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CHAPTER X L 

AERIAL' VIBRATIONS. 

2 3 6 . S I N C E the atmosphere is the almost universal vehicle of 
sound, the investigation of the vibrations of a gaseous medium 
has always been considered the peculiar problem of Physical 
Acoustics; but in all, except a few specially simple questions, 
chiefly relating to the propagation of sound in one dimension, the 
mathematical difficulties are such that progress has been very slow. 
Even when a theoretical result is obtained, it often happens that 
it cannot be submitted to the test of experiment, in default of 
accurate methods of measuring the intensity of vibrations. In 
some parts of the subject all that we can do is to solve those 
problems whose mathematical conditions are sufficiently simple to 
admit of solution, and to trust to them and to general principles 
not to leave us quite in the dark with respect to other questions in 
which we may be interested. 

In the present chapter we shall regard fluids as perfect, that is 
to say, we shall assume that the mutual action between any two 
portions separated by an ideal surface is normal to that surface. 
Hereafter we shall say something about fluid friction; but, in 
general, acoustical phenomena are not materially disturbed by 
such deviation from perfect fluidity as exists in the case of air 
and other gases. 

The equality of pressure in all directions about a given point 
is a necessary consequence of perfect fluidity, whether there be 
rest or motion, as is proved by considering the equilibrium of a 
small tetrahedron under the operation of the fluid pressures, the 

R. II. . 1 
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impressed forces, and the reactions against acceleration. In the 
limit, when the tetrahedron is taken indefinitely small, the fluid 
pressures on its sides become paramount, and equilibrum requires 
that their whole magnitudes be proportional to the areas of the 
faces over which they act. The pressure at the point x, y, z will 
be denoted by p. 

237. If pXdV, pYdV, pZdV, denote the impressed forces 
acting on the element of mass pdV, the equation of equili
brium is 

dp = p (Xdx + Ydy + Zdz), 
where dp denotes the variation of pressure corresponding to 
changes dx, dy, dz in the co-ordinates of the point at which the 
pressure is estimated. This equation is readily established by con
sidering the equilibrium of a small cylinder with flat ends, the 
projections of whose axis on those of co-ordinates are respectively 
dx, dy, dz. To obtain the equations of motion we have, in accordance 

Du 
with D' Alembert's Principle, merely to replace X, &c. by X—JJ^ > &c., 
•where '"^, &c. denote the accelerations of the particle of fluid con-

dJt 
sidered. Thus 

dp 

.(1). 

dx-P{X-Dt) 

dy P{ Dt 
dp (7 Dw\ 

In hydrodynamical investigations it is usual to express the veloci
ties of the fluid u, v, w in terms of x, y, z and t. They then 
denote the velocities of the particle, whichever it may be, that at 
the time t is found at the point x, y, z. After a small interval of 

time dt, a new particle has reached x, y, z; dt expresses the 
Du 

excess of its velocity over that of the first particle, while dt on 
the other hand expresses the change in the velocity of the original 
particle in the same time, or the change of velocity at a point, 
which is not fixed in space, but moves with the fluid. To this 

notation we shall adhere. In the change contemplated in ^ , the 
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237/ EQUATION OE CONTINUITY. 3 
position in space (determined by the values of x, y, s) is retained 

invariable, while in it is a certain particle of the fluid on which 

attention is fixed. The relation between the two kinds of differ
entiation with respect to time is expressed by 

D d , d d d ... 
Dt dt dx dy dz v " 

and must be clearly conceived, though in a large class of important 
problems with which we shall be occupied in the sequel, the dis
tinction practically disappears. Whenever the motion is very 

small, the terms u ^ , &c. dimmish in relative importance, and 

ultimately ^ = | . 

238. We have further to express the condition that there is 
no creation or annihilation of matter in the interior of the fluid. 
If a, /3, 7 be the edges of a small rectangular parallelepiped 
parallel to the axes of co-ordinates, the quantity of matter which 
passes out of the included space in time dt in excess of that which 
enters is 

and this must he equal to the actual loss sustained, or 

Hence 
dp , d(pu) d(pv) | d(pw) ^Q  

dt dx dy dz ""^ 
the so-called equation of continuity. When p is constant (with 
respect to both time and space), the equation assumes the simple 
form 

du ^ dv dw _ Q 

dx dy dz 
In problems connected with sound, the velocities and the varia
tion of density are usually treated as small quantities. Putting 
P = Po (1 + s), where s, called the condensation, is small, and neglect
ing the products u ^ , &c, we find 

ds du dv dw 
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In special cases these equations take even simpler forms. In 
the case of an incompressible fluid whose motion is entirely 
parallel to the plane of xy, 

5 + $ - · < * 

from which we infer that the expression ucly — vdx is a perfect 
differential. Calling it d^r, we have as the equivalent of (4) 

— £ O 

where -fr is a function of the co-ordinates which so far is perfectly 
arbitrary. The function yfr is called the stream-function, since the 
motion of the fluid is everywhere in the direction of the curves 

= constant. When the motion is steady, that is, always the 
same at the same point of space, the curves I|R = constant mark 
out a system of pipes or channels in which the fluid may be sup
posed to flow. Analytically, the substitution of one function yfr 
for the two functions u and v is often a step of great consequence. 

Another case of importance is when there is symmetry round 
an axis, for example, that of x. Everything is then expressible in 
terms of x and r, where r =jyl + z*, and the motion takes place 
in planes passing through the axis of symmetry. If the velocities 
respectively parallel and perpendicular to the axis of symmetry be 
u and q, the equation of continuity is 

d (ru) d (rq) = Q ,fl* 
dx dr 

which, as before, is equivalent to 

r » - J £ , rq = --g (/), 

yfr being the stream-function. 

239. .In almost all the cases with which we shall have to 
deal, the hydrodynamical equations undergo a remarkable sim
plification in virtue of a proposition first enunciated by Lagrange. 
If for any part of a fluid mass udx + vdy + wdz be at one moment 
a perfect differential d<f>, it will remain so for all subsequent 
time. In particular, if a fluid be originally at rest, and bo then 
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239.] lagrange's theorem. 5 

set in motion by conservative forces and pressures transmitted 
from the exterior, the quantities 

dv dw dw du du dv 
dz dy ' dx dz' dy dx' 

(which we shall denote by £, »7, £) can never depart from zero. 

We assume that p is a function of p , and we shall write for 
brevity 

--/? - «• 
The equations of motion obtained from (1), (2), § 237, are 

d'T*s _ j£ du ^du ^du w ^ u rns 

dx ~ ~ dt dx dy dz ^ 

with two others of the same form relating to y and z. By 
hypothesis, 

dX=dY, 
dy dx ' 

so that by differentiating the first of the above equations with 
respect to y and the second with respect to x, and subtracting, 
we eliminate ts and the impressed forces, obtaining equations 
which may be put into the form 

Dt du „ , dm- (du , dv\ ^ 
m - ^ + d z V - K d x + d y ) ^ ( 3 ) ' 

DP Dv 

with two others of the same form giving > · 

In the case of an incompressible fluid, we may substitute for 

+ - T - its equivalent — and thus obtain dx dy ^ dz 

DX du y dv dw „ „ / A 

which are the equations used by Helmholtz as the foundation 
of his theorems respecting vortices. 

If the motion be continuous, the coefficients of £, % £" in 
the above equations are all finite. Let L denote their greatest 
numerical value, and fi the sum of the numerical values of £, % f. 
By hypothesis, II is initially zero; the question is whether in 
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the course of time it can become finite. The preceding equa
tions shew that it cannot; for its rate of increase for a given 
particle is at any time less than 3ZO, all the quantities con
cerned being positive. Now even if its rate of increase were 
as great as 3L£l, fl would never become finite, as appears from 
the solution of the equation 

A fortiori in the actual case, O cannot depart from zero, 
and the same must be true of £, 97, f 

It is worth notice that this conclusion would not be disturbed 
by the presence of frictional forces acting on each particle pro
portional to its velocity, as may be seen by substituting X — K U , 

Y — K V , Z — K W , for X , Y , Z in (2)1. But it is otherwise with 
the frictional forces which actually exist in fluids, and are de
pendent on the relative velocities of their parts. 

The first satisfactory demonstration of the important pro
position now under discussion was given by Cauchy; but that 
sketched above is due to Stokes2. It is not sufficient merely to 
shew that if, and whenever, £, 17, £ vanish, their differential 

coefficients - ~ , &c. vanish also, though this is a point that is 

often overlooked. When a hodj falls from rest under the action 
of gravity, s <x s%; but it does not follow that s never becomes 
finite. To justify that conclusion it would be necessary to prove 
that s vanishes in the limit, not merely to the first order, but 
to all orders of the small quantity t; which, of course, cannot 
be done in the case of a falling body. If, however, the equation 
had been s oc s, all the differential coefficients of s with respect 
to t would vanish with t, if s did so, and then it might be in
ferred legitimately that s could never vary from zero. 

By a theorem due to Stokes, the moments of momentum about 
the axes of co-ordinates of any infinitesimal spherical portion 
of fluid are equal to P, r/, f, multiplied by the moment of 
inertia of the mass; and thus these quantities may be regarded 

1 By introducing such forces and neglecting the terms dependent on inertia, we 
should obtain equations applicable to the motion of electricity through uniform 
conductors. 

2 Cambridge Trans. Vol. vm. p. 307. B. A. Report on Hydrodynamics, 1847. 
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239.] R O T A T O R Y V E L O C I T I E S . 7 

as the component rotatory velocities of the fluid at the point to 
which they refer. 

If v, £ vanish throughout a space occupied by moving 
fluid, any small spherical portion of the fluid if suddenly solidified 
would retain only a motion of translation. A proof of this 
proposition in a generalised form will be given a little later. 
Lagrange's theorem thus consists in the assertion that particles 
of fluid at any time destitute of rotation can never acquire it. 

240. A somewhat different mode of investigation has been 
' adopted by Thomson, which affords a highly instructive view 

of the whole subject1. 
By the fundamental equations 

d-sr = Xdx + Ydy + Zdz — ^ 7 dx — ̂  du — dz. 1 " J)t Dt a Dt 
Now Xdx + Ydy 4- Zdz = dR, if the forces be conservative, 

and 
Du 7 Dv 7 Dw 7 

Dtdx + D i d y + D t d s 

D . i , 7 , 7 . Ddx Ddy ^ Ddz = -(udx + vdy + wdz)-u-m--v-Tf-w-M, 
in which 

Ddx , Dx T „ 
-DT = d D t = = d u ' & c -

Thus, if IP = wa + v* + to4, we have 

dw = dR — (udx + vdy +wdz) + ̂ dlP (1), 

or ^ (udx + vdy + wd/) = d(R + ̂ U*~zy) (2). 
Integrating this equation along any finite arc PxPt, moving 

with the fluid, we have 

~ j(udx + vdy + wdz) = (i£ +1U2— vr)2 — (R + ^U*— ..(3), 

in which suffixes denote the values of the bracketed function 
at the points P 2 and P x respectively. If the arc be a complete 
circuit, 

D f 
jy\(udx + vdy+wdz)=0 (4); 

1 Vortex Motion. Edinburgh Transactions, 1869. 
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or, in words, 
The line-integral of the tangential component velocity round 

any closed curve of a moving fluid remains constant throughout all 
time. 

The line-integral in question is appropriately called the circu
lation, and the proposition may be stated :— 

The circulation in any closed line moving with the fluid re
mains constant. 

In a state of rest the circulation is of course zero, so that, 
if a fluid be set in motion by pressures transmitted from the 
outside or by conservative forces, the circulation along any closed 
line must ever remain zero, which requires that udx + vdy + wdz 
be a complete differential. 

But it does not follow conversely that in irrotational motion 
there can never be circulation, unless it be known that <p is single-
valued; for otherwise /doi need not vanish round a closed circuit. 
In such a case all that can be said is that there is no circu
lation round any closed curve capable of being contracted to 
a point without passing out of space occupied by irrotationally 
moving fluid, or more generally, that the circulation is the same 
in all mutually reconcilable closed curves. Two curves are said 
to be reconcilable, when one can be obtained from the other 
by continuous deformation, without passing out of the irrota
tionally moving fluid. 

Within an oval space, such as that included by an ellipsoid, all 
circuits are reconcilable, and therefore if a mass of fluid of that 
form move irrotationally, there can he no circulation along any 
closed curve drawn within it. Such spaces are called simply-
connected. But in an annular space like that bounded by the 
surface of an anchor ring, a closed curve going round the ring is 
not continuously reducible to a point, and therefore there may be 
circulation along it, even although the motion be irrotational 
throughout the whole volume included. But the circulation is 
zero for every closed curve which does not pass round the ring, and 
has the same constant value for all those that do. 

241. AVhen udx + vdy + wdz is an exact differential deb, the 
velocity in any direction is expressed by the. corresponding rate 
of change of <b, which is called the velocity-potential, and 

du dv , dw 
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241.] VELOCITY-POTENTIAL. 9 

may be replaced by dty d?if> dty 
da? + dtf + dz*' 

If 8 denote any closed surface, the rate of flow outwards across the 
element dS is expressed by ^ dS, where ^ is the rate of varia
tion of <p in proceeding outwards along the normal. In the case of 
constant density, the total loss of fluid in time dt is thus 

pdS.dt, 
dn the integration ranging over the whole surface of S. If the space 

8 be full both at the beginning and at the end of the time dt, 
the loss must vanish; and thus 

The application of this equation to the element dxdydz gives for 
the equation of continuity of an incompressible fluid 

" - : < * 
or, as it is generally written, 

V > = 0 (3); 

when it is desired to work with polar co-ordinates, the trans
formed equation is more readily obtained directly by applying (1) 
to the corresponding element of volume, than by transforming (2) 
in accordance with the analytical rules for effecting changes in the 
independent variables. 

Thus, if we take polar co-ordinates in the plane xy, so that 

x = r cos 0, y = r sin 9, 
we find 

V * - dr* + r dr + r* dP + d»*W' 
or, if we take polar co-ordinates in space, 

x = r sin 9 cos co, y = r sin 0 sin co, z = r cos 0, 

Vt = ^ + rI + r^9T0{SmdT0) + S^0^---(5)' 
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Simpler forms are assumed in special cases, such, for example, as 
that of symmetry round z in (5). 

When the fluid is compressible, and the motion such that the 
squares of small quantities may be neglected, the equation of con
tinuity is by (3), § 238, 

| + V ^ = 0 (6), 

where any form of y 2 ^ may be used that may be most convenient 
for the problem in hand. 

242. The irrotational motion of incompressible fluid within 
any simply-connected closed space 8 is completely determined by 
the normal velocities over the surface of 8. If 8 be a material 
envelope, it is evident that an arbitrary normal velocity may be im
pressed upon its surface, which normal velocity must be shared 
by the fluid immediately in contact, provided that the whole 
volume inclosed remain unaltered. If the fluid be previously at 
rest, it can acquire no molecular rotation under the operation of 
the fluid pressures, which shews that it must be possible to de
termine a function <b, such that = 0 throughout the space 

inclosed by 8, while over the surface ~ - has a prescribed value, 

limited only by the condition 

» 
An analytical proof of this important proposition is indicated 

in Thomson and Tait's Natural Philosophy, § 317. 

There is no difficulty in proving that but one solution of the 
problem is possible. By Green's theorem, if y2 >̂ = 0, 

l!ffi+%+$)*r-U*Z" <2>. 
the integration on the left-hand side ranging over the volume, 
and on the right over the surface of 8. Now if <}> and <b + A.<b 
be two functions, satisfying Laplace's equation, and giving 

prescribed surface-values of ^ , their difference A(j> is a function 

also satisfying Laplace's equation, and making vanish 
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over the surface of S. Under these circumstances the double 
integral in (2) vanishes, and we infer that at every point of 8 
dA$ dA6_ dAfy m u g £ D e e q u a i ^ 0 z e r 0 - \ n other words AA 
dx dy dz ^ r 

must be constant, and the two motions identical. As a par
ticular case, there can be no motion of the irrotational kind 
within the volume S, independently of a motion of the surface. 
The restriction to simply connected spaces is rendered necessary 
by the failure of Green's theorem, which, as was first pointed 
out by Helmholtz, is otherwise possible. 

When the space 8 is multiply-connected, the irrotational 
motion is still determinate, if besides the normal velocity at 
every point of 8 there be given the values of the constant cir
culations in all the possible irreconcilable circuits. For a 
complete discussion of this question we must refer to Thomson's 
original memoir, and content ourselves here with the case of 
a doubly-connected space, which will suffice for illustration. 

Let ABCD be an endless tube within which fluid moves 
irrotationally. For this motion there must exist a velocity 

Fig. 54 

potential, whose differential coefficients, expressing, as they do, 
the .component velocities, are necessarily single-valued, but 
which need not itself be single-valued. The simplest way of 
attacking the difficulty presented by the ambiguity of 6, is to 
conceive a barrier AB taken across the ring, so as to close the 
passage. The space ABGDBAEF is then simply continuous, 
and Green's theorem applies to it without modification, if allow
ance be made for a possible finite difference in the value of c6 
on the two sides of the barrier. This difference, if it exist, is 
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necessarily the same at all points of AB, and in the hydro-
dynamical application expresses the circulation round the ring. 

In applying the equation 

we have to calculate the double integral over tho two faces of 
the barrier as well as over the original surface of the ring. Now 

since ^ has the same value on the two sides, an 

jj<P^dS (over two faces of AB) = jj^ KCIS = K jJ^dS, 
if K denote the constant difference of <f>. Thus, if K vanish, 
or there be no circulation round the ring, we infer, just as for 
a simply-connected space, that is completely determined by 

the surface-values of ^- > . If there be circulation, <b is still an 
determined, if the amount of the circulation be given. For, 
if <j> and <j> + A(p be two functions satisfying Laplace's equation 
and giving the same amount of circulation and the same normal 
velocities at 8 , their difference Â > also satisfies Laplace's equa
tion and the condition that there shall be neither circulation 
nor normal velocities over 8 . But, as we have just seen, under 
these circumstances A<f> vanishes at every point. 

Although in a doubly-connected space irrotational motion 
is possible independently of surface normal velocities, yet such 
a motion cannot be generated by conservative forces nor by 
motions imposed (at any previous time) on the bounding surface, 
for we have proved that if the fluid be originally at rest, there 
can never be circulation along any closed curve. Hence, for 
multiply-connected as well as simply-connected spaces, if a 
fluid be set in motion by arbitrary deformation of the boundary, 
the whole mass comes to rest so soon as the motion of the boun
dary ceases. 

If in a fluid moving without circulation all the fluid outside 
a reentrant tube-like surface of uniform section become instan
taneously solid, then also at the same moment all the fluid 
within the tube comes to rest. This mechanical interpretation, 
however unpractical, will help the student to understand more 
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clearly what is meant by a fluid having no circulation, and it 
leads to an extension of Stokes' theorem with respect to mole
cular rotation. For, if all the fluid (moving subject to a 
velocity-potential) outside a spherical cavity of any radius be
come suddenly solid, the fluid inside the cavity can retain no 
motion. Or, as we may also state it, any spherical portion of 
an irrotationally moving fluid becoming suddenly solid would 
possess only a motion of translation, without rotation1. 

A similar proposition will apply to a circular disc, or cylinder 
with flat ends, in the case of fluid moving irrotationally in two 
dimensions only. 

The motion of an incompressible fluid which has been once 
at rest partakes of the remarkable property (§ 79) common to that 
of all systems which are set in motion with prescribed velocities, 
namely, that the energy is the least possible. If any other 
motion be proposed satisfying the equation of continuity and 
the boundary conditions, its energy is necessarily greater than 
that of the motion which would be generated from rest. 

243. The fact that the irrotational motion of incompressible 
fluid depends upon a velocity-potential satisfying Laplace's 
equation, is the foundation of a far-reaching analogy between 
the motion of such a fluid, and that of electricity or heat in 
a uniform conductor, which it is often of great service to bear 
in mind. The same may be said of the connection between 
all the branches of Physics which depend mathematically on 
a potential, for it often happens that the analogous theorems 
are far from equally obvious. For example, the analytical 
theorem that, if TJ*6 = 0, 

//£"-· 
over a closed surface, is most readily suggested by the fluid 
interpretation, but once obtained may be interpreted for electric 
or magnetic forces. 

Again, in the theory of the conduction of heat or electricity, 
it is obvious that there can be no steady motion in the interior 
of 8 , without transmission across some part of the bounding sur
face, but this, when interpreted for incompressible fluids, gives an 
important and rather recondite law. 

1 Thomson on Vortex Motion, loc. cit. 
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P 

so that 

which is the form ordinarily given. 

If p be constant, j~^^s replaced, of course, by 

The relation between p and <f> in the case of impulsive motion 
from rest may be deduced from (2) by integration. We see that 

—jpdt = — <f> ultimately. 

The, same conclusion may be arrived at by a direct application of 
mechanical principles to the circumstances of impulsive motion. 

If p = Kp, equation (2) takes the form 

Khgp-R-^-lU* (3). 
If the motion be such that the component velocities are always the 
same at the same point of space, it is called steady, and $ becomes 
independent of the time. The equation of pressure is then 

fdP. B (4), 
r 

or in the case when there are no impressed forces, 
rdp _ 

C-$U* (5). 
P 

In most acoustical applications of (2), the velocities and condensa
tion are small, and then we may neglect the term | IP, and sub
stitute — for f — , if Bp denote the small variable part of p ; thus 

Po J P 

244. When a velocity-potential exists, the equation to deter
mine the pressure may he put into a simpler form. We have from 
(1), § 240, · 

dzT = dB-^-tdcp + ̂ dU2 ( I ) , 

•whence by integration 
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and we get on elimination of s , 

d'<b _ dR 
df ~ dt H-a'vV (9). 

245. The simplest kind of wave-motion is that in which the 
excursions of every particle are parallel to a fixed line, and are the' 
same in all planes perpendicular to that line. Let us therefore 
(assuming that R = 0) suppose that (b is a function of x (and t) 
only. Our equation (9) § 244 becomes 

d2<b _ , d*<b n s 
df~a d a ? W ' 

the same as that already considered in the chapter on Strings. 
We there found that the general solution is 

<f> =f(x-at)+F(x + at) (2), 

representing the propagation of independent waves in the positive 
and negative directions with the common velocity a. 

Within such limits as allow the application of the approximate 
equation (1), the velocity of sound is entirely independent of the 
form of the wave, being, for example, the same for simple waves 

<b = A cos ^ (x — at), 

whatever the wave-length may be. The condition satisfied by the 
positive wave, and therefore by the initial disturbance if a posi
tive wave alone be generated, is 

S - a - f " . TO, 
wliich with 

S + = ° (7) 

are the equations by means of which the small vibrations of an 
elastic fluid are to be investigated. 

If a2 = , so that Sp = a?p0s, (6) becomes 
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16 PLANE PROGRESSSIVE WAVES. [245. 

or by (8) § 244 ' 
u- as = 0 (3). 

Similarly, for a negative wave 
u+ as = 0 (4). 

Whatever the initial disturbance may be (and u and s are both 
arbitrary), it can always be divided into two parts, satisfying 
respectively (3) and (4), which are propagated undisturbed. In 
each component wave the direction of propagation is the same as 
that of the motion of the condensed parts of the fluid. 

The rate at which energy is transmitted across unit of area of 
a plane parallel to the front of a progressive wave may be re
garded as the mechanical measure of the intensity of the radiation. 
In the case of a simple wave, for which 

<j> = A cos ^ (x — at) (5), 
At 

the velocity g of the particle at x ^equal to is given by 

f - - ^ 4 B i n ^ ( « - a O (6), 

and the displacement £ is given by 

A 2?r, 
^ = ~ " ö " c o s x O _ a 0 (7). 

The pressure p=p0 + % where by (6) § 244 

Sp = — ^ p0dA s i n ^ ( a ; — at) (8). 
# A. Ar 

Hence, if W denote the work transmitted across unit area of the 
plane x in time t, 

= (Po + Sp) £ = iPoa
 ( y - ) -4' + periodic terms. 

If the integration with respect to time extend over any number of 
complete periods, or practically whenever its range is sufficiently 
long, the periodic terms may be omitted, and we may take 

W: t = lp,a(^JA* (9), 
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or by (6), if 8 denote the maximum value of \ , 

'w=y0e*at 

Thus the work consumed in generating waves of harmonic type 
is the same as would be required to give the maximum velocity 8 
to the whole mass of air through which the waves extend *. 

In terms of the maximum excursion a by (7) and (9) 

where T ( = X - J - a) is the periodic time. In a given medium the 
mechanical measure of the intensity is proportional to the square 
of the amplitude directly, and to the square of the periodic time 
inversely. The reader, however, must be on his guard against 
supposing that the mechanical measure of intensity of undulations 
of different wave lengths is a proper measure of the loudness of 
the corresponding sounds, as perceived by the ear. 

In any plane progressive wave, whether the type be harmonic 
or not, the whole energy is equally divided between the potential 
and kinetic forms. Perhaps the simplest road to this result is 
to consider the formation of positive and negative waves from an 
initial disturbance, whose energy is wholly potential3. The total 
energies of the two derived progressive waves are evidently equal, 
and make up together the energy of the original disturbance. 
Moreover, in each progressive wave the condensation (or rare
faction) is one-half of that which existed at the corresponding 
point initially, so that the potential energy of each progressive 
wave is one-quarter of that of the original disturbance. Since, as 
we have just seen, the whole energy is one-half of the same 
quantity, it follows that in a progressive wave of any type one-
half of the energy is potential and one-half is kinetic. 

The same conclusion may also be drawn from the general 
expressions for the potential and kinetic energies and the relations 
between velocity and condensation expressed in (3) and (4). 
The potential energy of the element of volume d V is the work 

1 The earliest statement of the principle embodied in equation (10) that I have 
met with is in a paper by Sir W. Thomson, " On the possible density of the 
luminiferous medium, and on the mechanical value of a cubic mile of sun-light." 
Phil. Mag. ix. p. 36. 18S5. 

2 Bosanquet. Phil. Mag. XLV. p. 173. 1873. 
s Phil. Mag. (5) I. p. 260. 1876. 

W= 2TT\ 

R. I I . 2 
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18 N E W T O N ' S I N V E S T I G A T I O N . [245. 

that would be gained during the expansion of the corresponding 
quantity of gas from its actual to its normal volume, the expansion 
being opposed throughout by the normal pressure p„. At any 
stage of the expansion, when the condensation is s', the effective 
pressure Bp is by § 244 a* p0 s', which pressure has to be multiplied 
by the'corresponding increment of volume dV.ds'. The whole 
work gained during the expansion from dV to dV (1 + s) is 

therefore a?p0dV. j s'ds' or %a*p0dV. s2. The general expressions 
' 0 

for the potential and kinetic energies are accordingly 

potential energy = J afpgjjjs'dV (12), 

kinetic energy = ip0jjju*dV. (13), 

and these are equal in the case of plane progressive waves for 
which 

u = i as. 

If the plane progressive waves be of harmonic type, u and s 
at any moment of time are circular functions of one of the space 
co-ordinates (as), and therefore the mean value of their squares 
is one-half of the maximum value. Hence the total energy of 
the waves is equal to the kinetic energy of the whole mass of 
air concerned, moving with the maximum velocity to be found in 
the waves, or to the potential energy of the same mass of air 
when condensed to the maximum density of the waves. 

246. The first theoretical investigation of the velocity of 
sound was made by Newton, who assumed that the relation be
tween pressure and density was that formulated in Boyle's law. If 
we assume p = icp, we see that the velocity of sound is expressed 
by V A C , or -s-vV> in which the dimensions of p (= force area) 
are \M] [T]"2, and those of p (= mass volume) are [M] [L]~3. 
Newton expressed the result in terms of the ' height of the homo
geneous atmosphere,' defined by the equation 

9ph=P (1)» 
where p and p refer to the pressure and the density at the earth's 
surface. The velocity of sound is thus Vgh, or the velocity which 
would be acquired by a body, falling freely under the action of 
gravity through half the height of the homogeneous atmosphere. 
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To obtain a numerical result we require to know a pair of 
simultaneous values of p and p. It is found by experiment that 
at 0° Cent, under a pressure of 1033 grammes per square centi
metre, the density of dry air is '001293 grammes per cubic centi
metre. If we take the centimetre, gramme, and second as the 
fundamental units the (c.G.S. system), these data give 

p = 1033 xg = 1033 x 981, p = -001293, 
whence 

/1033 x 981 o h 7 f m E , 
A = V -001293 = 2 7 9 9 5 ; 

so that the velocity of sound at 0° would be 279'95 metres per 
second, falling short of the result of direct observation by about 
a sixth part. 

Newton's investigation established that the velocity of sound 
should be independent of the amplitude of the vibration, and abo 
of the pitch, but the discrepancy between his calculated value 
(published in 1687) and the experimental value was not explained 
until Laplace pointed out that the use of Boyle's law involved 
the assumption that in the condensations and rarefactions ac
companying sound the temperature remains constant, in contra
diction to the known fact that, when air is suddenly compressed, 
its temperature rises. The laws of Boyle and Charles supply only 
one relation between the three quantities, pressure, volume, and 
temperature, of a gas, viz. 

pv = B6 (2), 

where the temperature 0 is measured from the zero of the gas 
thermometer; and therefore without some auxiliary assumption it 
is impossible to specify the connection between p and v (or p). 
Laplace considered that the condensations and rarefactions con
cerned in the propagation of sound take place with such rapidity 
that the heat and cold produced have not time to pass away, and 
that therefore the relation between volume and pressure is sensibly 
the same as if the air were confined in an absolutely non-con
ducting vessel. Under these circumstances the change of pressure 
corresponding to a given condensation or rarefaction is greater 
than on the hypothesis of constant temperature, and the velocity 
of sound is accordingly increased. 

In equation (2) let v denote the volume and p the pressure of 
the unit of mass, and let 6 be expressed in centigrade degrees 

2—2 
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reckoned from the absolute zero1. The condition of the gas (if 
uniform) is denned by any two of the three quantities p, v, 0, and 
the third may be. expressed in terms of them. The relation 
between the simultaneous variations of the three quantities is 

f = (3). 
0 p v K ' 

In order to effect the change specified by dp and dv, it is 
in general necessary to communicate heat to the gas. Calling 
the necessary quantity of heat dQ, we may write 

* - $ ) * + ( D * 
Suppose now (a) that dp = 0. Equations (3) and (4) give 

where (p const.) expresses the specific heat of the gas under 

a constant pressure. This being denoted by KP, we have 

-.-01 <5>-
Again, suppose (b) that dv = 0. We find in a similar manner 

that, if KV denote the specific heat under a constant volume, 

- 0 ! («)· 
In order to obtain the relation between dp and dv when 

there is no communication of heat, we have only to put d Q = 0. 
Thus 

\dp, 
or, on substituting for the differential coefficients of Q their values 
in terms of «„, KP, 

K/J + K^ = 0 (7). 
r v p 

o- 1 dv dp 
Since v = -, — = ; 

P v p ' 
so that 

a^FF^P^^ly ( 8 ) , 
dp p K v p w ' 

1 On the ordinary centigrade scale the absolute zero is about - 273°. 
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if, as usual, the ratio of the specific heats be denoted by 7. 
Laplace's value of the velocity of sound is therefore greater than 
Newton's in the ratio of J Y : 1. 

By integration of (8), we obtain for the relation between 
p and p, on the supposition of no communication of heat, 

*=(*v or,, 
where p0> p0 are two simultaneous values. Under the same 
circumstances the relation between pressure and temperature is 
by (3) 

PO W 
The magnitude of 7 cannot be determined with accuracy by direct 
experiment, but an approximate value may be obtained by a 
method of which the following is the principle. Air is compressed 
into a reservoir capable of being put into communication with 
the external atmosphere by opening a wide valve. At first the 
temperature of the compressed air is raised, but after a time 
the superfluous heat passes away and the whole mass assumes 
the temperature of the atmosphere ©. Let the pressure (measured 
by a manometer) be p. The valve is now opened for as short 
a time as is sufficient to permit the equilibrium of pressure to 
be completely established, that is, until the internal pressure 
has become equal to that of the atmosphere P. If the experiment 
be properly arranged, this operation is so quick that the air in 
the vessel has not sufficient time to receive heat from the sides, 
and therefore expands nearly according to the law expressed in 
(9). Its temperature 6 at the moment the operation is complete 
is therefore determined by 

» A (11). HI)' 
The enclosed air is next allowed to absorb heat until it has re
gained the atmospheric temperature ©, and its pressure (p') is 
then observed. During the last change the volume is constant, 
and therefore the relation between pressure and temperature 
gives 

?-, = e- ...„.(12); 
P © • 

1 I t is here assumed that 7 is constant. This equation appears to have been 
given first by Poisson. 
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so that by elimination of 6 : 0 , 

whence 
_ log p — log P 

^ logp — log p' 
By experiments of this nature Clement and Desormes de

termined 7 = 13492; but the method is obviously not susceptible 
of any great accuracy. The value of 7 required to reconcile 
the calculated and observed velocities of sound is 1"408, of the 
substantial correctness of which there can be little doubt. 

We are not, however, dependent on the phenomena of sound 
for our knowledge of the magnitude of 7 . The value of K P — 
the specific heat at constant pressure—has been determined 
experimentally by Regnault; and although on account of in
herent difficulties the experimental method may fail to yield 
a satisfactory result for «„, the information sought for may be 
obtained indirectly by means of a relation between the two spe
cific heats, brought to light by the modern science of Thermo
dynamics. 

If from the equations 

6 v pi 

We eliminate dp, there results 

dQ-(K,-K.)ep + K.dd (15). 
Let us suppose that dQ = 0, or that there is no communication 

of heat. It is known that the heat developed during the com
pression of an approximately perfect gas, such as air, is almost 
exactly the thermal equivalent of the work done in compressing 
it. This important principle was assumed by Mayer in his 
celebrated memoir on the dynamical theory of heat, though 
on grounds which can hardly be considered adequate. However 
that may be, the principle itself is very nearly true, as has since 
been proved by the experiments of Joule and Thomson. 

If we measure heat in dynamical units, Mayer's principle 
may be expressed Kvd0=pdv on the understanding that there 

(13). 
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is no communication of heat. Comparing this with (15), we see 
that 

= S (16), 
and therefore 

K , K P - K 

The value of pv in gravitation measure (gramme, centimetre) 
is, as we saw, 1033 -s- -001293, at 0° Cent, so that 

-1033 R = 001293 x 272-85 ' 

By Regnault's experiments the specific heat of air is "2379 
of that of water; and in order to raise a gramme of water one 
degree Cent., 42350 gramme-centimetres of work must be done 
on it. Hence with the same units as for R, 

KP = -2379 x 42350. 
Calculating from these data, we find y = 1'410, agreeing almost 

exactly with the value deduced from the velocity of sound. This 
investigation is due to Rankine, who employed it in 1850 to 
calculate the specific heat of air, taking Joule's equivalent and 
the observed velocity of sound as data. In this way he antici
pated the result of Regnault's experiments, which were not 
published until 1853. -

247. Laplace's theory has often been the subject of mis
apprehension among students, and a stumblingblock to those 
remarkable persons, called by De Morgan, ' paradoxers.' But there 
can be no reasonable doubt that, antecedently to all calculation, 
the hypothesis of no communication of heat is greatly to. be 
preferred to the equally special hypothesis of constant temperature. 
There would be a real difficulty if the velocity of sound were 
not decidedly in excess of Newton's value, and the wonder is 
rather that the cause of the excess remained so long undiscovered. 

The only question which can possibly be considered open, 
is whether a small part of the heat and cold developed may not 
escape by conduction or'radiation before producing its full effect. 
Everything must depend on the rapidity of the alternations. 
Below a certain limit of slowness, the heat in excess, or defect, 
would have time to adjust itself, and the temperature would 
remain sensibly constant. In this case the relation between 
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pressure and density would be that which leads to Newton's value 
of the velocity of sound. On the other hand, above a certain limit 
of quickness, the gas would behave as if confined in a non-con
ducting vessel, as supposed in Laplace's theory. Now although 
the circumstances of the actual problem are better represented 
by the latter than by the former supposition, there may still 
(it may be said) be a sensible deviation from the law of pressure 
and density involved in Laplace's theory, entailing a somewhat 
slower velocity of propagation of sound. This question has been 
carefully discussed by Stokes in a paper published in 1851 1, 
of which the following is an outline. 

The mechanical equations for the small motion of air are 
dp dii n 
dx=-PTt&c ( 1 ) ' 

with the equation of continuity 
ds du dv dw n 

Tt+dx + T y + d z - - " [ 2 > -
The temperature is supposed to be uniform except in so far 

as it is disturbed by the vibrations themselves, so that if 0 denote 
the excess of temperature, 

p= KP(1+S+*0) (3). 

The effect of a small sudden condensation s is to produce an 
elevation of temperature, which may he denoted by Bs. Let 
dQ be the quantity of heat entering the element of volume in 
time dt, measured by the rise of temperature that it would 
produce, if there were no condensation. Then (the distinction 

between — and ^ being neglected) 

dd_Bds dQ 

^ being a function of 0 and its differential coefficients with 

respect to space, dependent on the special character of the 
dissipation. Two extreme cases may be mentioned; the first 
when the tendency to equalisation of temperature is due to 
conduction, the second when the operating cause is radiation, 
and the transparency of the medium such that radiant heat is 

i Phil. Mag. (4) i. 305. 
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(d , \d's I d , \d*s 
{dt + Vdf=K^dt+VaW 

if 7 be written (in the same sense as before) for 1 + aft. 
If the vibrations be harmonic, we may suppose that s varies 

as eint, and the equation becomes 

JL±^.s = o (7). 
dx K q + iyn 

Let the coefficient of s in (7) be put into the form ^e~u^, 
where 

and 
2 * = tan"125 - tan"1 5 = tan"1 ( - ^ ^ ( 9 ) . 

r q q yn* + tf 
Equation (7) is then satisfied by terms of the form 

g±ill. (cos iff - i sin#a; 
Jr ^ ' ' 

but being positive, and i|r less than \TT) if we wish for the 
expression of the wave travelling in the positive direction, we 
must take the lower sign. Discarding the imaginary part, we 
find as the appropriate solution 

s ^Ae-i"™** cos (nt - ft cos f x) (10). 

not sensibly absorbed within a distance of several wave-lengths. 
dQ 

In the former case oc y2<?, and in the latter, which is that 

selected by Stokes for analytical investigation, ^ cc (— 6), Newton's 
law of radiation being assumed as a sufficient approximation to 
the truth. We have then 

dO Qds . ,^ 

In the case of plane waves, to which we shall confine our 
attention, v and w vanish, while u, p, s, 6 are functions of x (and ¡5) 
only. Eliminating p and u between (1), (2) and (3), we find 

df ~ K {da? + * dxV ' 

from which and (5) we get 

rd \ \d*s ( d \d\ 
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The first thing to be noticed is that the sound cannot be 

propagated to a distance unless sin \Jr be insensible. 

The velocity of propagation (V) is 

V = n/jT1 secifV (11), 

which, when sin y¡r is insensible, reduces to 

V=n/jT1 (12). 

Now from (9) we see that yfr cannot be insensible, unless 
q : n is either very great, or very small. On the first supposition 
from (11), or directly from (7), we have approximately, V = J K 

(Newton); and on the second, V = sficy, (Laplace), as ought 
evidently to be the case, when the meaning of q in (5) is con
sidered. What we now learn is that, if q and n were comparable, 
the effect would be not merely a deviation of V from either of 
the limiting values, but a rapid stifling of the sound, which we 
know does not take place in nature. 

Of this theoretical result we may convince ourselves, as 
Stokes explains, without the use of analysis. Imagine a mass 
of air to be confined within a closed cylinder, in which a piston 
is worked with a reciprocating motion. If the period of the 
motion be very long, the temperature of the air remains nearly 
constant, the heat developed by compression having time to 
escape by conduction or radiation. Under these circumstances 
the pressure is a function of volume, and whatever work has 
tb be expended in producing a given compression is refunded 
when the piston passes through the same position in the reverse 
direction; no work is consumed in the long run. Next suppose 
that the motion is so rapid that there is no time for the heat 
and cold developed by the condensations and rarefactions to 
escape. The pressure is still a function of volume, and no work 
is dissipated. The only difference is that now the variations 
of pressure are more considerable than before in comparison 
with the variations of volume. We see how it is- that both on 
Newton's and on Laplace's hypothesis, the waves travel without 
dissipation, though with different velocities. 

But In intermediate cases, when the motion of the piston 
is neither so slow that the temperature remains constant nor 
so quick that the heat has no time to adjust itself, the result 
is different. The work expended in producing a small condensa-
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tion is no longer completely refunded during the corresponding 
rarefaction on account of the diminished temperature, part of 
the heat developed by the compression having in the meantime 
escaped. In fact the passage of heat by conduction or radiation 
from a warmer to a finitely colder body always involves dissipa
tion, a principle which occupies a fundamental position in the 
science of Thermodynamics. In order therefore to maintain the 
motion of the piston, energy must be supplied from without, 
and if there be only a limited store to be drawn from, the motion 
must ultimately subside. 

Another point to be noticed is that, if q and n were com
parable, V would depend upon n, viz. on the pitch of the sound, 
a state of things which from experiment we have no reason to 
suspect. On the contrary the evidence of observation goes to 
prove that there is no such connection. 

From (10) we see that the falling off in the intensity, esti
mated per wave-length, is a maximum with tani/r, or yjr; and 
by (9) i¡r is a maximum, when q : n = J j . In this case 

H = nK~i 7~i, 2i|r = tan-17* — tan"17-* (13), 
whence, if we take 7 = 136 , 2·^ = 8° 47'. 

Calculating from these data, we find that for each wave
length of advance, the amplitude of the vibration would be 
diminished in the ratio "6172. 

To take a numerical example, let 

T = g -̂j of a second, X = wave-length = 44 inches. 

In 20 yards the intensity would be diminished in the ratio 
of about 7 millions to one. 

Corresponding to this, 

2 = 2198 (14). 

If the value of q were actually that just written, sounds of 
the pitch in question would be very rapidly stifled. We there
fore infer that q is in fact either much greater or else much less. 
But even so large a value as 2000 is utterly inadmissible, as 
we may convince ourselves by considering the significance of 
equation (5). 
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Suppose that by a rigid envelope transparent to radiant heat, 
the volume of a small mass of gas were maintained constant, 
then the equation to determine its thermal condition at any 
time is 

whence 
6 = Ae-«* (15), 

where A denotes the initial excess of temperature, proving that 
after a time q"1 the excess of temperature would fall to less than 
half its original value. To suppose that this could happen in a 
two thousandth of a second of time would be in contradiction to 
the most superficial observation. 

We are therefore justified in assuming that q is very small 
in comparison with n, and our equations then become ap
proximately 

s = Ae-ll-y~1)ir cos~(Vt-x) (16). . 

The effects of a small radiation of heat are to be sought 
for rather in a damping of the vibration than in an altered 
velocity of propagation. 

Stokes calculates that if 7 = 1"414, V= 1100, the ratio 
(iV : 1) in which the intensity is diminished in passing over a 
distance x, is given by log 1 0iV= '0001156 qx in foot-second mea
sure. Although we are not able to make precise measurements 
of the intensity of sound, yet the fact that audible vibrations 
can be propagated for many miles excludes any such value of 
q as could appreciably affect the velocity of transmission. 

Neither is it possible to attribute to the air such a conducting 
power as could materially disturb the application of Laplace's 
theory. In order to trace the effects of conduction, we have only 

to replace q in (5) by — q' ^ . Assuming as a particular solution 

we find 
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whence, if q' be relatively small, 

M=17,V-Vfcv·(17)-
Thus the solution in real quantities is 

leaving the velocity of propagation to this order of approximation 
still equal to JXY. 

From (18) it appears that the first effect of conduction, as 
of radiation, is on the amplitude rather than on the velocity of 
propagation. In truth the conducting power of gases is so 
feeble, and in the case of audible sounds at any rate the time 
during -which conduction can take place is so short, that dis
turbance from this cause is not to be looked for. 

In the preceding discussions the waves are supposed to be 
propagated in an open space. When the air is confined within 
a tube, whose diameter is small in comparison with the wave
length, the conditions of the problem are altered, at least in 
the case of conduction. What we have to say on this head 
will, however, come more conveniently in another place. 

248. From the expression *J(py) ·*• Vp. we see that in the 
same gas the velocity of sound is independent of the density, * 
because if the temperature be constant, p varies as p (p =Rp6). 
On the other hand the velocity of sound is proportional to the 
square root of the absolute temperature, so that if a0 be its 
value at 0° Cent. 

A = ¿ 3 W > 

where the temperature is measured in the ordinary manner from 
the freezing point of water. 

The most conspicuous effect of the dependence of the velocity 
of sound on temperature is the variability of the pitch of organ 
pipes. We shall see in the following chapters that the period 
of the note of a flue organ-pipe is the time occupied by a pulse 
in running over a distance which is a definite multiple of the 
length of the pipe, and therefore varies inversely as the velocity 
of propagation. The inconvenience arising from this alteration 
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30 VELOCITY OE SOUND I N WATER. [ 2 4 8 . 

of pitch is aggravated hy the fact that the reed pipes are not 
similarly affected; so that a change of temperature puts an 
organ out of tune with itself. 

Prof. Mayer1 has proposed to make the connection between 
temperature and wave-length the foundation of a pyrometric 
method, but I am not aware whether the experiment has ever 
been carried out. 

The correctness of (1) as regards air at the temperatures of 0° 
and 100° has been verified experimentally by Kundt. See § 260. 

In different gases at given temperature and pressure a is 
inversely proportional to the square roots of the densities, at 
least if y be constant8. For the non-condensable gases 7 does 
not sensibly vary from its value for air. 

The velocity of sound is not entirely independent of the 
degree of dryness of the air, since at a given pressure moist air 
is somewhat lighter than dry air. It is calculated that at 50° F., 
air saturated with moisture would propagate sound between 
2 and 3 feet per second faster than if it were perfectly dry. 

The formula °? = < ^ m a v be applied to calculate the velocity 

of sound in liquids, or, if that be known, to infer conversely 
the coefficient of compressibility. In the case of water it is 
found by experiment that the compression per atmosphere is 
•0000457. Thus, if dp = 1033 x 981 in absolute c .as . units, 

dp = -0000457, since p=l. 
Hence 

a = 1489 metres per second, 
which does not differ much from the observed value (1435). 

249. In the preceding sections the theory of plane waves 
has been derived from the general equations of motion. We 
now proceed to an independent investigation in which the motion 
is expressed in terms of the actual position of the layers of air 
instead of by means of the velocity potential, whose aid is no 
longer necessary inasmuch as in one dimension there can he 
no question of molecular rotation. 

1 On an Acoustic Pyrometer. Phil. Mag. XLV. p. 18. 1873. 
* According to the kinetic theory of gases, the velocity of sound is determined 

solely hy, and is proportional to, the mean velocity of the molecules. Preston, Phil. 
Mag. (5) i n . p. 441. 1877. 
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If V> V + ^ dx, define the actual positions at time t of 

neighbouring layers of air whose equilibrium positions are defined 
.by x and x + dx, the density p of the included slice is given by 

whence by (9) § 246, 

the expansions and condensations being supposed to take place 
according to the adiabatic law. The mass of unit of area of 

the slice is p0dx, and the corresponding moving force is — ^ dx, 

giving for the equation of motion 

d?y dp , . 
P«d7 + d H - ° ( 3 ) -

Between (2) and (3) p is to be eliminated. Thus, 

\dx) df~ P o d x ' { >' 

Equation (4) is an exact equation defining the actual abscissa 
y in terms of the equilibrium abscissa x and the time. If the 

motion be assumed to be small, we may replace , which 

occurs as the coefficient of the small quantity --f-, by its ap

proximate value unity; and (4) then becomes 

df P o d x " w ' 

the ordinary approximate equation. 

If the expansion be isothermal, as in Newton's theory, the 
equations corresponding- to (4) and (5) are obtained by merely 
putting 7 = 1. 

Whatever may be the relation between p and p, depending on 
the constitution of the medium, the equation of motion is by 
(1) and (3) 
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from which p, occurring in is to be eliminated by means of 

the relation between p and ^ expressed in (1). 

250. In the preceding investigations of aerial waves we 
have supposed that the air is at rest except in so far as it is 
disturbed by the vibrations of sound, but we are of course at 
liberty to attribute to the whole mass of air concerned any 
common motion. If we suppose that the air is moving in the 
direction contrary to that of the waves and with the same actual 
velocity, the wave form, if permanent, is stationary in space, 
and the motion is steady. In the present section we will con
sider the problem under this aspect, as it is important to obtain 
all possible clearness in our views on the mechanics of wave pro
pagation. 

If u0, p0, p0 denote respectively the velocity, pressure, and 
density of the fluid in its undisturbed state, and if u, p, p be 
the corresponding quantities at a point in the wave, we have 
for the equation of continuity 

P w = Po«o (1), 
and by (5) § 244 for.the equation of energy 

*f = K 2 " K (2). 
PÙ P 

Eliminating w, we get 

<*>, 

determining the law of pressure under which alone it is possible 
for a stationary wave to maintain itself in fluid moving with 
velocity M0. . From (3) 

fx 

or 
» = constant (5). 

p 
Since the relation between the pressure and the density of 

actual gases is not that expressed in (5), we conclude that a self-
maintaining stationary aerial wave is an impossibility, whatever 
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may be the velocity u0 of the general current, or in other words that 
a wave cannot be propagated relatively to the undisturbed parts 
of the gas without undergoing an alteration of type. Nevertheless, 
when the changes of density concerned are small, (5) may be 
satisfied approximately; and we see from (4) that the velocity 
of stream necessary to keep the wave stationary is given by 

which is the same as the velocity of the wave estimated relatively 
to the fluid. 

This method of regarding the subject shews, perhaps more 
clearly than any other, the nature of the relation between velocity 
and condensation § 245 (3), (4). In a stationary wave-form a loss 
of velocity accompanies an augmented density according to the 
principle of energy, and therefore the fluid composing the con
densed parts of a wave moves forward more slowly than the 
undisturbed portions. Relatively to the fluid therefore the 
motion of the condensed parts is in the same direction as that 
in which the waves are propagated. 

When the relation between pressure and density is other than 
that expressed in (5), a stationary wave can be maintained only 
by the aid of an impressed force. By (1) and (2) § 237 we have, 
on the supposition that the motion is steady, 

while the relation between u and p is given by (1). If we suppose 
that p = d?p, (7) becomes 

shewing that an impressed force is necessary at every place where 
u is variable and unequal to a. 

251. The reason of the change of type which ensues when a 
wave is left to itself is not difficult to understand. From the 
ordinary theory we know that an infinitely small disturbance is 
propagated with a certain velocity a, which velocity is relative 
to the parts of the medium undisturbed by the wave. Let us 
consider now the case of a wave so long that the variations of 

d log u 
dx (8), 

R. II. 3 
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velocity and density are insensible for a considerable distance 
along it, and at a place where the velocity (w) is finite let us 
imagine a small secondary wave to be superposed. The velocity 
with which the secondary wave is propagated through the 
medium is a, but on account of the local motion of the medium 
itself the whole velocity of advance is a + u, and depends upon 
the part of the long wave at which the small wave is placed. 
What has been said of a secondary wave applies also to the parts 
of the long wave itself, and thus we see that after a time t the 
place, where a certain velocity u is to be found, is in advance of 
its original position by a distance equal, not to at, but to (a + u) t; 
or, as we may express it, u is propagated with a velocity a + u. 
In symbolical notation u =f [x + (a + u) t], where f is an arbitrary 
function, an equation first obtained by Poisson1. 

From the argument just employed it might appear at first 
sight that alteration of type was a necessary incident in the progress 
of a wave, independently of any particular supposition as to the 
relation between pressure and density, and yet it was proved in 
§ 250 that in the case of one particular law of pressure there 
would be no alteration of type. We have, however, tacitly 
assumed in the present section that a is constant, which is tanta
mount to a restriction to Boyle's law. Under any other law of 

presently, of u. In the case of the law expressed in (5) § 250, the 
relation between u and p for a progressive wave is such that 

+ u is constant, as much advance being lost by slower 

propagation due to augmented density as is gained by superposi
tion of the velocity u. 

So far as the constitution of the medium itself is concerned 
there is nothing to prevent our ascribing arbitrary values to both 
u and p, but in a progressive wave a relation between these two 
quantities must be satisfied. We know already (§ 245) that this 
is the case when the disturbance is small, and the following 
argument will not only shew that such a relation is to be expected 
in cases where the square of the motion must be retained, but 
will even define the form of the relation. 

1 Mémoire sur la Théorie du Son. Journal de l'école polytechnique, t. vu. 
p. 319. 1808. 

therefore, as we shall see 
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251 . ] RELATION BETWEEN VELOCITY A N D DENSITY. 35 

Whatever may he the law of pressure, the velocity of propaga

tion of small disturbances is by § 245 equal to \ J > AN(^ IN A 

positive progressive wave the relation between velocity and con
densation is 

. — y © 
If this relation be violated at any point, a wave will emerge, 
travelling in the negative direction. Let us now picture to our
selves the case of a positive progressive wave in which the changes 
of velocity and density are very gradual but become important by 
accumulation, and let us inquire what conditions must be satisfied in 
order to prevent the formation of a negative wave. It is clear that 
the answer to the question whether, or not, a negative wave will be 
generated at any point will depend upon the state of things in the 
immediate neighbourhood of the point, and not upon the state of 
things at a distance from it, and will therefore be determined by 
the criterion applicable to small disturbances. In applying this 
criterion we are to consider the velocities and condensations, not 
absolutely, but relatively to those prevailing in the neighbouring 
parts of the medium, so that the form of (1) proper for the present 
purpose is 

* - y ( t ) * (2»; 

whence 

\dpj p 

which is the relation between u and p necessary for a positive 
progressive wave. Equation (2) was obtained analytically by 
Eamshaw1. 

In the case of Boyle's law, Ay/^f~) *s constant, and the rela
tion between velocity and density, given first, I believe, by 
Helmholtz8, is 

u = a log (4), 

if p0 be the density .corresponding to u = 0. 
In this case Poisson's integral allows us to form a definite idea 

of the change of type accompanying the earlier stages of the 
1 Phil. Trans. 1859, p. 146. 
a Fortschritta dcr Plnjsik, IT. p. 106. 1852. 

3—2 
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progress of the wave, and it finally leads us to a difficulty which 
has not as yet been surmounted1. If we draw a curve to represent 
the distribution of velocity, taking x for abscissa and u for 
ordinate, we may find the corresponding curve after the lapse of 
time t by the following construction. Through any point on the 
original curve draw a straight line in the positive direction parallel 
to x, and of length equal to (a + u) t, or, as we are concerned with 
the shape of the curve only, equal to u t. The locus of the ends of 
these lines is the velocity curve after a time t. 

But this law of derivation cannot hold good indefinitely. The 
crests of the velocity curve gain continually on the troughs and 
must at last overtake them. After this the curve would indicate 
two values of u for one value of x, ceasing to represent anything 
that could actually take place. In fact we are not at liberty to 
push the application of the integral beyond the point at which the 
velocity becomes discontinuous, or the velocity curve has a vertical 
tangent. In order to find when this happens let us take two 
neighbouring points on any part of the curve which slopes down
wards in the positive direction, and inquire after what time this 
part of the curve becomes vertical. If the difference of abscissae 
be dx, the hinder point will overtake the forward point in the 
time dx (— dti). Thus the motion, as determined by Poisson's 
equation, becomes discontinuous after a time equal to the reci
procal, taken positively, of the greatest negative value of ^ . 

For example, let us suppose that 

u=U cos ^ {x — (a + u) t), 

where XJ is the greatest initial velocity. When t = 0, the greatest 

negative value of ~ i s _ ^ JJ; so that discontinuity will com

mence at the time t = A, -f- 2irU. 

When discontinuity sets in, a state of things exists to which 
the usual differential equations are inapplicable; and the subse
quent progress of the motion has not been determined. It is 
probable, as suggested by Stokes, that some sort of reflection would 
ensue. In regard to this.matter we must be careful to keep 

i Stokes, " On a difficulty in the Theory of Sound." Phil. Mag. Nov. 1848. 
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dt* \ \dx)\ d a ? K h 

can by means of the arbitrary function F be made to coincide 

with any dynamical equation in which the ratio of and ^ 

is expressed in terms of ^ . The form of the function F being 

i Proceedings of the Royal Society, Jan. 6, 1859. Phil. Trans. 1860, p. 133. 

purely mathematical questions distinct from physical ones. In 
practice we have to do with spherical waves, whose divergency 
may of itself be sufficient to hold in check the tendency to discon
tinuity. In actual gases too it is certain that before discontinuity 
could enter, the law of pressure would begin to change its form, 
and the influence of viscosity could no longer be neglected. But 
these considerations have nothing to do with the mathematical 
problem of determining what would happen to waves of finite 
amplitude in a medium, free from viscosity, whose pressure is 
under all circumstances exactly proportional to its density; and 
this problem has not been solved. 

It is worthy of remark that, although we may of course conceive 
a wave of finite disturbance to exist at any moment, there is a 
limit to the duration of its previous independent existence. By 
drawing lines in the negative instead of in the positive direction 
we may trace the history of the velocity curve; and we see that 
as we push our inquiry further and further into past time the for
ward slopes become easier and the backward slopes steeper. At a 

time, equal to the greatest positive value of ^ , antecedent to that 

at which the curve is first contemplated, the velocity would be 
discontinuous. 

252. The complete integration of the exact equations (4) and 
(6) § 249 in the case of a progressive wave was first effected by 
Earnshaw1. Finding reason for thinking that in a sound wave the 
equation 

dy. = F(dy\ ( 1 ) 

dt \dso) K ' 

must always be satisfied, he observed that the result of differen
tiating (1) with respect to t, viz. 
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38 EARNSHAW'S INVESTIGATION. [252 . 

thus determined, the solution may be completed by the usual 
process applicable to such cases1. 

Writing for brevity a in place of ^ , we have 

and the integral is to be found by eliminating a between the equa
tions 

y = txx+F(a)t + <p (a)) 
0 = x + F (a) t + <p' (a) j 1 >' 

a being equal to p0-t-p, and <p being an arbitrary function. 

If p = a!/3, the exact equation (6 § 249) is 

c dy\2dy_ d*y . 

i y comparison of which with (2) we see that 

- 7 " ( « ) = ±

a

a (5), 
or on integration 

F (a) = C±aloga '. (6), 

as might also have been inferred from (4) § 251. The constant G 
vanishes, if F (a) , viz. u, vanish when a = 1, or p = p0; otherwise 
it represents a velocity of the medium as a whole, having nothing 
to do with the wave as such. For a positive progressive wave the 
lower signs in the ambiguities are to be used. Thus in place of 
(3), we have 

y=ax-alogat+<p («)} .„ 
0 = ax-at + a o S ' ( a ) J [ h 

and 
u = — a log a. = a log — (8). 

If we subtract the second of equations (7) from the first, we get 

y — at + at log a = <p (a) — a <j>' (a), 

from which by (8) we see that y — (a + u) t is an arbitrary function 
1 Boole's Differential Equations, Ch. xrv. 
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1 Uebor dio Fortpflanzung ebener Luftwollon von endlicher Schwingungs
weite. Göttingon, Abhandlungen, t. vm. I860. See also an excellent abstract 
in the Forlschritte der Physik, xv. p. 123. 

of a, or of u. Conversely therefore u is an arbitrary function of 
y — (a + u) t, and we may write 

» = / { y . - ( a + «)*} (9)· 
Equation (9) is Poisson's integral, considered in the preceding 
section, where the symbol x has the same meaning as here attaches 
to y. 

253. The problem of plane waves of finite amplitude attracted 
also the attention of Riemann, whose memoir was communicated 
to the Royal Society of Gottingen on the 28th of November, 18591. 
Riemann's investigation is founded on the general hydrodynamical 
equations investigated in §§ 237, 238, and is not restricted to any 
particular law of pressure. In order, however, not unduly to ex
tend the discussion of this part of our subject, already perhaps 
treated at greater length than its physical importance would 
warrant, we shall here confine ourselves to the case of Boyle's law 
of pressure. 

Applying equations (1), (2) of § 237 and (1) of § 238 to the 
circumstances of the present problem, we get 

d u | u

d u = j d l o g p ( 1 ) 

dlogp ^dlogp __du ,2, 
dt dx dx 

If we multiply (2) by + a, and afterwards add it to (1), we 
obtain 

dP . s cZP dQ . ,dQ 
W = - ( M + a ) S < ~ d t = - ^ - a ) T x < 8 ) ' 

where P = a logp+w, Q = a l o g p ^ t (4). 

Thus 
dP^{dx-{u + a)dt} ,(5), 

^ = S {dx-{u-a)dt} (6). 
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These equations are more general than Poisson's and Earnshaw's 
in that they are not limited to the case of a single positive, or 
negative, progressive wave. From (5) we learn that whatever 
may be the value of P corresponding to the point x and the time 
t, the same value of P corresponds to the point x + (u + a) dt at 
the time t + dt; and in the same way from (6) we see that Q re
mains unchanged when x and t acquire the increments [u — a) dt 
and dt respectively. If P and Q be given at a certain instant of 
time as functions of x, and the representative curves be drawn, we 
may deduce the corresponding value of u by (4), and thus, as in 
§ 251, construct the curves representing the values of P and Q 
after the small interval of time dt, from which the new values 
of u and p in 'their turn become known, and the process can be 
repeated. 

The element of the fluid, to which the values of Pand Q at 
any moment belong, is itself moving with the velocity u, so that 
the velocities of P and Q relatively to the element are numerically 
the same, and equal to a, that of P being in the positive direction 
and that of Q in the negative direction. 

We are now in a position to trace the consequences of an 
initial disturbance which is confined to a finite portion of the 
medium, e.g. between x= a. and a? = /3, outside which the medium 
is at rest and at its normal density, so that the values of P and Q 
are a log p„. Each value of P propagates itself in turn to the ele
ments of fluid which lie in front of it, and each value of Q to those 
that lie behind it. The hinder limit of the region in which P is 
variable, viz. the place where P first attains the constant value 
a log p0, comes into contact first with the variable values of Q, and 
moves accordingly with a variable1 velocity. At a definite time, 
requiring for its determination a solution of the differential equa
tions, the hinder (left hand) limit of the region through which P 
varies, meets the hinder (right hand) limit of the region through 
which Q varies, after which the two regions separate themselves, 
and include between them a portion of fluid in its equilibrium 
condition, as appears from the fact that the values of P and Q are 
both a log P o . In the positive wave Q has the constant value 

a logp0, so that u = a log — , as in (4) § 251; in the negative wave 
Po 

1 At tills point an error seems to have crept into Riemann's work, which is cor
rected in the abstract of the Fortschritte der Physik. 
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P has the same constant value, giving as the relation between u 

and p , u = — a log — . Since in each progressive wave, when iso-

Po 
lated, a law prevails connecting the quantities u and p , we see 
that in the positive wave du vanishes with dP, and in the negative 
wave du vanishes with dQ. Thus from (5) we learn that in a 
positive progressive wave du vanishes, if the increments of x and 
t be such as to satisfy the equation dx — (u •+- d) dt = 0, from which 
Poisson's integral immediately follows. 

It would lead us too far to follow out the analytical develop
ment of Riemaun's method, for which the reader must be referred 
to the original memoir; but it would be improper to pass over in 
silence an error on the subject of discontinuous motion into which 
Riemann and other writers have fallen. It has been held that a 
state of motion is possible in which the fluid is divided into two 
parts by a surface of discontinuity propagating itself with constant 
velocity, all the fluid on one side of the surface of discontinuity 
being in one uniform condition as to density and velocity, and on 
the other side in a second uniform condition in the same respects. 
Now, if this motion were possible, a motion of the same kind 
in which the surface of discontinuity is at rest would also be 
possible, as we may see by supposing a velocity equal and 
opposite to that with which the surface of discontinuity at first 
moves, to be impressed upon the whole mass of fluid. In order to 
find the relations that must subsist between the velocity and 
density on the one side (uv pt) and the velocity and density on the 
other side (M2, p2), we notice in the first place that by the principle 
of conservation of matter pjna = p^iv Again, if we consider the 
momentum of a slice bounded by parallel planes and including the 
surface of discontinuity, we see that the momentum leaving the 
slice in the unit of time is for each unit of area (p2u2 = p ^ ) u2, 
while the momentum entering it is pjJ,?. The difference of mo
mentum must be balanced by the pressures acting at the boundaries 
of the slice, so that 

Pi ui Oa ~ «,) =Px ~Pt =
 a* (Pi - ft)> whence 

The motion thus determined is, however, not possible; it satisfies 

IRIS - LILLIAD - Université Lille 1 



indeed the conditions of mass and momentum, but it violates the 
condition of energy (§ 244) expressed by the equation 

This argument has been already given in another form in § 250, 
which would alone justify us in rejecting the assumed motion, since 
it appears that no steady motion is possible except under the law of 
density there determined. From equation (8) of that section we 
can find what impressed forces would be necessary to maintain the 
motion defined by (7). It appears that the force X, though con
fined to the place of discontinuity, is made up of two parts of 
opposite signs, since by (7) u passes through the value a. The 
whole moving force, viz. JXp dx, vanishes, and this explains how 
it is that the condition relating to momentum is satisfied by (7), 
though the force X be ignored altogether. 

254. The exact experimental determination of the velocity 
of sound is a matter of greater difficulty than might have been 
expected. Observations in the open air are liable to errors from 
the effects of wind, and from uncertainty with respect to the 
exact condition of the atmosphere as to temperature and dryness. 
On the other hand when sound is propagated through air con
tained in pipes, disturbance arises from friction and from transfer 
of heat; and, although no great errors from these sources are 
to be feared in the case of tubes of considerable diameter, such 
as some of those employed by Regnault, it is difficult to feel 
sure that the ideal plane waves of theory are nearly enough 
realized. 

The following Table1 contains a list of the principal experi
mental determinations which have been made hitherto. 

log p, - a' (8). 

Académie des Sciences (1738) 

Names of Observers. Velocity of Sound at 
0° Cent, in Metres. 

332 

Benzenberg (1811) 

Goldingham (1821) 
Bureau des Longitudes (1822) 
Moll and van Beek 

3311 
330-6 
332-2 

1 Bosauquet, Phil. Mag. April, 1877. 
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254.] O F T H E V E L O C I T Y O F S O U N D . 43 

Names of Observers. Velocity of Sound at 
0° Cent, in Metres. 

Stampfer and Myrback , 
Bravais and Martins (1844) 
Wertheirn 

3324 
332-4 
3316 
332-4 
3307 
330-7 

Stone (1871) 
Le Roux. 
Regnault 

In Stone's experiments1 the course over which the sound 
was timed commenced at a distance of 640 feet from the source, 
so that any errors arising from excessive disturbance were to 
a great extent avoided. 

A method has been proposed by Bosscha2 for determining 
the velocity of sound without the use of great distances. It 
depends upon the precision with which the ear is able to decide 
whether short ticks are simultaneous, or not. In Konig's8 form of 
the experiment, two small electro-magnetic counters are controlled 
by a fork-interrupter (§ 64), whose period is one-tenth of a second, 
and give synchronous ticks of the same period. When the 
counters are close together the audible ticks coincide, but as one 
counter is gradually removed from the ear, the two series of ticks 
fall asunder. When the difference of distances is about 34 metres, 
coincidence again takes place, proving that 34 metres is about 
the distance traversed by sound in a tenth part of a second. 

1 Phil. Trans. 1872, p. 1. 2 Pogg. Ann. son. 486. 1854. 
3 Pogg. Ann. cxviu. 610. 1863. 
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CHAPTER XII. 

VIBRATIONS I N TUBES. 

2 5 5 . W E have already (§ 2 4 5 ) considered the solution of our 
fundamental equation, when the velocity-potential, in an unlimited 
fluid, is a function of one space co-ordinate only. In the absence 
of friction no change would be caused by the introduction of any 
number of fixed cylindrical surfaces, whose generating lines are 
parallel to the co-ordinate in question; for even when the surfaces 
are absent the fluid has no tendency to move across them. If one 
of the cylindrical surfaces be closed (in respect to its transverse 
section), we have the important problem of the axial motion of air 
within a cylindrical pipe, which, when once the mechanical condi
tions at the ends are given, is independent of anything that may 
happen outside the pipe. 

Considering a simple harmonic vibration, we know (§ 245) 
that, if varies as e™*, 

S + ^ = ° a). 
where 

27r n 
K = r - = - ( 2 ) . 

The solution may be written' in two forms— 
(j> = (A cos / M f 5 sin K X ) e i n t \ 

<f>=: (A e U x + B e~iKX) e i n t J ' 

of which finally only the real parts will be retained. The first 
form will be most convenient when the vibration is stationary, or 
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.(5). 

Taking the first form in (3), we have 

<j> = A cos KX + B sin KX 

= — K A sin KX + K B COS KX 

ax 
If there he any point at which either $ or ^ is permanently zero, 

the ratio A : B must be real, and then the vibration is stationary, 
that is, the same in phase at all points simultaneously. 

Let us suppose that there is a node at the origin. Then when 

x = 0, ^ vanishes, the condition of which is B = 0. Thus 

6 = A cos KX eint; ^ = — KA sin KX eint (6), 

from which, if we substitute Pei6 for A , and throw away the 
imaginary part, 

A= P cos KX cos (nt + 6) ~| 

2^ = — K P sin KX cos (nt + 6) J 
From these equations we learn that ^ vanishes wherever 

dec 

sin KX = 0; that is, that besides the origin there are nodes at the 
points x = ^mX, m being any positive or negative integer. At any 
of these places infinitely thin rigid plane barriers normal to x 
might be stretched across the tube without in any way alter-

nearly so, and the second when the motion reduces itself to a 
positive, or negative, progressive undulation. The constants A 
and B in the symbolical solution may be complex, and thus the 
final expression in terms of real quantities will involve four arbi
trary constants. If we wish to use real quantities throughout, we 
must take 

6 = ( A cos KX + B sin KX) COS nt 

+ (C cos KX + B sin KX) sin nt (4), 

but the analytical work would generally be longer. When no 
ambiguity can arise, we shall sometimes for the sake of brevity 
drop, or restore, the factor involving the time without express 
mention. Equations such as (1) are of course equally true whether 
the factor be understood or not. 
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ing the motion. Midway between each pair of consecutive nodes 
there is a loop, or place of no pressure variation, since Bp = — p<b 
(6) § 244. At any of these loops a communication with the 
external atmosphere might be opened, without causing any disturb
ance of the motion from air passing in or out. The loops are the 
places of maximum velocity, and the nodes those of maximum 
pressure variation. At intervals of X everything is exactly re
peated. 

If there be a node at x = I , as well as at the origin, sin K I = 0, 
or \=2l^-m, where m is a positive integer. The gravest tone 
which can be sounded by air contained in a doubly closed pipe 
of length Z is therefore that which has a wave-length equal to 21. 
This statement, it will be observed, holds good whatever be the 
gas with which the pipe is filled; but the frequency, or the place 
of the tone in the musical scale, depends also on the nature -of 
the particular gas. The periodic time is given by 

T - X - » (8). 

The other tones possible for a doubly closed pipe have periods 
which are submultiples of that of the gravest tone, and the whole 
system forms a harmonic scale. 

Let us now suppose, without stopping for the moment to in
quire how such a condition of things can be secured, that there is 
a loop instead of a node at the point x = I . Equation (6) gives 
cos K I = 0, whence X = 4Z -7- (2?« + 1), where m is zero or a positive 
integer. In this case the gravest tone has a wave-length equal 
to four times the length of the pipe reckoned from the node to 
the loop, and the other tones form with it a harmonic scale, from 
which, however, all the members of even order are missing. 

256. By means of a rigid barrier there is no difficulty in 
securing a node at any desired point of a tube, but the condition 
for a loop, i.e. that under no circumstances shall the pressure vary, 
can only be realized approximately. In most cases the variation 
of pressure at any point of a pipe may be made small by allowing 
a free communication with the external air. Thus Euler and 
Lagrange assumed constancy of pressure as the condition to be 
satisfied at the end of an open pipe. We shall afterwards return 
to the problem of the open pipe, and investigate by a rigorous 
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process the conditions to be satisfied at the end. For our im
mediate purpose it will be sufficient to know, what is indeed 
tolerably obvious, that the open end of a pipe may be treated as 
a loop, if the diameter of the pipe be neglected in comparison 
with the wave-length, provided the external pressure in the neigh
bourhood of the open end be not itself variable from some cause 
independent of the motion within the pipe. When there is an 
independent source of sound, the pressure at the end of the pipe 
is the same as it would be in the same place, if the pipe were 
away. The impediment to securing the fulfilment of the condition 
for a loop at any desired point lies in the inertia of the machinery 
required to sustain the pressure. For theoretical purposes we may 
overlook this difficulty, and imagine a massless piston backed by 
a compressed spring also without mass. The assumption of a 
loop at an open end of a pipe is tantamount to neglecting the 
inertia of the outside air. 

We have seen that, if a node exist at any point of a pipe, 
there must be a series, ranged at equal intervals \ X, that midway 
between each pair of consecutive nodes there must be a loop, and 
that the whple vibration must be stationary. The same conclusion 
follows if there be at any point a loop ; but it may perfectly well 
happen that there arc neither nodes nor loops, as for example in 
the case when the motion reduces to a positive or negative pro
gressive wave. In stationary vibration there is no transference of 
energy along the tube in either direction, for energy cannot pass 
a node or a loop. 

257. The relations between the lengths of an open or closed 
pipe and the wave-lengths of the included column of air may also 
be investigated by following the motion of a pulse, by which is 
understood a wave confined within narrow limits and composed 
of uniformly condensed or rarefied fluid. In looking at the matter 
from this point of view it is necessary to take into account care
fully the circumstances under which the various reflections take 
place. Let us first suppose that a condensed pulse travels in the 
positive direction towards a barrier fixed across the tube. Since 
the energy contained in the wave cannot escape from the tube, 
there must be a reflected wave, and that this reflected wave is 
also a wave of condensation appears from the fact that there is no 
loss of fluid. The same conclusion may be arrived at in another 
way. The effect of the barrier may be imitated by the introduc-
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tion of a similar and equidistant wave of condensation moving in 
the negative direction. Since the two waves are both condensed 
and are propagated in contrary directions, the velocities of the 
fluid composing them are equal and opposite, and therefore neu
tralise one another when the waves are superposed. 

If the progress of the negative reflected wave be interrupted 
by a second barrier, a similar reflection takes place, and the wave, 
still remaining condensed, regains its positive character. When a 
distance has been travelled equal to twice the length of the pipe, 
the original state of things is completely restored, and the same 
cycle of events repeats itself indefinitely. We learn therefore that 
the period within a doubly closed pipe is the time occupied by a 
pulse in travelling twice the length of the pipe. 

The case of an open end is somewhat different. The supple
mentary negative wave necessary to imitate the effect of the open 
end must evidently be a wave of rarefaction capable of neutralizing 
the positive pressure of the condensed primary wave, and thus in 
the act of reflection a wave changes its character from condensed 
to rarefied, or from rarefied to condensed. Another way of con
sidering the matter is to observe that in a positive condensed 
pulse the momentum of the motion is forwards, and in the 
absence of the necessary forces cannot be changed by the reflec
tion. But forward motion in the reflected negative wave is 
indissolubly connected with the rarefied condition. 

When both ends of a tube are open, a pulse travelling back
wards and forwards within it is completely restored to its original 
state after traversing twice the length of the tube, suffering in the 
process two reflections, and thus the relation between length and 
period is the same as in the case of a tube, whose ends are both 
closed; but when one end of a tube is open and the other closed, 
a double passage is not sufficient to close the cycle of changes. 
The original condensed or rarefied character cannot be recovered 
until after two reflections from the open end, and accordingly in 
the case contemplated the period is the time required by the pulse 
to travel over four times the length of the pipe. 

258. After the full discussion of the corresponding problems 
in the chapter on Strings, it will not be necessary to say much on 
the compound vibrations of columns of air. As a simple example 
we may take the case of a pipe open at one end and closed at the 
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258.] PROBLEM. 49 

other, which is suddenly brought to rest at the time = 0, after 
being for some time in motion with a uniform velocity parallel to 
its length. The initial state of the contained air is then one of 
uniform velocity' w0 parallel to x, and of freedom from compression 
and rarefaction. If we suppose that the origin is at the closed 
end, the general solution is by (7) § 255, 

<p = {Al cos nf + Bt sin nf) cos KXX 

+ (A2 cos n2t + B2 sin n2t) cos K2X 

+ '· (1)' 

where KR = 2R ~ 1 j , nr = a/cr, and Av Bx, A3, B2... are arbitrary 

•constants. 
Since is to be zero initially for all values of x, the coeffi

cients B must vanish; the coefficients A are to be determined 
by the condition that for all values of x between 0 and I, 

%KTArwa.Krx = - u t (2), 

where the summation extends to all integral values of r from 
1 to co. The determination of the coefficients A from (2) is 
effected in the usual way. Multiplying by sin Kjn^tfrm^^n^-

grating from 0 to I, we get 

r 

— -
The complete solution is therefore 

, 2u0 „»"=-"00 cos K x 
</> = - X S r = i — c o s n, * .XI ) . 

259. In the case of a tube stopped at the origin and open at 
x = I, let 4> = cos nt be the value of the potential at the open end 
due to an external source of sound. Determining P and 8 in 
equation (7) § 255, we find 

, cos KX 
<}3 = c ^ d c o s n t CO-

i t appears that the vibration within the tube is a minimum 
when cos KI = ± 1 , that is when I is a multiple of £ \ , in which case 

R. II. 4 
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50 FORCED VIBRATION. [259. 

there is a node at x=l. When I is an odd multiple of JX, cos d 
vanishes, and then according to (1) the motion would become 
infinite. In this case the supposition that the pressure at the 
open end is independent of what happens within the tube breaks 
down; and we can only infer that the vibration is very large, in 
consequence of the isochronism. Since there is a node at x = 0, 
there must be a loop when x is an odd multiple of \ X, and we 
conclude that in the case of isochronism the variation of pressure 
at the open end of the tube due to the external cause is exactly 
neutralised by the variation of pressure due to the motion within 
the tube itself. If there were really at the open end a variation 
of pressure on the whole, the motion must increase without limit 
in the absence of dissipative forces. 

If we suppose that the origin is a loop instead of a node, the 
solution is 

, smicx / c n 

* = s - r a c o s , ? * ( 2 ) -
where A = cos tit is the given value of A at the open end x = I . 
In this case the expression becomes infinite, when KI = mir, or 
I = \ mk. 

We will next consider the ease of a tube, whose ends are both 
open and exposed to disturbances of the same period, making A 
equal to Heint, Keint respectively. Unless the disturbances at the 
ends are in the same phase, one at least of the coefficients H, K 
must be complex. 

Taking the first form in (3) § 255, we have as the general 
expression for A 

A = eint ( A cos KX + JB sin KX). 

If we take the origin in the middle of the tube, and assume that 
the values Heint, Keint correspond respectively to x = l, x = -l, 
we get to determine A ' and B , 

H = A cos KI + B sin K I , 

K = A cos KI — B sin d, 
whence 

giving 
A = H ± K _ ^ B = * ^ (3), 

2 cos tel' 2 sin/cï 

j _ I N T H sin K (I + x) + K sin K (I - x) 
sin 2KI ^ ' 
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259.] BOTH ENDS OPEN. 51 

This result might also be, deduced from (2), if we consider that 
the required motion arises from the superposition of the motion, 
which is due to the disturbance Heint calculated on the hypothesis 
that the other end x — — l is a loop, on the motion, which is 
due to Keint on the hypothesis that the end x = I is a loop. 

The vibration expressed by (4) cannot be stationary, unless the 
ratio H : K be real, that is unless the disturbances at the ends be 
in similar, or in opposite, phases. Hence, except in the cases 
reserved, there is no loop anywhere, and therefore no place at 
which a branch tube can be connected along which sound will not 
be propagated1. 

At the middle of the tube, for which x = 0, 

shewing that the variation of pressure (proportional to <b) vanishes 
if H + K= 0, that is, if the disturbances at the ends be equal and 
in opposite phases. Unless this condition he satisfied, the expres
sion becomes infinite, when 21 = | (2m +1) X. 

At a point distant J \ from the middle of the tube the 
expression for <j> is · 

' - f s ^ (6)' 
vanishing when 11= K, that is, when the disturbances at the. ends 
are equal and in the same phase. In general <b becomes infinite, 
when sin KI = 0, or 21 = m\. 

If at one end of an unlimited tube there be a variation of 
pressure due to an external source, a train of progressive waves 
will be propagated inwards from that end. Thus, if the length 
along the tube measured from the open end be y, the velocity-
potential is expressed by <h = cos (nt — n | ^ , corresponding to 

1 An arrangement of this land has been proposed by Prof. Mayer (Phil. Mag. 
XLV. p. 90, 1873) for comparing the intensities of sources of sound of the same 
pitch. Each end of the tube is exposed to the action of one of the sources to be 
compared, and the distances are adjusted until the amplitudes of the vibrations 
denoted by H and K are equal. The branch tube is led to a manometric capsule 
(§ 262), and the method assumes that by varying the point of junction the disturb
ance of the flame can be stopped. From the discussion in the text it appears that 
this assumption is not theoretically correct. 

4—2 
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52 FORCED VIBRATION OE PISTON. [259. 

= eos nt at y = 0; so that, if the cause of the disturbance within 
the tube be the passage of a train of progressive waves across the 
open end, the intensity within the tube will be the same as in the 
space outside. It must not be forgotten that the diameter of the 
tube is supposed to be infinitely small in comparison with the 
length of a wave. 

Let us next suppose that the source of the motion is within the 
tube itself, due for example to the inexorable motion of a piston 
at the origin1. The constants in (5) § 255 are to be determined 

by the conditions that when x = 0, ^ = cos nt (say), and that, 

when x = l, <f> = 0. Thus KA = — tan KI, K B = 1, and the ex
pression for r/> is 

^
sin K ( X — I ) = ^—i— (7). 

K cos Kl 

The motion is a minimum, when cos icl = ±l, that is, when the 
length of the tube is a multiple of J X . . 

When I is an odd multiple of ¿ X , the place occupied by the 
piston would be a node, if the open end were really a loop, but in 
this case the solution fails. The escape of energy from the tube 
prevents the energy from accumulating beyond a certain point; 
but no account can be taken of this so long as the open end is 
treated rigorously as a loop. We shall resume the question of 
resonance after we have considered in greater detail the theory of 
the open end, when we shall be able to deal with it more satis
factorily. 

In like manner if the point x = I be a node, instead of a loop, 
the expression for <p is 

C O S J ^ ) 
T K s i n KL . 

and thus the motion is a minimum when I is an odd multiple of J X , 
in which case the origin is a loop. When I is an even multiple of 
¿ X , the origin should be a node, which is forbidden by the condi
tions of the question. In this case according to (8) the motion 
becomes infinite, which means that in the absence of dissipative 
forces the vibration would increase without limit. 

1 These problems are considered by Poisson, M4m. de Vlnstitut, t. n. p. 305. 
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260. The experimental investigation of aerial waves within 
pipes has been effected with considerable success by M. Kundt1. 
To generate waves is easy enough; but it is not so easy to invent a 
method by which they can be effectually examined. M. Kundt 
discovered that the nodes of stationary waves can be made evident 
by dust. A little fine sand or lycopodium seed, shaken over the 
interior of a glass tube containing a vibrating column of air, 
disposes itself in recurring patterns,, by means of which it is easy 
to determine the positions of the nodes and to measure the 
intervals between them. In Kundt's experiments the origin of 
the sound was- in. the longitudinal vibration of a glass tube called 
the sounding-tube, and the dust-figures were formed in a second 
and larger tube, called the wave-tube, the latter being provided 
with a moveable stopper for the purpose of adjusting its length. 
The other end of the wave-tube was fitted with a cork through 
which the sounding-tube passed half way.. By suitable friction 
the sounding-tube was caused to vibrate in its gravest mode, so 
that the central point was nodal, and its- interior extremity (closed 
with a cork) excited aerial vibrations in the wave-tube. By means 
of the stopper the length of the column of air could'be adjusted so 
as to make the vibrations as vigorous as possible, which happens 
when the interval between the stopper and the end of the 
sounding-tube is a multiple of half the wave-length of the 
sound. 

With this apparatus Kundt was able to compare the wave
lengths of the same sound in various gases, from which the rela
tive velocities of propagation are at once deducihle, but the results 
were not entirely satisfactory. It was found that the intervals 
of recurrence of the dust-patterns were not strictly equal, and, 
what was worse, that the pitch of the sound was not constant 
from one experiment to another. These defects were traced to a 
communication of motion to the wave-tube through the cork, by 
which the dust-figures were disturbed, and" the pitch made irregular 
in consequence of unavoidable variations in the mounting of the 
apparatus. To obviate them, Kundt replaced the cork, which 
formed too stiff a connection between the tubes, by layers of sheet 
indiarubber tied round with silk, obtaining in this way a flexible 
and perfectly air-tight joint; and in order to avoid any risk of the 
comparison of wave-lengths being vitiated by an alteration of pitch, 

1 Fogg. Ann. t. cxxxv. p. 337. 1868. 
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the apparatus was modified so as to make it possible to excite 
the two systems of dust-figures simultaneously and in response to 
the same sound. A collateral advantage of the new method con
sisted in the elimination of. temperature-corrections. 

In the improved "Double Apparatus" the sounding-tube was 
caused to vibrate in its second mode by friction applied near 
the middle; and thus the nodes were formed at the points distant 
from the ends by one-fourth of the length of the tube. At each 
of these points connection was made with an independent wave-
tube, provided with an adjustable stopper, and with branch tubes 
and stop-cocks suitable for admitting the various gases to be 
experimented upon. It'is evident that dust-figures formed in the 
two tubes correspond rigorously to the-same pitch, and that there
fore a comparison of the intervals of recurrence leads to a correct 
determination of the velocities of propagation, under the circum
stances of the experiment, for the two gases with which the tubes 
are filled. 

The results at which Kundt arrived were as follows:— 
(a) The velocity of sound in a tube diminishes with the 

diameter. Above a certain diameter, however, the change is not 
perceptible. 

(b) The diminution of velocity increases with the wave
length of the tone employed. 

(c) Powder, scattered in a tube, diminishes the velocity of 
sound in narrow tubes, but in wide ones is without effect. 

(d) In narrow tubes the effect of powder increases, when 
it is very finely divided, and is strongly agitated in consequence. 

(e) Roughening the interior of a narrow tube, or increasing 
its surface, diminishes the velocity. 

( / ) In wide tubes these changes of velocity are of no im
portance, so that the method may be used in spite of them for 
exact determinations. 

(g) The influence of the intensity of sound on the velocity 
cannot be proved. 

Qi) "With the exception of the first, the wave-lengths of a 
tone as shewn by dust are not affected by the mode of excitation. 

(i) In wide tubes the velocity is independent of pressure, 
but in small tubes the velocity increases with the pressure. 
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(j) All the observed changes in the velocity were due to 
'friction, and especially to exchange of heat between the air and 
the sides of the tube. 

(Jc) The velocity of sound at 100° agrees exactly with that 
given by theory1. 

We shall return to the question of the propagation of sound in 
narrow tubes as affected by the causes mentioned above (j), and 
shall then investigate the formulas given by Helmholtz and 
Kirchhoff. 

261. In the experiments described in the preceding section the 
aerial vibrations are forced, the pitch being determined by the 
external source, and not (in any appreciable degree) by the length 
of the column of air. Indeed, strictly speaking, all sustained 
vibrations are forced, as it is not in the power of free vibrations 
to maintain themselves, except in the ideal case when there is 
absolutely no friction. Nevertheless there is an important prac
tical distinction between the vibrations of a column of air as 
excited by a longitudinally vibrating rod or by a tuning-fork, and 
such vibrations as those of the' organ-pipe or chemical harmonicon. 
In the latter cases the pitch of the sound depends principally on 
the length of the aerial column, the function of the wind or of the 
flame2 being merely to restore the energy lost by friction and by 
communication to the external air. The air in an organ-pipe is to 
be considered as a column swinging almost freely, the lower end, 
across which the wind sweeps, being treated roughly as open, and 
the upper end as closed, or open, as the case may be. Thus the 
wave-length of the principal tone of a stopped pipe is four times 
the length of the pipe; and, except at the extremities, there is 
neither-node nor loop. The overtones of the pipe are the odd 
harmonics, twelfth, higher third, &c, corresponding to the various 
subdivisions of the column of air. In the case of the twelfth, for 
example, there is a node at the point of trisection nearest to the 

1 From some expressions in the memoir already cited, from which the notice 
in the text is principally derived, M. Kundt appears to have contemplated a con
tinuation of his investigations; hut I am unable to find any later publication on 
the subject. 

2 The subject of sensitive flames with and without pipes is treated in con
siderable detail by Prof. Tyndall in his work on Sound; but the mechanics of 

• this class of phenomena is still very imperfectly understood. We shall return to 
it in a subsequent chapter. 
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open end, and a loop at the other point of trisection midway 
between the first and the stopped end of the pipe. 

In the case of the open organ-pipe both ends are loops, and 
there must be at least one internal node. The wave-length of the 
principal tone is twice the length of the pipe, which is divided 
into two similar parts by a node in the middle. From this we see 
the foundation of the ordinary rule that the pitch of an open pipe 
is the same as that of a stopped pipe of half its length. For reasons 
to be more fully explained in a subsequent chapter, connected 
with our present imperfect treatment of the open end, the rule is 
only approximately correct. The open pipe, differing in this re
spect from the stopped pipe, is capable of sounding the whole series 
of tones forming the harmonic scale founded upon its principal 
tone. In the case of the octave there is a loop at the centre of the 
pipe and nodes at the points midway between the centre and the 
extremities. 

Since the frequency of the vibration in a pipe is proportional 
to the velocity of propagation of sound in the gas with which the 
pipe is filled, the comparison of the pitches of the notes obtained 
from the same pipe in different gases is an obvious method of 
determining the velocity of propagation, in cases where the impos
sibility of obtaining a sufficiently long column of the gas precludes 
the use of the direct method. In this application Chladni with his 
usual sagacity led the way. The subject was resumed at a later 
date by Dulong1, and by Wertheim2, who obtained fairly satisfac
tory results. 

2G2. The condition of the air in the interior of an organ-pipe 
was investigated experimentally by Savart", who lowered into the 
pipe a small stretched membrane on which a little sand was 
scattered. In the neighbourhood of a node the sand remained 
sensibly undisturbed, but, as a loop was approached, it danced with 
more and more vigour. But by far the most striking form of the 
experiment is that invented by König. In this method the vibra
tion is indicated by a small gas flame, fed through a tube which 
is in communication with a cavity called a manometric capsule. 

1 Rechprches sur les clialeurs spficifiques des fluides ^lfistiques. Ann. d. Chim., 
t. XLI. p. 113. 

s Ann. de Chim., 3 i e m o Serie, t. x x n . p. 434. 
3 Ann. de Chim., t. xxiv. p. 56. 1823. 
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This cavity is bounded on one side by a membrane on which 
the vibrating air acts. As the membrane vibrates, rendering the 
capacity of the capsule variable, the supply of gas becomes un
steady and the flame intermittent. The period is of course too 
small for the intermittence to manifest itself as such when the 
flame is looked at steadily. By shaking the head, or with the aid 
of a moveable mirror, the resolution into more or less detached 
images may be effected; but even without resolution the altered 
character of the flame is evident from its general appearance. In 
the application to organ-pipes, one or more capsules are mounted 
on a pipe in such a manner that the membranes are in contact 
with the vibrating column of air; and* the difference in the flame 
is very marked, according as the associated capsule is situated at 
a node or at a loop. 

263. Hitherto we have supposed the pipe to be straight, but 
it will readily be anticipated that, when the cross section is small 
and does not vary in area, straightness is not a matter of impor
tance. Conceive a curved axis of x running along the middle of 
the pipe, and let the constant section perpendicular to this axis 
be 8. When the greatest diameter of 8 is very small in comparison 
with the wave-length of the sound, the velocity-potential 
becomes nearly invariable over the section; applying Green's 
theorem to the space bounded by the interior of the pipe and by 
two cross sections, we get 

and in the limit, when the distance between the sections is made 
to vanish, 

Now by the general equation of motion 

f f f l f f f l c P f f f 8 d? [ 

so that 
d?<p _ 2 (f<f> 
df ~ a dx* (1), 

shewing that <f> depends upon x in the same way as if the pipe 
were straight. By means of equation (1) the vibrations of air in 
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curved pipes of uniform section may be easily investigated, and the 
results are the rigorous consequences of our fundamental equations 
(which take no account of friction), when the section is supposed to 
be infinitely small. In the case of thin tubes such as would be 
used in experiment, they suffice-at any rate to give a very good 
representation of what actually happens. 

264. We now pass on to the consideration of certain cases of 
connected tubes. In the accompanying figure AD represents a 
thin pipe, which divides at D into two branches DB, DO. At E 
the branches reunite and form a single tube EF. The sections 
of the single tubes and of the branches are assumed to be uniform 
as well as very small. 

Fig. 55. 

In the first instance let us suppose that a positive wave of 
arbitrary type is advancing in A. On its arrival at the fork D, it 
will give rise to positive waves in B and C, and, unless a certain 
condition be satisfied, to a negative reflected wave in A. Let the 
potential of the positive waves be denoted hyfA)fB,fa, / being in 
each case a function of x — at; and let the reflected wave be 
F(x + at). Then the conditions to be satisfied at D are first that 
the pressures shall be the same for the three pipes, and secondly 
that the whole velocity of the fluid in A shall be equal to the sum 
of the whole velocities of the fluid in B and G. Thus, using 
A, B, G to denote the areas of the sections, we have, § 244, 

whence 
p,_B+ C-A , 

"B+G+A^' 
2A 

•(2), 

.(3)\ 

1 These formulas, as applied to determine the reflectod and refracted waves 
at the junction of two tubes of sections B + C, and A respectively, are given by 
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It appears that/), and fc are always the same. There is no reflec
tion, if 

B + G = A (4), 
that is, if the combined sections of the branches be equal to the 
section of the trunk; and, when this condition is satisfied, 

· (5)· 
The wave then advances in B and G exactly as it would have 
done in A, had there been no break. If the lengths of the 
branches between D and E be equal, and the section of F be equal 
to that of A, the waves on arrival at E combine into a wave pro
pagated along F, and again there is no reflection. The. division 
of the tube has thus been absolutely without effect; and since the 
same would be true for a negative wave passing from F to A> 
we may conclude generally that a tube may be divided into two, 
or more, branches, all of the same length, without in any way 
influencing the law of aerial vibration, provided that the whole 
section remain constant. If the lengths of the branches from D 
to E be unequal, the result is' different. Besides the positive wave 
in F, there will be in general negative reflected waves in B and G. 
The most interesting case is when the wave is of harmonic type 
and one of the branches is longer than the other by a multiple of 
£ X. If the difference be an even multiple of \ X, the result will be 
the same as if the branches were of equal length, and no reflection 
will ensue. But suppose that, while B and G are equal in section, 
one of them is longer than the other by an odd multiple of ^X. 
Since the waves arrive at E in opposite phases, it follows from 
symmetry that the positive wave in i^must vanish, and that the 
pressure at E, which is necessarily the same for all the tubes, 
must be constant. The waves in B and G are thus reflected as 
from an open end. That the conditions of the question are thus 
satisfied may also be seen by supposing a barrier taken across the 
tube F in the neighbourhood of E in such a way that the tubes 
B and G communicate without a change of section. The wave in 
each tube will then pass on into the other without interruption, 
and the pressure-variation at E, being the resultant of equal and 
opposite components, will vanish. This being so, the barrier may 
be removed without altering the conditions, and no wave will be' 
propagated along F, whatever its section may be. The arrange-

Poisson, M&m, d. Vlnstitut, t. n . p. 305. The reader will not forget that both 
diameters must be small in comparison with the wave-length. 
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merit now under consideration was invented by Herschel, and has 
been employed by Quincke and others for experimental purposes,— 
an application that we shall afterwards have occasion to describe. 
The phenomenon itself is often referred to as an example of inter
ference, to which there can be no objection, but the same cannot 
be said when the reader is led to suppose that the positive waves 
neutralise each other in F, and that there the matter ends. It must 
never be forgotten that there is no loss of energy in interference, 
but only a different distribution; when energy is diverted from 
one place, it reappears in another. In the present case the positive 
wave in A conveys energy with it. If there is no wave along F, 
there are two possible alternatives. Either energy accumulates 
in- the branches, or- else it passes back along A in the form of a 
negative wave. In order to see what really happens, let us trace 
the progress of the waves reflected back at E. 

These waves are equal in magnitude and start from E in 
opposite phases; in the passage from E to D one has to travel 
a greater distance than the other by an odd multiple of |A , ; and 
therefore on arrival at D they will be in complete accordance. 
Under these circumstances they combine into a single wave, which 
travels negatively along A, and there is no reflection. When the 
negative wave reaches the end of the tube A, or is otherwise dis
turbed in its course, the whole or a part may be reflected, and then 
the process is repeated. But however often this may happen there 
will be no wave along F, unless by accumulation in consequence of 
a coincidence of periods, the vibration in the branches become so 
great that a small fraction of it can no longer be neglected. 

Pig. 56. 

•El 

U 
Or we may reason thus, Suppose the tube F cut off by a 
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barrier as before. The motion in the ring being due to forces 
acting at D is necessarily symmetrical with respect to D, and D'— 
the point which divides DBCB into equal parts. Hence D' is a 
node, and the vibration is stationary. This being the case, at a 
point E distant \ \ from D' on either side, there must be a loop; 
and if the barrier be removed there will still be no tendency to 
produce vibration in F. If the perimeter of the ring be a multiple 
of X, there may be vibration within it of the period in question, 
independently of any lateral openings. 

Any combination of connected tubes maybe treated in a similar 
manner. The general principle is that at .any junction a space 
can be taken large enough to include all the region through which 

Fig. 57. 

the want of uniformity affects the law of the waves, and yet so small 
that its longest dimension may be neglected in comparison with X. 
Under these circumstances the fluid within the space in question 
may be treated as if the wave-length were infinite, or the fluid 
itself incompressible, in which case its velocity-potential would 
satisfy v*^ = 0, following the same laws as electricity. 

265. When the section of a pipe is variable, the problem of the 
vibrations of air within it cannot generally be solved. The case 
of conical pipes will be treated on a future page. At present we 
will investigate an approximate expression for the pitch of a nearly 
cylindrical pipe, taking first the case where both ends are closed. 
The method that will be employed is similar to that used for a string 
whose density is not quite constant, §§ 91, 140, depending on the 
principle that the period of a free vibration fulfils the stationary 
condition, and may therefore be calculated from the potential and 
kinetic energies of any hypothetical motion not departing far from 
the actual type. In accordance with this plan we shall assume that 
the velocity normal to any section 8 is constant over the section, 
as must be very nearly the case when the variation of 8 is slow. 
Let X represent the total transfer of fluid at time t across the 
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section at x, reckoned from the equilibrium condition ; then X 
represents the total velocity of the current, and X-i-S represents 
the actual velocity of the particles of fluid, so that the kinetic 
energy of the motion within the tube is expressed by 

T=yj^.dx ( i ) . 

The potential energy § 245 (12) is expressed in general by 

r^ictpjjjfdv, 
or, since dV=8dx, by 

V-Wpjsfdœ (2). 
Again, by the condition of continuity, 

and thus 

1 dX 

If we now assume for X an expression of the same form as 
would obtain, if S were constant, viz. 

X = sin ̂  cos nt (5), 

we obtain from the values of T and F i n (1) and (4), 

„ oV a fl , TT'X dx fl . „ irx dx 

" - T - J . 0 0 8 T-ti+lrT-s(6)' 
or, if we write S = S0 + AS and neglect the square of AS, 

, a V f , „ Cl ZTTxASdx) ,~ 

" — r i 1 - 2 y , C 0 " r ^ T j w -
The result may be expi'essed conveniently in terms of Al, the cor
rection that must be made to I in order that the pitch may be 
calculated from the ordinary formula, as if S were constant. For 
the value of AI we have 

Al = I cos — j — Q - d x (8). 
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The effect of a variation of section is greatest near a node or near 
a loop. An enlargement of section in the first case lowers the 
pitch, and in the second case raises it. At the points midway 
between the nodes and loops a slight variation of section is without 
effect. The pitch is thus decidedly altered by an enlargement or 
contraction near the middle of the tube, but the influence of a 
slight conicality would be much less. 

The expression for Al in (8) is applicable as it stands to the 
gravest tone only; but we may apply it to the m t h tone of the har
monic scale, if we modify it by the substitution of cos ^'m^ r x. 
- 2irx ior cos —j— . 

In the case of a tube open at both ends (5) is replaced by 

X = cos -j- cos nt...: (9), 

which leads to . 
A 7 [l 2ttx AS 7 Al = - cos —j Q-dx (10), 

Jo l> o„ 

instead of (8). The pitch of the sound is now raised by an 
enlargement at the ends, or by a contraction at the middle, of the 
tube; and, as before, it is unaffected by a slight general conicality 
(§ 281). 

0 

266. The case of progressive waves moving in a tube of vari
able section is also interesting. In its general form the problem 
would be one of great difficulty; but where the change of section 
is very gradual, so that no considerable alteration occurs within a 
distance of a great many wave-lengths, the principle of energy 
will guide us to an approximate solution. It is not difficult to see 
that in the case supposed there will be no sensible reflection of the 
wave at any part of its course, and that therefore the energy of the 
motion must remain unchanged1. Now we know, § 245, that for 
a given area of wave-front, the energy of a train of simple waves 
is as the square of the amplitude, from which it follows that as 
the waves advance the amplitude of vibration varies inversely as 
the square root of the section of the tube. In all other respects the 
type of vibration remains absolutely unchanged. From these re
sults we may get a general idea of the action of an ear-trumpet. 

1 Phil. Mag. (5) i. p. 261. 

IRIS - LILLIAD - Université Lille 1 



64 V A R I A B L E DENSITY. [266. 

It appears that according to the ordinary approximate equations, 
there is no limit to the concentration of sound producible in. a 
tube of gradually diminishing section. 

The same method is applicable, when the density of the 
medium varies slowly from point to point. For example, the 
amplitude of a sound-wave moving upwards in the atmosphere 
may be determined by the condition that the energy remains 
ilnchanged. From § 245 it appears that the amplitude is in
versely as the square root of the density1. 

1 A delicate question arises as to the ultimate fate of sonorous waves propagated . 
upwards. It should be remarked that in rare air the deadening influence of viscosity 
is much increased. 
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CHAPTER XIII. 

SPECIAL PROBLEMS. REFLECTION A N D REFRACTION OF 

PLANE WAVES. 

267. BEFORE undertaking the discussion of the general equa
tions for aerial vibrations we may conveniently turn our attention 
to a few special problems, relating principally to motion in two 
dimensions, which are susceptible of rigorous and yet compara
tively simple solution. In this way the reader, to whom the 
subject is new, will acquire some familiarity with the ideas and 
methods employed before attacking more formidable difficulties. 

In the previous chapter (§ 255) we investigated the vibrations in 
one dimension, which may take place parallel to the axis of a tube, 
of which both ends are closed. We will now inquire what vibrations 
are possible within a closed rectangular box, dispensing with the 
restriction that the motion is to be in one dimension only. For 
each simple vibration, of which the system is capable, $ varies as 
a circular function of the time, say cos icat, where it is some 
constant; hence <f> = — K'O^, and therefore by the general differen
tial equation (9) § 244 

V'0 + «ty = O (1). 

Equation (1) must be satisfied throughout the whole of the 
included volume. The surface condition to be satisfied over the 
six sides of the box is simply 

S " m 
where dn represents an element of the normal to the surface. It 
is only for special values of K that it is possible to satisfy (1) and 
(2) simultaneously. 

R. II. 5 

IRIS - LILLIAD - Université Lille 1 



66 A E R I A L V I B R A T I O N S [267. 

Taking three edges which meet as axes of rectangular co-ordi
nates, and supposing that the lengths of the edges are respectively 
a> A 7> we know (§ 255) that 

^ = c o s ^ p ^ , 6 = cos(q~^j, 6 = cos(r™y 

where p, q, r are integers, are particidar solutions of the problem. 
By any of these forms equation (2) is satisfied, and provided 

that « be equal to p ^, q ^ , or r ^ , as the case may be, (1) is also 

satisfied. It is equally evident that' the boundary equation (2) is 
satisfied over all the surface by the form 

6 = cos (p™^} cos (q^ cos (r^j (S), 

a form which also satisfies (1), if K be taken such that 

where as before p, q, r are integers. 

The general solution, obtained by compounding all particular1 

solutions included under (3), is 

A ·= 2 2 2 (A cos icat + B sin icat) 

x cos (p7^} cos (q^ cos [r^j (5), 

in which A and B are arbitrary constants, and the summation is 
extended to all integral values of p, q, r. 

This solution is sufficiently general to cover the case of any 
initial state of things within the box, not involving molecular 
rotation. The initial distribution of velocities depends upon the 
initial value of A, or /(«„(&*; + vQdy + w0dz), and by Fourier's 
theorem can be represented by (5), suitable values being ascribed 
to the coefficients A. In like manner an arbitrary initial distribu
tion of condensation (or rarefaction), depending on the initial 
value of <f>, can be represented by ascribing suitable values to the 
coefficients B. 

The investigation might be presented somewhat differently 
by commencing with assuming in accordance with Fourier's 
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theorem that the general value of <j> at time t can be expressed in 
the form 

<b = 2 S % C cos (p ™j cos (qr cos (r ""^ , 

in which the coefficients G may depend upon t, but not upon 
x, y, z. The expressions for T and V would then be formed, and 
shewn to involve only the squares of the coefficients G, and from 
these expressions would follow the normal equations of motion 
connecting each normal co-ordinate C with the time. 

The gravest mode of vibration is that in which the entire 
motion is parallel to the longest dimension of the box, and there 
is no internal node. Thus, if a be the greatest of the three sides 
a, B, y, we are to take p = 1, q = 0, r = 0. 

In the case of a cubical box, <x = 8=y, and then instead of 
(4) we have 

"2=V(i>2 + 2 2 + 0 (6), 
or, if X be the wave-length of plane waves of the same period, 

X = 2 a - v V + 2 2 + 0 (7). 
For the gravest mode p = 1, q = 0, r = 0, or p = 0, q = 1, r = 0, &c, 
and X = 2a. The next gravest is when p = 1, q = 1, r = 0, &c, and 

2 
then X = /y/2 a. When p = 1, q = I, r = 1, X = a. For the 
fourth gravest mode p = 2, q=0, r= 0, &c, and then X = 4x. 

As in the case of the membrane (§ 197), when two or more 
primitive modes have- the same period of vibration, other modes 
of like period may be derived by composition. 

The trebly infinite series of possible simple component vibra
tions is not necessarily completely represented in particular cases of 
compound vibrations. If, for example, we suppose the contents of 
the box in its initial condition to be neither condensed nor rarefied 
in any part, and to have a uniform velocity, whose components 
parallel to the axes of co-ordinates are respectively u0, v0, w0, 
no simple vibrations are generated for which more than one of 
the three numbers p, q, r is finite. In fact each component initial 
velocity may be considered separately, and the problem is similar 
to that solved in § 258. 

- 5 — 2 
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68 NOTES OE NARROW PASSAGES. [267, 

In future chapters we shall meet with other examples of the 
vibrations of air within completely closed vessels. 

Some of the natural notes of the air contained within a room 
may generally be detected on singing the scale. Probably it is 
somewhat in this way that blind people are able to estimate the 
size of rooms1. 

In long and narrow passages the vibrations parallel to the 
length are too slow to affect; the ear, but notes due to transverse 
vibrations may often be heard. The relative proportions of the 
various overtones depend upon the place at which the disturbance 
is created2. 

In some cases of this kind the pitch of the vibrations, whose 
direction is principally transverse, is influenced by the occurrence 
of longitudinal motion. Suppose, for example, in (3) and (4), that 
q = 1, r = 0, and that a is much greater than ß. For the principal 
transverse vibration p = 0, and K — ir-i-ß. But besides this there 
are other modes of vibration in which the motion is principally 
transverse, obtained by ascribing to p small integral values. Thus, 
when p = 1, 

shewing that the pitch is nearly the same as before8. 

268. If we suppose 7 to become infinitely great, the box of 
the preceding section is transformed into an infinite rectangular 
tube, whose sides are a and ß. Whatever may be the motion of 
the air within this tube, its velocity-potential may be expressed 
by Fourier's theorem in the series 

f - S S ^ c o B ^ c o s * ? (1). 

1 A remarkable instance is quoted in Young's Natural Philosophy, ti. p. 272, 
from Darwin's Zoonomia, 11. 487. " The late blind Justice Fielding walked for the 
first time into my room, when he once visited me, and after speaking a few words 
said, ' This room is about 22 feet long, 18 wide, and 12 h igh 4 ; all which he guessed 
by the ear with great accuracy." 

a Oppel, Die harmonischen Oberlöne des durch parallele Wände erregten Jle-
flexionstones. Fortschritte der Physik, xx» p. 130. 

3 There is an underground passage in m y house in which it is possible, by 
singing the right note, to excite free vibrations of many seconds' duration, and it 
often happens that the resonant note is affected with distinct beats. The breadth 
of the passage is about 4 feet, and the height about CJ feet. 
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where the coefficients A are independent of x and y. By the use 
of this form we secure the fulfilment of the boundary condition 
that there is to be no velocity across the sides of the tube ; the 
nature of A as a function of z and t depends upon the other 
conditions of the problem. 

Let us consider the case in which the motion at every point is 
harmonic, and due to a normal motion imposed upon a harrier 
stretching across the tube at z == 0. Assuming to be proportional 
to eUat

 at all points, we have the usual differential equation 

3 + g + 3 + * - » » 
which by the conjugate property of the functions must he satisfied 
separately by each term of (1), Thus to determine AP1 as a 
function of z, we get 

^ + p-^g + | ) ] ^ = 0 (3). 

The solution of this equation differs in form according to the sign 
of the coefficient oî AM. When^? and q are both zero, the coeffi
cient is necessarily positive, but as p and q increase the coefficient 
changes sign. If the coefficient be positive and be called /J?, 
the general value of Apl may be written 

AK =Bt!ei(Kat+^+ C^eW-i"* (4), 
where, as the factor é*at is expressed, JB , Opq are absolute 
constants. However, the first term in (4) expresses a motion 
propagated in the negative direction, which is excluded by the 
conditions of the problem, and thus we are to take simply as the 
term corresponding to p, q, 

6 = C„ c o s ^ ^ cos ^ eH*<a-pzi 
pq a B 

In this oxpression CPJ may be complex ; passing to real quantities 
and taking two new real arbitrary constants, we obtain 

$ = \Pptcos
 (Ka^~/**) + EMsin - cos^j^ cos ^—...(5). 

We have now to consider the form of the solution in cases 
where the coefficient of AM in (3) is negative. If we call it — VS, 
the solution corresponding to (4) is 

A„ = é**{BMe"+ a„e—) (6), 
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of which the first term is to be rejected as becoming infinite with z. 
We thus obtain corresponding to (5) 

(p = e~vz [D^ cos icat + EM sin teat] cos cos (7). 

The solution obtained by combining all the particular solutions 
given by (5) and (7) is the general solution of the problem, and 

allows of a value of o v e r the section z — 0, arbitrary at every 

point in both amplitude and phase. 

At a great distance from the source the terms given in (7) 
become insensible, and the motion is represented by the terms of 
(5) alone. The effect of the terms involving high values of p and q 
is thus confined to the neighbourhood of the source, and at 
moderate distances any sudden variations or discontinuities in the 
motion at z = 0 are gradually eased off and obliterated. 

If we fix our attention on any particular simple mode of vibra
tion (for which p and q do not both vanish), and conceive the 
frequency of vibration to inorease from zero upwards, we see that 
the effect, at first confined to the neighbourhood of the source, 
gradually extends further and further, and after a certain value 
is passed, propagates itself to an infinite distance, the critical 
frequency being that of the two dimensional free vibrations of the 
corresponding mode. Below the critical point no work is required 
to maintain the motion; above it as much work must be done at 
z = 0 as is carried off to infinity in the same time. 

269. We will now examine the result of the composition of 
two trains of plane waves of harmonic type, whose amplitudes and 
wave-lengths are equal, but whose directions of propagation are 
inclined to one another at an angle 2a. The problem is one of 
two dimensions only, inasmuch as everything is the same in 
planes perpendicular to the lines of intersection of the two sets of 
wave-fronts. 

At any moment of time the positions of the planes of maximum 
condensation for each train of waves may be represented by pa
rallel lines drawn at equal intervals X on the plane of the paper, 
and these lines must be supposed to move with a velocity a in a 
direction perpendicular to their length. If both sets of lines be 
drawn, the paper will be divided into a system of equal parallelo-
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grams, which advance in the direction of one set of diagonals. At 
each comer of a parallelogram the condensation is doubled by the 
superposition of the two trains of waves, and in the centre of each 
parallelogram the rarefaction is a maximum for the same reason. 
On each diagonal there is therefore a series of maxima and minima 
condensations, advancing without change of relative position and 
with velocity a H- cos a. Between each adjacent pair of lines of 
maxima and minima there is a parallel line of zero condensation, 
on which the two trains of waves neutralize one another. It is 
especially remarkable that, if the wave-pattern were visible (like 
the corresponding water wave-pattern to which the whole of the 
preceding argument is applicable), it would appear to move for
wards without change of type in a direction different from that of 
either component train, and with a velocity different from that 
with which both component trains move. 

In order to express the result analytically, let us suppose that 
the two directions of propagation are equally inclined at an angle a 
to the axis of x. The condensations themselves may be denoted by 

cos — (a t — x cos a — y sin a) 

and cos -— (a t — x cos a + y sin a) 

respectively, and thus the expression for the resultant is 
27T , , - . . 27T , . » s = cos — (at — x cos OL — y sin a) + cos — (a t — x cos a + y sin a) 

X X 

= 2 cos^r (at-cc cosa) c o s ^ ( w sina) (1). 
A. A' 

It appears from (1) that the distribution of s on the plane xy 
advances parallel to the axis of x, unchanged in type, and with a 
uniform velocity a cos a. Considered as depending on y, $ is a 
maximum, when y sin a is equal to 0, X, 2X, 3X, &c, while for the 
intermediate values, viz. i X, f X, &c, s vanishes. 

If a = \ ir, so that the two trains of waves meet one another 
directly, the velocity of propagation parallel to x becomes infinite, 
and (1) assumes the form 

s = 2 cos atj cos ( 2)j 

which represents stationary waves. 
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72 . R E F L E C T I O N F R O M F I X E D W A L L . [269. 

The problem that we have just been considering is in reality 
the same as that of the reflection of a train of plane waves by an 
infinite plane wall. Since the expression on the right-hand side 
of equation (1) is an even function of y, s is symmetrical with 
respect to the axis of x, and consequently there is no motion 
across that axis. Under these circumstances it is evident that the 
motion could in no way be altered by the introduction along the 
axis of x of an absolutely immovable wall. If a be the angle 
between the surface and the direction of propagation of the inci
dent waves, the velocity with which the places of maximum con
densation (corresponding to the greatest elevation of water-waves) 
move along the wall is a cos a. It may be noticed that the aerial 
pressures have no tendency to move the wall as a whole, except in 
the case of absolutely perpendicular incidence, since they are at 
any moment as much negative as positive. 

270. So long as the medium which is the vehicle of sound con
tinues of unbroken uniformity, plane waves may be propagated in 
any direction with constant velocity and with type unchanged; but 
a disturbance ensues when the waves reach any part where the 
mechanical properties of the medium undergo a change. The 
general problem of the vibrations of a variable medium is probably 
quite beyond the grasp of our present mathematics, but many of 
the points of physical interest are raised in the case of plane 
waves. Let us suppose that the medium is uniform above and 
below a certain infinite plane (x = 0), but that in crossing that 
plane there is an abrupt variation in the mechanical properties on 
which the propagation of sound depends—namely the compressi
bility and the density. On the upper side of the plane (which for 
distinctness of conception we may suppose horizontal) a train of 
plane waves advances so as to meet it more or less obliquely; the 
problem is to determine the (refracted) wave which is propagated 
onwards within the second medium, and also that thrown back 
into the first medium, or reflected. We have in the first place 
to form the equations of motion and to express the boundary 
conditions. 

In the upper medium, if p be the natural density and s the 
condensation, 

density = p (1 + s), 

and pressure = P (1 + As), 
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where A is a coefficient depending on the compressibility, and P 
is the undisturbed pressure. In like manner in the lower medium 

density = pl(l + sj, 

pressure = P(1 + A1 s j , 

the undisturbed pressure being the same on both sides of x = 0· 
Taking the axis of z parallel to the line of intersection of the 
plane of the waves with the surface of separation x = 0, we have 
for the upper medium (§ 244), 

and D$+V*s = 0 (2), 

where V2 = FA + p (3). 

Similarly, in the lower medium, 

DE~yi[dx>+ DY*J - w ' 

and §& + V i \ = 0 (5), 

where V*^PAt*p1 (6). 

These equations must he satisfied at all points of the fluid. Further 
the boundary conditions require (a) that at all points of the 
surface of separation the velocities perpendicular to the surface 
must be the same for the two fluids, or 

» <0: 
(/3) that the pressures must be the same, whence A^ = As, or by 
(2), (3), (5) and (6), 

pdi (8). 

In order to represent a train of waves of harmonic type, we 
may assume 6 and c6, to be proportional to ei<-ax+iy+c(>, where 
ax + hy = const, gives the direction of the plane of the waves. If 
we assume for the incident wave, 

6 = 4'' ETTEZ+BV+CT) (9)} 
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the reflected and refracted waves may be represented respectively 
by 

(j) = (b'>ei(-a*+by+c{) (10), 

tb = <b1e%aix+iv+ct'> (11). 
The coefficient of t is necessarily the same in all three waves 
on account of the periodicity, and the coefficient of y must be the 
same, since the traces of all the waves on the plane of separation 
must move together. With regard to the coefficient of x, it ap
pears by substitution in the differential equations that its sign is 
changed in passing from the incident to the reflected wave; in 
fact 

c 2 = F 2 [ ( ± a ) a + 52] = V* [a* + 62] (12). 

Now J r \ / ( a , + &2) is the sine of the angle included between the 
axis of x and the normal to the plane of the waves—in optical 
language, the sine of the angle of incidence, and b -s- \l (a* + V) is in 
like manner the sine of the angle of refraction. If these angles 
be called 0, 0V (12) asserts that sin 0 : sin 0l is equal to the con
stant ratio V: Vv— the well-known law of sines. The laws of re
fraction and reflection follow simply from the fact that the velo
city of propagation normal to the wave-fronts is constant in each 
medium, that is to say, independent of the direction of the wave-
front, taken in connection with the equal velocities of the traces of 
all the waves on the plane of separation (V-¥ sin 0 = V1-¥ sin 0J. 
It remains to satisfy the boundary conditions (7) and (8). 

These give 

9{<b' + f') = P i * J 
whence 

**"-<$-%)* c * 
This completes the symbolical solution. If at (and be real, we 
see that if the incident wave be 

<b = cos (ax + by + ct), 

or in terms of V, X, and 0, 

27T ' 
0 = cos — (x cos 0 + y sin 6 + Vt) (15), 

(13), 
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the reflected wave is 

PJ cot 61 

= P cot g c o g 2TT ( _ X Q + Y S . N E + F < ) _ > ( 1 6 ) ) 

. COt A. 
0 + " p COt 0 

and the refracted wave is 

2 27r 
^ = p cotT C 0 S \ ~ ^ C 0 S &1 + y S i n 0 1 + V d •'•W' 

p cot 0 
The formula for the amplitude of the reflected wave, viz. 

£ t cot 6\ 

C ' - e - ^ f (is), 

/> cot 0 
is here obtained on the supposition that the waves are of harmonic 
type; but since it does not involve \ and there is no change of 
phase, it may be extended by Fourier's theorem to waves of any 
type whatever. 

If there be no reflected wave, cot 0t : cot 6 = pt: p, from which 
and (1 + cot2 0J : (1 + cot2 0) = F 2 : V*, we deduce 

( e l H 
\p* V*) 

^cot 20 = ^ - - l (19), 
"l 

which shews that, provided the refractive index V1 : V be inter
mediate in value between unity and p : plt there is always an 
angle of incidence at which the wave is completely intromitted; 
but otherwise there is no such angle. 

Since (18) is not altered (except as to sign) by an interchange 
of 0, 6l; p, Pi', &c., we infer that a wave incident in the second 
medium at an angle 9% is reflected in the same proportion as a 
wave incident in the first medium at an angle 0, 

As a numerical example let us suppose that the upper medium 
is air at atmospheric pressure, and the lower medium water. 
Substituting for cot 9X its value in terms of 0 and the refractive 
index, we get 

c o t f l ^ V 

cot 0. V' 
77x A / 1 - - l ) tan2 0. (20), 
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or, since V1 : V = 4 -3 approximately, 

^ - 4 = -23 V ( l - l 7 - 5 tansr?), cot 0 v ' 

which shews that the ratio of cotangents diminishes to zero, as 0 
increases from zero to about 13°, after which it becomes imaginary, 
indicating total reflection, as we shall see presently. It must be 
remembered that in applying optical terms to acoustics, it is the 
water that must be conceived to be the 'rare' medium. The ratio 
of densities is about 770 : 1; so that 

<ft" ^ 1 - -0003 Jl -17-5 tan' 0 
<?' = 1 + -0003 Jl - 17-5 tan2 0 

= 1 - -0006 Jl - 1 7 ' 5 tan2 0 very nearly. 

Even at perpendicular incidence the reflection is sensibly perfect. 

If both media be gaseous, Ax = A, if the temperature be con
stant; and even if the development of heat by compression be 
taken into account, there will be no sensible difference between 
A and Ax in the case of the simple gases. Now, if AX = A, 
Pj : p = sin* 0 : sin2 0X, and the formula for the intensity of the 
reflected wave becomes 

<ft" _ sin 29 - sin 20x _ tan (8 - 6X) 
<p' ~ sin 20 + sin 20x ~ tan (0 + 6 » j ( 2 1 ) ' 

coinciding with that given by Fresnel for light polarized perpen
dicularly to the plane of incidence. In accordance with Brewster's 
law the reflection vanishes at the angle of incidence, whose 
tangent is V-¥ Vx. 

But, if on the other hand px = p, the cause of disturbance 
being the change of compressibility, we have 

<f>" _ tan 0t — tan 6 _ sin (0, — 0) 
^ ~ tan 6t + tan 6 ~ sin (Bx + 0 ) ' * 

agreeing with Fresnel's formula for light polarized in the plane 
of incidence. In this case the reflected wave does not vanish at 
any angle of incidence. . 

In general, when 0 = 0, 
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so that there, is no reflection, if p1 p = V: Pj. In the case of 
gases V2 : V* = p1: p, and then 

Suppose, for example, that after perpendicular incidence re
flection takes place at a surface separating air and hydrogen. We 
have 

p = -001276, P l = -00008837; 

whence */p : ̂ pt = 3'800, giving 
<j>' = — "5833 <p'. 

The ratio of intensities, which is -as the square of the amplitudes, 
is -3402 : 1, so that about one-third part is reflected. 

If the difference between the two media be very small, and we 
write V1=V + BV, (24) becomes 

f - i r <25>-
If the first medium be air at 0° Cent., and the second medium be 
air at f Cent., V+SV= 7^/^^0036615 so that 

%• = - -00091«. 
9 

The ratio of the intensities of the reflected and incident sounds is 
therefore -83 x 10 - 6 x ? : 1. 

As another example of the same kind we may take the case in 
which the first medium is dry air and the second is air of the 
same temperature saturated with moisture. At 10" Cent, air 
saturated with moisture is lighter than dry air by about one part 

y 
in 220, so that S V=* nearly. Hence we conclude from (25) 

that the reflected sound is only about one 774,000 th part of the 
incident sound. 

From these calculations we see that reflections from warm or 
moist air must generally be very small, though of course the effect 
may accumulate by repetition. It must also be remembered that 
in practice the transition from one state of things to the other 
would be gradual, and not abrupt, as the present theory supposes. 
If the space occupied by the transition amount to a considerable 
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fraction of the wave-length, the reflection would be materially 
lessened. On this account we might expect grave sounds to travel 
through a heterogeneous medium less freely than acute sounds. 

The reflection of sound from surfaces separating portions of 
gas of different densities has engaged the attention of Prof. Tyndall, 
who has devised several striking experiments in illustration of the 
subject1. For example, sound from a high-pitched reed was con
ducted through a tin tube towards a sensitive flame, which served 
as an indicator. By the interposition of a coal-gas flame issuing 
from an ordinary bat's-wing burner between the tube and the 
sensitive flame, the greater part of the effect could be cut off. 
Not only so, but by holding the flame at a suitable angle, the 
sound could be reflected through another tube in sufficient quantity 
to excite a second sensitive flame, which but for the interposition 
of the reflecting flame would have remained undisturbed. 

The preceding expressions (16), (17), (18) hold good in every 
case of reflection from a ' denser' medium; but if the velocity of 
sound be greater in the lower medium, and the angle of incidence 
exceed the critical angle, a, becomes imaginary, and the formula? 
require modification. In the latter case it is impossible that a 
refracted wave should exist, since, even if the angle of refraction 
were 90°, its trace on the plane of separation must necessarily 
outrun the trace of the incident wave. 

If — ia[ be written in place of at, the symbolical equations are 

Incident wave 
& = giiax + by+ct) ^ 

Reflected wave 

A — P 2. ei(-ax+by+ct) 

P a 

Refracted wave 
9 

p a 

from which by discarding the imaginary parts, we obtain 

i Sound, 3rd edition, p. 282. 
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Incident wave 
<jj = cos (ax + by + ci) 

Reflected wave 
<f> = cos (— ax + by + ct + 2e) (27), 

Refracted wave 

(28), 

where (29). 

These formulae indicate total reflection. The disturbance in the 
second medium is not a wave at all in the ordinary sense, and at 
a short distance from the surface of separation (x negative) he-
comes insensible. Calculating a' from (12) and expressing it in 
terms of 6 and \ , we find 

shewing that the disturbance does not penetrate into the second 
medium more than a few wave-lengths. 

The difference of phase between the reflected and the incident 
waves is 2e, where 

If the media have the same compressibilities, p : pt = V*: V3, and 

Since there is no loss of energy in reflection and refraction, the 
work transmitted in any time across any area of the front of the 
incident wave must be equal to the work transmitted in the same 
time across corresponding areas of the reflected and refracted 
waves. These corresponding areas are plainly in the ratio 

(30), 

(31). 

(32). 

cos 6 : cos 6 : cos 6X ; 

and thus by § 245 (r being the same for all the waves), 

cos 0 £ ( ^ = cos fl.Ä^., 
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or since V ·. Vx = sin 0 : sin 9l, 

P cot 0 ( f 3 - <b"2) = P l cot 0t (33), 

which is the energy condition, and agrees with the result of multi
plying together the two boundary equations (13). 

When the velocity of propagation is greater in the lower than 
in the upper medium, and the angle of incidence exceeds the 
critical angle, no energy is transmitted into the second medium; 
in other words the reflection is total. 

The method of the present investigation is substantially the 
same as that employed by Green in a paper on the Reflection and 
Refraction of Sound1. The case of perpendicular incidence was 
first investigated by POISSOD 2, who obtained formulae corresponding 
to (23) and (24), which had however been already given by Young 
for the reflection of Light. In a subsequent memoir8 Poisson 
considered the general case of oblique incidence, limiting himself, 
however, to gaseous media for which Boyle's law holds good, and 
by a very complicated analysis arrived at a result equivalent to 
(21). He also verified that the energies of the reflected and re
fracted waves make up that of the incident wave. 

271. If the second medium be indefinitely extended down
wards with complete uniformity in its mechanical properties, the 
transmitted wave is propagated onwards continually. But if at 
oo = —I there be a further change in the compressibility, or density, 
or both, part of the wave will be thrown back, and on arrival at 
the first surface (x = 0) will be divided into two parts, one trans
mitted into the first medium, and one reflected back, to be again 
divided at x = — I, and so on. By following the progress of these 
waves the solution of the problem may be obtained, the resultant 
reflected and transmitted waves being compounded of an infinite 
convergent series of components, all parallel and harmonic. This 
is the method usually adopted in Optics for the corresponding 
problem, and is quite rigorous, though perhaps not always suf
ficiently explained ; but it does not appear to have any advantage 
over a more straightforward analysis. In the following investi
gation we shall confine ourselves to the case where the third 
medium is similar in its properties to the first medium. 

1 Cambridge Transactions, 1838. 
8 Mem. de I'Institut, t. n . p. 305. 1819. 
3 " M^moire sur le mouvement de deux fluides filastiquea superposes." M4m. 

de VInstitut, t. x. p. 317. 1831. 
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In the first medium 

0 _ pgiiax+by+ct) .j. fa'e^-ax+by+a\ 
In the second medium 

In the third medium 

with the conditions 

c' = V*(a1+ ¥) = V* (a? + 52) (1). 

At the two surfaces of separation we have to secure the equality 
of normal motions and pressures; for x = 0, 

a(<f>'-fa') = a,(f-^")) 
p ($'+$")=•• Pi & + f))' 

for x = — I, ai (^f'e-.iail — l " ^ 1 ) = afae-ial 

Pi ii^'e'^1 + TJr"etal1) = pfae~M 

from which i | / and ty" are to be eliminated. We get 

(fa - fa') cos atl - i S £ (fa + </>") sin o j = fae~M I 
a P i ' 

( f + 0") cos atZ - t ^ ( f - f ) sin axZ = fae~ial 

aiP 
and from these, if for brevity = a, 

aiP 
1 

•(2); 

•(3), 

^ a + - — 2i cot ajf 
•(5), 

a 
fa 2eM 

.(6). 
^ 2 cos axl + i sin axl [a. + 

In order to pass to real quantities, these expressions must be 
put into the form BeiB. If at be real, we find corresponding to 
the incident wave 

(f> = cos (ax + by + ct), 
R. II. G 
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the reflected wave 

^ — aj sin (— ax + hy + ct — e) 

* = ~ / / IV ! (7), 
A / 4 c o t * a 1 Z + i ' a + H 

and the transmitted wave 

, 2 cos (<?a; + fry + ct + al — e) 
^ = ~ 7 = ' . , , i v ( 8 ) . 

4cossa,£ + sinaj,la + -J 

where 

tan e = J f̂ a + ~j tan a I (9), 

If a = — = 1, there is no reflected wave, and the trans-cot vl p 

mitted wave is represented hy 

<p = cos (ax + by + ct + al — aj), 

shewing that, except for the alteration of phase, the whole of the 
medium might as well have been uniform. 

If I be small, we have approximately for the reflected wave 

<r> = Y ^ - a ) sin (-ax + by+ ct), 

a formula applying when the plate is thin in comparison with 
27T 

the wave-length. Since a1=~ cos^, it appears that for a given 

angle of incidence the amplitude varies inversely as \ , or as \ . 

In any case the reflection vanishes, if cot3 a J, = oo, that is, if 

21 cos 0t = m\, 
m being an integer. The wave is then wholly transmitted. 

At perpendicular incidence, the intensity of the reflection is 
expressed by 

<->· 

Let us now suppose that the second medium is incompressible, so 
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that V% = oo ; our expression becomes 

83 

(11), 

shewing how the amount of reflection depends upon the relative 
masses of such quantities of the media as have volumes in the ratio 
of I : X. It is obvious that the second medium behaves like a 
rigid body and acts only in virtue of its inertia. If this be suf
ficient, the reflection may become sensibly total. 

We have now to consider the case in which a y is imaginary. 
In the symbolical expressions (5) and (6) cos aj, and i sin aj, are 

real, while a, a + ^, a — ^ are pure imaginaries. Thus, if we sup
pose that a, = ta,', a = i a , and introduce the notation of the hyper
bolic sine and cosine (§ 170), we get 

^ 2coshttj'Z- i \ a — —,J sinh a^l 

Hence, if the incident wave be 

<b = cos (ax + by + ct), 

the reflected wave is expressed by 

(a! + V) sinh a [ l cos ( - a x + by + ct + e) 

4 c o s h X Z + (a'~ VfsinhXZ 
(12), 

where 

and the transmitted wave is expressed by 

, 2 sin (ax + by + ct + al + e) 

IRIS - LILLIAD - Université Lille 1 



84 NO LOSS OF ENERGY. [271. 

It is easy to verify that the energies of the reflected and 
transmitted waves account for the whole energy of the incident 
wave. Since in the present case the corresponding areas of wave-
front are equal for all three waves, it is only necessary to add the 
squares of the amplitudes given in equations (7), (8), or in equa
tions (12), (14). 

272. These calculations of reflection and refraction under 
various circumstances might be carried further, but their interest 
would be rather optical than acoustical. It is important to bear 
in mind that no energy is destroyed by any number of reflections 
and refractions, whether partial or total, what is lost in one direc
tion always reappearing in another. 

On account of the great difference of densities reflection is 
usually nearly total at the boundary between air and any solid or 
liquid matter. Sounds produced in air are not easily communi
cated to water, and vice versd sounds, whose origin is under water, 
are heard with difficulty in air. A beam of wood, or a metallic 
wire, acts like a speaking tube, conveying sounds to considerable 
distances with very little loss. 
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CHAPTER XIV. 

GENERAL EQUATIONS. 

273. I N connection with the general problem of aerial 
vibrations in three dimensions one of the first questions, which 
naturally offers itself, is the determination of the motion in an 
unlimited atmosphere consequent upon arbitrary initial dis
turbances. It will be assumed that the disturbance is small, so 
that the ordinary approximate equations are applicable, and further 
that the initial velocities are sueh as can be derived from a velocity-
potential, or (§ 240) that there is no circulation. If the latter con
dition be violated, the problem is one of vortex motion, on which 
we do not enter. We shall also suppose in the first place that no 
external forces act upon the fluid, so that the motion to be 
investigated is due solely to a disturbance actually existing at 
a time (£ = 0), previous to which we do not push our inquiries. 
The method that we shall employ is not very different from that 
of Poisson1, by whom the problem was first successfully attacked. 

If u0,v0, w0 be the initial velocities at the point x, y, z, and s0 

the initial condensation, we have (§ 244), 

&=/ K* B + \dy + w0dz) (1), 

?\ = ~ A (2), 
1 

by which the initial values of the velocity-potential <j> and of its 
differential coefficient with respect to time cj> are determined. 

1 Sur l'intégration de quelques équations linéaires aux différences partielles, 
et particulièrement de l'équation générale du mouvement des fluides élastiques. 
Mém. de l'Institut, t. m. p. 121. 1820. 
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The problem before us is to determine <p at time t from the above 
initial values, and the general equation applicable at all times and 
places, 

( £ - c < v ) * - 0 (3). 

When <p is known, its derivatives give the component velocities at 
any point. 

The symbolical solution of (3) may be written 

<f> = sin (ia vO · 0 + cos (ia yi) . % (4), 

where 0 and % are two arbitrary functions of x, y, z and i = J— 1. 
To connect 8 and % with the initial values of cf> and <f>, which we 
shall denote by / and F respectively, it is only necessary to observe 
that when t = 0, (4) gives 

<Po = X> 4>o = iaV-0i 

so that our result may be expressed 

JL / · \̂ j- . sinh'av*) rr 
9 = c °s (««V0 · / + ^ v

v j · F (5), 
in which equation the question of the interpretation of odd powers 
of V n e e < l n ° t u e considered, as both the symbolic functions are 
wholly even. 

In the case where <p was a function of sc only, we saw (§' 245) 
that its value for any point x at time t depended on the initial 
values of cj> and <j> at the points whose co-ordinates ̂ were x — at 
and x + at, and was wholly independent of the initial circumstances 
at all other points. In the present case the simplest supposition 
open to us is that the value of <f> at a point 0 depends on the 
initial values of <p and <f> at points situated on the surface of the 
sphere, whose centre is 0 and radius at; and, as there can be no 
reason for giving one direction a preference over another, we are 
thus led to investigate the expression for the mean value of a 
function over a spherical surface in terms of the successive differen
tial coefficients of the function at the centre. 

By the symbolical form of Maclaurin's theorem the value of 
F (x, y, z) at any point P on the surface of the sphere of radius r 
may be written 
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F(x, y,z)=e si*°. F(w0, y0, z0), 

the centre of the sphere 0 being the origin of co-ordinates. In 

the integration over the surface of the sphere ~, S -
">xa dy0 dz0 

behave as constants ; we may denote them temporarily by I, m, n, 
so that v/ = f + ™2 + n\ 

Thus, r being the radius of the sphere, and dS an element of 
its surface, since, by the symmetry of the sphere, we may replace 

any function of m ^ n z by the same function of z without J *J(P + m2 + w) J 

altering the result of the integration, 

= (U*dS = 2wr \+re^dz = — (e» - e-v) = 47rr2 ™J&T}. ]J 1-r V W 

The mean value of F over the surface of the sphere of radius r is 
thus expressed by the result of the operation on F of the symbol 
S " ^ ~ ~ > o r> j j^ 0 " d e a ° t e integration with respect to angular 

space, 

By comparison with (5) we now see that so far as <b depends 
on the' initial values of <j>, it is expressed by 

* - T H F W * R (ft 

or in words, cp at any point at time * is the mean of the initial 
values of (£> over the surface of the sphere described round the 
point in question with radius at, the whole multiplied by t. 

By Stokes' rule (§' 95), or by simple inspection of (5), we see 
that the part of <b depending on the initial values of $ may be 
derived from that just written by differentiating with respect to t 
and changing the arbitrary function. The complete value of <b at 
time t is therefore 
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we find from (8) 

dty__l_ d 
dt* ~ 4vrf dt " J J dt" 4mrf dtJJ d (at) 

dS being the surface element of the sphere r = at. 

But by Green's theorem 

and thus 

d*6 _ 
dt* 4nrat 

=i//v'™('=<,,,=£//v'"" 
Now jj^F do-is the same as y*jJFdo; and thus (3) is in fact 

satisfied. 

Since the second part of 6 is obtained from the first by differen
tiation, it also must satisfy the fundamental equation. 

With respect to the initial conditions we see that when t is made 
equal to zero in (8), 

* = h\iF{at) d(T {t = 0) + £r S? ' / / f { a t ) d ° (* = 0 ) ' 
1 Another investigation will be found in Kirchhoff's Vorlesungen über Mathe

matische Physik, p. 317. 1876. 

< 8 > > 

•which is Poisson's result*. 

On account of the importance of the present problem, it may 
he well to verify the solution a posteriori. We have first to prove 
that it satisfies the general differential equation (3). Taking for 
the present the first term only, and bearing in mind the general 
symbolic equation 

dt^'idt* d t ( J ; ' 
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of which the first term becomes in the limit F (0). When 4 = 0, 

since the oppositely situated elements cancel in the limit, when 
the radius of the spherical surface is indefinitely diminished. The 
expression in (8) therefore satisfies the prescribed initial con
ditions as well as the general differential equation. 

274. If the initial disturbance be confined to a space T, the 
integrals in (8) § 273 are zero, unless some part of the surface of 
the sphere r = at be included within T. Let Obe a point external 
to T, rx and r 2 the radii of the least and greatest spheres described 
about 0 which cut it. Then so long as at < rlt <p remains equal 
to zero. When at lies between rt and r 2, <f> may be finite, but for 
values greater than r2 <p is again zero. The disturbance is thus at 
any moment confined to those parts of space for which at is inter
mediate between r, and rt. The limit of the wave is the envelope 
of spheres with radius at, whose centres are situated on the surface 
of T. "When t is small, this system of spheres will have an 
exterior envelope of two sheets, the outer of these sheets being 
exterior, and the inner interior to the shell formed by the as
semblage of the spheres. The outer sheet forms the outer limit 
to the portion of the medium in which the dilatation is different 
from zero. As t increases, the inner sheet contracts, and at last its 
opposite sides cross, and it changes its character from being ex
terior, with reference to the spheres, to interior. It then expands, 
and forms the inner boundary of the shell in which the wave of 
condensation is comprised1." The successive positions of the 
boundaries of the wave are thus a series of parallel surfaces, and 
each boundary is propagated normally with a velocity equal to a. 

If at the time t = 0 there be no motion, so that the initial 
disturbance consists merely in a variation of density, the subse
quent condition of things is expressed by the first term of (8) § 273. 
Let us suppose that the original disturbance, still limited to a 
finite region T, consists of condensation only, without rarefaction. 
It might be thought that the same peculiarity would attach to the 

1 Stokes, " Dynamical Theory of Diffraction," Camb. Trans, ix. p. 15. 
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resulting wave throughout the whole of its subsequent course; but, 
as Prof. Stokes has remarked, such a conclusion would be erroneous. 
For values of the time less than r^a the potential at 0 is zero; 
it then becomes negative (s0 being positive), and continues nega
tive until it vanishes again when t = r2 + a, after which it always 
remains equal to zero. While <p is diminishing, the medium at 0 
is in a state of condensation, but as <f> increases again to zero, the 
state of the medium at 0 is one of rarefaction. The wave propa
gated outwards consists therefore of two parts at least, of which 
the first is condensed and the last rarefied. Whatever may be the 
character of the original disturbance within T, the final value of <p 
at any external point 0 is the same as the initial value, and there
fore, since cfs = — <{>, the mean condensation during the passage of 
the wave, depending on the integral / s dt, is zero. Under the 
head of spherical waves we shall have occasion to return to this 
subject (§ 279). 

The general solution embodied in (8). § 273 must of course 
embrace the particular case of plane waves, but a few words on 
this application may not be superfluous, for it might appear at 
first sight that the effect at a given point of a disturbance initially 
confined to a slice of the medium enclosed between two parallel 
planes would not pass off in any finite time, as we know it ought 
to do. Let us suppose for simplicity that </>0 is zero throughout, 
and that within the slice in question the initial value p0 is 
constant. From the theory of plane waves we know that at any 
arbitrary point the disturbance will finally cease after the lapse of 
a time t, such that at is equal to the distance (d) of the point 
under consideration from the further boundary of the initially 
disturbed region; while on the other hand, since the sphere of 
radius at continues to cut the region, it would appear from the 
general formula that the disturbance continues. It is true indeed 
that <f> remains finite, but this is not inconsistent with rest. It 
will in fact appear on examination that the mean value of (f>0 

multiplied by the radius of the sphere is the same whatever may 
be the position and size of the sphere, provided only that it 
cut completely through the region of original disturbance. If 
at > d, <f> is thus constant with respect both to space and time, 
and accordingly the medium is at rest. 

275. In two dimensions, when <p is independent of z, it might 
be supposed that the corresponding formula would be obtained by 
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simply substituting for the sphere of radius a t the circle of equal 
radius. This, however, is not the case. It may be proved that 
the mean value of a function F(%, y) over the circumference of a 
circle of radius r is J0(tr^) F0, where i = 

2_ d2 d*  
V dx0*+dy*' 

and J0 is Bessel's function of zero order; so that 

^-fF(Xly)ds = ( l + ^ + ^ + . . . ) F , 

differing from what is required to satisfy the fundamental equation. 
The correct result applicable to two dimensions may be obtained 

from the general formula. The element of spherical surface dS 
1* dv* dQ * 

may be replaced by C Q S ^ ' > where r, 6 are plane polar co-ordi
nates, and i|r is the angle between the tangent plane and that in 
which the motion takes place. Thus 

COS vr = — · , 

' at 

F(at) is replaced by F(r, 6), and so 

F(r, 6)rdrd6 HI 
where the integration extends over the area of the circle r — at. 
The other term might be obtained by Stokes' rule. 

This solution is applicable to the motion of a layer of gas 
between two parallel planes, or to that of an unlimited stretched 
membrane, which depends upon the same fundamental equation. 

276. From the solution in terms of initial conditions we may, 
as usual (§ 66), deduce the effect of a continually renewed dis
turbance. Let us suppose that throughout the space T (which 
will ultimately be made to vanish), a uniform disturbance <j>, 
equal to $ (t')dt', is communicated at time t'. The resulting value 
of cj> at time t is 

w f = 7 j 

where 8 denotes the part of the surface of the sphere r = a (t — t') 
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intercepted within T, a quantity which vanishes, unless a(t — 1f) be 
compressed between the narrow limits rt and r2. Ultimately t — t' 

may be replaced by r a, and $ (£') by $ — ^ ; and the re
sult of the integration with respect to dt' is found by writing T 
(the volume) for JaSdt'. Hence 

shewing that the disturbance originating at any point spreads itself 
symmetrically in all directions with velocity a, and with amplitude 
varying inversely as the distance. Since any number of particular 
solutions may be superposed, the general solution of the equation 

£ = aVty + * 
may be written 

r denoting the distance of the element dV situated at x, y, z from 

0 (at which £ is estimated), and t n e value of <E> for the 
T 

point x, y, z at the time t — - . Complementary terms, satisfying 
through all space the equation <b = a8v*& m a v °^ course occur inde
pendently. 

In our previous notation (§ 244) 

* = ̂  j" &dx + Ydy + Zdz); 

and it is assumed that Xdx+Ydy+Zdzis a complete differential. 
Forces, under whose action the medium could not adjust itself to 
equilibrium, are excluded; as for instance, a force uniform in mag
nitude and direction within a space T, and vanishing outside that 
space. The nature of the disturbance denoted by <I> is perhaps best 
seen by considering the extreme case when 5> vanishes except 
through a small volume, which is supposed to diminish without 
limit, while the magnitude of <3> increases in such'a manner that the 
whole effect remains finite. If then we integrate equation (2) 

(2) 

•(3), 
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through a small space includiug the point at which <& is ulti
mately concentrated, we find in the limit 

shewing that the effect of <1> may be represented by a proportional 
introduction or abstraction of fluid at the place in question. The 
simplest source of sound is thus analogous to a focus in the theory 
of conduction of heat, or to an electrode in the theory of electricity. 

277. The preceding expressions are general in respect of the 
relation to time of the functions concerned; but in almost all the 
applications that we shall have to make, it will be convenient to 
analyse the motion by Fourier's theorem and treat separately the 
simple harmonic motions of various periods, afterwards, if necessary, 
compounding the results. The value of <£, and <J>, if simple har
monic at every point of space, may be expressed in the form 
R cos (nt + e), R and e being independent of time, but variable 
from point to point. But as in such cases it often conduces to 
simplicity to add the term iR sin (nt + e), making altogether 
£ei(.nt+*)t or Reie. eint, we will assume simply that all the functions 
which enter into a problem are proportional to eint, the coeffi
cients being in general complex. After our operations are com
pleted, the real and imaginary parts of the expressions can be 
separated, either of them by itself constituting a solution of the 
question. 

Since <p is proportional to eint, <f> = — n*<p; and the differential 
equation becomes 

V , ^ + «"^+o-»* = 0 (1), 

where, for the sake of brevity, K is written in place of n -r- a. If X 
denote the wave-length of the vibration of the period in question, 

= ^ (2). 
a X w . 

To adapt (3) of the preceding section to the present case, it is 
v 

only necessary to remark that the substitution of t — - for t is 

effected by introducing the factor e a , or e~Ur: thus 
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and the solution of (1) is 

to which may be added any solution of + * V = 0-
If the disturbing forces be all in the same phase, and the 

region through which they act be very small in comparison with 
the wave-length, e~iKr may be removed from under the integral 
sign, and at a sufficient distance we may take 

or in real quantities, on restoring the time factor and replacing 

JjJWby *lf 

In order to verify that (3) satisfies the differential equation (1), 
we may proceed as in the theory of the common potential. Con
sidering one element of the integral at a time, we have first to 
shew that 

(5) 

satisfies VS<£ + « 2 < £ = 0, at points for which r is finite. The 
simplest course is to express y s in polar co-ordinates referred to 
the element itself as pole, when it appears that 

^ r ~ \dr2 r dr) r r dr3 r ' r " r 
We infer that (3) satisfies tfcp + K?6 = 0, at all points for 
which <3> vanishes. In the case of a point at which <I> does not 
vanish, we may put out of account all the elements situated at a 
finite distance (as contributing only terms satisfying va</> + "2A = 0), 
and for the element at an infinitesimal distance replace e ~ i K r by 
unity. Thus on the whole 

exactly as in Poisson's theorem for the common potential1. 
1 See Thomson and Tait's Nat. Phil, § 491. 

IRIS - LILLIAD - Université Lille 1 



278.] SURFACE DISTRIBUTIONS. 95 

278. The effect of a force <&t distributed over a surface 8 may 
be obtained as a limiting case from (3) § 277. d Vis replaced by 
<& bd8, b denoting the thickness of the layer; and in the limit we 
may write <3> b = st>t. Thus 

• - . a / K I R " 
The value of $ is the same on the two sides of 8, but there is 
discontinuity in its derivatives. If dn be drawn outwards from 8 
normally, (4) § 276 gives 

If the surface 8 be plane, the integral in (1) is evidently 
symmetrical with respect to it, and therefore 

\dn)l \dn)2' 

Hence, if ^ be the given normal velocity of the fluid in contact 

with the plane, the value of <p is determined by 

<*>· 

which is a result of considerable importance. To exhibit it in 
terms of real quantities, we may take 

d $ = pei<:nt+«) U ) 

P and e being real functions of the position of dS. The symbolical 
solution then becomes 

^=-HIFem-Kr+t)v (5)> 

from which, if the imaginary part be rejected, we obtain 

• 1 ff T, cos (nt — icr + e) ,a ,„s 

corresponding to 

^ = Pcos(n< + 6) (7). 

i Helmholtz. Crelle, t. 57, p. 21. 
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The same method is applicable to the general case when the 
motion is not restricted to be simple harmonic. We have 

where by V\t — -J is denoted the normal velocity at the plane 

for the element d8 at the time t — (r-i-a), that is to say, at a time 
r 4- a antecedent to that at which </> is estimated. 

In order to complete the solution of the problem for the 
unlimited mass of fluid lying on one side of an infinite plane, we 
have to add the most general value of <f>, consistent with V= 0. 
This part of the question is identical with the general problem of 
reflection from an infinite rigid plane1. 

It is evident that the effect of the constraint will be represented 
by the introduction on the other side of the plane of fictitious 
initial displacements and forces, forming in conjunction with those 
actually existing on the first side a system perfectly symmetrical 
with respect to the plane. Whatever the initial values of <b and 
<f) may be belonging to any point on the first side, the same must 
be ascribed to its image, and in like manner whatever function of 
the time <I> may be at the first point, it must be conceived to be the 
same function of the time at the other. Under these circumstances 
it is clear that for all future time <b will be symmetrical with 
respect to the plane, and therefore the normal velocity zero. So 
far then as the motion on the first side is concerned, there will he 
no change if the plane be removed, and the fluid continued 
indefinitely in all directions, provided the circumstances on the 
second side are the exact reflection of those on the first. This 
being understood, the general solution of the problem for a 
fluid bounded by an infinite plane is contained in the formulas 
(8) § 273, (3) § 277, and (8) of the present section. They give the 
result of arbitrary initial conditions (<£0 and <b0), arbitrary applied 
forces (<3>), and arbitrary motion of the plane (V). 

Measured by the resulting potential, a source of given magni
tude, i.e. a source at which a given introduction and withdrawal 
of fluid takes place, is thus twice as effective when close to a rigid 
plane, as if it were situated in the open ; and the result is ulti-

1 Poisson, Journal de l'école polytechnique, t. vu. 1808. 
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mately the same, whether the source be concentrated in a point 
close to. the plane, or be due to a corresponding normal motion 
of the surface of the plane itself. 

The operation of the plane is to double the effective pressures' 
which oppose the expansion and contraction at the source, and 
therefore to double the total energy emitted; and since this energy 
is diffused through only the half of angular space, the intensity of 
the sound is quadrupled, which corresponds to a doubled amplitude, 
or potential (§ 245). 

We will now suppose that instead of ^ = 0, the prescribed 

condition at the infinite plane is that <f> = 0. In this case the 
fictitious distribution of <f>0, <j>0, <&, on the second side of the plane 
must be the opposite of that on the first side, so that the sum of the 
values at two corresponding points is always zero. This secures 
that on the plane of symmetry itself (f> shall vanish throughout. 

Let us next suppose that there are two parallel surfaces Slt 

$ 2 , separated by the infinitely small interval dn, and that the 
value of <PX on the second surface is equal and opposite to the value 
of 4>, on the first. In crossing 8X, there is by (2) a finite change 

in the value of ^ to the amount of <J>4 4- d2, but in crossing Sa the 

same finite change occurs in the reverse direction. When dn is 

reduced without limit, and <&xdn replaced by <E>n, ^ will be the 

same on the two sides of the double sheet, but there will be 
discontinuity in the value of <p to the amount of <&u -r a3. At the 
same time (1) becomes 

If the surface S be plane, the values of <p on the two sides of it 
are numerically equal, and therefore close to the surface itself 

Hence (9) may be written 
d / e - ^ 

• - - è / J s v T - O * * 1 ( 1 0 ) ' 
where under the integral sign represents the surface-potential, 
positive on the one side and negative on the other, due to the 

R, II. 7 
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action of the forces at S. The direction of dn must be under
stood to be towards the side at which $ is to be estimated. 

279. The problem of spherical waves diverging from a point 
has already been forced upon us and in some degree considered, 
but on account of its importance it demands a more detailed 
treatment. If the centre of symmetry be taken as pole the velo
city-potential is a function of r only, and (§ 241) y s reduces to 

aY*^ \ d\' ° r *° r J p 7 " ' ^ e e ( l u a ^ o n °f ^ r e e m o t i ° n (3) § 273 

thus becomes 
d*(r<p)_ d>(rcp) 

whence, as in § 245, 

rcp=f(at-r) + F{at + r) (2). 

The values of the velocity and condensation are to be found by 
differentiation in accordance with the formulae 

dr' a 8 dt J 

As in the case of one dimension, the first term represents a wave 
advancing in the direction of r increasing, that is to say, a diver
gent wave, and the second term represents a wave converging upon 
the pole. The latter does not in itself possess much interest. If 
we confine our attention to the divergent wave, we have 

M = _ / J ^ _ / ^ . as=_m^i) (4). 
When r is very great the term divided by ra may be neglected, 
and then approximately 

M = as (5), 

the same relation as obtains in the case of a plane wave, as might 
have been expected. 

If the type be harmonic, 

= A e^w-r+Q (6), 

or, if only the real part be retained, 

r<f> = A cos =r- {at + 0 - r) (7). 
A. 
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If a divergent disturbance be confined to a spherical shell, 
within and without which there is neither condensation nor 
velocity, the character of the wave is limited by a remarkable re
lation, first pointed out by Stokes1. From equations (4) we have 

(as — u) r* =f(at— r), 

shewing that the value of f(at — r) is the same, viz. zero,- both 
inside and outside the shell to which the wave is limited. Hence 
by (4), if a and B be radii less and greater than the extreme 
radii of the shell, 

J^srdr = 0 ....(8), ' 

which is the expression of the relation referred to. As in § 274, 
we see that a condensed or a rarefied wave cannot exist alone. 
When the radius becomes great in comparison with the thickness, 
the variation of r in the integral may be neglected, and (S^then 
expresses that the mean condensation is zero. 

In applying the general solution (2) to deduce the motion 
resulting from- arbitrary initial circumstances, we must remember 
that in its present form it is too general for the purpose, since it 
covers the case in which the pole is itself a source, or place where 
fluid is introduced or withdrawn in violation of the equation of 
continuity. The total current across the surface of a sphere of 
radius r is 47rr2w, or by (2) and (3) 

- 4TT [f (at -r)+F(at + r)} + 4-rrr {F'(at + r) -/(at - r)}, 

so that, if. the pole be not a source, f(at — r)+F(at + r), or rfa, 
must vanish with r. Thus 

f(at) + F(at)=0 , (9), 

an equation which must hold good for all positive values of the 
argument2. 

By the known initial circumstances the values of u and s are 
determined for the time t = 0, and for all (positive) values of r. 

1 PHI. Mag. xxxrv. p. 52. 1849. 
a The solution for spherical vibrations may be obtained without the use of (1) 

by superposition of trains of plane waves, related similarly to the pole, and tra
velling outwards in all directions symmetrically. 

7—2 
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If these initial values be represented by u0 and s0, we obtain 
from (2) and (3) 

/{-r) + F[r)=r fu0dr 

f(-r)-F(r) = a fs0rdr 

.(10), 

by which the function / i s determined for all negative arguments, 
and the function F for all positive arguments. The form of / for 
positive arguments follows by means of (9), and then the whole 
subsequent motion is determined by (2). The form of F for 
negative arguments is not required. 

The initial disturbance divides itself into two parts, travelling 
_in opposite directions, in each of which r& is propagated with 
constant velocity a, and the inwards travelling wave is continually 
reflected at the pole. Since the condition to be there satisfied is 
r S = 0, the case is somewhat similar to that of a parallel tube 
terminated by an open end, and we may thus perhaps better 
understand why the condensed wave, arising from the liberation 
of a mass of condensed air round the pole, is followed immediately 

~ T b y a wave of rarefaction. 

280. Returning now to the case of a train of harmonic waves 
travelling outwards continually from the pole as source, let us 
investigate the connection between the velocity-potential and the 
quantity of fluid which must be supposed to be introduced and 
withdrawn alternately. If the velocity-potential be 

we have, as in the preceding section, for the total current crossing 
a sphere of radius r, 

iwr* < ^ = A {cos K (at — r) — icr sin K (at — r)} = A cos not, 

when r is small enough. If the maximum rate of introduction of 
fluid be denoted by A , the corresponding potential is given by (1). 

It will be observed that when the source, as measured by A , is 
finite, the potential and the pressure-variation (proportional to 6) 
are infinite at the pole. But this does not, as might for a moment 
be supposed, imply an infinite emission of energy. If the pressure 
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be divided into two parts, one of which has the same phase as 
the velocity, and the other the same phase as the acceleration, it 
will be found that the former part, on which the work depends, 
is finite. The infinite part of the pressure does no work on the 
whole, but merely keeps up the vibration of the air immediately 
round the source, whose effective inertia is indefinitely great. 

We will now investigate the energy emitted from a simple 
source of given magnitude, supposing for the sake of greater 
generality that the source is situated at the vertex of a rigid cone 
of solid angle QJ. If the rate of introduction of fluid at the source 
be A cos not, we have 

mr2^$- = A cos /cat dr 

ultimately, corresponding to 

9=~ — cos K(at-r) (2); 

whence <i = sin K (at — r) (3), 
r tor w 

and wr2 ^ = A {cos ic(at — r) — itr sin K (at — r)} (4). 
Thus, as in § 245, if dW be the work transmitted in time dt, 
we get, since Sp= — p<j>, 

dW picaA" · / . v / , \ 
- , - = — - s i n K (at — r) cos K(at — r) dt cor ' 

, K?aA* . . . x . + p — — sin K (at — r). 

Of the right-hand member the first term is entirely periodic, and 
in the second the mean value of sin s K (at — r) is \ . Thus in the 
long run 

w=p-*—t ; (5)·. 

It will be remarked that when the source is given, the ampli
tude varies inversely as to, and therefore the intensity inversely 
as (o\ For an acute cone the intensity is greater, not only on 
account of the diminution in the solid angle through which the 

1 Cambridge Mathematical Tripos Examination, 187G. 
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sound is distributed, but also because the total energy emitted 
from the source is itself increased. 

When the source is in the open, we have only to put a = 4nr, 
and when it is close to a rigid plane, a = 27r. 

The results of this article find an interesting application in the 
theory of the speaking trumpet, or (by the law of reciprocity 
§§ 10.9, 294) hearing trumpet. If the diameter of the large open 
end be small in comparison with the wave-length, the waves on 
arrival suffer copious reflection, and the ultimate result, which 
must depend largely on the precise relative lengths of the tube 
and of the wave, requires to be determined by a different process. 
But by sufficiently prolonging the cone, this reflection may be 
diminished, and it will tend to cease when the diameter of the 
open end includes a large number of wave-lengths. Apart from 
friction it would therefore be possible by diminishing co. to obtain 
from a given source any desired amount of energy, and at the 
same time by lengthening the cone to secure the unimpeded 
transference of this energy from the tube to the surrounding air. 

F r o i r i the theory of diffraction it appears that the sound will 
not fall o f f to any great extent in a lateral direction, unless the 
diameter at the large end exceed half a wavelength. The 
ordinary explanation of the effect of a common trumpet, depending 
on a supposed concentration of rays in the axial direction, is thus 
untenable. 

281. By means of Euler's equation, 

we may easily establish a theory for conical pipes with open ends, 
analogous to that of Bernoulli for parallel tubes, subject to the same 
limitation as to the smallness of the diameter of the tubes in com
parison with the wave-length of the sound. Assuming that the 
vibration is stationary, so that r<f> is everywhere proportional to 
cos Kat, we get from (1) 

£ S » + * . r * - 0 (2), 

of which the general solution is 

ifp^A cos tcr + B sin KJ* (3). 
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The condition to he satisfied at an open end, viz., that there is 
to be no condensation or rarefaction, gives r<j> = 0, so that, if the 
extreme radii of the tube be i \ and r a, we have 

A cos icr^ + B sin KV1 = 0, A cos KT2 + B sin «ra = 0, 
whence by elimination of A : B , sin K (r3 — 7\ ) = 0, or ra — rx = \ n i \ , 
where m is an integer. In fact since the form of the general 
solution (3) and the condition for an open end are the same as for 
a parallel tube, the result that the length of the tube is a multiple 
of the half wave-length is necessarily also the same. 

A cone, which is complete as far as the vertex, may be treated 
as if the vertex were an open end, since, as we saw in § 279, the 
condition ?'6 == 0 is there satisfied. 

The resemblance to the case of parallel tubes does not extend 
to the position of the nodes. In the case of the gravest vibration of 
a parallel tube open at both ends, the node occupies a central posi
tion, and the two halves vibrate synchronously as tubes open at one 
end and stopped at the other. But if a conical tube were divided 
by a partition at its centre, the two parts would have different 
periods, as is evident, because the one part differs from a parallel 
tube by being contracted at its open end where the effect of a 
contraction is to depress the pitch, while the other part is con
tracted at its stopped end, where the effect is to raise the pitch. In 
order that the two periods may be the same, the partition must 
approach nearer to the narrower end of the tube. Its actual 
position may be determined analytically from (3) by equating to 

zero the value of ^ . 

When both ends of a conical pipe are closed, the corresponding 
notes are determined by eliminating A : B between the equations, 

A (cos KTt + Krt sin K T J -f- B (sin KV1 — /crt cos KrJ = 0, 
A (cos iert + KT2 sin «r2) + B (sin /wa — «ra cos /cra) = 0, 

of which the result may be put into the form. 

KV2 — tan - 1 «ra = KTX — tan" (4). 

If r t = 0, we have simply 

tan Kr3 = «r2 

1 For the raois of this equation see § 207. 
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i f rx and rt be very great, tan - 1 KVX and tan - 1 K T 2 are both odd 
multiples of \ir, so that r3 — r1 is a multiple of as the theory 
of parallel tubes requires. 

282. If there be two distinct sources of sound of the same 
pitch, situated at Ot and 02, the velocity-potential <p at a point 
P whose distances from Ox, 02 are r, and rt, may be expressed 

0 _ ^ cos K (at - rt) + ^ cos K (at - r, ~ a) ^ 

where A and B are coefficients representing the magnitudes of 
the sources, (which without loss of generality may be supposed to 
have the same sign), and a represents the retardation (considered, 
as a distance) of the second source relatively to the first. The two 
trains of spherical waves are in agreement at any point P, if 
r2 4- a — r, = + m\, where m is an integer, that is, if P lie on any 
one of a system of hyperboloids of revolution having foci at 
Oj and 02. At points lying on the intermediate hyperboloids, 
represented by r2 + a — rt = ± \ (2m + 1) \ the two sets of waves 
are opposed in phase, and neutralize one another as far as their 
actual magnitudes permit. The neutralization is complete, if 
rx: rt = A : B, and then the density at P continues permanently 
unchanged. The intersections of this sphere with the system of 
hyperboloids will thus mark out in most cases several circles of 
absolute silence. If the distance Ox 0 2 between the sources be great 
in comparison with the length of a wave, and the sources themselves 
be not very unequal in power, it will be possible to depart from 
the sphere rt: r2 = A : B for a distance of. several wave-lengths, 
without appreciably disturbing the equality of intensities, and thus 
to obtain over finite surfaces several alternations of sound and of 
almost complete silence. 

There is some difficulty in actually realising a satisfactory inter
ference of two independent sounds. Unless the unison be extra
ordinarily perfect, the silences are only momentary and are 
consequently difficult to appreciate. It is therefore best to employ 
sources which are mechanically connected in such a way that the 
relative phases of the sounds issuing from them cannot vary. The 
simplest plan is to repeat the first sound by reflection from a flat 
wall (§§ 269, 278), but the experiment then loses something in 
directness owing to the fictitious character of the second source. 
Perhaps the most satisfactory form of the experiment is that 

IRIS - LILLIAD - Université Lille 1 



282. ] P O I N T S O F S I L E N C E . 105 

described in the Philosophical Magazine for June 1877 by myself. 
" An intermittent electric current, obtained from a fork interrupter 
making 128 vibrations per second, excited by means of electro
magnets two other forks, whose frequency was 256, (§§ 63, 64). 
These latter forks were placed at a distance of about ten yards 
apart, and were provided with suitably tuned resonators, by which 
their sounds were reinforced. The pitch of the forks was 
necessarily identical, since the vibrations were forced by electro
magnetic forces of absolutely the same period. With one ear 
closed it was found possible to define the places of silence with 
considerable accuracy, a motion of about an inch being sufficient 
to produce a marked revival of sound. At a point of silence, from 
which the line joining the forks subtended an angle of about 60°, 
the apparent striking up of one fork, when the other was stopped, 
had a very peculiar effect." 

Another method is to duplicate a sound coming along a tube 
by means of branch tubes, whose open ends act as sources. But 
the experiment in this form is not a very easy one. 

It often happens that considerations of symmetry are sufficient 
to indicate the existence of places of silence. For example, it is 
evident that there can be no variation of density in the continua
tion of the plane of a vibrating plate, nor in the equatorial plane 
of a symmetrical solid of revolution vibrating in the direction of 
its axis. More generally, any plane is a plane of silence, with 
respect to which the sources are symmetrical in such a manner 
that at any point and at its image in the plane there are sources 
of equal intensities and of opposite phases, or, as it is often more 
conveniently expressed, of the same phase and of opposite ampli
tudes. 

If any number of sources in the same phase, whose amplitudes 
are on the whole as much negative as positive, be placed on the 
circumference of a circle, they will give rise to no disturbance of 
pressure at points on the straight line which passes through the 
centre of the circle and is directed at right angles to its plane. 
This is the case of the symmetrical bell (§ 232), which emits no 
sound in the direction of its axis1. 

The accurate experimental investigation of aerial vibrations is 
beset with considerable difficulties, which have been only partially 

1 Phil. Mag. (5), m. p. 460. 1877. 
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surmounted hitherto. In order to avoid unwished for reflections 
it is generally necessary to work in the open air, where delicate 
apparatus, such as a sensitive flame, is difficult of management. 
Another impediment arises from the presence of the experimenter 
himself, whose person is large enough to disturb materially the 
state of things which he wishes to examine. Among indicators of 
sound may be mentioned membranes stretched over cups, the agita
tion being made apparent by sand, or by small pendulums resting 
lightly against them. If a membrane be simply stretched across a 
hoop, both its faces are acted upon by nearly the same forces, and 
consequently the motion is much diminished, unless the membrane 
be large enough to cast a sensible shadow, in which its hinder face 
may be protected. Probably the best method of examining the 
intensity of sound at any point in the air is to divert a portion of 
it by means of a tube ending in a small cone or resonator, the 
sound so diverted being led to the ear, or to a manometric 
capsule. In this way it is not difficult to determine places of 
silence with considerable precision. 

By means of the same kind of apparatus it is possihld to 
examine even the phase of the 'vibration at any point in air, and to 
trace out the surfaces on which the phase does not vary l. If the 
interior of a resonator be connected by flexible tubing with a 
manometric capsule, which influences a small gas flame, the motion 
of the flame is related in an invariable manner (depending on the 
apparatus itself) to the variation of pressure at the mouth of the 
resonator; and in particular the interval between the lowest drop 
of the flame and the lowest pressure at the resonator is independent 
of the absolute time at which these effects occur. In Mayer's 
experiment two flames were employed, placed close together in one 
vertical line, and were examined with a revolving mirror. So long 
as the associated resonators were undisturbed, the serrations of the 
two flames occupied a fixed relative position, and this relative 
position was also maintained when one resonator was moved about 
so as to trace out a surface of invariable phase. For further 
details the reader must be referred to the original paper. 

283. When waves of sound impinge upon an obstacle, a 
portion of the motion is thrown back as an echo, and under cover 
of the obstacle there is formed a sort of sound shadow. In order, 
however, to produce shadows in anything like optical perfection, 

1 Mayer, Phil. Mag. (4), XLIV. p. 321. 1872. 
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the dimensions of the interveniug body must be considerable. 
The standard of comparison proper to the subject is the wave
length of the vibration; it requires almost as extreme conditions 
to produce rays in the case of sound, as it requires in optics to 
avoid producing them. Still, sound shadows thrown by hills, or 
buildings, are often tolerably complete, and must be within the 
experience of all. 

For closer examination let us take first the case of plane waves 
of harmonic type impinging upon an immovable plane screen, of 
infinitesimal thickness, in which there is an aperture of any form, 
the plane of the screen (x = 0) being parallel to the fronts of the 
waves. The velocity-potential of the undisturbed train of waves 
may be taken, 

A = cos (nt — KX) (1). 

If the value of ^ over the aperture he known, formulae (6) 

and (7) § 278 allow us to calculate the value of A at any point on 
the further side. In the ordinary theory of diffraction, as given 
in works on optics, it is assumed that the disturbance in the plane 
of the aperture is the same as if the screen were away. This 
hypothesis, though it can never be rigorously exact, will suffice 
when the aperture is very large in comparison with the wave
length, as is usually the case in optics. 

For the undisturbed wave we have 

P (x = 0) =«s in nt (2), 

and therefore on the further side, we get 

A^\\^^d8 (3), 
the integration extending over the area of the aperture. Since 
« = 27r-rX, we see by comparison with (1) that in supposing a 
primary wave broken up, with the view of applying Huyghens' 
principle, d S must be divided by Xr, and the phase must be 
accelerated by a quarter of a period. 

When r is large in comparison with the dimensions of the 
aperture, the composition of the integral is best studied by the aid 
of Huyghens' zones. With the point 0 , for which A is to he 
estimated, as centre describe a series of spheres of radii increasing 
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by the constant difference the first sphere of the series being 
of such radius (c) as to touch the plane of the screen. On this 
plane are thus marked out a series of circles, whose radii p are 
given by pB + c ! = (c + \ n\)%, or pa = nek, very nearly; so that 
the rings into which the plane is divided, being of approximately 
equal area, make contributions to 96 which are approximately 
equal in numerical magnitude and alternately opposite in sign. 
If 0 lie decidedly within the projection of the area, the first term 

' of the series representing the integral is finite, and the terms 
which follow are alternately opposite in sign and of numerical 
magnitude at first nearly constant, but afterwards diminishing 
gradually to zero, as the parts of the rings intercepted within the 
aperture become less and less. The case of an aperture, whose 
boundary is equidistant from 0, is excepted. 

In a series of this description any term after the first is 
neutralized almost exactly by half the sum of those which imme
diately precede and follow it, so that the sum of the whole series 
is represented approximately by half the first term, which stands 
over uncompensated. We see that, provided a sufficient number 
of zones be included within the aperture, the value of 96 at the 
point 0 is independent of the nature of the aperture, and is there
fore the same as if there had been no screen at all. Or we may 
calculate directly the effect of the circle with which the system of 
zones begins; a course which will have the advantage of bringing 
out more clearly the significance of the change of phase which we 
found it necessary to introduce when the primary wave was broken 
up. Thus, let us conceive the circle in question divided into in
finitesimal rings of equal area. The parts of 96 due to each of 
these rings are equal in amplitude and of phase ranging uniformly 
over half a complete period. The phase of the resultant is there
fore midway between those of the-extreme elements, that is to 
say, a quarter of a period behind that due to the element at 
the centre of the circle. The amplitude of the resultant will be 
less than if all its components had been in the same phase, in 
the ratio sin x dx : IT, or 2 : t r ; and therefore since the area 
of the circle is ir\c, half the effect of the first zone is 

2 sin (nt —KC— \ir) 

7r' \O 
. 7rXc = cos (nt — KG), 

the same as if the primary wave were to pass on undisturbed. 
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"When the point 0 is well away from the projection of the 
aperture, the result is quite different. The series representing the 
integral then converges at both ends, and by the same reasoning 
as before its sum is seen to be approximately zero. We conclude 
that if the projection of 0 on the plane x = 0 fall within the 
aperture, and be nearer to 0 by a great many wave-lengths than 
the nearest point of the boundary of the aperture, then the 
disturbance at 0 is nearly the same as if there were no obstacle at 
all; but, if the projection of 0 fall outside the aperture and be 
nearer to 0 by a great many wave-lengths than the nearest point of 
the boundary, then the disturbance at 0 practically vanishes. 
This is the theory of sound rays in its simplest form. 

The argument is not very different if the screen be oblique to 
the plane of the waves. As before, the motion on the further side 
of the screen may be regarded as due to the normal motion of the 
particles in the plane of the aperture, but this normal motion now 
varies in phase from point to point. If the primary waves proceed 
from a source at Q, Huyghens' zones for a point P are the series of 
ellipses represented by rt + r2 = PQ + \ n X, where r, and r 2 are 
the distances of any point on the screen from Q and P respectively, 
and n is an integer. On account of the assumed smallness of X in 
comparison with rx and r2, the zones are at first of equal area and 
make equal and opposite contributions to the value of <f>; and 
thus by the same reasoning as before we may conclude that at any 
point decidedly outside the geometrical projection of the aperture 
the disturbance vanishes, while at any point decidedly within the 
geometrical projection the disturbance is the same as if the 
primary wave had passed the screen unimpeded. It may be 
remarked that the increase of area of the Huyghens' zones due to 
obliquity is compensated in the calculation of the integral by the 
correspondingly diminished value of the normal velocity of the 
fluid. The enfeeblement of the primary wave between the screen 
and the point P due to divergency is represented by a diminution 
in the area of the Huyghens' zones below that corresponding to 
plane incident waves in the ratio rl-\-ri:r1. 

There is a simple relation between the transmission of sound 
through an aperture in a screen and its reflection from a plane 
reflector of the same form as the aperture, of which advantage may 
sometimes be taken in experiment. Let us imagine a source 
similar to Q and in the same phase to be placed at Q\ the image of 
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Q in the plane of the screen, and let us suppose that the screen is 
removed and replaced by a plate whose form and position is exactly 
that of the aperture; then we know that the effect at P of the two 
sources is uninfluenced by the presence of the plate, so that the 
vibration from Q' reflected from the plate and the vibration from 
Q transmitted round the plate together make up the same vibra
tion as would be received from Q if there were no obstacle at all. 
Now according to the assumption which we made at the begin
ning of this section, the unimpeded vibration from Q may be 
regarded as composed of the vibration that finds its way round the 
plate and of that which would pass an aperture of the same form 
in an infinite screen, and thus the vibration from Q as transmitted 
through the aperture is equal to the vibration from Q' as reflected 
from the plate. 

In order to obtain a nearly complete reflection it is not neces
sary that the reflecting plate include more than a small number of 
Huyghens' zones. In the case of direct reflection the radius p of 
the first zone is determined by the equation 

'(s+s)-* 
where c t and c2 are the distances from the reflector of the source 
and of the point of observation. When the distances concerned 
are great, the zones become so large that ordinary walls are 
insufficient to give a complete reflection, but at more moderate 
distances echos are often nearly perfect. The area necessary for 
complete reflection depends also upon the wave-length; and thus 
it happens that a board or plate, which would be quite inadequate 
to reflect a grave musical note, may reflect very fairly a hiss or 
the sound of a high whistle. In experiments on reflection by 
screens of moderate size, the principal difficulty is to get rid 
sufficiently of the direct sound. The simplest plan is to reflect 
the sound from an electric bell, or other fairly steady source, round 
the corner of a large building1. 

284. In the preceding section we have applied Huyghens' 
principle to the case where the primary wave is supposed to be 
broken up at the surface of an imaginary plane. If we really 
know what the normal motion at the plane is, we can calculate 

1 Phil. Mag. (5) in. p. 458. 1877. 
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the disturbance at any point on the further side by a rigorous 
process. For surfaces other than the plane the problem has not 
been solved generally; nevertheless, it is not difficult to see that 
when the radii of curvature of the surface are very great in com
parison with the wave-length, the effect of a normal motion of an 
element of the surface must be very nearly the same as if the 
surface were plane. On this understanding we may employ the 
same integral as before to calculate the aggregate result. As a 
matter of convenience it is usually best to suppose the wave to be 
broken up at what is called in optics a wave-surface, that is, a 
surface at every point of which the phase of the disturbance is 'the 
same. 

Let us consider the. application of Huyghens' principle to 
calculate the progress of a given divergent wave. With any point 
P, at which the disturbance is required, as centre, describe a series 
of spheres of radii continually increasing by the constant difference 
\ \ , the first of the series being of such radius (c) as to touch the 
given wave-surface at 0. If B be the radius of curvature of the 
surface in any plane through P and 0, the corresponding radius p 
of the outer boundary of the nth zone is given by the equation 

R + c = jM7^ + J{c + ^n\y-p\ 

from which we get approximately 

' 8 = ^ ( i + ; ) w-
If the surface be one of revolution round PC, the area of the first 

n zones is 7 r p 2 , and since p 2 is proportional to n, it follows that the 
zones are of equal area. If the surface be not of revolution, the 
area of the first n zones is represented \ Jp2d&, where 6 is the 
azimuth of the plane in which p is measured, but it still remains 
true that the zones are of equal area. Since by hypothesis the 
normal motion does not vary rapidly over the wave-surface, the 
disturbances at P due to the various zones are nearly equal in 
magnitude and alternately opposite in sign, and we conclude that, 
as in the case of plane waves, the aggregate effect is the half of 
that due to the first zone. The phase at P i s accordingly retarded 
behind that prevailing over the given wave-surface by an amount 
corresponding to the distance c. 

The intensity of the disturbance at P depends upon the area of 
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the first Huyghens' zone, and upon the distance c. In the case of 
symmetry, we have 

7 r p 2 _ ir\R T~R~+c'. 
which shews that the disturbance is less than if R were infinite in 
the ratio B+c : B. This diminution is the effect of divergency, 
and is the same as would be obtained on the supposition that the 
motion is limited by a conical tube whose vertex is at the centre of 
curvature (§ 266). When the surface is not of revolution, the 
value of ^f'^P'OLFF -s- c may be expressed in terms of the principal 
radii of curvature i?, and B2, with which B is connected by the 
relation 

1 _ cos8 (9 sin'fl B~ R, + Ra ' 
We obtain on effecting the integration 

l f > = , v X j E ^ (2), 
2cJo H V ^ + c) (P a + C) W 

so that the amplitude is diminished by divergency in the ratio J(Rl + c) (Rt + c) : JR^R^, a result which might be anticipated by 
supposing the motion limited to a tube formed by normals drawn 
through a small contour traced on the wave-surface. 

Although we have spoken hitherto of diverging waves only, 
the preceding expressions may also be applied to waves converging 
in one or in both of the principal planes, if we attach suitable 
signs to and Rr In such a case the area of the first Huyghens' 
zone is greater than if the wave were plane, and the intensity of 
the vibration is correspondingly increased. If the point P 
coincide with one of the principal centres of curvature, the 
expression (2) becomes infinite. The investigation, on which (2) 
was founded, is then insufficient; all that we are entitled to affirm 
is that the disturbance is much greater at P than at other points 
on the same normal, that the disproportion increases with the 
frequency, and that it would become infinite for notes of infinitely 
high pitch, whose wave-length would be negligible in comparison 
with the distances concerned. 

285. Huyghens' principle may also be applied to investigate 
the reflection of sound from curved surfaces. If the material 
surface of the reflector yielded so completely to the aerial 
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pressures that the normal motion at every point were the same as 
it would have been in the absence of the reflector, then the sound 
waves would pass on undisturbed. The reflection which actually 
ensues when the surface is unyielding may therefore be regarded 
as due to a normal motion of each element of the reflector, equal 
and opposite to that of the primary waves at the same point, and 
may be investigated by the formula proper to plane surfaces in the 
manner of the preceding section, and subject to a similar limita
tion as to the relative magnitudes of the wave-length and of the 
other distances concerned. 

The most interesting case of reflection occurs when the 
surface is so shaped as to cause a concentration of rays upon a 
particular point (P). If the sound issue originally from a simple 
source at Q, and the surface be an ellipsoid of revolution having 
its foci at P and Q, the concentration is complete, the vibration 
reflected from every element of the surface being in the same 
phase on arrival at Q. If Q be infinitely distant, so that the 
incident waves are plane, the surface becomes a paraboloid having 
its focus at P, and its axis parallel to the incident rays. We must 
not suppose, however, that a symmetrical wave diverging from 
Q is converted by reflection at the ellipsoidal surface into a 
spherical wave converging symmetrically upon P; in fact, it is 
easy to see that the intensity of the convergent wave must be 
different in different directions. Nevertheless, when the wave
length is very small in comparison with the radius, the different 
parts of the convergent wave become approximately independent 
of one another, and their progress is not materially affected by 
the failure of perfect symmetry. 

The increase of loudness due to curvature depends upon the 
area of reflecting surface, from which disturbances of uniform 
phase arrive, as compared with the area of the first Huyghens* 
zone of a plane reflector in the same position. If the distances of 
the reflector from the source and from the point of observation be 
considerable, and the wave-length be not very small, the first 
Huyghens' zone is already rather large, and therefore in the case 
of a reflector of moderate dimensions but little is gained by 
making it concave. On the other hand, in laboratory experiments, 
when the distances are moderate and the sounds employed are of 
high pitch, e. g. the ticking of a watch or the cracking of electric 
sparks, concave reflectors are very efficient and give a distinct con
centration of sound on particular spots. 
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286. We have seen that if a ray proceeding from Q passes 
after reflection at a plane or curved surface through P, the point 
R at which it meets the surface is determined by the condition 
that QR + RP is a minimum (or in some cases a maximum). 
The point R is then the centre of the system of Huyghens' zones; 
the amplitude of the vibration at P depends upon the area of the 
first zone, and its phase depends upon the distance QR + RP. If 
there be no point on the surface of the reflector, for which 
QR + RP is a maximum or a minimum, the system of Huyghens' 
zones has no centre, and there is no ray proceeding from Q which 
arrives at P after reflection from the surface. In like manner if 
sound be reflected more than once, the course of a ray is deter
mined by the condition that its whole length between any two 
points is a maximum or a minimum. 

The same principle may be applied to investigate the refraction 
of sound in a medium, whose mechanical properties vary gradually 
from point to point. The variation is supposed to be so slow 
that no sensible reflection occurs, and this is not inconsistent 
with decided refraction of the rays in travelling distances which 
include a very great number of wave-lengths. It is evident 
that what we are now concerned with is not merely the length 
of the ray, but also the velocity with which the wave travels 
along it, inasmuch as this velocity is no longer constant. The 
condition to be satisfied is that the time occupied by a wave 
in travelling along a ray between any two points shall be a 
maximum or a minimum; so that, if V be the velocity of propa
gation at any point, and ds an element of the length of the ray, 
the condition may be expressed, $f V~1dS = 0. This is Fermat's 
principle of least time. 

The further developement of this part of the subject would 
lead us too far into the domain of geometrical optics. The funda
mental assumption of the smallness of the wave-length, on which 
the doctrine of rays is built, having a far wider application to the 
phenomena of light than to those of sound, the task of developing 
its consequences may properly be left to the cultivators of the 
sister science. In the following sections the methods of optics are 
applied to one or two isolated questions, whose acoustical interest 
is sufficient to demand their consideration in the present work, 
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287. One of the most striking of the phenomena connected 
with the propagation of sound within closed buildings is that 
presented by "whispering galleries," of which a good and easily 
accessible example is to be found in the circular gallery at the base 
of the dome of St Paul's cathedral. As to the precise mode of 
action acoustical authorities are not entirely agreed. In the 
opinion of the Astronomer Royal1 the effect is to be ascribed to 
reflection from the surface of the dome overhead, and is to be 
observed at the point of the gallery diametrically opposite to the 
source of sound. Every ray proceeding from a radiant point and 
reflected from the surface of a spherical reflector, will after 
reflection intersect that diameter of the sphere which contains the 
radiant point. This diameter is in fact a degraded form of one of 
the two caustic surfaces touched by systems of rays in general, 
being the loci of the centres of principal curvature of the surface to 
which the rays are normal. The concentration of rays on one 
diameter thus effected, does not require the proximity of the 
radiant point to the reflecting surface. 

Judging from some observations that I have made in St Paul's 
whispering gallery, I am disposed to think that the principal 
phenomenon is to be explained somewhat differently. The ab
normal loudness with which a whisper is heard is not confined 
to the position diametrically opposite to that occupied by the 
whisperer, and therefore, it would appear, does not depend 
materially upon the symmetry of the dome. The whisper seems 
to creep round the gallery horizontally, not necessarily along the 
shorter arc, but rather along that arc towards which the whisperer 
faces. This is a consequence of the very unequal audibility of a 
whisper in front of and behind the speaker, a phenomenon which 
may easily be observed in the open air2. 

Let us consider the course of the rays diverging from a radiant 
point P, situated near the surface of a reflecting sphere, and let us 
denote the centre of the sphere by 0, and the diameter passing 
through P by AA', so that A is the point on the surface nearest 
to P. If we fix our attention on a ray which issues from P at an 
angle + 8 with the tangent plane at A, we see that after any 
number of reflections it continues to touch a concentric sphere of 
radius OP cos 6, so that the whole conical pencil of rays which 

1 Airy on Sound, 2nd edition, 1871, p. 145, 
2 Phil. Mag. (5) in. p. 458, 1877. 
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originally make angles with the tangent plane at A numerically 
less than 6, is ever afterwards included between the reflecting 
surface and that of the concentric sphere of radius OP cos 0. The 
usual divergence in three dimensions entailing a diminishing 
intensity varying as r - 2 is replaced by a divergence in two dimen
sions, like that of waves issuing from a source situated between 
two parallel reflecting planes, with an intensity varying as r~\ 
The less rapid enfeeblement of sound by distance than that usually 
experienced is the leading feature in the phenomena of whispering 
galleries. 

The thickness of the sheet included between the two spheres 
becomes less and less as A approaches P, and in the limiting case 
of a radiant point situated on the surface of the reflector is 
expressed by OA (1 — cos 6), or, if 6 be small, \ OA . 6* approxi
mately. The solid angle of the pencil, which determines the whole 
amount of radiation in the sheet, is 4TT6 ; so that as 6 is 
diminished without limit the intensity becomes infinite, as com
pared with the intensity at a finite distance from a similar source 
in the open. 

It is evident that this clinging, so to speak, of sound to the 
surface of a concave wall does not depend upon the exactness of 
the spherical form. But in the case of a true sphere, or rather of 
any surface symmetrical with respect to A A', there is in addition 
the other kind of concentration spoken of at the commencement of 
the present section which is peculiar to the point A' diametrically 
opposite to the source. It is probable that in the case of a nearly 
spherical dome like that of St Paul's a part of the observed effect 
depends upon the symmetry, though perhaps the greater part is 
referable simply to the general concavity of the walls. 

The propagation of earthquake disturbances is probably affected 
by the curvature of the surface of the globe acting like a whisper
ing gallery, and perhaps even sonorous vibrations generated at the 
surface of the land or water do not entirely escape the same kind 
of influence. 

In connection with the acoustics of public buildings there are 
many points which still remain obscure. It is important to bear 
in mind that the loss of sound in a single reflection at a smooth 
wall is very small, whether the wall be plane or curved. In order 
to prevent reverberation it may often be necessary to introduce 
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carpets or hangings to absorb the sound. In some cases the 
presence of an audience is found sufficient to produce the desired 
effect. In the absence of all deadening material the prolongation 
of .sound may be very considerable, of which perhaps the most 
striking example is that afforded by the Baptistery at Pisa, where 
the notes of the common chord sung consecutively may be heard 
ringing on together for many seconds. According to Henry1 it is 
important to prevent the repeated reflection of sound backwards 
and forwards along the length of a hall intended for public speak
ing, which may be accomplished by suitably placed oblique 
surfaces. In this way the number of reflections in a given time is 
increased, and the undue prolongation of sound is checked. 

288. Almost the only instance of acoustical refraction, which 
has a practical interest, is the deviation of sonorous rays from a 
rectilinear course due to heterogeneity of the atmosphere. The 
variation of pressure at different levels does not of itself give rise 
to refraction, since the velocity of sound is independent of density; 
but, as was first pointed out by Prof. Osborne Reynolds2, the case 
is different with the variations of temperature which are usually 
to be met with. The temperature of the atmosphere is determined 

' principally by the condensation or rarefaction, which any portion 
of air must undergo in its passage from one level to another, and 
its normal state is one of "convective equilibrium3," rather than of 
uniformity. According to this view the relation between pressure 
and density is that expressed in (9) § 246, and the velocity of sound 
is given by 

V = ^ = 7^WY" 1 (1). 
To connect the pressure and density with the elevation (z), we 

have the hydrostatical equation 

dp = —gpdz (2), 

from which and (1) we find 

F 2 = F 0

2 - ( 7 - l ) ^ (3). 
if V0 be the velocity at the surface. The corresponding relation 

1 Amer. Assoc. Proc. 1856, p. 119. 
2 Proceedings of the Boyal Society, Vol. xxil. p. 531. 1874. 
8 Thomson, On the convective equilibrium of temperature in the atmosphere. 

Manchester Memoirs, 1861—62. 
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between temperature and elevation obtained by means of equation 

According to (4) the fall of temperature would be about 
1° Cent, in 330 feet, which does not differ much from the results of 
Glaisher's balloon observations. When the sky is clear, the fall of 
temperature during the day is more rapid than when the sky is 
cloudy, but towards sunset the temperature becomes approximately 
constant1. Probably on clear nights it is often warmer above than 
below. 

The explanation of acoustical refraction as dependent upon a 
variation of temperature with height is almost exactly the same as 
that of the optical phenomenon of mirage. The curvature (p_1) of 
a ray, whose course is approximately horizontal, is easily estimated 
by the method given by Prof. James Thomson2. Normal planes 
drawn at two consecutive points along the ray meet at tbe centre of 
curvature and are tangential to the wave-surface in its two con
secutive positions. The portions of rays at elevations z and z + i)z 
respectively intercepted between the normal planes are to one 
another in the ratio p : p — Bz, and also, since they are described 
in the same time, in the ratio V '. V+ B V. Hence in the limit 

In the normal state of the atmosphere a ray, which starts 
horizontally, turns gradually upwards, and at a sufficient distance 
passes over the head of an observer whose station is at the same 
level as the source. If the source be elevated, the sound is heard 
at the surface of the earth by means of a ray which starts with 
a downward inclination; but, if both the observer and the 
source be on the surface, there is no direct ray, and the sound is 
heard, if at all, by means of diffraction. The observer may then 
be said to be situated in a sound shadow, although there may be 
no obstacle in the direct line between himself and the source. 
According to (3) 

(10) § 246 is 

where $0 is the temperature at the surface, 

(4), 

1 Nature, Sept. 20,1877.. 
»· See Everett, On the Optics of Mirage. Phil. Mag. (4) XLV. pp. 1G1, 218. 
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so that 2V 4 F s 

(6); P = (y-l)g 2g 

or the radius of curvature of a horizontal ray is about ten times 
the height through which a body must fall under the action of 
gravity in order to acquire a velocity equal to the velocity of 
sound. If the elevations of the observer and of the source be z t 

and z2, the greatest'distance at which the sound can he heard 
otherwise than by diffraction is 

It is not to be supposed that the condition of the atmosphere 
is always such that the relation between velocity and elevation is 
that expressed in (3). When the sun is shining, the variation of 
temperature upwards is more rapid; on the other hand, as Prof. 
Reynolds has remarked, when rain is falling, a much slower varia
tion is to be expected. In the arctic regions, where the nights 
are long and still, radiation may have more influence than con
vection in determining the equilibrium of temperature, and if so the 
propagation of sound in- a horizontal direction would be favoured 
by the approximately isothermal condition of the atmosphere. 

The general differential equation for the path of a ray, when 
the surfaces of equal velocity are parallel planes, is readily obtained 
from the law of sines. If 6 be the angle of incidence, V sin Q is 
not altered by a refracting surface, and therefore in the case 
supposed remains constant along the whole course of a ray. If x 
be the horizontal co-ordinate, and the constant value of V-r- sin 6 
be called o, we get 

V(2^)+V(2*2/>) (7)· 

dx V 
J e - v 

f Vdz (8). or 

If the law of velocity be that expressed in (3), 

2VdV 
( 7 - 1 ) 0 * 

and thus 
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or, on effecting the integration, 
V 

(y-l)gx = constant + Vjc2- V-cssin-1 - (9), 
c 

in which Fmay be expressed in terms of z by (3). 
A simpler result will be obtained by taking an approximate 

form of (3), which will be accurate enough to represent the cases 
of practical interest. Neglecting the square and higher powers of 
z, we may take 

+ (10). 

Writing for brevity ß in place of ^ % i r * ^ ? w e ^ a v e ßdz = dV~\ 

By substitution in (8) 

"(f) 
cßx = 

the origin of x being taken so as to correspond with V=c, that is 
at the place where the ray is horizontal. Expressing Fin terms 
of x, we find 

1c 

-y = ecf>x + e-e<s*, 

whence ftz = - V~l + ^ (e^* + er<#») (12). 

The path of each ray is therefore a catenary whose vertex is 
2 F S 

downwards: the linear parameter is —; V r - » and varies from * ^ ( 7 - l ) c 
ray to ray. 

289. Another cause of atmospheric refraction is to be found 
in the action of wind. It has long been known that sounds are 
generally better heard to leeward than to windward of the source; 
but the fact remained unexplained until Stokes1 pointed out that 
the increasing velocity of the wind overhead must interfere with 
the rectilinear propagation of sound rays. From Fermat's law of 
least time it follows that the course of a ray in a moving, but 

1 Brit. Ait. Rep. 1857, p. 22. 
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otherwise homogeneous, medium, is the same as it would he in a 
medium, of which all the parts are at rest, if the velocity of 
propagation be increased at every point by the component of 
the wind-velocity in the direction of the ray. If the wind be 
horizontal, and do not vary in the same horizontal plane, the 
course of a ray, whose direction is everywhere but slightly inclined 
to that of the wind, may be calculated on the same principles as 
were applied in the preceding section to the case of a variable 
temperature, the normal velocity of propagation at any point being 
increased, or diminished, by the local wind-velocity, according as 
the motion of the sound is to leeward or to windward. Thus, 
when the wind increases overhead, which may be looked upon as the 
normal state of things, a horizontal ray travelling to windward is 
gradually bent upwards, and at a moderate distance passes over 
the head of an observer; rays travelling with the wind, on the 
other hand, are bent downwards, so that an observer to leeward of 
the source hears by a direct ray which starts with a slight upward 
inclination, and has the advantage of being out of the way of 
obstructions for the greater part of its course. 

The law of refraction at a horizontal surface, in crossing which 
the velocity of the wind changes discontinuously, is easily investi
gated. It will be sufficient to consider the case in which the 
direction of the wind and the ray are in the same vertical plane. 
If 9 be the angle of incidence, which is also the angle between the 
plane of the wave and the surface of separation, Z7 be the velocity 
of the air in that direction which makes the smaller angle with 
the ray, and V be the common velocity of propagation, the velocity 
of the trace of the plane of the wave on the surface of separa
tion is 

- A j + U " (1), 
sinfl ^ " 

which quantity is unchanged by the refraction. If therefore W be 
the velocity of the wind on the second side, and & be the angle of 
refraction, 

F i + ^ = ^ + ^ ' · (2), sin 9 sin & 

which differs from the ordinary optical law. If the wind-velocity 
vary continuously, the course of a ray may be calculated from the 
condition that the expression (1) remains constant. 
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If we suppose that U=0, the greatest admissible value of 
Wis 

U'=V[cosec6-l} (3). 
At a stratum where U' has this value, the direction of the ray 

which started at an angle 6 has become parallel to the refracting 
surfaces, and a stratum where U' has a greater value cannot be 
penetrated at all. Thus a ray travelling upwards in still air at an 
inclination ( J T T — 6) to the horizon is reflected by a wind overhead 
of velocity exceeding that given in (3), and this independently of 
the velocities of intermediate strata. To take a numerical example, 
all rays whose upward inclination is less than 11°, are totally 
reflected by a wind of the same azimuth moving at the moderate 
speed of 15 miles per hour. The effects of such a wind on the 
propagation of sound cannot fail to be very important. Over the 
surface of still water sound moving to leeward, being confined 
between parallel reflecting planes, diverges in two dimensions 
only, and may therefore be heard at distances far greater than 
would otherwise be possible. Another possible effect of the reflector 
overhead is to render sounds audible which in still air would 
be intercepted by hills or other obstacles intervening. For the 
production of these phenomena it is not necessary that there be 
absence of wind at the source of sound, but, as appears at once 
from the form of (2), merely that the difference of velocities U' — U 
attain a sufficient value. 

The differential equation to the path of a ray, when the wind-
velocity U is continuously variable, is 

ivtence • x = l w m ^ r > ( 5 ) -
In comparing (5) with (8) of the preceding section, which 

is the corresponding equation for ordinary refraction, we must 
remember that V is now constant. If, for the sake of obtaining a 
definite result, we suppose that the law of variation of wind at 
different levels is that expressed by 

U=a + /3z (6), 

we have ßx = vf , - ^ (7), 
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which is of the same form as (11) of the preceding section. The 
course of a ray is accordingly a catenary in the present case also, 
but there is a most important distinction between the two problems. 
When the refraction is of the ordinary kind, depending upon a 
variable velocity of propagation, the direction of a ray may be 
reversed. In the case of atmospheric refraction, due to a diminu
tion of temperature upwards, the course of a ray is a catenary, 
whose vertex is downwards, in whichever direction the ray may be 
propagated. When the refraction is due to wind, whose velocity 
increases upwards, according to the law expressed in (6) with /3 
positive, the path of a ray, whose direction is upward, is also along 
a catenary with vertex downwards, but a ray whose direction is 
downward cannot travel along this path. In the latter case the 
vertex of the catenary along which the ray travels is directed 
upwards. 

290. In the paper by Reynolds already referred to, an account 
is given of some interesting experiments especially directed to test' 
the theory of refraction by wind. It was found that "In the 
direction of the wind, when it was strong, the sound (of an electric 
bell) could be heard as well with the head on the ground as when 
raised, even when in a hollow with the bell hidden from view by 
the slope of the ground ; and no advantage whatever was gained 
either by ascending to an elevation or raising the bell. Thus, with 
the wind over the grass the sound could be heard 140 yards, and 
over snow 360 yards, either with the head lifted or on the ground; 
whereas at right angles to the wind on all occasions the range was 
extended by raising either the observer or the bell." 

" Elevation was found to affect the range of sound against the 
wind in a much more marked manner than at right angles." 

" Over the grass no sound could be heard with the head on the 
ground at 20 yards from the bell, and at 30 yards it was lost with 
the head 3 feet from the ground, and its full intensity was lost 
when standing erect at 30 yards. At 70 yards, when standing 
erect, the sound was lost at long intervals, and was only faintly 
heard even then; but it became continuous again when the ear 
was raised 9 feet from the ground, and it reached its full intensity 
at an elevation of 12 feet." 

Prof. Reynolds thus sums up the results of his experiments :— 
1. "When there is no wind, sound proceeding over a rough 

surface is more intense above than below." 
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2. " As long as the velocity of the wind is greater above than 
below, sound is lifted up to windward and is not destroyed." 

3. "Under the same circumstances it is brought down to 
leeward, and hence its range extended at the surface of the ground." 

Atmospheric refraction has an important bearing on the 
audibility of fog-signals, a subject which within the last few years 
has occupied the attention of two eminent physicists, Prof. Henry 
in America and Prof. Tyndall in this country. Henry1 attributes 
almost all the vagaries of distant sounds to refraction, and has 
shewn how it is possible by various suppositions as to the motion 
of the air overhead to explain certain abnormal phenomena which 
have come under the notice of himself and other observers, while 
Tyndall2, whose investigations have been equally extensive, 
considers the very limited distances to which sounds are sometimes 
audible to be due to an actual stopping of the sound by a flocculent 
condition of the atmosphere arising from unequal heating or 
moisture. That the latter cause is capable of operating in this 
direction to a certain extent cannot be doubted. Tyndall has 
proved by laboratory experiments that the sound of an electric hell 
may be sensibly intercepted by alternate layers of gases of different 
densities ; and, although it must be admitted that the alternations 
of density were both more considerable and more abrupt than 
can well be supposed to occur in the open air, except perhaps in 
the immediate neighbourhood of the solid ground, some of the 
observations on fog-signals themselves seem to point directly to 
the explanation in question. 

Thus it was found that the blast of a siren placed on the 
summit of a cliff overlooking the sea was followed by an echo 
of gradually diminishing intensity, whose duration sometimes 
amounted to as much as 15 seconds. This phenomenon was 
observed "when the sea was of glassy smoothness," and cannot 
apparently be attributed to any other cause than that assigned to 
it by Tyndall. It is therefore probable that refraction and 
acoustical opacity are both concerned in the capricious behaviour 
of fog-signals. A priori we should certainly be disposed to attach 
the greater importance to refraction, and Reynolds has shewn that 
some of Tyndall's own observations admit of explanation upon this 

1 Beport of the Lighthotise Board of the United States for the year 1874. 
8 Phil. Trans. 1874. Sound, 3rd edition, Ch. vn. 
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principle. A failure in reciprocity can only be explained in 
accordance with theory by the action of wind (§ 111). 

According to the hypothesis of acoustic clouds, a difference 
might be expected in the behaviour of sounds of long and of short 
duration, which it may be worth while to point out here, as it does 
not appear to have been noticed by any previous writer. Since 
energy is not lost in reflection and refraction, the intensity of 
radiation at a given distance from a continuous source of sound (or 
light) is not altered by an enveloping cloud of spherical form and of 
uniform density, the loss due to the intervening parts of the cloud 
being compensated by reflection from those which lie beyond the 
source. When, however, the sound is of short duration, the 
intensity at a distance may be very much diminished by the cloud 
on account of the different distances of its reflecting parts and the 
consequent drawing out of the sound, although the whole intensity, 
as measured by the time-integral, may be the same as if there had 
been no cloud at all. This is perhaps the explanation of Tyndall's 
observation, that different kinds of signals do not always preserve 
the same order of effectiveness. In some states of the weather a 
" howitzer firing a 3-lb. charge commanded a larger range than the 
whistles, trumpets, or syren," while on other days "the inferiority 
of the gun to the syren was demonstrated in the clearest manner." 
It should be noticed, however, that in the same series of experi
ments it was found that the liability of the sound of a gun "to be 
quenched or deflected by an opposing wind, so as to be practically 
useless at a very short distance to windward, is very remarkable." 
The refraction proper must be the- same for all kinds of sounds, 
hut for the reason explained above, the diffraction round the edge 
of an obstacle may be less effective for the report of a gun than for 
the sustained note of a siren. 

Another point examined by Tyndall was the influence of fog on 
the propagation of sound. In spite of isolated assertions to the 
contrary1, it was generally believed on the authority of Derham 
that the influence of fog was prejudicial. Tyndall's observations 
prove satisfactorily that this opinion is erroneous, and that the 
passage of sound is favoured by the homogeneous condition of the 
atmosphere which is the usual concomitant of foggy weather. 
When the air is saturated with moisture, the fall of temperature 
with elevation according to the law of convective equilibrium is 

1 See for example Desor, Fortschritte der Physik, xi. p. 217. 1855. 
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much less rapid than in the case of dry air, on account of the 
condensation of vapour which then accompanies expansion. From, 
a calculation by Thomson1 it appears that in warm fog the effect 
of evaporation and condensation would he to diminish the fall of 
temperature by one-half. The acoustical refraction due to tem
perature would thus be lessened, and in other respects no doubt 
the condition of the air would be favourable to the propagation of 
sound, provided no obstruction were offered by the suspended 
particles themselves. In a future chapter we shall investigate the 
disturbance of plane sonorous waves by a small obstacle, and we 
shall find that the effect depends upon the ratio of the diameter of 
the obstacle to the wave-length of the sound. 

The reader who is desirous of pursuing this subject may con
sult a paper by Reynolds "On the Refraction of Sound by the. 
Atmosphere2,'' as well as the authorities already referred to. It 
may be mentioned that Reynolds agrees with Henry in consider
ing refraction to be the really important cause of disturbance, but 
further observations are much needed. See also § 294. 

291. On the assumption that the disturbance at an aperture 
in a screen is the same as it would have been at the same place in 
the absence of the screen, we may solve various problems respecting 
the diffraction of sound by the same methods as are employed for 
the corresponding problems in physical optics. For example, the 
disturbance at a distance on the further side of an infinite plane 
wall, pierced with a circular aperture on which plane waves of 
sound impinge directly, may be calculated as in the analogous 
problem of the diffraction pattern formed at the focus of a circular 
object-glass. Thus in the case of a symmetrical speaking trumpet 
the sound is a maximum along the axis of the instrument, where 
all the elementary disturbances issuing from the various points 
of the plane of the mouth are in one phase. In oblique direc
tions the intensity is less; but it does not fall materially short 
of the maximum value until the obliquity is such that the 
difference of distances of the nearest and furthest points of the 
mouth amounts to about half a wave-length. At a somewhat 
greater obliquity the mouth may be divided into two parts, of 
which the nearer gives an aggregate effect equal in magnitude, 

1 Manchester Memoirs, 1861—62. 
' Phil. Trans. Vol. 166, p. 3J5. 1876. 
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but opposite in phase, to that of the further; so that the intensity 
in this direction vanishes. In directions still more oblique the 
sound revives, increases to an intensity equal to .'017 of that 
along the axis1, again diminishes to zero, and so on, the alternations 
corresponding to the bright and dark rings which surround the 
central patch of light in the image of a star. If R denote the 
radius.of the mouth, the angle, at which the first silence occurs, is 

sin - 1 ('610 . When the diameter of the mouth does not exceed 

the elementary disturbances combine without any considerable 
antagonism of phase, and the intensity is nearly uniform in all 
directions. It appears that concentration of sound along the axis 
requires that the ratio R : X should be large, a condition not 
usually satisfied in the ordinary use of speaking trumpets, whose 
efficiency depends rather upon an increase in the original volume 
of sound (§ 280). When, however, the vibrations are of very short 
wave-length, a trumpet of moderate size is capable of effecting a 
considerable concentration along the axis, as I have myself verified 
in the case of a hiss. 

292. Although such calculations as those referred to in the 
preceding section are useful as giving us a general idea of the 
phenomena of diffraction, it must not be forgotten that the 
auxiliary assumption on which they are founded is by no means 
strictly and generally true. Thus in the case of a wave directly 
incident upon a screen the normal velocity in the plane of the 
aperture is not constant, as has been supposed, but increases from 
the centre towards the edge, becoming infinite at the edge itself. 
In order to investigate the conditions by which the actual velocity 
is determined, let us for the moment suppose that the aperture is 
filled up. The incident wave <f> = cos (nt — KX) -is then perfectly 
reflected, and the velocity-potential on the negative side of the 
screen (x — 0) is 

= cos (nt — K X ) + cos (nt + KX) (1), 
giving, when x = 0, <p = 2 cos nt. This corresponds to the vanish
ing of the normal velocity over the area of the aperture; the 
completion of the problem requires us to determine a variable 
normal velocity over the aperture such that the potential due to it 
(§ 278) shall increase by the constant quantity 2 cos nt in crossing 

1 Yerdet, Lecons d'optique physiqtie, t. I. p. 306. 
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from the negative to the positive side; or, since the crossing 
involves simply a change of sign, to determine a value of the 
normal velocity over the area of the aperture which shall give on 
the positive side $ = cos nt over the same area. The result of 
superposing the two motions thus defined satisfies all the condi
tions of the problem, giving the same velocity and pressure on the 
two sides of the aperture, and a vanishing normal velocity over the 
remainder of the screen. 

If P cos (nt + e) denote the value of ^ at the various points 

of the area (S) of the aperture, the condition for determining 
P and e is by (6) § 278, 

„ cos (nt — KV + e) , 0 , /£>» 
P i - dS = cos nt (2), 

r 

where r denotes the distance between the element dS and any 
fixed point in the aperture. When P and e are known, the com
plete value of <j> for any point on the positive side of the screen is 
given by 

l f U c o s J n * - * ^ ^ ( 3 ) > 

T ZTTJJ r 

and for any point on the negative side by 

* = + 2lrHF ~r KV + ^ d& + 2 C°S Ut C°S KX 

The expression of P and e for a finite aperture, even .if of circular 
form, is probably beyond the power of known methods; but in the 
case where the dimensions are very small in comparison with the 
wave-length the solution of the problem may be effected for the 
circle and the ellipse. If r be the distance between two points, 
both of which are situated in the aperture, icr may be neglected, 
and we then obtain from (2) 

* " h u * n <». 

P 

shewing that — ^ is the density of the matter which must be 
distributed over 8 in order to produce there the constant potential 
unity. At a distance from the opening on the positive side we 
may consider r as constant, and take 

ft = J f

 0 0 8 («*-"*•) ( 6 ) , 
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where M= — -^jjPdS, denoting the total quantity of matter 

which must he supposed to he distributed. It will be shewn 
on- a future page that for an ellipse of semimajor axis a, and 
eccentricity e, 

M = a. + F(e) (7), 
where F is the symbol of the complete elliptic function of the first 
kind. In the case of a circle, F(e)=\ TT, and 

M= — (8). 
7T 

This result is quite different from that which we should obtain on 
the hypothesis that the normal velocity in the aperture has the 
value proper to the primary wave. In that case by (3) § 283 

, _ 7ra 2 sin (nt — KT) ... 

* x: ; ; w 

If there be several small apertures, whose distances apart are 
much greater than their dimensions, the same method gives 

0 = M

 0 0 8 («*-"»·.) M cos (nt - K r j ( w ) 

The diffraction of sound is .a subject which has attracted but 
little attention either from mathematicians or experimentalists. 
Although the general character of the phenomena is well under
stood, and therefore no very startling discoveries are to be 
expected, the exact theoretical solution of a few of the simpler 
problems, which the subject presents, would be interesting; and, 
even with the present imperfect methods, something probably 
might be done in the way of experimental examination. 

293. The value of a function $ which satisfies tfcf> = 0 through
out the interior of a simply-connected closed space 8 can be 
expressed as the potential of matter distributed over the surface 
of 8. In a certain sense this is also true of the class of functions 
with which we are now occupied, which satisfy v2<£ + ^(b = 0. 
The following is Helmholtz's proof1. By Green's theorem, if 0 
and ->|r denote any two functions of x, y, z, 

1 Theorie der LufUchwingnngrn in Bohren mit affenen Kvden. Crelle, Bel. LVII. 
p. 1. 18C0. 
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To each side add — jjJK26-^rdV; then if 

a 2 (v2tf> + + * = 0, a 2 (vty + + ̂  = 0, 

If $ and vanish within 8 , we have simply 

»· 
Suppose, however, that 

( 3 ) j 

where r represents the distance of any point from a fixed origin 0 
within 8 . At all points, except 0 , <& vanishes; and the last term 
in (1) becomes 

referring to the point 0 . Thus 

in which if M?" vanish, we have an expression for the value of ijr at 
any interior point 0 in terms of the surface values of -fy and of 

^ . In the case of the common potential, on which we fall back 

by putting K = 0, ^ would be determined by the surface values of 

^ only. But with K finite, this law ceases to be universally true. 

For a given space 8 there is, as in the case investigated in § 267, a 
series of determinate values of K, corresponding to the periods of 
the possible modes of simple harmonic vibration, which may take 
place within a closed rigid envelope having the form of 8 . With 
any of these values of K, it is obvious that ^ cannot be determined 
by its normal variation over 8 , and the fact that it satisfies 
throughout 8 the equation y2^ + K 2 ^ =0. But if the supposed 
value of K do not coincide with one of the series, then the problem 
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is determinate; for the difference of any two possible solutions, if 
finite, would satisfy the condition of giving no normal velocity 
over 8, a condition which by hypothesis cannot be satisfied with 
the assumed value of K. 

If the dimensions of the space 8 be very small in comparison 
with \ (= 2tt -5- K), e~ixr may be replaced by unity; and we learn 
that yjr differs but little from a function which satisfies throughout 
8 the equation y2(f) = 0. 

294. On his extension of Green's theorem (1) Helmholtz 
founds his proof of the important theorem contained in the following 
statement: If in a space filled with air which is partly bounded by 
finitely extended fixed bodies and is partly unbounded, sound waves 
be excited at any point A, the resulting velocity-potential at a second 
point B is the same both in magnitude and phase, as .it would have 
been at A, had B been the source of the sound. 

If the equation 

in which <p and ->|r are arbitrary functions, and 

<&-.— a 2 (ys(/>+ «*</>), ^ = -a2(y!f + K*f), 

be applied to a space completely enclosed by a rigid boundary and 
containing any number of detached rigid fixed bodies, and if <£, ^ 
be velocity-potentials due to -sources within 8, we get 

jjj(f®-cpy)dr=0 (2). 
Thus, if be due to a source -concentrated in one point A, <& = 0 
except at that point, and 

jjjf<S>dV=+Ajjj®dV, 
where jjjtf?dV represents the intensity of the source. Similarly, 

if yjr be due to a source situated at B, 
Accordingly, if the sources be finite and equal, so that 

ffl**r-fflvdv. (3)) 

9—2 
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it follows that 
B 

which is the symbolical statement of Helmholtz's theorem. 
If the space 8 extend to infinity, the surface integral still 

vanishes, and the result is the same ; but it is not necessary to go 
into detail here, as this theorem is included in the vastly more 
general principle of reciprocity established in Chapter V. The 
investigation there given shews that the principle remains true in 
the presence of dissipative forces, provided that these arise from 
resistances varying as the first power of the velocity, that the 
fluid need not be homogeneous, nor the neighbouring bodies rigid 
or fixed. In the application to infinite space, all obscurity is 
avoided by supposing the vibrations to be slowly dissipated after 
having escaped to a distance from A and B , the sources under 
contemplation. 

The reader must carefully remember that in this theorem 
equal sources of sound are those produced by the periodic intro
duction and abstraction of equal quantities of fluid, or something 
whose effect is the same, and that equal sources do not necessarily 
evolve equal amounts of energy in equal times. For instance, a 
source close to the surface of a large obstacle emits twice as much 
energy as an equal source situated in the open. 

As an example of the use of this theorem we may take the 
case of a hearing, or speaking, trumpet consisting of a conical tube, 
whose efficiency is thus seen to be the same, whether a sound pro
duced at a point outside is observed at the vertex of the cone, or 
a source of equal strength situated at the vertex is observed at the 
external point. 

It is important also to bear in mind that Helmholtz's form of 
the reciprocity theorem is applicable only to simple sources of sound, 
which in the absence of obstacles would generate symmetrical 
waves. As we shall see more clearly in a subsequent chapter, it is 
possible to have sources of sound, which, though concentrated in 
an infinitely small region, do not satisfy this condition. It will be 
sufficient here to consider the case of double sources, for which the 
modified reciprocal theorem has an interest of its own. 

Let us suppose that A is a simple source, giving at a point B 
the potential — yjr, and that A ' is an equal and opposite source 
situated at a neighbouring point, whose potential at B is -<Jr + Aijr, 
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If both sources be in operation simultaneously, the potential at B 
is A^ . Now let us suppose that there is a simple source at B, 
whose intensity and phase are the same as those of the sources at 
A and A'; the resulting potential at A is ^ , and at A' yjr + A ^ . 
If the distance A A' be denoted by h, and be supposed to diminish 
without limit, the velocity of the fluid at A in the direction A A' 
is the limit of Ai^ : h. Hence, if we define a unit double source 
as the limit of two equal and opposite simple sources whose dis
tance is diminished, and whose intensity is increased without 
limit in such a manner that the product of the intensity and 
the distance is the same as for two unit simple sources placed at 
the unit distance apart, we may say that the velocity of the fluid 
at A in direction AA' due to a unit simple source at B is numeri
cally equal to the potential at B due to a unit double source at A, 
whose axis is in the direction AA'. This* theorem, be it observed, 
is true in spite of any obstacles or reflectors that may exist in the 
neighbourhood of the sources. 

Again, if A A' and BB' represent two unit double sources of the 
same phase, the velocity at B in direction BB' due to the source 
AA' is the same as the velocity at A in direction AA' due to the 
source BB'. These and other results of a like character may also 
be obtained on an immediate application of the general principle of 
§ 108. These examples will be sufficient to shew that in applying 
the principle of reciprocity it is necessary to attend to the character 
of the sources. A double source, situated in an open space, is in
audible from any point in its equatorial plane, but it does not 
follow that a simple source in the equatorial plane is inaudible 
from the position of the double source. On this principle, I believe, 
may be explained a curious experiment by Tyndall1, in which 
there was an apparent failure of reciprocity2. The source of sound 
employed was a reed of very high pitch, mounted in a tube, along 
whose axis the intensity was considerably greater than in oblique 
directions. 

295. The kinetic energy T of the motion within a closed 
surface S is expressed "by 

R - W / / S © * R -
1 Proceedings of the Royal Institution, Jan. 1875. Also Tyndall, On Sound, 3rd 

edition, p. 405. 
2 See a note " On the Application of the Principle of Reciprocity to Acoustics." 

Royal Society Proceedings, Vol. xxv. p. 118, 1876, or Phil. Mag. (5) m. p. 300. 
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=p.//*g^-p.///^v><ir. 

by Green's theorem. For the potential energy Vt we have by 
(12) § 245 

v>=&!lftdv-
whence W-%\\\^dV= SJ//{f + »V*} ^ F . . . ( 4 ) , 

by the general equation of motion (9) § 244. Thus, if E denote 
the whole energy within the space 8, 

£ - * / / * S ^ & J / J w * " - * 
of which the first term represents the work transmitted across the 
boundary 8, and the second represents the work done by internal 
sources of sound. 

If the boundary 8 be a fixed rigid envelope, and there be no 
internal sources, E retains its initial value throughout the motion. 
This principle has been applied by Kirchhoff1 to prove the deter-
minateness of the motion resulting from given arbitrary initial 
conditions. Since every element of E is positive, there can be no 
motion within 8, if E be zero. Now, if there were two motions 
possible corresponding to the same initial conditions, their differ
ence would be a motion for which the initial value of E was zero; 
but by what has just been said such a motion cannot exist. 

1 Vorlesungen iiber Math. Fhysik, p. 311. 

[295, 

•(2), 
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CHAPTER XV. 

FURTHER APPLICATION OF THE GENERAL EQUATIONS. 

296. W H E N a train of plane waves, otherwise unimpeded, 
impinges upon a space occupied by matter, whose mechanical pro
perties differ from those of the surrounding medium, secondary 
waves are thrown off, which may be regarded as a disturbance due 
to the change in the nature of the medium—a point of view more 
especially appropriate, when the region of disturbance, as well 
as the alteration of mechanical properties, is small. If the 
medium and the obstacle be fluid, the mechanical properties 
spoken of are two—the compressibility and the density: no 
account is here taken of friction or viscosity. In the chapter on 
spherical harmonic analysis we shall consider the problem here 
proposed on the supposition that the obstacle is spherical, without 
any restriction as to the smallness of the change of mechanical 
properties ; in the present investigation the form of the obstacle 
is arbitrary, but we assume that the squares and higher powers 
of the changes of mechanical properties may be omitted. 

If £, v, £ denote the displacements parallel to the axes of 
co-ordinates of the particle, whose equilibrium position is defined 
by x, y, z, and if a be the normal density, and m the constant 
of compressibility so that Sp = ms, the equations of motion are 

and two similar equations in TJ and f On the assumption 
that the whole motion is proportional to ei*at, where as usual 
K = 27T\~1, and (§ 244) a2 = ma'1, (1) may be written 

- V - " w * - 0 (2>-
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The relation between the condensation s , and the displace
ments v, K, obtained by integrating (3) § 238 with respect 
to the time, is 

— s ·• 
d% + dv + dÇ 
dx dy dz' .(3). 

For the system of primary waves advancing in the direction 
of — x , v and f vanish ; if £0, s 0 be the values of f and s , and 
m0, o-0 be the mechanical constants for the undisturbed medium, 
we have as in (2) 

d (m0s0) 
dx •(4); 

but f0, s 0 do not satisfy (2) at the region of disturbance on account 
of the variation in m and <r, which occurs there. Let us assume 
that the complete values are + £ y, ?, s0.+ s , and substitute 
iu (2). Then taking account of (4), we get 

d(ms) 2 -a- r \ds0 , dm . . 2 „ 

- < ™ V | +(m- m0) + s , - 0 - o-,) «V£„ = 0, 

or, as it may also be written, 

d (ins) - « V £ + ^ (Am.s,) - Ao-.*V& = 0 (5), 
dx 

if Am, Ao- stand respectively for m —m0, a — o-0. The equations 
in 9; and f are in like manner 

^ (ms) - . o - « V t ? + ^ (Am.s.) = 0 

^ (ms) — c r / e V f + ^ (Am.s0) = 0 
da 

.(6). 

It is to be observed that Am, A<r vanish, except through a 
small space, which is regarded as' the region of disturbance ; 
£, 7], £, s, being the result of the disturbance are to be treated 
as small quantities of the order Am, Ao-; so that in our ap
proximate analysis the variations of m and o- in the first two 
terms of (5) and (6) are to be neglected, being there multiplied 
by small quantities. "We thus obtain from (5) and (6) by differ
entiation and addition, with use of (3), as the differential equation 
in s, 

V2 (ms) + ic'ms = *W ^ - (A<r. £,) - V 2 (Am. s0) (7). 
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As in § 277, the solution of (7) is 

4™=JjJ^{v 2
 (Am .0 - * V L ( A v . ^ d V (8),' 

in which the integration extends over a volume completely in
cluding the region of disturbance. The integrals in (8) may he 
transformed with the aid of Green's theorem. Calling: the two 
parts respectively P and Q, we have 

+ / / { £ ? R R „ ( I - - ' - ) - A - - ' . | ( £ F ) } ^ 
where 8 denotes the surface of the space through which the triple 

integration extends-. Now on 8, Am and ^ (Am.s0) vanish, 

so that both the surface integrals disappear. Moreover 

, fe~iKr\ = 1 d* 
V \ r ) rdr* 

1 d' .. „ e - t o   

e-«* = — K 

r 
and thus 

, = " k* III T~ A M , S ° D K ^ -
If the region of disturbance be small in comparison with X, 

we may write 
g-iKT 

P = - « \ — JJJAmdV. (10). 

In like manner for the second integral in (8), we find 

= «V|FJACT.ft | (^PJ d V= « V f . p, ^1fJA*d V... (11), 

where p. denotes the cosine of the angle between x and r. The 
linear dimension of the region of disturbance is neglected in 

.comparison with X, and X is neglected in comparison with r. 

If T he the volume of the space through which A m , Acr are 
sensible, we may write 

^ A m d V = T . A m , JfJA<rdV= T.Av, 
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if on the right-hand sides Am, ACT refer to the mean values of 
the variations in question. Thus from (8) 

To express £0 in terms of s„, we have from ( 3 ) , f0 = — Js0dx; and 
thus, if the condensation for the primary waves be s0 = eiic^at+x\ 
IKP0 = — s0, and ( 1 2 ) may be put into the form 

7rTe- f a r ( A m ACT ) 
0 Xr [m <r j 

in which s0 denotes the condensation of the primary waves at 
the place of disturbance at time t, and s denotes the condensa
tion of the secondary waves at the same time at a distance r from 
the disturbance. Since the difference of phase represented by the 
factor e~iKr corresponds simply to the distance r, we may consider 
that a simple reversal of phase occurs at the place of disturbance. 
The amplitude of the secondary waves is inversely proportional 
to the distance r, and to the square of the wave-length X. Of 
the two terms expressed in ( 1 3 ) the first is symmetrical in all 
directions round the place of disturbance, while the second varies 
as the cosine of the angle between the primary and the secondary 
rays. Thus a place at which m varies behaves as a simple source, 
and a place at which a- varies behaves as a double source (§ 2 9 4 ) . 

That the secondary disturbance must vary as X~* may he 
proved immediately by the method of dimensions. Am and Acr 
being given, the amplitude is necessarily proportional to T, and in 
accordance with the principle of energy must also vary inversely 
as r. Now the only quantities (dependent upon space, time, and 
mass) of which the ratio of amplitudes can bo a function, are 
T, r, X, a (the velocity of sound), and a, of which the last cannot 
occur in the expression of a simple ratio, as it is the only one of 
the five which involves a reference to mass. Of the remaining 
four quantities T, r, X, and a, the last is the only one which 
involves a reference to time, and is therefore excluded. We are 
left with T, r, and X, of which the only combination varying 
as 2V"1, and independent of the unit of length, is Tr'1 X"2.1 

An interesting application of the results of this section may 
be made to explain what have been called harmonic echoes*. 

1 "On the light from the sky," Phil. Mag. Feb. 1871, and "On the scattering of 
light by small Particles," Phil. Mag. June, 1871. 

" Nature, 1873, vm. 319. 

IRIS - LILLIAD - Université Lille 1 



If the primary sound be a compound musical note, the various 
component tones are scattered in unlike proportions. The octave, 
for example, is sixteen times stronger relatively to the funda
mental tone in the secondary than it was in the primary sound. 
There is thus no difficulty in understanding how it may happen 
that echoes returned from such reflecting bodies as groups of trees 
may be raised an octave. The phenomenon has also a comple
mentary side. If a number of small bodies lie in the path of 
waves of sound, the vibrations which issue from them in all direc
tions are at the expense of the energy of the main stream, and 
where the sound is compound, the exaltation of the higher har
monics in the scattered waves involves a proportional deficiency 
of them in the direct wave after passing the obstacles. This is 
perhaps the explanation of certain echoes which are said to return 
a sound graver than the original; for it is known that the pitch of 
a pure tone is apt to be estimated too low. But the evidence 
is conflicting, and the whole subject requires further careful expe
rimental investigation; it may be commended to the attention of 
those who may have the necessary opportunities, "While an altera
tion in the character of a sound is easily intelligible, and must 
indeed generally happen to a limited extent, a change in the 
pitch of a simple tone would be a violation of the law of forced 
vibrations, and hardly to be reconciled with theoretical ideas. 

In obtaining (13) we have neglected the effect of the variable 
nature of the medium on the disturbance. When the disturb
ance on this supposition is thoroughly known, we might approxi
mate again in the same manner. The additional terms so obtained 
would be necessarily of the second order in Am, ACT, so that our 
expressions are in all cases correct as far as the first powers of 
those quantities. 

Even when the region of disturbance is not small in com
parison with X, the same method is applicable, provided the 
squares of Am, Air be really negligible. The total effect of any 
obstacle may then be calculated by integration from those of its 
parts. In this way we may trace the transition from a small 
region of disturbance whose surface does not come into considera
tion, to a thin plate of a few or of a great many square wave
lengths in area, which will ultimately reflect according to the 
regular optical law. But if the obstacle be at all elongated in the 
direction of the primary rays, this method of calculation soon 
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ceases to be practically available, because, even although the 
change of mechanical properties be very small, the interaction 
of the various parts of the obstacle cannot be left out of account. 
This caution is more especially needed in dealing with the case of 
light, where the wave-length is so exceedingly small in comparison 
with the dimensions of ordinary obstacles. 

297. In some degree similar to the effect produced by a 
change in the mechanical properties of a small region of the fluid, 
is that which ensues when the square of the motion rises any
where to such importance that it can be no longer neglected. 
y2 )̂ + K?cf) then acquires a finite value dependent upon the square 
of the motion. Such places therefore act like sources of sound; 
the periods of the sources including the submultiples of the ori
ginal period. Thus any part of space, at which the intensity 
accumulates to a sufficient extent, becomes itself a secondary 
source, emitting the harmonic tones of the primary sound. If 
there be two primary sounds of sufficient intensity, the secondary 
vibrations have frequencies which are the sums and differences of 
the frequencies of the primaries (§ 68) \ 

298. The pitch of a sound is liable to modification when the 
source and the recipient are in relative motion. It is clear, for 
instance, that an observer approaching a fixed source will meet 
the waves with a frequency exceeding that proper to the sound, by 
the number of wave-lengths passed over in a second of time. Thus 
if v be the velocity of the observer and a that of sound, the 
frequency is altered in the ratio a ± v : a, according as the motion 
is towards or from the source. Since the alteration of pitch is 
constant, a musical performance would still be heard in tune, 
although in the second case, when a and v are nearly equal, the 
fall in pitch would be so great as to destroy all musical character. 
If we could suppose v to be greater than a, a sound produced after 
the motion had begun would never reach the observer, but sounds 
previously excited would be gradually overtaken and heard in the 
reverse of the natural order. If v = 2a, the observer would hear 
a musical piece in correct time and tune, but backwards. 

Corresponding results ensue when the source is in motion and 
the observer at rest; the alteration depending only on the relative 
motion in the line of hearing. If the source and the observer move 
with the same velocity there is no alteration of frequency, whether 

1 Helmholtz fiber Combinationstone. Pogg. Ann. Bd. xcix. s. 497. 1856. 
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the medium be in motion, or not. With a relative motion of 
40 miles per hour the" alteration of pitch is very conspicuous, 
amounting to about a semitone. The whistle of a locomotive is 
heard too high as it approaches, and too low as it recedes from an 
observer at a station, changing rather suddenly at the moment of 
passage. 

The principle of the alteration of pitch by relative motion was 
first enunciated by Doppler1, and is often called Doppler's prin
ciple. Strangely enough its legitimacy was disputed by Petzval2, 
whose objection was the result of a eonfusion between two 
perfectly distinct cases, that in which there is a relative motion 
of the source and recipient, and that in which the medium is in 
motion while the source and the recipient are at rest. In the 
latter case the circumstances are mechanically the same as if the 
medium were at rest and the source and the recipient had a 
common motion, and therefore by Doppler's principle no change 
of pitch is to be expected. 

Doppler's principle has been experimentally verified by Buijs 
Ballot8 and Scott Russell, who examined the alterations of pitch 
of musical instruments carried on locomotives. A laboratory in
strument for proving the change of pitch due to motion has been 
invented by Mach4. It consists of a tube six feet in length, 
capable of turning about an axis at its centre. At one end is 
placed a small whistle or reed, which is blown by wind forced 
along the axis of the tube. An observer situated in the plane of 
rotation hears a note of fluctuating pitch, but if he places himself 
in the prolongation of the axis of rotation, the sound becomes 
steady. Perhaps the simplest experiment is that described by 
König6. Two o" tuning forks mounted on resonance cases are 
prepared to give with each other four beats per second. If the 
graver of the forks be made to approach the ear while the other 
remains at rest, one beat is lost for each two feet of approach; if, 
however, it be the more acute of the two forks which approaches 
the ear, one beat is gained in the same distance. A modification 

1 Theorie des farbigon Lichtes der Doppelsterne. Prag, 1842. See Pislco, Die 
neueren Apparate der Ahustih. Wien, 18ß5. 

2 Wien. Ber. T i n . 134. 1852, Fortschritte der Physik, v n i . 1C7. 
8 Pogg. Ann. LXVI. p. 321. 
4 Pogg. Ann. cxu. p. 66, 1861, and cxvi. p. 333. 
5 Knnig's Catalogue des Appareils d'Acoustique. Faris, 1805. 
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of this experiment due to Mayer1 may also be noticed. In this 
case one fork excites the vibrations of a second in unison 'with 
itself, the excitation being made apparent by a small pendulum, 
whose bob rests against the extremity of one of the prongs. If the 
exciting fork be at rest, the effect is apparent up to a distance of 
60 feet, but it ceases when the exciting fork is moved rapidly to 
or fro in the direction of the line joining the two forks. 

There is some difficulty in treating mathematically the problem 
of a moving source, arising from the fact that any practical source 
acts also as an obstacle. Thus in the case of a bell carried 
through the air, we should require to solve a problem difficult 
enough without including the vibrations at all. But the solution 
of such a problem, even if it could be obtained, would throw no 
particular light on Doppler's law, and we may therefore advan
tageously simplify the question by idealizing the bell into a simple 
source of sound. 

In § 147 we considered the problem of a moving source of 
disturbance in the case of a stretched string. The theory for 
aerial waves in one dimension is precisely similar, but for the 
general case of three dimensions some extension is necessary, in 
order to take account of the possibility of a motion across the 
direction of the sound rays. From .§§ 273, 276 it appears that the 
effect at any point 0 of a source of sound is the same, whether the 
source be at rest, or whether it move in any manner on the surface 
of a sphere described about 0 as centre. If the source move in 
such a manner as to change its distance (r) from 0, its effect is 
altered in two ways. Not only is the phase of the disturbance on 
arrival at 0 affected by the variation of distance, but the amplitude 
also undergoes a change. The latter complication however may 
be put out of account, if we limit ourselves to the case in which 
the source is sufficiently distant. On this understanding we may 
assert that the effect at 0 of a disturbance generated at time t and 
at distance r is the same as that of a similar disturbance generated 
at the time t + ht and at the distance r — a St. In the case of a 
periodic disturbance a velocity of approach (y) is equivalent to an 
increase of frequency in the ratio a : a + v. 

299. We will now investigate the forced vibrations of the 
air contained within a rectangular chamber, due to internal sources 
of sound. By § 267 it appears that the result at time t of an 

1 Phil. Mag. (4) XLIII. p. 278, 1872. 
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initial condensation confined to the neighbourhood of the point 
f> V, Kis 

(f = %l,2KaSpar cos Kat cos (p ^ cos (q ^ cos (r ^ ...(1), 

where 

KaBwr = ^ cos (p ^ cos (q-^j cos (r ^jjj<j>0dxdydz...{2), 
from which thè effect of an impressed force may be deduced, 
as in § 276. The disturbance jjj<f>fdxdydz communicated at 
time t' being denoted by jjjQ (£') di dxdydz, or $>l(t')di, the 
resultant disturbance at time t is 

cos ^ cos (q ^ ) cos (r ^ ) | * * t (0 cos «a(* - 0 . . . ( 3 ) . 

The symmetry of this expression with respect to x, y, z and 
£, r], £is an example of the principle of reciprocity (§ 107). 

In the case of a harmonic force, for which Q>1 (£') = A cos moi', 
we have to consider the value of 

t 
erf's mat' eos ica (t — t') di (4). 

Strictly speaking, this integral lias no definite value; but, if 
we wish for thé expression of the forced vibrations only, we must 
omit the integrated function at the lower limit, as may be seen 
by supposing the introduction of very small dissipative forces. 
We thus obtain 

[* ^ /,<\ iA .'\ 7i A ma sin mat , K . J _ m * x ( « ) c o s m (t-1) di = A ( O T W ) a » (5). 

As might have been predicted, the expressions become infinite 
in case of a coincidence between the period of the source and one 
of the natural periods of the chamber. Any particular normal 
vibration will not be excited, if the source be situated on one 
of its loops. 

The effect of a multiplicity of sources may readily be inferred 
by summation or integration. 
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300. When sound is excited within a cylindrical pipe, the 
simplest kind of excitation that we can suppose is by the forced 
vibration of a piston. In this case the waves are plane from 
the beginning. But it is important also to inquire what happens 
when the source, instead of being uniformly diffused over the 
section, is concentrated in one point of it. If we assume (what, 
however, is not unreservedly true)* that at a sufficient distance 
from the source the waves become plane, the law of reciprocity 
is sufficient to guide us to the desired information. 

Let A be a simple source in an unlimited tube, B, B' two 
points of the same normal section in the region of plane waves. 
Ex hypothesi, the potentials at B and B' due to the source A 
are the same, and accordingly by the law of reciprocity equal 
sources at B and S would give the same potential at A. From 
this it follows that the effect of any source is the same at a 
distance, as if the source were uniformly diffused over the section 
which passes through it. For example, if B and B1 were equal 
sources in opposite phases, the disturbance at A would be nil. 

The energy emitted by a simple source situated within a 
tube may now be calculated. If the section of the tube be -a-, 
and the source such that in the open the potential due to it 
would be 

, A cos K (at — r) N 

* = - 4 l r ' r 
the velocity-potential at a distanee within the tube will be 
the same as if the cause of the disturbance were the motion 
of a piston at the origin, giving the same total displacement, 
and the energy emitted will also be the same. Now from (1) 

27rr2 ̂  = | A cos mt ultimately, 

and therefore if yjr be the velocity-potential of the plane waves 
in the tube (supposed parallel to z), we may take 

<Td-^=\AcosK(at-z) (2), 

corresponding to which 

= ~ 2(7 

A 

f = - ±± cos K (at - 0) ^ 
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Hence, as in § 245, the energy (W) emitted on each side of 
the source is given by 

dW ( ; df\ paA* , . -y-= a I — pyfr -~ ) = (—;—cos /cat; dt \ r r dzjz=0 4a- ' 

so that in the long run 

W=P-^t (4). 
OCT 

If the tube be stopped by an immovable piston placed close to 
the source, the whole energy is emitted in one direction; but 
this is not all. In consequence of the doubled pressure, twice 
as much energy as before is developed, and thus in this case 

W = ^ t (5). 

The narrower the tube, the greater is the energy issuing from 
a given source. It is interesting to compare the efficiency of 
a source at the stopped end of a cylindrical tube with that of 
an equal source situated at the vertex of a cone. From § 280 
we have in the latter case, 

w-p^r* («). 
so that W : W = » : *V (7). 
The energies emitted in the two cases are the same when a> = «V, 
that is, when the section of the cylinder is equal to the area-
cut off by the cone from a sphere of radius K"\ 

301. We have now to examine how far it is true that vibra
tions within a cylindrical tube become approximately plane at a 
sufficient distance from their source. Taking the axis of z parallel 
to the generating lines of the cylinder, let us investigate the 
motion, whose potential varies as eUat, on the positive side of a 
source, situated at z = 0. If </> be the potential and stand for 
d? d* 

+ , the equation of the motion is 

(J+v-2+*2)̂  = 0 (1). 
If <f> be independent of z, it represents vibrations wholly 

transverse to the axis of the cylinder. If the potential be then 
proportional to e^at, it must satisfy 

(V'+J>')* = 0 (2), 
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as well as the condition that over the boundary of the section 

5 - · •' « · 
In order that these equations may be compatible, p is restricted 
to certain definite values corresponding to the periods of the 
natural vibrations. A zero value of p gives <f> = constant, which 
solution, though it is of no significance in the two dimension pro
blem, we shall presently have to consider. For each admissible 
value of p, there is a definite normal function u of x and y (§ 92), 
such that a solution is 

cp = Aue{Pat (4). 

Two functions u, u', corresponding to different values of p, are 
conjugate, viz. make 

jjuu'dxdy = 0 (5), 

and any function of x and y may be expanded within the contour 
in the series 

6 = A„ug + Atut+Atu„ + (6), 

in which « 0, corresponding to p = 0, is constant. 

In the actual problem 6 may still be expanded in the same 
series, provided that A0, Alt &c. be regai-ded as functions of z. 
By substitution in (1) we get, having regard to (2), 

id*A, , , . \ , (#A. , , , _ , I 

+ u*{^+(«*-Pi)A] + - = ° :--(7)' 
in which, by virtue of the conjugate property of the normal func
tions, each coefficient of u must vanish separately. Thus 

rP A #72 4 

V + * A > = ° > I ? + ^ A=° (8)-

The solution of the first of these equations is 

giving 

4>o = a o uoei<at+^+ /80M0e&("«-*) (9). 
The solution of the general equation in A assumes a different 
form, according as « 2 —£ 2 is positive or negative. If the forced 
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vibration be graver in pitch than the gravest of the purely trans
verse natural vibrations, every finite value of p* is greater than «2, 
or «2 —p* is always negative. Putting 

K*-tf = - r ? (10), 

we have A = ae^s + Be'^, 

whence <£ = (ae"* -f Be'^) ueiltat (11). 

Now under the circumstances supposed, it is evident that the 
motion does not become infinite with z, so that all the coefficients 
a vanish. For a somewhat different reason the same is true of ct 0 , 
as there can be no wave in the negative direction. We may 
therefore take 

0 = j30ei<at-z)+B1u1e-^s eilcat+ /3^e~^eiKat+ (12), 

an expression which reduces to its first term when z is sufficiently 
great. We conclude that in all cases the waves ultimately become 
plane, if the forced vibration be graver than the gravest of the 
natural transverse vibrations. 

In the case of a circular cylinder, of radius r, the gravest trans
verse vibration has a wave-length equal to 27rr-=-1 - 841 = 3'413r 
(§ 339). If then the wave-length of the forced vibration exceed 
3'413r, the waves ultimately become plane. It may happen how
ever that the waves ultimately become plane, although the wave
length fall short of the above limit. For example, if the source 
of vibration be symmetrical with respect to the axis of the tube, 
e.g. a simple source situated on the axis itself, the gravest trans
verse vibration with which we should have to deal would be more 
than an octave higher than in the general case, and the wave
length of the forced vibration might have less than half the above 
value. 

From (12), when z = 0, 

^ = - iKBaeiKat - fi1B1u1eiKat- ... 

whence 

fj^d* = (13), 

inasmuch as JJ^dcr, Jfu^da, &c, all vanish. 

It appears accordingly that the plane waves at a distance are 
the same as would be produced by a rigid piston at the origin, 

10—2 

IRIS - LILLIAD - Université Lille 1 



302. In § 278 we have fully determined the motion of the 
air due to the normal periodic motion of a bounding plane plate of 

infinite extent. If ^ be the given normal velocity at the ele

ment dS, 
'd$ e~iKr 

dn r 
dS (1) 

gives the velocity-potential at any point P distant r from dS. The 
remainder of this chapter is devoted to the examination of the 
particular case of this problem which arises when the normal 
velocity has a given constant value over a circular area of radius 
R, while over the remainder of the plane it is zero. In particular 
we shall investigate what forces due to the reaction of the air will 
act on a rigid circular plate, vibrating with a simple harmonic 
motion in an equal circular aperture cut out of a rigid plane plate 
extending to infinity. 

For the whole variation of pressure acting on the plate we 
have (§ 244) 

jf SpdS = -o-jj<j>dS=- im<r jf <pdS, 

giving the same mean normal velocity as actually exists. Any 
normal motion of which the negative and positive parts are equal, 
produces ultimately no effect. 

When there is no restriction on the character of the source, and 
when some of the transverse natural vibrations are graver than 
the actual one, some of the values of K2—p* are positive, and then 
terms enter of the form 

<f> =Bu eiltat
 e - i v V - p 2 ^ 

or in real quantities 

<p = Bu cos {« at - V(«a -p") z) (14), 
indicating that the peculiarities of the source are propagated to 
an infinite distance. 

The problem here considered may be regarded as a generaliza
tion of that of § 268. For the case of a circular cylinder it may 
be worked out completely with the aid of Bessel's functions, but 
this must be left to the reader. 
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where <r is the natural density, and <p varies as e ^ . Thus by (1) 

fydsJ-^^Z^dSdS' ( 2 ) . 

In the double sum 

X Z ' L - d B d B ' (3), 

which we have now to evaluate, each pair of elements is to be 
taken once only, and the product is to be summed after multipli
cation by the factor r~l e~iRr, depending on their mutual distance. 
The best method is that suggested by Prof. Maxwell for the common 
potential1. The quantity (3) is regarded as the work that would be 
consumed in the complete dissociation of the matter composing 
the disc, that is to say, in the removal of every element from the 
influence of every other, on the supposition that the potential of 
two elements is proportional to r"1 e~iKr. The amount of work 
required, which depends only on the initial and final states, may 
be calculated by supposing the operation performed in any way 
that may be most convenient. For this purpose we suppose that 
the disc is divided into elementary rings, and that each ring is 
carried away to infinity before any of the interior rings are dis
turbed. 

The first step is the calculation of the potential (V) at the 
edge of a disc of radius c. Taking polar co-ordinates (p, 6) with 
any point of the circumference for pole, we have 

V= -—pdpd0=\ e-^dpdd = ^\ {1 - e - 2 « c c o S e } d9. 
J J p J -id 0

 lKJ 0 

This quantity must be multiplied by 2ircdc> and afterwards 
integrated with respect to c between the limits 0 and B. But 
it will be convenient first to effect a transformation. We have 

± e-ZiKCcos0 ¿0 = t \ e-2i<c sin0 ¿0 
7RJ 0 7 T j 0 

= — I cos (2/cc sin 6) dQ — - \ sin (2KC sin 6) d9 

= J0(z)-iK(z) (4), 

where z is written for 2KO. J „ (Z) is the Bessel's function of zero 
1 Theory of Resonance. Phil. Trans. 1870. 
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K(z) = - \ " sin (z sin 6) dO 
TJ o 

2 f a3 . z1 

= ^ 1 * ~ 1 27P + 1 2 . 3 2 . 5 a — l a . 3 2 . 5 2 . 7 2 + j 

Deferring for the moment the further consideration of the 
function K, we have 

V=?[K(z)-i{l-J0(z)}} (6), 

and thus 

s S i_ = |_ J zdz [ K (g) Jo {z)]i 
Now by (6) § 200 and (8) § 204 

\SzdzJ0{z) = zJ1{z) (7); 
J 0 

and thus, if Kt be defined by 

K1(z) = fZzdzK(z) (8), 

we may write 

From this the total pressure is derived by introduction of the 
r , iicacr dd> ,, . factor — , so that 7r an 

The reaction of the air on the disc may thus be divided into 
two parts, of which the first is proportional to the velocity of the 
disc, and the second to the acceleration. If £ denote the dis
placement of the disc, so that £ = ^ , we have £ = iica £ = i m ^ ; 

and therefore in the equation of motion of the disc, the reaction of 
the air is represented by a frictional force CUT . irH*. %(l — ^ ^ j ^ " ) 
retarding the motion, and by an accession to the inertia equal to 

order (§ 200), and K(z) is a function defined by the equation 
2 f+* 
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When KR is small, we have from the ascending series for j t 

(5) § 200, 
j x (2KB) K?R* h?!? IC'R3 KSRs . 

1

 KE 1 . 2 1 . 2 A . 3 + 1. 2 2 . 3 2 . 4 1 . 2 2 . 3 2 . 4 2 . 5 + · " " ^ 

so that the frictional term is approximately 

laa.irR\K*R\% (12). 

From the nature of the case the coefficient of % must he 
positive, otherwise the reaction of the air would tend to augment, 
instead of to retard, the motion. That (z) is in fact always less 
than \ z may be verified as follows. If 0 lie between 0 and t t , and 
z be positive, sin (z sin 6) — z sin 0 is negative, and therefore also 

1 f* 
{sin (z sin 6) — z sin 6} sin 0 d0 

T J o 
is negative. But this integral is j t (z) —\z, which is accordingly 
negative for all positive values of z. 

When KR is great, j t (2KR) tends to vanish, and then the 
frictional term becomes simply aa. TTR1 . £. This result might 
have been expected; for when KR is very large, the wave motion 
in the neighbourhood of the disc becomes approximately plane. 
We have then by (6) and (8) § 245, dp = ap„ £, in which p0 is the 
density (a); so that the retarding force is irR?$p = aa.irR1.^. 

We have now to consider the term representing an alteration 
of inertia, and among other things to prove that this alteration is 
an increase, or that Kt (z) is positive. By direct integration of the 
ascending series (5) for K (which is always convergent), 

•^l W = ̂  JP73 — 1 2 . 3 2 . 5 * l 2 . 3 2 . 5 2 . 7 — ' 

When therefore KR is small, we may take as the expression for 
the increase of inertia 

8<7R s _ „ 8 R 
- r - " * - ^ ( 1 4 ) -

This part of the reaction of the air is therefore represented by 
supposing the vibrating plate to carry with it a mass of air equal 
to that contained in a cylinder whose base is the plate, and whose 

822 

height is equal to ^ ; so that, when the plate is sufficiently small, 

the mass to be added is independent of the period of vibration. 
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dK(z) _ d_ 2 /•·«; 
dz = ~ . - C'na (z sin 6)d6 = - f'cos (z sin 6) sin 0d0...(l8); 

ofe Wo W O 
so that 

A^g) = J |l -J.^003 (* s i n s i n ^} 
= — ["'sin2 {\zsin 0) sin 0 d0 (19), 

71" J o 

an integral of which every element is positive. When z is very 
large, cos (z sin 6) fluctuates with great rapidity, and thus Kt (z) 
tends to the form 

( 2 0 > 
7T 

When z is great, the ascending series for K and Kx, though always 
ultimately convergent, become useless for practical calculation, and it 
is necessary to resort to other processes. It will be observed that 
the differential equation (16) satisfied by K is the same as that 
belonging to the Bessel's function J0, with the exception of the 

2 
term on the right-hand side, viz. — . The function K is therefore 
included in the form obtained by adding to the general solution of 
Bessel's equation containing two arbitrary constants any particular 
solution of (16). Such a particular solution is 

\ir. K(z) =z~1-Z~e+ V. 3s.z""-V. 3 s . 5 2.Z~ 7 + 1» .3" . 5 s . V. z~*—...(21), 

as may be readily verified on substitution. The series on the 
right of (21) notwithstanding its ultimate divergency, may be 
used successfully for computation when z is great. It is in fact 

From the series (5) for K(z), it maybe proved immediately 
that 

i&'a^M-sr^w 
( i + l l + 1 ) E ^ = k ™-

From the first form (15) it follows that 

Kx (z) = l'K(z) zdz = ̂ z-z d1^- (17). 
By means of this expression for Kx (z) we may readily prove that 
the function is always positive. For 
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the analytical equivalent of f*'e~p(zi+lS2)-idj3, and we might take 

K (z) = - ( f ^ — F Complementary Function. 

determining the two arbitrary constants by an examination of the 
forms assumed when z is very great. But it is perhaps simpler to 
follow the method used by Lipschitz1 for Bessel's functions. 

By (4) we have 

J0(z)-iK(z)=- e-*»«»»d0 = - 6 - = = ( 2 2 ) -

Consider the integral , where w is a complex variable of 

the form w + w. Representing, as usual, simultaneous pairs of 
values of u and v by the co-ordinates of a point, we see that the 
value of the integral will be zero, if the integration with respect 
to w range round the rectangle, whose angular points are respec
tively 0, h, h+i, i, where h is any real positive quantity. Thus 

fh e-zudu f* e-'to+Wdtfy) [° e~z(-n+®du f°e-izvd(iv) 
Jo V f + u1 J0 V l + (A + it))* J h*</l + (u + if J i V l — V* ' 

from which, if we suppose that h = GO , 
t i 6-iz»jv _ _ . P e~zndu . P e-e^+i)du 
J0 V i - « 2 ~ J o V T + w 5 lio V i + "̂ ̂ ' 

Replacing u.z by B, we may write (23) in the form 

The first term on the right in (24) is entirely imaginary; it 
therefore follows by (22) that \it J0 [z) is the real part of the 
second term. By expanding the binomial under the integral sign, 
and afterwards integrating by the formula 

we.obtain as the expansion for <70 (z) in negative powers of z , 

1 Crelle, Bd. LTI. 1859. Lornmel, Studien uber die Bessel'schen Functional, p. 59. IRIS - LILLIAD - Université Lille 1 



The final expression for iT t (z) may be put into the form 
2 

•K-! (a) - {»-r-̂ 1-3.xr3 4-l3.33.5.̂-6-ls.3».5s.7.S-7+ } 
7T + (la-4) (32-4)(5s-4) (72-4) } 1.2.3.4. (83)* -./̂ iriTifr l̂ I1'-4 (l'-4)(3*-4)(52-4) I1 . . V --sm^-i^ |i78i 1.8.8(8*)» +} -(28)' 

It appears then that Kt does not vanish when z is great, but 
approximates to - . z. But although the accession to the inertia, 

1 As was to be expected, the series within brackets are the same as those that 
occur in the expression of the function Jt ( 2 ) . 

By stopping the expansion after any desired number of terms, 
and forming the expression for the remainder, it may be proved 
that the error committed by neglecting the remainder cannot 
exceed the last term retained (§ 200). 

In like manner the imaginary part of the right-hand member 
of (24) is the equivalent of — \ i i r K ( Z ) , SO that 

K ( Z ) = ~ j2"1 - Z~3+15 ·3 2 · z_° - i a · 3 1 ·5 2 · Z~R+ J-

+ V feJ 11"l.3.(8g)« +1.2.3.A.(te)«-|8in(*-iir) 
~\l(TI) { r t - l.a.'ll'tS)' + } c o s (*" i"0 < 2 G)-

The value of Kx (z) may now be determined by means of (17). 
We find 

j- = - - {a *-3.z~* + la.3».5.«-« — l».3a.6«.7.«-8+ I , //2\ . f 3.5.1 3.5.7.9.1.3.5, 1 + V W {1+1T2TM2~ l-2.3.4.(8̂  +} // 2 \ · / 1 N f 3 3.5.7.1.3 " V y S1Q - * ̂  {iTW) - 1.2.8.(to)* 3.5.7.9.11.1.3.5.7 1 /OITN + 1.2.3.4.5.(83)= ~j K >' 
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which is proportional to Kv becomes infinite with R, it vanishes 
ultimately when compared with the area of the disc, and with the 
other term which represents "the dissipation. And this agrees 
with what we should anticipate from the theory of plane waves. 

If, independently of the reaction of the air, the mass of the 
plate be M, and the force of restitution be the equation of 
motion of the plate when acted on by an impressed force F, pro
portional to eiKat, will be 

{ i f + g Kx (2*iZ)} f + ac-vR* ( l - ĝ̂) I + p f = F ... (29); 

or by (13), if, as will be usual in practical applications, rcR be 
small, 

(M+^li+Z^i + re-F. (30). 
Two particular cases of this problem deserve notice. First let 

il/and p vanish, so that the plate, itself devoid of mass, is subject 
to no other forces than F and those arising from aerial pressures. 
Since £ = t«a|, the frictional term is relatively negligible, and we 
get when K R is very small, 

aow&.^£ %F (31). 

Next let M and ¡1 be such that the natural period of the plate, 
when subject to the reaction of the air, is the same as that imposed 
upon it. Under these circumstances 

and therefore 

<unrIP.'^.t = F (32). 
Comparing with (31), we see that the amplitude of vibration is 

greater in the case when the inertia of the air is balanced, in the 
ratio of 16 : %-KKR, shewing a large increase when K R is small. In 
the first case the phase of the motion is such that comparatively 
very little work is done by the force F; while in the second, the 
inertia of the air is compensated by the spring, and then F, being 
of the same phase as the velocity, does the maximum amount of 
work. 
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CHAPTER XVI. 

T H E O R Y OE R E S O N A T O R S . 

303. I N the pipe closed at one end and open at the other we had 
an example of a mass of air endowed with the property of vibrating 
in certain definite periods peculiar to itself in more or less com
plete independence of the external atmosphere. If the air beyond 
the open end were entirely without mass, the motion within the 
pipe would have no tendency to escape, and the contained column 
of air would behave like any other complex system not subject to 
dissipation. In actual experiment the inertia of the external air 
cannot, of course, be got rid of, but when the diameter of the pipe 
is small, the effect produced in the course of a few periods may be 
insignificant, and then vibrations once excited in the pipe have a 
certain degree of persistence. The narrower the channel of com
munication between the interior of a vessel and the external 
medium, the greater does the independence become. Such 
cavities constitute resonators; in the presence of an external 
source of sound, the contained air vibrates in unison, and with an 
amplitude dependent upon the relative magnitudes of the natural 
and forced periods, rising to great intensity in the case of approxi
mate isochronism. "When the original cause of sound ceases, the 
resonator yields back the vibrations stored up as it were within it, 
thus becoming itself for a short time a secondary source. The 
theory of resonators constitutes an important branch of our 
subject. 

As an introduction to it we may take the simple case of a 
stopped cylinder, in which a piston moves without friction. On 
the further side of the piston the air is supposed to be devoid of 
inertia, so that the pressure is absolutely constant. If now the 
piston be set into vibration of very long period, it is clear that 
the contained air will be at any time very nearly in the equi
librium condition (of uniform density) corresponding to the 
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momentary position of the piston. If the mass of the piston be 
very considerable in comparison with that of the included air, the 
natural vibrations resulting from a displacement will occur nearly 
as if the air had no inertia; and in deriving the period from the 
kinetic and potential energies, the former may be calculated with
out allowance for the inertia of the air, and the latter as if the 
rarefaction and condensation were uniform. Under the circum
stances contemplated the air acts merely as a spring in virtue of 
its resistance to compression or dilatation; the form of the contain
ing vessel is therefore immaterial, and the period of vibration 
remains the same, provided the capacity be not varied. 

When a gas is compressed or rarefied, the mechanical value of 
the resulting displacement is found by multiplying each infinitesi
mal increment of volume by the corresponding pressure and 
integrating over the range required. In the present case it is of 
course only the difference of pressure on the two sides of the 
piston which is really operative, and this for a small change is 
proportional to the alteration of volume. The whole mechanical 
value of the small change is the same as if the expansion were 
opposed throughout by the mean, that is half the final, pressure; 
thus corresponding to a change of volume from 8 to 8+B8, 
since p = a''p, 

V^p.^.BS^pa^ (1)\ 

If A denote the area of the piston, il/its mass, and x its linear 
displacement, B8 = Ax, and the equation of motion is 

Mx + P^~ x = 0 (2), 

indicating vibrations, whose periodic time is 

T - t o r + a A t / f a (3). 

Let us now imagine a vessel containing air, whose interior 
communicates with the external atmosphere by a narrow aperture 
or neck. It is not difficult to see that this system is capable of 
vibrations similar to those just considered, the air in the neigh
bourhood of the aperture supplying the place of the piston. By 
sufficiently increasing 8, the period of the vibration may be made 
as long as we please, and we obtain finally a state of things in 

1 Compare (12) § 245. 
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•which, the kinetic energy of the motion may be neglected except 
in the neighbourhood of the aperture, and the potential energy 
may be calculated as if the density in the interior of the vessel 
were uniform. In flowing through the aperture under the operation 
of a difference of pressure on the two sides, or in virtue of its own 
inertia after such pressure has ceased, the air moves approximately 
as an incompressible fluid would do under like circumstances, 
provided that the space through which the kinetic energy is 
sensible be very small in comparison with the length of the wave. 
The suppositions on which we are about to proceed are not of 
course strictly correct as applied to actual resonators such as are 
used in experiment, but they are near enough to the mark to afford 
an instructive view of the subject and in many cases a foundation 
for a sufficiently accurate calculation of the pitch. They become 
rigorous only in the limit when the wave-length is indefinitely 
great in comparison with the dimensions of the vessel. 

304. The kinetic energy of the motion of an incompressible 
fluid through a given channel may be expressed in terms of the 
density p , and the rate of transfer, or current, X, for under the cir
cumstances contemplated the character of the motion is always 
the same. Since T necessarily varies as p and as X*, we may put 

Y a 

?-iPT (1), 
where the constant c, which depends only on the nature of the 
channel, is a linear quantity, as may be inferred from the fact that 
the dimensions of X are 3 in space and — 1 in time. In fact, if <f> 
be the velocity-potential, 

by Green's theorem, where the integration is to be extended over 
a surface including the whole region through which the motion is 
sensible. At a sufficient distance on either side of the aperture, <p 
becomes constant, and if the constant values be denoted by fa and 
fa, and the integration be now limited to that half of S towards 
which the fluid flows, we have 

T = \ P (fa - fa)ljd£ds=y (fa - fa) x. 
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Now, since within S <j> is determined linearly by its surface . 

values, fffidS, or X, is proportional to (<f\ - If we put 

The nature of the constant c will he better understood by con
sidering the electrical problem, whose conditions are mathematically 
identical with those of that under discussion. Let us suppose that 
the fluid is replaced by uniformly conducting material, and that the 
boundary of the channel or aperture is replaced by insulators. We 
know that if by battery power or otherwise, a difference of electric 
potential be maintained on the two sides, a steady current through 
the aperture of proportional magnitude will be generated. The 
ratio of the total current to the electromotive force is called the 
conductivity of the channel, and thus we see that our constant 
c represents simply this conductivity, on the supposition that the 
specific conducting power of the hypothetical substance is unity. 
The same thing may be otherwise expressed by saying that c is the 
side of the cube, whose resistance between opposite faces is the 
same as that of the channel. In the sequel we shall often avail 
ourselves of the electrical analogy. 

When c is known, the proper tone of the resonator can be 
easily deduced. Since 

^ ~ c (?\ — $a)>. we get as before 

T-i„~. 
Pig. 58. 
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the equation of motion is 

X+^X = 0 (3), 

indicating simple oscillations performed in a time 

r ^ + A / ^ ;..(4). 

If iV be the frequency, or number of complete vibrations 
executed in the unit time, 

< 5 > -

The wave-length \ , which is the quantity most closely con
nected with the dimensions of the cavity, is given by 

x = l r 2 7 r \ / ? w« 
and varies directly as the linear dimension. The wave-length, it 
will be observed, is a function of the size and shape of the 
resonator only, while the frequency depends also upon the nature 
of the gas; and it is important to remark that it is on the nature of 
the gas in and near the channel that the pitch depends and not on 
that occupying the interior of the vessel, for the inertia of the air 
in the latter situation does not come into play, while the com
pressibility of all gases is very approximately the same. Thus in 
the case of a pipe, the substitution of hydrogen for air in the 
neighbourhood of a node would make but little difference, but its 
effect in the neighbourhood of a loop would be considerable. 

Hitherto we have spoken of the channel of communication as 
single, but if there be more than one channel, the problem is not 
essentially altered. The same formula for the frequency is still 
applicable, if as before wo understand by c the whole conduc
tivity between the interior and exterior of the vessel. When the 
channels are situated sufficiently far apart to act independently 
one of another, the resultant conductivity is the simple sum of 
those belonging to the separate channels; otherwise the resultant 
is less than that calculated by mere addition. 

If there be two precisely similar channels, which do not 
interfere, and whose conductivity taken separately is c, we have 
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shewing that the note is higher than if there were only one 
channel in the ratio A/2 : 1, or by rather less than a fifth—a law 
observed by Sondhauss and proved theoretically by Helmholtz in 
the case, where the channels of communication consist of simple 
holes in the infinitely thin sides of the reservoir. 

305. The investigation of the conductivity for various kinds 
of channels is an important part of the theory of resonators ; but 
in all except a very few cases the accurate solution of the problem 
is beyond the power of existing mathematics. Some general 
principles throwing light on the question may however be laid 
down, and in many cases of interest an approximate solution, suffi
cient for practical purposes, may be obtained. 

We know (§§ 79, 242) that the energy of a fluid flowing 
through a channel cannot be greater than that of any fictitious 
motion giving the same total current. Hence, if the channel bo 
narrowed in any way, or any obstruction be introduced, the con
ductivity is thereby diminished, because the alteration is of the 
nature of an additional constraint. Before the change the fluid 
was free to adopt the distribution of flow finally assumed. In 
cases where a rigorous solution cannot be obtained we may use the 
minimum property to estimate an inferior limit to the conductivity; 
the energy calculated from a hypothetical law of flow can never bo 
less than the truth, and must exceed it unless the hypothetical 
and the actual motion coincide. 

Another general principle, which is of frequent use, may be 
more conveniently stated in electrical language. The quantity 
with which we are concerned is the conductivity of a certain con
ductor composed of matter of unit specific conductivity. The 
principle is that if the conductivity of any part of the conductor 
be increased that of the whole is increased, and if the conductivity 
of any part be diminished that of the whole is diminished, 
exception being made of certain very particular cases, where no 
alteration ensues. In its passage through a conductor electricity 
distributes itself, so that the energy dissipated is for a given total 
current the least possible (§ 82). If now the specific resistance of any 
part be diminished, the total dissipation would be less than before, 
even if the distribution of currents remained unchanged. A 
fortiori will this be the case, when the currents redistribute them
selves so as to make the dissipation a minimum. If an infinitely 

R. IT. 11 
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thin lamina of matter stretching across the channel be made 
perfectly conducting, the resistance of the whole will be diminished, 
unless the lamina coincide with one of the undisturbed equipoten-
tial surfaces. In the excepted case no effect will be produced. 

306. Among different kinds of channels an important place 
must be assigned to those consisting of simple apertures in un
limited plane walls of infinitesimal thickness. In practical appli
cations it is sufficient that a wall be very thin in proportion to the 
dimensions of the aperture, and approximately plane within a 
distance from the aperture large in proportion to the same 
quantity. 

On account of the symmetry on the two sides of the wall, the 
motion of the fluid in the plane of the aperture must be normal, 
and therefore the velocity-potential must be constant; over the 
remainder of the plane the motion must be exclusively tangential, 
so that to determine A on one side of the plane we have the 

conditions (a) A = constant over the aperture, (ft) ^ = 0 over 
the rest of the plane of the wall, (7) A = constant at infinity. 

Since we are concerned only with the differences of A we may 
suppose that at infinity A vanishes. It will be seen that conditions 
(ft) and (7) are satisfied by supposing A to be the potential of 
attracting matter distributed over the aperture; the remainder of 
the problem consists in determining the distribution of matter so 
that its potential may be constant over the same area. The 
problem is mathematically the same as that of determining the 
distribution of electricity on a charged conducting plate situated 
in an open space, whose form is that of the aperture under con
sideration, and the conductivity of the aperture may be expressed 
in terms of the capacity of the plate of the statical problem. If 
A denote the constant potential in the aperture, the electrical 
resistance (for one side only) will be 

the integration extending over the area of the opening. 

Now Jj ^ d a = 27T x (whole quantity of matter distributed), 

and thus, if M be the capacity, or charge corresponding to unit-
potential, the total resistance is (TTM)'1. Accordingly for the con-
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ductivity, which is the reciprocal of the resistance, 

c = irM (1). 
So far as I am aware, the ellipse is the only form of aperture 

for which c or M can be determined theoretically1, in which case 
the result is included in the known solution of the problem of 
determining the distribution of charge on an ellipsoidal conductor. 
From the fact that a shell bounded by two concentric, similar and 
similarly situated ellipsoids exerts no force on an internal particle, 
it is easy to see that the superficial density at any point of an ellip
soid necessary to give a constant potential is proportional to-the 
perpendicular (p) let fall from the centre upon the tangent plane 
at the point in question. Thus if p be the density, p = icp; the 
whole quantity of matter Q is given by 

Q=jjp dS= xfjp dS= iwicahc (2),a 

s o t h a t · <3>-

In the usual notation 

- lx' yi Z* 

or, since _ = 

/ , a;8 y , c"x~ c"y 
6 2 ' a 4 ' 6 4 

If we now suppose that c is infinitely small, we obtain the par
ticular case of an elliptic plate, and if we no longer distinguish 
between the two surfaces, we get 

' - W W 1 - ? - ^ w-
We have next to find the value of the constant potential (P). 

By considering the value of P at the centre of the plate, we see 
that 

drde. 

1 The ease of a resonator with an elliptic aperture was considered by Helmholtz 
(Crelle, Bd. 57, 1860), whose result is equivalent to (8). 

8 2c being for the moment the third principal axis of the ellipsoid. 
11—2 
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Integrating first with respect to r, we have 

Fp dr=Q-r 4a - i cos V), 
Jo . 

e being the eccentricity; and thus 

« Jo VC1 — e cos2#) a v ; 

where i 7 is the symbol of the complete elliptic function of the first 
order. Putting P— 1, we find 

- =M= (5), 

7r F(e) v 

as the final expression for the capacity of an ellipse, whose semi-
major axis is a and eccentricity is e. In the particular case of the 
circle, e = 0, F ( e ) = \ i r , and thus for a circle of radius R , 

c = 2R (6). 
If the capacity of the resonator be S, we find from (6) § 304 

The area of the ellipse (o~) is given by 

er = 7ras *J 1 — e 2 , 

and hence in terms of a 

W_^ym^ (8, 
When e is small, we obtain by expanding in powers of e pre

vious to integration, 

F ( e ) = ^ l + ^ + ^ > + J^ig^ + ...} (9), 

whence 
2F(e) ( l - e ° ) * _ - i _ <**_ _ e° , 

7T 64 64 + "' 

Neglecting e8 and higher powers, we have therefore 

( 1 0 ) -
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From this result we see that, if its eccentricity he small, the 
conductivity of an elliptic aperture is very nearly the same as 
that of a circular aperture of equal area. Among various forms 
of aperture of given area there must be one which has a minimum 
conductivity, and, though a formal proof might be difficult, it is 
easy to recognise that this can be no other than the circle. An 
inferior limit to the value of c is thus always afforded by the con
ductivity of the circle of equal area, that is 2 /\J > and "when 

the true form is nearly circular, this limit may he taken as a close 
approximation to the real value. 

The value of X is then given by 

\ = 2Mo--*# (11). 
In order to shew how slightly a moderate eccentricity affects 

the value of c, I have calculated the following short table with the 
aid of Legendre's values of F(E). Putting e = sin YJR, we have 
cos as the ratio of axes, and for the conductivity 

(<L) 1L . 

\IR) ' 2 V(cos YJR). F (sin ty) 

E = sin IJ/. b : A = cos 

0° •00000 1-00000 1-0000 
20° •34204 •93969 1-0002 
30° •50000 •86603 1-0013 
40° •64279 •76604 1-0044 
50° •76604 •64279 1-0122 
60° •86603 •50000 1-0301 
70° •93969 •34202 l-072'4 
80° •98481 •17365 1-1954 
90° 1-00000 •00000 oo 

The value of the last factor given in the fourth column is tbe 
ratio of the conductivity of the ellipse to that of a circle of equal 
area. It appears that even when the ellipse is so eccentric that 
the ratio of the axes is 2 : 1 , the conductivity is increased by 
only about 3 per cent., which would correspond to an alteration 
of little more than a comma (§ 18) in the pitch of a resonator. 
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There seems no reason to suppose that this approximate inde
pendence of shape is a property peculiar to the ellipse, and we 
may conclude with some confidence that in the case of any mode
rately elongated oval aperture, the conductivity may be calculated 
from the area alone with a considerable degree of accuracy. 

If the area be given, there is no superior limit to o. For sup
pose the area <x to be distributed over n equal circles sufficiently 
far apart to act independently. The area of each circle is n'1 <r, 
and its conductivity is 2 (mr) The whole conductivity is n 
times as great, and therefore increases indefinitely with n. As a 
general rule, the more the opening is elongated or broken up, the 
greater will be the conductivity for a given area. 

To find a superior limit to the conductivity of a given aperture 
we may avail ourselves of the principle that any addition to the 
aperture must be attended by an increase in the value of c. Thus 
in the case of a square, we may be sure that c is less than for the 
circumscribed circle, and we have already seen that it is greater 
than for the circle of equal area. If b be the side of the square, 

~ < c < V2 6. 

iJir 
The tones of a resonator with a square aperture calculated from 
these two limits would differ by about a whole tone; the graver of 
them would doubtless be much the nearer to the truth. This 
example shews that even when analysis fails to give a solution in 
the mathematical sense, we need not be altogether in the dark as 
to the magnitudes of the quantities with which we are dealing. 

In the case of similar orifices, or systems of orifices, c varies as 
the linear dimension. 

307. Most resonators used in practice have necks of greater or 
less length, and even when there is nothing that would be called a 
neck, the thickness of the side of the reservoir cannot always be 
neglected. We shall therefore examine the conductivity of a 
channel formed by a cylindrical boring through an obstructing 
plate bounded by parallel planes, and, though we fail to solve the 
problem rigorously, we shall obtain information sufficient for most 
practical purposes. The thickness of the plate we shall call L, and 
the radius of the cylindrical channel R. 
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"Whatever the resistance of the channel may be, 
it will be lessened by the introduction of infinitely 
thin discs of perfect conductivity at A and B , fig. 59. 
The effect of the discs is to produce constant potential 
over their areas, and the problem thus modified is 
susceptible of rigorous solution. Outside A and B 
the motion is the same as that previously investi
gated, when the obstructing plate is infinitely thin; 
between A and B the flow is uniform. The resist
ance is therefore on the whole 

JL L 

21i + ^B?' 

Eig. 59. 

whence c = 
wrR} 

L + i r i r B ' 
..(1). 

on If a denote the correction, which must be added to L 
account of an open, end, 

a = \ i r B (2). 
This correction is in general under the mark, but, when L is 

very small in comparison with B , the assumed motion coincides 
more and more nearly with the actual motion, and thus the value 
of a in (2) tends to become correct. 

A superior limit to the resistance may be calculated from a 
hypothetical motion of the fluid. For this purpose we will suppose 
infinitely thin pistons introduced at A and B , the effect of which 
will be to make the normal velocity constant at those places. 
Within the tube the flow will be uniform as before, but for the 
external space we have a new pi'oblem to consider:—To determine 
the motion of a fluid bounded by an infinite plane, the normal 
velocity over a circular area of the plane having a given constant 
value, and over the remainder of the plane being zero. 

The potential may still be regarded as due to matter distributed 
over the "disc, but it is no longer constant over the area; the density 

of the matter, however, being proportional to ^ is constant. 

The kinetic energy of the motion 

dn 1 dn 
the integration going over the area of the circle. 
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The total current through the plane 

J J an an 

j j e n c e 2 kinetic energy _ ffcpdcr 
(current)2 ~ 2T)idd>' 

an 

If the density of the matter be taken as unity, ^ = 27T, and 
P 

the required ratio is expressed by ^j^i , where P denotes the. 
potential on itself of a circular layer of matter of unit density and 
of radius R. 

The simplest method of calculating P depends upon the con
sideration that it represents the work required to break up the 
disc into infinitesimal elements and to remove them from each 
other's influence1. If we take polar co-ordinates (p, 0), the pole 
being at the edge of the disc whose radius is a, we have for the 
potential at the pole, V=JJ dddp, the limits of p being 0 and 
2a cos 0, and those of 0 being and + \ TT. 

Thus F = 4 a (3). 
Now let us cut off a strip of breadth da from the edge of the disc. 
The work required to remove this to an infinite distance is 
2-rrada. 4a. If we gradually pare the disc down to nothing and 
carry all the parings to infinity, we find for the total work by 
integrating with respect to a from 0 to Rr 

P = 8 ^ R 3

2 

3 " « 
g 

The limit to the resistance (for one side) is thus g ; we 
0 7 T Jx 

conclude that the resistance of the whole channel is less than 

Collecting our results, we see that 

?B<a<^R (5), 
7T 

1 A part of § 302 is repeated here for the sake of those who may wish to avoid 
the difficulties of the more complete investigation. 

2 This method of calculating P was suggested to the author by Professor 
Clerk Maxwell. 
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or in decimals, 
a > -785 R) 

.(6). 

a < -849 R J 
It must be observed that a here denotes the correction for one 

end. The whole resistance corresponds to a length L + 2 a of 
tube having the section TTR?. 

When L is very great in relation to R , we may take simply 

In this case we have from (6) §• 304 

x = 2yW(̂) (g)> 
The correction for an open end (a) is a function of L , coinciding 

with the lower limit, viz. \irR, when L vanishes. As L increases, 
a increases with it ,· but does not, even when L is infinite, attain 
the superior limit g - R . For consider the motion going on in any 

middle piece of the tube. The kinetic energy is greater than 
corresponds merely to the length of the piece. If therefore the 
piece be removed, and the free ends brought together, the motion 
otherwise continuing as before, the kinetic energy will be dimin
ished more than corresponds to the length of the piece subtracted. 
A fortiori will this be true of the real motion which would exist in 

g 
the shortened tube. That, when L = oo, a does not become — R is 

0 7 T 

evident, because the normal velocity at the end, far from being 
constant, as was assumed in the calculation of this result, must 
increase from the centre outwards and become infinite at the edge. 

A further approximation to the value of a may be obtained by 
assuming a variable velocity at the plane of the mouth. The 
calculation will be found in Appendix A. It appears that in the 
case of an infinitely long tube a cannot be so great as '82422 R . 
The real value of a is probably not far from '82 R . 

308. Besides the cylinder there are very few forms of 
channel whose conductivity can be determined mathematically. 
When however the form is approximately cylindrical we may 
obtain limits, which are useful as allowing us to estimate the effect 
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of such departures from mathematical accuracy as must occur in 
practice. 

An inferior limit to the resistance of any elongated and approxi
mately straight conductor may be obtained immediately by the 
imaginary introduction of an infinite number of plane perfectly 
conducting layers perpendicular to the axis. If cr denote the area 
of the section at any point x, the resistance between two layers 
distant dx will be a-~ldx, and therefore the whole actual resistance 
is certainly greater than 

jr-'dx (1), 

unless indeed the conductor be truly cylindrical. 

In order to find a superior limit we may calculate the kinetic 
energy of the current on the hypothesis that the velocity parallel 
to the axis is uniform over each section. The hypothetical motion 
is that which would follow from the introduction of an infinite 
number of rigid pistons moving freely, and the calculated result is 
necessarily in excess of the truth, unless the section be absolutely 
constant. We shall suppose for the sake of simplicity that the 
channel is symmetrical about an axis, in which case of course the 
motion of the fluid is symmetrical also. 

If U denote the total current, we have ex hypothesi for the 
axial velocity at any point x 

u = a-~1U (2), 

from which the radial velocity v is determined by the equation of 
continuity (6 § 238), 

d(ru) + d(rv) = ^ 
dx dr 

Thus rv = const. - \ Url ^— , 
dx 

or, since there is no source of fluid on the axis, 

da 
dx v=-iUr^ (3). 
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The kinetic energy may now be calculated by simple integra
tion :—· 

JMV dx=lP j o - _ 1 dx, 

jjv*2vrdrdx = ^jy*(^fdx, 

if y be the radius of the channel at the point x, so that <r = iry1. 

This is the quantity which gives a superior limit to the resist
ance. The first term, which corresponds to the component velocity 
u, is the same as that previously obtained for the lower limit, as 
might have been foreseen. The difference between the two, which 
gives the utmost error involved in taking either of them as the 
true value, is 

urn** 
di] 

In a nearly cylindrical channel ^ is a small quantity and so 
the result found in this manner is closely approximate. It is not 
necessary that the section should be nearly constant, but only that 
it should vary slowly. The success of the approximation in this 
and similar cases depends upon the fact that the quantity to be 
estimated is at a minimum. Any reasonable approximation to the 
real motion will give a result very near the truth according to the 
principles of the differential calculus. 

By means of the properties of the potential and stream 
functions the present problem admits of actual approximate 
solution. If <p and ijr denote the values of these functions at any 
point x, r; u, v denote the axial and transverse velocities, 

dd> 1 d-Jr d<b 1 d-dr 
dx r dr dr r dx 

whence by elimination 
d*6 . 1 dd> , d2^ A ,m\ 
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•(9), 

172 APPROXIMATE CALCULATION. [ 3 0 8 . 

If F denote the value of <b as a function of x , when r = 0, the 
general values of <f> and yfr may be expressed in terms of F by 
means of (7) and (8) in the series 

r*F" r* Flr reFyi 

<f>=F 2 a - + 2 T 7 4 2 _ 2 2 . 4 a . Ga + '" 
r*F' r^F'" r'F1 r^F™ 

^ = ~2~ ~ W7i + 2 \ 4 2 . 6 ~ 2 2 . 4 2 . 6 ! . 8 + "" 

where accents denote differentiation with respect to x . At the 
boundary of the channel where r = y , is constant, say fa. Then 

fF' y*F" fF< 
fa—2~ ~ 2 ^ ^ 2 \ 1 ? 7 6 - ( 1 0 ) 

is the equation connecting y and F. In the present problem y is 
given, and 'we have to express F by means of it. By successive 
approximation we obtain from (10) 

r_2fa f K (2fa\ 1 . J. / 2 & \ 1 
* ~ j / 2 + 8 [ d A y * ) 8dx*y

 dx*\tf ) ] 

_ _ J ^ _ * ^ (11). 

The total stream is given by the integral 

fJ
 ^ 2irr d r = T - 1 ^ 2irr dr - 2iryfrt; JO dx 30rdr r " 

and therefore the resistance between any two equipotential surfaces 
is represented by 

The expression for the resistance admits of considerable simpli
fication by integration by parts in the case when the channel is 
truly cylindrical in the neighbourhood of the limits of integration. 
In this way we find for the final result, 

r e s i s t a n c e = / ^ { l + i y 2 - ^ ^ } (12)», 

y , y " denoting the differential coefficients of y with respect to x . 

It thus appears that the superior limit of the preceding 
investigation is in fact the correct result to the second order of 

1 Proceedings of tlie London Mathematical Society, VoL' YH, N O . 93. 
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i f = 52400 £ j (1), 

approximation. If we regard y as a function of cox, where w is a 
small quantity, (12) is correct as far as terms containing co*. 

309. Our knowledge of the laws on which the pitch of 
resonators depends, is due to the labours of several experimenters 
and mathematicians. 

The observation that for a given mouthpiece the pitch of a 
resonator depends mainly upon the volume 8 is due to Liscovius, 
who found that the pitch of a flask partly filled with water was 
not altered when the flask was inclined. This result was con
firmed by Sondhauss1. The latter observer found further, that in 
the case of resonators without necks, the influence of the aperture 
depended mainly upon its area, although when the shape was very 
elongated, a certain rise of pitch ensued. He gave the formula 

I 
8* 

the unit of length being the millimetre. 
The theory of this kind of resonator we owe to Helmholtz", 

whose formula is 

applicable to circular apertures. 

For flasks with long necks, Sondhauss3 found 
J 

i \ r = 46705 -f—. (3), 

corresponding to the theoretical 

J V-^HrT (4). 

In practice it does not often happen either that the neck 
is so long that the correction for the open ends can be neglected, 
as (4) supposes, or, on the other hand, so short that it can 
itself be neglected, as supposed in (2). Wertheim4 was the first 

1 Ueber den Brummkreisel und das Sehwingungsgesetz der cubischen Pfeifen. 
• Pogg. Ann. LXXXI. 

8 Orelle, Bd. LVII . 1—72. 1860. 
3 TJeber die Schallschwingungen der Luft in erbitzten Glasrohren undingedeck-

ten Pfeifen von ungleicher Weite. Pogg. Ann. LXXIX. 1850. 
* Memoire sur les vibrations sonores de l'air. Ann. d. Chim. (3) xxxi. 
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to shew that the effect of an open end could be represented by 
an addition (a) to the length, independent, or nearly so, of Z> 
and A, 

The approximate theoretical determination of a is due to 
Helmholtz, who gave J TTR as the correction for an open end 
fitted with an infinite flange. His method consisted in inventing 
forms of tube for which the problem was soluble, and selecting 
that one which agreed most nearly with a cylinder. The cor
rection J TTR is rigorously applicable to a tube whose radius at the 
open end and at a great distance from it is R , but which in the 
neighbourhood of the open end bulges slightly. 

From the fact that the true cylinder may be derived by in
troducing an obstruction, we may infer that the result thus obtained 
is too small. 

It is curious that the process followed in this work, which was 
first given in the memoir on resonance, leads to exactly the same 
result, though it would be difficult to conceive two methods more 
unlike each other. 

The correction to the length will depend to some extent upon 
whether the flow of air from the open end is obstructed, or not. 
When the neck projects into open space, there will be less ob
struction than when a backward flow is prevented by a flange as 
supposed in our approximate calculations. However, the un
certainty introduced in this way is not very important, and we 
may generally take a = J irR as a sufficient approximation. In 
practice, when the necks are short, the hypothesis of the flange 
agrees pretty well with fact, and when the necks are long, the 
correction is itself of subordinate importance. 

The general formula will then run 

where a- is the area of the section of the neck, or in numbers 

A formula not differing much from this was given, as the em
bodiment of the results of his measurements, by Sondhauss1 who 

Ar = a a- (6). 

1 Fogg. Ann. CXL. 53, 219. 1870. 
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at the same time expressed a conviction that it was no mere 
empirical formula of interpolation, but the expression of a natural 
law. The theory of resonators with necks was given about the 
same time1 in a memoir ' on Resonance' published in the Philo
sophical Transactions for 1871, from which most of the last few 
pages is derived. 

310. The simple method of calculating the pitch of resonators 
with which we have been occupied is applicable to the gravest 
mode of vibration only, the character of which is quite distinct. 
The overtones of resonators with contracted necks are relatively 
very high, and the corresponding modes of vibration are by no 
means independent of the inertia of the air in the interior of the 
reservoir. The character of these modes will he more evident, 
when we come to consider the vibrations of air within a com
pletely closed vessel, such as a sphere, but it will rarely happen 
that the pitch can be calculated theoretically. 

There are, however, cases of multiple resonance to which our 
theory is applicable. These occur when two or more vessels com
municate by channels with each other and with the external air; 
and are readily treated by Lagrange's method, provided of course 
that the wave-length of the vibration is sufficiently large in com
parison with the dimensions of the vessels. 

Suppose that there are two reservoirs, 8, 8', communicating 
with each other and with the external air by narrow passages or 

Pig. 60. 

necks. If we were to consider 8S' as a single reservoir and apply 
our previous formula, we should be led to an erroneous result; for 
that formula is founded on the assumption that within the reservoir 
the inertia of the air may be left out of account, whereas it is 
evident that the energy of the motion through the connecting 
passage may be as great as through the two others. However, an 

1 Proceedings of the Royal Society, Nov. 24, 1870. 
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investigation on the same general plan as before meets the case 
perfectly. Denoting by Xx, X2, X3 the total transfers of fluid 
through the three passages, we have as in (2) § 304 for the kinetic 
energy the expression 

•(1), 

and for the potential energy, 

v-if*{&^££+&^ (2>. 
An application of Lagrange's method gives as the differential 

equations of motion, 

Xa . o X„ — X, 

= 0 .(3). 

By addition and integration, 

C i C 2 CS 

·(*)· 

Hence on elimination of X„, 

= 0 
. (5). 

Assuming Xx = Aept, Xlt = Bept, we obtain on substitution 
and determination of A : B, 

P4 Hr + H?3} +
 ITS' { c & + c ° k + C B)} = ° - · · ( G ) -

as the equation to determine the natural tones. If N be the 
» 2 

frequency of vibration, N2 = — ~i, the two values of j?2 being of 
course real and negative, The formula simplifies considerably if 
c 3 = c i t S' = S ; but it will be more instructive to work out this 
case from the beginning. Let c,x = ca = mo, = mc. 
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310 . ] DOUBLE RESONATOR. 177 

The differential equations take the form 

X + ^l(l+m)X1 + Xs} = 0 

Xa+C^{(l+m)X3 + X1} = 0 

x ^ x 

•(7), 

while from (4) X 2 = — 

Hence 
m 

(Xl+Xa)+a£(m + 2)(X1 + Xs) = 0 

{Xt-XJ +^m(Xl-X3) = 0 

The whole motion may be divided into two parts. For the first of 
these 

Xx + Xa = 0 (9), 

which i-equires that X2 = 0. The motion is therefore the same as 
might take place were the communication between 8 and S' cut 
off, and has its frequency given by 

cfmo 

,(8). 

jy-2 _ a \ _ i .(10). 

The density of the air is the same in both reservoirs. 

For the other component part, Xt — X 3 = 0, so that 

X t — **>i ^ = '..(11). 

The vibrations are thus opposed in phase. The ratio of frequencies 
is given by iV'2: iV"2 = m + 2 : m, shewing that the second mode 
has the shorter period. In this mode of vibration the connecting 
passage acts in some measure as a second opening to both vessels, 
and thus raises the pitch. If the passage be contracted, the interval 
of pitch between the two notes is small. 

A particular case of the general formula worthy of notice is 
obtained by putting c8 = 0, which amounts to suppressing one of 
the communications with the external air. We thus obtain 

p* + ay(^ + ̂  + ̂  = 0 (12), 
R. II . 12 
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or, if 8 = 8', c t = mc2 = mc, 

p + ap = 0 (13), 

whence ^ = <SB{* + 2 ± V ( » » , + 4)} (14). 

If we further suppose m = 1, or c2 = c,, 

^ = ¿ ^ ( 3 + ^ / 5 ) . 

If N' be the frequency for a simple resonator (8, c), 

N'2 = 

and thus N2:N'2 = = 2618, 

N'2:N* = 2 = 2-618. 
3 - ^ / 5 

It appears that the interval from iVj to N' is the same as from 
N' to 2v"a, namely, V^^IS) = 1-618, or rather more than a fifth. 
It will be found that whatever the value of m may be, the interval 
between the two tones cannot be less than 2 -414, which is about 
an octave and a minor third. The corresponding value of m is 2. ' 

A similar method is applicable to any combination, however 
complicated, of reservoirs and connecting passages under the 
single restriction as to the comparative magnitudes of the reser
voirs and wave-lengths; but the example just given is sufficient 
to illustrate the theory of multiple resonance. A few measure
ments of the pitch of double resonators are detailed in my memoir 
on resonance, already referred to. 

311. The equations which we have employed hitherto take 
no account of the escape of energy from a resonator. If there 
were really no transfer of energy between-a resonator and the 
external atmosphere, the motion would be isolated and of little 
practical interest; nevertheless the characteristic of a resonator 
consists in its vibrations being in great measure independent. 
Vibrations, once excited, will continue for a considerable number of 
periods without much loss of energy, and their frequency will be 
almost entirely independent of the rate of dissipation. The rate 
of dissipation is, however, an important feature in the character 
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of a resonator, on which its behaviour under certain circumstances 
materially depends. It will be understood that the dissipation 
here spoken of means only the escape of energy from the vessel 
and its neighbourhood, and its diffusion in the surrounding 
medium, and not the transformation of ordinary energy into heat. 
Of such transformation our equations take no account, unless 
special terms be introduced for the purpose of representing the 
effects of viscosity, and of the conduction and radiation of heat. 

Pig. 61. 

In a previous chapter (§ 278) we saw how to express the motion 
on the right of the infinite flange (Fig. 61), in terms of the normal 
velocity of the fluid over the disc A. We found, § 278 (3), 

dd> e~iKr , 
/ do; dn r 

where <b is proportional to eint. 

If r be the distance between any two points of the disc, xr is a 
small quantity, and e~iKr = 1 — iter approximately. 

•<--&(JJ27-*JJ£*) » 
The first term depends upon the distribution of the current. If -

we suppose that ^ is constant, we obtain ultimately a term repre

senting an increase of inertia, or a correction to the length, 

equal to =—. This we have already considered, under the 
supposition of a piston at A. The second term, on which the 
dissipation depends, is independent of the distribution of current, 

12—2 
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180 RATE OE DISSIPATION. [311. 

being a function of the total current (X) only. Confining our . 
attention to this term, we have 

* - T ? » • 
Assuming now that <p x eM, we have for the part of the varia

tion of pressure at A, on which dissipation depends, 

s L · J. PNICX PN*X 

The corresponding work done during a transfer of fluid SX is 
N2 X 

^ &X'> a Q d since, as in § 304, the expressions for the potential 

and kinetic energies are 

V=ya'±-, T=ip± (4), 

the equation of motion (§ SO) is 

X + ^ X + ^ X = 0 (5),1 

in place of (3) § 304. In the valuation of c an allowance must be 
included for the inertia of the fluid on the right-hand side of A, 
corresponding to the term omitted in the expression for Bp. 

Equation (5) is of the standard form for the free vibrations 
of dissipative systems of one degree of freedom (§ 45). The 
amplitude varies as e , being diminished in the ratio e : 1 

after a time equal to —4- . If the pitch (determined by N) be 
71 C 

given, the vibrations have the greatest persistence when c is 
smallest, that is, when the neck is most contracted. 

If 8 be given, we have on substituting for c its value in terms 
of 8 and N, 

IVA _ IWA3 . . . 

l?o ~ w W ' 
shewing that under these circumstances the duration of the motion 
increases rapidly as N diminishes. 

In the case of similar resonators c oc N~L, and then 
INRA 1 

NO N' 

1 Equation (5) is only approximate, inasmuch as the dissipative force is calcu
lated on the supposition that the vibration is permanent; but this will lead to no 
material error when the dissipation is small. 
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which shews that in this case the same proportional loss of 
amplitude always occurs after the lapse of the same number of 
periods. This result may be obtained by the method of di
mensions, as a consequence of the principle of dynamical 
similarity. 

As an example of (5), I may refer to the case of a globe with 
a neck, intended for burning phosphorus in oxygen gas, whoso 
capacity is '251 cubic feet. It was found by experiment that the 
note of maximum resonance made 120 vibrations per second, 
so that n = 120 x 27r. Taking the velocity of sound (a) at 1120 
feet per second, we find from these data 

47ra 3 1 . . i . , , = - oi a second nearly. n if 5 J 

Judging from the sound produced when the globe is struck, 
I think that this estimate must be too low; but it should be 
observed that the absence of the infinite flange assumed in the 
theory must influence very materially the rate of dissipation. 

We will now examine the forced vibrations due to a source 
of sound external to the resonator. If the pressure Bp at the 
mouth of the resonator due to the source, i.e. calculated on the 
supposition that the mouth is closed, be Feilcat, the equation of 
motion corresponding to (5), but applicable to the forced vibra
tion only, is 

e.£+e£*z + egx=F6uat ( 7 ) . 

c 27r o v ' 
If X = X0 e*-Kat+e\ where X0 is real, 

The maximum variation of pressure (0) inside the resonator 
is connected with XQ by the equation 

(8), 

since X0-s-S is the maximum condensation. Thus 

O1 

which agrees with the equation obtained by Helmholtz for the 
case where the communication with the external air is by a 
simple aperture (§ 306). The present problem is nearly, but not 
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quite, a case of that treated in § 46, the difference depending 
upon the fact that the coefficient of dissipation in (7) is itself 
a function of the period, and not an absolutely constant quantity. 
If the period, determined by K, and 8 be given, (9) shews that 
the internal variation of pressure ((?) is a maximum when c = K?S, 
that is, when the natural note of the resonator (calculated with
out allowance for dissipation) is the same as that of the generating 
sound. The maximum vibration, when the coincidence of periods 
is perfect, varies inversely as 8; but, if 8 be small, a very slight 
inequality in the periods is sufficient to cause a marked falling 
off in the intensity of the resonance (§ 49). In the practical 
use of resonators it is not advantageous to carry the reduction 
of 8 and c very far, probably because the arrangements necessary 
for connecting the interior with the ear or other sensitive ap
paratus involve a departure from the suppositions on which the 
calculations are founded, which becomes more and more important 
as the dimensions are reduced. When the sensitive apparatus 
is not in connection with the interior, as in the experiment of 
reinforcing the sound of a tuning-fork by means of a resonator, 
other elements enter into the question, and a distinct investigation 
is necessary (§ 319). 

In virtue of the principle of reciprocity the investigation of the 
preceding paragraph may be applied to calculate the effect of a 
source of sound situated in the interior of a resonator. 

312. We now pass on to the further discussion of the problem 
of the open pipe. We shall suppose that the open end of the 
pipe is provided with an infinite flange, and that its diameter 
is small in comparison with the wave-length of the vibration 
under consideration. 

As an introduction to the question, we will further suppose 
that the mouth of the pipe is fitted with a freely moving piston 
without thickness and mass. The preceding problems, from 
which the present differs in reality but little, have already given 
us reason to think that the presence of the piston will cause 
no important modification. Within the tube we suppose (§ 255) 
that the velocity-potential is 

where, as usual, « = 2 ^ = na\ At the mouth, where x = 0, 
4> = (A cos KX + B sin KX) eint (0. 

(2). 
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On the right of the piston the relation between 6a and 

is by § 302 

/ W S ) . - ^ 1 - ^ } - ^ 2 ^ (s)' 
R being the radius of the pipe. From this the solution of the 
problem may be obtained without any restriction as to the 
smallness of KR : since, however, it is only when K R is small 
that the presence of the piston would not materially modify 
the question, we may as well have the benefit of the simplification 
at once by taking as in (1) § 311 

', , /dd>\ iirfcR* 8R? ... 

Now, since the piston occupies no space, the values of (^^j 

must be the same on both sides of it, and since there is no mass, 
the like must be true of the values of jJ<f>0d<T. Thus 

.(5). , D f 8K B .K?F? 

Substituting in (1), we find on rejecting the imaginary part, 
and putting for brevity B = l , 

(j> = jsin KX — cos cos nt — %K?R* COS KX sin nt (6). 

In this expression the term containing sin nt depends upon the 
dissipation, and is the same as if there were no piston, while that 

involving represents the effect of the inertia of the external 

air in the neighbourhood of the mouth. In order to compare with 
previous results, let a be such that 

8KR . . . 
sin KX — 7 z — cos KX = sin K (X — a): 

3TT V ' 

then, the squares of small quantities being neglected, 
8R /p_. 

a = 3 ^ ^ 
and 

6 = sin K [x — a) cos nt-\ « 8ii 2 cos KX sin nt (8). 
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These formulae shew that, if the dissipation be left out of account, 
the velocity-potential is the same as if the tube were lengthened 

g 
by g^; of the radius, and the open end then behaved as a loop. 

The amount of the correction agrees with what previous investi
gations would have led us to expect as the result of the intro
duction of the piston. We have seen reason to know that the 

true value of a lies between ^ P and ^-R> and that the presence 

of the piston does not affect the term representing the dissipation. 
But, before discussing our results, it will be advantageous to in
vestigate them afresh by a rather different method, which besides 
being of somewhat greater generality, will help to throw light on 
the mechanics of the question. 

313. For this purpose it will be convenient to shift the origin 
in the negative direction to such a distance from the mouth that 
the waves are there approximately plane, a displacement which 
according to our suppositions need not amount to more than a 
small fraction of the wave-length. The difficulty of the question 
consists in finding the connection between the waves in the pipe, 
which at a sufficient distance from the mouth are plane, and the 
diverging waves outside, which at a moderate distance may be 
treated as spherical. If the transition take place within a space 
small compared with the wave-length, which it must evidently 
do, if the diameter be small enough, the problem admits of solution, 
whatever may be the form of the pipe in the neighbourhood of 
the mouth. 

Fig. 62. 

Ok 

At a point P, whose distance from A is moderate, the velocity-
potential is (§ 279) 

•>|r= — e~iKr eint
 ( 1 ) , 
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whence 

£ : = p (l + « r ) . . . . . (2). 

Let us consider the behaviour of the mass of air included be
tween the plane section at 0 and a hemispherical surface whose 
centre is A , and radius r , r being large in comparison with the 
diameter of the pipe, but small in comparison w,ith the wave
length. Within this space the air must move approximately as an 
incompressible fluid would do. Now the current across the hemi
spherical -surface 

= = - 2irA'(l + iicr) 6«»*-« · ) = - 27rA'eint (3), 

if the square of KT be neglected. 

If, as before, we take for the velocity-potential within the pipe 

<f> = (A cos KX + B sin KX) e i a t (4), 

we have for the current across the section at 0 , 

°{t)rKB*nt (5); 

and thus 
<TKB=-2TZA (6). 

This is the first condition; the second is to be found from the 
consideration that the total current (whose two values have just 
been equated) is proportional to the difference of potential at the 
terminals. Thus, if c denote the conductivity of the passage be
tween the terminal surfaces, 

'(£).-·<*-«· 
<TKB A ' . . or = - e " w - i (7). 

o r w 

On substituting for A ' its value from (6), we have 

In this expression the second term is negligible in comparison with 
the first, for c is at most a quantity of the same order as the radius 
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of the tube, and when the mouth is much contracted it is smaller 
still. Thus we may take 

(-;+£) » A = aicB 
Substituting this in (4), we have for the imaginary expression of 
the velocity-potential within the tube, if B be put equal to unity, 

0 = |sin KX + <JK —̂ i + 1 ^ cos KX j eint, 

or, if only the real part be retained, 

(f> = j s i n K X — — cosxrajcosnt — ^ cos/acsin (9). 

Following Helmholtz, we may simplify our results by introducing 
a quantity a defined by the equation 

Thus 
tan tea = — (10). 

c 
<p = cos nt — s ~ cos KX sin nt (HJ> 
T cos«« 2TT 

and the corresponding potential outside the mouth is 

i/o = — cos (nt - AT) (12). 

If R be the radius of the tube, we may replace <r by irR*. 
When the tube is a simple cylinder, and the origin lies at a 

distance AL from the mouth, we know that o-c~l= AL + fiR, where 
(M is a number rather greater than J -rr. In such a case (the origin 
being taken sufficiently near the mouth) xa is a small quantity, 
and therefore from (10) 

a = ° = AL + (iR (13). 

At the same time cos tax. may be identified with unity. 
The principal term in fa involving cosnt, may then be calcu
lated, as if the tube were prolonged, and there were a loop at a 
point situated at a distance fiR beyond the actual.position of the 
mouth, in accordance with what we found before. These results, 
approximate for ordinary tubes, become rigorous when the diameter 
is reduced without limit, friction being neglected. 
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If there he no flange at A, the value of c is slightly modified 
by the removal of what acts as an obstruction, hut the principal 
effect is on the term representing the dissipation. If we suppose 
as an approximation that the waves diverging from A are spherical, 

we must take for the current 4nrr2 ^ instead of 27rr2 ^ . The 
dr dr 

ultimate effect of the alteration will be to halve the expression for 
the velocity-potential outside the mouth, as well as the corre
sponding second term in 6 (involving sin nt). The amount of 
dissipation is thus seen to depend materially on the degree in 
which the waves are free to diverge, and our analytical expressions 
must not be regarded as more than rough estimates. 

The correct theory of the open organ-pipe, including equations 
(11) and (12), was discovered by Helmholtz1, whose method, 
however, differs considerably from that here adopted. The 
earliest solutions of the problem by Lagrange, D. Bernoulli, and 
Euler, were founded on the assumption that at an open end 
the pressure could not vary from that of the surrounding atmo
sphere, a principle which may perhaps even now be considered 
applicable to an end whose openness is ideally perfect. The fact 
that in all ordinary cases energy escapes is a proof that there is 
not anywhere in the pipe an absolute loop, and it might have been 
expected that the inertia of the air just outside the' mouth would 
have the effect of an increase in the length. The positions of the 
nodes in a sounding pipe were investigated experimentally by 
Savart2 and Hopkins", with the result that the interval between 
the mouth and the nearest node is always less than the half of that 
separating consecutive nodes. 

31-4. Experimental determinations of the correction for an 
open end have generally been made without the use of a flange, 
and it therefore becomes important to form at any rate a rough 
estimate of its effect. No theoretical solution of the problem of 
an unflanged open end has hitherto been given, but it is easy to 
see that the removal of the flange will reduce the correction 
materially below the value '82 B (Appendix A). In the absence 
of theory I have attempted to determine the influence of a flange 

1 Crclle, Bd. 57, p. 1. 1860. 
2 Kechcrches sur les vibrations do l'air. Ann. d. Chim. t. xxiv. 1823. 
3 Aerial vibrations in cylindrical tubes. Cambridge Transactions, Vol, v. 

p. 231. 1833. 
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experimentally1. Two organ-pipes nearly enougli in unison with 
one another to give countable beats were blown from an organ 
bellows; the effect of the flange was deduced from the difference 
in the frequencies of the beats according as one of the pipes was 
flanged or not. The correction due to the flange was about '2R. 
A (probably more trustworthy) repetition of this experiment by 
Mr Bosanquet gave -25R. If we subtract -22R from -82R, we 
obtain '6R, which may be regarded as about the probable value of 
the correction for an unflanged open end, on the supposition that 
the wave-length is great in comparison with the diameter of the 
Pipe-

Attempts to determine the correction entirely from experiment' 
have not led hitherto to very precise results. Measurements by 
Wertheim2 on doubly open pipes gave as a mean (for each end) 
'663R, while for pipes open at one end only the mean result was 
'746 R. In two careful experiments by Bosanquet3 on doubly 
open pipes the correction for one end was '635 R, when X=12 R, 
and '543 R, when X = 30 R. Bosanquet lays it down as a general 
rule that the correction (expressed as a fraction of R) increases 
with the ratio of diameter to wave-length; part of this increase 
may however be due to the mutual reaction of the ends, which 
causes the plane of symmetry to behave like a rigid wall. When 
the pipe is only moderately long in proportion to its diameter, a 
state of things is approached which may be more nearly repre
sented by the presence than by the absence of a flange. The com
parison of theory and observation on this subject is a matter of 
some difficulty, because when the correction is small, its value, as 
calculated from observation, is affected by uncertainties as to 
absolute pitch and. the velocity of sound, while for the case, when 
the correction is relatively larger, which experiment is more com
petent to deal with, there is at present no theory. Probably a more 
accurate value of the correction could be obtained from a resonator 
of the kind considered in § 306, where the communication with 
the outside air is by a simple aperture; the "length" is in that 
case zero, and the " correction " is everything. Some measurements 
of this kind, in which, however, no great accuracy was attempted, 
will be found in my memoir on resonance4. 

1 Phil. Mag. (5) m . 456. 1877. 
2 Ann. d. Chim. (3) t. xxxi. p. 394. 
3 Phil. Mag. (5) iv. p. 219. 1877. 
4 Phil. Trans. 1871. See also Sondhauss, Fogg. Ann. t. 140, 53, 219 (1870), and 

some remarks thereupon by myself (Phil. Mag., Sept. 1870). 
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Various methods have been used to determine the pitch of 
resonators experimentally. Most frequently, perhaps, the resonators 
have been made to speak after the manner of organ-pipes by a 
stream of air blown obliquely across their mouths. Although good 
results have been obtained in this way, our ignorance as to the 
mode of action of the wind renders the method unsatisfactory. In 
Bosanquet's experiments the pipes were not actually made to 
speak, but short discontinuous jets of air were blown across the 
open end, the pitch being estimated from the free vibrations as 
the sound died away. A method, similar in principle, that I have 
sometimes employed with advantage consists in exciting free vibra
tions by means of a blow. In order to obtain as well denned a note 
as possible, it is of importance to accommodate the hardness of the 
substance with which the resonator comes into contact to the pitch, 
a low pitch requiring a soft blow. Thus the pitch of a test-tube 
may be determined in a moment by striking it against the bent 
knee. 

In using this method we ought not entirely to overlook the 
fact that the natural pitch of a vibrating body is altered by a 
term depending upon the square of the dissipation. With the 
notation of § 45, the frequency is diminished from n to 
n (1 — J «2w -2), or if x be the number of vibrations executed while 
the amplitude falls in the ratio e : 1, from n to 

The correction, however, would rarely be worth taking into 
account. 

The measurements given in my memoir on resonance were 
conducted upon a different principle by estimating the note of 
maximum resonance. The ear was placed in communication with 
the interior of the cavity, while the chromatic scale was sounded. 
In this way it was found possible with a little practice to estimate 
the pitch of a good resonator to about a quarter of a semitone. In 
the case of small flasks with long necks, to which the above method 
would not be applicable, it was found sufficient merely to hold the 
flask near the vibrating wires of a pianoforte. The resonant note 
announced itself by a quivering of the body of the flask, easily per
ceptible by the fingers. In using this method it is important that 
the mind should be free from bias in sub-dividing the interval 
between two consecutive semitones. When the theoretical result 
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is known, it is almost impossible to arrive at an independent 
opinion by experiment. 

315. We will now, following Helmholtz, examine more closely 
the nature of the motion within the pipe, represented by the 
formula (11) § 313. We have 

A = L cos (nt - 6) (1), 

, r 2 sin2 K (x — a) « V „ where L? = i—•—' + - ¡ — 5 - cos2
 KX (2), cos !*a 47r2 v 1 

. N K 2 O - cos Ka cos KX ' / N \ 

tan 0 = - „— ; -. e (3). 
Z7T sin K ( X — OL) 

In the expression for & the second term is very small, and 
therefore the maximum values of A occur very nearly when 

K (x - a) = (— in + 7r, 

or — x = \mX — £\— a (4), 
where m is a positive integer. 

The distance between consecutive maxima is thus \X, and the 
value of the maximum is sec2 #a. The minimum values of L" occur 
approximately when K (X — a) = — irnr, 
or — x = \mX — a (5), 

and their magnitude is given by 

1} = j ^ j COS3
 K X = cos2

 KOL (G). 

In like manner, 

g = / c o s ( n * - % ) (7), 
where J 2 = K * c o s * K ~ "> + ^ sin2 KX (8), 

cos Kix 47T v " 

K'CT cos KOC sin KX 

t a a * = 2,r cos * ( * - « ) 

The maximum values of J 2 occur when 

— x = \mX — a. (10), 

and the minimum values, when 
-x = %mX-\X-0L (11). 

IRIS - LILLIAD - Université Lille 1 



315.] ORIGINATING WITHIN A N OPEN PIPE. 191 

The approximate magnitude of the maximum is K?sec2 /car, and 
that of the minimum K V cos2 KX - j - 47r 2 . It appears that the 
maxima of velocity occur in the same parts of the tube as the 
minima of condensation (and rarefaction), and the minima of 
velocity in the same places as the maxima of condensation. The 
series of loops and nodes are arranged as if the first loop were at a 
distance cc beyond the mouth. . 

With regard to the phases, we see that both 6 and ^ are in 
general small; and therefore with the exception of the places 
where Z 2 and J% are near their minima the whole motion is 
synchronous, as if there were no dissipation. 

Hitherto we have considered the problem of the passage of 
plane waves along the pipe and their gradual diffusion from the 
mouth, without regard to the origin of the plane waves them
selves. All that we have assumed is that the origin of the motion 
is somewhere within the pipe. We will now suppose that the 
motion is due to the known vibration of a piston, situated 
at cc = — l, the origin of co-ordinates being at the mouth. Thus; 
when x = — l, 

3* (12)> 
and this must be made to correspond with the expression for the 
plane waves, generalized by the introduction of arbitrary amplitude 
and phase. 

We may take 

^^BJcosint-e-x) (13), 

where J and ^ have the values given in (8), (9), while B and e are 
arbitrary. Comparing (12) and (13) we conclude that 

K V cos KO. sin KI .„,. 
t a n 6 = 2 7 r c o s « ( ; + a) (1 4)> 

CP = U V I C 0 S \ ( ? + g ) + ^ s i n 2 rfl.... (15), 
[ cosa«a 4TT2 J v 

by which B and e are determined. 
In accordance with (12) § 313, the corresponding divergent 

wave is represented by 

i|r = — ^ ? c o s (nt — e — jcr) > (16)-
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If G be given, B is greatest, when cos K (I + a) = 0, that is 
•when the piston is situated at an approximate node. In that case 

B= 3

2 i r G ( 1 7 ) , 
K <J cos KX X ' 

shewing that the magnitude of the resulting vibration is very 
great, though not infinite, since cos KOL cannot vanish. When 
the mouth is much contracted, cos tea. may become small, but 
in this case it is necessary that the adjustment of periods be 
very exact in order that the first term of ( 1 5 ) may be negligible in 
comparison with the second. In ordinary pipes cos tea. is nearly 
equal to unity. 

The minimum of vibration occurs when I is such that 
cos K (I + a) = + 1 , that is, when the piston is situated at a loop. In 
that case 

j ? =

g c o s * g ( 1 8 ) . 

tc 
The vibration outside the tube is then, according to the value of 
a, equal to or smaller than the vibration which there would be 
if there were no tube and the vibrating plate were made part of 
the yz plane. 

3 1 6 . Our equations may also be applied to the investigation 
of the motion excited in a tube by external sources of sound. 
Let us suppose in the first place that the mouth of the tube is 
closed by a fixed plate forming part of the yz plane, and that the 
potential due to the external sources (approximately constant 
over the plate) is under these circumstances 

•\|r = H cos nt ( 1 ) , 

where -vjr is composed of the potential due to each source and its 
image in the yz plane, as explained in § 2 7 8 . Inside the tube let 
the potential be 

<p — Hcosicx cos nt ^ ( 2 ) , 

so that <f> and its differential coefficient are continuous across the 
barrier. The physical meaning of this is simple. We imagine 
within the tube such a motion as is determined by the conditions 
that the velocity at the mouth is zero, and that the condensation 
at the mouth is the same as that due to the sources of sound when 
the mouth is closed. It is obvious that under these circumstances 
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the closing plate may be removed without any alteration in the 
motion. Now, however, there is in general a finite velocity at 
x = — I , and therefore we cannot suppose the pipe to be there 
stopped. But when there happens to be a node at x = — I , that is 
to say when I is such that cos K ( I + a) = 0, all the conditions are 
satisfied, and the actual motion within the pipe is that expressed 
by (2). This motion is evidently the same as might obtain, if the 
pipe were closed at both ends; and in external space the potential 
is the same as if the mouth of the pipe were closed with the rigid 
plate. 

In the general case in order to reduce the air at x = — I to rest, 
we must superpose on the motion represented by (2) another of 
the kind investigated in § 313, so determined as to give at x = — I 
a velocity equal and opposite to that of the first. Thus, if the 
second motion be given by 

^ = BJ cos (nt — e— %), 

we have e + % = 0, and 

_„ (cos2 K ( I + a) K V 4 . S ,) . „ , 
W \ \ ' + -7—r sin 2

 Kl[ = H * sm 2 KI (3). | cos2«a 47T2 j v ; 

When sin KI = 0, we have, as above explained, B = 0. The maxi
mum value of B occurs when cos K ( I + a) = 0, and then 

(*>'· 

It appears, as might have been expected, that the resonance is 
greatest when the reduced length is an odd multiple of 

317. From the principle that in the neighbourhood of a node 
the inertia of the air does not come much into play, we see that 
in such places the form of a tube is of little consequence, and that 
only the capacity need be attended to. This consideration allows 
us to calculate the pitch of a pipe which is cylindrical through 
most of its length ( I ) , but near the closed end expands into a 
bulb of small capacity (8). The reduced length is then evi
dently 

l+a + Str-1
 (1), 

R. II. 

1 Helmholtz, CrelU, 1800. 
13 
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where a is the correction for the open end, and <r is the area of 
the transverse section of the cylindrical part. This formula is 
often useful, and may he applied also when the deviation from the 
cylindrical form does not take the shape of an enlargement. 

"When the enlargement represented by S is too large to allow 
of the above treatment, we may proceed as follows. The dissipa
tion being neglected, the velocity potential in the tube may be 
taken to be 

0 = sin K ( X — OL) COS nt, 

the origin being at the mouth, while a = \ i r R approximately. At 
x = — I, we have 

= n sin K (I + a) sin nt, 

and ^ = K cos K (I + a) cos nt. 
ax 

Now the condensation is given by s = — of 2<£, and the condition 
to be satisfied at x = — I is 

. 4 1 — S w -

if it be assumed that the condensation within S is sensibly 
uniform. Thus 

Sri'a'2 sin K (I + a) = <TK cos K (I + a), 

or, since n = an, 

tan«(Z + a) = ^g (3) 

is the equation, determining the pitch. Numerical examples of 
the application of (3) are given in my memoir on resonance 
(Phil. Trans. 1871, p. 117). 

Similar reasoning proves that in any case of stationary vibra
tions, for which the wave-length is several times as great as the 
diameter of the bulb, the end of the tube adjoining the bulb 
behaves approximately as an open end if K 8 be much greater 
than £7, and as a stopped end if KS be much less than <r. 

318. The action of a resonator when under the influence of a 
source of sound in unison with itself is a point of considerable 
delicacy and importance, and one on which there has been a 
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good deal of confusion among acoustical writers, the author not 
excepted. 

There are cases where a resonator absorbs sound, as it were 
attracting the vibrations to itself and so diverting them from 
regions where otherwise they would be felt. For example, 
suppose that there is a simple source of sound B situated in a 
narrow tube at a distance \"k (or any odd multiple thereof) from a 
closed end, and not too near the mouth: then at any distant 
external point A , its effect is nil. This is an immediate conse
quence of the principle of reciprocity, because if A were the 
source, there could be no variation of potential at B. The 
restriction, precluding too great a proximity to the mouth, may 
be dispensed with, if we suppose the source B to be diffused 
uniformly over the cross section, instead of concentrated in one 
point. Then, whatever may be the size and shape of the section, 
there is absolutely no disturbance on the further side. This is 
clear from the theory of vibrations in one dimension; the reci
procal form of the proposition—that whatever sources of disturb
ance may exist beyond the section, jjtydcr = 0—may he proved 
from Helmholtz's formula (2) § 293, by talcing for <j> the velocity 
potential of the purely axial vibration of the same period. 

It is scarcely necessary to say that, whenever no energy 
is emitted, the source does no work; and this requires, not 
that there shall be no variation of pressure at the source, for that 
in the case of a simple source is impossible, but that the variable 
part of the pressure shall have exactly the phase of the accelera
tion, and no component with the phase of the velocity. 

Other examples of the absorption of sound by resonators are 
afforded by certain modifications of Herschel's interference tube 
used by Quincke1 to stop tones of definite pitch from reaching 
the ear. 

In the combinations of pipes represented in Fig. 63, the sound 
enters freely at A ; at B it finds itself at the mouth of a reso
nator of pitch identical with its own. Under these circumstances 
it is absorbed, and there is no vibration propagated along BD. 
It is clear that the cylindrical tube BG may be replaced by any 
other resonator of the same pitch (7), without prejudice to the 

1 Togg. Ann. cxxvm. 177. 18G6. 
13—2 
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action of the apparatus. The ordinary explanation by interference 
(so called) of direct and reflected waves is then less applicable. 

< 7 U 

a 

Fig. 63. 

B 

These cases where the source is at the mouth of a resonator 
must not be confused with others where the source* is in the inte
rior. If B be a source at the bottom of a stopped tube whose 
reduced length is \ \ , the intensity at an external point A may 
be vastly greater than if there had been no tube. In fact the 
potential at A due to the source at B is the same as it would be 
at B were the source at A. 

319. For a closer examination of the mechanics of resonance, 
we shall obtain the problem in a form disembarrassed of unne
cessary difficulties by supposing the resonator to consist of a 
small circular plate, backed by a spring, and imbedded in an 
indefinite rigid plane. It was proved in a previous chapter, (30) 
§ 302, that if M be the mass of the plate, f its displacement, 
/u.£ the force of restitution, B the radius, and <r the density of the 
air, the equation of vibration is 

+ a £ + = F .(1), 3 y * • 2 

where F and £ a r e proportional to eilcat. . 

If the natural period of vibration (the reaction of external air 
included) coincide with that imposed, the equation reduces to 

bao-TT/SR* % = F ( 2 ) . 
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Let us now suppose that F is due to an external source of 
sound, giving when the plate is at rest a potential which will 
be nearly constant over the area of the plate. Thus 

F=-Bp. TTB2 = iicaa ,irR\f0 (3) ; 

so that irR% = X = 2 t7TK _ 1 ^ 0 = iXf 0 (4), 

and the potential 6 due to the motion of the plate at a distance 
r will be 

•ÌKT . = _ ^ e j ^ = _ i f _ 0 e - ^ = e _ _ ( g . 

independent, it should be observed, of the area of the plate. 

Leaving for the present the case of perfect isochronism, let us 
suppose that 

- ( A T + ^ K V + ^ O .'.(6), 

so that 27TA;'"1 is the wave-length of the natural note of the reso
nator. If M' be written for M+^vR3, the equation correspond
ing to (5) takes the form 

<P = t o T- -s- 1 ~ 2tJlf —̂y4 (7), 
r r o t / c r I irate3!?] w ' 

from which we may infer as before that if tc = K the efficiency of 
the resonator as a source is independent of R, When the adjust
ment is imperfect, the law of falling off depends upon M'RT*. 
Thus if M be great and R small, although the maximum efficiency 
of the resonator is no less, a greater accuracy of adjustment is 
required in order to approach the maximum (§ 49). In the case 
of resonators with simple apertures M' = ^ a-R5, so that M'RTi 

varies as R~\ Accordingly resonators with small apertures re
quire the greatest precision of tuning, but the difference is not 
important. From a comparison of the present investigation with 
that of § 311 it appears that the conditions of efficiency are dif
ferent according as internal or external effects are considered. 

We will now return to the case of isochronism and suppose 
further that the external source of sound to which the resonator 
A responds, is the motion of a similar plate B, whose distance 
c from A is a quantity large in comparison with the dimensions 
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of the plates. The intensity of B may be supposed to be such 
that its potential is 

*-v •··•«>• 
Accordingly = c"1 e and therefore by (5) 

9 = ̂ oi^- = e^,e— (9)> 

shewing that at equal distances from their sources 

$ : yjr = E - I * C : IKC (10). 

The relation of phases may be represented by regarding the 
induced vibration cj> as proceeding from B by way of A , and as 
being subject to an additional retardation of so that the whole 
retardation between B and A is c + JX . In respect of amplitude 
fp is greater than i/r in the ratio of 1 : /cc 

Thus when KC is small, the induced vibration is much the 
greater, and the total sound is much louder than if A were not 
permitted to operate. In this case the phase is retarded by a 
quarter of a period. 

It is important to have a clear idea of the cause of this 
augmentation of sound. In a previous chapter (§ 280) we saw 
that, when A is fixed, B gives out much less sound than might 
at first have been expected from the pressure developed. The 
explanation was that the phase of the pressure was unfavourable; 
the larger part of it is concerned only in overcoming the inertia 
of the surrounding air, and is ineffective towards the performance 
of work. Now the pressure which sets A in motion is the whole 
pressure, and not merely the insignificant part that would of itself 
do work. The motion of A is determined by the condition that 
that component of the whole pressure upon it, which has the phase 
of the velocity, shall vanish. But of the pressure that is due to 
the motion of A , , the larger part has the phase of the acceleration; 
and therefore the prescribed condition requires an equality 
between the small component of the pressure due to A's motion, 
and a pressure comparable with the large component of the 
pressure due to B'a motion. The result is that A becomes a 
much more powerful source than B. Of course no work is done 
by the piston A ; its effect is to augment the work done at B, 
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by modifying the otherwise unfavourable relation between the 
phases of the pressure and of the velocity. 

The infinite plane in the preceding discussion is only required 
in order that we may find room behind it for our machinery of 
springs. If we are content with still more highly idealized 
sources and resonators, we may dispense with it. To each piston 
must be added a duplicate, vibrating in a similar manner, but in 
the opposite direction, the effect of which will be to make the 
normal velocity of the fluid vanish over the plane AB. . Under 
these circumstances the plane is without influence and may be 
removed. If the size of the plates be reduced without limit they 
become ultimately equivalent to simple sources of fluid; and we 
conclude that a simple source B will become more efficient than 
before in the ratio of 1 : KG, when at a small distance c from 
it there is allowed to operate a simple resonator (as we may call 
it) of like pitch, that is, a source in which the inertia of the 
immediately surrounding fluid is compensated by some adequate-

machinery, and which is set in motion by external causes only. 

In the present state of our knowledge of the mechanics of 
vibrating fluids, while the difficulties of deduction are for the 
most part still to be overcome, any simplification of conditions 
which allows progress to be made, without wholly destroying the 
practical character of the question, may be a step of great 
importance. Such, for example, was the introduction by Helm-
holtz of the idea of a source concentrated in one point, represented 
analytically by the violation at that point of the equation of 
continuity. Perhaps in like manner the idea of a simple reso
nator may be useful, although the thing would be still more 
impossible to construct than a simple source. 

320. We have seen that there is a great augmentation of 
sound, when a suitably tuned resonator is close to a simple 
source. Much more is this the case, when the source of sound is 
compound. The potential due to a double source is (§§ 294, 324) 

n/r = fie-iKr(l + J-) 

If the resonator be at a small distance c, 
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and therefore the potential due to the resonator at a distance / is 

$ = ^lke'lKV=^lW'~ (2)> 

If fi0 vanish, the resonator is without effect; but when f i 0 = ± 1, 
that is, when the resonator lies on the axis of the double source, 
we have 

<P = + — —-r- (3). 
T KC r x ' 

At a distance from the double source its potential is 
- i*r 

Tr* = A * — (4)· 
Thus we may consider that the potential due to the resonator 

is greater than that due to the double source in the ratio «V : 1, 
the angular variation being disregarded. 

A vibrating rigid sphere gives the same kind of motion to the 
surrounding air as a double source situated at its centre; but the 
substitution suggested by this fact is only permissible when the 
radius of the sphere is small in comparison with c: otherwise 
the presence of the sphere modifies the action of the resonator. 
Nevertheless the preceding investigation shews how powerful 
in general the action of a resonator is when placed in a suitable 
position close to a compound source of sound, whose character 
is such that it would of itself produce but little effect at a 
distance. 

One of the best examples of this use of a resonator is afforded 
by a vibrating bar of glass, or metal, held at the nodes. A strip 
of plate glass about a foot long and an inch broad, of medium 
thickness (say -| inch), supported at about 3 inches from the ends 
by means of string twisted round it, answers the purpose very 
well. When struck by a hammer it gives but little sound except 
overtones; and even these may almost be got rid of by choosing 
a hammer of suitable softness. This deficiency of sound is a 
consequence of the small dimensions of the bar in comparison 
with the wave-length, which allows of the easy transference of air 
from one side to the other. If now the mouth of a resonator of 
the right pitch1 be held over one of the free ends, a sound of con-

1 To get the host effect, the mouth of the resonator ought to be pretty close to 
the bar; and then the pitch is decidedly lower than it would be in the open. The 
final adjustment may be made by varying the amount of obstruction. This use of 
resonators is of great antiquity. 
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siderable force and purity may be obtained by a well managed 
blow. In this way an improved harmonicon may be constructed, 
with tones much lower than would be practicable without reso
nators. In the ordinary' instrument the wave-lengths are suffi
ciently short to permit the bar to communicate vibrations to the 
air independently. 

The reinforcement of the sound of a bell in a well-known 
experiment due to Savart1 is an example of the same mode of 
action; but perhaps the most striking instance is in the ar
rangement adopted by Helmholtz in his experiments requiring 
pure tones, which are obtained by holding tuning-forks over the 
mouths of resonators. 

321. When two simple resonators Av A2, separately in tune 
with the source, are close together, the effect is less than if there 
were only one. If the potentials due respectively to Ax, Ax be 

"TV w e m a y take 

' 1 ' 2 

Let B represent the distance AXA%, and fa, fa, the potentials 
that would exist at Av, A%, if there were no resonators; then the 
conditions to determine At, A2 are by (5) § 319 

By hypothesis fa and fa are nearly equal, and therefore 

Since iicB is small, the effect is much less than if there were 
only one resonator. It must be observed however that the 
diminished effectiveness is due to the resonators putting one 
another out of tune, and if this tendency be compensated by an 
alteration in the spring, any number of resonators near together 
have just the effect of one. This point is illustrated by § 302,, 
where it will be seen (32) that though the resonance does not 
depend upon the size of the plate, still the inertia of the air, which 
has to be compensated by a spring, does depend upon it. 

1 Ann. d. Chim. t. xxiv. 1823. 
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322. It will be proper to say a few words in this place on: 
an objection, which has been brought forward by Bosanquet1 as 
possibly invalidating the usual calculations of the pitch of re
sonators and of the correction to the length of organ pipes. When 
fluid flows in a steady stream through a hole in a thin plate, the 
motion on the low pressure side is by no means of the character 
investigated in § 306. Instead of diverging after passing the hole 
so as to follow the surface of the plate, the fluid shapes itself into 
an approximately cylindrical jet, whose form for the case of two 
dimensions can be calculated from formulae given by KirchhofP. 
On the high pressure side the motion does not deviate so widely 
from that determined by the electrical law. In like manner fluid 
passing outwards from a pipe continues to move in a cylindrical 
stream. If the external pressure be the greater, the character of 
the motion is different. In this case the stream lines converge 
from all directions to the mouth of the pipe, afterwards gathering 
themselves into a parallel bundle, whose section is considerably 
less than that of the pipe. It is clear that, if the formation of jets 
took place to any considerable extent during the passage of air 
through the mouths of resonators, our calculations of pitch would 
have to be seriously modified. 

The precise conditions under which jets are formed is a subject 
of great delicacy. It may even be doubted whether they would occur 
at all in frictionless fluid moving with velocities so small that the 
corresponding pressures, which are proportional to the squares of 
the velocities, are inconsiderable. But with air, as we actually 
have it, moving under the action of the pressures to be found in 
resonators, it must be admitted that jets may sometimes occur. 
While experimenting about two years ago Avith one of Kdnig's 
brass resonators of pitch c', I noticed that when the corresponding 
fork, strongly excited, was held to the mouth, a wind of consider
able force issued from the nipple at the opposite side. This effect 
may rise to such intensity as to blow out a candle upon whose 
wick the stream is directed. It does not depend upon any peculiar 
motion of the air near the ends of the fork, as is proved by 
mounting the fork upon its resonance-box and presenting the open 
end of the box, instead of the fork itself, to the mouth of the 
resonator, when the effect is obtained with but slightly diminished 

1 Phil. Mag. Aug. 1877, p. 125. 
» Phil, Mag. Deo. 1876. 
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intensity. A similar result was obtained with a fork and re
sonator, of pitch an octave lower (c). Closer examination revealed 
the fact that at the sides of the nipple the outward flowing 
stream was replaced by one in the opposite direction, so that a 
tongue of flame from a suitably placed candle appeared to enter 
the nipple at the same time that another candle situated 
immediately in front was blown away. The two effects are of 
course in reality alternating, and only appear to be simultaneous 
in consequence of the inability of the eye to follow such rapid 
changes. The formation of jets must make a serious draft on the 
energy of the motion, and this is no doubt the reason why it is 
necessary to close the nipple in order to obtain a powerful sound 
from a resonator of this form, when a suitably tuned fork is pre
sented to it. 

At the same time it does not appear probable that jet forma
tion occurs to- any appreciable extent at the mouths of resonators 
as ordinarily used. The near agreement between the observed and 
the calculated pitch is almost a sufficient proof of this. Another 
argument tending to the same conclusion may be drawn from the 
persistence of the free vibrations of resonators (§ 311), whose dura
tion seems to exclude any important cause of dissipation beyond 
the communication of motion to the surrounding air. 

In the case of organ pipes, where the vibrations are very power
ful, these arguments are less cogent, but I see no reason for think
ing that the motion at the upper open end differs greatly from that 
supposed in Helmholtz's calculation. No conclusion to the con
trary can, I think, safely be drawn from the phenomena of steady 
motion. In the opposite extreme case of impulsive motion jets 
certainly cannot be formed, as follows from Thomson's principle 
of least energy (§ 7 9 ) , and it is doubtful to which extreme the 
case of periodic motion may with greatest plausibility be assimi
lated. Observation by the method of intermittent illumination 
(§ 42) might lead to further information upon this subject. 
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CHAPTER XVII. 

APPLICATIONS OF L A P L A C E ' S FUNCTIONS. 

323. T H E general equation of a velocity potential, when 
referred to polar co-ordinates, takes the form (§ 241) 

r dr* + Z r dr+ sin 6 d6 0 dd) + em'0 dmi+Kr^ ''W' 

If K vanish, we have the equation of the ordinary potential, 
which, as we know, is satisfied, if = rn8n, where Sn denotes the 
spherical surface harmonic1 of order n. On substitution it appears 
that the equation satisfied by 8n is 

s i n - . i% ( s i u 6 § ) + ¡ ¿ 3 S? + » <» + ^ = 0 < * > · 
Now, whatever the form of yjr may he, it can be expanded in 

a series of spherical harmonics 

* = fo + * i + + + + (3), 

where yjrn will satisfy an equation such as (2). 
Comparing (1) and (2) we see that to determine fan as a 

function of r, we have 

^ + 2r 1£ ~ n <n +

 J) +. + =

 0
 i 

or, as it may also be written, 

d2 (nfr) n(n+ 1 ) , , . 

w ~ w ( r f J + r i K = = 0  

1 On the theory of these functions the latest English works are Todhunter's 
Tlie Functions of Laplace, Lam4, and Bessel, and Ferrers' Spherical Harmonics. 
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Thus ^ « « i l L + l ^ , 

+ ··· + « A 5 ci7. / . · . . „ \ n | (9)' 

2 
p _ p ( " - ! ) ( n + 2 ) _ ( n - l ) n ( « + l ) ( n + 2 ) „ „ 

2 - 1 2 . 2 2 7 4 ' 
so that 
B = B l l 4 - n ( n + 1) . (n-D...(n+2) < « - S ) . . . ( n + 3) 

°(. 2.i«r 2 . 4 . (iter)* + 2 . 4. 6 . (t*r) 8 

1 . 2 . 3 . . . 2 » 
2 . 4 . 6 ...2n.(i/cr)n 

Denoting with Prof. Stokes1 the series within brackets by 
fn (inr), we have 

B = B0fn(i>cr) (10). 

In like manner by changing the sign of i, we get 
A^AJn(-iKr) (11). 

The symbols A0 and B0, though independent of r, are functions 
of the angular co-ordinates: in the most general case, they are 
any two spherical surface harmonics of order n. Equation (5) may 
therefore be written 

»·*»= 8ne-**fn ( t V r ) + S ' e + i « - f n (- tier) (12). 
1 On the Comnranication of Vibrations from a Vibrating Body to a surrounding 

Gas. Phil. Trans. 1868. 

In order to solve this equation, we may observe that when r 
is very great, the middle term is relatively negligible, and that 
then the solution is 

rfn=Aeilcr + Be~iKr (5). 
The same form may be assumed to hold good for the complete 

equation (4), if we look upon A and B no longer as constants, but 
as functions of r, whose nature is to be determined. Substituting 
in (4), we find for B, 

_ ^ + 2 ^ + « f e + l _ ) 5 . 0 (6). 
d (iicry d (iter) (ucry K ' 

Let us assume 
B=B0 + BX (iter)-1 + B2 (ucry + ... + B, (iter)-' +... (7), 

and substitute in (6). Equating to zero the coefficient of (i/cr)'''*, 

we obtain 
j> T> n(n + l)-s(s + l) _ „ (n-s) (n + s+1)  

B ' " = 2 ( « + l ) ' ' 2 ( * + l ) ( 8 ) > 
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whence by (14) we find 

Fn (wr) = 1 . 3 . 5 ... ( 2 n - 1) (n +1) (wr)"" 

X r
 + M r + ( » - H ) ( 2 » + l ) +

 - l ( 1 6 ) -

324. An important case of our general formula? occurs when 
^ represents a disturbance which is propagated wholly outwards. 
At a great distance from the origin, fn (tier) =fn (— iter) = 1, and 
thus, if we restore the time factor (e*1"1), we have 

r^n = eiK<-at-r) + Sn' eiK<-at+r'> (1), 
of which the second part represents a disturbance travelling 
inwards. Under the circumstances contemplated we are there
fore to take S' = 0, and thus 

r*n = Snfn(iKr) e«W-r) (2), 

which represents in the most general manner the w"1 harmonic 
component of a disturbance of the given period diffusing itself 
outwards into infinite space. 

By differentiation of (12) 

f " = - 7 ^ - F , (frr) - | h ^ Fn (- «r)....(13), 
where 

Fn (t/cr) = (1 + iicr)fn (iitr) — ii<rfn' (— iter) (14). 
The forms of the functions F, as far as n = 7, are exhibited in 

the accompanying table: 
F„(y)=y+ 1 
FM=V+ 2 + 2 r 1 

F 3 ty)=y+ 7+ 2 7 y - 1 + 6oy-»+ 6 0 3 / - » 

F,(y)=y + l l + 65y- i+ 2 4 0 y - 2 + 5252/"'+ 6252/-« 
F,(y)=y+16 + 136?/-» + 7352/~a+ 26252/"»+ 5670y-*+ 56702/-« 
F 6(3/)=y + 22 + 2522/-1 + 1890?/- !'+ 97652/"»+ 340202/-"+ 727652/-"+ 727652/"» 

= 3 , + 29+4342/" 1 + 42842/- J + 29925 2/"' +148995 2/-> + 509355^"»+108108,02/- 6 

+10810802/"' 

In order to find the leading terms in Fn (iar) when inr is small, 
we have on reversing the series in (9) 

/„ (tier) = 1 . 3 . 5 ... (2n - 1 ) ( w r p | l + t*r + 1 ^ («*r)2 + .. . 1 
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The origin of the disturbance may be in a prescribed normal 
motion of the surface of a sphere of radius c. Let us suppose 
that at any point on the sphere the outward velocity is repre
sented by V' eUat, U being in general a function of the position of 
the point considered. 

If U be expanded in the spherical harmonic series 

u = u 0 + u 1 + u 3 + . . . + u n + 

we must have by (13) § 323 
Of 

U» =—ie-iKCFn(iicc) 
c 

The complete value of is thus 
+ = _ £ ^ W - r + o ) 2 L ( & r ) ( 5 ) , 

where the summation is to be extended to all (integral) values of 
n. The real part of this equation will give the velocity potential 
due to the normal velocity Z7cos /cat1 at the surface of the 
sphere r = c. 

Prof. Stokes has applied this solution to the explanation of a 
remarkable experiment by Leslie, according to which it appeared 
that the sound of a bell vibrating in a partially exhausted receiver 
is diminished by the introduction of hydrogen. This paradoxical 
phenomenon has its origin in the augmented wave-length due to 
the addition of hydrogen, in consequence of which the bell loses 
its hold (so to speak) on the surrounding gas. The general expla
nation cannot be better given than in the words of Prof. Stokes : 

" Suppose a person to move his hand to and fro through a small 
space. The motion which is occasioned in the air is almost exactly 
the same as it would have been if the air had been an incompres
sible fluid. There is a mere local reciprocating motion, in which 
the air immediately in front is pushed forward, and that imme
diately behind impelled after the moving body, while in the 
anterior space generally the air recedes from the encroachment of̂  
the moving body, and in the posterior space generally flows in 
from all sides to supply the vacuum which tends to be created; so 
that in lateral directions the flow of the fluid is backwards, a 

(3), 

(4). 

1 The assumption of a real value for U is equivalent to limiting the normal 
velocity to be in the same phase all over the sphere r—c. To include the most 
general aerial motion U would have to be treated as complex. 
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portion of the excess of fluid in front going to supply the de
ficiency behind. Now conceive the periodic time of the motion 
to be continually diminished. Gradually the alternation of move
ment becomes too rapid to permit of the full establishment of the 
merely local reciprocating flow; the air is sensibly compressed and 
rarefied, and a sensible sound wave (or wave of the same nature, 
in case the periodic time be beyond the limits suitable to hearing) 
is propagated to a distance. The same takes place in any gas; 
and the more rapid be the propagation of condensations and rare
factions in the gas, the more nearly will it approach, in relation to 
the motions we have under consideration, to the condition of an 
incompressible fluid; the more nearly will the conditions of the 
displacement of the gas at the surface of the solid be satisfied by a 
merely local reciprocating flow." 

In discussing the solution (5), Prof. Stokes goes on to say, 

"At a great distance from the sphere the function fn(iicr)1 be
comes ultimately equal to 1, and we have 

^ = - cleMot-r+o)X (6). 

" It appears ^from the value of that the component of the 

velocity along the radius vector is of the order r~l, and that in any 
direction perpendicular to the radius vector of the order r~2, so 
that the lateral motion may be disregarded except in the neigh
bourhood of the sphere. 

" In order to examine the influence of the lateral motion in the 
neighbourhood of the sphere, let us compare the actual disturb
ance at a great distance with what it would have been if all lateral 
motion had been prevented, suppose by infinitely thin conical 
partitions dividing the fluid into elementary canals, each bounded 
by a conical surface having its vertex at the centre. 

" On this supposition the motion in any canal would evidently 
be the same as it would be in all directions if the sphere vibrated 
by contraction and expansion of the surface, the same all round, 
and such that the normal velocity of the surface was the Same as 
it is at the particular point at which the canal in question abuts 
on the surface. Now if Uwere constant the expansion of U would 

1 I have made some slight changes in Prof. Stokes' notation. 
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be reduced to its first term U0, and seeing that f0 (ixr) = 1, we 
should have from (5), 

cs „ Un •ySr = _ _ pMat-r+c). 
^ r e F0(i<ccy 

This expression will apply to any particular canal if we take U0 to 
denote the normal velocity at the sphere's surface for that particular 
canal; and therefore to obtain an expression applicable at once 
to all the canals, we have merely to write Z7for U0. To facilitate 
a comparison with (5) and (6), I shall, however, write 2 Un for U. 
We have then, 

ylr = _ _ pi^at-r+c) 
T r F a ( i i c c ) ' V ' ' 

It must be remembered that this is merely an expression appli
cable at once to all the canals, the motion in each of which takes 
place wholly along the radius vector, and accordingly the expres
sion is not to be differentiated with respect to 6 or m with the view 
of finding the transverse velocities. 

" On comparing (7) with the expression for the function yjr in 
the actual motion at a great distance from the sphere (6), we see 
that the two are identical with the exception that Ifn is divided 
by two different constants, namely F^IKC) in the former case and 
F N (iicc) in the latter. The same will be true of the leading terms 
(or those of the order r'1) in the expressions for the condensation 
and velocity. Hence if the mode of vibration of the sphere be 
such that the normal velocity of its surface is expressed by a 
Laplace's function of any one order, the disturbance at a great 
distance from the sphere will vary from one direction to another 
according to the same law as if lateral motions had been pre
vented, the amplitude of excursion at a given distance from the 
centre varying in both cases as the amplitude of excursion, in a 
normal direction, of the surface of the sphere itself. The only 
difference is that expressed by the symbolic ratio Fn(tKc) :F0(IKC). 

If we suppose Fn(iicc) reduced to the form /u.M(cos an + ism a„), 
the amplitude of vibration in the actual case will be to that in the 
supposed case as fi0 to f i n , and the phases in the two cases will 
differ by a 0 - a„ . 

"If the normal velocity of the surface of the sphere be not 
expressible by a single Laplace's Function, but only by a series, 
finite or infinite, of such functions, the disturbance at a given 

R. I I . 14 
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great distance from the centre will no longer vary from one direc
tion to another according to the same law as the normal velocity 
of the surface of the sphere, since the modulus fin and likewise 
the amplitude an of the imaginary quantity Fn(iKc) vary with the 
order of the function. 

" Let us now suppose the disturbance expressed by a Laplace's 
function of some one order, and seek the numerical value of the 
alteration of intensity at a distance, produced by the lateral 
motion which actually exists. 

" The intensity will be measured by the vis viva produced in a 
given time, and consequently will vary as the density multiplied 
by the velocity of propagation multiplied by the square of the 
amplitude of vibration. It is the last factor alone that is different 
from what it would have been if there had been no lateral motion. 
The amplitude is altered in the proportion of/x 0 to ftn, so that if 

'· - In is the quantity by which the intensity that would 
have existed if the fluid had been hindered from lateral motion 
has to be divided. 

"If \ be the length of the sound-wave corresponding to the 
period of the vibration, K = 27rX - 1 , SO that KO is the ratio of the 
circumference of the sphere to the length of a wave. If we sup
pose the gas to be air and X to be 2 feet, which would correspond 
to about 550 vibrations in a second, and the circumference 27ro to 
be 1 foot (a size and pitch which would correspond with the case 
of a common house-bell), we shall have KG = \ . The following 
table gives the values of the squares of the modulus and of the 

KC 71=0 n = l 71 = 2 71 = 3 71 = 4 

4 17 16-25 14-879 13-848 20-177 < 
2 5 5 9-3125 80 1495-8 0 
1 2 5 89 3965 300137 01 
0-5 1-25 16-25 1330-2 236191 72086371 O 

H» 

0-25 1-0625 64-062 20878 14837899 
18160 x10s 

4 1 0 95588 0-87523 0-81459 1-1869 
2 1 1 1-8625 16 299-16 ef, 
1 1 2-5 44-5 1982-5 150068 DQ 

0-5 1 13 1064-2 188953 57669097 O 

0-25 1 60'294 19650 
13965 x103 17092 x10" 

ratio In for the functions Fn(iKc) of the first five orders, for each 
;of the values 4, 2, 1, and \ of KC. It will presently appear why 
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the table has been extended further in the direction of values 
greater than \ than it has in the opposite direction. Five signi
ficant figures at least are retained. 

"When KC = OO we get from the analytical expressions / B = l . 
We see from the table that when KC is somewhat large In is liable 
to be a little less than 1, and consequently the sound to be a little 
more intense than if lateral motion had been prevented. The 
possibility of that is explained by considering that the waves of 
condensation spreading from those compartments of the sphere 
which at a given moment are vibrating positively, i.e. outwards, 
after the lapse of a half period may have spread over the neigh
bouring compartments, which are now in their turn vibrating 
positively, so that these latter compartments in their outward 
motion work against a somewhat greater pressure than if such 
compartment had opposite to it only the vibration of the gas 
which it had itself occasioned; and the same explanation applies 
mutatis mutandis to the waves of rarefaction. However, the in
crease of sound thus occasioned by the existence of lateral motion 
is but small in any case, whereas when KC is somewhat small In 

increases enormously, and the sound becomes a mere nothing, 
compared with what it would have been had lateral motion been 
prevented. 

" The higher be the order of the function, the greater will be the 
number of compartments, alternately positive and negative as to 
their mode of vibration at a given moment, into which the surface 
of the sphere will be divided. We see from the table that for a 
given periodic time as well as radius the value of In becomes con
siderable when n is somewhat high. However practically vibra
tions of this kind are produced when the elastic sphere executes, 
not its principal, but one of its subordinate vibrations, the pitch 
corresponding to which rises with the order of vibration, so that K 
increases with that order. It was for this reason that the table 
was extended from KC = 0 -5 further in the direction of high pitch 
than low pitch, namely, to three octaves higher and only one octave 
lower. 

" When the sphere vibrates symmetrically about the centre, i. e. 
so that any two opposite points of the surface are at a given 
moment moving with equal velocities in opposite directions, or 
more generally when the mode of vibration is such that there is 
no change -of position of the centre of gravity of the volume, there 

14—2 
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is no term, of order 1. For a sphere vibrating in the manner of a 
bell the principal vibration is that expressed by a term of the 
order 2, to which I shall now more particularly attend. 

"Putting, for shortness, /<?(?= g, we have 

rf = q +1, = & + 9 2 -*) B + (4 - 9q-y = q - 2 + 9?"1 + 81 q~\ 

r _ g

3 - 2 g ' + 9g + 81  
a ~ 2* (2 + 1) ' 

" The minimum value of 7 2 is determined by 

9 s - 6q* - 84>q - 64 = 0, 

giving approximately, 

2 = 12-859, KC = 3-586, ^ = 1 3 - 8 5 9 , = 12049, 

7, = -86941; 
so that the utmost increase of sound produced by lateral motion 
amounts to about 15 per cent. 

*' I now come more particularly to Leslie's experiments. Nothing 
is stated as to the form, size, or pitch of his bell; and even if these 
had been accurately described, there would have been a good deal 
of guess-work in fixing on the size of the sphere which should be 
considered the best representative of the bell. Hence all we can 

. do is to choose such values for K and c as are comparable with the 
probable conditions of the experiment. 

"I possess a bell, belonging to an old bell-in-air apparatus, 
which may probably be somewhat similar to that used by Leslie. 
It is nearly hemispherical, the diameter is l - 96 inch, and the pitch 
an octave above the middle o of a piano. Taking the number of 
vibrations 1056 per second, and the velocity of sound in air 1100 
feet per second, we have \ = 12 -5 inches. To represent the bell by 
a sphere of the same radius would be very greatly to underrate the 
influence of local circulation, since near the mouth the gas has but 
a little way to get round from the outside to the inside or the 
reverse. To represent it by a sphere of half the radius would still 
•apparently be to underrate the effect. Nevertheless for the sake 
of rather under-estimating than exaggerating the influence of the 
cause here investigated, I will make these two suppositions suc
cessively, giving respectively c = *98 and c = "49, KG = '4926, and 
KG = -2463 for air. 
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" If it were not for lateral motion the intensity would vary from 
gas to gas in the proportion of the density into the velocity of 
propagation, and therefore as the pressure into the square root of 
the density under a standard pressure, if we take the factor de
pending on the development of heat as sensibly the same for the 
gases and gaseous mixtures with which we have to deal. In the 
following Table the first column gives the gas, the second the 

ii 
G3 Cft OS 
GO GO CO 
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CO 
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pressure p, in atmospheres, the third the density D under the 
pressure p, referred to the density of the air at the atmospheric 
pressure as unity, the fourth, Qr, what would have heen the inten
sity had the motion heen wholly radial, referred to the intensity 
in air at atmospheric pressure as unity, or, in other words, a 
quantity varying as p x (the density at pressure 1)*. Then fol
low the values of q, i"2, and Q, the last being the actual intensity 
referred to air as .before. 

" An inspection of the numbers contained in the columns headed 
Q will shew that the cause here investigated is amply sufficient to 
acc'ount for the facts mentioned by Leslie." 

The importance of the subject, and the masterly manner in 
which it has been treated by Prof. Stokes, will probably be thought 
sufficient to justify this long quotation. The simplicity of the true 
explanation contrasts remarkably with conjectures that had pre
viously been advanced. Sir J. Herschel, for example, thought 
that the mixture of two gases tending to propagate sound with 
different velocities might produce a confusion resulting in a rapid 
stifling of the sound. 

325.. The term of zero order 

fa = ^EU(at-r) (1), 

where S„ is a complex constant, corresponds to the potential of a 
simple source of arbitrary intensity and phase, situated at the 
centre of the sphere (§ 279). If, as often happens in practice, the 
source of sound be a solid body vibrating without much change of 
volume, this term is relatively deficient. In the case of a rigid 
sphere vibrating about a position of equilibrium, the deficiency is 
absolute l, inasmuch as the whole motion will then be represented 
by a term of order 1 ; and whenever the body is very small in 
comparison with the wave-length, the term of zero order must 
be insignificant. For if we integrate the equation of motion, 
\j*\fr + = 0, over the small volume included between the body 
and a sphere closely surrounding it, we see that the whole quan
tity of fluid which enters and leaves this space is small, and that 
therefore there is hut little total flow across the surface of the 
sphere. 

1 The centre of the sphere being the origin of coordinates. 
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Putting 11 = 1, wa get for the term of the first order 

nh = £iê ->jl+̂ J (2), 
and 8± is proportional to the cosine of the angle between the direc
tion considered and some fixed axis. This expression is of the 
same form as the potential of a double source (§ 294), situated at 
the centre, and composed of two equal and opposite simple sources 
lying on the axis in question, whose distance apart is infinitely 
small, and intensities such that the product of the intensities and . 
distance is finite. For, if x be the axis, and the cosine of the 
angle between x and r he p,, it is evident that the potential of the 
double source is proportional to 

d_ /e-iKr\ _ d_ /e-"r\ = _ . pe~Wr f J _ 
dx \ r ) ~ ^ dr\ r ) K ' r \ iicr. 

It appears then that the disturbance due to the vibration of a 
sphere as a rigid body is the same as that corresponding to a 
double source at the centre whose axis coincides with the fine of 
the sphere's vibration. 

The reaction of the air on a small sphere vibrating as a rigid 
body with a harmonic motion, may be readily calculated from pre
ceding formulae. If % denote.the velocity of the sphere at time t, 

Uie

iKat = g(i (3), 
and therefore for the value of i/r at the surface of the sphere, we 
have from (5) § 324, 

•Jr = — ifcacEu, JJ;\. \ (4). 
The force 3 due to aerial pressures accelerating the motion is 

given by 
lB = -jjpSpdS = P jjpfdS 

— „· 3 i- fi (*«C) f „ » , . 47TC8 f. f. (iKC) 

--lmpc^F^))^^d^-ua^^F^y 
If we write 

iPs-=P-iq (5), 
F1 (wee) * 

th.PT! <— 4ttc3P -A &TTC3p f. ,a\ 

tnen a = -p—^-Lg-qKa— (6), inasmuch as £ = w t & 
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r . ^ — (7); 

The operation of the air is therefore to increase the effective 
inertia of the sphere by p times the inertia of the air displaced, 
and to retard the motion by a force proportional to the velocity, 
and equal to ^ irpc*. quaP, these effects being in general functions 
of the frequency of vibration. By introduction of the values of fx 

and F T we find 
/ , (wee) = 2 + K V - J K ' S C ' S 

F X (IKC) 4 + K*C* 

s o t t a t ' ^ = 4 + ^ V > ? = 4 + ^ V ( 8 ) -

When KG is small, we have approximately p = J, q = i KSC*. 

Hence the effective inertia of a small sphere is increased by one-
half of that of the air displaced—a quantity independent of the 
frequency and the same as if the fluid were incompressible. The 
dissipative term, which corresponds to the energy emitted, is of 
high order in KO, and therefore (the effects of viscosity being 
disregarded) the vibrations of a small sphere are but slowly 
damped. 

The motion of an ellipsoid through an incompressible fluid has 
been investigated by Green1, and his result is applicable to the 
calculation of the increase of effective inertia due to a compressible 
fluid, provided the dimensions of the body be small in comparison 
with the wave-length of the vibration. For a small circular disc 
vibrating at right angles to its plane, the increase of effective 
inertia is to the mass of a sphere of fluid, whose radius is equal to 
that of the disc, as 2 to IT. The result for the case of a sphere 
given above was obtained by Poisson3, a short time before the 
publication of Green's paper. 

It has been proved by Maxwell3 that the various terms of 
the harmonic expansion of the common potential may be re
garded as due to multiple points of corresponding degrees of corn

ât t\\ 
plexity. Thus F» is proportional to -^j-. [j.) > where there 
are i differentiations of r"1 with respect to the axes ht, h2, &c, any 
number of which may in particular cases coincide. It might perhaps 

1 Edinburgh Transactions, Dec. 16, 1833. Also Green's Mathematical Papers, 
edited by Ferrers. Macmillan & Co., 1871. 

8 Mémoires de l'Académie des Sciences, Tom. xi . p. 521, 
* Maxwell's Electricity and Magnetism, Oh. ix. 
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have been expected that a similar law would hold for the velocity · 
potential with the substitution of r~1e~ilcr for r~\ This however 
is not the case; it may be shewn that the potential of a quadruple 

source, denoted by ^ ^ . —̂ —, corresponds in general not to the 
g-iicy 

term of the second order simply, viz., S i — ^ - f i ( t K r ) , but to a 
combination of this with a term of zero order. The analogy there
fore holds only in the single instance of the double point or source, 
though of course the function r~1e-1''"' after any number of differ
entiations continues to satisfy the fundamental equation 

(v2 + «2)t = °-
It is perhaps worth notice .that the disturbance outside any 

imaginary sphere which completely encloses the origin of sound 
may be represented as due to the normal motion of the surface of 
any smaller concentric sphere, or, as a particular case when the 
radius of the sphere is infinitely small, as due to a source concen
trated in one point at the centre. This source will in general be 
composed of a combination of multiple sources of all orders of 
complexity. 

326. When the origin of the disturbance is the vibration of a 
rigid body parallel to its axis of revolution, the various spherical 
harmonics 8 n reduce to simple multiples of the zonal harmonic 
P„ (/A), which may be defined as the coefficient of e" in the expan
sion of {1 — 2e /M + es}~* in rising powers of e. And whenever the 
solid, besides being symmetrical about an axis, is also symmetrical 
with respect to an equatorial plane (whose intersection with the 
axis is taken as origin of co-ordinates), the expansion of the 
resulting disturbance in spherical harmonics will contain terms of 
odd order only. For example, if the vibrating body were a circular 
disc moving perpendicularly to its plane, the expansion of 
would contain terms proportional to Pj (/x), P a (/A), P 5 (/*), &c. In 
the case of the sphere, as we have seen, the series reduces 
absolutely to its first term, and this term will generally be prepon
derant. 

On the other hand we may have a vibrating system symmetri
cal about an axis and with respect to an equatorial plane, but in 
such a manner that the motions of the parts on the two sides of 
the plane are opposed. Under this head comes the ideal tuning 
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fork, composed of equal spheres or parallel circular discs, whose 
distance apart varies periodically. Symmetry shews that the 
velocity-potential, being the same at any point and at its image in 
the plane of symmetry, must be an even function of fi, and there
fore expressible by a series containing only the even functions 
P 0 (fj), Pa (JJ), &c. The second function P 2 (JA) would usually 
preponderate, though in particular cases, as for example if the 
body were composed of two discs very close together in comparison 
with their diameter, the symmetrical term of zero order might 
become important. A comparison with the known solution for the 
sphere whose surface vibrates according to any law, will in most 
cases furnish material for an estimate as to the relative importance 
of the various terms. 

327. The total emission of energy by a vibrating sphere is 
found by multiplying the variable part of the pressure (proportional 
to by the normal velocity and integrating over the surface 
(§ 245). In virtue of the conjugate property the various spherical 
harmonic terms may be taken separately without loss of generality. 
We have (§ 323) 

•f» = % m ~r /» (lKr) 

dr r* nK ' 
(1). 

or on rejecting the imaginary part 

r) + a sin K (at — r)} ] 
(2), ^ _ _ {ß' c o s K (at -r)+a sin K (at - r)} 

^* = — { a. cos K (at — r) — ß sin K (at — r)} 

where F=a + iß, f= a' + iß' (3). 

Th„, 

= yjJS*da {aß c o s 2 K (at -r) - a'ßsin2K (at - r) 

+ (aa! — ßß') sin K (at — r) cos K (at -»·)}· 
When this is integrated over a long range of time, the periodic 
terms may be omitted, and thus 

/'//+·itdS' d t = fr W ~ * ' ® H S » d a < * ) ' 
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Now, since there can be on the whole no accumulation of 
energy in the space included between two concentric spherical 
surfaces, the rates of transmission of energy across these surfaces 
must be the same, that is to say r'1 (a!B — B'a) must be independent 
of r. In order to determine the constant value, we may take the 
particular case of r indefinitely great, when 

Fn (i/cr) = iter, a. = 0, 8 = ter, 

/ . ( « r ) = l, o' = l , /3' = 0. 

Thus a'B - B'a = KT, identically (5). 

It may be observed that the left-hand member of (5) when' 
multiplied by i is the imaginary part of (a + iB) (a' — i8/) or of 
Fn(i/cr)fn (—iter), so that our result may be expressed by saying 
that the imaginary part of Fn (i/er)fn (— tier) is iter, or 

K («»·)/. (- i l c r ) ~ K ( ~ * « • ) / . (iter) = 2 w ( 6 ) . 
In this form we shall have occasion presently to make use of it. 

The same conclusion may be arrived at somewhat more directly 
by an application of Helmholtz's theorem (§ 294), i.e. that if two 
functions u and v satisfy through a closed space IS the equation 
(V s + «") u = 0, then 

//(.£-.£)«--·< ·'·<"• 
If we take for S the space between two concentric spheres, 

making 
w _

 r > v~~~. r ' 
we find that r*[Fn (iicr)fn (-iter) -Fn (- wr)fn (iter)} must be 
independent of r. 

"We have therefore 

//f̂" d~dr" dS •dt = ~ ̂ atI fad° > 
so that the expression for the energy emitted in time t is (since' 
Bp = -pf) 

W-Wpatjfeia v (8). 
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It 'will be more instructive to exhibit W as a function of the 
normal motion at the surface of a sphere of radius c. From (2) 

= — ^ [cos icat (a cos KO + B sin KC) 

+ sin m t (a sin KG — B cos KC)], 

so that, if the amplitude of be Un, we have as the relation 

between Sa and Un 

c'f, , = («' + iS , )S: (9). 

Thus w=wm\iu»d° 
This formula may be verified for the particular cases n = 0 and 
n = 1, treated in §§ 280, 325 respectively. 

328. If the source of disturbance be a normal motion of a 
small part of the surface of the sphere (r = c) in the immediate 
neighbourhood of the point fi=l, we must take in the general 
solution applicable to divergent waves, viz. 

+ = - ^ - H * S ^ / . ( & r ) (1), 

0 . = i ( 2 n + i ) PM-fyPM^ 
- i ( 2 » + l ) P . ( , . ) £ V c f c - 2 ^ P » ] J ™ (2); 

for where f/ is sensible, Pn (p) = 1. Thus 

^ = - f ^ - / / ™ - 2 ( 2 n + l ) P > ) ^ (3). 

In this formula jjUdS measures the intensity of the source. 

If I K C be very small, 

4 « = 1 - I K G + . . . , 4 ^ = fao ( l + i ) + . . . & c , 

Jf0(iKC) 1\(IKC) \ %KT) ' 

so that ultimately 

and the waves diverge as from a simple source of equal magnitude. 
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We will now examine the problem when KG is not very small, 
taking for simplicity the case where is required at a great 
distance only, so that fn(iicr) = 1. The factor on which the rela
tive intensities in various directions depend is 

(2n + l) P » 
2 — F J & 3 > { 0 ) ' 

and a complete solution of the question would involve a discussion 
of this series as a function of fi and KC. 

Thus, if 

•(6), 

where 
t = ~ ¿ 1 / U d S ' û"J'.fl* , l o*- r +" +» (7), 

(8). tan 0 = G : F., 

The intensity of the vibrations in the various directions is thus 
measured by F* + G\ If, as before, Fn = a + i ft, 

2 
2ra + l 

.(9). 

2n + l aPM-] 
a2 + /32 I 

a2 + /32J 

The following table gives the means of calculating F and G 
for any value of when KC = \, 1, or 2. In the last case it is 
necessary to go as far as n = 7 to get a tolerably accurate result, and 
for larger values of KC the calculation would soon become very 
laborious. In all problems of this sort the harmonic analysis seems 
to lose its power when the waves are very small in comparison 
with the dimensions of bodies. 

KC = \ . 

n 2a 2/3 (n + i ) a + ( a ! + / 3 2 ) (n+l)p+(a*+p') 

0 + · 2 + 1 + •4 + •2 
1 + 4 7 + -1846153 - -3230768 
2 64 35 - -0601391 - -0328885 
3 - 466 + 853 - -0034527 + -0063201 
4 + 14902 + 8141 + -0004653 + -0002542 
5 + 175592 -321419 + -0000144 - -0000264 
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KO = 1. 

n a P (n+è)a-=-(a« + /35) («+i)/3+(a 2+|8 2) 

0 + 1 + 1 + •25 + •25 
1 + 2 1 + •6 - • 3 
2 5 8 - -140449 - -224719 
3 53 + 34 --040784 + '030013 
4 + 296 + 461 + -004438 + -00C912 
5 + 4951 - 3179 + -000787 - -000505 
6 - 40613 - 63251 - -000047 - -000073 
7 - 936340 + 601217 - -000006 + -000004 

KC = 2. 

n a 1* (n + J)a-=-(a' + ^) (n + l)0+(o» + 0») 

0 + 1 + 2 + •1 + •2 
1 + 2 + 1 + •6 + •3 
2 + 1-75 - 2-5 + -46980 - -67114 
3 8 - 4 - -35 . - -175 
4 - 16-1875 + 35-125 - -04870 + -10567 
5 + 186-625 + 85-4375 + -02436 + -01115 
6 + 538-80 -1177-3 + -00209 - -00456 
7 -8621-7 -3945-8 - -00072 - -00033 

The most interesting question on which this analysis informs 
us is the influence which a rigid sphere, situated close to the 
source, has on the intensity of sound in different directions. 
By the principle of reciprocity (§ 294) the source and the place of 
observation may be interchanged. When therefore we know the 
relative intensities at two distant points B, B', due to a source A 
on the surface of the sphere, we have also the relative intensities 
(measured by potential) at the point A, due to distant sources at 
B and B'. On this account the problem has a double interest. 

As a numerical example I have calculated the values of F-\- iO 
and F*+ G* for the above values of KC, when fi = 1, /i = — 1, ¡1 = 0, 
that is, looking from the centre of the sphere, in the direction of 
the source, in the opposite direction, and laterally. 

When KC is zero, the value of F*+ G" is -25, which therefore 
represents on the same scale as in the table the intensity due to 
an unobstructed source of equal magnitude. We may interpret KC 
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as the ratio of the circumference of the sphere to the wave-length 
of the sound. 

F+iG F' + Ga 

1 •521503 + -149417i •294291 
h - 1 •159149 - -484149» •259729 h 

0 •430244- -2105391 •231999 

1 •667938+ -2383G9£ •502961 
1 - 1 - -440055- -302009» •2S5220 

0 + •321903- -364974i •236828 

1 •79683 +-2342K •6898 
2 - 1 •24954 + -50580i •3182 

0 - -15381 - -57C62i •3562 

In looking at these figures the first point which attracts 
attention is the comparatively slight deviation from uniformity 
in the intensities in different directions. Even when the circum
ference of the sphere amounts to twice the wave-length, there is 
scarcely anything to be called a sound shadow. But what is 
perhaps still more unexpected is that in the first two cases the 
intensity behind the sphere exceeds that in a transverse direction. 
This result depends mainly on the preponderance of the term of 
the first order, which vanishes with yti. The order of the more 
important terms increases with K C ; when KC is 2, the principal 
term is that of the second order. 

Up to a certain, point the augmentation of the sphere will 
increase the total energy emitted, because a simple source emits 
twice as much energy when close to a rigid plane as when entirely 
in the open. Within the limits of the table this effect masks the 
obstruction due to an increasing sphere, so that when /i = — 1, 
the intensity is greater when the circumference is twice the wave
length than when it is half the wave-length,. the source itself 
remaining constant. 

If the source be not simple harmonic with respect to time, the 
relative proportions of the various constituents will vary to some 
extent both with the size of the sphere, and with the direction 
of the point of observation, illustrating the fundamental character 
of the analysis into simple harmonics. 
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When KC is decidedly less than one-half, the calculation may 
he conducted with sufficient approximation algebraically. The 
result is 

+ ^ v ( i + i / x + i f P s + M ^ - ^ ^ a + A ^ ) 
+ terms in KBCS ; (10). 

It appears that so far as the term in « V , the intensity is an 
even function of fi, viz. the same at any two points diametrically 
opposed. For the principal directions fi = ± 1, or 0, the numerical 
calculation of the coefficient of K V is easy on account of the simple 
values then assumed by the functions P . Thus 

F * + G* = J + t fc *V + -77755 «V + 

0 * = - l ) , F * + G 1 = J + T f T * V + -02755 *V + 
0 * = 0), F*+Gr* = i - i K V + -19534 K V + 

When K*C* can be neglected, the intensity is less in a lateral 
direction than immediately in front of or behind the sphere. Or, 
by the reciprocal property, a source at a distance will give a greater 
intensity on the surface of a small sphere at the point furthest 
from the source than in a lateral position. 

If we apply these formulae to the case of KG = \, we get 

{(x = l), F 1 + G 2 = S073, 

0 * = - l ) , 2^+0» = -2604, 
(fi = 0), F ' + G8 = -2344, 

which agree pretty closely with the results of the more complete 
calculation. 

For other values of fi, the coefficient of /cV in (10) might be 
calculated with the aid of tables of Legendre's functions, or from 
the following algebraic expression in terms of f i 1 , 

l + ^fi + ^ P 3 + M p ^ ^ ^ P t + j h P t 

= -78138 +1-5 fi + -85938 (S - -03056 f t . 

The difference of intensities in the directions fi = +1 and 
fi = — 1 may be very simply expressed. Thus 

1 For the forms of the functions P, sec § 334. 
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If«o = f, | « V = -0148. 

I f*o = & f « V = -0029. 

I f*c = 4, f * V = - 0 0 0 2 . 

At the same time the total value of F2+ G* approximates to 
•25, when KC is small. 

These numbers have an interesting bearing on the explanation 
of the part played by the two ears in the perception of the quarter 
from which a sound proceeds. 

It should be observed that the variations of intensity in different 
directions about which we have been speaking are due to the 
presence of the sphere as an obstacle, and not to the fact that 
the source is on the circumference of the sphere instead of at 
the centre. At a great distance a small displacement of a 
source of sound will affect the phase but not the intensity in any 
direction. 

In order to find the alteration of phase we have for a small 
sphere 

F= \ + « V ( - j + 1 - & p 2 ) , a = KC ( - i + F r), 

ta,n6=G:F=Kc(-l+§fi), or 0 = KC ( - 1 + f n ) nearly. 
Thus in (7) 

from which we may infer that the phase at a distance is the same 
as if the source had been situated at the point /« —1, r = § e 
(instead of r = c), and there had been no obstacle. 

329. The functional symbols / and F may be expressed in 
terms of P. It is known1 that 

P . W - l - ^ . ^ H -

or, changing /* into 1 — fi, 

P 1 ± 1 • n ( n ~ *) + (n + 2 ) m s

 m 

. V 1 ' 1 ' 2 + 1 .2 1 1 . 2 '2* ;" 

Consider now the symbolic operator Pn (l — ~j, and let it 
operate on y'1. 

1 Thomson and Tait's Nat. Phil. § 782 (quoted from Murphy). 

R. I I . 15 

IRIS - LILLIAD - Université Lille 1 



In like manner, 
e 

If we now identify?/ with t«r,we see that the general solution, 
(12) § 323, may be written 

+ . „ ( _ I ) - ^ . P . ^ ) . ^ + « S ; P . ( ^ ) . ^ . . . W . 

from which the second term is to be omitted, if no part of the dis
turbance be propagated inwards. 

Again from (14) § 323 we see that 

y V dy]' y ' 

whence Fn (y) = fPn ( l - 1 ) ( l - | ) }- (5), 

and ^Mf! = _ (_rP (4-)*£. (6). 
y* K > n\dy)dy- y y ' 

a- -i I K(~y)e+V T,(d\d ,~ Similarly, = - P . ( ^ ) ^ . y (7)· 

Using these expressions in (13) § 323, we get 

Jylr . .... . / d \ d e-ilcr 

S I N C E (D ' - r ( - 1 ) ( - 2 ) {'s)y'"1' 
"V dy)-y-y + 1 .2 y + 2 . 4 y + 

A comparison with (9) § 323 now shews that 

( I - L ) ] ^ 

from which we deduce by a known formula, 

£ / . < J R ) - f F . ( L - 1 ) 1 - ( - D - P . ( ! ) . ^ (3). 
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330. We have already considered in some detail the form 

assumed by our general expressions "when there is no source at 
infinity. An equally important class of cases is defined by the 
condition that there be no source at the origin. We shall now 
investigate what restriction is thereby imposed on our general 
expressions. 

Reversing the series for fn, we have 

+ (-l)-S. 'e + t a , (l- iKr +. . · ) } , 

shewing that, as r diminishes without limit, rfyn approximates to 

„̂=1-8-5(4!w"1)

+̂(-ir̂ }. 
In order therefore that yfin may be finite at the origin, 

sa+{-iys:=o....: (i) 
is a necessary condition; that it is sufficient we shall see later. 

Accordingly (12) § 323 becomes 

rf . = Sn {e-**fn [itr) - {- l)ne^fn ( - i*r)} (2). 
If, separating the real and imaginary parts of /„, we write (as 

before) 

f . ' J + ip (3), 
(2) may be put into the form 

r f „ = - 2t"+1 Sn {a sin (KT + \ nir) - B' cos («r + J WTT) } (4). 
Another form may be derived from (4) § 329. We have 

g+JKJ* g-itf 
2t«r r 

-^(-irs.P.^).!^: C3). 
Since the function Pn is either wholly odd or wholly even, the 

expression for "vfrft is wholly real or wholly imaginary. 

In order to prove that the value of i|rn in (5) remains finite 
when r vanishes, we begin by observing that 

15—2 
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R+I 

' . ^ J e-Ur»d/j. ( 6 ) , 

= j+^Pn(p)ei'^dp (7), 

as is obvious when it is considered that the effect of differentiating 
gUrn a n y number of times with respect to %KT is to multiply it by 
the corresponding power of fi. It remains to expand the expres
sion on the right in ascending powers of r. We have 

+ 1 . 2 . . . » ^ j 

Now any positive integral power of /X., such as can be 
expanded in a terminating series of the functions P, the function 
of highest order being PT It follows that, if p < n, 

by known properties of these functions; so that the lowest power 

of iter in J Pn (/x) e*"* dfi is (t/w)*. Retaining only the leading 

term, we may write 

From the expression for Pn Qi) in terms of fi, viz. 

= 1 . 3 . 5 . . . ( 2 H - 1 ) f n ( n - l ) •̂W 1 . 2 . 3 . . . n f~2f>rT)/* 
» ^ 1 ^ - 2 ) ^ - 3 ) 4 _ , 

+ 2 .4 . (2n- l ) (2 iTr3)" / * - r W ' 
we see that 

fj." = i 3 5̂  ^(2n— 1) ^ ^ + terms in fi of lower order than XIN; 

2 sin KT f + 1 
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and therefore 

- 1 - 2 - 3 - " ? _ 
" 1 . 3 . 5 . . . ( 2 » - l ) 2n + l V >' 

Accordingly, by (5) and (7) 

^ - 2 ^ 1 T S n r j ^ ^ ) + (10), 

which shews that vanishes with r, except when n = 0. 
The complete series for -tyn, when there is no source at the 

pole, is more conveniently obtained by the aid of the theory of 
Bessel's functions. The differential equations (4) § .200, satisfied 
by these functions, viz. 

frl&hd'-
may also be written in the form 

It is known (§ 200) that the solution of (11) subject to the 
condition of finiteness when z = 0, is y = A Jm (z), where 

zm f 
J m W = 2 m r ( m +1) J1 ~ 2.(2TO + 2) 

+ 2.4.(2m + 2)(2m + 4 ) ~ " " J ( 1 3 ) ' 
is the Bessel's function of order m. 

When TO is integral, V (TO 4-1) = 1 . 2 . 3 ... m\ but here we have 
to do with m fractional and of the form n + \, n being integral. 
In this case 

1 .3 .5 . . . (2w + l ) . 
r ( l » + l)= gn« -V71" (14)· 

Referring now to (12), we see that the solution of 
d^ff . A. 4 m 2 - 1 
dz' 

under the same condition of finiteness when z = 0, is 

6 = A/jm(z) (16). 

IRIS - LILLIAD - Université Lille 1 



230 B E S S E L ' S F U N C T I O N S . [330 . 

Now the function tyn, with which we are at present concerned, 
satisfies (4) § 323, viz. 

?(rjrn) ( n(n+l)\ 

which is of the same form as (15), if m = n + J; so that the solu
tion is 

F „ = ^ ( « r ) ~ è = / + 1 («R) 

W V 2 f («·)' 
1 . 3 . . . ( 2 n - f l ) v M 2.(2rc + 3) 

+ ^ I (18) 
T 2 . 4 . (2*1 + 3) (2n + 5) '" ) K 

Determining the constant by a comparison with (10), we find 

— 2 ( - l ) - . « « f i L ( £ : ) ^ + | ( « r ) 

= s£CF i r a ( t V r ) " I l - * V 

-««I A ; d « 1 . 3 . 5 . . . ( 2 n + l ) J 2(2« + 3) 

ìn + 7) + - } ' 2 . 4 . (2n + 3) (2n + 5) 2 . 4 . 6·. (2n + B)"(2n + 5) (2* 
(19). 

as the complete expression for yf?n in rising powers of r. 

Comparing the different expressions (5) and (19) for ^r„, we 
obtain 

, d \ shucr = / , r _ \ 1 ( 

n\d.iicr) KV \2/crJ »+* v ' v ' 
If P = a 4- /̂3, the corresponding expressions for , are 

^ = - f J*-**P. (tVr) - (-1)" «+<«· ( - t*r)} 
2i"+1 $ 

= —^—- {a sin {fer + | nir) — 8 cos («r + J wr)) 
= - s t u (-1)*· p n ( * - ) J - . 

2n ( - L ) V F L ( « R R ( _ J ! L ± T _ «V + I F21Ï 

- = _ 1 . 3 . 5 . . . ( 2 » + 1 ) J 2 » ( 2 » + 3 ) J 1 ;" 
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It will be convenient to write down for reference the forms of 

and for the first three orders. 1 dr 

91 = 0 \ 

f„ = - 2 ™ £ 0 
sin nr 

d^r0 _ 2i/c 80 Jsin KV 
L dr r 

icr 
— cos Kr 

+ = ^ i 
T 1 „ 

28. { sin/c?" 1 icositr r I Kr 

n = 2 \ 

L dr 

—^r- j 2 cos Kr + IKT — — J sm Kr >. 

{(1-A)Bin"r+iCOB*r}' 
2i8a 

î *̂2, —| ^ 2 .1 — ^ \ sin KT *™~ (KT • ·— cos «r 

331. One of the most interesting applications of these results 
is to the investigation of the motion of a gas within a rigid 
spherical envelope. To determine the free periods we have only 

to suppose that ^ vanishes, when r is equal to the radius of the 
envelope. Thus in the case of the symmetrical vibrations, we 
have to determine K, 

tan «r = KT (1), 
an equation which we have already considered in the chapter 
on membranes, § 207. The first finite root (ier = 1'4303 IT) corre
sponds to the symmetrical vibration of lowest pitch. In the case 
of a higher root, the vibration in question has spherical nodes, 
whose radii correspond to the inferior roots. 

Any cone, whose vertex is at the origin, may be made rigid 
without affecting the conditions of the question. 

The loops, or places of no pressure variation, are given by 
(Kr)'1 sin Kr = 0, or Kr = mir, where m is any integer, except 
zero. 

The case of n = 1, when the vibrations may be called dia
metral, is perhaps the most interesting. Slt being a harmonic 
of order 1, is proportional to cos 6 where 6 is the angle between r 
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and some fixed direction of reference. Since vanishes only 
do 

at the poles, there are no conical nodes1 with vertex at the centre. 
Any meridianal plane, however, is nodal, and may be supposed 
rigid. Along any specified radius vector, fa and vanish, and 

change sign, with cos κν — («r) - 1 sin κν, viz. when tan κτ = κν. The 
loops in the present case therefore coincide with the nodal surfaces 
of the radial vibrations. 

To find the spherical nodes, we have 

tan *r= 2 / < τ

2 , (2). 

The first root is κν = 0. Calculating from Trigonometrical 
Tables by trial and error, I find for the next root, which cor
responds to the vibration of most importance within a sphere, 

*r = 119-26 x ^ . ; so that r : \ = '3313. 
l o O 

The air sways from side to side in much the same manner as 
in a doubly closed pipe. Without analysis we might anticipate 
that the pitch would be higher for the sphere than for a closed 
pipe of equal length, because the sphere may be derived from the 
cylinder with closed ends, by filling up part of the latter with 
obstructing material, the effect of which must be to sharpen the 
spring, while the mass to be moved remains but little changed. 
In fact, for a closed pipe of length 2r, 

r : λ = -25. 

The sphere is thus higher in pitch than the cylinder by about 
a Fourth. 

The vibration now under consideration is the gravest of which 
the sphere is capable; it is more than an octave graver than the 
gravest radial vibration. The next vibration of this type is such 

that κν = 34035 = ^ , or loll 
r : λ = -9454, 

and is therefore higher than the first radial. 
1 A node is a surface which might be supposed rigid, viz. one across which there 

is no motion. 
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When KT is great, the roots of (2) may he conveniently calcu
lated by means of a series. If KT = mir — y, then 

2 (mir — y) tan y —-.—* , a (mir-yY - 2 
from which we find 

When n = 2, the general expression for is 

# a = ^40 (eos20 - + cos w + 2^ sin «) sin 0 cos 0 
+ ( A a cos 2o) + B 3 sin 2w) sin20.. ..(4), 

from which we may select for special consideration the following 
notable cases: 

(a) the zonal harmonic, 
S=A,(Cof?0-£ (4). 

Here ^ 2 is proportional to sin 20, and therefore vanishes 

when 6 = ^ir. This shews that the equatorial plane is a nodal 
surface, so that the same motion might take place within a closed 
hemisphere. Also since $ 2 does not involve co, any meridianal plane 
may be regarded as rigid. 

(B) the sectorial harmonic 
Sst = Aa cos 2m sin2 0 (5). 

Here again ^ J 2 varies as sin 20, and the equatorial plane is 

nodal. But ^-r-3 varies as sin2w, and therefore does not vanish doi 
independently of 0, except when sin 2a> = 0. It appears accordingly 
that two, and but two, meridianal planes are nodal, and that these 
are at right angles to one another. 

(7) the tesseral harmonic, · 
$2 = Ax cos co sin 0 cos 0 (6). 

In this case ^ 8 vanishes independently of co with cos 20, that 

is, when 6 = \ir, or f TT, which gives a nodal cone of revolution 

whose vertical angle is a right angle, varies as sin co, and 

thus there is one meridianal nodal plane, and but one. 
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The spherical nodes are given by 

K V — 9 w 

[331 . 

tan KT = •(7), 4*V - 9 

of which the first finite solution is 

Kr = 3-3422, 

giving a tone graver than any of the radial group. 

In the case of the general harmonic, the equation giving the 
tones possible within a sphere of radius r may be written (21) 
§ 330 

or 

tan (KT + fyiir) = ft : a. , 

d \ d sin Kr f d \ d 
\d.iKr) d.Kr 

Kr Kr 
= 0 

•(8), 

•(9), 

or again, 

2KrJ'n+i(Kr)=Jn+i(Kr). .(10). 

Table A shews the values of \ for a sphere of radius unity, 
corresponding to the more important modes of vibration. In B is 
exhibited the frequency of the various vibrations referred to the 
gravest of the whole system. The Table is extended far enough to 
include two octaves. 

TABLE A , 

Giving the values of X for a sphere of unit radius. 

Order of Harmonic. 

0 1 2 3 4 5 

0 1-3983 3-0186 1-8800 1-392 1-118 . -9300 

1 •81334 1-0577 •86195 •7320 •6385 

2 •57622 •68251 •59208 •5248 

3 •44670 •50653 •45380 

4 •36485 •40330 

5 •30833 •33523 

•a 

% i 
• S 3 
•s-a 

•8002 
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TABLE B . 

Pitch of each 
tone, referred 

to gravest. 

Order 
of 

Harmonic. 

Number 
of internal 
spherical 

nodes. 

Pitch of each 
tone, referred 

to gravest. 

Order 
of 

Harmonic. 

Number 
of internal 
spherical 

nodes 

1-0000 0 2-8540 1 1 

1-6056 2 0 3-2458 5 0 

2-1588 0 0 3-5021 2 1 

2-169 3 0 3-7114 0 1 

2-712 4 0 3-772 6 0 

332. If we drop unnecessary constants, the particular solu
tion for the vibrations of gas within a spherical case of radius 
unity is represented by 

= 0»0~* Jn+i H cos (Kat - 0) (1), 

where K is a root of 
2^„ +jW = ̂ j W (*). 

In generalising this, we must remember that 8n may be com
posed of several terms, corresponding to each of which there may 
exist a vibration of arbitrary amplitude and phase. Further, each 
term in 8n may be associated with any, or all, of the values of «, 
determined by (2). For example, under the head of n=2, we 
might have 

fa = A (cos2 far)^ JnH far) cos faat + 6,) 

+ B cos 2<a sin2 9 far)'* Jn+± far) cos faat + 02), 

K T and K 3 being different roots of 

2* ^ W = ̂ («). 
Any two of the constituents of are conjugate, i.e. will vanish, 

when multiplied together, and integrated over the volume of the 
sphere. This follows from the property of the spherical harmonics, 
wherever the two terms considered correspond to different values of 
ii, or to two different constituents of 8n\ The only case remaining 
for consideration requires us to shew that 

jVdr. (*,r)~» Jn+1 far). far)"»Jn+1 far) = 0 (3), 

i Thomson and Tait's Nat. Phil., p. 151. 
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where /ct and K 3 are different roots of 
2 K J ' N + I ( K ) = J N H ( K ) (4), 

which is an immediate consequence of a fundamental property of 
these functions (§ 203). There is therefore no difficulty in adapt
ing the general solution to prescribed initial circumstances. 

In order to illustrate this subject we will take the case, where 
initially the gas is in its position of equilibrium but is moving with 
constant velocity parallel to X. This condition of things would be 
approximately realised, if the case, having been previously in uni
form motion, were suddenly stopped. 

Since there is no initial condensation or rarefaction, all the 

quantities 6n vanish. If ^ be initially unity, we have = X = R/M, 

which shews that the solution contains only terms of the first 
order in spherical harmonics. The solution is therefore of the 
form 

= AT(Ktr)~^J^ far) jj, cos Kxat 

+ •A-I(K/)~I J^FAR) /M cos K2 at + (5), 
where K V K 2 , &C. are roots of 

2*J 8'(*) = t7J(„> (6). 

To determine the coefficients, we have initially for values of R 
from 0 to 1, 

R = ^ f o r ) " * Jj for) + ^ f o r ) " * J § for) + (7). 

Multiplying by R^J^(ICR) and integrating with respect to R from 0 
to 1, we find 

I&R*J$ ( K R ) D R = AK"l^\J^KR)Jrdr (8), 
the other terms on the right vanishing in virtue of the conjugate 
property. Now by (16), § 203, 

2 fo [ J T ( * r ) ] ' r d r = < * ) ] ' + ( l - ^ ) [J^)Y 

- ( l - D ^ f W ] ' fl>>, 
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The evaluation of j r%J^(/cr)dr may be effected by the aid of 

a general theorem relating to these functions. By the fundamental 
differential equation 

whence by integration by parts we obtain, 

K 2 ^rn^Jn{Kr)dr^nrnJn(Kr) - r » + 1 — ^ (10), 

or, if we make r = 1, · · 

K2 \rrn+xJH{«r) dr = nJn(K)-KJN'(K) (11). 

Thus in the case, with which we are here concerned, 

«2 T r*J. («r) dr = %Ji (*) - */,'(*) = Jfo) by (C). 

J o 
Equation (8) therefore takes the form 

2 
A = ( S - 2 ) J % ( K ) · ( 1 2 ) ' 

and the final solution is 

* = 2 - y — £ - i l ^ c o s * a * (13), 

where the summation is to be extended to all the admissible 
values of K. 

When t = 0, and r = 1, we must have — /A, and accordingly 

2-A> = l (14). 

It will be remembered that the higher values of « are approxi
mately, (3) § 331 

K = mir — — (15). 

rnir x 

The first value of /eis 2-0815, and the second 5-9402, whence 

2 =-85742, - ^ = -06009, 

« . 2 - 2 
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shewing that the first term in the series for is by far the most 
important. 

It may be well to recall here that 

• V ' > - \ / s ( ^ - H <i6>-
Equation (14) may be verified thus ; The quantities K are the 

roots of 

or, if </> = z *" (z), the roots of fa = 0, where <p satisfies 

fa' + \ f a + { l - l ^ = 0 (17). 
Now, since the leading term in the expansion of fa in ascending 
powers of z, is independent of z, we may take 

fa = const. -Il — —~ • \l — -̂ if 

whence, by taking the logarithms and differentiating, 

fa' _ 2z 2z 
~" T~t ~ 2 2 8 2 1 · · · 

<j> K? - z* - z* 

If we now put s s = 2, we get by (17), 

K—l Z(p 
333, In a similar manner we may treat the problem of the 

vibrations of air included between rigid concentric spherical 
surfaces, whose radii are r and r s. For by (13) § 323, if f̂-s 

dr 
vanish for these values of r, 

F,{+i«rJ Fn(+i>crs)' 
whence 

where as before 
Fn(+wr) = a + iB (2), 
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"When the difference between rx and r2 is very small compared with 
either, the problem identifies itself, with that of the vibration of a 
spherical sheet of air, and is best solved independently. In (1) 
§ 323, if be independent of r, as it is evident that it must ap
proximately be in the case supposed, we have 

1 At. adf\ , 1 » , , , , . · 
B m 0 d d \ . d6J sin2

 0 dcoi r w 

whose solution is simply 
, (*)» 

while the admissible values of /c2 are given by 

« V = n(n + l) (/>). 

The interval between the gravest tone (n = 1) and the next is such 
that two of them would make a twelfth (octave + fifth). The pro
blem of the spherical sheet of gas will be further considered in 
the following chapter. 

334. The next application that we shall make of the spherical 
harmonic analysis is to investigate the disturbance which ensues 
when plane waves of sound impinge on an obstructing sphere. 
Taking the centre of the sphere as origin of polar co-ordinates, and 
the direction from which the waves come as the axis of fi, let c£ 
be the potential of the unobstructed plane waves. Then, leaving 
out an unnecessary complex coefficient, we have 

^ _ Qix [at+x) -_- ginat t ^1 ̂  
and the solution of the problem requires the expansion of e1'"'*'* in 
spherical harmonics. On account of the symmetry the harmonics 
reduce themselves to Legendre's functions Px (/*), so that we may 
take 

e*» = A0 + AlP1 +... + AnPn + (2), 

where A0... are functions of r, but not of /M. From what has been 
already proved we may anticipate that An, considered as a func
tion of r, must vary as 

D / d \ sin KV -x r . . • 
jr„ T—T— , or as r 3 J , , Ur), n \d. iter! KV ' n+h K " 

but the same result may easily be obtained directly. Multiplying 
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(2) by Pn (JJL), and integrating with respect to fi from fi = — l to 
/* = + 1, we find 

0 . ) e * » ^ = ^ J " " ( P . ) « = 1

2 A _ ( 3 ) . 

and, as in § 330, 

so that finally _A 
2« + 1 » U · « r / ' «r ~ V 2«r' n + i { ' ' .(4). 

In the problem in hand the whole motion outside the sphere 
may be divided into two parts ; the first, that represented by (f> 
and corresponding to undisturbed plane waves, and the second 
a disturbance due to the presence of the sphere, and radiating out
wards from it. If the potential of the latter part be ^r, we have 
(2) § 324 on replacing the general harmonic Sn by aa Pn (/*), 

rfn = anPnM.e-i""fa(iKr) j 

The velocity potential of the whole motion is found by addition 
of $ and yjr, the constants an being determined by the boundary 
conditions, whose form depends upon the character of the obstruc
tion presented by the sphere. The simplest case is that of a rigid 
and fixed sphere, and then the condition to be satisfied when r = c 
is that 

. M - o m . 

a relation which must of course hold good for each harmonic 
element separately. For the element of order n, we get 

Corresponding to the plane waves <p = e u i a t + x \ the disturbance 
due to the presence of the sphere is expressed by 

r r 

„n=» 2ra + l „ / d \ d sin KC T, , . „ ,. , 
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At a sufficient distance from the source of disturbance we niay 
take fn (i/cr) = 1. In order to pass to the solution of a real 
problem, we may separate the real and imaginary parts, and 
throw away the latter. On this supposition the plane waves are 
represented by 

[</>] = cos K (at + x) (9). 

Confining ourselves for simplicity's sake to parts of space at a 
great distance from the sphere, where fn (iter) = 1, we proceed to 
extract the real part of (8). Since the functions P are wholly 
even or wholly odd, 

P d \ d sin KG 

" \d.iKcJ d . KG KG 

is wholly real or wholly imaginary, so that this factor presents no 
difficulty. {Fn(iKc)}~1,however, is complex, and since FH(tKc) = a.+i8, 

if tan 7 = — /3 + a. 

Thus 

•\Jr =S (2« + 1) —ei["M-r+o)+y] 

* ^ r ^ Q - i ) ^ r / ^ - p . w d o ) . 
When therefore n is even, 

/cc2 

fy] = (2n +1) — cos {K (at~r + c) + 7} 
* i « , + ^ y y ^ - ^ . M - . . . ( n ) , 

while, if n be odd, 

KG 

W — ( 2 « + !) — * sin {K (at — r + c) + 7} r 

As examples we may write down the terms in [^], in
volving harmonics of orders 0, 1, 2. The following table of the 
functions P n (/J) will be useful. 

R. 11. 16 
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242 DISTURBANCE DUE TO [334, 

•p. 

We have, 

n = 0, a' + ff^l+M, tan y 0 =*-*<;, 

[+J + «V}"» jl- ^ C . cos {«(erf - r + o) + 7.} • • • • (13), 

n = l, + t a n 7 l = - ^ - 2 , 

W - ̂  j»V +-*,}"' *L . ™«. M. sin {* (a« - r + o) + yj 
r ( /ccj a(«c) KG 1 

(14), 

— 2, a' + £WC<-2 + ;A8 + g4, tan7a = -~^. 
X{^ + *J^}^2-(A,-»«>.K«rf-r + e) + yJ...(15). 

_ The solution of the prohlem here obtained, though analytically 
quite general, is hardly of practical use except when KG is a small 
quantity. I n this case we may advantageously expand our results 
in rising powers of KC. 
[fo] = ~ ~ ( l - f «V + f KV - i f KV + . . . ) 

x cos {« (o« - r + c) + 7J (16). 

X / t . sin {* (af — r + c) + 7J (17), 

[̂] = -̂ !(i-̂ «v+̂ r«v + ...) 
x (/x 2- |.) cos { « ( a t - r + c)+ %} (18). IRIS - LILLIAD - Université Lille 1 
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It appears that while [T^0] and [i/rj are of the same order in 
the small quantity KO, [> 2̂] is two orders higher. We shall find 
presently that the higher harmonic components in [^] depend upon 
still more elevated powers of KO. For a first approximation, then, 
we may confine ourselves to the elements of order 0 and 1. 

Although [î 0] contains a cosine, and [^J a sine, they never
theless differ in phase by a small quantity only. Comparing two 

of the values of dJf in (21) § 330 we see that 

a sin (KT + ^ nir) — 8 cos (*r + \ nir) 

= - ( - 1)" 1 3 ^ ^ 2 a + l ) + h l g l i e r P o w e r s o f K r 

identically. Dividing by a cos (KT + ^nir), we get ultimately 

. . . . . /8 (-1)" ra(«r)n+1 

tan («r + imr) — - = 7 -—. . · ., „ _, — · 
v z ; a a cos (»r + \mr) 1 . 3 . 5 ... (2n +1) 

When n is even, this equation becomes on substitution for a of 
its leading term, 

t a n « r - - _ - ( w + i ) ^ + ^ — — — — ^ . . . ( i g ) . 

For example, if n = 2, 
, //3\ 2 («·)• , t a n « r - ^ = - ^ + 

When n is at all high, the expressions tan icr and 8 -r a become 
very nearly identical for moderate values of Kr. 

When n is odd, we get in a nearly similar manner, 

fl_ n (sr) 2"' 1  

r + a ~ (n + 1) (2n + 1) {1 .3 .5 ... (2n - l ) ] 1 + 

or 
\2n+l 

t a n K r + h~ (» + i ) ( a > + i H ^ . 6 . . . ( a » - i ) r + ( 2 0 ) -

From these results we see that when n is even, 

J = — KO approximately, 
and when n is odd, 

y=z^TT — KG approximately. 
1 G — 2 
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The velocity-potential of the disturbance due to a small rigid 
and fixed sphere is therefore approximately, 

[ t o ] + W> J = ~ £ ( 1 + f H) cos K (at - r) 

= ~ r ? ( 1 + f / x )
 C0SKIAT-R)(21)' 

if T denote the volume of the obstacle, the corresponding direct 
wave being 

[<£] = cos K (at + x) (22). 

For a given obstacle and a given distance the ratio of the 
amplitudes of the scattered and the direct waves is in general pro
portional to the inverse square of the wave-length, and the ratio of 
intensities is proportional to the inverse fourth power (§ 296). 

In order to compare the intensities of the primary and 
scattered sounds, we may suppose the former to originate in a 
simple source, provided it be sufficiently distant (B) from T. 

Thus, if 
w = coSK (at-R) ( 2 3 ) ) 

-if 

^ = ~ ^ X ~ J (1 + COB * (a* - r) (24); 

so that at equal distances from their sources the secondary and 
the primary waves are in the ratio 

-slfl+t/O (25)-
The intensities are therefore in the ratio 

— , ( 1 + 1^ (26), 

which, in the case of /* = + 1 , gives approximately 

6 1 ^ (27) 

It must be well understood that in order that this result may 
apply, X must be great compared with the linear dimension of T, 
and B must be great compared with X. 

To find the leading term in the expression for tyu) when KC is 
small, we have in the first place, 
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. IN r> f d \ d, sin KG 

^ n + 1 ) P A d ^ o ) d - 7 o - - ^ c T 

m»(*o)-» U (» + 2)«W | 
~ 1 . 3 . 5 . . . ( 2 n - l ) 1 2 . n . (2n + 3 ) ^ " " J ^ 

Again, 

+ B* = Fn (Are) x Fn (- uce) 

= { 1 . 3 . 5 . . . (2n - 1) (» + l) („)->• {l + + ... } 
(29); 

so that 

l * + P J 1.3...(2n-l)(n + l)| 2 . (n + 1) (2n-l)
 + - J 

(30). 
Hence, from (10), 

_ CŴ .̂M ei[«W-r+«)+y,,] 

Y n ~ r{l .3.5 ... (2n-l)f (n + 1) 

x |l - «V ( ( 2 n + J ) ( 2 w - 1) + 2n f > + 3)) + - } - -C31)-

When n is even, yB = — KO approximately, and then 

[+J = r{1.8 (2»-l)}'(.+l) C°S* r> 
X J1" "V ((2» + 2)~(2»-l) + 2 ^ + 3 ) ) + } < 3 2 ) < 

while if n be odd, we have merely to replace in by in+i

> the 
result being then still real. 

By means of (31) we may verify the first two terms in the 
expressions for [̂rj, [i/rj, in (17), (18). To the case of n = 0, (31) 
does not apply. 

Again, by (31), 

L>8] = j | f r (1 ~ «V} W ~ if] {* (at - r + c) + 7 a } . . .(33), 

= 3Tofc ^ ~ W + cos {« (a« - r + c) + % } (34). 
Combining (17), (18), (33), (34), we have the value of [-f] 

complete as far as the terms which are of the order compared 
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with the two leading terms given in (21). In compounding the 
partial expressions, it is as necessary to be exact with respect to 
the phases of the components as with respect to their amplitudes; 
but for purposes requiring only one harmonic element at a time, 
the phase is often of subordinate importance. In such cases we 
may take 

(?i even) 7 = — /cc, (11 odd) 7 = \TT — KG, 

From (31) or (32) it appears that the leading term in fa rises 
two orders in KG with each step in the order of the harmonic; and 
that fa is itself expressed by a series containing only even, or only 
odd, powers of KG. But besides being of higher order in KG, the 
leading term becomes rapidly smaller as n increases, on account of 
the other factors which it contains. This is evident, because for 
all values of n and ft,, Pn (fi) < 1; the same is true of n + n +1 ; 
while i" only affects the phase. 

In particular cases any one of the harmonic elements of [fa] 
may vanish. From (11), (12) since a2 + /32 cannot vanish, we 
have in such a case 

P. 
, / d \ d sin #<3_Q 

" \d. IKCJ d.KO KG ' 

the same equation as that which gives the periods of the vibra
tions of order n in a closed sphere of radius c. A little con
sideration will shew that this result might have been expected. 
The table of § 331 is applicable to this question and shews, among 
other things, that when KG is small, no harmonic element in [fa] 
can vanish. 

In consequence of the aerial pressures the sphere is acted on 
by a force parallel to the axis of whose tendency is to set the 
sphere into vibration. The magnitude of this force, if o- be the 
density of the fluid, is given by 

2 7 r c V J (<b + fa fid/a, 

in which, by the conjugate property of Legendre's functions, only 
the term of the first order affects the result of the integration. 
Now, when r = c, 

, n . „t d sin KG 

1 d.iKC KC i 

• , f. (««) d d sin KG 

. *^Kce™lF^)TJK-c-d^c-^-»> 

IRIS - LILLIAD - Université Lille 1 



334. ] SOURCE AT FINITE DISTANCE. 247 

where 

In order that the force may vanish, it would he necessary that • 

d sin KG ^ / T (IKC) d2 sin KG _ ^ 

d.Ko' KG F X { I K G ) (d./ce)2
 KG ' 

which cannot he satisfied by any real value of KC. "We conclude 
that, if the sphere be free to move, it will always be set into 
vibration. 

If instead of being absolutely plane, the primary waves have 
their origin in a unit source at a great, though finite, distance R 
from the centre of the sphere, we have 

xP ( ^ } d s m K C /36\ 
" \dj IKC) d . KG KG 

On the sphere itself r = c, so that the value of the total poten
tial at any point at the surface is 

T P ( d \ S { n K ° JU *r- f» VK°) P ( d \ d S I N * C 1 

X I N \ d . IKCJ KG + F A («c) n\d.iKcJ d.KG KG J ' 

This expression may be simplified. We have 

. P„ F - R I - } ^ = { ( - 1 ) " .F, ( T « J ) - e + t e /„(-w)], 
d . « C n\d.lKcJ KG 2lKG u ' " 

and thus the quantity within square brackets may be written 

Fn (iKc)fn ( - IKC) - P„ ( - tVc)/» fr'*c) 
which by (6) § 327 is identical with eiKC [Fn (wc)] - 1. Thus 

ei*M-R+c) Pn(r>) torn 
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•which is the same as if the source had been on the sphere, and 
the point at which the potential is required at a great distance 
(§328), and is an example of the general Principle of Reciprocity. By 
assuming the principle, and making use of the result (3) of § 328, we 
see that if the source of the primary waves be at a finite distance 
B , the value of the total potential at any point on the sphere is 

* + * = " ¿ 2 e U i a t ' R + C ) S ( 2 n + 1 } P » W ( 3 8 ) . 

If A and B be any two points external to the sphere, a unit 
source at A will give the same total potential at B , as a unit 
source at B would give at A . In either case the total potential is 
made up of two parts, of which the first is the same as if there were 
no obstacle to the free propagation of the waves, and the second 
represents the disturbance due to the obstacle. Of these two 
parts the first is obviously the same, whichever of the two points 
he regarded as source, and therefore the other parts must also be 
equal, that is the value of ^ at B when A is a source is equal to 
the value of at A when B is an equal source. Now when the 
source A is at a great distance B , the value of at a point B 
whose angular distance from A is cos - 1 ¡1, and linear distance 
from the centre is r, is (36) 

f = - eM«*-ii-r+e> 2 (2« +1) P - ( i K r ) 

d \ d sin KG ' MM 
" \d. %KGJ 

d.KG' KG 

and accordingly this is also the value of yjr at a great distance B , 
when the source is at B . But since yjr is a disturbance radiating 
outwards from the sphere, its value at any finite distance B may 
be inferred from that at an infinite distance by introducing into 
each harmonic term the factor fn (IKB). We thus obtain the fol
lowing symmetrical expression 

which gives this part of the potential at either point, when the 
other is a unit source. 
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It should be observed that the general part of the argument 
does not depend upon the obstacle being either spherical or rigid. 

From the expansion of e^v- in spherical harmonics, we may 
deduce that of the potential of waves issuing from a unit simple 
source A finitely distant (r) from the origin of co-ordinates. The 
potential at a point B at an infinite distance B from the origin, 
and in a direction making an angle cos - 1 /J, with r, will be 

* = - 4 W T ' 
the time factor being omitted. 

Hence by the expansion of e*">* 

from which we pass to the case of a finite B by the simple intro
duction of the factor fn (iicR), 

Thus the potential at a finitely distant point B of a unit source 
at A is 

^ £ ^ S ( 2 „ + 1 ) P„ ™^fn {iKB). P . 00. · .(40). 

335. Having considered at some length the case of a rigid 
spherical obstacle, we will now sketch briefly the course of the 
investigation when the obstacle is gaseous. Although in all 
natural gases the compressibility is nearly the same, we will sup
pose for the sake of generality that the matter occupying the sphere 
differs in compressibility, as well as in density, from the medium in 
which the plane waves advance. 

Exterior to the sphere, <b is the same exactly, and 1 ^ is of 
the same form as before. For the motion inside the sphere, if 
/e' = 27TH-\ ' be the internal wave-length, (2) § 330, 

f . = —^{e-^f* (w'r) - ( - 1)" e+«>/„ ( - tVr)}, 

= I S L * ! . [a sin («V + inw) - S cos (*'r + Jw)} , 

satisfying the condition of continuity through the centre. 
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•(5), 

.(6). 
(outside) = — c 

^ (outside) 

Using these in (2), (3), and eliminating a0', retaining only the 
principal term, we find 

K V TO' — m a° = -ir — 
In like manner for the term of first order, 

fa (inside) = — %(i'k'*c/a ] 

^ (inside) =-K'«V ] < 8 > ' 

If 0-, a be the natural densities, m, m' the compressibilities, 

(i); 
and the conditions, to be satisfied by each harmonic element 
separately, are 

g+J (outside) = f (inside) (2), 
a {(p + ty (outside)} = o-'^ (inside) ...-(3), 

expressing respectively the equalities of the normal motions and 
of the pressures on the two sides of the bounding surface. From 
these equations the complete solution may be worked out; but 
we will here confine ourselves to finding the value of the leading 
terms, when KG, K G are very small. 

In this case, when r = c, 

i/̂0 (inside) = — 2w'a0' ] 

^ (inside) = f i^cat \ W ' ' 
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.(10), 
t i (outside) = A - 2 / i 

* (outside) = - | ^ 

which give 

At a distance from the sphere the disturbance due to it is 
expressed by 

T j r = le

i't<a'-'"'{a0 + a1M} 

,02 piK(at-r)\ 
3r ^ 

m —m . <r — <r , ,„ _ 
m' a- + 2a' 

If we introduce the relations 

T = ~ , * = 27r~X, 

and throw away the imaginary part, we obtain 

. irTUn' — m <r' — cr } , . . /10> 

as the expression for the most important part of the disturb
ance, corresponding to (21) § 334 for a fixed rigid sphere. It 
appears, as might have been expected, that the term of zero order 
is due to the variation of compressibility, and that of order one to 
the variation of density. 

From (13) we may fall back on the case of a rigid fixed sphere, 
by making both cr' and m infinite. It is not sufficient to make a-' 
by itself infinite, apparently because, if m' at the same time 
remained finite, K'O would not be small, as the investigation has 
assumed. 

When m' — m, a-' — a- are small, (13) becomes equivalent to 

. 7rT (W — m , a — o- ) , , . 
yjr = — — j - J H p\ cos K (at-r), 

corresponding to <£> = cos icat at the centre of the sphere. This 
agrees with the result (13) of § 296, in which the obstacle may be 
of any form. 
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In actual gases m = m, and the term of zero order disappears. 
If the gas occupying the spherical space be incomparably lighter 
than the other gas, a = 0, and 

ITT 1 ^ = 3 - 2 - ficos K (at — r) (14), 
A* 7* 

so that in the term of order one, the effect is twice that of a rigid 
body, and has the reverse sign. 

The greater part of this chapter is taken from two papers by 
the author "On the vibrations of a gas contained within a rigid 
spherical envelope," and an "Investigation of the disturbance pro
duced by a spherical obstacle on the waves of sound1," and from 
the paper by Professor Stokes already referred to. 

1 Math. Society's Proceedings, March 14, 1872; Nov. 14, 1872. 
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CHAPTER XVIII. 

S P H E R I C A L S H E E T S O P A I R . M O T I O N I N T W O D I M E N S I O N S . 

336. I N a former chapter (§ 135), we saw that a proof of 
Fourier's theorem might be obtained by considering the mechanics 
of a vibrating string. A similar treatment of the problem of 
a spherical sheet of air will lead us to a proof of Laplace's 
expansion for a function which is arbitrary at every point of 
a spherical surface. 

As in § 333, if fa is the velocity-potential, the equation of 
continuity, referred to the ordinary polar co-ordinates 0, co, takes 
the form, 

° df a jsin 0 d0 Vm ffd0j + sin" 8 dco*) ' 

Whatever may be the character of the free motion, it can 
be analysed into a series of simple harmonic vibrations, the 
nature of which is determined by the corresponding functions yjr, considered as dependent on space. Thus, if fa a: e i m t , the 
equation to determine ^ a s a function of 0 and co is 

J L ' (sin 0f±) + i ft+KVf = o (i). 
sin 0 d0\ d81 sin 6 dco T v 1 

Again, whatever function fa may be, it can be expanded by 
Fourier's theorem1 in a series of sines and cosines of the multiples 
of co. Thus 

fa — faQ + fax cos co + fat' sin co + fat cos 2co + faa' sin 2w 
+ + fa, cos sco + fa,' sin so> + (2), 

1 We here introduce the condition that ^ recurs after one revolution round the 
sphere. 
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where the coefficients ifo,-̂  •••^V V*"/ ··· a r e functions of 9 only; 
and by the conjugate property of the circular functions, each 
term of the series must satisfy the equation independently. 
Accordingly, 

-h i fsin 6 ?̂) - + -0 (») 
sin 9 d9\ d9 J sin 0 T' 

is the equation from which the character of y]rs or yjrt' is to be 
determined. This equation may be written in various ways. 

In terms of /u, (= cos 9), 

^-^Hv.-r^+.-o M; 
or, if v = sin 0, 

, 2 (1 - „2) g« + v (1 - 2„2) g-« + *'/.'*. - « V . = 0...(5), 
where h? is written for K V . 

When the original function yfr is symmetrical with respect 
to the pole, that is, depends upon latitude only, s vanishes, and 
the equations simplify. This case we may conveniently take 
first. In terms of it, 

The solution of this equation involves two arbitrary constants, 
multiplying two definite functions of fi, and may be obtained 
in the ordinary way by assuming an ascending series and de
termining the exponents and coefficients by substitution. Thus 

. V , , A2 (A2 -2.3) t 

A*(A2-2.3)(A2-4.5) 

1.2.3.4.5.6 /*+«c-J „f A2-1.2 3 , (A2-1.2) (A2-3.4) g . 1 , m  
+

 J f - ^ 0 - ^ + 1.2.3.4.5 >-&Cj 
in which .4 and i? are arbitrary constants. 

Let us now further suppose that i|o besides being symmetrical 
round the pole is also symmetrical with respect to the equator 
(which is accordingly nodal), or in other words that yfr is an 
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even function of the sine of the latitude (/A). Under these circum
stances it is clear that B must vanish, and the value of be 
expressed simply by the first series, multiplied by the arbitrary 
constant A. This value of the velocity-potential is the logical 
consequence of the original differential equation and of the two 
restrictions as to symmetry. The value of h? might appear 
to be arbitrary, but from what we know of the mechanics of the 
problem, it is certain beforehand that A2 is really limited to a 
series of particular values. The condition, which yet remains 
to be introduced and by which h is determined, is that the 
original equation is satisfied at the pole itself, or in other words 
that the pole is not a source; and this requires us to consider 
the value of the series when /* = 1. Since the series is an 
even function of if the pole fi = + 1 be not a source, neither 
will be the pole /* = — 1. It is evident at once that if 7¿^ be of 
the form n (n +1), where n is an even integer, the series termi
nates, and therefore remains finite when /A = 1; but what we 
now want to prove is that, if the series remain finite for p = l, 
h" is necessarily of the above-mentioned form. By the ordinary 
rule it appears at once that, whatever be the value of A2, 
the ratio of successive terms tends to the limit fj?, and there
fore the series is convergent for all values of /A less than unity. 
But for the extreme value fi = 1, a higher method of discrimi
nation is necessary. 

It is known1 that the infinite hypergeometrical series 

ah a(a + l)b(b + l) a(a+l)(a + 2)b(b+l)(b + 2)  
+ ed + c ( c+1)d(d+l ) + c(c + l)(c + 2) d{d+l)(d+ 2) + > ' ' w 

is convergent, if c + d — a — b be greater than 1, and divergent 
if c+d—a—b be equal to, or less than 1. In the latter case 
the value of c + d — a — b affords a criterion of the degree of 
divergency. Of two divergent series of the above form, for 
which the values of c + d — a — b are different, that one is relatively 
infinite for which the value of c + d—a — b is the smaller. 

Our present series (7) may be reduced to the standard form 
by taking 7t2 = n (n + 1), where n is not assumed to be integral. 
Thus 

i Boole's Finite Difference/, p. 79. 
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' 1 - h2 , h2{h2-2.3) 4 

1.2^ + ~ 1 . 2 . 3 . 4 * 

= 1 - n (n +1) , n(n + l ) ( n - 2 ) ( n + 8) 
1.2 ^ + 1 . 2 . 3 . 4 

= 1 + ( - jw) f tn + j) , ( - ^ ) ( - i n + l ) g n + | ) ( ^ 4 - l + l) 
l . i ^ + 1 . 2 . i . | 

+ (9), 
which is of the standard form, if 

a = -\n, & = £ H + £ , C = £, d = l. 

Accordingly, since c + d — a-b=l, the series is divergent for 
/* = 1, wwfess »i terminate; and it terminates only when n is an 
even integer. We are thus led to the conclusion that when 
the pole is not a source, and fa0 is an even function of /x, h2 must 
be of the form n (n +1), where n is an even integer. 

In like manner, we may prove that when ^ 0 is an odd function 
of /J,, and the poles are not sources, A = 0, and h2 must be of the 
form n(n +1), n being an odd integer. 

If n be fractional, both series are divergent for fi=± 1, and 
although a combination of them may be found which remains 
finite at one or other pole, there can be no combination which 
remains finite at both poles. If therefore it be a condition that 
no point on the surface of the sphere is a source, we have no 
alternative but to make n integral, and even then we do not 
secure finiteness at the poles unless we further suppose A = 0, 
when n is odd, and B = 0, when n is even. We conclude that 
for a complete spherical layer, the only admissible values of ty, 
which are functions of latitude only, and proportional to harmonic 
functions of the time, are included under 

where Pn (/JL) is Legendre's function, and n is any odd or even 
integer. The possibility of expanding an arbitrary function of 
latitude in a series of Legendre's functions is a necessary con
sequence of what has now been proved. Any possible motion 
of the layer of gas is represented by the series 

f = A0 + P1(JS)(A1 A, cos 
V 1 c 

. ) + . . . 

+ P. ( / * ) ( A C O S 

Jn(n + ! ) at + i ? H s i n ^ ( W

c

+ l ) °*) + ; ) + (10)· 
c 
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336.] T R A N S I T I O N TO T W O D I M E N S I O N S . . 257 

When t = 0, 
t = A0 + + ... + 4 , P » + ( 1 1 ) , 

and the value of when t = 0 is an arbitrary function of latitude. 

The method that we have here followed has also the advantage 
of proving the conjugate property, 

p . 0 . ) P m 0 * 5 ^ = 0 ( 1 2 ) , f. 
where n and m are different integers. For the functions P (/A) 
are the normal functions (§ 94) for the vibrating system under 
consideration, and accordingly the expression for the kinetic 
energy can only involve the squares of the generalized velocities. 
If ( 1 2 ) do not hold good, the products also of the velocities must 
enter. 

The value of ^ appropriate to a plane layer of vibrating gas 
can of course be deduced as a particular case of the general solu
tion applicable to a spherical layer. Confining ourselves to the 
case where there is no source at the pole (fi = 1 ) , we have to in
vestigate the limiting form of ^ = CPn{(i), where n (n + 1 ) = «V, 
when c2 and n2 are infinite. At the same time /x — 1 and v are 
infinitesimal, and cv passes into the plane polar radius (r), so 
that nv = nr. For this purpose the most convenient form of Pn(fi) 
is that of Murphy1 : 

P n (cos0) = 1 - * ^ s i n 2 F + ( » - * ) » fr+Y ( n + 2 ) rfn'F 

- ~ (13). 
The limit is evidently 

- 0 j l - ^ +-^7J» - 2"A\ 6* + · · · ' = GJo (Kr) (14), 

shewing that the Bessel's function of zero order is an extreme case 
of Legendre's functions. 

When the spherical layer is not complete, the problem re
quires a different treatment. Thus, if the gas be bounded by walls 
stretching along two parallels of latitude, the complete integral 
involving two arbitrary constants will in general be necessary. 

1 Thomson and Tait's Nat. Phil. §782. [J = s in 8 \9, not 4 s i n 2 J 9. ] Todhunter's 
Laplace's Functions, § 19. 

R. I I . 17 
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258 V I B R A T I O N S O F A S P H E R I C A L S H E E T [336. 

The ratio of the constants and the admissible values of h* are to be 
determined by the two boundary conditions expressing that at the 
parallels in question the motion is wholly in longitude. The value 
of fi being throughout numerically less than unity, the series are 
always convergent. 

If the portion of the surface occupied by gas be that included 
between two parallels of latitude at equal distances from the 
equator, the question becomes simpler, since then one or other of 
the constants A and B in (7) vanishes in the case of each normal 
function. 

337. When the spherical area contemplated includes a pole, 
we have, as in the case of the complete sphere, to introduce the 
condition that the pole is not a source. For this purpose the solu
tion in terms of v, i.e. sin 0, will be more convenient. 

If we restrict ourselves for the present to the case of symmetry, 
we have, putting s = 0 in (¿3) § 336, 

v (1 -"!) +(1 -2^ it+7'a v 0  

One solution of this equation is readily obtained in the ordinary 
way by assuming an ascending series and substituting in the 
differential equation to determine the exponents and coefficients. 
We get 1 

·} (2)· 

This value of yjr0 is the most general solution of (1), subject to 
the condition of finiteness when v — 0. The complete solution 
involving two arbitrary constants provides for a source of arbitrary 
intensity at the pole, in which case the value of T//-0 is infinite when 
v=0. Any solution which remains finite when v = 0 and involves 
one arbitrary constant, is therefore the most general possible under 
the restriction that the pole be not a source. Accordingly it is 
unnecessary for our purpose to complete the solution. The nature 
of the second function (involving a logarithm of v) will be illus
trated in the particular case of a plane layer to be considered 
presentty. 

1 Heine's Kugel-fmwlioiini, § 28. 

(0 .1 -V) ( 2 . 3 - h2) ( 4 . 5 - W) 
2 2 . 4 2 . 6 2 
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337. ] BOUNDED BY A SMALL CIRCLE. 259 

By writing n (n +1) for /V the series within brackets becomes 

« ( n + l ) , ( n - 2 ) n ( » + l ) ( n + 3)  
1 ^ 2* 4 2 — ^ 

or, when reduced to the standard hypergeometrical form, 

1 + I T T 1 . 2 . 1 . 2 V + - ' 
corresponding to 

a = — \n, b = \nAr\, c = l, d = 1. 

Since c + c?—a — h—\, the series converges for all values of v 
from 0 to 1 inclusive. To values of 6 (= sin - 1 v) greater than \TT 
the solution is inapplicable. 

When n is an integer, the series becomes identical with 
Legendre's function P n (fi). If the integer be even, the series 
terminates, but otherwise remains infinite. Thus, when n = 1, the 
series is identical with the expansion of y,, viz. V( l — "*), m powers 
of v. 

The expression for fa in terms of v may be conveniently applied 
to the investigation of the free symmetrical vibrations of a spheri
cal layer of air, bounded by a small circle, whose radius is less than 

the quadrant. The condition to be satisfied is simply ^ = 0, an 

equation by which the possible values of W, or «2c2, are connected 
with the given boundary value of v. 

Certain particular cases of this problem may be treated by 
means of Legendre's functions. Suppose, for example, that 11 = 6, so 
that 7i 2 = «2c2 = 42. The corresponding solution is fa = APR(ji). 

The greatest value of fx for which ^ = 0 is fi = -8302, corre

sponding to 6 = 33° 53' = -59137 radians1. 
If we take c6 = r, so that r is the radius of the small circle 

measured along the sphere, we get 

KT = V(42) x '59137 = 38325, 
which is the equation connecting the value of « (= 2TTX~1) with the 
curved radius r, in the case of a small circle, whose angular radius 
is 33° 53'. If the layer were plane (§ 339), the value of KT would 
be 3'8317; so that it makes no perceptible difference in the pitch 
of the gravest tone whether the radius (r) of given length bo 

1 The radian is the unit of circular measure. 

17—2 
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260 TJNSYMMETRICAL MOTION. [337. 

straight, or be curved to an arc of 33°. The result of the com
parison would, however, be materially different, if we were to- take 
the length of the circumference as the same in the two cases, that 
is, replace cQ = r by cv = r. 

In order to deduce the symmetrical solution for a plane layer, 
it is only necessary to make c infinite, while cv remains finite. On 
account of the infinite value of /i?, the solution assumes the simple 
form 

f = ^ j l - — + 2 ^ - ^ - 3 , + . . . j ( 4 ) , 

or, if we write cv = r, where r is the polar radius in two dimensions, 

f = A • 1 - K
2 V - + - j = A J0 (*r) (5), 

as in (14) § 336. 
The differential equation for in terms of v, when c is infinite 

and cv = r, becomes 

£ J + ; 2 + * ; - 0 » 
An independent investigation and solution for the plane problem 
will be given presently. 

338. When s is different from zero, the differential equation 
satisfied by the coefficients of sinsw, cossw, is 

S (1 _ ^ d ^ + v(l- 2v°) ^ + Slfy. - s'fa = 0 (1), 

and the solution, subject to the condition of finiteness when i> = 0", 
is easily found to be 

T. ^ v

 2 ( 2 s + 2) 
s(s + l)-h? (a+2) (s + 3)-h° 4 ) 

+ 2 (2s+ 2) " 4 (2s+ 4) " + — }> 
or, if we put V = n(n+ 1), 

(s-n) (s-w+2) (s + n+1) (* + « + 3) , ) , . 
2 .4 . (2s+2) (2s+~4) " + •"J"-"" { > ' 

1 The eolution may be completed by the addition of a second function derived 
from (2) by changing the sign of s, which occurs in (1) only as s2, but a modification 
is necessary, when s is a positive integer. The method of prooedure will be 
exemplified presently in the cafe of the plane layer. 
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2. (25 + 2)·' 2 . 4 . ( 2 s + 2) ( 2 s + 4 ) 

a function of r proportional to Js («r). 

(3), 

In terms of fi, the differential equation satisfied by the co
efficient of cos so), or sin sa>, is 

dfj. 
+ ïêf+.-O (4). 

Assuming yjrt = (1 — fJ?)is<pa, we find as the equation for <j>a 

( l - S ) ^ - 2 ( ° + V ^ + { V - s ( s + l)}t-. = 0 (5), 

which will be more easily dealt with. 

To solve it, let 
t a a a+2 , a+4 . , <x+2wl . 

and substitute in (5). The coefficient of the lowest power of 
H is a (a — 1) ; so that a = 0, or a = 1. The relation between 
a2m+ii> a n d « 2 m , found by equating to zero the coefficient of (u a + 2" t', is 

(a 4- 2m 4- s — n) (a + 2m + s 4- n + 1) 

Avhere n (n +1) = h*. 

° W ( a + 2 m + ! ) ( » + 2m + 2) 

We have here the complete solution of the problem of the 
vibrations of a spherical layer of gas bounded by a sinall circle 
whose radius is less than the quadrant. For each value of s , there 
are a series of possible values of n , determined hy the condi
tion = 0 ; with any of these values of n the function on the 

right-hand side of (2), when multiplied by COSSOJ or sinsw, is a 
normal function of the system. The aggregate of all the normal 
functions corresponding to every admissible value of s and n , with 
an arbitrary coefficient prefixed to each, gives an expression 
capable of being identified with the initial value of ty, i.e. with a 
function given arbitrarily over the area of the small circle. 

When the radius of the sphere c is. infinitely great, h" is infinite. 
If cv = r, /i,V = «V, and (2) becomes 
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( 8 - w ) ( s - w + 2)(g-re + 4)(g + w + l)(s + w + 3)(s+n + 5) 6  

+ 1 . 2 . 3 . 4 . 5 . 6 · / t + 

i (s - n +1) (s~ n + 3) (s + w + 2) (s + w + 4) . 
+ Q o A n /* + ·} (6), 2 . 3 . 4 . 5 

where A and 1? are arbitrary constants; 

* . = ( W ) * & (7)· 

We have now to prove that the condition that neither pole is ' 
a source requires that n — s be a positive integer, in which case 
one or other of the series in the expression for <£>s terminates. 
For this purpose it will not be enough to shew that the series 
(unless terminating) are infinite when /A = ± 1 ; it will be necessary 
to prove that they remain divergent after multiplication by 
(1 — /J?)IS, or as we may put it more conveniently, that they are 
infinite when FI = ±l in comparison with ( 1 — p?)~is. It will be 
sufficient.to consider in detail the case of the first series. 

We have 

, (s-n)(s + n + l) (s-n)(s-n + 2)(s + n+l)(s + n + 3)  
+ 1 . 2 + 1 . 2 . 3 . 4 + 

+ 1 . 2 . 4 4 + - » 

which is of the standard form (8) § 336 

ab a(a + l)b(b+l)  
+ cd + c{c + l)d{d+lj + '"' 

if a = £ s - £ n , 5 = £s + £re + £, c = 1 , d-^. 

The degree of divergency is determined by the value of 
ahb—c — d, which is hero equal to s — 1 . 

The complete value of <F>T is accordingly given by 
L A U • (s-n)(s+n + l) 2 , (s-n)(s-n + 2)(s+n+l)(s+n+S) . 
*- = A 1 + 1 .2 ^ + 1 . 2 . 3 . 4 * 
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f»/{n. n + 1) at \ . . 

For most purposes, however, it is more convenient to group 
the terms for which n is the same, rather than- those for which s 
is the same. Thus for any value of n 

fa =-2* i / ^ f f i (A, cos sco + B, sin< ra>) (11), 
s =o dp 

where every coefficient At>. B, may be regarded as containing a 
time factor of the form. (10). 

Initially fa is an arbitrary function of p and co, and therefore 
any such function is capable of being represented in the form 

On the other hand, the binomial theorem gives for the ex
pansion of (1 — p*) i s 

1 + ̂ . + i£(i^ + , 
which is of the standard form, if 

a = ^s, c = 1, b = d, and makes a + b — c — d = ^s — 1. 
Since s — 1 >^s — 1, it appears that the series in the expression 

for fa are infinities of a higher order than (1 —/j?)~ls, and there
fore remain infinite after multiplication by (1 — p 2 ) i s . Accordingly 
fa, cannot be finite at both poles unless one or other of the series 
terminate, which can only happen when n — s is zero, or a positive 
integer. If the integer be even, we have still to suppose B = 0; 
and if the integer be odd, A = 0, in order to secure finiteness at 
the poles. 

In either case the value of cf>, for the complete sphere may be 
put into the form 

i dn*' n , , 2 \ n _ d'Pn(fi) 
*- = aW'{ ^ ~ ~ d p T ( 8 ) ' 

where the constant multiplier is omitted. The complete expres
sion for that part of fa which contains cos sco or sin sco as a factor 
is therefore 

cos^p 
r sin sco „ = , " dp.' n X r i K " 

where An is constant with respect to p, and to, but as a function 
of the time will vary as 

f\/(n. n + 1) at 
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yjr = V (A" COS SCO + B,n
 siu Sco) (12), 

»=0 *=o cl/i 
which is Laplace's expansion in spherical surface harmonics. 

From the differential equation ( 0 ) , or from its general solution 

(6), it is easy to prove that <bt is of the same form as <b^lt so 

that we may write 
( i 3 ) ' 

(in which no connection between the arbitrary constants is as
serted), or in terms of i}r by (7), 

^ - ^ © V . 
Equation (13) is a generalization of the property of Laplace's 
functions used in (8). 

The corresponding relations for the plane problem may be 
deduced, as before, by attaching an infinite value to n, which 
in (13), (14) is arbitrary, and writing nv = /cr. Since {J? + v8 = 1, 

(-5s)'+» 
fa being regarded as a function of v. In the limit fi (even 
though subject to differentiation) may be identified with unity, 
and thus we may take 

*. = ( - 2 - ) « f c ^ ) V 0 C " ) . 
When the pole is not a source, fa is proportional to J"s(«r). 
The constant coefficient, left undetermined by (15), may be 
readily found by a comparison of the leading terms. It thus 
appears that 

J . (*r) = ( - 2«·)· (jd-^jj^r) (10), 

a well-known property of Bessel's functions1. 

The vibrations of a plane layer of gas are of course more 
easily dealt with, than those of a layer of finite curvature, but 

1 Todhvmter's Laplace's Functions, § 390. 

IRIS - LILLIAD - Université Lille 1 



3 3 8 . ] VIBRATION IN TWO DIMENSIONS. 2G5 

I have preferred to exhibit the indirect as" well as the direct 
method of investigation, both for the sake of the spherical problem 
itself with the corresponding Laplace's expansion1, and because 
the connection between Bessel's and Laplace's functions appears 
not to be generally understood. We may now, however, proceed 
to the independent treatment of the plane problem. 

339. If in the general equation of simple aerial vibrations 

we assume that is independent of z, and introduce plane polar 
coordinates, we get (§ 241) 

•(1) 

or, if i|r be expanded in Fourier's series 
, ^ = ^ 4 - ^ + . . . + ^ + (2), 

where y}rn is of the form An cos nd + Bn sin nd, 

This equation is of the same form as that with which we had to 
deal in treating of circular membranes (§ 200); the principal 
mathematical difference between the two questions lies in the 
fact that while in the case of membranes the condition to be 
satisfied at the boundary is -\jr = 0, in the present case interest 

attaches itself rather to the boundary condition ^ = 0, corre
sponding to the confinement of the gas by a rigid cylindrical 
envelope. 

The pole not being a source, the solution of (3) is 

f « = A J * O ) (4), 
and the equation giving the possible periods of vibration within 
a cylinder of radius r, is 

· £ ( < « · ) = 0 (5). 

1 I have been much assisted by Heine's Handbuch der Kugelfunctionen, Berlin, 
1861, and by Sir W. Thomson's papers on Laplace's Theory of the Tides, Phil. 
Mag. Vol. iv. 1875. 

s I here recur to the usual notation, but the reader will understand that n cor. 
responds to the s of preceding sections. The n of Laplace's functions is now infinite. 
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The lower values of KV satisfying (5) are given in the following 
table1, which was calculated from Hansen's tables of the functions 
J by means of the relations allowing Jn to be expressed in terms 
of </"„ and Jx. 

Number of in
ternal circu
lar nodes. 

7 1 = 0 n=l »¡, = 2 ra = 3 

0 3-832 1-841 3-054 4-201 
1 7-015 5-332 6-705 8-015 
2 10-174 8-536 9-965 11-344 
3 13-324 11-706 
4 16-471 14-864 
5 19-616 18-016 

The particular solution may be written 

fa = (A cos nd + 2? sin nO) Jn far) cos mt 

+ (Ccos n0 + D sin n0) Jn far) sin icat (6) , 

where A, B, C, D are arbitrary for every admissible value of 
n and K. A S in the corresponding problems for the sphere and 
circular membrane, the sum of all the particular solutions must 
be general enough to represent, when t = 0, arbitrary values of 

and yjr.. 
As an example of compound vibrations we may suppose, as 

in § 332, that the initial condition of the gas is that defined by 

-*jr = 0, ty = x = r cos 0. 

Under these circumstances (6) reduces to 

= At cos 0 Jx faxr) cos Kflt + A2cos 0 Jx far) cos K2at + ...(7), 

and, if we suppose the radius of the cylinder to be unity, the 
admissible values of K are the roots of 

(8)· 

The condition to determine the coefficients A is that for all values 
of r from r — 0 to r = 1, 

r = A/lfar)+A2J1far)+ (9), 

i Notes on Bessel's Functions. P7n7. Mag. Nov, 1872. 
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339.] CASE OF COMPOUND VIBRATIONS. 267 

whence, as in § 332, 

A = . i 2

 T , , (10). 

The complete solution is therefore 
^ 2 cos 0 JAur) . . 

* = V - i w « ) C 0 S / r o * ( }' 
where the summation extends to all the values of tc determined 
by (8). 

If we put t = 0 and r = 1, we get from (9) and (10) 

S ^ r = 1 <12>> 
an equation which may he verified numerically, or by an analy
tical process similar to that applied in the case of (14) § 332. 
We may prove that 

log Jx' (z) = constant + 2 log 1̂ - ^2 j , 

whence by differentiation 

Trr-\ — — * „« 
2z 

From this (12) is derived by putting z = l, and having, regard 
to the fundamental differential equation satisfied by Jv which 
shews that 

: Ji'(l) — 1 . 

Hitherto we have supposed the cylinder complete, so that 
\]r recurs after each revolution, which requires that n be integral; 
but if instead of the complete cylinder we take the sector included 
between 0=0 and 0 = B , fractional values of n will in general pre
sent themselves. Since ^ vanishes at both limits of 0, must 
be of the form 

= A cos (aat + e) cos n8 Jn (AT) (13), 
where n = VTTB'1 , v being integral. If /3 be an aliquot part of 
7r (or 7r itself), the complete solution involves only integral values 
of n, as might have been foreseen; but, in general, functions of 
fractional order must be introduced. 

An interesting example occurs when 8 = 2TT, which corre
sponds to the case of a cylinder, traversed by a rigid wall 
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stretching from the centre to the circumference (compare § 207). 
The effect of the wall is to render possible a difference of pressure 
on its two sides ; but when no such difference occurs, the wall 
may be removed, and the vibrations are included under the 
theory of a complete cylinder. This state of things occurs 
when v is even. But when v is odd, n is of the form (integer -f J ) , 
and the pressures on the two sides of the wall are different. In 
the latter case Jn is expressible in finite terms. The gravest 
tone is obtained by taking v = 1, or n = \, when 

•yjr = A cos (icat + e). cos \6. "̂ Ĵ * (14), 
and the admissible values of K are the roots of tan K = 2K. The 
first root (after « = 0) is « = 1 1655, corresponding to a tone 
decidedly graver than any one, of which the complete cylinder is 
capable. 

The preceding analysis has an interesting application to 
the mathematically analogous problem of the vibrations of water 
in a cylindrical vessel of uniform depth. The reader may 
consult a paper on waves by the author in the Philosophical 
Magazine for April, 1876, and papers by Prof. Guthrie to which 
reference is there made. The observation of the periodic time 
is very easy, and in this way may be obtained an experimental 
solution of problems, whose theoretical treatment is far beyond 
the power of known methods. 

340. Returning to the complete cylinder, let us suppose it 
closed by rigid transverse walls at z = 0, and z = I, and remove 
the restriction that the motion is to be the same in all transverse 
sections. The general differential equation (§ 241) is 

Let i/r be expanded by Fourier's theorem in the series 

f = H0 + H, cos ~ + H2 cos ?p +... + HP cos ( p ™ ) + . . . (2), 
where the coefficients Hp may be functions of r and 0. This form 
secures the fulfilment of the boundary conditions, when z = 0, z = lf 
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dr* r dr v-^^-^y.-<> <» 
which is of the same form as when the motion is independent of 
z, K? heing replaced by « 2 —pVl~2. The particular solution may 
therefore be written 

= (An cos nd + Bn sin nd). cosp-j-. Jn yK* - pW. r) cos /cat 

+ (Cn cos nd+Dn sin nO) cosp y . <7n ( ^ " - p T * . r) sin /cat... (4), 

which must be generalized by a triple summation, with respect to 
all integral values of p and n, and also with respect to all the 
values of K, determined by the equation, 

J:(J«*-pWr\r) = 0 (5). 

If r = 1, and K denote the values of K given in the table (§ 339), 
corresponding to purely transverse vibrations, we have 

«? = IP+p*^ (6). 

The purely axial vibrations correspond to a zero value of K, 
not included in the table. 

341; The complete integral of the equation 
cPfa,,ldfa„ / , n°\ 
lb* + r W + {K-r2)^ = ° 

when there is no limitation as to the absence of a source at the 
pole, involves a.second function of r, which may be denoted by 
Jenifer). Thus, omitting unnecessary constant multipliers, we may 
take (§ 200) 

fa = Ar'"\l K r I K V I 
r " \ 2 . 2 + 2w 2 . 4 . 2 + 2>z.4 +2ra "'J 

+ ^ I1 - 2^Tn + 2 . 4 . 2 - 2 W . 4 - 2 , " " j ® > 
but the second seiies requires modification, if n be integral. When 
n = 0, the two series become identical, and thus the immediate 
result of supposing n= 0 in (2) lacks the necessary generality. The 

and each term must satisfy the differential equation separately. 
Thus 

d*K, . ldHa . 1 d*H„ I . ^ 
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Thus / ( 0 ) = l o g r { l - ^ + ^ -2 2 ' 22.4." 2 2 . 4 \ 62 f«V *V « V I 
( 2 2 2 2 . 4 2 2 2 2 . 4 2 . 6 2 8 J ' 

and the complete integral for the case n = 0 is 

f 0 = ( 4 + £ l o g r ) | l - ^ + | ^ _ . . j 

+ 5{¥~~~FT4*'S2 + 2 ^ 7 4 ? . e 2 ^ 8 - ' " } w -

For the general integral value of n the corresponding ex
pression may be derived by means of (15) § 338 

^=^id{%^ (*>• 

required solution may, however, be obtained by the ordinary rule 
applicable to such cases. Denoting the coefficients of A and B 
in (2) by f(n), /(— n), we have 

+ = Af(n)+Bf(-n) 
= (A + B)f(0) + (A-B)f(0)n + (A + B)f"(0)^2 + .... 

by Maclaurin's theorem. Hence, taking new arbitrary constants, 
we may write as the limiting form of (2), 

fa = Af(0)+Bf'(0). 

In this equation/(0) is J^icr); to find / ' (0) we have 

/ ( » ) = r- log , {l - + 2A^CA + 2n -..»} 

+ dn\ 2 . 2 + 2» 2 . 4 . 2 + 2« .4 + 2n J' 
If u denote the general term (involving r s m) of the series within 

brackets, taken without regard to sign, 
1 du _ d log u _ _ 2 2 2 
M d « ~ dr? ~ 2+2) i 4 + 2« "' 2m + 2ra' 

so that f = — i 
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The formula of derivation (5) may he obtained directly from 
the differential equation (1). Writing z for KT and putting 

= (6), 
we find in place of (1) 

d'6 2 « + 1 d& , „ 

Again (7) may be put into the form 

*m+{n+1)^+l^° (8)' 
from which it follows at once that 

d 
d.z 

so that 
( 1 0 )' 

or by (6) · ^ = *"(̂ JVo ("). 
which is equivalent to (5), since the constants in ^ are arbitrary 
in both equations. 

The serial expressions for i|rn thus obtained are convergent for 
all values of the argument, but are practically useless when the 
argument is great. In such cases we must have recourse to semi-
convergent series corresponding to that of (10) § 200. 

Equation (1) may be put into the form 

— ? P f J + **f» = 0 (12), 

whence by § 323 (4), (12), we find as the general solution of (1) 

r „ Ol«r) e |1 l s { K r + l . 2 ( 8 t « r ) « 

( 1 2 - 4 H 2 ) (3 2-4?i 2) (5'-An 1) 1 
1 . 2 . 3 . ( 8 / « r / 

' I 1. 8̂ /«· 1 . 2 . (8t«r) 
( l ' - 4 ? i 2 ) ( 3 2 - 4 t t 2 ) ( 5 2 - 4 n 2 ) 1 
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When n is integral, these series are infinite and ultimately 
divergent, but (§§ 200, 302) this circumstance does not interfere 
with their practical utility. 

The most important application of the complete integral of (1) 
is to represent a disturbance diverging from the pole, a problem 
which has been treated by Stokes in his memoir on the communi
cation of vibrations to a gas. The condition that the disturbance 
represented by (13) shall be exclusively divergent is simply 
D = 0, as appears immediately on introduction of the time factor 
ewat by supposing r to be very great; the principal difficulty of 
the question consists in discovering what relation between the 
coefficients of the ascending series corresponds to this condition, 
for which purpose Stokes employs the solution of (1) in the form 
of a definite integral. We shall attain the same object, perhaps 
more simply, by using the results of § 302. 

and thus the question reduces itself to the determination of the 
form of the right-hand member of (14) when z is. small.. By (5) 
§ 302 and (5) § 200 we have 

\TT{K(Z) + i J0(z)} = z + \%TT + higher terms in z (15), 

so that all that remains is to find the form of the definite integral 
in (14), when z is small. Putting V (P' + z*) = y - B, we have 

When z is small, z2(2y)~1 is also small throughout the range of 
integration, and thus we may write 

By (22), (24) § 302 

J0 V(/32
 + * 2 ) J* I 

a2 , z* ) e-*» 7 

The first integral on the right is 

1 Do Morgan's Differential and Integral Calailw, y>. 053. 
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where 7 is Euler's constant ('5772...); and, as we may easily 
satisfy ourselves by integration by parts, the other integrals do not 
contribute anything to the leading terms. Thus, when z is very 
small, 

l 2 . 3 2 

8iz ^ 1 .2 . (8JS)2 

B=7 + L O G ( I * ) + I M > - + (17). 

Replacing z by icr, and comparing with the form assumed by (4), 
when r is small, we see that in order to make the series identical 
we must take 

A = 7 + LOG£ + LOGK+^'7R, 

so that a series of waves diverging from the pole, whose expression 
in descending series is 

1 - : 
1 2 .3 2 

1.8i«r 1 . 2 . (8kr) ! 

is represented also by the ascending series 

/ . iicr\( K V , « V I 
* o = ( 7 + LOG T ) j l - -gr + - • · ·) 

- ..·} (18), 

92 ^1 £2 ^2 ^2 "T- 4 9 f** * 2 2 . 4 2 . 68 
.(19). 

In applying the formula of derivation (11) to the descending 
series, the parts containing e~iKr and e+ilcr as factors will evidently 
remain distinct, and the complete integral for the general value 
of n, subject to the condition that the part containing e+ilcr shall 
not appear, will be got by differentiation from the complete 
integral for n = 0 subject to the same condition. Thus, since 

^^(l^K-urU - 1 - 3 , - 1 . 1 3.5 

- 1 . 1 . 3 * . 6 . 7 

R. II . 
1 . 2 . 3 . (8wr)' • + ·· (20), 

18 

IRIS - LILLIAD - Université Lille 1 



2 2 . 4 2 2 2 . 4 2 . 6 
(21). 

These expressions are applied by Prof. Stokes to shew how feebly 
the vibrations of a string, (corresponding to the term of order 
one), are communicated to the surrounding gas. For this purpose 
he makes a comparison between the actual sound, and what would 
have been emitted in the same direction, were the lateral motion 
of the gas in the neighbourhood of the string prevented. For a 
piano string corresponding to the middle C, the radius of the 
wire may be about *02 inch, and X is about 25 inches; and it 
appears that the sound is nearly 40,000 times weaker than it would 
have been if the motion of the particles of air had taken place in 
planes passing through the axis of the string. "This shews the 
vital importance of sounding-boards in stringed instruments. 
Although the amplitude of vibration of the particles of the sound
ing-board is extremely small compared with that of the particles 
of the string, yet as it presents a broad surface to the air it is able 
to excite loud sonorous vibrations, whereas were the string 
supported in an absolutely rigid manner, the vibrations which it 
could excite directly in the air would be so small as to be almost or 
altogether inaudible." 

Fig. 64. 

A 

m 
"The increase of sound produced by the stoppage of lateral 

motion may be prettily exhibited by a very simple experiment. 
Take a tuning-fork, and holding it in the fingers after it has been 

or, in terms of the ascending series, 

( . i/cr\(/cr K V , K V } 
~{y + log Y j { - 2 - ^ 7 4 + ~ • · · } 

8...... 
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made to vibrate, place a sheet of paper, or the blade of a broad 
knife, with its edge parallel to the axis of the fork, and as near to 
the fork as conveniently may be without touching. If the plane of 
the obstacle coincide with either of the planes of symmetry of the 
fork, as represented in section at A or B, no effect is produced; 
but if it be placed in an intermediate position, such as C, the 
sound becomes much stronger1." 

342. The real expression for the velocity-potential of sym
metrical waves diverging in two dimensions is obtained from (18) 
§ 341 after introduction of the time factor eilcat by rejecting the 
imaginary part; it is 

" {£)C 0 S K ( a t - r - J1 " 1 .2 . (Lf+ ···} 
+ ( £ f s I n * ( * - • - **•> { r i - i . 2 . ' 8 8 ' ( 8 ^ y + · · j ( 1 ) > 

in which, as usual, two arbitrary constants may be inserted, one as 
a multiplier of the whole expression and the other as an addition 
to the time. 

The problem of a linear source of uniform intensity may also 
be treated by the general method applicable in three dimensions. 
Thus by (3) § 277, if p be the distance of any element dec from 0, 
the point at which the potential is to be estimated, and r be the 
smallest value of p, so that p* = r 2 + a?, we may take 

*"2Jo P

 _ 2.l v V - O ( 2 ) ' U p J r vV-0 
which must be of the same form as (1). Taking y = p — r, we 
may write in place of (2) 

e-iKre-iK«dy 

from which the various expressions follow as in (14) § 341. When 
KT is great, an approximate value of the integral may be obtained 
by neglecting the variation of >J(2r + y), since on account of the 
rapid fluctuation of sign caused by the factor e~iKy we need attend 

i Phil. Trans. 1868. 

18—2 
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only to small values of y. Now 

f50 cos xdx _ r°° s'mxdx _ / 7 T \ 
Jo A/« JO V* V W 

(4), 

so that *- A /g)- -*a-o- v /©-- f c (5). 

Introducing the factor efao*, and rejecting the imaginary part of 

as the value of the velocity-potential at a great distance. A 
similar argument is applicable to shew that (1) is also the expres
sion for the velocity-potential on one side of an infinite plane 
(§ 278) due to the uniform normal motion of an infinitesimal strip 
bounded by parallel lines. 

In like manner we may regard the term of the first order 
(20) § 341 as the expression of the velocity-potential due to double 
sources uniformly distributed along an infinite straight line. 

From the point of view of the present section we see the 
significance of the retardation of which appears in (1) and in 
the results of the following section (16), (17). In the ordinary 
integration for surface distributions by Huyghens' zones (§ 283) 
the whole effect is the half of that of the first zone, and the phase 
of the effect of the first zone is midway between the phases due 
to its extreme parts, i.e. £ \ behind the phase due to the central 
point. In the present case the retardation of the resultant rela
tively to the central element is less, on account of the prepon
derance of the central parts. 

343. In illustration of the formulae of § 341 we may take 
the problem of the disturbance of plane waves of sound by a 
cylindrical obstacle, whose radius is small in comparison with 
the length of the waves, and whose axis is parallel to their 
plane. (Compare § 335.) 

Let the plane waves be represented by 

The general expansion of <f> in Fourier's series may be readily 
effected, the coefficients of the various terms being, as might 

the expression, we have finally 

(1)· 
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343. ] CYLINDRICAL OBSTACLE. 277 
be anticipated, simply the Bessel's functions of corresponding 
orders; but, as we confine ourselves here to the case where o 
the radius of the cylinder is small, we will at once expand in 
powers of r. 

Thus, when r = c, if eiKat be omitted, 

= 1 - \ K V + ueo . cos 0 + (2),· 

# = - ^ c + « . c o s 0 + (3). 

The amount and even the law of the disturbance depends upon 
the character of the obstacle. We will begin by supposing the 
material of the cylinder to be a gas of density a and compressi
bility m ; the solution of the problem for a rigid obstacle may 
finally be derived by suitable suppositions with respect to a', m. 
If K be the internal value of tc, we have inside the cylinder by 
the condition that the axis is not a source (§ 339), 

so that, when r = c, 
f (inside) = A, (1 - i * V ) +Ato(l-£*V) .cos 0... (4), 

^ (inside) = -\A0K'*C + A1(1- §*V) cos 0 (5). 

Outside the cylinder, when r = c, we have by (19), (21) § 341, 

_ / . IKC\ B, cos 0 "... f = B0(y + log-) + - ^ - (6), 

dfa^B, J^cosfl 
dr c KG7, . ' ^ '* 

The conditions to be satisfied at the surface of separation 
are thus 

-AtM = -M + 2Bt (8), 

"-A (1 - 1*V) = 1 - J «V + Ba (y + log if) (9), 

A /, 3 * V \ . B, 

<r' „ / , * V \ . . B, ^ c ( l - f ) = ̂ + § 
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from which by eliminating A0, Ax we get approximately 

B0 = ^o (12), 

B ^ i / c V K ^ (13). 
1 cr + cr ' 

Thus at a distance from the cylinder we have by (18) and 
(20) § 341, 

in' — m cr' —<T „) 

+ _, , cos v y 2m a + cr 

2TT . ire 
e - i« , + l ,> K = J 2 + ^ cos 4...(14). 

( zm cr +cr . ) 

Hence, corresponding to the primary wave 

27T 
0 = c o s — (at + x) (15), 

the scattered wave is approximately 

2TT . TTC8 fm' - m cr' - a - } 2ir . . 

+ rhT Y z H r + c7+c7cos°\cos~x & - r ~ i V ( 1 6 ) -

The fact that yfr varies inversely as XT* might have been 
anticipated by the method of dimensions as in the corresponding 
problem for the sphere (§ 335). As in that case, the symmetrical 
part of the divergent wave depends upon the variation of com
pressibility, and would disappear in the application to an actual 
gas, and the term of the first order depends upon the variation of 
density. 

By supposing cr' and m to become infinite, in such a manner 
that their ratio remains finite, we obtain the solution corre
sponding to a rigid and immoveable obstacle, 

f = - ^ f f i ( i + cos 6) cos ^ {at - r - \\) . . . ( 1 7 ) . 

The analysis of this section is applicable to the mathematically 
analogous problem of finding the effect of a cylindrical obstacle 
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on plane waves of transverse vibration in an elastic solid, the 
direction of vibration being parallel to the axis of the cylinder. 
If the densities' be o-, a and the rigidities be n, ri, and 7 denote 
the transverse displacement, the boundary conditions are 

7 (inside) = 7 (outside), 

ri ~ (inside) = n ^ (outside). 

The result is that, corresponding to the primary waves 

7 = C O S Y & « ( 1 8 ) , 

the disturbance is 

27r . 7TC 2 (cr — <7 ri — n J 27T , , . _ . . , . . 

7 = —i-r - i - j i T — cos (91 cos— {bt-r-l\)...(ld). 

' \ \ r \ \ 2<r ri + 11 j \ ^ 
For an application to the theory of light the reader is referred 

to a paper by the author, ' On the manufacture and theory of 
diffraction gratings1.' 

The exceeding smallness of the obstruction offered by fine 
wires or fibres to the passage of sound is strikingly illustrated 
in some of Tyndall's experiments. A piece of stiff felt half an 
inch in thickness allows much more sound to pass than a wetted 
pocket-handkerchief, which in consequence of the closing of 
its pores behaves rather as a thin lamina. For the same reason 
fogs, and even rain and snow, interfere but little with the free 
propagation of sounds of moderate wave-length. In the case 
of a hiss, or other very acute sound, the effect would perhaps 
be apparent. 

1 Phil. Mag. Vol. XLVII. 1874 
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CHAPTER XIX. 

FLUID FRICTION. PRINCIPLE OF DYNAMICAL SIMILARITY. 

344. T H E equations of Chapter xi. and the consequences that 
we have deduced from them are based upon the assumption (§ 236), 
that the mutual action between any two portions of fluid separated 
by an imaginary surface is normal to that surface. Actual fluids 
however do not come up to this ideal; in many phenomena the 
defect of fluidity, usually called viscosity or fluid friction, plays an 
important and even a preponderating part. It will therefore be 
proper to inquire whether the laws of aerial vibrations are sensibly 
influenced by the viscosity of air, and if so in what manner. 

In order to understand clearly the nature of viscosity, let us 
conceive a fluid divided into parallel strata in such a manner that 
while each stratum moves in its own plane with uniform velocity, 
a change of velocity occurs in passing from one stratum to another. 
The simplest supposition which we can make is that the velocities 
of all the strata are in the same direction, but increase uniformly 
in magnitude as we pass along a line perpendicular to the planes 
of stratification. Under these circumstances a tangential force 
between contiguous strata is called into play, in the direction of 
the relative motion, and of magnitude proportional to the rate at 
which the velocity changes, and to a coefficient of viscosity, com
monly denoted by the letter /i. Thus, if the strata be parallel to 
xy and the direction of their motion be parallel to y, the tangential 
force, reckoned (like a pressure) per unit of area, is 

The dimensions of p are [ML'1!^1]. 

The examination of the origin of the tangential force belongs 
to molecular science. It has been explained by Maxwell in ac-
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cordance with, the kinetic theory of gases as resulting from inter
change of molecules between the strata, giving rise to diffusion of 
momentum. Both by theory and experiment the remarkable 
conclusion has been established that within wide limits the force 
is independent of the density of the gas. For air at 0" Centigrade 
Maxwell1 found 

H = -0001878 (1 + -003660) (2), 
the centimetre, gramme, and second being units. 

345. The investigation of the equations of fluid motion in 
which regard is paid to viscous forces can scarcely be considered 
to belong to the subject of this work, but it may be of service 
to some readers to point out its close connection with the more 
generally known theory of solid elasticity. 

The potential energy of unit of volume of uniformly strained 
isotropic matter may be expressed2 

V= ^mS2 + 4n(e 2 + / 2 + ? - 2fg - 2ge -2ef+ tf+b2 + c!) 
= J*o2 + \n(2e* + 2f + 2g2-1S2 + a2 + V + c2) (1), 

in which B(=e +f+g) is the dilatation, e,f, g, a, b, c are the six 
components of strain, connected with the actual displacements a, 6, y 
by the equations 

da dp . dy m 

dB dy , _ dy da. _ d% dB ,«\ 
a - d ^ + dy' 0~dx + dz' C - d r y + T x W ' 

and m, n, K are constants of elasticity, connected by the equation 

K = m-^n (4), 

of which n measures the rigidity, or resistance to shearing, and K 
measures the resistance to change of volume. The components of 
stress P, Q, R, 8, T, U, corresponding respectively to e, f, g, a, b, c, 
are found from V by simple differentiation with respect to those 
quantities; thus 

P = K8 + 2n{e- J8) &c (5), 
S = na. &c -.(6). 

1 On the Viscosity or Internal Friction of Air and other Gases. Phil. Trans.' 
1866. 

3 Thomson and Tait's Natural Philosophy. Appendix C. 
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If X, Y, Z be the components of the applied force reckoned per 
unit of volume, the equations of equilibrium are of the form 

dP.dU.dT, yr n . 

from which the equations of motion are immediately obtainable 
by means of D'Alembert's principle. In terms of the displace
ments a, 6, y, these equations become 

d$ , d8 „ ,._ „ „ .„. 
KTx+*ndx + n V a + X = 0 & c ( 8 ) > 

where 8 = ^ + ^- + ^ (9). 
dx dy dz 

In the ordinary theory of fluid friction no forces of restitution 
are included, but on the other hand we have to consider viscous 
forces whose relation to the velocities (u, v, w) of the fluid elements 
is of precisely the same character as that of the forces of restitution 
to the displacements (a, 0, y) of an isotropic solid. Thus if ft be 
the velocity of dilatation, so. that 

~, du dv . duo „ n s 

the force parallel to x due to viscosity is, as in (8), 

dS' d&' . . 
Kdx- + i n d x - + U V u ( 1 1 ) · 

So far K and n are arbitrary constants; but it has been argued 
with great force by Prof. Stokes, that there is no reason why a 
motion of dilatation uniform in all directions should give rise to 
viscous force, or cause the pressure to differ from the statical pres
sure corresponding to the actual density. In accordance with this 
argument we are to put K = 0; and, as appears from (6), n coincides 
with the quantity previously denoted by The frictional terms 
are therefore 

f „ , d /du dv dw\) „ 
^ U + ^Tx{dx + Ty + ^)\'&C-' 

and (§ 237) the equations of motion take the form 

(Du „ \ , dp , d (du • dv , dw\ n 

IRIS - LILLIAD - Université Lille 1 



/dv + dw\* + /dw duV + /du dv\*~ 
\dz dy) \dx dz) \dy dx) _ dxdydz (14), 

in agreement with Prof. Stokes' calculation1. The theory of friction 
for the case of a compressible fluid was first given by Poisson2. 

346. We will now apply the differential equations to the in
vestigation of plane waves of sound. Supposing that v and w are 
zero and that u, p , &c. are functions of x only, we obtain from 
(13) § 345 

du dp i/M d*u _ n ^« 
podi + dx~Tdx^~ W < 

The equation of continuity (3) § 238 is in this case 

~ + — = 0 (2) 

and the relation between the variable part of the pressure Sp and 
the condensation s is as usual (§ 244) 

fy = aV (3). 

Thus, eliminating Sp and s between (1), (2), (3), we obtain 
d?u _ 2 d \ 4/i cfu _ 

~de~a M'^lx^dt W ' 

which is the equation given by Stokes3. 
Let us now inquire how a train of harmonic waves of wave

length X, which are maintained at the origin (x = 0), fade away 
1 Cambridge Transactions, 1851. § 49. 
s Journal de l'Ecole Polytechnique, t. xin. cah. 20, p. 139. 
3 Cambridge Transactions, 1845. 

or, if there be no applied forces and the square of the motion be 
neglected, 

du dp , d /du , dv dw\ n / n o , 
p ^ + £ - ^ u - ^ M T , + T y + d ^ r ° ( 1 3 ) -

We may observe that the dissipative forces here considered 
correspond to a dissipation function, whose form is the same with 
respect to u, v, w as that of V with respect to a, 8, 7, in the theory 
of isotropic solids. Thus putting K = 0, we have from (1) 
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1 Acoustical Observations, Phil. Mag., June, 1877. 

as x increases. Assuming that u varies as eint, we find as in 
§ 148, 

y = Aer™* cos (nt — Bx) (5), 

4/*n8 

a+~9pj- a+~wr 
In the application to air at ordinary pressures /* may be con
sidered to be a very small quantity and its square may be 
neglected. Thus 

a = 4 y ( 7 ) * 
It appears that to this order of approximation the velocity of 
sound is unaffected by fluid friction. If we replace n by 2 7 r a X ~ 1 j 
the expression for the coefficient of decay becomes 

" - Z X ^ a ( 8 ) ' 
shewing that the influence of viscosity is greatest on the waves of 
short wave-length. The amplitude is diminished in the ratio 
e : 1, when x = a - 1 . In C. G. s . measure we may take 

P o =-0013, fi = -00019, a = 33200; 
whence a; = 8800 X s (9). 

Thus the amplitude of waves of one centimetre wave-length is 
diminished in the ratio e : 1 after travelling a distance of 88 
metres. A wave-length of 10 centimetres would correspond nearly 
to gl"; for this case x = 8800 metres. It appears therefore that at 
atmospheric pressures the influence of friction is not likely to be 
sensible to ordinary observation, except near the upper limit of the 
musical scale. The mellowing of sounds by distance, as observed in 
mountainous countries, is perhaps to be attributed to friction, by 
the operation of which the higher and harsher components are 
gradually eliminated. It must often have been noticed that the 
sound s is scarcely, if at all, returned by echos, and I have found1 

that at a distance of 200 metres a powerful hiss loses its character, 
even when there is no reflection. Probably this effect also is due 
to viscosity. 
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In highly rarefied air the value of a as given in (8) is much 
increased, ft being constant. Sounds even of grave pitch may then 
be affected within moderate distances. 

From the observations of Colladon in the lake of Geneva it 
would appear that in water grave sounds are more rapidly damped, 
than acute sounds. At a moderate distance from a hell, struck 
under water, he found the sound short and sharp, without musical 
character. 

347. The effect of viscosity in modifying the motion of air in 
contact with vibrating solids will be best understood from the solu
tion of the problem for a very simple case given by Stokes. · Let us 
suppose that an infinite plane (yz) executes harmonic vibrations in 
a direction (y) parallel to itself. The motion being in parallel 
strata, u and w vanish, and the variable quantities are func
tions of x only. The first of equations (13) § 345 shews that the 
pressure is constant; the corresponding equation in v takes the 
form 

dv _ fi dH_ ~. 
T t ~ ~ p d a ? 1 >' 

similar to the equation for the linear conduction of heat. If we 
now suppose that v is proportional to e*"*, the resulting equation 
in x is 

d*v . np ,~ 
oW = l T v ( 2 ) ' 

and its general solution 

v = Ae-*x + Be+y (3), 

where * = V ^ ) ( 1 1 0 ( 4 ) > 

If the gas be on the positive side of the vibrating plane the motion 
is to vanish when x = + oo. Hence B = 0, and the value of v 
becomes on rejection of the imaginary part 

v = Ae ~ v © * cos \nt - AJ(JQ (5)> 
corresponding to the motion 

V=A cos nt (6) 

at x = 0. The velocity of the fluid in contact with the plane is 
usually assumed to be the same as that of the' plane itself on t i e 
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apparently sufficient ground that the contrary would imply an 
infinitely greater smoothness of the fluid with respect to the solid 
than with respect to itself. On this supposition (5) expresses the 
motion of the fluid on the positive side due to a motion of the 
plane given by (6). 

The tangential force per unit area acting on the plane is 
dv 

^dx ' 

or 

if A = 1. The first term represents a dissipative force tending to 
stop the motion; the second represents a force equivalent to an 
increase in the inertia of the vibrating body. The magnitude of 
both forces depends upon the frequency of the vibration. 

We will apply this result to calculate approximately the velocity 
of sound in tubes so narrow that the viscosity of air exercises a 
sensible influence. As in § 265, let X denote the total transfer of 
fluid across the section of the tube at the point x. The force, 
due to hydrostatic pressure, acting on the slice between x and 
x+Bx is, as usual, 

- 8 % ^ = ^ d S ® ' 

The force due to viscosity may be inferred from the investigation 
for a vibrating plane, provided that the thickness of the layer of 
air adhering to the walls of the tube be small in comparison with 
the diameter. Thus, if P be the perimeter of the tube, and V b e 
the velocity of the current at a distance from the walls of the 
tube, the tangential force on the slice, whose volume is 8Bx, is 
by (7) 

or on replacing Fby 8 

_ P W ( i W ) ( f + l g ) ^ (9). 
The equation of motion for this period is therefore 

s d*X ,n .PBxldX ld*X\ . - cPX Pt*-2gr + V (i nPH) — ^ + - w j = a p B x w , 
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The velocity of sound is approximately 

• l 1 < n ) ; 
or in the case of a circular tube of radius r, •H\/(4)} (12)-

The result expressed in (12) was first obtained by Helmholtz. 
An elaborate investigation of this problem has also been given by 
Kirchhoff1, who included in his calculation not only the effect of 
friction but also that of the conduction of heat. Kirchhoff's result 
is of the same form as (12), but VÔ/O ^s replaced by the quantity 
(called y) 

v̂ H"-̂ - <13)' 
where b is Newton's value of the velocity of sound, and v is a co
efficient of conduction, equal according to the kinetic theory of 
gases to |ftp'1. 

The diminution of the velocity of sound in narrow tubes, as 
indicated by the wave-length of stationary vibrations, was observed 
by Kundt (§ 260), and has been specially investigated by 
Schneebeli2 and A. Seebeck8. It appears that the diminution of 
velocity varies as r'1, in accordance with (12), but, when n varies, it 
is proportional rather to n'^ than to w -^.. Since fj, is independent 
of the density (p), the effect would be increased in rarefied air. 

348. In the course of this work we have had frequent occasion 
to notice the importance of the conclusions that may be arrived at 
by the method of dimensions. Now that we are in a position to 
draw illustrations from a greater variety of acoustical phenomena 
relating to the vibrations of both solids and fluids, it will be con
venient to resume the subject, and to develope somewhat in detail 
the principles upon which the method rests. 

In the case of systems, such as bells or tuning-forks, formed of 
uniform isotropic material, and vibrating in virtue of elasticity, the 

i Pogg. Ann. t. cxxxrv. 177. 1868. 3 Pogg. Ann. t. cxxxvi. 296. 1869. 
s Pogg. Ann. t. cxxxix. 104. 1870. 

IRIS - LILLIAD - Université Lille 1 



acoustical elements are the shape, the linear dimension c, the 
constants of elasticity q and p (§ 149), and the density p. Hence, 
by the method of dimensions, the periodic time varies cceteris 
paribus as the linear dimension, at least if the amplitude of vibra
tion be in the same proportion; and, if the law of isochronism 
be assumed, the last-named restriction may be dispensed with. In 
fact, since the dimensions of q and p are respectively [ML'1 T - 2 ] 
and [ML - 3], while p, is a mere number, the only combination 
capable of representing a time is q~^ .p^.c. 

The argument which underlies this mathematical shorthand is 
of the following nature. Conceive two geometrically similar bodies, 
whose mechanical constitution at corresponding points is the 
same, to execute similar movements in such a manner that the 
corresponding changes occupy times 1 which are proportional to the 
linear dimensions—in the ratio, say, of 1 : n. Then, if the one 
movement be possible as a consequence of the elastic forces, the 
other will be also. For the masses to be moved are as 1 : n", the acce
lerations as 1 : n"1, and therefore the necessary forces are as 1 : n2; 
and, since the strains are the same, this is in fact the ratio of the 
elastic forces due to them when referred to corresponding areas. 
If the elastic forces are competent to produce the supposed motion 
in the first case, they are also competent to produce the supposed 
motion in the second case. 

The dynamical similarity is disturbed by the operation of a 
force like gravity, proportional to the cubes, and not to the squares, 
of corresponding lines; but in cases where gravity is the sole 
motive power, dynamical similarity may be secured by a different 
relation between corresponding spaces and corresponding times. 
Thus if the ratio of corresponding spaces be 1 : n, and that of 
corresponding times be 1 : rfi, the accelerations are in both cases 
the same, and may be the effects of forces in the ratio 1 : n% acting 
on masses which are in the same ratio. As examples coming under 
this head may be mentioned the common pendulum, sea-waves, 
whose velocity varies as the square root of the wave-length, and the 
whole theory of the comparison of ships and their models by 
which Mr Froude predicts the behaviour of ships from experi
ments made on models of moderate dimensions. 

1 The conception of an alteration of scale in space has been made familiar by 
the universal use of maps and models, but the corresponding conception for time 
is often less distinct. Reference to the case of a musical composition performed at 
different speeds may assist the imagination of the student. 
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The same comparison that we have employed ahove for elastic 
solids applies also to aerial vibrations. The pressures in the cases to 
be compared are the same, and therefore when acting over areas in 
the ratio 1 : n*, give forces in the same ratio. These forces operate 
on masses in the ratio 1 : ns, and therefore produce accelerations in 
the ratio 1 : n'1, which is the ratio of the actual accelerations when 
both spaces and times are as 1 : n. Accordingly the periodic times 
of similar resonant cavities, filled with the same gas, are directly as 
the linear dimension—a very important law first formulated by 
Savart. 

Since the same method of comparison applies both to elastic 
solids and to elastic fluids, an extension may be made to systems 
into which both kinds of vibration enter. For example, the scale 
of a system compounded of a tuning-fork and of an air resonator 
may be supposed to be altered without change in the motion other 
than that involved in taking the times in the same ratio as the 
linear dimensions. 

Hitherto the alteration of scale has been supposed to be 
uniform in all dimensions, but there are cases, not coming under 
this head, to which the principle of dynamical similarity may be 
most usefully applied. Let us consider, for example, the flexural 
vibrations of a system composed of a thin elastic lamina, plane or 
curved. By §§ 214,215 we see that the thickness of the lamina b, 
and the mechanical constants q and p, will occur only in the com
binations go8 and bp, and thus a comparison may be made even 
although the alteration of thickness be not in the same proportion 
as for the other dimensions. If c be the linear dimension when 
the thickness is disregarded, the times must vary cceteris paribus 
as g - *. p^. c 2 . b'1. For a given material, thickness, and shape, the 
times are therefore as the squares of the linear dimension. It must 
not be forgotten, however, that results such as these, which involve 
a law whose truth is only approximate, stand on a different level 
from the more immediate consequences of the principle of simi
larity. 

THE END. 

R. II . 
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APPENDIX A. (§ 307). 

The problem of determining the correction for the open end of a 
tube is one of considerable difficulty, even when there is an infinite 
flange. It is proved in the text (§ 307) that the correction a is greater than 

g 
•Jir R, and less than ^- R. The latter value is obtained by calculating 
the energy of the motion on the supposition that the velocity parallel 
to the axis is constant over the plane of the mouth, and comparing this 
energy with the square of the total current. The actual velocity, no 
doubt, increases from the centre outwards, becoming infinite at the sharp 
edge ; and the assumption of a constant value is a somewhat violent one. 
Nevertheless the value of a so calculated turns out to be not greatly in 
excess of the truth. It is evident that we should be justified in ex
pecting a very good result, if we assume an axial velocity of the form 

r denoting the distance of the point considered from the centre of the 
mouth, and then determine //. and /*' so as to make the whole energy a 
minimum. The energy so calculated, though necessarily in excess, must 
be a very good approximation to the truth. 

In carrying out this plan we have two distinct problems to deal with, 
the determination of the motion (1) outside, and (2) inside the cylinder. 
The former, being the easier, we will take first. 

The conditions are that vanish at infinity, and that when x = 0, 

vanish, except over the area of the circle r = R, where 

r ' ^ ^ f 
Under these circumstances we know (§ 278) that 
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T r , 20 pa3 356 / a 8 . . 

and thus 

P = J^ 2wadaV[l+p^ + p ' ^ 
3 r 14 5 , 314 , 2 1 4 89 I a \ 
- { 1 + F 5 ' i + 2 T / A + 5 2 5 ' A + C r 5 W + 8 2 5 ^ j 

8 j r # 3  

: 3 

o n eifecthig t he integrat ion. This q u a n t i t y divided by IT gives twice t h e 
kinetic energy of t he motion defined by (1). 

The total cur ren t 

= J*2„rdr(l +p£a + p'£) = *Xs(l+hP + l / O ( * ) · 
"We have nex t to consider t he problem of de te rmining the motion of a n 

incompressible fluid wi th in a rigid cyl inder u n d e r t he conditions t h a t t h e 
axial velocity shall be uniform when x = — oo , and w h e n x = 0 shall be of 
the form 

d4> . i* , r* 

I t will conduce to clearness if wo separate from <j>, t h a t p a r t of i t which 
corresponds to a uniform flow. Thus , if wo t a k e 

d<b n , , dtp 

\fi will correspond to a motion, which vanishes w h e n x is numerica l ly 
great. W h e n x — 0, 

% = * V - \ ) + v : V - \ ) (6), 

if for t he sake of brevi ty we p u t B=l. 
1 The density of the fluid is supposed to ho unity. 

where p denotes t h e dis tance of t h e poin t where <f> is to be estimated 
from the element of area dcr. N o w 

2 , n „ e . ) · i jjtfj^ljjt. at 
if P represent t he potent ia l on itself of a disc of rad ius E, whose 

densi ty = 1 + p. + p' . 

The value of P is to be calculated by the me thod employed i n the t e x t 
(§ 307) for a uniform densi ty. A t t he edge of t he disc, when cut down 
to radius a, we have t he potent ia l 
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Now i/f may be expanded in the series 

+ = $ate"J0(pr) ( 7 ) , 

where p denotes a root of the equation 

•>o'0>) = 0 · (8) 1. 
Each term of this series satisfies the condition of giving no radial 
velocity, when r = 1; and no motion of any kind, when x= — co. It 
remains to determine the coefficients ap so as to satisfy (6), when x = 0. 
From r = 0 to r = 1, we must have 

whence multiplying by J0 (pr) rdr and integrating from 0 to 1, 

P«, [Jo (P)]° = 2 fcrdrJ. (Pr) (r* - J) + / (r* -

every term on the left, except one, vanishing by the property of the 
functions. For the right-hand side we have 

Jo 

\ydrJ0(pr)^J0(p\ 

/ V * / . < , r ) = ( * - p ) / . ( p ) j 
so that 

^ - v r w W O - l - ) } ; < " · 
The velocity-potential <j> of the whole motion is thus 

^ = ( 1 + ^ + ^ > + ^ ^ ± W ^ / V o ( ^ ) . . . . ( 1 0 ) ) 

the summation extending to all the admissible values of p. We have 
now to find the energy of motion of so much of the fluid a S 1 8 included 
between x = 0, and x = -l, where I is so great that the velocity jg there 
sensibly constant. 

By Green's theorem 

2 (kinetic energy) = J \ ^rrrdr (x - 0) - jf ^ ^ 2 7 r r d r ( * * ~ ^' 

The numerical values of the roots are approximately 
2 > 1 = 3-831705, 2>a= 7-015, p3

: 

i>4=13-324, ^ s =16-471, p» 

=10-174, 
= 19-616. 
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2 9 4 CORRECTION FOR OPEN ENDS. 

Now, -when x = — l, 

BO that the second term is irZ(l + ĵu. + 
In calculating the first term, we must remember that if p t and p a be 

two different values of p , 

jyirrdrJo(j>lr)J0(pf) = 0. 

Thus 

f **• 0) - 1 6 * i ^ V i ^ p ! f '2«.«6-[J.fcrff 
Jo <KB F K (P)J Jo 

Accordingly, on restoring i?, 
2 (kinetic energy) = TTEH (1 + J /ot + J 

+ 167riJ3S {f* + 2 / ( l - ĴV*-

To this must be added the energy of the motion on the positive side 
oJ x = 0. On the whole 
2 kinetic energy _ I 16 f „ , A. 8 \V , 

(current)' ~ ^ + (1 + Jfi + V ) ' S V* ^ V Wi * 
8 1 + A f * ' + +Si t + i 

+ 3*>R ( 1 + ^ + ^ 'V Hence, if a be the correction to the length, 

^ = [1 + i * ^ + ft* + ( C - 2 p - + A ) 

+ {24* · (2F"5
 - 1 6 S p " 7 + 642jT8) + ^ } p'*]-r- (1 + + J/O*. 

By numerical calculation from the values of p 
S p - 5 = - 0 0 1 2 8 2 6 6 ; 1p~s - 8 2 p _ 7 = -00061255, 

2 F ~ 5 - 1 6 2 F " 7
 + 6 4 S p - ' - -00030351, 

and thus g ^ = [ l + - 9333333/*+ -5980951/* ' 

+ -2622728 p.* + -363223 pp! + -1307634 p'°] + ( 1 + |/x + £/x') 2  

-0666667/*+ -0685716 // - -0122728 /*" - -029890 pp.' - -0196523 p* 

(11)· 
The fraction on the right is the ratio of two quadratic functions of 
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ft., / / , and our object is to de te rmine i ts m a x i m u m va lue . I n general if 
S and S' be two quadra t ic functions, t he m a x i m u m and min imum values 
of « = S-rS' a re given by t h e cubic equat ion 

- A s - 3 + ®z~' - © ' a - 1 + A' = 0, 
where S=a/j." + bp* + c+ 2f/x' + 2gfx + 

< s ' = a y + & y 3 + c ' + 2 / y + 2 ^ > + 2 A > / , 

A = abc + 2/,A - - cA° = 

© = (60 - / s ) a' + (ca - g2) V + (ab - A2) c' 
+ 2(gh- a/)/' + 2 ( A / - bg) g' + 2 ( / ? - cA) A', 

a n d ©', A', are derived from © and A b y in terchanging the accented and 
unaccented let ters . 

I n the present case, since S' is a p roduc t of l inear factors, A ' = 0 ; 
a n d since the two factors are t h e same, ©' = 0, so t h a t z = A -r © simply. 
Subs t i tu t ing the numerical values, and effecting t he calculations, we 
find z = '0289864, which is t he m a x i m u m value of t he fraction consistent 
w i t h real values of p and ¡1!. 

T h e corresponding value of a is '82422 i?, t h a n which the t r u e 
correction cannot be greater . 

I f we assume p' = 0, the grea tes t va lue of z t h e n possible is '024363, 
wh ich gives 

a =-828146. f i 1 . 
O n the other h a n d if we p u t ft = 0, t h e m a x i m u m value of z comes 

ou t '027653, whence 
a = - 8 2 5 3 5 3 i 2 . 

I t would appear from this resu l t t h a t t he var iable p a r t of the 
n o r m a l velocity a t t he mou th is be t t e r represented b y a t e r m vary ing as 
r 4 , t h a n b y one vary ing as r". 

The value a = -8242 iJ is probably p re t t y close to t he t r u t h . I f t he 
n o r m a l velocity be assumed constant , a = - 8 4 8 8 2 6 ^ 2 ; if of t he form 
1 + pr2, a = - 8 2 8 1 5 i ? , when /j. is sui tably d e t e r m i n e d ; and when the 
form 1 + jur 2 + //.V4, containing another a rb i t r a ry constant , is made 
t h e foundation of the calculation, we get a = ' 8 2 4 2 i ? . 

The t r u e va lue of a is probably about '82 R. 

I n t he case of 0, the m i n i m u m energy corresponds to ju.' = 1'103, 
so t h a t 

O n th i s supposit ion t he normal velocity of t h e edge (r — R) would be 
about double of t h a t near t he centre. 

1 Notes on Bessel's functions, Phil. Mag. Nov. 1872. 
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NOTE TO § 273 . 

A method of obtaining Poisson's solution (8) given by Liouville1 is 
worthy of notice. 

If r be the polar radius, vector measured from any point 0, and the 
general differential equation be integrated over the volume included 
between spherical surfaces of radii r and r + dr, we find on transforma
tion of the second integral by Green's theorem 

*(r>).<P(rk) 

in which A. = jj<j>d<r, that is to say is proportional to the mean value 

of reckoned over the spherical surface of radius r. Equation (a) may 
be regarded as an extension of ( 1 ) § 2 7 9 ; it may also be proved from 
the expression (5) § 241 for v8<f> in terms of the ordinary polar co-ordi
nates r, 6, a;. 

The general solution of (a) is 
rX = x (at + r) + 6 (at - r) (/8), 

where x and 6 are arbitrary functions; but, as in § 279, if the pole be 
not a source, x (at) + 6 (at) = 0, so that 

rX = x(at + r)-x(at-r) (y). 
It appears from (y) that at 0, when r = 0, X = 2x'(at), which is 

therefore also the value of 4ir<£ at 0 at time t. Again from (y) 

so that 

X W ld(at)+ dr J ( ^o)' 
or in the notation of § 273 

2x'(r) = T- jJF(r)dr + ±[r fjf(r)dv] (3). 

By writing at in place of r in (S) we obtain the value of 2^ (at), or 
i-rnj}, which agrees with (8) § 273. 

1 Liouville, torn. i. p. 1, 1856. 
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Note cm Progressive Waves. From the Proceedings of the London 
Mathematical Society, Vol. IX. No. 125. 

I t lias often been remarked that, when a group of waves advances 
into still water, the velocity of the group is less than that of the indi
vidual waves of which it is composed; the waves appear to advance 
through the group, dying away as they approach its anterior limit. 
This phenomenon was, I believe, first explained by Stokes, who re
garded the group as formed by the superposition of two infinite trains 
of waves, of equal amplitudes and of nearly equal wave-lengths, ad
vancing in the same direction. My attention was called to the subject 
about two years since by Mr Eroude, and the same explanation then 
occurred to me independently1. In my book .on the "Theory of 
Sound" (§ 191 ) , I have considered the question more generally, and 
have shewn that, if F be the velocity of propagation of any kind of 
waves whose wave-length is λ, and κ = 2 π λ - 1 , then IT, the velocity of 
a group composed of a great number of waves, and moving into an un
disturbed part of the medium, is expressed by 

or, as we may also write it, 

U: 7 = 1 + ^ ^ (2 ) . 

Thus, if Foe X", £T= (1 - » ) F (3 ) . 

In fact, if the two infinite traius be represented by cosK (Vt — x) 
and cos K (V't — x), their resultant is represented by 

coaK(Vt-x) + cosK (V't-x), 

1 Another phenomenon, also mentioned to me by Mr Froude, admits of a 
similar explanation. A steam launch moving quickly through the water is ac
companied by a peculiar system of diverging waves, of which the most striking 
feature is the obliquity of the line containing the greatest elevations of successive 
waves to the wave-fronts. This wave pattern may be explained by the super
position of two (or more) infinite trains of waves, of slightly differing wave-lengths, 
whose directions and velocities of propagation are so related in each case that there 
is no change of position relatively to the boat. The mode of composition will be 
best understood by drawing on paper two sets of parallel and equidistant lines, 
subject to the above condition, to represent the crests of the component trains. In 
the case of two trains of slightly different wave-lengths, it may be proved that the 
tangent of the angle between the line of maxima and the wave-fronts is half the 
tangent of the angle between the wave-fronts and the boat's course. 
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(K'V'-KV K ' - K ) (K'V'+KV, K' + K ) 
2 C 0 S { 2 ~ « - — » ) • « » | — g * - _ a , | . 

If K' — K, V — V be small, we have a train of waves whose amplitude 
varies slowly from one point to another between the limits 0 and 2, 
forming a series of groups separated from one another by regions com
paratively free from disturbance. The position at time t of the middle 
of that group, which was initially at the origin, is given by 

( K ' V ' - K V ) t - ( ^ - K ) X = 0, 

which shews that the velocity of the group is ( K ' V — KV) -r («' — K). 
In the limit, when the number of waves in each group is indefinitely 
great, this result coincides with (1). 

The following particular cases are worth notice, and are here tabu
lated for convenience of comparison :—· 

Fee X, U = 0, Reynolds' disconnected pendulums. 
V oz X*, U = J V, Deep-water gravity waves. 
V c= X", U = V, Aerial waves, &c. 
V oc X_i, U = •§ V, Capillary water waves. 
V co X-1, U = 2 7, Flexural waves. 

The capillary water waves are those whose wave-length is so small 
that the force of restitution due to capillarity largely exceeds that due 
to gravity. Their theory has been given by Thomson (Phil. Mag., 
Nov. 1871). The flexural waves, for which U=2V, are those cor
responding to the bending of an elastic rod or plate ("Theory of 
Sound," § 191). 

In a paper read at the Plymouth meeting of the British Association 
(afterwards printed in "Nature," Aug. 23, 1877), Prof. Osborne 
Reynolds gave a dynamical explanation of the fact that a group of 
deep-water waves advances with only half the rapidity of the indi
vidual waves. It appears that the energy propagated across any point, 
when a train of waves is passing, is only one-half of the energy neces
sary to supply the waves which pass in the same time, so that, if the 
train of waves be limited, it is impossible that its front can be propa
gated with the full velocity of the waves, because this would imply the 
acquisition of more energy than can in fact be supplied. Prof. Reynolds 
did not contemplate the cases where more energy is propagated than 
corresponds to the waves passing in the same time; but his argument, 
applied conversely to the results already given, shews that such case3 
must exist. The ratio of the energy propagated to that of the passing 
waves is U : Vthus the energy propagated in the unit time is XI : V 
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This valuo of CF> satisfies the general differential equation for irrota
tional motion (v2<£ = 0), makes the vertical velocity ^ zero when 

a = I, and — ̂  when z = 0. The velocity of propagation is given by 
do 

a 0*1 fi—kI 

7' = g - e , 6 , (6). 

We may now calculate the energy contained in a length x, which is 
supposed to include so great a number of waves that fractional parts 
may be left out of account. 

For the potential energy we have 

= gp j£ zdzdx = \gp jV dx = \gPH' .x (7). 

For the kinetic energy, 

' - * / / { ( 2 ! ) ' * © > * 
^ dx = \gPII\x r.'. (8), dz /z=0 

by (1) and (6). If, in accordance with the argument advanced at the 
end of this paper, the equality of V1 and T be assumed, the value of 
the velocity of propagation follows from the present expressions. The 
whole energy in the waves occupying a length x is therefore (for each 
unit of breadth) V1 + T=\gPH\x •» (9), 
II denoting the maximum elevation. 

1 Prof. Reynolds considers the trochoidal wave of Rankiue and Fronde, which 
involves molecular rotation. 

of that existing in a length V, or U times that existing in the unit 
length. Accordingly 

Energy propagated in unit time : Energy contained (on an average) 
in unit length =CI(KV) : CIK, by (1). 

As an example, I -will take the case of small irrotational waves in 
water of finite depth ll. If % be measured downwards from the surface, 
and the elevation (h) of the wave be denoted by 

h - II cos (nt — KX) (4) , 

in which N = KV, the corresponding velocity-potential (<J>) is 
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We have next to calculate the energy propagated iu time t across a 
plane for -which x is constant, or, in other words, the work (IF) that 
must be done in order to sustain the motion of the plane (considered, 
as a flexible lamina) in the face of the fluid pressures acting upon the 
front of it. The variable part of the pressure (Sp), at depth », is 
given by 

s cty e«te-Q + e-«l'-» . t . 
bp = - p~ = — 1l Vli : = COS (lit — KX), 

while for the horizontal velocity 
dd> e«(«-0 + e-«(«-0 

so that W^p^dzdt-lgpIP. Vt. [i + ̂ ^M^J (10), 

on integration. Prom the value of V in (6) it may be proved that 

and it is thus verified that the value of IF for a unit time 

_ d (KV) ^ e n e r g y j n u n j ^ lengt,]!, 
UK 

As an example of the direct calculation of U, we may take the case 
of waves moving under the joint influence of gravity and cohesion. 

It is proved by Thomson that 

V = Z+T'K (11), 

where T is the cohesive tension. Hence 

- ^ 4 ^ 1 = 1 « <">· 
When K is small, the surface tension is negligible, and then V'=\V; 

but when, on the contrary, K is large, U-—^V, as has already been 
stated. When T'i?=g, U=V. This corresponds to the muumuni 
velocity of propagation investigated by Thomson. 

Although the argument from interference groups seems satisfactory, 
an independent investigation is desirable of the relation between 
energy existing and energy propagated. For some time I was at a loss 
for a method applicable to all kinds of waves, not seeing in particular 
why the comparison of energies should introduce the consideration of 
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a va r ia t ion of wave-length. T h e following invest igat ion, in which t h e 
i n c r e m e n t of wave- length is imaginary, m a y perhaps be considered to 
m e e t t h e want:—> 

L e t u s suppose t h a t t he mot ion of every p a r t of t h e med ium is 
res is ted b y a force of v e r y small magn i tude propor t ional to t h e mass 
a n d t o t h e velocity of t h e par t , t h e effect of which wi l l be t h a t waves 
genera ted a t t he origin gradual ly die a w a y as x increases. The motion, 
wh ich i n t h e absence of friction would be represented by cos (nt — K X ) , 
u n d e r t h e hifluence of friction is represented b y e~'AX cos (nt — K X ) , 
w h e r e fx, i s a small positive coefficient. I n strictness t h e value of K is 
also a l tered b y t h e f r ic t ion; b u t t h e al tera t ion i s of t h e second order as 
r ega rds t h e frictional forces, a n d m a y b e omit ted u n d e r t he circum
stances he re supposed. The energy of t h e waves p e r un i t length a t 
a n y s tage of degradat ion is proport ional t o t h e square of the ampli tude, 
a n d t h u s t h e whole energy on t h e posi t ive side of t he origin is to t he 
energy of so much of t h e waves a t t he i r grea tes t va lue , i .e . , a t t he 

origin, as would be contained i n t he u n i t of length, as f"ersi*' dx : 1, 
or as ( 2 / t ) - 1 : 1. The energy t r ansmi t t ed t h rough t h e origin i n t he 
u n i t t i m e is t he same as t he energy d iss ipa ted; and, if the frictional 
force act ing on t h e element of mass m be hmv, where v is t he velocity 
of t he element and h is constant , the energy dissipated i n un i t t ime is 
Ji%mv' or 2hT, T being t h e k ine t ic energy. Thus , on t h e assumption 
t h a t t he kinet ic energy is half t h e whole energy, we find t h a t t h e 
energy t r ansmi t t ed in t he u n i t t ime is t o t h e greatest energy existing 
i n t he u n i t l ength as h : 2/*. I t remains t o find t h e connection be
t w e e n h and p. 

F o r th is purpose i t will be convenient to regard cos (nt — K X ) as the 
rea l p a r t of eint e~ilcx, and to inqui re how K is affected, when n is given, 
b y t h e int roduct ion of friction. N o w t h e effect of friction is represented 

d? d 
i n t he differential equations of mot ion b y t he subst i tu t ion of + h 

i n place of or, since t he whole motion is proport ional to eint, by 

subs t i tu t ing — 7 i s + ihn for — w 2. H e n c e t h e in t roduct ion of friction 
corresponds to a n al terat ion of n from n t o n-\ih ( the square of h 

dx 

being neglected); and accordingly K is al tered from K to K—\ih — . 
(t7Z 

The solution t h u s becomes e d n ei(-n(-*x\ or, when the imaginary 

p a r t is rejected, e ' '*»* cos (nt - K X ) ; so tha t / l t = i ^ ^ ~ > a n ^ 

ciiz · 
h : 2[x = -=-. The ra t io of the energy t ransmi t ted in the un i t t ime to 
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the energy existing in the unit length is therefore expressed by 

It has often been noticed, in particular cases of progressive waves, 
that the potential and kinetic energies are equal; but I do not call to 
mind any general treatment of the question. The theorem is not 
usually true for the individual parts of the medium1, but must be 
under stood to refer either to an integral number of wave-lengths, or to 
a space so considerable that the outstanding fractional parts of waves 
may be left out of account. As an example well adapted to give in
sight into the question, I will take the case of a uniform stretched 
circular membrane ("Theory of Sound," § 200) vibrating with a given 
number of nodal circles and diameters. The fundamental modes are 
not quite determinate in consequence of the symmetry, for any dia
meter may be made nodal. In order to get rid of this indeterminate-
ness, we may suppose the membrane to carry a small load attached to 
it anywhere except on a nodal circle. There are then two definite 
fundamental modes, in one of which the load lies on a nodal diameter, 
thus producing no effect, and in the other midway between nodal dia
meters, where it produces a maximum effect (" Theory of Sound," 
§ 208). If vibrations of both modes are going on simultaneously, the 
potential and kinetic energies of the whole motion may be calculated 
by simple addition of those of the components. Let us now, supposing 
the load to diminish without limit, imagine that the vibrations are of 
equal amplitude and differ in phase by a quarter of a period. The 
residt is a progressive wave, whose potential and kinetic energies are 
the sums of those of the stationary waves of which it is composed. 
For the first component we have V^ — E cos* nt, Tl=J2 sio." nt; and 
for the second component, Va = Ewa.*nt, T3 = E cos2 nt; so that 
F, + Va=Tl + T1=E, or the potential and kinetic energies of the 
progressive wave are equal, being the same as the whole energy of 
either of the components. The method of proof here employed appears 
to be sufficiently general, though it is rather difficult to express it in 
language>pWch inappropriate to all kinds of waves. 

dn d(KV) as was to be proved. 
du dK 
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London, and Member of the Institution K Civil Engineers. 8vo. 
•js. 6d. 
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P H Y S I C A L S C I E N C E . 

Airy (G. B . ) — P O P U L A R ASTRONOMY. With Illustrations. 
By Sir G. B. AIRY, K.C.B. , Astronomer Royal. New Editior 
i8mo. cloth. 4s. 6d. 

Bast ian .—Works by H. CHARLTON BASTIAN, M . D . , F .R.S . , 
Professor of Pathological Anatomy in University College, London, 
&c.:— 

T H E B E G I N N I N G S OF L I F E : Being some Account of the Nature, . 
Modes of Origin, and Transformations of Lower Organisms. In 
Two Volumes. With upwards of 100 Illustrations. Crown 8vo. 2&r. 
"It is d book that cannot be ignored, and must inevitably lead to 

renewed discussions and repeated observations, and through these to 
the establishment of truth."—A. R. Wallace in Nature. 

E V O L U T I O N A N D T H E ORIGIN OF LIFE. Crown 8vo. 
6s. 6d. 
"Abounds in information of interest to the student of biological 

science"- -Daily News. 

B l a k e . — A S T R O N O M I C A L M Y T H S . Based on Flammarion's 
" T h e Heavens." By John F. BLAKE. With numerous Illustra
tions. Crown 8vo. <)s. 

Blanford (H. F . ) — R U D I M E N T S OF P H Y S I C A L GEO
G R A P H Y FOR T H E U S E OF I N D I A N SCHOOLS. By 
H. F . BLANFORD, F .G.S . With numerous Illustrations and 
Glossary of Technical Terms employed. New Edition. Globe 
8vo. 2s. 6d. 

Blanford (W. / T . ) — G E O L O G Y A N D ZOOLOGY OF 
A B Y S S I N I A . By W. T. BLANFORD. 8vo. 21s. 

B o s a n q u e t — A N E L E M E N T A R Y T R E A T I S E ON M U S I C A L 
I N T E R V A L S A N D T E M P E R A M E N T . With an Account of 
an Enharmonic Harmonium exhibited in the Loan Collection of 
Scientific Instruments, South Kensington, 1876 ; also of an Enhar
monic Organ exhibited to the Musical Association of London, 
May, 1875. By R. H. Bosanquet, Fellow of St, John's College, 
Oxford. ,8vo. 6s. 

Coal : I T S H I S T O R Y A N D I T S U S E S . By Professors GREEN, 
MIALL, THORPE, RUCKER, and MARSHALL, of the Yorkshire 
College, Leeds. With Illustrations. 8vo. 12s. 6d. 
'' It furnishes a very comprehensive treatise on the whole subject of Coal 

from the geological, chemical, mechanical, and industrial points of 
view, concluding with a chapter on the important topic known as 
the ' Coal Question.'"—Daily News. 
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Cooke ( J o s i a h P . , J u n . ) — F I R S T P R I N C I P L E S O F 
C H E M I C A L P H I L O S O P H Y . By JOSIAH P. COOKE. Jun., 
Ervine Professor of Chemistry and Mineralogy in Harvard College. 
Third Edition, revised and corrected. Crown 8 v o . 12s. 

Cooke (M. C . ) — H A N D B O O K O F B R I T I S H F U N G I , 
with full descriptions of all the Species, and Illustrations of the 
Genera. By M . C. COOKE, M .A . Two vols, crown 8vo. 24s. 
" Will maintain its place a s the standard English book, on the 

subject of which it treats, for many years to come"—Standard. 

D a w k i n s . ^ C A V E - H U N T I N G : Researches on the Evidence of 
Caves respecting the Early Inhabitants of Europe. By W . B O Y D 
D A W K I N S , F . R.S., & c , Professor of Geology at Owens College, 
Manchester. With Coloured Plate and Woodcuts. 8 v o . 21s. 
" The mass of information he has brought together, with the judicious 

use he has made of his materials, will be found to invest his book 
with muck of new and singular value."—Saturday Review. 

D a w s o n (J. W . ) — A C A D I A N G E O L O G Y . The Geologic 
Structure, Organic Remains, and Mineral Resources of Nova 
Scotia, New Brunswick, and Prince Edward Island. By J O H N 
W I L L I A M D A W S O N , M .A . , L L . D . , F .R.S„ F . G .S . , Principal and 
Vice-Chancellor of M 'Gi l l College and University, Montreal, &c. 
With a Geological Map and numerous Illustrations. Third Edition, 
with Supplement. 8vo. 21s. Supplement, separately, 2s.6d. 
" The book will doubtless find a place in the library, not only Of 

the scientific geologist, but also of all who are desirous of the i n 
dustrial progress and commercial prosperity of the Acadian pro
vinces" Mining J rnal. 

F l e i s c h e r . —A S Y S T E M O F V O L U M E T R I C A N A L Y S I S . 
By Dr. E. FLEISCHKK. Translated from the Second German 
Edition by M . M . Pattison Muir, with Notes and Additions. 
Illustrated. Crown 8vo. Js. 6d. 

F o r b e s . — T H E T R A N S I T O F V E N U S . By GEORGE FORBES, 
B.A. , Professor of Natural Philosophy in the Andersonian Univer
sity of Glasgow. With numerous Illustrations. Crown 8vo. 3-r. 6d. 

F o s t e r and B a l f o u r . — E L E M E N T S O F E M B R Y O L O G Y 
By M I C H A E L FOSTER, M .D . , F .R .S . , andF. M . BALFOUR, M . A . , 
Fellow of Trinity College, Cambridge. With numerous Illustra
tions. Part I. Crown 8vo. 7^. 6d. 

G a l t o n . —Works by F R A N C I S GALTON, F .R .S . ·.— 
M E T E O R O G R A P H I C A , or Methods of Mapping the Weather. 

Illustrated by upwardsof 6 0 0 Pr'nted Lithographic Diagrams. 4 1 0 . 9 ; . 
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Galton— ontinued. 

H E R E D I T A R Y G E N I U S : An Inquiry into its Laws and Con
sequences. Demy 8vo. 1 2 s . 
The Times calls it " a m st able and most interesting book" 

E N G L I S H M E N OF S C I E N C E j T H E I R N A T U R E A N D 
N U R T U R E . 8vo. S s . 6d. 
" The book is certainly one of very great interest."—Nature. 

Geikie .—Works by ARCHIBALD GEIKIE, LL.D., F .R S., 
Murchison Professor of Geology and Mineralogy at Edinburgh :— 

E L E M E N T A R Y L E S S O N S I N P H Y S I C A L G E O G R A P H Y . 
With numerous Illustrations. Fcap. 8vo. 4 s . 6d. Questions, it. 6d. 

F I E L D GEOLOGY. With Illustrations. Crown 8vo. [Shortly. 
P R I M E R OF GEOLOGY. Illustrated. i8mo. i t . 
PRIMER O F P H Y S I C A L G E O G R A P H Y . Illustrated. i8mo. i t . 

Gordon.—AN E L E M E N T A R Y BOOK O N H E A T . By J. E. 
H. GORDON, B.A., Gonville and Caius College, Cambridge. 
Crown 8vo. 2 s . 

G u i l l e m i n . — T H E F O R C E S O F N A T U R E : A Popular Intro
duction to the Study of Physical Phenomena. By AM£D£E 
GUILLEMIN. Translated from the French by MRS. NORMAN 
LOCKYER ; and Edited, with Addi ions and Notes, by J. NORMAN 
LOCKYER, F .R .S . Illustrated by Coloured Plates, and 455 Wood
cuts. Third and cheaper Edition. Royal 8vo. 2 1 s . 
" Tran lator and Editor have done justice to their trust. The 

text has all the force and flow of original writing, ccnnbining 
faithfulness to the author's meaning with purity and independence 
in regard to idiom; while the historical precision and accuracy 

pervading the work throughout, speak of the watchful editorial 
supervision which has been given to every scientific detail. Nothing 
can well exceed the clearness and delicacy of the illustrative wood
cuts. Altogether, the work may be said to have no parallel, either 
in point of fulness or attraction, as a popular manual of physical 
science."—Saturday Review. 

T H E A P P L I C A T I O N S OF P H Y S I C A L F O R C E S . By A. 
GUILLEMIN. Translated from the French by Mrs. LOCKYER, and 
Edited with Notes and Additions by J. N. LOCKYER, F . R . S . 
With Coloured Plates and numerous Illustrations. Cheaper 
Edition. Imperial 8vo. cloth, extra gilt 361. 

Also in Eighteen Monthly Parts, price it. each. Part L in November, 1878. 
" A book which we can heartily recommend, b th on account of the 

width and soundness of its contents, and also because of the excel-
lence of its print, its illustrations, and external appearance."— 
Westminster Review. 
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H a n b u r y . — S C I E N C E P A P E R S : chiefly Pharmacological and 
Botanical. By D A N I E L H A N B U R Y , F .R .S . Edited, with 
Memoir, by J. INCE, F .L .S . , and Portrait engraved by C. H . 
JEENS. 8vo. 14Í. 

H e n s l o w . — T H E T H E O R Y O F E V O L U T I O N O F L I V I N G 
T H I N G S , and Application of the Principles of Evolution to 

Religion considered as Illustrative of the Wisdom and Benefi
cence of the Almighty. By the Rev. GEORGE HENSLOW, 
M.A., F . L . S . Crown 8vo. 6s. 

Hooker .—Works by Sir J. D . HOOKER, K .C.S . I . , C.B., 
F .R .S . , M.D. , D.C.L. :— 

T H E S T U D E N T ' S F L O R A O F T H E B R I T I S H I S L A N D S . 
Second Edition, revised and improved. Globe 8vo. 10s. bd. 
The object of this work is to supply students and field-botanists with a 

fuller account of the Plants of the British Islands than the manuals 
hitherto in use aim at giving. " Certainly the fullest and most 
accurate manual of the kind that has yet appeared. Dr. Hooker 
has shown his characteristic industry and ability in the care and 
skill which he has thrown into the characters of the plants. These 
are to a great extent original, and are really admirable for their 
combination of clearness, brevity, and completeness."—Pall Mall 
Gazette. 

P R I M E R OF B O T A N Y . With Illustrations. i8mo. is. N e w 
Edition, revised and corrected. 1 

H o o k e r a n d B a l l . — J O U R N A L O F A T O U R I N M A R O C C O 
A N D T H E G R E A T A T L A S . By Sir J. D . HOOKER, K.C S.I., 

' C.B., F .R .S . , & c , and JOHN BALL, F . R . S . With Appendices, 
including a Sketch of the Geology of Marocco. By G. M A W , 
F .L .S . , F .G.S . With Map and Illustrations. 8vo. 21s. 

H u x l e y and Mart in .—A C O U R S E O F P R A C T I C A L I N 
S T R U C T I O N I N E L E M E N T A R Y BIOLOGY. By T. H. 
H U X L E Y , L L . D . , Sec. R.S . , assisted by H. N. M A R T I N , B.A., 
M.B., D . S c , Fellow of Christ's College, Cambridge. Crown 8vo. 
6s. 
" This is the most thoroughly valuable book to teachers and students 

of biology which has ever appeared in the English tongue."— 
London Quarterly Review. 

H u x l e y (Professor ) .—LAY S E R M O N S , A D D R E S S E S , 
A N D R E V I E W S . By T. H. H U X L E Y , L L . D . , F .R .S . N e w 
and Cheaper Edition. Crown 8vo. Js. 6d. 
Fomteen Discourses on the following subjects:—(1) On the Advisable-

ness of Improving Natural Knoivledge:—(2) Emancipation— 
Black and White :—(3) A Liberal Education, and where to find 
it:—(4) Scientific Education:—(5) On the Educational Value of 
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Huxley (Professor)—continued. 
the Natural History Sciences:—(6) On the Study of Zoology:— 
(7) On the Physical Basis of life:—(8) The Scientific Aspects of 
Positivism:—(9) On a Piece of Chalk:—(10) Geological Contem
poraneity and Persistent Types of Life:—(11) Geological Reform:— 
(12) The Origin of Species:—(13) Criticisms on the "Origin of 
Species:"—(14) On Descartes' " Discourse touching the Method of 
using One's Reason rightly and of seeking Scientific Truth." 

E S S A Y S S E L E C T E D FROM " LAY SERMONS, A D 
D R E S S E S , A N D R E V I E W S . " Second Edition. Crown 8vo. is. 

C R I T I Q U E S A N D A D D R E S S E S . 8vo. 10s. 6d. 
Contents:—I. Administrative Nihilism. 2. The School Boards: 

what they can do, and what they may do. 3. On Medical Edu-
catwn. 4. Yeast. 5- On the Formation of Coal. 6. On Coral 
and Coral Reefs. J. On the Methods and Results of Ethnology. 
8. On some Fixed Points in British Ethnology. 9. Palaontology 
and the Doctrine of Evolution. 10. Biogenesis and Abiogenesis. 
I I . Mr. Darwin's Critics. 12. The Genealogy of Animals. 
13. Bishop Berkeley on the Metaphysics of Sensation. 

L E S S O N S I N E L E M E N T A R Y PHYSIOLOGY. With numerous 
Illustrations. New Edition. Fcap. 8vo. 4s. 6d. 

"Pure gold throughout."—Guardian. " Unquestionably the clearest 
and most complete elementary treatise on this subject that we possess in 
any language."—Westminster Review. 

A M E R I C A N A D D R E S S E S : with a Lecture on the Study of 
Biology. 8vo. 6s. 6d. 

P H Y S I O G R A P H Y : A n Introduction to the Study of Nature. With 
Coloured Plates and numerous Woodcuts. New Edition. Crown 
8vo. p. 6d. 

Jellet (John H., B.D.) — A T R E A T I S E O N T H E 
T H E O R Y O F F R I C T I O N . By J O H N H. J E L L E T , B .D. , 
Senior Fellow of Trinity College, Dublin; President of the Royal 
Irish Academy. 8vo. &s. 6d. 

Jones .—THE O W E N S COLLEGE J U N I O R COURSE OF 
P R A C T I C A L CHEMISTRY. By F R A N C I S J O N E S , Chemical 
Master in the Grammar School, Manchester. With Preface by 
Professor ROSCOE. New Edition. i8mo. with Illustrations. 2s. 6d. 

Kings ley .—GLAUCUS : OR, T H E W O N D E R S O F T H E 
S H O R E . By C H A R L E S K I N G S L E Y , Canon of Westminster. 
N e w Edition, with numerous Coloured Plates. Crown 8vo. 6s. 

Langdon.—THE A P P L I C A T I O N OF E L E C T R I C I T Y TO 
R A I L W A Y W O R K I N G . By W . E . LANGDON, Member of the 
Society of Telegraph Engineers. With numerous Illustrations. 
Extra fcap. 8vo. 4 .̂ 6d. 
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Lockyer (J. N . )—Works by J . N O R M A N L O C K Y E E , F .R.S .— 
E L E M E N T A R Y L E S S O N S I N A S T R O N O M Y . With nu
merous Illustrations. New Edition. i8mo. 5.?. 6d. 
" The book is full, clear, sound, and worthy of attention, not only as 

a popular exposition, but as a scientific 'Index.' " — Athenaeum. 
" The most fascinating of elementaiy books on the Sciences."— 
Nonconformist. 

T H E SPECTROSCOPE A N D I T S A P P L I C A T I O N S . By J. 
N O R M A N LOCKYER, F. R.S. With Coloured Plate and numerous 
Illustrations. Second Edition. Crown 8vo. 3 .̂ 6d. 

C O N T R I B U T I O N S TO S O L A R P H Y S I C S . By J. N O R M A N 
LOCKYER, F . R . S . I. A Popular Account of Inquiries into the 
Physical Constitution of the Sun, with especial reference to Recent 
Spectroscopic Researches. II . Communications to the Royal 
Society of London and the French Academy of Sciences, with 
Notes. Illustrated by 7 Coloured Lithographic Plates and 1 7 5 
Woodcuts. Royal 8vo. cloth, extra gilt, price 31s. 6d. 
" The \ook may be taken as an authentic exposition of the present 

state of science in connection with the important subject of spectro
scopic analysis. . . . Even the unscientific public may derive much 
information from it''—Daily News. 

PRIMER OF A S T R O N O M Y . With Illustrations. l8mo. is. 
Lockyer and Seabroke.—STAR-GAZING: P A S T A N D 

P R E S E N T . An Introduction to Instrumental Astronomy. By 
J. N . LOCKYER, F .R .S . Expanded from Shorthand Notes of a 
Course of Royal Institution Lectures with the assistance of G. M. 
SEABROKE, F.R. A .S . With numerous Illustrations. Royal 8vo. zis. 
"A book oj great interest and utility to the astronomical student." 

—Athenaeum. 
Lubbock.'—Works by S I R J O H N LUBBOCK, M . P . , F . R . S . , D . C . L , : 

T H E O R I G I N A N D M E T A M O R P H O S E S O F I N S E C T S . 
With Numerous Illustrations. Second Edition. Crown 8vo. 3;. 6d. 
"As a summary of the phenomena of insect metamorphoses his little 

book is of gi'eat value, and will be read with interest and profit 
by all students of natural history. The whole chapter on the 
origin of insects is most interesting and valuable. The illustra
tions are numerous and good."—Westminster Review. 

O N B R I T I S H W I L D F L O W E R S C O N S I D E R E D I N R E L A 
T I O N TO I N S E C T S . With Numerous Illustrations. Second 
Edition. Crown 8vo. 4^. 6d. 

Macmillan (Rev. Hugh).—For other Works by the same 
Author, see THEOLOGICAL CATALOGUE. 

H O L I D A Y S ON H I G H L A N D S ; or, Rambles and Incidents in 
search of Alpine Plants. Globe 8vo. cloth. 6s. 
" One of the most charming books of its kind ever written."— 

Literary Churchman. "Mr. Macmillan's glowing pictures of 
Scandinavian scenery."—Saturday Review. 
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Macmillan (Rev. Hugh)—continued. 
F I R S T FORMS O F . V E G E T A T I O N . Second Edition, corrected 

and enlarged, with Coloured Frontispiece and numerous Illustra
tions. Globe 8vo. 6s. 
The first edition of this book was published under the name of 

"Footnotes from the Page of Nature; or, First Forms of Vegeta
tion. Probably the best popular guide to the study of mosses, 
lichens, and fun^i ever written. Its practical value as a help to 
the student and collector cannot be exaggerated."—Manchester 
Examiner. 

Mansfield (C. B.)—Works by the late C. B. M A N S F I E L D : — 

A T H E O R Y OF SALTS. A Treatise on the Constitution of 
Bipolar (two-membered) Chemical Compounds. Crown 8vo. 14*. 

A E R I A L N A V I G A T I O N . The Problem, with Hints for its 
Solution. Edited by R. B. M A N S F I E L D . With a Preface by J. 
M. L U D L O W . With Illustrations. Crown 8vo. 10s. 6d. 

Mayer.—SOUND : a Series of Simple, Entertaining, and In
expensive Experiments in the Phenomena of Sound, for the Use of 
Students of every age. By A. M, MAYER, Professor of Physics 
in the Stevens Institute of Technology, S?c. With numerous Illus
trations. Crown 8vo. 3;. 6d. 

Mayer and Barnard.—LIGHT. A Series of Simple, Enter
taining, and Useful Experiments in the Phenomena of Light, for 
the use of Students of every age. By A. M . M A Y E R and C. 
B A R N A R D . With Illustrations. Crown 8vo. 2s. 6d. 

Mial l .—STUDIES I N C O M P A R A T I V E A N A T O M Y . No. 1, 
The Skull of the Crocodile. A Manual for Students. By L. C. 
M I A L L , Professor of Biology in Yorkshire College. 8vo. 2s. 6d. 
No. 2, The Anatomy of the Indian Elephant. By L. C. M I A L L 
and F . G R E E N W O O D . With Plates. $s. 

Miller.—THE R O M A N C E OF A S T R O N O M Y . By R, K A L L E Y 
M I L L E R , M.A., Fellow and Assistant Tutor of St. Peter's Col
lege, Cambridge. Second Edition, revised and enlarged. Crown 
8vo. 4s. 6d. 

Mivart (St. George).—Works by S T . GEORGE M I V A R T , F .R.S. 
&c, Lecturer in Comparative Anatomy at St. Mary's Hospital:— 

O N T H E G E N E S I S OF SPECIES. Crown 8vo. Second 
Edition, to which notes have been added in reference and reply to 
Darwin's "Descent of Man." With numerous Illustrations, pp. 
xv. 296. 9̂. ' 
" In no work in the English language has this great controversy 

been treated at once with the same broad and vigorous grasp of 
facts, and the same liberal and candid temper."—Saturday Review. 
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Mivart (St. George)—continued. 
T H E COMMON FROG. With Numerous Illustrations. Crown 

8vo.'3y. 6d. (Nature Series.) 
" It is an able monogram of the Frog, and something more. It 

throws valuable crosslights over wide portions of animated nature. 
Would that such works were more plentiful."—Quarterly Journal 
of Science. 

Moseley.—NOTES BY A N A T U R A L I S T O N T H E " C H A L 
L E N G E R , " being an account of various observations made during 
the voyage of H . M . S . " Challenger" round the world in the years 
1872—76. By H . N. MOSELEY, M.A.. F . R . S . , Member of the 
Scientific Staff of the "Challenger." With Map, Coloured 
Plates, and Woodcuts. 8vo. 21s. 

Muir.—PRACTICAL C H E M I S T R Y F O R M E D I C A L S T U 
D E N T S . Specially arranged for the first M. B. Course. By 
M. M. P A T T I S O N M U I R , F . R . S . E . Fcap. 8vo. is. 6d. 

Murphy.—HABIT A N D I N T E L L I G E N C E : a Series of 
Essays on the Laws of Life and Mind. By JOSEPH J O H N 
M U R P H Y . Second Edition, thoroughly revised and mostly re
written. With Illustrations. 8vo. 16s. 

Nature.—A W E E K L Y I L L U S T R A T E D J O U R N A L O F 
SCIENCE. Published every Thursday. Price 6d. Monthly 
Parts, 2s. and 2s. 6d.; Half-yearly Volumes, 15.?. Cases for binding 
Vols. is. dd. ' s 

" This Able and well-edited Journal, which posts up the science of 
the da$ promptly, and promises to be of signal service to students 
and savants Scarcely any expressions that we can employ 
would exaggerate our sense of the moral and theological value of 
the work."—British Quarterly Review. 

Newcomb.—POPULAR A S T R O N O M Y . By S I M O N N E W -
COMB, LL.D. , Professor U .S . Naval Observatory. With 112 
Engravings and Five Maps of the Stars. • 8vo. i8.r. 
"As affording a thoroughly reliable foundation for more advanced 

•reading, Professor Newcomb's ' Popular Astronomy ' is deserving' 
of strong recommendation."—Nature. 

Oliver.—Works by D A N I E L O L I V E R , F .R.S. , F .L .S . , Professor of 
Botany in University College, London, and Keeper of the Herba
rium and Library of the Royal Gardens, Kew :— 

L E S S O N S I N E L E M E N T A R Y B O T A N Y . With nearly Two 
Hundred Illustrations. N e w Edition. Fcap. 8vo. 4*. 6d. 
This book is designed to teach the elements of Botany on Professor 

Henslotds plan of selected Types and by the use of Schedules. The 
earlier chapters, embracing the elements of Structural and Physio
logical Botany, introduce us to the methodical study of the Ordinal 
Types. The concluding chapters are entitled, " How to- Dry 
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Oliver—continued. 
Plants " and " How to Describe Plants." A valuable Glossary is 
appended to the volume. In the preparation of this work free use 
has been made of the manuscript materials of the late Professor 
Henslow. 

F I R S T BOOK O F I N D I A N B O T A N Y . With numerous 
Illustrations. Extra fcap. 8vo. 6s. 6d. 
'' It contains a well-digested summary of all essential knowledge 

pertaining to Indian Botany, wrought out in accordance with the 
best principles of scientific arrangement."—Allen's Indian Mail. 

Pennington.—NOTES O N T H E B A R R O W S A N D B O N E 
CAVES OF D E R B Y S H I R E . With an account of a Descent 
into Elden Hole. By R O O K E P E N N I N G T O N , B.A., LL.B. , 
F .G.S . 8vo. 6s. 

Penrose (F. C.)—ON A M E T H O D O F P R E D I C T I N G BY 
G R A P H I C A L C O N S T R U C T I O N , O C C U L T A T I O N S OF 
S T A R S BY T H E MOON, A N D S O L A R ECLIPSES F O R 
A N Y Q I V E N PLACE. Together with more rigorous methods 
for the Accurate Calculation of Longitude. By F. C. P E N R O S E , 
F . R . A . S . With Charts, Tables, &c. 4to. 12s. 

Perry.—AN E L E M E N T A R Y T R E A T I S E ON STEAM. By 
J O H N P E R R Y , B.E., Professor of Engineering, Imperial College of 
Engineering, Yedo. With numerous Woodcuts, Numerical Ex-

. 'amples, and Exercises. l8mo. 4s. 6d. 
"Mr. Perry has in this compact little volume brought together an 

immense amount of information, new told, regarding steam and 
its application, not the least of its merits being that tt is suited to 
the capacities alike of the tyro in engineering science or the better 
grade of artisan."—Iron. 

Pickering.—ELEMENTS OF P H Y S I C A L M A N I P U L A T I O N . 
By E. C. P I C K E R I N G , Thayer Professor of Physics in the Massa
chusetts Institute of Technology. Part I., medium 8vo. IQJ. 6d. 
Part II . , \ o s . 6d. t 

" When finished 'Physical Manipulation' will no doubt be con
sidered the best and most complete text-book on the subject of 
which it treats."—Nature. 

Prestwich.—THE PAST A N D F U T U R E OF GEOLOGY. 
An Inaugural Lecture, by J. PRESTWICH, M.A. , F .R.S . , & c , 
Professor of Geology, Oxford. 8vo. 2s. 

Radcliffe.—PROTEUS : OR U N I T Y I N N A T U R E . By. C. 
B. R A D C L I F F E , M.D., Author of "Vital Motion as a mode of 
Physical Motion. Second Edition. 8vo. 7 .̂ 6d. 
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R e n d u . — T H E T H E O R Y O F T H E G L A C I E R S OF S A V O Y . 
By M. LE CHANOINE R E N D U . Translated by A. WELLS, Q. C , 
late President of the Alpine Club. To which are added, the Original 
Memoir and Supplementary Articles by Professors T A I T and R u s -
K I N . Edited with Introductory remarks by GEORGE FORBES, B.A., 
Professor of Natural Philosophy in the Andersonian University; 
Glasgow. 8VO. is. 6d. ' 

R o s c o e . — W o r k s by H E N R Y E. ROSCOE, F . R . S . , Professor of 
Chemistry in Owens College, Manchester :— 

L E S S O N S I N E L E M E N T A R Y C H E M I S T R Y , I N O R G A N I C 
A N D O R G A N I C . With numerous Illustrations and Chromo-
litho of the Solar Spectrum, and of the Alkalis and Alkaline 
Earths. N e w Edition. Fcap. 8VO. 4 .̂ 6d. 

C H E M I C A L P R O B L E M S , adapted to the above by Professor 
THORPE. Fifth Edition, with Key. 2s. 
"We unhesitatingly pronounce it the best of all our elementary 

treatises on Chemistry."—Medical Times. 
P R I M E R O F C H E M I S T R Y . Illustrated. L8MO. is. 

Roscoe and S c h o r l e m m e r . — A T R E A T I S E O N C H E 
MISTRY. By PROFESSORS ROSCOE and SCHORLEMMER. 

Vol. I. , The Non-metallic Elements. With numerous Illustrations 
and Portrait of Dalton. Medium 8VO. 21*. 

Vol. II . , Metals. Part I. With Illustrations. 8VO. 18;. 
" Regarded as a treatise on the Non-metallic Elements, there can be 

no doubt that this volume is incomparably the most satisfactory one 
of which we are in possession"—Spectator, 

" It would be difficult to praise the work too highly. All the merits 
which we noticed in the first volume are conspicuous in the second. 
The arrangement is clear and scientific; the facts gained by modern 
research are fairly represented and judiciously selected; and tke 
style throughout is singularly lucid."—Lancet. 

• [Metals, Part I I . in the Press. 

Rumford (Count) .—THE L I F E A N D C O M P L E T E W O R K S 
O F B E N J A M I N T H O M P S O N , C O U N T R U M F O R D . With 
Notices of his Daughter. By GEORGE ELLIS. With Portrait. 
Five Vols. 8VO. 4/. \\s. 6d. 

Schor lemmer.—A M A N U A L O F T H E C H E M I S T R Y O F 
T H E C A R B O N C O M P O U N D S OR O R G A N I C C H E M I S T R Y . 
By C. SCHORLEMMER, F . R . S . , Lecturer in Organic Chemistry in 
Owens College, Manchester. 8VO. 14!-. 
"It appears to us to be as complete a manual of the metamorphoses of 

carbon as could be at present produced, and it must prove eminently 
useful to the chemical student.''—-Athenseum. 
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Shann.—AN E L E M E N T A R Y T R E A T I S E ON H E A T , I N 
R E L A T I O N TO STEAM A N D T H E STEAM E N G I N E . 
By G. SHANN, M,A. With Illustrations. Crown 8vo. 4s. 6d. 

Smith .—HISTORIA FILICUM : An Exposition of the Nature, 
Number, and Organography of Ferns, and Review of the Prin
ciples upon which Genera are founded, and the Systems of Classifi
cation of the principal Authors, with a new General Arrangement, 
&c. By J. SMITH. A . L . S . , ex-Curator of the Royal Botanic 
Garden, Kew. With Thirty Lithographic Plates by W. H. FITCH, 
F .L .S . Crown 8vo. 12s. 6d. 
"No one, anxious to work up a thorough knowledge of ferns can 

afford to do without it."—Gardener's Chronicle. 

South Kensington Science Lectures.—Vol. I.—Con
taining Lectures by Captain ABNEY, F .RS. , Professor STOKES, 
Professor KENNEDY, F. J. BRAMWELL, F .R .S . , Professor G. 
FORBES, H. C. SORBY, F .R.S . , J. T. BOTTOMLEY, F . R . S . E . , 
S. H . VINES, B.Sc., and Professor CAREY FOSTER. Crown 8vo. 
6s. [Vol. II. nearly ready. 

SpottlSWOOde P O L A R I Z A T I O N OF L I G H T . By W. 
SPOTTISWOODE, President °f the Royal Society. With numerous 
illustrations. Second Edition. Cr. 8vo. y. 6d. (Nature Series.) 
'' The illustrations are exceedingly well adapted to assist in making 

the text comprehensible."—Athenaeum. "A clear, trustworthy 
manual."—Standard. 

Stewart (B.)—Works by BALFOUR STEWART, F .R .S . , Professor 
of Natural Philosophy in Owens College, Manchester :— 

L E S S O N S I N E L E M E N T A R Y P H Y S I C S . With numerous 
Illustrations and Chromolithos of the Spectra of the Sun, Stars, 
and Nebulas. New Edition. Fcap. 8vo. 4s. 6d. 

. The Educational Times calls this the beau-idCal of a scientific text
book, clear, accurate, and thorough." 

P R I M E R OF P H Y S I C S . With Illustrations. New Edition, with 
Questions. i8mo. is. 

Stewart and Tait.—THE unseen U N I V E R S E : or, 
Physical Speculations on a Future State. By BALFOUR STEWART, 
F.R.S. , and P. G. TAIT, M.A. Sixth.Edition. Crown 8vo. 6s. 
" 7 he book is one which well deserves the attention of thoughtful ana 

religious readers. . . It is a perfectly sober inquiry, on scientific 
grounds, into the possibilities of a future existence."-—Guardian. 

Tait.—LECTURES O N SOME R E C E N T A D V A N C E S I N 
P H Y S I C A L S C I E N C E . By P. G. TAIT, M.A., Professor of 
Philosophy in the University of Edinburgh. Second edition, 
revised and enlarged, with the Lecture on Force delivered before 
the British Association. Crown 8vo, a*. 

B 
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Tanner.—FIRST P R I N C I P L E S OF A G R I C U L T U R E . By 
H E N R Y TANNER, F .C.S . , Professor of Agricultural Science, 
University College, Aberystwith, Examiner in the Principles of 
Agriculture under the Government Department of Science. I8MO. 
is. 

Taylor S O U N D A N D . MUSIC : A Non-Mathematical Trea
tise on the Physical Constitution of Musical Sounds and Harmony 
including the Chief Acoustical Discoveries of Professor Helm 
holtz. By SEDLEY TAYLOR, M.A., late Fellow of Trinity Col 
ledge, Cambridge. Large crown 8VO. Ss. 6d. 
" In no previous scientific treatise do we remember so exhaustive and 

so richly illustrated a description of forms of vibration and of 
wave-motion in fluids!'1— Musical Standard. 

Thomson.—Works by SIR WYVILLE THOMSON, K.C.B. , F .R .S . 
T H E D E P T H S O F T H E SEA : An Account of the General 

Results of the Dredging Cruises of H.M.SS. "Porcupine" and 
" Lightning " during the Summers of 1868-69 and 70, under the 
scientific direction of Dr. Carpenter, F.R.S. , J. Gwyn Jeffreys, 
F . R . S . , and Sir Wyville Thomson, F . R . S . With nearly 100 
Illustrations and 8 coloured Maps- and Plans. Second Edition. 
Royal 8VO. cloth, gilt. 31 J. 6d. 
The Athenaeum says: " The book is full of interesting matter, and 

is written by a master of the art of popular exposition. It is 
excellently illustrated, both coloured maps and woodcuts possessing 
high merit. Those who have already become interested in dredging 
operations will of course make a point of reading this work ; those 
who wish to be pleasantly introduced to the subject, and rightly 
to appreciate the news which arfives from time to time from the 
' Challenger,' should not fail to seek instruction from it." 

T H E V O Y A G E OF T H E " C H A L L E N G E R . " — T H E A T L A N 
TIC. A Preliminary account of the Exploring Voyages of H . M . S . 
"Challenger," during the year 1873 and the early part of 1876. 
With numerous Illustrations, Coloured Maps & Charts, & Portrait 
of the Author, engraved.by C. H. JEENS. 2 Vols. Medium 8VO. 42s. 
The Times says:—•" It is right that the public should have some 

authoritative account of the general results of the expedition, and 
that as many of the ascertained data as may be accepted with con

fidence should speedily find their place in the general body of 
scientific knowledge. No one can be more competent than the 
accomplished scientific chief of the expedition to satisfy the public in 
this respect. . . . Tke paper, printing, and especially the numerous 
illustrations, are of the highest quality. . . . We have rarely, if 
ever, seen more beautiful specimens of wood engraving than abound 
in this work. . . . Sir Wyville" Thomson's style is particularly 
attractive; he is easy and graceful, but vigorous and exceedingly 
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Thomson—continued. 
happy in the choke of language, and throughout the work there are 
touches which show that science has not banished sentiment from 
his bosom." . • 

Thudichum and D u p r e — A * T R E A T I S E O N T H E 
ORIGIN, N A T U R E , A N D V A R I E T I E S O F W I N E . 
Being a Complete Manual of Viticulture and CEnology. By J. L. 
W. T H U D I C H U M , M . D . , and A U G U S T D U P R E , Ph .D . , Lecturer on 
Chemistry at Westminster Hospital. Medium 8vo. cloth gilt. 25J. 

"A treatise almost unique for its usefulness either to the wine-grower, 
the vendor, or the consumer of wine. The analyses of wine are 
the most complete we have yet seen, exhibiting at a glance the 
constituent principles of nearly all the wines known in this country." 
—Wine Trade Review. 

Wallace (A. R.)—Works by A L F R E D RUSSET. W A L L A C E . 
C O N T R I B U T I O N S TO T H E T H E O R Y OF N A T U R A L 

S E L E C T I O N . A Series of Essays. New Edition, with 
Corrections and Additions. Crown 8vo. Ss. 6d. 
Dr. Hooker, in his address to the British Association, spoke thus 

of the author: '' Of Mr. Wallace and his many contributions 
to philosophical biology it is not easy to speak without enthu
siasm ; for, putting aside their great merits, he, throughout his 
writings, with a modesty as rare as I believe it to be uncon
scious, forgets his own unquestioned claim to the honour of 
^having originated independently of Mr. Darwin, the theories 
which he so ably defends." The Saturday Review says: "He 
has combined an abundance of fresh and original facts with a 
liveliness and sagacity of reasoning which are not often displayed 
so effectively on so small a scale." 

T H E G E O G R A P H I C A L D I S T R I B U T I O N OF A N I M A L S , 
with a study of the Relations of Living and Extinct Faunas as 
Elucidating the Past Changes of the Earth's Surface. 2 vols. 8vo. 
with Maps, and numerous Illustrations by Zwecker, 42s. 

The Times says: " Altogether it is a wonderful and fascinating 
story, whatever objections may be taken to theories founded upon 
it. Mr. Wallace has not attempted to add to its interest by any 
adornments of style ; he has given a simple and clear statement of 
intrinsically interesting facts, and what he considers to be legiti
mate inductions from them. Naturalists ought to be grateful to 
him for having undertaken so toilsome a task. The work, indeed, 
is a credit to all concerned—the author, the publishers, the artist— 
unfortunately now no more—of the attractive illustrations—last 
but by no means least, Mr. Stanford's map-designer." 
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Wallace (A. R.)—continued. 
TROPICAL NATURE : with other Essays. 8vo. I2J . 

" Nowhere amid the many descriptions of the tropics that have been 
given is to be found a summary of the past history and actual • 
phenomena of the tropics which gives that which is distinctive of 
the phases of nature in them more clearly, shortly, and impres
sively."—Saturday Review. WaringtQn.—the week of creations OR, THE 

COSMOGONY OF GENESIS CONSIDERED IN ITS 
RELATION TO MODERN SCIENCE. By GEORGE W A R -
INGTON, Author of " The Historic Character of the Pentateuch 
Vindicated." Crown 8vo. 4s. 6d. 

Wilson.—RELIGIO CHEMICI. By the late G E O R G E W I L S O N , 
M . D . , F.R.S.E., Regius Professor of Technology in the University 
of Edinburgh. With a Vignette beautifully engraved after a 
design by Sir N O E L P A T O N . Crown 8vo. Ss. 6d. 
"A more fascinating volume," the Spectator says, "has seldom 

fallen into our hands." 

Wilson (Daniel.)—CALIBAN a Critique on Shakespeare's 
"Tempest" and "Midsummer Night's Dream." By D A N I E L 
W I L S O N , LL.D., Professor of History and English Literature in 
University College, Toronto. 8vo, \os. 6d. 
" The whole volume is most rich in the eloquence of thought and 

imagination as well as of words. It is. a choice contribution at 
once to science, theology, religion, and literature."—British 
Quarterly Review. 

Wright.—METALS AND THEIR CHIEF INDUSTRIAL 
APPLICATIONS. By C. A L D E R W R I G H T , D .Sc , &C , Lee-
turer on Chemistry in St. Mary's Hospital School. Extra fcap. 
8vo. 3*. 6d. 

Wurtz.—A HISTORY OF CHEMICAL THEORY, from the 
Age of Lavoisier down to the present time. By A D , W U R T Z . 
Translated by H E N R Y W A T T S , F .R.S. Crown 8vo. 6s. 
" The discourse, as a resume of chemical theory and research, unites 

singular luminousness and grasp, A few judicious notes are added 
by the translator."—Pall Mall Gazette. " The treatment of the 
subject is admirable, and the translator has evidently done his duty 
most efficiently."—Westminster Review. 
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W O R K S O N M E N T A L A N D M O R A L 
P H I L O S O P H Y , A N D A L L I E D S U B J E C T S . 

A r i s t o t l e . — A N INTRODUCTION TO ARISTOTLE'S 
RHETORIC. With Analysis, Notes, and Appendices. By E . 
M. C O P E , Trinity College, Cambridge. 8vo. 14s. 

ARISTOTLE ON FALLACIES; OR, THE SOPHISTICI 
ELENCHI. With a Translation and Notes by E D W A R D POSTE, 
M .A. , Fellow of Oriel College, Oxford. 8vo. Ss. 6d. 

BirkS .—Works by the Rev. T. R. B I R K S , Professor of Moral Philo
sophy, Cambridge:— 
FIRST PRINCIPLES OF MORAL'SCIENCE;. or, a Firs 

Course of Lectures delivered in the University of Cambridge. 
Crown 8vo. %s. 6d. 
This work treats of three topics all preliminary to the direct exposi
tion of Moral Philosophy. These are the Certainty and Dignity 
of Moral Science, its Spiritual Geography, or relation to other 
main subjects of human thought, And its Formative Principles, or 
some elementary truths on which its whole development must 
depend. 

MODERN UTILITARIANISM; or, The Systems of Paley, 
Bentham, and Mill, Examined and Compared. Crown 8vo. 6s. 6d. 

MODERN PHYSICAL FATALISM, AND THE DOCTRINE 
OF EVOLUTION ; including an Examination of Herbert Spen
cer's First Principles. Crown 8vo. 6si 

B b O l e . — AN INVESTIGATION OF THE LAWS OF 
THOUGHT, ON WHICH ARE FOUNDED THE 
MATHEMATICAL THEORIES OF LOGIC AND PRO
BABILITIES/ By G E O R G E . BOOLE, L L . D . J Professor of 
Mathematics in the Queen's University, Ireland, &c. 8vo. 14s. 

Butler.—LECTURES ON T H E HISTORY OF ANCIENT 
PHILOSOPHY. By W. A R C H E R B U T L E R , late Professor of 
Moral Philosophy in the University of Dublin. Edited from the 
Author's MSS., with Notes, by W I L L I A M H E P W O R T H T H O M P 
SON , M.A., Master of Trinity College, and Regius Professor of 
Greek in the University of Cambridge. New aftd Cheaper Edition, 
revised by the Editor. 8vd. 12s. ', 

Caird.— A CRITICAL ACCOUNT OF T H E PHILOSOPHY 
OP KANT. With an Historical Introduction. By E. CAIRD, 
M.A., Professor of Moral Philosophy in the University of Glasgow. 
8vo. lis. 
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Calderwood.—Works by the Rev. H E N R Y C A L D E R W O O D , M.A . , 
L L . D . , Professor of Moral Philosophy in the University of Edin
burgh :— 

P H I L O S O P H Y O F T H E I N F I N I T E : A Treatise on Man's 
Knowledge of the Infinite Being, in answer to Sir W. Hamilton 
and Dr. Mansel. Cheaper Edition. 8vo. 7.?. 6d. 
"A book of great ability . . . . "written in a clear style, and may 

be easily understood by even those who are not versed in such 
discussions"—British Quarterly Review. 

A H A N D B O O K O F M O R A L P H I L O S O P H Y . N e w Edition. 
Crown 8vo. 6s. 
"It is, we feel convinced, the best handbook on the subject, intellectually 

and morally, and does infinite credit to its author."—Standard. 
"A compact and useful work, going over a great deal of ground 
in a manner adapted to suggest and facilitate further study. . . . 
His book will be an assistance to many students outside his own 
University of Edinburgh. —Guardian. 

T H E R E L A T I O N S O F M I N D A N D B R A I N . [Nearly ready. 

F i s k e . — O U T L I N E S O F COSMIC P H I L O S O P H Y , B A S E D 
O N T H E D O C T R I N E OF E V O L U T I O N , W I T H C R I T I 
CISMS O N T H E P O S I T I V E P H I L O S O P H Y . By J O H N 
F I S K E , M.A. , LL.B. , formerly Lecturer on Philosophy at 
Harvard University. 2 vols. 8vo. 25̂ . 
" The work constitutes a very effective encyclopaedia of the evolution

ary philosophy, and is well worth the study of all who wish to see 
at once the entire scope and purport of the scientific dogmatism of 
the day."—Saturday Review. 

Herbert.—THE R E A L I S T I C A S S U M P T I O N S OF M O D E R N 
S C I E N C E E X A M I N E D . By T. M. H E R B E R T , M.A. , late 
Professor of Philosophy, & c , in the Lancashire Independent 
College, Manchester. 8vo. i\s. 

Jardine.—THE E L E M E N T S O F T H E P S Y C H O L O G Y O F 
COGNITION. By R O B E R T J A R D I N E , B . D . , D . S c , Principal of 
the General Assembly's College, Calcutta, and Fellow of the Uni
versity of Calcutta. Crown 8vo. 6s. 6d. 

Jevons.—Works by W. S T A N L E Y JEVONS, L L . D . , M. A., F . R . S . , 
Professor of Political Economy, University College, London. 

T H E P R I N C I P L E S OF S C I E N C E . A Treatise on Logic and 
Scientific Method. N e w and Cheaper Edition, revised. Crown 
8vo. 12J. 6d. 
" No one in future can be said to have any true knowledge of what 

lias been done in the way of logical and scientific method in 
England without having carefully studied Professor Jevons' 
book."—Spectator. 
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Jevons—continued. 
T H E S U B S T I T U T I O N O F S I M I L A R S , the True Principle of 

Reasoning. Derived from a Modification of Aristotle's Dictum. 
Fcap. 8vo. 2s. 6d. 

E L E M E N T A R Y L E S S O N S I N LOGIC, D E D U C T I V E A N D 
I N D U C T I V E . With Questions, Examples, and Vocabulary of 
Logical Terms. New Edition. Fcap. 8vo. ¡5. 6d. 

PRIMER O F LOGIC. New Edition. i8mo. is. 
Maccoll T H E G R E E K SCEPTICS, from Pyrrho to Sextus. 

An Essay which obtained the Hare Prize in the year 1868. By 
N O R M A N MACCOLL, B.A. , Scholar of Downing College, Cam-

. bridge. Crown 8vo. 3-r. 6d. 

M'Cosh—Works by JAMES M 'COSH, LL. D. , President of Princeton 
College, N e w Jersey, U .S . 
" He certainly shows himself skilful in that application of logic to 

psychology, in that inductive science of the human mind which is 
the fine side of English philosophy. His philosophy as a whole is 
worthy of attention."—Revue de Deux Mondes. 

T H E M E T H O D OF T H E D I V I N E G O V E R N M E N T , Physical 
and Moral. Tenth Edition. 8vo. 10s. 6d. 
"This work is distinguished from other similar ones by its being 

based upon a thorough study of physical science, and an accurate 
knowledge of, its present condition, and by its entering in a 
deeper and more unfettered manner than its predecessors upon the dis
cussion of the appropriate psychological, ethical, and theological ques
tions. The author keeps aloof at oncefrom the a priori idealism and 
dreaminess of German speculation since Schelling, and from the 
onesidedness and narrowness of the empiricism and positivism 
whichhavesoprevailedinEngland."—Dr. Ulrici, in "Zeitschrift 
fur Philosophie." 

T H E I N T U I T I O N S O F T H E M I N D . A New Edition. 8vo. 
cloth. 10s. 6d. 
"The undertaking to adjust the claims of the sensational and in

tuitional philosophies, and of the a posteriori and a priori methods, 
is accomplished in this work with a great amount of success."— 
Westminster Review. " / value it for its large acquaintance 
with English Philosophy, which has not led him to neglect the 
%reat German works. I admire the moderation and clearness, as 
well as comprehensiveness, of the author's views."—Dr. Dorner, of 
Berlin. 

A N E X A M I N A T I O N O F MR. J. S. MILL'S P H I L O S O P H Y : 
Being a Defence ol Fundamental Truth. Second edition, with 
additions. 10;. 6d. 
"Such a work greatly needed to be done, and the author was the man 

to doit. This volume is important, not merely in reference to the 
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M'Cosh—continued. 
views of Mr. Mill, but of the whole school of writers, past and 
present, British and Continental, he so ably represents."—Princeton 
Review. 

T H E LAWS Q F DISCURSIVE T H O U G H T : Being a Text-, 
book of Formal Logic. Crown 8vo. 5*. 
" The amount of summarized information which it contains is very 

great; and it is the only work on the very important subject with 
which it deals. Never was such a work so much needed as in 
the present day."—London Quarterly Review. 

CHRISTIANITY AND POSITIVISM : A Series of Lectures to 
the Times on Natural Theology and Apologetics. Crown 8vo. 
•js. 6d. 

' THE SCOTTISH PHILOSOPHY FROM HUTCHESON TO 
HAMILTON, Biographical, Critical, Expository. Royal 8vo. \6s. 

M a s s o n . — R E C E N T BRITISH PHILOSOPHY : A Review 
with Criticisms; including some Comments on Mr. Mill's Answer 
to Sir William Hamilton. By D A V I D M A S S O N , M . A . , Professor 
of Rhetoric and English Literature in the University of Edinburgh. 
Third Edition, with an Additional Chapter. Crown 8vo. 6s. 
" We can nowhere point to a work which gives so clear an exposi\ 

tion of the course of philosophical speculation in Britain during 
the past century, or which indicates so instructively the mutual in
fluences of philosophic and scientific thought."—Fortnightly Review. 

Maudsley.—Works by H. M A U D S L E Y , M . D . , Professor of Medical 
Jurisprudence in University College, London. 

T H E PHYSIOLOGY OF MIND ; being the First Part of a Third 
Edition, Revised, Enlarged, and in great part Rewritten, of ' ' The 
Physiology and Pathology of Mind. Crown 8vo. iar. 6d. 

T H E PATHOLOGY OF MIND. [In the Tress. 
BODY AND MIND : an Inquiry into their Connexion and Mutual 

Influence, specially with reference to Mental Disorders. An 
Enlarged and Revised edition. To which are added, Psychological 
Essays. Crown 8vo. 6s. 6d. 

I 
Maurice.—Works by the Rev. F R E D E R I C K D E N I S O N M A U R I C E , 

M.A., Professor of Moral Philosophy in the University of Cam
bridge. (For other Works by the same Author, see THEOLOGICAL 
CATALOGUE.) 

SOCIAL MORALITY. Twenty-one Lectures delivered in the 
University of Cambridge. New and Cheaper Edition. Crown 8vo. 
los. 6d. 
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Maurice—continued. 
" Whilst reading it we are charmed by the freedom from exclusiveness 

and prejudice, the large charity, ''the loftiness of thought, the eager
ness to recognize and appreciate whatever there is of real worth 
extant in the world, which animates it from one end to the other. 
We gain new thoughts and new ways of viewing things, even more, 

perhaps, from being brought for a time under the influence of so 
noble and spiritual a mind. —Athenaeum. 

T H E CONSCIENCE : Lectures on Casuistry, delivered in the Uni
versity of Cambridge. New and Cheaper Edition. Crown 8vo. $s. 
The Saturday Review says: "We rise from them 'with detestation 

of all that is selfish arid mean, and with a living impression that 
there is such a thing as goodness after all." 

MORAL AND METAPHYSICAL PHILOSOPHY. . Vol. I. 
Ancient Philosophy from the First to the Thirteenth Centuries j 
Vol. II. the Fourteenth Century and the French Revolution, with 
a glimpse into the Nineteenth Century. New Edition and 
Preface. 2 Vols. 8vo. 25.5·. 

Morgan.—ANCIENT SOCIETY : or Researches in the Lines of 
Human Progress, from Savagery, through Barbarism to Civilisation. 
By L E W I S H. M O R G A N , Member of the National Academy of 
Sciences. 8vo. \6s. 
\ 

t 
Murphy,—THE SCIENTIFIC BASES OF FAITH. By 

JOSEPH J O H N M U R P H Y , Author of " Habit and Intelligence." 
8vo. 14^. 
" The book is not without substantial value; the writer continues the 

work of the best apologists of the last century, it may be with less 
force and clearness, but still with commendable persuasiveness and 
tact; and with an intelligent feeling for the changed conditions of 
the problem."—Academy. 

Paradoxical Philosophy.—A Sequel to "The Unseen Uni
verse." Crown 8vo. Js. 6d. 

Picton.—THE MYSTERY OF MATTER AND OTHER 
ESSAYS. By J . A L L A N S O N P I C T O N , Author of " New Theories 
and the Old Faith." Cheaper issue with New Preface. Crown 
8vo. 6s. 
C O N T E N T S :— The Mystery of Matter—The Philosophy of Igno

rance—The Antithesis of Faith and Siqht—The Essential Nature 
of Religion—Christian Pantheism. 
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26 SCIENTIFIC CATALOGUE. \ 

S i d g w i c k — T H E M E T H O D S O F E T H I C S . By H E N R Y 
S I D G W I C K , M.A. , Pralector in Moral and Political Philosophy in 
Trinity College, Cambridge. Second Edition, revised throughout 
with important additions. 8vo. 14J. 

A S U P P L E M E N T to the First Edition, containing all the important 
additions and alterations in the Second. Svo. 2s. 

" This excellent and very welcome volume. . . . . Leaving to meta
physicians any further discussion that may be needed respecting the 
already over-discussed problem of the origin of the moral faculty, he 
takes it for granted as readily as the geometrician takes space for 
granted, or the physicist the existence of matter. But he takes little 
else for granted, and defining ethics as ' the science of conduct,' be 
carefully examines, not the various ethical systems that have been 
propounded by Aristotle and Aristotle's followers downwards, but 
the principles upon which, so far as they confine themselves to the 
strict province of ethics, they are based.''—Athenseum. 

Thornton .—OLD-FASHIONED E T H I C S , A N D COMMON-
S E N S E M E T A P H Y S I C S , with some of their Applications. By 
W I L L I A M T H O M A S T H O R N T O N , Author of " ATreatise on Labour." 8vo. 10s. 6d. 
The present volume aeals with problems which are agitating" the 

' minds of all thoughtjul men. The following are the Contents:— 
/. Ante- Utilitarianism. II. History's Scientific Pretensions. III. 
David Hume as a Metaphysician. IV. Huxleyism. V. Recent 
Phase of Scientific Atheism. VI. Limits of Demonstrable 7'heism. 

T h r i n g ( E . , M . A . ) — T H O U G H T S O N L I F E - S C I E N C E . 
By E D W A R D T H R I N G , M.A. (Benjamin Place), Head Master of 
Uppingham School. New Edition, enlarged and revised. Crown 8vo. Js. 6d. 

Venn.—THE LOGIC O F C H A N C E : An Essay on the Founda
tions and Province of the Theory of Probability, with especial 
reference to its logical bearings, and its application to Moral and 

- Social Science. By J O H N V E N N , M.A., Fellow and Lecturer of 
Gonville and Caius College, Cambridge. Second Edition, re
written and greatly enlarged. Crown 8vo. ior. 6d. 
" One of the most thoughtful and philosophical treatises on any sub

ject connected with logic and evidence which has been produced in 
this or any other country for many years."—Mill's Logic, vol. ii. 
p. 77. Seventh Edition. 
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SCIENCE PRIMERS. 27 
S C I E N C E P R I M E R S F O R E L E M E N T A R Y 

S C H O O L S . 

Under the joint Editorship of Professors H U X L E Y , ROSCOE , and 
BALFOUR S T E W A R T . 

Chemistry—By H . E. ROSCOE , F.R.S., Professor of Chemistry 
in Owens College, Manchester. With numerous Illustrations. 
l8mo. is. New Edition. With Questions. 

P h y s i c s — By B A L F O U R S T E W A R T , F.R.S., Professor of 
Natural Philosophy in Owens College, Manchester. With numer
ous Illustrations. i8mo. is. New Edition. With Questions. 

P h y s i c a l Geography. _ By A R C H I B A L D G E I K I E , F.R.S., 
Murchison Professor of Geology and Mineralogy at Edinburgh. 
With numerous Illustrations. New Edition with Questions. 
l8mo. is. 

Geology—By Professor G E I K I E , F.R.S. With numerous Illus
trations. New Edition. i8mo. cloth, is. 

Phys io logy—By M I C H A E L FOSTER , M.D., F.R.S. With 
numerous Illustrations. New Edition. l8mo. is. 

Astronomy—By J. N O R M A N LOCKYER , F.R.S. With numerous 
Illustrations. New Edition. l8mo. is. 

B o t a n y . _ B y Sir J . D. H O O K E R , K.C.S.I., C.B.,' F.R.S. With 
numerous Illustrations. New Edition. l8mo. is. 

Logic. —By Professor S T A N L E Y JEVONS , F.R.S. New Edition. 
i8mo. is. 

Pol i t ical Economy—By Professor S T A N L E Y JEVONS , F.R.S. 
i8mo. I*. 

In preparation :— 
INTRODUCTORY. By Professor H U X L E Y . &c. &c. 

E L E M E N T A R Y S C I E N C E C L A S S - B O O K S . 

As tronomy—By the ASTRONOMER ROYAL . POPULAR AS-
. TRONOMY. With Illustrations. By Sir G. B. A I R Y , K.C.B., 

Astronomer Royal. New Edition. i8mo. 4s. 6d. 
Astronomy—ELEMENTARY LESSONS IN ASTRONOMY. 

With Coloured Diagram of the Spectra of the Sun, Stars, and 
Nebulas, and numerous Illustrations. By J . N O R M A N LOCKYER, 
F.R.S. New Edition. Fcap. 8vo. Is. 6d. 

IRIS - LILLIAD - Université Lille 1 



E l e m e n t a r y S c i e n c e Class-books—continued. 
QUESTIONS ON LOCKYER'S ELEMENTARY LESSONS IN ASTRONOMY. For the Use of Schools. By J O H N 

FORBES ROBERTSON. i8mo, cloth limp. is. 6d. 

Physiology.—LESSONS IN ELEMENTARY PHYSIOLOGY. 
With numerous Illustrations. By T. H. H U X L E Y , F.R.S., Pro
fessor of Natural History in the Royal School of Mines. New 
Edition, Fcap. 8vo. 4 s . 6d. 

QUESTIONS ON HUXLEY'S PHYSIOLOGY EOR 
SCHOOLS. By T. ALCOCK, M . D . ï8mo. Is. 6d. 

Botany—LESSONS IN ELEMENTARY BOTANY. By D. 
O L I V E R , F.R.S., F.L.S., Professor of Botany in University 
College, London. With nearly Two Hundred Illustrations. New 
Edition, Fcap. 8vo. 4 s . 6d. 

Chemistry.—LESSONS IN ELEMENTARY CHEMISTRY, 
INORGANIC AND ORGANIC. By H E N R Y Ë . ROSCOE, 
F.R.S., Professor of Chemistry in Owens College, Manchester. 
With numerous Illustrations and Chromo-Litho of the Solar 
Spectrum, and of the Alkalies and Alkaline Earths. New Edition. 
Fcap. 8vo. 4 s . 6d. A SERIES OF CHEMICAL •.PROBLEMS, prepared with 
Special Reference to the above, by T. E. T H O R P E , Ph.D., 
Professor of Chemistry in the Yorkshire College ôf Science, Leeds. 
Adapted for the preparation of Students for the Government, 
Science, and Society of Arts Examinations. With a Preface by 
Professor ROSCOE . Fifth Edition, with Key. i8mo» 2s, 

Pol i t i ca l E c o n o m y — P O L I T I C A L ECONOMY FOR BE* 
GINNERS. By M I L L I C E N T G. F A W C E T T . New Edition. 
l8mo. 2s. 6d. 

Logic—ELEMENTARY LESSONS IN LOGIC; Deductive and 
Inductive, with copious Questions and Examples, and a Vocabulary, 
of Logical Terms. By W. S T A N L E Y JEVONS , M.A., Professor of 
Political Economy in University Collège, London. New Edition. 
Fcap. 8vp. 3s. 6d. 

Phys i c s —LESSONS IN ELEMENTARY PHYSICS. By 
B A L F O U R S T E W A R T , F.R.S., Professor of Natural Philosophy in 
Owens College, Manchester. With numerous Illustrations and 
Chromo-Litho of the Spectra of the Sun, Stars, and Nebul». New 
Edition. Fcap. 8vo. 4s. 6d. 

Pract ical Chemistry.—THE OWENS college junior 
COURSE OF PRACTICAL CHEMISTRY. By F R A N C I S 
JONES , Chemical Master in the Grammar School, Manchester. 
With Preface by Professor ROSCOE , and Illustrations. New 
Edition. i8mo. 2s. 6d. 
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SCIENCE CLASS-BOOKS. 29 
Elementary Sc ience Class-books—continued. 
Anatomy—LESSONS in ELEMENTARY ANATOMY. By 

S T . GEORGE M I V A R T , F .R .S . , Lecturer in Comparative Anatomy 
at St. Mary's Hospital.. With upwards of 400 Illustrations. Fcap. 8v0. 6s. 6d. 

Mechanics.—AN ELEMENTARY TREATISE. By A. B. 
W. K E N N E D Y , C.E , Professor of Applied Mechanics in University 
College, London. With Illustrations. [In préparation. 

Steam—AN ELEMENTARY TREATISE. By J O H N PERRY, 
Professor of Engineering, Imperial College of Engineering, Yedo. 
With numerous Woodcuts and Numerical Examples and Exercises. 
i8mo, 4s. 6d. 

P h y s i c a l Geography. — elementary lessons in 
PHYSICAL GEOGRAPHY. By A. G E I K I E , F .R .S . , Murchi-
son Professor of Geology, &c, Edinburgh. With numerous 
Illustrations, Fcap. 8vo. 4̂. 6d. 

QUESTIONS ON THE SAME. is. 6d. 
Geography.—CLASS-BOOK OF GEOGRAPHY. By C. B. 

C L A R K E , M . A . . F .R.G.S. Fcap. 8vo. 2s. 6d. 
Natural Ph i losophy .^ NATURAL PHILOSOPHY FOR 

• BEGINNERS. By I. T O D H U N T E R , M . A . , F . R . S . Part I. 
The Properties of Solid and Fluid Bodies. l8mo. 3s. 6d. Part 
I I . Soun,d, Light, and Heat. i8mo. 3*. 6d. 

Sound.—AN ELEMENTARY TREATISE. By W. H. S T O N E , 
M . D . , F.R.S. With Illustrations. l8mo. [In the Press. 

Others in Preparation. 

M A N U A L S F O R S T U D E N T S . 
Crown 8VQ. 

Dyer and V i n e s — T H E STRUCTURE OF PLANTS. By 
Professor T H I S E L T O N D Y E R , F.R.S., assisted by S Y D N E Y 
V I N E S , B. Sc., Fellow and Lecturer of Christ's College, Cambridge. 
With numerous Illustrations, [In preparation. 

Fawcett._A MANUAL OF POLITICAL ECONOMY. By 
Trofessor F A W C E T T , M .P . New Edition, revised and enlarged. 
Crown 8vo. 12s. 6d. 

Fleischer.—A SYSTEM OF VOLUMETRIC ANALYSIS. 
Translated, with Notes and Additions, from the second German 
Edition, by M. M. PATTISON MUIR, F.R.S.E. With Illustra
tions. Crown 8vo. 7^. 6d. 
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Manual s for Students—continued. 
F l o w e r ( W . H . ) _ A N I N T R O D U C T I O N TO T H E OSTE

OLOGY O F T H E M A M M A L I A . Being the Substance of the 
Course of Lectures delivered at the Royal College of Surgeons of 
England in 1870. By Professor W . H . F L O W E R , F . R . S . , 
F . R . C . S . With numerous Illustrations. N e w Edition, enlarged. 
Crown 8vo. \ o s . 6d. 

F o s t e r and B a l f o u r — T H E E L E M E N T S O F EMBRY
OLOGY. By M I C H A E L FOSTER, M . D . , F . R . S . , and F . M . 
B A L F O U R , M . A . Part I. crown 8vo. "]s. 6d. 

F o s t e r and L a n g l e y — A C O U R S E O F E L E M E N T A R Y 
P R A C T I C A L P H Y S I O L O G Y . By M I C H A E L FOSTER, M . D . , 
F . R . S . , and J . N . L A N G L E Y , B.A. N e w Edition. Crown 8vo. 6s. 

Hooker (Dr.)—THE S T U D E N T ' S F L O R A O F T H E B R I T I S H 
I S L A N D S . By Sir J . D . H O O K E R , K . C . S . I . , C . B . , F . R . S . , 
M . D . , D . C . L . N e w Edition, revised. Globe 8vo. 10s. 6d. 

H u x l e y — P H Y S I O G R A P H Y . An Introduction to the Study of 
Nature. By Professor H U X L E Y , F . R . S . With numerous 
Illustrations, and Coloured Plates. N e w Edition. Crown 8vo. 
p . 6d. 

H u x l e y and M a r t i n . _ A C O U R S E OF P R A C T I C A L IN
S T R U C T I O N I N E L E M E N T A R Y BIOLOGY. By Professor 
H U X L E Y , F . R . S . , assisted by H . N . M A R T I N , M . B . , D.Sc. N e w 
Edition, revised. Crown 8vo. 6s. 

H u x l e y and P a r k e r — E L E M E N T A R Y BIOLOGY. P A R T 
I I . By Professor H U X L E Y , F . R . S . , assisted by — P A R K E R . 
With Illustrations. [In preparation. 

J e v o n s — T H E P R I N C I P L E S O F S C I E N C E . A Treatise on 
Logic and Scientific Method. By Professor W . S T A N L E Y JEVONS, 
L L . D . , F . R . S . , N e w and Revised Edition. Crown 8vo. \2s. 6d. 

Oliver (Professor) F I R S T BOOK OF I N D I A N B O T A N Y . 
By Professor D A N I E L O L I V E R , F . R . S . , F .L .S . , Keeper of the 
Herbarium and Library of the Royal Gardens, Kew. With 
numerous Illustrations. Extra fcap. 8vo. 6s. 6d. 

Parker and B e t t a n y — T H E M O R P H O L O G Y OF T H E 
S K U L L . By Professor P A R K E R and G. T. B E T T A N Y . Illus
trated. Crown 8vo. iaf. 6d. 

T a i t _ A N E L E M E N T A R Y T R E A T I S E ON H E A T . By Pro-

T h o m s o n — ZOOLOGY. By 'Sir C. W Y V I L L E T H O M S O N , 

Tylor and L a n k e s t e r . — A N T H R O P O L O G Y . By E . B. 
TYLOR, M.A., F . R . S . , and Professor E . R A Y L A N K E S T E R , M.A., 
F . R . S . Illustrated. [In preparation. 

Other volumes of these Manuals will follow. 

fessor T A I T , F . R . S . E . Illustrated. [In the Press. 

F . R . S . Illustrated. [In preparation. 
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N A T U R E S E R I E S .  

. THE SPECTROSCOPE AND. ITS APPLICATIONS. By J. N. LOCKYER, F.R.S. With Illustrations. Second Edition. Crown 8vo. 3s. 6d. 

THE ORIGIN AND METAMORPHOSES OF IN-SECTS. By Sir JOHN LUBBOCK, M.P., F.R.S. With Illustrations. Crown 8vo. 3$. 6d. Second Edition. 

T H E T R A N S I T O F V E N U S . By G. FORBES, B.A., Professor of Natural Philosophy in the Andersonian University, Glasgow. With numerous Illustrations. Crown 8vo. 3s. 6d. 
THE C O M M O N F R O G . By ST. GEORGE MIVART, 

P O L A R I S A T I O N O F L I G H T . By W. SPOTTISWOODE, LL.D., President of the Royal Society. Illustrated. Second Edition. Crown 8vo. 3s. 6d. 

ON BRITISH WILD FLOWERS CONSIDERED IN RELATION TO INSECTS. By SIR JOHN LUBBOCK, M.P., F.R.S. Illustrated. Second Edition. Crown 8vo. 45. 6d. 

THE SCIENCE OF WEIGHING AND MEASURING. 

By H. W. CHISHOLM, Warden of the Standards. Illustrated. Crown 8vo. 
HOW TO DRAW A STRAIGHT LINE : A Lecture on 

Linkages. By A. B. KEMPE, B.A. Illustrated. Crown 8vo. «. 6d. 
LIGHT: A Series of Simple, Entertaining and Useful Experiments in the Phenomena of Light for the Use of Students of every Age. By ALFRED M. MAYER and CHARLES BARNARD. With Illustrations. Crown 8vo. is. 6d. 
SOUND : A Series of Simple, Entertaining and Inexpensive Experiments in the Phenomena of Sound, for the Use of Students of every Age. By A. Mi MAYER, Professor of Physics in the Stevens Institute of Technology, &c. With numerous Illustrations. Crown 8vo. 3J. 6d. 

F.R.S. Illustrated. Crown 8vo. 3s. 6d. 

4s. 6d. 

(Others to follow.) 

MACMILLAN AND CO., LONDON. 
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Published every Thursday, price 6d.y Monthly Parts 2s. and 

is. 6d., Half-Yearly Volumes, 15J. 

AN ILLUSTRATED JOURNAL OF SCIENCE. 

NATURE expounds in a popular and yet authentic manner, 
the GRAND RESULTS OF SCIENTIFIC RESEARCH, discussing 
the most recent scientific discoveries, and pointing out 
the bearing of Science upon civilisation and progress, and 
its claims to a more general recognition, as well as to a 
higher place in the educational system of the country. 

It contains original articles on all subjects within the 
domain of Science; Reviews setting forth the nature and 
value of recent Scientific Works; Correspondence Columns, 
forming a medium of Scientific discussion and of intercom
munication among the most distinguished men of Science ; 
Serial Columns, giving the gist of the most important 
papers appearing in Scientific Journals, both Home and 
Foreign ; Transactions of the principal Scientific Societies 
and Academies of the World, Notes, &c. 

In Schools where Science is included in the regular 
course of studies, this paper will be most acceptable, as 
it tells what is doing in Science all over the world, is 
popular without lowering the standard of Science, and by 
it a vast amount of information is brought within a small 
compass, and students are directed to the best sources for 
what they need. The various questions connected with 
£efence~tBaching in schools are also fully discussed, and the 
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