 

rt - s2 - cyr - npt = b ( X  -pq)  - acpq, 

the pnrainetric curves being nul lines on the surfaces. Manifestly we have, 
among the coefficients a, b, c and the quantity h, the relations 

The variables u and v are conjugate quantities, known (§,55) to be derivable 
by integrating an ordinary equation of the first order; the quantity X is then 
a factor, obtainable by merely direct operations. 

III. Let the surface be referred to geodesic polar coordinates. The arc- 
element then has the form 

d 9  = dua + D"va. 

With corresponding changes of notation, the equation, which determines 
surfaces that are deformable into a given surface, is 

the form being due to Bour. The equation naturally is equivalent to the 
equation in the preceding type of representation of the surface; but it is 
dependent upon the deterniination of the variables u and v, which requires 
the integration of an ordinary differential equation of the second order. 

218. Two other methods of constructing a critical equation-always of 
the second order, for the surfaces that arise by the deformations of a given 
surface, should be noted. One of them is due to Bonnet*, the other to 
Darboux t. 

In Bonnet's method, the surface aguin is referred to its nul lines as 
parametric curves, and the arc-element is taken in the form 

d g  = 44h9dudv. 

Al1 the surfaces, into which i t  can be defornied, are given by 

d& + dy2 + dz2 = 4x2dii du, 

* Journ. Éc. Polytechn., c h .  xlii (1867), p. 3. 
t See his treatise, vol. iii, p. 253. 
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so that 
xi-+y,"+z,l=O, LZ:+y,2+z,a=o, 

The first two of these equations are satisfied by taking 

for any values of rn, n, m', n'; and then the third equation is satisfied if 

nd - nz'n = i)L. 

But we must have 

ax1 - -x2 = 9 32, 32,. --- -=- av a u 1  au au ' a~ a~ 
and therefore 

mmz = nt!,m,', 

Hence 

Say. Also 

and therefore 

hence 

Similarly 

Now 

nm, + mn, = n'nt,' + m'n,'. 
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where p and q have an altered signifieance, which correspondingly will be 
associated with r ,  s, t. Thus 

and therefore 

becomirig, on expansion, 

X (rt - 8) - 2hz qr - 2hipt + 4pq hi2 = 0. 

This is the required equation; its difference, from the earlier equation in 
form, is due to the fact that the dependent variable now is 4 (y - ix). 

When this equation is integrated so that is known, we know rn and m'; 
and then, by quadrature through the above relations, we find nlm, that is, we 
know n. The value of n' follows from mn' - m'n = zX. Substituting in 

d x  = i ( m 9  n2) d,u + i (nt'2 + n'y du, 

dy  = (ma - n2) du + (mJa - da) du, 

d z  = 2mndu + Pm'n'dv, 

and effecting the quadratures, we have the equations of al1 surfaces derivable 
from the given surface by deformation. 

219. Next, consider Darboux's method of constructing the critical 
equation-always of the second order-for surfaces deformable into a given 
surface. The latter still is referred to its nul lines so that the arc-element is 
given by 

ds2 = 4Xdudv ; 

al1 the required surfaces are such that 

+ d g  + dz9 = 4Xdudv. 
Thus 

ch? + dy2 = 4Xdudv - ( p d u  + qdv)l 

= - p"u2 + 2 (2X - pq) dudv - q2de. 

The surface, of which the arc-element is given by 

dt? = -p"uz + 2 (2h -pq)  dudv - @dv2, 

is thus deformable into a plane; consequently, its Gaussian measure of 
curvature is zero. We have 

E'= -pz, F=2X-pq,  G=-q2 ,  va= 4h. ( p q  -A.); 
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and therefore 
2 (E,, - 2F12 + G,,) = rt - s2 - 2&,. 

Also, with the notation of § 34, we have 

n=2X,-qr, nt= - qs, n" = - q t ;  
and therefore 

nn'f - %'a = - 2Xlqt + q2 (rt - Qa), 

nm" - 2n.'nhf + nui" = 4h, A, - 2Xlpt - 2&qr + 2pq (rt  - s"), 
mnz" - mf2 = - 2 X p  + p2 ( r t  - 8). 

I n  order that the Gaussian mcasure of curvature may be zero, we must have 

8 (E', - 22712 + G11) 

= - E (nd' - ,da) + F (nnz" - 2n'm' + mn") - Q (mm" - m'2), 

which, when we substitute and reduce, becomes 

the equation in question. Manifestly i t  is a partial differential equation of 
the second order, being of the Monge-Ampère type; of course, the dependent 
variable is not the same as in Bonnet's equation. 

Moreover, supposing the value of z known, we have 

dz2 + dyz = - pZduZ + 2 ( 2 ~  - pq) dudz, - yadvz, 
so that 

x: + yI2 = -pz, 

+ y1 y2 = 2X - pq, 

x Z + y , " = - q 2 ;  
and therefore 

(p2 + xi") (q3 + $8) = (2X - ~ q  - ~ 1 ~ 2 ) ' ~ .  
that is, 

q",Z - 2 (2X -pq) S I X 2  +p2x: = 4x2 - 4Xpy, 

an equation of the first order for x. 

When is kriown from this equation, then 

y :=-pz -x i" ,  y 1 y 3 = 2 ) L - p q - x 1 x 3 ,  

and so the value of y is derivable by quadrature. 

I t  thus appears that, whatever process be adopted, an essential and critical 
condition-in the form that leads to surfaces which are deforrnable into a 
given surface-is a Monge-Ampère partial differential equation of the second 
order. The limitations of sufficiency of the equation, in varied possibilities, 
will be discussed later; we shall now deal with some special examples. 
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EJ. 1. Consider the surfaces deformable into a plane. The square of the arc-element 
is equal to  d$+dyq that is, 

du dv, 

where u=x+iy, v=x-iy. Thus, for Darboux's equation, A=;; and so the equatiou is 

Vt - @=O. 
The intermediate integral is - 
and the primitive is 

!z=f ( P I ;  
z = au + uf (a)  +O (a))  

whcm j'aiid $ are arbitrary functions. 

The equation for x now is 

whero ç=,f (a) ; and its primitive is 

The equations for y are 
-x12= -a2 - a2=p2, 

and so the nioot general value is 
y=pu+vv+p. 

The equations can be simplified by taking x and y as the independent variables, Say 
.v= u, y=v ; then 

2 = w + y f  (a)++ (4 
O =  x+yf'(a)+$'(a) 

beirig a developable surface, as was to be expected. 

Ex. 2. Consider the deformations of a sphere, not restricted (as in jj 213) to give 
surfaces of revolution. 

When the surface is referred to its nul lines as parametrie curves, the arc-element is 

so that 
1 A=- 

(1 + uv)2 ' 
for Darboux's equation. Thus 

aiid so the differential equation, which governs al1 the deformations, is 
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I t  is easy to verify that this equation is satisfied by 

where 

the sphere itself being given by 
1 - w  

A=O, f=- 
l+w' 

Ex. 3. Consider the surfaces into which the paraboloid of revolution 

2z=x=+y2 

can be deformed. To represent the surface, let 

Z+X, . c = ~ + c o s ~ ,  y=h&sine;  

the parameters of the nul lines are 

and the arc-element is 
ds2= 4hdzldv. 

We take 

though the integrated form will not be used. Writing X'= dX/d.$, we have 

and therefore 

so that the Darboux equation is 

the customary partial differential equation of the second order and the Monge-Ampbre t Y P  

Ex. 4. When we retain x and y as the independent variables, and again consider the 
deforrnationrr of the paraboloid of revolution 

BO that 

then the critical equation of the deformed surface is 
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~ a y  (with an obvious change of notation) 

This equation of the second order is of the customary type; and it  is  equivalent to the 
equation in the preceding example, regard being paid to the difference of significance in 
the symbols. 

The critical equation of t h  second order; its Zntegrals. 

220. I t  is clear, from the general theory and from al1 examples which 
are not exceedingly special, that the determination of the surfaces into which 
a given surface can be deformed depends upon the integration of a Monge- 
Ampère partial differential equation of the second order. Adopting Darboux's 
initial resolution of the problem, we have the equation in the form 

r t - 9 - c q r -  apt = b ( X - p q ) -  acpq, 
where 

The possible methods, at present known, of actually forming the primitive 
of an equation of this type are set out in treatises on differential equations. 
In  general, no one of the methods is of compelling power; that is to say, a 
primitive cannot be obtained in finite terms, unless some special forin or 
other characterises the quantity A. I t  may a t  once be said that no inter- 
mediate integral (that is, an equivalent partial equation of the first order) of 
the foregoing equation can be derived by the method of Monge or the 
equivalent method of Boole ; nor can an intermediate integral be derived by 
the amplification of Darboux's method for proceeding to the primitive of the 
equation. Al1 that remains therefore is to see how far Ampère's method, 
which is perfectly general in idea, can prove effectively manipulative in 
particular cases*. 

Stated briefly for the equation 

where A, B, C, L) can be functions of x, y, z, p, q, Ampère's method is as 
follows. Writing 

A = B 2 - A C -  D, 
we construct the two systems of subsidiary equations 

d q +  R ~ V - A ~ = O  dq + ~d~ + A& = O 

d p + A + d v +  T d u = O  , d p - ~ + d t ~ +  T d u = O  
d z -  pdv- pdu=O d z -  qdv - pdu = O 

+ See the author'e T h e o y  of Diferential Equations, vol. vi, ch. xvü; and some remarks in a 
lecture before the Rome congress of mathematicians (1908) in vol. i of the Atti, as weii as in a 
presidential addreas to the London Mathematical Society in 1906. 

24-2 
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We attempt to frame some integrable combination of the first set; let it be 

f ( p ,  q, 2, u, v, h) = a ,  
where a is an arbitrary parameter of integration. We attempt also to frame 
some integrable conlbination of the second set ;  let i t  be 

where p is another arbitrary parameter of integration. The quantities a and 
B are then made the independent variables ; and we form the equations 

These equations are to be integrated ; the integration has the sanie range of 
practical possibility as the construction of the preceding quantities f and g. 
Arbitrary parameters of partial integration for each set are made arbitrary 
functions of the latent variable; and so the primitive may be obtained. 
But, as already remarked, it happens only too often in individual cases that, 
while the theory is complete, the practicability of a primitive in finite terms 
is out of the question*. 

And manifestly, at this stage, the analysis is much more concerned with 
the integration of partial differential equations than with the properties of 
deformation of which they merely are the expression. 

Ex. 1. Taking the equation for the deformation of a paraboloid of revolution as given 
in 5 219, Ex. 3, shew that an integrable combination of the first set of subsidiary equations 
in the preceding statement of p m s s  is given by 

and that an integrable combination of the second set is given by 

- - 2 {(l +A)  (1 -?)}*=B. 
Complete the primitive t. 

Ex. 2. Shew that the surfaces of revolution into which the paraboloid 
22 +yLr2 

can be deformed are given by 

z=+r (r2+2c)b+ciog{r+(++2c)~},  

where c is a parametric constant. 

* For s detailed construation of the results steted, see the author's T h c o q  of Differential 
Equotim, vol. vi, ch. xvii. 

t See a memoir by Calapso, Rend. Cire. Mat. di P o l e m ,  t. xv (1901), pp. 1-32. 
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221. But, though there is the customary impossibility of integrating the 
critical equation in finite terms, there exists the important theorem due to 
Cauchy which governs the existence of integrals of partial differential 
equations. , When i t  is applied to an equation of the second order, the 
theorem affirms the existence of a uniform integral, which is uniquely 
determined by the properties that z and one of its derivatives-say p- 
acquire assigned values along any given curve that is not a characteristic. 
The properties can be stated in another form. Let the curve be 

+ (u, v) = O,  
so that 

Naw 

while z and p are given along the curve; hence q also is known along the 
curve, and therefore the properties can be regarded as giving the values of 
p, q, z along the curve. When 21 and v are x and y, as in the equation in 
$217 (L), WC can Say that a surface exists as an integral of the equation, 
uniquely determined by the requirements of passing through an assigned 
curve and touching a given developable surface along the curve. But the 
assigned curve must not be a characteristic ; in the present case, therefore, i t  
must not belong to either of the families of asymptotic lines. 

In the most general form, the quantities x, y, z satisfy one and the saine 
equation of the second order. Suppose that, when u=a,  where a is a 
parameter and IL is not the variable of an asyrnptotic line, the values of 
x, y, z are required to be A (v), B (v), C(v), and the values of x,, y,, z, are 
required to be a (v) ,  B (v), c (v). Then 

cl? + b2 + c2 = E 
aAf+bBf+cC'=P 
Ara+ Bf2+ G 

where E, F, G are given quantities; thus, in the least restricted assignment 
of conditions, three arbitrary elements appear to survive. The two inde- 
pendent variables are unassigned and arbitrary, yet they would have to 
disappear when the surface is represented by a single equation ; so they may 
be considered as absorbing two out of three arbitrary elements. It follows 
therefore that one arbitrary element certainly survives, when al1 requirements 
are met and the surface is given by a single equation; and so a question 
arises as to the use which can be made of this disposable arbitrary element. 
Soine instances are given in the propositions which follow. 

IRIS - LILLIAD - Université Lille 1 



CONDITIONED [CH. x 

Xonze illustrations as to deformation. 

222. For instance, can a surface S be deformed, while some curve C upon 
i t  is kept rigid ? 

On the surface, take a set of orthogonal curves with parameters u and v, 
where 

v = o  

is the equation of the curve C ;  and let denote the deformed surface. The 
correspondence between the points of the surfaces 8 and C is birational; 
hence, by Tissot's theorem ( 5  156), an orthogonal systern on S hafi an 
orthogonal system on Z as its homologue, and there is only one such system. 
By hypothesis, C is conserved through the deformations; hence the system 
of curves given by the parameters u and v on C is orthogonal. 

Again, as C remains rigid, its circular curvature is unaltered; and the 
geodesic curvature is not changed under deformation. Hence, with the usual 
notation (5 104), the quantity sin m is unchanged along C ;  and therefore the 
normal to 2 along C coincides with the normal to S along C. 

Denote by x', y', z' the coordinates for 2, and by X', Y', 2' the direction- 
cosines of the normal. Then, along C, we have 

that is, when v = O. From the second and the third lines we have 

xi; = x12> ylzl = y12, z12/ = 212, 

when u= 0. But 

sl, = x,F + x2A + LX, x,, = x1r'  + x2A' + MX, 

and so for the other coordinates, the quantities l?, A, i", A' depending only 
upon E, F, Q which remain unaltered. Hence 

when u=O. The Gaussian measure of curvature is unaltered by the de- 
formation, so that 

L'W- M'Z=Lfl- M9 
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that is, 
LIN'= L N ;  

and therefore N' = N when v = O, unless L'= L = O. Thus, if N' = N, we 
have 

%2'=%2,  yaa'=yaa, zi=zaa, 
when v = 0. 

Thus, except in the excluded case, al1 the second derivatives of x', y', z' 
agree with those of 8, y, z, when v = O. The same holds of al1 the derivatives 
of al1 orders when v = O ; hence, taking the Taylor expansions, we have 

everywhere, that is, S and Z coincide. There hm been no deformation. 

In the excluded case, L = O; we cannot infer that N' = N, or that xd = xB, 

yJ = y,, zd  = 2%. When L = 0, the asymptotic lines are 

2 M du dv + Ndva = 0, 

that is, the curve C is an asymptotic line. We cannot now infer that 

x' = x, y/ = y, 2' = Z, 

everywhere, so that S and Z do not coincide. There has been deformation. 
Hence a surface can be deformed while a curve upon i t  remains rigid, only if 
the curve is an asymptotic line*. 

The simplest example is that of a hyperboloid of one sheet. The 
hyperboloid can be deformedt so that  its generators continue generators, 
like a netted flexible frame of straight rigid rods. 

223. Next, consider those deformations (if any) of a surface such that one 
given curve C traced on the surface is deformed into another given curve C'. 

Denoting the circular curvature of Cf by llp', and the angle between the 
normal to the deformed surface a t  any point of C' and the principal normal 
of C' by m', we have 

sin P' 1 - - -- 
P' Y' 

owing to the persistence in value of the geodesic curvature of any curve on 
the surface ; hence in al1 cases 

1 1  
--/ 2 - , 
P Y 

as regards magnitude. Consequently the circular curvature of the final 
curve C' rnust be a t  least as great as the initial (and unchanged) geodesic 
curvature of C a t  the point. There are two cases to consider. 

On account of this property, asymptotic lines are sometimes called lines of folding. 
t For details, see Cayley, Coll. Matli. Papers, vol. xi, p. 66. 
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1. Let 

On the deformed surface, take an orthogonal system of curves determined by 
parameters u and v, such that the final curve Cf is given by u = O ; as any 
function of u can be substituted for u, let the magnitude of u be chosen 
so that, along v = 0, the arc of C' measured from some fixed point is equal to 
u. Then the arc-element on the deformed surface is given by 

where E= 1 when v = O. Also, du is the arc-element of 0 on the undeformed 
surface ; and E and O are known throughout. 

The principal trihedron of C' is known a t  every point. Hence the values 
of x,, y,, zl are known when v =  O, for they are the direction-cosines of the 
tangent to C'. The values of pfxll, pfyll, pfzll are known when v = 0, for they 
are the direction-cosines (say cos & cos q, cos c)  of the principal normal to C' ; 
thus, as  p' is known, the values of xn, y,,, z,, are known when v = O. And the 
direction-cosines (say cos h, cos p, cos v )  of the binormal to Cf are known, that 
is, when v = 0. 

As UT' is the angle between the normal to the deformed surface and the 
principal normal to C', i t  follows that &T- P' is the angle between the line 

whose direction-cosines are Q-*X~, G-Byz, G - ~ Z , ;  hence 

G - ix2 = sin a' cos - cos m' COS A, 

W 4 z 2 =  sin UT'COS r -  cosmf COS V. 

Thus the values of x2, y,, are known when u = 0 ; and so also the values of 
x12, y,,, ziP are known when v =  O. Moreover, the variable x satisfies the 
equation 

while y and z satisfy the same equation ; hence the values of xB, y,, z, are 
known when v =  O.  Thus, partly from the data and partly from the nature 
of the case, al1 the first and second derivatives of x, y, z are known along the 
curve C'. And similarly for al1 the higher derivatives ; e.g., the values of 
xlll, xl12, xle, when v = 0, are the u-derivatives of x,,, XI,, xB, and therefore are 
known, while the value of + is obtained by differentiating the critical 
equation with respect to v and then inserting in the derived equation the 
values of the other quantities which are known. 
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Now consider deformations of the surface in general. For the purpose, 
we require integrals of the foregoing critical equation which are such that, 
when v = 0, 

z = z f ,  z2=z; 

They exist, and they are uniquely determined by these relations. Thus the 
curve on the deformed surface, given by v =  O, coincides with Cf;  in other 
words, the deformation of the original surface is possible. A curve, originally 
given by v =  O, is deformed so as to coincide with C'. 

Moreover, in the present case, we have 

so that there are two (supplementary) values of m'. Thus we have the 
result :- 

It i s  possible ( in  two different wrcys) to defo7-n~ a surface, so tlrat a 
given curve C traced upon it cnît be deformed iîlto a ghen curue C', 
provided the &rcular curvatwe of C' is gl-eater than the geodesic cilrvn- 
ture of C on the origi~xal surface. 

II. The other case arises when 

We must then have P'= $W. Alao, when v = O, we have 

L cos w' z=-- = O, 
Pt 

and E = 1, when v = O; consequently 

L=O, 

and therefore the curve Cf is an asymptotic line. Hence, as in the preceding 
case, we are led to the theorem :- 

It &possible to deform a szrrface so t l~a t  a givetz cume C ~ ~ L O U E ~  become 
a12 asymptotic line C' i n  the deformed swface, provided the geodesic 
czirvature of C i s  equal to the circular curvature of C'. 

These results will suffice to indicate the manner, in which the external 
arbitrary data in Cauchy's existence-theorem concerning integrals of the 
critical equation can be used to obtain some conditioned deformations of a 
given surface. Further developments will be found in Darboux's discussion 
of t,he subject *. 

" See his treatise, vol. iii, especially pp. 253-29'3. 
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224. Among the surfaces which can be subjected to deformation, a special 
interest attaches to scrolls, thereby meaning surfaces which are ruled and are 
such that their rectilinear generators of any one system do not meet, the 
surface not being developable. Hitherto, al1 the deformations under considera- 
tion have related to the conservation of the arc-element, so that only the 
fundamental magnitudes of the first order have been involved; we now 
proceed to deformations limited, more or less, by fundamental magnitudes of 
the second order. 

Sonie hints have been given that a ruled surface can be deformed, while 
each single generator is kept rigidly straight, though these generators are 
not kept rigidly connected with one another. Accordingly, we first consider 
those deformations, which allow a ruled surface to be changed into a ruled 
surface. 

Suppose that, if possible, such a deformation exists under which the 
generators of one surface (being, of course, asymptotic lines of one system, 
and also geodevics on the surface) do not deform into the generators of the 
other surface (bcing also, of course, asyrnptotic lines of one system, and also 
geodesics on the surface). Let p be the parametric variable of the uncon- 
served generators on the first surface, and q the parametric variable of the 
unconserved generators on the second surface; and take p and q as the 
parametric variables of reference for both surfaces. As the arc-elements of 
the t s o  surfaces are the same, we have 

Edp2 + 2Fdpdq + GdqZ = E'dp2 + 2P'dpdq + Q'dq2, 

for al1 variations of p and q ; hence 

The asymptotic lines of the first surface are, as to one set, given by 
p = constant, and the general equation is 

Ldp2 + 2Mdpdq + Ndq2 = 0. 
Hence we have 

N =  O. 

The asynlptotic lines of the second surface are, as to one set (not being the 
set of the first surface), given by q = constant, and the general equation is 

L'dp2 + 2M'dpdq + N'dq2 = 0. 
Hence we have 

L' = o. 
The measure of curvature for the two surfaces is the same ; hence 

EN' - &p = LN - M', 
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that is, 
M ' = + M .  

Next, p = constant is a geodesic on the first surface, because the asymptotic 
lines of the system are generators ; hence 

r'"=O. 

Again, q = constant is a geodesic on the second surface, for the same reason ; 
hence 

A = o. 
For the first surface, we have N =  O, F u =  0, A = O ;  hence its Mainardi- 
Codazzi relations are 

L, + I'M= Ml + I"L + A'M, A"M= M, + I"M. 

For the second surface, we have L' = 0, r" = 0, A = O ; hence its Mainardi- 
Codazzi relations are 

F M ' =  Al;+ AfMf, N,'+AUM'= Mi+ rlM'+ A'N'. 

When the condition M' = f M is used, the first two of these relations give 

L,= rfL, 
and the other two give 

N,' = A'N'. 

The quantity I" is the same for both surfaces, and the final value of L after 
deformation (being 15') vanishes ; hence the former inference leads to 

L = o. 
The quantity A' is the same for both surfaces, and the initial value of AT' 
before deformation (being 2\1 vanishes ; hence the latter inference leads to 

N' = 0. 

Thus there is a third surface which has its asymptotic lines (being geodesics) 
given by p = constant, q = constant ; that is, the surface is a ruled quadric. 
Each of the two surfaces can be deformed into this quadric, on the hypothesis 
that the generators of the first do not deform into the generators of the 
second; and a quadric is the only proper surface with two systems of linear 
generators, for the intersection of a ruled surface of order n by its tangent 
plane is composed of a generator and a proper curve of order n - 1. Hence 
we have the theorem* :- 

Wheu. two ruled surfaces are defomnnble into one anothel; the,& either :- 

(i) ' the system of generators of one qf thenz deforms into the system of 
generutors of the other; or 

* It is due to Bonnet, Jmwn. de l'de. Poly., cati. xlii (1867). p. 44. 
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(ii) each of them can De deformed into a ruled quadhc, the generators 
of one surface defornzing into one set of quadric generators, and 
those of the other surface deforming into the other set of quadvic 
generators. 

225. We now proceed to consider the more general deformation of ruled 
surfaces; for this purpose, i t  is siifficient to obtain the surfaces which 
have the same arc-element as a ruled surface. The discussion will be 
restricted to real surfaces. 

On a given ruled surface, let a curve C (to be called the directrix) be 
drawn so as to meet al1 the generators. The position of a point on the 
surface is uniquely determined by 

(i) the arc of the directrix measured from a fixed point on the curve, 
Say v ;  

(ii) the direction-cosines (say a, b, c )  of the generator of the surface that 
passes through the point of C; 

(iii) the distance (say u) along the generator from the point where it, 
meets C; 

and the coordinates of the point on the surface then are 

x = p + n u ,  y=q+bu ,  z = r + c u ,  

where p, q, r are the coordinates of the point on C through which the 
generator passes. In  these expressions, the quantities p, q, r ,  a, B, c are 
functions of v only. As p', ql, r' are the direction-cosines of the tangent to C, 
we have 

u" B? + c2 = 1, 

$,'?+ 4 ' 2  + r ' 2  = 1, 

upr+ Bq'+ c r ' =  cos B = D, 

where 8 is the angle between the tangent to C and the generator; and then, 
when we write 

+ b'2 + c'2 = A ,  

a)' + B'q' + C'Y' = B; 

where A ,  B, D are functions of v alone, the arc-eletnent on the ruled surface 
is given by 

dsa = du2 + 2 Ddztdu + (Au2 + 2Bu + 1) du2, 

Accordingly, al1 the surfaces into which the ruled surface can be deformed 
must have this arc-element ; and so, for the general equations relating to al1 
surfaces, we have 

E = l ,  P = D ,  G=Aua+2Bu+1, 
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Also 
x, = a, YI = 4 Z, = C ,  

x2 =pl + un1, y2 = q1 + th', 2, = r' + U P ;  
and thcrefure 

.VX = br' - cg' + LL (bcl - cb'), 

VY = q' - al-' + Lf ( c d  - uc'), 

VZ = ay' - ly' + u (abf- ha'). 

The qiiantities l?, i", Y, A, A', A", are such that 

var = O ,  

v2rf = - ( A U +  B)  D, 

V 2 ï " =  (D' - B u  - B) (AuS + 2Bu+ 1 )  -(LPA' + 2uB1) D, 

V2A = O ,  

V2A' = A u  + B, 

VZA" = u.28' + 2tcB' - ( D I  - AU - B) D. 

Further, we have 

211 = 0, y11 = 0, z,, = O, 

XI2 = l t l ,  y12 = v, Zi2 = cl, 

XB = pn + ll.O,", îJT2 = q" + 'Ub, ZB = T" + VC" ; 

- - a ,  b ,  C 

pl + ua', q' + ub', r f  + uc' 

pfl + ud', qff + UV, r" + UC" 

where t, 7, (are functions of v alone. Squaring the determinant which gives 
IV, we have 

= Eu2+ 217~ + c, 

= A - A D Z - l P ;  VW2= 

O, B, A 

1, D, O 
D, 1, B 
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and therefore the Gaussian measure of curvature is 

a result also obtainable from Gauss's characteristic equation by inserting the 
values 

m = O, lx' = O ,  vT= D' -  AU - B, 

As the general equation of asymptotic lines is 

and as L = O for our riiled surface, one system of the aynlptotic lines is 
given by 

v = constant, 

that is, by the generatom, as is to be expected. The other system of 
asymptotic lines is given by the equation 

2Mdu + Ndv = O,  
that is, by 

As the coefficients of the powers of u on the right-hand side are functions of 
v alone, the equation is of the Riccati type ; its primitive is of the form 

where is an arbitrary constant, and a, p, y, 6 are known functions of u. 
Accordingly, this is the integral equation of the non-generator family of 
asymptotic lines; and the members of the family are given by the varying 
values of the parameter h. 

Take four values A,, h,, k,, A, of X, thus choosing four non-generator 
asymptotic lines ; and let u,, u,, u,, u, be the corresponding values of u. 
Then we verify a t  once that 

a constant for the same four lines. Now u is the distance dong a generator ; 
and therefore the anharinonic ratio of the four points, where any generator 
intersects four given non-generator asymptotic lines, is constant. 
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Line of Striction. 

226. Take any generator given by 

x = p + a u ,  y = q +  bu, z=r+cu ,  

and a consecutive generator for a consecutive value of v, so that its equations 
are 

x = p  +p'dv + U ( a  + a'da), 

y = q +qfdv + U(b + b'dv), 

z = r  + r'dv + U ( c  + c'dv). 

Draw the shortest distance between the two. Let u be the distance along the 
former generator from the directrix curve to the foot of this shortest distance, 
and u+du the distance along the latter generator for that curve to the other 
foot of the shortest distance. The direction-cosines X, p, u of the shortest 
distance are such that 

Xa+pb +vc = O ,  M P' 

Xa' + + vc' = O, N P 

and therefore 
h. =A= v 1 = - 

b'c - bc' c'a -caf a b  - AB ' 

The length d g  of this shortest distance is 

Let d+ be the angle between the consecutive generators PN and P M ,  and let 
MAT be the shortest distance between them. Then, in the figure, we have 

and therefore 
ua d@ + doZ + dua cos2 B = dg, 

so that 

But, as usual, 

hence 
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and therefore 

The sign must be detertnined. When we take the spherical image of the 
generators, the quantities a', b', c' are proportional to the direction-wsines of 
the spherical arc which makes an obtuse angle with Pi", and the direction- 
cosines of PP' are p', y', Y'; hence B, which is equal to ap' + b'q' + c'r', is 
negative. The quantity A is necessarily positive; and u is taken positive 
along the direction a, b, c.. Hence* 

B 
I L = - -  

A' 

The limiting ~osition of the foot of the shortest distance between two 
consecutive generators is called the centre of the generator (sometimes, also, 
the centre of greatest density). The locus of this centre is called the line of 
striction of the ruled surface. Obviously the shortest distance between two 
consecutive generators is not itself part of the line of striction. 

The equation of the line of striction .in terms of the parameters of the 
surface is 

Au+B=O.  
' 

As A is not zero for real surfaces, the line is determinate ; and i t  is the 
directrix curve, if B = 0. 

227. We know (5 105) that the geodesic curvature of any curve t$ (u, v )  = O 
on a general surface is given by 

Now the directrix curve is given by u = O, so that +, = 1 and +, = O ; hence 
its geodesic curvature is given by 

* The result is obtained, without referenoe to any figure, by Darboux (t. iii, p. 299) as 
follows. The shortest distance between two given generators wiii be obtained by making d 2 ,  
where 

ds" du2 + %D dudv + (Au" +Bu + 1)  dv2, 

a minimum when u and du are regarded as variables, while v and dv are fixed. Hence 

iiu+B=O, du+Ddv=O. 

The former in the required result ; the latter is  the incidental relation 

du= - du cos O. 
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For the ruled surface in general, we have 

V z = A u z +  ?Bu + sin20; 
and therefore 

= B, 
for the directrix curve, and 

sin 0 d0 

for the directrix curve. Hence the geodesic curvature of the directrix 
curve is given by 

1 B dB -=---- 
y sin 0 dv ' 

Also the curve is chosen arbitrarily, subject to the condition that i t  intersects 
the generators; and so we have the theorem :- 

When CG curve is drawn upon a ruled surface so as to intersect al1 
the generators, and when it has any two of the three poperties :- 

(i) that it is a geodesic; 

(ii) that it is a line of striction; 

(iii) that it cuts the generutors at a constant angle; 
it has the third prope~~ty also. 

228. Next, consider the orthogonal trajectories of the generators. On 
the surface, the family of generators is given by 

The orthogonal trajectory of this family upon any surface in general is given 
by the equation (§ 26) 

(Edu + Fdv) 6u = O ; 

and therefore on the ruled surface i t  is given by 
d.u + cos Bdv = 0, 

that is, m û is a function of v only, by 

u + cos 0dv = constant. I 
Now suppose that one of these orthogonal trajectories is chosen as the 
directrix curve; we then have 

e= Br, 
B. 25 
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so that 
P=O, c#~~=l, +,=O, V 2 = A ~ 2 + 2 B ~ h + 1 = G ,  

and so the geodesic curvature of the curve is 

Thus the line of striction is the locus of points on the ruled surface where the 
geodesic curvature of the orthogonal trajectories of the generators vanishes. 

229. When an orthogonal trajectory of the generators is chosen as the 
directrix curve, 6 = +.rr ; the arc-element of the surface is then given by 

Let 

then 
ds2 = du2 + { ( I I  - + dd. 

The centre of the generator is given by u= a. Let the normal to the surface 
at any point on the generator make an angle fl with the normal to the 
surface at  the centre of the generator. At any current point, we have 

VX = br' - cq' + u (bc' - cb') 1 
VY = cp' - ar' + u (CU' - ad) , 
VZ= aq'- w+ u (ab' -buf) i 

while the corresponding quantities a t  the centre are given by 

where 

VOXo = br' - cq' + a (bc' - cb') 

Vo Y. = cp' - ar' + a (CU' - acf) 

V ,  2, = aqf - Bp' + a (a,b' - ba') 

Now 

vv, cos n = xx, + YY, + ZZ, 
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hence 

cos n = P 
{(u - a)2 + pz+ ' 

and therefore 
u - a = P t a n f l ,  

giving the angle between the normals at the points u and a on the same 
generator. 

Let the tangent plane a t  the centre of a generator be turned round the 
generator through an angle +. I n  its displaced position, i t  is the tangent 
plane at  a point on the generator given by 

and it is the normal plane a t  a point on the generator given by 

Hence any plane through a generator is a tangent plane a t  some point on the 
generator and is a normal plane a t  some other point on the generator; and, 
for different planes, the two points generate an involution having its centre 
on the line of striction. 

Beltrami's theorem on ruled ~urfaces. 

230. The preceding general properties are necessary to facilitate the 
discussion of our main question as to how far a ruled surface is determined 
by a given arc-element. 

When the element is given, the quantities A ,  B, D are known. We then 
have ' 

a"+ +c2 = 1  
+ b'2 + C'2 = A 1 , 

*'a + r / 2  = 1 

ap' + bq' + cr' = D 

a'p' + b'q' + c'r' = B 

I 
1 

five equations in all, consistent with one another and satisfied by six functions 
of v. Hence one of the six functions can be taken arbitrarily, or an arbitrary 
relation among them can be postulated; hence there is an infinitude of 
ruled surfaces, which possess an assigned arc-element of the form, proper to 
a given ruled surface. 

Accordingly, let a relation 
f (a, b, c )  = 0 
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be chosen arbitrarily. This relation, together with the f int  of the preceding 
equations, determines b and c as functions of a ;  when these values are 
substituted in the second equation, the determination of a as a function of v 
is a matter of quadrature. Thus we can regard a, b, c as known functions 
of v. 

For the determination of p, q, r, we have 

ap' + bq' + cr' = D, 

a'p' + b'q' + c'r' = B, 

(bc' - bfc)p' + (ca' - c'a) q' + (ab' - a'b) r' = - V M  
=-(A-AD-B)*=J, 

Say, where J has either sign of the radical. When these three equations, 
linear in p', q', r', are solved, we find 

B J  p' = Da + - a' + - (bc' - b'c), 
A B  

B J r' = DG + - c' + (ab) - a'b), A 
while the eauation 

is satisfied in virtue of the value of JI The determination of p, q, r is then, 
again, a matter of quadrature. 

As a2 + bP+ C* = 1, the values of a, b, c give a spherical image of the 
generators, through the radii of the sphere which are parallel to them; 
the aggregate of these radii forms a cone which is called the director cone. 
Hence as the equation 

f (a, b, c )  = 0 

wae taken arbitrarily, and as no condition waa subsequently imposed on the 
equation, it follows that the director cone of a ruled surface possessing an 
assigned arc-element of the proper form can be taken arbitrarily. 

Thus there remains a disposable element through which some added 
external condition can be satisfied. 

231. One property of the preceding solution, first rendered significant 
by Beltrami*, is to be noted. When a, b, c are regarded as known, there are 
three linear equations for p', q.', r ' ;  but the quantity J in those equations can 
have either sign. Hence, given a ruled swface, t h e  is another (and diferent) 
ruled surface applicable in such a way th& the cmesponding generators are 
pnrallel and in the sanze sense. 

* Ann. d i  Mat., t. vii (1865), pp. 139-150. 
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As an illustration, consider the paraboloid 

(where 1 and m have the same sign), 80 as to obtain the associated ruled 
surface. 

The generators can be taken in the form 

z =  u s i n 8  
where 

tan = (y?; 

Ir p = + ( l e + l m ) - t a n 8 ,  q = - t ( m 2 + l m ) ~ t a n 8 ,  r = O .  
As 

p+ qf2 + 9-9 = 1, 
we have 

cl 

so that 

, rf = O. 
l + m  

2 ( 1 -  Be-- cos9 8 sin B, 
( 1  + m)2 

Substituting these values, we find 

so that 
p = + ( ~ + l m ) * t a n 8 ,  q = - t ( m 2 + l m ) ~ t a n 8 ,  r=O,  

leading to the original surface ; or else 
nz 4 31 - m 

qf=(=J  = , r1=0,  
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so that 

Thus the associated ruled surface is given by 

(31 - m) tan 0 + ZL COS 0 sin a 

z = 21 sin 0 1 

its Cartesian equation is 
1z231-m 1 y21-3m z =  . y ( l m ) - B  -- -- - - - - 
2 2 l + m  2 m  l+nz ' 

and therefore it is another ruled paraboloid. 

Ex. 1. Shew that the ruled surface, which can be applied to the hyperboloid of 
revolution 

so that correvponding generators are parallel, is the helicoid defined by the equations 

21 ?=- cos v - + -- a2-c2 
a (a~+ $)a 

Ex. 2. 0bt&in equations of the generators of the cubic scroll 

x%=y2(y - l), 
in the form 

p-v, q = l ,  v=o, 

where 

and shew that the ruled surface associated with the cubic scroll, so that corresponding 
generators are parallel, depnds upon the equations 

Ex. 3. Discuss similarly the cubic scrolls* 

Pz+yZw=0, x(yw+xz)+3/3=0, 

where w is a linear function of x, y, 2. 

* These equations give the two distinct kinds of cubio eorolls ; see Cayley, COU. Matli. Papers, 
vol. v, pp. 211-213. It may be added that there are no undegenerate cubic ~crolls of revolution. 
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Beltrami's method. 

232. The preceding method is due to Minding; i t  leaves an arbitrary 
element in the solution without giving any clear indication of the way in 
which the element inight be used to satisfy some imposed condition. Another 
method has been devised by Beltrami"; it pays special regard to the changes 
in the directrix curve during the deformation of the surface. 

In the deformations of the ruled surface which leave i t  a ruled surface, 
the arc-element persists unaltered; 
hence the quantities D, A, B, u are 
unchanged. The directrix curve will 
be deformed, though its geodesic cur- 
vature is unaltered ; let P, Q, R be the 
point corresponding to p, q, r. In  the 
figure, let AK be the tangent at  A 
(the point P, Q, R) to the directrix 
curve; KAT the tangent plane, and 
AG the generator through A making 
the ixnaltered angle B (= cos-' D) with 
AK; A N  the normal to the surface, 
and AC the principal normal to the curve, lying in the normal plane NAT. 

Let 1, nt, n be the direction-cosines of AG, while v is the arc measured 
along the directrix curve from some fixed point; let p be the radius of 
curvature of the directrix curve, and let its direction make an angle a with 
the principal normal to the surface. Then 

pF'"l + p Q m  + = cos .Jr, 
where iJr is the angle between AC and A G ;  the direction-cosines of AG are 
cos 8, 0, sin 8, while those of AC are 0, cos m, sin m, so thlzt 

Ri1 t 

and therefore 

hence 

cos + = sin B sin P. 

sin P 
lP1l+rn&"+nR=sinB --. 

" References to Minding and to Beltrami have already been given : see p. 354. 
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in accordance with the result of €J 227. The equation expresses the property 
that the geodesic curvature of the directrix curve remains unaltered. 

Let the direction-cosines of A K  be cos a, cos /3, cos y ;  those of AC be 
cos E, cos q, cos c; and those of the binorrnal to the directrix curve be cos X, 
cosp, cosv. As the generator AG makes an angle 8 with AK, an angle 
cos-' (sin 0 sin a) with AC, and an angle cos-' (sin 8 cos a) with the binomal, 
we have 

1 = cos 0 cos a + sin 8 sin P COS E + sin 0 cos Q COS X ) 
rn=cost?cosp+ sin 8 s i n P c o s T  + sin8cosmcosp L .  
n =  cos 0 c o s r +  sin 8sin PCOS c+ sin ûcos P C O S V  1 

For the directrix curve, the Serret-Frenet formulæ are 

d cos a - Cos 5 
du , 

P 
d cos 5 cos u cos ?t -- - - - 

da +-, 
P 4 

d cos X -- - cos 5 -- 
dv 3 

4 

where l/o is the torsion of the directrix curve. We thus have l', ,ru1, 12'. 

Now the quantities A and B are unaltered throughout the deforinations, 
and they are known functions of W. Also 8 is a known function of v. But 

B= l'P'+ m'Q'+nlR'=Z'cosa $ m'cosB+nlcosy, 
A = 1'2 + ,'2 + ,Iz. 

VC'hen we substitute in the former, we have 

. sin P --- = - 
P 

a result already obtained. When we substitute in the latter, and reduce 
slightly, we find 

sin 8 cos w d + -(sin 8 sin w) 
O- du 

Thus there are two equations involving a, p, o, the other quantities being 
known functions of v ;  when m is eliminated between the two equations, a 

results. This is an oi-dinary differential equation, of the first order and of the 
second degree, which governs ariy assigued shape for the deformed directrix 
curve. 
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When it is satisfied, we can regard p and u (and then GJ from the first 
equation) as known functions of v. The Serret-Frenet formuls would then 
be satisfied, as the curve is given, so that the direction-cosines of the 
principal lines are known; and then the values of 1, m, n are known. 

In that case, the surface can be deformed. 

ET. 1. Consider the p i b i l i t y  of deforrning a niled surface, so that it  shall remain 
riilcd and that any curve drawn upon it  hecomes an asymptotic line. 

The curve is, of course, taken as  the directrix curve. In  its deformed shape, it  is an 
asymptotic line. The osculating plane of the latter is the tangent plane to the surface, so 
that 

w =4n ; 
hence 

Also 

1 -=-  B 
8----- 

P sin 8 ' 

A - @ =   COS^ +- ("Y " Y 
sin2 0 

=Fcot2e+-  
u2 ' 

and therefore 

Thus the ruied surface cczn be deformed, iwmaiiiing ruled, so that a given c ime upon it 
can be deformed into an asymptotic line, provided the curvatures of the asymptotic line 
are given (and therefore the asymptotic line is defineci) by the preceding equations, where 
the quantities 8, A, B are defined in connection with the original given curve on the 
undeformed surface. 

Ex. 2. When the directrix curve is chosen so as to be a geodesic, in al1 deformations 
of the surface it  remains a geodesic. Hence 

for its geodesic curvatiire is zero ; hence ==O for aii deformed shapes unless one of them 
1 

is R straight line when -=O, while a is not settled by this equation. 
P 

III general, therefore, we have 
B ,y+--. = 0 

sin 0 

B= D'. 

Also, in general (BO that the deformed geodesic is not a straight line), the final shqbe of 
the geodesic is such that 

that is, 
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Ex. 3. Shew that, when a ruled surface is deformed, remaining ruled, while some 
assigned geodesic beconles a straight line, the equations of the surface in its final form are 

x=usinBcou+, y=usindsin+,  z=v+ucm8, 
mhere 

Ex. 4. Determine the condition that must be wltisfied by the quantities A, B, 8, in 
order that a given curve on a ruled surface may, in the deformations which lettve it  ruled, 
assume the form of a plane line of curvature. 

Other illustrations will be found in Beltrami's memoir and in Darboux's treatise (vol. iii). 

233. When we come to consider the whole aggregate of deformations of 
surfaces, there are two modes of approaching the subject. 

In  the first of them, we can have the coordinates of any point on the 
surfaces expressed in a form 

where p and q are current variables on a surface, and t is a parameter 
varying from one surface to another. Should t survive in the eliminant 
which results from elirninating p and q between the three equations, that 
eliminant represents a family of surfaces which, for continuous values of t, 
can change into one another in continuous succession. If the fundamental 
quantities E, F, G, defined as usual by the relations 

E=x,"yy+zziZ, P=x,x2+y1y2+z1z2, G = ~ : + y f + z ~ ~ ,  

are independent of t, then any two of the surfaces are applicable to one 
another; they are usually (but not always*) deformable into one another. 
In  particular, when two surfaces arise from values of t that differ only 
infinitesiinally from one another, each of the surfaces is regttrded as an 
infinitesimal deforination of the other. 

In  the second of the methods of discussion, the actual infinitesimal 
displacement of a point on the surface (subject, of course, to the persisting 
conditions of deformation of surfaces) is considered, rather than the whole 
body of the surface. We take 

x '=z+eX,  y l = y + e Y ,  z1=z+eZ, 

where e is a small constant of negligible square, and X, Y, Z are functiom of 
the current superficial variables; and then any arc-element of the surface is 
to remain unaltered, either actually, or subject to changes of small quantities 

An exception occurs in the case of Beltrami's associated ruled surfaces which, owing to the 
difference in the sign of J for the two surfaces (1 230), are not deformable into one another. 
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tliat are of the second or higher orders. Such an instance of infinitesimal - 
deformation is provided by a small rotation of the surface given by 

The question, as to how far the two modes are equivalent, belongs mainly 
to the theory of continuous groups of transformation. As we are concerned 
with continuous deformations, rather than with the applicability of surfaces 
fwhether deformed or not), we shall deal with the second mode. 

I n  either case, the essential and sufficient condition of applicability of two 
surfaces is that the relation . 

should be satisfied ; when the deformations to be considered are infinitesimal, 
this relation is also essential and sufficient. When the values 

X ~ = X + ~ ~ ,  y r = y + o ~ ,  Z I = Z + E Z  

are substituted, and when the terms multiplied by eZ are neglected because 
the deformation is infinitesimal, then (on the removal of a factor e) we have 
the equation 

dzdX+dydY+dzdZ=O,  

which is critical for our purpose. I t  is the resolution of this equation 
which contains the soiution of the problem; and there are various ways of 
resolving it. 

Before proceeding to two of the ways, we may note an interpretation of 
the equation which shews that our problem is analytically tantamount to 
another of an apparently quite different kind. The quantities X, Y, 2, being 
functions of the two parameters in x, y, z, are the coordinates of a point on 
an (unknown) surface; and d X ,  d Y ,  dZ determine an arc-element on the 
unknown surface, just as dx, dy, dz determine an arc-element on the given 
surface. The critical equation 

dxdX + dyd Y + dzdZ = O 

expresses the condition that the two arc-elements on the two surfaces are 
always perpendicular to one'another: and so the problem of iniinitesimal 
deformation is analytically equivalent to the problem of determining a surface 
that is associated with a given surface by means of orthogonal arc-eletnents*. 

* It may be added that a corresponding result spplies in the case of deformations which are 
not infinitesimal. Let two surfaces be defoipiable into one another, so that 

the two nerv surfaces are such that 
dXdX1+dYdY'+dZdZ'=0, 

and therefore they correspond by orthogonal aro-elements. The transformation is the basie of 
one of Weingarten's methods; see 5 237. 
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234. We have seen that, when a surface 

is referred to x and y as the parametric variables, and when the ordinate of 
the surface jhowever deformed) is denoted by Z, the equation for the 
determination of Z is ($ 21'1) 

(RT-S~(l+p2+q2)-(rT+tR-2sS)(pP+qQ)+(PP+Q2-1)(Tt-QZ)=0. 

Now consider an infinitesimal deviation, represented by 

z=z+ez ' ,  

where the square of E can be neglected; denoting the derivatives of 2' by 
P', Q', R', S', Tl, we have 

RT - S'J = rt - s" e (TT' + tR' - 2sS'), 

r T  + tR - 2sS = 2 ( ~ t  - s2) -11 e (rT' + tR1 - 2sS1), 

pP+ qQ=p2+  q2+e(pP'+qQ'), 

P 2 + Q Z - 1 = p 2 + q a - 1 + 2 e ( p P ' + q Q ' ) .  

The critical equation, after substitution, rejection of cancelling terms, and 
division by e, gives 

T T ' +  tR'- 2sS1= 0. 

235. The preceding infinitesimal deformation gives the variation of an 
ordinate alone. Consider a more general infinitesimal deformation, repre- 
sented by 

Z=z+eZ",  X = x +  ex',' Y = y + e Y ' ,  

governed by the critical relation 

dxdX' + dyd Y' + dzdZ" = O. 

The quantity 2" can be taken the same function of X and Y, as 2' is of 
x and y ;  as 2" is multiplied by e, while X and Y differ from x and from y 
by smltll quantities, we can substitute 2' for Z" in the expression for 2. 
Thus 2' is determined by the equation 

rT'+tR1- 2sS1=0; 

the infinitesimal deformation is represented by 

Z=z+eZ1,  X = x + e X ' ,  Y=y+eY1, 
while we have 

dxdX' + dyd Y' + dzdZ' = 0. 

The latter gives 
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for al1 variations of x and y ;  hence 
axr 
-+pP'=o,  a~ 

three equations to be satisfied by X' and Y', when 2' is known. Let 

au azxl - -- , - axay + PS' + yQ'> 

while, from the fint, 

O = -  + p s  + ,: 
axay 

so that 

., - 

au azy'+qs+tp: --- a~ -Z%j 
while, from the third, 

so that 
d U 
- = sQ' - t P'. 2 11 
-il 

Hence 

the eqiiation* which is satisfied by 2'. Consequently, when 2' is known, we 
determine X' (save as to an  additive function of y) and Y' (save as to an 
additive function of x )  from the equations 

and then these arbitrary functions must be such as to satisQ the equations 

This analysia ia another eatebliahment of the equation for 2' deduced from the equation 
clxdX+dydY+dzdZ=O, 
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E .  1. Consider the infinitesimal deformations of the paraboloid of revolution 
2z=a.+y2. 

We have 
p = x ,  q=y> r=l ,  s = O ,  t = l .  

The equatiori for L' is 
R'+ T1=O, 

so that 
e 1 = + ( ~ + i y ) + ~  (x-~Y), 

where $ and Ji are arbitrary functions of their arguments, and their derivatives are taken 
in the expreasion foi. Z' to avoid transformations needed to effect subsequent quadratures. 

- lr'=y$' (x+iy)+i$(x+iy)+yJI'(x-iy)-iJi(x-iy)+B(x), 
U= i$' (x + ;y) - iJi' (x - iy), 

where A (y) and B ( x )  are arbitrary functions of their argurnents. When we substitute, 
we find 

Af(y)=O, B1(x)=O, 

so that A is a constant, as is B. These qiirtntities occurring in X' and Y' merely give ail 
infinitesimal uniforrn dispiamment of the surface perpendicular to the axis of revolution. 
Xeglectiiig this displacement, we have the infinitesimal deformation given hy the squations 

- x' = x {$' (a + iy) +Jr' (J - iy)} - {$ (.z + iy) + Ji (x - iy)}, 
-y1= Y I (4 f ( 3 + i y ) + f ( . ~ - i y ) l + i { O ( x + i y ) - J i ( x - i y ) ) ,  

Z r = #  (x+iy)++'(x-iy), 

where $ and Ji are arbitrary functions of their arguments. 

Ex. 2. Shew that the infiiiite~imal deformatioiis of the paraboloid 
Z = . y  

are given by 
z = z + c ( S > + ~ ' ) ,  

X=x+c{2~-y(F+1')],  
Y=y+c{2[-x(F+q1)], 

where [ is any function of x, and q is any function of y. 

236. I n  various investigations, we have seen that i t  can be convenient to 
refer a surface to its nul lines as parametric curves, the arc-element being 
given by the relation 

dg2 = 4iXdudv. 

Then, denoting the derivatives of z with respect to u and v by p, q, r, s, t, we 
obtained the equation characteristic of any deformed z in the shape (5 217) 

We proceed, as in 5 234, to obtain the equations for the infinitesimal deforma- 
tion of the surface. Writing 

where x,,, yo, z0 are the coordinatas of the point on the undeformed surface 
and the square of e is to be neglected, we denote the derivatives of 2' with 
respect to u and v by P', &', R', S', Y, and similarly for the derivatives of zo 
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Substituting, omitting the terms which cancel, and removing a factor e, we 
have the equation for Zf in the form 

The governing equation 

on the supposition that 2' is known, thus gives the (consistent) equations 
for X' and Y' in the form 

These are the general equations for the infinitesimal deformation of the 
surface. The result depends primarily on the integmtion of the Monge 
equation of the second order, whatever be the surface. 

As an illustration, take the case of the general minimal surface ; we have 
(0 174) x = g (1 + U U ) ~  f "'g"', 
where f is any function of u only, while g is any function of v only. Also 

so that 

When these values are substitiited and reduction takes place, the equations 
for the infinitesimal deformation become 
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the quantity U ultimately dropping out of any particular solution, when 
i t  has been completed. . 

Hence, in order to obtain the full expression of the infinite~imal deforma- 
tion of a minimal surface in  general, i t  is necessary to solve the foregoing 
partial differential equation which is of the Monge type in the second order*, 
as well as equations of the first order ultimately integrable by quadratures 
alone. 

Ex. Thus, for Enneper's ~nrface ($ 177, Ex. l), we have 

f=Zl3, g=+ ;  
and so the equatiou for 2' is 

of whiüh a particiilar solution is 
Z'=K (1 -?Lv)~, 

where K iu a constant. Wheii we introduce new variables u' and v', such that 

the differential equation becomes a Laplace equation, with equal invariantst ; it caii be 
expressed in the form 

(12ii" 
-- . -- &'v' -- Zr,, 
au' au' - (4 - i (de - u12);2 

where 
2' = {4 - i (v'2 - ut=)} 2". 

Weingarten's Method. 

237. We now corne to Weingarten's methodf. He discusses, not rnerely 
the surfaces into which a given surface can be deformed but also two other 
surfaces which, a t  each stage of the deformation, can be associated with the 
surface. 

Suppose that S' and Sn are two surfaces in space, such that S' c m  be 
deformed continuously into 8". Let d, y', z' be any point on 8'; and let 
x", y", 2'' be the corresponding point on SM. The necessary and sufficient 
condition for the deformational correspondence of the surfaces is that the 
relation 

dx'z + dyfz + dz'2 = uz + dy"l + dz"2 

shall be satisfied everywhere for al1 variations along the surfaces. 

&e Darboux, vol. iv, @ 913-915. 
t This is a special illustration of the general theory : me Darboux, vol. iv, ch. ii. 
$ Only an elementary sketch will be given here. Hie ohief memoirs have already been 

mentioned (p. 354). References have already (1.c.) been given to the acconntri and developments 
of hia investigation8 which are to be found in the treetises by Darboux and by Bianohi. 
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Now let 
x = 4 (XI + x"), y = g (y' + y"), Z = g (2' + z"), 

u=$(-x '+x") ,  v=&(-y '+yl ' ) ,  w=*(-z '+zU);  

the point x, y, z describes a surface S, which can be regarded iw a middle 
between S' and S". This surface S i s  made the clue to the whole development. 
Clearly 

dxdu + dydv + dzdw = 0 ;  
and so, with p and q as the parametric variables, we have 

$171, + y1v1 + ZlWl = 0,  

xiu, + x2u, + y1v2 + yzv, +z1w2+z2w1=0, 

x2u2 + y2v2 + ZZW3 = O. 
We use the customary notation for the magnitudes of the first order and the 
second order connected with the surface S; and, for the purpose of dealing 
with these equations, we introduce a central function r$ under the definition 

2 v+ = $lu,  + y1v2 + ~ l W 2  - ( ~ 2 %  + Y,%+ 22~1). 

Then the foregoing etuations are 

X l U ,  + y,v1+ ZlW, = O 

X l u ,  + y1vz + .ZlW, = v+ 
82% + yzv1+ z*w1= - v+ 

2xlu12 + zx12u] = O ; 

x$Ut  + 1/2V2 + zZw2 = O j 

From the first of these, we have 

and, from the second, we have 

Similarly, from the third and the fourth, 

Also, as usual(§ 34), we have 

= + X ~ A  + L X ,  
qz = x , ~ I  + X,A' + M X ,  
xa = xlrll + X~ A" + N X ,  

and similarly for the derivatives of y and of z ;  al1 the coefficients concerned 
belonging to the middle surface S. Then substituting, we find 
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But we have 

and therefore 
1 

= v (LZXu, - M ZXU,). 
Similarly 

1 
$2 =.(MSX% - NHXU,). 

238. Two cases occur, according as the Gaussian 
Our middle surface S is zero or is not zero. 

measure of curvature of 

When the Gaussian measure of curvature is zero everywhere, then 

L N - M 2 =  0; 
and so we have 

N+, - M$, = O ,  - Al+, + L+, = O, 

equivalent to only a single equation. The central fiinction C#I satis$es a partial 
diferential equation of the jîrst order. 

When the Gaussian measure of curvature is not zero everywhere, the two 
equations can be resolved ; they give 

Hence 

and similarly for the derivatives of Y and of 2; hence 

PZX,ul  = - (FM - E N )  V+, 

VzZXizl,  = (FM - GL) V+, 
and therefore 

The central function + satisjîes a partial differential eqwttion of the second 
order and the Monge type. 
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As regards the quantities u, v, W, we have 

r 1  which can be solved for u,, v,, w,. 1 here is a simibr set for u,, v,, tu,. The 
resulting values are easily found to be 

Thus, when + is known, the determination of the quantities u, V ,  w is effected 
by a process of quadratures. 

We therefore have the following result :- 

Talce any surface S and, i n  connection with it, determine a function +, by 
the appropriate partial equation oj' the jhst order when S is developable, and 
by the appropriate partial equation of the second order when S is  mot develop- 
able; and construct the quantities zc, v, W. Then there are two surfaces 8' and 
Su, giuen by the equutions 

d l = x + u ,  y 1 = y + v ,  z l '=z+w, 

such that each cum be deformed into the other. 

Ex. 1. Let the surface be referred to its asymptotic lines as parametrio curves, so that 

L=O, N=O. 

We do not then have M = 0 ,  so that the function + mtisfies a partial equation of the second 
order. This equation is easily found to be 

a Laplace equation with equal invariants which, on the transformation 

+Mi, 
26-2 
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acquires the c;arioniml form 
*,,+e+=o, 

where 

This is the simplest form of the partial equation of the second order which, ultimately 
in some form or other, rnust be solved before the central function + c m  be determined. 

Ex. 2. Shew that, if the parametric curves on the surface X are siich that 

the eqiiation for the function + cari be trnnsformed to 

a,, +QB = ela, 
where 

@ =an*, 
and 8' depends solely upon the surface. 

239. Consider, under the new analysis, a question already ($222) discussed; 
can a surface be deformed while some curve upon it remains rigidly fixed ? 

As the parametric variables are a t  Our disposal, again choose them so that 
one of them is constant along the rigid curve, Say p = a. Now along this 
curve, we have 

= y" = z'' = z', 
that is, 

u=O, v = o ,  w=o,  

when p = a ; and therefore also 

when p = a. We shall assume that  we are dealing with real surfaces 
throughout ; the assumption, that V does not vanish, then is no limitation. 

We have 
XlU2 + y11j2 + z1wz = v+, 

in general ; hence we have 

+=O, (p2=oi +==O,  ...> 
when p = a. Again, we have 

in  geneml; and therefore, if the middle surface S is not developable, we 
have 

N+,  = 0, 
when p= a. 

Suppose that N does not vanish (the influence of the alternative to each 
of the suppositions can be considered later) ; so we have 
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when p = a,  and therefore 
+,%=O, . - * ,  

when p = a. 

The differential equation satisfied by 4 is 

8 ;M&) + $ ( L h  - M+, EN - 2FM + CL 
ap v + v + = O  

in general ; hence 
+ I l  = 0, 

when p = a, and so al1 the q-derivatives of +,, vanish when p = a. Differentiate 
the general characteristic differential equation with respect to p, and then 
make p = a ; we have 

+Il1 = O> 
when p = a, and so al1 the q-derivatives of +,,, vanish when p = a. 

Similarly for al1 the derivatives of c$ when p = a-each of them vanishes. 
Taking a Taylor expansion of + in any non-singular region round the rigid 
curve, we see that 4 vanishes everywhere in such a region. Hence, when 
regard is paid to the expressions for the derivatives for u, v, w, and to the 
f ~ c t  that 2 4  v, w vanish when p = a, i t  is clear that 

everywhere in the region. Consequently 
$'l = XI, y ' = yt, Z'l = z', 

everywhere ; and so there is no deformation between S r  and SM.  It therefore 
follows that . d l y  a surface cannot be defwmed while a curve upon it Zs 
kept rigàd. 

240. The negative conditions, under which the preceding result has been 
obtained, are three. I t  was assumed that the surface S is real-the quantity 
V waa supposed not to vanish; the. surface S was assumed not to be 
developable ; and the magnitude N was supposed not to vanish. 

We shall maintain the first condition. If V= 0, the two nul lines through 
a point coincide; so that not merely would the surface be imaginary, but i t  
would belong to a very special class of imaginary surfaces. 

Consider the possibility that N should vanish; in that case, we should 
h ~ v e  (along p = a) 

Xxz2 + Yya + Zz= = 0. 
And we always have 

Xx2 + +yz + Zz, = O ;  
hence 

X : Y : = yzZa - ZayB : z2xa - xzZa : x2yaa - 
= - *fyl l  : zlxll - g'z'f : $'y" - 31g"l 

where dashes denote differentiation along the curve p = a. When this curve 
is not a straight line, it has a definite direction for its binormal ; hence Our 
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assumption implies that the normal to the surface coincides with the binormal 
to the rigid curve along the whole length of the curve. Now when N is zero, 
we camot infer that +, = O along the curve, and so we should have a function 
4 satisfying the equation of the second order, vanishing along the rigid curve, 
but not vanishing everywhere on the surface. Thus the analytical condition 
N =  O is necessary for the conclusion. 

When the surface S is developable, the function + satisfies a partial 
equation of the first order 

N+, - M4, = O. 
An argument similar to the earlier argument shews that, if N is not zero, 
the function +, which satisfies this equation and vanishes along the ngid 
curve, vanishes everywhere; and then there is no deformation. Thus the 
condition is unnecessq,  when N is not zero; and the latter condition has 
just been retained. 

Summing up, we have W eingarten's theorems * :- 
Whm two surfaces deformble into one aaother coincide along a cumie, 

which is not a straight line and the points of which are self-congruent in 
any deformuth, the whole su~faces coincide unless the normals to the 
middle surface of the two surfaces constitute the binormals of the common 
cumie. 

When the measure of curvature of a real surface is everywhere positive, 
N cannot vanish ; and so the exception cannot arise. Hence :- 

Surfaces of a positive measure of curvature cannot be deformed, y 
a curve or part of a c u w e  (not being a straight line) on the surface is 
kept rigicl. 

Surfaces of a ~negative masure of curvature cannot be deformed, Zf a 
curwe or part of a curve other than an. asymptotic line on the surface 
is Icept rigid. 

If the curve, which is to be kept rigid, is an asymptotic line on the surface, 
we can have N = O ; we may have + = O along the line, where + satisfies the 
equation of the second order, and yet Ive may have + different from zero 
elsewhere. The surface may be deformable. The definite establishment of 
a theorem, that i t  is deforrnable, would require the derivation, from the 
equations, of the set of deformable surfaces which have their Gaussian 
measure of curvature everywhere negative and which possess one asymptotic 
line in common. 

For further developments of the subject, reference should be made to the 
memoirs by Weingarten. 

Crelle, t. c (1887), p. 307; the earliest (but only partial) eatablishment of the aecoud of 
them wss  made by Jellett. 
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EXAMPLES. 

1. Shew that it is possible to  deform a surface so that a given curve becomes a line of 
curvature on the deformed surface. Are there any conditions to be satiafied ? 

2. Shew that a surface cannot be deformed so that a whole system of asymptotic 
lines remains asymptotic, unless i t  is tr mled surface of which the asymptotic lines are 
generators. 

3. Prove that the Ciaussian measure of curvature of a ruled surface is greater a t  the 
line of striction than elsewhere along a generator. 

4. Spheres are drawn according to any law, which makes the centres lie upon a 
surface and their radii a function of the position of the centre upon the surface; and 
their envelope is formed. Shew that the normals to  the spheres a t  t h e  points of contact 
with their envelope remain rigidly connected with the surface on which their centres lie 
when this surface is deformed. 

5. Shew that a scroll can always be deformed into another scroll so as to make the 
generators of the first become the principal normals of any one of their orthogonal 
trajectories. 

6. Shew that, if a scroll can be deformed into another scroll so that its generators 
become the principal normals of two of their orthogonal trajectories, the equation 

a2+p2+2aa+2b~+c=0, 

(where a, b, c are constants, and a, /3 are the magnitudes of § 229), must be satisfied. 

7. Shew that when a hyperboloid of revolution of one sheet is deformed, while its 
generators remain rectilinear, its principal circular section becomes a (Bertrand) curve 
such that 

8. Prove that the only real ruled surfaces, which can be deformed into surfaces of 
revolution, are the one-sheeteà hyperboloid of revolution and the minimal helicoid. 

9. Prove that a pseudo-sphere can be deformed in an unlimited number of ways so as 
ta leave an asymptotic line rigid and to conserve the principal radii of curvature along the 
line; and that it  c m  be deformed in one way so that any two lines through a point on the 
surface become asymptotic lines for the deformed surface. 

10. A given surface can be deformed into a ruled surface, a family of geodesics 
h o m i n g  the generators. At the points where this family meeta an asymptotic line, 
the rectilinear tangents to the geodesic are drawn; prove that they generate a ruled 
surface into which the given surface can be deformed. 
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CHAPTER XI. 

THE present chapter is devoted to triply orthogonal systems in ordinary spaca No 
account will be taken of multiply orthogonal systems in space of more than three 
dimensions. 

The fiwt important theorem-that the intersections of three triply orthogonal surfaces 
are linea of curvature on the surfaceewas obtained by Dupin in 1813. Later, the subject 
attracted the attention of a multitude of mathematicians, among whom pmticular mention 
of Lam6 should be made ; the theory of curvilinear coordinates in space, and a large body 
of developed results, owe their origin to him. Later, in 1846, it was pointed out by Bouquet 
that any arbitrarily chosen surface cannot belong t o  a triply orthogonal system. In  1862, 
Bonnet had shewn that the determination of such a system must depend upon a partial 
differential equation of the third order; and this equation of the third order waa first 
obtained by Cayley in 1872. Soon there followed the researches of Darbous, on orthogonal 
systems, as  on so many parts of differential.geometry; and many workers, among whom 
Bianchi may be specially named, have laboured in the field. 

I t  is unnecessary to set out detailed references to the many memoirs that are concerned 
with the subject. The reader, who wishes to obtain a comprehensive grasp of the theory, 
niust refer to Darbouxk treatise Leçons SUT les ysthnes orthogonaux et les coordonnées 
curvilignes, published (in its completed form) in 1910. He will there find a systematic 
exposition of the theory, which deals with al1 the important matters and includes manp 
of the latest developments. In that work, ample references to the original memoirs are 
given. 

Curvilinear coordinates in  space; fundamental m a g d d e s .  

241. Just  as a point on a surface can be determined by two variables 
which are taken as the parameters of two families of curves on the surface, 
so a point in ordinary space can be determined by three variables which are 
the parameters of three families of surfaces in the space. We shall assume 
that, in any region which will be considered, the surfaces are uniform, regular, 
and free from singularities ; hence through any ordinary point of space there 
will pass three surfaces, one (and only one) belonging to each of the three 
families. 
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We shall denote* bÿ u, v, w the parameters of the three surfaces, so that 
these are given by 

u(x ,y ,z)=u,  v(x,y,z)=v, zu(x,y,z)=w. 

The Jacobian of u, v, w with respect to x, y, z is not identically zero; and 
we do not consider regions of space where, a t  points or dong lines connected 
with any of the surfaces, the Jacobian might happen to vanish (though not 
identically) or to become infinite. The surface w = constant will contain two 
families of curves; given as its intersections with the family of surfaces 
u =constant and the family v = constant ; thus u and v can be taken as the 
parametric variables for the representation of points on a w-surface. And so 
for a u-surface and 8 O-surface. 

When we suppose the variables x, y, z expressed in terms of u, v, w, we 
take them in a form 

x=x(u ,v ,  w), y=y(u,v,w),  z=z(u,v,w). 

Naturally we have the same excluding suppositions about the Jacobian of 
x, y, z with respect to u, v, w as about the former Jacobian, the product of 
the two being unity. 

We require derivatives with respect to u, v, w, and also derivatives with 
respect to x, y, z. We write 

and so on, with a similar notation for the derivatives of v and of w ;  and we 
also write (no confusion need be caused by the identity of the suffixes) 

ax a% a8  a2x 
au= XI, & = %  &=%, -- a,,- XII, . . a ,  

and so on, with a similar notation for the derivatives of y and of z. 

Three quantities hl, h,, h, are introduced under the definitions 

Moreover, i t  is customary to assume that the three families of surfaces are 
everywhere orthogonal to one another ; and so we have 

u,v, + u,v, + u3v3 = O, 

V,W] + v,w2 + v,w, = O, 

WlU1+ W,U,+ wsu3= O. 
The notations are very varied. In addition to u, v ,  w, the quantities p, pi, pz are used 

( b ~  Lamé, and Darboux); others (e.g. Bianchi) use pl ,  pe, h;  Cayley and Salmon have used 
i, q. r ; and not a few writera use a, p, -y. 
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410 FUNDAMENTAL [CR. XI 

Now, as u, v, w are independent functions of three independent variables 
x, y, z, we have 

U l X l  + +2yi + 2 S Z l  = 1, 

v,x, + v2y1 + v,z, = O, 

w,x,+ w,y,+ w3z,= 0 ; 

and therefore, from the second and third of these, we have 

$1 - - Y1 = 21 

VS?w3 - V3w9 v3w1 - v1w3 V I  w9 - v2wI 
But 

v1z~,+v2u2+v,u,=0, w1u,+w,u,+w,u,=0, 
so that 

2Cl - - % - - 7.43 . 
v,w,-v,w, v,w,-v,w, v,w2-V2W19 

thus 

we have 

hence 

Similarly 

Manifestly 
h?Hla=l ,  h 2 H 2 = 1 ,  @ H z =  1 ;  

or, if we give positive values to hl, h, h3, Hl, H,, H,, then 
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24 11 MAGNITUDES FOR SPACE 

The following relations can easily be established, and 
hereafter :- 

411 

may be useful 

Ex, In $195, the equations of a Dupin cyclide were obtained in the form 

b(ccos8-p) 
z= sin + 

à-ccoe8cos~r 

where ca=aa- ba. Thus three families of surfaces are given by regarding p, 8, JI as the 
fmily parameters; and the equations of the three families are easily proved be 

(si-ya+z2-p" b'b")2=4(ax-~p)~ +4Py9 

(g+ya+z3-pa- b2)a=4 (ex -ap)2-4bV 
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41 2 SECONDART MAGNITUDES FOR 

(these two equations of the Dupin cyclide being equivalent), 

I t  is not difficult to verify by direct substitution thet 

hence the surfacea are orthogonal to  one enother. Thus the three families of surfaces 
(one of them being il family of Dupin cyclides) are a triply orthogonal systern*. 

242. The construction of the fundamental magnitudes of the second 
order for the surfaces requires the derivatives of x, y, z of the second order 
with respect to u, v, W .  

When we differentiate x,xz + y,y, + zlz, = O with respect to w, and 
similarly for the other two corresponding relations symmetric with it, we 
have 

which are easily seen to be equivalent to 

x3x11+ ysyii + zszii= -a 
In regard to the systems which inolude Dupin's cyclidee, two memoirs by Darboux, Mém. de 

l'Acad., t. li (1908), na 1, no 2, as well as Note iii at the end of his treatiae on orthogonal systems, 
should be consulted. 
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2421 TRIPLY OKPHOGONAL SYSTEMS 

The direction-cosines of the norinals to the three surfaces are given by 

U1 "1 B - - = s  a l = - = -  
hl Hl' 1 -  hl H l >  71=1;1=g1 

" y? 8, 2 2  v1 xz p 2 = 4  =z2, a l= - -= -  h, H,' 
Wl $3 I I , = - = -  w2 Y 3  p . - - = - ,  w3 

is H3' J-h3 Ha r 3 = & = H 1 ,  

The parametric variables on the w-surface are u and v; hence the funda- 
mental magnitudes L, M, N for that surface are 

Hl a& L = a3"li + Biyii + yGii = - g a;; 3 

M= a,x,z+&y,z+.y,z,,=0, 
H2 aH2 N = a , ~ + B , y , + ~ z , = - -  H, aw. 

Similar results are deducible for the u-surface and the v-surface. The whole 
table of the six fundamental magnitudes for each of the three surfaces is as 
follows :- 

Superficial 
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243. I t  will be noticed that F= O, M =  O for each surface; so we have 
Dupin's theorem :- 

When three surfaces cut orthogonally, the ctwves of intersection are lines 
of czwvature on each surface. 

The last theorem can be associated with a theorem of Joachimsthal's 
already ( $ 1 2 8 )  proved-that, if two surfaces cut one another along a curve 
at  a constant angle, and if the curve be a line of curvature for either surface, 
it is a line of curvature upon the other also. 

When the constant angle is a right angle, the theorem can be established 
very simply by the following method which is an adaptation of the method 
of Puiseux to be used hereafter (§ 259, post) for triply orthogonal systems. 
Let the surfaces be transferred to any point current along the line of inter- 
section; take the tangent plane to one of them a t  the point as the plane 
z = 0, and the tangent plane to the other as the plane y = 0 ; then, in the 
immediate vicinity of the origin, the equations of the two surfaces have the 
form 

O = z +  a x 2 + b y 2 + 2 C x y +  ..., 
O = y + a l ~  + c'za + 2Bxz + . . . , 

whe.re, in each case, the unexpressed terms are of order smaller than the 
retained terms near the origin. The curve of intersection of the surfaces 
a t  the origin (which is a current point on the curve) is 

z = o ,  y = o ;  
on the former surface, i t  is a line of curvature if C=0,  and on the latter if 
B = 0. The condition of orthogonality everywhere is 

( 2 ~ + 2 C y +  ...)( 2 a 1 x + 2 B z +  ...) 
+ ( 1  +...)( 2 b y + 2 & +  ...) 

+( 1 +  ...)( 2 c f z + 2 B x +  ...)= O ;  
along the curve of intersection, we have 

- z = & + higher powers of x, - y = a ' ~  + higher powers of a ; 
hence we have 

B+C=O,  

so that the vanishing of B or C means the vanishing of the other. 

244. The expressions for al1 the second derivatives of s, y, z with regard 
to u, v, w are derivable from the foregoing equations. We have 
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2 441 SECOND DERIVATIVES 

and therefore 

XII = XI - - 

and therefore 

1 aH2 
z,, = 2, - - + fi3 - - 

H , ~ W  H , ~ W  la1"1 

I t  may be noted that the last three equations are the forms of equations of 
conjugate systems on the u-surface; as they are also orthogonal, they are 
necessarily lines of curvature. Similarly for the other surfaces. 

The corresponding results for the other derivatives can be obtained by 
the cyclical interchange of variables. The remaining f o r m u l ~  which, with 
those already given, constitute the full aggregate of second derivatives, are 
as follows :- 
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GENERAL 

and 

From these, we have 

together with others derivable by circular interchange of the variables u, V,  w 
and of the suffixes. 

Some of these relations for the second derivatives of x, y, z can be 
expressed in another form which will be used later. As 

we have 
aul i x l a H 1  l a H ,   la^, au-H,qi-- = - -  - - -- CG, - -- -a3, 

H: au H~ av H, aw 

on using the value of xll; and so for the others. The tale of the results is:- 
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air 

together with corresponding results for Pl, A, P, and y,, %, %. 

Further, it is important (especially for some of the equations of triply 
orthogonal systems) to associate a magnitude 

with x, y, z, and to have the corresponding equations ; these are 

I t  will be noticed that the forms of the last three equations are the same as 
the forms of the corresponding equations for x, y, z-a property to be 
compared with the corresponding property, noted in 5 '7'7, for surfaces when 
they are referred to lines of curvature as parametric curves. 

245. As the fundamental magnitudes of the three surfaces are known, 
and as the parametric curves are lines of curvature on each of the surfaces, 
the principal curvatures c m  be written down at  once. 

For the surface u = a, the principal curvature along v = b is N/G, that is, 

1 a. --- a~ au 
F. 27 
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and along w = c i t  is LIE, that is, 
1 aH* --- 

HlHz au ' 

For the surface v = b, the principal curvature along w = c is 

and along u = a is 

For the surface 

and along v = b is 

w = c, the principal curvature along u = a is 

Ex. It is knowu that a triply orthogonal system is constituted by the cornplete set of 
confocal quadrics 

x2 +L+224, 
a- b + X  c + X  

for various values of A. Taking u, v, w to be the parametric values of X for a point in 
spam, shew that 

and obtain al1 the fundamental magnitudes of the second order. 

Lamé relations satisjed by Hl, H2, H,. 

246. Although there are only three functions Hl, H,, H3 of the three 
independent variables u, v, w, yet i t  appears that they satisfy a set of 
differential relations, which can be obtained in the same way as the 
Mainardi-Codazzi relations for the fundamental magnitudes of a surface. 
The space-relations are six in number. One set of three is made up of the 
equations 
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2461 RELATIONS 419 

they sometimes are called Gauss relations, more often Lamé relations, and 
may be briefly written in the form 

[IL, v] = O, [u, w] = O, [w, u] = o. 
The other set of three is made up of the equations 

they sometimes are called Mainardi relations, more often Lamé relations, and 
may be briefly written in the form 

{v, wj = O, {w, uj = O, {u, U} = o. 
Al1 the expressions for the derivatives of x, y, z of the second order have 

been obtained; these derivatives of z are linear in x,, x2, x3, and similarly for 
the second derivatives of y and of z. Now we must have 

When we substitute the values of xll and xl,, y,, and y,,, zll and q,, effect the 
differential operations, substitute again for the second derivatives which are 
introduced by theve operations, and reduce, we find 

0 =[u, VI y2+ (u, 4 y3, 

O = [u, v] 2, + {v, w} 2, ; 
and therefore 

[u, v] = O, {v, w} = O. 

Similarly from the necessary relations 

8% -- - axls a* - ayI3 azll az, -- - =- a~ au , aw au y aw au * 
we find 

[w, ZL] = O, {u, w} = O ; 
fiom the necessary relations 

we find 
[u, v] = O, {w, u }  = O ; 

from the necessary relations 
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420 LAM$. RELATIONS 

we find 
[w, u] = O, {w, u} = O ; 

from the necessary relations 

from the necessary relations 

from the necessary relations 

from the necessary relations 

and from the necessary relations 

Hence there are six relations in all, in the two sets as arranged. 

247. It thus appears that the three quantities H l ,  H,, LII,, which arise 
from a triply orthogonal system, miist satisfy six partial differential equations 
of the second order; the independent variabIes do not explicitly occur in 
these equations. Two questions a t  once proponnd themselves. 

The first can be put into the form :-supposing that three quanthies 
Hi, H,, Ha are known, or are found, as satisf~ing these six equations, what is 
their significance for the construction of a triply orthogonal system 7 

The second arises out of an obvious doubt. We are to have six partial 
differential equations satided by three quantities, regardecl as dependent 
variables; and the independent variables do not occur. It is manifest thah, if 
the equations were quite general in form,comtnon solutions wouid not exista 
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But the equations are special in form, and have (in the two sets) a circular 
symmetry in the variables; and so they may possess cornmon solutions. 
Thus a question arises as to whether any conditions must be satisfied in 
order that the equations may coexist. Our concern, however, is rather with 
systems of surfaces than with systems of equations ; and so the question will 
rather relate to the conditions that may be required of families which can 
belong to triply orthogonal systems. 

The two questions will be taken in turn. 

Edension of Bonnet's theorem (5  37) to space. 

248. Accordingly, we proceed to investigate how far a triply orthogonal 
system is determined by three quantities Hl ,  H2, H,, which are given in 
value and satisfy the six characteristic partial equations of the second order. 

The equntions to be satisfied by the coordinates of a point in space, being 
the intersection of particular members of the three farriilies (if they exist), 
are three sets for each coordinate. One of these sets is 

1 aHl Hl aH1 
x - x -  x - -  Hl ôH, 

H~ au ( 8: ~ J - X ~ ( - I ~ ; . Z ) = O \  

being a set linear in z,, x2, x3, and in their first derivatives with regard to u. 
The other two sets for x also are linear in xl, x2, x3, and in their first 
derivatives with regard to v and to w respectively. The three sets coexist, 
after the earlier analysis of 5 246, provided the six characteristic equations are 
satisfied by Hl, H,, H,. 

As the foregoing set of equations is linear in x,, x2, x ~ ,  the primitive is of 
the form 

XI = ES + qbl+  CG 
~ç, = faa + aba + Cc2 , 
x3 = th + q bs + CcJ 1 

where f ,  r), C are arbitrary functions of v and w, and where three linearly 
independent sets of particular solutions are given by 

$1, x2, XQ = a,, a,, a,; 

= hl, b,, b , ;  

= Ci, Ca> Cs. 

Also, no limitations upon f ,  q,  are imposed by the above set of differential 
eqilations.. . . 
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249. The second set of equations in the derivatives of x is 

if the triply orthogonal system exists, this set must be satisfied by the 
primitive of the first set. When 

XI, x2, x3 = =, a2, (S 

are substituted in the left-hand sides of these equatioris, let the latter become 
A,, A,, A, respecti~ely*; and similarly let them become B,, B,, B, when 

81, $9, ~3 = bi> b, 
are substituted, and become Cl, C2, 9 when 

XI, %a:,, X3= CI, Ca, C3 

are substituted. Then, in order that the foregoing set may be satisfied by 
the primitive of the first set, i t  is necessary and sufficient that the equations 

should be satisfied by values of f ,  q, which are independent of u. This last 
requirement will be satisfied if, nt the same time, the equations 

aa I--+--+A- ae ab,aq ac a y  = - a ~ ,  a ~ ,  ac, 
au au au av au av ( f a ;+%+k) )  

aA, aB, ac, %!%+%an+%K - p-+q-+5-) )  
au av au au au av ( au au a. 

also are satisfied. That they are so satisfied, in connection with the equations 
which now define f ,  q, y, can be established as follows. 

Take the set of equatioris now defining E, q, and multiply them by 

i aHl -- a a ~ ,  --- H, a a  . 
H, au * H: au H: aw 

then adding, and remembering that xl, xz, x3 = a,, G, a, constitute a particular 

The quantity A1 formally is zero : it is retained for the sake of eymmetry. 
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system of solutions for the first set of three equations in x, and similarly 
for q, G, = b,, b,, b3, and for xl, x,, x8 = cl, c,, c,, we have 

Sirnilarly for the second and the third of the set of equations for f,  7, r. 
Accordingly, they al1 will be satisfied, if only nine relations of the type 

are satisfied. Now 
1 aHl 1 aH* A , = a a - & - - -  %--, H, av H~ au 

so that 

But 

aA, a h  In the expression for -, insert this value for -; substitute for a,,, al, 
au au 

6.om the original equations which they sa&@; gather together the terms in 
am, h, and substitute for a,, a, from A,, A,: then, after reductions which 
are merely laborious, we find 

Also A, = O. Hence the first of the nine relations is satisfied. 

In  precisely the same way, the other eight of those relations can be 
proved to be satisfied. 
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Consequently the three equations defining E, T, ( possess a primitive 
in which & q, ( occur as functions that do not involve u. As those equations 
are homogeneous and linear in t, T, t and their derivatives with regard to v, 
the primitive is of the form 

= pE1 + dj" + TE''' 
q = p i  + q" + 7Tj1' 

= p('+ or + rf."' 

where p, a, T are arbitrary constants so far as derivation with respect to v is 
concerned ; and where f ' ,  VI, f.' are one special set of solutions, Fu, II", are 
another special set, and f"', $", ("' are a third special set, these three sets 
being linearly independent of one another. When these values of f, q, ( are 
substituted in q, x2, x3, we have 

a,= pal + UA + y1 

x, = puo + a@, + ry2 

x3 = pas + UA t 
as the simultaneous primitive of the first two of the three sets of equations 
satisfied by x; and p, u, T are (so far as concerns these two sets) arbitra9 
functions of W. Also 

$1, $2, X3 = a13 az, Qa; 

= 81, A, P3; 

=y,, Yz, y3; 
are special simultaneous sets of solutions of the two sets of equations. 

260. The third set of equations for x, vie. 

- 
must be satisfied. Al1 that remains a t  our disposa1 for satisfying them are 
three arbitrary (and so disposable) functions p, cr, T, of W. The procedure is 
similar to the procedure for the preceding set ; the difference lies in the fact 
that, when the linear equations of the first order for p, a ,  T are formed, two 
subsidiary systems have to be satisfied instead of one alone. Al1 the necessary 
tests are satisfied in virtue of the six relations between Hl,  H2, H,; and the 
result is that the most general values of p, o, T are 
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where h, p, v are arbitrary constants; and where the other quantities are 
functions of w only, forming linearly independent sets of solutions of the 
equations for p, u, 7. 

When these values are substituted in the expressions for xlç,; x,, xs, we 
have (8s the ultimate primitive of the nine equations satisfied by x )  the 
expressions 

x l = a X l + p Y ~ + u Z ,  
x , = x X ~ + ~ Y ~ + V Z ~  . 
x ,=XX, fpY ,+vZ,  1 

The quantities A, p, v are arbitrary constants; the other quitntities are 
functions of ZL, v, W, which combine to form special sets of simultaneous 
solutions of the equations. 

The equations determining y,, y,, y, are precisely the same as those for 
xlJ ~c,, x3 ; hence their primitive is 

where X', v' are arbitrary constants. Likewise as to the equations 
determining z,, z,, z,; their primitive is 

where A", p", v" are arbitrary constants. 

251. Thus the complete primitive of al1 the equations together appears 
to contain nine arbitrary constants. But these equations are not independent 
of one another; they are differential inferences from the earlier equations, 
viz. from 

X: + y: + Z? = B?, xgxs + y2Ys + Z2 23 = 0, 

consequently the complete primitive, which has been obtained, must satis@ 
these equations also. When substitution takes place in the first of them, we 
have 

X l 2 2 ~  + 2 X 1 Y l ~ h p  + 2X1Z1 Shv + Y12x$ + 2~71Zl&v + Z?&J' = Hl2. 
But XI, Y,, Zl = xlJ y,, z,, constitute a special solution, so that 

x: + Y? + Z1" H?; 
hence, writing 

kl = - 1, k2 = ZXp, k, = 2AvJ k, = Xp2 - 1, k, = 2 p ,  k6 = 29- 1, 
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we have 
X,Zkl + +XI YI& + 2X1Z1 k, + Y:k4 + 2 YIZlks  + Z:b = O. 

h=O, k2=O, k3=0,  k t = 0 ,  k 5 = 0 ,  k0=0 ,  
that is, 

xa + X I 2  + A''% = 1, pu + /L8v' + p"v'' = O ,  

pz + /dP + $'* = 1, vx + v'x' + ÜX'' = 0, 
3 + ut* + v''~ = 1,  Xp + x'p' + X"p" = o. 

Thus there are six equations, homogeneous and linear in the six quantities 
Ic , ,  14, kg, le,; k5, k.,. The determinant of the coefficients of the six quantities 
in these equations is equal to 

Thus the nine constants are limited by the six equations satisfied by the 
direction-cosines of any three directions in space that are perpendicular to 
one another. Now 

dx = q d u  + xTdv + x3dw, 

XI > Yi, 2 1  

x*, y,, 2 2  

x3, y,, 2 3  

and similarly for d y  and dz;  hence 

4, 

=?a' +vz l  

y - B = X'x' + ply' + v'z' 
- c = ~ l ' ~ '  + p"Y' + ,,''zl 

which does not vanish because the quantities X, Y, Z constitute three 
linearly independent solutions of our equations; hence we must have 

where. x', y', z' are definite functions of u, v, w, and A, B, C are arbitrary 
constants. The result can be enunciated in the form :- 

Quantdies H,, H,, H3, satisfying the six characteristic eqmtions, 
determine a tr-ly orthogonal sysiem of surfaces uniquely m u e  ns to 
position a d  oriedatwn in space. 
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2511 CONFORMAL REPRESENTATION OF SPACE 427 

The theorem is the extension, to triply orthogonal surfaces in space, of 
Bonnet's theorem (Q 37) concerning the determination of a surface in general 
by its fundamental magnitudes. After the theorem, a knowledge of appro- 
priate quantities Hl, H,, H, is sufficient to ensure the existence of a triply 
orthogonal system ; the difficulty is to obtain this knowledge. 

Ex. As an illustration of the use of these equationq consider the conforma1 repre- 
sentation of space upon itself. 

Let s, y, z be the coordinates of a point in space; and let u, a, w be the coordinates of 
the associated point in the conforma1 reprwentation. The arc-elements are given by 

As the represent~tion is conformai, we must have 

dsP=Xds, 

where X is sny variable functioii free from differential elements ; hence 

1 
dx8+ dya +A2 =Xa (dv? +dva +dw2). 

Cousequently 
1 H1=H2=H3=-. 
A 

Let these values be substituted in the three relations of the type 

they give 

so thilt 

wbere (so far as these relations are concerned) U is any function of u alone, V of v alone, 
and W of w alone. 

Let the values of Hl, Hz, B3 be substituted in the three relations of the type 

they give three equations of the form 

and therefore, as  U, T, W are functioris of u alone, v alone, and w alone, respectiveb', we 
must have 

2 p= TT"= w = -  or O, 
a 

where a is a finite constant. 
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Taking the common value of U", V", W" to be 2/a, we have 

mhere the new quantities a, b, c are constants. But 

when the values are substituted, we must have 

q+b,+c2=0. 

Hence, changing the origin for u, IJ, ?o (which amoiints only to a displacement in space), 
we have 

1 X = U+ v+ W=- (u~+v~+&),  
a 

while 
1 H 1 = H 2 = E i , = x .  

Let this value, common for Hl, H,, Hs, be substituted in the equations for the 
derivatives of al, oz, a,, obtained in $244. They becorne 

together nith similar equations for 81, i82, B3 and YI, 72, 73. 

Integrating, and maintaining the relations of the type 

But 

80 that 

and therefore 
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Similarly 

SPACE UPON ITSELF 

These equations express an inversion with respect ta the syhere 

uZ+ v2+ wz=a. 

Next, hking the common value of ü", V", IV' to be zero, and noting the relation 

we have U', V', W' sero. Hence U, 17, W, h, H l ,  Fi,, f13 are constant, and so the 
equations for x, y, z, when integrated, give 

X - A ,  y - B ,  z-C=( a, a', a" &.L, v, w), 

b, b', v 

where the constants a, b, c on the right-hand side are proportional to the direction-cosines 
of three perpendicular straight lines. These equations express displacement and rotation, 
with constant magnification. . 

Hence there aie only two independent methods of repreaenting apam conformally 
upon itaelf, viz. 

(i) by displacement and rotation, together with constant mgnification, 

(ii) by inversion. 

The two methods can be repeated and combined in any manner and any number of times. 

252. The difficulty of determining Hl,  H,, H, does not depend solely 
upon the fact that, by one method of procedure, we should be obliged to solve 
a nurriber of simultaneous partial equations of the second order. An added 
complexity is caused by the fact that the number of independent equations 
in the system is greater than the number of dependent variables involved; 
and so even Cauchy's existence-theorem cannot be applied to the system. 

A prelimina& investigation reveals the degree of generality which is the 
utmost to be expected among such solutions a .  exist. I n  order that three 
surfaces 

u (x, y, 2) = u, v (x, y, 2) = v, w (x, y, 2) = w, 

may be orthogonal to one another (the quantities u, v, w on the right-hand 
sides being parametric), the equations 

V I  w1 + v,w, + v, w, = O 
Wlu, + w*u, + w,u, = O  

Ml% t %V2+ % % = O  
must be satisfied. Let 

1 
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then resolving the equations for u,,  v,, w,, we find 

This is a set of three partial equations of the first order in three dependent 
variables, and so we can apply Cauchy's theorem, as follows. Take 'any 
arbitrary (constant) value of z, Say* z = 0 ;  and let a, /3, y denote three 
arbitrary functions of x and y, such that no two of the curves 

a = constant, b = constant, y = constant, 

in the plane of z cut orthogonally. Then the quantities SI, S,, X, do not 
vanish when z = 0 ; and so, within some range of values of c, the values of 
the branches of u,, v,, w, are uniform and continuous. Then Cauchy's theorem 
declares that unique uniform functions u, v, w exist, satisfying the partial 
equations, and acquiring the values a, P, y when z = 0 ;  in other words, a 
tlviply orthogonal system exis&, determined by the condition that three ~urfaces 
pass through any three assiglted clwues in the plane of z, provided no Iwo of 
these three curves cut one a~other  orthogonally. (The same limitation rnust 
hold for any set of three curves in the plane through which any three of 
the surfaces would pass.) 

We have taken any plane z = O. A corresponding theorem, with corre- 
sponding limitations, would hold if we chose curves in any plane in space or 
curves on any surface in space. 

The importance of the result is obvious. The utmost degree of generality 
that can be expected from solutions of the six characteristic equations corre- 
sponds to the generality represented by the assignment of three arbitrary 
functions of two variables. 

The c?vitical equation of the t h i ~ d  order. 

253. To make sonie nearer approach to the actual determination of 
triply orthogonal systems, we proceed once more from the conditions of 
orthogonality as follows. From two of them, we have 

w h ere 
'P,=w,u,-w,t~, ?!p=w,~-wlu,, V,=w,&-w,ul. 

In  order that the function .v may exist, it is necessary and sufficient that the 
equation 

V , d x +  V 2 d y  + qSdc  = O 

* This pmticularisation involves no los8 of generality ; it only implies a change of origin of 
wordinates. 
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should have a single equation as its integral equivalent ; hence the condition 
of integrability 

must be satisfied. Now 

where 

Moreover, the remaining equation of orthogonality is 

Similarly for the other quantities of the same kind. When the values are 
substituted, the condition of integrability becomes 

with the preceding relation which is homogeneous and quadratic in tu,, tu,, w3, 
and resolve the two equations for wl : w, : w,, we find 

wi : wa : w,= U :  U' : U", 
where U, U', U" are two-signed functions of A, B, C, F, G, H, u,, %, y. 
(For one of the signs, we have wl : w, : w8, while the other gives the values of 
v, : v, : va.) In order that the function w may ex& the equation 

U& + U'dy + U d z  = O 

Wiuii + 'U'aUia + ufs% WI? U, 

Wl%,+W,%+W3%! wa, u, 

WiU1a+Wa%+W3%~ Ws, Y 

= 0, 

which, on multiplication by 2, can be written 

Aw~+BwaZ+Cw~+2Fw2w,+2Gw3wl+2Hw,w,=0, 
where 

A = 2 (Wh - W l J ?  F = %% - uzu, + %U13 - %%3 

B = ~ ( % % - u ~ z , ) ,  G=U,~,-%%+K%-%U~ 
C=2(u1u,-~uSi), -El=u,u]~-u,u,,+~u,u,-u~u* 

of w1, w2, w3. 

1 
Manifestly the same equation would be satisfied, if we write v,, va, v, in place 

When we associate the equation 
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must-satisfy the condition of integrability ; hence 

av auf) ,(aupr ;LJ (au au.) u --- + u  ---- + p  --- 
(â  ay 

= o. a~ ay a8 

This relation is not evanescent. I t  remains as a partial differential equation 
of the third order satisfied by ZL (x, y, z). Moreover, al1 the foregoing analysis 
is reversible; hence this condition is sufficient as well as necessary. So we 
have the theorem :- 

I n  order that a fa~~viily of surfaces, represented by 

u (x,  y, z) =constant, 

m ~ y  form part of a triply orthogonal system, i t  is necessay and su&ie)~t 
that u should satisfy a partial diferent.int equation of the third order. 

254. Should the equation be satisfied by u (x, y, z), it still is necessary 
to determine v (x, y, z )  and w (x, y, z), in order to have the full system. 
These two functions satisQ the same equation of the third order as u (x, y, 2); 
but it is unnecessary to take further solutions of that equation. We have 
seen that quantities U, U', U in the preceding analysis arise, as two- 
signed functions ; let U, U', U" denote one set, and T, T t ,  T u  the other set, 
al1 of them involving derivatives of u alone. Then 

wl: wz: w3= U :  u' : U", 
V I :  v2 : va = T :  T' : T". 

The condition of orthogonality ought to be satisfied, so that we ought to 
have 

U T +  U'Tf+ U"TM=O. 

Now the two sets of ratios are given by the equations 

I t  is easy to verify that 
A+B+C=O, 

so that the condition of orthogonality is satisfied without any further 
conditions. 

The surface, w(x,  y, z) = constant, is obtained by the integration of the 
equation 

U&+ U'dy+ U d z = O ;  
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and the surface, v (x, y, z) = constant, is obtained by the integration of the 
equation 

Tdx + T'dy + T"dz = 0. 
Hence, when one of the families of surfaces is known, the triply orthogonal 
system can be completed by the integration of two ordinary equations of the 
first order. 

255. The equation of the third order, satisfied by any one of the familieu 
in the triple system, is 

When the values of U, U', U" are substituted*, we have the equation 
required ; but the analysis is long and laborious. I n  preference, we adopt the 
follovVing method of constructing the partial equation of the third order to be 
satisfied by a family of surfaces forming part of a triply orthogonal system ; 
it is duet  to Darboux. 

Let a denote any one of the three quantities u, v, w ;  the operator Da 
is used, where 

UTe have 

Denoting by xm any one of the variables x, y, z, we have 
a - (Y 21, + 'UIVI + u3vJ = 0, 

axm 
and therefore 

D,vm+D,um=O; 
and, similarly, 

D,wm + D, um = O. 
Again, we have 

V,W, + v,w, + V*W, = O, 
Say, 

ZV,,,~,,, = O; 
m 

hence 
Z W , D ~ V ~ + X V , D ~ W ~ =  O ,  
m na 

and therefore 
Z wm D,u, + Zv,  D,um = O. 
m 1)) 

When this is expanded and a superfiiious factor 2 is removed, it becomes 

This is the method sdopted by Cayley; see Coll .  Math. Papers, vol. mü, no. 518, where the 
equation is obtsined with a superfluoue Botor; ib., vol. viii, no. 619, where the supeduous 
factor has been removed from the equation. 

t Systèmes ortkogonauz, (1910), @ 9-12. 

F. 28 
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To the last relation, we apply the operator Du; and then, using the above 
relations, we find 

We thus have three equations, containing homogeneously and linearly the 
six quantities' 

so, multiplying these by w, and v,, w, and v,, w, and us, and adding in each 
case, we have three further equations 

homogeneous and linear in the same six quantities. Now these six quantities 
do not simultaneously vanish; hence the determinant of their coefficients in 

Ii, may be added that, Save as to a common multiplier, these six quantities are equal to 
Ur, url+ulr, ulrl, u ~ + u ~ ~ r ,  u'rrt+ullrt, UT, 

in the notation of 5 254 ; but these relations will not be used for our immediate purpose. 
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where the first summation is cyclical for 11,22,33, and the second summation 
is cyclical for 12, 23, 31. 

As Al,, A,, A,, A,, A,, A,, contain the derivatives of the third order 
linearly, this equation has the form 

where O is linear in the derivatives of the third order, 

linear .............................. second order, 

quartic .............................. first order, 

while @ is cubic .............................. second order, 

cubic .............................. first order. 

So far, however, as concerns the simpler applications, i t  is easier to deal with 
the unexpanded form of equation. 

256. Many forms can be given to the eqiiation; among them is one 
which has a similar form, though with a different first row of constituents. 
Let 

T = (%a + + %a)-&, 

so that Th = 1 ; but we keep T as the variable * in preference to hl .  Then 
we have 

the other second derivatives of T are aven by cyclical interchange. Now 

Substitute from the above relations for the quantities A ; there are three 
aggregates of terms. 

du * It is easy to prove that T -=l, where dn is an element of am dong the normd. The 
dn 

quantity duldn may be regarded as the dilatation of the aurface u at the point. 

28-2 
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In one aggregate, we have a set involving the second derivatives of T, 
the same in forrn as the left-hand side of our equation with a factor 

The aggregate of terms with the factor 3h-5 is 

The aggregate of terms with the factor - 3h1-a is 

Now 

a 
= h: - (x, h?) 

av 

and similarly for the others. Hence the aggregate is 

h,8 ahl ah3 h: ah, ah, 
h, au aw C X ~ X S -  - Zx1x8 + -- -- - Xxg3 h3 au au hb av au 

Thus the second and third aggregates cancel ; and so the equation becomes 

Tllvlwl +TU(V~ZU, + ~ 2 ~ 1 )  + Tla(vlw3 + vawi) + T s v a  + T ~ ( v , w ~  + vaw2) + T 3 3 ~ 3 ~ 3  =Om 
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the other form of the equation indicated. 

Taking the other five equations which involve v,wl, vlw, + v a ,  ..., v,w, 
linearly and homogeneously, and eliminating these six quantities, we have 

If this form (which was obtained first by Cayley) be denoted by 

Tu, Tm, Tm, 11,, Ta, 7'12 

Ull, us, %, u31, un 

1 ,  1 ,  1 ,  O ,  O ,  0 

2 ~ 1 ,  0 :  O ,  O ,  us, u 2  

O ,  2% O ,  213, O ,  U1 

O ,  O ,  2213, U B ,  2 1 1 ,  O 

a = o ,  
and the earlier form by 

n = O,  
the foregoing analysis shews that 

= O ,  

The earlier form is the more direct; the latter will be used to establish 
a theorem due to Darboux. 

257. Still another form c m  be given to the general equation of the 
third order; and it is required when the family ~f surfaces, forming part of 
a triply orthogonal system, is given by an  equation 

where I#J is either not actually or not conveniently resoluble with regard to u. 
Such a case occurs with the triple families of confocal quadrics. 

Instead of proceeding from the last form of the equation, where the value 
of T would now be 

we proceed from the earlier form involving the quantities A. Let 

as usual, and similarly for the derivatives of other quantities ; then 

+, + UT+' = O, 

for r = 1, 2, 3. Hence three of the equations in § 255 become 
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and the equation 
~lWl+ V,W, + %W, = O 

is unaltered. 

hence, substituting in the equation 

and therefore is zero ; the coefficient of 4,' 
= vlz~wl + wlzulvl, 

and therefore is zero. Likewise for the coefficients of +,' and +,'. Hence 
the equation becomes 

There remains the sixth equation 

as corresponding to the quantities A,, we introduce quantities cP, under the 
definitions 

a>'# = #'x (4 t+7'6 t  - 24'i' t+t8) + + i x + t # h ' t  + +Srx+t&S - &iz#t? 
where the summation in each case (as for the quantities A,) is for t = 1, 2 ,3  ; 
and we substitute in the A-equation for the various quantities z ~ , , ~ ,  u,, u,,, uat, 
after multiplying by +13. In the resulting equation, the coefficient of is 

4' ZU? 2 ulv, x ~ ~ ~ t u , ,  
which is zero ; the coefficient of +"z is 

- 24' ~uF2hlvl SUIW,, 
which also is zero ; and similarly for al1 the aggregates of terms which contnin 
+" as a factor. Gathering together the remainder, we have the resulting 
equation in the form 

Thus, as before, we have six equations, homogeneous and linear in the six 
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non-vanishing quantities vlw,, . . ., . . ., v,w, ; hence the determinant of their 
coefficients vanishes, and so we have Darboux's equation* in the form 

as the partial equation of the third order to be satisfied by a function 
+ (4 y, 2, u), when + (3, y, 2, u) = 0 
is a family of surfaces constituting part of a triply orthogonal system. 

The invariance of form of the equation will be noticed, throughout its 
different shapes. I t  is through certain invariantive forms that Darboux 
constructs al1 the forms, after the first original equation of the third order 
has been obtained. 

258. One modification of the fundamental equation is worthy of notice. 
I t  reduces the equation to an arithmetical test a t  a point in space on one of 
the surfaces, while the point is current upon the surface and the surface is 
any member of its family. The degenerate form of the equation is useful as 
a test for any particular family of surfaces, and some examples will be given ; 
but it cannot be used for constructive purposes of integration. 

Let the u-surface be referred to any point, that lies upon i t  within the 
region considered, as origin. Take the normal to the surface at  the point as 
the axis of x ;  and take the directions of the lines of curvature a t  the point 
as the axes of y and z. Then we have (always a t  the point) 

u, 2 O, u,=o, u,=O, u,=o; 

and so the quantities, denoted (5  254) by B, C, F, are such that 

B=O, C-O, F=u1(u,-u,,). 

Xow the lines of curvature on the u-surface, being the intersections with the 
v-surface and the w-surface, are given by the equations 

sui+ VU,+ ru3= 0, 

AE" B q  + CCa + 2Fqc+ 2QtE + 2 H h  = O, 
The former of these equations requires that !j= O, when [= v, or when 5 = w, ; 
the requirement is satisfied. The latter of the equations, now that E = O 
definitely, requires that the equation 

2 h  (u, - u , ) d =  0 

* Le., p. 94. 
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shall be satisfied a t  the point ; thus if f = vl so that g = v,, or if f = w, so 
that q = w,, the requirement is necessarily and sufficiently satisfied, unless 

which also will satisfy the second equation, without limitations upon g and (. 

Thus al1 the conditions required, in order to secure the lines selected as 
axes, are satisfied except only when 

and the directions are definite and unique a t  the point, Save for the possible 
existence of this relation (which will be found to be a current characteristic 
of a sphere). 

I n  these circumstances, and with these values a t  the point, the terms 
involving A,,, A,, A,, A,,, A,, in the general expanded equation become 
evanescent as aggregate coefficients ; and thus the general equation becomes 

Inserting the value of A, a t  the point, and rejecting the non-vanishing 
power of ul, the equation of the third order degenerates a t  the point into the 
critical test represented by the relation 

Bu4 as already remarked, this test is arithmetical a t  a current point; it is 
not a differential equation. 

Ex. 1. A family of parallel planes can belong to a triply orthogonal system. For the 
family can be taken in the form 

x=u, 
so that 

Plia =O, U13= 0, U,B = 0 ; 
the test is satisfied. 

The determination of the other families in the system must be effected specially; for 
the general method of § 254 is ineffective, because al1 the quantities A, B, C, F, C f ,  Hvanish. 

The u-surfaces are known ; they are such that  

The v-siirfaces must satisfy the equation 

ulvl+u2v2+~~3=0; 
hence we must have 

' vl=o, 
and therefore 

v=#ly, 4, 
where + is any arbitrary function. Thus the v-surfaces are a family of cylinders having 
their generators perpendicular to  the plane of x, that is, perpendicular to  the u-surfaces. 

The w-surfaces must satisfy the equations 

U ~ W ~ + U ~ W ~ + U ~ W ~ = ~ ,  v1wl+v2î02+v3w3=o. 
From the former, we have 

w1=0; 
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from the latter. we have 

then we can take the tu-surfaces in the form 

+@, 4=w. 
(We coiild take w equal to  an arbitrary function of +; but no generality is gained thereby.) 
These w-surfaces also are cylinders having their generators perpendicular to the plane of a. 

Ex. 2. A family of concentric spheres can belong to a triply orthogonal system. 

The family can be taken in the form 

x2+ y"z2=u, 
so that 

ai2=0, uI3=O, u ~ ~ ~ = O ;  
the test is eatisfied. 

As ull=%=us=2, u12=uas=u3i =O, al1 the quantities A, B, C, P, ff, H vanish ; so 
again the determination of the other families in the system must be s~ecially effected. 

We have 
u, = 2.74 7 4  = 2y, u3 = 22 ; 

hence the v-surfaces satisfy the equation 

.m>i+yv2+2v3=0, 
so that their eauation is 

=$ (7, 0, 
say, where + is an arbitrary function of its arguments. 

The w-surfaces must satisfy the two equations 

m,+yw2+m3=0, 
vlwl+~~2w2+v3w3=o. 

From the former, i t  follows that w can be any function of 7 and (, Making r )  and t the 
independent variables, we have the second equation in the form 

Let an integral of the equtttion 

then we a n  take the w-surface? in the form 

JI (7, LI=,. 
As an illustration, let I#J (v, c)=r) ; then + (7, 1) = (1 +v2) 1-2. The triple system then ir 

x2+y2+22=u 
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Ex, 3. A family of spheres, touching one another a t  the same point, can belong to a 
triply orthogonal system. 

The farnily can be taken in the form 

the test iS satisfied. 

Once more, the method of S 254 cannot be applied*; for the equations are 

and the left-hand side of the latter is a factor of the left-hand side of the former. so that 
the equations do not determine two sets of values for 6 : g : i-, 

The v-siirfaces must satisfy the equation 

that is, 

Hence, writing 

we have 

as the equation of the v-surfaces, <p being any arbitrary function of its argrgiiments. 

The w-surfaces must satisfy the two equations 

The former equntion is the same as the equation for the v-surfacas ; hence w must be sorne 
function of 7 and [ alone. When we take t) and [as  the independent variables, the second 
of these equations becomes 

Let an integral of the equation 

Iw given by + (>1, l) =constant; 

then the wsiirfaces are given by 

.G (1, 0 =W. 
" The expisnation of the failure in this example and in the preceding examples is simple. 

The twa equations determine the directions of the lines of curvature on the u-surface ; these are 
not definite nhen the surface is a plane or a sphere, and so the two equations must cease to be 
effective. 
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As a special illustration, let 

then we find 

HO that we have a trjply orthogonal system given by 

Another triply orthogonal systenl is given by 

Ex. 4 As a last example for the present, consider a farnily of parallel surfaces. 

The quantity u, in the equation of a family of parallel surfaces given by 

satisfies a, simple partial differential equation of the first order. To find it, mearure 
a small constant distance p along the normal; the consecutive surface is given by the 
equation 

so that 

As p is constant, hl depends upon u alone; and so we may take 

as an equation characteristic of parallel surfaces. 

and tlierefore, for our arithmetical test a t  the point, we have 

so that, a t  the point, we have 
uis3 = 0. 
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The arithmetical test is satisfied ; and so any family * of parallel surfaces can belong to a 
triply orthogonal system. 

It is easy to infer geometricaliy that the other members of the triple system are the two 
sets of developables generated by the normals along the lines of curvature. 

259. Proceeding by another method, Puiseux obtainst a number of 
arithmetical results applicable at a current point-among them, the more 
important factor of the arithmetical test which has just been considered. 
He refers a triply orthogonal system to any point as  origin, taking the 
normals to the three surfaces as the axes of reference; then, by adjusting the 
values of the parameters, he takes the surfaces near the origin in the form 

u = x  + arç2 + dye + gz2 + 2 A y z  + 2 P . x  + 2Hxy  + terms of higher orders 

v = y + ~ + b y P + e z 2 + 2 1 y z  + 2 B z x + 2 D x y +  
w =  z + f&+ i y2+  c z2+2 ï7yz+2Gzx+2Cxy  + ........................... 

have to be satisfied along the lines of intersection ; hence 

O = ( H  + h) x + ( D  + d )  y  + ( A  + B) z + terms of order higher than the first, 

The terms of the various orders must vanish separately; in order that the 
terms of the first order may vanish, we must have 

The lnst column of three relations gives 

which effectively is Dupin's theorem. Using al1 the relations, we can take 
the surfaces in the form 

+ srri' + ry3 + 1.2 + oy2z  + pyz2 + m.Yx + w x 2  + ry&y + cxy2 + xxyz + ..., 
* We akeady have had examples, in a family of parallel planes, a family of concentric 

spheres. and a farnily of Dupin cyclides. 
t Liouville, 2me Sbr., t .  viii (1863), p. 336. 
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the unexpressed terms being of the fourth and higher orders. When we 
substitute in the equation 

vlwl + Wzw~ + W3w8 = 0, 

the terms of the first order disappear ; the terms of the second order, which 
are unaffected by the unexpressed terms, are to vanish by themselves, and so 
we have 

0 = 4 f h + y + s  

O = 4 b i + 4 e i + 3 r + f j  

Similarly from w,u, + w2u, + w,u, = O, we have 

0 = 4 d i + a + r ,  

0=4cg+4fg+3p+m,  

O=4af +4fg+3s+tc, 

O = 2eh-2cf- 2ag-2f"-2g2+q+r, 

0=4ef-4fh-4hD+2y+v, 

O=4gh-4de-4eg+226+X; 

From the fifth of the second set, we have 

and from the sixth of the third set, we have 

When these are substituted in the first of the first set, i t  becomes 

But in the present case, taking the values a t  the origin, we have 
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so that the relation is 
21,u,, - ~ u , , u , ~  = O, 

being one of the factors of the arithmetical test in 5 258. 

Similarly + = Sdi, x = Seg, 
which are the corresponding tests for the v-surface and the w-surface. 

The equations are turned to other uses by Puiseux; for these uses, reference 
should be made to his memoir. In particular, he shews that they contain 
the Gauss and the Mainardi-Codazzi relations ($ 34, 35). 

Lamé families of surfaces. 

260. Whichever form of the equation be adopted, we now have explicitly 
the partial equation of the third order which must be satisfied by the 
parameter of a family of surfaces belonging to a triply orthogonal system. 
Such a family is called* a Lamé family. 

As the equation is of the third order, it is to be expected (from the 
general theory of partial daerential equations) that its primitive will contain 
three arbitrary functionst which (after Cauchy's existence-theorem) may be 
taken as (say) the values of u, u,, us when z = O, so that they are then 
arbitrary functions of x and y. But the general equation appears too 
complicated to admit of explicit integration in finite terms; so we have to 
deal with specialised cases. Nevertheless, these cases have some real degree 
of generality. Among them, one of the most important is contained in a 
theorem; by Darboux, dealing with a large family of Lamé surfaces. 

Having regard to the form of the partial equation of the third order 
satisfied by such a family u(x, y, z)= u, we consider the equation 

* By Darboux, on account of the. importance of Lamé's work on curvilinear coordinaterr. 
t This is in aooord with the alternative form of statement in g 252. 
$ l.c., Book i, ch. iii, where the integral is discussed in some detail. 
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for substituting, multiplying the second row by f ", the fourth by 4% f', t.he 
fifth by au, f ', the sixth by Su3 f ', and subtracting the sum of these multiplied 
rows from the first, we have a row of zeros. 

Similarly, it is satisfied by 

the process of verification is the same, save that the respective factors are 

xg', yh', zk', for the second row ; 

+xuigV + g', +yu$' + h', gzu#'+ Ic', for the fourth row ; 

?pu2gV, +y.zh,  izu2L", for the fifth row ; 

4 X U ~ ~ ' ' ,  &YU&", +zu,k.", for the sixth row. 

Similarly, it is satisfied by 

e = ( x ~  + y2 + ~ 2 )  1 (u), 

the process of verification being the same, but with the multipliers 

(~9 + yyZ + za) Z', for the second row, 

21, for the third row, 

+ (1 + y? + 2 )  ulE1' + 2x1: for the fourth row, 

g (& + y2 + 2%) ,u,lr' + 2y17, for the fifth row, 

+ (~9 + y2 + z2) u,l" + 221t, for the sixth row. 

Now the equation quoted is linear in the derivatives of 8, and therefore the 
sum of any number of integrals with constant coefficients is an integral ; thus 

is an integral. But 
@ = O  

satisfies the equation; and so we have Darboux's theoreme:- 

Any family of surfaces u (x, y, z) = u, satisfying the equation 

where f, g, h, k, Z are any arbitrary functions of u, is a Lamé family 
belonging to a trz'ply orthogonal system. 

For the development, and for some applications, of the theorem, reference 
should be made to Darboux's treatiset. 

* Apparently, there are five arbitrary functions in the integral, instead of three ; but the five 
cm be reduced to four, by taking a new variable u', such that 1du=du1. The four functions 
involve only one parameter u ; each of the three fundions in the primitive (after the statement 
of Cauchy's existence-theorem in 3 262) oontains two independent perametnc variables. 

t Sycrtèmee o~thogonaw, Book i, ohap. iii. 
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Bouquet surfaces. 

261. As the general primitive of the equation of the third order has not 
been obtained, i t  is worth while considering some special classes of surfaces 
that belong to triply orthogonal systems. Among these are the u-surfaces, 
whose equation* has, or can be made to have, the form 

where X is a function of x only, Y of y only, Z of z only. Then 

and similarly for the others; hence the equation of the third order, when 
expanded, is 

X ' y f Z ' ~ ( X f X " ' -  2x4) (Y" -2") = o. 
Manifestly the factor XfY'Zf  can be dropped; and so the equation becomes 

The equation c m  be established ab initio by the following method which 
also contributes some knowledge of the other families in the triple system. 
Assuming that the .u-surface does belong to a triply orthogonal system, the 
other families are given by 

X'v, + Y'v, + Z'v, = O, 

X'w, + Y'w, + Z'w, = O, 

As regards the first two of these equations, we take two independent integrals 
of the subsidiary set 

dx dy dz ;E'=Y'=Z'" 
sav 

and then the first two equations are satisfied in  complete generality, by 
taking v and w as any two functions of a and /3 only. Let these functions 
be substituted in the third equation; i t  becomes 

that is, 

They were first oonsidered by Bouquet, Lhvi l le ,  t. xi  (1846), pp. 446-450. 
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There are three independent variables, though v and w are functions of only 
two independent combinations of thern. Change the independent variables, 
choosing them to be a, B, x ;  then y is a function of a and x, while z is a 
function of @ and x, such that 

Differentiating the modified equation with respect to x, and noting that v 
and w now do not involve x: but only a and P, we have 

Eliminating the derivatives of v and w between the last two relations, we find 
( X  'X "' - 2 x  "2) ( Y" - 2") + ( Y'P"' - 2 y'") (2" - X") 

+ (2'2"' - 22'") (X" - Y") = O, 
which is the equation in question. 

When we use the earlier of the two derived relations to eliminate Y'a from the 
a-@ equation, we find 

where 

It is not difficult to verify, through the critical eqmtion of the third order, that P is e 
function of a and only. 

Suppose that the u-surface does satisfy the Bouquet form of the critical 
equation. Then; for the other two families, we have 

where M is a quantity whose exact value is not required. Thus 

and - - are the roots of the quadratic equation aa Iaw as 
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One of the linear factors gives a homogeneous linear equation of the first 
order for v ;  the other of the linear factors similarly supplies W. When 
these equations are integrated, the values of v and of w are known; and 
so we have the triple system. 

Accordingly, the first step is the determination of values of X, Y, Z which 
shall satisfj the critical equation of the third order. I t  may be written 

where A and B are independent of s, while 

Differentiating with respect to cc, we have 

so that 

consequently both sides of this equation must be constant, so that 
ff=aXf",  A = - a .  

The former gives 
X'X" - 2X"2 = f = aXf' + b, 

where b is an arbitrary constant ; and then 

The relations A + a = O, B - b = O, give 

Hence the most general resoluiion of the critical equation is constituted by 
the set of equations 

X'X"' - 2x47 = aX" + 6 

y'y"'- 2yf'9= ay" + b . 
2'2"' - 2 2 ' 9  = aZf' + b 1 

Ex. 1. Consider the case when a =O, b =O. Then 
XfX"'- 2X"2 = O, y Y'" - $ p O, Z'Z"'- 2" 2= 0. 

The primitives of theae equations are 
X= nz log (x - m') + m", 

Y= nlog(y-n') +nt', 

z= p log (2 -p') +pH , 
where al1 the quantities m, ..., p" are arbitrerg constants. No generality is iost %y 
annihilating m', n', p', m", d', p"; so we have 

x= m log x, Y= in log y, z = p  log 2. 

The u-surface has therefore thé simple form 
U= eX+Y+Z=@ynzp. 
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For the other two families in the triple system, we first deal with the equations 

Hence, if 
" 

a=&-my2, @=p.t9-&, 

both v and w are functions of a and f i  alone. The equation 

Hence 

av a2n av 
a--+@- -=O. a, a, as ab 

The equation satisfied by v is 

and the same equation ie eatisfied by W. Let 

A =  ( P m  . a - -  n+mfi)<+4ab; 
P 

then we can take 
au n+m 

2a- aa +?Fa-- P @+A*) $0, 

($ma-n2@-Ai da-2aa-O, 
P ) 

g (a, 8) =constant, h (a, 8) =constant, 

respectively ; the two other families of the system are 

g b ,  b)=v, 

h(a, @)=W. 

Ex. 2. Shew that a triply orthogonal system is given by the equations :- 

(i) the hyperbolic parabolojds ?=a; 
x 

(ii) the closed sheeh of the surface 

d y a - ~ ~ ) ~ - 2 a d y ~ + z ~ + W ) + a ~ = O ;  

(iii) the open sheeta of the same surface. 
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Ez. 3. Obtain the families, to be nssociated with the family 

so as to give a triply orthogonal system, in the form 

w = (9 + aya + a2z2)t - ($ + ,zy2 + a ~ 2 ) * ,  

where a is an imaginary cube root of unity. 

Ex. 4. Shew that the critical equation of the third order is satisfied for the surface 

u=X+c(p+z'd), 

where X is any function of x. Shew also that the families of surfacw to be associateci with 
i t  in a triply orthogonal system are 

Y 2)=- 
z '  

E.T. 5. I t  was shewn that a general resolution of the critical equation leads to three 
equations of the form 

X'X'" - 2Xrtz = axlr+ b. 
Thus we have 

X ' X r =  2X1Q+ a X  + b 

= 2 (X" - p )  (X" - a), 

where p and a are constants. Assuming them unequal, let 

then 

so that 

X 1 - = P = .  
p - a  p - a '  

(X" - p)A (X" - a)" = c2xr: 

an eqmtion that usually is transcendental. Now 
d r  

d ~ = -  X "' 

- 1 - - X' 
2 (XI' - p )  (X" - O) 

d X  

If it were possible to invert this relation, so that 

then 
X= f (S -x0, O )  + 8%. 

Similarly 
Y=f (Y-Y07 4 +A'Y, 
Z=j(z -q,, d r ) + A a  

But, in general, the relation cannot be inverted so as to give an explicit form for f. 
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Ex. 6. Integrate the equation, so as to obtitin the u-surface in the following cases :- 

(i) when b=O, 

(ii) when a=O, 

(iii) when a2= ab. 

262. Now consider the possibility of having a family of central coaxial 
(but not necessarily confocal) quadrics as a family belonging to a triply 
orthogonal system. Their equation will have the form 

where A, B, C are functions of the family parameter u. We have 

while 

and so for the values of the other quantities a,, by cyclical rotation of the 
indices. Substituting in the Darboux equation of 5 237, and evaluating, we 
find (on the rejection of a merely numerical factor) 

Hence, rejecting irrelevant factors and non-vanishing factors, we have 

as a differential equation to be satisfied by the quantities A, B, C, which are 
functions of the family parameter u. And then, for any values of A, B, C as 
functions of the parameter u which satisfy the equation, the family of 
quadrics 

a9 y9 zS -+-+--1-0 
A B C  

belongs to a triply orthogonal system. 
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Ex. 1. The simplest solution is given by 

so that 

where a, b, c are any constants. The equation of the family of surfàces is 

the family is composed of confocal quadrics of the same kind. The other two families in 
the system are the two sets of confocal quadrics of the other two kinds. 

Ex. 2. Manifestly, a somewhat general solution is given by 

AA1=Ah+g 

BB=Bh+g , 
Cc'= Gh+g 

character by taking 

1 
where h and y are any disposable functions of u. We have one set of solutions of this 

A=(u+b)(u+c), B=(u+c)(u+a) ,  C=(u+a)(u+b),  
if 

aiid the fainily of quadrics, forming part of the triply orthogonal qstem, has the equation 

The other families of the triple aystem satisfy the equations 

The first step in the construction of these families is made by integrating the equations 

being the characteristics of the first two partial equations of the first order. When we 
equate each of these functions to  p'(u) du, where f is another unknown function, the 
integral of these characteristics csn be taken in the form 

x= A&+ 4 J'W-JW 

z = C& + 4 f' (4 -J@) 

= (u+a) (u+b) (u+c) eV@). 

When this value of f  (u) is regarded as known, we c m  take the two integrals a and fi of 
the subsidiary characteristic equations in the form 

a=,&-cye-afl-b 

p=fl(b-e)yb(c-a)2c(a-b) e(a-b)(b-c)(e-a)J'(u); 

and then v and w are appropriate functions of a and 8, satisfying the equation 
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263. Next, consider the paraboloids represented by 

where L, M, N are functions of a paramet.er u ; can the paraboloids, for some 
appropriate functions as values of L, M, N, be a family of surfaces belonging 
to a triply orthogonal system ? Writing 

we have 

@,,=O, @,,=O, @,,=O. 

Thus (removing the merely numerical factor 16) the critical equation is 

which, when expanded, becomes 

Substituting and collecting terms, we find that this equation takes the form 
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We may set aside, as a particular family, the surfaces for which M =  N ;  they 
are paraboloids of revolution. Thus the critical equation becomes 

L'+ M'+ N f =  O, 
so that 

L + M + N = constant. 

Ex. A particular family is given by 

M =u, N= - u, L = constant. 
The surfaces are 

y"$ 
- + 2 x + c = o  
u 

which (by change of origin and axes) becorne the surfaces 

YZ= uLY. 

We have already (§ 261, Ex. 2) dealt with the triple system to which this farnily of 
paraboloids belongs. . . 

264. Among triply orthogonal systems, there is one special class of 
surfaces of particular importance. They arise in two ways. 

In the h t  way, they were connected (by Lamé, to whom their earliest 
consideration is due) with the equation 

which has many physical interpretations-among them, that of representing 
the temperature of space in a state of heat equilibrium. If a family of 
surfaces + (x, y, 2, 21) = 0 
is isothermic, we must have 

e =f (u), 
where 8 satisfies the foregoing equation. Then 

and so the equation becomes 

It follows that, if the family of surfaces is isotherrnic, the paranieter u of 
the surfaces (when regarded as a function of the variables) must satisQ an 
eauation 

where g (u) is a function of u alone. 
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Should the condition be satided, the temperature of the surface is given 
by the equation 

f " (u) + f '  (u) g (u) = O, 
so that 

f(.)= A + B ) ?  -sg (4 du du. 

That the necessary condition is satisfied for a family of confocal quadrics 

can easily be verified. We have 

au rce 2~ - x = -  
ax (a2 + u)P az + u ' 

and t herefore 

so that 

aZu au and similarly for - - ay2 9 azZ . 

hence 

and therefore 

1 +- Y + U  +') 8 + u 9  

so that the condition is satisfied. Also 

265. The other method of proceeding deals simultaneously with the 
three families in the triple system, as follows. 
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It was seen (in Chap. III) that soine surfaces have their lines of curvature 
of the isometric orthogonal type ; so i t  is natural to enquire whether a triply 
orthogonal system of surfaces exists, in which each family is of that type. 
Naturally, the parametric curves of isometric division will be the lines of 
curvature on every member of each of the families. Hence, on the u-surface, 
we must have 

HZ : H,2 = function of v only : function of w only ; 

on the v-surface, 

H: : H: = function of w only : function of u only ; 

and, on the w-surface, 

H: : HZ = function of u only : function of v only ; 

the three ratios being subject to the conditions 

u = constant, v = constant, w = constant, 

respectively. Now let 

A' = any function of v and tu, independent of u ; 

then we c m  take 

where fl is any function of u, v, w, so far as concerns the foregoing ratio- 
conditions. 

Ex. It was stated (in the example in 5 245) that, for a triply orthogonal system con- 
stituted by three families of confocal quadrics 

for X=u, v, w, the values of fl,, 6, &are given by 

( w - U W - v )  (w-u)(w-2)) 
4H'=(a+w) (b+w) (c+w)= W .  

When we take 
=v!!W , 2 C * = c v  

W U '  UV ' 
which satisfies the restrictions upon A', B, Cf, and when we also take 

4n+= UVW, 

al1 the conditions are satisfied. Hence the triple system is of the isometric type. 
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The quantities Hl, Hz,  H3 have to,satisfy the Lamé relations. Following* 
Darboux, we write 

- e ~ + ~ - l ~ g n  , Hz = eC+A-l~gn H3 = eA+B-logO 
1 -  

where 
log A'= A, log B' = B, log C' = C. 

When we substitute in the second set of these relations, we have 

a, = w ,  + w, + as, 
nz1 = n8 B, + a, B, + as, , 
a,, = nlc2 + a,cl + as, l 

where 

The equations for a,, a,, a,, should lead to one and the same value for 
. Differentiating the first with respect to u, and substituting for a,, and 
a,, from the second and third, we have 

and similarly from the others. Hence 

thus the foregoing conditions become 

a as, as3 -=-=- au a~ a ~ '  

by taking each of the three equal expressions as equal to one-third of their 
sum. Thus 

as, - - as, as, au - 0, -- = 0, - av = O, 
aw 

Ann. de. Nom. Sup., ln SQr., t. iii (1866), p. 131. 
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so that SI is a function of v and w only, S, of w and u only, and 8, of u and v 
only. Thus 

(B,-AJ(C2- A * ) = K ,  (Cl -4)  (A,-&) = K * ,  (&-Ca)(B1-Cd=Ks, 
where K, is a function of v and w only, K, of w and u only, and Ks of u and 
v only. 

266. To find KI ,  let u have any constant value, Say zero, an assignment 
which does not affect K I .  Then 

B, becomes a function of w only, = w3 say, 

Ca ..... . . . . . .. . . . . . . . . . . . .. . . v only, = v, say ; 
and let 

w,-A,=J ,  v,-A,=I,  

Then 

so that 

Now I and J do not involve u; hence 

But T, does not contain v, and T, does not contain w ;  hence both fractions 
are functions of u only, Say 

b" (u)  * 
T u )  ' 

then 
1 
- = b (u) c(vj + a (v)  = blc,+ 4, T, 
1 
- - b (u) c' (w) + a' (w) = b,c, + a,. 
Ta - 

Substituting in 
I J  - + - + 1 = 0 ,  
T, T* 

we have 
b, (cJ+c,J)+a,I+a,J+l=O.  

Now I  and J are functions of v  and w only ; hence 

so that 
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1 C, = v2 + T, = v, + - 
hc, + a,' 

Change the variables from u, v, w to U ,  V, W, where 

where 
ûv vi = v2 n, a function of V only, 

aw W: = W. ............... W oniy, 

1 av 
fi=-- % a V ,  V only at the utmost, ............... 

1 aw +=--  ............... ......................... 
qawy 

W 
But 

therefore 
û = + = h ,  

where h is a piire constant. Thus 

Similarly 
A =  V, + W,-hlog(W- V). 

B = W8+ U, -h log(U-  W), 
C =  U, + P, -h log(V-  U); 

and so 
H, = e ~ + ~ - ~ ~ g n  

1 H2 = - eUl+Vp+ Ris-hri a ( W -  V)-h(U-  V)-hep9, 

1 H3 = - BU,+ Vs+ W , - h i  a (U- W)-* ( V -  W)-h eWs.  
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Returning now (as is ~errnissible) to our old variables, we have 
(v - 21)-h (w - u ) - ~  

Hl = 
QU 

> 

Instead of modifying the equations, we substitute once more in the second 
set of Lamé relations ; then 

(V - w )  Q03 = h (Q2  - Qa) 

(w-u) Qsl=h(Qa-Qi) 

(U - V )  Q12 = h (Ql - QJ 
the conditions of compatibility being satisfied. 

Thus, for confod quadrics 
Q = 2 ,  h = - * ,  

where 
Ua=(a+u) (b+u) (c+u) ;  

and V and W are the same functions of v and of w as U is of u. 
. v >  

267. We now must have regard to the first set of three Lamé relations 
of 5 246 which have to be satisfied by Hl ,  Hz,  H,. For simplicity, we shall 
take 

Q = constant = 1, 
so that the equations for Q are satisfied. One of the relations is 

that is, 

Now 

and similarly for the  others. Inserting these values in the foregoing relation, 
and reducing, we have 

l u '  I V '  
H: U H; V 
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The other two relations similarly give 

The sum of the left-hand sides of these three equations is zero; hence the 
sum of their right-hand sides must be zero, that is, 

Now the variable factor, being 

- 1 
(U- v)(v- w)(w- U) {("y)'+ + (y)3, 

is not zero. Hence 
1 +2h=0 ,  

so that h = - & ; and therefore 

The first 'of the three equations now is 

(w-v) UU'+(u-w) VP' 

l (3u-v-2w)(v-W) U 2 - ~ ( 3 ~ - 2 ~ - ~ ) ( ~ - ~ )  
+ 1  (u-v)(w-u) 2 (v-w)(u-v) 

v 2 ;  

and the other two are obtainable by cyclical interchange of the three 
variables. 

The equations, in this form, are linear and homogeneous in Ua, Vs, W 2  
and their derivatives of the first order. The syrnmetry suggests an ex- 
pectation that U3, Va, W 2  are similar polynomials in u, v, w or, a t  least, that 
solutions of this type certainly exist. If n be the comrnon degree of these 
polynomials, it is easy to see that 

n=3;  
and i t  is easy ta verify- that , . 
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where n, a, p, y are arbitrary constants, of which only the ratios are essential. 
As a matter of fact, these relations constitute the primitive of the three 
equations. 

The values of Hl, H,,  H, thus obtained belong to the triply orthogonal 
system of confocal quadrics. 

Darboux shews that a general triply orthogonal isometric system is given 
by the triple set of families of surfaces having the equation 

for A = u, v, W. The equation for the arc-element in space is 

where 
U =  ( u + u )  ( u + b ) ( u + c )  ( .ua-4#)  

V =  ( v+a)  ( v + b ) ( v + c )  (v2-4d2) 

W=(W +a)(w+b)(w+ c)(wa- 4d2) 

For this result, and for further developments, reference should be made to 
his memoir already cited and, above all, to his treatise on orthogonal 
systems. 

EXAMPLES. 

1. Let p and u be the r d i i  of curvature and torsion of the intersection of the surfaces 

"(3, y, 4=v, w(x, y, 4=w, 
in a triply orthogonal system ; prove that 

2. A family of surfaces is given by the equation 

4 (3, Y, 2, 4 = 09 
and x and y are regarded as the independent variables. Shew that the critical equation 
of the third order, which must be satisfied if the family belongs to a triply orthogonal 
system, is 

a 2  T a2 T a2 T 
I(l+q2) 8 - p p t 1  -+~(1+p2)t-(1+p2)~--+{ppT-(1+p~) ax2 s)-=O, axay 

where 
a!Iz 

3. Shew that any family of planw, the equation of which contains one parameter, 
can form part of a triply orthogonal system. 

In any one of the planes, let two sets of curvea be dmwn cutting one another 
orthogonally. Let the plane be moved so as always to touch the developable surface 
which is the euvelope of the farnily of planes; prove that the two families of surfaces 
generated by the two sets of curves complete a triply orthogond system. 

IRIS - LILLIAD - Université Lille 1 



EXAMPLES 465 

4. Circles are drawn, cutting a given surface orthogonally and also a given plane 
orthogonally. Shew that there is  a Lam6 family of surfaces cutting the circles 
orthogonally. 

5. In  the Bouquet surface u = X +  Y+Z, denote the equation which X must 
aatisfy by 

X'Xn'=2(X"-a)(X"- b); 

and let X and p be the roots of the equation 
~ ' 2  p j y a  
e:x+ e j y  + rz= O. 

Aleo let 

shew that the u-surface, the v-surface, and the w-surface thus obtained, are a triply 
orthogonal system. 

6. Obtain equations for the orthogonal systems of which the surfaces 
a$+by3+ci+A($+y2+z2)=u, 

d+by4+c#+X($+y2+z2)=~,  
(where a, b, c, 1 are constants) respectively form part. 

7. The envelope of the f m i l y  of surfaces 

mhere X is the parameter for the family, constitutea a triply orthogonal system, pmvided 
m+n+p+q is not zero. 

D i s c w  the case when m + n + p  +q=O, obtaining a triply orthogonal system partly 
through the envelope. 

1 
8. A particulai. Lamé family consists of surfaces of constant negative curvature - - uai 

where U may be a function of m. Shew that we may take 

wheiw 9 must satisfy the four equations (due to Bianchi) 

Prove that a solution of these equations is given by 

+ r - ~ = a m { w + f ( 4 1 ,  
where f (u) is sny arbitrary function of u, e is a pure constant, and the modulus of the 
elliptic functions is l/cU; and verify that these r-surfaces are surfaces of rotation. 

F. 30 
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CHAPTER XII. 

THE present chapter deals solely -with the elements of the theory of congruences of 
curves; and within the range of that theory, attention is restricted to curves which are 
either atraight lines or oirclea 

The aimplest example of rectilinear congruencm (in which, moreover, there is direct 
application t o  a physical subject) occurs when the straight lines are composed of a set 
of lines thabt can be cut orthogonally by a family of surfaces-such as the rays of light 
issuing from a centre. They were considered a t  an early stage by Malus, Dupin, and 
Hamilton. 

The theory of congrueuces of plane curves, and particularly of circles, owes its early 
systematic development t o  Ribaucour. 

Detailed references to many of the numerous writers on the subject will be found in 
the second volume of Dibrboux's The'orie générale des  surfaces, book iv, chapters i, xii, xiii, 
xv, and in chapters x and xviii of Bianchi's Geometria Diferenziale. 

268. I n  almost al1 the preceding investigations, whether surfaces or 
space constituted the subject of investigation, the discussion has been based 
upon point-coordinates by taking a point as the initial element. Two 
exceptions arose; for each of them, the discussion was based upon plane- 
coordinates, by taking a plane as the initial element. I n  one of these 
exceptions, the equation of the osculating plane of a skew curve w m  taken 
as the analytical definition of the curve (3 16 j ;  in the other of them, the 
coordinates of the tangent plane to a surface were used, to complete the 
spherical representation of the surface (§ 162). 

Now, in algebraic geometry, it proves wnvenient to use line-coordinates 
by taking a straight line as the element of space, instead of a point or a 
plane ; more generally, we could take a curve, plane or skew, as the element 
of space. For this purpose, we note that space may be regarded as containing 
ai points. For our purposes, a curve through a point will have a definite 
direction (or one of a limited number of definite directions); so that the 
curve will associate, with the point, KI' other points or a finite multiple of 
oo l other points ; consequently, we ahould have x, curves for our investigation. 
As they are curves in space, they require two independent equations for 
their analytical expression ; as they are oo a in numerical range, these equations 
rnust involve two independent parameters. Such an aggregate of curves is 
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called a congruence of curwes, sometimes a congruence, sometinies a congruence 
with a prefixed epithet (rectilinear, cyclical, or the like). 

Examples of congruences of curves are frequent enough. Thus the 
aggregate of the normals to a surface is a rectilinear congruence, as is the 
aggregate of tangents from a twisted curve to a surface in space. Systems 
of rays in theoretical optics have been the subject of many investigations ; 
and the importance of the congruence of characteristic curves in connection 
with the primitives of partial différentia1 equations is well known. 

To illustrate the origin of a congruence, consider two similar problems, 
one of which leads to a congruence, while the other does not. Take any two 
algebraical surfaces and, for greater definiteness, suppose that they are not 
parallel; let i t  be required to find the aggregate, (i) of straight liiies which 
are orthogonal to both surfaces, (ii) of circles which are orthogonal to both 
surfaces. The equations of the surfaces are taken to be 

(i) If x,, y,, zo be a point on the former surface; and if xl, yl, q be a 
point on the latter surface; where the straight line 

is normal to both surfaces, we have 

Thus there are six equations for the determination of the six quantities 
xo, y,, zo, xl, yi, zl. I n  the absence of special relations between the surfaces 
(such as parallelism, which woiild identify the last two pairs of equations), i t  
can be inferred that they furnish a, limited number of solutions, real or 
imaginary. Thus there is only a limited number of straight lines, normal 
to the two surfaces ; they do not constitute a congruence. 

(ii) Any circle in space can be represented by equations 

Let this circle cut the surface f (x, y, z) = O orthogonally a t  xo, y,, z,,, and the 
surface g (x, y, z )  = O orthogonally a t  xl, y,, 2,. Then the equations 
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must be satisfied. Thus, in general, there are ten equations (some of them 
not homogeneous) involving the twelve quantities x,, y,, z,, xl,yl, zl, a, p, y, p, 
Z : m, 1 : n ;  hence two of these quantities may be regarded as ultimately 
independent parameters. They do constitute a congruence; such a double 
system of circles is often called a cyclical congruence. 

But i t  does not, of course, follow that a congruence of circles is necessarily 
orthogonal to two independent surfaces. 

' 

269. Accordingly, we take a congruence of curves represented by two 
equations 

f ($2 Y, 2, p ,  q) = 07 g (x7 y, 2, p,  q) = 0, 

wherep and q are two parameters; and we shall assume that the equations 
are algebraical. When full variation is allowed to p and q independently of 
one another, we have a double infinitude of curves in the congruence. The 
curves, passing through a given point xo, yo, zo in space, are determined by 
values of p and q which satisfy the equations 

f ( ~ 0 7  Y O > ~ O , P ,  Q ) = O I  g(xo2Yo?z~>P> q)=O '  

Usually, these provide only a limited number of values of p and q, so that 
then the number of curves passing through the assigned point in space is 
limited. But i t  may happen that the two equations only determine a 
relation between p and q, so that p is not restricted to any definite value 
or values ; in that case, a simple infinitude of curves pass through the point. 

The double infinitude of curves can be grouped so as to constitute 
surfaces. Taking any relation 

q = d ( ~ X  
and eliminating p and q between this equation and the equations of the 
curves, we have a surface ; and by taking an infinitude of forms for +, so as 
to exhaust the congruence, we obtain a simple infinitude of surfaces. These 
are called the surfaces of the congruence. 

When any direction dx, dy, dz is taken a t  a point on the surface in the 
tangent plane, we have 
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and therefore 

where 

Thus the direction-cosines of the tangent plane are proportional to 

The curve of the congruence, passing throiigh the point of contact of this 
tangent plane, lies on the surface; and so its tangent lies in the tangent plane 
to the surface. 

270. The equations f = O and g = O are independent of one another, so 
far as concerns variables and parameters ; hence their Jacobian with regard 
to any two of the arguments involved (e.9. with regard to p and q) does not 
vanish identically. Thiis the equation 

is usually a new equation, satisfied independently of the equations of the 
curve f = O and g = O ; taken simultaneously with them, i t  determines a 
finite number of sets of values of x, y, z, that is, it determines a finite 
number of points on the particular curve, which are independent of the 
existence of any assigned relation between p and q. For al1 such points, 
the value of p is independent of the form of + ' ( p ) ;  and so a11 the surfaces 
of the congruence, which pass through the particular curve, have the same 
tangent plane a t  each of the points in question. These points upon the 
curve are called its focal points. 

I t  has been remarked that the number of focal points is limited, being 
the points given by the (usually) limited number of sets of simultaneous 
solutions of 

For a rectilinear congruence, f = O and g'= O are planes ; so the equations 
are of order 1, 1, 2 respectively. The number of focal points upon any line 
of the congruence usually is two; on particular lines, the two focal points 
may coincide. 

For a congruence of circles, f = O is a sphere and g = O is a plane ; so the 
equations are of order 2, 1, 2 respectively. The number of focal points upon 
any circle of the congruence usually is four ; for particular circles, coincidences 
among the focal points may occur. 
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For a congruence of conics, the number of focal points upon each conic 
effectively is six. For sphero-conics, the number is twelve. For quadri- 
quadric curves, the number is sixteen. For plane curves of order n, the 
number is n (n + 1). I n  the last case, there may be decrease of the 
number of focal points in the finite part of space, owing to some speciality 
in the form of the curve. I n  al1 the cases, there may be apparent decrease 
in the number owing to coincidences among the focal points in the general 
aggregate. 

The focal points of any curve are given by the equations 

whatever law between p and q is postulated. When p and q are eliminated 
between the three equations, usually a single relation between x, y, z is the 
eliminant. The surface, which is represented by this equation, is the same 
whatever values may have been assigned to p and q ; thus it is the locus of 
al1 the focal points of al1 the curves, and so i t  is called the focal surface of 
the congruence. 

Any surface of the congruence meets the focal surface at  the focal points 
of any of its curves. At any point on the focal surface, we have 

and a corresponding equation derived from J =  O, which (with these two) 
would give the direction-cosines of the normal to the tangent plane. Corre- 
sponding to the focal points on the curve, we have 

so that 

as the equation for directions in the tangent plane of the focal surface. But 
a t  these points on the surface of the congruence derived through our curve, 
we have p = K ;  so that the direction-cosines of the normal to the tangent 
plane to the latter a t  these points are proportional to 

and therefore are the same as those of the normal to the tangent plane to 
the focal surface a t  the point. Hence auy surface of a congruence touches 
the focal surface a t  the foci of any of its curves ; and any two surfaces, con- 
taining a particular curve, touch one another at  the foci of the curve. 
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The last result suggests the consideration of envelopes of the curves in 
the congruence. We cannot usually have 

So we imagine a family selected according to some law between p and q ;  and 
then its envelope is given by 

af ? f d a  a9 a9 dq f = O ,  g = o ,  - + - - = O ,  -+--=o. 
ap aq dp  ap 84. dp  

When we elirninate x, y, z, we have an ordinary equation 

of the first order; this will determine the required law. Also, the equations 
are included in, but are not so extensive as, the set of equations 

f = O ,  g = o ,  J - O ;  
and so the envelope of the selected curves lies upon the focal surface, touching 
the curves at  their focal points. 

Surfaces normal to a congrumce. 

271. Consider the possibility, that the curves in a congruence should be 
normal to some surface. Along the curve 

and so a surface, cutting the curve nt right angles, is given by 

If the surface is to cut al1 the curves of the congruence a t  right angles, the 
values of p and q must be imagined as obtained from f = O and g =O, and 

'f, 9 then be substituted in J - .Ag (y, z),  J (=), J (3) , wherever they occur. 

Let the resulting values of these quantities, which now are functions of 
the variables aloie, be denoted by X, Y, 2; Our equation is 

Xdx + Y d y  + Zdz = o. 
In .  general and unconditionally, this differential relation is not integrable, 
in the sense that its integral equivalent consists of only a single equation; 
and therefore there is n o  surface orthogonal to al1 the curves of an arbitrarily 
assigned congruence. 
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But the differential relation has an integral equivalent.consisting of a 
single equation, if the condition of integrability is satisfied, viz. we must have 

As regards this equation there are two possibilities. 

First, i t  may happen not to be an identity. I n  that event, it is a relation 
between x, y, z, which is algebraical in form and so can be regarded as pro- 
viding one or several values of z. If, for any one of these, the equation 

is satisfied, then the equation giving the value of z  in terms of x and y 
provides a surface orthogonal to al1 the curves of the congruence. But it is 
not iisually the case that values of z thus obtained do satisfy the differential 
relation; even those, which do satisfy it, only provide isolated surfaces 
orthogonal to the curves; and the number of these isolated surfaces is 
limited, so that i t  cannot be greater than the degree of the function I. 

Secondly, the condition of integrability inay happen to be satisfied 
identically. I n  that event, the relation 

Xdx+Ydy + Z d z =  O 

has an integral equivalent consisting of an equation 

where a is an arbitrary constant ; the integral equivalent ia obtained in the 
customary fashion. The integral equation gives a family of surfaces. Al1 the 
curves of the congruence are cut orthogonally by the family. 

Further, we have assumed that the congruence is represented by integral 
equations f = O and y = O, which are algebraical. I t  may be given initially by 
differential equations 

the primitive of which contains the two necessary parameters and consists 
of two integral equations. These two integral equations are, however, not 
necessarily algebraical, even when X, Y, Z are algebraical. The argument is 
otherwise unaltered ; and so we have the result :- 

A congrumce of cumres is  usually not capable of orthogonal section 
by a surface; but there may be isolated surfaces normal to the mrves 
in particular congruences, the number beiv~g h'mited when the curves are 
algebraical; and it  mny happen (under the condition indicated) that a 
congruence is cut normally by a family of surfaces. 
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ET. 1. For the congruence 
dx -=-- dz dy -- 

y  k+l)  z ( x + l )  x ( y+ l ) '  
so that 

X = y ( z + l ) ,  Y=z (x+ l ) ,  Z=x(y+ l ) .  

The equation I=O is not satisfied identically, being 

The value of z given by this relation does not satisfy the equation 

X&+ Ydy+Zdz=O ; 

there is no surface orthogonal to the congruence. 

Ex. 2. For the congruence 
dz dz -=A=- 

y-Z 2 - 2  x - y '  
being a congruence of circles 

x  + y  + z  =p 
xe+y2+P=g 

the equation I=0 is satisfid identically. Hence the circles cau be cut orthogonally by a 
family of surfaces, whose differential equation is 

the integral equation of the family is easily found to be 

y - z = a ( s -  z). 

Ex. 3. Shew that the congruence 

being a congruence of circles orthogonal to  the two particular surfaces 

has 

for its differential equations, Prove that the condition of integrability is satisfied; and 
verify that al1 the curves of the congruence are cut orthogonally by the family of spheres 

x2+y2+z2- l=az, 

where a  is the parameter of the family. 

272. The general condition of integrability is 

When the conpuence is given by the equations 

f ($9 y 9  2, p, q) = O, g ( x, y, 2, p, q)  = 0, 

of the most general type, then 
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and the values of p and q, in terms of x, y, z from f = O and y= O, have to be 
inserted, explicitly or implicitly, in X,  Y, Z before the partial derivatives are 
framed. Let 

so that dlds represents derivation dong the curve of the congruence; and 
write 

Then the foregoing general condition can be expressed in the form 

When the equatiom of the congruence have the simpler form 

f = f + q + c - p = 0 ,  g = a + B + y - q = 0 ,  

where a and F are functions of x alone, /3 and q are functions of y alone, and 
y  and are functions of z alone, we have 

Hence we must have 
a"f' - a'F" = pf + a,$' 

y y  - ?'y = Prf + or 
1 p'q'-,e'Tj"'Pp'+uqf , 
1 

and then the condition of integrability becomes 

where p and a are pure constants. And similarly for other forms. 

- alEl: TTf - Ptv", r'fr - ,y'r 1 a' Y @ Y Y' 

Ex. 1. Shew that the congnience 

= 0. 

where a, b, c are constants, can be cut orthogonally by a family of surfaces; and determine 
the family. 

I f ' ,  tf Y 5' l 
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Ex. 2. Find the congruence of curves, lying in parallel planes and upon the surfaces 

t+v+[=w 
which can be cut orthogonally by a family of mirfaces; and determine the orthogonal 
family. 

273. We now proceed to consider in some detail the properties of 
congruences composed of straight lines, commonly called rectilinear con- 
gruences. Their equation has the form 

where x, y, z, X, Y, Z are functions of two independent parameters p and q. 
The point x, y, z may be regarded as a point on a director surface; the 
quantities X, Y, Z are the direction-cosines of the line (often called the rny) 
through x, y, z, and, on the sphere 

xa+ Y2+22=1, 
they give a spherical image of the congruence. 

Distinction must be made between a congruence of lines, thus defined, - 
and a complex of lines. The equation of a complex has the above form 

where now x, y, z is any point of space, and the direction-cosines X, Y, Z are 
any definite functions ; so that the complex involves three parameters, while 
the congruence involves two. We shall deal only with congruences. 

Take any distance 1 from x, y, z along the ray through that point on the 
director surface ; the coordinates of the point so obtained are 

$+lx, y+lY, z + l Z .  

The square of an arc-element in space a t  the point is 

C d 8  + 2 d l Z X h  + 212dxdX + dlY + l%dX2. 
Of the quantities which occur in this expression, Z& is the square of the 
arc-element on the surface; its form has been amply studied in earlier 
chapters, and the significance is of minor importance for the lines in the 
congruence. The quantity ZXdx will occur from time to time; its 
evanescence is the condition that the lines are normals to a surface. The 
quantity ZdxdX is a new quadratic form; we write 

a = ZxlX l ,  b = C x , X , ,  b' = ZxlX, ,  c = Zz2X2 ,  
ax ax 

where x, = - , x2 = - , and so for the other quantities ; then 
ap aq 

BdxdX = adpa + ( b  + b') dpdq + cdq2. 

IRIS - LILLIAD - Université Lille 1 



4'1 6 RECTILINEAR [CH. XII 

The quantity dl is merely an element of length along the ray ; it is, of course, 
independent of p and q. The quantity 2 d X a  is the square of the arc-element 
in the spherical image ; we write (as before, 5 159) 

e = ZX;, f  = XX, X,, g = CX2,  
and 

BdX2= d@=edp2+ 2fdpdq +gdqe, 

so that dB is the angle between the rays (p, q )  and ( p  + dp, q + dq). 

The parameters p and q are at  our choice ; the choice can be exercised so 
as to make 

f=O, b+b'=O. 

To prove this, take two new independent variables u and v, which are 
functions of p and q to be determined. The new quantity f is 

axax avav azaz --+--+-- 
au a~ au av au av , 

that is, 

and so the new quantity f will vanish if p and q, as functions of u and v, 
satis@ the equation 

The new quantity b + b' is 
axax axax p ----+--) 

(au a. au av 
that is, 

and therefore the new quantity b + b' will vanish, if p and q satisfy the 
equation 

apan apaq + c - a ~ , ,  
a $ a p + ( ~ + ~ ) ( à - + - - )  au av U ~ V  av au auav 

Thus two relations have to be satisfied. 

Two cases arise. Firstly, let the relations be different from one another; 
then we have two partial equations of the first order involving two dependent 
variables ; by the general existence-theorem for such equations, they possess 
integrals which even satisfy assigned conditions. Thus the transformation is 
possible. Secondly, let the relations be the same; then the single relation 
can be satisfied by taking p any fiinction of u and v, and using the modified 
relation to determine p. Thus the transformation is possible in an infinitude 
of ways, when 

e : f : g = a : b + b ' : c ;  
such a congruence is called isotropie (5 279). 
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In  both cases, therefore, we can make f = O, b + b' = O ,  without ioss of 
generality. 

274. Take two consecutive rays determined by (p, q) and ( p  + dp, q + dq). 
Let dn denote the shortest distance between them, and cos a, cos p, COS y its 
direction-cosines ; then 

(X+dX)cosa+(Y+dY)  cos/3+(Z+dZ)cos y = O, 
so that 

COS y = Xd Y- YdX = (XY, - YXl) dp + (XII, - YX,) dq 
where 

M2=dX2+dY2+ dZ2=d& 
Then 

dn=dx .cosa+dy .cos /3+dz .cosY ,  
so that 

dedn = C [(lçldp + x2dq) [(YZ, - ZYJ dp + (YZ, - ZY,) dg}]. 

On the right-hand side, the coefficient of dp2 iis 

Zx1 (YZ, - ZYJ. 
Now (5 162) 

X,Y2-X,Y1=vZ, z,x,-Z,X,=vY, 

where v = (eg - f3*; and 80 the coefficient of dpa 

1 
= - Zxl{Z, ( z l x ,  - Z,Xl) - y1 (Xl y2 - X J l ) )  v 

1 
= - (eb' -fa). v 

Similarly, the coefficient of dpdq is 

and the coefficient of dqa is 
1 
- (fc - 9b). u 

We thus have 

1 
dedn = ; {(eV -fa) dp2+ (ec - f b + f b'- ga) dpdq + (fc - gb) dqa] 
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Further, let t denote the distance along the ray ( p ,  q) between the point 
x, y, z and the foot of the shortest distance dn between the consecutive 
rays under consideration; and let t + dt denote the distance along the ray 
(p + dp, q + dg) between the point a + dx, y + dy, z + dz and the foot of the 
same shortest distance. Then 

when infinitesimal quantities of the second order are neglected ; thus 

dn cos a = dx + Xdt + tdX. 
Similarly 

dncosB=dy+ Ydt+tdY, 

dn cos y = dz + Zdt + tdZ. 

Multiplying by X, Y, Z, and adding, we have 

multiplying by d X ,  dY ,  dZ, and adding, we have 

SdxdX + tZdXa= 0, 
that is, 

t = -  adp" (b + b') dpdq + cdq2 
edpa+2fdpdq+gdq1 ' 

These results are general, whatever be the parametric variables (p and q) that 
may originally have been selected. 

The first relation shews that, if the congruence is normal to the director 
surface, i t  is normal to any parallel surface ; for dt and ZXdx vanish together. 

275. The latter relation makes t a function of the ratio dp: dq. There 
are two values of this ratio for which t has a stationary (maximum or 
minimum) value; and there is a corresponding quadratic giving the two 
stationary values of t .  

When t is a maximum or minimum,we have (denoting the ratio dp : dg by p) 

t(ep+ f ) + u p + + ( b + b 1 ) = 0  

t ( fp+g)+B(b+b' ) r+c=O 
When p is eliniinated, we have the quadratic giving the stationary values of 
t ; it is 

d + a  , f t + f ( b + U ) / = O ,  

that is, 
(eg -fa) tz + iec - f (b + b') + gaj t + ac - 4 ( b  + b')a = 0. 

The directions, determined by the ratio dp : dq on the director surface, for 
which t haa one or other of these two stationary values, are obtained by 
eliminating t ; they are given by the equation 

(2fa - e (b + b')} dpa + 2 (ga - ec) dpdq + {g ( b  + b') -- 2fc1 = 0- 

IRIS - LILLIAD - Université Lille 1 



2751 LIMITS OF A RAY 479 

Now v2, = eg - fg, is not zero; so we may trtke the directions of the parametric 
curves to be given by the quantities u and v (of 5 273) ; that is, without loss 
of generality, we may take 

f = O ,  b+b '=O;  

and then the rays that give the maximum or minimum value of t are 

p = constant, q = constant. 

Let t, and t, denote the maximum and minimum values of t along the ray ; 
Say, let 

so that 

As to the form of this result, particular consecutive rays are chosen through 
the parameters of reference, the ray p =constant giving the value t, and 
the ray q = constant giving the value t. 

Let cos al, cos BI, cos yl denote the direction-cosines of the shortest 
distance between the former ray and the current ray ; and let cos a,, cos &, 
cos y2 denote those of the shortest distance between the latter ray and the 
current ray; then, as 

dB, cos a, = (PZ, - ZY,) dq, dB, cos % = (YZ, - ZY,) dp, 

and similarly for the other quantities, we have 

delde, 2 cos a, cos a, = (I; (YZ, - ZY,) ( YZ, - ZY,)] dpdq 

= {ZX2ZXlX, - ZXX,ZXX,] dpdq 

with our curves of reference. Thus the two shortest distances are perpen- 
dicular to one another. 

Further, let o denote the angle which the shortest distance between the 
ray ( p  + dp, q + dq) and the ray (p, q) makes-on the special reference-with 
the shortest distance between the rays (p, q + dq) and (p, q). Then, as 

dede, Z cos a cos a, = Z {(Y& - ZYJ dq} {( YZ, - ZYl) dp + (YZ, - Zr,) dq} 

= {Z ( YZ, - ZY,)1} dq" 

on Our reference, we have 
dBd8, cos o = gdqa. 

But 
dû: = g dq2, 

and therefore 
dBcoso=c)dq. 

Similarly 
dB sin o = e* dp, 
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the two equations being consistent with 

d B  = edp2 + gdq2. 
Hence we have 

t = t, cosa w + t, sina W ,  

a result due to  Hamilton. 

The analytical analogy with Euler's theorem as to the curvature of normal 
sections of a surface is obvious. 

The two points determined by t, and t, are called the linzits of the ray. 
The two planes through the ray and the two directions, associated with the 
limits, are called the fincipcd planes of the ray ; manifestly they are perpen- 
dicular to one another. 

276. Next, consider the foci of the ray. We know that the foci of a 
curve in a congruence 

can be obtained by associating the equations 

with the equations of the curve. In the case of the ray, its equations are 

E-.=lx, q-y=EY, <-z=ZZ, 

where 1 is independent of p and q ;  thus the equations to be associated 
with them are 

XI + l x ,  = c (3% + LX,), 

y l + ~ Y I = " ( y 2 + ~ Y A  
2, + 12, = . (2, + 12,). 

Multiplying by X I ,  Y,, Zl and adding, we have 

a + l e = % ( b + Z f ) ;  
multiplying by X,,  Y,, Z,, and adding, we have 

b'+ Z f = ~ ( c +  l g ) ;  

the roots of which are their distances along the ray from the director surface. 
Thus, in general, there are two foci; let their distances from the director 
surface be l, and 1,. 

Then 

h + b =  ec- f ( b  + b') +ga ac - bb'. , Z1la = - 
e9 -$ es  -P ' 

and therefore the positions of the foci on the ray are given by the equation 

a + l e ,  b + l f  1 bt+lf ,  c+lg 
= O ,  

that is, 
( e g - f ) 1 2 + { e c - f ( b + b ' ) + g a ] l + a c -  bb l=O,  
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and, from the equation for the limits, we have 

ec- f (b+b')+ga 
t,+t,= , t1t,= 

a c - + ( b + o . .  
es -fa es -f = 9 

hence 
t, + t, = I ,  + 22, 

Thus the point midway between the foci is midway between the limits; and 
when the foci are real, they lie between the limits. 

When the ray was referred to its priiicipal planes, we had 

so that in passing along the ray between the two limits, the magnitude of w 
varies from O to gr.  Let its values for 1, and 1, be o, and w,; then 

Il = t, cos2 w, + & sin",, 1, = cosz oz + t, sin2 o,, 
and 

1,+1,=t, + t , .  
Hence 

cosz W1 + cos2 oz = 1 ; 

and therefore, as o, and oz are not negative and as neither of thern is greater 
than +, we have 

o, + o, = +T. 

The planes, through the ray and the two directions determined by these 
angles o, and o, associated with the foci, are called the focal planes. They 
are not perpendicular to one another ; but, because w, + o2 = Hr ,  i t  follows 
that the plane through the ray bisecting the angle between the focal planes 
bisects also the angle between the principal planes. 

I t  is natural to consider which rays (if any) meet one another. The 
shortest distance dn between the two rays (p ,  q) and ( p  + dp, q + dq) is given 
by the equation 

vdûdn= e d p +  fdq, fdp+gdq 1 ;  1 adp + bdq, b'dp +cdq 1 
and therefore the two rays will meet if dp : dq satisfies the equation 

Hence there are two rays, which are consecutive to a given ray and intersect 
it ; and therefore two of the surfaces of a rectilinear congruence are develop 
able surfaces. 

F. 31 

1 edp+fdq, fdp+gdq  
adp + bdq, b'dp + cdq 

=O. 
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Moreover, the intersections of the two rays with a given ray are the foci 
of the latter. For the intersections are on the edge of regression of the 
developables, which is given by 

O = d x + l d X + X d l ,  
that is, 

O = (24 + lx,) dp + (x2 + lx ,)  dq + X d l  ; 
and similarly 

O=(y,+lY,)dp +(y,+lY*)dq + Ydl, 

O = (2, + 12,) dp + ( 2 2  + 122) dq + Zdl. 

Multiplying first by XI ,  Pl, Zl and adding, and next by X,, I',, 2, and adding, 
we have 

(a+ le)dp+(b+If)dq=O, 

(b'+If)dp+(c+lg)dq=O, 
and therefore 

a + l e ,  b + I f  /=O,  

being the equations for the focal distances. 

Clearly the focal planes of a ray are the tangent planes to the developable 
surfaces of the congruence that contain the ray ; and it is easy to shew that, 
if LI be the angle between the focal planes through the ray, 

1,-L sin LI = - 
4-tz' 

Thus on any ray in the congruence there are five special points, viz., the 
two limits, the two foci, and the middle point (that is, the point midway 
between the limits and midway between the foci). 

When we take al1 the rays in the congruence, each of these points 
generates a surface as its locus ; and so we have the limit surfaces, the focal 
surfaces, and the middle surface. The t-wo limit surfaces are two sheets of 
one and the same surface; i t  is called the limit surface. The two focal 
surfaces are two sheets of one and the same surface; i t  is called the focd 
surface. Each ray touches the two sheets of the focal surface a t  the respective 
foci; the focal planes of the ray are tangent planes to the focal surface a t  the 
foci. 

Nownal rectilinear congruences. 

277. Among rectilinear congruences, which are defined by the equatioris 

special interest attaches (through various physical theories) to those which 
are capable of orthogonal intersection by a surface and therefore (excluding 
exceptional cases such as those indicated in 5 272) by a family of surfaces. 
Such congruences are called normal. 
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If the property is possessed by the rectilinear congruence, then there must 
be variations of E, 9, c representing directions perpendicular to X, Y, Z ; and 
these, accordingly, are such that 

Xd4: + Ydq + Z d t  = 0. 

When the values of & q, are substituted, this relation becomes 

Xdx+ Ydy+ Zdz+dl  = O ,  

so that Xdx + Ydy + Zdz is a perfect differential as it stands. The analysis 
is reversible; and therefore it is necessary and suficient, thnt the qmntity 
Xdx + Ydy + Zdz should be a perfect differential, in order to secure that the 
rectilinear congruence should be norma,l-a theorem due to Hamilton. 

Much analytical and geometrical simplification in the general formulæ 
arises, when we deal with these special rectilinear congruences. We have 

-dl  = X & +  Ydy+Zdz, 

while X, Y, 2, x, y, z are functions of p and q;  hence, writing 

P = ZXx1, Q = CXx.2, 
we have 

- dl = P d p  + Qdq. 

The right-hand side must be a perfect differential : thus 

i3P aQ -- - azz --- aq-GY 
and so 

ap aq ' 
ZX,xl = Tx1X2. 

Thus 
b = ù'; 

and therefore (5 276) 
t, - t2 = ll - 12. 

Consequently, as 
tl +tz=E1+ 1 2 ,  

for al1 congruences, we have 
tl=l,, t ,= l ,  

for a normal congruence. 

Again, al1 the analysis is reversible. I t  follows therefore that, for a normal 
congruence, the focal surface is also the limit surface; and the focal planes, 
becoming the principal planes, are perpendicular to one another. 

Further, as we have 
- dl = P d p  + Qdq, 

the right-hand side being a perfect differential, the integral determines 1 Save 
as to an additive constant, which is arbitrary ; hence a normal congruence 
of rays is cut orthogonally by a family of surfaces- result to be expected 
(after § 274), since the surface given by a definite value of 1 does not arise 
through any singular condition. 

31 -2 
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The simplest example of a normal congruence occurs when i t  is composed 
of the aggregate of normals to a surface. The foci are the centres of principal 
curvature ; and the focal surface is the centro-surface of the original surface. 

278. One of the most interesting theorems relating to normal rectilinear 
congruences is connected with a system of rays, subjected to any number of 
reflections and refractions, viz.:-the system, once normal, remains normal 
throughout*. To establish the theorem, consider the effect of any refracting 
or reflecting surface on the system. We take the surface as the director 
surface; x, y, z is any point upon i t  ; we denote by X ,  Y, Z the direction- 
cosines of the incident ray, by X', Y', 2' the direction-cosines of the refracted 
(or reflected) ray, and by X", Y", Zn the direction-cosines of the normal to 
the surface a t  x, y, z. Then as the incident ray, the refracted (or reflected) 

and therefore quantities X and p exist such that 

ray, and the normal to the surface, lie in one plane, we have 

Y = X Y " + p Y 1  . 
Z =xZ" + p z 1  

Consequently 
i 

yz" - ZY" = p(Y'z" - Z'Y"), 

x, Y ,  Z" 
x ,  y ,  z 
X' , Y ' ,  Z' 

ZX" - XZ" = p (Z'X" - X'Z"), 
XY"- yx"=p(X'y"- Y'X"), 

and therefore 

= O ,  

[ ( Y 2  - ZY)" + (ZX" - XZ")z + ( X Y  - Y X " ) ~ J ~  

The left-hand side is the sine of the angle between the incident ray and the 
normal to the surface ; the radical on the right-hand side is the sine of the 
angle between the normal to the surface and the emerging ray; hence p i s  
the constant index when there is refiaction, and is - 1 when there is reflexion- 
in either case, p is a constant. 

Now for variations along the director surface, we have 

X"dx + Y'dy + Z d z  = O; 
and therefore 

Xdx + Y d y  + Zdz = ( X ' d x  + Y'dy  + Z'dz). 
The quantity Xdx + Ydy + Zdz is a perfect differential, because the incident 
system can be cut orthogonally by a family of surfaces ; and p is a constant. 

The theorem u&ially is connected with the namee of Malus and Dnpin ; eee Darboux. t. ii, 
pp. 280, 281. 
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Hence X'& + Y'dy + Z'dz  is a perfect differential ; that is, the emerging 
system can be cut orthogonally by a family of surfaces. This result happens 
nt every refracting or reflecting surface ; and so a system of rays, if normal, 
remains normal after any number of refractions and reflexions. 

I t  is easy to deduce the property that, along any ray in a heterogeneous 

medium, the value of between two points of its course is less than the I 
value of the same integral along any other path between the same two points. 

279. In  connection with rectilinear congruences, i t  was shewn that a 
transformation of the variables so as to make f = O and b + V = O is always 
possible ; and such a transformation is possible in an infinite number of ways, if 

a :  b + b ' : c = e : 2 f : g .  

For a congruence of this type, (called isot.ropic), we have 

t, = ta = t> 
so that the limits of a ray coincide and its foci are imaginary. The feet of 
the shortest distances, between the ray and consecutive rays, coincide in the 
point which is the single limit; and Bll these shortest distances lie in the 
plane through the single lirnit. The two limits coincide with the middle 
point ; and the two limit surfaces (or principal surfaces) coincide. This single 
surface can be called the middle surface of the isotropic congruence ; it is the 
envelope of the plane through the middle point perpendicular to the normal, 
as well as the locus of the middle point *. 

When we have any rectilinear congruence, we have ruled surfaces in the 
congruence. For those sets of two which correspond to the variables of the 
principal planes of the ray, the lines of striction coincide with the loci of the 
limits. For any ruled surface in an isotropic congruence, the line of striction 
coincides with the locus of the middle point; and RO the middle surface of an 
isotropic wngruence contains al1 the lines of striction of al1 the ruled surfaces 
in the congruence. 

Now choose as the parameters of reference the parameters of the nul lines 
in the spherical representation ; we have, as usual, 

u+v v - U UV - 1 x = --- y=i-- Z = , 1 +UV'  1 +UV' 1 +UV 

so that 

Our congruence is to be isotropic ; hence 

* A middle surface, taken es the envelope of the plane throngh the middle point of a ray 
normal to the ray in any rectilineer congruence, also may be considered, in addition to 
the middle surface in $276;  it is of direct importance in the case of iaotropic congruences. 

IRIS - LILLIAD - Université Lille 1 



486 MIDDLE SURFACE OF AN [CH. XII 

and the position of the middle point of the ray is given by 

The director surface is a t  Our disposa1 ; let i t  be chosen so as to be the unique 
middle surface of the congruence. Then we always have t= O, that is, b+ b'= O ;  
hence, with the middle surface of the isotropic congruence as its director 
surface, we have 

a=O,  b+b'=O, c=O. 
I t  a t  once follows that 

d x d X + d y d Y  + d z d Z = O ;  

and therefore any arc on the middle surface is orthogonal to the corresponding 
arc in the spherical representation. But the ray is normal to its middle 
surface ; and so the spherical representation of the congruence is a spherical 
representation of the middle surface. As corresponding arcs on the middle 
surface and the sphere are always orthogonal to one another, the spherical 
representation is also conforinal; and therefore (5 169) i t  is possible, though 
not certain from this property, that the middle surface is a minimal surface. 

280. The property that 

for the middle surface of an isotropic congruence, also suggests an association 
with Weingarten's method for considering the deformation of surfaces and 
specially the infinitesimal deformittion of surfaces ; but the consequences will 
not be developed here. 

The theorem, that the middle surface of an isotropic cangruence actually 
is a minimal surface, is due to Ribaucour*; it can be established as follows. 
We denote by E, F, CS, L, M, N, as usual, the fundamental magnitudes for 
the middle surface. 

Because the congruence is isotropic and becaiise we are dealing with the 
middle surface, we have 

a=O, b+b'=O, C S O ,  
and there fore 

x1X1 + y1 Y ,  + z,Z1= O, 

4x2 + y1 Y2 + 2 1 2 2  = - p, 

x J ,  + y* YI + z,Z1= p, 

~ 2 x 2  + yBY2 + z2Z2 = 0. 
Also 

Mém. Acad. Roy. Belg., t. xliv (1882), PP. 1-236. 
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Combining the first of the above relations with 

xx, + Y Y, + ZZ, = O ,  
we have 

x, : Y, : z ,  = Yz,  - Zy, : z x ,  - X z ,  : X y ,  - yxl. 
Hence 

(Y21 - zy1p + (2x1 - x z l y  + ( X y ,  - Yx,)Q = O ; 
and so, as 

Xx1+ Yy ,  + Zz, = O 
because the ray is normal to the middle surface, we have 

Similsrly, combining the fourth with 

xx, + YY* + ZZ, = O, 
we have 

G = x : +  y:+zz'J=O. 
Again, resolving the equations 

we have 

we have 

Manifestly 
2 

Thus 
1 xx,, y,= XY,, z l=  xz,, 
x2=- XX2, y*=- XY2, z ,=-XZ, .  

Hence 
~r;, = LX,, + L X 1 ,  X= = - LX,, - X, X%; 

and therefore, by addition, 
2x12 = & X I  - &X2. 

Similarly 
2y12= &Y1 -&Y*, 
2212= Xgz, -X1Z2. 

Multiplying by X, Y, Z and adding, we have 

. . M - Xx,, + Yy,, + Zz, 3 0. 
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Consequently, as E = O, M = 0, G = 0, we have 
E N -  2FM+ QL = 0 ;  

and so the middle surface of the isotropic congruence is a minimal surfaceo. 

Ex. The extremities of a straight line, the length of which is consbnt and the direction 
of which depends upon two parameters, are made to describe two siirfaces applicable to  
one another ; shew that the middle point of the line generates an isotropic congruence. 

Congruences of circles. 

281. Another set of congruences of considerable importance is constituted 
by those congruences which are composed of circles. When al1 the circles in 
a congruence can be cut orthogonally by a family of surfaces, the congruence 
is said to be normal; and i t  usually is called a cyclica2 system. The elements 
of the theory of cyclical systems, the initiation of which is due to Ribaucour, 
can be stated in a forni somewhat similar to that adopted for rectilinear 
congruences. 

Any 'circle in space is given by two equations 

( ~ - a ) " + ( y - b ) ~ + ( z - c ) ~ = f l ,  
X ( Z - a ) +  y ( y - b ) + Z ( z - c ) = O ,  

where 
X 2 +  P2+22= 1. 

When a, b, c, r, X, Y, Zare functions of two parameters, we have a congruence 
of circles, by allowing unlimited variations to the parameters. Any point on 
the circle is given by the equations 

where 

and 1, m, n are functions of p and q, as well as of a current variable along the 
circumference, Say the arc rd  measured frorn a fixed point. Let the radius 
through this fixed point have direction-cosines A, p, v, and let a perpendicular 
radius have direction-cosines X', p', Y'; then 

1X + mp + nv = cos 8, 
DL' + mp' + nv' = sin 0, 

where 
A' + pa + va = 1, hh' + pp' + VU' = O, h" + pi + uf2 = 1. 

Hence 
l = X c o s B + ~ ' s i n 0 ~  

ni = p cos d + sin 8 } , 
n = Y COS 8 + V' sin û ) 

X = pu' - pfv, Y = vxf - iX, Z= Xpf - Xfp. 

For further developments, see Darboux, t. ii, 260. 

IRIS - LILLIAD - Université Lille 1 



2811 CYCLICAL SYSTEMS 

Thus the point on the circle is given by 
x=a+r(XcosO+X's in8)  

y=b+r (pcosS++ , ' s in8 )  , 
z = c + r (v cos 0 + Y' sin 8) 

where 
1 

Lxa = 1, ÇXhf = O, 2X12 = 1 ; 
and the quantities a, b, c, Y, X, p, v, X', p', v' are functions of the two parameters 
of the congruence, viz. p and q, while B is the current variable along the 
circle. 

Both sets of equations will be used, as may be found convenient. For 
the purposes of the analysis, derivatives of a with regard to p and q will be 
denoted by a, and G, and so for other magnitudes. The derivative of 1 with 
regard to will be denoted by l,, and so for m and n ;  these quantities, and 
their derivatives, alone involve 8, in addition t o p  and q. 

Certain combinations of the derivatives are occasionally useful, par- 
ticularly the combinations connected with the variations with respect to 
p and q. We take 

LX: = e, ZX, A; = e" , 2%112 = ef 

r<A,&=f, ZX,X;=C#I, sh,'h2=$, SX,'X;=f1 , 
BA: = g, 2&~; = gff , 2x2 = gf 

another. We take 

1 
where the surnmation is for the cyclical iuterchange of h, p,  v among one 
another, and for the simultaiieous cyclical interchange of A', p', v' among one 

X'X, + plfi + vlvl = - t , XXI' + /.LpIf + vu; = t 
X ' h  + p1p2 + v1v2 = - t', X h i  + p b f  + vu: = l} ; 
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and 
Cl ,"=ecos~+2e"cosBs inB+e's in2B 

ZZ,2,=fcos28+(4 + ~)cosBsinB+ffs in2B 

X1,2=gcos20+2g"sinBcosB+g'sin20 
Also 

XI = hf (ej - ta)+ - X (, - ,)a xz = h' (gf - tf2)h - A (y - 
~71=p~(ef-t'>*-p(e-t")t , 

zl = (sr - ta)+ - y (e - q+ 1 2 2 - .  - ' (9' - t/+ - v (9 - t+ 
282. According to the general theory, the foci that lie upon any curve 

of a congruence 

f (x, Y, 2 9  p, q9) = 0, y (4 y, 2, p, q) = O, 
are given by combining these equations with the equation 

Consequently, the foci of a circle of the congruence 

f = (x - a>z+ (y  - b)Z+  (z  - c ) ~ -  ?= 0, 

g = X ( x - a )  +Y(y-b )+Z(z -c )=O,  

are its intersections with the surface 

As this eqiiation is of the second order, the niimber of sets of values of x, y, z 
satisfying the three equations is equal to four (5  2'70); but if a, b, c are 
constant (so that al1 the circles of the congruence pass through a fixed 
point), the new equation is only of the first order, and so the number of 
sets of solutions x, y, z of the three equations is only two. 

When the alternative form of the equations of the circle is used, the 
third equation becomes 

r, + 220, , 1 . 2  = O ,  1 -PXa.+rPZX,,  - L X a 2 + ~ E 1 X ,  

in the general case; in the special case when the fixed point is common to 
al1 the circles of the congruence, the equations for the foci are 

&+y2 +za =rq 

Xx+Yy+Zz=O,  
rlZZX, - r2ZZX,=0. 

We shall deal only with the general case. Let 

ZXq=a, Zha, = b ,  XXX, = y ,  ZXX, = 8 ,  
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8 = - (9 - t'")? 6' = - - t")* ; 
also, let 

Z X U , = ~ ,  BXG=O. 
Then the equation giving the foci of the circle in question is 

r , + a c o s B + d s i n B  , r,+BcosO+/3'sinB =O, 

- p + r (y cos 8 + y' sin 9), - u + r (6 cos 8 + 6' sin 8) 1 
an equation manifestly giving the values of 8 which settle the foci of the 
circle. The equation leads to four values of 8 in general, so that there are 
four foci upon a circle in a general congruence; when the circles al1 pass 
through a fixed point, a, a', p, B' vanish, and then the equation leads to two 
values of 8 determining two foci upon each such circle. 

The equations of the focal surface of the congruence of circles are 

x = a  +r(Xcos  8+Xf sin 8), 

z = c + r (v cos 8 + Y' sin 8), 

together with the above determinantal equation ; its explicit equation results 
from eliminating p, q, and 8, ainong the four equations. Manifestly, the 
focal surface is four-sheeted. 

283. We know that, in rectilinear congruences, certain selected con- 
secutive rays intersect one another; the points of intersection of any ray 
with the (two) different rays, which meet it, are the foci of the ray. I t  is 
natural to enquire which circles (if any), consecutive to a given circle, do 
intersect i t  ; we easily find that there are four such consecutive circles, and 
that each of the four points of intersection is a focus for the circle. 

The proof is simple. Any circle 

intersects a consecutive circle if 

O = d a  + l d r  + rdl,  

O = dc + ndr  + rdn, 
that is, if the equations 

(al + Ir, + rl,) dp + (h + Zr, + ri,) dq + &de = O ) 
(b, + m r , + m ) d p + ( b ,  +mr,+rm)dq + rm,d8=0 
(ci + nr, + rn,)dp + (c, + nr, + rn,) dq + rn,d8= O 

are satisfied a t  the point. Multiplying the equations by 1, m, n, adding, and 
remembering that 

l5 + mZ + nS = 1, 
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we have 
(ri + 2 k) dp  + (r,  + Z l h )  dq = 0. 

Multiplying the equations by - X ,  - Y,  - 2, adding, and remembering that 

X l +  Yin + Zn, = O, 
so that 

ExIl= - ZZX,, SX12 = - 31X,,  ZX1, = O ,  
we have 

( - ~ X a l + r 2 Z X l ) d p + ( - E X a , + r Z l ~ , ) d q = 0 .  
Elirninating ,dp : dq, we have 

which is the equation giving the four foci of the circle. Hence the inter- 
sections of the circle with consecutive circles are its four foci. 

The circles, that are consecutive and intersect, are deternlined by the 
quantities p + dp, q + dq ; and the point cornmon with the consecutive circle 
is given by the value 8 +dB on that consecutive circle. Now our two 
equations are 

rl dp + r2dq + (a  dp + b d q )  cos 8 + (a'dp + gdq) sin 8 = 0, 

- pdp - udq + r ($p + 6dq) cos 8 + r (y'dp + 8dq)  sin 0 = 0 ; 
hence 

+ adp + Pdq, a'dp + P d q  1 ydp + 6dq, y'dp + 6'dq 

t 1 a'dp + Pdq,  a d p f b d q ,  r r 1 d p + w 2 d q I 2  , 
= /  ydp+Sdq,  - p d p + u d q  i d p  + 8dq,  - ~ d p  - ~ d q  

This is an equation of the fourth order in dp : dq ; its coefficients are functions 
of p and q only; and therefore it determines four consecutive values of y 
and q, which give consecutive values of a, b, c, r, X ,  Y, 2, and therefore give 
four consecutive intersecting circles. And then 'the value of dB is given by 
the expression 

r d 9  = ( t  + a sin 8 - a' cos 8)  dp  + (t' + sin 8 - @' cos 8 )  dq, 
for each of the ratios of dp : dq. 

284. These results are general; and they belong to any congruence of 
circles, without any limitations upon the congruence. Every circle meets 
four other consecutive circles; i t  intersects each of the circles in a single 
point, the four points being the foci of the circle. 

Now the greatest number of points in which two circles can intersect is 
two; and so i t  is conceivable that a congruence of circles may be such as to 
allow two of the four foci of a circle to lie on one conseciitive circle, and the 
other two to lie on another consecutive circle. I n  that event, there will be 
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two (and not four) values of dp : dq, which give consecutive intersecting 
circles; for each of these two values of d p  : dq, there will be two values 
of 8, giving the two points upon the consecutive circle which are foci of the 
first. I n  order that this distribution of the foci may be possible, the two 
equations 

dr + Chdu cos 8 + ZXfdn sin 8 = 0, 

cannot be independent; for, if independent, they would determine COB B and 
sin 0 nniquely for an assigned value of dp : dq, and so there would be only a 
single focus on the consecutive circle. Accordingly, we must have 

and these equations are to determine two values of dp:dq. Let p denote 
either of these values of dp : d q ;  then Our equations are 

The condition, that only two values of p are thus to be provided, requires 
that the third fraction shall be unconditionally equal to each of the other 
two; and so quantities 1 and J must exist such that 

IV+ JY1= - p 

1 6 + J 6 ' = - u  
l a  + J d  = I Y ~  

IP+ J p =  rr, 
Consequently, the two conditions, represented by the equations 

must be satisfied by the magnitudes that occur in the expression of the 
congruence. The two values of p are the roots of the quadratic 

and the two values of 8, that belong to a value of p, are the roots of the 
equation 

r r , p+m;+ (ap+ /3 ) cos8+ (a ' p t  @)sinB=O. 

The two conditions may be wit ten in the form 

m; (Y 8' - +6) = p !al6 - a 6') + t~ (a  y' - a'y), 

w 9 ( y 8 ' - r ' Q =  p(P'8- /38)+ t J ( B y ' - B i ) ;  
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and therefore the quantities a, b, c, X, Y, Z satisfy the single condition 

while, when this condition is satisfied, r2 is given by a quadrature in the form 

The two values of p are the roots of the quadratic 

( a r t -  a'r)$+(a8-atS +Brt -P 'y )p+  @S'-flG= O ;  

let them be p, and f i ,  and let the primitives of the equations 
* 

respectively be 
p = constant, = constant, 

so that p and p' are two independent functions of the two parameters of the 
congruence. 

285. Now let these two quantities p and p' be taken as the parameters ; 
in other words, we may take p and q to be p and p'. Then the equations 

are to be satisfied by dp = O and dq = O. Let the uommon value of the 
fractions be Q when dp =O,  and be P when dq = O ; BO that Q is a function 
of q only, and P is a function of p only. Then we have 

Prom the first set, we a t  once have 

X l = P ( î - X B X q ) i  
Y ,  = P (b, - YZXa,)  
2, = P (4 - ZZ Xa,) 

and from the second set, we have 

XB=Q(4-xZx4)) 
Y, = Q(4 - Y8Xd 
2, = &(CS -2LXs) 
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a - {(z Xa) - 4 (a2 + b '  cca - r2) P} a~ 
= - g ( a a + b e + c a - F ) P , - ( ~ X ~ ) ( P ~ X U , ) .  

Now our congruence of circles is given initially by the equations 

it can therefore be expressed, in an equivalent form, by the equations 

AP (&+ ye+zS)- { (ZXa) -&(a2+  b2+c2-@)Pl  
+ ( X - a P ) s + ( Y - b P ) y + ( Z - c P ) z = O  

3 P 1 ( 8  + ye + 2") + (2 Xa) (L Xu,) + (ae + be + - TB) Pl 
- x {aP, + X(PBXQ\} - y  {bPl + Y(PZXa, ) }  - z {cP, + Z(PCXq)j = O 

Comparing these two forms of equation with the preceding relations, that 
follow from the relations connecting derivatives of X, Y, 2, a, b, c with 
respect to y,  we can express the result in the following form:- 

When a congruence of circles is such that each circle, of the set along 
directions given by a constant value of the parameter q, is intersected in 
two points by a consecutive circle of the same set, the equations of the 
congruence can be taken in the form 

Equations, connecting the derivatives of the quantities P, a, B, y, 6 with 
respect to q, also exist. Writing 

we can take the equations of the congruence in the form 

d + y a + 2 - ~ A x - ~ B ~ - ~ C Z + ~ D = O  
A , x t  B , I / + C ~ Z - D ~ = O  

and again there are relations involving the derivatives of A, B, C, D. 
A corresponding form could be obtained by using the equations involving 

Xzi Y2, Z,, h, b,, c,; and its parametric magnitudes would be subject t o  
relations connecting their derivatives with respect to p. 
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286. Instead of developing the limitations which are imposed by these 
relations for either of the forms, we shall now assume that the congruence 
is given by the foregoing pair of equations. Should the congruence be given 
initially by more general equations, the determination of the appropriate 
variables p and q can be effected (5 284) by the integration of two isolated 
ordinary differential equations, each of the first order ; and so no generality is 
lost by the immediate adoption of the pair of equations, so that we may take 

a = A ,  b = B ,  c = C ,  
X = BA,, Y=  dBl, Z= OCl, XXa= BD,. 

Now two of the foci of the circle lie upon another circle given by a consecutive 
value of p ; the equations for these two foci are 

d + y a + z 2 - 2 A x  - 2By-2Cz + 2 D = 0 ,  
Alx + B,y + Clz -Dl  = 0, 
Al,%+ Blly+ CI1z-  Dl,= 0, 

and therefore the equations of the line joining them are 

Alx + B,y + C,z - Dl = O 

Allx+ Blly + Cl,z- Dl,= O 
As the other two foci are to lie upon a consecutive circle, for which p is 

unaltered and q has a consecutive value, these other two foci must satisfy 
the equations 

& + y + z 2 - 2 A x  - 2 B y - 2 C z + 2 D = 0 ,  

where the quantities p and o can be any functions of p and p. The equations 
of the line through the two foci are 

The equations are to provide two points ; hence the last three equations are 
not independent, and so two relations are satisfied, viz. 

A l ,  BI ,  C l ,  Dl 
A , ,  4 ,  G ,  D2 
AIz, BI29 Cl% 4 1  

=o. 

These relations can also be expressed in the form 
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Gathering together the various results, we have the theorem* :- 

Let four quantities A, B, C, D  be talcen as solutions of an equation 

where p and a are any functions of p and q ;  then on each circle of the con- 
gmence 

$ + y a + z a - 2 A x - 2 B y - 2 C z + 2 D = O  

two of the foci lie on one consecutive circle, given by the same value of q and a 
consecutive value of p, and the other two foci lie on another consecutive circle, 
given by the same value of p and a consecutive value of q. 

The result may also be stated in the form :- 

Let any five functions A, B, C, D, E of p and q be chosen from among 
integrals of an equation 

MOu+ Nel2+ PB, + M'el+ N'8,+P1= O ;  
also let WL : : be chosen so that 

MT?--  mi + pm2 = O ; 
then the equations 

A(Içz+ya+z2)+Bx+ C y + D z + E = O  

define a congruence of circles of the foregoing type. 

287. The surfaces, generated by consecutive circles which intersect, have 
a relation to the congruence of circles similar to that which is borne to a 
rectilinear congruence by its developables ; and the two-fold locus of the foci 
of the circles (which, from their equations, manifestly lie upon the envelope 
of the circles) is a double curve on these surfaces, corresponding to the edge 
of regression of the developables in the rectilinear congruence. The equations 
of this two-fold locus for one system of circles are obtained by eliminating p 
between the equations 

* Derboux, t. ii, p. 316. 
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and for the other system of circles through the elimination of q between the 
equations 

X ~ + ~ ~ + Z ~ - ~ A X - Z B ~ - ~ C Z + Z D = O  1 

Also, the equations of the two surfaces, generated by consecutive circles, are 
obtained by eliminating p and q respectively between the two equations 
of the congruence. 

288. The equations for obtaining the magnitude, direction, and position 
of the shortest distance between any two consecutive circles (p, 9) and 
(p + dy, q + dq) of the congruence are as follows. Let its magnitude be d r  
and its direction-cosines L, M, N ;  then 

LI, + Mm, + Ar% = O, 

Ldl, + Mdm, + Ndn, = 0. 

Also, let d+ be the angle between the tangents to the two circles at  the feet 
of the shortest distance, so that 

Again, by projection on the axes of reference, we have 

a + E r + L d t = u + d a + ( l + d l ) ( r + d r ) ,  
that is, 

L d r  = d a  + r d l  + l d r ;  
and similarly 

Md7 = db + rdm + mdr, 

which gives an expression for d r  involving functions of 8 and also do. 

Nd7  = dc + rdn  + ndr. 
We a t  once have 

Multiplying the equations for Ldr ,  M ~ T ,  Nd7 by l,, m,, h, and adding, 

d+dr=  

we have 
%da + r218dl+ drÇ& = 0. 

Now 
221, = 0, Z&dl= de  - tdp - t'dg, 

da  + rd1 + ldr, l,, dl, 

db + rdm+mdr ,  TG, dm3 

dc + rd% + ndr, n,, dn, 

, 
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so that 

an equation expressing d0 in terms of dp, dq, and functions of 0. 

Multiplying the same three equations by dl,, dm,, dn,, and adding, we 
have 

Zdadl, + r8dld13 + drI;ld13 = 0. 
Now 

Zdadl, =- d0Zlda- sin 0 d d a d ~  + cos BZdadX', 

Xdldla = dp2ZEll18 + dpdqZ (lllB + Z,Zl3) + dq2Xl21,, 

Zldl, =-dB + tdp + t'dq. 

Inserting these values and substituting from the former equation for dB, we 
obtain an equation of the form 

where A, B, C, D, E are quadratic functions of the ratio dp : dq; they do 
not involve 8, and they have magnitudes connected with the congruence for 
their coefficients. 

Accordingly, this is the equation for 0. When an appropriate value is 
found, the earlier equation gives d e  in terms of dp and dq; and then d+ is 
known. We thus have the value of dr in terms of dp and dq, and of known 
magnitudes that do not involve dp or dq. 

Cyclical Systems. 

289. Just  as special importance centres in those rectilinear congruences 
which can be cut orthogonally by a family of surfaces, so also i t  is necessary 
to take particular account of congruences of circles which can be cut ortho- 
gonally by a family of surfaces. Such congruences are called cyclical 
systems. 

The direction-cosines of the tangent to any circle of a c o n p e n c e  repre- 
sented by 

g = a + l r ,  y=b+mr ,  z = c + n r ,  

are proportional to l , ,  m,, n,; hence every direction dx : dy : dz a t  the point, 
perpendicular to the tangent to the circle, must satisfy the relation 

If the circles of the congruence can be cut orthogonally, this differential 
relation must have a single equation as its integral equivalent, the single 
equation representing of course the family of orthogonal surfaces; and the 
condition, necessary and sufficient to secure the result, is the customary 
condition of integrability. When we write 
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(with the notation of $5 281, 282), the foregoing differential relation becomes 

Pdp 4 Qdq + r d 8  = 0. 

The condition of integrability is 

which, when the values of P and Q are substituted, becomes 

T c o s 8 + T ' s i n û + O = 0 ,  
where 

T=r( t /3  - t ' a )  +r,@-rzal-r/3,'+ra,l ) 

T, Y, O mànifestly being independent of 0. 
, . The condition of integrability may be satisfied identically, so that 

. . .  T=O, 'T1=O, @ = O ,  
In that case, let 

9 = constant 

be the integral equivalent of the differential relation; i t  is the equation of 
the family of surfaces cutting the congruence of circles orthogonally. 

If the condition is not satisfied identically, i t  rnay provide no value of 8, 
or one value of 8, or two values of 8. I n  the first case, there is no surface 
orthogonal to the congruence. I n  the second case, if (and only if) the value 
of 8 satisfies the differential relation, there is one special surface orthogonal 
to the congruence. I n  the third case, if (and only if) one of the values of 8 
satisfies the differential relation, there is a special surface orthogonal to the 
c o n p e n c e  ; there cm, a t  the utmost, be two special surfaces thus orthogonal 
to the congruence. 

Ex. 1. Consider the congruence of circles, which lie in the tangent planes to a surface 
and have their centres a t  the point of contact of the tangent plane with the surface. 

Let the surface be referred to the lines of curvature as  the parametric curves ; then 
we can take these directions as the axes of reference in the planes of the oircles, so that 

A = ~ ~ E - . $  p = b l ~ - t ,  "=$E-&, 

v=~,G-*,  pt=b2G-4, v r = c 2 ~ - g  
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and, similarly, 

=(E#)* (1 +rZK), 

where K is the Oaussian measure of curvature of the surface. 

In order that the congruence of circles may be a cyclical system, we are to  have 

T=O, Y=@, e=o. 
Hence we must have 

r = constant, 

and therefore on a surface, whose Ciamsian measure of curvature is constant and q u a 1  

to -5, the congruence of circles of constant radius r, which lie in the tangent planes to 
@ 

the surface and have their centres a t  the point of contact of the tangent plane with the 
surface, constitutes a cyclical system. 

It i. not difficult to prove that the surfaces, orthogonal to these circles, are themselves 
surfaces of constant negative curvature - 111.2. 

Ex. 2. Shem that, when any four of the orthogonal surfaces of a cyclical system are 
taken, the anharmonic ratio of the four points in which they cut any circle of the s p t e m  
is the same for al1 the circles. 

EX AMPLES. 
1. Three surfaces, independent of one another, are given by equations 

f(x,y,4p,q)=O, 9(4L;y,z,p,q)=O, h ( G ~ , z , p , q ) = O :  
and XI, x2 denote the derivatives of + with regard t o p ,  q, and similarly for y and w Prove 
that 

f, 9, J ( ~ ) ( ~ ~ z ~ - ~ . & = J  ?/, 

with two similar relations; and verify that the direction-cosines of the normal to the 
focal surface of the congruence 

f=O, g=o, 
a t  any point are proportional to 

2. If al1 the curves of a congruence meet a fixed curve, this fixed curve lies on the 
focal surface. 

3. Shem that, on each sheet of the focal surface of a rectilinear congruence, the curves 
componding to the two sets of developable surfaces of the congruence are a conjugate 
system. What are these curves 2 
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4. When the two sheets of the focal surface of a rectilinear congruence are the aame, 
the Qaussian measure of curvature of the focal surface a t  the point where it  is touched by 
the ray is 

1 - 
with the notation of 8 255. 

5. In a normal rectilinear congruence, the distance between the foci of a ray is the 
aame for al1 rays; shew that the two sheets of the focal surface have their Gaussian 
measure of curvature constant and negative. 

6. Shew that, if the rectilinear congruence 

ay-bz+d=O, cx-az+b'=O, bz-y+at=O 

is normal, the expression 

a', 
must be an exact differentiaL 

7. Prove that the rectilinear tangents to a family of geodesics traced upon a surface 
constitute a normal congruence. 

8. Rays are incident upon a reflecting surface, and the developables of the incident 
congruence arc reflected into the developables of the reflected c o n p e n c e  ; shew that they 
cut the surface in a conjugate system. 

9. Shew that, if a congruence of circles normal to  two surfaces is such that each of 
them is met in two points by one of the consecutive circles, the congruence is normal. 

10. . Tho envelope of a sphere depending upon a couple of parameters is formed ; and 
the lines of curvature on the two sheets of the envelope correspond. Circles are drawn, 
each cutting a sphere nornially a t  i ts two points of contact with its envelope ; shew that 
they form a cyclical system. 

11. Shew that with a given rectilinear congruence i t  is generally possible to associate 
a unique cyclical system, so that the rays in the former are the axes of the circles in the 
latter. 

12. Shew that, if the planes of al1 the circles in a cycliml system pms through a fixed 
point, the circles are cut orthogonally by a sphere having iB centre at  that point, unless 
the point is a t  infinity when the circles are out orthogonally by a plane. 

13. Prove that the family of surfaces, orthogonal to a cyclical system, belongs to a 
triply orthogonal system. 

14. In  a normal congruence of plane curves, the envelope of the planes is a surface ; 
shew that, when the surface is deformed so as  to carry its tangent planes with it while the 
curves in the planes are unaltered, the congruence remains normal. 
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1. A cubic helix has the plane a t  infinity for an osculating plane. Shew that it can 
be represented by the equations 

2. In  a skew curve of constant torsion, the direction-cosines of the binormal have 
the form 

acosO+bcos48, a'sinO+b'sin48, ccos{d. 

Find constants a, b, a', b', c so that the cuve may be algebraic ; and obtain its equations. 

3. Shew that the binormals of a skew curve generate a scroll on which the curve is 
the line of striction; that the principal radii of curvature of the scroll at a point on the 
curve are a tan +/3 and -a cot 48, where a is the radius of torsion of the curve and 
tan /3= 2p/o ; and that the other inflexional tangent a t  the point makes an angle with 
the generator. 

4. Prove that any skew curve is a geodesic on some developable surface ; and find the 
angle between the curve and the generator of the developable at any point. 

When a linear relation or a quadratic relation exists between s and the edge of 
regression becomes a point or a conic respectively when the surface is developed into a 
plane. 

Shew also that, if the lines of curvature on a developable are spherical curves, the edge 
of regression is a geodesic on a cone and so belongs to the first clam of curvea indicated. 

6. Denoting by K and T the curvature and tortuosity at the origin of the line of 
curvature of the surface 

z = & ( ~ ~ + b y 2 ) + *  ( A ~ + ~ B * + ~ C V ~ + & ~ ) + & ( ~ ~ + + M +  ...), 

when it is referred to plane z= 0 as a tangent plane, prove that 

6. The tangent lines to two skew curvea are conjugate with respect to a sphere. The 
distances of their points of contact from the centre of the sphere are r and r'; the 
perpendiculars upon the tangents from the centre of the sphere are p and p'; and the 
radii of curvature and of torsion are pl a, and p', a', for the two curves respectively. 
Prove that 

PY - pY3 ,+ - 
and that m'(<rd)-a is equal to the radius of the sphere. 
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7. Two skew curves are such that their tangent lines a t  corresponding points are 
polar conjugates with regard t o  the paraboloid d + y 2 = 2 z .  Denoting by nl and ni the 
cosines of the angles between those tangents and the a i s  of z, by v and V' the moments 
of the tangents about that axis, by n3 and ni the cosines of the angles between the 
binormals and the axis, and the tortuosities by u and d, prove that 

8. When a surface is represented in cylindrical coordinates by the equation z= f (r, B), 
its Oaussian measure of curvature is 

p + r z  $)'+ Ca',yr 
9. Points Pl, ..., P, move in such a way, that their mean centre is a fixed point and 

the tangent planes to their loci a t  corresponding points are parallel. Let R, and &' be 
the principal radii of curvature of the locus of P, ; and let a, be the angle which a line of 
curvature makes with R, line in the tangent plane parallel to a fixed plane ; shew that 

'n 'n n 
E (R, + R,') = O, E (R, - R,') cos 20, = 0, (R, -Ri) sin 20 ,  = 0. 

T=l r=1 ,=l 

10. The surface z=f (x, y) has m+vy+wz=l for a tangent plane, where v, is some 
function of u and v. Shew that 

a Z z  a z z  + ---- - a Z w  a z w  
{ax2  ay2 (aziyy} {-i ab - (2)") = ; 

and apply the last result to compare the measures of curvature of a surface and of ita polar 
reciprocal a t  correspouding points. 

11. When a surface is defined as  the envelope of a plane 

w+vy+ wz=l,  
where w is a function of u and v, its principal curvatures are the values of K given by 

K ( u ~ + v ~ + . ~ ~ ~ ) ~ = x ( u w ~ + v w ~ - w ) ,  
the values of A being roots of the equation 

12. Skew surfaces are generated by drawing normale to a given surface a t  points 
which lie on different curves traced upon it. Shew that, for surfaces containing an 
assigned normal, the Gaumian measure of curvature a t  the centres of principal curvature 
of the original surface is constant; and that, for surfaces touching along an assigued 
normal, the principal radii of curvature a t  the centres of principal curvature of the 
original surface are the same. 

13. The generators of a ruled surface al1 belong to a linear complex ; prove that the 
asymptotic lines can be determined by a single quadrature. Shew that, for the surface 

(.Y2 - ..12 = y2 (x2 +y2), 
they are given by 
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14. On a surface represented by 

x=U,V,, y=UzVz, Z=U3V3, 

where Ul, U2, U3 are functions of u only, and VI, V2, V3 are functions of v only, such that 
the parametric curves are a conjugate system, shew that the asymptotic lines can be 
deterinined by quadratures. Obtain thern for the'surface 

x = A ( ~ - a ) ~ ( v - a ) r n ,  y = B ( u - b p ( ~ - b ) ~ ,  z=C(u-c)"(v-c)m. 

15. On the surface 
2Ax=(a+u)3+(a+v)3 

2 B y = ( b + ~ ) ~ + ( b + v ) ~  
2Cz=(c+u)3 + (c+v)3 

which is the locus of middle points of the chords of the curve 

Ax = (a + u)3, By = (b + u)? CZ = (c + u ) ~ ,  

the asymptotic lines are given by u+_v=constant. 

16. Prove that the curvature of an asymptotic line on any surface is  

where a and p are the principal radii of curvature, and where u, v are the parnmeters 
of the lines of curvature. 

17. The necessary and sufficient condition, that the lines of curvature may divide a 
surface into infinitesimal squares, is that the quantity 

should be a perfect diferential, K and K' denoting the circular curvatures of the lines of 
cuwature on the surface. 

18. At any point P on a pseudosphere (of constant curvature - 1) a unit length PQ 
is taken along a tangent, drawn in such a direction that the tangent plane at Q to the 
locus of Q passes through PQ and is perpendicular to the tangent plane a t  P. Shew that 
the locus of Q is also a pseudcsphere. 

19. Prove that, on a surface of constant negative curvature -l/r2, the a,a of the 
maximum triangle, which can be formed with two of its sides of given lengths a and b, is 

20. Obtain the  general equation of geodesics on the surface 

1 =+1+vlz+'), z=- (U 
n + l  

where n is a constant, in  the form 

0 denoting UV, and a and c being arbitrary constants. 
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21. Shew that one system of the lines of curvature on the surface 

x=f(X) cos h-f'(h) sin A+F(p) cos X, 
y=f(A) sinA+f'(A)oosh+P(p) sin A, 

z=p, 
is composed of curves in parallel planes. 

22. A point in space is determined by the parameters A, p, u of the qudrics, which 
pass through it and are confocal with x2/a +y2/b +z2/c=l. Obtain the equations of a 
straight line in the form 

E 
dX 

=O, Z 
AdA 

= = O ,  
@-a) @-P)f@)14 {(X - a) (X - P ) f  (9" 

where 
f (h)=(a+X) (b+X) (c+A), 

and a, ,8 are constants. Hence shew that the tangent lines, common to the quadrics of 
parameters a and p, are normals to  a family of parallel surfaces given by 

23. The coordinatea of a point on a quadric x2/a +y2/b+z2/c=1 are given in the form 

$4 a - b  22 C-a -=-sn2usn2u, $=b-acn2ucn2v, -=-dnZudnzv, 
a a -c  b b-c c c-b 

where the modulus of the elliptic functions is (a - b)4 (a - c) -4. Shew that the equations 
of the lines of curva ture are 

u = constant, v =constant ; 

and that those of the generaton are 
u +  v= constant, 16 - v =  constant. 

24. A point on the ellipsoid x2/a2+ys/b2+z2/c2=1 is represented by 
x = a s n u d n v ,  y = b c n u c n v ,  z=cdnusnv ,  

where the modulus is 2-4, and the ellipsoid is such that 2b2=aa+c2. Shew that u and v 
are the parameters of its lines of curvature; discuss the surface of centres; and prove 
that the curve u+v=y is the intersection of the ellipsoid with the quadric 

a c  (y2 - b2) cn y - 2b2xz dn2 y +abcy sn2 y =O. 

25. Find the geodesics on the surface d ~ ~ = ( u + v ) - ~  dudv ; and use the integral 
equation to shew that, on a surface generated by rotating a tractrix about its asymptote, 
the geodesics lie upon the cylinders 

r2 ((9+A++B)+a2=0, 
and cut the cuspidal edge a t  an angle a, where 

26. A pseudosphere is represented by the equations 

x c o s c o s ,  y=d-cosasin+,  ~ = a / ~ ( ~ - l s i n ' ~ ) ~ d ~ ;  
O 

obtain the integral equation of its geodesics in the form 
t a n ~ = A s i n k ( $ + f l ) .  

Prove also that the equation of the geodesic parallel, having i ts  centre at o=a, +=O, and 
having 4 as for its radius, is 

cosk~$+tano tana=O. 
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27. A closed circuit of given perimeter is drawn on a surface, so as  ta cut off a 
maximum area of the surface. Prove that the geodesic curvature of the circuit is 
constant ; and shew that, in  general, only a limited number of such circuits of the same 
perimeter can be drawn through any assigned point of the surfwe. 

28. The geodesic distances of any point on a surface from two fixed points on the 
surface, geodesically distant c from one another, are  r and r'. The surface is such that  
the curves 

( l+a) r2+(1  -a )  r12=a 

are parallel curves (a being the parameter of the family); shew that the angle between 
the curves 

r = constant, r' = constant, 
a t  a point of intersection is 

rZ+9. '=-  9 cos -1 - 
2 4  . 

29. Obtain the equation of geodesics on Enneper's minimal surface in the form 

where a is  an arbitrary constant. 

30. The line of striction of a scroll is one of its asymptotic curves; prove that the 
angle at  which i t  cuts any generator is equal to its angle of contingence t, and that the 
asymptotic curves cut the generators a t  a distance r from the curve measured along the 
generators, where 

r being the tortuosity of the c u v e  at  the point. 

31. A skew c u v e  has assigned terminal points and assigned directions for its 
r 

tangents at  the terminal points; and it  is  to  have the property that ~zds along the J 
curve has a stationary value, where K is the circular curvature a t  any point. Denoting 
the torsion a t  the point by 7, prove that 

K ~ T  = a, 

where a and b are constants. 

32. The arc-element on a surface is given by 

Shew that the geodesios are given by linear equations between u and v. 
Denoting the geodesic distance between two pointa u, v, w and ut, v', w' by p, prove 

that 

where 

and so for ,$' and 7'. Obtain the arc-element in  terma of 8 and q ; and determine the 
curves in the plane of 5, 7 which correspond to geodesics on the surface. 

Prove that the Ciaussian measure of curvature for the surface is constant. 
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33. Al1 surfaces, whose lines of curvature &n be spherically represented by two 
systems of orthogonal circles, can be generated as  envelopes of the plane 

1-ncosa  
~ ~ + r n ~ + n z + ~ ~ ~ )  + ~ F ( ~ ) = o ,  

where P+ma+.n2=1, a is a constant depending upon the partiCu& set of orthogonal 
circles, and the axes of x and z are parallel to the lines through which the planes of the 
two circles pasa. 

34. When a surface is geodesically represeuted on a plane, curves of finite constant 
geodesic curvature on the surface do not in general become circles on the plane. 

35. Prove that the surface, represented (in the ordinary notation of elliptic functions) 
the equations 

~ K ~ S = E ( ; ) + E ( V ) - ( 1 - K ~ ) ( u + v )  

2 ~ ~ y = i { E ( u ) - E ( v ) - ( l + ~ ~ ) ( u - v ) }  
eKs=(dnu-~cnu)(dnv-xcnv) 

is minimal, and that its principal curvatures are 

36. Prove that the surface 

x = h c o s a +  sinhcoshp, 

y = p  +cosacoshsinhp,  

z= sin a cos h cosh p, 

is a minimal surface ; that the parametric curves are plane lines of curvature ; and that 
the Gaussian measure of curvature is 

- (cosh p + COS a COS A)-' sin2 a. 

37. A rigid boundary consists of two finite perpendicular straight lines OP and O&, 
and two infinite straight lines through P and Q perpendicular t o  the plane PO& drawn 
in the same  ens se. Shew that the minimal surface with this boundary is obtained by 
taking 

F(u)= -Q(1+2uacos a+u4)-1 

in the Weierstrass equations, where k and a are rettl, and OP, O& are the axes of x and y. 
Obtain relations between k, a, and the lengths of O P  and O&. 

38. Taking the conics subsidiary to the construction of a Dupin cyclide as the focal 
conics of a system of confocal quadrics, prove that the equation of the cyclide can be 
expressed in the form 

al + % + a3 = constant, 

where a,, a2, as are the primary semi-axes of the confocals through any point. 

39. When the fundamental magnitudes E, F, O are (i) functions of one parameter 
only, or are (ii) homogeueous functions of two parameters of degree - 2, the surface is 
applicable on a surface of revolution. 

40. A portion of a sphere is deformed, and 8 is the angle which the normal to the 

deformed surface makes with the axis of z ;  prove that H 

negative for the deformed surface, H denoting the mean measure of curvature. 
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41. A surface is generated by the revolution of the c u v e  

round the axis of y, where k is the modulus and a>b. Prove that the zone between the 
planes u = 2K and u= - 2 K is applicable to a portion of an anchor ring. 

Shew that the real branches of the asymptotic lines upon the surface are closed 
curves, if 

where m and n are integers. 

42. Prove that helicoids of a special type exist,   hi ch are applicable to scrolls of a 
special type so that the helices of the former coincide with the orthogonal trajectories of 
the generators of the latter. 

Prove also that the surfaces of revolution to which the helicchds in question can be 
applied are generated, by rotation round the axis of y, of one or other of the curves 

s n a c n u .  s d n r = l ,  y=u-E(u)+kz- 
d n u  ' 

43. A geodesic circle is defined as the locus of points on a surface a t  a constant 
geodwic distance from a centre. I t  might also be defined as a curve of constant geodesic 
curvature. Prove that, if the definitions agree for one centre, the surface is applicable to 
a surface of revolution ; if they agree for al1 centres, the Gaussian measure of curvature 
is constant. 

44. Prove that an infinite number of scrolls can usually he found applicable t o  a 
given scroll so that their generators correspond ; and that scrolls, with their generators 
parallel t o  those of a given cone, can be foiind similarly applicable to the given scroll. 

Let the given scroll be the cylindroid 

and the given cone be xz+yz=zzcot2a ; shew that the equations of the line, on the tmoll 
applicable as above to the cylindroid, which corresponds to the axis of z on the cylindroid, 
are [ooa {(sec~+2)u+@ +cos{(seca-2)v+B} 

x = f p s i n a  ---- 
8ecaf2  sec a-  2 

Z= +_p cos a sin 2v, 

where j3 is an arbitrary constant. Shew also that this line ia the line of striction on ita 
scroll. 
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45. Prove that the ruled surface, which is applicable to the hyperboloid 

xZ/az + yZ/b2 - z2 / c2 = 4  
and has its generators parallel to those of the hyperboloid in the same sense, is given by 
the equations 

where 
A2 = ae cose v + b2 sinZ v + c2. 

46. The quadric z = x y  is deformed into a surface 

Z=f ($9 Y), X=9 ( 4  y), Y= h ($9 Y) ; 

prove that a solution of the partial equation of the second order for Z is 

z= ( ~ 9 ~  + a q ) g  +a log {(xY)* + (a + xy)+}, 

where a is an arbitrary constant ; and obtain the values of X and Y to be associated with 
this value of 2. 

47. Three quantities a, ,3, y connected with the parameters A, p, v of three quadrics, 
passing through a point in space and confocal with x2/a+y2/b+z2/c, are defined by the 
relations 

2 (a+x)-hdh=dn, z (b+h)- l(a+h)- tdh=dfi ,  ~ ( c + ~ ) - l ( a + h ) - t d h = d ~ .  

Prove that the surfaces defined by a, y as parameters are a triply orthogonal system; 
and obtain the arc-element in  space as given by 

48. Obtain the equation of confocal cyclides in the form 

mhere h is the parametric variable, and [, q, c are the parameters (to be replaced by the 
functions of the variables) of a system of triply orthogonal spheres. 

Shew that the cyclides constitute a triply orthogonal system. 

49. Obtain a triply orthogonal system of surfaces such that 

B,=l, E2=1, H3=Au+Bv+CI 

where A, B, C are functions of w alone. 
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50. Shew that the surfacea 

q=uza,  2+ya+zz=v, x=+ya+zz=w(xz-y2), 

are a triply orthogonal system. 

51. The coordinates of a point in apaoe are given by the equations 

sin u 
x=2a {cos v - (w - v) sin v), 

1 +(w-v)~sinau 

sin u y= 2cb ----- {sin v +(w - U) sin v), 
1 + (w - v)z sin" 

Shew that the u-surface is a sphere having its centre on the axis of z, that the zo-surface 
is a pseudosphere having its measure of curvature equd to - l/az, and that the v-surface 
is a surface of revolution round the axis of z. Verify that the parametric surfaces are a 
triply orthogonal system, by obtaining the arc-element in space in the form 
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Abel, 136. 
Adjoint minimal surface (Bonnet's), 298 ; 

properties of, 299 ; correspondence of or- 
ganic curves on, 300. 

Algebraic curves of constant torsion, 27, 29. 
Algebraic minimal surfaces, constructed from 

algebraic nul lines in space, 80; in general, 
291; example of, 305. 

Algebraically complete aggregste of integrals 
of the equations characteristic of differential 
invariants for one curve, 217 ; the geometri- 
cal significance of these invariants, 224 ; 
other integrals, and their significance, ex- 
pressible in terms of this aggregate, 225, 
233 ; 

for two curves, 229, with their signifi- 
cance, 230-232. 

Ampère's method of solving partial differential 
equations of the second order, 371. 

Anchor-ring, as surface with circuler lines of 
curvature in both systems, 343. 

Angle between parametric curves, 34, and 
variation of, 50; between any two curves, 
35. and any two directions, 36. 

AppeU, 120. 
Applicability of surfaces, i n  general, 355 ; 

see deformation of surfaces. 
Arc-element of space, referred to rectilinear 

congruence, 475; canonical form of, 476. 
Assigned systems of lines of curvature, general 

equations of surfaces which have, 338. 
Associated minimal surfaces, 298 ; special 

example, 308. 
Asymptotic lines, can be real, imaginary, or 

oingle, 70 ; equation for (with examples), 
71 ; conditions that parametric curves may 
be, 72 ; not conserved under inversion, 
107; general properties of, a8 connected 
with binary forms, 199,200, 202 ; Beltrami's 
property of, 200 ; in any spherical repre- 
sentation, 256 ; 

Asymptotic lines (cont.) 
on two sheets of a centro-surface corre- 

spond, if and when the original surface 
is any Weingarten surface, 113 ; 

on minimal surface, 71, 272 ; spherioal 
representation of, 275; equation of, 
on general surface, 285; on Enneper's 
surface, 353 ; 

on Weingarten surfaces, 352 ; 
are the characteristics of the equation 

for the deformation of surfaces, 363; 
as  rigid curves during a deformation 

of a surface, 374, 405; as  final 
shape (after deformation) of an as- 
signed curve, 377 ; 

otlier than generators on a ruled surface, 
anharmonic property of, 382. 

Beltrami, 164, 173, 200, 203, 206, 207, 234, 
243, 245, 268, 354, 388, 391, 394. 

Beltrami's differential parameters, the first, 
164, 206, 219 ; the second, 207, 222; wben 
the first vanishes, it givea nul lines, 208 ; 
when the second vanishes, i t  gives iso- 
metric variables, 209. 

Beltrami's method for deformation of ruled 
surfaces, 391. 

Beltrami's theorems, on geodesio parallels, 
173; on the geodesic representation of a 
surface on a plane, 245 ; on a ruled surface 
applicable to another ruled surface, the 
generators being parallel, 387, with examples, 
389, 390. 

Bertrand curvea, 30, 407. 
Bianchi, 1, 23, 32, 63, 93, 123, 234, 260, 

309, 343, 354, 400, 408, 409, 465, 466. 
Binary forms (simultaneous), oonnected with 

curres on a surface, 190,194 ; some relations 
between them, 191 ; their geometrical sig- 
nificance, 192, 195; their expressions as  
invariants, 204 ; 
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possess only, are Dupin cyclides or anchor. 
rings, 342. 

Closed geodesic, when possible on a surface 
of revolution, 135 ; total curvature of portion 
of surface bounded by, 161. 

Codazzi, 48, 419. 
Complex of lines and congruence of lines, 475. 
Condition of integrability, for surfaces i n  

general, 37, 40; for surfaces with plane 
or spherical lines of curvature, 316 ; ane- 
lytically is equivalent to the condition of 
orthogonality of the lines of curvature, 
317; in triply orthogonal systems, 432. 

Confocal quadrics as triply orthogonal system, 
418; are also isometric, 457, 458. 

Conforma1 representation of space upon itaelf, 
427-429. 

Conforma1 representation of surfaces, its 
fundamental property, 235 ; adequately given 
by representation npon a plane, 236, with 
the conforming relation, 237 ; of planes on 
planes, 238; of surfaces of revolution on 
planes, 238, 242 ; various projections of 
spheres, 239 ; of oblate spheroid on plane, 
242; is also geodesic, only if the magnifi- 
cation is constant, 252. 

Congruence of circles, number of focal pointa, 
469; general equations for, 488; funda- 
mental magnitudes for, 489; special class 
of, with particular disposition of the four 
foci, 492, 493 ; magnitude, position, and 
direction, of shortest distance between eny 
two consecutive circles, 498 ; see cyclical 
systems. 

Congruence of straight lines, 467; see recti- 
linear congruence. 

Congruences, of curves in general, 467; illus- 
tration of, 467; general equations of, 468; 
surfaces of, 468 ; focal points of, 469 ; focal 
surface of, 470 ; not usually capable of ortho- 
gonal section by a surface, but there may 
be partioular orthogonal surfaces or even an 
orthogonal family, 472 ; sec congruence of 
circles, cyclical systems, reotilinear con- 
grnence. 

Conjugate of en assigned boundary on a 
minimal surface, 307. 

Conjugate lines and directions on a surface, 
65; condition that two directions should 
be conjugate, 66 ; equations for direction 
conjugate to given direction, 67; condition 
that parametric curves are conjugate, 67, 
91 ; lines of curvature are the only ortho- 
gonal directions which are conjugate, 68 ; in 

Conjugate points on  a geodesic, 87, 126; 
when the geodesio is drawn on a surface 
of revolution, 138; on an oblate spheroid, 
142, 144 ; on a sphere, paraboloid of re- 
volution, anchor-ring, 143. ' 

Contact of a skew ourve with its tangent, 
osculating plane, sphere of curvature, 8, 9. 

Contingence, angle of, for a skew curve, 4; 
in Routh's diagram, 10. 

Continuons groupa, see Lie's theory of. 
Coordinates of point, on a skew curve, at  a 

smaii arc-distance from any assigned point, 
10; when the curve is defined by its oscu- 
lating plane, 17; 

on a surfaoe, equations satisfied by, 
45. 

Coordinates s, y, z, of a point in space, as 
connected with triply coordinate system, 
equationa satisfied by, 415, and by xa+y2+za, 
417. 

Correspondence of surfaces, point-to-point, 
234; Tissot'a theorem on conservation of a 
single orthogonal system, 249. 

Critical equation for range of minimal surface, 
306. 

Critical function for range of geodesic, on 
surface of revolution, 137, 138, 142, 143; 
on an  oblate spheroid, 142; on a sphere, 
143 ; on a paraboloid of revolution, 143 ; 
on an  anchor-ring, 144. 

Cubic integral of the equation Ag=1 for 
geodesic parallels, 187. 

Cubic scrolls, ruled surfaces assooiated with, 
under Beltrami's theorem, 390. 

Curvature of normal section of a surface 
throngh a tangent, 41. 

Curvatures of skew curve, when completely 
given, define the curve intrinsically, 21; 
i f  given as  to ratio, or either alone, how 
far they define a curve, 15, 23, 25, 27. 

Curve of curvature on a surface, see lines 
of curvature. 

Cumes, in space: definition by current co- 
ordinates, current parameter, arc, 2; by 
means of osculating plane, 16;  by some 
organic property, 21-28 ; uniquely deter- 
mined by the assignment of the two cur- 
vatures, 21 ; having cyrvatures in a variable 
ratio, 15, and in a constant ratio, 23 ; with 
assigned torsion, 25 ; assigned circular cur- 
vature, 27. 

Curvilinear coordinates in space, 409. 
Cyclical systems, 467, 468, 499 ; generel 

eqnations for, 500; example of, 501. 
s spherical representation, 256. Cyclides, 324. 
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Darboux, vu, viii, 1, 10, 19, 23, 27, 33, 63, 69, 
71, 75, 86, 93; 94, 95, 120, 123, 135, 171, 
175, 203, 208, 234, 248, 268, 270, 302, 
309, 310, 324, 343, 354, 365, 377, 384, 394, 
400, 408, 409, 412, 433, 437, 439, 446, 447, 
459, 464, 466, 484, 488, 497. 

Darboux, on surfaces with two plane systems 
of lines of curvature, 324, 330 ; the equation 
for the deformation of surfaces, 368; the 
equation of the third order satisfied by the 
parameter of a family of surfaces in a triply 
orthogonal system, 433; on Lamé families 
(p.-v.), 447 ; on isometric triply orthogonal 
systems, 459-464. 

Deformation of a curve assigned in deformation 
of a surface, 375. 

Deformation of surfaces, in general, 131, 355; 
leaves Gauss measure of curvature unaltered, 
355; of surfaces of revolution with constant 
Gaussian curvature, 358; partial differential 
equation of second order, with the use of the 
integral, 363-368 ; 

with one curve rigid, is possible when 
the curve is an asymptotic line, 375, 
405 ; 50 that a given curve is deformed 
into another given curve, 375, or into 
an asymptotic line, 377, 393, or into 
a plane line of curvature, 394; 

by Weingarten's method, 395, 400; 
central function in, 401, satisfying 
an equation of the second order, 402; 
construction of, 403. 

Deformation of minimal surfaces into minimal 
surfaces, 297 ; conservation of spherical re- 
presentation throughout, 298 ; associated 
surfaces, and adjoint surfaces, 298; special 
example, 308. 

Deformation of particular surfaces; catenoid, 
356; centro-surface of a Weingarten surface, 
349, 350 ; helicoids, 289, 356 ; paraboloid of 
revolution, 370, 372 ; plane, 369 ; pseudo- 
sphere, 356; spheres, 369. 

Deformations that are infinitesimal, see infim- 
tesimal deformation. 

Demnrtres, 345. 
Derivatives of s, y, z of the second order, 45; 

of X, Y, Z of the first order, 39; of x ,  y, z 
of the third order, 59, 61 ; of X, Y, Z of the 
second order, 121. 

Derived magnitudes, of the third order, 56, 
and relations between them, 57; used to 
express derivatives of x, y, z of the third 
order, 59 ; variations of, under infinitesimal 
transformations, 212; 

of ,the f ~ u r t h  order, 57, and relations 

Derived magnitudes (cont.) 
between them, 58 ; expressions for, 
when surface is referred to lines of 
curvature as parametric curves, 103 ; 
for a central quadric, 105 ; for mini- 
mal surfaces, referred to nul lines, 285. 

Derived surfaces, 117 ; fundamental magnitudes 
for, 118 ; special ortses (centro-surface, middle 
evolute, prtrallel surfaces), 119, 120, 122. 

Differential equation of a surface, 37, is in- 
tegrable, 40; see condition of integrability. 

Differential invariants for one curve in general, 
possible arguments in, 210; definition of, by 
a relation, 210; partial differential equations 
characteristic of, constructed after Lie's 
theory of continuous groups, 210-214; ex- 
pressions for, as solutions of these equations 
in an  algebraically complete aggregate, 217 ; 
geometrical significanoe of, 218-225; 

for two curves in general, with partial 
differential equations characteristic of, 
228 ; algebraically complete aggregate 
of integrals, 229, with their sign5- 
cance, 230-232. 

Differential invariants, methods for, 203 ; 
simple examples of, directly constructed, 
204, 209 ; Beltrami's two a e r e n t i a l  para- 
meters, 206, 207; illustrations of use, 208. 

Differential parametere, Beltrami's first, 164, 
206; Beltrami's second, 207; see differential 
invariants. 

Differentiation, along a curve and along a 
geodesic tangent, difference between, with 
examples, 223, 224, 233 ; along a geodesic 
normal to a curve, 218 ; significance of these, 
in construction of differential invariants by 
Darboux's method, 220. 

Dini, 234, 248. 
Direction-cosines of a line, Weierstrass wmplex 

combination of, 19. 
Direction-oosines (X, Y, 8) of the normal to 

a surface, 36; first derivatives of, 39 ; second 
derivatives of, 121. 

Directrix curve on a ruled surface in deformation 
taken to be a n  asymptotic line, 393; geode- 
sic, 393, 394 ; plane line of curvature, 394. 

Double surfaces (minimal), after Lie, 294 ; 
examples, 296, 307, 308. 

Dupin, 65, 324, 408, 414, 466, 484. 
Dupin'e cyclides, 324 ; the general equation of 

order four, 325, lines of curvature and para- 
metric equations, 326 ; fundamental magni- 
tudes, 327 ; family of, are parallel surfaces, 
327; limiting case of, when the general 
equation is of order three, 328, 332; example 

33-2 
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of, 331; derived £rom general equations, 343; 
part of a triply orthogonal system, 411. 

Dupin's theorem on lines of curvature as 
intersections of triply orthogonal systems 
of surfaces, 414, 444; 

theorem on normal congruences, 484. 

Elliptic functions, aud geodesics on an oblate 
spheroid, 140 ; and umbilical geodesics on 
an ellipsoid, 147. 

Elliptic type of pseudo-sphere, 360. 
Enneper on integral equations of minimal 

surface, 282. 
Enneper's minimal surface, tangential equation 

of, 287 ; is of class six and order nine, 288; 
propertie~ of, 288; lines of curvature on, 
353 ; infinitesimal deformation of, 400. 

Eiivelope of curves in a congruence, lying 
upon the focal surface, 471. 

Equations characteristic of differential in- 
variants constructed after Lie's theory of 
continuous groups, 210-214 ; integration of 
these equations, 215 ; algebraically complete 
aggregate of their integrals, 217 ; exemples 
of other integrals, 225. 

Euler's theorem on the curvature of the normal 
section of a surface, 65, 124. 

Evolute, of a curve does not exist as a locus 
of centres of curvature, 10; of a surface, 107. 

Excess-function, for a single independent 
variable, 127; the test satisfied for al1 geo- 
desics, 129, and for a minimal surface, 272. 

Fabry, 27. 
Family of curves, arbitrarily assumed, are not 

geodesic parallels, 158; any curve of such 
a family can be made the foundation of 
a family of geodesic parallels, 158, but the 
form of its equation must be changed, 159. 

Family of surfaces in triply orthogonal system, 
their parameter must satisty a partial differ- 
ential equation of the third order, 432 ; de- 
termination of the associated families, 433. 

First order, fundamental magnitudes of the, 
see fundamental magnitudes. 

Flexion, radius of; see radius of circular 
curvature. 

Focal planes of a ray, 481 ; in a normal 
congruence are the principal planes, 483. 

Focal points of a congruence of curves, 469 ; 
property of the surfaces of the congruence, 
469; number of, for lines, circles, conics, 
sphero-oonics, quadri-quadrio curves, 469, 
470; rree foci. 

Focal surface, of a congruence of cnrves, an 

t hé  locus of the focal points, 470; contains 
the envelope of selected families of curves in 
the congruence, 471; of a rectilinear con- 
gruence, 482 ; coincides with limit surface 
from normal congruence, 483; of a con- 
grueuce of circles, 490. 

Foci of a congruence of circles, 490; are 
intersections with four selected consecutive 
circles, 491 ; may lie, in two pairs, on two 
consecutive circles, 492, with conditions, 493. 

Foci of a ray in a rectilinear congrueuce, 480; 
how related to the limits, 481; are inter- 
sections with two selected consecutive raya, 
482; coincide with limits in a, normal con- 
gruence, 483 ; in isotropie congruence, 485. 

Forsyth, 37, 50, 57, 68, 94, 96, 131, 138, 145, 
147, 165, 169, 189, 203, 215, 228, 232, 234, 
238, 266, 275, 301, 343, 363, 371, 372. 

Fouché, 27. 
Fourth order of derived magnitudes, sec 

derived magnitudes. 
Frenet, 17. 
Fresnel's wave-surface, asymptotic lines on, 71. 
Frost, 31, 289, 361. 
Fundamental magnitudes, connected with a rec- 

tilinear congruence, in canonical form, 476.; 
connected with a congruence of circles, 489 ; 

for triply orthogonal systems of surfaces, 
409, 410; give the fondamental mag- 
nitudes for each family, 413; for con- 
focal quadrics, 418, Lamé relations 
satisfied by, 418; when given, they 
determine the system except as to 
orientation and position, 421-427; 
Cauchy's existence-theorem for in- 
tegrals applied to, 430 ; 

in a spherical representation, 254, 258; 
quantities associated with, 259 ; 

of a surface, of the first order, 33; of 
the second order, 38 ; are invariantive 
for al1 orthogonal transformations of 
Cartesian axes of reference, 33, 38 ; 
satisfy the Gauss charaderistic equa- 
tion, 46, and the Mainardi-Godazzi 
relations, 48 ; when known, give 
unique intrinsic determination of a 
surface, 50-56 ; of higher orders, see 

derived magnitudes ; expressions for, 
when the surface is given by a 
Cartesian equation, 60;  

for a central quadric, 104; for the 
sheets of a centro-surface, 110; for 
minimal suilace, 284; for a Wein- 
garten surfaoe, 344; for each family 
in 6 triplg orthogonal system, 413. 
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surfaces, 181; on a hyperboloid of one 
sheet, 186 ; umbilical, on ellipsoid, 186 ; 
on non-central quadrics, 187 ; on minimal 
surfaces, 286, 308. 

Geodesics on surfaces of revolution, 132; the 
primitive of the differential equations, 133 ; 
three kinds of geodesics near the neck, 134 ; 
away from the neck, a geodesic undulates 
between two parallels, 135 ; when they can 
be closed curves, 136 ; investigation of range, 
137; on an oblate spheroid, 138, and 
througli a n  nmbilicus ou an  ellipsoid, are 
expressible by elliptic functions, 140, 147; 
on a sphere, 143; on a n  anchor-ring, 186. 

Gnomonic projections of a sphere, 243. 
Goursat, 120. 
Guichard, 354. 

Hadamard, 124. 
Halphen, 123, 138. 
Hamilton's theorems on systems of rays, 466, 

480, 483. 
Hancock, 124. 
Helicai curves, defined, 25 ; properties of, 

28, 30. 
Helicoids, as minimal surfaces, 289 ; family 

of, deformable into one another, 289; are 
double and periodic, 296 ; deformation of, 
356. 

Henneberg7s surface, tangentiel equation of, 
287; is  of class five, 287, and of order 
fifteen, 289 ; properties of, 289 ; is double, 
290. 

Herman, TG, viii, 20. 
Hirst, 105. 
Historical notes, 1, 19, 27, 32, 46, 63, 65, 93, 

120, 189, 203, 234, 242, 268, 309, 354, 371, 
408, 466, 484. 

Hyperbolic paraboloids as a family in a triply 
orthogonal system, with the associated sur- 
'faces, 451. 

Hyperbolic type of pseudo-sphere, 360. 
Hyperboloid, deformation of, 375. 
Hyperboloid of revolution, ruled surface as- 

sociated with, under Beltrami's theorem, 
390. 

Hyperelliptic functions and geodesics on an 
ellipsoid, 147. 

Infinitesimal deformation of surfaces, 394 ; 
critical equation of second order for, 396, 
399 ; of paraboloids, 398 ; of minimal sur- 
faces, 399; of Enneper's surface, 400. 

Inflexional tangents, 70. 
Integral equations, examples of, 136. 

Invariants and covariants of simultaneous 
binary forms connected with a surface and 
ourves on the surface; see differential in- 
variants, binary forms (simultaneous). 

Inversion, as  conformally representing space 
upon itself, 429. 

Inversion of surfaces, 105 ; conserves lines of 
curvatnre, 106, also orthogonal curves in 
general, nul lines, umbilici, but not asym- 
ptotic lines, 107 ; relation between measures 
of ourvature after, 107, 121. 

Isometric lines, on a surface, 80; relation to 
the surface, 81; parametric variables, though 
not unique, are restricted in range, 81 ; their 
aggregate gives the conforma1 representation 
of a surface on itself, and on a plane, 82 ;  
conditions that parametric curves should be, 
83 ; on minimal surface, spherical represen- 
tation of, 276. 

Isometric limes of curvature, on surface of 
revolution, 82 ; on central quadric, 83 ; 
general equations for surfaces having, 84- 
86 ; on surface of constant mean curvature, 
86 ; on deselopable surfaces, 92. 

Isometric triply orthogonal systems, 456 ; 
confocal quadrics, 457, 458 ; Darboux's 
general investigation of, 459. 

Isothermic linea on a surface, see isometric 
lines. 

Iaotropic rectilinear congruences, 476, 486 ; 
the limits on a ray coincide and the foci 
on a ray are imaginary, 485; properties of, 
485, 486. 

Jacobi, 123, 124, 138, 169, 173. 
Jacobi's theorem on last multiplier conneoted 

with equation of families of geodesics, 169, 
173. 

Jellett, 406. 
Joachimsthal's theorems on plane or spherical 

lines of curvature, 196, 197, 309, 311, 312, 
340. 

Kneser, 124. 
Knoblauch, 32. 
Kobb, 272. 
Kœnigs, 123, 175, 182, 183, 354. 
Kommerell, 63. 

Lagrange, 19, 234, 238, 242, 268. 
Lagrange's theorem on minimal ares, 268, 

270. 
Lamé, 203, 408, 409, 418, 419, 446, 456. 
Lamé's ourvilinear coordinates in space, 409; 

isometric triply orthogonal systems, 456. 

IRIS - LILLIAD - Université Lille 1 



INDEX 519 

Lamé family of surfaces (in a triply orthogonal 
system), 446; Darboux's theorem on, 447. 

Lamé relations (in two sets) satisfied by the 
three fundamental magnitudes for triply 
orthogonal systems, 418-420 ; degree of 
generality possible in their primitive, 430. 

Laplace equation, satisfied by coordinates of 
a point on a surface, 68 ; in infinitesimal 
deformation of surfaces, 400 ; in Weingarten's 
method for general deformation, 403. 

Last multiplier (Jacobi's), and families of 
geodesics, 169. 

Legendre, 124, 268. 
Levi-Civita, 203. 
Lie, Y, 79, 180, 189, 203, 210, 248, 254, 268, 
295, 296, 351. 

Lie double minimal surfaces, 294 ; associated 
with a single nul iine in spaoe, 297. 

Lie surfaces, admitting a quadratio integral 
of the equation A+=1 for geodesic parallels, 
180; are deformable into surfaces of revolu- 
tion, when real, 181 ; geodesically represent- 
able on one another, 254. 

Lie's construction of nul lines in space, 78, 
and of minimal surfaces by means of nul 
lines, 79, 279, 297. 

Lie's theorem concerning lines of curvature 
on a Weingarten surface, 351. 

Lie's theory of continuous groupa, used to 
construot the equations characteristic of 
relative differential invariants, 189, 203, 
209-214, 228. 

Limit surface, of rectilinear congruence, 482; 
coincides with focal surface in a normal 
rectilinem congruence, 483 ; of isotropic 
congruence, 485. 

Limita of a ray, in a rectilinear congruence, 
480; how related to the foci, 481; coincide 
with foci in a normai congruence, 483; in 
isotropic congruence, 485. 

Line of striction on ruled surfaces, 383; pro- 
perty of, if also geodesic, 385; how related 
to the orthogonal trajectories of generators, 
386; in an  isotropic congruence, 485. 

Linear integrai of the equation A$=1 for geo- 
desic parallels, 178, 182; does not coexist 
with independent quadratic integral, 186. 

Lines of curvature, assigned systems of, equa- 
tions for surfaces which have, 338; examples, 
in Dupin's cydides, 342, and in anchor-ring, 
a43 ; 

of a mrface, 41; the equation for their 
directions, shewing that  they are 
orthogonal to one mother, 43; con- 

Lines of curvature (cont.) 
be, 64; are the only perpendiculm 
tiirections which are conjugate, 68 ; 
i f  geodesic, are plane (but not con- 
versely), 88 ; 

in a spherical representation, 255, 257 ; 
when the distance T also is given, 
equation of, 267; 

on a surface of revolution, and on a 
central quadric, are isometric, 82; on 
surfaces dymzn=a, 121; on non- 
central quadrics, 121 ; 

on minimal surface, 273; general equa- 
tion of, 285; when plane, 353; on a 
Weingarten surface, 351; as intersec-. 
tions of triply orthogonal surfaces, 
Dupin's theorem on, 414; 

on two sheets of a centro-surface corre- 
spond, if and when the  original surface 
is a special Weingarten surface. 112 ; 

plane or spherical, Joachimsthal's theo- 
rems on, 196, 197; some general 
properties of, 197, 198, 202; why 
specially considered, 311; cannot have 
all their parameters arbitrary, 315 ; 
surfaces with one system plane, other 
spherical, 332 ; 

primitive of differential equation for, 
and the parametric variables, 93; 
become indefinite a t  an umbilicus, 
94; configuration of, in immediate 
vicinity of an  umbilicus, 95-99; 
determination of, when the surface 
is  given by a Cartesian equation, 99, 
with example, 100 ; conserved under 
inversion, 106. 

Lines of folding, asyrnptotic lines as, 375. 
Liouville, 1, 26, 150, 151, 163. 
Liouville's expressions for geodesic curvature, 
150, 162. 

Liouville surfaces, that are pseudo-spheres, 92; 
that are dewlopable surfaces, 92 ; geodesic 
parallels and families of geodesics on, 170, 
179; course of a geodesic, 171; admit a 
quadratic integral of the equntion A$ = 1 for 
geodesic parallels, 181 ; examples of, due to 
Kœnigs, 182; can be geodesically represented 
on one another, 251. 

Liouville's theoïem that surfaces, with familiea 
of geodesics cutting at a constant angle, are 
developable, 151, 163. 

Mahardi-Codazzi relations between the funda- 
mental magnitudes of a surface, 48, 73, 76, 

ditions that parametric curves may 84, 85, 90, 102, 103. 

IRIS - LILLIAD - Université Lille 1 



Malus, theorem of, on normal congruences, 
466, 484. 

Mathews, 10. 
Mean curvature, H, of a surface, 44; vanishes 

for a minimal surface, 44, 272; its first deri- 
vatives, 58; expression for, when the surface 
is  given by a Cartesian equation, 60; ex- 
pression for, when parametric lines are 
(i) asymptotic, 73, (ii) nul, 76, (iii) isometric, 
84, (iv) geodesic polar, 90, (v) lines of 
curvature, 102; for an inverted surface, 107; 
for each sheet of a centro-surface, 111 ; as a 
differential invariant, 205, 225; derivatives 
of, 227. 

Mean curvature constant, central equation for 
surface having, 77; related to peeudo-sphere, 
77, 120; asymptotic lines on, 78; possesses 
isometric lines of curvature, 86; as Wein- 
garten surfaces, 345. 

Measures of curvature, see Gauss measure, 
mean curvaturb. 

Mercator's projection of spheres on planes, 
240. 

Meunier's theorem on curvature of curves on 
a surface, 64. 

Middle evolute of a surface, 117,120; harmonie 
middle evolute, 122. 

Middle surface of rectilinear congruence, 482; 
of isotropie congruence, 485, is a minimal 
surface (Ribaucour's theorem), 486, and 
connected with Weingarten's method for 
deformation of surfaces, 486. 

Minding, 334, 391. 
Minding's method for deformation of ruled 

surfaces, 387. 
Minimal lines, see nul lines. 
Minimal surface constructed by means of nul 

lines in space, 79, 279. 
definition of, 269 ; characteristic pro- 

pertythat themeancurvaturevanishes, 
obtained by calculus of variations, 
270, and by properties of derived 
surfaces, 271; second variation, for 
weak variations, 271; 

deformation of, into associated and 
adjoint minimal surfaces, 298 ; in- 
finitesimal, 399 ; 

integral equations of, 279 ; after Monge, 
280; after Weierstrass, 282, 284; 
fundamental magnitudes of, 284 ; 
derived magnitudes of third order, 
285; of revolution is a catenoid, 
290 ; 

intrinsic equations of, 278 ; 
organic h e s  on, 272; 

Minimal surface (eont.) 
range over which i t  is a least area, 305 ; 

conjugate of a boundary curve, 307; 
spherical representation of, is conformal, 

255, 274; image of asymptotic lines, 
267; image of nul h e s o  275; image 
of isometric lines, 276; 

tangential equation of, 287 ; 
that is algebraic, 80, 291; that is real, 

292; that is double, 294; that is 
periodic, 295, 296; 

uniquely determined by passing through 
an assigned curve (if not a nul line) 
and touching an assigned developable 
along the curve, 301; this property 
used by Schwarz, to determine the 
arbitraiiy functions in the Weierstrass 
equations, 302; touching an ellipaoid 
along a line of curvature, 303 ; passing 
through a straight line, has the line 
for axis of symmetry, 304; having 
plane line of curveture, 305, 353. 

Monge, 1, 13, 26, 150, 268, 279, 280. 
Monge-Ampére equation for the deformation 

of surfaces, 363 ; its characteristics are 
asymptotic lines, 363 ; is the essential 
condition, 368. 

Monge's integral equations of minimal surface, 
280. 

Nodal curves on centro-surface of an ellipsoid, 
117. 

Normal plane of a skew curve, its equation, 3. 
Normal rectilinear congruences, 482 ; Hamil- 

ton's condition of their existence, 483; cut 
orthogonally by a family of surfaces, 483; 
example of, in the normals to a surface, 484; 
remain normal through reflexion and refrac- 
tion in any heterogeneons medium (theorem 
of Malus and Dupin), 484. 

Normal section of a surface through a tangent, 
expression for its curvature, 41. 

Normal to a surface, direction-cosines of, 39 ; co- 
incides withprincipalnormal of a geodesic, 87. 

Nul line in space, 78; Lie's construction of, 
78; used by Lie to construot minimal 
surfaces, 79, 279 ; leads to Lie's double 
surfaces, 296, 297, with example, 307. 

Nul lines on a surface, 75; conditions that 
parametric curves may be, 75 ; their para- 
metric variables, 76; equations for a sphere, 
when nul lines are parametric, 91 ; oonserved 
under inversion, 107 ; analytical propertiea 
of, connected with associated binary forms, 
201, 202; on a Weingarten surface, 352 ; 
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on any arbitrarily assumed initial curve, 159 ; Pirondini, 15. 

Nul lines (cont.) 
as  parametric curves, used to determine 

geodesic parallels and families of 
geodesics, 172 ; 

on minimal surface, 272; their spherical 
representation, 275 ; are the convenient 
parametric curves, 277, 279,280, (with 
possible, but limited, exceptions, 282); 
parameters of, 291; must not be 
boundary for conditions assigued 
under Cauchy's theorem, (p. W . ) ,  301 ; 
conuection with conjugate of an ns- 
signed boundary, 307. 

Oblate spheroid, geodesics on, 139; a right- 
angled geodesic triangle on, compered with 
right-angled triangle on a sphere, 140; un- 
dulation of, 141; range of, 142; 

conformally represented on a plane, 242. 
One-sided surfaces, see double surfaces ; exemple 

of, 308. 
Organic curves, of surfaces, 63-91 ; on minimal 

surfaces, 272 ; spherical representation of, 
274; their equations in general, 285; and on 
adjoint surface, with correspondence, 300. 

Orthogonal curves, condition for parametric 
curves, 63; are conserved under inversion, 
107; in a spherical representation, 255. 

Orthogonal section of a congruence of general 
curves, when possible, 472, 474; with ex- 
amples, 473. 

Orthogonal system in birational correspondence 
of surfaces, Tissot's theorem on conservation 
of unique, 249. 

Orthogonal trajectories of generators on rnled 
surfaces, 385; properties of, 386; 

of geodeeics, see geodesic parallels. 
Orthographie projection, 243. 
Osculating circle of a skew curve; see circle 

of curvature. 
Osculating developable of a skew curve, 16. 
Osculating plane, of geodesic contains the 

normal to the surface, 87; 
of a ahew curve, 3;  used to define the 

curve, 16, 78, 79. 

Parabolic type of pseudo-sphere, 361. 
Paraboloid of revolution, deformetion of, 370. 
Paraboloids, ruled surface associated with, 

under Beltrami's theorem, 389 ; infinitesimal 
deformation of, 398 ; 

as  a family in a triply orthogonal 
system, 455. 

Paraliel cnrves on a surface, 158 ; family based 

equation of family eatisfies a differential 
equation, 158. 

Parallel generators, applicable ruled surfaces 
possessing, 388. 

Parallel surfaces, 117, 120; special pair of, in 
pseudo-sphere and a particulnr surface of 
constant mean measure, 120; properties, 
121; Dupin's cyclides as example of, 327; 
as  a family in a triply orthogonal system, 
443. 

Parameter of family of surfaces in a triply 
orthogonal system, 409; must satisfy a 
partial differential equation of the thiid 
order, 432, which has various forms, 434- 
440. 

Parameters of lines of curvature, which are 
plane or spherical, are subject to one con- 
dition, 315, which is the condition of 
integrability of the differential equation of 
the surface, 316; 

nul lines in the Weierstrass equations 
of a minimal surface, 291. 

Paremetnc cuïves on a surface, 84; variation 
of angle between, 50; may be orthogonal, 
63; lines of cnrvature, 63 ; conjugate, 68; 
asymptotic lines, 72 ; nullines, 75; isometric, 
83 ; geodesic polars, 89 ; summary of results, 
90; and their geodesic tangents, curvatures 
and torsions of, 196. 

Partial differential equation A+=l ,  and its 
connection with geodesic parallels and families 
of geodesics, 164-171 ; form of, when para- 
metric curves are nul lines, 172 ; polpomial 
integrals of, 175. 

Partial differential equations of the first order, 
in the deformation of surfaces, 368. 

Partial differential equations of the second 
order, Ampère's method of solving, 371; 
Cauchy's existence-theorem for, 373 ; charac- 
teristics of, 373; 

for the deformation of surfaces, 363; 
the characteristics are the asymptotic 
lines, 363; forms of, 364, 365, 367, 
368; for infinitesimal deformation, 
396,399,400 ; for Weingarten's cenûrd 
function, 402. 

Partial dinerential equation of the third order, 
satisfied by parameter of a family in a triply 
orthogonal system, 432 ; Dsrboux's constrnc- 
tion of, 433; various forms of, 434-440; for 
Bouquet surfaces X+ Y + Z = u ,  449 ; for 
surfaces 9 (2, y, z, u)=O, 437, 464. 

Penodic minimal surfaoes, 295, 296. 
Perspective projections, 243. 
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Plane lines of curvature, families of surfaces 
possessing, chapter rx ; minimal surfaces 
possessing, 304; see Joachimethal's theorems. 

Plane through generator of a ruled surface, 
property of, 387. 

Planes, deformation of, 369. 
Planes (parallel) as a family in a triply ortho- 

gonal system, with the assooiated families, 
440; any family of, when the equation 
contains one parameter, 464. 

Polar developable of a skew curve, 13. 
Polar line of a skew curve, 12. 
Polynomial integrals of the equation A+= 1 

for geodesic parallels, 175; can be taken 
either odd or even, 176; form of, when 
parametrio curves are nul lines, 177; if 
linear, surface is  deformable into surface of 
revolution, 178; quadratic, 178; but sirnul- 
taneous quadratic integrals, independent of 
one another, do not coexist, 184; nor linear 
and quadratic, 185; cubic, 187; quartic, 188; 
of any order, 188. 

Primary quantities, see fundamental magni- 
tudes. 

Principal axes of a curve, 5. 
Principal curvatures of families in triply 

orthogonal systems, 417. 
Principal lines of a curve, 5; see binorrnal, 

principal normal, tangent. 
Principal normal of a curve, 4. 
Principal planes of a ray in a rectilinear 

congruence, 480; are the focal planes in a 
normal congruence, 483; in an isotropie 
congruence, 485. 

Principal radii, see radii of curvature. 
Projections of spheres, conformal, 239; Mer- 

cator's, 240 ; stereographic, 241 ; for star- 
maps, 241 ; non-conformal (perspective, 
orthographic, gnomonic), 243. 

Pseudo-sphere (surface having the Gauss 
measure of curvature constant and negative), 
73; central equation for, when parametric 
curves are asymptotic lines, 74, when para- 
metric curves are lines of curvature, 75; 
connected with surface of constant mean 
curvature, 77, 120; forms of equation for, 
when they are Liouville surfaces, 92; evolute 
of, 122; 

and spherical representation, 265; area 
of a quadrilateral bounded by asym- 
ptotic lines, 265; 

as a Lam6 family (q.v.), 465; 
as a Weingarten surface, 344, 348; 
congruence of certain circles in tangent 

planes to, form a cyclical system, 501; 

Pseudo-sphere (cont.) 
deformable into itself in an unlimited 

number of ways, 356; which are 
surfaces of revolution, 358, 360; 
hyperbolic, elliptic, parabolic, types, 
360, 361 ; otlier deformations, 406, 
407 ; 

geodesically represented on a plane, 
247 ; 

one particular class, of whkh the geo- 
desics are conformally represented by 
a double family of circles on a plane, 
237. 

Puiseux, 23,414; on triply orthogonal systems, 
444. 

Quadratic integral of the equation A$=1 for 
geodesic parallels, 178-183 ; does not co- 
exist with an independent quadratic integral, 
184, nor with an independent linear integral, 
186. 

Quadrics, central and coaxial, as a family in 
a triply orthogonal system, 453; exemples 
of, with associated surfaces, 454. 

Quartic integral of the equation A+1 for 
geodesic parallels, 188. 

Radii of curvature of a surface, 42; the equa- 
tion for their magnitudes, 43 ; associated with 
the respective lines of ourvature, 43, 64. 

Radius of circular curvature of skew curve, 3; 
its analytical expression and its direction- 
cosines, 4; when the curve is defined by its 
osculating plane, 17. 

Radius of torsion of a skew curve, 6; when the 
curve is defined by its osculating plane, 17. 

Range (for least area) of a minimal surface, 
305. 

Range of geodesic, as shortest distance between 
two points along a surface, may be limited, 
126; on surface of revolution in general, 
investigation of, 136, with critioal function 
for, 137, 142; on an  oblate spheroid, 142, 
144; on a sphere, paraboloid of revolution, 
anchor-ring, 143; ia unlimited on an  anti- 
clastic surfaae, 161. 

Rays of a rectilinear congruence, 475; length 
and position of shorteat distance between 
consecutive, 477 ; limits of, 480, principal 
planes of, 480; foci of, 480, 481, and re- 
lation to limits, 481; focal planes of, 481. 

Real minimal surfaces, 292. 
Rectifying developable of a skew curve, 13; 

used to determine curves which have their 
curvatures in an  sssigned variable ratio, 15. 
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Rectifying line of a skew curve, 12. 
Rectifying plane of a skew curve, 12. 
Rectiliuear congruence, 467; number of focal 

points of, 469; equations of, in general, 475; 
fundamental magnitudes connected with, 
475, witb their canonical form, 476; length 
and position of shortest distance between 
consecutive rays of, 177 ; limits, principal 
planes, foci, focal planes, of raya in, 480, 
481; focal surface of, 482; limit surface of, 
482 ; middle surface of, 482 ; when capable of 
orthogonal section by a surface, see normal 
rectilinear congruences. 

Xepresentation of surfaces upon one another, 
general character, 234; see conforma1 repre- 
sentation, geodesic representation, spherical 
representation, deformation of surfaces. 

Ribaucour, 112, 113, 120, 354, 466, 486, 488. 
Ribaucour's theorem on the correspondence 

(i) of lines of curvature, (ii) of asymptotic 
lines, on the sheets of a centro-surface, 112, 
348 ; 

that the middle surface of an isotropic 
congruence is minimal, 486. 

Riccati equation, connected with Serret-Frenet 
formula?, 20; another form, 29 ; for asym- 
ptotic lines on ruled surface, 382. 

Ricci, 203. 
Right-angled geodesic triangle on oblate sphe- 

roid, 140. 
Rigid curve in deformation of surfaces, 373, 

404; when the surfaces have their Gauss 
measure of curvature constant, 406. 

Rouquet's method (by spherical representation) 
of constructing the equation of surfaces that 
have two plane systems of lines of curvature, 
309, 328-332. 

Routh's diagram for a skew curve, 10, 15. 
Ruled surface, applicable to ruled surface with 

parallelism of generators, 388; examples, 
389, 390; 

general deformation of, 380; general 
equations for, 382; line of striction 
on, 383; when an assigned curve 
becomes an  asymptotic line, 393; 
see scrolls. 

Salmon, 32, 409. 
Schwarz, on properties of surface adjoint to 

minimal surface, 268, 299; uses them to 
determine a minimal surface under assigned 
boundary conditions, 301. 

Screw curvature of a skew curve, 12. 
Scrolls, deformation of, into scrolls, 378 ; 

generators of, how deformed, 379; if de- 

formable into one another, may be deform- 
able into ruled quadric, 380; properties of, 
when deformable into one another, 407; 
see ruled surface. 

Second order, fundamental magnitudes of the, 
see fundamental magnitudes. 

Second variation for weak variations of mini- 
mal surface, 271, 305. 

Secondary quantities, see fundamental magni- 
tudes. 

Self-conjugate directions, 70. 
Serret, 1, 16, 17, 26, 309, 314, 324, 332, 

336, 338. 
Serret-Cayley treatment of surfaces with plane 

or spherical lines of curvature, 314, 323, 
330, 336-338. 

Serret-Frenet formulse, 19 : applications of, 
21-28 ; used to determine torsion of curve 
on a surface, 193. 

Significance of differential invariants of one 
curve, 224, of two curves, 232. 

Skew curves defined, 1; sec curves, in space. 
Smith (Henry) double surface, 308. 
Space conformally represented upon itself, 427. 
Special congruence of circles such that each 

circle is intersected twice by a circle in the 
same set, 492-498. 

Specific curvature of a surface, see Gauss 
measure. 

Spheres, deformation of, 369; as a family in 
a triply orthogonal system, with the as- 
sociated families if  concentric, 441 ; if they 
touch one another, 442. 

Spherical curvature of a skew curve, 7, 8 ;  
properties of locus of centre of, 11,12,28; on 
a surface and associated binary forms, 194. 

Spherical indicatrix, connected with a skew 
curve, 6. 

Spherical lines of curvature, families of sur- 
faces possessing, chapter LX ; see Joachim- 
sthai's theorems. 

Spherioal representation, of surfaces, 254 ; the 
fundamental magnitudes, 254, 258 ; inap- 
plicable to developable surfaces, 255; usually 
is not conformal, 255; of minimal surfaces, 
is conformal, 258 ; of orthogonal lines, 
lines of curvature, conjugate linee, asym- 
ptotic lines, 255; used to prove Joachim- 
ethal's theorems, 257 ; 

how far it determines a surface, with 
various cases, 262, 266; of minimal 
surfaces, and their organic lines, 273- 
277; of a Weingarten surface, 352; 
of an  isotropic congruence of rays, 
485, 486; 
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Spherical representation (cont.) 
used (by Rouquet) to obtain the equa- 

tions of a surface with two plane 
systems of lines of curvature, 328. 

Stahl, 63. 
Star-maps, as conforma1 projections of a 

sphere on a plane, 241. 
Steiner's surface, 69. 
Stereographic projections, 241, 243. 
Striction, line of, see line of striction. 
Strong variations, and the test by the excess- 

function, 127; satisfied for all geodesica, 
129; satisfied for al1 minimal surfaces, 
272. 

Surface of centres, for any surface, 42, 107; 
is two-sheeted in general, 107; relations 
of the tmo sheets, 108; coordinates of 
points (as centres of curvature) correspond- 
ing to the original point, 109 ; fundamental 
magnitudes of the first order, 110, and of 
the second order, 111; the two measures 
of curvature for each of the sheets, 111; 
conditions of correspondence of lines of 
curvature and of asymptotic lines, 112 ; 

of an ellipsoid, in parametric represen- 
tation, 69, 113; is a surface of order 
twelve, 114 ; sections of, by principal 
planes, 115; configuration of the 
sheets, 116 ; nodal curves on, 117 ; 

of Weingarten surface, deformable into 
surface of revolution and other pro- 
perties, 349-352. 

Surface W, 8ee Weingarten surfaces. 
Surfaces derived by measuring a variable 

distance along normale to  a surface, see 
derived surfaces. 

Surfaces having plane or spherical lines of 
curvature, Serret-Cayley discussion of, 315; 
with two plane systems, 317, and their 
general equation, 323, constructed also from 
the spherical representation, 328 ; with 
one system plane and the other spherical, 
332. 

Surfaces having positive constant Gauss 
measure of curvature, not deformable if 
any curve is kept rigid, 406. 

Surfaces of a congruence of curves, 468; 
property of, a t  the focal points, 469. 

Surfaoes of revolution, with constant Gauss 
measure of curvature, deformable upon 
themselves, 358; in general, when deform- 
able into surfaces of revolution, 361 ; the 
only real ruled surfaces deformable into, 
407. 

Surfaces orthogonal to a congruence of curves, 

when they exist, 472; to a congruence of 
lines, 483; to a congruence of circles, 499, 
500. 

Symbols used, and their significance, xix. 
Symmetric variables, parametrio for nul lines 

on a surface, 76; are conjugate for isometric 
lines, 80. 

Systems of surfaces, triply orthogonal, oee 
triply orthogonal systems. 

Tangent to a skew ourve, its equations, 3, 16 ; 
is the intersection of consecutive osculating 
planes, 4. 

Tangential coordinates X, Y, S, T of a surface, 
260 ; when given, they determine the surface 
completely, 261 ; equations satisfied by, 261; 
when a spherical representation and the dis- 
tance T are given, the surface is determinate 
except as to orientation and position, 262, 
with equation of its lines of curvature, 267; 
how far a surface is  determined by a know- 
ledge of X, Y, Z ,  or of a spherical repre- 
sentation, 262, with illustrations of, 256. 

Tangential equation of minimal surface in 
general, 286; of Enneper's surface, and of 
Henneberg's surface, 286. 

Theoretical dynamics and geodesics, 123, 133. 
Third order of derived magnitudes, see derived 

magnitudes. 
Third order, partial differential equation of 

the, satisfied by parameter of a family in 
a triply orthogonal system, 432, in various 
forms of, 43&440. 

Tissot, 243, 249. 
Tissot's theorem on conservation of a single 

orthogonal system under the birational 
oorrespondence of surfaces, 249 ; two ex- 
ceptions to, 251. 

Torsion, angle of, for a skew curve, 5, 7 ;  
analytical expression for, 6 ; in Routh's 
diagram, 10; when a curve is defined by 
its osculating plane, 17; when known, 
whether variable or constant, how far it 
defines a curve, 25. 

Torsion of a curve on a surface, how related 
to the torsion of its geodesic tangent, 154; 
the associated binary forms, 193, 195. 

Torsion of a geodesic, 155; and associated 
binary forms, 194, 195, 221; expressions 
for, 225; derivatives of, 227. 

Total curvature, of a surface at a point, see 
Gauss measnre ; of closed area on a surface, 
160; of a geodesic triangle, 161; of portion 
of a surface bounded by a closed geodesic, 
161 ; of an area on a pseudo-ciphere, 265. 
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Trihedron of a skew curve, 5. 
Triply orthogonal systems of surfaces, 408 ; 

the three parameters, 409 ; the three funda- 
mental magnitudes of, 409, 410; example, 
in Dupin cyclides and associated surfaces, 
411; curves of intersection are lines of 
ourvature, 414; general equations for, 415; 
principal curvatures of, 417; determined, 
Save as to orientation and position, by the 
three fundamental magnitudes, 421-427 ; 
under Cauchy's existence-theorem for in- 
tegrals, 429 ; Puiseux's discussion of, 444; 

exemples of, 411, 418, 440-443, 447, 
45CL452, 454, 464, 465; 

that are isometric, 456; Darboux's in- 
vestigation of, 459-464. 

Umbiical geodesics on an ellipsoid, 147 ; do 
not n tu rn  upon themselves, 186. 

Umbilicus on a surface, 43, 94 ; lines of curva- 
ture indefinite at, 94; forms of lines of 
curvature in immediate vicinity of, 95-99 ; 
on a central quadric, 105, 121; conserved 
under inversion, 107; on an ellipsoid, 
121. 

Undulation of geodesics between parallels, on 
a surface of revolution, 134; on an oblate 
spheroid, 141; between lines of curvature on 
sn ellipsoid, 147. 

Weak variations, 127, and the tests, 125-128; 
one of the tests satisfied by al1 geodesic 
curves, 128; for minimal surfaces, 271. 

Weierstrass, 19, 124, 147, 268, 279, 282. 
Weierstrass oombination of direction-cosines. 

19 ; 
integral equations of minimal surface, 

282, 284; on algebraic, and on real, 
minimal surfaces, 291. 

Weingarten, 86, 310, 343, 349, 350, 354, 395, 
400, 406. 

Weingarten's method for deformation of sur- 
faces, 395, 400; central function in, 401, 
satisfying an  equation of the first or the 
second order, 402 ; on deformable surfaces 
associated with any arbitrarily assumed 
surface, 403-406 ; connected with middle 
surface of an isotropie congruence, 486. 

Weingarten surfaces defined, 58 ; some pro- 
perties of, 112, 113, 120; in general, 343 ; 
fundamental magnitudes for, 344 ; examples 
of, in surfaces with constant measures of 
curvature, 345 ; minimal surface, with 
centro-surface, 346; other examples, 347; 
centro-surface in general, 348; Lie's theorem 
as to lines of curvature on, 351; spherical 
representation, 352. 
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