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PREFACE.

THE fact that certain bodies, after being rubbed,
appear to attract other bodies, was known to the
ancients. In modern times, a great variety of other
phenomena have been observed, and have been found
to be related to these phenomena of attraction. They
have been classed under the name of FElectric phe-
nomena, amber, #Aecrpor, having been the substance
in which they were first described.

Other bodies, particularly the loadstone, and pieces
of iron and steel which have been subjected to certain
processes, have also been long known to exhibit phe-
nomena of action at a distance. These phenomena,
with others related to them, were found to differ from
the clectric phenomena, and-have been classed under
the name of Magnetic phenomena, the loadstone, uayvss,
being found in the Thessalian Magnesia.

These two classes of phenomena have since been
found to be related to each other, and the relations
between the various phenomena of both classes, so
far as they are known, constitute the science of Flec-
tromagnetism. '

In the following Treatise I propose to describe the
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vi PRETACE.

most important of these phenomena, to shew how they
may be subjected to measurement, and to trace the
mathematical connexions of the quantities measured.
Having thus obtained the data for a mathematical
theory of electromagnetism, and having shewn how
this theory may be applied to the calculation of phe-
nomena, I shall endeavour to place in as clear a light
as I can the relations between the mathematical form
of this theory and that of the fundamental science of
Dynamics, in order that we may be in some degree
prepared to determine the kind of dynamical pheno-
mena among which we are to look for illustrations or
explanations of the electromagnetic phenomena.

In describing the phenomena, I shall select those
which most clearly illustrate the fundamental ideas of
the theory, omitting others, or reserving them till the
reader is more advanced.

The most important aspect of any phenomenon from
a mathematical point of view is that of a measurable
quantity. I shall therefore consider electrical pheno-
mena chiefly with a view to their measurement, de-
scribing the methods of measurement, and defining
the standards on which they depend.

In the application of mathematics to the calculation
of electrical quantities, I shall endeavour in the first
place to deduce the most general conclusions from the
data at our disposal, and in the next place to apply
the results to the simplest cases that can be chosen.
I shall avoid, as much as I can, those questions which,
though they have elicited the skill of mathematicians,
have not enlarged our knowledgé of science.
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PREFACE. vil

The internal relations of the different branches of
the science which we have to study are more numerous
and complex than those of any other science hitherto
developed. Its external relations, on the one hand to
dynamics, and on the other to heat, light, chemical
action, and the constitution of bodies, seem to indicate
the special importance of electrical scicnce as an aid
to the interpretation of nature.

It appears to me, therefore, that the study of elec-
tromagnetism in all its extent has now become of the
first importance as a means of promoting the progress
of science.

The mathematical laws of the different classes of
phenomena have been to a great extent satisfactorily
made out.

The connexions between the different classes of phe-
nomena have also been investigated, and the proba-
bility of the rigorous exactness of the experimental
laws has been greatly strengthened by a more extended
knowledge of their relations to each other.

Finally, some progress has been made in the re-
duction of electromagnetism to a dynamical science,
by shewing that no electromagnetic phenomenon is
contradictory to the supposition that it decpends on
purely dynamical action.

What has been hitherto done, however, has by no
means exhausted the ficld of electrical research. It
has rather opened up that field, by pointing out sub-
jects of enquiry, and fornishing us ‘with means of
investigation.

It is hardly necessary to enlarge upon the beneficial
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results of magnetic research on navigation, and the
importance of a knowledge of the true direction of
the compass, and of the effect of the iron in a ship.
But the labours of those who have endeavoured to
render navigation more secure by means of magnetic
observations have at the same time greatly advanced
the progress of pure science.

Gauss, as a member of the German Magnetic Union,
brought his powerful intellect to bear on the theory
of magnetism, and on the methods of observing it,
and he not only added greatly to our knowledge of
the theory of attractions, but reconstructed the whole
of magnetic science as regards the instruments used,
the methods of observation, and t_hé calculation of the
results, so that his memoirs on Terrestrial Magnetism
may be taken as models of physical research by all
those who are engaged in the measurement of any
of the forces in nature.

The important applications of electromagnetism to
telegraphy have also reacted on pure science by giving
a commercial value to accurate electrical measure-
ments, and by affording to electricians the use of
apparatus on a scale which greatly transcends that
of any ordinary laboratory. The consequences of this
demand for electrical knowledge, and of these experi-
mental opportunities for acquiring it, have been already
very great, both in stimulating the energies of ad-
vanced electricians, and in diffusing among practical
men a degree of accurate knowledge which is likely
to conduce to the general scientific progress of the
whole engineering profession.
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Therc are several treatises in which electrical and
magnetic phenomena are described in a popular way.
These, however, are not what is wanted by those who
have been brought face to face with quantities to be
measured, and whose minds do not rest satisfied with
lecture-room experiments.

There is also a considerable mass of mathematical
memoirs which are of great importance in electrical
science, but they lie concealed in the bulky Trans-
actions of learned societies; they do not form a con-
nected system; they are of very unequal merit, and
they are for the most part beyond the comprehension
of any but professed mathcmaticians,

I have therefore thought that a treatise would be
useful which should have for its principal object to
take up the whole subject in a methodical manner,
and which should also indicate how each part of the
subject is brought within the reach of methods of
verification by actual measurement.

The general complexion of the treatise differs con-
siderably from that of several excellent electrical
works, published, most of them, in Germany, and it
may appear that scant justice is done to the specu-
lations of several eminent electricians and mathema-
ticians. One reason of this is that before I began
the study of electricity I resolved to read no mathe-
matics on the subject till I had first read through
Faraday's Experimental Researches on Electricity, 1
was aware that there was supposed to be a difference
between FFaraday’s way of conceiving phenomena and
that of the mathematicians, so that neither he nor
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they were satisfied with each other’s language. 1 had
also the conviction that this discrepancy did not arise
from either party being wrong. I was first convinced
of this by Sir Willian Thomson *, to whose advice and
assistance, as well as to his published papers, I owe
most of what I have learned on the subject.

As I proceeded with the study of Faraday, I per-
ccived that his method of conceiving the phenomena
was also a mathematical one, though not exhibited
in the conventional form of mathematical symbols. I
also found that these methods were capable of being
expressed In the ordinary mathematical forms, and
thus compared with those of the professed mathema-
ticians. )

For instance, I'araday, in his mind’s eye, saw lines
of force traversing all space where the mathematicians
saw centres of force attracting at a distance: Faraday
saw a medium where they saw nothing but distance:
IFFaraday sought the seat of the phenomena in real
actions going on in the medium, they were satisfied
that they had found it in a power of action at a
distance impressed on the electric fluids.

When I had translated what I considered to be
Faraday’s ideas into a mathematical form, I found
that in general the results of the two methods coin-
cided, so that the same phenomena were accounted
for, and the same laws of action deduced by both
methods, but that Faraday’s methods resembled those

* I take this opportunity of acknowledging my obligations to Sir
‘W. Thomson and to Professor Tait for many valuable suggestions made
during the printing of this worl.
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in which we begin with the whole and arrive at the
parts by analysis, while the ordinary mathematical
methods were founded on the principle of beginning
with the parts and building up the whole by syn-
thesis.

I also found that several of the most fertile methods
of research discovered by the mathematicians could be
expressed much better in terms of ideas derived from
Faraday than in their original form.

The whole theory, for instance, of the potential, con-
sidered as a quantity which satisfies a certain partial
differential equation, belongs essentially to the method
which I have called that of Faraday. According to
the other method, the potential, if it is to be considered
at all, must be regarded as the result of a summa-
tion of the electrified particles divided cach by its dis-
tance from a given point. Hence many of the mathe-
_ matical discoveries of Laplace, Poisson, Green and

Gauss find their proper placc in this treatise, and their
appropriate expression in terms of conceptions mainly
derived from Faraday.

Great progress has been made in electrical science,
chiefly in Germany, by cultivators of the theory of
action at a distance. The valuable electrical measure-
ments of W. Weber are interpreted by him according
to this theory, and the electromagnetic speculation
“which was originated by Gauss, and carried on by
Weber, Riemann, J. and C. Neumann, Lorenz, &c. is
founded on the thcory of action at a distance, but
depending either directly on the relative velocity of the
particles, or on the gradual propagation of something,
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whether potential or force, from the one particle to
the other.” The great success which these eminent
men have attained in the application of mathematics
to electrical phenomena gives, as is natural, addi-
tional weight to their theoretical speculations, so that
those who, as students of electricity, twrn to them as
the greatest authoritics in mathematical electricity,
would probably imbibe, along with their mathematical
methods, their physical hypotheses.

These physical hypothescs, however, are entirely
alien from the way. of looking at things which 1
adopt, and one object which I have in view is that
some of those who wish to study electricity may, by
reading this treatise, come to see that there is another
way of treating the subject, which is no less fitted to
explain the phenomena, and which, though in some
parts it may appear less definite, corresponds, as I
think, more faithfully with our actual knowledge, both
in what it affirms and in what it leaves undecided.

In a philosophical point of view, moreover, it is
exceedingly important that two methods should be
compared, both of which have succeeded in explaining
the principal electromagnetic phenomena, and both of
which have attempted to explain the propagation of
light as an electromagnetic phenomenon, and have
actually calculated its velocity, while at the same time
the fundamental conceptions of what actually takes
place, as well as most of the secondary conceptions of
the quantities concerned, are radically different.

I have thercfore taken the part of an advocate rather
than that of a judge, and have rather exemplified one
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method than attempted to give an impartial description
of both. T have no doubt that the method which T
have called the German one will also find its sup-
porters, and will be expounded with a skill worthy
of its ingenuity.

I have not attempted an exhaustive account of elec-
trical phenomena, experiments, and apparatus. The
student who desires to read all that is known on these
subjects will find great assistance from the Z77aité
d’Electricité of Professor A. de la Rive, and from several
German treatises, such as Wiedemann’s Galvanismus,
Riess’ Reibungselekiricitit, Beer’s Einlettung in die Elek-
trostatik, &c. .

I have confined myself almost entirely to the ma-
thematical treatment of the subject, but I would
recommend the student, after he has learned, experi-
mentally if possible, what are the phenomena to be
observed, to read carefully Faradays ZHzperimental
Researches in Electricity. e will there find a strictly
contemporary historical account of some of the greatest
electrical discoveries and investigations, carried on in
an order and succession which could hardly have been
improved if the results had been known from the
first, and expressed in the language of a man who
devoted much of his attention to the methods of ac-
curately describing scientific operations and their re-
sults *.

It is of great advantage to the student of any
subject to read the original memoirs on that subject,
for science is always most completely assimilated when

* Life and Letters of Faraday, vol. i, p. 395.
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it is in the nascent state, and in the case of Faraday’s
Researches this is comparatively easy, as they are
published in a separate form, and may be read con-
secutively. If by anything I have here written I
may assist any student in understanding Faraday’s
modes of thought and expression, I shall regard it as
the accomplishment of one of my principal aims—to
communicate to others the same delight which I have
found myself in reading Faraday’s Researches. -

The description of the phenomena, and the ele-
mentary parts of the theory of each subject, will be
found in the earlier chapters of each of the four Parts
into which this treatise is divided. The student will
find in these chapters enough to give him an elementary
acquaintahce with the whole science.

The remaining chapters of each P’art are occupied
with the higher parts of the theory, the processes of
numerical calculation, and the instruments and methods
of experimental research. '

The relations between electromagnetic phenomena
and those of radiation, the theory of molecular electric
currents, and the results of speculation on the nature
of action at a distance, are treated of in the last four
chapters of the second volume.

Feb, 1, 1873,
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ERRATA. VOL. I

Page 26, 1. 3 from bottom, dele ‘As we have made no assumption’, &c.

down to 1. 7 of p. 27, ‘the expression may then be written’, and
substitute as follows :—

Let us now suppose that the curves for which a is constant
form a series of closed curves, surrounding the point on the surface
for which a has its minimum value, a,, the last curve of the series,
for which a = a,, coinciding with the original closed curve s.

Let us also suppose that the curves for which @ is constant form
g serics of lines drawn from the point at which e = a, to the
closed curve s, the first, 8,, and the last, 3,, being identical.

Integrating (8) by parts, the first term with respect to a and
the sccond with respect to 3, the double integrals destroy each
other. The lire integral,

B1
(X
o

z ﬂ)r da,

is zcro, because the curve a = a, is reduced to a point at which
there is but one value of X and of «.
The two line inten'rals

._f (X d +f (XdaB-Bda’

destroy each other, because the point (g, B,) is identical with the

point (a, 3,).
The expression (8) is therefore reduced to

(Xdﬂ)u_uiiﬁ- (9)

Since the curve o = o, is identical with the closed curve s, we
may write this expression

p. 80, in equations (’%), (4), (), (8), (17), (18), (19), (20), (21), (22), for
B read N,
p- 82, L 3, for Rl read N1
. . a2y, azv’
p- 83, in equations (28), (29), (30), (31), for Tt read Tody’

» in equation (29), insert — before the second member.
. 105, 1. 2, for Q@ read 87Q.

. 108, equation (1), for p read ¢
5 ” (2), for ¢ read p.
» ” (3), for o read o’.
3 » (4), for o’ read o.

o wE

1
. 1. 4, — .
118, L. 4, for KR read 47TKR

» L5, for KRR cose read ZI;TKRE'COS €.

114, 1. 5, for 8, read S.
124, last line, for e, +e, read e +e,.
125, lines 3 and 4, tromspose within and without; 1. 16, for v

read V; and L 18, for ¥V read v.

128, lines 11, 10, 8 from bottom, for dx read dz.
149, 1. 24, for equpotential read eguipotential,
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D
p-

ERRATA. VOL. L

. 159, L 3, for F read f.

» 1. 2 from bottom, for M read M,.
163, 1. 20, for Ai—s+1 read Ai_sa1

. R 28 e 126
164, equation (34), for (—1)* g”le]T read (—_l)‘ e ll.
p. 179, equation (76), for i+1 read 27+ 1.
x® 22
, equation (24), for z—j——:—z_l read — A 1.

p- 185

p. 366, equation (3),

. 367, 1. 5, for 2k, 8 read 2k,8.
. 368, equatlon (14), Jor J) read I,

. 397, L. 1, for Fﬁ’ read o .

. db
. 356, equation (12), for - ' read -

. 186, L. 5 from hottom, for ‘The surface- dcnslty on the elliptic plate’

read The surface-density on either side of the elliptic plate.

. 186, equation (30), for 27 read 4.
. 188, equation (38), for n? read 27
. 196, L. 27, for e..e read ¢, ..¢,

. 197, equation (10) should be M =

. 204, 1. 15 from bottom, dele either.
. 215, 1. 4, for A2k read +/2F.

Fe ea’
7Ty

v

E
234, equation (13), for 2 read on'

. 335, dele last 14 lines.
. 336, 1. 1, dele therefore.

1. 2, for ‘the potential at C' to exceed that at D by P, read a
current, C, from X to Y.

1. 4, for *C to D will cause the potential at 4 to exceed that at
B by the same quantity £, read X to Y will cause an equal
current € from 4 to B.

. 351, L. 3, for B2+ B0 +sz2 'read R u P Byt + Byt

w L85, read +2f//(u——+ +w—)dacd_/d~

. 355, last line, for 8" read S.

712

dx
, in equations (12), (15) (16), far A read Ar.

2

E’
at the end of Art. 350 insert as follows :—
When vy, the resistance to be measured, @, the resistance of the
battery, and e, the resistance of the galvanometer, are given, the
best values of the other resistances have been shewn by Mr. Oliver
Heaviside (£hil. May., Feb. 1873) to be

c=vam, s=Jari =it

a+t+y

u.-+—y
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ELECTRICITY AND MAGNETISM,

PRELIMINARY.
ON THE MEASUREMENT OF QUANTITIES.

1.] EvERY expression of a Quantity consists of two factors or
components. One of these 1s the name of a certain known quan-
tity of the same kind as the quantity to be expressed, which is
taken as a standard of reference. The other component is the
number of times the standard is to be taken in order to make up
the required quantity. The standard quantity is technically called
the Unit, and the number is ealled the Numerical Value of the
quantity.

There must be as many different units as there are different
kinds of quantities to be measured, but in all dynamical sciences
it is possible to define these units in terms of the three funda-
mental units of Length, Time, and Mass. Thus the units of area
and of volume are defined respectively as the square and the cube
whose sides are the unit of length.

Sometimes, however, we find several units of the same kind
founded on independent considerations. Thus the gallon, or the
volume of ten pounds of water, is used as a unit of capacity as well
as the cubic foot. The gallon may be a convenient measure in
some cases, but it is not a systematic one, since its numerical re-
lation to the cubic foot is not a round integral number.

2.1 In framing a mathematical system we suppose the funda-
mental units of length, time, and mass to be given, and deduce
all the derivative units from these by the simplest attainable de-
finitions.

The formulae at which we arrive must be such that a person

VOL. 1, B
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2 PRELIMINARY. [3.

of any mnation, by substituting for the different symbols the nu-
merical value of the quantities as measured by his own national
units, would arrive at a true result.

Hence, in all scientific studies it is of the greatest importance
to employ units belonging to a properly defined system, and to
Lknow the relations of these units to the fundamental units, so that
we may be able at once to transform our results from one system to
another.

This is most conveniently done by ascertaining the dimensions
of every unit in terms of the three fundamental units. When a
given unit varies as the #th power of one of these units, it is sald
to be of u# dimensions as regards that unit.

For instance, the scientific unit of volume is always the cube
whose side is the unit of length. If the unit of length varies,
the unit of volume will vary as its third power, and the unit of
volume is said to be of three dimensions with respect to the unit of
length.

A knowledge of the dimensions of units furnishes a test which
ought to be applied to the equations resulting from any lengthened
investigation. The dimensions of every term of such an equa-
tion, with respect to each of the three fundamental units, must
be the same. If not, the equation is absurd, and contains some
error, as its interpretation would be different according to the arbi-
trary system of units which we adopt *.

The Three Fundamenial Units.

8.] (1) Lengfk. 'The standard of length for scientific purposes
in this country is one foot, which is the third part of the standard
yard preserved in the Exchequer Chambers.

In France, and other countries which have adopted the metrie
. system, it is the métre. The métre is theoretically the ten mil-
lionth part of the length of a meridian of the earth measured
from the pole to the equator; but practically it is the length of
a standard preserved in Paris, which was constructed by Borda
to correspond, when at the temperature of melting ice, with the
value of the preceding length as measured by Delambre. The meétre
has not been altered to correspond with new and more accurate
measurements of the earth, but the arc of the meridian is estimated
in terms of the original métre.

* The theory of dimensions was first stated by Fourler, Théorie de Chaleur, § 160.
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5] THE THREE FUNDAMENTAL UNITS. 3

In astronomy the mean distance of the earth from the sun is
sometimes taken as a unit of length.

In the present state of science the most universal standard of
length which we could assume would be the wave length in vacuum
of a particular kind of light, emitted by some widely diflused sub-
stance such as sodium, which has well-defined lines in its spectrum.
Such a standard would be independent of any changes in the di-
mensions of the earth, and should be adopted by those who expect
their writings to be more permanent than that body.

In treating of the dimensions of units we shall call the unit of
length [Z]. 1If 7 is the numerical value of a length, it is under-
stood to be expressed in terms of the concrete unit [L], so that
the actual length would be fully expressed by 7 [L].

4.7 (2) Time. The standard unit of time in all civilized coun-
tries is deduced from the time of rotation of the earth about its
axis. The sidereal day, or the true period of rotation of the earth,
can be ascertained with great exactness by the ordinary observa-
tions of astronomers; and the mean solar day can be deduced
from this by our knowledge of the length of the year.

The unit of time adopted in all physical researches is one second
of mean solar time.

In astronomy a year is sometimes used as a unit of time. A
more universal unit of time might be found by taking the periodic
time of vibration of the particular kind of light whose wave length
1s the unit of length.

We shall call the concrete unit of time [77], and the numerical
measure of time 7.

5.] (8) Mass. The standard unit of mass is in this country the
avoirdupois pound preserved in the Exchequer Chambers. The
grain, which is often used as a unit, is defined to be the 7000th
part of this pound.

In the metrical system it is the gramme, which is theoretically
the mass of a cubic centimétre of distilled water at standard tem-
perature and pressure, but practically it is the thousandth part
of a standard kilogramme preserved in Paris.

The accuracy with which the masses of bodics can be com-
pared by weighing is far greater than that hitherto attained in
the measurement of lengths, so that all masses ought, if possible,
to be compared directly with the standard, and not deduced from
experiments on water.

In descriptive astronomy the mass of the sun or that of the

B 2
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4 PRELIMINARY. [5.

earth is sometimes taken as a unit, but in the dynamical theory
of astronomy the unit of mass is deduced from the units of time
and length, combined with the fact of universal gravitation. The
astronomical unit of mass is that mass which attracts another
body placed at the unit of distance so as to produnce in that body
the unit of acceleration.

In framing a universal system of units we may either deduce
the unit of mass in this way from those of length and time
already defined, and this we can do to a rough approximation in
the present state of selence; or, if we expect* soon to be able to
determine the mass of a single molecule of a standard substance,
we may wait for this determination before fixing a universal
standard of mass.

We shall denote the conerete unit of mass by the symbol [ ]
in treating of the dimensions of other units. The unit of mass
will be taken as one of the three fundamental units. When, as
in the French system, a particular substance, water, is taken as
a standard! of density, then the unit of mass is no longer inde-
pendent, but varies as the unit of volume, or as [ Z3].

If, as in the astronomical system, the unit of mass is defined
with respect to its attractive power, the dimensions of [M] are
[ L3 T-2].

For the acceleration due to the attraction of a mass m at a

distance 7 is by the Newtonian Law % . Suppose this attraction

to act for a very small time ¢ on a body originally at rest, and to
cause it to describe a space s, then by the formula of Galileo,

w
s=1 0 =400

2

whence m = 2%9. Since r and s are both lengths, and £ is a

time, this equation cannot be true unless the dimensions of m are
[Z37-%]. The same can be shewn from any astronomical equa-
tion in which the mass of a body appears in some but not in all
of the terms .

* See Prof J. Loschmidt, ¢ Zur Grosse der Lufimolecule,” Acalemy of Vienna,
Oct. 12, 1865; G, J. Stoney on ‘The Internal Motions of Gases,’ PLil. Mag., Aug.
1868 ; and Sir W, Thomegon on * The Size of Atoms,” Nature, March 31, 1870.

+ If a foot and & second are taken as units, the astronomical unit of mass would
be about 32,000,000 pounds.
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6. ] DERIVED UNITS. 5

Derived Units.

6.] The unit of Velocity is that velocity in which unit of length
is described in unit of time. Its dimensions are [L 71},

If we adopt the units of length and time derived from the
vibrations of light, then the wnit of velocity is the velocity of
light.

The unit of Accecleration is that aceeleration in which the velo-
city increases by unity in unit of time. Its dimensionsare [Z2'77].

The unit of Density is the density of a substance which contains
unit of mass in unit of volume. Itsdimensions are [M L3].

The unit of Momentum is the momentum of unit of mass moving
with unit of velocity, Its dimensions are [AM/L7T77].

The unit of Force is the force which produces unit of momentum
in unit of time. Its dimensions are [MLT-%].

This 1s the absolute unit of force, and this definition of it is
implied in every equation in Dynamics. Nevertheless, in many
text books in which these equations are given, a diflerent unit of
force is adopted, namely, the weight of the national unit of mass;
and then, in order to satisfy the equations, the national unit of mass
1s itself abandoned, and an artificial unit is adopted as the dynamical
unit, equal to the national unit divided by the numerical value of
the force of gravity at the place. In this way both the unit of forece
and the unit of mass are made to depend on the value of the
force of gravity, which varies from place to place, so that state-
ments involving these quantities are not complete without a know-
ledge of the force of gravity in the places where these statements
were found to be true.

The abolition, for all scientifie purposes, of this methed of mea-
suring forces is mainly due to the introduction of a general system
of making observations of magnetic force in countries in which
the force of gravity is different. All such forces are now measured
according to the strictly dynamical method deduced from our
definitions, and the numerical results are the same in whatever
country the experiments are made.

The unit of Work is the work done by the unit of force acting
through the umnit of length measured in its own direction. Its
dimensions are [M L2 12].

The Energy of a system, being its capacity of performing work,
is measured by the work which the system 1s capable of performing
by the expenditure of its whole energy.
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6 PRELIMINARY. [7.

The definitions of other quantities, and of the units to which
they are referred, will be given when we require them.

In transforming the values of physical quantities determined in
terms of one unit, so as to express them in terms of any other unit
of the same kind, we have only to remember that every expres-
sion for the quantity consists of two factors, the unit and the nu-
merical part which expresses how often the unit is to be taken.
Hence the numerical part of the expression varies inversely as the
magnitude of the unit, that is, inversely as the various powers of
the fundamental units which are indieated by the dimensions of the
derived unit.

On Physical Continuity and Discontinuity.

7.) A quantity is sald to vary continuously when, if it passes
from one value to another, it assumes all the intermediate values.

We may obtain the conception of continuity from a consideration
of the continuous existence of a particle of matter in time and space.
Such a particle cannot pass from one position to another without
describing a continuous line in space, and the coordinates of its
position must be continuous functions of the time.

In the so-called fequation of continuity,’ as given in treatises
on Hydrodynamics, the fact expressed is that matter cannot appear
in or disappear from an element of volume without passing in or out
through the sides of that element.

A quantity i1s said to be a continuous function of its variables
when, if the variables alter continuwously, the quantity itself alters
eontinuously.

Thus, if # is a function of z, and if, while # passes continuously
from x, to z,, » passes continuously from %, to »;, but when 2
passes from a;, to &,, # passes from #,” to u,, #,” being different from
#;, then # is said to have a discontinuity in its variation with
respect to @ for the value # = », because it passes abruptly from #;
to u,” while # passes continuously through ;.

If we consider the differential coeflicient of » with respect to z for
the value # = &, as the limit of the fraction

0y — 1,

Zy—ay
when 2, and 2, are both made to approach #, without limit, then,
if @, and =z, are always on opposite sides of #;, the ultimate value of
the numerator will be #,”— #,;, and that of the denominator will
be zero. If u is a quantity physically continuous, the discontinuity
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can exist only with respect to the particular variable 2. We must
in this case admit that it has an infinite differential coefficient
when # = z;. If % is not physically continuous, it cannot be dif-
ferentiated at all.

It is possible in physical questions to get rid of the idea of
discontinuity without sensibly altering the conditions of the case.
If o, is a very little less than z,, and #, a very little greater than
z,, then #, will be very nearly equal to #, and », to u,/. We
may now suppose # to vary in any arbitrary but continuous manner
from u, to wu, between the limits #;, and #,. In many physical
questions we may begin with a hypothesis of this kind, and then
investigate the result when the values of z, and #, are made to
approach that of x; and ultimately to reach it. The result will
in most cases be independent of the arbitrary manner in which we
have supposed # to vary between the limits.

Discontinuity of a Function of more than One Variable.

8.] If we suppose the values of all the variables except # to be
constant, the discontinuity of the function will occur for particular
values of z, and these will be connected with the values of the
other variables by an equation which we may write

¢ = ¢(.z‘, Y, % &(‘) = 0.
The discontinuity will occur when ¢ = 0. When ¢ is positive the
function will have the form F), (z, #, 2z, &c.)» When ¢ 1s negative
it will have the form F, (z, 7, 2, &c.). There need be no necessary
relation between the forms F| and F,.

To express this discontinuity in a mathematical form, let one of
the variables, say r, be expressed as a function of ¢ and the other
variables, and let #, and 7, be expressed as functions of ¢, 7, z, &e.
We may now express the general form of the function by any
formula which is sensibly equal to F, when ¢ is positive, and to
I when ¢ 1s negative. Such a formula is the following—

I +emt F,

F= 14 et

As long as # is a finite quantity, however great, I will be a
continuous function, but if we make » infinite /' will be equal to
F, when ¢ is positive, and equal to #, when ¢ is negative.

Duscontinuily of the Derivalives of a Continuons Function.

The first derivatives of a continuous function may be discon-
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8 PRELIMINARY, (9.

tinuous. Let the values of the variables for which the discon-
tinuity of the derivatives occurs be connected by the equation
p=¢@yz..)=0,

and let 7, and F, be expressed in terms of ¢ and n—1 other
variables, say (y,2...).

Then, when ¢ is negative, # is to be taken, and when ¢ is
positive F, is to be taken, and, since # is itself continuous, when
¢ is zero, £} = F,

Ilence, when ¢ is zero, the derivatives i and ar, may be

d¢ de
different, but the derivatives with respect to any of the other
variables, such as an and d——ﬁé, must be the same. The discon-
dy dy

tinuity is therefore confined to the derivative with respect to ¢, all
the other derivatives being continuous,

Periodic and Multiple Functions.

9.1 If # is a function of z such that its value is the same for
#, #+a, #+nae, and all values of » differing by o, # is called a
periodic funetion of 2, and & is called its period.

If 2 is considered as a function of #, then, for a given value of
#, there must be an infinite series of values of 2 differing by
multiples of @. In this case « is called a multiple function of »,
and a is called its cyclic constant.

. . . dx .

The differential coefficient (Z'Jld has ouly a finite number of values

corresponding to a given value of z.

On the Relation of Physical Quantities to Directions in Space.

10.] In distinguishing the kinds of physical quantities, it is of
great importance to know how they are related to the directions
of those coordinate axes which we usually employ in defining the
positions of things. The introduction of coordinate axes into geo-
metry by Des Cartes was one of the greatest steps in mathematical
progress, for it reduced the methods of geometry to calculations
performed on numerical quantities. The position of a point 1s made
to depend on the length of three lines which are always drawn in
determinate directions, and the line joining two points is in like
manner considered as the resultant of three lines.

But for many purposes in physical reasoning, as distinguished
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from calculation, it is desirable to avoid explicitly introducing the
Cartesian coordinates, and to fix the mind at once on a point of
space instead of its three coordinates, and on the magnitude and
direction of a force instead of its three components. This mode
of contemplating geometrical and physical quantities is more prim-
itive and more natural than the other, although the 1deas connected
with it did not receive their full development till ITamilton made
the next great step in dealing with space, by the invention of his
Calculus of Quaternions.

As the methods of Des Cartes are still the most familiar to
students of science, and as they are really the most useful for
purposes of caleulation, we shall express all our results in the
Cartesian form. I am eonvinced, however, that the introduction
of the ideas, as distinguished from the operations and methods of
Quaternions, will be of great use to us in the study of all parts
of our subject, and especially in electrodynamics, where we have to
deal with a number of physical quantities, the relations of which
to each other can be expressed far more simply by a few words of
ITamilton’s, than by the ordinary equations.

11.] One of the most important features of Hamilton’s method is
the division of quantities into Scalars and Vectors.

A Scalar quantity is capable of being completely defined by a
single numerical specification. Its numerical value does not in
any way depend on the directions we assume for the coordinate
axes,

A Vector, or Directed quantity, requires for its definition three
numerical specifications, and these may most simply be understood
as having reference to the directions of the coordinate axes.

Scalar quantities do not involve direction. The volume of a
geometrical figure, the mass and the energy of a material body,
the hydrostatical pressure at a point in a fluid, and the potential
at a point in space, are examples of scalar quantitics.

A vector quantity bas direction as well as magnitude, and is
such that a reversal of its direction reverses its sign. The dis-
placement of a point, represented by a straight line drawn from
its original to its final position, may be taken as the typical
vector quantity, from which indeed the name of Vector is derived.

The velocity of a body, its momentum, the force acting on it,
an electric current, the magnetization of a particle of iron, are
instances of vector quantities.

There are physical quantities of another kind which are related
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10 PRELIMINARY. [12.

to directions in space, but which are not vectors. Stresses and
strains in solid bodies are examples of these, and the properties
of bodies considered in the theory of elasticity and in the theory
of double refraction. Quantities of this class require for their
definition #ize numerical specifications. They are expressed in the
language of Quaternions by linear and vector functions of a vector.

The addition of one veetor quantity to another of the same kind
is performed according to the rule given in Statics for the com-
position of forces. In fact, the proof which Poisson gives of the
¢ parallelogram of forces” is applicable to the composition of any
quantities such that a reversal of their sign is equivalent to turning
them end for end.

When we wish to denote a vector quantity by a single symbol,
and to call attention to the fact that it 1s a vector, so that we must
consider its direction as well as its muagnitude, we shall denote
it by a German capital letter, as U, B, &ec.

In the calculus of Quaternions, the position of a point in space
is defined by the vector drawn from a fixed point, called the origin,
to that point. If at that point of space we have to consider any
physical quantity whose value depends on the position of the point,
that quantity is treated as a function of the vector drawn from
the origin. The function may be itself either scalar or vector.
The density of a body, its temperature, its hydrostatic pressure,
the potential at a point, are examples of scalar functions. The
resultant force at the point, the velocity of a fluid at that point,
the velocity of rotation of an element of the fluid, and the couple
produeing rotation, are examples of vector functions.

12.] Physical vector quantities may be divided into two classes,
in one of which the quantity is defined with reference to a line,
while in the other the quantity is defined with reference to an
ared.

For instance, the resultant of an attractive force in any direction
may be measured by finding the work which it would do on a
body if the body were moved a short distance in that direction
and dividing it by that short distance. Here the attractive force
is defined with reference to a line.

On the other hand, the flux of heat in any direction at any
point of a solid body may be defined as the quantity of heat which
crosses a small area drawn perpendicular to that direction divided
by that area and by the time. Here the flux is defined with
reference to an area.
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13.] FORCES AND FLUXES. 11

There are certain cases in which a quantity may be measured
with reference to a line as well as with reference to an area.

Thus, in treating of the displaeementg of elastic solids, we may
direct our attention either to the original and the actual position
of a particle, in which case the displacement of the particle is
measured by the line drawn from the first position to the second,
or we may consider a small arca fixed in space, and determine
what quantity of the solid passes across that area during the dis-
placement.

In the same way the velocity of a fluild may be investigated
either with respect to the actual velocity of the individual parti-
cles, or with respeet to the quantity of the fluid which flows through
any fixed area.

But in these cases we require to know separately the density of
the body as well as the displacement or velocity, in order to apply
the first method, and whenever we attempt to form a molecular
theory we have to use the second method.

In the case of the flow of electricity we do not know anything
of its density or its velocity in the conductor, we only know the
value of what, on the fluid theory, would correspond to the product
of the density and the velocity. Hence in all such cases we must
apply the more general method of measurement of the flux across
an area.

In electrical science, electromotive force and magnetic force
belong to the first class, being defined with reference to lines.
When we wish to indicate this fact, we may refer to them as
Forees.

On the other hand, electric and magnetic induction, and electric
currents, belong to the second class, being defined with reference
to areas. When we wish to indicate this fact, we shall refer to them
as Fluxes.

Each of these forces may be considered as producing, or tending
to produce, its corresponding flux. Thus, electromotive force pro-
duces electric currents in conductors, and tends to produce them
in dielectrics. It produces electric induction in dielectrics, and pro-
bably in conductors also. In the same sense, magnetic force pro-
duces magnetic induction.

13.] In some cases the flux is simply proportional to the force
and in the same direction, but in other cases we can only affirm
that the direction and magnitude of the flux are functions of the
direction and magnitude of the force.
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The case in which the eomponents of the flux are lineer functions
of those of the force is discussed in the chapter on the Equations
of Conduction, Art, 296." There arc in general nine coeflicients
which determine the relation between the force and the flux, In
certain cases we have reason to believe that six of these coeflicients
form three pairs of equal quantities. In such cases the relation be-
tween the line of direction of the force and the normal plane of the
flux is of the same kind as that between a diameter of an ellipsoid
and its conjugate diametral plane. In Quaternion language, the
one vector is said to be a linear and vector function of the other, and
when there are three pairs of equal cocflicients the function is said
to be self-conjugate.

In the case of magnetic induction in iron, the flux, (the mag-
netization of the iron,) is not a linear function of the magnetizing
force. In all cases, however, the product of the force and the
flux resolved in its direction, gives a result of scientific import~
ance, and this is always a scalar quantity.

14.] There are two mathematical operations of frequent occur-
rence which are appropriate to these two classes of vectors, or
directed quantities.

In the case of forces, we have to take the integral along a line
of the product of an element of the line, and the resolved part of
the force along that element. The result of this operation is
called the Line-integral of the force. It represents the work
done on a body carried along the line. In certain cases in which
the line-integral dees not depend on the form of the line, Lut
only on the position of its extremities, the line-integral is called
the Potential.

In the case of fluxes, we have to take the integral, over a surface,
of the flux through every element of the surface. The result of
this operation is called the Surface-integral of the flux. It repre-
sents the quantity which passes through the surface.

There are certain surfaces across which there is no flux. If
two of these surfaces intersect, their line of intersection is a line
of flux. In those cases in which the flux is in the same direction
as the force, lines of this kind are often called Lines of Force. It
would be more correct, however, to speak of them in electrostaties
and magnetics as Lines of Induction, and in electrokinematics as
Lines of Flow.

15.] There is another distinction between different kinds of
directed quantities, which, though very important in a physical
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point of view, is not so necessary to be observed for the sake of
the mathematical methods, This is the distinction between longi-
tudinal and rotational properties.

The direction and magnitude of a quantity may depend upon
some action or effect which takes place entirely along a certaiu
line, or it may depend upon something of the nature of rota-
tion about that line as an axis. The laws of combination of
directed quantities are the same whether they are longitudinal or
rotational, so that there is no difference in the mathematical treat-
ment of the two classes, but there may be physical circumstances
which indicate to which class we must refer a particular pheno-
menon. Thus, electrolysis consists of the transfer of certain sub-
stances along a line in one direction, and of certain other sub-
stances in the opposite direction, which is evidently a longitudinal
phenomenon, and there is no evidence of any rotational effect
about the direction of the force. Hence we infer that the electric
current which causes or accompanies electrolysis is a longitudinal,
and not a rotational phenomenon.

On the other hand, the north and south poles of a magnet do
not differ a8 oxygen and hydrogen do, which appear at opposite
places during electrolysis, so that we bave no evidence that mag-
netism is a longitudinal phenomenon, while the effect of magnetism
in rotating the plane of polarized light distinetly shews that mag-
netism is a rotational phenomenon.

On Line-integrals.

16.7 The operation of integration of the resolved part of a vector
quantity along a line is important in physical science generally,
and should be clearly understood.

Let #, 7, 2 be the coordinates of a point P on a line whose
length, measured from a certain point 4, is §. These coordinates
will be functions of a single variable s.

Let Z be the value of the vector quantity at P, and let the
tangent to the curve at 7 make with the direction of £ the angle ¢,
then R cose is the resolved part of /2 along the line, and the

integral s
L= f L cos e ds
0

is called the line-integral of 2 along the line s.
We may write this expression

[+, dx dy de
L :,/0 (XB; +Y[]§ +J—(§)d8,
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where X, ¥, Z are the components of & parallel to @, 7, 2 respect-
ively.

This quantity is, In general, different for different lines drawn
between 4 and P. When, however, within a certain region, the
quantity

Xde+ Ydy+Zde = — D,
that is, is an cxact differential within that region, the value of Z
becomes L = ¥,—¥,,

and is the same for any two forms of the path between 4 and P,
provided the one form can be changed into the other by con-
tinuous motion without passing out of this region.

On Potentials.

The quantity ¥ is a scalar function of the position of the point,
and is therefore independent of the directions of reference. It is
called the Potential Function, and the vector quantity whose com-
ponents are X, ¥, Z is said to have a potential ¥, if

d¥ d¥ ay
x—- @) TG 2-

== E)

‘When a potential function exists, surfaces for which the po-
tential is constant are called Equipotential surfaces. The direction
of £ at any point of such a surface coincides with the normal to
the surface, and if # be a normal at the point P, then B = —%; .

The method of considering the components of a vector as the
first derivatives of a certain function of the coordinates with re-
spect to these coordinates was invented by Laplace* in his treat-
ment of the theory of attractions. The name of Potential was first
given to this function by Green t, who made it the basis of his
treatment of electricity. Green’s essay was neglected by mathe-
maticiang till 1846, and before that time most of its important
theorems had been rediscovered by Gauss, Chasles, Sturm, and
Thomson §.

In the theory of gravitation the potential is taken with the
opposite sign to that which is here used, and the resultant force
In any direction is then measured by the rate of increase of the

* Mée, Céleste, liv, iii.

+ Essay on the Application of Mathematical Analysis to the Theories of Electricity
and Magnetism, Nottingham, 1828. Reprinted in Crelle’'s Journal, and in Mr. Ferrer's
edition of Green’s Works.

1 Thomson and Tait, Natural Philosopby, § 483.
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potential function in that direction. In electrical and magnetic
investigations the potential is defined so that the resultant force
in any direction is measured by the decrease of the potential in
that direction. This method of using the expression makes it
correspond in sign with potential energy, which always decreases
when the bodies are moved in the direction of the forces acting
on them.

17.] The geometrical nature of the relation between the poten-
tial and the vector thus derived from it receives great light from
Hamilten’s discovery of the form of the operator by which the vector
is derived from the potential.

The resolved part of the vector in any direction is, as we have
seen, the first derivative of the potential with respect to a co-
ordinate drawn in that direction, the sign being reversed.

Now if ¢, /, £ are three unit vectors at right angles to each
other, and if X, ¥, Z are the components of the vector § resolved
parallel to these vectors, then

F=iX+jY+42Z, (1)
and by what we have said above, if ¥ is the potential,

LAY Ay d¥
32_(z%+;@-+ 7 (2)
If we now write V for the operator,
d d d
4, .4 L d 5
o +j(ly +chz ®)
F=—VL (4)

The symbol of operation V may be interpreted as directing us
to measure, in each of three rectangular directions, the rate of
increase of ¥, and then, comsidering the quantities thus found as
vectors, to compound them into one. This is what we are directed
to do by the expression (3). But we may also consider it as directing
us first to find out in what direction ¥ increases fastest, and then
to lay off in that direction a vector representing this rate of
Increase.

M. Lamé, in his T¥aité des Fonctions Inverses, uses the term
Differential Parameter to express the magnitude of this greatest
rate of increase, but neither the term itself, nor the mode in which
Lamé uses it, indicates that the quantity referred to has direction
as well as magnitude. On those rare occasions in which I shall have
to refer to this relation as a purely geometrical one, I shall eall the
vector F the Slope of the scalar function ¥, using the word Slope
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to indicate the direction, as well as the magnitude, of the most
rapid decrease of ¥.

18.] There are cases, however, in which the conditions

a5_ar o, dX_ a4y dX_

dy de O de dz” de dy — 7
which are those of Xdz+ Ydy+ Zdz being a eomplete differential,
are fulfilled throughout a certain region of space, and yet the line-
integral from 4 to # may be different for two lines, each of
which lies wholly within that region. This may be the case if
the region is in the form of a ring, and if the two lines from 4
to P pass through opposite segments of the ring. In this case,
the one path cannot be transformed into the other by continuous
motion without passing out of the region.

‘We are here led to considerations belonging to the Geometry
of Position, a subject which, though its importag::e was pointed
out by Leibnitz and illustrated by Gauss, has been little studied.
The most complete treatment of this subject has been given by
J. B. Listing *.

Let there be p points in space, and let / lines of any form be
drawn joining these points so that no two lines intersect each
other, and no point is left isolated. 'We shall call a figure com-
posed of lines in this way a Diagram. Of these lines, p—1 are
suflicient to join the p points so as to form a connected system.
Every new line completes a loop or closed path, or, as we shall
call it, a Cyele. The number of independent eycles in the diagram
is therefore x = {— p+1.

Any closed path drawn along the lines of the diagram is com-
posed of these independent cycles, each being taken any number of
times and in either direction.

The existence of cycles is called Cyclosis, and the number of
eycles in a diagram is called its Cyelomatic number.

Cyclosis in Surfaces and Regions.

Surfaces are either complete or bounded. Complete surfaces are
either infinite or closed. Bounded surfaces are limited by one or
more closed lines, which may in the limiting cases become finite
lines or points.

A finite region of space is bounded by one or more closed
surfaces. Of these one is the external surface, the others are

* Der Census Raiimlicher Complexe, Gott. Abh., Bd. x, 8. 87 (1861).
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included in it and exclude each other, and are called internal
surfaces.

If the region has one bounding surface, we may suppose that
surface to contract inwards without breaking its continuity or
cutting itself. If the region 1s one of simple continuity, such as
a sphere, this process may be continued till it is reduced to a
point; but if the region is like a ring, the result will be a closed
carve; and if the region has multiple connexions, the result will
be a diagram of lines, and the cyclomatic number of the diagram
will be that of the region. The space outside the region has the
same cyclomatic number as the region itself. Hence, if the region
is bounded by internal as well as external surfaces, its cyclomatic
pumber is the sum of those due to all the surfaces.

When a region encloses within itself other regions, it is called a
Periphractic region.

The number of internal bounding surfaces of a region is called
its periphractic number. A closed surface is also periphractic, its
number being unity.

The cyclomatic number of a closed surface is twice that of the
region which it bounds. To find the cyclomatic number of a
bounded surface, suppose all the boundaries to contract inwards,
without breaking continuity, till they meet. The surface will then
be reduced to a point in the case of an acyclic surface, or to a linear
diagram in the case of cyclic surfaces. The cyclomatic number of
the diagram is that of the surface.

19.] TuroreM 1. If throughout any acyclic region
Xde+Ydy+Zde =—D¥,
the value of the line-integral from a point 4 to a point P taken
along any puath within the region will be the same.

We shall first shew that the line-integral taken round any closed
path within the region is zero.

Suppose the equipotential surfaces drawn. They are all either
closed surfaces or are bounded entirely by the surface of the region,
so that a closed line within the region, if it cuts any of the sur-
faces at one part of its path, must cut the same surface in the
opposite direction at some other part of its path, and the corre-
sponding portions of the line-integral being equal and opposite,
the total value is zero.

Hence if 4QP and AQ'P are two paths from 4 to P, the line-
integral for 4@ P is the sum of that for 4Q P and the closed path

VOL. I, C
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AQPQA. But the line-integral of the closed path is zero, there-
fore those of the two paths are equal.

Hence if the potential is given at any one point of such a
region, that at any other point is determinate.

20.7] Tuarorey 1. In a cyclic region in whick the equation
' Xdo4 Ydy+Zdz = —D¥
is everywhere fulfilled, the line-integral from A to P, along a
line drawn within the region, will not in general be determinate
unless the channel of communication between A and P be specified.

Let X be the cyclomatic number of the region, then K sections
of the region may be made by surfaces which we may call Dia-
phragms, so as to close up K of the channels of communication,
and reduce the region to an acyclic condition without destroying
its continuity.

The line-integral from 4 to any point P taken along a line
which does not cut any of these diaphragms will be, by the last
theorem, determinate in value.

Now let 4 and P be taken indefinitely near to each other, but
on opposite sides of a diaphragm, and let X be the line-integral
from 4 to P.

Let £ and #” be two other points on opposite sides of the same
diaphragm and indefinitely near to each other, and let K’ be the
line-integral from 4" to P”. Then K'= K.

For if we draw 44" and PF, nearly coineident, but on opposite
sides of the diaphragm, the line-integrals aloug these lines will be
equal. Suppose each equal to L, then the line-integral of 4" P’ is
equal to that of L4+ AP+ PP =_—_L + K+ 1L = K = that of 4P.

Hence the line-integral round a closed curve which passes through
one diaphragm of the system in a given direction is a constant
quantity K. This quantity is called the Cyeclic constant corre-
sponding to the given cycle.

Let any closed curve be drawn within the region, and let it cut
the diaphragm of the first cycle p times in the positive direction
and 7 times in the negative dircction, and let p—p = ”1 Then
the line-integral of the closed curve will be #, K.

Similarly the line-integral of any closed curve will be

K+ n,Ky+. . +ugKg;
where ng represents the excess of the number of positive passages
of the curve through the diaphragm of the cycle K over the
number of negative passages.
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21.] SURFACE-INTEGRALS. 19

If two curves are such that one of them may be transformed
into the other by continuous motion without at any time passing
through any part of space for which the condition of having a
potential is not fulfilled, these two curves are called Reconcileable
curves, Curves for which this transformation cannot le effected
are called Irreconcileable curves *.

The condition that Xdz+ Ydy+ Zdz is a complete differential
of some function ¥ for all points within a certain region, occurs in
severa] physical investigations in which the directed quantity and
the potential bave different physical interpretations.

In pure kinematies we may suppose X, ¥, Z to be the com-
ponents of the displacement of a point of a continuous body whose
original coordinates are z, ¥, z, then the condition expresses that
these displacements constitute a non-rotational strain t.

If X, ¥, Z represent the components of the veloeity of a fluid at
the point #, 7, 2, then the condition expresses that the motion of the
fluid is irrotational.

If X, ¥, Z represent the components of the force at the point
@, ¥, 2, then the condition expresses that the work done on a
particle passing from one point to another is the difference of the
potentials at these points, and the value of this difference is the
same for all reconcileable paths between the two points.

On Surfuce-Integrals.

21.] Let d8 be the element of a surface, and € the angle which
a normal to the surface drawn towards the positive side of the
surface makes with the direction of the vector quantity £, then

f 2L cos ed S is called the surface-integral of R over the surfuce §.

TrororeMm II1. The surface-integral of the flux through a closed
surface may be expressed as the volume-integral of its convergence
taken within the surface. (See Art. 25.)

Let X, 7, Z be the compounents of £, and let 7, m, » be the

direction-cosines of the normal to § measured outwards. Then the
surface-integral of It over § 1s

ffR cos ed S :/YdeS+fmedS+fondS
' :ffXdydz+/dezdm+ffzozxdy,- (1)

* See Sir W. Thomson * On Vortex Motion,’ Trans. R. S. Edin., 1869.
+ See Thomson and Tait’s Natural Philosophy, § 190 (3).

C 2
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20 PRELIMINARY. [21.

the values of X, ¥, Z being those at a point in the surface, and
the integrations being extended over the whole surface.

If the surface is a closed one, then, when y and z are given,
the coordinate # must have an even number of values, since a line
parallel to z must enter and leave the enclosed space an equal
number of times provided it meets the surface at all.

Let a point travelling from z=—o to # = 4w first enter
the space when @ = z;, then leave it when z = #,, and so on;
and let the values of X at these points be X, X,, &c., then

f_/Xdez_f (X, —X) 4 (X,— X)) + &e. + (X, — XKoo} dydz. (2)

If X is a quantity which is eontinuous, and has no infinite values
between #; and @, then

Ty
X,—X = A %frlx; (3)
where the integration is extended from the first to the second
intersection, that is, along the first segment of z which is within
the closed surface. Taking into account all the segments which lie

within the closed surface, we find

ffXdydz:f/f%dmdydz, ()

the double integration being confined to the closed surface, but
the triple integration being extended to the whole enclosed space.
Hence, if X, Y, Z are continuous and finite within a closed surface
S, the total surface-integral of £ over that surface will be

]fﬁcoseds fff(‘lX ar dz)d 5 dy ds, (5)

the triple integration being extended over the whole space within 8.
Let us next suppose that X, ¥, Z are not continuous within the
closed surface, but that at a certain surfuce F(z, y, z) = 0 the
values of X, ¥, Z alter abruptly from X, ¥, Z on the negative side
of the surface to X7, ¥’, Z’ on the positive side.
If this disconfinuity occurs, say, between @, and z,, the value

of X,— X, will be
22 g X ,
[ o=y, (6)

z1
where in the expression under the integral sign only the finite
values of the derivative of X are to be considered.
In this case therefore the total surface-integral of 2 over the
closed surface will be expressed by
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22.] SOLENOIDAL DISTRIBUTION, 21

fchosedS—f/f((f]f Cf,Y+dy)(lm/ydz—f-ff(X’—X)rlydz
+ff(1"—1’)(?zzlx+ff(Z'-—Z)dx(Zy; (1)

or, if ', m’, »" are the direction-cosines of the normal to the surfuce
of discontinuity, and ¢§” an element of that surface,

dX dY dZ
ffRCOSEdS=f/f((Lp + iy + Z)rlwdydz

+ff{l’(X'—X)+m’(Y’—Y)+n’(Z’—Z)}dS’, (8)
where the integration of the last term is to be extended over the

surface of discontinuity.
If at every point where X, ¥, Z are continuous

dX dY dZ
vt =0 (9)
and at every surface where they are discontinuous
X+ Y +0Z =1V X4+m Y402, (10)

then the surface-integral over every closed surface is zero, and the
distribution of the vector quantity is said to be Salencidal.

We shall refer to equation (9) as the General solenocidal con-
dition, and to equation (10) as the Superficial solenoidal condition.

22.] Let us now consider the case in which at every point
within the surface § the equation

aX + ay " dz —0 (11)
de " dy  dz
is fulfilled. We have as a consequence of this the surface-integral
over the closed surface equal to zero.

Now let the closed surface § consist of three parts §;, §,, and
§,. Let §; be a surface uf any form bounded by a closed line Z; .
Let 8, be formed by drawing lines from every point of Z; always
coinciding with the direction of &. 1If I, m, #» are the direction-
cosines of the normal at any point of the surface §,, we have

Reose =X+ Ym+Zn =0, (12)
Hence this part of the surface contributes nothing towards the
value of the surface-integral.

Let S, be another surface of any form bounded by the closed
curve L, in which 1t meets the surface §,.

Let @, @y, @, be the surface-integrals of the surfaces 8, Sg, 8,
and let @ be the surface-integral of the closed surface 8. Then

Q:Q1+Q0+Q2=05 (13)
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22 PRELIMINARY. (22.

and we know that Qy=0; (14)
therefore @, =—0; (18)
or, in other words, the surface-integral over the surface §, 1s equal
and opposite to that over §, whatever be the form and position
of §,, provided that the intermediate surface S, is one for which £
is always tangential.

If we suppose L; a closed curve of small area, §, will be a
tubular surface having the property that the surface-integral over
every complete section of the tube is the same.

Since the whole space can be divided into tubes of this kind

provided dX dY dzZ

P 7_; + = 0, (16)
a distribution of a veclor quantity consistent with this equation is
called a Solenoidal Distribution.

On Tubes and Lines of Flow.

If the space is so divided into tubes that the surface-integral
for every tube is unity, the tubes are culled Unit tubes, and the
surface-integral over any finite surface § bounded by a closed
curve L is equal to the number of such tubes which pass through
8§ 1n the positive direction, or, what is the same thing, the number
which pass through the closed curve L.

Hence the surface-integral of § depends only on the form of
its boundary L, and not on the form of the surface within its
boundary.

On Periphractic Regions.

If, throughout the whole region bounded externally by the single

closed surface 8, the solenoidal condition

de ~ dy ' dz
is fulfilled, then the surface-integral taken over any closed surfuce
drawn within this region will be zero, and the surface-integral
taken over a bounded surface within the region will depend only
on the form of the closed curve which forms its boundary.

It is not, however, generally true that the same results follow
if the region within which the solenoidal condition is fulfilled is
bounded otherwise than by a single surface.

For if it is bounded by more than one continuous surface, one of
these is the external surface and the others are internal surfaces,
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22.] PERIPHRACTIC REGIONS. 23

and the region § is a periphractic region, having within it other
regions which it completely encloses.

If within any of these enclosed regions, §;, the solenoidal con-
dition is not fulfilled, let

Q, =/ ReosedS,

be the surface-integral for the surface enclosing this region, and
let @,, @5, &c. be the corresponding quantities for the other en-
closed regions.

Then, if a closed surface §” is drawn within the region §, the
value of its surface-integral will be zero only when this surface
§” does not include any of the enclosed regions §;, §,, &e. 1If it
includes any of these, the surface-integral 1s the sum of the surface-
integrals of the different enclosed regions which lie within it.

For the same reason, the surface-integral taken over a surface
bounded by a closed curve is the same for such surfaces only bounded
by the closed curve as are reconcileable with the given surface by
continuous motion of the surface within the region §.

‘When we have to deal with a periphractic region, the first thing
to be done is to reduce it to an aperiphractic region by drawing
lines joining the different bounding surfaces. Each of these lines,
provided it joins surfaces which were not already in continuous
connexion, reduces the periphractic number by unity, so that the
whole number of lines to be drawn to remove the periphraxy is
equal to the periphractic number, or the number of internal sur-
fuces. When these lines have been drawn we may assert that if
the solenoidal condition is fulfilled in the region S, any closed surface
drawn entirely within §, and not cutting any of the lines, has its
surface-integral zero.

In drawing these lines we must remember that any line joining
surfaces which are already connected does not diminish the peri-
phraxy, but introduces cyclosis.

The most familiar example of a periphractic region within which
the solenoidal condition is fulfilled is the region surrounding a mass
attracting or repelling inversely as the square of the distance.

In this case we have

X:mf;; Y:m—‘%—: Z.—_-m—z;;
7 r 7
where = 1s the mass supposed to be at the origin of coordinates.
At any point where r is finite
X dY oz
de ' dy  dz T
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24 PRELIMINARY. [23.

but at the origin these quantities become infinite. For any closed
surface not including the origin, the surface-integral is zero. If
a closed surface includes the origin, its surface~integral is 4 .

If, for any reason, we wish to treat the region round m as if it
were not periphractic, we must draw a line from » to un infinite
distance, and in taking surface-integrals we must remember to add
47m whenever this line crosses from the negative to the positive
side of the surface.

On Right-kanded and Left-kanded Relutions in Space.

23.] In this treatise the motions of translation along any axis
and of rotation about that axis, will be assumed to be of the same
sign when their directions correspond to those of the translation
and rotation of an ordinary or right-handed screw *.

For instance, if the actual rotation of the earth from west to east
is taken positive, the direction of the earth’s axis from south to
north will be taken positive, and if a man walks forward in the
positive direction, the positive rotation is in the order, head, right-
hand, feet, left-hand.

If we place ourselves on the positive side of a surface, the positive
direction along its bounding curve will be opposite to the motion
of the hands of a watch with its face towards us.

This is the right-handed system which 1s adopted in Thomson
and Tait’s Natural Philosophy, § 243. The opposite, or left-handed
system, is adopted in Hamilton’s and Tait’s Quaternions. The
operation of passing {rom the one system to the other is called, by
Listing, Perversion.

The reflexion of an object in a mirror is a perverted image of the
object.

‘When we use the Cartesian axes of z, 7, 2, we shall draw them

* The combined action of the muscles of the arm when we turn the upper side of
the right-hand outwards, and at the same time thrust the hand forwards, will
impress the right-handed screw motion on the memory more firmly than any verbal
definition. A common corkscrew may be used as a material symbol of the same
relation.

Professor W, H. Miller has suggested to me that as the tendrils of the vine are
right-handed screws and those of the hop left-handed, the two systems of relations in
space might be, called those of the vine and the hop respectively.

The system of the vine, which we adopt, is that of Linngus, and of screw-makers
in all civilized countries except Japan. De Candolle was the Hrst who called the
hop-tendril right-handed, and in thizs he is followed by Listing, and by most writers
on the rotatory polarization of light, Screws like the hop-tendril are made for the
couplings of railway-carriages, and for the fittings of wheels on the left side of ordinary
carriages, but they are always called left-handed screws by those who use them.
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24.] LINE-INTEGRAL AND SURFACE-INTEGRAL. 25

so that the ordinary conventions about the eyclic order of the
symbols lead to a right-handed system of directions in space. Thus,
if z is drawn eastward and y northward, z must be drawn upward.
The areas of surfaces will be taken positive when the order of
integration coincides with the cyclic order of the symbols. Thus,
the area of a closed curve in the plane of zy may be written either

fz:dy or —fy(lz;

the order of integration being z,  in the first expression, and 7, z
in the second.

This relation between the two products dzdy and dydr may
be compared with that between the products of two perpendicular
vectors in the doctrine of Quaternions, the sign of which depends
on the order of multiplication, and with the reversal of the sign
of a determinant when the adjoining rows or columns are ex-
changed.

For similar reasons a volume-integral 1s to be taken positive when
the order of integration is in the cyclic order of the variables z, 7, 2,
and negative when the cyclic order is reversed.

We now proceed to prove a theorem which 1s useful as esta-
blishing a connexion between the surface-integral taken over a
finite surface and a line-integral taken round its boundary.

?4.1 Turorem IV. A line-integral taken round a closed curve
may be expressed in terms of o surface-integral taken over a
surface bounded by the curve.

Let X, ¥, Z be the components of a vector quantity % whose line-
integral is to be taken round a closed curve s.

Let § be any continuous finite surface bounded entirely by the
closed curve s, and let £, 4, ¢ be the components of another vector
quantity %, related to X, ¥, Z by the equations

_d7 aY _dX dZ C_Q’_JX (1)
=7 dy — dz T T 4 T dx’ dy
Then the surface-integral of ¥ taken over the surface § is equal to

the line-integral of 9 taken round the curve s. It 13 manifest that

&, 1, ¢ fulfil of themselves the solenoidal condition
d_f d 17 a¢
et gyt T

Let 4, m, » be the direetmn-cosmes of the normal to an element
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26 PRELIMINARY. [24.

of the surface 8, reckoned in the positive direction. Then the
value of the surface-integral of B may be written

[[egrmnsngas (2)

In order to form a definite idea of the meaning of the element
48, we shall suppose that the values of the coordinates @, y, z for
every point of the surface are given as functions of two inde-
pendent variables a and 8. If 8 is constant and a varies, the point
(w, 7, 2) will describe a curve on the surface, and if a series of values
is given to B, a series of such curves will be traced, all lying on
the surface S. In the same way, by giving a series of constant
values to @, a second series of curves may be traced, cutting the
first series, and dividing the whole surface into elementary portions,
any one of which may be taken as the element 8.

The projection of this clemeut on the plane of z, #z 15, by the
ordinary formula,

_dy dz dy de
ldS_(d—a(i,é—d_ﬂ%)dﬁda' (3)
The expressions for mdS and nd8 are obtained from this by sub-
stituting z, 7, z in cyclic order.

The surface-integral which we have to find is

[[ s msncias; (1)

or, substituting the values of &, 7, {in terms of X, ¥, Z,
258 X dY LAY A7 dZ
ff(m nay I+t a ™" ) ds. (8)
The part of this which depends on X may be written
dX ,dz dv dzdx _@@*d_m@} )
G G- pa) 4 Gans— zaaws 84 ©

4X dw dx
adding and subtracting  dadB’

ff{ dX dz (ZX{]‘/+€Z:/'Y@

this becomey

(Zx da dj da ' dz da
ax (Zz' X(l_/ dX dz }
(dx Bttt e 73§ Bde; (1)

dX dz adX olx
- [/ & 15— a5 72 28 e ®)

As we have made no assumption as to the form of the functions
a and 3, we may assume that a is a function of X, or, in other
words, that the curves for which a is constant are those for which
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X is constant. TIn this case Z;f: 0, and the expression becomes

by integration with respect to a,

]2 dsanin x50

where the integration i1s now to be perf'ormed round the closed
curve. Since all the quantities are now expressed in terms of one
variable 3, we may make s, the length of the bounding curve, the
independent variable, and the expression may then be written

dr
fX%ds, (10)

where the integration is to be performed round the curve s. We
may treat in the same way the parts of the surface-integral which

depend upon ¥ and Z, so that we get finally,
, dx dy dz .
/./(lé.+mn+n§)dS._f(lds +YES+Z(—1;)11’S, (11)

where the first integral is extended over the surface §, and the
second round the bounding curve s ¥,

On the effect of the operator V on a vector function.

25.] We have seen that the operation denoted by V is that by
which a vector quantity is deduced from its potential. The same
operation, however, when applied to a vector function, produces
results which enter into the two theorems we have just proved
(IIT and IV). The extension of this operator to vector displacements,
gnd most of its further development, is due to Professor Tait t.

Let o be a vector function of p, the vector of a variable point.
Let us suppose, as usual, that

p=tx+jy+kz,
and o =1 X+7Y+%Z;
where X, ¥, Z are the components of ¢ in the directions of the
axes.
We have to perform on ¢ the operation
.d .d d
Performing this operation, and remembering the rules for the

* This theorem was given by Professor Stokes. Smith’s Prize Examination, 1854,
question 8. It is proved in Thomson and Tait's Natural Philosophy, § 190 ().

+ See Proc. R. 8. Edin., April 28, 1862. ¢ On Green’s and ather allied Theorems,’
Trans, R. 8. Edin., 1869-70, a very valuable paper; and ‘On some Quaternion
Integrals,’ Proc. R. 8. £din., 1870-71.
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multiplication of 2, 7, £, we find that Vo consists of two parts,
one scalar and the other vector.

The scalar part 1s
— (6%+ %‘;-{- %): see Theorem ITI,
and the vector part is
.27 dY, . dX dZ dY dX,
roe=i(E =) +iCE = )R — )

If the relation between X, ¥, Z and §, n, ¢ is that given by

equation (1) of the last theorem, we may write
Vve =:ié+j7n+%¢ See Theorem IV,

It appears thercfore that the functions of X, ¥, Z which occur
in the two theorems are both obtained by the operation ¥ on the
vector whose components are X, ¥, Z. The theorems themselves

may be written
fffSVzrds :ffS.aUuds, (11IT1)
and /Sadp =ffS.VaUuds,- (IV)

where ds is an element of a volume, ds of a surface, dp of a curve,
and Uv a unit-vector in the direction of the normal.
To understand the meaning of these functions of a vector, let us
suppose that o, is the value of o at a point P, and let us examine
the value of ¢—o; in the neighbourhood of P.
l If we draw a closed surface round P, then, if the
\ / surface-integral of o over this surface is directed
inwards, § V ¢ will be positive, and the vector
r o—a, near the point P will be on the whole
A AN directed towards 2P, as in the figure (1).
T I propose therefore to call the scalar part of
Fig. 1. V o the convergence of o at the point P.
To interpret the vector part of Vo, let us
suppose ourselves to be looking in the direction of the vector
whose components are & 7,  and let us examine
- the vector o—o, near the point P. It will appear
l 5 T as in the figure (2), this vector being arranged on
the whole tangentially in the direction opposite to
the hands of a watch.
I propose (with great diffidence) to ecall the veetor
part of Vo the curl, or the version of o at the point P.

SVe=

—_— . -~—

—_—

Fig. 2.
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At Fig. 3 we have an illustration of curl combined with con-
vergence.

Let us now consider the meaning of the equation

FVve = 0. \ /

This implies that Vo is a scalar, or that the vector ’ \
o is the slope of some scalar function ¥. These /
applications of the operator ¥ are due to Professor
Tait *. A more complete development of the theory
is given in his paper ‘On Green’s and other allied Theoremst,’
to which I refer the rcader for the purely Quaternion investigation
of the properties of the operator V.

26.] One of the most remarkable properties of the operator Vv is
that when repeated it becomes
d? daz  d*
R + 75)

Fig. 3.

vi=—(

an operator occurring in all parts of Physics, which we may refer to
as Laplace’s Operator.

This operator is itself essentially scalar. When it acts on a
gealar function the result is scalar, when it acts on a vector function
the result is a vector.

If, with any point P as centre, we draw a small sphere whose
radius is 7, then if g, is the value of ¢ at the centre, and g the
mean value of ¢ for all points within the sphere,

%—7 = 1572 V?q;
so that the value at the centre excceds or falls short of the mean
value according as V24 is positive or negative.

I propose therefore to call V24 the concentration of ¢ at the
point P, because it indicates the excess of the value of ¢ at that
point over its mean value in the neighbourhood of the point.

If g is a scalar function, the method of finding its mean value is
well known, If it is a vector function, we must find its mean
value by the rules for integrating vector functions. The result
of course is a vector.

* Proceedings 1. 8. Edin., 1862. + Trans. R. 8. Edin., 1863-70.
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PART I

ELECTROSTATICS.

CHAPTER 1.

DESCRIPTION OF PHENOMENA.

Flectrification by Friction.

27.] ExperiMENT I*. Let a piece of glass and a piece of resin,
neither of which exhibits any clectrical properties, be rubbed to-
gether and left with the rubbed surfaces in contact. They will
still exhibit no electrical properties. Let them be separated. They
will now attract each other.

If a second piece of glass be rubbed with a second piece of
resin, and if the pleces be then separated and suspended in the
neighbourheod of the former pieces of glass and resin, it may be
observed—

(1) That the two pieces of glass repel each other.
(2) That each piece of glass attracts each piece of resin.
(3) That the two pleces of resin repel each other.

These phenomena of attraction and repulsion are called Elec-
trical phenomena, and the bodies which exhibit them are said to
be electrified, or to be charged with electricity.

Bodies may be electrified in many other ways, as well as by
frietion.

The electrical properties of the two pieces of glass are similar
to each other but opposite to those of the two pieces of resin,
the glass attracts what the resin repels and repels what the resin
attracts.

* See Sir W. Thomson ‘ On the Mathematical Theory of Electricily,’ Cambridge
and Dublin Mathematical Journal, March, 1848,
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If a body electrified in any manner whatever behaves as the
glass does, that is, if it repels the glass and attracts the resin, the
body is said to be witreously electrified, and if it attracts the glass
and repels the resin it is said to be resinously electrified. All
electrified bodies are found to be either vitreously or resinously
electrified.

It 1s the established practice of men of seience to eall the vitreous
electrification positive, and the resinous electrification negative.
The exactly opposite properties of the two kinds of electrification
justify us in indicating them by opposite signs, but the applica-
tion of the positive sign to one rather than to the other kind must
be considered as a matter of arbitrary conveution, just as it is a
matter of convention in mathematical diagrams to reckon positive
distances towards the right hand.

No force, either of attraction or of repulsion, can be observed
between an electrified body and a body not electrified. When, in
any case, bodies not previously electrified are observed to be acted
on by an electrified body, it is because they have become electrificd
by induction.

Flectrification by Induction.

28.] ExpErtMENT I1*. Let a hollow vessel of metal be hung
up by white silk threads, and let a similar thread
be attached to the lid of the vessel so that the vessel
may be opened or closed without touching it.

Let the pieces of glass and resin be similarly sus-
pended and electrified as before.

Let the vessel be originully unelectrified, then if
an clectrified piece of glass is hung up within it by
its thread without touching the vessel, and the lid
closed, the outside of the vessel will be found to
be vitreously electrified, and it may be shewn that
the electrification outside of the wessel is exactly the
same in whatever part of the interior space the glass
is suspended.

If the glass is now taken out of the vessel without touching it,
the electrification of the glass will be the same as before it was
put in, and that of the vessel will have disappeared.

This electrification of the vessel, which depends on the glass

Fig. 4.

* This, and several experiments which follow, are due to Faraday, ‘On Static
Electrical Inductive Action,” Phil. Mag., 1843, or Exp. Res., vol. il. p. 279.
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being within it, and which vanishes when the glass is removed, is
called Llectrification by induction.

Similar effects would be produced if the glass were suspended
near the vessel on the outside, but in that case we should find
an electrification vitreous in one part of the outside of the vessel
and resinous in another. When the glass is inside the vessel
the whole of the outside is vitreously and the whole of the inside
resinously electrified.

Electrification by Conduction.

29.] ExperimeNT III. Let the metal vessel be electrified by
induction, as in the last experiment, let a second metallic body
be suspended by white silk threads near it, and let a metal wire,
similarly suspended, be brought so as to touch simultaneously the
electrified vessel and the second body.

The second body will now be found to be vitreously electrified,
and the vitreous electrification of the vessel will have diminished.

The electrical eondition has been transferred from the vessel to
the second body by means of the wire. The wire is called a con-
ductor of electricity, and the second body is said to be electrified
by conduction.

Conductors and Insulators.

Exprrivext IV. If a glass rod, a stick of resin or gutta-percha,
or a white silk thread, had been used instead of the metal wire, no
transfer of electricity would have taken place. Hence these latter
substances are called Non-conductors of electricity. Non-condue-
tors are used in electrical experiments to support electrified bodies
without carrying off their electricity. They are then called In-
sulators.

The metals are good conductors ; air, glass, resins, gutta-percha,
vulcanite, paraffin, &c. are good insulators; but, as we shall see
afterwards, all substances resist the passage of electricity, and all
substances allow it 1o pass, though in exceedingly diflerent degrees.
This subject will be considered when we come to treat of the
Motion of electricity. For the present we shall consider only two
classes of bodies, good conductors, and good insulators.

In Experiment IT an electrified body produced electrification in
the metal vessel while separated from it by air, a non-conducting
medium. Such a medium, considered as {ransmitting these electrical
eflects without conduction, has been called by Faraday a Dielectrie
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medium, and the action which takes place through it is ecalled
Induction.

In Experiment 11T the electrified vessel produced electrification
in the second metallic body through the medium of the wire. et
us suppose the wire removed, and the electrified piece of glass taken
out of the vessel without touching it, and removed to a sufficient
distance. The second body will still exhibit vitreous electrifica-
tion, but the vessel, when the glass is removed, will have resinous
electrification. If we now bring the wire into contact with both
bodies, conduction will take place along the wire, and all electri-
fication will disappear from both bodies, shewing that the elec-
trification of the two bodies was equal and opposite.

30.] ExrperiMENT V. In Experiment II it was shewn that if
a piece of glass, electrified by rubbing it with resin, is hung up in
an insulated metal vessel, the electrification observed outside does
not depend on the position of the glass. If we now introduce the
plece of resin with which the glass was rubbed into the same vessel,
without touching it or the vessel, it will be found that there is
no electrification outside the vessel. From this we conclude that
the electrification of the resin is exactly equal and opposite to that
of the glass. By putting in any number of bodies, electrified in
any way, it may be shewn that the electrification of the outside of
the vessel is that due to the algebraic sum of all the electrifica-
tions, those being reckoned negative which are resinous. We have
thus a practical method of adding the electrical effects of several
bodies without altering the electrification of each.

31.] ExrerimeNT VI. Let a second insulated metallic vessel, B,
be provided, and let the electrified piece of glass be put into the
first vessel 4, and the electrified piece of resin into the second vessel
B. Let the two vessels be then put in communication by the metal
wire, as in Experiment III. All signs of electrification will dis-
appear.

Next, let the wire be removed, and let the pieces of glass and of
resin be taken out of the vessels without touching them. It will
be found that 4 1s clectrified resinously and A8 vitreously.

If now the glass and the vessel 4 be introduced together into a
larger insulated vessel C, it will be found that there is no elec-
trification outside €. This shews that the electrification of 4 is
exactly equal and opposite to that of the piece of glass, and that
of B may be shewn in the same way to be equal and opposite to that
of the piece of resin.

YOL. L. D
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‘We have thus obtained a method of charging a vessel with a
quantity of electricity exactly equal and opposite to that of an
electrified body without altering the eleetrification of the latter,
and we may in this way charge any number of vessels with exactly
equal quantitics of electricity of either kind, which we may take
for provisional units.

32.] ExperiMENT VII. Let the vessel B, charged with a quan-
tity of positive electricity, which we shall call, for the present,
unity, be introduced into the larger insulated vessel € without
touching it, It will produce a positive electrification on the out-
side of C. Now let B be made to touch the inside of C. No change
of the external eleetrification will be observed. If B is now taken
out of € without touching it, and removed to a sufficient distance,
it will be found that B is completely discharged, and that C has
become charged with a unit of positive electricity.

‘We have thus a method of trausferring the charge of B to C.

Let B be now recharged with a unit of electricity, introduced
inta € already charged, made to touch the inside of €, and re-
moved. It will be found that B is again completely discharged,
so that the charge of Cis doubled.

If this process is repeated, it will be found that however highly
C is previously charged, and in whatever way B is charged, when
B 1s first entirely enclosed in C, then made to touch C, and finally
removed without touching C, the charge of B is completely trans-
ferred to €, and B is entirely free {rom electrification.

This experiment indicates a method of charging a body with
any number of units of electricity. We shall find, when we come
to the mathematical theory of electricity, that the result of this
experiment affords an accurate test of the truth of the theory.

33.] Before we proceed to the investigation of the law of
electrical force, let us enumerate the facts we have already esta-
blished.

By placing any electrified system inside an insulated hollow con-
ducting vessel, and examining the resultant effect on the outside
of the vessel, we ascertain the character of the total electrification
of the system placed inside, without any communication of elec-
tricity between the different bodies of the system.

The electrification of the outside of the vessel may be tested
with great delicacy by putting it in communication with an elec-
troscope.

‘We may suppose the electroscope to cousist of a strip of gold
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leaf hanging between two bodies charged, one positively, and the
other negatively. If the gold leaf Lecomes electrified it will incline
towards the body whose electrification is opposite to its own. By
increasing the electrification of the two bodies and the delicacy of
the suspension, an exceedingly small electrification of the gold leafl
may be detected.

When we come to deseribe electrometers and multipliers we
shall tind that there are still more delicate methods of detecting
electrification and of testing the accuracy of our theorems, buv at
present we shall suppose the testing to be made by connecting the
hollow vessel with a gold leaf electroscope.

This method was used by Faraday in his very admirable de-
monstration of the laws of electrical phenomena *,

34.17 I. The total electrification of a body, or system of bodies,
remains always the same, except in so far as it receives electrifi-
cation from or gives electrification to other bodies.

In all electrical experiments the electrification of hodies is found
to change, but it is always found that this change is due to want
of perfect insulation, and that as the means of insulation are im-
proved, the loss of electrification becomes less. 'We may therefore
assert that the electrification of a body placed in a perfectly in-
sulating medium would remain perfectly constant.

II. When one body electrifies another by conduction, the total
electrification of the two bodies remains the same, that is, the one
loses as much positive or gaing as much negative electrification as
the other gains of positive or loses of negative electrification.

For if the two bodies are enclosed in the hollow vessel, no change
of the total electrification is observed.

ITI. When electrification is produced by friction, or by any
other known method, equal quantities of positive and negative elec-
trification are produced.

For the electrification of the whole system may le tested in
the hollow vessel, or the process of electrification may be carried
on within the vessel itself, and however intense the electrification of
the parts of the system may be, the electrification of the whole,
as indicated by the gold leaf electroscope, is invariably zero.

The electrification of a body is therefore a physical quantity
capable of measurement, and two or more clectrifications can be
combined experimentally with a result of the same kind as when

* ¢ On Static Electrical Inductive Action,” Phil. Mag., 1843, or Exp. Res., vol. i,
p. 249,

D2
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two quantities are added algebraically. We therefore are entitled
to use language fitted to deal with electrification as a quantity as
well as a quahity, and to speak of any electrified body as ¢ charged
with a certain quantity of positive or negative ¢lectricity.’

35.] While admitting electricity, as we have now done, to the
rank of a physical quantity, we must not too hastily assume that
it is, or i1s not, a substance, or that 1t 1s, or i1s not, a form of
energy, or that it belongs to any known category of physical
quantities. All that we have hitherto proved is that it cannot
be created or annihilated, so that if the total quantity of elec-
tricity within a closed surface 1s increased or diminished, the in-
crease or diminution must have passed in or out through the closed
surface.

This is true of matter, and is expressed by the equation known as
the Equation of Continuity in Hydrodynamics.

It is not true of heat, for heat may be increased or diminished
within a closed surface, without passing in or out through the
surface, by the transformation of some other form of eunergy into
heat, or of heat into some other form of energy.

It is not true even of energy in general if we admit the imme-
diate action of bodies at a distauce. For a body outside the closed
surface may make an exchange of energy with a body within
the surface. But if all apparent action at a distance is the
result of the action between the parts of an intervening medium,
and if the nature of this action of the parts of the medium is
clearly understood, then it is conceivable that in all cases of the
increase or diminution of the energy within a closed surface we
may be able to trace the passage of the energy in or out through
that surface.

There is, however, another reason which warrants us in asserting
that electricity, as a physical quantity, synonymous with the total
electrification of a body, is not, like heat, a form of energy. An
electrified system has a certain amount of energy, and this energy
can be caleulated by multiplying the quantity of electricity in
each of its parts by another physical quantity, called the Potential
of that part, and taking half the sum of the produets. The quan-
tities ¢ Electricity ’ and ¢ Potential,” when multiplied together,
produce the quantity ¢ Energy.” It is impossible, therefore, that
electricity and energy should be quantities of the same category, for
electricity is only onc of the factors of energy, the other factor
being ¢ Potential.’
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Energy, which is the product of these factors, may also be con-
sidered as the product of several other pairs of factors, such as

A Force x A distance through which the force is to act.
A Mass x Gravitation acting through a certain height.
A Mass x Half the square of its velocity.

A Pressure x A volume of fluid introduced into a vessel at

that pressure.

A Chemical Affinity x A chemical change, measured by the number
of electro-chemical equivalents which enter
into combination.

If we obtain distinct mechanical ideas of the nature of electric
potential, we may combine these with the idea of energy to
determine the physical category in which ¢ Electricity’ is to be
placed.

36.] In most theories on the subject, Electricity is treafed as
a substance, but inasmuch as there are two kinds of electrification
which, being combined, annul each other, and since we cannot
conceive of two substances annulling each other, a distinction has
been drawn between Free Electricity and Combined Electricity.

Theory of Two Fluids.

In the theory called that of Two Fluids, all bodies, in their
unclectrified state, are supposed to be charged with equal quan-
tities of positive and negative electricity. These quantities are
supposed to be so great that no process of electrification has ever
yet deprived a body of all the electricity of either kind. The pro-
cess of electrification, according to this theory, consists in taking
a certain quantity P of positive electricity from the body 4 and
communicating it to B, or in taking a quantity &N of negative
electricity from 5 and communicating it to A, or in some com-
bination of these processes.

The result will be that 4 will have £+ N units of negative
electricity over and above its remaining positive electricity, which
is supposed to be in a state of combination with an equal quantity
of negative electricity. This quantity P+ N is called the Free
electricity, the rest is called the Combined, Latent, or Fixed elec-
tricity.

In most expositions of this theory the two electricities are called
fFluids,” beecause they are capable of being transferred from one
body to another, and are, within conducting bodies, extremely
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mobile. The other properties of fluids, such as their inertia,
weight, and elasticity, are not attributed to them by those who
have used the theory for merely mathematical purposes; but the
use of the word Fluid has been apt to mislead the vulgar, including
many men of science who are not natural philosophers, and who
have seized on the word Fluid as the only term in the statement
of the theory which seemed intelligible to them.

We shall see that the mathematical treatment of the subject has
been greatly developed by writers who express themselves in terms
of the “Two Fluids’ theory. Their results, however, have been
deduced entirely from data which can be pruved by experiment,
and which must therefore be true, whether we adopt the theory of
two fluids or not. The experimental verification of the mathe-
matical results therefore is no evidence for or against the peculiar
doctrines of this theory.

The introduction of two fluids permits us to consider the negative
electrification of 4 and the positive eleetrification of B as the effect
of any one of three different processes which would lead to the same
result. We have already supposed it produced by the transfer of
P units of positive electricity from 4 to B, together with the
transfer of IV units of negative electricity from B to 4. But if
P+ N units of positive electricity had been transferred from 4
to B, or if P4V units of negative electricity had been transferred
from B to 4, the resulting *free electricity’ on 4 and on & would
have been the same as hefore, but the quantity of ¢eombined
electricity’ in 4 would have been less 1n the second case and greater
in the third than it was in the first.

It would appear therefore, according to this theory, that it is
possible to alter not only the amount of free electricity in a body,
but the amount of combined electricity. But ne phenomena have
ever heen observed in eleetrified bodies which can be traced to the
varying amount of their combined electricities. Ilence either the
combined electricities have no observable properties, or the amount
of the combined electricities is incapable of variation. The first
of these allernatives presents no difficulty to the mere mathema-
tician, who attributes no properties to the fluids except those of
attraction and repulsion, for in this point of view the two fluids
simply annul one another, and their combination is a true mathe-
matical zero. But to those who cannot use the word Fluid without
thinking of a substance it is difficult to conceive that the com-
bination of the two fluids shall have no properties at all, so that
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the addition of more or less of the combination to a body shall not
in any way affect it, either by increasing its mass or its weight, or
altering some of its other properties. Hence it has been supposed
by some, that in every process of electrification exactly equal quan-
tities of the two fluids are transferred in opposite directions, so
that the total quantity of the two fluids in any body taken to-
gether remains always the same. By this new law they ‘contrive
to save appearances,” forgetting that there would have been no need
of the law except to reconcile the “two fluids’ theory with facts,
and to prevent it from predieting non-existent phenomena.

Theory of One Fluid.

37.] In the theory of One Fluid everything is the same as in
the theory of Two Fluids except that, instead of supposing the two
substances equal and opposite in all respects, one of them, gene-
rully the negative one, has been endowed with the properties and
name of Ordinary Matter, while the other retains the name of The
Electric Fluid. The particles of the fluid are supposed to repel
one another according to the law of the ilnverse square of the
distance, and to attract those of matter according to the same
law. Those of matter are supposed to repel each other and attract
those of electricity. The attraction, however, between units of the
different substances at unit of distance is supposed to be a very little
greater than the repulsion between units of the same kind, so that
a unit of matter combined with a unit of electricity will exert a
force of attraction on a similar combination at a distance, this
force, however, being exceedingly small compared with the force
between two uncombined units.

This residual force is supposed to account for the attraction of
gravitation. Unelectrified bodies are supposed to be charged with
ag many units of electricity as they contain of ordinary matter.
When they contain more electricity or less, they are said to be
positively or negatively electrified.

This theory does not, like the Two-Fluid theory, explain too
much, It requires us, however, to suppose the mass of the electric
fluid so small that no attainable positive or negative electrification
has yet perceptibly increased or diminished either the mass or the
weight of a body, and it has not yet been able to assign sufficient
reasons why the vitreous rather than the resinous electrification
should be supposed due to an ezcess of electricity.

One objection has sometimes been urged against this theory by
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men who ought to bave reasoned better. It has been said that
the doctrine that the particles of matter uncombined with elec-
tricity repel one another, is in direct antagonism with the well-
established fact that every particle of matter aéfracis every other
particle throughout the universe. If the theory of One Fluid were
true we should have the heavenly bodies repelling one another.

But it is manifest that the heavenly hbodies, according to this
theory, if they consisted of matter uncombined with electricity,
would be in the highest state of negative electrification, and would
repel each other. We have no reason to believe that they are in
such a highly electrified state, or could be maintained in that
state. The earth and all the bodies whose attraction has been
observed are rather in an unelectrified state, that is, they contain
the normal charge of electricity, and the only action between them
is the residual force lately mentioned. The artificial manner, how-
ever, in which this residual force is introduced is a much more
valid objection to the theory.

In the present treatise 1 propose, at different stages of the in-
vestigation, to test the different theories in the light of additional
classes of phenomena. For my own part, I look for additional
light on the nature of electricity from a study of what takes place
in the space’intervening between the electrified bodies. Such is the
essential character of the mode of investigation pursued by Faraday
in his Frperimental Researches, and as we go on I intend to exhibit
the results, as developed by Faraday, W. Thomson, &c., in a con-
nected and mathematical form, so that we may perceive what
phenomena are explained equally well by all the theories, and what
phenomena indicate the peculiar difficulties of each theory.

Measurement of the Force between Electrified Bodies.

88.] Toreces may bhe measured in varions ways. For instance,
one of the bodies may be suspended from one arm of a delicate
balance, and weights suspended from the other arm, till the body,
when unelectrified, is m equilibrium. 'The other body may then
be placed at a known distance beneath the first, so that the
attraction or repulsion of the bodies when electrified may increase
or diminish the apparent weight of the first. The weight which
must be added to or taken from the other arm, when expressed
in dynamical measure, will measure the force between the bodies.
This arrangement was used by Sir W. Snow Harris, and is that
adopted in Sir W, Thomson’s absolute electrometers. See Art. 217,
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It is sometimes more convenient to use a torsion-balance in
which a horizontal arm is suspended by a fine wire or fibre, so as
to be capable of vibrating about the vertical wire as an axis, and
the body 1s attached to one end of the arm and acted on by the
force in the tangential direction, so as to turn the arm round the
vertical axis, and so twist the suspension wire through a certain
angle. The torsional rigidity of the wire is found by observing
the time of oscillation of the arm, the moment of inertia of the
arm being otherwise known, and from the angle of torsion and
the torsional rigidity the force of attraction or repulsion ean be
deduced. The torsion-balance was devised by Michell for the de-
termination of the force of gravitation between small bodies, and
was used by Cavendish for this purpose. Coulomb, working in-
dependently of these philosophers, reinvented it, and successfully
applied it to discover the laws of electric and magnetic forces;
and the torsion-balance has ever since been used 1n all researches
where small forces have to be measured. See Art. 215,

39.] Let us suppose that by either of these methods we can
measure the force between two electrified bodies. We shall suppose
the dimensions of the bodies small ecompared with the distance
between them, so that the result may not be much altered by
any inequality of distribution of the electrification on either body,
and we shall suppose that both bodies are so suspended in air as
to be at a considerable distance from other bodies on which they
might induce electrification.

It is then found that if the bodies are placed at a fixed distance
and charged respectively with e and ¢ of our provisional units of
electricity, they will repel each other with a force proportional
to the product of e and ¢’. If either e or ¢ is negative, that is,
if one of the charges is vitreous and the other resinous, the force
will be attractive, but if both ¢ and ¢’ are negative the foree is again
repulsive.

We may suppose the first body, 4, charged with = units of
vitreous and # units of resinous electricity, which may be con-
ceived separately placed within the body, as in Experiment V.,

Let the second body, B, be charged with =" units of positive
and 2’ units of negative electricity.

Then each of the z positive units in 4 will repel each of the »’
positive units in B with a certain force, say f, making a total effect
equal to mwm'f.

Since the cffcet of negative electricity is exactly equal and
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opposite to that of positive electricity, each of the m positive units
in 4 will attract each of the #” negative units in B with the same
force f, making a total effect equal to mn f.

Similarly the # negative units in A will attract the »’ positive
units in A with a force nm'f, and will repel the #»” negative units
in B with a force nn'f.

The total repulsion will therefore be (mm’+ »2")f; and the total
attraction will be (ma’+ m'n)f.

The resultant repulsion will be

(mm’ + un’ —mw’ —um ) f or (m—n)(m' —n")f.

Now m—n = ¢ is the algebraical value of the charge on 4, and
m’ —n' = ¢ is that of the charge on B, so that the resultant re-
pulsion may be written ee¢’f, the quantities e and ¢’ being always
understood to be taken with their proper signs.

Variation of the Force with the Distance.

40.] Having established the law of force at a fixed distance,
we may measure the force between bodies charged in a constant
manner and placed at different distances. It is found by direct
measurement that the force, whether of attraction or repulsion,
varies inversely as the square of the distance, so that if /is the
repulsion between two units at unit distance, the repulsion at dis-
tance r will be /772, and the general expression for the repulsion
between e units and ¢” units at distance 7 will be

Jedr 2,

Definition of the Electrostatic Unit of Electricity.

41.7 We have hitherto used a wholly arbitrary standard for our
unit of electricity, namely, the electrification of a certain piece of
glass as it happened to be electrified at the commencement of our
experiments. We are now able to select a unit on a definite prin-
ciple, and in order that this unit may belong to a general system
we define it so that /' may be unity, or in other words—

The electrostatic unit of electricity is that quantity of electricity
whick, when placed atf wwnil 9f° distance from an equal quantily, repels
it wilh unit of force.

This unit is called the Electrostatic unit to distinguish it from
the Electromagnetic unit, to be afterwards defined.

We may now write the general law of electrical action in the
simple form Fw=cedr?; o,
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The repulsion between two small bodies charged respectively with e and
& unils of electricity is numerically equal to the product of the charges
divided by the square of the distance.

Dimensions of the Electrostatic Unit of Quantity.

42.] If [Q] is the concrete electrostatic unit of quantity itself,
and ¢, ¢ the numerical values of partienlar quantities; if {L] is
the unit of length, and 7 the numerieal value of the distance; and
if [F] is the unit of force, and # the numerical value of the force,
then the equation becomes

FIF] =edr2[Q%][L7%];
whence [Q) = [LF%]
= [LiT +A1%].

This unit is called the Electrostatic Unit of electricity. Other
units may be employed for practical purposes, and in other depart-
ments of electrical science, but in the equations of electrostatics
quantities of electricity are understood to be estimated in electro-
static units, just as in physical astronomy we employ a unit of
mass which is founded on the phenomena of gravitation, and which
differs from the units of mass in common use.

Proof of the Law of Electrical Force.

43.] The experiments of Coulomb with the torsion-balance may
be considered to have established the law of force with a certain
approximation to accuracy. Experiments of this kind, however,
are rendered difficult, and in some degree uncertain, by several
disturbing causes, which must be carefully traced and corrected for.

In the first place, the two electrified bodies must be of sensible
dimensions relative to the distance between them, in order to be
capable of carrying charges sufficient to produce measurable forces.
The action of each body will then produce an effect on the dis-
tribution of electricity on the other, so that the charge cannot be
considered as evenly distributed over the surface, or collected at
the centre of gravity; but its effect must be calculated by an
intricate investigation. This, however, has been done as regards
two spheres by Poisson in an extremely able manner, and the
investigation has been greatly simplified by Sir W. Thomson in
his Theory of Electrical Images. See Arts. 172-174.

Another difficulty arises from the action of the -electricity
induced on the sides of the case containing the instrument. By
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making the inside of the instrument accurately cylindric, and
making its inner surface of metal, this effect can be rendered
definite and measurable.

An independent difficulty arises from the imperfect insulation
of the bodies, on account of which the charge continually de-
creases. Coulomb investigated the law of dissipation, and made
corrections for it in his experiments.

The methods of insulating charged conductors, and of measuring
electrical effects, have been greatly improved since the time of
Coulomb, particularly by Sir W. Thomson; but the perfeet ac-
curacy of Coulomb’s law of force is established, not by any direct
experiments and measurements (which may be used as illustrations
of the law), but by a mathematical consideration of the pheno-
menon described as Experiment VII, namely, that an electrified
conductor B, if made to touch the inside of a hollow closed con-
ductor € and then withdrawn without touching C, is perfectly dis-
charged, 1n whatever manner the outside of € may be electrified.
By means of delicate electroscopes it is easy to shew that no
electricity remains on B after the operation, and by the mathe-
matical theory given at Art. 74, this can only be the case if the
force varies inversely as the square of the distance, for if the law
had been of any different form B would have been electrified.

T%e FElectric Field.

44.] The Electric Field is the portion of space in the neigh-
bourhood of electrified bodies, considered with reference to electric
phenomena. It may be occupied by air or other bodies, or it
may be a so-called vacuum, from which we have withdrawn every
substance which we can act upon with the means at our dis-
posal.

If an electrified body be placed at any part of the electric field
1t will be acted on by a force which will depend, in general, on
the shape of the body and on its charge, if the body is so highly
charged as to produce a sensible disturbance in the previous elec-
trification of the other bodies.

But if the body is very small and its charge also very small,
the electrification of the other bodies will not be sensibly disturbed,
and we may consider the body as indicating by its centre of gravity
a certain point of the field. The force acting on the body will
then be proportional to its charge, and will be reversed when the
charge 1s reversed.
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Let ¢ be the charge of the body, and F the force acting on the
body in a certain direction, then when ¢ is very small # is propor-
tional to e, or F = Re,

where £ is a quantity depending on the other bodies in the field.
If the charge e could be made equal to unity without disturbing
the electrification of other bodies we should have F= Z.

We shall call £ the Resultant electric force at the given point
of the field.

Electrie Potential.

45.] If the small body carrying the small charge ¢ be moved
from the given point to an indefinite distance from the electrified
bodies, it will experience at each point of its course a force e,
where £ varies from point to point of the course. Let the whole
work done on the body by these electrical forces be Fe, then ¥ is
the potential at the point of the field from which the body started.
If the charge e could be made equal to unity without disturbing
the electrification of other bodies, we might define the potential at
any point as the work done on a body charged with unit of elec-
tricity in moving from that point to an infinite distance.

A body electrified positively tends to move from places of greater
positive potential to places of smuller positive, or of negutive
potential, and a body negatively electrified tends to move in the
opposite direction.

In a conductor the electrification is distributed exactly as if
it were free to move in the conductor according to the same law,
If therefore two parts of a conductor have different potentials,
positive electricity will move from the part having greater potential
to the part having less potential as long as that difference con-
tinues. A conductor therefore cannot be in electrical equilibrium
unless every point in it has the same potential. This potential is
called the Potential of the Conductor.

Equipotential Surfaces.

46.] If a surface described or supposed to be described in the
electric field 1s such that the electric potential 1s the same at every
point of the surface it is called an Equipotential surface.

An electrified point constrained to rest upon such a surface will
have no tendency to move from one part of the surface fo another,
because the potential is the same at every point. An equipotential
surface is therefore a surface of equilibrium or a level surface.
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The resultant force at any point of the surface is in the direction
of the normal to the surface, and the magnitude of the force is such
that the work done on an electrical unit in passing from the surface
7 to the surface 77 is 77— 7",

No two equipotential surfaces having different potentials can
meet one another, because the same point cannot have more than
one potential, but one equipotential surface may meet itself, and
this takes place at all points and lines of equilibrinm.

The surface of a conductor in electrical equilibrium is necessarily
an equipotential surface, If the electrification of the conductor is
positive over the whole surface, then the potential will diminish as
we move away from the surface on every side, and the conductor
will be surrounded by a series of surfaces of lower potential.

But if (owing to the action of external electrified bodies) some
regions of the conductor are electrified positively and others ne-
gatively, the complete equipotential surface will consist of the
surface of the conductor itself together with a system of other
surfaces, meeting the surface of the econductor in the lines which
divide the positive from the negative regions. These lines will
be lines of equilibrium, so that an electrified point placed on one
of these lines will experience no force in any direction.

‘When the surface of a conductor is electrified positively in some
parts and negatively in others, there must be some other electrified
body in the ficld besides itself. For if we allow a positively
electrified point, starting from a positively electrified part of the
surface, to move always in the direction of the resultant force upon
it, the potential at the point will continually diminish till the point
reaches either a negatively electrified surfuce at a potential less than
that of the first conductor, or moves off to an infinite distance.
Since the potential at an infinite distance is zero, the latter case
can only occur when the potential of the conductor is positive.

In the same way a negatively electrified point, moving off from
a negatively electrified part of the surface, must either reach a posi-
tively electrified surface, or pass off to infinity, and the latter case
can only happen when the potential of the eonductor is negative.

Therefore, if both positive and negative electrification exists on
a conductor, there must be some other body in the field whose
potential has the same sign as that of the conductor but a greater
pumerical value, and if a conductor of any form is alone in the
field the electrification of every part is of the same sign as the
potential of the conductor.
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Lines of Force.

47.] The line described by a point moving always in the direc-
tion of the resultant force is called a Line of force. It cuts the
equipotential surfuces at right angles. The properties of lines of
force will be more fully explained afterwards, because I'araday has
expressed many of the laws of electrical action in terms of his
conception of lines of force drawn in the clectrie field, and indicating
both the direction and the magnitude of the force at every point.

Electric Tension.

48.] Since the surface of a conductor is an equipotential surface,
the resultant force i1s normal to the surface, and it will be shewn
in Art. 78 that it is proportional to the superficial density of the
electrification. Hence the electricity on any small area of the
surface will be acted on by a force tending from the conductor
and proportional to the product of the resultant force and the
density, that is, proportional to the square of the resultant force.

This force which acts outwards as a tension on every part of
the conductor will be called electric Tension. It s measured like
ordinary mechanical tension, by tlie force exerted on unit of area.

The word Tension has been used by electricians in several vague
senses, and 1t has been attempted to adopt it in mathematical
lavguage as a synonym for Potential ; but on examining the cases
in which the word has been used, I think it will be more con-
sistent with usage and with mechanical analogy to understand
by tension a pulling force of so many pounds per square inch
exerted on the surface of a conductor or elsewhere. We shall find
that the conception of Faraday, that this electric tension exists not
only at the electrified surface but all along the lines of force, leads
to a theory of electric action as a phenomenon of stress in a
medium,

FElectromotive Force.

49.] When two conductors at different potentials are connected
by a thin conducting wire, the tendency of electricity to flow
along the wire is measured by the difference of the potentials of
the two bodies. The difference of potentials between two con-
ductors or two points is therefore called the Electromotive force
between them.

Electromotive force may arise from other causes than difference
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of potential, but these causes are not considered in treating of sta-
tical electricity. We shall consider them when we come to chemical
actions, motions of magnets, inequalities of temperature, &ec.

Capacity of a Conductor.

50.] If one conductor is insulated while all the surrounding con-
ductors are kept at the zero potential by being put in commu-
nication with the earth, and if the conductor, when charged with
a quantity Z of electricity, has a potential 7, the ratio of £ to ¥
is called the Capacity of the conductor. If the conductor is com-
pletely enclosed within a condueting vessel without touching it,
then the charge on the inner conductor will be equal and op-
posite to the charge on the inner surface of the outer conductor,
and will be equal to the capacity of the inner conductor multiplied
by the difference of the potentials of the two conductors.

Flectric Accumulators.

A system consisting of two conductors whose opposed surfaces
are separated from each other by a thin stratum of an insulating
medium is called an electric Accumulator. Its capacity is directly
proportional to the area of the opposed surfaces and inversely pro-
portional to the thickness of the stratum between them. A Leyden
jar is an accumulator in which glass is the insulating medium,
Accumulators are sometimes called Condensers, but I prefer to
restrict the term ‘condenser’ to an instrument which is used not to
hold electricity but to increase its superficial density.

PROPERTIES OF BODIES IN RELATION TO STATICAL ELECTRICITY,

Lesistance to the Passage of Electricity through a Body.

51.] When a charge of electricity is communicated to any part
of a mass of metal the electricity is rapidly transferred from places
of high to places of low potential till the potential of the whole
mass becomes the same. In the case of pieces of metal used in
ordinary experiments this process is completed in a time too short
to be observed, but in the case of very long and thin wires, such
as those used in telegraphs, the potential does not become uniform
till after a sensible time, on account of the resistance of the wire
to the passage of electricity through it.

The resistance to the passage of electricity is exceedingly dif-
ferent 1n different substances, as may be seen from the tables at

IRIS - LILLIAD - Université Lille 1



51.] ELECTRIC RESISTANCE. 49

Arts, 362, 366, and 369, which will be explained in treating of
Electric Currents.

All the metals are good conductors, though the resistance of
lead is 12 times that of copper or silver, that of iron 6 times,
and that of mercury 60 times that of copper. The resistance of all
metals increases as their temperature rises.

Selenium in its crystalline state may also be regarded as a con-
ductor, though its resistance is 3.7 x 10'2 times that of a piece
of copper of the same dimensions. Its resistance increases as the
temperature rises, Selenium in the amorphous form is a good
insulator, like sulphur.

Many liquids conduct electricity by electrolysis. This mode of
conduction will be considered in Part IT. For the present, we may
regard all liquids containing water and all damp bodies as con-
ductors, far inferior to the metals, but incapable of insulating a
charge of electricity for a sutficient time to be observed.

On the other hand, the gases at the atmospheric pressure, whether
dry or moist, are insulators so nearly perfect when the electric tension
is small that we have as yet obtained no evidence of electricity passing
through them by ordinary conduction. The gradual loss of charge
by electrified bodies may in every case be traced to imperfect insu-
lation in the supports, the electricity either passing through the
substance of the support or creeping over its surfuce. Ience, when
two charged bodies are hung up near each other, they will preserve
their charges longer if they are electrified in opposite ways, than if
they are electrified in the same way. For though the electromotive
force tending to make the electricity pass through the air between
them is much greater when they are oppositely electrified, no per-
ceptible Joss occurs in this way. The actual loss takes place through
the supports, and the electromotive force through the supports is
greatest when the bodies are clectrified in the same way. The result
appears anomalous only when we expect the loss to occur by the
passage of electricity through the air between the bodies.

Certain kinds of glass when cold are marvelously perfect in-
sulators, and Sir W, Thomson has preserved charges of electricity
for years in bulbs hermetically sealed. The same glass, however,
becomes a conductor at a temperature below that of boiling water.

Gutta-percha, caoutchoue, vuleanite, paraffin, and resins are good
insulators, the resistance of gutta-percha at 75°F. being about
6 x 101? times that of copper.

Ice, crystals, and solidified electrolytes, are also insulators.

VOL. L. E
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50 ELECTROSTATIC PHENOMENA. [52.

Certain liquids, such as naphtha, turpentine, and some oils, are
insulators, but inferior to most of the solid insulators.

The resistance of most substances, except the metals, and selenium
and carbon, seems to diminish as the temperature rises.

DIELECTRICS.
Specific Inductive Capacity.

52.] All bodies whose insulating power is such that when they
are placed between two conductors at different potentials the elec-
tromotive force acting on them does not immediately distribute
their electricity so as to reduce the potential to a constant value, are
called by Faraday Dielectrics.

Faraday discovered that the capacity of an accumulator depends
on the nature of the insulating medium between the two conductors,
as well as on the dimensions and relative position of the conductors
themselves. By substituting other insulating media for air as the
dielectric of the accumulator, without altering it in any other
respect, he found that when air and other gases were employed as
the Insulating medium the capacity of the accumulator remained the
same, but that when shell-lae, sulphur, glass, &c., were substituted
for air, the capacity was increased in a ratio which was different
for each substance.

The ratio of the capacity of an accumulator formed of any di-
electric medium to the capacity of an accumulator of the same form
and dimensions filled with air, was named by Faraday the Specific
Induetive Capacity of the dielectric medium. It is equal to unity
for air and other gases at all pressures, and probably at all tempe-
ratures, and it is greater than unity for all other liquid or solid
dielectrics which have been examined.

If the dielectric is not a good insulator, it is difficult to mea-
sure its inductive capacity, because the accumulator will not hold a
charge for a sufficient time to allow it to be measured; but it is
certain that inductive capacity is a property not confined to good
insulators, and it is probable that it exists in all bodies.

Absorption of Electricity.
53.] It is found that when an accumulator is formed of certain
dielectrics, the following phenomena occur,
‘When the accumulator has been for some time electrified and is
then suddenly discharged and again insulated, it becomes recharged
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54.] ELECTRIC ABSORPTION, 51

in the same sense as at first, but to a smaller degree, so that it may
be discharged again several times in succession, these discharges
always diminishing. This phenomenon is called that of the Re-
sidual Discharge.

The instantaneous discharge appears always to be proportional
to the difference of potentials at the instant of discharge, and the
ratio of these quantities is the true capacity of the accumulator;
but if the contact of the discharger is prolonged so as to include
gome of the residual discharge, the apparent capacity of the accu-
mulator, calculated from such a discharge, will be too great.

The accumulator if charged and left insulated appears to lose its
charge by conduction, but it is found that the proportionate rate
of loss is much greater at first than it is afterwards, so that the
measure of conductivity, if deduced from what takes place at first,
would be too great. Thus, when the insulation of a submarine
cable is tested, the insulation appears to improve as the electrifi-
cation continues.

Thermal phenomena of a kind at first sight analogous take place
in the case of the conduction of heat when the opposite sides of a
body are kept at different temperatures. In the case of heat we
know that they depend on the heat taken in and given out by the
body itself. Hence, in the case of the electrical phenomena, it
has been supposed that electricity is absorbed and emitted by the
parts of the body. We shall see, however, in Art, 329, that the
phenomena can be explained without the hypothesis of absorption of
electricity, by supposing the dielectrie in some degree heterogeneous.

That the phenomenon called Electric Absorption is not an
actual absorption of electricity by the substance may be shewn by
charging the substance in any manner with electricity while it is
surrounded by a closed metallic insulated vessel. If, when the
substance is charged and insulated, the vessel be instantaneously
discharged and then left insulated, no charge is ever communicated
to the vessel by the gradual dissipation of the electrification of the
charged substance within it.

' 54.] This fact is expressed by the statement of Faraday that
1t is impossible to charge matter with an absolute and independent
charge of one kind of electricity *.

In fact it appears from the result of every experiment which
has been tried that in whatever way electrical actions may take

* Exp. Res., vol. i. series xi. T ii. ‘On the Absolute Charge of Matter,” and (1244).
r 2
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52 ELECTROSTATIC PHENOMENA, [55.

place among a system of bodies surrounded by a metallic vessel, the
charge on the outside of that vessel is not altered.

Now if any portion of electricity could be forced into a body
s0 as to be absorbed in it, or to become latent, or in any way
to exist in it, without being connected with an equal portion of
the opposite electricity by lines of induetion, or if, after having
being absorbed, it could gradually emerge and return to its or-
dinary mode of action, we should find some change of electrifica-
tion in the surrounding vessel.

As this is never found to be the case, Faraday concluded that
it is impossible to communicate an absolute charge to matter, and
that no portion of matier can by any change of state evolve or
render latent one kind of electricity or the other., He therefore
regarded induction as fthe essential function both in the first
development and the consequent phenomena of electricity.” His
‘induction’ is (1298) a polarized state of the particles of the
dielectrie, each particle being positive on one side and negative
on the other, the positive and the negative electrification of each
particle being always exactly equal.

Disruptive Discharge .

55.] If the electromotive force acting at any point of a dielectric
is gradually increased, a limit is at length reached at which there
18 a sudden electrical discharge through the dielectric, generally
accompanied with light and sound, and with a temporary or per-
manent rupture of the dielectrie.

The intensity of the electromotive force when this takes place
depends on the nature of the dielectric. Tt is greater, for instance,
in dense air than in rare air, and greater in glass than in air, but
in every case, if the electromotive force be made great enough,
the dielectric gives way and its insulating power is destroyed, so
that a current of electricity takes place through it. It is for this
reason that distributions of electricity for which the electric resultant
force becomes anywhere infinite cannot exist in nature,

The Electric Glow.

Thus, when a conductor having a sharp point is electrified,
the theory, based on the hypothesis that it retains its charge,
leads to the conclusion that as we approach the point the super-
ficial density of the electricity increascs without limit, so that at
the point itself the surface-density, and therefore the resultant

* See Faraday, Exp. Res., vol. i, series xii, and xiii.

IRIS - LILLIAD - Université Lille 1



55.] ELECTRIC GLOW. b3

electrical force, would be infinite. If the air, or other surrounding
dielectric, had an invincible insulating power, this result would
actually occur ; but the fact is, that as soon as the resultant force
in the neighbourhood of the point has reached a certain limit, the
insulating power of the air gives way, so that the air close to
the point becomes a conductor. At a certain distanee from the
point the resultant force is not sufficient to break through the
insulation of the air, so that the electric current is checked, and
the electricity accumulates in the air round the point.

The point is thus surrounded by particles of air charged with
electricity of the same kind with its own. The effect of this charged
air round the point is to relieve the air at the point itself from
part of the enormous electromotive force which it would have ex-
perienced if the conductor alone had been electrified. In fact the
surface of the electrified body is no longer pointed, because the
point is enveloped by a rounded mass of electrified air, the surface
of which, rather than that of the solid conductor, may be regarded
as the outer electrified surface.

If this portion of electrified air could be kept still, the elec-
trified body would retain its charge, if not on itself at least in its
neighbourhood, but the charged particles of air being free to move
under the action of electrical force, tend to move away from the elec-
trified body because it is charged with the same kind of electricity.
The charged particles of air therefore tend to move off in the direc-
tion of the lines of force and to approach those surrounding bodies
which are oppositely electrified. When they are gone, other un-
charged particles take their place round the point, and since these
cannot shield those next the point itself from the excessive elec-
tric tension, a new discharge takes place, after which the newly
charged particles move off, and so on as long as the body remains
electrified.

In this way the following phenomena are produced :—At and
close to the point there 1s a steady glow, arising from the con-
stant discharges which are taking place between the point and the
air very near it.

The charged particles of air tend to move ofl’ in the same general
direction, and thus produce a current of air from the point, con-
sisting of the charged particles, and probably of others carried along
by them. By artificially aiding this current we may increase the
glow, and by checking the formation of the current we may pre-
vent the continuance of the glow.
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The electric wind in the neighbourhood of the point is sometimes
very rapid, but it soon loses its veloeity, and the air with its charged
particles is carried about with the general motions of the atmo-
sphere, and constitutes an invisible electric cloud. When the charged
particles come near to any conducting surface, such as a wall, they
induce on that surfuce an electrification opposite to their own, and
are then attracted towards the wall, but since the electromotive
force is small they may remain for a long time near the wall
without being drawn up to the surface und discharged. They
thus form an electrified atmosphere clinging to conductors, the pre-
sence of which may sometimes be detected by the electrometer.
The electrical forces, however, acting between charged portions
of air and other bodies are exceedingly feeble compared with the
forces which produce winds arising from inequalities of density
due to differences of temperature, so that it is very improbable
that any observable part of the motion of ordinary thunder clouds
arises from electrical causes.

The passage of electricity from one place to another by the
motion of charged particles is called Electrical Convection or Con-
vective Discharge.

The electrical glow is therefore produced by the constant passage
of electricity through a small portion of air in which the tension
is very high, so as to charge the surrounding particles of air which
are continually swept off by the electric wind, which is an essential
part of the phenomenon.

The glow is more easily formed in rare air than in dense air,
and more easily when the point is positive than when it is negative.
This and many other differences between positive and negative elec-
trification must be studied by those who desire to discover some-
thing about the nature of electricity. They have not, however,
been satisfactorily brought to bear upon any existing theory.

The Efectric Brusk.

56.] The electric brush is a phenomenon which may be pro-
duced by electrifying a blunt point or small ball so as to produce
an electric field in which the tension diminishes, but in a less rapid
manner, as we leave the surface. It consists of a succession of
discharges, ramifying as they diverge from the ball into the air,
and terminating either by charging portions of air or by reaching
some other conductor. It is accompanied by a sound, the pitch of
which depends on the interval between the successive discharges,
and there is no current of air as in the case of the glow.
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The Electric Spark.

57.] When the tension in the space between two conductors is
considerable all the way between them, as in the case of two balls
whose distance is not great compared with their radii, the discharge,
when it occurs, usually takes the form of a spark, by which nearly
the whole electrification is discharged at once.

In this case, when any part of the dielectric has given way,
the parts on either side of it in the direction of the electric force
are put into a state of greater tension so that they also give way,
and so the discharge proceeds right through the dielectrie, just as
when a little rent is made in the edge of a piece of paper a tension
applied to the paper in the direction of the edge causes the paper to
be torn through, beginning at the rent, but diverging occasionally
where there are weak places in the paper. The electric spark in
the same way begins at the point where the electric tension first
overcomes the insulation of the dielectrie, and proceeds from that
point, in an apparently irregular path, so as to take in other weak
points, such as particles of dust floating in air.

On the Electric Force required to produce a Spark in Aur.

In the experiments of Sir W, Thomson * the electromotive force
required to produce a spark across strata of air of various thick-
nesses was measured by means of an electrometer.

The sparks were made to pass between two surfaces, one of which
was plane, and the other only sufficiently convex to make the sparks
occur always at the same place.

The difference of potential required to cause a spark to pass was
found to increase with the distance, but in a less rapid ratio, so that
the electric force at any point between the surfaces, which is the
quotient of the difference of potential divided by the distance, can
be raised to a greater value without a discharge when the stratum
of air is thin.

When the stratum of air is very thin, say .00254 of a centimetre,
the resultant force required to produce a spark was found to be
527.7, in terms of centimeétres and grammes. This corresponds to
an electric tension of 11.29 grammes weight per square centimetre.

‘When the distance between the surfaces is about a millimetre
the electrie force 1s about 130, and the electrie tension .68 grammes
weight per square centimétre. It is probable that the value for

* Proc. K. 8, 1860 ; or, Reprint, chap, xix.
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greater distances is not much less than this. The ordinary pressure
of the atmosphere is about 1032 grammes per square centimétre.

It is difficult to explain why a thin stratum of air should require
a greater force to produce a disruptive discharge across it than a
thicker stratum. Is it possible that the air very near to the sur-
face of dense bodies is condensed, so as to become a better insu-
lator ? or does the potential of an electrified conductor differ from
that of the air in contact with it by a quantity having a maximum
value just before discharge, so that the observed difference of
potential of the conductors is in every case greater than the dif-
ference of potentials on the two sides of the stratum of air by a
constant quantity equivalent to the addition of about .005 of an
nch to the thickness of the stratum ?  See Art. 370.

All these phenomena differ considerably in different gases, and in
the same gas at different densities. Some of the forms of electrical
discharge through rare gases are exceedingly remarkable. In some
cases there is a regular alternation of luminous and dark strata, so
that if the electricity, for example, is passing along a tube contain-
ing a very small quantity of gas, a number of luminous disks will
be seen arranged transversely at mearly equal intervals along the
axis of the tube and separated by dark strata. If the strength of
the current be increased a new disk will start into existence, and
it and the old disks will arrange themselves in closer order. In
a tube described by Mr. Gassiot * the light of each of the disks
is bluish on the negative and reddish on the positive side, and
bright red in the central stratum.

These, and many other phenomena of electrical discharge, are
exceedingly important, and when they are better understood they
will probably throw great light on the nature of electricity as well
as on the nature of gases and of the medium pervading space. At
present, however, they must be considered as outside the domain of
the mathematical theory of electricity.

Electric Phenomena of Towrmaline.

58.7 Certain crystals of tourmaline, and of other minerals, possess
what may be called Electrie Polarity. Suppose a erystal of tour-
maline to be at a uniform temperature, and apparently free from
electrification on its surface. Let its temperature be now raised,
the crystal remaining insulated. One end will be found positively

* Imtellectugl Observer, March, 1866,
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and the other end negatively electrified. Let the surface be de-
prived of this apparent electrification by means of a flame or other-
wise, then if the crystal be made still hotter, electrification of the
same kind as before will appear, but if the crystal be cooled the
end which was positive when the crystal was heated will become
negative.

These electrificatious are observed at the extremities of the crys-
tallographic axis. Some crystals are terminated by a six-sided
pyramid at one end and by a three-sided pyramid at the other.
In these the end having the six-sided pyramid becomes positive
when the crystal 1s heated.

Sir W. Thomson supposes every portion of these and other hemi-
hedral crystals to have a definite electric polarity, the intensity
of which depends on the temperature. When the surface is passed
through a flame, every part of the surface becomes electrified to
such an extent as to exactly neutralize, for all external points,
the effect of the internal polarity. The crystal then has no ex-
ternal electrical action, nor any tendency to change its mode of
electrification. But if it be heated or cooled the interior polariza-
tion of each particle of the erystal is altered, and can no longer
be Dalanced by the superficial electrification, so that there is a
resultant external action.

Plan of this Treatise.

59.] In the following treatise I propose first to explain the ordinary
theory of electrical action, which considers it as depending only
on the electrified bodies and on their relative position, without
taking account of any phenomena which may take place in the
surrounding media. In this way we shall establish the law of the
inverse square, the theory of the potential, and the equations of
Laplace and Poisson. We shall next consider the charges and
potentials of a system of electrified conductors as connected by
a system of equations, the coeflicients of which may be supposed
to be determined by experiment in those cases in which our present
mathematical methods are not applicable, and from these we shall
determine the mechanical forces acting between the different elec-
trified bodies.

We shall then investigate certain general theorems by which
Green, Gauss, and Thomson have indicated the conditions of so-
lution of problems in the distribution of electricity. One result
of these theorems is, that if Poisson’s equation is satisfied by any
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function, and if at the surface of every conductor the function
has the value of the potential of that conductor, then the func-
tion expresses the actual potential of the system at every point. We
also deduce a method of finding problems capable of exact solution.

In Thomson’s theorem, the total energy of the system is ex-
pressed in the form of the integral of a certain quantity extended
over the whole space between the electrified bodies, and also in
the form of an integral extended over the electrified surfaces only.
The equation between these two expressions may be thus inter-
preted physically. We may conceive the relation into which the
electrified bodies are thrown, either as the result of the state of
the intervening medium, or as the result of a direct action between
the electrified bodies at a distance. 1f we adopt the latter con-
ception, we may determine the law of the action, but we can go
no further in speculating on its cause. If, on the other hand,
we adopt the conception of action through a medinm, we are led to
enquire into the nature of that action in each part of the medium.

It appears from the theorem, that if we are to look for the seat
of the electric energy in the different parts of the dielectric me-
dium, the amount of energy in any small part must depend on
the square of the intensity of the resultant electromotive force at
that place multiplied by a coeficient called the specific inductive
capacity of the medium.

It is better, however, in considering the theory of dielectrics
in the most general point of view, to distinguish between the clec-
tromotive force at any point and the electric polarization of the
medium at that point, since these directed quantities, though re-
lated to one another, are not, in some solid substances, in the same
direction. The most general expression for the electric energy of
the medium per unit of volume is half the product of the electro-
motive force and the electric polarization multiplied by the cosine
of the angle between their directions.

In all fluid dielectries the electromotive force and the electric
polarization are in the same direction and in a constant ratio.

If we calculate on this hypothesis the total energy residing
in the medium, we shall find it equal to the energy due to the
electrification of the conductors on the hypothesis of direct action
at a distance. Ience the two hypotheses are mathematically equi-
valent.

If we now proceed to investigate the mechanical state of the
medium on the hypothesis that the mechanical action observed
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between electrified bodies is exerted through and by means of
the medium, as in the familiar instances of the action of one body
on another by means of the tension of a rope or the pressure of
a rod, we find that the medium must be in a state of mechanical
stress.

The nature of this stress is, as Faraday pointed out¥*, a tension
along the lines of force combined with an equal pressure in all
directions at right angles to these lines. The magnitude of these
stresses is proportional to the energy of the electrification, or, in
other words, to the square of the resultant electromotive force mul-
tiplied by the specific inductive capacity of the medium.

This distribution of stress is the only one consistent with the
observed mechanical action on the electrified bodies, and also with
the observed equilibrium of the fluid dielectric which surrounds
them. I bave therefore thought it a warrantable step in scientific
procedure to assume the actual existence of this state of stress, and
to follow the assumption into its consequences. Finding the phrase
electric tension used in several vague senses, I have attempted to
confine it, to what I conceive to have been in the mind of some
of those who have used it, namely, the state of stress in the
dielectric medium which causes motion of the electrified bodies,
and leads, when continually augmented, to disruptive discharge.
Electric tension, in this sense, is a tension of exactly the same
kind, and measured in the same way, as the tension of a rope,
and the dielectric medium, which can support a certain tension
and no more, may be said to have a certain strength in exactly
the same sense as the rope is said to have a certain strength.
Thus, for example, Thomson has found that air at the ordmmary
pressure and temperature can support an electric tension of 9600
grains weight per square foot before a spark passes.

60.] From the hypothesis that electric action is not a direct
action between bodies at a distance, but is exerted by means of
the medium between the bodies, we have deduced that this medium
must be in a state of stress. We have also ascertained the cha-
racter of the stress, and compared it with the stresses which may
occur in solid bodies. Along the lines of force there is tension,
and perpendicular to them there is pressure, the numerical mag-
nitude of these forces being equal, and each proportional to the
square of the resultant force at the point. Having established
these results, we are prepared to take another step, and to form

* Exp. Res., series xi. 12097.
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an idea of the nature of the electric polarization of the dielectrie
medium,

An clementary portion of a body may be said to be polarized
when it acquires equal and opposite properties on two opposite
sides. The idea of internal polarity may be studied to the greatest
advantage as exemplified In permanent magnets, and it will be
explained at greater length when we come to treat of magnetism.

The electric polarization of an elementary portion of a dielectric
is a forced state into which the medium is thrown by the action
of electromotive force, and which disappears when that force is
removed. We may conceive it to consist in what we may call
an electrical displacement, produced by the electromotive force.
When the electromotive force acts on a conducting medium it
produces a current through it, but if the medium is a non-con-
ductor or dielectric, the current cannot flow through the medium,
but the electricity is displaced within the medium in the direction
of the electromotive force, the extent of this displacement de-
pending on the magnitude of the electromotive force, so that if
the electromotive foree increases or diminishes the electric displace-
ment increases and diminishes in the same ratio.

The amount of the displacement is measured by the quantity
of electricity which crosses unit of area, while the displacement
increases from zero to 1ts actual amount. This, therefore, is the
measure of the electric polarization.

The analogy between the action of electromotive force in pro-
ducing electric displacement and of ordinary mechanical force in
producing the displacement of an elastic body is so obvious that
I have ventured to call the ratio of the electromotive force to the
corresponding electric displacement the coefficient of electric elasticity
of the medium. This cocfficient is different in different media, and
varies Inversely as the specific inductive capacity of each medium.

The variations of electric displacement evidently constitute electric
currents. These currents, however, can only exist during the
variation of the displacement, and therefore, since the displace-
ment cannot exceed a certain value without causing disruptive
discharge, they cannot be continued indefinitely in the same direc-
tion, like the currents through conductors.

In tourmaline, and other pyro-electric crystals, it is probable that
a state of electric polarization exists, which depends upon tem-
perature, and does not require an external electromotive force to
produce it If the interior of a body were in a state of permanent
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electric polarization, the outside would gradually become charged
in such a manner as to neutralize the action of the internal elec-
trification for all points outside the body. ™This external superficial
charge could not be detected by any of the ordinary tests, and
could not be removed by any of the ordinary methods for dis-
charging superficial electrification. The internal polarization of
the substance would therefore never be discovered unless by some
means, such as change of temperature, the amount of the internal
polarization could be increased or diminished. The external elec-
trification would then be no longer capable of neutralizing the
external effect of the internal polarization, and an apparent elec-
trification would be observed, as in the case of tourmaline.

If a charge ¢ is uniformly distributed over the surface of a
sphere, the resultant force at any point of the medium surrounding
the sphere is numerically equal to the charge ¢ divided by the square
of the distance from the centre of the sphere. This resultant force,
according to our theory, is accompanied by a displacement of elec-
tricity in a direction outwards from the sphere.

If we now draw a concentric spherical surface of radius 7, the whole
displacement, £, through this surface will be propertional to the
resultant force multiplied by the area of the spherical surface. But
the resultant force is directly as the charge ¢ and inversely as the
square of the radius, while the area of the surface is directly as the
square of the radius.

Hence the whole displacement, Z, is proportional to the charge e,
and is independent of the radius.

To determine the ratio between the charge e, and the quantity
of electricity, Z, displaced outwards through the spherical surface,
let us consider the work dome upon the medium in the region
between two eoncentric spherical surfaces, while the displacement
is increased from £ to £+ 84. If 7| and 7, denote the potentials
at the inner and the outer of these surfaces respectively, the elec-
tromotive force by which the additional displacement is produced
is 7,—7,, so that the work spent in augmenting the displacement
is (F— V)8 E.

If we now make the inner surface coincide with that of the
electrified sphere, and make the radius of the other infinite, 7
becomes 7, the potential of the sphere, and 7, becomes zero, so
that the whole work done in the surrounding medium is V3 Z.

But, by the ordinary theory, the work done in augmenting the
charge is 7 8¢, and if this is spent, as we suppose, in augmenting
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the displacement, §Z = 3¢, and since £ and e vanish together,
E=c¢ or—

The displacement oulwards through any spherical surfuce concentrie
with the sphere is equal to the charge on the sphere.

To fix our ideas of electrie displacement, let us consider an accu-
mulator formed of two conducting plates 4 and B, separated by a
stratum of a dielectric C. Let # be a conducling wire joining
A4 and B, and let us suppose that by the action of an electromotive
force a quantity @ of positive electricity is transferred along the
wire from B to 4. The positive electrification of 4 and the
negative electrification of B will produce a certain electromotive
force acting from 4 towards B in the dielectric stratum, and this
will produce an electric displacement from A4 towards B within the
diclectric. The amount of this displacement, as measured by the
quantity of electricity forced across an imaginary section of the
dielectric dividing it into two strata, will be, according to our
theory, exactly . See Arts. 75, 76, 111,

It appears, therefore, that at the same time that a quantity
@ of electricity is being transferred along the wire by the electro-
motive force from B towards 4, so as to cross every section of
the wire, the same quantity of electricity crosses every section
of the dielectric from 4 towards B by reason of the electric dis-
placement.

The reverse motions of electricity will take place during the
discharge of the accumulator. In the wire the discharge will be
@ from 4 to B, and in the dielectric the displacement will subside,
and a quantity of electricity @ will cross every section from &
towards 4.

Every case of eleetrification or discharge may therefore be con-
sidered as a motion in a closed circuit, such that at every section
of the circuit the same quantity of electricity crosses in the same
time, and this is the case, not only in the voltaic circuit where
it has always been recognised, but in those cases in which elec-
tricity has been generally supposed to be accumulated in certain
places.

61.] We are thus led to a very remarkable consequence of the
theory which we are examining, namely, that the motions of elec-
tricity are like those of an ¢ncompressitle fluid, so that the total
quantity within an imaginary fixed closed surface remains always
the same. This result appears at first sight in direct contradiction
to the fact that we can charge a conductor and then introduce
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it into the closed space, and so alter the quantity of electricity
within that space. But we must remember that the ordinary theory
takes no account of the electric displacement in the substance of
dielectrics which we have been investigating, but confines its
attention to the electrification at the bounding surfaces of the
conductors and dielectrics. In the case of the charged conductor
let us suppose the charge to be positive, then if the surrounding
dielectric extends on all sides beyond the closed surface there will be
electric polarization, accompanied with displacement from within
outwards all over the closed surface, and the surface-integral of
the displacement taken over the surface will be equal to the charge
on the conductor within.

Thus when the charged conductor is introduced into the closed
space there is immediately a displacement of a quantity of elec-
tricity equal to the charge through the surface from within out-
wards, and the whole quantity within the surface remains the
same.

The theory of electric polarization will be discussed at greater
length in Chapter V, and a mechanical illustration of it will be
given in Art. 334, but its importance cannot be fully understood
till we arrive at the study of electromagnetic phenomena.

62.] The peculiar features of the theory as we have now de-
veloped them are :—

That the energy of electrification resides in the dielectric medium,
whether that medium be solid, liquid, or gaseous, dense or rare,
or even deprived of ordinary gross matter, provided it be still
capable of transmitting electrical action.

That the cnergy in any part of the medium is stored up in
the form of a state of constraint called electric polarization, the
amount of which depends on the resultant electromotive force at
the place.

That electromotive force acting on a dielectric produces what
we have called electric displacement, the relation between the force
and the displacement being in the most general case of a kind
to be afterwards investigated in treating of conduction, but in
the most important cases the force is in the same direction as
the displacement, and is numerically equal to the displacement
multiplied by a quantity which we have called the coeflicient of
electric elasticity of the dielectric.

That the energy per unit of volume of the dieleetric arising from
the electric polarization is half the product of the electromotive
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force and the electric displacement multiplied, if necessary, by the
cosine of the angle between their directions.

That in fluid dielectrics the electrie polarization is accompanied
by a tension in the direction of the lines of force combined with
an equal pressure in all directions at right angles to the lines
of force, the amount of the tension or pressure per unit of area
being numerically equal to the energy per unit of volume at the
same place.

That the surfaces of any elementary portion into which we may
conceive the volume of the dielectric divided must be conceived
to be electrified, so that the surface-density at any point of the
surface is equal in magnitude to the displacement through that
point of the surface reckoned inwards, so that if the displacement
is in the positive direction, the surface of the element will be elec-
trified negatively on the positive side and positively on the negative
side. These superficial electrifications will in general destroy one
another when consecutive elements are considered, except where
the dielectric has an internal charge, or at the surface of the
dielectric.

That whatever electricity may be, and whatever we may under-
stand by the movement of electricity, the phenomenon which we
have called electric displacement is a movement of electricity in the
same sense as the transference of a definite quantity of electricity
through a wire is a movement of electricity, the only difference
being that in the dielectric there is a force which we have called
electric elasticity which acts against the electric displacement, and
forces the electricity back when the electromotive force is removed ;
whereas in the conducting wire the electric elasticity is continually
giving way, so that a current of true conduction is set up, and
the resistunce depends, not on the total quantity of electricity dis-
placed from its position of equilibrium, but on the quantity which
crosses a section of the conductor in a given time.

That in every case the motion of electricity is subject to the
same condition as that of an incompressible fluid, namely, that
at every instant as much must flow out of any given closed space
as flows into it.

It follows from this that every electric current must form a
closed circuit. The importance of this result will be seen when we
investigate the laws of electro-magnetism.

Since, as we have scen, the theory of direct action at a distance
is mathematically identical with that of action by means of a
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medium, the actual phenomena may be explained by the one
theory as well as by the other, provided suitable hypotheses be
introduced when any difficulty occurs. Thus, Mossotti has deduced
the mathematical theory of dielectrics from the ordinary theory
of attraction by merely giving an-electric instead of a magnetic
interpretation to the symbols in the investigation by which Poisson
has deduced the theory of magnetic induction from the theory of
magnetic finids. e assumes the existence within the dielectric of
small conducting elements, capalle of having their opposite surfaces
oppositely electrified by induction, but not capable of losing or
gaining electricity on the whole, owing to their being insulated
from each other by a non-conducting medium. This theory of
dielectrics is consistent with the laws of electricity, and may be
actually true. If 1t is true, the specific inductive capacity of a
dielectric may be greater, but cannot be less, than that of air or
vacuum. No instance has yet been found of a dielectric having
an inductive capacity less than that of air, but if such should
be discovered, Mossotti’s theory must be abandoned, althongh his
formulae would all remain exact, and would only require us to alter
the sign of a coeflicient.

In the theory which I propose to develope, the mathematical
methods are founded upon the smallest possible amount of hypo-
thesis, and thus equations of the same form are found applicable to
phenomena which are certainly of quite different natures, as, for
mstanee, electric induction through dielectrics ; conduction through
conductors, and magnetic induction. In all these cases the re-
lation between the force and the effect produced is expressed by
a set of equations of the same kind, so that when a problem in
one of these subjects is solved, the problem and its solution may
be translated into the language of the other subjects and the
results in their new form will also be true.

VOL. 1.
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CHAPTER IL

ELEMENTARY MATHEMATICAL THEORY OF STATICAL

ELECTRICITY.

Definition of Electricily us a Mathematical Quantily.

63.] We have seen that the actions of electrified bodies are such
that the electrification of one hody may be equal to-that of another,
or to the sum of the electrifications of two bodies, and that when
two bodies are equally and oppositely electrified they have no elec-
trical effect on external bodies when placed together within a closed
insulated conducting vessel. We may express all these results in
a concise and consistent manner by describing an electrified body as
charged with a certain quantity of electricily, which we may denote
by e. When the electrification is positive, that is, according to the
usual convention, vitreous, ¢ will be a positive quantity. When the
electrification is negative or resinous, e will be negative, and the
quantity —e may be interpreted either as a negative quantity of
vitreous electricity or as a positive quantity of resinous electricity.

The effect of adding together two equal and opposite charges of
electricity, +e and —e¢, is to produce a state of no electrification
expressed by zero. We may therefore regard a body not electrified
as virtually charged with equal und opposite charges of indefinite
magnitude, and an electrified body as virtually charged with un-
equal quantities of positive and negative electricity, the algebraic
sum of these charges constituting the observed electrification. Itis
manifest, however, that this way of regarding an electrified body
1s entirely artificial, and may be compared to the conception of the
velocity of a body as compounded of two or more different velo-
cities, no one of which is the actual velocity of the body. When
we speak therefore of a body being charged with a quantity e of
electricity we mean simply that the body is electrified, and that
the electrification is vitreous or resinous according as e is positive
or negative,
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ON ELECTRIC DENSITY.

Distribution in Three Dimensions.

64.] Definition. The electric volume-density at a given point
in space is the limiting ratio of the quantity of electricity within
a sphere whose centre is the given point to the volume of the
sphere, when its radius is diminished without limit.

We shall denote this ratio by the symbol p, which may be posi-
tive or negative.

Distribution on a Surface.

It is a result alike of theory and of experiment, that, in certain
cases, the electrification of a body is entirely on the surface. The
density at a point on the surface, if defined according to the method
given above, would be infinite. We therefore adopt a different
method for the measurement of surface-density.

Definition. The electric density at a given point on a surface is
the limiting ratio of the quantity of electricity within a sphere
whose centre is the given point to the area of the surface contained
within the sphere, when its radius is diminished without limit.

‘We shall denote the surface-density by the symbol o.

Those writers who supposed electricity to be a material fluid
or a collection of particles, were obliged in this case to suppose
the electricity distributed on the surface in the form of a stratom
of a certain thickness 6, its density being p,, or that value of p
which would result from the particles having the closest contact
of which they are capable. 1t is manifest that on this theory

pof = o,
When o is negative, according to this theory, a certain stratum
of thickness 6 is left entirely devoid of positive electricity, and
filled entirely with negative electricity.

There is, however, no experimental evidence either of the elec-
tric stratum having any thickness, or of electricity being a fluid
or a collection of particles. We therefore prefer to do without the
symbol for the thickness of the stratum, and to use a special symbol
for surface-density.

Distribution along o Line.

It is sometimes convenient to suppose electricity distributed
on a line, that is, a long narrow body of which we neglect the
¥ 2
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thickness. In this case we may define the line-density at any point
to be the limiting ratio of the cleetricity on an element of the
line to the length of that element when the element is diminished
without limit.

If A denotes the line-density, then the whole quantity of elee-

tricity on a curve is e :/)\ ds, where ds 1s the element of the curve.

Similarly, if ¢ is the surface-density, the whole quantity of elec-
tricity on the surface is

o = [[eas

where 48 is the element of surface.
If p is the volume-density at any point of space, then the whole
eleetricity within a certain volume is

e:fffpdxdyclz,

wherce dz dy de is the element of volume. The limits of integration
in each case are those of the curve, the surface, or the portion of
space considered.

It 1s manifest that e, N, o and p are quantities differing in kind,
each being one dimension in space lower than the preceding, so that
if @ be a line, the quantities ¢, a), 2%, and a%p will be all of the
same kind, and if @ be the unit of length, and A, o, p each the
unit of the different kinds of density, @A, a%o, and e®p will each
denote one unit of electricity.

Definition of the Unit of Electricity.

65.] Let 4 and B be two points the distance between which
is the unit of length. Let two bodies, whose dimensions are small
compared with the distance 45, be charged with equal quantities
of positive electricity and placed at 4 and B respectively, and
let the charges be such that the foree with which they repel each
other is the unit of force, measured as in Art. 6. Then the charge
of either body is said to be the unit of electricity. If the charge of
the body at B were a unit of negative electricity, then, since the
action between the bodies would be reversed, we should have an
attraction equal to the unit of force.

If the charge of 4 were also negative, and equal to unity, the
force would be repulsive, and equal to unity.

Since the action between any two portions of electricity is not
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affected by the presence of other portions, the repulsion between
¢ units of electricity at 4 and ¢ units at B is eg, the distance
AB being unity. See Art. 39.

Law of Force between Electrified Bodies.

66.] Coulomb shewed by experiment that the force between
electrified bodies whose dimensions are small compared with the
distance between them, varies inversely as the square of the dis-
tance. Hence the actual repulsion between two such bodies charged
with quantities ¢ and ¢ and placed at a distance 7 is

ed
=

We shall prove in Art. 74 that this law 1s the only one con-
sistent with the observed fact that a conductor, placed in the inside
of a closed hollow conductor and in contact with it, is deprived of
all electrical charge. Our convietion of the aceuracy of the law
of the inverse square of the distance may be considered to rest
on experiments of this kind, rather than on the direct measure-
ments of Coulomb.

LResultant Force between Two Bodies.

67.] In order to find the resultant force between two bodies
we might divide each of them into its elements of volume, and
consider the repulsion between the electricity in each of the elements
of the first body and the electricity in each of the elements of the
gecond body. We should thus get a system of forces equal in
number to the product of the numbers of the clements into which
we have divided each body, and we should have to combine the
effects of these forces by the rules of Statics. Thus, to find the
component in the direction of z we should have to find the value
of the sextuple integral

No—a) du dy de da’ dyf de
IS s s

where @, y, z are the coordinates of a point 1o the first body at

which the electrical density is p, and 2%, 7/, 2/, and p’ are the
corresponding quantities for the second body, and the integration
is extended first over the one body and then over the other.

Resultant Force at a Point.

68.] In order to simplify the mathematical process, it is con-
venient to consider the action of an electrified body, not on another
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body of any form, but on an indefinitely small body, charged with
an indefinitely small amount of electricity, and placed at any point
of the space to which the electrical action extends. By making
the charge of this body indefinitely small we render insensible its
disturbing action on the charge of the first body.

Let ¢ be the charge of this body, and let the force acting on
it when placed at the point (z, 7, z) be e, and let the direction-
cosines of the force be Z, m, n, then we may call 2 the resultant
force at the point (z, v, 2).

In speaking of the resultant electrical force at a point, we do not
necessarily imply that auy force is actually exerted there, but only
that if an electrified body were placed there it would be acted on
by a force Re, where ¢ is the charge of the body.

Definition. The Resultant electrical force at any point is the
force which would be exerted on a small body charged with the unit
of positive electricity, if it were placed there without disturbing the
actual distribution of electricity.

This force not only tends to move an electrified body, but to
move the electricity within the body, so that the positive electricity
tends to move in the direction of f2 and the negative electricity
in the opposite direction. Hence the force £ is also called the
Electromotive Force at the point (z, #, 2).

‘When we wish to express the fact that the resultant force is a
vector, we shall denote it by the German letter €. If the body
is a dielectric, then, according to the theory adopted in this
treatise, the electricity is displaced within it, so that the quantity
of electricity which is forced in the direction of € across unit
of area fixed perpendicular to € 1s

1

where D 1s the displacement, € the resultant force, and K the
specific induetive capacity of the dielectric.  For air, K = 1.

If the body 1s a eonductor, the state of constraint is continually
giving way, so that a current of conduction is produced and main-
tained as long as the force € acts on the medium.

Components of the Resultant Force.

If X, ¥, Z denote the components of &, then
X:Hl, Y = Rm, Z = R’ﬂ;

where , m, n are the direction-cosines of &.
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Line-Integral of Electric Force, or Electromotive Force along
an Are of a Curve.

69.] The Electromotive force along a given arc 4P of a curve is
numerically measured by the work which would be done on a unit
of positive electricity carried along the curve from the beginning,
A, to P, the end of the are.

If s 15 the length of the arc, measured from 4, and if the re-
sultant force £ at any point of the curve makes an angle e with
the tangent drawn in the positive direction, then the work done

on unit of electricity in moving along the element of the curve

ds will be R coseds,

and the total electromotive force ¥ will be
V=f']i’coseds,
0

the integration being extended from the beginning to the end
of the are.
If we make use of the components of the force &, we find
¢ dr d. dz
r= (@G +12 425y
If X, ¥, and Z are such that Xdz+ Ydy+Zdz is a complete
differential of a function of 2, 7, 2, then

P
'V:f (Xde+ Ydy+Zde) = ¥V4— Vp;
A

where the integration is performed in any way from the point 4
to the point P, whether along the given curve or along any other
line between 4 and 2.

In this case 7 is a scalar function of the position of a point in
space, that 1s, when we know the coordinates of the point, the value
of 7 is determinate, and this value is independent of the position
and direction of the axes of reference. See Art. 16.

On Functions of the Position of a Point.

In what follows, when we deseribe a quantity as a function of
the position of a point, we mean that for every position of the point
the function has a determinate value. We do not imply that this
value can always be expressed by the same formula for all points of
space, for it may be expressed by one formula on one side of a
given smface and by another formula on the other side,
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On Potential Punctions.
70.] The quantity Xdoe+ Ydy+Zde is an exact differential

whenever the foree arises from attractions or repulsions whose in-
tensity is a function of the distance only from any number of
points. For if », be the distance of one of the points from the point
(z, 9, 2), and 1f ;| be the repulsion, then
X =R I!=E %,
with similar expressions for ¥, and Z;, so that
X dz+ Y dy+2Z,dz = R dr;

and since [, is a function of #, only, &, dry is an exact differential
of some function of 7|, say 7.

Similarly for any other force R,, acting from a centre at dis-
tance 7,,

X, de + Y,dy+Z,de = Rydry, = dV,.

But X = X, + X, +&c. and ¥ and Z are compounded in the same
way, therefore

Xde+Ydy+Zde = dV,+dV, + &c. = dV.

7, the integral of this quantity, under the condition that /" = 0
at an infintte distance, is called the Potential Function,

The use of this funetion in the theory of attractions was intro-
duced by Laplace in the calculation of the atiraction of the earth,
Green, in his essay < On the Application of Mathematical Analysis
to Electricity,” gave it the name of the Potential Function. Gauss,
working independently of Green, also used the word Potential.
Clausius and others have applied the term Potential to the work
which would be done if two bodies or systems were removed to
an infinite distance from one another. We shall follow the use of
the word in recent English works, and avold ambiguity by adopting
the following definition due to Sir W. Thomson,

Definition of Potential. The Potential at a Point is the work
which would be done on a unit of positive electricity by the elec-
tric forces if it were placed at that point without disturbing the
electric distribution, and carried from that point to an infinite
distance.

71.] Expressions for the Resultant Force and its components in
terms of the Potential.

Since the total electromotive foree along any arc 45 is

z;YA— If}?a
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if we put ds for the arc 48 we shall have for the force resolved

in the direction of ds,
av.

Rcose = ——
ds’

whence, by assuming dg¢ parallel to each of the axes in succession,

t
weget . 4y, 4r . dr

= — = — — —

dr dy T de’
P_(le avp? W2>%-
T\ Tyl Tt

‘We shall denote the force itself, whose magnitude is £ and whose
components are X, ¥, Z, by the German letter €, as in Arts. 17
and 68,

The Potential al all Points within a Conductor is the same.

72.] A conductor is a body which allows the electricity within
it to move from one part of the body to any other when acted on
by electromotive force. When the electricity Is in equilibrium
there can be no electromotive force acting within the eonductor.
Hence R = 0 throughout the whole space occupied by the con-
ductor. From this it follows that

arv _ 0 av 0 av

dz , @ =Y dz =0;
and therefore for every point of the conductor
V=2¢,

where C is a constant quantity.

Potential of a Conductor.

Since the potential at all points within the substance of the
conductor is €, the quantity C is called the Potential of the con-
ductor. C may be defined as the work which must be done by
external agency in order to bring a unit of electricity from an
infinite distance to the conductor, the distribution of electricity
being supposed not to be disturbed by the presence of the unit.

If two conductors have equal potentials, and are connected by
a wire so fine that the electricity on the wire itself may be neg-
lected, the total electromotive force along the wire will be zcro,
and no electricity will pass from the one conductor to the other.

If the potentials of the conductors 4 and B be 7,4 and 7, then
the electromotive force along any wire joining 4 and B will be

Vi—Ty

IRIS - LILLIAD - Université Lille 1



74 ELECTROSTATICS, [73.

in the direction 45, that is, positive electricity will tend to pass
from the conductor of higher potential to the other.

Potential, in electrical science, has the same relation to Elec-
tricity that Pressure, in Hydrostaties, has to Fluid, or that Tem-
perature, in Thermodynamics, has to Heat. Electricity, Fluids,
and Heat all tend to pass from one place to another, if the Poten-
tial, Pressure, or Temperature s greater in the first place than in
the second. A fluid is certainly a substance, heat is as certainly
not a substance, so that though we may find assistance from ana-
logies of this kind 1n forming clear ideas of formal electrical rela-
tions, we must be careful not to let the one or the other analogy
suggest to us that electricity is either a substance like water, or
a state of agitation like heat.

Potential due fo any Electrical System.

73.] Let there be a single electrified point charged with a quantity

e of electricity, and let 7 be the distance of the point &/, 7, # from it,
then V=f ]ﬂdr:f %dr:f-
r r 7 7

Let there be any number of electrified points whose coordinates
are (z1, 7, 21), (&3, ¥2, 2,), &c. and their charges ¢, ¢, &c., and
let their distances from the point (¢, %, &) be 7, r,, &c., then the
potential of the system at &', 7, ¢ will be

e
= > (%).
r=3()
Let the electric density at any point (2, 7, z) within an elec-
trified body be p, then the potential due to the body is

P arayaz:
V_-/:/:/rdxdydz,

where r={(@—a + (g~ +—2PH,
the integration being extended throughout the body.

On the Proof of the Law of the Inverse Square.

74.] The fact that the force between electrified bodies is inversely
as the square of the distance may be considered to be established
by direct experiments with the torsion-balance. The results, how-
ever, which we derive from such experiments must be regarded
as affected by an error depending on the probable error of each
experiment, and unless the skill of the operator be very great,
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the probable error of an experiment with the torsion-balance is
considerable, As an argument that the attraction is really, and
not merely as a rough approximation, inversely as the square of the
distance, Experiment VII (p. 34) is far more conclusive than any
measurements of electrical forces can be.

In that experiment a conductor B, charged in any manner, was
enclosed in a hollow conducting vessel €, which completely sur-
rounded it. € was also electrified in any manner.

B was then placed in electric communication with €, and was then
again insulated and removed from € without touching it, and ex-
amined by means of an electroscope. In this way it was shewn
that a conduetor, if made to touch the inside of a conducting vessel
“which completely encloses it, becomes completely discharged, so
that no trace of electrification can be discovered by the most
delicate electrometer, however strongly the conductor or the vessel
has been previously electrified.

The methods gf detecting the electrification of a body are so
delicate that a millionth part of the original electrification of B
could be observed if it existed. No experiments involving the direct
measurement, of forces can be brought to such a degree of accuracy.

It follows from this experiment that a non-electrified body in the
inside of a hollow conductor is at the same potential as the hollow
conductor, in whatever way that conductor is charged. TFor if it
were not at the same potential, then, if it were put in electric
connexion with the vessel, either by touching it or by means of
a wire, electricity would pass from the one body to the other, and
the conductor, when removed from the vessel, would be found to be
electrified positively or negatively, which, as we have already stated,
1s not the case.

Hence the whole space inside a hollow conductor is at the same
potential as the conductor if no electrified body is placed within it.
If the law of the inverse square is true, this will be the case what-
ever be the form of the hollow eonductor. Qur object at present,
however, i1s to ascertain from this fact the form of the law of
attraction.

For this purpose let us suppose the hollow conductor to be a thin
spherical shell.  Since everything is symmetrical about its centre,
the shell will be uniformly electrified at every point, and we have
to enquire what must be the law of attraction of a uniform spherical
shell, so as to fulfil the condition that the potential at every point
within 1t shall be the same.,
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Let the force at a distance 7 from a point at which a quantity e
of electricity is concentrated be X, wherc £ is some function of 7.
All central forees which are functions of the distance admit of a

potential, let us write '/—07(77;) for the potential function due to a unit
of electricity at a distance r.

Let the radius of the spherical shell be z, and let the surface-
density be 0. Let 2 be any point within the shell at a distance
p from the centre. Take the radius through P as the axis of
spherical coordinates, and let 7 be the distance from £ to an element

d§ of the shell. Then the potential at P is

po [[o D

V:fhf’;-'@agsinﬁdﬂd(p.
0 0 r

Now 7?2 = a?—2ap cos 6+ p?,
rdr = apsin§do.
a [etP )
Hence V= 27r<r]f S dr;
a—p

and 7 must be constant for all values of p less than a.
Multiplying both sides by p and differentiating with respect to p,
V=2raa{f(a+p)+fla—p)}
Differentiating again with respect to p,
0 =/ (a+p)—f (a—p).
Since @ and p are independent,
J(r) = C, a constant.
Hence S = Cr+ O,
and the potential function is

MZC+£_
r r

The force at distance » is got by differentiating this expression
with respect to 7, and changing the sign, so that
C’
L= o
or the force is inversely as the square of the distance, and this
therefore is the only law of force which satisfies the condition that
the potential within a uniform spherical shell is constant*. Now

* See Pratt’s Mechanical Philosophy, p. 144,
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this condition is shewn to be fulfilled by the electric forces with
the most perfect accuracy. Hence the law of electric force is
verified to a corresponding degree of accuracy.

Suyface-Integral of Electric Induction, and Electrie Displacement
througk a Surface.

75.] Let R be the resultant force at any point of the surface,
and e the angle which £ makes with the normal drawn towards the
positive side of the surface, then £ cose is the component of the
force normal to the surface, and if 48 is the element of the surface,
the electric displacement through 48 will be, by Art. 68,

i KZFEcoseds.
4

Since we do not at present consider any dielectric except air, K=1.

We may, however, avoid introducing at this stage the theory of
electric displacement, by calling 7 cos e 28 the Induction through
the element &8. This quantity is well known in mathematical
physics, but the name of induction is borrowed from Faraday.
The surface-integral of induction is

/ £ cos e 48,

and it appears by Art. 21, that if X, ¥, Z are the components of £,
and if these quantities are continuous within a region bounded by a
closed surface §, the induction reckoned from within outwards is

f/RcosedS //f(éf[f dY [ZZ (Imflydz

the integration being extended through the whole space within the
surface.

Induction through a Finite Closed Surfuce due to a Single Centre
of Foree.

76.] Let a quantity e of electricity be supposed to be placed at a
point O, and let » be the distance of any point P from O, the force
at that point i1s £ = Tez in the direction 02,

Let a line be drawn from O in any direction to an infinite
distance. If O is without the closed surface this line will either
not cut the surface at all, or it will issue from the surface as many
times as it enters. If O is within the surface the line must first
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issue from the surface, and then it may enter and issue any number
of times alternately, ending by issuing from it.

Let ¢ be the angle between OF and the normal to the surface
drawn outwards where OP cuts it, then where the line issues from
the surface cose will be positive, and where it enters cos e will
be negative.

Now let a sphere be described with centre O and radius unity,
and let the line OP describe a conical surface of small angular
aperture about O as vertex.

This cone will cut off a small element dw from the surface of the
sphere, and small elements d8;, 48,, &ec. from the closed surface at
the various places where the line OP intersects it.

Then, since any one of these elements 4§ intersects the cone at a
distance 7 from the vertex and at an obliquity ¢,

a8 =r?secedow;
and, since £ = er—2, we shall have
LicosedS = + edo;
the positive sign being taken when 7 issues from the surface, and
the negative where it enters it.

If the point O is without the closed surface, the positive values
are equal in number fo the negative ones, so that for any direction
of 7, ZRcosedS =0,

and therefore f[R cosedS = 0,

the integration being extended over the whole closed surface.

If the point O is within the closed surface the radius vector OP
first issues from the closed surface, giving a positive value of edow,
and then has an equal number of entrances and issues, so that in
this case SRcosedS = edo.

Extending the integration over the whole closed surface, we shall
include the whole of the spherical surface, the area of which is 4,

so that
f/RcosedS: ef/dm = 47e.

Hence we conclude that the total induction outwards through a
closed surface due to a centre of force e placed at a point O is
zero when O is without the surface, and 4we when O is within
the surface.

Since in air the displacement is equal to the induction divided
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by 47, the displacement through a closed surfuce, reckoned out-
wards, 1s equal to the electricity within the surface.

Corollary. Tt also follows that if the surface is not closed but
is bounded by a given closed curve, the total induction through
it is we, where w is the solid angle subtended by the closed curve
at 0. This quantity, therefore, depends only on the closed curve,
and not on the form of the surface of which it is the boundary.

On the Equations of Laplace and Poisson.

77.) Since the value of the total induction of a single centre
of force through a closed surface depends only on whether the
centre is within the surface or not, and does not depend on its
position in any other way, if there are a number of such centres
¢, &, &c. within the surface, and e/, ¢, &c. without the surface,
we shall have

f ReosedS = 4me;

where e denotes the algebraical sum of the quantities of elec-
tricity at all the centres of force within the closed surface, that is,
the total electricity within the surface, resinous electricity being
reckoned negative.

If the electricity is so distributed within the surface that the
density is nowhere infinite, we shall have by Art. 64,

4me = 47rff]pdzdydz,
and by Art. 75,

fchosedS jff(dX dY dy)](lydz

If we take as the closed surface that of the element of volume
dz dy dz, we shall have, by equating these expressions,

FZRr I P

and if a potential 7 exists, we find by Art. 71,
ary drv  drv . o.

dz2+ly t o T =

This equation, in the case in which the density is zero, is called
Laplace’s Equation. In its more general form it was first given by
Poisson. It enables us, when we know the potential at every point,
to determine the distribution of electricity.
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‘We shall denote, as at Art. 26, the quantity

dz V av + 2 d“V 27,

2zt T by —¢
and we may express Poisson’s equatlon in words by saying that
the electric density multiplied by 4« is the concentration of the
potential. Where there is no electrification, the potential has no
concentration, and this is the interpretation of Laplace’s equation.

If we suppose that in the superficial and linear distributions of

electricity the volume-density p remains finite, and that the elec-
tricity exists in the form of a thin stratum or narrow fibre, then,
by increasing p and diminishing the depth of the stratum or the
section of the fibre, we may approach the limit of true superficial
or linear distribution, and the equation heing true throughout the
process will remain true at the limit, if interpreted in accordance
with the actual circumstances.

On the Conditions to be fulfilled at an Electrified Surfuce.

78.] We shall consider the electrified surface as the limit to
which an electrified stratum of density p and thickness v approaches
when p is increased and » diminished without limit, the product p»
being always finite and equal to o the surface-density.

Let the stratum be that included between the surfaces

Fo,y,2) =F=a (1)
and F=a+4r (2)
2 Yl 2 =12
If we put R? = ﬁ cfé dj; ; (8)
and if 7, m, # are the direction-cosines of the normal to the surface,
RZ—dF, Rm: @) R’ﬂ:dF‘ (4)
dw dy dz

Now let 7] be the value of the potential on the negative side
of the surface F = a, 7" its value between the surfuces # = @ and
F = a+#, and 7, its value on the positive side of ¥ = a+£.

Also, let py, p’, and p, be the values of the density in these three
portions of space. Then, since the density 1s everywhere finite,
the second derivatives of 7 are everywhere finite, and the first
derivatives, and also the function itself, are evervwhere continuous
and finite.

At any point of the surface £/ = 2 let a normal be drawn of
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length », till it meets the surface F = a 4 4, then the value of F at
the extremity of the normal is

dF aF daF
a+v(l dz +7ﬂz‘yf + E;)+&C., (5)
or a+h=a+ v+ &ec. (6)
The value of 7 at the same point is
av’ dv’ av’
V‘2=VI+U(ZW+M—@—+7!72—)+&C., (7)
koav’
or V,=V, = T + &ec. (8)

Since the first derivatives of ¥ continue always finite, the second
side of the equation vanishes when £ is diminished without limit,
and therefore if 7, and #; denote the values of # on the outside
and inside of an electrified surface at the point z, 7, 2,

v, =V, ©)

If #+dx, y+dy, z+dz be the coordinates of another point on
the electrified surface, ¥ =a and 7,=/, at this point also; whence

dF dr dF
d +——dy+—dz+&c (10)

dy
B dVl) dV _ a7,

- (- Dy (O

and when dz, dy, dz vanish, we ﬁnd the condmons

)a’ 2+ &e.; (11)

av, arv,;

T~ =0

ar; dv,

o2 Tl 12
dy dy Cm, (12)
av, dv,

e Pl

where C is a quantity to be determined.

. - av
Next, let us consider the variation of F and ——- along the

dz
ordinate parallel to z between the surfaces F=a and F=a+-4.
We have F—a+”da-+%dljd.p) + &e., (13)
av  dv, a” V’ av’
and Ty = _(l_z dz+4 773 (dz)? + &e. (14)

Hence, at the sccond surfaee, where F=a + 4, and 7 becomes 7,
v, dV axv’
dr T dx t

VOL. I. @

dz+&e. ; (15)
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dazv’
whence E de+&e. = Cl, (16)

by the first of equations (12).
Multiplying by /7, and remembering that at the second surface

Ride = 4 (17)

we find cf;zlﬁ = CRI. (18)
Similarly fl_;;p;ﬁ — CRm?; (19)
and %;:}; = CRn*. (20)
Adding d;; + d;;; + d;!;)/& =CR; (21)
but %:erg;Jr%:_mp' and 2 =sR; (22)
henee C=—4mpv =—4roa, (23)

where o is the surface-density; or, multiplying the equations
(12) by ¢, m, # respectively, and adding,
av, dv; a¥, dr avy, 4V
Z(’d}f‘ — T;)+m(7; _@!)+ a( T _TZZ_I)+4M = 0. (24)
This equation is called the characteristic equation of ¥ at a surface.
This equation may also be written

v, 47,

(Z—Vl+d_u:;+4’no'=0; (25)
where vy, v, are the normals to the surface drawn towards the
first and the second medium respectively, and #,, ¥, the potentials
at points on these normals. We may also write it

Rycose+ L cose+4ma = 0; (26)
where R,, R, are the resultant forces, and ¢, €, the angles which
they make with the normals drawn from the surface on either
side.

79.] Let us next determine the total mechanical force acting on
an element of the electrified surface.

The general expression for the force parallel to z on an element
whose volume is do dy dz, and volume-density p, is

av
aX = — TP dz dy dz. (27)

IRIS - LILLIAD - Université Lille 1



80.] FORCE ACTING ON AN ELECTRIFIED SURFACE, 83

In the present case we have for any point on the normal »
arav, @&y,
dr — dr Ty du?

also, if the element of surface is #8§, that of the volume of the
element of the stratum may be written dSdv; and if X is the whole
force on a stratum of thickness »,

x= ([0 4l k) asim (29)

Integrating with respect to », we ﬁnd

+ &e.; (28)

av, v 2427,
X_—ffp dS( o L+ &e.); (30)
. ar; sz’
or, since a7, _Tl- P + &e.; (31)

X__/fgpuds( + 24 4 ke (32)

When v is diminished and p” increased without limit, the product
p'v remaining always constant and equal to o, the expression for
the force in the direction of # on the electricity ¢ &8 on the element
of surface 4.8 1s av, dr,

X=—cdS}(-1 + —2); (33)
that is, the force acting on the electrified element o 4§ in any given
direction is the arithmetic mean of the forces acting on equal
quantities of electricity placed one just inside the surface and the
other just outside the surface close to the actual position of the
element, and therefore the resultant mechanical force on the elec-
trified element is equal to the resultant of the forces which would
act on two portions of electricity, each equal to half that on the
element, and placed one on each side of the surface and infinitely
near to it.

80.] Wken a conductor is in electrical equililvium, the whole of the
electricity is on the surface.

.We have already shewn that throughout the substance of the
conductor the potential 7 is constant. Hence y27 is zero, and
therefore by Poisson’s equation, p is zero throughout the substance
of the conductor, and there can be no electricity in the interior
of the conductor.

Hence a superficial distribution of eleetricity is the only possible
one in the case of conductors in equilibrium. A distribution
throughout the mass can only exist in equilibrium when the body
is a non-conductor.

G 2
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Sinee the resultant foree within a conductor is zero, the resultant
force just outside the conductor is along the normal and is equal to
4 7o, acting outwards from the conductor.

8l.] If we now suppose an elongated body to be electrified, we
may, by diminishing its lateral dimensions, arrive at the conception
of an electrified line.

Let ds be the length of a small portion of the elongated body,
and let ¢ be its circumference, and ¢ the superficial density of the
electricity on its surface; then, if A is the eleetricity per unit of
length, A = c¢o, and the resultant electrical force close to the
surface will be A

4d7mo = 47 .

If, while A remains finite, ¢ be diminished indefinitely, the force
at the surface will be increased indefinitely. Now in every di-
electric there is a limit beyond which the foree eannot be increased
without a disruptive discharge. Hence a distribution of electricity
in which a finite quantity is placed on a finite portion of a line
is inconsistent with the conditions existing in nature.

Even if an insulator could be found such that no discharge could
be driven through it by an infinite force, it would be impossible
Lo charge a linear conductor with a finile guantity of electricity,
for an infinite electromotive force would be required to bring the
electricity to the linear conduector.

In the same way it may be shewn that a point charged with
a finite quantity of electricity cannot exist in nature. It is con-
venient, however, In certain cases, to speak of electrified lines and
points, and we may suppose these rcpresented by electrified wires,
and by small bodies of which the dimensions are negligible com-
pared with the principal distances concerned,

Since the quantity of electricity on any given portion of a wire
diminishes indefinitely when the diameter of the wire 1s indefinitely
diminished, the distribution of electricity on bodies of considerable
dimensions will not be sensibly affected by the introduction of very
fine metallie wires into the field, so as to form electrical connexions
between these bodies and the earth, an electrical machine, or an
electrometer.

On Lines of Force.

82.] If a line be drawn whose direction at every point of its
course coincides with that of the resultant force at that point, the
line is called a Line of Force.

IRIS - LILLIAD - Université Lille 1



82.] LINES OF FORCE. 85

If lines of force be drawn from every point of a line they will
form a surface such that the force at any point is parallel to the
tangent plane at that point. The surface-integral of the force with
respect to this surface or any part of it will therefore be zero.

If lines of force are drawn from every point of a closed curve L,
they will form a tubular surface §,. Let the surface §;, bounded
by the closed curve Z,, be a section of this tube, aud let §, be any
other section of the tube. Let @,, @, @, be the surface-integrals
over 8y, 8, §;, then, since the three surfaces completely enclose a
space in which there 1s no attracting matter, we have

Q0+ Q1+ Q2 = 0.

But §, = 0, therefore @, =—@,, or the surface-integral over
the second section is equal and opposite to that over the first: but
since the directions of the normal are opposite in the two cases, we
may say that the surface-integrals of the two scctions are equal, the
direction of the line of force being supposed positive in both.

Such a tube is called a Solenoid *, and such a distribution of
force 1s called a Solenoidal distribution. The velocities of an in-
compressible fluid are distributed in this manner.

If we suppose any surface divided into elementary portions such
that the surface-integral of each element is unity, and if solenoids
are drawn through the field of force having these elements for their
bases, then the surface-integral for any other surface will be re-
presented by the number of solenoids which it cuts. It is in this
sense that Faraday uses his conception of lines of force to indicate
not only the direction but the amount of the force at any place in
the field.

‘We have used the phrase Lines of Force because it has been used
by Faraday and others. In strictness, however, these lines should
be called Lines of Electric Induction.

In the ordinary cases the lines of induction indicate the direction
and magnitude of the resultant electromotive force at every point,
because the force and the induction are in the same direction and
In a constant ratio. There are other cases, however, in which it
is important to remember that these lines indicate the induction,
and that the force is indicated by the equipotential surfaces, being
normal to these surfaces and inversely proportional to the distances
of consecutive surfaces.

* From cbAfr, a tube. Faraday uses (3271) the term ‘Sphondyloid’ in the same
sense.
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On Specific Inductive Capacity.

83.] In the preceding investigation of surface-integrals T have
adopted the ordinary conception of direct action at a distance,
and have not taken into consideration any effects depending on the
nature of the dielectric medium in which the forces are observed.

But Faraday has observed that the quantity of electricity
induced by a given clectromotive force on the surface of a conductor
which bounds a dielectric is not the same for all dielectrics, The
induced electricity is greater for most solid and liquid dielectrics
than for air and gases. Hence these bodies are said to have a
greater specific inductive capacity than air, which is the standard
medium.

‘We may express the theory of Faraday in mathematical language
by saying that in a dielectric medium the induction across any
surface is the product of the normal electric force into the coefficient
of specific inductive capacity of that medium. If we denote this
coefficient by K, then in every part of the investigation of sur-
face-integrals we must multiply X, ¥, and Z by K, so that the
equation of Poisson will become

L R
de'de  dy’ T dy  de’ Z: Trme =0
At the surface of separation of two media whose inductive cupa-
cities are K, and K,, and in which the potentials are ¥} and 7,,
the characteristic equation may be written
av, . ar;
@ N

where v 1s the normal drawn from the first medium to the second,

K, +4ma =0;

and o is the true surface-density on the surface of separation;
that is to say, the quantity of electricity which is actually on the
surface in the form of a charge, and which can be altered only by
conveying electricity to or from the spot. This true electrification
must be distinguished from the apparent electrification o”, which is
the electrification as deduced from the electrical forces in the neigh-
bourhood of the surface, using the ordinary characteristic equation
av, dr;

v —_ 31}‘ +47wo = 0.

If a solid dielectric of any form is a perfect insulator, and if
its surface receives no charge, then the true electrification remains
zero, whatever be the electrical forces acting on 1t.

IRIS - LILLIAD - Université Lille 1



83.] SPECIFIC INDUCTIVE CAPACITY. 87

arv, K, dV. K,—K, dV
H @y _Mdly A=Ay 47, '
ence dv =K, dv and K dv +4ma'= 0,
ar, 4na’ K, av, 47’ Ky

dv ~ K=K,  dv  K—K,

The surface-density o i1s that of the apparent electrification
produced at the surface of the solid dielectric by induction. Tt
disappears entirely when the inducing force is removed, but if
during the action of the inducing force the apparent electrification
of the surface is discharged by passing a flame over the surface,
then, when the inducing force is taken away, there will appear an
electrification opposite to ¢ *.

In a heterogeneous dielectric in which X varies continuously, if
" be the apparent volume-density,

azv. d*v a2V
dz? + dy? t dz?
Comparing this with the equation above, we find

an(p—Ke) + ﬂK(ZV+ {U(dV+ aK IZV—___ 0
de doe * dy dy = dz de )

The true electrification, indicated by p, in the dielectric whose

variable inductive capacity is denoted by &, will produce the same

potential at every point as the apparent electrification, indicated by

¢’, would produce in a"dielectric whose inductive capacity is every-

where equal to unity.

—+—47l'p’: 0.

* Sce Faraday’s ‘Remarks on Static Induction,’ Proceedings of the Royal In-
stitution, Feb. 12, 1858.
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SYSTEMS OF CONDUCTORS.

On the Superposition of Electrical Systems.

84.] liet & be a given electrified system of which the potential
at a point P is 7], and let Z, be another electrified system of which
the potential at the same point would be 7, if E| did not exist.
Then, if £ and K, exist together, the potential of the combined
system will be 7+ 7,.

Hence, if 7 be the potential of an electrified system £, if the
eleetrification of every part of F be increased in the ratio of # to 1,
the potential of the new system » £ will be = 7.

Energy of an Electrified System.

85.] Let the system be divided into parts, 4, 4,, &c. so small
that the potential in each part may be considered constant through-
out its extent. Let ¢, ¢, &ec. be the quantities of electricity in
each of these parts, and let 7, 7,, &c. be their potentials,

If now ¢, is altered to ze, ¢, to 76, &e., then the potentials will
become 2 ¥, n¥,, &e. )

Let us consider the effect of changing # into %+ dr in all these
expressions, It will be equivalent to charging 4, with a quantity
of electricity ¢, dn, 4, with e,dn, &c. These charges must be sup-
posed to be brought from a distance at which the electrical action
of the system is insensible. The work done in bringing e dn of
electricity to 4, whose potential before the charge is # 77, and after
the charge (n+dr) 7}, must lie between

nViejdn and (n+dn)V,e dn:
In the limit we may neglect the square of oz, and write the
expression Ve ndn.
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Similarly the work required to increase the charge of 4, is
V,e,ndn, so that the whole work done in increasing the charge
of the system is

(Fiev4 Vyey+ &) n dn.

If we suppose this process repeated an indefinitely great number
of times, each charge being indefinitely small, till the total effect
becomes sensible, the work done will be

E(Ve)fndn =32 (Fe)(n2—n?);

where = (#¢) means the sum of all the products of the potential of
each element into the quantity of electricity in that element when
n = 1, and #, is the initial and », the final value of =,

If we make 2, = 0 and #, = 1, we find for the work required to
charge an unclectrified system so that the electricily is ¢ and the
potential 7 in each element,

Q@=131Z(Ve).

General Theory of a System of Conductors. .

86.1 Let 4,, 4,,... 4, be any number of conductors of any
form. Let the charge or total quantity of electricity on each of
these be E, E,, ... £B,, and let their potentials be 7, 7,, ... F,
respectively.

Let us suppose the eonductors to be all insulated and originally
free of charge, and at potential zero,

Now let 4, be charged with unit of electricity, the other bodies
being without charge. The effect of this charge on 4, will be to
raise the potential of 4, to p,,, that of 4, to 2,, and that of 4, to
Pin» Where 2, &c. are quantities depending on the form and rela-
tive position of the conductors. The quantity p;; may be called the
Potential Coeflicient of 4; on itself, and p;, may be called the Po-
tential Coeflicient of 4; on 4,, and so on.

If the charge upon 4, is now made F,, then, by the principle of
superposition, we shall have

Vi=puli...... Vo= pra by
Now let 4, be discharged, and 4, charged with unit of electricity,

and let the potentials of 4,, 4,, ... 4, be Py, Pgyy ... py,, then the
potentials due to E, on 4, will be

7/1=[721E2 ...... Vn=]72nE2'
Similarly let us denote the potential of 4, due to a unit charge
on A, by 7., and let us call p,, the Potential Coeflicient of 4, on 4,,
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then we shall have the following equations determining the po-
tentials in terms of the charges :
Vi=pnE...4 pi Br. .+ puy B,
Vs=plsE1"'+])rsEr"-+ﬁnaEm (1)
K =ﬁ1nE1 "'+prnEr"' +])7mEn-
We have here # linear equations containing #? coefficients of
potential.
87.] By solving these equations for Z), #,, &e. we should obtain
n equations of the form
B=quh g Gt
B, = 9.7,

"'+qr8K"'+anK: (2)
o= quVy. ol + Gnitae

The coefficients in these equations may be obtained directly from

those in the former equations. They may be called Coefficients of

Induction.

Of these ¢y is numerically equal to the quantity of electricity
on A4, when 4, is at potential unity and all the other bodies are
at potential zero. This is called the Capacity of 4,. It depends
on the form and position of all the conductors in the system.

Of the rest g,, 1s the charge induced on 4, when 4, 1s main-
tained at potential unity and all the other conductors at potential
zero. 'This is called the Coefficient of Induction of 4, on 4,.

The mathematical determination of the coeflicients of potential
and of capacity from the known forms and positions of the con-
ductors is in general difficult. We shall afterwards prove that they
have always determinate values, and we shall determine their values
in certain special cascs. For the present, however, we may suppose
them to be determined by actual experiment.

Dimensions of these Coefficients.

Since the potential of an electrified point at a distance 7 is the
charge of electricity divided by the distance, the ratio of a quantity
of electricity to a potential may be represenied by a line. Hence
all the coefficients of capacity and induction (¢) are of the nature of
lines, and the coefficients of potential (») are of the nature of the
reciprocals of lines.
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88.] Turorem 1. The coefficients of A, relative to 4, are equal fo
those of A, relative {o A .

If E,, the charge on 4,, is increased by 3 Z,, the work spent in
bringing 3 £, from an infinite distance to the conductor 4, whose
potential 18 7, is by the definition of potential in Art. 70,

V" 5 E’"
and this expresses the increment of the electric energy caused by
this increment of charge.

If the charges of the different conductors are increased by 37,
&c., the increment of the electric energy of the system will be

3 = V,8F +&e.+ V,3E, + &e.

If, therefore, the electric energy @ is expressed as a function
of the charges E|, %,, &c., the potential of any conductor may be
expressed as the partial differential coeflicient of this function with
respect to the charge on that conductor, or

d d
V'=(d§,) ...... V,:(d%.

Since the potentials are linear functions of the charges, the energy

must be a quadratic function of the charges. If we put
CE. F,

for the term in the expansion of @ which involves the product
E, E,, then, by differentiating with respect to £,, we find the term
of the expansion of V, which involves Z, to be CZ,.

Differentiating with respect to Z,, we find the term in the
expansion of ¥, which involves Z, to be CE,.

Comparing these results with equations (1), Art. 86, we find

Pr = C = py,

or, interpreting the symbols z,, and p,, :—

The potential of 4, due to a unit charge on A, is equal to the
potential of 4, due to a unit charge on 4,.

This reciprocal property of the electrical action of one conductor
on another was established by Helmholtz and Sir W. Thomson.

If we suppose the conductors 4, and 4, to be indefinitely small,
we have the following reciprocal property of any two points :—

The potential at any point 4,, due to unit of electricity placed
at 4, in presence of any system of conductors, is a function of the
positions of 4, and A4, in which the coordinates of A4, and of 4,
enter in the same manner, so that the value of the function is
unchanged if we exchange 4, and 4,.
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This function is known by the name of Green’s Function.

The coefficients of induction ¢,, and ¢,, are also equal. This is
easily seen from the process by which these coefficients are obtained
from the coefficients of potential. For, in the expression for g¢,,,
2, and p,, enter in the same way as p,, and p,, do in the expression
for ¢,.. Hence if all pairs of coeflicients p,, and p,, are equal, the
pairs ¢,, and g,, are also equal. .

89.] Trxorem I1I. Let a charge F, be placed on A, and let all
the other conductors be at potential zero, and let the charge
induced on A, be —n,, L., then if A, is discharged and insulated,
and A, brought to polential ¥, the olker conductors being al
potential zero, then the potential of A, will be +u,V,.

For, in the first case, if # is the potential of 4., we find by

equations (2),

EB = V,, and Er = ¢y Z
Hence E, = 1’/"‘]1"_, and 7w, =— %
q

rr er

In the second case, we have

Er =0 = 9rr7r+graVa-
Hence V=— Iy g n,, V.

8
"

From this follows the important theorem, due to Green :—

If a charge unity, placed on the conductor 4, in presence of
conductors 4,, 4,, &e. at potential zero induces charges —uz;,
—n,, &c. in these conductors, then, if 4, is discharged and -
sulated, and these conductors are maintained at potentials 73, 75,
&e., the potential of 4, will be

n ¥V, +n, 7, + &e.
The quantities (#) are evidenily numerical quantities, or ratios.

The conductor 4, may be supposed reduced to a point, and
4,, 4,, &e. need not be insulated from each other, but may be
different elementary portions of the surface of the same conductor.
‘We shall see the application of this principle when we investigate
Green’s Functions.

90.] Turworex I11. ke coefficients of polential are all positive,
but none of the cocflicients p,, is greater than p,, 0¥ p,,.

For let a charge unity be communicated to A,, the other con-
ductors being uncharged. A system of equipotential surfaces will

IRIS - LILLIAD - Université Lille 1



91.] PROPERTIES OF THE COEFFICIENTS, 93

be formed. Of these one will be the surface of 4,, and its potential
will be p,,. If A, is placed in a hollow excavated in 4, so as to be
completely enclosed by it, then the potential of 4, will also be g,,.

If, however, 4, is outside of 4, its potential p,, will lie between
7, and zero.

For consider the lines of force issuing from the charged con-
ductor 4,. The charge is measured by the excess of the number
of lines which issue from it over those which terminate in it.
Hence, if the conductor has no charge, the number of lines which
enter the conductor must be equal to the number which issue from
it. The lines which enter the conductor come from places of greater
potential, and those which issue from it go to places of less poten-
tial. Hence the potential of an uncharged conductor must be
intermediate between the highest and lowest potentials in the field,
and therefore the highest and lowest potentials cannot belong to
any of the uncharged bodies.

The highest potential must therefore be z,,, that of the charged
body 4., and the lowest must be that of space at an infinite dis-
tance, which is zero, and all the other potentials such as p,, must
lie between p,, and zero.

If 4, completely surrounds 4,, then p,, = z,,.

91.] Turorem IV. None of the coefficients of induction are positive,
and the sum of all those belonging to a single conductor is not
numerically greater than the coefficient of capacity of that con-
ductor, whick is always positive,

For let 4, be maintained at potential unity while all the other
conductors are kept at potential zero, then the charge on 4, is ¢,,,
and that on any other conductor 4, is g¢,,.

The number of lines of force which issue from 4, is p,,. Of these
some terminate in the other conductors, and some may proceed to
infinity, but no lines of force can pass between any of the other
conductors or from them to infinity, because they are all at potential
zero.

No line of force can issue from any of the other conductors such
as 4,, because no part of the field has a lower potential than 4,.
If 4, is completely cut off from A, by the closed surface of one
of the conductors, then g,, is zero. 1f 4, is not thus cut off, ¢,, is a
negative quantity.

If one of the conductors 4, completely surrounds 4,, then all
the lines of force from A, fall on 4, and the conductors within it,
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and the sum of the coefficients of induction of these conductors with
respect to 4, will be equal to g¢,, with its sign changed. But if
4, is not completely surrounded by a conductor the arithmetical
sum of the coefficients of induction g,,, &c. will be less than g,,.

‘We have deduced these two theorems independently by means
of electrical considerations. We may leave it to the mathematical
student to determine whether one is a mathematical consequence
of the other.

Resultant Mechanical Force on any Conductor in terms of the Charges.

92.] Let 8¢ be any mechanical displacement of the conductor,
and let ® be the the component of the force tending to produce that
displacement, then &8¢ is the work done by the force during
the displacement. If this work is derived from the electrification
of the system, then if @ is the electric energy of the system,

P3p+06Q = 0, (3)
)
or (s3] _—_—5%- 4)
Here Q=3 ELN+EFV,+&e) (5)

If the bodies are insulated, the variation of @ must be such that
£, E,, &c. remain constant. Substituting therefore for the values
of the potentials, we have

Q =43,.2,(F, Ep,), (6)
where the symbol of summation X includes all terms of the form

within the brackets, and r and ¢ may each have any values from
1 to . From this we find

d AP,
:_d_gz—%zrzs(ErEa d4)) (7)

as the expression for the component of the force which produces
variation of the generalized coordinate ¢.
Resultant Mechanical Force in terms of the Potentials.

93.] The expression for @ in terms of the charges is

dp,,
®=—1%, 3, (L j(p) (8)

where in the summation 7 and ¢ have each every value in suc-
cession from 1 to =z.

Now Z, = E:(V,qr,) where ¢ may have any value from 1 to #,
so that
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dﬁ”
& =—143,3,3,(57q, d¢ . (9)

Now the coefficients of potential are connected with those of
induction by # equations of the form

Er (pﬂf qﬂf) = 1, (10)
and 4 # (n—1) of the form
2r(ﬁmr qbr) = 0. (11)
Differentiating with respect to ¢ we get $n(2+41) equations of
the form dg,, ey
2r(};ar d¢)+2 ( br )— 0’ (12)

where @ and & may be the same or dlﬁ’erent.
Hence, putting a and & equal to 7 and s,

=1%,5,5(L %p., qdr:) (13)

but 25 (Eapn) =7

r?

so that we may write
g,
¢=gz,z,(r;r,mf), (14)

where 7 and ¢ may have each every value in succession from 1
to #. This expression gives the resultant force in terms of the
potentials.

If each conductor is connected with a battery or other con-
trivance by which its potential is maintained constant during the
displacement, then this expression is simply

= s’ (15)
under the condition that all the potentials are constant.

The work done in this case during the displacement 8¢ is @ d¢,
and the electrical energy of the system of conductors is increased
by 8Q; hence the energy spent by the batteries during the dis-
placement is

bip+0@ =254 = 234, (16)
It appears from Art. 92, that the resultant force ® is equal to

, under the condition that the charges of the conductors are

@

, under the con-
ad

d
~de
constant. It is also, by Art. 93, equal to
dition that the potentials of the conductors are constant. If the
conductors are insulated, they tend to move so that their energy
is diminished, and the work done by the electrical forces during
the displacement is equal to the diminution of energy.

If the conductors are connected with batteries, so that their

IRIS - LILLIAD - Université Lille 1



96 SYSTEMS OF CONDUCTORS. [94.

potentials are maintained constant, they tend to move so that the
energy of the system is increased, and the work done by the
electrical forces during the displacement is equal to the increment
of the energy of the system. The energy spent by the batteries
is equal to double of either of these quantities, and is spent half
in mechaniecal, and half in electrical work.

On the Comparison of Similar Elecirified Systems.

94,7 If two electrified systems are similar in a geometrical sense,
so that the lengths of corresponding lines in the two systems
are as L to I/, then if the dielectric which separates the conducting
bodies is the same in both systems, the coefficients of induction
and of capacity will be in the proportion of L to L’. TFor if we
consider corresponding portions, 4 and A, of the two systems, and
suppose the quantity of electricity on 4 to be %, and that on 4’
to be E’, then the potentials ” and 7~ at corresponding points
B and £, due to this electrifieation, will be

P E e B
But 4B is to A’B as L to L, so that we must have
E:E LV L'V,

But if the inductive capacity of the dielectric is different in the
two systems, being X in the first and X’ in the second, then if the
potential at any point of the first system is to that at the cor-
responding point of the second as 7 to 7, and if the quantitics
of electricity on corresponding parts are as I to £, we shall have

E:E ::LVK: L'V'K'.

By this proportion we may find the relation between the total
electrification of corresponding parts of two systems, which are
in the first place geometrically similar, in the second place com-
posed of dielectric media of which the dielectric inductive capacity
at corresponding points is in the proportion of X to X', and in
the third place so electrified that the potentials of corresponding
points are as 7 to V7.

From this it appears that if' 4 be any coeflicient of capacity or
induction in the first system, and ¢ the corresponding one in the
second, g:¢:: LK : I'K’;
and if » and p’ denote corresponding coeflicients of potential in
the two systems, , 1 1

Piv G TRTRS
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If one of the bodies be displaced in the first system, and the
corresponding body in the second system receive a similar dis-
placement, then these displacements are in the proportion of ZL
to I/, and if the forces acting on the two bodies are as F to F7,
then the work done in the two systems will be as #.Z to F'L’.

But the total electrical energy is half the sum of the quantitics
of electricity mulfiplied each by the potential of the electrified
body, so that in the similar systems, if @ and Q" be the total
electrical energy,

Q:Q ::EV EV,
and the difference of energy after similar displacements in the two
systems will be in the same proportion. Hence, since FZL is pro-
portional to the electrical work done during the displacement,
FL:FL ::EV:EV.

Combining these proportions, we find that the ratio of the
resultant force on any body of the first system to that on the
corresponding body of the second system s

F.F ::V2K: VK’
T S
or F:F Yt g
The first of these proportions shews that in similar systems the
force is proportional to the square of the electromotive foree and
to the induective capacity of the dielectrie, Lut is independent of the
actual dimensions of the system.

Hence two conductors placed in a liquid whose inductive capacity
is greater than that of air, and eclectrified to given potentials, will
attract each other more than if they had been electrified to the
same potentials in air.

The second proportion shews that if the quantity of electricity
on each body is given, the forces are proportional to the squares
of the electrifications and inversely to the squares of the distances,
and also inversely to the inductive capacities of the media.

Hence, if two conductors with given charges are placed in a
liquid whose inductive capacity is greater than that of air, they
will attract each other less than if they had been surrounded with
air and electrified with the same charges of electricity.

VOL. 1. H
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CHAPTER 1V.

GENERAL THEOREMS.

95.] IN the preceding chapter we have caleulated the potential
function and investigated its properties on the hypothesis that
there is a direct action at a distance between electrified bodies,
which 1s the resultant of the direct actions between the various
electrified parts of the bodies.

If we call this the direet method of investigation, the inverse
method will consist in assuming that the potential 1s a function
characterised by properties the same as those which we have already
established, and investigating the form of the function.

In the direct method the potential is caleulated from the dis-
tribution of electricity by a process of integration, and is found
to satisfy certain partial differential equations. In the inverse
method the partial differential equations are supposed given, and
we have to find the potential and the distribution of eleetricity.

It 1s only in problems in which the distribution of electricity
is given that the direct method can be used. When we have to
find the distribution on a conductor we must make use of the
inverse method.

‘We have now to shew that the inverse method leads in every
case to a determinate result, and to establish certain general
theorems deduced from Poisson’s partial differential equation

azv sz a2y
=)

The mathematical ideas expressed by this equation are of a
different kind from those expressed by the equation

+m +x +x
V=f / / Pyt ay d.

In the differential equation we express that the values of the
second derivatives of / in the neighbourhood of any point, and

+4mp = O.
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the density at that point are reluted to cach other in a certain
manner, and no relation is expressed between the value of 7 at
that point and the value of p at any point at a sensible distance
from it.

In the second expression, on the other hand, the distance between
the point (2, 3/, 2’) at which p exists from the point (z, 7, z) at
which 7 exists is denoted by 7, and is distinetly recognised in the
expression to be integrated.

The integral, therefore, is the appropriate mathematical expression
for a theory of action between particles at a distanee, whereas the
differential equation is the appropriate expression for a theory of
action exerted between contiguous parts of a medium.

We have seen that the result of the integration satisfies the
differential equation. We have now to shew that it is the only
solution of that equation fulfilling certain conditions.

We shall in this way not only establish the mathematical equi-
valence of the two expressions, but prepare our minds to pass from
the theory of direct action at a distance to that of action between
contiguous parts of a medium,

Characteristics of the Potential Function.

96.] The potential function 7, considered as derived by integration
from a known distribution of eleetricity cither in the substance of
bodies with the volume-density p or on certain surfaces with the
surface-density o, p and ¢ being everywhere finite, has been shewn
to have the following characteristics :—

(1) 7 is finite and continuous throughout all space.

(2) ¥ vanishes at an infinite distance from the electrified system.

(3) The first derivatives of 7 are finite throughout all space, and
continuous except at the electrified surfaces.

(4) At every point of space, except on the electrified surfaces, the
equation of Poisson

a2V dryv d2r

T2 + W + s +47mp =20
is satisfied. We shall refer to this equation as the General
Characteristic equation.

At every point where there is no electrification this equation

becomes the equation of Laplace,
arv. axv 4y
ar ey el .
dx? T dy? T de?
H 2
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(3) At any point of an electrified surface at which the surface-
density is o, the first derivative of 7, taken with respect to the
normal to the surface, changes its value abruptly at the surface,

so that v dv

@

where v and v are the normals on cither side of the surface, and

¥V and V7 are the corresponding potentials. We shall refer to this
equation as the Superficial Characteristic equation.

(6) If 7 denote the potential at a point whose distance from

any fixed point in a finite electrical system is 7, then the product

+470=0,

V7, when 7 increases indefinitely, is ultimately equal to £, the total
charge in the finite system.

97.] Lemma. Let F be any continuous function of =z, 7, z, and
let %, », w be functions of #, 7, 2, subject to the general solenoidal
condition du dv  dw

;i;-*-@-i-‘d;:o; (1)
where these functions are continuous, and to the superficial sole-
noidal condition

£ (uy—n,)+m (v —v,)+n(w,—w,) = 0, (2)
at any surface at which these functions become discontinuous,
{, m, = being the direction-cosines of the normal to the surface,
and #,, v, w, and w,, v,, w, the values of the functions on opposite
sides of the surface, then the ’triple integral

M= /ff( +wﬁ)drdydz (3)

vanishes when the integration is extended over a space bounded by
surfaces at which either 7 is constant, or

lu+mv+nw = 0, (4)
[, m, n, being the direction-cosines of the surface.

Before proceeding to prove this theorem analytically we may
observe, that if #, v, w be taken to represent the components of the
velocity of a homogeneous incompressible fluid of density unity,
and if /" be taken to represent the potential at any point of space
of forces acting on the {luid, then the general and superficial equa-
tions of continuity ((1) and (2)) indicate that every part of the
space is, and continues to be, full of the fluid, and equation (1)
is the condition to be fulfilled at a surface through which the fluid
does not pass.

The integral M represents the work done by the {fluid against
the forces acting on 1t in unit of time.
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Now, since the forces which act on the fluid are derived from
the potentiul function 7, the work which they do is subject to the
law of conservation of energy, and the work done on the whole
fluid within a certain space may be found if we know the potential
at the points where each line of flow enters the space and where
it issues from it. The excess of the second of these potentials over
the first, multiplied by the quantity of fluid which is transmitted
along each line of flow, will give the work done by that portion
of the fluid, and the sum of all such products will give the whole
work.

Now, if the space be bounded by a surface for which /'=C, a
constant quantity, the potential will be the same at the place
where any line of flow enters the space and where it issues from
it, so that in this case no work will be done by the forces on the
fluid within the space, and A = 0.

Secondly, if the space be bounded in whole or in part by a
surface satisfying equation (4), no fluid will enter or leave the space
through this surface, so that no part of the value of M can depend
on this part of the surface.

The quantity A7 is therefore zero for a space bounded externally
by the closed surface #’=C, and it remains zero though any part
of this space be cut off from the rest by surfaces fulfilling the
condition (4).

The analytical expression of the process by which we deduce the
work done in the interior of the space from that which takes place
at the bounding surface is contained in the following method of
integration by parts.

Taking the first term of the integral 4/,

ff (lzdzdjdz=f/“(u7 (l_yflz—fffo\dxd/dz

where EV) = wV—w,V,+u,Vy—uV, + &c.;

and where #, 7, »,7,, &c. are the values of » and v at the points
whose coordinates are (»y, 7, &), (%,, #, 2), &e., #,, z,, &c. being the
values of # where the ordinate cuts the bounding surface or surfaces,
arranged in descending order of magnitude.

Adding the two other terms of the integral #, we find

M= ﬂE ul) /]/(L+ff2 77V)dzd.z+ff2 wV) dz dy
du  dv (]70
—fff ({l’l‘ (/_y dz )dT ay dz.
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If /, m, n are the direction-cosines of the normal drawn inwards
from the bounding surface at any point, and @8 an element of that
surface, then we may write

M= —ffV(lu+mv+%w)dS—fffV(% + :}]—Z + {gg)dxdydz;

the integration of the first term being extended over the bounding
surface, and that of the second throughout the entire space.

For all spaces within which #, », w, are continuous, the second
term vanishes in virtue of equation (1). If for any surface within
the space #, », w are discontinuous but subject to equation (2), we
find for the part of M depending on this surface,

M, =—/fV1 4y uy + w0y 0, 4719 0,) 48,

M, = —fsz (by g+ mg vy 4-my w,) A8, 5

where the suflixes ; and ,, applied to any symbol, indicate to which
of the two spaces separated by the surface the symbol belongs.

Now, since ¥ is continuous, we have at every point of the surface,

Py=V,=V;
we have also dS, = dS, = df;
but since the normals are drawn in opposite directions, we have
L =—1,= ¢, my = —m, = m, N = —Ny = %;

50 that the total value of M, so far as it depends on the surface of
discontinuity, is

M+ M, = —ffV(l(ul—uz)-i-m (v, — ) +n (wy—w,)) dS.

The quantity under the integral sign vanishes at every point in
virtue of the superficial solenoidal condition or characteristic (2).

Hence, in determining the value of M, we have only to consider
the surface-integral over the actual bounding surface of the space
considered, or

M= —ffV(Zu+mv+mu) ds.

Case 1. If ¥V is constant over the whole surface and equal to C,
M—=—C f(lu+mv+nw) a8,

The part of this expression under the sign of double integration
represents the surface-integral of the flux whose components are
%, #, %, and by Art. 21 this surface-integral is zero for the closed
surface in virtue of the general and superficial solenoidal conditions

(1) and (2).
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Hence M = 0 for a space bounded by a single equipotential
surface.

If the space is bounded externally by the surface /' = C, and
internally by the surfaces ¥ = C,, ¥ = C,, &e., then the total value
of M for the space so bounded will be

M—M,— M, &e.,
where A7 is the value of the integral for the whole space within the
surface ¥ = C, and M, M, are the values of the integral for the
spaces within the internal surfaces. But we have seen that 27,
M, M,, &c. are each of them zero, so that the integral is zero also
for the periphractic region between the surfaces.

Case 2. If lu+mv4nw is zero over any part of the bounding
surface, that part of the surface can contribute nothing to the value
of M, beeause the quantity under the integral sign 1s everywhere
zero. Hence 37 will remain zero if a surface fulfilling this con-
dition is substituted for any part of the bounding surface, provided
that the remainder of the surface 1s all at the same potential.

98.] We are now prepared to prove a theorem which we owe to
Sir William Thomson *.

As we shall require this theorem in various parts of our subject,
I shall put it in a form capable of the necessary modifications.

Let a, &, ¢ be any functions of z, y, z (we may call them the
components of a flux) subject only to the condition

da db de dmp— 0 )
ottt ="0% '

where p has given values within a certain space. This is the gencral
characteristic of 2, &, c.

Let us also suppose that at certain surfaces (8) 4, &, and ¢ are
discontinuous, but satisfy the eondition

ey —a)+m (b,—b)+n(e,—ec)+4mo = 0; (6)

where 7, m, » arc the direction-cosines of the normal to the surface,
a,, by, ¢, the values of @, 6, ¢ on the positive side of the surface, and
a,, by, €, those on the negative side, and ¢ a quantity given for
every point of the surface. This condition 1s the superficial charac-
teristic of a, &, c.

Next, let us suppose that 7 is a continuous function of z, 7, 2,
which either vanishes at infinity or whose value at a cerfain point
is given, and let 7 satisfy the general characteristic equation

* Cambridge and Dublin Matkematical Journal, February, 1848,
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AV d 4V av
dx dz +(ZJKdJ+d’K?ZZ+4WP:0’ )

and the superficial characteristic at the surfaces (§),
rl v, cZ v,
Le dx) ( 1 LE dy

M(Kﬂ_ﬂe

av,
L (&2

)+4ma=0, (8)

K being a quantity which may be positive or zero but not negative,
given at every point of space.
Finally, let 8 = @ represent the triple integral

87 Q =f[[—]%(az+62+cz)dxdydz, (9)

extended over a space bounded by surfaces, for each of which either
¥V = constant,

av
or la+m5+%0_KliV+K y+K sz 9 (10)

where the value of 7 is given at every point of the surface ; then, if
a, b, ¢ be supposed to vary in any manner, subject to the above
conditions, the value of @ will be a wnigue minimum, when

av av av
= 53 = -2 ;= . 11
a de /] Ktlly ¢ Te (11)
Proof.
If we put for the general values of o, 4, ¢,
av ar LAV
a=K%+n, 6=K@+1;, c=[x—d;+w, (12)

then, by substituting these values in equations (5) and (7), we find
that #, », w satisfy the general solenoidal condition
) dv dv  dw _
@ dz T dy tET
We also find, by equations (6) and (8), that at the surfaces of
discontinuity the values of #,, vy, wy and u,, v,, w, satisfy the
superficial solenoidal condition
(2)  (m—uy)+m (v, —vy)+n (w—wy) = 0.
The quantities %, v, w, therefore, satisfy at every point the sole-
noidal conditions as stated in the preceding lemma.
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We may now express @ in terms of %, v, w and 7,

2 2 2
1
Q=[/fK<g +f]; +?Z—ZV )(szydz+'/fff(u2+02+w2)dxdydz

av  dr av
+2fff(u%+ v-d‘; +w?z—)dxa7ydz. (18)

The last term of @ may be writlen 2 37, where M is the quantity
considered in the lemma, and which we proved to be zero when the
space is bounded by surfaces, each of which is either equipotential
or satisfies the condition of equation (10), which may be written

(4) lut+mvtnw = 0.
Q is therefore reduced to the sum of the first and second terms.

In each of these terms the quantity under the sign of integration
consists of the sum of three squares, and is therefore essentially
positive or zero. Hence the result of integration can only be
positive or zero.

Let us suppose the function 7 known, and let us find what values
of 4, v, w will make @ a minimum.

If we assume that at every point 2 = 0, » = 0, and w = 0, these
values fulfil the solenoidal conditions, and the second term of @
is zero, and @ is then a minimum as regards the variation of
u, v, .

For if any of these quantities had at any point values differing
from zero, the second term of @ would have a positive value, and
@ would be greater than in the case which we have assumed.

Butif# = 0, » = 0, and w = 0, then

(11) a=Kd—V, 6:](@21 C-’:'.Kg-
dx dy
Hence these values of «, &, ¢ make @ a minimum.

But the values of a, 4, ¢, as expressed in equations (12), are
perfectly general, and include all values of these quantities con-
sistent with the conditions of the theorem. Hence, no other values
of @, 4, ¢ can make ¢ a minimum.

Again, @ is a quantity essentially positive, and therefore @ is
always capable of a minimum value by the variation of ¢, ¢, c.
Hence the values of a, 4, ¢ which make @ a minimum must have
a real existence. It does not follow that our mathematical methods
are sufficiently powerful to determine them.

Corollary 1. 1f a, 6, ¢ and K are given at every point of space,
and if we write
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dav arv

av N
(12) a=KE; + u, 6=Ka;+v, c—]x——+w
with the condition (1)
du dv  dw

P T
then 7, %, v, w can be found without ambiguity from these four
equations.
Corollary 1L, The general characteristic equation

dgd? 4y dgdr

dz dx+(l_y @+d£ dz+7rp_ ’
where 7 is a finite quantity of single value whose first derivatives
are finite and continuous except at the surface 8, and at that surface

fulfil the superﬁcial characteristic

av,

Z(A —K )+ /z (1(1 ‘WZ)

2 dy
+n(K dV Kz%—)+47ra= 0,
can be satisfied by one value of 7, and by one only, in the following
cases.

Case 1. When the equations apply to the space within any closed
surface at every point of which /" = C.

For we have proved that in this case e, 8, ¢ have real and unique
values which determine the first derivatives of 7, and hence, if
different values of / exist, they can only differ by a constant. But
at the surface 7 1s given cqual to C, and therefore 7 is determinate
throughout the space.

As a particular case, let us suppose a space within which p = 0
bounded by a closed surface at which 7=0C. The characteristic
equations are satisfled by making 7= C for every point within the
space, and therefore 7= C is the only solution of the equations.

Case 2. When the equations apply to the space within any closed
surface at every point of which 7 is given.

For if in this case the characteristic equations could be satisfied
by two different values of 7, say # and 77, put U=V —7¥", then
subtracting the characteristic equation in 7’ from that in /7, we
find a characteristic equation in U. At the closed surface U =0
because at the surface 7 =7", and within the surface the density
is zero because p = p’. Hence, by Case 1, U = 0 throughout the
enclosed space, and therefore /" = /7 throughout this space.
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Czse 3. When the equations apply to a space bounded by a
closed surface consisting of two parts, in one of which ¥ is given at
every point, and in the other

Lfl:+](m({ll—;+l(n [fljz 45
where ¢ is given at every point.

For if there are two values of 7, let U’ represent, as before, their
difference, then we shall have the equation fulfilled within a closed
surface consisting of two parts, in one of which U’= 0, and in the
other AU AU al

P2 IR

K!

and since "= 0 satisfies the equation it is the only solution, and
therefore there is but one value of 7 possible,

Note.—The function 7 in this theorem is restricted to one value
at each point of space. If multiple values are admitted, then,
if the space considered is a cyclic space, the equations may be
satisfied by wvalues of 7 containing terms with multiple values.
Examples of this will oceur in Electromagnetism.

99.] To apply this theorem to determine the distribution of
electricity in an electrified system, we must make X =1 throughout
the space occupied by air, and X = « throughont the space occupied
by conductors. If any part of the space is occupied by dielectrics
whose inductive capacity differs from that of air, we must make K
in that part of the space equal to the specific inductive capacity.

The value of 7, determined so as to fulfil these conditions, will
be the only possible value of the potential in the given system.

Green’s Theorem shews that the quantity ¢, when it has its
minimum value corresponding to a given distribution of electricity,
represents the potential energy of that distribution of electricity.
See Art. 100, equation (11).

In the form in which @ is expressed as the result of integration
over every part of the field, it indicates that the energy due to the
electrification of the bodies in the field may be considered as the
result of the summation of a certain quantity which exists in every
part of the field where electrical force is in action, whether elec-
trification be present or not in that part of the field.

The mathematical method, therefore, in which €, the symbol
of electrical energy, is made an object of study, instead of p, the
symbol of electricity itself, corresponds to the method of physical
speculation, in which we look for the seat of electrical action in
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every part of the field, instead of confining our attention to the
electrified bodies.

The fact that @ attains a minimum value when the components
of the electric force are expressed in terms of the first derivatives
of a potential, shews that, if it were possible for the electric force
to be distributed in any other manner, a mechanical force would
be brought into play tending to bring the distribution of force
into its actual state, The actual state of the electric field is
therefore a state of stable equilibrium, considered with reference
to all variations of that state consistent with the actual distribution
of free electrieity.

Green’s Theorem.

100.7 The following remarkable theorem was given by George
Green in his essay * On the Application of Mathematics to Electricity
and Magnetism.’

I have made use of the coefficient X, introduced by Thomson, to
give greater generality to the statement, and we shall find as we
proceed that the theorem may be modified so as to apply to the
most general constitution of crystallized media.

‘We shall suppose that U and 7 are two functions of z, g, 2,
which, with their first derivatives, are finite and continuous within
the space bounded by the closed surface 8.

‘We shall also put for conciseness
d ,dU d ,dU d x av
Az dz Tyt Tt & @
d av d dV d _dv

gf et gty tafe="17" )

=—4mp, (1)
and

where K is a real quantity, given for each point of space, which
may be positive or zero but not negative. The quantities p and
p’ correspond to volume-densifies in the theory of potentials, but
in this investigation they are to be considered simply as ab-
breviations for the functions of U and 7 to which they are here
equated.

In the same way we may put

aU au au

' oY 3

IK T +mK Tj’y + nK 7z 4ma, (3)

and 15 QU Ly LUy (4)
dz dy dz

where 7, m, n are the direction-cosines of the normal drawn inwards
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from the surface 8. The quantities ¢ and ¢ correspond to super-
ficial densities, but at present we must consider them as defined by
the above equations.

Green’s Theorem is obtained by integrating by parts the ex-
pression

a’U(ZV AU AV AU dF
T 5
4ndl = f/fK(dx dz dy dy YL@ da dy dz ®)

throughout the space within the surface §.

., dV .
If we consider —— as a component of a force whose potential is 7,

dz
and X 7y 282 component of a flux, the expression will give the

work done by the force on the flux.
If we apply the method of integration by parts, we find

4x M = ffVK(zﬂ]+ d)dS
U d ,dU 4 ,dU.
_/ffV(%Kd—I+3y—K@+degz«)dxdydz; (6)

or 47r.7l[=_/‘f47m'VdS+fff47rp'dedydz. (7)

In precisely the same manner by exchanging U/ and 7, we should

find
47rM'=+/f4waUdS+ff/47erdxdydz. (8)

The statement of Green’s Theorem is that these three expressions
for A are identical, or that

J[:/fv’VdS+//]p'Vdmdydz :ffoUdS+ffprdxdydz

dUdV avay  dudb,
9
/ff (dx dz a’y dy T4 dz d dy dz. ®

Correction of Green’s Theorem for Cyclosis.

There are cases in which the resultant force at any point of a
certain region fulfils the ordinary condition of having a potential,
while the potential itself is a many-valued function of the coor-
dinates. For instance, if

K2 x
X= ;2'+—‘yz ’ Y=__‘_$z+yz s Z=0,
we find 7 = t;m—‘g, a many-valued function of # and y, the

values of 7 forming an arithmetical series whose common difference
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18 2m, and in order to define which of these is to be taken in
any particular case we must make some restriction as to the line
along which we are to integrate the force from the point where
V = 0 to the required point.

In this case the region in which the condition of having a
potential is fulfilled is the cyclic region surrounding the axis of 2,
this axis being a line in which the forces are infinite and therefore
not 1itself included in the region.

The part of the infinite plane of zz for which # is positive may
be taken as a diaphragm of this cyelic region. If we begin at
a point close to the positive side of this diaphragm, and integrate
along a line which is restricted from passing through the diaphragm,
the line-integral will be restricted to that value of 7 which is
positive but less than 2 =

Let us now suppose that the region bounded by the closed surface
8§ in Green’s Theorem is a cyclic region of any number of eycles,
and that the function 7 is a many-valued function having any
number of eyclic constants.

The quantities d—V: @’ and a will have definite values at all
de’ dy dz
points within 8, so that the volume-integral
[[[x@var  avar avan
J de de = dy dy  dz de
has a definite value, ¢ and p have also definite values, so that if U
is a single valued function, the expression

ff«rUdS+ff/pUdzdyr]z

has also a definite value.

The expression involving 7 has no definite value as it stands,
for /'is a many-valued function, and any expression containing it
is many-valued unless some rule be given whereby we are directed
to select one of the many values of 7 at each point of the region.

To make the value of 7 definite in a region of # cycles, we must
conceive z diaphragms or surfaces, each of which completely shuts
one of the channels of communication between the parts of the
cyelic region. Each of these diaphragms reduces the number of
cycles by unity, and when # of them are drawn the region is still
a connected region but acyclic, so that we can pass from any one
point to any other without cutting a surface, but only by recon-
cileable paths.
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Let 8 be the first of these diaphragms, and let the line-integral
of the furce for a line drawn in the acyclic space from a point
on the positive side of this surface to the contiguous point on
the negative side be «;, then «; is the first eyelic constant.

Let the other diaphragms, and their corresponding cyeclic con-
stants, be distinguished by suffixes from 1 to #, then, since the
region 1is rendered acyclic by these diaphragms, we may apply to
it the thecrem 1in its original form.

‘We thus obtain for the complete expression for the first member
of the equation

fffp’dedydz +ffa"VdS +ffal'xl s, + fxrg'xz d8, + &c. + f(r"'x,, as,.

The addition of these terms to the expression of Green’s Theorem,
in the case of many-valued functions, was first shewn to be necessary
by Helmholtz ¥, and was first applied to the theorem by Thomson.

Plysical Interpretation of Green’s Theorem.

The expressions ¢d8 and pdedydz denole the quantities of
electricity existing on an element of the surface § and in an
element of volume respectively. We may therefore write for either
of these quantities the symbol e, denoting a quantity of electricity.
We shall then express Green’s Theorem as follows—

M= 2(78’):2(7’8);
where we have two systems of electmfied bodies, ¢ standing in
succession for ¢, ¢,, &c., any portions of the electrification of the
first system, and 7~ denoting the potential at any point due to all
these portions, while ¢ stands in succession for ¢/, e,, &e., portions
of the second system, and 7’ denotes the potential ut any point
due to the second system.

Hence /¢ denotes the product of a quantity of electricity at a
point belonging to the second system into the potential at that
point due to the first system, and = (7¢) denotes the sum of all
such quantities, or in other words, 2 (7¢") represents that part of
the energy of the whole electrified system which is due to the
action of the second system on the first.

In the same way = (7’¢) represents that part of the energy of

* tUeber Integrale der Hydrodynamischen Gleichungen welehe den Wirbelbe-
wegungen entsprechen,” Crelle, 1858. Translated by Tait in Phil. Mag., 1867, ().
T * On Vortex Motion, Trans. R. 8. Edin., xxv. part . p. 241 (1868).
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the whole system which is due to the action of the first system on
the second.

If we define 7 as X (;), where 7 is the distance of the quantity e

of electricity from the given poini, then the equality between these
two values of M may be obtained as follows, without Green’s
Theorem—

270 = 2(3() = 53 =2 (3()1) = 3070

This mode of regarding the question belongs to what we have
called the direct method, in which we begin by considering certain
portions of electricity, placed at certain points of space, and acting
on one another in a way depending on the distances between these
points, no account being taken of any intervening medium, or of
any action supposed to take place in the intervening space.

Green’s Theorem, on the other hand, belongs essentially to what
we have called the inverse method. The potential is not supposed
to arise from the electrification by a process of summation, hut
the electrification is supposed to be deduced from a perfectly
arbitrary function called the potential by a process of differen-
tiation.

In the direct method, the equation is a simple extension of the
law that when any force acts directly between two bodies, action
and reaction are equal and opposite.

In the inverse method the two quantities are not proved directly
to be equal, but each is proved equal to a third quantity, a triple
integral which we must endeavour to interpret.

If we write £ for the resultant electromotive force due to the
potential 7, and /, m, » for the direction-cosines of %, then, by

Art. 71,
— R, —Y _km, _ _ Ra
dy dz

If we also write & for the foree duc to the second system, and
¥, m’, n’ for its direction-cosines,

ar . ar ,ar .,
-—-'%:_R’Z, —?Z?_ m , —dz—_Rﬂ,
and the quantity M may be written
w=L fff(mm' cos €) da dy dz, (10)
W

IRIS - LILLIAD - Université Lille 1



101.] GREEN’S FUNCTION. 113

where cos € = 4’ 4+ mm’ +nn,
€ being the angle between the directions of £ and R,

Now if A is what we have called the coeflicient of electrie
inductive capacity, then X2 will be the eleetric displacement due
to the electromotive force R, and the product KRR cose will
represent the work done by the force 2’ on account of the dis-
placement caused by the force £, or in other words, the amount
of intrinsic energy in that part of the field due to the mutual
action of 2 and £,

‘We therefore conclude that the physical interpretation of Green’s
theorem is as follows :

If the energy which is known to exist in an electrified system
is due to actions which take place in all parts of the field, and
not to direct action at a distance between the electrified bodies,
then that part of the intrinsic energy of any part of the field
upon which the mutual action of two electrified systems depends
is KR I’ cos € per unit of volume.

The energy of an electrified system due to its action on itself is,

by Art. 85, 13 (e?),

which is by Green’s theorem, putting U= 7,
=L ([[x(
S K(dz- +d_y 7

and this is the unique minimum value of the integral considered

in Thomson’s theorem.

2

)(lxdydz; (11)

Green’s Function,

101.7 Let a closed surface § be maintained at potential zero.
Let P and @ be two points on the positive side of the surface §
(we may suppose either the inside or the outside positive), and
let a small body charged with unit of electricity be placed at P;
the potential at the point @ will consist of two parts, of which one
is due to the direct action of the electricity on P, while the other
is due to the action of the electricity induced on § by £. The
latter part of the potential is called Green’s Function, and is
denoted by &,.

This quantity is a function of the positions of the two points
P and @, the form of which depends on that of the surface §. It
has been deterrhined in the case in which § is a sphere, and in
a very few other cases. It denotes the potential at @ due to the
electricity induced on § by unit of electricity at P.

VOr. I. 1

IRIS - LILLIAD - Université Lille 1



114 GENERAL THLOREMS. [101.

The actual potential at any point @ due to the electricity at P

and on § is 1
T qu’

v
where 7,, denotes the distance between 2 and Q.

At the surface §), and at all points on the negative side of §, the
potential is zero, therefore G 1 , ()
Tps
where the suflix , indicates that a point 4 on the surface § is taken
instead of Q.
Let o,; denote the surface-density induced by P at a point 4’
of the surface §, then, since (7., is the potential at @ due to the

superficial distribution,
-z

where d8” is an clement of the surfd(,c § at A’y and the integration
is to be extended over the whole surface 8.
But if unit of electricity had been placed at ¢, we should have

had b tion (1),
ad by equation (1) L:—G, )

_—ff ~dS; (4)

where o, is the density induced by Q on an element 8§ at 4, and
7,2 18 the distance between 4 and 4’. Substituting this value of

1 . .
—— in the expression for &, , we find

Tqal
—_fjff" vt 1948, (5)

Since this expression is not altered by changing , into , and

q into ,, we find that G, = Gps (6)
a result which we have already shewn to be necessary in Art. 88,
but which we now see to be deducible from the mathematical process
by which Green’s function may be calculated.

If we assume any distribution of electricity whatever, and place
in the field a point charged with unit of electricity, and if the
surface of potential zero completely separates the point from the
assumed distribution, then if we take this surface for the surface S,
and the point for P, Green’s function, for any point on the same
side of the surface as 2P, will be the potential of she assumed dis-
tribution on the other side of the surface. In this way we may
‘construct any number of cases in which Green’s function can be
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found for a particular position of P. To find the form of the
function when the form of the surface is given and the position
of P is arbitrary, is a problem of far greater difficulty, though,
as we have proved, it is mathematically possible.

Let us suppose the problem solved, and that the point P is
taken within the surface. Then for all external points the potential
of the superficial distribution is equal and opposite to that of 2.
The superficial distribution is therefore centrodaric ¥, and its action
on all external points is the same as that of a unit of negative
electricity placed at P,

Method of Approximating to the Values of Coefficients of Capacity, §e.

102.] Let a region be completely bounded by a number of
surfaces 8, 8, §,, &c., and let K be a quantily, positive or zero
but not negative, given at every point of this region. Tiet ¥
be a function subject to the conditions that its values at the
surfaces §;, §,, &c. are the constant quantities €y, C,, &c., and that
at the surface §; av

=0, (1)
dv
where v 13 a normal to the surface §;,. Then the integral

Q—“fff ‘W []y2+‘fl’/)dxdydz, (2)

taken over the whole region, hds a unique minimum when 7 satisfies

theequation g g7 a4 _qv d _dV
P %+@K@+EEKE=O (3)
throughout the region, as well as the original conditions.

We have already shewn that a function 7 exists which fulfils the
conditions (1) and (3), and that it is determinate in value. We
have next to shew that of all functions fulfilling the surface-con-
ditions it makes @ a minimum.

Let 7, be the function which satisfies (1) and (3), and let

V="7V+U (4)
be a function which satisfies (1),
1t follows from this that at the surfaces 8, 8;, &c. U = 0.
The value of @ becomes

Q:a//{,{@:&c_)m(gg

K(— v + &e. )} dedyde. (5)

2

+ &c.)

* Thomson and Tait’s Natural Philosophy, § 526.
12
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Let us confine our attention to the last of these three groups
of terms, merely observing that the other groups are essentially
positive. By Green’s {heorem

av, dU av, an av, dlu o
ff/ (dx ar T d_/ d./ de )d dy 3z —ﬂKU a8

av, dVO d cZVO

the first integral of the second member belng extended over the
surface of the region and the second throughout the enclosed space.
But on the surfaces 8, §,, &c. U = 0, so that these contribute
nothing to the surface-integral.

. d . .
Again, on the surface S, 75—0 = 0, so that this surface contributes

nothing to the integral. Hence the surface-integral is zero.

The quantity within brackets in the volume-integral also dis-
appears by equation (3), so that the volume-integral is also zero.
Henece @ is reduced to

o=g [ 22

Both these quantities are cssentially positive, and therefore the
minimum value of @ is when
aU _dU _dU
— = 0, 8
de ~ dy — de (®)
or when U is a constant. But at the surfaces 8, &e. ' = 0. Hence
U = 0 everywhere, and ¥ gives the unique minimum value of @.

+ &o. ) dedy de + siw,[/fK([Zr + &) dedyde. (7'

Caleulation of a Superior Limit of the Coefficients of Capacity.

The quantity @ in its minimum form can be expressed by means
of Green’s theorem in terms of 7, /,, &c., the potentials of §,, §,,
and %, %,, &c., the charges of these surfaces,

Q@=3NE+V,E+&e); 9)
or, making use of the coefficients of capacity and induction as defined
in Article 87,

Q=3P qu+ V5" 4o+ &)+ V1 7y g1o+ &e. (10)

The accurate determination of the eoefficients ¢ is in gencral
difficult, involving the solution of the general equation of statical
electricity, but we make use of the theorem we have proved to
determine a superior limit to the value of any of these coefficients.
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To determine a superior limit to the coeffieient of capacity ¢,,,
make 7, = 1, and ¥, ¥, &c. each equal to zero, and then take
any function 7" which shall have the value 1 at §;, and the value 0
at the other surfaces.

From this trial value of 7 calculate @ by direct integration,
and let the value thus found be @’ We know that Q" is not less
than the absolute minimum value @, which in this case is 4 ¢;;-

Hence ¢y, is not greater than 2 @' (11)

If we happen to have chosen the right value of the function
7, then ¢;; = 2§, but if the function we have chosen differs
slightly from the true form, then, since @ is a minimum, @ will
still be a close approximation to the true value.

Superior Limit of the Cocfficients of Potential.

We may also determine a superior limit to the coefficients of
potential defined in Article 86 by means of the minimum value
of the quantity @ in Article 98, expressed in terms of o, 8, c.

By Thomson’s theorem, if within a certain region bonnded by the
surfaces Sy, ), &c. the quantities e, 4, ¢ are subject to the condition

de db de

e @b ac . 12

Gty ta=% (12)
and 1if la+mb+nc =g (13)

be given all over the surface, where ¢, m, n are the direction-cosines
of the normal, then the integral

1 fff1
- 2324 g2
Q__Sﬂf/fK (2% 482 +c2) do dy dz (14)
1s an absolute and unique minimum when
av av arv
= —- = —— 2 = " 15
a=K In b Kdy c Kdz (15)

When the minimum is attained @ is evidently the same quantity
which we had before.

If therefore we can find any form for a4, 6, ¢ which satisfies the
condition (12) and at the same time makes

fgdS_ 1 /-gdSz=]*]2&c.; (16)

and if @” be the value of @ calculated by (14) from these values of
@, b, ¢, then Q" is not less than

Y (B2 pu+ By p)+ 8, By py,. (17)
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118 GENERAL THEOREMS, [102.

If we take the case in which one of the surfaces, say §,, sur-
rounds the rest at an infinite distance, we have the ordinary case

of conductors in an infinite region ; and if we make £, = —¥), and
£ =0 for all the other surfaces, we have 7, = 0 at infinity, and
9 Qr’

£y 18 not greater than o
1
In the very important case in which the electrical action is
entirely between two conducting surfaces §; and §;, of which §,
completely surrounds 8 and is kept at potential zero, we have
L =—F, and ¢y pyy = 1.
Hence in this case we have

71, not less than 2—%,,; (18)
s had bef
and we had before g1, not greater than 2 Q" ; (19)

so that we conclude that the true value of ¢y;, the capacity of the
internal conductor, lies hetween these values.

This method of finding superior and inferior limits to the values
of these coeflicients was suggested by a memoir ‘On the Theory
of Resonance,” by the Hon. J. W, Strutt, PAil. Trans., 1871. See
Art, 308,
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CHAPTER V.
MECHANICAL ACTION BETWEEN ELECTRIFIED BODIES.

108.] Let ¥ = C be any closed equipotential surface, € being
a particular value of a function 7, the form of which we suppose
known at every point of space. Let the value of 7 on the outside
of this surface Le 7, and on the inside 7,. Then, by Poisson’s
equation

&V BV BV

TN+W+W+”P:O’ (1)

we can determine the density p; at every point on the outside, and
the density p, at every point on the inside of the surface. We shall
cull the whole electrified system thus explored on the outside 7,
and that on the inside £,. The actual value of 7 arises from the
combined action of both these systems.

Let & Le the total resultant force at any point arising from
the action of Z, and E,, R is cverywhere normal to the equi-
potential surface passing through the point.

Now let us suppose that on the equipotential surface 7V = C
electricity is distributed so that at any point of the surface at
which the resultant force due to £, and ¥, reckoned outwards
is £, the surface-density is o, with the condition

R=47n0c; (2)
and let us call this superficial distribution the electrified surface 8,
then we can prove the following theorem relating to the action of
this eleetrified surface.

If any equipotential surface belonging to a given electrified
system be coated with electricity, so that at each point the surface-

density ¢ = ?Ri, where £ is the resultant force, due to the original
™

electrical system, acting outwards from that point of the surface,
then the potential due to the electrified surface at any point on
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120 ELECTRIC ATTRACTION. [103.

the outside of that surface will be equal to the potential at the
same point due to that part of the original system which was on
the inside of the surface, and the potential due to the electrified
surface at any point on the inside added to that duc to the part of
the original system on the outside will be equal to C, the potential
of the surface.

For let us alter the original system as follows :

Let us leave everything the same on the outside of the surface,
but on the inside let us make 7, everywhere equal to C, and let us
do away with the electrified system Z, on the inside of the surface,
and substitute for it a surface-density o at every point of the
surface 8, such that R=47no0. (3)

Then this new arrangement will satisfy the characteristics of 7 at
every point,

For on the outside of the surface hoth the distribution of elee-
tricity and the value of ¥ are unaltered, therefore, since 7 originally
satisfied Laplace’s equation, it will still satisfy it.

On the inside 7 is constant and p zero. These values of 7 and p
also satisfy the characteristic equations.

At the surface itself, if 75 is the potential at any point on the
outside and 7, that on the inside, then, if 7, m, % are the direction-
cosines of the normal to the surface reckoned outwards,

(Z ' av, ar,
T dy T
and on the inside the derivatives of 7 vanish, so that the superficial
characteristie
d V2

l(—\ T dz ( (ZJ
is satisfied at every pomt of the surface.

Hence the new distribution of potential, in which it has the
old value on the outside of the surfuce and a constant value on
the inside, is consistent with the new distribution of electricity,
in which the electricity in the space within the surface is removed
und a distribution of electricity on the surface is substituted for
it. Also, since the original value of /) vanishes at infinity, the
new value, which is the same outside the surface, also fulfils this
condition, and therefore the new value of 7 is the sole and only
value of ¥ belonging to the new arrangement of electricity.

l=—R=—4m0c; (4)
(l.zz

) ar,

Vz
—* ;)+47r(r._0 (5)
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On the Mechanical Action and Reaction of the Systems £, and E,.

104.]7 If we now suppose the equipotential surface ¥V =C to
become rigid and capable of sustaining the action of forces, we
may prove the following theorem.

If on every element 48 of an equipotential surface a force
él{rRZ d8 be made to act in the direction of the normal reckoned
outwards, where £ 1s the ‘electrical resultant force’ along the
normal, then the total statical effect of these forces on the
surface considered as a rigid shell will be the same as the total
statical effeet of the electrical action of the electrified system #;
outside the shell on the electrified system Z, inside the shell, the
parts of the interior system £, being supposed rigidly connected
together.

We have seen that the action of the electrified surface in the last
theorem on any external point was equal to that of the internal
system Z,, and, since action and reaction are equal and opposite,
the action of any external electrified body on the eleetrified surface,
considered as a rigid system, is equal to that on the internal system
E,. Hence the statical action of the external system Z; on the
electrified surface is equal in all respects to the action of £, on the
internal system Z,.

But at any point just outside the electrified surface the resultant
force i1s R in a direction normal to the surface, and reckoned positive
when it acts outwards. The resultant inside the surface is zero,
therefore, by Art. 79, the resultant force acting on the element
d8 of the electrified surface is 3 R o dS, where o 1s the surfuce-
density.

Substituting the value of ¢ in terms of B from equation (2), and
denoting by 48§ the resultant force on the electricity spread over
the element d8, we find

pdS = R4S
This force always acts along the normal and outwards, whether
R be positive or negative, and may be considered as equal to a
pressure p= % £% acting on the surface from within, or to a tension
of the same numerical value acting from without.
* See Sir W, Thomson * On the Attractions of Conducting and Non-conducting

Electrified Bodies, Cambridge Mathematical Journal, May 1843, and Reprint,
Art, V11, § 147.
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Now R is the resultant due to the combined action of the
external system %} and the electrification of the surface §. Hence
the effect of the pressure p on each element of the inside of the surface
considered as a rigid body is equivalent to this combined action.

But the actions of the diflferent parts of the surface on each other
form a system in equilibrium, therefore the effect of the pressure p on
the rigid shell is equivalent in all respects to the electric attraction
of E; on the shell, and this, as we have before shewn, is equivalent
to the electric attraction of | on £, considered as a rigid system.

If we had supposed the pressure p to act on the outside of the
shell, the resultant effect would have been equal and opposite, that
is, it wounld have been statically equivalent to the action of the
mternal system £, on the external system Z|.

Let us now take the case of two electrified systems Z| and
L,, such that two equipotential surfaces 7 =0 and ¥ =(,, which
we shall eall 8, and 8, respectively, can be described so that £ 1is
exterior to §;, and 8, surrounds §,, and %, lies within ;.

Then if R, and B, represent the resultant force at any point of
§; and S, respectively, and if we make

1 1
= %2 and = —R2
Dy Pyt ana g, gl

the mechanical action belween £, and E, is equivalent to that
between the shells §; and §,, supposing every point of §; pressed
inwards, that is, towards §, with a pressure p,, and every point of
8§, pressed outwards, that 1s, towards §; with a pressure p,.

105.] According to the theory of action at a distance the action
between F) and £, is really made up of a system of forces acting in
straight lines between the electricity in 7| and that in £%,, and the
actual mechanical effect is in complete accordance with this theory.

There is, however, another point of view from which we may
examine the action between £, and F,. When we see one body
acting on another al a distance, before we assume that the one
acts directly on the other we generally inquire whether there is
any material connexion between the two bodies, and if we find
strings, or rods, or framework of any kind, capable of accounting
for the observed action between the bodies, we prefer to explain
the action by means of the intermediate connexions, rather than
admit the notion of direct action at a distance.

Thus when two particles are connected by a stralight or curved
rod, the action between the particles is always along the line joining
them, but we account for this action by means of a system of
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internal forees in the substance of the rod. The existence of these
internal forces is deduced entirely from observation of the effect
of external forces on the rod, and the internal forces themselves
are generally assumed to be the resultants of forces which act
between particles of the rod. Thus the observed action between
two distant particles is, in this instance, removed from the class
of direct actions at a distance by referring it to the intervention
of the rod; the action of the rod is explained by the existence
of internal forces in its substance; and the internal forces are
explained by means of forces assumed to act between the particles
of which the rod is composed, that is, between bodies at distances
which though small must be finite.

The observed action at a considerable distance is therefore ex-
plained by means of a great number of forces acting between
bodies at very small distances, for which we are as little able to
account as for the action at any distance however great.

Nevertheless, the consideration of the phenomenon, as explained
in this way, leads us to investigate the properties of the rod, and
to form a theory of elasticity which we should have overlocked
if we had been satisfied with the explanation by action at a distance.

106.] Let us now examine the consequence of assuming that the
action between electrified bodies can be explained by the inter-
mediate action of the medium between them, and let us ascertain
what properties of the medium will account for the observed action.

We have first to determine the internal forces in the medium,
and afterwards to account for them if possible.

In order to determine the internal forces in any case we proceed
as follows :

Let the system 3 be in equilibrium under the action of the
system of external forces F. Divide M by an imaginary surlace
into two parts, M, and M,, and let the systems of external forces
acting on these parts respectively be F, and #,. Also let the
internal forces acting on 3] in consequence of its connexion with
M, be called the system 7.

Then, since A, is in equilibrium under the action of #| and /,
it follows that 7 is statically equivalent to F] reversed.

In the case of the electrical action between two electrified systems
E; and F,, we deseribed two elosed equipotential surfaces entirely
surrounding &, and ecutting it off from £, and we found that the
application of a certain normal pressure at every point of the inner
side of the inner surface, and on the outer side of the outer surface,
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124 ELECTRIC ATTRACTION. [106.

would, if these surfaces were each rigid, act on the outer surface
with a resultant equal to that of the electrical forces on the outer
system Z|, and on the inner surface with a resultant equal to that
of the electrical forces on the inner system.

Let us now consider the space between the surfaces, and let us
suppese that at every point of this space there is a tension in the

direction of & and equal to %R“ per unit of area. This tension
w

will act on the two surfaces in the same way as the pressures on
the other side of the surfaces, and will therefore account for the
action between K, and Z,, so far as it depends on the internal force
in the space between S, and 8,.

Let us next investigate the equilibrium of a portion of the shell
bounded by these surfaces and separated from the rest by a surface
everywhere perpendicular to the equipotential surfaces. We may
suppose this surface generated by deseribing any closed curve on
§;, and drawing from every point of this carve lines of force till
they meet ;.

The figure we have to consider is therefore bounded by the two
equipotential surfaces S, and §,, and by a surface through which
there is no induction, which we may call §.

Let us first suppose that the area of the closed curve on 8 is very
small, eall it 48, and that C, = C) + 7.

The portion of space thus bounded may be regarded as an element
of volume. If » is the normal to the equipotential surface, and
dS the element of that surfuce, then the volume of this element
is ultimately @8 d..

The induction throngh 48, is £48;, and since there is no in-
duction through §;, and no (ree electricity within the space con-
sidered, the induction through the opposite surface 48, will be
equal and opposite, considered with reference to the space within
the closed surface.

There will therefore be a quantity of electricity

1
e, = _ET— Rl CZSI
on the first equipotential surface, and a quantity
1
€, — G R2 dSZ

on the second equipotential surface, with the condition
et+e = 0.
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Let us next consider the resultant force due to the action of the
electrified systems on these small electrified surfuces.

The potential within the surface S, is constant and equal to C,
and without the surface §, it is constant and equal to €,. In the
shell between these surfuces 1t 1s continuous from €, to G,.

Hence the resultant force is zero except within the shell.

The electrified surface of the shell itself will be acted on by forces
which are the arithmetical means of the forces just within and just
without the surface, that is, in this case, since the resultant force
outside is zero, the force acting on the superficial electrification is
one-half of the resultant foree just within the surface.

Hence, if XdSdv be the total moving force resolved parallel
to x, due to the electrical action on both the electrified surfaces of
the element d8dv,

d VQ)

XaSds = — 4 (602 40,2

where the suffixes denote that the derivatives of » are to be taken
at 48, and 48§, respectively.

Let I, m, » be the direction-costhes of 7, the normal to the
equipotential surface, then making

de = {dv, dy=mdy, and dz = ndv,

axv azv v
) ( ) + (I tm =yt =) dv + &e.s
and since ¢, = —e,, we may write the value of X

d s dV av av
XdSdv = éel?g; (l I +m7§ +77'—J;)dl'-

arv avy

1 — — _— -
But  e=— R4S and (lw g R;
therefore XdeV——R dS(Zu,
or, if we write L L
1, L de v’ dV‘z)
p= ER ~ 8w \dx d_y dg | !’
dp
=S - 5 /= 1———;
then X—édx’ %dy Z =1 A

or the force in any direction on the element arising from the action
of the eleetrified system on the two electrified surfaces of the
element is equal to half the rate of increase of p in that direction
multiplied by the volume of the element.
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This result is the same if we substitute for the forces acting on
the electrified surfaces an imaginary force whose potential is — 4 p,
acting on the whole volume of the element and soliciting it to
move so as to increase § p.

If we now return to the case of a figure of finite size, bounded
by the equipotential surfaces §, and §, and by the surface of no
induction §;, we may divide the whole space into elements by a
series of equipotential surfaces and two series of surfaces of no
induction. 'The charges of electricity on those faces of the elements
which are in contact will be equal and opposite, so that the total
effect will be that due to the electrical forces acting on the charges
on the surfaces & and §,, and by what we have proved this will be
the same as the action on the whole volume of the figure due to a
system of forces whose potential is —4 p.

But we have alrcady shewn that these electrical forces are
equivalent to a tension p applied at all points of the surfaces &
and 8,. Hence the effect of this tension is to pull the figure in
the direction in which p increases. The figure therefore eannot be
in equilibrium unless some other forces act on it.

Now we know that if a hydrostatic pressure p is applied at every
point of the surface of any closed figure, the elfect is equal to
that of a system of forces acting on the whole volume of the figure
and having a potential . In this case the figure is pushed in
the direction in which p diminishes.

We can now arrange matters so that the figure shall be in
equilibrium.

At every point of the two cquipotential surfaces 8, and §,, let
a tension = p be applied, and at every point of the surface of no
induction §, let a pressure = p be applied. These forces will keep
the figure in equilibrium.

For the tension p may be considered as a pressure p combined
with a tension 2p. We have then a hydrostatic pressure p acting
at every point of the surface, and a tension 2 p acting on S, and §,
only.

The effect of the tension 2 p at every point of §; and 8§, is double
of that which we have just calculated, that is, it is equal to that
of forces whose potential is —p acting on the whole volume of the
ficure. The effect of the pressure p acting on the whole surface
is by hydrostatics equal and opposite to that of this system of
forees, und will keep the figure in equilibrium.

107.] We have now determined a system of internal forces in
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the medium which is consistent with the phenomena so far as
we have examined them. We have found that in order to account
for the electric attraction between distant bodies without admitting
direct action, we must assume the existence of a fension p at every
point of the medium in the direction of the resultant force Z at
that point. In order to account for the equilibrium of the medium
itself we mnst further suppose that in every direction perpendicular
to I there is a pressure p ¥,

By establishing the necessity of assuming these internal forces
in the theory of an electric medinm, we have advanced a step in
that theory which will not be lost though we should fail in
acecounting for these internal forces, or in explaining the mechanism
by which they can be maintained in air, glass, and other dielectric
media.

We have seen that the internal stresses in solid bodies can be
ascertained with precision, though the theories which account for
these stresses by means of molecular forces may still be doubtful.
In the same way we may estimate these internal electrical forces
before we are able to account for them.

In order, however, that it may not appear as if we had no
explanation of these internal forces, we shall shew that on the
ordinary theory they must exist in a shell bounded by two equipo-
tential surfaces, and that the attractions and repulsions of the elec-
tricity on the surfaces of the shell are sufficient to account for them.

Let the first surface 8, be electrified so that the surface-density is

1
o= — 47
and the second surface §, so that the surface-density is
1
= E,;

then, if we suppose that the value of 7 is €| at every point within
8§;, and G, at every point outside of §,, the value of 7 between these
surfaces remaining as before, the characteristic equation of 7 will
be satisfied everywhere, and ¥ is therefore the true value of the
potential.

We have already shewn that the outer and inner surfaces of the
shell will be pulled towards each other with a force the value of
which referred to unit of surface 1s p, or in other words, there is a
tension » in the substance of the shell in the direction of the lines
of force,

* Sce Faraday, Exp. Res. (1224) and (1297).
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If we now conceive the shell divided into two segments by a
surface of no induction, the two parts will experience electrical
forees the resultants of which will tend to separate the parts with
a force equivalent to the resultant force due to a pressure p acting
on every part of the surface of no induction which divides them.

This illustration is to be taken merely as an explanation of what
is meanl by the tension and pressure, not as a physical theory to
account for them.

108.] We have next to consider whether these internal forces
are capable of accounting for the observed electrical forces in every
case, as well as in the case where a closed equipotential surface can
be drawn surrounding one of the electrified systems.

The statical theory of internal forces has leen investigated by
writers on the theory of elasticity. At present we shall require only
to investigate the effect of an oblique tension or pressure on an
element of surface.

Let p be the value of a tension referred to unit of a surface to
which 1t is normal, and let there be no tension or pressure in any
direction normal to p. Let the direction-cosines of p be Z, m, a.
Let dy dz be an element of surface normal to the axis of z, and let
the effect of the internal force be to urge the parts on the positive
side of this clement with a force whose components are

Pz dy dz 1n the direction of x,
Pudydz . . . . . . y and
Pulydz . . . . . z

From every point of the boundary of the element dy dz let lines
be drawn parallel to the direction of the tension p, forming a prism
whose axis is in the line of tension, and let this prism be cut by a
plane normal to its axis.

The area of this section will be /dy dz, and the whole tension
upon 1t will be z / dy de, and since there 1s no action on the sides
of the prism, which are normal to p, the force on the base dy dz
must be equivalent to the force p/dy dz acting in the direction
(¢, m, »). Hence the component in the direction of #,

Polyde = plidyde; or

Pz = PL%.
Similarly Py = pim, (1)
Pz = pin.

If we now combine with this tension two tensions p” and p” in
directions (7, #/, ') and (¢”, m”, n”} respectively, we shall have
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Pax = Pl 4707 + p U2,
Py = plm+ " 'm + g 7w, (2)
Poe =pln+ g7 In" + 35770 0",

In the case of the electrical tension and pressure the pressures

are numerically equal to the tension at every point, and are in
directions at right angles to the tension and to each other. Hence,

putting y=p'=—p, (3)
B2 =1, dn+im' +0m" =0, Intla' +0"=0, (4)
we find Pux = (202—=1)p,
Poy = 21mp, (3)
Paz = 20np,

for the action of the combined tension and pressures.
Also, since p = 81 R?, where 2 denotes the resultant foree, and
ki3

since Rl=X, Bm =7, Bn=Z,

_717, 2 __ 2__ 72
Pex = o (XP—F2—27),

1
Py = 8 2XY=])W, (6)
Poz = 8L 2X7 = pua;

v

where X, ¥, 7 are the components of 2, the resultant electromotive
force.

The expressions for the component internal forces on surfaces
normal to y and z may be written down from symmetry.

1o determine the conditions of equilibrium of the element dzdyde.

This element is bounded by the six planes perpendicular to the
axes of coordinates passing through the points (#, g, ¢) and (z 1 dz,
¥+ dy, 24 dz).

The force in the direction of z which acts on the first face dy dz
is — p,,dy de, tending to draw the element towards the mnegative .
side. On the second face dy dz, for which & has the value # 4 dz,
the tension p,, has the value

Pendy et (e ) du dy e,

and this tension tends to draw the element in the positive direction.
If we next consider the two faces dede with respect to the
VOL. I. K
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tangential forces urging them in the direction of #, we find the
force on the first face — p,, dz dr, and that on the second

Py 2 A2 + ((—Z; pw) dz de dy.

Similarly for the faces do dy, we find that a force — p,, dx dy acts
on the first face, and

P A dy + ([l;;pz,) Az dy dz

on the second in the direetion of 2.
If £drdyde denotes the total effect of all these internal forces
acting parallel to the axis of z on the six faces of the element, we find
d d
— Pyt dzpzz) de dydz

d

or, denoting by £ the internal force, referred to unit of volume, and
resolved paralle] to the axis of =,

b= 2 et Gt @
= Iz Paz+ Zly Pyz dz yary

with similar expressions for n and {, the component forces in the
other directions *.

Differentiating the values of pu., Py and p,, given in equations
(6), we find

= (X000 (®)
But by Art. 77
dX dY dZ
((E+@+%)= 47p. (9)
Hence E=p X
Similarly n=p?, (10)
(=p2

Thus, the resultant of the tensions and pressures which we have
supposed to act upon the surface of the element is a force whose
components are the same as those of the force, which, in the
ordinary theory, is ascribed to the action of electrified bodies on the
electricity within the element.

If, therefore, we admit that there is 2 medium in which there
is maintained at every point a tension p in the direction of the

* This investigation may be compared with that of the ¢equation of continuity
in hydrodynamics,” and with others in which the effect on an element of volume
i3 deduced from the values of certain quantities at its bounding surface.
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resultant electromotive force £, and such that 222 = 8 7 p, combined
with an equal pressure p in every direction at right angles to the
resultant £, then the mechanical effect of these tensions and
pressures on any portion of the medium, however bounded, will he
identical with the mechanical effect of the electrical forces according
to the ordinary theory of direct action at a distance.

109.] This distribution of stress is precisely that to which Fara-
day was led in his investigation of induction through dielectrics.
He sums up in the following words :—

€(1297) The direct inductive force, which may be conceived to
be exerted in lines between the two limiting and charged con-
ducting surfaces, is accompanied by a lateral or transverse force
equivalent to a dilatation or repulsion of these representative lines
(1224.); or the attracting force which exists amongst the par-
ticles of the dielectric in the direction of the induction is ac-
companied by a repulsive or a diverging force in the transverse
direction.

(1298) Induction appears to consist in a certain polarized state
of the particles, into which they are thrown by the electrified body
sustaining the action, the particles assuming positive and negative
points or parts, which are symmetrically arranged with respect
to each other and the inducting surfaces or particles. The state
must be a forced one, for it is originated and sustained only by
force, and sinks to the normal or quiescent state when that force
is removed. It can be comfinued only in insulators by the same
portion of electricity, because they only can retain this state of the
particles.’

This is an exact account of the conclusions to which we have
been conducted by our mathematical investigation. At every point
of the medium there is a state of stress such thut there is tension
along the lines of force and pressure in all directions at right angles
to these lines, the numerical magnitude of the pressure being equal
to that of the tension, and both varying as the square of the
resultant force at the point.

The expression ‘electric tension’ has been used in various senses
Ly different writers. 1 shall always use it to denote the tension
along the lines of force, which, as we have seen, varies from point
to point, and is always proportional to the square of the resultant
force at the point.

110.] The hypothesis that a state of stress of this kind exists
in a fluid dielectrie, such as air or turpentine, may at first sight

K 2
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appear at variance with the established prineciple that at any point
in a fluid the pressures in all directions are equal. But in the
deduction of this prineiple from a consideration of the mobility
and equilibrium of the parts of the fluid it is taken for granted
that no action such as that which we here suppose to take place
along the lines of force exists in the fluid. The state of stress
which we have been studying is perfectly consistent with the
mobility and equilibrium of the fluid, for we have seen that, if
any portion of the fluid is devoid of electric charge, it experi-
ences no resultant force from the stresses on its surface, however
intense these may be. It i1s only when a portion of the fluid
becomes charged, that its equilibrium is disturbed by the stresses
on its surface, and we know that in this case it actually tends to
move. Ilence the supposed state of stress is not Inconsistent with
the equilibrium of a fluid dielectric.

The quantity @, which was investigated in Thomson’s theorem,
Art. 98, may be interpreted as the energy in the medium due to
the distribution of stress. It appears from that theorem that the
distribution of stress which satisfies the ordinary conditions ulso
makes @ an absolute minimum. WNow when the cnergy is a
minimum for any configuration, that configuration is one of equi-
librium, and the equilibrium 1s stable. Hence the dielectric,
when subjected to the inductive action of electrified bodies, will
of itself take up a state of stress distributed in the way we have
described.

It must be carefully borne in mind that we have made only one
step in the theory of the action of the medium. We have supposed
1t to be in a state of stress, but we have not in any way accounted
for this stress, or explained how it is maintained. This step,
however, seems to me to be an important one, as it explains, by
the action of the consecutive parts of the medium, phenomena which
were formerly supposed to be explicable only by direct action at
a distance.

111.7 I have not been able to make the next step, namely, to
account by mechanical considerations for these stresses in the
dielectric. I therefore leave the theory at this point, merely
stating what are the other parts of the phenomenon of induction
in dieleetrices.

I. Electric Displacement. When induction takes place in a
dielectric a phenomenon takes place which is equivalent to a
displacement of electricity in the direction of the indunction. For
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instance, in a Leyden jar, of which the inner coating is charged
positively and the outer coating negatively, the displacement in
the substance of the glass is from within outwards.

Any 1ucrease of this displacement is equivalent, during the time
of increase, to a current of positive eleetricity from within outwards,
and any diminution of the displacement is equivalent to a current
1u the opposite direction.

The whole quantity of electricity displaced through any area
of a surface fixed in the dielectric is measured by the quantity which
we have already Investigated (Art. 75) as the surface-integral of
induetion through that arca, multiplied by il{, where X is the
specific inductive capacity of the dielectrie.

II. Superficial Electrification of the Particles of the Dielectrie,
Conceive any portion of the dielectrie, large or small, to be separated
(in imagination) from the rest by a closed surface, then we must
suppose that on every elementary portion of this surface there is
an electrification measured by the total displacement of electricity
throngh that element of surface rectoned inwards.

In the case of the Leyden jar of which the inner coating is
charged positively, any portion of the glass will have its inner
side charged positively and its outer side negatively. If this
portion be entirely in the interior of the glass, its superficial elee-
trification will be neutralized by the opposite electrification of the
parts in contact with it, but if it be in contact with a conducting
body which is incapable of maintaining in itself the inductive state,
the superficial electrification will not be neutralized, but will con-
stitute that apparent electrification which is ecommonly called the
Electrification of the Conductor.

The electrification therefore at the bounding surface of a con-
ductor and the surrounding dieleetrie, which on the old theory
was called the electrification of the conductor, must be called in the
theory of induction the superficial electrification of the surrounding
dieleetric.

According to this theory, all electrification is the residual effect
of the polarization of the diclectric. This polarization exists
throughout the interior of the substance, but it is there neutralized
by the juxtaposition of oppositely electrified parts, so that it is only
at the surface of the dielectric that the effects of the electrification
become apparent.

The theory completely accounts for the theorem of Art. 77, that
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the total induction through a closed surface is equal to the total
quantity of electricity within the surface multiplied by 4w For
what we have called the induction through the surface is simply
the electrie displacement multiplied by 47, and the total displace-
ment outwards 1s necessarily equal to the total electrification within
the surface.

The theory also accounts for the impossibility of communicating
an absolute charge to matter. For every particle of the diclectric
is electrified with equal and opposite charges on its opposite sides,
if it would not be more correct to say that these electrifications are
only the manifestations of a single phenomenon, which we may call
Electric Polarization.

A dielectrie medium, when thus polarized, is the seat of eleetrical
cnergy, and the energy in unit of volume of the medium is nu-
merically equal to the electric tension on unit of area, both quan-
tities being equal to half the product of the displaccment and the
resultant electromotive force, or

1 2m
— ] —  K@E2 — " g2
P=196 = ;- K€ = "7 97,

where p is the electric tension, D the displacement, & the electro-
motive force, and K the specific inductive capacity.

If the medium is not a perfect insulator, the state of constraint,
which we call electric polarization, is continually giving way. The
medium yields to the electromotive foree, the electric stress is
relaxed, and the potential energy of the state of constraint is con-
verted into heat. The rate at which this decay of the state of
polarization takes place depends on the nature of the medium.
In some kinds of glass, days or years may elapse before the polar-
ization sinks to half its original value. In copper, this change
may occupy less than the billionth of a second.

We have supposed the medium after being polarized to be simply
left to itself. In the phenomenon called the electric current the
constant passage of electricity through the medium tends to restore
the state of polarization as fast as the conductivity of the medium
allows it to decay. Thus the external agency which maintains the
current 1s always doing work in restoring the polarization of the
medium, which is continually becoming relaxed, and the potential
energy of this polarization is continually becoming transformed
into heat, so that the final result of the energy expended in main-
taining the current is to raise the temperature of the conductor.
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ON POINTS AND LINES OF EQUILIBRIUM,

112.] Ir at any point of the electric {ield the resultant force is
zero, the point is called a Point of equilibrium.
If cvery point on a certain line is a point of cquilibrium, the line
is called a Line of equilibrium.
The conditions that a point shall be a point of equilibrium are
that at that point
av av ar
%=0, -d}=0, %:'0.
At such a point, therefore, the value of 7 is a maximum, or
a minimum, or is stationary, with respect to variations of the
coordinates. The potential, however, can have a maximum or a
minimum valne only at a point charged with positive or with
negative electricity, or throughout a finite space bounded by a
surface clectrified positively or negatively. If, thercfore, a point
of equilibrium occurs in an unelectrified part of the field it must
be a stationary point, and not 2 maximum or a minimum.
In fact, the first condition of a maximum or minimum is that

a2V arv axv
T vk and e
must be all negative or all positive, if they have finite values.

Now, by Laplace’s equation, at a point where there is no elec-
trification, the sum of these three quantities is zero, and thercfore
this eondition cannot be fulfilled.

Instead of investigating the analytical conditions for the cases
in which the components of the force simultaneously vanish, we
shall give a general proof by means of the equipotential surfaces.

If at any point, P, there is a true maximum value of 7, then, at
all other points in the immediate neighbourheod of P, the value-of
7 is less than at P. Hence P will be surrounded by a series of
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closed equipotential surfaces, each outside the one before it, and at
all points of any one of these surfaces the electrical force will be
dirccted outwards. But we have proved, in Art. 76, that the surface-
integral of the electrical force taken over any closed surface gives
the total electrification within that surface multiplied by 4=. Now,
in this case the force is everywhere outwards, so that the surface-
integral is necessarily positive, and therefore there 1s positive elec-
trification within the surface, and, since we may take the surface as
near to P as we please, there is positive electrification at the point P.

In the same way we may prove that if 7 1s a minimum at 2,
then P is negatively electrified.

Next, let £ be a poimnt of equilibrium in a region devoid of elec-
trification, and let us describe a very small closed surface round
P, then, as we have seen, the potential at this surface cannot be
everywhere greater or everywhere less than at . It must there-
fore be greater at some parts of the surfuce and less at others.
These portions of the surface are bounded by lines in which the
potential is equal to that at 2.  Along lines drawn from £ to
points at which the potential is less than that at I the electrical
force is from P, and along lines drawn to points of greater po-
tential the force is towards P. Hence the point P is a point of
stable equilibrium for some displacements, and of unstable equili-
brium for other displacements.

113.] To determine the number of the points and lines of equi-
librium, let us consider the surface or surfaces for which the
potential 1s equal to C, a given quantity. Let us call the regions
in which the potential is less than € the negative regions, and
those in which it is greater than C the positive regions. Let
7, be the lowest, and 7] the highest potential existing in the
electric field. If we make C = 7, the negative region will in-
clude only the electrified point or conductor of lowest potential,
and this is necessarily electrified negatively. The positive region
consists of the rest of space, and since it surrounds the negative
region it 1s periphractic. See Art. 18.

If we now increasc the value of € the negative region will
expand, and new negative regions will be formed round negatively
electrified bodies. For every negative region thus formed the
surrounding positive region acquires one degree of periphraxy.

As the different negative regions expand, two or more of them
may meeb in a point or a line. If z+41 negative regions meet,
the positive region loses #» degrees of periphraxy, and the point
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or the line in which they meet is a point or line of equilibrium
of the #th degree.

‘When € becomes equal to /] the positive region is reduced to
the clectrified point or conductor of highest potential, and has
therefore lost all its periphraxy. Hence, if each pownt or line of
equilibrium counts for one, two, or z according to its degree, the
number so made up by the points or lines now considered will
be one less than the number of negatively electrified bodies.

There are other points or lines of equilibrium which oceur where
the positive regions become separated from each other, and the
negative region acquires periphraxy. 'The number of these, reck-
oned according to their degrees, is one less than the number of
positively electrified bodies.

If we call a point or line of equilibrium positive when it is the
meeting-place of two or more positive regions, and negative when
the regions which unite there are negative, then, if there are p
bodies positively and = bodies negatively electrified, the sum of
the degrees of the positive points and lines of equilibrium will be
#—1, and that of the negative ones n—1.

But, besides this definite number of points and lines of equi-
librium arising from the junction of different regions, there may
be others, of which we ean only affirm that their number must be
even. TFor if, as the negative region expands, it meets itself, it
becomes a eyclic region, and it may acquire, by repeatedly meeting
itself, any number of degrees of eyclosis, each of which corresponds
to the point or line of equilibrium at which the cyclosis was
established. As the negative region continues to expand till it
fills all space, it loses every degrce of cyclosis it has acquired, and
becomes at last acyclic. Ilence there is a set of points or lines
of equilibrium at which cyclosis is lost, and these are equal in
number of degrees to those at which it is acquired.

If the form of the electrified bodies or conductors is arbitrary,
we can only assert that the number of these additional points or
lines is even, but if they are electrified points or spherieal con-
‘ductors, the number arising in this way cannot exceed (n—1)(n—2),
where 2 is the number of bodies.

1147 The potential close to any point £ may be expanded in
the series

V="Vy+H+1,+&e.; .
where H,, 1I,, &e. are homogencous functions of x, y, 2, whose
dimensions are 1, 2, &e. respectively.
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Since the first derivatives of # vanish at a point of equilibrium,
H, = 0, if P be a point of equilibrium.

Let ZI; be the first function which does not vanish, then close to
the point P we may neglect all functions of higher degrees as
compared with I,

Now =0

is the equation of a cone of the degree ¢, and this cone is the cone
of closest contact with the equipotential snrface at P.

It appears, therefore, that the eguipotential surface passing
through P has, at that point, a conical point touched by a cone
of the second or of a higher degree.

If the point £ 1is not on a line of equilibrium this cone
does mot intersect itself, but consists of ¢ sheets or some smaller
number.

If the nodal line intersects itself, then the point £ is on a line
of equilibrium, and the equipotential surface through P cuts itself
n that line.

If there are intersections of the nodal line not on opposite points
of the sphere, then P is at the intersection of three or more lines
of equilibrium. For the equipotential surface through P must cut
itself in each line of equilibrium.

115.] If two sheets of the same equipotential surface intersect,
they must intersect at right angles.

For let the tangent to the line of intersection be taken as the

axis of 2, then %—zfz— = 0. Also let the axis of # be a tangent to
2

one of the sheets, then ((ZZ_?: 0. It follows from this, by Laplace’s
I

. 12V . .
equation, that ©r_ 0, or the axis of 7 is a tangent to the other
ay g
sheet.

This investigation assumes that 77, is finite. If 77, vanishes, let
the tangent to the line of intersection be taken as the axis of ¢, and
let # = 7 cos 8, and y = 7sin 8, then, since
a2V axv arv
EZ R "

a2V 14V 1 42V

or = — Sy A —
drt " rodr 7% 402

0;

the solution of which equation in ascending powers of # is

V="VF,+A4,rcos(0+a)+ 4,7% cos (20 + ay) + &c. + 4, 7* cos (20 + a,).
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At a point of equilibrium 4, is zero. If the first term that does
not vanish is that in 7%, then
V—T,= 4,7 cos (10 + a;) + terms in higher powers of r.
This gives ¢ sheets of the equipotential surface /=7, intersecting

at angles each equal to ; . This theorem was given by Rankine *,

It is only under certain conditions that a line of equilibrium can
exist in free space, but there must be a line of equilibrium on the
surface of a conductor whenever the electrification of the conductor
is positive in one portion and negative in another.

In order that a conductor may be oppositely electrified in different
portions of its surface, there must be in the field some places where
the potential is higher than that of the body and others where it is
lower. We must remember that at an infinite distance the potential
18 zero.

Let us begin with two conductors electrified positively to the
same potential. There will be a point of equilibrium between the
two bodies. et the potential of the first body be gradually raised.
The point of equilibrium will approach the other body, and as the
process goes on it will coincide with a point on its surface. If the
potential of the first body be now increased, the equipotential
surface round the first body which has the same potential as the
second body will cut the surface of the second body at right angles
in a closed curve, which 1s a line of equilibrium.

Farnshaw’s Theorecin.

116.] An electrified body placed in a field of electrie force cannot
be in stable equilibrium.

First, let us suppose the electricity of the moveable body (4), and
also that of the system of surrounding bodies (8), to be fixed in
those bodies.

Let 7 be the potential at any point of the moveable body due to
the action of the surrounding bodies (B), and let ¢ be the electricity
on a small portion of the moveable body 4 surrounding this point.
Then the potential energy of 4 with respect to B will be

M = 2 (Fe),
where the summation is to be extended to every electrified portion
of 4.

* ¢ Summary of the Properties of certain Stream Lines,” Phil. Mag., Ocl. 1864.
Sce also, Thomson and Tait’s Natural Philosephy, § 780; and Rankine and Stokes,
in the Proc. R. 8., 1867, p. 468 ; also W. R. Smith, Proc. R. S. Edin., 1869-70, p. 79.
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Let e, 6, ¢ be the coordinates of any electrified part of 4 with
respect to axes fixed in 4, and parallel to those of z, y, 2. Let the
coordinates of the point fixed in the body through which these axes
pass be &, n, ¢

Let us suppose for the present that the body 4 is constrained to
move parallel to itself, then the absolute coordinates of the point
a, b, ¢ will be

z = &4 a, y=7)+b, 2= (+c

The potential of the body 4 with respect to B may now be
expressed as the sum of a number of terms, in each of which /
is expressed in terms of @, §, ¢ and & », {; and the sum of these
terms is a function of the quantities a, 4, ¢, which are constant for
each point of the body, and of £ 9, ¢ which vary when the body is
moved. .

Since Laplace’s equation is satisfied by each of these terms it is
satisfied by their sum, or

a*M  d*M  dEM
dgt T ap T acr

Now let a small displacement be given to 4, so that

d¢ = ldr, dn = mdr, d¢ = ndr;

dr will be the increment of the potential of 4 with respect

= 0.

aM
dr
to the surrounding system B.

If this be positive, work will have to be done to increase , and

then

1 . o
there will be a force * el tending to diminish 7 and to restore 4 to

dr
its former position, and for this displacement therefore the equi-
librium will be stable. 1If, on the other hand, this quantity is
negative, the force will tend to increase 7, and the equilibrium will
be unstable.

Now consider a sphere whose centre is the origin and whose
radius is 7, and so small that when the point fixed in the body
lies within this sphere ne part of the moveable body 4 can coincide
with any part of the external system 7. 'Then, since within the
sphere ¢2M = 0, the surface-integral

[ s,

taken over the surface of the sphere.
. 1M, o
Hence, if at any part of the surface of the sphere {(7 4 is positive,
(7

there must be some other part of the surlace where it is negative,
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and if the body 4 be displaced in a dircetion in which %7}—[ is
negative, it will tend to move from its coriginal position, and its
equilibrium is therefore necessarily unstable.

The body therefore is unstable even when constrained to move
parallel to 1tself, & fortiors it is unstable when altogether free.

Now let us suppose that the body 4 is a conductor. We might
treat this as a case of equilibrium of a system of bodies, the move-
able electricity being considered as part of that system, and we
might argue that as the system is unstable when deprived of so
many degrees of freedom by the fixture of its electricity, it must
¢ forfiori be unstable when this freedom is restored to it.

But we may consider this case in a more particular way, thus—

First, let the electricity be fixed in 4, and let it move through
the small distance dr. The inerement of the potential of 4 due to
this cause is ﬁ{(Zr.

dr

Next, let the electrieity be allowed to move within 4 into its
position of equilibrium, which is always stable. During this motion
the potential will necessarily be diminished by a quantity which we
may call Cdr.

Hence the total increment of the potential when the electricity
is free to move will be

di
( dr
and the force tending to bring 4 back towards its original position
will be AM

dr
where C is always positive,

—C)(Zr;

-,

Now we have shewn that ddﬂ is negative for certain direc-
Ir

tions of 7, hence when the electricity is free to move the instability
in these directions will be increased.
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FORMS OF THE EQUIPOTENTIAL SURFACES AND LINES OF

INDUCTION IN SIMPLE CASES.

117.] Wz have seen that the determination of the distribution
of electricity on the surface of conductors may be made to depend
on the solution of Laplace’s equation

) GEY S LY
P~
V being a function of &, y, and 2z, which is always finite and con-
tinuous, which vanishes at an infinite distance, and which has

0,

a given constant value at the surface of each conductor.

It is not in general possible by known mathematical methods
to solve this equation so as to fulfil arbitrarily given conditions,
but it is always possible to assign various forms to the function
¥V which shall satisfy the cquation, and to determine in each case
the forms of the conducting surfaces, so that the function 7 shall
be the true solution.

It appears, therefore, that what we should naturally ecall the
inverse problem of determining the forms of the conductors from
the potential is more manageable than the direct problem of de-
termining the potential when the form of the conductors is given.

In fact, every electrical problem of which we know the solution
has been constructed by an inverse process. It is therefore of
great 1mportance to the electrician that he should know what
results have been obtained in this way, since the only method by
which he can expect to solve a new problem is by reducing it
to one of the cases in which a similar problem has been con-
structed by the inverse process.

This historical knowledge of results can be turned to account in
two ways. If we are required to devise an instrument for making
electrical measurements with the greatest accuracy, we may select
those forms for the electrified surfaces which correspond to cases
of which we know the accurate solution. If, on the other hand,
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we are required to estimate what will be the electrification of bodies
whose forms are given, we may begin with some case in which one
of the equipotential surfaces takes a form somewhat resembling the
given form, and then by a tentative method we may modify the pro-
blem till it more nearly corresponds to the given case. This method
1s evidently very imperfect considered from a mathematical point
of view, but it is the only one we have, and if we are not allowed
to choose our conditions, we can make only an approximate cal-
culation of the electrification. It appears, therefore, that what we
want is a knowledge of the forms of equipotential surfaces and
lines of induction in as many different cases as we can collect
together and remember. In certain classes of cases, such as those
relating to spheres, we may proceed by mathematical methods. In
other cases we cannot afford to despise the humbler method of
actually drawing tentative figures on paper, and selecting that
which appears least unlike the figure we require.

This latter method I think may be of some use, even in cases in
which the exact solution has been obtained, for I find that an eye-
knowledge of the forms of the equipotential surfaces often leads to a
right selection of a mathematical method of solution,

I have therefore drawn several diagrams of systems of equipotential
surfaces and lines of foree, so that the student may make himself
familiar with the forms of the lines. The methods by which such
diagrams may be drawn will be explained as we go on, as they
belong to questions of different kinds.

118.] In the first figure at the end of this volume we have the
equipotential surfaces surrounding two points electrified with quan-
tities of electricity of the same kind and in the ratio of 20 to 5.

Here each point is surrounded by a system of equipotential
surfaces which become more nearly spheres as they become smaller,
but none of them are accurately spheres. 1If two of these surfaces,
one surrounding each sphere, be taken to represent the surfaces
of two conducting bodies, nearly but not quite spherical, and if
these bodies be charged with the same kind of electricity, the
charges being as 4 to 1, then the diagram will represent the
equipotential surfaces, provided we expunge all those which are
drawn inside the two bodies. It appears from the diagram that
the action between the bodies will be the same as that between
two points having the same charges, these points being not exactly
in the middle of the axis of each body, butl somewhat more remote
than the middle point from the other body.
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The same diagram enables us to see what will be the distribution
of clectricity on one of the oval figures, larger at one end than
the other, which surround both centres. Such a body, if electrified
with a charge 25 and free from external influence, will have the
surface-density grealest at the small end, less at the large end,
and least in a circle somewhat nearer the smaller than the larger end.

There is one equipotential surface, indicated by a dotted line,

which consists of two lobes mecting at the conical point 2. That
point is a point of equilibrium, and the surface-density on a body
of the form of this surface would be zero at this point,
. The lines of force in this case form two distinet systems, divided
from one another by a surface of the sixth degree, indicated by a
dotted line, passing through the point of equilibrium, and some-
what resembling one sheet of the hyperboloid of two sheets.

This diagram may also be taken to represent the lines of force
and equipotential surfaces belonging to two spheres of gravitating
matter whose masses are as 4 to 1.

119.] In the second figure we have again two points whose
charges are as 4 to 1, but the one positive and the other negative.
In this ease one of the equipotential surfaces, that, namely, corre-
sponding to potential zero, is a sphere. It is marked in the diagram
by the dotted circle . The importance of this spherical surface
will be scen when we come to the theory of Electrical Images.

‘We may see from this diagram that if two round bodies are
charged with opposite kinds of electricity they will attract each other
as much as two points having the same charges but placed some-
what nearer together than the middle points of the round bodies.

Here, again, one of the equipotential surfaces, indicated by a
dotled line, has two lobes, au inner one surrounding the point whose
charge is 5 and an outer one surrounding both bodies, the two
lobes meeting in a conical point 2 which is a point of equilibrium.

If the surface of a couductor 1s of the form of the outer lobe, a
roundish body having, like an apple, a conical dimple at one end of
its axis, then, if this conductor be electrified, we shall be able to
determine the superficial density at any point. That at the bottom
of the dimple will be zero.

Surrounding this surfacc we have others having a rounded
dimple which flattens and finally disappears in the equipctential
surfuce passing through the point marked 7.

The lines of force in this diagram form two systems divided by a
surface which passes through the point of equilibrium.
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If we consider points on the axis on the further side of the point
B, we find that the resultant force diminishes to the double point P,
where it vanishes. It then changes sign, and reaches a maximum
at A1, after which it continually diminishes.

This maximum, however, is only a maximum relatively to other
points on the axis, for if we draw a surface perpendicular to the
axis, 3/ is a point of minimum force relatively to neighbouring
points on that surface.

120.7 Figure 1II represents the equipotential surfaces and lines
of force due to an electrified point whose charge 1s 10 placed at
A4, and surrounded by a field of force, which, before the intro-
duction of the clectrified point, was uniform in direction and
magnitude at every part. In this case, those lines of force which
belong to 4 are contained within a surface of revolution which
has an asymptotic cylinder, having its axis parallel to the un-
disturbed lines of force.

The equipotential surfaces have each of them an asymptotic
plane. One of them, indicated by a dotted line, has a conical
point and a lobe surrounding the point 4. Those below this surface
have one sheet with a depression near the axis. Those above have
a closed portion surrounding 4 and a separate sheet with a slight
depression near the axis.

If we take one of the surfaces below 4 as the surface of a con-
ductor, and another a long way below 4 as the surface of another
conductor at a different potential, the system of lines and surfaces
between the two conduetors will indicate the distribution of electric
force. 1If the lower conductor is very far from 4 its surface will
be very nearly plane, so that we have here the solution of the
distribution of electricity on two surfuces, both of them nearly
plane and parallel to each other, except that the upper one has
a protuberance near its middle point, which is more or less pro-
minent according to the particular equipotential line we choose for
the surface.

121.7 Xigure I'V represents the equipotential surfaces and lines
of force due to three electrified points 4, B and C, the charge of 4
being 15 units of positive electricity, that of B 12 units of negative
electricity, and that of € 20 units of positive electricity. These
points are placed in one straight line, so that

48 =9, BC = 16, A4C = 25.

In this case, the surface for which the potential is unity cousists
of two spheres whose centres are 4 and € and their radii 15 and 20.

VOL. 1. L

IRIS - LILLIAD - Université Lille 1



146 EQUIPOTENTIAL SURFACES [122.

These sphercs intersect in the circle which cuts the plane of the
paper in D and 2/, so that B is the centre of this circle and its
radiuns 18 12, This circle is an example of a line of equilibrium, for
the resultant force vanishes at every point of this line.

If we suppose the sphere whose centre is 4 to be a conductor
with a charge of 3 units of positive clectricity, and placed under
the influence of 20 units of positive electricity at C, the state of
the case will be represented by the diagram if we leave out all the
lines within the sphere 4. The part of this spherical surface within
the small circle D" will be negatively electrified by the influence
of C.  All the rest of the sphere will be positively electrified, and
the small circle D2 itself will be a line of no electrification.

‘We may also consider the diagram to represent the electrification
of the sphere whose centre is €, charged with 8 units of positive
electricity, and influenced by 15 units of positive electricity placed
at 4.

The diagram may also be taken to represent the case of a con-
ductor whose surface consists of the larger segments of the two
spheres meeting in 202/, charged with 23 units of positive elec-
tricity.

‘We shall return to the consideration of this diagram as an
illustration of Thomson’s Theory of Electrical Images. See Art. 168.

122.] I am anxious that these diagrams should be studied as
illustrations of the language of Faraday in speaking of ‘lines of
force,” the ¢ forces of an electrified body,” &e.

In strict mathematical language the word Foree is used to signify
the supposed cause of the tendency which a material body 1s found
to have towards alteration in its state of rest or motion. It is
indifferent whether we speak of this observed tendency or of its
immediate cause, since the cause is simply inferred from the effect,
and has no other evidence to support it.

Since, however, we are ourselves In the practice of directing the
motion of our own bodies, and of moving other things in this way,
we have acquired a copious store of remembered sensations relating
to these actions, and therefore our ideas of force are connected in
our minds with ideas of conscious power, of exertion, and of futigue,
and of overcoming or yielding to pressure. These ideas, which give
a colouring and vividness to the purely abstract idea of force, do
not in mathmatically trained minds lead to any practical error.

But in the vulgar language of the time when dynamical science
was unknown, all the words relating to exertion, such as force,
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energy, power, &c., were confounded with each other, though some
of the schoolmen endeavoured to introduce a greater precision into
their language.

The cultivation and popularization of correct dynamical ideas
since the time of Galileo and Newton has effected an immense
change in the language and ideas of common life, but it is only
within recent times, and in consequence of the increasing im-
portance of machinery, that the ideas of force, energy, and power
have become accurately distinguished from each other. Very few,
however, even of scientific men, are eareful to observe these dis-
tinetions ; hence we often hear of the force of a ecannon-ball when
either its energy or its momentum is meant, and of the force of an
electrified body when the quantity of its electrification is meant.

Now the guantity of electricity in a body is measured, according
to Faraday’s ideas, by the nwmier of lines of force, or rather of
induection, which proceed from it. These lines of force must all
terminate somewhere, either on bodies in the neighbourhood, or on
the walls and roof of the room, or on the earth, or on the heavenly
bodies, and wherever they terminate there is a quantity of clec-
tricity exactly equal and opposite to that on the part of the body
from which they proceeded. By examining the diagrams this will
be seen to be the case. There is therefore no contradietion bet veen
Taraday’s views and the mathematical results of the old theory,
but, on the contrary, the idea of lines of force throws great light
on these results, and seems to afford the means of rising by a con-
tinuous process from tlie somewhat rigid conceptions of the old
theory to notions which may be capable of greater expansion, so
as to provide room for the increase of our knowledge by further
researches.

123.] These diagrams are constructed in the following manner : —

First, take the case of a single centre of force, a small electrified

body with a charge E. The potential at a distance » is V' = g—;

7

hence, if we make r= ., we shall find 7, the radius of the sphere

¥
for which the potential is /. If we now give to ¥ the values
1, 2, 3, &e., and draw the corresponding spheres, we shall obtain
a series of equipotential surfaces, the potentials corresponding to
which ave measured by the natural numbers. The sections of these
spheres by a plane passing through their common centre will be
cireles, which we may mark with the number denoting the potential
L2
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of each. These are indicated by the dotted circles on the right
hand of Fig. 6.

If there be another centre of foree, we may in the same way draw
the equipotential surfaces belonging to it, and if we now wish to
find the form of the equipotential surfaces due to both centres
together, we must remember that if 7] be the potential due to one
centre, and 7, that duc to the other, the potential due to both will be
V,+ ¥V,=/. Hence, since at every intersection of the equipotential
surfaces belonging to the two series we know both 73 and 77, we
also know the value of 7. If therefore we draw a surface which
passes through all those intersections for which the value of /7 is
the same, this surface will coincide with a true equipotential surface
at all these intersections, and if the original systems of surfaces
be drawn sufficiently close, the now surface may be drawn with
any required degree of accuracy. The equipotential surfaces due to
two points whose charges are equal and opposite are represented by
the continuous lines on the right hand side of Fig. 6.

This method may be applied to the drawing of any system of
equipotential surfaces when the potential is the sum of two po-
tentials, for which we have already drawn the equipotential surfaces.

The lines of force due to a single centre of force are straight
lines radiating from that centre. If we wish to indicate by these
lines the intensity as well as the direction of the force at any point,
we must draw them so that they mark out on the equipotential
surfaces portions over which the surface-integral of induction has
definite values. The best way of doing this is to suppose our
plane figure to be the section of a figure in space formed by the
revolution of the plane figure about an axis passing through the
centre of force. Any straight line radiating from the centre and
making an angle 6 with the axis will then trace out a cone,
and the surface-integral of the induction through that part of any
surfuce which is cut off by this cone on the sidg next the positive
direction of the axis, is 27 /7 (1 —cos 8).

If we further suppose this surface to be bounded by its inter-
section with two planes passing through the uxis, and inclined at
the angle whose arc i1s equal to half the radius, then the induction
through the surface so bounded is

E(1—cos@) = 2¥, say;
and 6 = cos! (1 —2 ;})
If we now give to W a series of values 1, 2, 3 ... , we shall {ind
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a corresponding series of values of 6, and if # be an integer, the
number of corresponding lines of forece, including the axis, will be
equal to 7.

‘We have therefore a method of drawing lines of force so that
the charge of any centre is indicated by the number of lines which
converge to it, and the induction through any surface cut off in the
way described 1s measured by the number of lines of force which
pass through it. The dotted straight lines on the left hand side
of Fig. 6 represent the lines of force due to each of two electrified
points whose charges are 10 and —10 respectively.

If there are two centres of force on the axis of the figure we
may draw the lines of force for each axis corresponding to values
of ¥, and ¥,, and then, by drawing lines through the consecutive
intersections of these lines, for which the value of ¥ 4+, is the
same, we may find the lines of force due to both centres, and in
the same way we may combine any two systems of lines of force
which are symmetrically situated about the same axis. The con-
tinuous curves on the left hand side of ¥ig. 6 represent the lines
of force due to the two electrified points ueting at once.

After the equipotential surfaces and lines of force have been
constructed by this method the accuracy of the drawing may be
tested by observing whether the two systems of lines are every-
where orthogonal, and whether the distance between consecutive
equpotential surfaces is to the distance between consccutive lines
of force as half the distance from the axis i1s to the assumed unit of
length,

In the case of any such system of finite dimensions the line of
forece whose index number 1s ¥ has an asymptote which passes
through the centre of gravity of the system, and is inclined to the
P where Z 1s the total
electrification of the system, provided ¥ is less than £. Lines of
force whose index is greater than Z are finite lines.

The lines of force corresponding to a field of uniform foree parallel
to the axis are lines parallel to the axis, the distances from the
axis being the square roots of an arithmetical series.

axis at an angle whose cosine is 1—2

The theory of equipotential surfaces and lines of force in two
dimensions will be given when we come to the theory of conjugate
functions *.

* See a paper ‘ On the Flow of Electricity in Conducting Surfaces,” by Prof. W. R.
Smith, Proc. R. 8. Edin., 1869-70, p. 79.

IRIS - LILLIAD - Université Lille 1



CHAPTER VIIL

"+ 8IMPLE CASES OF ELECTRIFICATION.

Twa. Parallel Plaues.. -

124.] We shall consider, in the first, place, two parallel plane
conducting surfaces of infinite extent, at a distance ¢ from each
otherj-maintained respectively 4t potentials 4 and 43, ,

It is manifest that in this case the potential 7 will be a function
of the distance % from’ thy plane 4, ARA"Will e the same for all
points. of any_ para,llel ‘plane -between 4 and B, except near the
boundarics of the electrified surfaces, which by the supposmon
are at an infinitely great distance:from the -point-considered.-

Hence, Laplace’s equation becomes reduced to

szV
the integral of whiclris«* ) .
V C, + C,z;

and since when 2z = 0 V__A and thnz_c V = B,

?

V=d1(B-a)°.

For all points between the planes, the resultant electrical force
is normal to the planes, and its magnitude is

A—B

R —
In the substance of the conduc‘?ﬁors themselves, £ = 0. Hence

the distribution of electnmty on the first plane has a surface-

density o, where _
) dn0 = R = A B

e
On the other surface, where the potential is B, the surface-.
denblty o’ willybg equal and, oppomte to o, and
B
40’ =—HR = 70717 .
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Let us next consider a portion of the first surface whose area
is §, tuken so that no part of § is near the boundary of the
surface.

The quantity of electricity on this surface is £ = S, and, by
Art. 79, the foree acting on every unit of eleetricity 1s 4 &, so that
the whole force actmg on the area §, and attracting it towalds

the other pl:me 18
= 4 KSs = ms _ 5 ﬂf’?)f-
8w [

Here the attraction is expresscd in terms of the area S, the
difference of potentials of the two surfaces (4—B), and the distance
Letween them ¢. The attraction, expressed in terms of the charge
£, on the area §, is 2

- F=- 5 2.
The electrical energy due to the distribution of electricity on the
area 8, and that on an area 8" on the surface B defined by projecting
"8 on the surface B by a system of lines of force, which in this case
are normals to the planes; s -
Q=i A+E,B),
(d—B)*
=,
Vi
8

-

?; Eze,
= f‘

The first of these expressions is the general expression of clec-
trical energy.

The second gives the energy in terms of the area, the distance,
and the difference of potentials.

The third gives it in terms of the resultant force>Z, and the
volume S¢ included between the areas 8 and &, and shews that the
. energy in unit of volume is p where 8 7 p = R

The attraction between the planes is 4§, or in other words, there
is an clectrical tension (or negative prescure) oqual to p on every
- unit of area. -

The fourth expressxon gives the energy in terms of the charge.

The fifth shews that the electrical energy is equal to the work
which would be done by the electric force if the two surfaces were
to be brought together, moving parallel to themsdvas, with their
. electrie Chd.l oes constunt.
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To express the charge in terms of the ditference of potentials,
we have 1 8
B =——B-4)=q(B—4).

T 47 e

: 1 8 :
The coefficient 4o 5 = ¢ represents the charge due to a differ-

ence of potentials equal to unity. This coefficient is called the
Capacity of the surface S8, due to its position relatively to the
opposite surface.

Let us now suppose that the medium between the two surfaces
is no longer air but some other dielectric substance whose specific
inductive capacity is K, then the charge due to a given difference
of potentials will be K times as great as when the diclectric is atr,

or . KS :
v = -Q_M‘-(B_A).
The total energy will be
XS 2
27 .
ﬁblzc'

The force between the surfaces will be
K§ (B—A4)?

8 c?

27 .,
= =5 L2,

Hence the forece between two surfaces kept at given potentials
varies directly as K, the specific capacity of the diclectric, but the
force between two surfaces charged with given quantities of elec-
tricity varies inversely as K.

Two Coneentric Spherical Surfaces.

125.] Let two concentric spherical surfaces of radii  and 4, of
which & is the greater, be maintained at potentials 4 and B
respectively, then it iy manifest that the potential 7 is a function
of r the distance from the centre. In this case, Laplace’s equation

becomes ary 24V
@&* Ty dr T
The integral of this is
V= 01+ 027’_1 H

und the condition that 7= 4 when 7 = 4, and ¥ = B when » = ,
gives for the space between the spherical surfaces,
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v Aa —Bb A—B

a—b sz

—2
— " _r2,
dr  a l1—§1

If oy, oy are the surface-densities on the opposed surfaces of a
solid sphere of radius a, and a spherical hollow of radius 4, then

1 A4—8B 1 B—4
DT 4mar a5 T gmpr ot
If X, and E, be the whole charges of electricity on these surfaces,
A—B

_El = 47ra20'1 =

——F,

al—p1

The capacity of the enclosed sphere is therefore o

If the outer surface of the shell be also spherical and of radius ¢,
then, if there are no other conductors in the neighbourhoed, the
charge on the outer surface is

ES = Be.

Hence the wlole charge on the mnner sphere is
ab
E = b:é(A_B)’
and that of the outer

B4+ 7, = ab

b—a

(B—4)+ Be.

If we put =02, we have the case of a sphere in an infinite
space. The eleetric capacity of such a sphere is @, or it is nu-
merically equal to its radius.

The electrie tension on the inner sphere per unit of area is

Lo (4B

The resultant of this tension over a hemisphere is wa?p = F
normal to the base of the hemisphere, and if this is balanced by a
surface tension exerted across the circular boundary of the hemi-
sphere, the tension on unit of length being 7, we have

F: 27T(ZT.
42 (d—B2  E?
T 8 (b—a) ~ 8a%’
1 (4—By

T 16ma (h—a)?

Hence

T
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If a spherical soap bubble is electrified to a potential A, then, if
its radius is ¢, the charge will be Aa, and the surface-density
will be 1 A

g = —— —
4T a

The resultant electrical force just outside the surface will be 47,
and inside the bubble it is zero, so that by Art. 79 the electrical
foree on unit of area of the surface will be 2702, acting outwards.
Hence the electrification will diminish the pressure of the air
within the bubble by 2no?, or

1 42
B a?’

But il may be shewn that if 7' is the tension which the liquid

film exerts across a line of unit length, then the pressure from

m

o . TN 4
within required to keep the bubble from collapsing is 2 e If the

electrical force is just sufficient to keep the bubble in equilibrium
when the air within and without is at the same pressure
A% = 16mal.

Two Infinite Coarxal Cylindric Surfaces.

126.] Let the radius of the outer surface of a conducting cylinder
be @, and let the radius of the inner surface of a hollow cylinder,
having the same axis with the first, be 4. Let their potentials
be 4 and B respectively. Then, since the potential 7 is in this
case a {unction of 7, the distance from the axis, Laplace’s equation
becomes

a2V ar o
P
whence V=~0C+0logr.

Since ¥ = 4 when » = a, and 7 = B when r = 4,

Alog? + Blog”
V= . z.

log %

If o0y, o, are the surface-densities on the inner and outer
surfaces,

d—B - B—4

4‘7701: ] 41’[(;2_—_

alog; blogf;
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If P, and £, are the charges on a portion of the two eylinders of
length /, measured along the axis,

B, = 2male, = 5‘1_?1 =—E,.
log E
The capacity of a length 7 of the interior cylinder is therefore
4
% —
log 2

If the space Letween the cylinders is occupied by a dielectric of
specific capacity K instead of air, then the capacity of the inmer
cylinder is (K

p—
log >

The energy of the electrical distribution on the part of the infinite
cylinder which we have considered is

LK(4—B)
p ==
log 2
B A
——T C A
J
Fig. 5.

127.] Let there be two hollow cylindric conductors 4 and B,
Fig. 5, of indefinite length, having the axis of z for their common
axis, one on the positive and the other on the negative side of the
origin, and separated by a short interval near the origin of co-
ordinates.

Let a hollow cylinder € of length 2/ be placed with its middle
point at a distance w on the positive side of the origin, so as to
extend into both the hollow cylinders.

Let the potential of the positive hollow eylinder be 4, that of
the negative one B, and that of the internal one C, and let us put
a for the capacity per unit of length of C with respect to 4, and
B for the sume quantity with respect to B.

The capacities of the parts of the cylinders near the origin and
near the ends of the inner cylinder will not be affected by the
value of # provided a comsiderable length of the inmer cylinder
enters each of the bollow cylinders. Near the ends of the hollow
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eylinders, and near the ends of the inner cylinder, there will he
distributions of electricity which we are not yet able to calculate,
but the distribution near the origin will not be altered by the
motion of the inner cylinder provided neither of its ends comes
near the origin, and the distributions at the ends of the inner
eylinder will move with it, so that the only effect of the motion
will be to increase or diminish the length of those parts of the
inner cylinder where the distribution is similar to that on an in-
finite cylinder.

Hence the whole energy of the system will be, so far as it depends
on z,

Q=3%a(l+2)(C—A)?%+LB({—2)(C— B)?+ quantities

independent of « ;

and the resultant force parallel to the axis of the cylinders will be

_4Q _ 1
X= T %G(O_A)2_2ﬁ<0—l)))2-

If the eylinders 4 and B are of equal section, a = 3, and
X=aB-A)(C—-54+D8)).

It appears, therefore, that there is a constant force acting on
the inner cylinder tending to draw it into that one of the outer
cylinders from which its potential differs most.

If ¢ be numerically large and 4+ B comparatively small, then
the force is approximately X — o (B—4)C;

so that the difference of the potentials of the two cylinders can be
measured if we can measure X, and the delicacy of the measurement
will be increased by raising €, the potential of the inner cylinder.

This principle in a modified form is adopted in Thomson’s
Quadrant Electrometer, Art. 219.

The same arrangement of three cylinders may be uscd as a
measure of capacity by connecting B and C. If the potential of
A4 is zero, and that of B and C is 7, then the quantity of electricity
on A4 will be Fy = (gs+al+2) 7;
so that by moving C to the right till # beeomes -+ £ the capacity of
the cylinder € becomes increased by the definite quantity-a g, where

1
a = ;3 2

Zlogz

@ and & being the radii of the opposed eylindrie surfaces.
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CHAPTER IX.

SPHERICAL HARMONICS.

On Singulur Points at whick the Potential becomes Lufinite.

128.] We lave already shewn that the potential due to a
quantity of electricity e, condensed at a point whose coordinates
are (z, 0, ¢), 1s p

V== (1)

r

where 7 is the distance from the point (e, §, ¢) to the point (z, 7, 2),
and 7 1s the potential at the point (w, 7, 2).

At the point (a, 4, ¢) the potential and all its derivatives become
infinite, but at every other point they are finite and continuous,
and the second derivatives of 7 satisfy Laplace’s equation.

Ilence, the value of 7, as given by equation (1), may be the
actual value of the potential in the space outside a closed surface
surrounding the point (a, b, ¢), bul we cannot, except for purely
mathematical purposes, suppose this form of the function to hold
up to and at the point (e, b, ¢) itself. For the resultant force close
to the point would be infinite, a condition which would necessitate
a discharge through the dielectric surrounding the point, and
besides this 1t would require an infinite expenditure of work to
charge a point with a finite quantity of electricity.

‘We shall call a point of this kind an infinite point of degree zero.
The potential and all its derivatives at such a point are infinite,
but the product of the potential and the distance from the point
is ultimately a finite quantity ¢ when the distance is diminished
without limit. This quantity ¢ is called the charge of the infinite
point.

This may be shewn thus. If 77 be the potential due to other
electrified bodies, then near the point 7’ is everywhere finite, and
the whole potential is e
V = V’—{-;,

whence Vr=Vr+e
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‘When # is indefinitely diminished 77 remains fimite, so that
ultimately Fr— e

129.] There are other kinds of singular points, the properties of
which we shall now investigate, but, before doing so, we must define
some expressions which we shall find useful in emancipating our
ideas from the thraldom of systems of coordinates.

An qaris is any definite direction in space. We may suppose
it defined in Cartesian coordinates by its three direction-cosines
{, m, n, or, belter still, we may suppose a mark made on the surface
of a sphere where the radius drawn from the centre in the direction
of the axis meets the surface. We may call this point the Pole
of the axis. An axis has therefore one pole only, not two.

If through any point z, 7, 2 a plane be drawn perpendicular to
the axis, the perpendicular from the origin on the plane is

p = lzt+my+nez. (2)
The operation 4 ]i +m7d_ " d 3)
= de Py Y a (

is called Differentiation with respect to an axis 4 whose direction-
cosines are £, m, 7.

Different axes are distinguished by different suffixes.

The cosine of the angle betwecen the vector r and any axis Z,
is denoted by A;, and the vector resolved in the direction of the
axis by p;, where

Nr=Letmy4nz=p,. (4)

The cosine of the angle between two axes Z; and /4, is denoted by

pyy Where B = Ll momy 4 ngng. (5)

From these definitions it is evident that

{Z/' V2
T T Ay (6)
{Z]?J. _ d])1 (7)

di, = P = g
AN, py—A A,
7= (8)
Now let us suppose that the potential at the point (z, 7, 2) due
to u elngular point of any degree placed at the origin is
Mf(2, g, 2).
If such a point be placed at the extremity of the axis 4, the
potential at (r, , 2) will be
Mf((x—1h), (y —mh), (e—nkh)) ;
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and if a point in all respects equal and of opposite sign be placed
at the origin, the potential due to the pair of points will be

V=23Mf{(= —-Z/A) (y—mh), (z—nh)} —Mf(z, 9, 2
=—2M:i ﬁ F(z, y, 2)+ terms containing 42,

If we now diminish £ and increase 3 without limit, their product
M% remaining counstant and equal to A7, the ultimate value of the
potential of the pair of points will be

l":_],['%f(w,y’ Z) (9)
If /'(r, 3, 2) sutisfies Laplace’s equation, then 77, which is the
difference of two functions, each of which separately satisfies the
egnation, must itself satisfy it.
If we begin with an infinite point of degree zero, for whieh

Fo= My > (10)
we shall get for a point of the first degree
d 1
Fy=—M (7/71 7
P A
=ﬂ1]7;=2l[1;;- (11)

A point of the first degree may be supposed to consist of two
points of degree zero, having equal and opposite charges 3/, and
—M;, and placed at the extremities of the axis 2. The length
of the axis is then supposed to diminish and the magnitude of the
charges to increase, so that their product M 4 is always equal to
Af,. The ultimate result of this process when the two points
coincide is a point of the first degree, whose moment is 37, and
whose axis is £,. A point of the first degree may therefore be
called a Double point.

By placing two equal and opposite points of the first degree at
the extremities of the second axis 4,, and making M 4, = M,, we
get by the same process a point of the second degree whose potential
1s ) d

Vo=— 4 %p;a

dz 1
dhydhy v

3)\)\ —H
= M, =20 (12)
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We may call a point of the second degree a Quadruple point,
because it is constructed by making four points approach each
other. It has two axes, 4, and /Z,, and a moment #,. The di-
rections of these two axes and the magnrifude of the moment com-
pletely define the nature of the point.

130.] Let us now consider an infinite point of degree ¢ having
i axes, each of which is defined by a mark on a sphere or by two
angular coordinates, and having also its moment M, so that it is
defined by 2741 independent quantities. Tts potential is obtained
by differentiating 7, with respect to the ¢ axes in succession, so
that it may be written

. A 1
Vo= (UM (13)

The result of the operation is of the form
Z: —l—ﬂ["/rhrl’ (14)

where ¥;, which is called the Surface Harmonie, is a function of the
7 cosines, A; ... A, of the angles hetween » and the ¢ axes, and of the
1 é(G—1) cosines, py,y, &e. of the angles between the different axes
themselves. In what follows we shall suppose the moment ; unity.

LEvery term of ¥; consists of products of these cosines of the form

K]
Hig- M3a -+ Has—102s Apotr - A
in which there are s cosines of angles between two axes, and 1—2¢
cosines of angles between the axes and the radius vector. As each
axis is introduced by one of the ¢ processes of dilferentiation, the
symbol of that axis must occur once and only once among the
suffixes of these cosines.
Hence in every such product of cosines all the indices oceur
once, and none is repeated.
The number of different products of s cosines with double suffixes,
and ¢— 2 ¢ cosines with single suffixes, 1s
T i ~
V=g iTa (15)

For if we take any one of the & different terms we can form
from it 2% arrangements by altering the order of the suffixes of the
cosines with double suffixes. Trom any one of these, again, we
can form |5 arrangements by altering the order of these cosines,
and from any one of these we can form ¢—2s arrangements by
altering the order of the cosines with single suffixes. Hence, with-
out altering the value of the term we may write it in 255 i—2s
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different ways, and if we do so to all the terms, we shall oltain
the whole permutations of 7 symbols, the number of which is [7.

Let the sum of all terms of this kind be written in the ab-
breviated form 5 (=20 9,

If we wish to express that a particular symbol j occurs among
the A’s only, or among the p’s only, we write it as a suflix to the A
or the . Thus the equation

> ()\i—m Ha) -3 ()\ji—z:z y‘n) +3 ()\i-—za I"'j!) (16)
expresses that the whole system of terms may be divided into two
portions, in one of which the symbol j occurs among the direction-
cosines of the radius vector, and in the other among the cosines
of the angles between the axes.

Let us now assume that up to a certain value of 2

Y, = Ao S (V)4 4,y 3 (N2 ) 4 e

+4;, S (N2 ) 4 &e. (17)
This is evidently true when ¢=1 and when ¢ =2. We shall shew
that if it is true for 7 it is true for ¢4+ 1. We may write the series
Y= 8{4, 2w, (18)
where § indicates a summation 1n which all values of s not greater
than 17 are to be taken.

Multiplying by ¢ #~¢+1 and-remembering that p; = »);, we
ohtain by (14), for the valne of the solid harmonic of negative
degree, and moment unity,

V= |8 8{d,, S () (19)

Differentiating ¥, with respect t0 a new axis whose symbol is
J, we should obtain 7, with its sign reversed,
= |8 {4 (2e—2im e MO (e

+Ail87.25‘2i—1 > (ﬁifzs—lp.]_s-%l)}. (20)

If we wish to obtain the terms containing s cosines with double
suffixes we must diminish s by unity in the second term, and we find

—Fy = S (A, (a2 1) S (5 )

i (P ) (21)

If we now make

A, (28—2¢—1)= A,y =—(i+1)4,,, (22)

then by = 11418 {AHLE"?!’Z(HM#I 2 (79”1'25#“)}} (23)

and this value of ¥, is the same as that obtained by changing i
VOL. I. M
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162 SPHERICAL HARMONICS. [131.

into ¢+ 1 in the assumed expression, equation (19), for 7,. Ilence
the assumed form of 7}, in equation (19), if true for any value of i,
is true for the next higher value.

To find the value of 4,,, put ¢ = 0 in equation (22), and we find

2141

dipy0= Tl Ay (24)
and therefore, since 4, ; 1s unity,
12¢
d;5 = m: (25)

and from this we obtain, by equation (22), for the general value of

the coeflicient 12i—2s
A= (1) 55 i ims) (26)

and finally, the value of the trigonometrical expression for ¥ is

F=8{(—1p 22 s pen ), . @)

21'—3 ‘_1'_ Ji_s

This is the most general expression for the spherical surface-
harmonic of degree 2. If 7 points on a sphere are given, then, if any
other point 2 is taken on the sphere, the value of ¥, for the point
P is a function of the 7 distances of P from the ¢ points, and of the
3 i(4—1) distances of the ¢ points from each other. 'These ¢ points
may be called the Poles of the spherical harmonic. Kach pole
may be defined by two angular coordinates, so that the spherical
harmonic of degree 7 has 27 independent constants, exclusive of its
moment, M.

131.] The theory of spherical harmonics was first given by
Laplace in the third book of his Miecanique Celeste. 'The harmonics
themselves are therefore often called Laplace’s Coefficients.

They have generally been expressed in terms of the ordinary
spherical coordinates 8 and ¢, and eontain 2{-+1 arbitrary con-
stants. Gauss appears® to have had the idea of the harmonic
being determined by the position of its poles, but I have not met
with any development of this idea.

In numerical investigations I have often been perplexed on ae-
count of the apparent want of definiteness of” the idea of a Laplace’s
Coefficient or spherical harmonic. By conceiving it as derived by

. o .. .1 . .
the successive differentiation of = with respect to 4 axes, and as
r

expressed in terms of the positions of its ¢ poles on a sphere, 1

* Gauss. Werke, bd. v, 8. 361.
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132.] SYMMETRICAL SYSTEM. 163

have made the conception of the general spherical harmonie of any
integral degree perfectly definite to myself, and I hope also to those
who may have felt the vagueness of some other forms of the ex-
pression,

‘When the poles are given, the value of the harmonic for a given
point on the sphere is a perfectly definite numerical quantity.
When the form of the function, however, is given, it is by no
means so easy to find the poles except for hurmonies of the first
and second degrees and for particular cases of the higher degrees.

Hence, for many purposes it is desirable to express the harmonic
as the sum of a number of other harmonies, each of which has its
axes disposed in a symmetrical munner.

Symmetrical System.

132.7 The particular forms of harmonies to which it is usual to
refer all others are deduced from the general harmonie by placing
i1—o of the poles at one point, which we shall call the Positive Pole
of the sphere, and the remaining o poles at equal distances round
one half of the equator. .

In this case A[, Ay, ... A,_, are each of them equul to cos 8, and
A; s41 .+ A; are of the form sin @ cos(¢p—3). We shall write u for
cos 8 and v for sin 9.

Also the value of p;; 1s unity if s and 4" are both less than i —a,
zero when one is greater and the other less than this quantity,

T
and cosz — when both are greater.
T

When all the poles are concentrated at the pole of the sphere,
the harmonic becomes a zonal harmonic for which ¢ = 0. As the
zonal harmonie 1s of great importance we shall reserve for it the
symbol @,.

We may obtain its value either from the trigonometrical ex-
pression (27), or more directly by differentiation, thus

i7i+l di 1
_ L35 (2= di@=1) ,,  iE-1)E—2)(E=8) o
@ 1234 WM api—nt i 2.4.(20—1)(2¢—3) t—ke
1 2i—2n )
=30y e (29)

It 1s often convenicnt to express @, as a homogeneous function of
cos 6 and sin #, which we shall write p and » respectively,
M g
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164 SPHERICAL HARMONICS. [132.

i i(z—1) i-2. 2 Z(Z_l (Zg_'?) (2_3) pitrt —&
Q; T g H 7V + 2.2 . 4 . 4 vt —ke
§ L

— — 1\ — i—-2n_2n 0

In this expansion the coefficient of y; Is unity, and all the other
terms involve ». Hence at the pole, where u=1 and v=0, @;=1.

It is shewn in treatises on Laplace’s Coeflicients that Q; is the
coefficient of 4 in the expansion of (1—2uk + A2)"%

The other harmonics of the symmetrical system are most con-
veniently obtained by the use of the imaginary coordinates given by
Thomson and Tait, Natural Philosopky, vol. 1. p. 148,

=z «/—71% n=a—+—1g. (31)

The operation of differentiating with respect to ¢ axes in suc-
cession, whose directions make angles T with each other in the
- a

plane of the equator, may then be written
dc a a°

- - — - 32

iy .. dh, — dge iy (32)

The surface harmouic of degree ¢ aud type o is found by
differentiating % with respect to 7 axes, o of which are at equal

intervals in the plane of the equator, while the remaining i—a
coincide with that of 2, multiplying the result by #*+1 and dividing
by |3. Hence

S ) Ky CARECAR TEY (33)
i |1 dic df" dn"/ My
i-s8 (23 o it di—lf I

:(_1) 238‘1-18 (f +n)7"1227:;‘7m' (34)
Now E°+n" = 27707 cos (o + ), (35)

i1 _ five 1
and gi— et = (TR0 e 3 (36)

o ito o

ence y =2 527‘7\"; p- 3: cos (0 -+ ), (37)

where the factor 2 must be omitted when ¢ = 0.

The quantity Sia) is a function of 6, the value of which is given
in Thomson and Tait's Natural Philosophy, vol. 1. p. 149.

It may be derived from @, by the equation

[ T Ll A A
Si =2 ‘.i+g v [l#g Qi; (38)

where @, is expressed as a function of u only.

IRIS - LILLIAD - Université Lille 1



133.] SOLID HARMONICS OF POSITIVE DEGREE. 165

Performing the differentiations on @; as given in equation (29),
we obtain
Ji—o | |2i—2n

(@) < o | i—or—@
3; U"H{(-l) éi70|i+a n i—"li'—u~2n“ ’ "}. (39)

We may also express it as a homogencous funetion of u and »,

(e) li—a’[tr i oz yan |
S\; _V“E{(—l)" 22;@}1. —2n 2 5 (40)

In this expression the coefficient of the first term 1s unity, and
the others may be written down in order by the application of
Laplace’s equation.

The following relations will be found useful in Flectrodynamics.
They may be deduced at once from the expansion of Q,.

1, dQ, i
— (). = - 2 L= !
[ Ql Q1+1 7+ 1 v (l‘u, 2”,3,-! (41)
1 ,dQ, <¢+1
Qi1 —r Q= g“z‘d_y_‘: 2 N (42)

On Solid Harmonics of Positive Degree.

133.] We have hitherto considercd the spherical surface harmonie

¥, as derived from the solid harmonic
Fom 3 M,y

This solid harmonie is a homogencous function of the coordinates
of the negative degree —(¢+1). Its values vanish at an infinite
distance and become infinite at the origin.

We shall now shew that to every such function there corresponds
another which vanishes at the origin and has infinite values at an
infinite distance, and is the corresponding solid harmonic of positive
degree 1.

A solid harmonie in general may be defined as a homogeneous
function of #, g, and 2, which satisfies Laplace’s equation

axy  dEV dEV

Let 1, be a homogeneous function of the degree 7, such that

0.

H,=|i M;7Y;, = r%*1V, (43)
a1l ; 2i—1 2i+1 ar
Then o = (204 1) r? -tk 7 e
d2H, . . 2 ar . o ar, L dEy
haets 22)420-3)7 1 9(9Q 1)92i-1 i 2i+1 L
o =(2i+1)((2i =12+ Y7 +2(2¢4 1) D R
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166 SPHERICAL IIARMONICS, [134.

Hence

AL /A A e
 t g g =GN,
dv;
@y

dr; A AN

i 2i+1 A
+Z(Zz)+r (rlm" dy® + 22 (44)

. . V.
21—1 )
+2(2i4 1)r (xdm-f-y

Now, since 7 is a homogeneous function of negative degree ¢ + 1,

ar,  drv;,  dr . , e
T y@ zzz—(z-}l)ﬂ.. {45)
The first two terms therefore of the right hand member of
equation (44) destroy each other, and, since ¥ satisfies Laplace’s
equation, the third term is zero, so that 7, also satisfies Laplace’s
equation, and is therefore a solid harmonie of degree <.
‘We shall next shew that the value of 77, thus derived from 7] is
of the most general form.
A homogencons funetion of #, y, 2 of degree 4 contains
LG41) G42)
terms.  But

Il — I I (ZZIT[,;
' da? dy? dz*
is a homogeneous function of degree i—2, and therefore contains
44(z—1) terms, and the condition y2H; = 0 requires that each of
these must vanish. There are therefore § ¢ (¢ —1) equations between
the coeflicients of the %(z4+1)(¢+42) terms of the homogeneous
function, leaving 27+ 1 independent constants in the most general
form of ZI,.
But we have seen that F, has 2441 independent constants,
therefore the value of 17, is of the most general form.

Application of Solid Harmonics to the Theory of Llectrified Spheres.

134.] The function 7, satisfies the condition of vanishing at
infinity, but does not satisfy the condition of being everywhere
finite, for it becomes infinite at the origin.

The function [7; satisfies the condition of being finite and con-
tinuous at finite distances from the origin, but does not satisfy the
condition of vanishing at an infinite distance. '

Bul if we determine a closed surface from the equation

T/;Z ]Tis (4(‘))

and make I/, the potential function within the closed surface and
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135.] ELECTRIFIED SPHERICAL SURFACE. 167

7, the potential outside it, then by making the surface-density o
satisfy the characteristic equation

ai, s,

we shall have a distribution of potential which satisfies all the
conditions.

It is manifest that if /7, and 7] are derived from the same value
of 7, the surface 7; = ¥ will be a spherical surface, and the
surface-density will also be derived from the same value of F,.

Let a be the radius of the sphere, and let

Y,

H = 4rY,, F = Br‘.—:l ’ o= CY, (48)
Then at the surface of the sphere, where » = 4,
. B
Aab = —i
- a_amr_ .,
. ar — dr T T
. B .
or (z%—l)a—‘.r2 +ia*14 = 47 C;
whence we find #; and 7, in terms of C,
4w C 7 470 a'*?
=g aate h=gpyeate (49)

‘We have now obtained an electrified system in which the potential
is everywhere finite and continuous. This system consists of a
spherical surface of radius a, electrified so that the surface-density
is everywhere CT;, where C 1s some constaut density and V; i1s a
surface harmonic of degree i. The potential inside this sphere,
arising from this electrification, is everywhere Z7;, and the potential
outside the sphere is F,.

These values of the potential within and without the sphere
might have been obtuined in any given case by direct integration,
but the labour would have been great and the result applicable only
to the particular case.

135.] We shall next consider the action between a spherical
surface, rigidly eleetrified according to a spherical harmonic, and
an external electrified system which we shall call Z.

Let 7 be the potential at any point due to the system &, and
V, that due to the spherical surfuce whose surface-density is o.

IRIS - LILLIAD - Université Lille 1



168 SPHERICAL HARMONICS, [135.

Then, by Green’s theorem, the potential energy of E on the
electrified surface is equal to that of the electrified surface on %, or

/fVcr a8 = SV, dE, (50)

where the first integration is to be extended over every element 48
of the surface of the sphere, and the summation X is to be extended
to every part d F of which the electrified system £ is composed.

But the same potential function /, may be produced by means
of a combination of 2¢ electrified points in the manner already
described. Let us therefore find the potential energy of £ on
such a compound point.

If M is the charge of a single point of degree zero, then M/
is the potential energy of 7 on that point.

If there are two such points, a positive and a negative one, at
the positive and negative ends of a line 4,, then the potential energy
of £ on the double point will be
drv

. 1794
— ) - _ 1727 " 3 .
MY +MO(I7+ by i +34 (M12+&0_),

and when [/, increases and 4, diminishes indefinitely, but so that
Myh, = M,

the value of the potential energy will be for a point of the first degree

, av
M, /A
Similarly for a point of degree ¢ the potential energy with respect
to E will be div

1, dhy dhy ... dl;

This is the value of the potential energy of Z upon the singular
point of degree 7. That of the singular point on # is SV, dF, and,
by Green’s theorem, these are equal. Hence, by equation (50),

s
f VodS =M g0 i’

If ¢ = CY, where C is a constant quantity, then, by equations
(49) and (14), 4nC ait?

- v 51

M, = RS (51)

Hence, if 7 is any potential function whatever which satisfies

Laplace’s equation within the spherical surface of radius «, then the
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137] SURFACE-INTEGRAL OF THE PRODUCT OF HARMONICS. 169

integral of VY, dS, extended over every element .5 of the surfuce
of a sphere of radius «, is given by the equation

. 4w aite v Y
f PYdS =15 givr an, ... an,’ (52)

where the differentiations of 7 are taken with respect to the axes
of the harmonie ¥, and the value of the differential coefficient is
that at the centre of the sphere.

136.] Let us now suppose that 7 is a solid harmonic of positive

degree 7 of the form

r="rvr (53)

At the spherical surface, 7 = a, the value of 7 is the surface har-
monic ¥, and equation (52) becomes

4w @=it2 di(PY)
LY. = S 7 7 I o

where the value of the differential coefficient is that at the centre
of the sphere.

When ¢ is numerically different from 7, the surface-integral of
the product ¥; ¥, vauishes. For, when 7 is less than j, the result
of the differentiation in the second member of (54) 1s a homogeneous
funetion of z, , and 2, of degree j—i¢, the value of which at the
centre of the sphere is zero. 1f ¢ is equal to j the result is a constant,
the value of which will Le determined in the next article. If the
differentiation 1s carried further, the result is zero. Ilcnce the
surface-Integral vanishes when ¢ is greater than j.

137.] The most important case is that in which the harmonic
#71; is differentiated with respect to ¢ new axes in suceession, the
numerical value of j being the same as that of 7, but the directions
of the axes being in general different. The final result in this case
18 a constant quantity, each term being the product of 7 cosines of
angles between the different axes taken in pairs. The general
form of such a product may be written symbolically

28

[T T
which indicates that there are ¢ cosines of angles between pairs of
axes of the first system and ¢ between axes af the second system,
the remalning ¢—2¢ cosines being between axes one of which
belongs to the first and the other to the second system.

In each product the suffix of every one of the 24 axes occurs
once, and once only.
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170 SPHERICAL HARMONICS. [138.

The number of different products for a given value of s is

)2 -

= 223(‘ )211_23 (55)

The final result is easily obtained by the successive differen-
tiation of
12525

et el

1
ri¥; = Tj‘S{(—

Differentiating this ¢ times in succession with respect to the new
axes, so as to obtain any given combination of the axes in pairs,
we find that in differentiating #?* with respect {o s of the new axes,
which are to be eombined with other axes of the new system, we
introduce the numerical factor 2¢(2s—2)...2, or 2¢(s. In con-
tinuing the differentiation the p’s become converted into w’s, but
no numerieal factor is introduced. Hence

i 2025 s
ﬁli}ﬁl rY; = S{ (=1 5= Z.ST_‘__;Z(MUS“‘H‘ w2} (56)

Substituting this 1'esu1t in equation (54) we find for the value of
the surfacc-integral of the product of two surface harmonics of the
same degree, taken over the surface of a sphere of radius g,

4a? J2i—2s 8 i .
findeS: iy U W gmyiy Bl i )} (57)

This guantity differs from zero only when the two harmonics are
of the same degree, and even in this case, when the distribution of
the axes of the one system bears a certain relation to the distribution
of the axes of the other, this integral vanishes. In this case, the
two harmonics are said to be conjugate to each other.

On Conjugate Hormonics.

138.] 1If one harmonic is given, the condition that a second
harmonie of the same degree may be conjugate to it is expressed
by equating the right hand side of equation (57) to zero.

If a third harmonic i1s to be found conjugate to both of these
there will be two equations which must be satisfied by its 24
variables.

If we go on constructing new harmonics, each of which is con-
jugate to all the former harmonies, the variables will be continually
more and more restricted, till at last the (27 + 1)th harmonic will
have all its variables determined by the 2: equations, which must
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be satisfied in order that it may be conjugate to the 27 preceding
harmonics.

IHence a system of 2741 harmonies of degrce ¢ may be con-
structed, each of which is conjugate to all the rest. Any other
harmonic of the same degree may be expressed ag the sum of this
system of conjugate harmonics each multiplied by a coeflicient.

The system deseribed in Art. 132, consisting of 2741 har-
monics symmetrical about a single axis, of which the first is zonal,
the next 7—1 puairs tesseral, and the last pair sectorial, is a par-
ticular case of a system of 2741 harmonics, all of which are
conjugate to each other. Sir W. Thomson has shewn how to
express the conditions that 2741 perfectly general harmonics,
cach of which, however, is expressed as a linear function of the
274+ 1 harmonics of this symmetrical system, may be conjugate
to each other. These conditions consist of 7(2¢+4 1) linear equa-
tions eonnecting the (2441)% coefficients which enter into the
expressions of the general harmonics in terms of the symmetrical
harmonies.

Protessor Clifford has also shewn how to form a conjngate system
of 22+ 1 sectorial harmonics having different poles.

Both these results were communicated to the British Association
in 1871.

139.] If we take for ¥; the zonal harmonic @;, we obtain a
remarkable form of equation (57).

In this case all the axes of the second system coincide with each
other.

The cosines of the form p;; will assume the form A where A 1s the
cosine of the angle between the common axis of @; and an axis of
the first system.

The cosines of the form u;; will all become equal to unity.

The number of combinations of s symbols, each of which is
distinguished by two out of ¢ suflixes, no suffix being repeated, is

i

N= e (58)

and when each combination is equal to unity this number represents
the sum of the products of the cosines pj; or T (u; ).

The number of permutations of the remaining 1—2s symbols of
the second set of axes taken all together is [i~25. Hence

S (- 2) = |i=2s 5 Ni-2s, (59)
Equation (57) therefore becomes, when T is the zonal harmonie,
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a 2 21—2s )
[[rQus= (2;:?)11' S {17 grv oy SO0 TH0)

2
= :{% Yiiys (60)
where ¥;(; denotes the value of ¥; in equation (27) at the common
pole of all the axes of Q.

140.] This result is a very important one in the theory of
spherical harmonics, as it leads to the determination of the form
of a series of spherical harmonics, which expresses a function having
any arbitrarily assigned value at each point of a spherical surface.

For let # be the value of the function at any given point of the
sphere, say at the centre of gravity of the element of surface ¢S,
and let @, be the zonal harmonic of degree ¢ whose pole is the point
L on the sphere, then the surface-integral

f 7Q,d8

extended over the spherical surface will be a spherical harmonie
of degree 4, because it is the sum of a number of zonal harmonics
whose poles are the various elements d§, each being multiplied by
FdS. Henee, if we make

2241 . .
4y, =220 [[rquas, (61)
we may expand I in the form
F=A4,YV,4+ 4, Y, +&c.+ 4,7, (62)

or
r= " [[ro,as+ 3 [[PQuis+&e.+@itn) [[FQuas). ()

This is the celebrated formula of Laplace for the expansion in
a series of spherical harmonics of any quantity distributed over
the surface of a spherc. In making use of it we are supposed to
take a certain point P on the sphere as the pole of the zonal
harmonic @, and to find the surfuce-integral

[ FQ,dS8

over the whole surface of the sphere. The result of this operation
when multiplied by 2i4 1 gives the value of 4,¥, at the point P,
and by making P travel over the surface of the sphere the value of
A, ¥; at any other point may be found.

IRIS - LILLIAD - Université Lille 1



141.] SPHERICAL HARMONIC ANALYSIS. 173

But 4,7, is a general surface harmonic of degree ¢, and we wish
to break it up into the sum of a series of multiples of the 2741
conjugate harmonies of that degree.

Let P be one of these conjugate harmonies of a particular type,

and let B; £ be the part of 4,Y; belonging to this type.
We must first find
ﬂf:/fzgzgds, (64)

which may be done by means of equation (57), making the second
set of poles the same, each to each, as the first set.
We may then find the coeflicient B; from the equation

1 Y =4
Bi= 4 szz.{zs. (65)

For suppose F expanded in terms of spherical harmonies, and let
B;P be any term of this expaunsion. Then, if the degree of B is
different from that of 1}, or if, the degree being the same, £} is
conjugate to 7}, the result of the surface-integration is zero. Hence
the result of the surface-integration is to select the coeflicient of the
harmonic of the same type as £.

The most remarkable example of the actual development of a
function in a series of spherical harmonics is the calculation by
Gauss of the harmonies of the first four degrees in the expansion
of the magnetic potential of the earth, as deduced from observations
in various parts of the world.

He has determined the twenty-four coefficients of the three
conjugate harmonies of the first degree, the five of the second,
seven of the third, and nine of the fourth, all of the symmetrical
system. The method of calculation is given in his General Theory
of Terrestrial Muagnetism.

141.] When the harmonic £; belongs to the symmetrical system
we may determine the surface-integral of its square extended over
the sphere by the following method.

The value of 7 ¥ 7 is, by equations (34) and (36),
tee (€ +77) (¢ — Z--2fn 4 & );

2"Jl J(r

(t—0) (i;{r—l)
4(c+1)

7.1' K((Y) —

and by equations (33) and (54),

. 2
jf(K(U)> s = |l 2141 dz1 o (df"'_ dn® ) V).

Performing the differentiations, we find that the only terms
which do not disappear are those which contain 2:-". Hence
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Joepas- o=

2i+1 2% i |i

except when o = 0, in which case we have, by equation (60),

Jfaras= 372 (67)

These expressions give the value of the surface-integral of the

square of any surface harmonic of the symmetrical system.
‘We may deduce from this the value of the integral of the square

of the function §,(@), given in Art. 132,

2 2% i—a(jo)

2141 tta

~

[7 = (58)

This value is identical with that given by Thomson and Tait, and is
troe without exeeption for the case in which o = 0.

142.] The spherical harmonics which I have deseribed are those
of integral degrees. To enter on the consideration of harmonics
of fractional, irrational, or impossible degrees is beyond my purpose,
which is to give as clear an idea as I can of what these harmonics
are. 1 have done so by referring the harmonic, not to a system
of polar coordinates of latitude and longitude, or to Cartesian
coordinates, but to a number of points on the sphere, which 1
have called the Poles of the harmonic. Whatever be the type
of a harmonie of the degree %, 1t 1s alwuys muathematically possible
to find 4 points on the sphere which are its poles. The actual
calculation of the position of these poles would in general involve
the solution of a system of 24 equations of the degree 4. The
conception of the gencral harmonie, with its poles placed in any
manner on the sphere, is useful rather in fixing our ideas than in
making calculations. For the latter purpose 1t is more convenient
to consider the harmonic as the sum of 2741 conjugate harmonics
of selected types, and the ordinary symmetrical system, in which
polar coordinates are used, is the most convenient. In this system
the first type is the zonal harmonic @, in which all the axes
coincide with the axis of polar coordinates. The second type is
that in which 2—1 of the poles of the harmonie coincide at the pole
of the sphere, and the remaining one is on the equator at the origin
of longitude. In the third type the remaining pole is at 90° of
longitude.

In the same way the type in which ¢{—o poles coincide at the
pole of the sphere, and the remaining ¢ are placed with their axes

IRIS - LILLIAD - Université Lille 1



143.] FIGURES OF SPHERICAL HARMONICS. 175

at equal intervals : round the equator, is the type 20, if one of the

poles is at the origin of Jongitude, or the type 2o +1 if it is at

longitude L.
20

143.1 It appears from equation (60) that it is always possible
to express a harmonic as the sum of a system of zonal harmonics
of the same degree, having their poles distributed over the surface
of the sphere.  The simplification of this system, however, does not
appear easy. I have however, for the sake of exhibiting to the
eye some of the features of spherical harmonics, calculated the zonal
harmonijes of the third and fourth degrees, and drawn, by the
method already deseribed for the addition of functions, the equi-
potential lines on the sphere for harmonies which are the sums of
two zonal harmonics. See Figures VI to IX at the end of this
volume.

Fig. VI represents the sum of two zonal harmonics of the third
degree whose axes are inclined 120° in the plane of the paper, and
the sum is the harmonie of the second type in which ¢ = 1, the axis
being perpendicular to the paper.

In Fig. VII the harmonic is also of the third degree, but the
axes of the zonal harmonics of which 1t is the sum are inclined
90°, and the result is not of any type of the symmetrical system.
One of the nodal lines is a great circle, but the other two which are
intersected by it are not circles.

Fig. VIII represents the difference of two zonal harmonies of
_the fourth degree whose axes are at right angles. The result is a
tesseral harmonic for which 2 = 4, ¢ = 2.

Fig. IX represents the sum of the same zonal harmonics.” The
result gives some mnotion of one type of the more general har-
monic of the fourth degree. In this type the nodal line on the
sphere consists of six ovals not intersecting cach other. Within
these ovals the harmonie is positive, and in the sextuply connected
part of the spherical surface which lies outside the ovals, the har-
monic 1s negative.

All these figures are orthogonal projections of the spherical
surface.

T huve also drawn in Fig. V a plane section through the axis
of a sphere, to shew the equipotential surfaces and lines of force
due to a spherical surface electrified according to the values of a
spherical harmonic of the first degree.
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Within the sphere the equipotential surfaces are equidistant
planes, and the lines of force are straight lines parallel to the axis,
their distances from the axis being as the square roots of the
natural numbers. The lines outside the sphere may be taken as a
representation of those which would be due to the earth’s magnetism
if it were distributed according to the most simple type.

144.7] Tt appears from equation (52), by making ¢ = 0, that if
¥ salisfles Laplace’s equation throughout the space occupied by a
sphere of radius &, then the integral

/‘fT'(ZS =Azma?F,, (69)

where the integral is taken over the surface of the sphere, 4§ being
an element of that surface, and /| is the value of 7™ at the centre
of the sphere. This theorem may be thus expressed.

The value of the potential at the centre of a sphere is the mean
value of the potential for all points of 1ts surface, provided the
potential be due to an electrified system, no part of which is within
the sphere.

It follows from this that if 7~ satisfies Laplace’s equation through-
out a certain continuous region of space, and if, throughout a
finite portion, however small, of that space, /" is constant, it will
be constant throughout the whole continuous region.

If not, let the space throughout which the potential has a
constant value € be separated by a surface § from the rest of
the region in which its values differ from C, then it will always
be possible to find a finite portion of space touching § and out-
side of 1t in which 7 is either everywhere greater or everywhere
less than C.

Now deseribe a sphere with its centre within §, and with part
of 1ts surface outside 8, but in a region throughout which the value
of 7 is everywhere greater or everywhere less than C.

Then the mean valuc of the potential over the surface of the
sphere will be greater thun its value at the centre in the first case
and less in the second, and therefore Laplace’s equation cannot
be satisfied thronghout the space occupied by the sphere, contrary
to our hypothesis. It follows from this that if 7=C throughout
any portion of a connected region, /= C throughout the whole
of the region which ean be reached in any way by a body oi
fintte size without passing through electrified matter. (We sup-
pose the body to be of finite size because a region in which ¥ is
constant may be scparated from another region in which it is
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variable by an electrified surface, certain points or lines of which
are not electrified, so that a mere point might pass out of the
region through one of these points or lines without passing
through electrified matter.) This remarkable theorem is due to
Gauss. See Thomson and Tait’s Natural Philosophy, § 497.

It may be shewn in the same way that if throughout any finite
portion of space the potential has a value which can be expressed
by a continuous mathematical formula satisfying Laplace’s equation,
the potential will be expressed by the same formula throughout
every part of space which can be reached without passing through
electrified matter.

For if in any part of this space the value of the function is 77,
different from #, that given by the mathematical formula, then,
since both 7 and ¥ satisfy Laplace’s equation, U = 7'— ¥ does.
But within a finite portion of the space U = 0, therefore by what
we have proved U/ = 0 throughout the whole space, or 7'=/.

145.] Let 7; be a spherical harmonie of ¢ degrees and of any
type. Let any line be taken as the axis of the sphere, and let the
harmonic be turned into # positions round the axis, the angular

. . . . 27
distance between consecutive positions being — -
%

If we take the sum of the # harmonics thus formed the result
will be a harmonic of ¢ degrees, which is a function of 6 and of the
sines and cosines of 7 ¢.

If # is less than ¢ the result will be compounded of harmonies for
which ¢ is zero or a multiple of % less than ¢, but if » is greater
than 4 the result 1s a zonal harmonie. Hence the following theorem :

Let any point be taken on the general harmonic Y, and let a
small circle be deseribed with this point for centre and radius 6,
and let # points be taken at equal distances round this eirele, then
if @, is the value of the zonal harmonic for an angle 6, and if ¥ is
the value of ¥, at the centre of the circle, then the mean of the
n values of ¥; round the circle is equal to @, ¥/ provided # is greater
than 2.

If » is greater than Z4s, and if the valuc of the harmonic at
cach point of the circle be multiplied by sins¢ or coss¢ where
s is less than 4, and the arithmetical mean of these products be
4,, then if §7 is the value of &) for the angle 0, the coefficient
of sin 8¢ or cos s¢ in the expansion of ¥, will be

@
24, 5?

YOL. 1. N
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In this way we may analyse Y; into its component conjugate
harmonies by means of a finite number of ascertained values at

selected points on the sphere.

Application of Spherical Harmonic Analysis to the Determinalion
of the Distribution of Electricity on Spherical and nearly Spherical
Conductors under the Action of known External Electrical Forces.

146.] We shall suppose that every part of the electrified system
which acts on the conductor is at a greater distance from the
centre of the conductor than the most distant part of the conductor
itself, or, if the conductor is spherical, than the radius of the
sphere.

Then the potential of the external system, at points within this
distance, may be expanded in a series of solid harmonies of positive

degree V=Ady+d r ¥, + &c+ 4, Y, 7. (70)

The potential due to the conductor at points outside it may be
expanded in a scries of solid harmonics of the same type, but of
negative degree

U= B2 4802 + &4 By,
Va r

i (71)
At the surface of the conductor the potential is constant and
equal, say, to €. Let us first suppose the conductor spherical and
of radius . Then putting r = @, we have U+ V=0, or, equating
the coefficients of the different degrees,
By =a(0C—4),
B, =—a34d, (72)
B :_421;1/1__
The total charge of electricity on the conductor is 5.
The surface-density at any point of the sphere may be found
from the equation
vwe AU
T T dr
By . . i
= J—3ad r ¥V —&e.—(2i4+ 1)a¥t14, Y,. (73)

P
Distribution of Electricity on a nearly Spherical Conductor.
Let the equation of the surface of the conductor be

r = a(l4F), (74)
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where # 1s a function of the direction of », and is a numerical
quantity the square of which may be neglected.

Let the potential due to the external electrified system be ex-
pressed, as before, in a series of solid harmonics of positive degree,
and let the potential U/ be a series of solid harmonics of negative
degree. Then the potential at the surface of the conductor is
obtained by substituting the value of # from equation (74) in these
series.

Hence, if € is the value of the potential of the conductor and
B, the charge upon it,

C=Ady+4,aY, +..+4,4Y,
+4,aFY, ... +id,a" FY,
+J>’o% +5’1% Vit .+ Bia 6O+ .+ Bja 7+ Y,
—BoéF—zBlaleYl-y...—(ijL 1) B,a6+0 FY, 4.
o=+ 1) Ba UV FY, (75)

Since # is very small compared with unity, we have first a set

of equations of the form (72), with the additional equation

0 =—B0£F+3AlaFY1+&c.+(i+ 1) 4, & FY,
+2(B;aUtDY )2 ((j41) B;a~UTO FY). (76)
To solve this equation we must expand ¥, £7; ... FY, in terms of
spherical harmonies. If # can be expanded in terms of spherical
harmonics of degrees lower than %, then FT; can be expanded in

spherical harmonies of degrees lower than ¢ + 4.
Let therefore ’

ByL F—34aFY,—. . —(2i+1) diaFY,=3 (B,a-0*1 T, (77)

then the coeflicients B; will each of them be small compared with
the coeflicients B, ... B, on account of the smallness of #, and
therefore the last term of equation (76), consisting of terms in B, 7,
may be neglected.

Hence the cocfficients of the form B, may be found by expanding
equation (76) in spherical harmonics.

For example, let the body have a charge B, and be acted on by
no external force.

Let F be expanded in a series of the form

F— 8 Vy+&e.+8,.F,. (78)
Then B, 8, + &e.+ By ) Sy = 2 (Ba-t0 ), (79)
N 2
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or the potential at any point outside the body 1s

U:é]ﬁo(;+§SlY1+...+5;;S,‘Yk); (80)
and if ¢ is the surface-density at any point
4T = — ig:
dr
or dmac = By(1+8F,+...+ (£—1)85,Y,). (81)

Hence, if the surface differs from that of a sphere by a thin
stratum whose depth varies according to the values of a spherical
harmonic of degree £, the ratio of the difference of the superficial
densitics abt any two points to their sum will be £—1 times the
ratio of the difference of the radii of the same two points to their
sum.
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CHAPTER X.

CONFOCAL QUADRIC SCRFACES .

147.] Let the general equation of a confocal system be

22 72 22
Mgt _pty_a= 1 M

where A 1s a variable parameter, which we shall distinguish by the
suffix A; for the hyperboloids of two sheets, A, for the hyperboloids
of one sheet, and A, for the ellipsoids. The quantities
a, Ay 0, Ay, €5 Ay

are in ascending order of magnitude. The quantity & is introduced
for the sake of symmetry, but in our results we shall always suppose
=0,

If we consider the three surfaces whose parameters are A;, A, A,
we find, by climination between their equations, that the value of
x? at their point of intersection satisfies the equation

2 (0P —a?) (P —a?) = (NP —at) 02 —a?) O —a?). ()
The values of %% and 22 may be found by transposing e, 4, ¢
symmetrically.
Differentiating this equation with respect to A;, we find
dz A (3)

7V VO e
If ds, 1s the length of the intercept of the curve of intersection of
A, and A, cut off between the surfaces A, and A;+dA,, then

doy )P _de P Ay [P P A AR (AP )
) Tan) T T oy T ar—aag—ihag—ey

* This investigation is chiefly borrowed from a very interesting work,—Legons sur
les Fonctions Inverses des Transcendantes et les Surfaces Isothermes. Par G. Lamé.
Paris, 1857.
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The denominator of this fraction is the product of the squares of
the semi-axes of the surface A,.
If we put
D2 =A2—A2 D2 =A'—\?% and D2 =M\2—\2, (5)
and if we make @ = 0, then
ds; D, D,
Ay DIVE S 2

It is easy to see that J, and D, are the semi-axes of the central
section of A; which is conjugate to the diameter passing through
the given point, and that 7, is parallel to ds,, and 2, to ds,.

If we also substitute for the three parameters Ay, Ay, A, their
values in terms of three functions a, 8, y, defined by the equations

(6)

da ¢

—_——— A, =0 when a =0,

dry T B AN Az !

a8 _ e

did . = & when 8 = 0, 7
= «/—b‘»\/cz }\2 A, = b when 3 (M)
(7)/ e

Ay =¢ when y = 0;

ANy VAE A g —
then ds, = ;])2 D,da, ds,— ;Dg DB, ds,= %Dl Dydy.  (8)

148.] Now let 7 be the potential at any point a, 8, y, then the
resultant force in the direction of ds; 1s

oAV _ _dVda_ AV ¢ (0
Y7 ds, T dadsy, da Dy Dy ")

Since ds;, ds,, and ds, are at right angles to each other, the
surface-integral over the element of area ds, ds, is

av e DD DD
%D e

dVJ)1

Now consider the element of volume intercepted between the
surfaces a, 3, 7, and a+da, B8+d38, y+dy. There will be eight
such elements, one in each octant of space. ’

We have found the surface-integral for the element of surface
intercepted from the surface a by the surfaces 8 and B+ 28, y and
y+dy.

By ds,ds, = 2.dpdy
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149.]  TRANSFORMATION OF POISSON’S EQUATION. 183

The surface-integral for the corresponding element of the surface

a+da will be
av D* d? V])

dBdy + 7 —L.dadpdy
da

since D is independent of a. The surfa(:e-lntegral for the two
opposite faces of the element of volume, taken with respect to the
interior of that volume, will be the difference of these quantities, or

a2V D®

da?

Similarly the surface-integrals for the other two pairs of forces

will be

1 dadB dy.

42V D,? d*V Dy
78 2 dadBdy and 77 — dadpdy.

These six faces enclose an clement whose volume 1s

ds, ds,ds, = DD ]) "Dy dadBdy,
and if p is the volume-densmy within that element, we find by
Art. 77 that the total surfuce-integral of the element, together with
the quantity of electricity within it, multiplied by 4= is zero, or,
dividing by dadp dy,
2 DEfED..

ARl R NRREIL . cOP N
which is the form of Pmssons extension of Laplace’s equation re-
ferred to ellipsoidal coordinates.

If p = 0 the fourth term vanishes, and the equation is equivalent
to that of Laplace.

For the general discussion of this equation the reader is referred
to the work of Lamé already mentioned.

149.] To determine thg quantities a, 8, y, we may put them in
the form of ordinary elliptic functions by introducing the auxiliary
angles 6, ¢, and , where

A = dsin 6, (12)

A, =/ c?sin? G+ 6% cos? ¢, (13)
¢

= - ) 14

3 sin (1)

If we put & = Zc, and A2+ 4% = 1, we may call £ and £ the two
complementary moduli of the confocal system, and we find

o a0
= TR = = 2 15
* ( 1~k sin? 0 (1%)
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an elliptic integral of the first kind, which we may write according
to the usnal notation F{%£6).
In the same way we find

[¢
where /7% is the complete function for modulus #,

4 _l/[; M1—sin?y Pty ()

Ilere a is represented as a function of the angle 6, which is a
function of the parameter A;, B as a function of ¢ and thence of A,
and y as a function of ¢ and thence of A;.

But these angles and parameters may be considered as functions
of a, B, v. 'The properties of such inverse functions, and of those
connected with them, are explained in the treatise of M. Lamé on
that subject.

1t is easy to see that since the parameters are periodic functions
of the auxiliary angles, they will be periodic functions of the
quantities a, B, y: the periods of A; and A are 4 #(£) and that of A,
is 2 F(£").

—-——_F Y—F (& 16
e = W FE), (16)

Particular Solutions.

150.]1 If 7 is a linear function of a, 3, or y, the equation is
satisfied. Hence we may deduce from the equation the distribution
of electricity on any two confocal surfaces of the same family
maintained at given potentials, and the potential at any point
between them.

The Hyperbolods of Two Sheels.

When o is constant the corresponding surface is a hyperboloid
of two sheets. Let us make the sign of a the same as that of # in
the sheet under consideration. 'We shall thus be able to study one
of these sheets at a time.

Let a;, o, be the values of a corresponding to two single sheets,
whether of different hyperboloids or of the same one, and let 7}, 7,
be the potentials at which they are maintuined. Then, if we make
aleﬁanl'*‘a(Vl_yz)’ (18)

a1y
the conditions will be satisfied at the two surfaces and throughout
the space between them. If we make # constant and equal to 7
in the space beyond the surface a;, and constant and equal to 7,

V =
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in the space beyond the surface a,, we shall have obtained the
complete solution of this particular case.
The resultant force at any point of either sheet is

av av da
__er_ _erda, 19
== = " da iy, (19)
Vi—7v, ¢
_ 20
R T =r (20)

If p, be the perpendicular from the eentre on the tangent plane
at any point, and P the product of the semi-axes of the surface,
then p, D, D, = P,.

Hence we find ri—7¥%, ep

By =" 1,
a—ay, £y

or the force at any point of the surface is proportional to the per-

(21)

pendicular from the centre on the tangent plane.
The surface-density o may be found from the equation

47T0':R1. (22)

The total quantity of electricity on a segment cut off by a plane
whose equation is # = @ from one sheet of the hyperboloid is

e Vi—V,
= I 23
e=j itz ). (23)
The quantity on the whole infinite sheet is therefore infinite.

The limiting forms of the surface are :—

(1) When a = F;y the surface is the part of the plane of 2z on
the positive side of the positive branch of the hyperbola whose
equation 18 22 22

ji— =1 (24)
(2) When a = 0 the surface is the plane of y2.
(3) When a = —F;y the surface is the part of the plane of zz on

the negative side of the negative branch of the same hyperbola.

The Hyperboloids of One Sheet.

By making 8 constant we obtain the equation of the hyperboloid
of one sheet. The two surfaces which form the boundaries of the
clectric field must therefore belong to two different hyperboloids.
The investigalion will in other respects be the same as for the
hyperboloids of two sheets, and when the difference of potentials
is given the density at any point of the surface will be proportional
to the perpendicular from the centre on the tangent plane, and the
whole quantity on the infinite sheet will be infinite.
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Limiting Forms.

(1) When 8 = 0 the surface is the part of the plane of 2z
between the two branches of the hyperbola whose equation is
written above, (24).

(2) When 8 = F(#) the surface is the part of the plane of azy
which is on the outside of the focal ellipse whose equation is

22 7*
a2t E_gE= 1. (2)

Tre Ellipsoids.
For any given ellipsoid y is constaut. If two ellipsoids, y, and y,,

be maintained at potentials 7 and #,, then, for any point y in the
space between them, we have

V:71V2_72VI+V(V1_V2)_ (26)

N7

The surface-density at any point 1s
: o =—LH2, ffi‘d, (27)

dm y—ys s
where p, is the perpendicular from the centre on the tangent plane,
and P; is the product of the semi-axes.
The whole charge of electricity on either surface is
Vi—V,
szcél—z =—Q, (28)

. i Y172
a finite quantity.

When y = F(%) the surface of the ellipsoid is at an infinite
distance in all directions.

If we make 7, = 0 and y, = F(%), we find for the quantity of
electricity on an ellipsoid maintained at potential 7 in an infinitely
extended field, Q=c —~Z~ _ (29)

Flk)—y

The limiting form of the ellipsoids oeccurs when y = 0, in which
case the surface is the part of the plane of zy within the focal
ellipse, whose equation is written above, (25).

The surface-density on the elliptic plate whose equation is (25), and
whose cccentricity is £, is

14 1 1
T A FE /\/ " PE (30)
1 ="
c? 4t
and 1ts charge is vV
Q — c]’Tk). (31)

IRIS - LILLIAD - Université Lille 1



151.] SURFACES OF REVOLUTION. 187

Particutar Cases.

151.] If % is diminished till it becomes ultimately zero, the
system of surfaces becomes transformed in the following manner :—

The real axis and one of the imaginary axes of each of the
hyperboloids of two sheets are indefinitely diminished, and the
surface ultimately coincides with two planes intersecting in the
axis of z.

The quantity o becomes identical with 8, and the equation of the
system of meridional planes to which the first system is reduced is

‘Z.Z y2 .
e feosar 2

The quantity 8 is reduced to

de ¢ .
— —_—— = é — 33
A fsin @ log tan 2 (33)
whence we find ) .
2 er—e
1 [ p— — = 34
sin ¢ = Pl P cos ¢ F e P (34)

If we call the exponential quantity 4 (¢f+¢#) the hyperbolie
cosine of B, or more concisely the hypocosine of 8, or cos 4 3, and if
we call } (¢B—¢—F) the hyposine of 8, or sin/ 3, and if by the same
analogy we call

1 the hyposecant of B, or sec % 3,

cos/

. 1 the hypocosecant of 3, or cosec Z 3,
s/
sin "B the hypotangent of 8, or tan 4 3,
cos 4 i

and M the hypocotangent of 8, or cot £ 3 ;

sin 4
then A, = csec % 3, and the equation of the system of hyperboloids
of one sheet is

(scc AB): (tankhB)2 —
The quantity y is reduced to v, so that A, = ccosecy, and the
equation of the system of ellipsoids is

z.2 + y‘d ZZ 2
gy 2 e 36
(secy)2 " (tany? ~ ° (36)

z? 4 y* 22 o (35)

Ellipsoids of this kind, which are figures of revolution about their
eonjugate axes, are called Planetary ellipsoids.
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The quantity of electricity on a planetary ellipsoid maintained at
potential » in an infinite field, is

Q=c
ki
37

7

) (37)

where ¢ sec y 1s the equatorial radius, and ¢ tan y is the polar radius.
If y = 0, the figure is a circular disk of radius ¢, and

7

G = ———5———— (38)
m2 W/ % — 72

vV
= C— 39
Q=c - (39)

2

152.] Second Case. Let b = ¢, then 2 =1 and ¥ = 0,

a = log tan .,-,-_25, whence A, = ctanta, (40)

and the equation of the hyperboloids of revolution of two sheets
becomes wf‘# _ifi-:cz (41)
(tanka)?  (secha)? )

The quantity 8 becomes reduced to ¢, and each of the hyper-

boloids of one sheet is reduced to a pair of planes intersecting in
the axis of # whose equation is

P& 22 —
(sinB)2 " (cos B)2

This is a system of meridional planes in which B is the longitude.

(42)

TmT—2

The quantity y becomes log tan 2 \lf—, whence A, = c cot £ y,

and the equation of the family of ellipsoids 1s

22 P4t
(cot &y * (cosec hy)?
These ellipsoids, in which the transverse axis is the axis of revo-
lution, are called Ovary ellipsoids.
The quantity of electricity on an ovary ellipsocid maintained at a

potential ¥ in an infinite field is

(13)

Q = L. (44)
Y
If the polar radius is 4 = ccot 2y, and the equatorial radius is
B = ccosechy,

A A= D

y:lob —-——2]}*'*4' (45)
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If the eqnatorial radius is very small compared to the polar radius,
as in a wire with rounded ends,
AV

A 46
log 4—log B (46)

y:log—‘;: and @ =

When both 4 and ¢ become zero, their ratio remaining finite,
the system of surfaces becomes two systems of confocal cones, and
a system of spherical surfaces of which the radius is inversely
proportional to y.

If the ratio of & to ¢ is zero or unity, the system of surfaces
becomes one system of meridian planes, one system of right cones
having a common axis, and a system of concentric spherical surfaces
of which the radius is inversely proportional to y. This is the
ordinary system of spherical polar coordinates.

Cylindric Surfuces.

153.] When cis infinite the surfaces are cylindrie, the generating
lincs being parallel to 2. One system of cylinders is elliptic, with
the equation

z2 y?
z + 7 —
(cosba) (sinZ a)

02, (17)

The other is hyperbolic, with the equation
22 72

(cosB)? ~ (smp)?

This system is represented in Fig. X, at the end of this volume.

62, (48)

Confocal Paraboloids.

154.] If in the general equations we transfer the origin of co-
ordinates to a point on the axis of z distant ¢ from the centre of
the system, and if we substitute for @, A, 6, and ¢, ¢4, £+ A, 46,
and ¢+ c¢ respectively, and then make ¢ increase indefinitely, we
obtain, in the limit, the equation of a system of paraboloids whose
foci are at the points # = 2 and @ = ¢,

y a
P e

’ —o0. (49)

4 (x—A)+

If the variable parameter is A for the first system of clliptic
paraboloids, u for the hyperbolic paraboloids, and » for the second
system of elliptic paraboloids, we have A, 4, g, ¢, v in ascending
order of magnitude, and
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z=Atptr—c—9, )
=N (=) p=b)
¥ = YDy ] (50)
R G VI G DI ClO N
A )
A=3(@+c)~—4(c—b)cosiha,
b=+ —}(—beoss, (51)
v=3 (@ te)+h(c—b)coshy; )
z=%(b+c)+ % (c—8)(cosky—cos B—cos 4 a),
y =2 (c—0b) sin/zg singcosﬁg; { (52)

z = 2(c—6)eos/¢%cos§sink§-

When b = ¢ we have the case of paraboloids of revolution about

the axis of #, and & = a(e2*—etv),
¥ = 2ac*tY cos 3, ) (53)
2 = 2ae*Trsin 8.

The surfaces for which A is constant are planes through the axis,
B3 being the angle which such a plane makes with a fixed plane
through the axis.

The surfaces for which a is constant are confocal paraboloids.
‘When a=0 the paraboloid is reduced to a straight line terminating
at the origin.

We may also find the values of a, 8, y in terms of 7, 6, and ¢,
the spherical polar coordinates referred to the focus as origin, and
the axis of the purabolus as axis of the sphere,

a = log (r¥ cos 1 0),
B = ¢ (54)
y = log (#* sin } 6).

‘We may compare the case in which the potential is equal to g,
with the zonal solid harmonic #; @;. Both satisfy Laplace’s equa-
tion, and are homogeneous functions of =z, », 2z, but in the case
derived from the paraboloid there is a discontinuity at the axis, and
¢ has a value not differing by any finite quantity from zero.

The surface-density on an electrified paraboloid in an infinite
field (including the case of a straight line infinite in one direction)
is inversely as the distance from the focus, or, in the case of
the line, from the extremity of the line.
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CHAPTER XL

THEORY OF ELECTRIC IMAGES AND ELECTRIC INVERSION.

155.] We have already shewn that when a conducting sphere
is under the influence of a known distribution of electricity, the
distribution of electricity on the surface of the sphere can be
determined by the method of spherical harmonies.

For this purpose we require to expand the potential of the in-
fluencing system in a series of solid harmonies of positive degree,
having the centre of the sphere as origin, and we then find a
corresponding series of solid harmonies of negative degree, which
express the potential due to the electrification of the sphere.

By the use of this very powerful method of analysis, Poisson
determined the electrification of a sphere under the influence of
a given electrical system, and he also solved the more diffieult
problem to determine the distribution of electricity on two con-
ducting spheres in presence of each other. These investigations
have been pursued at great length by Plana and others, who have
confirmed the accuracy of Poisson.

In applying this method to the most elementary case of a sphere
under the influence of a single electrified point, we require to expand
the potential due to the electritied point in a series of solid bar-
monics, and to determine a second series of solid harmonics which
express the potential, due to the electrification of the sphere, in the
space outside.

It does not appear that any of these mathematicians observed
that this second series expresses the potential due to an imaginary
electrified point, which has no physical existence as an electrified
point, but which may be called an electrical image, because the
action of the surface on external points is the same as that which
would be produced by the imaginary electrified point if the spherical
surface were removed.
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This discovery scems to have been reserved for Sir W. Thomson,
who has developed it into a method of great power for the solution
of electrical problems, and at the same time capable of being pre-
sented in an elementary geometrical form.

His original investigations, which are contained in the Cambridge
and Dublin Mathematical Journal, 1848, are expressed in terms of
the ordinary theory of attraction at a distance, and make no use of
the method of potentials and of the general theorems of Chapter IV,
though they were probably discovered by these methods. Instead,
however, of following the method of the author, I shall make free
use of the idea of the potential and of equipotential surfaces, when-
ever the investigation can be rendered more intelligible by such
means.

Theory of Electric Images.

156.] Let 4 and B, Figure 7, represent two points in a uniform
dielectric medium of infinite extent.
Let the charges of 4 and B be ¢
and e, respectively. Let £ be any
point in spuace whose distances from
A and B are r; and 7, respectively.
Then the value of the potential at P
will be

4 €.
V=1 -2, 1
7_14-72 (1)

The equipotential surfaces due to
this distribution of electricity are represented in Fig. T (at the end
of this volume) when ¢, and ¢, are of the same sign, and in Fig. 1T
when they are of opposite signs. We have now to consider that
surface for which # = 0, which is the only spherical surface in
the system. When ¢, and e, are of the same sign, this surface is
entirely at an infinite distance, but when they are of opposite signs
there is a plane or spherical surface at a finite distance for which
the potential is zero.

The equation of this surface is
SO RS (2)
8] 72
Its centre is at a point € in A8 produced, such that
AC: BC:: ¢ : e?,
and the radius of the sphere 1s

Fig. 7.

€, €
AB_ %

62—e,
The two points 4 and B are inverse points with respect to this

5"
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sphere, that is to say, they lie 1n the same radius, and the radius is
a mean proportional between their distances from the centre.

Since this spherical surface 1s at potential zero, if we suppose
it constructed of thin metal and connected with the earth, there
will be no alteration of the potential at any point either outside or
inside, but the electrical action everywhere will remain that due to
the two eleetrified points 4 and B.

If we now Leep the metallic shell in connexion with the earth
and remove the point B, the potential within the sphere will become
everywhere zero, but outside 1t will remain the same us before.
For the surface of the sphere still remains at the same potential,
and no change has been made in the exterior electrification.

Hence, 1f an electrified point 4 be placed outside a spherical
conductor which is at potential zero, the electrical action at all
points outside the sphere will be that due to the point 4 together
with another point B within the sphere, which we may call the
electrical image of 4.

In the same way we may shew that if B 1s a point placed inside
the spherical shell, the electrical action within the sphere is that
due to B, together with its image 4.

157.] Definition of an Electrical Image. An electrical image is
an electrified point or systemn of points on one side of a surface
which would produce on the other side of that surface the same
electrical action which the actual electrification of that surface
really does produce.

In Optics a point or system of points on one side of a mirror
or lens which if it existed would emit the system of rays which
actually exists on the other side of the mirror or lens, is called a
virtual image.

Electrical images correspond to virtual images in optics in being
related to the space on the other side of the surface. 'They do not
correspond to them in actual position, or in the merely approximate
character of optical foei.

There are no real electrical mages, thal is, imaginary electrified
points which would produce, in the region on the same side of the
electrified surface, an effect equivalent to that of the clectrified surface.

For if the potential in any region of space is equal to that due
to a certain electrification in the same region it must be actually
produced by that electrification. In faet, the electrification at any
point may be found from the potential near that point by the
application of Poisson’s equation.

VOL. 1. 0
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Let @ be the radius of the sphere.
Let /" be the distance of the electrified point A4 from the centre C.
Let ¢ be the charge of this point.
Then the image of the point is at B, on the same radius of the

2
sphere at a distance a7 , and the charge of the image is —e % .

‘We have shewn that this image
will produce the same effect on the
opposite side of the surface as the
7 n e actual electrification of the surface

T 5 D does. We shall next determine the
surface-density of this electrifica-
tion at any point P of the spherical
surface, and for this purpose we shall
make use of the theorem of Coulomb,
Art. 80, that if 2 is the resultant force at the surface of a conductor,
and o the superficial density,

R =47o,
& being measured away from the surface.
We muay cousider £ as the resultant of two forces, a repulsion

o

Fig. 7.

€ .
iz acting along 42, and an attraction e/ W acting along PB.

Resolving these forces in the directions of 4C and CP, we find
that the components of the repulsion are
Aﬁ‘ along AC, and a.long cr.
Those of the attraction are

BC along 4C, and — along CP.

a2 1
f BPd f BpP

g
Now BP = 7/11) and 5C = 7o so that the components of

the attraction may be written
—efj%5 along AC, and —e'/%z 17 along CP.

The components of the attraction and the repulsion in the
direction of 4C are equal and opposite, and therefore the resultant
force is entirely in the direction of the radins CP. This only
confirms what we have already proved, that the sphere is an equi-
potential surface, and therefore a surface to which the resultant
force is everywhere perpendicular.
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The resultant force measured along CP, the normal to the surface
in the direction towards the side on which A 1s placed, 1s
—a 1

. 3
a AP )

If 4 is taken inside the sphere /' is less than 2, and we must
measure /& inwards. Yor this case therefore

"2
R=—e‘/ -

2__ f£2 1
R= _g“_&f_ o (4)
In all cases we may write
AD. 4d 1
B=—e=(p= 53 %)

where 40D, Ad are the segments of any line through 4 cutting the
sphere, and their product is to be taken positive in all cases.

158.] Irom this it follows, by Coulomb’s theorem, Art. 80,
that the surface-density at P is
_eAl).AdL. ©)

4m.CP 4P3
The density of the electricity at any point of the sphere varies
inversely as the cube of its distance from the point A.

The effect of this superficial distribution, together with that of
the point 4, is to produce on the same side of the surface as the
point 4 a potential equivalent to that due to e at 4, and its image
a
S
everywhere zero. Hence the effect of the superficial distribution
by itself is to produce a potential on the side of 4 equivalent to

g =

— e~ at B, and on the other side of the surface the potential is

that due to the image —e} at B, and on the opposite side a

potential equal and opposite to that of e at 4.

The whole charge on the surface of the sphere is evidently —eZ
since it is equivalent to the image at B.

We have therefore arrived at the following theorems on the
action of a distribution of electricity on a spherical surface, the
surface-density being inversely as the cube of the distance from
a point 4 either without or within the sphere.

Let the density be given by the equation

c
g = ﬁsv (7)
where (' is some constant quantity, then by equation (6)
C=—c¢ AD. dd . (8)
47
02
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The action of this superficial distribution on any point separated
from A4 by the surface is equal to that of a quantity of electricity
—e, or 47alC

AD . 44
concentrated at 4.

Tts action on any point on the same side of the surface with 4 is

equal to that of a quantity of electricity

Anta?
J4D.4d

concentrated at A the image of 4.

The whole quantity of eleetricity on the sphere is equal to the
first of these quantities if 4 is within the sphere, and to the second
if 4 is without the sphere.

These propositions were established by Sir W. Thomson in his
original geometrical investigations with reference to the distribution
of elcctricity on spherical conductors, to which the student ought
to refer,

159.7 If a system in which the distribution of electricity is
known is placed in the neighbourhood of a conducting sphere of
radius ¢, which is maintained at potential zero by connexion with
the earth, then the electrifications due to the several parts of the
system will be superpoeed.

Let 4,, 4,, &e. be the electrified points of the system, £}, /,, &ec.
their distances from the centre of the sphere, ¢, ¢,, &c. their
charges, then the images B), 5,, &e. of these points will be in the
a? a?

B &e.

fi' /e

same radil as the points themselves, and at distances

from the centre of the sphere, and their charges will be

a a
e 7 € 7 &e.

The potential on the outside of the sphere due to the superficial
electrification will be the same as that which would be produced by
the system of images B,, B,, &c. This system is therefore called
the electrical image of the system 4,, 4,, &e.

If the sphere instead of being at potential zero is at potential 7,
we must superpose a distribution of electricity on its outer surface
having the uniform surface-density

v
= /m—a .
The effect of this at all points outside the sphere will be equal to

-
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that of a quantity Ve of electricity placed at its centre, and at
all points inside the sphere the potential will be simply increased
by V.

The whole charge on the sphere due to an external system of
influencing points 4,, 4,, &c. is

F= Va—el;%—ezf%—&e., (9)
from which either the charge £ or the potential 7 may be cal-
culated when the other is given.

When the clectrified system is within the spherical surfuce the
induced charge on the surface is equal and of opposite sign to the
inducing charge, as we have before proved it to be for every closed
surface, with respect to points within it.

160.] The energy due to the mutual action between an elec-
trified point ¢, at a distance f from the centre of the sphere greater
than « the radius, and the electrification of the spherical surface
due to the influence of the electrified point and the charge of the
sphere, is

Va a e e?a’
=e(F =) = 7 F—pm_m) (10)
where / is the polential, and £ the charge of the sphere.

The repulsion between the electrified point and the sphere is
therefore, by Art. 92,

V ef
F=¢€a ‘/7‘2 —_ (],2_7)2)
e a® (2 f 2 —a?
_fTa (E— f(/d ) (1)
Hence the force between the point and the sphere is always an
attraction in the following cases—
(1) When the sphere is uninsulated.
(2) When the sphere has no charge.
(3) When the electrified point is very near the surface.
In order that the force may be repulsive, the potential of the

3
sphere must be positive and greater than e(fzf el and the
charge of the sphere must be of the same sign as ¢ and preater
a® (2./]('2_“2)
than e W'

At the point of equilibrium the equilibrium is unstable, the force
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being un attraction when the hodies are nearer and a repulsion
when they are farther off.

When the electrified point is within the spherical surface the
force on the electrified point is always away from the centre of
the sphere, and 1s equal to

e*af

The surface-density at the point of the sphere nearest to the
clectrified point where 1t lies outside the sphere is

1 a(f+a) )
ana? UV (F=a S
1 a*(3/—a)

= e VB SO (12)

The surface-density at the point of the sphere farthest from the
electrified point is

(71=

1 (. a(f—a)

%= 4rai UV a)af
. 1 2(3f+a)
:W{F” ® Ffray } (18)

When Z, the charge of the sphere, lies between
2 (@f—0) (37 +4)

e A Ve

the electrification will be negative next the electrified point and
positive on the opposite side. There will be a circular line of division
between the positively and the negatively electrified parts of the

surface, and this line will be a line of equilibrium.

£ = ! > 14
If ga(sz ~ _f) (14)
the equipotential surface which cuts the sphere in the line of equi-
librium is a sphere whose centre is the electrified point and whose
radius is /% —a?.
The lines of force and equipotential surfaces belonging to a case
of this kind are given in Figure IV at the end of this volume.

Images in an Infinite Plane Conducting Surfuce.

161.] 1f' the two electrified points 4 and A in Art. 156 are
electrified with equal charges of electricily of opposite signs, the
surface of zero potential will be the plane, every point of which is
equidistant from 4 and B.
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Hence, if 4 be an electrified point whose charge is ¢, and 40D
a perpendicular on the plane, produce 4.0
to B so that DB = 4B, and place at B

a charge equal to —e, then this charge r
at B will be the image of 4, and will /\
produce at all points on the same side of ¢ - >

the plane as 4, an effect equal to that
of the actual electrification of the plane.
For the potential on the side of 4 due
to 4 and B fulfils the conditions that
vZV = 0 everywhere except at 4, and
that 7 = 0 at the plane, and there is only Fig. 8.
one form of /" which can fulfll these conditions.

To determine the resultant force at the point 2 of the plane, we

observe that it is compounded of two forces each equal to ng’_z )
one acting along 4P and the other along 5. Hence the resultant
of these forces is in a direction parallel to 4.5 and equal to

e AR
AP 4P’
Hence R, the resultant force measured from the surface towards the
space In which 4 lies, is

2¢AD

B=—""T (15)
and the density at the point £ is
edD
- . 16
7 27 AD8 (16)

On FElectrical Inversion.

162.] The method of electrical images leads directly to a method
of transformation by which we may derive from any electrical
problem of which we know the solution any number of other
problems with their solutions.

‘We have seen that the image of a point at a distance # from the
centre of a sphere of radius £ is in the same radius and at a distance
#" such that »»’ =A% Hence the image of a system of points, lines,
or surfaces is obtained from the original system by the method
known in pure geometry as the method of inversion, and described
by Chasles, Salmon, and other mathematicians.
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If 4 and B are two points, 4" and B’ their images, O being the
centre of inversion, and £ the radius of the

0 sphere of inversion,
P 04.04 = K2 = 0B.0R.
IIence the triangles O4.B, OB’ A" are similar,
g N and 4B LB :04:0B8 ::04.0B: R2.
Fig. 9. If a quantity of eleetricity e be placed at 4,
its potential at & will be e
V= 75"
If ¢" be placed at 4’ its potential at A" will be
., e
V' = "

In the theory of electrical images
e:e::04:R:: R:04".

Henee VeV R:0B, (17)
or the potential at B due to the electricity at A is to the potential
at the image of 5 due to the electrical image of A as & is to O5.

Since this ratio depends only on OB and not on O4, the potential
at B due to any system of electrified bodies is to that at B due
to the image of the system as 2 1s to OB.

If 7 be the distance of any point 4 from the centre, and »” that
of its image 4’, and if e be the electrification of 4, and ¢’ that of 4,
also if L, §, K be linear, superficial, and solid elements at 4, and
L7, 8, K’ their images at 4’, and A, o, p, X', o/, p” the corresponding
line-surface and volume-densities of electricity at the two points,
¥ the potential ut 4 due to the original system, and 7’ the potential
at 4" due to the inverse system, then

PR 8 R KRS8
T LT TR OS§TATR KT TR
¢ R 7 Az r R
T 7 TR N"F T L +(18)
d 3 R? o 5 RS
o R pE’ 7=R5=7'5’
Vooor £
== )

1f in the original system a certain surface is that of a conductor,

* See Thomson and Tait's Natural Philosophy, § 515,
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and has therefore a constant potential P, then in the transformed

system the image of the surface will have a potential £ 7]? - But

by placing at O, the centre of inversion, a quantity of electricity
equal to — PR, the potential of the transformed surface is reduced
to zero.

Hence, if we know the distribution of electricity on a conductor
when insulated in open space and charged to the potential P, we
can find by inversion the distribution on a conductor whose form 1s
the image of the first under the influence of an electrified point with
a charge — P I placed at the centre of inversion, the conductor
being in connexion with the earth.

163.] The following geometrical theorems are useful in studying
cases of inversion. :

Every sphere becomes, when inverted, another sphere, unless
it passes through the centre of inversion, in which case it becomes
a plane.

If the distances of the centres of the spheres from the centre of
inversion are a and @', and if their radii are o and «’, and if we
define the power of the sphere with respect to the centre of in-
version to be the product of the segments cut off by the sphere
from a line through the centre of inversion, then the power of the
first sphere is 2% —a?, and that of the second 1s &’2—a’2.  We
have in this case

a a R? a’?—a®

PRl - (19)
or the ratio of the distances of the centres of the first and second
spheres is equal to the ratio of their radii, and to the ratio of the
power of the sphere of inversion to the power of the first sphere,
or of the power of the second sphere to the power of the sphere
of inversion.

The centre of cither sphere corresponds to the inverse pomt of
the other with respect to the centre of inversion.

In the case in which the inverse surfaces are a plane and a
sphere, the perpendicular from the centre of inversion on the plane
is to the radius of inversion as this radius is to the diameter of
the sphere, and the sphere has its centre on this perpendicular and
passes through the centre of inversion.

Every circle is inverted into another circle unless it passes
through the centre of inversion, in which case it becomes a straight
line.
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The angle between two surfaces, or two lines at their intersection,
18 not changed by inversion.

Every circle which passes through a point, and the image of that
point with respeet to a sphere, cuts the sphere at right angles.

Hence, any circle which passes through a point and cuts the
sphere at right angles passes through the image of the point.

164.] We may apply the method of inversion to deduce the
distribution of electricity on an uninsulated sphere under the
influence of an electrified point from the uniform distribution on
an insulated sphere not influenced by any other body.

If the electrified point be at A, take it for the centre of inversion,
and if 4 is at a distance / from the cenire of the sphere whose
radius is @, the inverted figure will be a sphere whose radius is &’

and whose centre is distant #, where
« Vidd
e = f = Fr—ar’

The centre of either of these spheres corresponds to the inverse
point of the other with respect to 4, or if € is the centre and B the
inverse point of the first sphere, €” will be the inverse point, and B’
the centre of the second.

Now let a quantity ¢ of eleetricity be communicated to the
second sphere, and let it be uninfluenced by external forces. It
will become uniformly distributed over the sphere with a surface-
density e

. . 21
¢ d7a’? (1)

(20)

Its action at any point outside the sphere will be the same as
that of a charge ¢’ placed at 5’ the centre of the sphere.
At the spherical surface and within it the potential is

P (22)

y
@’
a constant quantity.

Now let us invert this system. The centre B” becomes in the
inverted system the inverse point B, and the charge ¢ at &
Ij,? at B, and at any point separated from B by the
surface the potential is that due to this charge at B.

The potential at any point P on the spherieal surfuce, or on the
same side as B, 1s in the inverted system

¢ R
o AP

becomes ¢
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If we now superpose on this system a charge ¢ at 4, where

’

¢
=— 23
¢ o R, (23)
the potential on the spherical surface, and at all points on the same
side as B, will be reduced to zero. At all points on the same side

as 4 the potential will be that due to a charge ¢ at 4, and a charge

R
¢ =, at B.
S R ,
But et = el = 2, (24)
J S J

as we found before for the charge of the image at B.
To find the density at any point of the first sphere we have
, R°
=74y
Substituting for the value of ¢’ in terms of the quantities be-
longing to the first sphere, we find the same value as in Art. 158,

=) (26)

o (25)

dmadP?

On Finite Systems of Successive Images.

165.] 1f two conducting planes intersect at an angle which is
a submultiple of two right angles, there will be a finite system of
images which will completely determine the electrification.

For let 40B be a section of the two conducting planes per-
pendicular to their line of inter-
section, and let the angle of
intersection A0B = %, let P
be an electrified point, and let
PO =17, and POB = 6. Then,
if we draw a circle with centre O
and radius OP, and find points
which are the successive images
of P in the two planes'ﬁeginning
with OB, we shall find @, for the Fig. 10.
image of P in OB, P, for the image of @, in O, @, for that of P,
in 0B, P, for that of @, in 04, and @, for that of £ in OB,

If we had begun with the image of £ in 40 we should have
found the same points in the reverse order Q,, Py, Q,, P,, @,
provided 40B is a submultiple of two right angles.
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For the alternate images P, P,, P, are ranged round the circle
at angular intervals equal to 2408, and the intermediate images
@y, @y, @3 are at intervals of the same magnitude. Hence, if
2408 is a submultiple of 2w, there” will be a finite number of
images, and none of these will fall within the angle 408. If]
however, 408 is not a submultiple of =, 1t will be impossible to
represent the actual electrification as the result of a finite series of
clectrified points.

If 408 =%, there will be » negative images @, ¢,, &e., each

equal and of opposite sign to P, and n—1 positive images I,
P;, &e., each equal to P, and of the same sign.

. . . . 2=
The angle between successive images of the same sign is o

If we consider either of the conducting planes as a plane of sym-
metry, we shall find the positive and negative images placed
symmetrically with regard to that plane, so that for every positive
image there is a negative image in the same normal, and at an
equal distance on the opposite side of the plane.

If we now invert this system with respect to any point, the two
planes become two spheres, or a sphere and a plane intersecting

at an angle ;L:, the influencing point P being within this angle.

The successive images lie on the circle which passes through P
and intersects both spheres at right angles.

To find the position of the images we may either make use of
the principle that a point and its image are in the same radius
of the sphere, and draw successive chords of the circle beginning
at P and passing through the centres of the two spheres al-
ternately.

To find the charge which must be attributed to each image, take
any point in the circle of intersection, then the charge of each
image is proportional to its distance from this point, and its sign
1s positive or negative according as it belongs to the first or the
second system,

166.]7 We have thus found the distribution of the images when
any space bounded by a conductor consisting of two spherical surfaces

meeting at an angle %, and kept at potential zero, is influenced by

an electrified point.
We may by inversion deduce the case of a conductor consisting
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“ - . m
of two spherical segments meeting at a re-entering angle »° charged

to potential unity and placed in free space.

For this purpose we invert the system with respect to . The
circle on which the images formerly lay now becomes a straight
line through the centres of the spheres.

If the figure (11) represents
a section through the line of
centres 45, and it D, I are the
poluts where the circle of in-
tersection cuts the plane of the
paper, then, to find the suc-
cessive images, draw D4 a o
radius of the first circle, and
draw 0C, DB, &ec., making

T 27 . i
angles -, © | &ec. with DA. Fig. 11.
n n

2\

The points C, B, &ec. at which they cut the line of centres will
be the positicns of the positive images, and the charge of each
will be represented by its distances from 2. The last of these
images will be at the centre of the second eircle.

To find the negautive images draw DP, 1), &c., making angles
%: Enf, &c, with the line of centres. The intersections of these
lines with the line of centres will give the positions of the negative
images, and the charge of each will be represented by its distance
from D.

The surface-density at any point of either sphere is the sum
of the surface-densities due to the system of images. For instance,
the surface-density at any point § of the sphere whose centre is
4, 1s

1

Ty Y|

where 4, B, C, &c. are the positive series of images.

When §is on the circle of intersection the density is zero.

To find the total charge on each of the spherical segments, we
may find the surfuce-integral of the induction throungh that segment
due to each of the images.

The total charge on the segment whose centre is 4 due to the
image at 4 whose charge is /4 is

DB ne
{1+ (4D — 4B 5 +(4D* ~ 4C?) 5y +&e ]
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D4 Z)ﬁz}’jﬁi = }(D4+04),
where O is the centre of the circle of intersection.
In the same way the charge on the same segment due to the
image at Bis 4 (DB + OF), and so on, lines such as OB measured
from O to the left being reckoned negative.

Hence the total charge on the segment whose eentre 1s 4 is
$(DA+DB+DCH+8&e)+3(04+ 08+ 00+ &e.),
—3(DP +DQ + &)= (0L +0Q 4 &e.).

167.] The method of clectrical images may be applied to any
space bounded by plane or spherical saurfaces all of which cut one
another in angles which are submultiples of two right angles.

In order that such a system of spherieal surfuces may exist, every
solid angle of the figure must be trihedral, and two of its angles
must, he right angles, and the third either a right angle or a
submultiple of two right angles.

Hence the cases in which the number of images is finite are—

(1) A single spherical surface or a plane.

(2) Two planes, a sphere and a plane, or two spheres intersecting

kol
at an angle o

(3) These two surfaces with a third, which may be either plane
or spherical, cutting both orthogonally.

(1) These three surfuces with a fourth cutting the first two
orthogonally and the third at an angle g, . Of these four surfaces

one at least must be spherical.

We have already examined the first and second cases. In the
first case we have a single image. In the second case we have
27—1 1mages arranged In two scries in a circle which passes
through the influencing point and is orthogonal to both surfaces.
In the third case we have, besides these images, their images with
respect to the third surface, that is, 4» —1 images in all besides the
influencing point.

In the fourth case we first draw through the influencing point
a circle orthogonal to the first two surfaces, and determine on it
the positions and magnitudes of the # negative images and the
n—1 positive images. Then through each of these 2z points,
including the influencing point, we draw a circle orthogonal to
the third and fourth surfaces, and determine on it two series of
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1mages, #’ in each series. We shall obtain in this way, besides the
influencing point, 22n"—1 positive and 2z#%" negative images.
These 4 » n” points are the intersections of z circles with #” other
circles, and these circles belong to the two systems of lines of
curvature of a eyelide.

If each of these points is charged with the proper quantity of
electricity, the surface whose potential is zero will consist of #+ 2’
spheres, forming two series of which the suceessive spheres of the

first set intersect at angles T and those of the second set at angles
n

7‘:,—, while every sphere of the first set is orthogonal to every sphere

of the second set,.

Cuse of Two Spheres cutting Orthogonally. See Fig. 1V at the
end of this volume.

168.] Let 4 and B, Fig. 12, be the centres of two spheres cutting
each other orthogonally in £ and
L7, and let the straight line D2 cut
the line of centres in C. Then C
is the image of 4 with respect to
the sphere B, and also the image
of B with respect to the sphere
whose centre is 4. If 4D =a,
BD = 3, then 48 = «/(;ZT/SE, and
if we place at 4, B, C quantities Fig. 12.

aj3
a2
spheres will be equipotential surfaces whose potential is unity.

We may therefore determine from this system the distribution of
electrieity in the following cases :

(1) On the conductor PDQL formed of the larger segments of
both spheres. Its potential is 1, and its charge is

atg— 2B __ 4py BD—CD.
Var g

This quantity therefore measures the capacity of such a figure
when free from the inductive action of other bodies.

The density at any point 2 of the sphere whose centre is 4, and
the density at any point § of the sphere whose centre is 5, are
respectively

Ijr; (1 — -BEF)S) and # (1 —(ﬁf) .

of electricity equal to a, 8, and — respectively, then both
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At the points of intersection, D, 2/, the density is zero.

If one of the spheres is very much larger than the other, the
density at the vertex of the smaller sphere is ultimately three times
that at the vertex of the larger sphere.

(2) The lens /7DQ'L formed by the two smaller segments of

the spheres, charged with a quantity of electricity = —

and acted on by points 4 and B, charged with quantities a and 3,
is also at potential unity, and the denpsity at any point is expressed
by the same formulae.
(3) The meniscus DPL'Q" formed by the difference of the
segments charged with a quantity a, and acted on by points B
—aB

/2 2
in equilibrium at potential unity. @A

(4) The other meniscus Q JF"7) under the action of 4 and C.

‘We may also deduce the distribution of electricity on the following
internal surfaces.

The hollow lens P DQ'D under the influence of the internal
electrified point C at the centre of the circle DI,

The hollow meniscus under the influence of a point at the centre
of the concave surface.

The hollow formed of the two larger segments of both spheres
under the influence of the three points 4, B, C.

But, instead of working out the solutions of these cases, we shall
apply the principle of electrical images to determine the density
of the electricity induced at the point P of the external surface of
the conductor PDQL by the action of a point at O charged with
unit of clectricity.

Let 04 = a, 0B = b, OoF = 7, BP =p,

A = a, BU=p8, 4B =+d5p

Invert the system with respect to a sphere of radius unity and
centre O.

The two spheres will remain spheres, cutting each other ortho-
gonally, and having their centres in the same radii with 4 and 5.
If we indicate by accented letters the quantities corresponding to
the inverted system,

and C, charged respectively with quantities 3 and , 18 also

7 a 4 & r a 4 18
CSee TTpmmp Ytroa e
po b BPLE (P —p)

oy VRS 72 (])2_32)2
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If, in the inverted system, the potential of the surface is unity,
then the density at the point # is

= i (1 (%)3) :

If, in the original system, the density at 2 is o, then

o 1

7 —Qa ?

o T 13
and the potential is ; By placing at O a negative charge of

electricity equal to unity, the potential will become zero over the
surface, and the density at 2 will be
2__ g% 8 43
_ 1 a 3a (1 _ B r - ,)
47  ar (ﬁ27~2+(52
This gives the distribution of electricity on one of' the spherical
surfaces due to a charge placed at O. The distribution on the
other spherical surface may be found by exchanging « and 6, « and
B, and putting ¢ or 4@ instead of p.
To find the total charge induced on the conductor by the elee-
trified point at O, let us examine the inverted system.
In the inverted system we have a charge o’ at 4, and 8" at &,
and a negative charge — o F at a point €’ in the line 40",
\/arz_*_ﬁ'z
such that AC:CB ::a?: g2,
It O4'= o', OB’ =¥, OC' = ¢, we find
Py LI/ I B e
g
Inverting this system the charges become

@ o BB,

e

AP Al
and _ s L, - _ s
mc ,\/azﬁz+5z 2 __ 232
Hence the whole charge on the conductor due to a unit of
negative electricity at O is
a B ap
;+ & «/a2ﬂ2+52a —q? ﬁ2

VOL. 1. P
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Distribution of Electricity on Three Spherical Surfaces which
Tutersect at Right Angles.
169.] Let the radii of the spheres be a, 3, y, then

BC=+B"373% Cd=4+4%+a%, ADB =+ a5 p.

Let PQR, Fig. 13, be the feet
of the perpendiculars from 4BC
on the opposite sides of the tri-
angle, and let O be the inter-
section of perpendiculars.

Then P is the image of B in
the sphere y, and also the image
of Cin the sphere 8. Also O is
the image of P in the sphere a.

Let charges a, B, and y be
placed at 4, B, and C.

Then the charge to be placed
Fig. 13. at Pis

By  _ 1

SV 11
Fy /\/Bﬁ+;z’

J@ },2 +§2 a? E{zﬂz’

AlSO AP =

» 50 that the charge at O, con-

VB 492
sidered as the image of P, is
__ aBy _ 1
Jﬁzyz +?2a2 +a?p? 1 1 1
=2 + ﬂ? + ?

In the same way we may find the system of images which are
electrically equivalent to four spherical surfaces at potential unity
intersecting at right angles.

If the radius of the fourth sphere is &, and if we make the charge
at the centre of this sphere = 3, then the charge at the intersection
of the line of centres of any two spheres, say a and B, with their
plane of interseclion, is 1

———
at g

The churge at the intersection of the plane of any three centres
ABC with the perpendicular from D is
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and the charge at the intersection of the four perpendiculars is
1

1 1 1 1
/\/ag + Bt -+ pY + 32
System of Four Spheres Intersecting at Right Angles under the
detion of an Electrified Poind.

170.] Let the four spheres be 4, 8,C, I, and let the electrified point
be O. Draw four spheres 4,, B, C,, ), of which any one, 4,,
passes through O and cuts three of the spheres, in this case B,
C, and D, at right angles. Draw six spheres (a8), (ac), (ad), (b¢),
(8d), (ed), of which each passes through O and through the circle
of intersection of two of the original spheres.

The three spheres B,, C;, D, will intersect in another point besides
0. Let this point be called 4’, and let #, C’, and 7/ be the
intersections of C,, Dy, 4;, of D, 4;, B,"and of 4, B, C, re-
spectively. Any two of these spheres, 4,, B, will intersect one of
the six (ed) in a point (a’6"). There will be six such points.

Any one of the spheres, 4, will intersect three of the six (af),
(ac), (ad) in a point a’. There will be four such points. Finally,
the six spheres (ad), (ac), (ad), (cd), (db), (b¢), will interscct in one
point §.

If we now invert the system with respect to a sphere of radius
£ and centre O, the four spheres 4, B, C, D will be inverted into
spheres, and the other ten spheres will become planes. Of the
points of intersection the first four 4’, B, €’, I will become the
centres of the spheres, and the others will correspond to the other

eleven points in the preceding article. These fifteen points form
the image of O in the system of four spheres.
At the point 4, which is the image of O in the sphere 4, we

must place a charge equal to the image of 0, that is, — g, where a

is the radius of the sphere 4, and a 1s the distance of its centre
from O. In the same way we must place the proper charges at
B, C, . *

The charges for each of the other eleven points may be found from
the expressions in the last article by substituting o, g, /, 8 for
a, B, v, 3, and multiplying the result for each point by the distance
of the point from 0, where

! ’ 4 7 6
a=_la . = B __7 ¥

T TTTa—pt T Tl
P2

IRIS - LILLIAD - Université Lille 1



212 ELECTRIC IMAGES. [171.

Two Spheres not Intersecting.

171.7 When a space is bounded by two spherical surfuces which
do not intersect, the successive images of an influencing point
within this space form two infinite series, all of which lie beyond
the spherical surfaces, and therefore fulfil the condition of the
applicability of the method of electrical images.

Any two non-intersecting spheres may be inverted into two
concentric spheres by assuming as the point of inversion either
of the two common inverse points of the pair of spheres.

We shall begin, therefore, with the case of two uninsulated
concentric spherical surfaces, subject to the induction of an elec-
trified point placed between them.

Let the radius of the first be ¢, and that of the second 4¢®, and
let the distance of the influencing point from the centre be 7 = &¢®.

Then all the successive images will be on the same radius as the
influencing point.

Let @, Fig. 14, be the image of P in the first sphere, P, that
of @), in the second sphere, @, that of P, in the first sphere, and
go on ; then

0P, 0Q, = &2,
and OP,.0Q, ; = b% 2™,
also 0Q, = 6e¥,
OP) = be*t2%,
B ) 0@, = be~®*2™) &e.
Hence O0F, = fet+2:%),
0@, = be~k+2e®),
If the charge of P is denoted by 2,
Fig. 14. then
£ = Pe™, Q, = —Pe (Hsm),
Next, let @, be the image of 2 in the second sphere, P, that of
@, in the first, &e.,
0Q) = be2™~%,  OP/= be—2®,
0Q, = bet™ %, OF,) = 4% ;
0P/ = ben—4%, 0Q; = be?s@—,
P} = Pe?, Q= Per® ™,

Of these 1mages all the P’s are positive, and all the @’s negative,
all the P”s and @’s belong to the first sphere, and all the /s and
@)”’s to the second.
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The images within the first sphere form a converging series, the
sum of which is
eT %1

@ —1

—P

This therefore is the quantity of electricity on the first or interior
sphere. The images outside the second sphere form a diverging
series, but the surface-integral of each with respect to the spherical
surface is zero. The charge of electricity on the exterior spherical
surface 1s therefore

e’w_u_

( |

em‘_em’_u

17—1)=_p

ew—1

If we substitute for these expressions their values in terms of

04, OB, and OP, we find

04 PB
charge on 4 = —P P A5’
OB AP
)i B=—p_— =2~ |
charge on P()[’ T

If we suppose the radii of the spheres to become infinite, the case
becomes that of a point placed between two parallel planes 4 and 5.
In this case these expressions become

PB
charge on 4 __PE’

AP
lh 3 B Y —
charge on P 1B

172.] In order to pass from this case to that of any two spheres
not intersecting each

other, we begin by

finding the two com-

mon inverse points O,

O through which all

circles pass that are - G

orthogonal to both J ; A
\\)L

spheres. Then, invert-
ing the system with
respect to either of
thesepoints,the spheres

become concentrie, as TFig. 15.
in the first case.

The radius O4LB on which the successive images lie becomes
an are of a circle through O and (¥, and the ratio of O'P to OP is
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equal to Ce* where C is a numerical quantity which for simplicity
we may make equal to unity.
We thercfore put

WL OP o4 OB
?//—Og‘—o—])—: a-Og‘OAs B—Og—O—B
Let B—a = w, v—a = 0,

Then all the successive images of P will lie on the arc OAPBCQ,
The position of the image of £ in A is @, where

o
u(Q,)=log ag = 20—,
That of @, in 5 is P, where

% (L)) = log or

o1
()Pl = w42,

Similarly
u(PB)=u+28w, u(Qx): 2a—u—28w.
In the same way if the successive images of P in B, 4, 8, &e.
are Q,, P/, @/, &,
$(Q) = 28—, w(P)= u—2a;
u(P))=u—2sw, ©(Q)) =2R—u+2swm.
To find the charge of any image P, we observe that in the
inverted figure its charge is

or,
P/\/ﬁ'

In the original figure we must multiply this by O'P,. Hence the
charge of P, in the dipolar figure is

OP,.UP,
OP.OP
If we make & =+/OP.0'P, and call £ the parameter of the
point P, then we may write

_ &
P=P

or the charge of any image is proportional to its parameter.
If we make use of the curvilinear coordinates # and v, such that

o+ —1y—k
T+ «/—_13/+/v‘,

ksin 2w ksinw
" coshu—cosv’ y=

gutV—1v —

then z = -
cos fu—cos v
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2%+ (y—Fkcot v)? = £ cosec?y,
(x+ % cot hu)? 4 2 = k% cosec A?u,
Gl el +2y/: —* y cothu =— g A R
g 2k %
\/cos hu—cos v

Since the charge of each image is proportional to its parameter,
& and is to be taken positively or negatively according as it is of
the form P or @, we find

P/ cos hu—cosv
Vcosh(w+2sw)—Ccosv

Pr/cos hu—cosv
Qa = b4

x/cos/L(‘)a—u 2sw)—e()bu

P cos hu—cos v

cotv =

])

P = ’
Aeosk(u—28w)—cosp
Q/=— Pr/cos hu—cosw

\/OOS/L(2,3—26+2813)—COS?)

We have now obtained the positions and charges of the two
infinite series of images. We have next to determine the total
charge on the sphere 4 by finding the sum of all the images within
it which are of the form @ or . We may write this
1

U cosh (4 — 28 w)—cos v

b

PA/cos hu—cosv 2,_

F= 1

—P«/cgﬁu—cosvz_, — e — . ———"

=0 Veosh(2a—u—2sw)—cosv
In the same way the total induced charge on B is
=a 1

Prcoshu—cosw 2,21 ey

'\/COSﬁ(u+28ﬁr)—COSU

1

—Pn/eos hu—cosv E'=° Acosh(23—u+28@)—cosv )

* In these expressions we must remember that
2coshu=et+e4, 2sinhuy=e*—e™Y,
and the other functions of % are derived from these by the same definitions as the
corresponding trigonometrical functions.

The method of applying dipolar coordinates to this case was given by Thomson in
Liouville's Journal for 1847. See Thomson’s reprint of Klectrical Papers, § 211, 212.
In the text 1 have made use of the investigation of Prof. Betti, Nuovo (imento,
vol. xx, for the analytical method, but I have retained the idea of electrical images as
used by Thomson in his original investigation, Pkil. Mag., 1853,
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173.7 We shall apply these results to the determination of the
coeflicients of capacity and induction of two spheres whose radii are
e and &, and the distance of whose centres is c.

In this case

b «/a4+64+c4—26202—2cza2—2a262_
- 2c !

. k . k
sin A.a = 2’ sin A.8= 7

Let the sphere 4 be at potential unity, and the sphere B at

potential zero,

Then the successive images of a charge « placed at the centre
of the sphere 4 will be those of the actual distribution of clectricity.
All the images will lie on the axis between the poles and the

centres of the spheres.
The values of » and v for the centre of the sphere A are

%= 2a, v = 0.
Hence we must substitute  or Lﬂ‘nlﬂ— for P, and 2a for %, and
£ a
»=0 in the equations, remembering that P itself forms part of the
charge of 4. We thus find for the coefficient of capacity of 4

5= 1
Goa = /CEJ=0 sink(sw—a)
for the coefficient of induction of 4 on B or of B on 4
s=w 1
g =—# 25:1 SinAsw:
and for the coeflicient of capacity of B

f=w 1
Gop = 702,=o snA (ﬁ.Hq)'

To calculate these quantities in terms of @ and &, the radii of the
spheres, und of ¢ the distance between their centres, we make use

of the following quantities

e kz l—k
p= + 2’

g=¢ = b2+1+
=r=e’“’=(/\/g;+l+;];)(/\/l;—z+l+§)-
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We may now write the hyperbolic sines in terms of , 7, 75 thus

Goa = 2:::_2k_—’

7 »
p
=0 2F
Qub = - 2,=1 __T’
P ———
7.8
s=o 2k
9o = 2.::0 T
gr— e

Proceeding to the actual caleulation we find, either by this
process or by the direct caleulation of the successive images as
shewn in Sir W, Thomson’s paper, which is more convenient for
the earlier part of the series,

0 a%b a’b? &
Qua = 2+ ¢z —h2 + (e? — 0% +ac) (¢ — 6% —ac) +&e.
ab a%h2 PENY
Qb= = T a T B0 o (e%—at B al (0% =k U —&e.
e c(c*—at—4%) ¢ (c?—a®—0b% tab)(c?—a®—bt—ab)

. a a2?
Qo =0+ m—m (c* —a*+-be) (¢* —a? —bo)

+ &e.

174.] We have then the following equations to determine the
charges #, and 7, of the two spheres when electrified to potentials
7, and 7, respectively,

Ea = Va gaa+ ngab,‘
By =V, qm+ Vs qus-

1
If we put Joo Yp—qa? = D = 70
aﬂd _pa,a = be D,) pab = —Qab DIJ Py = gaa-Dl:
whence Poa P~ Pa” = I ;

then the equations to determine the potentials in terms of the
Charges are Va = Paa Eu+ Pab 'Eb:
V;) = Lo Ea'*‘pbb Eb’

and poq, P, and py, are the coefficients of potential.
The total energy of the system is, by Art. 85,

Q=3 L+ET)
%z (Vu-.z gau+ 2Va ngul)+ Vbz gbb)s
% (Emzpaa + 2 Ea Ebpab'*‘ —Ebz pbb)‘

I

i
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The repulsion between the spheres is therefore, by Arts. 92, 93,

dgunb 2 dqt)b ?
de +5 de ('

N T

APaa — dpy,
zIZ)c +2 J“Ebd\c + 5! {ZJE E ’
where ¢ 1s the distance between the centres of the spheres.

Of these two expressions for the repulsion, the first, which
expresses 1t in terms of the potentials of the spheres and the
variations of the coefficients of capacity and induction, is the most
convenient for caleulation.

We have therefore to differentiate the ¢’s with respect to e.
These quantities are oxpressed as functions of £, a, 8, and =, and
must be differentiated on the supposition that @ and & are constant.

From the equations

=—4{ B

sinkasin/4f
sin 4 =

k=asinfa=14bsinif = ¢
da_sinkacosip
dc ~  ksinkw
48 coslkasinkp
de = ksinkw

we find

dm’_ 1

de —E’

dk __coshacoshf3
de  sinhw
whence we find

dGae _ COShacoshf g, Emm(sc—acosﬁﬁ)cos/l(.s’m—a)

de —  sinkw kA “Hs=o ¢ (sin4 (8 w—a))?

b

A _ coshacoshBqy, Es=wseosksm-

/s =1 (sinksw)? ’

de =  sinkw k

@,_b __coskacosi@ g, Et=w (sc+beosha)cos k(B +sw)

de — sinkw & =0 o(sini(B+sw)?

Sir William Thomson has calculated the force between two
spheres of equal radins separated by any distance less than the
diameter of one of them. For greater distances it is not necessary
to use more than two or three of the successive nnages.

The series for the differential coefficients of the ¢’s with respect

to ¢ are easily obtained by direct differentiation
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goa __ 2a%bc  2a°8%c(2¢?—202—a?) &
de T T (=08 T (2—b% +ac)? (c? =1 —ac)? -
dgy ob  a?b?(3c2—a®—b%)

e T ¢? (¢? —a? —bF)

a® 83 {(5¢% —a? —1?) (¢* —a® — %) —a? 8} &
ot (—at I ab (= aP— PPl
dgy, 2ablec 2a%83%¢(2c% —24%—6%)

= - —&e.
de (¢ —a%)? (¢t —a* 4 be)? (f—a®—be)t ¢

Distribution of Electricity on Two Spheres in Contact.

175.] If we suppose the two spheres at potential unity and not
influenced by any other point, then, if we invert the system with
respeet to the point of coutact, we shall have two parallel planes,

. 1 . . . .
distant 52 and EIZ from the point of inversion, and electrified by

the action of a unit of clectricity at that point.
There will be a series of positive images, cach equal to unity, at

. 1 1 . .
distances s(; + Z) from the origin, where s may have any integer

value from —o0 to + oo.

There will also be a series of negative images each equal to —1,
the distances of which from the origin, reckoned in the direction of
s e = +s(E 4 0):

When this system is inverted back again into the form of the
two spheres in contact, we have a corresponding series of negative

images, the distances of which from the point of contact are of the

form -—11—1, where s is positive for the sphere 4 and negative
(Gt 3)

for the sphere B. The charge of each image, when the potential
of the spheres is unity, is numerically equal to its distance from the
point of contact, and is always negative.

There will also be a series of positive images whose distances
from the point of contact measured in the direction of the centre

1

1 1 1y

2+ G+y)

When s is zero, or a positive integer, the image is in the sphere 4.
When s is a negative integer the image is in the sphere B.

of a, are of the form
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The charge of each image is measured by its distance from the
origin and is always positive,
The total charge of the sphere 4 is therefore

5= 1 ab 1=mo ]
E“=2s01 —a+é2r=1§'
+5(;+)
Each of these serles is 1nﬁn1te, but if we combine them in the form

s=x *6
D C Crw

the series becomes converging.
In the same way we find for the charge of the sphere B,

S=® ab 1=—w ]
Eb:Ex 13’(—a+—b‘ a+bzs——1 E’

. E-r ® al?
T =1 s(a+8) {s(a+ )b}
The values of £, and F, are not, so far as I know, expressible
in terms of known functions. Their difference, however, is easily
expressed, for

f=m a/}
FeB=2 et

wab nb
a+tb eo a+é'

When the spheres are equal the charge of each for potential unity

B=a27 25 (2s—1) 23—1)

= a(l—%"*'%—l'*'&c'%
= alog,2 = 1.0986 a.

is

When the sphere 4 is very small compared with the sphere B
the charge on 4 is

a? s=o ]

B, = b Rtemr g2 approximately ;
7% o?
or E = 5 7

The charge on B is nearly the same as if 4 were removed, or
LBy =2¢.
The mean density on each sphere is found by dividing the charge
by the surface. In this way we get
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E, =
Ta = 4nar ™ 248’
¥, 1
= qni* T and’
7!'2
T = 5 O

Hence, if a very small sphere is made to touch a very large one,
the mean density on the small sphere is equal to that on the large

Zz .
sphere multiplied by %, or 1.644936.

Application of Electrical Inversion to the case of a Spherical Bowl.

176.] One of the most remarkable illustrations of the power of
Sir W. Thomson’s method of Electrical Images is furnished by his
investigation of the distribution of electricity on a portion of a
spherical surface bounded by a small cirele. The results of this
investigation, without proof, were communicated to M. Liouville
and published in his Journal in 1847. The complete investigation
is given in the reprint of Thomson’s Electrical Papers, Article XV.
I am not aware that a solution of the problem of the distribution
of electricity on a finite portion of any curved surface has been
given by any other mathematician,

As I wish to explain the method rather than to verify the
calculation, I shall not enter at length into either the geometry
or the integration, but refer my readers to Thomson’s work.

Distribution of Electricity on an Ellipsoid.

177.] 1t is shewn by a well-known method * that the attraction
of a shell bounded by two similar and similarly situated and
concentric ellipsoids is such that there is no resultant attraction
on any point within the shell. If we suppose the thickness of
the shell to diminish indefinitely while its density increases, we
ultimately arrive at the conception of a surface-density varying
as the perpendicular from the centre on the tangent plane, and
since the resultant attraction of this superficial distribution on any
point within the ellipsoid is zero, electricity, if so distributed on
the surface, will be in equilibrium,.

Hence, the surface-density at any point of an ellipsoid undis-
turbed by external influence varies as the distance of the tangent
plane from the centre,

* Thomson and Tait's Natural Philosophy, § 520, or Art. 150 of this book,
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Distribution of Electricity on a Disk.

By making two of the axes of the ellipsoid equal, and making
the third vanish, we arrive at the case of a circular disk, and at an
expression for the surface-density at any point P of such a disk
when electrified to the potential 7 and left undisturbed by external
influence. If o be the surface-density on one side of the disk,
and if KPL be a chord drawn through the point P, then

4

* T 2xVKP.PL

Application of the Principle of Electric Inversion.

178.] Take any point @ as the centre of inversion, and let A
be the radius of the sphere of inversion. Then the plane of the
disk becomes a spherical surface passing through @, and the disk
itself becomes a portion of the spherical surface bounded by a circle.
‘We ghall eall this portion of the surface the dowd.

If 8 is the disk electrified to potential ¥ and free from external
influence, then its electrical image § will be a spherical segment at
potential zero, and electrified by the influence of a quantity /£ of
electricity placed at Q.

‘We have therefore by the process of inversion obtained the
solution of the problem of the distribution of electricity on a
bowl or a plane disk when under the influence of an electrified
point in the surface of the sphere or plane produced.

Influence of an Electrified Point placed on the unoccupicd part of the
Spherical Surface.

The form of the solution, as deduced by the principles already
given and by the geometry of inversion, is as follows :

If C is the central point or pole of the spherical bowl §, and
if' @ 1s the distance from C to any point in the edge of the segment,
then, if a quantity ¢ of electricity is placed at a point @ in the
surface of the sphere produced, and if the bowl § is maintained
at potential zero, the density ¢ at any point P of the bowl will be

_ 1 q /\/Cinué
7T 22 QP 2z —Cp?’
CQ, CP, and Q2P being the straight lines joining the points, C, @,

and P,

It is remarkable that this expression is independent of the radius
of the spherical surface of which the bowl is a part. It is thercfore
applicable withoul alteration to the case of a plane disk.
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Influence of amy Number of FElectrified Points.

Now let us' consider the sphere as divided into two parts, one of
which, the spherical segment on which we have determined the
electric distribution, we shall call the é&ow?, and the other the
-remainder, or unoccupied part of the sphere on which the in-
fluencing point @ is placed.

If any number of influencing points are placed on the remainder
of the sphere, the electricily induced by these on any point of the
bowl may be obtained by the summation of the densities induced
by each separately.

179.7 Let the whole of the remaining surface of the sphere
be uniformly electrified, the surface-density being p, then the
density at any point of the bowl may be obtained by ordinary
integration over the surface thus electrified.

We shall thus obtain the solution of the case in which the bowl
1s at potential zero, and electrified by the influence of the remaining
portion of the spherical surface rigidly electrified with density p.

Now let the whole system be insulated and placed within a
sphere of diameter £, and let this sphere be uniformly and rigidly
electrified so that its surface-density is p'.

There will be no resultant force within this sphere, and therefore
the distribution of electricity on the bowl will be unaltered, but
the potential of all points within the sphere will be increased by
a quantity 7 where

27p’ )
A
Hence the potential at every point of the bowl will now be 7.

Now let us suppose that this sphere is concentric with the sphere
of which the bowl forms a part, and that its radius exceeds that
of the latter sphere by an infinitely small quantity.

V=

We have now the case of the bowl maintained at potential ¥ and
influenced by the remainder of the sphere rigidly electrified with
superficial density p+p".

180.] We have now only to suppose p+p'= 0, and we get the
case of the bowl maintained at potential 7 and free from external
influence.

If ¢ is the density on either surface of the bowl at a given point
when the bowl is at potential zero, and is influenced by the rest
of the sphere electrified to density p, then, when the bowl is main-
tained at potential 7, we must increase the density on the outside
of the bowl by p’, the density on the supposed enveloping sphere.
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The result of this investigation is that if /' is the diameter of
the sphere, a the chord of the radius of the bowl, and » the chord
of the distance of P from the pole of the bowl, then the surface-
density o on the inside of the bowl is

and the surface- dens1ty on the outside of the bowl at the same
point is 4+ V
2nf

In the calculation of this result no operation is employed more
abstruse than ordinary integration over part of a spherical surface.
To complete the theory of the electrification of a spherical bowl
we only require the geometry of the inversion of spherical surfaces.

181.] Let it be required to find the surface-density induced at
any point of the bowl by a quantity ¢ of electricity placed at a
point @, not now in the spherical surface produced.

Invert the bowl with respect to @, the radius of the sphere of
inversion being £, The bowl § will be inverted into its image §7,
and the point P will have P for its image. We have now to
determine the density ¢” at #” when the bowl § is maintained at
potential 77, such that ¢ =F’R, and is not influenced by any
external force.

The density o at the point £ of the original bowl is then

a’ i3
6 =— @jf-"
this bowl being at potential zero, and 1nﬂucnced by a quantity ¢ of
electricity placed at Q.

The result of this process is as follows :

Let the figure represent a section
through the centre, O, of the sphere,
the pole, C, of the bowl, and the in-
fluencing point §. I is a point
which corresponds in the inverted
figure to the unoccupied pole of the
rim of the bowl, and may be found
by the following construction.

Draw through @ the chords £QZ’
and FQF’, then if we suppose the
radius of the sphere of inversion to
be a mean proportional between the
segments into which a chord i1s divided at ), £’ will be the

Tig. 16.
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image of EF. Bisect the arc F'CE’ in IV, so that F'IV =1V £’, and
draw QD to meet the sphere in J. D is the point required.
Also through O, the centre of the sphere, and @ draw HOQH’
meeting the sphere in I and 7/”. Then if P be any point in the
bowl, the surface-density at P on the side which is separated from
@ by the completed spherical surface, induced by a quantity ¢ of
electricity at @, will be
QH.QH' Ch?—a?% _ CD? —a?.%
0=y LI PP ( —gope) —tn 1[ oGz —ore) ]}
where @ denotes the chord drawn from C, the pole of the bowl,
o the rim of the bowl.
On the side next to @ the surface-density is
g QH.QH'
7 F 2wt LT PQY

VOI. I. Q
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CHAPTER XII.
THEORY OF CONJUGATE FUNCTIONS IN TWO DIMENSIONS.

182.] THE number of independent cases in which the problem
of electrical equilibrium has been solved is very small. The method
of spherical harmonies has been employed for spherical conduetors,
and the methods of electrical images and of inversion are still more
powerful in the cases to which they can be applied. The case of
surfuces of the sccond degree is the only one, as far as I know,
in which both the equipotential surfaces and the lines of force are
known when the lines of force are not plane curves.

But there is an important class of problems in the theory of
electrical equilibrium, and in that of the conduction of currents,
in which we have to consider space of two dimensions only.

For instance, if throughout the part of the electric field under
consideration, and for a considerable distance beyond it, the surfaces
of all the conductors are generated by the motion of straight lines
parallel to the axis of 2, and if the part of the ficld where this
ceases to be the case is so far from the part considered that the
électrical action of the distant part on the field may be neglected,
then the electricity will be uniformly distributed along each gene-
rating line, and if we consider a part of the field bounded by two
planes perpendieular to the axis of 2 and at distanee unity, the
potential and the distribution of electricity will be functions of 2
and z only.

If p dz dy denotes the quantity of eleetricity in an element whose
base is dz dy and height unity, and o ds the quantity on an element
of area whose base is the linear element 4s and height unity, then
the equation of Poisson may be written

a2V d*rv

e +W-+47rp=0.
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‘When there is no free electricity, this is reduced to the equation

of Laplace, BV 47
T AT

The general problem of electric equilibrium may be stated as
follows :— '

A continuous space of two dimensions, bounded by closed curves
Cy, C,, &c. being given, to find the form of a function, 7, such that
at these boundaries its value may be 7, 7,, &c. respectively, being
constant for each boundary, and that within this space ¥ may be
everywhere finite, continuous, and single valued, and may satisfy
Laplace’s equation.

I am not aware that any perfectly general solution of even this
question has been given, but the method of transformation given in
Art. 190 1s applicable to this case, and is much more powerful than
any known method applicable to three dimensions.

The method depends on the properties of conjugate functions of
two variables.

Definition of Conjugate Functions.

183.7 Two quantities a and 3 are said to be conjugate functions
of z and g, if a+ +/ —1 B is a function of z + ~/' — 1 7.
It follows from this definition that

da dB da dj

o= dy ™ gt =0 (1)
d*a  d?a da*g 4%
mtg =% Gtz =" (2)

Hence both functions satisfy Laplace’s equation. Also

2

dadf {la/],(-}_@‘2 %‘_%2 g’

f __feop b G A eB _ pe.
de dy dy de ™~ dr| +dyf dx +a’y‘ B (3)

If # and 7 are rectangular coordinates, and if ds; is the intercept
of the curve (3 = constant) between the curves a and a+ da, and
ds, the intercept of a between the curves 5 and 8448, ihen

ds,  ds, 1
da —dg = R’
and the curves intersect at right angles.

If we suppose the potential 7 =¥+ &a, where % is some con-
stant, then /” will satisfy Laplace’s equation, and the curves (a) will
be equipotential curves. The curves (8) will be lines of force, and

Q2

(4)
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the surface-integral of a surface whose projection on the plane of
zy is the curve 4B will be £(8s—p34), where B4 and Bz are the
values of B at the extremitics of the curve.

If a serles of curves corresponding to values of o in arithmetical
progression is drawn on the plane, and another series corresponding
to a series of values of 8 having the same common difference, then
the two series of curves will everywhere intersect at right angles,
and, if the common difference is small enough, the elements into
which the plane 1s divided will be ultimately little squares, whose
sides, in different parts of the field, are in different directions and of
different magnitude, being inversely proportional to Z£.

If two or more of the equipotential lines (a) are closed curves
enclosing a continuous space between them, we may take these for
the surfaces of conductors al potentials (¥y+£qa)), (¥, +£%a,), &c.
respectively. The quantity of electricity upon any one of these

k
dr (ﬁz‘—ﬁl)

The number of equipotential lines between two conductors will
therefore indicate their difference of potential, and the number of

between the lines of force 8; and B, will be

lines of force which emerge from a conductor will indicate the
quantity of electricity upon it. _

‘We must next state some of the most important theorems
relating to conjugate functions, and in proving them we may use
either the equations (1), containing the differential coefficients, or
the original definition, which makes use of imaginary symbols.

184.] Trsorem L. If' 2" and ' are conjugate functions with respect
to z and y, and if & and y” are also conjugate functions with
respect to x and y, then the funclions &' +&” and y +3y" will
be comjugale funciions witk respect lo z and y.

dd _dy e’ dy’

For = dy an T
d' 4 ’? d ’ ’”
therefore ,,w;‘w ) _ 4y +5) .
&z dy
=’ dy’ Cda” dy”

Also =" ™ =

therefore d(@ +27) - Ay +y") :
dy dz

or z +a” and ¥ + 4" are conjugate with respect to 2 and y.
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Graphic Representation of a Function which is the Sum of Two
CGiven Functions.

Let a function (a) of # and z be graphically represented by a
geries of curves in the plane of zy, each of these curves corre-
sponding to a value of a which helongs to a series of such values
increasing by a common difference, 8.

Let any other function, B, of # and 7 be represented in the same
way by a series of curves corresponding to a scrics of values of B8
having the same common difference as those of a.

Then to represent the function a4 3 in the same way, we must
draw a series of curves through the intersections of the two former
series from the intersection of the curves (a) and (8) to that of the
curves (a+8) and (3—8), then through the intersection of {a+ 28)
and (3—28), and so on. At each of these points the function will
have the same value, namely a+ 3. The next curve must be drawn
through the points of intersection of a and 843, of a+3 and B,
of a+23 and B—3, and so on. The function belonging to this
curve will be a +8 + 3.

In this way, when the series of curves (a) and the series (8) are
drawn, the series (a+ ) may be constructed. These three series of
curves may be drawn on separate pieces of transparent paper, and
when the first and second have been properly superposed, the third
may be drawn.

The combination of conjugate functions by addition in this way
enables us to draw figures of many interesting cases with wery
little trouble when we know how to draw the simpler cases of
which they are compounded. We have, however, a far more
powerful method of transformation of solutions, depending on the
following theorem.

185.] Trerorem II, If o7 and y” are comjugate functions with
respect to the variables ¥ and y', and of 2 and y are conjugate
Junctions with respect to z and vy, then 3 and y” will be con-
Jugate functions with respect to x and y.

For do” _ Ao T + da” dy’ )
de ~  di de ' dy da
W Ay
= Ty dy T Ay’
dy”
T @
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de’  do” dd | d2 dy

dy = @y Taydy
by s
dy dz~ do de ’
dy”

L

and

and these are the conditions that #” and g” should be conjugate
functions of # and g.

This may also be shewn from the original definition of conjugate
functions. For 2”7+ «/ff_g/" is a function of » 4+ +/—1%/, and
&+ —1y is a function of z ++/—1z. Ience, 274+ —14”
is a function of z + \/———fy

In the same way we may shew that if 2" and y" arc conjugate
functions of # and 7, then z and y are conjugate functions of 2’
and 7.

This theorem may be interpreted graphiecally as follows :—

Let 2/, %" be taken as rectangular coordinates, and let the curves
corresponding to values of #” and of 7 taken in regular arithmetical
series be drawn on paper. A double system of curves will thus be
drawn cutting the paper into little squares. ILet the paper be also
ruled with horizontal and vertical lines at equal intervals, and let
these lines be marked with the corresponding values of " and #".

Next, let another piece of paper be taken in which z and 7 are
made rectangular coordinates and a double system of curves #/, 5
is drawn, each curve being marked with the corresponding value
of 2" or . This system of curvilinear coordinates will correspond,
point for point, to the rectilinear system of coordinates 2”, " on the
first piece of paper.

Hence, if we take any number of points on the curve 2 on the
first paper, and note the values of 2’ and y” at these points, and
mark the corresponding points on the second paper, we shall find
a number of points on the transformed curve z”. If we do the
same for all the curves 27, ¥ on the first paper, we shall obtain on
the second paper a double series of curves #”, 3 of a different form,
but having the same property of cutting the paper into little
squares.
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186.) Turorem IIL. I/ 7 is any function of & and ¥, and if '
and y are conjugate functions of w and y, then
azrv drp, A2V A2V ,
ff(dzz dy*® )d wdy ~ff i T ([_/5) da dyf,

the integration being between the same limits.

For av __d¥ dx’ dV(]y
° dz = de T ay ds’
eV _ a2V dﬁ')ﬁa drV do dy A2V dy?
=) Y gy a i AT ar
AV &g’ AV iy
dz’ dz? Ey' dz? ?
azv (L.c’dj/ a2V dy'*
da" dy’ dy dy dez d./l
av e AV dry
taw dy? + dy JJ

Adding the last two equations, and remembering the conditions
of conjugate functions (1), we find

+

d2V a2V dr'|?

d =
an (/yz ast dy y

a*v 42V drV dy

T
CV BV _ &V &y
dr? dy® dr’? Ndz

,),

— 2
d.c\ ) av ( Y

PR

BV |V ey
da'? d‘/Z) (d,; 7(],5/ (Zy d.z)
Hence
arv  drv BV BV A dy Ay,
f/(clx‘ ){Zx dy _f_/‘(,[m'z dy’z) (?ZE d_y - @%) du dy,

aryv cZ v,
ff(d.v’z )dw dy’.

If 7 is a potential, then, by P01sson s equation

d2V dzz dmo — 0
W—’rdyz-i- Tp=0,

and we may write the result

ffp dxdy = Up’ ar’ dy,

or the quantity of electricity in corresponding portions of two
systems is the same if the coordinates of one system are conjugate
functions of those of the other.
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Additional Theorems on Conjugate Functions.

187.] Taeorex IV. If @y and y,, and also z, and ¥y, are con-
Jugate functions of = and y, then, if
X=aom—~p9 and Y =zy+z7,
X and ¥ will be conjugate functions of x and y.

For X+ /0 = (@, + v =19) @+~ —12,)-

TrEOREM V. If ¢ be a solution of the equalion

P dzg
@ Y gp =0
d¢
dp®  del , dz
and if ZR_.log(d‘—i- ), and © = tan IW’
dy

B and © will be conjugate functions of x and y.

For £ and © are conjugate functions of — ¢ and - j’, and these

dz

are conjugate functions of # and y.

Exavere I.— Inversion.

188.] As an example of the gencral method of transformation
let us take the case of inversion in two dimensions.

If O is a fixed point in a plane, and 04 a fixed direction, and
if # = OP = aer, and 0 = 40P, and if #, y are the rectangular
coordinates of P with respect to O,

p=10g‘%«/x2+y2, 0= n—l‘y 1

& = aefcosd, Y = oeP smB,J
p and 6 are conjugate functions of # and .
If p = np and ¢ = 26, ¢’ and & will be conjugate functions of p

and 8. In the case in which # == —1 we have
2
r-—-%, and 6 =—9, (6)

which is the case of ordinary inversion combined with turning the
figure 180° round 04.

Inversion in Two Dimensions.

In this case if » and #” represent the distances of corresponding
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points from O, ¢ and ¢ the total electrification of a body, 8 and §”
superficial elements, 7 and 7’ solid elements, ¢ and o surface-

densities, p” and p” volume densities, ¢ and ¢" corresponding po-
tentials,

Y 8 et R S L

FTET AT T

€ 1 a7t at ¢ at

e=l eTaTp T s "
4
? 1
¢

ExameLe 11.—Eleciric Images in Two Dimensions.

189.] Let A4 be the centre of a circle of radins 40 = 4, and let
E be a charge at 4, then the potential
at any point P is

b
¢ =2Flog =47’ (8)
and if the circle is a section of a hollow
conducting cylinder, the surface-density

at any point @ 1s — 2£ Fig. 17.
v

Invert the system with respect to a point O, making
40 = mb, and a? = (m%2—1)6%;

b
then we have a charge at 4" equal to that at 4, where 44" = el
The density at @ is 7

_ B poax?
anh  AQ*
and the potential at any point P within the circle is
¢ = ¢ = 2 (log b—log 4P),
= 2F (log OFP —log 4’ P —log m). (9)
This is equivalent to a combination of a charge F at 4’, and a
charge —F at 0, which is the image of A4’, with respect to the
circle. The imaginary charge at O is equal and opposite to that
at 4,
If the point P’ is defined by its polar coordinates referred to the
centre of the circle, and if we put

H

p=logr—logbd, and p,=1logd4 —logh,
then AP = bee, A = bepo, A0 = be-ro (10)
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and the potential at the point (p, 0) is
¢ = Elog (=20 —2e~r ¢? cos 0 +¢2P)
— L log (e?ro—2 ePoef cos 8 +e%f)+2 Ep,.  (11)

This is the potential at the point (p, 0) due to a charge ¥, placed
at the point (p,, 0), with the condition that when p = 0, ¢ = 0.

In this casc p and 0 are the conjugate functions in equations (3):
p 1s the logarithm of the ratio of the radius vector of a point to
the radius of the cirele, and 9 is an angle.

The centre is the only singular point in this system of coordinates,

L. do .
and the line-integral of le— ds round a closed curve is zero or 2w,
$

according as the closed curve excludes or includes the centre.

Exampry II1.—Neumann’s Transformation of this Case *.

190.] Now let a and 8 be any conjugate functions of » and y,
such that the curves (a) are equipotential curves, and the curves
(B) are lines of force due to a system consisting of a charge of half
a unit at the origin, and an electrified system disposed in any
manner at a certain distance from the origin.

Let us suppose that the curve for which the potential is q, is
a closed curve, such that no part of the electrified system excepl the
half-unit at the origin lies within this curve.

Then all the curves (a) between this curve and the origin will be
closed curves surrounding the origin, and all the curves (8) will
meet in the origin, and will cut the curves (a) orthogonally.

The coordinates of any point within the curve (a,;) will be determ-
ined by the values of « and 8 at that point, and if the point travels
round one of the curves a in the positive direction, the value of 8
will increase by 2w for cach complete circuit.

If we now suppose the curve (a;) to be the section of the inner
surface of a hollow ecylinder of any form maintained at potential
zero under the influence of a charge of linear density Z on a line of
which the origin is the projection, then we may leave the external
electrified system out of consideration, and we have for the potential
at any point (o) within the curve

= 2F(a—ay), (12)
and for the quantity of electricity on any part of the curve q,
between the points corresponding to 8, and 3,

Q@ = 2L£(8,—B.) (13)

* See Crelle’s Journal, 1861.
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If in this way, or in any other, we have determined the dis-
tribution of potential for the case of a given curve of section when
. the charge is placed at a given point taken as origin, we may pass
to the case in which the charge is placed at any other point by an
application of the general method of transformation.

Let the values of a and 8 for the point at which the charge is
placed be a, and B;, then substituting in equation (11) a—aq, for p,
and 8—p, for 6, we find for the potential at any point whose co-
ordinates are a and S,

¢ = Elog (1 —2¢ " cos (8—B,) +ex=—)
— Elog (1—2e** 2% cos (— ) + e**o-2%)) 4 2 F (a) —ay). (14)

This expression for the potential becomes zero when a=aq,, and is
finite and continuous within the curve a, except at the point a, 3;,
at which point the first term becomes infinite, and in its immediate
neighbourhood is ultimately equal to 2 Elog#’, where 7" is the
distance from that point.

We have therefore obtained the means of deducing the solution
of Green's problem for a charge at any point within a closed curve
when the solution for a charge at any other point is known.

The charge induced upon an element of the curve a, between the
points B and 84 d3 by a charge £ placed at the point a; 8, 1s

¥ 1 — g2(e1—a0)
ﬁ 1 —2¢(®1—%) cos ('3_}31) + e2(m1— %)

8. (15)

From this expression we may find the potential at any point
a, 3, within the closed curve, when the value of the potential at
every point of the closed curve is given as a function of 8, and
there is no electrification within the closed curve.

For, by Theorem I1 of Chap. I1I, the part of the potential at
a; B;, due to the maintenance of the portion &3 of the closed curve
at the potential 7, is # ¥, where 2 is the charge induced on ¢8 by
unit of electrification at a, 3,. Hence, if /" is the potential at a
point on the closed curve defined as a function of 8, and ¢ the
potential at the point a, 8, within the closed curve, there being no
electrification within the curve,

1 /2" (1 —e2a—a) V(g
0

¢ = 27 1—2 ela—30) cos (B— B,) 4 €2lar—20) ~

(16)
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236 CONJUGATE FUNCTIONS. [rg1.

Exavere IV.— Distribution of Electricity near an Edge of a
Conductor formed by Two Plane Faces.

191.7 In the case of an infinite plane face of a conductor charged
with eleetricity to the surface-density o, we find for the potential
at a distance y from the plane

V=C—4ma,y,
where C is the value of the potential of the conductor itself.
Assume a straight line in the plane as a polar axis, and transform
into polar coordinates, and we find for the potential
V= C—4moyaePsind,
and for the quantity of electricity on a parallelogram of breadth
unity, and length ae? measured from the axis
E = o,aer.
Now let us make p = #p” and § = »6’, then, since p’ and 8 are
conjugate to p and 6, the equations
V= _C—47n0yae"” sinnb
and = oyae"”
express a possible distribution of electricity and of potential.

If we write # for @e?”,  will be the distance from the axis, and

0 the angle, and we shall have

V=C—4mng, ar sin z 6,
r”

E =g =

¥ will be equal to C whenever 8 = 7 or a multiple of =.

Let the edge be a salient angle of the conductor, the inclination
of the faces being a, then the angle of the dielectric is 27 —a, so
that when § =27 —a the point is in the other face of the conductor.
‘We must therefore make

#(2m—a) =7, or n= T_.
2m—a
Th V= 0—1 " sin —
en @ n
ey () S1 271'—4’

Ym—a
Fena (Y

The surface-density ¢ at any distance 7 from the cdge 1s

dF 2
= _117 2r—a 0( )

3
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‘When the angle is a salient oue @ is less than 7, and the surface-
density varies according to some inverse power of the distance
from the edge, so that at the edge itself the density becomes
infinite, although the whole charge reckoned from the edge to any
finite distance from it is always finite,

Thus, when a=0 the edge is infinitely sharp, like the edge of a
mathematical plane. In this case the density varies inversely as
the square root of the distance from the edge.

‘When a = g the edge is like that of an equilateral prism, and the
density varies inversely as the 2 power of the distance.

‘When a=g the edge is a right angle, and the density is in-
versely as the cube root of the distance.

When a= 23‘" the edge is like that of a regular hexagonal prism,

and the density is inversely as the fourth root of the distance.

When a = 7 the edge 1s obliterated, and the density is constunt.

When o =4 7 the edge is like that in the inside of the hexagonal
prism, and the density is directly as the square root of the distance
from the edge.

‘When a=3 7 the edge is a re-entrant right angle, and the density
is directly as the distance from the edge.

When e=§ # the edge is a re-entrant angle of 60°, and the
density is directly as the square of the distance from the edge.

In reality, in all cases in which the density becomes infinite at
any point, there is a discharge of clectricity into the dielectric at
that point, as is explained in Art. 55.

Exaupre V.—FEllipses and Hyperbolas. TFig. X.
192.] We have seen that if
z, = ¢® cos , = e*sin v, (1)
z and y will be conjugate functions of ¢ and .

Also, if z, = e~%cosy, o= —e® sin, (2)
z, and y, will be conjugate functions. Hence, if
2o=x,+x,=(e®+¢ %) cos s, 2y =y, + y,=(e®—e®)siny, (3)
2 and 7 will also be conjugate functions of ¢ and .

In this case the points for which ¢ is constant lie in the ellipse
whose axes are ¢? +¢—% and e® —e— %,
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238 CONJUGATE FUNCTIONS, [193.

The points for which 1 is constant lie in the hyperbola whose
axesare 2cosy and 2siny.

On the axis of z, betweenz = —1 and z =+ 1,
¢ =0, ¥ = cos~la. (4)
On the axis of z, beyond these limits on either side, we have
r> 1, W =0, ¢ = log (2 + /w2 1), (5)

r<—1, = m, (j):log-(\/.ﬂv—l—w)

Hence, if ¢ is the potential function, and - the function of flow,
we have the case of electricity flowing from the negative to the
positive side of the axis of z through the space between the points
—1 and +1, the parts of the axis beyond these limits being
impervious to electricity.

Since, in this case, the axis of # is a line of flow, we may suppose
1t also impervious to electricity.

We may also consider the ellipses to be sections of the equi-
potential surfaces due to an indefinitely long flat conductor of
breadth 2, charged with half a unit of electricity per unit of length,

If we make \ the potential function, and ¢ the function of flow,
the case becomes that of an infinite plane from which a strip of
breadth 2 has been cut away and the plane on one side charged to
potential = while the other remains at zere.

These cases may be considered as particular cases of the quadrie
surfaces treated of in Chapter X. The forms of the curves are
given 1n Fig, X,

Exampre VI.—Fig. X1.

193.7 Let us next consider &” and 3’ as functions of z and y, where
o= blog /22 + 52, ¢ = Utan—! %’ (6)

2" and " will be also conjugate functions of ¢ and .

The curves resulting from the transformation of Fig. X with
respeet to these new coordinates are given in Fig. XI.

If o’ and ¥ are rectangular coordinates, then the properties of the
axis of # in the first figure will belong to a series of lines parallel
to & i the second figure for which y"= bn'w, where #” 18 any
integer,

The positive values of 2” on these lines will correspond to values
of # greater than unity, for which, as we have already seen,

¥ = nm, ¢ = log (r+ V/22—1) = log (6%4—\/62{—1). (7
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195.] EDGE OF AN ELECTRIFIED PLATE. 239

The negative values of 2” on the same lines will correspond to

values of 2 less than unity, for which, as we have seen,
-
¢ =0, ¥ = cos—la = cos—1e". (8)

The properties of the axis of 7 in the first figure will belong to

a series of lines in the second figure parallel to &/, for which
f=bm (W ). (9)

The value of Y along these lines is = = (»"+31) for all points
both positive and negative, and .

z 27
¢=10g(_y+/y2+1)=log(e-b_+\/e”+1). (10)

194.] If we consider ¢ as the potential function, and + as the
funetion of flow, we may consider the case to be that of an in-
definitely long strip of metal of breadth 74 with a non-conducting
division extending from the origin indefinitely in the positive
direction, and thus dividing the positive part of the strip into two
separate channels. We may suppose this division to be a narrow
slit in the sheet of metal.

If a current of eleciricity 1s made to flow along one of these
divisions and back again along the other, the entrance and exit of
the current being at an indefinite distance on the positive side of
the origin, the distribution of poteatial and of eurrent will be given
by the functions ¢ and y respectively.

If, on the other hand, we make y the potential, and ¢ the
function of flow, then the case will be that of a current in the
general direction of y, flowing through a sheet in which a number
of non-conducting divisions are placed parallel to », extending from
the axis of # to an indefinite distance in the negative direction.

195.] We may also apply the results to two important cases in
statical electricity.

(1) Let a conductor in the form of a plane sheet, bounded by a
straight edge but otherwise unlimited, be placed in the plane of zz
on the positive side of the origin, and let two infinite conducting
planes be placed parallel to it and at distances w4 on either side.
Then, if  is the potential function, its value is 0 for the middle
conductor and % = for the two planes.

Let us consider the quantity of electricity on a part of the middle
conductor, extending to a distance 1 in the direction of 2, and from
the origin to 2 = a.

The clectricity on the part of this strip extending from #; to =,

s L (ha—by)-

45
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Hence from the origin to 2’= @ the amount is

a %a
E=%log(€7+\/(3’f—l)- (1)
ko
If a is large compared with &, this becomes
a
E= 41; log2et,
a+b6log, 2
—_ eZ . 12
47h (12)

Hence the quantity of electricity on the plane bounded by the
straight edge is greater than it would have been if the cleetricity
had been uniformly distributed over it with the same density that
it has at a distance from the boundary, and it is equal to the
quantity of electricity having the same uniform surface-density,
but extending to a breadth equal to &log, 2 beyond the actual
boundary of the plate.

This imaginary uniform distribution is indicated by the dotted
straight lines in Fig. XT. The vertical lines represent lines of
force, and the horizontal lines equipotential surfaces, on the hypo-
thesis that the density is uniform over both planes, produced to
infinity in all directions.

196.] Electrical condensers are sometimes formed of a plate
placed midway between two parallel plates extending considerably
beyond the intermediate one on all sides. If the radius of curvature
of the boundary of the intermediate plate is great compared with
the distance between the plates, we may treat the boundary as
approximately a straicht line, and calculate the capacity of the
condenser by supposing the intermediate plate to have its area
extended by a strip of uniform breadth round its boundary, and
assuming the surface-density on the extended plate the same as
it is in the parts not near the boundary.

Thus, if § be the actual area of the plate, L its circumference,
and B the distance between the large plates, we have

.y (13)
m

and the breadth of the additional strip is

o= 8.2 p (14)
w
so that the extended area is
8 = 8+ BIL >log,2. (15)
m
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The capacity of the middle plate is

15 8 1
n T ~anlp tEglE2h 1)

Correction for the Thickness of the Plate.

Since the middle plate is generally of a thickness which cannot
be neglected in comparison with the distance between the plates,
we may obtain a better representation of the facts of the case by
supposing the section of the intermediate plate to correspond with
the curve yr = ",

The plate will be of nearly uniform thickness, 8 = 24/, at a
distance from the boundary, but will be rounded near the edge.

The position of the actual edge of the plate is found by putting
¥ =0, whence z'= & log cos . (17)

The value of ¢ at this edge i1s 0, and at a pownt for which &= a
it is e+ &log, 2

]

Hence the quantity of electricity on the plate is the same as

if a strip of breadth B w8
=_ log, (2 cos @) (18)

had been added to the plate, the density being assumed to be every-
where the same as it 1s at a distance from the boundary.

Density near the Fdge.
The surfuce-density at any point of the plate is

z

1 de 1 et
dwdd ~ 4mbh 2z
\/eb‘—l
1 _2x 4%
— b b &
=10 (1+&e + e &c.). (19)

The guantity within brackets rapidly approaches unity as 2
increases, so that at a distance from the boundary equal to z times
the breadth of the strip a, the actual density is greater than the

normal density by about —_—— of the normal density.

2zn+1
In like manner we may calculate the density on the infinite planes

c'|5!

1
7 lz =
\/e +1
When o/ =0, the density is 27# of the normal density.
VOL. I. R

(20)
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At n times the breadth of the strip on the positive side, the
density is less than the normal density by about —2“1\?1 .

At % times the breadth of the strip on the negative side, the
density is about % of the normal density.

These results indicate the degree of accuracy to be expected in
applying this method to plates of limited extent, or in which
irregularities may exist not very far from the boundary. The same
distribution would exist in the case of an infinite series of similar
plates at equal distances, the potentials of these plates being
alternately 4+ 7 and — 7. In this case we must take the distance
betwecen the plates equal to B.

197.] (2) The second case we shall consider 1s that of an infinite
series of planes parallel to @z at distances B =74, and all cut off by
the plane of y2, so that they extend only on the negative side of this
plane. If we make ¢ the potential function, we may regard these
planes as conductors at potential zero.

Let us consider the curves for which ¢ is constant.

When 3 = n7é, that is, in the prolongation of each of the planes,

we have &=0blog % (e? + &%) (21)
when y'= (n+ %) 47, that is, in the intermediate positions
= blog } (e —e*). (22)

Hence, when ¢ 1s large, the curve for which ¢ is constant is
an undulating line whose mean distance from the axis of 4 1s

approximately o = b(p—log,2), (23)
and the amplitude of the undulations on either side of this line is
et e¢
1blog g (24)

When ¢ is large this becomes de~?#, so that the curve approaches
to the form of a straight line parallel to the axis of ¥ at a distance
a from aéd on the positive side.

If we suppose a plane for which 2" = @, kept at a constant
potential while the system of parallel planes is kept at a different
potential, then, since é¢ = a + & log, 2, the surface-density of
the electricity induced on the plane is equal to that which would
have been induced on it by a plane parallel to itself at a potential
equal to that of the series of planes, but at a distance greater
than that of the edges of the planes by 4 log, 2.
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If B is the distance between two of the planes of the serics,
B = =&, so that the additional distance is

@ = Bl_oé'g_. (25)
'y

198.7 Let us next consider the space included between two of
the equipotential surfaces, one of which consists of a series of parallel
waves, while the other corresponds to a large value of ¢, and may
be considered as approximately plane.

If D is the depth of these undulations from the crest to the trough
of each wave, then we find for the corresponding value of ¢,

D
6=1lgt L. (26)
e — 1
The value of 27 at the crest of the wave is
blog % (e* +e-%). (27)

Hence, if 4 is the distance from the crests of the waves to the
opposite plane, the capacity of the system composed of the plane
surface and the undulated surface is the same as that of two planes
at g distance 4+ a” where

, B 2
o = — log, —
1+e 8

199.] If a single groove of this form be made in a conductor
having the rest of its surface plane, and if the other conductor is
a plane surface at a distance 4, the capacity of the one conductor
with respeet to the other will be diminished. The amount of this

(28)

diminution will be less than the %th part of the diminution due

to # such grooves side by side, for in the latter case the average
electrical force between the conductors will be less than in the
former case, so that the induction on the surface of each groove will
be diminished on account of the neighbouring grooves.

If L is the length, B the breadth, and D the depth of the groove,
the eapacity of a portion of the opposite plane whose area is § will be

S I/B ﬂ.’

LT . 29
4md 4w d.A+a (29)
If 4 is large compared with B or o/, the correction becomes
L B? 2
el — @0
14e¢ B
R 2
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and for a slit of infinite depth, putting 2 = oo, the correction is

L B?
mz—zloge& (31)

To find the surface-density on the series of parallel plates we

v when ¢ = 0. We find

must find ¢ = - 5
4 7 da

1 1
O — —5 —o————
47d x’
\/6_217_1

(32)

The average density on the plane plate at distance 4 from the

edges of the series of platesis ¢ = 4—16— . Hence, at a distance from
T
the edge of one of the plates equal to za the surface-density is
1

———— of this average density.

V2B
200.] Let us next attempt to deduce from these results the
distribution of electricity in the figure formed by rotating the
plane of the figure about the axis = —F. 1In this case, Poisson’s
equation will assume the form
a2V drV 1 av
P + W + m ay
Let us assume /'=¢, the function given in Art.193, and determine
the value of p from this equation. We know that the first two
terms disappear, and therefore
1 1 dé
PE TRy (34
If we suppose that, in addition to the surface-density already
investigated, there 1s a distribution of electricity in space according
to the law just stated, the distribution of potential will be repre-
sented by the curves in Fig. XT.

+47p = 0. (33)

Now from this figure it is manifest that Z‘; is generally very

small except near the boundaries of the plates, so that the new
distribution may be approximately represented by what actually
exists, namely a certain superficial distribution near the edges of
the plates.

If therefore we integrate f pdx’dy’ between the limits =0 and

y’.—_-gb, and from 2'=—o« to £ =+, we shall find the whole

additional charge on one side of the plates due to the curvature.

IRIS - LILLIAD - Université Lille 1



201.] THEORY OF THOMSON'S GUARD-RING. 245

) dp Ay
Since 2? = 1

+m» , + o 1 1 d\p ’
[ =] Tn (B ) dz ™

_r 1 7 1)- (35)

TB8R¥y\BT
Integrating with respect to #’, we find
B ft= 1 1RE+B, R+B
Y =~ — - =~ - 36
fojiwpflxdy Ry Y (36)
18 1 b
185 165 37
TP METY ik (57)

This is the total quantity of electricity which we must suppose
distributed in space near the positive side of one of the eylindric
plates per unit of circumference. Since it is only close to the edge
of the plate that the density is sensible, we may suppose it all
condensed on the surface of the plate without altering sensibly its
action on the opposed plane surface, and in calculating the attraction
between that surface and the cylindric surface we may suppose this
electricity to belong to the cylindric surface.

The superficial charge on the positive surface of the plate per
unit of length would have been — 4§, if there had been no curvature.

Hence this charge must be multiplied by the factor (1 + é%)
to get the total charge on the positive side.

In the case of a disk of radius X placed midway between two
infinite parallel plates at a distance B, we find for the capacity
of the disk R

AP Ay TR ) (38)
D -om

Theory of Thomson’s Guard-ring.

201.7 In some of Sir W. Thomson’s electrometers, a large plane
surface is kept at one potential, und at a distance & from this surface
is placed a plane disk of radius & surrounded by a large plane plate
called a Guard-ring with a circular aperture of radius £’ concentric
with the disk. This disk and plate are kept at potential zero.

The interval between the disk and the guard-plate may be
regarded as a circular groove of infinite depth, and of breadth
I’ — R, which we denote by B.
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The charge on the disk due to unit potential of the large disk,
2

supposing the density uniform, would be TIRT[ .

The charge on one side of a straight groove of breadth B and
length I = 2= &, and of infinite depth, would be
, BB
4 A—}—a'
But since the groove is not straight, but has a radius of curvature
£, this must be multiplied by the factor (1 + éﬁ)
'
The whole charge on the disk is therefore
R* | RB B
R Gy ) (39)
_REy R OR?-RE o
Y 84  A+d’
The value of a cannot be greater than
o — B;log?

™

, == 0.22 B nearly.

If B is small compared with either 4 or X this expression will
give a sufficiently good approximation to the charge on the disk
due to unity of difference of potential. The ratio of 4 to &
may have any value, but the radii of the large disk and of the
guard-ring must exceed £ by several multiples of 4.

Exawrre VII.—Fig. XII.

202.] Helmholtz, in his memoir on discontinuous fluid motion %,
has pointed out the application of scveral formulae in which the
coordinates are expressed as functions of the potential and its
conjugate function.

One of these may be applied to the case of an electrified plate
of finite size placed parallel to an infinite plane surface connected
with the earth.

Since z =4d¢ and 7, =4y,
and also z, = Ae*cosy and y, = AePsiny,
are conjugate functions of ¢ and v, the functions formed by adding
z, to @, and g, to », will be also conjugate. Hence, if

z = A¢+4e® cosy,
y =AY+ Adetsiny,

* Kinigl. Akad. der Wissenschaften, zu Berlin, April 23, 1868.
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then z and y will be conjugate with respect to ¢ and y, and ¢ and
¢ will be conjugate with respect to # and .

Now let @ and y be rectangular coordinates, and let £y be the
potential, then £¢ will be conjugate to £y, £ being any constant.

Let us put y = 7, then y = dn, 2 = 4 (p—e?).

If ¢ varies from —oo to 0, and then from 0 to 4o, # varies
from —ec to —4 and from —4 to —c. Hence the equipotential
surface for which £y = is a plane parallel to # at a distance é =74
from the origin, and extending from —oo to 2 = —A4.

Let us consider a portion of this plane, extending from

z2=—(Ad+a)torx=—Adand fromz=0toz=c¢,
let us suppose its distance from the plane of 2z to be y = b = 4,
and its potential to be V= £y = k.

The charge of electricity on any portion of this part of the plane
1s found by ascertaining the values of ¢ at its extremities.

If these are ¢, and ¢,, the quantity of electricity is

ook (G,

We have therefore to determine ¢ from the equation
2=—(d+a) = A(p—e?),
¢ will have a negative value ¢, and a positive value ¢, at the edge
of the plune, where z = — 4, ¢ = 0.
IHence the charge on the negative side is —c £ ¢, and that on

the positive side is ¢ £ ¢,.
If we suppose that a is large compared with A,

a
2 —jf—1+e—A—1+&c'
¢1:—Z—1+6 ’

¢, = log {Z +1 +10g(%— +1 +&c.)}-

If we neglect the exponential terms in ¢, we shall find that the
charge on the negative surface exceeds that which 1t would have
if the superficial density had been uniform and equal to that at a
distance from the boundary, by a quantity equal to the charge on a

strip of breadth 4 = ¢ with the uniform superficial density.
™
The total capacity of the part of the plane considered is

¢
¢= GZ (¢2_¢1)'
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The total charge is C¥, and the attraction towards the infinite
plane is

A
ac ac @ _e
12t e 5
14 db—V 4”52(1+1 410 +e A+&C.)
+a gA
V2e & 42

a
= 4aE 0+ 5 g o8 TR}

The equipotential lines and lines of force are given in Fig. XII.

Exavrre VIIL—Tleory of a Grating of Parailel Wires. Fig. X1T1.

203.] In many electrical instruments a wire grating is used to
prevent certain parts of the apparatus from being eclectrified by
induction. We know that if a conductor be entirely surrounded
by a metallic vessel at the same potential with itself, no electricity
can be induced on the surface of the conductor by any electrified
body outside the vessel. The conductor, however, when completely
surrounded by metal, cannot be seen, and therefore, in certain cases,
an aperture is left which is covered with a grating of fine wire.
Let us investigate the effect of this grating in diminishing the
effect of electrical induction. We shall suppose the grating to
consist of a scries of parallel wires in one plane and at equal
intervals, the diameter of the wires being small compared with the
distance between them, while the nearest portions of the electrified
bodies on the one side and of the protected conductor on the other
are at distances from the plane of the sereen, which are considerable
compared with the distance between consecutive wires.

204.} The potential at a distance #* from the axis of a straight
wire of infinite length charged with a guantity of electricity A per

unit of length is 7 =—2xlog s +C. (1)

‘We may express this in terms of polar coordinates referred to an
axis whose distance from the wire 1s unity, in which case we must
make 72 = 1427 cos 412, (2)
and if we suppose that the axis of reference is also charged with
the linear density A", we find

V:-)\log(1—2rcos9+r2)~—2)\’logr+ C. (3)
If we now make
2 27
7 = ez a, g = Z ? (4)
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then, by the theory of conjugate functions,
(gt 2me ) bry
V=—Alog 1—20“005—;v+e“ —2Aloge * +C, (5)

where # and y are rectangular coordinates, will be the value of the
potential due'to an infinite series of fine wires parallel to z in the
plane of yz, and passing through points in the axis of z for which
z is a multiple of a.

Each of these wires is charged with a linear density A.

The term involving A" indicates an cleetrification, producing a

47X

constant force — in the direction of 7.

The forms of the equipotential surfaces and lines of force when
A= 0 are given in Fig. XIII. The equipotential surfuces near the
wires are nearly cylinders, so that we may consider the solution
approximately true, even when the wires are cylinders of a dia-
meter which 1s finite but small compared with the distance between
them.

The equipotential surfaces at a distance from the wires become
more and more neatly planes parallel to that of the grating.

If in the equation we make y = &;, a quantity large compared
with @, we find approximately,

Vi=— t7by (A +X)+ C nearly. (6)
a
If we next make y = —¥, where &, is a negative quantity large
compared with g, we find approximately,
V,=— 178 (A—A") + C nearly. (N
a

If ¢ is the radius of the wires of the grating, ¢ being small
compared with g, we may find the potential of the grating itself
by supposing that the surface of the wire coincides with the equi-
potential surface which cuts the plane of yz at a distance ¢ from the
axis of 2. To find the potential of the grating we thercfore put
2z = ¢, and y = 0, whence

V=—2}\log2sin¥ +C. (8)

205.] We have now obtained expressions representing the elec-
trical state of a system consisting of a grating of wires whose
diameter is small compared with the distance between them, and
two plane conducting surfaces, one on each side of the grating,
and at distances which are great compared with the distance
between the wires.
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The surface-density o; on the first plane i1s got from the equa-

tion (6) av, 4w

= = e 9
470y 7 " (A+X) (9)

That on the second plane o, from the equation (7)

av, im
—__ =— "2 A=X\ 10
tmo=— (A —X). (10)
If we now write @ . TcC

a=—2ﬁloge(2sm;), (11)

and eliminate A and A" from the equations (6), (7), (8), (9), (10),
we find
20,8, b 24

_2)_ Vz—V——Z’ (12)

4nad(bl+b+ )_—V+V(1+2 1) — Vﬁ (13)
‘When the wires are 1nﬁn1tely thin, a becomes mﬁmte, and the
terms in which it is the denominator disappear, so that the case
is reduced to that of two parallel planes without a grating in-
terposed.

If the grating 1s in metallic communication with one of the
planes, say the first, =7, and the right-hand side of the equation
for o, becomes 7, —¥,. Hence the density o induced on the first
plane when the grating is interposed is to that which would have
been induced on it if the grating were removed, the second plane

26,4,
a (b +6y)

‘We should have found the same value for the effect of the grating
in diminishing the eleetrical influence of the first surface on the
sccond, if we had supposed the grating connected with the second
surface. This is evident since 4, and 4, enter into the expression
In the same way. It is also a direct result of the theorem of
Art. 88.

The induction of the one electrified plane on the other through
the grating is the same as if the grating were removed, and the
distance between the planes increased from &, + 6, to

&+6+266

being maintained at the same potential, as 1 to 1+

If the two planes are kept at potential zero, and the grating
electrified to a given potential, the quantity of electricity on the
grating will be to that which would be induced on a plane of equal
area placed in the same position as

25,56,1s to 24, by+a (6,4 &,).
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This investigation is approximate only when &, and &, are large
compared with a, and when ¢ is large compared with ¢. The
quantity @ 1s a line which may be of any magnitude. It becomes
infinite when ¢ is indefinitely diminished.

If we suppose ¢ = 44 there will be no apertures between the
wires of the grating, and therefore there will be no induection
through it. We ought therefore to have for this case a = 0. The
formula (11), however, gives in this case

122
a=—, log, 2, =-—0.11gq,

which is evidently erroneous, as the induction can never be altered
in sign by means of the grating. It is easy, however, to proceed
to a higher degree of approximation in the case of a grating of
cylindrical wires. I shall merely indicate the steps of this process.

Method of Avprozimation.

206.] Since the wires are cylindrical, and since the distribution
of electricity on each is symmetrical with respect to the diameter
parallel to 7, the proper expansion of the potential is of the form

V=2Clogr+XCrcosid, (14)
where 7 is the distance from the axis of one of the wires, and 6 the
angle between r and g, and, since the wire is a conductor, when
r is made equal to the radius / must be constant, and thercfore
the coeflicient of each of the multiple cosines of § must vanish,

For the sake of conciseness let us assume new coordinates §, 5, &c.
such that

af =27z an=27wy, ap=2ur, aB =27k & (15)
and let Fy = log (P4 e~WrA—2 cos £). (16)

Then if we make
ar arF
V=AF+ 4, o +A22’)_2
by giving proper values to the coefficients 4 we may express any
potential which is a function of 7 and cos £ and does not become
infinite except when n+8 = 0 and cos £ = 1.

When 3 = 0 the expansion of 7 in terms of p and 4 is

+ &e. (17)

Fy=2logp+ s pZcos20— ;¢ p? cos 460+ &e. (18)
For finite values of B8 the expansion of F is

F=pt2log(1—e®)+ T pooso— T 2c0s204&e. (19
B—-B—{- Og( —€ )+-1te—_5p008 —‘(—1:?/;)—2[) cos + C.(
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In the case of the grating with two conducting planes whose
equations are 7= —p@, and 5= 8,, that of the plane of the grating
being 5 = 0, there will be two infinite series of images of the
grating. The first series will consist of the grating itself together
with an infinite series of images on both sides, equal and similarly
electrified. The axes of these imaginary cylinders lie in planes
whose equations are of the form

_ 1= & 20(B+8y) (20)
n being an integer.

The second series will consist of an infinite series of images for
which the coefficients 4, 4, 4,, &ec. are equal and opposite to the
same quantities in the grating itself, while 4, 4;, &ec. are equal
and of the same sign. The axes of these images are in planes whose
equations are of the form

n =28 & 2m(B:+ B (21)
m being an integer.

The potential due to any finite series of such images will depend
on whether the number of images is odd or even. MHence the
potential due to an infinite series is indeterminate, but if we add to
it the function Bxn 4 C, the eonditions of the problem will be sufficient
to determine the electrical distribution.

We may first determine 7; and 7,, the potentials of the two
conducting planes, in terms of the coefficients 4, 4;, &c., and of
D and C. We must then determine o, and o,, the surface-density
at any point of these planes. 'The mean values of o, and a, are
given by the equations

imo, = 4,— B, 470, = 4,+ B. (22)

‘We must then expand the potentials due to the grating itself
and to all the images in terms of p and cosines of multiples of 6,
adding to the result Bpeos+C.

The terms independent of 6 then give / the potential of the
grating, and the coefficient of the cosine of each multiple of
equated to zero gives an equation between the indeterminate co-
etficients.

In this way as many equations may be found as are sufficient
to eliminate all these coeflicients and to leave two equations to
determine oy and o, in terms of 73, ¥,, and 7.

These equations will be of the form

V—V=4mo(bi+a—y)+ama,(a+t7),
Vo— ¥V = 4dmo (at+y)+4mo,(6,+a—7y). (23)
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The quantity of electricity induced on one of the planes protected
by the grating, the other plane being at a given difference of
potential, will be the same as if the plates had been at a distance

(a—y) (4, + &) + B, B,—14a
a+ty

Y instead of b+ 8,.

The values of a and y are approximately as follows,
a { opr 2 5 ntct
= or U8 2 T 3 14t it
b1+ b

—4r —4r— —n—’ﬂ
TPV N (T I a+&c.)+&c.}» (24)

—41rh _4,,?_’2
3mac? e @ e 9
i o +&e. (25)

r= 3a?% 4+ mwic? .} _—e
1—e a l—e @
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CHAPTER XIIL
ELECTROSTATIC INSTRUMENTS.

On Electrosiatie Instruments.

TrE instruments which we have to consider at present may be
divided into the following classes :

(1) Electrical machines for the production and augmentation of
electrification.

(2) Multipliers, for increasing electrification in a known ratio.

(3) Electrometers, for the measurement of electric potentials and
charges.

(4) Accumulators, for holding large electrical charges.

Electrical Mackines.

207.] In the common electrical machine a plate or cylinder of
glass is made to revolve so as to rub against a surface of leather,
on which is spread an amalgam of zine and mercury. 'The surface
of the glass becomes electrified positively and that of the rubber
negatively. As the electrified surface of the glass moves away
from the negative electrification of the rubber it acquires a high
positive potential. It then comes opposite to a set of sharp metal
points in connexion with the conductor of the machine. The posi-
tive electrification of the glass induces a megative electrification
of the points, which is the more intense the sharper the points
and the nearer they are to the glass.

When the machine works properly there is a discharge through
the air between the glass and the points, the glass loses part of
its positive charge, which is transferred to the points and so to
the insulated prime econductor of the machine, and to any other
body with which it is in electric communication.

The portion of the glass which is advancing towards the rubber
has thus a smaller positive charge than that which 1s leaving it
at the same time, so that the rubber, and the conductors in com-
munication with it, become negatively electrified.
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208.] ELECTROPHORUS. 255

The highly positive surfuce of the glauss where it leaves the
rubber is more attracted by the negative charge of the rubber than
the partially discharged surface which is advancing towards the
rubber. The electrical forces therefore act as a resistance to the force
employed in turning the machine. The work done in turning the
machine is therefore greater than that spent in overcoming ordinary
friction and other resistances, and the excess is employed in pro-
ducing a state of electrification whose energy is equivalent to this
excess.

The work done in overcoming friction is at once converted into
heat in the bodies rubbed together. The electrical energy may
be also converted either into mechanical energy or into heat.

If the machine does not store up mechanical energy, all the
energy will be converted into heat, and the only difference between
the heat due to friction and that due to electrical action is that the
former is generated at the rubbing surfuces while the latter may be
generated in conductors at a distance *.

We have seen that the electrical charge on the surface of the
glass is attracted by the rubber. If this attraction were sufficiently
intense there would Dbe a discharge between the glass and the
rubber, instead of between the glass and the collecting points. To
prevent this, flaps of silk are attached to the rubber. These become
negatively electrified and adhere to the glass, and so diminish the
potential near the rubber.

The potential therefore increases more gradually as the glass
moves away [rom the rubber, and therefore at any one poimnt there
1s less attraction of the charge on the glass towards the rubber, and
consequently less danger of direct discharge to the rubber.

In some electrical machines the moving part is of ebonite instead
of glass, and the rubbers of wool or fur. The rubber is then elec-
trified positively and the prime conductor negatively.

The Electrophorus of Volta.

208.] The electrophorus consists of a plate of resin or of ebonite
backed with metal, and a plate of metal of the same size. An
insulating handle can be screwed to the back of either of these
plates. 'The ebonite plate has a metal pin which connects the metal

» Tt is probable that in many cases where dynamical energy is converted into heat
by friction, part of the energy may be first transformed into electrical energy and
then converted into heat as the electrical energy is spent in maintaining currents of

ghort circuit close to the rubbing surfaces. See Sir W. Thomson, ‘¢ On the Electro-
dynamic Qualities of Metals." Phil. Trans., 1856, p. 650.
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256 ELECTROSTATIC INSTRUMENTS. [2c9.

plate with the metal back of the ebonite plate when the two plates
are in contact.

The ebonite plate is electrified negatively by rubbing it with
wool or cat’s skin. The metal plate is then brought near the
ebonite by means of the insulating handle. No direct discharge
passes between the ebonite and the metal plate, bhut the potential
of the metal plate is rendered negative by induction, so that when
it comes within a certain distance of the metal pin a spark passes,
and if the metal plate be now carried to a distance it is found
to have a positive charge which may be communicated to a con-
ductor. The metal at the back of the ebonite plate i1s found to
have a negative charge equal and opposite to the charge of the metal
plate.

In using the instrument to charge a condenser or acenmulator
one of the plates 1s laid on a conductor in communication with
the earth, and the other is first laid on it, then removed and applied
to the electrode of the condenser, then laid on the fixed plate and
the process repeated. If the ebonite plate is fixed the condenser will
be charged positively. If the metal plate is fixed the condenser will
be charged negatively.

The work done by the hand in separating the plates is always
greater than the work done by the electrical attraction during the
approach of the plates, so that the operation of charging the con-
denser involves the expenditure of work. Part of this work is
accounted for by the energy of the charged condenser, part is spent
in producing the noise and heat of the sparks, and the rest in
overcoming other resistances to the motion.

On Machines producing Electrification by Mechanical Work.

209.] In the ordinary frictional electrical machine the work done
in overcoming friction is far greater than that done in increasing
the electrification. Hence any arrangement by which the elec-
trification may be produced entirely by mechanical work against
the electrical forces is of scientific importance if not of practical
value. The first machine of this kind seems to have been Nicholson’s
Revolving Doubler, deseribed in the Philosoplical Transactions for
1788 as ‘an instrument which by the turning of a Winch produces
the two states of Electricity without friction or communication with
the Earth.’

210.] It was by means of the revolving doubler that Volta
succeeded in developing from the electrification of the pile an
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210.] THE REVOLVING DOUBLER. 257

electrification capable of affecting his electrometer. Instruments
on the same principle have been invented independently by Mr.
C. F. Varley ¥, and Sir W. Thomson.

These instruments consist essentially of insulated conductors of
various forms, some fixed and others moveable. The moveable
conductors are called Carriers, and the fixed ones may be called
Inductors, Receivers, and Regenerators, The inductors and receivers
are 50 formed that when the carriers arrive at certain points in
their revolution they are almost completely surrounded by a con-
ducting body. As the inductors and receivers cannot completely
surround the carrier and at the same time allow it to move freely
in and out without a complicated arrangement of moveable pieces,
the instrument is not theoretically perfect without a pair of re-
generators, which store up the small amount of electricity which
the carriers retain when they emerge from the receivers.

For the present, however, we may suppose the inductors and
receivers to surround the carrier completely when it is within them,
in which case the theory is much simplified.

‘We shall suppose the machine to consist of two inductors £4 and
C, and of two receivers BB and 2, with two carriers F and G.

Suppose the inductor 4 to be positively electrified so that its
potential is 4, and that the carrier # is within it and is at potential
F. Then,if @ is the coeflicient of induction (taken positive) between
A4 and F, the quantity of electricity on the carrier will be Q (F'—4).

If the carrier, while within the inductor, is put in connexion with
the earth, then = 0, and the charge on the carrier will be — Q4,
a negative quantity. Let the carrier be carried round till it is
within the receiver B, and let it then come in contact with a spring
50 as to be in electrical connexion with B. It will then, as was
shewn in Art. 32, become completely discharged, and will com-
municate its whole negative charge to the receiver B.

The carrier will next enter the inductor C, which we shall suppose
charged negatively. While within € it is put in connexion with
the earth and thus acquires a positive charge, which it carries off
and communicates to the receiver /), and so on.

In this way, if the potentials of the inductors remain always
constant, the receivers B and 2 receive successive charges, which
are the same for every revolution of the carrier, and thus every
revolution produces an equal increment of electricity in the re-
ceivers.

* Specification of Patent, Jan. 27, 1860, No. 206.

VOL. 1. s

IRIS - LILLIAD - Université Lille 1



258 ELECTROSTATIC INSTRUMENTS. [210.

But by putting the inductor 4 in communication with the re-
ceiver D, and the inductor C with the receiver B, the potentials
of the inductors will be continually increased, and the quantity
of electricity communicated to the receivers in each revolution will
continually increase.

For instance, let the potential of 4 and O be U, and that of B
and C, 7, and when the carrier is within 4 let the charge on 4
and € be z, and that on the carrier &, then, since the potential
of the carrier is zero, being in contact with earth, its charge is
z=— Q. The carrier enters B with this charge and communicates
it to B. If the capacity of B and C is B, their potential will be
changed from 7 to ¥V — % U.

If the other carrier has at the same time carried a charge — Q7
from € to D, it will change the potential of 4 and O from U to

’

U— % 7, if @’ is the coefficient of induction between the carrier
and €, and A the capacity of 4 and D. If, therefore, U, and 7,

be the potentials of the two inductors after # half revolutions, and
U..iand 7, after z+ 1 half revolutions,

Un+1 = Un_% Vm
Q T
Vis1 = Va— 5 v,.
If we write p? = g and ¢% = ik we find

Ui+ 9V iy = (pUs+qV) (1= pg) = (pUy+¢7) (1 — )"+,
U=V iy = (pUa—q V) (0 + pg) = (pUy—q7 o) (1 +p9)" "
Hence

U,= U, (0—pg)"+ (14 29" +1% Vo (L —p9)"—(1 4 21",

v, =§ Us (A== +p)™) + 5 (1 —=pg)"+ (1 +9)")-

It appears from these equations that the quantity pU/+¢¥ con-
tinually diminishes, so that whatever be the initial state of elec-
trification the receivers are ultimately oppositely electrified, so that
the potentials of 4 and B are in the ratio of p to —g.

On the other hand, the quantity #U/—¢7 continually increases,
so that, however little U may exceed or {ull short of ¢/ at first,
the difference will be increased in a geometrical ratio in each
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revolution till the electromotive forces become so great that the
insulation of the apparatus is overcome.

Instruments of this kind may be used for various purposes.

For producing a copious supply of electricity at a high potential,
as is done by means of Mr. Varley’s large machine.

For adjusting the charge of a condenser, as in the case of
Thomson’s electrometer, the charge of which can be increased or
diminished by a few turns of a very small machine of this kind,
which 1s then called a Replenisher.

For multiplying small differences of potential. The inductors
may be charged at first to an exceedingly small potential, as, for
instance, that due to a thermo-electric pair, then, by turning the
machine, the difference of potentials may be continually multiplied
till it becomes capable of measurement by an ordinary electrometer.
By determining by experiment the ratio of increase of this difference
due to each turn of the machine, the original electromotive force
with which the inductors were charged may be deduced from the
number of turns and the final electrification.

In most of these instruments the carriers are made to revolve
about an axis and to come into the proper positions with respect
to the inductors by turning an axle. The connexions are made by
means of springs so placed that the carriers come in contact with
them at the proper instants.

211.] Sir W. Thomson*, however, has constructed a machine for
multiplying electrical charges in which the carriers are drops of
water falling out of the inside of an inductor into an insulated
receiver. The receiver is thus continually supplied with electricity
of opposite sign to that of the induetor. If the inductor is electrified
positively, the receiver will receive a continually increasing charge
of negative electricity.

The water is made to escape from the receiver by means of a
funnel, the nozzle of which is almost surrounded by the metal of
the receiver. The drops falling from this nozzle are therefore
nearly free from electrification. Another inductor and receiver of
the same construction are arranged so that the inductor of the
one system is in connexion with the receiver of the other. The
rate of inerease of charge of the receivers is thus no longer constant,
but increases in a geomelrical progression with the time, the
charges of the two receivers being of opposite signs. This increase
goes on till the falling drops are so diverted from their course by

* Proc. R. 8., June 20, 1867.
s 2
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the electrical action that they fall outside of the receiver or even
strike the inductor.

In this instrument the energy of the electrification is drawn
from that of the falling drops.

212.] Several other electrical machines have been constrneted
in which the principle of electric induction is employed. Of these
the most remarkable is that of Holtz, in which the carrier is a glass
plate varnished with gum-lac and the inductors arc pieces of
pasteboard. Sparks are prevented from passing between the parts
of the apparatus by means of two glass plates, one on each side
of the revolving carrier plate. This machine is found to be very
effective, and not to be much affected by the state of the atmo-
sphere. The principle is the same ag in the revolving doubler and
the instruments developed out of the same idea, but as the carrier
is an insulating plate and the inductors are imperfect conductors,
the complete explanation of the action is more difficult than in
the case where the carriers are good conductors of known form
and are charged and discharged at definite points.

213.] In the electrical machines already described sparks occur

B B ' whenever the carrier comes in
////( \\ contact with a conductor at a

g PES different potential from its

7 kN own.,

>r_’ Now we have shewn that
A

\

A‘//
whenever this occurs there is
a loss of energy, and therefore
/ the whole work employed in

E * turning the machine is not con-
L,/

- verted into electrification in an

7 N

‘D available form, but part is spent
Fig. 17. in producing the heat and noise
of electric sparks.

I have therefore thonght it desirable to shew how an electrical
machine may be constructed which is not subject to this loss of
efficiency. I do not propose it as a useful form of machine, but
as an example of the method by which the contrivance called in
heat-engrines a regenerator may be applied to an electrical machine
to prevent loss of work.

In the figure let 4, B, C, 4y, B, C" represent hollow fixed
conductors, so arranged that the carrier P passes in succession
within each of them. Of these 4, 4" and B, B’ nearly surround the

7y
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carrier when it is at the middle point of its passage, but C, ¢’ do not
cover 1t so much.

We shall suppose 4, B, C to be connected with a Leyden jar
of great capacity at potential ¥, and 4, B’, C" to be connected with
another jar at potential — 7.

P is one of the carriers moving in a circle from A to (', &ec.,
and touching in its course certain springs, of which @ and o’ are
connected with 4 and 4" respectively, and ¢, ¢ are connected with
the earth.

Let us suppose that when the carrier £ is in the middle of 4
the coefficient of induction between P and 4 is —A4. The capacity
of 2 in this position is greater than 4, since it is not completely
surrounded by the receiver 4. Let it be 4 +a.

Then if the potential of P is U, and that of 4, 7, the charge
on P will be (d+a)U—47V.

Now let P be in contact with the spring ¢ when in the middle
of the receiver 4, then the potential of # is 7, the same as that
of 4, and its charge is therefore a 7.

If P now leaves the spring a it carries with it the charge o/,
As P leaves 4 its potential diminishes, and it diminishes still more
when it comes within the influence of €’, which is negatively
electrified.

If when P comes within C its coeflicient of induction on C is
—(C’, and its capacity is C’+¢’, then, if U is the potential of P
the charge on P 1s

(C+HU+CTV =4V,

If CV'=aV,
then at this point U the potential of P will be reduced to zero.

Let P at this point come in contact with the spring ¢ which is
connected with the earth. Since the potential of P is equal to that
of the spring there will be no spark at contact.

This conductor €’, by which the carrier is enabled to be connected
to earth without a spark, answers to the contfrivance called a
regenerator in heat-engines. We shall therefore call it a Re-
generator.

Now let P move on, still in contact with the earth-spring ¢/, till
it comes into the middle of the inductor B, the potential of which
is 7. If —B is the coeflicient of induction between P and B at
this point, then, since U/ = 0 the charge on P will be —B7.

‘When £ moves away from the earth-spring it carries this charge
with it. As it moves out of the positive inductor B towards the

IRIS - LILLIAD - Université Lille 1



262 ELECTROSTATIC INSTRUMENTS. [214.

negative receiver 4° its potential will be increasingly negative. At
the middle of 4’, if it retained its charge, its potential would be
AV + BV

A +d

and if BV is greater than &’7" its numerical value will be greater
than that of #7. Hence there is some point before P reaches the
middle of 4” where its potential is — #". At this point let 1t come
in contact with the negative recciver-spring a’. There will be no
spark since the two bodies are at the same potential. Let £ move
on to the middle of 4, still in contact with the spring, and therefore
at the same potential with 4’. During this motion it communicates
a negative charge to 4°. At the middle of 47 it leaves the spring
and carrics away a charge —a’ 7’ towards the positive regenerator

C, where its potential is reduced to zero and it touches the earth-
spring ¢. It then slides along the earth-gpring into the negative
inductor &, during which motion it acquires a positive charge B’V
which it finally communicates to the positive receiver 4, and the
cyele of operations is repeated.

During this cycle the positive receiver has lost a charge a# and
gained a charge B'7’. Hence the total gain of positive electricity
is BV —aV.

Similarly the total gain of negative electricity is BV —a'F*,

By making the inductors so as to be as close to the surface of
the carrier as is consistent with insulation, £ and 5" may be made
large, and by making the receivers so as nearly to surround the
carrier when it is within them, 4 and " may be made very small,
and then the charges of both the Leyden jars will be increased in
every revolution.

The conditions to be fulfilled by the regenerators are

C'V'=aV, and CF=da'V".

Since ¢ and o’ arc small the regenerators do mot require to be

either large or very close to the carriers.

On Electromelers and Electroscopes.

214.] An clectrometer 1s an instrument by means of which
electrical charges or electrical potentials may be measured. In-
struments by means of which the existence of electric charges or
of differences of potential may be indicated, but which are not
capable of affording numerical measures, are called Electroscopes.

An electroscope if sufficiently sensible may be used in electrical
measurements, provided we can make the measurement depend on
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the absence of electrification, For instance, if we have two charged
bodies 4 and B we may use the method deseribed in Chapter T to
determine which body has the greater charge. Let the body A
be carried by an insulating support into the interior of an insulated
closed vessel €. Let C be connected to earth and again insulated.
There will then be no external electrification on . Now let 4
be removed, and B introduced into the interior of C, and the elec-
trification of C tested by an electroscope. If the charge of B is
equal to that of 4 there will be no electrification, but if it is greater
or less there will be electrification of the same kind as that of B, or
the opposite kind.

Methods of this kind, in which the thing to be observed is the
non-existence of some phenomenon, are called zuff or zero methods.
They require only an instrument capable of detecting the existence
of the phenomenon.

In another class of instruments for the registration of phe-
nomena the instrument may be depended upon to give always the
sante indication for the same value of the quantity to be registered,
but the readings of the scale of the instrument are not proportional
to the values of the quantity, and the relation between these
readings and the corresponding value is unknown, except that the
one is some continuous function of the other. Several electrometers
depending on the mutual repulsion of parts of the instrument
which are similarly electrified are of this class. The use of such
instruments is to register phenomena, not to measure them. Instead
of the true values of the quantity to be measured, a series of
numbers is obtained, which may be used afterwards to determine
these values when the scale of the instrument has been properly
investigated and tabulated.

In a still higher class of instruments the scale.readings are
proportional to the quantity to be measured, so that all that is
required for the complete measurement of the quantity is a know-
ledge of the coeflicient by which the scale readings must be
multiplied to obtain the true value of the quantity.

Instruments so constructed that they contain within themselves
the means of independently determining the true values of quan-
tities are called Absolute Instruments.

Coulom’s Torsion Balance.

215.] A great number of the experiments by which Coulomb
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established the fundamental laws of electricity were made by mea-
suring the force between two small spheres charged with electricity,
one of which wus fixed while the other was held in equilibrium by
two forces, the electrical action between the spheres, and the
torsional elasticity of a glass fibre or metal wire. See Art. 38.

The balance of torsion consists of a horizontal arm of gum-lac,
suspended by a fine wire or glass fibre, and carrying at one end a
little sphere of elder pith, smoothly gilt. The suspension wire is
fastened above to the verlical axis of an arm which can be moved
round a horizontal graduated circle, so as to twist the upper end
of the wire about its own axis any number of degrees.

The whole of this apparatus is enclosed in a ease. Another little
sphere is so mounted on an insulating stem that it can be charged
and introduced into the case through a hole, and brought so that
its centre coincides with a definite point in the horizontal ecircle
described by the suspended sphere. The position of the suspended
sphere is ascertained by means of a graduated circle engraved on
the cylindrical glass case of the instrument.

Now suppose both spheres charged, and the suspended sphere
in equilibrium in a known position such that the torsion-arm makes
an angle 0 with the radius through the centre of the fixed sphere.
The distance of the centres is then 24 sin 4 8, where a is the radius
of the torsion-arm, and if # is the force between the spheres the
moment of this force about the axis of torsion is Facos 3 6.

Let both spheres be completely discharged, and let the torsion-
arm now be in equilibrium at an angle ¢ with the radius through
the fixed sphere.

Then the angle through which the clectrical force twisted the
torsion-arm must have been ¢ —¢, and if 37 is the moment of
the torsional elasticity of the fibre, we shall have the equation

Facosi0 = M(O—¢).

Hence, if we can ascertain M, we can determine #, the actual
force between the spheres at the distance 2a sin 4 6.

"To find M, the moment of torsion, let 7 be the moment of inertia
of the torsion-arm, and 7 the time of a double vibration of the arm
under the action of the torsional elasticity, then

1
— 2
M= 4.,,le .

In all electrometers it is of the greatest importance to know
what force we are measuring. The force acting on the suspended
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sphere is due partly to the direct action of the fixed sphere, but
partly also to the electrification, if any, of the sides of the case.

If the case is made of glass it is impossible to determine the
electrification of its surface otherwise than by very difficult mea-
surements at every point. If, however, either the case is made
of metal, or if a mctallic case which almost completely encloses the
apparatus is placed as a screen between the spheres and the glass
case, the electrification of the inside of the metal screen will depend
entirely on that of the spheres, and the electrification of the glass
case will have no influence on the sphercs. In this way we may
avold any indefiniteness due to the action of the case.

To illustrate this by an example in which we can calculate all
the effects, let us suppose that the case is a sphere of radius 4,
that the centre of motion of the torsion-arm coincides with the
centre of the sphere and that its radius is «; that the charges on
the two spheres are F| and Z,, and that the angle between their
positions 1s 6; that the fizxed sphere is at a distunce «, from the
centre, and that » is the distance between the two small spheres.

Neglecting for the present the effect of induction on the dis-
tribution of electricity on the small spheres, the force between

them will be a repulsion
EE,

e

and the moment of this force round a vertical axis through the
centre will be
EE, aa,sin 6
r3 '
The image of #; due to the spherical surface of the case is a point

2

in the same radius at a distance % with a charge — Z; ai » and the
51 1

moment of the attraction between Z and this image about the axis

of suspension is

& .
3 a;— sin 0
! {uZ—-z at’ cos 8+ %}%
1 31
. aa, sin @
= JE L DR .
Fléﬂl 2% 6050 ﬁ%?
1T TR s+ I

If 4, the radius of the spherical case, is large compared with a
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and 2, the distances of the spheres from the centre, we may neglect
the second and third terms of the factor in the denominator. The
whole moment tending to turn the torsion-arm may then be written

. 1 1
EE am s1n0{ﬁ — Zg} =M (8—¢).

Electrometers for the Measurement of Potentials.

216,17 In all electrometers the moveable part is a body charged
with electricity, and its potential is different from that of certain
of the fixed parts round it. When, as in Coulomb’s mcthod, an
insulated body having a certain charge is used, it is the charge
which is the direct object of measurement. We may, however,
connect the balls of Coulomb’s electrometer, by means of fine wires,
with different conductors, The charges of the balls will then
depend on the values of the potentials of these conductors and on
the potential of the case of the instrnment. The charge on each
ball will be approximately equal to its radius multiplied by the
excess of its potential over that of the case of the instrument,
provided the radii of the balls are small compared with their
distances from each other and from the sides or opening of the
case.

Coulomb’s form of apparatus, however, is not well adapted for
measurements of this kind, owing to the smallness of the force
between spheres at the proper distances when the difference of po-
tentials 1s small. A more convenient form is that of the Attracted
Disk Electrometer. The first electrometers on this principle were
constructed by Sir W. Snow Harris*. They have since been
brought to great perfection, both in theory and construction, by
Sir W. Thomson +.

When two disks at different potentials are brought face to face
with a small interval between them there will be a nearly uniform
electrification on the opposite faces and very little electrification
on the backs of the disks, provided there arc no other conductors
or electrified bodies in the neighbourhood, The charge on the
positive disk will be approximately proportional to its area, and to
the difference of potentials of the disks, and inversely as the distance
between them. Hence, by making the areas of the disks large

* Phil Trans. 1834.
4 See an excellent report on Electrometers by Sir W. Thomson. Report of the
British Asscciation, Dundee, 1867.
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and the distance between them small, a small difference of potential
may give rise to a measurable foree of attraction.

The mathematical theory of the distribution of electricity over
two disks thus arranged is given at Art. 202, but since it 18 im-~
possible to make the case of the apparatus so large that we may
suppose the disks insulated in an infinite space, the indications of
the instrument in this form are not easily interpreted numerically.

217.] The addition of the guard-ring to the attracted disk 1s one
of the chief improvements which Sir W. Thomson has made on the
apparatus.

Instead of suspending the whole of one of the disks and determ-
ming the force acting upon it, a central portion of the disk is
scparated from the rest to form the attracted disk, and the outer
ring forming the remainder of the disk is fixed. In this way the
force 18 measured only on that part of the disk where 1t 1s most
regular, and the want of uniformity of the electrification near the

COUNTERPOISE

rwa BLACK 03TS

\\ CUARD m/’

INSULATED STEM
WORKED BY
SGRE!

MICROMETER

Fig. 18,

edge is of no importance, as it occurs on the guard-ring and not
on the suspended part of the disk.

Besides this, by connecting the guard-ring with a melal case
surrounding the back of the attracted disk and all its suspending
apparatus, the electrification of the back of the disk is rendered
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impossible, for it is part of the inner surface of a closed hollow
conductor all at the same potential.

Thomson’s Absolute Electrometer therefore consists essentially
of two parallel plates at different potentials, one of which is made
so that a certain area, no part of which is near the edge of the
plate, is moveable under the action of electric force. To fix our
ideas we may suppose the attracted disk and guard-ring uppermost.
The fixed disk is horizontal, and is mounted on an insulating stem
which has a measurable vertical motion given to it by means of
a micrometer screw. The guard-ring is at least as large as the
fixed disk; its lower surface is truly plane and parallel to the fixed
disk. A delicate balance is erected on the gnard-ring to which
1s suspended a light moveable disk which almost fills the circular
aperture in the guard-ring without rubbing against its sides. The
lower surface of the suspended disk must be truly plane, and we
must have the means of knowing when its plane coincides with that
of the lower surface of the gnard-ring, so as to form a single plane
interrupted only by the narrow interval between the disk and its
guard-ring.

For this purpose the lower disk is screwed up till it is in contact
with the guard-ring, and the suspended disk is allowed to rest
upon the lower disk, so that its lower surface 1s in the same plane
as that of the guard-ring. Its position with respect to the guard-
ring is then ascertained by means of a system of fiducial marks.
Sir W. Thomson generally uses for this purpose a black hair
attached to the moveable part. This hair moves up or down just
in front of two black dots on a white enamelled ground and is
viewed along with these dots by means of a plano convex lens with
the plane side next the eye. If the hair as seen through the lens
appears straight and bisecls the interval between the black dots
it is said to be in its sighted position, and indicates that the sus-
pended disk with which it moves 1s in its proper position as regards
hejght. The horizontality of the suspended disk may be tested by
comparing the reflexion of part of any object from its upper surface
with that of the remainder of the same object from the upper
surface of the guard-ring.

The balance is then arranged so that when a known weight is
placed on the centre of the suspended disk it is in equilibrium
in its sighted position, the whole apparatus being freed from
electrification by putting every purt in metallic communication.
A metal case is placed over the guard-ring so as to enclose the
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balance and suspended disk, suflicient apertures being left to see
the fiducial marks.

The guard-ring, case, and suspended disk are all in metallic
communication with each other, but are insulated from the other
parts of the apparatus.

Now let it be required to measure the difference of potentials
of two conductors. The conductors are put in communication with
the upper and lower disks respectively by means of wires, the
welght 18 taken off the suspended disk, and the lower disk is
moved up by means of the micrometer screw till the electrical
attraction brings the suspended disk down to its sighted position.
We then know that the attraction between the disks is equal te
the weight which brought the disk to its sighted position.

If # be the numerical value of the weight, and g4 the force of
gravity, the force is # g, and if 4 is the area of the suspended
disk, D the distance between the disks, and 7 the difference of the
potentials of the disks, -

24
g = 8w %’

. 8wyl
or V=217 /\/T

If the suspended disk is circular, of radius £, and if the radius of
the aperture of the guard-ring is A, then
= ya(R24+ % and V=4D /\/ g
Ry R
218.] Since there is always some uncertainty in determining the
micrometer reading corresponding to £ = 0, and sinee any error

* Let us denote the radius of the suspended disk by R, and that of the aperture
of the guard-ring by K’, then the breadth of the annular interval betweeu the
disk and the ring will he B=R'—R.

If the distance between the suspended disk and the large fixed disk is D, and
the difference of potentials between these disks is ¥, then, by the investigation in
Art. 201, the quantity of electricity on the suspended disk will be

R” R a }
- SD D+a
where  a= B]Og or a—0.220635 (R'—R).

If the surface of the guard-ring is not exactly in the plane of the surface of
the suspended disk, let us suppose that the distance between the fixed disk and
the guard-ring is not D but D +2z=D’, then it appears from the investigation in
Art. 925 that there will be an additional charge of electricity near the edge of
the disk on account of its height z above the general surface of the guard-ring.
The whole charge in this case is therefore

Q-Vv {R’+R” R?—R? a R+ I dv(R+ R

T80 Dral o DTDege—p—p
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in the position of the suspended disk is most important when D
is small, Sir W. Thomson prefers to make all his measurements
depend on differences of the electromotive force #. Thus, if 7 and
V' are two potentials, and D and 2 the corresponding distances,

VeV’ = (-1 MSIZK.

For instance, in order to measure the electromotive force of a
galvanic battery, two electrometers are used.

By means of a condenser, kept charged if necessary by a re-
plenisher, the lower disk of the prineipal electrometer is maintained
at a constant potential. This is tested hy connecting the lower
disk of the principal electrometer with the lower disk of a secondary
electrometer, the suspended disk of which is connected with the
carth. The distance between the disks of the secondary elee-
trometer and the force required to bring the suspended disk to
its sighted position being constant, if we raise the potential of the
condenser till the secondary electrometer is in its sighted position,
we know that the potential of the lower disk of the principal
electrometer exceeds that of the earth by a constant quantity which
we may call 7.

If we pnow connect the positive electrode of the battery to earth,
and connect the suspended disk of the principal electrometer to the
negative electrode, the difference of potentials between the disks
will be 7 +o, if » is the electromotive force of the battery. Let
D be the reading of the micrometer in this case, and let 2 be the
reading when the suspended disk 1s connected with earth, then

v = (D—17) ,\/S”ZW.

In this way a small electromotive force » may be measured
by the electrometer with the disks at conveniently measurable
distances. When the distance is too small a small change of
absolute distance makes a great change in the force, since the

and in the expression for the attraction we must substitute for A, the area of the
disk, the corrected quantity

A=}n {Rum_(R'ﬂ_Rﬂ)

a . 4m(R+ )
T a8 @+ B (D' = D)log, — =

where R = radius of suspended disk,
R'= radius of aperture in the guard-ring,
D = distance between fixed and suspended disks,
D’ = distance between fixed disk and guard-ring,
e = 0.220635 (&' — £k).
When o i3 small compared with D we may neglect the second term, and when
D'— D is small we may neglect the last term,
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force varies inversely as the square of the distance, so that any
error in the absolute distance introduces a large error in the result
unless the distance 1s large compared with the limits of error of
the micrometer screw.

The effect of small irregularities of form in the surfaces of the
disks and of the interval between them diminish according to the
inverse cube and higher inverse powers of the distance, and what~
ever be the formn of a corrugated surface, the eminences of which
just reach a plane surface, the electrical effect at any distance
which 1s considerable compared to the breadth of the corrugations,
is the same as that of a plane at a certain small distance behind
the plane of the tops of the eminences. Sce Arts. 197, 198.

By means of the auxiliary eleetrification, tested by the auxiliary
electrometer, a proper interval between the disks is secured.

The auxiliary electrometer may be of a simpler construction, in
which there i1s no provision for the determination of the force
of attraction in absolute measure, sinee all that is wanted is to
secure a coustant electrification. Such an electrometer may be
called a gange electrometer.

This method of using an auxiliary electrification besides the elec-
trification to be measured is ecalled the Heterostatic method of
electrometry, in opposition to the Idiostatic method in which the
whole effect is produced by the electrification to be measured.

In several forms of the attracted disk electrometer, the attracted
diek is placed at one end of an arm which is supported by being
attached to a platinum wire passing through its centre of gravity
and kept stretched by means of a spring. The other end of the
arm carries the hair which is brought to a sighted position by
altering the distance between the disks, and so adjusting the force
of the electric attraction to a constant value. In these electro-
meters this force i1s not in general determined in absolute measure,
but is known to be constant, provided the torsional elasticity of
the platinum wire does not change.

The whole apparatus is placed in a Leyden jar, of which the inner
surface is charged and connected with the attracted disk and
guard-ring. The other disk is worked by a micrometer screw and
is connected first with the earth and then with the conductor whose
potential is to be measured. The difference of readings multiplied
by a constant to be determined for each electrometer gives the
potential required.

219.] The electrometers already described are not self-acting,
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but require for each observation an adjustment of a micrometer
screw, or some other movement which must be mude by the
observer. They are therefore not fitted to act as self-registering in-
struments, which must of themselves move into the proper position.
This condition is fulfilled by Thomson’s Quadrant Electrometer.

The electrical principle on which this instrument is founded may
be thus explained :—

A and B are two fixed eonductors which may be at the same
or at different potentials. C is a moveable conductor at a high
potential, which is so placed that part of it is opposite to the
surface of 4 and part opposite to that of B, and that the proportions
of these parts are altered as C moves.

For this purpose it is most convenient to make € moveable about
an axis, and make the opposed surfaces of 4, of B, and of € portions
of surfaces of revolution about the same axis.

In this way the distance between the surface of C and the
opposed surfaces of 4 or of B remains always the same, and the
motion of € in the positive direction simply increases the area
opposed to B and diminishes the area opposed to 4.

If the potentials of 4 and B are equal there will be no force
urging C from 4 to B, but if the potential of € differs from that
of B more than from that of 4, then C will tend to move so as
to increase the area of its surface opposed to A.

By a suitable arrangement of the apparatus this force may be
made nearly constant for different positions of C within certain
limits, so that if € is suspended by a torsion fibre, its deflexions
will be nearly proportional to the difference of potentials between
A and B multiplied by the difference of the potential of C from
the mean of those of 4 and B.

C is maintained at a high potential by means of a condenser
provided with a replenisher and tested by a gauge electrometer,
and 4 and B are connected with the two conductors the difference
of whose potentials is to be measured. The higher the potential
of C the more sensitive is the instrument. This electrification of
C, being independent of the electrification to be measured, places
this electrometer in the heterostatic class.

We may apply to this electrometer the general theory of systems
of conductors given in Arts, 93, 127.

Let 4, B, C denote the potentials of the three conductors re-
spectively. Let a, b, ¢ be their respective capacities, p the coeflicient
of induction between B and C, ¢ that between C and 4, and # that
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between 4 and B. All these coefficients will in general vary with
the position of €, and if € is so arranged that the extremities of 4
and B are not near those of € as long as the motion of € is confined
within certain limits, we may ascertain the form of these coefficients.
If 6 represents the deflexion of € from 4 towards B, then the part
of the surface of 4 opposed to C will diminish as 6 increases.
Hence if 4 is kept at potential 1 while B and C are kept at potential
0, the charge on 4 will be @ = a,—a8, where 2, and a are
constants, and @ is the capacity of 4.

If 4 and B are symmetrical, the capacity of Bis & = b,+a 6.

The capacity of C is not altered by the motion, for the only
effect of the motion is to bring a different part of C opposite to the
interval between 4 and 5. Hence ¢ = ¢,.

The quantity of electricity induced on € when B is raised to
potential unity is p = p,—a6.

The coefficient of induction between 4 and Cis ¢ = ¢,+ af.

The coefficient of induction between 4 and B is not altered by
the motion of C, but remains » = 7.

Hence the electrical energy of the system is

Q=1314%+1B*% 41 4C% 4+ BCp+ CAq+ 4B,

and if © 1s the moment of the force tending to increase 6,

Q= %?— A, B, C being supposed constant,
-—izlz -}-415}5’2 +7£C2 +BCZP+CAd0+ABZ

:—§A2a+§B2a—BCa+ Cda;
or O = a(d—B)(C—}(A+B)).

In the present form of Thomson’s Quadrant Electrometer the
conductors 4 and B are in the form of
a cylindrical box completely divided
into four quadrants, separately insu-
lated, but joined by wires so that two
opposite quadrants are counected with
4 and the two others with B.

The conductor C is suspended so as
to be capable of turning about a
vertical axis, and may consist of two
opposite flat quadrantal ares supported
by their radii at their extremities. -
In the position of equilibrium these quadrants should be partly

VOL. L T
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within 4 and partly within B, and the supporting radii should
be near the middle of the quadrants of the hollow base, so that
the divisions of the box and the extremities and supports of C
may be as far from each other as possible.

The conductor C is kept permanently at a hich potential by
being connected with the inner coating of the Leyden jar which
forms the case of the instrument., B and A are connected, the first
with the earth, and the other with the body whose potential is to be
measured.

If the potential of this body is zero, and if the instrument be
in adjustment, there ought to be no force tending to make C move,
but if the potential of 4 is of the same sign as that of C, then
C will tend to move from 4 to B with a nearly uniform force, and
the suspension apparatus will be twisted till an equal force is
called into play and produces equilibrium. For deflexions within
certain limits the deflexions of C will be proportional to the

product (4—B) (C—3} (4 +B)).

By increasing the potential of C the sensibility of the instrument
may be inereased, and for small values of 4 (4 4 B) the force will be
nearly proportional to (4—8B) C.

On the Measurement of Electric Potential.

220.] In order to determine large differences of potential in ab-
solute measure we may employ the attracted disk electrometer, and
compare the attraction with the effect of a weight. If at the same
time we measure the diflerence of potential of the same conductors
by means of the quadrant electrometer, we shall ascertain the
absolute value of certain readings of the scale of the quadrant
electrometer, and in this way we may deduce the value of the scale
readings of the quadrant electrometer in terms of the potential
of the suspended part, and the moment of torsion of the suspension
apparatus.

To ascertain the potential of a charged conductor of finite size
we may connect the conductor with one electrode of the electro-
meter, while the other is connected to earth or to a body of
constant potential. The electrometer reading will give the potential
of the conductor after the division of its electricily between it
and the part of the electrometer with which it is put in contact.
If K denote the capacity of the conductor, and K’ that of this part
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of the electrometer, and if 7, 7’ denote the potentials of these
bodies before making contact, then their common potential after
making contact will be
KV +K'V”

K+K
Hence the original potential of the conductor was

V =

. = K o,
V=74 T (yV=rn.

If the conductor is not large compared with the electrometer,
K’ will be comparable with X, and unless we can ascertain the
values of K and K” the second term of the expression will have
a doubtful value. But if we can make the potential of the electrode
of the electrometer very nearly equal to that of the body before
making contact, then the uncertainty of the values of K and K’
will be of little consequence.

If we know the value of the potential of the body approximately,
we may charge the electrode by means of a freplenisher’ or other-
wise to this approximate potential, and the next experiment will
give a closer approximation. In this way we may measure the

potential of a conductor whose eapacity is small compared with
that of the electrometer.

To Measure the Potential at any Point in the Air.

221.] First Method. Place a sphere, whose radius is small com-
pared with the distance of electrified conductors, with its centre
at the given point. Connect it by means of a fine wire with the
earth, then insulate it, and carry it to an electrometer and ascertain
the total charge on the sphere,

Then, if ¥ be the potential at the given point, and « the
radius of the sphere, the charge on the sphere will be —Va= @,
and if 7 be the potential of the sphere as measured by an elec-
trometer when placed in a room whose walls are connected with
the earth, then ,

Q =V,

whence V4V =0,

or the potential of the air at the point where the centre of the
sphere was placed is equal but of opposite sign to the potential of
the sphere after being connected to earth, then insulated, and
brought into a room.
This method has been employed by M. Delmann of Creuznach in
T2
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measuring the potential at a certain height above the earth’s
surface.

Second Method. We have supposed the sphere placed at the
given point and first connected to earth, and then insulated, and
carried into a space surrounded with conducting matter at potential
Ze€ro.

Now let us suppose a fine insulated wire carried from the elec-
trode of the electrometer to the place where the potential is to
be measured. Let the sphere be first discharged completely. This
may be done by putting it into the inside of a vessel of the same
metal which nearly surrounds it and making it touch the vessel.
Now let the sphere thus discharged be carried to the end of the
wire and made to touch it. Since the sphere is not electrified 1t
will be at the potential of the air at the place, If the electrode
wire is at the same potential it will not be affected by the contact,
but if the electrode 1s at a different potential it will by contact
with the sphere be made nearer to that of the air than it was
before. By a succession of such operations, the sphere being
alternately discharged and made to touch the eclectrode, the poten-
tial of the electrode of the electrometer will continually approach
that of the air at the given point.

222.] To measure the potential of a conductor without touching
it, we may measure the potential of the air at any point in the
neighbourhood of the conductor, and calculate that of the conductor
from the result. If there be a hollow nearly surrounded by the
conductor, then the potential at any point of the air in this hollow
will be very nearly that of the conductor.

In this way 1t has been ascertained by Sir W. Thomson that 1f
two hollow conductors, one of copper and the other of zine, are
in metallic contact, then the potential of the air in the hollow
surrounded by zinc is positive with reference to that of the air
in the hollow surrounded by copper.

Third Method. If by any means we can cause a succession of
small bodies to detach themselves from the end of the electrode,
the potential of the electrode will approximate to that of the sur-
rounding air. This may be done by causing shot, filings, sand, or
water to drop out of a funnel or pipe connected with the electrode.
The point at which the potential is measured is that at which
the stream ceases to be continuous and breaks into separate parts
or drops.

Another convenient method is to fasten a slow match to the
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electrode. The potential is very soon made equal to that of the
air at the burning end of the match. Even a fine metallic point
is sufficient to create a discharge by means of the particles of the
air when the difference of potentials is considerable, but if we
wish to reduce this difference to zero, we must use one of the
methods stated above.

If we only wish to ascertain the sign of the difference of the
potentials at two places, and not its numerical value, we may cause
drops or filings to be discharged at one of the places from a nozzle
connected with the other place, and catch the drops or filings
in an insulated vessel. Kach drop as it falls is charged with a
certain amount of electricity, and 1t 1s completely discharged into
the vessel. The charge of the vessel therefore is continually ac-
cumulating, and after a sufficient number of drops have fallen, the
charge of the vessel may be tested by the roughest methods. The
sign of the charge is positive if the potential of the nozzle is positive
relatively to that of the surrounding air.

MEASUREMENT OF SURFACE-DENSITY OF ELECTRIFICATION.

Theory of the Proof Plane.

223.] In testing the results of the mathematical theory of the
distribution of electricily on the surface of conductors, it is necessary
to be able to measure the surface-density at different points of
the conductor. For this purpose Coulomb employed a small disk
of gilt paper fastened to an insulating stem of gum-lac. He ap-
plicd this disk to various points of the conductor by placing it
so as to coincide as nearly as possible with the surface of the
conduetor. He then removed it by means of the insulating stem,
and measured the charge of the disk by means of his electrometer.

Since the surface of the disk, when applied to the conductor,
nearly coineided with that of the conductor, he concluded that
the surface-density on the outer surface of the disk was nearly
equal to that on the surface of the conductor at that place, and that
the charge on the disk when removed was nearly equal to that
on an area of the surface of the conductor equal to that of one side
of the disk. This disk, when employed in this way, is called
Coulomb’s Proof Plane.

As objections have been raised to Coulomb’s use of the proof
plane, I shall muke some remarks on the theory of the experiment,
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The experiment consists in bringing a small conducting body
into contact with the surface of the conductor at the point where
the density is to be measured, and then removing the body and
determining its charge.

‘We have first to shew that the charge on the small body when
in contact with the conductor is proportional to the surface-
density which existed at the point of contact before the small body
was placed there.

‘We shall suppose that all the dimensions of the small body, and
especially its dimension in the direction of the normal at the point
of contact, are small compared with either of the radii of curvature
of the conductor at the point of contact. IHence the variation of
the resultant force due to the conductor supposed rigidly electrified
within the space occupied by the small body may be neglected,
and we may treat the surface of the conductor near the small body
as a plane surface.

Now the charge which the small body will take by contact with
a plane surface will be proportional to the resultant force normal
to the surface, that is, to the surface-density. We shall ascertain
the amount of the charge for particular forms of the body.

We have next to shew that when the small body is removed no
spark will pass between it and the conductor, so that it will carry
its charge with it. This 1s evident, because when the bodies are
in contact their potentials are the same, and therefore the density
on the parts nearest to the point of contact is extremely small.
‘When the small hody is removed to a very short distance from
the conductor, which we shall suppose to be electrified positively,
then the electrification at the point nearest to the small body is
no longer zero but positive, but, since the charge of the small body
is positive, the positive electrification close to the small body will
be less than at other neighbouring points of the surface. Now
the passage of a spark depends in general on the magnitude of the
resultant force, and this on the surface-density. Ilence, since we
suppose that the conductor is not so highly electrified as to be
discharging electricily from the other parts of its surface, it will
not discharge a spark to the small body from a part of its surface
which we have shewn to have a smaller surface-density.

224.] We shall now consider various forms of the small body.

Suppose it to be a small hemisphere applied to the conductor so
as fo touch it at the centre of 1ts flat side.

Let the conductor be a large sphere, and let us modify the form
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of the hemisphere so that its surface is a little more than a hemi-
sphere, and meets the surface of the sphere at right angles. Then
we have a case of which we have already obtained the exact solution.
See Art. 168.

If 4 and B be the centres of the two spheres cutting each other
at right angles, D/’ a diamecter of the circle of intersection, and €
the centre of that cirele, then if 7 is the potential of a conductor
whose outer surface coincides with that of the two spheres, the
quantity of electricity on the exposed surface of the sphere 4 is

AV (4D+ B+ 40— CD—EBC),
and that on the exposed surface of the sphere B is
V(4D 4+ BD+ BC—CD—AC),
the total charge being the sum of these, or
V(dD+BD=CD).

If a and B are the radii of the spheres, then, when a is large
compared with 8, the charge on B is to that on 4 in the ratio of
3 8 18, 14°
A GRS i e
Now let ¢ be the uniform surface-density on 4 when B is re-
moved, then the charge on 4 is

+ &c.) to 1.

4 wa? o,
and therefore the charge on B is

B

37rﬁ20'(1+%;+&e.)y

or, when 7 i1s very small compared with a, the charge on the
hemisphere B is equal to three times that due to a surface-density o
extending over an area equal to that of the circular base of the
hemisphere.

It appears from Art. 175 that if a small sphere is made to touch
an electrified body, and is then removed to a distance from it, the
mean surface-density on the sphere is to the surface-density of the
body at the point of contact as =2 is to 6, or us 1.645 to 1.

225.] The most convenient form for the proof plane is that of
a circular disk. We shall therefore shew how the charge on a
circular disk laid on an electrified surface is to be measured.

For this purpose we shall construct a value of the potential
function so that one of the equipotential surfaces resembles a circular
flattened protuberance whose general form is somewhat like that of
a disk lying on a plane.
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Let o be the surface-density of a plane, which we shall suppose
to be that of zy.

The potential due to this electrification will be

V=—angoz

Now let two disks of radius & be rigidly electrified with surface-
densities —a” and +0¢°. Let the first of these be placed on the plane
of zy with its centre at the origin, and the second parallel to it at
the very small distance e.

Then it may be shewn, as we shall see in the theory of mag-
netism, that the potential of the two disks at any point is wo’c,
where o is the solid angle subtended by the edge of either disk at
the point. Hence the potential of the whole system will be

V=—dmoztode

The forms of the equipotential surfaces and lines of induction
are given on the left-hand side of Fig. XX, at the end of Vol. 1L

Let us trace the form of the surfuce for which 7 = 0. This
surface is indicated by the dotted line.

Putting the distance of any point from the axis of z = 7, then,
when 7 1s much less than «, and z is small,

w = 277—2#2—}-&0.

Hence, for values of r considerably less than a, the equation of

the zero equipotential surface is ’
, ,z¢
0=—4moz42n0c—270 - +&e. ;

’
or 2y = ——™

) = ———

4

2040 -

a

Hence this equipotential surface near the axis is nearly flat.
Outside the disk, where = is greater than o, © is zero when z is
zero, so that the plane of zy 1s part of the equipotential surface.
To find where these two parts of the surface meet, let us find at

what point of this plane a = 0.

dz
‘When 7 is very ncarly equal to @
av 2d’¢
Y = 4ot
dz —a
Hence, when
a_, LA
de To=0+ 50

The equipotential surface 7 = 0 is therefore composed of a disk-
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like figure of radius 7;, and nearly uniform thickness z,, and of the
part of the infinite plane of zy which lies beyond this figure.

The surface-integral over the whole disk gives the charge of
electricity on it. It may be found, as in the theory of a circular
current in Part 1V, to be

Q=47raa-’c{log —2}+1r0'r02.

To—a
The charge on an equal area of the plane surface is 7 o 7%, hence

the charge on the disk exceeds that on an equal area of the plane

in the ratio of z 8wr ;

148 - log -~ to unity,

where 2z is the thickness and 7 the radius of the disk, z being sup-

posed small compared with 7.

On Electric Accumulators and the Measurement of Capacily.

226.]1 An Accumulator or Condenser is an apparatus consisting
of two conducting surfaces separated by an insulating dielectrie
medium.

A Leyden jar is an accumulator in which an inside coating of
tinfoil is separated from the outside coating by the glass of which
the jar is made. The original Leyden phial was a glass vessel
containing water which was separated by the glass from the hand
which held it.

The outer surface of any insulated conductor may be considered
as one of the surfaces of an accumulator, the other being the earth
or the walls of the room in which it is placed, and the intervening
air being the dielectric medinm.

The capacity of an accumulator is measured by the guantity of
electricity with which the inner surface must be charged to make
the difference between the potentials of the surfaces unity.

Since every eleetrical potential is the sum of a number of parts
found by dividing each electrical element by its distance from a
point, the ratio of a quantity of electricity to a potential must
have the dimensions of a line. Hence electrostatic capacity is a
linear quantity, or we may measure it in feet or metres without
ambiguity.

In electrical researches accumulators are used for two principal
purposes, for receiving and retaining large quantities of electricity
in as small a compass as possible, and for measuring definite quan-
tities of electricity by means of the potential to which they raise
the accumulator.

IRIS - LILLIAD - Université Lille 1



282 ELECTROSTATIC INSTRUMENTS, [227.

For the retention of electrical charges nothing has been devised
more perfect than the Leyden jar. The principal part of the loss
arises from the electricity creeping along the damyp uncoated surface
of the glass from the one couting to the other. This may be checked
in a great degree by artificially drying the air within the jar, and
by varnishing the surface of the glass where it is exposed to the
atmosphere. In Sir W. Thomson’s electroscopes there is a very
small percentage of loss from day to day, and I believe that none
of this loss can be traced to direct conduction either through air
or through glass when the glass is good, but that it arises chiefly
from superficial conduction along the various insulating stems and
glass surfaces of the instrument.

In fact, the same electrician has communicated a charge to
sulphuric acid in a large bulb with a long neck, and has then her-
metically sealed the neck by fusing it, so that the charge was com-
pletely surrounded by glass, and after some years the charge was
found still to be retaied.

It is only, however, when cold, that glass insulates in this
way, for the charge escapes at once if the glass is heated to
a temperature below 100°C.

When it is desired to obtain great capacity in small compass,
accumulators in which the dielectric is sheet caoutchoue, mica, or
paper impregnated with paraflin are convenient.

227.] Tor accumulators of the second class, intended for the
measurement of quantities of electricity, all solid dielectries must be
employed with great caution on account of the property which they
possess called Electric Absorption.

The only safe dielectric for such accumunlators is air, which has
this inconvenience, that if any dust or dirt gets into the narrow
space between the opposed surfaces, which ought to be occupied only
by air, it not only alters the thickness of the stratum of air, but
may establish a connexion between the opposed surfuces, in which
case the accumulator will not hold a charge.

To determine in absolute measure, that is to say in feet or metres,
the capacity of an accumulator, we must either first ascertain its
form and size, and then solve the problem of the distribution of
electricity on its opposed surfaces, or we must compare its capacity
with that of another accumulator, for which this problem has been
solved.

As the problem is a very difficult one, it is best to begin with an
accumulator constructed of a form for which the solution is known.
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Thus the capacity of an insulated sphere in an unlimited space is
known to be measured by the radius of the sphere.

A sphere suspended in a room was actually used by MM. Kohl-
rausch and Weber, as an absolute standard with which they com-
pared the capacity of other accumulators.

The capacity, however, of a sphere of moderate size is so small
when compared with the capacities of the accumulators in common
use that the sphere 1s not a convenient standard measure.

Its capacity might be greatly increased by surrounding the
sphere with a hollow concentric spherical surface of somewhat
greater radius. The capacity of the inner surface is then a fourth
proportional to the thickness of the stratum of air and the rudii of
the two surfaces.

Sir W. Thomson has employed this arrangement as a standard of
capacity, but the difficulties of working the surfaces truly spherical,
of making them truly coucentric, and of measuring their distance
and their radii with suflicient accuracy, are considerable.

We are therefore led to prefer for an absolute measure of capacity
a form in which the opposed surfaces are parallel planes.

The accuracy of the surface of the planes can be easily tested,
and their distance can be measured by a micrometer screw, and
may be made capable of continuous variatien, which is a most
important property of, a measuring instrument.

The only difficulty remaining arises from the fact that the planes
must necessarily be bounded, and that the distribution of electricity
near the boundaries of the planes has not been rigidly calculated.
It 1s true that if we make them equal circular disks, whose radius
is large compared with the distance between them, we may treat
the edges of the disks as if they were straight lines, and calculate
the distribution of electricity by the method due to Helmholtz, and
described at Art. 202. But it will be noticed that in this case
part. of the electricity is distributed on the back of each disk, and
that in the calculation it has been supposed that there are no
conductors in the neighbourhood, which is not and cannot be the
case in a small instrument.

2287 We therefore prefer the following arrangement, due to
Sir W. Thomson, which we may call the Guard-ring arrangement,
by means of which the quantity of electricity on an insulated disk
may be exactly determined in terms of its potential.
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The Guard-ring Accumulator.
B is a cylindrical vessel of conducting material of which the
outer surface of the upper face is accurately plane. This upper
surface consists of two parts,

a disk 4, and a broad ring
BB surrounding the disk,
C C ] separated from it by a very

small interval all round, just

l = - — suﬂ"lf:ient to prevent sparks
A ao/ G G pussing. The upper surfuce
(L— . of the disk is accurately in

the same plane with that of
the guard-ring. The disk is
supported by pillars of insulating material GG. € is a metal disk,
the under surface of which is accurately plane and parallel to BA.
The disk C is considerably larger than 4. Its distance from 4
is adjusted and measured by means of a micrometer screw, which

Fig. 20.

is not given in the figure.

This accumulator is used as a measuring instrument as follows :—

Suppose C to be at potential zero, and the disk A and vessel A4
both at potential ¥, Then there will be no electrification on the
back of the disk because the vessel is nearly closed and is all at the
sume potential. There will be very little electrification on the
edges of the disk because BB is at the same potential with the
disk. On the face of the disk the electrification will be nearly
uniform, and therefore the whole charge on the disk will be almost
exactly represented by its area multiplied by the surface-density on
a plane, as given at Art. 124,

In fuct, we learn from the investigation at Art. 201 that the
charge on the disk is

Vg]iz-}-]{'z R2—FR* a
\ 84 84 4d+a }
where R is the radius of the disk, /&’ that of the hole in the guard-
ring, 4 the distance between 4 and C, and a a quantity which
cannot exceed (&’ -—R)IO%"Z-

If the interval between the disk and the gunard-ring is small
compared with the distance between 4 and C, the second term will
be very small, and the charge on the disk will be nearly

REy B2
it
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Now let the vessel B4 be put in connexion with the earth. The
charge on the disk 4 will no longer be uniformly distributed, but it
will remain the same in quantity, and if we now discharge 4 we
shall obtain a quantity of electricity, the value of which we know
in terms of 7, the original difference of potentials and the measur-
able quantities &, £ and A.

On the Comparison of the Capacity of Accumulalors.

229.] The form of accumulator which is best fitted to have its
capacity determined in absolute measure from the form and dimen-
sions of its parts is not generally the most suitable for electrical
experiments, It is desirable that the measures of capacity in actual
use should be accumulators having only two conducting surfaces, one
of which i8 as nearly as possible surrounded by the other. The
guard-ring accumulator, on the other hand, has three independent
conducting portions which must be charged and discharged in a
certain order. IHence it is desirable to be able to compare the
capacities of two accumulators by an electrical process, so as to test
accumulators which may afterwards serve as secondary standards.

I shall first shew how to test the equality of the capacity of two
guard-ring accumulators.

Let 4 be the disk, B the guard-ring with the rest of the con-
ducting vessel attached to it, and C the large disk of one of these
accumulators, and let 47, B, and €’ be the corresponding parts of
the other.

If either of these accumulators is of the more simple kind, having
only two conductors, we have only to suppress B or 5, and to
suppose 4 to be the inner and C the outer conducting surface. €
in this case being understood to surround A.

Let the following connexions be made.

Let B be kept always connected with €7, and B with C, that is,
let each guard-ring be connected with the Jarge disk of the other
condenser.

(1) Let A be connected with B and €’ and with J, the electrode
of a Leyden jar, and let 4" be connected with B and € and with
the earth.

(2) Let 4, B, and C’ be insulated from J.

(3) Let A be insulated from B and C’, and 4’ from B’ and C".

(4) Let B and €’ be connected with B° and C and with the
earth,

(5) Let 4 be connected with A",
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(6) Let 4 and A" be connected with an electroscope E.
‘We may express these connexions as follows :—

(1) 0=C=F=4 | A4d=B=0'=J,
(2) 0=C=B=4 | A4=B=C"|J.
18) 0=C=08"|4 | 4]|B=C.

(4) 0=C=B|4 | 4]|B=C=0.
(5) 0=C=DB|4 = 4|B=C=0.

(6) 0=C="F l A=F=4 , B=C"=o0.

Here the sign of equality expresses electrical connexion, and the
vertical stroke expresses insulation.

In (1) the two accumulators are charged oppositely, so that 4 is
positive and 4 negative, the charges on 4 and 4" being uniformly
distributed on the upper surface opposed to the large disk of each
accumulator.

In (2) the jar is removed, and in (3) the charges on 4 and 4" are
insulated.

In (4) the guard-rings are connected with the large disks, so that
the charges on 4 and 4, though unaltered in magnitude, are now
distributed over their whole surface.

In (5) 4 is connected with 4°. If the charges are equal and of
opposite signs, the electrification will be entirely destroyed, and
in (6) this is tested by means of the electroscope Z.

The electroscope # will indicate positive or negative electrification
accovding as A or A" has the greater capacity.

By means of a key of proper construction, the whole of these
operations can be performed In due succession in a very small
fraction of a second, and the capacities adjusted till no electri-
fication can be detected Ly the electroscope, and in this way the
capacity of an accumulator may be adjusted to be equal to that of
any other, or to the sum of the capacities of several accumulators,
so that a system of accumulators may be formed, each of which has
its capacity determined in absolute measure, 1. e. in feet or in metres,
while at the same time it is of the construction most suitable for
electrical experiments.

This method of comparison will probably be found wuseful in
determining the specific capacity for electrostatic induction of
different dielectrics in the form of plates or disks. If a disk of
the dielectric 1s interposed between 4 and C, the disk being con-
siderably larger than 4, then the capacity of the accumulator will
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be altered and made equal to that of the same accumulator when 4
and C are nearer together. If the accumulator with the diclectric
plate, and with 4 and C at distance z, is of the same capacity as
the same accumulator without the dielectrie, and with 4 and C at
distunce ', then, if 2 is the thickness of the plate, and X its specific
dielectric inductive capacity referred to air as a standard,

a

T e4d—n

The combination of three cylinders, described in Art. 127, has
been employed by Sir W. Thomson as an accumulator whose capa-
city may be Increased or diminished by measurable quantities.

The experiments of MM. Gibson and Barclay with this ap-
paratus are described in the Proceedings of the Royal Sociely, Feb. 2,
1871, and Phil. Trans., 1871, p. 573. They found the specific in-
ductive capacity of paraffin to be 1.975, that of air being unity,
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PART IL

ELECTROKINEMATICS.

CHAPTER 1.
THE ELECTRIC CURRENT.

230.] Wr have scen, in Art. 45, that when a conductor is in
electrical equilibrium the potential at every point of the conductor
must be the same.

If two conductors 4 and B are charged with electricity so that
the potential of 4 is higher than that of B, then, if they are put
in communication by means of a metallic wire € touching both of
them, part of the charge of 4 will be trausferred to 5, and the
potentials of 4 and B will become in a very short time equalized.

231.] During this process certain phenomena are observed in
the wire C, which are called the phenomena of the electric conflict
or current.

The first of these phenomena is the transference of positive
electrification from 4 to B and of negative electrification from B
to 4. This transference may be also effected in a slower manner
by bringing a small insulated body into contact with 4 and B
alternately. By this process, which we may call electrical con-
vection, successive small portions of the electrification of each body
are transferred to the other. In either case a certain quantity of
electricity, or of the state of electrification, passes from one place
to another along a certain path in the space between the bodies.

‘Whatever therefore may be our opinion of the nature of elec-
trieity, we must admit that the process which we have described
constitutes a current of electricity. This current may be described
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as a current of positive clectricity from 4 to B, or a current of
negative electricity from B to 4, or as a combination of these two
currents.

According to Fechner’s and Weber’s theory it is a combination
of a current of positive electricity with an exaetly equal current
of negative electricity in the opposite direction through the same
substance. It is necessary to remember this exceedingly artificial
hypothesis regarding the constitution of the current in order to
understand the statement of some of Weber’s most valuable ex-
perimental results.

If, as in Art. 36, we suppose P units of positive electricity
transferred from 4 to A, and NV units of negative electricity trans-
ferred from B to 4 in unit of time, then, according to Weber’s
theory, P=XN, and P or N is to be taken as the numerical measure
of the current.

We, on the contrary, make no assumption as to the relation
between P and N, but attend only to the result of the current,
namely, the transference of I’+ ¥V of positive electrification from 4
to B, and we shall consider P+ N the true measure of the current,
The current, therefore, which Weber would call 1 we shall eall 2.

On Steady Currents.

2327 In the case of the current between two insulated con-
ductors at different potentials the operation is soon brought to
an end by the equalization of the potentials of the two bodies,
and the current is therefore essentially a Transient current.

But there are methods by which the difference of potentials of
the conductors may be maintained constant, In which case the
current will continue to flow with uniform strength as a Steady
Current.

The Poltaic Battery.

The most convenient method of producing a steady current is by
means of the Voltaic Battery.

For the sake of distinctness we shall deseribe Daniell’s Constant
Battery :—

A solution of sulphate of zinc is placed in a cell of porous earth-
enware, and this cell is placed in a vessel conlaining a saturated
solution of sulphate of copper. A piece of zinc is dipped into the
sulphate of zinc, and a piece of copper is dipped into the sulphate
of copper. Wires are soldered to the zinc and to the copper above

VOL. L. U
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the surface of the liquid. This combination is called a cell or
element of Danicll’s battery. See Art. 272.

233.] If the cell is insulated by being placed on a non-con-
ducting stand, and if the wire connected with the copper 1s put
in contact with an insulated conductor 4, and the wire connected
with the zinc is put in contact with B, another insulated conductor
of the same metal as 4, then it may be shewn by means of a delicate
electrometer that the potential of 4 exceeds that of B by a certain
quantity. This difference of potentials is called the Electromotive
Force of the Daniell’s Cell.

If 4 and B are now disconnected from the cell and put in
communication by means of a wire, a transient current passes
through the wire from 4 to B, and the potentials of 4 and B
become equal. 4 and B may then be charged again by the cell,
aud the process repcated as long as the cell will work. But if
4 and B be connected hy means of the wire €, and at the same
time counected with the battery as before, then the cell will main-
tain a constant current through C, and also a constant difference
of potentials between 4 and /. This difference will not, as we
shall see, be equal to the whole electromotive force of the cell, for
part of this force is spent in maintaining the current through the
cell itself.

A number of cells placed in series so that the zine of the first
cell is connected by metal with the copper of the second, and
so on, 18 called a Voltaic Battery. The electromotive foree of
such a battery is the sum of the electromotive forces of the cells
of which it is composed. If the battery is insulated it may be
charged with electricity as a whele, but the potential of the copper
end will always exceed that of the zinc end by the electromotive
force of the battery, whatever the absolute value of either of these
potentials may be. The cells of the battery muy be of very various
construction, containing different chemical substances and different
metals, provided they arc such that chemical action does not go
on when no current passes.

234.7 Let us now consider a voltaic battery with its ends insulated
from each other. The copper end will be positively or vifreously
electrified, and the zinc end will be negatively or resinously clectrified.

Let the two ends of the battery be now connected by means
of u wire. An electric current will commence, and will in a very
short time attain a constant value. 1t is then said to be a Steady
Current.
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Properties of the Current.

235.] The current forms a closed ecircuit in the direction from
copper to zinc through the wires, and from zine to copper through
the solutions.

If the circuit be broken by cutting any of the wires which
connect the copper of one cell with the zine of the next in order, the
current will be stopped, and the potential of the end of the wire
in eonnexion with the copper will be found to exceed that of the
end of the wire in connexion with the zinc by a constant quantity,
namely, the total electromotive force of the circuit.

Eleetrolylic Aclion of the Currend.

236.] As long as the circuit is broken no chemical action goes
on in the cells, but as soon as the circuit is completed, zine is
dissolved from the zinc in each of the Daniell’s cells, and copper is
deposited on the copper.

The quantity of sulphate of zine increases, and the quantity of
sulphate of copper diminishes unless more is constantly supplied.

The quantity of zinc dissolved and also that of copper deposited is
the same in each of the Danicll’s cells throughout the circuit, what-
ever the size of the plates of the cell, and if any of the cells be of a
different construetion, the amount of chemical action in it bears
a constant proportion to the action in the Daniell’s cell. For
instavce, if one of the cells consists of two platinum plates dipped
into sulphuric acid diluted with water, oxygen will be given off
at the surface of the plate where the current enters the liquid,
namely, the plate in metallic connexion with the eopper of Daniell’s
cell, and hydrogen at the surface of the plate where the current
leaves the liquid, namely, the plate connected with the zine of
Daniell’s cell.

The volume of the hydrogen is exactly twice the volume of the
oxygen given off in the same time, and the weight of the oxygen is
exactly eight times the weight of the hydrogen.

In every cell of the circuit the weight of each substance dissolved,
deposited, or decomposed is equal to a certaln guantity called the
electrochemical equivalent of that substance, multiplied by the
strenpth of the current and by the time during which it has
been flowing,

For the experiments which established this principle, see the
seventh and eighth series of Iaraday’s Eaperimental Researches;

U2
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and for an investigation of the apparent exceptions to the rule, see
Miller’s Chemical Physics and Wiedemann’s Galvanismus.

237.] Substances which are decomposed in this way are called
Electrolytes. The process is called Electrolysis. The places where
the current enters and leaves the electrolyte are culled Electrodes.
Of these the electrode by which the current enters is called the
Anode, and that by which it leaves the electrolyte is called the
Cathode. The components into which the electrolyte 1s resolved
are called Ions: that which appears at the anode is called the
Anion, and thati which appears at the cathode is called the Cation.

Of these terms, which were, I believe, invented by Faraday with
the help of Dr. Whewell, the first three, namely, electrode, elec-
trolysis, and electrolyte have heen generally adopted, and the mode
of conduction of the current in which this kind of decomposition
and transfer of the components takes place is called Llectrolytic
Conduction.

If a homogencous electrolyte is placed in a tube of variable
section, and if the electrodes are placed at the ends of this tube,
it is found that when the current passes, the anion appears af
the anode and the cation at the cathode, the quantities of these
ions being electrochemieally equivalent, and such as to be together
equivalent to a certain quantity of the electrolyte. In the other
parts of the tube, whether the section be large or small, uniform
or varying, the composition of the electrolyte remains unaltered.
Hence the amount of electrolysis which takes place across every
section of the tube is the same. Where the section is small the
action must therefore be more intense than where the section is
large, but the total amount of each ion which crosses any complete
section of the electrolyte in a given time is the same for all sections.

The strength of the current may therefore be measured by the
amount of electrolysis in a given time. An instrument by which
the quantity of the elcctrolytic products can be readily measured
is called a Voltameter.

The strength of the current, as thus measured, 1s the same
at every part of the circuit, and the total quantity of the elec-
trolytie products in the voltameter after any given time is pro-
portional to the amount of electricity which passes any section in
the same time.

238.] If we introduce a voltameter at one part of the circuit
of a voltaic battery, and break the circuit at another part, we may
suppose the measurement of the current to be conducted thus.
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Let the ends of the broken circuit be 4 and B, and let 4 be the
anode and B the cathode. Let an insulated ball be made to touch
4 and B alternately, it will carry from A to B a certain measurable
quantity of electricity at each journey. This quantity may be
measured by an electrometer, or 1t may be calculated by mul-
tiplying the electromotive force of the circuit by the electrostatic
capacity of the ball. Electricity is thus carried from 4 to B on the
insulated ball by a process which may be called Convection. At
the same time electrolysis goes on in the voltameter and in the
cells of the battery, and the amount of electrolysis in each cell may
be compared with the amount of electricity carried across by the
insulated ball. The quantity of a substance which is electrolysed
by one unit of electricity is called an Electrochemical equivalent
of that substance.

This experiment would be an extremely tedious and troublesome
one if conducted in this way with a ball of ordinary magnitude
and a manageable battery, for an enormous number of journeys
would have to be made before an appreciable quantity of the electro-
Iyte was decomposed. The experiment must therefore be considered
as a mere illustration, the actual measurements of electrochemical
equivalents being conducted in a different way. But the experi-
ment may be considered as an illustration of the process of elec-
trolysis itself, for if we regard electrolytic conduction as a species
of convection in which an electrochemical equivalent of the anion
travels with negative electricity in the direction of the anode, while
an equivalent of the cation travels with positive electricity in
the direction of the cathode, the whole amount of transfer of elec-
tricity being one unit, we shall have an idea of the process of
electrolysis, which, so far as 1T know, is not inconsistent with known
facts, though, on account of our ignorance of the nature of electricity
and of chemical compounds, it may be a very imperfect repre-
sentation of what really takes place.

Magnetic Action of the Current.

239.]1 Oersted discovered that a magnet placed near a straight
electric current tends to place itself at right angles to the plane
passing through the magnet and the current. See Art. 475.

If a man were to place his body in the line of the current so
that the current from copper through the wire to zine should flow
from his head to his feet, and if he were to direct his face towards
the centre of the magnet, then that end of the magnet which tends

IRIS - LILLIAD - Université Lille 1



294 THE ELECTRIC CURRENT. [240.

to point to the north would, when the current flows, tend to point
towards the man’s right hand.

The nature and laws of this electromagnetic action will be dis-
cussed when we come to the fourth part of this treatise. What
we are concerned with at present is the fuct that the electric
current has a magnetic action which is exerted outside the current,
and by which its existence can be ascertained and its intensily
measured without breaking the cirenit or introducing anything into
the current itself.

The amount of the magnetic action has been ascertained to be
strictly proportional to the strength of the current as measured
by the products of electrolysis in the voltameter, and to be quite
independent of the nature of the conductor in which the current
is flowing, whether it be a metal or an electrolyte.

240.] An instrument which indicates the strength of an electric
current by its magnetic effects is called a Galvanometer,

Galvanometers in general consist of one or more coils of silk-
covered wire within which a magnet is suspended with its axis
horizontal. When a current is passed through the wire the magnet

' tends to set itself with its axis perpendicular to the plane of the
coils. If we suppose the plane of the coils to be placed parallel
to the plaue of the earth’s equator, and the current to flow round
the coil from east to west in the dirvection of the apparent motion
of the sun, then the magnet within will tend to set itself with
its magnetization In the same direction as that of the earth con-
sidered as a great magnet, the north pole of the earth being similar
to thut end of the compass needle which points south.

The galvanometer is the most convenient instrument for mea-
suring the strength of electric eurrents. 'We shall therefore assume
the possibility of constructing such an instrument in studying the
laws of these currents, reserving the discussion of the principles of
the instrument for our fourth part. When therefore we say that
an electric current is of a certain strength we suppose that the
measurement is effected by the galvanometer.
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CHAPTER 1L

CONDUCTION AND RESISTANCE.

241.] Ir by means of an electrometer we determine the electric
potential at different points of a circuit in which a constant electrie
current 18 maintained, we shall find that in any portion of the
circuit consisting of a single metal of uniform temperature through-
out, the potential at any point exceeds that at any other point
farther on in the direction of the current by a quantity depending
on the strength of the current and on the nature and dimensions
of the intervening portion of the circuit. The difference of the
potentials at the extremities of this portion of the circuit is called
the External electromotive force acting on it. If the portion of
the circuit under consideration is not homogeneous, but contains
transitions from one substance to another, from metals to elec-
trolytes, or from hotter to colder parts, there may be, besides the
external electromotive force, Internal electromotive forces which
must be taken into account.

The relations between Electromotive Force, Current, and Resist-
ance were first investigated by Dr. G. S. Ohm, in a work published
in 1827, entitled Die Galvanische Ketle Mathematisch Bearbeitet,
translated in Taylor’s Scientific Memoirs. The result of these in-
vestigations in the case of homogeneous conductors is commonly

called ¢ Ohm’s Law.’
Okm’s Law.

The elcctromotive force acting between the extremities of any part
of a circuit is the product of the strength of the current and the
Resistance of (hat part of the circuit,

Here a new term is introduced, the Resistance of a conductor,
which is defined to be the ratio of the electromotive foree to
the strength of the current which it produces. The introduction
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of this term would have been of no scientific value unless Ohm
had shewn, as he did experimentally, that it corresponds to a real
physical quantity, that is, that it has a definite value which is
altered only when the nature of the conductor is altered.

In the first place, then, the resistance of a conductor is inde-
pendent of the strength of the current flowing through it.

In the second place the resistance is independent of the electrie
potential at which the conductor is maintained, and of the density
of the distribution of electricity on the surface of the conductor.

It depends entircly on the nature of the material of which the
conductor is composed, the state of aggregation of its parts, and its
temperature.

The resistance of a conductor may be measured to within one
ten thousandth or even one hundred thousandth part of its value,
and so many conductors have been tested that our assurance of the
truth of Ohm’s Law is now very high, In the sixth chapter we
shall trace its applications and consequences.

Generation of lleat by the Current.

2427 We have seen that when an electromotive force causes
a current to flow through a conductor, electricity is transferred
from a place of higher to a place of lower potential. If the transfer
had been made by convection, that is, by carrying successive
charges on a ball from the one place to the other, work would have
been done by the electricul forces on the ball, and this might have
been turned to account. It is actually turoed to account in a
partial manner in those dry pile circuits where the electrodes have
the form of bells, and the carrier ball is made to swing like a
pendulum between the two bells and strike them alternately. In
this way the electrical action is made to keep up the swinging
of the pendulum and to propagate the sound of the lells to a
distance. In the case of the conducting wire we have the same
transfer of electricity from a place of high to a place of low potential
without any external work being done. The principle of the Con-
servation of Energy therefore leads us to look for internal work in
the conductor. In an electrolyte this internal work consists partly
of the separation of its components. In other conductors it is
entirely converted into heat.

The energy converted into heat is in this case the product of
the electromotive force into the quantity of electricity which passes.
But the electromotive force is the product of the current into the
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resistance, and the quantity of clectricity is the product of the
current into the time. Ilence the quantity of heat multiplied by
the mechanical equivalent of unit of heat is equal to the square of
the strength of the current multiplied into the resistance and into
the time.

The heat developed by electric currents in overcoming the re-
sistance of conductors has been determined by Dr. Joule, who
first established that the heat produced in a given time is pro-
portional to the square of the current, und afterwards by careful
absolute measurements of all the quantities concerned, verified the

equation JII = C2R¢,

where J 1s Joule’s dynamieal equivalent of heat, /7 the number of
units of heat, C the strength of the current, & the resistance of the
conductor, and ¢ the time during which the current flows. These
relations between electromotive foree, work, and heat, were first fully
explained by Sir W. Thomson in a paper on the application of the
principle of mechanical effect to the measurement of electromotive
forces *.

243 The analogy between the theory of the conduction of
electricity and that of the conduction of heat is at first sight almost
complete. If we take two systems geometrically similar, and such
that the conductivity for beat at any part of the first is proportional
to the conductivity for electricity at the corresponding part of the
second, and if we also make the temperature at any part of the
first proportional to the electric potential at the corresponding point
of the second, then the flow of heat across any arca of the first
will be proportional to the flow of electricity across the corre-
sponding area of the second.

Thus, in the illustration we have given, in which flow of elec-
tricity corresponds to flow of heat, and electric potential to tem-
perature, electricity tends to flow from places of high to places
of low potential, exactly as heat tends to flow from places of high
to places of low temperature.

244.] The theory of potential and that of temperature may
therefore be made to illustrate one another; there is, however, one
remarkable difference between the phenomena of electricity and
those of heat.

Suspend a conducting body within a closed conducting vessel by
a silk thread, and charge the vessel with electricity, The potential

* Dhil. Mag., Dec. 1851.
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of the vessel and of all within it will be instantly raised, but
however long and however powerlully the vessel be electrified, and
whether the body within be allowed to come in contact with the
vessel or not, no signs of electrification will appear within the
vessel, nor will the body within shew any electrical effect when
taken out.

But if the vessel is raised to a high temperature, the body
within will rise to the same temperature, but only after a con-
siderable time, and if it is then taken out it will be found hot,
and will remain so till it has continued to emit heat for some time.

The difference between the phenomena consists in the fact that
bodies are capable of absorbing and emitting heat, whereas they
have no corresponding property with respect to electricity. A body
cannot be made hot without a certain amount of heat being
supplied to it, depeuding on the mass and specific heat of the body,
but the electric potential of a body may be raised to any extent
in the way already deseribed without communicating any electricity
to the body.

245.] Again, suppose a body first heated and then placed inside
the closed vessel. The outside of the vessel will be at first at the
temperature of surrounding bodics, but it will soon get hot, and
will remain hot till the heat of the interior body has escaped.

It is impossible to perform a corresponding electrical experiment.
Tt is impossible so to electrify a body, and so to place 1t in a
hollow vessel, that the cutside of the vessel shall at first shew no
signs of electrification but shall afterwards become electrified. It
was for some phenomenon of this kind that Faraday sought in
vain under the name of an absolute charge of electricity.

Heat may be hidden in the interior of a body so as to have no
externul action, but it is impossible to isolate a quantity of elec-
tricity so as to prevent it from being constantly in inductive
relation with an equal quantity of electricity of the opposite kind.

There is nothing therefore among electric phenomena which
corresponds to the capacity of a body for heat. This follows at
once from the doctrine which is asserted in this treatise, that
electricity obeys the same condition of continuity as an incom-
pressible fluid. It is therefore impossible to give a bodily charge
of electricity to any substance by forcing an additional quantity of
electricity into it. See Arts. 61, 111, 329, 334,
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CHAPTER III.

ELECTROMOTIVE FORCE BETWEEN BODIES IN CONTACT.

The Potentials of Different Substances in Contact.

246.] Ir we define the potential of a hollow conducting vessel
as the potential of the air inside the vessel, we may ascertain this
potential by means of an electrometer as described in Part I,
Art. 222,

If we now take two hollow vessels of different metals, suy copper
and zine, and put them in metallic contact with each other, and
then test the potential of the air inside each vessel, the potential
of the air inside the zinc vessel will be positive as compared with
that inside the copper vessel. The difference of potentials depends
on the nature of the surface of the insides of the vessels, being
greatest when the zine is bright and when the copper is coated
with oxide.

It appears from this that when two different metals are in
contact there is in general an clectromotive force acting from the
one to the other, so as to make the potential of the one exceed
that of the other by a certain quantity. This is Volta’s theory of
Contact Eleetricity.

1f we take a certain metal, say copper, as the standard, then
if the potential of iron in contact with copper at the zero potential
is 7, and that of zine in contact with copper at zero is Z, then
the potential of zine in contact with iron at zero will be Z—1.

It appears from this result, which is true of any three metals,
that the differences of potential of any two metals at the same
temperature in contact is equal to the difference of their potentials
when in contact with a third metal, so that if a circuit be formed
of any number of metals at the same temperature there will be
electrical equilibrium as soon as they have acquired their proper
potentials, and there will be no current kept up in the cireuit.
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247.] If, however, the circult consist of two metals and an elec-
‘trolyte, the electrolyte, according to Volta’s theory, tends to reduce
the potentials of the metals in contact with it to equality, so that
the electromotive force at the metallic junction is no longer balanced,
and a continuous current is kept up. 'The energy of this current
1s supplied by the chemical action which takes place between the
electrolyte and the metals.

248.] The electric effect may, however, be produced without
chemical action if by any other means we can produce an equali-
zation of the potentials of two metals in contact. Thus, in an
experiment due to Sir W. Thomson*, a copper funnel is placed in
contact with a vertical zine cylinder, so that when copper filings
are allowed to pass through the funmnel, they separate from each
other and from the funne! near the middle of the zine eylinder,
and then fall into an insulated receiver placed below. The receiver
1s then found to be charged negatively, and the charge increases
as the filings continue to pour into it. At the same time the zine
cylinder with the copper funnel in it becomes charged more and
more positively. .

If now the zine cylinder were connected with the receiver by a
wire, there would be a positive current in the wire from the cylinder
to the receiver. The stream of copper filings, each filing charged
negatively by induction, constitutes a negative current from the
funnel to the receiver, or, in other words, a positive current from
the receiver to the copper funnel. The positive current, therefore,
passes through the air (by the filings) {rom zine to copper, and
through the metallic junction from copper to zine, just as in the
ordinary voltaic arrangement, but in this case the force which keeps
up the current is not chemical action but gravity, which causes the
filings to full, in spite of the electrical attraction between the
positively charged funnel and the negatively charged filings.

249.] A remarkable confirmation of the theory of contact elec-
tricity is supplied by the discovery of Deltier, that, when a current
of electricity crosses the junction of two metals, the junction is
heated when the current is in ome direction, and cooled when it
1s in the other direction. It must be remembered that a current
in its passage through a metal always produces hcat, because it
meets with resistance, so that the cooling effect on the whole
conductor must always be less than the heating effect. We must
therefore distinguish between the generation of heat in each metal,

North British Heview, 1864, p. 353 ; and Proc. R. 8., June 20, 1867.
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due to ordinary resistance, and the generation or absorption of heat
at the junction of two metals. We shall call the first the frictional
generation of heat by the current, and, as we have seen, it is
proportional to the square of the current, and is the same whether
the current be in the positive or the negative direction. The second
we may call the Peltier effect, which changes its sign with that
of the current.

The total heat generated in a portion of a compound conductor
consisting of two metals may be expressed by

R
—_— 2L __
I = 5 cx-11Ct,

where /7 is the quantity of heat, J the mechanical equivalent of
unit of heat, R the resistance of the conductor, C the current, and
¢ the time ; IT being the coefficient of the Peltier effect, that is,
the heat absorbed at the junction due to the passage of unit of
current for unit of time.

Now the heat generated is mechanically equivalent to the work
done against clectrical forces in the conductor, that is, it is equal
to the product of the current into the electromotive force producing
it. Hence, if # is the external electromotive force which causes
the current to flow through the conductor,

JH=CE{t=RC?*{—JIIC¢,
whence E=LRC—JII.

It appears from this equation that the external electromotive
force required to drive the current through the compound conductor
is less than that due to its resistance alone by the electromotive
force JI1. Ience JII represents the electromotive contact force
at the junction acting in the positive direction.

This application, due to Sir W. Thomson *, of the dynamical
theory of heat to the determination of a local electromotive force
is of great scientific importance, since the ordinary method of
connecting two points of the compound conductor with the elec-
trodes of a galvanometer or electroscope by wires would be uscless,
owing to the contact forces at the junctions of the wires with
the materials of the compound conductor. In the thermal method,
on the other hand, we know that the only source of energy is the
current of electricity, and that no work is done by the current
in a certain portion of the circuit except in heating that portion
of the conductor. Tf, therefore, we can measure the amount. of the

* Proc. R. 8. Edin, Dec. 15, 1851 ; and Trans. R. 8. Edin., 1854.
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cwrent and the amount of heat produced or absorbed, we can
determine the electromotive force required to urge the current
through that portion of the conductor, and this measurement is
entirely independent of the effect of contact forces in other parts of
the circuit. .

The electromotive force at the junction of two metals, as de-
termined by this method, does not account for Volta’s electromotive
force as described in Art. 246. The latter is in general far greater
than that of this Article, and is sometimes of opposite sign. Hence
the assumption that the potential of a metal is to be measured by
that of the air in contact with it must be erroncous, and the greater
part of Volta’s electromotive force must be sought for, not at the
Junction of the two metals, but at one or both of the surfuces which
separate the metals from the air or other medium which forms the
third element of the circuit.

R50.] The discovery by Seebeck of thermoelectric currents in
circuits of different metals with their junctions at different tem-
peratures, shews that these contact forces do not always balance
each other in a complete circuit. It is manifest, however, that
in a complete circuit of different metals at uniform temperature the
contact forces must balance each other. For if this were not the
case there would be a current formed in the eireuit, and this current
might be employed to work a machine or to generate heat in the
circuit, that is, to do work, while at the same time there is no
expenditure of energy, as the circuit 1s all at the same temperature,
and no chemical or other change takes place. Ience, if the Peltier
effect at the junction of two metals a and 4 be represented by II,,
when the current flows from @ to 4, then for a circuit of two metals
at the same temperature we must have

g+ 1l = 0,
and for a eireuit of three metals a, 8, ¢, we must have
Uy + 1o+ 1T = 0.

It follows from this equation that the three Pelticr effects are not
independent, but that one of them can be deduced from the other
two. For instance, if we suppose ¢ to be a standard metal, and
if we write P, = J1I,, and P, = JII,,, then

JIly = P,—P,.

The quantity P, is a function of the temperature, and depends on
the nature of the metal a.

251.] It has also been shewn by Magnus that if a eireuit is
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formed of a single metal no current will be formed in it, however
the section of the conductor and the temperature may vary in
different parts.

Since in this case there is conduction of heat and consequent
dissipation of cnergy, we cannat, as in the former case, consider this
resull as sell-evident. The electromotive force, for instance, between
two portions of a circuit might have depended on whether the
current was passing from a thick portion of the conductor to a thin
one, or the reverse, as well as on its passing rapidly or slowly from a
hot portion to a cold one, or the reverse, and this would have made
a current possible in an unequally heated circuit of one metal.

Hence, by the same reasoning as in the case of Peltier’s phe-
nomenon, we find that if the passage of a current through a
conductor of one metal produces any thermal effect which is re-
versed when the current is reversed, this can only take place when
the current flows from places of high to places of low temperature,
or the reverse, and if the heat generated in a conductor of one
metal in flowing from a place where the temperature is # to a
place where it is y, is #, then

J I = RC?*t-8,, 0,
and the clectromotive force tending to maintain the current will
be S, ]

If #, y, z be the temperatures at three points of a homogeneous
cireuit, we must have

S“+SZZ+SW = 0,
according to the result of Magnus. Hence, if we suppose z to be
the zero temperature, and if we put
Q.=8, and @,=8,,
we find 8, = Q.—Q,,
where ¢, 1s a function of the temperature z, the form of the
function depending on the nature of the metal.

If we now consider a circuit of two metals @ and 4 in which
the temperature is # where the current passes from a to 4, and
» where 1t passes [rom & to a, the electromotive force will be

V= Pax—])ba:+ Ql;z—Qby+Pby_Pay+ Qny_ Qaz:

where P, signifies the value of 7 for the metal ¢ at the tempera-
ture 2, or

F= Paa:_ Qaz_(])ay—' Qay)-(])bz- sz)+z)by_ sz/'

Sinee in unequally heated circuits of different metals there are in

IRIS - LILLIAD - Université Lille 1



304 CONTACT FORCE. [252.

general thermoclectric currents, it follows that P and @ are in
general different for the same metal and same temperature.

252.] The existence of the quantity @ was first demonstrated by
Sir W. Thomson, in the memoir we have referred to, as a dedunction
from the phenomenon of thermoelectric inversion discovered by
Cumming ¥, who found that the order of certain metals in the ther-
moelectric scale is different at high and at low temperatures, so that
for a certain temperature two metals may be neutral to each other.
Thus, in a cireuit of copper and iron if one junction be kept at the
ordinary temperature while the temperature of the other is raised,
a current sets from copper to iron through the hot junction, and
the electromotive force continues to increase till the hot junction
has reached a temperature 7, which, according to Thomson, is
about 284°C. When the temperature of the hot junction is raised
still further the electromotive force is reduced, and at last, if the
temperature be raised high enough, the current is reversed. The
reversal of the current may be obtained more easily by raising the
temperature of the colder junction. If the temperature of both
junctions is above 7' the current sets from iron to copper through
the hotter junction, that is, in the reverse direction to that ob-
served when both junctions are below 7.

Hence, if one of the junctions is at the neutral temperature 7
and the other is either hotter or colder, the current will set fromn
copper to iron through the junction at the neutral temperature.

253.] From this fact Thomson reasoned as follows :—

Suppose the other junction at a temperature lower than 7.
The current may be made to work an engine or to generate heat in
a wire, and this expenditure of energy must be kept up by the
transformation of heat into electric energy, that is to say, heat
must disappear somewhere in the circuit. Now at the tempera-
ture 7' iron and copper are neutral to each other, so that no
reversible thermal effect is produced at the hot junction, and at
the cold junction there is, by Peltier’s principle, an evolution of
heat. Hence the only place where the heat can disappear is in the
copper or iron portions of the circuit, so that either a current in
iron from hot to cold must cool the iron, or a current in copper
from cold to hot must cool the copper, or both these effects may
take place. By an elaborate series of ingenious experiments Thom-
son succeeded in detecting the reversible thermal action of the
current in passing between parts of different temperatures, and

* Camlbridge Transactions, 1823.
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he found that the current produced opposite effects in copper and
in iron *.

When a stream of a material fluid passes along a tube from
a hot part to a cold part it heats the tube, and when it passes
from cold to hot it cools the tube, and these effects depend on
the specific capacity for heat of the fluid. If we supposed elec-
tricity, whether positive or negative, to be a material fluid, we
might measure its specific heat by the thermal effect on an un-
equally heated conductor. Now Thomson’s experiments shew that
positive electricity in copper and negative electricity in iron carry
heat with them from hot to cold. Ilence, if we supposed either
positive or mnegative electricity to be a fluid, capable of being
heated and cooled, and of communicating heat to other bodies, we
should find the supposition contradicted by iron for positive elec-
tricity and by copper for negative electricity, so that we should
have to abandon both hypotheses.

This scientific prediction of the reversible effect of an electric
current upon an unequally heated conductor of one metal is another
instruetive example of the application of the theory of Conservation
of Energy to indicate new directions of scientific research. Thomson
has also applied the Second Law of Thermodynamics to indicate
relations between the quantities which we have denoted by P
and ¢, and has investigated the possible thermoelectric properties
of bodies whose structure is different in different directions. He
has also investigated experimentally the conditions under which
these properties are developed by pressure, magnetization, &c.

254.] Professor Tait+ has recently investigated the electro-
motive force of thermoelectric circuits of different metals, having
their junctions at different temperatures. He finds that the elec-
tromotive force of a circuit may be expressed very accurately by
the formula

E = a(ty—1y) [L—3 (4 +15)),

where ¢4, 1s the absolute temperature of the hot junction, £, that
of the cold junction, and ¢, the temperature at which the two metals
are neutral to each other. The factor @ is a coeflicient depending
on the nature of the two metals composing the circuit. This law
has been verified through considerable ranges of temperature by
Professor Tait and his students, and he hopes to make the thermo-
electric circuit available as a thermometric instrument in his

* ‘On the Electrodynamic Qualities of Metals.’ PLil. Trans., 1856.

+ Proc. R. 8. Edin., Session 1870-71, p. 808, also Dec. 18, 1871.

VOL, I, X
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experiments on the eonduction of heat, and in other cases in which
the mercurial thermometer is not convenient or has not a sufficient
range.

According to Tait’s theory, the quantity which Thomson calls
the specific heat of electricity is proportional to the absolute tem-
perature in each pure metal, thongh its magnitude and even its
sign vary in different metals. From this he has deduced by ther-
modynamic principles the following results. Let £,¢, 4,¢, %,¢
be the specific heats of electricity in three metals a, 4, ¢, and let
Ty, Ty, Ty be the temperatures at which pairs of these metals are
neutral to each other, then the equations

Uy — 1) Ty (ho— B T+ (ha— ) Ty = 0,

Uy = (k,— &)t (Ty—10),

Ly = (ka—k) (h—10p) [Tab_é 6+ 52)]
cxpress the relation of the neutral temperatures, the value of the
Peltier effect, and the eleetromotive foree of a thermoclectric eireuit.
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CITAPTER 1V.

ELECTROLYSIS.

Electrolytie Conduction.

255.] I nave already stated that when an electric current in
any part of its circuit passes through certain compound substances
called Electrolytes, the passage of the current is accompanied by
a certain chemical process called Electrolysis, in which the substance
is resolved into two components called Ions, of which one, called
the Anion, or the electronegative component, appears at the Anode,
or place where the current enters the electrolyte, and the other,
called the Cation, appears at the Cathode, or the place where the
current, leaves the electrolyte.

The complete investigation of Electrolysis belongs quite as much
to Chemistry as to Electricity. We shall consider it from an
electrical point, of view, without discussing its application to the
theory of the constitution of chemical compounds.

Of all electrical phenomena electrolysis appears the most likely
to furnish us with a real insight into the true nature of the eclectric
current, because we find currents of ordinary matter and currents
of electricity forming essential parts of the same phenomenon.

1t is probably for this very reason that, in the present imperfectly
formed state of our ideas about electricity, the theories of electro-
lysis are so unsatisfactory.

The fundamental law of electrolysis, which was established by
Faraday, and confirmed by the experiments of Beetz, Hittorf, and
others down to the present time, 1s as follows :—

The number of electrochemical equivalents of an electrolyte which
are decomposed by the passage of an electric current during a given
time is equal to the number of units of electricity which are trans-
ferred by the current in the same time.

The electrochemical equivalent of a substance 1s that quantity

X2

IRIS - LILLIAD - Université Lille 1



308 ELECTROLYSIS, [255.

of the substance which is electrolysed by a unit current passing
through the substance for a unit of time, or, in other words, by the
passage of a unit of electricity. When the unit of electricity is
defined in absolute measure the absolute value of the electro-
chemical equivalent of each substance can be determined in grains
or in grammes.

The electrochemical equivalents of different substances are pro-
portional to their ordinary chemieal equivalents. The ordinary
chemical equivalents, however, are the mere numerical ratios in
which the substances combine, whereas the electrochemical equi-
valents are quantities of matter of a determinate magunitude, de-
pending on the definition of the unit of electricity.

Every electrolyte consists of two components, which, during the
electrolysis, appear where the current enters and leaves the clec-
trolyte, and nowhere else. Ilence, if we conceive a surface described
within the substance of the electrolyte, the amount of electrolysis
which takes pluce through this surface, as measured by the elee-
trochemical equivalents of the components transferred across it
in opposite directions, will be proportional to the total electric
current through the surface.

The actual transfer of the ions through the substance of the
electrolyte in opposite directions is therefore part of the phenomenon
of the conduction of an electric current through un electrolyte. At
every point of the electrolyte through which an electric current
1s passing there are also two opposite material currents of the anion
and the cation, which have the same lines of flow with the electrie
current, and are proportional to it in magnitude.

Tt is therefore extremely natural to suppose that the currents of
the ions are convection currents of electricity, and, in particular,
that every molecule of the cation is charged with a certain fixed
quantity of positive electricity, which is the same for the molecules
of all cations, and that every molecule of the anion is charged with
an equal quantity of negative electricity.

The opposite motion of the ions through the electrolyte would
then be a complete physical representation of the electric current.
‘We may compare this motion of the ions with the motion of gases
and liquids through each other during the process of diffusion,
there being this difference between the two processes, that, in
diffusion, the different substunces are only mixed together and the
mixture is not homogeneous, whereas in electrolysis they are chemi-
cally combined and the electrolyte is homogeneous. In diffusion
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the determining cause of the motion of a substance in a given
direction is a diminution of the quantity of that substance per
unit of volume in that direction, whereas in electrolysis the motion
of each jon is due to the electromotive force acting on the charged
molecules.

256.] Clausius ¥, who has bestowed much study on the theory
of the molecular agitation of bodies, supposes that the molecules
of all bodies are in a state of constant agitation, but that in solid
bodies each molecule never passes beyond a certain distance from
its original position, whereas in fluids a molecule, after moving
a certain distance from its original position, is just as likely to
move still farther from it as to move back again. Hence the
molecules of a fluid apparently at rest are continually changing
their positions, and passing irregularly from one part of the {fluid
to another. In a compound fluid he supposes that not only the
compound molecules travel albout in this way, but that, in the
collisions which occur between the compound molecules, the mole-
cules of which they are composed are often separated and change
partners, so that the same individual atom is at one time associated
with one atom of the opposite kind, and at another time with another.
This process Clausius supposes to go on in the liquid at all times, but
when an electromotive force acts on the liquid the motions of the
molecules, which before were indifferently in all directions, are now
influenced by the electromotive force, so that the positively charged
molecules have a greater tendency towards the cathode than towards
the anode, and the negatively charged molecules have a greater
tendency to move in the opposite direction. Hence the molecules
of the cation will during their intervals of freedom struggle towards
the cathode, but will continually be checked in their course by
pairing for a time with molecules of the anion, which are also
struggling through the crowd, but in the opposite direction.

257.] This theory of Clausius enables us to understand how it is,
that whereus the actual decomposition of an electrolyte requires an
electromotive force of finite magnitude, the conduction of the
current in the electrolyte oleys the law of Ohm, so that cvery
electromotive force within the electrolyte, even the feeblest, produces
a current of proportionate magnitude.

According to the theory of Clausius, the decomposition and
recomposition of the electrolyte is continually going on even when
there is no current, and the very feeblest clectromotive force is

* Pogg. Ann. bd, ci. 5. 338 (1857).
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sufficient to give this process a certain degree of direction, and so
to produce the currents of the ions and the electric current, which
is part of the same phenomenon. Within the electrolyte, however,
the 1ons are never set free in finite quantity, and it is this liberation
of the lons which requires a finite electromotive force. At the
electrodes the ions accumulate, for the successive portions of the
ions, as they arrive at the electrodes, instead of finding molecules of
the opposite 1on ready to combine with them, are forced into com-
pany with molecules of their own kind, with which they cannot
combine. The elcetromotive force required to produce this effect
1s of finite magnitude, and forms an opposing electromotive force
which produces a reversed current when other electromotive forces
are removed. When this reversed electromotive force, owing to
the accumulation of the lons at the electrode, 1s observed, the
electrodes are said to be Polarized.

258.] One of the best methods of determining whether a body
is or is not an electrolyte is to place it between platinum electrodes
and to pass a current through it for some time, and then, dis-
engaging the electrédes from the voltaic battery, and connecting
them with a galvanometer, to observe whether a reverse current,
due to polarization of the electrodes, passes through the galvano-
meter. Such a current, being due to accumulation of different
substances on the two electrodes, 1s a proof that the substance has
been electrolytically decomposed by the original current from the
battery. This method can often be applied where 1t 1s difficult,
by direct chemical methods, to detect the presence of the products
of decomposition at the electrodes. See Art, 271.

259.] So far as we have gone the theory of electrolysis appears
very satisfactory. It explains the electric current, the nature of
which we do not understand, by means of the currents of the
material components of the electrolyte, the motion of which,
though not visible to the eye, Is easily demonstrated. It gives a
clear explanation, as Faraday has shewn, why an electrolyte which
conducts in the liquid state is a non-conductor when solidified, for
unless the molecules can pass from one part to another no clee-
trolytic conduction can take place, so that the substance must
be in a liquid state, either by fusion or by solution, in order to be
a couductor.

But if we go on, and assume that the molecules of the ions
within the electrolyte are actually charged with certain definite
quantities of electricity, positive and negative, so that the elec-
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trolytic current is simply a current of convection, we find that this
tempting hypothesis leads us into very difficult ground.

In the first place, we must assume that in every electrolyte each
molecule of the cation, as it is liberated at the cathode, commu-
nicates to the cathode a charge of positive eleetricity, the amount
of which is the same for every molecule, not only of that cation
but of all other cations. In the same way each molecule of the
anion when liberated, communicates to the anode a charge of
negative electricity, the numerical magnitude of which is the same
as that of the positive charge due to a molecule of a cation, but
with sign reversed.

If, instead of a single molecule, we consider an assemblage of
molecules, constituting an electrochemical equivalent of the ion,
then the total charge of all the molecules is, as we have seen, one
unit of electricity, positive or negative.

260.] We do not as yet know how many molecules there are
in an electrochemical equivalent of any substance, but the molecular
theory of chemistry, which is corroborated by many physical con-
siderations, supposes that the number of molecules in an elec-
trochemical equivalent is the same for all substances. We may
therefore, in molecular speculations, assume that the number of
molecules in an electrochemical equivalent 18 &) a number unknown
at present, but which we may hereafter find means to determine *.

Each molecule, therefore, on being liberated from the state of

. . . N | .
combination, parts with a charge whose magnitude is -, and is
4

positive for the cation and negative for the anion. This definite
quantity of electricity we shall eall the molecular charge. If 1t
were known it would be the most natural unit of electricity.

Hitherto we have only increased the preeision of our ideas by
exercising our imagination in tracing the electrification of molecules
and the discharge of that electrification.

The liberation of the ions and the passage of positive electricity
from the aunode and into the cathode are simultaneous facts. The
lons, when liberated, are not charged with electricity, hence, when
they are in combination, they have the molceular charges as above
described.

The electrification of a molecule, however, though easily spoken
of, is not so casily conceived.

We kpow that if two metals are brought into contact at any

* See note to Art. 5.
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point, the rest of their surfaces will be electrified, and if the metals
are in the form of two plates separated by a narrow interval of air,
the charge on each platec may bhecome of considerable magnitude.
Something like this may be supposed to occur when the two
components of an electrolyte are in combination. Each pair of
molecules may be supposed to touch at one point, and to have the
rest of their surface charged with electricity due to the electro-
motive foree of contact.

But to explain the phenomenon, we ought to shew why the
charge thus produced on each molecule is of a fixed amount, and
why, when a molecule of chlorine is combined with a molecule of
zine, the molecular charges are the same as when a molecule of
chlorine is combined with a molecule of copper, although the elec-
tromotive force between chlorine and zine i1s much greater than
that between chlorine and copper. If the charging of the molecules
is the effect of the electromotive force of contact, why should
electromotive forces of different intensities produce exactly equal
charges ?

Suppose, however, that we leap over this difficulty by simply
asserting the fact of the constant value of the molecular charge,
and that we call this constant molecular charge, for convenience in
deseription, one molecule of electricity.

This phrase, gross as it is, and out of harmony with the rest of
this treatise, will enable us at least to state clearly what is known
about electrolysis, and to appreciate the outstanding difficulties.

Every electrolyte must be considered as a binary compound of
its anion and its cation. The anion or the cation or both may be
compound bodies, so that a molecule of the anion or the cation
may be formed by a number of molecules of simple bodies. A
molecule of the anion and a molecule of the cation combined to-
gether form one molecule of the electrolyte.

In order to act as an anion in an electrolyte, the molecule which
s0 acts must be charged with what we have called one molecule
of negative electricity, and in order to act as a cation the molecule
must be charged with one molecule of positive electricity.

These charges are connected with the molecules only when they
are combined as anion and cation in the electrolyte.

‘When the molecules are electrolysed, they part with their charges
to the electrodes, and appear as unelectrified bodies when set free
from combination.

If the same molecule is capable of acting as a cation in one
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electrolyte and as an anion in another, and also of entering into
compound bodies which are not electrolytes, then we must suppose
that it receives a positive charge of electricity when it acts as a
cation, a negative charge when it acts as an anion, and that it
is without charge when it is not in an electrolyte.

Todine, for instance, acts as an anion in the iodides of the metals
and in hydriodic acid, but is said to act as a cation in the bromide
of iodine.

This theory of molecular charges may serve as a method by
which we may remember a good many facts about electrolysis.
It is extremely improbuble that when we come to understand the
true nature of electrolysis we shall retain in any form the theory of
molecular charges, for then we shall have obtained a secure basis
on which to form a true theory of electric currents, and so become
independent of these provisional theories.

261.] One of the most important steps in our knowledge of
electrolysis has been the recognition of the secondary chemical
processes which arise from the evolution of the ions at the elec-
trodes.

In many cases the substances which are found at the electrodes
are not the actual 1ons of the electrolysis, but the products of the
action of these 1ons on the electrolyte.

Thus, when a solution of sulphate of soda is electrolysed by a
current which also passes through dilute sulphurie acid, equal
quantities of oxygen are given off at the anodes, and equal quan-
tities of hydrogen at the cathodes, both in the sulphate of soda
and in the dilute acid.

But if the electrolysis is conducted in suitable vessels, such as
U-shaped tubes or vessels with a porous diaphragm, so that the
substance surrounding each electrode can be examined separately,
it is found that at the anode of the sulphate of soda there is an
equivalent of sulphuric acid as well as an equivalent of oxygen,
and at the cathode there 1s an equivalent of soda as well as two
equivalents of hydrogen.

It would at first sight seem as if, according to the old theory
of the constitution of salts, the sulphate of soda were electrolysed
into its constituents sulphuric zcid and soda, while the water of the
solution is electrolysed at the same time into oxygen and hydrogen.
But this explanation would involve the admission that the same
current which passing through dilute sulphurie acid electrolyses
one equivalent of water, when it passes through solution of sulphate
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of soda electrolyses one equivalent of the salt as well as one equi-
valent of the water, and this would be contrary to the law of
electrochemical equivalents.

But if we suppose that the components of sulphate of soda are
not SO, and NaO but 8O, and Na,—not sulphuric acid and soda
but snlphion and sodium—then the sulphion travels to the anode
and is set free, but being unable to exist in a free state it breaks
up into sulphuric acid and oxygen, one equivalent of each. At
the same time the sodium i1s set free at the cathode, and there
decomposes the water of the solution, forming one equivalent of
soda and two of hydrogen.

In the dilute sulphurie acid the gases collected at the eclectrodes
are the constituents of water, namely one volume of oxygen and
two volumes of hydrogen. There is also an increase of sulphurie
acid at the anode, but its amount 1s not equal to an equivalent.

It is doubtful whether pure water is an electrolyte or not. The
greater the purity of the water, the greater the resistance to elee-
trolytic conduction. The minutest traces of foreign matter are
sufficient to produce a great diminution of the electrical resistance
of water. The electric resistance of water as determined by difterent
observers has values so different that we cannot consider it as a
determined quantity. The purer the water the greater its resistance,
and 1f we could obtain reully pure water 1t 1s doubtful whether it
would conduct at all.

As long as water was considered an electrolyte, and was, indecd,
taken as the type of electrolytes, there was a strong reason for
maintaining that it is a binary compound, and that two volumes
of hydrogen are chemically equivalent to one volume of oxygen.
If, however, we admit that water is not an electrolyte, we are free
to suppose that equal volumes of oxygen and of hydrogen are
chemically equivalent.

The dynamical theory of gascs leads ns to suppose that in perfect
gases equal volumes always contain an equal number of molecules,
and that the prineipal part of the specific heat, that, namely, which
depends on the motion of agitation of the molecules among each
other, is the same for equal numbers of molecules of all gases.
Hence we are led to prefer a chemical system in which equal
volumes of oxygen and of hydrogen are regarded as equivalent,
and in which water is regarded as a compound of two equivalents
of hydrogen and one of oxygen, and therefore probably not capuble
of direct electrolysis.
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While electrolysis fully establishes the close relutionship between
electrical phenomena and those of chemical combination, the fact
that every chemical compound is not an electrolyte shews that
chemical combination is a process of a higher order of complexity
than any purely electrical phenomencn. Thus the combiuations of
the metals with each other, though they are good conductors, and
their components stand at different points of the scale of electri-
fication by contact, are not, even when in a fluid state, decomposed
by the current. Most of the combinations of the substances which
act as anions are not conductors, and therefore are not electrolytes.
Besides these we have many compounds, containing the same com-
ponents as electrolytes, but not in equivalent propertions, and these
are also non-conductors, and therefore not electrolytes.

On the Conservation of Energy in Electrolysis.

262.] Consider any voltaic circuit consisting partly of a battery,
partly of a wire, and partly of an electrolytic cell.

During the passage of unit of electricity through any section of
the circuit, one electrochemical equivalent of each of the substances
in the cells, whether voltaic or electrolytic, is electrolysed.

The amount of mechanical energy equivalent to any given
chemicul process can be ascertained by converting the whole energy
due to the process into heat, and then expressing the heat in
dynamical measure by multiplying the number of thermal units by
Joule’s mechanical equivalent of heat.

Where this direct method is not applicable, if we can estimate
the heat given out by the substances taken first in the state before
the process and then in the state after the process during their
reduction to a final state, which 1s the same in both cases, then the
thermal equivalent of the process is the difference of the two quan-
tities of heat.

In the ease in which the chemical action maintains a voltaic
circuit, Joule found that the heat developed in the voltaic cells is
less than that due to the chemical process within the cell, and that
the remainder of the heat is developed in the connecting wire, or,
when there is an electromaguetic engine in the cireuit, part of the
heat may be accounted for by the mechanical work of the engine.

For instance, if the electrodes of the voltaie cell are first con-
nected by a short thick wire, and afterwards by a long thin wire,
the heat developed in the cell for each grain of zinc dissolved is
greater in the first case than the second, but the heat developed
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in the wire s greater in the second case than in the first. The
sum of the heat developed in the cell and in the wire for each grain
of zine dissolved is the same In both cases. This has been esta-
blished by Joule by direct experiment.

The ratio of the heat generated in the cell to that generated
in the wire is that of the resistance of the cell to that of the wire,
so that if the wire were made of sufficient resistance nearly the
whole of the heat would be generated i the wire, and if it were
made of sufficient conducting power nearly the whole of the heat
would be generated in the cell.

Let the wire be made so as to have great resistance, then the
heat generated in it is equal in dynamical measure to the product
of the quantity of electricity which is transmitted, multiplied by
the electromotive force under which it is made to pass through
the wire.

263.] Now during the time in which an electrochemical equi-
valent of the substance in the cell undergoes the chemical process
which gives rise to the current, one unit of clectricity passes
through the wire. Ilence, the heat developed by the passage
of one umit of electricity is in this case measured by the electro-
motive force. But this heat is that which one clectrochemical
equivalent of the substance generates, whether in the cell or in the
wire, while undergoing the given chemical process.

Hence the following important theorem, first proved by Thomson
(LPhil. BMay. Dec. 1851) :—

*The electromotive force of an electrochemical apparatus is in
absolute measure equal to the mechanical equivalent of the chemical
action on one electrochemical equivalent of the substance.’

The thermal equivalents of many chemical actions have been
determined by Andrews, Hess, Favre and Silbermann, &e., and from
these their mechanieal equivalents can be deduced by multiplication
by th: mechanical equivalent of heat.

This theorem not only enables us to caleulate from purely thermal
data the electromotive force of different voltaic arrangements, and
the electromotive force required to effect electrolysis in different
cases, but affords the means of actually measuring chemical affinity.

It has long been known that chemical affinity, or the tendency
which exists towards the going on of a certain chemical change,
is stronger in some cases than in others, but no proper measure
of this tendency could be made till it was shewn that this tendency
in certain cases is exactly equivalent to a certain electromotive
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force, and can therefore be measured according to the very same
principles used in the measurement of electromotive forces.

Chemical affinity being therefore, in certain cases, reduced to
the form of a measurable quantity, the whole theory of chemical
processes, of the rate at which they go on, of the displacement of
one substance by another, &c., becomes much more intelligible than
when chemical aflinity was regarded as a quality swi generis, and
irreducible to numerical measurement.

When the volume of the products of electrolysis is greater than
that of the electrolyte, work is done during the electrolysis in
overcoming the pressure. If the volume of an electrochemical
equivalent of the electrolyte is increased by a volume » when
electrolysed under a pressure p, then the work done during the
passage of a unit of electricity in overcoming pressure is »p, and
the electromotive force required for electrolysis must include a
part equal to vp, which is spent in performing this mechanical
work,

If the products of electrolysis are gases which, like oxygen and
hydrogen, are much rarer than the electrolyte, and fulfil Boyle’s
law very exactly, vp will be very nearly constant for the same
temperature, and the electromotive force required for electrolysis
will not depend in any sensible degree on the pressure. Ience it
has been found impossible to check the electrolytic decomposition
of dilute sulphuric acid by confining the decomposed gases in a
small spuce.

When the products of electrolysis are liquid or solid the quantity
vp will increase as the pressure increases, so that if » is positive
an increase of pressure will increase the electromotive foree required
for electrolysis.

In the same way, any other kind of work dene during electro-
lysis will have an eflfect on the value of the electromotive force,
as, for instance, if a vertical current passes between two zine
electrodes 1n a solution of sulphate of zinc a greater electromotive
force will be required when the current in the solution flows
upwards than when it flows downwards, for, in the first case, it
carries zinc from the lower to the upper electrode, and in the
seccond from the upper to the lower. The electromotive force
required for this purpose is less than the millionth part of that
of a Daniell’s cell per foot.
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ELECTROLYTIC POLARIZATION,

264.] WrEN an electric current is passed through an electrolyte
bounded by metal electrodes, the accumulation of the ions at the
electrodes produces the phenomenon called Polarization, which
consists in an electromotive foree acting in the opposite direction
to the current, and producing an apparent increase of the resistance.

When a continuous current is employed, the resistance appears
to increase rapidly from the commencement of the current, and
at last reaches a value nearly constant. If the form of the vessel
in which the electrolyte is contained is changed, the resistance is
altered in the same way as a similar change of form of a metallie
conductor would alter its resistance, but an additional apparent
resistance, depending on the nature of the electrodes, has always
1o be added to the true resistance of the electrolyte.

265.] These phenomena have led some to suppose that there is
a finite electromotive force required for a current to pass through
an electrolyte. It has been shewn, however, by the researches of
Lenz, Neumann, Beetz, Wiedemann ¥, Paalzow +, and recently by
those of MM. F. Kohlrausch and W. A. Nippoldt$, that the con-
duction in the electrolyte itsclf obeys Ohm’s Law with the same
precision as in metallic conductors, and that the apparent resistance
at the bounding surface of the electrolyte and the electrodes is
entirely due to polarization.

266.1 The phenomenon called polarization manifests itself in
the case of a continuous current by a diminution in the eurrent,
indicating a force opposed to the current. Resistance is also per-
ceived as a force opposed to the current, but we can distinguish

* Galvanismus, bd. 1. + Berlin Monatsbericht, July, 1868.
T Pogg. Ann. bd. exxxviil, s. 286 (October, 1869).
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between the two phenomena by instantaneocusly removing or re-
versing the electromotive force.

The resisting force is always opposite in direction to the eurrent,
and the external eleetromotive force required to overcome it is
proportional to the strength of the current, and changes its direc-
tion when the direction of the current is changed. If the external
electromotive force hecomes zero the current simply stops,

The electromotive force due to polarization, on the other hand,
is In a fixed direction, opposed to the current which produced it.
If the electromotive foree which produced the current is removed,
the polarization produces a current in the opposite direction.

The difference between the two phenomena may be compared
with the difference between forcing a current of water through
a long capillary tube, and forcing water through a tube of moderate
length up into a cistern. In the first case if we remove the pressure
which produces the flow the current will simply stop. In the
second case, if we remove the pressure the water will begin to flow
down again from the cistern.

To make the mechanical illustration more complete, we have only
to suppose that the cistern is of moderate depth, so that when a
certain amount of water i1s raised into it, it begins to overflow.
This will represent the fact that the total electromotive force due
to polarization has a maximum limit.

267.] The cause of polarization appears to be the existence at
the electrodes of the products of the electrolytic decomposition of
the fluid between them. The surfaces of the electrodes are thus
rendered electrically different, and an electromotive force between
them is ealled into action, the direction of which is opposite to that
of the current which caused the polarization.

The ions, which by their presenee at the electrodes produce the
phenomena of polarization, are not in a perfectly free state, but
are in a condition in which they adhere to the surface of the
electrodes with considerable foree.

The electromotive force due to polarization depends upon the
density with which the electrode is covered with the ion, but it
1s not proportional to this density, for the cleetromotive force does
not increase so rapidly as this density.

This deposit of the ion is constantly tending to become free,
and either to diffuse into the liquid, to escape as a gas, or to be
precipitated as a solid.

The rate of this dissipation of the polarization is exceedingly
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small for slight degrees of polarization, and exceedingly rapid near
the limiting value of polarization.

268.] We have seen, Art. 262, that the electromotive force acting
in any electrolytic process is numerically equal to the mechanical
equivalent of the vesult of that process on one electrochemical
equivalent of the substance. If the process involves a diminution
of the intrinsic energy of the substances which take part in it,
as in the voltaie eell, then the electromotive furee is in the direction
of the current. If the process involves an increase of the intrinsic
energy of the substances, as in the case of the electrolytic cell,
the clectromotive force is in the direction opposite to that of the
current, and this electromotive force is called polarization.

In the case of a steady current in which electrolysis goes on
continuously, and the ions are scparated in a free state at the
electrodes, we have only by a switable process to measure the
intrinsic energy of the separated ions, and compare it with that
of the electrolyte in order to calculate the electromotive force
required for the electrolysis. This will give the maximum polari-
zation.

But during the first instants of the process of electrolysis the
ions when deposited at the electrodes are not in a free state, and
their intrinsic energy is less than their energy in a free state,
though greater than their energy when combined in the electrolyte.
In fact, the ion in contact with the electrode i1s in a state which
when the deposit is very thin may be compared with that of
chemical combination with the electrode, but as the deposit n-
creases in density, the succeeding portions are no longer so in-
timately combined with the electrode, but simply adhere to it, and
at last the deposit, if gaseous, escapes in bubbles, if liquid, diffuses
through the electrolyte, and if solid, forms a precipitate.

In studying polarization we have therefore to consider

(1) The superficial density of the deposit, which we may call
o. This quantity o represents the number of electrochemical
equivalents of the ion deposited on unit of area. Since each
electrochemical equivalent deposited corresponds to one unit of
electricity transmitted by the current, we may consider o as re-
presenting either a surface-density of matter or a surface-density of
electricity.

(2) The electromotive force of polarization, which we may call p.
This quantity p is the difference between the electric potentials
of the two electrodes when the current through the electrolyte
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1s so feeble that the proper resistance of the electrolyte makes no
sensible difference between these potentials,

The electromotive force p at any instant is numerically equal
to the mechanical equivalent of the electrolytic process going on at
that instant which corresponds to one electrochemical equivalent of
the electrolyte. This electrolytic process, it must be remembered,
consists in the deposit of the ions on the electrodes, and the state
in which they are deposited depends on the actual state of the
surface of the electrodes, which may be modified by previous
deposits.

Hence the electromotive force at any instant depends on the
previous history of the electrode. It is, speaking very roughly,
a function of o, the density of the deposit, such that p = 0 when
o = 0, but p approaches a limiting value much sooner than o does.
The statement, however, that p is a function of o cannot be
considered accurate. It would be more correct to say that p is
a function of the chemical state of the superficial layer of the
deposit, and that this state depends on the density of the deposit
aceording to some law involving the time.

269.] (3) The third thing we must take into account is the
dissipation of the polarization. The polarization when left to itself
diminishes at a rate depending partly on the inlensity of the
polarization or the density of the deposit, and partly on the nature
of the surrounding medium, and the chemical, mechanical, or thermal
action to which the surface of the electrode 1s exposed.

If we determine a time 7 such that at the rate at which
the deposit is dissipated, the whole deposit would be removed in
a time 7, we may call 7 the modulus of the time of dissipation.
When the density of the deposit is very small, 7 is very large,
and may be reckoned by days or months. When the density of
the deposit approaches its limiting value 7' diminishes very rapidly,
and 1s probably a minute fraction of a second. In fact, the rate
of dissipation increases so rapidly that when the strength of the
current is maintained constant, the separated gas, instead of con-
tributing to increase the density of the deposit, escapes in bubbles
as fast as it is formed.

270.] There is therefore a great difference between the state of
polarization of the electrodes of an electrolytic cell when the polari-
zation is feeble, and when it 1s at its maximum value. For instance,
if a number of electrolytic cells of dilute sulphuric acid with
platinum electrodes are arranged in scries, and if a small clectro-
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motive force, such as that of one Danicll’s cell, be made to act
on the circuit, the electromotive force will produce a current of
exceedingly short duration, for after a very short time the elec-
tromotive force arising from the polarization of the cell will balance
that of the Daniell’s cell.

The dissipation will be very small in the case of so feeble a state
of polarization, and it will take place by a very slow absorption
of the gases and diffusion through the liquid. The rate of this
dissipation 1s indicated by the exceedingly feeble current which
still continues to flow without any visible separation of gases.

If we neglect this dissipation for the short time during which
the state of polarization is set up, and if we call @ the total
quantity of electricity which is transmitted by the current during
this time, then if 4 is the area of one of the electrodes, and o
the density of the deposit, supposed uniform,

@ = 4o.

If we now disconnect the electrodes of the electrolytic appuratus
from the Daniell’s cell, and connect them with a galvanometer
capable of measuring the whole discharge through it, a quantity
of electricity nearly equal to @ will be discharged as the polari-
zation disappears.

271.] Hence we may compare the action of this apparatus, which
is a form of Ritter’s Secondary Pile, with that of a Leyden jar.

Both the secondary pile and the Leyden jar are capable of being
charged with a certain amount of electricity, and of being after-
wards discharged. During the dischurge a quantity of electricity
nearly equal to the charge passes in the opposite direction. The
difference between the charge and the discharge arises partly from
dissipation, a process which in the case of small charges is very
slow, but which, when the charge exceeds a certain limit, becomes
exceedingly rapid. Another part of the difference between the charge
and the discharge arises from the fact that after the electrodes
have been connected for a time sufficient to produce an apparently
complete discharge, so that the current has completely disappeared,
if we separate the electrodes for a time, and afterwards connect
them, we obtain a second discharge in the same direction as the
original discharge. This is called the residual discharge, and is a
phenomenon of the Leyden jar as well as of the secondary pile.

The secondary pile may therefore be compared in several respects
to a Leyden jar. 'There are, however, certain important differences.
The charge of a Leyden jar is very exactly proportional to the
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electromotive force of the charge, that is, to the difference of
potentials of the two surfaces, and the charge corresponding to unit
of electromotive force 1s called the capacity of the jur, a constant
quantity. The corresponding quantity, which may be called the
capacity of the secondary pile, increases when the electromotive
force increases.

The capacity of the jar depends on the area of the opposed
surfaces, on the distance between them, and on the nature of the
substance between them, but not on the nature of the metallie
surfaces themselves. The capacity of the secondary pile depends
on the area of the surfuces of the electrodes, but not on the distance
between them, and it depends on the nature of the surface of the
electrodes, as well as on thut of the fluild between them. The
maximum difference of the potentials of the electrodes in each
element of a secondary pile is very small compared with the maxi-
mum difference of the potentials of those of a charged Leyden jar,
so that in order to obtain much electromotive force a pile of many
elements must be used.

On the other hand, the superficial density of the charge in the
secondary pile is immensely greater than the utmost superficial
density of the charge which can be accumulated on the surfaces
of a Leyden jar, insomuch that Mr. C. F. Varley ¥, in deseribing
the construction of a condenser of great capacity, recommends a
series of gold or platinum plates immersed in dilute acid as prefer-
able in point of cheapness to induction plates of tinfoil separated
by insulating material.

The form in which the energy of a Leyden jar is stored up
1s the state of constraint of the dielectric between the condueting
surfaces, a state which I have already described under the name
of electric polarization, pointing out those phenomena attending
this state which are at present known, and indicating the im-
perfect state of our knowledge of what really takes place. See
Arts. 62, 111.

The form in which the energy of the secondary pile is stored
up is the chemical condition of the material stratum at the surface
of the electrodes, consisting of the ions of the electrolyte and the
substance of the electrodes in a relation varying from chemical
combination to superficial condensation, mechanical adherence, or
simple juxtaposition.

The scat of this energy is close to the surfaces of the electrodes,

* Specification of C. F. Varley, * Electric Telegraphs, &ec.,” Jan, 1860.
Y 2
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and not throughout the substance of the electrolyte, and the form
in which it exists may be called electrolytic polarization.

After studying the secondary pile in connexion with the l.eyden
jar, the student should again compare the voltaic battery with
some form of the electrical machine, such as that deseribed in
Art. 211.

Mr. Varley has lately ¥ found that the capacity of one square
inch is from 175 to 542 microfarads and upwards for platinum
plates in dilute sulphuric acid, and that the capacity increases with
the electromotive force, being about 175 for 0.02 of a Daniell’s
cell, and 542 for 1.6 Daniell’s cells.

But the comparison between the Leyden jar and the secondary
pile may be carried still farther, as in the following experiment,
due to Bufft. It is only when the glass of the jar is cold that
it is capable of retaining a charge. At a temperature below 100°C
the glass becomes a conductor, If a test-tube containing mercury
is placed in a vessel of mercury, and if a pair of electrodes are
connected, one with the inner and the other with the outer portion
of mercury, the arrangement constitutes a Leyden jar which will
hold a charge at ordinary temperatures. If the electrodes are con-
nected with those of a voltaic battery, no current will pass as long
as the glass is cold, but if the apparatus is gradually heated a
current will begin to pass, and will increase rapidly in infensity as
the temperature rises, though the glass remains apparently as hard
as ever.

This current is manifestly electrolytic, for if the electrodes are
disconnected from the battery, and connected with a galvanometer,
a considerable reverse current passes, due to polarization of the
surfaces of the glass.

If, while the bafttery is in action the apparatus is cooled, the
current is stopped by the cold glass as before, but the polarization
of the surfaces remains. The mercury may be removed, the surfaces
may be washed with nitric acid and with water, and fresh mercury
introduced. If the apparatus is then heated, the current of polar-
1zation appears as soon as the glass 1s sufficiently warm to conduct it.

‘We may therefore regard glass at 100°C, though apparently a
solid body, as an electrolyte, and there is considerable reason
to believe that in most instances in which a dielectric has a
slight degree of conductivity the conduction is electrolytic. The

* Proc. K. §., Jan. 12, 1871.
+ Annalen der Chemic und Pharmacie, bd. xe. 257 (1854).
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existence of polarization may be regarded as conclusive evidence of
electrolysis, and if the conductivity of a substance increases as the
temperature rises, we have good grounds for suspecting that it is
electrolytic.

On Constant Volluie Elements.

272.] When a series of experiments is made with a voltaic
battery in which polarization occurs, the polarization diminishes
during the time that the current is not flowing, so that when
it begins to flow again the current is stronger than after it has
flowed for some time. If, on the other hand, the resistance of the
circuit is diminished by allowing the current to flow through a
short shunt, then, when the current is again made to flow through
the ordinary cireuit, it is at first weaker than its normal strength
on account of the great polarization produced by the use of the
short circuit.

To get rid of these irregularities in the current, which are
exceedingly troublesome in experiments involving exact measure-
ments, it is necessary to get rid of the polarization, or at least
to reduce it as much as possible.

It does not appear that there is much polarization at the surface
of the zine plate when immersed in a solution of sulphate of zine
or in dilute sulphuric acid. The principal seat of polarization is
at the surface of the negative metal. When the fluid in which
the negative metal is immersed is dilute sulphuric acid, it is seen
to become covered with bubbles of hydrogen gas, arising from the
electrolytic decomposition of the fluid. Of course these bubbles,
by preventing the fluid from touching the metal, diminish the
surface of contact and increase the resistance of the circuit. But
besides the visible bubbles it is certain that there is a thin coating
of hydrogen, probably not in a free state, adhering to the metal,
and as we have seen that this coating is able to produce an elec-
tromotive force in the reverse direction, it must necessarily diminish
the electromotive force of the battery.

Various plans have been adopted to get rid of this coating of
hydrogen. It may be diminished to some extent by mechanical
means, such as stirring the liquid, or rubbing the surface of the
negative plate. In Smee’s battery the negative plates are vertical,
and covered with finely divided platinum from which the bubbles of
hydrogen easily escape, and in their ascent produce a current of
liquid which helps to brush off other bubbles as they arc formed.

A far more efficacious method, however, is to employ chemical
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means, These are of two kinds. In the batteries of Grove and
Bunsen the negative plate is immersed in a fluid rich in oxygen,
and the hydrogen, instead of forming a coating on the plate,
combines with this substance. In Grove’s battery the plate is
of platinum immersed in strong pitric acid. In Bunsen’s first
battery it is of carbon in the same acid. Chromie acid is also used
for the same purpose, and has the advantage of being free from the
acid fumes produced by the reduction of nitric acid.

A different mode of getting rid of the hydrogen is by using
copper as the negative metal, and covering the surface with a coat
of oxide. This, however, rapidly disappears when it is used as
the negative electrode. To renew it Joule has proposed to make
the copper plates in the form of disks, half immersed in the lhiquid,
and to rotate them slowly, so that the air may act on the parts
exposed to it in turn.

The other method is by using as the liquid an electrolyte, the
cation of which is a metal highly negative to zinc.

In Daniell’s battery a copper plate is immersed in a saturated
solution of sulphate of copper. When the current flows through
the solution from the zinc to the copper no hydrogen appears on
the copper plate, but copper is deposited on it. When the solution
is saturated, and the current is not too strong, the copper appears
to act as a true cation, the anion SO, travelling towards the zine.

‘When these conditions are not fulfilled hydrogen is evolved at
the cathode, but immediately acts on the solution, throwing down
copper, and uniting with SO, to form oil of vitricl. When this
is the case, the sulphate of copper next the copper plate is replaced
by oil of vitriol, the liquid becomes colourless, and polarization by
hydrogen gas again takes place. The copper deposited in this way
is of a looser and more friable structure than that deposited by true
electrolysis.

To ensure that the liquid in contact with the copper shall be
saturated with sulpbate of copper, crystals of this substance must
be placed in the liquid close to the copper, so that when the solution
is made weak by the deposition of the copper, more of the crystals
may be dissolved.

We have seen that it is necessary that the liquid next the copper
should be saturated with sulphate of copper. It is still more
neeessary that the liguid in which the zine is immersed should be
free from sulphate of copper. If any of this salt makes its way
to the surface of the zine it is rveduced, and copper is deposited
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on the zinc. The zine, copper, and fluid then form a little circuit
in which rapid electrolytic action goes on, and the zine is eaten
away by un action which contributes nothing to the useful effect
of the battery.

To prevent this, the zinc is immersed either in dilute sulphuric
acld or in a solution of sulphute of zine, and to prevent the solution
of sulphate of copper from mixing with this liquid, the two liquids
are separated by a division consisting of bladder or porous earthen-
ware, which allows elcetrolysis to take place through it, but
effectuully prevents mixture of the fluids by visible currents.

In some hattertes sandust is used to prevent currents. The
experiments of Graham, however, shew that the process of diffusion
goes on nearly as rupidly when two liquids are separated by a
division of this kind as when they are in direct contact, provided
there are no visible enrrents, and it is probable that if a septum
is employed which diminishes the diffusion, it will increase in
exactly the same ratio the resistance of the element, because elec-
trolytic conduction is a process the mathematical laws of which
have the same form as those of diffusion, and whatever interferes
with one must interfere equally with the other. The only differ-
ence is that diffusion 1s always going on, while the current flows
only when the battery is in action.

In all forms of Daniell’s battery the final result is that the
sulphate of copper finds its way to the zine and spoils the battery.
To retard this result indefinitely, Sir W. Thomson * has constructed
Daniell’s battery in the following form.

. 4

/ ELECTRODES

LEVEL wr SIPHON

Zw 5047 CuS50

'] COPPER

Fig. 21.

In ecach cell the cc pper plate is placed horizontally at the bottom
* Proc. R. S, Jan. 19, 1871.
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and a saturated solution of sulphate of zinc is poured over it. The
zine 1s in the form of a grating and is placed horizontally near the
surface of the solution. A glass tube is placed vertically in the
solution with its lower end just above the surface of the copper
plate. Crystals of sulphate of copper are dropped down this tube,
and, dissolving in the liquid, form a solution of greater density
than that of sulphate of zinc alone, so that it cannot get to the
zine except by diffusion. To retard this process of diffusion, a
siphon, consisting of a glass tube stuffed with cotton wick, is
placed with one extremity midway between the zine and copper,
and the other in a vessel outside the cell, so that the liquid is
very slowly drawn off near the middle of its depth. To supply
its place, water, or a weak solution of sulphate of zine, i1s added
above when required. In this way the greater part of the sulphate
of copper rising through the liquid by diffusion is drawn off by the
siphon before 1t reaches the zine, and the zinc is surrounded by
liquid nearly free from sulphate of copper, and having a very slow
downward motion in the cell, which still further retards the upward
motion of the sulphate of copper. During the action of the battery
copper is deposited on the copper plate, and SO, travels slowly
through the liquid to the zine with which 1t combines, forming
sulphate of zinc. Thus the liquid at the bottom becomes less dense
by the deposition of the copper, and the liquid at the top becomes
more dense by the addition of the zine. To prevent this action
from changing the order of density of the strata, and so producing
instability and visible currents in the vessel, care must be taken to
keep the tube well supplied with crystals of sulphate of copper,
and to feed the cell above with a solution of sulphate of zine suffi-
ciently dilute to be lighter than any other stratum of the liquid
in the cell.

Daniell’s battery i1s by no means the most powerful in common
use. The electromotive force of Grove’s cell 1s 192,000,000, of
Daniell’s 107,900,000 and that of Bunsen’s 188,000,000.

The resistance of Daniell’s cell is in general greater than that of
Grove’s or Bunsen’s of the same size.

These defeets, however, are more than counterbalanced in all
cases where exact measurements are required, by the fact that
Daniell’s eell exceeds every other known arrangement in constancy
of electromotive force. It has also the advantage of continuing
in working order for a long time, and of emitting no gas.
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CHAPTER VL

LINEAR ELECTRIC CURRENTS.

On Syslems of Linear Conductors.

273.] Axy conductor may be treated as a linear conductor if it
is arranged so that the current must always pass in the same manner
between two portions of its surface which are called its electrodes.
For instance, a mass of metal of any form the surface of which is
entirely covered with insulating material except at two places, at
which the exposed surface of the conductor is in metallic contact
with electrodes formed of a perfectly conducting material, may be
treated as a linear conductor. For if the current be made to enter
at one of these electrodes and escape at the other the lines of flow
will be determinate, and the relation between electromotive force,
current and resistance will be expressed by Ohm’s Law, for the
current in every part of the mass will be a linear function of £.
But if there be more possible electrodes than two, the conductor
may have more than one independent current through it, and these
may not be conjugate to each other. See Art. 282.

Ohm’s Law.

274.] Let Z be the electromotive force in a linear conductor
from the electrode 4, to the electrode 4,. (See Art. 69.) Let
C be the strength of the electric current along the conductor, that
is to say, let C umits of electricity pass across every section in
the direction 4, 4, in unit of time, and let 22 be the resistance of
the conductor, then the expression of Ohm’s Law is

E = CR. (1)

Linear Conductors arranged in Series.

R75.] Let 4,, 4, be the electrodes of the first conductor and let
the second conductor be placed with one of its electrodes in contact
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with 4,, so that the second conductor has for 1ts electrodes 4,, 4.
The electrodes of the third conductor may be denoted by A
and 4,.
Let the electromotive force along each of these eonductors be
denoted by £, Fy, £, and so on for the other conductors.
Let the resistance of the conductors be
By, Ry, Ry, &e.
Then, since the conductors are arranged in series so that the same
carrent C flows through each, we have by Ohm’s Law,
Ey=CRy,, ky—=CRy, E,=CR,. @)
If £ is the resultant electromotive force, and 2 the resultant
resistance of the system, we must have by Ohm’s Law,
E = CR. (3)
Now E=F,+ Byt By, (4)
the sum of the separate electromotive forces,
= C(R,+ £+ £l5) by equations (2).
Comparing this result with (3), we find
R= Ryg+ Ry -+ By, (5)
Or, the resistance of a series of conductors is the sum of the resistances
of the conductors taken separately.

Potential at any Point of the Series.

Let 4 and € be the electrodes of the series, & a point between
them, a, ¢, and & the potentials of these points respectively. Let
It; be the resistance of the part from 4 to B, &, that of the part
from B to C, and £ that of the whole from 4 to C, then, since

a—b=RC, b—c=R,C, and a—c = RC,
the potential at /5 is Rya+ R,
e (6)
which determines the potential at 5 when those at 4 and € are
given.

b=

Resistance of a Multiple Conduetor.

276.] Let a number of conductors 4BZ, 4CZ, ADZ be arranged
side by side with their extremities in contact with the same two
points 4 and Z. They are then said to be arranged in multiple
arc.

Let the resistances of these conductors be £, f,, £, respect-

IRIS - LILLIAD - Université Lille 1



277.] SPECIFIC RESISTANCE AND CONDUCTIVITY. 331

ively, and the currents C), C,, C,, and let the resistance of the
multiple conductor be R, and the total current €. Then, since the
potentials at 4 and Z are the same for all the conductors, they have
the same difference, which we may call . We then have

E=CR =CR,=C,R, = CR,
but C=C+C+C,,
L_ 11
E=rtTw TR,
Or, the reciprocal of the resistance of a multiple conductor is the sum
of the reciprocals of the component conductors.
If we call the reciprocal of the resistance of a conductor the
conductivity of the conductor, then we may say that ke con-

ductivily of o multiple conductor is the sum of the conductivities of
the component conductors.

whence

(7)

Current in any Branch of a Multiple Conductor.

From the equations of the preceding article, it appears that if
C, is the current in any branch of the multiple conductor, and
R, the resistance of that branch,

¢ —of

il 8
% ®)
where C is the total current, and £ is the resistance of the multiple
conductor as previously determined.

Longitudinal Resistance of Conductors of Uniform Section.

277.] Let the resistance of a cube of a given material to a current
parallel to one of its edges be p, the side of the cube being unit of
length, p is called the €specific resistance of that material for unit
of volume.’

Consider next a prismatic eonductor of the same material whose
length is /, and whose section is unity. This is equivalent to £
cubes arranged in series. The resistance of the conductor 1s there-
fore Zp.

Finally, consider a conductor of length ¢ and uniform section s.
This is equivalent to ¢ conductors similar to the last arranged in
multiple arc. The resistance of this conductor is therefore

r=".
8
When we know the resistance of a uniform wire we can determine
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the specitic resistance of the material of which it is made if we can
measure its length and its section.

The sectional area of small wires is most accurately determined
by calculation from the length, weight, and specific gravity of the
specimen. The determination of the specific gravity is somelimes
inconvenient, and In such cases the resistance of a wire of unit
length and unit mass is used as the ¢specific resistance per unit of
weight,’

If 7 is this resistance, / the length, and  the mass of a wire, then
r

R="

m

On the Dimensions of the Quantities involved in these Egquations.

278.] The resistance of a conductor is the ratio of the electro-
motive force acting on it to the current produced. The conduct-
wvily of the conductor is the reciprocal of this quantity, or in
other words, the ratio of the current to the electromotive force
producing it.

Now we know that in the electrostatic system of measurement
the ratio of a quantity of electricity to the potential of the con
ductor on which it is spread is the capacity of the conductor, and
is measured by a line. If the conductor is a sphere placed in an
unlimited field, this line is the radius of the sphere. The ratio
of a quantity of electricity to an electromotive force is therefore a
line, but the ratio of a quantity of electricity to a current is the
time during which the current flows to transmit that quantity.
Hence the ratio of a current to an electromotive force is that of a
line to a time, or in other words, it is a velocity.

The fact that the conductivity of a conductor is expressed in the
electrostatic system of measurement by a velocity may be verified
by supposing a sphere of radius » charged to potential 7, and then
connected with the earth by the given conductor. Let the sphere
contract, so that as the electricity escapes through the conductor
the potential of the sphere is always kept equal to 7. Then the
charge on the sphere is 77 at any instant, and the current is
aJ
dt
electromotive force through the conductor is 7.~

The conductivity of the conductor is the ratio of the current to
dr
d_t ’

(#¥), but, since ¥ is constant, the current is %V, and the

the electromotive force, or that is, the velocity with which the
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radius of the sphere must diminish in order to maintain the potential
constant when the charge is allowed to pass to earth through the
conductor.

In the electrostatic system, therefore, the conductivity of a con-
ductor is a velocity, and of the dimensions [ L771].

The resistance of the conductor is therefore of the dimensions
(£,

The specific resistance per unit of volume is of the dimension of
[7], and the specific conductivity per unit of volume is of the
dimension of [771].

The numerical magnitude of these coefficients depends only on
the unit of time, which is the same in different countries.

The specific resistance per unit of weight is of the dimensions
[L73MT].

279.] We shall afterwards find that in the electromagnetic
gystem of measurement the resistance of a conductor is expressed
by a velocity, so that in this system the dimensions of the resist-
ance of a conductor are [ L7 1].

The econductivity of the eonductor is of course the reciprocal of
this,

The specific resistance per unit of volume in this system is of the
dimensions [ L27~1], and the specific resistance per unit of weight
is of the dimensions [Z1T~12/]. ’

On Linear Systems of Conductors in general.

280.] The most general case of a linear system is that of »
points, 4y, 4,,... 4,, connected together in pairs by 4z(z—1)
linear conductors. Let the conductivity (or reciprocal of the re-
sistance) of that conductor which connects any pair of points, say
4,and 4, be called K, and let the current from 4, to 4, be C,,.
Let ) and 7, be the electric potentinls at the points 4, and 4,
respectively, and let the internal electromotive force, if there be
any, along the conductor from 4, to 4, be Z,,.

The current from 4, to 4, is, by Obm’s Law,

Coo = Kpy (Pp—L+ E,) (1)

Among these quantities we have the following sets of relations :

The conductivity of a conductor is the same in either direction,

or Ky = Kpp- (2)
The electromotive force and the current are directed quantities ,
50 that qu =—Fk,, and Cpq = qu' (3)
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Let P, P,,... P, be the potentials at 4,, 4,, ... 4, respectively,
and let §,, @, ... @, be the quantities of electricity which enter
the system in unit of time at each of these points respectively.
These are necessarily subject to the condition of * continuity’

G+@. +Q. =0, (4)
since electricity can neither be indefinitely accumulated nor pro-
duced within the system.

The condition of ¢ continuity’ at any point 4, is
Q, = Cpy+Cpt+&e. +C,,. (5)
Substituting the vulues of the currents in terms of equation
(1), this becomes
Q= (Kp+ Kpg+ &+ K,,) P,— (K, P+ K, Py + &e. + K, P)

»2
+ (K, B +&e. + K, E,,). (6)
The symbol K, does not oceur in this equation. Let us therefore
give it the value
K,=—(K,+K,+&.+K,); (7)
that is, let K, be a quantity equal and opposite to the sum of
all the conductivities of the conductors which meet in 4,. We
may then write the condition of continuity for the point 4,
K, P +K,P,+&c.+K, P +&.+K,,P,
: =K, E,+&.+K, . E, . —@, (8)

By substituting 1, 2, &c. # for p in this equation we shall obtain
n equations of the same kind from which to determine the =
potentials P,, P,, &ec., P,.

Since, however, there is a necessary condition, (4), connecting the
values of @, there will be only z—1 independent equations. These
will be suflicient to determine the differences of the potentials of the
points, but not to determine the absolute potential of any. This,
however, is not required to calculate the currents in the system.

If we denote by D the determinant

Kll’ Klz 3 e K] (n—1)>
D = | Kas Kops oo K tn)s )]

Koa_py Kapas-o-oo K nynn
and by D,,, the minor of X,,, we find for the value of P,—P,,
(Pp—P) D = (K, Eyy + &e. — @) Dy + (K By + &e.— Q) Dy + &
+ (K B+ &e.+ K, E,,— Q) D, + &e. (10)
In the same way the excess of the potential of any other point,
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say 4,, over that of 4, may be determined. We may then de-
termine the current between 4, and 4, from equation (1), and so
solve the problem completely.

281.] We shall now demonstrate a reciprocal property of any
two conductors of the system, answering to the reciprocal property
we have already demonstrated for statical electricity in Art. 88.

The coefficient of @  in the expression for P, is %ﬂ. That of @,
. . . D
in the expression for P, is %j—” .

Now D,, differs from D, only by the substitution of the symbols
such as K for K,,. But, by equation (2), these two symbols are
equal, since the conductivity of a conductor is the same both ways.
Hence D, =D, (11) -

It follows from this that the part of the potential at 4, arising
from the introduction of a unit current at 4 is equal to the part of
the potential at 4, arising from the introduction of a unit current
at 4,.

We may deduce from this a proposition of a more practical form.

Let 4, B, C, D be any four points of the system, aund let the
effect of a current @, made to enter the system at A4 and leave it
at B, be to make the potential at C exceed that at & by P. Then,
if an equal current @ be made to enter the system at C and leave
it at D, the potential at 4 will exceed that at B by the same
quantity P.

We may also establish a property of a similar kind relating to
the effect of the internal electromotive force £,,, acting along the
conductor which joins the points A4, and 4, in producing an ex-
ternal electromotive force on the conductor from A, to 4., that is
to say, a difference of potentials P,— P . TFor since

E,= —Fk,,

the part of the value of P, which depends on this electromotive
force 1s 1 ;
.‘1)' (‘Dpr—-DpA) -Eru
and the part of the value of P, is
1
D (qu—an) Ers'
Therefore the coeflicient of Z,, in the value of P, — P, is
1
D {Dpr‘*'pqs—ﬁm—qu}' (12)

This is identical with the coeflicient of £, in the value of P,— P,.
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If therefore an electromotive force £ be introduced, acting in the
conductor from 4 to B, and if this causes the potential at C to
exceed that at D by P, then the same electromotive force Z intro-
duced into the conductor from € to /) will cause the potential at 4
to exceed that at 7 by the same quantity P.

The electromotive force ' may be that of a voltaic battery intro-
duced between the points named, care being taken that the resist-
ance of the conductor is the same before and after the introduction
of the battery.

2821 If D,+D,—D, —D, =0, (13)
the conductor 4,4, is said to be conjugate to 4, 4,, and we have
seen that this relation is reciprocal.

An electromotive force in one of two conjugate conductors pro-
duces no electromotive force or current along the other. We shall
find the practical application of this prineiple in the case of the
electric bridge,

The theory of conjugate conductors has been investigated by
Kirchhoff, who has stated the conditions of a linear system in the
following manner, in which the consideration of the potential is
avoided.

(1) (Condition of ¢ continuity.’) At any point of the system the
sum of all the currents which flow towards that point is zero.

(2) In any complete circuit formed by the conductors the sum
of the electromotive forces taken round the circuit is equal to the
sum of the products of the current in each conductor multiplied by
the resistance of that conductor.

We obtain this result by adding equations of the form (1) for the
complete circuit, when the potentials necessarily disappear.

Heat Generated in the System.

283.] The mechanical equivalent of the quantity of heat gene-
rated in a conductor whose resistance is £ by a eurrent € in unit of
time is, by Art. 242, JH = RC-. (14)

We have therefore to determine the sum of such quantities as
£C? for all the conductors of the system.

For the conductor from 4, to 4, the conductivity is K,,, and the
resistance £7,,, where K,.R, = 1. (15)

The cuarrent in this conductor is, according to Ohm’s Law,

C,p = K, (P,—P). (16)
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We shall suppose, however, that the value of the current is not
that given by Ohm’s Law, but X, , where

X, =Cpt+ ¥, (17)

To determine the heat generated in the system we have to find

the sum of all the quantities of the form
RP(I XZF‘I’
or JH=2{R, C% +2R, C Y +R, Y2 1. (18)
Giving C,, its value, and remembering the relation between K,

and £, , this becomes

(P, —PH(C+2Y )+ R, T2, (19)
Now since both € and X must satisfy the condition of continuity
at 4,, we have @ = G+ G+ &e + Gy (20)
Q =X, + X, + &c.+ X, (21)
therefore 0 = Y+ ¥y + &+ 1py. (22)

Adding together therefore all the terms of (19), we find
S(Rpg X% = 2P, Qp+32 By Y2, (23)

Now since 2 is always positive and ¥? is essentially positive, the
last term of this equation must be essentially positive. Hence the
first term is a minimum when ¥ is zero in every conductor, that is,
when the current in every conductor is that given by Ohm’s Law.

Hence the following theorem :

284.] In any system of conductors in which there are no internal
electromotive forces the heat generated by currents distributed in
accordance with Ohm’s Law is less than if the currents had been
distributed in any other manner consistent with the actual con-
ditions of supply and outflow of the current.

The heat actually generated when Ohm’s Law is fulfilled is
mechanically equivalent to =7, @, that is, to the sum of the
products of the quantities of electricity supplied at the different
external electrodes, each multiplied by the potential at which it is
supplied.

VOL. L. Z
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CHAPTER VIL

CONDUCTION IN THREE DIMENSIONS.

Notation of Flectric Currents.

285.] AT any point let an element of area 48 be taken normal
to the axis of 2, and let @ units of clectricity pass across this area
from the negative to the positive side in unit of time, then, if

S becomes ultimately equal to » when 48 is indefinitely diminished,

% 1s said to be the Component of the electric current in the direction
of # at, the given point.

In the same way we may determine » and =, the components of
the current in the directions of y and #z respectively.

286.] To determine the component of the current in any other
direction OR through the given point O.

Let {, m, # be the direction-cosines of OZ, then cutting off from

the axes of z, 7, 2 portions equal to

R
C ;: Z: and Z
-7 A I m % .
2 respectively at 4, B and C, the triangle 4BC
will be normal to O R.
° - The area of this triangle ABC will be
-2
Fig. 22. 28 = 3 "
5 lmn’

and by diminishing # this area may be diminished without limit.

The quantity of clectricity which leaves the tetrahedron 4BCO
by the triangle 4 BC must be equal to that which enters it through
the three triangles OBC, 0C4, and OAB

The area of the triangle OBC 1s } 7, and the component of
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the current normal to its plane is #, so that the quantity which
enters through this triangle is § 72 7:7» .

The quantities which enter through the triangles OC4 and O4B

respectively are w

4&72:—1, and 37?2 .
If y is the component of the velocity in the direction OF, then
the quantity which leaves the tetrahedron through 4BC is
b4
A7 Ton
Since this is equal to the quantity which enters through the three
other triangles,

%Izl: érz{l__*.L ad };

imn mn né + im
multiplying by 2l:2'm » we get
Y = lut+mr4aw. (1)
If we put w024 w? =T2,
and make #, ', 2" such that
u =1{T, v=mT, and w=2T;
then vy=T{l+mm +nn"). (2)

Hence, if we define the resultant current as a vector whose
magnitude is T, and whose direction-cosines are &/, »’, ', and if
y denotes the current resolved in a direction making an angle
with that of the resultant current, then

y =Tcos8; (3)
shewing that the law of resolution of currents is the same as that
of velocities, forces, and all other vectors.

287.] To determine the condition that a given surface may
be a surface of flow.

Let Flz,y,2)=2A (4)
be the equation of a family of surfaces any one of which is given by
making A constant, then, if we make
L A (5)
del ' dy de ~— N%’
the direction-cosines of the normal, reckoned in the direction in
which A increases, are

dX dX da .

72
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Hence, if y 1s the component of the current normal to the surface,
dA A dA

- A L 0N L0 7

14 N{ud.z-+v(/y +wdz} 2

If y = 0 there will be no current through the surface, and the

surface may be called a Surface of Flow, because the lines of motion

are in the surface.

288.] The equation of a surface of flow is therefore

udi\+”ili\ " dx
dz dy Yz T
If this equation is true for all values of A, all the surfaces of the
family will be surfaces of flow.
280.] Let there be another family of surfaces, whose parameter
is A/, then, if these are also surfaces of flow, we shall have
ax ax dx

i - = 9
+v(1y +w T 0. (9)

0. (8)

dz

If there is a third family of surfaces of flow, whose parameter

is )\”, then AN’ a\’ ax”’
ud—x—+vW+wW:O. (10)

Eliminating between these three equations, #, v, aud w disappear

together, and we find

dA dax dA

dr’ dy’ de

ax ax’ dx’

P ; W’ —dz— = 0; (1 1)

X’ 4dx”  dx”

Az dy T dz

or N'= (M) (12)

that is, A” 1s some function of A and X",

290.] Now consider the four surfaces whose parameters are A,
A4-3A, A, and A"+ 82", These four surfaces enclose a quadrilateral
tube, which we may call the tube 3A.8A". Since this tube is
bounded by surfaces across which there is no flow, we may call
it a Tabe of Flow. If we take any two scctions across the tube,
the quantity which enters the tube at one section must be equal
to the quantity which leaves it at the other, and since this quantity
is therefore the same for every section of the tube, let us call it
L3X.0)N where L is a function of A and A", the parameters which
determine the particular tube.
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291.] If 88 denotes the section of a tube of flow by a plane
normal to #, we have by the theory of the change of the inde-
pendent variables,

pr.aN = pS(TH AN A ‘b‘)
dy dz  dz dy

and by the definition of the components of the current
88 = LdA.SN. (14)
Hence =1 ((ﬁ ax _ d)\,) .
dy dz  dz dy

Similarly v= 1 (d—/\ ﬂ — @d‘)\'); (15)

(13)

AN dX  dAdX
W dy iy o)

292.] It is always possible when one of the functions A or X’ is
known, to determine the other so that Z may be equal to unity.
For instance, let us take the plane of g2, and draw upon it a series
of equidistant lines parallel to g, to represent the sections of the
family A" by this plane. In other words, let the function A’ be
determined by the condition that when 2z = 0 A= 2. If we then
make L = 1, and therefore (when z = 0)

A_/ud_/,

then in the plane (# = 0) the amount of electricity which passes
through any portion will be

f/udydz =ffdAd)\’. (16)

Having determined the nature of the sections of the surfaces of
flow by the plane of yz, the form of the surfaces elsewhere is
determined by the conditions (8) and (9). The two [unctions A
and X thus determined are sufficient to determine the current at
every point by equations (15), unity being substituted for Z.

On Lines of Flow.

203.] Let a series of values of A and of A" be chosen, the suc-
cessive differences in each series being unity. The two series of
surfaces defined by these values will divide space into a system
of quadrilateral tubes through each of which there will be a unit
current. By assuming the unit sufficiently small, the defails of
the current may be expressed by these tubes with any desired
amount of minuteness. Then if any surface be drawn cutting the
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system of tubes, the quantity of the current which passes through
this surface will be expressed by the number of tubes which cut it,
since each tube carries unity of current.

The actual intersections of the surfaces may be called Lines of
Flow. When the unit is taken sufficiently small, the number of
lines of flow which cut a surface is approximately equal to the
number of tubes of flow which cut it, so that we may consider
the lines of flow as expressing not only the direction of the current
but its sfrength, since each line of flow through a given section
corresponds to a unit current.

On Current-Sheets and Current-Functions.

294.] A stratum of a conductor contained between two con-
secutive surfaces of flow of one system, say that of A", is called
a Current-Sheet. The tubes of flow within this sheet are deter-
mined by the function A, If A4 and Ap denote the values of A at
the points 4 and 2 respectively, then the current from right to
left across any line drawn on the sheet from 4 to P i1s Ap—Ay.
If AP be an element, ds, of a curve drawn on the sheet, the current
which crosses this element from right to left is

dA

d—sds.
This funetion A, from which the distribution of the current in
the sheet can be completely determined, is called the Current-
Funection.

Any thin sheet of metal or conducting matter bounded on both
sides by air or some other non-conducting medium may be treated
as a current-sheet, in which the distribution of the current may
be expressed by means of a current-function. See Art. 647.

Equation of * Continuity.

295.] If we differentiate the three equations (15) with respect to
z, 9, z respectively, remembering that Z is a function of A and A,
we find dw dv  dw

dw Ty U@

The corresponding equation in Hydrodynamics is called the
Equation of ¢ Continuity.” The continuity which it expresses is
the continuity of existence, that is, the fact that a material sub-
stance cannot leave one part of space and arrive at another, without
going through the space between. It cannot simply vanish in the

= 0. (17)
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one place and appear in the other, but it must travel along a con-
tinuous path, so that if a closed surface be drawn, including the
one place and excluding the other, a material substunce in passing
from the one place to the other must go through the closed surface.
The most general form of the equation in hydrodynamics is

dpu) | dlpr) dlpw)  dp —=0; (18)

dz y dz dt

where p signifies the ratio of the quantity of the substance to the
volume it occupies, that volume being in this case the differential
element of volume, and (p#), (pv), and (pw) signify the ratio of the
quantity of the substance which crosses an element of area in unit
of time to that area, these areus being normal to the axes of z, 7, and
z respectively. Thus understood, the equation is applicable to any
material substance, solid or fluid, whether the motion be continuous
or discontinuous, provided the existence of the parts of that sub-
stance is continuous. If anything, though not a substance, is
subject to the condition of continuous existence in time and space,
the equation will express this condition. In other parts of Physical
Science, as, for instance, in the theory of electric and magnetic
quantities, equations of a similar form occur. We shall call such
equations °equations of continuity’ to indicate their form, though
we may not attribute to these quantities the properties of matter,
or even continuous existence in time and space.

The equation (17), which we have arrived at in the case of
electric currents, is identical with (18) if we make p = 1, that 1s,
if we suppose the substance homogeneous and incompressible. The
equation, in the case of fluids, may also be established by either
of the modes of proof given in treatises on Hydrodynamics. In
one of these we trace the course and the deformation of a certain
element of the fluid as it moves along. 1In the other, we fix our
attention on an element of space, and take account of all that
enters or leaves it. The former of these methods cannot be applied
to electric currents, as we do not know the veloeity with which the
electricity passes through the body, or even whether it moves in
the positive or the negative direction of the current. All that we
know is the algebraical value of the quantity which crosses unit
of area in unit of time, a quantity corresponding to (p«) in the
equation (18). We have no means of ascertaining the value of
either of the factors p or %, and therefore we cannot follow a par-
ticular portion of electricity in its course through the body. The
other method of investigation, in which we consider what passes
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through the walls of an element of volume, 1s applicable to electric
currents, and is perhaps preferable in point of form to that which
we have given, but as it may be found in any treatise on Hydro-
dynamics we need not repeat it here.

Quantity of Electricity whick passes through a given Surface.

206.] Let T" be the resultant current at any point of the surface.
Let 48 be an element of the surface, and let € be the angle between
I’ and the normal to the surface, then the total current through

the surface will be
f I'cos €d8,

the integration being extended over the surface.
As 1n Art. 21, we may transform this integral into the form

du dv dw
ffl‘cosedS:fff((E+@+E)dxdydz (19)

in the case of any closed surface, the limits of the triple integration
being those included by the surface. This is the expression for
the total cfllux from the closed surface. Since in all cases of steady
currents this must be zero whatever the limits of the integration,
the quantity under the integral sign must vanish, and we obtain
in this way the equation of continuity (17).
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CHAPTER VIIL
RESISTANCE AND CONDUCTIVITY IN THREE DIMENSIONS.

On the most General Relalions between Current and Flectro-
motive Force.

297.] LET the components of the current at any point be %, v, w.

Let the components of the electromotive force be X, ¥, Z.

The electromotive force at any point is the resultant force on
a unit of positive electricity placed at that point. It may arise
(1) from electrostatic action, in which case if 7 is the potential,

or (2) from electromagnetic induction, the laws of which we shall
alterwards examine; or (3) from thermoelectric or electrochemical
action at the point itself, tending to produce a current in a given
direction.

We shall in general suppose that X, ¥, Z represent the com-
ponents of the actual electromotive force at the point, whatever
be the origin of the force, but we shall occasionally examine the
result of supposing it entirely due to variation of potential.

By Ohm’s Law the current is proportional to the electromotive
force. Hence X, ¥, Z must be linear functions of #, », w. We
nay therefore assume as the equations of Resistance,

X=Ru+ Qo+ P,w,
Y = Pyu+ Byt Qw, (2)
Z = Q,u+ Pio+ Byw.

We may call the coeflicients R the coefficients of longitudinal
resistance in the direetions of the axes of coordinates.

The coeflicients £ and @ may be called the coefficients of trans-
verse resistance. They indicate the electromotive force in one
direction required to produce a current in a different direction.
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If we were at liberty to assume that a solid body may be treated
as a system of linear conductors, then, from the reciproeal property
(Art. 281) of any two conductors of a linear system, we might shew
that the electromotive force along z required to produce a unit current
parallel to ¥ must be equal to the electromotive force along y re-
quired to produce a unil current parallel to z. This would shew
that 7, = @, and similarly we should find £, = §,, and P, = @,.
‘When these conditions are satisfied the system of coefficients is said
to be Symmetrical. When they are not satisfied it is called a
Skew system.

We have great reason to believe that in every actual case the
system 1s symmetrical, but we shall examine some of the con-
sequences of admitting the possibility of a skew system.

298.] The quantities », v, w may be expressed as linear functions
of X, Y, Z by a system of equations, which we may call Equations
of Conductivity,

w=rX+p, Y+ g,7,
v =g X+ Y+ p 7 (3)
w=p, X+ ¢ ¥V +r,2;
we may call the coefficients 7 the coeflicients of Longitudinal con-
ductivity, and p and ¢ those of Transverse conductivity.

The coeflicients of resistance are inverse to those of conductivity.
This relation may be defined as follows :

Let | PQR] be the determinant of the coefficients of resistance,
and [ pgr] that of the coeflicients of conductivity, then

[PQE]= P\ Py Py+ QQy Qs+ B\ By By — P Q By — Py Q, By — Py QG Ry, (4)
L297] = mpapst Qe s+ 1 Te Ta— Py Q1 71— P2 @aTa—P3 03 Tss (5)
LPQE] [pr] = 1, (6)
LP QE] =&(P2P3— @), | pgr] Py = (pus— 17, (7)
c. &e.

The other equations may be formed by altering the symbols
P, Q, R, p, g, r, and the suflixes 1, 2, 3 in cyelical order.

Late of Generation of Ieal.

299.] To find the work done by the current in unit of time
in overcoming resistance, and so generating heat, we multiply the
components of the current by the corresponding components of the
electromotive force. We thus obtain the following expressions for
W, the quantity of work expended in unit of time :
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W=Xu+Yv4+Zw; (8)
=Ru? + Bp? + Byt + (P4 Q) vw + (Py+ Qy)wu+ (Pt Q)uv; (9)
=n X4, Y24, 28+ (oo + 00 Y2+ ( 2y + 402X + (B3 +¢5) XY (10)

By a proper choice of axes, either of the two latter equations may

be deprived of the terms involving the products of », v, w or of
X, Y, Z. The system of axes, however, which reduces # to the form

- Biw?+ B, v% 4 Ryw?
is not in general the same as that which reduces it to the form
r X2 r, Ve84 r, 22,
It is only when the coefficients P,, £,, P, are equal respectively

to @y, &,, @, that the two systems of axes coincide.
If with Thomson * we write

P=8S4+7 Q=8~-T,;
} (11)
and p =841 g =¢8—1;

then we have
[PRQE] = R B, Ry+28,8,8,—82R,—82K,—82R,
+e (8, 0,1+ 8, T, 7 + S, T\ T)+ B, T*+ R, 7,2+ R, T2
and [PQE] 7 = B, B;— 8%+ T3,
[PQRYs, = T, T, + 8,8, —R S, E (13)
[PQE]t, = —R\ T, + 815+ 8,7,.
If therefore we cuuse 8, 8,, 8, to disappear, s; will not also dis-
appear unless the coeflicients 7' are zero.

} a2

Condition of Stability.

300.] Since the equilibrium of electricity is stable, the work
spent in maintaining the current must always be positive. The
couditions that 7 must be positive are that the three coefficients
R, R,, R,, and the three expressions

4B, Ry— (P + @)%
4R3R1_‘(P2+ QZ)Z! (14)
4 'Rl Rz-(Ps + Q3)2,
must all be positive.
There are similar conditions for the coeflicients of conductivity.

* Trans. R. 8. Edin., 1853-4, p. 165.
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Equation of Continuity in & Homogeneous Medivm.

301.] If we express the components of the electromotive force
as the derivatives of the potentiul 7, the equation of continuity

d_u dzi dw

i = 1
de Tyt e T (18)
becomes in a homogenecus medium
acxy . arv. d*V azv azy a*v

™ +72W 1y +231W +28 o+ 83dz‘dy:0' (16)

If the medium is not homogeneous there will be terms arising
from the variation of the coefficients of conductivity in passing
from one point to another.

This equation corresponds to Laplace’s equation in an isotropie
medium.

302.] If we put

[r8] = myryra+ 28y 8,8,—r 82—, 82 —r, 82 (17)

and [4B) = 4,4,4,+ 28 B, B,— A4, B2~ 4,B2— 4, B, (18)
where [rs] 4y = ryr3—sf,

[rs] By = s,8— 7,8, (19)

and so on, the system 4, B will be inverse to the system 7, s, and
1f we make
A 2%+ 4, 9"+ 4,2 +2 Biyz+ 2B,z + 2 Byzy = [ 48] p?, (20)
we shall find that
V=

is a solution of the equation.

In the case in which the coefficients 7" are zero, the coefficients 4
and B become identical with £ and 8. When 7 exists this is not
the case.

In the case therefore of electricity flowing out from a centre in an

(21)

|

c
47

infinite homogeneous, but not isotropie, medium, the equipotential
surfaces are ellipsoids, for each of which p is constant. The axes of
these ellipsoids are in the directions of the principal axes of con-
ductivity, and these do not coincide with the principal axes of
resistance unless the system is symmetrical.

By a transformation of this equation we may take for the axes
of z, 7, 2 the principal axes of conductivity. The coefficients of the
forms s and B will then be reduced to zero, and each coeflicient
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of the form 4 will be the reciprocal of the corresponding coefli-
cient of the form . The expression for p will be

Tl (22)
LTy Ty TiTeTy

303.] The theory of the complete system of equations of resist-
ance and of conductivity is that of linear functions of three vari-
ables, and it is exemplified in the theory of Strains ¥, and in other
parts of physics. The most appropriate method of treating it is
that by which Hamilton and Tait treat a linear and vector function
of a vector. We shall not, however, expressly introduce Quaternion
notation.

The coeflicients 7y, 7,, 7, may be regarded as the rectangular
components of a vector 7, the absolute magnitude and direction
of which are fixed in the body, and independent of the direction of
the axes of reference. The same is true of #,, 4,, 7, which are the
components of another vector ¢,

The vectors T and ¢ do not in general coincide in direction.

Let us now take the axis of z so as to coincide with the vector
7, and transform the equations of resistance accordingly. They
will then have the form

X=Ru+8v+8w—Tv
Y=8u+Rv+8wt+Tu, (23)
Z = Su+ 8Sv4 R

It appears from these equations that we may consider the elec-
tromotive force as the resultant of two forces, one of them depending
only on the coeflicients &£ and §, and the other depending on 7 alone.
The part depending on 2 and § is related to the current in the
same way that the perpendicular on the tangent plane of an
ellipsoid is related to the radius vector. 'The other part, depending
on 7, is equal to the product of 7' into the resolved part of the
current. perpendicular to the axis of 7, and its direction is per-
pendicular to 7' and to the current, being always in the direction in
which the resolved part of the current would lie if turned 90° in
the positive direction round 7.

Considering the current and 7' as vectors, the part of the
electromotive force due to 7' is the vector part of the product,
T x current.

The coefficient 7' may be called the Rotatory cocflicient. We

* See Thom;son and Tait’s Natural Philosophy. § 154.
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have reason to believe that it does not exist in any known sub-
stance. It should be found, if anywhere, in magnets, which have
a polarization in one direction, probably due to a rotational phe-
nomenon in the substance.

304.] Let us next consider the general characteristic equation

of 7,

av th dv. ( V+ av dV)
dz(ldx ])de_f-qzdz) dy 1 fa 2(1’/ Ty,
d dV arv
dz( + 7% +r3—(]2—)+47rp=0, (24)

where the coefficients of conductlwty 7, g, 7 may have any positive
values, continuous or discontinuous, at any point of space, and 7
vanishes at infinity.

Also, let g, 8, ¢ be three functions of #, 7, 2 satisfying the condition

da db  de
R A Wi =0; 25
dz +(l7 dz +ame ’ (28)
av av [lV
and let @ =7+ iy t g T
av dV av
6:937254-7'273/ +?71% + v (26)

_ av arv rd—V w
c—-ﬁz%*‘%@*' 3 s + 2.

Finally, let the triple-integral

w=]] f (Rya% 4 R 4 By®

+(Py+ Q) be+(Py+ Q) ca+t (Ps+ Q) al} dzdydz (27)
be extended over spaces bounded as in the enunciation of Art. 97,
where the coeflicients P, @, R are the coefficients of resistance.

Then # will have a unique minimum value when a, #, ¢ are such
that #, v, w are each everywhere zero, and the characteristic equation
(24) will therefore, as shewn in Art. 98, have one and only one
solution.

In this ease " represents the mechanical equivalent of the heat
generated by the current in the system in unit of time, and we have
to prove that there is one way, and one only, of making this heat
a minimum, and that the distribution of currents (24¢) in that case
is that which arises from the solution of the characteristic equation
of the potential 7.

The quantity #” may be written in terms of equations (25) and (26),
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dr? dr * (/’!
—f.[f5 Mg T dy MENY
iV av av dv dv dv
+(m Ql)l/J (/ (ﬁ3+gﬂ)r/z dr +(Pstgs) dz

+fff{]fﬂu +I72v? + Ry’

+(P,+ Q)rw+ (Pet Q) wu+(Py+ Qyuvt drdydz

}dmd‘/(lz

dy  d¥ av, Todydz (28)
+ff/(u dr )E+w (lz)[ 4
du (]v (Zw
) — =0, 29
Since e -+— (iz (29)

the third term of JF~ vamshes within the limits.

The second term, being the rate of conversion of electrical energy
into heat, is also essentially positive. Its minimum value is zero,
and this is attained only when #, ¢, and » are everywhere zero.

The value of J}7 is in this case reduced to the first term, and is
then a minimum and a unique minimum.

305.] As this proposition is of great importance in the theory of
electricity, it may be useful to present the following proof of the
most general case in a form free from analytical operations.

Let us consider the propagation of electricity through a conductor
of any form, homogeneous or heterogeneous.

Then we know that

(1) If we draw a line along the path and in the direction of
the electric current, the line must pass from places of high potential
to places of low potential.

(2) If the potential at every point of the system be altered in
a given uniform ratio, the currents will be altered in the same ratio,
according to Ohm’s Law.

(3) If a certain distribution of potential gives rise to a certain
distribution of currents, and a second distribution of potential gives
rise to a second distribution of currents, then a third distribution in
which the potential is the sum or difference of those in the first
and second will give rise to a third distrilbution of currents, such
that the total current passing through a given finite surface in the
third case is the sum or difference of the currents passing through
it in the first and second cases. For, by Ohm’s Law, the additional
current due to an alteration of potentials is independent of the
original current due to the original distribution of potentials.

(4) If the potential is constant over the whole of a closed surface,
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3562 RESISTANCE AND CONDUCTIVITY. [305.

and if there are no electrodes or intrinsic electromotive forces
within it, then there will be no currents within the closed surface,
and the potential at any point within it will be equal to that at the
surface.

If there are currents within the closed surface they must either
be closed curves, or they must begin and end either within the
closed surface or at the surface itself.

But since the current must pass from places of high to places of
low potential, it cannot flow In a closed curve.

Since there are no electrodes within the surface the current
cannot begin or end within the closed surface, and since the
potential at all points of the surface is the same, there can be
no current along lines passing from one point of the surface to
another.

Hence there are no currents within the surface, and therefore
there can be no difference of potential, as such a difference would
produce currents, and therefore the potential within the closed
surface 1s everywhere the same as at the surface.

(5) If there is no electric current through any part of a closed
surface, and mo electrodes or intrinsic clectromotive forces within
the surface, there will be no currents within the surface, and the
potential will be uniform.

‘We have seen that the currents cannot form closed curves, or
begin or terminate within the surface, aud since by the hypothesis
they do not pass through the surface, there can be no currents, and
therefore the potential is constant.

(6) If the potential is uniform over part of a closed surface, and
if there is no current through the remainder of the surface, the
potential within the surface will be uniform for the same reasons.

(7) If over part of the surfuce of a body the potential of every
point is known, and if over the rest of the surface of the body the
current passing through the surface at each point is known, then
only one distribution of potentials at points within the body can
exist.

For if there were two different values of the potential at any
point within the body, let these be /) in the first case and 7, in
the second case, and let us imagine a third case in which the
potential of every point of the body 1s the excess of potential in the
first case over that in the second. Then on that part of the surface
for which the potential is known the potential in the third case will
be zero, and ou that part of the surface through which the currents
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are known the currents in the third case will be zero, so that by
(6) the potential everywhere within the surface will be zero, or
there is no excess of 7 over 7,, or the reverse. Hence there is
only one possible distribution of potentials, This proposition is
true whether the solid be bounded by one closed surface or by
several.

On the Approzimate Calculation of the Resistance of a Conductor
of a given Form.

806.] The conductor here considered has its surface divided into
three portions. Over one of these portions the potential is main-
tained at a constant value. Over a second portion the potential has
a constant value different from the first. The whole of the remainder
of the surface is impervious to electricity. We may suppose the
conditions of the first and second portions to be fulfilled by applying
to the conductor two electrodes of perfectly conducting material,
and that of the remainder of the surface by coating it with per-
fectly non-conducting material.

Under these circumstances the current in every part of the
conductor is simply proportional to the difference between the
potentials of the electrodes. Calling this difference the electro-
motive force, the total current from the one electrode to the other
is the product of the electromotive force by the conductivity of the
conductor as a whole, and the resistance of the conductor is the
reciprocal of the conductivity.

It is only when a conductor is approximately in the circumstances
above defined that it ean be said to have a definite resistance, or
conductivity as a whole. A resistance coil, consisting of a thin
wire terminating in large masses of copper, approximately satisfies
these conditions, for the potential in the massive electrodes is nearly
constant, and any differences of potential in different points of the
same electrode may be neglected in comparison with the difference
of the potentials of the two electrodes.

A very useful method of calculating the resistance of such con-
ductors has been given, so far as I know, for the first time, by
the Hon. J. W. Strutt, in a paper on the Theory of Resonance *.

It is founded on the following considerations.

If the specific resistance of any portion of the conductor be
changed, that of the remainder being unchanged, the resistance of

* Phil. Trans., 1871, p. 77. See Art.102.
VOL. 1. A a

IRIS - LILLIAD - Université Lille 1



354 RESISTANCE AND CONDUCTIVITY. [ 3c6.

the whole conductor will be inercased if that of the portion is
increased, and diminished if that of the portion be diminished.

This principle may be regarded as self-evident, but it may easily
be shewn that the value of the expression for the resistance of a
system of conductors between two points selected as electrodes,
increases as the resistance of each member of the system in-
creases,

It follows from this that if a surface of any form be described
in the substance of the conductor, and if we further suppose this
surface to be an infinitely thin sheet of a perfectly conducting
substance, the resistance of tlie conductor as a whole will be
diminished unless the surface is one of the equipotential surfaces
in the natural state of the conductor, in which case no effect will
be produced by making it a perfect conductor, as it is already in
electrical equilibrium,

If therefore we draw within the conductor a series of surfaces,
the first of which coincides with the first electrode, and the last
with the second, while the intermediate surfaces are bounded by
the non-conducting surface and do not interseet each other, and
if we suppose each of these surfaces to be an infinitely thin sheet
of perfectly conducting matter, we shall have obtained a system
the resistance of which is certainly not greater than that of the
original conductor, and is equal to it only when the surfaces we
have chosen are the natural equipotential surfaces.

To calculate the resistance of the artificial system is an operation
of much less difficulty than the original problem. For the resist-
ance of the whole is the sum of the resistances of all the strata
contained between the consecutive surfaces, and the resistance of
each stratum can be found thus :

Let 48 be an element of the surfuce of the stratum, v the thick-
ness of the stratum perpendicular to the element, p the specific
resistance, # the difference of potential of the perfectly conducting
surfaces, and dC the current through 458, then

ac=E-1as, (1)
pv
and the whole current through the stratum is

O=E’ffp—1yclS, 2)

the integration being extended over the whole stratum bounded by
the non-conducting surface of the conductor.
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Hence the conductivity of the stratum is

C [ 1
P =jfpvdS, (3)

and the resistance of the stratum is the reciprocal of this quantity.
If the stratum be that bounded by the two surfaces for which
the function F has the values F and #+ dF respectively, then
(Z]"

v I:(t/-t) (,/J) ([(Zlf)] (4)

and the resistance of the stratum is

jj% GFdS

To find the resistance of the whole artificial conductor, we have
only to integrate with respect to #, and we find

R, = J‘ 1(ZF )
[[*vras

p
The resistance & of the conductor in its natural state is greater
than the value thus obtained, unless all the surfaces we have chosen
are the natural equipotential surfaces. Also, since the true value

of 22 1s the absolute maximum of the values of Zt; which can thus
be obtained, a small deviation of the chosen surfaces from the true

(5)

(6)

equipotential surfaces will produce an error of £ which is com-
paratively small.

This method of determining a lower limit of the value of the
resistance is evidently perfectly general, and may be applied to
conductors of any form, even when p, the speeific resistance, varies
in any manner within the conductor.

The most familiar example is the ordinary method of determining
the resistance of a straight wire of variable section. In this case
the surfaces chosen are planes perpendicular to the axis of the
wire, the strata have parallel faces, and the resistance of a stratum
of section § and thickness ds is

pds ds
AR = )
and that of the whole wire of length ¢ is
iR, = f ﬂs@ : (8)
where §7 is the transverse section and is a funection of s.
Aaz
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This method in the case of wires whose section varies slowly
with the length gives a result very near the truth, bnt it is really
only a lower limit, for the true resistance is always greater than
this, except in the case where the section is perfectly uniform.

307.] To find the higher limit of the resistance, let us suppose
a surface drawn in the conductor to be rendered impermeable to
electricity. 'The effect of this must be to increase the resistance of
the conductor unless the surface is one of the natural surfaces of
flow. By means of two systems of surfaces we can form a set of
tubes which will completely regulate the flow, and the effect, if
there is any, of this system of impermeable surfaces must be to
increase the resistance above its natural value,

The resistance of each of the tubes may be calculated by the
method already given for a fine wire, and the resistance of the
whole conduetor is the reciprocal of the sum of the reciprocals of
the resistances of all the tubes. The resistance thus found is greater
than the natural resistance, except when the tubes follow the
natural lines of flow.

In the case already considered, where the conductor is in the
form of an elongated solid of revolution, let us measure « along the
axis, and let the radius of the section at any point be 4. Let onc
set of impermeable surfaces be the planes through the axis for each
of which ¢ is constant, and let the other set be surfaces of revolution
for which 72 = B2, )
where ¢ is a numerical quantity between 0 and 1.

Let us consider a portion of one of the tubes bounded by the
surfaces ¢ and ¢+ d¢, ¥ and  + 4V, z and 2+ dz.

The section of the tube taken perpendicular to the axis is

ydydd = 62 dyde. (10)
If 6 be the angle which the tube makes with the axis
L db
The true length of the element of the tube is da see 6, and its
true section is 142 dyr d g cos 6,

so that its resistance is

dz dz db*
L 2 p— N p .
20 geay dp 0 = 20 g g (V) (12)
dz dr db|*
Let, =f Sq? = ——
e 4 P and B P oz 7 (13)
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the integration being extended over the whole length, #, of the
conductor, then the resistance of the tube dyr dep 1s
2
Ty g (4+yB),
dyde
2(d+vyD)

To find the conductivity of the whole conductor, which is the
sum of the conductivities of the separate tubes, we must integrate
this expression between ¢ = 0 and ¢ = 27, and between y = 0
and y = 1. The result is

1 T B
= Ly, 14
=3 log (1 + A) (14)
which may be less, but cannot be greater, than the true con-
ductivity of the conductor.

and its conductivity 1s

When ZZ 1s always a small quantity g will alse be small, and we

may expand the expression for the conductivity, thus

B 52 B

The first term of this expression, —:1;— , Is that which we should

have found by the former method as the superior limit of the con-

ductivity. Hence the true conductivity is less than the first term

but greater than the whole series. The superior value of the
resistance is the reciprocal of this, or

, 4 B 1 B2 1 B3

B=T (U —ngtauyp

If, besides supposing the flow to be guided by the surfaces ¢ and

¥, we had assumed that the flow through each tube is proportional

to dy d¢, we should have obtained as the value of the resistance

under this additional constraint

-—&c.)- - (16)

R”:%(A+§B), (17)

which is evidently greater than the former value, as it ought to be,
on account of the additional constraint. Tn Mr. Strutt’s paper this
is the supposition made, and the superior limit of the resistance
there given has the value (17), which is a little greater than that
which we have obtained in (16).
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308.1 We shall now apply the same method to find the correction
which must be applied to the length of a cylindrical conductor of
radius @ when its extremity is placed in metallic contact with a
massive electrode, which we may suppose of a different metal.

For the lower limit of the resistance we shall suppose that an
infinitely thin disk of perfectly conducting matter is placed between
the end of the cylinder and the massive electrode, so as to bring
the end of the cylinder to one and the same potential throughout.
The potential within the cylinder will then be a function of its
length only, and if we suppose the surface of the electrode where
the cylinder meets it to be approximately plane, and all its dimen-
sions to be large compared with the diameter of the cylinder, the
distribution of potential will be that due to a conductor in the form
of a disk placed in an infinite medium. See Arts. 152,177,

If % is the difference of the potential of the disk from that of
the distant parts of the electrode, C the current issuing from the
surface of the disk into,the electrode, and p” the specific resistance
of the electrode, pC=41ak (18)

Ilence, if the length of the wire from a given point to the
electrode 1s Z, and its specific resistance p, the resistance from that
point to any point of the electrode not near the junction is

L P
and this may be written .

R=-o(14+ % ") (19)
where the second term within brackets is a quantity which must
be added to the length of the eylinder or wire in ecalculating its
resistance, and this is certainly too small a correction.

To understand the nature of the outstanding error we may
observe, that whereas we have supposed the flow in the wire up
to the disk to be uniform throughout the section, the flow from
the disk to the electrode is not uniform, but is at any point in-
versely proportional to the minimum chord through that point. In
the actual case the flow through the disk will not be uniform,
but it will not vary so much from point to point as in this supposed
case. The potential of the disk in the actual case will not be
uniform, but will diminish from the middle to the edge.

309.] We shall next determine a quantity greater than the true
resistance by constraining the flow through the disk to be uniferm
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at every point. 'We may suppose electromotive forces introduced
for this purpose acting perpendicular to the surface of the disk.

The resistance within the wire will be the same as before, but
in the electrode the rate of generation of heat will be the surface-
integral of the product of the flow into the potential. The rate of

flow at any point is gﬂ , and the potential is the same as that of
™

an electrified surface whose surface-density is o, where
4

2mo = CP (20)
w

?
a2

¢ being the specific resistance.
We have therefore to determine the potential energy of the
electrification of the disk with the uniform surface-density o.
The potential at the edge of a disk of uniform density o is easily
found to be 4a¢. The work done in adding a strip of breadth
da at the circumference of the disk is 2nweocda.4a 0, and the
whole potential energy of the disk is the integral of this,
or P = 83Wa3 ol (21)
In the case of electrical conduction the rate at which work is
done in the electrode whose resistance is R’ is
cr="7p, (22)
P

whenee, by (20) and (21),

’

r= 8

?
3n2a

and the correction to be added to the length of the cylinder is

s

8
LAy
p 3w
this correction being greater than the true value. The true cor-

7

rection to be added to the length is therefore »E—an, where 7 is a
p

. 7 8
number lying between E and 50 Or between 0.785 and 0.849.
T

Mr. Strutt, by a second approximation, has reduced the superior
limit of = to 0.8282.
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CHAPTER IX.

CONDUCTION THROUGH HETEROGENEOUS MEDIA.

On the Conditions v be Fulfilled at the Surface of Separalion
between Two Conducting Media.

310.] Tuzrrz are two conditions which the distribution of currents
must fulfil in general, the condition that the potential must be
continucus, and the condition of ‘ continuity’ of the electric currents.

At the surface of separation between two media the first of these
conditions requires that the potentials at two points on opposite
sides of the surface, but infinitely near each other, shall be equal.
The potentials are here understood to be measured by an elec-
trometer put in connexion with the given point by means of an
electrode of a given metal. If the potentials are measured by the
method described in Arts. 222, 246, where the electrode terminates
in a cavity of the conductor filled with air, then the potentials at
contiguous points of different metals measured in this way will
differ by a quantity depending on the temperature and on the
nature of the two metals,

The other condition at the surface is that the current through
any clement of the surface is the same when measured in either
medium.

Thus, if 7; and /7, are the potentials in the two media, then at
any point in the surface of separation

ry="r, (1)
and 1f %, v, w; and w,,v,,w, are the components of currents in the
two media, and /, m, » the direction-cosines of the normal to the
surface of scparation,

; = y \
u b vymwyn = wuyl+vym 4wy (2

In the most general case the components w, », w are linear
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functions of the derivatives of ¥, the forms of which are given in

the equations w=rnX+p, Y+ g, 2

v =g X+ 7Y+ p 7 (3)
w=p X+ Y+ 7,2,
where X, Y, Z are the derivatives of 7 with respect to z, y, 2
respectively.

Let us take the casc of the surface which separates a medium
having these coefficients of conduction from an isotropic medium
having a coeflicient of conduction equal to 7.

Let X’, ¥’, Z’ be the values of X, ¥, Z in the isotropic medium,
then we have at the surface

V = V’, (4)
or Xde+ Ydy+Zde = X'de+ Y'dy+ Z dz, (5)
when fdz+mdy+nde = 0. (6)

This condition gives
X=X+4470!, Y'=Y4tdmom, Z'=Z+4won, (7)
where o is the surface-density.
‘We have also in the isotropic medium
w=rX, v=17Y", w=rZ, (8)
and at the boundary the condition of flow is
Wit v'myw'n = ul+tom+uwn, (9)
or r({X4m¥+nZ+47a)
=X+ Y + ¢, 4) +m{g X+ 7, Y + pr Z) + (o X+ Y+ 7,7), (10)
whence
dnmor= ({(ry—r)+mgs+up,) X+ ({ps+m(ry—r)+ng) ¥
+ (lgp +mpy+n (ry—1)) Z. (11)
The quantity o represents the surfuce-density of the charge
on the surface of separation. In erystallized and organized sub-
stances it depends on the direction of the surface as well as on

the force perpendicular to it. In isotropic substances the coeffi-
cients p and ¢ are zero, and the coefficients 7 are all equal, so that

tno= (2t = 1)( X+nY+n2), (12)

where 7, 1s the conductivity of the substance, » that of the external
medium, and [, m, » the dircction-cosines of the normal drawn
towards the medium whose conductivity is 7.

When both media are isotropic the conditions may be greatly
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simplified, for if £ is the specific resistance per unit of volume, then
eo YT war o war
k dz k dy k dz

and if v is the normal drawn at any point of the surface of separation
from the first medium towards the second, the conduction of con-

tinmty is 1dVy 1 dp, (14)
k dv  k, dv

If 6, and 6, are the angles which the lines of flow in the first and

second media respectively make with the normal to the surface

of separation, then the fangents to these lines of flow are in the

same plane with the normal and on opposite sides of it, and
&y tun 6, = &y tan 6,. (15)
This may be called the law of refraction of lines of flow.

311.] As an example of the conditions which must be fulfilled
when electricity crosses the surface of separation of two media,
let us suppose the surface spherical and of radius «, the specific
resistance being £, within and £, without the surface.

Let the potential, both within and without the surface, be ex-
panded in solid harmonies, and l¢t the part which depends on
the surface harmonic §; be

Vy= (47 + Byr ) 8, (1)
Vo= (dyr'+ 8,77 ) §; (2)
within and without the sphere respectively.

At the surface of separation where » = @ we must have

1 a7/, 1 47,

V.=V . B 2,
=hoad o = &

From these conditions we get the equations

(4,—4)a%*1 4 B — B, = 0,
1 1\, 1 1 : (4)
(EAI—- EAZ)MZ +1_ (E_Bl———/ﬂ;BQ)(z+l) = o.g

(3)

These ecquations are suflicient, when we know two of the four
quantities 4y, 4,, B,, B,, to deduce the other two.

Let us suppose 4; and B, known, then we find the following
expressions for 4, and B,,

4, = HEEDFEY A+ =4) 4+ 1) 5a7ETD
B B (2i+1) )
5
5 _ k) ida¥ g (bR (1) B, j
2 £ (2:41)
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In this way we can find the conditions which each term of the
harmonic expansion of the potential must satisfy for any number of
strata bounded by concentric spherical surfaces.

312.] Let us suppose the radius of the first spherical surface
to be a;, and let there be a second spherical surface of radius e,
greater than @, beyond which the specific resistance 1s £;.  If there
are no sources or sinks of electricity within these spheres there
will be no infinite values of ¥, and we shall have B, = 0.

‘We then find for 4, and B,, the coeflicients for the outer medium,

Ay by By (20 +1)7 = [”’1 (4 1)+ hye} {£, G+ 1) + 457} ~(
!
+i (i+1)(k1_k2) (kz‘ks)(;;) ]/11: (6)

Byky by (20410 = [i (A, G 1)+ Ay (b — k) 4254
(k=) {hyit+ A (i+ 1)} a2+ 1] 4,

The value of the potential in the outer medium depends partly
on the external sources of electricity, which produce currents in-
dependently of the existence of the sphere of heterogeneous matter
within, and partly on the disturbance caused by the introduction of
the heterogeneous sphere.

The first part must depend on solid harmonics of positive degrees
only, because it cannot have infinite values within the sphere. The
second part must depend on harmonies of negative degrees, because
it must vanish at an infinite distance from the centre of the sphere.

Hence the potential due to the external electromotive forces must
be expanded in a series of solid harmonics of positive degree. Let
4, be the coefficient of oue these, of the form

A, 8, 7.
Then we can find 4,, the corresponding coeflicient for the inner
sphere by equation (6), and from this deduce 4,, B,, and B,. Of
these B, represents the effect on the potential in the outer medium
due to the introdaoction of the heterogeneous spheres.

Let us now suppose £; = £;, so that the case is that of a hollow
shell for which £ =£,, separating an inner from an outer portion of
the same medium for which £=#£,.

If we put

C =

1

e (O
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then 4, = & 4, (2i+1)2C4,,
Ay = k(264 1) (B, G+ 1)+ 4£,2)CA,, \L )
By =kt (204 1) (b, — k) 2,21%1C 4,,
By =i (b — &) (£ G+ 1) +Ayd) (2,27 —a, 2 ¥) O 4, J

The difference between 4, the undisturbed coeflicient, and 4, its
value in the hollow within the spherical shell, is

Ay—dy = (=R i i+ 1) (1 — (Z;)zfﬂ) ” ©

Since this quantity is always positive whatever be the values
of %, and £,, it follows thaf, whether the spherical shell conducts
better or worse than the rest of the medium, the electrical action
within the shell is less than it would otherwise be. If the shell
is a better conductor than the rest of the medium it tends to
equalize the potential all round the inner sphere. If it is a worse
conductor, it tends to prevent the electrical currents from reaching
the inner sphere at all.

The case of a solid sphere may be deduced from this by making
a; = 0, or it may be worked out independently.

313.] The most important term in the harmonic expansion is
that in which ¢ = 1, for which

c= ! —
9 by by 42 (b — Ay (1 — (;2) )
4, =9k %,0C4,, Ay = 3%, (2 ky+4,)C4;,
By=3ky(ky—ky)a*C Ay, By=(hy— k1) (28 +£,)(2,% —a,*)C 4y,

The case of a solid sphere of resistance £, may be deduced from

this by making a; = 0. We then have

®)

3%,
Az—m13, 'BZ':O’
- (10)
_ MTM 3
By b+ 2k, 24

It is easy to shew from the general expressions that the value
_of By in the case of a hollow sphere having a nucleus of resistance
%,, surrounded by a shell of resistance £,, i1s the same as that of
a uniform solid sphere of the radius of the outer surface, and of
resistance K, where
K= (2% +4)a,+ (b —k)a®
(2 /f1+k2)“23—2(k1_k2)a’13

F,. (11)
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314.] If there are # spheres of radius 2, and resistance £, placed
in a medium whose resistance is #,, at such distances from each
other that their effects in disturbing the course of the current
may be taken as independent of each other, then if these spheres
are all contained within a sphere of radius g,, the potential at a
great distance from the centre of this sphere will be of the form

V= (A+nBr—12)cose, (12)

where the value of B is
kl—k2 3
=, . 13
2k 1 £, 4 (13)
The ratio of the volume of the # small spheres to that of the

sphere which contains them is
(14)

The value of the potential at a great distance from the sphere
may therefore be written
ki —k,
V= (A +}9a23 ——2k1+k2
Now if the whole sphere of radius a, had heen made of a material
of specilfic resistance K, we should have had
K—% 1)
KTk 7S
That the one expression should be equivalent to the other,
2k + Ay + p (b —£y)
N 2k1+k2_217(k1_k2)k2. ()
This, therefore, is the specific resistance of a compound medium
consisting of a substance of specific resistance £,, in which are
disseminated small spheres of specific resistance £;, the ratio of the
volume of all the small spheres to that of the whole being p. In
order that the action of these spheres may not produce effects

712)005 9. (15)

V= {A-{-azs cos 9. (16)

K

depending on their interference, their radii must be small compared
with their distances, and therefore p must be a small fraction.

This result may be obtained in other ways, but that here given
involves only the repetition of the result already obtained for a
single sphere.

‘When the distance between the spheres is not great compared

with their radii, and when —kl_]cz
2 &y + Ay

terms enter into the result, which we shall not now consider.
In consequence of these terms certain systems of arrangement of

is considerable, then other
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366 CONDUCTION IN HETEROGENEOUS MEDIA. [315.

the spheres cause the resistance of the compound medinum to be
different in different directions.

Application of the Principle of Images.

315.] Let us take as an example the case of two media separated
by a plane surface, and let us suppose that there is a source §
of clectricity at a distance @ from the plane surface in the first
medium, the quantity of electricity flowing from the source in unit
of time being §.

If the first medium had been infinitely extended the current
at any point 2 would have been in the direction 8P, and the

. #
potential at £ would have been ;E where F = % and r, = 8P
1
In the actual case the conditions may be satisfied by taking
a point 7, the image of 8§ in the second medium, such that /8
is normal to the plane of separation and is bisected by it. Let 7,

be the distance of any point from 7, then at the surface of separation

7= 7y, (1)
dr,__dr, .
dy dy

Let the potential 7, at any point in the first medium be that
due to a quantity of electricity & placed at §, together with an
imaginary quantity ¥, at 7, and let the potential ¥, at any point
of the second medium be that due to an imaginary quantity £, at

8, then if 7 ‘
’ Vl=—r_+§ and Vz=§1, (3)
7 7 L
the superficial condition /=7, gives
B+, =, (4)
and the condition
1 d7) 1 4V,
r o=t %)
& dv &, dv
gives R S 6
kl (E EZ) i kz ﬁl’ ( )
2 k,—k
whence B = LB, B,=71F (7)
YTkt A, Pkt

The potential in the first medium is therefore the same as would
be produced in air by a charge F placed at §, and a charge E,
at [ on the electrostatic theory, and the potential in the second
medium is the same as that which would be produced in air by
a charge %, at 8.
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317.] STRATUM WITH PARALLEL SIDES. 367

The current at any point of the first medium is the same as would

have been produced by the source § together with a source ]]?%/21 S
1 2

placed at I if the first medium had been infinite, and the current

at any point of the second medium is the same us would have been

produced by a source 25,8 placed at § if the second medium had
(k1 +£,)

been infinite.

We have thus a complete theory of electrical images in the case
of two media separated by a plane boundary. Whatever be the
nature of the electromotive forces in the first medium, the potential
they produce in the first mediom may be found by combining their
direct effect with the effect of their image.

If we suppose the second medium a perfect conductor, then
k, = 0, and the image at I is equal and opposite to the course
at §. This is the case of electric images, as in Thomson’s theory
in electrostatics.

If we suppose the second medium a perfect insulator, then
£, = oo, and the image at { is equal to the source at § and of the
same sign. This is the case of images in hydrokinetics when the
fluid is bounded by a rigid plane surface.

316.]7 The method of inversion, which is of so much use In
electrostatics when the bounding surface is supposed to be that
of a perfect conductor, is not applicable to the more general case
of the surface separating two conductors of unequal electric resist-
ance. The method of inversion in two dimensions is, however,
applicable, as well as the more general method of transformation in
two dimensions given in Art. 190 ¥,

Conduction through a Plate scparating Two Media.

817.] Let us next consider the effect of a plate of thickness 45 of
a medium whose resist-
ance is £,, and separating 3
two media whose resist-
ances are £, and %£,, in + T8 A s v
altering the potential due
to a source S in the first
medium.

The potential will be

%

7

AN

Fig. 23.

* See Kirchhoff, Pogg. Ann. Ixiv. 497, and 1xvii. 344 ; Quincke, Pogg. xcvii. 382;
and Smith, Proc. R. 8. £din., 1869-70, p. 79.
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368 CONDUCTION IN HETEROGENEOUS MEDIA, [318.

equal to that due to a system of charges placed in air at certain
points along the normal to the plate through 8.
Make
Al=84, BL=8B, AJ, =14, Bl,=J B, A4J,=1,4, &ec.;
then we have two series of points at distances from each other equal
to twice the thickness of the plate.
318.] The potential in the first medium at any point P is equal to
E 1 L
P T T T
that at a point 7 in the second
£ I I’ I
PstPI T PRt PRt

+&e., (8)

V<
) Jy
9
+ ot py e )
and that at a point 2 in the third
- 2z 10
75t gt e (10)

where 7, I, &c. represent the imaginary charges placed at the
points 7, &c., and the accents denote that the potential is to be
taken within the plate.

Then, by the last Article, for the surface through 4 we have,

ky— 2 £,
’ 11
I= /c2+ic b = byt &y B. (11)
For the surface through B we find
ky—F, 2k,
7 i 7’ ’ 1 2
I’ = k+kE K= k+kE. (12)
Similarly for the surface through 4 again,
b E—ky o, 2k
= A 13
K= by + 4, I, L= b+, A (13)
and for the surface through B,
ky—F, 2k,
’ ’ — ’ 1 4
= ka'f-/“z SO /Cs'f‘/‘fJ. (e
If we make % —4%, ,  ky—F,
=5k and p _;%3+1:2’
we find for the potential in the first medinm,
¥ r

/; g v
_* 2 ’ N
V=pg5—ppr Q=0 Yo +p (1=p%)pp Pl + &e.

P , E
Ho (1 =p?) (pp")" " 57+ (15)

n
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319.] STRATIFIED CONDUCTORS. 369

For the potential in the third medium we find

F=0+400- Eim*r.f “L&“r(zv)"}> (16)

If the first medium is the same as the third, then 4, = £, and
p = p’, and the potential on the other side of the plate will be

1
V= (1_p2)E1PS+H +&e. +PJ} (17)

If the plate is a very much better conductor than the rest of the
medium, p is very nearly equal to 1. If the plate is a nearly perfect
insulator, p is nearly equal to —1, and if the plate differs little in
conducting power from the rest of the medium, p is a small quantity
positive or negative.

The theory of this casc was first stated by Green in his ¢ Theory
of Magnetic Induction’ (Essey, p. 65). Ilis result, however, is
correct only when p is nearly equal to 1*. The quantity g which
ke uses 1s connected with p by the equations

2p ki —Fk, 89  k—hk
3—p byt2k; P= 24y Btk

g:

If we put p= , we shall have a solution of the problem of

2
1427k
the magnetic induction excited by a magnetic pole in an infinite
plate whose coeflicient of magnetization is .

On Stratified Conductors.

819.7 Let a conductor be composed of alternate strata of thick-
ness ¢ and ¢ of two substances whose coefficients of conductivity
are different. Required the coeflicients of resistance and condue-
tivity of the compound conductor.

Let the plane of the strata be normal to Z. Let every symbol
relating to the strata of the second kind be accented, and let
every symbol relaling {o the compound conductor be marked with
a bar thus, X. Then

X=-X=X, {e+c\u = cutcv,
Y=Y=1Y", (c+ Yo = co+cv';
e+ Z Z=cZ+c7, w=w=1u.
We must first determine #», 4+, », ¢, Z and Z’ in terms of

X, 7 and @ from the equations of resistance, Art. 297, or those

* See Sir W. Thomson's ‘Note on Induced Magnetism in a Plate,’ Camb. and
Dub, Math. Journ., Nov. 1845, or Reprint, art. ix. § 156.

VOL. I. B b
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370 CONDUCTION IN HETEROGENEOUS MEDIA. [320.

of conduetivity, Art. 298. If we put D for the determinant of the
coefficients of resistance, we find

ury D = sz—' Qs Y+wq, D,

vrgD =R Y~P, X +wp, D,

Zry =-—p2X_—- @ ¥ +w

Similar equations with the symbols accented give the values

of #/, v"and . Having found %, ¥ and  in terms of X, ¥ and Z,
we may write down the equations of conductivity of the stratified

’

conductor. If we make 4 = - and ¥ = c_—,, we find

T3 3
o hmKpl gk
1T TR E NEThTE
= _ hp+Hp) - @’2‘*‘/"92,’

2= Ty w T DT TLw
7, = epytepy AN (=) (9.—45) |

e+c (A4 (e+¢")
- = %iﬁl%’ _ A (pr— ) (p2—p2)
2 c+¢ (A+£)(c+¢)
;o= et A (1)) —17)
17 ey 4+ (c+¢)
7 = T +ery _ ﬂi’l—ﬁ{) (n—a) s
2T o4 (A+E)(c+c)
L e+
G—ﬁ+k

320.] If neither of the two substances of which the strata are
formed has the rotatory property of Art. 303, the value of any
P or p will be equal to that of its corresponding @ or ¢.

From
this it follows that in the stratified conductor also

Pr= i P2 = 7 P3 = 93
or there is no rotatory property developed by stratification, unless
it exists in the materials.
821.] If we now suppose that there is no rotatory property, and
also that the axes of @, 7 and z are the principal axes, then the
p and ¢ coeficients vanish, and

— ery + v/ _ ery 41y _ e+¢
T = = Ty = ————5 G

e+ ¢ c+c 3 ¢ !
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322.] STRATIFIED CONDUCTORS. 371

If we begin with both substances isotropie, but of different
conductivities, then the result of stratification will be to make
the resistance greatest in the direction of a normal to the strata,
and the resistance in all directions in the plane of the strata will
be equal.

322, Take an isotropic substance of conductivity 7, cut it into
exceedingly thin slices of thickness 2, and place them alternately
with slices of a substance whose conductivity is s, and thickness
k& a.

Let these slices be normal to 2. Then cut this compound econ-
ductor into thicker slices, of thickness 4, normal to g, and alternate
these with slices whose conductivity is ¢ and thickness %, 6.

Lastly, cut the new conductor into still thicker slices, of thick-
ness ¢, normal to z, and alternate them with slices whose con-
ductivity is & and thickness £, c.

The result of the three operations will be to cut the substance
whose conductivity is 7 into rectangular parallelepipeds whose
dimensions are «, & and ¢, where & is exceedingly small compared
with ¢, and @ 1s exceedingly small compared with 4, and to embed
these parallelepipeds in the substance whose conductivity 1s s, so
that they are separated from each other #,¢ in the direction of 2,
k,0 in that of y, and Z;¢ in that of 2. The conductivities of the
conductor so formed in the directions of #,  and z are

R {14+ 2,0 +4)(1+ k) r+ﬁ(k2+k3+]f2k3)'?8

1 (14 ) (14 #,) (A 7 +3)
(M +h b ho) 74 (B 4 k3+k17‘2+/ﬂ1ka+/‘1kzka)3s
(1 +45) {Far+ (1 + £y + £y £y) s}

_ (L4 &) (r+ (bi+ b+ H1 £y) 8)
3T hyr+ (Vv byt byt by kg Ry B Ry Ry By) 8

Ty = f

7 s.

The accuracy of this investigation depends upon the three
dimensions of the parallelepipeds being of different orders of mag-
nitude, so that we may neglect the conditions to be fulfilled at
their edges and angles. If we make #;, %, and 4, each unity, then

574 3s 3r+5¢ 274+ 6¢
7= ——38, Tg=g——39 = 8
47+ 43 274+69 r+ 78

s T3 =

If » = 0, that is, if the medium of which the parallelepipeds
are made is a perfect insulator, then
’1‘1=%8, 7‘2=-g—8, 7'3=$8.
b2
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372 CONDUCTION IN HETEROGENEOUS MEDIA. (323.

If 7 = oo, that is, if the parallelepipeds are perfect conductors,
r,=2s, =138 ry = 24,

In every case, provided # = 4, = #,, it may be shewn that
r,, 7, and 7r; are In aseending order of magnitude, so that the
greatest conductivity is in the direction of ithe longest dimensions
of the parallelepipeds, and the greatest resistance in the direction
of their shortest dimensions.

323.] In a reclangular parallelepiped of a conducting solid, let
there be a conducting channel made from one angle to the opposite,
the channel being a wire covered with insulating material, and
let the lateral dimensions of the channel be so small that the
conductivity of the solid is not affected except on account of the
eurrent conveyed along the wire.

Let the dimensions of the parallelepiped in the direetions of the
coordinate axes be a, b, ¢, and let the conductivity of the channel,
extending from the origin to the point (zée), be abeX.

The electromotive force acting between the extremities of the

channel is aX1i¥+ecZ
and if ¢’ be the current along the ehannel
C'= Kabe(aX+6Y4cZ).
The current across the face é¢ of the parallelepiped is dew, and

this is made up of that due to the conductivity of the solid and
of that due to the conductivity of the channel, or

beu = be(rn X+ p, Y+ ¢, 7))+ Kabe(aX+6Y 4 cZ),
or u=(r+Ka) X4 (py+Kab) ¥ +(g;+Kca) Z.
In the same way we may find the values of v and w. The

coeflicients of conductivily as altered by the effect of the channel
will be

7+ Ka?, ry+ K 82, 7y + Ke?,
ﬁ;-*-KbC: ﬁ2+KCd, ]73+Ka6,
¢, +Kébe, 7+ K ea, 71+ Kabh.

In these expressions, the additions to the values of p,, &ec., due
to the effeet of the channel, are equal to the additions to the values
of g,, &e. Hence the values of p; and ¢, cannot be rendered
unequal by the introduction of linear channels into every element
of volume of the solid, and therefore the rotatory property of
Art. 303, if it does not exist previously in a solid, cannot be
introduced by such means.
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324.) To eonstruct a framework of linear conductors whick skall

kave any given coefficients of conductivily forming a symmelrical
system.

Let the space be divided into equal small
cubes, of which let the figure represent one.
Let the coordinates of the points O, I, M, N,
and their potentials be as follows :

z ¥y z Potential.
0 0 0 O 0
z 0 1 1 04+ Y+2,
M 1 0 1 0+Z2+4 X,
N 1 1 0 0+X+ Y.

Let these four points be connected by six conductors,
OL, O, ON, MY, NI, LM,
of which the conductivities are respectively
4, B, C, P, Q, y A
The electromotive forces along these conductors will be
Y+4, Z+X, X+¥, Y-Z, Z-X, X—7,
and the currents
A¥Y+Z%), B(Z+X), C(X+Y), P(¥-2), Q(Z-X), R(X-T).
Of these currents, those which convey electricity in the positive
direction of z are those along LM, LN, OM and ON, and the

quantity conveyed is

#=(B+C+Q+R)X+(C~R)Y +{B-Q)Z
Similarly
v=(C—R)X +(C+A+R4+PYY +(4—P) 2,
w=(B—Q)X +(4—P)Y +d+B+P+Q)Z;

whence we find by comparison with the equations of conduction,
Art. 298,

44 =ry+r,—r+2p, AP =rytrg—r—2p,
4B =ry+r—1,+2p,, 4Q = 1347 —7,—2p,,
4C = r4r,—r;42p;, 4= fry—ry—2p,.
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CHAPTER X.
CONDUCTION IN DIELECTRICS.

325.] WE have seen that when electromotive force acts on a
dielectric medium it produces in it a state which we have called
electric polarization, and which we have described as consisting
of clectric displacement within the medium in a direction which,
in isotropic media, coincides with that of the electromotive foree,
combined with a euperficial charge on cvery element of volume
into which we may suppose the dielectric divided, which is neguative
on the side towards which the force acts, and positive on the side
from which it acts.

When electromotive force acts on a conducting medium it also
produces what is called an electric current.

Now dielectric media, with very few, if any, exceptions, are
also more or less imperfect conductors, and many media which are
not good insulators exhibit phenomena of dielectric induction.
Hence we are led to study the state of a mediumn in which induction
and conduction are going on at the same time.

For simplicity we shall suppose the medium isotropic at every
point, but not necessarily homogeneous at different points. In this
case, the equation of Poisson becomes, by Art. 83,

d av, d ar,
&)+ 7, &)
where K is the ‘specific inductive capacity.’

d av.
+ (K?l?)+4ﬂp:0’ (1)

The *equation of continuity’ of electric currents becomes
d ,1dV, d ,1dV. d 1 dV, dp

Gty Gt aG@—u=" ()
where 7 1s the specific resistance referred to unit of volume.

iz oG

When X or 7 is discontinuous, these equations must be trans-
formed into those appropriate to surfaces of discontinuity.
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In a strictly homogeneous medium 7 and K are both constant, so
that we find

ﬂ av v s f’_.—rdp (3)
Bt E T =T RS
an
whence p=Ce K (4)
. Kr b
or, if we put 7= o p=Ce¢ T, (5)

This result shews that under the action of any external electrie
forces on a homogeneous medium, the interior of which is originally
charged in any manner with electricity, the internal charges will
die away at a rate which does not depend on the external forces,
so that at length there will be no charge of electricity within
the medium, after which no external forces can either produce or
maintain a charge in any internal portion of the medium, pro-
vided the relation between electromotive foree, electric polarization
and conduction remains the same. When disruptive discharge
accurs these relations cease to be true, and internal charge may
be produced.

On Conduction through a Condenser.

326.] Let C be the capacity of a condenser, & its resistance, and
E the electromotive force which acts on it, that is, the difference of
potentials of the surfaces of the metallic electrodes.

Then the quantity of electricity on the side from which the
electromotive force acts will be CE, and the current through the
substance of the condenser in the direction of the electromotive

force will be %
If the electrification is supposed to be produced by an electro-
motive force £ acting in a circuit of which the condenser forms

part, and if %? represents the current in that cireuit, then

=—--+0—-~—- (6)

Let a battery of electromotive force #, and resistance 7, be
introduced into this eircuit, then

St =4O 7
Hence, at any time 7,

_h
E(=FE)=E R; (1—0 Tx) where 7| =
1

N CR#
R4

Eir O
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Next, let the circuit 7, be broken for a time ¢,,

ty
E(=E)=EF,e 75 where T, = CR. (9)
Finally, let the surfaces of the condenser be connected by means
of a wire whose resistance is 7; for a time #;,
E(=B)=FE,¢ T where T, = &7
= L) =S 3T Rin,
If @, is the total discharge through this wire in the time ¢,
CR? . -
=Bt (1—e T) e m{1—¢ ) (11
Qa D(E-f-rl)(]ﬁ-f-?'s) ( l) 2( S)

In this way we may find the discharge through a wire which
1s made to connect the surfaces of a condenser after being charged
for a time ¢, and then insulated for a time Z,. If the time of
charging is sufficient, as it generally is, to develope the whole
charge, and if the time of discharge is sufficient for a complete
discharge, the discharge is

(10)

CR? .
Q,,:Eome CR (12)
327.1 In a condenser of this kind, first charged in any way, next
discharged through a wire of small resistance, and then insulated,
no new electrification will appear. In most actual condensers,
however, we find that after discharge and insulation a new charge
is gradually developed, of the same kind as the original charge,
but inferior in intensity. This is called the residual charge. To
account for it we must admit that the constitution of the dielectrie
medium is different from that which we have just described. We
shall find, however, that a medium formed of a conglomeration of
small pieces of different simple media would possess this property.

Theory of a Composite Dielectric.

328.1 We shall suppose, for the sake of simplicity, that the
dielectric consists of a number of plane strata of different materials
and of area unity, and that the electric forces act in the direction
of the normal to the strata.

Let oy, a,, &c. be the thicknesses of the different strata.

X, X,, &c. the resultant elcctrical force within each stratum.

P15 Pas &e. tHe current due to conduction through each stratum.

J15/3, &c. the electric displacement.

%, uy, &c. the total current, due partly to conduction and partly
to variation of displacement.
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71, 75y &c. the specific resistance referred to unit of volume.

X\, K,, &ec. the specific inductive capacity.

kv, £y, &e. the reciprocal of the specific inductive capacity.

E the electromotive force due to a voltaic battery, placed in
the part of the circuit leading from the last stratum towards the
first, which we shall suppose good conductors.

@ the total quantity of electricity which has passed through this
part of the circuit up to the time ¢,

R, the resistance of the battery with its connecting wires.

0y, the surface-density of electricity on the surface which separates
the first and second strata.

Then in the first stratum we have, by Ohm’s Law,

X, =np. (1)
By the theory of electrical displacement,
X =4nkf,. (2)
By the definition of the total current,
d
U =Pt a{;l ’ (3)

with similar equations for the other strata, in each of which the
quantities have the suffix belonging to that stratum.
To determine the surface-density on any stratum, we have an

equation of the form 0 =Jo—S1s (4)
and to determine its variation we have
do -
le =D Pe- (3)
By differentiating (4) with respect to ¢, and equating the result
to (5), we obtaln
d 4
]71'*'7{; =ﬁ2+j§=%5a)’s (6)
or, by taking account of (3),
= u, = &c. = u. @)

That is, the total current % is the same in all the strata, and is
equal to the current through the wire and battery.
We have also, in virtue of equations (1) and (2),
1 14X,
= — 1 8
P vy S (&)
from which we may find X, by the inverse operation on #,

1 1 d\"!

U =
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The total electromotive force F is
E=a X +ta,X, +&c, (10)
1 1 d\"1 1 1 d\"1
or I= {a] (;]— + 4ﬂ'k1 7&) Ty (;2_ + 47r/£z ;72) + &e. }u, (11)
an equation between £, the external electromotive force, and %, the
external eurrent.
If the ratio of » to 4 is the same in all the strata, the equation
reduces 1tself to

7
E—J,-T(E

ik di

which is the case we have already examined, and in which, as we

= (@, 7y +a, 7+ &c.) u, (12)

found, no phenomenon of residual charge can take place.

If there are # substances having different ratios of » to %4, the
general equation (11), when cleared of inverse operations, will be
a linear differential equation, of the sth order with respect to £
and of the (r—1)th order with respect to %, ¢ being the independent
variable.

From the form of the equation it is evident that the order of
the different strata is indifferent, so that if there are several strata
of the same substance we may suppose them united into one
without altering the phenomena.

329.] Let us now suppose that at first £}, /;, &e. are all zero,
and that an electromotive force ¥ is suddenly made to act, and let
us find its instantaneous effect.

Integrating (8) with respect to ¢, we find

1 , 1
Q _/udt = Tleldt-}- Z;k_le+COHSt' (13)

Now, since X, is always in this case finite, le dt must be in-

sensible when ¢ is insensible, and therefore, since X is originally
zero, the instantancous effect will be

X, =47k Q. (14)
Hence, by equation (10),
E=dn(l athae+&e)Q, (15)

and if C be the electric capacity of the system as measured in this
Instantaneous way,
c=9_ ! : (16)
B dw(ka +k,a,+ &e.)
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This is the same result that we should have obtained if we had
neglected the conductivity of the strata.

Let us next suppose that the electromotive force & is continued
uniform for an indefinitely long time, or till a uniform current of
conduction equal to p is established through the system.

We have then X = r, p, and therefore

E = (rnay+ra,+&e)p. (17)
If R be the total resistance of the system,

Al

R=E=7141+r2a2+&e. (18)
In this state we have by (2),
”
h= il
so that Ty, _(477/6 47“%)}7 (19)

If we now suddenly connect the extreme strata by means of a
conductor of small resistance, £ will be suddenly changed from its
original value £ to zero, and a quantity @ of electricity will pass
through the conductor.

To determine § we observe that if X’ be the new value of X,

then by (13), Xll= Xl+4 _n_l:l Q- (20)
Hence, by (10), putting £ = 0,

0 = o, X+ &e.+47(a by +a,by+ &e) @, (21)

or 0="F+ 5 Q (22)

Hence ) = — CF; where C is the eapacity, as given by equation
(16). The instantaneous discharge is therefore equal to the in-
stantaneous charge.

Let us next suppose the connexion broken immediately after this
discharge. We shall then have # = 0, so that by equation (8),

4k
X, =Xe nt, (23)
where X” is the initial value after the discharge.

Hence, at any time 7,
dnky

X, =&, {% _ 47;/;10}{7
The value of % at any time is therefore

4wk,

ank,
E=B (00 —ama k) 4 (B —amakC)e T el
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and the instantaneous discharge after any time ¢ is #C. This is
called the residual discharge.

If the ratio of » to £ is the same for all the strata, the value of #
will be reduced to zero. If, however, this ratio is not the same, let
the terms be arranged according to the values of this ratic in
descending order of magnitude.

The sum of all the coefficients is evidently zero, so that when
¢ =0, #=0. The coeflicients are also in descending order of
magnitude, and so are the exponential terms when ¢ is positive.
Hence, when ¢ is positive, £ will be positive, so that the residual
discharge is always of the same sign as the primary discharge.

When ¢ is indefinitely great all the terms disappear unless any
of the strata are perfect insulators, in which ease », is infinite for
that, stratum,” and & is infinite for the wholc system, and the final
value of £ is not zero but

E=F(1—47ma 4 0C). (25)
Hence, when some, but not all, of the strata are perfect insulators,
4 residual discharge may be permancntly preserved in the system.

330.] We shall next determine the total discharge through a wire
of resistance &, kept permanently in connexion with the extreme
strata of the system, supposing the system first charged by means
of a long-continued application of the electromotive force Z.

At any instant we have

E=arp to,rp,+&e.+ Byu =0, (26)

and also, by (3), u=p + 6;/; (27)

Hence (R+R)u = a, g fl + ay7y ‘flfa + &e. (28)
Integrating with respect to £ in order to find @, we get

(B+Ry) @ = ayry (Y — /D +aa e (fF — /o) + &, (29)

where /] is the initial, and /" the final value of /.
In this case /i’ = 0, and /] = £, (4 vy C).

“1 7’ “z ry?

47 R £,

Ience (B4+R) Q= +&c)—E,CR, (30)

= CE" S5 [alazif 3 ( 72%)_], (31)
2

where the summation i1s extended to all quantlties of this form
belonging to every pair of strata.
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It appears from this that @ is always negative, that is to say, in
the opposite direction to that of the current employed in charging
the system.,

This investigation shews that a dielectric composed of strata of
different kinds may exhibit the phenomena known as electric
absorption and residual discharge, although none of the substances
of which it is made exhibit these phenomena when alone. An
investigation of the cases in which the materials are arranged
otherwise than in strata would lead to similar results, though
the caleulations would be more complicated, so that we may
conclude that the phenomena of electric absorption may be ex-
pected in the case of substances composed of parts of different
kinds, even though these individual parts should be microscopically
small.

It by no means follows that every substance which exhibits this
phenomenon is so composed, for it may indicate a new kind of
electric polarization of which a homogeneous substance may be
capable, and this in some cases may perhaps resemble electro-
chemical polarization much more than dielectric polarization.

The abject of the investigation is merely to point out the true
mathematical character of the so-called electric absorption, and to
shew how fundamentally it differs from the phenomena of heat
which scem at first sight analogous.

331.] If we take a thick plate of any substance and heat it
on one side, so as to produce a flow of heat through it, and if
we then suddenly cool the heated side to the same temperature
as the other, and leave the plate to itself, the heated side of the
plate will again become hotter than the other by conduction from
within.

Now an electrical phenomenon exactly analogous to this can
be produced, and actually occurs in telegraph cables, but its mathe-
matical laws, though exactly agreeing with those of heat, differ
entirely from those of the stratified condenser.

In the case of heat there is true absorption of the heat into
the substance with the result of making it hot. To produce a truly
analogous phenomenon in electricity is impossible, but we may
imitate it in the following way in the form of a lecture-room
experiment.

Let 4,, 4,, &c. be the inner conducting surfaces of a series of
condensers, of which B,, B, B;, &ec. are the outer surfaces.

Let 4,, 4;, &c. be connected in series by connexions of resist-
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ance R, and let a current be passed along this series from left to
right.

Let us first suppose the plates B,, B, B,, each insulated and
free from charge. Then the total quantity of electricity on each of
the plates B must remain zero, and since the electricity on the
plates 4 is in each case equal and opposite to that of the opposed

R, R,

1 R\’
| mﬂ

Fig. 25.

surface they will not be electrified, and no alteration of the current
will be observed.

But let the plates B be all connected together, or let each be
connected with the earth. Then, since the potential of 4, is
positive, while that of the plates B is zero, 4, will be positively
elcetrified and B, negatively.

If P,, P,, &c. are the polentials of the plates 4,, 4,, &c., and C
the capacity of each, and if we suppose that a gquantity of electricity
equal to §, passes through the wire on the left, @; through the
connexion K, and so on, then the quantity which exists on the
plate 4, is @,~ Q,, and we have

Qo— Q= C Py
Similarly —Q,= G P,
and so on.
But by Ohm’s Law we have
d
P—P, = R, T%
a9,
PP, = 1,25

If we suppose the values of € the same for each plate, and those
of B the same for each wire, we shall have a series of equations of
the form
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Q—2 Qi+ Qs = ROZE,

G-2Qs+@Q, = RCLE.

If there are » quantities of electricity to be determined, and if
either the total electromotive force, or some other equivalent con-
ditions be given, the differential equation for determining any one
of them will be linear and of the nth order.

By an apparatus arranged in this way, Mr. Varley succeeded in
imitating the electrical action of a cable 12,000 miles long.

‘When an electromotive force is made to act along the wire on
the left hand, the elcctricity which flows into the system is at first
principally occupied in charging the different condensers beginning
with 4;, and only a very small fraction of the current appears
at the right hand till a considerable time has elapsed. If galvano-
meters be placed in circuit at R, R,, &c. they will be affected
by the current one after another, the interval between the times of
equal indications being greater as we proceed to the right.

332.] In the case of a telegraph cable the conducting wire is
separated from conductors outside by a eylindrical sheath of gutta-
percha, or other insulating material. Each portion of the cable
thus becomes a condenser, the outer surface of which is always at
potential zero. Hence, in a given portion of the cable, the quantity
of free electricity at the surface of the conducting wire is equal
to the product of the potential into the capacity of the portion of
the cable considered as a condenser.

If a;, a, are the outer and inner radii of the insulating sheath,
and if K 1s its specific dielectric capacity, the capacity of unit of
length of the cable is, by Art. 126,

J'e

C =

: 1)
2 log !
@y

Let v be the potential at any point of the wire, which we may
consider as the same at every part of the same section.

Let @ be the total quantity of electricity which has passed
through that section since the beginning of the current. Then the
quantity which at the time ¢ exists between sections at 2 and at

z 40z, 18 d 3 d
Q—(Q+E;Q§x), or Qéz,

and thig is, by what we have said, equal to cod2.
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d

Hence === (2)

Again, the electromotive force at any section is — Zg, and by
Ohm’s Law, e aQ “

where £ is the resistance of unit of length of the conductor, and

d—? is the strength of the current. Eliminating ¢ between (2) and

(3), we find v d%
dv _ d*v 4
kg = ®

This is the partial differential equation which must be solved
in order to obtain the potential at any instant at any point of the
cable. It is identical with that which Fourier gives to determine
the temperature at any point of a stratum through which heat
is flowing in a direction normal to the stratum. In the case of
heat ¢ represents the capacity of unit of volume, or what Fourier
calls CD, and £ represents the reciprocal of the conductivity.

If the sheath is not a perfect insulator, and if 4, is the resist-
ance of unit of length of the sheath to eonduction through it in a
radial direction, then if p, is the specific resistance of the insulating

material,
by = 2p, log, :_; (5)

The equation (2) will no longer be true, for the clectricity is
expended not only in charging the wire to the extent represented

by ¢, but in escaping at a rate represented by%1 . Hence the rate
of expenditure of electricity will be
a? dv 1

ol AR (©)

whence, by comparison with (3), we get
2

and this is the equation of conduetion of heat in a rod or ring
as given by Fourier *.

333.] If we had supposed that a body when raised to a high
potential becomes electrified throughout its substance as if elee-
tricity were compressed into it, we should have arrived at equa-
tions of this very form. It is remarkable that Ohm himself,

ck

* Théorie de la Chaleur, art. 105.
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misled by the analogy between electricity and heat, entertained
an opinion of this kind, and was thus, by means of an erroneous
opinion, led to employ the equations of Fourier to express the
true laws of conduction of electricity through a long wire, long
before the real reason of the appropriateness of these equations had
been suspected.

Mechanical Illusiration of the Properties of a Dielectric.

334.] Five tubes of equal sectional area 4, B, C, D and P are
arranged in circuit as in the figure.

A4, B, C and D are vertical and equal, / lli ;I: )
and P is horizontal. (—‘—'—H

The lower halves of 4, B, C, D
are filled with mercury, their upper
halves and the horizontal tube P are q
filled with water. 4] BB

A tube with a stopcock @ con- 4 [&]
nects the lower part of 4 and B |4 LB, 1 S o,
with that of € and D, and a piston -, e,
P is made to slide in the horizontal la 5
tubes ’ ‘

Let us begin by supposing that b

-/

the level of the mercury in the four
tubes is the same, and that it is
indicated by 4,, B,, Cy, Dy, that
the piston is at P,, and that the @

stopeock @ is shut. Fig. 26.

Now let the piston be moved from P to P,, a distance @. Then,
since the sections of all the tubes are equal, the level of the mercury
in 4 and C will rise a distance &, or to 4, and €}, and the mercury
in B and /) will sink an equal distance «, or to 5, and J,.

The difference of pressure on the two sides of the piston will
be represented by 4a.

This arrangement may serve to represent the state of a dielectric
acted on by an electromotive force 4a.

The excess of water in the tube 2 may be taken to represent
a positive charge of electricity on one side of the dielectric, and the
excess of mercury in the tube 4 may represent the negative charge
on the other side. The excess of pressure in the tube P on the
side of the piston next D will then represent the excess of potential
on the positive side of the dielectrie.

VOL. 1. ce
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If the piston is free to move it will move back to P, and be
in equilibrium there. This represents the complete discharge of
the dielectric.

During the discharge there is a reversed motion of the liquids
throughout the whole tube, and this represents that change of
electric displacement which we have supposed to take place in a
dielectric.

I have supposed every part of the system of tubes filled with
incompressible liquids, in order to represent the property of all
electric displacement that there is no real accumulation of elec-
tricity at any place.

Let us now consider the effect of opening the stopcock @ while
the piston 7 is at P,.

The level of 4, and D, will remain unchanged, but that of 5 and
C will become the same, and will coincide with B, and C,.

The opening of the stopeock @ corresponds to the existence of
a part of the dielectric which has a slight conducting power, but
which does not extend through the whole dielectric so as to form
an open channel.

The charges on the opposite sides of the dielectrie remain in-
sulated, but their difference of potential diminishes. .

In fact, the difference of pressure on the two sides of the piston
sinks from 44 to 2¢ during the passage of the fluid through Q.

If we now shut the stopcock @ and allow the piston P to move
freely, it will come to equilibrium at a point P,, and the discharge
will be apparently only half of the charge.

The level of the mercury in 4 and B will be 4a above its
original level, and the level in the tubes C and D will be 1a
below its original level. This is indicated by the levels 4,, B,,
G, D,.

If the piston is now fixed and the stopeock opened, mereury will
flow from 55 to C till the level in the two tubes is again at B, and
C,. There will then be a difference of pressure = a on the two
sides of the piston P. If the stopeock is then closed and the piston
P left free to move, it will again come to equilibrium at a point P,,
half way between P, and 2,. This corresponds to the residual
charge which is observed when a charged dielectric is first dis-
charged and then left to itself. It gradually recovers part of its
charge, and if this is again discharged a third charge is formed, the
successive charges diminishing in quantity. In the case of the
illustrative experiment each charge is half of the preceding, and the
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discharges, which are 4, §, &e. of the original charge, form a series
whose sum is equal to the original charge.

If, instead of opening and closing the stopeock, we had allowed it
to remain nearly, but not quite, closed during the whole experiment,
we should have had a case resembling that of the electrification of a
dielectric which 1s a perfect insulator and yet exhibits the phe-
nomenon called ¢ electric absorption.’

To represent the case in which there is true conduction through
the dielectric we must either make the piston leaky, or we must
establish a communication between the top of the tube A and the
top of the tube 2.

In this way we may construct a mechanical illustration of the
properties of a dielectric of any kind, in which the two electricities
are represented by two real fluids, and the electric potential is
represented by fluid pressure. Charge and discharge are repre-
sented by the motion of the piston P, and electromotive force by
the resultant force on the piston.

cc2
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CHAPTER XI.
THE MEASUREMENT OF ELECTRIC RESISTANCE.

835.] IN the present state of electrical science, the determination
of the electric resistance of a conductor may be considered as the
cardinal operation in electricity, in the same sense that the deter-
mination of weight is the cardinal operation in chemistry.

The reason of this is that the determination in absolute measure
of other electrical magnitudes, such as quantities of electricity,
electromotive forces, currents, &c., requires in each case a com-
plicated series of operations, involving generally observations of
time, measurements of distances, and determinations of moments
of inertia, and these operations, or at least some of them, must
be repeated for every new determination, because it is lmpossible
to preserve a unit of electricity, or of electromotive force, or of
current, in an unchangeable state, s0 as to be available for direct
comparison.

But when the electric resistance of a properly shaped conductor
of a properly chosen material bas been once determined, it is found
that it always remains the same for the same temperature, so that
the conductor may be used as a standard of resistance, with which
that of other conductors ecan be compared, and the comparison of
two resistances 1s an operation which admits of extreme accuracy.

‘When the unit of electrical resistance has been fixed on, material
copies of this unit, in the form of ¢ Resistance Coils,” are prepared
for the use of electricians, so that in every part of the world
electrical resistances may be cxpressed in terms of the same unit.
These unil resistance coils are at present the only examples of
material electric standards which can be preserved, copied, and used
for the purpose of measurement. Measures of electrical capacity,
which are also of great importance, are still defective, on account
of the disturbing influence of electric absorption.

336.] The unit of resistance may be an entirely arbitrary one,
as in the case of Jacob’s Etalon, which was a certain copper
wire of 22.4932 grammes weight, 7.61975 metres length, and 0.667
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millimetres diameter. Copies of this have been made by Leyser of
Leipsig, and are to be found in different places.

According to another method the unit may be defined as the
resistance of a portion of a definite substunce of definite dimensions.
Thus, Siemens’ unit is defined as the resislance of a column of
mercury of one metre long, and one square millimetre section, at
the temperature 0 C.

337.7 Finally, the unit may be defined with reference to the
electrostatic or the electromagnetic system of units. In practice
the elcetromagnetic system is used in all telegraphic operations,
and therefore the only systematic units actually in use are those
of this system.

In the clectromagnetic system, as we shall shew at the proper
place, a resistance is a quantity homogeneous with a velocity, and
may therefore be expressed as a velocity. See Art. 628.

338.7 The first actual measurements on this system were made
by Weber, who employed as his unit one millimetre per seccond.
Sir W. Thomson afterwards used one foot per second as a unit,
but a large number of electricians have now agreed to use the
unit of the British Association, which professes to represent a
resistance which, expressed as a velocity, is ten millions of metres
per second. The magnitude of this unit is more convenient than
that of Weber’s unit, which is too small. It is sometimes referred
to as the B.A. unit, but in order to connect it with the name of
the discoverer of the laws of resistance, it is called the Ohm.

339.] To recolleet its value in absolute measure it is useful
to know that ten millions of metres is professedly the distance
from the pole to the equator, measured along the meridian of Paris.
A body, therefore, which in one second travels along a meridian
from the pole to the equator would have a velocity which, on the
electromagnetic system, is professedly represented by an Ohm.

I say professedly, because, if more accurate researches should
prove that the Ohm, as constructed from the British Association’s
material standards, is not really represented by this velocity, elec-
tricians would not alter their standards, but would apply a cor-
rection. In the same way the metre 1s professedly one ten-millionth
of a certain quadrantal are, but though this is found not to be
exactly true, the length of the metre has not been altered, but the
dimensions of the earth are expressed by a less simple number.

According to the system of the British Association, the absolute
value of the unit is originally chosen so as to represent as nearly
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as possible a quantity derived from the electromagnetic absolute
system,

340.] When a material unit representing this ahstract quantity
has been made, other standards are constructed by copying this unit,
a process capable of extreme accuracy—of much greater accuracy
than, for instance, the copying of foot-rules from a standard foot.

These copies, made of the most permanent materials, are dis-
tributed over all parts of the world, so that it is not likely that
any difficulty will be found in obtaining copies of them if the
original standards should be lost.

But such units as that of Siemens can without very great
labour be reconstructed with considerable accuracy, so that as the
relation of the Ohm to Siemens unit is known, the Ohm can be
reproduced even without having a standard to copy, though the
labour is much greater and the accuracy much less than by the
method of copying.

Finally, the Ohm may be reproduced

U\ 1 by the electromagnetic method by which

it was originally determined. This method,

which is considerably more laborious than
the determination of a foot from the seconds
pendulum, is probably inferior in accuracy
to that last mentioned. On the other hand,
the determination of the electromagnetic
unit in terms of the Ohm with an amount
of accuracy corresponding to the progress
of electrical science, is a most important
physical research and well worthy of being
repeated.

The actual resistance coils constructed
to represent the Ohm were made of an

alloy of two parts of silver and one of pla-
tinum in the form of wires from .5 milli-
metres to .8 millimetres diameter, and from
one to two metres in length. These wires
were soldered to stout copper clectrodes.

The wire itself was covered with two layers
of silk, imbedded in solid paraffin, and enclosed in a thin brass
case, so that it can be easily brought to a temperature at which
its resistance is accurately one Ohim. This temperature is marked
on the insulating support of the coil. (See Fig. 27.)
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On the Forms of Resistunce Coils.

341.] A Resistance Coil is a conductor capable of being easily
placed in the voltaic ecircuit, so as to introduce into the circuit
a known resistance.

The electrades or ends of the coil must be such that no appre-
ciable error may arise from the mode of making the connexions.
For resistances of considerable magnitude it is sufficient that the
electrodes should be made of stout copper wire or rod well amal-
gamated with mercury at the ends. and that the ends should be
made to press on flat amalgamated copper surfaces placed in mereury
cups.

For very great resistances it is sufficient that the electrodes
should be thick pieces of brass, and that the connexions should
be made by inserting a wedge of brass or copper into the interval
between them. This method is found very convenient.

The resistance coil itself consists of a wire well covered with
silk, the ends of which are soldered permanently to the elec-
trodes.

The coil must be so arranged that its temperature may be easily
observed. For this purpose the wire is ecoilled on a tube and
covered with another tube, so that it may be placed in a vessel
of water, and that the water may have access to the inside and the
outside of the coil.

To avoid the electromagnetic effects of the current in the coil
the wire is first doubled back on itself and then coiled on the tube,
so that at every part of the coil there are equal and opposite
currents in the adjucent parts of the wire.

When it is desired to keep two coils at the same temperature the
wires are sometimes placed side by side and coiled up together.
This method 1s especiully useful when it is more important to
secure equality of resistance than to know the absolute value of
the resistance, as in the case of the equal arms of Wheatstone’s
Bridge, (Art. 347).

When measurements of resistance were first attempted, a resist-
ance coil, consisting of an uncovered wire coiled in a spiral groove
round a cylinder of insulating material, was much used. 1t was
called a Rheostat. The accuracy with which it was found possible
to compare resistances was soon found to be inconsistent with the
use of any instrument i which the contacts are not more perfect
than can be obtained in the rheostat. The rheostat, however, is
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still used for adjusting the resistance where accurate measurement is
not required.

Resistance coils are generally made of those metals whose resist-
ance is greatest and which vary least with temperature. German
silver fulfils these conditions very well, but some specimens are
found to change their properties during the lapse of years. Hence
for standard coils, several pure metals, and also an alloy of platinum
and silver, have been employed, and the relative resistance of these
during several years has leen found constant up to the limits of
modern accuracy.

842.] For very great resistances, such as several millions of
Ohms, the wire must be either very long or very thin, and the
construction of the coil 1s expensive und difficult.  Ience tellurium
and selenium have been proposed as materials for constructing
standards of great resistance. A very ingenious and easy method
of eonstruction has been lately propesed by Phillips*.  On a piece
of ebonite or ground glass a fine pencil-line is drawn. The ends
of this filament of plumbago are connected to metallic electrodes,
and the whole is then covered with insulating varnish. If it
should be found that the resistance of such a pencil-line remains
constant, this will be the best method of obtaining a resistance of
several millions of Ohms.

343.] There are various arrangements by which resistance coils
may beeasily introduced into a circuit.

For instance, a series of coils of which the resistances are 1, 2

b) ?

4, 8, 16, &c., arranged according to the powers of 2, may be placed
in a box in series.

The electrodes consist of stout brass plates, so arranged on the
outside of the box that by inserting a brass plug or wedge between

* Phil, Mag., July, 1870.
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two of them as a shunt, the resistance of the corresponding coil
may be put out of the circuit. This arrangement was introduced
by Siemens.

Each interval between the electrodes 1s marked with the resist-
ance of the corresponding coil, so that if we wish to make the
resistance box equal to 107 we express 107 in the binary scale as
64+32+8+2+1 or 1101011, We then take the plugs out
of the holes corresponding to 64, 32, 8, 2 and 1, and leave the
plugs in 16 and 4.

This method, founded on the binary scale, is that in which the
smallest number ol separate coils is needed, and it is also that
which can be most readily tested. For if we have another coil
equal to 1 we can test the equality of 1 and 17, then that of 1+ 17
and 2, then that of 1+ 17+ 2 and 4, and so on.

The only disadvantage of the arrangement 1s that it requires
a familiarity with the binary scale of notation, which is not
generally possessed by those accustomed to express every number
in the decimal scale.

344.] A box of resistance coils may be arranged in a different
way for the purpose of mea-
suring conduectivities instead of
resistances.

The coils are placed so that
one end of each is connected

with a long thick piece of

metal which forms one elec-
trode of the box, and the other
end is connected with a stout piece of brass plate as in the former
case.

The other electrode of the box is a long brass plate, such that
by inserting brass plurs between it and the electrades of the coils
it may be connected to the first electrode through any given set of
coils. The conductivity of the box is then the sum of the con-
ductivities of the coils.

In the figure, in which the resistances of the coils are 1, 2, 4, &e.,
and the plugs are inserted at 2 and 8, the conductivity of the
box is 4+ )% = &, and the resistance of the box is therefore £
or 1.6.

This method of combining resistance coils for the measurement
of fractional resistances was Introduced by Sir W. Thomson under
the name of the method of multiple ures.  See Art. 276.
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On the Comparison of Resistances.

345.] If £ is the electromotive force of a battery, and £ the
resistance of the battery and its connexions, including the galvan-
ometer used in measuring the current, and if the strength of the
current is [ when the battery connexions are closed, and 1}, 7,
when additional resistances 7, 7, are introduced into the circuit,
then, by Ohm’s Law,

E=IR=1(R+r) =L R+r).

Eliminating £, the elcetromotive force of the battery, and R

the resistance of the battery and its connexions, we get Ohm’s

formula rn_ U=

r, (=I)1
This method requires a mecasurement of the ratios of I, 7; and 17,
and this implies a galvanometer graduated for absolute mea-
surements.

If the resistances », and 7, are equal, then 7, and 7, are equal,
and we can test the equality of currents by a galvanometer which
1s not capable of determining their ratios.

But this is rather to be taken as an example of a faulty method
than as a practical method of determining resistance. The eleetro-
motive force # cannot be maintained rigorously constant, and the
internal resistance of the battery is also exceedingly variable, so
that any methods in which these are assumed to Le even for a short
time constant are not to be depended on.

346.] The comparison of resistances can be made with extreme

Fig. 30.

accuracy by oither of two methods, in which the result is in-
dependent of vaviations of £ and £.
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The first of these methods depends on the use of the differential
galvanometer, an instrument in which there are two coils, the
currents in which are independent of each other, so that when
the currents are made to flow in opposite directions they act in
opposite directions on the ncedle, and when the ratio of these
currents is that of m to = they have no resultant effect on the
galvanometer needle.

Let 1, 7, be the currents through the two coils of the galvan-
ometer, then the deflexion of the needle may be written

d=mI—nl,

Now let the battery current 7 be divided between the coils of
the galvanometer, and let resistances 4 and B be introduced into
the first and sccond coils respectively. Let the remainder of the
resistance of their coils and their connexions be a and B respect-
ively, and let the resistance of the battery and its connexions
between € and 2 be 7, and its electromotive force Z.

Then we find, by Ohm’s Law, for the difference of potentials
hetween C and D,

C—D =1 (d+a) = L,(B+p) = E—1Ir,

and since L+ 1,=1,
_ . B+B _ ad+e _ pAdtet+B4+8
I =K 5’ I, =F 7 I=F— e ;
where D=(d+a)(B+B)+r(d+a+DB+4).

The deflexion of the galvanometer needle 1s therefore
b= L B p—ndtal,

and if there 1s no observable deflexion, then we know that the
quantity enclosed in brackets eannot differ from zero by more than
a certain small quantity, depending on the power of the battery,
the suitableness of the arrangement, the delicacy of the galvan-
ometer, and the accuracy of the observer.

Suppose that B has been adjusted so that there is no apparent
deflexion.

Now let another conductor 4 be substituted for 4, and let
A" be adjusted till there is no apparent deflexion. Then evidently
to a first approximation 4= A.

To ascertain the degree of accuracy of this estimate, let the
altered quantities in the seccond observation be accented, then
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m(B+B)~—n(d +a) = %6,

’

m(B+B)—n(d +a) =é):5.

Hence n(d —A4)= ‘]? 5 % 3.

If 3 and ¥, instead of being both apparently zero, had been only
observed to be equal, then, unless we also could assert that £ = Z,
the right-hand side of the equation might not be zero. In fact,
the method would be a mere modification of that already described. -

The merit of the method consists in the fact that the thing
observed is the absence of any deflexion, or in other words, the
method is a Null method, one in which the non-existence of a force
is asserted from an observation in which the foree, if it had been
different from zero by more than a certain small Zmount, would
have produced an observalle eflect.

Null methods are of great value where they can be employed, but
they can only be employed where we can cause two equal and
opposite quantities of the same kind to enter into the experiment
together.

In the case before us both & and & are quantities too small to be
observed, and therefore any change in the value of Z.will not affeet
the accuracy of the result.

The actual degree of aceuracy of this method might be ascer-
tained by taking a number of observations in each of which 4
is separately adjusted, and comparing the result of each observation
with the mean of the whole series.

But by putting 4" out of adjustment by a known quantity, as,
for instance, by inserting at 4 or at B an additional resistance
equal to a hundredth part of 4 or of B, and then observing
the resulting deviation of the galvanometer ncedle, we can estimate
the number of degrees corresponding to an error of one per cent.
To {ind the actual degree of precision we must estimate the smallest
deflexion which could not escape observation, and compare it with
the deflexion due to an error of one per cent.

* If the comparison 1s 1o be made between 4 and B, and if the
positions of 4 and B are exchanged, then the second equation
becomes

* This investigation is taken from Weber's treatise on Galvanometry. Gittingen
Transactions, x. p. 65.
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o
m(Ad+B)—n(B+a) = 57,
DI

whence (m+n) (B—2) = 2,6 - o,

If m and n, 4 und B, a and B are approximately equal, then
; 1 ’
B = s (A+a) (4+a+27) (3.

Here 8—&" may be taken to be the smallest observable deflexion
of the galvunometer.

If the galvanometer wire be made longer and thinner, retaining
the same total mass, then n will vary as the length of the wire
and a as the square of the length. Hence there will be a minimum

value of (d:+a) (i—*— a+27) when

a=?;(/1+7‘){2/\/1—g(—[%2—1§-

If we suppose r, the battery resistance, small compared with 4,
this gives a=3%4;

or, the resistance of each coil of the galvanomeler shonid be one-third
of the resistance to be measured.

We then find A2

8
B =5

3—a"\

If we allow the current to flow through one only of the coils
of the galvanometer, and if the deflexion thereby produced is A
(supposing the deflexion strictly proportional to the deflecting
force), then

mE 3nf 1
A:m T fr*Oanda—é—A.
Hence B¥—A 28_¥
A 3 A

In the differential galvanometer two currents are made to
produce equal and opposite effects on the suspended needle. 'The
force with which either current acts on the needle depends not
only on the strength of the current, but on the position of the
windings of the wire with respect to the ncedle. Hence, unless
the coil 18 very carefully wound, the ratio of m to % may change
when the position of the needle is changed, and therefore it is
necessary to determine this ratio by proper methods during each

IRIS - LILLIAD - Université Lille 1
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course of experiments if any alteration of the position of the needle
1s suspected.

The other null method, in which Wheatstone’s Bridge is used,
requires only an ordinary galvanometer, and the observed zero
deflexion of the needle is due, not to the opposing action of two
currents, but to the non-existence of a current in the wire. Hence
we have not merely a null deflexion, but a null current as the
phenomenon observed, and no errors can arise from want of
regularity or change of any kind in the coils of the galvanometer.
The galvanometer is only required to be sensitive enough to detect
the existence and direction of a current, without in any way
determining its value or comparing its value with that of another
current,

347.] Wheatstone’s Bridge consists essentially of six conductors
connecting four points. An electromotive
force £ 1s muade to act between two of the
peints by means of a voltaic battery in-
troduced between B and C. The current
between the other two points O and A is
measured by a galvanometer.

Under certain circumstances this current
becomes zero. The conductors £ and 04
are then sald to be conjugate to each other,
which implies a certain relation between the resistances of the

Fig. 1.

other four conductors, and this relation is made use of in measuring
resistances.

If the current in O4 is zero, the potential at O must be equal
to that at 4. Now when we know the potentials at B and C we
can determine those at O and 4 by the rule given at Art. 274,
provided there is no current in 04,

0— By+C8 A= Bo+Ce
B+y b+e

whence the condition is

3

68 = Y,
where &, ¢, B, y are the resistances in Cd, 45, BO and OC re-
spectively.

To determine the degree of accuracy attainable by this method
we must ascertain the strength of the current in O4 when this
condition is not fulfilled exactly.

Let 4, B, C and 0O be the four points. Let the currents along
BC, C4 and 4B be z, y and 2, and the resistances of these
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conductors a, 4 and ¢. Let the currents along 04, OB and OC be
& m, ¢ and the resistances a, 8 and y. Let an electromotive force
E act along BC. Required the current £ along 0.

Let the potentials at the points 4, B, € and O be denoted
by the symbols 4, B, C and 0. The equations of conduction are

arx = B—C+E, af=0—4,
by = C—A4, Bn=0-20,
¢z = A—B, y¢=0-C;
with the equations of continuity
E+y—2=0,
nt+z—a =0,
(+z—y=0.

By considering the system as made up of three circuits OBC,
0CA and O4B in which the currents are z, 7, ¢ respectively, and
applying Kirchhoff’s rule to each cycle, we eliminate the values
of the potentials O, 4, B, C, and the currents &, n, { and obtain the
following equations for #, 7 and &,

(a+B+v)z—vy —B8= = &
—vyz +(h+y+a)y—az = 0,
—Bx —oay +{c+at+B)z= 0.
Hence, if we put
D=]at+B+y —y —8
—y btyta  —a |,
—B —a c+a+8
we find &= i (bB—cy),
D
¥
and z =5 {0+7)(c+B8)+alb+e+B+n}

348.] The value of D may be expressed in the symmetrical form,

D = abe 4 be(B+y)+ca(y+a)+abla+B)+(a+b+c)(By+yataf)
or, since we suppose the battery in the conductor a and the
galvanometer in a, we may put B the battery resistance for 2 and
G the galvanometer resistance for a. We then find

D=BGO+c+B4+y)+BUl+y)(c+B)
+G G+ (B+y) +bc(B4y)+By(@+e).

If the electromotive force & were made to act along 04, the
resistance of O4 being still ¢, and if the galvanometer were placed
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400 MEASUREMENT OF RESISTANCE. [340.

mm BC, the resistance of BC being still a, then the value of D
would remain the same, and the current in BC due to the electro-
motive force £ acting along 04 would be equal to the current
in O A4 due to the electromotive force £ acting in BC.

But if we simply disconnecet the battery and the galvanometer,
and without altering their respective resistances connect the battery
to O and 4 and the galvanometer to B and C, then in the value of
D we must exchange the values of B and G. If 7)" be the value
of D after this exchange, we find

D—D = (G=B){(b+c) (B+y)~(E+7)(B+0)},
= (B— ) {(b=)(e—7)}.

Let us suppose that the resistance of the galvanometer is greater
than that of the battery.

Let us also suppose that in its original position the galvanometer
connects the junection of the two conductors of least resistance 8, y
with the junetion of the two conductors of greatest resistance 4, ¢,
or, in other words, we shall suppose that if the quantities 4, ¢, y, 8
are arranged in order of magmitude, & and ¢ stund together, and
y and 3 stand together. Hence the quantities 4 —8 and ¢—y are
of the same sign, so that their product is positive, and therefore
IV — D is of the same sign as B—G.

If therefore the galvanometer is made to connect the junction of
the two greatest resistances with that of the two least, and if
the galvanometer resistance is greater than that of the battery,
then the value of D will be less, and the vulue of the deflexion
of the galvanometer greater, than if the connexions are exchanged.

The rule therefore for obtaining the greatest galvanometer de-
flexion in a given system is as follows:

Of the two resistances, that of the Dattery and that of the
galvanometer, connect the greater resistance so as to join the two
greatest to the two least of the four other resistances.

349.7 We shall suppose that we have to determine the ratio of
the resistances of the conductors 458 and 4C, and that this is to be
done by finding a point O on the conductor BOC, such that when
the points 4 and O are connected by a wire, in the course of which
a galvanometer is inserted, no sensible deflexion of the galvano-
meter needle occurs when the battery is made to act between 55
and C.

The conductor BOC may be supposed to be a wire of uniform
resistance divided into equal parts, so that the ratio of the resist-
ances of B0 and OC may be read off at once.
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Instead of the whole conductor being a uniform wire, we may
make the part near O of such a wire, and the parts on each side
may be coils of any form, the resistance of which is accurately
known,

We shall now use a different notation instead of the symmetrical
notation with which we commenced.

Let the whole resistance of BAC be R.

Let c =mAR and b = (1—m) R.

Let the whole resistance of 50OC be 8.

Let B==28 and y= (1—n) 8.

The value of # is read off directly, and that of = is deduced from
it when there is no sensible deviation of the galvanometer.

Let the resistance of the battery and 1ts connexions be f3, and
that of the galvanometer and its connexions @G.

‘We find as before
D= Q{BR+BS+ RS} +m(1—n)R2{B+8)+n(1—-n)S23(B+R)

+ (m+n—2mn) BES,
and if £ is the current in the galvanometer wire
ERS
="

In order to obtain the most accurate results we must make the

deviation of the needle as great as possible compared with the value

(n—m).

of (m—m). This may be done by properly choosing the dimensions
of the galvanometer and the standard resistance wire.

It will be shewn, when we come to Galvanometry, Art. 716,
that when the form of a galvanometer wire is changed while
its mass remains constunt, the deviation of the needle for unit
current is proportional to the length, but the resistance increases
as the square of the length. IHence the maximum deflexion is
shewn to occur when the resistance of {he galvanometer wire 1s
equal to the constant resistance of the rest of the circuit.

In the present case, if § is the deviation,

b= CVG@¢
where € is some constant, and G is the galvanometer resistance
which varies as the square of the length of the wire. Hence we
find that in the value of 7), when & is a maximum, the part
involving G must be made equal to the rest of the expression.

If we also put m = =, as is the case if we have made a correct
observation, we find the best value of ¢ to be

G =n(l—n)(X+8).

VOL. L pd
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This result is easily obtained by considering the resistance from
4 to O through the system, remembering that BC, being conjugate
to 40, has no effect on this resistance.

In the same way we should find that if the total area of the
acting surfaces of the battery is given, the most advantageous
arrangement of the battery is when

RS
B = 7is

Finally, we shall determine the value of § such that a given
change in the value of # may produce the greatest galvanometer
deflexion. By differentiating the expression for £ we find

BR G
~B+R (R+n(l—-n))'

If we have a great many determinations of resistance to make
in which the actual resistance has nearly the same value, then it
may be worth while to prepare a galvanometer and a battery for
this purpose. In this ease we find that the best arrangement is

§=R, B=1R, G=2n(1—n)R,
and if 2 = &, G = é_lf.

S2

On the Use of Wheatsione’s Bridge.

350.7 We have already explained the general theory of Wheat-
stone’s Bridge, we shall now consider some of its applications.

The comparison which can be effected with the greatest exact-
ness 1s that of two equal resistances.
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Let us suppose that 8 is a standard resistance coil, and that
we wish to adjust y to be equal in resistance to B.

Two other coils, & and ¢, are prepared which are equal or nearly
equal to each other, and the four coils are placed with their electrodes
in mercury cups so that the current of the battery is divided
between two branches, one consisting of 3 and y and the other
of & and c. The coils 4 and ¢ are connected by a wire PR, as
uniform in its resistance as possible, and furnished with a scale
of equal parts.

The galvanometer wire connects the junction of 8 and y with
a point @ of the wire PR, and the point of contact at @ is made
to vary till on closing first the battery circuit and then the
galvanometer circuit, no deflexion of the galvanometer needle is
observed.

The coils 8 and y are then made to change places, and a new
position 1s found for Q. If this new position is the same as the
old one, then we know that the exchange of 8 and y has produced
no change in the proportions of the resistances, and therefore y
is rightly adjusted. If @ has to be moved, the direction and
amount of the change will indicate the nature and amount of the
alteration of the length of the wire of y, which will make its
resistance equal to that of 8.

If the resistances of the coils & and ¢, each including part of the
wire PR up to its zero reading, are equal to that of & and ¢
divisions of the wire respectively, then, if @ is the scale reading
of @ in the first case, and y that in the second,

e+ ﬁ ety Y

b—z y ’ b—y 8 ’
2 b+c)(y—a)
h }’_:1 (——.
whence R + (cx2) (b—y)

Since #—y is nearly equal to ¢+, and both are greal with
respect to # or y, we may write this
2

A J==,
gr = Mt
y—=
alnd y_ﬁ(1+2b+c).

When y is adjusted ns well as we can, we substitute for & and ¢
other coils of (say) ten times greater resistance.
The remaining difference between 8 and y will now produce
a ten times greater difference in the position of @ than with the
pda
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original coils & and ¢, and in this way we can continually increase
the accuracy of the comparison.

The adjustment by means of the wire with sliding contact piece
is more quickly made than by means of a resistance box, and it 1s
capable of continuous variation.

The battery must never be introduced instead of the galvano-
meter into the wire with a sliding contact, for the passage of a
powerful current at the point of contact would injure the surface
of the wire. Hence this arrangement is adapted for the case in
which the resistance of the galvanometer is greater than that of the
battery.

On the Measurement of Small Resistances.

351.] When a short and thick conductor is introduced into a
circuit its resistance is so small compared with the resistance
occasioned by unavoidable faults in the connexions, such as want
of contact or imperfect soldering, that no correct value of the
resistance can be deduced from experi-
ments made in the way deseribed above.

The objeet of such experiments is
generally to determine the specific re-
sistance of the substance, and it is re-
sorted to in cases when the substance
cannot be obtained in the form of a
long thin wire, or when the resistance

to transverse as well as to longitudinal
conduction has to be measured.

Fig. 84.

Sir W. Thomson* has described a method applicable to such
cases, which we may take as an example of a system of nine
conductors,

* Proc. R. 8., June 6, 1861,
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The most 1mportant part of the method consists in measuring
the resistance, not of the whole length of the conductor, but of
the part between two marks on the conductor at some little dis-
tance from its ends.

The resistance which we wish to measure is that experienced
by a current whose intensity is uniform in any section of the
conductor, and which flows in a direction parallel to its axis.
Now close to the extremities, when the current is introduced
by means of electrodes, either soldered, amalgamated, or simply
pressed to the ends of the condunctor, there is generally a want of
uniformity in the distribution of the current in the conduector.
At a short distance from the extremities the current hecomes
sensibly uniform. The student may examine for himself the
investigation and the diagrams of Art. 193, where a current is
introduced into a strip of metal with parallel sides through one
of the sides, but soon becomes itself parallel to the sides.

The resistance of the conductors between certain marks §, §°
and 7'7” is to be compared.

The conductors are placed in series, and with connexions as
perfectly conducting as possible, in a battery circuit of small resist-
ance, A wire SFV7 is made to touch the conductors at § and 7,
and 87T’ is another wire touching them at §” and 7.

The galvanometer wire connects the points # and 77 of these wires.

The wires S¥T and §' 7’7" are of resistance so great thut the
resistance due to imperfect connexion at 8, 7, 8" or 7”7 may be
neglected in comparison with the resistance of the wire, and 7, 7~
are taken so that the resistance in the branches of either wire
leading to the two conductors are nearly in the ratio of the resist-
ances of the two conductors.

Culling /7 and # the resistances of the conduetors 88" and 777.

" A and C those of the branches §7 and 77.

’ P and R those of the branches 8’77 and 7’'7T".
’ @ that of the connecting piece §°7".

" B that of the battery and its connexions.

» G that of the galvanometer and its connexions.

The symmetry of the system may be understood from the
skeleton diagram. Fig. 33.

The condition that B the battery and G the galvanometer may
be conjugate conductors is, in this case,

LA U C . N S
c-at\e~ ) rProrr ="
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Now the resistance of the connector @ is as small as we can
make it. If it were zero this equation would be reduced to
r

=~

C 4
and the ratio of the resistances of the conductors to be compared
would be that of € to 4, as in Wheatstone’s Bridge in the ordinary
form.

In the present case the value of @ is small compared with P
or with &, so that if we assume the points ¥, /" so that the ratio
of & to C is nearly equal to that of P to A, the last term of the
equation will vanish, and we shall have

F:I::0C: A

The success of this method depends in some degree on the per-
fection of the contact between the wires and the tested conductors
at 85, 77 and 7. In the following method, employed by Messrs.
Matthiessen and Hockin *, this condition is dispensed with.

NE
==

Fig. 35.

352.] The couductors to be tested are arranged in the manner
already described, with the connexions as well made as possible,
and 1t 1s required to compare the resistance between the marks
88” on the first conductor with the resistance between the marks
7’7 on the second.

Two conducting points or sharp edges are fixed in a piece of
insulating material so that the distance between them can be
accurately measured. This apparatus is laid on the conductor to
be tested, and the points of contact with the conductor are then
at a known distance §8”. Each of these contact pieces is connected

* Laboratury. Matthiessen and Hockin on Alloys.

IRIS - LILLIAD - Université Lille 1



352.] MATTHIESSEN AND HOCKIN'S METHOD. 407

with a mercury cup, into which one electrode of the galvanometer
may be plunged.

The rest of the apparatus is arranged, as in Wheatstone’s Bridge,
with resistance coils or boxes 4 and C, and a wire PR with a
sliding contact piece @, to which the other electrode of the galva-
nometer is connected.

Now let the galvanometer be connected to § and @), and let
4; and C, be so arranged, and the position of @ so determined, that
there is no current in the galvanometer wire,

Then we know that XS 4,470

SY T C +QR
where XS, P@Q, &c. stand for the resistances in these conductors.
From this we get
X8 4,4+ PQ,
XY ~ 4,+C + PR’

Now let the electrode of the galvanometer be connected to &,
and let resistance be transferred from C to 4 (by carrying resistance
coils from one side to the other) till electric equilibrium of the
galvanometer wire can be obtained by placing ¢ at some point
of the wire, say @,. Let the values of C and 4 be now C, and 4,,

and let Ay +Cy+ PR = 4, + C,+ PR = R.
Then we have, as before,
X8 A4,+ P,
Xy~ R
8§ _dy— A+ Q@
VVthce .—X_}; = A]ﬂiﬁ -

In the same way, placing the apparatus on the second conductor
at 77" and again transferring resistance, we get, when the electrode
is in 7%, B

XTI A+ PQ,

XY~ R

and when it 15 in 7
X7 _ 4,+7Q,

XY~ R
T'T _ A,—A3+ Q3 Qs
Whence Yy = g

We can now deduce the ratio of the resistances §§” and 7”7, for
8§ A=A+ 0, @y

TT ™ 4,—4,+0,Q,
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When great accuracy is not required we may dispense with the

resistance coils 4 and C, and we then find
5§ ,0,
77~ Q, Qs

The readings of the position of ¢ on a wire of a metre in length
cannot be depended on to less than a tenth of a millimetre, and the
resistance of the wire may vary considerably in different parts
owing to inequality of temperature, friction, &e. IHence, when
great accuracy is required, coils of considerable resistance are intro-
duced at 4 and C, and the ratios of the resistances of these coils
can be determined more accurately than the ratio of the resistances
of the parts into which the wire is divided at Q.

It will be observed that in this method the accuracy of the
determination depends in no degreec on the perfection of the con-
tacts at 8" or 77,

This method may be called the differential method of using
Wheatstone’s Bridge, since it depends on the comparison of ob-
servations separately made.

An essentiul condition of accuracy in this method is that the
resistance of the connexions should continue the same during the
course of the four observations required to complete the determ-
ination. Hence the series of observations ought always to be
repeated in order to detect any change in the resistances.

On the Comparison of Great Resistances.

353.7 When the resistances to be measured are very great, the
comparison of the potentials at different points of the system may
be made by means of a delicate electrometer, such as the Quadrant
Electrometer deseribed in Art. 219.

- If the conductors whose resistance 1s to be measured are placed
in series, and the same eurrent passed through them by means of a
battery of great electromotive force, the difference of the potentials
at the extremities of each conductor will be proportional to the
resistance of that conductor. Hence, by connecting the electrodes
of the electrometer with the extremities, first of one econductor
and then of the other, the ratio of their resistances may be de-
termined,

This 1s the most direet method of determining resistances. It
involves the use of an electrometer whose readings may be depended
on, and we must also have some guarantec that the current remains
constant during the experiment.
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Four conductors of great resistance may also be arranged as in
Wheatstone’s Bridge, and the bridge itself may consist of the
electrodes of an electrometer instead of those of a galvanometer.
The advantage of this method is that no permanent current is
required to produce the deviation of the electrometer, whereas the
galvanometer cannot be deflected unless a current passes through
the wire.

354.] When the resistance of a conductor is so great that the
current which can be sent through it by any available electromotive
force is too small to be directly measured by a galvanometer, a
condenser may be used in order to accumulate the electricity for
a certain time, and then, by discharging the condenser through a
galvanometer, the quantity accumulated may be estimated. This
is Messrs. Bright and Clark’s method of testing the joints of
submarine eables.

355.1 But the simplest method of measuring the resistance of
such a conductor is to charge a condenser of great capacity and to
connect its two surfaces with the electrodes of an electrometer
and also with the extremities of the conductor. If Z is the dif-
ference of potentials as shewn by the electrometer, S the capacity
of the condenser, and @ the charge on either surface, £ the resist-
ance of the conductor and # the current in it, then, by the theory
of condensers,

Q = §E.
By Ohm'’s Law, E = Rx,
and by the definition of a current,
_ 49
-
e
Ience Q= ]iSW ;
t
and Q= Q¢ £,

where @), is the charge at first when £ = 0.
t

Similarly F=Eye &
where E; is the original reading of the electrometer, and Z the
same after a time #.  From this we find

14
=y {log, B,—log,E}’

which gives £ in absolute measure. TIn this expression a knowledge
of the value of the unit of the electrometer scale 3s not required.
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If §, the capacity of the condenser, is given in electrostatic
measure as a certain number of metres, then 2 is also given in
electrostatic measure as the reciprocal of a velocity.

If 8 is given in electromagnetic measure its dimensions are

ik .
I and & is a velocity.

Since the condenser itself is not a perfect insulator it is necessary
to make two experiments, In the first we determine the resistance
of the condenser itself, R, and in the second, that of the condenser
when the conductor is made to connect its surfaces. Let this be 2,
Then the resistance, I, of the conductor is given by the equation

1 1 1
=R TR
This method has been employed by MM. Siemens.
Thomson’s * Method for the Delermination of the Resistance of
the Galvanometer.
356.] An arrangement simjlar to Wheatstone’s Bridge has been
employed with advantage by Sir W. Thomson in determining the

Calvansrieter

A

Fig. 36.
resistance of the galvanometer when in actual use. It was sug-
gested to Sir W. Thomson by Mance’s Method. Sece Art. 357.

Let the battery be placed, as before, between B and € in the
figure of Article 347, hut let the galvanometer be placed in C4
instead of in 0O4. If é8—cy is zero, then the conductor 04 is
conjugate to BC, and, as there is no current produced in O 4 by the
battery 1n BC, the strength of the current in any other conductor

* Proc. R. 8., Jan. 19, 1871,
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is independent of the resistance in OA. Hence, if the galvano-
meter is placed in Cd its deflexion will remain the same whether
the resistance of OA is small or great. We therefore observe
whether the deflexion of the galvanometer remains the same when
0 and 4 are-joimrd by a conductor of small resistance, us when
this connexion is broken, and if, Ly properly adjusting the re-
sistances of the conductors, we obtain this result, we know that
the resistance of the galvanometer 1is
cy
b= B
where ¢, y, and 3 are resistance coils of known resistance.

It will be observed that though this is not a null method, in the
sense of there being no current in the galvanometer, it is so in
the sense of the fact observed being the negative one, that the
deflexion of the galvanometer is not changed when a certain con-
tact is made. An observation of this kind is of greater value
than an observation of the equality of two different deflexions of
the same galvanometer, for in the latter case there is time for
alteration in the strength of the battery or the sensitiveness of
the galvanometer, whereas when the deflexion remains constant,
in spite of certain changes which we can repeat at pleasure, we are
sure that the current is quite independent of these changes.

The determination of the resistance of the coil of a galvanometer
can easily be cffected in the ordinary way of using Wheatstone’s
Bridge by placing another galvanometer in O4. By the method
now described the galvanometer itself is employed to measure its
own resistance.

Mance's*® Method of determining the Resistance of the Baltery.

357.] The measurement of the resistance of a battery when in
action is of a much higher order of difficulty, since the resistance
of the battery is found to chaage considerably for some time after
the strength of the current through it is changed. In many of the
methods commonly used to measure the resistance of a battery such
alterations of the strength of the current through it occur in the
course of the operations, and therefore the results are rendered
doubtful.

In Mance’s method, which is free from this objection, the battery
is placed in BC and the galvanometer in C4. The connexion
between O and B is then alternately made and broken.

* Proc. R. 8., Jan. 19, 1871.
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If the deflexion of the galvanometer remains unaltered, we know
that OB is conjugate to U4, whence ¢y = au, and a, the resistance
of the battery, is obtained in terms of known resistances ¢, y, a.

‘When the condition ¢y = aa is fulfilled, then the current through

the galvanometer is
Fa

Y aieiaiy)’
and this is independent of the resistance 8 between O and B. To
test the sensibility of the method let us suppose that the condition
ey = aa is nearly, but not accurately, fulfilled, and that g, is the

TFig. 37.

current through the galvanometer when O and B are connected
by a conductor of no sensible resistance, and 7, the current when
O and B are completely disconnected.

To find these values we must make 3 equal to 0 and to « in the
general formula for , and compare the results.

In this way we find

Yo—Hh _ & Ccy—ada |

y y(e+a)(aty)
where g, and 7, are supposed to be so nearly equal that we may,
when their difference 1s not in question, put either of them equal
to 7, the value of the current when the adjustment is perfect.

The resistance, ¢, of the conductor 485 should be equal to 2,
that of the battery, a and y, should be equal and as small as
possible, and & should be equal to a+y.

Since a galvanometer is most scnsitive when its deflexion is
small, we should bring the needle nearly to zero by means of fixed
magnets before making contact between O and B.

In this method of measuring the resistance of the lattery, the
current in the battery is not in any way interfered with during the

operation, so that we may ascertain its resistance for any given
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strength of current, so as to determine how the strength of current
effects the resistunce.

If y is the current in the galvanometer, the actual current
through the battery is #, with the key down and @, with the
key up, where

b & ac
Co = 14 ’ = 1 — — >
r0=9(1+ 53) n=y(U S )
the resistance of the battery is
¢y
a4 = —)
a

and the electromotive force of the battery is

c
E = y(5+c+ E(b—{—y))

The method of Art. 356 for finding the resistance of the galva-
nometer differs from this only in making and breaking contact
between O and 4 instead of between O and B, and by exchanging
a and B we obtain for this case

Yo~ _ B c}’—bB

7 v BBty

On the Comparison of Electromotive Forces.

358.] The following method of comparing the electromotive forees
of voltaic and thermoelectric arrangements, when no current passes
through them, requires only a set of resistance coils and a constant
battery.

Let the electromolive force Z of the battery be greater than that
of either of the electromotors to be compared, then, if a sufficient

[

Fig. 38.

resistance, £;, be iuterposed between the points 4;,, B, of the
primary circuit & B; 4, £, the electromotive foree from 5, to 4,
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may be made equal to that of the electromotor Z;. If the elec-
trodes of this electromotor are now connected with the points
4,, B, no current will flow through the electromotor. By placing
a galvanometer ¢, in the circuit of the electromotor Z;, and
adjusting the resistance between 4, and B, till the galvanometer
@, indicates no current, we obtain the equation

E = RC,
where £, is the resistance between 4, and B, and C is the strength
of the current in the primary circuit.

In the same way, by taking a second electromotor £, and placing
its electrodes at 4, and B,, so that no current is indicated by the
galvanometer G,

E, = R,C,
where £, is the resistance between 4, and B,. If the observations
of the galvanometers G, and @, are simultaneous, the value of C,
the current in the primary circuit, is the same in both equations,
and we find
E B R R,

In this way the electromotive force of two electromotors may be
compared. The absolute electromotive force of an electromotor
may be measured either electrostatically by means of the electro-
meter, or electromagnetically by means of an absolute galvano-
meter.

This method, in which, at the time of the comparison, there
is no current through either of the electromotors, is a modification
of Poggendorfi’s method, and 1s due to Mr. Latimer Clark, who
has deduced the following values of electromotive forces :

Concentrated
solution of Volts.

Daniell T. Amalgamated Zinc HSO,+ 4aq. Cu 80, Copper =1.079

II1. " HSO,+12aq. Cu 30, Copper =0.978

TI1. . HSO,+12aq. CuNQ, Copper =1.00
Bunsen 1. ' " ' H NO, Carbon =1.964

II1. ' » . sp. £.1.38 Carbon =1.888
Grove . HS0,+ 4 agq. HNO, Platinum =1.956

4 Volt is an electromotive force equal to 100,000,000 units of the centimetre-gramme-
second system.
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ON THE ELECTRIC RESISTANCE OF SUBSTANCES.

359.] THERE are three classes in which we may place different
substances in relation to the passage of electricity through them.

The first class contains all the metals and their alloys, some
sulphurets, and other compounds containing metals, to which we
must add carbon in the form of gas-coke, and selenium in the
crystalline form.

In all these substances conduction takes place without any
decomposition, or alteration of the chemical nature of the substance,
either in its interior or where the current enters and leaves the
body. In all of them the resistance increases as the temperature
rises.

The second eclass consists of substances which are called electro-
Iytes, because the current is associated with a decomposition of
the substance into two components which appear at the electrodes.
As a rule a substance is an electrolyte only when in the liquid
form, though certain eolloid substances, such as glass at 100°C,
which are apparently solid, are electrolytes. It would appear from
the experiments of Sir B. C. Brodie that certain gases are capable
of electrolysis by a powerful electromotive force.

In all substances which conduct by electrolysis the resistance
diminishes as the temperature rises.

The third class consists of substances the resistance of which is
so great that it is only by the most refined methods that the
passage of electricity through them can be detected. These are
called Dielectriecs. To this class belong a considerable number
of solid bodies, many of which are electrolytes when melted, some
liquids, such as turpentine, naphtha, melted paraflin, &e., and all
gases and vapours. Carbon in the form of diamond, and selenium
in the amorphous form, belong to this class.

The resistance of this class of bodies is enormous eompared with
that of the metals. It diminishes as the temperature rises. It
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is difficult, on account of the great resistance of these substances,
to determine whether the feeble current which we can force through
them is or is not associated with electrolysis.

On the Llectric Resistance of Melals.

360.] There is no part of electrical research in which more
numerous or more accurate experiments have been made than in
the determination of the resistance of metals. It is of the utmost
importance in the electric telegraph that the metal of which the
wires arc made should have the smallest attainable resistance.
Measurements of resistance must therefore be made before selecting
the materials. When any fault occurs in the line, its position is
at once ascertained by measurements of resistance, and these mea-
surements, in which so many persons are now employed, require
the use of resistunce coils, made of metal the electrical properties
of which have been carcfully tested.

The electrical properties of metals and their alloys have been
studied with great care by MM. Matthiessen, Vogt, and Hockin,
and by MM. Siemens, who have done so much to introduce exact
electrical measurements into practical work.

It appears from the researches of Dr. Matthiessen, that the effect
of temperature on the resistance is nearly the same for a considerable
number of the pure metals, the resistance at 100°C being to that
at 0°C in the ratio of 1.414 to 1, or of 1 to 70.7. For pure iron
the ratio 1s 1.645, and for pure thallium 1.458.

The resistance of metals has been observed by Dr. C.W. Siemens*
through a much wider range of temperature, extending from the
freezing point to 350°C, and in certain cases to 1000°C. He finds
that the resistance increases as the temperature rises, but that the
rate of increase diminishes as the temperature rises. The formula,
which he finds to agree very closely both with the resistances
observed at low temperatures by Dr. Matthiessen and with his
own observations through a range of 1000°C, is

r=al*+BT+y,
where 7' is the absolute temperature reckoned from —273°C, and
a, 3, y are constants. Thus, for

Platinum...... 7= 0.0393697% 1 0.002164077—0.2413,
Copper......... r = 0.0265777%40.00314437—0.22751,
Teon...... ... r = 0,0725457'% 3-0.00381337—1.23971.

¥ Proc. R. 8., April 27, 1871,
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From data of this kind the temperature of a furnace may be
determined by means of an observation of the resistance of a
platinum wire placed in the furnace.

Dr. Matthiessen found that when two metals are combined to
form an alloy, the resistance of the alloy is in most cases greater
than that calculated from the resistance of the component metals
and their proportions. In the case of alloys of gold and silver, the
resistance of the alloy is greater than that of either pure gold or
pure silver, and, within certain limiting proportions of the con-
stituents, 1t varies very little with a slight alteration of the pro-
portions. For this reason Dr. Matthiessen recommended an alloy
of two parts by weight of gold and one of silver as a material
for reproducing the unit of resistance.

The effect of change of temperature on electric resistance is
generally less in alloys than in pure metals.

Hence ordinary resistance coils are made of German silver, on
account of its great resistance and its small variation with tem-
perature.

An alloy of silver and platinum is also used for standard coils.

361.] The electric resistance of some metals changes when the
metal is annealed; and until a wire has been tested by being
repeatedly raised to a high temperature withoul permanently
altering its resistance, it cannot be relied on as a measure of
resistance. Some wires alter in resistance in course of time without
having been exposed to changes of temperature. Henee it is
important to ascertain the specific resistance of mercury, a metal
which being fluid has always the same molecular structure, and
which can be easily purified by distillation and treatment with
nitric acid. Great care has been bestowed in determining the
resistance of this metal by W. and C. F. Siemens, who introduced
it as a standard. Their researches have been supplemented by
those of Matthiessen and Ifockin,

The specific resistance of mercury was deduced from the observed
resistance of a tube of length ¢ containing a weight w of mercury,
in the following manner,

No glass tube is of exactly equal bore throughout, but if a small
quantity of mereury is introduced into the tube and occupies a
length A of the tube, the middle point of which is distant 2 from
one end of the tube, then the area s of the section near this point

. C .
will be s = 3 where C is some constant.

VOL, 1. Ee
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The weight of mercury which fills the whole tube is

1 !
w= pfs(l.:c = pCE(X);:
where 2 is the number of points, at equal distances along the
tube, where A has been measured, and p is the mass of unit of
volume.
The resistance of the whole tube is

e T osn?,
]i_jsdx_ Lsw

where 7 1s the specifie resistanee per unit of volume.

1, /2
Hence wh=rpS(\)Z (7\) o
_wh 7&2
and pl2

M)

gives the specific resistance of unit of volume.

To find the resistance of unit of length and unit of mass we must
multiply this by the density.

It appears from the experiments of Matthiessen and Hockin that
the resistance of a uniform column of mercury of one metre in
length, and weighing one gramme at 0°C, is 13.071 Ohms, whence
it follows that if the specific gravity of mercury is 13.595, the
resistance of a column of one metre in length and one square
millimetre in section is 0.96146 Ohms.

362.] Tn the following table R is the resistance in Ohms of a
column one metre long and one gramme weight at 0°C, and ~ is
the resistance in centimetres per second of a cube of one centi-
metre, according to the experiments of Matthiessen ¥,

Percentage
increment of
Specific resistance for
gravity I r 1 Cat 20°C.
Silver ........ 10.50 hard drawn 0.1689 1609 0.377
Copper .. .... 895 hard drawn 0.1469 1642  0.388
Gold .. ...... 19.27 hard drawn 0.4150 2154 0.365
Lead ........ 11.391 pressed 2.257 19847  0.387
Mereury .. .. .. 13.595 liquid 13.071 96146  0.072
Gold 2, Silver 1..15.218 hard or annealed 1.668 10988 0.065
Selenium at 100°C Crystalline form 6x 102 1,00

* Phil. Mag, May, 1865.
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Ui the Electrie Resistunce of Biectrolytes.

363.] The measurement of the electric resistance of electrolytes
is rendered diflicult on account of the polarization of the electrodes,
which causes the observed difference of potentials of the metallic
electrodes to be greater than the electromotive force which actually
produces the current.

This difficulty can be overcome in various ways. In certain
cases we can get rid of polarization by nsing electrodes of proper
material, as, for 1mstunce, zine electrodes in a solution of sulphate
of zinc. By making the surface of the electrodes very large com-
pared with the section of the part of the electrolyte whose resist-
ance 1s to be measured, and by using only currents of short duration
in opposite directions alternately, we can make the measurements
before any considerable intensity of polarization has been excited
by the passage of the current.

Tinally, by making two different experiments, in one of which
the path of the current through the electrolyte i1s much longer than
in the other, and so adjusting the clectromotive force that the
actual current, and the time during which it flows, are nearly the
same in each case, we can eliminate the effect of polarization
altogether.

364.] In the experiments of Dr. Paalzow * the electrodes were
in the form of large disks placed in separate flat vessels filled with
the electrolyte, and the connexion was made by means of a long
siphon filled with the electrolyte and dipping into both vessels.
Two such siphons of different lengths were used.

The observed resistances of the electrolyte in these siphons
being 2, and R, the siphons were next filled with mercury, and
their resistances when filled with mercury were found to be R/
and R,

The ratio of the resistance of the electrolyle to that of a mass
of mercury at 0°C of the same form was then found from the

formula _ R,—R,
p - jgll_ﬁzl
To deduce from the values of p the resistance of a centimetre in

length having a section of a square centimetre, we must multiply
them by the value of » for mercury at 0°C. See Art. 361.

* Berlin Monatsbericht, July, 1868.
Ee 2
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The results given by Paulzow are as follow :—

Mixtures of Sulphuric Acid and Water.

Resistance compared

Temp. with mercury,
H, 80, ... 15°C 96950
H,80,+ 14 HO .... 19°C 14157
H,S0, + 13 H?0 .... 22°C 13310
H,80, +499 HO .... 22°C 184773

Sulphate of Zinc and Water.

Zn 80, + 23 H*O .... 23°C 194400
ZnS0, + 24 T%0 .... 23°C 191000
ZnS0O, +105 H*O .. .. 23°C 354000

Sulphate of Copper and Water.

CuSO, + 45H?0 .... 22°C 202410
CuSO, +105H?0 ..., 22°C 339341

Sulphate of Magnesium and Weter.

Mg80, + 3¢ HO .... 22°C 199180
MgSO,+107HO .... 22°C 324600

Hydrochloric Acid and Water.

OCl + 15H20 .... 23°C 13626
HCl +500H20 .... 23°C 86679

365.] MM. F. Kohlrausch and W. A. Nippoldt* have de-
termined the resistance of mixtures of sulphuric acid and water.
They used alternating magneto-electric currents, the electromotive
force of which varied from § to - of that of a Grove’s cell, and
by means of a thermoelectric copper-iron pair they reduced the
electromotive force to ryy%go of that of a Grove’s cell. They found
that Ohm’s law was applicable to this electrolyte throughout the
range of these electromotive forces.

The resistance is a minimum in a mixture containing about one-
third of sulphuric acid.

The resistunce of electrolytes diminishes as the lemperature
increases. The percentage increment of conductivity for a rise of
1°C 1s given in the following table.

* Pogg., Ann. cxxxviii, p. 286, Oct. 1869.
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Resistance of Mixtures of Sulphuric Acid and Water at 22°C in terms
of Mercury at 0°C.  MM. Kohlrausch and Nippoldt,

: : Resistance Porcentage
Specific gravity Percentage increment of
at 18 5 of H, 80, at 22 C conductivity
(Hg=1) for 1 C.
0.9985 0.0 746300 0.47
1.00 0.2 465100 0.47
1.0504 8.3 34530 0.653
1.0989 14.2 18946 0.646
1.1431 20.2 14990 0.799
1.2045 28.0 13133 1.317
1.2631 35.2 13132 1.259
1.3163 41.5 14286 1.410
1.3547 46.0 15762 1.674
1.3994 50.4 17726 1.582
1.4482 55.2 20796 1.417
1.5026 60.3 25574 1.794

On the Llectrical Resistance of Dielectrics.

366.] A great number of determinations of the resistance of
gutta-percha, and other materials used as insulating media, in the
manufacture of telegraphic cables, have been made in order to
ascertain the value of these materials as insulators.

The tests are generally applied to the material after it has been
used to cover the conducting wire, the wire being used as one
electrode, and the water of a tank, in which the cable is plunged,
as the other. Thus the current is made to pass through a cylin-
drical coating of the insulator of great area and small thickness.

It is found that when the electromotive force begins to act, the
current, as indicated by the galvanometer, is by no means constant.
The first effect is of course a transient current of considerable
intensity, the total quantity of electricity being that required to
charge the surfaces of the insulator with the superficial distribution
of electricity corresponding to the electromotive force. This first
current therefore is a measure not of the conductivity, but of the
capacity of the insulating layer.

But even after this current has been allowed to subside the
residual current is not constant, and does not indicate the true
conductivity of the substance. It is found that the current con-
tinues to decrease for at least half an hour, so that a determination
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of the resistance deduced from the current will give a greater value
if a certain time is allowed to elapse than if taken immediately after
applying the battery.

Thus, with Hooper’s insulating material the apparent resistance
at the end of ten minutes was four times, and at the end of
nineteen hours twenty-three times that observed at the end of
onc minute. When the direction of the electromotive foree is
reversed, the resistance falls as low or lower than at first and then
gradually rises.

These phenomena scem to he due to a condition of the gutta-
percha, which, for want of a better name, we may call polarization,
and which we may compare on the one hand with that of a series
of Leyden jars charged by cascade, and, on the other, with Ritter’s
secondary pile, Art. 271.

If a number of Leyden jars of great capacity are connected in
serics by means of conductors of great resistance (such as wet
cotton threads in the experiments of M. Gaugain), then an electro-
motive foree acting on the series will produce a current, as indicated
by a galvanometer, which will gradually diminish till the jars are
fully charged.

The apparent resistance of such a series will increase, and if the
diclectric of the jars is a perfect insulator it will increase without
limit. If the electromotive force be removed and connexion made
between the ends of the series, a reverse current will be olserved,
the total quantity of which, in the case of perfect insulation, will be
the same as that of the direct current. Similar effects are observed
in the case of the sccondary pile, with the difference that the final
insulation 1s not so good, and that the capacity per unit of surface
is immensely greater.

In the case of the cable covered with gutta-percha, &e., it is found
that after applying the battery for half an hour, and then con-
necting the wire with the external electrode, a reverse current takes
place, which goes on for some time, and gradually reduces the
systern to its original state.

These phenomena are of the same kind with those indicated
by the ‘residual discharge’ of the Leyden jar, except that the
amount of the polarization is much greater in gutta-percha, &ec.
than in glass.

This state of polarization seems to be a directed property of the
material, which requires for its production not only electromotive
force, but the passage, by displacement or otherwise, of a con-

IRIS - LILLIAD - Université Lille 1



368.] OF DILLECTRICS. 423

siderable quantity of electricity, and this passage requires a cou-
siderable time. When the polarized state has been set up, there
i1s an internal electromotive force acting in the substance in the
reverse direction, which will eontinue till it has cither produced
a reversed current equal in total quantity to the first, or till the
state of polarization has quietly subsided by means of true con-
duction through the substance.

The whole theory of what has been ealled residual discharge,
absorption of electricity, electrification, or polarization, deserves
a careful investigation, and will probably lead to important dis-
coveries relating to the internal structure of bodies.

367.] The resistance of the greater number of diclectrics di-
minishes as the temperature rises.

Thus the resistance of gutta-percha is about twenty times as great
at 0°C as at 24°C.  Messrs. Bright and Clark have found that the
following formula gives results agreeing with their experiments.
If » is the resistance of gutta-percha at temperature 7 centigrade,
then the resistance at temperature 7 ¢ will be

R =17 x 0.8878,
the number varies between 0.8878 and 0.9.

Mr. Hockin has verified the curious fact that it is not until some
hours after the gutta-percha has taken its temperature that the
resistance reaches its eorresponding value.

The effect of temperature on the resistance of india-rubber is not
so great as on that of gutta-percha.

The resistance of gutta-percha increases considerably on the
application of pressure.

The resistance, in Ohms, of a cubie metre of various specimens of
gutta-percha used in different cables is as follows %.

Name of Cable.

Red Sea..........ooovvnl, .267 x 1012 t0 .362 x 10'*
Malta-Alexandria............... 1.23 x 1012
Persiun Gulf ..................... 1.80 x 1012

............... 3.42 x 1012
Hooper’s Persian Gulf Core...74.7 x 1012
Gutta-percha at 24°C ......... 3.53x10'2

368.] The following table, caleulated from the experiments of

* Jenkin's Canfor Lectures.
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M. Buff, described in Art. 271, shews the resistance of a cubic
metre of glass in Ohms at different temperatures.

Temperature, Resistance.
200°C 227000
250° 13300
300° 1480
350° 1035
400° 735

369.] Mr. C. F. Varley * has recently investigated the conditions
of the current through rarefied gases, and finds that the electro-
motive foree £ is equal to a constant £ together with a part
depending on the current according to Ohm’s Law, thus

= EO+RO

For instance, the electromotive force required to cuuse the
current to begin in a certain tube was that of 323 Daniell’s cells,
but an electromotive force of 304 cells was just sufficient to
maintain the current. The intensity of the current, as measured
by the galvanometer, was proportional to the number of cells above
304. Thus for 305 cells the deflexion was 2, for 306 it was 4,
for 307 it was 6, and so on up to 380, or 304 +76 for which the
deflexion was 150, or 76 x 1.97.

From these experiments it appears that there is a kind of
polarization of the electrodes, the electromotive force of which
1s equal to that of 304 Daniell’s cells, and that up to this electro-
motive force the battery is occupied in establishing this state of
polarization. When the maximum polarization is established, the
excess of electromotive force above that of 304 cells 1s devoted to
maintaining the current according to Ohm’s Law.

The law of the current in a rarefied gas 1s therefore very similar
to the law of the current through an elec{rolyte in which we have
to take account of the polarization of the electrodes.

In connexion with this subject we should study Thomson’s results,
described in Art. 57, in which the electromotive force required
to produce a spark in air was found to be proportional not to the
distance, but to the distance together with a constant quantity.
The electromotive force corresponding to this constant quantity
may be regarded as the intensity of polarization of the electrodes.

370.] MM. Wiedemann and Rithlmann have recently { investi-

* Proc. B. 8, Jan. 12, 1871.
+ Berichte der Konigl. Sachs, Gesellschaft, Oct. 20,1871,
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gated the passage of electricity through gases. The electric current
was produced by Iloltz’s machine, and the discharge took place
between spherical electrodes within a metallic vessel containing
rarefied gas. The discharge was in general diseontinuons, and the
interval of time Detween successive discharges was measured by
means of a mirror revolving along with the axis of Holtz’s machine.
The images of the series of discharges were observed by means of
a heliometer with a divided object-glass, which was adjusted till
one image of each discharge coincided with the other image of
the next discharge. By this method very consistent results were
obtained. It was found that the qnantity of electricity in each
discharge is independent of the strength of the current and of
the material of the electrodes, and that it depends on the nature
and density of the gas, and on the distance and form of the
electrodes.

These researches confirm the statement of Faraday * that the
electric tension (see Art. 48) required to cause a disruptive discharge
to begin at the electrified surface of a conductor is a little less
when the electrification is negative than when it is positive, but
that when a discharge does take place, much more electricity passes
at each discharge when it begins at a positive surface. They also
tend to support the hypothesis stated in Art. 57, that the stratum
of gas condensed on the surface of the electrode plays an important
part in the phenomenon, and they indicate that this condensation
is greatest at the positive electrode.

* Exp. Res., 1501,

VOL. L v
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