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PREFACE.

THE second volume of this Treatise deals with the more ad-
vanced portions of Hydrodynamics, including the motion of viscous
liquids to which the last four chapters have been devoted. It
commences with a chapter on Harmonic Analysis, in which a
variety of functions which frequently occur in physical investiga-
tions are considered. The most exhaustive work on this subject
is the German Treatise on Kugelfunctionen by Heine, of which
considerable use has been made, especially in the first twenty
pages of this chapter. The remainder of the chapter which relates
to Toroidal Functions, is taken from Mr Hicks' papcrs in the
Philusophical Transactions for 1881 and 1884,

The notation J_ (z) for an ordinary Bessel’s Function of degree
m is well established, and the sceond solution of Bessel's equation,
which is not however so frequently required, may be conveniently
denoted by ¥, (z); but therc is another class of functions also of
cousiderable importanée, which constitute the two solutions of
the equation which is obtained by changing  into wz in Besscl’s
equation. The notation for these functions does not appear to be
so well established, many English writers employing the symbols
J,, («x) and ¥, (tx), whilst German writers often cmploy the symbol
K_ (u2) in the place of ¥, («x). But as it appcars to me that the
employment of an imaginary argument in the case of functions
which may always be treated as real quantities, creates unnecessary
complexity, 1 have ventured to introduce a new notation, and
have denoted these functions by the symbols I (x) and K, («)
respectively.

a2
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v PREFACE.

The portions of Chapter XTV. which relate to the vibrations of
a circular vortex and to linked vortices, have been taken with
slight modifications from a paper by Professor J. J. Thomson in
the Philosoplical Transactions for 1882, and from the Treatisc on
the Motion of Vortem Rings by the same author, to which the
Adamg’ Prize was adjudged in 1882. The latter portion of this
chapter has been derived from Mr Hicks' papers on vortex rings in
the Phelosophical Transactions for 1884 and 1885. It is however
necessary to point out, that the period equation obtuined by
Mr Hicks for determining the Huted vibrations of a circular vortex,
docs not agree with that obtained by myself, and consequently
there is an important difference in the results connected with the
stability of the vortex. I am however indebted to Mr A. E. HL Love,
for having examined and verified the analysis of §§ 326—340, and
I therefore trust that the results which are put forward are the

correct, ones.

In the Chapter on Waves, I have made considerable use of
Prof. Greenhill’s Article on Waves in the American Journal of
Mathematics, Vol. IX., which eontains an exhaustive discussion of
most of the principal problems of interest.

The Chapter on the Mides is confined exclusively to the
dynamical theories which have been proposed as an explanation of
tidal phenomena, and is principally derived from the investiga-
tions of the late Astronomer Royal and Professor G. H. Darwin.
The reduction of tidal obscrvations, together with a variety of
questions relating to the practical portion of the subject, arc very
fully treated in Professor Darwin’s Article on Tides in the
Encyclopaedia Britannica.

Although nearly forty years have elapsed since the publication
of Prof. Stokes’ puper “On the Effects of the Internal Friction of
Fluids on Penduluins,” it is remarkable that very little progress
has been made with respect to the solution of problems connected
with the motion of solid bodies in a viscous liquid. The complete

solutions for a sphere and a right circular cylinder moving in a
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PREFACE. A%

viscous liquid of unlimited extent under the action of given forees,
have not yet been obtained ; and no problem involving the motion
of two solids appears to have ever been attempted; neither have
any general equations analogous to Lagrange’s equations been
discovered, by means of which the motion of one or more solids
in a viscous liquid may be obtained, without going through the
troublesome process of calculating the c.omponents of the force
and couple exerted by the liquid on each solid. The difficulties
of the subject are undoubtedly great, but it is hoped that before
the termination of the present century, substantial progress will be
made.

I have in conclusion to express my obligations to Professor
Greenhill for having read the proof shects; to Mr A, E. H. Love
for having examined the analysis of §§ 8326—340, and for having
read the proof sheets of the last four chapters; and to Professor
J. J. Thomson and Professor (. 11, Darwin for permission to make
frec use of thelr investigations on Vortex Rings and Laplace’s

Theory of the Tides respectively.

UxiTep UnNIversiry CLus,
November 1888.
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CHAPTER XIL
ON SPHEROIDAL HARMONICS AND ALLIED FUNCTIONS.

242, It 18 shown in treatises on Spherical Harmonics, that
every spherical harmonic of degree n, is expressible in a series of

n

the form 2, _"A4 P (u)sin (m¢ +a,), where cos'u and ¢ are the
co-latitude and longitude of a point on a sphere, and P (u) is
called an associated function of the first kind of degree n and
order m. This function satisfies the equation

2
Ed—#(1—;L”)Z\E—l’,ritz+n(n+1)\[r=0 ......... (1).

This differential equation being of the sccond order has two
independent integrals. The first of these is P (u), and is finite
for all finite values of g, and is infinite when w = o, The second
integral, which will be denoted by @7 (1), is as we shall presently
show, infinite when p = + 1, but is finite for all other values of g,
and vanishes when g =+ 0.

243. Laplace, to whom we are indebted for the invention of
spherical harmonie analysis, principally devoted his attention to
the attractions of spheres, and of bodies slightly differing there-
from; and it was therefore sufficient for him to consider the
properties of the first solution upon the supposition that p<1;
but in dealing with the potentials of ovary ellipsoids, the function
I} is required both when p <1 and w>1; and the function Q7 is
required when x> 1. We shall thercfore consider these functions
from their most general point of view, and shall denote the
argument by g when it is < 1, and by » when it is > 1,

B. TI. 1
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2  SPHEROIDAL HARMONICS AND ALLIED TFUNCTIONS.

244. The function P may be very briefly dismissed.

It is shown in Ferrers’ Spherical Harmonics that

d~P '
m — — 2\3m 7 n
PR(u)= (=™ <l s (),
or P (v) = (0* — 1) d;{f >1 e, (3),

where P, is an ordinary zonal harmonic or Legendre’s cocfficient.
The value of P, can be expresscd either in the form of a

terminating series of powers of u, or by means of the definite
integral

P"Z}r,(” fm+ (' —1) cos 8 d6
1"
Z;J (et (2 —1)cos )" dB ... (4).

The expressions for P, in terms of the series, or in terms of
cither of the definite integrals, hold good whether p < or > 1.

An expression for 7 in the form of a definite integral may be
found as follows. Let

v, = f T sinTEdd
, {l" + v{p* = 1) cos 9}n+u.+1 .

Then
0,”/;2_ nm+ 17y (u —1)—}-/&005 0} sin*"6dd
du N =1) ), {p+ (= 1)cos g
__n+m+1 cos 8 sin*™"dd @

VG =D TG~ Doy = @ m 1) Vo
Intcgrating by parts we obtain

dv., (n+m+1)(w—fm)v
dp S+ 1 et

Now V:')rP therefore

a"pP, (n—m+1)(n——m+2) (n+'m)V
du” 1.3.5..Cm—-1)=w

whence
Pro (n+m) (1 —pip~ ™ sin®"0déd 5)
" n—m)11.8...(2m— 1)), Tu+ (& — 1) cos B e (5).
If we transform the definite integral by putting

peos + Jiut— 1)
@A+t —1) cos g’

cos @ =
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ZONAL FUNCTIONS OF THE SECOND KIND. 3

we obtain

A e : :
P;"=w(;"+m’)";)f§ o5 | = 1)eos g msin g (6),

If w>1=y we must change the factor (1 —~;L)*”‘ into
(v* — 1) 1u (5) and (6).

245. We shall now consider the function .

Let us first suppose that m = 0 ; writing v for x4, (1) becomes

(0 4 1)0=0 e .

If we endeavour to express J, in the form of a series of powers
of v, 1t will be found that
Py T @r+ ) (2r+3) . (2r+ 20 1) BF T or
This scries is convergent if » > 1, but when » <1 it is
divergent.

d 2
dy(l—v)

246. A series for ¢, in powers of » could ecasily be obtained
when v < 1, but it will not be required ; we shall therefore proceed
to find an expression for @, in the form of a definite integral,

.1 viax+ H
Let D—2H10gV+x_H,
where =1+ 2vz+2* and v > 1.

Then

N1

(1—V)d—y—~j[2{1+va:—x(1—v2) Uy,

x

o%(l — ) Ci{ly]= ﬁz (@8 — o2 — 2+ (V2 + 208" + 2v + 32) U}.
Also

j @U) = H" (2 4 pa— 2t — v’z + 20a® + 20+ 30) U5

therefore 0 (I — “)w— ta o (x U)=0.
Hence if U=2%8 2" 8, satisfies the equation

d A .
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4 SPHEROIDAL HARMONICS AND ALLIED FUNCTIONS.

and since »>1, S, must be equal to 4,Q,(¥) where 4 is some
constant. Now if > b,

f‘t do _ 1 o a++/(a® - b
o @+ bcosh 8 &/(a* — b%) g b .
Putting e =v + 2, b=4/("— 1),
f’z do _ 1 Iogv+x+\/(1+2vx+x"’)
0+ =Dcosh@+z (1 + 2wz +a") V(@ —1)
_ 1 jgrtetd
T2H ®vva—H
=3A4,0.2"

Expanding the definite integral and equating the coeflicients
of 2", we find that
i “ de
AL, _fo v + ¥ — 1) cosh 6]
If the left-hand side be expanded in powers of ™%, the cocfficient
of y™7—the first term in the expansion—is evidently equal to

© dé e L o A
f0(1+cosh 9)"“—_/.0( — 2)\ads
n!
1 .3...(21L+B;
comparing this with the series (8) for Q,, we see that 4, =(—1)",
whence

[ d0 ;
Q.= f VO 1) s G 9.
247. We can now establish the following equations, viz.
(n+2) Qn+2—(2n+3) Qn+1+(n+1) ano """ (10)’
*—1d
;+1 %=Qn+,—an .................. (11),
*—1d
— d‘?}" T N+ KR (12)

We obtain from (9)
aQ, (n+1) [* W' —1)+vcosh ] db

dv ~ Ny 1)), v+ (P —1)cosh g

therefore
-1 d@, _ _fwi{u:—iliy\/(u"'—l)poshﬂ dé
n+1l dv 0 {v + 4/(* — 1) cosh 6]
== VQH + Qn.&-p

...(13),
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ZONAL FUNCTIONS. 5

which proves (11). Again from (13) we obtain
V¥ —-1dQ, f _ W/(»¥—1)cosh §d8
n+l dv v+ @' W+ ver=1) cosh g}"™
sinh® 840
+ 07 - l)f 7" —1) cosh O]
Integrating the last term by parts, the right-hand side

_ f +/(v*—1) cosh 6d6
- 'n-+—1 {v++/(@*—1) cosh 6}’

whence
v -1 dQ
n Q Qn—l’

which proves (12). Eliminatmg d@,/dv between (11) and (12) we
obtain (10).

248. By employing either of the definite integral expressions
(4) for a zonal harmonic, it can be shown that P, satisfies (10),
(11) and (12).

We obviously have
P,=1, P,=y, P,=%(3-1),

Q=1tlog "1, Q=1g,—1

249. We can now prove three more equations, viz

Pn+1Q" - P,,Q..H = m ................ (14),
1
FQ —-PQ. = I e (15),
C oy 'y +1
P Q= Pl =T s (16),

where the accents denote differentiation with respect to ».
From (10) it follows that

Pn+1Qn - PnQn+1 = ;7:’__1 048 Qn_, - I)n-,Q,.),

= 60— Q).

—

T+l
which proves (14); the other two equations can be established in
# similar manner.
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6 SPHEROIDAL HARMONICS AND ALLIED FUNCTIONS.

250. We shall now obtain an expression for ¢ in the form of
a definite integral. Let

= sinh™@do
Va ‘fo {v + #/(v* -~ 1) cosh g}~ ~
- Then
d& - _ "}+m+ } « {‘\/(V2‘1)+1JCOS}1 9} Sinhzmgdg_
v N@'—=1)J, v+ —1)cosh g7

_ _n+m4+17"  sinh™ @ cosh 8d8 nv
STV, b Ve = Deosh g T et m D Vi,
Integrating by parts, we find ,
ﬂ"__ (n+m+1)(g—m)V
dv ~ (2m + 1) i
Now V,=@,, hence

"Q, _ " (n—m+1)(n—m+2)...(n+m)
. dv™ 1.3....2m—~1) "
therefore
gr = k) 1 (0 — D sinh*6df (a7
" (n—m)i1.3...2m—1) ), v+ J@* —1)cosh g}t
This expression is true for all positive values of m and »n such
that n 3 m.

251. We shall hereafter show that the potentials of ovary
ellipsoids can always be expressed in terms of a series of P and
@) functions; but in order to express the potentials of planetary
ellipsoids in a similar manner, we require the functions which
constitute the two solutions of the equation

d d mt
NG

These two solutions may evidently be deduced from our
previous results by putting w for », and rejecting imaginary
factors. Beginning with the case of m =0, the complete solution
of (18) is

—n (a4 1)Yr=0....... (18).

AP,l (w) + BQﬂ (w),

where
(_)%n T 2 n
Pw="" f{v+J(v+1)cos€; o ... (19),
— (=) trtD) N dé
Q) = () [ T e g (20
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ZONAL FUNCTIONS. 7

If therefore we denote the two definite integrals by mp, (v)
and ¢.(v) respectively, the solution of the equation "

d o QY o -
a;(l—k—v)fdyhn(n%—l)\{r_o ............ (21
may be written
"’ :Apn (V) +Bqn (V)
252. From (19) and (20) we easily obtain
q,=cot™ g, =1—vcot?n
Po=1, =,
and we can show as in § 247 that,
(n+2)g,.,+En+3)vy,, — (n+1)q,=0

Dz -+ 1 dqn = — _

n+1 dv B O 22
v +1dg,

n dy VT e

The last three equations are also satisfied by (=)"p,; also

1
.pn-HQn + q".+1pn = —m

, , 1
P9, 9.0n— L[ e (23)
v A n+1
P9 +q".pﬂ+1 = yz+'1
If we put cosh 6 = sec ¢, we obtain

_/*" cos” pde )
T e weosd T T
therefore g, (0)=1m I, }

1
Tonia (0) = Eml)iﬂ,

where H, :ﬁ...on—].
" 2" n!

253. It can also be shown that if 4 be any solution of (21),
then (14 %)™ d™Jr/dv™ is a solution of (18); whence the complete
integral of (18) may be written

Ap?+ Bq?,
a"p, )

where I pr=(1 + )" dv |

m 2}7ndmn
q,‘=(1+V) %%J‘
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8 SPHEROIDAL HARMONICS AND ALLIED FUNCTIONS.

Neumann's Transformation.

254. Having obtained these preliminary results, we shall now
show by means of a transformation due to C. Neumann’, that a
solution of Laplace’s equation can, in certain cases, be obtained in
the form of a series £ (£) F (5) (me + ), where € and 7 are conjugate
functions z and w.

Laplace’s equation when transformed into cylindrical coordi-
nates 2z, = and ¢ becomes

@V dV 14V 1@V
A7 det T wde T wt dg

Let V=1"sin (m¢ + ),

where V7 is a function of z and = only ; substituting in (26), the
equation for determining V* is

&V BV 1AV mV

_dzT_*_ da® +;%—? L (27).
Let V'=Us"t,
then (27) becomes
aU  JU 1 .
dz7+dr.r’+';"(i—m)U=O ............ (28).
Let z+ 1w =f(E+un),

o (3 (- 2+

<( m)
l 3
t]l(}n (28) be(:()llles

1 2
dg* +W+:}gm2(%—m) U=0............. (29)

Now if U= WJ?TU where u is a function of £ alone and vis a
function of 9, {29) may be put into the form

1d/ dwy 1ddwy 1
- SR - - (1 an?
ud§<“ d§)+vd7] (” dn)JrszM m) W

w o w? W P .
+(§ZL“W+’2})_W> 1 (30),
the accents denoting differentiation.  From the form of the above

I Theorie der Elekiricitits- und Wiérme-Vertheiluny in eincin Ringe. Halle, 1864,
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NEUMANN'S TRANSFORMATION. 9

equation, it follows that if (J=)?is either a function of £ or 7 only,
or the sum of two such functions, we can express Win a series of
terms of the type XY, where .X, is a function of £and ¥, is a
function of 5 alone.

255. If we put

z + @ = ccos (E— 7)),
then
z=ccos £ cosh,

w=csin £ sinh 7,
the equations =/, £=a represent a family of confocal ovary
ellipsoids and hyperboloids of two shects respectively; also
J ™% = cosec’ £+ cosech’ 7,
whence Neumann’s transformation is applicable. Let
u=sin §, v=sinhy,
w=cosE, wv=cosha.

Then W=Ule/m)t=Vch
and (30) becomes
d w2 av’: d o AV’ 1 1 —
&/:(1* )d;x, E;)(l_y) dv—(l—yfi—l—v’)mv_o'

This equation is satisfied by the series 32X, Y, where X, and
Y respectively satisfy the equatiens

d . dX" m? B
d . (lY m? _
Z=» (o= Jv.=o,

and C is some constant ; hence
V=332X,V, sin (m¢ +a,).

In order to determine the constant C, we observe that the
potential at an external point of the ellipsoid (z/a)'+ (w/c)*=1 is
ao 2 2
— mpadt = Ay A
V= mpac fA (1 CHA dt x) @+ AP+
where A is the positive root of the equation
z* w®

a+k+f+k

By § 148, equations (12) and (13), and by § 248 it is easily
scen that each of the three integrals of which V is composed, are
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10 SPHEROIDAL HARMONICS AND ALLIED ¥UNCTIONS.

respectively proportional to @,(»), @' (#) P (u) and @, (v) P, (1);
whenee € =n(n +1) and the geueral value of V7 is,

V' =3 {A,P;(v)+B,07 )]

Along the line joining the foci, » =1, and the @ functions are
therefore infinite; on the other hand w», and therefore the P
functions, are infinite at infinity. But the () functions and their
derivatives do not become infinite at infinity, and J vanishes at
infinity ; also the P functions and their derivatives are finite and
continuous along the line joining the foci; hence for space out-
side the ellipsoid

V334,00 () P () sin (m + ),
and inside

V=22B P (v) P, (u)sin (me +a,,),
but for space bounded by two confocal ellipsoids both functions
may occur.

256. If we put
w +1z2=c cos (£ — 1)),
the surfaces =g, £ = a will represent a family of confocal planc-
tary cllipsoids and hyperboloids of onc sheet; and if we put
p = sin £, vy =sinh ), it can be shown in a similar manner, that the

potential at all points outside a planetary ellipsoid can be expressed
in the form of the series

V=334,q7 (v) P; (u)sin (mdp +a,),
and at an internal point

V=35B,p7 (v) Py () sin (mh +a,).

257. We shall now give some examples.

Let a fixed ovary ellipsoid be immersed in an infinite liquid,
and let the axes vary with the time, but so that the volume of the
solid remains constant. If ¢ be the velocity potential, @ and b
the polar and equatorial semi-axes, and ¢ = (&’ — b*)}, the surface
condition is

db (w i)

dn =P\ T
But dn = acp™'dv,
and d/a + 2b/b = 0.
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APPLICATION TO ELLIPSOIDS OF REVOLUTION. 11

Thercfore at the surface
%-—ac 3[1, ) 2CLCP \/L)
Therefore :
b= acQ (V)P (#)
Q,n
where v = a/c is the value of » at the surface, and the accents
denote differentiation.

In the corresponding case of a planetary ellipsoid,

acq2 v)P [L)
#= 4, ()

258. When a solid of revolution is moving parallel to its
axis with velocity ¥, we have shown in § 160 that if + = yw,
where +r is Stokes’ current function, v is a solution of the
equation

Ty @x  Ldx _ x _

& T de T o de  w

whence in the case of an ovary ellipsoid

v =a3, 4,01 () P} (),

and 1n the case of a planetary ellipsoid

Y =wE A0, () P (W),
Now for motion parallel to the axis, the surface condition is

Vv =4 Ve?,
also at the surface
w =0yt = 1) (L= ),
=bP (u),
_ Q'GP .
‘4' - %Vb Q ( ) 3

and in the case of a planetary ellipsoid

whence

=1 Vbw g, (v) (v) P! P (1)
v 2. ()
259. If z 412 = ¢sce (E+ ),

the surface 5 =const., is the inverse of an ovary ellipsvid with
respect to its centre, also

J & = cosec® £ + coseeh® 7,
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12 SPHEROIDAL HARMONICS AND ALLIED FUNCTIONS.

In Neumann’s transformation put
w=sin £, v=sinhay,
u=cos § wv=cosha,
and the equation to be satisfied by W, becomes
(1 &) i{LV ;V (1— ) ‘%V— (71117‘2 — 1 y'*) W = 0.
Also W=U(u) t=Vre?
Whence remembering that the lines »=1 lie outside the surface,

and that » = 0 at the centre; the value of ¥ at an external point
will be

=334, PO o (g 4 a),

Ly
and at an internal point

y=C334 % g) f; ; ) Gin (m + ).

260. The value of the current function +r, at an external
point will be

B () L ()
Fly)

If therefore the solid be moving parallel to its axis with velocity
V, the boundary condition becomes

Vrer /2 = E? A P (w),

we have therefore to find the expansion of r=.

CT @
’\P = 7,,,’ El An

From the equations,

czjrt =y, cw/rt=(1—-p) @ —1)
we obtain,

rz_ uv ‘r‘m' J(y —-1){1 - 1 =4’ )
¢* (/1.+1/—1)‘\i (,u—r—u—l)8
Since z is a potential function, 7z can be expanded in a serles

of spheroidal harmonics, and since only odd powers of » can oceur,
we must have

]

lu‘v (F'E + V‘Z - 1)—§ = E0 BEiH—l Q2n+l (V) I)Qvnl (F‘)‘
Thercfore

1t 1
;::;QMH = ot _1/" {1 +. (?'5 + 1) II ( /L') } P2n+1 d/"’:
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INVERSE OF AN OVARY ELLIPSOID. 13

where H‘=_:’)'f.'(12‘5"71)_
2.8t
1
Let Un =J' p(l— F’g)! P2n+1 du
Then -
! d dP
2+ (2n+2) U, = _f_lu (1— p2) (L;,(l — u?) ‘d—::” du,

t arP
-— 2 1 2n+1
=(2s+1) f,t(l — @) o du

1
- Qsj (1= dL"""‘ dy,
=25 +1)(2+2) U, — 2’s”U,;_1
Therefore
25 ,
U'=(s—n) (25 + 2n 4 3) U
e (a—1p . (s—r+ 1P U_
= (s—n)(s-n-1)...(s—n— r+1)(23+2n+3)(29+7n+1) (254 2n—2r45)°

Now U, =) f wi P du
o (_)12n+1 n !7
T (2n+3) (2 +5)...(4n 1 3)
Therefore if s=n+r
: - 2(=)"1.3...@2n+ 27+ 1)(n+1)(n+2).. (n+’r)
@42t )l U= = 1 90+ 8) 2n 4 5)....(dn + 2r £ 3)

‘2( Y (2u+ DV H  (2r41)(2r +2)...(2n+2r+1)
(2r4+1)(2r+3)...(4n+ 2r+3)

Thercfore 2B, Q.. (dn+3)=2(—Cn+ 1) H Q,..,
whence
refo = (g +"~ 1) =3 ()" @r+ 1) (40 4+ 3) H,Quu P

Integrating both sides with respect to », we obtain

’L(ug+v2—1)_%:S'B2ﬂ+lP2"+lj Q2n+1 dv

;’\/(vz - 1) Q;n o
2n+1 1n-+-1 (2ﬂ+ 1) (211 + 2)

=-3B,

Differentiating with respect to u, and multiplying by /(1 — %)
we obtain
1—p -1 - 4n+3 .
( lL ) (y ) ) 2 2 H Q 2341 P 2n+t”
W —1)f mE
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14 SPHEROIDAL HARMONICS AND ALLIED FUNCTIONS.

‘Whence

Ve'm (o (<) (40 +3) Q4 () g pr P :
2r 20 VWQTP;;H ('Y) n 2n+1 (V) 2n+1 (’u)

261. By procceding in a similar manner, it will be found that
when the solid is the inverse of a planctary ellipsoid with respect
to its centre, the value of Y- is’

__Vim (4 +3) ¢ (V) gy 0 pt
= 2r 20 (2n + 2) p‘%ﬂ () Ifn Paun (v) i1 (/L)

262. By making use either of the method of inversion or the
transformation,
z + 1w = 2csec® § (E+ o),
the same problem can be solved when the meridian curve is an
elliptic limagon, Le. the inverse of an ellipse with respect to its
focus™

Bessel’'s Functions.

263. The properties of the Bessel’s function J,, (x) where m is
any positive integer, are so fully discussed in Todhunter’'s Functions
of Laplace, Lamé and Bessel, and Lord Rayleigh’s Treatise on
Sound, that it will be unnecessary to consider them in the present
chapter, farther than to note that J_(z) satisfies the differential
equation

and that it can be expressed either in the form of the definite
integral

™ ” . om
J (@) = mﬂ’ ¢os (z cos ¢) sin™"Pd ¢,
or by means of the series

x? z*

x™ :
Ta (@) = g {1 TI@m+2)  2.40m+2)@m+ )
(]

X
2.4.62m+2) (2m+4)(2m+6)+"'}‘

Y Quarterly Journal, vol. x1x. pp. 368—370.
2 Proc. Camb. Phil. Sec. vol. vi. p. 8.
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BESSEL'S FUNCTIONS. 15

We shall also prove the following theorem which is analogous
to Fourier’s theorem, by means of which a given function can be
expressed in the form of a definite integral involving Bessel's
functions.

264. If p and q be any positive real quantities, and ¢ (=) is a
Junction which is finite and continuous for all values of = which lie
between the limits p and g, but which s not necessarily finile ut the
{tmits, then the definite integral

f "o f "t () I, ) T, (@)l (32),
0 q

is equal to ¢ (=) when = lies between the limits p and q, and s equal
to zero when = lies beyond these limits.

In order to prove the theorcm, consider a thin plane conductor
bounded by two concentric circles of radii p and ¢, which is
electrified In such a manner that the density on either side is
equal to

% ¢ (m) cos mg.
The potential will be
V:.[P it uch (w) cos me'dudd’ )
- {7+ + u— 2wucos(d — @)t
Let ¥ —p=n
R =%+ 4’ —2=u cos 7.
Then V' =f: fj" ug (u) (cos me COEZT_:}_ —l—zf)lin me sin mn) dudn'

The second integral vanishes; also since

f:e“"ZJO (AR)dA = (2 + RV
the first is equal to
2 cosmep | :dh / : du | e () cos mn, (VD) .
Now! J,(AR) =J, (A&) J, (Au) + 22 J, (Aw)J, (\u) cos m,

whence V' =2 cos mqbf dx j.pe"‘zmi) () J_ (Auw)J, (A=) du
0 q

The density == 4,17; (%?) ,

/o

! Todhunter, Functions of Laplace &e. § 453.
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16 SPHEROIDAL HARMONICS AXD ALLIED FUNCTIONS.

hence this quantity must be equal to $¢ (=) cos m¢ when p>= > ¢,
and must be zero when = lies beyond the limits p and g, whence

f:dx f:m({; (W) T, (\u) T, (Aw) duu = (5),p > @ > q
=0 = >p} )

orm <qg

265. If a charged conductor of the form which we are con-
sidering is placed in a field of force, the density will usually be
infinite at the edges, but d V/dz will always be finite except at the
edges ; whence although 1t 1s necessary that ¢ (w) should be finite
and continuous between the limits p and ¢, it i3 not in general
necessary that it should be finite at the limits. There are however
two special cases, viz. (i) ¢ =0, p finite; and (i1) p= o, ¢ finite,
which require separate consideration.

The first case is that of a circular disc of radius p; and if
¢ (=) became infinite when = = 0, there would be a singular point
at the origin.

The sccond ecase is that of an infinite plane screen having a
circular aperture, and if ¢ (=) became infinite when = = o, the
density would be infinite at an infinite distance from the aperture,
which seems to be physically impossible.

If therefore in the first case ¢ (w)= o0 when ¢=0; and in the
second case ¢ (@) = w0 when p = o, the theorem could not be safely
employed. _

If ¢ (=) is finite and continuous for all values of = between
0 and o0 inclusive, we may put p=o0, g=0, and the theorem
becomes

¢ (=) =f:d7\, f:M(,d) (w)J, Qu)J,, (A=) du ...... (33)

for all positive values of =,

266. We must now consider a class of functions analogous to
Bessel's functions, which are obtained by changing « into .

Putting x =z, (31) becomes

du  1du m?
d?J”;dx_(HZc*)“‘o ............... (34).

This equation, as we shall proceed to show, has two independent
integrals, one of which is finite or zero when =0, and is infinite
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o - . -
when & = o ; and the other is infinite when £ =0 and zero when

z=o00. We shall denote these two solutions by the symbols I ()
and K (x) respectively.

The funetion I, is derived from J, by changing « into « and
rejecting imaginary factors; we thus obtain

74

T.(z) = W) f " cosh (z cos ) sin®™dep ...(35),

or as a serles

2 A

x™ & T ;
(@) = gnpy {1 to@mi2) T 2 E@m T 2) (Em T A +} (36)
267. In (34) put u =2a"v,_, and we obtain

AV  2m+1dr, —0
der t T de T

in this put 2°= y, and we obtain
d'v,, dv,, _
Y dy* +(m+1) dy $v.=0.

Differentiating with respect to ¥, we obtain

dv,,
Ey = Upmaa+
Hence if u, denote any solution of the equation
du 1ldu
CW‘*‘;&;}-U:O ..................... (37),
a solution of (34) will be
ko) d "
um =Z {E’(‘w_‘)} Ug vovrvvenniinirenennan (38).

If therefore the value of K is known, the value of K, can be
obtained by means of (38).

268. Perhaps the simplest way of determining K, is derived
from the consideration that Bessel’s functions are limiting forms
of spheroidal harmonics, Let ¢y be the major axis of an ovary
ellipsoid, and let

cNJ@—1)=r, n(n4+1)=n¢,
then if ¢ and n increase indefinitely, whilst » approaches indefinitely
near to unity, but so that both » and X remain finite, the ellipsoid
ultimately becomes a circular cylinder.

B. 1I. 2

IRIS - LILLIAD - Université Lille 1



Y
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In equation (7) change the variable from v to » and we abtain

dw Vduw 1 ,d%  _ du nm- 1ly _
d7+;dr+c< F e ) e
vhich ultimately becomes
du  ldu _,
‘(F + ;‘ E‘ —Nu= 0,
which agrees with (37) if Ar = a.
= d9
Also Q.= j , A NG = 1) cosh O

= jmexp {=(n+1)log [v+ /(+* —1) cosh 0]} d6.

Now (n+Dlogiv+ J(@*—1)cosh 8}
=} {1+ JO+ 43N log {1 + 7|} + r/c . cosh 6}
=Arcosh 6,

ultimately ; hence the limiting form of @, () is
Q,= f g Areosho g -
whence it follows that

K, (@) = J j LT B (30).

Since K () is infinite when 2 =0, it is evidently the solution
we Tequire,
Another form of K, may be obtained by means of the integral
J “cosAvdy  ar
0

- = E—Aa’
o+ 2a

for putting z =sinh 8 in (39) we obtain
e— N (14 22)
K= Ji V{1 +Z‘)
_ _J'w J’ cos zpdddz
7l Jy 1+ ¢+ &
[T cos adpdd
e (L)

cos yd
"J @ :xx)* .............................. (40)
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APPLICATION TO CARDIOIDS. 19

Whence by (38)

_(=)"1.3..@2m-1) cos m¢dd>
K, - e f T g e (D)
Also K/=2K ..ccociiiiiiiinininnnnnn, (42).

269. By means of the integral

[ et wau= e

[}

we obtaln
K=fM_=f”J' —puy ddd
o . (1+¢2)5 ) oe » (u) cos xpdpdu
_ [T ud (u) du
—fo w2+u2
_{"a‘fo(ax)da
B 1+

~ 0

270. We shall now apply the preceding results, to determine
the current function due to the motion parallel to its axis of the
surface formed by the revolution of a cardioid about its axis.

It E+um=c/(z—m)
we obtain E=(c/r)tcos } 6, n={(c/r)}sin} @

and the surfaces £ =a, 7=/ are the surfaces formed by the revolu-
tion of a cardioid about its axis. Also

J-E’m—ﬂ — E*E + 7]—2
hence Neumann’s transformation can be employed.

In § 254 put u = £,v= 7, and (30) becomes

1d /. dwW 1d(dW> ,(1 1)

= JF e IV VI P2 + 2 W = 0,

£ i (EGE) T oan (i)~ (5
and this equation is satisfied if

W={4,1,0m) + B K, ()}, AE)
where A 1s undetermined.  Also
V'=Wr (4c)
whence V=cr'2 {A, 1, (\)+ B K, () J, (AE)sin (me +a,).
The preceding value of V is a suitable expression for determin-

ing the potential of the surface n = const.

2—2
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20 SPHEROIDAL HARMONICS AND ALLIED FUNCTIONS.

Now a cardioid is the inverse of a parabola, and a parabola is
a limiting form of an ellipse; and since the ¢ functions are suitable
for space outside an ovary ellipsoid, and the P functions for space
inside, it follows that the K functions are suitable for space out-
side a paraboloid of revolution, and the I functions for space inside.
Hence the I functions are suitable for space outside the surface
formed by the revolution of a cardioid, and the K functions for
space instde ; moreover the conditions of the problem do not enable
us to assign any value to A, and we must therefore give it all
values from o to 0, and replace the summation with respect to A
by a definite integral. Hence the potential outside the surface
formed by the revolution of a cardioid is of the form

V =0r'S sin (mé + &) f F O I, (vp) J. (A5 dn,
0
and inside

V=0 sin (mp+a,) [ "FO) K, () T, (AE)

271. When the surface formed by the revolution of the
cardioid (r/c)* =sin 18 or 5= 1, is moving parallel to its axis with
velocity V, the value of Y may be written

cw [~ I )y J, (AE)
=22 POy TAILRS) gy
=] PO RIS
where F (A) has to be determined from the surface condition
Vrer/20 = f FQ)J, (AE) dn.
Now whenp =1,
rofc® = 28/(1 + £)°

=2 jmf“’ ' (1 + aﬂ)—ﬂ ']1 (ka) J1 (XE) dadn.
By (43),  K,(0)= f " 61,(6) 68 1 6 d6.

Thercfore 2K, =K'y=— 2\ f 0J, (8) (\* + &%) d.
Also oJ, = J + 6.

Therefore K,=-— )\f (T + 6 ) (A" + )7 d.
0
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TOROIDAL FUNCTIONS. 21

Integrating the last term by parts, and then putting 6 =g,
we obtain

K A)=— 47\.""f &J, (\a) (1+ o) da
0

Therefore "2 = § f NE, () T, (AE) dn,

4
whence  F(\)=—1VeNK, (\),
Vew [*NEK,(\
and R OE)) I, ) J,(A8) .

This expression, as well as the corresponding expression for
the current function due to the motion of the inverse of an
ellipsoid of revolution with respect to its centre, is of such an
exceedingly complicated character, that it does not seem probable
that progress is to be looked for in the direction of new surfaces

of the third and higher orders,

Toroidal Functions'.

272. The system of conjugate functions

ztw=atand(E+ o) corvevineninnnns, (45),

has been discussed in § 120, and it is there shown that the curves
7 = const., represent the system of circles

& +y'—2aycothn+a’=0............... (46).

The centres of each circle of this system lie on the axis of 4,
and none of the circles cut the axis of z.  If therefore we put

ztw=atan} (E+um) ..ol 47),
(46) becomes
2+ " —2aw cothyg + a*=0,
which is the equation of a family of anchor rings or tores, whose
common axis is the axis of 2= When 7 = o, the tores degenerate
into the circle formed by the revolution of the points 4 and B.
This circle is called the critical circle.

! Hicks ; Phil. Trans. 1881, p. 609: Ibid. 1884, p. 161,
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22 SPHEROIDAL HARMONICS AND ALLIED FUNCTIONS.

y

A

C/N\E a
X

B

Also since Jw =sinh #, Neumann's transformation applies; if
therefore we put « =1, v =sinh %, v = cosh % in (30) the equation
for W becomes

W d, , AW m'W
Tl P R i e |

Now W must evidently be periodic with respect to £, and

must therefore be of the form 3y, cos (nf4a,) where n is a

positive integer, and v, is a function of % alone. Substituting in
(48) we obtain

+3W =0, (48).

d - o dﬂ mﬂn 2
E(l_,)%_,lgyﬁ(n —Dxa=0.rerrrrn (49),

whence
V = (cosh 5 + cos £} 23, y, tos (nE + a,) sin (m¢p + 8,)...(50).

The two integrals of (49) are called Toreidal Functions, and
will be employed in Chapter XIV. in the discussion of circular
vortices,

Equation (49} shows that y, 1s an associated function of degree
n — £ and order m; but it will not be necessary to enter into the
gencral discussion of this equation for all values of m, since in the
hydrodynamical applications which follow, the functions of orders
zero and unity are the only ones required. We shall begin with
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TOROIDAL FUNCTIONS. 23

the case of m=0, and show that if in the definite integral
expressions for the two kinds of zonal harmonics, » be changed
into m—~4, the resulting integrals constitute two independent
integrals of (49), one of which is finite when »=1 and infinite
when v = o0 ; and the other is infinite when v=1 and zero when
v=0.

273. If in (49) we put m = 0, we obtain
d dy, . _
E(l—v"') 0 + (=D xa=0.ciiinnn. (51),

which is the equation satisfied by zonal toroidal functions, Writing
for brevity C and 8 for cosh 5 and sinh 5, we know that the zonal
barmonic of degree u of the first kind is expressible (omitting the
factor ") in either of the forms

f(C+Scosﬁ)"d6 or _F(O'+Scos€)""“ dé,
0 ]

the second of which can be deduced from the first by means of
the transformation (C'48Scos @) (C+ Scos @) =1. Similarly if
we put

P=[(C+Scos " Pap........... (52),
0

1t can be shown by means of the same transformation that

Pn _ frr (O + S cos 0)—i(2”+1) de ............ (53)'

We shall now show that either of the definite integrals (52)
or (53) is a solution of (51).

From (52) we obtain

B =pen—1) [ (C+8 0050/ (14 G cos 6) .
dv ° S

Therefore

52 g 2n—1)[((C+ 8 c0s 6} (0(C + Scos 6)~ 1] 0
T DY (o7 X 0 VS (54),
and from (53)
aP, ;. mC(C+Scosf)~1
8 =R ) o S aos g
e 3 @BnA 1) (CP, = Pop) covrieerrrenenens (35).
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24 SPHEROIDAL HARMONICS AND ALLIED FUNCTIONS,

Differentiating (54) with respect to », we obtain
dP, del)

dv — dv
=}@n-1{P,+32n-1)C8*(CP, - P, )

-+ (2 -1)87%(P, - CP, )}
==L,

%(s*ddf")=§(2n_1) (P+c

d 2 dPn ] 1 D

or dv (l—v)—d;—}-(n—z)]"—(),
which shows that the definite integrals (52) and (53) are solutions
of (51).

Eliminating d P /dv from (54) and (55) we obtain the sequence
equation

Cn+1) P, —4nCP +2n-1)P, =0...... (56).

Equations (54), (55) and (56) are what equations (12), (11)

and (10) become when = is changed into n —$.

From (52) it appears that P, = when C le. »=o; and
therefore P, = oo when 5=} also when =0, C=1, S=0 and
P, =

274. Again let

cz=—71 S=€
((JV+S)Z H

. 28 o

k —m—l—e 1,
Then
p=[ MO e[ opp G

°_f,, (()+Scos€)5_ o (l—k'”sin“(j))%_ e (57),
and

T L
P, = / (€ + S cos O)} 46 = 2k f (1—k” sin? $)} dp = 2% E/(58),

[ 0
where " and £ are the first and second complete elliptic integrals
to mod. ¥

Having obtained the values of P, and P, the values of the
successive functions can be calculated by means of the sequence
equation (56).
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275. We have shown that the zonal harmonic of the second
kind is expressible in the form

F _ a8
o (C+ Scoshg)=+t>

Q _f“’ d

")y (C'+ 8 cosh gyt
it can be shown, as in the case of the P functions, that the above
definite integral is a solution of (51). Also when (=, @, =0;
and when C=1 or =0, ,=o. Hence the two functions P
and @ constitute two independent integrals of (51). It can also
be shown that the above value of ¢), satisfies equations (34), (55)
and (56).

Again,

and if we put

* df
Qo_fo (C+Scosh9)£’

® dé
O T
o (C'+ Scosh @)
In these change # into 26", and then put cosh 8" =sec ¢ ; then
d8’ = sec pdd, also when §'=0 or ©, ¢ =0 or L7 ; therefore

é =2f°° 46’
- n(U—S+2Scosh'0')&,

- f*” d¢p

0o {C+8—(C— 8)sin®¢}*’
= F e (59).
And
0 =2f°° de’
' o (€'~ §+ 28 cosh? 6

9 f’\" cos® pdgp
- : #
{C+ 8~ (C - 8)sin’® ¢}
fi” E*— & sin® qS
=Wk

(1— L’sm ¢)§
_2F 2k d¢
Tk k) (1 Z e sin o
=2 (F—E)e it (60).

And the values of the successive @ functions can be calculated
by mcans of the sequence equation (56).
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26 SPHEROIDAL HARMONICS AND ALLIED FUNCTIONS.

276. At the eritical circle 7=, and at all points on the
axis of z, 7= 0; and since P= o when p=o,and P=m when
7 = 0, the P functions are not suitable for space within a tore, but
are suitable for space without the tore. On the other hand
Q. =0 when n=o,and =o when 5 =0; hence the @ functions
are suitable for space inside a tore but not for space outside.

If therefore the potential is symmetrical with respect to the
axis of the tore, its proper value for points outside the tore will be

V=(C+cos g3, A, P (cosnf+a),
and for points inside

V' =(C +cos E)!'S, B.Q, (cosnk+ ).

277. A different cxpression for §, may be obtained as follows.
The inverse distance of a point from the origin is

1 1 C+cosé

aV C—cosE’

Since ™' is a potential function which is infinite at the origin
and which vanishes at infinity, it is evident that ™" can be
expanded in a series such that

7 =a"1(C + cos £)F 3B,Q, cos n,
whence (C—cos &) 1= 2B,Q, cosnf,
and therefore
2 (™ cos nfdo
"_"fn (0—6089)7%’

1 dd
BO = ~f _ a0
o /o (C ~cos O

The quantity B, may be some function of #n, but if we
substitute the above value of @, in the sequence equation (56), it
will be found that it will be satisfied provided B, = A4, where 4 is
a certain constant which is independent of n. In order to find
4, we have

BQ, =

AQ0=1 T~ de ,
TJo (C—cos )
__ 2 [ a$
—I/ﬁfo (1 —A*sin® ¢p)’
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where A2=2(C+1)"*. Now k7'=C+ 58, therefore

4k _ 4(C+8) _ 4
(1+Ek 1+C+8) (C+8(C-S+1)
_ 4 _ 2 g
T C-8+2+C+8 C+1~ ™
Therefore
——
AQ, = 2 .Jok d¢

It
3

TU+E) (12 4k (1447 sin® @)
= 2r7 (2B F (k)
== 2}Q,,
therefore A ==7"./2.

Similarly from the value of @, it can be shown that if n is not
zero, A = 277 4/2; therefore

0 _fm dé _2_§f">cosn6d0
" J o (€ +8 cosh 9D o (C = cos )

278. The following relations between the P and @ functions,

where the accents denote differentiation with respect to #, are also
useful, viz,

P Q.- PQ., . =2r/2n+ 1), (62),
PO~ PuQa=m/S i (63),
P —P, Q=@ D). e (B4,

In order to prove (62), substitute the values of P,,,, @,., &c.
from the sequence equations, and we obtain

En 1) (Lo, 0= PuR,,) = (2n=1) (PQ, , — P €)

= P)_Qu - Po@x
—4(EF+FE—FF)

= 2.

The other two equations can be proved in a similar manner by
means of equations (54) and (53).
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28 SPHEROIDAL HARMONICS AND ALLIED FUNCTIONS.

279. When the motion of a liquid about a tore is symmetrical
with respect to the axis of the tore, and is irrotational, we have
shown that the current function r = x'w, where ' satisfies the
equation

d & | Vdx _x _

T de T wde @
whence 3" =(C+c)'2(4,P,'+B,Q.") cos (nf +a,),
where ¢=cos £ and P,' and Q' are the two solutions of the
equation

(1— 2) T t@—-Du=0
Differentiate (51) with respect to », and put

v= (= 1)} X = Sd

dv v
Then -
S d'v 2; gv é) " — 1) !’ 0,
or ad’( )d ]i)y*,+(n”—i)v=0;
whence Pr= ddljﬂ - %%, Q= %l%‘

Let us now choose two new functions U, V, such that

dp,

—_ J 1 _ dQn e
o Vam = SQr= =8 (63),

U,=8Pr=8

and therefore

du, av.
n: 2_1 T 2__ .
d,)? (n’ 4) SPm dn (’Il i) SQ,. ’

whence, remembering that = = a8 (€4 cos £)7, the general value
of yr i3
Y =(C+0) S, (AU, + B,V,) cos (nf + a)......(66).
The function U clearly belongs to space outside the tore, and

the function ¥ to space inside; hence outside the tore the proper
value of 4 is

Y =(Ctc) S AT, cos (E+a)erinenns (67),
and inside yr=(C+ c)'% S:Bn V.cos(nE+a )ivninnns (G8).
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Again, )
d
Vo= =80 = (4 1) (00, - Q..

"Ing1 Ccosn()—cos (n+1)6

“2v2 ), (C—esep ¥

=(n+4) 2 j —cosﬁ) cosnf
+ (C — cos )" sin nf sin 6} d6.

Integrating the last term by parts we obtain

Vo=—3%@4n"-1) 2_§f (C —cos 6)t cosnf dé...... (69).
0

280. Let p and g be the velocities perpendicular to the
surfaces 5 and §, in the directions shown in the figure, then

q
p
z
LY g 1OY g,
p=_ nf4 - b 8,
but cos 8 =Jdz/dE, sin 6 = Jda/dE,
therefore p=dJw ' dyr/dE.
Similarly q= 1dv cos 8 — d\!’ sin 8,
v w dw w
and cos § =Jd=/dy, sinl=—Jdz/dn,
whence q=dJa dir/dn.
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281. We can now obtain the value of the cyclic constant ; for
this quantity is the circulation round any closed curve embracing
the tore once. Let the curve be =17’, then putting cos E=¢

K:f: qu=f' lg\k dg

;af (C+ o) ‘I’dg.

Consider first the general term 4, Un cos n€ in , the circulation
due to this is

-_—:Aaf' {(C+ )*dU S(C+ )~ iU}cosn;‘fd.f

= 2Ana—‘f {(O+ (P -HP,-3U, (C+ c)_i} cosnEdE
—— 4@ (P2 (VP 1 U,Q)

di. dP
S0 (,n)

— S84 g (=) 2 (P
=—m (=) 4,a" 2%
Similarly the term involving V_ produces the term
— 10} @Qﬂ —_ dQn) —
SBna’ 2 (Qn d,r’ n dﬂ - 01
also the terms in sin n€ evidently disappcar, whence
k= —ma  28S(YA (70).

282. The value of % is €7, and since n is very large in the
neighbourhood of the critical circle 1t follows that if the cross
section of the tore is small, £ will be small at all points within the
tore, and also at all points outside the tore which are not far from
1ts surface.

In the hydrodynamical applications of Chapter XIV., the cross
section of the tore will always be supposed to be small in
comparison with its aperture, and the values of the functions will
ouly be required at points within the tore or in its Immediate
ncighbourhood ; and 1t will be sufficient to employ approximate
values of the functions which do not involve powers of & higher
than the second.

Now if L =log 4/k, and k be small,

FIY=L+iF¥(L-1D+ &L -7,
EE)=1+L-§H+ U -1
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Substituting in (56), (57), (58), we obtain
Py= 2l (L + 1 (L-1)1,
Pi=2k L+ (L-D R,
P,= g1+ 349,
The function P, contains the factor £~#®*~2 which is very
large if k is small, but it will hereafter be found that P, (k) is

always divided by P, (b) where b is the value of k at the surface
of the tore; hence the term A, P, will always be of the form
A’ (B/k)¥® Dy where 4’_ is a finite constant and wu, is a quantity
of the form
oyt a e’ + ... (B, + B+ B, K"+ et ) L;

when [ is small £*"L is always small except whenn =0, also b/k can
never be greater than unity, hence the preceding approximate
values of P, F,... may be employed.

2
From (56), (59) and (60) we obtain
Qu=mk? (1+347)
Q. =3kt (1 + 38),
Q,= gkt (1+ 15 ),
where the series in brackets are carried to the second power only.
283. By means of these equations combined with (65) the U
and V functions can be calculated, but since U, and V, respectively

contain &4 and 1277V a5 factors, it will be more conve-
nient to introduce two new functions E_and 77, such that

L-i@atl) R =U, %w/c% (2n-1) T.=V, ......... (71),

and we shall obtain

By=—{$L—-1+§(L+ 1)F)
R=3}1—-3(L-}) " } ............ (72),
R,=1-—-5k

T,=1+1F

T =301-1 kﬂ)} .............................. (73),
To='¢ (1 -k

where the series are carried as fur as £%. It will not be neces-
sary to employ the functions of higher orders than E, and T, or to
retain higher powers than &%
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32 SPHEROIDAL HARMONICS AND ALLIED FUNCTIONS.

The general value of the current function may now be written

W =(C+e)3 (4, (b/k)WMR + B, (kLY VT } cos (nE + a,)
...... (74),

in which form it will hereafter be employed.

EXAMPLES.

1. Apply Neumann’s transformation to prove that the potential
at an external point of the surface, which is the inverse of an
ovary ellipsoid with respeet to its focus, can be exprcqsed by means
of a series of terms of the type ¢r P () P, (u) sin (mf + a,,); and
at an internal point by a series of terms of the type

er Q7 (v) Pr (u)sin (mB +a,,);
where »=cosh 9, p =cos £; und z + 1= = 2c sec® § (E+ 17).
2. Prove that

(=i (0 = 1Y (e +9)* = 33, (=) @+ 1) Q' (v) P, (w);

hence show that if the surface, which is the inverse of an ovary
ellipsoid with respect to its focus, be moving with velocity V
parallel to its axis in an infinite liquid,

Y =8V S, (=) (20 + 1) g E;; P () P, (),

where ry 1s the value of v at the surface.

3. Establish the following results:

f K, (az) cos bada = m (a* 4575

(i) f e K, (ba)dz= (b*— a®) P tan (B —a* o ;b>a

a+ (a0 — b2)é

=1(a*— ) og
Z(a’ ) a_(u bl)i’

a>Db,

(iif) f}(o (ax)J, (bx) dw = (a*+ b)) " F (b (a*+ &)},
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4. Prove that

f w7 M sin ped, (pw) du = sin” 2¢/(p + 9),
0 -
where =2+ (wt+o), =2+ (7~ c)h

5. By means of the definite integral

f duf cos x cos ©* (z° ~ A7) da,
prove that J,(A) = 27r—‘f sin (A cosh ¢) d¢.
0
6. Prove that if

V=2r" [ du fce"*’ cos A cos uod, (u@) dv,

then : V =J, A=), when z=0 and = <g,
and that dV/dz=0, when z=0 and » >¢,

7. Prove that if
V=2xr1 f du J-Ge‘/“ sin Av sin poJ, (u=)dv,
0 0

then V=J, A\w), when =0, and w <c¢,
and that dV/dz =0, when z2=0 and = > ¢.

8. Prove that

0

o
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CHAPTER XITIL
RECTILINEAR VORTICES.

284. THE general theory of vortex motion has been discussed
in Chapter 1v.; and we shall now consider the special case
in which all the vortex lines are parallel to the axis of z. We
shall also include the case in which cylindrical masses of rota-
tionally moving liquid composed of such vortex lines are sur-
rounded by irrotationally moving liquid. If the whole liquid is
supposed to extend to infinity in the positive and negative
directions of the axis of z, and the boundaries of the liquid
consist of cylinders whose generating lines are parallel to this
axis, the problem will evidently be one of two-dimensional motion,
and the solution will apply to any limited portion of the hqmd
bounded by two fixed planes perpendicular to the axis of z.

Since the motion is in two dimensions,
w=10, du/de=0, dv/dz=0, £=0, n=0,
dv du

and %‘ — a?/ = 2; ........... ieirertseniane (1) H

also 0f/0t = 0, and therefore { remains constant for each particular
clement of liquid. If 4» be the current function, u = dyr/dy,
v = — dyr/dz; whence, substituting in (1), we obtain
(il\!: d’\p +2£=0
This eqﬁation must, be satlsﬁed at every point of the liquid
where vortex motion exists. At every point of the irrotationally
moving liquid which surrounds the vortices £=0, and therefore
dy A
........................ 3).
dt T dy =0 3
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SINGLE VORTEX. 35

Equations (2) and (3) show that Y is the potential of in-
definitely long cylinders composed of attracting matter of density
&/27r, which occupy the same positions as the vortices.

285. Let us now suppose that a single rectilinear vortex,
whose cross section is a circle of radius a, exists in an infinite
liquid. In order that the cross section may remain circular, it is
nceessary that ¢ and +f should be functions of r alone. The con-
ditions of steady motion § 38 (37) require that £ should be equal to
an arbitrary function of Y, which for the present we shall suppose
to be equal to a constant.

Equations (2) and (3) now become

d'r, | 1dy, _
s igp—0 (4),
which gives the values of yr inside the vortex, and
di‘l’ﬂ 1 d‘l’i p—
77 + v dr O . (5),

which gives the value outside.
The complete integrals of (4} and (5) are
v, =4 logr+B — i
and v, =Clogr+ D.

Now 4r, must not be infinite when 7 =0, and therefore 4 =0 ;
also at the boundary of the vortex, where r = a,

Vo=t dgjdr=dydr;

whence B—4&’=Cloge+ D
—fa'=C,
and therefore C=-ta"=—lojm=—m,

where o is the area of the cross section, and #wm is the sirength of
the vortex. The constant D) contributes nothing to the velocity,
and may therefore be omitted, whence

Now — dvr/dr is the velocity perpendicular to », whence inside
the vortex

‘ —drfdr=08r ... (8),
which vanishes when 7 = 0, and outside
—dyrfdr=mfr ... (9).
3—2
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36 RECTILINEAR VORTICES.

Hence a single vortex whose cross section is cireular, if existing
wn an tnfinite ligued will remain at rest, ond will rotate as a rigid
body. It will also produce at every point of the irrotationally
moving liquid with which @ is surrounded, a velocity which is per-
pendicular to the line joining that point with the centre of its cross
sectron, and which is inversely proportional to the distance of that
potnt from the centre.

If ¢ be the velocity potential outside the vortex

¢ =—3mlog (z+ @)z — )
=mtan™y/r e (10),

whence ¢ is 2 monocyclic function whose cyclic constant 1s 27m ;
and therefore if & be the circulation due to the vortex, its strength
is equal to f«.

286. If other vortices exist in the liquid, or if the liquid instead
of extending to infinity is bounded by fixed or moving surfaces, the
cross section, if of finite area, will experience a deformation, and
the preceding cxpressions for ¢ and + will not continue to hold;
but we shall hereafter show that if the cross section is small, this
deformation may be neglected, and (6), (7) and (10) will give the
values of ¢ and +r so far as this particular vortex is concerned.
Also since every vortex of finite cross section may be divided into
elementary vortex filaments, the value of 4 at any point (z, ¥) for
any number of vortices will be

Yo=—2"n"fTlog {(w — @)+ (y —y)} da'dy’......(11),
where the integration extends over the cross sections of all the
vortices.

It therefore follows that the component velocities due to any
number of vortices will be determined by the superposition of the
velocities due to each, and will be given by the equations

u=—3m(y—y)/ R, v=3m(x—az)/R

where I’ = (z —z))* + (y —5,)%,and (z,, ¥,) are the coordinates of any
of the vortices. Now if (u, v) be the component velocitics at any
point of one of the vortices the expressions 2 (mu) and 3 (mw),
where the summations extend throughout the vortices, vanish ; for
they each consist of pairs of terms of the forms mm, (z, — 2,)/ 2"
and mm, (z, ~z,)/R. Hence if m be regarded as the mass of
a distribution of matter, the centre of inertia of this mass remains
stationary throughout the motion.
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287. Let us now suppose that in the irrotationally moving
liquid which surrounds a vortex whose eross section is circular, the
circulation is different from that which is due to the vortex, and
consequently the tangential velocities at the common surface of the
vortex and the surrounding liquid are different on either sides of
this surface. 'This surface will therefore be a surface of discon-
tinuity which possesses the propertics of a vortex sheet. We shall
also for greater generality suppose that the density of the liquid
forming the vortex is different from that surrounding it.

Let o be the density of the vortex, & the eirculation due to it;
p the density of the outside liquid, « its circulation ; also let ', 4r
be the current functions inside and outside the vortex.

Then " = — L8r" + coust,,
and K=—a f_w (dy’jdr), 8 = 2mu®.
0
Therefore ' = — £'r*/4wa® + const.,

= — /27 . log r + const.

Let p', p be the pressures in the vortex and the surrounding
liquid, then

’ 2 2 P
Therefore L _ i;r it
o 87'a a
2
also Q = 11 - Kz 2
p p 8rr

where P 1s the pressure at the centre of the cross section
of the vortex, and I is the pressure at infinity. At the surface of
separation p = p’, whence
P=1— («p + «"a)/87"a".
Hence if Il < (£'p + «"0)/87rd’,
p’ will become negative for some value of r < g, which shows that

a cylindrical hollow will exist in the vortex, which is concentric
with its outer boundary.

The case of ¢=0 is that of a cylindrical hollow surrounded
by liquid in a state of cylic irrotational motion. The condition for
the existence of such a hollow is that p =0 when r=gq, hence

1= icqp/S'n‘E(Lﬂ.
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38 RECTILINEAR VORTICES.

288. We must now investigate the stability of the preceding
case of steady motion.

Let us suppose that a small disturbance is communicated to
the liquid ; the equation of the common surface of separation may
be taken to be of the form

F=a+acosnf+Bsinnf—r=0........ (12),

where n is any positive integer, and a, 8 are functions of the
time which in the beginning of the disturbed motion are small
quantities, whose squares and products may be neglected.

Let the current functions be
VY = —k/27 . log 7 + (4 cos nf + Bsin nd) (a/r)"...(13)
outside the vortex, and
V' = — £7[4mwa’ + (0 cos n6 + D sin nd) (r/a)...... (14)
inside the vortex. The boundary condition is
dF 1dFdy LdFdyr _ ~0

G drdb 7 as g =0 (15).
Substituting the value of # from (12) we obtain
. . 1d
acosnfl 4+ Bsinnb — d\g " d\p (a sin nfd — B cos nf) = 0.

If U be the tangential Velomty of the surrounding liquid at the
surface of separation in steady motion, we may in the small terms
put dyr/dr =— U, whence

&cos nf+ B sinnd + na* (A4 sin nf — B cos nb)
—aUa™ (asin nf — Bcosnd)=0.

Equating the coctlicients of sin n8, cos nf to zero, we obtain

A=—aB/n+ Uz
B=aa/n+ U,B}
Similarly if U be the tangential velocity of the vortex at the
surface of separation in steady motion, we shall obtain
C=-af/n+ Ua
D= aan+ UB }
Since the disturbed motion will necessarily be irrotational it

will have a velocity potential, and by employing the method of
conjugate functions it can easily be shown that

= (4 sinnd — B cosnb) (a/r)",
=~ (C'sinnf — D cosnb) (r/a)".
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If 8p, 8p" be the increments of the pressure due to the
disturbed motion just outside and just inside the vortex, we must
have

op
P__ $—13 ( \l'> +30¢
= — (4 sin nf — B cos nf) + Ua™ (2 cos nd + B sin n0)
—xaUa™ (4 cos »nf + B sin nd)
=(— A + U*Bja—nUBja)sinn + (B + U’ala — nUA/a) cosnd
={aB/n—2Ua— U*B (n—1)/a} sin nd
+ {ad/n +2UB — Ua (n — 1)/a} cosnf......... (18),
by (16). From the general equat;ions of motion we have
_ldp’ du o
pu % % Zé’!),
ldp' dv d¢?
Tody Tdr T Eay TE
whence ~plo=¢ + g+ 284"

Hence
op' dyr\? s 20 (., &°
—¢ -4 (G) v (v - )
= (C'sinn0 — D cos nf) — U™ (2 cos nb + B sin nh)
+ Una™ (Ccosnb + D sin nf) + 2U*a™ (a cos nb + 8 sin nb)
—2U'a7 (Ccos nf + D sin nd)
= [(C+ U*B/a— UD (n—2)/a} sinud '
4+ (=D + Uaja — U'C (n - 2)/a} cos nd
={—af/n+2U0 (n—1)&/n+ U*B (n—1)/a] sin nd
+{~ad/n—2U0 (n-1) Bin+ Uan—1)/a} cosnb......... (19) ,
by (17). In (18) and (19) write @ and B for aa and a8, and w and
v for U/a and U'/a; siuce 8p = p’, we obtain by equating the
coefficients of sin 8, cosnf in the expressions for dp, 8p’ given by
(18) and (19),
@(14a/p) + 28 [nw +v (n — 1) o/p} —n (n—1)ajuw+1*c/p}=
B(L+a/p) =24 nw+v(n—1) o/p} —n(n~1) B{w+v'c/p} =
To solve these equations put a =L cos M, 8 = Lsin A, also let
k=a/p, and we obtain
NA+kE)—20jnw+kn—1Do)+n@®m=1) @+ k%) =0..(21).

}(2(»
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40 RECTILINEAR VORTICES.

In order that the steady motion should be stable, it is
necessary that both roots of this quadratic should be real.

Case I. Suppose that there is no core, but simply a cylindrical
hollow round which circulation takes place. Here o=0, ép=0,
whence from (18) or (20) we obtain

AN —2Dnw+n(n—-1)w* =0,

the roots of which are (n+4/n)w. Hence the steady motion is
stable, and the disturbance consists of two trains of waves travelling
round the ring in the same direction.

Case II. Let the vortex be of the same density as the surround-
ing liquid, and let there be no slipping at the surface of separation,
Here w=v={, p=0c, k=1 and (21) becomes

M—aE@n—1D+nn~-1)=0,

the roots of which are nf and (n — 1) & Hence the steady motion
is stable. It might at first sight appear that the disturbance
consists of fwo trains of waves whose periods are 2w/ng, and
2a/(n — 1) § respectively ; but in order to solve this case it is
unnecessary to take into account the pressure condition, since the
two values of 4r at the surface of separation must differ by a
constant quantity, which together with the condition of no slipping
and the boundary condition (15) are sufficient to determine the
disturbed motion. It will thus be found that the equations of
motion become

i+ -1y, B+ (mr—17¢B=0,
and therefore the solution A =n{ of (21) must be rejected, and the

disturbance consists of a train of waves travelling round the
cylinder whose period' is 27/(n — 1) L.

Casc 11I.  In the general casc the condition that the roots of
(21) should be real is that
fnwt+k(n—-Dv)—n(n—1)k+1) W+ k%) >0,
or
Gn(n—NDwr—n{ln—-1)k—1j ' —k(n—1)(n+k)v*>0...(22).
If w =w the condition becomes
n-kn-1)>1,

! Sir W. Thomson, “On the Vibrations of & Columnar Vortex,” Phil. Mag. Sep,
1880. J. dJ. Thomson, Motion of ¥Vortex Rinys, p. 74.
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which requires that £ <1. The steady motion will therefore be
unstable if the density of the vortex is greater than that surrounding
liquid.

Let w/v =1+ q; then (22) becomes on dividing by =?,

2 2
1=K F 20 g*{(l —1) lc—l} > 0.
n n o on n n

If g is not zero, it is always possible by taking n large enough,
to make the left-hand side negative; hence the motion is unstable,
unless w=v, and o < p.

‘When w and » are unequal, the common surface of separation
is a surface of discontinuity which has the properties of a vortex

sheet, and the preceding investigation confirms Sir W. Thomson’s
statement that discontinucus motion is unstable.

289. Kirchhoff' has shown that it is possible for a vortex
whose cross section is an invariable ellipse, and whose vorticity at
every point is constant, to rotate in a state of steady motion in an
infinite liquid, provided a certain relatlon exists between the
vorticity and the angular velocity of the axes of the cross section.

The current function is evidently equal to the potential of an
elliptic eylinder of density &/2w. Let a and b be the semi-axes of
the cross section, and let the value of 4 inside the vortex be

V' =D—-¢t (42" + By)/(4 + B).

Let 2 =ccoshneos £ y=csinhnsin  where ¢ = (a*— %), and

let n = B at the surface; the value of yr becomes
' =D — tc* (A cosh® 7 cos’E + Bsinh® 5 sin’£)/(4 + B).
Also let the value of 4 outside the vortex be
= A’e" cos 28 + Dn/.
When =8, we must have
r — Y’ = const., dyr/dn = dy’[dn.

Therefore A'e=2 = — }{c® (4 cosh’3 — Bsinh’B)/(A + B).
and A'e~2 =} (A — B)sinh Bcosh B/(4 + B).
Whence A'(g—-0)'=-— é‘c}(fﬁ‘i— g)b,) - 5622((‘61 ‘_:2)‘1”
Therefore 4da = Bb and

¥ =D — (b’ + ay(a+b).

1 Vorles, liber Math, Phy. p. 261, see also Hill, Phil. Trans. 1834, p. 363.

IRIS - LILLIAD - Université Lille 1



42 RECTILINEAR VORTICES.

Let » be the angular velocity of the axes; w, v the velocities
of the liquid parallel to them, then
& —yo=u=dy’[dy =—2aty/(a +b),
9+ 20 =0v=—dy'/de=2b{z/(a + D).
The boundary condition is
) (ilE+ y @‘ — 0,
where F'=(z/a)’+ (y/b)’—1=0. Whence
2af\ 1 2n¢ 1 _
(o-urtat larso) ="

therefore w = 2abf/(a + b)~.

We therefore obtain
& =—awy/b, y=Dbwxla,
Phe integrals of which are
z= Lacos (ot +a), y=Lbsin(wt+ a),

where I and a are the constants of integration. Whence the
path of every particle relative to the boundary, is a similar ellipse.

290. We have shown that the effect of a cylindrical vortex
column of small cross section is to produce at every point P
external to it, a velocity whose magnitude is equal to m/r and
whose direction is perpendicular to that of r, where r is the
distance of P from vortex. If therefore more than one vortex
exists in the liquid, the effect of any one of the vortices upon the
others will be to produce a motion of translation combined with a
deformation of their cross sections. The mathematical difficulties
of solving this problem when the initial distribution of the vortices
and the initial forms of their cross sections are given, are very
great; and it seems impossible in the present state of analysis to
do more than obtain an approximate solution in certain cases. We
shall now show that when there are two rectilinear vortices in a
liguid, the lincar dimensions of whose cross sections arc small in
comparison with the shortest distance between them, the cross
sections will remain approximately circular'; from which 1t is
inferred that a similar result holds good in the case of any number
of vortices.

1 J. J. Thomson, Motivn of Vortex Rings, p. 74.
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Hence it follows that if any number of vortices of small cross
sectlons are moving in the liquid, and the vortices never get very
close to one another, we may neglect the effects produced by the
deformations of their cross sections, which may therefore be
regarded as approximately circular.

291. Let A and B be the centres of the two vorticcs at time ¢;
¢ the angle which the line joining their centres makes with some
line fixed in space; also let (r, 8) be the coordinates of any point
referred to the centre of 4, and Az as initial line, and let & be the
vorticity of 4.

Let the equation of the cross section of 4 be
r=a+ 3 (a,cosnd +B,sinnb)............. (23),
and let the values of the current functions cutside and inside A be
Yr=C-ta*logr+ 3 (4, cosnf + B, sinnb) (e/r)",
and Y, =C,—~1&*+ 3 (C, cos nb + D, sin ub) (r/a)"
Since we suppose that a, 8, 4, B, C, D are all small quantities,
whose squares and products are to be neglected, it follows that the

condition that the values of Yr and r, should differ by a constant
quantity at the surface of the vortex is that

A,=C, B,=D,

Also since we assume that there is no slipping at the surface of
A, the values of dyr/dr and dv,/dr must be equal at the surface;
this condition gives

'An = agan/n’ Bﬂ = agB"/’ny
and therefore the value of ¢ 18

Y =C —talog r+ at > (2, cos nd + B, sin nf) a™/nr".
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Let us now denote corresponding quantities which refer to the
other vortex B by accented letters, and we have
V=0 -t logr +b¢' 2 (2 cosnb + B, sin nb) b"/nr'™,
where b is the mean radius of the section of B.

If R, ® be the velocities of any point on the surface of 4,
relative to its centre, the boundary condition is

dt " r dr rdf
where the value of ¥ is given by (23); whence

: . . Ld(y+4) B .
aﬂcosn6+3nsmn0—{&——d6 +—c—sm(9—s)

0,

—n(a,sinnd — B_ cos nf) {— d(_"’d::_@ + Lé)? cos (0 —e)} =0, (24).
Now %‘g

dy’ ne @ ,
g =" b (Tglogr,

=~ af 3 (a, sin nf — B, cos nf),

also

the portion involving the series being neglected, since it involves
terms of the order ab/c &ec., which are of a higher order than the
first. But ife> r,
log r’ =} log {r* 4 ¢ — 2rc cos (6 —¢)}
=logc—r/c.cos(f —e)— 4 r*/c*.cos2 (0 —€) —
il
dé

therefore =—¢b {a/c.sin (6 —€) + a*/c*.sin 2 (6 — €) + &c.].
Also d\{r — ta,

and d‘p =g [¢" cos (0 —€)+ac’cos 2 (0 —€) + &,

whence (24) becomes
@ cosnd + B, sin nd + £ (a,sin n@ — B cos nb)
+ E'b ac™ sin 2 (6 — €) — né (2, sin nf — S, cos nd) = 0.
Equating the coefficients of sin 8, cos 8, we obtain
=0, B =0,
and since @, 8, are initially zero, they will remain so during the
whole motion; hence the centre of inertia of either vortex column
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is undisturbed. Equating the coeflicients of sin 20, cos 26 we
obtain

@, + £B, = ¢ ab’c? sin 2¢,

Bg — &a, = — §ab* cos 2e.

Since the centre of inertia of neither vortex column is dis-
turbed, their common centre of inertia will remain at rest, and the
two vortices will revolve around it with angular velocity n, where
n= (g’ + ¢£'b*)/c*; whence e = nt, and our equations become

a, + &8, = L'ab’c * sin 2nt,
B, — La, = — ¢'ab’c cos 2nt,
therefore 2, + §a, = L'ab’c” (2n + &) cos 2ni,
C'ab® (2n + &) cos 2nt

¢ (&8 — 4n?) ’
with a similar equation for 8, Let the initial values of «,, 8, 4,,
be zero, and we obtain

whence a,= A cos (§t+ )+

%= éa o) (cos 2nt — cos &1),
B.=x é’abQ (sin 2nt — sin &t).

Hence the cross section at any instant is an ellipse whose axes
are functions of the time, and which vibrates about the circular
form. The vibration has two periods, a long one /2 and a short
one 2/¢

292. We shall pass on to consider the motion of a number of
vortices of small and approximately circular cross sections.

Since we neglect deformations of the cross sections, the current
function due to each vortex will be — m log r, and the velocity due
to it at any point P will be m/r, and will be perpendicular to the
line joining P with the vortex. Hence if two vortices of equal
strengths m exist in a liquid, each vortex will describe a circle
whose centre is the middle point of the line joining them, with
velocity m/2c, where 2¢ is the distance between them ; and there-
fore each vortex will move as if there existed a stress in the nature
of a tension between them, of magnitude m?/4¢’.}

To find the stream lines relative to the line joining the vortices,

1 Greenhill, “*Plane Vortex Motion,” Quart. Journ. vol. xv. p. 20.
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take moving axes, in which the axis of # coincides with the above-
mentioned line ; then

¥ =—14m log {y*+ (z— )} {y°+ (= +¢)'}.
Also & — wy = u = dr/dy,
g+ wz=v=—dy/dz,
where w =m/2¢". Let
X =¥ +io @ +y)
therefore &=dy/dy,q= —.dx/dm.

Multiplying by g, & respectively, subtracting and integrating,
we obtain
y = const. = 4,

whence the equation of the relative stream lines is

to (@ +y)-dmlog{y* + (z -} {" + (& + '} = 4.

203. If two opposite vortices of strengths m and — 7m are
present in the liquid, the vortices will move perpendicularly to the
line joining them with velocity m/2c, where 2¢ is the distance
between them.

In this case there is evidently no flux across the plane which
biscets the line joining the vortices, and which is perpendicular to
it ; we may therefore remove one of the vortices and substitute
this plane for it. Hence a vortex in a liquid which is bounded by
a fixed plane will move parallel to the plane, and the motion of
the liquid will be the same as would be caused by the original
vortex, together with another vortex of equal and opposite strength,
which is at an equal distance and on the opposite side of the
plane.

This vortex is evidently the image of the original vortex, and
we may therefore apply the theory of images in considering the
motion of vortices in a liquid bounded by planes.

294. If there is a vortex at the point (#, ¥) moving in a
square corner bounded by the planes Oz, Oy, the images will consist
of two negative vortices at the points (- @, ¥), (@, —y), and a
positive vortex at the point (—&, —¥); for if these vortices be
substituted for the planes, their combined effect will be to cause no
flux across them.
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y
> “Op

0 X
A ——

Since the vortex is incapable of producing any motion of
translation upon itself, its motion will be due solely to that pro-
duced by the combined effect of its images; whence,

m my ma’

Py T i@+ @y

m mz my’

V="t @) T )
therefore wlz® +y/y*=0
whence gty =0
or r ain 26 = 2aq.

This is the equation of a Cotes’ Spiral, which is the curve
described by the vortices : also since

xy — &y =—tm
the vortex describes the spiral in exactly the same way as a particle
would describe it, if repelled from the origin with a force 3m*/4+".

295. The method of images may also be applied to determine

the current function due to a vortex in a liquid, which is bounded
externally or internally by a circular cylinder,

%
0 H A Ly

Let H be the vortex, a the radius of the cylinder, O = ¢; and
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let § be a point such that 0S = j=d%/c, then the triangles SOP
and POH are similar, therefore

SPO= OHP,
OPIH = 08P,
also OSP + SPA=0AFP=0OPA
= OPH + HPA,
therefore SPA = HPA.

Let us place another vortex of equal and opposite strength
at S, then the veloeity along OP due to the two vortices is

m . m .
u=—grp S HPO +ST) sin SPO.

sin PO _sin HPO
sin 8P 0~ sin OAP
=0Il/a
= I P/SP,

hence u = 0 and there 1s no flux across the cylinder.

But

Hence the image of a vortex inside a cylinder, is another vortex of
equal and opposite strength situated on the line joining the vortex
with the centre of the cylinder, and at a distance a*/¢ from the
centre, and the vortex and its image will describe circles about the
centre with a velocity

m/SH = mc/(a® — ¢°).

The velocities of the vortex and its image are equal, but their
angular velocities about the axis of the cylinder will be different;
hence the motion of the liquid inside the cylinder and the motion of
the liquid outside the eylindecr arc independent, and the vortex and
its image will not remain on the same radial plane in the sub-
sequent motion. Hence the motions of the liquid inside and
outside the cylinder do not correspond, as is the case with plane
boundaries, except at the instant when the vortex and its image
are on the same radial plane.

The current function of the liquid at a point (r, 6) within the
eylinder is

¥ =—m log SP/HP

log . T ¢ = 2rc cos
S+ f?— 2rfeos 07
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296.  The current function due to a vortex situated between
two parallel planes, can be obtained by finding the current function
due to the two infinite trails of images, exactly in the same manner
as the velocity potential due to a source under the same circum-
stances, was found in § 57.

Let the origin be midway between the two planes, and the axis
of @ perpendicular to them, then as in § 57,

Vv=fle-a,y—y)—fl@e+z +20, y—y)+C
where
J iz y)=— 3mlog Hmm{(:c + 4na)® + y'L.
Now if we omit constant terms, we have shown that
f(x,y) =— ymlog (cosh my/2a — cos mz/2a),

therefore

Y= — 4m log cosh 7 (y —y")/2a —cos 7 (x — «')/2a
- P

cosh 7 (y —y)/2a + cos 7 (z + 2')/2a °

207. Let us now transform the preceding expression by put-
ting (z+w)/a=(x, + Lyl)i/c*, (@ + 1y a=(s, + Ly'l)%/cé.

The portions of the lines &=+« which lie on the positive
side of the axis of 2, evidently become transformed into a parabola,
and the portion of space lying on the positive side of the axis of «,
which is bounded by these lines and the portion of the axis of z
which is intercepted between them, becomes transformed into the
space inside the parabola ; whilst the portion of space bounded by
these lines which lics on the negative side of the axis of # altogether
disappears. Also the portion of the axis of z which is intercepted
between the lines z = + a, transforms into a double line joining the
focus of the parabola with its vertex. Now if we werc to transform
the preceding expressions for 4r as above mentioned, it would be
found that the velocity at points on the line joining the focus of the
parabola with its vertex would be discontinuous; but if we place
another vortex of equal strength at the point —«', —y’, and add
the results, the velocity in the transformed expression will be
continuous along this line.  We thus obtain the current function
due to a vortex in the parabolic cylinder 2¢ = r (1 — cos 6).

In order to find the path described by the vortex, we must
subtract — §m log {(# — 2)* + (y — %)’} and then put z=2",y =y’;
we thus obtain

B. 1L 4
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__ . cosh 7y/a — cos ma/a
¥ bmlog 8a2 2™ log (1 + cosh my/a) (1 + cos we/a)

= —4m log (sec® mx/2a —sech® wy/2a)

neglecting constant terms.  Transforming this expression we
obtain

€M — sec® {3 (r/e)t cos 18) — sech?® {§or (r/c)? sin 6},

which is the equation of the path of a vortex in a parabolic
cylinder.

298. Professor Greenhill' has shown that the equation of the
path of a vortex in a rectangular prism, the origin being at a
corner, is

ctn® (Kz/a) + etn® (K'y/b) = e~ 2/m — 1,

where 2a, 2b are the sides of the rectangular section; Kja= K'[b,
and the functions of z are to mod. k, whilst those of y are to mod. %'
He has also solved the same problem when the boundaries are two
arcs of concentric circles and two radii inclined at an angle «/n.

Coates® has shown how Greenhill's expression for the current
function due to a vortex situated in a rectangle may be transformed,
80 as to give the current function due to a vortex in an elliptic
cylinder.

299, We shall now find the current function due to a vortex
outside an elliptic cylinder.

The method of images is not applicable to problems in which
the boundary is elliptic, and we shall therefore solve the problem
by means of conjugate functions.

Let £ 7 be conjugate functions such that z + vy = ¢ cos (£ — in);
and let (£, ) be the co-ordinates of the vortex §, then if £ 4 be
the coordinates of any point P of the liquid,

RQPP=(z—2)+(y —y)
=ty -+ e—w— (@ -y}
=" {cos (£ — un) —cos (§ — )} {ecos (§ + ) —cos (§'+ on);
= ¢’ {cosh (o' + 1) —cos (£ + &)} {cosh (' —n) — cos (£’ ~ E)}.

L Quart. Jowrn. vol. xv, p. 25, 2 Ibid. xv1. p. 81,

-
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Now
log {cosh (7" +n) ~ cos (& + &)}
=log§ +7% + 5 +log {1 — e 1T} 4 log {1 — e e+ EY)
=log4 +% +n— 220: e cos n (€ + §),
therefore
log QP =log c + ' — 20: nt{emnli v cosm (K + E)
+ e @1 cosn (£ —E)} coviiiennnn. (25),

This series is always convergent when 7" >4 We may
therefore put

Yy=—mlogQP+¥ ... (26)

where
v = mE:o e (78 (A, cos nE + B, sinnf) +m (log e+ 4"+ n— B).
Now 4 =0 at the surface where n=/8. Substituting these
values of ¥r and log QP in (26), and putting 5= 3, we find
—4,=2e ™ cos ng’ cosh nf

— B, = 2¢~m'sin n§ sinh ng;
therefore

o

W= —m3 w7 e ) cogn (F + &) 4 €m0 28) cos n (£~ £)]
. +m(log e +9" +9—8)
= }m log {cosh (7 + %) — cos (E+ &)}

+3m log {cosh (7 + 9 — 28) —cos (£ ~ E)} + mloge ...(27),
therefore

"y —e '
Y =—dmlog w—:;—fj(}:},(% 7 Z)QB—)O_SE(fS—(gé)— By (28).
To find the curve described by the vortex we must put 9 = 7',
E=E in (27), whence
W = 4m log ¢ {cosh 29 — cus 28] cosh 2 (n — B)
therefore the equation of the path is
(cosh 27 ~ cos 2) cosh 2 (p — 8) = const.

For further information respecting the images of vortices, and
also for other cases of vortex motion in and about elliptic cylinders,
the reader is referred to the authorities cited below®.

1 Coates, “Vortex motion in and about elliptic cylinders,”” Quart. Jour. vol. xv.
p. 356 ; vol. xvi. p. 81. Hicks, “*On functional images in ellipses,” Quart. Jour.
vol. xvir. p. 327.

4—2
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On the Method of Inversion.

300. We shall now explain a method by means of which we
may derive from any hydrodynamical problem in plane vortex
motion of which we know the solution, any number of other prob-
lems with their solutions.

If P be any point on a plane curve S, and O be any fixed point
in the plane of S, and if we take another point P’ such that
OP. OF =q* where a is any constant, the locus of P’ is another
curve, which is called the inverse of S with respeet to O.

301. Let +r be the current function due to a rectilinear vortex
of strength =m situated at any point outside a eylinder whose cross
section is S; then if R is the distance of any point from the
vortex, we may put

PY=—mlogR+V¥. ... (29).

At the surface S, 4r is a constant which may be taken to be
zero, also V¥ and its first derivatives must be finite and continuous
at all points of the liquid, and the derivatives must vanish at infinity.
Hence ¥ is the potential of the induced charge when the cylinder
is under the action of an electrified line which coincides with the
vortex, and which is charged with electricity of line density {m
per unit of length. Hence the induced charge on the cylinder is
equal to — 4m per unit of length.

302. Let 4P be the cross section of the cylinder, AP’ the
curve which is the inverse of AP with respect to O ; also let 2 be
the electrified wire, which we shall suppose outside AP, 4 the
potential of the electric field at @, and o the surface density of

AP, per unit of length.
R

Invert the system with respect to O, and let the accented letters
refer to the 1nverse system.
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Then
Yyr=—2fclog PQds —mlog BQ............... (30).
Also if Y be the potential at @ due to a charge ym at R,
together with a surface density ¢’ upon A'#
Y'=—2[a"log P'Qds’ —mlog K ¢.
Now
PQ_00  R¢_0Q & _d
PQ - 0P’ RQ ~or ™ opP T op-

Hence if we take ¢ OP = ¢OP, so that ¢'ds’ = ads, we obtain

¥ =—2fc (log ’Q —1log OP) ds — log 0Q'fods
—m(log BQ+log 0@ —log OR)...... (31).

But 2fods=—m

and — 2] log OFPds = — potential of B at U
= log OR :
by (30). Substituting in (31) we obtain
V' =—2 folog PQds —mlog BQ
= \P\_

Now + is zero at all points within 4P, therefore 4 is zero at
all points without 4'P"; hence 4 is the potential of the electric
ficld, when the inverse eylinder is under the action of an electrified
line situated at a point R’ within the inverse cylinder, which is the
inverse point of L.

If R is inside AP, R will be outside 4'P’, and the same results
hold good mutatis mutandis.

Hence if we know the current function due to any number of
rectilincar vortices which are situated on one side of a eylinder whosc
cross section is a closed or infinite curve, the method of inversion
enables us to obtain the solution for a cylinder, whose cross section
1s the Inverse curve with respect to any point in the plane of the cross
section.

303. We can now prove the following proposition.
Let £, 5 be conjugate functions of «, y such that
Et+wm=f{e+uc;
and let E, m, be conjugate functions of x, y, such thai
E + o = fla*fe (x,—y,)} ; also let F(E,n) be the current function
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of a liquid bounded externally or internally by the cylinder = j,
due to a vortez at any point P of the liqguid. Then F (€, n,) will
be the current function of a liquid bounded wnternally or externally
by the inverse cylinder , = 8, due to « vortex situated at a point P,
which is the tnverse of I’ with respect to the origin.

If the vortices are replaced by electrified lines, and the cylindrical
boundaries by conductors, we have shown that if +r, 4, be the
current functions due to the two hydrodynamical systems, these
quantities will be the electric potentials of the two electro-static
systems ; hence =

Let (z, y) be the rectangular and (£, ») the curvilinear coordi-

nates of any point ¢ ; and let (z,, ¥,), (£, »,) be the coordinates of
the inverse point @, Then if a is the constant of inversion,

_ .2 2 2y, [ 8
‘7"—“‘%‘1/71) .’/‘ayx/ru

therefore T+ = a'[(z, — vy,),
therefore £ + i, =f{a’/c (z, — )} =F (@ + up)/c]
=&+,
whence E=¢, n=n,
Hence if Y = F(§ n), then r, = F(§,7).

304. In § 296 we have found an expression for the current
function due to a vortex between two parallel planes, and by means
of the preceding proposition we can obtain the current function
due to a vortex In a liquid which is bounded by two circular
cylinders. Also if in the expression in § 297 for the path of a
vortex within a parabolic cylinder we write ¢/r for r/c, the resulting
expression will give the path of a vortex in a liquid bounded
internally by a cylinder whose cross section is a cardioid.

The expressionrfor the current function due to a vortex outside
an elliptic eylinder, is the expression for a vortex within acylinder
whose cross section is the inverse of an ellipse with respect to its
centre or focus ; but in the former case £ + v =sec¢™ (£ + ty)/ec, and
in the latter it equals 2 sec™ {(z + 14/)/20}*.

The expression found by Coates for the current function due to
a vortex inside an clliptic eylinder, similarly determines the current
function due to a vortex in aliquid bounded internally by a cylinder
whose cross scction 1s the inverse of an ellipse with respect to its
centre or focus.
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EXAMPLES.

1. If the axis of a hollow vortex be the axis of 2z, measured
vertically downwards, the plane of xy being the asymptotic plane
to the free surface, and if = be the atmospheric pressure : prove
that the equation of the surface at which the pressureis w 4 gpa is

@+ (z —a) =,
where ¢ is a constant.

2. Three rectilinear vortices of equal strengths form the edges
of an equilateral triangular prism. Prove that they will always
form the three edges of an equal prism.

3. The space between two infinite parallel planes distant ¢
from each other is filled with water. Half way between the planes is
placed a rectilinear vortex. Prove that the path of any particle
of water is given by the equation

cosh my/c = A cos /e,
the axis of 2 being perpendicular to the plancs.
Prove also that the velocity potential 1s

m tan* (sinh 7y/c cosec wxz/c).

4. An infinite plane vortex sheet in which the rotation is
everywhere the same in magnitude and directlon exists in an
infinite mass of liquid ; prove that the resultant velocity at any
point (z, ¥, 2) 1s

q f"’ f“’ ) ady'dZ
L e R S A D L
where yz is the plane of the vortex sheet, the axig of 2z is parallel

to the axis of molecular rotation, and ¢ is the product of the section
by the angular velocity for each line.

Evaluate this integral, and explain the result.

5. Ifnrectilinear vortex filaments of equal strengths, be initially
at the angles of a prism whose base is a regular polygon of n sides,
show that they will always be so situated, and that each filament
will describe the circumscribed cylinder with velocity & (n —1)/2a
where £ is the velocity duc to each vortex at unit distance and a is
the radius of the cylinder. Show also that the equation of the
relative stream lines referred to the radius through a vortex as
initial line is 7 — 2a"r" cos nd — b* = (.
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6. The space on one side of the concave Branch of a rectangular
hyperbolic eylinder is filled with liquid, and a rectilinear vortex
exists in the liquid; prove that it moves in a cylinder having the
same asymptotic planes as the boundary.

7. The motion of a liguid in two dimensions is such that the
vorticity ¢ is constant ; prove that the general functional equation
of the stream lines is

¢ (y + ) +x(y— @) — 3" +y) =c.
Prove that if the space between one branch of the hyperbola
' — 3y = a® and the tungent to its vertex be filled with liquid, 16
will be possible for the liquid to move steadily with constant vor-
ticity, and find the form of the stream lines.

8. A mass of liquid whose outer boundary is an infinitely long
cylinder of radius b, is in a state of cyclic irrotational motion and is
under the action of a uniform pressure II over its external surface.
Prove that there must be a concentric cylindrical hollow whose
radius a 18 determined by the equation

8’ Il = M«?,
where M 1s the mass of unit length of the liquid, and « is the
circulation,

If the cylinder recelve a small symmetrical displacement,
prove that the time of a small oscillation is
4 ,,, /logbla
R b b gt
9. A fixed cylinder of radius a is surrounded by incompressible
homogeneous fluid extending to infinity. Symmetrically arranged
round it as generators on a cylinder of radius ¢ (> ) coaxial with the
given one, are n rectilinear vortex filaments each of strength m.
Show that the filaments will remain on this eylinder throughout
the motion, and will re.volve round its axis with angular velocity
m  (n+1)"+(n—1)a™

27(}2 - CZ’I, . aﬂ.ﬂ

3

and that the velocity of any point P of the fluid is

mnr"! ¢"— b
(" — 20" cos nd + ¢™) (r** — 20™" cos nb + b*")’

where a®=bc, r is the distance of P from the axis, and 6 is the
angle between a plane containing P and the axis, and a plane con-

taining Pand the instantaneous position of any one of the filaments.
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10. Four straight vortex filaments with alternately positive
and negative rotations are placed symmetrically within a cylinder
filled with liquid ; prove that if the motion is steady the distance
of each filament from the axis of the cylinder is ncarly three-
fifths of the radius of the latter.

11.  Prove that three infinitely long straight cylindrical vortices
of equal strengths will be in stable steady motion, when situated at
the vertices of an equilateral triangle whose sides are large com-
pared with the radil of the sections of the vortices; and that if they
are slightly displaced, prove that the time of a small oscillation
is the same as that of the time of revolution of the system in its
undisturbed state.

12. A straight cylindrical vortex column of unifurm vorticity
¢, is surrounded by an infinite quantity of liquid moving irrota-
tionally which is at rest at infinity ; prove that the difference be-
tween the kinetic energy included betwecn two planes at right
angles to the axis of the cylinder and separated by unit distance,
when the cross section is an ellipse, and when it is a circle of equal
area A is

pr 1A% log (a + b)/2 ub,

where p 1s the deonsity of the liquid, and ¢ and b are the semiaxes
of the ellipse. :

13. Examine the stability of Kirchhoff’s elliptic vortex, when
the cross section of the vortex column is displaced into a curve
slightly different from an ellipse.

14. Prove or verify that the current function duc to a station-
ary vortex situated at the centre of an elliptic cylinder, 1s

Y =—34mlog4c®snusn(u— K)snvsn (v — K),
where Evip=u, E—inp=n.
Prove also that the velocity potential is

¥ sn (2KE/7) so (K'5/B)

¢ = tan on (K Em) ,

where B8 = §wK'/K is the value of # at the eylindrical boundary ;
and the functions of £ are to mod. &, and those of % to mod. %"
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153. A quantity of liquid whose vorticity is uniform and equal to
¢, and whase external surface is a circular eylinder, surrounds a con-
centric cylinder of radius @. The external surface is subjected toa
constant pressure 1.  Prove that if the inuner eylinder be removed,
the velocity of the internal surfuce when its radius is a, i3 equal to
R e Al

a log a*/(d +¢%)

where mpc® 1s the mass of the liquid per unit of length.

16. If a vortex is moving in a liquid bounded by a fixed
plane, prove that a stream line can never coincide with a line of
constant pressure.

17. If a pair of equal and opposite vortices are situated inside
or outside a circular cylinder of radius @, prove that the equation
of the curve described by each vortex s,

(r® — & (v sin® 0 — b%) = 4a’b%% sin® 4,

where b is a constant.
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CHAPTER XIV.

CIRCULAR VORTICES.

305. A CIRCULAR vortex ring may be supposed to be made
up of a large number of indefinitely thin cireular vortex filaments,
every element of which is rotating with angular velocity w about
the tangent to the circle of which the element forins a part.

We have shown in Chapter IV. that the velocity due to a fine
vortex filament, is proportional to the magnetic force exerted by
an clectric current, which flows along a fine wire which coincides
with the vortex; and it has been shown by Maxwell’, that if
electric currents flow round an anchor ring of small cross section,
the effect is the same as if the currents were condensed into a
single one flowing along the central line of the ring. If therefore
the cross section of the ring is small in comparison with its
aperture, the effect of the ring upon the irrotationally moving
liquid by which 1t 1s surrounded, will be approximately the same
as that of a fine vortex filament of equal strength, which coincides
with the central line of the core. Hence rings of small cross
section may be approximately regarded as vortex filaments, and
we may disregard the effects which are due to any deformation
of the form of the cross section, or to anything which takes place
within the substance of the ring. We shall thereby greatly sim-
plify the analysis; but when we wish to ascertain what goes on
inside the ring, it will be necessary to employ toroidal functions,
and the investigation becomes much more complicated.

1 Electricity and Magnetism, 2nd edition, vol. 11. § 683.
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306. Let us in the first place confine our attention to a single
circular vortex of small cross section in an infinite liquid. It is
clear that the motion is symmetrical with respect to a line passing
through the centre of the ring and perpendicular to its plane,
which we shall choose as the axis of z. Hence by § 88 (28), if w
be the molecular rotation, Stokes’ current function satisfies the

equation

Y A1 d\,/‘ _0

T det  wmdw
at all points in the interior of the ring. Outside the ring the
current function satisfies the equation

&y Iy 1dy

: dm'ﬂ T dﬁf )
Putting ¥ = y& these equations become

dx & | ldx _x _
azz +dm'2 +&dw’—’mj+2w—0 ............ (1)
inside ; and
Iy d'% | ldx X _ )
dZ / z dm‘ - m_ = U i e e e (2)

outside.

These equations show that y cos @ is the potential of a distri-
bution of matter of density wcosf. /2, which occupies the same
portion of space as the vortex ring.

On account of the smallness of the cross section, w may be
treated as approximately constant, and y cos d will be the po-
tential of a fine circular wire whose density is o cos 6. /2w, € being
measured from some fixed point on the ring.

307. To find this potential, let O be the centre of the vortex
ring, and let the axis of z be perpendicular to the plane of the

-

paper; let A be the fixed point on the ring from which 6 is
measured, and let P be any point whose coordinates are z, =, 8;
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also let @ be any point on the central line of the vortex whose
coordinates are z’, a, #'; then if & be the cross section
awg [0 cos ' d
2 -[8 (z—2) + ="+ o' — 2wa cos (¢ — 6)}1" '
Putting & — 0 = ¢, we obtain

x cos & =

XCOSB='§

a'waj'%’ (cos 8 cos € — sin 0 sin €) de
i
{

(z—2)+="+a’— 2wa cos €}
The second integral vanishes, whence

\P‘zxw=owwaf:{ cos e de }é...(f}),

T (z—2)+w'+a"—2wmacos e

which determines the value of Y- at any point outside the vortex.

308. We can now determine the motion of the vortex.
Putting
4ma

kﬂ_(z—z) + (w + a)*’

(3) becomes

e v 2cosy—1
Y =gor k (wa)éfo m}dﬂ
=qor (wa)! RF = EVk —KF)} ......... (4).

Putting
U=2(F - E)E —FkF, m=cw,
where m is the strength of the vortex, we obtain
¥ =m (wa)t U
At the surface of the vortex ring, z and = are very mearly

equal to 2z’ and a respectively, hence % is very nearly equal to
unity ; whenece if = log 4/k, we have approximately’

F' =L+ (L—1),
E=1+30I-D),

therefore U=L-2+3F(L-1)
Also w= 1di_m\/ dU U
wdw m‘
_ ldy_ m adlU
= @ dz = dz

1 Cayley, Elliptic Functions, p. 54.
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(e—2)+(w—a)

(z =2V + (= + a)”’

whence if ¢ be the radius of the cross section of the ring, we have
approximately at the surface of the ring

P de _20(m—a)—€ dk _7—=7

Now k=

2a’ da 4a’e dz Qae
av_ 1 .. 5
And akf——%+§L(L—g)

_ 2a  3e 3
= ?+4_a(L_7)'

I

m (2a - 3e
Therefore u—-;{? i (L 9)} g

When z=2, u =0, hence the radius of the ring remains in-

variable.

_ 2¢  3e o | 20(w —a) —¢*
Again w= —;{— u(L—TI)} +

-2
¢ 4a’e 27 (L(L )

In order to obtain the velocity of translation of the ring we
must put @ = g, and we obtain

= oma D |
m 8a .
= a<1°__1> .................. (),

which shows that the ring moves forward in the direetion of the
cyclic motion through its aperture with constant velocity.

By § 61 every clement of the vortex produces a velocity at the
centre of the ring which is equal to mds/2mwa®; hence the velocity
at the centre is equal to m/a = mé'w/a.

Hence an isolated circular vortex in an infinite liquid moves
without sensible change of size in a direction which is perpendicu-
lar to its plane, with a constant velocity, which is small compared
with that of the liquid in the immediate neighbourhood of its
central line, but large compared with the velocity of the liquid at
the centre of the ring.

309. Let us now consider the motion of two parallel circular
vortices whose centres lie on the axis of z. If the dircctions of
molecular rotation are the same in both, the effect of the hinder-
most vortex on the one in advance, will be to increase the radius
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and retard the velocity of the latter; whilst the effect of the fore-
most vortex upon the one in the rear, will be to diminish the
radius and increase the velocity of the latter. Hence the hinder-
most ring will overtake and shoot through the foremost; after
which the circumstances will be reversed, and the one which is
now in the rear will overtake and shoot through the one in
advance.

310. If the directions of rotation are in opposite directions
the rings will either recede from, or advance towards one
another. If the former is the case the radii of each ring will
diminish, whilst the converse will be the case if the rings are
advancing towards one another. In the latter case the velocity
of approach continually diminishes whilst the radii of the rings
increase; also if the vortices are of equal size and strength,
there will be no flux across a fixed plane parallel to them and
bisecting the distance between them, and we may therefore
remove one of the vortices and substitute for it a rigid plane
boundary. Hence the motion of a vortex which is moving in a
liquid towards or from a fixed rigid plane, is obtained by
substituting for the plane a second vortex of equal size and
opposite strength, which is the image of the first with respect
to the plane.

311. We shall now determine the image of a circular vortex
in a sphere’.

We shall in the first place show that every element ds of a
vortex ring within the sphere, together with a corresponding

1 Lewis, Quart. Journ. vol. xv1. p. 338.
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element ds” without the sphere, which occupies the position of
the electrical image of ds, will produce over the surface of the
sphere a velocity which is everywhere tangential, provided certain
other conditions are satisfied.

Let O be the centre of the sphere, and let BB, CC’ be the two
elements, m, m' their strengths, and let the plane in which they
lie be the planc of @wy. Since OB.0C = 05". 0C, the angle
ACB=AB(C = AB(C ultimately, whence AC=AR.

Let OC be the axis of z, BP=r, CP=¢', OB=f, OC=f,
ABC =8, also let 8 and y be the angles which the planes APDB
and 4 PC respectively make with the plane zy.

Let (w, y, 2) be the coordinates of P, and u, », w the
velocities at P; then by § 61 if the two vortex elements at B and
C are parts of complete filaments

2 = mr~ dssin B sin Bsin 8 + mr ™ ds"sin Csin ysin 6,

27y =—mr*dssin B sin B cos 6 4 m'r'* ds' sin (' sin vy cos 6,
27w = —mr t dssin Beos 8+ m'r *ds'sin C cos .
But

z=rsin Bsin 8 =r"sin Csin vy,
(z—f)sin 0 —y cos =2z cot B,
(f—x)sinf —ycos @ =z cot .
Therefore
2ru=(mrds+ mr' ™ ds)zsin g,
2rv=(—mr2ds+mr'?ds)zcos b,
2w = (— mr®dscot B+ m'r'*ds cotry)z.

In order that there may be no flux across the sphlere, we
must have at the surface

Cw 4+ vy + we = (.
Therefore

mr*ds (zsin @ —y cos § — z cot 8)
+mr?ds’ (zsin 8+ ycos 8 + zcoty) =0,
whence mfr*ds=—m/f'r’ 7 ds.
But ds/f=ds'|f’; and (r/r')*=f/f =(f/a)’, where a is the
radius of the sphere; therefore

myf=—m'\f.
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Hence the molecular rotations of the two vortex elements must
be in opposite directions, and their strengths must vary inversely
as the square roots of the distances of the two elements from the
centre of the sphere. Now along each ring m is constant, also
since f/f' =(f/a), f must be constant, and therefore each vortex
ring must lie on a sphere concentric with the sphere which forms
the boundary of the liquid.

312. We have shown in § 62 that the velocity potential at
any point due to a fine vortex is equal to — m/2m, where Q is
the solid angle subtended by the vortex at the point. When the
vortex is circular, this solid angle may be easily expressed in a
series of spherical harmonics!, and we may thus obtain the
expressions for the component velocities in the form of a series.
This method of proceeding is especially useful, when we desire to
obtain the effect of a vortex at a point very distant from it, for in
this case a few terms of the series will be sufficient.

We could also apply this method to find the velocity potential
due to a vortex situated outside a fixed sphere, but the preceding
investigation shows that the serles representing the image will
not be the velocity potential of a single vortex unless the original
vortex lies on a concentric sphere; when this is not the case, the
image will consist of a hydrodynamical system of more or less
complexity, which will be dependent on the form and position of
the original vortex ring.

In considering the motion of two vortices we have supposed
that their planes are parallel, and that their centres lie on a
straight line which is perpendicular to their planes. For the
discussion of the motion of two vortex rings whose planes are not
parallel, we must refer the reader to Part 11, of Prof. J.J. Thomson’s
Motion of Vortex Rings.

1 Ferrers, Spherical Harmonics, ch. . Maxwell, Electricity and Magnetism,
vol. 11. ¢h. xIv.

O

B. I
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Vibrations of a Circular Vortex Ring’.
[2]

313. The vibrations to which a vortex ring may be subject,
may be divided into two classes, vibrations which involve a deform-
ation of the surface of the ring, without any deformation of the
central line; and vibrations which involve a deformation of the
central line as well as a deformation of the surface of the ring.

A complete investigation of the stability of a vortex which is
in a state of steady motion or kiretic equilibrium, would involve
the consideration of the problem in its most general form. When
however the cross section of the ring is small in comparison with
its aperture, we may without sensible error treat these two kinds
of vibrations separately. We shall therefore in the present section
confine our attention to vibrations involving a deformation of the
central line alone, and shall neglect deformations of the surface.
In the closing portion of this Chapter, we shall suppose that the
central line retains its circular form, and investigate what may be
called jfluted wibrations, that is to say vibrations which consist of
trains of waves travelling over the surface of the ring, whose crests
are circles parallel to the central line.

814. Let a be the radius of the central line when the ring is
undisturbed, 3 its distance from the origin; and let &, ¥/, 2" be
rectangular, and @', ¥, 2’ cylindrical coordinates of any point on
the central line during the disturbed motion; also let z, %, 5+ ¢
be rectangular, and =, 8, 3+ ¢ be cylindrical coordinates of any
point of space. Let

w'=a+acosny, 2 =%+, cosnyr............ (6),

where in the beginning of the disturbed motion, a,, ¢, are small
functions of the time, whose squares and products may be neglected.
Then
==’ cosYr, ¥ ==’ sin,

wheunce

dx'jdr = — a sin {r — a,_ (cos n sin ¥ + 7 sin nyr cos )

dy'[dyr = @ cos Yr + 2, (cosmir cosyfp —n sin arsin ) oo (7).

Az’ [dr = — mry, sin nyr

1 J. J. Thomson, Phil, Trans, 1882, and Motion of Tortex Rings. Part L.
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Let r be the distance between the points (z, y, 3+ ) and

(&, y, ), also let §' =& —q,_ cos nyr, then
=o'+ 2"+ §" — 2zw cos (Y — 0).

Now r® can evidently be expanded in a series of cosines of

multiples of 4r — 8, we may therefore put
r¥=C + C,cos (Y~ 8) +...... €, cos m (r — B),
where the (s are functions of =, w’, £ Since - enters into =, {
in the forms a, cosnyr, v, cosnyr, the terms in the C’s which
involve 4 will be small quantities, whence if
[@+a+ 8 —2zacos(Yr— ) T=4 + 4, cos(yr— )
F e A cosm(Yy—0)+...(8),

we shall have

dA d4,,
C.=4,+ da % COS Y — 2¢ a(gH T cos s,

In the present investigation & will be a small quantity, and we
may therefore neglect the last term, we thus obtain

315. We must now calculate the velocity due to the vortex
during the disturbed motion.
By § 61 the velocity parallel to = of a vortex of strength m is
m (¥ 1

w Yy n az’
wmge [T e - w-n g} av.

Substituting the values of z — z’ &ec. in terms of ¥r and neglect-
ing squares of small quantities, the term in brackets becomes
a cos \r + nyy, sin nar

+ day, {(n—=1) cos (n+1) ¥ — (n+ 1) cos (n = 1) ]

Since every term of this expression is small, we may write 4

for C in the expression for 7*, whence remembering that

on
] cos mr cos nyrdrr =0 or =
according as m 18 unequal or equal to n, we obtain
w=4m[fad,cos b
+ day, {m 1) 4,, cos(n+1)8~ (n+1) 4, cos(n—1) 8}
+ dnwy, 4, {cos(n—1)f~cos (n+1)6}]..oervneniannnn (10).

5—2
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The velocity parallel to y is
m . dx
_27J {@ x)d‘y (2=2) gy | 0~
The term in brackets

= fa sin Y — nary, sin nyr
+ tay, {(n— 1) sin (n+ D) + (0 + 1) sin(n—1) ¢},

whence
v=4m[tad, sin @
+day, ((n—1) A, sin(n+1)0+(n+1)4,, sin(n—1)0}
—4nwy,d, {sin(n+1)0 +sin (n—-1)0}]..ooeeinnns (11).
The velocity parallel to z is

2r 7
o S R R A T
The expression in brackets is equal to
a® — o (@ cos yr + 5 sin )

+ 202, cosnfr — Fya {(n-+ 1) sin (n 4+ D) + (n— 1) sin(n — 1)}
—daxa {(n+1)cos (n+ 1)y —(n—1) cos (n—1) 4}
Since the first two terms are not multiplied by any small
quantity, we must not put 4 for € in the value of + by which

these terms are multiplied, but must employ the value of C given
by (9); whence on integration

the 1st term = Jma® <2A0 + C;—i—" a, cos n0> ,

the 2nd term

d4
=—}md aw — } maxz, {frd(;“ cos (m+1) 0+ dg cos (n—1) 6}

— 3 maya, {‘% sin(n+1)64— 3{’; tsin (n — 1) 9},
and the other terms
=tm [2aa, 4, cos nf
—dya, {(n+ 1) A, sin(w+1)0+n~1)4,, sin(n—1) 6}
=tz {(nt1) 4, cos(n+1)0—(n~1)A4,  cos (n—1)0}]
Collecting our results we obtain
w=3im [2/100,” —awd,

+{24 a+iw(n-1)4 _

dA

d
C o+ L(L % —iw 7o 4,,+4 ,H)} aa, Cos n@} ........... (12).

—m+1) A, 1 a, cosnd
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316. Having ohtained the values of the velocities we can now
find the values of 4, +,.

If e be the radius of the cross section (which is supposed to be
very small) the equations of the surface of the ring are
w=a+a.cosnd+ecosd.....c..euinnnnn, (13),
z=3+ry,cosnl +esiip..icriiiniiinns (14).

By §12, if F(w, 0, ¢, 1) be the equation of a surface which
always contains the same elements of fluid,

¥ dF dF dr
FARLE Sl TR T
where B 1s the velocity along =, and ®, ® are the angular

velocities in the directions in which these quantities increase.

0,

Applying this to (13) we obtain
&, cosnf — B —na, © sinnf —eDsin ¢ =0.
If the motion were undisturbed ® would be zero, hence in the
beginning of the disturbed motion @ must be a small quantity;

the third term is consequently of the second order and may there-
fore be neglected. We thus obtain

R=a cosnf—ePsind.....caiirinnns (15).
But
R =wucosf+uvsind
=im[tad, +Yay, (n—1)A,, —(n+1)A4, }cosnb]... (16),
by (10) and (11). In this expression {=ry, cosnf +esind; also
the values of the A’s must be obtained from (8) by putting
w=a+a,cosnd +ecosd

and giving to ¢ the above value. Let S, denote the value of 4
at the surface of the undisturbed vortex, that is when a, =1y, =0.
Then by proceeding in the same manner as in the case of equation
(9), we see that

But since each of the 4's is multiplied by a small quantity in
(16), we may put 8 for A, and we thus obtaln

B=1m[aS, (y,cosnd +esin ¢)
tiay, {(n—1)S,,, — (n+1) 5, } cos nO].ecerenrnnnn.. (18).
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Equating coefficients of cosn8 and sin ¢ in the two values of £
given by (15) and (18) we obtain

G, = ymay, [S,+ } {(n—=1)8,,, — (a~1) 5, ]]......(19).

Again, the condition that (14) should be always composed of
the same elements of fluid, is

dF dF dr
dt+(w )d +O (Ddd; 0,
whence
w=%+r, cosnfd+ePecose.................. (21).

Equating the right-hand side of this equation to the value of w
given by (12), we obtain

3m [2110@”— awd,+ {24 a+3w[(n-1)4,,,—(n +1)An;‘]} a, cos nf

+ {a dd, —iw ﬁ(An“+An_,)} @z, COS nHJ =3+, cos nf
+edcos ¢...(22).

Since the last two terms on the left-hand side are multiplied
by a,, we may put w=a, A =28, ; but in the first two terms
which are not multiplied by a small quantity, we must substitute
for 4 its value from (17), and for = its value from (13). Making
these substitutions and equating coefficients we obtain

F =3ma® (28, =8 (23),
D = — 3MAS ee (24)
¥, = }muz, [QS"— S+3{(n—-1)S _,—(n+1)8,,,]

+a—{S (S, + 5. )}—{-add 28,— ) J...(zs).

317. We must now calculate the 8s. From (8) it follows
that if we put

w=qag+ecosd, {=esing, mwag=w’*+a’+ &,
then

B f cos nfdeé
T ('2wa)§ o (g — cos 6)3 ’

\J
n

o =

T (7m'a)é -[o (g — cos 6)g

Since ¢ is very small, ¢ is nearly equal to unity, and we therc-
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fore require the values of the preceding integrals, when ¢ is nearly
equal to unity. Let
. = lf" cos nfdf 1[ cos nﬁgg
' o (g —cos 19)i
From § 277, it appears that &_is a zonal toroidal function of
the second kind; also since ¢, = — 2db,/dgq, it follows from § 273
(55) and § 275 that

0 (9 —cos 9)

2n+1

= - 26
¢, -1 (gb, = Bou)e i (26),
and that
1— ‘) -2 db" b =0 27
( d »—2¢- dq +@®—=1)b,=0......... (27).

In order to find the value of b, when gis nearly equal to unity,
assume

_ o 11
Substituting in (27) we obtain
o AP d¢
1— e — + (n =0,
1—q9 A (-1 ¢

d w & 2
—4 d"q5+(1—q);}lqz —2q JH” —H¥=0

In these equations put # =¢ — 1, and they become

(2 +w)§z§+2(1 +w)§f~(n“—i)¢=o ...... (28),
. d
4 (jl(g+m(2+m) Zj.f+2(1+w) %—(n“-i)\l,___()___(gg)_

In order to solve (28), assume ¢ = Za,«™, and we obtain
Ww—1—m(m+1)

G =T 9 I G
whence
A
v — 1) (n® - § n®— 2Ry sgna
) ((3')‘)( (;) T }...(30),

=g, P (say).
Putting yr ==z 2™ we obtain from (29)

W =% —m{m+1) 2
a,, = . @, —~
e A(m+ 1) " an + 1 G
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whence
Y =0o,P — 2@02:0 (l +4+... %) (' — 1) (v = 9D...
= m =Y s

= g=1 (32)
and therefore b,=a,Plog 16 g+ 1) + 32
By § 273 (56)
dngb, =(2n —1)b,_,+(2n+1)b,,,

Hence when g is nearly equal to unity, this equation may be
written,

dmb, =(2n—1)b_ +(@n+1)b
the solution of which is
b= C+0 (1 o %1__1)
=040 (M)t (33).
Therefore b, =0+,
25, =C.
Therefore b, =2b, + (b, — 2b,) f(n)..cevveeeiiiiiiniinai. (34).

1 [z d6
Now 2b, = ;jo V(@ —cos 6)

_ 2 " dé e

w«/(q+1) o (1— K cos* ¢yt g+1
[ dé

vr~/(q+1) (1 k2%1n (;))’j

4 low &

Tavig+1) BF

__vZ2,  gq—1

= l°°16(g+1)

nt1?

approximately. Also
b=~ _F" cos 0 df
(g — cos 6’)"\

- - ;v(g+l)_’ -k sin® ¢)' d + 2b,q

= — 4 y2m+2b,
approximately ; whence (34) becomes,

V2, -1 A2
b, =— _10510(q+1) - fn)oo.
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Since z is very small we may put # =0 in the expressions for
¢ (#) and 4 (), and (32) becomes,

-1
b, =a,log ig(gT)_+ - T (36).

Comparing (35) and (36) we obtain
a, =~ \/2/7r,
1, = — 4 2f (n)/m.

If o, denote the sum of the reciprocals of the first n natural

numbers,
f(n) = 0'2" - %a-'n'
But it is shown in Boole’s Finite Differences, 2nd edition, p. 93
that o, =5771215 +logn + 2707 — 127072
whence
f(n) =-288607 +log 2n — § logn + (48)'n"...... (387),
and we obtain from (32)
b, =277 {144 (n* — }) z} {log 16 (2 + &)/z — 4 (n)}

+4/ 27z (n* —$)...(38),
and therefore from (26)

¢, =27 [2/z— (n*—}) {log 16 (2 + z)/z — 4f (n)} — n*— §]...(89).
Hence we finally obtain

S, =[2/z—(n*—}){log 16 (2-+z)/a—4f (n)} —n®—3]/27 (wa)}...(40),

where z=g—1={(=—a)+ /2=

318. We can now complete the solution of the equations of
§316. At the surface of the ring w—a=ecosd, {=esin g,

whenee z=¢€/2d" (2+ z)/x=4a’/e,
and therefore
S, =[4a’/e’ — (n' — }) {log 64 a’/¢" — 4f (n)} — n* — }]/27a’,
and
28, = (4a’/e* + § log 8aje — $)/27a’.
Substituting the values of S, and S in (23) and (24) we obtain

§=m (log 8afe—1)/2ma.....c.ccevviineiinn.n. (41),
b = —m(4d’/e" — 8 log 8aje + 8)/4ma®
or since m = wrwe’,
b =—ow+iwda” (log8afe—5).......coe.ni. (42).
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Equation (41) gives the velocity of translation of the ring, and
agrees with the expression previously obtained in (5). The angu-
lar velocity of the liquid at the surface of the ring is given by (42).

319. In order to obtain the eguations for determining the
small oscillations, we must substitute the value of S, in (19) and
(25), Putting

L=m{log8u/e—2f(n) —4}/2ma’............ (43),
we shall after reduction obtain
g, =—nLry, 7, ="' —~1)La ............... (44),

the solution of which 1is
a, = A cos {Lna/(n*—1)t + B},
v.=An" y/(n* —1)sin {Ln/(n'— 1)t + B}

These equations show that a circular vortex ring is stable for
all displacements of its central linc, and that the period of oscilla-
tion is 2ar/LnA/(n® — 1)

Now ¢ is a small quantity and therefore if n is not very large,

log Ba/e will be large compared with 2/ (n)+ 4, and the period of
oscillation is approximately equal to

dr’a’/mn A/(n* — 1) log 8a/e.
But if » is so large that ne is comparable with a, we must
substitute for £ (n) its value from (37), and we obtain
L =m (log 2a/ne — 1:0772)/2ma’.
Since n 1s large, we may write n* for n*—1, hence if {= 27a/n
the period of vibration becomes
I (loglfme — 1:0772)7 (rrwe’) ™.
The transverse vibrations of a rectilinear vortex have been

investigated by Sir W. Thomson', who finds that when /e is
large, the period of oscillation is equal to

I (log ljme —3272)7 (7we*)™,
which approximately agrees with the preceding cxpression.
If the displacement had been represented by the equations
=’ =a+a,cosn + B, sinny, 2'=34ry, cosnyr + 8, sin nyr,

it could have been shown in a similar manner that 8, 8, satisfy
the same equations as «,, «y,.

U Phil. Mag. Sep. 1880, p. 167.
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Linked Vortices.

320. The subject of linked vortices has been elaborately
discussed by Prof. J. J. Thomson in Part 111. of his Motion of
Vortez Rings, to which the reader must be referred for complete
information on the subject. In the present section we shall
confine ourselves to the discussion of the simple case of two
vortices of equal strengths.

We have shown in § 291, that when two rectilinear vortices
are situated at a distance from one another which is large
in comparison with the linear dimensions of the cross sections
of either, their cross sections will retaln an approximately
circular form ; and the vortices will revolve about their common
centre of inertia with angular velocity (m + m")/wd’, where
m, m' are the strengths of the vortices and d is the shortest
distance between them. Hence if the motion is steady the angular
velocity must be approximately constant, and therefore d must be
constant.

If we consider two linked vortices whose shortest distance is
small in comparison with the radii of their apertures, but large in
comparison with the linear dimensions of the cross sections of
either of them, the action of one vortex upon the other so far as it
affects the form of the cross section of the other, will be approxim-
ately the same as that of two rectilinear vortices. Hence in order
that the cross sections of the two linked vortices may retain an
approximately circular form, we must suppose them linked ia such
a manner that the above conditions are satisfied. When the
vortices are of equal strengths, this may be effected by supposing
them wound round an anchor ring, the radius of whose cross
section is small compared with the radius of its aperture, in such a
manner that there are always portions of the two vortices at
opposite extremities of a diameter of the cross section of the
anchar ring.  If we wind a piece of string n times round a curtain
ring, and tie the ends together; and then wind another piece of
string n times round the ring in the same direction as the first, so
that the shortest distance between cvery point on one of the strings
from the other string is a diameter of the cross section of the ring,
and tie the ends of the latter together; we shall have an exact
representation of the manner of linking.
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It is also evident that the number of windings must not exceed
a certaln number which depends on the dimensions of the cross
sections of the vortices and the anchor ring, and also upon the
radius of the latter, otherwise the shortest distance might not be
the diameter of the cross section of the ring. Moreover one or
more vortices twisted round an anchor ring a great number of
times would approximate to a vortex sheet, and the motion would
be unstable.

821. We shall now consider the small oscillations of two
equal vortices wound 7 times round an anchor ring.

Let the equations of the two vortices when undisturbed, be
@ =a+ id cos 6, z =%+ 4dcosro,
= =a—}d cosr, Z=%—3%dcosrf,
and let these equations when the vortices are disturbed, be
= =a + 2a, cos nd, z =3+ 2y, cosnb,
=’ =a+2d, cosnf, 2 =3+ 3y cosnf.
Also let 4., S, be the quantities denoted by these letters in
§ 316, due to the action of the first vortex upon itself; and let 4°,

&’ be the values of these quantitics, due to the action of the first
vortex on the second.

From (18) it follows that the velocity in the direction of the
radius due to the first vortex at a point on the second vortex,
consists of a series of terms of the type

jma [8'7, 4 b, (0= 1) 8y = (4 1) 8, ] cos nf...(45)

The value of §' is given by (40) in terms of 23 in the present
case @ 1s approximately equal to d*/2a?, where d is the diameter of
the cross section of the anchor ring on which the vortices lic and
which is therefore a small quantity. Also if we suppose that =n is
vot sufficiently large for f(n) to be comparable with log 8a/d,
it follows that if the largest terms only are retained, the above
expression for the velocity

=m (dma®) " [(4a®/d" — § log 8a/d) vy,
— {4a’/d® + 2 (n* — §) log 8a/d} vy, ] cos nd...(46).
From (43) and (44) it follows that the velocity along the radius
vector due to the action of the second vortex upon itself
=—mn® (2mra®) 'y’ cosnBlog 8afe............ (47).

IRIS - LILLIAD - Université Lille 1



LINKED VORTICES. 77

Since we suppose that e is small compared with a, it follows
from (15) that the velocity of the second vortex along the radius
vector 1s approximately equal to &', cosnf, whence equating these
values of the radial velocity we obtain

&, =m [(4a*/d* — 3 log 8a/d — 2n’ log Bu/e) ¥,
— {4a°/d* + 2 (0* — ) log 8a/d; v, ]/4mu’...(48).

From (12) it follows that the portion of the velocity parallel to
z of the second vortex, which is duc to the first is,

w=4m[24' @’ —awd’,
+{28 a+3a{n-1)8, ,—(n+1)8_, 1} a cosnb]
+ tmo’ t%z_ 8, =38, ., +8,.)} «, cos nf.

Now at the second vortex

24’0 — aw A’ =a" (28, - §)— 8 o2, cos nd
+a? Jim— (28, —8') ', cosnd,

also 28, — 8, = (log 8a/d — 1)/mc’,
and d(28,—8)/dw =—3n " a*log 8a/d,
retaining the most important term only; whence the value of w
approximately is,
w=m (log 8a/d — 1)/27a

—m (4ra®) [(4a’/d* + % log 8u/d) a',

+ {4a®/d* + 2 (n* — ) log 8a/d} a,] cos nf.

By (41) and (44) the velocity parallel to z of the second vortex
due to itself is

m (log 8afe — 1)/2ma + m (2mwa®; ™ (n* — 1) a, cos nd log 8a/e.

The resultant velocity parallel to z of the second vortex is the
sum of these two expressions; but by (21) this velocity is also
equal to '

5+« cosn,
whence equating coefficients in these two expressions, we obtaln
3 =m (log 64a*/de — 2)/2mq,
v, =m[2{2a°/d*+ (n* — }) log 8a/d] a,
— {4a*/d® + § log 8a/d — 2 (n* — 1) log 8a/e) & |/4ma®...(49).
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322. Let
L =m (4a*/d* — 3 log 8a/d — 2u° log 8a/e)/4ma’,
M=m {2u%d*+ (n* — §) log 8a/d}/2ma’,
P =m 4a’[d* + § log 8a/d — 2 (n* — 1) log 8a/e} /4mwa’,
Q =m 2¢"/d’ + (»* — {) log 8a/d}/2mwa’,
and we obtain from (48) and (49)
&,=Ly, — My, v.=Qa —Pd,.
Similarly it can be shown that
&, =Ly, — My, 7,=Q,— Pa,
whence
@—td=(L+M)&a~7) Vo t=—L+Q)(d.~2a,),
therefore
o —2,=24 cos (ut +¢)
Y= Ya=—24u (L + M) sin (ut + e)}
where
W= (L+ M) (P+Q)
= (m/4ma’)* {8a°/d’ + (2n* — 3) log 8a/d — 2n* log 8a/e}
x (8a’/d” 4+ (20® + 1) log 8a/d — 2 (#* — 1) log 8a/e}...(51).
Again,
@otd=L=M) (Y, +9) Yot ta=—(F-Q) (¥, +v.)
whence

o, +a,=2Bcos(vt+¢€) .
¥ut+ry,=—2Bv (L—M)"sin (vt + E')} """""" (52),
where
v =(L— M) (P—Q)
= (m/2mwa’)® (log 64a’/de)’ n* (n® — 1).
Therefore
v=m (2ra’)n (n* = 1)} log 64a’/de............ (63)

=n (=1 Vja
nearly if 7 be the velocity of translation of the vortex; we there-
fore finally obtain

a = Acos(ut+e)+ Bceos(vt+e)

n

u, = — A cos (ut +¢€) + B cos (vt +¢')

Ve=—dp L+ M) sin{ut+¢€)— Be(L—M)" sin (vt+¢)
Y. = Ap(L+M) sin(ut + ) — By (L—=M)" sin (vt + €)

(54,
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Equations (51) and (53) show that x and » are both real, and
therefore the steady motion we have been consldering is both
possible and stable; also g is much greater than v, and therefore
the motion consists of a quick vibration whose period is 27/p and
a slow vibration whose period is 27/v.

323. In the problem we have been considering, we have
supposed the vortices wound 7 times round an anchor ring, and
that the equation of its projection on the plane of the ring during
the disturbed motion is

@ =a+ 2z, cos nf.

Of the terms a,, the quantity «, is the most important, since its
maximum value is 4d; the other terms denote small sinuosities
and are very much less than a. Now (54) shows that if any of
the quantities « ... are initially zero, and the vortex suffers no
external disturbance, they will remain zero throughout the motion,
and the motion of the vortex will be given by (54),  being written
for n; also if the rings are initially placed so that

ar:—a":éd; ’Yr:_rylr:‘%d’
we see from (52) that B = D =0, and therefore the slow vibrations

will not be excited unless the ring suffers some external disturb-
ance.

324. The preceding investigation shows that two vortices of
equal strengths linked round an anchor ring in the manner described
in § 820 are stable; Prof. Thomson has also shown that two linked
vortices may be stable when their strengths are unequal, but the
manner of linking is not the same in the two cases.

When the vortices are of unequal strengths m, m' they must
be linked in the following manner’:

“ Describe an anchor ring whose mean radius of aperture is a,
and the radius of whose transverse section is m'd/(m +m'); then
the central line of vortex core of the vortex of strength m will
always lie on the surface of this anchor ring. Describe another
anchor ring with the same circular axis, and the same radius of
aperture as the first, but with a transverse section of radius
md/(m + m") ; then the central line of vortex core of the vortex ring,
whose strength is m’, will always lie on the surface of this anchor

1 Mation of Vortex Rings, p. 88.
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ring ; and will be so situated with respect to the first vortex ring
that if we take a transverse section of the anchor ring, and if C be
the common centre of the two circular sections, I” and @ the points
where the central lines of the vortex rings cut the plane of section,
then P, C, §) will be in one straight line and € will be between P
and Q. If we imagine the circular axis of the anchor rings to
move forward with a certain velocity ¥, and the circular axes of
the vortex rings to rotate round it with a certain angular velocity
which depends upon their strengths and dimensions, we shall get a
complete representation of the motion.”

325. A similar method might be employed to investigate the
steady motion of a number of linked vortices, but if the number of
vortices exceed a certain limit the steady motion will be unstable.
For if we suppose for simplicity that the vortices are of equal
strengths, and are linked round an anchor ring, the system will
approximate to a vortex sheet if the number of vortices be large;
and since the cross section of the anchor ring is small compared with
the radius of its aperture, such a vortex sheet may be approxim-
ately regarded as a cylindrical vortex sheet, and we have shown in
the previous chapter that such a vortex sheet is unstable. For
the purpose of investigating this question, Prof. Thomson has
examined the stability of a number of rectilinear vortices of equal
strengths arranged at equal distances round the circumference of a
circle, and he finds that the steady motion of six or any less
number of vortices is stable, but that seven vortices are unstable;
whence it is inferred that if less than seven vortices are linked
round an anchor ring so as to cut any cross section in the angular
points of a regular polygon, the system is stable, but if there are
more than six vortices the system is unstable’,

Vortex Rings of Finite Section®.

326. In the preceding investigations we have regarded the
cross section of the ring as indefinitely small, and have taken no
account of what goes on iuside the ring; we shall now suppose
that. the cross section though small in compurison with the
aperture of the ring is finite, and we shall investigate the motion
of the rotationally moving liquid of which the ring is composed.

! For the motion of vortices in a gas, see Chree, Mess. Math. vol. xvIL. p. 103,
2 Hicks, Pkil. Trans. 1884 and 1885.
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For the sake of greater generality we shall suppose that the
liquid constituting the ring is of different density from the liquid
surrounding it, and that in the surrounding liquid there is a
circulation additional to that produced by the filaments of which
the ring is composed ; but it will be assumed that the pressure at
a distance from the ring is sufficient to prevent the formation of
s hollow, and the conditions for this will be found.

Let p be the density of the outside liquid, y its circulation ; o
the density of the liquid constituting the ring, u' the circulation
due to it.

Outside the ring, Stokes’ current function satisfies the equation

o A Ly o (55).

dz'  do' wdw
Inside the ring, v satisfies the equation

YAy 1 dy 3
VdZ“ +W_;—d73—2ww ........... e ({)6).
In order to obtain the solutions of thesc cquations in a suitable
form, it will be necessary to employ the toroidal functions whose
properties have been discussed in Chapter X1I., and we shall begin
by considering the steady motion of the ring.

By § 79 the vorticity at any point of the ring is proportional to
w/= ; hence by (33) of § 38 when the motion is steady the vorticity
is a function of the current function. Now before it 1s possible to
discuss the properties of any vortex ring it is necessary to know
its vorticity, and we shall suppose in the present investigation
that the vorticity is constant. This requires that w/= = const. =
whence (56) becomes

i L AN A R P (57).

de + d\wg - d,m. ...............

We may also suppose that the ring is at rest, provided we
impress upon the whole liquid a translatory velocity equal and
opposite to the velocity V of the ring; whence the proper solutions .
of (55) and (57) may be respectively written,

Yr=—3Va®+ @) (C+ P E] AR, (b/k)™ cosnk... (58),

and

W = 1Mot + (20 (C + o) =) BT, (kib)"? cosné......(59).
If the ring contained a hollow space, it would be necessary to
B. IL 6
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include terms of the form D R, (b/k)"** cos n§ in the expression for
Jr'; but as we suppose that the pressure is sufficient to prevent
the formation of a hellow, ¥ cannot contain any terms of this
form.

327. We are not at liberty to assume that the cross section of
the ring is an exact circle in steady motion ; but when the cross
section is small compared with the aperture, it can be represented
by an equation of the form

k=b(1+B8,cos £+ B,cos2f+...... ) I (60),

where b is a small quantity and B, is another small quantity of the
order b"; and our object will be to obtain an approximate solution
of the problem upon this assumption, which as we shall presently
sce is justified by the result. We shall make the further
assumption, which is also justified by the result, that 4, and I,
are cach quantities of the order §"; and for a first approximation
we shall retain quantities of the first order in calculating v, which
will render it unnecessary to carry the approximation farther than
the term involving cos £; but in calculating ¥ it will be necessary
to carry the approximation as far as cos 2§, and to include in the
cacfficients of these terms quantitics of the third order.

328. Putting C = cosh %, § =sinh 4, ¢ = cos £, we have shown

that
J=(C+c)/a, =»=aS/(0C+¢c)......... (61),

also by § 280 if p and ¢ are the velocities perpendicular to the
surfaces  and £ measured in the directions shown in the figure

of that section,
p=Jady/df, g=Jady/dy............ (62).
Since p’ is the circulation due to the ring
w = 2ffoda = M[[aJ 7 dndE,
= Ma® [[(C + ¢)® Sdnd§,

=—} M’ fr (C+ ) dE,
=—dMmd®b* . (63),

terms of the fourth order being omitted. Also since w is the
circulation outside the ring, it follows from (70) of § 281, writing

A"b"ﬂ_} for 4, that
p=—ma (A —~AD+ AP ). ... (64).
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329. We are now in a position to calculate 4. From (61)
we obtain -
w®=a* (1 —&)%/(1 4+ &* + 2k cos £),
=a' {1 —4kcos & + 21 (1 + 3 cos 2F) —} ... (65).
Also
(C+¢) v =Y + 1 + 2k cos £)F,
= (2B 1+ 14 — (b + 3% cos E+ kP cos2E—]...(66),

in which we have retained quantities of the third order in the
coefficient of cos £, as they will hereafter be required. Whence to
the first order

Yv=—1% Vo' (1 —4kcos ) + (1 —kcos E){A R+ A, R, (b/k)cos E}(67).

The value of 4 must be constant at the surface, if therefore we
substitute for % its value from (60), the coefficient of cos £ must
vanish. Now by § 283

Rﬂ“*ﬁ(L‘Q)"é"'z(L“)} .............. (68)

B =3—-$(L-14)

Therecfore dR, jdk= 2k)y" -}k (L + 1})} ............... (69).
dR [dk=—3k(L—1)

Therefore at the surface
Yr=—4%Va’(1 —4bcosE)+ (1 —beos §)
x{—34,(L—2)+ 34,8, cosE+ 44, cos £

Eqnating the coefficient of cos £ to zero, we obtain

2Va’ + 34, (L~2+B,/)+$4,/b=0......... (69a),

which shows that A is of the first order; therefore from (64)
A=—pafr (70),
A =pmab (L —-2+8,/b)—4Vab............ (71).

330. The calculation of ¥ is more difficult, since we must
retain terms of the third order. Tet (= — u'a/4mr, then by (63),
M= Q/a*t?, and the value of {+ becomes

By = Qat/8at + (26) 1 (C + o) Y BT, (k/6)" 7 cosnk...(72).
Now =*=a'{l + 12k — 8 (k + 6%*) cos £+ 20&% cos 2€],
also by § 283
T,=1+ 4, T,=§(1- 49 T,=10 (L - 18,
omitting k.
6-—2

IRIS - LILLIAD - Université Lille 1



84 CIRCULAR VORTICES.

Therefore by (66)
20)H(C+e) BT, (b/k)t = B, {1 + }* — (b + 3%*) cos £ + 34* cos 28}
x (1 + 347
B, {1+ 3k — (k+ 35°) cos E + 3k cos 2F},
@2b) ¥ (C+¢) ™ B, T, (k/b)t = § B, (1 4+ }&* — k cos £ + 3k cos 2F)
x (k/b) (1 — 3k cos §,
— 3 B {$k—(1+3F")cosE+ Shcos2EL k/b.
2)7H (O +¢)"F B, T, (k/b)¥= 18 B, (1 — k cos &) (k/b)" cos 2§,
=—13 B, (4k cos £ —cos 2§) (k/b)™
Collecting the terms and putting for brevity
G=Q+ B,—3B,/2b, H=15B,/4b"—3B,/2b + §B, + 5Q,
we obtain
b = 3Q + B, + (@ + §0) I — (Gl + (GH + 4G +3Q) ) cos £
F AOE COS et (73).

In order to obtain the surface value of 4, we must substitute
the value of k from (60) in (73).

The first two terms
=40+ B, + 0 (@ +3G) (1 + 28, cos §).
The next term
=—{Gb+ V" AT +1G +$Q) +5GbB,} cos E— F GbB, (1 + cos 2§).
The last term

=+ HD" (cos 28 + B, cos £).
Adding and equating the coefficients of cos £ and cos 2£ to zero,
we obtain

—Gb— (L +1G +3Q) U° — 3GbB, + 1 II0°B, + (2Q+ GH*B,=0...(74),

and ~3GWB +3HE =0 (75).
From (74) it follows that to the lowest order
G =0,
whence from (75) H=0.

From these equations it appears that &' and H are quantities
of the fourth order at least.

Substituting in (73) we obtain
Py’ =3Q+ B+ QF — QP cos E............ (76).
This is the approximate value of 4" inside the ring to the first
order of small quantities.
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331. We can now determine the value of 8. Since the
normal velocity must be zero at the surface of the ring, the
boundary condition is

dr dr

q 'dg —p % =0,
which by (62) becomes
dy' dF _ dy’ dF ~0
dic d dE dk
where F=b(1+4p,cos§)—k=0
Therefore

(4Qk — 27Qk* cos E) bB, sln £ — 9Q&’sin =0,

whence to the lowest order

332, We must now calculate the pressure. Inside the ring
the equations of steady motion are

1dp

o-dm'+% +2’ww—0

where ¢ is the resultant velocity, whence remembering that
wu = — dy'/dz, sw = d¥'/dw, 20 = Mw, we obtain
plo=E—3 + M e, (78),

where E is a constant.  Outside the ring the pressure is determined
by the equation

p=11—4p7,
where II is the pressure at infinity. Now

- 5{8+ ()

- G e (A}
and Jhja = (1 + 4k cos £)/2a%,

approximately ; also from (76)
dy’_ ¢ (210 k’ cos f)

dk ~ b
Tedy' | 0 oo ),
therefore o Ak = 9u (210— = K cos £
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in which we have neglected terms of the first order, since they are
small in comparison with ™. For the same reason 4™ dyr/d £ may
be neglected, whence (78) becomes
’ 2 2
P oogo b 0k~ cos B 4 0 (4 BJQ + B — g cos §)

The velocity evidently vanishes when % = 0, whence if I” be the
pressure along the critical circle

Plo=E+ Q{Q+ B)la*b’,
whence at the surface (omitting terms of zero order),

B (28, eos Bl (79).

From (67) we obtain
'”’ —(@Va'— AR, cos £+ (1 —kcos £) (A,/2Kk — A b/2k* . cos E).

Therefore at the surface

Jk dyr
= d/c

- 271! (1448 cos £) [A,/2b+{2Va + $4,(L~3)

| — 148,/b— A /2] cos]
- .21(; [4,/2b + (4Vad + A, (L — })} cos £],

by (71).
Therefore
Q= bel 347+ 4b [4Vei+ A4, (L — {;)}cos £,
p II A,

hence rial ‘b‘ [34,+ b [4Va+ 4, (L — })} cos £]... [80).

Since the pressure must be the same on either side of the
surface of separation, we obtain by equating the values of p, p
given by (79) and (80), .

P+ Q' [200" =TI — A 2/32a**................ (81),
QB —)a=—1d4p 4Va'+ 4, (L —$)}...... (82).
Putting for @ and 4, their values, these become

P= 11—"52*2‘5,77 .............................. (83),
_ K- w25, _Z> (
V=l -+ Gmﬂp( o 5) (84).
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433,  Equation (83) determines the pressure along the critical
circle, hence it follows that in order that there should be mno
hollow, P must never become negative ; this requires that

If therefore the pressure at infinity is slightly less than the
above quantity, a hollow will begin to form about the critical
circle.

The velocity of translation of the ring is determined by (84).
Let e be the radius of the circle which approximates most nearly
to the cross section of the ring, then

= a cosech n =2al,
therefore L =log4/b=1og 8a/e
and there are three cases to be considered.

(1) Let p=y', p=0, m=3u, where m is the strength of the
vortex ; then substituting the value of B, from (77), (84) becomes

m
V = 27"-—& (log Sa/e —_— i) .................. (86):

which gives the velocity of translation of a ring of the same
density as the liquid, when there is no additional circulation.

This expression does not agree with that obtained fur the
velocity 1n (5) and (41), but it mnust be recollected that since e is
small compared with a, log 8a/e is large compared with 1, and
therefore the difference between the two expressions is small.
The present procedure, although more complicated, gives a
perfectly accurate result to the order of approximation adopted,
and the next term in the value of ¥V is of tbe first order of small
quantities.

(i1) Let there be a ring-shaped hollow round which circula-
tion takes place.

The conditions for the existence of such a hollow are that p
should be zero at the surface, and also that w' = ¢ =0; hence from
(83) and (84) or directly fromn (80) we obtain

m
= lg —
|4 2ma (log 8a/e %)] .................. 87).
IT = p’p/324%0°
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88 CIRCULAR VORTICES.

“(ii1) It is also possible to have a ring-shaped mass of liquid
relatively at rest, surrounded by liquid in a state of eyclic irrota-
tional motion. Io this case the surface of separation will be a
surface of discontinuity along which slipping takes place, which
possesses the properties of a vortex sheet. The condition for this is
that ' =0, whence the liquid constituting the ring is relatively at
rest, and 1t moves forward like a rigid body with a velocity V
which is given by (87). In order that the liquid should be
continuous at the surface of separation, it is necessary that

IT = or > u’p/32a°b*

It can be proved that in cases (ii) and (ii1) the value of 3, is of
the sceond order of small quantities, sec Appendix.

Fluted Vibrations of a Vorter Ring.

334. We have shown in § 319, that a vortex of small cross
section is stable with respect to a deformation of its central line;
we shall now investigate the effect of a deformation of its cross
section, such that the disturbance consists of trains of waves whose
crests are circles which are parallel to the critical circle. These
vibrations may be called fluted wibrations.

Instead of adopting a procedure analogous to that employed in
§ 288 for investigating the corresponding vibrations of a rectilinear
vortex, it will be more convenient to use complex quantities and
throw away the imaginary part'; we shall therefore suppose that
the cross section of the ring at time £ is represented by an
equation of the form

E=b+b3Be™ M i (88).

In the beginning of the disturbed motion the 8’s will be small
compared with b, except 8, whose mean value we have already
shown to be equal to b; we may therefore in counsidering the
variations of B, regard the cross section of the ring as an exact
circle in steady motion; but the value of 8, thus obtained can
only be regarded as a first approximation, and a more accurate
result would be obtained by going to a second approximation.

1 The employment of complex guantitics was suggested to me by Mr A. E.
. Love.
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We shall not however consider in detail this latter point®, but
procced at once to determine the value of 8, on the supposition
that the cross section is an exact circle in steady motion.

335. Dropping the suffix n, (88) so far as B, is concerned may

be written
E=b+bBe™*™ (89),
also let the current function due to the disturbed motion be
x=(2b) " (C+ o) F AR, (bfky"™ e
outside, and
= (20, (C+ o) BT, (kb €™

inside. The coefficients 4 and B will be small complex constants
of the order B; also by (66), (C + ¢)™* = (2k)} approximatcly ; also
since R,, T, are respectively multiplied by small quantities they
may approximately be regarded as constants; we may therefore write

x =A Gk ™ (90),
' =B kb €™ N (91).

336. If p and ¢ are the velocities perpendicular to the
surfaces # and £ measured in the directions shown in the figure
to § 280, the boundary condition is

dF+J dF dFy
(03 =7 )=
Since J* = 2uk, we obtain from (89)
b (2abAB + qnB) €™M —pk=0............... (92).

Outside the ring

J d

Since ¢ is multiplied by a small quantlty, the term dy/dy may
be neglected ; also from (67) the principal term in (2a*%)™ dyr/dy
is p/4mak, which at the surface of the ring is approximately equal
to U the tangential velocity just outside the ring in steady motion;
we may therefore in the small terms put g=U. Also

1 d
P=9. dE (¥ + x)-
1 A similar question arises in connection with linked vortices, which Prof, J. J.

Thomson has investigated by carrying the approximation to the second order.
This would be very laborious in the present case.
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Now 4a7?k7 dyr/d§ is very nearly equal to the normal velocity
of the ring in steady motion, and may therefore be neglected (since
the ring is supposed to be at rest in consequence of its velocity of
translation having been reversed); we may therefore put

1 dx Al'n el"l£+ll\t’
T 20t dE

whence (92) becomes
=208 (U + 2abr/n)....ccooiiiiian . (93).

If U be the tangential velocity just inside the ring, 1t can be
shown in the same manner that

B =208 (U + 26bA/1) eoeveeerenrnn.. (94).

337. We must in the next place determine the velocity
potential due to the disturbed motion.

Since the disturbed motion is irrotational and acyclic, its
velocity potential at any point P is equal to the flow along any
path joining P with the origin. Let this path be the curve £=0
from =0 to 5 =7, and the curve =7 from £=0 to £=§
Then

(4
—f"J-‘pdr, +f T gdE

8, e [

Substituting the value of y from (90), we vbtain

Ldyy  l+coshy o e
<w df>£ N Ane

= Ama™ (k)" (1 +2k+...) €,

whence keeping only the largest terms we obtain, since k is small,

"o -1 AN I 1
—f Jpdn = — Adw T (k)" .
Also ’

¢
fJ“‘ qd& = Ana™ (b//c)"j ™M g
0
=— dwa™ (/)" ™7 + Aua™ (bj)" €™,

whence b=—Awa BB ™ e, (95).
Similarly it can be shown that
¢' = Biat (kb)) ™M L, (96).
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338. Putting for a moment k=25 + &%, the pressure outside
the ring is determined by the equation

§=const.—¢$~§(U dg8k+ng

Hence if 8p, 8p” be the increments of the pressure p due to
the disturbed motion just outside and just inside the vortex,

8£=_¢‘,_ U(‘c%’gk_idl)

) + terms of 2nd order.

p 2a* dk /)’
Now from (67) it follows that to a first approximation
U= plimak,
therefore dUjdl=—U'k,

whence dropping the exponential factor
8p/p=—AXja + U*B —nUA/24°).
Substituting the value of 4 from (93) we obtain
op/p=B{U*—n (U + 2abx/n)’};

if therefore we write B, and w for 2abR and U/2ab respectively,
we shall obtain

n8p/2abp = — B, A+ aw+n (n—1)w......... 97).
Just inside the vortex the pressure p'is
%:const.~¢’—$-(U +ﬂ Sk +J %X) + M(«p +d"' 8k+x) ,
whence
& o (AU 1 dy’ dy’
s ="¢-U <dlc 8 = gy dkE (g 8]”7‘)

But M =— p//4ma’V’, also from (76) U'=p'k/4mal’, therefore
aU'ldk=U'lk, Ma*=- Uk;
also U'=—La dy'/dE,
whence omitting the exponential factor
Sy je=—¢ + USkik+ Y Uady'/dk — Ux//ka®
=Bxja+ UB + nUB/2a’b — UB/a’b
=B [U* + (U + 2abr/n) {2002 + (n — 2) U}].
Putting U’/2ab = v, this becomes
ndp'[2abo =B, A+ 2(n - rv+n(n—1)v}...... (98).
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Since 8p=28p’, we obtain
pMN+2mw+n(n—-1)wl+o N +2n -1 M+n(n—1)v"} =0,
or writing f for o/p this becomes

MNA+H+2Amw+f(n—=Dvt+n (n—1) @ +f0%) =0...(99).

In order that the steady motion should be stable it is necessary

that both roots of this quadratic should be real.

Referring to § 288 1t appears that the period equation (99) is
exactly the same as equation (21) of that section with the sign of
Achanged. This however does not affect the question of stability ;
hence the conditions of stability are the same in both cases, as
might have been expected, since a circular vortex whose cross
section i3 small compared with its aperture, approximates to a
rectilinear vortex. It therefore follows that if there is slipping at
the surface of the ring, the steady motion must be unstable.

339, We have shown in § 332 that if the pressure at a great
distance from the vortex is less than (u’p + p*¢)/32a°’ a hollow
space must exist within the ring; and that if this pressure is just
below this critical value, the hollow must begin to form at the
critical circle. The steady motion of a ring in which such a hollow
exists, when there is an additional circulation inside the ring,
which is always possible when a hollow exists, has been considered
by Mr Hicks, and one curious point connected with the investiga-
tion is, that it seems probable that under certain circumstances
the hollow might slip out of the ring, so that two rings might be
formed, one of which consists of a hollow with circulation round it,
and the other consists of a rotational core with no additional
circulation; but until the subject has been more fully investigated,
it cannot be asserted that this state of things could actually take
place.

In Mr Hicks' investigation from which the foregoing articles
are taken, the more general problem of the fluted vibrations of a
vortex when there is a hollow and an additional internal circula-
tion is considered. It should however be noticed that his period
equations (63) and (63)" do not agree with equation (99) of § 338.
Unless therefore some error exists in the analysis of §§ 334—338,
his results upon this portion of the subject cannot be regarded as
altogether free from doubt.

1 Phil. Trans. 1885,
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340. When a hollow exists in the ring, it is possible for it to
pulsate as well as to vibrate. The question of pulsations has also
been considered by Mr Hicks.

EXAMPLES.

1. Prove that effect of a circular vortex at a great distance
from 1iteelf, is approximately the same as that of a doublet of
strength 3mc?, where m is the strength of the vortex, and ¢ is its
radius.

2. The motion of an incompressible fluid in a spherical vessel
at any instant, is such that each spherical stratum rotates like a
rigid shell, the rectangular components of its velocity being w,, w,,
w,, these quantities varying from stratum to stratum; show that
if each element of fluid is attracted towards the centre with a
force whose intensity per unit of mass is
dw, dw, dw)  dV
(02 + wy + w,2) (xw+ Ygr t? Zl;')
where V is any function of the coordinates, the motion of the fluid
will be steady ; and find the pressure at any point.

dr’

3. If p, be the period of the quick vibrations when two
vortices of equal strengths are linked once through each other, and
p, when they are linked twice through one another ; show that

7 1 6m

D P Td

and prove also that the period of the vibrations gets longer, as
the complexity of linking increases.

4. Prove that the current function due to a fine circular
vortex of radius ¢ and strength m, may be expressed in the form

— f NN T () T, (e) dn,

the upper or lower sign being taken according as z — 2" is negative
or positive.
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5. A closed vessel bounded by two coaxial circular cylinders
of radii a and b respectively and of lengths 2k, with plane ends
perpendicular to the axis is filled with liquid in rotational motion,
the vorticity being uniform, and the planes of the vortex filaments
parallel to the axis. Show that when the motion is steady, the
current function is of the form

_ 2 e/ 2 72 I, (nw) K, (nw)) cosnz
v=¢(w" —d) (w' = V")~ {rEL, {[1 Gy " K (na)} —

where the summation extends to all values of » given by the
equation

1, (na) K, (nb) =1 (nb) K, (na).

6. If ®, O are the velocities of the liquid surrounding a thin
circular vortex ring of strength m, at two points in the plane of
the ring each of which is the inverse of the other with respect to
the radius of the ring, and whose distances from the centre of the
ring are R, It, where R > R’; prove that

b5 d
@yR+ O'VR = 27”] db

w)o R Rawal
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CHAPTER XV.

ON THE MOTION OF A LIQUID ELLIPSOID UNDER THE
INFLUENCE OF ITS OWN ATTRACTION.

341. IN the year 1738 the Academy of Sciences at Paris
offered a prize for an essay on the subject of the theory of the
tides. The authors of fuour essays received prizes, viz. Maclaurin,
Euler, Daniel Bernoulli and Cavalleri. The essay of Maclaurin is
chiefly of importance, owing to his having proved that when a
mass of liquid is rotating as a rigid body about a fixed axis under
the influence of its own attraction, a possible form of the free
surface is a planetary ellipsoid, whose polar axis coincides with the
axis of rotation. In 1834 Jacobi discovered that under the same
conditions, another possible form of the free surface is an ellipsoid
with three unequal axes, whose least axis coincides with the axis
of rotation. The researches of Dirichlet, Dedekind and Riemann
have shown, that the ellipsoidal form is a possible form of the free
surface, when the liquid does not rotate as a rigid body. The
discussion of these different ellipsoids forms the subject of the
present chapter.

342. We shall commmence by obtaining the general equations
of motion of a mass of liquid, which rotates about its centre of
inertia under the influence of its own attraction, in such a manner
that its free surface always remains an ellipsoid with variable
axes. The motion of the liquid is supposed to be rotational,
but the molecular rotation is assumed to be independent of
the positions of individual elements of liquid, and it will be
shown that the consequence of this assumption is, that the com-
ponent, velocities at any point of the liquid are linear functions
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96 MOTION OF A LIQUID ELLIPSOID.

of the coordinates of that point. We shall first of all show
that the particular kind of motion under consideration, may be
generated from rest by means of the following three operations,
which are supposed to take place instantancously one afler the
other™.

(i) Let an ellipsoidal case whose axes are a, b, ¢ be filled with
liquid and frozen, and then sct in rotation with component angular
velocities £, #, & about the principal axes.

(ii)) Let the liquid be melted, and let additional angular
velocities O, Q,, O, be impressed on the case.

(1) Let the case be removed, and by means of a suitable
impulsive pressure applied to the free surface, let the axes be
made to vary with velocities ¢, b, é.

343. Let @, 4, 2 be the coordinates of an element of liquid
referred to the principal axes; u, v, w the component velocities
of the element parallel to the axes; U, V, W the component
velocities relative to the axes; and w,, w,, @, the angular velocities
of the axes about themselves. Then

w,=0+4+E w0,=0,+7, w,=0,+¢
The kinematical condition to be satisfied at the free surface is

A | dF L dF L dF

i T Jg}+ W?.Z_E =0, (1),
where F=(zla)+ (y/b)' + (g/c)— 1 =0,
and U=u+ wy—o.z

V=v+wz—ogz,
W=w+ozs— 0y
Equation (1) can be satisfied by assuming
w="Llx+my+nz,
v=1Lx+my+ nz,
w=1x+my+ ngz,
where [, m,, &c. are independent of z, ¥ and 2.
Substituting in (1) and equating coefficients of powers and

products of x, ¥y, z to zero, we obtain

1 Greenhill, Proc, Camb. Phil. Soc. vol. 1v. p. 4.
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HYDRODYNAMICAL EQUATIONS, 97
l,=d/a, m,=Dbjb, ny=dc,
L+o)ad’+ (n,—o)c" =0,
(m,+ o) b+ (I, —w,) a’=0.

But from the mode of gencration £ 9, { are independent of z,
v, z; therefore

2b=m,—n, 2p=n-1, 2t=1,—m,

Hence the nine coefficients are completely determined, and we
finally obtain

ar o, (0®—0%) —2a°¢ y+ w, (" —a®) + 2a™y 27

u:E"}' a+ b +

m(y—mq WE (@ — b+ 2L 0
v = b—+ e z+ . z (2
_ ¢z (c—a”)—?cn o, (0" —c*) + 26
w=+" ¢+a ot b +¢

4

These expressions obviously satisfy the equation of continuity,
since on account of the constancy of volume

aa +b/b 4+ é/e=0.

344. By §23 (4) the general equations for the pressure
referred to moving axes are
1dp du du

———X+——vw+’wm+U +V

s - W =0..(3),

with two similar equations; and by ehmmatmg the pressure and
potential, the equations for molecular rotation will be found to be

s

dE dE d{: du du
g~ 7% +§w+U +V +W de d;-i-é’a(é),

dy

with two similar equations. Subsmtutmg the values of u, v, w
from (2) in (4) we shall obtain

40 () 20 (90
e e
fllt <§> B c’zj-aa“ 2, (i) + b"Q—iGc2 o <g> =0 ]

B. 1L 7
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98 MOTION OF A LIQUID ELLIPSOID.

If &, k,, h, are the component angular momenta about the
axes
b, = pfff(wy - vz) dov dy dz,
— M 2 232 2,2 )
—m{(b — ") o, + 46%°E|
M
Ol Terwul
M
W

(¢ — @'Y w, + 4c’a’p] } .ooeonn, (6),

(a® — 6°) w, +4°6°L]

where M is the mass of the liquid; and the dynamical cquations
for rotation are

dh, A

i hgms + ﬁswg =0

dh,

E; - hs(l)l =+ hl(l)s = 0 (7).
dh, _

g ko, + how =0 )

If we now introduce the six new quantities u, », w, v, v, w'
employed by Riemann, such that

U+U'=wl, v+ =w, w4+ w = w,,
" — 2bel}, oo — 2cal), o — 2abQ2, ..(8),
o'+ e’ T+ a¥’ T at+ b
we obtain

E={(b+c)u — (b—c)"u}/2be, &e., &e.
hy=3tM{(b+cyvu + (b—rc)ul, &c, &c.}

Substituting these values of £, 7, z, and A, h,, h, in (5) and (7),
and then multiplying (5) by 2Mabc and adding to (7), we obtain

(b+c) %?:’ +2u d% (b+c)+(b—c+2a)vw’ +(b—c—2a) v'w=0...(10).
Similarly by subtracting, we obtain

(-0 % + 2u% (b—c)+ (b+e—2a) vw + (b+c+ 2a)v'w'=0...(11).
Four other equations can respectively be written down by

symmetry, and we thus obtain six equations of motion.
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345. The three remaining equations can be obtained as
follows. The potential of the liquid at an internal point is

V=342 + By’ + C2*) — H,

dr
where H= ng V@R TN @I N’
2dH
A== da

Now if in equations (3) we transpose the terms p~'dp/de— X
&e., to the right-hand sides, and then substitute the values of the
velocities given by (2), the left-hand side of each equation will be
a linear function of @, ¥, 2 ; moreover if we multiply each equatinn
by dz, dy, dz and add, the right hand side of the resulting equation
will be a perfect differential, and therefore the left hand side must
be so also. Hence (3) must be of the form

1d

> ap =
pdm+Aw+u+hy+gz 0
}@+By+km+ﬁy+fz=0 ............. (12).
pdy

1dp _

The last three terms of these equations are the component
accelerations of an element of liquid parallel to the axes ; and since
there are no external impressed forces, the moments of these
accelerations about the coordinate axes must be zero, hence

Sm{(gr+fy+v)y—(ho+By+fe)zp=0

or f3m (-2 =0,
therefore f=0,
similarly g=0, A=0; and (12) reduce to
1 dp+(A +a)yz=0 ]
1
pdp+(B+B)y R T (13),

1d
pdp+(C+'y)z— J

where «, 8, v are quantities which are independent of #, ¥, 2, and
which will hereafter be determined.

7—2
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100 MOTION OF A LIQUID ELLIPSOID.

Integrating we obtain
plp+ T+ {(A+a)a®+(B+B) Y + (C+7) 2% =0...(14).
Since the external surface is the ellipsoid

(zfa) + (y/b)* + (/) =1,
we must have

A+a)a*=B+B)V=(C+vy)c*=20......... (15),

where o is a function of the time. Hence (14) may be written
P_ _T_¥y_z

P—-m’+a‘(1 -y c’) ................ (16).

In order that the external surface should be a free surfacc, it is
necessary that o« should vanish, and consequently o must never
become negative.

346. Returning to (13) we see that a is the cocfficient of z in
the expression for the component aceeleration parallel to 2 of an
element of liquid, and therefore
am (@)t

dt\a a

v+
a

{(a—b)w+(a+b)w}+

{(c—a)v—(c+a)v],

+§— (w;w’){(a—b)w— (@ +b)w} +v—Tv’ {lc—a)v+ (c+a)r],

=§{%%¥f—(a—b)w“—(a+b)w”— (@—0) v“—(a+c)v'2},
whence by (15),
320 (40— (@4~ (= D) ut— (a4 b = L $4a (17)

Two other symmetrical equations can be obtained; hence,
collecting our results, we have the following nine equations;

-

té—(a—c)v*—(a+e)v —(a—byw' —(a+b)w =0g/a —}da
$-(b-a)yw —(b+a)w—(b—c)u' ~(b+c)u*=a/b— }Rb
e—(c—bDu'—(c+d)u*—(c—a) v —(c+a)v® =a/c—}Cc
(b—c)i+ 2u (b—¢)+ (b+c—2a) vw +(b+c+ 2a)vw =0
(b +c) +2u (b+6)+ B —c+2a)vw + (b —c— 2a) vw=0 ;(18).
c—-a)i+ 20 (¢ —a)+(cta—20)wu+(c+a+2b)wu=0
(c+a)i" +20 (é+a)+ (c—a+2b)wu' + (¢ —a— 2b) w'u=0
(@—=0)w+ 2w(@—b)+(a+b—2) uww+(@+b+2)uv'=0
(@ +b)w + 2w (d+b) + (@ —b + 2c) uv' + (@ — b — 26) w'v=0|
abe = const.
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These equations were first obtained by Riemann'; they furnish
ten independent relations between the ten unknown quantitics
a b cu u,v, v, w w and o, and are therefore sufficient for the
complete solution of the problem.

347. Three first integrals of the above equations can be at once
obtained.

Multiplying equations (5) by £/a, /b, ¢/c, and adding, we
obtain
gx =+ b: + 35 cz =const.........oeiiiinnls (1),
which expresses the fact that the vorticity is constant?,
Similarly from (7) we obtain
AP+ R+ hF=const..................ll (20),
which expresses the fact that the angular momentum is constant.

The third integral is the equation of energy

T+ U=consteceininireirniiinnnnn, (21).
Since p [ff@dadydz = 1M,
and [[fzydzdydz = 0
we obtain from (2)
. (b‘l_c ﬂ ¢ a‘)! 32 aﬂ_bﬂﬂ
T=T‘6{“ R c(+a” S !
2 242 2 2 2 2512
LWL Ay 4ahE (22).

P+ F4+a’ @+ b

1 Abhandlungen der Komiglichen Gesellschaft der Wissenschaften zu Gittingen,
vol. 1x.; see also Proc. Lond. Math. Soc. vol. xvii. p. 255,

2 This equation may be shortly proved thus:—

Since &, n, { are independent of z, y, 2, the vortex lines must all be parallel to
some diameter r of the cllipsoid. Let I, m, = be the direction cosines of r, dS an
element of the plane conjugate to 7, and e the angle between r and S.

The condition that the vorticity should be constant requires that
const. = fjw sin edS=wS gin e=wSpr-1,
where p 1s the perpendicular froin the centre on to the tangent plane parallel to the
plane S, But, since the volume of the ellipsvid is constant, Sp=const., therefore

w(r=const., or
12 m2 m2
w? (7 + =+ —-) = const.,
C

2
ie., Z e, = =const.
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102 MOTION OF A LIQUID ELLIPSOID.

Now! U=3%p [[[Vdzdydz,

=1, a b ¢ dr
— 3 A2 -
e fo {5<a T et ’+x> 1} P

where P = /(¢ +\) (B* +A) (¢* + ), therefore

U—QGM”F‘% M”f‘ d(l)dx.

dn \P
Integrating the last term by parts we obtain
U = — 3Mmpabe f i} .................. (23).

Q

Motion of an Ellipsord of Revolution®

348. Let us now apply the preceding equations to determine
the motion when the free surface is an ellipsoid of revolution,
which is rotating about its polar axis. Let the density of the
liquid be unity, and let a=0; and let o, w, & 5, £, 2, Q, be
each zero; then o, =& w=w'=3§

From the last of equations (5) we obtain

d
a(e)=
therefore tle=¢&fc,

where the suffix denotes the initial values of the quantities.

Let R’= a’c, and let us introduce two new variables & and p,
such that

f=Ra'=c/R
and p=t/(@m) = & /e, (2) = pf/a,
where a is the initial value of 8 From the first and third of

equations (18) we obtain

6 0y 200°
%6‘{‘ 2 p@-fR,*—AG,

6=-2 _106.

- R’()

1 Maxwell’s Electricity, vol, 1. art. 85.
1 Dirichlet, Crelle, vol. Lvnin. p. 209.
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Eliminating 6 and @, and remembering that A + 4C = 27, we

obtain _
o 1 T4
ﬁ(20+€2)=27r(1—p)+4€“
g_ 30 P\ g4
oo o ) s (d-)
Putting ~ F(6) = f ) dr
& o (L+ 00 (L4 26)
1 o AdA
th . PO = -5_1)f , A
e 0 =(5 o (1400 (142/6)

and the left-hand side of the last equation can be shown to be equal
to 8wk (6); integrating this equation we obtain

(2 + - )6"’+8 {(%“)29 - F(B)} = const, = 87 K,

which is the equation of energy. Hence the equations of motion

finally become
a 1 w860
720+ g) =2 =)+

2( )é——‘igw{f—ﬁ"(a)}:or ------ (24). -

(2 + %3) 6 + 8 {(%) 6 F(G)} = 87K |

These are Dirichlet’s equations for the motion of an ellipsoid of

revolution.

349. Since the remainder of the present investigation depends
upon the properties of the function F (f), when € is positive, it will
be convenient to trace the curve y =4 (z). Now

F@)=20"6"-1)" tan (87— 1)} 6<1;
and
1+ —g%
1—(1-69"

Also when =0,F(0)=0, F'(6)=w ; when 0=1,F (0) =
F (6) =0. When 8 increases from 0 to 1, F () increases from
0 to 2 which is its maximum value; and F' () is positive and
diminishes from « to 0.

> 1.

F@)=0"1-0""tlg
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104 MOTION OF A LIQUID ELLIPSOID.

When 6 increases from 1 1o o, F(d) diminishes from 2 to 0;
also ' (6) is always negative and vanishes when 6 =c. Hence
the axis of # is an asymptote. The form of the curve is shown in
the figure.

[7] M X

350. Let us first suppose that the motion is irrotational, in
which case p = p,=0; also that initially 6 =0.

Equations (24) now become
g 1 3(9'2

2 (2+ %)6’ 3?972— 8" (6),

(2 +%3> 6 = 8 (F (6)— F (a)).

From the last equation it follows that F(8) must never be less
than F(a), throughout the motion. Now if a =1, the initial form
of the free surface would be spherical; also since F(f) is a
maximum when 6=1, it follows that § =a=1 throughout the
motion ; hence the free surface always remains spherical.

If a <1, the initial form of the free surface would be a
planetary cllipsoid ; also from the figure, it is seen that the
equation F'(f)= F(a) has one real root B which is greater than 1;
hence 6 will vanish when € =g, and therefore the free surface
will oscillate through a sphere to an ovary ellipsoid, and back
again to its original form, the time of a complete oscillation

being ]
=/ p @ p

The motion is of a similar kind when the initial form of the free
surface i3 an ovary ellipseid.
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351. The general character of the motion is not altered when
the motion does not commence from rest, provided the initial value
of 6 does not exceed a certain limit. If @ be the initial value of 6,
the last of equations (24) becomes

(24670 =2+d)a + 87 (F(0) —F(@)}.....(25).

Let (2+a7") & — 8nF (a) = 8rk,
and (25) becomes .

2+6%F=8n{F(0)+ k.

In order that § may vanish it is necessary that & should be
negative, in which case we may put &k = — F (y); hence the ellipsoid
will oscillate between the values =1, 6 =+, where ¢, o are the
two real roots of the equation ¥ (y)= #(#). But if k is positive &
will indefinitely increase or indefinitely diminish with the time
according as @ is positive or negative. In the former case the
ellipsoid will gradually become clongated to an indefinite extent, and
in the latter case will become indefinitely flattened.

In the foregoing cases o is always positive, and therefore the
motion can take place without the aid of an external pressure.

352, We must now consider the case in which there is mole-
cular rotation.

Let 3 be a quantity defined by the equation
F' (8) = (p,/a),
then since F”(8) is positive, 8 must lic between 0 and 1; also let
¥ (6) = 6F" (8) ~ F (0).
The character of the motion depends on the properties of the
curve y = ¥r («), which we shall now investigate.

Y

In the figure let OPR and OST be the positive branches of the
curves y = F (z) and y= {r(x) respectively; and let OR be the
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106 MOTION OF A LIQUID ELLIPSOID.

straight line y =ax#" (8). The ordinate of the curve y = r () will
evidently be equal to QM — PM= - PQ, and will therefore be
negative so long as & < OT; also since ¢ (8)=0, ¥ () will be
numerically greatest when @ =35, and its value will be negative.
When = > OT, 4 () is positive, and the straight line y = F" (8) is
an asymptote to the curve.

353. Putting (2 +a7%)d* = 8nk,
and remembering that p = p.6/a, (24) may be written
1 - 34
—I%<Zt9+@>=27r -7 @)+
1), 36 .
2(2+§,)6—?+8mp (6)=OT ......... (26).

<2+éa) 6 + 8wy (0) =8 {\lr(fl)-{-k}J

From the last equation it follows that during the whole motion
Y (2) + k — Y- (6) can never become negative. Since i (8) is the
greatest negative value that +r (8) can have, there are three cases
to be considered according as

1) A (@) + k= (8),
(ii) 0> (2) +k > (),
(iii) v (a) + k> 0.

Case (i). The equation of condition may be written

k=4 @) =P (@ oo (27).

Now k is always positive, and the right-hand side of (27) is
always negative unless a = 8, when it is zero, hence a =8,k = 0; also
since ¥ (8) — 4 (#) must never be negative, it follows that §=28
throughout the motion. Now & < 1, therefore the ellipsoid must be
planetary, and the motion is such that the liquid rotates as a rigid
body about the axis of the ellipsoid, with angular velocity

& =278 F (3).

It will hereafter be shown that the maximum value of the
quantity 6°F" (6) 1s -2246, and that the equation &F' (8)= 6*F" (9)
has two real roots, 8, 8, both of which are positive and less than
unity. Hence for every value of ¢*/27 which is less than 2246
there are two planetary ellipsoids which are possible forms of the
free surface, and which coincide when /2w = 2246 : also since o
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1s always positive the motlion can take place without the aid of
an external pressure.

This is Maclaurin’s ellipsoid, which will be treated in a different
manmer later on.

Case (ii). Here r(2)+% is a negative quantity which is
numerically less than + (8); hence we may put this quantity
equal to ¥ (y), where v <é.

N

In the figure let OM =y, OA'=a, O8'=8§, ON =0, OM =+,
where Q@' is parallel to Oz. Then
AA —k=QM;

therefore y<a; also since v (@) + & — +Jr (), that is Y (y) — A (8),
must be always positive,

PN > QM.

Now the equation yr(y) =+ (6) =0 has evidently two real
roots lying between zero and OT, vie. =1, 6=4'; hence the
ellipsoid will oscillate in such a manner that 8 must always lie
between ry and «', and the time of a complete oscillation is

-3 Y 24078
(2m) fy \/ Ry L. (28).

From the first of equations (26) it follows that the pressure will
not remain positive, unless F” (8) never becomes greater than
unity throughout the motion, hence F"(6) must never be greater
than unity. Also since

¢ =2ar (pfa) 67 =20F (8) F...c.o..... (29),
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this condition requires that ¢*/27 should never be greater than
unity.
Since
(2+a)d8m =y (v) =¥ (2)
=A4"-QM,

it follows that we must have

&< (z‘i% [ () =¥ @} overrens (30).

If the conditions (29) and (30) are not satisfled, an ex-
ternal pressure will be necessary in order to maintain the
ellipsoidal form of the free surface.

Case (ii1). In this case yr (2) + k& is always positive, if there-
fore we put it equal to +r(¢) where e=COH’, we must have
OR’' > OT. '"The last of equations (26) becomes

(2 +07°) 0 =8m [y (e) — (O)}.

The equation ¥ (¢) —+r (8) has only one real root, viz. & =g,
and therctore the motion can never be of an oscillatory character.
If 6 be initially positive, then since 4 () is negative so long as
0 < 07, and positive when 8 > GT, it follows that the ellipsoid will
gradually elongate itself to a limiting form determined by the
equation @ =e. On the other hand if & be initially negative, the
ellipsoid will ultimately become indefinitely flattened.

The possibility of this motion taking place without the aid of
an external pressure, depends upon conditions similar to those of
the preceding case.

Steady Motion of an Ellipsoid.

354. When a mass of liquid is rotating in a state of steady
motion under the influence of its own attraction, the different
ellipsoidal forms which its free surface can assume may, as we
shall procecd to show, be classified as follows.

(i) Maclaurin’s Ellipsoid, in which the free surface is a
planetary ellipsoid, and the liquid rotates as a rigid body about
the polar axis of the cllipsoid. If p be the density of the liquid, ¢
the angular velocity of the ellipsoid, which in this case 1s identical
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with the molecular rotation, it will be shown that &*/4mp must not
be greater than '1123, in order that steady motion may be possible,
and in this case there are two ellipsoids, which coalesce when
¢ /dmp = 1123,

(ii) Jacobi's Ellipsoid, in which the free surface is an ellipsoid
with three unequal axes, and the liquid rotates as a rigid body
about the least axis, In this case {'/4mp must not be greater
than ‘0934 in order that the ellipsoid may be a possible form of
the free surface. Hence if §*/4mp <0934 there are three ellip-
soidal forms, viz. two planetary ellipsoids, and an ellipsoid with
three unequal axes. When ¢*/4mrp=-0934, Jacobi’s ellipsoid
coalesces with the most oblate of the two planetary cllipsoids;
and when §/4mp lies between ‘0934 and 1123 the revolutional
form is the only one possible.

(i) Dedekind's Ellipsoid, in which the free surface remains
stationary in space, but there is an internal motion of the particles
of liquid, due to molecular rotation ¢ parallel to the least axis. In
this case if ¢ and b are the greatest and mean axes respectively,
a’h*¢*/(a* + b%)* mp must not be greater than -0934; and when the
former quantity is equal to -0934, we must have a=25, and
Dedekind’s ellipsoid coalesces with the most oblate of the two
Maclaurin’s ellipsoids.

(iv) An ellipsoid, which will be called the Irrotational Ellip-
soid, in which the axis of rotation is the mean axis, and the motion
1s irrotational. In this case the revolutional form is not possible.

(v) An ellipsoid in which there is molecular rotation ¢, and
an independent angular velocity ¢+ Q about the axis to which ¢
refers. In this case the axis of rotation will be the mean or least
axis according as

¢ a’— b _ 2a 7)
Q<"1 (1 * S =)

When this inequality becomes an equality, the free surface
will be an ovary ellipsoid rotating about an equatorial axis. This
case includes the four preceding cases.

(vi) Riemann’s Ellipsoid, in which the ellipsoid rotates about
an instantaneous axis lying in a principal plane. This case
includes all the preceding eases; if the axis of rotation does not lie
in a principal plane steady motion is impossible. It is moreover
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impossible for steady motion to exist when the axis of rotation is
the greatest axis.

The foregoing propositions might be established by employing
Riemann’s general equations of motion, but when the rotation
takes place about a principal axis, it is simpler to start from first
principles’, and we shall therefore commence with Case v.

355. Let ¢ be the axis of rotation, w,=Q + £ then from (2)
we obtain

> = wa+§w w=0...(31).

+bﬂﬂy &y, v= -{—b’

The hydrodynamical equations for the pressure referred to the
principal axes of the ellipsoid are therefore

ldp du
o do +Az—v (2 + )+ de de——O
1dp
+ B +uQ+§+U—+V—— ...... 32).
o dy TP+l (32)
1313+C'z =0
p oz J
Also
2a® O
U=ut+ @+ y= 257,
20 N2
V='U—(Q+§)-T=—m.

Substituting these values of », v, U, V in (32) we obtain

1 dp [A 2Q(Q+§) b2+0’(a:——*b’>ﬂ—§']”=°’

pdz b a'+ b
1dp _ a? — b2\? . _
;@+{B+QQ(Q+§) H bz+‘Q’ (az+b2> —L’]y—o,
1‘!]}4_02 =0;
p dz

the integral of which is

Pri(et+ By 0 - 20+ 0 (@~ ) Z;Z

+1}{Q! ( +Z C’}(m’+y’)=const.,

which determines the surfaces of equal pressure.

! Greenhill, Proc. Camd. Phil. Soc. vol. m. p. 233 and vol. 1v. pp. 4 and 208,
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The condition that the free surface should be the ellipsoid
(zla) + (y/b) + (2/c)* =1, 18

a{ —20(Q+¢) +2:+Q"( bz)ﬂ g“ |

@+ b
_ “ 33).
—b“{B+EZQ(Q+;’) Z,+Q(Z+Z, — ++(33)

= C¢
These equations show that Aa®is greater than B* or U¢?, and

hence a must be the greatest axis; and therefore the greatest axis
can never be the axis of rotation.

The axis of rotation will be the mean or least axis according as

Cc® > or < B,
that is, according as

. a?_bﬂ 2 (1/2_622
£ - 200+ & Ty -2 (G ys)

is negative or positive, that is, according as

t cor> a® - b2 2a
Q o’ + b2 J(a o))’
If the ratio §/Q is such that this inequalily becomes an
equality, we must have b =¢, and the free surface will be an ovary

ellipsoid rotating about an equatorial axis, This is the only case
in which the free surface can be an ovary ellipsoid.

356. We must now consider the first four cases in detail,

Case (1). Maclaurin’s Ellipsoid.
Here a =5, Q2 =0, and (33) becomes

The free surface is therefore a planetary ellipsoid, and the
liguid rotates with angular velocity ¢ about the polar axis,

Now
= dx

C’=27rpa*cfw —dL——

o (a®+A)(+ X)i

Putting » = (1 — ¢%)¥/e in (14) and (15) of § 148, we obtain
A=2mpe®(1— e [sin e — e (1 — e},
O = 4mpe® [e~ (1 — ")t sin™ ¢},

A= 27rpu"’cf
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where e is the excentricity, whence (34) becomes '
¢*2mp=e¢ (1 — &) (3 ~ 2¢°) sin* e — Be (1 — &")¥}...(35).

The right-hand side of this equation can easily be seen to
vanish when e=0 and e=1, and to be positive for all values of ¢
between 0 and 1. IHence as ¢ increases from O to 1, the right-
hand side increases from zero to a certain maximum value, and
then decreases to zero. It therefore follows that for all values of
&*/2mp which are less than this maximum value, there will be two
cllipsoidal forms of the free surface, the excentricities of whose
meridian curves are determined by the two roots of (35); when
&/2mp is equal to this maximum value, there is only one ellipsoidal
form; and when £*/2mp is greater than this maximum value, the
ellipsoidal form is impossible.

The excentricity of the ellipsoid corresponding to the maximum
value of §*/2mp is determined by the equation

(9 -8 sinte=¢e(9—2¢%) (1 — e
In this put & =A%/(1 + %) and we obtain
A (9 + 7Y
A+A) @+
In order to find the root of this equation®, denote the left-hand
side by f(A). Let A =2-5, then by the aid of the formula
tan™' 25 = tan™' 2 + tan™" 4,
we obtain f(2:5)=-0025,
Let A=20+4y,

—tan™' A =0,

then approximately

y=—f @5 (3),

also S (2:5)=— 085 ncarly;
therefore y = 0293,
A =25293.

Substituting this value of A in {35), we shall obtain
£/ derp = 1123,
which determines the maximum value of the angular velocity.
The value of the excentricity will be found to be approximately
equal to -93.

! Besant’s Hydromechanics, ch. viir. ; see also Thomson and Tait’s Nat. Phil.
vol, 1, part 1. p. 327, where a table is given,
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857, Case (i1). Jacob?'s Ellipsoid.
In (33) put 2 =0, and we obtain '
(A-8)a'=(B-)o"=07,

or =40 — CN)ju' = (BY — CHP............ (36).

In order that the value of ¢ may be real it is necessary that
Aa® > Bb* > Cc’; hence a > b > ¢, and therefore the axis of rotation
must be the least axis. The free surface is therefore an ellipsoid
about whose least axis the liquid rotates as a rigid body; also since
the volume of the ellipsoid is constant, it follows from (36) that

when ¢ is given there is only one ellipsoid satisfying the conditions
of the problem.

From (36) we have
@’V (A — By +(a" — ") Oc* =0,

e [° ar L[
or a’b . (aw(m—ﬂ fo (62+X)P ...... (37),

or f (@ -’ =)y A =N} PP dA=0.
. .

If ¢=0 the last integral is positive, and if ¢ = ab/(a® + b”)* the
integral is negative ; hence ¢ must have some value lying between
0 and ab/(a®+ b

According to Ivory?, the axes must be proportional to

¢ e/ (L+2A%), /(1 +n*/A%)
where 7 is a numerical quantity lying between 1 and 1-9414.

When a =b, Jacobi’s ellipsoid coalesces with the most oblate of
the two Maclaurin’s ellipsoids. In order to find the excentricity of
this ellipsoid, put

(@ +A)} = aev in (37) and integrate, and we shall obtain
(3+ 26" —2¢) sin" e=e (1 — ") (§ + §€°).

By trial and error it can be shown that this equation has one
real root lying between O and 1, which is approximately equal to
‘8127, and the corresponding value of {¥/4mwp is 0934. Hence
when §*/4mp lies between O and ‘0934, there are three possible
forms of the free surface, viz,, the two ellipsoids of revolution and
an ellipsoid with three unequal axes; when {*/4mp lies between
‘0934 and -1123 the two revolutional ellipsoids are the only
ellipsoidal forms possible.

1 Phril. Trans, 1838.
B. 1L 8
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358. Case (ili). Dedekind's Ellipsoid.
In (33) put 4 £=0, and we obtain
27.9 442 272
o (A - 4—?32) _p (B - M) = Ce
a®+b a’+b
Hence the ellipscidal boundary is stationary, but there is an

internal motion of the particles, which from (31) is determined by
the equations '

L 2270y
Tax bJ2 ’
__wos
a’+ b’
‘Whence &+ ?gi—(;:; =0,

therefore z=4 cos (kt + a),
and “y=— Aa"'bsin (kt + a),
where k= 2abQ/(? + D).

Hence if #,, ¥, 2, are the initial co-ordinates of the element of
liquid whose co-ordinates at time ¢ are z, ¥, z, we obtain,
@ =z, cos kt + ab™ y,sin kt,
= — a ‘bz, sin kt -+ y, cos ki,
z=2z,

In Dedekind’s ellipsoid the quantity 2abf/(a®+ 8% takes the
place of ¢ in Jacobi’s ellipsoid, and it can be shown in the same
manner that we must have 0 < ¢ < ab/(a® + b")* and that therc is
only one ellipsoid satisfying the conditions. When a =& Dedekind’s
ellipsoid coalesces with the limiting Jacobian ellipsoid, and there-
fore when £*/4mp > 0934 Dedekind’s ellipsoid is impossible.

359. Case (iv). The Irrotational Ellipsoid.
In (83) put =0, and wc obtain
Q'@+ Ao -C¢ Cc* — BV’

=8 af (" +36%) 0 (Bat+ b’

The motion of the liquid 1s therefore irrotational, and is the
same as might be generated from rest by filling an ellipsoidal
cavity with liquid, and setting it in rotation about the axis ¢
Moreover, in order that {} may be real, we must have Cc¢® > B¥’,
hence ¢> b, and the axis of rotation must be the mean axis. In
this case the revolutional form is evidently impossible.
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360. Case (vi). Riemann’s Ellipsoid.

In order to investigate the most general kind of steady motion
of which a liquid ellipsoid is capable, we must employ the general
equations of motion. Putting d(Ea™)/dt, &ec. equal to zero, we
obtain from (5)

.9} 0 Q

1

S’ e B
E@+¢) n(d+a) £+
Also w, =0 +E=0Q (' + )+ 1}, & &e.
From (7) we have
hjw, =hlo,=hjo,
Substituting the values of A, A, &, in tcrms of w,, O, &ec, from
(6) it will be found that (38) are equivalent to the following three
equations:
W= - —~Hpu+ (F+a’)(@®+)—4a*=0
pi—QP =t —a)u+ (@ + )P+ ) —4' =0
=2 =" =)+ O +¢") (" +a") —4c'=0.
These three equations cannot co-exist, hence one of the three
pairs of quantities Q,, & &c. must be zero. Hence steady motion is

vmpossible unless the instantaneous awis of rotation lies in a principal
plane.

1
=const.=—...... 38).
e (38)

361. Let us therefore suppose that , =£=0. From the fourth
and fifth of (18) we obtain,

¥ _Ca=b—0)@2a+b—0)
¥ (a+b+c)(2a—b+c)’
w? (2a—b—c)(2a—b+c)
wz

T (2a+b+c)Ra+b—c)

Let
2 _ U _g
@Ca+b+c)(Ba=b+c) (Ra—-b—c)(Pat+b—c) (39)

w _ w _7
(2a+b+ec)Ra+b—c) (2a—b-c)(2a~b+c)

Substituting in the first three of (18) we obtain
(4a” — 6" —3c¢") S + (4a® — 30" — ") I'= 34 — o /a’ ...(40).
R A A

(~b)8=1C —io/c
8—2
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Solving these equations we obtain

_mpa’b’e® (7 (2h + 40’ — b ~ ¢ 1 dr
o= -[0 { CESVICESY FIA P (42).
_mp (B —a®) (* (4o’ ="+ b7 BT Ad\
S - 2D (62 —_ 62) [0 { Cﬂ + )\‘ az + X} (bz + X)P, ------ (4‘3).
__Wp(f-—a?f”{@g’—b2+c’_ ¢ } AdA
T—2D(c-z_ bZ) R A PN (G.l-}-X)P’ ......... (4:41),
where D=4a" —a*(B*+ )+ b%¢® .oviiiviiiininanen, (45).

P'=Pjabc.

362. We must now find the relations between a, b, ¢ in order
that these equations may give real values of », ¥, w, w" and also
make ¢ positive.

In order that (¢'/»)* and (w'/w)® should be positive, it is
necessary and sufficient that
a>%®+¢e) or <% (b—0),

and there are three cases to be considered.

Case I. a>%(b+c).

In this case it is easily seen that J) and both the integrals on
the right-hand sides of (43) and (44) are positive, for
D=a’ {4a® — (b+ c)*} + be (227 + be),
also the integral (43)

=fj {(4a® — ) X + a® (4a® + b — &) — B¢’} —u%

Since 2a>b + ¢, then 4a’>¢*; also

4+ 0= > b+ + 0" —c*>2b (b +¢),

therefore a® (4a®+ 6° — ¢*) > 2a°b (b + ¢) > 1b (b + ¢)* > b

Hence the above integral is positive ; similarly by interchang-
ing b and ¢, it is seen that the integral on the right-hand side of
(44) is also positive. If now a increase from 3 (0+¢) to o, T
will be always positive provided b > ¢, but S will be positive only
80 long as a <b; hence in this case we must have

b>“>%®+®} ..................... (46).

b>c

b must therefore be the greatest axis, but @ may be either the
mean or the least axis.
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Case II. a<tb—c), a>c.
Since 2a <b —¢, 8 must be negative and 7 positive; now
(e’ = )N+ a*(4a* + ¢ = ) - B¢
is always negative, and therefore T can never be positive unless
D (¢*—a”) is positive, which requires that D should be negative
and therefore
¢ < a’ (b — 4a?)/(B* — a¥),

which is always possible since the right-hand side of this inequality
<a® Also since &+ A <+ A and 4a° >, the integral on the

right-hand side of (43) will always be positive and therefore S will
be negative.

This case may be further divided into two sub-cases.
(1). The first condition may be written ¢< b — 2a, which

requires that b > 2a, whence b must be the greatest axis, Now if
b>a (43 +1),1it can easily be shown that

(b = 2a) > a* (B — 4a®)/(V* — &°),
hence the conditions may be written
b>a(W3+1) }
c< a /(b —4a?)/ (b~ o)
(i1). Butif a (¥3 +1)>b>2a, then
(b - 2a)' < a’ (0" — 4a?)/(8* — a?),
and the conditions become
a(/3+1)>b>2a
c<b— ‘Za}
Case IIL a<}(b—c), a<ec.
The second condition requires that
¢ >a’ (0 — 4a”)/(H* — a?),

and therefore D and 7 are both positive. The value of S remains
negative so long as a < 4¢, and becomes positive when a =¢, and
therefore the integral becomes positive for some value of a which
lies between 4¢ and ¢. Hence the conditions in this case reduce to

a<i(b—rc), a<k,
where le<k<ec

Lastly, in order that the motion may be possible without the
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aid of an external pressure, it 1s necessary that o should be always
positive. The value of o may be expressed in the form

o= mpD™ f (8N +6)a® + D) P dx.

In the first and third cases D and therefore o is always positive,
but in the second case where D is negative a further limitation is
required.

On the Stability of an Ellipsoid.

363. The question of the stability of a liquid ellipsoid has
been discussed by Sir W. Thomson?, and a very elaborate investiga-
tion of this question has been made by Poincaré?, to which the
reader must be referred for complete information on the subject.
The problem in its most general form is this. A mass of liquid is
rotating about 1ts centre of inertia in a state of steady motion,
under the influence of its own attraction, in such a mmanner that
the form of the free surface is an ellipsoid, and a disturbance of
any kind is communicated to the liquid; it is required to deter-
mine whether the resulting motion is stable or unstable.

In the present section, we shall not attempt to deal with the
problem in its most general form, but the iuvestigation will be
confined to the consideration of the stability of a liquid ellipsoid
which in steady motion is rotating about a principal axis, and
which is subjected to a disturbance such that the free surface
in the beginning of the disturbed motion is an ellipsoid® A
disturbance of this character may be communicated by enclosing
the liquid ellipsoid in a case which 1s subjected to an impulsive
couple about any diameter together with a deformation of its
surface, and is therefore equivalent to a disturbance produced by
an impulsive pressure communicated to the free surface of the
liquid.

1 Thomson and Tait, vol. 1. part m. pp. 329 and 333; Proc. Roy. Soc. Edin.
vol. x1. p. 610.

2 Acta Mathematica, vol, vi1. p. 259.

3 Riemann, Gait. Abhkand. vol. 1z.; see also Proc. Lond. Math. Soe. vol. xux,
p. 46, The investigation given in the latter paper respecting the stability of
Maeclaurin’s ellipsoid i8 erroneous.
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364. By (23), the potential energy of an ellipsoidal mass of
gravitating liquid of mass M and uniform of density p is

U7 = D — 2Mmpabe f dr
o L
where P =,/ (&’ + M) (0*+A) (¢* +7), and D is a constant. Let R
be the radius of a sphere of equal volume, then
U=0whena=b=c=R,
therefore D = 4MmpR?,

and U = 4MrpR° — 3 Mrrpabe f %Z—‘ ............... (49),
a

Now U is evidently positive ; hence the integral must be a
maximum when a=5=c¢= R, and will become indefinitely small
when any one of the axes of the ellipsoid becomes infinitely
small or infinitely large.

Let 2¢ be the axis of rotation, and let

@ (=0 4 d\ 3
E= 1_1(7M { 3(52 ¥ bg)’ + P T Ié;:— 471"[) abcf ]7} ...... (DO)

By (22) and (28) E is the variable part of the energy of a mass
of liquid whose free surface is constrained to maintain a fixed
ellipsoidal form and which is rotating about the axis ¢. In steady
motion w, and &, and therefore %, are certain functions of ¢, b, c;
let &, be the value of E in steady motion.

Let a disturbance (which for brevity will be called an ellipsoidal
disturbance) be communicated to the liquid by means of an im-
pulsive pressure applied to its free surface, which is such that in
the beginning of the disturbed motion the free surface is a
slightly different ellipsoid. Then, if £ + 8% is the energy of the
disturbed motion, we obtain by (22) and (23),

SE = ;M [d* B L) Gl VA A il Y i1 4

b?_f_cﬂ Gz+a/2 b2+c‘2
4oy’
+ . + E-E,

All the terms in square brackets are positive, and in the begin-
ning of the disturbed motion are small quantities ; hence, if & > E,,
these terms must remain small quantities and the free surface can
never deviate far from its form in steady motion, and the motion 18
therefore stable. But, if £ < £, the terms in square brackets may
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become a finite positive yuantity, and the difference & — £, may
become a finite negative quantity, such that the difference between
the two sets of terms always remains equal to the infinitesimal
quantity 8E. When this is the case the free surface may deviate far
from its form in steady motion, and the motion may be unstable.

Hence, for the particular kind of disturbance which we are
considering, the condition of stability requires that the energy in
steady motion should be a minimum. Or, in other words, if the
steady motion is stable, it must be impossible by any kind of
ellipsoidal disturbance to abstract energy from the system.

365. Let the disturbing pressure be divided into two parts
Py P, the former of which produces a variation of the axes and no
change in the angular momentum, whilst the latter produces no
" Instantancous variation of the axes but changes the angular momen-
tum. The resultant of p, will consist of a couple &, and a single
force, which produces a translation of the whole mass of liquid,
and which it is unnecessary to consider. If the axis of this
couple lie in the principal plane, which is perpendicular to the’
axis of rotation in steady motion, the energy will be evidently
increased by its application; but, if the axis of the couple does not
lie in this principal planc, the componcnt of the couple about the
axis of rotation may diminish the energy if it acts in the opposite
dircetion to that of rotation, in which case the motion will be
unstable.

In Maclaurin’s ellipsoid the component of the couple about the
axis of rotation necessarily vanishes, since p, always passes through
the axis of rotation ; the case of Dedekind’s ellipsoid, in which the
free surface is stationary, will be considered later on.

Hence, so far as the action of p, is concerned, Jacobi’s ellipsoid,
the irrotational ellipsoid, and the ellipsoids belonging to the general
class V., including the ovary ellipsoid rotating about an equatorial
axis, but excluding Dedekind’s ellipsoid, are stable whenever the
couple component about the axis of rotation of the disturbing
pressure either vanishes or is in the same direction as the rotation;
but when this is not the case the motion may be unstable,

In the case of Dedekind’s ellipsoid, by (50),

g = dh
Eo= EAM {ZHT%;E— wpabcfo /.P—} 3
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40’0’  Aa’-0Cc"  Bb'—-C¢?
a*+ b a? - b

and the effect of a disturbing couple about the axis of rotation will

be to increase the energy by the quantity
Mo®, (o' — b
10 (@F+ 59

whence £ > E,, and therefore the motion so far as this kind of

disturbance is concerned is stable.

where

366. Wemust now consider the disturbance p, which produces
a variation of the axes. From the last two of (18) we obtain

(@a—bfw=const.=7, (¢+b)w =const.=7"...... (51).

whence, from (9),

§= 72(;);, =AM (T T e (52).
Also, from (6)
‘M 2 N2 272
hy= 5o 9 10" = ) oy 408,
2 ’2
whence E=1M { @bt —Trb) 2H} ............ (53),
where H =mpabe fo P

Also putting d, b, é each equal to zero in the first three of (18)
and taking account of (51) we obtain

[¢2
0=%CG—E
le ,r? a 1
S T - = 2_Ced) boennn. 4).
@+ 8 F (a—0 bdo=g =g, (A= 00 (54)
R S R N SN
ity MG = = |

Whence (53) becomes
L =4(da’+ Db’ - 20¢")— 2H

since Ad* + BV + O =2H.
Whence £, is a finite negative quantity.

The constants 7, 7° express the fact that the angular momentum
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and the vorticity are unchanged during the motion ; also since the
disturbance p, does not change the angular momentum or vorticity,
these constants must have the same values as in steady motion.

Sinee the volume of the ellipsoid is constant, the conditions
that & may be a minimum require that

dl c¢dFE
da ade 5
@_Qd_E_O ..................... (56).
db b de

On performing the differentiations it will be found that (56)
lead to (54); hence the first conditions are satisfied.

We must now enquire whether, in the general case, £ has a
minimum value when 7 and 7° are unchanged by the disturbance.

Let 2=5E/M, R =qabc, z=a, y=>0, then

T T? ® ar
= -‘*—‘21 Rsf 8/ 2 5 .

i = R e e B R N NI e N

Since @, b, ¢, are positive, and a is never less than b, we have to
examine the form of the surface (57) between the planes y =0,

z—y=0.

First suppose 7 is not zero.

When x =y, z=0o. If y has any finite value < or ==, then, as
z increases from y to infinity, z diminishes, and the value of E; in
steady motion shows that z will vanish and become negative, and
when z is very large 2 is very small. Moreover, z can never become
equal to — o for any values of  or y, and when « and y are both
very large z is very small, unless £ — y is small.

-

Fig.1.
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A general idea of the form of the surface may be obtained from
the accompanying figures. Fig. 1 is the curve of section made by the
plane y =maz, m<1; and Fig. 2 shows the curves of section made
by the planes zz and zy. The surface cuts the place of xy along
the curve #P, and the sheet underncath this plane gradually bends
upwards towards the plane.

It therefore follows that in this case z must have a minimum
value, which is given by (55).

367. 1f r=0, it follows from (54) either that @ =&, which is
the case of Maclaurin's ellipsoid, or the axes of the ellipsoid must be
connected by the equation (da®— Cc?)/a = (Bb — Cc®)/b.

We shall now show that Maclaurin’s ellipsoid is unstable if the
excentricity exceeds a certain value.
In steady motion
=0, ¥/la+ by =w =3%¢L

Let Q@ =Ad*— 0, R=DBb— Cc then omitting the factor
2mrpabe in A, B and (), the condition that Maclaurin’s ellipsoid
should be stable for an ellipsoidal disturbance, is that £ should be
a minimum in steady motion where

,r’i
= . = 2 R
(a + b)* A
Putting  £,=dE/du &c. we obtain
e 2 B
Ea= a (a+b)*’ By = b (a+b)”
_1d@ cd@y @ 67"
Bu= (@ ‘a%) AT
. _17dQ ¢d@ 67
o= (G -0 3s) MCETE

where b is to be put equal to a after differentiation. Now
when ¢ = b, Q@ = R and E_, = E,,, therefore

SE =1 (L, 8a’ + 2E ,0abb + E_, 5b%)
= ;1 (EM + Eab) (Sa‘ + Bb)ﬂ + i (Eaa - Eab) (Sa’ - Bb)Z

d
Now o (E.+E)=a (% + ‘i—g) _ 9099 1 90,

de
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On reduction it will be found that the right-hand side is equal
to
9e (1 — &)} (3 — 2¢%) — (27 — 36¢* + 8¢*) sin" ¢,
which is positive for all values of ¢ between zero and unity. DBut

: _ (2@ _do\
a (E:zn. - Eab) - (a& db) a Q!
=e (1 — &) (8 + 4¢") — (3 + 2¢* — 4¢") sin"e... (58)

on reduction. The right-hand side is positive when e=0, and
negative when ¢=1, whence Maclaurin’s ellipsoid becomes unstable
when the excentricity exceeds the root of the equation obtained by
- equating the right-hand side of (58) to zcro.

The equation determining the excentricity of the revolutional
ellipsoid which coineides with the limiting Jacobian cllipsoid has
been found in § 357, and on comparing it with (58), it will be seen
that the excentricity of this ellipsoid is somewhat less than the
ellipsoid which Is unstable.

This result was first obtained by Riemann™

In the last edition of Thomson and Tait’s Natural Philusophy,
vol. I. part 1L p. 333, it is stated that Maclaurin’s ellipsoid is
stable or unstable, according as the excentricity is less or greater
than the ellipsoid which coalesces with the limiting Jacobian
ellipsoid ; i.e. according as e < or > 8127, Unfortunately no proof
of this statement is given, but if it is correct, the disturbance
which produces instability cannot be an ellipsoidal disturbance,
but must be one of a more general character.

368. Poincaré® has shown that when a mass of liquid is
rotating about a fixed axis as a rigid body, the problem of deter-
mining the small oscillations is reducible to the solution of a single
equation.

Let the axis of rotation in steady motion be the axis of 2, and
let the axes of «# and ¥ be any two perpendicular axes which arc
rotating with angular velocity w. Then if the disturbed motion be
referred to the same axes, the equations of motion are

ou _ap v _dQ ow  d@

o0 " T s @ T dy A da

L Qott. Abhand. vol. 1x. § 9.
2 dcta Math, vol. vi1. p, 356.
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where o/ot =d/dt + Ud/dz+ Vd/dz + Wd/dz,

@=~-p/p+V";
U, V, W being the velocities of the liquid relative to the moving
axes, and V' is the potential. Also

U=utuwy, V=v—wz, W=w.
Since the liquid is rotating as a rigid body in steady motion,
U, V,and W are all zero, hence in the disturbed motion U, V, W
are all small quantities; if therefore we put
¥ =Q + 1o’ (@ +y7),

the equations of disturbed motion are

aU _ady dv dyr dW _dyr
#TEV e vV i T as
The equation of continuity is
dU+dV+dW 0
dz dz
1y _ dU dV
whence Vi = 20 (-@—%),

TN =20 % (20 -2 ] (‘z ~ 27),
)
Hence %" (Vi) = — 4o’ %,

which is Poincaré’s equation.

If we assume that the time enters into +r in the form of the
factor €™, this becomes

vy, b0t A
Vi = g =0

Putting 2 =2'y/ (1 — 4w’/n*), this becomes
&Y dYe DY
dt T ap T a =

The problem is therefore reduced to finding a solution of
Laplace’s equation within the surface which is derived from the
original surface by writing 2’y/(1 — 4w?®/n®) for z.
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126 MOTION OF A LIQUID ELLIPSOID.

The solution of this equation subject to the boundary conditions
will lead to an equation for determining n, which will show
whether the motion is stable or unstable.

The oscillations of an elliptic cylinder! and of an elastic

spherical shell containing liquid®, have been worked out by this
method by Mr Love.

EXAMPLES,

1. An infinite cylindrical mass of liquid is rotating about its
axis with angular velocity Q + & under the influence of its own
attraction, where { is the molecular rotation. Prove that a possible
form of the free surface is an elliptic ¢ylinder, and that if ¢ and b
be the semi-axes of the cross section,

. 4«a“b2§2 4mpab
R N CE U

2. In the last example prove that the paths of the particles of
liquid relatively to the axzes of the cross section are in general
pericycloids, which (i) when & (a* 4 8% = Q (¢* — b°) are epicycloids ;
(ii) when Q + £=0 are ellipses; (iii) when Q=0 or (Q + &) (a*+ b%)
= + 20bQ are circles.

3. A spheroidal shell whose equatorial and polar axes are
20 and 2¢, and whose mass may be neglected, is filled with liquid
and is rotating about its centre of inertia. The motion of the
liquid at every instant is such that it could be instantaneously
generated by means of the first two operations explained in § 342.
Prove that

grr=L-%E,
e (" + ) ¢
Q. + 0, W+2 (a )
Q‘E+02"=N+((L—Z;E’

where L, M, N are constants depending on the initial motion.

Prove also that ¢ can be expressed in terms of the time in
terms of elliptic functions, except when LM = N?, or ¢ = 3a, when it
is expressible by means of circular functions.

1 Quart. Journ. vol. xxir1. p. 158.
2 Proc. Lond., Math. Soe. vol, x1x.
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4, In the case of Jacobi’s ellipsoid, prove that the mean
pressurc throughout the liquid is 4 of the pressure at the centre of
the ellipsoid; and that if the equation of the free surface is
(@fa)* + (y/b) + (¢/c)' =1, and M is the mass of the liquid, the
kinetic energy of the system is

M (A’ + Bb — 20¢6%).

5. In the case of Maclaurin’s spheroid, prove that any given
mass of the liquid may be annihilated without disturbing the
motion of the rest, provided the annihilated mass is bounded by
the external surface and either of the two other spheroids, but that
a similar theorem does not hold for laws of attraction other than
that of the Inverse square of the distance.

6. Prove that if a rigid ellipsoidal shell be filled with two
homogeneous gravitating liquids of different densities, the denser
liquid will form a nucleus in the shape of an ellipsoid ; and that if
the shell be made to revolve with constant angular velocity about
any given fixed axis, a possible form of the nucleus when the
liquids are in relative equilibrium will be an ellipsoid not co-axial
with the external surface.

7. A rigid shell in the form of an ellipsoid of revolution is

filled with two homogeneous gravitating liquids of different densitics

. which do not mix, and the whole system is rotating uniformly in

relative equilibrium round the axis of the shell. Prove that a

possible form of the surface of separation is a spheroid, and find the
equation connecting the excentricity with the angular velocity.

8. A mass of attracting liquid which is at rest, is enclosed in
an ellipsoidal casc. Prove that if the case be removed the liquid
will move so as always to preserve the ellipsoidal form.

In the case of a spheroid, prove that if a be the axis of figure,

., 8mr'd’
’ T+ 24 (@ -0,
where O = jm @ };)d()‘w’-, 0, is the value of £ in one position
o &+ a +

of rest, and 7 is the radius of the sphere whose volume is equal to
that of the liquid.

Hence show that if the two extreme values of @ be r cosec%¢,
and r sin%H, the relation between ¢ and ¢ will be

. ¥
T sin*f  sin ¢
<§ - 9) (370376 cos ¢ log cot %¢
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9. In Maclaurin’s spheroid, find the ellipticity e in terms of
the density p and the angular velocity w when the free surface is
nearly spherical ; and show that the whole pressure on an equatorial
plane is approximately equal to (5 — 6e) m°p’a?/15 astronomical
units of force, where @ is the equatorial radius,

10. In Jacobi’s ellipsoid prove that gravity on the surface
is inversely proportional to the perpendicular on to the tangent
plane, and that the total stress across any central section is pro-
portional to the area of the section.

11. If two concentric approximately spherical masses of fluid
of densities (astronomical) p and p + p’, the denser being inside, be
rotating round an axis with angular velocity n, and if @, a’ be the
mean radii of the outer and inner surfaces, and if the equations of
the surfaces be r=a (1 +a), =0 (1 +4'), prove that o, ¢’ are
given by the equations

(3’ +p) o’ ~§po = 13 + ¢/ (&' [aY} o — 49 ([a)"a’ =Fnim™ (§ — cos'6).

12. Prove that if a thin case in the form of an ellipsoid of
revolution be filled with liquid which is rotating as if rigid about
its axis, the motion is unstable, if the length of the polar axis
lies between one and three times the length of the equatorial axis.

13. A quantity of liquid of demsity p is enclosed in a case,
which may be either an oblate or prolate spheroid, and is rotating
about its polar axis like a rigid body with angular velocity &
Prove that if the case be removed, it will be impossible for the free
surface to retain the spheroidal form unless initially £%/2mwp < 1.
Prove also that if 2¢ be the length of the polar axis, the frce
surface will cease to be spheroidal, if at any period of the subsequent

motion
2
£ >1+4+ 3¢

27p 8mpc*’

14. A liquid spheroid of small ellipticity e is rotating about
its axis like a rigid body ; prove that the angular velocity is equal

to 4 (we/15)},
15. Assuming that Saturn is a spheroid of small ellipticity e,
and that 1t was originally liquid, investigate the equation

d¢ _ 3mk ok
U 2Me (¢ —-0) T M
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for determining the ellipticity, due partly to its own rotation e,
and partly to the disturbance caused by its ring, which is supposed
to be a flat concentric circular disc, of uniform thickness and
density and lying in the plane of the equator: where M is the
mass of Saturn, % its mean radius; m the mass of the ring, ¢ + b
its bounding radii, and ¢ is large compared with &.

Prove also that the value of gravity at co-latitude 8, is to
equatorial gravity in the ratio
1+ecos’d - 1.

16. Prove that Dedekind’s ellipsoild may be derived from
Jacobi’s ellipsoid by supposing the liquid cnclosed in a case, and
then imparting to the case an equal and opposite angular velocity ;
and show that the impulsive couple which must be applied to the
case, is equal to

IME (&8 — UY/(@® + ).

17. In the irrotational ellipsoid, prove that if the liquid be

suddenly solidified, the loss of encrgy is equal to
M0’ (o — )/ (@ + &),
where ( is the angular velocity of the free surface before solidifi-

cation.

18. Obtain the equations for determining the small oscillations
of the ellipsoids included in case v, when the position of the axis
of rotation is unaffected by the disturbance which is supposed to be
ellipsoidal ; and prove that in the case of Maclaurin’s ellipsoid, the
period 7’ of oscillation is dctermined by the equation

{4'|T" - E,,+ E,} (1 + 2¢"/d") 4”/T" ~ E,, — E,,} =0,
where £ is the variable part of the whole energy, and
E_ =dE/dd, &e.

B. 1L v
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CHAPTER XVL

ON TIIE STEADY MOTION OF TWO MASSES OF ROTATING
LIQUID.

369. WIHEN a mass of liquid is rotating as a rigid body about
a fixed axis under the influence of its own attraction, the condition
that the motion should be steady and that the free surfuce should
preserve an invariable form, is obtained directly from the considera-
tion that the reversed effective forces together with the forces
arising from the mutual attractions of the different portions of
liqmid, must form a system in statical equilibrium.

Let the axis of rotation be the axis of z; V, p, w, p the attraction®
potential, pressure, angular velocity and the density of the liquid.
The equation for determining the hydrostatic pressure p gives

dp=p {(%f—l— m2x> da + (%4— w’y> dy + ddlzfdz} ;
whence if p be constant, we obtain
p/p + const. = V + $6® (&* + 7).
At the free surface p =0, whence the equation of the free

surface is
V4t (@ +y") =conste..oociniveniinin, (1).

370. The value of V cannot be determined without knowing
the form of the free surface. If any particular form of the free
surface be assumed, and the resulting value of V is substituted in
(1), it usually happens that it is impossible to satisfy (1); hence
the problem in 1ts most general form is onc which cannot be solved

! Sinece V is the attraction potential, dV/dz = force in the direction of z.
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by any direct method. It is however sometimes possible to obtain
an approximate solution, in which the free surface differs slightly
from some surface whose form is known; and we shall therefore
proceed to Investigate the steady motion of two approximately
spherical masses of liquid which revolve like rigid bodies about a
fixed axis.

The present investigation is taken from a paper by Prof.
G. H. Darwin’.

371. We must first find the potential of a homogencous mass
of gravitating matter of unit density whose free surface is approxi-
mately spherical.

Let the equaéiou of the bounding surface be
r=a(l+22,¥,) i (2),

where Y is a spherical surface harmonic of degree n, and ¢, is a
small quantity whose squares and products may be neglected.

If V, V' be the potentials at an external and internal point
respectively, we may assume

V=tmo’lr+3 A, (a/r)"™ Yeerrriioen (3),
V'i=—3ar" + ETA,,’ G ST (4),

for these values evidently satisfy the equations V'V =0 and
VeV + 47 = 0 respectively. The conditions to be satisfied at the
surface of the solid are

-]

V=V +eonst. .....ooeviiiiinn... (5),
dVidr=dV'jdr...ccocooiiiiiil. (6).

Since the A’s and A”s are small quantities of the order a, we
may in the small terms put r = 4, but in the first term we must
give to r its full value from (2).

Substituting in (6) we obtain
a3, Y, —2(n+ 1) A Y, =—4ma’Za Y, +3 A7,
whence equating coefficients of ¥, we obtain
4‘77'01201“ =(n+1) A" +nd,.
Stmilarly from (5) we obtain,
A=A,

L ¢« On the Figures of Equilibrium of Rotating Masses of Iluid,” Phil. Trans.
1887, p. 397.

9—2
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4ra’ Y, [fa\""

Whence V= - + dara® 2, o +1 <r> TN (A 8
) 2 2 o ?nYn (7:)"

14 Lowr’ +dma 212n+1 a e (8).

372. Let us now suppose that there are two masses of liquid
whose free surfaces are approximately spheres, and whose centres
arc o and O.

Let there be two sets of rectangular axes whose origins arc o
and O respectively, and let the axis of 2z be measured from o to O,
and that of Z from O to o. Let Oo=e¢; a, 4 the radii of the
spheres whose centres are o and O respectively. Let P; be an
assoclated function whose origin is O and whose axis is 0Z, and
let p7 be a similar function when the origin is at 0 and the axis 1s
oz. Let the axis of rotation be a line parallel to oz drawn through
some point on Oo whose distances from O and o are D and d
respectively. If Q) be the potential of the centrifugal forces, we
have

Q=10 (Y + 27+ d" — 2dz).
Now if r, cos™ p, ¢ be polar coordinates referred to o as origin,

P =p p,(W)=5Bu"=1), p’ (W) =31 —-u%,
whence

Q = {o" (d? — 2drp, + Lr'p, + 2r* — §r'p,* cos 2¢).

Let us now put w,_ =r"p, w, =r"p, cos 24, so that w,, w, are

n 2%n

solid harmonics of positive degree, and we obtain
O =}’ (d* —2dw, + w, + 2r* — % w))eeeonnn. (9)
Similarly the value of  referred to the other origin O is

Q =}’ (D= 2DW, + 4 W, + 2R — 2 W,).oovon (10).
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373. It will hereafter be necessary to employ the transference
formulae given in Chapter X1 § 227. Writing o — 8 for @ in these
formulae, and remembering that P7 {cos (7 — 6)} = (—)"™ Py (cos §),
and multiplying both sides of each equation by cos m¢, the
formulac become

¢ w3 (ntm+8) W

—_ 1 mTn A s mizg
(n—m)!" . 2 @mast o (11),
LW, 2 (n+m+s)! w
—myt oW ST (M A Dty (19),
(TL m) J{Znﬂ $=0 (27”’ +S)I cmﬂ ( 2)

374. Let V, v be the potentials at an external point of the
solids O, o respectively; and let V, v be divided -into three parts
V,, V, Vyand v, v, v, respectively. By (1), the condition that the
free surfaces of the two masses of liquid should be equipotential
surfaces, 18 that the equation

Vi+ Vo+ V4o, +v,4+ v, +Q=const......... (13),

should be satisfied at each of the free surfaces. Sinee the free
surfaces are approximately spherical, each of the three o’s will be
of the form (7), and each of the three V’s will be of a similar form
with 4 and £ written for ¢ and r. Expressing the series (7) in
terms of solid harmonics of positive degree instead of surface
harmonics, it follows that (13) will be satisfied provided the
following conditions are fulfilled.

(i) ¥V, must consist of a series of zonal solid harmonics of the
form (7) referred to the origin 0, and v, must consist of a similar
series referred to the origin o, such that when the expression
V., + v, is transformed by means of (11) and (12) into two scparate
series of zonal solid harmonics referred to the two origins O and o
respectively, the coefficients of all the barmonics must vanish
except those of W, and w,.

(i) V,+ v, must consist of two similar series of harmonics,
such that when V,+ v, is transformed into two separate serics of
zonal solid harmonics referred to O and o respectively, all the
coeflicients must vanish except those of W,, W, w, w, and the
coefficients of W, w, in V, + v, and the coefficients of W,, w, in
V,+ V,+v, + v, must be determined so as to annul the terms
imvolving these quantities in Q.

(iii) V,+ v, must consist of two series of tesseral solid har-
monics | W,, o, such that when V,+ v, 15 trunsformed into two

g w9l
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scparate series referred to O and o respectively, all the coefficients
must vanish except those of \W, aw,, which must be determined so
as to annul the terms involving these quantities 1in 2.

The terms R? and »* in £ need not be considered, for since the
correspouding forces are symrmetrical about each origin, they pro-
duce no departure from sphericity.

When we have determined the three quantities V, + v, V,+ v,
V.+uv, and the form of the boundary corresponding to each, the
final result will be obtained by addition.

375.  We shall now consider the potential V, +wv,.

Let the equations of the two surfaces be

_ AVes= 2n 4+ 1 .
1+ (a) B zn_z(E> bW, e, (14),

E

R jayrieontl A)"ﬂ .

=15 2 (5) mErw..as)
where the 2’s and /’s are unknown coefficients whose values are to
be determined. Putting I'=A*/c¢®, v=a?/c’, it appears from (7)
and (8) tha

B . (@ 2 AP k== Ry raNF ra\FT wny,
()1 = %W’a (;) —+ ¢ kzzz —k‘— 1 (E) (;) ;.k ...... (16),

474/ ¢ ANz I T W
) + 2 () "

V—73T \1‘3 nEE n—1 R&

Putting m =0 in (12), and transferring to o by the resulting
formula, we obtain
4 AP R raNk wy
Rt )
§ 2 (A g LTRSS (L) oo

¢ \¢/) u—s n—1 ;-9 k!n!l\c/ a*

H]

the value of v, + V| is

LraN | AmAPEL2 [ Bhy raNE oy  wy
jma (;)+ T [ZIc 2() (7) =+

Wi "l-—w(k+n)1 Fnl
+%<G> ak ,,22 wl k!l n— 1Hj ...... (18).

This quantity is to vanish when r has the value given by (14)
for all values of k except k=1. Since the squares and products
of small guantitics are to be ncglected, we may put r=a In the
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term in square brackets, but in the first term we must give to
a/r its full value; whence equating the coefficient of wy to zero
we obtain

% +1 3he ae (k) T
ok oM Tar—s +1+7"()7,i bt o1 =0
L a)”" (n+k)! (
Therefore hk—1+2<c SO g e 19),
and by symmetry
_ AN 722 (n+ s)]
H"H%(E)n:z L by (20).

For the purpose of obtaining an approximate solution it will
be sufficient to calculate the values of the H’s and %’s as far as ¢
only; we shall therefore require only the first terms of the two
series, and we thus obtain

he=143 ( > (%M e enen(21),
Hy=1+% (ij) (ktléf(llﬂ) e (22).

Returning now to (18) we must determine the portion of the
potential which involves harmonics of the first degree. From (16)
it is seen that at the surface of o, v, contributes nothing; whence
by (17) the portion of the potential is

4 A® a)s” *n+1
- 3 (=2 - - n-1 s
w = [1 43 (G 3 RTITUH, | (23),
and when the origin is at O,

g _ 4 [1 +3 (é)' "yntl e h] W,......(24).

t 3¢ ¢/ p—z n—1

876. We must now consider the potential V,+ v, due to the
rotational terms, which are equal to }e®W, or te®w, according as
the origin is at O or o.

By Chapter XV., Ex. 14, if a spheroid of small ellipticity e is

rotating with angular velocity o, then e =15w0°/167 ; let us there-
fore assume for the equations of the two masses of liquid

r w, , (A" 20+ 1 fa\™, -

a:1.+. - +(m> n:zz - <E> Lr™w, ... (25),
R W, /aN P 2n 4l fANY
Bt ge +(A) R (E) LR™W,...(26).
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By (7) the potential due to the inequality jer”w, in (25) ib
equal to A mea’w,/r", whence proceeding as before, the potential v,
due to the w hole sphere @ and its inequalities 1is

4 - /CL)G Qr APk=> | (a k ’El)kﬂwk
v, = 4mu’ (>+1 e, | . +o k22 E—1 ) ('r 'rk"'(27)’

and the potential V,”due to the whole sphere 4 and its inequalities
can be at once written down by symmetry. By (12) the value of

V. when transferred to o is

47 A’ "2"’ Wi | A" k2 5° (k4 1) (b4 2)wy

3¢ ;o ck 15 k—o c*

2ra’A* o™ L, I"‘"l" © (k4n)!wy
.................. 28).

e nzzg W—]ko kln! ck (28)

V, =

Substituting the value of a/r from (25) in the first term of
(27), we find that the valuc at the surface of the portion involving
€, added to the second term of (27)

= — {mew, + mew, = — Lmew, %mgw_l.

This annuls the term le’w, in the rotation potential; hence
the value at @ of the potential due to the inequalitics of the two
spheres minus the above mentioned term and the outstanding
potentials of the first degree is,

Vot — dm AP (2n+ 1) Lw, | 2043 1w,
2R T T e neu (2n—2)c" ¢ azn—lg,
2med’rT®
= 1
+ e 3 (et D+ 2e
B e e T
c ¢) noo s kin! k—1
whence
In+1 3L, AN ;
Ton—ght g gt e (E) (n+1)(n+2)
a\? P b+ my I*T
+7()k=2 k! mk— 1Lk—0’
AN’ aNP ke k4 ntl T
— . 1 9 30 R,
or L 106(0) (n+1)(n+ )+2(c> ki Elnik—1
Similarly
AN ez kgl o
L=ge () erne2+3(5) 2T
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whence neglecting higher powers than ¢ we obtain

L _gUe< ) (Rt 1) (B 2) e, (29),
= e (*) R 1) (D), (30).

The outstanding potentials of the first degree are
u, = 4med’w [c', and U, = dmea W /c"......... (31).

877. Let us write @, g, for ,W, ,w,; and we have lastly to

2 2 2’
find the potential due to the rotatmnal terms — #4°), and — {5 0’Q,

in Q.

Let the equation of the free surfaces be

r , (AN PE 2r 4+ 1 fa\™ n .
2=l —‘%qu - (—) b (E) mgar " (32),

: 7 /) p=g 2n—1
R Q a\*rz® 2p 4 1 1 4\""
Dy (2 L
A=t (A> R (6) MQR™..(33).

By (7) the potential due to the inequality — leq,/r® in (32) is
— 2mea’q,/157"; whence the potential v/ of the mass o and its
inequalities is

‘s . a) . (('1‘)6_ 271'[13 A= (C})” (g)nﬂ "qn
(A 3TQ (7‘ T257r€q2 r c 7152 ¢ r ( 1),,. (34)

Whence at the surface, the value of the potential of the
inequalities is

AN*7Z2 2n 4+ 1 am g, _
’v3=$ {%qu/a +( ) nEZ 2n_ ]. anlq } _T%WEQE---(3O),

and since Ymeq, — Zmeq, = frmeq, = Lw'q,,
the term — feq,/»* in (32) annuls the rotational term {,wg, in Q.
The value referred to O of the potential of the inequalities of 4
is
AN 2w A B M I Qo™
— — 2 = il
v, T5mels <R> pg I:=22 T —1 R

and the value of this at the surface of 0 1s

Vs:_j eA’c " S‘ ¢ n
n=2
277'43(1'% x M, Fk: n=w® k\_*_?l!i a
& S k=1 .S k=21 k421
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whence equating ceeflicients from (34), (35) and (36) we obtain
2n +1 __3m, ] AN
on—1"" gp 1 107° (c>
(1/) - k+n! AMkI‘k_l

b

> i—2ing2i ko1 ¢

/
A
Whence

AN? a\* k== k+mn! | K
— 1™ g (2 TR S M.
m"_we(c) T (c) ,E, F_gingoiho1
Similarly

a\? A\ s+ k! ry
[, — @ a (2 _ Stk v
M= ‘Us(c>+2(c)s=22 s—21 k+2ls—1"

1

Whence neglecting (a/c)® and (4/c¢)® we oblain
m, = {56 (A/c)’, M, =se(aje)............ (37).

378. In order to determine the angular velocity, we must
cquate to zero the sum of the harmonic terms of the first degree in
Q in (23) and (31); we thus obtain

—’d + 4w %" + tmed’ [ =0,
or —o'd + $m A%/ + L0’ /c' = 0
Similarly —'D + $ma’/c’ + §a’a’/c' =0
Adding and remembering that D + d = ¢, we obtain
o (L= § (474 )6} = gr (4" 4 a0,
and since we neglect powers above (a/c)’ we obtain
w'=4r (A*+ ). (38).

379. The object of the problem which we are considering 1s,
to obtain the equations of the free surfaces of the two masses of
liquid ; this will be effected by adding the inequalities in equations
(14), (25) and (32) to unity, and substituting the values of A, 1,
and m, from (21), (29) and (37).

This will give us the equation of the boundary of the mass o.

Similarly by adding equations (15), (26) and (33) and substi-
tuting the values of H, L, and M, from (22), (30) and (37), we
shall obtain the form of the free surface of the mass 0. We shall
thus obtain

_,_1+65(2w —q,,)/r +< > { (a> & 2<%>‘7;} +%((CL\) ’r"}’
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which expressed in terms of surface harmonics is

' AN? a a\*
Cotagep-pieon2d) + (5) lanr 1 (2 p 5 (5 nf 09
Similarly
R . ay® A4 AN?
G =1+c(@P,— Plcos2$) + @ {gP, + %<;> P4} (E) PA}(40).

380. Prof. Darwin has entered into an elaborate series of
numerical calculations for the purpose of ascertaining the forms of
the two figures when they are in close proximity with one another;
and has computed and drawn the figures which are shown in the
accompanying diagrams.

Figures 1 and 2 show the form of the sections of the figures
through aud perpendicular to the axis of rotation when the masses
arc equal and nearly in contact, the constants being chosen so that
A=aqa, ¢la=2646, 0*/4m ="038, and % the moment of momentum
o ‘472. It will be observed that the section through the axis of
rotation is considerably more elongated than the section perpen-
dicular to that axis.

Figures 3 and 4 are particularly interesting. Here the masses
are equal and ¢/a = 2449, @/4mr =-0494, A oc 482, and the masscs
partially overlap. Although two portions of matter cannot actually
overlap so as to occupy the same portion of space, yet the continuity
of figures of equilibrium leads to the conclusion that the two
masses in this case constitute a single mass of liquid. The probable
form of the free surface is shown by the dotted line connecting
the two masses.

It will be observed that both the angular velocity and the
moment of momentum of the system is greater in this case than in
the preceding; it is therefore to be inferred that for a properly
chosen moment of momentum, there exists a dumb-bell figure
of equilibrium, and that when the ratio of the square of the
angular velocity to the density is less than a certain quantity
which lies between 47 x ‘0494 and 47 x ‘038, a single figure of
equilibrium becomes impossible and the mass divides 1nto two.

Figurcs 5 and 6 show the forms of the surfaces when the
masses are unequal, the ratio of the larger mass to the smaller
being 27. The free surfaces consist of two detached masses, and it
18 remarkable that the smaller mass has a very distinct furrow,
which indicates a tendency for it to break up into two separate
masses.
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381. Poincaré has shown by a difficult analytical process that
when Jacobi’s ellipsold becomes moderately elongated, instability
sets in by a furrowing of the cllipaoid along a line which lies in a
plane perpendicular to the longest axis; and it is to be noticed
that this furrow is not symmetrical with respect to the two ends.
Assuming the correctness of this result, it would appear that there
is a tendency to form a dumb-bell figure with two unequal bulbs.

MISCELLANEOUS EXAMPLES.

1. A vessel in the form of a regular polyhedron is filled with
fluid, and revolves with given angular velocity around a vertical
axis passing through its centre of gravity; if I denote the whole
pressure on the surface of the vessel, § the whole surface, and 1I
the pressure at the centre of gravity, prove that P—1IIS 1s
constant for every vertical axis.

2. Prove that the relative stream lines for liquid bounded by
the hyperbolic cylinders z (z — y) = a®, y (x + y) =b" are the quartic
eurves,

{&(z—y)—d®} {y (x + y) — b’} = coust.

3. A right circular cylinder whose section is r/fa =1+ f(6)
where both f(6) and f" () are very small, is surrounded by an
infinite liquid. If the cylinder have an angular velocity o about
1ts axis, prove that the velocity potential at any point of the
liquid 18

dwr (>  f(a)sin (@ — 6) da
T ) 7% — 2ar cos (2 — 8) + a®’

4. A circular cylinder of radius ¢ moves along the axis of
with velocity — 1. Prove that the direction of motion of a particle
of the fluid with respect to still water, 1s a tangent to the circle
drawn through the particle and touching the axis of @ at the point
where the axis of the cylinder at the instant cuts this axis; and
also that if p is the radius of curvature of the path of the particle
relative to still water

' =4p (y — 1b),
where b 1s a constant,

5. The resvlved attractions of a body symmetrical about the
axis of z are f (2, =) and F (z, =) respectively perpendicular and
parallel to that axis. The equation of a solid of revolution is
wf (2, =) =a=’ + b, where a and b are constants. Prove that if
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this solid be made to move parallel to its axis in an infinite liquid,
the stream lines are given by equating the left-hand side of this
equation to a constant, and the velocity potential is ¥ (z, =)
multiplied by a constant.

When the moving solid is formed by two spheres intersecting
at an angle m/n, find the velocity potential and ecurrent function
by choosing as the attracting body a serics of 2n—1 particles,
situated on the line joining the centres so that each is the image
of the two adjacent particles, having their masses proportional to
the cubes of their distances from any point on the intersection of
the spheres, and being alternately attractive and repulsive.

6. Fluid moves irrotationally within an ellipsoidal cavity
whose semi-axes are a, b, ¢ in a vessel which turns freely about the
axis of ¢. Show that the locus of points at which the pressure is
the same as that at the centre is two planes, and that the pressure
at any other point exceeds the pressure at the centre, by a quantity
proportional to the product of its distances from these planes.
Show also that each particle of fluid returns to the same place in
the vessel after a time 7'(a® + &°)/2ab, where 7 is the time of a
complete revolution of the vessel.

Find the place from which a drop of fluid may be removed
without disturbing the motion.

Let an internal ellipsoid be described touching the cavity at the
extremities of the axis of rotation, and having all its sectiouns
perpendicular to this axis similar to those of the cavity. If the
mass of fluid within this ellipsoid be suddenly solidified and
rigidly connected with the rotating vessel, find what change in the
motion is produced.

7. Liquid is contained in a thin rigid ellipsoidal case, which is
held in any position in contact with a smooth horizontal plane; if
it 1s released, prove that the pressure on the table 1s instantaneously
reduced in the ratio 1 : 1 + P, where

1Pp* = m™n® (b* + &) + n'l (¢ + a*) + I'm® (a® + b°),
and p is the central perpendicular on the planc at striking, and
[, m, n are its direction cosines referred to the principal axes of the
ellipsoid.

Prove also that if it is dropped on to the plane, and has no
rotation at striking, the kinetic energy is reduced by the impact in
the ration P : 1 + P,
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CHAPTER XVIL

ON LIQUID WAVES.

382. TuE different kinds of liquid waves may be classified as
follows® :

I Oscillatory Waves, which are the class of waves most
commonly met with, and which consist of an elevation together
with & companion hollow. They always appear in groups, and
may either be stationary elevations or depressions, as in the case of
a stream of running water, or may be propagated along the surface
as at sea.

II. The Wave of Translation or Solitary Wawe, which consists
of a single wave travelling along the surface of the liquid. Its
form may either be that of a solitary elevation or a solitary hollow,
the former being called the positive wave, and the latter the
negative wave. There is however an important difference between
the two waves, since the positive wave possesses considerable
permanence of form, being capable of propagation to great distances
without suffering much degradation; whilst the negative wave is
incapable of travelling any considerable distance without being

broken up.
III. Capillary Waves, which are mainly produced by the

surface tension of the liquid, and whose effect is insensible except
near the surface of the liquid.

IV. Sound Wawves, which in the case of liquids are due to the
very slight changes which the density of a liquid under pressure
experiences. They are Insensible to sight, and the consideration
of their propertics heclongs to the theory of sound rather than to
hydrodynamics.

1 Scott Russell, Brit. dssue, Rep. on Waves, 18423
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The mathematical difficulties of the subjcct are so great, that
no complete solution of any problem has as yet been obtained
except the trochoidal waves considered in § 888, which were first
discovered by Gerstner® in 1802, and afterwards independently by
Rankine® in 1862; and we are therefore compelled to resort to
approximatc methods, which depend upon the assumption that the
motion is sufficiently slow for it to be permissible to ncglect the
terms involving the squares and products of the velocities. The
problem thus consists of (1) the dctermination of a velocity
potential which satisfies Laplace’s equation ; (ii) the determination
of the boundary conditions to be satisfied at the fixed boundaries of
the liquid ; (iii) the determination of the conditions to be satisfied in
order that the free surface should be a surface of constant pressure,
or in the case of two liquids which are in contact, that there
should be no discontinuity of pressure at the surface of scparation.

Section 1.

Oscillatory Waves.

383. We shall first consider the waves propagated in a liyuid
of uniform depth & under the action of gravity.

Let the plane of the undisturbed surface be the plane of xy, let
the axis of « be measured in the direction of propagation of the
waves, and let the axis of 2 be measured vertically upwards.

Since the motion is supposed to be irrotational, the velocity
potential satisfies the equation

Vo= 0o (1).
At the bottom of the liquid where 2=~ 4,
dp/dz=0..........ooc i (2).
The pressure is determined by the equation
Plp+gz+d+iq =const . .oeiiiiiinnnnnns (3),

where g is the resultant velocity. At the free surface dp/dt =0, or

dp dp dp dp
d—t+1—+vd—(+waz—0 ............... (4).

! Theorie der Wellen, {bhand. Kin. Bilimischen Gesel. Wiss, 1802,
2 Phil. Trans. 1863,

B. IL 10
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Also if 7 be the elevation of the free surface above the undis-
turbed surface, we must have

f=dp/dz, when z=9..................... (5).

So far our equations have been exact; we shall now assume
that the motion is so slow that the squares and products of the
velocities may be neglected. Substituting the value of p from (3)
-in (4) and npeglecting small quantities of the second order we
obtain

&' do
Pre%-o0
ar Y9 g, ="
when 2=0. Since we are dealing with wave motion, ¢ must be
an harmonic function of the time, whence if [ be the length of the
simple equivalent pendulum

d'e
L T99=0,
and therefore ldp/dz=¢, when z=0.................... (6).

Waves in Rectangular Canals.

384. When the motion is in two dimensions, we may suppose
that the liquid is bounded by two parallel planes, which are at
right angles to the crests of the waves. Hence the motion will be
the same as that of waves propagated along a canal whose cross
section is a rectangle.

Let A be the length of the waves, U the velocity of propagation,
h the depth of the canal. Since the motion is in two dimensions,
we IIlay assuie

¢ = f (2) cos (mz — nt),
where m = 2w/x, n =27 U\, n* =¢g/l. Substituting this value of ¢
in (1) we obtain

g?:— m'f=0;
the solution of which is
f=P coshmz + @ sinh ma.
Equations (2) and (6) require that
P sinh mh = Q cosh mh
P =mlQ,
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whence ¢ = A cosh m (2 + k) cos (mz — nt)
ml = coth mh,
and U =0*/nt = g/m’l
=gA/27 . tanh 27h/n ..o (N,
which determines the velocity of propagation.
Putting 4mwh/A = u, we obtain

d

— log U= — u™ + cosech
which is positive or negative, u being supposed positive, according
as

p>ar<sinh p>or< (p+u%/3! +...... ),

and is therefore negative. Henee U decreases as u and thercfore
m increases, and therefore (7) cannot be satisfied for a given value
of U by more than one value of m. Hence there is only one wave
length which corresponds to a given velocity of propagation ; also
the velocity of propagation diminishes as the wave length increases.

385.  When A/x 1s small, tanh 27h/A = 27h/X, and

which determines the velocity of propagation of long waves in
shallow water.

When 2/A is large tanh 27h/A =1, and

which determines the velocity of propagation of decp sea waves.

386. At the free surface z=7%, where 5 is the elevation;
whence substituting the value of ¢ in (5) and suitably choosing
the origin we obtain

7= — Amn " sinh mh sin (mx — nt).

Let (z, z) be the coordinates of an element of liquid when
undisturbed, (& &) its horizontal and vertical displacements, also
let =2 +§ 2 =24+¢; then

E- d/dz’ = — Am cosh m (2" + k) sin (snx’ — nt)

E<~dp/dz’ = Amsinhm (2" + %) cos (ma’ — nt).
10—2
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Since the displacement is small we may put z=a', z=2"as a
first approximation, and we obtain

£=—acoshm (z + k) cos (mx — nt)
¢ =— asinh m (z + &) sin (mz — nt),

where Am/n=a; whence the elements of liquid describe the
ellipse

E/cosh®m (z + &) + */sinh’m (z+ h) =d’.

387. When the depth of the liquid is very great we may put
k=, and the hyperbolic functions must be replaced by expo-
nential ones; we shall thus obtain

¢= Ae™ cos (mz — nt)
1 =— Admn7 sin (mz — nt),
and the elements of liquid will describe the circles
E+ = (Am/n) ™

We shall consider the problem of deep sea waves at greater

length in § 408.

Gersiner's Trochoidal Waves.

388, It was shown by Gerstner in 1802 and was rediscovered
by Rankine, that there exists a certain form of trochoidal waves,
which can be expressed in finite terms without resorting to methods
of approximation.

Let the motion of the liquid be given by the equations

m=a+k"e‘"’sink(a+ct)} 10)

—z=b+kE"'e®cosk(a+ct)
where &k and ¢ are absolute constants, and ¢ and & are functions of

the initial coordinates of the element of liquid whose coordinates
at time ¢ are (z, 7).

The conditions of continuity require that the area of any
elementary rectangle bounded by the curves a, b, @ + Sa, & + 8b,
should be constant throughout the mation, this requires that

d(z, z) _
dab)
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where 4 is a quantity which is independent of z, z or & From
(10) we obtain
d(x, z) _
d(a, b~ ¢

hence the conditions of continuity are satisfied.

—2 1.
3

The Lagrangian equations of motion are
daPletgn=—2, —% .,
i( o+ )__d:lj_..dA?
which by (10) become
(% (plp +g92) =kc' ¢ sink (a + ct),

c% (plp +gz) =kc® e cos k (a + ct) — ke €™
whence
Jo—g{b+k7e®cosk(a+ct))=—c e cosk(a+ct)
+icte ™+ O
At the free surface p must be independent of ¢, whence
g =kc"
The wave length X =27 /k, and ¢ is the velocity of propagation ;

hence ¢= (gn/2)}, and is therefore equal to the velocity of propa-
gation previously found for deep sea waves.

The pressure 1s given by the equation
plp=gb+3ce ™ +C
=¢"(kb+3e™) +C,
and therefore retains the same value at every point moving with

the liquid. If thercforc we put b=p4 at the free surface, we
obtain

plp=c{k(b—B)+( ™ —e ™)}
which makes the pressure vanish at the free surface. The quantity

b increases with — z, and therefore the wave disturbance decreases
with the depth of the liquid.

The velocities of the liquid are
u=4a=ce ™ cosk (a+ct)

w=z¢=ce®sink (a+ ct),
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from which it can be shown that a velocity potential does not
exist. In fact

de " dz) da. B =W 2y — WiZ, T+ U Ty — UL,

dw  du\ d (z, 2)
( ) d (a, b)

where the suffixes denote partial differentiation; whence if o be
the molecular relation

o = kee ®/(e ™ — 1),

The wotion 1s therefore rotational, and therefore waves of this
description could not be generated in a frictionless 11qu1d which is
under the action of natural forces.

Waves at the Surface of Sepuration of Two Liguids.

389. Let us first suppose that two liquids of different densities
(such as water and mercury) are resting upon one another, which
are 1n repose except for the disturbance produced by the wave
motion, and which are confined between two planes parallel to
their surface of separation. Let p, p” be the densities of the lower
and upper liquids respeetively, A, &’ their depths, and let the origin
be taken in the surface of separation when in repose.

In the lower liquid let

¢=A coshm (z+h) cos(mz—mnt)............ (11),
and in the upper let
¢’ =A"coshm(e—h)cos(mz—mt) ............ (12),
also let 7 =q sin (mx — nt),

be the equation of the surface of separation. At this surface, the
condition that the two liquids should remain in contact requires
that

dnjdt=dp/dz=d¢’/dz, when z=0.

Whence — na=md sinh mh =~ mA' sinh mh'.

If &p, 8p” be the increments of the pressure due to the wave
motion just below and just above the surface of separation, then

op +gpn + pdep/dt =0
and Sp'+9pm+ p'qu//dt ={,
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and since 8p = 8p’, we obtain
9 (p—p)n=—pdd/dt +p'dd’[dt
=n(— Apcoshmh + A'p’ cosh mA") sin (mz — nt)

= (p coth mh + g’ coth mh’) n'n/m,
whence

- . 9(p—p)
U= (n/m)* = m (p coth mh + p’ coth mh')’

where m = 27 /X,

390. When A is small compared with b and A’, then mh, mh’
are large, and coth mh and coth mh may be replaced by unity; we
thus obtain

Ut =g(p—p)m(p+p)
If p’ > p, U? is negative and therefore » is imaginary; hence if
the upper liquid is denser than the lower the motion cannot be
represented by a periodic term 1n £, and is therefore unstable.

If the density of the upper liquid is small compared with that
of the lower, we have approximately

U = gmt (1= 20')p).
If the liquid is water in contact with air, p’/p=-00122, hence
if the air is treated as an incompressible fluid

U'="99756 x gm™".

391. Secondly, let us suppose that the upper liquid is moving
with velocity V7, and the lower with veloeity V'; then we may put

¢ = Va+ A coshm (2 + k) cos (ma —nt)
¢’ = V'a+ A’ coshm (2 — L") cos (mz — nt).
Let the equation of the surface of separation be
F=m—usin(mz—nt)=0.
Then in both liquids # must be a bounding surface, and there-
fore when z=0,

iF  dpdF dF do
&V dode Tidn dz =Y

dF d¢’ dl’+dFd¢
dt T de ds dn dz

Whence an —mVa+mAd sinhmh=0

an —mV'a —mA’ sinh ma’ = 0.
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Hence if U=n/m be the velocity of propagation,
A sinh mh=a(V—-U)
A'sinhmh’=—a (V' - U).
If &p, &p’ be the increments of pressure at the surface of
separation due to the wave motion,
Sp/p + g + dp/dt + § {V — Am cosh mk cos (mw — nf)1* =L V7,
3p'lp'+ gn+d'[dt + L (V' — A’m cosh mh’ cos (ma —nt)P =1 V7™
Therefore since 8p =8p’,
ag(p—p’)=Admp (V' — U) coshmh — A'mp’ (V' — U) cosh mh’
or  g(p—p)=mp(V—U)cothmh+mp' (V' — Uy coth ml,

which determines U.

Waves in Canals with Sloping Sides.

392, In all the preceding sections the motion considered has
been in two dimensions, and the results are therefore applicable
either to straight crested waves in an unlimited ocean, or to waves
In a canal whose cross section is a rectangle. We shall now
copsider some cases of three-dimensional motion.

We shall first discuss the case of waves propagated along a
straight canal of uniform section, whose sides are two planes
inclined at an angle }7 to the horizon.

Let & be the greatest depth of the canal, and let the origin be
taken in the line of intersection of the two sides. The equations
of the two sides of the canal are y + 2=0, and the boundary
conditions are

dop/dy — dep/dz =0 when y —2=0
dep/dy + dep/dz =0 when y+2=0.

The cquation of continuity and the boundary conditions will
be satisfied if

¢ = A cosh my cosh mz cos 4/2 (ma — nt).
At the free surface where z = 2, we must have

ld¢/dz = ¢,
for all values of # and y, whence

ml = coth m#,
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and therefore  U” =n’/m* = g/lm® = gm™ tanh m#,
= (g\/my/2) tanh why/2/ N
The free surface is determined by the equation
dn/dt =d¢/dz = mA sinh mh cosh my cos /2 (mz — nt),

whence 7=~ (mA/ny/2)sinh mh cosh my sin 4/2 (mz — nt).

These results are due to Prof. Kelland.

The equation of continuity and the boundary conditions will
also be satisfied by assuming

¢ = B sinh my sinh mez sin §/2 (mz — nt),
1n which cuse we should have
U? = (g\/m/2) coth mha/2/A,
7= (mA/ny2) cosh mh sinh my cos /2 (mew — nt).

393. Kelland' also obtained the solution for progressive waves
whose crests are perpendicular to a shore whose inclination to the
horizon -is 47, and which are moving parallel to the shore. This
solution has been generalized by Prof. Stokes® for a shore sloping
at any angle a.

Let the origin be taken in the line of intersection of the shore

with the undisturbed surface; then the equation of the shore
will be

ysina+ zcos a=0,
and the boundary condition is

@sina-{—éécosa:O,

dy dz
which is satisfied if
¢ = A exp {—m (y cos a — z sin a)} cos (mx — nt),
Whence mlsina=1,

and U?*=(gh /27)sin a.

394, If we attempt to determine the solution for progressive
waves along a canal whose sides slope at an angle {7 to the
horizon, by assuming that ¢ =F (y, 2) cos /2 (ma —nt), it will be
found that the period equation has only one real root, viz. mh =0,

U Trans. Roy. Soc. Edin. vol. gv. p. 121,
# Brit. Assoc. Rep. Hydrodynamies, 1846,
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repcated four times. Henee it follows that progressive waves in a
canal of this form are unstable; we must therefore assume
¢ = & cosh /2 (mx — nt).
The boundary conditions are
ddjdy = dD/dz, when y = 2y/3,
d®/dy = — dD/dz, when y=—zy3.
These equations together with the equation of continuity will
be satisfied by assuming
D =sin m (2 —a) cosmy + sin yme (/8 — 1) 2~2x] cos dm (V3 +1) y
—sinim {(¥/3+1) 2+ 2a} cos im (V3 —1) 5.
Substituting this value of ® in (6) and putting m (h—a) =4,
we obtain the following equations:
ml=tany=(y3 + 1) tan {y — 4 (3 —v/3) mh}
=(y8—1)tan {4 (3 + N 3) mh — )
From these equalions we find that tan v is an harmonic mean
between tan § (3 — v3) mh and tan § (3 + 4/3) mh, which determines

~ and therefore a in terms of mh; and on eliminating ¢ we shall
find that the period equation is

(2 —/38) cos (3+ +/3) mh + (2 + 4/3) cos (3 — /3) mh — cos 2mhy/3=3,
which 1s an equation with an infinite number of real roots.

Since wave motion is stable when the sides of the canal are
inclined at an angle }mr to the horizon, and unstable when they
arc inclined at an angle L, it follows that there must be some
inclination lying between }sr and l7 which forms the limit
between stability and instability. The value of this angle has uot
apparently been determined.

Standing Waves across a Canal.

395. If liquid is contained in a straight canal whose sides are
inclined at any angle a to thie horizon, and if the free surface is
either displaced in such a manner that its equation is n=F(y),
where ¥ 1s measured across the canal, and the liquid 1s then left to
itself; or if a velocity f (y) is communicated to every point of the
free surface, after which the liquid is left to itself; the subsequent
motion of the liquid, if periodic, will consist of vscillations composed
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of waves whose crests are parallel to the sides of the canal.  Such
oscillations are called standing waves, and the theory of them has
been investigated by Kirchhoff* and Greenhill?,

When the sides of the canal are inclined at an angle %7 to the
horizon, the boundary conditions are

d¢jdy —dp/dz=0 when y—z=0}
d/dy +dp/dz=0 when y+2=0

We can at once obtain an algebraic solution, by supposing that
the free surface is initially plane,

Let #=ay, =0 initially. The equation of continuity and (13)
are satisfied if
¢ = dyzsin nt.
From (6) we obtain I=4; also
f =d¢/dz = Ay sin nt,
Whence n=— 4dn7'y cosnt,
and therefore ¢ = — anyez sin at.
The value of the current function +Jr is
¥ = fan (" — £°) sin nt,

which shows that the stream lines are rectangular hyperbolas.

396. The cequation of continuity and (13) are also satisfied if
p=3%A4{cosm (y+1z) * cosm (y — 12) + cosm (z + 1y)
+ cos m (2 — 1y)} (cos or sin) nt.
Taking the upper sign, and putting mh = p, we obtain frown (6)
ml (cos my sinh p — cosh my sin p) = cos my cosh p + cosh my cos p.
Since this equation 1s true for all values of y, we must have
ml=cothp=—cotp ....c.ocoooiiiii, (14).

Similarly if we had taken the lower sign, we should have
obtained
ml=tanhp=tanp ......c...oomenil, (15).

Both the period equations (14) and (15) are iucluded in the
single equation
cos 2p cosh 2p =1,
! Uecber Stehende Schwinzungen einer schweren Fliissigkeit, Gesam. Abhand,

vol. 11,
2 Amer. Jour. of Math. vol, 1z, p. 62,
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which is the period equation for the lateral vibrations of a bar.
This equation is discussed in Lord Rayleigh’s Theory of Sourd,
vol. L. p. 219, and it is there shown that it has an infinite number
of real roots.

397. In order to find the solution for standing waves parallel

to a shore which slopes at an angle 1, let

b =A {m-u) 4 ¢~mw—2} (cos or sin) nt,
the origin being in the line of intersection of the undisturbed
surface with the shore, and y being measured from the shore.

This value of ¢ satisfies the boundary condition

do/dy + dp/dz =0 when z=—y.

If we take the real part of this expression alone, it will be
found impossible to satisfy (6), but if we add together the real and
imaginary parts we obtain

¢ = A {¢™ (cos my ~sin my + € ™ (cos mz + sin mz)} (cos or sin) nt,
and (6) gives ml=1.

Whence U* = gn\/2m.

398. The corresponding solutions for standing waves across a
canal whose sides are iInclined at an angle lw to the horizon,
have also been obtained by Kirchhoff. In this case we can obtain
an algebraic solution by supposing that the initial form of the
free surface is the parabolic cylinder

. 7l=a(}12_3/2);
where £ is the depth of the liquid, and the origin is a point in the
intersection of the sides.

The equation of continuity is satisfied if
b= AP sin nt,
where D=2~ 3y'z + 2h°,
and the corresponding current function is
¥ =y (zv3 —y) (23 + y),

which vanishes when y= + 2z4/3, so that the boundury conditions
are satistied.

At the free surface z = &, and

dd

g, =3k =By =D/,
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and therefore {=A. Also
l 7 =34 (b* — y*) sin nt,
therefore =—34n7 (K* — y*) cos nt,

which shows that the initial form of the free surface is a parabolie
cylinder.

For the solution in the general case, we must refer the reader
to Prof. Greenhill’s article on Waves'.

Waves in a Cylinder®.

399. The equation of continuity referred to cylindrical co-
ordinates =, 8, z 1s

dé 1dp 1 d¢_,

dotTode T mag T ap =0 (16).

If h be the depth of the liquid, the surface conditions are
de/dz=0 when z=—"h.................. (an),
ldd/dz=¢ when 2=0.......ccccevvieinn. (18).

In order to satisfy (16), assume
¢ =AF (=) sin n cosh (kz + B) cos pt.
Substituting in (16) we obtain
$F 1 dF ok,
Tm_,'f‘;c/z;—'m,'}—kﬁ’fo ............... (19),
whence F=J (k=)

If a be the radius of the cylinder, d¢/dw =0 when r=gq,
whence

T (@) =0 oo, (20)

and the different values of % are the roots of (20), which can be
shown to be all real.

The value of n will depend upon the particular problem under
consideration. If the motion is symmetrical about the origin,
n=0; if on the other hand the liquid is contained within a sector
of angle 2z where a < 37, and if the line bisecting the angle of the

! American Journal of Mathematics, vol. 1x. p. 62.
2 Lord Rayleigh, < On Waves,” Phil. Mag. April, 1876.
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sector is taken as the initial line, we must have d¢/dd =0 when
0 = + x, whence n = (2m + 1) w/22 where m is a positive integer.
From (17) we obtain 8= kh; and from (18) we find
kl = coth kh,
whence P’ = gk tanh kh.

400. Let us now suppose that the liquid 1s initially ab rest,
and that the free surface is displaced so that its initial form is

n == cos 0.
Then
¢ =3AJ (k=) cos @ cosh k (z+ h) sin pt,
and
dé/dz = dn/dt= 2k AJ, (k=) sivh kh cos 8 sin pt,
and n=—23kp"dJ, (kw)sinh khcos@cospt ......... (21).
Initially % == cos 8, therefore
w =—2kpT A sinh kb J (kw),
and putting Akp~sinh kh =-— B, we obtain
w =3BJ, (k=),
n =3BJ, (k=) cos 8 cos pt.
Let I,=J, (k'w), then, if the accents denote differentiation
with respect to =,
@I v wd! (e —1)J,=0,
el w1+ (ke —1) T, =0,
whence
) [ ol J dw 1 a 1T, = LJ)), =
Yo
Since I',(¥'a) and J'| (ka)= 0, the integral must vanish if k

and %' are different ; to find the value of the integral when k=%
let &' =k + 8k, then

t e - dJ/ dJ
213k f @l o) dav + (1, 7t =, dk) 8 = 0,
therefore fa wd kw)do = 2/‘ J g
Ience

—BaJ e =" ], () dor

R
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But d J)+ Fs-1)J, =0
u m%(’w 1 w 17 Y

whence fa (M= —1) J,dw — aJ, +ja Jdw =0,
[} 0

and therefore
2 2a
ad,” (Fa*—1)J, (ka)’
< 2aJ, (kw) cos 8 cos pt
und =2 e 1) T, k)
which determines the form of the free surface at any subsequent
time.

B=-—

Waves @n Hyperbolvids and Cones.

401. If we put
¢p=zw"sinnfcos Pb............oeeonnn. (22),

(16) is satisfied ; also at the free surface where 2 =4,

hdp/dz = ¢
so that 1= hA.

Let us suppose that the vessel which contains liquid having
this motion is one of revolution; in order to determine its shape,
we have along a meridian section

dé . dg
dw 92~ 4 4

or nezds = wdw
by (22); whence integrating
ng* =o'+ C

The containing vessel is therefore a hyperboloid of revolution,
including as a particular case a cone of semi-vertical angle tan™ 4/a.

Long Waves in Shallow Water.

402. In the theory of long waves it is assumed that the length
of the waves is so great in proportion to the depth of the water,
that the vertical component of the velocity can be neglected, and
the horizontal component is uniform across ecach section of the
canal. In § 385 we saw that if the depth is small compared with
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the wave length then U* = gh, provided the square of the velocity
1s neglected. We shall now examine this result in connection with
the above-mentioned assumption.

Let the motion be made steady by impressing on the whole
liquid a velocity equal and opposite to the velocity of propagation
of the waves. Let 5 be the elevation of the liquid above the
undisturbed surface; U, u the velocities corresponding to A& and
h + n respectively. The equation of continuity gives

u=hU/(h+7),
whence U —u? = U7 (2l + )/ (A + 7)%
If 8p be the excess of pressure due to the wave motion

S = {7ﬂ2h +m) }
2(h+m)*
When 7/h is very small the quantity in brackets is U*/h—g;
whenee 1if U® = gh, the change of pressure at a height £ + 5 vanishes
to a first approximation and therefore a free surface is possible.

If the condition U* = gk is satistied, the change of pressure to
a second approximation is

8p =—3gpm’/2h,

which shows that the pressure i1s defective at all parts of the wave
at which » differs from zero. Unless therefore o* can be neglected,
it is umpossible to satisfy the condition of a free surfuce for a
statronary long wave ;—in other words, it s vmpossible for a long
wave of finite hetght to be propagated in still water without change
of type. If however n be everywhere positive a better result can
be obtalined with a somewhat increased value of U; and if 5 be
everywhere negative, with a diminished value. We therefore infer
that positive waves travel with a sumewhat higher, and negative
waves with a somewhat lower velocity than that due to half the
undisturbed depth’.

403. The theory of long waves in a canal may be investigated
analytically as follows”

Let the origin be in the bottom of the liquid, A the undisturbed
depth, 5 the elevation; and let « be the abscissa of an element of
liquid when undisturbed, £ the horizontal displacement. The

! Lord Rayleigh, **On Waves,” Phil. Mag. April, 1876,
? Airy, “Tides and Waves,” Encyc. Met.
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quantity of liquid originally between the planes z and z +dz is
hdz; at the end of an interval ¢ the breadth of this stratum is
dz (1 +dE/dx), and its height is k -+, whence the equation of
continuity is
A+dEdn)y(h+a)=h e (23).

Let us now investigate the motion of a column of liquid
contained between the planes whose original distance was dz; and
let us suppose that in addition to gravity, small horizontal and
vertical disturbing forces X and ¥ act. Since the vertical accelera-
tion is neglected, the pressure will be equal to the hydrostatic
pressure due to a column of liquid of height & + 7, whence

k7
p=gp(h+'r;—y)+pfy Ydy ...l (24).
The equation of motion of the stratum is

hd £ %(h-{-'q)-{»Xph .................. (25).

de*
Now from (24),
dp dn f htn dY )
&;_g dm (ZT + Ay, (26);
also in most problems to which the theory applies the last two
terms on the right-hand side of (26) are very much smaller than
the first, and may therefore be neglected, wheunce (25) becomes
aE _
haw =
Substituting the value of 5 from (23) we abtain

def —gh g;f (1 + %)_SJFX ............... .

For a first approximation, we may neglect squares and products
of small quantities, and (23) and (27) respectively become

g(h—}-?])d + Xh.

b= = AEZ it (28),
PE A
A m I X (29).

If X =0, the form of (29) shows that the velocity of propaga-
tion is equal to (gh).
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Stationary Waves in Flouwng Water®.

404. Let us suppose that water is flowing uniformly along a
straight canal with vertical sides, and that between two points 4
and B there are small inequalities, and that beyond these points
the bottom 1s perfectly level. Let a be the depth, u the velocity,
p the mean pressure beyond 4 ; b the depth, » the velocity, and ¢
the mean pressure beyond B: also let f be the difference of levels
of the bottom at A and B.

The total energy of the liquid per unit of the canal's length
and breadth, at points beyond B is

b
%v"“’b+gf ydy +w=3 (" +gb) b+w,

where w 1s the wave encrgy, and the density of the liquid is taken
as unity. At very great distances beyond B the wave motion will
have subsided and w will be zero.

The equation of continuity is

The dynamical equation is found from the consideration that
* the difference between the work done by the pressure p upon the
volume of water entering at 4, and the work done by the pressure
g at B upon an equal volume of water passing away at B, is equal
to the difference between the energy which passes away at B, and
the energy which enters at 4. Whence

+f
pan— qhv= (b +hgh + ) v —(targ [ gy
which by (30) becomes, .
p—g=3"+3gb+wb—tu'—g (S+ia)een.-.. 31).

Now p and q are the mean pressures, and therefore since the
pressure at the free surface is zero,

p=1iga, q=4igb+wb,
where w’ denotes a quantity depending on the wave disturbance;
whence (31) becomes

M (= 0%)/a’b —g(a—b+f)+ (w—w)/b=0...... (32).

If we put
D'=220"/(a+b), M=VD;

1 8ir W. Thomson, Phil. Mag. (5) vol. xx11, p, 353.
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D will denote a mean depth intermediate between ¢ and b, and
approximately equal to their arithmetic mean when their differ-
ence i3 small in comparison with either; and ¥V will similarly
denote a corresponding mean velocity of flow. We thus obtain

from (32)
J—(w—w)gh
1— V39D
If b — a were exactly equal to £, and there were no disturbance
of the water beyond B, the mean level of the water would be the
same at great distances beyond 4 and B; but if this is not the
case, there will be a rise or fall of level, determined by the formula

_ _ VgD + (w—w')/gh
e S

b—a=

Let us now suppose that between A4 and B there are various
small inequalities; each of these inequalities will produce small
waves whose nature is determined by the form of the functions w,
w'; hence w and w’ will both be small quantities and the sign of
y will be independent of that of w—w/. Now f is positive or
negative according as the bottom at A is higher or lower than the
bottom at B. Ilence if VZ< gD the upper surfuce of the water
rises when the bottom falls, and falls when the bottom rises; and
the converse 1s the case when V? > gD.

Theory of Group Velocity.

405. When a group of waves advances into still water, it is
observed that the velocity of the group is less than that of the
individual waves of which it is composed. This phenomenon was
first explained by Prof. Stokes!, who regarded the group as formed
by the superposition of two infinite trains of waves of equal
amplitudes and nearly equal wave lengths, advancing in the same
direction.

Let the two trains of waves be represented by cosk(Vi—a)

and cos &' (V't —x); their resultant is equal to
cosk (Vi—a) +cosk’ (V't—z)=2cos } (V' —kV)t— (K =k) z}
xecosy {(KV' +EV)t— (B + k).

1 Smith’s Prize Ezamination, 1876; and Lord Rayleigh, ‘“On Progressive
Waves’'; Proe. Lond. Math. Soc. vol. 1x.

11—2
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If ¥ —k, V'—V be small, this represents a train of waves
whose amplitude varies slowly from one point to another between
the limits 0 and 2, forming a series of groups separated from one
anothcr by regions comparatively free from disturbance. The
position at time ¢ of the middle of the group which was initially at
the origin is given by

KV —-kEVit—(k—k)x=0,
which shows that the velocity of propagation U of the group is
U=FV' =kV)/(E — k).

In the limit when the number of waves in each group is
indefinitely great we have &'=k+ 8k, V' = V + 8V, whence

d kV)
V= dk

406. In the preceding investigation we have supposed that
the pressure at the free surface is either constant or zero; we shall
now find the forced waves® produced by a surface pressure which
is equal to

@+ D)+ 0 .
+ {W sin wt.

Let 2+ & z+ { be the coordinates at time ¢ of a particle whose
initial position is (z, z); also let .P denote the time integral of the
velocity potential. Then

d [t ar dP
E—@fod)dt:%) C—E-
Since the motion is small,
—C— _dd
dP d°P
—C—gz—gw——ﬁ ..................... (33),
the density being taken as unity. The equation of continuity is
P d'P
*dECT‘ + W "—‘0 ........................ (34‘),
also if  be the elevation
dP
n = -?l; ........................... (35).

L 8ir W. Thomson, Phil. Mag. (5) zxm1. p. 113.
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A solution of (34) is evidently
v (O =0—2+w) texp{—gf/d (b —2z+)......(36).
Changing ¢ into —, adding and dividing by ¢2 we obtain
¥ (8) =77 [r— 2 4+ b) cos gt 2/40® + (r + 2 — b)! sin gf* /407

x exp { — gt* (b— 2)[4r%}...(37),
where "= (b —zy 4+

It is known from the theory of the Conduction of Heat that
(86) and thercfore (37) is a solution of the equation®

dy  dv_
o e A (38),

whence if

x0=] v

x (1) 1s also a solution of (38). Let us now assume that

t t
P:—j x{t—T) sinw-rd'rz—f v (T)sln o ({—T1)dT,
then since x(0) =

dP— J'x (t — 1) sin wrdr,

= —f Y (t — 7) sin wrdT,
also since
(0= —z+b)r,
2 } ¢
%5 == (r—z+b)}sinwt -—J. A (¢ —7) sin wrdr,

t
=—ri(r—z+ b)i sin wt —f v (¢ — 1) sin wrdr.
‘We thus obtain

dP apP -t o
dz+dt —r{(r—z+b)sin wt

_f e1nw(t~7){ +g‘flx}d

Z
=—7rt(r—z+ b)z7 sin wt.

! This will be proved in Chapter XXIII.
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Whence at the surface where z= 0, we obtain from (33)

By bt
p=0+ {(_.cc“’-k)b—”} sin wi,
The velocity potential is
aP ¢ 0
d;:%:—f sinw E—7m) Y () dr .onnninl. (39).
and the value of ¢ is
_dP_ 1(d¢  (r—z+b) . }
é‘——dz =3 {Et-+—7:——sm Wl ceeiaes (40).

407. Sir W, Thomson has worked out the value of the eleva-
tion % on the assumption that b=0. This assumption undoubtedly
makes the pressure infinite at the origin excepting for values of ¢
which are equal to 2mm/w, but as we shall only investigate the
value of 7 at great distances from the origin, the sclution we shall
obtain will be sufficiently accurate to represent the motion at
such points.

Putting b=0, z=0, we obtain

U () = (2/x) sin (gi/da + 1)
Let g/42z = %%, then the preceding equation becomes
¥ () = (2/s)’ sin (K¢ + §m),

whence if
o =k,
' é ke - -
¢=—2(2/g) f sin @ (t — o/k) sin (¢® + ) da,
Kt
= @)t [ [eos (o Bk ~ 3o+ wt+ ]
0
—cos {(¢ + tw/k) —{o’/F — ot + {7} ] do,
’ Be—dulk
- (2/9)*] cos (A" — 10’ + ot + 1) dA,
k

—}w)/
kt+iw/k

- (2/9)} /

Let « be very large, and let ¢ be so large that it —3w/k 1s a
large positive quantity. Then £ is small and the second integral
vanishes, whilst the limits of the first are «© and — w0, whence
remembering that

@

j (sin or cos) A2dA = (L)},

cos (A — 2B —wt+Fm)dhi (41).
julk
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we obtain
b= (27r/g)i cos (0’x/g — wt),
and
n=w (2m/g")} {sin (o #/g — 0t) — (9/270* )} sin o],

=w (27/P) sin (0&/g — @) eeriiieeieieeeeeeaieian (42),

approximately, since the first term is large compared with the
second.

Hence

A =27g/e’, U=glo=(gr/2m)

We therefore see that at great distances from the origin, where
the pressure is approximately constant, the waves are approxim-
ately the same as a procession of free waves.

On the other hand if # is large and ¢ so small that &t — fw/k is
a large negative quantity, both integrals vanish; and wave motion
does not exist. Hence as the time advances wave motion gradually
commences from nothing until it becomes the regular procession
of waves represented by (42) and so continues for ever afterwards.

When « is large, the value of ¢ at the time ¢ = 2wa/g, is

=29y | cos (00— Lo+ ot + §m) d,
0
= (/29)} cos (0’z/g — wt),

and thercfore ¢ has attained half its final value. The point #
where this condition is fulfilled at time { may be called the mid-
front of the procession. It travels with the velocity 4g/w or half
the wave velocity.

Deep Sea Waves.

408. In § 387 we determined the motion of deep sea waves
upon the assumption that the motion is slow enough to allow the
squares and products of the velocities to be neglected. A higher
degree of accuracy might be obtained by substituting the solution
we have already obtained in the terms of the second order, and
proceeding by the usual method of successive approximation. This
mode of proceeding Is however somewhat laborious, and we sball
therefore employ a different method which 1s due to Prof. Stokes',

1 Math. and Phys. Papers, vol. 1. p. 814.
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Since ¢ and 4 are conjugate functions of z and z, we have

dzfdd=dz/dr, and dz/dyr=— dz/dd;

dz\*  (da\* sdz\* | rdz\?
s=(2g) +(ag) = () + (&)
and if we change the independent variables from # and z to ¢ and
Jr, we obtain

Sd¢/dw=dz/d, Sd¢/dz=—dz/dV,
whence v+ uw'=8",
and plp+g(z—Clm)+ (28)™ =0,

where C and m are constants.

whence if

Let us convert the wave motion into steady motion by impress-
ing on the whole liquid a velocity — U, where U is the velocity of
propagation of the waves. If there were mo wave motion we
should have ¢ =— Uz, whence we may assume

z=—¢/U+ m“E:O (Bre"”"”w + 4, efrm‘wy) (sin or cos) rme/ U,
z2=—Y/U+ fm,’lE:o (Bre"m”"/U — A,efmwv) (cos or sin) rmd/ U,

where r 1s a positive integer. If A be the wave length, the value
of z when ¢ is changed into ¢ — 27w U/m must be # +A; whence
m=2n/x. Also if ¥r=0 be the equation of the free surface and
the origin of z and ¢ be taken in the trough of the wave, z must
be a maximum when ¢ == U//m ; whence the cosine terms in z,
and the sine terms In z must disappear. Since z is measured
upwards and Uz=—+r in the undisturbed motion, ¢y must increase
with the depth of the liquid, whence the B’s vanish. - If therefore
we write for shortness ¢ and « for mep/U and mvr/U, the values
of z and z may finally be written

z=—¢/m+m3 A sinrg
z=—/m—m3. A cosre

where the A’s have to be determined. At the free surface p and
4 are zero, whence

(z = C/m)8 +(29)™" =0.
Substituting the values of z and S obtained from (43), we find

(C+ZA4, cosrd)[1—23rd cosrd +2r"A 7+ 23rsA A, cos (1~ s) ]
— Um/2g =0...(44),
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where in the term in the square brackets, each different combina-
tion of the letters r and & is to be taken once.

This equation may be arranged in the form
B,+ B, cos¢p+ B,cos2¢p+... =0,
and since it bas to be satistied independently of ¢, we must have

B,=0, B,=0, B,=0&C...c.cc0ecurrer... (45).

Let A,=05; then we shall make the assumption which will be
justified by the result, that A _is a quantity of the order &", and
we shall endeavour to obtain an approximate solution as far as the
terms involving 5°. Equations (45) written out at full length as far
as the terms of the order * become,

CA+A+44) - A7+ 244,— 247 — Um/29=0)
C(—24,+44.4,+124,4)+ A, + A —34.4,
+64. 4743474, —54,4,=0
C(—44,+64A4)+4,—A7+347°4,—44.4,=0
C(—64,+84 4)+A,—34 4, +4A74,+24 A}
—-54,4,=0
—80A,+4,—44,4,—247=0
—10C4,+4,-54,4,-54,4,=0 |

> (46).

In order to obtain a first approximation, we must reject all the
terms except those of the lowest order in each equation, and we
shall obtain

C=Um/29, C=%, A,==0, A,=351°, 4,=—35b", A,=1250"
whence U?=g/m=g\/2nm as before.
Let us now put
C=%+2 A,=-b -y, 4,=3b"+¢

where z, ¥, 2z are at least of the orders &, &, b* respectively. Sub-
stituting in the second, third and fourth of (46), and retaining
termas of one order higher, we shall obtain

z="0" y=4bt, z=185
whenece —A, =D +4b, A, =40+ 130"

Lastly substituting these values of 4,, 4, in the second of (46)
we obtain

C=4+6"+ 115,
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and hence the final equations are
U= gm™ 1+ 0+ 109,
ma=— ¢ +be ¥ sin  — (B + §b) ¥ sm2¢ + (3% 41 qbs) ¢ ¥ sin 3¢
—8b*c ¥ sin 4 +1251°¢ ™ sin 5¢p,
mz=—r—be ¥ cos ¢ +(b*+ §b*) e cos 2¢ — (3b° +198") ¢ cos 3b
+ %b‘s_‘“’ cos 4¢p — %f{-b“e_w cos 5.
In order to obtain the equation of the free surface, we must
put 4 = 0 in the preceding equations, and we find
mx =—¢p+ bsin ¢ — (b + £b*) sin 2¢ + (§0° + 1§b°) sin 34
— 8b*sin 4¢p + 120b° sin 5¢...(47),
mz=—bcos¢ + (b + £b*) cos 2¢p — (§b° + 138°) cos 3¢
+ 80 cos 4 — 1258 cos 5¢p...(48),
and the equation of the wave profile is determined b_‘).f eliminating
¢ between (47) and (48).

The climination is most casily effected by Lagrange’s theorem,
and gives

—mz+ 6% + 6" = (b + 2b%) cos mz — (40° + 1 b*) cos 2ma + §b° cos 3ma
— 1b* cos 4ma,
to the fourth order. Let b + §b°* =g, then to the fourth order
b=a- §a°,
and shifting the origin su as to get rid of the constant term, the
equation of the wave profile may finally be written

mz=— a cos mz + (a* + 1%a*) cos 2max — §a’ cos 3mz 4 Lat cos 4mae.
Now the equations of a trochoid are given by the equations
mx=af+ Bsinl, —mz=Lcos @+r.

In order that  may have the same period in the trochoid as in
the wave profile, we must have « =1. We then obtain by deve-
lopment of the fourth order, and choosing v so as to make the
constant term vanish

—mz=(B— 38°) cos ma — (18* — 1/3*) cos 2mz + 35° cos Smx
— 18" cos dmux,
and putting 8 — 5" =a, we obtain to the fourth order

mz= —a cos mz + (yo* + ') cos 2mx — Ju® cos 3mw + fa’ cos dma.

IRIS - LILLIAD - Université Lille 1



DEEP SEA WAVES. 171

Hence if z,, 2, denote the ordinates of the wave and trochoid
respectively
z,— 2, = §a*m™ cos 2mz.

Hence to the third order the form of the wave profile is a
trochoid, but if we proceed to the fourth order we see that the
wave lies a little above the trochoid at the crest and trough, and a
little below it at the shoulders.

Prof. Stokes has also applied the same method to investigate
the form of the waves propagated in a liquid of finite depth, but
the results are naturally more complicated, and we must therelore
refer the rcader to his Collected Papers™.

409. Professor Stokes has also shown? that in addition to the
wave motion, the liquid has a slow motion of translation in the
direction of the wave, which rapidly diminishes with the depth of
the liquid. Lord Rayleigh® has given an elegant geometrical proof
that this motion is a conscquence of the absence of molecular
rotation, and is independent of the condition of constant pressure
at the free surface,

Let AB be the surface from crest to hollow, and CD a
neighbouring stream line. Let us suppose the motion is made
steady by reversing the velocity of propagation, and draw two
stream lines A’B’, ("I at such a depth that the steady motion of
the liquid is uniform, and so that the fow across 4°C" is equal to
the flow across AC. Then we have to show that a particle at 4
will take longer to reach B, than a particle at A’ takes to arrive at
B'. Now if o denotes the small breadth of the tube of flow AD,
and V the velocity, the total stream is ov and is constant and

1 Vol. 1. p. 320.
2 Math. and Phys. Papers, vol. 1. p. 207.
3 Phil. Mag. April, 1876,
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equal to K suppose. The time occupied by a particle in travelling
from A to B is therefore

t=[v'ds=K"fods= K" area 4D,
Hence if ¢ is the time from A4’ to B,
t =K'area A'D’,
and since K is the same in both cases,
t:¢ area AD:area A'D,
and it remains to show that area AD > area A'D’.

Let us draw a series of equipotential lines ¢ and ¢ + d¢, such
that the small spaces between them and 4B, CD are squares.

Then PQ=d¢/v, PP =dyr/v and therefore d¢ =dvyr: also
pg=dd/v, pp'=dy'[v', but since the flux across AC, and A'C" are
the same, dyr’ = dyr = d¢, whence pg = pp” and therefore the equi-
potential lines divide A'D’ into squares. Now if a line be divided
into a given number of parts, the sum of the squares of all the
parts will be a minimum when the parts are all equal’. Hence
the space AD is greater than if the squares described on 4B were
all equal, and therefore a fortiori greater than the space A'D’
which consists of the sum of the squares of equal parts of a shorter
line.

Hence it follows that when a particle starting from A’ has
arrived at B’, another particle starting at the same moment from 4
will fall short of B. Thus in a progressive wave, the water near the
surface has on the whole a motion of translation in the direction in
which the waves advance.

1 This may be proved as follows. ILet
U=z +y*+u?, A=z +y+u,

where X is the length of the line; z and y the lengths of any two parts; «? and u
the sum of the squares, and the sum of the remaining parts respectively, then

A - U?=2zy + 2u (z +y) - u?
=3 =+ -4 (@ -y)P+2u (g +y) -2

Hence A?— U will be & maximum, and therefore I'? will be 8 minimum wheun
z=1y.
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SectIoN IL

The Solitary Wave.

410. The theory of irrotational waves of permanent type
depends upon the assumption, that it is possible for an infinite
train of similar waves to follow one another without suffering
degradation of form. The experiments described by the late Mr
Scott Russell” indicate that it is possible for a single wave to be
propagated along the surface of a liquid, and such a wave is called
by him a solitary wave. He states that the length of the wave is
about six or eight times the depth of the liquid, and therefore
partakes of the character of a long wave; but that it possesses
several peculiarities, the principal of which are that a positive
wave or elevation is capable of being propagated to a considerable
distance without breaking up, whilst a negative wave or depression
. 1s Incapable of being propagated to any considerable distance with-
out becoming dissipated.

The mathematical theory of the solitary wave has been in
former times the subject of considerable controversy; it was
discussed by Earnshaw? in 1845, but his theory has not been
regarded as satisfactory. A satisfactory approximate theory was
given by Boussinesq® in 1871, and a very similar one was dis-
covered independently by Lord Rayleigh* in 1876. We shall now
proceed to consider the theory of the latter.

411. We shall suppose that the motion is in two dimensions,
and that the bottom of the liquid is horizontal. Let the origin be
taken in the bottom of the liquid, and let the axis of x be
measured in the direction of propagation of the wave, whilst the
axis of ¥ Is measured vertically upwards. Let [ be the depth of
the liquid when undisturbed, ¢’ the height of the crest above the
bottom of the liquid.

1 Brit. Assoc. Rep. on Waves, 1844.

? Trans. Camd. Phil. Soc. vol. vim. p. 326.

® Comptes Rendus, vol. Lxi1.

4 Phil. Mag. Ap. 1876; See also Airy, Tides and Waves; Stokes, Brit. Assoc.
Rep. on Hydrodynamics, 1845.
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Since the motion is irrotational, the current function +r satisfics
Laplace’s equation, and we may therefore put

y=sin(y ) F@) =0f @ = LS @+ L 17 @)= (49)

where f(z)=F" («). Since the motion is steady, the pressure is
determined by the equation

plp+gy+3 (W+)=4.
Putting A — p/p = 1w, this becomes

W= =297 i (50).

At the free surface = must be constant; if therefore we can
determine ¥ as a function of z, such that = shall be constant at the
free surface, this relation will determine its form.

Since v’ + "= (1 + ") w* where ¥’ =dy/dz, (50) may be written

yu=(=y"— 295"} /(L + g™
Now

a 5 2 3
yu=y%‘§=yf_%f"+%fw_ ...... - ”t“/l+§23i...(51).

The function f is the value of % at the bottom of the liquid
and is very nearly constant, and therefore f(z) varies very slowly;
hence the differential coeflicients of f(x) are small quantities.
Also if the curvature of the wave profile is small, 4/, y”... will also
be small quantities, and we may therefore eliminate f between (49)
and (51) by successive approximation. Since 4 is constant at the
free surface, we have writing R =+ /y,

f= R, fl/ — R'!;

whence to the second order
S=R+3/ R — 'RV +
S =R"+{y'RY -3 (y'y +y") R+ §y"yR”,
SV =RY + &e.

neglecting terms of the fifth order. Substituting in (51) we
obtain

1 ” 1 Iv " 2 1 " , /1 it
S PPN i B TPy Bl u® ) =2 —
147 () i (e w rwr () -2 (3 o
w:f—ﬂ_()la
14+y"
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If we neglect terms of the fourth and higher orders, this
equation becomes,

VA+yH 1+ oy - 29" = ey’ — 299,

or V(-39 +3yy") ==y’ - 295"
The above equation may be put into the form
ay

= (Y -2 vy h)
Multiplying by 2dy*dz and integrating we obtain

1T(dylda) = Cy + (wy’ — gy )"+ 1o, (52).

Let u, be the velocity of the liquid in the undisturbed parts of
the strecam, then

and = udy=ul.......oooiiinn. (54).
whence (52) becomes
Y dy/dz)? =1+ Cy + o (uy' + 29D /u,T — gy’ ful......(55).

In this equation ¢ and I arc given, whilst (' and , are at our
disposal ; hence the cubic expression on the right hand side of
(55) may be made to vanish when y=17 and y=1I" If we substi-
tute these values of ¥ and equate the right hand side of (55) to
zero, we shall obtain

US =gl (56),
—Cl=2+glfu'=2+ .
Substituting these values of , and C, (55) becomes,
(dy/dzy +8(y—D(y = 1)/1*U'=0 ............ (37).

From this equation it appears that there is only one maximum
or minimum value of y besides !; and since y — 1 is necessarily
negative, the surface condition cannot be satisfied to this order of
approximation by a solitary wave of depression.

Differentiating (5?() we obtain
Tyjds' =4 (y — 1) (@ + 1~ 3y)/it,

which shows that the points of zero curvature occur when y =1
and y=%(2'+0)=0{+%(—1I). Hence the curvature changes
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sign at two-thirds of the height of the wave above the undisturbed
level, and at this point only.

If we put I'—1=8, y— =19 and integrate (57), we shall
obtain

n = B sech }z (3B/F)},

the constant being chosen so that # =0 when n=/. This equation
determines the form of the wave profile, and it therefore follows
that when the depth of the liquid and the velocity of propagation
are given, there is only one solitary wave. On either side of the
greatest elevation the height diminishes indefinitely, but does not
absolutely vanish ; hence there is no definite wave length.

If we regard the wave as ending where the height is one tenth
of the maximum, we obtaln

zfl=2. 141 +1B).
The shortest wave length iz when 8=17 and then
2/l = 5'96.

If8=11; 22/1=84; and if 8=}, 22/l =126. These results
agree with Scott Russell's observations.

The form of the wave is shown in the figure, and its velocity of

propagation 1s given by (56), which is the value deduced by Scott
Russell from his experiments.

Another of Scott Russell’s observations is now readily accounted
for .—He found that the wave broke when its elevation above the
general level became equal, or nearly so, to the depth of the
undisturbed liquid. If V be the velocity of the liquid at the crest
of the wave we obtain from (50)

Vi=a 29,

=g (2 -1,
by (563) and (55); which requires that [ >0'—1 When therefore
the wave is on the point of breaking, the water at the crest is
moving with the velocity of the wave.
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Secrion III.

Capillary Waves.
412. We must now consider the third class of waves, which
are principally due to capillary forces.
Let T be the surface tension of the liquid; 8p the excess
of pressure in the liquid just below the free surface; then
8pjp +gn+¢=0.
But if 7, ' denote the radii of curvature of two vertical sections
in and perpendicular to the direction of propagation of the waves

o d&’'n  d'p
—p=T () =T (3 1+ 0).

since the curvature is supposed to be small at the free surface;
whence

&' d%
T(da:fﬂrd) gpn + po.

Differentiating with respect to {, and remembering that
7 = de/dz, and that V¢ =0, the above equation becomes?
d d
- Td?-gp d(b —gel™ &,
do  Ti d'P
or Z—E+ gp ’dZ*— ..................... (58),

where [ is the length of the simple equivalent pendulum.

413. We shall now apply the preceding result to determine
the capillary waves propagated along a canal of depth A.

Assuming as usual that
¢ = A cosh m (z + k) cos (mz — nt),
and substituting in (58), we ohtain
mlsinh mh + Tlng™p™ sinh mh = cosh mh.
Whence U?=n’/m*=g (m™ + T'm/gp) tanh mh,
= (g 27 + 27 T[pA) tanh 27wh/N ...... (59).

Equation (59) determines the wave length corresponding to a

given veloeity of propagation.

1 Kolacek, Fortschritte der Mathematic, 1878.
B. IL 12
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Let us now suppose that the depth of the liquid is so great
that tanh 27h/A may be replaced by unity. Eyuation (59) becomes

9pN —2mp U A+ 47T =0.........ceen, (60),

whence A=wlUg + mg? (U~ 4Ty/p).

In order that wave motion may be possible both values of A
must be real, which requires that

U=or>4Tg/pl

Hence the minimum value of U is (4Tg/p)!, and the corre-

sponding value of A i1s 27/(T/gp).

Sir W. Thomson defines a ripple to be a wave whose length is
less than the preceding critical value of AL

414. In § 389 we have considered the propagation of waves at
the surface of separation of two liquids which are moving with
different velocities. We shall now consider the production of
ripples by wind blowing over the surface of still water.

Let V be the velocity of the wind, which is supposed to be
parallel to the undisturbed surface of the water, o the density of
air referred to water.

Since the changes of density of the air are very small in the
neighbourhood of the water, the air may approximately be regarded
as an incompressible fluid, whenee if the accented letters refer to
the water, the kinematical conditions at the boundary give

¢ =Ve+a(U—V)e™cos(ma—ni),
¢ =— alUe™ cos (ma — nt),

where U is the veloeity of propagation of the waves in the water,
and n =a sin (mz — nt) is the equation of its free surface.

The dynamical condition at the free surface is

Now
Splo+ygn+ ¢+ {V—am(U—V)sin(ma—nt))*— V=0,
or Sptaci{g+n(U—=V)—mV(U~—V)}sin(mz—nt)=0.
Similarly
p'+ (g — Un) asin (ma —nt) =0,

1 Phil. Mag- (4), vol. xLiL.

3
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whence (61) becomes
gle—1D)+aem(U=VY+mU*—Tm*=0 ...... (62)

Let W be the velocity of propagation of waves in water when
there 1s no wind, then

_ g (1 —a)+ Tm? y
W_\/— A — (63),
or T —m (1 +a) Wt g(1—a)=0.

The coudition that the roots of this quadratic in m should be
real is that

7 2
W =or> JTg(l—0o)ooie. (64),

which determines the minimum value of W. This value of W is

less than (47g)}, which shows that when water is in contact with
air, it is possible for ripples to travel over its surface.

Substituting the value of W from (63) in (62) we obtain
M+a)U*—=20VU +eV*~(1+0a) W*=0,

oV T )
Wheuce U: m i /\/{IV - (1 -{—0')72} ............ (6{))

We shall now discuss this equation.

Case (i). V< Wyl +a)lo

In this case both values of U are real, and one of them is
positive and the other negative; hence waves can travel either
with or against the wind. Moreover since the positive value is
numerically greater than the negative value, waves travel faster
with the wind, than against the wind; also the velocity of waves
travelling against the wind is always less than W.

Case (11). V> W/ +a)fo.

In this case both values of U if real, are positive ; hence waves
cannot travel against the wind.

Case (11). When V< 2W, the velocity of waves travelling
with the wind is > W; when V> 2 W this velocity 1s < W; and
when V'=2W, the velocity of waves travelling with the wind 18
undisturbed.

Case (iv). If V> W (1 +a)a?, both values of I are imaginary
which shows that the motion is unstable.

12- -2
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Waves in Ice of Uniform Thickness Resting on Waiter.

415. If the upper surfuce of water be covered with ice and 1if
any disturbance be given to the water, the elasticity of the ice will
cause waves consisting of lateral vibrations to be propagated along
1t,

Let L be the flexural rigidity of ice, o the mass of a section of
unit of area, the equation of motion of the ice is

; d* -
gl = —L azi+ 8}) ..................... (bs)

Let E be Young’s modulus of elasticity, e the thickness of the
ice, then neglecting the slight difference between the density of
water and ice, we have

L =1e"E o=ep
Let the velocity potential of the water be
¢ = A cosh m (2 + &) cos (mz — nt),
then f=— Amn™ sinh mh sin (mz — nt),
and Op + gpt + pAn cosh mh sin (ma — nt) =0.
Substituting in (66) we obtain
(e + m ™ coth mh) UY = {4¢’m’E + gp/m?,
re _ 2 ENp + g)\)2m
27e/A + coth (2wh/\)’

It may be stated that ice was the first substance for which an
experimental determination of Z was attempted (see Young’s
Lectures on Natural Philosophy).

or

Further examples of waves in water covered with ice will be
found in Prof. Greenhill’s Article on Waves.

In addition to the papers referred to in the text, the reader
may consult the following authorities.

Cauchy, Mém. des Savants étrangers, vol. 1. 1827,

Polsson, Mém. de UInstitute, vol. 1. 1816.

Green, Trans, Camd. Phil. Soc. 1838.

Kelland, Trans. Roy. Soc. Edin. vols. x1v. and xv.

Lord Rayleigh, ¢ On Progressive Waves,” Proc. Lond. Math. Soc. vol. 1x.

Lord Rayleigh, ‘“The Form of Standing Waves on the Surface of Running
Water,” Ibid. vol. xv.
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Lord Bayleigh, “ On the Vibrations of a Cylindrical Vessel containing Liquid,”
Phil, Mag, June, 1883.

Sir W, Thomson, *On Stationary Waves in Flowing Water,” Phil. Mag. (5),
vol. xx1. pp. 353, 445, 6517 ; and vol. xx11r. p. 52.

Sir W. Thomson, % On the Front and Rear of a Free Procession of Waves,”
Ibid. vol. xxmm1. p. 113,

Sir W. Thomson, “On the Waves produced by a Single Impulse in Water
of any Depth,” Ibid. p. 252,

Greenhill, ©* On Wave Motion in Hydrodynamics,” Admerican Journal of Mathe-
matics, vol. 1x.

An seccount of the principal memoirs on wave motion is given by Saint-Venant,
in an article, “De la Houle et du Clapotis,” Annales des Ponts et Chaussées,
May, 1888.

EXAMPLES.
1. A liquid of infinite depth is bounded by a fixed plane

perpendicular to the direction of propagation of the waves. Prove
that each element of liquid will vibrate in a straight line, and
draw a figure representing the free surface and the direction of
motion of the elements, when the crest of the wave reaches the
fixed plane.

2. Prove that the velocity of propagation of long waves in a
semi-circular canal of radius @ and whose banks are vertical, is

3 (rga)”

8. If two series of waves of equal amplitude and nearly equal
wave length travel in the same direction, so as to form alternate
lulls and roughness, prove that in deep water these are propagated
with half the velocity of the waves; and that as the ratio of the
depth to the wave length decreases from o to 0, the ratio of the
two velocities of propagation increases from $ to 1.

4. If a small system of rectilinear waves move parallel to and
over another large rectilinear system, prove that the path of a
particle of water is an epicycloid or hypocyeloid, according as the
two systems are moving in the same or opposite directions.

5. If a cylinder is bounded by » =q, and € =0, @ = =, prove
that if » 1s the least number of oscillations per second in a liquid
of depth % in the cylinder,

¢ = A (kr)™* {(kr)™ sin kr — cos kr} cos §6 cosh kz cos 2mnt
where (8 = 2k*a®) tan ka = 8ka, n*=ak tanh kh/4m".
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6. A fine tube made of a thin slightly elastic substance is
filled with liquid; prove that the velocity of propagation of a
disturbance in the liquid is (A@/ap)!, where @ is the internal
diameter of the tube, 8 its thickness, X the coefficient of elasticity
of the material of which it is made, and p the density of the liquid.

7. A circular canal of radius ¢ and of breadth very small
compared with @, has its sides vertical and contains liquid of
depth d. An isosceles right-angled prism whose length is equal
to the breadth of the canal, floats immersed to a depth b in the
liquid with its parallel edges coinciding with the radii of the canal,
and its bypothenuse horizontal. If the prism be suddenly removed
without disturbing the liquid, show that the velocity potential of
the resulting motion is

gbt/2ma + 2 (Qg);"a,é/'rrng . 2:7 sin® nb/20 . (sin an/u)_;"
x coshn (z + d)/a . cos nf sin (gna™ tanh nd/a)é 1.

8. A horizontal rectangular box is completely filled with
three liquids which do not mix, whose densities reckoned down-
wards are o,, o,, o,, and whose depths when in equilibrium are
L, L, 1, respectively. Show that if long waves are propagated at
their common surfaces, the velocity of propagation V' must satisfy
the equation

{(U-l/lx + ‘72/12) v _.9(‘73_0-1)} {(o-z/lx + o-s/ls) Ve - g (0-3 —0'2)} =0-22 V.‘/l:'

9. A given mass of air is at rest in a circular cylinder of
radius ¢ under the action of a constant force to the axis; show
that if the force suddenly cease to act, the velocity potential at
apy subsequent time varies as

s J, (kr)
KJ, (k)
where a 1s the velocity of sound in air, and the summation extends
to all values of k& satisfying J, (k¢) = 0, and the square of the
condensation is neglected.

sin kat.

10. Prove that liquid of density p flowing with mean velocity
U through an elastic tube of radius @, will throw the surface into
slight stationary corrugations, of which the number per unit of
length is
g 2paU® = A /(2mall)E,
where A is the modulus of elasticity of the substance of the tube,
and 7 its total tension.
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11. The radius of a solid sphere surrounded by an unlimited
mass of air is given by R (1 + a sin nat), where a is the velocity of
sound in air. Show that the mean energy per unit of mass of air
at a distance 7 from the centre of the sphere due to the motion of
the latter 1s

}n'a’ o RS (1 + 2n%%)/r* (1 + n°R%).

12. A stream of uniform depth and uniform width 2o flows
slowly through a bridge consisting of two equal arches resting on
a rectangular pier of width 25, the bridge being so broad that the
liquid flows under it with uniform velocity U. Show that after
the strcam has passed the bridge, the velocity potential of the
motion will be

(a —b) Uz/a + 2Ua/m*. ZTn_” ¢~ "™ sin marbja cos nwy/a,

the axis of z being in the forward direction of the stream, and the
origin at the middle point of the pier.

13. Prove that the velocity potential
p =4 (A + 27°y*/A) sin 27 (vt — 2)/A

satisfies the equation of continuity in a mass of water, provided
the ratio y/X is so small for all possible values of y that its square
may be neglected. Hence prove that if the water in a canal of
uniform breadth and uniform depth %, be acted upon in addition
to gravity by the hovizontal force Hu™ sin 2 (mt — x/a) where IT
and m are small and o is large, the equation of the free surface
may be of the form

Hk

W cos 2 (mt - CC/CL).

y=k+

14. Prove that in order that indefinite plane waves may be
transmitted without alteration with uniform velocity o in a
homogeneous fluid medium, the pressure and dewsity must be
connccted by the equation

p—p=ap (p, —p ),

where Py, p, are the pressure and density in the undisturbed part
of t/he fluid.
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15. Two liquids of density p, p’ completely fill a shallow pipe;
prove that the velocity of propagation of long waves is
o9l —p) AL’
b (A/p + AP/) 3
where A, A’ are the areas of the vertical sections of the two

liquids when undisturbed, and & 1s the breadth of the surface of
separation.

16. If the upper liquid were moving with mean velocity U,
and there is a surface tension 7, prove that the wave length is
determined by the equation

ATZ N =b (pUHA + p U A) =g (p — p).

17. A rectangular pipe whose faces are horizontal and vertical
planes, is completely filled with = + 1 liquids; show that the
velocities of propagation of waves of length A at the surfaces of
separation of the strata are given by the equation

4, - B,
-B, 4, -B, ... ..
—B, A, =D, ... .. . o ..
—-B, A, —B, .. .. .. |=0,
—anl Anvl_Bn
| .. =B, A4,

where

A, =27\ (p,,,, coth 2wh,, [N+ p, coth 2k /A) = G (P — Pr) L
= 27v*/x cosech 2mh /X

and A, is the equilibrium thickness of the stratum p,.

In particular if p, =ma, and kh, = ma, then the 2n values of
v are included in the formula

v =+ }(ga) sec ymm/(n + 1),
where m is supposed to assume the values 1, 2, 3 ..., n, and A the

wave length is supposed very large compared with na.

18. If there be an infinite filin in a horizontal plane, separating
two heavy liquids of considerable depths, which are flowing in the
same directions with velocities V, V' respectively between two
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horizontal planes, prove that the velocity of propagation of waves
of length A in the direction of the stream, is given by

c(v—V)4d v-V)V=(c"—0c) gA2m + 2xT/A,
where o, ¢’ are the densities of the upper and lower liquids
respectively, and 7' is the tension of the film.

19. If the bottom of a horizontal canal of depth % be con-
strained to execute a simple harmonic motion, such that the vertical
displacement at a distance # from a given line across the canal and
perpendicular to its length, be given by k cos m (# — ot), & being
small; show that when the motion is steady, the form of the free
surfuce 1s given by

y=h+ Lvacosm(a;—vt)
' —gh ’

20. A mass M of liquid is at rest under the action of its
surface tension 7. Show that if it be thrown into smnall vibrations
of the type of a zonal harmonic of order =, the time of a small
vibration will be

3 M L
nn—1)(n+2)T}"

21. Prove that upon a shore sloping at an angle }7 below the
horizon, a possible state of fluid motion is represented by the
velocity potential
¢ =A sinnwt ¢ sin az — /36 1V o510 (2 /3 — )

+ ¥ =2V sin da (2 /3 + a))
and that the corresponding current function is
Y= A sinnt {¢”% cos aw — ¥/3 e ETEV gin Lo (2 /8 — 7)

~ TV 005 La (243 + @)

Prove also that if the motion is small and takes place under

the action of gravity,

ga = n'mr’.

22. A shallow trough is filled with oil and water, the depth
of the water being % and its density o, and that of the oil being
h and its density p. Prove that the velocity of propagation v of
long waves is

g =4 (h+ k) + 3 (b — k) + 4hkp/o}.

(Note that there may be slipping between the oil and water.)
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23. If water is flowing with velocity proportional to the
distance from the bottom, V being the velocity of the stream at
its surface, prove that the velocity of propagation U of waves in
the direction of the stream is given by

(U= VyE=V(U—V)Wgh— W*=0,

where W is the velocity of propagation of waves in still water.

24. Suppose that an expanse of liquid is originally still, and
plane acrial vibrations of wave length A and velocity # in air of
density p’, to impinge on the surface at an angle 8; prove that
when the motion of the system bas become periodic, we may
represent the displacement of the incident and reflected waves of
alr, and the displacement of the surface by

(i) asin{m(zsin 8+ zcosB) — nt —aj,
(ii) asin{m(xsin B—zcos B)—nt +a},
(1) b cos (mxsin B — nt),
respectively, where m = 2mw/\, n = 2mre/A: prove also that a the
change of phase is given by
p cot o= (2;:)?' sin® 8 + 29;;) cos 8 — p cot B coth (2whX™ sin B),

where 7T 13 the surface tension.

25. Prove that with cylindrical coordinates =, 8, 2, a possible
state of liquid motion inside a right circular cone of vertical angle
2z 1s given by the velocity potential

¢ = Azw" cos nb cos 2mpt,
where . n = tan® a, and that if the axis of the cone be vertical and

i be the mean depth of the liquid, the frequency p of such wave
motion supposed of small displacement, is given by

4m'pth = g.

26. Two liquids of densities p, p’ cach of which half fills a pipe
of which the cross section is a square with a vertical diagonal of
length 27, are slightly disturbed. Neglecting the disturbing effect
of the boundary in the neighbourhood of the surface of separation,
prove that the velocity of propagation of progressive waves along
the pipe is given by the equation

= g (P - o)

- 2m (P ‘f; p75 (ta‘nh or COt}I) ’)nh_
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27. A soap bubble of finite thickness in frec space with air
inside it, is performing small oscillations radially under the action
of its surface tenstion T and the pressure of the contained air.
Prove that the length [ of the simple equivalent pendulum for
vibrations so slow that the contained air may be supposed to obey
Boyle’s law, is given by the equation

SMab’g = 8la T (b* + ab + a’) (20° + ab + o) (b° + ab — a*),
where @ and b are the internal and external radii of the shell and
M its mass.

28. Prove that in the case of standing waves across a canal of
triangular section, whose sides slope at an aungle = to the horizon,
the equation of continuity and the boundary conditions are satisfied
by taking
¢ =cost (g/l)} {sinh m (z — a) cos max — sinh ym (@y/3 + 2 + 2a)

x cos ym (x — 24/3) + sinh dm (2v/3 — 2 — 22) cos ym (z + 24/3)},

the axis of # being measured across the canal, and the origin being
taken in the line of intersection of the sides.

Prove also that if 4 be the depth of the canal, ml, @ and mh
are determined by the equations

ml=tanh m (A —a), 1—m’l*=miy3 cot inhy3,
and one or other of the equations
cosh 3mh = — cos mhin/3 + 2 scc mha/3,
3 cosh 3mh = — cos mhay/3 — 2 sec mhy/3.
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CHAPTER XVIII

STABLE AND UNSTABLE MOTION'.

416. In Chapters XIII. and XIV. we came across several
Instanccs in which vortex sheets and motions involving surfaces of
discontinuity are unstable; and there is a considerable amount of
evidence which supports the conclusion that when no forces are in
action, all motions involving vortex sheets are unstable. No
general proof of this proposition appears as yet to have been given;
and it is important to observe that it certainly is not universally
true when the liquid is acted upon by any external forces. This
may at once be shown by considering the waves propagated at the
surface of separation of two liquids, which when undisturbed are
moving with velocities V, V.

Putting &, &’ for m coth mi and m coth mh', we have shown in
§ 391 that the velocity of propagation is given by the equation

ko (V=UP+kp (V-Uf=g(ps—0p)

The condition of stability is that the roots of this quadratic in
U should be real, and is therefore

glkp+kp)(p—p) —kkpp’ (V- V)*>0.

It therefore follows that if p > p', that is if the lower liquid 1s
denser than the upper liquid, the motion may be stable; but if no
forces are in action so that g =0, the motion will be unstable.

1 This chapter is taken from the following three papers by Lord Rayleigh,
< On the Instability of Jets,” Proc. Lond. Math. Soc. vol. x.

“On the Stability or Instability of certain Fluid Motions,” Proc. Lond. Math.
Sac., vols. x1. and x1x.
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417. If no forces are in action and both liguids are of
unlimited extent so that A =4A"= o, the equation for determining

U becomes
p(V=Ul+p(V=Uy=0.ccccccc.ccuur.. (1).

The initial form of the surface of separation is 5= @ sin mx,
where m is a real quantity, and its form at any subsequent time is
determined by the equation 5 = a sin (mz — nt).

The roots of (1) are
_pV+p V' 0 Jpd (V=)
p+p '
hence U and therefore n is a complex quantity. Putting
U=a+:8=n/m,

and rejecting the imaginary part, the equation of the surface of
separation becomes

b?

1= b sin m (z — at) cosh mpBt,

which indicates that the motion is wunstable. The rejected
imaginary part shows that if the initial form of this surface was
n=>bcos mz, its equation at any subsequent time would be

n=">bcosm (x — at) cosh m@Gt.

There are three cases worthy of notice.

(1) If p=p,, V==V, so that the densities of the two liquids
are equal, and their undisturbed velocities are equal and opposite,
a=0, 3=V, whence

7 = b cosh m Vi sin ma.
(i) Let p=p,, V=0, then a=3V, 8=13V, and
n=>0coshimVtsin m (x — LV7),
hence the waves travel in the direction of the strecam, and with

half its velocity.

(iti) Let p=p’, V= V. In this case the roots are equal, but
the general solution may be obtained by putting V'= V(1 +4)
where y ultimately vanishes; we thus obtain

n=>bsinm (x — Vi) cosh 3 Voyt — ib cos m (z — Vi) sinh $ Vit
Putting 4:bVy = ¢, and proceeding to the limit we obtain

7 =">bsin m(x ~ Vt) —ctcos m (z — Vi).
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If 5 =0, when ¢t =0, we must have mbV =— ¢, whence
g=>0bsinm (x — Vt)+ dbm Vi cos m (x — V).

The peculiarity of this solution is, that previously to displace-
ment there is no real surfuce of separation at all. Hence if we have
a thin surface such as a flag, whose Inertia may be neglected,
dividing the air, it appears from the last equation that (neglecting
changes in the density of the air) the motion of the flag will be
unstable, and that it will flap.

418. We shall now investigate the motion of a jet of density p
and width 2/, which is flowing with velocity V, and is surrounded
by fluid of density p” which is at rest.

In solving problems of this class, it is often convenient to
employ complex expressions, and in our final results to reject the
Imaginary parts; we shall thercfore suppose that both the surfaces
of separation are represented by an equation of the form

vmztunt

n = Qe + L.

This is equivalent to supposing that the disturbance is such
that the sinuosities of the two surfaces of the jet are parallel.

Let the velocity potential of the jet be
¢ = (4 cosh mz + B sinh mz) €™ 4+ Ve,
and that of the surrounding liquid on the upper side be
¢ = Qe mz bl
The kinematical conditions at the surfaces of separation give
A =0, B=a(n+mV)/mcoshml, C=— ina/m.
The dynamical condition of equality of pressure gives
pB (n +mV)sinhml— p'Cn=0,
whence p (n+mV) tanh ml + n’p' = 0.

The values of n determined by this equation are always
complex unless p’ 1s zero. When p =g,

—mV tavhml + «mV (tanh ml)t
1 + tanh ml '

When m! is small, we have approximately

n=ae" " o m (Vmlt — ).
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419. The motion of a straight cylindrical jet, whose cross
section is a circle, and which is surrounded by liquid which 1s at
rest, has also been investigated by Lord Rayleigh, and the results
are similar to those already obtained for a two-dimensional jet. If
z be measured along the axis of the jet, the displacement of any
point on its surface can be shown to be

uve

w=ae " cos m (Vt — 2),

where @t = ma’ {log 8/ma+ 7w IV (L))

420. Tt is a matter of observation, that when a jet of water
issues continuously from a small orifice, the continuity of the
liquid ceases at a certain distance from ‘the orifice, and the jet
becomes disintegrated into drops. The preceding investigations
partially explain this phenomenon, since the jet is necessarily
surrounded by air, and we have shown that the motion in such a
case must be unstable. It must however be admitted that the
results obtained are only rough approximations, since we have
supposed (i) that the air by which the jet is surrounded is incom-
pressible and at rest, (il) that the liquid of which the jet is
composed is free from viscosity, (ili) we have necglected the
existence of capillarity at its surface. When we consider the
motion of a viscous liquid, it will be shown that a surface of
discontinuity, if it ever could be formed, would instantly disappear,
aud that molecular rotation would be propagated on either side of
the surface according to the law of propagation of heat. Hence
our results are necessarily imperfect. We shall return to this
point Lereafter; and shall now proceed to investigate the effect of
surface tension on a eylindrical jet moving in vacuo.

421. Taking the axis of z along the axis of the cylinder, let
us suppose that the surface of the jet at time £ is

r=0a + acos kz,
where a is a small function of the time, and « = 27/,
Let o be the area of the surface of the jet included between
unit of length ; then

A
a=2m\" f (@ + acos 2mz/\ + Jadic’ sin® 2mz/A) dz
[+l

=@ (2 IE) e, (2)

approximately. In this expression a is not absolutely constant;
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its value is determined from the. fact that the volume V included
between unit length is constant, whence

Now (2) may be written
o =2ma + {wa’/a+ 3w’ (K’ —1)/a.

Substituting the value of @ from (3) in the first two terms we
obtain

=2 (wV )+ 4mwa? (e — 1)/a.
If o, be the value of o for the undisturbed motion, we have
og—o,=3mF (& —1)/a........ooo L (4).
If T, denote the surface tension, the potential cnergy per unit
of length from the position of equilibrium is
V=—3aT (1 —cea......ocooonninnn. (5).
Since the motion is symmetrical with respect to the axis of 2,
Laplace’s equation 1s '
2
and since ¢ must vary as cos «z, the proper solution is
¢ =AI (xr) cos kz.
The coefficient 4 is determined from the fact that the normal
velocity at the surface of the jet is equal to d cos vz, whence

Axl' (ka)=a,
and therefore
~al {xr)
= Wl () COS K2,

Taking the density of the liquid to be unity, the kinetic
energy per unit of length is

T= @\ f A 2mag (db/dr), dz

o 1, (k)
— Lopotsz o KW/
s kel (ka)’
whence by (5) the equation of motion is

3,2
q(i{“@) — Tla"’(l — ’cp‘a/?) = const.
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Differentiating with respect to £, and then putting 2 = A¢", we

obtain
o T, (1~ k*a”) kal; (ka)
a1, (k) .

If kn > 1, q is imaginary, and the motion is stable; hence from
(4) it follows that if the surface is greater after displacement than
before, the motion 1is stable; but if otherwise the motion is
unstable. Writing xa = «, the instability will be greatest when A
has such a value that ¢ is a maximum,

Sinece

‘7)4 w‘Z
2.4y e gt
the value of ¢*¢®/T, will be found to be

1,801 _ .3 _z 2t 118 192°
bo (1 ’”){1 pto g oo gtart g gty

a;?

)

25
or %{x”—%x‘+— Lac“a > o ? w‘°+...j

1
24 3% “9n% tan g ;5
Differcntiating we obtain

7 100 91
1 —%m“-%—?x‘— 210'.276—{»-211—.3278-*-...: (.
If all the terms but the first three be neglected, the quadratic
gives 2* = 4914 ; and if this value be substituted in the next two

terms, the equation becomes
08928 — 32 + {z2' =0,

whence " = 4858,

The corresponding value of A is given by

A=4508 x 2a,

which gives the ratio of the wave length to the diameter, for the
kind of disturbance which leads most rapidly to the disintegration
of the eylindrical mass. The corresponding number obtained by
Plateau from some experiments by Savart is 438, but as his
estimate involves a knowledge of the coefficient of contraction of a

Jet escaping through a small hole in a thin plate, it is probably
liable to a greater error than its deviation from 4-51.

Further information on the subject of jets in connection with
hydraulic machinery, will be found in Prof. W. C. Unwin’s article
on Hydraulics, in the Encyclopaedia Britannica.

B. 1L 13
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Stability of Steady Motion between Two Parallel Planes*.

422. Let the liquid be bounded by two parallel planes, and be
moving with velocity U parallel to those planes; also let the axis
of # lie in one of the planes, and be parallel to the direction of U.
If the motion is steady, U must be a function of y alone, and the
vorticity &=~ 3dU/dy.

Let a disturbance of any kind be communicated to the liquid,
subject only to the condition that the resulting motion is in two
dimensions; and let U+, v, {+¢ be the component velocities
and vorticity during the disturbed motion. Then

LN S

dt TV e Ty T
du dv , _dv  du
di Ty @y

If we assume that # and ¢ enter into u, », £’ in the form of the
factor exp (unt + Jkz), the preceding eguations may be written

c(n+k0) ¢ =3vd’U/dy", weu +dv/dy =0, 28 = kv —du/dy.

Eliminating « and &' we obtain,

2 0) (dj) _,h) L)

423. We must now determine the boundary conditions.

At the surfaces of the bounding planes we must have »=0.
It may also happen that the vorticity in steady motion suddenly
changes as we cross some plane, and we must thercfore find the
conditions to be satisfied at the surface of separation. Denoting
by A the difference between the values of the quantities on either
side of this surface, the kinematical condition is

The dynamical condition which is the analytical expression for
the fact that there must be no discontinuity of pressure, may be
obtained by integrating (6) across the surface; we thus obtain

n dv dU

! Lord Rayleigh, Proc. Lond. Math. Soc. vols, x1. and x1x.
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424. We shall now apply these equations to determine the
copditions of stability of a mass of liquid bounded by the planes
y=0,y=a+b+c, and which consists of three layers of thickness
a, b, ¢, the vorticity being constant but different throughout each
layer.

Let U=0 along Oz, and let U7, U, be the values of U at the
planes y=a, y=a +b. Since {is constant, &'U/dy* = 0, hence if
n/k+ U 1s not zero, (G) becomes

d™v .
dy; — kv = 0,
the solution of which is
v=A cosh ky + B sinh ky.

Since v =0 when y =0, we must have at the first layer

v=v, =sinhky.......o..ooon 9),
in the sccond
v=v,=v,+Msinhk(y—a)............... (10),
and in the third
v=v,=v,+ Msinhk(y—a—-0)............ (11).

The condition that v =0 when y =a + b + ¢, gives
M,sinhke+ M sinhk (b +c)+sinhk (a+b+¢)=0...(12).
If we denote the values of AdU/dy at the two surfaces by A,
and A, respectively, the condition (8) gives
(n+kU)YM —~A sinhka=0............... (18),
(m+kU)M,— A, {M sinhkb+sinh k (a+b)} =0...(14).
Eliminating M, M, between (12), (13) and (14), we shall find
that n satisfies the guadratic
AW+ Bn+C=0_.......cciiienis (15),
where
A=sinhk(a+b+0)
B=k(U,+U)sinhk(a+b+c)+ A, sinhkasinhk(b+¢)
+ A, sinh ke sinh & (@ +b) § ...(16).
C=kU,U,sinhk(a+b+c)+k U A, sinh kesinhk(a+b)
+ kU A, sinh ka sinhk (b + ¢)+A,A,sinh kasinhZbsinh ke
13—2
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The condition that the roots of (15) should be real, is that
B —4A(C should be positive. Now,

B —4AC={k(U,— U)sinhk (a+b+c)+ A, sinh ko sinh k (b+c)
— A, sinh ke sinh &k (@ + 8)}* + 44 A, sinh*ka sinh*ke. ... @an.

If therefore A, A, have the samc sign, so that the curve
expressing U as a function of 4 is of one curvature throughout, the
roots are real and therefore the disturbed motion is stable.

425. Let us now suppose that the breadths of the layers ¢ and
¢ are equal, and that their vorticities are equal and opposite, and
that the layer & is without vorticity ; also let ¥ be the velocity of
the middle layer. If we suppose the velocity of the liquid to be
zero at the walls, which we may do without loss of generality, we

shall have
U=U,=V, A =4A,=-"V/a,

1

whence B — 4AC = 4A*sinh*ka,
indicating stability. Also
V [sinh ka sinh k (¢ + b) + sinh’/a}

asinh & (20 + b) ’

which determines the relation between n and k.

n+kV =

426. In the next place let us suppose that the velocities are
equal and opposite on either side of the middle layer; then the
velocities in steady motion, in the first, second and third layers
will be respectively

v=Aly=a)+ V, o=V (1 -2yb+2ab), v,=E(y—a—b)-7V,

also if the velocities at the bounding planes are equal and opposite
we must have A = E. We thus obtain
erz_ Us: v, A1=—Au:f“1f’ .
where p=—A/V—2b6" From (16) it follows that B =0, and
(15) may be written
- n' _ [psinh @sinh y + ksinh (z + 3)]* — £ sinh’z
Bve & sinh y sinh (22 + ¥) ’

where o = ka, y = kb.

From this expression it is easlly seen that #® is positive if u is
positive ; but if p is negative the motion will be unstable unless
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the numerator of the above fraction is positive. Writing — v fur
4, this requires that
{k (coth z + coth L) — v} {k (coth # + tanh 3y) — 2] > 0...(18).
If we suppose that k is very small this becomes
(@ + 207 —v) (et —v) > 0.

Hence if v < ¢™ the motion 1s stable, but if a? + 26" > v >a '},
the motion is unstable.

When v=a™+ 267" the motion is on the border line between
stability aud instability, but it is really uunstable; for proceeding
to a second approximation the first factor of (18) becomes

a™ + 207 — WPa — L' — v,
which shows that the motion 1s unstable. Now if U be the
velocity of the liquid in contact with the plane y =0, U=V — 4a,
whence
p=—(V-U)/Va—2b".
Hence the final condition of complete stability is that
2Ub > Va.

Steady Motion between Two Concentric Cylinders’.

427. We shall now prove that if liquid is in motion between
two rigid concentric circular cylinders, the steady motion 1s stable
provided the vorticity either continually increases or continually
decreases in passing outward from the axis.

In steady motion let V' be the velocity aud w the vorticity,
then V and w are functions of = alone. Let %, V + v be the
velocities along and perpendicular to the radius vector during the
disturbed motion, @ + § the vorticity.

These quantities satisfy the following equations:

dv. vV
2w=w +—T—— ........................ (19),
d¢ de Vd&
G gy T gg= O (20),
d(ru)  dv_ .
dr +d9—0 ....................... (21),
dv v  1du

E’-+T+;d6=2§ .....................

1 Lord Rayleigh, Proc. Lond. Math. Soc. vol. x1.; see also Sir W. Thomson, On
Maximum and Minimurme Energy in Vortex Motion, Phil. M/ag. June 1887.
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Equation (19) is the equation connecting the velocity and vorticity
in steady motion, and (20), (21) determine the changes in the
velocity and vorticity due to the disturbance.

Let us assume that u, v, { are each of the form F (r) exp (k€ + nt)

where % is a real quantity but n may be complex. We have ta
determine the conditions that n may be real. From (20) and (22)

we obtaln
( r (dr r r dr

and from (21)

d(7u)+ o < O.

Putting ru = p and eliminating », we obtain

n V\(dp 1dp kp\ 2pdw
<k+_><067+;g1: 'r">_frdr'
Let a/k =e + 1f, p=a+ 4B, where ¢, f, a, B are real, then
&  1d & do  (a+¢8)
(g trart )(“+ B =2 e i Vv

Whence equating the real and imaginary parts we obtain
da lda ka 2
df Trdr T D‘{“(VH“HBﬂdT

B 1d8 B 2
d7"2+7'dr+ﬁ D‘{B(V+Te)_af}d ’

where IP=(V +re)* +7%*. Multiplying the first equation by
r(3 and the second by ra and subtracting we obtain

Let @ and b be the radi of the cylindrical boundaries, then
since ¢ and B are each zero at the boundaries, we obtain on
integrating between the limits ¢ and b,

o[ g+ G r=o

If dew/dr does not change sign between the limits, every
element of this integral bas the same sign, and therefore the
integral cannot vanish unless /=0; when this is the case n Is real
and therefore the steady motion is stable.
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CHAPTER XIX.
THOE THEORY OF THE TLDES.

428. TeE phcnomenon of the tides is produced, as 1s well
known, by the disturbing attractions of the sun and moon upon the
ocean. This appears to have been first recognised by Kepler, but
the subject was not investigated mathematically until the year
1687, when Newton' applied the law of gravitation to the explana-
tion of the tides. He supposed that the ocean covers the whole
earth, and that it assumes at each instant a figure of equilibrium
under the combined attractions of the earth, sun and moon. In
1738 Daniel Bernoulli® extended and improved Newton’s theory,
and the theory of the former is usually known as the Equelibrium
Theory. This theory although it serves to explain many of the
principal features of the tides, cannot be considered satisfactory;
for the problem is essentially a dynamical one, and consists in
finding the forced oscillations of an ocean which is disturbed by the
attractions of the sun and moon. The solution of the dynamical
problem was first effected by the genius of Laplace®, upon the
agsumptions that the ocean covers the whole earth, and that its
depth is equal to I (1 — g cos®#6), where 8 is the co-latitude, and [
and ¢ are constants, The original investigation of Laplace is
however unnecessarily complicated by the use of spherical harmonic
analysis; it was subsequently presented in a simpler form by Airy?,
but the investigation of the latter contains a criticism on Laplace’s
method of dealing with a certain continued fraction, which occurs

1 Principia, Book 1. Prop. 66, Cor. 19; Book 111. I'rops. 26 and 27.
2 Acad. des Sciences, Paris, 1738,

3 Mécanique Céleste, Book 1v.

4+ Tides and Waves,” Encyc. Met. Sec. 1IL.
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in the evaluation of the semi-diurnal tide in an ocean of uniform
depth, which is now generally considered to be erroneous. Laplace’s
procedure was justified by Sir W. Thomson', and the controverted
point has been fully worked out and explained by Prof. G. I
Darwin? and it is from the papers of the latter that the following
investigation of Laplace’s theory is taken, A third theory, known
as the Canal Theory, which is due to Airy® consists in investigating
the tides In a canal cuinciding with a small circle upon the earth,
which are produced by a disturbing body revolving ahout the earth
in an orbit, whose projection upon the earth’s surface is a different
small circle.

In the present chapter we shall discuss these three theories®.

The Equilibrium Theory.

429. In the equilibrium theory, the earth is supposed to
consist of a solid spherical nucleus, whose density is either uniform
or which is composed of spherical strata of uniform density. The
solid nucleus is supposed to be covered with water, which is
disturbed by the atiractions of the sun and moon; aud it is
required to find the form of the free surface of the water, on the
supposition that at every instant it assumes the form of a surface
of equilibrium under the combined attractions of the earth, sun
and moon.

Since the disturbing attractions of the sun and moon are both
small In comparison with that of the earth, we may consider the
effects of each luminary separately, and the combined effect of
both will be obtained by addiug the effects due te each.

Whether the disturbing body is the sun or moon, the earth
may be supposed to be reduced to rest by including amongst the
forces which act upon the ocean, the reversed acceleration of the

1 Phil. Mag. 1875.
2 «Tides,” Encyc. Brit.; Proc. Roy. Soc. 1886.
3 «Tides and Waves,” Encyc, Met. See. VL.
¢ For further information, see
Bibliographie de UAstronomie, by Houzeau and Lancaster, Brussels, 1882
which contalns a complete list of works upon the subject down to 1881;
Thomson and Tait, vol. 1. part 11.;
Reports on Tides to the British Association;
Thomson, Phil. Mag. 1880.
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centre of the earth towards the disturbing body. This reversed
acceleration is equal to the mass of the disturbing body divided by
the square of its distance from the centre of the earth. We shall
also suppose that the rotation of the earth is annulled, and that
the disturbing body revolves round the earth,

Let E be the centre of the earth, P its pole, @ any point of the
ocean, Let M be the moon, EM =D, ER=r, MEQ =¢; also lot
V be the attraction potential of all the forces which act on the
ocean, and let v be the potential of the earth and the ocean.

Resolving the force upon an element of liquid at @ along EQ),
we obtaln

%lg= 21%2—, cos (m — LQM) + D{ COs €,

M Dcose—r) dv
B (r* + D* = 2Dr cos )l dr
M
(" +D*~2Drcose)

bt r)ﬂ COS €,

whence V=

Mr
yto— g cose+ A...(1).

Since the right-hand side of (1) is a potential function, it is
unnecessary to add a function of ¢ and therefore 4 is an absolute
constant. Kxpanding and neglecting spherical barmonics of a

higher degree than the second, we obtain

V—%{ JZ: P,(cose)+ v+ A.

Let a be the radius of the free surface of the ocean when
undisturbed, @ +¢ its value when disturbed, so that g is the
height of the tide. Then £ may be expanded in a series of spherical
harmonics whose axis is KM ; and since the value of V must be
constant at the surface of the ocean, it follows that ¢ cannot contain

any harmonics of the first degree. Also since the depth of ithe
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occan is small in comparison with the radius of the carth, it
follows from (7) of § 871 that if we neglect harmonics of a higher
degree than the second,

v=Lr+ tmrac (a/r)e,
where £ is the mass of the earth, and o 1s the deusity of the occan.

Hence if p be the density of the earth, the condition that V should
be constant at the surface of the ocean is that

2
-1l
and since fi/a® = g, we obtain
B Mu*P,
")

This equation determines the height of the tide upon the
equilibrium theory, and shows that the form of the free surface at
any period is a prolate spheroid, whose longest axis coincides with
the line joining the centre of the earth with the disturbing body.

Since the density of the ocean is small in comparison with that
of the earth, the quantity o/p is usually neglected, in which case
we obtaln

ge=MaP/D° ... (2).

430. Before proceeding to discuss this equation, it should be
noticed that owing to the fuct that the earth 1s not entirely
covered with water, the value of ¢ requires correction. A descrip-
tion of the necessary corrections, together with tables containing

the results of observations at various ports, will be found in
Thomson and Tait’s Natural Philoscphy, Vol. L, Part 11., §§ 808—
810 and § 848,

431. Let A be the latitude and I the west longitude of @;
also let 7 be the westward hour angle of the moon from Greenwich,
d the moon’s declination. Then since the angle QPR =51 -1, we
obtain from the spherical triangle QPR,

cos € = sin A sin & 4 cos A cos & cos (b — 1),
therefore

P,(cose) =3 (3cos’e~1)
=1(3sin® —1)(3sin®A—1) + 3sin\cosAsin dcosScos(h-1)
+3cos™eos’8cos 2(h—1) .o (3).
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A similar equation holds good when the sun is the disturbing

body ; whence writing 8, IV, &, b’ for the mass, distance, declination

and hour angle of the sun, the height of the tide due to the
combined action of the sun and moon is

\
2—&(1 3sn”>\){l)3(§ os'd—1)+ ,J(Zcos \1)1
il 27\{11 98 cos (h— I} + -y sin 28 z
+4951n 1y sin 28 cos (b — )+Das1n2 cos(h'—1) ]

3 v 2
+ 7}% os)\{Dscos 80052(h—-l)+D,30055 cos 2 (A’ ~1)

\-’r"\-'v"

We shall now proceed to discuss this equation’.

432. Twdes of Long Period. The first line of this expression
does not depend upon A—{ or ' —{, and is therefore independent
of the hour of the day. It depends solely npon the latitude of the
place of observation, and upon the quantities D, IV, 8, & The
quantities D, 8 depend upon the elements of the moon’s orbit
round the earth, and it will be observed that the value of the first
term due to the moon’s action does not depend upon the sigan of §,
and therefore has the same value whether the moon’s declination
18 porth or south. Also since the moon approximately takes
fourteen days to deseribe a semi-circle, the effect of the first term
is to produce a fortnightly tide.

The second term of the first line is due to the action of the
sun; it depends upon the elements of the earth’s orbit round
the sun, and produces a semi-annual tide. Both these tides are
known as tides of lomg period, and are called by Laplace, “ Les
oscillations de la premiire espéce”” They vanish in latitude
+ cosec 4/3.

433. The Dvurnal Tides. The second line of (4) consists of
two terms each of which depends upon the hour angle of the
disturbing body. The first term goes through all its changes
each time the moon’s hour angle inercases by 860°; and the
second term goes through its period when the sun’s hour angle
increases by the same amount. These terms constitute the
diurnal fedes, and arc called by Laplace, “ Les oscillations de la
seconde espéce.”

1 Airy, Tides and Waves.
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Since W' —l=p —I1+h —h, the second line of (4) may be
written

da? . 78 .
ZL‘& sin 2 Héa sin 28 + g,, sin 28’ cos (A" — h)} cos (h—1)

— 5, sin 28'sin (W' 1) sin (3 - l)] :
3a® . i
= ,;; sin 2A [“Dg sin® 234—51 sin® 28’
28M

e
) SD'*sin 28" sin (A" —h)
MD?sin 28 + SD"*sin 28 cuos (b’ — 4)°

This tide alWays vanishes at the equator where A =0, and also
at the poles where A =907, and its greatest value is in latitude 45°

sin 23 sin 28’ cos (&' — h)] cos(h—1+ E),

where tan £ =

Yor any particular point on a meridian, the tide will be highest
when h—1+ E=0, or e+ £E=0. Hence if € is positive, that is if
the moon is west of the place of observation, & is negative, and
therefore if & is positive &' — & is negative. Also tan & and there-
fore £ is always a small quantity, hence just before new moon and
full moon high tide occurs shortly after the moon has passed the
meridian, But if £ is positive € is negative, and therefore just
after new moon and full moon high tide occurs befure the moon
passes the place of observation.

Let us now examine how this tide depends on 8. Since S/D*
is small in comparison with M/D? it follows that tan £ is positive
if 8, &, b’ — h are positive. Now suppose that the moon crosses the
equator, then & will change sign, and £ will change rapidly from a
small angle through 47 and then to an angle not much less than =
Hence e will rapidly change to m—¢, and high water instead of
oceurring when the moon is near the meridian of the place of
observation, will take place when the moon is near the meridian
passing through the antipodes.

434 The Semi-diurnal Tides. The third line of (4) consists
of two terms each of which depends upon twice the hour angle of
the disturbing body, and goes through all its changes every time
the hour angle increases by 180° These terms constitute the
semi-diwrnal tides, and are called by Laplace “ Les oscillations de (v
troisieme espéce.”

IRIS - LILLIAD - Université Lille 1



LAPLACE'S THEORY. 205

This term may be expressed in the form
3u? M? S7 o
g cos’A {F’ cos'd + IL),B cos's

+ % cos’8 cos’8’ cos 2 (A"~ h)} cos{2(h = h) + I},
SD™ cos’d sin 2 (B’ — k)
MD™ cos®8 + SD™® cos™8 cos 2 (A — k)’

For different latitudes this tide has its greatest value at the
equator where A =0, and vanishes at the poles where A =90".
For different positions of the moon it js a maximum when
h'—h=0 or =, that is at full moon and new moon; and 1t is a
minimum when A’ —h=13m or 4, that is when the moon is in

where tan F'=

quadratures.

The time of high water at any place is found by putting
W —h=—3%F or e=—4F; hence when 47w >h"—h >0 and when
3r >k —h>m, € is negative, and therefore between new moon
and quarter moon, and between full moon and three-quarter moon
high tide occurs before the moon has passed the place of observa-
tion; and the contrary 18 the case between quarter moon and full
moon and between three-quarter moon and new moon.

Laplace’s Theory’.

435. The celebrated theory of the tides which is due to
Laplace, deals with the problem by means of dynamical principles.
The problem to be solved, consists in finding a selution of the
general equations of motion applicable to the case of the forced
oscillations of a frictionless liquid, which completely covers a solid
spherical nucleus, and whose equilibrium is disturbed by the attrac-
tion of a distant body. The depth of the ocean is supposed to be
very small In comparison with the radius of the earth, and the
height of the waves small in comparison with their lengths, in
other words the waves are assumed to be long waves in shallow
waler, aud the equations determining the oscillations of the ocean
are obtained ; but the mathematical difficulties of integrating them
are so great, that Laplace was compelled to assume that the depth
of the ocean is proportional to 1 — ¢ cos®d, where 6 1s the co-latitude

1 Mécanique Céleste, Livres 1. and 1v.
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and ¢ is a constant; and in the case of the semi-diurnal tides it is
necessary to suppose that q is zero or unity.

The method of procedure adopted in the present section is
somewhat different from Laplace's, and is taken from Prof. G.
H. Darwin’s' investigations, which were suggested by Sir W.
Thomson’s papers in the Phelosophical Magazine®.

436. We must first find a suitable form of the equation of
continuity.

Let @ be the radius of the earth, v the depth of the ocean, 8
the co-latitude, and ¢ the longitude of any point P on its surface
when undisturbed. Let 6 +u, & +%, a+ v+ D be the co-ordinates
of the same point during the disturbed state. Let @ be a point
near P, whose undisturbed co-ordinates are a+ry, 8 + 86, ¢ + 8¢.

Let Pp, Qg be the meridians, and Pg, Qp the perallels of
latitude passing through P and @ ; and consider a small column of
liquid which is bounded by the bottom of the ocean, the free
surface, and the four planes drawn through % the centre of the
earth and the arcs Pp, pQ, Qg, ¢P respectively.

The volume of this -column of liquid when the ocean is
undisturbed is
@ty sin 0803 ...t ).
The volume of this element when the ocean is disturbed, will
be found by changing € and ¢ into € +u, ¢+, and hence y must
be changed into y+ Y +udy/df + vdy/dé ; whence the volume is
equal to

@’ ('y+b+ud—+vd¢) sin (6 + w) (1 gg) (1+3;) 365 ...(6),

* Proc. Roy. Soc. 1886 ; and Encyc. Brit., Art. ¢* Tides,”
? Phil. Mag. 1875,

IRIS - LILLIAD - Université Lille 1



LAPLACE'S THEORY. 207

equating (5) and (6) and neglecting squares and products of small
quantities we obtain,

d (yv)
de

437. In order to obtain the equations of motion of the ocean,
we shall reduce the centre of the earth to rest, and we must there-
fore include amongst the impressed forces which act upon individual
particles of liquid, the reversed acceleration of the centre of the
earth. This reversed acceleration is equal to the attraction of
the sun and moon upon a unit particle situated at the centre of
the earth. We must also suppose the sun to be revolving round
the earth.

If therefore 7, ', ¢" are the co-ordinates of an element of the
ocean In its disturbed position; w’, w', ¥’ the component velocities
of this element relative to the centre of the earth in the directions
in which r, &', ¢’ increase, the relative accelerations are

d (yu)

b+ i

+ ' +equcot 8=0............ (M.

% —v'8,+ w6, in the direction of &,
¥ —wl +u'l, » , w @
w—ub,+v0 » ” » T
If n be the angular velocity of the earth’s rotation
W=rf, v=r($+n)siné, w=r
=—(¢ +n)sind’, 6,=§, g,= (¢ +n)cos &,

and the precedlng expressions for the component accelerations
become

gt (1) — r (¢ + n)?sin @ cos & + i,

d G : ’ . g . ’ P ’
th{r@) +n)sin 8} +7(d" +n)sind +r8" (¢ + n)cos &,
#—rf —r (¢ +n)sin’ .

But 6 =04, ¢"=¢ + 2, where 8, ¢ are the co-latitude and
longitude of the element in its undisturbed position; also since the
vertical motion is slow in compdrison with the horizontal motion

(since the oscillations are long waves), we may neglect #, 7, and
the above expressions become

— 7 (n*+ 2nv) sin’f 1n the direction of »,
rii —r (n® + 2n9) sin @ cos » » . 0,

risin@+ 2rnucos 8, " » .
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Hence the equations of motion are

‘1;31: (Zv—kr(n + 2n9) sin’f W
:) Zg [jlléf G + 7 (0 + 2n0) sin 6 cos 6§ .o (8),
% % = %g — 7?9 sin®d — 2r°nii sin 6 cos @

where V is the attraction potential of the forces.

According to the theory of long waves explained in Chapter
XVII, the pressure is assumed to be equal to the hydrostatic
pressure which would exist if liquid had no motion, and were
under the action of forces which would preserve the form of its
free surface unaltered. It therefore follows from § 369, or directly
from (8) by putting 4, 4, , ¥ equal to zero and multiplying by dr,
d@, d¢ and integrating, that

/p=V"+ in*r’sin’d + const,,
where V" is the potential of the fictitious forces which would produce
an equilibrium tide of height . By (1) and (2) it follows that
the variable part of this potential is gBr*/a® + E/r, whence
plp = ghr*/a® + E/r + $n’r" sin’d + const.
Now V is the potential of a system of forces which would
produce an equilibrium tide of height ¢, whence
V = ger*/a’ + E/r 4 const,,
and therefore
plp =V =g —r) /o’ + $n°r" sin’0 + const.

Substituting this value of p/p — V in the last two of (8) and
putting au=§, av =7, so that £ 7 sin @ are the co-latitudinal and
longitudinal displacements, and remembering that in the small
terms we may pub 7 =a, we obtain

E- 2m]sm€cos€————(h 2)

-

"riS'ng-l- QW,E.COSB—“ CL-SID_H d¢ ({J“f)

and (7) becomes

ba sin 8 4 j@ (vEsin 0) + c;% (ynsin)=0...... (10).

The solution of these equations determines the oscillations of
the ocean.
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438. The value of ¢ is given by (4), and from this value it
appears that £ consists of three sets of terms. The first set which
in the equilibrium theory gives rise to tides of long period vary very
slowly, and it is known from physical astronomy that these terms
can be expanded in a series of terms of the type 4 cos (8nft+«);
the second and third set respectively involve ¢ and 2¢; it there-
fore follows that ¢ can be expanded in a series of terms of the
type ecos(2nft + k¢ + a), where e is a function of the co-latitude
alone and of the elements of the orbit of the disturbing body.

It also follows from (4) that the tides of long period do not
depend on the longitude, hence £ =0,

e=J (§ — cos’d) }
e=F (} — cos’d) cos (Znft + )
In the lunar fortnightly tide f= g3 approximately.
In the diurnal tides f=} approximately, k=1,
e=Fsin fcosd
e=FEsinfcosfcos(nt+d+a)............ (12).
In the semi-diurnal tides, f=1 approximately, k=2,
e = F sin®d
¢ =KEsin’@cos Znt + 2d + @)uniiennnnnin, (13).

In each of the three preceding equations, the quantity % is a
function of the elements of the orbit of the disturbing body.

We shall therefore assume that,
e=ecos 2nft + ko + a)
b=hcos 2nft+ kdp + )
E=xcos (2nft + kP + 2)
7 =ysin 2nft + kP + a)

where e, h, @, y are functions of the co-latitude alone; and we
shall also suppose that  is a function of the co-latitude alone.

Let m=n'gly, u=h—e
Substituting from (14) in (9) and (10) we obtain
1
zf* + yf'sin 60059:%7? % “
T e (10),

. - _ ku

yf'sin 0+ xfcos § = — dm sin 0 |

B. 1L 14
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d, . |
ha + kyy + cosee 8 a0 (yzsin ) =0............(16).
Solving (16) for # and y, we obtain
: 1
4maz (f* — cos’d) = Z; +kf_u cot & |
cosfdu B b (17).
. . . 8 u
dmy sin 8 (f* — cos’) = — Tgé—STIleJ

Whence substituting the preceding values of z, y and » in (17),
we obtain

1 d (y(sin@du/df +kf " ucosb)

in 6 d0 Fi—cos'd
kv (f cos 8 du/dB + ku cosec 0)

T sin@(f—cos’f) ’
+4ma (u+e)y=0.....ociin, (18).

This is equivalent to Laplace’s equation® for determining the

tidal oscillations ¢f an ocean, whose depth « is a function of the
latitude alone.

Tides of Long Period.

439. Laplace in considering these tides does not employ (18),
but endeavours to show that on account of the friction of the ocean
against its bed, the values of these tides will be the same as the
corresponding values furnished by the equilibrium theory ; and he
assumes that the effect of this friction upon any element of the
liquid, can be represented by a force proportional to the velocity of
that element. One objection to this hypothesis is that it is in
complete disagreement with the theory of the motion of a viscous
liquid, which, as we shall sec in the next chapter, shows that the
effect of friction is to introduce terms of the form V%, 2V%, 1V
into the general equations of motion, where v is a constant depend-
ing on the viscosity of the liquid®

Another objection, which has been urged by Prof. Darwin, is as

follows®. “In systems where resistances are proportional to the

1 Mécanique Céleste, Livre 1v. § 3, (4).

? The problem of Waves in a slightly viscous liguid will be considered in
Chapter XXIII.

3 Proe. Roy. Soc. 1886.
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veloeity, it is usual to specify the resistance by a modulus of decay,
viz., that period in which a velocity is reduced by friction to ¢ or
1+2783 of its 1nitial value, and the friction contemplated by
Laplace is such that the modulus of decay is short compared with
the semi-period of oscillation, The quickest of the tides of long
period is the fortnightly tide, hence for the applicability of
Laplace’s conclusion, the modulus of decay must be short compared
with a week. Now 1t seems practically certain that the friction
of the ocean bed would not materially affect the velocity of a slow
vcean currenl in a day or two, IHence we cannot accept Laplace’s
bypothesis a3 to the effect of friction.”

Laplace’s argument is as follows. He supposes that the co-
latitudinal and longitudinal components of the resistance are
represented by the terms EF, #6sin 6. Now the terms £ 4
depend upon f*, and may be neglected if £is small; hence (9) and
(10) become

€é—2nr’,sin9c059=—‘g diﬁ B -9,
6 sin 6 + 2nE cos 6 =0,
ba sin 6 + ado— (vEsin 6) =0,

since none of the quantities depend upen ¢. From the first two
we obtain

' N g @
(e’+ % cos 0) =~ 0 (1)
Substituting in this the value of £ from (14) we obtain
dn* d
2nf<é’ + ~g cos 0)1:-% o7 h—ve),

whence if f 1s small compared with €, the left-hand side may be
neglected and we obtain h—e=0.

440. We shall now give Prof. Darwin’s solution of this pro-
blem?,

It is assumed that the ocean is of uniform depth; hence
putting B = 4ma/y, p=cos6; and remembering that k=0,
e=J'(§—u*), (18) becomes
d (1—p? du ,
Ty =R u+ B —ph) e L (19).
dp {# ~f" duf { G5 =43 )

1 Proc. Roy. Sor. 18886,

14—2
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The symmetry of the motion requires that u should be an even
function of u, hence at the equator where u=0, we muyst bave
dufdp =0.

Let us assume

;LT}-72 gj: =Bu+Bp'+...B,  p"+
Then
L—p du
W=
d /1—u*du
?@(#“—f@

= Bl”’ + (B‘s — Bl) 'uﬂ + ... (B2u+1 — B2n—1) qunﬂ +

) =B +3(B,—B) ...
+. @+ 1) (B, — B )™+ (20).
Again

d 2 2 8 oan+1
=B fut B )  B = B i 4,
whence u=C~}f B +iB,—f*B)u'+......

+ 9 (Bm—ﬂ _f an—l) L (21),

where (' is a constant. Substituting from (20) and (21) in (19),
and equating coefficients we obtain

C=—4E+BIR) :
BB—B1(1—£2§)+%BE=0 |
R (22).

_ B BB, s _
B,..— B, {1 ~ 2n (2 +T)} S Zn(2n+1) OJ

Hence all the constants C, B,, B,... are expressible in terms of
B,, which is apparently indcterminate.

If we put
—18B ,=18E, or B ,=-2F,

the last of equations (22) will hold for all values of # from 1 to «o.
Writing this equation in the form

B2n+l =1— ‘fQB +J_Br§2ﬁ
s 2n(2n+1) 2n(Zn+ 1) B, °

we see at once that when n is large B,,../B,., either tends to
become infinitely small or it does not.
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If this ratio does not become infinitely small, it follows that the
successive B’s tend to become equal to one another, and so also
do the coefficients B,  — f*B,,,, in the expression for du/du. We
may therefore put

2n+1

du M
@ =L + 1— Pz ’
where L and M are finite quantities which do not vanish for any

value of u, hence
du

J e — —_— 2§_
go="LA-#)

M
(1 —p

Substituting this value of du/df in the first of (17), and
putting k=0, it follows that at the pole where u=1, # and
therefore £ are infinite. Hence the hypothesis that B, /B
does not tend to become infinitely small, makes the velocity infinite
at either pole, which is obviously contrary to the facts of the case;
and we therefore conclude that B, , /B, . does tend to become
infinitely small.

n—1

Writing the last of (22) in the form

_ B
B, _ 2n (2n + 1) e
o= ) 7B "B, (23),
T Pn(@n+1) B,

it follows that this ratio may be written in the form of the
continued fraction

- B Y - SR I
By _ On (2n + 1) n+ 2)(2n + 3) e
Bws— B 7B .

T %uions1) " @nr2@nT D)

This continued fraction gives the value which this ratio must
have when the water covers the whole globe.

Let N, denote the value of the continued fraction, then
remembering that B_ = — 2K, we have

B =2EN, B,=—N,B =—2ENN,
B,=—2ENN,N, &c,
C=—4E +2EN,/8.
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We therefore obtain
b=t B}~ o)
= O+ 4= (B B/ BY W+ (By— B i+ o
or h/E=2N/B—~(1+/N)u+iN (1+N)u
—INN, A+ N b+ (24).
The height h of the tide is equal to Acos (2nft+ a) and the
height of the equilibrium tide 1s ¢ = X (3 — u*) cos (2nft + ).

In the paper from which this investigation is taken, Prof.
Darwin has made some numerical calculations for determining the
values of the fortnightly tide when the depth of the ocean is 3000
and 1200 fathoms respectively; and he finds that in the case of
the oceans upon the earth, this tide is smaller than balf its
equilibrium value, but with a deeper ocean the tide would approxi-
mate towards its equilibrium value.

The Diurnal Tides.

441. In these tides k=1, f=4, e=ZLsinfcosf, also
y=1(1—qcos*d).
In order to solve (18) let us assume
2 2lg\*
u=F,+F, (J> +F, (l) o
ma ma

where the F’s are functions of @ but not of I; substituting in (18)
and equating coeflicients of powers of /, we at once obtain

F =—e=—FEsinfcosf.
To determine F,, put »=F, in the left-hand side of (18), then
v(sin @ du/df +2ucos ) 4Ky {sin 0 (2 cos’d — 1) + 2sinfeos’d}

1 —cos’d 1—4cos’d
= 4Ly sin 0,
also
v (2 cos 0 du/df + wcosec 6) 4Ly {2 cos 8 (2 cos’d — 1) + cos b}
sin @ (1 — cos’d) sin @ (1 — 4 cos*6)
= 4 Ky cot 6,

whence the first two terms of (18) are equal to
8Llg sin 6 cos 8 = — 8lgF,.
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We thus obtain 8lgF, = 8lqF,

I A

therefore F,=F.
Proceeding in the same way it can be shown that
F =F =.... = F,

whence the value of u finally becomes

2l 20N
10:F0{1+7E3+(7ﬁz)+ ...... }
_ e
1 —2lg/ma’
2lqe/ma

7 = == —_-——-— - W
Whence h=e+u 1= 2lgima

The peculiarity of this tide is, that when ¢=0 so that the
depth of the acean is everywhere uniform, the tide vanishes.

If ¢ is not zcro and & 1s positive, e will be positive if the place
of observation is in north latitude. If thercfore the ocean is
shallower at the poles than at the equator, ¢ is positive and there-
fore when the disturbing body is in the meridian of the place of
observation A is negative, and the tide is inverted.

442. The evanescence of this tide applies only to the elevation
of the water; the velocity of the latter which depends on £ and
n does not vanish, Putting v =—e we obtain from (17),

z=Ejm, ysin 6 =— Em™ cos 6.
Confining our attention to a single disturbing body, it appears
from (4) that K'=3Mua®sin écos §/D% ; hence if the declination of
the disturbing body is north, £ is positive, and therefore in north

latitude the motion of the water is from north to south, and the
longitudinal velocity vanishes at the equator.

The Semi-diurnal Twdes.

443. We shall only be able to solve the problem of the semi-
diurnal tides when g=1 and ¢=0. In the former case y = sin’f,
and the height of the tide can be found by a similar method to that
employed in the preceding section.
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We have k=2, f=1, e=Esin’d. Let us therefore endeavour
to find a solution of (18) of the form

21 AW
w= Bt B () + B () + e
where the F’s are functions of § but not of L. We obtain as
before
Fy=—e=— Ksin®f.
To determine F, put u = F, in the left-hand side of (18), then

v (sin @ du/dd + 2ucos §) _

1 — costd —4Elsin*@ cos 6

2y (cossidgugw_-ziljec)osec O __ 4T (1 + cos’d).
Whence the first two terms of (18) are equal to
8Elsin’8 = — 8LF,.
We thus obtain F,=F,

Proceeding in the same way we obtain
F=F_=.... =F,
and the value of u finally becomes

2
e n e 2 () )
ma ma

- %
T 1-2ma’
2le/ma o
whence h=¢+u=— L= Qfma (26).

If {/ma < 3§, it appears that when the disturbing body is on the
meridian, the tide is inverted.

444. Laplace has also solved the equation determining these
tides, when the ocean is of uniform depth, which leads to a
solution involving a continued fraction similar to that of § 440.

Let ¢=0, 8=4ma/l, v=sin 0, so that e= Ev*. Changing the
variable from 8 to », (18) becomes

d’ du 4 .
v (1—17) dT?/L‘ -V (8 — 20" - B Yu+ K =0...(27).
In order to satisfy this equation, let us assume

w=B,+(B,~E)v*+ By + Ba' + ...+ B, v"......(28).
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Substituting the preceding series in (27) and equating coeffi-
cients we obtain
B,=0, B,=F,

and 2n(2n+6)B,, —20(2n+3) B, ,+8B,,=0...... (29).

By means of this equation the values of the B’s can be deter-
mined in terms of B, B, Now B,=FE; also since the motion is
symmetrical with respect to the equator it follows from (17) that »
and therefore du/df must vanish at the equator; hence B, must be
determined from the condition that du/df =0 when 8= }m.
Writing (29) in the form,

B,{M“2n+3_ B B,
B?ﬂd—ﬁ B 2n + 6 2n (2n + 6) Biu-*-i’
it follows that in order that the series should be convergent, it is
necessary that B, /B, should tend to a limit < 1.

Now this quantity tends to become infinitely small or it does
not; in the latter case

B, /" 20438, ( 3) 2

e = AR = 1 — oa._
B, v 2046

ultimately when =z is very large.

Now this is the degree of ultimate convergence of the series for
(1 — )%, hence the series for u is convergent and we may therefore
put
w=A4+B(1-»}
where 4 and A are finite for all values of v.

Differentiating (28) with respect to », the convergence of the
series for du/dy depends upon the value of

(2n+4) B, v/(2n+2) B, .,

Now by (29)

2n+4)B, ., (2n+4)(2n+3) ,
Ot 2 BT (20t 2) (2n 6"

2n+2

=(1- 2)
when n is very large. Now this is the degree of convergence of
the series for (1 — vz)_i; we may therefore put
du i

(YU=O+D(1—V) ’
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where C and D are finite for all values of »; also since
du 03 du
0= g
it follows that at the equator where v =1, du/df = D. Hence the
hypothesis that B,,.,/B,.., does not tend to become infinitely small,
makes dg/dt finite at the equator; we thercfore conclude that this
ratio does tend to become infinitely small as n indefinitely increases.
Writing (29) in the form
B 8

Lonte _.

B, T 20 + Bn — (QnEWBL‘,;jBE,;.‘, ’

=C(1—-v)4D,

it follows that B,,,,/B,, 1s expressible 1n the form of the continued
fraction

§2n+2 __ ‘1@87 l\, 7*<:(n27+ 35)‘8 ;{(\n + 1P+ 3 (n+ 1)“ B Ij&c
B, 2043n 2(n+1¥+3(n+1) 2(n+2)'+3(n+2)

2

Putting N, for the continned fraction, we obtain
B,=E, B,=EN, B,=ENN, &e

The solution of the problem of the semi-diurnal tides in an
ocean of uniform depth by means of this continued fraction was
given by Laplace without explanation; it was attacked by Airy’,
and by Ferrel?, but was justified by Sir W. Thomson® and the
process was worked out and explained by Prof. Darwin® as above.”

445. The following numerical results are given by Laplace.
The quantity m is the ratio of the centrifugal force to gravity at

the equator, and is equal to §é—9; if therefore we put B successively

1 ¢« Tjdes and Waves,” Encyc. Met.

2 «Tidal Researches,” U. S. Coast Survey.

3 Phil. Mag. 1875. 8 ¢t Tides,” Encyc. Brit.

5 The reasoning which lies at the bottom of the investigutions of §§ 440 and 444,
may I think be rendered clearer by the following considerations.

Let us supposc that we have to find the value of a function which satisfics
(i) & given differential equation, (ii) certain other conditions. Then if we seek for a
solution in the form of a series, and determine all the coeflicients so as to satisfy
(i) and (ii), the series will not be the solution we require unless it be convergent.
Similarly if the conditions (i) and (ii) enable us to determine all the coefficients in
terms of a single unknown quantity 4, it does not follow that 4 is indeterminate;
for if by assigning any particular value to 4, the resulting series could be made
divergent, this value would have to be excluded. The quantity 4 is therefore
not really indeterminate, but must be found from, the coundition that the serics
should be convergent.
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equal to 40, 10, and 5, the corresponding depths of the ocean will

1 1 1 , . . o
be 9890° 7225 36195 of the earth’s radius. Alsosince 2= Ev* + 4,

Laplace finds the following values of 4 in the three cases, viz.,
B =40
h=FE (" + 201862 v* + 10-1164 1* — 1371047 »° — 15 4488 v*°
— 74581 — 2:1975,% — 4501 v™ — 0687 v*
— 0082 2™ — -0008 »* —-0001 ™),
B=10
h=E ("4 61960 2% + 82474 05 47238 1° + 0919 p™°
+ 0076 % - 0004 1),
B=5
E=E @+ 75040 + 1566 2" + -0157 »* + 0009 »*°).
From these equations we see that & vanishes when »=0, hence
there is no tide at either pole.

At the equator » =1, and we find
B=40, h=—T4344 &
B=10, A= 112671 F
B8=5h= 19236 F.

When 8 =40, & 1s negative which shows that at the equator
the tide is inverted; but in the neighbourhood of the poles where
v is small, the tides are direct; hence there is a certain latitude,
which is approximately 18° in which the tide vanishes, and which
is therefore a nodal line of evanescent tide. In the other two
cases the tides are always dircct; bence it follows that if the depth
of the ocean is 281W ths of the carth’s radius, or 1200 fathoms, the
tides will vanish 1n latitude 18° and in lower latitudes will be
inverted ; as the depth of the ocean increases the latitude of the
evanescent tide increases until it ultimately coincides with the
equator, and for greater depths the tides are direct everywhere.
This critical depth lies between 1200 and 4800 fathoms.
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Free Oscillations of an Ocean of Uniform Depth.

446. Before passing on to consider the canal theory of tides,
we shall consider the problem of the free oscillations of an ocean of
uniform depth which completely envelopes a sphere’.

Let a be the radius of the sphere, A the depth of the ocean
when undisturbed. Let the equation of the surface of the sea be

r=a+h+ 3T e (30),

where Y, is a spherical surface harmonie, and the 2n + 1 constants
which it contains are functions of the time. Since [[¥,dS vanishes
when the integration is taken over the surface of a sphere, the
condition of constancy of volume is satisfied by (30).

Since d¢/dr vanishes when r = g, the velocity potential ¢ must
be of the form

p=3{n+1)(r/a)" +n(afry™} Z ........... (31),
where Z, 1s another spherical surface harmonie.
The condition that (30) should be a bounding surface 1is

dy, dé

zdt—d7

=0,

when r=a + £ ; whence writing b for a + &, we obtain

e =t (n 1) {(3f)™ = @)™ Zuwrvreonn (32).
The equation determining the pressure is
% - V+ %(f =C0onSt e eiriiiiiine (33),

where V is the attraction potential, and the square of the velocity
is as usual neglected. By § 371, the value of V at the surface is

Y
V ==+ 47pb3, St 1’
K E  4apb
) -3 (F—2n+1> Y.

L Lamb, Motion of Fluids, p. 197. Thomson, Phil. Trans. 1863, p. 608.

IRIS - LILLIAD - Université Lille 1



FREE OSCILLATIONS OF AN OCEAN. 221

where & 1s the mass of the sphere and liquid, and p is the
density of the latter. If o be the density of the sphere

E=4ma’c + §mp (I° — a°).

Whence (33) becomes

p E K 4arpb
b+2<b" on+1 Y.

+3 {(n+1) d/a)" +n (a/b)*"} %Zt" = const.

At the free surface p = const.; whence putting E/6*=g, we
obtain

— ((n+ 1) Bay + (b)) O

d—t" = {g—4mpb/(2rn + 1)} ¥,

3pb® 1 ,
= _ V. ... 34).
71 G e s w e e O
Eliminating Z, between (32) and (34) we obtain

Y, 4
dt’ T

n

Y,=0,
where T',, the period of oscillation, is determined by the equation
12 = oy {(n + 1) (blay +n (/)"

o4 1) () - @y |1 387

- @n+1){o® + p(ba—QSﬁ:] ...(35).

If o < p the value of 7' will be imaginary, and the motion is
unstable. If therefore a spherical nucleus is surrounded by liquid
of uniform depth, the equilibrium will be unstable if the density of
the liquid is greater than that of the nucleus, and the nucleus will

float on the liquid with a portion of its surface protruding.
If @ = 0, (35) becomes
2rt(2n+ 1) b,
n(n—1)g ’
which determines the period of oscillation of a spherical mass of
liquid under the influence of its own attraction.

T =

n

If 2 be small compared with a, (35) becomes
T?=4n"an(n+ 1) {1 -3p/(@n+1)c} gh;

a result due to Laplace.
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The Canal Theory of Tides’.

447. The defect of Laplace's theory when applied to the tides
as they actually exist in the oceans covering the carth, consists in
the circumstance that this theory is based upon the assumption
that the whole earth is covered with water; whereas the existence
of large continents must scriously affect the accuracy of results
deduced from this theory. Another theory has been developed by
Aliry, which is usually known as the canal theory of tides, whose
object is to investigate the tidal motion of water due to the
disturbing influence of the sun and moon, in a narrow canal whose
form is that of a small circle upon the earth.

448. Since the Jateral dimensions of the canal are supposed to
be small in comparison with the radius of the earth, the problem
may be treated as one of two-dimensional motion. Let the
origin be taken in the bottom of the canal, and let the axis of # be
measured along the canal, and that of y vertically upwards. TLet £
be the displacement in the direction of «, of an element of liquid
whose undisturbed co-ordinates are (z, ¥); X, Y the componcnt
forces parallel to the axes due to the disturbing body; A the depth
of the canal, # the height of the tide.

The equations of motion are

B 1dp
E=X- o T s (36),
1dp
=Y —g—= 0 37
K pdy &7

Since the vertical acceleration is small compared with the
horizontal acceleration, 4 may be neglected; also since the
disturbing force is small compared with the attraction of the earth,
the pressure at a given depth will be approximately equal to the
hydrostatic pressure due to the height of the free surface; we may
therefore put

p=gph+n—y)
Substituting in (86) we obtain
) dn
E=X—yg dz

1 Airy, “Tides aud Waves,” Sec, vi. Encyc. Met.

IRIS - LILLIAD - Université Lille 1



THE CANAL THEORY. 223

By § 403, the equation of continuity is

nh=—dEdz............o (38),
i d?
whence E=X + gh d—;: ......................... (39).

In the following applications, X will be of the form
A sin (nt — mz + a), where A and a are constants; substituting
this value of X in (39), and integrating we obtain

. !
£~ oy sin (nt —ma + a) | o
Abm B
whence n= migh — cos (nt — mz +a)

This is the portion of £ which depends upon the disturbing
body, and thercfore constitutes the forced oscillation. The free
oscillations are represented by the complimentary function which
1s obtained by integrating (39) with X =0. '

449. We shall now suppose the disturbing body to be the
moon, which is assumed to revolve with angular velocity », in an
orbit whose projection upon the earth is a small circle, and that
the canal is any other small circle upon the earth,

In the figure let P be the pole of the earth, 3 the projection
of the moon, LL" the small circle described by it round the pole;
let KX’ be the canal, @ any point on it. Let MQ=¢, pQ=a,
pM =3, Pp=ry; also let the angle ApQ=¢, HpQ=20; also let
LPM =nt, PM =1 — 8, so that & is the declination of the moon.
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From the spherical triangle QpM we obtain
cose=cosfsinasin B +cosacosB............ 41).

By § 429, the potential of the forces acting on an element at

Q 1s

M E Mr? »
V=ﬁ+7+A +2—DT(3COS€—1)’
or,

ﬂ 2
=_D1+g+A +£{£3 {8 (cos 8 sin a sin B + cos a cos B)* — 1},

by (41). The force at  along QK is
1
s 31; =— ?%q (cos @ sin a sin B + cos « cos 8) sin € sin B...(42).

We must now express the right-band side of this equation in
terms of ng. We have

sin @ sin 8 =sin Bsin (¢ — KpH)
=sin ¢ sin B cos KpH — cos ¢ sin Bsin Kpli.
From the spherical triangle MpP we obtain

cos KpH = — cos MpP = (cos y cos 8 — sin 8)/sin Bsiny,
whence

sin B cos KpH = cot ry (cos & sin vy cos nf + cos  sin 8) — sin 8 cosec y

=cos8cosycosnE—SIndsinmy ..oooveinvnennn.n. (43),
also sin B sin KpH =sin B sin MpP =cos §sinat...... (44),
therefore
sin 6 sin 8 = — sin ¢ sin 8 sin y + sin ¢ cos & cos vy cos nt
—cosdeosdsinnt.......oue..e. (45).
Again

cos @ sin B = cos ¢ sin B cos KpH +sin ¢ sin Bsin KpH
= cos ¢ (cos & cos y cos nt — sin dsin ) + sin ¢ cos &sin nf,

by (43) and (44); whence

cos @ sinasin B 4 cosa cos 3 = sin 8 (cos « cos ¢y — sin a sin y cos ¢)
+ cos 8 (cos a sin vy + sin a cos ry cos ¢) cos nt

+sin psinacos §sinnl....euiuinns (46).
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The complete solution of the problem 1s obtained by expressing
the value of the disturbing force in the form 4 sin (pt+qd +7)
by means of (42), (45) and (46), then putting ¢ ==/a sin 2, and
finding the forced oscillation by means of (39) or (40).

450. Let us now suppose that the disturbing body lies on the
equator; then §=0, and the right-hand sides of (45) and (46)
respectively become

€08 1y Sin ¢ cos Nt — oS p SIN Nbuvvrernnnnnnnen (4),
and

(cos a sin 7y + sin 2 cos y cos ¢) cos nt + sin a sin ¢ sin nt...... (48).

The product of these expressions multiplied by — 8Ma/D* will
give the disturbing force. This product will be found to consist of
three parts, the first of which is independent of ¢ and therefore
does not produce any tide but simply alters the mean level of the
water. The second part depends upon ¢ and 2n¢; and the third
part upon 2¢ and 2n,

Since ¢ enters in the form 2nf, the tides represented by both
terms will be semi-diurnal ; and we shall first consider the second
part which is equal to

$MaD™® (— cos asin vy cos vy sin ¢ cos 2nt + cos a sin y cos ¢ sin 2nt)
=8MaD® cos asin §y cos v {sin’Lrysin (Z2ni+ ¢) + cos*}ysin (2nt—)}.
In order to find the elevation of the water we must put

¢ =z/asin a, and substitute the preceding expression for X in
(89); we thus obtain from the second of (40)

3Ma’h

= —5—~ Sl 8 a si ? 2nt —
1= g (gh — tn'a” sin'a) sin & cos a sin «y [cos’}y cos (2nt — )

—sin®}y cos (2nt + ¢)},

which represents two waves travelling in opposite dircetions.

If in this expression we put tan 4» = tan ¢ sec ry, it becomes

Ma’h i i 2 2 s2 gk
1= 9TF (gh — 4n’a” sin‘a) sin & cos a sin fy (cos™y cos’d + sin’p)
X €08 (2n8 — Y).ceoeiinnnnn (49).

The preceding value of # shows (1) that the oscillation at the
place of observation goes through all its phases twice during a
complete revolution of the moon, it therefore represents a semii-
diurnal tide; (i1) that at any particular instant, o goes through all

B. 1L 15
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its values as ¢ changes from 0 to 2m; hence the elevation is
different at every point of the canal, and therefore (49) represents
a single wave travelling round the canal with an irregular motion
twice in a tidal day. Since y=0 when the pole of the canal
coincides with the pole of the earth, this tide does not exist when
the canal coincides with a parallel of latitude.

451. The oscillation just considered, constitutes what Airy calls
the jirst semi-dvurnal tide; we must now consider the third part
of the disturbing force, which depends upon 2¢ and 2n¢, and which
constitutes the second semi-diurnal tide. From (47) and (48) the
portion of the disturbing forece which depends on thesc terms will
be found to be,
$MaD™® {sin a cos y cos 2¢b sin 2nt — 4 sin a (1 + cos™y) sin 2¢b cos 2nt}

=3MaD™ sin a {cos'} ry sin (2nt — 2¢) — sin’}ry sin (2nt + 2¢)],
whence the elevation is
_ 3Mad'hsin’a
1= 418 (gh —n"a" sin'a) {
Putting tan y = 2 cos y tan 24 /(1 + cos’y), this may be written,
_ 3Ma’h sin’a
1= 3D (gh — n'a® sin’a)

cos'}y sin (2nt — 2¢) — sin*}y sin (2nt — 24)}.

{£(1+ cos™y)* cos?2¢ + cos?ry sin2¢}F
X €08 (21 — Y )eerinrnineninns (50).

The preceding value of 5 shows (i) that the oscillation at the
place of observation goes through all its phases twice during a
complete revolution of the moon, hence the tide is semi-diurnal;
(i1) that the height of the tide at a point 7 + ¢ is the same as that
at a point ¢: hence there is a double wave on the canal which
travels round the canal with an irregular motion once in a tidal
day.

452. The waves which we have investigated in §§ 450—1
compound into a single wave at the place of observation; for they
are each represented by terms of the form A cos(2nt—+) and
Bcos (2nt —x) which may evidently be compounded into a single
term of the form C cos (2nt — ). The quantities ¢ and Q depend
upon the dimensions and position of the canal; hence the magnitude
of the tide and other special circumstances connected with it cannot
be investigated without a knowledge of their values,
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453. Let us now suppose that the canal is a great circle, whilst
projection of the path of the disturbing body is any small circle.
In this case a=4mr, and the value of sinfsin B is given by (45),
and the right-hand side of (46) becomes

— sin y sin & cos ¢ + cos y cos & cos ¢ cos nt + cos §sin ¢ sin nt...(51).

If the right-hand sides of (45) and (51) be multiplied together,
and the result multiplied by — 3Ma/D?, we shall find that the
disturbing force consists of three parts. The first part is indepen-
dent of n¢, and shows that the mean elevation is modified by the
action of the disturbing body. The second part depends upon 2¢
and nt, and the third on 2¢ and 2nt.

The tides produced by these terms can be investigated in
precisely the same manner as in §§ 450—1, and it will be found
that the height of the tide produced by the terms depending on
2¢ and nt is

_ SMa’h . - M P - g 3
n=— D (agh — ') sin 28 sin v (cos™y cos’2¢p +sin*2¢)
X €08 (NE—Y)veveiriinnnnns (52),

where tan Y» = sec y tan 2¢. This tide is therefore a diurnal tide;
also since the value of # at the point = + ¢ is the same as at the
point ¢, there are two waves in the canal, each of which travels
round the canal with an irregular motion once in two days. Since
the elevation depends upon sin 28, it changes sign when the
luminary crosses the equator, and vanishes when the luminary
is on the equator. If therefore the path of the disturbing body
coincides with the equator, this tide vanishes.

If the canal coincides with a meridian, y =37, and (52) becomes

2
n=— D?(%%’) sin 28 sin 2¢ sin nt......... (53),

hence the wave is a stationary wave, whose period is diwrnal.
The elevation vanishes at the poles where ¢ =0 or =, and at the
equator where ¢ =47 or §m; also an elevation in north latitude
occurs at the same time as a depression in south latitude, and the
tide will be highest (or lowest) in lat. 45°. The sign of 5 will
depend on that of 4gh —n’a®, which depends on the depth of the
canal.

If the canal is equatorial y=0, and therefore the tide
vanishes.
15—2
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454, The portion of the disturbing force depending on 2¢ and
2nt can be shown as in § 451 to produce an elevation

SMa*h cos 2 \e g e g0k
= 4D (gh—n'a®) {1 (1+cos™)? cos*2¢ + cos®rysin® 2}
X €08 (20t — x)euieiiiiininnn (54),

where tan x =2 cos y tan 2¢/(1 + cos™y). Hence the portion of the
tide which depends on these terms is semi-diurnal, and consists of
two waves on the canal travelling round it with an irregular
motion once a day.

Since the declination of the sun or moon is never equal to 90°,
this tide can never vanish for any position of the disturbing body.

If the canal is equatorial, v =0, and (54) becomes
_ 3Ma’h cos* &
4D? (gh—n*a?)
Hence the tide will be direct or inverted according as A > or
< n’a’/g.

cos (2nt — 2¢p) ...ivennnnn (55).

If the canal passes through the pole y = 47, whence
_ 3Ma*hcos® &
= 8D (gh—n'a?)

which represents a stationary wave.

cos 2¢p cos 2t ..iiieninns (56),

455. If the period of apparent revolution of the disturbing
body round the pole were exactly equal to the period of rotation of
the earth, which is very nearly true in the case of the sun, though less
so in the case of the moon, n*a/y would be equal to 5i5; and there-
fore the denominator of (55) would be negative if & < /289, or < 14
miles about. Now the depths of the oceans which cover the earth
are less than 14 miles, it therefore follows that when the luminary
is on the meridian of the place of observation, or nt = ¢, the tide
considered in (55) will be inverted.

If in (50) the canal coincides with a parallel of latitude, v =0,
and y = 2¢, hence the tide will be inverted unless 4 > 14 sin’z
where A is the depth of the canal in miles. At the equator a=4n
and at the poles a =0, it therefore follows that whatever the depth
of the ocean may be there must be a certain latitude for which this
tide vanishes, which is equal to cos™ (h/14)}, and therefore in higher
latitudes the tide will be direct, whilst in lower latitudes the tide
will be inverted,
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The first portion of the disturbing force in the preceding
sections, which does not contain nt, is not absolutely constant, since
it depends upon the motion of the moon about the earth, or of the
earth about the sun, according as the disturbing body is the moon
or the sun. Hence these terms will give rise to tides of long
period ; we shall not however investigate them but refer the reader
to Airy’s treatise’ where they are discussed.

Tides wn Estuaries.

456. We have shown in § 403, that the equation of motion
for long waves is

TE_ L dE dg\” .
W_U Jmﬂ<1+d~x> .................. (07),
and that the elevation % is
__ 9 dE\™
n=—"h da (1 + dw) .................. (58),

where h is the depth of the water and +* = gh.

Let us now suppose that a gulf or tidad river communicates with
the sea. Owing to the tides in the sca, there will be a tide in the
river up to a certain point; also if the length of the river be short
in comparison with the radius of the earth, the tides produced by
the direet action of the sun and moon will be small in comparison
with the tides produced by the rise and fall of the ocean with which
the river conmunicates. The elevation of the water ut the mouth of
the river may be represented by a term of the form 5 = H sin nt,
and the problem consists in finding the forced oscillations of the
river due to this term.

Since 7 and therefore d£/dx are small, (57) may be written

LA TN
o=V (L =3 ) s (59).

For a first approximation omit the last term on the right-hand
side of (69), and we obtain on integration,

E=acosm (vt —z), n=— maksinm(vt — z),
where m = n/v, H =— mah.

1 ¢ Tides and Waves,” Sec. vi. §§ 446—449,
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The preceding value of 5 gives the height of the tide at any
point up the river to a first approximation. In order to cbtain a
second approximation, substitute the preccding value of £ in the
last term on the right-hand side of (59) and we obtain putting
u =17vt— =,

dE_ L

v* %+ 30%a*m’ sin 2mu.

di* = do
In order to solve this equation, assume
& =0 cosmu + Az cos 2mu + B sin 2mu
and we find A =— } a'm”; and from (58) we obtain
n/h = im’a’ — ma sin mu + $ma’z sin 2mu
+ (2mB — im’a®) cos 2mu...(60).
Since # = H sinnt when z = 0, we must have

2
= — {& ma’,
and therefore

nfh = — ma sin mu + & m*a’z sin 2mu + fm’a® (1 — cos 2mu)...(61).

457. In the preceding investigation we have implicitly as-
sumed that the terms involving 2mu are small in comparison with
those involving mu. Now the coefficient of cos 2mu is Az, and
this will not be small if z is large; but in order to cvade this
difficulty we may take the canal of finite length, and suppose that
the other extremity is connected with a large lake at which an
appropriate forced oscillation is maintained.

The first term of (61) is called the fundamental or oceunic tide;
and the second is called the first gver-tide. The velocities of pro-
pagation of the two tides are the same, but the frequency or
speed of the latter is double that of the former. It also appears
that the times of high and low tide are the same throughout the
estuary,

As a matter of fact the time of high tide in a tidal river differs
at different places. For example, if it is high tide at Margate at
noon, high tide at Gravesend occurs at a quarter past two, and at
London Bridge a few minutes before three; hence the preceding
results can scarcely be considered an approximate representation of
the facts. Of course the tides in an estuary depend largely upon
its form, the presence of shoals and other causes; also the effect of
the viscosity of the water, and the friction against the bed of the
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estuary due to the inequalities of the latter, must materially
influence the motion. The solution of the problem when friction
is taken into account has been given by Airy, upon the supposition
that the effect of friction may be represented by a term proportional
to the velocity, and may therefore be obtained by adding the term
udE/dt to the left-hand side of (57) and proceeding as before ; and
the form of his solution shows that the tide gradually travels up
the river, which is in better agreement with the facts. For further
information on this point, we must refer the reader to Airy’s T%des
and Waves, and to Prof. Darwin’s article on T%des in the Encyclo-
pedia Britannica.
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CHAPTER XX.

ON THE GENERAL EQUATIONS OF MOTION OF A VISCOUS
FLUID.

458. WE have defined a perfect fluid to be one which is
incapable of sustaining any tangential stress, and have shown as a
necessary consequence of this definition, that whether such a fluid
is at rest or in motion the pressure at every point is the same in
all directions, and acts in a direction perpendicular to every plane
through that point. We have also pointed out that this condition
is not fulfilled 1n the case of any fluid which exists in nature, since
every fluid with which we are acquainted is capable of sustaining
tangential stresses, and consequently the pressure al a point is not
perpendicnlar to every plane drawn through that point, neither is
it the same in all directions.

It further appears from experiment that whenever a fluid is set
in motion and then left to itself, the motion gradually subsides and
ultimately dies away, and an apparent loss of energy takes place,
This apparent loss of energy is due to the internal friction of the
fluid, which causes the kinetic energy of the motion to be converted
into heat.

Various theories' have been constructed to explain the nature

1 Navier, Mém. de Z’Ac‘ad. des Sciences, vol, vi. p. 389,

Poisson, Journal de ' Ecole Polytechnique, vol. x111, p. 139.

Barré de Saint-Venant, Comptes Rendus, vol. xvir. p. 1240.

A description of thege three papers is given by Stokes, Brit. Assoc. Rep. Hydro-
dynamics, 1846. See also,

Meyer, Ueber die Reibung der Fliissigkeiten, Borch, vol. LIz, p. 229 ; and vols.

LxxvIL p. 130, and Lxxx. p. 315.

Stefan, Ueber die Bewegung fliissiger Korper, Sitz. Akad. Wiss. Wien, vol xLvi.
p. 8.

Maxwell, “ On the dynamical theory of gases,” Phil. Trans. 1867, p., 813 and
Phil. Mag. Jan, and July, 1860.

Levy, Comptes Rendus, vol. LXvuiL, p. 582.

Kleitz, Ibid. vol, nxx1v. p. 426.

Butcher, “ On Viscous Fluids in Motion,” Proc. Lond. Math. Soc. vol. vim1. p. 103.

A description of these latter papers is given by Hicks, Brit. dssoc. Rep. Hydro-
dynamics, 1881—2.
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and effects of fluid friction, some of which depend upon speculations
concerning the molecular constitution of matter; none of them can
be regarded as altogether satisfactory, although they furnish results
which cxperiment proves to be true when the motion of the fluid
is slow. The theory which will be explained in the present
chapter is due to Prof. Stokes?, and depends partly on the theory
of the internal stresses which are experienced by media which are
capable of resisting compression and distortion, and partly upon
three agsumptions.

459. The general theory of the internal stresses experienced
by a medium which is capable of resisting compression and distor-
tion, 18 given in treatises on Klasticity; but for the sake of
completeness, it will be desirable to give an outline of this theory,
so far as is necessary for our present purpose. We shall therefore
commence by examining the stresses which act upon an element of
such a medium.

Zx

PO

B

A

Let the figure represent a small parallelopiped of the medjum.
The stresses which act on the face A.D are,

(i) A normal stress or traction X, parallel to Oz;

(i) A tangential stress or shear ¥, parallel to Oy;

(iil) A tangential stress or shear Z, parallel to Oz.

Similarly the remaining stresses which act on the faces Bf) and
CDare Y, Z,X,and Z, X, ¥,

These are the stresses exerted on the faces AD, BD, CD of the
element by the surrounding medium; the stresses exerted by the
medium on the three opposite faces will be in the opposite

directions.
1 Trans. Camb. Phil. Soc. vol. viir, p. 287,
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460. Let F, (, H be the components parallel to the axes, of
the stresses upon the plane ABC, whose area is A and whose
direction cosines are [, m, n. The conditions of equilibrium of the
tetrahedron O.ABC require that

FA=(X_+mX, +nX,)A.
‘We thus obtain
F=IX,+mX, +nX,
=1V, +mY, +nY o, (1)
H=1Z +mZ + nZ,

461. The preceding results are true of any medium which is
capable of resisting compression and distortion. We shall now
suppose that the medium is a viscous fluid, and shall proceed to
find the equations of motion.

Let X, Y, Z be the components per unit of mass, of the
impressed forces which act on the fluid; p its density, and ¢ its
resultant velocity. Describe any imaginary fixed surface 8 in the
fluid, and let e be the angle which the direction of ¢ makes with
the normal to S drawn outwards.

The rate of increase of the component of momentum parallel to
#z of the fluid contained within §, is equal to the rate at which
momentum parallel to z flows into S across the boundary of S,
together with the rate at which momentum parallel to z is
generated by the component of the impressed force parallel to «,
and by the component parallel to = of the stresses exerted by the
surrounding fluid upon the boundary of S*.

1 The principle upon which this mcthod depends was erroneously stated
in Vol. 1. § 21. The correct principle for a frictionless fluid is, as stated above,
with pressure substituted for stresses; lines 13 and 14 of page 21 should therefore
be,

The rate at which momentum parallel to z flows into S, is

—f/pgu cos edS = — ffpu (lu + mv + nw) dS ;
using this in § 21 together with the prineiple stated above and taking account of
the equation of continuity, we shall obtain the equations of motion of a frictionless
fluid in their ordinary form.

A gimilar modification is required in § 35. In this case the prineiple is ;

The rate of increase of the kinetic energy of the fluid contained within S,
is cqual to the rate at which kinetic energy flows into S across its boundary,
together with the rate at which work is done upon the fluid contained within S by
the impressed forces, and by the pressure of the surrounding fluid upon the
boundary of S. Lines 6 and 5 from the bottom of page 31 should therefore be,

The rate at which kinetic energy flows into §,

= —ffpT (lu+mv + nw) dS.
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The rate of increase of the component momentum parallel to
of the fluid contained within S, is

fﬁ. g'—t (pu) dzdyde.

The rate at which momentum parallel to « flows into S, is

— [foqu cos edS = — [fpu (lu + mv + nw) dS

(pu’)  d (Pu”) d (P““’)L dzdydsz,
. -- [ ’

The rate at which momentum parallel to z is generated by the
impressed forces, is

[fp X dady dz.

The rate at which momentum parallel to x is generated by the
stresses exerted by the surrounding fluid upon the boundary of S,
is

X, d¥X, dX
ff(zx,+mX,+nX,)ds_f[_[( R ) dodydz,

by 8 7. Whenece

Y

_UK X+ —F+‘—%X dX)dwdydz

whence reducing S to a point, we obtain

dpw) , dlpwt) , dlow) _d(puw) _
dit “dz dy dz

dX dX, dX,
+ ot
dy  dz

Taking account of the equation of continuity, and of the other
two equations which can be obtained by considering the rates of
increase of the component momenta parallel to y and 2, we obtain
the equations of motion in the form

u_ o dX, dX,+dX
Pat =P T 4y dz
o dy, de dy, .
pc‘ﬁ—pY-F (ﬂ_*- *@4‘82 .............. (2/
ow_ o, 44 dZ, dZ,
Pot =P " do ™ dy " de
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462. In addition to the equations expressing the fact that the
rate of increase of the linear momentum within a closed space is
due to the causes above mentioned, we must also express in an
analytical form the fact that the rate of increase of the moment of
momentum of the fluid within § about any axis, is equal to the rate
at which moment of momentum about this axis is brought in by the
fluid crossing the boundary, together with the rate at which
moment of momentum is generated by the forces which act upon

this portion of the fluid. This will enable us to show that,
X,=Y,Y,=Z,Z=X,.................. (8).

z

The rate of increase of the moment of momentum about z, of
the fluid contained within 8, is

fff( o) _ 42 (P”)> dodydz.

The rate at which moment of momentum flows into S, is

— flp (fu + mv + nw) (yw — 2v) dS.

The rate at which moment of momentum is gencrated by the
impressed forces is

[llo (42 — 2¥) dedyde;
and the rate at which it is generated by the surface stresses is
[y (@Z,+mé,+nZ)—2z(Y,+mY,+nY,)}dS.
Transforming the surface integrals into volume integrals by § 7,
and making use of the equation of continuity, we shall obtain
10y (p 55 = 7 - e = =0 dwdyds

X dv, d¥, dy,
Ml (p 55— p Y =% - )dxdydz+ [1f(Z,~ ) dadydz=0

From (2) it follows that the first two integrals vanish, whence
Z,=Y, and similarly Z,= X, and ¥,=X,.

463. From the preceding investigation it appears that the
components of stress are corupletely specified by the six quantities
X, Y, Z,Y,Z, X, which we shall in future denote by the letters
P,Q R,8, T U Equations (1) and (2) may now be written

F=Pl+ Um+1Tn
G=Ul+ Qm+ Sn}
H=T+8m+ En
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ou dP dU dT
and PPt T s
B iU  dQ  dS
p 55 —pY+ d,z +@ +(]; ............... (5)
ow dT dS  dR

i PR T P

464. It appears from (4) that if we construct the quadric
Pz’ 4 Qi + B2 + 28yz + 2T22+ 2Uzy =1...... (6),

then F, @, H will be proportional to the direction cosines A, g, v of
the normal to this quadric at the point »i, 7m, rn, hence

F=X\rp, G=pfrp, H=yv/rp,
and P+ G+ =0p) N,

where p is the perpendicular from the centre of the quadric on to
the tangent plane at r{, rm, ra.

Hence the magnitude and direction of the stress across any
plane may be found by the following construction.

From the centre of the stress quadric (6), draw a line perpendi-
cular to the plane and meeting the quadric at P, draw the tangent
plave at P; then the required stress will be tn the direction of the
perpendicular on to the tangent plane at P, and will be equal to the
reciprocal of the product of this perpendicular and the radius
vector to P,

If the stress quadric be referred to its principal axes, its equa-
tion will be of the form
P+ Qy+ RS =1,
where P, , R’ are the normal tractions perpendicular to the
three co-ordinate planes. It thus appears that the tangential
stresses across these planes are zero; hence there are always three
planes mutually at right angles to one another, such that the

stresses across these three planes are altogether perpendicular to
them.

465. If F', G', H' are the stresses perpendicular to any other
three planes mutually at right angles to onc another, whose
direction cosines referred to the principal axes of the stress quadric
are (,, m, n), (7, p, v), (L, M, N), we obtain from (4)
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F'=P7 +Q@Qm"+ En’
@ =P+ Qub + R
H=PL+(M+ RN,
whence F+@+H=P+@+R .ccc.ce.......... (8).

Hence the sum of the three normal stresses across amy three
planes mutually ot right angles to each other vs constant.

466. Equations (5) have been established by perfectly rigorous
dynamical methods, but before any use can be made of them,
1t is neccessary to connect the six components of stress with the
velocities ; and in order to do this the first assumption has to be
made.

Let u, v, w be the velocities of the centre of inertia G of any
small element of the fluid; let =, y, # be its co-ordinates and
z+a, y+3y, z+2 those of a point P near G. The component
velocities of P are

u = +:c'@+ ,d_u+z,d_u
YT G Y Ay T 4z
, , dv ,dv  , dv
w'—w+m'dw+ ,§w+z,d_w
- dz Y dy dz J
If we put
du dv dw
b A Al A
...(10),

o=t (g i) v=r (i) o= ()

equations (9) may be written
wW=u+ex +cy + b + 9 — &y
V=vtoer +fy+ad +—EL (11),
w =w+ by +ay +g2'+ Ey' —na’

where & 9, §, as usual, denote the components of molecular rota-
tion.

The first term of each equation represents a motion of transla-
tion of the whole element of fluid.
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The next three terms represent a motion, such that every point
on the surface of the quadric

e’ + fy' + 92" + 2ayz + Bbzz + 2exy =1,
is moving in the direction of the normal at that point. If this
quadric is referred to its principal axes, its equation will be of the
form
e+ [y +gd=1,
and the corresponding portions of the component velocities will be
wW=eéa, v =Fy, w=¢7.cc.cconinn. 12).

Equation (12) shows that every line of the element parallel to
the axes is being elongated (or contracted) at the rates ¢, /', ¢’
respectively. This kind of motion is called a pure strain or
distortion; and the six quantities a, b, c, ¢, f, g, are the six
components of the rate of strain.

The last two terms of (11) represent a motion of rotation of
the element, whose component angular velocities are £, 9, &

Hence the motion of every small element of fluid consists;
(1) of a motion of translation of the whole element;
{(ii) a motion of distortion;

(ii1) a motion of rotation about an instantaneous axis.

Now the internal friction of a fluid in motion is caused by the
different elements of the fluid rubbing against one another. In
the case of a perfectly rigid body no such rubbing takes place, and
there is no internal friction ; and since the parts (1) and (iii) of the
motion of the element are such as belong to a rigid body, it is
inferred that these parts of the motion cannot give rise to internal
friction, which is therefore due to the motion of distortion. Hence
the first assumption is that

The siz stresses due to wiscosity depend solely on the motion
of distortion, and are therefore functions of the siz components of
the rate of strain.

If the velocity of the fluid is small, e, £, g, a, b, ¢, will all
be small quantities, and therefore if we expand the stresses in
terms of the rates of strain and neglect squares and higher powers
of small quantities, the stresses will be linear functions of the
rates of strain.
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The second assumption will therefore be that; The six stresses
due to viscosity are linear functions of the rates of strain, the co-
efficients of which are all constant quantities, which depend on the
viscosity of the fluid.

Since this assumption depends upon the supposition that the
velocity is small, it is not of an altogether satisfactory character,
when the velocity is not small.

Since the tangential stresses 8, T, U are zero when the fluid is
frictionless, they must depend entirely on the viscosity, and there-
fore cannot contain any terms independent of the rates of strain;
but the normal stresses P, @, B do not vanish when the fluid is
frictionless, but are each equal to —p, where p is the pressure.
These stresses are therefore composed of two parts, one of which is
a linear function of the rates of strain, and the other of which is
equal to — p, where p is a function of #, y, 2z and £, which is equal
to the pressure when the fluid is frictionless; and the third as-
sumption is that;

" When a gas is expanding equally i<n all directions, the stresses
P, Q, B are the same as if the fluid were frictionless, and are there-
fore each equal to — p.

We shall therefore assume that P, Q@ and R are each of the
form —p+ P, —p+Q, —p+ R, where P, @, R are linear
functions of the rates of strain,

467. Let W be the rate at which work is done per unit of
volume by the strains, then 8W is the rate at which work must
be done in order to change the rates of strain from a, & &ec. to
a + 8a &c.; hence from (10)

SW="Pdbe+ Q8f+ R'8g+2(Sda+ Tb+ Ubc)...(18).

Since W must be a definite function of the rates of strain, the
right-hand side of (13) must be a perfect differential, hence W
must be a homogeneous quadratic function of the rates of strain;
and therefore in 1ts most general form will contain twenty-one
coefficients. But since the fluid is isotropic, W will remain un-
changed when — z and —w are written for z and w. This altera-
tion changes @ and b into —a and —b. Similar observations apply
to the planes (z2) and (yz), whence W must be of the form

W=3%(Ee+Ff*+Gg"+ Aa” + Bb* + O
+2Lfg+2Mge +2Nef)......... (14),

IRIS - LILLIAD - Université Lille 1



CALCULATION OF THE STRESSES. 241

~

hence P'=%7=E3+Nf+Mg
aw
Q= df =Ne+ Ff+ Ly
R=""_ Mo+ I+ Gy
g
qW (et eiieneens (15).
2S= %=AGJ
aw
dW
2U: *dG’ :CC )

Since the fluid is isotropic we at once obtain 4 =B=C.
Also if the stresses arc such as to produce a strain ¢, then ' = F/,
therefore M = N ; similarly N = L, whence L=M=N. Also if
the stresses consist of a single traction P, we must have f=g,
therefore #/ = (7; similarly ¢ = E, whence & =¥ = (. Changing
the constants and remembering that P =— p + I”, we obtain

P=—p+r0+2ue 1

Q= —p+ AD + 2/,Lf
R=—p+A0+2ug
S=2ka, T=2kb, U=2kc

where B=e+f+g.

In order to obtain the relation between k and u, let us consider
the motion of a fluid in two dimensions.

Let 4 B be a line meeting the axis of @ at an angle }m.

oo (16),

y

0 A x

Let u/, v be the velocities of the fluid perpendicular and
parallel to AB. Then from (6) and (16)
B. II 16
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U=2"HG-F)=}(Q-P),

whence

du'  dv’ dv du
k (d—y_’-}_di’) —-}L(f—e)—/.l, <@—%>
But '
By2=oty, yyR=y—g, Wy2=uto, vyI=v-u,
du'  dv dv du
whence (Ty’_*_?d?_@_dmﬁ’
and therefore E=piiii amn.

In the case of a liquid € =0, and therefore the terms involving
A disappear, and the third assumption is not requircd: hence all
the components of stress are given by (16) and (17) in terms
of the rates of strain, and therefore of the velocitics and a quantity
4 which depends upon the viscosity of the particular liquid under
consideration.

But if the fluid be a gas 8 does not vanish, and we therefore
require a relation between A and p. This is furnished by the third
assumption, which asserts that when e=f=g, P=Q=R=—p;
which requires that,

which gives the relation between A and g in the case of a gas.

We therefore finally obtain

o
P=—P—%#9+2#g?;

dv
Q=—P—%M9+2#g
J ...(19),
dw

dz

dw  dv du dw dv  duw
S=u(G+am) T=r (T +2) U=/‘(g;,+3§>_
and the value of W becomes

W=—1ul + pu{e+ 1+ g + 2 (a’ + b*+ ¢)}......(20).

R=—p—3%u6+2u

468. We can now obtain the equations of motion of a viscous
fluid in the required form, for substituting the values of P, @, R,
S, T, U from (19) in (5) and putting w/p =v, the result is
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ou ldp a

%=X pda +4v d + vViu

ov ldp : 2 3
E%=Y o dy &vd—-i'-vVU} ............ (21).
%:Z-;E_*-H F+VV

When the fluid is incompressible 8 =0, and (21) becomes

ou 1dp 2 )

éE_X pd + vV

ov 1dp 2,

&m=Y- pdy+”V e (22),
ow 1dp

g Ave

o Z— pd +v wj

and the values of the stresses are obtained from (19) by putting
0=0.
469. The constant u is ealled the coefficient of viscosity of the

fluid ; it is independent of the pressure and its value is different
for different fluids, and can only be found by experiment.

The quanhfy v=nplp is called the kinematic coefficient of
viSCOSity.

470. We shall hercafter require the equations of motion of a
viscous liquid referred to cylindrical and polar coordinates.

When cylindrical coordinates are employed, let %/, v* be the
veloeities of the liquid in the directions of z and w; w, » the
velocities in the directions of @ and €; then if 7 be the potential
of the impressed forces, and if Q@ = — V' — p/p, we have

uw =wucosf@—vsinf, v'=wusinf+wvcosb.

Also if £, denote the acceleration parallel to ,

fa=foco80+ f,5in 0 = (;gr +vecos OV + v sin 6V,

fo=Fycos0—f,sinf= = Zg! 4 v cos BV —psin V3.

16—2
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Now
2,0 __ . 9 . du
Viu' = cos V% — sin 6V — _ssin 4 a0

u 2 dv v
—G—;Z,cos(i 00‘49676 — sin f

V' = sin 6V + cos 6V + 2.,cos€d9

. 2 . ,dv v
—?Slnﬁ—misnle@—;gcosg.

Therefore cos OV + sin V% = Vi — u 2 dv

= «°dfd’
cos OV —sin V% =V — ° + Ez oLu
=t w'dd

Substituting the values of £, and f; from (7) of § 6, we obtain
2
au_g=(LQ+v<V2u_u_\2,@> 1

ot w= dw @ wtdlf

Bl)_{_uv_ldQ ( 2y _ Y 2du>'

it s = do T - (23)
ow A )
W = dz + vV
) o d d v d d
where

B dm T ede T gz
In order to obtain the equations referred to polar coordinates
7, 0, ¢, we must recollect that the & in cylindrical coordinates is
the ¢ in polar coordinates. Let U, V, W be the velocitics in the
directions 7, 8, ¢; then
u=Usinf+ Veost, w=Ucos8— Vsind, v=W.
From (23) we obtain

F.=Ff,cos 0+ fusin 9=§Q+vcos€V”w+vSin9<Viu— v _ 2 dW)
r dr = @ do
.o, 1dQ . u 2 dW
ﬁ:ﬁcosﬂ—_/‘;sme—;ﬂ JG+VCOSH<V U= 2= 5 d‘i’)
— vsin §Vaw.
Now

Vi =sin VU + cos 6V V + i} (2 cos 0 %q— U sin 9) cot

1?(2sm0d + Veosd —EE?QVsinﬁ
dg P
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V“w=COS€V’U—sin6V2V——<2sm9d +Uco > 0%29 Usin g

— 1@ (2 cos BdV— Vsinﬁ) —ﬂ V cos@.
T do 7
Therefore
cos 6V*w + sin 6Viu = VU — g— g, ar_ l:cot 4
r o df  r
2dU U 14

2 2 2 J—
eos BV —sin 6Vw =V ¥V + 20t cot @ et

Substituting the values of f,, 75, and f; from (8) of § 6, we
obtain

oU_Vi+ W*_dQ
ot T —dr+y

r  1%sinf d¢

UV W 1dQ (o, 24U
at o Tt = gt (VV 7 do
14 gcotedw> 2,
" Fsin' T sin 0 dp
oW oUW UV .. 1 dg 2 W
~8ti+ P +TCOt9_rsin6%+V<V T sin®0

4 2 ddU+200t 6dV
r’sind d¢p ~ r'sind d(j)) )

9 d ,d Vd, £ W d
stV a8 T rsme de

where

471. If the impressed forces have a potential, the equations
determining the rates of change of molecular rotation in the case
of a liquid, are obtained by eliminating the pressure and potential
from (22); and are

Sk ww 2
Bt Edw+ndy 5 RtV
2 . )
77 fdx+7’d +§d43+vV ............ (25),
Bé’_ dw dw .
at_ERE nayt i V]
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472. Tt appears from the preceding results, that the equations
of motion of a viscous fluid are of a somewhat intractable character,
There are however many problems, especially those relating to the
small oscillations of bodies, in which the motion is sufficiently slow
to permit the terms involving the squares and products of the
velocities to be neglected ; in other words we may write d/dt for
o/ot. It is also probable that there may be other problems in
which the neglect of these terms may not lead to any serious error.
‘Whenever this can safely be done, the equations of motion become
considerably simplified, and when the boundaries of the fluid are
plane or spherical, known methods can be employed for their
solution,

Another point to be noticed is that in dedueing these equations,
we have assumed that the stresses due to viscosity are linear
functions of the strains. This asswnption is perhaps rather
questionable unless the motions considered are small; and therefore
the equations themsclves cannot be considered to stand on a
perfectly unimpeacbable basis. There is however a good deal
of experimental evidence to show, that they may be relied on as
giving a very accurale representation of motions involving small
oscillations; and we shall see in Chapter XXII, that even if the
motion is not slow they give results which represent motion of &
similar kind to that which actually takes place. We are therefore
Jjustified in concluding, that the preceding equations of motion give
a better representation of the motion of fluids which exist in
nature, than those which are derived from the supposition that the
fluid is frictionless.

473. When the terms involving the squarcs and products of
the velocities are neglected, we can deduce an important result
from equations (25); for in this case they become

dt¢ o dn_ o A o .
o =VE Sl=0Vm, Vi (26),

which shows that molecular rotation is propagated in a viscous
liquid, according to the same law as heat in a conducting medium.
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Impulsive Motion.

474. We shall now show that the equations of impulsive
motion of a viscous liquid are the same as those of a frictionless
liquid.

If we regard an impulsive force as the limit of a very large
finite force which acts for a very short time 7, and if we integrate
the first of (22) between the limits = aund 0, all the integrals will
vanish except those in which the quantity to be integrated becomes
infinite when T vanishes; we thus obtain

u—uo+fl;%fpd'r=0.

Putting f pdr =P, where P is the impulsive pressure at any
0

point of the liquid, we obtain
plu—u)+dP/de=0...............e0e (27),

with two similar equations, which are the same as those which
determine the impulsive pressure at any point of a frictionless
liquid.

These equations also show that it is impossible to produce any
instantaneous change in the molecular rotation of a viscous liquid
by any impulse applied to the boundary; and also that if w, v, w
and v+, v+ v, w+w' are the velocitics just before and just after
the impulse, then w'dz+v'dy +w'dz a perfect differential, and is
therefore derivable from a single function ¢ by differentiation;
but after a sensible interval has elapsed, this quantity will no
longer be a perfect differential.

Boundary Conditions.

475. We must now consider the conditions to be satisfied at the
boundaries of the fluid.

At a frce surface the normal stress must be constant, and the
tangential stress must be zero; hence there are three equations
of condition, which must be obtained from (4) and (19) by resolving
the strcsses upon any element of the free surface along the
normal, and along two lines at right angles to it. The kinematical
condition of § 12 of course always holds.
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If the fluid is in contact with a fixed or moving surface, the
component of the velocity perpendicular to the surface must
always be equal to that of the surface. With regard to the
tangential component, it is found in many cases that an indefinitely
thin film of fluid adheres to the surface and moves with it. When
this is the case the velocity of the fluid in contact with the surface
is the samc ag that of the surface itself.

The experiments of Helmholtz and Piotrowski appear to
indicate that in the casc of many fluids, slipping may take place at
the surface of a solid in contact with the fluid. When the velocity
of the fluid relative to the solid 1s small, it 1s assumed that the
tangential force exerted by the solid upon the fluid is in the same
direction as that of the relative velocity and proportional to it;
hence if », »; %, v be the component velocities of the fluid
and solid at any point P of the solid along two lines in the tangent
plane at P which are perpendicular to one another, and 7, 7% are
the tangential stresses in these directions, the surface conditions
are

T=B@@—u), T'=B®—0). ... (28),
where B is the coefficient of sliding friction.

Prof. W. C. Unwin considers that conditions (28) hold good in
the case of water, when the relative velocity is less than one
inch per second. At velocitics of § foot per second and greater
velocities, the frictional resistance is more nearly proportional to
the square of the relative velocity.

Many attempts have been made to express the law of friction
of a fluid in contact with a surface, in a form which is applicable to
high as well as low velocities, and various empirical formule have
been proposed. These are discussed in Prof. W, C. Unwin’s
Article on Hydraulics, in the Encyclopedic Britannica.

The Coeffictent of Viscosity.

476. The determination of the numerical value of the coefficient
of viscosity is of considerable lmportance, and numerous experi-
ments have hcen made in recent years, especially in Germany, for
the purpose of ascertaining its value. It is beyond the scope of the
present treatise to attempt to discuss these experiments, and we
shall therefore confine ourselves to making some general remarks
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upon the subject, and giving the values of this quantity for some
of the more important fluids,

The coefficient of viscosity is found to be independent of the
pressure, but is dependent on the temperature.

The value of & in C.G.s. units for the following liquids has been
determined by Helmholtz and Piotrowski’.

Liquid © Temperature eentigrade
Water ‘014 061 22 24-5°
Alcohol ‘018 917 25 24-05°
Ether ‘002 496 179 5 21-6°
Carbon bisulphide ‘003 365 026 21-85°

According to more recent experiments made by Konig® the
values of w for the following liquids are

Liquid "
Water ‘014 39
Ether ‘002 56
Carbon bisulphide 003 88
O1il of Turpeutine ‘018 65

Shrottner found the following values of w for glycerine at
& C.
=42 when 8= 39

o= 8 ) 6 = 200.

A very elaborate series of experiments upon a variety of hydro-
carbons, has been made by Pilram and Handl®, which are discussed
in a paper by Graetz*, in which references will be found to most of
the authorities on the subject.

1 Sitzungs. der k. k. Acad. der Wiss. zu Wien, vol. xu. p. 607; see also Wiss.
Abhand. vol. 1, p. 172.

2 Wied. Ann. 1887, p. 193.

3 Wien. Ber. 1878, p. 113; 1879, p. 1; 1881, p. 11.

4 Wied. dnn, 1888, p. 25.
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The value of p found by Helmholtz and Piotrowski for water
at 77° Fahr. when expressed in British units of feet, pounds, pounds
per square foot, feet per second is

4 =000 001 91,

For water the value of u decreases rapidly as the temperature
rises.

The following valucs in ¢.G.s. units of the coefficient of sliding
friction B are given by Helmholtz and Piotrowski; it must however
be confessed that thesc values are not of universal application, since
this quantity depends not only on the particular liquid, but also on
the nature of the substance with which it is in contact.

Liguid Value of pp/3
‘Water -235 34
Alcohol ‘010 96
Ether ‘012 43
Carbon bisulphide 044 30

Viscosity of Guses.

477.  According to the experiments of Maxwell®, the value of
w for air at temperature 6°C. in €.6.8. units is

u=u, (14--003 666),
where g, 18 the value of u at 0°C.

The more recent experiments of Obermayer? and Holman®
show that for air, the coefficient of viscosity increases at a less rapid
rate at higher than at lower temperatures. The former has
deduced from his cxperiments the formula

M=, (1 +-003 858 56 —'000 001 056%),
and the latter the formula
o= gy (1 4002 7516 —-000 000 346%,
L Phil. Trans. 1866,

2 Wien. Ber, vol. LxxIl. p. 468 (1876).
3 Phil. Mag. (5) xx1. p. 220.
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The values of u, for air as determined by different experi-
menters is

Maxwell? ‘000 187 8
0. E. Meyer 000172 7
Pulyj ® ‘000 179 8
Schneebeli ? ‘000170 7
Obermayer ® 0001705

|  Tomlinson* 000171 55

The value of u for air obtained by Maxwell when expressed in
British units and degrees Fahr. is,

#=-000 000 025 6 (461° + ).

Mazwell found that damp air over water at a temperature of
21°°11 C, and a pressure of 101 millims., is less viscous than dry
air at the same temperature by about one-sixtieth per cent.
The researches of Tomlinson lead to the conclusion that at 15° C.
and a pressure of 760 millims., air saturated with aqueous vapour
would be more viscous than dry air to the extent of "2 per cent.;
and that it is not until air is under a less pressure than 350
millims., that the aqueous vapour begins to show any appreciable
effect ; but when the rarefaction 1s great, moist air is less viscous
than dry air. Sce also a paper by Crookes, On the Viscosity of
Gases at High Ezhaustions®.

Maxwell found that dry hydrogen is less viscous than air, the
ratio of its viscosity to that of air being -5156. Whence for
hydrogen

p, =000 087 451.

Also a small proportion of air mixed with hydrogen was found
to produce a large increase in its viscosity, and a mixture of equal
parts of hydrogen and air has a viscosity nearly equal to 12 that
of air.

The viscosity of oxygen is greater than that of air.

The experiments of Obermayer, Wiedermann and Holman
L Phil. Trans. 1866.
2 Phil. Mag. vol. xx1, 1886, p. 221.
8 Archives des Sciences, Phy. Nat. vol, x1v.

4 Phil. Trans. 1886.
5 Ibid. 1881,
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have respectively led to the following formule for carbonic aeid

gas:
=, (1 + 003 5856 — *000 001 0567)

= p, (14008 7276 — 000 003 267)
p=p, (140037256 — 000 002 646%).

According to Maxwell the ratio of the viscosity of dry air to
carbonic acid gas is about ‘859, whence

p, =000 161 310 2.

Dissipation of Energy.

478. We shall now obtain an expression for the energy
converted into heat.

If ¢ be the resultant velocity, the rate of increase of kinetie
energy within a closed surface S, is

7 = & g Mg dadyde
dq
=_U[( , i dt)(ixdjdz .............. (29)
dg _ %9 l( d  d d) ]
Now 95~ %% @ttt )
dp _ d(pw) d(pv) d(pw)
Also = 2 () _dlew),

Substituting in (29) and integrating the last two terms by
parts, we obtain

éf—ff{ (u - +v@+w%%}> dedydz — 1 [[pg® (lu+ mv + nw) dS.

Substituting the values of 0u/d¢ &ec. from the equations of
motion in the first term, it becomes

Mo (Xu + Yv+ Zw) dedydz

+ﬁ‘f{ (dl’ dU Cjz + <dU+¢(7;ll(§+ZS>

dT dS dR
+ w (d +(}lJ 7 )} dxdydz,
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and thus on integration by parts we obtain,

%:f[fp(Xu—}— Yo+ Zw) dadydz — % [[pq® (lu + mv + nw) dS

+[[w@P +mU+ nT) +v (U +mQ +nS)+w(T+mS+nR)}dS
—[[[{Pe+Qf + Bg+28a+2Tb + 2Uc} dzdyd=.

The first term of this expression is equal to the rate at which
kinetic energy is generated by the impressed forces which act on
the fluid within the surface; the second term is the rate at which
kinetic energy is introduced by the fluid crossing the boundary
and bringing its kinctic energy with it; the third term is equal to
[[(Fu+ Gv+ Hw)dS by (4), and therefore represents the rate of
generation of energy by the stresses acting on the boundary of S
and we have to consider the last term.

Writing
F=—3%u(et+f+9)"+2u(@++g + 20"+ 20"+ 2¢)...(30),
the last term is

[lip (e + f+ ) dzdydz — [[[Fdxdyd-=.

The first volume integral vanishes for a liquid, and for a gas it
is equal to the rate at which potentlal energy is converted into
kinetic energy in consequence of the expansion of the gas. The
last integral represents the rate at which energy is converted into
heat. The function F is called by Lord Rayleigh the dissipation
JSunction,

It follows from (30) that when a gas expands equally in all
directions #’'=0. Whence the physical intorpretation of Stokes’
third assumption is, that for motion of this kind therc is no
dissipation of energy.

On Steady Motion.

479. When the motion of a liquid is slow, we may neglect the
terms involving the squares and products of the velocities; and
whenever this can be done the equations of steady motion of a
liquid can be reduced to a very simple form?,

1 Oberbeck, Boreh. vol. Lxxx1. D. 62,
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254 MOTION OF A VISCOUS FLUID.

Putting @ = — ¥V — p/p, and remembering that in steady motion
du/dt = dv/dt = dw/dt = 0, (22) becomes

19 g g (Ch_d?)]

yd&? dz dy

1dQ o, de  dg |
-—;a—y‘v’l}:2<d——jz-) ...............(31).

]dQ . o (dE dy

— 3 dz V’w—ﬂ(@‘a;c)

Differentiating with respect to #, y, 2, and taking account of
the equation of continuity, we obtain

VI =0 toeeereeeereeeeeresieennns (32)
From (26) we obtain
V=0, Vig=0, V¥{=0...ccceevrrnnnn. (33),
dg  dy  df
and by § 17, (26), dstdy + 1 =0 (34).
Also if we put
_dé N dN dMA
Tdx T dy de
d¢  dL dN ) 35
v= dy+ B e [ (35),
we dé  dM dN
Tdz ' dz dy

it can be shown as in § 60, that

Vig=0, V'L +2E=0, V'"M+27=0, VN +2£=0...(36).

480. Let f be any function of #, y, z which satisfies the
equation

V=0,
and let f,, fo. /o fo be four new functions of #, y, 2 which satisfy the
equations

A +zg ............... (37,

f+m +Jd

IRIS - LILLIAD - Université Lille 1



STEADY MOTION. 255

_, Y ]
ﬁ-Z@—yEE
af _ df
./; x@ — Z_d_l; > tistersasstieeieanaiae (38)
af _df
f"—y—d\x—wdjz
Then it can easily be shown that
Vi =V =V, =V, =0...cc...ou. (39),
df A, | df
%4‘ Ziy‘f'd;ao ....................... (40),
dfy _df, _dfy)
dy dz dz
&f, _df _dfo
de “do T dy [ (41).
df, _df, _df
dz  dy dz |

Comparing equations (39), (40) and (41) with (32), (33), (34)
and (31), we see that the same equations are satisfied by £, £, 7,
and £, as are satisfied by Q/», & » and §; hence we may put

Qlv=/fy 26=F, 2n=Ff, 2L=F, cvocerrr. (42).
481, In the next place we shall show that we may put
L=z %’— y gw
M=z ‘g —z g ..................... (43),

where F'is a function to be determined. For substituting these
values in the first of (35) we obtain

d¢ fi(F+ dF _ dF __dF

i R 2
det dz z +y?y+zdz) aViE...(44),

U =

with similar expressions for v and w; and if we differentiate the
right hand sides of (44) with respect to z, y, z respectively, it will
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be found that these values of 4, v and w, and therefore of L, M, ¥
satisfy the equation of continuity.

From equations (36) and (43) we obtaln

or o OF . AF
whence by (38) and (42)
V:F=—f,
therefore VVEF =0.ciiiiiiiiiinine (45).

We have thus reduced every problem of steady motion to the
determination of two functions ¢ and F which respectively satisfy
the equations

Vig=0, VVF=0....ccceoevnrian. (46).

482. We shall conclude this chapter with two general pro-
positions.

When the motion vs steady and there are no vmpressed forces
and the squares and products of the wvelocittes are neglected, the
sum of the surface integrals of each of the components of stress
parallel to the axes, taken over each of the bounding surfaces s
zero.

From (5) we obtain

ar av ar_
de Ty T
whence f{f<0(li—i+%+%z— dz dy dz =0,

where the volume integral extends throughout the fluid. Integrat-
ing by parts we obtain

0 = [[(Pl+ Um + Tn) dS = [[FdS

by (4); where the surface integral is to be taken over each of the
bounding surfaces.

483. When the motion of a lLiguid s steady and the sguares
and products of the velocities are neglected, and no slipping takes
place at the surfaces of solids n contact with it, the loss of energy
ts less than it would be if the liquid had any other motion con-
sistent with the boundary conditions®.

! Helmholtz, Wiss. Abhand, vol. 1. p. 223.
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The loss of energy per unit of volume in the case of a liquid, is
given by the last terms of the dissipation function F, we have
therefore to find the conditions that [[fFdzdydz may be a minimum,
subject to the condition

du dv+dz£r__0
dw+dy dz

Hence if A is an undetermined function of =, ¥, 2, we must

have
S [[f{F +N\ (u,+v, + w,)} dedydz = 0.

Taking the variation, we obtain
2 f[](2u,8u, + 2v,8v,+ 2w,dw, +(v,4+w,)(8v,+ 8w,) + (w,+ 1) (Sw, + Su,)
+ (v, +,) (Su, + 8v,)} dadydz + [[[ X (Su, + 8v, + dw,) dzdydz = 0.
Integrating each term by parts we obtain
20 [f(20u, +m (v, +u,) + n (w, + )} SudS + two similar terms
— 2p [f(V*udu + Vudo -+ Vwdw) dedydz,

+ [Ix (18w + m8v + ndw) dS — [ff (gg Su+ % Su + gg 3w> dzxdyde.

In order that the volume integrals may vanish, we must have

2Vt P g 2,va+f-:‘=o, 2w + T 0,

dz ~ 1y dz
Comparing these equations with (31) we sce that
A=20p=—2(Vp+p).

Also since there is no slipping, and the boundary conditions
are assumed to be unaltered, 8u, dv and Sw are cach zero at the
boundaries, whence the surface integrals vanish.

B. IL 17
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EXAMPLES,

1. When the motion of a liquid is in two dimensions, and the
squares and products of the velocities are neglected, prove that the
equations of motion are

"o Tag =Y d8 T T dr

where

o fdNr 1di 1 d21!J‘> dr
x=v (G +7 @ +oar) ~d
and +r is Earnshaw’s current function,

2. When the motion of a liquid is in two dimensions and the
squares and products of the velocity are nof neglected, prove that
4r satisfies the equation

(Nf—ﬁw ( d%w(%) Ty,

3. Viscous liquid is confined between fixed walls at which
there is no slipping; prove that the rate at which energy is
diminishing is

4y [[[’dadydz,

where o 1s the molecular rotation.

4. If T be the kinetic energy of a viscous liquid which is
contained within a closed surface S, prove that

ar

dt

where g is the resultant velocity, @ the molecular rotation, y the

angle between the directions of ¢ and the instantaneous axis of

rotation, and @ is the inclination of the normal to the plane
containing the latter axis and the direction of q.

— dp [[Jo’dzdydz + 2u [[qe sin y sin 028,

5. Prove that the values of the six component stresses in

polar coordinates are

d ldv w
P=-p—%/1,8+2‘u,dg, =—p—3ud+ #( l9+ )

1 dw v
R=—p-— §M3+2M<Tsmgd¢+ + Cow)
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1 dv ldw w B 1 du dw w
—"‘(ﬁin@@Jr}dH_?mw)’ T—“(*rsinedt;ﬁd—r;w

)
\

“\rdd Tdr 7))’
where
8___du 1 dv 1 dw-}—z—u+1—)cot9.

(_l;+;(§9+rsin6’% r r

6. Prove also that the values of the same quantities in
cylindrical coordinates are,
1 @ u)

du
=——p_3 = =_—p—2 9, (. 3
P P §y5+2,ud , P 3;;,54—2/&( Bt =)

dw
R=—p—34ud+2u dz’

1 dg} dv)

Sz“(éd@*d?’ = (du dw): U=u(d” v, 1w

=#\d: T dw de = T odo)

7. When the motion of a liquid is symmetrical with respect
to the axis of 2, prove that Stokes’ current function satisfies the
equation

d d d 2

a4 1d
where D= 2_;_@_;&5;_

17—2
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CHAPTER XXI.

ON THE STEADY MOTION AND SMALL OSCILLATIONS OF
SOLID BODIES IN A VISCOUS LIQUID.

.484. 'THE first problems relating to the motion of solid bodies
in a viscous liquid were solved by Prof. Stckes!, who in 1850
obtained the solution in the case of a sphere which is constrained
to move with uniform velocity in a straight line, after a sufficient
time bas clapsed for the motion to have beecome steady, and also
in the case of spherical and cylindrical pendulums, which are
performing small oscillations in a straight line. The torsional
oscillations of spheres and cylinders form the subject of a joint
memoir by Helmholtz and Piotrowski® and Oberbeck® has obtained
the solution in the case of the steady motion of an ellipsoid which
moves parallel to an axis. We shall devote the present Chapter
to the consideration of these investigations,

Motion of a Sphere.

485. Let us suppose that a sphere of radius @ is moving along
a straight line which we shall choose for the axis of 2, and that the
initial motion of the liquid is symmetrical with respect to this
axis; then it is evident that the subsequent motion will also be
symmetrical with respect to this axis, and therefore the motion of
the liquid can be determined by means of Stokes’ current function.

1 ¢ (On the Effect of the Internal Friction of Fluids on the Motion of Pendulums,”
Trans. Camb. Phil. Soc. vol. 1x.

2 Wissenschaft. Abhand. vol. 1. p. 172.

3 Borch. vol. Lxxxr. p. 62,
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MOTION OF A SPHERE. 261

Hence if w and « be the component velocities along and perpendi-
cular to the axis of 2,

__lady _1d¥

'ardz’ ‘w’d'a;

The equations of motion are determined by (23) of § 470 ; and
if we neglect the terms involving the squares and products of the
velocity, and remember that none of the quantities are functions
of 6, we obtain

du _ dQ . u
Et——d—w+v(Vu—;,> .................. (2),
dw d@ ,
a; = dz+ VV [ T (3),
and the equation of continuity is
dw du u
d; d_'ar + :5} =0 (‘L)

Equations (2) and (3) have been formed on the supposition
that the origin is fixed; let us now suppose that the motion is
referred to the centre of the sphere as origin, which 1s supposed to
be moving along the axis of z with velocity V, and let & be its
distance from a fixed point. If (2, w) be the coordinates of a
point referred to the centre of the sphere as origin,

w=f(z+¢ =, t),

dw _df df
therefore a " dt + Vdé”
the second term on the right-hand side is of the same order as the
square of the velocity, and must therefore be omitted; hence on
the supposition that such terms can be neglected, (2) and (3) hold
good whether the origin is fixed or in motion.

$ & 1d

Let D:Tf+62;‘_;dﬁ ..................... (0),

then if B be any function of z and =
v*@) ~1priZ&,
& (o o

d dRy 1 dR
and a;(Dti)zD(—)+—

dos mial_ﬂ;;
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whence (2) and (3) may be written

dQ 1d (dy )
%_WCE-((Zt —vDy )
QN gy [ .
~ e~ wdi i DY)
Eliminating ¢, the equation for determining  is
1d
D(D—w})\p:o ..................... ).
The solution of this equation is
W= F Wi, (8),
where v, and {r, respectively satisfy the equations
DU =00, 9),
1d
(D Lo V=0, (10).

Multiplying (6) by dz, d=, subtracting and taking account of
(9) and (10), we obtain
_1d rdy _dyr
—dg=_ 5 (G aw - dz) ............ (11).
Equation (9) shows that the right-hand side of (11) is a perfect
differential.

486. We shall now transform these equations to polar
coordinates = and 6.

Let IR and © be the velocities along and perpendicular to the
direetion of r, then

1 dy _ 1 dy
= i a0’ O=— e dr""""""(12)’
d* sinfd d
and D= =T g (cosec() dﬁ) .............. (13),
whence (11) becomes
1 d vy, 1dy,
—dQ= dt( 40 — = md) ......... 14).

487. We must now consider the boundary conditions. If we
suppose that there is no slipping at the surface of the sphere, the
boundary conditions are

R=Vecosf, O=—=Tsinf............... (15),
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where ¥V is the velocity of the sphere. By (12) these are equiva-
lent to
d“!’ — 2.3 d‘lt — L]
g = Va’sin @ cos 6, i Vasin®d............ (16).
If there is slipping, let U be the tangential stress exerted by
the liquid on the sphere in the direction of & ; then it follows from
§ 475 that we must substitute for the second of (16)

B(O®+ Vsin)=pnU.

By means of the transformation formulae of § 18, it can be

shown that
1dR  dO© G))

U=p ( a6t ar Ty
whence the condition becomes

1dR 40 @
BlO+Vsin0)=u(, %+ 5 ;)

in which » is to be put equal to ¢ after differentiation.

If the liquid extends to infinity and is at rest there, R and ©®
must each vanish when r =

Equations (9), (10) and (11) together with (16) or (17) contain
the complete solution of every problem relating to the rectilinear
motion of a sphere' in a viscous liquid of uulimited extent, which is
either initially at rest, or whose initial motion is symmetrical with
respect to the line along which the sphere moves. When the
motion 18 neither of an oscillatory character nor steady, the
difficulty of integrating these equations is considerable, but the
solution as will be shown in the next chapter, can in certain cases
be effected by means of definite integrals.

Motion of a Spherical Pendulum’.

488. In order to apply the preceding results to the motion of
a spherical pendulum, which is performing small oseillations along
a straight line, we shall assume that the time enters into

in the form of the factor ¢, where A is at present undetermined ;
then (9) and (10) become
D=0, (D=2, =00 i, (18),

1 Stokes, Trans. Camb. Phil. Soc. vol. 1%.; see also O. E. Meyer, Borch. vol.
Lxxmrn p. 3L
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where r/, v, are functions of 7 and € only. Dropping the
accents for the present, and putting px = cos 6, we can satisfy (18)

‘\!’1 = RﬂQﬂ’ \’,2 = Rn,Q"
where R,, R, are functions of  alone, and

Q,=(1—p)dP [du,
where P>, is a zonal harmonic of degree n. The equations for
determining B, I are
d’R
dr

2 !
%ﬁi{”— —nn+1)R72—AE '=0............ (20).
The solution of (19) is
B o=Ar™ 4 Dr*t

by assuming

—nn+ 1) Rr?=0..... (19),

Equation (20) is discussed in” Forsyth’s Differential Equations
§ 112 and § 139 Example 4, and it is shown that the solution can
be expressed either in the form
Ly e D)

”

[ 5o O Bt _
R =r (7' dr
or
A o0
R'= C”r”“f €N =) du + Dr"ﬂf e (U = A" du.
—A A

n

489. It will not however be necessary to consider the general
solutions of (19) and (20), since the surface condition (16) shows
that 8 must enter into 4r in the form of the factor sin®d, whence
n=1, and

R=A/r + Br’.

To integrate (20) when n=1, put B' =rdw/dr, and the equation

becomes
Po 20w _2dw_dw_
dr’®  ordrt rfdr dr )

Integrating we obtain

d?
ar*

(wr) —Nwr=0,

the solution of which is

w=(Der — Ce=*)/r,
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b4 PN -
whence R=r ar {(Ar) (DeM — Ce—2r)}
: 1 / 1
. —A s AP -—
= Ce~*r (1+M)+De (1 M).

Since the velocity must vanish at infinity, 8= D =0, whence

4 1 .
S U 2 R - — X 2
r=c {T+0(1+M)e "}sm@ ............ @1).
In order to satisfy (16) we must have
E=V=ce™,

where ¢ is the displacement of the centre of the sphere, and cis a
constant, whence

E=ce™/Ny = VA,
Also substituting the values of dyr/dr and dyr/d@ from (21) in

(16), we obtain
A =3+ 3ac<1+ 1)

DY A/’
— 3(10 A
C=— an €%
whence
o 3 3va 3 1\ arw] s
v=1Va {<1+X—Q+X2ag>;—m(1+)w>e r-al sind...(22).

490. We must now calculate the resistance execrted by the
liquid upon the sphere,

Let P be the normal and U the tangential stresses measured
in the 7 and 6 directions; the formulae of transformation of Chapter
L, give

dR
P=—p+2/1,ﬂ

d® 1dR O
U=u(Gteds )
Hence if Z be the resistance expericnced by the sphere,
Z- Zvra,’fr (= P cos 0+ U'sin 0) sin 6d0........(24).
0

Now by (12) and (16),

dR  cosec f (dw» 2 d\[f) ~0

dr =~ 7

drd6 7 df
at the surface; also
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1dr 1d dr
T ﬂ————<cosecﬁﬁ>

rdf rdo
_ 13 (;9 (Vaicos ) =— Zsm g = (i(;))u,
at the surface; and
4O 1 /i 1dy
dr rsmf)(d?_;7>
_ _leQ gind d dy\  1dy
" rsinf {“ dt 7 df (cosec 0 Elé)) T W}
by (10). Hence by (16),
a0 1 dyr,
dr ~  wvasinf dt’
at the surface; therefore
Z:eraf (pacos@ p w)\smﬂd@ .........
0

Also fnp cos Osin 0df =—1% f sin”f (jw da

0

but @ =— p/p + grsin 8, therefore by (14) at the surface

d'y
drdt

dp
dd

=pcoscc - + gpa cos 6,

therefore

frpCosﬁsin()dG:—éij ( +gasm600%0> sin 6

\drd

d (" o . R
accordingly Z=—mpa — i { {a < dt )a + 2%} sinfdf......
Now ¥, = (142 4 ia) sin'e,
dy 3 3.,
Therefore ( 0 )u =—3TVa ( 7& + = X 1) sin’d,
3Va 1y .,
and x],r2=—~2—x— (1 +ﬁ) sin®d.
Whence Z= Lmpd’ % j v(1+ 3 H? ) sin'0 o
AT
< 7\’2 2 qr?

where m is the mass of the liquid displaced by the sphere.

IRIS - LILLIAD - Université Lille 1

do,

(26).



MOTION OF A SPIERICAT, PENDULUM. 267

491. TLet us now suppose that the sphere is constrained to
perform small oscillations of period 7. In this case we must have

A =, where 7= 27/n.  Putting k=(n/20)}, we vbtain A=k (1 +2)
and
9 dV = 9n
=im [{1 *ora (1~ L)}Tz? t o V]

9\dV  9n 1
:%m {(1-‘-216;) d{+2/{,‘a (1 +Z7?Z) V} ......... (27),
since (dV/dt=—nV.

The effect of the first term is simply to produce an apparent
increase in the inertia of the sphere; the second term would pro-
duce a gradual diminution of the arc of oscillation if the sphere
were left free. Now » is a small quantity, whence k is a large
quantity, hence the effect produced by the second term is small,
and is almost insensible during the period of a single oscillation.
We may therefore employ the preceding value of Z to obtain the
correction due to viscosity in the case of a free pendulum oscillating
in a liquid.

If 7 be the length of the pendulum, and if K, K’ denote the
values of the cocflicients of dV/dt and V in the cxpression for Z;
the equation of motion of the sphere will be

(Ml + K)64+ K0+ (M —m)gbf=0,
the solution of which is
0= Ac " sin (pt + a),
K (4(M —m)(Ml+ K)g - K%}
“ean+ry PT T 20n+K) i
The modulus of decay, that is the time which must elapse

before the amplitude falls to €™ of its original value, is therefore
equal to 2 (M1 + K)/K".

where 8

Torsional Oscillations of a Sphere™.
492. We shall now investigate the motion of a sphere which

1s ecither filled with liquid or surrounded with liquid, and which is
oscillating by means of a torsion fibre.

3 Helmholtz and Piotrowski, Wissenschaft. dbhand. vol. 1. p. 172,
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Let @ be the angular velocity of the sphere, w the component
velocity of the liquid in the planc perpendicular to the axis of
oscillation, 7' the tangential stress which opposes the motion of
the sphere at a point whose co-latitude is #. The surface condition
when slipping is supposed to exist is

B{w~awsinf)="T.
By (26) and (30) of § 18,

_fdw w
T=u (G =7):
whence

B (w—awsin 6)= u (d“i’ - 1") ............ (28).

Since the resistunce expericnced by the sphere depends solcly
on the component velocity w, it will be unnecessary to consider
the other two components. On account of the symmetry of the
motion all the quantities will be functions of (r, 6, £), whence by
(24) of § 470 the equation for w will be

dw . w .
at —V(Vw—;‘m) .................. (29),
the squares and products of the velocities being neglected. Equation
(29) will be satisfied by putting w= W sin 8, where W is a function
of r and £ only, which satisfics the equation,

1AW _&W  2dW _2W
VAW _&W 2dW B

Let Q be the angular velocity of the liquid, then W = Q# and
(30) becomes,
aQ /' 4dQ
dt " (W ” W)

This is the general cquation for determining the angular
velocity of a viscous liquid bounded externally or internally by a
sphere which is rotating about a fixed diameter,

493. In considering the oscillations of a sphere filled with
liquid, we may put
Q=¢€Aﬁvt,

whence
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the solution of which is

1d /e
b= i ()

whence b= 2Ar2 (7\ - 1) & + —B; (X + %) €M e (33).

r 2r

Since Q must not be infinite when =0, we must bave 4 =B,
whence

Q=4 (;‘ cosh A —  sinh M~> ............ (34).
Putting & = vp/3, (28) becomes
) )
Q—m:k(d;)“ ........................ (35)

2. -
Now ® must be of the form c¢¢*”, where ¢ is a constant;

whence substituting the value of © from (34) we obtain
e/A=na* (14 3k/a) coshha — o (Wk+a™" + 3k/a’) sinh Aa...(36),
which determines A.

The couple which the liquid exerts on the sphere measured in
the dircetion of its motion is

G=- 27m3f7r T sin® 0d8 = — §mvpa’ (%) ,

=—87Ba (- @) v, 80,
by (35).

In order to complete the solution we may proceed as in § 491.
First suppose the sphere to perform small oscillations whose period
is 27/n, then A*» =n, and

0 =mw, A= (n/?v)} (1 46) coneiinninnnnns (38).

By means of (36) and (38) the imaginary quantity ¢ can be
eliminated, and the value of (@ expressed in a real form as a
function of & and w; and since the motion is supposed to be slow
we may neglect squares and products of & and w. Having

obtained the value of  in a real form, the equation of motion
which will be of the form

16+ 0+ 80=0,
can be written down and integrated.

If the sphere is surrounded with liquid we must put 4 =0 in
(33), because ¢ must not be infinite when r=o0, If there is no
slipping 8 = w and therefore & =0,
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Steady Motion of @ Sphere'.

494, We shall first consider the steady motion of a sphere
which is moving along a straight line, when slipping takes place;
in order to pass to the case of no slipping, we must put 8= in
our results.

When the motion is steady dvr/d¢=0, and (7) becomes
D=0 ..o, (39).
Let 4 = ¢ (r) sin’ 8, then (39) becomes

d
(=) =0

whence o 4: — ?‘Z’ = 4 + B
dr* 7 r
Integrating again and changing the constants, we cbtain
¢p=Ajr+Br+Cr*+Dr* ... (40).

Since B and ® vanish at infinity, it follows that ¢ =0, D=0,
and
4o = (A /r + Br)sin® 8.
The first of (16) gives
A+ Ba* =3Va’,
and (17) gives
A1+ 6p/Ba)— Ba*=— Va?,
whence
=—31Va’/(1 + 3p/Ba), B=3Va(l+2u/Ba)/(1+ 3u/Ba)
We thus obtain
1T ain? %)C_@}( 3#)7‘
¥ =} Val sin 9{3(1+Bu Lt o) oo (a0).

W T

If there is no slipping 8 = o, and the preceding equation
becomes

which is Prof. Stokes’ result.

495. The value of the forcc which must be applied to the
sphere in order to maintain the motion, may be obtained either by
calculating the resultant force exerted by the liquid upon the

1 Stokes, T'rans. Camb, Phil. Soc. vol. 1x.; see also Lamb, Motion of Fluids,
§§ 184—185,
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sphere, or by means of the dissipation function. If we employ
the first method, and put u = Dvyr, we obtain from (6)

dp v /du du
S ldw ,  du
or dp—'r—m(rdﬁ(h rdrd()).
Now Dp=—2Br?sin* 0,
whence dp=2Bud (r™*cos ),
and therefore p=II+2Bpr?cos 0.....cccneviinnniin. (43),

and we obtain from (23),

dR
P==pt2ey.
=—1[ - pcos @ (124/a* + 6B/a?),
also U= —-64pur™sin 6,
and therefore from (24)
Z=2mu [ {(12‘4 + 63) cost 0 sin 6 — %sim 0} a8,
= 8mrul3,
=6Vmua (1 +2u/Ba)/ (1 + 3u/Ba) «.cccvviivnnnn... (44).

If in (44) we put B respectively equal to infinity and zero, we
see that Z must lie between the values 6 Vrrua and 4 Vrua.

If a solid of density o is descending in a viscous liquid of
density p under the action of gravity, the force in the direction of
its motion is ¢ma’q (o — p). If therefore the sphere descend from
rest, the velocity will not continue to increase indefinitely, but will
tend towards a limiting value which is determined by the equation

$ma’g (o —p) = 6Vmpa (1 + 2u/Ba) /(1 + 3p/Ba).
If there is no slipping the value of V is

The preceding formula has been applied by Prof. Stokes to
show that the viscosity of the air is sufficient to account for the
suspension of the clouds.

496. We shall now determine the steady motion of liquid

which surrounds a sphere, which is constrained to rotate with
uniform angular velocity about a fixed diamater,
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By (30j the equation for W is
W 2dW 2W
dr* " dr 1%

the solution of which is

0,

W=Ar+ B/
Since W must not be infinite when » =0, A =0, whence
w=2Dr?*sinf.

The surface condition (28) gives

g 3/»)“
B=wd (1 + B—“ .
‘Whence

3 -1
w="% sin 0 (1 v —3i> .................. (46).

2

If 8= this becomes

[ole)
w=—,
r

which is Prof. Stokes’ result.
The couple which must be applied to the sphere in order to
maintain the motion is

G =—2mrud’ 4 (%—U> fﬂ- sin® 86,

dr\r//,
= 8muwa® (14 3p/Ba)™.

In obtaining the preceding result we have tacitly assumed that
the stream lines are concentric circles, whose centres lie on the
axis of rotation. Prof. Stokes has however pointed out,— that
permanent motion in annuli is impossible, whatever may be the
law of friction between the sphere of the liquid, and it is therefore
necessary to suppose that the particles move in planes passing
through the axis of rotation, while at the same time they move
around it. In fact it is casy to sce that from the excess of centrifugal
force in the neighbourhood of the equator of the revolving sphere,
the particles in that part will recede from the sphere, and approach
it again at the polcs, and this circulating motion will be combined
with a motion about the axis. If however we leave the centri-
fugal force out of consideration, the motion in annuli becomes
possible®.”

1 Math. and Phys. Papers, vol, 1. p. 103,
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Steady Motion of an Ellipsoid.

497, By means of equation (42) it can easily be shown that if
the axis of # be the dircction of motion of the sphere, the
component velocities w, v, w parallel to the axes of =z, y, z are
determined by the equations

wety () v (- 3) 5

v= V(l—ﬁ)a‘a?,
\ r Ve

w= gv(l—‘%“if.
T r

The preceding formule suggested to Oberbeck® the correspond-
ing results in the case of an ellipsoid, which moves parallel to one
of its principal axes.

Let Q be the potential of an ellipsoid of unit density, so that
with the notation of § 147,

9} =721’ (A,\.ﬂa +B,\yu+ O,\ZZ)—.H,\;

and lot
w=a(s BB, 4020
v=a ( dH‘+dedy) e (48),
el 2

where a, 8 are constants. It can easily be shown that these values
of u, v, w satisfy the equation of continuity, and vanish at infinity.

If the ellipsoid move parallel to « with velocity V, and there
is no slipping, the surface conditions are

u="V, v=0, w=0.

If p be the perpendicular from the centre on to the tangent
plane at (%, v, 2), and the unsuffixed letters denote the surface
values of 4, B, C, H,

dH _ 2mp'a ' 4 dmrp’s”

de at ’ dat T a

1 Borch. vol. 1.xxx1, p. 62,
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) _ 2mp*s® 28
whence V—a{AB—H—- - <1+ ?)},

and therefore

also the preceding values of a and 8 make » and w each zero at
the surface.

If X be the force required to maintain the motion,
X=[{(Pl+ Um+ Tn)dS.

Now let us suppose that the liquid is bounded by a very large
sphere whose radius » is ultimately made infinite; then by § 482

X=—[[(PU+Uw'+ T7)dS,
where the accents refer to the spherical boundary.

At a great distance from the origin H, = EJr, where £ is the
charge due to a distribution of electricity upon the ellipsoid of
density 4p; also the coefficients of B in (48) are of the order ™
and therefore ultimately vanish. We thus obtain

(/1 a2 Eaxy FEaxz
u=—Ea(r7_+p>, v=——,*2 w=—"

’ ] 5

7 7
whence p=—2uEax/r’,
and therefore

—P=—p+2u Z—Z = GE‘QF,.’I/’S/T:S,

— U= 6 Laapa’y/r,
— T'= 6 Baus’z[r°,

thercfore PU+ Um' + T'w' = 6 Eapa’/r*,
Hence X=—12nFap F cos® G sin 6d6,
Yo
= — 47TEQ/L,
B SmulV
TAd+ 2
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Motion of a Cylinder.

498. We must in the next place consider the small oscillations
and steady motion of a circular cylinder; and we shall commence
with the case of a cylindrical pendulum, which is performing small
oscillations along a straight line.

Let u, » be the velocities of the liquid parallel to fixed
rectangular axes; the equations of motion are

% Al +0vVu

....................... (50),
dv _ dQ .
dt dy IV

where @ =—p/p— V; the squares and products of the velocities
being neglected.

Also if Y be the current function
u=d\/dy, v=—d/dr;

whence eliminating  we obtain

v (V?-ld%)\p_o ..................... (51).
This equation will be satisfied by putting
V=9 +4y
where ‘ T =0 (52),
( 2_i C%) Y ST (53)
Substituting for u, v in terms of 4r in (50) we obtain,

d/, 1d d/, 1d

which becomes by (52) and (53)

Ny g, A
—dQ= (dmdt y — detdx) ................. (54).

Let R, ® be the velocities of the liquid along and perpendicular

! Stokes, Trans. Camb, Phil. Soc. vol. 1x.

18—2
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to the radius vector, @ the radius of the cylinder; then changing
to polar coordinates we have

poldy o dy

r dé’ dr’
Vi d n 1d + 1d
drt " rdr "t dOP’
whence (54) becornes
_ g ) :
dQ—d—t( 70— V3 dr) e (55).
If ¥ be the velocity of the cylinder, the surface conditions are
d d . <
d‘g =Vacoss, W =Vsinfooooooo... (56),

when 7=n0. Equations (56) show that § must enter into 4 in the

form of the factor sin 6 ; also if we assume that the time factor is

2
' we may put

v, =" sin Oy, (1), Y,=¢ sinby, (), V= ce'™...(56 A).
Substituting in (52), (53) and (56) we obtain

X X xT =0 (37),
Xy xS T = x T =N, =0 (58),
@+ (@)=ac, x, (@) +x, (@) =c.........(59).
The integral of (57) is
x,=A/r+DBr.o (60),

whence since y, =0 when r =w, B=0.

499  Since y, must vanish when » = o, the proper solution of
(58) is x,= K, (Ar) where K is a Bessel’s function of the second
kind of order unity; but since A is a complex quantity, the
definite integral form of K, is not a convenient expression, and we
shall therefore proceed to find one suited to our purpose.

Let x, =du/dr; substituting in (58) and integrating we obtain
duw | 1du

ailiae T 22,
it dr Mu=0........oo (61
If the equation
w1 du e, T\, .
d/r'g + — o d?" (X + 77) w = 0 ............... (()2),
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be integrated by series, the result is

KFTZ K(l/ri
w=dr {1+2.(2+2n)+2.'1«.(2+2n).(4«+2n) """ }
B h?i h44
{1+2(2 5+ TEE— By =g }

The latter series fails when = is an integer since it becomes
infinite; and when n is zcro the two series become identical. Let
us therefore denote the first series by f(») and the second by
f(—mn), then by Maclaurin’s theorem

w=Af(n)+ Bf(—n)
= (A +B) F(0) + (A —B)uf' (0)+ (4 +B)—§!f”(0)+ ...... ,

whence choosing new arbitrary constants, the value of «' when

n =0 will be
u'=u=0F(0) + Df (0).

Now
, n XZTE h4,rl4
f(ﬂ)_Tlogr{1+2.(2+2n)+2.4.(2+2n).(4s+2n) """ }
d )\‘2 2 x4 4
T {1+2(‘)+2n)+24(2+2n) (& an)y }
If v denote the coefficient of (Ar)* in the above series
ldv_d(oge) 1 1 1
vdu  dn 14+ a 242 7 m+n’
whence ( ) — S,
1,1 1
where S—1+2 3 ...... +771,’
and therefore
, AR At ASS
f(0)—1();;7'{14—?{4-22 pER A gt }
W ARt NS
“{2‘ gt g St }
whence the solution of (61) is
Kﬂrﬂ x‘l/',ﬁ
w=(C+ Dlogr) <1 AN L. )
A‘Q 2 A‘QT‘X
—D( F g g S s ) ............... (63).
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We may also integrate (61) in a series of descending powers of
r by assuming
u=e** (Adr* + Brf + ...... )
and we shall obtain
1° 1%, 3 1*. 8%, 5°
=Cledpd 1 —— 4 0. T .
u=Cer { 2 4hr T 2 4. (a2 4. 6 (dAr) }

( 1 17. 82 17, 8°.5°
A
+ D'y 11+—2_4M+2_4_(4M)2+2'4.6(4M)3+ ...... }...(64).

A third form of the integral of (61) may be obtained as follows.
One of the solutions is

I (wry=7r" f i cosh (A7 cos ¢) sin®"pdd = £ (n),

0

whence 0= fh cosh (Ar cos ¢) log (r sin’¢p) dep,

and therefore
%= f? {07+ D" log (rsin®p)] cosh (Arcos @) dep ... (65).
(]

Also comparing (63) and (65) we shall obtain
C+Dlogr=%m (C"+D"logry+wD"log},
whence C=3nC"+7wD"logd, D=%taD"............ (66).
We must now find the relation between C” and D” in order
that w =0 when r=cc.

When r is very large the limit of ¢ " log » is zero, also since
sin ¢ and cos ¢ can never be greater than unity throughout the
range of integration, ¢ will be very small compared with » We
may therefore replace the limits $or and 0 in the integral (65) by
w and 0, where w 1s a very small positive quantity which ultimately

vanishes when r =0 .
Let cosp=1—z, so that
sin’p =2z (1 —dxz), dp=2z—a")tde=1—3x+...... ) (22) 4 d,

then the limits of « will be , and 0 where z,=1 —cosw. Whence
the limit of the integral (65) when » is large Is

e [zj (C" + D" log 2ra) e 2 (22) ~td,
0
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Let @ =y/r, then the linits of y are r#, and 0, the former of which
becomes infinite with #, whence

limit of integral = (2r)~# e“‘f (C" + D" log 2y) e~ y~t dy.
0
Nowj i\/zf = 4/, and if we differentiate both sides of the
]
equation

j e de=T(s),
with respect to s and then put s =}, we obtain
f e*g~togzde=1"(}),
0

putting z=2Ay, the required limit becomes
u={m/2ar)t & [+ D" (7= 1V (}) — log §r}]
Comparing this with (64) we obtain
D =(m/2Ap {0+ D' [TV (§) —logr]}...... (67).
Now in order that v may vanish when »=c we must have
D'=0, whence the required relation between C” and D" 1s
"= D" flog I — 71 " (B},
and therefore by (66) the required relation between C und D 1s
C=D{logdh—m AT (F)}eeviin (68).
Putting w = F (r) we obtain from (59)
Ala+F (@)=0ac, —Ajlo+al (a)=uac...... (69),
a’c+ A4 _aF" (a)
oA Fay e
(63), (68) and (69) completely determine 4, C and D.

whence

500. Let us now suppose that the cylinder is a pendulum
oscillating under the action of gravity ; and let Z be the resistance
experienced by it per unit of length, then

Z=afw(—PC%94-Uﬁn9Lda
0
where I> and U are given by Example 5, Ch. XX. Adding (52)

and (53) we obtain

dy_ 1
r

dr*

RY
r rd

Y 1dy,
dr +

"y dt
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Using this equation together with (56) and (59) we obtain

FA RN

1 (dR) (d"’«p) __Vsind ©
a\dfd/, do* a a’
().~ (). =2 ). o ().~ (i) - ().
whence Z= af {p cos 8 —p ‘h sin 6}" de.
By (55) 1 (1% +gacosf=— %2 ZZ‘Z;

Therefore integrating the first term by parts, we obtain
fz P cos 9d9——f sin 4 dp do
do

Y,
—a,pf bmﬁddtdﬁ

whence Z=—pa f" dt { dyr, + 1};2} sin @ d6.
Putting A =n and substituting the values of +r, and r, from
(56 A.), we obtain
Z =mpans {4 ja — F' (a)} e,
By (69) F'(a) =ac—4/a and by (70)

aF” (a) — F (a) .
T aF” @)+ F (a (a)
Therefore

— aF" (a)— ¥’ (a)
Z——Mcm{l 2 Fm)}e ,

where M’ is the mass of the liquid displaced. Since F satisfies
the differential equation (61),

Z=Mrcn { )ﬁf}lf‘((a;)} e

=MWene™ (K —iK') (say),
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where K and K’ are real. Whence if I be the length of the
pendulum, the equation of motion of the eylinder is

MIE+ MEE+ M K'n+ (M — M) gt=0.

The second term of this equation is the part of Z which alters
the time of oscillation, and the third term is the part which
diminishes the arc of oscillation.

For the calculation of the quantitics K, K’ we must refer the
reader to Professor Stokes’ memoir.

501. We shall now show that when a cylinder is moving in a
straight line, steady motion is impossible.

Putting r =+ sin 8 in (51), it follows that the equation for
determining the value of 4" in steady motion is

d? 1d 1y,
<W+;d7_q§)\b_ .................. (71),
s TV
dr ' r dr

the integral of which may be written
V' =Arlogr+ Cr+ Drt 4 Br,

We therefore obtain

R:. }q%=(_A10g7‘+BT2+C+.DT'_2>COSGL
..(72).

O=— 'é;{’_z(l)r“f*_o'_3Br2—Alogr—A)sinGJ

Let us now suppose that the motion is reversed, so that the
cylinder is at rest, whilst the liquid is streaming past it, the
velocity of the latter at infinity being equal to — V. The equations
of condition are

R =0, e =0, when r=a...... (73),
R=—Vcosf, O=Vsinbd, when r=cw...... (74).

The first of equations (74} requires that 4 =0, B=0,0=-V,
which also satisfies the second, and we are thus left with one
disposable constant to satisfy equations (78); and since both these
equations cannot be satisfied by the same value of D, steady motion
is impossible.

IRIS - LILLIAD - Université Lille 1
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502. When the motion of a liquid is symmetrical about a
point and is in two dimensions, it follows from the second of
equations (23) of § 471 that the velocity is determined by the
equation
dv_y(d’v 1dv v)

dt ar T rdr

If therefore the motion is steady, the value of v is
v=Ar+ B/r.

Hence if a cylinder is surrounded with viscous liquid and made
to rotate with angular velocity o, the value of v after the mation
has become steady is

v=2ad'w/r.

If on the other hand the cylinder is filled with liquid, the
value of # is wr, and therefore the liquid rotates like a rigid body.

EXAMPLES.

1. When a sphere is moving with uniform velocity along a
straight line, prove that after the motion has become steady, the
vorticity at any point of a vortex line 1s inversely proportional to
the cube of the distance of that point from the centre of the
sphere.

2. A doublet of strength m is situated at the centre of a
sphere of radius a. Prove that after the motion has become
steady, the radial and transversal velocitics of the liquid are
respectively equal to

P! = .2
7n(;—g§+%> cos 6, and m(i,—k%—(;lﬁ) sin 6.

3. The space between two concentric spheres is filled with
viscous liquid, and the spheres are made to rotate with different
angular velocities about the same diameter. Assuming that the
particles of liquid move in planes perpendicular to the axis of
rotation, and that there is no slipping, find the velocity of the
liquid after the motion bas become steady; and prove that if the
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inner sphere is at rest, the couple which must be applied to the
outer one in order to maintain the motion is equal to

87 pwa’d’
- b — b& 3

where @ and b are the radii of the outer and inner spheres, and w
the angular velocity of the former.

4. The space between two concentric cylinders of radii ¢ and
b, is filled with viscous liquid, and the eylinders arc constrained to
rotate with angular velocities w,, w,; prove that if w be the
angular velocity of a liquid particle at a distance r from the axis
after the motion has become steady

o,—w _1—(afr)
w,—w, 1-—/(a/b)?

5. A cylinder of length  and radius a, which is surrounded
by viscous liquid, is made to rotate with uniform angular velocity
w. Prove that if slipping takes place, the couple which must be
applied to the cylinder to maintain the motion when steady, is

equal to
drpwa’l

1+ 2u/Ba’

6. A cylinder of radius o is filled with viscous liquid and
constrained to rotate so that the angular velocity at any time is
w sin mt; prove that if there is no slipping at the surface, the
current, function is

Yr = aw (P cos mt + @ sin mt),

J k(L —¢
where P+LQ=(1—L)]G—J%?:]}:, and % =m/2.

7. A long right circular cylinder is rotating with uniform
angular velocity w inside a concentric eylinder which is at rest, the
spacc between the ceylinders being filled with viseous liquid ; show
that the couple on the cylinder per unit of length is

4pwa’b’

where @ and b are the radii of the outer and inner cylinders.
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284 STEADY MOTION AND SMALL OSCLLLATIONS.

8. The inner of two confocal ellipsoids of revolution, the space
between which is filled with viscous liquid, is made to rotate with
angular velocity w about its axis, the outer one bLeing at rest;
prove that the velocities of the liquid are

=—owy (11 - Al)/(A2 - Ax)’ V=¥ (A - Al)/(As - Al)’

‘ " d\[r

[ P+ )

and 4, 4, are the values of A at the outer and inner ellipsoid
respectively.

where A=

9. A thin circular disc is oscillating in a viscous liquid by
means of a torsion fibre. Prove that the cquation of motion of
the disc is

(I + wpa‘k) 8 + mpa'kl + n 16 =0,
where Z is the moment of inertia of the dise, a its radius, p the
density of the liquid, £* =n/2», and #, is what #» would beecome if
the liquid were absent.

Integrate this equation, and explain how the result may
be used to determine the coefficient of viscosity.
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CHAPTER XXII.
ON THE MOTION OF A SPHERE IN A VISCOUS LIQUID.

503. I~ the preceding Chapter we considered the steady
motion and small oscillations of a sphere and a cylinder in a
viscous liquid; we shall now proceed to investigate the motion of
a sphere which is surrounded by a viscous liquid of unlimited
extent, and which is moving in a straight line under the action of
a constant force such as gravity'.

The mathematical difficulties of integrating the general
equations of motion when the terms involving the squares and
products of the velocitics arc retained, will compel us to omit
them throughout the whole of this Chapter. This is no doubt
legitimate provided we confine our attention to the consideration
of slow motions; but when the motion is not slow it must be
confessed that the assumption that these terms can be neglected
is of a questionable character. It will be seen that the results
which we shall obtain give a better representation of the motion
which actually takes place, than those which are obtained from
the ordinary theory of a frictionless liquid; and it should also be
noticed that when the liquid is frictionless the terms involving the
squares and products of the velocities do not contribute anything
to the resistance experienced by the sphere; and it is therefore
not impossible that when the viscosity is small, the effect of these
terms may be unimportant compared with those retained. Since
the equations of motion can be reduced to a comparatively simple
form when these terms are omitted, I am inclined to think that
the procedure which would be most likely to be successful in

b Phil. Trans. 1888, p. 43,
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advancing our theoretical knowledge of the motion of solid bodies
in viscous liquids, would be to neglect these terms in the first
instance, in the hope that the imperfect solutions which are
therchy obtained, may hereafter suggest a more satisfactory method
of dealing with such problems.

Motion of a Sphere under the dction of Grawity.

504. Let us suppose that a sphere of radius o, 1s surrounded
by a viscous liquid which is initially at rest, and let the sphere be
constrained to move with uniform velocity ¥, in a straight line.
If the squares and products of the velocity of the liquid are
neglected, we have shown in the previous Chapter that the current
function 4 must satisfy the differential equation

1d
D(D——%ﬂr—o ..................... (1),
d? sinf d
where D= e R R ) (cosec 0 d9)

and (r, 8) are polar coordinates of a point referred to the centre of
the sphere as origin.

Let R, ® be the component velocities of the liquid along and
perpendicular to the radius vector; then, if we assume that no
slipping takes place at the surface of the sphere, the surface
conditions are

1 d‘l’
~smd df =T CosO.ccviininiinniannnnn (2),
oo 1 dv__
=~ ssm@dr Vsinf......cooenni (3).

Also, at infinity R and ® must both vanish.
These equations can be satistied by putting
V=0, +r)sin® 0. ..o (4,

where +, and «r, are functions of » and ¢, which respectively
satisfy the equations

d'r, 29, _ .
—W —_ ,,_7[ = O ......................... (O),
a2, _1dy, (6).

s P Ty dp e
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The proper solution of (5) is 4, = f(¢)/r, which it will be

convenlent to write in the form

=g v(yt) f x (@) exp (= /4ty da ......... .

where <y () 1s an arbitrary function, which will hereafter be
determined.

In order to obtain the solution of (6), let us put ¥, = re=2¢ dw/dr,
where w is a function of 7 alone; substituting in (6), and integrat-
ing, we obtain

rw=A4cos A (r —a+ ),
where @ is the radius of the sphere and 4 and a are the constants
of integration. Whence a particular solution of (6) is

d e "t
x[r,:Ar% - cos A (r ~a + a).

Integrating this with respect to A betwecen the limits oo and 0,
and then changing A4 into ¥ (a) and integrating the result with
respect to @ between the same limits, we obtain

_nr d [PR@ [ =ata)
V.= 2¢(tydrte r exp { 4ot }da'

Performing the differentiation and then integrating by parts,
we obtain

et 3 R e e g
o+ i [poe e

We shall presently show that it is possible to determine ¥ (a),
so that #(0) =0, and /' (a) e * =0 when a= oo ; hence the term in
square brackets will vanish at both limits, and we cobtain

b2 Jo [ o (- )
—}sin®d \/thf: {@ +F (a)} exp {— (T—_—:;: a)z} da...(8).

We must now determine the functions ¢ and ¥ so as to satisfy
the surface conditions (2) and (3).

Equation (2) will be satisfied if
x (@ —F(a)~aF" () =Va/m............... (9.
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Equation (3) requires that

:_%\/vt.[ ¥ (a) exp (——)da
el re(-E)e

—a \/ f (F(a) + aF" (a)}—a exp (- 4;) da.

Integrating the last term by parts, the preceding equation
becomes
Ve =hrput) | (= x (@) + F (@) +oF” () + a'F” @)}
0
X exp(—a*/4vt) da..oviiiiniiininns (10),

provided, [F (a) + aF” ()} exp (— o*/4vt) vanishes at both limits.
This requires that F(0)=F'(0)=0, and that F(a)e~*" and
F" (a) €= should each vanish when a=w. When this is the case
(10) will be satisfied if
—x @)+ F(2) +aF (1) + ’F" (a) =2Va%/mr...... (11).

Whence by (9) F"(ax)=3Va/mr
and, therefore, F (o) =3Vax*/27 + Ca + D.

The conditions that F (0)= F’ (0) = 0 require that C =D =0}
whence

F (a) =3Vad®/2m, x (a) = Var* (§2* + 3ua + o).

Also the preceding value of F () satisfies the conditions that
F(a) e, and F''(a) e~ should each vanish when a= o ; whence
all the conditions are satisfied, and we finally obtain

Vasin® 8 . , o
'\!’— 27.’\/(,"_1}15) { (qa + 3(1&—}—;}0/) exp (_ Et) du
8Vasin' 97 14 _(-adtay :
T 2y(avt) (27- +“) exp { vt }da...(lZ)_

The first integral can be evaluated; in the second put
r —a + a = 2uy/(¥t) and we obtain

\P__Vasm 6

{3vt + 6a 4/ (vt/m) + o’}
SVa sin® @

............ (13).

2 v (vi)
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505. When ¢=0 the second integral vanishes, whence the
initial value of yris
_Va’sin® 8
v= 2r
which is the known value of 4 in the case of a frictionless liquid,

as ought to be the case.

When ¢ is very large, we may put ¢ = in the lower Limit of
the second integral, which then

Ta2
= 37ij;“ O [ (24t + 2aun(vt) + § (2 — 1)} @ d,
0
12
= — V“;;fl? (3wt + 6an/(vt) + 3 (& — 7)),
. 3r a
whence v =1Va’sin® 0 (71, - ;) .

This equation gives the value of +r after a sufficient time has
elapsed for the motion to have become steady, and agrees with the
result obtained in § 494.

506. Let v be any solution of the partial differential equation

Y ) R R —— (14).

t
Then, if vu=0,{ F{t—7)v,dr, where F(r) is any arbitrary

Jo

function which 1s independent of r and ¢, and does not become
infinite between the limits, will also be a solution of (14); for,
substituting in (14), the right-hand side becomes

F(O)’Ug+ftp(t—7)?jrdT:F(t)'Uo+ftF<t_'T)Z%rd'r
0 0

Sy (0%) f: P(t—r)v dr,
if »,=0.

507. The second expression on the right-hand side of (13) is
the value of 4, sin’@; and it is easily seen that this expression
vanishes when ¢ =0. Hence it follows that the expression which
is obtained from (13) by changing ¢ into v and V into F' (¢ — 1) dr,
and integrating the result from ¢ to 0, is also a solution of (1).
Now, if F(0)=0, it will be found on substituting the above-
mentioned expression in (2) and (3) that F (¢) is the velacity of the

B. IL 19
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290 MOTION OF A SPHERE.

sphere, supposing it to have started from rest ; hence this expres-
sion gives the current function due to the motion of a sphere
which has started from rest, and which is moving with variable
velocity F ().

In order to obtain the eguation of motion of the sphere, we
must calculate the resistance due to the liquid; but in doing this
we may begin by supposing the velocity to be uniform, and
perform the above-mentioned operation at a later stage of the
process.

If the impressed forece is a constant force, such as gravity,
which acts in the direction of motion of the sphere, and Z is the
resistance due to the liquid, it follows from (25) of § 490, that

Z=29%mra j (pa cos @ —p— \h sin ()) sin 8 d8,

also from (14) of § 486,

d'yr,
dt dr

where p is the density of the liquid ; also, since

dp

d—0=psin0 —gpa sin 6,

J{’rp COS& Sin 0 dﬁ = — %f" sin2€ %dﬁ,
0 0
we obtain

Z——vrpadtfr(a —‘k‘+ 2y> sin'd df + Mg

=—a’ldt( d&’;‘”‘h) + g,

where M is the mass of the liquid displaced. Now, if V" were
constant, we should obtain from (13)

a (‘Z‘f) =V (3t -+ Ba v/(vt/m) + 3a¥),
and (). =—3Va {Jvtja + v/ (vt/m)],
whence (a %‘T’ﬁ + 2\;,2) =~V (30t + 9a (ut/7) + $a?}.

We must now change ¢ into =, V into F'(¢— 7)dr, and
integrate the result with respect to = from ¢ to 0, and we obtain
M d

=55 f‘zf" (6~ 1) {7 + 9a o/ (vr/m)} dr + s M’ + Mg,
£ 70
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and the equation of motion of the sphere is

M +-1M)yv+ 9(]1;[’ dtf F(t—1) [vr + a v/ (vr/m}dr

(M =M)g...couonnn... (15).

Integrating the definite integral by parts, and remecmbering
that #(0) =0, the result is

¢
f F—r){iv+iav(v/mr)}dr
0
and, differentiating with respeet to #, (15) becomes

M+ 32y 4 50 {vv+a \/ f‘ F“—*)d }

= (M— Myg...o........ (16).
Let o be the density of the sphere, and let

(c—p)g 9%  _ _
o+ 1ip =/ m{;rp)—k, A=kvo..n, (17),

then (16) becomes
. v (PF(t=7),
’U+X’U+ka/\/7r‘[0—}\/.r——‘d’r—f .......... (18)

This is the equation of motion of the sphere, from which F (¢) or v
must be determined.

508. Up to the present time we have supposed the motion to
have commenced from rest, so that #(0)=0. Let us now suppose
that the sphere was initially projected with velocity V. In order
to obtain the equation of motion in this case we may divide the
time ¢, into two intervals 4 and ¢ —h, where k is a very smuall
quantity, which ultimately vanishes. During the first interval let
the sphere move from rest under the action of gravity and a very
large constant force, which is equal to (M + $M") X, and then let
the large force cease to act. This force must be such as to produce
a velocity V at the end of the interval A, whence we must have
V =Xh, v=Xt; and, therefore, v=Vt/k. Changing finto f+ X
in (18), multiplying by €, and integrating between the limits ¢
and 0, we obtain

ue“—-—ka\/ fduf‘emF'(u_T) T +f Xevdu
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Now F#” (t) is composed of two parts: a large part which depends
upon X, and which is equal to V/k; and another part which
depends upon f, and which we shall continue to denote by F” (¢).
Heuce (19) may be written

_X o (o [ r wdr
vef\e_i(eA_1)+X(e'\—1)—ka\/7—rf0du OF(u—-r)e" 7

t
N f oy () du.......(20),
T/
" Vdr
o hVT
Now » () depends on X, and therefore vanishes when u > h.
When u< h,

where x (z) =

x (u) = 2Vu&/h ;
therefore

{ h
f sy () dus = f QTV e du =0, when k=0,
1} 0

Henee, in the limit when % vanishes, (20) becomes

v= Ve"‘t+‘£(1—e‘“)

[
—a \/%f() duf:e—w—u) F (u—T)% ......... (21),

and the value of the acceleration is

=—TheM 4 feoN

~ha ,\/Wdtf duf A u)F'(u—T)ilTTT ............... 22).

509. It scems almost hopeless to attempt to determine the
complete value of F from the preceding equations, but, in the case
of many liquids, v 1s a small quantity, and (21) and (22) may then
be solved by the method of successive approximation. For a first
approximation

i=F () =fe—”,

IR ({—r)dr _ e~ Mdr
whence fo—N/T =f o«/(t—’r)

The integral on the right-hand side of (23) cannot be evaluated
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in finite terms, and we shall denote it by ¢ (¢). Putting T =1y,
we obtain

My d
$ (6) = vt f 7 7’ ................... (24),
= Wi f e 3 H g dy,
where I = w
" 2"n!
! 1—e
—My oy — 7
Now fo € Y dy = nt

1 Nl _ =M
Therefore f yre MY dy = (-)" (c%ﬁ) 1_)\‘;_ ,
and therefore

p O S S L () 5

When ¢ is very large we may replace (1 — e~2)/A¢ by (M), and
we shall obtain

1 H
5 0= i {1+ i
-
AT Y(AE—1)°
which shows that ¢ (¢)=0 when t=w0

Another expression for ¢ (¢) may be obtained in the form of a
series, for

_x [PEdT
JORE
e (2n)? (=) ()"
_2vt{ T3+1.35 " 1820+ 1) } ......... (26),

by successive integration by parts. The above series is convergent
for all values of £, and is zero when ¢t =

For a second approximation, (22) gives

by =F (t) = feM — fha ,\/;%/:e"\”(#(t—u) du...(27),

and

v Ve—w+{(1 — ) — fla /;f: = b (6= ) du..(28).
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Let X (6) = :Zzi f LM () e, (29),
0
and (27) becomes

F' () =fe= — fka (v/m) x ()

Whence to a third approximation

=~ VAe N4 fe — fha \/3 x ()

7?”%[ duf —Alt— ")x(u—'r)—.

Let ¥ (t) = 0’ %((;)_d:) ..................... (30),

and the last equation becomes

v=— Vre M+ fe=™ — fka \/ix(t)

f¥av d

+ dil, e—"“ ¥ (E—u)du........ (31),

and

=;—:(1 — ) 4 Ve — fha \/;"r j:ewqb (6 —u) du

+ﬂc:,a L f : M (=) du.......... (32).

‘Woe must now express all the above integrals in terms of ¢ (f)
From (29) we obtain

x () =5 [ e ¢ ) du
—6® - : AN b () dus

= (t) — e f: du f: err %_

by (24). Changing the order of integration, the last integral
t todu [t t
= AT — At [
f()d-r.[-rE NT foe (‘\/T \/T)d’r

fpoerd) -4

whence XO =G =)D )+ Ve ovirearns (33).
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Substituting this value of ¢ () in (30), we obtain

IR TICFEsey BV
o f ¢(2ij f [0 «/{t—_:;?fu—“)}
f f V] t——:)u g:— u)_}

=7rfe"\"du=7—r(1 M) (34),
0 A

P4

‘T(j)('r)drz ¢ . [T e~ dy
oV —T) Jo N[t —7) (T —w)]

‘f d“f «/(t—r;u(ofh— )}
=’_2’j:(e+u) e~M gy

= 7; {t (1 — 264 + % (1- e'”)} .o (35),

and f \/- T (36),

also

whence V@) =ate™ i, 37).
Again f M (t—w) du 'rrs"“f (t—u)du
0.
=Lmte™™ (38),

whence (31) and (82) finally become
v =fe M — Ve ™ — fla (v/m)* (4 ~\t) ¢ () + 1}

+ flafute 2 (1 — INM). e, (39),
/S T (1~ e=4) 4 Ve — flha (vfm)} {(t + lex> ¢ () - *it}
+ LRGP . (40).

These equations determine to a third approximation the values
of the acceleration and velocity of the sphere, when it is projected
vertically downwards with velocity V, and allowed to descend
under the action of gravity. If the sphere is ascending the sign of
g must be reversed.
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If no forces are in action we must put =0, and the preceding
equations give the values of ¥ and v to a first approximation only;
but, on referring to (21) and (22), it will be seen that the values of
these quantities to a third approximation may be obtained in this
case from (39) and (40) by changing f into — VX and expunging
the terms fe-* and fA™ (1 — ¢-2), We thus obtain, since A = kv,

i= =V + Va8 {3 2 6 (0 + w1}

— Va2 vte 2 (1 — §Ad)eeenenn. .. (41),
o= Ve Vet nH (un 1Y g9 - YY)
A VaEE M oo (42).

510. Tt appears from the preceding equations that the suc-
cessive terms are multiplied by some power of &k as well as of ».
If k& is not a very large quantity, and the velocity of the sphere is
not very great, the foregoing equations may be expected to give
fairly correct rosults; but if k is a very large quantity, it may
happen that, notwithstanding the smallness of », kv may be so large
that some of the terms neglected may be of equal or greater import-
ance than those retained. Now from (17), ¥ =9p Qa +p)~" a™;
if thercfore the sphere is considerably denser than the liquid, &
will be small provided @ be not very small; but if the sphere be
considerably less dense than the liquid, £ will approximate towards
the limit 9a¢7% and this will be very large if @ be small, and %» may
therefore be large. On the other hand, it should be noticed that
when Zv or A is large the quantities e=** and ¢ (¢) diminish with
great rapidity, and it is therefore by no means impossible that the
formulse may give a fairly accurate representation of the motion
even in this case.

All that we can therefore safely infer is this, that in the case
of a sphere ascending or descending in a liguid whose kinematic
coefficient of viscosity is small compared with the radius of the
sphere (all quantities being of course referred to the same units),
the formulee would give approximately correct results, provided the
velocity of the spherec were not too great. But, in the case of
small bodies descending in a highly viscous liquid, it is possible
that the motion represented by the formulme may be very different
from the actual motion; and if this should turn out to be the fact,
the solution of (18) applicable to this case must be obtained by
some different method.

IRIS - LILLIAD - Université Lille 1



MOTTON OF A ROTATING SPITERE. 297

Equation (39) shows that after a very long time has elapsed
the acceleration vanishes, and the motion becomes ultimately
steady ; in other words, the acceleration due to gravity is counter-
balanced by the retardation duc to the viscosity of the liquid.
When this state of things has been reached, the terminal velocity

of the spherc 18
_f_2 (‘f _ ) .
A 9 \p 1)g;
which agrees with (45) of § 495,

Motion of a Sphere which is rotating about n Fized Diameter.

511.  We shall now consider the motion of a sphere which 1s
surrounded by an infinite liquid, and which is rotating about a
fixed diameter.

We shall begin by supposing that the angular velocity of the
sphere is uniform and equal to , and shall endeavour to obtain an
expression for the component velocity of the liquid in a plane
perpendicular to the axis of rotalion, on the supposition that no
slipping takes place at the surface of the sphere.

Assuming that the liquid is initially at rest, it is easily seen
that uone of the quantities can be functions of ¢, where 7, 8, and ¢
are polar coordinates referred to the ceutre of the sphere as origin.
If, therefore, we neglect squares and products of the velocities, the
component velocity W of the liquid, perpendicular to any plane
containing the axis of rotation, is determined by the equation

daW acw  2dW 1 d /. d w
ar =7 { d T dr Trsn 0 a6 (sm 0 dﬂ) W= r*sin’ 0}’

and if in this equation we put W =wsin 8, where w 1s a function

of 7 and ¢ only, the equation for w is
dw  2dw 2w _1dw

drz_*_;'g;—;jﬁydt .................

The value of the tangential stress per unit of area which
opposes the motion of the sphere is

T _ 1 dR ﬂV_'W
- VP(Tsin9%+dr 7)’

where R is the radial velocity ; but, since £ is not a function of ¢,
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the value of this stress depends solely on that of W. Now it has
been pointed out in the previous Chapter that unless the motion
of the sphere is exceedingly slow, the motion of the liquid will not
take place in planes perpendicular to the axis of rotation, but the
velocity of every particle will have a component in the plane
containing the particle and this axis. But since this component
does not produce any effect on the motion of the sphere, which it
is our object to determine, we may confine our attention solely to
the calculation of w.

In addition to (43), w must satisfy the conditions:
(i) At the surface of the sphere w = aw for all values of &.

(ii) When t=0, w=0 for all values of r greater than a, the
radius of the sphere.

Let w= Re-** where R is a function of R alone ; substituting
in (43), we obtain
'R 2dR 2R

2
dT'*‘;—d—/r’——'FXR 0,
the solution of which is
d (1
R=4 E‘{;cosx(r-—a+a)},
~ A%yt
whence w=Add—r{5T—cos7x(r—a+a)}.

Integrating this with respect to A between the limits oo and 0,
and then changing A into ¥ (2) and integrating the result with
respect to « between the same limits, we obtain

md 1/ (r—a+ay
—%»\/vtdr'rfo F(@) exp{ T 4wt }da.

Performing the differentiation and then integrating by parts,
we shall obtain

oo b S o 0

provided F'(0) =0 and F'(a) e=*=0 when a=o0.
The surface condition (i) will be satisfied if
F(a)+afF (a) =—2d°w/m,
whence F(a)=—2d’wm (1 — e~2/4),

the constant of integration being determined so that #(0)=0;
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this value of F(a) also satisfies the condition that F(a)e =0
when a =w . We therefore obtain

a*wsin 8 [* (a a (r—a+a)
= - — _ i —_ —afa — ,7
W r v (i) fo {r+ (1 7‘) € } exp { e }da...(4<4~).
Putting r — a + a = 2us/(vt) this becomes

2a’w sin 6
W= r
o Qu, t)—r+ 2 5
f r—a {?"4- (1—(;) exp (— W)} e (43)
2y E)

If »>a it follows that W =0 when ¢=0. When r=a and
t =0 the lower limit of the definite integral (45) becomes indeter-
minate ; but since, in this case, we are to have W =awsin 6, it
follows that if we put k=7 — a the quantitics £ and £ must vanish
in such a manner that when k=0 and ¢ =0, &/2 +/(vt) =0.

When t=ow we obtain
a,”ai sin ﬁ

W= (46).

T

This equation gives the value of W after a sufficient time has

elapsed for the motion to have beceme steady, and agrees with (47)
of § 496.

512. Since the tangential stress per unit of area which opposes
the motion of the sphere is

d (W
r=—wpa g ()
the opposing couple is

G = —2mvpd® f: (%_ CI?V),, sin* 0 dd

0

d /w
=—28 ¢t (=
gmopat (T)
1f, therefore, the sphere be acted upon by external forces which
produce a couple IV, its equation of motion will be

8 oSy — AT
Tgo'aw_'l'G—N,

= — 2mypa’ ;; (?) f" sin® 8 d6

oam d /w
or 5p il 2 CTI‘ (;)a =N e (47),
where N =3pN'[8a’.
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‘When the motion of the sphere commences from rest the value
of w or W cosce @ will be obtained from (45) by changing ¢ into 7,

w into ' (t—7)dr, and integrating the result

with respect to 7

from ¢ to 0, where F (f) 1s the variable angular velocity of the

sphere.

Now, i \) Sndr

adr o
Hence, if @ were uniform we should have

d(@_u)u ldw w

(j%)l =—20+ ?/C:r J’w exp {—2u4/(vt)/a —u

. aw
} du — sty

Putting u + 4/(vt)/a = B, the definite integral

= e"t/“zf e Fdp
Vvt)la

£
et {0 GOF

a 3a’

(‘/—W—M#’ww— )

2 a 207
if vt be small; whence

<d'w> _ 2w (N/ p vt'\/'rr)_ aw
dr) =7 T aya \V" T T2q N2
Chann‘ing t into 7, and o into F' (¢ — 7) d¢, (47) becomes
oow 2uw , vT AT
Ty fF(t—-r)( (w)—fﬁ)dT
¢ B
f Ft=r) t ) Gt = N, (48)
0
Putting 10p =k kv=2,
oa’
(48) becomes
(t~) {vf -z \/(v'rr)} dr
4 bha \/ v f F(e=) \72 T S (49).

Now we have supposed the motion to have commenced from

rest under the action of the couple N'; but

if the sphere had

initially been set 1n rotation with angular velocity £, and then left
to itself, it could be shown in the same manner as in § 508 that

the equation of motion would be
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. kAt , T
m+km+aﬁ[0F t—1) {\/r—%\/(vw)} dr

, d
Yo \/;—'rﬂﬁ (t =) S = O (50),

where F(0)=(. Putting 6 (¢) for the last two terms, and inte-
grating, we obtain

© = Qe — f e G (u) dat e e (1),

0
d It
d =—ADe M — — f e i-u) @ (uydu...... (52).
dt Jo
For a first approximation we have
w=0e* o=—AleM=F (1)

Whenee, if ¢, i, and ¥ have the same meanings as in § 509, a
second approximation gives

. . EFPaQot
w = F (t) = — kUQG—Kt + 7#‘71-‘ X (t) ......... (53),
Ba? [t
— —At . —A(l—u)
w=0¢+ 2 foe ¢ (u) duteeeivenne (54).
And a third approximation gives
: KaQvt Bt od o, ™
- —at ALY g A=) S d
® kvQe=M 4+ 9 v xa)+2a~/7rdt Odujoe JTdT

Bavd (¢ L w )
T 4w (thoe %) Al (W) dtheanenens (55),
2 &
B K ’_"t i f“ A=) /7 ]
o =¢ M+§,,/—7r[ A" & (u) du + - Odu “e ) 7 dr

0 20 +/
Pa’?
4

Now we have shown in § 509 that

| " e g () (56).
0

f: M- () du= ¢ (f) (t+ %) _ %t.

" ¢ ¢
Also ft du[ e M=) W/ d'r:[ d"rf e -7 /e du
0 0 0 T

= e""tf e (T — ) dr
g

=~%{t¢(t)—¥j+%¢(t)}-
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And the value of the last integral in (56) is given by (38);
whence

o= Qe 4 k;f/!:% {4’ ¢+ ) %}

{00 (G ) i

. . 5
which determines the value of the angular velocity as far as »*.

EXAMPLES.

1. A sphere of radius @ is surrounded by viscous liquid which
is initially at rest. Prove that if the sphere is constrained to
rotate about a fixed diameter with uniform velocity w, and slipping
i1s supposed to take place at the surface of the sphere, the velocity
of the liquid at time ¢, perpendicular to the plane containing the
ax1is of rotation, is equal to

@’ sin @ { a? (1 + qers _peqa>

’r('rrvt)} 7 (3% + a) P—q
+spa_eqa} exp{ r—a-{-a)z}d
rP—9q

where k=wp/8; B is the coefficient of sliding friction, and p and ¢
are the roots of the equation

ka’z* + (3k+aw)az + 3k +a = 0.

2. In the last example, if the sphere is filled with liquid and
no slipping is supposed to take place; prove that the velocity of
the liquid at time ¢ is equal to
. . e~ M gin Aa S (Ar)
or sin € — 20 5in 6%, - NaSE hg)
where S (r) denotes the spherical function d (+™*sinr)/dr, and the
different values of A are the roots of the equation S8 (Aa) = 0.

3. A spherical mass of ice which is surrounded by water is
made to rotate with uniform angular velocity w. After the motion
has become steady, the ice is suddenly melted; prove that the
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component velocity of the water in the plane perpendicular to the
axis of rotation at any subsequent time is

3o (m[vt)? sin 6 % 1—_ (%J.: a*—da’ f:) [exp {— (T;T:)g}
— exp {- (r :; ;‘)H da.

4. A right circular cylinder of radius ¢ is filled with viscous
liquid which is initially at rest, and made to rotate with uniform
angular velocity e about its axis. Prove that the velocity of the
liquid at time ¢ is equal to

et J (Ar)
A (ha)
where the different values of A are the roots of the equation

J, () =0.

203 + wr,

5. DProve that if in the last cxample, the cylinder were
surrounded by viscous liquid, the solution of the problem might be
obtained from the definite integral

f " f " et nug (u) J, (i) T, () da,
0 0

by properly determining ¢ (u) so as to satisfy the boundary
conditions.

6. A perfectly smooth thin cylindrical shell of radius aq,
is surrounded by viscous liquid which is at rest, and contains
viscous liquid which is rotating as a rigid body with angular
velocity . By means of the expression for J, (A) given in Ex. 5,
Chapter XII, prove that if the shell be removed, the vorticity at
any point of the liquid at any subsequent time is equal to

Tl T [(“‘)S“Hcos@-

o e e
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CHAPTER XXIII.
MISCELLANEOUS PROFOSITIONS.

518. THE present Chapter will be devoted to the consideration
of certain miscellaneous problems relating to the motion of a
viscous liquid.

Steady Motion in Pipes and Canals.

514. Let the pipe be cylindrical and vertical, ¢ its radius,
and let us suppose that the liquid has been flowing through the
pipe long enough for the motion to have become steady. At a
considerable distance from either end of the pipe, the velocity may
be regarded as wholly vertical; whence using ecylindrical co-
ordinates, u=v=0; and the equation of continuity gives

which shows that w is a function of = alone. Also if the axis of 2
is measured vertically downwards, we obtain from (23) of § 470,

Y @),
p dw
_ldp dw 1 dw
O—g_ﬁii2+y(d?+5d—w) USRI ) )

From (2) it follows that p is a function of z alone; hence if
we differentiate (3) with respect to z, and take account of (1), we
shall obtain

&p
dz*

p:(A+gp)z+rI ...................... (4‘),

:0,

whence
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where 11 is the pressure at the origin and 4 is an undetermined
constant. Substituting the value of p from (4) in (3), we obtain

dw 1l1dw A ~0
d=* t e de uw
the integral of which is

w=14s"p+Blogw+ C ....oovvvvnnnene, (5).

Since w must not be infinite at the centre of the pipe, =0.
In order to determine C, we must take account of the surface
condition

d .
ﬂw:—T:——,uEg ..................... (6),

where 8 is the coefficient of sliding friction. Substituting in (6)
from (5), we obtain
C=—}A0/B— 14ap,

w=—}Ap™ ("~ =*) - }Aa/B.

In order to determine the constant A4, we must know the
pressure at some other point of the pipe; let Il be the pressure
when z =1, then from (4)

A =(0, =1L = gpl)fleeesesiesinrannn (7).

The flux across any section of the pipe is

whence

27rf wedw = — ra*dfu— yra’A /B,
0

= (ma*{8ul + wa’/280) (11 — 11, + gpl).
If we suppose the tube to be horizontal and of small cross
section, and that the current is maintained by a constant pressure
II at one end, and that there is no slipping, we must put g=0,
B =, and the value flux is

ma' (1T — 11,)/8ul.
This result agrees with the result obtained by Poiseuille® from

his experiments on the flow of liquids through capillary tubes, and
furnishes a means of determining the value of x from experiment.

515. Greenhill has pointed out? that the motion of a viscous
liquid in a eylindrical pipe of any cross scction, when there is no
slipping, can be obtained whenever the value of the current
function for a frictionless liquid contained in a rotating cylinder

L Mém, des Savants Iz‘trungcrs, vol. 1x. (1846).
2 Proc. Lond. Math. Soc. vol, xmi, p, 43,
B. 1L, 20
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306 MISCELLANEQUS PROPOSITIONS.

of the same form is known ; for when the cross section is not 1
circle (3) becomes
d*w + d'w
da® * dy
where M is a constant. Also w=0 at the surface of the pipe.
Now we have shown in § 97, that when frictionless liquid is
contained in a rolating cylinder,
d?,\!’ qu{ 0
da? d ?
at all points of the liquid; and y»=—4% o (#° + y°) at the boundary,
whence if y =4 + 4o (2° + 3°),
d'y & _
dct .+ d s — 20=0
at every point of the liquid, and y =0 at the boundary; hence X
satisfies the same conditions as w.

2+M 0,

If liquid is flowing in an open chanunel, and the axis of y be
vertical, the conditlions to be satisfied at the free surface are

y = const., dw/dy=0. .
If thercfore any known value of  satisfies this condition, we

can obtain the corresponding solution for liquid flowing in an 1 open
channel.

Motion in Parullel Planes.

516. When the lines of flow of a viscous liquid are parallel
straight lines, the determination of the motion depends upon the
solution of an equation of the same form as that which determines
the motion of heat in two dimensions.

Let the axis of 2 be parallel to the direction of motion; then
v=0, w=0 and the equation of continuity gives du/dz = 0, which
shows that u=f(y, 2, £). If no external forces act, the equations
of motion are '

du_ 1ldp du du
= (@ﬁ@) ................. ®),
0—_ 1ldp
pdy’
o-_1dp
p dz’
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Henee dPp/dz® =0, and p = #¢ (¢) + const.; also since p must
not be infinite when 2=+ o, ¢ (£) = 0, and (8) becomes
du _ ) (diu + d“’u)
dt —  \dy’
Let us now suppose that the liquid extends to infinity in the

positive and negative directions of the axis of 2z, and that u is a
function of ¥ and £ only; then (9) becomes

du d*u

Clt =1)d—y.J .......................... (10).

517. The principal solutions of this equation will now be
given.

First, let the liquid be unlimited in the positive and negative
directions of the axis of y; and let u = F (y) initially.

A vparticular solution of (10) is w=e"** cosAy; and since A
is arbitrary we may integrate this expression with respeet to A
between the limits oo and — e, and we thus obtain

U= ('rr/uif)i ey,

From the form of (10) it follows that if in this cxpression we
change y into 8 —y, the resulting expression will also be a solution,
whence multiplying by F (8)/27 and integrating with respect to 8
between the limits oo and — o0 we obtain

w=%(mvt) ‘*f F(B)eB-wiimt g
Putting 8 —y= 9a/vt, this becomes

u:rrr_*f Fy+2afvt)e~?da ............ (11),
and therefore u= F (y), when £=0. This solution is due to
Fouricr.

Secondly, let the liquid be bounded by the plane #z; and let
its initial velocity be F (y); then

u = F(y), when =0, provided y> 0.
u=0, when y=0, for all values of &

From the preceding case it follows that a solution of (10) is
u=3 (wVf')_if F(B) {e-tv-pruvt . = WHBFIM, g8 | (12),
0
20—2
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also when y = 0, u is obviously zero. To find the valve of w when
t =0, we obscrve that (12) may be written

U= 'n"‘fw dr f F (B) e=**t {cos A (y — B) — cos A (y + B)} dB,

w=2n f r f F(B) et sin Ay sin 3B,
0 Q

which by Fourier's theorem is equal to F(y) when £=0, for all
values of y between o and 0.

Thirdly, let the liquid be initially at rest, and let the plane 2z
move with velocity ¢ (¢). Then
#=0 when t=0, and y >0,
u=¢ (f) when y =0, for all positive values of ¢.
Since (vt) " e ¥ ig a solution of (10), its differential cocfficient
with respect to 4 is also a solution ; we may therefore put
u=1y (’n'y/ts)_é P

Since this expression vanishes when t =0, it follows from § 506,
that a solution of (10) is

¢
u =%y (wv) -if ¢ — T) T8 e—vir g,

Let 1y/(vr) = q,

then u:?-rr—!f b (t— v /dva) e da ..........(13).
vl it

When y=0, u=¢ (¢); and when ¢=0, w =0, whence (13) is
the required solution.

Adding together (12) and (13), the resulting value of u satisfies
the following conditions:
u=F(y), when £=0, and y >0,
w=¢ (£), when y =0, for all positive values of &

We thus obtain the solution for the motion of a viscous liquid
which s initially moving with velocity F(y), and which is bounded
by the planc y = 0 which is moving with velocity ¢ (2).

518. By means of the definite integral (13) we can obtain the
solution of the following problem.

Let the liquid be divided by the plane y =0, which is supposed
to be perfectly smooth ; and let the liquid on the positive side be
set in motion with initial velocity V7, and let the liquid on the
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negative side be set in motion with initial velocity V, and then
let the plane be removed. It is required to find the velocity at
any subsequent time.

In (18) let ¢ () =4V, and we obtain
u, = V;rr‘bf e~ da,

/e ot

=}V, — Vot Exfy/2 (ut),
adopting the notation fz e % du = Erf , first intreduced by Dr

]
J. W. L. Glaisher.

When ¢ =0 and % is positive, w,=0; but when =0 and y is
negative, u, = V.

Again from the form of (10), it is evident that
= V _&f —a? da,
LI ment

=1V, + Vit Erf y/2 (w1,
is also a solution. When ¢£=0 and y1is positive », = V; but when
£ =0, and y is negative, u, = 0. Hence if

U=u, + U,
=3 (V.4 V) +(V,=V,) m ¥ Exfy/2 ()},

w=7V, when £=0, and y is positive,

u="V,

» when t=0, and y is negative.

When ¢ is not zero, the value of u on both sides of the plane
y=01s equal to § (V,+ V,); hence the vortex sheet whick initially
existed instantly disappears.

From the last throe sections it is at once obvious that numerous
results furnished by the theory of the Conduction of Heat are

capable of a hydrodynamical interpretation and vice versé.

Waves tn a Viscous Liquid.
519. When the motion of a hiquid is in two dimensious, and

the squares and products of the velocitics are neglected, we have
shown that the current function satisfies the equation

(vz 135)‘1’ O oo, (14),
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the solution of which is

Vi =0 (i (16),
ry L ¥y
Vi, s gp = Qe an).
Also p is determined by the equation
‘ dp —_ d d‘kl _d‘\#l
s (dw dz »d7dw> ceerenrerneee(18),

In considering the problem of wave motion, it will be con-
venient as in Chap. XVIL to take the origin in the undisturbed
surface, and measure the axis of  in the dircction of the propaga-
tion of the waves, whilst the axis of z is measured vertically
upwards; and we have to find a solution of (14) which represents
a train of waves, and which also satisfies the following conditions.

At the free surface the normal and tangential stresses must
vanish, whence

=0, T=0,
a
or p+2y dw%;llrz= ....................... 19,
ayr  dY )
i T ds =0 (20).

Also if the liquid is bounded by fixed surfaces, we shall assume
that the liquid in contact with such surfaces is at rest.

In order to find a solution of (14) we shall assume that « and ¢
enter in the form of the factor ¢m#+¥ where m = 27/A, M being the
wave length; and the principal object of the investigation is to
find the value of k£ It is obvious that wave motion will not be
possible unless & is a complex quantity whose real part is negative,
for this is the only form of k& which represents a train of waves
whose amplitudes diminish with the time.

520. We shall now investigatc the propagation of waves in a
liquid which was originally at rest, and whose depth is so great in
comparison with the wave length, that it may be regarded as
nfinite.

Putting P=m’ + Ry (21),
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we obtain from (16) and (17)
¥, = (Ae™ 4 Be~mz) gmate
Vo = (O 4 De=2) gt
Tt will hereafter appear that « is a complex quantity whose

real part is positive, therefore since z is measured vertically
upwards we must have B= D = 0, whence

Yr=(dem 4 Cew) ematht ... (22).
If 5 be the elevation

. d
n=- ((Z%)z:‘]: —um (A +C)ematit
therefore
n+ unk™ (A + C’) emztit —
Previously to disturbance the pressure p, = — gpz, whence if p’

be the increment of the pressure due to the wave motion, we

obtain from (18)
pr= Akpbemz+l.mx+kl,
and therefore
P=—gpz + Akpiemetimatet (24).

At the free surface z =7, whence substituting in (19) the
values of Y, 7 and p from (22), (23) and (24), we obtain

(gmfk + k4 2m*v) A + (gmfk + 2mva) O=0 ...... (25).
From (20) we likewise obtain
Am* 4+ C& + (A + Ym*=0,
which by (21) becomes

2m*A + (2m* + k) C=0.........oce.ee (26).
Eliminating A and C between (25) and (26) we obtain
B+ 4mhv + gm + 4m' — 4mPva=0 ... ... (27),

which by virtue of (21) is a biquadratic equation for deter-
mining &.

‘When » is small a= (k/v)’a approximately, and therefore the
last two terms of (27) may be neglected ; we thus obtain

E* + 4km’ + mg =0,
the solution of which is
E=—2m% + J(dm*® — gm),
=—2m N i (28)

approximately, where n? = gm.
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Taking the lower sign we obtain from (26)
C=—24m*vi/n,
and from (21) ot =—m’— /v

On account of the smailness of », the first term may be
neglected, whence if

8= (n/2v),
a=(1-1)8,

and therefore
Jr = Ae=2m [gmz — 2 yn el BT} @ma =t
Rejecting the imaginary part, we obtain
Y = A2t {emz cos (mx — nt) + 2m*wn ' B2 sin (mz — Bz — nt)).
On account of the smallness of » the last term is insensible;
also if V be the velocity of propagation, and A the wave lengtlh,
m = 27/\, (m‘g)é =n=27V/A, whence V*=gr/27, and

2 2
A= Ae=$rvime oo T'"' (z— V),

and therefore the modulus of decay is A¥/87"y,

The preceding value of 4 represents a train of waves whose
amplitude diminishes with the time; it also appears that the
diminution due to viscosity is very much less in the case of long
waves than in the case of short ones.

1f we were to proceed to a second approximation, 1t would be
found that

k= —2m*v {1 — m (2u/n)t] —n {1 — m? (2°/n®)).

521. Let us now suppose that v is large. Putting 2" =Fk/y,
(27) becomes

2t 4’ + gms® + dm* — dm® (m? + 22 = 0.
In this put & =m tan 8, and we obtain
tan‘d + 4 tan®d + g/m** = 4 (sec 6§ — 1).
On account of the largeness of , the term g/m*® is very small,

and may therefore be neglected, whence dividing out by sec 6 -1
and putting sec § =y, we obtain
¥+ +3y~1=0.
This cubic has one real root which is approximately equal
to '29, whence
kfv =m"tan"0 = — m* x 92
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approximately. The other two roots lead to complex values of k&/»
whose real parts are approximately equal to —m® x 33,

The factor sec # —1 leads to k=0, which corresponds to no
motion, and this root must therefore be rejected. We therefore
see that the real part of % is a large negative quantity, and there-
fore the motion rapidly dies away.

522. These results are entirely in accordance with what 1s
observed in the case of viscous liquids. If for example a jet of air
were directed for a short time to the surface of a slightly viscous
liquid such as water, waves would be observed to diverge from
the point of application of the jet, whose amplitudes gradually
diminish as the {ime advances, until the motion ultimately dies
away. But if the jet were applied to the surface of a highly
viscous liquid such as treacle or glycerine, waves would not be
excited. The immediate cffect of the jet of air would be to
produce a depression in the neighbourhood of its point of appli-
cation, and as soon as it had ceased, the liquid would sluggishly
move so as to fill up the depression, and would very soon come to
rest,

528. We shall now solve the same problem when the depth
of the liquid is finite and equal to k. In this case we shall have

= (A cosh mz + B sinh mz + C cosh az + D sinh az) eme+#2,

The conditions to be satisfied at the bottom of the liquid
are that

dyr/dz=0, dyr/dz=0 when z=—h.

Putting
L = coshmh, M =sichmh, P =coshzh, @ =sinhak, these
conditions give

AL-BM+ CP-DQ=0............ (29),
(AM—BLym+(0Q—DP)a=0 ............ (30).
dyr
Als = — ———) = — e+ ket
0 7 (d.ﬂ s m (4 +C)e ;
whence nAt kT (A4 C)emstht <0 L (31).

From (18) we obtain
p=—gpz+ kp: (4 sinh mz + B cosh mz) ems+rt (32).

At the free surface z=1, whence substituting the values of ¥
7 and p in (19) we obtain ’

Agmik+ B \2m* + k) + Cogm/k + 2Dmay < ()
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Also from (20) and (21)
24Am'y + 2mv + k) C=0..oooveiiiinnn. (34).
Eliminating 4, B, €, D from (29), (80), (33) and (34) we

obtain,

2m’y, L, Mm, gm/k
0, — M, — Lm, 2m*y + k,
w4k, P 0 gmik, =0...(35).
‘ 0, —-Q, — Pa, 2mnav,

This is the equation for determining &£ For the purpose of
obtaining an approximate solution which is applicable to waves
in watcr, we shall neglect the square of v; and the determinantal
equation then becomes
— 2w’y (PMagm/fk + QLm’g[k + ka)
+Q@mlv+ k) [—Qm M (2m®v + k)+ Lgm/k} + La {P (2m®v + k) — 2m*y}

+ Mma (Pg/k + 2Mmy)] = 0.

Since v is small « is large, and therefore P and @ are large, we
may therefore put /@ =1. Dividing out by @, it will be found
that the largest terms are those which are multiplied by a; whence
retaining the most important terms only, it will be found that the
equation for k reduces to

k* + 4&m’v + mg tanh mh = 0,
the solution of which is
k= —2m’y + y(Am'V* — mg tanh mh),
= —2m + 1 (mg tanh mh) . .coeieiieennn, ..(36).
Hence the velocity of propagation is determined by the equation
V= (g\/27) tanh (27R/0),

which agrees with the result found in § 384. The modulus of
decay is X*/87"w as before.

If the depth of the liquid is small compared with the wave
length, we may replace tan mh by mh, and (36) becomes approxi-

mately
= — 2m% + mu (gh)},

which shows that long waves travel with a velocity of propagation
approximately equal to (gh)}, and that the amplitude diminishes
with the time?.

1 In connection with this subject, a paper by Lord Rayleigh **On the Circu-
lation of Air observed in Kundt’s Tubes,” Phil. Trans, 1884, may be consulted.
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Instability of Viscous Laguids.

524. The instability of viscous liquids has been studied
experimentally by Prof. Osborne Reynolds'. His experiments
consisted in causing water to flow from a large cistern through a
tube 4 feet 6 inches long, and by means of suitable appliances a
fine stream of coloured liquid was made to pass down the centre
of the tube along with the water. The results of experiments
made with three different tubes, whose respective diameters were
1 inch, } inch and # inch were as follows. When the velocity was
sufficiently small, the streak of coloured liquid extended in a
straight line through the tube, and if the liquid in the cistern were
slightly disturbed, the streak would oscillate in the tube about its
mean position, but showed no tendency to mix with the water. It
thus appeared that for small velocities the motion was stable.

As the velocity was gradually increascd, it was found that as
svon as it had attained a certain critical value, the coloured liquid
commenced to mix with the water, and the motion became
unstable; but the point at which instability commenced was
always at a considerable distance from the extremity of the tube
at which thé water flowed in, and. the intervening portion was
perfectly clear.

Any increase in the velocity caused the point at which insta-
bility commenced, to approach this extremity, but Reynolds did not
succeed in obtaining a velocity large enough to make the region
of stability altogether disappear.

On examining the unstable portion of the liquid by the light
of an electric spark, the mass of colour was found to consist of a
number of distinct curls, showing the existence of eddies.

When the water was kept at -constant temperature, and the
cistern as still as possible, it was found that the critical velocity
was inversely proportional to the diameter of the tube; and also
that 1if the viscosity of the water was diminished by increasing
its temperature, the critical velocity diminished directly as the
coeflicient of viscosity.

It was also found that the critical velocity was very sensitive
to disturbance of the water before entering the tube; and it was

1 ¢ 0On the Motion of Water and the Law of Resistance in Parallel Channels,”
Phil, Trans. 1883, p. 935,
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only by the greatest care as to uniformity of the temperature of
the cistern and the stillness of the water, that consistent results
could be obtained. This showed that the steady motion was
unstable for large disturbances long before the critical velocity
was reached,—a fact which agreed with the full-blown manner in
which eddies appeared.

If ¢ be the temperature expressed in degrees centigrade, D

the diameter of the tube, and if
P =(1+-0336¢ +00221¢")" < v,
Reynolds found that the critical velocity was given by the formula
U= P/BD, where B=43179;

and he concluded, that the probable condition of stability of a
viscous liquid is that Uc/v should be less than a certain numerical
quantity, where ¢ is a length U and a velocity, which define the

linear scale and scale of velocity of the system, and » the kinematic
coefficient of viscosity.

For the mathematical treatment of this question, the following
papers by Sir W. Thomson may be consulted.

On the Oscillations of a Viscous Spheroid.

525. The oscillations of a viscous spheroid have been
investigated by Prof. G. IL. Darwin® and Prof. Lamb®; we shall
now proceed to give the investigation of the latter.

The equations

V+Eyu=0,V'+E)v=0, V' + FHw=0...... (37),
subject to the condition
du , dv  dw
da (—i—:l/ + dz = [ T, (38),

are of frequent occurrence in a variety of physical investigations,
and we shall commence by obtaining the solution of these equations
subject to the condition of finiteness at the origin.

Let u =+ ¢, where ¢ is a solid harmonic of degree n, and

1« QOn the Stability of Fluid Motion,” Phil. Mag. (5) vol. xxrv, pp. 188 and 272,

« On the Propagation of Laminar Motion through a turbulently moving Inviscid
Tiquid,” Ibid. p. 342,

% ¢« On the Bodily Tides of Viscous Spheroids,” Phil. Trans. 1879.

3 Proc. Lond. Math. Soc. vol. x1t1. p. 51,
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4, i8 a function of r alone; substituting in (37), taking account
of the value of V* in (15) of § 10, and remembering that

d¢"/d7' = n¢n/r’
we shall find that the equation to be satisfied by +r, is

A, 2+ l)dy, .,
P e I = B =0 (39).
If we put = R, _[r", the equation for R, is
&'RB, 2dR, n(n+1) P
et o R +FR,=0...... (40).

The properties of the function B_ have been fully discussed by
the authorities cited below?; for our present purpose it will only
be necessary to consider that solution of (39) which is finite when
7 = Q.

Integrating (39) in a series of ascending powers of » we obtain

-1.2,..2 4 4
11"‘:1_2.;cnr+3+2.4.2nﬁr3.2n+5_ """ ),
from which it is evident that
Y, = (kr)y™ sin kr.

By meaus of (41) we can easily prove that

dyr, kr®
T _—2n+1‘h ...... P (42),
Ay, _
Tl dr = Vg = Wi (43),
By = @n+1)(2n+3) (Y, = Wy )ererenns (44).
It follows from (42) that
o= (1. B (Za+ 1) (% d%)" L (45),

where z =kr,

Let ¢,, i, be any two spherical solid harmonics of degree = ;

1 Stokes, ‘“On the Communication of Vibrations from a Vibrating Body to a
surrounding Gas,”’ Phil. Trans. 1868.

C. Niven, “On the Oonduction of IHeat in Ellipsoids of Revolution,” Phil.
Trans, 1880.

C. Niven, ““On the Induction of Electric Currents in Infinite Plates and
Spherical Shells,” Phil. Trans. 1881,

Lamb, ** On Electrical Motions in a Spherical Conductor,” Phil. Trans. 1883.

Lord Rayleigh, Theory of Sound, vol. 1. ch, xvir
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then d¢,,,/dz is obviously a solid harmonic of degree n; also by
substituting each of the functions

0 R A ML AL S/

Y s dy’ 7 dz’ ° dy Y s
in Laplace’s equation, it can be shown that the latter three
functions are also solid harmonics of degree n. It therefore

follows that
— d¢n+l an an
w= (Y y o - dy) .............. (46)

with symmetrical expressions for v and w are respectively solutions

of (37). Thesec expressions do not however satisfy (38), for taking
account of (42) and remembering that

50, ddb,  do,
oy g =,

we find that
du dv dw _ (n+ 1)

Tt Z +o = o+ 3 SV SRR (4.

s 2n+ —2n—~ - -
The function r***d (r***¢_ )/dz is a homogeneous function of
degree n + 2; substituting in Laplace's equation, and using the

equation
r”  dé, d ¢
& —_ 2rt+1 o ¢
b, a1 (dm - r'*"“) ............ (48)
which can be immediately verified, it can be shown that this
function is a solid harmonie of degree n + 2. We may therefore
assume

w =4 et 4 ¢ (49),

n +2 dw uc 4G eeeemmanimanianes

where 4 is a constant, with symmetrical expressions for v and ',
Substituting in (38) we obtain

de v dw 2 d +2
detaytdp S AT D 6, ‘P"
X —AF (n + 2) (2n+ 5) ¢n+_—1‘ll"n+2
=—AF(n+2)(2n+5) b, Vo

(n+1)
T (n+2)(2n+3)(2n+5)’
it follows from (48) that the complete solution of (37) and (38) is
u+u &e. Whence we may put
d¢n dXﬂ (?’L + ]) k“l’n—#—?‘ n"*ﬁ d ¢ﬂ+l
u=% {\P ( gt v e dy) (n T 2)(2n + 3) (20 5 B) da 7™
............... (50).

by (43). Hence if
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526. Tt is important to notice that the solution of the
proposed system of equations consists of two distinct types, which
may be thus written:

1st type q
—_— 7X1l — N X'n =4
U=y, (y it dy) ................... (57)
2nd type 4 o J
U= ,11,"-1 i; niEr ’\P‘n +1 2nt+l 7 ¢ (52)

dz  (n+1)2n+1)(2n+3) der"

It should also be noticed that the solutions of the first type
make

autyv+zw=0...........oooiil, (53),
whilst those of the second type make
U+ Y F 2w =Y D i, (549).

527. We shall now apply the preceding results to determine
the small oscillations of a nearly spherical mass of viscous liquid.

Since the motion is small, we may ncglect the squares and
products of the velocities, and the equations of motion are

du Q -

e vViu + o s &, &covnniiiiinin (55),
where Q= —p/p+V and V is the attraction potential; also if we
assume that the time enters in the form of the factor e~ these
may be written

VB u=—2"dQ/dz....covren e (56),
where 4 = a/v, and the exponential factor is omitted.

From (56) combined with (38) it follows that V!Q = 0, and
therefore

u=—a’d@)/dz + terms of types (51) and- (52).
The condition to be satisfied at the free surface is that the
stress must be zero, hence the boundary conditions are

zP+yU+21I'=0

U +yQ+28=0F-oeeermreiinnnnn, (57).
a2l +yS+28=0
Substltutmg the values of P, @ ...... from § 468 (19), these
become
2zu, + y (u, +1v,) + 2 (v, + w,) = pz/u, &, &,
or (rad;_1>u+d_‘i(xu+yv+zw):% &e., &e...... (58).
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528. TFrom (53) it follows that the terms of the first type
represent motions which are everywhere perpendicular to the radius
vector, and which are therefore unaffected by gravitation. Hence
the vibrations represented by the two types are independent of one
another.

As regards the vibrations of the first type, (56) and (57) are

satisfied by
dx
=0, = V. ( dz,l dyn)

also since there is no radial motion, the surface value of V is
constant. Substituting in (58), we obtain after reduction

[a%%ﬁwn—lwh}=

where the square brackets denote surface values. This equation
determines the values of & which are all real, and hence the values
of a

529. Since @ can be expanded in a series of spherical solid
harmonics of the form EQ", the vibrations of the second type can
be expressed by equations of the form

U= idd:Q'z R ;m (T" T ») n+ 1 ¥ = V) ((Z)MH aZv( i Tﬂ),

where 7', is a spherical surface harmonic of degree #, and a is the
mean radius of the sphere. Substituting in (58) and taking account
of (48), we obtain at the surface

d _ an—24Q,, d/r d
(’rd;—l)u—— a dw+dm(ETﬂ)'(TE+n—2)\I’n—l

(G (r - 2) e (59)

Also at the surface,

d _d nQ, ,
C/l;'(:cu+yv—+—zw)——dm( 2 "\hl)
_ndQ, &l dy, d (™
== St e g ()
_ _ndQ, d /T,
- o d + \}’n— g ( u}n’)
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Let the equation of the free surface be
r=a+8,
where S, is another spherical surface harmonic, then by § 371, the
value of the potential at an internal point 1s,
V = const. — §mpr* + ;:aislﬂ (g) ,
and therefore the value of V at the surface 1s

_ 8map (n ~1) 8,
V = const. ~ §@nt1)
; s 2n(n—1
Putting B = (27(L+\1))a,g ....................... (61),

remembering that g=4mpa, and suitably choosing the const., the
value of V' may be written

V=—n"aBS,
Hence
prjp=—(Q,— V)=z/v
== (Qu +77aB8) TV (62)

de ~ % dg
_ @B (dr8,  ..d 5, }
v(2n+1) dze a” dxr™
by (48). DBut at the surface we have also the kinematical condition
dS,/dt = — aS, = (zu + yv + zw)/a
=—(Q,f«—ny,T,)/a
Accordingly from (62) and (63) we obtain

_ K’ BN (4@, _ wmn @ Q,
p/ﬂ—_(§n+1)a{<1+?)<dm ¢ dx;“é’m)
BE d T"T," B d a,n+1Tn)
el @t &
Collecting our results, and substituting in the three equations

(58), and equating separately the surface harmonics of degrees
n~1 and n+1, we shall obtain after reduction '

(2n—2)Q, — [rdy,_/dr+ (2n—2) 4 _aT,
— B0 [(1 + BYa) G — (B)a) ¥ 2T.]/(2n 4+ 1)......(64),

_ @ {dQn .y Qn}

and
@0+ 1) [(rd)dr - 3) (Y= Vo) T,

=—(n+ 1)k [(1+5/2")Q,— (Bla)* Yol ]...... (65),
B. II. 21
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where the square brackets indicate surface values. These equations
may be written

[2(n—1) @n+1) = k% (1 + BY4")} [Qn]

=[2(n—1)2n+ 1), —La* (1 + B%/a*) ] aT,,
and

(n+ 1) Ka* (1 + B8/) [Q,] + [— (n+ 1) Fa’ (1 + B/a’) 4,
+ (20 + 4) na dyfr, /dr + (Zn + 1) Ba*y,] T = 0.
Eliminating @, and 7, wo shall finally obtain

’(’275 2522()2%@ (1 + %) Yorn = {2” —2- 2121 1 (1 + E: )}

Va (Qn + 4) n‘i’m—l
X {ﬁ1 —aTD el et 3)} (1))

530. This is the equation for determining the values of ka;
it can be approximately solved either when the viscosity is very
large or very small.

When v is large £ and a are small, and +, = 1; putting
t=Ka'B/2n+1) = 5Y(2n+1)va......... (67),
(66) becomes
2(n-1)¢ =2(n—1)—§'{1+ (2n+4)n },
(2n+1) (2rn +3) n+1 (2n+1) (2n+3)

approximately. Solving for ¢ and substituting in (67), we obtain

. ngav”
T2m+ 1+ 1
a result which was first obtained by Prof. G. H. Darwin®,

On the other hand when » is small, it is evident from § 446
that a is nearly equal to ¢8, so that k is large. From (45) it
is easily scen that the most important part of 4 is

(—)"1.3.5...... (Zn+1) (ka)™ ' sin (ka + Lnar).

It thus appears that the ratio v, /4, is of the order (ko)™ and
(66) becomes approximately

2(n—1)2n+1) -k’ (1 + 5 = 0.
This leads to
a/iB=1+(n—1)(2n+1)/ka?
=1+(n—-1)@n+1)v/Ba2
1 Phil. Trans. 1879, p. 10,
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whence a=t8+(n—1)2n+1)va™,
whence the modulus of decay is
T = a’/(n— 1) (2n+1)

From this result it appears that the oscillations of a globe of
moderate dimensions are very slightly affected by such an amount
of viscosity as is ordinarily met with in nature.

For a globe of the same size as the earth, and of the same
kinematic viscosity as water, we have on the c. G's. system
a =637 x 10° » =014 ; and Prof. Lamb finds that the value of +

for the oscillation of longest period, Le. n =2, is

=184 x 10" years.

Prof. Darwin has found that the viscosity of pitech near the
freezing temperature is u =1-3 x 10° x g, hence taking g =980, we
find

7 =150 hours.

This is the modulus of decay of the slowest oscillation of a
globe of the size of the earth, having the density of water and the
viscosity of piteh.

The oscillations of a cylindrical mass of rotating viscous liquid
have been discussed by Mr G. H. Bryan, in a paper which is to be
published in the Proc. Camb. Phil. Soc. vol. VL.

EXAMPLES.

1. A current of liquid is made to flow through an infinitely
long rectangular tube one of whose sides is smooth, and the other
is rough; after the motion has become steady the forces which
maintain the motion cease to act; prove that the velocity at
distance y from the smooth side, at time ¢ after the forces have
ceased to act, 1s

u=8 U'zr"E:D (2n+1)%exp {— @n+ 1)’ m*vt/4a’} cos (2n + 1) wy/2q,

where « is the width of the tube, and U is the velocity of the
liquid in contact with the smooth side in steady motion.
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2. An unlimited mass of viscous liquid is divided by the plane
y=0. The liquid on the positive side of the plane is at rest,
whilst the liquid on the negative side is initially moving with a
velocity parallel to z, which is equal to UePrcos Bz, where B=(2v)‘}
and x is negative. Prove that if the plane be removed, the
velocity of the liquid at any subsequent time is

%rf cos (t— qu'*) e du.

Zv(vt)

3. A viscous liquid is contained between two smooth parallel
plane boundaries # = + g, unlimited in one direction, and closed
by a rough plane y =0, which is capable of movement in its own
plane in the direction of the axis of z. Prove that if the rough
plane be moved with constant velocity V, so small that the
squares and products of the velocity of the fluid may be neglected,
then after the motion has become steady, the current function is
given by the equation

Y =—2Vyr™ tan™ {cos (mwa/2a) cosec (my/2a)].

4. A viscous liquid occupies the space between two infinite
parallel planes. One of the planes is fixed, whilst the other moves
parallel to itself with a simple harmonic motion 4 cos nf. Show
that the tangential force on the fixed plane has a maximum value
per unit of area, which is equal to

24 un
(cosh 2AL — cos 20y

where [ is the distance between the planes, A= pn/24, and the
fluid in contact with the plaue is assumed to adhere to it.

5. Prove that when viscous liquid is flowing steadily through
a cylindrical tube of any section, the curves of equal velocity are
the same as the relative strcam lines of a frictionless liquid filling
an equal cylinder, due to any plane motion of the eylinder perpen-
dicular to its generating lines, the viscous liquid being supposed to
adhere to the sides of the tube.

If the section of the tube be the ellipse (y/b)°+ (¢/c)* =1, prove
that the velocity of the liquid at any point is

Ab® (1 — P /b* — 2%/c*) /(0" — o),

and that the molecular rotation is

ABS (P64 22/ (B + ¢,
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6. A stream of liquid free from viscosity, is flowing with
velocity u along a straight smooth pipe of length I and uniform
circular section of radius @. Supposing the pipe suddenly to
become rough, the coefficient of sliding friction having a given
value 8, and the fluid viscous, the coefficient of viscosity having a
given value u, find the additional pressure which must be applied
at the end from which the stream is flowing in order to keep the
efflux unaltered.

7. A mass of air bounded by two infinite planes perpendicular
to the axis of ¥ and distant g, apart is in motion, the motion being
the same in all planes parallcl to zy. Form equations to deter-
mine the motion taking account of internal friction, and show that
if 1t be periodic in # and ¢, and the direct effect of friction be
limited to a thin layer near the planes, then neglecting terms
involving the squares and higher powers of the velocities, a solution
is given by
u = cos kz [e=BW+n) cos {nt — B (y + y,)} — cos nt],

v =— (k/B v/2) sin kx
X [yy,™ cos (nt — ) + e FW¥W cos {nt — {m — B (¥ +7,)}1,

where B =(n/2v)!; v is the kincmatic coefficient of viscosity;
p=0a’p and
b=+na {1+3(1—0)y " (dnfv)" Y.

8. A viscous fluid flows between two parallel planes and the
motion is slightly disturbed; prove that if u be the velocity at
right angles to the planes which is supposed to vary as ewttoms
where ¢ is the time and z the axis parallel to the plane, then «
satisfies the equation

d* A/ d 2 Lp) Vum _
{(%—m> (@z‘m ~ +m}“—°'

where v is the kinematic coefficient of viscosity, 20 the distance
between the planes, V the original velocity of the fluid midway
between the planes, the axis of # being perpendicular to the
planes.
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APPENDIX.

I. A cuass of functions closely allied to toroidal functions has
been recently investigated by Mr Hobson'. These functions are
spherical harmonics of complex degree —1 +=u; and appear to have
been first studied by Mehler?, by whom they were called Kegel-
JSunctionen, which may be translated Conical Harmonics. They are
also discussed by Heine® and there is a short note upon them by
Mr Burnside®.

Mr Hobson has applied these functions to the solution of a variety
of problems in Electricity and the Conduction of Heat. He has also
obtained the current function due to the motion parallel to its axis of a
spindle-shaped solid, formed by the revolution of a segment of a circle
round its chord. The result is expressed in the form of a definite
integral, which although elegant from an analytical point of view, is of
the same complicated character as the corresponding result in the case
of the cardioid which is given in § 271.

II. The investigation of § 332—3 1s not quite satisfactory in the
case of a hollow vortex; for in deducing the value of 8, we have
employed the value of ¢/, whereas in this case ' does not exist, and the
value of 8, must be deduced from that of .

In this case the boundary condition is

Now the most Important terms of dy/dk are of zero order, and
therefore the first term of (1) is of the second order, therefore to
the first order, the condition becomes

iy
aE O (

1 «On a Class of Spherical Harmonics of Complex Degree,”’ Trans. Camb. Phil,
Soe. vol. x1v. p. 211,

2 Ueber cine mit den Kugel- und Cylinderfunctionen verwandte Function,
Elbing 1870; and Crelle, vol. Lxvii

3 Kugelfunctionen, vol. 11, p. 217.

4 Mess. Math. vol. x1v, p. 122.
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Now from (67) of § 329,

gg‘k ——2Va%ksin £+ ksin £ {4,R, + 4,R, (B(k) cos &}

—(l—Fkcos§) 4,2, (b/]c) sin &,
whence retaining terms of the first order only, (2) becomes
2Va®b + ybA, (L~ 2) + 34, =0,

whence by (69, @), 8, =0; which shows that 8, is of the second order
of small quantities.

ITI. In a paper which is to be published in the American Journal
of Mathemaiics, I have employed toroidul functions to investigate the
steady motion of an annular mass of liquid, whose cross section Is
small compared with its aperture, and which is rotating like a rigid
body about its axis of unequal moment.

If the cross section of the ring is given by the equation

k=b(1+pBcosé+fB,cos2f+...... ),
it is shown by a process similar to that employed in Chapter XTIV, that
the values of the B8’s in terms of b and the angular velocity w, can be
obtained to any degree of approximation that may be desired ; and the
value of B8, to a first approximation is
B, b (31 + 120 —8log 4/b)..........oiinil. (1),
where A = v*/4mp.
It is also assumed that no hollow space exists within the liquid, and

this leads to the following inequality which expresses the condition that
the pressure should not become negative inside the ring, viz.,

A (Zlog4/b—19) A+ >0 oo, (2).

9
1z
If therefore the radius of the critical circle be taken as the unit of
length, we may assign to & and A any values which make B, a small
quantity, and which also satisfy (2).
Tf 5= "1, then B, = 0124 + 10A,
and if we put A =01, the left-hand side of (2) is equal to 9224, and is
therefore positive, and therefore 8, = 1124, Hence
b=-1, fB,=-1124, w¥4mp=-01,

are solutions of the problem.

IV. Equations (12) of § 467 may be proved in a somewhat
different manner as follows.

We have shown in § 464 that there are three planes mutually at
right angles to one another, across which the tangential stresses are
eero.  Tet ¢, f', ¢ be the rates of extension perpendicular to these
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328 APPENDIX.

planes in the directions Ox, Oy’, 0z"; and let the direction cosines of
Ox'y Oy, O, with reference to Oz, Oy, Oz be given by the scheme,

z y z

« A my oY
:y' A my Ty
2 ly My ng

Since the fluid is isotropic
PP=—p+d(e+f +g)+2ue oo, (1),
with similar expressions for @', B. Also
P=—p+ P74+ QL+ R
Substituting from (1) and remembering that ¢ + f + ¢  is an
invariant, and therefore equal to e +f+ ¢, we obtain

Pe—ptd(e+f+q)+2u (L2 + 12+ 1) ... (2).
dus d ., d . dN, . ., .
But  o=‘- (zl gt dz,) (b’ + Lo/ + L)

=12 12 4 10,
thercfore (2) becomes,

P=—p+X(e+f+g)+2me. i, (3),
with similar expressions for @ and .

Again S=mm P +mm,Q +mm, R
=2 (mye’ + myris [+ mgngg’) . oo (4).
But
@< (dfw+d_v>¥% (m i+m 2 +m, d) (n;'+nv’+nw’) .
-9 dy a'z - 1 dﬂ:l 2 dyl 3 dz! 1 2 3

d d d ' 2 _/
+§<n1 ch’+n“E_/+n3 d;,)(mlu +m + mg)

=mme’ + Mgy + mgngg’,
and therefore (4) beecomes

dw dv -
S=p (cTy + %> ........................... (5),

with similar expressions for 7 and U.
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By T.H.Key, M.A. 6th Thousand. Post 8vo. 8s.

A Short Latin Grammar for Schools. By T. H. Key, M.A.
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rovised, 4s. 64. Or in two parts, 2s. 6d. each. HKExamples (nearly 8000),
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Hydromechanics. By W. H. Besant, D.Sc,, F.R.8. 4th Edition,
Part I. Hydrostatics. 5s.

Mathematical Examples. By J. M, Dyer, M.A., and R. Prowde
Smith, M.A., Assistant Masters at Cheltenham College. (In the press.

Mechanics. Problems in Elementary. By W. Walton, M.A. 6e.
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CAMBRIDGE SCHOOL AND COLLEGE
TEXT-BOOKS.

A Series of Elementary T'reatises for the use of Students.

Arithmetie. By Rev.C.Elssce, M.A. Feap. 8vo. 13th Edit. 3s. 6d.
By A, Wrigley, M.A. 8z, 6d.

A Progressive Course of Examples. With Answers., By
J. Watson, M_A, 6th Edition. 2s.6d.

Algebra. By the Rev. C. Elgee, M.A, 7th Edit, ds,

Progressive Conrse of Examples. By Rev. W. F.
M‘Michael, M.A.,and R. Prowde Smith, M.A. 4th Edition. 3s. 6d. With
Answers. 4. 6d.

Plane Astronomy, An Introduction to. By P. T. Main, M.A
5th Edition. 4s.

Conic Seotions treated Geomsetrically. By W. H. Besant, D.Se.
6th Edition, 4s. 6d. Solution to the Examples. 4s.

Enunciations and ¥igures Separately. 1s. 6d.

Statics, Elementary. By Rev. H. Goodwin, D.D. 2nd Edit. 3s.
Hydrostatics, Elementary. By W. H, Besant, D.Sc, 12th Edit. 4s.
Mensuration, An Flementary Treatise on. By B.T. Moore, M.A. s,

Newton's Prineipia, The First Three Sectione of, with an Appen-
dix; and the Ninth and Eleventh Bections, By J. H. Kvans, M,A, 5th
Edition, by P. T. Main, M.A. 4as.

Analytical Geometry for Schools, By T. G.Vyvyan. 4th Edit, 4s.6d.

Gresk Testament, Companion to the. By A. C. Barrett, A M,
5th Edition, revised. Feap. 8vo. 5s.

Book of Common Prayer, An Historical and Explanatory Treatise
on the. By W. G. Humphry, B.D. 6th Edition, Feap. 8vo. 2s.6d.
Musle, Text-book of. By Professor H, C. Banister. 13th Edition,

revised. 5s.

Concise History of, By Rev. H. G. Bonavia Hunt,
Mus. Doc. Dublin.  9th Edition revised. 8s. 6d.

ARITHMETIC AND ALGEBRA.
See the two foregoing Series.

BOOK-KEEPING.

Book-keeping Papers, set at various Public Xzaminauons.
Collected and Written by J. T. Medhurst, Lecturer on Book-keeping in
the City of Londoun College.

A2
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GEOMETRY AND EUCLID.

Euclid. Books I.-VI. and part of XI. and XII. A New Trans-
lation. By H. Deighton. (fee Cambridge Mathematical Series, p. 8.)
The Definitions of, with Explanations and Exzercises,
and an Appendix of Kxercises on the First Book. By R. Webb, M.A.

Crown 8vo. 1s. 64.

Book I. With Notes and Exercises for the use of Pre-

paratory Schools, &, By Braithwaite Arnett, M.A. 8vo. 4s. 6d.

The First Two Books explained to Begiuners. By C. P,
Magon, B.A. 2nd Edition. Feap. 8vo. 2s. 64d.

The Enunciations and Figures to Euclid’s Elements. By Rev.
J. Brasse, D.D. New Edition. Feap.8ve. 1s. Without the Figures, 6d.

Exercises on Buclid and in Modern Geometry. By J. McDowell,
B.A. Crown 8vo. 3rd Edition revised. 6s.

Geometrical Conie Sections. By H. G. Willis, M.A. (See p. 8.)

Geometrical Conic Sections. By W. H. Besant, D.Sc. (See p.9.)

Elementary Geometry of Conics. By C, Taylor, D.D, (See p. 8.)

An Introduction to Ancient and Modern Geometry of Conies.
By C. Taylor, D.D., Mastor of St. John’s Coll., Camb. 8vo. 15s.

Solutions of Geometrical Problems, proposed at St. John's
College from 1830 to 1848. By T. Gaskin, M.A. 8vo. 12

TRIGONOMETRY.

Trigonometry, Introduction to Plane. By Rev.T. G. Vyvyan,
Charterhouse. 3rd Edition. OCr. 8vo. 3s, 6d.

An Elementary Treatise on Mensuration. By B. T. Moore,
M.A, 5s.

ANALYTICAL GEOMETRY
AND DIFFERENTIAL CALCULUS.

An Introduection to Analytical Plane Geometry. By W. P,
Turnbull, M.A. 8vo. 12

Problems on the Principles of Plane Co-ordinate Geometry.
By W. Walton, M.A. 8vo. 16s.

Trilinear Co-ordinates, and Modern Analytical Geometry of
Two Dimensions, By W. A. Whitworth, M.A. 8vo. 16s.

An Elementary Treatise on Solid Geometry. By W. 8. Aldis,
M.A. 4th Edition revised. Cr. 8vo. 6s.

Elliptic Functions, Elementary Treatise on. By A. Cayley, D.Sc.
Professor of Pure Mathematics at Cambridge Universiity. Demy 8vo. 15s.
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MECHANICS & NATURAL PHILOSOPHY.

Statlos, Elementary. By H. Goodwin, D.D. Feap. 8vo. 2nd
Edition. 8s.

Dynamies, A Treatise on Elementary. By W. Garnett, M.A
D.C.L. 4th Edition. Crown 8vo. 8s.

Dynamies. Rigid. By W. 8, Aldis, M.A, 4s,

Dynamics, A Treatise on. By W. H. Besant, D.Sc.,F.R.8. 7s.64d.

Elementary Mechanics, Problems in, By W. Walton, M.A, New
Xdition. Crown 8vo. 6s.

Theoretical Mechanios, Problems in. By W. Walton, M.A.  3rd
Fdition. Demy 8vo. 16s.

Hydrostatics. By W. H.Besant, D.Se. Feap. 8vo. 12th Edition. 4s.

Hydromeohanics, A Treatise on. By W.H. Besant, 1).Sc., F.R.8.
8vo. 4th Edition, revised. Part I. Hydrostatics. &s.

Optics, Geometrical. By W. B. Aldis, M.A, Crown 8vo. 2nd
Edition, ds.

Double Refraction, A Chapter on Fresnel’s Theory of. By W. 8.
Aldis, M.A. 8vo. 2.

Heat, An Elementary Treatise on. By W. Garnett, M.A., D.C.L.
Crown 8vo. 4th Edition. 4s.

Newton’s Prineipia, The First Three Sections of, with an Appen-
dix; and the Ninth and Eleventh Bections, By J. H. Evans, M.A. 5th
Edltlon Edited by P. T. Main, M A, 4as,

Astronomy, An Introduction to Plane. By P, T. Main, M.A,
Feap. 8vo. cloth. 5th Edition. 4a.

Practical and Spherical. By R. Main, M.A, 8vo. 14..

Elementary Chapters on, from the ¢ Astronomie Physique*
of Biot. By H. Goodwin, D.D. 8vo. 8s. 6d.

Pure Mathematics and Natural Philosophy, A Compendium of
Facts and Formulse in. By G. R. Bmalley. 2nd Edition, revised by
J. McDowell, M.A. Fcap. 8vo. 8s. 6d.

Elementary Mathematical Formulse. By the Rev. T, W. Open-
shaw, M.A, 1s, 6d.

Elementary Course of Mathematies. By H. Goodwin, D.D.
6th Edition. 8vo. 16s.

Problems and Examples, adapted to the ¢ Elementary Course of
Mathematics.” 3rd Kdition, 8vo. b5s.

Solutions of Goodwin’s Collection of Problems and Examples.
By W. W. Hutt, M.A. 3rd Edition, reviged and enlarged. 8vo. 8s.

A Collection of Exsmples and Problems in Arithmetic,
Algebra, Geometry, Logarithms, Trigonometry, Conic S8ections, Mechanics,

&c., with Answers. By Rew A. Wrigley. 20th Thousand. 8s. 6d.
Key. 10s. 6d.
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TECHNOLOGICAL HANDBOOKS.

Edited by H. TrueMan Woobp, Secretary of the Society of Arts.

1. Dyeing and Tissue Printing. By W. Crockes, F.R.8. 5s.

2. Glass Manufacture. ByHenryChunce,\IA H.J.Powell, B.A.;
and H. G. Harris. 3s.6

3. Cotton Manufactu:re. By Richard Marsden, of Manchester.
3rd Edition, revised. 6s. 6d.

4, Chemistry of Coal-Tar Colours. By Prof. Benedikt. Trans.
lated by Or. Xnecht of Bradford. 3s.

5. Woollen and Worsted Cloth Manufacture. By Roberts
Beaumont, Assistant Lecturer at Yorkshire College, Lieeds. 7s. 6d.

Others in preparation.

HISTORY, TOPOGRAPHY, &e.

Rome and the Campagna. By R. Burn, M\A. With 85 En-
gravings and 26 Maps and Plans. With Appendix., 4to. 3L 3s.

Old Rome. A Handbook for Travellers. By R. Burn, M.A,
With Maps and Plans, Demy 8vo. 10s, 6d.

Mcdern Eurcpe. By Dr. T. H. Dyer. 2nd Edition, revised and
continued. 5 vols. Demy 8vo. 21, 12s, 6d.

The History of the Kings of Rome. ByDr, T. H, Dyer. 8vo.16s.

The History of Pompell: its Buildings and Antiquities. By
T. H. Dyer. 3rd Edition, brought down to 1874. Post 8vo. 7s. 6d.

The City of Rome: its History and Monuments. 2nd Edition,
revised by T. H. Dyer. 5s.

Anclent Athens: its History, Topogra.phy, and Remains, By
T. H. Dyer. Super-royal 8vo. Cloth. 1i. 5

The Decline of the Roman Republic. By G. Long. 5 vola.
8vo. 14s. each.

A Higtory of England during the Early and Middle Ages. By
. H. Pearson, M.A. 2nd Edition revised and enlarged. 8vo. Vol 1.
16s. Val. IL 14s.

Historical Maps of England. By C. H. Pearson. Folio, 3rd
Edition revised. 3ls, 6d.

History of England, 1800-46. By Harriet Martinean, with new
and copious Index. & vols. 3s. 64d. each.

A Practical Synopsis of English History. By A. Bowes, 9th
Edition, revised. 8vo. ls.

Lives of the Queens of England. By A. Strickland. Library
Edition, 8 vols. 7s. 6d. each. Cheaper Edition, 8 vols. 5s. each. Abridged

Edmon 1 vol. 6s. Gd Mary Queen of Scots, 2vols 5s. each, Tudor and
Stuart Princesses, 5s.

Eginhard's Life of Karl the Great (Charlemagne). Translated,
with Notes, by W. Glaister, M.A_, B.0.T.. Crown 8vo. 4s.6d.

The Elements of General Hlstory By Prof. Tytler. New
Edition, brought down to 1874. 8mall Post 8vo. 3. 6d.

History and Geography Examination Papers. Compiled by
C. I Spence, M.A., Clifton College. *Crown 8vo. 2s. 6d.

IRIS - LILLIAD - Université Lille 1



Educational Works. 13

PHILOLOGY.

WEBSTER'S DICTIONARY OF THE ENGLISH LAN-
GUAGE, With Dr. Mahn's Etymology. 1 vol. 1628 pages, 3000 Illus-
trationa. 21s.; half calf, 30s.; calf or half russia, 8ls. 6d.; russia, 2.
With Appendices and 70 additional pagea of Lliustrations, 1919 pages,
31s, 6d.; half calf, 21.; calf or half russia, 21. 2s.; russia, 21. 10s.

*THE BEST PRACTICAL ENGLISHE DICTIONARY FXTANT.'—Quarterly Review, 1873.

Prospectuses, with specimen pages, post free on application.
Richardson's Philological Dictiorary of the English Language.
Combining Explanation with Etymology, and copiously illustrated by

Quotations from the best Authorities. With a Supplement. 2 vols. 4to.
4l, 14¢. 6d. Supplement separately. 4to. 12s,

Brief History of the English Language. By Prof. James Hadley,
LI.D., Yule Collega. Fecap. 8vo. 1ls.

The Elements of the English Language. By E. Adams, Ph.D.
21st Edition. Post 8vo. 4s. 6d.

Philological Eissays. By T. H. Key, M.A,, F.R.8. 8vo. 10s. 64.
Language, Its Origin and Development. By T. H. Eey, M.A,,
F.R.8B. 8vo. 14s.

Synonyms and Antonyms of the English Language. By Arch-
doacon Bmith, 2nd Edition. Post 8vo. 5s.

Synonyms Discriminated. By Archdeacon Smith. Demy 8vo.
2nd Edition reviged. lds.

Bible English. Chapters on Words and Phrases in the Bible and
Prayer Book. By Rev. T. L. O. Davies. 5s.

The Queen's English. A Manual of Idiom and Usage. By the
late Dean Alford 6th Edition. Feap. 8vo. 1s.sewed. 1s. 6d.cloth.

A History of English Rhythms. By Edwin Guest, M.A,,D.C.L.
LL.D. New Edition, by Profcssor W. W. Skeat. Demy 8vo. 18s,

Elements of Comparative Grammar and Philology. For Use
in 8chools. By A. C. Price, M.A., Assistant Master at Leeds Grammar
School. Crown 8vo. 2s, 6d.

Questions for Examination in English Literature. By Prof.
W. W, Skeat. £2nd Edition, revised. 2s.6d.

Etymological Glossary of nearly 2500 English Words de-
rived from the Greek. By the Rev. K. J. Boyce. Fcap. 8vo, 3s, 6d.

A Syriac Grammar. By G. Phillips, D.D. 3rd Edition, enlarged.
8vo, 7s.6d.
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DIVINITY, MORAL PHILOSOPHY, &e.

By taE REv. F. H. Scrivever, A.M,, LL.D., D.C.L.

Novum Testamentum Gresee, Editio major. Being an enlarged
Edition, containing the Readings of Westcott and Hort, and those adopted
by the Revisers, &c. 7s. 6d. For other Editions sed page 3.

A Plain Introduction to the Criticism of the New Testament.
With Forty Facsimiles from Ancient Manuscripts. 3rd Edition. 8vo. 18s,

8ix Lectures on the Text of the New Testament. For English
Readers, Crown 8vo. 6s.

Codex Bezm Cantabrigiensis. 4to. 26s.

The New Testament for English Readers. By thelate H. Alford,
D.D. Vol. I, Part I. 3rd Edit. 12s. Vol. I, Part 1I. 2nd Edit, 10s, 64,
Vol. I1. Part I. 2nd Edit. 16s. Vol. II. Part I1. 2nd Edit. 16a.

The Greck Testament. By the late H. Alford, D.D. Vol I. 7th
Hdit, 1. 8s. Vol. II. 8th Edit. 1I. 4s. Vol. ITL. 10th Edit. 18s. Vel. IV,
Part 1. 5th Kdit, 18s. Vol. IV. Part IL, 10th Edit. 14s. Vol. LV. 1i. 125,

Oompanion to the Greek Testament. By A. C, Barrett, M.A.
5th Edition, revised. Fcap. 8vo. 5s.

The Book of Psalms. A New Translation, with Introductions, &e.
By the Very Rev. J. J, Stoewart Perowne, D.D, 8vo. Vol I. 6th Kdition,
18s. Vol IT. 6th Kdit. 16s.

Abridged for Schools. 6th Edition. Crown 8vo. 10s. 6d.

History of the Articles of Religlon. By C. H. Hardwick. 3rd
Edition. Post 8vo. 5s.

History of the Creeds. By J. R. Lumby, DD, 3rd Edition.
Crown 8vo. 7s. 6d.

Pearson on the Creed. Carcfully printed from an early edition,
‘With Analysis and Index by K. Walford, M.A, Post8vo. &s.

Liturgies and Offices of the Church, for the Use of English

Readerg, in Illustration of the Book of Common Prayer, By the Rev.
Edward Burhidge, M.A. Crown 8vo. 9s.

An Historical and Explanatory Treatlse on the Book of
Common Prayer By Rev. W. . Humphry, B.D. 6th Edition, enlarged.
Small Post 8vo. 2s. 6d. ; Cheap Edition, 1s,

A Commentary on the Gospels, Epistles, and Acts of the
Apostles. By Rev. W. Denton, A.M. New Edition, 7 vols. 8vo. 9s. each.

Notes on the Catechism. By 1it. Rev. Bishop Barry. 8th Edit.
Feap. 2s.

The Winton Church Catachist. Questions and Answers on the
Teaching of the Church Catechism. By the late Rev. J. 8. B. Monsell,
LL.D. 4th Edition. Cloth, 3s.; or in Four Parts, sewed.

The Church Teacher’s Manual of Christian Insfruction. By
Rev, M. F. Badler, 38th Thousand, 2s.6d.
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FOREIGN CLASSICS.

A Series for use in Schools, with English Notes, grammatical and
explanatory, and renderings of difficult idiomatic expressions.
Feap. 8vo.

Schillers Wallenstein. By Dr. A. Buchheim. 5th Edit. 3s.
Or the Lager and Piccolomini, 2s. 64. Wallenstein’s Tod, 2s. 6d.

Maid of Orleans. By Dr. W. Wugner. 2und Edit. 1s. 6d.
Maria Stuart. By V. Kagtner. 2nd Kdition. 1s. 6d.

Goethe’s Hermann and Dorothea. By E. Bell, M.A.,, and
E. Wolfel. ls. 6d.

German Ballads, from Uhland, Gosthe, and Schiller. By C. L.
Bielefeld. 3rd Edition. 1s. 6d.

Charles XI1., par Voltaire. By L. Direy. 7th Edition. 1s. 6d.

Aventures de Télémaque, par Fénélon. By C. J. Delille. 4th
Edition, 2s. 6d.

Select F'ables of La Fontaine. By F.E. A.Garc. 18th Edit. 1s. 6d.
Ploclola, by X. B. Saintine. By Dr. Dubuc. 15th Thousand. 1s. 64.

Lamartine’s Le Tailleur de Pierrcs do Saint-Point. By
J. Boiclle, 4th Thousand. ZFcap, Bvo. 1s. 6d.

Italian Primer. By Rev. A. C, Clapin, M.A. Fecap. 8vo, 1s,

FRENCH CLASS-BOOKS.

French Grammar for Public Schoals. By Rev. A. C. Clapin, M.A.
Feap. 8vo. 11th Edition, revised. 2s. 6d.

French Primer. By Rev. A.C, Clapin, M.A, Fecap. 8vo. 7th Ed. 1s.

Primer of French Philology. By Rev. A. C. Clapin. Feap. 8vo.
3rd Edit. 1s.

Le Nouveau Trésor; or, French Student’s Companion. By
M. K. B. 18th Kdition. Fcap. 8vo. 1s, 64,

French Examination Papers in Miscellaneons Grammar and
Tdioms. Cowpiled by A. M. M. Stedwan, M.A. 2pd Edition, revised-
Crown 8vo. 2s. 6d,

Key to the above. By G. A. Schrumpf, Univ. of France. Crown
8vo. 58, (For Teachers or Private Studeuts only.)

Manual of French Prosody. By Arthur Gosset, M.A. Crown
Bvo. 3s.
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F. E. A. GABC’'S FRENCH COURSE.

First French Book. Feap. 8vo. 98th Thousand. 1ls.

Second French Book. 47th Thousand. Fecap. 8vo. 1s. 6d.

Key to First and Second French Books. 5th Edit. Fep. 8vo. 3s.6d.

French Fables for Beginners, in Prose, with Index. 15th Thousand.
12mo. 1s. 6d.

Select Fableg of La Fontaine. 18th Thousand. Feap.8vo. 1s. 6d.

Histolres Amusantes et Instructives. With Notes. 16th Thou-
sand. Feap. 8vo. 2s. 6d.

Practical Guide to Modern French Conversation. 17th Thou-
sand. Fcap. 8vo. 1s. 6d.

French Poetry for the Young. With Notes. &5th Edition. Feap.
8vo. 2s.

Materials for French Prose Composition; or, Selections from
the best English Prose Writers. 18th Thousund. Fcap. 8vo. 3a.
Key, 6s.

Prosateurs Contemporaing. With Notes. 10th Edition, re-
vised. 12mo. 3s. 6d.

L.e Petit Compagnon; 8 French Talk-Book for Little Children.
11th Thousand. 16mo. 1s. 6d.

An Improved Modern Pocket Dictionary of the French and
Engligh Languages, 38th Thousand, with Additions, 16mo. 2s. 6d.

Modern French-English and English-French Dictionary. 3rd
and Cheaper Edition, revised. In 1 vol. 10s. 6d.

The A B C Tourist's French Interpreter of all Immaediats
Wants. By F. K. A. Gasc. 1s.

GOMBERT'S FRENCH DRAMA.

Being a Selection of the best Tragedies and Comedies of Molidre,
Racine, Cormeillo, and Voltaire. With Arguments and Notes by A.
Gombert. New KEdition, revised by F. K. A. Gase. Fecap. 8vo. 1ls. each;
sewed, 6d.

CONTENTS.

MornierE :—Le Misanthrope. L’Avare. Le Bourgeois Gentilhomme. Le
Tartuffe. Le Malade Imaginaire. Les Femmes Savantes. Les Fourberiea
de Scapin. Les Précicuses Ridicules. L'Hcole des Femmes. I’Ecole des
Maria, Le Médecin malgré Lui.

RACINE :—Phédre. Esther. Athalie. Iphigénie. Les Plaideurs. La
Thébaide; ou, Los Fréres Ennemis. Andromaque, Britannicus.

P. CorNEILLE:—Le Cid. Horace. Cinna. Polyeuncta.

VYOLTAIRE :—Zalre.

GERMAN CLASS-BOOKS.

Materiala for German Progs Composition. By Dr. Buchheim.
11th Kdition, thoroughly revised. Fcap. 4s.6d4. Key, Parts L. and 1L, 3s.
Parts 111, and IV, 4s.

German Conversation Grammar. By I Sydow. 2nd Edition.
Book I. Etymology. 2s. 6d. Book IL. Syntax, 1s. 6d.
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‘Wortfolge, or Rules and Exercises on the Order of Words In
German Sentences, By Dr. F. 8tock. ls. 6d.

A German Grammar for Pnblic Schools. By the Rev. A. C.
Clapin and F. Holl Miller. 4th Edition. Feap. 2s 6d.

A German Primer, with Exercises. By Rev. A. C. Clapin. 1s.
Kotzebue's Der Gefangene. With Notesby Dr. W. SBtromberg. 1s.

German Examination Papers in Grammar and Idiom. By
R. J. Morich. 2s. 6d. [Key tn the press.

MODERN GERMAN SCHOOL CLASSICS.
Small Crown 8vo.

German KExamination Course. By Prof. F. Lange, Ph.D.
Elementary, 2s. Intermediate,2s. Advanced,ls, 6d.

Hey’s Fabeln Fir Kinder, Edited by Prof. F. Lange, Ph.D, 1s.6d.

Bechstein's Mirchen. Edited by Prof. H. Hager, Ph.D,

Benedix’s Dr. Wespe, Edited by F. Lange, Ph.D. 2s. 6d.

Schiller’s Jugendjahre. Edited by Prof. H. Hager, Ph.D.

Hoi}’m:f’s Meister Martin, der Kiifner, By Prof. F. .ange, Ph.D.
£

Heyse’s Hans Lange. By A. A. Macdonell, M.A., Ph.D. 23,

Auerbach’s Auf Wache, and Roquette’s Der Gefrorene Kuss.
By A. A. Macdonell, M.A. 2s.

Moser's Der Bibliothekar. By Prof. ¥. Lange, Ph.D, 2s.

Eber’s Eine Frage. By F. Storr, B.A, 2s.

Freyiag’s Die Journalisten. By Prof. F. Lange, Ph.D, 2s, 6d.

Gutzkow’s Zopf und Schwert, By Prof. ¥. Lange, Ph.D. 2s,

German Epic Tales. Edited by Karl Neuhaus, Ph.D. 2s. 6a.

Humoresken. Novelletien der besten deutschen Humoristen der
Gegenwart. Edited by A, A. Maedonell, M.A, Oxon. Authoriged Edition.
[In preparation.

ENGLISH CLASS-BOOKS.

Comparative Grammar and Philology. By A. C. Price, M.A.,
Assistunt Master at Leeds Grammar School. 2s. 6d.

The Elements of the English Language. By E. Adams, Ph.D,
21st Edition. Post Bvo. 4s. 6d.

The Rudiments of English Grammar and Analysls. By
K. Adams, Ph.D, 16th Thousand, Feap. 8vo. 1ls.

A Concise System of Parsing. ByJ. E. Adams, B.A. 1s. 6d,

Examples for Grammatical Analysis (Verse and Prose). Se-
lected, &ec., by F. Edwards. 6d.

Notes on Shakespeare’s Midsummer Night's Dream. By T.
Duff Barnett, B.A, 1s. Juliug Ceesar, 1s. Henry V,, ls.
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By C. P. Masox, Fellow of Univ. Coll. London.

First Notions of Grammar for Young Learners. Feap. 8vo.
35th to 40th Thousand. Cloth, 94,

Flrat Steps in English Grammar for Junior Classes. Demy
18mo. 44th Thousand. ls.

Outlines of English Grammar for the Use of Junior Classes.
65th to 70th Thousand. Crown8vo. £s.

English Grammar, including the Principles of Grammatical
Analysis, 30th Edition. 120th to 124th Thousand. Crowmn 8vo. 3s. 6d.

A Shorter English Grammar, with copious Exercises. 30th to
33rd Thonsand. Crown 8vo. 3s. 6d.

English Grammar Practice, being the Exercises separately, la.

Code Standard Grammars. Parts. and I1., 2d. each. Parts I,
IV., and V., 3d. each.

Notes of Lessons, their Preparation, &c. By José Rickard,
Park Lane Board School, Leeds, and A. H. Taylor, Rodley Board
School, Leeds. 2nd Hdition. Crown 8va. 2s. 6d.

A Byllabic 8ystem of Teaching to Read, combining the advan-
tages of the ¢ Phonic’ and the * Look-and-Say’ Systems. Crown 8vo. ls.

Practical Hints on Teaching. By Rev. J. Menet, M.A. 6th Edit.
revised. Orown 8vo. paper, 2s.

How to Earn the Merit Grant. A Manual of School Manage-
ment. By H. Major, B.A., B.Sc. 2nd Edit. revised. Part I. Infant
Behool, 8s. Part II. 4s. Complete, 6s.

Test Lessons in Dictation. 4th Edition. Paper cover, 1s. 6d.

Drawing Copies. By P. H. Delamotte. Oblong 8vo. 12s. Sold
also in parts at 1s. each.

Poetry for the Schoolroom. New Edition. Feap. 8vo. 1z, 6d.

The Botanist’s Pocket-Book. With a copious Index. By W. R.
Hayward. 5th Hdition, revised. Crown 8vo. cloth limp, 4s, 6d.

Experimental Chemistry, founded on the Work of Dr. Stockhardt.
By O. W. Heaton. Post 8vo. 5s.

Lectures on Musical Analysis. Sonata-form, Fugue. Illus-
trated from Classical Masters. By Prof. H. C. Banister, 7s. 6d.

GEOGRAPHICAL SERIES. By M. J. Barrixoron Wakp, M.A.

The Map and the Compass. A Reading-Book of Geography.
For Standard T. 6d.

The Round World, A Recading Book of Geography. For
Standard II. 10d.

The Chlld’s Geography. For the Use of Schools and for Home
Tuition. 6d.

“The Child’s Geography of England. With Introductory Exer-

cises on the British Isles and Empire, with Questions, 2s. 6d. Without
Questions, 2s.

Geography Examination Papers. (See History and Geography
Papers, p. 12.)
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Fducational Works. 19

Helps’ Course of Poetry, for Schools. A New Selection from
the English Poets, carefully compiled and adapted to the several standards
by E. A. Helps, one of H.M. Inspectors of Schools.

Book 1. Infants and Standards I. and II. 134 pp. small 8vo, Pd.

Book II. Standards IIL. and IV. 224 pp. crown Bvo. 1ls. 6d.

Book 11X, Standarda V., VL., and V1I. 352 pp, post 8vo. 2s.

Or in PARTS. Infants, 2d.; Standard I., 2d.; Standard IL., 2d.
Standard IIL., 4d.

Picture School-Books. In Simple Language, with nhumerous
Illustrations. Royal 16mo.

The Infant’s Primer. 3d.—School Primer. 8d.—B8chool Reader. By J.
Tilleard. 1s.—Poetry Book for 8chools. 1s.—The Life of Joseph, 1s.—Ths
Scripture Parables. By the Rev. J. B. Clarke. 1s.—The 8cripture Miracles.
By tho Rev. J. E. Clarke. ls.—The New Testament History. By the Rev.
J. G. Wood, M.A. 1s.—The Old Testament History. By the Rav. J. Q.
Wood, M.A. 1s.—The 8tory of Bunyan’s Pilgrim’s Progress. 1s.—The Lifa
of Martin Luther. By S8arah Crompton. 1s.

BOOKS FOR YOUNG READERS.
A Series of Reading Books designed. to facilitate the acquisttion of the power
of Reading by very young Children. In 1l vols. limp cloth, 6d. each.
Those with an asterisk have a Fronlispiece or other Illustration.

*The Two Parrots, A Tale of the Jubilee. By M. L.
Wintle. 9 Illustrations.

*The Old Boathouse. Bell and Fan; or, A Cold Dip.
*Tot and the Cat. A Bit of Cake. The Jay. The | Suitable

Black Hon’s Nest. Tom and Ned. Mrs. Bee. I _jfh:m.
nya
*The Cal and the Hen. Sam and his Dog Redleg.
Bob and Tom Lee. A Wreck.
*The New-born Lamb. The Rogewood Box. Poor
Fan. Bheep Dog.
*The Story of Three Monkeys.
*Story of a Cat. Told by Herself,
The Blind Boy. The Mute Girl. A New Tale of
Babes in & Woed,
. Suitable
The Dey and the Knight. The New Bank Note. For
The Royal Visit., A King's Walk on a Winter's Day. IStandards
*Queen Bee and Busy Bee. Leln
*Gull's Crag.

*A Pirst Book of Geography. By the Rev.C. A. Johns.
Tllustrated. Double size, la.

Syllabic Spelling. By C. Barton. In Two Parts. Infants, 3d.
Standard 1., 3d.

IRIS - LILLIAD - Université Lille 1



20  George Bell and Sons’ Educational Works.

BELL’S READING-BOOKS.

FOBR SCHOOLS AND PAROQCHIAL LIBRARIES.
Now Ready. Post8vo. Strongly boundin cloth, 1s. each.

*¥Life of Columbus.

*Grimm’s German Tales. (Selected.)

*Andersen’s Danish Tales. Ilustrated. (Selected.) Suitable
Great Englishmen. Short Lives for Young Children. | standards
Great Englishwomen. Short Lives of. 1. & IV
Great Scotsmen. Short Lives of.

*Masterman Ready. ByCapt. Marryat. Illus. (Abgd.)

*Scott’s Talisman. (Abridged.)

*Friends in Fur and Feathers. By Gwynfryn.

*Dickens's Little Nell. Abridged from the ¢ The 01d

Curiosity Shop.”

Parables from Nature. (Selected.) By Mrs. Gatty. Standards
Lamb's Tales from Shakespeare. (Selected.) Iv.4 7.
Edgeworth's Tales. (A Selection.)

*Gulliver's Travels. (Abridged.)

*Robinson Crusce. Illustraled.

*Aragbian Nights. (A Selection Rewritten.)

*The Vicar of Wakefleld.
*Seattlers in Canada. By Capt. Marryat. (Abridged.)
Marie: Glimpses of Life in France. By A, R. Ellis,
Poetry for Boys. Selected by D. Munro,
* 7 - Standards
Southey’s Life of Nelson. (Abridged.) Y. VL. &
*Life of the Duke of Wellington, with Maps and Plans. Vil

*Sir Roger de Coverley and other Esgsays from the
Spectator.

Tales of the Coast. By J, Runciman,
* These Volumes are Illustrated.

Uniform with the Series, in limp cloth, 6d. each.
Shakespeare’s Plays. ® Kemble’s Reading Edition. With Ex-
planatory Notes for School Use.

JULIUS CXESAR. THE MERCHANT OF VENICE. XING JOHN.
HENRY THE FIFTH. MACBETH, A8 YOU LIKE_IT.

London: GEORGE BELL & SONS, York Street, Covent Garden.
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