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P E E F A C E . 

T H E second volume of this Treatise deals with the more ad­
vanced portions of Hydrodynamics, including the motion of viscous 
liquids to which the last four chapters have been devoted. It 
commences with a chapter on Harmonic Analysis, in which a 
variety of functions which frequently occur in physical investiga­
tions are considered. The most exhaustive work on this subject 
is the German Treatise on Kuc/elfunctionen by Heine, of which 
considerable use has been made, especially in the first twenty 
pages of this chapter. The remainder of the chapter which relates 
to Toroidal Functions, is taken from Mr Hicks' papers in the 
Philosophical Transactions for 1881 and 1884. 

The notation Jm (x) for an ordinary Bessel's Function of degree 
m is well established, and the second solution of Bessel's equation, 
which is not however so frequently required, may be conveniently 
denoted by Ym(x); but there is another class of functions also of 
considerable importance, which constitute the two solutions of 
the equation which is obtained by changing x into ix in Bessel's 
equation. The notation for these functions does not appear to be 
so well established, many English writers employing the symbols 
Jm (tx) and Ym (tx), whilst German writers often employ the symbol 
Km (ix) in the place of Ym ( t x ) . But as it appears to me that the 
employment of an imaginary argument in the case of functions 
which may always be treated as real quantities, creates unnecessary 
complexity, I have ventured to introduce a new notation, and 
have denoted these functions by the symbols Im (x) and Km (x) 
respectively. 
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The portions of Chapter XTV. which relate to the vibrations of 
a circular vortex and to linked vortices, have been taken with 
slight modifications from a paper by Professor J. J. Thomson in 
the Philosophical Transactions for 1882, and from the Treatise on 
the Motion of Vortex Mings by the same author, to which the 
Adams' Prize was adjudged in 1882. The latter portion of this 
chapter has been derived from Mr Hicks' papers on vortex rings in 
the Philosophical Transactions for 1884 and 1885. It is however 
necessary to point out, that the period equation obtained by 
Mr Hicks for determining the fluted vibrations of a circular vortex, 
does not agree with that obtained by myself, and consequently 
there is an important difference in the results connected with the 
stability of the vortex. I am however indebted to Mr A. E. H. Love, 
for having examined and verified the analysis of §§ 326—340, and 
I therefore trust that the results which are put forward are the 
correct ones. 

In the Chapter on Waves, I have made considerable use of 
Prof. Greenhill's Article on Waves in the American Journal of 

Mathematics, Vol. IX., which contains an exhaustive discussion of 
most of the principal problems of interest. 

The Chapter on the Tides is confined exclusively to the 
dynamical theories which have been proposed as an explanation of 
tidal phenomena, and is principally derived from the investiga­
tions of the late Astronomer Royal and Professor G. H. Darwin. 
The reduction of tidal observations, together with a variety of 
questions relating to the practical portion of the subject, are very 
fullj' treated in Professor Darwin's Article on Tides in the 
Encyclopaedia Britannica. 

Although nearly forty years have elapsed since the publication 
of Prof. Stokes' paper " On the Effects of the Internal Friction of 
Fluids on Pendulums," it is remarkable that very little progress 
has been made with respect to the solution of problems connected 
with the motion of solid bodies in a viscous liquid. The complete 
solutions for a sphere and a right circular cylinder moving in a 
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viscous liquid of unlimited extent undor the action of given forces, 
have not yet been obtained; and no problem involving the motion 
of two solids appears to have ever been attempted; neither have 
any general equations analogous to Lagrange's equations been 
discovered, by means of which the motion of one or more solids 
in a viscous liquid may be obtained, without going through the 
troublesome process of calculating the components of the force 
and couple exerted by the liquid on each solid. The difficulties 
of the subject are undoubtedly great, but it is hoped that before 
the termination of the present century, substantial progress will be 
made. 

I have in conclusion to express my obligations to Professor 
Grcenhill for having read the proof sheets; to Mr A. E. H. Love 
for having examined the analysis of §§ 326—340, and for having 
read the proof sheets of the last four chapters; and to Professor 
J. J. Thomson and Professor G. II. Darwin for permission to make 
free use of their investigations on Vortex Rings and Laplace's 
Theory of the Tides respectively. 

U N I T E D U N I V E R S I T Y C L U B , 

November 1 8 8 8 . 
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E 1 U J A T A . 

Page 21 line 4 read rHTJc2 — - & e . 

, , 25 „ 13 „ value for values. 

, , 37 , , 8 from bottom, read TT1 for ir. 

, , 48 „ 2 „ ,, „ - m log HP/SP. 

„ 81 lines 14 and 24, and p . 85 line 17 read, - a for w. 

„ 189 „ 5 „ 7 read b for a. 

„ 226 line 16 read sin 4 ¿ 7 sin (2rcf-t-20) for sin 4 J-vsin (2nt- 20) . 

„ 249 In the first table read v for n-

„ 250 In the table read u/,8 for jup//S. 
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C H A P T E R X I I . 

O N S P H E R O I D A L H A R M O N I C S A N D A L L I E D F U N C T I O N S . 

242. IT is shown in treatises on Spherical Harmonics, that 
every spherical harmonic of degree N, is expressible in a series of 
the form 2™=" AMP™(/I)sin (MCP + AN), where C O S _ 1 L I . and <J> are the 
co-latitude and longitude of a point on a sphere, and P™ (FI) is 
called an ASSOCIATED FUNCTION OF THE FIRST KIND OF DEGREE n AND 

ORDER m. This function satisfies the equation 

This differential equation being of the second order has two 
independent integrals. The first of these is P™(P), and is finite 
for all finite values of FI, and is infinite when FT = oc. The second 
integral, which will be denoted by Q™ (FI), is as we shall presently 
show, infinite when JJ.= ±1, but is finite for all other values of FI, 
and vanishes when FI = ± AC . 

243. Laplace, to whom we are indebted for the invention of 
spherical harmonic analysis, principally devoted his attention to 
the attractions of spheres, and of bodies slightly differing there­
from ; and it was therefore sufficient for him to consider the 
properties of the first solution upon the supposition that FT < 1; 
but in dealing with the potentials of ovary ellipsoids, the function 
P™ is required both when FT < 1 and FT > 1 ; and the function is 
required when /A > 1. We shall therefore consider these functions 
from their most general point of view, and shall denote the 
argument by FT when it is < 1, and by V when it is > I. 

B . I I . 1 

DFT 
^ + 7 7 , ( 7 1 + 1 ) ^ = 0 (1)· 
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= - f ' [p + V <y - 1) cos dö (4). 
77-J „ 

The expressions for Pn in terms of the series, or in terms of 
either of the definite integrals, hold good whether fi< or > 1 . 

An expression for P™ in the form of a definite integral may be 
found as follows. Let 

-i: sm*'n0d9 [fi + V04" - lj cos 6}" 

Then 

d"F"ra _ n + m + l f y(p? - l ) + fj. cos 0} smim0dd 

m +1 p dp - 1) Jo {/* + v V - 1) cos c?}"̂ 2 

_ n + m + l f ' cos sin^fMc? 
_ VG^iyio { / i + V ( ^ - l ) c o s 9 r - + 1 " C" + ™ + 1) 

Integrating by parts we obtain 
dVm _ (n + m+1) (n - m) „ 

dp ~ 2m+ 1 
Now y o = 7 r P n , therefore 

d'"P„ _ ( n — m. + 1 ) ( ? i — m 4- 2). . . (n + m ) „ 

" ¿ 7 " _ 1 . 3 . 5 . . . ( 2 m - l ) T r ' 

whence 

p . = . _ (n + m)_!_(l- i , 2 ) ^ f» sivTBde . 

" 7 T (n - m)! 1.3.. .(2m - 1) j 0 {/x + V ( M ~ 1) cos 0J" 1"" 1 ' '"W ' 

If we transform the definite integral by putting 

/« + \/(/".8 — 1) cos 0 ' 

244. Tho function P™ may be very briefly dismissed. 

It is shown in Ferrers' Spherical Harmonics that 

00 = ( 1 - , . - ) » » - ^ " / * < i (2), 

p : « = ( v - i r d - ^ " > i (3), 

where Pn is an ordinary zonal harmonic or Legendre's coefficient. 
The value of P„ can be expressed either in the form of a 
terminating series of powers of fi, or by means of tho definite 
integral 

1 r {n + V - 1) cos 6}" aie 
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Z O N A L F U N C T I O N S O F T H E S E C O N D K I N D . 3 

we obtain 

F > - , ( N + 7 $ L -4 ~ ! I T ^ f ^ W G . ' - l W r ^ i n ' " ^ . ( 6 ) . ' 
Tr(n — m)]1.6...(zm — l)J0

 1 T > T T 

If fi > 1 = v, we must change the factor ( 1 — p ) i m into 
( y 2 - iu ( 5 ) and ( 6 ) . 

245. We shall now consider the function Q™. 

Let us first suppose that m = 0 ; writing y for ( 1 ) becomes 

If we endeavour to express QN in the form of a series of powers 
of v~\ it will be found that 

_1 v ' = " (2r + l)(2r + 2)...(2r + n) 1 . 
y » v'«L % = 0 ( 2 r 4 -1 ) (2?· + 3 ; . . .(2r + 2n + I ) i , 2 r ^ 

divergent. 

246. A series for Qn in powers of v could easily be obtained 
when v < 1, but it will not be required ; we shall therefore proceed 
to find an expression for Qn in the form of a definite integral. 

Let L = 2 H l 0 E V + - ^ H > 

where IP = 1 + 2vx + x 2 and v > 1. 
Then 

^ ( 1 - I T ) ^ = ~ {x2 - v x - 2 + {v2x + 2vx2 + 2v + Zx)U}. 

Also 

x ~ (x U) = ~ [ 2 + i/cc - x 8 - ( v V + 2 wc a + 2y + 3«) Z7j; 

therefore ( 1 — v2) + x (x U) = 0. 
dv dv dx 

Hence if U= 2Snx", S n satisfies the equation 
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and since v > l , Sn must be equal to A„Q„(v) where A n is some 
constant. Now if a > b, 

R dd 1 o + V(g a - V) 

J o a + b cosh 8 ~ <J(a' - 6 " ) ° G b 

Putting a = v + x, b = ̂ /(v1 — 1 ) , 

v + x + <J(l + 2vx+x2) 

V 0 7 - T ) ' 
F ^ _ = 1 . log 
J o v -\-*J(y% — 1 ) cosh 8 -\- x (l + 2vx + a?f 

_ i> + a: + 

~2H S v + x - H 

= ZAnQ„xn. 

Expanding the definite integral and equating the coefficients 
of a;" we find that 

( - 1 ) " AnQ„ = I Q | y + j ( y _ i ) c u s h • 

If the left-hand side be expanded in powers of the coefficient 
of y"""1—the first term in the expansion—is evidently equal to 

f 0 0 d8 f 1 

- n ] 

~ l . 3 . . . ( 2 , 1 + 1 ) ' 

comparing this with the series ( 8 ) for Q„, we see that A n = (—1 )", 

"whence 
E " = / O - 1 ) cosh 0 P ( 9 ) ' 

2 4 7 . We can now establish the following equations, viz. 

( N + 2 ) Q „ + 2 - ( 2 » + 3 ) Q n + l + (n + 1 ) Qn = 0 ( 1 0 ) , 

<»)• 

O * 

We obtain from (9) 

dQa = _ _fa±l) r W(v* - l ) + v cosh 6} d8 

dv V(** - 1 ) ' o + - 1) C O S R T F L P ' ' 

therefore 

¿ 0 - = _ F " ^ 1 ^ ( " ' ~ 1 ) C O S H 0 J I < ? 
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Z O N A L F U N C T I O N S . 5 

n + 1 dv ] o {v + v V - 1) c o s h 

+ I 

•which proves (11). Again from (13) we obtain 
v * - I d Q n (x J ( v ' - l ) cosh 6dd_ 

9}" 

f" sinh' Odd 
{ V J J o {» + ~ 1) c ° s h 6}™ ' 

Integrating the last term by parts, the right-hand side 

n_ t"__*J(v*~\) cosh OdO 

~ n + l ' J 0 { v 

whence 
[v + V(v* - 1) cosh ' 

which proves (12). Eliminating dQ„/dv between (11) and (12) wc 
obtain (10). 

248. By employing either of the definite integral expressions 
(4) for a zonal harmonic, it can be shown that P n satisfies (10), 
(11) and (12). 

We obviously have 
P 0 = l , P ~ p , P, = 4 ( 3 ^ - 1 ) , 

Q t = ^ ° S ~ \ . Ql = v Q t - l . 

249. We can now prove three more equations, viz. 

P ^ Q » - P a Q . „ = ~ (14), 

K Q . - P . Q ' ^ ^ h i (15)> 

P ' „ Q ' ^ - P \ i + l Q ' n = ^ (16), 

where the accents denote differentiation with respect to v. 
From (10) it follows that 

_ 1 
~ n + l' 

which proves (14); the other two equations can be established in 
a similar manner. 
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250. "We shall now obtain an expression for QZ in the form of 
a definite integral. Let 

sinh s m0d0 
'o {v + V ( ^ - l ) c o s h 0 ) n + " 1 + 1 -

Then 

dV^ = _ n + m + 1 fx {V(V - 1 ) + v cosh ¿1} sinh2" 6d9 
~dv vV - I ) J0 {v + V(i/ - 1 ) cosh ' 

n + m + 1 r" sinh*" 9 cosh fldfl 

vV - 1) J0 lv + vV - 1) cosh + C f t + 7 7 1 + ^ 

Integrating by parts, we find 

dV^ = _ (n+m + 1) (w - m) „ 

(2m + lj m + 1 " 

Now F 0 = QN, hence 

f™Q„ = (-)" O ~ ™ + 1) (n - m + 2 ) _ (n_+ m] 
oV" 1.3 7 , . . ( 2 m - l ) 

therefore 

( - ) " (n + m) ! - 1)*'» f _ s i n h 2 " 0*0 
W " (n-m)!1 .3r . . (2m-l)J 0 [v + J(v2 - 1) cosh 6>}"+™+ 1- - 1 ' J -

This expression is true for all positive values of m and w, such 
that w > m. 

251. We shall hereafter show that the potentials of ovary 
ellipsoids can always be expressed in terms of a series of P and 
Q functions; but in order to express the potentials of planetary 
ellipsoids in a similar manner, we require the functions which 
constitute the two solutions of the equation 

£<i+-->S+i£-o-n>+-° ('«)• 
These two solutions may evidently be deduced from our 

previous results by putting w for v, and rejecting imaginary 
factors. Beginning with the case of m = 0, the complete solution 
of (18) is 

APn(cv) + BQn («0. 

where 

("-)*" /""" 

-P-(*") = - {v+J(v* + l)coa 6}'dB (19), 

„ . . . . _ f x
 d9 

IRIS - LILLIAD - Université Lille 1 



If therefore we denote the two definite integrals by ^ ^ 
and q„ {u) respectively, the solution of the equation 

Ä - C I + ^ ^ - « ( « + D * - O . . - . ( L L ) > 

may be written 
•f = Ap„ (v) + Bqn (v). 

252. From (19) and (20) we easily obtain 
q0 = cot"1 v, q1 = l — v cot"1 v. 

Po = 1. Pi = v, 

and we can show as in § 247 that, 
(n + 2) q M + (2n + 3) vq^ - (n + 1 ) g. = 0 4 

^ + 1 = 

n + 1 dv 

v" + 1 dg„ 

The last three equations are also satisfied by ( — ) n p „ *, also 
1 

p ^ i n + q n + l p , = 

••-Çn+i-vq», 
(22). 

n + 1 
1 

v' + l 

n + 1 

V + I 

If we put cosh 0 = sec cb, we obtain 
cos" <pd<p 

.(23). 

therefore 

W H E 

•(24), 
(2n + 1) ZT„. 

1 . 3 . . . 2 W - 1 

2"n! 

253. It can also be shown that if •v/r be any solution of (21), 
then (1 + v*)hm dmtyjdvm is a solution of (18) ; whence the complete 
integral of (18) may be written 

Kim dmpA 
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Neumanns Transformation. 

254. Having obtained these preliminary results, we shall now 
show by means of a transformation due to C. Neumann1, that a 
solution of Laplace's equation can, in certain cases, be obtained in 
the form of a series f ( % ) F (77) (mo5 4- a), where £ and 77 are conjugate 
functions z and 

Laplace's equation when transformed into cylindrical coordi­
nates z , •a- and cb becomes 

d T t f f l_dV l_d*V_ 

dz* + dn* + ur dur +

 OT

2 dcp' ~ ^ 

Let V= V sin (m<p + a), 

where V is a function of .z and -ar only ; substituting in (26), the 
equation for determining V is 

d*V d W 1 dV m'V „ 

Let r '=Z7w-» , 

then (27) becomes 

^ + S + ̂ - ^ = ° <28> 
Let z + £CT = / (f + ¡77), 

J - \ d z ) + [ d i ) - \ d z ) + { d v . 

then (28) becomes 

Now if U = W Juv where u is a function of f alone and ?; is a 
function of t), (29) may be put into the form 

u d £ \ d!; ) + v d V \ dv J J ' ™ ' y i ' 

fu" u's v" v'2\ T T T „ . „ „ , 

the accents denoting differentiation. From the form of the above 

1 Theorie der Eleklrkitats- und WSriue-Vertheilung in eiiicm Hinge. Halle, 1864. 
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equation, it follows that if ( i s either a function of f or 17 only, 
or the sum of two such functions, we can express Win a series of 
terms of the type XNYN, where X„ is a function of f and YN is a 
function of 77 alone. 

255. If we put 
Z 4 [ST = C COS ( f — 17]), 

then 
2 = c cos £ cosh 77, 

T D - = c sin f sinh 17, 
the equations TJ = B, £ = a represent a family of confocal ovary 
ellipsoids and hyperboloids of two sheets respectively; also 

J"_2OT -2 = cosec2 £ 4 cosech2 77, 
whence Neumann's transformation is applicable. Let 

U = sin f, A = sinh »7, 
/w. = cos v = cosh 77. 

Then T r = E T ( c / w ) » = F c * , 

and (30) becomes 
d .,, dF ' d ... dF ' / 1 1 \ ! T „ . 
j - ( l - f ) j TO- — V ) — J h » - i * m s F ' = 0 . 
d/x v n ' dp d v K ' dv \ l - f i 1 -

This equation is satisfied by the series %XNYN, where XN and 
YN respectively satisfy the equations 

_d „ ,s dF_ 
dv 

and C is some constant; hence 

V=ZZXNYnsm ( m o i + O -
In order to determine the constant C, we observe that the 

potential at an external point of the ellipsoid (zjaf 4 (^/c)* = 1 is 
d X 

H J k \ C 4 X + V x r c ' + X a2 4 X / ' (a2 4 A ) * (c a 4 X ) ' 

where X is the positive root of the equation 
zL « r ' 

a 2 4 X + c 2 4 A 

Ey § 148, equations (12) and (13), and by § 248 it is easily 
seen that each of the three integrals of which V is composed, are 
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respectively proportional to Q0 (v), Q,1 (v) P* ( ? ) and Q1 (v) P , (jj.) ; 
whence C = n (n + 1) and the general value of V is, 

v = z { a „ p : ( V ) + p . „ q : ( V ) } . 

Along the line joining the foci, v = 1, and the Q functions are 
therefore infinite; on the other hand v, and therefore the P 
functions, are infinite at infinity. But the Q functions and their 
derivatives do not become infinite at infinity, and J vanishes at 
infinity; also the P functions and their derivatives are finite and 
continuous along the line joining the foci; hence for space out­
side the ellipsoid 

V= XZAnQ: (v) P : f » sin {m<b + a J , 

and inside 
V = 2 Z B n P : (v) P : (?) sin (m<b + «„,), 

but for space bounded by two confocal ellipsoids both functions 
may occur. 

25G. If we put 
rar + iz = c cos (f — Lij), 

the surfaces 77 = /3, £ = a will represent a family of confocal plane­
tary ellipsoids and byperboloids of one sheet; and if we put 
fj, = sin f, v = sinh rj, it can be shown in a similar manner, that the 
potential at all points outside a planetary ellipsoid can be expressed 
in the form of the series 

V = ZXA„q: (v) P : (?) sin (m<j> + a j , 

and at an internal point 

7 = Z Z B n P : ( „ ) P ; (?) sin (m<b + O -

257. We shall now give some examples. 

Let a fixed ovary ellipsoid be immersed in an infinite liquid, 
and let the axes vary with the time, but so that the volume of the 
solid remains constant. If ib be the velocity potential, a and b 
the polar and equatorial semi-axes, and c = (a s — 6'2)*, the surface 
condition is 

But dn = acp 'dv, 

and a/a + 26/6 = 0. 
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A P P L I C A T I O N T O E L L I P S O I D S O E R E V O L U T I O N . 11 

Therefore at the surface 

^ = a C ( , V - l ) = 2 d c P > ) . 
dv r 

Therefore : 

where 7 = 0 / 0 is the value of v at the surface, and the accents 
denote differentiation. 

In the corresponding case of a planetary ellipsoid, 
. = 2 acq2 Q) P2 [fi) 

9 ( 7 ) 

258. When a solid of revolution is moving parallel to its 
axis with velocity V, we have shown in § 160 that if = x&, 
where i /r is Stokes' current function, ^ is a solution of the 
equation 

djc +

 d2x + ldx_x = 0 
dz* dm* ru dux OT2 ' 

whence in the case of an ovary ellipsoid 
and in the case of a planetary ellipsoid 

Now for motion parallel to the axis, the surface condition is 

also at the surface 

w = c ( 7 ' - l ) ' ( l - , . ' ) ' , 

= bP? (,.), 

whence ^ = \VOTZ
 Q - ' y , f \ ( ^ ; 

Y 1 Q, ( 7 ) 

and in the case of a planetary ellipsoid 

r 5 ( 7 ) 

259. If z + ITS = c sec (£ + irf), 

the surface TJ = const., is the inverse of an ovary ellipsoid with 
respect to its centre, also 

J~2T?~* = cosec2 f -f cosoch3 77. 
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= l j \ P j l + ...(2* + 1) F 0 Z 7 ' - P 8 „ + 1 

In Neumann's transformation put 

U = sin V = sinh V, 
[A = COS f, V = COsb 7F, 

and the equation to be satisfied by W, becomes 
D ^DW D ~ D W / L 1 \ S T I . n 

T - (1 - u s ) , — - , - (1 - v*) - j , 2 - = j m2 JF = 0. 
d/i v N / DP DV^ ' DV \L—P 1 — j>V 

Also JF = U(uv) ' I = V'RC~K 

Whence remembering that the lines V=L lie outside the surface, 
and that V = OO at the centre ; the value of Fat an external point 
will be 

F = C - S ^ / » - g ^ S i n W + 0 > 

and at an internal point 

260. The value of the current function YP-, at an external 
point will be 

™ - p ; („) p • ( „ ) 

If therefore the solid be moving parallel to its axis with velocity 
V, the boundary condition becomes 

VR*r/2c - 2" ANP; {P), 

we have therefore to find the expansion of rcr. 
From the equations, 

CZ/R1 = PV, CVRJR1 = (1 - P2F (V* - IF, 

we obtain, 

RZ _ PV rnr _ !(V* - 1) (1 - P2) 

c" ( p ' + - l ) 1 ' c2 + 

Since 2 is a potential function, r\z can be expanded in a series 
of spheroidal harmonics, and since only odd powers of V can occur, 
we must have 

PV (P> + V2 - i r 5 = S 0 X + 1 Q M » ( 0 P 2 n + 1 0*)-

Therefore 

4n + 3 
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•where II = 2 \ s ! 

Let U = C p(l-li'yP„ldp. 
- 1 

(2n + 1) (2n + 2) U. = - J* (1 - / . ' ) • ^ (1 - / / ) 

Then dP, dp, rl dP 
= ( 2 « + i ) J (i-^r-^d* 
= (2a + l ) (2« + 2)Z7.-2VZ7_ 1 . 

Therefore 

'~ (s-n) (2s + 2n + 3) 
2 V ( s - l ) 2 . . . ( g - r + l ) ' ( 7 ^ 

~ .. .(.5-Ti-r+l)(2s+2ri,+ 3)(2«+2n+l).. .(2s+2n-2r+5)" 

N o w tf„ = ( - ) " [ V + 1 P S n + 1 c * > 

( - ) - 2"+' w! 
~ (2« + 3) (2H~+5)T7T(4II + 3 ) ' 

Therefore if s — n + r, 
, ^ + 2r + ] W IT _ 2 ( - ) " l - 3 - ( 2 n + 2 r + l ) ( W + l ) ( r . + 2)- ( W +_r) 
^ - r ^ / - i - j ; ^ „ + r ^ 0 + r r , ^ 2 ? i + 3)(2n + 5J...(4ri+2r + 3) 

2(-)"(2n+l) g „ (2r+l) (2r + 2)... (2n + 2r +1) 
(2r + l ) (2r + 3)...(4n.+ 2r + 3) 

Therefore 22?, „ + 1 Q 2„+ 1 / (4n + 3) = 2 (-)· (2» + ] ) ^ Q 2 n + l , 
whence 

rzji? = ^ + „ ' - i r 5 = 2 0 ( - ) " (2n + 1) ( 4 * + 3) ff,^,. 
Integrating both sides with respect to we obtain 

r EC 

M f y + - 1 ) " 1 = X P 2 „ + 1 Q , . + 1 dp, 
J v 

= - % B ^ , P 2 » + l (2n + 1 ) (2n + 2) ' 
Differentiating with respect to ft, and multiplying by ^/(l — / / ) , 

we obtain 

(1 - (/-if _ • s ^ + 3 , 

1 . 3 . . . ( 2 s - l ) 
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When cn 

261. By proceeding in a similar manner, it will be found that 
when the solid is the inverse of a planetary ellipsoid with respect 
to its centre, the value of \JR is 1 

* 2r ~° (2n + 2 ) p \ n + l (y) P 2»» W 2 " + l W ' 

262. By making use either of the method of inversion or the 
transformation, 

z + izt = 2c sec 21 (£ + LT]), 
the same problem can be solved when the meridian curve is an 
elliptic limaçon, i.e. the inverse of an ellipse with respect to its 
focus". 

Bessel's Functions. 

263. The properties of the Bessel's function Jm(x) where m is 
any positive integer, are so fully discussed in Todhunter's Functions 

of Laplace, Lame and Bessel, and Lord Bayleigh's Treatise on 

Sound, that it will be unnecessary to consider them in the present 
chapter, farther than to note that JM (*•) satisfies the differential 
equation 

cFu 1 du I', m2' 

dx' x dx x 

and that it can be expressed either in the form of the definite 
integral 

J m ^ = 77 1 .3 . . . (2m-Tj j C ° S ^ C ° S ^ ^ m ^ d ^ 

or by means of the series 

x m f x2 ™* 
2™m ! ( 2 (2m + 2) 2 . 4 (2m + 2) (2m + 4) 

x* 

' 2 . 4 . 6 (2m + 2) (2m + 4) (2m + 6) + 

1 Quarterly Journal, vol. xix. p p . 368—370. 
2 Proc. Camb. Phil. Soc. vol . VI. p . 8. 
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We shall also prove the following theorem which is analogous 
to Fourier's theorem, by means of which a given function can be 
expressed in the form of a definite integral involving Bessel's 
functions. 264. If p and q be any positive real quantities, and 0 (ur) is a f miction which is finite and continuous for all values of V which lie between the limits p and q, but which is not necessarily finite at the limits, then the definite integral 

dX lV\u<b O) Jm (\w) Jm (Xsj)du (32), 
0 J q 

is equal to c5 (rs) when zr lies between the limits p and q, and is equal to zero when ts lies beyond these limite. 
In order to prove the theorem, consider a thin plane conductor 

bounded by two concentric circles of radii p and q, which is 
electrified in such a manner that the density on either side is 
equal to 

\ (b (SJ ) cos racf. 

The potential will be y _fp ri" + * u$> [u) cos mcb'dud<b' 
~~ J q J <(, { « " + OT2 + U' - 2 s r M cos(0' - 0)J* " 

Let cp' — cp = Tj 
R2 = in- 2 + u2 — 2-5TK cos n. sin mv) dudv 

J o {f + Wfi 
The second integral vanishes; also since 

, T _ f P Cin
 uij} (u) (cos mqb cos mv — sin m<b 

igral vanishes ; also since 
o 

e-^J0{\R)d\ = (z* + B*yi 
J o 

the first is equal to 

r [p _ 2 cos 7>i<b I d\ I du I e Az utp (w) cos mvJc (\R) dv. J a J q J a 
Now* J0 (\R) = J0 ( \ w ) J0 (\u) + Jvi (XCT) Jm (\u) cos mv, 

r i ' p -

whence y"=27reosm <b d\j e~*zu<p (u) Jm (\u) Jm (\cr) du. JO J q The density = _ _ _ ^ , 1 Todhunter, Function) of Laplace &c. § 453. 

IRIS - LILLIAD - Université Lille 1 



hence this quantity must be equal to $<f> (CT) cos m§ when p > > q, 

and must be zero when lies beyond the limits p and q, whence 

[ dX \\utf> (u) J m (Xu) J m ( t e ) du = cp (CT), p > Tz > q 
J 0 J q 

or TS < q 

265. If a charged conductor of the form which we are con­
sidering is placed in a field of force, the density will usually be 
infinite at the edges, but d V/dz will always be finite except at the 
edges ; whence although it is necessary that $(=>•) should be finite 
and continuous between the limits p and q, it is not in general 
necessary that it should be finite at the limits. There are however 
two special cases, viz. (i) q = 0, p finite ; and (ii) p = oo , q finite, 
which require separate consideration. 

The first case is that of a circular disc of radius p · and if 
oi (CT) became infinite when ro- = 0, there would be a singular point 
at the origin. 

The second case is that of an infinite plane screen having a 
circular aperture, and if (CT) became infinite when = oo , the 
density would be infinite at an infinite distance from the aperture, 
which seems to be physically impossible. 

If therefore in the first case <j> (m) = oo when q = 0 ; and in the 
second case c/> (ra-) = oo when p = oo , the theorem could not be safely 
employed. 

If <p (zr) is finite and continuous for all values of •nr between 
0 and oo inclusive, we may put p = oo , q = 0, and the theorem 
becomes 

r/> O ) = j dx( Xu<p (u) J m (Xu) J m (Xnr) du (33) 
Jo Jo 

for all positive values of 

266. We must now consider a class of functions analogous to 
Bessel's functions, which are obtained by changing x into ix. 

Putting x = ix, (31) becomes 

d*u 1 du /v m J\ U _ Q 

dxl x dx \ x* J 
This equation, as we shall proceed to show, has two independent 

integrals, one of which is finite or zero when x = 0, and is infinite 
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rfa;1 a; da; 

in this put x* = ?/, and we obtain 

m * 

cPvm , , N dv„ , 

Differentiating with respect to y , we obtain 

dv„ 
— = v . 
dy m + l 

Hence if ua denote any solution of the equation 

d*u 1 du _ / n h f V 

a ? 4 i £ - = 0 ( 3 7 ) ' 

a solution of (34) will be 

u*=*idU"u° (38)-
If therefore the value of Ka is known, the value of Km can be 

obtained by means of (38). 

268. Perhaps the simplest way of determining Ka is derived 

from the consideration that Bessel's functions are limiting forms 

of spheroidal harmonics. Let c v be the major axis of an ovary 

ellipsoid, and let 

c j ( / - l ) = r, n (n + l ) = W , 

then if c and n increase indefinitely, whilst v approaches indefinitely 
near to unity, but so that both r and \ remain finite, the ellipsoid 
ultimately becomes a circular cylinder. 

B. II. 2 

when x — <x> ; and the other is infinite when x = 0 and zero when 
x = oo . We shall denote these two solutions by the symbols Im (x) 
and Km (x) respectively. 

The function Im is derived from Jm by changing x into ix and 
rejecting imaginary factors ; we thus obtain 

I M = T T 1.3.
 X.(2m^l) °0Sh ̂  C°S ̂  sin^d^ • • ̂ 35)' 

or as a series 

7™ W = ¥"ml j 1 +
 2 (2m +"2) + 27î(2m + 2){2m + i) + " "} (^S6')' 

267. In (34) put M = a?™wm, and we obtain 

d'vm 2m + ] du 
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In equation (7) change the variable from v to r and we obtain 

d2u 1 du 1 / , a?u ^ r t i (n + 1 ) u _ ^ 
dr2

 r dr ca \ dr* dr / c8 ' 

which ultimately becomes 

CPM 1 du . „ _ 

a r r ar 

which, agrees with. (37) if X r = a\ 

n _ r d9 
n - J 0 {" + V(*a - 1) cosh 0)" + l 

= [ exp { - (n + 1 ) log [v + *J(J - 1 ) cosh 0]} ¿0. 

Now (ri + 1 ) log [v + J(v a - 1 ) cosh 0} 

= i {1 + V(l + 4\ 2c 2)} log {(1 + r/c*)* + r/o . cosh 0} 

= Xr cosh 0, 

ultimately ; hence the limiting form of Qn (v) is 

"whence it follows that 

^ - x c o a a e ^ (39). 
o 

Since Ka (x) is infinite when x = 0, it is evidently the solution 
we require. 

Another form of Ka may be obtained by means of the integral 

cos Xvdv 7T 

• 1 » 

J D 

_ _ f - A o 

a2 + v* 2a 

for putting s = sinh 0 in (39) we obtain 

R Y X Y Q + z ' ) dz 

2 f°° f cos x<bd4>dz 

~"^J0 J0 Y + <f>2 + z* 

_ f1" cos xtfrdtp 

_ f" cos 
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(43), 

_l'aJB^ax)doi ^ 
270. We shall now apply the preceding results, to determine 

the current function due to the motion parallel to its axis of the 
surface formed by the revolution of a cardioid about its axis. 

If £ + "7 = c*/ (z - « 0 * 
we obtain £ = (c/r) J cos \ 6, 77 = (c/r)* sin \ 9 
and the surfaces £ = a, TJ = /3 are the surfaces formed by the revolu­
tion of a cardioid about its axis. Also 

J-V- 2 = f "s + Tf2 

hence Neumann's transformation can be employed. 

In § 254 put u = f, v = v, and (30) becomes 

1 d /f.dW\ 1 d { dW\ 2/l , 1\T„ . 
and this equation is satisfied if ^ = Jm (M) + ^ ( ^ ) i Jm (Xf) 
where \ is undetermined. Also 

V'= Wr'^cf 
whence V= cr^S [ 4 m 7 m ( \ , ) + BmKm (\v)} Jm (X0 sin (mo3 +«,„). 

The preceding value of V is a suitable expression for determin­
ing the potential of the surface v = const. 2—2 

Whence by (38) 

( - ) " ! . 3 . . . ( 2 m - l ) f cosxcpdoS 
2 V i„ (l + ^ ) i ( 2 m + 1 ) V ;" 

Also ^ o ' = 2 ^ ( 4 2 ) -

2(59. By means of the integral 

f e-^J"0 (u)du = ( l + p 2 )~ J , 
we obtain 

K « = f T F £ ! = r f V n / ° <«>cos 

Jo (1 + 9) Jo Jo 
5wJ„ (w) dw 
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Now a cardioid is the inverse of a parabola, and a parabola is 
a limiting form of an ellipse; and since the Q functions are suitable 
for space outside an ovary ellipsoid, and the P functions for space 
inside, it follows that the K functions are suitable for space out­
side a paraboloid of revolution, and the I functions for space inside. 
Hence the I functions are suitable for space outside the surface 
formed by the revolution of a cardioid, and the K functions for 
space inside; moreover the conditions of the problem do not enable 
us to assign any value to X, and we must therefore give it all 
values from oo to 0, and replace the summation with respect to X. 
hy a definite integral. Hence the potential outside the surface 
formed by the revolution of a cardioid is of the form 

V = c r -2 sin (m£ + a j f p ( X ) I m (Xv) J m ( X f ) dx, 

and inside 

V= cr*Z sin (rmp + a J f 77 ( X ) K n (Xv) Jm ( X £ ) d\. 
J a 

271. When the surface formed by the revolution of the 
cardioid (r/c)* = sin |f7 or 77 = 1, is moving parallel to its axis with 
velocity V, the value of may be written 

where F ( X ) has to be determined from the surface condition 

Vrvrftc = f F ( \ ) J t ( X f ) dX. 

Now when 77 = 1, 

«r /c- = 2f/(l + f/ 

- 2 [ " f \ > ' (1 + a 2 ) - 8 J, ( X a ) Jx ( X f ) didX. 
J 0 ' 0 

By (43), K0 ( X ) = f 6J„ (6) ( X s + &T dB. 

Therefore 2R\ = K\ = - 2 \ f 6J0 (6) ( X 2 + 0*)~* dB. 
J 0 

Also BJt = J> + 6.Tt. 

Therefore K, = - X f (.7, + BJ1,) ( X ' + B 2 ) " dB. 
J 0 
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Integrating the last term by parts, and then putting 9 = \a, 
we obtain 

Kx ( \ ) = - 4V* f" a'Jt (Xa) (1 + a'f da. 
J 0 

Therefore ~ = U (\) J, d\, 

whence P (\) = - £ Vc\3Kl (X), 

and + = - ™T J" ^ ) (X,) j ; ( x f l d x . 

This expression, as well as the corresponding expression for 
the current function due to the motion of the inverse of an 
ellipsoid of revolution with respect to its centre, is of such an 
exceedingly complicated character, that it does not seem probable 
that progress is to be looked for in the direction of new surfaces 
of the third and higher orders. 

Toroidal Functions 

272. The system of conjugate functions 

x + ly — a t an 1 (£ + irj) (45), 

has been discussed in § 120, and it is there shown that the curves 
T] = const., represent the system of circles 

x2 + y 2 - 2 a y coth rj + a" = 0 (46). 

The centres of each circle of this system lie on the axis of y , 
and none of the circles cut the axis of x . If therefore we put 

z + inr = a tan \ (£ + irj) (47), 
(46) becomes 

z' + zs2 — 2azs coth T) + a2 — 0, 

which is the equation of a family of anchor rings or tores, whoso 
common axis is the axis of z . When i j = G O , the tores degenerate 
into the circle formed by the revolution of the points A and B. 
This circle is called the critical circle. 

1 H icks ; Phil. Trans. 1881, p. (509: Ibid. 1884, p. 161. 
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Also since JTH = sinh 77, Neumann's transformation applies; if 
therefore we put u = 1, v = sinh 77, v = cosh 77 in (30) the equation 
for W becomes 

d*W d . , 
1) 

dW m2W .(48). 
dv^ ' dv v * - l 

Now W must evidently be periodic with respect to f, and 
must therefore be of the form cos (mf 4- a„) where n is a 
positive integer, and y_n is a function of 77 alone. Substituting in 
(48) we obtain 

whence 

K" = (cosh jj + cos p£„ cos (wf + an) sin (m<£ + /3 m ) . . . (50). 

The two integrals of (49) are called Toroidal Functions, and 
will be employed in Chapter XIV. in the discussion of circular 
vortices. 

Equation (49) shows that xa is an associated function of degree 
n — \ and order m; but it will not be necessary to enter into the 
general discussion of this equation for all values of m, since in the 
hydrodynamical applications which follow, the functions of orders 
zero and unity are the only ones required. We shall begin with 
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the case of m = 0 , and show that if in the definite integral 
expressions for the two kinds of zonal harmonics, n be changed 
into n — J, the resulting integrals constitute two independent 
integrals of ( 4 9 ) , one of which is finite when v = 1 and infinite 
when v ~ oo; and the other is infinite when v = 1 and zero when 
V = 00 . 

2 7 3 . If in ( 4 9 ) we put m = 0, we obtain 

A ( l - ^ ^ + K - i ) x „ = 0 ( 6 1 ) , 

which is the equation satisfied by zonal toroidal functions. Writing 
for brevity C and S for cosh v and sinh rj, we know that the zonal 
harmonic of degree n of the first kind is expressible (omitting the 
factor T T " 1 ) in either of the forms 

T(c+scos eyoie or r (o+s cos ey~*de, 
JO J o 

the second of which can be deduced from the first by means of 
the transformation (C + S cos 8) (C + S cos 8') = 1. Similarly if 
we put 

P b = P(C + S cos 8 f 2 n - i : > d 9 ( 5 2 ) , 

J 0 

it can be shown by means of the same transformation that 

P„ = P ( 0 + £cos ^ 2 » + 1 ' rffl ( 5 3 ) . 
J 0 

We shall now show that either of the definite integrals ( 5 2 ) 
or ( 5 3 ) is a solution of ( 5 1 ) . 

From ( 5 2 ) we obtain 

dfo = i ( 2 w - 1 ) _f ( G + 5 c o s 0 ) K 2 " ~ 3 ) ( l + 1 cos 0 ) d8. 

Therefore 

/S2 ̂  = \ ( 2 » - 1 ) J " ( ( 7 + cos 0 ) 4 t 2 " - 3 ) {C[0+S cos (9) - 1 ] dd 

= l ( 2 n - l ) ( O P . - P M ) ( 5 4 ) , 
and from ( 5 3 ) 

d* * (C + S c o s f l ) ^ 3 1 

= - J ( 2 ^ + l ) ( C P „ - P „ + 1 ) ( 5 5 ) . 
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24 S P H E R O I D A L H A R M O N I C S A N D A L L I E D F U N C T I O N S . 

Differentiating (54) with respect to v, we obtain 

= i (2n - 1) [Pn + i (2n - 1) OS" 2 ( CP„ - P , M ) 

- à ( 2 » - l ) - S - ( P „ - C P t l ) } 

£ < I - O G - + ( I . ' - I ) I ' . = O . 

which shows that the definite integrals (52) and (53) are solutions 
of (51). 

Eliminating dPJdv from (54) and (55) we obtain the sequence 
equation 

(2n + 1) P „ + 1 - 4« CP„ + (2n - 1) P M = 0 (56). 

Equations (54), (55) and (56) are what equations (12), (11) 

and (10) become when n is changed into n—\. 

From (52) it appears that P n = o o when G i.e. v = oo ; and 
therefore P„ = oo when 77 = oo ; also when »7 = 0, 0 = 1 , S = 0 and 

P . = 7T. 

274. Again let 

lc- = 1 = 
(0 + 8? 

9 S! 

Then 

/ • T F I Î F ri* d<f> 
r°=]o [c + S costf)* =

 2* j0 ( J ^ s h r ^ ) * = 2 i F - ( 5 7 ) ' 

an d 

A = f (C+Svos 0)kd0=2k^ J*"(1-k"sin*<P?d<P = 2lc'iE'[58), 

J Q J O 

where F' and E' are the first and second complete elliptic integrals 
to mod. ¥. 

Having obtained the values of P 0 and P the values of the 
successive functions can be calculated by means of the sequence 
equation (56). 
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275. We have shown that the zonal harmonic of the second 
kind is expressible in the form 

_ d 9 . 

„ (C + Scosh0") s + l ' 
and if we put 

dO 

J 0 • (G'+#cosh0)« 2 ' 1 + 1 ) ' 

it can be shown, as in the case of the P functions, that the above 
definite integral is a solution of (51). Also when C = oo , Q n = 0 ; 
and when G = 1 or 77 = 0, Q n = oc . Hence the two functions P 
and Q constitute two independent integrals of (51). It can also 
be shown that the above value of Q n satisfies equations (54), (55) 
and (56). 

Again, 

Q = r di 
° J 0 (C + £cosh 9 ) 2 ' 

Q = r di 
1 J 0 (C-f Scoshtf)* 

In these change 9 into 29', and then put cosh 8' = sec cf>; then 
d & = sec <bd<f>, also when & = 0 or oo , cb = 0 or \ t t ; therefore 

dff 

{ C - S + 2 S cosh2 9'f 

= 2 dtp 

o { C + S - { G - S ) s m 2 < p \ * 

21?F (59). 
And ®1 = 2 j dff 

0 (C-S+2/Scosh ' 9 ' f 
_ /"** cos5

 <bd<b 

J 0 [C + S - (C - S ) s i n 2 cpf 

2 [ i * k* - k 2 sin" cb 

~ V * i . (l-jfc'sin'fl* 
= 2F_ 21c2 r*" dtp 

J k ~ J k ] „ (l _ fc2

 s in 2 </,)* 
= 2k~k (F - E ) . . (60). 

And the values of the successive Q functions can be calculated 
by means of the sequence equation (56). 
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276. At the critical circle t] = oo, and at all points on the 
axis of z, 7) = 0 ; and since P = oo when r\ = oo , and P = it when 
7j = 0, the P functions are not suitable for space within a tore, but 
are suitable for space without the tore. On the other hand 
Qn — 0 when rj = oo , and = ao when rj = 0 ; hence the Q functions 
are suitable for space inside a tore but not for space outside. 

If therefore the potential is symmetrical with respect to the 
axis of the tore, its proper value for points outside the tore will be 

V = (0 + cos %~AJPn (cos ref + O , 

and for points inside 

V'=(C + cos f )* Sr B a Q n (cos nf + «'„)• 

277. A different expression for Qu may be obtained as follows. 
The inverse distance of a point from the origin is 

1_1 10 + cos g 
r a V (7 — cos £ ' 

Since r"1 is a potential function which is infinite at the origin 
and which vanishes at infinity, it is evident that r - 1 can be 
expanded in a series such that 

r"1 = a - 1 (C + cos ZBnQn cos rcf, 

whence (C— cosf)~"= l l B n Q n c o s n ^ 1 

and therefore 

n o = l [ ' _ 1 1 
o V o W o ( G _ c o s 0 ) i -

The quantity i9n may be some function of n, but if we 
substitute the above value of Qn in the sequence equation (56), it 
will be found that it will be satisfied provided Bn = A , where A is 
a certain constant which is independent of n. In order to find 
A , we have 

dd 

o (C-cos£>) 
2 r*"__ 

irJC+ 1 J o (1 - X 2 sin2 
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4 ? _ , , 
C - S + 2 + C + S - C+ 1 

Therefore 

7T (1 + /t) J „ ^ ^ + s i n » ^ 

therefore J. = 77 1 ^/2. 

Similarly from the value of Q t it can be shown that if n is not 
zero, A — 2^ */2 ; therefore 

f" old _ t r cosnBde 
Y " J 0 ( « 7 + S cosh ef ( 2 , I + 1 > J 0 ( C - cos ef 278. The following relations between the P and Q functions, 

where the accents denote differentiation with respect to 77, are also 
useful, viz. 

^ . + I E . - - P . Q . + l = 2 7 r / ( 2 n + L ) (62), P'nQ„-PKQ'. = Tr/S (03), 
P \ # . + 1 - i V . + 1 < 2 \ . = K2n + l ) 7 r '. (64). 

In order to prove (62), substitute the values of P „ + 1 , Q^+1< &c. 
from the sequence equations, and we obtain 

(2» + 1) (P . + 1 Q. - P „ Q n + I ) = (2» - 1) (P„Q fc_, - P„_ t QJ 

= 4(£"P + i ' r £ ' - P ^ ' ) 

The other two equations can be proved in a similar manner by 
means of equations (54) and (55). 

where X,2 = 2 (C+ Now k'1 = C + S, therefore 

^Jk 4>(Q + S) 4 

(l + k)*~ (L+C+Sf~ (C + S)(C-S+lf 
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279. When the motion of a liquid about a tore is symmetrical 
with respect to the axis of the tore, and is irrotational, we have 
shown that the current function ifr = x'm, where ^ ' satisfies the 
equation 

dz* dm* TU dm OT2 ' 

whence X' = (C+ cf t (AnPn

l + BnQn

l) cos ( * F + A J , 

where c = cos f, and P„* and are the two solutions of the 
equation 

Differentiate (51) with respect to v, and put 

y dv dv 

Then 
„ dai> 2 C dv v , „ v _ 

D I - f i * - ( B
 - « 5 = 0 ' 

¿ ( 1 - 0 ^ - ^ + ^ - 1 ) ^ 0 ; 

whence P * = £f - r - * = - j - 5 , Q„ = - , " • 
dv dv " dv 

Let us now choose two new functions IT, V. such that 

un = S I V = S , K - „ = - S Q ; = - S

 d^ (65), 

and therefore 
^ = ( » ! - i ) ^P n , ^ » = - (*' - 1) > S F Q „ ; 

whence, remembering that nr = aS (O + cos £ t h e general value 
of -v/r is 

* = (0+ c)~l X'(AnUn + B.VJ cos (nf + a J (66). 
The function ¿7 clearly belongs to space outside the tore, and 

the function Vto space inside; hence outside the tore the proper 
value of is 

+ = (0 + c ) - i 2>„Un cos (nf + «„) (67), 
and inside ^ = (C + c)~* 2 J J X V. cos («£ + a'J (68). 

IRIS - LILLIAD - Université Lille 1 



Again, 

r . = - s d £ = (n + i) ( C Q u ~ Q n J 

' 2 n _). i C cos n9 — cos (n + 1) 6 ' T 

J 0 

¿0 
2V2 J0 (C-cos6>)* 

= (n + 2 _ i f { (C-cos0) J cosn0 
J 0 

+ ( C - cos 6>)~* sin n6 sin 0) d0. 

Integrating the last term by parts we obtain 

F„ = - | ( 4 7 i 2 - l ) 2 - i ( ( C - cos OF cosrc0d0 (69). 
J o 

280. Let P and g be the velocities perpendicular to the 
surfaces 77 and in the directions shown in the figure, then 

1 DILR . . 1 rM-

» = - ' , - s m H - —r- cos a ; 
cr eta -ar dz 

but cos 0 = JDZJDT;, sin 0 = Jcfe/df, 

therefore P = D-^JD^. 

and 

whence 

„ 1 4 ( 

a? dz 

cos 0 = JD^JDRJ, SIN0 = — JDZ/DRJ, 

Similarlv q = — } — cos 0 p sin 6, 
" •M G t o -A; DZ 

q = Jzz'* dtfr/dv-

IRIS - LILLIAD - Université Lille 1 



281. We can now obtain the value of the cyclic constant; for 
this quantity is the circulation round any closed curve embracing 
the tore once. Let the curve be 77 = 77', then putting cos f = c 

Consider first the general term A„ UN cos n% in -^R, the circulation 
due to this is 

= ZAJT J ' J ( C + CF (n« - i ) P„ - J C/T„ (C + c ) - * J cos d? 

= - 7 r ( - ) " ^ l „ a - 1 2 i . 

Similarly the term involving VN produces the term 

V " dv V n dv J 

also the terms in sin 71% evidently disappear, whence 

« = - 7 r a - ' 2 J 2 ( - ) M „ (70). 

282. The value of K is e-1>, and since 1 7 is very large in the 
neighbourhood of the critical circle it follows that if the cross 
section of the tore is small, K will be small at all points within the 
tore, and also at all points outside the tore which are not far from 
its surface. 

In the hydrodynamical applications of Chapter XIV., the cross 
section of the tore will always be supposed to be small in 
comparison with its aperture, and the values of the functions will 
only be required at points within the tore or in its immediate 
neighbourhood; and it will be sufficient to employ approximate 
values of the functions which do not involve powers of K higher 
than the second. 

Now if L = log 4/&, and K be small, 
F(*') = L + W (L ~ 1) + A K* {L - I), 
E (K') = 1 + p » ( L - { ) + & V (L - I). 
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Substituting in (56), (57), (58), wo obtain 

P 0 = 2fc* {L+\(L-!)¥}, 
P 1 = 2 A - 4 { l + i ( Z - i ) ¥}, 

The function P„ contains the factor AT* ! 2 " - 1 ' which is very 
large if k is small, but it will hereafter be found that P„(Jc) is 
always divided by P„ (&) where b is the value of k at the surface 
of the tore; hence the term AnPn will always be of the form A'n (b/k) i [ 2 n ~ 1 \ i n where A'n is a finite constant and uH is a quantity 
of the form 

a „ + « a F + .. . O90 + + /3 2 F» + ) £ ; 

when k is small &2nZ/ is always small except when n = 0, also 6/A can, 
never be greater than unity, hence the preceding approximate 
values of P 0, P s... may be employed. 

From (56), (59) and (60) we obtain 

Q0 = 7 r # ( l + i A " ) , 

where the series in brackets are carried to the second power only. 

283. By means of these equations combined with (65) the U 
and V functions can be calculated, but since [7nand Irrespectively 
contain / c

_ i ( 2 n + 1 )

 a n d i 7 r & * ( 2 M ~ 1 ' as factors, it will be more conve­
nient to introduce two new functions R N and T„, such that 

4-i(a»+D B%=U„ i 7 r ^ M TM=VU (71), 

and we shall obtain Ba = -{±L-l+t(L + l)W}} 
P 2 = i - | f c a J 

^ = ! ( i - U 2 ) (73), 
^ a = ¥ ( i - i d 

where the series are carried as far as k*. It will not be neces­
sary to employ the functions of higher orders than -R2 and TV or to 
retain higher powers than k*. 

IRIS - LILLIAD - Université Lille 1 



32 S P H E R O I D A L H A R M O N I C S A N D A L L I E D F U N C T I O N S . 

The general value of the current function may now be written 

^r = (C+ cr^:{An (b/kf^+vEn + B n (k/b)i&n'l]Tn} cos (nf + «„) 

in which form it will hereafter be employed. 

EXAMPLES. 

1. Apply Neumann's transformation to prove that the potential 
at an external point of the surface, which is the inverse of an 
ovary ellipsoid with respect to its focus, can be expressed by means 
of a series of terms of the type cr~'P™ (v) P™ {?) sin (md + o,„) ; and 
at an internal point by a series of terms of the type 

cr-'Q:(v) PZ ( » s i n {rnd + a j ; 

where v = cosh tf, fi — cos f ; and z + im = 2c sec2 ^ ( f + vrj). 

2. Prove that 

(l - {J -1)V + „)» = isrc - ) " (2« + 1 ) Q\ [v) P \ 0*); 
hence show that if the surface, which is the inverse of an ovary 
ellipsoid with respect to its focus, be moving with velocity V 
parallel to its axis in an infinite liquid, 

* = 8 F c V 1 2" ( - )" (2* + 1) | > W P „ <„) P \ (ft), 

where j is the value of v at the surface. 

3. Establish the following results: 

(i) J (aa;) cos fec&c = \TT (a2 + i 2 ) - ^ 
J 0 

(ii) e " a x K 0 (bx) dx = (fc2 - a 2)" * tau"1 (V - a*)*/a ; b > a 
J 0 

= i (a2 - 6 2) 4 log Y^—J-, \ a > b , 

(Hi) | V 0 (cr.T)./ 0 (5a:) <fc = (a 2 + J")-*F{6 ( a 2 + 6»)-*i-
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B . I T . 

4. Prove that 

J p - V * sin pcJ, C/*bt) d/4 = sin'' 2 o / f r + ?)· 
"i 2 

where = £2 + ( O T + OF, Q2 = 2* + ~ C> · 

5. By means of the definite integral 

I tfe J cos x cos 16s (a; 8 — X*) ^ 

, .00 

prove that J0 ( X ) = 2TT_1 sin (X cosh (j>) d<P-
J o 

6. Prove that if 

V= 27T'1 J dfj.j e~i" cos Xv cos fivJ0 {fiw) dv, 

then V = J6 (\vr), when z = 0 and < c, 

and that dV/dz = 0, when z = 0 and a > c, 

7. Prove that if 

V= 2TT'1 J dpj e~»z sin Xv sin /it;^ (/wr) dv, 

then P~= / , ( V E T ) , when z — 0, and TO- < c, 

and that dVjdz = 0, when ^ = 0 and cr > c. 

"8. Prove that 

f D X = 2 7 r _ 1 ( a ' + 4 i * ) ~ 1 ^ i 2 6 (« 2 + W 
•/ 0 
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C H A P T E R X I T T . 

R E C T I L I N E A R V O R T I C E S . 

284. T H E general theory of vortex motion has been discussed 
in Chapter I V . ; and we shall now consider the special case 
in which all the vortex lines are parallel to the axis of z . We 
shall also include the case in which cylindrical masses of rota-
tionally moving liquid composed of such vortex lines are sur­
rounded by irrotationally moving liquid. If the whole liquid is 
supposed to extend to infinity in the positive and negative 
directions of the axis of z , and the boundaries of the liquid 
consist of cylinders whose generating lines are parallel to this 
axis, the problem will evidently be one of two-dimensional motion, 
and the solution will apply to any limited portion of the liquid 
bounded by two fixed planes perpendicular to the axis of z . 

Since the motion is in two dimensions, 
w = 0, du/dz = 0, dv/dz = 0, £ = 0, v = 0, 

, dv du , , . 

a n d d , d f ^ 

also d£/dt = 0, and therefore £ remains constant for each particular 
element of liquid. If be the current function, u = dyjr/dy, 

v = — dijr/dx; whence, substituting in (1) , we obtain 

» 
This equation must be satisfied at every point of the liquid 

where vortex motion exists. At every point of the irrotationally 
moving liquid which surrounds the vortices f = 0 , and therefore 

dx2 dyl v 
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Equations (2) and (3) show that i|r is the potential of in­
definitely long cylinders composed of attracting matter of density 
f/27r, which occupy the same positions as the vortices. 

285. Let us now suppose that a single rectilinear vortex, 
whose cross section is a circle of radius a, exists in an infinite 
liquid. In order that the cross section may remain circular, it is 
necessary that £ and ifr should be functions of r alone. The con­
ditions of steady motion §38 (37) require that f should be equal to 
an arbitrary function of -v/r, which for the present we shall suppose 
to be equal to a constant. 

Equations (2) and (3) now become 

» 
which gives the values of yjr inside the vortex, and 

dr 2 r dr ® 
which gives the value outside. 

The complete integrals of (4) and (5) are yjr^Alogr + B -\%r* and yjrt = G log r+D. 
Now ^ must not be infinite when r = 0, and therefore A = 0 ; 

also at the boundary of the vortex, where r = a, "^I = '"rV d\frjdr = difrjdr ; 
whence B — £ fa 8 = <?log a 4- D 

and therefore G= — £a' = — £<T/TT = — m, 
where tr is the area of the cross section, and irm is the strength of 
the vortex. The constant D contributes nothing to the velocity, 
and may therefore be omitted, whence 

^-KCa'-O-mloga ( 6 ) i 

V"a = - r a Iog r (7). 

Now — d^r/dr is the velocity perpendicular to r, whence inside 
the vortex -dfJdr = Zr (8), 
which vanishes when r = 0, and outside - d-pjdr = m/r (9). 

3—2 
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Hence a single vortex whose cross section is circular, if existing 

in an infinite liquid will remain at rest, and will rotate as a rigid 

body. I t will also produce at every point of the irrotationally 

moving liquid with vihich it is surrounded, a velocity which is per­

pendicular to the line joining that point with the centre of its cross 

section, and which is inversely proportional to the distance of that 

point from the centre. 

If (f> be the velocity potential outside the vortex 

9 = - 2 mi l°g (x + llj)i(x - <-y) 
= mt&u~1y/x (10), 

"whence t£ is a monocyclic function whose cyclic constant is 2TT/H ; 

and therefore if K be the circulation due to the vortex, its strength 
is equal to ^K. 

286. If other vortices exist in the liquid, or if the liquid instead 
of extending to infinity is bounded by fixed or moving surfaces, the 
cross section, if of finite area, will experience a deformation, and 
the preceding expressions for and i/r will not continue to hold ; 
but we shall hereafter show that if the cross section is small, this 
deformation may be neglected, aud (6), (7) and (10) will give the 
values of cb and ijr so far as this particular vortex is concerned. 
Also since every vortex of finite cross section may be divided into 
elementary vortex filaments, the value of ifr at any point ( x , y) for 
any number of vortices will be 

* = - 2-V-'/j? log {(* - x j + ( y - y'Y] dx'dy' (11), 
where the integration extends over the cross sections of all the 
vortices. 

It therefore follows that the component velocities due to any 
number of vortices will be determined by the superposition of the 
velocities due to each, and will be given by the equations 

u = — (y — y^lR2, v = ~2,m [x — x^/R1, 

where if? = (x — x ^ 2 + (i/ — _?/,)", and ( x 1 , y t ) are the coordinates of any 
of the vortices. Now if ( « , v) be the component velocities at any 
point of one of the vortices the expressions 2 (ma) and 2 (mv), 
where the summations extend throughout the vortices, vanish ; for 
they each consist of pairs of terms of the forms injn^ (xt — xu)/R2 

and m^i^^x^—xJ/R2. Hence if m be regarded as the mass of 
a distribution of matter, the centre of inertia of this mass remains 
stationary throughout the motion. 

IRIS - LILLIAD - Université Lille 1 



287. Let us now suppose that in the irrotationally moving 
liquid which surrounds a vortex whose cross section is circular, the 
circulation is different from that which is due to the vortex, and 
consequently the tangential velocities at the common surface of the 
vortex and the surrounding liquid are different on either sides of 
this surface. This surface will therefore be a surface of discon­
tinuity which possesses the properties of a vortex sheet. We shall 
also for greater generality suppose that the density of the liquid 
forming the vortex is different from that surrounding it. 

Let o- be the density of the vortex, K the circulation due to it; 
p the density of the outside liquid, K its circulation; also let yfr', ijr 
be the current functions inside and outside the vortex. 

Then i|r' = - ^£rs + const., 

and K = — a (d-fy'jdr)ad6 = 2ir%a2. 
J o 

Therefore = — Kr2/4<ira2 + const., 

T|T = — «/27r . log r + const. 

Let p , p be the pressures in the vortex and the surrounding 
liquid, then 

1 dp' v" _ ic'2r 

a dr r 4<Tr'idi' 

Therefore ^— — r.—„—j -1 , 
a 07T a a 

P = n 

p ~ p 8TTV ' 

where P is the pressure at the centre of the cross section 
of the vortex, and n is the pressure at infinity. At the surface of 
separation p = p ' , whence 

p = n - < y P + * 'V)/87rV. 

Hence if n < {K'P + «V ) /87ra 2 , 

p will become negative for some value of r < a , which shows that 
a cylindrical hollow will exist in the vortex, which is concentric 
with its outer boundary. 

The case of a = 0 is that of a cylindrical hollow surrounded 
by liquid in a state of cylic irrotational motion. The condition for 
the existence of such a hollow is that p = 0 when r = a, hence 

n = «>/87rV. 

also 
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288. We must now investigate the stability of the preceding 
case of steady motion. 

Let us suppose that a small disturbance is communicated to 
the liquid ; the equation of the common surface of separation may 
be taken to be of the form 

F = a + a cos nd + /3 sin nd - r = 0 (12), 

where n is any positive integer, and a, ft are functions of the 
time which in the beginning of the disturbed motion are small 
quantities, whose squares and products may be neglected. 

Let the current functions be 

i f r = - « / 2 T T . log r + (A cos no + B sin nO) (a / r ) \ . .(13) 
outside the vortex, and 

yfr' = - «V /47ra ' + (0 cos nd + D sin nd) ( r / a f (14) 

inside the vortex. The boundary condition is 

d t + r dr de r d6 dr ~ ° ( o ) -

Substituting the value of F from (12) we obtain 
n A · n 1 d^lr n d-dr 

« cos nd + p sin nd - - + ^ ( a sin n6 - B cos nd) = 0. 

If U be the tangential velocity of the surrounding liquid at the 
surface of separation in steady motion, we may in the small terms 
put d^rjdr = — U, whence 

à cos nd + fi sin nd + na~' (A sin nd — B cos n8) 

— n UuT1 (a sin nd — /3 cos 718) = 0. 
Equating the coefficients of sin nd, cos n 9 to zero, we obtain 

A = - a/3/n + Ua ' 

B = ai/n+U/3] 

Similarly if IF be the tangential velocity of the vortex at the 
surface of separation in steady motion, we shall obtain 

C = - afSjn + D'a ' 
, . ' 1 7 ) . 

D = aa/n + U'B 

Since the disturbed motion will necessarily be irrotational it 
will have a velocity potential, and by employing the method of 
conjugate functions it can easily be shown that 

tp = (A sin nd — B cos n8) (a/r)n, 

</>'=- (C sin n8 — D cos n8) (r/a)". 
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If Bp, Bp be the increments of the pressure due to the 
disturbed motion just outside and just inside the vortex, we must 
have 

P 

— — (A sin nO — B cos nd) + WaT1 (a cos nd + ¡3 sin nd) 

— nUaT1 (A cos nd + B sin nd) 

= ( - A + U2p/a - n UB/a) sin nd + (B+ IPa/a - n UA/a) cos nd, 

= {a/3/n - 2 m - Lnf3 (n - l)/a] sin nd 

+ [dijn + 2 £7/3 - tT'a (n - l)/a] cos «0 (18), 
by (16). From the general equations of motion we have 

_ 1 dp' = du + d£ _ 

<J dx dt dx 

_ l < W ^ d v + d c ? + 

a dy dt dy 

whence — p'/tr = <b + \q* + 2 £ T / T ' . 

Hence 

= [C sin n9 - D cos nd) - J7V 1
 (a cos nd + /3 sin nO) 

+ U'na1 ( Ccos nd + D sin nd) + 2 J/ 'V 1 (a cos «61 + 0 sic n0) 

- 2 U'a' (G cos nd + D sin w0) 

= {G + [T/3/a - U D { n - 2)/a} sin n0 

+ {-£> + ET2a/a, - <7C (n - 2)/oJ cos nd 

= {- afi/n + 2 U ' ( n - l ) a/n + U 2 $ (n - l)/a] sin n<9 

+ [- aixjn - 2 W (n - 1) /3/ra + CT'a (m - 1)/»} cos n8 (19), 

by (17). In (18) and (19) write a and /3 for act and a/3, and w and 
v for CT/a and t^/a; since Bp = Bp', we obtain by equating the 
coefficients of sin nd, cos nd in the expressions for Bp, Bp given by 
(18) and (19), 

a( l +<r/p) •+ 2/3 {nw + v (n - 1) <r/p] - n (n -1) a{w*+i;V/p} = 0") ,- (20). 
/3 (1 + c r / p ) - 2a [nw + v ( n - l ) ajp) -n(n-l)/3{w2+v'o-/p] = 0) 

To solve these equations put a = L cos \t, ft = L sin \J, also let 
A = a j p , and we obtain 

V (1 + fc) - 2 \ {?iw + fc (n - + n (n - 1) (w ! + fo;2) = 0... (21). 

IRIS - LILLIAD - Université Lille 1 



In order that the steady motion should be stable, it is 
necessary that both roots of this quadratic should be real. 

Case I. Suppose that there is no core, but simply a cylindrical 
hollow round which circulation takes place. Here a = 0, Sp = 0, 
whence from (18) or (20) we obtain 

X 2 - 2\nw + n (n - 1) w2 = 0, 

the roots of which are (n + \ [ n ) w. Hence the steady motion is 
stable, and the disturbance consists of two trains of waves travelling 
round the ring in the same direction. 

Case II. Let the vortex be of the same density as the surround­
ing liquid, and let there be no slipping at the surface of separation. 
Here w = v = f, p = a, k = l and (21) becomes 

X 2 - X f (2n - 1) + n (n - 1) £2 = 0, 

the roots of which are n% and [n — 1) f Hence the steady motion 
is stable. It might at first sight appear that the disturbance 
consists of two trains of waves whose periods are 2ir/n^, and 
2ir/(n — 1) f respectively; but in order to solve this case it is 
unnecessary to take into account the pressure condition, since the 
two values of at the surface of separation must differ by a 
constant quantity, which together with the condition of no slipping 
and the boundary condition (15) are sufficient to determine the 
disturbed motion. It will thus be found that the equations of 
motion become 

d + (n - l ) a f a , ¡3+ { n - l f ? 8 = 0, 

and therefore the solution X = nf of (21) must be rejected, and the 

disturbance consists of a train of waves travelling round the 

cylinder whose period1 is 2irj(n — 1) £ 

Case III. In the general case the condition that the roots of 
(21) should be real is that 

{nw + k(n — l) v}2 - n (n - 1) (k + 1) (wa + kv2) > 0, 

or 

2kn (n - 1) wv-n {(n - 1) k - 1) w2 - k (n - 1) (n + k) v2 > 0.. .(22). 

If w = v the condition becomes 

n - F ( w - l ) > l , 

1 Sir W . Thomson, " On the Vibrations of a Columnar Vortex," Phil. Mag. Sep. 

1880. J. J. Thomson, Motion oj Vortex Einifs, p . 74. 
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which requires that k < 1. The steady motion will therefore he 
unstable if the density of the vortex is greater than that surrounding 
liquid. 

Let wjv = 1 + q ; then (22) becomes on dividing by n*, 

l ^ + ^ + 2 2 _ ^ 1 _ l W _ l | > ( , 
n n n (\ nj n) 

If q is not zero, it is always possible by taking n large enough, 
to make the left-hand side negative; hence the motion is unstable, 
unless w = v, and a <_ p . 

When w and v are unequal, the common surface of separation 
is a surface of discontinuity which has the properties of a vortex 
sheet, and the preceding investigation confirms Sir W. Thomson's 
statement that discontinuous motion is unstable. 

289. Kirchhoff1 has shown that it is possible for a vortex 
whose cross section is an invariable ellipse, and whose vorticity at 
every point is constant, to rotate in a state of steady motion in an 
infinite liquid, provided a certain relation exists between the 
vorticity and the angular velocity of the axes of the cross section. 

The current function is evidently equal to the potential of an 
elliptic cylinder of density $/27r. Let a and b be the semi-axes of 
the cross section, and let the value of inside the vortex be •V = D - £ (A x* + By!)/(A + B). 

Let x = c cosh 77 cos f, y = c sinh 77 sin f, where c = (a2 — Vf, and 
let 7j = B at the surface ; the value of becomes 

I|r' = Z)— f>2 (A cosh8

 v cos2£ + B sinh2
 v sin>£)/(A + B). 

Also let the value of outside the vortex be 
I|R = A'e'2r> cos 2£ + Brj/8. 

When 17 —8, we must have 
I^R - I|R' = const., dyjr/dr/ = d^r'jdy. 

Therefore A'e~W = - \ t f ? (A cosh'/3 - B sinh2/3)/(4 + B) 
and A'E-W = Jfc' (A - B) sinh B cosh B/(A + B ) . 

tf(Ad>-Bb*) tf(A-B)ah 
Whence A (a — b) = g ( Z T £ ) - = " ^ Z T B J " 

Therefore 4 a = .B& aud 
1// = D - f (ta 2 + ay2)/(a + b). 

1 Vorlei. uber Math. Phy. p. 261, see also Hill, Phil. Trans. 1884, p. 363. 
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290. We have shown that the effect of a cylindrical vortex 
column of small cross section is to produce at every point P 
external to it, a velocity whose magnitude is equal to m / r and 
whose direction is perpendicular to that of r, where r is the 
distance of P from vortex. If therefore more than one vortex 
exists in the liquid, the effect of any one of the vortices upon the 
others will be to produce a motion of translation combined with a 
deformation of their cross sections. The mathematical difficulties 
of solving this problem when the initial distribution of the vortices 
and the initial forms of their cross sections are given, are very 
great; and it seems impossible in the present stato of analysis to 
do more than obtain an approximate solution in certain cases. We 
shall now show that when there are two rectilinear vortices in a 
liquid, the linear dimensions of whose cross sections are small in 
comparison with the shortest distance between them, the cross 
sections will remain approximately circular1; from which it is 
inferred that a similar result holds good in the case of any number 
of vortices. 

1 J. J. Thomson, Motion of Vortex Rings, p. 74. 

Let » be the angular velocity of the axes ; u, v the velocities 
of the liquid parallel to them, then 

x — ya> = M = d^r'fdy = — 2aÇy/(a + b), 

y + xco = v = — dty'/dx = 2bÇxJ(a + h). 

The boundary condition is 

. dF . dF 

X d x + y d y = 0 ' 

where F= (x/af + (y/b)' - 1 = 0. Whence 

V a +b/ a \a + b ) b 

therefore a> = 2a6Ç"/(a + b ) ' . 

We therefore obtain 

x = — aœyfb, y = baixfa, 

the integrals of which are 

x = La cos (rat + a), y = £6 sin (mt + a), 

where L and a are the constants of integration. Whence the 
path of every particle relative to the boundary, is a similar ellipse. 
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Hence it follows that if any number of vortices of small cross 
sections are moving in the liquid, and the vortices never get very 
close to one another, we may neglect the effects produced by the 
deformations of their cross sections, which may therefore be 
regarded as approximately circular. 

291. Let A and B be the centres of the two vortices at time t; 
e the angle which the line joining their centres makes with some 
line fixed in space; also lot ( r , 6) be the coordinates of any point 
referred to the centre of A , and Ax as initial line, and let fbe the 
vorticity of A . 

P 

Let the equation of the cross section of A be 

r = a + t {an cos nô + /3„ sin n6) (23), 

and let the values of the current functions outside and inside A be 

^ = G - Ça* log r + S c4„ cos nd + B„ sin nff) (a/r)n, 

and ^ = C, - 1 Çr* 4- £ (C n cos NO + D„ sin N Ô ) (r/a)n. 

Since we suppose that a, ¡3, A , B, C, D are all small quantities, 
whose squares and products are to be neglected, it follows that the 
condition that the values of i /r and if^, should differ by a constant 
quantity at the surface of the vortex is that 

Am = Gm, B n = Dn. 

Also since we assume that there is no slipping at the surface of 
A , the values of dty/dr and dtyjdr must be equal at the surface ; 
this condition gives 

and therefore the value of y]r is 

= C - fa" log r + aÇt 0 „ cos n6 + 0 H sin n0) a'/nr*. 
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— n (an sin n8 — Ba cos nB) 
. - W ^ ) + ^ C 0 8 ( f l _ 6 ) H o.(24). 

N ow = - af 2 (a„ sin n6 — 8„ cos n0), 
a l s ° ^ = = - ^ ^ l o « r ' ' 
the portion involving the series being neglected, since it involves 
terms of the order abjc &c, which are of a higher order than the 
first. But if c > r, 

log r =\ log {r 2 + c2 — 2rc cos (9 — e)} 

= log c — r/c . cos (0 — e) — J r 2 /c 2 . cos 2(9 — e) — &c, 

therefore = - {a/c . sin (6 - e) + a'/d'.sm 2 (6 - e) + &c.}. 
Also -~ — - ca, dr 

and = %V {<f1 cos (0 - e) + acf2 cos 2 (0 - «) + &c], 

whence (24) becomes 

a n cos «0 + /3„ sin rc0 + £X (a„ sin «5 — /3n cos n8) + £b* ac~* sin 2 (8 - e) - n£(a, sin n0 - /3„ cos w0) = 0. 

Equating the coefficients of sin 9, cos 9, we obtain 

¿, = 0, & = 

and since â , j3l are initially zero, they will remain so during the whole motion; hence the centre of inertia of either vortex column 

Let us now denote corresponding quantities which refer to the 
other vortex B by accented letters, and we have 

T|r' = (7 - Z'b' log r + 2 (a'„ cos n6 + B'n sin nff) V/nr", 
where b is the mean radius of the section of B. 

If R, © be the velocities of any point on the surface of A, 
relative to its centre, the boundary condition is dF RdF &dF n dt r dr r dd 
where the value of F is given by (23) ; whence 

a cos no + p. sin n9 — \ + - — sm (8 — e) 
[a d8 o v ' 
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is undisturbed. Equating the coefficients of sin 28, cos 29 we 
obtain 

a2 + SS, = f a&V2 sin 2e, 

/32 - fa, = - f a&V1 cos 2e. 

Since the centre of inertia of neither vortex column is dis­
turbed, their common centre of inertia will remain at rest, and the 
two vortices will revolve around it with angular velocity n, where 
n = (fa a + f 6*)/c°; whence e = nt, and our equations become 

a, + f/32 = f'a&V2 sin 

/S, - fa, = - f 'a&V cos 2n«, 

therefore a, + fa , = f ' a b 2 c ~ 2 (2n + f) cos 2nt, 

\ A iyt , a\ , f'a&" (2ra + f) COB 2ni whence a, = 4 cos (ft + /3) + ), ̂  _ W ] . 

with a similar equation for B2. Let the initial values of a2, (3a, a 
be zero, and we obtain 

fat* 
c" ( f - 2n) (cos 2nt — cos ft), 

Hence the cross section at any instant is an ellipse whose axes 
are functions of the time, and which vibrates about the circular 
form. The vibration has two periods, a long one irjn and a short 
one 2?r/f. 

292. We shall pass on to consider the motion of a number of 
vortices of small and approximately circular cross sections. 

Since we neglect deformations of the cross sections, the current 
function due to each vortex will be — m log r, and the velocity due 
to it at any point P will be r n [ r , and will be perpendicular to the 
line joining P with the vortex. Hence if two vortices of equal 
strengths m exist in a liquid, each vortex will describe a circle 
whose centre is the middle point of the line joining them, with 
velocity m/2c, where 2c is the distance between them ; and there­
fore each vortex will move as if there existed a stress in the nature 
of a tension between them, of magnitude m'/ic".1 

To find the stream lines relative to the line joining the vortices, 

1 Greenhill, "P lane Vortex Mot ion," Quart. Journ. vol. xv. p. 20. 
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take moving axes, in which the axis of x coincides with the above-
mentioned line ; then 

^ = - \ m log {y* + { x - c)2} {f + 0 + c)"J. 

Also x — a>y = U = dtjr/dy, 

y + wx = v = — d-^r/dx, 

where to = TW /2C z . Let 

therefore x = d%/dy , y = — d%/dx. 

Multiplying by y , x respectively, subtracting and integrating, 
we obtain 

X = const. = A , 

whence the equation of the relative stream lines is 
| M (a? + y*)-\m log {f + ( x - c y } {y* + (x+ cf} = A . 

293. If two opposite vortices of strengths irm and — irm are 
present in the liquid, the vortices will move perpendicularly to the 
line joining them with velocity m/2c, where 2c is the distance 
between them. 

In this case there is evidently no flux across the plane which 
bisects the line joining the vortices, and which is perpendicular to 
it; we may therefore remove one of the vortices and substitute 
this plane for it. Hence a vortex in a liquid which is bounded by 
a fixed plane will move parallel to the plane, and the motion of 
the liquid will be the same as would be caused by the original 
vortex, together with another vortex of equal and opposite strength, 
which is at an equal distance and on the opposite side of the 
plane. 

This vortex is evidently the image of the original vortex, and 
we may therefore apply the theory of images in considering the 
motion of vortices in a liquid bounded by planes. 

294. If there is a vortex at the point ( x , y) moving in a 
square corner bounded by the planes O x , O y , the images will consist 
of twro negative vortices at the points ( — x , y ) , ( x , — y ) , and a 
positive vortex at the point (— x , — y) ; for if these vortices be 
substituted for the planes, their combined effect will be to cause no 
flux across them. 
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T V 

Since the vortex is incapable of producing any motion of 
translation upon itself, its motion will be due solely to that pro­
duced by the combined effect of its images ; whence, 

x = ^ 
my 

2y 2(x*+y°) 2y(x>+y*)' 

m 

2x' 

therefore 

whence 

or 

2{x* + tf) 

x/xs + y/Y=0 

x-* + y-*=:a~2 

r sin 29 = 2a. 

This is the equation of a Cotes' Spiral, which is the curve 
described by the vortices : also since 

xy — xy = — \m 

the vortex describes the spiral in exactly the same way as a particle 
would describe it, if repelled from the origin with a force 3m2/4r"3. 

295. The method of images may also be applied to determine 
the current function due to a vortex in a liquid, which is bounded 
externally or internally by a circular cjdinder. 

Let H be the vortex, a the radius of the cylinder, O H = c; and 
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let δ be a point such that OS = / = a*fc, then the triangles SOP 
and ΡΟΗ we similar, therefore 

SPO ̂  OHP, 
OPH=OSP, 

also OSP +SPA = OAP= ΟΡΑ 
= ΟΡΗ + ΗΡΑ, 

therefore SPA = ΗΡΑ. 

Let us place another vortex of equal and opposite strength 
at S, then the velocity along OP due to the two vortices is 

u = - ~p sin ΠΡΟ + sin SP 0 . 
sin HPO __ sin HP 0 U sir7SJA7~nr70HP = Oil ja 

= JPP/'SP, 
hence u = 0 and there is no flux across the cylinder. 

Hence the image of a vortex inside a cylinder, is another vortex of 
equal and opposite strength situated on the line joining the vortex 
with the centre of the cylinder, and at a distance aa/c from the 
centre, and the vortex and its image will describe circles about the 
centre with a velocity 

m/SH=mc/{a? - c5). 
The velocities of the vortex and its image are equal, but their 

angular velocities about the axis of the cylinder will be different; 
hence the motion of the liquid inside the cylinder and the motion of 
the liquid outside the cylinder arc independent, and the vortex and 
its image will not remain on the same radial plane in the sub­
sequent motion. Hence the motions of the liquid inside and 
outside the cylinder do not correspond, as is the case with plane 
boundaries, except at the instant when the vortex and its image are on the same radial plane. The current function of the liquid at a point (r , 0) within the cylinder is <f^-m log SP/HP c2 — 2rc cos θ 

= - 4 / 

m LOP-

-*+/*- 2R/COSI9' 
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296. The current function due to a vortex situated between 
two parallel planes, can be obtained by finding the current function 
due to the two infinite trails of images, exactly in the same manner 
as the velocity potential due to a source under the same circum­
stances, was found in § 57. 

Let the origin be midway between the two planes, and the axis 
of a; perpendicular to them, then as in § 57, 

^ = / ( * - « > , y - y ) -fipo + x + 2a, y - y ' ) + C 

where 

/ 0 , y) = ~ h m l o g n ° ° {(x + 4>na)' + y2}. 
00 

Now if we omit constant terms, we have shown that 
f(x ,y)=— log (cosh Try/2a — cos Trxj2a), 

therefore 
cosh 7T (y — y')/2a — cos ir (x — x')j2a 

•ty = — log 
cosh 7r (y — y')/2a + cos TT (x + x')j2a 

297. Let us now transform the preceding expression by put­
ting (x + iy)/a= (xx + tyi)i/ci, (x + ty')/a = (x\ + iy\y~/cK 

The portions of the lines x — ± a which lie on the positive 
side of the axis of x, evidently become transformed into a parabola, 
and the portion of space lying on the positive side of the axis of x, 
which is bounded by these lines and the portion of the axis of x 
which is intercepted between them, becomes transformed into the 
space inside the parabola ; whilst the portion of space bounded by 
these lines which lies on the negative side of the axis of x altogether 
disappears. Also the portion of the axis of x which is intercepted 
between the lines x = ± a, transforms into a double line joining the 
focus of the parabola with its vertex Now if we were to transform 
the preceding expressions for yjr as above mentioned, it would be 
found that the velocity at points on the line joining the focus of the 
parabola with its vertex would be discontinuous ; but if we place 
another vortex of equal strength at the point — x, — y', and add 
the results, the velocity in the transformed expression will bo 
continuous along this line. We thus obtain the current function 
due to a vortex in the parabolic cylinder 2c = r (1 — cos 6). 

In order to find the path described by the vortex, we must 
subtract — \m log {(x — x')2 + (y — y1)2} and then put x = x', y — y ; 
we thus obtain 

B . I I . 4 
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8a2 2 ° (1 + cosh iry J a) (1 + cos -rrxja) 

= — \ m log (sec! 7 r a ; / 2 a — sech2 7ry/2a) 

iieglecting constant terms. Transforming this expression we 
obtain 

which is the equation of the path of a vortex in a parabolic 
cylinder. 

298. Professor Greenhill1 has shown that the equation of the 
path of a vortex in a rectangular prism, the origin being at a 
corner, is 

ctn2 (Kx/a) + ctn2 (K'y/b) = e -«*• '*» - 1, 

where 2a, 26 are the sides of the rectangular section; K/a = K ' \ b , 
and the functions of x are to mod. Jc, whilst those of y a r e to mod. k'. 
He has also solved the same problem when the boundaries are two 
arcs of concentric circles and two radii inclined at an angle tt/u. 

Coates 2 has shown how Greenhill's expression for the current 
function due to a vortex situated in a rectangle may be transformed, 
so as to give the current function due to a vortex in an elliptic 
cylinder. 

299. We shall now find the current function due to a vortex 
outside an elliptic cylinder. 

The method of images is not applicable to problems in which 
the boundary is elliptic, and we shall therefore solve the problem 
by means of conjugate functions. 

Let f, v be conjugate functions such that x + ly = c cos ( f — ir))\ 
and let ( f , tj') bo the co-ordinates of the vortex Q, then if f, y be 
the coordinates of any point P of the liquid, 

= {x + i y - {£ + iy')} [ x - i y - (x - iy')} 

= c? {cos ( | — iv) — cos ( f - L7]')} {cos -1- in) — cos (£' + j 

= c 2 {cosh (rj' + TJ) — cos ( f + f)} {cosh (TJ' — TJ) — cos (£' — f)}. 

1 Quart. Journ. vol . xv. p. 25. 2 xvi. p. 81. 

, . 7 r 2 . cosh ttvId — cos irxla 
yfr = - \m log ^ - \ m log 
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V O R T E X O U T S I D E A N E L L I P T I C C Y L I N D E R . 51 

Now 

log {cosh (v' + v) ~ cos (f + f)} 

= log 4 + V + 1 7 + log (1 - 6 - V - i + ' « ' + f l } 4- log {1 - 6 - - i ' - i - i ( f+£!} 

= log i + 17' + v - 22" v i " ' e - M ( , , ' + ' ' ) cos n (f + f), 

therefore 

log QP = b g Jc + 77' - 2" «~ l {e-«W-n> cos n (f + \) 

+ < r » ( V - i ) c o s 7 i ( ^ - | ) j (25), 

This series is always convergent when 77' > 7;. We may 
therefore put 

ifr = - m log QP+ *• (26), 

where 

¥ = ra2* 7 j - 1

e - ' l ( " - 3 ) (4„ cos + P„ sin ntj)+m (log + 77' + 77 - /3). 

Now -^=0 at the surface where TJ = /3. Substituting these 
values of -vfr and log QP in (26), and putting 77 = ¡3, we find 

— A = 2e~ny1' cos cosh n/3 
— Bn = 2e - '" 1 ' sin r?.£' sinh n/3; 

therefore 
cd 

•*· = - w i S , 7 r I { 6 - T C ( " + , ' ' > cos n (f + f) + e - ^ + i ' - a p ) cos n ( f - f)} 

+ TO (log | c + 77' + 77 - /3) 

= £m log [cosh (77 + 77') - cos (f + f)} 

+ log (cosh (77 + 77' - 2/3) - cos ( f - £)} + m log c .. .(27), 

therefore 

& - _ J L m i0„
 C O s h ( V ^ ^ o s (f - f) 

* ~ * m i 0 ° cosh (V + 77 - 2 /3) - TOS(f - £ ) ( i 8 ) " 
To find the curve described by the vortex we must put 77 = 7 7 ' , 

? = f ' i u (27), whence 

* = 4m log «/ {cosh 2TJ - cos 2 |] cosh 2 (77 - B) 

therefore the equation of the path is 

(cosh 2?7 — cos 2£) cosh 2 (77 — ¡3) = const. 

For further information respecting the images of vortices, and 
also for other cases of vortex motion in and about elliptic cylinders, 
the reader is referred to the authorities cited below1. 

1 Coates, " V o r t e x motion in and about elliptic cylinders," Quart. Jour. vo l . xv. 

p. 356 ; vol . xv i . p. 81. Hicks, " O n functional images in ellipses," Quart. Jour. 

vol. xvn . p. 327. 
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On the Method of Inversion. 
300. We shall now explain a method by means of which we 

may derive from any hydrodynamical problem in plane vortex 
motion of which we know the solution, any number of other prob­
lems with their solutions. 

If P be any point on a plane curve S, and 0 be any fixed point 
in the plane of S, and if we take another point P' such that 
OP. OP' = a? where a is any constant, the locus of P' is another 
curve, which is called the inverse of S with respect to 0. 

301. Let -ijr be the current function due to a rectilinear vortex 
of strength irm situated at any point outside a cylinder whose cross 
section is S; then if R is the distance of any point from the 
vortex, we may put 

TJ/ = - m log R + V ( 2 9 ) . 

At the surface S, i ^ is a constant which may be taken to be 
zero, also '"iP and its first derivatives must be finite and continuous 
at all points of the liquid, and the derivatives must vanish at infinity. 
Hence M/1 is the potential of the induced charge when the cylinder 
is under the action of an electrified line which coincides with the 
vortex, and which is charged with electricity of line density £m 
per unit of length. Hence the induced charge on the cylinder is 
equal to — \m per unit of length. 

302. Let AP be the cross section of the cylinder, A'P' the 
curve which is the inverse of AP with respect to 0 ; also let R be 
the electrified wire, which we shall suppose outside AP, the 
potential of the electric field at Q, and <r the surface density of 
AP, per unit of length. 

Invert the system with respect to 0, and let the accented letters 
refer to the inverse system. 
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Then 
\jr = - 2/o- log PQds - m log RQ. (30). 

Also if yfr be the potential at Q' due to a charge \m at P'. 
together with a surface density a upon A ' P 

•^' = - 2 fa' log P'Q W - m log P/ O/. 

PQ ~ OP' RQ ~ OR' OP' ~~ OP " 

Hence if we take a O P ' = o-OP, so that ads' = ads, we obtain 

f = - 2jV (log PQ - log O P ) ds - log OQ'/o-ds 

- m (log P 0 4-log 00/ - log OR) (31). 

But 2 / ads = — m 

and —2) a log OPds = — potential of P at 0 

Now -v/r is zero at all points within AP, therefore 1/r' is zero at 
all points without A ' P ; hence -ty is the potential of the electric 
field, when the inverse cylinder is under the action of an electrified 
line situated at a point R' within the inverse cylinder, which is the 
inverse point of R. 

If R is inside AP, PJ will be outside A ' P ' , and the same results 
hold good mutatis mutandis. 

Hence if we know the current function due to any number of 
rectilinear vortices which are situated on one side of a cylinder whoso 
cross section is a closed or infinite curve, the method of inversion 
enables us to obtain the solution for a cylinder, whose cross section 
is the inverse curve with respect to any point in the plane of the cross 
section. 

303. Wo can now prove the following proposition. 

Let £, v be conjugate functions of so, y such that 

£ + =/[(<=+ * y ) / c } ; 
and let f,, r/x be conjugate functions of xx, yx, such that 

f t + ivx = f{a2/c (xx — iyx)} ; also let F (f, n) be the current function 

Now 

by (30). 

= m log OR 

Substituting in (31) wre obtain 

yfr' = _ 2 / « 7 log PQds - m log RQ 
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of a liquid bounded externally or internally by the cylinder v ~ B, 

due to a vortex at any point P of the liquid. Then F (f^ n^ will 

be the current function of a liquid bounded internally or externally 

by the inverse cylinder TJ1 = B, due to a vortex situated at a point Pt 

which is the inverse of P with respect to the origin. 

I f the vortices are replaced by electrified lines, and the cylindrical 
boundaries by conductors, we have shown that if i^, ^ be the 
current functions due to the two hydrodynamical systems, these 
quantities will be the electric potentials of the two electro-static 
systems ; hence iJ/ = i\rl. 

Let ( x , y) be the rectangular and (f, v ) the curvilinear coordi­
nates of any point Q ; and let ( x l t y ) , nj be the coordinates of 
the inverse point Qy Then if a is the constant of inversion, 

x = a*xjr?, y = a'yjr,*, 

therefore x+ ty = a2/(x1 — iy^, 

therefore £ + in, =f [a'/o ( a , - i f t ) } = / [ ( « + iy)/c} 

= £ + "7, 

whence f = f 4, V = Vi-

Hence i f TJ> = F & v ) , then ^ = F ( £ , 
304. In § 29G we have found an expression for the current 

function due to a vortex between two parallel planes, and by means 
of the preceding proposition we can obtain the current function 
due to a vortex in a liquid which is bounded by two circular 
cylinders. Also if in the expression in § 297 for the path of a 
vortex within a parabolic cylinder we write c / r for r / c , the resulting 
expression will give the path of a vortex in a liquid bounded 
internally by a cylinder whose cross section is a cardioid. 

The expression*for the current function due to a vortex outside 
an elliptic cylinder, is the expression for a vortex within a cylinder 
whose cross section is the inverse of an ellipse with respect to its 
centre or focus ; but in the former case £ + in = sec - 1 (JJ + iy)/c, and 
in the latter it equals 2 sec - 1

 {(x + M / ) /2C;*. 

The expression found by Coates for the current function due to 
a vortex inside an elliptic cylinder, similarly determines the current 
function due to a vortex in a liquid bounded internally by a cylinder 
whose cross section is the inverse of an ellipse with respect to its 
centre or focus. 

IRIS - LILLIAD - Université Lille 1 



EXAMPLES. 

1. If the axis of a hollow vortex be the axis of z , measured 
vertically downwards, the plane of x y being the asymptotic plane 
to the free surface, and if •sr be the atmospheric pressure : prove 
that the equation of the surface at which the pressure is + gpa\s 

where c is a constant. 

2. Three rectilinear vortices of equal strengths form the edges 
of an equilateral triangular prism. Prove that they will always 
form the three edges of an equal prism. 

3. The space between two infinite parallel planes distant c 
from each other is filled with water. Half way between the planes is 
placed a rectilinear vortex. Prove that the path of any particle 
of water is given by the equation 

4. An infinite plane vortex sheet in which the rotation is 
everywhere the same in magnitude and direction exists in an 
infinite mass of liquid ; prove that the resultant velocity at any 
point (x, y, s) is 

where yz is the plane of the vortex sheet, the axis of z is parallel 
to the axis of molecular rotation, and q is the product of the section 
by the angular velocity for each line. 

Evaluate this integral, and explain the result. 

5. If n rectilinear vortex filaments of equal strengths, be initially 
at the angles of a prism whose base is a regular polygon of n sides, 
show that they will always be so situated, and that each filament 
will describe the circumscribed cylinder with velocity k [n — l)/2a 
whore k is the velocity due to each vortex at unit distance and a is 
the radius of the cylinder. Show also that the equation of the 
relative stream lines referred to the radius through a vortex as 
initial line is r m - 2a"rn cos nd - b2n = 0. 

(a? + f)(z-a) = c 3 , 

cosh Tryjc = A cos TTX/C, 

the axis of x being perpendicular to the planes. 
Prove also that the velocity potential is 

m tan - 1 (sinh iry/c cosec TTX/C). 
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6. The space on one side of the concave Branch of a rectangular 
hyperbolic cylinder is filled with liquid, and a rectilinear vortex 
exists in the liquid; prove that it moves in a cylinder having the 
same asymptotic planes as the boundary. 

7. The motion of a liquid in two dimensions is such that the 
vorticity f is constant; prove that the general functional equation 
of the stream lines is 

4> (y + ix) + x(y - LX) - ^ { x 2 + ?/) = c. 
Prove that if the space between one branch of the hyperbola 

x 2 — Sy2 = a' and the tangent to its vertex be filled with liquid, it 
will be possible for the liquid to move steadily with constant vor­
ticity, and find the form of the stream lines. 

8. A mass of liquid whose outer boundary is an infinitely long 
cylinder of radius b , is in a state of cyclic irrotational motion and is 
under the action of a uniform pressure D over its external surface. 
Prove that there must be a concentric cylindrical hollow whose 
radius a is determined by the equation 

&7r2a2b2U = MH.2, 

where M is the mass of unit length of the liquid, and K is the 
circulation. 

If the cylinder receive a small symmetrical displacement, 
prove that the time of a small oscillation is 

K V o — a 

9. A fixed cylinder of radius a is surrounded by incompressible 
homogeneous fluid extending to infinity. Symmetrically arranged 
round it as generators on a cylinder of radius e (> a) coaxial with the 
given one, are n rectilinear vortex filaments each of strength m. 
Show that the filaments will remain on this cylinder throughout 
the motion, and will revolve round its axis with angular velocity 

m (n + l ) c M + (ri - 1) a2" 

2TTO2 " c'n - a l n 

and that the velocity of any point P of the fluid is 
mnr"'1 c" - b" 

7T " (?n-^2c"rn cos n8 + c2n) (r2n - 26V cos n6+~b2") ' 

where a2— bo, r is the distance of P from the axis, and 8 is the 
angle between a plane containing P and the axis, and a plane con­
taining Pand the instantaneous position of any one of the filaments. 
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10. Four straight vortex filaments with alternately positive 
and negative rotations are placed symmetrically within a cylinder 
filled with liquid ; prove that if the motion is steady the distance 
of each filament from the axis of the cylinder is nearly three-
fifths of the radius of the latter. 

11. Prove that three infinitely long straight cylindrical vortices 
of equal strengths will be in stable steady motion, when situated at 
the vertices of an equilateral triangle whose sides are large com­
pared with the radii of the sections of the vortices; and that if they 
are slightly displaced, prove that the time of a small oscillation 
is the same as that of the time of revolution of the system in its 
undisturbed state. 

12. A straight cylindrical vortex column of uniform vorticity 
is surrounded by an infinite quantity of liquid moving irrota-

tionally which is at rest at infinity ; prove that the difference be­
tween the kinetic energy included between two planes at right 
angles to the axis of the cylinder and separated by unit distance, 
when the cross section is an ellipse, and when it is a circle of equal 
area A is 

p7T 

where p is the density of the liquid, and a and b are the semiaxes 
of the ellipse. 

13. Examine the stability of KirchhofFs elliptic vortex, when 
the cross section of the vortex column is displaced into a curve 
slightly different from an ellipse. 

14. Prove or verify that the current function due to a station­
ary vortex situated at the centre of an elliptic cylinder, is 

T|T = — \ m log 4c2 sn M s t i ( « - K) sn v sn (v — K), 

where f - I - irj = u, f — LH) = v. 

Prove also that the velocity potential is 

k' sn (2JJTg/V) sn {K'vjB) 

* - m t a n cn (2KZ/n) ' 

where 8 = \irK'jK\s the value of rj at the cylindrical boundary ; 
and the functions of f are to mod. k, and those of rj to mod. k'. 
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58 R E C T I L I N E A R V O R T I C E S . 

15. A quantity of liquid whose vorticity is uniform and equal to 
f, and whose external surface is a circular cylinder, surrounds a con­
centric cylinder of radius a. The external surface is subjected to a 
constant pressure 11. Prove that if the inner cylinder be removed, 
the velocity of the internal surface when its radius is a, is equal to 

1 /(a 2 -/) ( P c ' - g n / p ) 
a V ~log a7(a2 + c ' j 

where Trp& is the mass of the liquid per unit of length. 

16. If a vortex is moving in a liquid bounded by a fixed 
plane, prove that a stream line can never coincide with a line of 
constant pressure. 

17. If a pair of equal and opposite vortices are situated inside 
or outside a circular cylinder of radius a, prove that the equation 
of the curve described by each vortex is, 

(r 2 - a j (r2 sin2 0 - V) = 4a !6V sin2 6, 

where & is a constant. 
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C H A P T E R X I V . 

C I R C U L A R V O R T I C E S . 

305. A C I R C U L A R vortex ring may be supposed to be made 
up of a large number of indefinitely thin circular vortex "filaments, 
every element of which is rotating with angular velocity to about 
the tangent to the circle of which the element forms a part. 

We have shown in Chapter IV. that the velocity due to a fine 
vortex filament, is proportional to the magnetic force exerted by 
an electric current, which flows along a fine wire which coincides 
with the vortex; and it has been shown by Maxwell1, that if 
electric currents flow round an anchor ring of small cross section, 
the effect is the same as if the currents were condensed into a 
single one flowing along the central line of the ring. If therefore 
the cross section of the ring is small in comparison with its 
aperture, the effect of the ring upon the irrotationally moving 
liquid by which it is surrounded, will be approximately the same 
as that of a fine vortex filament of equal strength, which coincides 
with the central line of the core. Hence rings of small cross 
section may be approximately regarded as vortex filaments, and 
we may disregard the effects which are due to any deformation 
of the form of the cross section, or to anything which takes place 
within the substance of the ring. We shall thereby greatly sim­
plify the analysis; but when we wish to ascertain what goes on 
inside the ring, it will be necessary to employ toroidal functions, 
and the investigation becomes much more complicated. 

1 Electricity and Magnetism, 2nd edition, vol . n. § 683. 
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306. Let us in the first place confine our attention to a single 
circular vortex of small cross section in an infinite liquid. It is 
clear that the motion is symmetrical with respect to a line passing 
through the centre of the ring and perpendicular to its plane, 
which we shall choose as the axis of z . Hence by § 38 (28), if tu 
be the molecular rotation, Stokes' current function satisfies the 
equation 

az ttzn- OT d-d 

at all points in the interior of the ring. Outside the ring the 
current function satisfies the equation 

d2jr_l^djr _ 0 

dzl dm2 t j drs 

Putting yjr = j^ST these equations become 

•(1) 
inside ; and 

az a V ra- G M T -as 

dz' dnr" + *T d-sr 1 s t " V } 

outside. 
These equations show that % cos 8 is the potential of a distri­

bution of matter of density as cos 8. J2TT, which occupies the same 
portion of space as the vortex ring. 

On account of the smallness of the cross section, as may be 
treated as approximately constant, and ^ cos 8 will be the po­
tential of a fine circular wire whose density is as cos O./2-rr, 8 being 
measured from some fixed point on the ring. 

307. To find this potential, let 0 be the centre of the vortex 
ring, and let the axis of z be perpendicular to the plane of the 

paper; lut A be the fixed point on the ring from which 8 is 
measured, and let P be any point whose coordinates are z , m, 8 ; 
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S I N G L E C I R C U L A R V O R T E X . 61 

also let Q be any point on the central line of the vortex whose 
coordinates are z, a, & ; then if a be the cross section 

„ a a a f 2 * + e cos 0' da" 
V C O S 0 = — I r . 

2TT J e _ z y + „ 1 + 0 . _ 2 x i r a cos (ff - ey? 

Putting ff — 8 = e , we obtain 
n awa [%lr (cos 8 cos e — sin 8 sin e ) de 

X cos 0 = — — — i ^ 1 . 

^TT Jo {(^ _ .g 'y + OT« + a2 _ 2wa cos e}* 
The second integral vanishes, whence 

, awtxa [* cos e T " = = 1 •••(*>)> 
7 7 J . { ( * - y ) " + w , + a , - 2 i ! r a c o B e } i 

which determines the value of i|r at any point outside the vortex. 

308. We can now determine the motion of the vortex. 
Putting 

j'-i ^txa 

(z — z y + (w + ay 

(3) becomes 
r*" 2 cos2 7/ - 1 

o (1 —k'1
 cos1 jjf 

. = o w - 1 (vraf [2 (F' - E')/k' - k'F'} (4). 

Putting 
U= 2 (F' - E')jk' - k'F, m = aw, 

where m is the strength of the vortex, we obtain 

\/r = m (maf U/tt. 
At the surface of the vortex ring, z and or are very nearly 

equal to z' and a respectively, hence k' is very nearly equal to 
unity ; whence if L = log i/k, we have approximately1 

F' = L + \ k \ L - \ ) , 

E' = l + \ k * ( L - \ ) , 

therefore IT = L - 2 + f/c2 (L - 1). 

, [*" 2 c o s 2 ? j - l , 

•Jr = aojTT 1 k' (tsar - 7 7 a T ^ i dV 
K ' J o 1 - A ; a c o s - r 7 r 

1 d-Jr m lafdU XT' Also w = - _ r _ = - / _ + 

1 dty _ m /a dU 

•st dz i r \ / st dz 
1 Cayley, Elliptic Functions, p. 54. 
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X T „ « - « y + 9 - a ) ' 

Now = j ^ ) ( , 
(z - z'Y + O + a)2 

whence if e be the radius of the cross section of the ring, we have 
approximately at the surface of the ring 

^ e dk _ 2a (CT — a) — e* dk _ z — z 

2a' din- 4<a*e ' dz 2ae 

Iherefore « = — •{ -7- (L — i ) r ~a • 
17 {e 4a v l ' \ 2ae 

When z = z, u = 0, hence the radius of the ring remains in­
variable. 

And 

Assan w = 
2a 3e r 1 2a ( C T - a) - e2

 m T 

T " 4 a ( X ~ ^ 4a 2 e~~ + 2 ^ a ( A ~ 2 ) ' 

In order to obtain the velocity of translation of the ring we 
must put m = a, and we obtain 

m /r t j 
W = 2 , r a ( Z - 1 ) 

»i A 8a \ . 
= 2 ^ a ( L 0 ° T - 1 J < ° > ' 

which shows that the ring moves forward in the direction of the 
cyclic motion through its aperture with constant velocity. 

By § 61 every element of the vortex produces a velocity at the 
centre of the ring which is equal to mds/2TTa*1; hence the velocity 
at the centre is equal to mja = TRE'co/a. 

Hence an isolated circular vortex in an infinite liquid moves 
without sensible change of size in a direction which is perpendicu­
lar to its plane, with a constant velocity, which is small compared 
with that of the liquid in the immediate neighbourhood of its 
central line, but large compared with the velocity of the liquid at 
the centre of the ring. 

309. Let us now consider the motion of two parallel circular 
vortices whose centres lie on the axis of z. If the directions of 
molecular rotation are the same in both, the effect of the hinder-
most vortex on the one in advance, will be to increase the radius 
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and retard the velocity of the latter ; whilst the effect of the fore­
most vortex upon the one in the rear, will be to diminish the 
radius and increase the velocity of the latter. Hence the hinder-
most ring will overtake and shoot through the foremost; after 
which the circumstances will be reversed, and the one which is 
now in the rear will overtake and shoot through the one in 
advance. 

310. If the directions of rotation are in opposite directions 
the rings will either recede from, or advance towards one 
another. If the former is the case the radii of each ring will 
diminish, whilst the converse will be the case if the rings are 
advancing towards one another. In the latter case the velocity 
of approach continually diminishes whilst the radii of the rings 
increase; also if the vortices are of equal size and strength, 
there will be no flux across a fixed plane parallel to them and 
bisecting the distance between them, and we may therefore 
remove one of the vortices and substitute for it a rigid plane 
boundary. Hence the motion of a vortex which is moving in a 
liquid towards or from a fixed rigid plane, is obtained by 
substituting for the plane a second vortex of equal size and 
opposite strength, which is the image of the first with respect 
to the plane. 

311. We shall now determine the image of a circular vortex 
in a sphere1. 

I* 

P 

A 

We shall in the first place show that every element ds of a 
vortex ring within the sphere, together with a corresponding 

1 Lewis, Quart. Journ. vol. xvi. p. 338. 
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element ds without the sphere, which occupies the position of 
the electrical image of ds, will produce over the surface of the 
sphere a velocity which is everywhere tangential, provided certain 
other conditions are satisfied. 

Let 0 be the centre of the sphere, and let BB', C O be the two 
elements, m, m their strengths, and let the plane in which they 
lie be the plane of x y . Since O B . 0 0 = O B ' . O C , the angle 
ACB = A B ' C = A B O ultimately, whence A O = AB. 

Let 0 0 be the axis of x, BP = r, CP = r ' , OB=f, OC=f, 

A B C = 9, also let B and 7 be the angles which the planes APB 
and A P C respectively make with the plane x y . 

Lot ( x , y , z) be the coordinates of P , and u, v , w the 
velocities at P : then by § 61 if the two vortex elements at B and 
C are parts of complete filaments 

2TT?/ = mr"* ds sin B sin / 3 sin 0 + m'r'~3 ds' sin C sin 7 sin 8, 

ITTV = — mr* ds sin B sin B cos 8 + m r ' ' 2 ds' sin C sin 7 cos 8, 

2TTW = — mr"2 ds sin B cos B + m r " 2 ds' sin C cos 7 . 

But 
z = r sin B sin B = r' sin C sin 7 , 

(x — y)sin 9 ~ y cos 0 = z cot /3, 

(/' — x) sin f? — y cos 8 = z cot 7 . 

Therefore 

2 7 T M = ( T t t r - " rfs + TOV/_s rfs') £ sin f 7 , 

2 7 r u = ( — mr"3 cfe + m ' r ' ~ 3 ds') z cos f?, 

2 7 T W = ( — m r ' 3 ds cot B + 3 c ° t 7 ) z. 

In order that there may be no flux across the sphere, we 
must have at the surface 

ux + vy + wz = 0. 

Therefore 

mr~3 ds (x sin 8 — y cos 8 — z cot B) 

+ m r ' " 3 ds'(xsin 9 + y cos 5 •+• zcot 7 ) = 0, 

whence mfr'3 ds = — m ' / ' r ' 3 ds'. 

But ds/f=ds'/f; and (r/r'f — fjf = (//ct)3, where a is the 
radius of the sphere ; therefore 

» V / = -
 mWf-

IRIS - LILLIAD - Université Lille 1 



V E L O C I T Y P O T E N T I A L O F A C I R C U L A R V O R T E X . 65 

Hence the molecular rotations of the two vortex elements must 
he in opposite directions, and their strengths must vary inversely 
as the square roots of the distances of the two elements from the 
centre of the sphere. Now along each ring m is constant, also 
since flf = (flaY,f must be constant, and therefore each vortex 
ring must lie on a sphere concentric with the sphere which forms 
the boundary of the liquid. 

312. We have shown in § 62 that the velocity potential at 
any point due to a fine vortex is equal to --- mil/lir, where fl is 
the solid angle subtended by the vortex at the point. When the 
vortex is circular, this solid angle may be easily expressed in a 
series of spherical harmonics1, and we may thus obtain the 
expressions for the component velocities in the form of a series. 
This method of proceeding is especially useful, when we desire to 
obtain the effect of a vortex at a point very distant from it, for in 
this case a few terms of the series will be sufficient. 

We could also apply this method to find the velocity potential 
due to a vortex situated outside a fixed sphere, but the preceding 
investigation shows that the series representing the image will 
not be the velocity potential of a single vortex unless the original 
vortex lies on a concentric sphere; when this is not the case, the 
image will consist of a hydrodynamical system of more or less 
complexity, which will be dependent on the form and position of 
the original vortex ring. 

In considering the motion of two vortices we have supposed 
that their planes are parallel, and that their centres lie on a 
straight line which is perpendicular to their planes. For the 
discussion of the motion of two vortex rings whose planes are not 
parallel, we must refer the reader to Part I I . of Prof. J. J. Thomson's Motion of Vortex Rings. 

1 Ferrers, Spherical Harmonics, eh. in . Maxwell, Electricity and Magnetism, 
vol. n. ch. xrv. 

B . r r . 

IRIS - LILLIAD - Université Lille 1 



Vibrations of a Circular Vortex Ring1. 
fi 

313. The vibrations tD which a vortex ring may be subject, 
maybe divided into two classes, vibrations which involve a deform­
ation of the surface of the ring, without any deformation of the 
central line; and vibrations which involve a deformation of the 
central line as well as a deformation of the surface of the ring. 

A complete investigation of the stability of a vortex which is 
in a state of steady motion or kinetic equilibrium, would involve 
the consideration of the problem in its most general form. When 
however the cross section of the ring is small in comparison with 
its aperture, we may without sensible error treat these two kinds 
of vibrations separately. We shall therefore in the present section 
confine our attention to vibrations involving a deformation of the 
central line alone, and shall neglect deformations of the surface. 
In the closing portion of this Chapter, we shall suppose that the 
central line retains its circular form, and investigate what may be 
called fluted vibrations, that is to say vibrations which consist of 
trains of waves travelling over the surface of the ring, whose crests 
are circles parallel to the central line. 

314. Let a be the radius of the central line when the ring is 
undisturbed, } its distance from the origin; and let x ' , y ' , z' be 
rectangular, and ra', ifr, z' cylindrical coordinates of any point on 
the central line during the disturbed motion ; also let x , y , ? + f 
be rectangular, and or, 8, *• + £ be cylindrical coordinates of any 
point of space. Let 

where in the beginning of the disturbed motion, ctn, y n are small 
functions of the time, whose squares and products maybe neglected. 

•m' — a + an cos ni/r, z = } + yn cos nifr (6) , 

Then 
X = vs' COS i fr , y = s í ' sin -i¡r, 

whence 

dx/di]r = — a sin — an (cos n^jr sin + n sin rnjr cos yjr) 

dy'fd^jr — a cos + >>n (eos n-¡fr cos i¡r — n sin ni¡r sin -¡¡r) 

dz'/d-^r = — nyn sin n\¡r 

1 J. J. Thomson, l'kil. Trans. 1882, and Motion of Vortex Binar, Part i. 
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according as TO is unequal or equal to n, we obtain 

u = Jwi [%aAi cos 0 
+ io7„ { ( » - 1 ) ^ n + 1 cos (n+l)8-(n + l)An_lCos(n-l)8} 
+ i ^ y „ i „ {cos (n - 1) f? - cos (n + 1) 8\] (10). 

5—2 • 

Let r be the distance between the points [x, y , } + f) and 
(V, y \ z ' \ also let £" = f — y n cos nijr, then 

r* = *r' + + £ 1 - 2 W cos (T/T - 0). 

Now r"a can evidently be expanded in a series of cosines of 
multiples of i^ — 8, we may therefore put 

r"3 = C0 + C, cos ty-fl) + C r a c o s m ( f - 0), 

where the Cs are functions of or, ro', f. Since i|r enters into ra-', f 
in the forms ocn cos n\fr, 7„ cos n^r, the terms in the Cs which 
involve yjr will be small quantities, whence if 

{m' + a* + ? - Iwa cos - 8)}-* = A a + A l cos (yfr - 8) 

+ A m cos m{yfr — 6)+...(8), 

we shall have 

C „ = A ~ + «„ c o s - 2f 7. c o s 

In the present investigation f will be a small quantity, and we 
may therefore neglect the last term, we thus obtain 

C m = ^ m + ^ " « „ c o s n f (9). 

315. We must now calculate the velocity due to the vortex 
during the disturbed motion. 

By § 61 the velocity parallel to x of a vortex of strength m is 

Substituting the values of z — z &c. in terms of i | r and neglect­
ing squares of small quantities, the term in brackets becomes 
ya cos + nyytl sin mi/r 

+ { ( « — 1) c o s ( » + 1) i/r — (n + 1) cos (ra — 1) tjr]. 

Since every term of this expression is small, we may write A 
for C in the expression for r - 8, whence remembering that 

ran 
cos m^r cos n-^rd^jr — 0 or TT 
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m 
W = 2 r r 

The expression in brackets is equal to 
a3 — a (x cos + y sin ty) 

+ 2aac„ cos n^r — -^i/an [(?i + 1) sin (n + 1) + (n — 1) sin (n — 1) TJTj 
— ^*a„ {(n + 1) cos (n + 1) — (m — 1) cos (« — 1) i/rj. 

Since the first two terms are not multiplied by any small 
quantity, we must not put A for 0 in the value of r~s by which 
these terms are multiplied, but must employ the value of C given 
by (9); whence on integration 

/ dA the 1st term = ^ma2 ( 2 A C H—~ an cos nd dAn 

the 2nd term 

= - | mA^vr -1 m a x i n j * ^ * 1 cos (n + l) 0 + cos (n - 1) 0 

- i mayoin sin (n + 1) 0 - s i n („ - l ) 

and the other terms 

= \m [2aorn A n cos n0 

- [(« + 1) A,« S M O + 1) 0 + (n - 1) An_x sin (» - 1) 0} 

- i aa. {(/i + 1) A n + 1 cos (n + 1) 8 - (n - 1) 4 b 1 COS (n - 1) 0}]. 

Collecting our results we obtain 

2AQa* — a-usAl 

+ [2^ B a + [(»i - 1) A ^ - ( n + l) A M ] } an cos n8 

The velocity parallel to y is 

The term in brackets 
= fa sin ^ — nx'Y„ sin n-f-

+ i a 7 » K71 — ! ) s i n (n + 1) + + 1) sin (n — 1) ^ j , 
•whence 
v = ^m [&A1 sin 0 

+ W„ KW - 1 ) A„+l sin O + 1) S + (n + 1) A n ^ sin (w - 1) 8) 

- \ n ^ r 1 n A n { s in («+ 1) 0 + sin (n - 1) 8}] (11). 
The velocity parallel to z is 
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316. Having obtained the values of the velocities we can now 
find the values of dn, y n . 

If e be the radius of the cross section (which is supposed to be 
very small) the equations of the surface of the ring are 

•as = a + an cos n9 + e cos <b (13), 

z — 1 + 7„ c o s
 nfl + e s i u $ (14)· 

By § 12, if F{TZ, 6, <p, t) be the equation of a surface which 
always contains the same elements of fluid, 

dF v d F ^ d F ^ d F . 

dt dm dd dtp 

where R is the velocity along -as, and ®, cE* are the angular 
velocities in the directions in which these quantities increase. 

Applying this to (13) we obtain 

an cos nd — R — nan © sin nd — e<I> sin = 0. 

If the motion were undisturbed © would be zero, hence in the 
beginning of the disturbed motion © must be a small quantity; 
the third term is consequently of the second order and may there­
fore be neglected. We thus obtain 

R = an cos nd — ec& sin qb (15). 
But 

R = u cos 9 4- v sin 8 

= \ m \ t , a A x + \ a y n {(n - 1) A n + l - (n + 1) An_x) cos nff\... (16), 

by (10) and (11). In this expression £ = y n cos nd + e sin <jj ; also 
the values of the A ' s must be obtained from (8) by putting 

sj- = a + an cos nd + e cos cb 

and giving to f the above value. Let Sn denote the value of A n 

at the surface of the undisturbed vortex, that is when an = y n = 0. 
Then by proceeding in the same manner as in the case of equation 
(9), we see that 

A n = S n + d ^ a n c o S n B (17). 

But since each of the A ' s is multiplied by a small quantity in 
(16), we may put S for A , and we thus obtain 

R = \ m [aSl (yn cos nd + e sin cp) 

+ W „ {(n - 1) S n + 1 - (n + 1) Sn_x] cos n0] (18). 
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Equating coefficients of cos n6 and sin <b in the two values of Ji 
given by (15) and (18) we obtain 

K = i « o y . IK + i K« - 1 ) 3 . « - (» - 1 ) - S U 1 (19)· 

* = - £ma (20). 

Again, the condition that (14) should be always composed of 
the same elements of fluid, is 

dF . . s d F - d F , d F . 

whence 

w = \ + 7 n cos nd + e<î> cos <b (21). 

Equating the right-hand side of this equation to the value of w 
given by (12), we obtain 

2 A Q a ? - avrA^ {2Ana + ^nr[(n-l)Am+l-(n+l)Aa_l]}ancosn9 

? + 7 n C 0 S n @ 

+ e < T J c o s 0...(22). 

Since the last two terms on the left-hand side are multiplied 
by an, we may put TB = a, A n = Sn ; but in the first two terms 
which are not multiplied by a small quantity, we must substitute 
for A n its value from (17), and for sr its value from (13). Making 
these substitutions and equating coefficients we obtain 

j = W ( 2 ^ - ^ ) (23), 

<J> = - ^maSl (24). 

7 » = £ m o w » 

.(2= 

317. We must now calculate the S's. From (8) it follows 
that if we put 

nr = a + e cos <f>, f = e sin <h, 2maq = -m* + a? + 

then 

S . 

2 " cos n9d8 
, 2S„ = 

7T (2sm)* J o 

d9 

7r (2cra)* J o (q — cos9)- " -rr (2-ssaf J o (q— cos 0)B 

Since e is very small, a is nearly equal to unity, and we there-
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fore require the values of the preceding integrals, when q is nearly 
equal to unity. Let 

_ 1 /•»» coswfldfl b _± P" coswgdfl 
7T J „ ( 2 _ c o s <?)F » ^ I O ( 2 - c o s ^ ' 

From § 277, it appears that 6n is a zonal toroidal function of 
the second kind; also since = — idbjdq, it follows from §273 
(55) and § 275 that 

C - = 2

G " ± J (26). 
and that 

( W > ^ - 2 ? | * + ( » ' - i ) 6 . = 0 (27). 

In order to find the value of b n when q is nearly equal to unity, 
assume 

Substituting in (27) we obtain 

- * 2 + A - < F - « * £ * < * - I , + - A 

In these equations put a; = j — 1, and they become 

*(2+a,)^+2(1
 +x)dt~^~^'P^0

 (28)> 

4 ddt + X ( 2 + ^ I T + 2 C1 + S ~ <B'~ *> + = 0 - ( 2 » ) -
In order to solve (28), assume (jS = Sa^a:"1, and we obtain •ri* — \ — m(m + 1) 

= ~ 2 (m + 1)* 
whence 
, (\ , a . . a ; ( n J - | ) ( « 3 - | ) /aA a 

( w - - ^ ) ( T t - - B ) ( w - - y ) / a * . , 
+ (317 — (J) + } - ( 3 0 ) . 

= » 0 P (say). 
Putting I/R = S I , w e obtain from (2£)) 

VI2 - -J— (m + 1) 2 
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*" J o V (9 - cos 0) 

. _ . 2 f # ^ 
7T V(9 + 1) J „ (1 _ fc« c o s » q + l 

•^v'(? + 1 ) - / o ( 1 - j f s i i i » 4 

4 4 
''ir<J{q+ 1) g # 

7T * 16(^ + 1) 
approximately. Also 

i (2" cos e de ° (q — cos 6)* 

~ * V(? + 1) f*' (1 - *" s i n = d(f> + 2 b ° 1 

: - 4 V 2 / 7 r + 260, 
approximately ; whence (34) becomes, 

6 = _ ^ W _ £ z J _ - i ^ / ( n ) (35). 
TT B 16(^ + 1) IT J Y > Y ' 

whence 

* = aDP - 2 a X (l + * + . . . ± ) (« ' - i) <n' - f ) . . . 

and therefore 6 = a.P log-l7,^.——,^ + ilr (32). 
0 s 1 6 ( g + l ) r " ; 

By § 273 (56) 
4n56.= ( 2 n - l ) 6 M + (2n + 1 ) 6.+1. 

Hence when q is nearly equal to unity, this equation may be 
written, 

4«6 B = ( 2 / 1 - 1 ) 6 ^ + (2.1 + 1 ) 6 ^ , 
the solution of which is 

^ = 0 + C r ( 1 + i + . . . g - L T ) 

= G + Cf(n) (33). 

Therefore 6, = G + (7', 
260 = C. 

Therefore b n = 2\ + (bx - 2b0) f(n) (34). 
1 f2" dd Now 26 = -

IRIS - LILLIAD - Université Lille 1 



Since x is very small we may put x = 0 in the expressions for 
<p (x) and tfr (x), and (32) becomes, 

6" = a > g i T ( ^ + 3 ° < 3 6 > -
Comparing (35) and (36) we obtain 

a0-- V/2/TT, 

* 0 = - 4 v / 2 / » / 7 r . 

If <rn denote the sum of the reciprocals of the first n natural 
numbers, 

But it is shown in Boole's Finite Differences, 2nd edition, p. 93 
that <rn = -577215 + log n + T l n ' - 12~ln\ 
whence 

f{n) = -288607 + log 2n - \ log n + (48)- 1 «^ (37), 

and we obtain from (32) 

b9 = V 2 7 T - 1 (l + i (n2 - l) x] {log 16 (2 + x)\x - 4/(n)} 
+ V 2 7 T a; ( n 1 - £ ) . . . ( 3 8 ) , 

and therefore from (26) 

c . = V2 7r- 1[2/ a : - ( n « - i ) {log 16 (2 + x)/x - 4/(n)} - n a - f ]...(39). 

Hence we finally obtain 

Sn=[2/'x-(n'-l){log 16 (2+«)/a ' -4 / (Ti)}-w ! - | ] /27r(CTa) f . . . (40) , 

where * = q — 1 = {(CT — a)1 + £2}/2tza. 
318. We can now complete the solution of the equations of 

§316. At the surface of the ring cr —a = ecos0, f = esin0, 

whence x = e2/2a2, (2 + = 4a2/e2, 

and therefore 

Sn = [4a7e2 - (re* - i ) {log 64 a'/e2 - 4 / ( B ) } - n2 - f]/27ro' p 

and 
2S0 = (4a8/e2 + J log 8a/« - |)/27ra3. 

Substituting the values of Sn and >!?0 in (23) and (24) we obtain 

} = m (log 8a/e - l)/2?ra (41), 

<p = -m (4a !/e2 - f log 8a/e + |)/47ra' 

or since m = 7ra>e2, 

cj) = _ a + fweV" (log 8a/e - «) (42). 
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Equation (41) gives the velocity of translation of the ring, and 
agrees with the expression previously obtained in (5). The angu­
lar velocity of the liquid at the surface of the ring is given by (42). 

319. In order to obtain the equations for determining the 
small oscillations, wc must substitute the value of Sn in (19) and 
( 2 5 ) . Putting 

L = m {log Safe - 2f(n) - ^}J2TTO' (43), 

we shall after reduction obtain 

án = - n'Lym. yn = (w* - 1) L-in (44), 

the solution of which is 

an = A cos {Ln *J(n2 - l ) t + ß], 

y n = A n'1 - 1) sin [Ln V(n' - l ) t + ß}. 

These equations show that a circular vortex ring is stable for 

all displacements of its central line, and that the period of oscilla­

tion is 277/Xw vX^2 — ! ) • 

Now e is a small quantity and therefore if n is not very large, 
log Safe will be large compared with 2f(n) + ^, and the period of 
oscillation is approximately equal to 

4nr'at/mn ^(rf — 1) log 8a/e. 

But if n is so large that n e is comparable with a, we must 
substitute for f(n) its value from (37), and we obtain 

L = m (log 2a/ne - l-0772)/2W. 

Since n is large, we may wrrite w2 for wa— 1, hence if 1= 2ira¡n 

the period of vibration becomes 

V (log l/ire - r0772)~ : ( W ) " 1 . 

The transverse vibrations of a rectilinear vortex have been 
investigated by Sir W. Thomson1, who finds that when l/e is 
large, the period of oscillation is equal to 

V (log Ijire - -3272)-1
 ( T T O ^ 2 ) " 1 , 

which approximately agrees with the preceding expression. 

If the displacement had been represented by the equations 

ts' = a + an cos n-v/r + ßn sin ni¡r, z = } + yn cos n-^r + 8 n sin nifr, 

it could have been shown in a similar manner that ß n , §„ satisfy 
the same equations as un, y n . 

' Fhil. Maß. Sep. 1880, p. 167. 
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Linked Vortices. 

320. The subject of linked vortices has been elaborately 
discussed by Prof. J. J. Thomson in Part I I I . of his Motion of 

Vortex Rings, to which the reader must be referred for complete 
information on the subject. In the present section we shall 
confine ourselves to the discussion of the simple case of two 
vortices of equal strengths. 

We have shown in § 291, that when two rectilinear vortices 
are situated at a distance from one another which is large 
in comparison with the linear dimensions of the cross sections 
of either, their cross sections will retain an approximately 
circular form ; and the vortices will revolve about their common 
centre of inertia with angular velocity (m + rn)/Vda, where 
m, m are the strengths of the vortices and d is the shortest 
distance between them. Hence if the motion is steady the angular 
velocity must be approximately constant, and therefore d must be 
constant. 

If we consider two linked vortices whose shortest distance is 
small in comparison with the radii of their apertures, but large in 
comparison with the linear dimensions of the cross sections of 
either of them, the action of one vortex upon the other so far as it 
affects the form of the cross section of the other, will be approxim­
ately the same as that of two rectilinear vortices. Hence in order 
that the cross sections of the two linked vortices may retain an 
approximately circular form, we must suppose them linked in such 
a manner that the above conditions are satisfied. When the 
vortices are of equal strengths, this may be effected by supposing 
them wound round an anchor ring, the radius of whose cross 
section is small compared with the radius of its aperture, in such a 
manner that there are always portions of the two vortices at 
opposite extremities of a diameter of the cross section of the 
anchor ring. If we wind a piece of string n times round a curtain 
ring, and tie the ends together; and then wind auother piece of 
string n times round the ring in the same direction as the first, so 
that the shortest distance between every point on one of the strings 
from the other string is a diameter of the cross section of the ring, 
and tie the ends of the latter together; we shall have an exact 
representation of the manner of linking. 
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It is also evident that the number of windings must not exceed 
a certain number which depends on the dimensions of the cross 
sections of the vortices and the anchor ring, and also upon the 
radius of the latter, otherwise the shortest distance might not be 
the diameter of the cross section of the ring. Moreover one or 
more vortices twisted round an anchor ring a great number of 
times would approximate to a vortex sheet, and the motion would 
be unstable. 

321. We shall now consider the small oscillations of two 
equal vortices wound r times round an anchor ring. 

Let the equations of the two vortices when undisturbed, be 

•sr = a + §ci cos rd, z = ? + \d cos rd, 

ra' = a — I d cos rd, z = ? — ^d cos rd, 

and let these equations when the vortices are disturbed, be 

•nr = a + £crt( cos nd, z = ? + X y n cos nd, 

ra' = a + Xa'n cos nd, z = } + £ 7 ' , , cos nd. 

Also let A n , Sn be the quantities denoted by these letters in 
§316, due to the action of the first vortex upon itself; and let A ' n , 
S'n be the values of these quantities, due to the action of the first 
vortex on the second. 

From (18) it follows that the velocity in the direction of the 
radius due to the first vortex at a point on the second vortex, 
consists of a series of terms of the type 

\ma [S\j'n + | 7 „ {{n - 1) S ' n + l - (71 + 1) S'^}] cos nd.. .(45). 

The value of S'n is given by (40) in terms of x ; in the present 
case x is approximately equal to d?¡2a?, where d is the diameter of 
the cross section of the anchor ring on which the vortices lie and 
which is therefore a small quantity. Also if we suppose that n is 
not sufficiently large for / ( ' « ) to be comparable with log 8a/d, 
it follows that if the largest terms only are retained, the above 
expression for the velocity 

= m f ^ W ) " 1 [(4a7d 2 - 1 log 8a/d) 7 ' „ 

- [4a*/d* + 2 (n' - f) log 8a/d\ 7 J cos nd.. .(46). 

From (43) and (44) it follows that the velocity along the radius 
vector due to the action of the second vortex upon itself 

= - mn* ( 2 7 r a 2 ) - ' y \ cos nd log 8a/e (47). 
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Since we suppose that e is small compared with an, it follows 
from (15) that the velocity of the second vortex along the radius 
vector is approximately equal to ancosnd, whence equating these 
values of the radial velocity we ohtain 

d'n = m [(4a !/cf - * log 8a/d - 2n2 log Safe) y'n 

- {4a2"id2 + 2 (nv - f ) log8a/d] yJ /47Ta 2 . . . (48) . 

From (12) it follows that the portion of the velocity parallel to 
z of the second vortex, which is due to the first is, 

w = \ m \2A\ac2 — awA\ 

+ { 2 S > + \ a [(n - 1) S'n_t - (n + 1) S'nJ] am cos nff] 

+ \ma* ~ [S'n - \ (S ' „ + 1 + S'n_t)} an cos nB. 

Now at the second vortex 

2A\a' - wmA\ = a2 (2S'0 - S\) - S\az'n cos nB 

+ a* ^ L ( 2 S ' Q - S \ ) a'„ cosnB, 

(LUT 

also 2S\ - S\ = (log 8a/d - 1 ) ( W , 

and d (2S'„ - S'j/dn = - f ^ 1 a* log 8a/d, 

retaining the most important term only; whence the value of w 
approximately is, 
w = m (log 8a/d — l ) / 2 7 r a 

- m ( 4 7 r a 2 ) " 1 [ ^ / d 2 + f log 8a/d) a'„ 

+ {4a7da + 2 ( n a r- I) log 8 a / d ] a J cos nB. 

By (41) and (44) the velocity parallel to z of the second vortex 
due to itself is 

m (log 8a/e — l)/2ira + m ( 2 7 r a 2 ; - 1 ( « ' — 1) a n cos nB log 8a/e. 

The resultant velocity parallel to z of the second vortex is the 
sum of these two expressions ; but by (21) this velocity is also 
equal to 

j + y'n cos nB, 

whence equating coefficients in these two expressions, we obtain 

) = m (log BlaVde — 2)/2?ra, 

7« = [2 {2aVd a+ (n2 - J) log 8a/d] an 

- {4o7d ! + | log 8a/d - 2 (M* - 1) log 8a/e] a 'J /47m a . . .(49). 
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7 ' , - 7 . = - 2 4 / * + M)'1 S I N + E ) J ( 5 0 ) ' 

W H E R E 

fJ = (L + H) ( P + Q ) 

= ( m / M ) 2 [8a2/d2 + (2n2 - 3 ) L O G 8 A / D - 2?I 2 L O G 8 A / E } 

X { 8 A 2 / < F + ( 2 N 2 + 1 ) L O G 8ajd - 2 (n2 - 1 ) L O G Safe].. . ( 5 1 ) . 

A G A I N , 

+ A . = - M) (?'. + 7„), Jn + jm = - ( P - Q ) ( 7 ; + 7 J , 

W H E N C E 

<*'„-F A N = 2B cos (vt -F e ) 

7 - + 7 „ = - 2 ^ ( £ - ^ ) " ' S I N ("t + e ' ) ) ( f > 2 ) ' 

W H E R E 

v 2 = ( L - M ) ( P - Q ) 

= ( M / 2 7 R A 2 ) 2 ( L O G G4>a2/de)2n2 (n2 - 1 ) . 

T H E R E F O R E 

v = m {2Tra2)'1 n ( n 2 - 1 ) * L O G 6 4 A 2 / D E ( 5 3 ) 

= n (n2 - 1 ) * Vja 

N E A R L Y I F V B E T H E V E L O C I T Y OF T R A N S L A T I O N OF T H E V O R T E X ; W E T H E R E ­

FORE FINALLY O B T A I N 

a n — A COS (pt + e) + B COS (vt + e') 

a n = — A COS (jjbt + e ) 4- B COS (vt 4- e') | 

7 ' , = - An (L + A l p S I N (fit + e ) - B v ( L - M ) " S I N ( v t + e ) j - • • v 5 * ) -

7 n = A p . ( L + M)~i S I N (/X£ 4- E ) —Bv(L — M)~l S I N (K£ + e')) 

3 2 2 . L E T 

L = m (4a2/d2 - F L O G 8a/d - 2n* L O G 8 A / E ) / 4 7 7 - A B , 

M = m \2a2jd2 + (n2 - %) L O G Ha/dj^-rrd2, 

P = m [ia'/d* + F L O G 8a/d - 2 (n2 - 1 ) LOG 8 A / E ] / 4 7 R A 2 , 

Q = m {2a2jd2 + (n2 - £ ) L O G 8 A / D } / 2 7 R A 2 , 

A N D W E O B T A I N FROM ( 4 8 ) A N D ( 4 9 ) 

« » = V « - ^ 7 - 7 - = < 2 3 N - - P « ' » -

S I M I L A R L Y I T C A N B E S H O W N T H A T 

D » = I 7 « - ^ 7 N . 7 „ = ^ ' » - - P F F „ , 

W H E N C E 

a' - «„ = (Z, + I F ] ( 7 ' « - 7 „ ) , 7 - - 7 » = - ( - P + Q) (« ' . - O > 

THEREFORE 

a' — a„ = 2^4 C O S (/*£ + E ) 
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Equations (51) and (53) show that p . and v are both real, and 
therefore the steady motion we have been considering is both 
possible and stable; also p is much greater than v, and therefore 
the motion consists of a quick vibration whose period is 2 T T / / X and 
a slow vibration whose period is 2TT/V. 

323. In the problem we have been considering, we have 
supposed the vortices wound r times round an anchor ring, and 
that the equation of its projection on the plane of the ring during 
the disturbed motion is 

•sr = a + ~S,yn cos nB. 

Of the terms an, the quantity ar is the most important, since its 
maximum value is \d; the other terms denote small sinuosities 
and are very much less than ar. Now (54) shows that if any of 
the quantities orn... are initially zero, and the vortex suffers no 
external disturbance, they will remain zero throughout the motion, 
and the motion of the vortex will be given by (54), r being written 
for r i ; also if the rings are initially placed so that 

we see from (52) that B = D = 0, and therefore the slow vibrations 
will not be excited unless the ring suffers some external disturb­
ance. 

324. The preceding investigation shows that two vortices of 
equal strengths linked round an anchor ring in the manner described 
in § 320 are stable; Prof. Thomson has also shown that two linked 
vortices may be stable when their strengths are unequal, but the 
manner of linking is not the same in the two cases. 

When the vortices are of unequal strengths m, m' they must 
be linked in the following manner1: 

" Describe an anchor ring whose mean radius of aperture is a, 
and the radius of whose transverse section is m'dj(m + m') ; then 
the central line of vortex core of the vortex of strength m will 
always lie on the surface of this anchor ring. Describe another 
anchor ring with the same circular axis, and the same radius of 
aperture as the first, but with a transverse section of radius 
mdj(m + m) ; then the central line of vortex core of the vortex ring, 
whose strength is m, will always lie on the surface of this anchor 

1 Motion of Vortex Kings, p. 88. 
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ring; and will be so situated with respect to the first vortex ring 
that if we take a transverse section of the anchor ring, and if G be 
the common centre of the two circular sections, P and Q the points 
where the central lines of the vortex rings cut the plane of section, 
then P, C, Q will be in one straight line and C will be between P 
and Q. If we imagine the circular axis of the anchor rings to 
move forward with a certain velocity V, and the circular axes of 
the vortex rings to rotate round it with a certain angular velocity 
which depends upon their strengths and dimensions, we shall get a 
complete representation of the motion." 

325. A similar method might be employed to investigate the 
steady motion of a number of linked vortices, but if the number of 
vortices exceed a certain limit the steady motion will be unstable. 
For if we suppose for simplicity that the vortices are of equal 
strengths, and are linked round an anchor ring, the system will 
approximate to a vortex sheet if the number of vortices be large ; 
and since the cross section of the anchor ring is small compared with 
the radius of its aperture, such a vortex sheet may be approxim­
ately regarded as a cylindrical vortex sheet, and we have shown in 
the previous chapter that such a vortex sheet is unstable. For 
the purpose of investigating this question, Prof. Thomson has 
examined the stability of a number of rectilinear vortices of equal 
strengths arranged at equal distances round the circumference of a 
circle, and he finds that the steady motion of six or any less 
number of vortices is stable, but that seven vortices are unstable ; 
whence it is inferred that if less than seven vortices are linked 
round an anchor ring so as to cut any cross section in the angular 
points of a regular polygon, the system is stable, but if there are 
more than six vortices the system is unstable1. 

Vortex Rings of Finite Section3. 

32G. In the preceding investigations we have regarded the 
cross section of the ring as indefinitely small, and have taken no 
account of what goes on inside the ring; we shall now suppose 
that the cross section though small in comparison with the 
aperture of the ring is finite, and we shall investigate the motion 
of the rotationally moving liquid of which the ring is composed. 

1 For the motion of vortices in a gas, see Chree, Mess. Math. vol. xvn. p. 105. 
2 Hicks, Phil. Trans. 1884 and 1885. 
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For the sake of greater generality we shall suppose that the 
liquid constituting the ring is of different density from the liquid 
surrounding it, and that in the surrounding liquid there is a 
circulation additional to that produced by the filaments of which 
the ring is composed ; but it will be assumed that the pressure at 
a distance from the ring is sufficient to prevent the formation, of 
a hollow, and the conditions for this will be found. 

Let p be the density of the outside liquid, p its circulation ; ti­
the density of the liquid constituting the ring, / / the circulation 
due to it. 

Outside the ring, Stokes' current function satisfies the equation 

op, apr L_pr = Q 
dz dss -as d-as 

Inside the ring, TJ/- satisfies the equation 

, -VT -rnr = 2">O T (56). 
dz din TS dzs 

In order to obtain the solutions of these equations in a suitable 
form, it will be necessary to employ the toroidal functions whose 
properties have been discussed in Chapter XII., and we shall begin 
by considering the steady motion of the ring. 

By § 79 the vorticity at any point of the ring is proportional to 
OJ/HT ; hence by (33) of § 38 when the motion is steady the vorticity 
is a function of the current function. Now before it is possible to 
discuss the properties of any vortex ring it is necessary to know 
its vorticity, and we shall suppose in the present investigation 
that the vorticity is constant. This requires that to/in- = const. = \M, 

whence (56) becomes 

dtf dsr -a dzs ' 

We may also suppose that the ring is at rest, provided we 
impress upon the whole liquid a translatory velocity equal and 
opposite to the velocity V of the ring; whence the proper solutions 
of (55) and (57) may be respectively written, 

* = - i7«r» + (26)"* (G + c)" } S0" i A cos nf... (58), 
and 

V = l i f e 1 + (2&5)-4 (G + cr* K BJ* ( W * c o s n% (59)· 

If the ring contained a hollow space, it would be necessary to 
15. II. 6 
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include terms of the form D„Rn (b/k)n+i cos nf in the expression for 
tfr'; but as we suppose that the pressure is sufficient to prevent 
the formation of a hollow, cannot contain any terms of this 
form. 

327. We are not at liberty to assume that the cross section of 
the ring is an exact circle in steady motion ; but when the cross 
section is small compared with the aperture, it can be represented 
by an equation of the form 

k = b (1 + J81 cos f + 0, cos 2? 4- ) (GO), 
where 6 is a small quantity and J3n is another small quantity of the 
order b" ; and our object will be to obtain an approximate solution 
of the problem upon this assumption, which as we shall presently 
see is justified by the result. We shall make the further 
assumption, which is also justified by the result, that A n and Bn 

are each quantities of the order b " ; and for a first approximation 
we shall retain quantities of the first order in calculating which 
will render it unnecessary to carry the approximation farther than 
the term involving cos f; but in calculating \jr it will be necessary 
to carry the approximation as far as cos 2£, and to include in the 
coefficients of these terms quantities of the third order. 

328. Putting C = cosh v, S = sinh 17, c = cos we have shown 
that 

J = ( C + «) /« , •n = aS/(C + c) (61), 

also by § 280 if p and q are the velocities perpendicular to the 
surfaces 7 / and f measured in the directions shown in the figure 
of that section, 

p = JST~' d^r/dg, q = JHT~1 d^/'dv (62). 

Since fi' is the circulation due to the ring 
fi' = 2ffad<r = ilf/JW^ dydg, 

= Ma" IJ(G + Cys Sdvd£, 

= - l M a l j " (C + c)"d£, 

= - 4.¥vras62 (63), 

terms of the fourth order being omitted. Also since fi is the 
circulation outside the ring, it follows from (70) of § 281, writing 
A bn2~h for A , that 

l> = - TTOT' (A, - A f i + Afi' - ) (64). 
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329. We are now in a position to calculate From (61) 
wc obtain 

TO8 = a' (1 - fc8)8/(l +k*+ 2k cos f ) , 
= a' (1 - 4/c cos f + 2/f (1 + 3 cos 2£) - } . . . (65). 

Also 

( C + c ) ~ * = ( 2 A ) * / ( l + k * + 2k c o s ^f, 

= ( 2 k ) i [1 + { k ' ~ { k + p 3)cos£+t£ !cos2£-}...(66), 

in which we have retained quantities of the third order in the 
coefficient of cos f, as they will hereafter be required. Whence to 
the first order 

f = - J Va! (1 - 4fc cos f) + (1 - jfc cos f) { J4 0fl 0+^ 1.R 1(&/fc)cosf ](G7). 

The value of -i/r must be constant at the surface, if therefore we 
substitute for k its value from (60), the coefficient of cos f must 
vanish. Now by § 283 

R a = - k ( L - 2 ) - y < > { L + l ) \ 
.(68). 

Therefore dRjdk = (2k)'1 - J A (L 4- £ ) | 

diJ1/dfc = - | f c ( Z - l ) I 

Therefore at the surface 

^ = - ±Va'(l - 46 cos ?) + (1 - 6 cos £•) 

x { - ^ 0 ( i - 2) + ^ „ ¿ 3 , cos f + M , cos f ] . 

Equating the coefficient of cos f to zero, we obtain 

2 Fa 2 + ±At [L - 2 + BJb) + ±AJb = 0 (69a), 

which shows that A , is of the first order; therefore from (64) 

A ^ - f i a / r r (70), 

A l = fiir'1 ab ( L - 2 + BJb) - 4 Va'b (71). 

330. The calculation of i/r' is more difficult, since we must 
retain terms of the third order. Let Q = — p!aj\ir, then by (63), 
M — Q/a462, and the value of yjr becomes 

= Qin*/'8a* + (26) ~* (G + c ) - i 2°0 B J n (fc/6)"" 1 cos/if. . . (72). 

Now TO-4 = a4 {1 + 12Ais - 8 (k + Qk3) cos f + 20A* cos 2f), 
also by § 283 

T0 = I + W, r1 = i ( i - 4 * ' ) ) r , = v ( i - i n 
omitting A4. 
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Therefore by (66) 

(2b)-\0 + c ) - * B„Ta (&/*)* = Ba (1 + ^A2 — (A-f- |A 3 ) cos£ + |A 2 cos 2£} 

x (1 + \k2) 

=2?0 [1 + £A2 - (A + |A 3) cos f + f A2 cos 2f}, 

(26)" 1 (C + c ) _ i 2 ? t r , (A/6)1 = f B1 (1 + iA' — A cos ? + \ k 2 cos 2£) 
x (A/6) ( l - i A 5 ) c o s ? , 

= ~ 1 A UA-(l+^A 2 )cos?+|Acos2?}A/6. 
(26 ) _ i (0 + cyh BTT„ (A/6)5= J £ 2?, (1 - A cos f) (A/6)a cos 2?, 

= - J £ 2?2 (£A cos f - cos 2?) (A/6)2. 
Collecting the terms and putting for brevity 

G = Q + B 0 - 3BjZb, H = 15BJ4b2 - BBJ2b + |Z?0 + 5Q, 

we obtain 

= iQ + 3 , + ( Q + iG) *" - {G-k + (\H+ iff + | Q ) A3] cos f 
+ £Z7A2 cos 2?. (73). 

In order to obtain the surface value of -^r, we must substitute 
the value of A from (60) in (73). 

The first two terms 
= iQ + Ba + b2 (Q + ±Q) (1 + 2/3, cos £). 

The next term 
= _ {(76 + 6a ( f f f + \G + f Q) + iGb/3,} cos f - J £6/3, (1 + cos 2?). 

The last term 
= ^Eft8 (cos 2 | + (Ql cos £). 

Adding and equating the coefficients of cos ? and cos 2? to zero, 
we obtain 

- G b - (\H+ {G + |Q) 6s - ±Gb32 + i l i b 1 ^ + (2Q + G)6 2/3 1-0.. .(74), 

and - lGb8l + \Kb2 = 0 (75). 

From (74) it follows that to the lowest order 
G = 0, 

whence from (75) H— 0. 

From these equations it appears that G and H are quantities 
of the fourth order at least. 

Substituting in (73) we obtain 

= IQ + -B0 + QA* - 1QA3 cos f (76). 

This is the approximate value of T// inside the ring to the first 
order of small quantities. 
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S T E A D Y M O T I O N . 85 

331. We can now determine the value of /9,. Since the 
normal velocity must be zero at the surface of the ring, the 
boundary condition is 

dF dF n 

dj = 0 -

which by (62) becomes 

dj/dF _ d ± d F _ Q 

dk dÇ D F dk 

where F = b ( l + @ l cos f ) - k = 0. 

Therefore 

(4Qfc - 27 Qk* cos £) 6/3, sin f - 9 O/c3 sin f = 0, 

whence to the lowest order 

A = 2 * ( " ) · 

332. We must now calculate the pressure. Inside the ring 
the equations of steady motion are 

cr dz dz i dz 

* F 4 - ^ + 2 ^ = 0, 
cr dz? dsr 

where q is the resultant velocity, whence remembering that 
•GSU -= — dty'/dz, •snu = d^r'jdrs, 2 u = Mrs-, we obtain 

P 7 « r = E - \ q 2 + M-p (78), 

where E is a constant. Outside the ring the pressure is determined 
by the equation 

P = n - i P l \ 

where II is the pressure at infinity. Now 

_ cra
 \[dk) + k2 \d^j J"' 

and «7&/IJT = (1 4- 4& cos £)/2a2, 

approximately; also from (76) 
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= i - , K / 2 6 + {4 TV + A t (L - \)) cos £], 

by (71)· 
Therefore 

5 s
 = ^ I W + [4 Va* + A 0 ( L - *)} cos £], 

hence £ = " - ~ b i ftA. + 6 [47a' + A 0 {L - J)} cos f ] . . . (80). 

Since the pressure must be the same on either side of the 
surface of separation, we obtain by equating the values of p , p 
given by (79) and (80), 

P + QV/2a'6 a = FT - Afa'Ma'b* (81), 
Q>(.23Jb- $ a = - \ A # {4Va* + AQ(L — $)] (82). 

Putting for Q and A a their values, these become 

< 8 3 > 

in which we have neglected terms of the first order, since they are 
small in comparison with b~l. For the same reason k~l d^rjd^ may 
be neglected, whence (78) becomes 

i = E ~ Sv ( 2 A ~ ^ c o s & + B J Q + k ' ~ ^ c o s R -

The velocity evidently vanishes when k — 0, whence if P be the 
pressure along the critical circle 

whence at the surface (omitting terms of zero order), 

a = ^ + 2% [ l + ( 2 / 3 > - W c o s f 1 ( 7 9 ) " 

From (67) we obtain 

2 = (2 Va' - A0R0) cos £ + (1 - k cos f) (4 0 /2£ - 4,6/2^·. cos £). 

Therefore at the surface 
Jk dyfr 
TO1 ( t t 

= g^i + « cos £) [J 0/26 + {27a a + l A 0 ( L - 3 ) 
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333. Equation (83) determines the pressure along the critical 
circle, hence it follows that in order that there should be no 
hollow, P must never become negative ; this requires that 

N - » > * ^ < 8 5 > -

If therefore the pressure at infinity is slightly less than the 
above quantity, a hollow will begin to form about the critical 
circle. 

The velocity of translation of the ring is determined by (84). 
Let e be the radius of the circle which approximates most nearly 
to the cross section of the ring, then 

e = a cosech n = 2 a b , 

therefore L = log 4/6 = log 8 a / e 

and there are three cases to be considered. 

(i) Let ft = fx , p = o-, 7n = 4M- where m is the strength of the 
vortex ; then substituting the value of B1 from (77), (84) becomes 

V = 2

r ^ ( l o g S a l e - I ) (86), 

which gives the velocity of translation of a ring of the same 
density as the liquid, when there is no additional circulation. 

This expression does not agree with that obtained fur the 
velocity in (5) and (41), but it must be recollected that since e is 
small compared with a, log 8aje is large compared with \ , and 
therefore the difference between the two expressions is small. 
The present procedure, although more complicated, gives a 
perfectly accurate result to the order of approximation adopted, 
and the next term in the value of V is of the first order of small 
quantities. 

(ii) Let there be a ring-shaped hollow round which circula­
tion takes place. 

The conditions for the existence of such a hollow are that p 
should be zero at the surface, and also that p ' = a = 0 ; hence from 
(83) and (84) or directly from (80) we obtain 

7 = 2 ^ ( L O G 8 A / . - L ) L , 8 N 

I I = p'pfàa'V ' 
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(iii) It is also possible to have a ring-shaped mass of liquid 
relatively at rest, surrounded by liquid in a state of cyclic irrota-
tional motion. In this case the surface of separation 'will be a 
surface of discontinuity along which slipping takes place, which 
possesses the properties of a vortex sheet. The condition for this is 
that fi = 0 , whence the liquid constituting the ring is relatively at 
rest, and it moves forward like a rigid body with a velocity V 
which is given by (87). In order that the liquid should be 
continuous at the surface of separation, it is necessary that 

IT = or > ,x2p/32aV. 

It can be proved that in cases (ii) and (iii) the value of /3, is of 
the second order of small quantities, see Appendix. 

Fluted Vibrations of a Vortex Ring. 

334. We have shown in § 319, that a vortex of small cross 
section is stable with respect to a deformation of its central line ; 
we shall now investigate the effect of a deformation of its cross 
section, such that the disturbance consists of trains of waves whose 
crests are circles which are parallel to the critical circle. These 
vibrations may be called fluted vibrations. 

Instead of adopting a procedure analogous to that employed in 
§ 288 for investigating the corresponding vibrations of a rectilinear 
vortex, it will be more convenient to use complex quantities and 
throw away the imaginary part1; we shall therefore suppose that 
the cross section of the ring at time t is represented by an 
equation of the form 

k = b + b 2 B / n * + M (88). 

In the beginning of the disturbed motion the /3's will be small 
compared with 6, except /3, whose mean value we have already 
shown to be equal to '{b ; we may therefore in considering the 
variations of B „ regard the cross section of the ring as an exact 
circle in steady motion; but the value of /3, thus obtained can 
only be regarded as a first approximation, and a more accurate 
result would be obtained by going to a second approximation. 

1 The employment of complex quantities was suggested to me by Mr A. E. 
I I . L O Y C . 
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We shall not however consider in detail this latter point1, but 
proceed at once to determine the value of Bn on the supposition 
that the cross section is an exact circle in steady motion. 

335. Dropping the suffix n , (88) so far as Bn is concerned may 
be written 

k = b + b @ e i n ( + M (89), 

also let the current function due to the disturbed motion be 

X = (26)"* (C + c ) _ * A R n (bjk)n+i e ^ + M 

outside, and 
X = (2b (G + c)"* BTn (k/b)** e H + M 

inside. The coefficients A and B will be small complex constants 
of the order B ; also by (66), (G + c ) _ i = ( 2 k f approximately; also 
since Rn, Tn are respectively multiplied by small quantities they 
may approximately be regarded as constants; we may therefore write 

X = A ( b [ k ) n e i n 4 + M (90), 

XI = B (kjbf e t % t + M (91). 

336. If p and q are the velocities perpendicular to the 
surfaces r) and f measured in the directions shown in the figure 
to § 280, the boundary condition is 

dF Tf dF dF\ n 

Since J 1 = 2ak, we obtain from (89) 

ib [2ab\p + qnB) z n i * M - p k = 0 (92). 

Outside the ring 

Since q is multiplied by a small quantity, the term dx/dr) may 
be neglected; also from (67) the principal term in (2a1k)'i dtyjdr) 

is pjinrak, which at the surface of the ring is approximately equal 
to U the tangential velocity just outside the ring in steady motion; 
we may therefore in the small terms put q = U. Also 

* = 2 - k a ? ( * + x>-
1 A similar question arises in connection with linked vortices, which Prof. J. J. 

Thomson has investigated by carrying the approximation to the second order. 
This would be very laborious in the present case. 
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Now ^aT^k'1 d\fr/d!; is very nearly equal to the normal velocity 
of the ring in steady motion, and may therefore be neglected (since 
the ring is supposed to be at rest in consequence of its velocity of 
translation having been reversed) ; we may therefore put 

pk 
_ l ^ d x _ A tn 

2a' dg 2a* 
whence (92) becomes 

A = 2a?bB (U + 2ab\/n) (93). 

If IT be the tangential velocity just inside the ring, it can be 
shown in the same manner that 

B = 2a2bft (IT + 2abX/n) (94). 

337. We must in the next place determine the velocity 
potential due to the disturbed motion. 

Since the disturbed motion is irrotational and acyclic, its 
velocity potential at any point P is equal to the flow along any 
path joining P with the origin. Let this path be the curve f = 0 
from 77 = 0 to 7j = 77, and the curve 77 = 1; from f = 0 to ? — g . 
Then 

</> = - r j - 1 p d n + J J-*qdZ 
J 0 Jo 

. in - d%Jt=0

dv + } 0 m dn 

Substituting the value of ^ from (90), we obtain 

\w d f /£ = 0 a sinh 77 
= A ma-1 (b/k)n ( l + 2 k + ...) e M , 

whence keeping only the largest terms we obtain, since k is sraal 

- (" J-'pdr) = - A m 1 (b/k)" e M . 
* 0 

Also 

J ' 1 qd£ = A na'1 (b/k)" I * e L n ( + M d£ 

= - Aia* (b/k)" e L n l + i K t + Aiar1 (b/k)" «='", 

whence <f> = - A i a ' 1 (b/k)" e n i + l H (95). 
Similarly it can be shown that 

4>' = B i a

l (Jb/6)" e

i n t + M (96). 
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cr ' \ dk V K j 2d' dk) ^ I<L K dk 

But M = — /i'/47ra36*, also from (76) U' = p!k\^iral?, therefore 

d U'jdk = U'jk, Ma1 = - U'jk; 

also V" = - ld~* dyidk, 

whence omitting the exponential factor 

hp'J a = -<p'+ U'hkjk + \ War* dx'/dk - lTx'/ka* 

= B\ja + IT2P + n UBjMb - U'Bjarb 

= [ f7'2 + ( I T + 2ab\jn) {2ab\ + (n - 2) W}]. 

Putting U'j2ab = v, this becomes 

nhp'j2aba = 0 , {\* + 2 (n - 1) Xv + n (n - 1) «"} (98). 

338. Putting for a moment k = 6 + hk, the pressure outside 
the ring is determined by the equation 

- = const. — d> — $- ( U + ^,rSA + — ^ \ + terms of 2nd order. 
p \ dk dvj 

Hence if hp, hp be the increments of the pressure p due to 
the disturbed motion just outside and just inside the vortex, 

p ^ \dk 2a dk. 

Now from (67) it follows that to a first approximation 

TJ — p/iirak, 

therefore dlJ.dk = —U!k, 

whence dropping the' exponential factor 

hp/p = - A \ j a + f/*/9 - n UAjZa'b. 

Substituting the value of A from (93) we obtain 

Bplp = 0 { U 2 - n ( U + 2a6\/ft) 2}; 

if therefore we write /34 and w for 2a5/9 and Uj2ab respectively, 
we shall obtain 

iiSp/2abp = -/31{X*+2Xnw + n ( n - l ) w2} (97). 

Just inside the vortex the pressure p is 

^ c „ o s ^ f - i ^ + ^ a ^ | ' y + . « ( + - + f a + v ) . 

whence 
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Since Bp = Bp', we obtain 
p { \ 2 + 2n\w + n ( n - 1) w2} + a [\ 2 + 2 (n - l ) \ v + n (n - 1) v*} = 0, 
or writing f for cr /p this becomes 

(1 + / ) + +f(n - l ) v } + n ( n - l ) (wa +/u 2 ) = 0.. .(99). 

In order that the steady motion should be stable it is necessary 
that both roots of this quadratic should be real. 

Referring to § 288 it appears that the period equation (99) is 
exactly the same as equation (21) of that section with the sign of 
A, changed. This however does not affect the question of stability ; 
hence the conditions of stability are the same in both cases, as 
might have been expected, since a circular vortex whose cross 
section is small compared with its aperture, approximates to a 
rectilinear vortex. It therefore follows that if there is slipping at 
the surface of the ring, the steady motion must be unstable. 

339. We have shown in § 332 that if the pressure at a great 
distance from the vortex is less than (/j^p + //V)/32a 2/j 2 a hollow 
space must exist within the ring; and that if this pressure is just 
below this critical value, the hollow must begin to form at the 
critical circle. The steady motion of a ring in which such a hollow 
exists, when there is an additional circulation inside the ring, 
which is always possible when a hollow exists, has been considered 
by Mr Hicks, and one curious point connected with the investiga­
tion is, that it seems probable that under certain circumstances 
the hollow might slip out of the ring, so that two rings might be 
formed, one of which consists of a hollow with circulation round it, 
and the other consists of a rotational core with no additional 
circulation; but until the subject has been more fully investigated, 
it cannot be asserted that this state of things could actually take 
place. 

In Mr Hicks' investigation from which the foregoing articles 
are taken, the more general problem of the fluted vibrations of a 
vortex when there is a hollow and an additional internal circula­
tion is considered. It should however be noticed that his period 
equations (63) and (65) 1 do not agree with equation (99) of § 338. 
Unless therefore some error exists in the analysis of §§ 334—338, 
his results upon this portion of the subject cannot be regarded as 
altogether free from doubt. 

i Phil. Trans. 1H85. 
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340. When a hollow exists in the ring, it is possible for it to 
pulsate as well as to vibrate. The question of pulsations has also 
been considered by Mr Hicks. 

EXAMPLES. 

1. Prove that effect of a circular vortex at a great distance 
from itself, is approximately the same as that of a doublet of 
strength \mcl, where m is the strength of the vortex, and c is its 
radius. 

2. The motion of an incompressible fluid in a spherical vessel 
at any instant, is such that each spherical stratum rotates like a 
rigid shell, the rectangular components of its velocity being â , &>2, 
« 3 , these quantities varying from stratum to stratum; show that 
if each element of fluid is attracted towards the centre with a 
force whose intensity per unit of mass is 

. , / dm, da>„ da>\ dV 

+ a j , + »,*) {* + V + ' J +
 dr ' 

where V is any function of the coordinates, the motion of the fluid 
will be steady; and find the pressure at any point. 

3. If p 1 be the period of the quick vibrations when two 
vortices of equal strengths are linked once through each other, and 

p t when they are linked twice through one another; show that 1 _ 1 _ _ 6 _ H 
PI pt~-n*d" 

and prove also that the period of the vibrations gets longer, as 
the complexity of linking increases. 

4. Prove that the current function due to a fine circular 
vortex of radius c and strength m, may be expressed in the form 

mva ( E***-*> J% ( W ) JT ( X c ) d\, 

the upper or lower sign being taken according as z — z ' is negative 
or positive. 
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5. A closed vessel bounded by two coaxial circular cylinders 
of radii a and b respectively and of lengths 2h, with plane ends 
perpendicular to the axis, is filled with liquid in rotational motion, 
the vorticity being uniform, and the planes of the vortex filaments 
parallel to the axis. Show that when the motion is steady, the 
current function is of the form 

f = ? - « 0 - 6') - CrtL, 1^*? - f ^ l ^ , 
T * " " \J,(na) K,(na) \ cos nh 

here thi 
equation 
where the summation extends to all values of n given by the 

1, [no) K t (nb) = I v (nb) Kx (no). 

6. If ©, ©' are the velocities of the liquid surrounding a thin 
circular vortex ring of strength m, at two points in the plane of 
the ring each of which is the inverse of the other with respect to 
the radius of the ring, and whose distances from the centre of the 
ring are R, R\ where R > R'; prove that 
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C H A P T E R X V . 

O N T H E M O T I O N O F A L I Q U I D E L L I P S O I D U N D E R T H E 

I N F L U E N C E O F I T S O W N A T T R A C T I O N . 

341. I N the year 1738 the Academy of Sciences at Paris 
offered a prize for an essay on the subject of the theory of the 
tides. The authors of four essays received prizes, viz. Haclaurin, 
Euler, Daniel Bernoulli and Cavalleri. The essay of Maclaurin is 
chiefly of importance, owing to his having proved that when a 
mass of liquid is rotating as a rigid body about a fixed axis under 
the influence of its own attraction, a possible form of the free 
surface is a planetary ellipsoid, whose polar axis coincides with the 
axis of rotation. In 1834 Jacobi discovered that under the same 
conditions, another possible form of the free surface is an ellipsoid 
with three unequal axes, whose least axis coincides with the axis 
of rotation. The researches of Dirichlet, Dedekind and Riemann 
have shown, that the ellipsoidal form is a possible form of the free 
surface, when the liquid does not rotate as a rigid body. The 
discussion of these different ellipsoids forms the subject of the 
present chapter. 

342. We shall commence by obtaining the general equations 
of motion of a mass of liquid, which rotates about its centre of 
inertia under the influence of its own attraction, in such a manner 
that its free surface always remains an ellipsoid with variable 
axes. The motion of the liquid is supposed to be rotational, 
but the molecular rotation is assumed to be independent of 
the positions of individual elements of liquid, and it will be 
shown that the consequence of this assumption is, that the com­
ponent velocities at any point of the liquid are linear functions 
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of the coordinates of that point. We shall first of all show 
that the particular kind of motion under consideration, may be 
generated from rest by means of the following three operations, 
which are supposed to take place instantaneously one after the 
other1. 

(i) Let an ellipsoidal case whose axes are a, b , c be filled with 
liquid and frozen, and then set in rotation with component angular 
velocities f, w, f about the principal axes. 

(ii) Let the liquid be melted, and let additional angular 
velocities i l 2 , I2a be impressed on the case. 

(iii) Let the case be removed, and by means of a suitable 
impulsive pressure applied to the free surface, let the axes be 
made to vary with velocities a, 6, c. 

343. Let x , y , z be the coordinates of an element of liquid 
referred to the principal axes; u, v, w the component velocities 
of the element parallel to the axes; U, V, W the component 
velocities relative to the axes ; and OJ1,O>3, toa the angular velocities 
of the axes about themselves. Then 

The kinematical condition to be satisfied at the free surface is 
olF T r d F T r d F wdF . + JJ + V ,-+ W-j- = 0 (1), 
dt dx dy dz 

where F = {xjaf 4- + (zjcf - 1 = 0 , 

and U = u + a>3y — ai2z, 
V=v + w^z — co3x, W = w 4- a>.js — <u,y. 

Equation (1) can be satisfied by assuming 

u = l1x + m^y 4- n^z, 

v = l2x + m2y + n2z, 

w = l 3 x + msy 4- n3z, 

where Z,, TO,, &c. are independent of a;, y and z . 

Substituting in (1) and equating coefficients of powers and 
products of x , y , z to zero, we obtain 

1 Grcenhill, Proc. Camb. Phil. Soc. vol . iv . p. i . 
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l ^ d / a , m, = &/&, ns = cjc, 

(ns + &),) c2 + (m s - w j 62 = 0, 

(J, + » , ) a2 + K - » , ) c 2 = 0, 

K + » , ) b * + ( * , - « , ) a 2 = 0 . 

But from the modo of generation £, rj, £ aro independent of x, 
y , z ; therefore 

Hence the nine coefficients are completely determined, and we 
finally obtain 

u = — + 
a 

W = 1-
c 

«„ ( a a - 6 2 ) - 2a 2f 
dl + b' 

» , ( & ' - e 1 ) - 26'f 
&' + c" 

" a ( c a - a a ) ~ 2o!77 

c" 4- o* 

a > 2 ( c 2 - a

2 ) + 2a27? 

V + — - i — 2 

a2 + 62 

a + 62 + c2 2 / 

These expressions obviously satisfy the equation of continuity, 
since on account of the constancy of volume 

a/a + b/b + c/c = 0. 

344. By § 23 (4) the general equations for the pressure 
referred to moving axes are 

1 dp _ du T T d u -n-du ^ d u n -p£-X+dt-W' +
 ^+Ute+VTY+WK=0"-M 

with two similar equations; and by eliminating the pressure and 
potential, the equations for molecular rotation will be found to be 

dp „ TTdP „ dp T i r dp ^ du du ^du . 

i - ^ + ^ + U £ + V i + W £ = t T x + 7 > d y + ! d z - - ^ 
with two similar equations. Substituting the values of u, v, w 
from (2) in (4) we shall obtain 

d , % dt \ <aj 

d (V 
dt u 
d 

dt U 

i + 6 " \bl c" + a2 2 W 

26c £\ 2ab n 

! „ F I . - + N F L . 
» + c 1 Ve/ a + b 3 

F U = 0 r 

© - ^ M D + F T ^ © H 
B . I I . 
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If A ;, A„, As are the component angular momenta about the 
axes 

h1 = pffj(wy - vz) dx dy dz, 

M 
h . = 

5 ( c a + a 2 ) 

M 

5 (a2 + W) 
l ( c 2 - a 2) 2 a>2 + 4cV»7] 

{(a5 - 6 - ) ' » , - f - 4 a - 6 - f } 

• ( C ) , 

where M is the mass of the liquid ; and the dynamical equations 
for rotation are 

dh. 

•(7). dt

l - + hw* = 0 

dh, 7 , _ 

If we now introduce the six now quantities u, v, w, u, v', w' 
employed by Riemann, such that 

U + U — ft), 

v + v =w„. 

U — U = y j \ , V — V = - = r, , W — W 
, _ 2 o W 2 , f •••(8), 

a'J + bv 
•(9). 

wo obtain 

%={(b+ cfu-(b-c)'u}l2bc, &c, & c 

A, = \M{(b + c) 2 u + ( b - c) 2 « } , &C, &C.'. 

Substituting these values of f, v, \ and A i ; hB, Aa in (5) and (7), 
and then multiplying (5) by \Mabc and adding to (7), we obtain 

( 6 + C ) 3«~ + 2 m ' Jt (& + c ) + ( & - c + 2 a ) W + ( b - c - 2 a ) y ' w = 0...(10). 

Similarly by subtracting, we obtain 

(b - c)~t + 2u^-t(b-c)-r {b + c - 2a) vw + (b+ c + 2a) v'w'= 0.. .(11). 

Four other equations can respectively be written down by 
symmetry, and we thus obtain six equations of motion, 
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345. 
follows. 

whe 

The three remaining equations can be obtained as 
The potential of the liquid at an internal point is 

V = \ (Ax2 + By2 + Cz2) - H, 

dX 
H-

f 

J 0 
/J(a2 + X)(b2 + X)(c2 + X)' 

A = 
2 d l l 

a da 

Now if in equations (3) we transpose the terms p'1 dp/dx — X 

&e., to the right-hand sides, and then substitute the values of the 
velocities given by (2), the left-hand side of each equation will be 
a linear function of x , y , z ; moreover if we multiply each equation 
by dx, dy, dz and add, the right hand side of the resulting equation 
will be a perfect differential, and therefore the left hand side must 
be so also. Hence (3) must be of the form 

1 dp 

p dx 

1 dp 

p dy 

+ Ax + ax + hy + gz = 0 

-t- By + hx + fiy +fz = 0 

0 

.(12). 

The last three terms of these equations are the component 
accelerations of an element of liquid parallel to the axes ; and since 
there are no external impressed forces, the moments of these 
accelerations about the coordinate axes must be zero, hence 

[(gx + f y J r y z ) y - (hx + &y +fz) z} =. 0, 

or f t m (y2 - z2) = 0, 

/ = O , 

; and (12) reduce to 

therefore 

similarly g — Q,h 

1 dp 

p dx 
+ (A + a) x = 0 

1 dp 

p dz 
+ (G + y)z = 0 

.(13), 

where a, ¡3, 7 are quantities which are independent of x , y , z , and 
which will hereafter be determined. 
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Integrating we obtain 

' pjp + U + i {(A + a)x2+(B+B) y2 + (G + 7) z2) = 0...(14). 

Since the external surface is the ellipsoid 
(* / 0 y + (y/6) , + ( a / c y = i J 

we must have 
(A + a)a2 = (B + 8) b2 = (G 4- 7) c2 = 2a (15), 

where cr is a function of the time. Hence (14) may be written 

+ ( 1 6 ) . 

In order that the external surface should be a free surface, it is 
necessary that ra- should vanish, and consequently a must never 
become negative. 

346. Returning to (13) we see that a is the coefficient of x in 
the expression for the component acceleration parallel to x of an 
element of liquid, and therefore 

a = It W a~ ^ - 6 ) w + + ) + — { ( c - o ) « - ( c + o ) « ' } , 

+ a 2 ~ —a— { ( a - b ) w - (a + b) w) + {(c - a) v + (c+a)v } , 

1 ^ - (a - b) w2 - (a + b) w12 - ( a - c) v2 - (a + c) v'2 j , 

whence by (15), 

( a _ c ) ^ _ ( a + c) v " - ( a - b ) w 2 - ( a + b ) w ' 2 = - - l l A a ( 1 7 ) . 
Ctt Oj 

Two other symmetrical equations can be obtained; hence, 
collecting our results, we have the following nine equations ; 

\ a - ( a - c ) v2 - ( a + c) v'2 - (a - b ) w2 — (a + b) w'2 = a/a - \Aa" 

\ b - ( b - a ) w * - (6 + a) w ' 2 - (b - c) u2 - ( 6 + c)u'2 = */b - \Bb 

£c - (c - b) u 2 - ( c + b) u * - ( c - a ) v 2 - ( c + a) u'2 = ajc - \Cc 

(b - c ) u + 2u (b — c) + (b + c - 2a) vw +(b + c + 2a) v'w =0 
(b + c)u + 2u' (b + c) + (6 - c + 2a) vw' + (b - c - 2a) v'w = 0 j-(18). 
(c - a) ii + 2v (c - d) + (c+a — 2b) wu + (c + a+ 2b)w'u'=0 

(c + a) v + 2v (c + d) + ( c - a + 2b) wu + (c - a - 2b) w'u=0 

(a - b) w + 2w (a - b) + (a + b - 2c) uv + (a + b + 2c) wV = 0 
(a + 6) w' + 2M/ (a + b) + (a - & + 2c) vv + (a - b - 2c) u'v=0 J 

abc = const. 
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These equations were first obtained by Riemann1; they furnish 
ten independent relations between the ten unknown quantities 
a, b, c , u, u, v, v', w, w and a, and are therefore sufficient for the 
complete solution of the problem. 

347. Three first integrals of the above equations can be at once 
obtained. 

Multiplying equations (5) by f/a, 7]/b, f/c, and adding, we 
obtain 

| + | ! + 5 = const (19), 

which expresses the fact that the vorticity is constant". 

Similarly from (7) we obtain 

H ' + HF + V = const (20) , 

which expresses the fact that the angular momentum is constant. 

The third integral is the equation of energy 

T+ U= const (21). 

Since p JJfx*dxdydz = jrifd2, 

and jjjxydxdydz = 0, 

we obtain from (2) 

k w wfi 
+ b2 + o2 + c2 + a2 + a? + p \ ( >' 

1 Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Güttingen, 
vol. ix.; see also Proc. Land. Math. Soc. vol. xvn. p. 255. 

2 This equation may be shortly proved thus :— 

Since I , ? ) , I" are independent of x, y, z, the vortex lines must all be parallel to 
some diameter r of the ellipsoid. Let I, m, n be the direction cosines of r, dS an 
element of the plane conjugate to r, and T the angle between r and S. 

The condition that the vorticity should be constant requires that 

const. = FFUI sin edS = uS sin e = aSpr^1, 

where p is the perpendicular from the centre on to the tangent plane parallel to the 

plane S. But, since the volume of the ellipsoid is constant, Sp = const., therefore 

u/r = const., or 
.IP rr? ri>\ 
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Motion of an Ellipsoid of Revolution1. 

348. Let us now apply the preceding equations to determine 
the motion when the free surface is an ellipsoid of revolution, 
which is rotating about its polar axis. Let the density of the 
liquid be uuity, and let a = b; and let a>v &>2, £, w, il,, C 2 , i l a be 
each zero ; then a>3 = £, u> = w = ^£ 

From the last of equations (5) we obtain 

therefore f/c = (To/Co, 

where the suffix denotes the initial values of the quantities. 
Let R3 = uac, and let us introduce two new variables 8 and p , 

such that 
8 = P a/a a = c/P 

and p = f / (2TT)- = g, c/c0 (2™·)* = po0/a, 
where a is the initial value of 8. From the first and third of 
equations (18) we obtain 

e=ie~hce-
1 Maxwell 's Electricity, vol . i. art. 85. 
a Dirichlet, Crelle, vol. L V I I I . p. 209. 

Now 1 U = y fJjVdxdydz, 

r (1 / aa 6a c ! \ J d \ 

where P = V(«* + (&' + (c" + therefore 

Integrating the last term by parts we obtain 

U=-lM7rPahc j°° dp (23). 
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Eliminating 6 and a, and remembering that A + \ C = 2TT, we 
obtain 

» ( » ^ ) » - ^ - ( ? ) , - ^ - a » ) -
Putting F(6) = r — x . 

then 

(1 + 0X) (1 + X / Ö 2 ) 4 

and the left-hand side of the last equation can be shown to be equal 
to 8TF' (8) ; integrating this equation we obtain 

Ö 2 + 8TT 8 - F ( d ) \ = eonst. = 8 T T K , 

which is the equation of energy. Hence the equations of motion 
finally become 

.(24). 

(2 + i , ) Ö2 + 8TT 8 - F (0) | = STrif 

These are Dirichlet's equations for the motion of an ellipsoid of 
revolution. 

349. Since the remainder of the present investigation depends 
upon the properties of the function F (&), when 8 is positive, it will 
be convenient to trace the curve y = F (x). Now 

F (8) = 28'' (8's - 1 ) _ * tan"1 (fT3 - if, 8 < l ; 

and 

F(5) = « - , ( l - f l - " ) " * l o B ^ 2 — 0 > 1 . 
w v ; b 1 - (1 - A"3)* 

Also when 8 = 0,F(6) = 0, F' (6) = oo ; when 8 = 1,F(8) = 2, 
i?" (#) = 0. When f? increases from 0 to 1, F (8) increases from 
0 to 2 which is its maximum value; and F' (8) is positive and 
diminishes from 00 to 0. 
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When 8 increases from 1 to oo, F (8) diminishes from 2 to 0; 
also F ' ( 0 ) is always negative and vanishes when 6 = oo. Hence 
the axis of x is an asymptote. The form of the curve is shown in 
the figure. 

350. Let us first suppose that the motion is irrotational, in 
which case p = p0 = 0 ; also that initially 6 = 0. 

Equations (24) now become 

2 ( 2 + ^ ) 0 - ^ = 8 7 ^ ' (6), 

( z + ^ ) P = ihr {F(8)-F(a)}. 

From the last equation it follows that F ( 9 ) must never be less 
than F {pi), throughout the motion. Now if a = 1, the initial form 
of the free surface would be spherical; also since F (8) is a 
maximum when 0 = 1, it follows that 8 = a = 1 throughout the 
motion; hence the free surface always remains spherical. 

If a < 1, the initial form of the free surface would be a 
planetary ellipsoid ; also from the figure, it is seen that the 
equation F{ff) = F ( a . ) has one real root ß which is greater than 1 ; 
hence 8 will vanish when 8 — ß , and therefore the free surface 
will oscillate through a sphere to an ovary ellipsoid, and back 
again to its original form, the time of a complete oscillation 
being 

The motion is of a similar kind when the initial form of the free 
surface is an ovary ellipsoid. 
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351. Tbe general character of the motion is not altered when 
the motion does not commence from rest, provided the initial value 
of 0 does not exceed a certain limit. If d be the initial value of 0, 
the last of equations (24) becomes 

(2 + 0-°)0* = (2 + a*) <*! + 8 T T {F(0) -F(a)} (25). 

Let ( 2 + a H , ) d ' - 8 7 r ^ ' ( a ) = 8 7 r A ] 

and (25) becomes 
(2 + rTs)(92 = 8 7 r [F(8)+k}. 

In order that 8 may vanish it is necessary that k should be 
negative, in which ease we may put k — — F (y) ; hence the ellipsoid 
will oscillate between the values 8 = 7 , 8 = j , where 7 , 7 ' are the 
two real roots of the equation F ( y ) = F ( 9 ) . But if k is positive 8 
will indefinitely increase or indefinitely diminish with the time 
according as a is positive or negative. In the former case the 
ellipsoid will gradually become elongated to an indefinite extent, and 
in the latter case will become indefinitely flattened. 

In the foregoing cases cr is always positive, and therefore the 
motion can take place without the aid of an external pressure. 

352. We must now consider the case in which there is mole­
cular rotation. 

Let B be a quantity defined by the equation 
F' (S) = {pjay, 

then since F' (8) is positive, 8 must lie between 0 and 1 ; also let 
ty(0)=0F' (S)-F(9). 

The character of the motion depends on the properties of the 
curve y = ifr (%), which we shall now investigate. 

In the figure let OPR and OS The the positive branches of the 
curves ?/ = F (a) and y = i]r(x) respectively ; and let OR be the 
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straight line y = xF' ( 8 ) . The ordinate of the curve y = ^ r ( x ) will 
evidently be equal to QM—PM=-PQ, and will therefore be 
negative so long as x < 0T; also since i ^ ' (8) = 0, (#) will be 
numerically greatest when x = S, and its value will be negative. 
When x > 0 T , yjr(x) is positive, and the straight line y = xF' ( 8 ) is 
an asymptote to the curve. 

353. Putting (2+a- s)a 2 = 8 7 r & , 

and remembering that p = pcfija., (24) may be wrritten 

* ( 2 < ? - r £ ) = 2,r [1-PF'(S)} + 

. ( 2 6 ) . 

i f V VI 1 W J 402 

0 - + 87r-f' (6») = 0 

2 + 6>2 + 8TT^ (0) = 8TT {yfr (a) + A] 

From the last equation it follows that during the whole motion 
ijr (a) + k — -vf r (0) can never become negative. Since tfr (S) is the 
greatest negative value that i | r (#) can have, there are three cases 
to be considered according as 

(i) ^ r ( a )+A = V(S) . 

(ii) 0 > TJr (a) + k > yjr ( 8 ) , 

(iii) (a.) + k > 0 . 

Case (i). The equation of condition may be written 

& = f ( S ) - f (a) (27). 

Now A is always positive, and the right-hand side of (27) is 
always negative unless a = 8, when it is zero, hence a = 8, k = 0; also 
since -ifr ( 8 ) — TJT ((?) must never be negative, it follows that 0 = 8 
throughout the motion. Now S < 1 , therefore the ellipsoid must be 
planetary, and the motion is such that the liquid rotates as a rigid 
body about the axis of the ellipsoid, with angular velocity 

? = 2TTVF ( 8 ) . 

It will hereafter be shown that the maximum value of the 
quantity 6*F' (d) is -2246, and that the equation S'F' (8) = Q'F' (Q) 
has two real roots, 8, 8', both of which are positive and less than 
unity. Hence for every value of f / 2 7 r which is less than '2246 
there are two planetary ellipsoids which are possible forms of the 
free surface, and which coincide when ^'/2TT = '2246 : also since cr 
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is always positive the motion can take place without the aid of 
an external pressure. 

This is Maclaurin's ellipsoid, which will be treated in a different 
manner later on. 

Case (ii). Here -us (a) + k is a negative quantity which is 
numerically less than y(r (8) ; hence we may put this quantity 
equal to -ty ( 7 ) , where 7 < 8. 

In the figure let O M = y , O A ' = a, OS = B, ON = 9, OM' = y , 
where QQ' is parallel to O x . Then 

A A ' - k = QM; 

therefore 7 < a ; also since ^ (a) + k — (8), that is i | r ( 7 ) — 1 / r ( 9 ) , 
must be always positive, 

PN> QM. 

Now the equation i f - ( 7 ) — i / r ( 0 ) = 0 has evidently two real 
roots lying between zero and OT, viz. 9 = 7 , 8 = y ' \ hence the 
ellipsoid will oscillate in such a manner that 6 must always lie 
between 7 and 7 ' , and the time of a complete oscillation is 

^ y i U ¥ w ^ m d e (28)-
From the first of equations ( 2 G ) it follows that the pressure will 

not remain positive, unless 92F' (S) never becomes greater than 
unity throughout the motion, hence y'2F'(B) must never be greater 
than unity. Also since 

r = 27r (PJ«y 0« = 271-^ (5)0" (29), 
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this condition requires that £'/2TT should never be greater than 
unity. 

Since 
(2 + O « 7 8 7 7 = rfr ( 7 ) _ ^ (a) 

= AA'—QM, 

it follows that we must have 

*a< (iSi)'* w - * ( « ) } (3°)· 

If the conditions (29) and (30) are not satisfied, an ex­
ternal pressure will be necessary in order to maintain the 
ellipsoidal form of the free surface. 

Case (iii). In this case (a) + k is always positive, if there­
fore we put it equal to T/T (e) where e = OR', we must have 
OR' > OT. The last of equations (26) becomes 

(2 + < T 3 ) 6* = 8TT {-f ( e ) - ( 6 1 ) } . 

The equation i|r (e) — T/T (8) has only one real root, viz. 8 = e , 
and therefore the motion can never be of an oscillatory character. 
If 8 be initially positive, then since ->|r (8) is negative so long as 
8 < OT, and positive when 8 > OT, it follows that the ellipsoid will 
gradually elongate itself to a limiting form determined by the 
equation 8 = e. On the other hand if 8 be initially negative, the 
ellipsoid will ultimately become indefinitely flattened. 

The possibility of this motion taking place without the aid of 
an external pressure, depends upon conditions similar to those of 
the preceding case. 

Steady Motion of an Ellipsoid. 

354. When a mass of liquid is rotating in a state of steady 
motion under the influence of its own attraction, the different 
ellipsoidal forms which its free surface can assume may, as we 
shall proceed to show, be classified as follows. 

(i) Maclaurin's Ellipsoid, in which the free surface is a 
planetary ellipsoid, and the liquid rotates as a rigid body about 
the polar axis of the ellipsoid. If p be the density of the liquid, f 
the angular velocity of the ellipsoid, which in this case is identical 
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with the molecular rotation, it will be shown that ^/^-rrp must not 
be greater than ' 1 1 2 3 , in order that steady motion may be possible, 
and in this case there are two ellipsoids, which coalesce when 
r / 4 7 r r j = 1 1 2 3 . 

(ii) Jacobi's Ellipsoid, in which the free surface is an ellipsoid 
with three unequal axes, and the liquid rotates as a rigid body 
about the least axis. In this case ^j^irp must not be greater 
than " 0 9 3 4 in order that the ellipsoid may be a possible form of 
the free surface. Hence if ^l^irp < ' 0 9 3 4 there are three ellip­
soidal forms, viz. two planetary ellipsoids, and an ellipsoid with 
three unequal axes. When ^ / i i r p = • 0 . 9 3 4 , Jacobi's ellipsoid 
coalesces with the most oblate of the two planetary ellipsoids; 
and when £ * / 4 ? T p lies between " 0 9 3 4 and ' 1 1 2 3 the revolutional 
form is the only one possible. 

(iii) Dedekind's Ellipsoid, in which the free surface remains 
stationary in space, but there is an internal motion of the particles 
of liquid, due to molecular rotation f parallel to the least axis. In 
this case if a and b are the greatest and mean axes respectively, 
a2b2^1/(d> + b2f trp must not be greater than " 0 9 3 4 ; and when the 
former quantity is equal to - 0 9 3 4 , we must have a = b, and 
Dedekind's ellipsoid coalesces with the most oblate of the two 
Maclaurin's ellipsoids. 

(iv) An ellipsoid, which will be called the Irrotational Ellip­

soid, in which the axis of rotation is the mean axis, and the motion 
is irrotational. In this case the revolutional form is not possible. 

(v) An ellipsoid in which there is molecular rotation f, and 
an independent angular velocity $"+ fi about the axis to which f 
refers. In this case the axis of rotation will bo the mean or least 

axis according as 

When this inequality becomes an equality, the free surface 
will be an ovary ellipsoid rotating about an equatorial axis. This 
case includes the four preceding cases. 

(vi) Riemanns Ellipsoid, in which the ellipsoid rotates about 
an instantaneous axis lying in a principal plane. This case 
includes all the preceding cases ; if the axis of rotation docs not lie 
in a principal plane steady motion is impossible. It is moreover 

IRIS - LILLIAD - Université Lille 1 



impossible for steady motion to exist when the axis of rotation is 
the greatest axis. 

The foregoing propositions might be established by employing 
Riemann's general equations of motion, but when the rotation 
takes place about a principal axis, it is simpler to start from first 
principles1, and we shall therefore commence with Case v. 

355. Let c be the axis of rotation, wg = £1 + ?, then from (2) 
we obtain 

a' — b2 a' — b2 

u = " 5 q r p % - & > v = a T j T j ? n a s + & > w = 0 . . . ( 3 l ) . 

The hydrodynamical equations for the pressure referred to the 

principal axes of the ellipsoid are therefore 

Also 

1 dp . , T-r du T r du 
-f- - f -Ax - v (LI + n + U j - + V ,-p dx dx dy 

1 dp „ ' , „ TT dv iT-dv . 
p £ j + By + u(n + ^ ) + U ^ + V T r 0 

l ^ + Cz 
p dz 

U = u + ( L l + ^ ) y = ^ ^ 

= 0 

= 0 

.(32). 

V = v - ( L l + Ç)x = 

a" + b2 ' 

2b2 n x 

~oJ+~b2, 

Substituting these values of u, v, U, V in (32) we obtain 

1 dp 

p dx 

1 dp 

p d y 

1 dp 

+ 

+ 

x = 0, [ , - m ( „ + { ) k £ + n - g - - £ ) - - r ] 

+ Gz 
p dz 

the integral of which is 

= 0; 

-+ £ (Ax* + By2 + Cz2) — t l (l\ + Ç) (x2 — y%) 
a ^ - b 2 

a% + b' 

+ * {fiB {dj-+ vf - r } + ^ = C 0 I l s t ' 
which determines the surfaces of equal pressure, 

1 Greenhill, Pruc. Camb. Phil. Soc. vol. m. p . 233 and vol . i v . pp. 4 and 208. 
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The condition that the free surface should be the ellipsoid 
[xjaf+{ylbf+{zIcf = l , is 

6s fa2 - o 2^ 2 

...(33). 

= Co2 

These equations show that .da8 is greater than B b 2 or O c 1 , and 
hence a must be the greatest axis; and therefore the greatest axis 
can never be the axis of rotation. 

The axis of rotation will be the mean or least axis according as 

Cc2 > or < Bb2, 

that is, according as 
n2 — y fn* ~ ' '" 

a2 + b2 W + U 

is negative or positive, that is, according as 
£• a2 - b2 L 2a 

< or >^r—, J l ± 

If tho ratio f/12 is such that this inequality becomes an 
equality, we must have b = c , and the free surface will be an ovary 
ellipsoid rotating about an equatorial axis. This is the only case 
in which the free surface can be an ovary ellipsoid. 

356. We must now consider the first four cases in detail. 

Case (i). Maclaurin s Ellipsoid. 

Here a = b , 12 = 0, and (33) becomes 
?a2 = A a 2 - C c 2 (34). 

The free surface is therefore a planetary ellipsoid, and the 
liquid rotates with angular velocity £ about the polar axis. 

Now 

A = 2TToa2o [ 

J. (re + X) 2 (c 2 

C = 27TPa2c i 

J a 

+ X ) 4 ' 

o (a2 + X) (c 2 + X)*' 

Putting v = (1 - es)Ve in (14) and (15) of § 148, we obtain 

A = 27rpe" (1 - e2f [sin - 1 e - e (1 - e*)% 

C = iv-pe'3 {e - (1 - e2f sin"1 e], 
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where E is the excentricity, whence (34) becomes 

?/2IRP = E* (1 - E2f {(3 - 2e2) sin^1 E - 3e (1 - e-)*}...(35). 
The right-hand side of this equation can easily be seen to 

vanish when E = 0 and e = 1, and to be positive for all values of E 
between 0 and 1. Hence as E increases from 0 to 1, the right-
hand side increases from zero to a certain maximum value, and 
then decreases to zero. It therefore follows that for all values of 
^\2-NP which are less than this maximum value, there will be two 
ellipsoidal forms of the free surface, the excentricities of whose 
meridian curves are determined by the two roots of (35); when 
^\2IRP is equal to this maximum value, there is only one ellipsoidal 
form ; and when ^\2ITP is greater than this maximum value, the 
ellipsoidal form is impossible. 

The excentricity of the ellipsoid corresponding to the maximum 
value of ^ 2 / 2 T T / 3 is determined by the equation 

(9 - 8e2) sin"1 e = E (9 - 2e2) (1 - E*F. 
In this put e2 = X 2/(l + X2) and we obtain 

X(9 + 7X2) _, 
jz.—\ „, — — tan A = 0. (1 + V) (9 + X2) 

In order to find the root of this equation1, denote the left-hand 
side by /"(A.). Let X = 25, then by the aid of the formula 

tan - 1 2'5 = tan - 1 2 + tan - 1

 T \ , 
we obtain / ( 2 ' 5 ) = "0025. 

Let X = 2"5 + Y, 
then approximately 

Y = -F (2-5)//' (2-5), 

also / ( 2 - 5 ) = - -085 nearly; 

therefore Y = "0293, 

X = 2-5293. 

Substituting this value of X in (35), we shall obtain 

?H-rrp = -1123, 

which determines the maximum value of the angular velocity. 
The value of the excentricity will be found to be approximately 

equal to -93. 
1 Besant's Hydromechanics, nh. v m . ; see also Thomson and Tait 's Nat. Phi!. 

vol. i, part n . p. 327, where a table is given. 
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357. Case (ii). Jacobis Ellipsoid. 

In (33) put [1 = 0, and we obtain 

( i - n « ! = ( 5 - D b2 = Cc2, 

or f2 = (Aa2 - Cc2)/a' = (BV - C<?)\b2 (36). 

In order that the value of f may be real it is necessary that 
Aa2 > B b 2 > C c 3 ; hence a > b > c , and therefore the axis of rotation 
must be the least axis. The free surface is therefore an ellipsoid 
about whose least axis the liquid rotates as a rigid body; also since 
the volume of the ellipsoid is constant, it follows from (36) that 
when f is given there is only one ellipsoid satisfying the conditions 
of the problem. 

From (36) we have 

a2b2 [ A - B ) + (a2 - b2) Co' = 0, 

a V / . ( a ^ + W + x P = ° " / . V^kr(37)) 

or [ { ( a 2 b 2 - a2c2 - b2c2) X - c2X2} P~s d \ = 0. 

If c = 0 the last integral is positive, and if c = ab/(a2 + b2)^ the 
integral is negative; hence c must have some value lying between 
0 and ab/(d>+b2)i. 

According to Ivory1, the axes must be proportional to 
c, c*J(l+Xs), cJ(l+n2/X2) 

where n is a numerical quantity lying between 1 and 1"9414. 

When a = b, Jacobi's ellipsoid coalesces with the most oblate of 
the two Maclaurin's ellipsoids. In order to find the excentricity of 
this ellipsoid, put 

( a 2 + X,)* = a e v in (37) and integrate, and we shall obtain 

(f + 2e2 - 2e4) sin"1 e = e (1 - e2? (f + f e2). 
By trial and error it can be shown that this equation has one 

real root lying between 0 and 1, which is approximately equal to 
•8127, and the corresponding value of ^jiirp is '0934. Hence 
when f2/47r/3 lies between 0 and "0934, there are three possible 
forms of the free surface, viz., the two ellipsoids of revolution and 
an ellipsoid with three unequal axes ; when ^jirrp lies between 
"0934 and -1123 the two revolutional ellipsoids are the only 
ellipsoidal forms possible. 

l Phil. Trans. 1838. 

B . I I . 8 
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358. Case (iii). DedeJcindJs Ellipsoid. 

In (33) put fl + £ = 0, and we obtain 

cf + bV \ a' + b2 

Hence the ellipsoidal boundary is stationary, but there is an 
internal motion of the particles, which from (31) is determined by 
the equations 

. _ 2 a 2 % 

y = -

a2 + b" 

2b2Clx 

a2 + b2 

4>a2b2£l2x 
Whence ic + rtf + yy = °. 

therefore x = A cos (Jet + a), 
and y ~ ~ Aa~xb sin (Jet + a), 

where k = 2a&n/(aa + V). 
Hence if x 0 , y 0 , z0 are the initial co-ordinates of the element of 

liquid whose co-ordinates at time t are x , y , z, we obtain, 
x = xa cos kt + ab'1 ya sin kt, 

y = — a'1bxa sin kt + y0 cos kt, 

* = Jo­

in Dedekind's ellipsoid the quantity 2a&£/(as + 62)* takes the 
place of £ in Jacobi's ellipsoid, and it can be shown in the same 
manner that we must have 0 < c < abj(a2 + b2)* and that there is 
only one ellipsoid satisfying the conditions. When a —h Dedekind's 
ellipsoid coalesces with the limiting Jacobian ellipsoid, and there­
fore when ^'/'4s7rp > '0934 Dedekind's ellipsoid is impossible. 

359. Case (iv). TJie Irrotalional Ellipsoid. 

In (33) put £•= 0, and wo obtain 

fl" (a*+ & ' ) ' _ A a 2 - C c 2 _ Co2 - Bb2 

a2 - b2 a3 (a,2 + 3b2) b2 (3a2 + b2)' 

The motion of the liquid is therefore irrotational, and is the 
same as might be generated from rest by filling an ellipsoidal 
cavity with liquid, and setting it in rotation about the axis c. 
Moreover, in order that O, may be real, we must have C c 2 > Bb2, 
hence c > b, and the axis of rotation must be the mean axis. In 
this case the revolutional form is evidently impossible. 
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w (2a + b + c) (2a + b - c) ' 
Let 

i f 

(2a+b + c) ( 2 a - b + c)~ ( 2 a - b - c ) ( 2 a + b - c ) 

w2 w'2 

S 

• T 

...(39). 

( 2 a + b + c ) (2a+ b - c ) ( 2 a - b - c)(2a-b + c ) 

Substituting in the first three of (18) we obtain 

( 4 a ! - b 2 - 3 c 2 ) S + ( 4 a 2 - 5b2 — c 2 ) T = \ A — £ c r / a 2 . . . ( 4 0 ) . 

( b 2 - c 2 ) T = \ B - \ * l b 2 ) 

( c 2 - 6 s ) S = \ C - \ t r l f ) 

8—2 

3 6 0 . Case (vi). Riemanns Ellipsoid. 

In order to investigate the most general kind of steady motion 
of which a liquid ellipsoid is capable, we must employ the general 
equations of motion. Putting d(^a~l)fdt, &c. equal to zero, we 
obtain from (5) 

TW+d)=vW+rf)= r ^ + y j = c o n s t - = I ( 3 8 ) ' 
Also = f l t + f = n t {fj,j(bl + c5) + 1}, & c . &c. 

From (7) we have 
Kfai = Kl«>* = V w

3 -

Substituting the values of hv \ , h3 in terms of o^, fij &c, from 
(6) it will be found that (38) are equivalent to the following three 
equations: 

(A? — (2a* — b2~c,)fj, + ( c z 4 - a s ) ( a 2 + & 2 ) — 4 a 4 = 0 

? 2 - (2b2 - c2 - a 2 ) / . + ( a 2 + b2) (b2 + c 2 ) - W = 0 

fj,2 - (2d2 - a 2 - b 2 ) ? + (b2 + c2) ( c 2 + a2) - 4 c 4 = 0 . 

These three equations cannot co-exist, hence one of the three 
pairs of quantities fi,, £ & c . must be zero. Hence steady motion is 

impossible unless the instantaneous axis of rotation lies in a principal 

plane. 

361. Let us therefore suppose that X2, = £ = 0. From the fourth 
and fifth of (18) we obtain, 

i/_ 2 _ ( 2 a - 6 - c)J2a + b^- c) 

v" ~ (2a + b + c) (2a ^ T + c ) ' 

v / 2 _ ( 2 a - b - c) {2a - b + c) 
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Solving these equations we obtain 

_ T r p a W f [2X 4- 4a" - b2 - c* 1 ) d\ 

j „ 1 (ft* + X) (c2 + X) + a 2 + XT P ' ( }-£ J 0 [ (62 + X ) ( c 2 + X ) 

- r?-) L I r.2 4- X a 2 X f f i 2 4- X^P' ^ 3> S 2D (b2 - c2) f, j c2 + X a 2 + XJ (62 + X)P ' 

T r p ^ - a 8 ) f [ 4 a ' - 6 2 + c 2 _ _ ^ _ ) XcZX . 
2D(c2-b2)) a \ b2 + \ a 2 4 - X J ( c 2 - r X ) P ^ ; ' 

where D = 4a* - a2 (&2 4- c !) + 6V (45). 

P'=P/a&c. 

362. We must now find the relations between a, 6, c in order 
that these equations may give real values of v, v, w, w and also 
make <r positive. 

In order that (v'jv)2 and (w jwf should be positive, it is 
necessary and sufficient that 

a > \ ( b + c) or < £ (6 - c), 

and there are three cases to be considered. 

Case I. a > i (b + c). 

In this case it is easily seen that D and both the integrals on 
the right-hand sides of (43) and (44) are positive, for 

D= a2 {4aa - (6 + cf\ + be (2a2 + be), 

also the integral (43) 

= j {(4aa - c a ) X + a2 ( 4 a

a + b2 - c a ) - b2c2} ^ffpr>. 

Since 2a > b + c , then 4a2 > c a ; also 
4 a a + o a - c a > ( 6 - f c)2 + o ' - c a > 2 & (b+c), 

therefore a2 (4a ! 4- 62 - c2) > 2a2b (b+c)> \b (b + c)s > bsc2. 

Hence the above integral is positive ; similarly by interchang­
ing b and c, it is seen that the integral on the right-hand side of 
(44) is also positive. If now a increase from ^ (b + c) to cc, T 
will be always positive provided b > c , but S will be positive only 
so long as a < b ; hence in this case we must have 

6 > a > 4 (b + c) 
} (46). 

b > c J 
b must therefore be the greatest axis, but a may be either the 

mean or the least axis. 
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Case I I . a < £ (b — c), a > c. 

Since 2» < 6 — c, S must be negative and !F positive; now 

(4a2 - V) \ + a2 (4a2 + c2 - 62) - bV 

is always negative, and therefore T can never be positive unless 
D (c2 — a2) is positive, which requires that D should be negative 
and therefore 

c s < a2 (62 - 4a2)/(62 - a2), 
which is always possible since the right-hand side of this inequality 
< a\ Also since c2 4- A. < a2 + X and 4a2 > c2, the integral on the 
right-hand side of (43) will always be positive and therefore S will 
be negative. 

This case may be further divided into two sub-cases. 

(i). The first condition may be written c < 6 — 2a, which 
requires that b > 2 a , whence b must be the greatest axis. Now if 
6 > a (V3 + 1), it can easily be shown that 

(b - 2a)2 > a2 ( b 2 - 4a2)/(t2 - a 2 ) , 

hence the conditions may be written 

6 > " W 3 + 1 > „,} («). c < as/(b2-4a2)/(V 

(ii). But if a (V3 + 1) > b > 2 a , then 

(6 - 2a)2 < a2 (b2 - 4a2)/(62 - a 2) 

and the conditions become 

a (V3 + 1) > 6 > 2a 
, -) f (48). 

c < o — 2a | v ' 
Case I I I . a < \ (b — c), a < c . 

The second condition requires that 

c 2 > a 2 ( 6 2 - 4 a 5 ) / ( 6 2 - a ! ) , 
and therefore D and T are both positive. The value of S remains 
negative so long as a < \ c , and becomes positive when a = c , and 
therefore the integral becomes positive for some value of a which 
lies between \ c and c. Hence the conditions in this case reduce to 

a < \ (b — c), a< k, 

where \ c < k < c . 

Lastly, in order that the motion may be possible without the 
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aid of an external pressure, it is necessary that er should be always 
positive. The value of a may be expressed in the form 

In the first and third cases D and therefore a is always positive, 
but in the second case where D is negative a further limitation is 
required. 

363. The question of the stability of a liquid ellipsoid has 
been discussed by Sir W. Thomson1, and a very elaborate investiga­
tion of this question has been made by Poincaré2, to which the 
reader must be referred for complete information on the subject. 
The problem in its most general form is this. A mass of liquid is 
rotating about its centre of inertia in a state of steady motion, 
under the influence of its own attraction, in such a manner that 
the form of the free surface is an ellipsoid, and a disturbance of 
any kind is communicated to the liquid ; it is required to deter­
mine whether the resulting motion is stable or unstable. 

In the present section, we shall not attempt to deal with the 
problem in its most general form, but the investigation will be 
confined to the consideration of the stability of a liquid ellipsoid 
which in steady motion is rotating about a principal axis, and 
which is subjected to a disturbance such that the free surface 
in the' beginning of the disturbed motion is an ellipsoid3. A 
disturbance of this character may be communicated by enclosing 
the liquid ellipsoid in a case which is subjected to an impulsive 
couple about any diameter together with a deformation of its 
surface, and is therefore equivalent to a disturbance produced by 
an impulsive pressure communicated to the free surface of the 
liquid. 

1 Thomson and Tait , vol . i. part a. pp. 329 and 333; Proo. Roy. Soc. Edin. 
vol . x i . p . 610. 

2 Acta Mathematica, vol . v i i . p. 259. 
3 Eiemann, Gait. Abliand. vol . ix. ; aee also Proc. Lund. Math. Soc. vol . xix. 

p. 46. The investigation given in the latter paper respecting the stability of 
Maclaurin's ellipsoid is erroneous. 

On the Stability of an Ellipsoid. 
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364. By (23), the potential energy of an ellipsoidal mass of 
gravitating liquid of mass M and uniform of density p is 

IM-n-pabc 
J o 

TJ D • T ^ r j . /. f J i ^ L / u | p 

where P = J (a2 + X) (62 + X) (c2 4- X), and D is a constant. Let R 
be the radius of a sphere of equal volume, then 

TJ — 0 when a = & = c = i£, 

therefore Z) = ^MirpR?, 

and U = p/7rpi i 2 - \Mirpabc J ~ (49). 

Now TJ is evidently positive; hence the integral must be a 
maximum when a = b — c = R, and will become indefinitely small 
when any one of the axes of the ellipsoid becomes infinitely 
small or infinitely large. 

Let 2c be the axis of rotation, and let 

E = ™ M \ ^ b * - + a T ^ > - ^ a h t P \ < O 0 > 

By (22) and (23) E is the variable part of the energy of a mass 
of liquid whose free surface is constrained to maintain a fixed 
ellipsoidal form and which is rotating about the axis c. In steady 
motion &)8 and f, and therefore E, are certain functions of a, b, c; 
let E0 be the value of E in steady motion. 

Let a disturbance (which for brevity will be called an ellipsoidal 
disturbance) be communicated to the liquid by means of an im­
pulsive pressure applied to its free surface, which is such that in 
the beginning of the disturbed motion the free surface is a 
slightly different ellipsoid. Then, if Ea + SE is the energy of the 
disturbed motion, we obtain by (22) and (23), 

r . - 2 ftf—^\' , . . 2 f „ 2 _ „ 2 V > 

Z E = ^ M \ 

4c 2 aV 
-I L 

c + a 

+ E - E V 

All the terms in square brackets are positive, and in the begin­
ning of the disturbed motion are small quantities ; hence, if E > Ea, 
these terms must remain small quantities and the free surface can 
never deviate far from its form in steady motion, and the motion is 
therefore stable. But, if E < E0, the terms in square brackets may 
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become a finite positive quantity, and the difference E — E 0 may 
become a finite negative quantity, such that the difference between 
the two sets of terms always remains equal to the infinitesimal 
quantity BE. When this is the case the free surface may deviate far 
from its form in steady motion, and the motion may be unstable, 

Hence, for the particular kind of disturbance which we are 
considering, the condition of stability requires that the energy in 
steady motion should be a minimum. Or, in other words, if the 
steady motion is stable, it must be impossible by any kind of 
ellipsoidal disturbance to abstract energy from the system. 

365. Let the disturbing pressure be divided into two parts 
p x , p . 2 , the former of which produces a variation of the axes and no 
change in the angular momentum, whilst the latter produces no 
instantaneous variation of the axes but changes the angular momen­
tum. The resultant of p 2 will consist of a couple 67, and a single 
force, which produces a translation of the whole mass of liquid, 
and which it is unnecessary to consider. If the axis of this 
couple lie in the principal plane, which is perpendicular to the 
axis of rotation in steady motion, the energy will be evidently 
increased by its application; but, if the axis of the couple does not 
lie in this principal plane, the component of the couple about the 
axis of rotation may diminish the energy if it acts in the opposite 
direction to that of rotation, in which case the motion will be 
unstable. 

In Maclaurin's ellipsoid the component of the couple about the 
axis of rotation necessarily vanishes, since p^ always passes through 
the axis of rotation ; the case of Dedekind's ellipsoid, in which the 
free surface is stationary, will be considered later on. 

Hence, so far as the action of p 3 is concerned, Jacobi's ellipsoid, 
the irrotational ellipsoid, and the ellipsoids belonging to the general 
class V., including the ovary ellipsoid rotating about an equatorial 
axis, but excluding Dedekind's ellipsoid, are stable whenever the 
couple component about the axis of rotation of the disturbing 
pressure either vanishes or is in the same direction as the rotation; 
but when this is not the case the motion may be unstable. 

In the case of Dedekind's ellipsoid, by (50), 
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where ±a*bX A a 2 - C c 2 Bb*-Cc* 
o' + i" a2 b2 ' 

and the effect of a disturbing couple about the axis of rotation will 
be to increase the energy by the quantity 

Mo>\(a2-by 

10 (a2 + 6s) ' 
whence E > Ea, and therefore the motion so far as this kind of 
disturbance is concerned is stable. 

366. We must now consider the disturbance^ which produces 
a variation of the axes. From the last two of (18) we obtain 

(a — b ) 2 w = const. = T , (a + &)2 w' = const. = T ' (51). 

whence, from (9), 

£ T ' — T 

Also, from (6) 
o 2abc ' 8 s 

M 

ha = ±M(T' + T) (52). 

whence 

where 

5(a 2 + 62) 

E = IM 

, {(a 2-6 s) 2 a>8+4as&U 

(a-by {a + b}2 
• (53), 

H = irpabc j 
1 dX. 

Also putting a, 6, c each equal to zero in the first three of (18) 
and taking account of (51) we obtain 

(54). 

0 = 1 Go-" 
2 c 

T ' 2 T 2 1 
7 w + / 1\3 = i Aa — - = — ( A a 2 - Co2) 

(a+b)3 (a — bf 2 a 2 a K ' 
(a + b) (a—by b 2b 

Whence (53) becomes 

E 0 = i (Aa2 + Bb2 - 2Co2) - 2H 

= - H - % C c 2 (55), 

since Aa2 + B b 2 + Co2 = 2H. 

Whence E 0 is a finite negative quantity. 

The constants T , T express the fact that the angular momentum 
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and the vorticity are unchanged during the motion ; also since the 
disturbance p1 does not change the angular momentum or vorticity, 
these constants must have the same values as in steady motion. 

Since the volume of the ellipsoid is constant, the conditions 
that E may be a minimum require that 

dE c dE 

.(56). 
da a dc ^ 

d E _ c d E = Q 

db b do 

On performing the differentiations it will be found that (56) 
lead to (54); hence the first conditions are satisfied. 

We must now enquire whether, in the general case, E has a 
minimum value when T and T are unchanged by the disturbance. 

Let z = 5E/M, Rs = abc, x = a, y = b, then 

z = { ^ + J ^ y J ~ 2 i r p W \ 0 V ( * S + W + x ) W A 2 + * ) " ' ( 5 7 ) ' 

Since a, b, c, are positive, and a is never less than b, we have to 
examine the form of the surface (57) between the planes y = 0, 
x — y = 0. 

First suppose T is not zero. 
When x = y, z = oo. If y has any finite value < or = x, then, as 

x increases from y to infinity, z diminishes, and the value of E0 in 
steady motion shows that z will vanish and become negative, and 
when x is very large z is very small. Moreover, z can never become 
equal to — oo for any values of x or y, and when x and y are both 

very large z is very small, unless x — y is small. 
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A general idea of the form of the surface may be obtained from 
the accompanying figures. Fig. 1 is the curve of section made by the 
plane y = mx, m< 1; and Fig. 2 shows the curves of section made 
by the planes xz and x y . The surface cuts the place of x y along 
the curve xP, and the sheet underneath this plane gradually bends 
upwards towards the plane. 

It therefore follows that in this case z must have a minimum 
value, which is given by (55). 

3(17. If T = 0, it follows from (54) either that a = b , which is 
the case of Maclaurin's ellipsoid, or the axes of the ellipsoid must be 
connected by the equation ( A a 1 — Cc2)/a = (BW — Cc2)/6. 

We shall now show that Maclaurin's ellipsoid is unstable if the 
excentricity exceeds a certain value. 

In steady motion 

T = 0, T ' / ( O + bf = w' = if. 

Let Q ^ A a ' - C c 1 , R = Bb* — Cc*, then omitting the factor 
2rrpabc in A , B and C, the condition that Maclaurin's ellipsoid 
should be stable for an ellipsoidal disturbance, is that E should be 
a minimum in steady motion where 

(a + b)' 

Putting E a = dEjda &c. we obtain 

F - 9 _ 2 i l P = & - 1T'2 

"~ a (a + b y 0 b ( a + b y 

a \ d a a dcj a* (a + b y 

a \db b dcj (a + b y 

where b is to be put equal to a after differentiation. Now 
when a = b, Q = R and Eaa = Ebi, therefore 

82? = i (Eaaoa2 + 2EJaSb + E „ Sb>) 

= i + (So + S6)a + 1 (Eaa - E J (8a ~ 86)2. 

Now + + + 
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On reduction it will be found that the right-hand side is equal 

which is positive for all values of e between zero and unity. But 

on reduction. The right-hand side is positive when e = 0, and 
negative when e = l, whence Maclaurin's ellipsoid becomes unstable 
when the excentricity exceeds the root of the equation obtained by 

The equation determining the excentricity of the revolutional 
ellipsoid which coincides with the limiting Jacobian ellipsoid has 
been found in § 357, and on comparing it with (58), it will be seen 
that the excentricity of this ellipsoid is somewhat less than the 
ellipsoid which is unstable. 

This result was first obtained by Riemann1. 

In the last edition of Thomson and Tait's Natural Philosophy, 

vol. I . part u. p. 333, it is stated that Maclaurin's ellipsoid is 
stable or unstable, according as the excentricity is less or greater 
than the ellipsoid which coalesces with the limiting Jacobian 
ellipsoid ; i.e. according as e < or > '8127. Unfortunately no proof 
of this statement is given, but if it is correct, the disturbance 
which produces instability cannot be an ellipsoidal disturbance, 
but must be one of a more general character. 

368. Poincaré5 has shown that when a mass of liquid is 
rotating about a fixed axis as a rigid body, the problem of deter­
mining the small oscillations is reducible to the solution of a single 
equation. 

Let the axis of rotation in steady motion be the axis of z, and 
let the axes of x and y be any two perpendicular axes which are 
rotating with angular velocity w. Then if the disturbed motion be 
referred to the same axes, the equations of motion are 

to 
9 e ( l - e a ) * (3 -2e 2 ; l ) - (27 - 36e8 + 8e*) sin"1 e , 

= e (1 - e2) (3 + 4e") - (3 + 2ea - 4e4) sin'1*?... (58) 

. equating the right-hand side of (58) to zero. 

du 

di 
— wv = 

dQ dv 

dx ' ct 

dQ dw _ dQ 

dy ' dt dz ' 

1 Gott. Abhand. vol. ix. § 3. 
2 Acta Math. vol. vn. p. 356'. 
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Hence | , ( V W 0 = - 4 „ 2 

which is Poincare"s equation. 

If we assume that the time enters into IFR in the form of the 
factor e'"', this becomes 

Putting z = z'\J (1 — 4to2/n2), this becomes 

dx1 dy2 dz"' ~ 

The problem is therefore reduced to finding a solution of 
Laplace's equation within the surface which is derived from the 
original surface by writing z'»J(\ — 4&)2/n2) for z. 

where djdt = d[dt + Ud/dx + Vd/dz + Wd/dz, 

Q = -PIP + V; 
U, V, W being the velocities of the liquid relative to the moving 
axes, and V is the potential. Also 

U=u-r-toy, V—v — wx, W = w. 

Since the liquid is rotating as a rigid body in steady motion, 
U, V, and W are all zero, hence in the disturbed motion U, V, W 
are all small quantities ; if therefore we put 

IR = Q + i » - <y + F), 
the equations of disturbed motion are 

— - 2 e o F = ^ ^+20,11 = ̂  ^ ^ d ± . 
dt dx ' dt dy' dt dz' 

The equation of continuity is 

dU dV d W ^ Q 

dx dy dz ' 

, fdU dV\ 
whence vSlr = 2w , 
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The solution of this equation subject to the boundary conditions 
will lead to an equation for determining n , which will show 
whether the motion is stable or unstable. 

The oscillations of an elliptic cylinder1 and of an elastic 
spherical shell containing liquid2, have been worked out by this 
method by Mr Love. 

EXAMPLES. 

1. An infinite cylindrical mass of liquid is rotating about its 
axis with angular velocity 12 4- f, under the influence of its own 
attraction, where £ is the molecular rotation. Prove that a possible 
form of the free surface is an elliptic cylinder, and that if a and b 
be the semi-axes of the cross section, 

2. In the last example prove that the paths of the particles of 
liquid relatively to the axes of the cross section are in general 
pericycloids, which ( i ) when £ (a2 + b2) = f2 ( a 2 — b2) are epicycloids ; 
( i i ) when Q + f = 0 are ellipses; (ii i) when £2 = 0 or (f2 + f) ( a 2 + b2) 
= ± 2a6f2 are circles. 

3. A spheroidal shell whose equatorial and polar axes arc 
2a and 2 c , and whose mass may be neglected, is filled with liquid 
and is rotating about its centre of inertia. The motion of the 
liquid at every instant is such that it could be instantaneously 
generated by means of the first two operations explained in § 342. 
Prove that 

? + v

2 = L - ^ f , 

2 c 2 ( a 2 - c 2 ) ' 

where L , M, N are constants depending on the initial motion. 
Prove also that £ can be expressed in terms of the time in 

terms of elliptic functions, except when L M = N1, or c = 3a, when it 
is expressible by means of circular functions. 

1 Quart. Journ. vol. x x m . p. 158. 
3 Proc. Loud. Math. Soc. vo l . x i s . 
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4. In the case of Jacobi's ellipsoid, prove that the mean 
pressure throughout the liquid is £ of the pressure at the centre of 
the ellipsoid; and that if the equation of the free surface is 
(xja)2 + {y/bf + (zjcf = 1, and M is the mass of the liquid, the 
kinetic energy of the system is 

( A a 2 + B b 2 - 2Cc2). 

5. In the case of Maclaurin's spheroid, prove that any given 
mass of the liquid may be annihilated without disturbing the 
motion of the rest, provided the annihilated mass is bounded by 
the external surface and either of the two other spheroids, but that 
a similar theorem does not hold for laws of attraction other than 
that of the inverse square of the distance. 

6. Prove that if a rigid ellipsoidal shell be filled with two 
homogeneous gravitating liquids of different densities, the denser 
liquid will form a nucleus in the shape of an ellipsoid; and that if 
the shell be made to revolve with constant angular velocity about 
any given fixed axis, a possible form of the nucleus when the 
liquids are in relative equilibrium will be an ellipsoid not co-axial 
with the external surface. 

7. A rigid shell in the form of an ellipsoid of revolution is 
filled with two homogeneous gravitating liquids of different densities 
which do not mix, and the whole system is rotating uniformly in 
relative equilibrium round the axis of the shell. Prove that a 
possible form of the surface of separation is a spheroid, and find the 
equation connecting the excentricity with the angular velocity. 

8. A mass of attracting liquid which is at rest, is enclosed in 
an ellipsoidal case. Prove that if the case be removed the liquid 
will move so as always to preserve the ellipsoidal form. 

In the case of a spheroid, prove that if a be the axis of figure, 

.-, IX, is the value of £1 in one position 
. ( c ! + x ) < y + \ ) 5 F 

of rest, and r is the radius of the sphere whose volume is equal to 
that of the liquid. 

Hence show that if the two extreme values of a, be r cosec^e/>, 
2 

and r sin 26, the relation between 6 and 0 will be 

2 J cos 6 cos 0 6 2 Y 
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9. In Maclaurin's spheroid, find the ellipticity e in terms of 
the density p and the angular velocity a> when the free surface is 
nearly spherical; and show that the whole pressure on an equatorial 
plane is approximately equal to (5 — 6e) 7r a p 2 a 4 /15 astronomical 
units of force, where a is the equatorial radius. 

10. In Jacobi's ellipsoid prove that gravity on the surface 
is inversely proportional to the perpendicular on to the tangent 
plane, and that the total stress across any central section is pro­
portional to the area of the section. 

11. If two concentric approximately spherical masses of fluid 
of densities (astronomical) p and p + p ' , the denser being inside, be 
rotating round an axis with angular velocity n, and if a, a be the 
mean radii of the outer and inner surfaces, and if the equations of 
the surfaces be r = a (1 + a ) , r' = a (1 + </), prove that o-, a' are 
given by the equations 

(V + p)<r'~ ìpa = {fp + p' {a'laf} a - |p' (o'/a) V =f -cos 20). 

12. Prove that if a thin case in the form of an ellipsoid of 
revolution be filled with liquid which is rotating as if rigid about 
its axis, the motion is unstable, if the length of the polar axis 
lies between one and three times the length of the equatorial axis. 

13. A quantity of liquid of density p is enclosed in a case, 
which may be either an oblate or prolate spheroid, and is rotating 
about its polar axis like a rigid body with angular velocity f. 
Prove that if the case be removed, it will be impossible for the free 
surface to retain the spheroidal form unless initially £2/27rp < 1. 
Prove also that if 2c be the length of the polar axis, the free 
surface will cease to be spheroidal, if at any period of the subsequent 
motion 

14. A liquid spheroid of small ellipticity e is rotating about 
its axis like a rigid body; prove that the angular velocity is equal 

Sirpà 

3c2 

to 4 Qire/lòf. 

15. Assuming that Saturn is a spheroid of small ellipticity e, 

and that it was originally liquid, investigate the equation 

, Smk3 cok' 
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for determining the ellipticity, due partly to its own rotation &>, 
and partly to the disturbance caused by its ring, which is supposed 
to be a flat concentric circular disc, of uniform thickness and 
density and lying in the plane of the equator : where M is the 
mass of Saturn, k its mean radius; m the mass of the ring, c ± b 
its bounding radii, and c is large compared with k. 

Prove also that the value of gravity at co-latitude B, is to 
equatorial gravity in the ratio 

1 + e cos26> : 1. 

16. Prove that Uedekind's ellipsoid may be derived from 
Jacobi's ellipsoid by supposing the liquid enclosed in a case, and 
then imparting to the case an equal and opposite angular velocity ; 
and show that the impulsive couple which must be applied to the 
case, is equal to 

17. In the irrotational ellipsoid, prove that if the liquid be 
suddenly solidified, the loss of energy is equal to 

fM2 5 aV (V - cTW + cV, 

where H is the angular velocity of the free surface before solidifi­
cation. 

18. Obtain the equations for determining the small oscillations 
of the ellipsoids included in case v, when the position of the axis 
of rotation is unaffected by the disturbance which is supposed to be 
ellipsoidal; and prove that in the case of Maclaurin's ellipsoid, the 
period T of oscillation is determined by the equation 

W T - Eaa + EJ {(1 + 2c7a2) - Eaa - EJ = 0, 
where E is the variable part of the whole energy, and 

E M = d ' E j d d 2 , &c. 

B . I I . 
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C H A P T E R X V I . 

O N T H E S T E A D Y M O T I O N O F T W O M A S S E S O F R O T A T I N G 

L I Q U I D . 

369. W H E N a mass of liquid is rotating as a rigid body about 
a fixed axis under the influence of its own attraction, the condition 
that the motion should be steady and that the free surface should 
preserve an invariable form, is obtained directly from the considera­
tion that the reversed effective forces together with the forces 
arising from the mutual attractions of the different portions of 
liquid, must form a system in statical equilibrium. 

Let the axis of rotation be the axis of z\ V,p, as, p the attraction1 

potential, pressure, angular velocity and the density of the, liquid. 
The equation for determining the hydrostatic pressure p gives 

whence if p be constant, we obtain 

pjp + const. =• V + ̂ w2 (jr? + if). 
At the free surface p = 0, whence the equation of the free 

surface is 
V + Jo)8 (V + f) = const (1). 

370. The value of V cannot be determined without knowing 
the form of the free surface. If any particular form of the free 
surface be assumed, and the resulting value of V is substituted in 
(1), it usually happens that it is impossible to satisfy ( 1 ) ; hence 
the problem in its most general form is one which cannot be solved 

1 Since V is the attraction potential, tlV/dx — force in the direction of x. 
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by any direct method. It is however sometimes possible to obtain 
an approximate solution, in which the free surface differs slightly 
from some surface whose form is known; and we shall therefore 
proceed to investigate the steady motion of two approximately 
spherical masses of liquid which revolve like rigid bodies about a 
fixed axis. 

The present investigation is taken from a paper by Prof. 
G. H. Darwin1. 

371. We must first find the potential of a homogeneous mass 
of gravitating matter of unit density whose free surface is approxi­
mately spherical. 

Let the equation of the bounding surface be 

r = a ( l + t * n Y n ) (2), 

where Yn is a spherical surface harmonic of degree n, and an is a 
small quantity whose squares and products may be neglected. 

If V, V' be the potentials at an external and internal point 
respectively, we may assume 

V = frra'lr + \ A n (a/r)"+ 1 F„ (3), 

7 ' = - K + s X ' W " ) " ï 7 » W . 

for these values evidently satisfy the equations V * F = 0 and 
V2V' + 4 7 T = 0 respectively- The conditions to be satisfied at the 
surface of the solid are 

V = V + const (5), 

dV/dr = dV'/dr (6). 

Since the A ' a and A " s are small quantities of the order a, we 
may in the small terms put r = a, but in the first term we must 
give to r its full value from (2). 

Substituting in (6) we obtain 

f T r a " %anYn - S (n + 1) A J n = - fra* S ^ F . + l„A„Yn, 

whence equating coefficients of Yn we obtain 

4nra\ = (n + 1 ) A n + nAn'. 

Similarly from (5) we obtain, 

^ . = 4 . ' . ' 

1 " O n the Figures of Equilibrium of Rotating Masses of Fluid," Phil. Trnim. 

1887, p. 397. 
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Whence 

3 1 2n + 1 \a 

(7), 

(8)· 

372. Let us now suppose that there are two masses of liquid 
whose free surfaces are approximately spheres, and whose centres 
arc o and 0. 

Let there he two sets of rectangular axes whose origins are o 
and 0 respectively, and let the axis of z be measured from o to 0, 
and that of Z from 0 to o. Let Oo = c ; a, ^4 the radii of the 
spheres whose centres are o and 0 respectively. Let P™ be an 
associated function whose origin is 0 and whose axis is OZ, and 
let p™ be a similar function when the origin is at o and the axis is 
oz. Let the axis of rotation be a line parallel to o x drawn through 
some point on Oo whose distances from 0 and o are D and d 
respectively. If £1 be the potential of the centrifugal forces, we 
have 

Xl = i 0 }»(y« + ^ + J _ 2 d « ) . 

Now if r, cos - 1 ft, cp be polar coordinates referred to o as origin, 

Pr = /*, P. 0*) = \ ( V - 1 ) , p : O ) = 3 (1 - A 

whence 

XI = |co 2 (a? - 2drp^ + ir'p2 + §r2 - ^r'p? cos 2oj>). 

Let us now put wa — r n p n , 2 w n = r"pB

2 cos 2<p, so that w n, 2wn are 
solid harmonics of positive degree, and we obtain 

a = W (d* - 2dwt + i « / 2 + | r 2 - i 2w 2) (9). 

Similarly the value of 12 referred to the other origin 0 is 

n = k ( £ 2 - 2D w, +1 + ik -1 , wt) ( i o ) . 

IRIS - LILLIAD - Université Lille 1 



373. It will hereafter be necessary to employ the transference 
formulae given in Chapter XL § 227. Writing TT — 9 for 6 in these 
formulae, and remembering that P™ {cos (TT - 6)} = (-)" _ mP™ (cos 9), 
and multiplying both sides of each equation by cos m<p, the 
formulae become 

Vi+a •(11), m ) - r2"+1 ,T0 (2m + *)I c"'+ 

(» m)- - , * " ( 2 m + «)l U ^ 

374. Let F, « be the potentials at an external point of the 
solids 0, o respectively ; and let V, v be divided into three parts 
Vv V „ Va and vv vv v3 respectively. By (1), the condition that the 
free surfaces of the two masses of liquid should be equipotential 
surfaces, is that the equation 

V 1 + V 1 + V 3 + vl + v2 + vs + il = const (13), 
should be satisfied at each of the free surfaces. Since the free 
surfaces are approximately spherical, each of the three v's will be 
of the form (7), and each of the three V's will be of a similar form 
with A and H written for a and r. Expressing the series (7) in 
terms of solid harmonics of positive degree instead of surface 
harmonics, it follows that (13) will be satisfied provided the 
following conditions are fulfilled. 

(i) F, must consist of a series of zonal solid harmonics of the 
form (7) referred to the origin 0, and must consist of a similar 
series referred to the origin o, such that when the expression 
V1 + vx is transformed by means of (11) and (12) into two separate 
series of zonal solid harmonics referred to the two origins 0 and o 
respectively, the coefficients of all the harmonics must vanish 
except those of IF, and wr 

(ii) F 2 + v.2 must consist of two similar series of harmonics, 
such that when F 2 •+ v2 is transformed into two separate series of 
zonal solid harmonics referred to 0 and o respectively, all the 
coefficients must vanish except those of Wv TF2, wt, w2, and the 
coefficients of W2, wB in F a + v2 and the coefficients of Wv w1 in 
F, + F z + vt + v2 must be determined so as to annul the terms 
involving these quantities in 12. 

(iii) F 3 + v3 must consist of two series of tesseral solid har­
monica 2 Wn, 2wB, such that when F a + va is transformed into two 
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separate series referred to 0 and o respectively, all the coefficients 
must vanish except those of tWa, 2w2, which must be determined so 
as to annul the terms involving these quantities in LI. 

The terms R 2 and r2 in £1 need not be considered, for since the 
corresponding forces are symmetrical about each origin, they pro­
duce no departure from sphericity. 

When we have determined the three quantities VL + vt, V2 + vv 

y „ + v3 and the form of the boundary corresponding to each, the 
final result will be obtained by addition. 

3 7 5 . We shall now consider the potential P, + v,. 
Let the equations of the two surfaces be 

R / f f l \ 3 n " 2 / i + i M y + 1 

A = 1 + [ a ) 2 ^ 2 U J H » R W « ( 1 5 ) ' 

where the h's and I l ' s are unknown coefficients whose values are to 
be determined. Putting V = A'/c*, 7 = a 2 / c 2 , it appears from ( 7 ) 

and (8) that 

- 3 T Kr) + 2 ™ [ t j i a r ^ ( 1 7 ) -

Putting m = 0 in (12), and transferring to 0 by the resulting 
formula, we obtain 

4 > T r A ! > k y ° f a \ k Wj, 

3c ft_o \ c ) a k 

+ 2 ™ 3 / A y i f „ r n _ 1 k y ° (Zo + n)! ( a \ k w k 

c \ c j n = 2 n —1 *=o AM n! W a* 
the value of v1 + V1 is 

ff7ra U / *=o 2A - 2 I. J W r* + c* 

.(18). 5 W a* „ = 2 n! AM m - 1 " 

This quantity is to vanish when r has the value given by (14) 
lor all values of k except k = 1. Since the squares and products 
of small quantities are to be neglected, we may put r = a in the 
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term in square brackets, but in the first term we must give to 
a/r its full value ; whence equating the coefficient of Wk to zero 
we obtain 

2fc + 1 3hk 3 fa 

m = 2 n \ k \ ri—1 

Therefore A* = 1 + # 

and by symmetry 
- = 2 n ! k \ T i - l " 

"=°° (n + s)! 7"_ 1 

tt=2 « ! S I 71 — 1 

.(19), 

.(20). 

For the purpose of obtaining an approximate solution it will 
be sufficient to calculate the values of the I T a and A's as far as c"5 

only; we shall therefore require only the first terms of the two 
series, and we thus obtain 

fa\'(k + l) (ft+ 2) 
= i + l 

= i + f 

{cj 2! 

A J (k + 1) (k + 2) 

•(21), 

2 ! 
.(22). 

Returning now to (18) we must determine the portion of the 
potential which involves harmonics of the first degree. From (16) 
it is seen that at the surface of o , vl contributes nothing; whence 
by (17) the portion of the potential is 

3c2 
\cJ „ , ¡ ¡ 7 1 - 1 

and when the origin is at 0, 

U, = 
47ra 3 

1 + * 
,=° n + 1 
\ n - 1 

•(23), 

.(24). 

376. We must now consider the potential VT + vt due to the 
rotational terms, which are equal to leo2W2 or ^&)2w2 according as 
the origin is at 0 or o. 

By Chapter XV., Ex. 14, if a spheroid of small ellipticity e is 
rotating with angular velocity to, then e = 15«ua/167r ; let us there­
fore assume for the equations of the two masses of liquid 

Z„iT"}F„...(26). = 1 + 
w . a \ 3 n ^ ° 2n + 1 /M 

2 U 
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and the potential V2' due to the whole sphere A and its inequalities 
can be at once written down by symmetry. By (12) the value of 
V a ' when transferred to o is 

V , ^TTA'K^Wu A*%°> (k+l)(k + 2)wk 

2 3c k _ a ck 1 5 c3

 i = 0 c* 

c4 «=s w - 1 a = o A! n! ck 

Substituting the value of a/r from (25) in the first term of 
(27), we find that the value at the surface of the portion involving 
e, added to the second term of (27) 

This annuls the term ^<uBwa in the rotation potential; hence 
the value at a of the potential clue to the inequalities of the two 
spheres minus the above mentioned term and the outstanding 
potentials of the first degree is, 

v 4 - „ = - 4 7 r A ' T ( 2 w + 1 )
 l»w« + ^ L \ A ' n Y J » _ w -

2 2 3c n t h (2ra-2)c" + c _ M r 2 n - l c . 

2 7 r 6 ^ 1 s ' 1 = c c 

+ - ,- 2 ( « 4 1) (n + 2)c-"w. 

+ ~ c ~ W , r 2 "A! n! A - l ^ c " ' 
whence 
_2rc + l , M 

2 w - 2 2 M - 2 1 ( 1 Vc 
) 2 (n + 1) ( T I + 2 ) 

\cJ s = 2 A ! ri A - 1 

Similarly 

By (7) the potential due to the inequality ^f7-~2w2 in (25) is 
equal to -^Tredwjr5', whence proceeding as before, the potential va' 

due to the whole sphere a and its inequalities is 
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By (7) the potential due to the inequality —^tqjr1 in (32) is 
— 27rea692/15rB; whence the potential v3' of the mass o and its 
inequalities is 

Whence at the surface, the value of the potential of the 
inequalities is 

and since § w e f c - - j ^ T r e f t = A 7 1"*?! = TTJW"?. . 

the term — %eq2/r* in (32) annuls the rotational term ^a>sqa in 

The value referred to 0 of the potential of the inequalities of A 
is 

and the value of this at the surface of o is 
n = °o 

F 3 = - ^ 7 r ^ 5 C - 2 C F ? N 

whence neglecting higher powers than cf5 we obtain 

L = f a ( ^ ) \ n + 1) (n + 2) (29), 

A . = tV (°)V + l ) ( n + 2) (30). 

The outstanding potentials of the first degree are 

M2 = ^•n-eA'wJc', and = jrirea'WJc1 (31). 

377. Let us write Q2, q 2 for 2 W 2 , 2w 2; and we have lastly to 
find the potential due to the rotational terms — j$ay'q2 and — y j OI*Q2 

in Q. 

Let the equation of the free surfaces be 
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* \c) * = 2 fc-2! n + 2 ! k-l 
Whence 

A \ * „ / a \ 3 *=" k + nl Tk~ 
M " = ™€ UJ + * [ c J *5 £ ^ T T T 2 ! * = T ^ 

Similarly 
7 

m,. vc; 2 W .Ja s - 2 ! fc + 2 ! s - 1 

Whence neglecting [ajcf and (^L/c)a we obtain 

mn = fa (A/cy, Mn = TVe (a/cY (37). 

378. In order to determine the angular velocity, we must 
equate to zero the sum of the harmonic terms of the first degree in 
fl in (23) and (31) ; we thus obtain 

- a*d + iTTAVC2 + f T r e ^ V c 4 = 0, 

or - a?d + f T T A V C 2 + %AWjcl = 0. 

Similarly - rfD + f 7 r a 3 / c 2 + f a V / c 4 = 0. 

Adding and remembering that D + d = c, we obtain 

{1 - f ( 4 B + a5)/c5} = J7T ( ^ 8 + c^/c 8 , 

and since we neglect powers above (ajcf we obtain 

HI" = f 7T (X 3 4- a3)/c3 (38). 

379. The object of the problem which we are considering is, 
to obtain the equations of the free surfaces of the two masses of 
liquid ; this will be effected by adding the inequalities in equations 
(14), (25) and (32) to unity, and substituting the values of h„, l„, 
and m„ from (21), (29) and (37). 

This will give us the equation of the boundary of the mass o. 

Similarly by adding equations (15), (26) and (33) and substi­
tuting the values of Hn, LN, and Mn from (22), (30) and (37), we 
shall obtain the form of the free surface of the mass 0. We shall 
thus obtain 

whence equating coefficients from (34), (35) and (36) we obtain 

2n + 1 3m.n , [A 
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•which expressed in terms of surface harmonics is 

r~ = 1 - ie ( 2 A - p.? cos 2 # + (£j {f Pi + \ g) {f̂  + f Q ^ Q V f (39)-
Similarly 

I = 1 + j e (2P. - P ; eoa 2 « + gj|f P a + $ ( ^ ) 

380. Prof. Darwin has entered into an elaborate series of 
numerical calculations for the purpose of ascertaining the forms of 
the two figures when they are in close proximity with one another; 
and has computed and drawn the figures which are shown in the 
accompanying diagrams. 

Figures 1 and 2 show the form of the sections of the figures 
through and perpendicular to the axis of rotation when the masses 
are equal and nearly in contact, the constants being chosen so that 
A = a, c/a = 2 646, a>2/47r =• '038, and h the moment of momentum 
x 472. It will be observed that the section through the axis of 
rotation is considerably more elongated than the section perpen­
dicular to that axis. 

Figures 3 and 4 are particularly interesting. Here the masses 
are equal and c/a = 2'449, & ) 2 / 4 7 r = '0494, h x -482, and the masses 
partially overlap. Although two portions of matter cannot actually 
overlap so as to occupy the same portion of space, yet the continuity 
of figures of equilibrium leads to the conclusion that the two 
masses in this case constitute a single mass of liquid. The probable 
form of the free surface is shown by the dotted line connecting 
the two masses. 

It will be observed that both the angular velocity and the 
moment of momentum of the system is greater in this case than in 
the preceding; it is therefore to be inferred that for a properly 
chosen moment of momentum, there exists a dumb-bell figure 
of equilibrium, and that when the ratio of the square of the 
angular velocity to the density is less than a certain quantity 
which lies between 4TT X "0494 and 4-n- x '038, a single figure of 
equilibrium becomes impossible and the mass divides into two. 

Figures 5 and 6 show the forms of the surfaces when the 
masses are unequal, the ratio of the larger mass to the smaller 
being 27. The free surfaces consist of two detached masses, and it 
is remarkable that the smaller mass has a very distinct furrow, 
which indicates a tendency for it to break up into two separate 
masses. 
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381. Poincare" has shown by a difficult analytical process that 
when Jacobi's ellipsoid becomes moderately elongated, inslability 
sets in by a furrowing of the ellipsoid along a line which lies in a 
plane perpendicular to the longest axis; and it is to be noticed 
that this furrow is not symmetrical with respect to the two ends. 
Assuming the correctness of this result, it would appear that there 
is a tendency to form a dumb-bell figure with two unequal bulbs. 

MISCELLANEOUS EXAMPLES. 

1. A vessel in the form of a regular polyhedron is filled with 
fluid, and revolves with given angular velocity around a vertical 
axis passing through its centre of gravity; if P denote the whole 
pressure on the surface of the vessel, $ the whole surface, and II 
the pressure at the centre of gravity, prove that P — US is 
constant for every vertical axis. 

2. Prove that the relative stream lines for liquid bounded by 
the hyperbolic cylinders x(x — y) — a2, y (x + y) = b2 are the quartic 
curves, 

[x (x — y) — a2} [y (x + y) — b2} — const. 

3. A right circular cylinder whose section is r/a = l + / ( # ) 
where both f ( 9 ) and f (9) are very small, is surrounded by an 
infinite liquid. If the cylinder have an angular velocity &> about 
its axis, prove that the velocity potential at any point of the 
liquid is 

a W / ( a ) sin (a - 6) da 

7r Jo r2 — 2ar cos (x - 9) -f a2' 

4. A circular cylinder of radius a moves along the axis of x 
with velocity — 1. Prove that the direction of motion of a particle 
of the fluid with respect to still water, is a tangent to the circle 
drawn through the particle and touching the axis of x at the point 
where the axis of the cylinder at the instant cuts this axis; and 
also that if p is the radius of curvature of the path of the particle 
relative to still water 

a2 = 4,p { y - \ b ) , 
where b is a constant. 

5. The resolved attractions of a body symmetrical about the 
axis of z are f (z, -nr) and F (z, -nr) respectively perpendicular and 
parallel to that axis. The equation of a solid of revolution is 
zrf (z, •nr) = a-as2 + b, where a and b are constants. Prove that if 
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this solid be made to move parallel to its axis in an infinite liquid, 
the stream lines are given by equating the left-hand side of this 
equation to a constant, and the velocity potential is F (z, nr) 
multiplied by a constant. 

When the moving solid is formed by two spheres intersecting 
at an angle 7 r / ? i , find the velocity potential and current function 
by choosing as the attracting body a series of 2n — 1 particles, 
situated on the line joining the centres so that each is the image 
of the two adjacent particles, having their masses proportional to 
the cubes of their distances from any point on the intersection of 
the spheres, and being alternately attractive and repulsive. 

6. Fluid moves irrotationally within an ellipsoidal cavity 
whose semi-axes are a, b , c in a vessel which turns freely about the 
axis of c. Show that the locus of points at which the pressure is 
the same as that at the centre is two planes, and that the pressure 
at any other point exceeds the pressure at the centre, by a quantity 
proportional to the product of its distances from these planes. 
Show also that each particle of fluid returns to the same place in 
the vessel after a time T (a2 + b2)/'2ab, where T is the time of a 
complete revolution of the vessel. 

Find the place from which a drop of fluid may be removed 
without disturbing the motion. 

Let an internal ellipsoid be described touching the cavity at the 
extremities of the axis of rotation, and having all its sections 
perpendicular to this axis similar to those of the cavity. If the 
mass of fluid within this ellipsoid be suddenly solidified and 
rigidly connected with the rotating vessel, find what change in the 
motion is produced. 

7. Liquid is contained in a thin rigid ellipsoidal case, which is 
held in any position in contact with a smooth horizontal plane; if 
it is released, prove that the pressure on the table is instantaneously 
reduced in the ratio 1 : 1 + P, where 

\Pp2 = m V (&" + c2) + n'F (c2 + a2) + I'm2 {a2 + b2), 

and p is the central perpendicular on the plane at striking, and 
I, m, n are its direction cosines referred to the principal axes of the 
ellipsoid. 

Prove also that if it is dropped on to the plane, and has no 
rotation at striking, the kinetic energy is reduced by the impact in 
the ration P : 1 + P . 
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C H A P T E R X V I I . 

O N L I Q U I D W A V E S . 

382. T H E different kinds of liquid waves may be classified as 
follows1: 

I. Oscillatory Waves, which are the class of waves most 
commonly met with, and which consist of an elevation together 
with a companion hollow. They always appear in groups, and 
may either be stationary elevations or depressions, as in the case of 
a stream of running water, or may be propagated along the surface 
as at sea. 

II. The Wave of Translation or Solitary Wave, which consists 
of a single wave travelling along the surface of the liquid. Its 
form may either be that of a solitary elevation or a solitary hollow, 
the former being called the positive wave, and the latter the 
negative wave. There is however an important difference between 
the two waves, since the positive wrave possesses considerable 
permanence of form, being capable of propagation to great distances 
without suffering much degradation ; whilst the negative wave is 
incapable of travelling any considerable distance without being 
broken up. 

III. Capillary Waves, which are mainly produced by the 
surface tension of the liquid, and whose effect is insensible except 
near the surface of the liquid. 

IV. Sound Waves, which in the case of liquids are due to the 
very slight changes which the density of a liquid under pressure 
experiences. They are insensible to sight, and the consideration 
of their properties belongs to the theory of sound rather than to 
hydrodynamics. 

1 Scott Kussull, Brit. Assoc. Rep. on Waves, 1842—3. 
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The mathematical difficulties of the subject are so great, that 
no complete solution of any problem has as yet been obtained 
except the trochoidal waves considered in § 388, which were first 
discovered by Gerstner1 in 1802, and afterwards independently by 
Rankine2 in 18G2 ; and we are therefore compelled to resort to 
approximate methods, which depend upon the assumption that the 
motion is sufficiently slow for it to be permissible to neglect the 
terms involving the squares and products of the velocities. The 
problem thus consists of (i) the determination of a velocity 
potential which satisfies Laplace's equation ; (ii) the determination 
of the boundary conditions to be satisfied at the fixed boundaries of 
the liquid ; (iii) the determination of the conditions to be satisfied in 
order that the free surface should be a surface of constant pressure, 
or in the case of two liquids which are in contact, that there 
should be no discontinuity of pressure at the surface of separation. 

S E C T I O N I. 

Oscillatory Waxes. 

383. We shall first consider the waves propagated in a liquid 
of uniform depth h under the action of gravity. 

Let the plane of the undisturbed surface be the plane of x y , let 
the axis of x bo measured in the direction of propagation of the 
waves, and let the axis of z be measured vertically upwards. 

Since the motion is supposed to be irrotational, the velocity 
potential satisfies the equation 

V * 4 > = 0 (1). 

At the bottom of the liquid where z = — h, 

d<pidz = 0 (2). 

The pressure is determined by the equation 

pip + yz 4- <b + \ q ' = const (3), 
where q is the resultant velocity. At the free surface dp/'dt = 0, or 

+ rfP.O (4). 
at dx dy dz 

1 TliKorie der Wellen, Abhantl. Knn. BolmihcJien Genel. Wixs. 1802. 

2 rhil. Trajis. 1 8 0 3 . 

1 5 . I I . 1 0 
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Also if rj be the elevation of the free surface above the undis­
turbed surface, we must have 

1 7 • = dtbjdz, when z = TJ (5). 

So far our equations have been exact; we shall now assume 
that the motion is so slow that the squares and products of the 
velocities may be neglected. Substituting the value of p from (3) 
in (4) and neglecting small quantities of the second order we 
obtain 

d°<f> deb n 

d ? + ° d z = 0 ' 

when z = 0. Since we are dealing with wave motion, <b must be 
an harmonic function of the time, whence if I be the length of the 
simple equivalent pendulum 

and therefore Idtb/dz = <p, when z = 0 (6). 

Waves in Rectangular Canals. 

384. When the motion is in two dimensions, we may suppose 
that the liquid is bounded by two parallel planes, which are at 
right angles to the crests of the waves. Hence the motion will be 
the same as that of waves propagated along a canal whose cross 
section is a rectangle. 

Let X be the length of the waves, [/"the velocity of propagation, 
h the depth of the canal. Since the motion is in two dimensions, 
we may assume 

<f>= f (z) cos (mx — nt), 

where m = 2 7 r / X , n = 2 7 r ? 7 / X , n? = g\l. Substituting this value of </> 
in (1) we obtain 

the solution of which is 

f — P cosh mz + Q sinh mz. 

Equations ( 2 ) and (6) require that 

P sinh mh = Q cosh nth 
P = mlQ, 
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whence <b = A eosh m (z -f h) nos (mx — nt) 

ml = coth mh, 

and IP = w'/m* = gjin?l 

= gXl2rr . tanh 2n-A/A. (7), 

which determines the velocity of propagation. 

Putting 4>Trh/\ = fj., we obtain 

log U' = — + cosech /x, 

which is positive or negative, ? being supposed positive, according 
as 

/tt > or < sinh /x > or < [ft + /x3/3 ! + ), 

and is therefore negative. Hence U decreases as /x and therefore 
m increases, and therefore (7) cannot be satisfied for a given value 
of U by more than one value of m. Hence there is only one wave 
length which corresponds to a given velocity of propagation ; also 
the velocity of propagation diminishes as the wave length increases. 

385. When h/X is small, tanh 2irh/X = 2irh/\, and 

U ^ g h (8), 

which determines the velocity of propagation of long waves in 
shallow water. 

When h/X is large tanh l-rrhlx = 1, and 

U'=g\j2Tr ( 9 ) , 

which determines the velocity of propagation of deep sea waves. 

380. At the free surface z = n, where v is the elevation; 
whence substituting the value of <p in (5) and suitably choosing 
the origin we obtain 

r) = — AmrT1 sinh mh sin (mx — nt). 

Let (x, z) be the coordinates of an element of liquid when 
undisturbed, (£, f) its horizontal and vertical displacements, also 
let. x = x + £ z = z + f; then 

f = d<b/dx' = — Am cosh m (z + h) sin (mx' — nt) 

(T= dfpjdz = A rn sinh in (z' + /<) cos (mx — nt). 

1 0 — 2 

IRIS - LILLIAD - Université Lille 1 



Since the displacement is small we may put x — x , z—z as a 
first approximation, and we obtain 

f = — a cosh m (z + h) cos (mx — nt) 

£ = — a sinh m(z + h ) sin (mx — nt), 

where Am/n = a; whence the elements of liquid describe the 
ellipse 

f/cosh8m (z + h) + f/sinh'm (z + h) = a\ 

387. When the depth of the liquid is very great we may put 
h = oo , and the hyperbolic functions must be replaced by expo­
nential ones; we shall thus obtain 

tf>= A e m t cos (mx — nt) 

n — — AnvnT1 sin (mx — nt), 

and the elements of liquid will describe the circles 

f + T = (Am/nf e8™*. 

We shall consider the problem of deep sea waves at greater 
length in § 408. 

Gerstners Trochoidal Waves. 

388. It was shown by Gerstner in 1802 and was rediscovered 
by Rankine, that there exists a certain form of trochoidal waves, 
which can be expressed in finite terms without resorting to methods 
of approximation. 

Let the motion of the liquid be given by the equations 

x = a + k ' 1 e ' a sin k (a + ct) \ 

- z = b + k~l e"* cos k (a + ct) J 

where k and c are absolute constants, and a and b are functions of" 
the initial coordinates of the element of liquid whose coordinates 
at time t are (x, y ) . 

The conditions of continuity require that the area of any 
elementary rectangle bounded by the curves a, b , a + Sa, b + 8 b , 
should be constant throughout the motion, this requires that 

d (x, z) ^ 

d (a, b) 
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where A is a quantity which is independent of x , z or t, From 
(10) we obtain 

d ( x ' ^ = _ 1 • 
d(a,b) 

hence the conditions of continuity are satisfied. 

The Lagrangian equations of motion are 
d , . . .. dx dz 

d d { p l p + 9 z ) = - X d a - Z T a > 

d . . . ..dx ..dz 

which by (10) become 

(p/p + gz) = kc2 6 " M sin k (a + ct), 

~ (p/p + gz) = kc2 e-lb cos k (a + ct) - kc2 e'2**; 

whence 

p/p - g { b + k'1 e _ i S cos k (a + ct)} = - c2 e -*6 cos k (a + ct) 

At the free surface p must be independent of t, whence 
g = kc2. 

The wave length X = 27r/fc, and c is the velocity of propagation ; 
hence c = (gX/^irf, and is therefore equal to the velocity of propa­
gation previously found for deep sea waves. 

The pressure is given by the equation 

p/p = gb + ^c2e-^ + C 

= c2(kb + \e-™) + C, 

and therefore retains the same value at every point moving with 
the liquid. If therefore we put b = B at the free surface, we 
obtain 

p/p = c2{k(b-B) + % ( e ' M - e - } . 

which makes the pressure vanish at the free surface. The quantity 
b increases with — z, and therefore the wave disturbance decreases 
with the depth of the liquid. 

The velocities of the liquid are 
u = x = ce~kb cos k [a + ct) 

w = z = ce~a sin k (a + ct), 
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Waves at the Surface of Separation of Two Liquids. 

o89. Let us first suppose that two liquids of different densities 
(such as water and mercury) are resting upon one another, which 
are in repose except for the disturbance produced by the wave 
motion, and which are confined between two planes parallel to 
their surface of separation. Let p , p be the densities of the lower 
and upper liquids respectively, h, h' their depths, and let the origin 
be taken in the surface of separation when in repose. 

In the lower liquid let 

cj) = A cosh m(z + h) cos (mx — nt) (11). 

and iu the upper let 

<£' = A ' cosh m (z — h') cos (mx — nt) (12), 

also let TJ = a sin (nix — nt), 

be the equation of the surface of separation. At this surface, the 
condition that the two liquids should remain in contact requires 
that 

dvjdt = d(f>[dz = djs'jdz, when z = 0. 

Whence — na = mA sinh mh = — niA' sinh mti. 

If Bp, Sp' be the increments of the pressure due to the wave 
motion just below and just above the surface of separation, then 

Sp + (jprj + pd<f>/dt = 0, 

and Sp' + gp'v + p'dfp'/dt = 0, 

from which it can be shown that a velocity potential does riot 
exist. In fact 

fdw du\ d (x, z) 

[dx - dz) djafh) = W A - W A + M A " 

where the suffixes denote partial differentiation ; whence if a> be 
the molecular relation 

w = kce a b / ( e ' M - 1). 

The motion is therefore rotational, and therefore waves of this 
description could not be generated in a frictionless liquid which is 
under the action of natural forces. 
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and since Bp — Bp', we obtain 

g(p — p')v = — pdcp/dt + p'dcb'/dt 

~n(— Ap cosh mh + A ' p cosh mh') sin (mx — nt) 
= (p coth mh + p coth mh') n'v/m, 

whence 

U* = {n/mf = - - ^P~P1 i — n , , 

m (p coth mh + p coth mh) 
where m — 2TT/\. 

390. When X is small compared with h and K, then mh, mh' 
are large, and coth mh and coth mh' may be replaced by unity ; we 
thus obtain 

If p > p , U2 is negative and therefore n is imaginary ; hence if 
the upper liquid is denser than the lower the motion cannot be 
represented by a periodic term in t, and is therefore unstable. 

If the density of the upper liquid is small compared with that 
of the lower, we have approximately 

U2=gml(l-2p'/p). 

If the liquid is water in contact with air, p'/p = "00122, hence 
if the air is treated as an incompressible fluid 

Z7a = '99756 x gin\ 

391. Secondly, let us suppose that the upper liquid is moving 
with velocity V, and the lower with velocity V; then we may put 

<fi = Vx + A cosh m(z + h) cos (mx — nt) 
<p' = Vx + A ' cosh m(z — h') cos (mx — nt). 

Let the equation of the surface of separation be 
F=T] — (xsin (mx — nt) = 0. 

Then in both liquids F must be a bounding surface, and there­
fore when z = 0, 

d F + d c b d F + d F d c p _ 0 

dt dx dx drj dz ' 

dF d$' dF + dF d $ _ Q 

dt dx dx dn dz 

Whence an — mVa + mA sinh mh = 0 

an — mV'a — mA' sinh mh' - 0. 
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I F a u e s m Canals with Sloping Sides. 

392. In all the preceding sections the motion considered has 
been in two dimensions, and the results are therefore applicable 
either to straight crested waves in an unlimited ocean, or to waves 
in a canal whose cross section is a rectangle. We shall now 
consider some cases of three-dimensional motion. 

We shall first discuss the case of waves propagated along a 
straight canal of uniform section, whose sides are two planes 
inclined at an angle %TT to the horizon. 

Let h be the greatest depth of the canal, and let the origin be 
taken in the line of intersection of the two sides. The equations 
of the two sides of the canal are y ± z — 0, and the boundary 
conditions are 

dcpjdy — d<p/'dz = 0 when y — z = 0 

d(b/dy + d<pjdz = 0 when y + z = 0. 
The equation of continuity and the boundary conditions will 

be satisfied if 
<p = A cosh my oosh mz cos »J2 (mx — nt). 

At the free surface where z = h, we must have 
Idcp/'dz = cp, 

for all values of x and y , whence 

ml = coth mh, 

Hence if U=njm be the velocity of propagation, 

A sinh mh = a ( V — U) 

A'mih.mh' = - a ( Y - U). 

If hp, hp be the increments of pressure at the surface of 
separation due to the wave motion, 

hp/p + grj + dcpjdt + \ {V — Am cosh mh cos (mx — nt)}" = \ V2, 

hp'jp + gv + dtp'ldt + % {V — A'm cosh mh' cos (mx — nt)}2 = | F". 

Therefore since hp = hp', 

ag (p — p') = Amp (V— U) cosh mh — A'mp' ( V —IT) cosh mh' 

or g (p — p) = mp (F— Lr)* coth mh 4- mp' ( F' - IT)2 coth m/t', 

which determines f/-. 

IRIS - LILLIAD - Université Lille 1 



and therefore U* = n3/m? = g/lm* = gm 1 tanh mh, 

= (gXjw^T) tanh Trh^2/X. 
The free surface is determined by the equation 

dn/dt = dtpjdz = mA sinh rah cosh my cos \/2 {rax — nt), 

whence v ~ ~ (mA/ny/2) sinh mh cosh my sin \/2 (ma; — 

These results are due to Prof. Kelland. 

The equation of continuity and the boundary conditions will 
also be satisfied by assuming 

0 = 5 sinh my sinh mz sin »J2 (rnx — nt), 

in which case we should have 

IP = (gXlTry/2) coth irh^lX, 

Tj = (mA /n^/2) cosh mh sinh my cos \J2 (ww; — n£). 

393. Kelland1 also obtained the solution for progressive waves 
whose crests are perpendicular to a shore whose inclination to the 
horizon is \TT, and which are moving parallel to the shore. This 
solution has been generalized by Prof. Stokes" for a shore sloping 
at any angle a. 

Let the origin be taken in the line of intersection of the shore 
with the undisturbed surface; then the equation of the shore 
will be 

y sin a + z cos a = 0, 
and the boundary condition is 

dtf> . d<f> n sin a + —,— cos a = 0, 
ay dz 

which is satisfied if 

<p = A exp {— TO (y cos a - z sin a)] cos (mx — nt). 

Whence ml sin a = 1, 

and U2 = (gX \2ir) sin a. 

394. If we attempt to determine the solution for progressive 
waves along a canal whose sides slope at an angle ^TT to the 
horizon, by assuming that 4> = F ( y , z) cos >J2 (mx — nt), it will be 
found that the period equation has only one real root, viz. mh — 0, 

1 Trans. Roy. Soc. Edin. vol. xv. p. 121. 
2 Brit. Assoc. Rep. Hydrodynamics, 1846. 
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repeated four times. Hence it follows that progressive waves in a 
canal of this form are unstable; we must therefore assume 

= cosh V2 (mx — nt). 
The boundary conditions are 

dfyjdy = d<£>/dz, when y = z ^ 3 , 

d<&jdy — — d^jdz, when y = — z<J3. 

These equations together with the equation of continuity will 

be satisfied by assuming 

<P = sin m (z — n) cos my + sin \m \(\I'A — l)z — 2x) cos \ m ( * / 3 + l)y 

— sin \ m {(iJS + 1 ) z + 2a} cos \ m (V3 — 1 ) y. 

Substituting this value of * in ( 6 ) and putting m (h — a) = 7 , 
we obtain the following equations : 

ml = tan 7 = (V3 + 1 ) tan { 7 - I ( 3 - v ' 3 ) mh} 

= (V3 - 1 ) tan (3 + V3) - 7 } . 

From these equations wo find that tan 7 is an harmonic mean 
between tan \ ( 3 - \ / 3 ) mh and tan |- ( 3 + V3) mh, which determines 
7 and therefore a in terms of mh ; and on eliminating 7 we shall 
find that the period equation is 

(2 - V3) cos (3 4 - V3) mh + (2 + A / 3 ) cos (3 - V3) m/i - cos 2mh>J3 = 3 , 

which is an equation with an infinite number of real roots. 

Since wave motion is stable when the sides of the canal are 
inclined at an angle \IT to the horizon, and unstable when they 
are inclined at an angle \ir, it follows that there must be some 
inclination lying between \TT and \TV which forms the limit 
between stability and instability. The value of this angle has not 
apparently been determined. 

Standing Waves across a Canal. 

395. If liquid is contained in a straight canal whose sides are 
inclined at any angle a to tho horizon, and if the free surface is 
either displaced in such a maimer that its equation is i) = F { y ) , 
where y is measured across the canal, and the liquid is then left to 
itself; or if a velocity f (y) is communicated to every point of the 
free surface, after which the liquid is left to itself; the subsequent 
motion of the liquid, if periodic, will consist of oscillations composed 
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of vvaves whoso crests are parallel to the sides of the canal, Such 
oscillations are called standing waves, and the theory of them has 
been investigated by Kirchhoff1 and GreenhilP. 

When the sides of the canal are inclined at an angle \TT to the 
horizon, the boundary conditions are 

d<pjdy — drpjdz — Q when y — z = Q 

dtp/dy + d<pi'dz = Q when y + z = 0 

We can at once obtain an algebraic solution, by supposing that 

the free surface is initially plane. 

Let t] = a y , r) = 0 initially. The equation of continuity and (13) 
are satisfied if 

(b = Ayz sin nt. 

From (6) we obtain l = h; also 

r) = dcpldz = Ay sin id. 

Whence y = — An~*y cos nt, 

and therefore <p = — anyz sin nt. 

The value of the current function i ^ r is 

yfr = \an (y2 — z'1} sin nt, 

which shows that the stream lines are rectangular hyperbolas. 

396. The equation of continuity and (13) are also satisfied if 

0 = \ A {cos m(y + iz) ± cos m (y — LZ) + cos m (z + uy) 

+ cos m (z — t_y)j (cos or sin) nt. 

Taking the upper sign, and putting mh—p, we obtain from (6) 

ml (cos my sinh p — cosh my sin p) = cos my cosh p + cosh my cos p. 

Since this equation is true for all values of y , wo must have 

ml = coth p = — cotp (14)· 

Similarly if we had taken the lower sign, we should have 
obtained 

ml = tanh ¿ 7 = tan p (15). 

Both the period equations (14) and (15) are included in the 
single equation 

cos 2p cosh 2p = 1, 
1 TJeber Stehende Suhwlnzungen einer schweren Flüssigkeit, Gesam. Abhand. 

vol. I i , 
2 Anier. Jour, of Math, vol, ix. p. 62. 
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which is the period equation for the lateral -vibrations of a bar. 
This equation is discussed in Lord Rayleigh's Theory of Sound, 

vol. i. p. 219, and it is there shown that it has an infinite number 
of real roots. 

397. In order to find the solution for standing waves parallel 
to a shore which slopes at an angle \TT, let 

cp = A {e

m^-ly1 + e - m ( » - i z > } (cos or sin) nt, 

the origin being in the line of intersection of the undisturbed 
surface with the shore, and y being measured from the shore. 

This value of cj> satisfies the boundary condition 

dcp/dy + d<b/dz = 0 when z = — y. 

If we take the real part of this expression alone, it will be 
found impossible to satisfy (6), but if we add together the real and 
imaginary parts we obtain 

cb = A {emz (cos my — sin my + e"" (cos mz 4- sin mz)) (cos or sin) nt, 

and (6) gives ml = 1. 

Whence I1"' = gX/Zw. 

398. The corresponding solutions for standing waves across a 
canal whose sides are inclined at an angle ^TT to the horizon, 
have also been obtained by Kirchhoff. In this case we can obtain 
an algebraic solution by supposing that the initial form of the 
free surface is the parabolic cylinder 

V = a ( h ' - i f ) , 

where h is the depth of the liquid, and the origin is a point in the 
intersection of the sides. 

The equation of continuity is satisfied if 
cp = A Q sin nt, 

where <P = z* - 3y*z + 2hs, 

and the corresponding current function is 

V = y W 3 - y ) W 3 + T / ) , 

which vanishes when y = + z*J3, so that the boundary conditions 
are satisfied. 

At the free surface z = h, and 

d * 
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Waves in a Cylinder2. 

399. The equation of continuity referred to cylindrical co­
ordinates n r , 8, z is 

& + ±*k + L , * ± + ** = 0 (i6). 

d-m2 cr efc- -a d82 dz2 v J 

If h be the depth of the liquid, the surface conditions are 

d<p/dz = 0 when z = — h (17), 

ldfp/dz = $ when z = 0 (18). 

In order to satisfy (16), assume 

(j> = AF (sr) sin n9 cosh (kz + /3) cospt. 

Substituting in (16) we obtain 

+ - » ' f + ^ = 0 (19), 
ttCT T J a - 5 7 OT 

whence F= JN (ksr). 

If a be the radius of the cylinder, dtp/dm = 0 when r = a, 
whence 

J'n(ka)=r) ( 2 0 ) , 

and the different values of k are the roots of (20), which can be 
shown to be all real. 

The value of n will depend upon the particular problem under 
consideration. If the motion is symmetrical about the origin, 
n = 0 ; if on the other hand the liquid is contained within a sector 
of angle 2a where a < \TT, and if the line bisecting the angle of the 

1 American Journal of Matliematics, vol. I X . p. 62. 
2 Lord Rayleigh, " On Waves," Phil. Mag. April, 1876. 

and therefore I = h. Also 

7] = 3A (Kl — y2) sin nt, 

therefore v = — 3An'1 (h2 — y 2 ) cos nt, 

which shows that the initial form of the free surface is a parabolic 
cylinder. 

For the solution in the general case, we must refer the reader 
to Prof. Greenhill's article on Waves1. 

IRIS - LILLIAD - Université Lille 1 



sector is taken as the initial line, we must have d<bjd8 = 0 when 
8 = + a, whence n = (2m + 1) 7r/2af where m is a positive integer. 

From (17) we obtain 8 = kh ; and from (18) we find 

kl = coth kh, 

whence p ' — g k tanh kh. 

400. Let us now suppose that the liquid is initially at rest, 
and that the free surface is displaced so that its initial form is 

r)=-m cos 8. 

Then 
<h = "ZA Jl (k-sr) cos 0 cosh k (z + h) sin pt, 

and 
dcb/dz — dv/dt = 'S,kAJ1 (km) sinh kh cos 8 sin pt, 

and 77 = — 1.kp~l AJX (km) sinh Mcos # cosjj^ (21)-

Initially TJ = nr cos 0, therefore 

OT = — Xkp~lA sinh kh J1 (Aw), 

and putting A kp~* sinh kh = — B, we obtain 

= 7 = t B J 1 (km), 

1 7 = "ZBJ1 (km) cos f? cos pt. 

Let / , = J, (k'm), then, if the accents denote differentiation 
with respect to m, 

srV," 4- J/ + (AV - 1) = 0, 

m2I^ + m l l ' + ( i V - 1) r, = 0, 

whence 

(A- - A2) fvrljjvr 4- a (iy, - / , / , ' ) . = 0. 
·< 0 

Since (A'a) and J\ (ka) = 0, the integral must vanish if k 
and k' are different; to find the value of the integral when A'= A', 
let k' = k + SA, then 

2ASA j " mJ* (km) dm + a ^ - ./,' ^ SA = 0, 

ra a? 
therefore j mJ2(km) dm = - ^ J J " · 

Hence 
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But m A ( s ^ ' l + (fcW - 1) J, = 0, 
O C T 

whence I (ArW — 1) Jffa — a J 1 + \ Jtd^ = 0, 
J 0 0 

and therefore 
2 2a 

a./," (fcV - 1) Jl (ka) ' 

2a J , (Aur) cos ö cos pi 
7 7 " ( j fcV^ l Y X f ï a ) " ' (JfcV - 1) Jt {ka) 

which determines the form of the free surface at any subsequent 
time. 

Waves in Hyperboloids and Cones. 

401. If we put 

<b = ztz" sin nd cos pt (22), 

(16) is satisfied ; also at the free surface where z = h, 

hdcp/dz = cb 

so that I — h. 
Let us suppose that the vessel which contains liquid having 

this motion is one of revolution ; in order to determine its shape, 
we have along a meridian section 

dd> , deb , 
-,— dz = - — acr, 
a-57 dz 

or nzdz = - C T O V 

by (22); whence integrating 

nz* = nrB + C. 

The containing vessel is therefore a hyperboloid of revolution, 
including as a particular case a cone of semi-vertical angle tan - 1 »Jn. 

Long Waves in Shallow Water. 

402. In the theory of long waves it is assumed that the length 
of the waves is so great in proportion to the depth of the water, 
that the vertical component of the velocity can be neglected, and 
the horizontal component is uniform across each section of the 
canal. In § 385 we saw that if the depth is small compared with 
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the -wave length then U' = g h , provided the square of the velocity 
is neglected. We shall now examine this result in connection with 
the above-mentioned assumption. 

Let the motion be made steady by impressing on the whole 
liquid a velocity equal and opposite to the velocity of propagation 
of the waves. Let 77 be the elevation of the liquid above the 
undisturbed surface ; U, u the velocities corresponding to h and 
h + y respectively. The equation of continuity gives 

u = hU/(h + v ) , 

whence U2 - u2 = U2 [2hy + yJ)/(h + y)\ 

If Sp be the excess of pressure due to the wave motion 

_ f U2 (2h 4 - v ) \ 

When y / h is very small the quantity in brackets is U2/h — g ; 
whence if U2 = g h , the change of pressure at a height h 4 - 77 vanishes 
to a first approximation and therefore a free surface is possible. 

If the condition U2 = gh is satisfied, the change of pressure to 
a second approximation is 

Sp=-BgPr,'/2h, 

which shows that the pressure is defective at all parts of the wave 
at which y differs from zero. Unless therefore y2 can be neglected, 

it is impossible to satisfy the condition of a free surface for a 

stationary long wave;—in other words, it is impossible for a long 

wave of finite height to be. propagated in still water without change 

of type. If however y be everywhere positive a better result can 
be obtained with a somewhat increased value of U; and if y be 
evwywhere negative, with a diminished value. We therefore infer 
that positive waves travel with a somewhat higher, and negative 
waves with a somewhat lower velocity than that due to half the 
undisturbed depth1. 

403. The theory of long waves in a canal maybe investigated 
analytically as follows2. 

Let the origin be in the bottom of the liquid, h the undisturbed 
depth, y the elevation ; and let x be the abscissa of an element of 
liquid when undisturbed, £ the horizontal displacement. The 

1 Lord Bayleigh, "On Waves," Phil. Mai]. April, 1876. 
2 Airy, " Tides and Waves," Encyc. Met. 
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quantity of liquid originally between the planes x and x + dx is 
hdx; at the end of an interval t, the breadth of this stratum is 
dx (1 + dtj/dx), and its height is h + v, whence the equation of 
continuity is 

(l+d%ldx)(h + ii) = h (23). 

Let us now investigate the motion of a column of liquid 
contained between the planes whose original distance was dx ; and 
let us suppose that in addition to gravity, small horizontal and 
vertical disturbing forces X and Y act. Since the vertical accelera­
tion is neglected, the pressure will be equal to the hydrostatic 
pressure due to a column of liquid of height h.+• rj, whence 

p=ffP(h + v ~ y ) + p F +VYdy (24). 
J v 

The equation of motion of the stratum is 

PHDL=-C]£{H+V)+XPH (25)-
Now from (24), 

dp dy „dr) [ h + y i d Y , . _ „ . 

DÎ=Z<>TX+P7DL+NY ITXDY <26); 

also in most problems to which the theory applies the last two 
terms on the right-hand side of (26) are very much smaller than 
the first, and may therefore be neglected, whence (25) becomes 

Substituting the value of W from (23) we obtain 

3 - * 3 ( « * 2 > - * * <*» 
For a first approximation, we may neglect squares and products 

of small quantities, and (23) and (27) respectively become 

?)/h = -dg/dx (28),-

%h»H3?+X < 2 9 ) -

If X = 0, the form of (29) shows that the velocity of propaga­

tion is equal to (glif. 

B . I I . 11 
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Stationary Waves in Flowing Water1. 

404. Let us suppose that water is flowing uniformly along a 
straight canal with vertical sides, and that between two points A 
and B there are small inequalities, and that beyond these points 
the bottom is perfectly level. Let a be the depth, u the velocity, 
p the mean pressure beyond A ; b the depth, v the velocity, and q 

the mean pressure beyond B: also let f be the difference of levels 
of the bottom at A and B. 

The total energy of the liquid per unit of the canal's length 
and breadth, at points beyond B is 

^v2b + g [ ydy + w = 1 (v2 + gb) b + w, 

J 0 

where w is the wave energy, and the density of the liquid is taken 
as unity. At very great distances beyond B the wave motion will 
have subsided and w will be zero. 

The equation of continuity is 

au=bv = M (30). 

The dynamical equation is found from the consideration that 
the difference between the work done by the pressure p upon the 
volume of water entering at A , and the work done by the pressure 
q at B upon an equal volume of water passing away at B, is equal 
to the difference between the energy which passes away at B, and 
the energy which enters at A . Whence 

ra+f 

pan — qbv = (^v2b + %g¥ + w)v — (\v?a +gj ydy) u, 

which by (30) becomes, 

p - q = \ v 2 + igb + wjb - \ u 2 - g (f+ Ja) (31). 

Now p and q are the mean pressures, and therefore since the 
pressure at the free surface is zero, 

p = \ga>, q = l g ° + «>'/&, 

where w' denotes a quantity depending on the wave disturbance; 
whence (31) becomes 

\M2 (a? - b 2 ) l a % 2 - g ( a - b + f ) + (w - w')/b = 0 (32). 

If we put 
D3 = 2a2b*i(a + b), M=VD; 

1 Sir W . Thomson, Phil. Mag. (5) vol. i s n , p. 353. 
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D will denote a mean depth intermediate between a and b , and 
approximately equal to their arithmetic mean when their differ­
ence is small in comparison with either; and V will similarly 
denote a corresponding mean velocity of flow. We thus obtain 
from (32) 

/, n _ f - i ^ - w ' ) l g b 
b ~ a ~ \ - V 2 / g D • 

lib — a were exactly equal to f , and there were no disturbance 
of the water beyond B, the mean level of the water would be the 
same at great distances beyond A and B; but if this is not the 
case, there will be a rise or fall of level, determined by the formula 

v - h „ r V J I g D + i w - w ' y g b 

Let us now suppose that between A and B there are various 
small inequalities; each of these inequalities will produce small 
waves whose nature is determined by the form of the functions w, 
w'; hence w and w' will both be small quantities and the sign of 
y will be independent of that of w — w'. Now f is positive or 
negative according as the bottom at A is higher or lower than the 
bottom at B. LTence if V2 < gD the upper surface of the water 

rises when the bottom falls, and falls when the bottom rises; and 

the converse is the case when V2 > gD. 

Theory of Group Velocity. 

405. When a group of waves advances into still water, it is 
observed that the velocity of the group is less than that of the 
individual waves of which it is composed. This phenomenon was 
first explained by Prof. Stokes1, who regarded the group as formed 
by the superposition of two infinite trains of waves of equal 
amplitudes and nearly equal wave lengths, advancing in the same 
direction. 

Let the two trains of waves be represented by coskiVt — x) 

and cos k' ( V ' t — x) ; their resultant is equal to 

cos k (Vt - x) + cos k' ( V ' t - x ) = 2 cos £ [(k'V - kV) t - ( k ' - k) x) 

x cos \ {{k'V + k V ) t - (k' + k) x\. 

1 Smith's Prize Examination, 1876; and Lord Eayleigh, " On Progressive 
Waves " ; Proc. Lond. Math. Soc. vol. ix. 
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If M — k, V — V be small, this represents a train of waves 
whose amplitude varies slowly from one point to another between 
the limits 0 and 2, forming a series of groups separated from one 
another by regions comparatively free from disturbance. The 
position at time t of the middle of the group which was initially at 
the origin is given by 

( k ' V - k V ) t - ( k ' - k ) x = Q, 

which shows that the velocity of propagation U of the group is 

U = ( k ' V ' - k V ) l { k ' - k ) . 

In the limit when the number of waves in each group is 
indefinitely great we have k' = k + Dk, V = V + hV, whence 

dk ' 

406. In the preceding investigation we have supposed that 
the pressure at the free surface is either constant or zero; we shall 
now find the forced waves1 produced by a surface pressure which 
is equal to 

n , f v V + & ' ) + * > ) > . . 
U + i — — , , ,„ }• s in cot. 

L a? + 62 

Let * + z + f be the coordinates at time t of a particle whose 
initial position is ( x , z ) ; also let P denote the time integral of the 
velocity potential. Then £ = — ll

 Ad r - d P . 
dx J „ dx ' dz ' 

Since the motion is small, 

the density being taken as unity. The equation of continuity is 

also if 7] be the elevation 
dP 

1 Sir W . Thomson, Phil. Mag. (5) x x m . p. 113. 
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whence if 

J 0 

X (t) is also a solution of (38). Let us now assume that 

P = — f x (t — t ) sin w t OIT = — I x ( t ) sin co (t — T ) dr, 
JO J Q 

then since % (0) = 0 

dP rt 

dt 
= — I X it — r) sin co-rdr, 

= — I (t — t ) sin w t c J t , 

also since 

| ( 0 ) = ( r - 2 + &)4/V. 

- 7 a = - r"1 (r — z + 6)4 sin tot - (t — t ) sin w t c Z t , 
J 0 

= - r"1 (r - 2 + &)* sin cot — f ^ " (t — t ) sin g o t c £ t . 
•» 0 

We thus obtain 

= - ! • " ' ( ) · - « + &)* sin coi. 

1 Thia will be proved in Chapter X X I I I . 

A solution of (34) is evidently 

i/r ( { ) = (6 - z + tic)"J exp { - gfji (b - z + ix)} (36). 

Changing ^ into — i, adding and dividing by \J2 we obtain 

(t) = r"1 [r - z + &)* cos gf xj^r2 + ( r + z - b ) i sin gt2 x/ir2} 

x e x p [ - ^ ( 6 - ^ ) / 4 r a ) . . . ( 3 7 X 

•where r2 = (& — z ) 2 + x J. 

It is known from the theory of the Conduction of Heat that 
(36) and therefore (37) is a solution of the equation1 
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Whence at the surface whore z = 0, we obtain from (33) 

The velocity potential is 

<p = ^ = - f' sin » (* - T ) t ( T ) dr (39). 
Ojb J 0 

and the value of £ is 
„ dP 1 (d<b ( r - z + b)* . 1 . . N . 

407. Sir W. Thomson has worked out the value of the eleva­
tion T) on the assumption that b — 0. This assumption undoubtedly 
makes the pressure infinite at the origin excepting for values of t 
which are equal to 2rrnr/a>, but as we shall only investigate the 
value of r\ at great distances from the origin, the solution we shall 
obtain will be sufficiently accurate to represent the motion at 
such points. 

Putting 6 = 0 , 5 = 0, we obtain 

^ (t) = (2/xf SIN (gtffix + l-n-). 

Let gl^x = k*, then the preceding equation becomes 

^•(«)=(2/fl!)*BIN(*'*'-ri7r)> 

whence if 

a = kr, 

cp = - 2 (2/g)' SIN TO (t - ajk) sm (a2 + JTT) da, 

•> 0 

- cos {(a + \aIk)1 - W / F - at + \TT}} da, 

= (2/r/)1 cos {X2 - \a>2k2 + o>t + I-TT) d \ , 

-frlcrf c o s Q J - W t f - w t + MdX (41). 
V TJI J Ju/4 

Let x be very large, and let t be so large that kt — ̂ ajk is a 
large positive quantity. Then k is small and the second integral 
vanishes, whilst the limits of the first are oo and — x , whence 
remembering that 

( (sin or cos) \ 2 d \ = (^Tr)\ 
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we obtain 
t}> = ( 2 7 r / g r ) * cos (afx/g — a>t), 

and 

y = a) (2-n-/gs)i [sin (<u2 a/gr - wi) - (g^TTta* x? sin M « ] , 

= to ( 2 ^ / / ) * sin ( o ) 2 ^ - 0 3 « ) (42), 
approximately, since the first term is large compared with the 
second. 

Hence 
\ = 2 7 r f / / a > ! , U = g/u>= {gxl^-rrf. 

We therefore see that at great distances from the origin, where 
the pressure is approximately constant, the waves are approxim­
ately the same as a procession of f r e e waves. 

On the other hand if x is large and t so small that Jet — \at\k is 
a large negative quantity, both integrals vanish; and wave motion 
does not exist. Hence as the time advances wave motion gradually 
commences from nothing until it becomes the regular procession 
of waves represented by (42) and so continues for ever afterwards. 

When x is large, the value of tf> at the time t = 2a>x/g, is 

<j> = ( 2 / g f cos ( \ 2 - i<aV + col + £TT) d\, 
J 0 

= ( 7 r / 2 < 7 ) * C O S (ro2x/g — tut), 

and therefore tf> has attained half its final value. The point x 
where this condition is fulfilled at time t may be called the mid-
front of the procession. It travels with the velocity \g\ta or half 
the wave velocity. 

Deep Sea Waives. 

408. In § 387 we determined the motion of deep sea waves 
upon the assumption that the motion is slow enough to allow the 
squares and products of the velocities to be neglected. A higher 
degree of accuracy might be obtained by substituting the solution 
we have already obtained in the terms of the second order, and 
proceeding by the usual method of successive approximation. This 
mode of proceeding is however somewhat laborious, and we shall 
therefore employ a different method which is due to Prof. Stokes\ 

1 Math, and Pliys. Papers, vol. i. p. 314. 
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Since <h and are conjugate functions of x and z , we have 

dxjdcj) = dz/d-^r, and dzjd^r = — dz/deb ; 

whence if 

\dcb) + [dfj ~ \d<p) + \djr) ' 
and if we change the independent variables from x and z to <p and 
•̂ r, we obtain 

8d<hjdx = dzjdty, Sdcbjdz = —dxjd^r, 

whence w8 + ui1 = $"\ 

and + # 0 -

 Clm) + (ZSy1 = 0, 

where C and m are constants. 
Let us convert the wave motion into steady motion by impress­

ing on the whole liquid a velocity — V, where U is the velocity of 
propagation of the waves. If there were no wave motion we 
should have eh = — Tlx, wdience we may assume 

a = -<plU + » T 2 r {By™*111 + A r e - ™ * / f 7 ) ( s n i 0 r cos) rmcb/U, 

z = - •yfr/U+mr't* ( B / m * , u - A y r m m ) (cos or sin) rmcb/U, 

where r is a positive integer. If X be the wave length, the value 
of x when <p is changed into cb — 2it\J/m must bo x + \ ; whence 
m = 2-7r /X. Also if = 0 be the equation of the free surface and 
the origin of x and cb be taken in the trough of the wave, z must 
be a maximum when cp = irU/m ; whence the cosine terms in x, 

and the sine terms in z must disappear. Since z is measured 
upwards and TJz=—ty in the undisturbed motion, must increase 
with the depth of the liquid, whence the B's vanish. • If therefore 
we write for shortness tb and T̂T for m<b/TJ and rmjr/U, the values 
of x and z may finally be written 

x = — (p/m + TO-1 A r e ~ r 4 1 sin rcb 

z = — ifr/m — m"1 £ l X J.e~r''' casreb 

where the A ' s have to be determined. At the free surface p and 
are zero, whence 
Substituting the values of z and 8 obtained from (43), we find 

(C + J,Ar cos rcb) [1 - 2Sr4 r cos rip + Xr2Ar"+ 2 t r s A r A , cos (r — s) <p] 
- £7!m/2<7 = 0...(44), 
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where in the term in the square brackets, each different combina­
tion of the letters r and s is to be taken once. 

This equation may be arranged in the form 

Ba + £\ cos <f> + _B2 cos 2<p + . . . = 0, 

and since it has to be satisfied independently of c/>, we must have 

Bo = 0, ^ = 0, B„=0&c (45). 

Let A ^ = b ; then we shall make the assumption which will be 
justified by the result, that A T is a quantity of the order b r , and 
we shall endeavour to obtain an approximate solution as far as the 
terms involving b s . Equations (45) written out at full length as far 
as the terms of the order 65 become, 

G ( l + A ' + 4A,*) - A* + 2 A 2 A 3 - 2 A 2 - U2m/2g 

G (- 2A1 + 4A X A , + 12ASAS) + A 1 + A> - SA^A, 

+ 6A1A* + 3 A ? A s - b A s A s 

C ( - 4 J 2 + G A ^ ) + A 2 - A , ' + 3 A * A , - 4 A x A t 

0 ( - QA 3 + 8 A A ) + A t - 3 A 1 A a + *A 2 A , + 2 A t A 2 

- 8 C A i + A i - 4 A l A i - 2 A 1

2 

- 10CAB + A S - 5 A 1 A i - 5A2AS 

In order to obtain a first approximation, we must reject all the 
terms except those of the lowest order in each equation, and we 
shall obtain 

G = U 2 m / 2 g , G = \ , A , = - V , A 3 = f b \ A t = - f b \ A s = ^ b \ 

whence U2 = g/m = g~X/2Tr as before. 

Let us now put 

C = i+ff , A , = - b 2 - y , A , = %b* + e, 

where x , y , z are at least of the orders b , b s , b* respectively. Sub­
stituting in the second, third and fourth of (46), and retaining 
terms of one order higher, wo shall obtain 

x = b \ y = W . z = W , 

whence ~A2 = b 2 + W , ^ 3 = P S + T!&5-

Lastly substituting these values of A 3 , A 3 in the second of (46) 
we obtain 

C = i + 6 ,
 + V - 6 * . 

= 0 

= 0 
= 0 

= 0 
= 0 
= 0 

(46). 
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and hence the final equations are 

ff^pm"1 (1 + 6"+{&*), 

mx = - 0 + be~* sin 0 - (b* + ¿6') e"2* sin20 + (f& s+i|&B) <TS* sin 30 

- f &V** sin 4cp + i*J<b*e-5* sin 50, 

m 2 = _ ^ _ 6 e - + c o s $ + ( 6 . + i E - 2 * Cos 20 - (f Z>3 + j 9 j . ) e " s * c 0 8 3 0 

+ |4 4e"*'' cos 40 - \ y 6 » e -
6 * cos 50. 

In order to obtain the equation of the free surface, we must 
put T̂ - = 0 in the preceding equations, and we find 

mx = - 0 + b sin 0 - (62 + | o 4 ) sin 20 + (f 63 + f|&5) sin 30 

- fb l sin 40 + i*£W sin 50...(47), 

mz = - 6 cos 0 + (62 + i&4) cos 20 - (§&3 +j§&5) cos 30 

+16 4 cos 40 - A*/ &5 cos 5 0.. . (48), 

and the equation of the wave profile is determined by eliminating 
0 between (47) and (48). 

The elimination is most easily effected by Lagrange's theorem, 
and gives 

- m z - r W + bi=(b + f 6s) cos mx - $b2 + y b*) cos 2mx + f 6s cos 3mx 

— J&4cos 4mx, 

to the fourth order. Let b + f t 3 = a, then to the fourth order 

b = a - fa 3 , 

and shifting the origin so as to get rid of the constant term, the 
equation of the wave profile may finally be written 

mz = — a cos mx + (^a? + ^ I A * ) C O S % 7 , I X ~ I 0 , 3 C O S + i a *
 c o s 4m». 

Now the equations of a trochoid are given by the equations 

mx = a3 + /3 sin 0, — mz = B cos 6 + 7 . 

In order that x may have the same period in the trochoid as in 
the wave profile, we must have a = 1. We then obtain by deve­
lopment of the fourth order, and choosing 7 so as to make the 
constant term vanish 

— mz = (¡3 — §/33) cos mx — Q/32 — J/34) cos 2mx + gS3 cos 3mx 

— \Bl cos 4rnx, 
and putting B — %0* = «> w e obtain to the fourth order 

mz = — a cos mx + (£az + a\« 4) c o s 2mx — get3 cos 3mx + ^a* cos imx. 
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Hence if z „ , zc denote the ordinates of the wave and trochoid 
respectively 

z a — z t = fa^rT1 cos 2mx. 

Hence to the third order the form of the wave profile is a 
trochoid, but if we proceed to the fourth order we see that the 
wave lies a little above the trochoid at the crest and trough, and a 
little below it at the shoulders. 

Prof. Stokes has also applied the same method to investigate 
the form of the waves propagated in a liquid of finite depth, but 
the results are naturally more complicated, and we must therefore 
refer the reader to his Collected Papers1. 

409. Professor Stokes has also shown* that in addition to the 
wave motion, the liquid has a slow motion of translation in the 
direction of the wave, which rapidly diminishes with the depth of 
the liquid. Lord Rayleigh8 has given an elegant geometrical proof 
that this motion is a consequence of the absence of molecular 
rotation, and is independent of the condition of constant pressure 
at the free surface. 

6 \ 6 \ 
7 

P 

Let A B be the surface from crest to hollow, and C D a 
neighbouring stream line. Let us suppose the motion is made 
steady by reversing the velocity of propagation, and draw two 
stream lines A ' B ' , C D ' at such a depth that the steady motion of 
the liquid is uniform, and so that the flow across A ' C is equal to 
the flow across A C . Then we have to show that a particle at A 
will take longer to reach B , than a particle at A ' takes to arrive at 
B'. Now if a denotes the small breadth of the tube of flow A D , 
and V the velocity, the total stream is trv and is constant and 

1 Vol . I . p. 320. 
2 Math, and Phys. Papers, vol. i. p. 207. 
3 Phil. Mag. April , 1876. 
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equal to K suppose. The time occupied by a particle in travelling 
from A to B is therefore 

* = JtT1 ds = K-'Jads = 7T 1 area AD. 

Hence if t' is the time from A ' to B', 

t' = K'1 area A ' D ' , 

and since K is the same in both cases, 

t : t':: area AD : area A'D', 

and it remains to show that area AD > area A ' D ' . 

Let us draw a series of equipotential lines <b and ej> + deb, such 
that the small spaces between them and AB, C D are squares. 

Then PQ = d<f>/v, PP' = dty/v and therefore deb = dty : also 
pq = dep/v, pp = d-^r'/v', but since the flux across AC, and A'C are 
the same, difr' = d^r = deb, whence pq = pp' and therefore the equi­
potential lines divide A ' D ' into squares. Now if a line be divided 
into a given number of parts, the sum of the squares of all the 
parts will be a minimum when the parts are all equal1. Hence 
the space AD is greater than if the squares described on AB were 
all equal, and therefore a fortiori greater than the space A ' D ' 
which consists of the sum of the squares of equal parts of a shorter 
line. 

Hence it follows that when a particle starting from A ' has 
arrived at B', another particle starting at the same moment from A 
will fall short of B. Thus in a progressive wave, the water near the 
surface has on the whole a motion of translation in the direction in 
which the waves advance. 

1 This may be proved as follows. Le t 

where \ is the length of the l ine ; x and y the lengths of any two parts ; v? and ft, 
the sum of the squares, and the sum of the remaining parts respectively, then 

X 2 - U' = 2xy + 2ii [x + y) - u 2 

= \{x + yf-\(x-y? + 'ilJ.(x + y)-wl. 

Hence X 2 - U wil l be a maximum, and therefore IP will be a minimum when 
x-y. 
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S E C T I O N II. 

The Solitary Wave. 

410. The theory of irrotational waves of permanent type 
depends upon the assumption, that it is possible for an infinite 
train of similar waves to follow one another without suffering 
degradation of form. The experiments described by the late Mr 
Scott Russell1 indicate that it is possible for a single wave to be 
propagated along the surface of a liquid, and such a wave is called 
by him a solitary wave. He states that the length of the wave is 
about six or eight times the depth of the liquid, and therefore 
partakes of the character of a long wave; but that it possesses 
several peculiarities, the principal of which are that a positive 
wave or elevation is capable of being propagated to a considerable 
distance without breaking up, whilst a negative wave or depression 
is incapable of being propagated to any considerable distance with­
out becoming dissipated. 

The mathematical theory of the solitary wave has been in 
former times the subject of considerable controversy; it was 
discussed by Earnshaw2 in 1845, but his theory has not been 
regarded as satisfactory. A satisfactory approximate theory was 
given by Boussincsq3 in 1871, and a very similar one was dis­
covered independently by Lord Rayleigh* in 1876. We shall now 
proceed to consider the theory of the latter. 

411. Wo shall suppose that the motion is in two dimensions, 
and that the bottom of the liquid is horizontal. Let the origin be 
taken in the bottom of the liquid, and let the axis of so be 
measured in the direction of propagation of the wave, whilst the 
axis of y is measured vertically upwards. Let I be the depth of 
the liquid when undisturbed, I' the height of the crest above the 
bottom of the liquid. 

1 Brit. Assoc. Rep. an Waves, 1844. 
2 Trans. Camb. Phil. Soc. vol . v m . p. 326. 
3 Comptes Rendus, vol . L X I I . 
* Phil. Mag. A p . 1876; See also Ai ry , Tides and Waves; Stokes, Brit. Assoc. 

Rep. on Hydrodynamics, 1845. 
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) - W ©"+ to" » " ) © " - W © > • · • ] 

J - l + y " 

Since the motion is irrotational, the current function yjr satisfies 
Laplace's equation, and we may therefore put 

f = sin (y £ ) F (x) = yf (x) - y~f" (x) + f / ™ (x) - . . . ( 4 9 ) 

where f(x) = F ( x ) . Since the motion is steady, the pressure is 
determined by the equation 

p / p + g y + i C M , + « ' ) = ^ . 

Putting A —pip = \m, this becomes 

u2 + v2 = - s r - 2gy (50). 

At the free surface I T must be constant; if therefore we can 
determine y as a function of x , such that ra- shall be constant at the 
free surface, this relation will determine its form. 

Since u2 + v2 — (1 4- y'2) u2 whore y = dy/dx, (50) may be written 

yu = (vy2-2gy')i/(l+y'2)i. 
Now 

T R + i f " - - J * = F • · . ( • « ) • 

The function f is the value of u at the bottom of the liquid 
and is very nearly constant, and therefore fix) varies very slowly; 
hence the differential coefficients of f (x) are small quantities. 
Also if the curvature of the wave profile is small, y , y " . . . will also 
be small quantities, and we may therefore eliminate / between (49) 
and (51) by successive approximation. Since ijr is constant at the 
free surface, we have writing R = "*jr/y, 

f = R , f ' = B-; 

whence to the second order 

f = R + i y 2 R " - r ^ / R ™ + 

f " = R" + i y 2 R " - i (y"y + y2) R" + IfyK", 

neglecting terms of the fifth order. Substituting in (51) we 
obtain 
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Multiplying by 2dy*dx and integrating we obtain 

i (dyldxf = Cy + ( v t f - g y s ) / ' r + 1 (52). 

Let ua be the velocity of the liquid in the undisturbed parts of 
the stream, then 

•a=u* + 2gl (53), 

and V r = f uJ^y — ul (54). 
J 0 

whence (52) becomes 

i (dyi'dx)' = 1+Cy + f ( « 0

! + 2gl)<u0T - g Y / u t V (55). 

In this equation g and I arc given, whilst 0 and u0 are at our 
disposal; hence the cubic expression on the right hand side of 
(55) may be made to vanish when y — I and y = V. If we substi­
tute these values of y and equate the right hand side of (55) to 
zero, we shall obtain 

K = 9 1 ' (5(j)> 

- C l = 2 + g l l u 0 * = 2 + ljl'. 

Substituting these values of M0 and C, (55) becomes, 

(dyldxf + 3 (y - If (y - = 0 (57). 

From this equation it appears that there is only one maximum 
or minimum value of y besides I; and since y — I is necessarily 
negative, the surface condition cannot be satisfied to this order of 
approximation by a solitary wave of depression. 

Differentiating (5^) we obtain 

d ? y / d x * = % ( y - l ) (2l' + l ~ 3 y ) / r T , 

which shows that the points of zero curvature occur when y = I 
and y = \ (21' + I) = I + § (V — I). Hence the curvature changes 

If we neglect terms of the fourth and higher orders, this 
equation becomes, 

The above equation may be put into the form 
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propagation is given by (56), which is the value deduced by Scott 
Russell from his experiments. 

Another of Scott Russell's observations is now readily accounted 
for :—He found that the wave broke when its elevation above the 
general level became equal, or nearly so, to the depth of the 
undisturbed liquid. If V be the velocity of the liquid at the crest 
of the wave we obtain from (50) 

v1
 = - o r — 2gi; 

= g(2l-r), 
by (53) and (55); which requires that I > I' — I. When therefore 
the wave is on the point of breaking, the water at the crest is 
moving with the velocity of the wave. 

sign at two-thirds of the height of the wave above the undisturbed 
level, and at this point only. 

If we put V —1 = 0, y — I — i) and integrate (57), we shall 
obtain 

y = /3 sech \ x {W/Fl')\ 

the constant being chosen so that a = 0 when n —13. This equation 
determines the form of the wave profile, and it therefore follows 
that when the depth of the liquid and the velocity of propagation 
are given, there is only one solitary wave. On either side of the 
greatest elevation the height diminishes indefinitely, but does not 
absolutely vanish; hence there is no definite wave length. 

If we regard the wave as ending where the height is one tenth 
of the maximum, we obtain 

x/l = 2.1/J(l + l//3). 

The shortest wave length is when /3 = I and then 

2x/l= 5-96. 

If j3 = \l; 2 x / l = 8-4 ; and if /3 = ¡¡1, 2 x / l = 126. These results 
agree with Scott Russell's observations. 

The form of the wave is shown in the figure, and its velocity of 
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S E C T I O N I I I . 

Capillary Waves. 

412. We must now consider the third class of waves, which 
arc principally due to capillary forces. 

Let T be the surface tension of the liquid; Sp the excess 
of pressure in the liquid just below the free surface; then 

ty'iP + g v + 4 > = °-

But if r, r' denote the radii of curvature of two vertical sections 
in and perpendicular to the direction of propagation of the waves 

- * - R ^ + 0 - R ( 2 + G ) . 

since the curvature is supposed to be small at the free surface; 
whence 

Differentiating with respect to t, and remembering that 
r) = dcj>/dz, and that = 0, the above equation becomes1 

. deb Tl d*<b , 

l d z {

 ! / P d J ~ " t > (58), 

where I is the length of the simple equivalent pendulum. 

413. We shall now apply the preceding result to determine 
the capillary waves propagated along a canal of depth h. 

Assuming as usual that 

<b = A cosh m ( z + h ) cos (mx — nt), 

and substituting in (58), we obtain 

ml sinh mh + Tbn'g^p'1 sinh mh = cosh mh. 

Whence U1 = n2/m2 = g (m - 1 + Tmjgp) tanh mh, 

- (g\/2Tr + 2 7 r T l p \ ) tanh 2vhj\ (59). 

Equation (59) determines the wave length corresponding to a 
given velocity of propagation. 

1 Kolacek, Fortschritte der Mathematic, 1878. 

B . I I . 12 
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Let us now suppose that the depth of the liquid is so great 
that tanh 2 7 r A / X may be replaced by unity. Equation (59) becomes 

gp\" - 2rrp U2X + W T = 0 (60), 

whence X = TrU*/g ± irg'1 V ( P 4 - *Tgjp). 

In order that wave, motion may be possible both values of X 
must be real, which requires that 

U = or >(4Tg/p)i. 
Hence the minimum value of U is {^Tg/pf, and the corre­

sponding value of X is 27ri/(T/gp). 

Sir W. Thomson defines a ripple to be a wave whose length is 
less than the preceding critical value of X 1 . 

414. In § 389 we have considered the propagation of waves at 
the surface of separation of two liquids which are moving with 
different velocities. We shall now consider the production of 
ripples by wind blowing over the surface of still water. 

Let V be the velocity of the wind, which is supposed to be 
parallel to the undisturbed surface of the water, a- the density of 
air referred to water. 

Since the changes of density of the air are very small in the 
neighbourhood of the water, the air may approximately be regarded 
as an incompressible fluid, whence if the accented letters refer to 
the water, the kinematical conditions at the boundary give 

(p = Vx + a (U — V) e""1* cos (mx - nt), 

<p' = — aUe"" cos (viw — nt), 

where U is the velocity of propagation of the waves in the water, 
and rj = a sin (mx — nt) is the equation of its free surface. 

The dynamical condition at the free surface is 

hp' - h P - . T ^ > (61). 

Now 

hpia + gv + tp + l { V - a r n ( U - V) sin (mx — nt)}2 — \ Y 2 = 0, 

or hp + aa {g +n(U— V) — m V ( U — V)} sin (mx — nt) = 0. 

Similarly 
hp' + (g — Un) a s i n (mx — nt) = 0, 

1 Phil. Mag. (4), vol. X L I I . 
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whence (61) becomes 

g ( c r - l ) + c r m ( U - V)2 + mU* - Tm* = 0 (62) 

Let W be the velocity of propagation of waves in water when 
there is no wind, then 

or 7m 2 - TO (1 + a) I P + # (1 - a-) = 0. 

The condition that the roots of this quadratic in m should be 
real is that 

W t = o r > l ^ j T g { l - a ) (64), 

which determines the minimum value of W. This value of W is 
less than (iTgf, which shows that when water is in contact with 
air, it is possible for ripples to travel over its surface. 

Substituting the value of W from (63) in (62) we obtain 

(1 +cr) U*- Zo-VU + aV* - (I + a) W* = 0, 

We shall now discuss this equation. 

Case (i). V < IfV(l + *)!<*• 

In this case both values of U are real, and one of them is 
positive and the other negative ; hence waves can travel either 
with or against the wind. Moreover since the positive value is 
numerically greater than the negative value, waves travel faster 
with the wind, than against the wind; also the velocity of waves 
travelling against the wind is always less than W. 

Case (ii). V > WJ(\ + a),'a. 

In this case both values of U if real, are positive; hence waves 
cannot travel against the wind. 

Case (iii). When V<2W, the velocity o f waves travelling 
with tho wind is > W ; when l r >2W r th i s velocity is < W; and 
when V=2W, the velocity o f waves travelling with the wind is 
undisturbed. 

Case (iv). If V > W(l + < T ) a"1*, both values of 77are imaginary 
which shows that the motion is unstable. 
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Waves in Ice of Uniform Thickness Resting on Water. 

415. If the upper surface of water be covered with ice and if 
any disturbance be given to the water, the elasticity of the ice will 
cause waves consisting of lateral vibrations to be propagated along 
it. 

Let L be the flexural rigidity of ice, cr the mass of a section of 
unit of area, the equation of motion of the ice is 

< r £ = - £ 0 + 8 p (66). 

Let E be Young's modulus of elasticity, e the thickness of the 
ice, then neglecting the slight difference between the density of 
water and ice, we have 

L = -r\e*E, a = ep. 

Let the velocity potential of the water be 

0 = A cosh m (z + h) cos (mx — nt), 

then £•= — Amn~l sinh mh sin (mx — nt), 

and Bp + gpÇ + pAn cosh mh sin (mx — nt) = 0. 

Substituting in (66) we obtain 

(e + m'1 coth mh) IT = ^ e s m 2 E + gp/m2, 

° r _ 2 7 r e / \ + c o t h ( ' 2 7 r A / \ ) ' 

It may be stated that ice was the first substance for which an 
experimental determination of E was attempted (see Young's 
Lectures on Natural Philosophy). 

Further examples of waves in water covered with ice will be 
found in Prof. Greenhill's Article on Waves. 

In addition to the papers referred to in the text, the reader 
may consult the following authorities. 

Cauchy, Mêm. des Savants étrangers, vo l . i . 1827. 

Poisson, Mêm. de VInstitute, vol . i. 1816. 

Green, Trans. Camb. Phil. Soc. 1838. 

Kelland, Trans. Soy. Soc. Edin. vols. x iv . and xv. 

Lord Rayleigh, " On Progressive W a v e s , " Proc. Land. Math. Soc. vol . ix . 

Lord Rayleigh, " T h e Form of Standing Waves on the Surface of Running 

Water , " Ibid. vol . xv. 
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Lord Rayleigh, " On the Vibrations of a Cylindrical Vessel containing Liquid," 
Phil. Mag. June, 1883. 

Sir W . Thomson, " On Stationary Waves in Flowing Water," Phil. Mag. (5), 
vol. xxii. pp. 353, 445, 517 ; and vol. xxni. p. 52. 

Sir W . Thomson, " On the Front and Bear of a Free Procession of Waves," 
Ibid. vol. xxm. p. 113. 

Sir W . Thomson, " O n the Waves produced by a Single Impulse in Water 
of any Depth," Ibid. p. 252. 

Greenhill, " On Wave Motion in Hydrodynamics," American Journal of Mathe­
matics, vol. ix. 

An account of the principal memoirs on wave motion is given by Saint-Venant, 
in an article, " De la Houle et du Clapotis," Annales des Ponts et Chaussées, 
May, 1888. 

EXAMPLES. 

1. A liquid of infinite depth is bounded by a fixed plane 
perpendicular to the direction of propagation of the waves. Prove 
that each element of liquid will vibrate in a straight line, and 
draw a figure representing the free surface and the direction of 
motion of the elements, when the crest of the wave reaches the 
fixed plane. 

2. Prove that the velocity of propagation of long waves in a 
semi-circular canal of radius a and whose banks are vertical, is 

3. If two series of waves of equal amplitude and nearly equal 
wave length travel in the same direction, so as to form alternate 
lulls and roughness, prove that iu deep water these are propagated 
with half the velocity of the waves ; and that as the ratio of the 
depth to the wave length decreases from oo to 0, the ratio of the 
two velocities of propagation increases from ^ to 1. 

4. If a small system of rectilinear waves move parallel to and 
over another large rectilinear system, prove that the path of a 
particle of water is an epicycloid or hypocycloid, according as the 
two systems are moving in the same or opposite directions. 

5. If a cylinder is bounded by r — a, and 6 — 0, 6 = §TT, prove 
that if n is the least number of oscillations per second in a liquid 
of depth h in the cylinder, 

(f> = A (kr)~^ {(kr)'1 sin kr — cos kr] cos |f) cosh kz cos 2irnt 

where (3 — 2&W) tan ka = Rka, nu = o k tanh khj W. 
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6. A fine tube made of a thin slightly elastic substance is 
filled with liquid; prove that the velocity of propagation of a 
disturbance in the liquid is (X0lap)i, where a is the internal 
diameter of the tube, 0 its thickness, X the coefficient of elasticity 
of the material of which it is made, and p the density of the liquid. 

7. A circular canal of radius a and of breadth very small 
compared with a, has its sides vertical and contains liquid of 
depth d. An isosceles right-angled prism whose length is equal 
to the breadth of the canal, floats immersed to a depth b in the 
liquid with its parallel edges coinciding with the radii of the canal, 
and its hypothenuse horizontal. If the prism be suddenly removed 
without disturbing the liquid, show that the velocity potential of 
the resulting motion is 

gbt/2ira + 2 (2gfailirni. 2 * sin" nbj2a . (sin 2nd/a)~i 

x cosh n (z + d)ja. cos nd sin (gna~l tanh ndjdfi t. 

8. A horizontal rectangular box is completely filled with 
three liquids which do not mix, whose densities reckoned down­
wards are a , cr 2, cr g, and whose depths when in equilibrium are 
llt £2, l3 respectively. Show that if long waves are propagated at 
their common surfaces, the velocity of propagation V must satisfy 
the equation 

9. A given mass of air is at rest in a circular cylinder of 
radius c under the action of a constant force to the axis; show 
that if the force suddenly cease to act, the velocity potential at 
any subsequent time varies as 

^ T v r . 7 \ sin kat. fcV„ (kc) 
where a is the velocity of sound in air, and the summation extends 
to all values of k satisfying JX (kc) = 0, and the square of the 
condensation is neglected. 

10. Prove that liquid of density p flowing with mean velocity 
U through an elastic tube of radius a, will throw the surface into 
slight stationary corrugations, of which the number per unit of 
length is , . 

5 (2PaUs~\)il(27raT)i, 

where X is the modulus of elasticity of the substance of the tube, 
and T its total tension. 
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11. The radius of a solid sphere surrounded by an unlimited 
mass of air is given by li (1 + a sin nat), where a is the velocity of 
sound in air. Show that the mean energy per unit of mass of air 
at a distance r from the centre of the sphere due to the motion of 
the latter is 

\ rfaWIi6 (1 + 2?iV)/r 4 (1 + n2R2). 

12. A stream of uniform depth and uniform width 2a flows 
slowly through a bridge consisting of two equal arches resting on 
a rectangular pier of width 2 b , the bridge being so broad that the 
liquid flows under it with uniform velocity U. Show that after 
the stream has passed the bridge, the velocity potential of the 
motion will be 

(a — b) Ux/a + 2 t /a/V . 2 w"a
 c ~ n ' " x l a

 s m nirb/a cos niry/a, 

the axis of x being in the forward direction of the stream, and the 
origin at the middle point of the pier. 

13. Prove that the velocity potential 

0 = A (X + 2ir2f/\) sin 2TT (vt - x)/X 

satisfies the equation of continuity in a mass of water, provided 
the ratio yj\ is so small for all possible values of y that its square 
may be neglected. Hence prove that if the water in a canal of 
uniform breadth and uniform depth k, be acted upon in addition 
to gravity by the horizontal force Ila1 sin 2 (rat — x/a) where II 
and m are small and a is large, the equation of the free surface 
may be of the form 

y = k + -=r, o ... cos 2 (mt — x/a). 
J 2 ( g k - m2aJ) ^ ' ' 

14. Prove that in order that indefinite plane waves may be 
transmitted without alteration with uniform velocity o in a 
homogeneous fluid medium, the pressure and density must be 
connected by the equation 

p-Po = » V ( P o _ 1 - p " 1 ) . 

where p 0 , p„ are the pressure and density in the undisturbed part 
of the fluid. 
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15. Two liquids of density p , p completely fill a shallow pipe; 
prove that the velocity of propagation of long waves is 

b (A'p + Ap') ' 

where A , A ' are the areas of the vertical sections of the two 
liquids when undisturbed, and 6 is the breadth of the surface of 
separation. 

16. If the upper liquid were moving with mean velocity V, 
and there is a surface tension T, prove that the wave length is 
determined by the equation 

4 7 V / V = 6 (p IT1 J A + p'lT/A') - g ( p - p'). 

17. A rectangular pipe whose faces are horizontal and vertical 
planes, is completely filled with n + 1 liquids; show that the 
velocities of propagation of waves of length X at the surfaces of 
separation of the strata are given by the equation 

- A 

" A K ~BA 

- B , A ~ B A 

B, BB 

•B. 

- B 
n 

A . 

= 0, 

where 

A m = 2^IX (Pm+1 coth 2-n-hmJX + P m coth 2-n-hJX) - g (Pm+1 - P J Bm 

= 2TTV'/X cosech 27rhJX 

and hm is the equilibrium thickness of the stratum p m . 

In particular if p m = mcr, and hm = ma, then the 2n values of 
v are included in the formula 

v = + \(gaf sec ^mir/(n + 1), 

where m is supposed to assume the values 1, 2, 3 n , and \ the 
wave length is supposed very large compared with n a . 

18. If there be an infinite film in a horizontal plane, separating 
two heavy liquids of considerable depths, which are flowing in the 
same directions with velocities V, V respectively between two 
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horizontal planes, prove that the velocity of propagation of waves 
of length \ in the direction of the stream, is given by 

t r ( v - Vf + a { v - V'y = (</ - a) g\/2ir + 2wT/\, 
where <r, a are the densities of the upper and lower liquids 
respectively, and T is the tension of the film. 

19. If the bottom of a horizontal canal of depth h be con­
strained to execute a simple harmonic motion, such that the vertical 
displacement at a distance x from a given line across the canal and 
perpendicular to its length, be given by k cos m (x — v i ) , k being 
small; show that when the motion is steady, the form of the free 
surface is given by 

y = fi + -j r cos m (x — vt). 

3 v — gh v ' 

20. A mass M of liquid is at rest under the action of its 
surface tension T. Show that if it be thrown into small vibrations 
of the type of a zonal harmonic of order n, the time of a small 
vibration will be 

3TTM )i 

n ( n - 1 ) 0 + 2) T\ ' 

21. Prove that upon a shore sloping at an angle ^ir below the 
horizon, a possible state of fluid motion is represented by the 
velocity potential 
<b = A sin nirt [e~a' sin ax ~ ^ / 3 e ~ i a ( i + x ^ s ) cos \ a (z */3 - x) 

+ 6 W « - » / 8 > B i r i i a ( W 3 + *)} 

and that the corresponding current function is 

T/T = A sin nwt { e ~ a z cos ax - ^3 e - 1 " { 2 + x V 3 ) s i n \ a ( z ./3 - x) 

_ 6Ja(.-*V« c o s i o ( « V 3 + a;). 

Prove also that if the motion is small and takes place under 
the action of gravity, 

ga --- a V . 

22. A shallow trough is filled with oil and water, the depth 
of the water being k and its density cr, and that of the oil being 
h and its density p . Prove that the velocity of propagation v of 
long waves is 

v'lg = 1 (h + k) + i [(h - kf + Wcp/o-}K 

(Noto that there may be slipping between the oil and water.) 
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23. If water is flowing with velocity proportional to the 
distance from the bottom, V being the velocity of the stream at 
its surface, prove that the velocity of propagation U of waves in 
the direction of the stream is given by 

([/_ vf- V(U- V) W*/gh-W*=0, 

where W is the velocity of propagation of waves in still water. 

24. Suppose that an expanse of liquid is originally still, and 
plane aerial vibrations of wave length X. and velocity v in air of 
density p, to impinge on the surface at an angle 8 ; prove that 
when the motion of the system has become periodic, we may 
represent the displacement of the incident and reflected waves of 
air, and the displacement of the surface by 

(i) a sin {m (x sin ¡3 + z cos B) — nt — a], 

(ii) a sin [ni (x sin B — z cos B) ~ nt + a|, 

(iii) b cos (mx sin B — nt), 

respectively, where m = 2TT/X, n = 27rv/\: prove also that a the 
change of phase is given by 

a cot at = f ^ 7 1 " ^ sin2
 B + j ? * ^ cos B — p cot B coth (2TrhX'i sin B), 

r \ \ v 2TTV ) 

where T is the surface tension. 

25. Prove that with cylindrical coordinates •w, 9, z, a possible 
state of liquid motion inside a right circular cone of vertical angle 
2a is given by the velocity potential 

<p — Az-ny" cos n9 cos 27rpt, 

where n = tana a, and that if the axis of the cone be vertical and 
h be the mean depth of the liquid, the frequency p of such wave 
motion supposed of small displacement, is given by 

47r'*psh = g. 

26. Two liquids of densities p, p each of which half fills a pipe 
* of which the cross section is a square with a vertical diagonal of 

length 2h, are slightly disturbed. Neglecting the disturbing effect 
of the boundary in the neighbourhood of the surface of separation, 
prove that the velocity of propagation of progressive waves along 
the pipe is given by the equation 

r * = $ ^ ~ P \ (tanh or coth) nth. 
1m [p + p) 
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27. A soap bubble of finite thickness in free space with air 
inside it, is performing small oscillations radially under the action 
of its surface tension T and the pressure of the contained air. 
Prove that the length I of the simple equivalent pendulum for 
vibrations so slow that the contained air may be supposed to obey 
Boyle's law, is given by the equation 

SMa'Fg = 8lirT (b2 + ab + a') (2b2 + ab + a2) (V + ab - a'), 

where a and b are the internal and external radii of the shell and 
M its mass. 

28. Prove that in the case of standing waves across a canal of 
triangular section, whose sides slope at an angle ^TT to the horizon, 
the equation of continuity and the boundary conditions are satisfied 
by taking 

(p = cos t (gjlf {sinh m(z — a) c o s m x — sinh \m (x>J'6 + z + 2a) 

x cos \m (x — Z\J3) + sinh \ m (x<JS — z — 2a) cos \m (x + z>JS)}, 

the axis of x being measured across the canal, and the origin being 
taken in the line of intersection of the sides. 

Prove also that if h be the depth of the canal, ml, a and mh 
are determined by the equations 

ml — tanh m(h — a), 1 — m2l2 = nil\/3 cot mh'JS, 

and one or other of the equations 

cosh 3mA = — cos mh^JS + 2 sec mh/J'H, 

3 cosh Bmh — — cos ?nA\/3 — 2 sec mh-JS. 
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C H A P T E R X V I I I . 

S T A B L E A N D U N S T A B L E M O T I O N 1 . 

416. In Chapters XIII. and XIV. we came across several 
instances in which vortex sheets and motions involving surfaces of 
discontinuity are unstable ; and there is a considerable amount of 
evidence which supports the conclusion that when no forces are in 

action, all motions involving vortex sheets are unstable. No 
general proof of this proposition appears as yet to have been given; 
and it is important to observe that it certainly is not universally 
true when the liquid is acted upon by any external forces. This 
may at once be shown by considering the waves propagated at the 
surface of separation of two liquids, which when undisturbed are 
moving with velocities V, V. 

Putting k, k' for m coth mh and m coth mh', we have shown in 
§ 391 that the velocity of propagation is given by the equation 

k p ( V - U r + k'p' ( V - U f = g ( p - p ) . 

The condition of stability is that the roots of this quadratic in 
U should be real, and is therefore 

g (kp + k'p) (p - p ) - kk'pp (V— V)% > 0. 

It therefore follows that if p > p , that is if the lower liquid is 
denser than the upper liquid, the motion may be stable; but if no 
forces are in action so that g ~ 0 , the motion will be unstable. 

1 This chapter is taken from the following three papers by Lord Rayleigh, 

" On the Instability of Jets," Proc. Land. Math. Soc. vol. x. 

" On the Stability or Instability of certain Fluid Motions," Proc. jMtd. Math. 

Soc, vols. xi. and xix. 
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417. If no forces are in action and both liquids are of 
unlimited extent so that h = K = oo , the equation for determining 
U becomes 

P(v-vy + p'(r-ur = o ( i ) . 
The initial form of the surface of separation is ij = a sin mx, 

where m is a real quantity, and its form at any subsequent time is 
determined by the equation 77 = a sin (mx — nt). 

The roots of ( 1 ) are 
_ P V + p ' V ' ± i j p 7 (V— V) p + p 

hence U and therefore n is a complex quantity. Putting 

U — a + iB = n/m, 
and rejecting the imaginary part, the equation of the surface of 
separation becomes 

7j = b sin m ( x — at) cosh mBt, 
which indicates that the motion is unstable. The rejected 
imaginary part shows that if the initial form of this surface was 
T; = b cos mx, its equation at any subsequent time would be 

7] = b cos m (x — at) cosh mBt. 
There are three cases worthy of notice. 
(i) If p = p ' , V = — V, so that the densities of the two liquids 

are equal, and their undisturbed Velocities are equal and opposite, 
a = 0, B = V, whence 

7] = b cosh m Vt sin mx. 

(ii) Let p = p , V = 0, then a = \V, B = ±\V, and 
TJ = b cosh \mVt sin m (x — ^Vt), 

hence the waves travel in the direction of the stream, and with 
half its velocity. 

(iii) Let p = p , V = V. In this case the roots are equal, but 
the general solution may be obtained by putting V = 1 ^ ( 1 + 7 ) 
where 7 ultimately vanishes; we thus obtain 

7] = b sin m (x— Vt) cosh J Vjt — ih cos m (x — Vt) sinh \ Vyt. 

Putting ^ibVy = c, and proceeding to the limit we obtain 7] — b sin m (x — Vt) — ct cos rn (x — Vt). 
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If 17 = 0, when t = 0, we must have mbV = — c, whence 
V = b sin m (x — Vt) + bm Vt cos m (x — Vt). 

The peculiarity of this solution is, that previously to displace­
ment there is no real surface of separation at all. Hence if we have 
a thin surface such as a flag, whose inertia may b e neglected, 
dividing the air, it appears from the last equation that (neglecting 
changes in the density o f the air) the motion o f the flag will be 
unstable, and that it will flap. 

4 1 8 . We shall now investigate the motion of a jet of density p 
and width 21, which is flowing with velocity V, and is surrounded 
by fluid of density p' which is at rest. 

In solving problems of this class, it is often convenient to 
employ complex expressions, and iu our final results t o reject the 
imaginary parts; we shall therefore suppose that both the surfaces 
o f separation are represented by an equation o f the form 

77 = a e + I. 

This is equivalent to supposing that the disturbance is such 
that the sinuosities of the two surfaces of the jet are parallel. 

Let the velocity potential of the jet be 

<b = (A cosh mz + B sinh mz) €

M X + i n t + Vx, 

and that of the surrounding liquid on the upper side be 

The kinematical conditions at the surfaces o f separation give 

A = 0 , B = La (n + mV)/m cosh ml, C = —Lnajm. 

The dynamical condition of equality o f pressure gives 

pB (n + m V) sinh ml — p ' C n = 0, 

whence p (n +mVf tanb ml + n*p = 0. 

The values of n determined by this equation are always 
complex unless p is zero. When p = p', 

_ — B i V t a n h ml ± i w i V ( t a n b . ml)' 

1 + tanh ml 

When ml is small, we have approximately 

j) = ae cos m ( Vmlt — a). 
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419. The motion of a straight cylindrical jet, whose cross 
section is a circle, and which is surrounded by liquid which is at 
rest, has also been investigated by Lord Rayleigh, and the results 
are similar to those already obtained for a two-dimensional jet. If 
z be measured along the axis of the jet, the displacement of any 
point on its surface can be shown to be 

• 5 7 = ae**1™cos m(Vt — z ) , 

where ^ = mW {log 8/ma + I T ' 1 V (\)). 

420. It is a matter of observation, that when a jet of water 
issues continuously from a small orifice, the continuity of the 
liquid ceases at a certain distance from "the orifice, and the jet 
becomes disintegrated into drops. The preceding investigations 
partially explain this phenomenon, since the jet is necessarily 
surrounded by air, and we have shown that the motion in such a 
case must be unstable. It must however be admitted that the 
results obtained are only rough approximations, since we have 
supposed (i) that the air by which the jet is surrounded is incom­
pressible and at rest, (ii) that the liquid of which the jet is 
composed is free from viscosity, (iii) we have neglected the 
existence of capillarity at its surface. When we consider the 
motion of a viscous liquid, it will be shown that a surface of 
discontinuity, if it ever could be formed, would instantly disappear, 
aud that molecular rotation would be propagated on either side of 
the surface according to the law of propagation of heat. Hence 
our results are necessarily imperfect. We shall return to this 
point hereafter; and shall now proceed to investigate the effect of 
surface tension on a cylindrical jet moving in vacuo. 

421. Taking the axis of z along the axis of the cylinder, let 
us suppose that the surface of the jet at time t is 

r = a + a cos KZ, 

where a is a small function of the time, and k = 2TT/\. 

Let a be the area of the surface of the jet included between 
unit of length ; then 

<T = 27rX. 1 ( ( a + a cos 2TTZ/\ + ^ a i V sin2
 2vz/\) dz 

J 0 

= T T « ( 2 + £ * V ) ( 2 ) 

approximately. In this expression a is not absolutely constant; 
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and therefore , il [KT) 
φ = — χ COS KZ. 

κ! 0 (κα) 

Taking the density of the liquid to be unity, the kinetic 
energy per unit of length is 

T= (2λΓ Γ 2παφ {άφΙάν)αάζ 

J ο — 2 ττα ζ , — , 
και 0 (κα) 

whence by (5) the equation of motion is 

its value is determined from the. fact that the volume V included 
between unit length is constant, whence 

V = ira> + \TT-J? (3). 

Now (2) may be written 

a- = lira 4 4 ^ T T S 8 ( * V - l)/a. 
Substituting the value of a from (3) in the first two terms we 

obtain a = 2 [ivVf 4- ivra2 ( « V - l)/a. 

If cr0 be the value of a for the undisturbed motion, we have 

e r - c r ^ ™ 2 ( * V - l ) / o (4). 
If T, denote the surface tension, the potential energy per unit 

of length from the position of equilibrium is 

V= - \irT^ (1 - « V ) / o (5). 

Since the motion is symmetrical with respect to the axis of z , 
Laplace's equation is (Feb d?<b ldf_ dz° + dr* + rdr~ ' 
and since <b must vary as cos KZ, the proper solution is 

tb = AI0 (KT) COS KZ. 

The coefficient A is determined from the fact that the normal 
velocity at the surface of the jet is equal to a cos KZ, whence 

A KI'0 (KO) = a, 

IRIS - LILLIAD - Université Lille 1 



Differentiating with respect to t, and then putting a = A e q t , we 
obtain 

, _ TL (1 - * V ) Kal\ (KO) 

^ a 3 I 0 (KO) 

If /ca > 1, q is imaginary, and the motion is stable ; hence from 
(4) it follows that if the surface is greater after displacement than 
before, the motion is stable; but if otherwise the motion is 
unstable. Writing ica = x , the instability will be greatest when X 
has such a value that q is a maximum. 

Since 
2 4 2 

A W = 1 + gi + 2 z _ 4 i + 2» _ 4 , _ g2 + 

the value of q2a,/Tl will be found to be 

a x (1 a ^ j l 2

3 + 2 4 . 3 2 1 0 . 3 + 2" . 3 . 5 ' 

1 F 2 *) 4 ^ 6 ^ ' ^ 8 9 1 IQ 1 

or £ ja: — + ^ 4 — x — ^is + g 5 +• • • j -

Differentiating we obtain 

-. 0 . 7 . 100 . 91 s 

If all the terms but the first three be neglected, the quadratic 
gives x 2 = '4914; and if this value be substituted in the next two 
terms, the equation becomes 

•98928- |a; ! + ^a;* = 0, 

whence x 2 = "4858. 

The corresponding value of X is given by 

X = 4-508 x 2a, 

which gives the ratio of the wave length to the diameter, for the 
kind of disturbance which leads most rapidly to the disintegration 
of the cylindrical mass. The corresponding number obtained by 
Plateau from some experiments by Savart is 4'38, but as his 
estimate involves a knowledge of the coefficient of contraction of a 
jet escaping through a small hole in a thin plate, it is probably 
liable to a greater error than its deviation from 4· 51. 

Further information on the subject of jets in connection with 
hydraulic machinery, will be found in Prof. W. C. Unwin's article 
on Hydraulics, in the Encyclopaedia Britannica. 

B . 1 1 . 13 
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Stability of Steady Motion between Two Parallel Planes1. 

422. Let the liquid be bounded by two parallel planes, and be 
moving with velocity IT parallel to those planes; also let the axis 
of x lie in one of the planes, and be parallel to the direction of U. 
If the motion is steady, IT must be a function of y alone, and the 
vorticity Z> = — \dU\dy. 

Let a disturbance of any kind be communicated to the liquid, 
subject only to the condition that the resulting motion is in two 
dimensions; and let U + u , v, be the component velocities 
and vorticity during the disturbed motion. Then 

§ + U F + V f = 0 , 
dt dx dy 

du dv _ „ _ d v du 

dx dy ' dx dy' 

If we assume that x and t enter into u, v, f in the form of the 
factor exp (mt + ikx), the preceding equations may be written 

t,(n + klT)^' = ^vd2IT/dy2, IKW + dv/dy = 0, 2? = ikv-du/dy. 

Eliminating u and £' we obtain, 

n T T \ (dS) \ d?U 

^ U ) W V R W V ( } -
423. We must now determine the boundary conditions. 
At the surfaces of the bounding planes we must have v = 0. 

It may also happen that the vorticity in steady motion suddenly 
changes as we cross some plane, and we must therefore find the 
conditions to be satisfied at the surface of separation. Denoting 
by A the difference between the values of the quantities on either 
side of this surface, the kinematical condition is 

Aw = 0 (7). 

The dynamical condition which is the analytical expression for 
the fact that there must be no discontinuity of pressure, may be 
obtained by integrating (6) across the surface; we thus obtain 

(n , , , \ . dv . dlJ „ , n . 

( j c + U ) A d y - v A l l y = 0 < 8 > " 

' Lord Bayleigh, Proc. Land. Math. Soc. vols. xi . and xix . 
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424. We shall now apply these equations to determine the 
conditions of stability of a mass of liquid bounded by the planes 
y = 0 , y = a + b + c, and which consists of three layers of thickness 
a, b, C, the vorticity being constant but different throughout each 
layer. 

Let U = 0 along O x , and let Ult ? 7 2 be the values of U at the 
planes y = a, y = a + b. Since £ is constant, d'Ujdy* = 0, hence if 
njk + U is not zero, (C) becomes 

d'v 

the solution of which is 

v = A cosh ky + B sinh ky. 

Since v — 0 when y = 0, we must have at the first layer 

(9), 
in the second 

• tfv = 0, 

v = vt = sinh ky 

v = v1 = vl + ATl sinh k ( y — a ) . (10), 
and in the third 

v = v3 = vs + Ma sinh k ( y - a - b ) (11). 

The condition that v = 0 when y = a + b + c, gives 

Mt sinh kc + Ml sinh k (b + c) + sinh k (a + b + c) = 0.. .(12). 

If we denote the values of &dLr/dy at the two surfaces by A, 
and A a respectively, the condition (8) gives 

(n + k M1 - \ sinh ka = 0 (13), 

(n + kU2) Mt - A 3 [Ml sinh kb + sinh k (a + b)} = 0...(14). 

Eliminating Mv Mt between (12), (13) and (14), we shall find 
that n satisfies the quadratic 

Anr + Bn + C = 0 (15), 

where 

A = sinh k ( a 4- 6 + c) 
B = k(U1 + Us) sinh k ( a + b + c) + A, sinh ka sinh k (b + c) 

+ A 2 sinh kc sinh k (a + b) |- . . . (16). 
C = A2 L7, U% sinh k(a + b + c) + k L\Aa sinh kc sinh k(a+b) 

+ kU A 1 sinh ka sinh & (6 + c) + A ^ sinh Act sinh kb sinh Ac J 
13—2 
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The condition that the roots of (15) should be real, is that 
W — 4̂ 4 (1 should be positive. Now, 

B2- 4 A C = {&(L r , - Ut) sinh. A; (a + b + c) + A, sinh ka sinh k ( b + c) 
— A 2 sinh kc sinh k (a + b)}2 + 4A t A 2 sinh2£a sinh" Ac (17). 

If therefore A i ; A 2 have the same sign, so that the curve 
expressing U as a function of y is of one curvature throughout, the 
roots are real and therefore the disturbed motion is stable. 

425. Let us now suppose that the breadths of the layers a and 
c are equal, and that their vorticities are equal and opposite, and 
that the layer b is without vorticity ; also let V be the velocity of 
the middle layer. If we suppose the velocity of the liquid to be 
zero at the walls, which we may do without loss of generality, we 
shall have 

U ^ l \ = V , A l = A, = - Via, 

whence B2 - C = 4A 2 sinh4AM, 

indicating stability. Also 

n JaY— ^ ( s m n ka sinh k (a + b) ± sinh'ka} 

a sinh k ( 2 a + b) ' 

which determines the relation between n and k. 

426. In the next place let us suppose that the velocities are 
equal and opposite on either side of the middle layer ; then the 
velocities in steady motion, in the first, second and third layers 
will be respectively 

v, = A ( y - a ) + V , v t = V ( l - 2 y l b + 2a/b), va = E (y - a - b) - V, 

also if the velocities at the bounding planes are equal and opposite 
we must have A = E. We thus obtain 

where p = - A j V - 2 b ' 1 . From (16) it follows that B = 0, and 
(15) may be written 

n2 {/i sinh x sinh y + k sinh (x + y ) } 2 — k2 sinh2* 
WV1 = k'^mhy^ahTj2x + y) ' 

where x = ka, y = kb. 

From this expression it is easily seen that n2 is positive if y, is 
positive ; but if / A is negative the motion will be unstable unless 
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the numerator of the above fraction is positive. Writing — v for 
fa, this requires that 

{k (cothx + coth \y) - v) ¡4 (coth x + tanh \y) - v ) > 0...Q8). 

If we suppose that k is very small this becomes 

(a~l + 2&"1 - v) (a - 1 - v ) > 0 . 

Hence if v < a - 1 the motion is stable, but if a'1 + 2b~~l > v > a \ 

the motion is unstable. 

When v = a~l + 2 b ~ l the motion is on the border line between 

stability and instability, but it is really unstable ; for proceeding 

to a second approximation the first factor of (18) becomes 

a"1 + 2ZT1 - i£ 2a - $k*b - v, 

which shows that the motion is unstable. Now if U be the 
velocity of the liquid in contact with the plane y = 0, U = V— Aa, 
whence 

p — - (V— U ) I V a - W \ 

Hence the final condition of complete stability is that 

2Ub> Va. 

Steady Motion between Two Concentric Cylinders1. 

427. We shall now prove that if liquid is in motion between 
two rigid concentric circular cylinders, the steady motion is stable 
provided the vorticity either continually increases or continually 
decreases in passing outward from the axis. 

In steady motion let V be the velocity and to the vorticity, 
then V and u are functions of r alone. Let u, V + v be the 
velocities along and perpendicular to the radius vector during the 
disturbed motion, <u + £ the vorticity. 

Those quantities satisfy the following equations: 

2 a > = d r + r ™ 

d£ dm Vd£ n , a n . 

dt > " d , • r uO - ° 

djruy dv_ 

dr + d 9 ~ U { A l ) > 

dv v I d n 

dr r r dd 

1 Lord Rayleigh, Proc. Lond. Math. Soc. vol. xi. ; see also Sir W . Thomson, On 

Maximum and Minimum Energy in Vortex Motion, Phil. Mag. June 1887. 
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Equation (19) is the equation connecting the velocity and vorticity 
in steady motion, and (20), (21) determine the changes in the 
velocity and vorticity due to the disturbance. 

Let us assume that u , v , f are each of the form F ( r ) exp ( i k d + int) 
where A; is a real quantity but n may be complex. We have to 
determine the conditions that n may be real. From (20) and (22) 
we obtain 

, / k V \ / d v v IKU\ dro 

K " + - r - J U - + . + T J + M ^ = ° ' 
and from (21) 

d ( r u ) , 

~ + i k v = 0. 
dr 

Putting r u = p and eliminating v, we obtain 

n V \ rdfp 1 dp k s p \ _ 2 p Ju> 

,k r J \ d r * r d r r " ) r d r ' 

Let n/k = e + if, p = a + t,B, where e, f , a, B are real, then 

<dr-a ' r d r T r ' J K ' H ' dr ( e + i f ) r + V 

Whence equating the real and imaginary parts we obtain 

d ' a 1 d a Fa 1 dto 

d 7 + r d r + ^ = W ^ V + ^ + ^ d r ' 

d"B 1 d B k 2 B 2 r _ , T r , _ dw 

where I T = ( V 4- r e ) 3 + r ' f 2 . Multiplying the first equation by 
r/3 and the second by ra. and subtracting we obtain 

/ „ (Fa d 2 B \ r, d a d B 2fr . , n „ . da> 

Let a and 6 be the radii of the cylindrical boundaries, then 
since a. and B a r e each zero at the boundaries, we obtain on 
integrating between the limits a and b , 

If d a t j d r does not change sign between the limits, every 
element of this integral has the same sign, and therefore the 
integral cannot vanish unless /=0; when this is the case n is real 
and therefore the steady motion is stable. 
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C H A P T E R X I X . 

T H E T H E O R Y O E T H E T I D E S . 

428. T H E phenomenon of the tides is produced, as is well 
known, by the disturbing attractions of the sun and moon upon the 
ocean. This appears to have been first recognised by Kepler, but 
the subject was not investigated mathematically until the year 
1687, when Newton1 applied the law of gravitation to the explana­
tion of the tides. He supposed that the ocean covers the whole 
earth, and that it assumes at each instant a figure of equilibrium 
under the combined attractions of the earth, sun and moon. In 
1738 Daniel Bernoulli2 extended and improved Newton's theory, 
and the theory of the former is usually known as the Equilibrium 

Theory. This theory although it serves to explain many of the 
principal features of the tides, cannot be considered satisfactory ; 
for the problem is essentially a dynamical one, and consists in 
finding the forced oscillations of an ocean which is disturbed by the 
attractions of the sun and moon. The solution of the dynamical 
problem was first effected by the genius of Laplace* upon the 
assumptions that the ocean covers the whole earth, and that its 
depth is equal to I (1 — q cos2 6), where 6 is the co-latitude, and I 
and q are constants. The original investigation of Laplace is 
however unnecessarily complicated by the use of spherical harmonic 
analysis ; it was subsequently presented in a simpler form by Airy4, 
but the investigation of the latter contains a criticism on Laplace's 
method of dealing with a certain continued fraction, which occurs 

1 Principia, Book i . Prop. 66, Cor. 19 ; Book in . Props. 26 and 27. 
2 Acad, des Sciences, Paris, 1738. 
3 Mécanique Céleste, Book iv. 
* " Tides and W a v e s , " Encyc. Met. Sec. nr. 
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in the evaluation of the semi-diurnal tide in an ocean of uniform 
depth, which is now generally considered to be erroneous. Laplace's 
procedure was justified by Sir W. Thomson1, and the controverted 
point has been fully worked out and explained by Prof. G. II. 
Darwin2, and it is from the papers of the latter that the following 
investigation of Laplace's theory is taken. A third theory, known 
as the Canal Theory, which is due to Airy8, consists in investigating 
the tides in a canal coinciding with a small circle upon the earth, 
which are produced by a disturbing body revolving about the earth 
in an orbit, whose projection upon the earth's surface is a different 
small circle. 

In the present chapter we shall discuss these three theories*. 

The Equilibrium Theory. 

429. In the equilibrium theory, the earth is supposed to 
consist of a solid spherical nucleus, whose density is either uniform 
or which is composed of spherical strata of uniform density. The 
solid nucleus is supposed to be covered with water, which is 
disturbed by the attractions of the sun and moon; and it is 
required to find the form of the free surface of the water, on the 
supposition that at every instant it assumes the form of a surface 
of equilibrium under the combined attractions of the earth, sun 
and moon. 

Since the disturbing attractions of the sun and moon are both 
small in comparison with that of the earth, we may consider the 
effects of each luminary separately, and the combined effect of 
both will be obtained by adding the effects due to each. 

Whether the disturbing body is the sun or moon, the earth 
may be supposed to be reduced to rest by including amongst the 
forces which act upon the ocean, the reversed acceleration of the 

1 Phil. Mag. 1875. 
2 " Tides," Encyc. Brit.; Proc. Boy. Soc. 1886. 
3 "Tides and Waves," Encyc, Met. Seo. vi. 
4 For further information, see 

Bibliograpkie de VAstronomic, by Ilouzeau and Lancaster, Brussels, 1882 
which contains a complete list of works upon the subject down to 1881; 

Thomson and Tait, vol. i. part n.; 
Reports on Tides to the British Associaiion; 
Thomson, Phil. Mag. 1880. 
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centre of the earth towards the disturbing body. This reversed 
acceleration is equal to the mass of the disturbing body divided by 
the square of its distance from the centre of the earth. We shall 
also suppose that the rotation of the earth is annulled, and that 
the disturbing body revolves round the earth. 

Let E be the centre of the earth, P its pole, Q any point of the 
oceau. Let M be the moon, E M = D, ER = r, MEQ = e; also lot 
V be the attraction potential of all the forces which act on the 
ocean, and let v be the potential of the earth and the ocean. 

Resolving the force upon an element of liquid at Q along EQ, 
we obtain 

dV M m n r \ , d v M 

_ M (B cos e - r ) dv M 

i y + & - 2Dr cos e) f d r D 

whence V=-
M 

+ V — cos e + A...(l). 
( r 2 + D a - 2 D r cos e) 4 

Since the right-hand side of (1) is a potential function, it is 
unnecessary to add a function of e, and therefore A is an absolute 
constant. Expanding and neglecting spherical harmonics of a 
higher degree than the second, we obtain 

„ M Mr2 

2) +
 ~ W 2 ^ c o s £ ) + v + A -

Let a be the radius of the free surface of the ocean when 
undisturbed, a + Z its value when disturbed, so that £ is the 
height of the tide. Then l may be expanded in a series of spherical 
harmonics whose axis is EM; and since the value of V must be 
constant at the surface of the ocean, it follows that E cannot contain 
any harmonics of the first degree. Also since the depth of the 
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ocean is small in comparison with the radius of the earth, it 
follows from (7) of § 371 that if we neglect harmonics of a higher 
degree than the second, 

v = E/r + \TTUO- (a/i-y t, 

where E is the mass of the earth, and a is the density of the ocean. 
Hence if p be the density of the earth, the condition that V should 
be constant at the surface of the ocean is that 

E 3o-\ Ma," „ 

and since Eld2 = g, we obtain 

ihVP. , 

This equation determines the height of the tide upon the 
equilibrium theory, and shows that the form of the free surface at 
any period is a prolate spheroid, whose longest axis coincides with 
the line joining the centre of the earth with the disturbing body. 

Since the density of the ocean is small in comparison with that 
of the earth, the quantity cr/p is usually neglected, in which case 
we obtain 

gt = MaTJD* (2). 

430. Before proceeding to discuss this equation, it should be 
noticed that owing to the fact that the earth is not entirely 
covered with water, the value of t requires correction. A descrip­
tion of the necessary corrections, together with tables containing 
the results of observations at various ports, will be found in 
Thomson and Tait's Natural Philosophy, Vol. I . , Part I I . , §§ 808— 
810 and § 848. 

431. Let \ be the latitude and I the west longitude of Q ; 
also let h be the westward hour angle of the moon from Greenwich, 
S the moon's declination. Then since the angle QPR = h — I, we 
obtain from the spherical triangle Q P R , 

cos e = sin A. sin S + cos A. cos 8 cos (h — I), 

therefore 

P s (cos e) = I (3cos 2 e- 1) 

= \ (3 sin2S - 1 ) (3 s in 2 \ -1 ) + 3sin\cos\sin Scos Scos(/i - Ï) 

+ I cos 2\ cos2S cos 2 (h - I) (3). 
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A similar equation holds good when the sun is the disturbing 
body ; whence writing S, D ' , 8', h' for the mass, distance, declination 
and hour angle of the sun, the height of the tide due to the 
combined action of the sun and moon is 

t = I (1 - 3 sin\) (I cos'S - 1) + (I cos!S' - l ) j 

+ '~-sin2\ |^sin2Scîos(A —+'^ 3 s in2S 'coa(A ' —2)| l...(4). 

+ cos'X cos28cos 2(h—l) + cos2S'cos 2(A'—?j| 

We shall now proceed to discuss this equation1. 

432. Tides of Long Period. The first line of this expression 
does not depend upon h — I or h' — I, and is therefore independent 
of the hour of the day. It depends solely upon the latitude of the 
place of observation, and upon the quantities D , D ' , 8, 8'. The 
quantities D , 8 depend upon the elements of the moon's orbit 
round the earth, and it will be observed that the value of the first 
term due to the moon's action does not depend upon the sign of 8, 
and therefore has the same value whether the moon's declination 
is north or south. Also since the moon approximately takes 
fourteen days to describe a semi-circle, the effect of the first term 
is to produce a, fortnightly tide. 

The second term of the first line is due to the action of the 
sun; it depends upon the elements of the earth's orbit round 
the sun, and produces a semi-annual tide. Both these tides are 
known as tides of long period, and are called by Laplace, " Les 

oscillations de la première espèce." They vanish in latitude 
+ cosec ^3. 

433. The Diurnal Tides. The second line of (4) consists of 
two terms each of which depends upon the hour angle of the 
disturbing body. The first term goes through all its changes 
each time the moon's hour angle increases by 360°; and the 
second term goes through its period when the sun's hour angle 
increases by the same amount. These terms constitute the 
diurnal tides, and are called by Laplace, " Les oscillations de la 

seconde espèce." 

1 Airy, Tides and Wanes. 
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S 

— jyS sin 28' sin (hf — h) sin (h — l) 

2a2 . ^ 
, s i n 2 \ 
±9 

UP & 

s i n ü¿> 

cos (h — l + E), 

jjs s i n 2 28 + s i n 2 28' 

• jjujjTs s m 28 sin 28' cos (h' — h) 

, £ s in 2 8 ' s in QY - h) 

where tan = ^ 2 g - + ^ , _ 3 ̂  2 g > ^ ^ , _ ^ . 

This tide always vanishes at the equator where X. = 0, and also 
at the poles where X = 90°, and its greatest value is in latitude 45°. 

For any particular point on a meridian, the tide will be highest 
when h — l + E = 0, or e + E = 0 . Hence if e is positive, that is if 
the moon is west of the place of observation, E is negative, and 
therefore if 8' is positive K — h is negative. Also tan E and there­
fore E is always a small quantity, hence just before new moon and 
full moon high tide occurs shortly after the moon has passed the 
meridian. But if E is positive e is negative, and therefore just 
after new moon and full moon high tide occurs before the moon 
passes the place of observation. 

Let us now examine how this tide depends on 8. Since SID'3 

is small in comparison with M / D 3 , it follows that tan E is positive 
if 8, 8', h' — h are positive. Now suppose that the moon crosses the 
equator, then 8 will change sign, and E will change rapidly from a 
small angle through \TT and then to an angle not much less than tr. 
Hence e will rapidly change to rr — e, and high water instead of 
occurring when the moon is near the meridian of the place of 
observation, will take place when the moon is near the meridian 
passing through the antipodes. 

434. The Semi-diurnal Tides. The third line of ( 4 ) consists 
of two terms each of which depends upon twice the hour angle of 
the disturbing body, and goes through all its changes every time 
the hour angle increases by 180°. These terms constitute the 
semi-diurnal tides, and are called by Laplace " Les oscillations de la 

troisième espèce." 

Since h' — I = h — I + h' — h, the second line of ( 4 ) may be 
written 

sin 2 \ ĵ ĵ > sin 28 + jj.s sin 28' cos (V - A) J cos (h - I) 
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This term may be expressed in the form 

- cos A, j - ^ cos o + jyt cos o 
2 MS 1 

+ cos2S cos'S' cos 2 (/<,' - A) cos {2(/V - /i) + J7}, 
„ _ SD'-* cos'S' sin 2 (h' - h) 

L a n J 1 , T y r \ f . J V - 8 9 C\ / £ - T T l 
w h e r e 

i f lT ' cos'S + SB'3 cos2S' cos 2 (A' - A)" 

For different latitudes this tide has its greatest value at the 
equator where X. = 0, and vanishes at the poles where X=90°. 
For different positions of the moon it is a maximum when 
h' — h = 0 or 7T, that is at full moon and new moon; and it is a 
minimum when K — h — \TT or § 7 r , that is when the moon is in 
quadratures. 

The time of high water at any place is found by putting 
K — h = — \F or e = — \F; hence when \TT > h' — h > 0 and when 
| 7 r > K — h > IT, e is negative, and therefore between new moon 
and quarter moon, and between full moon and three-quarter moon 
high tide occurs before the moon has passed the place of observa­
tion ; and the contrary is the case between quarter moon and full 
moon and between three-quarter moon and new moon. 

Laplace's Theory1. 

435. The celebrated theory of the tides which is due to 
Laplace, deals with the problem by means of dynamical principles. 
The problem to be solved, consists in finding a solution of the 
general equations of motion applicable to the case of the forced 
oscillations of a frictionless liquid, which completely covers a solid 
spherical nucleus, and whose equilibrium is disturbed by the attrac­
tion of a distant body. The depth of the ocean is supposed to be 
very small in comparison with the radius of the earth, and the 
height of the waves small in comparison with their lengths, in 
other words the waves are assumed to be long waves in shallow 
water, and the equations determining the oscillations of the ocean 
are obtained ; but the mathematical difficulties of integrating them 
are so great, that Laplace was compelled to assume that the depth 
of the ocean is proportional to 1 — q cos~8, where 6 is the co-latitude 

1 Mccanique Celeste, Livres i. and iv. 
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and q is a constant; and in the case of the semi-diurnal tides it is 
necessary to suppose that q is zero or unity. 

The method of procedure adopted in the present section is 
somewhat different from Laplace's, and is taken from Prof. G. 
H. Darwin's1 investigations, which were suggested by Sir W. 
Thomson's papers in the Philosophical Magazine'. 

H16. We must first find a suitable form of the equation of 
continuity. 

Let a be the radius of the earth, 7 the depth of the ocean, 6 
the co-latitude, and tp the longitude of any point P on its surface 
when undisturbed. Let ff + u, <b-\-v, a + y + fy be the co-ordinates 
of the same point during the disturbed state. Let Q be a point 
near P, whose undisturbed co-ordinates are « 4 - 7 , 6 + 80, (p 4 - Sep. 

E 

Let P p , Qq be the meridians, and P q , Qp the parallels of 
latitude passing through P and Q ; and consider a small column of 
liquid which is bounded by the bottom of the ocean, the free 
surface, and the four planes drawn through E the centre of the 
earth and the arcs P p , p Q , Q q , qP respectively. 

The volume of this column of liquid when the ocean is 
undisturbed is 

a a 7 sin eSOSqb ( 5 ) . 
The volume of this element when the ocean is disturbed, will 

be found by changing 6 and r/> into 8 + u, cb + v, and hence 7 must 
be changed into 7 4 - 1 4 - udyjdO 4 - vdyjd<p ; whence the volume is 
equal to 

·' ( - + 6 + S ) s i n <e+* i1+a) ('+ £) "* •••<«· 
1 Proc. Boy. Soc. 188G ; and Encyc. Brit., Art. " T i d e s . " 
3 Phil. Mag. 1875. 
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equating (5) and (6) and neglecting squares and products of small 
quantities we obtain, 

. d (yu) d (yv) n n / t T . 

^ + - m J + - ^ r + ^ c a i 0 = o 

437. In order to obtain the equations of motion of the ocean, 
we shall reduce the centre of the earth to rest, and we must there­
fore include amongst the impressed forces which act upon individual 
particles of liquid, the reversed acceleration of the centre of the 
earth. This reversed acceleration is equal to the attraction of 
the sun and moon upon a unit particle situated at the centre of 
the earth. We must also suppose the sun to be revolving round 
the earth. 

If therefore r, 9', <f>' are the co-ordinates of an element of the 
ocean in its disturbed position; w , u, v' the component velocities 
of this element relative to the centre of the earth in the directions 
in which r, 0', <p' increase, the relative accelerations are 

u — v'93 + io'02 in the direction of 9', 

v —v)'6l + u'd3 „ „ „ tb', 

w ' - u ' 0 a + v'0l „ „ „ r. 

If n be the angular velocity of the earth's rotation 

u = r&, v' = r + 7i) sin 8', w = r, 

01 = -(<f>' + n)sm0', 0 2 = 0 ' , 8 3 = (4' + n) cos 0', 

and the preceding expressions for the component accelerations 
become 

j (r£Q - r + nf sin 0' cos 9' + rd', 

Jt l r (<f> + n ) s i n &} +r((b' + n) sin & + rd' ((ft' + n) cos 9', 

f - r 8 * - r ( $ + ny sin2f7. 

But 0' = 9 + u, <f> = <p + v, where 8, tf> are the co-latitude and 
longitude of the element in its undisturbed position; also since the 
vertical motion is slow in comparison with the horizontal motion 
(since the oscillations are long waves), we may neglect r, r, and 
the above expressions become 

— r (n2 + 2nv) sin20 in the direction of r, 

ru - r ( « ! + 27111) sin 0 cos 0 ,, „ „ 0, 

r'u sin 0 + 2rnu cos 0 „ , . „ cb. 
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Hence the equations of motion arc 

1 dp dV . „ , „ .. . 
- - f = — + r (n2 + 2nv) sm29 
p dr dr 

-- ^ = ^ - r2u + r 2 (7i2
 + 2nv) sin 6 cos 9 [· 

•(8), 

rBii sin"# — 2r2nù sin f? cos (9 
p deb d<£ 

where Fis the attraction potential of the forces. 

According to the theory of long waves explained in Chapter 
XVII., the pressure is assumed to be equal to the hydrostatic 
pressure which would exist if liquid had no motion, and were 
under the action of forces which would preserve the form of its 
free surface unaltered. It therefore follows from § 369, or directly 
from (8) by putting u, u, v, v equal to zero and multiplying by dr, 
d9, deb and integrating, that 

p/p = V + %ri'r2 sin!0 + const., 

where V is the potential of the fictitious forces which would produce 

an equilibrium tide of height h. By (1) and (2) it follows that 

the variable part of this potential is gfyr'/a2 + E/r, whence 

p\p = g\)r2/a2 + Ejr + \ n 2 r 2 sin'f? + const. 

Now V is the potential of a system of forces which would 

produce an equilibrium tide of height t, whence 

V = glr2/a2 + Ejr + const., 

and therefore 

p/p - V= g (ft - t) r2/a2 + f n V sm28 + const. 

Substituting this value of p / p — V in the last two of (8) and 
putting au = a v = rj, so that r\ sin 9 are the co-latitudinal and 
longitudinal displacements, and remembering that in the small 
terms we may put r — a, we obtain 

• !»»-«> 
g d 

£ — 2nr) sin 8 cos 8 -

ïj sin 8 4- 2nf cos 8 = — 

and (7) becomes 
.8 d</> 

•(9). 

.(10). ha sin 8 + ^ ( 7 f sin 8) 4- ^ (777 sin 8) = 0 . 

The solution of these equations determines the oscillations of 
the ocean. 
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438. The value of t is given by (4), and from this value it 
appears that £ consists of three sets of terms. The first set which 
in the equilibrium theory gives rise to tides of long period vary very 
slowly, and it is known from physical astronomy that these terms 
can be expanded in a series of terms of the type A cos (2nft + a); 

the second and third set respectively involve 0 and 2 0 ; it there­
fore follows that E can be expanded in a series of terms of the 
type e cos (2nft + kip + a), where e is a function of the co-latitude 
alone and of the elements of the orbit of the disturbing body. 

It also follows from (4) that the tides of long period do not 
depend on the longitude, hence k — 0, 

e = E ( \ - cos2d) 

£ = E ( j i - cosa<?) cos (2nft + a)j ^ 

In the lunar fortnightly tide_/=j1g approximately. 

In the diurnal tides f = \ approximately, k = 1, 

e = E sin 6 cos 9 

Z = Es'm 9 cos 8 cos (nt + 0 + a) (12). 

In the semi-diurnal tides,_/"= 1 approximately, k = 2 , 

e = E aitfd 

t = E s'm*8 cos (2nt + 2 0 + a) (13). 

In each of the three preceding equations, the quantity E is a 
function of the elements of the orbit of the disturbing body. 

We shall therefore assume that, 

Z = e cos (2nft + k<p + a) 

h = h cos (2nft + kcp + a) 

f = x cos (2n/t + k<p + a) 

77 = y sin [2nft + £ 0 + a) 

where e, h, x , y are functions of the co-latitude alone ; and we 
shall also suppose that 7 is a function of the co-latitude alone. 

Let m = n2a\g, u — h—e. 

Substituting from (14) in (9) and (10) wo obtain 

xP 4- vfsin 6 cos 8 = —— 4^ I J J 4m d9 1 

v 

yf sin 8 + xf cos 8 = - - — " . y j J 4m sin 8 J 
B . I I . 14 

(14), 
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ha + kyy + cosec 8 ̂  ( y x sin 8) = 0 (1G). 

Solving (16) for x and y , we obtain 

4ma; ( / 2 — cos2#) = ^ + ^ cot # 

cos 6 du ku 
4<my sin 8 (f2 — cos2#) = — 

/ dd sinO 

. ( 1 7 ) . 

Whence substituting the preceding values of x , y and u in (17), 
wTe obtain 

1 d \y (sin 6 du/dd + kf~1u cos 6)\ 

sind dd { f2 - coTd j 

ky (f'1 cos 8 dujdd + ku cosec 8) 

sin 8 ( / 2 - cos!0) ' 

+ 4ma (u + e) = 0 (18). 

This is equivalent to Laplace's equation1 for determining the 
tidal oscillations cf an ocean, whose depth 7 is a function of the 
latitude alone. 

Tides of Long Period. 

439. Laplace in considering these tides does not employ (18), 
but endeavours to show that on account of the friction of the ocean 
against its bed, the values of these tides will be the same as the 
corresponding values furnished by the equilibrium theory ; and he 
assumes that the effect of this friction upon any element of the 
liquid, can be represented by a force proportional to the velocity of 
that element. One objection to this hypothesis is that it is in 
complete disagreement with the theory of the motion of a viscous 
liquid, which, as we shall see in the next chapter, shows that the 
effect of friction is to introduce terms of the form iV2u, vV2v, iVw 

into the general equations of motion, where v is a constant depend­
ing on the viscosity of the liquid2. 

Another objection, which has been urged by Prof. Darwin, is as 
follows8. " In systems where resistances are proportional to the 

1 Mécanique Célente, L iv re iv. § 3, (4) . 
2 T h e problem of Waves in a slightly viscous liquid viill be considered in 

Chapter X X I I I . 
3 Proc. Roy. Roc. 1886. 
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velocity, it is usual to specify the resistance by a modulus of decay, 
viz., that period in which a velocity is reduced by friction to e - 1 or 
1 -r- 2'783 of its initial value, and the friction contemplated by 
Laplace is such that the modulus of decay is short compared with 
the semi-period of oscillation. The quickest of the tides of long 
period is the fortnightly tide, hence for the applicability of 
Laplace's conclusion, the modulus of decay must be short compared 
with a week. Now it seems practically certain that the friction 
of the ocean bed would not materially affect the velocity of a slow 
ocean current in a day or two. Hence we cannot accept Laplace's 
hypothesis as to the effect of friction." 

Laplace's argument is as follows. He supposes that the co-
latitudinal and longitudinal components of the resistance are 
represented by the terms rjS sin 6. Now the terms j , TJ 
depend upon f * J and may be neglected i f / is small; hence (9) and 
(10) become 

gf -2n , / s in0cos0 = - 9 4 (fc - 1 ) , 

Qj Cbu 
£7) sm0+2M£cos0 -O , 

\>a sin 0 + ^-(7? sin 6) = 0, 

since none of the quantities depend upon cp. From the first two 
we obtain 

Substituting in this the value of f from (14) we obtain 

whence if f is small compared with €, the left-hand side may be 
neglected and we obtain ft — e = 0. 

440. We shall now give Prof. Darwin's solution of this pro­
blem1. 

It is assumed that the ocean is of uniform depth ; hence 
putting ¡3 = 4ma/7, p = cos 6 ; and remembering that k ~ 0, 
e = E(^ — (j.*), (18) becomes 

* £ = £ £ } - ' i " + * < t - « » o » 
1 Vroc. Bmj. Soc. 1886. 
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Then 

+ . . . ( 2 n + l ) ( B l r t + l - B 2 n J ^ " + (20). 

Again 

^ = - B J ^ + (B, - f B s ) ^ + . . . - f B 2 v J ^ + .. 

whence u = C - %fBlfi' + \(B1 - f Ba) ^ + 

+ 2

L

r e ( ^ - s - / S ^ - > ! " + (21), 

where G is a constant. Substituting from (20) and (21) in (19), 
and equating coefficients we obtain 

G = — ^E + BJB 1 

B . - B , ( l - £ ^ + ± ß E = 0 

.(22). 

B - B i l - • Z " ' 3 — I = 0 
!n+1 2n (2TI + 1)J 2 w ( 2 n + l ) j 

Hence all the constants G, Ba, B^... are expressible in terms of 
Bv which is apparently indeterminate. 

If we put 
- i ß B _ 1 = ißE, or B_T = - 2 E , 

the last of equations (22) will hold for all values of n from 1 to JO . 
Writing this equation in the form 

B ^ 2n (2m + 1) +
 2n {in + 1) B ^ ' 

we see at once that when n is large P 2„ + 1/-S 2n-i either tends to 
become infinitely small or it does not. 

The symmetry of the motion requires that u should be an even 
function of f i , hence at the equator where ft = 0, we must have 
du/dfj. = 0. 

Let us assume 

1 du 
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If this ratio does not become infinitely small, it follows that tbe 
successive B's tend to become equal to one another, and so also 
do the coefficients 5S B_, — f ' B i n + i in the expression for du/d/j.. We 
may therefore put 

du _ T M 

dp~ + 1 ^ ( 7 " 

where L and M are finite quantities which do not vanish for any 
value of fi, hence 

Substituting this value of du/dd in the first of ( 1 7 ) , and 
putting k = 0 , it follows that at the pole where = x and 
therefore £ are infinite. Hence the hypothesis that B m + J B m _ l 

does not tend to become infinitely small, makes the velocity infinite 
at either pole, which is obviously contrary to the facts of the case ; 
and we therefore conclude that B t n + J B a n _ l does tend to become 
infinitely small. 

Writing the last of (22) in the form 

B 

B M = 2n (2n + 1 ) 

1 -

.(23), 

2n(2n+l) Bin_, 

it follows that this ratio may be written in the form of the 
continued fraction 

B 

» , 2n (2n + 1) 
ß 

(2n + 2) (2n + 3) + 
&c. 

2n(27i + i ) (2n+2)(2n + 3) 

This continued fraction gives the value which this ratio must 
have when the water covers the whole globe. 

Let Nn denote the value of the continued fraction, then 
remembering that 5_ t = — 2E, we have 

Bl = 2ENV B, = - Nfr = - 2EN1A
T

11 

£„ = - 2ENlN2N, &c., 

C = - ^ E + 2ENJB. 
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We therefore obtain 

h = u + E ( l ~ p ) 

= C + \ E - ( E + \ f B x ) p} + i (Bl - f ' B a ) /.*+..., 

or h/E = 22VJ0 - (1 +fN1) p? + (1 + f N , ) p,< 

- i ^ a ( l + / 2 ^ s ) ^ + (24). 

The height f) of the tide is equal to h cos (2nft + a) and the 
height of the eqinlibrium tide is £ = E (\ — p?) cos (2nft 4- oi). 

In the paper from which this investigation is taken, Prof. 
Darwin has made some numerical calculations for determining the 
values of the fortnightly tide when the depth of the ocean is 3000 
and 1200 fathoms respectively; and he finds that in the case of 
the oceans upon the earth, this tide is smaller than half its 
equilibrium value, but with a deeper ocean the tide would approxi­
mate towards its equilibrium value. 

The Diurnal Tides. 

441. In these tides k=l, f = \ , e = E sin 8 cos 6, also 
7 = I (1 — q cos*8). 

In order to solve (18) let us assume 

u = F o + F m + F m \ 
1 \maj \ma/ 

where the F ' s are functions of 8 but not of I; substituting in (18) 
and equating coefficients of powers of I, we at once obtain 

Fa = - e = — E sin 8 cos 8. 

To determine Fv put u = F0 in the left-hand side of (18), then 

7 (sin 8 dujd8 + 2u cos (?) _ _ 4Ey (sin 8 (2 cos'c? - 1) + 2sin flcos'fl} 
cos20 ~ 1 - 4 cos20 

= 4ify sin 0, 
also 

7 (2 cos 9 dujdd + u cosec 8) _ _ 4 i i 7 [2 cos 9 (2 cos26> - l ) + cos 8} 

sin 8 ( i - cos20) ~ sin0~(l - 4 c o W ) 
= 4/?7 cot 8, 

whence the first two terms of (18) are equal to 
ciElq sin 8 cos 9 = - HlqF0. 

IRIS - LILLIAD - Université Lille 1 



We thus obtain 8lqFQ = 8lqFv 

therefore F0 — Fv 

Proceeding in the same way it can be shown that 

Fn = F„_x = =F0, 

whence the value of u finally becomes 

u = F A i ^ + m \ i 
{ ma \maj ) 

e 

1 — 2lqjma ' 

Whence h = e + u = — 
2lqe/ma 

(25). 
1 — % q \ n i a 

The peculiarity of this tide is, that when q = 0 so that the 
depth of the ocean is everywhere uniform, the tide vanishes. 

If q is not zero and E is positive, e will be positive if the place 
of observation is in north latitude. If therefore the ocean is 
shallower at the poles than at the equator, q is positive and there­
fore when the disturbing body is in the meridian of the place of 
observation h is negative, and the tide is inverted. 

442. The evanescence of this tide applies only to the elevation 
of the water; the velocity of the latter which depends on f and 
w does not vanish. Putting u = - e w e obtain from (17), 

Confining our attention to a single disturbing body, it appears 
from (4) that E= 3Ma2 sin S cos &/Dsg ; hence if the declination of 
the disturbing body is north, E is positive, and therefore in north 
latitude the motion of the water is from north to south, and the 
longitudinal velocity vanishes at the equator. 

443. We shall only be able to solve the problem of the semi­
diurnal tides when q = 1 and q = 0. In the former case 7 = I sin2#, 
and the height of the tide can be found by a similar method to that 
employed in the preceding section. 

x = Ejm, y sin 8 = — Em, 1 cos 8. 

The Semi-diurnal Tides. 
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• ftn , m = - 4 H ( l - r c o s 2 5 ) . 
s i n 0 (1 — c o s 0) 

Whence the first two terms of (18) are equal to 

8EI shi99 = - ISIF0. 

We thus obtain F, = F„. 
Proceeding in the same way we obtain 

K = ^ = = ^ 0 , 

and the value of u finally becomes 

u = F 0 \ l + — + — + •••• 
I ma \maj 

1 - 2 1 ma 

2le\ma 
whence h = e + u = — , (26). 

1 — 2ljma 

If Ijma < \ , it appears that when the disturbing body is on the 
meridian, the tide is inverted. 

444. Laplace has also solved the equation determining these 
tides, when the ocean is of uniform depth, which leads to a 
solution involving a continued fraction similar to that of § 440. 

Let q = 0, B = imajl, v = sin 9, so that e = E v l . Changing the 
variable from 9 to p, (18) becomes 

v2 (1 - v1) d ~ _ „ J * _ <8 - 2J - Bvl) u + ESv6 = 0.. .(27). 

In order to satisfy this equation, let us assume 

u = B0 + (Bt — E)vi + B y + B y + + B . y (28). 

We have k = 2 , f = 1, e = E sin2f?. Let us therefore endeavour 
to find a solution of (18) of the form 

U - F . + F J ^ + F J * ) 1 * 
1 \ma) 2 \maj 

where the F ' s are functions of 8 but not of I. Wc obtain as 
before 

F, = - e = - Esin'8. 

To determine F^ put u = FQ in the left-hand side of (18), then 

y ^ 0 d u j d 9 - + 2 ^ s 9) = _ 8 i n l f l c o g B 

1 — cos d 

2y (cos 9 du/d9 + 2u cosec 0) 
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Substituting the preceding series in (27) and equating coeffi­
cients we obtain 

B0 = 0, B t = E, 

and 2n (2n + 6) B ^ + i - 2n (2n + 3) B 2 n + 1 + B B i n = 0 (29). 

By means of this equation the values of the B's can be deter­
mined in terms of Bv Br Now B2 = E; also since the motion is 
symmetrical with respect to the equator it follows from (17) that x 
and therefore du/dd must vanish at the equator ; hence B t must be 
determined from the condition that du/dd = 0 when 6 = \-w. 

Writing (29) in the form, 

= 2/1 + 3 _ B__ 
B M 2n + 6 2 « ( 2 « + 6 ) £ s „ + s * 

it follows that in order that the series should be convergent, it is 
necessary that B^JB^ should tend to a limit < 1. 

Now this quantity tends to become infinitely small or it does 
not ; in the latter case 

B , ^ 2n + 3 , / , 3 
B M i ? " 2 » + 6 

ultimately when n is very large. 

Now this is the degree of ultimate convergence of the series for 
(1 — J / 2 ) 4 , hence the series for u is convergent and we may therefore 
put 

u = A + B (1 - i / 1 ) * , 

where A and B are finite for all values of v. 

Differentiating (28) with respect to v, the convergence of the 
series for dujdv depends upon the value of 

(2n+-4)B2n+lv*/(2n + 2 ) B , n + , 

Now by (29) 

(2n + 4) tf2n+4 _ (2n + 4) { 2 n + 3) 
{2n + 2 ) B 2 ^ (2-/1 + 2) (2n + 6) 

v 

when n is very large. Now this is the degree of convergence of 
the series for (1 - v ' ) ' i ; we may therefore put 

d ' 1 = C + D ( l - v Y i , 
dv K 
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where C and D are finite for all values of v; also since 

it follows that at the equator where i » = 1, du/dO — D. Hence the 
hypothesis that B m + J B i n + ^ does not tend to become infinitely small, 
makes d%/dt finite at the equator; we therefore conclude that this 
ratio does tend to become infinitely small as n indefinitely increases. 

Writing (29) in the form 

#a+2= H 
2« s + 3n - (2n2 + 6n) B ^ J B ^ ' 

it follows that B 2 n + J B 2 a is expressible in the form of the continued 
fraction £2n+2 = i$_ [ ^F~+ 3rff/3 PUrTW+3 (n + 1)'| /8 F&c. 
P 8 B 27i i + 3n 2(TJ+1) ' j + 3 ( 7 1 + 1) 2 (»i + 2) 2 + 3 ( 7 1 + 2) 

Putting iV„ for the continued fraction, we obtain 
Bt = E, Bi = E N v Bt = ENtN%&c. 

The solution of the problem of the semi-diurnal tides in an 
ocean of uniform depth by means of this continued fraction was 
given by Laplace without explanation; it was attacked by Airy1, 
and by Ferrel", but was justified by Sir W. Thomson3 and the 
process was worked out and explained by Prof. Darwin1 as above.6 

445. The following numerical results are given by Laplace. 
The quantity m is the ratio of the centrifugal force to gravity at 

the equator, and is equal to ; if therefore we put /3 successively 

1 " Tides and Waves," Encyc. Met. 
2 " Tidal Researches," U. S. Coast Survey. 
3 Phil. Mag. 1875. 4 " Tides," Encyc. Brit. 
5 The reasoning which lies at the bottom of the investigations of §§ 440 and 444, 

may I think be rendered clearer by the following considerations. 
Let us suppose that we have to find the value of a function which satisfies 

(i) a given differential equation, (ii) certain other conditions. Then if we seek for a 
solution in the form of a series, and determine all the coefficients so as to satisfy 
(i) and ( i i ) , the series will not be the solution we require unless it be convergent. 
Similarly if the conditions (i) and (ii) enable us to determine all the coefficients in 
terms of a single unknown quantity A. it does not follow that A is indeterminate; 
for if by assigning any particular value to A, the resulting series could be made 
divergent, this value would have to bo excluded. The quantity A is therefore 
not really indeterminate, but must be found from, the condition that the scries 
should be convergent. 
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equal to 40, 10, and 5, the corresponding depths of the ocean will 

be „ 7 7 7 7 7 , , ^ ¿ 7 5 - = , S T T r v f i of the earth's radius. Also since h = E v 2 + u, 
ZouO ¿"¿¿0 o v i ' z , i 

Laplace finds the following values of h in the three cases, viz., 

/3 = 40 

h = E ( v 2 + 201862 v 4 + 101164 v 6 - 13 1047 pa - 15 4488 v w 

- 7-4581,/» - 2197.V 4 _ -4501 v w - '0687 v w 

- '0082 v'" - -0008 - -0001 v 2 ' ) , 

B = 10 

h = E ( v 2 + 61960 j,* + 3-2474 y

5 + 7238 v a + -0919 v10 

+ 0070 + -0004 v 1 1 ) , 
B = 5 

h = E (j/a + '7504 -f-1566 + '0157 v a + '0009 v l e ) . 

From these equations we see that h vanishes when v = 0, hence 
there is no tide at either pole. 

At the equator v = 1, and we find 

(S = 40, h = - 7-4344 # 

£ = 10, A = 11-2671 E 

B = 5 , h = 1-9236 ^ 

When ¡3 = 40, A. is negative which shows that at the equator 
the tide is inverted ; but in the neighbourhood of the poles where 
v is small, the tides are direct; hence there is a certain latitude, 
which is approximately 18° in which the tide vanishes, and which 
is therefore a nodal line of evanescent tide. In the other two 
cases the tides are always direct; hence it follows that if the depth 

of the ocean is ths of the earth's radius, or 1200 fathoms, the 
2890 

tides will vanish in latitude 18°, and in lower latitudes will be 
inverted; as the depth of the ocean increases the latitude of the 
evanescent tide increases until it ultimately coincides with the 
equator, and for greater depths the tides are direct everywhere. 
This critical depth lies between 1200 and 4800 fathoms. 
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Free Oscillations of an Ocean of Uniform Depth. 

446. Before passing on to consider the canal theory of tides, 
we shall consider the problem of the free oscillations of an ocean of 
uniform depth which completely envelopes a sphere1. 

Let a be the radius of the sphere, h the depth of the ocean 
when undisturbed. Let the equation of the surface of the sea be 

on 

r = a + h + Z j n (30), 

where Yn is a spherical surface harmonic, and the 2n + 1 constants 
which it contains are functions of the time. Since JJYndS vanishes 
when the integration is taken over the surface of a sphere, the 
condition of constancy of volume is satisfied by (30). 

Since dcbjdr vanishes when r = a, the velocity potential cb must 
be of the form 

ch = % {(n + 1) (r/a)' + n (a/V)"+l} Zn (31), 

where Za is another spherical surface harmonic. 

The condition that (30) should be a bounding surface is 

y dYn d$ 

* dt d r ~ U ' 

when r = a 4- h ; whence writing b for a + h, we obtain 

^ = a*n (n + 1) {(i/a)"" 1 - ( a /6)"-} Zn (32). 

The equation determining the pressure is 

~ - ^ + ^ = const (33), 
p at 

where V is the attraction potential, and the square of the velocity 
is as usual neglected. By § 371, the value of V at the surface is 

E Y 
V = - + W p f c - S s - ^ , r r 2ra + 1 

_ E _ „ IE 4,7rpb \ 

~ b U" 2/i + 1 ) 

i Lamb, Motion of Fluids, p. 197. Thomson, Phil. Trans. 1863, p. 608. 
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[ l - s ' » 

dt 

F„ (34). 
^ L (2ra4- 1) [<ra3 + p (b° - a 3 ) } 

Eliminating Zn between (32) and (34) we obtain 

d? Tn " ' 

where Tn, the period of oscillation, is determined by the equation 

T* = Wag"1 {(n + 1) (&/u)n 4- n (a/&)"+1} 
3p6: 

v » i ( » 4 l ) { ( 6 / a ) * r i - ( a / 6 ) - + 1 ' } 1 -
(2n4-l){o-a 34-/3(6 3-a 3)} (35). 

If < T < / 3 the value of Tl will be imaginary, and the motion is 
unstable. If therefore a spherical nucleus is surrounded by liquid 
of uniform depth, the equilibrium will be unstable if the density of 
the liquid is greater than that of the nucleus, and the nucleus will 
float on the liquid with a portion of its surface protruding. 

If a = 0, (35) becomes 

2TT 2 (2^4-^)6 
n(n-l)g ' 

which determines the period of oscillation of a spherical mass of 
liquid under the influence of its own attraction. 

If h be small compared with a, (35) becomes 

T„ a = 4 T T V / » I (n 4 1) (1 - 3p/(2n 4- 1) a] gh ; 

a result due to Laplace. 

where E is the mass of the sphere and liquid, and p is the 
density of the latter. If a be the density of the sphere 

E = | 7 r a V 4- %-n-p (bs - a"). 

Whence (33) becomes 

P - H , s (E 4 T T P & \ 

p b * W 2 n + U " 

+• X {(« + 1) (b/a)n + n (a/6)""} = const. 

At the free surface p = const.; whence putting E / b * = g , we 
obtain 

- {(n + 1) ( & / < 4- n ( 0 / 6 ) - } ^ = b - 4 ^ 6 / ( 2 « + 1)} F„ 
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The Canal Theory of Tidesl. 

447. The defect of Laplace's theory when applied to the tides 
as they actually exist in the oceans covering the earth, consists in 
the circumstance that this theory is based upon the assumption 
that the whole earth is covered with water ; whereas the existence 
of large continents must seriously affect the accuracy of results 
deduced from this theory. Another theory has been developed by 
Airy, which is usually known as the canal theory of tides, whose 
object is to investigate the tidal motion of water due to the 
disturbing influence of the sun and moon, in a narrow canal whose 
form is that of a small circle upon the earth. 

448. Since the lateral dimensions of the canal are supposed to 
be small in comparison with the radius of the earth, the problem 
may be treated as one of two-dimensional motion. Let the 
origin be taken in the bottom of the canal, and let the axis of x be 
measured along the canal, and that of y vertically upwards. Let £ 
be the displacement in the direction of x , of an element of liquid 
whose undisturbed co-ordinates are (x, y ) ; X, Y the component 
forces parallel to the axes due to the disturbing body; h the depth 
of the canal, n the height of the tide. 

The equations of motion are 

f = X - - f - (36), 
p dx 

y-*~\% ( 3 7 > -
Since the vertical acceleration is small compared with the 

horizontal acceleration, ij may be neglected; also since the 
disturbing force is small compared with the attraction of the earth, 
the pressure at a given depth will be approximately equal to the 
hydrostatic pressure due to the height of the free surface; we may 
therefore put 

p =gp{h + y - y ) . 

Substituting in (36) we obtain 

1 Airy, "Tides and Waves," Sec. vi. Encyc. Met. 
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By § 403, the equation of continuity is 

T)\K = -d%\dx (38), 

whence f = X + gh g (39). 

In the following applications, X will be of the form 
A sin {nt — mx + a), where A and a. are constants ; substituting 
this value of X in (39), and integrating we obtain 

A • , -,\ t = —o—J 5 sin (nt — mx + a) 
' J ~ « ' (40) . 

, Ahm , , . 
whence n = —s—, . cos (nt - mx + a) 

m gh — n j 
This is the portion of f which depends upon the disturbing 

body, and therefore constitutes the forced oscillation. The free 
oscillations are represented by the complimentary function which 
is obtained by integrating (39) with X = 0. 

449. We shall now suppose the disturbing body to be the 
moon, which is assumed to revolve with angular velocity n, in an 
orbit whose projection upon the earth is a small circle, and that 
the canal is any other small circle upon the earth. 

P 

In the figure let P be the pole of the earth, M the projection 
of the moon, LTJ the small circle described by it round the pole ; 
let KK' be the canal, Q any point on it. Let M Q = e , p Q = a, 
pM=fi, Pp = y ; also let the angle KpQ = <p, IIpQ = 6; also let 
LP AT = vt, P M = \TT — S, so that S is the declination of the moon. 
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From the spherical triangle Q p M we obtain 

cos e = cos 8 sin a sin /3 4 cos a cos 8 (41). 

By § 429, the potential of the forces acting on an element at 
Qis 

V = p 4 - + A + ^ ¡ - ( 3 cos-c - 1), 

or, 

M E Mr2 

F"=-g + -—4-̂ 4 4- {3 (cos 8 sin a sin 8 4 cos a cos B f — 1], 

by (41). The force at Q along Q K is 

—= = — (cos 8 sin a. sin B 4- cos a cos /3) sin 8 sin <3...(42). 

We must now express the right-hand side of this equation in 
terms of nt. We have 

sin 8 sin 8 = sin 8 sin (cp — KpH) 

= sin cp sin /3 cos KpH — cos oi sin /3 sin KpII. 

From the spherical triangle MpV we obtain 

cos KpH = — cos MpP = (cos y cos /3 — sin S)/sin B sin 7 , 

whence 

sin B cos KpH = cot 7 (cos 8 sin 7 cos ?ii 4 cos 7 sin 8) — sin 8 cosec 7 

= cos 8 cos 7 cos nt — sin 8 sin 7 (43), 

also sin /3 sin KpH = sin /3 sin MpP = cos 8 sin nt (44), 

therefore 

sin 8 sin 8 = — sin cb sin 8 sin 7 4 sin cp cos 8 cos 7 cos nt 

— cos of> cos 8 sin Jif (45)-

Again 

cos 8 sin /3 = cos cp sin /3 cos KpH 4- sin oi sin 8 sin KpH 

= cos of) (cos 8 cos 7 cos nt — sin 8 sin 7 ) 4 sin </> cos 8 sin ni, 

by (43) and (44) ; whence 

cos 8 sin 1 sin B + cos a cos /3 = sin 8 (cos a cos 7 — sin a sin 7 cos cp) 

4 cos 8 (cos a sin 7 4 sin a cos 7 cos cb) cos nt 

4 sin cb sin a cos 8 sin nt (46). 
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The complete solution of the problem is obtained by expressing 
the value of the disturbing force in the form A sin ( p t + qcb + r) 
by means of (42), (45) and (40), then putting cp = x \ a . sin a, and 
finding the forced oscillation by means of (39) or (40). 

450. Let us now suppose that the disturbing body lies on the 
equator; then 8 = 0, and the right-hand sides of (45) and (46) 
respectively become 

cos y sin ch cos nt — cos cp sin nt (47), 
and 

(cos a sin 7 + sin a cos 7 cos ch) cos nt + sin a sin <b sin nt (48). 

The product of these expressions multiplied by — SMa/D3 will 
give the disturbing force. This product will be found to consist of 
three parts, the first of which is independent of t and therefore 
does not produce any tide but simply alters the mean level of the 
water. The second part depends upon cp and 2nt; and the third 
part upon 2cj> and 2nt. 

Since t enters in the form 2nt, the tides represented by both 
terms will be semi-diurnal; and we shall first consider the second 
part which is equal to 

f J/aZT3 (— cos a. sin 7 cos 7 sin cp cos 2nt + cos a sin 7 cos cp sin 2nt) 

= 3MaD~s cos a sin ¿ 7 cos ^y {s'm,lysm(2nt+ cp) + cos'ly sin (2nt — ch)}. 

In order to find the elevation of the water we must put 
ch = xja sin a, and substitute the preceding expression for X in 
(39); we thus obtain from the second of (40) 

3Ma2h . • r 21 re * J \ 
7 1 = 2 / y ( g f c - 4 , V s h A ) S l n a c o s a s i n 7 [ c o s i 7 c o s { 2 n t ~ & 

— s in 2 ^7 cos (2nt + (/>)}, 

which represents twro waves travelling in opposite directions. 

If in this expression we put tan -ty- = tan ch sec 7 , it becomes 

" sin a cos a sin 7 (cos 7 cos 9 + amp) 1 

' 2DS ( # A - 4 7 i V s i n V ) 

X cos (2nt - ijr) (49). 

The preceding value of 77 shows (i) that the oscillation at the 
place of observation goes through all its phases twice during a 
complete revolution of the moon, it therefore represents a semi­

diurnal tide; (ii) that at any particular instant, 77 goes through all 
B . II. 15 
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its values as 0 changes from 0 to 2 7 r ; hence the elevation is 
different at every point of the canal, and therefore (49) represents 
a single wave travelling round the canal with an irregular motion 
twice in a tidal day. Since 7 = 0 when the pole of the canal 
coincides with the pole of the earth, this tide does not exist when 
the canal coincides with a parallel of latitude. 

451. The oscillation just considered, constitutes what Airy calls 
the first semi-diurnal tide; we must now consider the third part 
of the disturbing force, which depends upon 2 0 and 2nt, and which 
constitutes the second semi-diurnal tide. From (47) and (48) the 
portion of the disturbing force which depends on these terms will 
be found to be, 

fi¥aZTs {sin 2 cos 7 cos 2 0 sin 2nt — £ sin a (1 4 - 0 0 3 * 7 ) S R L 1 2 0 cos 2nt) 

= %MaD~3 sin a { c o s 4 ^ 7 sin (2nt - 2 0 ) - sin% sin (2nt + 2 0 ) } , 

whence the elevation is 

3Md'h sinaa . . , „ . , , . „ , N . 
v = 4X» 3(ffA-wVsin 2a) ' C 0 S * 7 S m ^ ~ ® ~ * 7 S m ^ ~ 

Putting tan % = 2 cos 7 tan 2 0 / ( 1 + cosfy), this may be written, 

V = A T * , 1. 2 » • -2 x {1(1 + c o s ! 7 ) ! c o s 8 2 0 + c o s 2 7 s i n 2 2 0 } * 
4D3 (gh — n a sm a) 1 4 v ' T ' r j 

x cos(2nt- x ) (50). 

The preceding value of rj shows (i) that the oscillation at the 
place of observation goes through all its phases twice during a 
complete revolution of the moon, hence the tide is semi-diurnal; 
(ii) that the height of the tide at a point IT + 0 is the same as that 
at a point 0 : hence there is a double wave on the canal which 
travels round the canal with an irregular motion once in a tidal 
day. 

452. The waves which we have investigated in §§ 450—1 
compound into a single wave at the place of observation; for they 
are each represented by terms of the form A cos (2nt — -v/r) and 
B cos (2nt — x ) which may evidently be compounded into a single 
term of the form 0 cos (2nt — O). The quantities C and fi depend 
upon the dimensions and position of the canal; hence the magnitude 
of the tide and other special circumstances connected with it cannot 
be investigated without a knowledge of their values. 
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453. Let us now suppose that the canal is a great circle, whilst 
projection of the path of the disturbing body is any small circle. 
In this case a = \ i r , and the value of sin 8 sin /3 is given by (45), 
and the right-hand side of (46) becomes 

— sin 7 sin 8 cos 0 4- cos 7 cos 8 cos 0 cos n t + cos S sin 0 sin n t . . .(51). 

If the right-hand sides of (45) and (51) be multiplied together, 
and the result multiplied by — 3Ma/D*, we shall find that the 
disturbing force consists of three parts. The first part is indepen­
dent of nt, and shows that the mean elevation is modified by the 
action of the disturbing body. The second part depends upon 20 
and nt, and the third on 20 and 2nt. 

The tides produced by these terms can be investigated in 
precisely the same manner as in §§ 450—1, and it will be found 
that the height of the tide produced by the terms depending on 
20 and nt is 

77 = — / ^ g j ^ \*a*) s m 2S sin 7 ( c o s J 7 cos'20 +sin2 20) ' 

x cos (nt — ty) (52), 

where tan i|r = sec 7 tan 20. This tide is therefore a diurnal tide; 

also since the value of n at the point IT + 0 is the same as at the 
point 0, there are two waves in the canal, each of which travels 
round the canal with an irregular motion once in two days. Since 
the elevation depends upon sin 26, it changes sign when the 
luminary crosses the equator, and vanishes when the luminary 
is on the equator. If therefore the path of the disturbing body 
coincides with the equator, this tide vanishes. 

If the canal coincides with a meridian, 7 = \ ir, and (52) becomes 

3Ma% . . . 

hence the wave is a stationary wave, whose period is diurnal. 

The elevation vanishes at the poles where 0 = 0 or IT, and at the 
equator where 0 = \ir or \TT ; also an elevation in north latitude 
occurs at the same time as a depression in south latitude, and the 
tide will be highest (or lowest) in lat. 45°. The sign of n will 
depend on that of 4?gh — 7i2a2, which depends on the depth of the 
canal. 

If the canal is equatorial 7 = 0, and therefore the tide 
vanishes. 
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454. The portion of the disturbing force depending on 2<p and 
2nt can be shown as in § 451 to produce an elevation 

SMa'hcosaS . , , .„ „ . s n . . i 
^ j g p - n ' o 1 ) { i ( l 4 W 7 ) W 2 < ? i + c o u s i n 8 2 0 } * 

x cos(2n£ —^) (54), 

where tan % = 2 cos y tan 2<j>/(l + cos*y). Hence the portion of the 
tide which depends on these terms is semi-diurnal, and consists of 
two waves on the canal travelling round it with an irregular 
motion once a day. 

Since the declination of the sun or moon is never equal to 90°, 
this tide can never vanish for any position of the disturbing body. 

If the canal is equatorial, 7 = 0, and (54) becomes 

m a ' h cos' 8 

Hence the tide will be direct or inverted according as h > or 
< rfaf/y. 

If the canal passes through the pole 7 = \TT, whence 

3 J f f f l ' A c o B ' 8 _ , _ . . „ „ . 

V = n T~\I f f 1 2>
 c o s 2© cos znt ( D O ) , 

8JJ [gh—n a) r 

which represents a stationary wave. 

455. Tf the period of apparent revolution of the disturbing 
body round the pole were exactly equal to the period of rotation of 
the earth, which is very nearly true in the case of the sun, though less 
so in the case of the moon, n*a/g would be equal to and there­
fore the denominator of (55) would be negative if h< a/289, or< 14 
miles about. Now the depths of the oceans which cover the earth 
are less than 14 miles, it therefore follows that when the luminary 
is on the meridian of the place of observation, or nt = <f>, the tide 
considered in (55) will be inverted. 

If in (50) the canal coincides with a parallel of latitude, 7 = 0 , 
and x = 2cb, hence the tide will be inverted unless h > 14 sin2 a 
where h is the depth of the canal in miles. At the equator a = \TT 
and at the poles a =0 , it therefore follows that whatever the depth 
of the ocean may be there must be a certain latitude for which this 
tide vanishes, which is equal to cos - 1

 (h/14i)i, and therefore in higher 
latitudes the tide will be direct, whilst in lower latitudes the tide 
will be inverted, 
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The first portion of the disturbing force in the preceding 
sections, which does not contain nt, is not absolutely constant, since 
it depends upon the motion of the moon about the earth, or of the 
earth about the sun, according as the disturbing body is the moon 
or the sun. Hence these terms will give rise to tides of long 
period ; we shall not however investigate them but refer the reader 
to Airy's treatise1 where they are discussed. 

Tides in Estuaries. 

456. We have shown in § 403, that the equation of motion 
for long waves is 

y j °7), 
dt2 dx2 V dx. 

and that the elevation rj is 

1 = - A £ ( l + S r ( 6 8 ) . dx \ dx) 

where h is the depth of the water and v2 = g h . 

Let us now suppose that a gulf or tidal river communicates with 
the sea. Owing to the tides in the sea, there will be a tide in the 
river up to a certain point; also if the length of the river be short 
in comparison with the radius of the earth, the tides produced by 
the direct action of the sun and moon will be small in comparison 
with the tides produced by the rise and fall of the ocean with which 
the river communicates. The elevation of the water at the mouth of 
the river may be represented by a term of the form T? = H sin nt, 
and the problem consists in finding the forced oscillations of the 
river due to this term. 

Since T] and therefore d£/dx are small, (57) may be written 

3 - ' £ ( » - ' £ o > 
For a first approximation omit the last term on the right-hand 

side of (59), and we obtain on integration, 

f = a cos m (vt — x), 97 = — mah sin m (vt — x), 

where m = n/v, H — — mah. 

1 " Tides and W a v e s , " S e c . v i . §§ 446—449. 

IRIS - LILLIAD - Université Lille 1 



The preceding value of y gives the height of the tide at any 
point up the river to a first approximation. In order to obtain a 
second approximation, substitute the preceding value of f in the 
last term on the right-hand side of (59) and we obtain putting 
u = vt — x, 

d £ 9 ^ ^ , 5 9 ? ~i 
-jf, — v -y-+ strom' sin 2mu. 
dt dx* i 

In order to solve this equation, assume 

ff = a cos mu + Ax cos 2mu + R sin 2mu 

and we find A = — j | a*m*; and from (58) we obtain 

v/h — \?n?o? — ma sin mu + fmWa; sin 2mu 

+ (2mB - | m V ) cos 2mu... (60). 

Since 7j = H sin nt when x = 0, we must have 

B = — T

3

F F TWO. 2 , 

and therefore 
ij/A = — ma sin mu + fm'a's; sin2mw + £mBa4 (1 — cos 2mw)...(61). 

457. In the preceding investigation we have implicitly as­
sumed that the terms involving 2mw are small in comparison with 
those involving mu. Now the coefficient of cos 2mu is Ax, and 
this will not be small if x is large ; but in order to evade this 
difficulty we may take the canal of finite length, and suppose that 
the other extremity is connected with a large lake at which an 
appropriate forced oscillation is maintained. 

The first term of (61) is called the fundamental or oceanic tide; 

and the second is called the first over-tide. The velocities of pro­
pagation of the two tides are the same, but the frequency or 
speed of the latter is double that of the former. It also appears 
that the times of high and low tide are the same throughout the 
estuary. 

As a matter of fact the time of high tide in a tidal river differs 
at different places. For example, if it is high tide at Margate at 
noon, high tide at Gravesend occurs at a quarter past two, and at 
London Bridge a few minutes before three; hence the preceding 
results can scarcely be considered an approximate representation of 
the facts. Of course the tides in an estuary depend largely upon 
its form, the presence of shoals and other causes ; also the effect of 
the viscosity of the water, and the friction against the bed of the 
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estuary due to the inequalities of the latter, must materially 
influence the motion. The solution of the problem when friction 
is taken into account has been given by Airy, upon the supposition 
that the effect of friction may be represented by a term proportional 
to the velocity, and may therefore be obtained by adding the term 
fid^fdt to the left-hand side of (57) aud proceeding as before ; and 
the form of his solution shows that the tide gradually travels up 
the river, which is in better agreement with the facts. For further 
information on this point, we must refer the reader to Airy's Tides 

and Waves, and to Prof. Darwin's article on Tides in the Encyclo­

paedia Eritannica. 
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C H A P T E R X X . 

O N T H E G E N E R A L E Q U A T I O N S O F M O T I O N O F A V I S C O U S 

F L U I D . 

458. W E have defined a perfect fluid to be one which is 
incapable of sustaining any tangential stress, and have shown as a 
necessary consequence of this definition, that whether such a fluid 
is at rest or in motion the pressure at every point is the same in 
all directions, and acts in a direction perpendicular to every plane 
through that point. We have also pointed out that this condition 
is not fulfilled in the case of any fluid which exists in nature, since 
every fluid with which we are acquainted is capable of sustaining 
tangential stresses, and consequently the pressure at a point is not 
perpendicular to every plane drawn through that point, neither is 
it the same in all directions. 

It further appears from experiment that whenever a fluid is set 
in motion and then left to itself, the motion gradually subsides and 
ultimately dies away, and an apparent loss of energy takes place. 
This apparent loss of energy is due to the internal friction of the 
fluid, which causes the kinetic energy of the motion to be converted 
into heat. 

Various theories1 have been constructed to explain the nature 
1 Navier, Mem. de VAcad. des Sciences, vol. vi. p. 389. 
Poisson, Journal de VEcole Polytechnique, vol. m p. 139. 
Barr6 de. Saint-Venant, Comptes Rendus, vol. xvn. p. 1240. 
A description of these three papers is given by Stokes, Brit. Assoc. Rep. Hydro­

dynamics, 1846. See also, 
Meyer, lieber die Reibung der Flüssigkeiten, Borch, vol. Lrx . p. 229; and vols. 

L X X V I I I . p. 130, and L X X X . p. 315. 

Stefan, Ueber die Bewegung flüssiger Körper, Sitz. Akad. Wiss. Wien, voL X L V J . 

p.8. 
Maxwell, " On the dynamical theory of gases," Phil. Trans. 1867, p. 81; and 

Phil. Mag. Jan. and July, 1860. 
Levy, Comptes Rendas, vol. L X V I I I . p. 582. 
Kleitz, Ibid. vol. nxx iv . p. 426. 
Butcher, " On Viscous Fluids in Motion," Proc. Land. Math. Soc. vol. vm. p. 103. 
A description of these latter papers is given by Hicks, Brit. Assoc. Rep. Hydro­

dynamics, 1881—2. 
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and effects of fluid friction, some of which depend upon speculations 
concerning the molecular constitution of matter; none of them can 
be regarded as altogether satisfactory, although they furnish results 
which experiment proves to be true when the motion of the fluid 
is slow. The theory which will be explained in the present 
chapter is due to Prof. Stokes1, and depends partly on the theory 
of the internal stresses which are experienced by media which are 
capable of resisting compression and distortion, and partly upon 
three assumptions. 

459. The general theory of the internal stresses experienced 
by a medium which is capable of resisting compression and distor­
tion, is given in treatises on Elasticity; but for the sake of 
completeness, it will be desirable to give an outline of this theory, 
so far as is necessary for our present purpose. We shall therefore 
commence by examining the stresses which act upon an element of 
such a medium. 

/I 
/ ! 

2 

c 

/I 
/ ! > " * j r > " * j r 

Let the figure represent a small parallelopiped of the medium. 
The stresses which act on the face AD are, 

(i) A normal stress or traction XT parallel to O x ; 
(ii) A tangential stress or shear Yx parallel to O y ; 

(iii) A tangential stress or shear Zx parallel to O z . 

Similarly the remaining stresses which act on the faces BD and 
CD are Yy, Zy, X„ and Z„ X„ Y, 

These are the stresses exerted on the faces A D , BD, C D of the 
element by the surrounding medium; the stresses exerted by the 
medium on the three opposite faces will be in the opposite 
directions. 

1 Trans. Camb. Phil. Soc. vol. vin. p . 287. 
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4 6 0 . Let F, G, H be the components parallel to the axes, of 
the stresses upon the plane ABC, whose area is A and whose 
direction cosines are I, m, n. The conditions of equilibrium of the 
tetrahedron OABG require that 

F& = (IX, + m l , + nX,) A. 
We thus obtain 

F=lX1 + mXt + nXc] 

e = JF I + mF, + » 7 , ( 1 ) . 

11 = IZ, + mZs + nZj 

4 6 1 . The preceding results are true of any medium which is 
capable of resisting compression and distortion. We shall now 
suppose that the medium is a viscous fluid, and shall proceed to 
find the equations of motion. 

Let X, Y, Z be the components per unit of mass, of the 
impressed forces which act on the fluid ; p its density, and q its 
resultant velocity. Describe any imaginary fixed surface S in the 
fluid, and let e be the angle which the direction of q makes with 
the normal to S drawn outwards. 

The rate of increase of the component of momentum parallel to 
* of the fluid contained within S, is equal to the rate at which 
momentum parallel to x flows into S across the boundary of S, 
together with the rate at which momentum parallel to x is 
generated by the component of the impressed force parallel to x , 
and by the component parallel to x of the stresses exerted by the 
surrounding fluid upon the boundary of S1. 

1 The principle upon which this method depends was erroneously stated 
in Vol . i . § 21. The correct principle for a frictionless fluid is, as stated above, 
with pressure substituted for stresses; lines 13 and 14 of page 21 should therefore 
be, 

The rate at which momentum parallel to z flows into S, is 
-ffpiu cos e d S = -f/pu (lu + mv + nw) dS ; 

using this in § 21 together with the principle stated above and taking account of 
the equation of continuity, we shall obtain the equations of motion of a frictionless 
fluid in their ordinary form. 

A similar modification is required in § 35. I n this case the principle is ; 
The rate of increase of the kinetic energy of the fluid contained within S, 

is equal to the rate at which kinetic energy flows into S across its boundary, 
together with the rate at which work is done upon the fluid contained within S by 
the impressed forces, and by the pressure of the surrounding fluid upon the 
boundary of S. Lines 6 and 5 from the bottom of page 31 should therefore be, 

Tho rate at which kinetic energy flows into S, 

= —ffpT (lu + mv + nw) dS. 
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The rate of increase of the component momentum parallel to x 
of the fluid contained within S, is 

/// d 
^ ( p w ) dxdydz. 

The rate at which momentum parallel to x flows into S, is 

— ffpqu cos edS = — JJpu (lu + mv + nw) dS 

by § 7 . 

The rate at which momentum parallel to x is generated by the 
impressed forces, is 

JJfpXdxdydz. 

The rate at which momentum parallel to x is generated by the 
stresses exerted by the surrounding fluid upon the boundary of S, 
is 

f!«X, + mX, + B Z . ) dS = / / / ( f * + ^ + f * ) dxdydz, 

by § 7. Whence 

(d d(pu') d(puv) d(puw)\ , , , 

dx dy dz J 

whence reducing S to a point, we obtain 

d (pu) d [pu') d (puv) d (puw) T r . dX* . dX„ . dX 

dt dx dy dz ^ ^ dx ^ dy ^ dz 

Taking account of the equation of continuity, and of the other 
two equations which can be obtained by considering the rates of 
increase of the component momenta parallel to y and z , we obtain 
the equations of motion in the form 

dt 
„ dXc dXt dXz 

dx dy dz 

dv_ y dY, dY, dY, 

P dt dx dy 

dw 
dz 

= dZ, dZt dZ. 

^ dt ^ dx dy dz 
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462. In addition to the equations expressing the fact that the 
rate of increase of the linear momentum within a closed space is 
due to the causes above mentioned, we must also express in an 
analytical form the fact that the rate of increase of the moment of 

momentum of the fluid within S about any axis, is equal to the rate 
at which moment of momentum about this axis is brought in by the 
fluid crossing the boundary, together with the rate at which 
moment of momentum is generated by the forces which act upon 
this portion of the fluid. This will enable us to show that, 

Z , = F„, Y = Z „ ZX = XZ (3). 

The rate of increase of the moment of momentum about x , of 
the fluid contained within S, is 

The rate at which moment of momentum flows into S, is 

— JJp (lu + mv + nw) (yw — zv) dS. 

The rate at which moment of momentum is generated by the 
impressed forces is 

Hlp(yZ-zY)dxdydz; 

and the rate at which it is generated by the surface stresses is 

II{y {IZX + mZy + nZ,) - z (IYX + mYt + « F , ) ) dS. 

Transforming the surface integrals into volume integrals by § 7, 
and making use of the equation of continuity, we shall obtain 

„ r ! dw „ dZ dZ dZ\ . , , 
I I I y { p d j - p Z - ^ - ^ - ^ ) d x d y d z 

-SIJ* (P ¡1 -pY-dl* - f * - ^ x d y d z + I I K Z , - Y,)dxdydz^. 

From (2) it follows that the first two integrals vanish, whence 
Zy = Yt, and similarly Zx = Xz and Yx = Xy, 

463. From the preceding investigation it appears that the 
components of stress are completely specified by the six quantities 
Xx, Yy, Z^ Yz, Zx, X „ , which we shall in future denote by the letters 
P , Q, R, S, T, U. Equations (1) and (2) may now be written 

F = P l + U m + Tn\ 

G=Ul+ Qm+Sni (4), 

H = Tl + Sm + Rn) 
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d u _ x d P dU d T \ 

P dt ° dx dy dz 

dv _ y dU dQ dS 

P dt P dx dy dz 

dw_ z + dT dS dR 

P dt dx dy dz J 

(5). 

464. It appears from ( 4 ) that if we construct the quadric 

Par + Qf + R z 2 + 2Syz + 2Tzx + 2Uxy = \ (6 ) , 

then F, G, H will he proportional to the direction cosines X, fi, v of 
the normal to this quadric at the point rl, rm, rn, hence 

F = \ / r p , G = /i/rp, H = vjrp, 

and F*+G' + IT = ( r P y (7), 

where p is the perpendicular from the centre of the quadric on to 
the tangent plane at rl, rm, rn. 

Hence the magnitude and direction of the stress across any 
plane may be found by the following construction. 

From the centre of the stress quadric ( 6 ) , draw a line perpendi­
cular to the plane and meeting the quadric at P, draw the tangent 
plane at P ; then the required stress will be in the direction of the 

perpendicular on to the tangent plane at P, and will be equal to the 

reciprocal of the product of this perpendicular and the radius 

vector to P. 

If the stress quadric be referred to its principal axes, its equa­
tion will be of the form 

P'x2 + Q'y* + R'z* = l, 

where P', Q', R' are the normal tractions perpendicular to the 
three co-ordinate planes. It thus appears that the tangential 
stresses across these planes are zero; hence there are always three 

planes mutually at right angles to one another, such that the 

stresses across these three planes are altogether perpendicular to 

them. 

465. If F', G', FT are the stresses perpendicular to any other 
three planes mutually at right angles to one another, whose 
direction cosines referred to the principal axes of the stress quadric 
are (l, m, n ) , (X, fi, v), ( L , M, N), we obtain from (4) 
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F' = PV + Q'mt + R'n3 

G' = P'X* + Q'p* + / 2 V 

ir = P T + Q'M7 + R'N*, 

whence F' + G' + H' = P' + Q' + R" (8). 

Hence the sum of the three normal stresses across any three 

planes mutually at right angles to each other is constant. 

466. Equations (5) have been established by perfectly rigorous 
dynamical methods, but before any use can be made of them, 
it is necessary to connect the six components of stress with the 
velocities ; and in order to do this the first assumption has to be 
made. 

Let u , v, w be the velocities of the centre of inertia G of any 
small element of the fluid ; let x , y , z be its co-ordinates and 
x + x , y + y ' , z + z those of a point P near G. The component 
velocities of P are 

equations (9) may be written 

u' = u + ex + cy' + bz 4 - i)z — %y'\ 

v = v + cx + f y + az' + - %A (11), 

«/ = w + hx + a y ' + g z + £y' — rjx'J 

where rj, £ as usual, denote the components of molecular rota­
tion. 

The first term of each equation represents a motion of transla­
tion of the whole element of fluid. 
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The next three terms represent a motion, such that every point 
on the surface of the quadric 

ea? +fy" + gz' + 2ayz + 2bzx + 2cxy = 1, 

is moving in the direction of the normal at that point. If this 
quadric is referred to its principal axes, its equation will be of the 
form 

e V + / y + £ V = l , 

and the corresponding portions of the component velocities will be 

v! = e'x, v'=fy, w=g'z (12). 

Equation (12) shows that every line of the element parallel to 
the axes is being elongated (or contracted) at the rates e , /', g 
respectively. This kind of motion is called a pure strain or 
distortion; and the six quantities a, b, c , e , f g , are the six 
components of the rate of strain. 

The last two terms of (11) represent a motion of rotation of 
the element, whose component angular velocities are n, £. 

Hence the motion of every small element of fluid consists; 

(i) of a motion of translation of the whole element; 

(ii) a motion of distortion ; 

(iii) a motion of rotation about an instantaneous axis. 

Now the internal friction of a fluid in motion is caused by the 
different elements of the fluid rubbing against one another. In 
the case of a perfectly rigid body no such rubbing takes place, and 
there is no internal friction; and since the parts (i) and (iii) of the 
motion of the element are such as belong to a rigid body, it is 
inferred that these parts of the motion cannot give rise to internal 
friction, which is therefore due to the motion of distortion. Hence 
the first assumption is that 

The six stresses due to viscosity depend solely on the motion 

of distortion, and are therefore functions of the six components of 

the rate of strain. 

If the velocity of the fluid is small, e , f g , a, b, c , will all 
be small quantities, and therefore if we expand the stresses in 
terms of the rates of strain and neglect squares and higher powers 
of small quantities, the stresses will be linear functions of the 
rates of strain. 
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The second assumption will therefore be that; The six stresses 

due to viscosity are linear functions of the rates of strain, the co­

efficients of which are all constant quantities, which depend on the 

viscosity of the fluid. 

Since this assumption depends upon the supposition that the 
velocity is small, it is not of an altogether satisfactory character, 
when the velocity is not small. 

Since the tangential stresses 8, T, U are zero when the fluid is 
frictionless, they must depend entirely on the viscosity, and there­
fore cannot contain any terms independent of the rates of strain; 
but the normal stresses P, Q, R do not vanish when the fluid is 
frictionless, but are each equal to — p , where p is the pressure. 
These stresses are therefore composed of two parts, one of which is 
a linear function of the rates of strain, and the other of which is 
equal to — p , where p is a function of x , y , z and t, which is equal 
to the pressure when the fluid is frictionless; and the third as­
sumption is that; 

When a gas is expanding equally in all directions, the stresses 

P, Q, R are the same as if the fluid were frictionless, and are there­

fore each equal to —p. 

We shall therefore assume that P, Q and R are each of the 
form — p + P', — p + Q', — p + R', where P', Q', R' are linear 
functions of the rates of strain, 

467. Let W be the rate at which work is done per unit of 
volume by the strains, then BW is the rate at which work must 
be done in order to change the rates of strain from a, b &c. to 
a + Ba &c; hence from (10) 

8 W = PBe 4- Q'Sf + R' Bg + 2 (SSa + TBb + UBc)... (13). 

Since W must be a definite function of the rates of strain, the 
right-hand side of (13) must be a perfect differential, hence W 
must be a homogeneous quadratic function of the rates of strain; 
and therefore in its most general form will contain twenty-one 
coefficients. But since the fluid is isotropic, W will remain un­
changed when — z and — w are written for z and w. This altera­
tion changes a and b into — a and — 6. Similar observations apply 
to the planes (xz) and (yz), whence W must be of the form 

W = \ (Ee* + Ff +Gg* + Aa* + Bb* + Cc* 

+ 2Lfg + 2Mge + 2Nef) (14), 
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hence P' = 
dW _ 

de 
Ee + Nf+ Mg 

Q' = 
dW 

df ~ 
Ne + Ff+Lg 

R' = 
dW _ 

dg ~ 
Me + Lf+Gg 

2S = 
dW _ 

da 
Aa 

2T = 
dW 

db 
Bb 

217 = 
dW _ 

do 
Cc 

.(15). 

Since the fluid is isotropic we at once obtain A = B = 0. 
Also if the stresses are such as to produce a strain e , then Q' = R', 
therefore M = N; similarly N = L , whence L = M = N~. Also if 
the stresses consist of a single traction P', we must have f = g , 
therefore F = G; similarly G = E, whence E = F = G. Changing 
the constants and remembering that P = — p + P1, we obtain 

P = - p + \ 9 + 2/xe 
Q = - p + \ 9 + 2/x/ 

R = - p + \ 0 + 2fig 

S = 2 k a , T=2kb, U=2kc_ 

where ff = e + f + g . 

In order to obtain the relation between k and /it, let us consider 
the motion of a fluid in two dimensions. 

Let AB be a line meeting the axis of x at an angle \TT. 

.(16), 

Let u', v' be the velocities of the fluid perpendicular and 
parallel to AB. Then from (5) aud (16) 

B . I I . 16 
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U ' = 2 - * ( G - F ) = H Q - P ) , 

T /du dv'\ . . . fdv du\ 
whence k ^ + = p. (/ - e) = y . \ j y - ^ j . 

But 

2 = x + y , y'\/2 = y — x, u's/2 = U + V, V>J2 = v — u, 

du dv' dv du 
whence -j—, + -7 -7 — j ~ r > 

dy dx dy dx 

and therefore k = p (Ify 

In the case of a liquid 0 = 0, and therefore the terms involving 
A. disappear, and the third assumption is not required : hence all 
the components of stress are given by (16) and (17) in terms 
of the rates of strain, and therefore of the velocities and a quantity 
p , which depends upon the viscosity of the particular liquid under 
consideration. 

But if the fluid be a gas 6 does not vanish, and we therefore 
require a relation between X and p . This is furnished by the third 
assumption, which asserts that when e = f = g , P = Q = R = — p; 

which requires that, 
3X + 2p = 0 (18), 

which gives the relation between X and p in the case of a gas. 

We therefore finally obtain 

P = - p 

Q = - P 

R = -p 
„ (d,w dv\ m fdu dw\ „ (dv du\ 

8 = »{dy- + dz)' T = ^ { T z + dx)' U = »{dx + dy)_ 

and the value of W becomes 

W=-lp6* + p [e2 + / ' + g2 + 2(a 2 + b2 + c2)} (20). 

468. We can now obtain the equations of motion of a viscous 
fluid in the required form, for substituting the values of P, Q, R, 
S, T, U from (19) in (5) and putting p \ p = v, the result is 

\p0 + 2p 

• %p9 + 2p 

dv 

dy 

dw 

~dz 

.(19), 
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du _ 1 dp d6 , _ 5 -i 

3i p dx A dx 1 

8« , r 1 dm , , ¿"0 
(21). 

8i " p dz * dz 

When the fluid is incompressible 8 = 0, and (21) becomes 

•(22), 

du 1 dp 

ct p ax 

dv T r 1 dp _ 2 

at p ay 

dw r , 1 dp 

at p dz 

and the values of the stresses are obtained from (19) by putting 

8 = 0. 

469. The constant p, is called the coefficient of viscosity of the 
fluid; it is independent of the pressure and its value is different 
for different fluids, and can only be found by experiment. 

The quantity v = pb/p is called the kinematic coefficient of 

viscosity. 

470. We shall hereafter require the equations of motion of a 
viscous liquid referred to cylindrical and polar coordinates. 

When cylindrical coordinates are employed, let v.', v be the 
velocities of the liquid in the directions of x and y ; u, v the 
velocities in the directions of CT and 8 ; then if V be the potential 
of the impressed forces, and if Q = — V — p / p , we have 

u = u cos 9 — v sin 8, v — u sin 8 + v cos 8. 

Also iffx denote the acceleration parallel to x, 

/s-=fx cos 8 + / „ sin 8 = ^ + v cos 0 W + v sin 0VV, 

f . = / „ cos 8 - f s in#= - dJi + v cos 0VV - v sin <9VV. 

16—2 
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Now 
9 rli/ 

W = cos 8V2u - sin 8V2v - - , sin 8 ^ 
m2 da 

u n 2 dv v . • —,, COS 8 ; COS 8 - r p , H ; sin I 
vr tu dd ro-8 

9 f T W 

V V = sin 8V2u + cos 6V2u + - , cos 0 
ST C t P 

u . „ 2 . v . 
5 am 8—^2 Bin 9 2 cos 8. 

•ET or at/ vr 

Therefore cos 0 V V + sin 0VV = V 2 « - u 2 cfo 

cos 8 V V - sin 0 V V = V2v - - t + \ ~ . 
tz tx dd 

Substituting the values of f m and f B from (7) of § 6, we obtaii 

• (23), 

du 

dt ~ 

v s _ 

IS dta \ 

u 2 dv\ 

de) 

dv 

cl + 

uv 

•m 

V 2 du\ ! 

dw 

dt dz 

where 
dt~ 

d d v 
= jl + u + -dt (Its sr 

<2 

In order to obtain the equations referred to polar coordinates 
r, 8, 0 , we must recollect that the 8 in cylindrical coordinates is 
the 0 in polar coordinates. Let U, V, W be the velocities in the 
directions r, 9, 0 ; then 

u = IT sin 8 + Vcos 9, w = Ucos 8 — Vsin ô, v = W. 

From (23) we obtain 

fr =ft cos 6+f„sin8=d

d® + 7jcos 8 V2w + vsin8 ( V w - * , - J, S 

/ , = fi, cos (9 - / , sin 8 = * ^ + v cos (9 ( V 2

M . 
M _ 2 dW\ 

•ET2 CT2 t Z 0 , 

— v sin 6>V 
Now 

Vhi = sin f 3 V ' 0 - + cos 6V 2 F + i f2 cos f9 ~ - f/sin + ^ [Tcos 0 
r v da J r 

1 / d V \ cot5 T r . . - ^ (2 s m ^ + F cos 0] F sin 9 
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V2w = cos 6V2U- sin 6 V 2 7 - p (2 sin 8 ~ + Ucos fl) - Usin 9 

rlV 
'2 cos 9 J n -VsinS 

cot 8 
K C O S F C ! . 

Therefore 

cos 6V2w + s i n 6 V ' u = V * U - ~ - c o t 9 

cos 8V'u - sin 6V2w = V 2 F + ^ 2 ^ + -?cot 0 - Z . 

R do r r 

Substituting the values of / „ and / 0 from (8) of § 6, we 
obtain 

dU_ V2 + W2

 = dQ / 2U_ 2 dV 

dt r d r + V [ r' r l d9 

2Fcotg 2 dW' 
r2 v'sinfl ¿ 0 

3 7 , UV I F _ l d Q 2dU 

• + cot 8 = - ¡2 + v \ V 7 + N I 

r r- r dU 1 

7"2 ¿5 

F _ 2 cot# rfTTN 
r2 sin'^ r2 sin 8 deb J 

dW UW UV n 1 
+ 1 c o t " = a j j . 

O T R R R S I N a dep 

d Q

 + vh>w- w 

r2 sin" 8 

where 

2 dJ7 2 cot 61 d F 
r 2 sin # o ! 0 r2sin 8 dcpy 

d _ d T J d L Vji W d_ 

dt dt dr r d8 r sin 9 dtp' 

•(24), 

471. If the impressed forces have a potential, the equations 
determining the rates of change of molecular rotation in the case 
of a liquid, are obtained by eliminating the pressure and potential 
from ( 2 2 ) ; and are 
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472. It appears from the preceding results, that the equations 
of motion of a viscous fluid are of a somewhat intractable character. 
There are however many problems, especially those relating to the 
small oscillations of bodies, in which the motion is sufficiently slow 
to permit the terms involving the squares and products of the 
velocities to be neglected ; in other words we may write d/dt for 
d/dt. It is also probable that there may be other problems in 
which the neglect of these terms may not lead to any serious error. 
Whenever this can safely be done, the equations of motion become 
considerably simplified, and when the boundaries of the fluid are 
plane or spherical, known methods can be employed for their 

Another point to be noticed is that in deducing these equations, 
we have assumed that the stresses due to viscosity are linear 
functions of the strains. This assumption is perhaps rather 
questionable unless the motions considered are small; and therefore 
the equations themselves cannot be considered to stand on a 
perfectly unimpeachable basis. There is however a good deal 
of experimental evidence to show, that they may be relied on as 
giving a very accurate represented:ion of motions involving small 
oscillations; and we shall see in Chapter XXII , that even if the 
motion is not slow they give results which represent motion of a 
similar kind to that which actually takes place. We are therefore 
justified in concluding, that the preceding equations of motion give 
a better representation of the motion of fluids which exist in 
nature, than those which are derived from the supposition that the 
fluid is frictionless. 

473. When the terms involving the squares and products of 
the velocities are neglected, we can deduce an important result 
from equations (25); for in this case they become 

solution. 

dt 

di] 

dt 
V, 

dÇ 

dt 
(28), 

which shows that molecular rotation is propagated in a viscous 
liquid, according to the same law as heat in a conducting medium. 
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Impulsive Motion. 

474. We shall now show that the equations of impulsive 
motion of a viscous liquid are the same as those of a frictionless 
liquid. 

If we regard an impulsive force as the limit of a very large 
finite force which acts for a very short time T , and if we integrate 
the first of (22) between the limits T and 0, all the integrals will 
vanish except those in which the quantity to be integrated becomes 
infinite when r vanishes ; we thus obtain 

Putting | pdr = P, where P is the impulsive pressure at any 
0 

point of the liquid, we obtain 

p (u - ua) + dPjdx = 0 (27), 

with two similar equations, which are the same as those which 
determine the impulsive pressure at any point of a frictionless 
liquid. 

These equations also show that it is impossible to produce any 
instantaneous change in the molecular rotation of a viscous liquid 
by any impulse applied to the boundary; and also that if u, v, w 
and u + u, v + v', w + w' are the velocities just before and just after 
the impulse, then u'dx + v'dy +w'dz a perfect differential, and is 
therefore derivable from a single function <p by differentiation; 
but after a sensible interval has elapsed, this quantity will no 
longer be a perfect differential. 

Boundary Conditions. 

475. We must now consider the conditions to be satisfied at the 
boundaries of the fluid. 

At a free surface the normal stress must be constant, and the 
tangential stress must be zero ; hence there are three equations 
of condition, which must be obtained from (4) and (19) by resolving 
the stresses upon any element of the free surface along tho 
normal, and along two lines at right angles to it. The kinematical 
condition of § 12 of course always holds. 
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If the fluid is in contact with a fixed or moving surface, the 
component of the velocity perpendicular to the surface must 
always be equal to that of the surface. With regard to the 
tangential component, it is found in many cases that an indefinitely 
thin film of fluid adheres to the surface and moves with it. When 
this is the case the velocity of the fluid in contact with the surface 
is the same as that of the surface itself. 

The experiments of Helmholtz and Piotrowski appear to 
indicate that in the case of many fluids, slipping may take place at 
the surface of a solid in contact with the fluid, When the velocity 
of the fluid relative to the solid is small, it is assumed that the 
tangential force exerted by the solid upon the fluid is in the same 
direction as that of the relative velocity and proportional to it; 
hence if u. v; u, v' be the component velocities of the fluid 
and solid at any point P of the solid along two lines in the tangent 
plane at P which are perpendicular to one another, and T, T are 
the tangential stresses in these directions, the surface conditions 
are 

T = B ( u - u), T = B ( v - v ' ) (28), 

where B is the coefficient of sliding friction. 

Prof. W. C. Unwin considers that conditions (28) hold good in 
the case of water, when the relative velocity is less than one 
inch per second. At velocities of \ foot per second and greater 
velocities, the frictional resistance is more nearly proportional to 
the square of the relative velocity. 

Many attempts have been made to express the law of friction 
of a fluid in contact with a surface, in a form which is applicable to 
high as well as low velocities, and various empirical formula; have 
been proposed. These are discussed in Prof. W. C. Unwin's 
Article on Hydraulics, in the Encyclopaedia Britannica. 

The Coefficient of Viscosity. 

476. The determination of the numerical value of the coefficient 
of viscosity is of considerable importance, and numerous experi­
ments have been made in recent years, especially in Germany, for 
the purpose of ascertaining its value. It is beyond the scope of the 
present treatise to attempt to discuss these experiments, and we 
shall therefore confine ourselves to making some general remarks 

IRIS - LILLIAD - Université Lille 1 



upon the subject, and giving the values of this quantity for some 
of the more important fluids. 

The coefficient of viscosity is found to be independent of the 
pressure, but is dependent on the temperature. 

The value of fi in C .G.S . units for the following liquids has been 
determined by Helmholtz and Piotrowski1. 

Liquid Temperature centigrade 

W a t e r •014 0 6 1 22 24-5° 

A l c o h o l •018 917 25 24 -05 u 

E t h e r •002 496 179 5 21-6° 

C a r b o n b i s u l p h i d e •003 365 026 21-85° 

According to more recent experiments made by König", the 
values of ti for the following liquids are 

Liquid 

W a t e r 

E t h e r 

C a r b o n b i s u l p h i d e 

O i l o f T u r p e n t i n e 

•014 39 

•002 56 

•003 88 

•018 65 

Shrottncr found the following values of /A for glycerine at 
0° C. 

fi = 42 when 9 = 3°, 

fi = 8 „ 6= 20°. 
A very elaborate series of experiments upon a variety of hydro­

carbons, has been made by Pilram and Lfandl3, which are discussed 
in a paper by Graetz4, in which references will be found to most of 
the authorities on the subject. 

1 Sitzunqs. der k. k. Acad, der Wiss. zu Wien, vol . XL . p . 607; seo also Wiss. 
Abhand. vol . I . p. 172. 

2 Wied. Ann. 1887, p . 193. 
3 Wien. Ber. 1878, p. 113 ; 1879, p . 1; 1881, p. 11. 
* Wied. Ann. 1888, p. 25. 
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The value of fi found by Helmholtz and Piotrowski for water 
at 77° Fahr. when expressed in British units of feet, pounds, pounds 
per square foot, feet per second is 

^ = •000 001 91. 

For water the value of /j, decreases rapidly as the temperature 
rises. 

The following values in c .G. s. units of the coefficient of sliding 
friction 8 are given by Helmholtz and Piotrowski; it must however 
be confessed that these values are not of universal application, since 
this quantity depends not only on the particular liquid, but also on 
the nature of the substance with which it is in contact. 

Liquid Value of 

" W a t e r •235 34 

A l c o h o l •010 96 

E t h e r •012 43 

C a r b o n b i s u l p h i d e •044 30 

Viscosity of Gases. 

477. According to the experiments of Maxwell1, the value of 
fj. for air at temperature 0° G. in C. G. S. units is 

= (1 +-003 660), 
where fj,a is the value of /j, at 0° C. 

The more recent experiments of Obermayer2 and Holman3 

show that for air, the coefficient of viscosity increases at a less rapid 
rate at higher than at lower temperatures. The former has 
deduced from his experiments the formula 

/* = /*„ (1 + -003 858 56» - '000 001 050 s), 

and the latter the formula 

/A = M l + "002 7510 - -000 000 3402). 

1 Phil. Trans. 1866. 
2 Wien. B E T . vol . L X X I I I . p . 468 (1876). 
3 Phil. Mag. (5) xxi. p. 220. 
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Maxwell1 •000 187 8 
0. E. Meyer •000 172 7 
Fuluj 2 •000 179 8 
Schneebeli3 •000 170 7 
Obermayer 3 •000 170 5 
Tomlinson * •000 171 55 

The value of μ for air obtained by Maxwell when expressed in 
British units and degrees Fahr. is, 

μ = 000 000 025 G (461° + Θ). 

Maxwell found that damp air over water at a temperature of 
21° -11 C, and a pressure of 101 millims., is less viscous than dry 
air at the same temperature by about one-sixtieth per cent. 
The researches of Tomlinson lead to the conclusion that at 15° C. 
and a pressure of 760 millims., air saturated with aqueous vapour 
would be more viscous than dry air to the extent of '2 per cent.; 
and that it is not until air is under a less pressure than 350 
millims., that the aqueous vapour begins to show any appreciable 
effect; but when the rarefaction is great, moist air is less viscous 
than dry air. See also a paper by Crookes, On the Viscosity of 

Gases at High Exhaustions5. 

Maxwell found that dry hydrogen is less viscous than air, the 
ratio of its viscosity to that of air being -5156. Whence for 
hydrogen 

^„ = •000 087 451. 

Also a small proportion of air mixed with hydrogen was found 
to produce a large increase in its viscosity, and a mixture of equal 
parts of hydrogen and air has a viscosity nearly equal to \% that 
of air. 

The viscosity of oxygen is greater than that of air. 

The experiments of Obermayer, Wiedennann and Holman 

1 Phil. Trans. 1S66. 
2 Phil. Mag. vol . xxi , 1886, p. 221. 
3 Archives des Sciences, Phy. Nat. vol . xiv. 
1 Phil. Trans. 1886. 
6 Ibid. 1881. 

The values of f i a for air as determined by different experi­
menters is 
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Dissipation of Energy. 

478. We shall now obtain an expression for the energy 
converted into heat. 

If q be the resultant velocity, the rate of increase of kinetic 
energy within a closed surface S, is 

^=:kjtHJp<f dxdydz 

p q ^ + W^ dxdydz (29). 

, T dq dq , I d d d \ „ N°W *i = qi-KUdx+Vdy + W d z ) ' l -

A l s o dp = _ d ( P r f _d(pv)_ d(pw) 

dt dx dy dz 

Substituting in (29) and integrating the last two terms by 
parts, we obtain 

= Slip (u || + v ~ + w dxdydz — \ JJpq2(lu + mv + nw) dS. 

Substituting the values of du/dt &c. from the equations of 
motion in the first term, it becomes 

fffp (Xu + Yv + Zw) dxdydz 

fdP dU dT\ fdU dQ dS 

\dx dy dz J \ dx dy dz 

(dT dS dR\) , . , 
+ W [ d x + d y + ^ ) \ d w d y d z ' 

have respectively led to the following formulas for carbonic acid 
gas: 

p = p0(l + -003 5850 - -000 001 O502) 

p = p0(l + -003 7270 - -000 003 202) 

p = pg(l + -003 7250 - 000 002 6 402). 

According to Maxwell the ratio of the viscosity of dry air to 
carbonic acid gas is about '859, whence 

/*0 = -000 161 310 2. 
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and thus on integration by parts we obtain, 

dT 

-fa — fffp (Xu + FA + Zui] dx dydz — \ Jfpq2 (lu + mv + nw) dS 

+ Jj{u(lP + mU+nT)+v(lU + mQ +nS)+w(lT+mS+nR)}dS 

-fff{Pe + Qf+ Rg + 2Sa + 2Tb + 2Uc] dxdydz. 

The first term of this expression is equal to the rate at which 
kinetic energy is generated by the impressed forces which act on 
the fluid within the surface; the second term is the rate at which 
kinetic energy is introduced by the fluid crossing the boundary 
and bringing its kinetic energy with it; the third term is equal to 
// ( F u + Gv + Hw) dS by (4), and therefore represents the rate of 
generation of energy by the stresses acting on the boundary of S; 
and we have to consider the last term. 

Writing 

F = - i / j . { e + f + g)* + 2fi (e2 + / 2 + g* + 2a2 + 2&2 + 2c 2)...(30), 

the last term is 

H I P ( e + / + 9) dxdydz - JfJFdxdydz. 

The first volume integral vanishes for a liquid, and for a gas it 
is equal to the rate at which potential energy is converted into 
kinetic energy in consequence of the expansion of the gas. The 
last integral represents the rate at which energy is converted into 
heat. The function F is called by Lord Rayleigh the dissipation 

function. 

It follows from (30) that when a gas expands equally in all 
directions F = 0. Whence the physical interpretation of Stokes' 
third assumption is, that for motion of this kind there is no 
dissipation of energy. 

On Steady Motion. 

479. When the motion of a liquid is slow, we may neglect the 
terms involving the squares and products of the velocities; and 
whenever this can be done the equations of steady motion of a 
liquid can be reduced to a very simple form1. 

1 Oberbeok, Borch. vol. LXXXI. p. 62. 
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Putting Q = — V — P i P , and remembering that in steady motion 
du/dt = dvjdt = dw/dt = 0, (22) becomes 

i> dx 

- j — V V = i 

j - = V w = 2 
1/ < I £ 

¿77 

dx dz) 

^_ dy\ 

dx) . 

.(31). 

Differentiating with respect to x , y , z, and taking account of 
the equation of continuity, we obtain 

V 2Q = 0 

From (26) we obtain 

V a f = 0, V2r; = 0, V t = 0 . 

and by § 17, (26), 

Also if we put 

dx dy dz 

U = H dN _dM-

dx dy dz 

dy dz dx 

w = d<p dM _ dX 

dz dx dy J 

(32). 

•(33), 

.(34). 

• (35), 

it can be shown as in § 60, that 

VJf/) = 0, V 2 i + 2£=0 , VM+ 2 y = 0, V W + 2 £ = 0 . . . ( 3 6 ) . 

480. Let f be any function of x , y , z which satisfies the 
equation 

V » / = O , 

and let / 0 , f 2 , f s be four new functions of x , y , z which satisfy the 
equations 

df , df ^ df 

fa /+ X d x ^ y dy + Z dz 
.(37), 
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. _ df df 
z y dz dy 

f = x d I - z

d l 
J i dz dx 

t df df 

dz 

(38). 

Then it can easily be shown that 

V ? / 0 = V Y 1 = V Y 2 = V 2 / A = O 

df , df 

dx dy dz 

dy dz dx 

df, _df 

dz dx dy 

df = A Y » 

dx dy dz 

(39), 

• •(40), 

.(41). 

Comparing equations (39), (40) and (41) with (32), (33), (34) 
and (31), we see that the same equations are satisfied h y f m f , / 2 

and f as are satisfied by Qjv, f, n and £; hence we may put 

Q/" = / . . n = / „ 2 , = / „ 2? = / , (42). 

481. In the next place we shall show that we may put 

L = zdjf_ dFf\ 

dy y dz 

M = , 
dF 

dz 

dF 

dx 

dF 

.(43), 

dF 
Jy = y , — x , 

dx dy j 

where F is a function to be determined. For substituting these 
values in the first of (So) we obtain 

u _ d $ < L ^ F + x d F dF 
U dx dx V °° dx y dy 

dF 

dz 
•xV2F...(U), 

with similar expressions for v and VJ ; and if we differentiate the 
right hand sides of (44) with respect to x , y , z respectively, it will 
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be found that these values of u, v and w, and therefore of L, M, N 
satisfy the equation of continuity. 

From equations (36) and (43) we obtain 

dy u dz 

whence by (38) and (42) 
V * F ^ - f 

therefore V 2 V 2 ^ = 0 (45). 

We have thus reduced every problem of steady motion to the 
determination of two functions cb and F which respectively satisfy 
the equations 

V'cb = 0, V W = 0 (46). 

482. We shall conclude this chapter with two general pro­
positions. 

When the motion is steady and there are no impressed forces 

and the squares and products of the velocities are neglected, the 

sum of the surface integrals of each of the components of stress 

parallel to the axes, taken over each of the bounding surfaces is 

zero. 

From (5) we obtain 

dP dU d T _ Q 

dx dy dz ' 

whence ///(g + ^ + dx dy dz = 0, 

where the volume integral extends throughout the fluid. Integrat­
ing by parts we obtain 

0 = JftPl + Urn + Tn) dS = JjFdS 

by (4) ; where the surface integral is to be taken over each of the 
bounding surfaces. 

483. When the motion of a liquid is steady and the squares 

and products of the velocities are neglected, and no slipping takes 

place at the surfaces of solids in contact with it, the loss of energy 

is less than it would be if the liquid had any other motion con­

sistent with the boundary conditions1. 

1 Helmhol tz , Wiss. Abliand, vol. I . p. 223. 
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The loss of energy per unit of volume in the case of a liquid, is 
given by the last terms of the dissipation function F, we have 
therefore to find the conditions that JfjFdxdydz may be a minimum, 
subject to the condition 

du dv du> _ Q 

doc dy dz 

Hence if X is an undetermined function of x , y , z , we must 
have 

8 IIJ[F + X(ux + vu + w,)} dxdydz = 0. 

Taking the variation, we obtain 

fyJH&uM* + 2vyhvy+2 w,Bw,+(v,+w „)(6>,+ Swv) + (wx+u,)(Swx+Su.) 

+ (uv + O ( o \ + $vx)} dxdydz + JJ/X (Swx + Svx + Swz) dxdydz = 0. 

Integrating each term by parts we obtain 

2p JJ{2lux + m (yx + u ) + n (wx + u^)} SudS + two similar terms 

- 2p///(V2MSM + VvSv + V*w8w) dxdydz, 

+ fj\ (ISu + m&v + nSw) dS — /// ^ ™ Su + ^ Sv + ^ Sv?j dxdydz. 

In order that the volume integrals may vanish, we must have 

2fj.V-u+d

J

X
 = 0, 2p^v + ~ = 0, 2 M V W ^ = (). dx r dy 'i~ ^z 

Comparing these equations with (31) we sec that 

X = 2Qo = - 2 (Vp+p). 

Also since there is no slipping, and the boundary conditions 
are assumed to be unaltered, Su, Sv and Sw are each zero at the 
boundaries, whence the surface integrals vanish. 

B . I I . 17 
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EXAMPLES. 

1. When the motion of a liquid is in two dimensions, and the 
squares and products of the velocities are neglected, prove that the 
equations of motion are 

d r + d 0 ' dB V dr · 
where 

/d'f 1 djr 1 d > \ cty 
X ~ V Vdr* + r ~aV + ? W J ~~di · 

and is Earnshaw's current function. 

2. When the motion of a liquid is in two dimensions and the 
squares and products of the velocity are n o t neglected, prove that 
i/r satisfies the equation 

™, / d . d 

dy) 

3. Viscous liquid is confined between fixed walls at which 
there is no slipping; prove that the rate at which energy is 
diminishing is 

^SJJudxdydz, 

where a is the molecular rotation. 

4. If T be the kinetic energy of a viscous liquid which is 
contained within a closed surface S, prove that 

dT 

—^= — ^fi Jffrfdxdydz + 2fi ffqm sin ^ sin 0dS, 

where q is the resultant velocity, a> the molecular rotation, ^ the 
angle between the directions of q and the instantaneous axis of 
rotation, and 6 is the inclination of the normal to the plane 
containing tbe latter axis and the direction of q . 

5. Prove that tbe values of the six component stresses in 
polar coordinates are 

/ 1 dw u v 

R = - p - f r o - + ^ [ ^ 0 d $ + r + r C o U 
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^ P'\,rdff + dr r. 

~ du 1 dv 1 dw 2u v „ 

6 = - j - + - ~rh H • — a T T H h - cot t>. 

dr r sin a dep r r 

6. Prove also that the values of the same quantities in 
cylindrical coordinates are, 

du „ n „ , „ f l dv , W\ -r. . , tN CT du „ / 1 cZw u \ 

„ / l dw dv\ „ /dw dw\ /dv u 1 d«\, 

^ U d e + dW' T = * { d z + d ^ ) ' u = f l { d ^ - ^ + ^ d e ) -

7. When the motion of a liquid is symmetrical with respect 
to the axis of z , prove that Stokes' current function satisfies the 
equation 

( " > - a W - ( * f i + " s - S ) B * 
d2 d 2 I d 

w h e r e D = , + • - . 
dz dsj •as ass 

_ / 1 dv 1 dw w „ \ m ( 1 du dm w\ 
r \r am a deb r da r 1 \r sin 0 d<p dr r) 

i\ du . dv v 

where 
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C H A P T E R X X I . 

O N T H E S T E A D Y M O T I O N A N D S M A L L O S C I L L A T I O N S O F 

S O L I D B O D I E S I N A V I S C O U S L I Q U I D . 

. 484 THE first problems relating to the motion of solid bodies 
in a viscous liquid were solved by Prof. Stokes1, who in 1850 
obtained the solution in the case of a sphere which is constrained 
to move with uniform velocity in a straight line, after a sufficient 
time has elapsed for the motion to have become steady, and also 
in the case of spherical and cylindrical pendulums, which are 
performing small oscillations in a straight line. The torsional 
oscillations of spheres and cylinders form the subject of a joint 
memoir by Helmholtz and Piotrowski2, and Oberbeck8 has obtained 
the solution in the case of the steady motion of an ellipsoid which 
moves parallel to an axis. We shall devote the present Chapter 
to the consideration of those investigations. 

Motion of a Sphere. 

485. Let us suppose that a sphere of radius a is moving along 
a straight line which we shall choose for the axis of z , and that the 
initial motion of the liquid is symmetrical with respect to this 
axis; then it is evident that the subsequent motion will also be 
.symmetrical with respect to this axis, and therefore the motion of 
the liquid can be determined by means of Stokes' current function. 

1 " On the Effect of the Internal Friction of Fluids on the Motion of Pendulums," 
Trans. Camh. Phil. Soc. vol. ix . 

3 Wissenschaft. Abhand. vol. i. p. 172. 
3 Porch, vol. L X X X I . p. 62. 
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Hence if w and u be the component velocities along and perpendi­
cular to the axis of z , 

u = w = — T - (1). 
•as dz TX dts 

The equations of motion are determined by (23) of § 470 ; and 
if we neglect the terms involving the squares and products of the 
velocity, and remember that none of the quantities are functions 
of 0, we obtain 

du dQ , 7 ™ u \ 

Tt = d * + v V u - ^ ) ( 2 ) ' 

dw dQ _,, 

dt = dz + ^ W <S* 

and the equation of continuity is 

dw du u „ . . . 

-r + + - = 0 ( 4 ) . 
dz dzn •sr 

Equations (2) and (3) have been formed on the supposition 
that the origin is fixed; let us now suppose that the motion is 
referred to the centre of the sphere as origin, which is supposed to 
be moving along the axis of z with velocity V, and let f bo its 
distance from a fixed point. If (z, be the coordinates of a 
point referred to the centre of the sphere as origin, 

- dw df „ df therefore _ . = ^ + F ^ > 

the second term on the right-band side is of the same order as the 
square of the velocity, and must therefore be omitted; hence on 
the supposition that such terms can be neglected, (2) and (3) hold 
good whether the origin is fixed or in motion. 

T . d2 d2 1 d 

dz dzr E7 dzr 

then if R bo any function of a and zr 

and 
dTS \dvrj -nr d-ar 
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vdtj 

The solution of this equation is 

where -jr1 and ifra respectively satisfy the equations 

¿ ^ = 0 (9), 

Multiplying (6) by dz, d-n, subtracting and taking account of 
(9) and (10), we obtain 

<»)• 

Equation (9) shows that the right-hand side of (11) is a perfect 

differential. 

486. We shall now transform these equations to polar 
coordinates r and 6. 

Let R and © be the velocities along and perpendicular to the 
direction of r, then 

R = . * * t t © = _ i ^ ( 1 2 ) i 

r s i n 6 dd r s i n 0 dr 

, _ d* sin 6 d ( . d \ / l n N 

a n d D = d ? l c o s e c
 6 d S ) ( 1 3 ) j 

whence (11) becomes 

- * - ; È j £ ( £ « - ? 3 N »*> 
487. We must now consider the boundary conditions. If we 

suppose that there is no slipping at the surface of the sphere, the 
boundary conditions are 

R = V c o s 6 , ® = - V s m 8 (15), 

whence (2) and (3) may be written 

clQ I d (dAr „ . \ A 

ctz atx \ at 

__dQ=l_ d ,d£_ ' 
c t o TJT d z \ d t 

Eliminating Q, the equation for determining is 

* f a - ^ ) * = o (n 
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where V is the velocity of the sphere. By (12) these are equiva­
lent to 

^ = VaXm 9 cos 9, ^ = Va sm*9 (16). 
d0 dr 

If there is slipping, let II be the tangential stress exerted by 
the liquid on the sphere in the direction of 8 ; then it follows from 
§ 475 that we must substitute for the second of (16) 

/ 3 ( © + Fsin 6) = fiU. 

By means of the transformation formulae of § 18, it can be 
shown that 

T T f \ dR d® ®\ 
U = »{rire+ dr-J)' 

whence the condition becomes 

n T 7 - · n\ A dR d® 0 \ „ . 
^ & + V l i m 6 ^ » i a - d 0 + d r - a ) ™ 

in which r is to be put equal to a after differentiation. 
If the liquid extends to infinity and is at rest there, R and 0 

must each vanish when r = oo . 

Equations (9), (10) and (11) together with (16) or (17) contain 
the complete solution of every problem relating to the rectilinear 
motion of a sphere in a viscous liquid of unlimited extent, which is 
either initially at rest, or whose initial motion is symmetrical with 
respect to the line along which the sphere moves. When the 
motion is neither of an oscillatory character nor steady, the 
difficulty of integrating these equations is considerable, but the 
solution as will be shown in the next chapter, can in certain cases 
be effected by means of definite integrals. 

Motion of a Spherical Pendulum1. 

488. In order to apply the preceding results to the motion of 
a spherical pendulum, which is performing small oscillations along 
a straight line, we shall assume that the time enters into i|r 
in the form of the factor e*8"', where X is at present undetermined; 
then (9) and (10) become 

IJ^' = 0, ( 2 ) - X * ) ^ . ' = ° (18), 
1 Stokes, Trans. Camb. Phil. Soc. vol. i x . ; see also 0. E. Meyer, Borch. vol. 

L x x n i . p. 31. 
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iL" = Cr" + 1 T «=" ( \ 2 - u2)" du + D r n + l f e"" (u2 - \ 2 f du. 

489. It will not however be necessary to consider the general 
solutions of (1.9) and (20), since the surface condition (16) shows 
that 8 must enter into i/r in the form of the factor sin2^, whence 
n = 1, and 

R = A/r + Br2. 

To integrate (20) when n = 1, put R' = rdw/dr, and the equation 
becomes 

d3w 2 d2w 2 dw ^ dw _ ^ 

drs r dr2 r' dr dr 

Integrating we obtain 

d2 

(uir) — \ 2 w r = 0, 
dr 

the solution of which is 

w = (De>"--Ce-Kr)j\r, 

where -ty', i ^ 2 ' are functions of r and 6 only. Dropping the 
accents for the present, and putting p = cos 6, we can satisfy (IS) 
by assuming 

where _R„, RJ are functions of r alone, and 

where Pn is a zonal harmonic of degree n. The equations for 
determining Rn, Rn' are 

^ - n ( n + l) ^ - = 0 (19), 

^ - n (n + 1) - V f l ; = 0 ( 20 ) . 

The solution of (19) is 

R n = Ar~n + B r n + \ 

Equation (20) is discussed in Forsyth's Differential Equations 

§ 112 and § 139 Example 4, and it is shown that the solution can 
be expressed either in the form 

1 d y (GV + De-*r\ 

r dr) \ r J ' 
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whence 

Ce~* 1 + 
Xr. Xr. 

Since the velocity must vanish at infinity, £ = D = 0, whence 

1 ^ " - - + 0 ( 1 + - ] e "M sin!<9 (21). 
I r \ Xr] 

In order to satisfy (16) we must have 

£= V=cdf"\ 

where f is the displacement of the centre of the sphere, and c is a 
constant, whence 

Also substituting the values of d-^r/dr and d^rfdd from (21) in 
(16), we obtain 

C = -
3ac 

2 \ 7 

whence 

ty = \Vd' 
( I + É + I ) ° - Â ( I 4 > - > , ' - , } ™ - F L - ( 2 2 ) -

490. We must now calculate the resistance exerted by the 
liquid upon the sphere. 

Let P be the normal and U the tangential stresses measured 
in the r and 8 directions ; the formulae of transformation of Chapter 
I., give 

P = - p + 2fj. 
dR 

dr 
.(23). 

/dW 1 dR @\ 

Hence if Z be the resistance experienced by the sphere, 

Z = 2 7 r a 2 f (— P cos 8 + U sin 8) sin 8d8 (24). 

J o 

Now by (12) and (16), 

dR _ cosec 8 /d"^ _ 2 d , f \ = Q 

d r ~ r 1 \drd8 r dBJ 

at the surface ; also 
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therefore 

dp „ d'^ir, n 

dTe = p r M S C c e d r f t + 2 P a c o s d ' 

p cos 0 sin Odd = — £p j ( 4- #a sin 8 cos #J sin 0cZ0, 

accordingly Z=-irPa^f |a ( ^ ) 4- 2i|r„J sin (9 d6> (26). 

Fa 3 / , . 3 3 
Now * t = r

nii- (1 4- 4- ) sin20. 

Y l 2r V Xa X a / 

Therefore = - i F o ( l + ^ + ^ ) ^ 8 , 

and ^ ^ - ^ ( ^ i ) ^ -
Whence Z = * £ 7 ( l + A 4 - ^ ) sin3* ¿0 

where m is the mass of the liquid displaced by the sphere. 

1 dit I d / a d - f 

r d 8 - r > d 6 { C O S e c d d ë 

I d V /©' 
= —s -r̂  ( Fa J cos 8) = sin # = ( — 

a d 8 K a \ r 

at the surface ; and 

< m __1_ /dfy _ 1 djr\ 

dr r sin 0 \d^ 2 ?" dr / 

~ rsin 8 \i ~dt r2 d8 \ dO) r dr 

by (10). Hence by (16), 

m _ _ i _ < % 

tir sin 0 

at the surface ; therefore 

Z = 2-ira j " (pa cos 8 - p ^ sin Odd (25). 

Also j " p cos 8 sin 0d0 = - \ ^ siu20 ^ | d<9 ; 

but Q = — pip + g r sin 8, therefore by (14) at the surface 
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491. Let us now suppose that the sphere is constrained to 
perform small oscillations of period T . In this case we must have 

\ ' v = un, where T = 2ir/n. Putting k = (nj2vf, we obtain \ = & ( l + t) 

and 

Z = \ m 

9 \ d V 9n / 1 \ l r . 
2ka) dt 2ka V kal 

since idV/dt = — nV. 

The effect of the first term is simply to produce an apparent 
increase in the inertia of the sphere; the second term would pro­
duce a gradual diminution of the arc of oscillation if the sphere 
were left free. Now v is a small quantity, whence k is a large 
quantity, hence the effect produced by the second term is small, 
and is almost insensible during the period of a single oscillation. 
We may therefore employ the preceding value of Z to obtain the 
correction due to viscosity in the case of a free pendulum oscillating 
in a liquid. 

If I be the length of the pendulum, and if K, K' denote the 
values of the coefficients of dV/dt and V in the expression for Z ; 

the equation of motion of the sphere will be 

(Ml + K)6 + K'0 + (M - m ) g d = 0, 

the solution of which is 

G = Ae~iis\n('pt + a), 

where 8 = - ^ ' — p A ^ - J - ) ( M l + K)_g-K^f 

2(Ml + K)' P 2(Ml + K) 

The modulus of decay, that is the time which must elapse 
before the amplitude falls to e~l of its original value, is therefore 
equal to 2 (Ml + K)jK'. 

Torsional Oscillations of a Sphere1. 

492. We shall now investigate the motion of a sphere which 
is either filled with liquid or surrounded with liquid, and which is 
oscillating by means of a torsion fibre. 

1 Hulmholtz and Piotrowski, Wisse-nscìui/t. Abiiand. vol . i. p. 172. 
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Let OJ be the angular velocity of the sphere, w the component 
velocity of the liquid in the plane perpendicular to the axis of 
oscillation, T the tangential stress which opposes the motion of 
the sphere at a point whose co-latitude is 6. The surface condition 
when slipping is supposed to exist is 

8 (w ~ aw sin 8) = T. 

By (26) and (30) of § 18, 
rp _ fdw _ W\ 

^ \dr r 
whence 

8(w-aoJ&mB)=p^£-fj (28). 

Since the resistance experienced by the sphere depends solely 
on the component velocity w , it will be unnecessary to consider 
the other two components. On account of the symmetry of the 
motion all the quantities will be functions of (r, 6, i), whence by 
(24) of § 470 the equation for w will be 

dW fa-tt)(29). dt V r2sin2c? 

the squares and prod ucts of the velocities being neglected. Equation 
(29) will be satisfied by putting w = W sin 9, where W is a function 
of r and t only, which satisfies the equation, 

v dt ~~ dr" r dr r 2 ^ >' 

Let 12 be the angular velocity of the liquid, then W = Clr and 
(30) becomes, 

dn [a*XI 4 dD.\ , 
dT = V { d y + r d r ) ( 3 1 ) -

This is the general equation for determining the angular 
velocity of a viscous liquid bounded externally or internally by a 
sphere which is rotating about a fixed diameter. 

493. In considering the oscillations of a sphere filled with 
liquid, we may put 
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the solution of which is 

™ r d r \ r 

whence * = & { * - \ ) + + ·'*" < 3 3 > 

Since O must not be infinite when r = 0, we must have A = B, 
whence 

N = A e * " ' cosh Xr-~ sinh \ r ) (34). 

Putting k = vp/8, (28) becomes 

Now m must be of the form c e f v t , where c is a constant; 
whence substituting the value of £1 from (34) we obtain 

c/A =Xa^ (1 + Sk/a) cosh Xa - aT2 (\*k + aTl + 3k/a2) sinh Xa.. .(36), 
which determines A . 

The couple which the liquid exerts on the sphere measured in 
the direction of its motion is 

G = — 2 m ' J ' T sin3 OdO = - lirvpa' (^j , 
= - § 7 r l S a < ( N - Q , ) (37), 

by (35). 
In order to complete the solution we may proceed as in § 491. 

First suppose the sphere to perform small oscillations whose period 
is 2-irjn, then X2v = m, and 

w = mw, X = (jijlvf ( H I ) (38). 

By means of (36) and (38) the imaginary quantity i can be 
eliminated, and the value of G expressed in a real form as a 
function of to and OJ ; and since the motion is supposed to be slow 
we may neglect squares and products of cj and ro. Having 
obtained the value of G in a real form, the equation of motion 
which will be of the form 

16 + ^8 + 89 = 0, 

can be written down and integrated. 

If the sphere is surrounded with liquid we must put A = 0 in 
(33), because r/> must not be infinite when r = o o . If there is no 
slipping /8 = oo and therefore k = 0. 
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Steady Motion of a Sphere1. 

494. We shall first consider the steady motion of a sphere 
which is moving along a straight line, when slipping takes place; 
in order to pass to the case of no slipping, we must put B — oo in 
our results. 

When the motion is steady dtjr/dt = 0, and (7) becomes 

= 0 (39). 
Let ty = <b(r) sin2 8, then (39) becomes 

T~i — ~i ) <P = ° : dr r J 

whence — = — + B'r*. 
di- r r 

Integrating again and changing the constants, we obtain 

4> = Ajr + Br + CV2 + I V (40). 

Since R and © vanish at infinity, it follows that G = 0, D = 0, 
and 

i/r = ( A j r + Br) sin2 9. 
The first of (16) gives 

A + Bd2 = \ Va\ 

and (17) gives 
A (1 + Qfi/Ba) -Ba* = - Vd\ 

whence 

A=-iFa3/(1 + 3p/Ba), B = IVa (1 + 2fi/8a)/ ( l + 3/*//8a). 

We thus obtain 

If there is no slipping /3 = oo , and the preceding equation 
becomes 

^ = i F a 2 ( 3

f t

r - ^ s i n 2 0 (42), 

which is Prof. Stokes' result. 

495. The value of the force which must be applied to the 
sphere in order to maintain the motion, may be obtained either by 
calculating the resultant force exerted by the liquid upon the 

1 Stokes, Trans. Camb. Phil. Soc. vol. ix. ; see also Lamb, Motion of Fluids, 
§§ 184—185, 
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sphere, or by means of the dissipation function. If we employ 
the first method, and put u = B^r, we obtain from (6) 

dp v I'du , du , 
— = — -j— dz =- dm 
p •us \d'ur dz 

, u, [ l d u 7 du l n 

or an = —:—- - • dr — r -r- do 
r sin 0 \ r d o dr 

Now DT^ = — 2Br~2 sin2 9, 

whence dp = 2Bp,d (r - 8 cos 6), 

and therefore p = II + 2Bp.r~2cos 8 (43), 

and we obtain from (23), 
„ dB 

= - II - fi cos 9 (12 A J a* + SB/a*), 

also U = — G J. /ir~ 4 sin £>, 

and therefore from (24) 

Z = f + 6BJ cos2 0 sin 0 - ^ sin' flj ¿0, 

= Swp.B, 

= 6 FTr/xa (1 + 2fi/8a) / (1 + 3^18a) (44). 

• If in (44) we put 8 respectively equal to infinity and zero, we 
see that Z must lie between the values QVirp-a and iVirp^a. 

If a solid of density a is descending in a viscous liquid of 
density p under the action of gravity, the force in the direction of 
its motion is iTra3g (a — p). If therefore the sphere descend from 
rest, the velocity will not continue to increase indefinitely, but will 
tend towards a limiting value which is determined by the equation 

%ira%g (a - p] = 6PV/xa (1 + 2/x//3a) / ( l + 3/x//3a). 

If there is no slipping the value of V is 

v - X < ° - * < « > · 

The preceding formula has been applied by Prof. Stokes to 
show that the viscosity of the air is sufficient to account for the 
suspension of the clouds. 

496. We shall now determine the steady motion of liquid 
which surrounds a sphere, which is constrained to rotate with 
uniform angular velocity about a fixed diameter. 
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By (30) the equation for W is 

d r W 2 d W 2 T f _ Q 

dr2 r dr r 2 ' 

the solution of which is 

W = A r + B / r \ 

Since W must not he infinite when r = oo, A = 0, whence 

w = Br~2 sin 0. 

The surface condition (28) gives 

B = u a ? ( l + f 
\ Ba, 

Whence 

- - ^ s i n f l f l + J i y 1 ( 4 6 ) . 
~ r 2 \ Ba. 

If B = oo this becomes 

eOa n / A hr\ 

--— „ sin 0 (47). 

which is Prof. Stokes' result. 

The couple which must be applied to the sphere in order to 
maintain the motion is 

G = -

= 8-n-p.œa2 (1 + 3/J./P* a) 

In obtaining the preceding result we have tacitly assumed that 
the stream lines are concentric circles, whose centres lie on the 
axis of rotation. Prof. Stokes has however pointed out,—" that 
permanent motion in annuli is impossible, whatever may be the 
law of friction between the sphere of the liquid, and it is therefore 
necessary to suppose that the particles move in planes passing 
through the axis of rotation, while at the same time they move 
around it. In fact it is easy to sec that from the excess of centrifugal 
force in the neighbourhood of the equator of the revolving sphere, 
the particles in that part will recede from the sphere, and approach 
it again at the polos, and this circulating motion will be combined 
with a motion about the axis. If however we leave the centri­
fugal force out of consideration, the motion in annuli becomes 
possible1." 

1 ^fath. and Phys. Papers, vol . i. p . 103. 

IRIS - LILLIAD - Université Lille 1 



Steady Motion of an Ellipsoid. 

497. By means of equation (42) it can easily be shown that if 
the axis of x be the direction of motion of the sphere, the 
component velocities u, v, w parallel to the axes of x , y , z are 
determined by the equations 

1 T r /3ffl , « 3 \ , T r / 1 a2\a& 

w = 

a 2 \ axy 

axz 

The preceding formula? suggested to Oberbeck1 the correspond­
ing results in the case of an ellipsoid, which moves parallel to one 
of its principal axes. 

Let H be the potential of an ellipsoid of unit density, so that 
with the notation of § 147, 

and let 
dHK „ _ J A \ I 

v = a[x — + 8 ^ 1 1 ) 
\ dy dxdyJ 

dHK { d 2 l l } 

.(48), 

dz ' dxdz) 

where a, 8 are constants. It can easily be shown that these values 
of u, v, w satisfy the equation of continuity, and vanish at infinity. 

If the ellipsoid move parallel to x with velocity V, and there 
is no slipping, the surface conditions are 

u = V, v = 0, w— 0. 
If p be the perpendicular from the centre on to the tangent 

plane at (x, y , z ) , and the unsuffixed letters denote the surface 
values of A , B, C, H, 

dH 

dx 

2TTP

2X ( F A 

a' ' dx* 
= A -

4<Trp2x2 

~ a ^ 

B . I I . 

1 Borch. vol . I.XXXT, p. 62. 
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whence p = — 2)j.Etxx/r3, 

and therefore 

- P ' = - p + 2 / , g = 6 ^ ^ 7 r 5 , 

— U'= b'EifJLX2ylr's, 

- T = QEafix2z/rs, 

therefore P'l' + U'm + T n = GEa/Lx'/r*. 

Hence X = - IZirEap T cos2
 B sin 6d6, 

• 0 

= — i-n-Eafi, 

%-trp.EV 

whence 7 = a\A8 - H - ^ ( l + *§ 

and therefore 
2V 

B = - i a , « = - A a r ^ H (49); 

also the preceding values of a and B make v and w each zero at 
the surface. 

If X be the force required to maintain the motion, 

X = U(Pl+Um + Tn)dS. 

Now let us suppose that the liquid is bounded by a very large 
sphere whose radius r is ultimately made infinite ; then by § 482 

X = - fj (PT + U'm' + Tn') dS, 

where the accents refer to the spherical boundary. 

At a great distance from the origin HK = E/r, where E is the 
charge due to a distribution of electricity upon the ellipsoid of 
density \ p ; also the coefficients of B in (48) are of the order ?•'" 
and therefore ultimately vanish. We thus obtain 

Eaxy Eixz 
— 'in = — 

?.s ' w r" 
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Motion of a Cylinder1. 

498. We must in the next place consider the small oscillations 
and steady motion of a circular cylinder; and we shall commence 
with the case of a cylindrical pendulum, which is performing small 
oscillations along a straight line. 

Let u, v be the velocities of the liquid parallel to fixed 
rectangular axes ; the equations of motion are 

du _dQ 

dt dx 
• (50), 

dv _dQ y 2 

dt dy 

where Q = —plp—V; the squares ami products of the velocities 
being neglected. 

Also if \fr be the current function 

u=dip~jdy, v = — d^rjdx; 

whence eliminating Q we obtain 

V , ( V , - 1 J t ) + = ° - - < 6 1 > " 
This equation will be satisfied by putting 

yfr = y}r1 + i / r a , 

where v > i = 0 ( 5 2 ) . 

Substituting for u, v in terms of t}r in (50) we obtain, 

- dQ = vdx | [ y _ 1 * ) f - vdy -I ( v 2 - 1 1 ) ir, 
which becomes by (52) and (53), 

- • " H S ^ - S H <54>-
Let R, f H ) be the velocities of the liquid along and perpendicular 

J Stokes, Trans. Gamb. Phil. Soc. vol . rx. 
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to the. radius vector, a the radius of the cylinder; then changing 
to polar coordinates we have 

£ r ol6 ' d r ' 

- 3 = d^ I d 1 
~ dri + r d r + r* d82' 

whence (54) becomes 

w 
If V be the velocity of the cylinder, the surface conditions are 

= Va cos 8, ^ = Vamd (56), 
do dr 

when r— a. Equations (56) show that 8 must enter into I / r in the 
form of the factor sin 8 ; also if we assume that the time factor is 
e , we may put 

^ = e** 6 X i (r), = ™ 0 X l M , V = .. .(56 A ) . 

Substituting in (52), (53) and (56) we obtain 

K + K ' / r - x J r ^ O (57), 

%2" + X > - % > 2 - V % 2 = 0 (58), 

Xi ( a ) + %e O ) = A C > Xi ( « ) + % » ' ( « ) = c ( 5 9 ) -

The integral of (57) is 
X l = A/r + Br (60), 

whence since %, = 0 when r = oc , B = 0. 

499 Since X 2 must vanish when r = oo , the proper solution of 
(58) is X^ = K 1 ( \ r ) where K1 is a Bessel's function of the second 
kind of order unity; but since X is a complex quantity, the 
definite integral form of Kt is not a convenient expression, and we 
shall therefore proceed to find one suited to our purpose. 

Let X l = du/dr ; substituting in (58) and integrating we obtain 

d2u I d u 2 . 
T - S H ^ X u = 0 (61). 
dr r dr 

If the equation 

d V 1 du' /_ „ «s 
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an 

X V XV 
+ 2(2 4-27i) + 2.4.(2 + 2n).(4 + 27i) + 

If v denote the coefficient of (Xr)2'" in the above series 

l d v _ _ d Q o g v ) _ 1 _ 1 1 

v dn~~ dn
 —

 1 + n 2 + n '" m + n' 

whence = - v0Sm, 

„ , 1 1 1 where ^ = 1 + - + - + + 

and therefore 

/ ( 0 ) = l o g r j l + — + - - — + . . . . 

\ 2 2 + 2 s . 4 2 2 + 2 2 . 4 2 . 6: 

whence the solution of (61) is 

, n r, i ·, / 1 * V XV 

~ i ) ( ¥ 2 + 2 ? > 2 + ) ^ 

be integrated by series, the result is 

U \ + 2 . (2 + 2«) + 2 . 4 . ( 2 + 2n). (4 + 2w) + ' 

B ( X V X V 
+ r" { + 2 . (2-2re) + 2 .4 . (2-2re) . (4-2rc) + " " 

The latter series fails when n is an integer since it becomes 
infinite; and when n is zero the two series become identical. Let 
us therefore denote the first series by fin) and the second by 

f ( —n), then by Maclaurin's theorem 

u' = Af(n) + Bf(-n) 

= (A + B)f(0) + ( A - B) nf (0) + (A + B) - £ , / " (0) + , 

whence choosing new arbitrary constants, the value of u' when 
n = 0 will be 

u=u=Cf(0) + Df(0). 

Now 

/ ( » ) = / • log r j l + 2 , ( 2 + 2 n) + 2 . 4 . ( 2 + 2n r).(4 + 2 w ) + 
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RA (Xr) = rn (" cosh (Xr cos cb) sin2"<pdcp = f ( n ) , 
J 0 

whence f (0) = / cosh (Xr cos cb) log (r sin2ep) deb, 
J 0 

f 5 » 

" (0 ) = j 

and therefore 
IT 

u= j {0" + D"log(rsha2^)} cosh (\rcos cb) defy... (65). 
J A 

Also comparing (63) and (65) we shall obtain 

C + D log R = \IR (G" + D" log R) + TTD" log J, 

whence f7=iirC" +TTD" log^ , D = \IRD" (66). 
We must now find the relation between C" and D" in order 

that u = 0 when r = oc . 
When r is very large the limit of e r log r is zero, also since 

sin cb and cos cb can never be greater than unity throughout the 
range of integration, cb will be very small compared with r. We 
may therefore replace the limits \IR and 0 in the integral (65) by 
co and 0, where TO is a very small positive quantity which ultimately 
vanishes when r = oo . 

Let cos cf> = 1 — x , so that 

siii2oi = 2x(l- i x ) , deb = (2a;-a;2)-*cfa; = ( ! - £ « + ) (2a)"*t£c, 

then the limits of x will be x 1 and 0 where x i = 1 — cos &). Whence 
the limit of the integral (65) when r is large is 

eKr p /(j" + £>" i o g 2rx) e ~ k r x (2x)-*.dx. 

We may also integrate (61) in a series of descending powers of 
r by assuming 

u = e ± K r (Ar* + Br? + ) , 

and we shall obtain 

„ i r i f, l 2 1 2 . 3 2 1 \ 3 2 . 5 2 

( 2 . 4 \ r + 2 . 4 . (4Xr) 2 2 . 4 . 6 ( 4 X r ) 3 + 

1 2 .3 2 1 2 . 3 2 . 5 8 I 
2. 4Xr ' 2 . 4 . (4Xr) 2 + 2 . 4 . 6 (4>\r? + J " ^ >' 

A third form of the integral of (61) may be obtained as follows. 
One of the solutions is 

FI* 
I . 
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putting x = \ y , the required limit becomes 

u = (TT/EU-)* eA r [ C + D" {TT-* r (i) - log J\]]. 

Comparing this with (64) we obtain 

-D' = (7R/2xy {(7" + Z>" [7R-i F ( i ) - log (67). 

Now in order that it may vanish when r = oo we must have 
D' = 0, whence the required relation between C" and D " is 

C" = D"{logJ\-7R-»RA)}, 

and therefore by (66) the required relation between C and D is 

G = I ) { \ o g \ X - ^ V ( \ ) } (68). 

Putting u = F ( r ) we obtain from (59) 

A/a + F' (a) = ac, - A/a + aF' (a) = ac (69), 

v v h e n c e a*c + A aF^a) 

(63), (68) and (69) completely determine A , G and D . 

500. Let us now suppose that the cylinder is a pendulum 
oscillating under the action of gravity ; and let Z be the resistance 
experienced by it per unit of length, then 

a \*" (-Peas, 9+ Usin 0)ad8, 
J 0 

where P and U are given by Example 5, Ch. XX. Adding (52) 
and (53) we obtain 

- _ 1 ^ _ 1 &y\r 1 
dr* r d r r d02 v dt 

Let x = y / r , then the limits of y are r x t and 0, the former of which 
becomes infinite with r, whence 

limit of integral = (2r)"M' - F (G" + D"log 2y) e~Kv y'^dy. 

r" e~* d x 

Now — , — = JTT, and if we differentiate both sides of the 
J0 >Jx 

equation 

f e-*xs-1dx = T(s), 

with respect to s and then put s = \, we obtain 

e-% x - i i 0 g x d x = p ' Q ̂  
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X*aF (a)) 

= Mem emt { K - i K ' ) (say), 

Using this equation together with (56) and (59) we obtain 

fdli\ 1 fdjr\ 1 / d > \ 

1 /dR\ _ 1 /dSM _ _ Fsin (9 _ © 

'd©\ _ _ / d > \ = 1 (df\ 1 / c f f \ _ 1 / * f \ = _ 1 / d ^ \ 
d W a

_ UrV a

_a \ d r ) a

 + a' \ d 9 2 ) a v\dt)a~ v\dt)a' 
whence Z = a J jp cos 0 — p sin #j 

T, 1 dp „ dQ d 2 ^ 
B y < ° ° ) p d i + 9 a ™ * e = - T 0 = a d 7 d i -

Therefore integrating the first term by parts, we obtain 

J% cos 6d6 = - j * sin O ^ d Q 

= - a p [ \ i n d ^ d e , 

whence Z = — pa j * ^ ja + ^r a| sin 6> d0. 

Putting \ a v = in and substituting the values of ^ and -0-2 from 
(56 A . ) , we obtain 

Z = irpam {Aja - F' (a)} e m t . 

By (69) F'(a) = a c - A l a and by (70) 

a F " ( a ) - F ' ( a ) 

~ a F " ( a ) + F' { a ) a C ' 

Therefore 

Z = - M ' c n i ^ 1 - 2 — ^ 7 7 - ^ = 7 7 - : ^ 6 > 

( a.F (a) + F' (a)j 
where if ' is the mass of the liquid displaced. Since F satisfies 
the differential equation (61), 
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where K and K' are real. Whence if I be the length of the 
pendulum, the equation of motion of the cylinder is 

Mg + M'Kg + M'K'n% + M') g% = 0. 

The second term of this equation is the part of Z which alters 
the time of oscillation, and the third term is the part which 
diminishes the arc of oscillation. 

For the calculation of the quantities K, K' we must refer the 
reader to Professor Stokes' memoir. 

501. We shall now show that when a cylinder is moving in a 
straight line, steady motion is impossible. 

Putting -ty = ty' sin 6 in (51), it follows that the equation for 
determining the value of ty' in steady motion is 

Id. 
drs r dr 

-£)V = 0 (71), 

whence —/ - + - , -L- = Ar + Br, 
ar r dr r 

the integral of which may be written 

•uV' = Ar log r + Cr + B r ' 1 + B r \ 

We therefore obtain 
R = I = (A logr + Br* + C + D r ~ 2 ) cos 8 

r do , 

rJ f - ( 7 2 ) -

© = _ a T . = (Dr~* - G - 3Br* - A log r - A) sin 8 J 

Let us now suppose that the motion is reversed, so that the 
cylinder is at rest, whilst the liquid is streaming past it, the 
velocity of the latter at infinity being equal to — V. The equations 
of condition are 

B = 0, 0 = 0, when r = « (73), 

R = - V c o s 6 , © = Fsin0, when/-=oo (74). 

The first of equations (74) requires that A = 0 , B = 0, C = — V, 
which also satisfies the second, and we are thus left with one 
disposable constant to satisfy equations (73); and since both these 
equations cannot be satisfied by the same value of D , steady motion 
is impossible. 
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dt \dr* r dr 

If therefore the motion is steady, the value of v is 

v = Ar + B/r. 

Hence if a cylinder is surrounded with viscous liquid and made 
to rotate with angular velocity <u, the value of v after the motion 
has become steady is 

v = a s c o / r . 

If on the other hand the cylinder is filled with liquid, the 
value of v is ar, and therefore the liquid rotates like a rigid body. 

EXAMPLES. 

1. When a sphere is moving with uniform velocity along a 
straight line, prove that after the motion has become steady, the 
vorticity at any point of a vortex line is inversely proportional to 
the cube of the distance of that point from the centre of the 
sphere. 

2. A doublet of strength m is situated at the centre of a 
sphere of radius a. Prove that after the motion has become 
steady, the radial and transversal velocities of the liquid are 
respectively equal to 

(2 5 3r8\ . , (1 5 6r 8\ . . 
m [ r ° - a ? + t f ) C Q S 0 ' a n d m [ ? + a ' - - l 7 ) S m 0 -

3. The space between two concentric spheres is filled with 
viscous liquid, and the spheres are made to rotate with different 
angular velocities about the same diameter. Assuming that the 
particles of liquid move in planes perpendicular to the axis of 
rotation, and that there is no slipping, find the velocity of the 
liquid after the motion has become steady; aud prove that if the 

502. When the motion of a liquid is symmetrical about a 
point and is in two dimensions, it follows from the second of 
equations (23) of § 471 that the velocity is determined by the 
equation 

dv /(Pv 1 do v \ 
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inner sphere is at rest, the couple which must be applied to the 
outer one in order to maintain the motion is equal to 

where a and b are the radii of the outer and inner spheres, and tu 
the angular velocity of the former. 

4. The space between two concentric cylinders of radii a and 
b , is filled with viscous liquid, and the cylinders are constrained to 
rotate with angular velocities to,, a>8; prove that if a> be the 
angular velocity of a liquid particle at a distance r from the axis 
after the motion has become steady 

a>x — w _ 1 - ( a / r ) 2 

ojj - tu2

 — 1 - (albf ' 

5. A cylinder of length I and radius a, which is surrounded 
by viscous liquid, is made to rotate with uniform angular velocity 
(o. Prove that if slipping takes place, the couple which must be 
applied to the cylinder to maintain the motion when steady, is 
equal to 

4>TTfia>a?l 

1 + 2fj,//3a' 

6. A cylinder of radius a is filled with viscous liquid and 
constrained to rotate so that the angular velocity at any time is 
a sin mt; prove that if there is no slipping at the surface, the 
current function is 

•ty = \ aa> (P cos mt + Q sin mt), 

where P + i Q = (1 - t) k J° f. \\ ~ j , and k* = m/2v. 
•Jo \k (J. — t) o,\ 

7. A long right circular cylinder is rotating with uniform 
angular velocity a inside a concentric cylinder which is at rest, the 
space between the cylinders being filled with viscous liquid; show 
that the couple on the cylinder per unit of length is 

4 /uoja2Z> s 

a 2 - b ° ' 

where a and b are the radii of the outer and inner cylinders. 
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2 8 4 S T E A D Y MOTION A N D S M A L L OSCILLATIONS. 

8. The inner of two confocal ellipsoids of revolution, the space 
between which is filled with viscous liquid, is made to rotate with 
angular velocity a> about its axis, the outer one being at rest; 
prove that the velocities of the liquid are 

and A l t A 2 are the values of A at the outer and inner ellipsoid 
respectively. 

9. A thin circular disc is oscillating in a viscous liquid by 
means of a torsion fibre. Prove that the equation of motion of 
the disc is 

where I is the moment of inertia of the disc, a its radius, p the 
density of the liquid, k* = n/2v, and n1 is what n would become if 
the liquid were absent. 

Integrate this equation, and explain how the result may­
be used to determine the coefficient of viscosity. 

„ = _ w y {A - A j / ( A , - At), v = »x {A - AJKA, - A,), 

where 

(I + 7rpaiIe) 8 + -rrpa' fk9 + n?I6 = 0, 
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C H A P T E E X X I I . 

O N T H E M O T I O N O F A S P H E R E I N A V I S C O U S L I Q U I D . 

503. Ix the preceding Chapter we considered the steady 
motion and small oscillations of a sphere and a cylinder in a 
viscous liquid; we shall now proceed to investigate the motion of 
a sphere which is surrounded by a viscous liquid of unlimited 
extent, and which is moving in a straight line under the action of 
a constant force such as gravity1. 

The mathematical difficulties of integrating the general 
equations of motion when the terms involving the squares and 
products of the velocities are retained, will compel us to omit 
them throughout the whole of this Chapter. This is no doubt 
legitimate provided we confine our attention to the consideration 
of slow motions; but when the motion is not slow it must be 
confessed that the assumption that these terms can be neglected 
is of a questionable character. It will be seen that the results 
which we shall obtain give a better representation of the motion 
which actually takes place, than those which are obtained from 
the ordinary theory of a frictionless liquid; and it should also be 
noticed that when the liquid is frictionless the terms involving the 
squares and products of the velocities do not contribute anything 
to the resistance experienced by the sphere; and it is therefore 
not impossible that when the viscosity is small, the effect of these 
terms may be unimportant compared with those retained. Since 
the equations of motion can be reduced to a comparatively simple 
form when these terms are omitted, I am inclined to think that 
the procedure which would be most likely to be successful in 

1 Phil. Trans. 1888, p. 43. 
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advancing our theoretical knowledge of the motion of solid bodies 
in viscous liquids, would be to neglect these terms in the first 
instance, in the hope that the imperfect solutions which are 
thereby obtained, may hereafter suggest a more satisfactory method 
of dealing with such problems. 

Motion of a Sphere under the Action of Gravity. 

504. Let us suppose that a sphere of radius a, is surrounded 
by a viscous liquid which is initially at rest, and let the sphere be 
constrained to move with uniform velocity V, in a straight line. 
If the squares and products of the velocity of the liquid are 
neglected, we have shown in the previous Chapter that the current 
function i/r must satisfy the differential equation 

B{D-Ydh=() 

, „ d? sin 8 d ( . d \ 
where D = ^—„ H -„ = = cosec V 

dr' r 2 d8 \ d8) 

and ( r , 8) are polar coordinates of a point referred to the centre of 
the sphere as origin. 

Let R, © be the component velocities of the liquid along and 
perpendicular to the radius vector; then, if we assume that no 
slipping takes place at the surface of the sphere, the surface 
conditions are 

R = ^ T 8 d £ = V ™ e < 2 > -

0 = ^ = _ Vsm8 (3). 

a sin 8 dr 

Also, at infinity R and 0 must both vanish. 

These equations can be satisfied by putting 
yjr = -f yfrj sin2

 8 (4), 
where i]r1 and are functions of r and t, which respectively 
satisfy the equations 

IRIS - LILLIAD - Université Lille 1 



(r — a + a) 
[da...(8). 

Wo must now determine the functions x and F so as to satisfy 
the surface conditions (2) and (3). 

Equation (2) will be satisfied if 

X [ * ) - F (a) - aF' ( « ) = Vet fir ( 9 ) . 

The proper solution of (5) is tyl = f(t)/r, which it will be 
convenient to write in the form 

* = ^ r * ( a ) e x p <- <n 
where ^ ( a ) is an arbitrary function, which will hereafter be 
determined. 

In order to obtain the solution of (6), let us put yjr2 = re~k^( dw/dr, 

where w is a function of r alone ; substituting in (6), and integrat­
ing, we obtain 

rw = A cos \ (r — a + a), 

where a is the radius of the sphere and A and a are the constants 
of integration. Whence a particular solution of (6) is 

d e~^vt 

TJT, = AT ^ cos X (r — a + a). 
dr r ^ ' 

Integrating this with respect to X between the limits oo and 0, 
and then changing A into F (a ) and integrating the result with 
respect to a between the same limits, we obtain 

rsjir d r~F(a) ( ( r - a + ay) 

Performing the differentiation and then integrating by parts, 
we obtain 

We shall presently show that it is possible to determine F ( a ) , 
so that F (0) = 0, and F (a) e ~ a ' = 0 when a = oo ; hence the term in 
square brackets will vanish at both limits, and we obtain 

sin8 9 Inr C , x f 
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2W(Trvt) J o ' 2 2 ' * V W 

3Fa sin2 6»f /a 2 \ f (r - a + a)2} ^ 

J O + a ) E X P | 4 ^ } d a - ( 1 2 ) -

The first integral can be evaluated ; in the second put 
r — a + a = 2M^/(J4) and we obtain 

^ = [Zvt + 6a V W ' ) + < * ' } 

- 3 Z c t ^ ^ F j 1
 [2uj(vt) - r + a)2 + 2uV(»rt) - r + A L E ^ 2 da 

V 7 1 " J r^a (¿1* J 
2 v > 0 (13). 

Equation (3) requires that 

Integrating the last term by parts, the preceding equation 
becomes 

V a * = I O K > * f { " X ( = 0 + ^ ( A ) + A F ' 0 0 + to} 

J O 

x exp ( - a'/ivt) di (10), 

provided, [F (a) + a F ' (a)} exp (—a2/4>vt) vanishes at both limits. 
This requires that F (0) = F ' (0) = 0, and that F (a) e -

a " and 
.F" (a) e~"2 should each vanish when a = co . When this is the case 
(1.0) will be satisfied if 

- X ( a ) + F ( a ) + a F ' (a) + a 2 F " (a) = 2 V a ^ j i r (11). 

Whence by (9) F " (a) = 3 Vaj-rr 

and, therefore, F{a)=3 Vacf/Sir + Ca + D . 

The conditions that F ( 0 ) = F ' ( 0 ) = 0 require that C = D = 0 ; 
whence 

^ (a) = 3 V a r d j l i r , X (a) = Fa-rr"1 (fx2 + 3aa + a2). 

Also the preceding value of F (a) satisfies the conditions that 
.F(a) e - a \ and F' (a) e ^ 2 should each vanish when a = g o ; whence 
all the conditions are satisfied, and we finally obtain 

V a sin2 9 f™ ,„ . „ , / a2 \ 7 
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505. When t = 0 the second integral vanishes, whence the 
initial value of yfr is 

, Va? sin2 6 

which is the known value of yjr in the case of a frictionless liquid, 
as ought to be the case. 

When t is very large, we may put t = oo in the lower limit of 
the second integral, which then 

3 Va sin2 0 C + 2 a u ^ p € ) + r=)j 6 - « « gn, 

Jo rij-rr 

Fa sin2 9 
2r 

Vr = iFa 2 s i n 2 £ > f 3 r - -

This equation gives the value of i/r after a sufficient time has 
elapsed for the motion to have become steady, and agrees with the 
result obtained in § 494. 

506. Let vt be any solution of the partial differential equation 

Then, if v0 = Q, F ( t - r ) v T d i , where F(T) is any arbitrary 
J o 

function which is independent of r and t, and does not become 
infinite between the limits, will also be a solution of (14) ; for, 
substituting in (14), the right-hand side becomes 

F(0)vt+ F ( t - r ) v T d T = F(t)v0+ F ( t - T ) p d T 
Jo Jo UT 

if v0 = 0. 

507. The second expression on the right-hand side of (13) is 
the value of i /r s sin2 6; and it is easily seen that this expression 
vanishes when t = 0. Hence it follows that the expression which 
is obtained from (13) by changing t into r and F into F' (t — T ) dr, 
and integrating the result from t to 0, is also a solution of (1). 
Now, if F (0) = 0, it will be found on substituting the above-
mentioned expression in (2) and ( 3 ) that F(t) is the velocity of the 

B . I I . 19 
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sphere, supposing it to have started from rest; hence this expres­
sion gives the current function due to the motion of a sphere 
which has started from rest, and which is moving with variable 
velocity F ( t ) . 

In order to obtain the equation of motion of the sphere, we 
must calculate the resistance due to the liquid ; but in doing this 
we may begin by supposing the velocity to be uniform, and 
perform the above-mentioned operation at a later stage of the 
process. 

If the impressed force is a constant force, such as gravity, 
which acts in the direction of motion of the sphere, and Z is the 
resistance due to the liquid, it follows from ( 2 5 ) of § 4 9 0 , that 

Z = 2-rra J " [pa cos S - p ^ - ' sin2
 0J sin 6 old, 

also from ( 1 4 ) of § 4 8 6 , 

dp . d*ilr . „ 
~T?i= p S I N 0 — a pa S I N 6, 
dd r dtdr v r 

where p is the density of the liquid ; also, since 

jWp cos 0 sin 0 C 2 0 = - i J " s i n 2 0 ^ dd, 

we obtain 

Z = - 7 r p a j t ^ ( a - ^ + 2 I F C , ) s i n 3 0 d d + Mg 

M! d ( d-Jr, „ \ 
- - - [a Z + H . ) + M 9 > 

* a A A dt \ dr 

where M' is the mass of the liquid displaced. Now, if V were 
constant, we should obtain from ( 1 3 ) 

a — — V [\vt + 3 A + K } , 

and ( I | r s ) a = - 3 Va {^vt/a + <J(vt/ir)}, 

whence (a ^ 4 - 2 ^ =~V\%vt + 9 « V ( ^ / 7 r ) + W l 

We must now change t into r, V into F' ( t — T ) dr, and 
integrate the result with respect to T from t to 0, and we obtain 

W d r* 

Z = F I " F ' ( t - r ) { F Z > R + 9 A </{VT/TT)} dr + \M'v + Wg, 
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and the equation of motion of the sphere is 
9M'd rt 

(M f- \M')v + - r F ( t - r ) $VT + a V O T / T T } d r 
a (it J o 

= (M-M')g (15). 

J o 

Integrating the definite integral by parts, and remembering 
that F ( 0 ) = 0, the result is 

rt 

F ( t - r ) + \ a *J{V/TTT)} dr, 

i o 

and, differentiating with respect to t, (15) becomes 
= (M-M')g (16). 

Let <r be the density of the sphere, and let 

( < L - p ) 5 r 9p x = k i > 

a + ip J a'(2a + p) 
then (16) becomes 

v + Xv + k a ^ l l F ^ d r = f . (18). 

This is the equation of motion of the sphere, from which F (t) or v 
must be determined. 

508. Up to the present time we have supposed the motion to 
have commenced from rest, so that F ( 0 ) = 0. Let us now suppose 
that the sphere was initially projected with velocity V. In order 
to obtain the equation of motion in this case we may divide the 
time t, into two intervals h and t — h, where A is a very small 
quantity, which ultimately vanishes. During the first interval let 
the sphere move from rest under the action of gravity and a very 
large constant force, which is equal to [M + ^M') X, and then let 
the large force cease to act. This force must be such as to produce 
a velocity V at the end of the interval h, whence we must have 
V = Xh, v = Xt; and, therefore, v = Vt/h. Changing / into / + X 
in (18), multiplying by tu, and integrating between the limits t 
and 0, we obtain 

ve*1 = - h a j' dufQ

 eKU F' 0 ' _ T ) % + f X e * u d u 

+ f P ekudu (19). 

Jo 
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Now F' (t) is composed of two parts: a large part which depends 
upon X, and which is equal to V/h; and another part which 
depends upon f , and which we shall continue to denote by F' (t). 
Hence (19) may be written 

ve^= - ( e A A - 1) + •£ ( e A « - l ) - k a / - F du F F' (u - T ) e A « ~ 
X X V T J0 Jo V T 

-ka J^f^xi^du (20), 
where Y (u) = F T ^ 7 " . 

Now x (u) depends on X, and therefore vanishes when u > h. 
When u < h, 

x ( u ) = 2 V u i l h ; 

therefore 
ft rh 2 y 

<^UX (u) du = -r- u V " du = 0, when h = 0. 
Jo J a «• 

Hence, in the limit when h vanishes, (20) becomes 

„ = Fe -« + ^ ( l - e - M ) 

and the value of the acceleration is 

u = - 7 \ 6 - M + / e - w 

-*JlM.du^™F*-T)% (22)-
509. It seems almost hopeless to attempt to determine the 

complete value of F from the preceding equations, but, in the case 
of many liquids, v is a small quantity, and (21) and (22) may then 
be solved by the method of successive approximation. For a first 
approximation 

v = F' (t) = f e - x t , 

whence ^ t - j ) d r f* ^ d r 

Jo J h - J ( t - r ) K ' 

The integral on the right-hand side of (23) cannot be evaluated 
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in finite terms, and we shall denote it by <p (*)· Putting T = ^ 
we obtain 

+ ®=KW=§)(24)-
J 0 

_ 1 . 3 - ( 2 n - l ) 
2" re! 

Therefore dy = ( - ) - (J^)' . 

where 

Now 

and therefore 

Whcn £ is very large we may replace (1 — e~M)/\t by (X-i)-1, and 
we shall obtain 

1 

which shows that <p (t) = 0 when t = oo . 

Another expression for may be obtained in the form of a 
series, for 

- 2 //Ji ^ . ( a x - O ' ( - ) " ( 2 W ) " 1 

by successive integration by parts. The above series is convergent 
for all values of t, and is zero when t = oo . 

For a second approximation, ( 2 2 ) gives 

v = F (0 = / e - « - / f c o JI j t FO e~*» <f> (« - u) di*. ..(27), 

and 

„ = r e - « + / ( l - e - « ) - / fca ^ / ^ J"' </> (* - w) du. ..(28). 
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v = - V \ e - * t + f e - M - f k a ^,x(t) 

+ ^ ? > J f , d H r , ^ « - ) x ( „ - T ) 
7T A T J O Jo 

• w - / : ^ <*>· 

dr 

Let 

and the last equation becomes 

i, = - V\e ^ - / to ^ / ~ x (t) 

+ •^aV J I* 6 - * « y\r{t-u)du (31), 
7T ctt J a 

and 

« = ^ (1 - e - w ) + Ve-v -flea /- <b (t - u) du, 
A . V 7 r i o 

+ / F C V V F ' e _ K u , , t _ u } d u (ß2). 
TT J O 

We must now express all the above integrals in terms of <k (t) 
From (29) we obtain 

x(*) = j J ^ - M ' - " ) * ( « ) du 
= <j>(t)-\ (*e-«+*« th(u) du J o 

Jo Jo V T 

by (24). Changing the order of integration, the last integral 

whence x (t) = (-J- - \ i ) <p (£) + V* (33). 

Let v ( * ) = i P e-^cb{t-u)du (29), 
dt J O 

and (27) becomes 

F ' ( 0 = / e - M - ^ o ( « M * X ( t ) . 
Whence to a third approximation 
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SUBSTITUTING THIS VALUE OF X (t) IN (30), WE OBTAIN 

/ * d > (T) d r f* , f e ~ A M d û 

N O W J „ V ( ^ = R T J O 

--(* duf 

J 0 J M 

V { ( « - r ) (T-U)] 

= TT R E - ^ < Ì M = ^ ( L - 6 - w ) : (34), 
Jo X 

, [' T(b(r)dT [* , CT T e ~ A « DW 

J o V ( * - T ) - J o t f T J o V { ( « - T ) ( T - M ) } 

= R DU F 
J O JL V{(*-T) (T-M)} 

5 F (É + U) e _ A M d M 

7T 

2\ 
J* (1 - 2 e - « ) + ^ (1 . . . . (35), 

AND J* J ^ ~ T dr = \irt (36), 

WHENCE yjr (t) = Trte'Xt (37). 

AGAIN F e~Ku\lr(t — u) DW = 7re " M I (t — u) du 
J a J O · 

= ^ f e ~ x t • (38), 

WHENCE (31) AND (32) FINALLY BECOME 

v = fo-u _ 7XE-« -fka (ylnf {(A - \t) $ (t) + >Jt} 

+ f k t d i v t e - u { \ - t \ t ) (39), 

v = / (1 - e - « ) + Ve~» -fka {(* + A ) </, (I) -

+ i f t * a t v e e - u (40). 

THESE EQUATIONS DETERMINE TO A THIRD APPROXIMATION THE VALUES 
OF THE ACCELERATION AND VELOCITY OF THE SPHERE, WHEN IT IS PROJECTED 
VERTICALLY DOWNWARDS WITH VELOCITY V, AND ALLOWED TO DESCEND 
UNDER THE ACTION OF GRAVITY. IF THE SPHERE IS ASCENDING THE SIGN OF 
g MUST BE REVERSED. 
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If no forces are in action we must put / = 0, and the preceding 
equations give the values of v and v to a first approximation only; 
but, on referring to (21) and (22), it will be seen that the values of 
these quantities to a third approximation may be obtained in this 
case from (39) and (40) by changing / into - V\ and expunging 
the terms/e-« a n d / V 1 (1 _ 6 - « ) . We thus obtain, since \ = lev, 

v = - V k v e - U 4- VaWj 7 T ~ 2 { ( \ - \ t ) cp (t) + */t} 

- 7 o W t e - » * ( l - | X « ) (41), 

v = V e - ^ + V a k ^ r r - ^ l t + ^ j t b i t ) - ^ 

- ^Va'kVfe-^ (42). 

510. It appears from the preceding equations that the suc­
cessive terms are multiplied by some power of A; as well as of v. 
If k is not a very large quantity, and the velocity of the sphere is 
not very great, the foregoing equations may be expected to give 
fairly correct results ; but if £ is a very large quantity, it may 
happen that, notwithstanding the smallness of v, lev may be so large 
that some of the terms neglected may be of equal or greater import­
ance than those retained. Now from (17), k =9p (2a + p)~'a~* ; 

if therefore the sphere is considerably denser than the liquid, k 
will be small provided a be not very small; but if the sphere be 
considerably less dense than the liquid, k will approximate towards 
the limit 9a - 2, and this will be very large if a be small, and kv may 
therefore be large. On the other hand, it should be noticed that 
when kv or X is large, the quantities and 0 (t) diminish with 
great rapidity, and it is therefore by no means impossible that the 
formula may give a fairly accurate representation of the motion 
even in this case. 

All that we can therefore safely infer is this, that in the case 
of a sphere ascending or descending in a liquid whose kinematic 
coefficient of viscosity is small compared with the radius of the 
sphere (all quantities being of course referred to the same units), 
the formulaj would give approximately correct results, provided the 
velocity of the sphere were not too great. But, in the case of 
small bodies descending in a highly viscous liquid, it is possible 
that the motion represented by the formulas may be very different 
from the actual motion ; and if this should turn out to be the fact, 
the solution of (18) applicable to this case must be obtained by 
Boine different method. 
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Equation (39) shows that after a very long time has elapsed 
the acceleration vanishes, and the motion becomes ultimately 
steady; in other words, the acceleration due to gravity is counter­
balanced by the retardation due to the viscosity of the liquid. 
When this state of things has been reached, the terminal velocity 
of the sphere is 

/ 2aa
 f a _ \ 

which agrees with (45) of § 495. 

Motion of a Sphere which is rotating about a Fixed Diameter. 

511. We shall now consider the motion of a sphere which is 
surrounded by an infinite liquid, and which is rotating about a 
fixed diameter. 

We shall begin by supposing that the angular velocity of the 
sphere is uniform and equal to a>, and shall endeavour to obtain an 
expression for the component velocity of the liquid in a plane 
perpendicular to the axis of rotation, on the supposition that no 
slipping takes place at the surface of the sphere. 

Assuming that the liquid is iuitially at rest, it is easily seen 
that none of the quantities can be functions of C P , where r, 8, and < P 
are polar coordinates referred to the centre of the sphere as origin. 
If, therefore, we neglect squares and products of the velocities, the 
component velocity W of the liquid, perpendicular to any plane 
containing the axis of rotation, is determined by the equation 

dW _ \dTW_ 2dW ^J- _ ± ( • a d \ W ) 

dt ~~ " [ d r 2 + r dr + r2 sin 6 dB [Sm dBJ r^sin2 &\ ' 

and if in this equation we put TF = wsin 8, where w is a function 
of r and t only, the equation for w is 

d2w 2 dw 2w 1 dw , 
r _̂  ~ (43) 

dr2 r dr r 2 v dt 

The value of the tangential stress per unit of area which 
opposes the motion of the sphere is 

T - - v 
VP \r sin 8 dcp dr r J ' 

where -K is the radial velocity; but, since R is not a function of 0 , 
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the value of this stress depends solely on that of W. Now it has 
been pointed out in the previous Chapter that unless the motion 
of the sphere is exceedingly slow, the motion of the liquid will not 
take place in planes perpendicular to the axis of rotation, but the 
velocity of every particle will have a component in the plane 
containing the particle and this axis. But since this component 
does not produce any effect on the motion of the sphere, which it 
is our object to determine, we may confine our attention solely to 
the calculation of w. 

In addition to (43), w must satisfy the conditions: 

(i) At the surface of the sphere w = aa> for all values of t. 

(ii) When t = 0, w — 0 for all values of r greater than a, the 
radius of the sphere. 

Let w = R e ~ K H t where R is a function of R alone ; substituting 
in (43), we obtain 

* R + * d R _ 2 R 

dr r dr r 

the solution of which is 

whence w = A -=- \ cos \ ( r — a + a) 
d r { r v 

Integrating this with respect to \ between the limits x and 0, 
and then changing A into F (a) and integrating the result with 
respect to a between the same limits, we obtain 

W = W vt d r r I „ F {a)
 6 X P | ~ 4 u t \ ^ 

Performing the differentiation and then integrating by parts, 
we shall obtain 

provided F ( 0 ) — 0 and F(a) e - " 2 = 0 when a = oo . 

The surface condition (i) will be satisfied if 

F { a ) + aF' (a) = - 2 a 3 w / 7 r , 

whence F ( a ) = — 2 a W - 1 (1 - e _ a / a ) , 

the constant of integration being determined so that F (0) = 0; 
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this value of F ( a ) also satisfies the condition that F ( a ) e""" = 0 
when a = oo . We therefore obtain 

^ a'(u sin 0 [°° [a / , a\ , ) f (r — a + a)!) 7 , , .. 
- r 7 H io l r

 + I1 ~ r ) ^ { " } 

Putting 7— a + a = 2M\/(*'0 this becomes 

T „ 2a2o) sin 9 
W = -. x 

r V 7 r 

If r > a it follows that If = 0 when 4 = 0. When r = a and 
t = 0 the lower limit of the definite integral (45) becomes indeter­
minate ; but since, in this case, we are to have W = aco sin 0, it 
follows that if we put k = r — a the quantities k and t must vanish 
in such a manner that when k = 0 and t = 0, i /2 VC"*) = 0· 

When £ = oo we obtain 

F = a W n 0 ( 4 6 ) 

This equation gives the value of W after a sufficient time has 
elapsed for the motion to have became steady, and agrees with (47) 
of § 496. 

512. Since the tangential stress per unit of area which opposes 
the motion of the sphere is 

rp d ( W \ 

the opposing couple is 

G = - 2-n-vpa3 j " j r (^j sin2 6 d9 

= - 2-n-vpa? ~r (™) j " sin3 9 d0 

a 4 d ( W \ 

If, therefore, the sphere be acted upon by external forces which 
produce a couple N', its equation of motion will be 

x

8

5crasci + G = N', 

w-vdAr)rN (47)-
where N = 3pN'l8ai. 
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When the motion of the sphere commences from rest the value 
of w or TFcoscc 8 will bo obtained from (45) by changing t into r, 
to into F ( t — r) dr, and integrating the result with respect to T 
from t to 0, whore F ( t ) is the variable angular velocity of the 
sphere. 

Now ^ (W\ — ^dw w 
' dr \ r j a a dr a 2 ' 

Hence, if a> were uniform we should have 

(dw\ 2 « f ° ° . „ . . „ , . aw 
\ i— I = — za>+-i exp — 2u J(vt)a — u \ du , , -,. . 
\ d r j a V T T J O l >J(irvt) 

Putting u + */(vt)/a = 3 , the definite integral 

= j t i * f e - P d& 

J yjlyt)la 

= \~2 ~ oT +
 ~2aF ~ ' 

if vt be small; whence 

dw\ _ 2 e o / , ^ vt*/ir\ aa> 

dr/IL a*Jir V 2a J iJirvt' 

Changing t into T , and to into F ( t — r)dt, (47) becomes 

aaw 2vw 2v f( , , . f ,, . VT >JTT\ , 

op a a%/irJo \ 2a J 

/ v _ ^ F ^ - j ) d ^ N 

Putting = k, kv = X, 

(48) becomes 

+ 4 4 O J V (Z - T ) ^ = paiV (49). 

Now we have supposed the motion to have commenced from 
rest under the action of the couple N'; but if the sphere had 
initially been set in rotation with angular velocity 12, and then left 
to itself, it could be shown in the same manner as in § 508 that 
the equation of motion would be 
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= Xle-« + ^FF^ 6 - ^ - « ) ^ ( t t ) d a (54). 
I *Jir Jo 

ft) 

And a third approximation gives 

- ? f e-*tf-«) du (55). 

ft) = fle-M + ^ 5 ^ P E - M < - » ) cb (u) du + ̂  f «** fVM '~T ) dr 
2 J O ^ V T J D J D 

_ P c-*e-«) ilr (u) du (56). 
4TT J O 

Now we have shown in § 509 that 

J* e-W-*i cb (w) du = cb (t) (t + ~ j - ^ . 

Also J' du j * 6-*«-*> *JT dr = £ dr J* e -*« -* l Vt du 

J o 

i f a . / * 3 . ,.,1 

A + X W + ^ II F ' - T> - £ V(-)} dr 

+ t k a j - | V ( t - T ) ^ = 0 (50), 

where P(0) = fl. Putting 6 (t) for the last two terms, and inte­
grating, we obtain 

a = fie-w - P e-M«-«) 0 ( u ) dw (51), 
J o 

d = - \ n « - « - J. f e~* ( ' - « ) 0 (u) du (52). 
dt J o 

For a first approximation we have 

w = n 6 - * « , ¿ 5 = - = F' ( t ) . 

Whence, if cb, x , and -v^ have the same meanings as in § 509, a 

second approximation gives 

i = F' (t) = - Ai/fle-" + X (0 (53), 
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EXAMPLES. 

1. A sphere of radius a is surrounded by viscous liquid which 
is initially at rest. Prove that if the sphere is constrained to 
rotate about a fixed diameter with uniform velocity to, and slipping 
is supposed to take place at the surface of the sphere, the velocity 
of the liquid at time t, perpendicular to the plane containing the 
axis of rotation, is equal to 

sin 6 F \ aa / qePa—pe*a\ 

rvtf h \r (3k + a) \ p - q J r (irvty 

where k = vpjB ; B is the coefficient of sliding friction, and p and q 

are the roots of the equation 

fcaV + (3Jc + a ) a x + 3 k + a = 0. 

2. In the last example, if the sphere is filled with liquid and 
n o slipping is supposed to take place; prove that the velocity of 
the liquid at time t is equal to 

cor sin 6 - 2co sin x W r ( X g ) , 

where 8(r) denotes the spherical function d (r~l sin r)/dr, and the 
different values of \ are the roots of the equation S' (Xa) = 0. 

3. A spherical mass of ice which is surrounded by water is 
made to rotate with uniform angular velocity co. After the motion 
has become steady, the ice is suddenly melted ; prove that the 

And the value of the last integral in (56) is given by (38) ; 
whence 

+ ^ {\£ - * (o (i+D) - .. .(57), 

which determines the value of the angular velocity as far as v'\ 
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exp 

da. — exp 
•• + «) 

4. A right circular cylinder of radius a is filled with viscous 
liquid which is initially at rest, and made to rotate with uniform 
angular velocity a about its axis. Prove that the velocity of the 
liquid at time t is equal to 

where the different values of X are the roots of the equation 
JL (Xo) = 0. 

5. Prove that if in the last example, the cylinder were 
surrounded by viscous liquid, the solution of the problem might be 
obtained from the definite integral 

/""> fa 
d \ e - x h , t X M 0 (U) JY (XM) JX (Xr) du, 

Jo Jo 

by properly determining cp (w) so as to satisfy the boundary 
conditions. 

6. A perfectly smooth thin cylindrical shell of radius a, 
is surrounded by viscous liquid which is at rest, and contains 
viscous liquid which is rotating as a rigid body with angular 
velocity w. By means of the expression for J0 ( X ) given in Ex. 5, 
Chapter XII, prove that if the shell be removed, the vorticity at 
any point of the liquid at any subsequent time is equal to 

2 (irvt) 

•a f i r rx 

du dtp \ u 
Jo Jo Jo 

CO 

(u cosh 0 + r cos <p) 

(u cosh 0 + r cos cp)! 

dB. 

component velocity of the water in the plane perpendicular to the 
axis of rotation at any subsequent time is 
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C H A P T E E X X I I I . 

M I S C E L L A N E O U S P R O P O S I T I O N S . 

513. THE present Chapter will "be devoted to the consideration 
of certain miscellaneous problems relating to the motion of a 
viscous liquid. 

Steady Motion in Pipes and Canals. 

514. Let the pipe be cylindrical and vertical, a its radius, 
and let us suppose that the liquid has been flowing through the 
pipe long enough for the motion to have become steady. At a 
considerable distance from either end of the pipe, the velocity may 
be regarded as wholly vertical; whence using cylindrical co­
ordinates, u = v = 0 ; and the equation of continuity gives 

dwjdz = 0 (1), 

which shows that w is a function of •& alone. Also if the axis of z 
is measured vertically downwards, we obtain from (23) of § 470, 

0 = * ^ (2), 

1 dp fd?w 1 dw\ 
0 = V - - p d i + V { d ^ + mdv) ( 3 ) " 

From (2) it follows that p is a function of z alone ; hence if 
we differentiate (3) with respect to z, and take account of (1), Wc 

shall obtain 

£ e = o 
dz* ' 

whence 
p = ( A + gp)z + Tl 
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where I I is the pressure at the origin and A is an undetermined 
constant. Substituting the value of jo from (4) in (3), we obtain 

cCw 1 dm A 

· + - J = 0 -a m ovar ft 
the integral of which is 

w - \Azr2jp. + B log nr + C (5). 

Since w must not bo infinite at the centre of the pipe, B = 0. 
In order to determine G, we must take account of the surface 
condition 

8 w = - T = - / £ (6), 

where 8 is the coefficient of sliding friction. Substituting in (6) 
from (5), we obtain 

C = - \ A a i B - \ A a 2 l n , 

whence 
w = - \ A / J . - 1 {a*- w 2 ) - \Aa/B. 

In order to determine the constant A , we must know the 
pressure at some other point of the pipe ; let 11̂  be the pressure 
when z = l, then from (4) 

A - ( N . - H - F L R P O / * (7)-

The flux across any section of the pipe is 

2 7 r I was dtx = — j 7 r a M / / x — \nra%A ¡ 8 , 

= (-n-al/8fj.l + ira3j1Bl)(U. - I i x + gpl). 

If we suppose the tube to be horizontal and of small cross 
section, and that the current is maintained by a constant pressure 
II at one end, and that there is no slipping, we must put g = 0, 
8 = so , and the value flux is 

T r a 4
 ( N - R G / 8 / i Z . 

This result agrees with the result obtained by Poiseuille1 from 
his experiments on the flow of liquids through capillary tubes, and 
furnishes a means of determining the value of p, from experiment. 

515. Greenhill has pointed out2, that the motion of a viscous 
liquid in a cylindrical pipe of any cross section, when there is no 
slipping, can be obtained whenever the value of the current 
function for a frictionless liquid contained in a rotating cylinder 

1 Mem. dcs Savants Etrantjcrs, vol. xx. (1846). 
2 Proa. Lond, Math. Soc. vol. x m , p. 43. 

B . I I . 20 
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Motion in Paralhl Planes. 

516. When the lines of flow of a viscous liquid are parallel 
straight lines, the determination of the motion depends upon the 
solution of an equation of the same form as that which determines 
the motion of heat in two dimensions. 

Let the axis of x be parallel to the direction of motion ; then 
v = 0, w = 0 and the equation of continuity gives du/dx = 0, which 
shows that u=f(y, z, t). If no external forces act, the equations 
of motion are 

du I dp /dru d?u\ 

d t - - p d x + V [ d y 2 + d ? ) ( 8 ) ' 

0 = - - ^ 

p dy' 

o = - 1 dP 
P dz' 

of the same form is known ; for when the cross section is not a 
circle (3) becomes ' 

d2w d2w 

d^ + ay + M = 0 ' 

where M is a constant. Also w = 0 at the surface of the pipe. 
Now we have shown in § 97, that when frictionless liquid is 
contained in a rotating cylinder, 

dx2 dy2 

at all points of the liquid; and -^r = — ^ a> (a? + y 2 ) at the boundary, 
whence if % = \jr + \a> ( x 2 4- y 2 ) , 

dx dy2 

at every point of the liquid, and ^ = 0 at the boundary ; hence ^ 
satisfies the same conditions as w. 

If liquid is flowing in an open channel, and the axis of y be 
vertical, the conditions to be satisfied at the free surface are 

y = const., dw/dy = 0. 
If therefore any known value of ^ satisfies this condition, we 

can obtain the corresponding solution for liquid flowing in an open 
channel. 
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Hence cPp/dx* = 0, and p = x<j> (t) + const.; also since p must 
not be infinite when x = ± GO , (p (t) = 0, and (8) becomes 

d u (d?u g?u 

) (9)· 
d t ~ \dy* ' d z \ 

Let us now suppose that the liquid extends to infinity in the 
positive and negative directions of the axis of z , and that u is a 
function of y and t only ; then (9) becomes 

d u d*u . 

d t = v a y ( 1 0 ) -

517. The principal solutions of this equation will now be 
given. 

First, let the liquid bo unlimited in the positive and negative 
directions of the axis of y ; and let u = F (y) initially. 

A particular solution of (10) is u = e ~ K ' v t cos Xy; and since \ 
is arbitrary we may integrate this expression with respect to X 
between the limits oo and — oo , and we thus obtain 

From the form of (10) it follows that if in this expression we 
change y into B — y , the resulting expression will also be a solution, 
whence multiplying by F {B)/2tt and integrating with respect to B 
between the limits oo and — GO we obtain 

u = \ ( j r v t ) ~ * f F ( B ) e - ^ ' d B -

Putting f3 — y = 2 a j v t t this becomes 

M = 7 r " M F ( y + 2 a J H ' ) 6 — i d i (11), 
- - oo 

and therefore u = F ( y ) , when t — 0. This solution is due to 
Fourier. 

Secondly, let the liquid be bounded by the plane x z ; and let 
its initial velocity be F ( y ) ; then 

u = F ( y ) , when i = 0, provided y > 0 . 

u = 0, when y = 0, for all values of t. 

From the preceding case it follows that a solution of (10) is 

v = 1 ( v v t y * ( F (B) { e - b - W W - e-(w+0W"j dB · ..(12), 
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also when y = 0, u is obviously zero. To find the value of u when 
t = 0, we observe that (12) may be written 

M = 7 r - 1 l dX I F (8)e-Mt{cos\(y - f3)-cos\(y+/3)}d8, 
J 0 •' 0 

- Q O * ·<» 

M = 2 7 T - 1 I dX \ F ( 8 ) e - ^ sin Xy sin A^Sdft 

which by Fourier's theorem is equal to F ( y ) when t = 0 , for all 
values of y between oo and 0. 

Thirdly, let the liquid be initially at rest, and let the plane xz 
move with velocity <p (t). Then 

u = 0 when t = 0, and y > 0, 

u = <p(t) when y = 0, for all positive values of i. 

Since (!/{)"* e - ^ « is a solution of (10), its differential coefficient 
with respect to y is also a solution ; we may therefore put 

Since this expression vanishes when t = 0, it follows from § 506, 

that a solution of (10) is 

Let M ^ ) J = « , 

then M = 2 T r - i f <f>(t-y^/ivx1) e~** da (13). 

When y = 0 , u — <p{t); and when ¿ = 0, u = 0, whence (13) is 
the required solution. 

Adding together (12) and (13), the resulting value of u satisfies 
the following conditions : 

u — F (y), when t = 0, and y > 0, 

u = tf> ( t ) , when y — 0, for all positive values of t 

We thus obtain the solution for the motion of a viscous liquid 

which is initially moving with velocity F ( y ) , and which is bounded 

by the plane y = 0 which is moving with velocity (p (t). 

518. By means of the definite integral (13) we can obtain the 
solution of the following problem. 

Let the liquid be divided by the plane y = 0, which is supposed 
to be perfectly smooth ; and let the liquid on the positive side be 
set in motion with initial velocity Vv and let the liquid on the 
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negative side be set in motion with initial velocity Vv and then 
let the plane be removed. It is required to find the velocity at 
any subsequent time. 

In (13) let cp (t) = ̂ V2, and we obtain 

w 2 = F 2 T r - i ( e - " ' da, 
J viz 

= iV,-Vsr-iETfy/2(vt)i, 

adopting the notation j e~u* du = Erf x , first introduced by Dr 
J. W. L. Glaisher. 

When t = 0 and y is positive, w2 = 0 ; but when t = 0 and y is 
negative, w2 = Vr 

Again from the form of (10), it is evident that 

u = 7 V - * f 6 - « !
 da, 

J -yI2{vt)i 

= ^V1+ y i T -*Erfj , /2(rf)*, 
is also a solution. When t = 0 and y is positive wt = but when 
£ = 0, and y is negative, wt = 0. Hence if 

u = Mj + w s , 

= i (Vt + F.) + ( 7 ; - 7 2 ) vr-* Erf y/2 (rf)*, 
M = F„ when £ = 0, and y is positive, 

u = V, when t = 0, and y is negative. 

When i is not zero, the value of u on both sides of the plane 
y = 0 is equal to \ (Vl + FJ ; hence the vortex sheet which initially 

existed instantly disappears. 

From the last three sections it is at once obvious that numerous 
results furnished by the theory of the Conduction of Heat are 
capable of a hydrodynamical interpretation and vice versa. 

Waves in a Viscous Liquid. 

519. When the motion of a liquid is in two dimensions, and 
the squares and products of the velocities are neglected, we have 
shown that the current function satisfies the equation 

V , ( V , - ; D + = ° ( I 4 ) ' 
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the solution of which is 

* = + (15), 
where T/TJ, ^ 2 respectively satisfy the equations 

V ^ = 0 (16), 

v ^ - - / l 8 = 0 

Also p is determined by the equation 

In considering the problem of wave motion, it will be con­
venient as in Chap. XVII. to take the origin in the undisturbed 
surface, and measure the axis of x in the direction of the propaga­
tion of the waves, whilst the axis of z is measured vertically 
upwards; and we have to find a solution of (14) which represents 
a train of waves, and which also satisfies the following conditions. 

At the free surface the normal and tangential stresses must 
vanish, whence 

22 = 0, T = 0 , 

I > < ^ ; ! 1 - ° ^ 

3 - 3 - ( - ) • 
Also if the liquid is bounded by fixed surfaces, we shall assume 

that the liquid in contact with such surfaces is at rest. 
In order to find a solution of (14) we shall assume that x and t 

enter in the form of the factor e i m x + k t where m = 2TT/\, A, being the 
wave length; and the principal object of the investigation is to 
find the value of k. It is obvious that wave motion will not be 
possible unless k is a complex quantity whose real part is negative, 
for this is the only form of k which represents a train of waves 
whose amplitudes diminish with the time. 

520. We shall now investigate the propagation of waves in a 
liquid which was originally at rest, and whose depth is so great in 
comparison with the wave length, that it may be regarded as 
infinite. 

Putting a3 =. m2 + kju (21), 
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— tm ( A + G) etmx+Mt 

therefore 

n + Link'1 (A + C) e i m x + l t = 0 (23). 

Previously to disturbance the pressure p x = - gpz, whence if p 
be the increment of the pressure due to the wave motion, we 

obtain from (18) 
p' = A k p i e m z + t m x + k t , 

and therefore 
p = - gpz + A k p t , e ' m ! ! + i m x + ! c t (24). 

At the free surface z = v, whence substituting in (19) the 
values of ty, rj and p from (22), (23) and (24), we obtain 

(gm/k + k + 2m9!/) A + (gm/k + Zmva) C = 0 (25). 

From (20) we likewise obtain 

A m 2 + Ca2+(A + C)m2 = 0, 

which by (21) becomes 

2m2A + (2m2 + k/v)G = 0 (26). 

Eliminating A and C between (25) and (26) we obtain 

k* + 4>rri2kv + gm + 4mV - 4mVa = 0 (27), 
which by virtue of (21) is a biquadratic equation for deter­
mining k. 

When v is small a={k/vf approximately, and therefore the 
last two terms of (27) may be neglected ; we thus obtain 

k2 + 4>km2p + rag = 0, 
the solution of which is 

k = — 2m2v ± v / (4mV — gm), 

= - 2m2v ± m (28) 

approximately, where n2 = gm. 

we obtain from (16) and (17) 

ifr1 = (Ae™* + Be~mz) e t m x + k t , 

i|ra = (GeaZ
 + De"") e

i m x + k t . 

It will hereafter appear that a is a complex quantity whose 
real part is positive, therefore since z is measured vertically 
upwards we must have B = D = 0, whence 

yfr = (Aemz
 + Ce°*) £

i m x + k t (22). 

If 7} be the elevation 
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Taking the lower sign we obtain from (26) C = — 2Am2vi.\n, 
and from (21) a* = — m2 — m/v. 

On account of the sma'dness of v, the first term may be 
neglected, whence if 

jS = (n/2„)*, 

a = ( l - t ) A 
and therefore 

Rejecting the imaginary part, we obtain 

f = A e - 2 m M { e m z cos ( I M - nt) + 2m2vn'le^ sin (mx - Bz - nt)}. 

On account of the smallness of v the last term is insensible ; 
also if V be the velocity of propagation, and X the wave length, 

TO = 2w/\, (mg)2 = n = 2 7 r F / A . , whence V = gX\2iT, and 
2TJ-

T/T = A e - ^ W + m z cos — (a; - Vt), 

and therefore the modulus of decay is \2j8ir2v, 
The preceding value of •vjr represents a train of waves whose 

amplitude diminishes with the time; it also appears that the 
diminution due to viscosity is very much less in the case of long 
waves than in the case of short ones. 

If we were to proceed to a second approximation, it would be 
found that 

k = - 2m2v (1 - m (2v/n)'} - in {1 - m8 (2v*jn*)\ 
521. Let us now suppose that v is large. Putting x2 = kjv, 

(27) becomes x* + 4tm2x2
 + gmjv2 + im* — 4m3 (m2 + a?f = 0. 

In this put x = m tan 8, and we obtain 
tan46> + 4 tan20 + g/mV = 4 (sec 6 - 1). 

On account of the largeness of v, the term g/m3v2
 is very small, 

and may therefore be neglected, whence dividing out by sec 6 — 1 
and putting sec 9 = y , we obtain 

f + y 2 + 3y-l=0. 
This cubic has one real root which is approximately equal 

to '21), whence 

k/p = m2 tan20 = — m2 x 92 
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approximately. The other two roots lead to complex values of klv 
whose real parts are approximately equal to — m2 x 3'3. 

The factor sec 0 — 1 leads to k = 0, which corresponds to no 
motion, and this root must therefore be rejected. We therefore 
see that the real part of A; is a large negative quantity, and there­
fore the motion rapidly dies away. 

522. These results are entirely in accordance with what is 
observed in the case of viscous liquids. If for example a jet of air 
were directed for a short time to the surface of a slightly viscous 
liquid such as water, waves would be observed to diverge from 
the point of application of the jet, whose amplitudes gradually 
diminish as the time advances, until the motion ultimately dies 
away. But if the jet were applied to the surface of a highly 
viscous liquid such as treacle or glyceriue, waves would not be 
excited. The immediate effect of the jet of air would be to 
produce a depression in the neighbourhood of its point of appli­
cation, and as soon as it had ceased, the liquid would sluggishly 
move so as to fill up the depression, and would very soon come to 
rest. 

523. We shall now solve the same problem when the depth 
of the liquid is finite and equal to h. In this case we shall have 

= (A cosh mz + B sinh mz + 0 cosh az + D sinh a£) e i m x + k t . 

The conditions to be satisfied at the bottom of the liquid 
are that 

dip-jdz = 0, d^rjdx = 0 when z = — h. 

Putting 
L = cosh mh, M = sinh mh, P = cosh ah, Q = sinh ah, these 
conditions give. 

A L - BM+ CP - DQ = 0 (29), 
( A M - B L ) m + ( C Q - DP) a = 0 (30). 

whence TJ + iink~' (A + C) &m*+*t = 0 (31) 
From (18) we obtain 

P — — gpz + kpi (A sinh mz + B cosh mz) 6"«s+« (32) 

At the free surface z = Vl whence substituting the values of f , 
TJ and p in (19) we obtain ' 

Agmjk + B \ ^ m \ + k) + Cgmjk + 2Dmw = 0 (33). 
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Also from (20) and (21) 
2 A m \ + (2m*v + k) G = 0 (34). 

Eliminating A , B, C, D from (29), (30), (33) and (34) we 
obtain, 

2m2v, 

0, 

2m'v+k, 

0, 

This is the equation for determining k. For the purpose of 
obtaining an approximate solution which is applicable to waves 
in water, we shall neglect the square of v; and the determinantal 
equation then becomes 

— 2m2 v (PMagm/k + QLm'gjk + ka) 

+ (2m2v+k) [-Qm{M{2m2v + k) + Lgm/k] +La [P(2m2v + k)~2m2v] 

+ Mm% (Pg/k + 2Mmv)~] = 0. 

Since v is small a is large, and therefore P and Q are large, we 
may therefore put P / Q = l. Dividing out by Q, it will be found 
that the largest terms are those which are multiplied by a; whence 
retaining the most important terms only, it will be found that the 
equation for k reduces to 

k2 + 4<km2v + mg tanh mh = 0, 

the solution of which is 

k = — 2m*v ± \ /(4mV — mg tanh mh), 

— — 2m2v ± i (mg tanh mhj (36). 
Hence the velocity of propagation is determined by the equation 

7 s = (gX\2Tv) tanh (2irh\\), 

which agrees with the result found in § 384. The modulus of 
decay is \2J&TT2V as before. 

If the depth of the liquid is small compared with the wave 
length, we may replace tan mh by mh, and (36) becomes approxi­
mately 

= — 2m2v ± mi (gh)^, 

which shows that long waves travel with a velocity of propagation 
approximately equal to (gKf, and that the amplitude diminishes 
with the time1. 

1 In connection with this subject, a paper by Lord Itayleigh "On the Oircu-
lation of Air observod in Kundt's Tubes," Phil. Trans. 1884, may be consulted. 

L , Mm, gm/k, 

• M, - Lm, 2m2v + k, 

P, Q«, gmlk, 

• Q, — Pa, 2mnav, 

= 0...(35). 
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Instability of Viscous Liquids. 

524. The instability of viscous liquids has been studied 
experimentally by Prof. Osborne Reynolds1. His experiments 
consisted in causing water to flow from a large cistern through a 
tube 4 feet 6 inches long, and by means of suitable appliances a 
fine stream of coloured liquid was made to pass down the centre 
of the tube along with the water. The results of experiments 
made with three different tubes, whose respective diameters were 
1 inch, | inch and \ inch were as follows. When the velocity was 
sufficiently small, the streak of coloured liquid extended in a 
straight line through the tube, and if the liquid in the cistern were 
slightly disturbed, the streak would oscillate in the tube about its 
mean position, but showed no tendency to mix with the water. It 
thus appeared that for small velocities the motion was stable. 

As the velocity was gradually increased, it was found that as 
soon as it had attained a certain critical value, the coloured liquid 
commenced to mix with the water, and the motion became 
unstable; but the point at which instability commenced was 
always at a considerable distance from the extremity of the tube 
at which the water flowed in, and. the intervening portion was 
perfectly clear. 

Any increase in the velocity caused the point at which insta­
bility commenced, to approach this extremity, but Reynolds did not 
succeed in obtaining a velocity large enough to make the region 
of stability altogether disappear. 

On examining the unstable portion of the liquid by the light 
of an electric spark, the mass of colour was found to consist of a 
number of distinct curls, showing the existence of eddies. 

When the water was kept at constant temperature, and the 
cistern as still as possible, it was found that the critical velocity 
was inversely proportional to the diameter of the tube; and also 
that if the viscosity of the water was diminished by increasing 
its temperature, the critical velocity diminished directly as the 
coefficient of viscosity. 

It was also found that the critical velocity was very sensitive 
to disturbance of the water before entering the tube; and it was 

1 " On the Motion of Water and the Law of Resistance in Parallel Channels," 
Phil. Trans. 1883, p. 935. 
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only by the greatest care as to uniformity of the temperature of 
the cistern and the stillness of the water, that consistent results 
could be obtained. This showed that the steady motion was 
unstable for large disturbances long before the critical velocity 
was reached,—a fact which agreed with the full-blown manner in 
which eddies appeared. 

If t be the temperature expressed in degrees centigrade, D 
the diameter of the tube, and if 

P = (1 + -0336* + -00221*2)-1 x „, 

Reynolds found that the critical velocity was given by the formula 

U=P/BD, where B = 43-79 ; 
and he concluded, that the probable condition of stability of a 
viscous liquid is that Uc/v should be less than a certain numerical 
quantity, where c is a length U and a velocity, which define the 
linear scale and scale of velocity of the system, and v the kinematic 
coefficient of viscosity. 

For the mathematical treatment of this question, the following 
papers by Sir W. Thomson may be consulted1. 

On the Oscillations of a Viscous Spheroid. 

525. The oscillations of a viscous spheroid have been 
investigated by Prof. G. IT. Darwin2 and Prof. Lamb 3; we shall 
now proceed to give the investigation of the latter. 

The equations 

(V* + jfe*) u = 0, (V* + k * ) v = 0, (V1 + F ) w = 0 (37), 

subject to the condition 

p+dv dw = Q 

ax ay dz 

are of frequent occurrence in a variety of physical investigations, 
and we shall commence by obtaining the solution of these equations 
subject to the condition of finiteness at the origin. 

Let u = ijrncf>n where <£n is a solid harmonic of degree n, and 
1 " On the Stability of Fluid Mot ion , " Phil. Mag. (5) vol . xxrv, pp. 188 a n d 272. 
" On the Propagation of Laminar Motion through a turbuleutly moving Inviscid 

L iqu id , " Ibid. p. 342. 
•' " On the Bodily Tides of Viscous Spheroids," Phil. Trans. 1879. 
•* Proc. Lond. Math. Soc. vol . x l l i . p. 51. 
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d<+n + 2 J n ^ l ) d £ + k ^ = 0 m 

dr2 r dr 

If we put ^rn = RJr", the equation for Rn is 

5 ' + ^ - - R + WRn = 0 (40). 
dr2 r dr r n " v ' 

The properties of the function Rn have been fully discussed by 
the authorities cited below 1; for our present purpose it will only 
be necessary to consider that solution of (39) which is finite when 
r = 0. 

Integrating (39) in a series of ascending powers of r we obtain 

r » = L - 2 . 2n + 3 + 2 . 4 . 2n + 3 . 2n + 5 _ ( 

from which it is evident that 

yjra = (hr)'1 sin kr. 

By means of (41) we can easily prove that 

r d ± ^ = _ * V 
dr 2n + 1 Y " ; h 

^ Y n + 1 = (2n + 1) (2n + 3) (jr% - ^ - J (44). 

It follows from (42) that 

where z = kr. 

Let <f>n, ^ n be any two spherical solid harmonics of degree n; 

1 Stokes, " On the Communication of Vibrations from a Vibrating Body to a 
surrounding Gas," Phil. Trans. 1868. 

C. Niven, " O n the Conduction of Heat in Ellipsoids of Revolution," Phil. 
Trans. 1880. 

C. Niven, " On the Induction of Electric Currents in Infinite Plates and 
Spherical Shells," Phil. Trans. 1881. 

Lamb, " On Electrical Motions in a Spherical Conductor," Phil. Trans. 1883. 
Lord Rayleiyk, Theory of Sound, vol. n. ch. xvir. 

I|RH is a function of r alone; substituting in (37), taking account 
of the value of V 3 in (15) of § 10, and remembering that 

d<bjdr = n(f>Jr, 

we shall find that the equation to be satisfied by -ty^ is 
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then d(pn+Jdx is obviously a solid harmonic of degree n; also by 
substituting each of the functions 

dx,_2<hc1 z

d X n _ a ;

d x s x

dx»_ydx« 
y dz dy ' dx dz ' dy dx 

in Laplace's equation, it can be shown that the latter three 
functions are also solid harmonics of degree n. It therefore 
follows that ; ( " i 
with symmetrical expressions for v and w are respectively solutions 
of (37). These expressions do not however satisfy (38), for taking 
account of (42) and remembering that 

we find that 
du dv dw (n + l)W , , fiyj. 

dx + d y + d z = - 2n + 3 ( 4 )' 

The function r'n+sd {r~'in~a$n^'dx is a homogeneous function of 
degree n + 2 ; substituting in Laplace's equation, and using the 
equation 

V - 2n+l\dx T d x r M J V ' 

which can be immediately verified, it can be shown that this 
function is a solid harmonic of degree n 4- 2. We may therefore 
assume 

^ A V + ^ ^ & z (49), 

where A is a constant, with symmetrical expressions for v and w. 
Substituting in (38) we obtain 

du dv dw , , , , „ . , d-fr , „ 

.dx + d y + ^ = - A k r ^ + ^ ^ ^ 

- Ak* (n 4- 2) (2n + 5) (p n + 1-f 
= - A K ' ( n + 2) (2n + 5 ) A ^ . 

by (43). Hence if 

n + 2 

n+1 

(n + 2) (2?i 4- 3) (2n 4- 5 ) ' 
it follows from (48) that the complete solution of (37) and (38) is 
u + u &c. Whence we may put 

u - * I'r-n \ - d x + y d z

 z dy) (n + 2) (2n + 3) (2« + 5) dx r»>+ 

(50). 
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526. It is important to notice that the solution of the 
proposed system of equations consists of two distinct types, which 
may be thus written : 

1st type 

2nd type 
Y ~ 1 tlx (n + 1) (2n + 1) (2n + 3) dx r M + 1 — W -

It should also be noticed that the solutions of the first type 
make 

xu + yv + zw = 0 (53), 

whilst those of the second type make 

xu + yv + zw = nTJracf>„ (54). 
527. We shall now apply the preceding results to determine 

the small oscillations of a nearly spherical mass of viscous liquid. 
Since the motion is small, we may neglect the squares and 

products of the velocities, and the equations of motion are 

| = , V V + ^ , f c , &c (55), 
dt dx v 

where Q = —p/p + V and V is the attraction potential; also if we 
assume that tho time enters in the form of the factor e ~ a i , these 
may be written 

(V2 = - v-'dQ/dx (56), 

where k? = a/v, and the exponential factor is omitted. 
From (56) combined with (38) it follows that V2Q = 0, and 

therefore 
u = — a.~ldQ{dx + terms of types (51) and- (52). 

The condition to be satisfied at the free surface is that the 
stress must be zero, hence the boundary conditions are 

xP + y U + z T = 0 \ 

xU + yQ + zS = ol (57). 
x T + y S + zR = 0 J 

Substituting the values of P, Q from § 468 (19), these 
become 

2xux + y(uv + vx) + z (u, + wx) = px/fi, & C , & C , 

or (r ~ — l) u + ^ - (xu + yv + zw) = ~ &c, &c (58). 
V dr J dx ' P 
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528. From (53) it follows that the terms of the first type 
represent motions which are everywhere perpendicular to the radius 
vector, and which are therefore unaffected by gravitation. Hence 
tho vibrations represented by the two types are independent of one 
another. 

As regards the vibrations of tho first type, (56) and (57) are 
satisfied by 

« = O , » = + . F Y ^ - * ^ . dz dy) 

also since there is no radial motion, the surface value of V is 
constant. Substituting in (58), we obtain after reduction 

= 0, 

where the square brackets denote surface values. This equation 
determines the values of k which are all real, and hence the values 
of a. 

529. Since Q can be expanded in a series of spherical solid 
harmonics of the form SQ n, the vibrations of the second type can 
be expressed by equations of the form 

l d Q n , d (rn _ \ n , , , . / r \ , B + 1
 d fan+l „ \ 

U = ~ Ydx + dx T T ' ) " n + 1 ( * » - * « > U ) Tx ( P * T " ) ' 

where Tn is a spherical surface harmonic of degree n, and a is the 
mean radius of the sphere. Substituting in (58) and taking account 
of (48), we obtain at the surface 

- J " 1 i ( £ 0 ' (' i + » - 2 ) < + · - + • J < 5 9 > 

Also at the surface, 

d , \ d ! n 0 nr" , ,„ \ 
d J x u + y v + z w ) = d X { - « 

a ¿ 1 a dr r " dx \a" "/ 

= - - p " + R N L R - , - ( " 
a dx "~l dx V a" 
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y = const. — lirar* + „ , , 

and therefore the value of V at the surface is 

V = const. ; - " . 
3(2w + 1) 

^ = | f e ^ (»)· 
remembering that g = ^7rpa, and suitably choosing the const., the 
value of V may be written 

Hence 

p x / f i = - ( Q n - V) x / v 

= - ( Q n + n - l a p S n ) x l v (62) 

«a \dQ„ _ + 1 _d J2„ 
v (2re + 1) J cte afo /-'2"+1 

_ a3/32 ( d _ d_ 
*(2n + l ) ( ^ a" c t e r " + 1 j K J ' 

by (48). But at the surface we have also the kinematical condition 
dSJdt = — aS„ = (xu + yv + zw)/a 

Accordingly from (62) and (63) we obtain 

P / h " ~ (2n + l ) * \ \ + a*)\dx a d x r ^ 

8 s I d r"Tv d a?nT 

a \dx a" dx r n \ ' 

Collecting our results, and substituting in the three equations 
(58), and equating separately the surface harmonics of degrees 
n — 1 and n + 1 , we shall obtain after reduction 

(2n - 2) Q m - [ r d ^ J d r + (2n - 2) « r „ 

= Fa 2 [(1 + /32/«2) g . - (/3/ a) 2
 +n*TH]/(2n + 1 ) (64), 

(2n + 1) n [(rdidr - 3) ty. - ^ . J aTJ 

= - (n + 1) ArV [ d + /32/a2) Q„ - (/3/«)2 ^ a T J (65), 
B . ii. 21 

Let the equation of the free surface be 
r = a + S n , 

where Sn is another spherical surface harmonic, then by § 371, the 
value of the potential at an internal point is, 

4nrapSn fr\ 
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where the square brackets indicate surface values. These equations 
may be written 

{2 (n - 1) (2n + 1) - kW (1 + 8*/**)} [QJ 

= [2 (n - 1) ( 2 n + 1) - i V (1 + 8*1«*) f n ] « T n l 

and 

(n + 1) AV (1 + 8*/x>) [Qn] + [ - ( « + 1) AV (1 + /3 2/ a

2) t „ 
+ (2n + 4) Tia d^Jdr + (2n + 1) & 2a>„] aTn = 0. 

Eliminating Qn and 7*, wo shall finally obtain 

(2ra-2)fcV A. , 8 * \ , L „ ^ * , P 
(2n + iy ( 2 . T 3 ) V + <? J = i 2 n - 2 ~ 2 ^ + 1 V1 + a' 

fJr . _ (2 w + 4 ) n f n + 1 1 . 
[n + l (n + l)(2n + l ) (27i + 3)j 

530. This is the equation for determining the values of ka; 
it can be approximately solved either when the viscosity is very 
large or very small. 

When v is large k and a are small, and ^rn = 1; putting 
f = k2a2B2/(2n + 1) d2 = /3V/'(2w + 1) VOL (67), 

(66) becomes 
2 (n - 1) f _ 2 (n - 1) - £ ^ (2?j + 4) «. 

(2n + l) (2n + 3) (2n + l)(2w + 3) r i + 1 
approximately. Solving for f and substituting in (67), we obtain 

ngav~l 

a = 2 (n + 1)" + 1" 
a result which was first obtained by Prof. Gr. H. Darwin1. 

On the other hand when v is small, it is evident from § 446 
that a is nearly equal to t/3, so that k is large. From (45) it 
is easily seen that the most important part of is 

( - ) " 1 .3.5 (2n + 1 ) (Aap" 1 sin (ka + \mr). 
It thus appears that the ratio ^ n + J ^ „ is of the order (ka)'1 and 

(66) becomes approximately 

2 (TI - 1) (2n + 1) - AV (1 + 8*/*) = 0. 
This leads to 

afiB = 1 + (TI - 1) (2n + l)/k2a2 

= l + ( n - l ) (2n + l ) v / i 8 a \ 

1 Fhil. Trans. 1879, p. 1Q, 
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whence a = iB + (n — 1) (2n + 1) va \ 

whence the modulus of decay is 

T = a*/(n~ 1) (2n + 1) v. 

From this result it appears that the oscillations of a globe of 
moderate dimensions are very slightly affected by such an amount 
of viscosity as is ordinarily met with in nature. 

For a globe of the same size as the earth, and of the same 
kinematic viscosity as water, we have on the C. G." S. system 
a = 6'37 x 108, v = '014 ; and Prof. Lamb finds that the value of T 
for the oscillation of longest period, i.e. n = 2, is 

T = 1-84 x 10 1 1 years. 

Prof. Darwin has found that the viscosity of pitch near the 
freezing temperature is /J, = 1"3 x 10 s x g , hence taking g = 980, we 
find 

T = 150 hours. 

This is the modulus of decay of the slowest oscillation of a 
globe of the size of the earth, having the density of water and the 
viscosity of pitch. 

The oscillations of a cylindrical mass of rotating viscous liquid 
have been discussed by Mr G. H. Bryan, in a paper which is to be 
published in the Proc. Camb. Phil. Soc. vol. V I . 

EXAMPLES. 

1. A current of liquid is made to flow through an infinitely 
long rectangular tube one of whose sides is smooth, and the other 
is rough; after the motion has become steady the forces which 
maintain the motion cease to act; prove that the velocity at 
distance y from the smooth side, at time t after the forces have 
ceased to act, is 

u = HUTT''1"(2/i + l ^ e x p { - (2n + If ^vt/'W} cos (2n + 1) -rryfta, 

where a is the width of the tube, and U is the velocity of the 
liquid in contact with the smooth side in steady motion. 
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2. An unlimited mass of viscous liquid is divided by the plane 
y = 0. The liquid on the positive side of the plane is at rest, 
whilst the liquid on the negative side is initially moving with a 
velocity parallel to x, which is equal to Ue^cosBx, where B=(2v)~i 

and x is negative. Prove that if the plane be removed, the 
velocity of the liquid at any subsequent time is 

•í v(xi) 
3. A viscous liquid is contained between two smooth parallel 

plane boundaries x = ± a, unlimited in one direction, and closed 
by a rough plane y = 0, which is capable of movement in its own 
plane in the direction of the axis of x . Prove that if the rough 
plane be moved with constant velocity V, s o small that the 
squares and products of the velocity of the fluid may be neglected, 
then after the motion has become steady, the current function is 
given by the equation 

= — 2Vyir~1 tan - 1 {cos (irxj2a) cosec (Try 12a)}. 

4. A viscous liquid occupies the space between two infinite 
parallel planes. One of the planes is fixed, whilst the other moves 
parallel to itself with a simple harmonic motion A cos nt. Show 
that the tangential force on the fixed plane has a maximum value 
per unit of area, which is equal to 

2AXy,n 

(cosh 2X1 - cos 2Xlf' 

where I is the distance between the planes, X1 = pn/2/u,, and the 
fluid in contact with the plane is assumed to adhere to it. 

5. Prove that when viscous liquid is flowing steadily through 
a cylindrical tube of any section, the curves of equal velocity are 
the same as the relative stream lines of a frictionless liquid filling 
an equal cylinder, due to any plane motion of the cylinder perpen­
dicular to its generating lines, the viscous liquid being supposed to 
adhere to the sides of the tube. 

If the section of the tube be the ellipse (y/b)' -r (zjcf — 1, prove 
that the velocity of the liquid at any point is 

AbV (1 - tf/b* - s'WKV - c 2), 
and that the molecular rotation is 

Ab%t? {jflV + flrflQ? 4 - c 2 ) . 
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6. A stream of liquid free from viscosity, is flowing with 
velocity u along a straight smooth pipe of length I and uniform 
circular section of radius a. Supposing the pipe suddenly to 
become rough, the coefficient of sliding friction having a given 
value ¡3, and the fluid viscous, the coefficient of viscosity having a 
given value fjL, find the additional pressure which must be applied 
at the end from which the stream is flowing in order to keep the 
efflux unaltered. 

7. A mass of air bounded by two infinite planes perpendicular 
to the axis of y and distant y l apart is in motion, the motion being 
the same in all planes parallel to x y . Form equations to deter­
mine the motion taking account of internal friction, and show that 
if it be periodic in x and t, and the direct effect of friction be 
limited to a thin layer near the planes, then neglecting terms 
involving the squares and higher powers of the velocities, a solution 
is given by 

u = cos kx [ e _ P t » + » i ) cos {nt — 8 (y + y j \ — cos nt], 

v = — (kjB V2) sin kx 

x [yy~l cos (nt - \-rr) + 6 - P & + » ' > cos [nt - {TT - 8 (y + y,)}], 

where 8 = (nj2vf; v is the kinematic coefficient of viscosity; 
p - cfp and 

k = ± n a l + y-> (in/u)^}. 

8. A viscous fluid flows between two parallel planes and the 
motion is slightly disturbed ; prove that if u be the velocity at 
right angles to the planes which is supposed to vary as e^-1-'™*, 
where t is the time and z the axis parallel to the plane, then u 
satisfies the equation 

where v is the kinematic coefficient of viscosity, 2a the distance 
between the planes, V the original velocity of the fluid midway 
between the planes, the axis of x being perpendicular to the 
planes. 
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A P P E N D I X . 

I . A C L A S S of functions closely a l l ied to toroidal functions has 

been recently invest igated b y M r H o b s o n 1 . These functions arc 

spherical harmonics of complex degree — 1 + ni; a n d a p p e a r to have 

been first studied b y Mehler" , b y w h o m they w e r e cal led Kegel-

functionen, w h i c h m a y be translated Conical Harmonics. T h e y are 

also discussed b y H e i n e 3 , a n d there is a short note upon them b y 

M r B u r n s i d e 4 . 

M r H o b s o n has appl ied these functions to the solution of a var ie ty 

of prob lems in Electr ic i ty a n d the Conduct ion of H e a t . H e has also 

obta ined the current funct ion due to the mot ion para l l e l to its axis of a 

spindle-shaped solid, formed b y the revolut ion of a segment of a circle 

r o u n d its chord. T h e result is expressed in the form of a definite 

integral , w h i c h a l though elegant from a n analyt ica l point of v i ew, is of 

the same complicated character as the corresponding result in the case 

of the cardioid w h i c h is g iven in § 271. 

I I . T h e invest igat ion of § 332—3 is not qui te sat is factory in the 

case of a ho l low v o r t e x ; for in deducing the va lue of /3, w e have 

employed the va lue of i^', w h e r e a s in this case \p' does not exist, a n d the 

va lue of /3, must b e deduced f r o m that of xp. 

I n this case the b o u n d a r y condit ion is 

- 2 w * * £ - » w 
N o w the most i m p o r t a n t terms of dijs/dk are of zero order , a n d 

therefore the first t erm of ( 1 ) is of the second order , therefore to 

the first order, the condit ion becomes 

m -

1 " On a Class of Spherical Harmonics of Complex Degree," Trans. Camb. Phil. 
Soc. vol . x iv . p. 211. 

2 TJeber cine mit den Kugel- und Cylinderfunctionen verwandte Function, 
Elbing 1870; and Grelle, vol . L X V I I I . 

s Kugelfunr.tionen, vol . T I . p. 217. 
4 Mess. Math. vol . xiv. p. 122. 
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N O W F R O M ( 6 7 ) O F § 3 2 9 , 

- f = - 2 Va'k S I N f + £ S I N £ {A„Ra + AxRx (b/k) C O S f} 

- ( 1 - A C O S ^ A ( T Y A ) S I N F , 

W H E N C E R E T A I N I N G T E R M S O F T H E F I R S T O R D O R O N L Y , ( 2 ) B E C O M E S 

2 Va'b + \bAa (L-2) + $Al = 0, 

W H E N C E B Y ( 6 9 , a), / 3 x = 0 : W H I C H S H O W S T H A T j3l I S O F T H E S E C O N D O R D E R 

O F S M A L L Q U A N T I T I E S . 

I I I . I N A P A P E R W H I C H I S T O B E P U B L I S H E D I N T H E American Journal 

o f Mathematics, I H A V E E M P L O Y E D T O R O I D A L F U N C T I O N S T O I N V E S T I G A T E T H E 

S T E A D Y M O T I O N O F A N A N N U L A R M A S S O F L I Q U I D , W H O S E C R O S S S E C T I O N I S 

S M A L L C O M P A R E D W I T L I I T S A P E R T U R E , A N D W H I C H I S R O T A T I N G L I K E A R I G I D 

B O D Y A B O U T I T S A X I S O F U N E Q U A L M O M E N T . 

I F T H E C R O S S S E C T I O N O F T H E R I N G I S G I V E N B Y T H E E Q U A T I O N 

k = b(l + p, C O S £ + / S 2 C O S 2 £ + ) , 

I T I S S H O W N B Y A P R O C E S S S I M I L A R T O T H A T E M P L O Y E D I N C H A P T E R X I V . , T H A T 
T H E V A L U E S O F T H E / 3 ' S I N T E R M S O F b A N D T H E A N G U L A R V E L O C I T Y a, C A N B E 
O B T A I N E D T O A N Y D E G R E E O F A P P R O X I M A T I O N T H A T M A Y B E D E S I R E D ; A N D T H E 
V A L U E O F T O A F I R S T A P P R O X I M A T I O N I S 

0 , - ^ 6 ( 3 1 + 1 2 A - 8 L O G 4 / 6 ) ( 1 ) , 
W H E R E A = U S / 4 » R P . 

I T I S A L S O A S S U M E D T H A T N O H O L L O W S P A C E E X I S T S W I T H I N T H E L I Q U I D , A N D 
T H I S L O A D S T O T H E F O L L O W I N G I N E Q U A L I T Y W H I C H E X P R E S S E S T H E C O N D I T I O N T H A T 
T H E P R E S S U R E S H O U L D N O T B E C O M E N E G A T I V E I N S I D E T H E R I N G , V I Z . , 

A 2 - ( § L O G 4 / 6 - I F ) 6 2 A + 6 * > 0 ( 2 ) . 

I F T H E R E F O R E T H E R A D I U S O F T H E C R I T I C A L C I R C L E B E T A K E N A S T H E U N I T O F 
L E N G T H , W T E M A Y A S S I G N T O b A N D A A N Y V A L U E S W I N C H M A K E / 8 1 A S M A L L 
Q U A N T I T Y , A N D W H I C H A L S O S A T I S F Y ( 2 ) . 

I F ft = ' 1 , T H E N ft = - 0 1 2 4 + 1 0 A , 

A N D I F W O P U T A = - 0 1 , T H E L E F T - H A N D S I D E O F ( 2 ) I S E Q U A L T O - 9 2 2 4 , A N D I S 

T H E R E F O R E P O S I T I V E , A N D T H E R E F O R E fl1 = - 1 1 2 4 . H E N C E 

6 = - L , f t - - 1 1 2 4 , o i A / 4 I R P = - 0 1 , 

A R E S O L U T I O N S O F T H E P R O B L E M . 

I V . E Q U A T I O N S (12) O F § 4 6 7 M A Y B E P R O V E D I N A S O M E W H A T 
D I F F E R E N T M A N N E R A S F O L L O W S . 

W E H A V E S H O W N I N § 4 6 4 T H A T T H E R E A R E T H R E E P L A N E S M U T U A L L Y A T 
R I G H T A N G L E S T O O N E A N O T H E R , A C R O S S W H I C H T H E T A N G E N T I A L S T R E S S E S A R E 
Z E R O . L E T e', f, g' B E T H E R A T E S O F E X T E N S I O N P E R P E N D I C U L A R T O T H E S E 
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p l a n e s i n t h e d i r e c t i o n s Ox, Oy', Oz ; a n d l e t t h e d i r e c t i o n cos ines of 

Ox, Oy', Oz', w i t h r e f e r e n c e t o Ox, Oy, Oz b e g i v e n b y t h e s c h e m e , 

X y z 

x' k 

y' h m2 ™ 2 

z' k ms 

( i ) . 

S i n c e t h e f lu id i s i s o t r o p i c 

P' = - p + X (e +f + g') + 2/xe' 

w i t h s i m i l a r e x p r e s s i o n s f o r Q', R'. A l s o 

P = - P + r i l

1 + Q'l2 + It'll 

S u b s t i t u t i n g f r o m ( 1 ) a n d r e m e m b e r i n g t h a t e + f + g' is an 

i n v a r i a n t , a n d t h e r e f o r e e q u a l t o e +f + g, w e o b t a i n 

P = _ p + x ( e + / + g) + 2 ^ ( i y + lif + Z 3 y) ( 2 ) . 

d , d , d' 
B u t e = - = -

dx 

t h e r e f o r e ( 2 ) b e c o m e s , 

P = - p + \(e +f+g) + 2t,e (3), 

w i t h s i m i l a r e x p r e s s i o n s f o r Q a n d R. 

A g a i n S = m ^ P + m.2n.2Q' + m^n^R 

= 2/J. ( m ^ e ' + m^zf' + msn3g') ( 4 ) . 
B u t 

a 
. fdw dv\ . ( d d d \ , 

^ { d y + dz) = nmid^ + ™* dy' + dz'J ^ U + "*v + n ^ 

= mfi-fi' + msn2f + msn3g't 

a n d t h e r e f o r e ( 4 ) b e c o m e s 

S = » \ d y + d z ) ( 5 ) . 

w i t h s i m i l a r exp re s s ions f o r T a n d U. 
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Full Cataloguée will he sent post free on application. 

B I B L I O T H E C A C L A S S I C A . 

A Series of Greek and Latin Authors, with English Notes, edited by 

eminent Scholars. 8vo. 

.ffisorryms. By F. A. Paley, M.A. , L L . D . 18s. 
C i c e r o ' s O r a t i o n s . By O. Long, M.A. 4 vols. 16*., 14.?., 16*., 18/. 
D e m o s t h e n e s . By B. Whiaton, M.A. 2 vols. 16s. each. 
E u r i p i d e s . By F. A. Paley, M . A . , L L . D . 3 vols. 16s. each. 
H o m e r . By F. A . Paley, M.A. , L L . T ) . Vol. 1.12s.; Vol. I I . 14s. 
H e r o d o t u s . By Eev. J. W . Blakesley, B . D . 2 vols. 32s. 
H e s i o d . By F. A. Paley, M . A . , L L . D . 10s. 6d. 
H o r a c e . By Bev. A. J. Macleane, M . A . 18s. 
J u v e n a l a n d Persius. By Bev. A. J. Macleane, M . A . 12s. 
Lucan . Tho Pharsalia. By C. E . Haskins, M . A . 14s. 
Plato. By W. H . Thompson, D .D . 2 vols. 7s. 6d. each. 
S o p h o c l e s . V o l . I . B y Rev. F. H . Blaydes, M . A . 18«. 

Vol. n . Philoatetes—Eleetra—Ajax and Traehinira. By 
F. A. Paley, ALA., L L . D . 12s. Or the 4 playa aeparatoly, 3s. 6d. eack. 

T a c i t u s : T h e Annals. By t h e Bev. P. Frost. 15s. 
T e r e n c e . By E . S t . J . Parry, M . A . 18s. 
V i r g i l . By J. Conington, M . A . Revised by Professor H . Nettleship. 

3 vols. lie. each. 
A n Atlaa o f Classical Geography; Twenty-fonr Maps. By 

W. HnghaH and ftflorge L o n g , M.A. N e w edition, with coloured Outlines. 
Imperial 8YO. 12*. 6d, 

Uniform with above. 

A C o m p l e t e L a t i n O r a m m a r . By J. W . Donaldson, D . D . 3rd 
Hoivioa. 14*. 
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G R A M M A R - S C H O O L C L A S S I C S . 

A Series of Greek and Latin Authors, with English Notes. 
Fcap. 8vo. 

Ceesar: D e Bello G-allleo. By George Long, M . A . is. 
Books I . - I I I . For JimiorClasses. By G . L o n g , M . A . 1 » . Gd. 

• Books r v . and V . 1 « . &± Books V L and V H . Is. 6<Z. 

Catullus, Tibullus, and Propertiua. Selected Poems. With Life. 
B y B e v . A. H . W r a t i s l a w . 2 s . 6 d . 

Cicero: De Senectute, De Amicitia, and Select Epistles. By 
G e o r g e L o n g , M . A . 3 s . 

Cornelius Nepos . By Bev. J. F. Macmichael. 2s. 
H o m e r : Iliad. Books I . - X H . By F . A . Paiey, M . A . , L L . D . 

4 s . 6 d . A l s o i n 2 p a r t s , 2 s . 6ct. e a c h . 
Horace . With Life. By A . J. Macleane, M . A . 3». Sd. In 

2 p a r t s , 2 s . e a c h . 

Juvenal: Sixteen Satires. By H . Prior, M . A . 3». 6d. 

Mart ia l : Select Epigrams. With Life. By F. A . Paloy, M . A . , L L . D . 
4 s . S d . 

O v i d : the Fasti. By F. A . Paley, M . A . , L L . D . 3». 6d. Books L 
a n d I I . 1 s . S d . B o o k s I I I . a n d I V . I s . 6 d . 

Sallust: Catilina and Jugurtha. With Life. By G. Long, M.A> 
a n d J . G - . F r a z e r . 3 s . 6 d . , o r s e p a r a t e l y , 2 s . e a c h . 

Taoitus: Germania and Agricola. By Kev. P. Frost. 2s. Gd. 

Virg i l : Bucolics, Georgics, and 2Eneid, Books I . - I V . Abridged 
f r o m P r o f e s s o r C o n i n g t o n ' s E d i t i o n . 4 s . 6d.—jllnoid, E o o k s V . - X I I . 4 s . 6d. 
A l s o i n 9 s e p a r a t e V o l u m e s , a s f o l l o w s , i s . 6 d . e a c h B u c o l i c s — G e o r t r i c e , 
I . a n d I I . — G r e o r g - i e s , I I I . a n d I V . — v T C n e i d , I . a n d T I . — y E n n i d , I I I . a n d 
I V . - ^ C n o i d , V . a n d V I . — ^ 5 n o i d , V I I . a n d V I I I . — ^ I n e i d , I X . a n d X . — 
^ n e i d , X I . a n d X I I . 

Xsnophon: The Anabasis. With Life. By Eev. J. F. Macmichael. 
3 s . 6 d . A l s o i n 4 s e p a r a t e v o l u m e s , I s . Gd. e a c h : — B o o k I . ( w i t h L i f e , 
I n t r o d u c t i o n , I t i n e r a r y , a n d T h r e e M a p s ) — B o o k s I T . a n d I T I . — I V . a n d Y . 
—VI. a n d V I I . 

The Cyropa?dia. By G. M . Gorham, M . A . 3». 6d. Books 
I . and I I . I s . 63,.—Books V. a n d V I . I s . tid. 

Memorabilia. By Percival Frost, M . A . 3*. 

A Grammar-School Atlas of Classical Geography, containing 
Ten selected Maps. Imperial 8vo. 5s. 

Uniform with the Seriet. 

T h e N e w Testament, in Greek. With English Notes, &o. By 
Rev. J. T. Ilaotnidh&oL -4s. Gd. I n p a r t s , s e w e d , Sd. each. 
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C A M B R I D G E G R E E K A N D L A T I N T E X T S . 

JEsohylus. B y F . A . Paley, M . A . , L L . D . 2s. 6d. 
Caesar: D o Bel lo Gallico. By G. Long, M . A . 1» . Sd. 
Cioero: D e Senectute et D e Amicitia, et EpistolsB Seleotsa. 

By Or. L o n g , M . A . Is . 8d. 

Cloeronis Orationea. In Verrem. By G. Long , M . A . 2g.6d. 
Euripides . B y F . A . Paley, M . A . , L L . D . 3 vols. 2s. each. 
Herodotus. By J. G. Blakesley, B . D . 2 vols. 5s. 
Homer i Ilias. I . - X I I . By F . A . Paley, M . A . , L L . D . 1». 6d. 
HoratluB. B y A . J. Macleane, M . A . 1 « . 6d. 
Juvenal et Persius. By A . J. Macleane, M . A . Is. 6d. 
Lucretius. By H . A . J. Munro, M . A . 2s. 
Sallusti Crispi Catilina et Jugurtha. By G. Long, M . A . Is. 6<J. 
Sophocles. By F . A . Paley, M .A . , L L . D . 2s. 6d. 
Terentl ComcediEB. By W . Wagner, P h . D . 2«. 
Thuoydides. By J. G. Donaldson, D .D . 2 vols. 4s. 
Vlrgillus. By J. Conington, M . A . 2s. 
Xenophontis Expeditio Gyri. By J. F . Macmichael, B . A . Is. 6d. 
N o v u m Testamentum Greece. By F . H . Scrivener, M . A . , D . C . L . 

4s. 6d. An edition wi th wide marfrin for notes, half bound, 12a. E D I T I O 
M i J O n , wi th additional Readings and References. 7e. 6cl. See page 9. 

C A M B R I D G E T E X T S W I T H N O T E S . 

A Selection of the most usually read of the Greek and Latin Authors, Annotated for 
Softools. Edited by well-known Classical Scholars. Fcap. 8w. Is. 6d. each, 
with exceptions. 

.ZEBciiylus. Prometheus Yinctus.—Septem contra Thebas.—Aga­
m e m n o n : — P E R S E B . — E u m e n i d e s . — C h o e p h o r o r . ByF. A . Paley, M . A , , L L . D . 

Euripides. Alcestis.—Medea.—Hippolytua.— Hecuba.—Bacchee. 
—Ion. 2s.—Orestes. — FhoeniBSEe.—Troades.—Hercules Furens.—Andro­
mache.—Iphigenia in Tauria.—Snpplices. B y F. A . Pa ley , M . A . , L L . D . 

H o m e r . Il iad. Book I . B y F . A . Paley, M . A . , L L . D . 1*. 
Sophocles. (Edipus Tyrannua.— CEdipus Coloneus.— Antigone. 

—Kleotrn—Ajax. B y E. A . Pa ley , M . A . , L L . D . 
X e n o p h o n . Anabasis. In 4 vols. By J. E . Melhuiah, M . A . , 

Assistant Classical Master at Sfc. Paul 's School. 
X e n o p h o n . Hellenics, Book II. By L . D . Dowdall , M . A . , B . D . 

ISKortly. 
Cicero. De Senectute, De Amicitia, and Epistolie Selectra. By 

G . L o n g , M . A . 
Ovid. Fasti. By F. A . Paley, M . A . , L L . D . I n 3 vols., 2 books 

in each, lZs. each. vo l . 
O v i d . Selections. Amores, Tristia, Heroides, Metamorphoses* 

B y A . J, Macleane, M . A . 
Terence. Andria.—Hauton Timorumcnos.—Phormio.—Adelphoe. 

By Professor Wagner, P h . D . 
V i r g i l . Professor Conington's edition, abridged in 9 vols., 2 hooka 

in each. 
Other8 I N preparation. 
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P U B L I C S C H O O L S E R I E S . 

A Series of Classical Texts, annotated by well-known Scholars. Or. 8w>. 

Aristophanes. The Peace. B y F. A . Paley, M . A . , L L . D . 4s. 6d. 
The Acharnians. By F. A . Paley, M . A . , L L . D . 4s. 6d. 

• The Frogs. By F. A . Paley, M . A . , L L . D . 4s. 6d. 
Oioero. The Letters to Attious. Bk. I . By A . Prefer, M . A . 4«. 6d-
Demosthenes de Falsa Legations. By B . Shilleto, M . A . 6s. 
• The Law of Leptines. By B . W . Beatson, M . A . 3s. 6d. 
Livy. Book X X I . Edited, with Introduction, Notes, and Maps, 

by t h e E S T . L . D . D o w d a l l , M.A. , B . D . 3 s . 6d. [ i i o o f c XXII. in the press* 
• Book X X I I . Edited, &a., by Bev. L . D. Dowdall, M . A . „ 

B . D . 3 s . 6 d . 
Plato. The Apology of Socrates and Crito. By W . Wagner, Ph.D. 

10th E d i t i o n . 3 s . 6d. Cheap Edition, limp c l o t h , 2 s . Rd. 
The Phsido. 9th Edition. By W . Wagner, Ph .D. 5s. 6d. 
The Protagoras. 4th Edition. By W . Wayte, M . A . 4s. 6d. 
The Euthyphro. 3rd Edition. By G. E . Wells, M . A . 3s. 
The Euthydemua. By G. H . Wells, M . A . 4s. 
The Republics. Books I . & I I . By G. EC. Wells, M . A . 3rd 

Edit ion. 5s. 6d. 

Plautus. The Aulularia. By W . Wagner, Ph.D. 3rd Edition.[4s. 64 
Trinummus. By W . Wagner, Ph.D. 3rd Edition. 4». Gd. 
The Menaechmei. By W . Wagner ,Ph .D. 2nd Edit. is. 6A 
The Mostellaria. By Prof. E. A. Sonnenschein. 5s. 
The Budens. Edited by Prof. E . A. Sonnenschein. 

[ J n the prtss.. 
Sophoolis Traehiniffl. By A . Prefer, M . A . 4s. (id. 
Sophocles. Oedipus Tyrannus. By B . H . Kennedy, D . D . 5s. 
Terenoe. By W . Wagner, Ph .D. 2nd Edition. 10s. 6d. 
Theooritus. By F. A. Paley, M . A . , L L . D . 2nd Edition. 4s. Gd. 
Thueydides. Book V I . By T. W . Dougan, M . A . , Fellow of St-

J o h n ' s C o l l e g e , C a m b r i d g e . 6s. 
Others in preparation. 

C R I T I C A L A N D A N N O T A T E D E D I T I O N S . 

Arifltophanls Comocdiro. By E . A Holden, L L . D . 8vo. 2 vols, 
23s. 6d. Flays sold separately. 

Calpurnius Siculus. By 0, E . Eeene, M . A . Crown 8vo. 6s. 
Corpus Poetarum Latinorum. Edited by Walior. 1 vol. 8TO. 18S, 
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Horace . Quinti Horatii Flacoi Opera. By H . A . J, Munro, M . A . 
Large 8vo. 11. la. 

H v y . The first five Books. By J. PrendevUle. 12mo. roan, 5x. 
Or Books I . - T I I . 3s. 8d. I V . and V . 3s. 6d. 

Lucretius. With Commentary by H . A. J. Munro. 4th Edition. 
V o l s . I . and I I . Introduction, T e x t , and Notos. 18s. Vol. I I I . Trans­
lation. Gs. 

Ovid. P. OvidiiNasonisHeroidesXTV. By A. Palmer, M.A. 8vo. 6 i . 
P. Ovidii Nasonis Ars Amatoria et Amores. By the Bev. 

H . Wil l iams, M . A . 3«. 6Ä. 
Metamorphoses. Book X I I I . By Chaa. Haines Keene, M . A . 

2s. 6d. 
Epistolarum ex Ponto Liber Primus. ByC.H.Keene,M.A. 3s. 

Propertius. Sex Aurelii Propertii Carmina. By F. A. Paley, M.A. , 
L U D . 8vo. Cloth, 9s. 

— Sex Propertii Elegiarum. Libri IV. Bocensuit A. Palmer, 
Collegfii SacrosanctaB et IndividuoB Trinitat is juxta Dubliuum Socius. 
Fcap 8vo. 3s. 6d. 

Sophocles. The Ajax. By C. E . Palmer, M.A. 3«. Gd. 
The Oedipus Tyrannus. By B. H . Kennedy, D . D . 

Crown 8vo. 8s. 
Thuoydides. The History of the Peloponnesian W a r . By Einhard 

Shilleto, M . A . Book I . 8 Y O . 6S. 6d. Book n . 8vo. 5s. 6d. 

L A T I N A N D G R E E K C L A S S - B O O K S . 

Eaci l iora. An Elementary Latin Book on a new principle. B y 
the Rev . J. L . Sea le r , M . A . [In the pi-ess. 

E i r s t Lat in Lessons. 13y A. M. M. Btedman, M . A . Is. 
Miscellaneous Lat in Exercises. By A . M. M. Stedman, M . A . 

Fcap. 8vo. Is. Gd. 
E a s y Lat in Passages for Unseen Translation. By A. M. M . 

Stedman, M . A . Fcap. 8vo. Is. 6d. 
A Latin Primer. By llev. A. C. Clapin, M.A. I s . 
AuxUia Latlna. A Series of Progressive Latin Exercises. By 

M . J . B . R s i , d d e l e y , M . A . Fcan.8vo. P a r t I . Accidence. 3rd Edit ion, revised. 
2s. Part I L 4th Kdition, revised. 2s. Key to Part I I . 2s. 6d. 

Sca la Latina. Elementary Latin Exercises. By Bev. J. W . 
Davis, M . A . New Edit ion, wi th Vocabulary. Fcap. 8vo. 2s. Gd. 

L a t i n Prose Lessons. By Prof. Church, M.A. Hth Edition. 
Fcap. Bvo. 2s. Cd. 

Iiatin Exercises and Grammar Papers. By T. Collins, M.A. 5th 
Edit ion. Fcap. Bvo. 2s. 6d. 

U n s e e n Papers in Latin Prose and Verse. With Examination 
Quastiona. By T . Collins, M . A . 4th Edi t ion. Foap. 8vo. 2s. 6d. 

in Greek Prose and Verse. With Examination Questions. 
B y T. Collins, M . A . 3rd Edition. Fcap. 8ro. 3s. 

E a s y Translations from Nepos . Ceesar, Cioero, Livy, & c , for 
Retranslat ion into Lat in . W i t h Notes , by T. Collins, M . A . [Prepar ing . 

Tale3 for Latin Prose Composition. With Notes and Vocabu­
lary. B y G. H . Wel l s , M . A . 2s. 
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L a t i n Vocabular ies for Repe t i t ion . By A . M . M . Stedman, M . A . 
2nd Edit ion, revised. Fcap. Svo. I s . 6d. 

A n a l y t i c a l L a t i n Exerc ises . 13y C. P . Mason, B . A . 4 t h Edi t . 
Par t I . , Is. 6 1 I . P a r t I I . , 2s. 6d. 

L a t i n E x a m i n a t i o n P a p e r s I n G r a m m a r and I d i o m . B y 
A . M . M . Stedman, M . A . Crown 8vo. 2s. 6d. K e y (for Tutors and 
Private Students on ly ) , 5s. 

Greek Examina t i on Pape r s In G r a m m a r and I d i o m . B y 
A . M . M . Stedman, M . A . 2s. 6 « . 

Sca laGrseca : a Seriesof Elementary Greek Exercises. B y R e v . J . W . 
Davis, M . A . , and a. W . Baddoley, M . A . 3rd Edi t ion. Fcap. 8vo. 2s. 6d. 

G r e e k V e r s e Composi t ion. By G. Preston, M . A . 5 t h Edi t ion. 
Crown 8vo. 4s. 6d. 

Greek Part icles and their Comhinations a c c o r d i n g t o Attic Usage. 
A Short Treatise. By F. A . Pa ley , M . A . , L L . D . 2s. Gd. 

G r e e k Tes tament Select ions. By A . M . M . Stedman, M . A . 2nd 
Edition enlarged, wi th Notes and Vocabulary. Fcap. 8vo. 2s. Gd. 

Rudimen t s o f A t t i o Construct ion and I d i o m . B y the Rev . 
W . 0. Compton, M . A . , Assistant Master at Uppingham School. 3s. 

Passages for Trans la t ion i n t o L a t i n P rose . By Prof. H . Nett le-
ship, M . A . 3s. K e y ( for Tutors on ly ) , 4?. 6d. 

B i t h e R E V . P . F k o s t , M . A . , S t . J o h n ' s C o l l e g e , C a m b r i d g e . 

Eologffi LatinEB; or, First Latin Reading-Book, with English Notes 
and a Dictionary. N e w Edit ion. Fcap. 8vo. Is . 6d. 

Mater ia l s for L a t i n Prose Composi t ion. New Edition. Fcap. 8vo. 
2s. K e y (for Tutors o n l y ) , 4s. 

A L a t i n Ver se -Book . An Introductory W o r k on Hexameters and 
Pentameters . S e w Edit ion. Fcap. 8vo. 2a. K e y (for Tutors o n l y ) , 5s. 

A n a l e c t s G r E B c a Minora , with Introductory Sentences, Engl ish 
Notes , and a Dict ionary. N e w Edi t ion. Fcap. 8va. 2s. 

Mater ia l s f o r G reek P r o s e Composi t ion . New Edit . Fcap. 8vo. 
2«. 6d. K e y (for Tutors on ly ) , 5s. 

n o r i l e g i u m Poet icum. Elegiac Extracts from Ovid and Tibnllns. 
N e w Edit ion. W i t h Notes . Fcap. 8vo. 2s. 

A n t h o l o g i a GrEeca. A Selection of Choice Greek Poetry, with Notea. 
By F . St. John Thackeray, ith and Cheaper Edition. 16mo. 4s. Gd. 

A n t h o l o g i a Lat ina . A Selection of Choice Lat in Poetry, from 
Narrius to Boethius, wi th Notes . B y R e v . F . St. John Thackeray. Revised 
and Cheaper Edi t ion. 16ino. 4s. 6d. 

B y H . A . H o l d e n , L L . D . 

F o l i o r u m Si lvula . Part I . Passages for Translation into Lat in 
Elegiac and Heroic Verse . 10th Edit ion. Pos t Svo. 7s. 6d. 

Part I I . Select Passages for Translation into Lat in L y r i c 
and Comic Iambic Verse. 3rd Edit ion. Post 8vo. 5s. 

F o l i a Silvulaa, sive Eclogsa Poetarum Anglicorum in Latimvm et 
Oraecum converses. 8vo. V o l . I I . 12«. 

F o l i o r u m Centuries. Select Passages for Translation into Lat in 
and Greek Prose . 10th Edit ion. Post 8vo. 8s. 
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T R A N S L A T I O N S , S E L E C T I O N S , &e. 

* » * Many of the following books are well adapted for School Prizes. 

•ffisohylus. Translated into English Prose by P . A. Paley, M . A , , 
L L . D . 2nd Edition. 8vo. 7s. 6d. 

Translated into English Verse by Anna Swanwick. 4th 
Edition. Post 8vo. 5s. 

Horace . The Odes and Carmen Ssecnlare. In English Verse by 
J. Cunington, M . A . 10th edition. Fcap. 8vo. 5s. 6d. 

The Satires and Epistles. In English Verse by J. Coning-
ton, M . A . 7th edition. 6s. Gd. 

Plato. Gorgias. Translated by E. M. Cope, M.A. 8vo. 2nd Ed. 7s. 

Philebus. Trans, by E. A. Paley, M . A . , L L . D . Sm. 8vn. 4s. 

• Theastetus. Trans, by P. A . Paley,M.A., L L . D . Sm. 8vo. 4s. 

Analysisandlndexof theDialogues. ByDr .Day . PoBt8vo.5s. 

Sophocles. Œdipus Tyrannus. By Dr. Kennedy. Is. 

Theocritus. In English Verse, by C. S. Calverley, M . A . New 
Edition, revised. Crown 8 Y O . 7 S . Bd. 

Translations into English and Latin. By C. S. Calverley, M . A . 
Post 8ra. 7s. 6 i . 

Translations into English, Latin, and Greek. By E, C. Jebb, M.A. , 
H . Jackson, Litt .D. , and W . E. Carrey, M . A . Second Edition. 8s. 

Extracts for Translation. By R. C. Jebb, M . A . , H . Jackson, 
Lit t .D. , and W . E. Currey, M . A . 4s. 6d. 

Between W h i l e s . Translations by Bev. B. H . Kennedy, D.D. 
2nd Edition, revised. Crown 8vo. 5s. 

R E F E R E N C E V O L U M E S . 

A Lat in Grammar. By Albert Harkness. Post 8vo. 6s. 

By T. H . Key, M . A . 6th Thousand. Post 8vo. 8s. 

A Short Lat in Grammar for Sohoolfl. By T. H . Koy, M . A . 
F . B . S . 16th Edition. PoBt 8vo. 3s. 6d. 

A Guide to the Choice of Classical Books. By J. B . Mayor, M . A , 
3rd Edition, with a Supplementary List. Crown 8vo. 4s. 6d, Supple­
mentary List separately, Is. 6d. 

T h e Theatre of the Greeks. By J. W . Donaldson, D . D . 8th 
Edition. Post 8vo. 5s. 

Keightley's Mythology of Greece and Italy. 4th Edition. 5s. 
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C L A S S I C A L T A B L E S . 

Lat in Aocldenos. By the Rev. P. Frost, M . A . I f . 
Latin Versification. Is. 
Notabil la Q u s B d a m ; or the Principal Tenses of most oi tha 

I r r e g n l a r G r e e k V e r b s a n d E l e m e n t a r y G r e e k , L a t i n , a n d F r e n c h C o n ­
s t r u c t i o n . H e w E d i t i o n . I s . 

Richmond Rules for the Ovldian Distich, &a. By J. Tate, 
M . A . 1«. 

T h e Principles of Lat in Syntax. 1 » . 
Greek Verbs . A Catalogue of Verbs, Irregular and Defective; their 

l o a d i n g f o r m a t i o n s , t e n s e s , a n d i n f l e x i o n s , w i t h P a r a d i g m s f o r c o n j u g a t i o n , 
R u l e s f o r f o r m a t i o n o f t e n s e s , & c . & o . B y J . S . B a i r d , T . C . D . 8 t h E d . 2 s . fid. 

Greek Accents (Notes on). By A . Barry, D.D. New Edition. 1 » . 
Homeric Dialect. Its Leading Forms and Peculiarities. By J. 8. 

B a i r d , T . O . D . N e w E d i t i o n , b y W . G . R u t h e r f o r d , L L . D . I s . 

Greek Aooidenca. By the Bev. P. Frost, M . A . New Edition. 1 » . 

C A M B R I D G E M A T H E M A T I C A L S E R I E S . 

Arithmetic for Schools. By C. Pendlebury, M . A . 2nd Edition, 
roYised, 4 s . Gd. O r i n t w o p a r t s , 2 s . Gd. e a c h . E x a m p l e s ( n e a r l y 8000), 
w i t h o u t a n s w e r s , i n a s e p a r a t e v o l . 3 s . 

Algebra. Choice and Chance. By W . A . Whitworth, M . A 4th 
E d i t i o n . 6 s . 

Eucl id . Books I . - V I . ana part of Books X I . and X I I . By H . 
D e i g h t o n . 4 s . 6 d . B o o k s I . a n d I I - , 2 s . [A Key to the Exercises in theprees. 

Euclid, Exercises on Euclid and in Modern Geometry. By 
J . M c D o w e l l , M . A . 3 r d E d i t i o n . 6 s . 

Trigonometry. Plane. By Eev. T.Vyvyan.M.A. 3rd Edit. 3s. 6i. 
Geometrical Conic Sections. By H . G. Willis, M . A Man­

c h e s t e r G r a m m a r S c h o o l . 7 s . G d . 

Conies. The Elementary Geometry of. 5th Edition, revised and 
e n l a r g e d , fly U . T a y l o r , D . D . is. 6 d . 

Solid Geometry. By W . S. Aldis, M.A. Ith Edit, revised. 6s, 
Geometrical Optics. By W . S. Aldis, M.A. 2nd Edition. 4s. 
Rigid Dynamics. By W . S. Aldis, M . A 4s. 
Elementary Dynamics. By W.Garnett, M . A . , D . C . L . 4th Ed. 6s. 
Dynamics. A Treatise on. By W . H . Besant, D .Sc , F .R.9 . 7s. M. 
Heat . An Elementary Treatise. By W . Garnett, M.A. , D . C . L . 4th 

E d i t i o n . 4 s . 

Elementary Physics. Examples in. By W . Gallatly, M . A . 
f i n ths press. 

Hydromechanics. By W . H . Besant, D .Sc , F .B .S . 4thEdition. 
P a r t I . H y d r o s t a t i c s . 5 « . 

Mathematical Examples . By J. M . Dyer, M . A . , and B . Prowde 
S m i t h , M . A . , A s s i s t a n t M a s t e r s a t C h e l t e n h a m C o l l e g e . [In the prest. 

Mechanics. Problems in Elementary. By W . Walton, M . A . 6s. 
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C A M B R I D G E S C H O O L A N D C O L L E G E 

T E X T - B O O K S . 

A Series of Elementary Treatises for the use of Students. 

Arithmetic. By Kev. C. Elsee, M . A . Feap. 8vo. 13th Edit. 3s. Gd. 

• By A . Wrigley, M.A. 8«. Gd. 

A Progressive Course of Examples. W i t h Answers. By 
J. Watson, M . A . 6th Edit ion. 2s. Sd. 

Algebra. By the Kev. C. Elsee, M . A . 7th Edit. is. 

* Progressive Conrse of Examples. By Bev. W . F. 
M'Michael , M . A . , and E . Prowde Smith, M . A . 4th Edit ion. 3s. 6d. W i t h 
Answers. 4s. (id. 

Plane Astronomy, A n Introduction to. By P. T . Main, M . A 
5th Edi t ion. 4s. 

Conio Sections treated Geometrically. By W . H . Besant, D.Sc. 
6th Edit ion. 4s. fid. Solution to the Examples. 4s. 

• Enunciations and Figures Separately. I s . Gd. 

Statics, Elementary. By Bev. H . Goodwin, D .D. 2nd Edit . 3». 

Hydrostatics, Elementary. By W . H . Besant, D.Sc. 12th Edit . is. 

Mensurat ion, A n Elementary Treatise on. By B . T . M o o r e , M . A . 5s. 

Newton's Prinoipia, The First Three Sections of, with an Appen­
dix ; and the Ninth and Eleventh Sections. By J. H. Evans. M . A . 5th 
Edit ion, by P . T . Main, M . A . 4s. 

Analy t i ca l G e o m e t r y for Schools, By T. G.Yyvyan. 4th Edit. is. 6<i. 

Greek Tes tament , Companion to the. By A , C. Barrett, A M . 
5th Edit ion, revised. Fcap. 8vo. 5s. 

Book of C o m m o n Prayer, A n Historical and Explanatory Treatise 
on the. By W . &. Humphry, B . D . 6th Edit ion. Ecap. 8vo. 2s. 6d. 

Music, Text-book of. By Professor H . C. Banister. 13th Edition, 
revised. 5s. 

Concise History of. By Bev. H . Q. Bonavia Hunt, 
Mus. Doc. Dublin. 9th Edit ion revised. 3s. 6d. 

A R I T H M E T I C A N D A L G E B R A . 

See the two foregoing Señes. 

B O O K - K E E P I N G . 

Book-keep ing Papers, set at various Public Examinations:. 
Collected and Wr i t t en by J. T . Medhurst, Lecturer on Book-keeping in 
the City of London College. 

A 2 
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G E O M E T R Y A N D E U C L I D . 

Euclid. B o o k s I . - V I . and part of XI. and X H . A New Trans­
lation. B y H . Deighton. ( f e e Cambridge Mathematical Series, p . 8.) 

The Definitions of, with Explanations and Exercises, 
and an Appendix of Exercises on the I i r s t Book. B y R . Webb , M . A . 
Crown 8vo. Is . 6d. 

Book I . With Notes and Exercises for the use of Pre­
paratory Schools, &c. By Braithw&ito Arnet t , M . A . 8yo. 4s. Gd. 

The First Two Books explained to Beginners. By C, P. 
Maaon, B . A . 2nd Edit ion. Fcap. 8vo. 2s. 6d. 

T h e Enunciations and Figures to Euclid's Elements. By Bev. 
J. Brasse, D . D . N e w Edit ion. Feap. 8vo. I s . Wi thou t the Figures, 6d. 

Exercises on Eucl id and in Modern Geometry. By J. McDowell, 
B . A . Crown 8vo. 3rd Edit ion revised. 6s. 

Geometrical Conic Sections. By H . G . Willis, M . A . (See p. 8 . ) 
Geometrical Conic Sections. By W . H . Besant, D.Sc. (Seep. 9.) 
Elementary Geometry of Conios. By C. Taylor, D . D . (Seep. 8 . ) 
A n Introduction to Ancient and M o d e r n Geometry of Conios 

B y C. Tay lor , D . D . , Mastor of St. John's Coll . , Camb. 8vo. 15s. 
Solutions of Geometrical Problems, proposed at St. John's 

College from 1830 to 1846. B y T . Gaakin, M . A . 8vo. 12s. 

T R I G O N O M E T R Y . 

Trigonometry, Introduction to Plane. By Bev. T. G. Vyvyan, 
Charterhouse. 3rd Edition. Cr. 8vo. 3s. 6d. 

A n Elementary Treatise on Mensuration. By B . T. Moore, 
M . A . 5s. 

A N A L Y T I C A L G E O M E T R Y 

A N D D I F F E R E N T I A L C A L C U L U S . 

A n Introduction to Analytical Plane Geometry. By W . P. 
Tumbul l , M . A . 8vo. 12«. 

Problems on the Principles of P l a n e Co-ordinate Geometry. 
By W . Wa l ton , M . A . 8vo. 16s. 

Trilinear Co-ordinates, and Modern Analytical Geometry of 
T w o Dimensions. B y W . A . W h i t w o r t h , M . A . 8vo. 16s. 

A n Elementary Treatise on Solid Geometry. By W . S. Aldis, 
M . A . 4th Edit ion revised. Cr. 8vo. 6s. 

Elliptic Functions, Elementary Treatise on. By A. Cayley, D . S c . 
Professor of Pure Mathematics at Cambridge Uii iversi i ty . Demy 8vo. 15s. 
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M E C H A N I C S & N A T U R A L P H I L O S O P H Y . 

Statloa, Elementary. By H . Goodwin, D.D. Fcap. 8vo. 2nd 
E d i t i o n . 88. 

Dynamics, A Treatise on Elementary. By W . Garnett, M.A. , 
D . C . L . 4 t h E d i t i o n . C r o w n S t o . 6 « . 

Dynamics. Rigid. By W . S. Aldis, M.A. 4 s , 
Dynamies. A Treatise on. By "W. H . Besant, D.So. ,P.R.S. 7 s . 6d. 
Elementary Mechanics, Problems in. By W . Walton, M.A. New 

E d i t i o n . C r o w n 8 v o . 6s. 

Theoretical Mechanics, Problems in. By W . Walton, M.A. 3 r d 
E d i t i o n . D e m y 8 v o . 16s. 

Hydrostatlos. B y W . H . B e s a n t , D . S e . Fcap.8vo. 12thEdition. 4i. 
Hydromechanics, A Treatise on. By W . H . Besant, D . S c , F . R . 8 

8 v o . 4 t h E d i t i o n , r e v i s e d . P a r t I. H y d r o s t a t i c s , .'is. 

Optics, Geometrical. By W . B. Aldis, M.A. Crown 8vo. 2 n d 
E d i t i o n . 4s. 

Double Refraction, A Chapter on Fresnel's Theory of. By W . S. 
A l d i s , M . A . 8 v o . 2*. 

Heat, An Elementary Treatise on. By W . Garnett, M . A . , D.C.L. 
C r o w n 8 v o . 4 t h E d i t i o n . 4s. 

Newton's Principia, The First Three Sections of, with an Appen­
d i x ; a n d t h e N i n t h a n d E l e v e n t h S e c t i o n s . B y J . H . E v a n a , M . A . 5 th 
E d i t i o n . E d i t e d b y P . T. M a i n , M . A . 4s. 

Astronomy, An Introduction to Plane. By P. T. Main, M.A. 
F c a p . 8 v o . c l o t h . 5 t h E d i t i o n . 4a. 

Practical and Spherical. By R. Main, M.A. 8vo. 14». 
Elementary Chapters on, from the 1 Astronomie Physique ' 

of B i o t . B y H . G o o d w i n , D . D . 8 v o . Ss. 6 d . 

Pure Mathematics and Natural Philosophy, A Compendium of 
F a c t a a n d F o r m u l a s i n . B y G . R. S m a l l e y . 2 n d E d i t i o n , r e v i a e d b y 
J . M c D o w e l l , M . A . F c a p . 8 v o . 3s. 6d. 

Elementary Mathematical FormulSB. By the Rev. T. W . Open-
B h a w , M . A . I s . 6 d . 

Elementary Course of Mathematics. By H . Goodwin, D.D. 
6 t h E d i t i o n . 8 v o . 16s. 

Problems and Examples, adapted to the ' Elementary Course of 
M a t h e m a t i c s . ' 3 r d E d i t i o n . 8 v o . 5s. 

Solutions of Goodwin's Collection of Problems and Examples . 
B y W . W . H u t t , M . A . 3 r d E d i t i o n , r e v i s e d a n d e n l a r g e d . 8 v o . 9s. 

A Collection of Examples and Problems in Arithmetic, 
A l g e b r a , G e o m e t r y , L o g a r i t h m s , T r i g o n o m e t r y , C o n i c S e c t i o n s , M e c h a n i c s , 
& . C . , w i t h A n s w e r s . B y Rem A . W r i g l e y . 2 0 t h T h o u s a n d . 8s. 6d . 
K e y . 10s. 6 d . 
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T E C H N O L O G I C A L HANDBOOKS. 
Edited by H . T B U E H A N W O O D , Secretary of the Society of Arts, 

1. Dye ing and Tissue Pr int ing. By W . Crookes, F .R .S . 5s. 
2. Glass Manufacture . By Henry Chance, M.A. ; H . J. Powell, B . A . ; 

a n d U . G . H a r r i s . 3s. 6 d . 

3 . Cot ton Manufacture . By Bichard Marsden, of Manchester. 
3 r d E d i t i o n , r e v i s e d . 6s. 6 d . 

4. Chemis t ry of Coa l -Ta r Colours. By Prof. Benedikt. Trans-
l a t e d b y O r . X r i e c h t of B r a d f o r d . 5s. 

5. W o o l l e n and W o r s t e d Cloth Manufacture . By B o b e r t 3 
B e a u m o n t , A s s i s t a n t L e c t u r e r a t Y o r k s h i r e C o l l e g e , L e e d s . 7s. 6d. 

Others in preparation. 

H I S T O R Y , TOPOGRAPHY, &c. 
R o m e and the Campagna. By R . Burn, M . A . Wi th 85 En­

g r a v i n g s a n d 26 M a p s a n d P l a n s . W i t h A p p e n d i x . 4 to . 31. 3s. 

O l d R o m e . A H a n d b o o k for Travellers. B y R. Burn, M . A . 
W i t h M a p B a n d P l a n s . D e m y 8 v o . 10s. 6d . 

M o d e r n Europe . By Dr. T. H . Dyer. 2 n d E d i t i o n , r e v i s e d and 
c o n t i n u e d . 5 v o l s . D e m y 8 v o . 21, 12s. 6d. 

T h e Hi s to ry of the K ings of R o m e . By D r . T . H. D y e r . 8 v o . 16s. 
T h e H i s to ry o f P o m p e i i : its B u i l d i n g s a n d A n t i q u i t i e s . By 

T . H . D y e r . 3 r d E d i t i o n , b r o u g h t d o w n to 1874. P o s t 8 v o . 7s. 6<J. 

T h e C i t y o f R o m e : i t s H i s t o r y a n d M o n u m e n t s . 2 n d E d i t i o n , 
r e v i s e d b y T . H . D y e r . 5s. 

A n o l e n t A t h e n s : i t s H i s t o r y , T o p o g r a p h y , and R e m a i n s . By 
T . H . D y e r . S u p e r . r o y a l 8 v o . C l o t h . 11. 5s. 

T h e Dec l ine of the R o m a n Republ ic . By G. L o n g . 6 vols. 
8 v o . 14s. e a c h . 

A H i s to ry of E n g l a n d during the E a r l y and M i d d l e A g e s . By 
0 . H . P e a r s o n , M . A . 2 n d e d i t i o n r e v i s e d a n d e n l a r g e d . 8 v o . Vol. I . 
16s. V o l . I I . 14s. 

Histor ical M a p s of Eng land . By C. H . Pearson. Folio. 3 r d 
E d i t i o n r e v i s e d . 31s. 6d . 

His tory of Eng land , 1800-46. By H a r r i e t Martineau, with new 
a n d c o p i o u s I n d e x . 5 v o l s . 3s. 6d. e a c h . 

A Pract ica l Synopsis of Engl i sh His to ry . By A . Bowes. 9 t h 
E d i t i o n , r e v i s e d . 8 v o . I s . 

L i v e s of the Queens of Eng land . By A . Strickland. Library 
E d i t i o n , 8 v o l s . 7s. 6d . e a c h . C h e a p e r E d i t i o n , 8 v o l s . 5s. e a c h . A b r i d g e d 
E d i t i o n . 1 v o l . 6s. 6d . M a r y Q u e e n of S c o t s , 2 v o l s . 5s. e a c h . T u d o r a n d 
S t u a r t P r i n c e s s e s , 5s. 

Eginhard 's L i f e of K a r l the Grea t (Char lemagne) . T r a n s l a t e d , 
w i t h N o t e s , b y W . G l a i s t e r , M . A . , B . C . L . C r o w n 8 v o . 4s. 6d. 

T h e E lemen t s of Genera l His to ry . By Prof. Tytler. New 
E d i t i o n , b r o u g h t d o w n t o 1874. S m a l l P o s t 8 v o . 3s. 6 d . 

H i s t o r y a n d G e o g r a p h y E x a m i n a t i o n P a p e r s . C o m p i l e d b y 
C . H. S p e n c e , M.A., C l i f t o n C o l l e g e . " C r o w n 8vo . 2s. 6 d . 
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P H I L O L O G Y . 

W E B S T E R ' S D I C T I O N A R Y O P T H E E N G L I S H L A N ­
G U A G E . With D r . M a n n ' s E t y m o l o g y . 1 vol. 1628 p a g e s , 3000 I l l u s ­
t r a t i o n s . 21s . ; h a l f ca l f , 30s . ; c a l f o r h a l f n i s s i a , 31s. dd.; n i s s i a , 21. 
With A p p e n d i c e s a n d 70 a d d i t i o n a l p a g e s of I l l u s t r a t i o n s , 1919 pages, 
31s. 6d. j h a l f ca l f , 21. · c a l f o r h a l f r n s s i a , 21. 2s . ; r u s s i a , 21. 10s. 

• T H K B U S T P H A C T I C A L E N G L I S H D I C T I O N A R Y M T A H I . " — Q u a r t e r l y K«ui0iB,1873. 
P r o s p e c t u s e s , w i t h s p e c i m e n p a g e s , p o s t f r e e on a p p l i c a t i o n . 

Richardson's Philological Dictionary of the English Language . 
C o m b i n i n g E x p l a n a t i o n w i t h E t y m o l o g y , a n d c o p i o u s l y i l l u s t r a t e d b y 
Q u o t a t i o n s f r o m t h e b e s t A u t h o r i t i e s . W i t h a S u p p l e m e n t . 2 vols. 4to. 
4i. 14s. 6d. S u p p l e m e n t s e p a r a t e l y . 4 t o . 12s. 

Brief History of the English Language. By Prof. James Hadley, 
L L . D . , Y a l e C o l l e g e . F c a p . 8vo . I s . 

T h e Elements of the English Language. B y E . Adams, Ph .D . 
21st E d i t i o n . Post 8vo. 4s. 6 d . 

Philological Essays. By T . H . Key, M.A., F . E . S . 8vo. 10». 6d. 
Language, Its Origin and Development. B y T. H . Key , M . A , 

E . B . S . 8 v o . 14s. 

Synonyms and Antonyms of the Engl ish Language. By Arch­
deacon B m i t h . 2 n d E d i t i o n . P o s t 8vo. 5s. 

Synonyms Discriminated. B y Archdeacon Smith. Demy 8vo. 
2 n d E d i t i o n r e v i s e d . 14s. 

Bib le English. C h a p t e r s on Words a n d Phrases in the Bible and 
P r a y e r B o o k . B y R e v . T . L . O . D a v i e s . 5s. 

T h e Queen's English. A Manual of Idiom and Usage. By the 
late Dean A l f ord 6 t h E d i t i o n . F c a p . 8vo. I s . s e w e d . I s . 6d . c l o t h . 

A History of English Rhythms. By E d w i n Guest, M . A . , D . C . L . 
L L . D . N e w E d i t i o n , b y P r o f e s s o r W. W . S k e a t . D e m y 8 v o . 18s. 

Elements of Comparative Grammar and Philology. For Use 
i n S c h o o l s . "Ry A . C . P r i c e , M . A . , A s s i s t a n t M a s t e r a t L e e d s G r a m m a r 
S c h o o l . C r o w n 8 v o . 2s. 6 d . 

Questions for Examination in English Literature. By Prof. 
W. W. S k e a t . 2 n d E d i t i o n , r e v i s e d . 2s. 6d. 

Etymological Glossary of nearly 2 5 0 0 Engl ish W o r d s de­
rived from the Greek. By the Rev. E . J. Boyce. Fcap. 8vo. 3s. 6d. 

A Syriao Grammar. By G. Phillips, D . D . 3rd Edition, enlarged. 
8vo. 7e. Bd. 
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D I V I N I T Y , M O R A L P H I L O S O P H Y , &o. 

B Y THE R E V . F . H . S C R I V E N E B , A . M . , L L . D . , D . C . L . 

N o v u m Testamentum Grsaoe. Editio major. Being an enlarged 
E d i t i o n , c o n t a i n i n g t h e H e a d i n g s o f W e s t c o t t a n d H o r t , a n d t h o s e a d o p t e d 
b y t h e R e v i s e r s , & c . 7s. 6 d . For other Editions see page 3 . 

A Plain Introduction to the Criticism of the N e w Testament. 
With F o r t y F a c s i m i l e s f r o m A n c i e n t M a n u s c r i p t s . 3 r d E d i t i o n . 8 v o . 18s. 

Six Lectures on the Text of the N e w Testament. For English 
R e a d e r s . C r o w n 8 v o . 6s. 

Codex Bezsa Cantabrigiensis. 4 t o . 26». 

T h e N e w Testament for English Readers. By the late H . Alford, 
D . D . V o l . I . P a r t I . 3 r d E d i t . 12s. V o l . I . P a r t I I . 2 n d E d i t . 10s. 6 d . 
V o l . I I . P a r t I . 2 n d E d i t . 16s. V o l . I I . P a r t I I . 2 n d E d i t . 16s. 

T h e Greek Testament. B y the late H . Alford, D . D . Vol. I . 7 t h 
E d i t . 11. 8s. V o l . I I . 8 t h E d i t . 11. 4s. V o l . I I I . 10th E d i t . 18s. V o l . I V . 
P a r t I. S t h E d i t . 18s. V o l . I V . P a r t I I . 1 0 t h E d i t . 14s. V o l . I V . 11. 12s. 

Companion to the Greek Testament. By A . C, Barrett, M . A . 
S t h E d i t i o n , r e v i s e d . F c a p . 8 v o . 5s. 

T h e Book of Psalms. A New Translation, with Introductions, &o. 
B y t h e V e r y R e v . J . J . S t e w a r t P e r o w n e , D . D . 8 v o , V o l . I . 6 t h E d i t i o n , 
18s. V o L I I . 6 t h E d i t . 16s. 

Abridged for Schools, fith Edit ion. Grown 8vo. 10s. 6d. 
History of the Articles of Religion. B y C. H . Hardwick. 3rd 

E d i t i o n . P o s t 8 v o . 5s. 

History of the Creeds. By J. R. Lumby, D D . 3rd Edition. 
C r o w n 8 v o . 7s. 6d. 

Pearson on the Creed. Carefully printed from an early edition. 
W i t h A n a l y s i s a n d I n d e x b y E . W a l f o r d , M . A . P o s t 8 v o . 5s. 

Liturgies and Offices o f the C h u r c h , for t h e U s e of E n g l i s h 
R e a d e r s , i n I l l u s t r a t i o n of t h e B o o k o f C o m m o n P r a y e r . B y t h e R e v . 
E d w a r d B u r b i d g e , M . A . C r o w n 8 v o . 9s. 

A n Historioal and Explanatory Treatise on the B o o k o f 
C o m m o n P r a y e r B y R e v . W . G. H u m p h r y , B . D . 6 t h E d i t i o n , e n l a r g e d . 

S m a l l P o s t 8 v o . 2s. 6 d . ; C h e a p E d i t i o n , I s . 

A Commentary on the Gospels, Epis t les , and Acts o f the 
A p o s t l e s . B y R e v . W . D e n t o n , A . M . N e w E d i t i o n . 7 v o l s . 8 v o . 9s. e a c h . 

Notes on the Catechism. By l i t Eev . Bishop B a r r y . 8 t h Edi t . 
F c a p . 2s. 

T h e W i n t o n Church Catechist. Questions and Answers on the 
T e a c h i n g o f t h e C h u r c h C a t e c h i s m . B y t h e l a t e R e v . J . S. B . M o n a e l l , 
L L . D . 4 t h E d i t i o n . C l o t h , 3 s . ; o r i n F o u r P a r t s , s e w e d . 

T h e Church Teacher's Manua l of Christian Instruction. By 
R e v . M . F . S a d l e r . 3 8 t h T h o u s a n d . 2s. 6 d . 
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F O R E I G N C L A S S I C S . 

A Series for use in Schools, with English Notes, grammatical and 
explanatory, and renderings of difficult idiomatic expressions. 

Fcap. Svo. 

Sohlller's Wallenateln. By Dr. A . Buchheim. 5th Edit. 5s. 
Or the Lager a n d Piccolomini, 2s. 6 d . Wallenatein's T o d , 2s. 6d. 

M a i d of Orleans. By Dr. W . Wagner. 2nd Edit. Is. &d. 
Maria Stuart. By V. Kastner. 2nd Edition. Is. Od. 

Goethe's He r man n and Dorothea. By E . Bell, M . A . , and 
B. WoUel. Is. fid. 

G e r m a n Ballads, from Uhland, Goethe, and Schiller. By C. L . 
Bielefeld. 3 r d Edition. Is. 6d. 

Charles X I I . , par Voltaire. By L . Direy. 7th Edition. Is. Gd, 
Aventures de Tel6maque, par Fenelon. By C. J. Delille. 4th 

Edition, 2s. 6d. 
Select Fables of L a Fontaine. By F . E . A.Gaso. ISthEdit. Is. 6 0 ! . 
Ploclola, by X. B . Saintine. By Dr. Dubuc. loth Thousand. Is. 6d. 
Lamartine's L e TaiJleur de Pierrcs do Saint-Point. B y 

J. B o i e i l e , 4th Thousand, Fcap. 8 v o . I s . 6 d . 

Italian Primer. By Bey. A . C. Clapin, M . A . Fcap. 8vo. Is. 

F R E N C H C L A S S - B O O K S . 

French Grammar for Public Schools. By Bev. A . C. Clapin, M . A . 
F c a p . 8 v o . 11 th E d i t i o n , r e v i s e d . 2s. 6 d . 

Frenoh Primer. By Bev. A . C. Clapin, M.A. Fcap. 8vo. 7th Ed . Is . 
Primer of Frenoh Philology. By Bev. A . C. Clapin. Fcap. 8vo. 

3 r d E d i t . I s . 

L e Nouveau Tresor; or, French Student's Companion. B y 
M. K . 8. 1 8 t h Edition. F c a p . 8vo . I s . 6 d . 

French Examination Papers in Miscellaneous Grammar and 
I d i o m s . C o m p i l e d b y A . M . M . S t e d m a n , M . A . 2nd E d i t i o n , r e v i s e d -
C r o w n 8vo . 2s. 6 d . 

Key to the above. By G. A. Schrumpf, Univ. of France. Crown 
Hvo. 5s. ( F o r T e a c h e r s o r P r i v a t e S t u d e n t s o n l y . ) 

M a n u a l of French Prosody. By Arthur Gosset, M.A . Crown 
B v o . 3s. 
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F . B . A . GASC'S F K B N C H C O U B S E . 

First French Book. Fcap. 8vo. 98th Thousand. 1». 
Second French Book. 47th Thousand. Fcap. 8vo. 1«. 6d. 
K e y to First and Second French Books. 5th Edit. Fcp.8vo. 3». &d. 
French Fables for Beginners, in Prose, with Index. 15th Thousand. 

12zno. la. 6d. 

Seleot Fables of L a Fontaine. 18th Thousand. Fcap.8vo. I f . Gd. 

Hlstolres Amusantes et Instructiyes. With Notes. 16th Thou­
sand. Toap. 8vo. 2s. 6d. 

Praotlcal Guide to M o d e r n French Conversation. 17th Thou­
sand. Fcap. 8 T O . I S . 6d. 

French Poetry for the Young . With Notes. 5th Edition. Fcap. 
8 T O . 2 S . 

Materials for French Prose Composition; or, Selections from 
the best English Prose Wr i t e r s . 18th Thousand. Fcap. 8vo. 3a. 
K e y , 6a. 

Prosateurs Contemporains. With Notes. 10th Edition, re­
vised. 12mo. 3s. 6d. 

L B Petit Compagnon; a French Talk-Book for Little Children. 
l l t h Thousand. 16mo. Is 6d. 

A n Improved Modern Pocket Dictionary of the French and 
English Languages. 38 bh Thousand, wi th Addit ions. 16mo. 2s. 6d. 

M o d e r n French-English and English-French Dictionary. 3rd 
and Cheaper Edi t ion, revised. I n 1 vo l . 10s. 6d. 

T h e A B C Tourist's French Interpreter of all Immediate 
Wants . B y F. E . A . Gasc. I s . 

G O M B E R T ' S F R E N C H D R A M A . 

Being a Selection of the b e s t Tragedies and Comédies of Molière, 
Racine, Corneil lo, and Vol ta i re . W i t h Arguments and Notes by A. 
Gomber t . N e w Edit ion, revised by F . E . A . Gaso. Fcap. 8vo. Is. each ; 
sewed, 6d. 

C O N T E N T S . 
M O L I È R E : — L e Misanthrope. L ' A v a r e . L e Bourgeois Genti lhomme. L e 

Tartuffe. L e Malade Imaginaire . Les Femmes Savantes. Les Fourberiea 
de Scapin. Les Précieuses Ridicules. L ' E c o l e des Femmes. L ' E c o l e des 
&taris. L o Médecin malgré L u i . 

R A C I N E :—Phèdre. Esther. Atha l ie . IpMgén ie . Les Plaideurs . L a 
Thébaïde ; ou. L es Frères Ennemis. Andromaque. Britannious. 

P . C O B N E I L L E : — L e Cid. Horace . Cinna. Polyencte . 

V O L T A I R E : — Z a ï r e . 

G E R M A N C L A S S - B O O K S . 

Materials for G e r m a n Prose Composition. By Dr. Buchheim, 
l l t h Edi t ion, thoroughly revised. Fcap. 4s. 6d. K e y , Par ts I . and I I . , 3s. 
Par ts I I I . and I V . , 4s. 

G e r m a n C o n v e r s a t i o n G r a m m a r . B y I . S y d o w . 2 n d E d i t i o n . 
Book I . E t y m o l o g y . 2s. 6d. Book I I . Syntax. I s . 6d. 
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Wortfolge, or Rules and Exercises on the Order of W o r d s In 
G e r m a n S e n t e n c e s . B y D r . F . S t o c k . Is. 6d . 

A G e r m a n Grammar for Pnblie Schools. By the Bev. A . 0. 
C l a p i n a n d F . H o l l M ü l l e r . 4 t h E d i t i o n . F o a p . 2 « . 6 d . 

A G e r m a n Primer, with Exercises. By Bev. A. C. Clapin. 1». 
Kotzobue's Der Gefangene. WithNotesby Dr. W . Stromberg. Is. 
G e r m a n Examination Papers in Grammar and Idiom. B y 
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