
A P P L I C A T I O N S OF D Y N A M I C S 

TO 

PHYSICS A N D C H E M I S T R Y . 

IRIS - LILLIAD - Université Lille 1 



IRIS - LILLIAD - Université Lille 1 



APPLICATIONS OF DYNAMICS 

TO 

PHYSICS A N D C H E M I S T R Y 

B Y 

J. J. T H O M S O N , M.A. , F . R . S . 
FELLOW OF TRINITY COLLEGF. AND CAVENDISH PROFESSOR 

OF EXPERIMENTAL PHYSICS, CAMBRIDGE. 

Honfcon: 
• M A C t M I L L A N A N D C O . 

AND N E W Y O R K . 

All Hights reserved.] 

IRIS - LILLIAD - Université Lille 1 



P R I N T E D BY C. J . C L A Y , M . A . & SONS, 

A T T H S UNIVERSITY ?HHSS. 

IRIS - LILLIAD - Université Lille 1 



P R E F A C E . 

THE following pages contain the substance of a 
course of lectures delivered at the Cavendish Labora­
tory in the Michaelmas T e r m of 1886. 

S o m e of the results have a l ready been published 
in the Philosophical Transact ions of the Roya l 
Soc ie ty for 1886 and 1887, but as they relate to 
phenomena which be long to the borderland between 
two departments of Physics , and which are generally 
either entirely neglected or but briefly noticed in 
treatises upon either, I have thought that it might 
perhaps be of service to students of Physics to 
publish them in a more complete form. I have 
included in the book an account of some investiga­
tions publ ished after the del ivery of the lectures 
which illustrate the methods described therein. 

There are two modes of establishing the connexion 
between two physica l phenomena ; the most obvious 
as well as the most interesting of these is to start 
with t rustworthy theories of the phenomena in ques­
tion and to trace every step of the connexion between 
them. T h i s however is only possible in an exceed­
ingly limited number of cases, and we are in general 
compelled to have recourse to the other mode in 
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vi P R E F A C E . 

which by methods which do not require a detailed 
knowledge of the mechanism required to produce the 
phenomena, we show that whatever their explanat ion 
m a y be, they must be related to each other in such 
a w a y that the exis tence of the one involves that 
of the other. 

I t is the object of this b o o k to develop methods 
of app ly ing general dynamica l principles for this 
purpose. 

T h e methods I have adopted (of which that used 
in the first part of the book was suggested b y 
Maxwe l l ' s paper on the Elec t romagnet ic Field) make 
everything depend upon the properties of a single 
function of quantities fixing the state of the system, a 
result analogous to that enunciated b y M . Massieu 
and Prof. Wil lard Gibbs for thermodynamic pheno­
mena and applied b y the latter in his celebrated paper 
on the "Equi l ib r ium of Heterogeneous Subs tances" 
to the solution of a large number of problems in 
thermodynamics . 

I wish in conclusion to thank m y friend Mr L . R . 
Wilberforce, M.A. , of Tr in i ty Col lege , for his kindness 
in correct ing the proofs and for the many valuable 
suggest ions he has made while the book was passing 
through the press. 

J. J. T H O M S O N . 

TRINITY COLLEGE, CAMBRIDGE, 

May 2nd, 1888. 
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A P P L I C A T I O N S OF D Y N A M I C S TO 
PHYSICS A N D C H E M I S T R Y . 

C H A P T E R I. 

P R E L I M I N A R Y C O N S I D E R A T I O N S . 

i. IF we consider the principal advances made in the 
Physical Sciences during the last fifty years, such as the 
extension of the principle of the Conservation of Energy 
from Mechanics to Physics, the development of the Kinetic 
Theory of Gases, the discovery of the Induction of Electric 
Currents, we shall find that one of their most conspicuous 
effects has been to intensify the belief that all physical 
phenomena can be explained by dynamical principles and 
to stimulate the search for such explanations. 

This belief which is the axiom on which all Modern 
Physics is founded has been held ever since men first began 
to reason and speculate about natural phenomena, but, with 
the remarkable exceptions of its successful application in 
the Corpuscular and Undulatory Theories of Light, it 
remained unfruitful until the researches of Davy, Rumford, 
Joule, Mayer and others showed that the kinetic energy 
possessed by bodies in visible motion can be very readily 
converted into heat. Joule moreover proved that whenever 
this is done the relation between the quantity of kinetic 

T. D. r 
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energy which disappears and the quantity of heat which 
appears in consequence is invariable. 

The ready conversion of kinetic energy into heat con­
vinced these philosophers that heat itself is kinetic 
energy; and the invariable relation between the quantities 
of heat produced and of kinetic energy lost, showed that 
the principle of the Conservation of Energy, or of Vis-Viva 
as it was then called, holds in the transformation of heat into 
kinetic energy and vice versa.. 

This discovery soon called attention to the fact that 
other kinds of energy besides heat and kinetic energy 
can be very readily converted from one form into another, 
and this irresistibly suggested the conclusion that the various 
kinds of energy with which we have to deal in Physics, such 
for example as heat and electric currents, are really forms of 
kinetic energy—though the moving bodies which are the 
seat of this energy must be indefinitely small in comparison 
with the moving pieces of any machine with which we are 
acquainted. 

These conceptions were developed by several mathema­
ticians but especially by v. Helmholtz, who, in his treatise 
Ueber die Erhaltung der Kraft, Berlin, 1847, applied the 
dynamical method of the Conservation of Energy to .the 
various branches of physics and showed that by this prin­
ciple many well-known phenomena are connected with 
each other in such a way that the existence of the one 
involves that of the other. 

2. The case which from its practical importance at first 
attracted the most attention was that of the transformation 
of heat into other forms of energy and vice versa.. 

In this case it was soon seen that the principle of the 
Conservation of Energy—the First Law of Thermodynamics 
as it was called—was not sufficient to obtain all the relations 
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existing between the effects of heat on the various pro­
perties of a body and the heat produced or absorbed 
when certain changes take place in the body, but that 
these relations could be deduced by the help of another 
principle, the Second Law of Thermodynamics—which states 
that if to a- system where all the actions are perfectly rever­
sible a quantity of heat dQ be communicated at the absolute 
temperature 8, then 

the integration being extended over any complete cycle of 
operations. 

This statement is founded on various axioms by different 
physicists, thus for example Clausius bases it upon the 
" a x i o m " that heat cannot of itself pass from one body to 
another at a higher temperature,'and Sir William Thomson 
on the " ax iom" that it is impossible by means of inanimate 
material agency to derive mechanical effect from any por­
tion of matter by cooling it below the temperature of the 
coldest of the surrounding objects. 

Thus the Second Law of Thermodynamics is derived 
from experience and is not a purely dynamical principle. 

• We might have expected a priori from dynamical con­
siderations that the principle of the Conservation of Energy 
would not be sufficient by itself to enable us to deduce all 
the relations which exist between the various properties of 
bodies. For this principle is rather a dynamical result than 
a dynamical method and in general is not sufficient by 
itself to solve completely any dynamical problem. 

Thus we could not expect that for the dynamical treat­
ment of Physics the principle of the Conservation of Energy 
would be sufficient by itself, since it is not so in the much 
simpler cases which occur in ordinary Mechanics. 

I 2 
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The resources of dynamics however are not exhausted 
even though the principle of the Conservation of Energy has 
been tried. Fortunately we possess other methods, such as 
Hamilton's principle of Varying Action and the method of 
Lagrange's Equations, which hardly require a more detailed 
knowledge of the structure of the system to which they 
are applied than the Conservation of Energy itself and yet 
are capable of completely determining the motion of the 
system. 

3. The object of the following pages is to endeavour 
to see what results can be deduced by the aid of these 
purely dynamical principles without using the Second Law 
of Thermodynamics. 

The advantages of this method in comparison with that 
of the two laws of Thermodynamics are 

(1) that it is a dynamical method, and so of a much more 
fundamental character than that involving the use of the 
Second L a w ; 

(2) that one principle is sufficient instead of two; 
(3) that the method can be applied to questions in which 

there are no transformations of other forms of energy from 
or into heat (except the unavoidable ones due to friction), 
while for this case the other method degenerates into the 
principle of the Conservation of Energy, which is often not 
sufficient to solve the problem. 

The disadvantages of the method on the other hand are 
that, since the method is a dynamical one, the results are 
expressed in terms of dynamical quantities, such as energy, 
momentum, or velocity, and so require further knowledge 
before we can translate them in terms of the physical 
quantities we wish 'to measure, such as intensity of a 
current, temperature, and so on : a knowledge which in all 
cases we do not possess. 
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The Second Law of Thermodynamics, on the other hand, 
being based on experience does not involve any quantity 
which cannot be measured in the Physical Laboratory. 

For this reason there are some cases where the Second 
Law of Thermodynamics leads to more definite results than 
the dynamical methods of Hamilton or Lagrange. Even 
here I venture to think the results of the application of the 
dynamical method will be found interesting, as they show 
what part of these problems can be solved by dynamics, and 
what has to be done by considerations which are the results 
of experience. 

4. Many attempts have been made to show that the 
Second Law of Thermodynamics is a consequence of the 
principle of Least Action ; none of these proofs seem quite 
satisfactory; but even if the connexion had been proved in 
an unexceptionable way it would still seem desirable to 
investigate the results of applying the principle of Least 
Action, or the equivalent one of Lagrange's Equations, 
directly to various physical problems. 

If these results agree with those obtained by the use of 
the Second Law of Thermodynamics, it will be a kind of 
practical proof of the connexion between this law and the 
principle of Least Action. 

5. Considering our almost complete ignorance of the 
structure of the bodies which form most of the dynamical 
systems with which we have to deal in physics, it might 
seem a somewhat unpromising undertaking to attempt to 
apply dynamics to such systems. Rut we must remember 
that the object of this application is not to discover the 
properties of such systems in an altogether d priori fashion, 
but rather to predict their behaviour under certain circum­
stances after having observed it under others. 

A dynamical example may illustrate what the application 
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of dynamics to physical problems may be expected to do, 
and the way in which it is likely to do it. Let us suppose 
that we have a number of pointers on a dial, and that 
behind the dial the various pointers are connected by a 
quantity of mechanism of the nature of which we are 
entirely ignorant. Then if we move one of the pointers, A 
say, it may happen that we set another one, B, in motion. 

If now we observe how the velocity and position of B 
depend on the velocity and position of A, we can by the aid 
of dynamics foretell the motion of A when the velocity and 
position of B are assigned, and we can do this even though 
we are ignorant of the nature of the mechanism connecting 
the two pointers. Or again we may find that the motion of 
B when A is assigned depends to some extent upon the 
velocity and position of a third pointer C: if in this case we 
observe the effect of the motion of C upon that of A and B 
we may deduce by dynamics the way in which the motion 
of C will be affected by the velocities and positions of the 
pointers A and B. 

This illustrates the way in which dynamical considera­
tions may enable us to connect phenomena in different 
branches of physics. For the observation of the motion of 
B when that of A is assigned may be taken to represent the 
experimental investigation of some phenomenon in Physics, 
while the deduction by dynamics of the motion of A when 
that of B is assigned may represent the prediction by the 
use of Hamilton's or Lagrange's principle of a new phenome­
non which is a consequence of the one investigated experi­
mentally. 

Thus to take an illustration, suppose we investigate 
experimentally the effect of a current of electricity both 
steady and variable upon the torsion of a longitudinally 
magnetized iron wire along which the current flows, then we 
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can deduce by dynamics the effects of torsion and variations 
of torsion in the wire upon a current flowing along it. 

The method is really equivalent to an extension and 
generalization of the principle of the equality of action and 
reaction, as when we have two bodies A and B acting upon 
each other if we observe the motion of B which results when 
A moves in a known way we can deduce by the aid of this 
principle the motion of A when that of B is known. The 
more general case which we have to consider in Physics is 
when instead of two bodies attracting each other we have 
two phenomena which mutually influence each other. 

IRIS - LILLIAD - Université Lille 1 



C H A P T E R . IT. 

T H E D Y N A M I C A L M E T H O D S T O BE E M P L O Y E D . 

6. A s we do not know the nature of the mechanism of 
the physical systems whose action we wish to investigate, all 
that we can expect to get by the application of dynamical 
principles will be relations between various properties of 
bodies. And to get these we can only use dynamical 
methods which do not require an intimate knowledge of the 
system to which they are applied. 

The methods introduced by Hamilton and Lagrange 
possess this advantage and, as they each make the behaviour 
of the system depend upon the properties of a single func­
tion, they reduce the subject to the determination of this 
function. In general the way that we are able to connect 
various physical phenomena is by seeing from the behaviour 
of the system under certain circumstances that there must be 
a term of a definite kind in this function, the existence 
of this term will then often by the application of Lagrangian 
or Hamiltonian methods point to other phenomena besides 
the one that led to its detection. 

7. We shall now for convenience of reference collect the 
dynamical equations which we shall most frequently have to 
use. 

The most generally useful method is Hamilton's principle 
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of Varying Action according to which (see Routh's Advanced 
Rigid Dynamics, p. 245) 

where T and V are respectively the kinetic and potential 
energies of the system, / the time, and q a coordinate of 
any type. In this case t0 and tx are each supposed to be 
constant. 

In some cases it is convenient to use the equation in this . 
form but in others it is more convenient to use Lagrange's 
Equations, which may be derived from equation (1) (Routh's 
Advanced Rigid Dynamics, p. 249) and which may be 
written in the form 

d_d_L dL_ 
dt dq dq ^ K 2 ) m 

where L is written for T- V and is called the Lagrangian 
function and Q is the external force acting on the system 
tending to increase q. 

In the preceding equations the kinetic energy is sup­
posed to be expressed in terms of the velocities of the 
coordinates. In many cases however instead of working 
with the velocities corresponding to all the coordinates it is 
more convenient to work with the velocities corresponding 
to some coordinates but with the momenta corresponding to 
the others. This is especially convenient when some of 
the coordinates only enter the Lagrangian function through 
their differential coefficients and do not themselves occur 
explicitly in this function. In a paper " On some Applica­
tions of Dynamical Principles to Physical Phenomena" 
(Phil. Trans. 1885, Part 11.) I have called these "kinos-
thenic" coordinates. In the following pages the term 
" speed coordinates" will for the sake of brevity be used 
instead wherever it will not lead to ambiguity. 
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The most important property of such a coordinate is 
that whenever no external force of its type acts upon the 
system, the momentum corresponding to it is constant. 

For if x be a speed coordinate, since 
dL 

* = °' 
we have by Lagrange's equation since no external force 
acts on the system 

d dL . . 
d t T C ° ( 3 ) 

as the momentum corresponding to \ is dZ./dx, this equa­
tion shows that it is constant. 

8. Routh {Stability of Motion, p. 61) has given a general 
method which enables us to use the velocities of some 
coordinates and the momenta corresponding to the remain­
der, and which is applicable whether these latter coordinates 
are speed coordinates or not. 

The method is as follows : suppose that we wish to use 
the velocities of the coordinates qv ^ 2...and the momenta 
corresponding to the coordinates then Routh has 
shown that if we use instead of L the new function Z ' given 
by the equation. 

Z ' = Z - ^ 4 f - ^ ^ - & c (4) 

and eliminate <£,,••-by means of the equations 
^ dT ^ dT . 

d<j>, d<j>3 

then as far as the coordinates qlt q2, are concerned we may 
use Lagrange's equations if we substitute / . ' for L. Thus we 
have a series of equations of the type 

dt dq dq ~ V (5)· 
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If we call 

the part of the kinetic energy corresponding to the coordi­
nate <t>x then we see by (4) that L' = the kinetic energy of 
the system minus its potential energy minus twice the kinetic 
energy corresponding to the coordinates whose velocities are 
eliminated. 

9. If we do not know the structure of this system all 
that we can determine by observing its behaviour will be 
the Lagrangian function or its modified form, and since 
this function completely determines the motion of the 
system it is all we require for the investigation of its 
properties. We see however that when we calculate the 
"energy" corresponding to any physical condition the in­
terpretation may be ambiguous if the energy is not entirely 
potential. For what we really calculate is the Lagrangian 
function or its modified form and this is the kinetic energy 
minus the potential energy minus twice the kinetic energy 
corresponding to the coordinates whose velocities are elimi­
nated. So that the term in the energy which we have cal­
culated may be any one of these three things. Thus to 
take an example, it is said that the energy of a piece of 
soft iron of unit volume, throughout which the intensity 
of magnetization is uniform and equal to / , is - Phk, 
where k is the coefficient of magnetic induction of the 
iron, but all that this means is that the term P12k occurs 
in the Lagrangian function (modified or otherwise) of 
the system whose motion or configuration produces the 
phenomenon of magnetization. And without further con­
siderations we do not know whether this represents an 
amount of kinetic energy P'I2k or potential energy - PI2k, 
or some kinetic energy corresponding to coordinates whose 
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velocities have been eliminated, or some combination of all 
three of these. 

10. This ambiguity however does not occur if we have 
the system completely mapped out by coordinates, because 
in this case whenever we find a term in the Lagrangian 
function it must be expressed in terms of these coordinates 
and their velocities, or it maybe the momenta corresponding 
to them, and we can tell by inspection whether the term 
expresses kinetic or potential energy. Two investigations in 
the second volume of Maxwell's Electricity and Magnetism 
afford a good illustration of the way in which this ambiguity 
is cleared away by an increase in the precision of our ideas 
about the configuration of the system. In the early part of 
the volume by considering the mechanical forces between two 
circuits carrying electric currents, it is shown that two such 
circuits conveying currents i,j possess a quantity of potential 
energy — Mij where /J/" is a quantity depending on the shape 
and size of the two circuits and their relative position. Later 
on however when coordinates capable of fixing the electrical 
configuration of the system have been introduced it is shown 
that the system instead of possessing — Mij units of potential 
energy really possesses + Mij units of kinetic. 

n . The following considerations may be useful as 
helping to show that this ambiguity is largely verbal and is 
probably mainly due to our ignorance of what potential 
energy really is. 

Suppose that we have a system fixed by n coordinates, 
qx, q^,...q„ of the ordinary kind, that is, coordinates which 
occur explicitly in the expressions for the kinetic or potential 
energies, and which we shall call positional coordinates, 
and m kinosthenic or speed coordinates <j>lt </>2,..-<t>m. Let 
us further suppose that there are no terms in the expression 
for the kinetic energy which involve the product of the 
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velocity of a q and a <p coordinate and that the system has 
no potential energy. 

Then by Routh's method we can use Lagrange's equation 
for the q coordinates if instead of the ordinary Lagrangian 
function Z which reduces in this case to the kinetic energy 
we use the modified function IJ given by the equation 

Z ' = Z - 2 ^ ' (6), 

or, 

i : w % >**Z <?>< 

and where 4>n <£a are to be eliminated by the aid of the 
equations 

1 ~ ~ 

Thus since the expression for Z does not contain any 
terms involving the product of the velocity of a q and a <f> 
coordinate, L' will be of the form 

Tm] — Tt^ç), 

where T(M) is the kinetic energy arising from the motion of 
the q or positional coordinates, Ty^,) that arising from the 
motion of the kinosthenic or speed coordinates. 

By Routh's modification of the Lagrangian equations 
we have 

iti Ì J ^T{,,) ~ T m ^ " lqx (T{n) ~ = ° - " f 8 ) ' 

but — = 0 , 
dqx 

so that equation (8) reduces to 

d D2Y _ dT^ = JJJM 

dt dq\ dq1 àqx 

• (g)-
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If the system fixed by the positional coordinates q 
had possessed a quantity of potential energy equal to V, the 
equations of motion would have been of the type, 

d dTm _ dT^ ^_ dV 
dt dt/x dq^ dq1 

By comparing equations (9) and (10) we see that the 
system fixed by the positional coordinates q will behave 
exactly like a system whose kinetic energy is T{n) and whose 
potential energy is . 

Thus we may look on the potential energy of any system 
as kinetic energy arising from the motion of systems con­
nected with the original system—the configurations of these 
systems being capable of being fixed by kinosthenic or speed 
coordinates. 

Thus from this point of view all energy is kinetic, and all 
terms in the Lagrangian function express kinetic energy, the 
only thing doubtful being whether the kinetic energy is due 
to the motion of ignored or positional coordinates; this 
can however be determined at once by inspection. 

12. Some of the theorems in dynamics become very 
much simpler from this point of view. Let us take for 
example the principle of Least Action- -that for the uncon­
strained motion of a system whose energy remains constant 

fH Tdt 
it, 

is a minimum from one configuration to another—and apply 
it to the system we have been considering in which all the 
energy is kinetic but some of it is due to the motion of a 
system whose configuration can be fixed by kinosthenic 
coordinates. 

As all the energy is kinetic its magnitude remains 
constant by the principle of the Conservation of Energy, 
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D Y N A M I C A L M E T H O D S . 

and so the principle of Least Action takes the very simple 
form, that with a given quantity of energy any material 
system will by its ungnided motion go along the path which 
will take it from one configuration to another in the least 
possible time. The material system must of course include 
the kinosthenic systems whose motion produces the same 
effect as the potential energy of the original system; and 
two conlgurations are not supposed to coincide unless the 
configuration of these kinosthenic systems coincide also. 

This view which regards all potential energy as really 
kinetic has the advantage of keeping before us the idea 
that it is one of the objects of Physical Science to explain 
natural phenomena by means of the properties of matter in 
motion. When we have done this we have got a complete 
physical explanation of any phenomenon and any further 
explanation must be rather metaphysical than physical. It 
is not so however when we explain the phenomenon as due 
to changes in the potential energy of the system; for potential 
energy cannot be said, in the strict sense of the term, to 
explain anything. It does little more than embody the 
results of experiments in a form suitable for mathematical 
investigations. 

The matter whose motion constitutes the kinetic energy 
of the kinosthenic systems, the " systems, which we regard 
as the potential energy of the "q" systems, may be either 
that of parts of the system, or the surrounding ether, or 
both; in many cases we should expect it to be mainly the 
ether. 
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C H A P T E R I I I . 

A P P L I C A T I O N OF T H E S E P R I N C I P L E S TO P H Y S I C S . 

13. IN our applications of Dynamics to Physics it will 
be well to begin with the cases which are the most nearly 
allied to those we consider in ordinary Rigid Dynamics. 
Now in this subject when there is no friction all the motions 
are reversible and are chiefly relations between vector quan­
tities. We shall therefore begin by considering reversible 
vector effects and afterwards go on to reversible effects 
involving scalar as well as vector relations; those for 
example in which a scalar quantity such as temperature is 
prominently involved : lastly we shall consider irreversible 
effects. Thus the order in which we shall consider the 
subject will be 

1. Reversible vector phenomena. 
2. Reversible scalar phenomena. 
3. Irreversible phenomena. 

14. We shall begin by considering the relations between 
the phenomena in elasticity, electricity, and magnetism and 
the way in which these depend upon the motion and 
configuration of the bodies which exhibit the phenomena. 

These phenomena differ from some we shall consider 
later on in that we have the quantities concerned in them 
entirely under our control and can by applying proper 
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external forces make them take any value we please (sub­
ject of course to such limitation as the strength of the 
material and the saturation of magnets may impose). The 
other phenomena on the other hand depend upon a multi­
tude of coordinates over whose individual motion we have 
no control though we have some over their average motion. 
As the first kind of phenomena most closely resemble those 
we have to do with in ordinary dynamics we shall begin 
with them. 

• 15. The first thing we have to do when we wish to apply 
dynamical methods to investigate the motion of a system is 
to choose coordinates which can fix its configuration. 

We shall find it necessary to give a more general 
meaning to the term "coordinate" than that which obtains 
in ordinary Rigid Dynamics. There a coordinate is a 
geometrical quantity helping to fix the geometrical con­
figuration of the system. 

In the applications of Dynamics to Physics however, 
the configurations of the systems we consider have to be fixed, 
with respect to such things as distributions of electricity and 
magnetism, for example, as well as geometrically, and to do 
this we have in the present state of our knowledge to use 
quantities which are not geometrical. 

Again the coordinates which fix the configurations of the 
systems in ordinary dynamics are sufficient to fix them 
completely, while we may feel pretty sure that the coordi­
nates which we use to fix the configuration of the system 
with respect to many of its physical properties, though they 
may fix it as far as we can observe it, are not sufficient to 
fix it in every detail ; that is they would not be sufficient 
to fix it if we had the power of observing differences 
whose fineness was comparable with that of molecular 
structure. 

T. n. 2 
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Hydrodynamics furnishes us with many very good illus­
trations of this latter point. For example, when a sphere 
moves through an incompressible fluid, we can express the 
kinetic energy of the system comprising both sphere and 
fluid in terms of the differential coefficients of the three 
coordinates which fix the centre of the sphere, though it 
would require a practically infinite number of coordinates 
to fix the configuration of the fluid completely. 

Now Thomson and Tait (Natural Philosophy, vol. I. 
p. 320) have shown how we can " ignore" these coordinates 
when the kinetic energy can be expressed without them, and 
that we may treat the system as if it were fully determined 
by the coordinates in terms of whose differential coefficients 
the kinetic energy is expressed. 

And again Larmor (Proceedings of London Mathemati­
cal Society, xv. p. 173) has proved that if L be Routh's 
modification of the Lagrangian function, that is qY, q2,-.-
being the coordinates retained, t£z,...those ignored, Qu 

<22.-., <t>3 the momenta corresponding to these coordinates 
respectively, if 

L' = \\%Qg--2&î\- V, 
rt, 

then S Z'dt=- o (11) . 
Jk 

If all the kinetic energy vanishes when the positional 
coordinates qlt q2,...are constant, as is the case when a 
number of solids move through a perfect fluid in which 
there is no circulation, Z ' is the difference between the 
kinetic and potential energies of the system. If however 
the kinetic energy does not vanish when the velocities of 
the positional coordinates all vanish, as for example when 
a number of solids are moving through a fluid in which there 
is circulation, Z ' no longer equals the difference between 
the kinetic and potential energies of the system. 
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It follows from (11), by the Calculus of Variations, that if 
L' be expressed in terms of a series of quantities qlt Ça---
and their first differential coefficients, then whatever these 
quantities may be, we must have a series of equations of the 
type 

d dL' dL' . , — — = 0 (12). 
dt dq dq 

Thus we see that we may treat any variable quantities 
as coordinates if the modified Lagrangian function can be 
expressed in terms of them and their first differential coeffi­
cients. We shall take this as our definition of a coordinate. 

16. When we introduce a symbol to fix a physical 
quantity we may not at first sight be sure whether it is a 
coordinate or the differential coefficient of one with respect 
to the time. 

For example, we might feel uncertain whether the symbol 
representing the intensity of a current was a coordinate or 
the differential coefficient of one. The simplest dynamical 
considerations however will enable 11s to overcome this 
difficulty. Thus if when there is no dissipation of energy 
by irreversible processes, the quantity represented by the 
symbol remains constant under the action of a constant 
force tending to alter its value, the energy at the same time 
remaining constant, then the symbol is a coordinate. 

Again, if it remains constant and not zero when no force 
acts upon it, there being no dissipation and the energy 
remaining constant, the symbol represents a velocity, that is, 
the differential coefficient of a coordinate with respect to 
the time. 

Let us apply these considerations to the example men­
tioned above ; as the intensity of a current flowing through 
a perfect conductor, the only circumstances under which 
there is no dissipation, does not satisfy the first of these 

2—2 
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conditions, while it does satisfy the second, we conclude 
that the intensity of a current ought to be represented by 
the rate of change of a coordinate and not by the coordinate 
itself. 

Specification of Cooniinates. 

17. T o fix the configuration of the system so far as the 
phenomena we are considering are concerned we shall use 
the following kinds of coordinates. 

(r) Coordinates to fix the geometrical configuration of 
the system, i.e. to fix the position in space of any bodies of 
finite size which may be in the system. For this purpose 
we shall use the coordinates ordinarily used in Rigid Dy­
namics and denote them by the letters X„ X2, xa...; and 
when we want to denote a geometrical coordinate generally 
without reference to any one in particular we shall use the 
letter x. 

(2) Coordinates to fix the configuration of the strains 
in the system. We shall use for this purpose, as is ordinarily 
done in treatises on elasticity, the components parallel to 
the axes of x, y, z of the displacements of any small portion 
of the body, and denote them by the letters a, /?, y respec­
tively. For the strains 

¿01 dp dy _ 
dx ' dy ' dz ' 

/dy d/3\ /da dy\ /dp da\ 
\dy + dz)' \dz + dx) ' \dx + dy) ' 

we shall use the letters e, f, g, a, b, c respectively. It will 
be convenient to have a letter typifying these quantities 
generally without reference to any one in particular, we 
shall use the letter w for this purpose. 

(3) Coordinates to fix the electrical configuration of 
the system. For this purpose we shall use coordinates 
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denoted by the letters ylt y2---, the typical coordinate 
being denoted by y, where y in a dielectric is what Maxwell 
calls an electric displacement, and in a conductor the time 
integral of a current flowing through some definite area. 

(4) Coordinates to fix the magnetic configuration. We 
might do this by specifying the intensity of magnetization 
at each point, but it is clearer 1 think to regard the magnetic 
configuration as depending, even in the simplest case, upon 
two coordinates, one of which is a kinosfhenic or speed 
coordinate. 

This way of looking at it brings it into harmony with the 
two most usual ways of representing the magnetization of a 
body, viz. Ampere's theory and the hypothesis of Molecular 
Magnets. 

According to Ampere's theory the magnetization is due 
to electric currents flowing through perfectly conducting 
circuits in the molecules of the magnets. In this case the 
differential coefficient of the kinosthenic coordinate would 
fix the intensity of the current, and the other coordinate the 
orientation of the planes of the circuits. 

According to the Molecular Magnet theory, any magnet 
of finite size is built up of a large number of small magnets 
arranged in a polarized way. Here the momentum corre­
sponding to the kinosthenic or speed coordinate may be 
regarded as fixing the magnetic moment of a little magnet, 
which it is well fitted to do by its constancy; the other co­
ordinate may be regarded as fixing the arrangement of the 
little magnets in space. 

We shall denote the kinosthenic coordinate by £ and 
the geometrical one by jj and suppose that they are so 
chosen that the intensity of magnetization at any point is r/f, 
where £ is the momentum corresponding to the kinosthenic 
coordinate £· V 1 S a vector quantity and may be resolved 
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into three components parallel to the axes of x, y, z respec­
tively. 

18. Having chosen the coordinates there are two ways 
in which we may proceed. We may either write down the 
most general expression for the Lagrangian function in terms 
of these coordinates and their differential coefficients, and 
then investigate the physical consequences of each term 
in this expression. If these consequences are contradicted 
by experience we conclude that the term we are considering 
does not exist in the expression for the Lagrangian function. 

Or we may know as the result of experiment that there 
must be a certain term in the expression for the Lagrangian 
function and proceed by the application of Lagrange's Equa­
tions to develop the consequences of its existence. Thus, for 
example, we know by considering the amount of work 
required to establish the electric field that there must be in 
the Lagrangian function of unit volume of the dielectric a 
term of the form 

where K is the specific inductive capacity of the dielectric 
and D the resultant electric displacement. We can then by 
applying Lagrange's equation to this term see what are the 
consequences of the specific inductive capacity of the 
dielectric being altered by strain (see § 39). 

We shall make use of both methods but commence with 
the first as being perhaps the most instructive, and also 
because we shall have a great many examples of the second 
method later on since the scalar phenomena do not admit 
of being treated by the first method. 

19. In using the first method the first thing we have to 
do is to write down the most general expression for the 
Lagrangian function in terms of the coordinates x, y, y, £, w. 
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Let us suppose that £ is eliminated by means of the 
equation 

dT 

and that we work with Routh's modification of the Lagran-
gian function. 

The most general expression for the terms correspond­
ing to the kinetic part of this function, which is the only 
part we can typify, is of the form 

+ {y,y,)yi

a + {y,y2)K' +2 {y,y,)yJa+-
+ {ww) w* + (1777) ij' + (¿1) £* 

+ 2 (xy) xy + 2 (xw) xw + 2 (xrf) xi] 

+ 2 (x£) x£+ 2 (yw) yw + 2 (y-q) yrj 

+ 2 y£ + 2 (tiirj) Wrj + 2 (w£) w£ 

These terms may be divided into fifteen types. 
There are five sets which are quadratic functions of the 

velocity or momentum corresponding to one kind of coordi­
nate. Each of these five sets must exist in actual physical 
systems if there is anything analogous to inertia in the 
phenomena which the corresponding coordinates typify. 

Again, there are ten sets of terms of the type 

involving the product of two velocities or a velocity and 
a momentum of two coordinates of different kinds. 

To determine whether any particular term of this type 
exists or not we must determine what the physical conse­
quences of it would b e ; if these are found to be contrary 
to experience we conclude that this term does not exist. 

(xy) xy or (x£) x£, 
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a force of type q equal to 

d 

20. We can determine the consequences of the exist­
ence of a term of this kind in the expression for the kinetic 
energy in the following way. 

Let us suppose that we have a term in the modified 
Lagrangian function of the type 

where / and q may be any of the five kinds of coordinates we 
are considering. 

Then we have by Routh's modification of Lagrange's 
equations 

d dL' dL' „ . . 
— = P (13), 
dt dp dp 

where P is the external force of type p acting on the system. 
Thus the effect of the term 

(pq)pq 
is equivalent to the existence of a force of the type / equal 
to 

that is, 

q equal to 

that is, 

~ {{Pg)p + Tp^P + %Tr { M ) rp) ( l 5 ) ; 

and a force of type r equal to 
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*at is, pqjr{pq) (16); 

where r is a coordinate of any type other than that of 
p or q. 

Each of the terms in these expressions would correspond 
to some physical phenomenon ; and as it is clearer to take a 
definite case to illustrate this, let us suppose that p is the 
geometrical coordinate symbolized by x, and q the electrical 
coordinate y. 

Then if the term (xy) xy occurred in the expression for 
the Lagrangian function, the mechanical force produced by 
a steady current would not be the same as that produced by 
a variable one momentarily of the same intensity. This is 
so because by the expression (14) there is the term 

(xy)y 
in the expression for the force of type x, that is the 
mechanical force, and as y is zero if the current is steady, 
there would be a mechanical force depending on the rate of 
variation of the current if this term existed. 

Again, we see from the term ~ (xy) y' in the expression 

(14), remembering that / stands for x and q for y, that if 
(xy) were a function of y the current would produce a 
mechanical force proportional to its square, so that the force 
would not be reversed if the direction of the current was 
reversed. 

Or again, if we consider the expression for the force of 
type y or q, that is the electromotive force, we see that the 
existence of this term implies the production of an electro­
motive force by a body whose velocity is changing, 
depending upon the acceleration of the body ; this is shown 
by the existence of the term (xy) x in (15), the expression 
for the electromotive force. 
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If (xy) were a function of x, the term (xy) x* in (15) 
shows that a moving body would produce an electromotive 
force proportional to the square of its velocity, and therefore 
one that would not be reversed when the direction of motion 
of the body was reversed. 

As none of these effects have been observed we conclude 
that this term does not exist in the expression for the 
Lagrangian function of a physical system (see Maxwell, 
Electricity and Magnetism, § 574). 

21. We-shall now go through the various types of terms 
which involve the product of the velocities of two coordi­
nates of different kinds, or a velocity of one kind and the 
momentum of another, in order to see whether they exist or 
not in the expression for the Lagrangian function. 

The reasoning to be used is of the same nature as that 
just given, and we may leave it to the reader to show by the 
consideration of the expressions (14) and (15) that the 
existence of the several terms carries with it the con­
sequences we describe. 

Taking the terms in order we have 
1. Terms of the form 

(xy) xy. 
We have just seen that terms of this kind cannot exist in 

the expression for the Lagrangian function. See also Max­
well, Electricity and Magnetism, 11. part IV. chap. 7. 

2. Terms of the form 
(xw) xw. 

Terms of this form may exist in the case of a vibrating solid 
body which is also moving as a whole. For the velocity of 
any point in the solid equals the velocity of the centre of 
gravity plus the velocity of the point relatively to its centre of 
gravity. This latter velocity will involve w, so that the 
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square of the velocity and therefore the kinetic energy may 
involve xui. 

3. Terms of the form 
- (X7j) X-q 

cannot exist, for we can prove that they would involve the 
existence of a magnetizing force in a moving body depend­
ing upon the acceleration of the body. It would also require 
that the mechanical force exerted by a magnet should 
depend upon the rate of change of the magnetization. 
None of these effects have been observed. 

4. Terms of the form 
{x£) x£ 

apparently do not exist, for they would require that the 
mechanical force exerted by a magnet should depend upon 
the rate of variation of the magnetic intensity, and this 
effect has not been observed. 

5. Terms of the form 
(yw) yw. 

If these terms existed it would be possible to develop 
electromotive forces by vibration, and these forces would 
depend upon the acceleration of the vibration and not 
merely upon the velocity; as these have not been observed 
we conclude that this term does not exist in the Lagrangian 
function of physical systems. 

6. Terms of the form 

(yv) yv-
If these terms existed there would be electromotive forces 
depending upon the rate of acceleration of the changes in 
the magnetic field. 

They also indicate magnetic forces depending upon the 
rate of change of the current. As neither of these effects 
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have been observed we conclude that terms of this form do 
not exist in the expression for the Lagrangian function. 

7. Terms of the form 

Terms of this kind only involve the production of an 
electromotive force in a varying magnetic field, the electro­
motive force varying as the rate of change of the magnetic 
field. This is the well-known phenomenon of the produc­
tion of an electromotive force round a circuit whenever the 
number of lines of magnetic force passing through it is 
changed. 

As the term we are considering is the only one in the 
Lagrangian function which could give rise to an effect of 
this kind without also giving rise to other effects which have 
not been verified by experience, we conclude that this term 
does exist. 

8. Terms of the form 

If we take any molecular theory of magnetism, such as 
Ampere's, where the magnetic field depends upon the 
arrangement of the molecules of the body, we should rather 
expect this term to exist. The consequences of its existence 
have however not been detected by experiments. 

If this term existed, then considering in the first place 
its effect upon the magnetic configuration we see that a 
vibrating body should produce magnetic effects depending 
upon the vibrations. Secondly, considering the effects of 
this term on the strain configuration we see that there 
should be a distorting force depending upon the rate of 
acceleration of the magnetic field. As neither of these 
effects have been observed there is no evidence of the 
existence of this term. 
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9. Terms of the form 

(w£) wt. 

These would involve the existence of distorting forces 
depending upon the rate of change of the magnetic field, 
and we have no evidence of any such effect. 

10. Terms of the form 

If we assume Ampere's hypothesis of molecule currents this 
term is of the same nature as the term (x£) x£ which we 
discussed before, so that unless the properties of these 
molecular circuits differ essentially from those of finite size 
with which we are acquainted this term cannot exist. 

21. Summing up the results of the foregoing considera­
tions, we arrive at the conclusion that the terms in the 
Lagrangian function which represent the kinetic energy 
depending upon the five classes of coordinates we are 
considering must be of one or other of the following types : 

(xx) x! 

(yy)f 
(WW) 7l>' 
(w) VS I ( r 7)-

(xw)xw 
(yi)ttj 

22. We might make a model with five degrees of 
freedom which would illustrate the connection between 
these phenomena which are fixed by coordinates of five 
types. 

And if we arrange the model so that its configuration 
being defined by the five coordinates x, y, w, r;, £, only 
those terms which are in the expression (17) shall exist in 
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the expression for its kinetic energy, and make the potential 
energy of the model corresponding to each coordinate 
analogous to that possessed by the physical system, then 
the working of this model will illustrate the interaction of 
phenomena in electricity, magnetism, elasticity & c , and any 
phenomenon exhibited by the model will have its counter­
part in the phenomena exhibited in these subjects. 

When however we know the expression for the energy 
of such a model, there is no necessity to construct it in 
order to see how it will work, as we can deduce all the rules 
of working by the application of Lagrange's Equations. 
And from one point of view we may look upon the method 
we are using in this book as that of forming, not a model, 
but the expression for the Lagrangian function of a model 
every property of which must correspond to some actual 
physical phenomenon. 
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C H A P T E R IV. 

DISCUSSION OF T H E T E R M S IN T H E L A G R A N G I A N 
F U N C T I O N . 

23. W e must now proceed to examine the terms in the 
expression (17) more in detail, and find what coordinates 
enter into the various coefficients (xx), {yy)... . When we 
have proved that these coefficients involve some particular 
coordinates we must go on to see what the physical 
consequences will be. In this way we shall be able to 
obtain many relations between the phenomena in electri­
city, magnetism and elasticity. 

24. The first term we have to consider is {xx} x*, which 
corresponds to the expression for the ordinary kinetic energy 
of a system of bodies. We know that {xx) may be a function 
of the geometrical coordinate typified by x, but we need not 
stop to consider the consequences of this as they are fully 
developed in treatises on the Dynamics of a System of Rigid 
Bodies. 

Next {xx} may involve the electrical coordinate y, for 
in a paper " On the Effects produced by the Motion of 
Electrified Bodies," Phil. Mag. Apr. 1881, I have shown 
that the kinetic energy of a small sphere of mass m charged 
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with a quantity of electricity e and moving with a velocity v 
is 

where a is the radius of the sphere and p the magnetic 
permeability of the dielectric surrounding it. 

The existence in the kinetic energy of this term, which is 
due to the "displacement currents" started in the surrounding 
dielectric by the motion of the electrification on the sphere, 
shows that electricity behaves in some respects very much 
as if it had mass. For we see by the expression (18) that 
the kinetic energy of an electrified sphere is the same as 
if the mass of the body had been increased by 4/^°/150. 

Thus whenever a moving body receives a charge of 
electricity its velocity will be impulsively changed, for the 
momentum will remain constant, and as the apparent mass 
is suddenly increased the velocity must be impulsively 
diminished. 

The apparent increase in mass cannot exceed a very 
small quantity because air or any other dielectric breaks 
down when the electric force gets very intense. If we take 
75 as the intensity in electrostatic measure in c . g . s . units of 
the greatest electric force which a fairly thick layer of air 
can stand, which is the value given by Dr Macfarlane (Phil. 
Mag., D e c 1880), we have, since the electric force at the 
surface of the sphere must be less than 75, 

K being the specific inductive capacity of the medium. 
So that the ratio of the increase in mass to the original 

mass, which by (18) is equal to 

e 

IRIS - LILLIAD - Université Lille 1 



cannot exceed Kx 1500 yJCa3im, 
and since in air i / ^ ^ T = 9 x 10", 

K= 1, 
we see that the ratio cannot exceed 

1 . 6 x i o " 1 8 a3 jm, 
or about 4 x i o ~ l s / p , 

where p is the mean density of the substance enclosed by the 
electrified surface. 

Thus the alteration in mass, even if the mean density 
inside the surface is as small as that of air at the atmospheric 
pressure and o ° C , is only about 5 x io~ L B of the original 
mass, and is much too small to be observed. 

Let us now consider the electrical effects of this term. 
Let Q be the electromotive force acting on the sphere. 

The energy of the system, using the same notation as before, 
is 

2 /AdA 
\2 1 5 3 / 2 Ka 

If v be increased by and e by 8«, the increment in the 
energy is 

\ 15 a J 1 5 « Ka 

and by the Conservation of Energy this must equal 

Q8e, 
so that 

(„ + ± ^ \ v S v + ± ^ ele + ~ = Q$e ... (19). 
\ 15 a ] 15 c Ka ^ x 7' 15 a J 1 5 c 

Since no mechanical force acts upon the system the 
momentum will be constant, so that 

8 fLe 
15 a ( m + * + l ^ - ^ = o (20). 

\ 15 a I 1 5 a 
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Eliminating Sv and Si? between equations (in) and (20) we 
find 

^K>AV: v "·>• 
So that the capacity of the sphere is increased in the 

ratio of 1 to 1 / 1 - fiJ^?/", or since according to the 

Electromagnetic Theory of Light )xK= I / Vs where V is the 
velocity of light through the dielectric, the capacity of the 

sphere is increased in the ratio of 1 to 1 / 1 — - Thus 
/ I S v 

the capacity of a condenser in motion will not be the same 
as that of the same condenser at rest, but as the difference 
depends on the square of the ratio of the velocity of the 
condenser to the velocity of light it will be exceedingly 
small. 

If the earth does not carry the ether with it, a point on 
the earth's surface will be moving relatively to the ether, and 
the alterations in the velocity of such a point which occur 
during the day will produce a small diurnal variation in the 
capacities of condensers. 

25. When we have two spheres of radius a and a 
moving with velocities v and v respectively the kinetic 
energy (see the paper on the " Effects produced by the 
Motion of Electrified Bodies," Phil. Mag., April, 1881), 
assuming Maxwell's theory, is 

\(L m + JL ^ ) j + (I m- + .L ^1) V" + V A { 2 2 ) , 
{\2 15 a J \2 15 a J 3A J x 

where R is the distance between the centres of the two 
spheres and e the angle between their directions of motion; 
m, m, c, e are respectively the masses and charges of the 
spheres. 
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By expressing z;, v' and cos c in terms of the coordinates 
of the centres of the spheres and their differential coefficients 
with respect to the time, we can, by using Lagrange's 
equations in the way explained in § 20, show that these terms 
require the existence of the following forces on the two 
spheres, v and v being the accelerations of the spheres 
respectively. 

On the first sphere. 
a. An attraction 

along the line joining the centres of the spheres. 
/3. A force 

in the direction opposite to the acceleration of the second 
sphere. 

7 . A force 

in the direction opposite to the direction of motion of the 
second sphere. 

There are corresponding forces on the second sphere, and 
we see that unless the two spheres move with equal and 
uniform velocities in the same direction the forces on the 
two spheres are not equal and opposite. The sum of the 
momenta of the two spheres will not increase indefinitely 
however, since the sum of the actions and reactions is not 
constant but is a function of the accelerations. 

We may easily prove that if x, y, z are the coordinates of 
the centre of one sphere, x',y', z' those of the other, then 

uce' , 
- ^ VV cos e 

+ 1 m h 
4 fxe'2 /A ee'\ dx 
15 a 3 JÇ J dl 

3 — 2 
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is constant, along with symmetrical expressions for the y and 
z coordinates. 

26. Other electrical theories besides Maxwell's lead to 
the conclusion that the coefficient \xx\ is a function of the 
electrification of the system. 

Thus according to Clausius' theory (Grelle, 82, p. 85) 
the forces between two small electrified bodies in motion are 
the same as if, using the same notation as before, there was 
the term 

, , cos £ ee 
E E V V - R - K R 

in the expression for the Lagrangian function. The first of 
these is the same as the term we have just been considering. 

The forces which according to Weber's theory {Abhand­
lungen der Königlich Sächsischen Gesellschaft der Wissen­
schaften, 1846, p. 211. Maxwell's Electricity and Magnetism, 
2nd Edit. vol. 11. § 853) exist between two electrified bodies 
in motion may easily be shown to be the same as those 
which would exist if in the Lagrangian function there was 
the term 

ee ix-x', y-y , z - z V ee 

R \ R jr^-^ + -n {w~w)rKR\ 
where x, y, z, x\ y', z' are the coordinates of the centres of 
the electrified bodies and u, v, w, u, v', w' the components 
of their velocities parallel to the axes of coordinates. 

This term leads however to inadmissible results, as we 
can see by taking the simple case when the bodies are moving 
in the same straight line which we may take as the axis of 
x. In this case the term in the kinetic energy reduces to 

or ^ ( « « -2mi' +u's) 
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so that the electrified bodies will behave as if their masses 
were in consequence of the electrification increased by 
zeejR since the coefficients of u* and u'' are each increased 
by half this amount. Hence if we take e and e of opposite 
signs and suppose the electrifications are great enough to 
make 2ee'/R greater than the masses of one or both of the 
bodies, then one of the bodies at least will behave as if its 
mass were negative. This is so contrary to experience that 
we conclude the theory cannot be right. This consequence 
of Weber's theory was first pointed out by v. Helmholtz 
(Wissenschaftliche Abhandlungen, i . p. 647). 

The forces which according to Riemann's theory, given 
in his posthumous work Schwere, Elektriatat und Magtutis-
mus, p. 326, exist between two moving electrified bodies may 
easily be shown to be the same as those which would exist if 
there were the term 

~ \{u - u')' +(v- vj + (w- w'f) - g R 

in the expression for the Lagrangian function. We can 
easily see that this theory is open to the same objection 
as Weber's, that is, it would make an electrified body 
behave in some cases as if its mass were negative. 

27. If we regard the expression for the kinetic energy 
from the point of view of its bearing on electrical phenomena 
we shall see that it shows that if we connect the terminals 
of a battery to two spheres made of conducting material, the 
quantity of electricity on the spheres will depend upon their 
velocities. 

We see from the expression (22) for the kinetic energy of 
a moving conductor that if we have a number of conductors 
moving about in the electric field there will be a positive term 
in the Lagrangian function depending upon the square of 
the electrification. And the same is true to a smaller 
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extent if the moving bodies are not conductors but 
substances whose specific inductive capacity differs from 
that of the surrounding medium. This is equivalent to a 
decrease in the potential energy produced by a given 
electrification, since an increase in the potential energy 
corresponds to a decrease in the Lagrangian function. 
Thus the presence of the moving conductors is equivalent 
to a diminution in the stiffness of the dielectric with respect 
to alterations in its state of electrification. And therefore 
the speed with which electrical oscillations are propagated 
across any medium will be diminished by the presence of 
molecules moving about in i t ; the diminution being pro­
portional to the square of the ratio of the velocity of the 
molecules to the velocity with which light is propagated 
across the medium. Thus if the electromagnetic theory of 
light is true the result we have been discussing has an 
important bearing on the effect of the molecules of matter 
on the rate of propagation of light. 

28. We can see that {xx} may be a function of the 
strain coordinates, for let us take the case when {xx} is the 
moment of inertia of a bar about an axis through its centre : 
then it is evident if the bar be compressed in the middle 
and pulled out at the ends that the moment of inertia will 
be less than if the bar were unstrained, for the effect of 
the strain has practically been to bring the matter forming 
the bar nearer to the axis. Thus the moment of inertia 
and therefore {xx} may depend upon the strain coordinates. 

These coordinates will in general only enter {xx} through 
the expression for the alteration in the density of the strained 
body, i.e. through 

da ^ dfi ^dy ' 2 ) 
dx ~dy dz 1 3 » 

and this will only enter {xx} linearly. 
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If we form the equations of elasticity by using Hamilton's 
principle 

8 \h{T- V) dt = o 

we shall easily find that the presence of (23) in \xx\ 
leads to the introduction of the so-called "centrifugal forces" 
into the equation of elasticity for a rotating elastic solid. 
This however we shall leave as an exercise for the reader. 

29. Let us now consider that part of the Lagrangian 
function which depends upon the velocities of the electrical 
coordinates, i.e. the part denoted by 

\ {{yj^yf + ziyj^yJ^ ·••}• 
Let us take the case of two conducting circuits whose 

electrical configuration is fixed by the coordinates yv _y2, 
where yv y1 are the currents flowing through the circuits 
respectively. 

This part of the Lagrangian function may in this case be 
conveniently written 

i(Lyl' + 2My1y2 + Ny2

S!). 
Now we can fix the geometrical configuration of the two 

circuits if we have coordinates which can fix the position 
of the centre of gravity and the shape and situation of the 
first circuit, the shape of the second circuit and its position 
relatively to the first. 

Let us denote by x2 - xx any coordinate which helps to 
fix the position of one circuit relatively to the other, and by 

4 coordinates helping to fix the shape of the first and 
second circuits respectively. 

It is evident that the kinetic energy must be expressible 
in terms of these coordinates, for the only coordinates neces­
sary to fix the system which we have omitted are those fixing 
the centre of gravity and situation of the first circuit, and 
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1 This is quite consistent with the apparent diminution in the self-
induction caused by a neighbouring circuit when an alternating current 
is used. 

since a motion of the whole system as a rigid body through 
space cannot alter this part of the kinetic energy of the 
system, the expression for the kinetic energy cannot involve 
these coordinates. 

If we write for a moment x instead of xa — xx (a coordi­
nate helping to fix the position of one circuit relatively to 
the other) then by Lagrange's Equations we see that these 
terms in the kinetic energy correspond to the existence of a 
force tending to increase x equal to 

i dL . , dM . . i dN . , . . 
-2dx^ + d x ^ + 2d-X->'*<24>-

We see from this expression that dLjdx, and dJV/dx 
must vanish, otherwise there would be a force between the 
two circuits even though the current in one of them 
vanished. The quantities L and N are by definition the 
coefficients of self-induction of the two circuits, and hence 
we see that the coefficient of the self-induction of a circuit is 
independent of the position of other circuits in its neighbour­
hood and is therefore the same as if these circuits were re­
moved'. 

By (16) the force tending to increase x is 
dM . . 

that is there is a force between the two circuits proportional 
to the product of the currents flowing through them, and also 
to the differential coefficient with respect to the coordinate 
along which the force is reckoned of a function which does 
not involve the electrical coordinates. This corresponds 
exactly to the mechanical forces which are actually observed 
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between the circuits, and a little consideration will show that 
these forces could not arise from any other terms in the 
Lagrangian function. Thus the consideration of the mechan­
ical forces which two circuits carrying currents are known to 
exert upon each other proves that the term Myja exists in 
the expression for the Lagrangian function. 

Let us now go on to consider the effect of these terms 
on the electrical configuration of the two circuits. 

By Lagrange's Equation for the coordinate _y, we have 

d_dE__dE , v 

where Yt is the external electromotive force tending to 
increase yr Now as we shall prove directly dL'jdyl — o, so 
that the effects on the electrical configuration of the first. 
circuit, arising from the term 

\ (Ly*+2MyJ, + Ny*) 

are the same as would be produced by an external electro­
motive force tending to increase yt equal to 

~jt{Ly^My^ (26). 

Thus if any of the four quantities Z , M, yv yt vary in 
value there is an electromotive force acting round the 
circuit through which the current yx flows. And the 
expression (26) gives the E. M. F . produced either by the 
motion of neighbouring circuits conveying currents or by 
alterations in the magnitudes of the currents flowing through 
the circuits. 

This example is given in Maxwell's Electricity and 
Magnetism, vol. 11. part iv. chapter vi., and it is one which 
illustrates the power of the dynamical method very well. 
The existence of the mechanical force shows that there is 
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the term 
My, y,, 

in the expression for the Lagrangian function and then the 
law of the induction of currents follows at once by the 
application of Lagrange's Equations. 

The problem we have just been considering is dynamic­
ally equivalent to finding the equations of motion of a 
particle with two degrees of freedom when under the action 
of any forces. We know that these cannot be deduced by 
the aid of the principle of the Conservation of Energy alone, 
for to take--the simplest case of all, that in which no forces 
act upon the particle, the principle of the Conservation of 
Energy is satisfied if the velocity is constant whether the 
particle moves in a straight line or not. From this analogy 
we see that when we have two circuits the principle of the 
Conservation of Energy is not sufficient to deduce the 
equations of motion, and that some other principle must be 
assumed implicitly in those proofs which profess to deduce 
these equations by means of the Conservation of Energy-
alone. 

30. There is no experimental evidence to show that 
{yy\ is a function of the electrical coodinates y, and it 
certainly is not when the electrical systems consist of a 
series of conducting circuits, for if it were the coefficients of 
self and mutual induction would depend upon the length of 
time the currents had been flowing through the circuits. 
And in any case it would require the existence of electro­
motive forces which would not be reversed if the direction 
of all the electric displacements in the field were re­
versed. 

31. Similar reasoning will show that {yy} cannot be a 
function of the magnetic coordinates, for if it were there 
would be magnetic forces produced by electric currents 
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which would not be reversed if the directions of all the 
currents in the field were reversed. 

32. We must now consider whether \yy\ is a function 
of the strain coordinates or not. If it is then the coefficients 
of self and mutual induction of a number of circuits must 
depend upon the state of strain of the wires forming the 
circuits. This result though not impossible has never been 
detected, and it is contrary to Ampere's hypothesis that the 
force exerted by a current depends only upon its strength 
and position and not upon the nature or state of the 
material through which it flows. 

Then again, if we consider what the effect on the elastic 
properties of the substance would be if {yy \ were a function 
of the strain coordinates, we see at once that it would 
indicate that the elastic properties of a wire would be 
altered while an electric current was passing through it. 

The evidence of various experimenters on this point is 
somewhat conflicting. Both Wertheim {Ann. de Chim. et 
de Phys. [3] 12, p. 610, Wiedemann's Ekktricitat, 11. p. 403) 
and Tomlinson- have observed that the elasticity of a wire is 
diminished when a current passes through it and that this 
diminution is not due to the heat generated by the current. 
Streintz ( Wien. Ber. [z] 67, p. 323, Wiedemann's Elektriciidt, 
11. p. 404) on the other hand was unable to detect any such 
effect. 

But even if this effect were indisputably established it 
would not prove rigorously that \yy\ is a function of the 
strain coordinates, for as we shall endeavour to show when 
we consider electrical resistance this effect might have been 
due to another cause. 

To sum up we see that {yy} is a function of the 
geometrical coordinates but not of the electric or magnetic 
ones and probably not of the strain ones. 
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33. We shall now consider the part of the Lagrangian 
function which depends upon the magnetic coordinates and 
which does not involve the velocities of the geometrical, 
electrical or strain coordinates. Thus the terms we are 
about to consider in the Lagrangian function of unit 
volume of a substance are those we have denoted by 

we may have in addition to these terms arising from the 
potential energy. 

In order to begin with as simple a case as possible let 
us suppose that all the magnetic changes take place indefi­
nitely slowly ; in this case we may neglect the term 

and confine our attention to the terms 

or as it is more convenient to write them 

iAV^+hm (27)-
Let us take first the case when the magnetization is 

parallel to one of the axes, x for example, and let us denote 
the magnetic force parallel to this direction by H and the 
intensity of magnetization by I, where by definition 

/= Vt (28). 

The investigation in § 3 8 9 of Maxwell's Electricity and 
Magnetism shows that if we suppose that all the energy in 
the magnetic field is resident in the magnets, there is in the 
Lagrangian function for unit volume of a magnet the term 

HI. 

The result of this investigation is stated in the Electricity 
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MAGNETIZATION". 45 

and Magnetism to be that the potential energy of unit 
volume of the magnet is 

but we have seen in § 9 that the question whether energy 
determined in this manner is kinetic or potential is really 
left unsettled : what is actually proved is that a certain term 
exists in the Lagrangian function. 

If we suppose that the energy is distributed throughout 
the whole of the magnetic field, including unmagnetized 
substances as well as magnets, then the investigation in § 635 
of the Electricity and Magnetism shows that the Lagrangian 
function of unit volume anywhere in the magnetic field con­
tains the term 

where B is the magnetic induction. 
These two ways of regarding the energy in the magnetic 

field lead to identical results ; and as we shall for the 
present confine our attention to the magnetized substances 
we shall find it more convenient to adopt the first method 
of looking at the question. 

We have seen that the Lagrangian function for unit 
volume of a magnet contains the term 

Since the magnetic changes are supposed to take place 
indefinitely slowly, Lagrange's equation for the 17 coordinate 
reduces to 

- H I , 
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Applying this to the expression (27) and substituting 
Htl£ for 1 {£} t we get 

\^(AVr) + m = o (30), 

and since f is supposed to remain constant and therefore 
£diq = dl, 

this may be written 

I~(Ar) + U = ° (31). 

So that if k be the coefficient of magnetic induction and 
denned by the equation 

we have by (31) 

\ = ~ir { A r ) ( 3 2 ) > 

and therefore 

A r - - \ \ d r -

• * :adi. (33)-
Tf we know the way in which / varies with H we could 

by this equation express ^(.as a function of I. The relation 
between T and H Va however in general so complicated that 
there seems but little advantage to be gained by taking some 
empirical formula which connects the two and determining 
A by its help. 

For small values of IJ, Lord Rayleigh {Phil. Mag. 23, 
p. 225, 1887) has shown that I\H is constant, so by 
equation (33) A in this case is also constant. 

34. The mechanical force parallel to the axis of x 
acting on unit volume of the magnet is 

dL' 
dx 
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The only quantity in the terms we are considering which 
involves x explicitly is H, so that dL'jdx reduces to 

TdH . . 

and this is the mechanical force parallel to the axis of x 
acting on unit volume of the magnet. This expression may 
also be written 

1 dJLT 
2 dx 

with similar expressions for the components parallel to the 
axes of y and z. 

These are the same expressions for this force as those 
given in Maxwell's Electricity and Magnetism, vol. n. p. 70, 
the consequences of which are as is well known in harmony 
with Faraday's investigations on the way in which para­
magnetic and diamagnetic bodies move when placed in a 
variable magnetic field. 

35. We have just investigated the mechanical forces 
produced by a magnetic field ; we shall now proceed to 
investigate some of the stresses produced by it. 

Let us take the case of a cylindrical bar of soft iron 
whose axis coincides with the axis of x, and suppose that it 
is magnetized along its axis. Let e, f, g be the dilatations 
of the bar parallel to the axes of x, y, z respectively. We 
shall at present assume that there is no torsion in the bar. 
We shall suppose that the ehanges in the strains take place 
so slowly that we may neglect the kinetic energy arising 
from them. 

The potential energy due to these strains is 

\m \e +/+ g}s + \n {e* +f+g*~ 2ef- leg - 2/g], 
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where n is the coefficient of rigidity and m — n\$ the 
modulus of compression. 

Thus the terms in the Lagrangian function involving the 

magnetic and strain coordinates are 

\Aif? + Hrfc - \m (e +/+ g)' - \n {/ +f + g3 - 2ef- 2eg 

- '/g) ; 
neglecting those depending on the rate of variation of these 
quantities which rate we shall assume to be indefinitely small. 

The experiments of Villari and Sir William Thomson 
(Wiedemann's Elektricitdt, m. p. 70J) have shown that k 
depends upon the strain in the magnet, hence by equation 
(32) A will be a function of the strains. We shall pro­
ceed to investigate the stresses which arise in consequence 
of this. Using the Hamiltonian principle 

S Ldt=o, 

and substituting dajdx, d^jdy, dy/dz for e, f, g respectively, 
we get the following equations by equating to zero the 
variation caused by changing A into A + SA 

dL _d dL 
dx dx de ~ ° ; ( 3 S ^ 

inside the bar, 

" d e = ° ( 3 6 ) 

at the boundary. 
By equating to zero the variation caused by changing /? 

into ¿3 + 8/3 we get 
dL d dL 
dy~d~y~df = ° ' ' ^ 3 7 ) 

inside the bar, 

df 
at the boundary. 

dL , , 
0 (38) 
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And by equating to zero the variation caused by changing 
y into y + Sy we get 

inside the bar : 

at the boundary. 

dL d dT, , \ 

% ° ( l c ) 

The first and second terms in the equations (35), (37) 
and (35) may conveniently be considered separately. Since 
H is the only quantity in the expression for I. which can 
involve the coordinates x, y, or 2 explicitly the terms 

reduce to 

dL dL dL 
dx ' dy ' dz 

, dll f dH f dTT 
^ dx'rt-dy'^-dz ' 

kLldf, kHd",kHdf dx dy dz 
respectively. 

These are the expressions for the components of the 
mechanical force acting on the body, and it is shown in 
Maxwell's Electricity and Magnetism, § 642, that this dis­
tribution of force would strain the body in the same way as 
" a hydrostatic pressure LT!/8ir combined with a tension 
BLTI4.1T along the lines of force," B being the magnetic 
induction. Thus we may suppose that the strains arising 
from these terms are known. If e, f, g are the strains due 
to the second term in equations (35) (37) and (39), we have 

T. D. 4 
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dA ~i 
rf? d e - « i'+f+g) -«(<?-/- g) = o 

dA 
yfg -d- -m(e+f + g)-n(g-e-f) = o 

• ( 4 0 

Solving these equations and putting Tjf-T" we get 

' yn-n{df^ ' dg v J I 3;» — TIDE 

2m d . . „ 
yn — ndf 

2m d 
yn—n dgv 

-
— 

n 
— n 

3 ; « --n 

(42) 

If the magnet is symmetrical about its axis we have 

f = g 

So that equations (42) reduce to 

37« — n de ' 2>M — ndf' 
m " n d

 { A P ) +

m + n-^IAP) ' yn-n df • ' 3OT — n 
The dilatation e+ 2 / is equal to 

1 (D , , D 

.(43)· 

• (44) . 3;« — n {de 
Differentiating equations (43) with regard to 7 2 , we get 

d d^ approximately since --^ (A P) and -j—7r{AI2) must be 

small compared with or n, or the changes in the 
elasticity caused by magnetization would not be so small 
as to have escaped detection, 
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dl2 \ dl, 
df f dk\f m — n 1 dl m + n 1 dP 
dr~\ dl \ 2,m — nklde yn — nkldf)\ 
These expressions give the strains which result from the 

dependence of the intensity of magnetization on the state 
4—2 

de = J n _ d d _ m~n d d ' 
dl- 2,m —n de. dl x ' ?,m — n df dl * ' 
df m — nd d . rn + n d d . . 

a w ¿ 7 ^ ~ 3;«^» de dP { A I > + yn-n df IP { A I
 >J 

Now by equation (32) 

So that these equations become 

de in 1 dk tn — n 1 dk 1 
* rf/" yn — n'k* de 3 ; « - « /fc2 I . . 
df m — n i dk m + n 1 r/i 1 " 

dl% yn—ti k1 de 2>m — n k2 df J 
Now if the coefficient of magnetization depends upon 

the strains, the intensity of magnetization of the bar 
when under the action of a constant magnetizing force 
will be altered by strain, and in order to compare the 
formulae with the results of experiments we shall find it 
more convenient to express de/'d/2, df/dl2 in terms of the 
changes which take place in the intensity of magnetization 

i when the bar is stretched rather than in terms of dklde 
and dkjdf. 

We have I = kH, 

so that when H is supposed to be constant 

df rrdk dk dl , . 
de 1 1 de'" dl de ^ ' 

and equations (46) may be written 

de [ dk\f m J dT m — n 1 dh ") 
, R ) \ 2 M — nklde yn — nlzldf) 1 . „ , 

14*;· 
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of strain of the magnetized body. In addition there are 
the strains arising from Maxwell's distribution of stress. 
Kirchhoff (Wied. Ann. xx iv . p. 52, xxv. p. 601) has 
investigated the effect of this on a small soft iron sphere 
placed in a uniform magnetic field and has shown that it 
would produce an elongation of the sphere along the lines 
of force and a contraction at right angles to them. We may 
therefore assume that in general this distribution of stress 
causes an expansion of the magnet in the direction of the 
lines of force and a contraction in all directions perpen­
dicular to this. 

The expressions for the strains in a magnetizable 
substance placed in the magnetic field have also been in­
vestigated by v. Ilelmholtz (Wied. Ann. x m . p. 385). The 
object of the investigations of v. Helmholtz and Kirchhoff 
was rather different from that of Maxwell. Maxwell's object 
was to show that his distribution of stress would produce 
the same forces between magnetized bodies as those which 
are observed in the magnetic field, while v. Helmholtz and 
Kirchhoff's object was to show that it follows from the prin­
ciple of the Conservation of Energy that, whatever theory 
of electricity and magnetism we assume, the bodies in the 
electric or magnetic field must be strained as if they were 
acted upon by a certain distribution of stress which in the 
simplest case is the same as that given by Maxwell. 

We have in addition to the strain produced by these 
stresses, the strains depending upon the alteration of the 
intensity of magnetization with stress along and perpen­
dicular to the lines of force. 

The effect of stress along the lines of force on the 
magnetization of iron has been investigated by Villari {Pogg. 
Ann. 126, p. 87, 186S) and Sir William Thomson (Proc. 
Roy. Soc. 27, p. 439, 1878); both these physicists found that 
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the intensity of magnetization was increased by stretching 
when the magnetizing force was small, but that when the 
magnetization exceeds about 10 when measured in C.G.s. units 
the intensity of magnetization is diminished by stretching. 

Sir William Thomson also investigated the effect of 
stress at right angles to the lines of magnetic force on 
the intensity of magnetization and found that this was in 
general opposite to that of tension along the lines of force, 
so that for small values of the magnetizing force extension 
at right angles to the lines of force diminishes the mag­
netization, while for larger values of this force it increases 
it. The critical value of the force in this case however is 
higher than that for tension along the lines of force. 

Thus, except when the magnetizing force is between the 
critical values, dljde and dlldf have opposite signs, hence 
we see by equation (48) that except in this case, since 
Prof. Ewing's measurements show that Hdkldl is always 
less than unity, 

have opposite signs. 
Now dl',de is positive or negative according as the 

magnetizing force is less or greater than the critical value, 
so that when the magnetizing force is less than the critical 
value the extension we are investigating will increase with 
the magnetic force, but when the magnetizing force is 
greater than this value the extension will diminish as the 
force increases. 

As we mentioned before the strain produced by Maxwell's 
distribution of stress, which is the other cause tending to 

dl 
de 

have the same sign, and 
df dl 
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strain the body, has been shown by Kirchhoff to produce 
an expansion along the lines of force and a contraction at 
right angles to them. Thus when the magnetizing force is 
less than the critical value this strain and the strain we have 
just investigated act in the same way, but when the force is 
greater they act in opposite directions. 

Joule's investigations {Phil. Afag. 30, pp. 76 , 225, 18/17) 
prove that the length of an iron bar increases when it 
is magnetized and as far as the experiments went the 
increase in the length was proportional to the square of the 
magnetizing force. Mr Shelford Bidwell (Proc. Roy. Soc. 
x l . p. 109) however has lately shown that when the mag­
netizing force is very large the magnet shortens as the 
magnetizing force increases. 

Comparing these experimental results with our theoretical 
conclusions we see that they are in accordance when the 
magnetizing force is small, and that when the magnetizing 
force is large they indicate that the strains due to the same 
cause as that which causes the intensity of magnetization to 
alter with strains are more powerful than those arising from 
Maxwell's distribution of stress. Prof Ewing's experiments 
on the effect of strain on magnetization (" Experimental 
"Researches in Magnetism," Phil. Trans. 1885, part 11. p. 
585) would seem to show that this must be the case. For 
Kirchhoff (Wiedemann's Annalen, xxv . p. 601) has shown 
that the greatest increase in length which Maxwell's stresses 
can produce in a soft iron sphere whose radius is R, placed 
in a uniform magnetic field where the force at an infinite 
distance from the sphere is IT, is 

153 
17677 E ' 

where E is one of the constants of elasticity for soft iron 
and is equal in the c. g . s. system of units to i"8 x i o l a . 
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Thus in this case supposing k to be constant we have 
de 153 r 
dP = 176V/F i ^ V i c ^ 2 

1-5 x J O - 1 3 

V 
Now according to Prof. Ewing's experiments the intensity 

of magnetization of a soft iron wire which was represented by 
181 when there was no load was increased to 237 when the 
wire was loaded with a kilogramme, so that in this case 

j = n e a r l y (5°)· 

The diameter of the wire was such that the load of a 
kilogramme corresponded to a stress of about 2 x 10 s per 
square centimetre in c .G.s . units, so that if q be Young's 
modulus for the wire and 8« the extension produced by the 
load 

q8e =2 x 10": 
for wrought iron qtn is about 2-5, so that 

= 8 x io 7 

and therefore by (49) 
J_dl_ i 
nl de 2'4 x io" 

so that by equation (48) if e be the elongation due to the 
magnetization 

de i r . . 
d r ^ T ^ - k < s l ) -

Comparing this with (49) we see that the part of dejdl* due 
to the cause we are now considering is very much greater 
than that due to Maxwell's distribution of stress. The value 
of dl'de is probably exceptionally large in this case, and 
near the critical value it is doubtless very much less, so that 
in this case it is conceivable that the effect of the Maxwell 
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stress may be comparable with thai due to the alteration of 
intensity of magnetization with strain. 

Since the Maxwell effect is in general so small compared 
with the other we should expect the critical value of the 
magnetizing force to be approximately the same as the 
value of the force when the extension is a minimum ; it is 
however much less. There seems however to be reason 
to think that the critical value when the magnet is free 
from strain has been very much underestimated. Indeed 
Prof. Ewing [loc. a'f.) expresses his opinion that " if we 
deal only with very small stresses it is doubtful whether 
any reversal of the positive effect of stress would be 
reached even at the highest obtainable value of the magneti­
zation." By the positive effect of stress Prof. Ewing means 
an increase of magnetization with an increase of stress, the 
magnetizing force remaining constant. 

Bidwell's discovery that dejdl1 is negative when the 
magnetization exceeds a certain value, in conjunction with 
the theoretical results we have been investigating in this 
paragraph, shows that when the magnetization reaches this 
value the positive effects of stress must be reversed. The 
magnet in this case however is not free from stresses as it is 
acted on by those called into play by the magnetization. 

36. If the dilatation in volume e+ 2/ be denoted by 8, 
then the part of 8 due to the same cause as that which 
makes the intensity of magnetization depend upon strain is 
by (48) given by the equation 

d8 1 1 fdl dT\ f r r d k \ , . 
dP = y n - n Ti U + * WJ V ~ 1 1 d l ) - ^ -

Joule's experiments show that the dilatation in the 
volume if it exists at all must be very small compared with 
the elongation, as he was not able to detect it though his 
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apparatus would have enabled him to do so if it had 
amounted to one part in 4500000. Hence as the greater 
part of the strain is that given by equation (48) 

dl dl 
de df 

must be small, so that dljde and dljdf must have opposite 
signs except when they are very small. This agrees witli 
the results of Sir William Thomson's experiments on the 
effects of traction along and perpendicular to the lines of 
force on the intensity of magnetization ; as, except in the 
neighbourhood of the critical magnetic forces when dl',de 
and dlidf are both small, traction along and perpendicular 
to the lines of force produced opposite results. 

If we assume that Joule's experiments prove that there 
is no change in volume then by equation (52) 

dl dl 
de

 + 2W = ° 
and equation (48) reduces to 

de id// dk\* 
2ndr = YrdeV~Hnj) (S3)-

37. The critical value of the intensity of magnetization, 
i.e. the intensity when the magnetization is neither increased 
nor decreased by a small strain will, since by (32) and (47) 

1 / t t dk\ dl d d 

be given by the equation 

7e-dUAr^° kS> 
* In my paper on " Some App l i ca t ions of Dynamics to Physical 

Phenomena , " Part I. Phil. Trans. Par t TT. 1885 this equation has the 
wrong sign, wh ich was carried d o w n from equation (51) in the same 
paper. 
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The experiments of Sir William Thomson and Prof. Ewing 
have shown that the critical value of I depends upon the 
state of strain. Hence we see by means of equation (55) that 
liAjde must be a function of e, so that if A be expanded in 
powers of e it must contain powers about the first. We may 
therefore write 

A = a + fie + ye' + Ses + ... 

Now if the term ye2 exists, the coefficient of e' in the 
Lagrangian function will contain the term \yl2 and so will 
involve the state of magnetization of the body. The 
coefficients of elasticity however are linear functions of the 
coefficient of e2 in the Lagrangian function so that if this 
latter quantity depends upon the state of magnetization, the 
coefficients of elasticity will do the same. We conclude 
therefore that the elasticity of an iron bar must be altered by 
magnetization. This effect does not seem to have been 
observed. 

If in the expression for A we neglect powers above the 
second we have 

dA 

and therefore 

The right hand side of this equation changes sign when 
e passes through the value 

.» >· ô.) (57)· di'j/V dry 
Now the effects of strain on the intensity of magnetization 

and of magnetization upon strain depend by (32) and (47) 
upon the value of 
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so that we should expect the effect of magnetization on the 
strain of an iron rod to depend upon the strain previously 
existing in the rod, in such a way that when the strain was 
less than a critical value magnetization would increase the 
length of the rod, and when it was greater than this value 
magnetization would have the contrary effect and tend to 
shorten the rod. This agrees with the result of Joule's 
experiments as he found that when the soft iron wires were 
stretched beyond a certain limit they became shorter instead 
of longer when they were magnetized. 

38. So far we have only considered the effect of expan­
sion and contraction upon the intensity of magnetization 
and vice-versa. We can however in a similar way discuss 
the effects of torsion upon the magnetic properties of iron 
wire. 

Let us now suppose that twist is the only strain in an iron 
wire which is longitudinally magnetized and has a twist c 
about its axis, then, using the same notation as before, the 
terms in the Lagrangian function depending upon strain 
and magnetization are 

By a similar method to that employed in the case of 
dilatations we can prove that the twist c due to the same 
cause as that which makes the intensity of magnetization 
alter with the torsion is given by the equation 

£r = l i p i w ^ 
Now when a twisted bar is magnetized it untwists to 

a certain extent if the magnetization is intense, but the twist 
increases if the magnetization is weak. If however the bar 
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initially has no twist in it then it neither twists nor untwists 
when it is magnetized (Wiedemann's Elekiriritiit, in. p. 692). 

This shows that if A be expanded in powers of c the 
first power must be absent, otherwise by equation (58) an 
untwisted bar would twist when it was magnetized. Hence 
A must contain a term in tr and therefore the coefficient of 
c"' in the Lagrangian function must contain a term proportional 
to /*. Now the coefficient of c2 in the Lagrangian function 
is proportional to the'coefficient of rigidity and hence we see 
that the rigidity of iron wire will be altered by magnetization. 

Since the twist diminishes with strong magnetization we 
see by equation (58) that the coefficient of c in 

must be negative when I is large and hence that the co­
efficient of â in A must be negative. Let us call this 
coefficient — y, the coefficient of â in the Lagrangian 
function is 

but the apparent coefficient of rigidity is twice the coefficient 
of — r in the Lagrangian function so that in this case the 
apparent coefficient of rigidity is 

Thus in this case the effect of strong magnetization is to 
increase the rigidity, so that the same couple will not twist 
the wire as much when it is strongly magnetized as when it 
is unmagnetized. 

When the intensity of magnetization is small the opposite 
will be the case, as in this case the twist in a wire increases 
when it is longitudinally magnetized. 

i d d 
n 7c dP 2 

Since 
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and also 

we have 

dc f i i / ' , .„.) r ¿ 7 / 
^ I 1 " nd? ^ >j = « 4 / * ( r - ^ Z j 

or approximately since d*(AI*)/ndc* is very small 
<rir i df / 

We see by this equation that when the magnetization is 
so strong that magnetizing the wire diminishes the twist in 
it, then twisting the wire will diminish the intensity of 
magnetization. On the other hand when the intensity of 
magnetization is so small that magnetizing the wire increases 
the twist in it then twisting the wire will increase the 
intensity of magnetization. 

The reciprocal relations between torsion and magnetiza­
tion have been experimentally investigated by Wiedemann 
(Lehre z'on der Klektricitdi, in. p. 692) and he arranges 

the corresponding results in parallel columns. These are 
also quoted in Prof. Chrystal's article on Magnetism in the 
Encydopce.dia Britannica. The following is one set of the 

corresponding statements. 
" 5. If a wire under the influence of a twisting strain is 

magnetized, the twist increases with weak but diminishes 
with strong magnetization." 

" V. If a bar under the influence of a longitudinal 
magnetizing force is twisted the magnetization increases 
with small twists but decreases with large ones." 

Comparing these statements with the results we have 
previously obtained we see that whether the first part of V is 
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true or not depends upon the intensity of magnetization. Jf 
the twist be of such a magnitude that 5 is true, then the first 
part of V is true if the magnetization is weak, but the opposite 
is true if the magnetization is strong. Further since by V 
the influence of twist on magnetization depends upon the 
size of the twist, it follows by equation (60) that the influence 
of magnetization upon twist must depend upon the size of 
the twist—so that 5 is only true when the twist is on one 
side of a critical value, when it is on the other side the 
contrary is true. 

The existence of a critical twist as well as a critical 
magnetization makes the verbal enunciation of the relations 
between torsion and magnetization cumbrous; they are all 
however expressed by equation (60). 

39. S t r a i n s in a d ie lec t r i c p r o d u c e d by t h e 
e lec t r ic field. The strains produced in a dielectric by 
the electric field can be found by a method so similar to 
that used in the last two paragraphs that we shall consider 
them here though they have no connexion with the terms in 
the Lagrangian function which we have been considering. 

Let / , r be the electric displacements parallel to the 
axes of x, y, z respectively, then if the body is isotropic, the 
terms in the Lagrangian function of unit volume of the 
dielectric which depend upon the coordinates fixing the 
strains and electric configuration if the dielectric is free 
from torsion are, 

(Xp + yf + Zr)-2£\p*+ !> + *»} 

- \m (e +/+ g)> - \n {? +f2+g2- zef- 2eg- 2/g)... (61) 

where e,f, g are the dilatations parallel to the axes of x,y, z 
respectively, A'the specific inductive capacity of the dielectric 
and X, Y, Z the electromotive forces parallel to the axes 
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of x, y, z. Then we see as in § 35 that e,f, g the strains due 
to the dependence of K upon the strains in the dielectric 
are given by the equations 

dL dL dL 
-ar°' df = 0' dg

=0' 
where L stands for the expression (61). 

Substituting for L its value these equations become re­
spectively 

d r ^ 27r{/+?

2
 + r 2} + m(e+/+g) + n(e-f-g)--o I 

+ ? ! + ^ } ^ - ^ + ' « ( « + / + + = ° ^ (<")· 

2TT{/ + q* + Aj^k* m{e +f+g) + n(g-e~f) = o 

Now p--— KX, q = KY, r = ^~ KZ. 
4* 4ir 4tt 

So that if R1 = X" + Y' + Z\ 

we get from equations (62) 

R* 1 f dK (dK dK\] 

—iT ~ 7 \ 1 2 m 1 -(m-fi) [-,, + -j ,-...(63) 
I6TT n {yn-n) [ de x \df dgj) x ' 

with symmetrical expressions for g and //. 
The expansion in volume 

e +f + g 
is given by the equation 

R2 1 (dK dK dK) ., , 
e + f + * = T * W ^ \ - d e + - d f + H g \ ( 6 4 ) -

Just as in the analogous case of magnetism these are 
not the only strains produced in the dielectric by the 
electric field. The term (Xp + Yq + Zr) which occurs in 
the Lagrangian function can be shown to involve the same 
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distribution of strain in the dielectric as would be produced 
by the distribution of stress which Maxwell supposes to 
exist in the electric field, viz. a tension KR^I&tt along the 
lines of force and a pressure of the same intensity at right 
angles to them. The effect of this distribution of stress 
will be of the same character for all dielectrics, and its 
nature depends more upon the distribution of force 
throughout the electric field than upon the nature of the 
dielectric. The experiments of Quincke (Phil. Mag. x. p. 
30, 1880) and others show that the behaviour of different 
dielectrics when placed in the same electric field is very 
different. Thus, for example, though most dielectrics 
expand when placed in an electric field, the fatty oils on 
the contrary contract. This difference of behaviour shows 
that in many cases at any rate, the strains due to the same 
cause as that which makes the specific inductive capacity 
depend upon the strain are greater than those produced by 
Maxwell's distribution of stress. 

Quincke has shown that the coefficients of elasticity of a 
dielectric are altered when an electric displacement is pro­
duced in it, this shows that ijK when expanded in powers 
of e must contain a term in and is another proof that 
the specific inductive capacity depends upon the strain in 
the dielectric. Since part of the strain of a dielectric in an 
electric field is due to the same cause as that which makes 
the specific inductive capacity depend upon strain, the 
expression for i/A'when expanded in powers of e must con­
tain the first power of the strains as well as the second, as if 
it only contained the second powers placing the dielectric 
in an electric field would merely be equivalent to changing 
the coefficients of elasticity of the body and so could not 
strain the body if it were previously free from strain. 

No experiments seem to have been made to determine 
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M A G N E T I C I N E R T I A . 65 

directly the values of dKide, dK/df &LC, and the experimen­
tal difficulties which would have to be overcome in order to 
do this are much greater than those in the corresponding 
case in magnetism. The dependence of K upon strain is 
probably much less than that of k, the coefficient of 
magnetic induction. For the specific inductive capacity 
seems to be much more independent of the molecular state 
of the dielectric than the coefficient of magnetic induction 
is of the molecular state of soft iron. Thus there is a com­
paratively small difference between the specific inductive 
capacities of various substances, while the coefficient of 
magnetic induction of iron is enormously greater than that 
of any other substance. Again, the coefficient of magnetic 
induction is known to be much affected by changes in 
temperature; while some recent experiments made by Mr 
Cassie in the Cavendish Laboratory have shown that the 
effect of changes of, temperature on the specific inductive 
capacities of ebonite, mica and glass is small, amount­
ing in the case of glass, for which it is largest, to 1 part in 
400 for each degree centigrade of temperature. No experi­
ments seem to have been made on the effect of torsion on 
electrification or of electrification upon torsion. 

40. In f luence of i ne r t i a on m a g n e t i c p h e n o ­
m e n a . In the preceding investigations we have supposed 
the magnetic changes to take place so slowly that the 
effects of inertia may be neglected. If however a change in 
the magnetization involves, as it does according to all 
molecular theories of magnetism, motion of the molecules 
of the magnet, then magnetism must behave as if it possessed 
inertia. 

In soft iron and steel the conditions are made so com­
plex by the effects of magnetic friction, magnetic retentive-
ness and permanent magnetism, that it would be difficult to 

T. D. S 
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disentangle .the effects of inertia proper from other compli­
cations. The effect, if it exists, would probably be detected 
most easily in the case of crystals, as only one of these, 
quartz, has ever been suspected of showing residual mag­
netism (see Tumlirz, Wied. Ann. xxvu. p. 133, 1886). The 
effect of inertia would be to introduce into the equations 
•of magnetization a term 

. Mdf> 

where / is the intensity of magnetization. The equations 
of magnetization would therefore be of the form 

: . ' : / % • [• " · ^ 
where I/is the external magnetic force. 

If H is periodic and varies as eipt then by (65) 

^T^Mp* ^ 

so that if p be so large that kMp*> 1, the crystal if para­
magnetic for a steady magnetic force will be diamagnetic for 
a variable one and vice versa. 

Changes of this kind could be detected very readily if 
the crystal were freely suspended in the magnetic field, for 
when p " passed through the value i/kM the crystal would 
swing through a right angle. 

41. T h e t e r m (f_y) £y in t h e L a g r a n g i a n func ­
t i on . We have considered the terms depending upon the 
squares of the velocities of the electrical coordinates, and 
those depending solely on the magnetic coordinates, let us 
now consider those terms in the expression for the kinetic 
energy which involve the product of the velocities of a mag­
netic and an electrical coordinate. 

It is proved in Maxwell's Electricity and Magnetism 
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E L E C T R O M O T I V E F O R C E . 6j 

(§ 634) that when a current whose components are u, v, w 
flows through the element of volume dxdydz and the volume 
dx'dy'dz1 is magnetized to the intensities A, B, C parallel to 
the axes of x, y, z respectively, then the kinetic energy L 
possessed by the-system is 

l dz dy) [_ dx dz J 

' } . 
dxdydzdx'dy'dz'... (6 7), 

dy' dx' 

where f is the reciprocal of the distance between the 
elements dxdydz and dx'dy'dz'. 

Now we represent the intensity of magnetization by 
17*; where £ is the momentum corresponding to a kinosthenic 
or speed coordinate and i\ is a vector quantity. 

Since 17 is a vector quantity it may be resolved into com­
ponents parallel to the axes of x, y, z. Let us denote these 
components by A, /i, v respectively, then we may put 

Making this substitution we have 

dz dy J \ dx dz J 

dp 
V'dy'-^dxj, 

^dxdydzdx'dy'dz'... (68). 

So that these terms are of the form 

\IY\YT 
Considering the Lagrangian Equation for the electrical 

coordinate, we see that there is an electromotive force 
parallel to the axis of x on the element dxdydz equal to 

_ddL 
dtdu' 

5—z 
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so that, per unit volume, this force equals 

(«9>. 

with corresponding expressions for the electromotive forces-
parallel to the axes of y and z. 

These are the usual expressions for the electromotive 
forces due to the variations of the magnetic field. 

The magnetic force parallel to x acting on the element 
dx'dy'dz is by § 33 equal to 

so that the magnetic force parallel to x per unit volume 
is equal to 

with similar expressions for the magnetic forces parallel to-
the axes of y and z. These expressions agree with those 
given by Ampère for the magnetic force produced by a 
system of currents. 

Again there is a mechanical force acting on the element 
dxdydz whose component parallel to the axis of x is 

F, G, H respectively, then F, G, II are the same as the 

i dL 

Ì dk 

(7°), 

dL 

dx ' 
If we call 
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M E C H A N I C A L F O R C E D U E T O A C U R R E N T . 69 

quantities denoted by the same symbols in Maxwell's 
Electricity and Magnetism. 

Since the force on the element dxdydz is 
dL 
dx' 

"we see that the force on unit volume may be written 
dF dG d.H 

It , -t V , h W , , 
dx dx dx 

or 
(dG dF) (dF dH\ dF dF dF . . 

V { d x - d y \ - W \ d ~ z ~ - d X \ + U d x + V d y + W T z - ^ 7 2 ) -
This differs from Maxwell's expression for the same force 

by the term 

Since 

it follows that 

dF 
dx 

dF 
dy 

+ w 
dF 
dz 

du dv 
dy 

dw 
dx 

dv 
dy dz — 0 

\ \ \ { U f x ^ V f y + W ^ z ) d x d y d z 

if all the circuits are closed. So that as long as the circuits 
are closed the effect of the translator}' forces is the same as 
if they were given by Maxwell's expressions. 

In the above investigation we have assumed that we 
could move the element without altering the current; if we 
suppose the current to move with the elements we shall get 
Maxwell's expression exactly. 

The components parallel toy and z of the force on the ele­
ment dxdydz are given by expressions corresponding to (72). 

The force parallel to x on the magnetized volume 
dx'dy'dz', is 

dx' 
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so that the force parallel to x per unit volume is 

{<*C- „B) 3 + (WA - uC) ^ + {uB - vA ) j g L } 
dxdydz..\>]$) 

with corresponding expressions for the forces parallel to y 
and z. 

Thus the force on the magnet is equal and opposite to 
that on the current. 

We see by this example how from the existence of a 
single term in the expression for L we can deduce the laws 
of the induction of currents, the production of a magnetic 
field by a current, the mechanical force on a current in a 
magnetic field and the mechanical force on a magnet placed 
near a current. 

42. T w i s t in a m a g n e t i z e d i ron w i r e p r o d u c e d 
b y a c u r r e n t . Prof. G. Wiedemann (ElektricUdt, in. 
p. 689) has shown that when a current flows along a longi­
tudinally magnetized wire, it produces a couple tending to 
twist the wire. This shows that there must be a term in the 
Lagrangian function for the wire of the form 

A*)M (74), 
where y is the current flowing along the wire, 17̂  the intensity 
of magnetization I, and c the twist about the axis of the 
wire, ./(c) being some function of c. Applying Hamilton's 
principle to this term we see that it indicates the existence 
of a couple tending to twist the wire equal to 

<»>• 

Applying Lagrange's equation for the_v coordinate to this 
term we see that since the electromotive force tending to 
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increase y is 
d_ dL 

lit dy 

the existence of this term shows that there is an electro­
motive force along the wire equal to 

Thus twisting a longitudinally magnetized iron wire must 
produce an electromotive force which lasts as long as the 
twist is changing, and any alteration in the longitudinal 
magnetization of a twisted iron wire must produce one lasting 
as long as the magnetization changes. Hence Faraday's rule 
that the electromotive force round the circuit due to induc­
tion equals the rate of diminution in the number of lines of 
force passing through it, will not apply to the case of a twisted 
iron wire, for we might get an electromotive force round a' 
circuit made of such a wire by moving it in the plane of 
the magnetic force, and in this case there is no alteration in 
the number of lines of force passing through the circuit. 

The production of an electromotive force by twisting 
a longitudinally magnetized iron wire has been experi­
mentally verified. 

Again, if we consider Lagrange's equations for the 
coordinates fixing the magnetic configuration, since any term 
in the Lagrangian function indicates an effect similar to 
that which would be produced by an external magnetic force 
equal to 

we see that the term we are considering indicates the 

that i (76). 

i dL 
$ dV ' 
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existence of a magnetizing force on the wire equal to 

FIAY (77) 
tending to magnetize it longitudinally. So that if a current 
of electricity passes along a twisted wire or if a wire 
conveying a current of electricity be twisted the wire will be 
longitudinally magnetized. These effects have been ob­
served by Prof. G. Wiedemann (Elektruitdt, in. p. 692). 

43. H a l P s p h e n o m e n o n . The terms we are con­
sidering, involving both the electric and magnetic coordinates, 
are also interesting from their connexion with Hall's phe­
nomenon, for as we shall see directly this phenomenon 
indicates the existence in the Lagrangian function of terms 
of this kind. Hall discovered (Phil. Mag. x. 301,) that 
when currents are flowing through a conductor placed in a 
magnetic field, there is an electromotive force due to the 
field even though it remains constant, and that this electro­
motive force at any point is parallel and proportional to the 
mechanical force acting on the conductor conveying the 
current at that point. Thus the electromotive force is at 
right angles both to the direction of the current and the 
magnetic induction, and its components parallel to the axes 
of x, y, 2 are respectively given by the expressions 

- C (yg- ph), 

-C'(aA-yf), 

-C(/3/-ag), 

where C is a constant depending upon the nature of the 
medium through which the current is flowing, a, /?, y are 
the components of the magnetic force and / , g, h are the 
components of the electric displacement if the medium is a 
dielectric, if the medium is a conductor /, g, h are the 
components of the electric current. 
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Prof. Fitzgerald (" On the Electromagnetic Theory of 
the Reflection and Refraction of Light," Phil. Trans. 
1880, Part 11.) and Mr Glazebrook (Phil. Mag. xi. p. 397, 
1881) have shown that the existence of this force proves 
that there is a term equal to 

iC{f(yg- /M) +g{°A- yf) + h (¡3/-og)\ ...(78) 
in the expression for the Lagrangian function of unit 
volume of the medium. 

Let us consider the Lagrangian equation for the electric 
displacement f. It indicates the existence of an electromo­
tive force parallel to the axis of x equal to 

_ d dL dL 

dt df if 
or in this case 

C(flh-yg) + lC'(yg-ph) (79). 

The first of these terms corresponds to the Hall effect, 
the second to an electromotive force tending to displace the 
lines of electrostatic force. 

This latter force is at right angles both to the direction 
of electric displacement and to that in which the change in 
the magnetic force is greatest; the magnitude of the force 
is 

I C'HD sin 6, 
where D is the resultant electrostatic displacement, H the 
rate of change of the magnetic force and 0 the angle 
between the electric displacement and the direction in 
which the change in the magnetic force is greatest 

If P be the original electromotive force then since the 
Hall electromotive force is very small'we have approximately 

where K is the specific inductive capacity of the medium. 
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Thus the ratio of the disturbing force we are considering to-
the original electromotive force is 

^ CKJIsm 6. 

Now Hall's experiments show that C in electromagnetic 
measure is at most of order i o _ i ; and Kis of the order io~ 2 1 

so that the ratio of the disturbing force to the original force 
is of the order 

i o - C 7 Z / s i n 6, 

and is thus much too small for there to be any chance of its 
detection by experiment. 

We see too from the expression for this force that it 
absolutely vanishes when both the electric displacement and 
the magnetic force are stationary, and these were the con­
ditions when Hall tried unsuccessfully to detect the existence 
of his effect in an insulator (Phil. Mag. x. p. 304, 1880.) 

Let us now consider Hall's effect from the point of view 
of magnetic instead of electromotive force. Perhaps the 
easiest way to do this will be to suppose that the magnetic 
forces are produced by an - element of volume dx'dy'dz' 
magnetized to intensities A, B, C parallel to the axes of 
x, y, z respectively. If Q is the magnetic potential of this 
element at a distance r, then, for a point outside the magnet 

11 = - (A 4-- + b4~-+ C 4 ~) dx'dy'dz' ...(80), 
\ dxr dy r dz rj v ' 

and 
da . da dn 

Substituting these values for a, ¡3, y in the expression (78) 
we see that there is a term in the Lagrangian function equal 
to 
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+ c / { # 4 - v ~jz~ + \hf~ A/lJL1 ... d1

 n 1 

dx'dy'dz1'. 

If as ' o n ' page ( 6 7 ) we put 

the magnetic force on the element dx'dy'dz parallel to the 

axis of x -will be 
1 dL 
èdJ.' 

so that in this case the magnetic force parallel to x per unit 

volume is 

2 

or if 

0 
,·, d I , ; . ·. d I • r . . d i 

S * dx' r + dy r + ^ ^ ' d z ' r = l- C 2 

then the magnetic force at the points x, y', z' parallel to the 
axis of x due to the electric displacements f,g,h through 
unit volume at the point (xyz) is 

similarly the magnetic forces parallel to y and » are 

a * d · g , ( 8 4 ) , 

respectively. 
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If we have electric displacements distributed throughout 
a volume of any size, then the components of the magnetic 
force parallel to the axes of x, y, z due to the same cause 
as that which produces Hall's effect are 

d*ii d<H d'if 
dx' ' dy ' dz' 

respectively, where 
* = /// $ dxdydz (85), 

the integration being extended over the volume throughout 
which there are electric displacements. 

If the point at which we wish to find the magnetic force 
is inside the volume occupied by the electric displacements 
we must modify the preceding results. Let us suppose that 
we have a small sphere whose centre is at the point where 
we require the magnetic force, magnetized to the intensities 
A, B, C parallel to the axes of x, y, z respectively. Then 
inside the sphere 

3 3 3 
So that the Lagrangian function for an element of volume 
dxdydz inside the sphere is 

\ C ^ \ A (gh-gh) + B (hf- hf) + C (fg-fg)} dxdydz, 

hence the components of the magnetic force due to the 
electric displacement at the point where the force is measured 
are 

(gh-gh), 

l^c!(kf-hf)t 

• • - ^C-(fg-fg). 
So that the general expression for the components of the 
magnetic force due to the Cause producing the Hall effect 
are 
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dx' 

7 + f *c w - hf) 

C {gh -gh) 

(86), 
dy 
d* 
%+2^C'(/g-fg) 

where / , g, h are the components of the electric displace­
ment at the point where the magnetic force is measured and 
* is given by equation (81). Since C is a very small 
quantity, as are also f, g, h, these forces will be very small, 
and it is only when f, g, h vary very rapidly that we could 
expect to have any chance of detecting them. We shall 
therefore calculate the magnitude of these forces when the 
electric displacement changes with the greatest rapidity we 
can produce in an experiment. This if the Electromagnetic 
Theory of Light is true will be when the electric displace­
ments are those which accompany the propagation of light. 

Let us suppose that we have a circularly polarized ray 
travelling along the axis of z and that the electric displace­
ments are given by the equations 

h = o J 
where w is the amplitude of the oscillation, A the wave length 
and v the velocity of propagation of light. 

Substituting these values we see 

f= w cos —- (vt — z) 
A 

g = w sin {vt — z) (87), 

gk-gh = Q 

hf- hf= o 
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If we consider a long cylindrical beam of light 
•>J> = o 

and thus by- equation (86) the circularly polarized ray 
produces a magnetic force in the direction along which it is 
propagated equal to 

we can deduce the value of w for strong sunlight from 
the data given in Maxwell's Electricity and Magnetism, Vol. 
n - § 793- The maximum electromotive force in this case 
is given as 

6 x i o ' 

in electromagnetic measure, the maximum value w, of the 
displacement corresponding to this is 

K• — 6 x 10 
4TT 

or 
3 x io 7 

27TV1 

Assuming the wave length to be 6 x io~ 5, which is a little 
greater than that of the D line and C to be io" ' , we see 
that the magnetic force produced by circularly polarized 
light as intense as strong sunlight cannot be greater than 

2 x io~ 1 B, 
which is much too small to be detected by experiments. 

The direction of the magnetic force is related to the 
direction of rotation of the electric displacement in a 
circularly polarized ray like translation and rotation in a 
left-handed screw. 

Prof. Rowland has shown (Phil. Mag. Apr. 1881) that the 
Hall effect if it existed in transparent bodies (which with the 
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exception of electrolytes are all insulators) would account for 
the rotation of the plane of polarization of light passing 
through such bodies placed in a magnetic field in which the 
lines of magnetic force are more or less parallel to the 
direction of propagation of the light. In this case by the 
aid of an external magnetic force we rotate the plane of 
polarization; in the case we have just investigated, which 
may be looked upon as the converse of this, a beam of 
circularly polarized light produces a magnetic force parallel 
to the direction in which it is travelling. 
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C H A P T E R V . 

R E C I P R O C A L R E L A T I O N S B E T W E E N P H Y S I C A L F O R C E S 

W H E N T H E S Y S T E M S E X E R T I N G T H E M A R E I N A 

S T E A D Y S T A T E . 

44. T H E preceding methods are applicable to systems 
in all states, whether steady or variable. When however the 
system is in a steady state the reciprocal relations between 
the various physical forces become so simple that they seem 
deserving of special treatment, and we shall accordingly 
consider them separately. 

Let us consider the mutual effect of two quantities fixed 
by the coordinates / and q upon each other. Let us 
suppose that we have a force P of type p acting upon the 
system, then P will alter the coordinate p in a definite way 
and the amount of the alteration may depend upon the 
value of the other coordinate q. Let us suppose that q 
suffers a small alteration and that SP is the amount by 
which P must be increased in order to keep / the same as 
before. Then since the system is in a steady state if L be 
the Lagrangian function we have 

dL 
dp 

and 
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R E C I P R O C A L R E L A T I O N S . 81 

so that SP^-^Sq (89). 
apaq 

Now if we have a force Q of type q producing a definite 
change in the coordinate q then if we alter p by &J> we must 
in order to keep q constant alter Q by some quantity SQ, 
and since 

we have S Q = - ^ S P (90) 

so that by (89) and (90) we have 

« =cm (9I). 
\ dq J p constant \dp J g constant 

Or the alteration in P when q is increased by unity, / being 
constant, is the same as the alteration in Q when p is 
increased by unity, q being constant. Thus if P depends 
upon q then Q will depend upon p and vice versa. And 
we notice that if by increasing q we increase the "spr ing" 
of p then by increasing p we shall increase the " spring" 
of q. 

Equation (91) is analogous to the " thermodynamical 
relations" given in Maxwell's Theory of Heat, p. 169 and 
forms one of those reciprocal relations which exist in 
physics and which so often enable us to duplicate discoveries 
in Physical Science. The consequences of reciprocal rela­
tions of a different kind are considered by Lord Rayleigh 
in the Theory of Sound, Vol. 1. Chapter 5. 

As an example of the application of this equation we 
T . n. 6 

IRIS - LILLIAD - Université Lille 1 



may take the case of a wire bent into any shape by the 
action of any number of forces two of which are / ' a n d Q, 
then the increase in Q required to keep its point of 
application at rest when p is increased by unity, will also 
be the amount by which P must be increased to prevent its 
point of application moving when q is increased by unity. 

Or again, we see by this equation that if the force 
required to produce a given extension in an iron wire is 
altered by magnetizing the wire then the magnetic force 
required to magnetize the wire to a given intensity will be 
altered by straining the wire : and that these alterations will 
be connected by the following relation, P being the tension, 
<rthe extension of the wire, Zf the magnetic force and / the 
intensity of magnetization, 

Again when a current passes through an electrolyte in 
solution it decomposes it and the strength of the solution 
changes, this change in the strength of the solution may, 
and in general will, change the coefficient of compressibility, 
the volume and the surface tension of the solution, and in 
this case equation (91) shows that the electromotive force 
required to send a given current through a cell containing 
the solution will be altered by pressure and by any change 
in the free surface of the solution. Let E be the electro­
motive force, y the current, v the volume of the solution, 
5 its surface, and T its surface tension, then in this case for 
the effect of pressure p we have 

The negative sign is taken because/ tends to diminish v. 
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If k be the modulus of compression, v0 the volume of 
the solution when free from pressure, then 

>-*(.'-$ 

when y is constant, k is also constant so that 

and therefore from (93) 
,„ / v\dk dp 

d E - V \ ' - v j T y T 
i dk 

so that if the pressure is increased from P1 to Ps the 
increase SS in the electromotive force required to keep the 
current constant is given by 

&E=iv0\P;-J>'}^^ (94)-

To get an idea of the magnitude of this effect let us take 
the case of a solution of chloride of lithium, the volume of 
the solution being 1 cubic centimetre. 

The data for calculating dk/dy in this case are the fol­
lowing : 

The passage of unit quantity of electricity corresponds 
to the decomposition of about 4^3 x i o " " grammes of 
lithium chloride, we shall suppose that none of this is redis-
solved, then the passage of a unit quantity of electricity will 
withdraw this quantity of salt from the solution. 

Rontgen's and Schneider's experiments (Wiedemann's 
Annalen, xxix. p. 1S6, 1886) show that the addition of 6 
grammes of lithium chloride to 100 cubic centimetres of 

6—2 
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water increases the modulus of compression by about 15 
parts in 100, so that if the increase in the modulus is 
proportional to the quantity of salt, then the subtraction of 
4 -3 x 10 ~ 3 grammes from 1 cubic centimetre will diminish 
the modulus by about t part in 100, hence 

1 dk _„ . , - - 7 - = — 10 , approximately. k dy 
Now k for water is about 2-2 x 10", so that if S£ is the 

change produced by a pressure of 1000 atmospheres, which 
in absolute measure is about io°, we have 

1 o 1 B I 
* 2-2 X IO 1 0 lO 2 4 

that is the pressure of 1000 atmospheres would diminish the 
counter electromotive force by about 1/400 of a volt. 

The numbers given by Rbntgen and Schneider for the 
effect of carbonate of soda on the coefficient of compres­
sibility, show that the effect of pressure on a solution of this 
salt would be much greater than that on the lithium chloride 
solution. 

Let us now suppose that the volume of the solution is 
altered by the passage of an electric current, but that the 
coefficient of compressibility is unaltered. 

Then since 

'-'(-*)• 
if the passage of the unit of electricity increases the volume 
by dvjdy we must apply an additional pressure kdv\vady to-
keep the volume constant, so that 

tdp\ _k_dv 
\dylv constant l>a dy' 

and the equation (91) becomes 
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y constant 

k dv 
V0 dy ' 

so that since kdvjv0 — — dp, we see from this equation that 
the change hE in the counter electromotive force is given 
by the equation 

When the electric current goes through a salt solution 
the changes which take place and which alter the volume 
are so numerous that it is not possible to calculate from 
existing data the change which takes place in the volume 
when unit quantity of electricity passes through the solution. 
In order to see of what order this effect is likely to be, let us 
suppose that the change in the volume is comparable with 
the volume of the salt electrolysed. When unit quantity of 
electricity goes through a solution of sulphate of potassium 
it electrolyses about 9 x I D - 3 grammes of salt, and since the 
specific gravity of the salt is 2'6, the volume of this is about 
3 5 x i o - 3 , hence in this case we may suppose that dv/dy is 
comparable with 35 x io~ 3 and that the change in the 
counter electromotive force produced by 1000 atmospheres 
is of the order 

or about 1/28 of a volt. 
We will now consider the case when gas is given off. 

Let us suppose we are electrolysing water, above which 
we have air, enclosed by a cylinderwith a moveable piston. 

If unit quantity of electricity goes through the water, 
9 x 1 o* grammes of water are electrolysed, the volume of 
the water therefore diminishes by 9 x 10~ l cubic centi­
metres. At one terminal T O - * grammes of hydrogen will be 
liberated, and 8 x io^ 4 grammes of oxygen at the other. 

7 
(95)-

3'5 * IO°> 
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so that by (95) 
dE 1 
dv 

{1-65 x i o 6 - 9 X / X I O 4 } . 

But 

that 
v p ' 

dE r 6 ; x i o ! 

= i q x 10 
dp p 

If the pressure is increased from Pt to Pa the change 
SE in E is given by the equation 

p 
SE= 1-65 x 10 6 X log -0 - 9 x i o " 4 X (P^P,)-

I 

For a thousand atmospheres the counter electromotive 
force is increased by 

i'65 x io" x 6"9 - 9 X I O ~ * X io 9 approximately, 
= I ' 2 X I O 7 — 9 X I O 5 , 

Let us proceed to find the change in the pressure, the 
volume remaining constant when unit of electricity passes. 

The diminution in pressure due to the disappearance of 
the water is, if v be the volume of the gas above the water 

-*P G X W - , 
v 

the increase in pressure due to the i o - 4 grammes of hydro­
gen is if the temperature is o" C. 

I I X I O X , 
V 

and the increase due to the oxygen is one half of this, hence 

! ) ^ { I - 6 5 - O - - 9 X I O - V } , 
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E F F E C T O F S U R F A C E T E N S I O N O N E. M . F . 8/ 

so that the counter electromotive force is increased by about 
one-eighth of a volt. 

The effect of surface tension is given by 

fdE\ (dT\ 
' y C O N S T A N T 

(£) (f) (,r.). 
\ «o / y C O N S T A N T \ #y /S C O N S T A N T 

This effect will in general be very small, for example in the 
case of chloride of lithium, the experiments of Rontgen 
and Schneider (Wiedemann's Annalen, xxix. p. 209, 1886), 
show that the addition of 6 parts by weight of lithium chloride 
to 100 of water increases the surface tension by about 3 parts 
in 100. The passage of 1 unit of electricity decomposes 
about 4'3 x t o ' 3 grammes of lithium chloride, so that if v 
be the volume of the solution 

1 dT 1 3 10 2 

—, - = - = — - X „ X —r- X \ " \ X IO 
T dy v 10 6 ^ J 

= — 2 x io~ 3 - approximately, 

and for water T=8i, 
so that 

dT i6-2 x io~ 2 

dy v 

and therefore by (96) 
dE r6'2 x io~ 
dS v 

or if the volume remains constant the effect of increasing 
the surface by S is to diminish the counter electromotive 
force by 

16-2 x i o - * S 
v 

Suppose that the liquid is squeezed out into a thin film 
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whose thickness is t then 
v = St 

and 
16-2 x T O - * 

' " 
If / were of the order of molecular distances say i o - 7 then 

&£ = — 162 x io 5 , 
or the counter electromotive force is diminished by about 

= 'oi6 volts. 
The preceding investigation is on the supposition that 

the electrolyte is in contact with the air; if it were in 
contact with a solid such as glass the withdrawal of the 
electrolyte from the solution on the passage of the current 
would increase the surface tension between the liquid and 
the solid, so that the" electromotive force required to 
decompose an electrolyte in a porous plate would be larger 
than that required to decompose it when it is in bulk. 

Again, the surface tension of liquids is altered when they 
absorb gases, so that the electromotive force required to 
decompose an electrolyte which absorbs a gas produced by 
the passage of the current will be different when the 
electrolyte fills the interstices of a porous plate from that 
required when it is in an ordinary electrolytic cell. 
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C H A P T E R VI. 

E F F E C T O F T E M P E R A T U R E U P O N T H E P R O P E R T I E S 

O F l i O D I E S . 

45. W E have only considered so far the relations 
between the phenomena in electricity, magnetism and elas­
ticity and have not discussed any phenomenon in which 
temperature effects occur. We shall now go on however to 
endeavour to extend the methods we have hitherto used to 
those cases in which we have to consider the effects of 
temperature upon the properties of bodies. 

Before doing this however we must endeavour to arrive 
at some dynamical interpretation of temperature. The only 
case in which a dynamical conception of temperature has 
been attained is in the Kinetic Theory of Gases, and there 
the temperature is the mean energy due to the translatory 
motion of the molecules of the gas. So that if JV be the 
number of molecules of the gas in unit volume N& is the 
energy of translatory motion of the molecules at the tempe­
rature 6. 

There seems good reason for believing that N6 is a part 
-of the lunetic energy of the molecules when these are 
aggregated so as to form a solid or liquid as well as when 
they form a gas. 
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The experiments and ideas which led to the establish­
ment of the principle of the Conservation of Energy at the 
same time led to the conclusion that the energy of sensible 
heat is energy due to the motion of the molecules and is 
therefore part of the kinetic energy of the system. The 
reader should refer on this point to Maxwell's Theory of 
Heat, p. 301. Another reason for supposing that the 
temperature in the liquid as well as in the gaseous 
condition is measured by the mean energy of translation 
of the molecules is, that Van der Wäals (Die Continuität des 
gasförmigen und flüssigen Zustandes) has given a theory of 
the molecular constitution of bodies in those states which 
are intermediate between the liquid and gaseous, in which 
this supposition is made, and that this theory agrees well 
with the facts in many important respects. And again 
since most solids and liquids are capable of getting into a 
state where their specific heat is constant, that is, where the 
rise in temperature is proportional to the energy communi­
cated to the system, we are led to suppose that the kinetic 
energy of some particular kind is a linear function of the 
temperature. 

This following illustration will show that it is probable 
that when we have two bodies in contact the collisions-
between the molecules will tend to equalize the mean 
energy of this translatory motion when these bodies are 
solids and liquids as well as when they are gases. The 
mean translatory energies of two substances in contact thus 
tend to become equal, so that in this important respect the 
mean translatory energy has the same property as tempe­
rature. 

Let us suppose that we have two different substances 
composed of molecules A and B respectively, and that the 
molecules of the two substances are separated by a material 
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plane surface. Let us also suppose that the mass of this 
plane is large compared with that of a molecule of either 
substance and that it is prevented by perfectly elastic stops 
from moving through more than a distance comparable 
with molecular distances. Since the mass of the plane is 
very much greater than that of a molecule and since it can 
only move through a small distance in one direction—the 
velocity of the plane will be very small compared with that 
of the molecules—we shall suppose that it is so small that 
the number of molecules which are moving more slowly 
than the plane may be neglected, or what amounts to the 
same thing that all the molecules on the surface of the 
substances which are moving towards the plane strike it, 
and that none of those which are moving away from the 
plane do so. Let us suppose that the action between the 
molecule and the plane is the same as that between a 
perfectly elastic sphere and plane. 

Let m be the mass of an A molecule, v the velocity of 
the molecule, and a the angle its direction of motion makes 
with the normal to the plane before impact, V the velocity 
after impact, Afthe mass of the plane, w and fFits velocity 
before and after it is struck by the molecule. Then we 
may easily show that 

- m[ V-va}= , .AMw1- mv'co^cL-tM- m) vw cos a}. 
2 1 ' (M+m)1- v ' ' 

Let us take the sum of the equations representing the 
effects of all the collisions which take place in unit time, we 
have 

= ^ + m y 2 {Afnf — *»z/*cos*a - (M— m) vwcas a}...(97). 

If N be the number of A molecules which come in con-
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tact with the plane in unit time and 9l the mean translatory 
kinetic energy of such molecules, then if èô1 denotes the 
change in 0l in unit time 

If N' be the number of collisions and 9 the mean 

kinetic energy of the plane, then 

%Mit? = 2N'6. 
Since the directions of motion of the A molecules are 
equally distributed 

%mv' cos 5 a = I -%mv* = \N'QY. 

Since the plane is supposed to move so slowly that all 
the molecules moving towards it strike it, and since its 
average velocity is zero, we have 

2 (AT - m) vw cos 0 = 0, 

so that equation (97) becomes 

m e ^ - i M ^ T { 2 N I 6 - ^ N ' ^ ( 9 8 ) -
If 6^ be the average translatory kinetic energy of the B 

molecules which strike the plane in unit time, the num­
ber of such molecules and TV/ the number of collisions, m' 
the mass of a molecule, we have similarly 

2 Mm' 
=iMTrtfW$ - m ) (99), 

and we have also 

2Afm 

{^Tn7f^N:e~i^ (I00). 
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Now we can make the average kinetic energy of the 
plane what we please by giving it the proper initial velocity. 
For our purpose we wish the plane to act as a transmitter 
and not as a storer of energy, and it will do so if we give it 
such an initial velocity that the mean kinetic energy of the 
plane does not alter in unit time. If this is the case && 
vanishes and we have by (100) 

so that 

(M+ m) 

a + b 

26 - Ì 0 . 

b = 

9,) 6 
a + b 

m'N! 

misr 
(M+mf ' 

Substituting these values for 26-ÔJ3, and 28-OJ3 in 
equations (98) and (99) , we have 

iMab 

3 (« + 6) 

2 3 (a + b) 1 8 " 

Thus if 6„ is greater than 6U 6l will increase and 0S will 
diminish, and vice versa, and if 61 is equal to 02 they will 
remain equal ; thus the mean translatory energy behaves in 
these respects exactly like temperature. There seems 
nothing in the above illustration to restrict it to the case of 
gases, and we should expect it would hold equally well for 
solids or liquids. 
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46. We are thus led to assume that part of the kinetic 
energy of a system, whether that system be a portion of a 
solid, liquid or gas, is proportional to the temperature. 

Let us denote this part of the kinetic energy by 

\ {(«") + ··•}, 
•where u is a coordinate helping to fix the position or con­
figuration of a molecule. We see at once that there is an 
essential difference between these coordinates and those we 
have hitherto been considering and which fix the geometrical, 
strain, electric and magnetic configuration of the system. 
We have these latter coordinates entirely under our control 
and subject to certain limitations imposed by the finite 
strength of materials, the strength of dielectrics, and 
magnetic saturation ; we may make them take any value we 
please. We may therefore fitly call these coordinates con­
trollable coordinates. It is quite different, on the other 
hand, with the coordinates fixing the separate moving parts 
of the systems whose kinetic energy constitutes the tempera­
ture of the body. We can it is true affect the average 
value of certain functions of a large number of these coor­
dinates, but we have no control over the coordinates indivi­
dually. We may therefore call these coordinates "uncon-
strainable" coordinates. Their fundamental property is 
that we can not oblige any individual coordinate to take 
any value which may be assigned. Since we have no power 
of dealing with individual molecules, the "controllable" 
coordinates must merely fix the position of a large number 
of molecules as a whole. 

If the term 

\ {(uu'ju2 + ...} 

involves any "controllable" coordinate tj>, then it is evident 
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that this coordinate φ must enter as a factor into all the 
terms in the form expressed by the equation 

i = ( Ι Ο Ί ) , 

where the coefficients (uu)' do not involve φ : otherwise the 
phenomenon would be influenced more by the motion of 
some particular molecule than by that of others. We 
shall assume that Θ, the temperature, is proportional to 

h {(«»)«"+·••}, 
that is that 

0 = %C {(uu)a' + ...} (102), 

where C does not involve any of the "controllable" coordi­
nates which fix the configuration of the system. 

47. We may conveniently divide the kinetic energy of 
a system into two parts, one depending on the motion of 
"unconstrainable" coordinates, which we shall denote by 
Tu, and we shall assume that this is proportional to the 
absolute temperature Θ, the other depending on the motion 
of the "controllable" coordinates, we shall denote by Tc, 
Tc corresponds to what v. Helmholtz in his paper on 
"Die Thermodynamik chemischer Vorgänge" ( Wissenschaßüdie 
Abhandlungen, 11. p. 958) calls "die freie Energie." There 
will not be any terms in the kinetic energy involving the 
product of the velocities of an "unconstrainable" and a 
"controllable" coordinate, otherwise the energy of the system 
would be altered by reversing the motion of all the "uncon­
strainable" coordinates. 

Let us suppose that φ is a controllable coordinate which 
enters into the expression for that part of the kinetic energy 
which expresses the temperature, then if Φ be the external 
force of this type acting on the system we have by Lagrange's 
equations, V being the potential energy, 
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, d dT dT dV 
S> = — • ; -I - , 

dt <2<£ d<f> dij} 

Now T= Tc+ T„ 

dT„ 
~di=°' 

and 

so that 
. d dTc dTc dT„ dV , , 

d$ < ty> d<p d $ v J / ' 

Now by equation (103) Tu is of the form 

i/(4>) {(UUY Ù* +...}, 

oliere (uu)' does not involve <j>, so that we have 

D4> J ( 9 ) K ( L ° 4 ) L 

and therefore 

dt dj, d$ /(*) l u + d + K 5 h 

differentiating this equation on the supposition that all the 
controllable coordinates are constant and that the only 
variable is the energy depending on the motion of " uncon­
trollable" coordinates, we have 

D* _ /(*) 
DTH F&) ' 

and therefore by (104) 

48. Now let us suppose that energy is communicated to 
the system, partly by the action of the external forces on the 
"controllable" coordinates, and partly through the "uncon-
strainable" coordinates: let the quantity of work commu­
nicated in the latter way be 8(2- If the motion of the 
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2 S^Ki^ 8S) (I09)i dip d(j>. 

so that by subtracting (108) from (109) we get 

sr-*(*8f -»*S) (iio)-
Since the change in the configuration is that which 

actually takes place in the time 8/, we have 
08/— 80, 

so that 

\dl d<f, d<j> J v 

and therefore equation (107) becomes 

Now, if V be completely fixed by the controllable 
coordinates, we have 

dV 
8 ^ = 2 - ^ 8 0 . 

T. D. 7 

"unconstrainable" coordinates is that which gives rise to the 
energy corresponding to temperature, BQ may be regarded 
as a quantity of heat communicated to the system. 

We have by the Conservation of Energy, if <t> denotes a 
" controllable " coordinate, 

8Q + 2®$<j> = STc + STu+&V (107). 

Now ZTc=%id]}H + ~m) (108), 
(.«<?> d<j> > 

and since Tc is a quadratic function of the velocities of the 
" controllable " coordinates, wc have 

aif> 
and therefore 
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but by (106) 

so that 

S G = 3 8 ^ + 8r„ ( 1 1 3 ) ; 

constant 

( I I 4 ) . 

Let us suppose that the quantity of work communicated 
to the system is just sufficient to prevent T„ from changing, 
then 

or 

\"<P/ 7"„ constant \"«/<f> constant 

Remembering that 7^ is proportional to the absolute 
temperature Q, we see that equation (115) becomes 

m ( " 6 ) , 
\U<p/ Q constant \ constant 

where in finding d^?jdQ we must take care that 6 is the only 
quantity which varies. 

In this form equation (116) is identical with the third 
thermodynamical relation given in Maxwell's Theory of 
Heat, p. 169, and v. Helmholtz in his paper "Die Thermo-

So that 

Substituting for $ the value given by (103) we have 
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dynamik Chemischer Vorgänge" (Wissenschaftliche Abhand­
lungen, 2, p. 962) deduces this equation from the Second 
Law of Thermodynamics and applies it to the case of 
the variation of the electromotive force of galvanic cells 
with temperature. The conclusions at which he arrives 
have been verified by the experiments of Czapski (Wied. 
Ann; 21, p. 209) and Jahn (Wied. Ann. 28, pp. 21, 491). 
If S(2 = o, that is if all the work done on the system is done 
by means of forces of the types of the various controllable 
coordinates, then we have by equation (114) 

=(2) -<"'>• 
\« -l u/t constant \ «G>> /(̂ constant 

49. Since 
~d+ /<*) J u ' 

ve see by (113) that 

so that 

- ^ = 5 8 log / (<« +Slog Tu (118), 

is a perfect differential. This is analogous to the Second 
Law of Thermodynamics, and we see by the analogy that 
it shews that energy arising from the motion of quantities 
fixed by " unconstrainable" coordinates can only be partly 
converted into work spent in moving the quantities fixed by 
the " controllable" coordinates. The amount which can be 
converted follows laws analogous to those which regulate 
the conversion of heat into mechanical work. 
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In the preceding work we have assumed that the 
potential energy of the system was not changed if the 
"controllable" coordinates remained unchanged. When 
however the system is a portion of a solid or liquid the 
potential energy may by some alteration in the state of 
aggregation be changed without there being any corre­
sponding change in the controllable coordinates. To 
include this case we must suppose that V is a function of 
the temperature as well as of the <j>s, and that its value in 
the neighbourhood of the temperature corresponding to a 
change of state in the substance varies very rapidly. 

In this case we have 0 being the temperature, 

s r , dV-, dV. 

and instead of (114) 
8 < 2 = - ^ ( g ) ^ + « 2 : + ( ^ M . . . ( I x 9 ) . 

Since W and S7*„ vanish together we see that equation 
(116) still holds. Equations (117) and (118) however require 
modification. We have now (SQ-SV^ 

C O N S T A N T 

))/Tu a perfect 
differential instead of 8Q/TX. 

50. R e l a t i o n s b e t w e e n h e a t a n d s t r a i n . We 
shall now apply equation (116) to determine the effects due 
to the variation of various physical quantities with tempera­
ture, and shall begin by considering the effects produced by 
the variation of the coefficients of elasticity m and n with 
temperature. 

In equation (116) let us suppose that * is a stress of 
type e, then using the same notation as in § 35, we have 

® = m(e+f + g) + n(e-.f-g), 
(d<& \ dm dn , , . 
U h C 0 D ^ r M ( e + / + g ) + d6(e-f~^ 
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So that by equation (116), SQ, the heat which must be 
supplied to unit volume of the bar to keep its temperature 
from changing when e is increased by Be is given by the 
.equation 

8 «2 = - + S) + S)} 6Se ( no ) , 

and thus if the coefficients of elasticity diminish as the 
temperature increases, heat must be supplied to keep the 
temperature of a bar constant when it is lengthened, and 
hence if the bar is left to itself and not supplied with heat it 
will cool when it is extended. 

If $ is a couple tending to twist the bar about the axis 
•of x, we have, if a is the twist about that axis, 

= na, 

d<$> dn 
~d5 = ~d~da' 

and therefore by (116) SQ, the heat required by unit 
volume of the bar to keep the temperature from changing 
when a is increased by &z is given by the equation 

8Q = -6^a^a (121), 

so that if a rod which is already twisted is twisted still further 
it will cool if left to itself, provided, as is usually the case, 
the coefficient of rigidity diminishes as the temperature 
increases. 

The preceding results were first obtained by means of 
the Second Law of Thermodynamics by Sir William Thomson 
in his paper on the Dynamical Theory of Heat (Collected 
Papers, Vol. i. p. 309). 

51 . T h e r m a l E f f e c t s p r o d u c e d b y E lec t r i f i ca ­
t ion. Let us now consider the case when <fc is an electric 
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force parallel to the axis of x, producing an electric displace­
ment f in that direction. In this case if K be the specific 
inductive capacity of the dielectric, we have 

W#/V constant K* d6 J 

so that SQ, the heat which must be supplied to unit volume 
of the dielectric in order to prevent its temperature changing 
when the electric displacement is increased by S/j is by 
(116) given by the equation 

8<> ( - 3 ) · 

Some recent experiments made by Mr Cassie in the Caven­
dish Laboratory on the effect of temperature on the specific 
inductive capacities of glass, mica and ebonite, have shewn 
that the specific inductive capacity of these dielectrics-
increases as the temperature increases, and that at about 
3°° C 

1 d K t i Kd6 ^'°°2 fOTglaSS' 
i dK 

- , = -0004 lor mica, 
K du 
i dK c , . 

- r , — r r — "ooo7 for ebonite. 
A dO 

Thus the heat which must be supplied to unit volume of a 
piece of glass to enable its temperature to remain constant 
when it is electrified is by (123) 

K' f ' 

and this at 2.0° C. = -6 2 7 ^ : 
K ' 

IRIS - LILLIAD - Université Lille 1 



T H E R M A L E F F E C T S D U E T O M A G N E T I Z A T I O N " . 103 

is the work supplied from electrical sources, hence in charg­
ing a Leyden jar, we see that the mechanical equivalent of 
the heat absorbed by it during charging, if its temperature 
remains constant, is about two-thirds of the work supplied 
to it from electrical sources. 

We see also by equation (123) that a piece of glass will 
be cooled when it moves from a place where the electric 
force is weak to one where it is strong. 

52. T h e r m a l effects of M a g n e t i z a t i o n . Let us 
now suppose that •!> is a magnetic force magnetizing a piece 
of soft iron or other magnetizable substance to the intensity 
I. Then if k be the coefficient of magnetic induction 

I 

so that 

And therefore SQ the heat which must be supplied to 
unit volume of the magnet to keep its temperature con­
stant when the intensity of magnetization is increased by 
oYis by equation (116) given by the equation 

^-QnM- (»s). 
so that if the coefficient of magnetization decreases as 
the temperature increases then a magnet will get heated 
when its intensity of magnetization is increased, and there­
fore when it moves from weak to strong parts of the 
magnetic field. This was pointed out by Sir William 
Thomson in the paper just quoted. 
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The experimental investigation of the heating effects 
produced by the motion of magnetizable bodies in variable 
magnetic fields is rendered difficult from the heating effect 
produced by the electric currents induced in the magnet by 
the alteration in the number of lines of magnetic force pass­
ing through it. 

Another thing which would increase the difficulty is 
the phenomenon called by Ewing hysteresis (Experimental 
Investigation on Magnetism, Phil. Trans. 1885, p. 11) . 
This causes the intensity of magnetization to depend not 
only on the strength of the magnetic force, but also on the 
previous magnetic history of the substance: so that the 
curve representing the relation between intensity of magneti­
zation (ordinate) and magnetic force (abscissa), as the mag­
netic force goes through a complete cycle, will be of the 
kind shewn in the accompanying figure, and will enclose 

a finite area, indicating the dissipation of a finite quantity 
of energy proportional to the area of the curve, and this 
dissipated energy will appear as heat. - -

Experiments made on the effects of temperature upon 
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the coefficient of magnetization of iron have shewn that 
these are rather complex. Baur (Wiedemann's Elektricitdt. 
iii. p. 750) from his experiments on this subject has arrived 
at the following results. 

The influence of temperature upon the magnitude of the 
coefficient of magnetization depends upon the magnitude of 
the magnetizing force. 

The coefficient of magnetization increases with the 
temperature if the magnetizing force does not exceed a 
certain value, but when the magnetizing force exceeds this 
value the coefficient of magnetization diminishes as the 
temperature increases. 

The smaller the magnetizing force the greater the influ­
ence of temperature upon the coefficient of magnetization. 

Taking these results in conjunction with equation (125) 
we see, 

1. That when a magnetizable body moves in a magnetic 
field where the force is everywhere less than the critical 
value, its temperature will tend to fall when it moves from 
places of weak to places of strong magnetic force and vice 
versa. 

2. That when the body is placed in a magnetic field 
where the magnetic force is everywhere greater than the 
critical value, its temperature will rise when it moves from 
places of weak to places of strong magnetic force and vice 
versa. 

The coefficient of magnetization of nickel diminishes as 
the temperature increases, so that a piece of nickel will get 
warmer when it 'moves from a. weak to a strong part of the 
magnetic field. The coefficient of magnetization of cobalt 
on the other hand increases as the temperature increases, so 
that a piece of cobalt will cool as it moves from a weak to a 
strong part of the magnetic field. 
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C H A P T E R V I I . 

E L E C T R O M O T I V E F O R C E S D U E T O D I F F E R E N C E S 

O F T E M P E R A T U R E . 

• 53. W E shall now go on to consider various cases in. 
which inequalities of temperature in a substance give rise 
to electromotive forces. 

Sir William Thomson has shewn that when a current 
of electricity flows along an unequally heated bar it carries 
with it as it flows from a hot to a cold place either heat 
or cold: heat if the bar is made of brass or copper, cold 
if it is made of iron. Sir William Thomson expressed this, 
result by saying that the specific heat of electricity in copper 
and brass is positive, since the electricity in this case carries 
heat with it just as if it were a real fluid possessing specific 
heat; the " specific heat " of electricity in iron on the other 
hand is said to be negative, since electricity in iron behaves 
with regard to heat in the opposite way to a fluid possessing 
specific heat. 

It follows from this result, by the consideration of the 
reciprocal relations, that electromotive forces must be de­
veloped in any conductor the temperature of which is not 
uniform throughout. We shall now endeavour to find what 
terms in the Lagrangian function these phenomena corre-
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spond to, or rather we shall shew that if there was a certain 
term in the Lagrangian function an unequally heated body 
would exhibit similar phenomena. 

Let us suppose that in the term 
J{(»K)M"+ . . . } , 

which expresses the part of the kinetic energy of unit 
volume of the substance due to sensible heat, the coeffi­
cients (uu) are functions of 

where o-,, cry, <r2 are quantities not explicitly involving 
/, g, h, the quantities of electricity which have passed 
through planes of unit area at right angles to the axes 
x, y, z respectively 

Let us write for the sake of brevity 

Then, since / g, h are controllable coordinates, and 
by hypothesis (uu) involves e, we may write 

where /(e) denotes some function of t. The coefficients 
(uu)' are supposed not to involve /, g, h explicitly. 

By Hamilton's principle any term in the Lagrangian 
function indicates the existence of effects which are the 
same as those which would be produced by electromotive 
forces parallel to the axes of x, y, z, and equal to the 
coefficients of 8/, &g, SA which this term contributes when 
the variation of the Lagrangian function is taken. 

The term we are considering is, taking the whole 
volume, 

f/(<0 I {("")' "~+ •••\dxdyds. 
US' 
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Hfai{/' -]\¥^yd2...(z27). 

Since ^ / ( E ) {(*«/)'a 2+...} 

is proportional to the temperature, we may put 

£/(c) {(«*)' «*+.. . } = /?*, 

•and then (127) may be written 

//"•*/ w MD"DZ-!IH£{mp6}¥dxdydz-
So that by Hamilton's principle if X be the force per 

unit length which would produce the same effects as this 
term indicates 

*"'•£{$$»>}• 
To take the simplest case let us suppose that / (e) is a 

linear function of e, so that 
f(t) = a + be, 

/ ( E ) a + bc 

As #e/s is the alteration in the energy made by the 
•electrification, it can only be a small quantity, so that we 

When c is increased by St the alteration in this term is 

I jjj&tf (t) ((«»)' u2 +...} dxdydz (126). 

Since Sc = (o-J/) + ~ foSg) + ^ (a-M), 

we see that if we integrate (126) by parts the terms 
in S/are 
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have approximately 

/ ( « ) «' 
and therefore 

(128), 

or if b and a remain constant throughout the substance, 

So that this term indicates the existence of an electromotive 
torce parallel to x and proportional to the rate of alteration 
of the temperature in that direction. If Y and Zare the 
electromotive forces parallel to y and z respectively we 
have 

The occurrence of 8/ in the surface integral shews that 
there is a discontinuity in the potential at the surface of 
separation of two media and that the potential in the first 
medium is higher than that in the second by 

where the suffix attached to the bracket indicates the medium 
for which the value of the quantity inside the bracket is to 
be taken. 

54. T h e r m a l effects of t h i s t e r m . Let us suppose 
that SQ is the quantity of heat that must be supplied to 
unit volume of the conductor to keep its temperature from 
changing when a quantity of electricity 8/ flows through it, 
that is when f is increased by 8/1 

Z 

Y 
ÒJ ¿01 

y a dy 

6/3 d6 
a dz 
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We see by equation (113) that 

SQ = the increase in Tu when / is increased by 8f 
hP M ^ 

= — o-j. — — 0/ by equations 127 and 129. 
If u be the 

been flowing 

so that 

If the current flows in the direction in which heat is 
flowing, that is from hot to cold, SQ will have the same sign 
as crj>, since /? and u are necessarily positive. Hence if 
uj? is positive heat must be supplied to unit volume to keep 
the temperature constant when a current flows into it from 
a hotter place, that is a current from a hot to a cold place 
carries cold with it, so that in this case the electricity 
behaves as if it had a negative specific heat. Hence a-J/ is 
•of the opposite sign to the specific heat of electricity in the 
substance. 

We see from equation (130) that the electromotive 
force at any part of the circuit always tends to produce a 
current in the same direction as one which would cause a 
fall in temperature at this part of the circuit, 

If we produced a distribution of electricity throughout 
the volume of a body, some very peculiar results would 
follow if this term existed. 

Let us take the case of an isotropic body whose 
•temperature is uniform, then we may suppose that o-̂  ay, 
o-j. are each equal to cr and independent of x, y, z, then 

d , . d , . d . . (df d? d/i) 
T x K/ ) + dy <rJ> + d~ M ) = - {Tx + fy + j,) ; 

current parallel to x and the time it has 

S / = ult, 

bp dB 

IRIS - LILLIAD - Université Lille 1 



but if p be the volume density of the distribution of 
electricity, 

• d£ + dg + dh = _ _ 
dx dy dz ^' 

So that the energy in unit volume corresponding to the 
heat energy equals 

\{a-b<iP\ { ( « « ) ' • • • } (131), 

and thus when we alter the volume density of the electricity 
we alter the energy due to the heat and therefore the 
temperature. 

To calculate the amount and even the sign of this 
alteration in temperature we must observe that u... will be 
altered if we suddenly alter p. The case is quite analogous 
to that of a moving body the effective mass of which is 
suddenly increased, we may suppose, by the tightening of a 
string attached to another mass. In this case it is the 
momentum of the system and not its velocity which remains 
constant. 

If we express the term (131) in terms of the momenta 
vJt vs... corresponding to the various coordinates uv ut, we 
see, since 

dT 

that it will be of the form 

a — bap' 

where f(z\, v2...) denotes a quadratic function of vlt v2 

&c, which does not involve p . As this expression is pro­
portional to the temperature 6, we see that if p be suddenly 
increased by Bp, the increase 86 in the temperature is given 
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by the equation 
80 b<r$P 

9 a — bap 
so that if ba- is positive the temperature of the body is. 
increased by communicating a charge of electricity to it, 
that is the electricity behaves like a body whose specific 
heat was negative. But we saw that ba- was of the opposite 
sign to what Sir William Thomson has defined as the 
specific heat of electricity in the substance. Hence we 
see that the analogy between the behaviour of electricity 
and that of a fluid possessing either positive or negative 
specific heat can be extended to cover the case when 
a bodily charge of electricity is communicated to the 
body. 

We can shew however that if the charge of electricity be 
of the same order of magnitude as those which occur in 
electrostatic phenomena this heating effect must be ex­
tremely small. For multiplying both sides of equation (132) 
by /3, we have 

/380 ^ j3ba^ approximately. 
6 a 

Now fiba-jo, is by equation (130) the "specific heat" of 
electricity. The value of this for antimony at the tempera­
ture 27°C. is (see Tait's Heat, p. 180) about 1 0 " ' x 300 
when the unit is i o ~ 5 of the E. M. F . of a Grove's cell. As 
the E. M. F. of a Grove's cell is about 2 x i o 8 in absolute 
measure the "specific heat" of electricity in antimony in 
absolute measure will be about 6000. 

We must now find a limiting value for Sp. Let us sup­
pose that electricity is uniformly distributed through a sphere 
of radius r, then if p be the density of the electrical distribu-
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tion, K the specific inductive capacity, the force just outside 
the sphere is 

Now the greatest value this can have in air is (see 
Everett's Units and Physical Constants, p. 142) about 4 x r o " , 
so that a limiting value of p will be given by 

~ ^ 7 T P ? - = 4 X IO «. 

Now JC= — L 
9 x 10 

so that p = -—-—— approximately. 

Hence substituting this value of p for Sp, we get at the 
temperature 27°C. 

300 x 6 x i o 3 

¡386 = ·-
9 x 1 0 x r 

Now ¡386 IS the mechanical equivalent of the heat 
available for changing the temperature, so that the change 
in temperature will be of the order 

1 
2 . 1 x 10 r ' 

since 4 -2 x i o 7 is the mechanical equivalent of heat. 
Thus the change of temperature which can be produced in 
this way by any statical charge of electricity is infinitesimal. 

55. T h e r m o e l e c t r i c effects of s t r a in . If the 
quantity b in the expression for f (t) is a function of the 
strain in the wire along which the current is passing, then 
putting b ±=/ («), where e denotes a strain in the wire, we 

T. D . 8 
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see by equation (128) that at each point of the wire there 
is the electromotive force 

acting along the wire, ds being an element of its length. 
Now if we have a closed circuit made of one metal, in 

which ox may vary with the temperature and state of strain, 
then the integral of the expression taken round the circuit 
will vanish if either 8 or e is constant all along the circuit 
but will not in general vanish if both 6 and e vary round the 
circuit. So that we cannot produce currents in a wire 
whose temperature is constant by any variation in the strain, 
nor in a wire where the strain is constant by any variation 
in the temperature, while on the other hand we should 
expect to get currents if both the strain and the tempera­
ture were variable. All these results agree exactly with 
experiment, and hence we are led to conclude that b is a 
function of the strain. 

If this is so then communicating a volume distribution 
of electricity to an unequally heated rod must tend to strain 
it. 

For let us suppose that the strain e is an extension of a 
wire, then if a be the displacement of a point along the 
wire 

If a be increased by 8a, the coefficient of So. in the 
change in the Lagrangian function is, when the medium is 
isotropic 

and therefore, by Hamilton's principle, the effects due to 

da. 
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this term are the same as would be produced by an external 
force equal per unit length to (133) tending to strain the 
wire. 

Thus when an unequally heated wire has electricity dis­
tributed throughout the volume there will be stresses tending 
to strain the wire. 

If we consider twist instead of elongation we can show in 
& similar way that an unequally heated wire will be twisted 
when electricity is distributed through it. 

56. The electromotive force in a thermoelectric circuit 
is generally calculated from the heat developed in various 
parts of the circuit by the passage of the current. The 
amount of knowledge of the electromotive force which we 
•can derive from thermal considerations is however limited 
in a way which I think is generally overlooked. 

We see by § 47 that when a coordinate x is increased 
by Sx, the heat SQ which must be supplied to the system 
to prevent its temperature from changing is given by the 
equation 

where X is the force of type x acting on the system. 
Now let X be an electromotive force in a thermoelectric 

•circuit and x a quantity of electricity, then we see by (114) 
that from considerations about the heat developed we can 
•only derive information about the part of the electromotive 
force which depends upon temperature and cannot tell 
anything whatever about any other part. 

As a particular application of this principle we see that 
the Peltier effect can throw no light on the absolute differ­
ence of potential between two different metals and hence 
there is nothing in the phenomena of thermoelectricity to 
force us to attribute the large difference in potential ob-
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served by Volta between two different metals in contact 
to chemical action between them and the surrounding 
medium. 

57. E l e c t r o m o t i v e forces p r o d u c e d b y inequa l ­
i t i es of t e m p e r a t u r e in a m a g n e t i c field, v. Etting-
hausen and Nernst (Wiedemann's Annalen, xxxr. 737 and 
760, 1887) have recently discovered an electromotive force 
due to inequalities in temperature which is very analogous 
to the Hall effect. They found that when heat is flowing 
across a thin plate made of a substance which can conduct 
electricity, electromotive forces are produced in the plate, if 
it is placed in a magnetic field. The direction of the elec­
tromotive force is at right angles both to the magnetic force 
and to the direction in which the temperature is changing 
fastest. The magnitude of the electromotive force is pro­
portional to the product of the magnetic force into the rate 
of increase of the temperature at right angles to the lines of 
magnetic force. 

This electromotive force is especially large in bismuth. 
If 6 represents the temperature, and a, /?, y the com­

ponents of magnetic force parallel to the axes of x, y, z 
respectively, the components of the electromotive force due 
to this effect will if the laws we have just quoted are true be 
given by the expressions 

where Q is a quantity which has very different values in 
different substances. The results of Nernst's determinations 
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of this quantity (Wied. Ann. xxxi. 775), are given in the 
following table 

i Q 

Bismuth - -132 
Antimony - -00887 
Nickel - '00861 
Cobalt — '0O224 

Iron + '00156 
Steel + '000706 
Copper 4- '000090 
Zinc 4- '000054 
Silver +• ' o o o o 4 6 

We shall now proceed to see what term in the Lagran-
gian function would give rise to forces of this kind. 

Let us consider the term 

/ / / * { | | [ C M r f - t f ) ] 

where f, g, h are the components of the electric displace­
ment parallel to the axes of x, y, z respectively. 

The variation of this term when f is increased by S/is 

JjV Q 6 0 3 » - ym) dS - jjj S /Q (¿3 g - y | ) dx dy dz, 

where /, m, n are the direction cosines drawn outwards of 
the normal to the surface enclosing the volume through 
which the integrals are extended. 

By Hamilton's principle the term in the surface integral 
indicates that if we draw any circuit in the field then when 
this circuit crosses the boundary of two media there is an 
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electromotive force whose components parallel to the axes 
of x, y, z are respectively 

«[« {QJi.-QA}-'»{Q'Y. - a v i } ] 

{ < 2 s y a - G r / J - "{Q2

a2 ~ Qiai\] 
D [M\Qa - <2,«i} - 1 {QA- QiaA 

where corresponding quantities in the media (i) and (2) are 
indicated by affixing the suffixes 1 and 2 respectively to the 
symbol representing the quantity, and /, m, ?i are the direc­
tion cosines of the normal drawn from medium (2) to 
medium (1). 

By the same principle the terms in the volume integral 
indicate the existence of an electromotive force throughout 
the body whose components per unit length parallel to the 
axes of x, y, z are 

/ dd J8\ 

! dO d0\ 
Q \ a d z - t d x ) 

r d& dB 
Q{Pdx-ad3. 

• ( I 3 4 ) , 

these are the expressions for the components of the electro­
motive force discovered by v. Ettinghausen and Nernst. 

These forces do not satisfy the solenoidal condition; they 
will therefore produce a distribution of electricity throughout 
the substance whose volume density p is given by the equa­
tion 

K_ d_ 
dx 

dB nd& 
dy dz 

dd 
dz 

d 
dz 

dd) 
~ydx) 

,d0_ 
dx Q ( 3 ; 

dd 
' dy 

where K is the specific inductive capacity of the substance, 
thus, 
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_KQ(dQ /d/3 dj\ dd /dy _ da\ d& /da _ d(3\\ 
P ~ 45T \dx \dz dy) dy \dx dz) dz \dy dx)) ' 

or neglecting Q2 

._ _ r dB dd d6\ 
P = 'KV {Udx^VTy + Uldz)' 

where u, v, w are the components of the current. 

58. T h e r m a l p h e n o m e n a a r i s i n g f rom th i s t e r m . 
We can see by equation (ri3) that 811 the heat required by 
unit volume to prevent the temperature from changing 
when a quantity of electricity 8f passes through it parallel to 
the axis of x is given by the equation 

8H = (that part of the electromotive force which 
arises from the part of the energy corre­
sponding to the sensible heat) 8f; 

thus the part of oil which arises from this term is given by 

"-e(rS-/>£)« 
so that when quantities of electricity Sf, 8g, 8k pass parallel 
to the axes of x, y, z respectively then 

or, if u, v, ID are the components of current parallel to the 
axes of x, y, z respectively and 8i the time the displacement 
takes, then since 

8f= u8t; 8g = v8t• 8k = w8i, 
we have 

™ FT adQ\ f d9 dd\ (0d& dfo "I S/I=QSi{y7y-^\U
 + {\Tz^dx)V+\PTx-adyr_ 

„„Jd6lo , do . , do. (135). 
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If X, Y, Z are the mechanical forces acting on unit 
volume of the conductor arising from the action of the 
magnetic field on the currents flowing through the volume 

X = jl [yv — fiw\ 
Y= / A {aw - yu\ · 
Z = y. {fiu - av}, 

where /«. is the magnetic permeability, combining these 
equations with (135) we see that 

w=-±<$t\xd* + Yf + zf\. 
fx. ( dx ay dzj 

So that if the action of the mechanical force on the 
current tends to make the substance conveying the current 
move in the direction in which heat is flowing, then when 
Q is negative, heat must be abstracted from the substance to 
keep its temperature constant when currents of electricity 
flow through it. And the heat which has to be supplied in 
unit time to unit volume to prevent the temperature from 
changing is given by the equation 

§If= - Q {resultant mechanical force on 
unit volume x flow of heat x 
cosine of the angle between 
these two quantities}. 

Heating effects in a magnetic field have been detected 
by v. Ettinghausen (Wiedemann's Annalen, xxx. pp. 737— 
760, 1887). 

59. M a g n e t i c effects of t h i s t e r m . If we apply to 
the term 

/// e[i IG (w - M \+1 < Q <·* - yf)\ + i i Q (fif - 5] 
dxdydz 
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the same method as the one which in § 43 we applied to 
the term corresponding to Hall's effect, we shall see that it 
involves the existence at a point £, 17, £ where there are no 
electric displacements of a magnetic force whose components 
parallel to the axes of x, y, z are respectively 

D$ ' D N ' D£' 

where 

* - - M @ - D 

D i + ^dh 

dx R 

(DH df\ D 

\dx dzj 1 

( D L . . D L \ 
\DY DX) , 

dxdydz, 

dz) dy R 

DG\ CF \ 

\DY DX) DZ R _ 

where R is the distance between the points x, y, z and 

If f, rj, £ is a point at which there is an electric dis­
placement, then as before the components of the magnetic 
force parallel to x, y, z respectively are 

DÈ 3 DR, GDV 

_DX _ 4 ^ N F FDB 

DR, 3 * V D F 

We see that the equation 

DY _DJL 

' DR, DT 

is no longer true, but that now 

- * 3 D 

J DR,)) 

•(136). 

47T« : 

4TTU • 
NFD9 (DF DG DH\ 

^{DI\D^ + D V

+ D U 

dfdd 

dt dt 

dfdO^ DFDÔ 

" DR, DR, DT DU 

_DY _Dß 

'DR, DC 

IRIS - LILLIAD - Université Lille 1 



It follows from equation (136) that if dielectrics as well 
as conductors exhibit the phenomenon discovered by v. 
Ettinghausen and Nernst then a steady electric displacement 
through a heated dielectric may produce magnetic forces. 
A numerical calculation similar to that in § 43 will show 
however that these forces are exceedingly small. 

60. T h e r m a l e f f e c t s a c c o m p a n y i n g c h a n g e s 
i n m a g n e t i z a t i o n , a r i s i n g f r o m t h i s t e r m . Since 
the magnetic forces expressed by equation (136) arise from 
that part of the kinetic energy which corresponds to the 
sensible heat, changes in the intensity of magnetization 
must by equation (114) be accompanied by reversible 
thermal effects. If the intensities parallel t o the axes of 
x, y, z be increased by Szf, &B, SC respectively, then by 
equation (114) SI/ the mechanical equivalent o f the heat 
which must be supplied to unit volume t o prevent its 
temperature from changing is given by the equation 

61. R o t a t i o n o f t h e p l a n e o f p o l a r i z a t i o n p r o ­
d u c e d b y t h e flow o f h e a t . Rowland has shown that 
if Hall's effect exists in dielectrics, then, according to Max­
well's Electromagnetic Theory of Light, the plane of polariza­
tion of plane polarized light will be rotated when the 
dielectric through which the light is passing is placed in 
a magnetic field the lines of force of which are more or 
less parallel to the direction of propagation of the light. 
We shall now proceed to investigate whether the existence 
o f v. Ettinghausen's and Nernst's phenomenon will produce 

. „(f,d6 d6\., ( sdG Id8\.n 

IRIS - LILLIAD - Université Lille 1 



a rotation of the plane of polarization when a ray of plane 
polarized light passes through a dielectric through which 
heat is flowing. 

Let us suppose that we have a circularly polarized ray 
of light travelling parallel to the axis of z through a 
dielectric in which there is a uniform flow of heat also 
parallel to z. 

Let f and g be the electric displacements parallel to 
the axes of x and y respectively, Fand G the components 
of the vector potential parallel to x and y respectively, 
and X and Y the components of the electromotive force 
parallel to these axes, then since dQjdx, dd/dy both vanish 

dt ^ H dz ' 

dt ^ dz 

where a and /3 are the components of the magnetic force 
parallel to x and y respectively. 

Hence if K be the specific inductive capacity 

47T dF 
Qß 

do 47T 

dt Qß dz 
dG 

Q* 
dO 

X 0 ' ~ di + Q* dz 

Differentiating the first of these equations with respect 
to f we get 

^4f__d2F_ d^d6 
Kdt~~~dt* V dt d z ^ 3 7 ) 

but in a dielectric 
df _ d'F 

A ^ d t ~ ~ dz' ' 
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and in the small term 
d(id6 

V dt dz' 
if we neglect Q 2 we may put 

dp _ d'F 
^ dt dtdz' 

where FI is the magnetic permeability of the dielectric. 
Substituting these values in equation (137) we get 

J_d*F d'F Qd6dsF 
p.K dz\ ~ df + p. d z d t d z ^ 3 ^' 

For a circularly polarized ray we may put 

/''= A sin ^ (vt — z) 

G = - A cos ^ (vi - z) 

where V is the velocity of the light, and A its wave length. 
Substituting this value for Fin equation (138) we get 

1 , Qdd 
= v - — -J V, 

[IK FJ. az 

and thus the velocity of the ray is greater than if the 
temperature had been uniform by 

1 Q dO 
2 FT. dz' 

The velocity of propagation of a ray circularly polarized 
in the opposite sense will also be increased by the same 
amount. So that regarding a plane polarized ray as made 
up of two rays circularly polarized in opposite senses we 
see that when such a ray passes through a medium in which 
there is a steady flow of heat, the plane of rotation will 
not be rotated, but the velocity will be increased by 

1 Q dd 
2 /x dz 
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Thus even if we had a transparent substance for which 
Q was as great as for bismuth, viz. -13 and a fall of tempe­
rature of ioo° C. per millimetre, the change in the velocity 
would only amount to 

this change is only about z - 2 x i o " 7 per cent, of the velocity 
of light, and violet light would have to traverse about 
20,000 cm . to gain or lose a wave length. This effect 
therefore is much too small to be detected experimentally. 

We saw by equation (135) that when electric displace­
ments take place in a field in which the temperature is not 
uniform, heat is absorbed or evolved, so that we should 
expect thermal changes to accompany the propagation of a 
ray of light through a medium the temperature of which 
was not uniform. 

By equation (13s) the heat oHwhich must be supplied 
in unit time to unit volume of the medium to prevent the 
temperature changing, is if the heat is flowing along the 
axis of z, given by the equation 

Let us take the case of a plane polarized ray for which 
approximately 

£ x -13 X 10' 
3 

or 65> 

/ 

g o 

a o 

ß i,tvvA cos 
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thus 
„ „ „ &TTSVS . A2 dd 2 7 T , . . 2 7 T , . 
oH=Q r - cos - hit — z) sin- -Ivt-z). 

A. dz A. N ' \ v 7 

So that the propagation of light along an unequally 
heated medium would if this theory is correct be accom­
panied by periodic emission and absorption of heat, analogous 
to that which accompanies the propagation of soundaccording 
to Laplace's theory. According to Maxwell (Electricity and 
Magnetism, Vol. n. p. 402) the maximum value of ¡3 for 
strong sunlight is '193 so that 

4nvA = '193, 
and therefore 

8 T T V ^ 2 - -02, 

let us take A as 3̂ 9 x 10 5 the wave length of the violet ray 
H in air 

1> rr „ ^ dQ 2 . . . 2 7 7 . ^ . 

(¡11= 5 x 10" x Q x -j- c o s ~ ^ \vt - z) S ln--^- (vt—z). 
If Q were as large as it is for bismuth, i.e. '132, and 

there was a fall of 100° C. in one centimetre, then the 
maximum amount of heat absorbed or emitted would be 

3"3 x I o 3 ; 

this would correspond to changes of temperature of not 
more than one ten thousandth of a degree centigrade, if 
the specific heat of the substance were as great as that of 
water. 

62. L o n g i t u d i n a l effect, v. Ettinghausen and 
Ernst found that in addition to the transversal electromotive 
force there was a longitudinal one along the lines of flow of 
the heat, which was not reversed when the magnetizing force 
was reversed, and which was proportional to the square 
of the magnetizing force as long as this was small. This 
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shows that the quantity 0- which we considered when we were 
discussing the Thomson effect in § 51 is a function of the 
•square of the magnetic force. If we consider the effect of 
this term magnetically we shall see that it indicates that the 
magnetic permeability of a magnet will be affected by the 
proximity of a conductor throughout which electricity is 
distributed. 

63. It is interesting, because suggestive of new physical 
phenomena, to trace the consequence of the existence in the 
Lagrangian function of terms, which are symmetrical func­
tions of f, g, h, a, p, y and their differential coefficients, 
such as terms proportional to 

fa + gP + ky, 
rda dP dy 

J dx 6 dy dz' 
a

 df + o dg + dh 
a dx dy ^ dz' 

/dfi^ _ dy\ /dy _da\ /da _ dp\ 
f \~dz~ ~ dy) +g\dx ~ dz) + [dy dx)' 

dP dy\ (dg . dh\ (dy da\ (dk df\ /dp _ dy\ /dg ._ dh\ /dy _ da\ /dh _ 
\ dz dy) \dz dy) \dx dz) \dx dz) 

+ /da_dp\ fdf _dg\ 
\dy dx) \dy dx)' 

The reader however who is interested in this will have 
no difficulty in tracing the consequences of these terms by 
the methods already given. 
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C H A P T E R V I I I . 

O N " r e s i d u a l " e f f e c t s . 

64. T h e r e are a great many cases in which the appli­
cation of forces to a body seems to produce a change in 
it, from which it does not recover for some time after the 
forces have been removed. 

Thus, for example, if we keep a metal wire or glass 
fibre twisted for some time, it will not when the twisting 
couple is removed at once vibrate symmetrically about its 
original position of equilibrium, but will oscillate about a 
new zero which gradually approaches the old one, the 
maximum difference between the temporary and the true 
zero and the time which elapses before these coincide 
increasing within certain limits with the duration of the 
original twisting couple. 

Phenomena of this kind are called in German treatises 
" elastiche nachwirkung." This peculiar effect of torsion 
does not seem to have received a name in this country, 
but the analogous cases in electricity and magnetism are 
called respectively "residual charge" and "residual mag­
netism." This latter effect is only partly analogous to that 
of the twisted wire, as they differ in one very important 
respect, that of permanence. In the case of the twisted 
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wire the effect of the previous torsion will disappear if 
time he given to it, but soft iron if kept free from dis­
turbance seems to be able to retain its magnetism for any 
length of time. 

We shall now endeavour to find a dynamical analogue 
to the case of the twisted wire. Let us suppose that we 
have a frictionless machine whose configuration is fixed 
by one coordinate x and that this is connected with another 
machine fixed by the coordinate y, the motion of this 
machine being resisted by a frictional force proportional 
to the velocity. We shall suppose at first that the mass of 
the second machine is so small that its inertia may be 
neglected, and that the connexion between the two machines 
is expressed by the existence in their Lagrangian function 
of a term f(xy) which involves both x and y, but not their 
differential coefficients with respect to the time. Then if 
the force X acting on the first machine is the only external 
force acting on the system, the equations of motion will be 
of the form 

A 
d2x 

dt* 
X ( r 4 ° ) , 

O (141). 

If x and y are small we may put 

i-f(xy) =P* + yy, 

where a, ¡3, y are constants. 

Making these substitutions we have 

T. D. 9 
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(i42)r 

+ {a-y)y-P* = ° (143). 

The solution of (143) i s 

2 f r ' ^ J 
xdf (T44). 

substituting this value of 7 in equation ( 1 4 2 ) w e g c t 

We see by this equation that the effect on the first system 
of its connexion with the second is to make the forces called 
into play at any time by the displacement of the system 
from its position of equilibrium depend not merely upon the 
displacement of the system at that time but also upon the 
previous displacements, and that a displacement x lasting for 
a short time T produces after a time T a force rxij/ (T) 
where 

Neesen ("Elastiche Nachwirkung bei Torsion," Berlin 
Monatsberickle, Feb. 12, 1874, p. 141) has shown that the 
assumption that (T) is proportional to e -* 7" agrees with his 
experiments on the twisting of wires. Boltzmann {Sitz. der 
k. Akad. zu Wien, 70, p. 275, 1874) works out a theory 
where ij/ (T) is proportional to 1 IT 

In many cases we are given the forces at the time t' and 
not the displacement, and in these, equation (145) is not 
convenient. If as is generally the case the motion is so slow 
that we may neglect the effects of inertia, then we have 

A - d i + ^ - a ) x ' i ] 0 

19 rt _ l"-y), (t-f) xdl' = X... (145). 
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&Y¿ +(a-y)y = ßx 

(fi — a) x = ßy + X, 
so that 

dt [ " fi — ay fi-a 
and therefore 

P 

w h e r e A = - ? - * ( ^ T ) ' 

and thus when the external force is removed 

* = r ? - w t-w-nxdf. 
¿ 0 * - « ) Jo 

If the primary machine had been connected with several 
secondaries instead of with only one, we should have, if the 
displacements are given 

and if the forces are given 

= St-**!' TnXt*W ( 1 4 6 ) , 

where -m is written for j3a/3 (/j. — and the sum taken 
for all the secondary systems. This is the general expression 
for the residual effect in terms of the forces acting on the 
system when it was under constraint. 

If we cannot neglect the inertia of the secondary system 
we must introduce the term Bd'yldf into equation (143) so 
that that equation becomes 
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of which the solution corresponding to (144) is 

where X; and X2 are the roots of the equation 
Jl\* + b\ + a - y = o. 

Thus the introduction of inertia into the secondary 
system does not change the form of the solution, it only 
introduces fresh terms of the same type as those which 
previously existed, and the general solution is of the form 

where c is a constant which depends on the constitution of 
the secondary system but not upon x. This is the general 
expression for the residual effect in terms of the initial 
displacements. 

65. In those cases in which residual effects occur we 
may suppose that the secondary systems which are affected 
by the changes in the primary are the molecules of the body 
which is the seat of the phenomenon or a portion of such 
molecules. For example in the case of the residual charge 
of the Leyden jar we may look upon the electrical system 
as the primary system and the system consisting of the 
molecules of the glass as the secondary system, and may 
suppose that during the actions of the electromotive force 
on the glass, the arrangement of the molecules of the glass 
suffers gradual changes which react upon the electric dis­
placement. 

x = 
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The following extract from Clerk-Maxwell's article on 
the "Constitution of Bodies" in the Encyclopaedia Britannica 
is most instructive on this point. 

"We know that the molecules of all bodies are in motion. 
In gases and liquids the motion is such that there is nothing 
to prevent any molecule from passing from any part of the 
mass to any other part ; but in solids we must suppose that 
some, at least, of the molecules merely oscillate about a 
certain mean position, so that if we consider a certain group 
of molecules, its configuration is never very different from, a 
certain stable configuration about which it oscillates. 

"This will be the case even when the solid is in a state of 
strain provided the amplitude of the oscillations does not 
exceed a certain limit, but if it exceeds this limit the group 
does not tend to return to its former configuration but 
begins to oscillate about a new configuration of stability, 
the strain in which is either zero or at least less than in the 
original configuration. 

"The condition of this breaking up of a configuration 
must depend partly on the amplitude of the oscillations and 
partly on the amount of strain in the original configuration j 
and we may suppose that different groups of molecules, 
even in a homogeneous solid, are not in similar circumstances 
in this respect. 

" Thus we may suppose that in a certain number of 
groups the ordinary agitation of the molecules is liable to 
accumulate so much that every now and then the configura­
tion of one of the groups breaks up, and this whether 
it is in a state of strain or not. We may in this case assume 
that in every second a certain proportion of these groups 
break up and assume configurations corresponding to a 
strain uniform in all directions. 
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" If all the groups were of this kind, the medium would 
be a viscous fluid. 

" But we may suppose that there are other groups, the 
configuration of which is so stable that they will not break 
up under the ordinary agitation of the molecules unless the 
average strain exceeds a certain limit, and this limit may be 
different for different systems of these groups. 

"Now if such groups of greater stability are disseminated 
through the substance in such abundance as to build up a 
solid framework, the substance will be a solid which will 
not be permanently deformed except by a stress greater 
than a certain given stress. 

"But if the solid also contains groups of smaller stability 
and also groups of the first kind which break up of them­
selves, then when a strain is applied the resistance to it will 
gradually diminish as the groups of the first kind break up, 
and this will go on till the stress is reduced to that due to 
the more permanent groups. If the body is now left to 
itself, it will not at once return to its original form but will 
only do so when the groups of the first kind have broken up 
•so often as to get back to their original state of strain. 

" This view of the constitution of a solid, as consisting of 
groups of molecules some of which are in different circum­
stances from others, also helps to explain the state of the 
solid after a permanent deformation has been given to it. 
In this case some of the less stable groups have broken up 
and assumed new configurations, but it is possible that others 
more stable may retain their original configurations, so that 
the form of the body is determined by the equilibrium 
between these two sets of groups ; but if on account of rise 
of temperature, increase of moisture, violent vibration, or 
any other cause, the breaking up of the less stable groups is 
facilitated, the more stable groups may again assert their sway 
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and tend to restore the body to the shape it had before its 
deformation." 

66. Let us now apply equation (146) to a definite case. 
Let us suppose that the force X1 acts on the system from 
/ = o to / = Tx and that from t- Tx to / = Ta, the force - Xt 

acts, then we have by equation (146) 

J o 

= ( e " - i - 1) - j r , ( « * 7 - . - f * 7 - i ) } . . . ( i 4 7 ) . 

If the primary system is connected with several seconda­
ries instead of one then we have 

x = Xi%j{^-nt-Tl) _ e-«) 

- X 2 2 ^ { c * ( ' - n > - e-*«-7' . )} . . . ( i48) . 

We see from equation (147) that if we have only one 
secondary x will never change sign, but that the system will 
return slowly to its position of equilibrium and never get 
beyond it whatever may have been its previous history. We 
know however that in the case of residual torsion of glass 
fibres and the residual charge of a Leyden jar the residual 
effects may be made to change sign. Thus if we give a fibre 
a strong twist in the positive direction for some considerable 
time and then a twist in the negative direction for a short 
time, the residual torsion after the twisting couple is taken 
off may be first in the negative and then in the positive 
direction. This is sometimes expressed by saying that the 
residual charges come out in the inverse order to that in 
which they went in. 
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If there are only two values of k, kt and k2, then since 

is not a function of t, we see that the sign of the residual 
effect can only change once however complicated the 
alternations in the signs of the twists or electrifications 
previously applied to the system may have been. 

Dr John Hopkinson represented the residual charge of 
a Leyden jar by a formula of the same type as (149) (see 
Chrystal's art. Electricity, Encyclopedia Britannica, p. 40) 
and he showed that for the formula to agree with his 
experiments on the residual charge in glass it was necessary 
to take more than two values of k. Now when we included 
the effects of the inertia of the secondary system we got two, 
but only two values of k for each secondary, so that as we 
have to introduce more terms than two to represent the 
residual effect in glass we must have more than one second­
ary system. This is an indication that glass is not a homo­
geneous substance but a mixture of different silicates. 

According to Neesen (loc. cit.) the residual effects of 
torsion in silk and guttapercha fibres can be represented 
by a single term of the form ce~kt. 

6 7 . We shall now investigate another effect due to the 
same cause as the residual effect but of a different kind. 
This is the effect of the secondary system on the way in 
which the free vibrations of the primary die away. 

Using the same notation as before and neglecting the 
inertia of the secondary system wc have for the free vibra­
tions the equation 

I'wX^dt (149) 
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d2x 

d2x 

or say A + JJ!X = j3y 

bjt+ay = Px, 

eliminating y we have 

{6d}+a'){Ai+^x=^x (I50)-
As this is a linear equation let us assume that x varies 

as then p is given by the equation 
. (bp + d) (Ap' + ?!) = p\ 

or Ap* + p = —r-

The right hand side of this equation is small, and if the 
residual effect does not produce a large change in the period 
of vibration we may on the right hand side of the equation 
substitute for p its value when there is no secondary system, 
i.e. i [fijA^- and for a , a ; making these substitutions we have 

f? _f?{a-i6WA)i) Ap2 + ^ 

r=- -A + 

^ p {a-ib^'Ay-) 
A A a' + Fn/A ' 

{A) L h a* + b'/i/A 
So that if / 3 s be small 

t F {a - ib (JJLIA)* 
V a" + b'^[A~ ] 

approximately. 
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Now if the motion of x were resisted by a frictional 
force proportional to the velocity, the equation for x would 
be 

, d*x . dx 

the solution of which is 
„ -A' (ff, A2 

x — Ce *A cos •" ' 

where C and e are constants. 
The ratio of the amplitudes of two successive swings 

in this case is 

2AJ xp{-' 

And thus the real part of p is approximately 

_ i h & 
2 Ad1 + ' 

the amplitude of the vibrations of x are thus given by the 
•expression 

where exp (x) = e". 
So that the ratio of the amplitudes of two successive 

•swings is 

*{-*tthrT)(I5I)' 
•where T is the time of a complete oscillation, and is 
given by the equation, 

T = 2ir {A//j.}^ approximately. 

Substituting this value of T in (151) we get for the ratio 
of the two amplitudes the expression 
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•or approximately 

ex. 

When the decrease in the amplitude is due to the 
•connexion with the secondary system, the ratio of two 
•successive amplitudes is 

so that the logarithmic decrement when the resistance is 
frictional varies as 

Hence we see that if the mass of the vibrating body is 
altered, the variation of the logarithmic decrement will be 
less in this case than it would if the decay in the oscillations 
were due to friction. This agrees with the results of Sir 
William Thomson's experiments on the decay of the tor­
sional vibrations of wire, as he found that the loss was 
^greater with the longer periods than that calculated ac­
cording to the law of square roots from its amount in the 
experiment with shorter periods. In fact if A were much 
smaller than nFjd* the rate of decay would be increased 
instead of diminished by increasing the vibrating mass, as 
the rate of decay has its maximum value when A = ftJ/ja1. 

i 

when it is due to the secondary system it varies as 

i 
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I N T R O D U C T O R Y T O T H E S T U D Y O F R E V E R S I B L E 

S C A L A R P H E N O M E N A . 

68. So far we have been dealing with phenomena in 
which as in ordinary, dynamics the quantities concerned 
were mainly of a vector character. We shall now how­
ever go on to consider phenomena when the quantities 
we have to deal with are chiefly scalar, such as the 
phenomena of evaporation, dissociation, chemical combi­
nation, etc. where the quantities which have to be considered 
are such things as temperature, vapour density, or the num­
ber of molecules in a particular state. The chief difference 
between these cases and those we have been considering is 
that in these we have as in the kinetic theory of gases to 
deal chiefly with the average values of certain quantities and 
cannot attempt to follow the variations of the individual 
members which make up the average, while in the previous 
cases we have been able to follow in all detail the changes 
in most of the quantities introduced. In these new 
cases all that we can get by the application of the Hamil-
tonian principle are relations between the averages of a series 
of quantities; as however these averages are all that we can 
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•observe in these cases, this limitation is not serious from a 
practical point of view. 

The relations we shall deduce are those which exist 
when the body is in a steady state. 

69. The systems we shall have to consider are portions 
•of matter in the solid, liquid or gaseous state, and consist, 
according to the molecular theory of bodies, of a very large 
number of secondary systems or molecules. Now we can 
control a primary system in many ways, we can fix its geo­
metrical position, we can within certain limits strain it in any 
way we please, we may establish electric currents or electric 
displacements through it, and if the body is magnetic we 
can magnetize it within the limits of saturation : so that the 
coordinates fixing the geometrical, the strain, the electric 
and the magnetic configurations are under our control and 
have therefore been called (§ 46) controllable coordinates. 

The coordinates fixing the positions of the several 
secondary systems are not however within our control and 
we have not the power of altering any one of them; we 
have called these unconstrainable coordinates. 

70. When we say that a system consisting of a great 
number of molecules is in a steady state we mean that the 
state is steady with respect to the controllable coordinates 
and make no supposition as to whether it is so or not with 
respect to the unconstrainable ones, all that we shall assume 
is that the mean values which we can observe and which 
depend upon the unconstrainable coordinates are steady. 

Thus when the system is in a steady state the velocity of 
each controllable coordinate must be constant, and if the 
coordinate enters explicitly into the expression for either 
the kinetic or potential energy, that is if the coordinate is 
not a " kinosthenic" or speed one, the velocity must vanish. 
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71. We shall now proceed to prove that when a system 
consisting of a great number of molecules is in a steady state-
the mean value of the Lagrangian function has a stationary 
value so long as the velocities of the controllable coordinates-
a T e not altered. 

Let us denote the controllable speed coordinates by the 
symbol q^, the controllable positional coordinates by q2 and 
the unconstrainable coordinates by q3) then we have by the 
Calculus of Variation 

-C(!4>.--/:(!-StH-
Remembering Lagrange's Equations we see that this 

equation reduces to 

(#>);;···<->• 
Let us suppose that the symbol of variation refers to a 

disturbed motion in which the values of the controllable 
coordinates are slightly altered while the velocities of the 
speed coordinates remain unaltered and constant during the 
disturbed as well as the undisturbed motion. 

We shall for the sake of greater clearness consider the 
three terms on the right-hand side of equation (152) 
separately, as the considerations which apply to them are 
different in each case. 

72. Let us first take the term 
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Since we suppose that in the disturbed motion the velocities 
of the speed coordinates are unaltered Sq, is always zero,, 
and thus the term we are. considering vanishes. 

73. We shall now show that the term 

also vanishes. Since qs is not a speed coordinate it must 
enter explicitly into the expression Z, so that when the 
motion is steady the velocities of coordinates of this class 
vanish. The terms in Z which contain the velocities of 
positional coordinates always vanish when the motion is 
steady. They do not therefore contribute anything to the 
mean value of Z, and so we may without loss of generality 
suppose that the coefficients of terms in the kinetic energy 
involving the velocities of positional coordinates are all zero 

and that therefore may be put equal to zero. In this 

way we may see that the terms we are considering in the 
expression for the variation of the mean value of the La-
grangian function vanish. 

74. To show that the terms 

vanish we must use the reasoning given by Clausius in his 
paper "On the Second Axiom of the Mechanical Theory of 
Heat," Phil. Mag. XLII . p. 178. 

Let us in the first place consider what the coordinates 
denoted by q3 are. They are coordinates fixing the 
position of the molecules of the system and may be 
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divided into two classes: firstly, coordinates fixing the 
position of the centres of mass of the molecules, and 
secondly, coordinates fixing the position of the molecules 
relatively to their centres of mass. The motion of the latter 
coordinates will be periodic, while that of the former will not 
be so; in consequence however of the frequent collisions 
between the molecules their direction of motion will be 
continually reversed, so that if the position of a molecule be 
arbitrarily changed the distance between the disturbed and 
the undisturbed positions will not increase indefinitely with 
the time, the difference will sometimes be positive, some 
times negative, but will fluctuate between limits which do 
not increase with the time. Thus if pa' is a coordinate of 
this kind 

will fluctuate between positive and negative values which do 
not increase with the interval t0 — 

The same reasoning will apply with still greater force to 
those coordinates which fix the configuration of a molecule 
relatively to its centre of mass, for these coordinates will 
oscillate and therefore the part of 

depending upon these coordinates will fluctuate between 
limits which do not increase as the time -ta increases. 

Now any change which we have the power to produce 
in any of the coordinates fixing the system will, since the 
motion is steady, produce a change in each term of 
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which will increase proportionately to the increase in the 
interval tl—ta: and thus if we integrate over a sufficiently 
long interval we may neglect any terms on the right hand 
side of equation ( 1 5 Z ) which fluctuate between fixed values 
and therefore as far as coordinates of the kind qs are 
concerned put 

when the interval tx - ta is sufficiently long. 
We have seen however that this is also true as far as the 

variations of the other coordinates qlt qt are concerned, 
so that when the motion is steady we have 

where L denotes the mean value of Z taken over unit time, 
e.g. one second, and where the variations are such as could 
be produced by slightly altering the values of the coordi­
nates. We may conclude that one second is a sufficiently 
long interval over which to integrate since according to the 
molecular theory of gases there are both a great many 
collisions and a great many vibrations in this period. 

75. In the above investigation we have supposed 
that the Lagrangian function Z is expressed in terms 
of the velocities of the coordinates and the proof is only 
valid when it is so expressed and does not hold when the 
velocities corresponding to some coordinates are elimi­
nated and the momenta corresponding to them introduced 
instead. 

We can prove however in this case that the modified 
Lagrangian function (§ n ) is stationary when the system is 
in a state of steady motion. 

For let Z' be the modified Lagrangian function and q a 

J. D. IO 

S (Z) = o {¡•S3), 
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coordinate whose velocity has not been eliminated, then Z ' 
is a function of q, q... and the momenta corresponding to 
the other coordinates, and since 

d dL dE _ 
dl dq dq 

we have by the Calculus of Variations 

where p is the momentum corresponding to one of the 
eliminated coordinates. We can prove exactly as before 
that the right hand side of equation (154) vanishes for all 
variations in which the momenta corresponding to the 
eliminated coordinates remain unaltered. 

Thus we have in all cases an equation of the form 
SZ = o, 

where Z is the mean value of the ordinary Lagrangian 
function or its modified form according as it does not or 
does contain the momenta corresponding to some of the 
coordinates. 

7 6 . In the physical applications of this principle it 
would sometimes be difficult to tell whether a symbol 
occurring in Z represented a momentum or a velocity. 
Fortunately however this knowledge is unnecessary if we 
calculate the Lagrangian function from the forces required 
to preserve equilibrium. For when the system is in a 
steady state, X the force of type x which must be applied 
to maintain equilibrium is given by 

X = ~ dx' 
where Z is the Lagrangian function or its modified form 
according as the kinetic energy does not or does contain the 
momenta corresponding to some of the coordinates. So 
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that by what we have just proved 
-%HXdxdt (155), 

the sum being taken for all the coordinates and X expressed 
in terms of them, is the expression for the terms depending 
on the controllable coordinates in a function which possesses 
the property of having a stationary value when the system 
to which it refers is in a steady state. 

7 7 . Thus to take an example let us consider the case 
of a heavy particle whose mass is m attached to a fixed 
point by a string whose length is /, and moving so that 
the string makes a constant angle 3- with the vertical. The 
kinetic energy of the system is 

\mF sin2 30 2 , 
where <p is the angle which the plane containing the string 
and a vertical line makes with some fixed plane. The couple 
0 which must act on the system to keep 3 constant is 

- mP sin 3 cos 30 2 . 
When the system is acted on by gravity the potential 
energy is — mgl cos S so that the Lagrangian function is 

^ml2 sin2 $<ps + Mgl cos 3 
which may be written 

— j®dd + mgl cos & 

and this possesses the property of being stationary. 
If however the Lagrangian function is expressed in 

terms of <J> the momentum corresponding to <p and given by 
the equation 

3> = mP sin2 &0 
the Lagrangian function becomes 

1 

<£>2 cosec2 3 + mgl cos 

and this expression i s n o t stationary. 
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The function which possesses this, property is the 
"modified" Lagrangian function 

—,„ <I>2 cosec" .& + mgl cos 
2ml 

Since 0 however when expressed in terms of 6 and <2> 
equals 

L a 2 c o s & 

ml" sin2 S ' 
we see that the " modified" Lagrangian function again 
equals 

— j®d6 + mgl cos ·&. 
Thus the expression 

- J®dO + mgl cos $ 

is stationary however © may be expressed, whether in terms 
of <}> or 3>. 

This example illustrates the principle that if we calculate 
the Lagrangian function from the forces necessary to pre­
serve equilibrium we need not consider whether it is ex­
pressed in terms of velocities or momenta. 

7 8 . If we consider the proof by which the equation 

hir-di *Q^t <^> 
was established we shall notice one point which we must 
continually bear in mind when we are calculating the value 
of the potential energy. 

By the Calculus of Variations 
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and thus if equation (156) holds we must have 
dL d dL_ 
dq dt dq 

Now in ordinary Rigid Dynamics perhaps the most 
usual form of Lagrange's equation is 

d dL dL _ 
dt dq dq ' 

where Q is the external force of type q tending to increase 
this coordinate. In this case L — T — V where V is the 
potential energy when the coordinates have their assigned 
value and the system is free from the action of external 
forces. If however we are to use equation (153) we must 
put L = T — V where 

V= V'-^iQdq, 

that is we must add to the potential energy we are con­
sidering the potential energy of the system which produces 
the external forces. 

Lagrange's equation may now be written 
d dT d 
dt dq~dq{T~ V ) = 0' 

and equation (153) is true. 
Thus to take an example, in Electrostatics we often 

assume that the potential energy V of unit volume of a 
dielectric whose specific inductive capacity is K and through 
which the electric displacements parallel to the axes of x, y. 
z are respectively/, g, h is 

J { / • + + 

and that the equations of equilibrium are 
djr dv _ dv' 
df ~ dg ~ r' dh ~ A 
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where X, Y, Zare the components of the electromotive force 
parallel to the axes of x, y, z respectively. 

If however we wish to apply the theorem we are now 
considering we must put 

V = ^ { f + g2 + /i2}-{Xf+ Yg+ Zh\, 

for then the equations of equilibrium are 
<W cIV _dV 
df dg dh 

The necessity of choosing V so that the equations of 
motion are of the form 

D 'LIT- V\-
dt dg dgK 

is one to which we must always be alive in dealing with this 
subject. 
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C H A P T E R X. 

T H E C A L C U L A T I O N O F T H E M E A N L A G R A N G I A N 

F U N C T I O N . 

79 . S I N C E we can observe and regulate the forces of the 
types of the "controllable" coordinates we can determine 
how they depend upon the values of these coordinates and 
then by means of the expression (155) calculate all those 
terms in the mean Lagrangian function which involve such 
coordinates. There may however be some terms in the 
Lagrangian function which do not involve these quantities 
and if we require these we must determine them by other 
considerations; a large number of problems can however be 
solved even though we do not know the values of these 
terms. 

To get some idea of the different kinds of terms which 
may exist in the Lagrangian function let us consider the 
energy of a system consisting of a large number of molecules. 
In the expression for the energy we can calculate all the 
terms involving the coordinates which fix the electric, 
magnetic or elastic configuration of the system, and in the 
terms depending upon the strain coordinates we may include 
those terms which involve the average distance between the 
molecules. There may however be some terms left which 

IRIS - LILLIAD - Université Lille 1 



each molecule contributes independently of its neighbours 
and which do not involve any of the controllable coordinates. 
The sum of these contributions will be proportional to the 
number of the molecules and must also be a function of the 
temperature, because the mean state of the system is fixed 
by the controllable coordinates and the temperature, and the 
mean kinetic energy must therefore be a function of these 
quantities. Ey hypothesis the terms we are considering do 
not involve the controllable coordinates, so that the only 
quantity they can depend upon is the temperature. The 
potential energy of the molecules may also contribute terms 
to the Lagrangian function which do not involve the con­
trollable coordinates and which therefore we cannot calculate 
by equation (155)- For the purposes for which we use the 
Lagrangian function all that we require to know about it is 
the change in its value when the system is changed in some 
definite way. Now if we measure the amount of heat 
absorbed or evolved when the change takes place and 
know the change, if any, which takes place in the kinetic 
energy, we can calculate the alteration in the part of the 
potential energy which is independent of the controllable 
coordinates. 

The methods of calculating the mean value of the 
Lagrangian function will be best illustrated by working out 
some particular cases. Let us begin with that of a perfect 
gas. 

Mean value of the Lagrangian function for a perfect gas. 

80. Let us suppose that unit mass of the gas is enclosed 
in a cylinder furnished with a piston, whose distance from 
the base of the cylinder is represented by the coordinate x, 
then since the pressure of the gas is a force tending to alter 
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the value of x, the mean Lagrangian function for the system 
of molecules forming the gas must involve the coordinate x. 

If H denotes the mean value of the Lagrangian function 
of the system, the mean value of the force of type x pro­
duced by the system when in a steady state is by Lagrange's 
equations 

dH 
dx ' 

Since there is equilibrium between the pressure due to 
the gas and the external pressure 

dH „ 

where / is the pressure of the gas and A the area of the 
piston. 

But if the gas obeys Boyle's law 
R6 

**· v ' 
where v is the volume of unit mass of the gas, 6 the absolute 
temperature and R a constant such that R8 equals the 
square of the velocity of sound in the gas. 

Now 
A d v 

dx ' 
so that 

dll _ RO dv_ 
dx v dx' 

Integrating this equation we have in so far as H depends 
upon v and 6, 

H=R6 l o g ^ + / ( 0 ) (iS7), 

where v0 is an arbitrary constant and f(6) an arbitrary func­
tion of 0, which does not involve x. It corresponds to the 
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part of the kinetic energy which depends entirely upon un-
constrainable coordinates. We shall find in the course of 
this work that a great many problems can be solved without 
a knowledge of the value of / (6). As far as f (8) is linear 
it may be included in the first term, as we may regard v0 as 
quite arbitrary. 

The expression (157) will give the value of the mean 
Lagrangian function so far as it involves x, it also includes 
that part of the kinetic energy which is expressed entirely in 
terms of unconstrainable coordinates, for this can be included 
in the term fi&)\ to complete its value we must subtract 
from it w the potential energy of unit mass of the gas when 
its particles are infinitely distant from each other, as this is 
the part of the potential energy which depends upon uncon­
trollable coordinates. 

Thus for unit mass of the gas 

H=m log - +/{6)-w, 

or if p be the density of the gas 

H=RQ log 1 ^ + f[6)-w. 

We shall see later on, when we consider the phenomenon 
of evaporation, that f{&) is of the form 

A8 + B6 log 9 (158). 
The value of H for a mass m of gas whose density is p 

is given by the equation 

H- mR8 log ^ + mf (9) - mw (159). 

This is the Lagrangian function for the gas itself; when 
an external pressure acts upon it we must add to this value 
the mean Lagrangian function of the system producing the 
pressure. We may suppose that this system is a weight 
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Mean value of the Lagrangian function for a liquid or solid. 

81. We must now proceed to find the mean value of 
the Lagrangian function for a liquid or solid. Let us suppose 
that we have a piston whose distance from a fixed plane is 
x pressing upon a bar of the substance. 

Then we have by Lagrange's equations when the motion 
is steady 

d — = mean force tending to increase x produced by 

the substance, 
so that 

(PJL 
dBdx \d6J V constant 

where p is the pressure required to balance this force and a 
the area of the cross section of the bar. The differential 
coefficient dpld9 is obtained on the supposition that the 
volume is constant. 

Since adx — dv, 
d'-FL 

w e h a V e dtdv" 
•,dp\ 
\d6Jv< 

placed upon the piston, the variable part of the potential 
energy of this is, if Vbe the volume occupied by the gas 

pV. 

So that its mean Lagrangian function is 

-pV 

and the Lagrangian function of the two systems is therefore 

mRB log ^° + mf(0) - mw -p V (160). 
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where ¡3 is the mean value of (dpjdff) between zero and 8. 

Thus H= 8 f Bdv + f^B) 

= tfy+ / , ( * ) say. 

Where f {&) is an arbitrary function of the temperature, 
it is unnecessary to add an arbitrary function of v on 
integration as this will be included in the potential energy 
due to strain. 

If the mass of the substance is unity 
I 

v = - , 

where a- is the density, so that in the expression for H 
for unit mass of the substance there are the terms 

-8 rPd<r + f(6). 
- V 0 FR 

From this we must subtract w the potential energy 
of unit mass of the substance. Thus in the Lagrangian 
function for a mass m of the substance there are the terms 

— m& j —id<r + 7nf^ (8) — mw. 

If there is any external pressure we must add to this 
the expression for the mean value of the Lagrangian 
function of the system producing this pressure. This, as 
in the case of the gas, will be 

-pv, 
where p is the external pressure and V the volume of the 
solid or liquid. Adding this term we get 

H^-m8\ •K,d<j + mf(8)-mw'-pV (161). 

dv In \dV/vmJI 
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It must be remembered that we have only calculated 
the value of the Lagrangian function in the simplest case 
when the body is in a steady state, when it is free from all 
strain except that inseparable from the body at the tempe­
rature we are considering, and when it is neither electrified 
nor magnetized. The change in the Lagrangian function 
due to any additional strain or to electrification or mag­
netization can be at once determined by finding the energy 
required to establish this particular condition. For example, 
the change in H produced by statical electrification equals 
minus the potential energy of the electrical distribution, the 
change due to any system of electric currents flowing through 
solids or liquids is the kinetic energy due to this distribution 
of currents, and can be calculated by the ordinary formulae 
of electrokinetics. 

82. The problems which we shall now proceed to 
solve, making use of the principle that the mean value of 
the Lagrangian function is stationary, are those which can 
often be solved on therniodyna'mical principles by using 
the condition that the value of the entropy of the system 
is' stationary. The value of H must therefore be closely 
connected with that of the entropy, and in fact we see 
from its value for a perfect gas in equilibrium under 
external pressure that, with the exception of the term / V, 
those terms in H which depend upon the controllable 
coordinates occur also in the expression for the entropy. It 
seems however preferable to use the function H which has a 
direct dynamical significance, rather than the entropy which 
depends upon other than purely dynamical considerations. 
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C H A P T E R X I . 

E V A P O R A T I O N . 

83. W E shall now go on to apply the principle that the 
value of H is stationary to solve some special problems in 
Physics. The first problem we shall consider is that of 
finding the state of equilibrium when a given mass of some 
liquid is placed in a closed vessel from which the air has 
been exhausted; some of the liquid will be vaporized and 
we wish to find how fa'r the vaporization will proceed 
before equilibrium is obtained. This of course is equivalent 
to finding the density of a vapour when in equilibrium in 
presence of the liquid. 

Let v, v be the volumes occupied by the vapour and 
liquid respectively, f the mass of the vapour, TJ that of the 
liquid, the rest of the notation being the same as that used 
in § 80 and § 81. 

Then assuming that the vapour obeys Boyle's law we 
see from equation (r58) that the vapour contributes to the 
expression for for the whole system the terms 

££9 log ?|» + # - ( 0 ) - f a , (162), 

since p the density of the vapour equals £lv. 
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From equation (161) we see that the liquid when it is free 
from surface tension, electrification and the like, furnishes 
to the same expression the terms 

- 1 , 0 ('^da + rt/^^-fpt/ (163). 

Thus H the mean value of the Lagrangian function for 
both the liquid and vapour is the sum of (162) and (163) so 
that we have 

H-tRO log ^ 2 + £f(G)+vfl(0) 

— r]0 I t-^da - £«' - tjw' (T64)-
J crD<r 

When there is equilibrium the value of H has by the 
Hamiltonian principle (§75) a stationary value, so that in 
this state no small change can affect the value of the right 
hand side of equation (164). 

The small change which we shall suppose to take place 
is that which occurs when the mass of the vapour is 
increased by a small amount S£ while the mass of the liquid 
is diminished by the same amount. The change in 1/is 

so that when there is equilibrium we have by the Hamil­
tonian principle 

dH 
~d¥ = °-

When S£ of the liquid is vaporized the volume of the 
liquid diminishes by 8f/«r so that we have 

dv' 1 
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and therefore 

Now 

dv 

d£ s £ v d£ 

where for brevity y is written instead of . 

da. 

Substituting for dv\d£, its value we have 

d^=R6 log 7 | ° + £ ^ - + ¿ ( 0 ) . . . ( 1 6 5 ) , 

where \p (6) is written for 
(y-K)6+f{0)-f (6), 

a quantity which does not involve £. Since £/v = p we may 
write (165) as 

d ~ = RB log ^° + RB (w - -uf) + (6). 

Since dHjd£ vanishes in the state of equilibrium we have 
then 

RB log ^ = - R6P- + (w- w) - 1// (6) ...(166), 

since p/o- is very small we may write this as 
(ZU — It/) 

P = 4> w r ^ r ( l f i 7 ) > 

where <p (#) is some function of B. 

and since the volume of the vapour and liquid remains con­
stant 

L (V + V ) = o, 
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Bertrand (1'hermodynamique, p. 93) has shown that the 
results of Regnault's experiments on the vapour pressures 
of different liquids can be represented by the following 
expressions, / being the pressure in millimetres of mercury: 

alcohol; l o g / = 21-44686 - 2743/0 - 4-2248 log 0, 
chloroform; l o g / = 19-29792 — 2179/0 ~ 3'9 IS^3 log ^ 
bisulphide of carbon l o g / -= 12-5885 2 -1684/6 - 1-7689 log 0. 

This form of expression was originally used by Dupre. 
(Theorie Mecanique de la Chaleur, p. 97.) 

The coefficient of i /0 in each of these expressions is nearly 
A0/V?, where X0 is the latent heat of the substance at the 
absolute zero of temperature. This is the term (w — w')j6 
in our expression (166) and w — w' is the latent heat at 
absolute zero, hence by comparing the other terms in 
these expressions we see that f(0) must be of the form 

84. We can by the aid of the preceding formulae very 
easily determine the effect upon the vapour pressure of any 
slight change in the physical condition of the liquid or 
vapour. 

Let us suppose that the physical conditions are so 
changed that the mean Lagrangian function exceeds the 
value we have hitherto assumed for it by Then instead of 
equation (167) we have evidently 

RB log ^ + R9 ^ + J, ( 0 ) - ( w - w ' ) + d£ = o, 
p <r dg 

so that Sp the change in the vapour density due to the cause 
T. D . I I 

water; 
ether; 

l o g / = 17-44324 
l o g / = 13-42311 

2795 /0 -3 '8682 logfl, 
1 7 2 9 / 0 - 1 - 9 7 8 7 log 0, 

A6 + BB log 0. 
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which produced the change ^ in the mean Lagrangian 
function is given by the equation 

-RB&P+RB S p

 + 5 = o, p <r af 

so that if x increases with £ the vapour pressure in the state 
of equilibrium is increased, while if \ diminishes as £ 
increases the equilibrium vapour pressure is diminished. 
This very important principle is a particular case of the 
more general one that; when the physical environment of a 
system is slightly changed and the consequent change in the mean 
Lagrangian function increases as any physical process goes on, 
then this process will have to go on further in the changed 
system before equilibrium is reached than in the unchanged one, 
while if the change in the mean Lagrangian function diminishes 
as the process goes on it will not have to proceed so far. We 
shall have numerous examples of this principle in the 
course of the following pages. 

8 5 . Let us now consider the effect of surface tension 
upon the vapour pressure. In order to take a definite case 
let us suppose that the liquid is a spherical drop. It will 
possess in consequence of surface tension potential energy 
proportional to its area, and as the area of the drop 
diminishes as the water evaporates the energy due to the 
surface tension changes, and since anything which causes 
the energy to change as evaporation goes on alters the state 
of equilibrium, the vapour pressures when there is equi­
librium in this case cannot be the same as when evaporation 
produces no change in the area and therefore no change in 
the energy due to surface tension. 
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Now 

and therefore 1 
3 7 ' V ' 

1. da 1 
hence —. = — — = - (I6Q) 

and therefore dx=2T 
d£ ao-

So that if Sp be_the change in the vapour density pro­
duced by the surface tension we have by equation ( 1 6 8 ) 

Sp=--2p f-^j (17°). 
<J — p a Kv 

and if 8p be the change in the vapour pressure, since 

8p = R08P, 
we have by (170) 

8 / = - a - ^ (171). 
0· — p a 

This agrees with the formula given by Sir William 
Thomson in the Proceedings of the Royal Society of 

11 — 2 

If a be the radius of the drop and T t h e energy per unit 
area due to surface tension then in the expression for the 
potential energy of the liquid there will be in addition to 
the terms we have already considered the term 

and therefore in the mean Lagrangian function for the liquid 
and vapour the additional term 

- 4-n-a2T. 

So that with our previous notation 

x = -4Tva*T. 
1 da 1 1 dv' 
a d£ 3 1 / d£ ' 
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86. E f f e c t o f a c h a r g e o f e l e c t r i c i t y o n t h e 

v a p o u r p r e s s u r e . We can by the use of formula (168} 

Edinburgh, Feb. 7, 1870, and quoted in Maxwell's Theory 
of Heat, 5 t h edit. p. 290. 

If we take the case of a drop of water of a millimetre 
in radius, then if the temperature is about io°C. we have 
by (170), since R9 for water vapour is about i p i o 9 

Sp 200 
p 1-3 X i o 8 

since T= 8 1 we have 

-— — 1 2 x 1 0 . 
P 

We see that the energy due to surface tension makes 
the Lagrangian function increase as evaporation goes on, 
so that by the principle given at the end of § 8 4 , the effect 
of it will be to make evaporation go on further than it 
otherwise would. 

If we have the water in narrow capillary tubes then 
when it evaporates the area of the surface of contact of the 
tube with water is diminished but that of the surface of 
contact of the tube with air is increased. Since the surface 
tension of the surface of separation of the tube and air is 
greater than that of the tube and water, the potential energy 
due to surface tension increases as evaporation goes on, 
thus the mean Lagrangian function diminishes as the liquid 
evaporates, so that by the principle of § 8 4 the effect of 
surface tension in this case will be to stop evaporation 
and promote condensation. We can easily shew that if a is 
the radius of the tube then in this case 

a — p a 
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find the effect on the vapour density of electrifying the liquid. 
If the charge e is given to the liquid which we shall suppose 
•spherical and of radius a, the potential energy is increased 
by 

I £» 

2K a' 
where K is the specific inductive capacity of the surrounding 
medium. 

The mean Lagrangian function of the liquid and its 
vapour is diminished by this amount. Blake's experiments 
on the evaporation of electrified liquids (Wiedemann's 
FJektricitdt, iv. p. 1212) show that e remains constant as the 
liquid evaporates, in other words that the vapour proceeding 
from the electrified liquid is not electrified. Thus the new 
term — e2J2Ka in the mean T.agrangian function diminishes 
as the liquid evaporates and therefore by the principle of 
§ 84 evaporation will not go on so far as before, that is 
the vapour density when there is equilibrium will be 
•diminished by electrifying the liquid. 

We can easily calculate by equation (168) the amount of 
this diminution. 

In this case 
= _ - 1- e-

X 2/T a' 

1 , i c d\ 1 ** da and therefore -~ = - —. : d% 2 Ka d% 
substituting the value of dald£ given by ( 1 6 9 ) we have 

dX =__ 1 <" 
d\ 8-n-JC a'tr ' 

so that if Sp be the change in the vapour density produced 
by the electrification we have by (168) 
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To calculate the magnitude of this effect let us suppose 
K= i ; then f/a2 is the electric force just outside the sphere, 
and this cannot exceed a certain value, otherwise the insu­
lating power of the air would break down and the electricity 
escape. The maximum value of e/a' when the sphere is 
surrounded by air at the atmospheric pressure is about 120 
in electrostatic measure : and as cr is unity, p a small fraction, 
the maximum alteration in the vapour density will be given 
by the equation 

7 = - 1 - 4 4 X 1 0
 XMT9' 

now R& for water vapour at io°C. is about i '3 x io B , so 
that 

— = - 4 x 10 7, 
P 

this value will be independent of the size of the drop. 
Comparing equations (170) and (172) we see that the 
maximum effect due to electrification is about equal in 
magnitude though opposite in sign to that due to a curvature 
of 1/4 of a centimetre. 

The effect of electrification is to diminish the vapour 
density when there is equilibrium between the liquid and 
the vapour, it therefore increases the tendency of the 
vapour to deposit on the liquid. We should therefore 
expect an electrified drop of rain to be larger than an 
unclectrified one, so that this effect may help to produce 
the large drops of rain which fall in thunderstorms. 

87. Effect of an e lec t r ic field u p o n t h e v a p o u r 
p r e s s u r e . Electricity also produces an effect upon the 
vapour pressure when the drop is not charged but merely 
placed in an electric field. Let us suppose that the 
field is due to a charge of electricity e collected at a point 
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P, let the radius of the drop of water which we shall 
suppose spherical be a and let f be the distance of the centre 
from P. Then (Maxwell's Electricity and Magnetism, Vol. 1. 
p. 232), the potential energy due to the mutual action of the 
electrified point and the drop of water is 

_j_ e'a3 

so that the increase in the mean Lagrangian function is 
1 /a3 

2K /·(/·-<?)' 
and therefore by (168) the change 8p in the density of 
the vapour when in a state of equilibrium is given by the 
equation 

8P _ 1 cr 1 J 3 fa* / a 4 )da 
7 = PO ( T - p KUf'~(f"~a1) + j'U'-a'f I di" 

Substituting for da/dS from (169) we have 
Sp 1 13 1 a \ 1 
p KbK o- - p (2 f (f - a") / " ( / ' - a"-f) 4" 

if a be small compared with / then approximately 

= _ J 1 J _ E * 

p %tv A>K6 a-p 

Now ejKf2 is the force at the centre of the drop due to 
the electrified point, calling this F and remembering that cr 
is large compared with p we have 

i = - h n r » ( I 7 3 ) ' 

so that the effect of electrification on a neighbouring body 
is again to diminish the vapour density in the state of 
equilibrium. The formula (173) will evidently hold even 
though the field is not due to an electrified point provided 

IRIS - LILLIAD - Université Lille 1 



F the force at the drop does not vary much in a distance 
comparable with the radius of the drop. 

88. E f f e c t o f s t r a in u p o n v a p o u r p r e s s u r e . 
We shall now investigate how the vapour pressure depends 
upon the state of compression of the liquid. Let us 
suppose that the pressure p acts upon the liquid, then if k 
be the modulus of resistance to compression, the potential 
energy possessed by the liquid in virtue of this strain is 

1 Pi 1 
2 k <T ' 

so that 

dé 2 a-k' 
and therefore by equation (168) 

8p i i
 1 Pi i \ 

or approximately 

*" ' / ¡ ( '75) 
p 2Ku <T& 

for water k = 22 x io"', so that the effect on the vapour 
pressure of the compression due to the pressure of icoo 
atmospheres is at the temperature of i5°C. given by 

Sp I 

P = 5 6 ; 

for ether the effect would be given by 

Sp I . 

• = - approximately. 
P 5 

In the next paragraph we shall consider another effect 
due to pressure which except for exceedingly large pressures 
is larger than the one we have just been considering. 
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89. E F F E C T O F THE P R E S E N C E OF A G A S H A V I N G N O 

C H E M I C A L A C T I O N O N THE W A T E R V A P O U R ON THE 

E Q U I L I B R I U M V A P O U R P R E S S U R E . It is generally believed 
that the equilibrium vapour pressure of water depends only 
upon the temperature of the water and not upon the pressure 
produced by an indifferent gas, that it is for example the 
same in a vacuum as under atmospheric pressure. If however 
we remember that when a portion of the liquid evaporates 
the air above it must expand and do work we shall see that 
this cannot be the case, but that since evaporation is 
accompanied by a diminution in the density of the air, and 
therefore by an increase in its mean Lagrangian function, 
it must by the principle of § 8 4 go on further when air is 
present than in a vacuum, so that the vapour density will be 
increased by the presence of the air. We shall now go on 
to investigate the magnitude of this increase and shall 
consider two cases. In the first case we shall suppose that 
the air and liquid are placed in a closed vessel whose 
volume remains constant. 

Let f, TJ, £ be the masses of the vapour, water, and air 
respectively; w, n\, ze»a, the mean potential energy of unit 
mass of each of these substances respectively. 

Then the mean Lagrangian function for the water vapour 
is 

m i o g ^ ° + f / ( f l ) - ^ , 
where v is the volume of the vessel above the liquid. 

The mean Lagrangian function for the w-ater is by 
equation ( 1 C 1 ) 

vyS + vA (6) ~ v™t; 
and the mean Lagrangian function for the air is 

iRt9 log Vf + £/ s (6) - frr 
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Thus when a quantity d£ of the liquid evaporates, since 
dv I d£= 11 it, the condition that dH\ d£ = a gives 

R6 log Vp/ + ^ — - R 9 + f{B) - / (6)-yO-(w-w,) + =o. 
° i V<r 1 (TV 

Now if Sp be the change in p due to the presence of the 
air, Sa;, the corresponding change in u\, we have by this 
equation 

r H + OOT, -I i - = O ( l 7 f ) ) -
p tr <rv 

The presence of the air will increase the pressure and so 
cause the liquid to be more compressed than it would be if 
the air were away, so that wl will be increased by the 
presence of the air. If he be the compression due to the 
pressure p ' of the air, and p the pressure due to the water 
vapour, Swl will be proportional to (p + p') Se and unless the 
pressure due to the air amounts to many thousands of 
atmospheres this term will be very small compared with 

tRJ 
(TV 

which is equal to p'/(T. 
Hence we may write equation (176) as 

R8SP R6SP p' _ 
p tr tr 

or, since o- is very large compared with p , 

*e*=p- ( 1 7 7 ) . 

P <* 
Now if Sp be the change in the pressure of the water 

vapour due to the presence of the air 
R68p = Sp, 

so that equation (177) becomes 
Sp_p' 
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But if p is the density of steam when the pressure is 

L = £, 
P P ' 

so that equation (177) becomes 
Sp = ^ 
P * 

and thus the alteration in the vapour pressure produced by an 
external pressure of an atmosphere is given by the equation 

&p density of steam at atmospheric pressure 
p density of water 

= —!-- at o° C. 1200 
So that for each atmosphere of pressure the vapour 

pressure of water is increased by about one part in twelve 
hundred. For ether the increase would be about one part in 
220. 

go. The other case we shall consider is when the 
pressure acting on the system remains constant. We shall 
use the same notation as before. The only change we shall 
have to make in the mean Lagrangian function is to add to 
it that of the system producing the steady external pressure. 
We may suppose in order to fix our ideas that this system is 
a quantity of mercury placed on the piston, which may 
be supposed to move vertically up and down, then if P be 
the steady pressure per unit area the potential energy is 
equal to 

P (v + v'), 

so that the mean Lagrangian function of this system is 

-P{v+vr), 

where v' is the volume of the liquid. 
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I he condition - = o 
at 

gives 
R6 log *-X6 + £™^ +f[6) - / , («) -yO- ( a , - W ] ) 

Now -~v = P 

and — 
z> 

where / a n d / ' are the pressures due to the water vapour and 
air respectively. 

Since P=p+p' 
dv 1 

and - = 
o-

the above equation reduces to 

R6log^-R6 + /(<?) -A, W -yO-(w- wj + ^ = o, 

or if Bp be the change produced by the external pressure, 

= * 
p rr 

Bp P 
or — — — 

p a-
a similar result to the one we obtained before. 

We see from this result that (apart from any other cause) 
rain drops will form more easily when the barometer is low 
than when it is high. 

Regnault's experiments seem to show that the vapour 
pressure in a vacuum is greater by nearly 5 per cent, than 
when there is air at atmospheric pressure above the liquid 
{Wullner's Lehrbuch der Pkysi'k, in. p. 703), but he attributed 
this difference to the condensation of the liquid on the sides 
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of the vessel; the absorption of the air by the liquid might also-
tend to produce an effect in this direction, though, as the 
following investigation will show, to nothing like the extent 
of 5 per cent. 

91. Effect of a b s o r b e d a i r on t h e v a p o u r 
p r e s s u r e . When the liquid contains some gas diffused 
through its volume which remains behind when it evaporates, 
the evaporation of the liquid will cause the volume occupied 
by the gas to diminish and its density to increase. Thus by 
(157) the mean value of its Lagrangian function will diminish 
as evaporation goes on, so that by § 84 the presence of the 
gas dissolved throughout the volume will diminish the 
equilibrium vapour pressure. 

Let t be the mass of the dissolved gas, v' the volume of 
the liquid in which it is dissolved, then the Lagrangian 
function of the gas is 

E R'6 log ^ - eze/ + / (0) (178), 

where w' is the intrinsic potential energy of unit mass of the 
dissolved gas. 

The expression (178) is the quantity we denoted by x in 
§ 8 4 . The only variable in x which involves | is v and 
dv'ld^ — — i/'c-, so that we have 

dx_ R'6* 
d£ vo-

and therefore by (168) 

A 8 - = - , - ( i79 • 
p tr — p V 

If bp be the increase in the vapour pressure caused by the 
dissolved gas, P the pressure this gas would produce 
if it were free from the liquid and filled the volume v, then 
since 

RQlp = Ip 
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and — - = P, 
v 

equation ( 1 7 9 ) may be written 

¥ = - ^ ± - P . 
r r - n 

So that since p is very small compared with <r we have 
approximately 

Sp = - - P (180) , 
cr 

or if p be the vapour pressure, and p the density of steam at 
the atmospheric pressure 71-, equation (180) may be written 

P IT 77 

And since p I a- is about i /1200 we see that 
S? = - — ( P ) , 
p I 2 0 0 X ' 

where (P) is the pressure P expressed in atmospheres. 
The volumes of the various gases which one volume of 

water will absorb at o° C. under the pressure of 760 milli­
metres of mercury were determined by Bunsen and are given 
in the following table : 

Hydrogen -019 
Nitrogen "0203 

Air '0247 

Carbonic Acid 1 7 9 
Chlorine 3 ' ° 3 6 i 

so that according to equation (180) the vapour pressure 
of water saturated with air will be lowered by about one 
part in 50,000, when saturated with carbonic acid by about 1 

part in 660 and when with chlorine by about 1 part in 400. 
In this investigation we have assumed that the properties 

of the liquid are not altered by the presence of the gas; 
if they are, then we must regard y and w' as functions of e, 
and this would lead to the introduction of several additional 
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terms into the equation for Sp. We have assumed too that 
the gas remains behind as the liquid evaporates, as in this 
case the diminution of the vapour pressure is greater than if 
some of the gas were to be set free when the liquid evapo­
rates. 

92. T h e effect of d i s so lved sa l t on t h e v a p o u r 
p r e s s u r e . Van 't Hoff ("L'équilibre chimique dans les 
systèmes gazeux ou dissous à l'état dilué," Archives Néer­
landais, xx. p. 239, 1886) has pointed out that Pfeffer's 
experiments on the osmotic pressure produced by salts 
dissolved in water (Pfeffer, Osmotische Untersuchungen, 
Leipzig, 1877) and Raoult's experiments on the effect of 
dissolved salts on the freezing point of solutions (Annales de 
Chimie, 6ms série, iv. p. 401), show that the molecules of a 
salt in a dilute solution exert the same pressure as they 
would exert if they were in the gaseous state at the same 
temperature and occupying a volume equal to that of the 
liquid in which the salt is dissolved, and that the pressure 
exerted by these molecules obeys Boyle's and Gay Lussac's 
law. This being so, the mean Lagrangian function for the 
salt dissolved in the liquid is the same as that of an equal 
mass of the salt in the gaseous state filling the volume 
occupied by the liquid. Thus if the properties of the liquid 
are not altered by the presence of the salt the results of the 
preceding section will apply, and we shall have, supposing 
that the salt remains behind when the liquid evaporates, 

where cr is the density of the liquid, p the density of its 
vapour at the atmospheric pressure, (P) the pressure in 
atmospheres which would be exerted by the dissolved salt 
if it were in the gaseous state. 

Thus, for example, suppose that we have n grammes of 

8/ 

P 
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salt in a litre of the solvent, where n is the molecular 
weight of the salt. This strength of solution is often called 
for brevity a strength of one equivalent per litre. This 
quantity of salt will by Avogadro's law produce the same 
pressure as 2 grammes of hydrogen per litre, that is about 22 
atmospheres ; if this quantity of salt were dissolved in water 
it would by equation (181) since p/er is about 1/1200 
diminish the vapour pressure by about 1 part in 5 5 , if it 
were dissolved in ether, C 4 H 1 0 O, where p/o- is about 1/220, 
then the vapour pressure would be diminished by about 1 
part in 10, if it were dissolved in alcohol, C z H 6 0 , where p/cr 
is about 1/380, the vapour pressure would be reduced by 
about one part in 17. We see from equation (181) that the 
diminution in the vapour pressure is proportional to the 
quantity of salt dissolved. We can also express the result of 
this equation as follows. If P is the pressure due to one 
equivalent in grammes of the salt dissolved in a kilogramme 
of the solvent, then P/o-, where a is the density of the 
solvent, is the pressure in atmospheres due to one equi­
valent of the salt dissolved in a litre of the solvent. Hence 
P 2 
— = ^./(density of hydrogen at atmospheric pressure.) So 
that we may write equation (181) as 

— = (molecular weight of solvent) x 1 x i o _ z , 

where Sp is the diminution in vapour pressure when one 
equivalent of the salt is dissolved in a kilogramme of the 
solvent. Another way of expressing the same thing is that 
when one equivalent of the salt is dissolved in 1000 
equivalents of the solvent, i.e. in 1000 m grammes where 
m is the molecular weight of the solvent, the diminution in 
the vapour pressure amounts to 1 part in rooo, whatever 
be the nature of the salt or solvent. 
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Since 

and since P is directly, while p is inversely, proportional to 
the absolute temperature, we see that the ratio Sp/p ought to 
be nearly independent of the temperature since cr only 
varies very slowly with it. 

93. In the preceding investigation we have assumed 
that the properties of the solvent were unaltered by the 
presence of the salt, and that all the solvent did was to 
enable the salt to exist in a condition in which the 
molecules were very far apart. 

If however the properties of the solvent are altered by 
the presence of the salt, then we must regard w' as a function 
of the quantity of salt dissolved. 

In this case instead of equation (179) we shall have 

where &u/ is the change in it/ produced by the presence of 
the salt. 

Now if s be the strength of the solution, i.e. the quantity 
of salt in unit volume of the solvent, 

If the change in w is proportional to the strength of the 
solution then 

dw' dw' 
d't] ds ' 

so that equation (182) becomes 

Sw' — s 
dw' 

T. D. 12 
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In the general case the lowest power of .r which occurs 
in the expression 

, d-u/ 
ds 

is the second, so that the effect produced by the alteration 
of the properties of the solvent depends upon the squares 
and higher powers of the concentration, while the effect we 
investigated in the preceding section was proportional to 
the first power, and therefore when the solution is dilute is 
relatively the more important. 

Raoult, Comptes Rendus 104, p. 1433, has recently found 
that when one equivalent of a substance is dissolved in 100 
equivalents of a solvent the vapour pressure is reduced by 
1 '05 parts in 100, which agrees very well with the results 
we have just obtained. 
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C H A P T E R X I I . 

P R O P E R T I E S O F D I L U T E S O L U T I O N S . 

94. T H E effect produced on the vapour pressure of any 
solvent by dissolving other substances in it has been discussed 
in the last chapter; in this chapter we shall consider some 
other properties possessed by dilute solutions. 

ABSORPTION OF GASES BY l iquids. Let us suppose 
that we have a closed cylinder containing a gas and a liquid 
and that we wish to find how much of the gas will be ab­
sorbed by the liquid. In this case we have four substances 
to consider, 

1. The liquid. 
2. The vapour of the liquid. 
3. The free gas. 
4. The gas dissolved in the liquid. 

The variation which we shall suppose to take place, and 
which will not by the Hamiltonian principle alter the value 
of II when the system is in equilibrium, is that corre­
sponding to the escape of a small quantity of gas from the 
liquid. This will not affect the value of the mean Lagrangian 
function of the vapour of the liquid, so that we may leave this 
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out of account in solving this problem. Let the mass of the 
liquid be ?j, that of the free gas f, and that of the absorbed 
gas £. Then using the same notation as we have hitherto 
employed, the mean Lagrangian function for the liquid is 

rryG + rjf (6)-r]wl (183), 

for the free gas 

I R B logIjp + g / ^ - f a , ( l 8 4 ) , 

for the dissolved gas 

ZX6 l o g ^ ' + £ / ' ( 0 ) - & / (185), 

where v is the volume occupied by the free gas, and v' the 
volume of the liquid or that occupied by the dissolved gas, 
and where w' and f'{6) are the quantities for the dissolved 
gas which correspond to w and / (B) for the free gas. If we 
denote the sum of the expressions (183), (184) and (185) by 
H, then by the Hamiltonian principle II is stationary when 
the system is in equilibrium, so that if we suppose a small 
variation to be caused by a quantity of gas 8£ escaping from 
the liquid then we must have for equilibrium 

this is equivalent to 

RB log ^ ° -R&+f{6)-w-HB log + HO-/' (6) + w 

+ + NFI (0) - W = o (186). 

The last term when the amount of gas absorbed is 
not large will be very nearly independent of the quantity 
of gas dissolved. Equation (186) may be written 
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Rd log c P- = w - w +/' (6) -f{0) 
P 

+ ^ {vy# + nfx (0) - •qw,} (187), 

where c is a constant and p and p' are the densities of the 
free and dissolved gas respectively. Since the temperature 
is constant, we see from this equation that pip is constant, 
that is, the quantity of gas in unit volume of the liquid is 
proportional to the density of the free gas. This is Henry's 
law of the absorption of gases by liquids and it has been 
verified by the researches of Bunsen and others. Bunsen's 
experiments showed that the value of the ratio p'/p depends 
upon the temperature, hence we see from equation (187) 

that w —f (8) - \w -f\Q)\ + -rr {rjyd + nf{6) — rfivj cannot 
at, 

be zero, otherwise p'lp would be the same at all tempera­
tures. Thus either the properties of the free gas can not 
be quite the same as those of the dissolved gas, or else 
the properties of the water are altered by the gas dissolved 
in it. 

95. A similar investigation will apply to the case of 
a solid or gas which can dissolve in two fluids which do 
not mix. We can prove in this way that when there is 
equilibrium when the fluids are shaken up together then, 
provided the solutions are dilute, the amount dissolved in 
unit volume of one fluid will bear a constant ratio to that 
dissolved in the same volume of the other (see Ostwald's 
Lehrbuch der allgemeinen Che?nie, 1. p. 401). 

96. The diffusion of salts through the solvent, a process 
which goes on until the solution acquires a definite state, 
can be explained by the same principles. In the following 
investigation of this problem we include the consideration 
of the effect of gravity upon diffusion. Let us suppose that 
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we have a shallow vessel whose volume is v and that this is 
connected by a capillary tube of fine bore with another 
shallow vessel whose volume is v' situated at a height h 
above the lower vessel. Let the two vessels be filled with 
water containing a certain quantity of salt dissolved in it, 
then we wish to find how the salt is divided between the 
vessels when equilibrium is established. Let £ and ij be 
the quantities of salt in the lower and upper vessels 
respectively, then if h' be the height of the lower vessel 
above some fixed plane, the potential energy of the salt in 
the lower vessel may be taken to be igh', so that there is 
the term — ^gh' in the expression for the mean Lagrangian 
function of this salt, similarly there is the term —r\g{h + h') 
in the expression for the mean Lagrangian function of the 
salt dissolved in the upper vessel. 

Thus using the same notation as before the expression 
for the mean Lagrangian function of the salt dissolved in 
the lower vessel is 

£RQ log ^ + £ / (0)- iw-tgti (r88), 

the mean Lagrangian function of the salt dissolved in the 
upper vessel is 

•qUeiog P-'^- +r1/(0)-r,w-rig(A' + ;*). . . (189). 

Let us suppose that a quantity S17 of salt goes from the 
lower to the upper vessel, then if there is equilibrium 
this change must not alter the value of II, the mean 
Lagrangian function of the salt and solvent in the two 
vessels. If the solutions are dilute the only part of H 
which varies is the sum of the expressions (188) and (189), 
and the condition 

dH 
- = o 
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leads to the equation 

X6\og— -gh = o, 

or if yf are the masses of salt in unit volume in the 
lower and upper vessels respectively 

R6\og -,-gh = o, 
V _gh 

or |> = e R* (190)· 

So that the concentration of the solution when there is 
equilibrium varies in the same way with the height as the 
density of a gas under the action of gravity. 

97. A large number of experiments have been made 
on the effect of dissolved salts on the coefficients of com­
pressibility of various solutions (see Schumann " Compressi-
bilitat von Chlorid Lbsungen," Wied. Ann. xxxi. p. 14, 
1887 and Rbntgen and Schneider, Wied. Ann. xxix. p. 
165, 1886), we shall therefore investigate an expression 
for this effect and see what information can be gained 
by comparing it with the results of the above-mentioned 
experiments. 

Let us suppose that the solution whose original volume 
is va is subjected to a hydrostatic pressure / which reduces 
its volume to v, and that k' is its coefficient of compressi­
bility. Then the mean Lagrangian function of the solution 
and the system producing the pressure is 

1 (v„ - v)s , 

the mean Lagrangian function of the dissolved salt is, using 
the same notation as hitherto, 
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f 7 ? 0 1 o g ^ ° ^ / ( 0 ) - ^ , 

where f is the mass of the salt. 
If H is the sum of these expressions then by the 

Hamiltonian principle II must be stationary when there is 
equilibrium. Let us suppose that the volume is increased 
by dv, then since H is stationary we must have 

dH 
dv ' 

or 7 7 — l-p+ = o (191) ; 

now $P8/z' is the pressure due to the molecules of the salt, 
let us call this P. If p be increased by Sp, the correspond­
ing diminution in volume Sz' is by (191) given by the equation 

1 Sz; . £P6 , 
77 °P+—i t>V=0, 
k va V 

1 8z> ( Pk'vn 

or since v0 is very nearly equal to v we may write this 
equation in the form 

So that the apparent coefficient of compressibility is 
k' 

1 + Pk'' 

thus the pressure due to the molecules of the dissolved salt 
produces a decrease in the coefficient of compressibility. 
Let us see what the magnitude of this effect would be if 
the pressure of the molecules were the only way in which 
the dissolved salt affected the resistance to compression. 
If we make this assumption k' = 1/2-2 x io l n , this being the 
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value when measured in c. g. s. units of this constant for 
pure water at i5°C. If there is one equivalent of salt in a 
litre of water, P is 22 atmospheres or in absolute measure 
2'2 x 10'. Since the reduction in the coefficient of com­
pressibility is very nearly equal to 

or to one part in \jPk\ we see that when the strength of 
solution is one equivalent per litre the reduction in the 
coefficient of compressibility ought to amount to one part in 

that is to one part in 1000. 
The following table taken from Rbntgen's and Schneider's 

paper will show that the effect of dissolved salts is some­
times more than a hundredfold that calculated on the 
above assumptions, and hence we conclude that in addition 
to producing a pressure in the solvent the dissolved salt 
must directly alter its elastic properties. 

Pk'\ 

I 
-, X 2'2 X I O 1 0 , 

2'2 X ID 

Names of salt 
or acid. 

solution in equivalents per litre. 

Strength of 
Reduction in com­pressibility found by Rontgen and Schneider reckuncd 

in parts per thousand. 

H N 0 3 

IIBr 
HC1 

i 49 
i'49 
i'S2 
1-48 
i 49 
l'S 
I - 5 
i'45 
i'S 

42 
40 
5z 
79 
90 
94 
90 
97 

371 

H 2 S 0 4 

NH ,1 
N H , N 0 3 

NH,Br 
N"H3C1 
N a 2 C 0 3 
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g8. The pressure due to the molecules of the dissolved 
salt will explain many of the phenomena exhibited by 
solutions. The molecules of the salt may be regarded 
as confined within a limited volume by the solvent, and 
they will take any opportunity of expanding even though 
they may have to do work to enable them to do so. Thus 
if the solution was contained in a vessel provided with a 
bottom pervious to water but impervious to the substance 
dissolved in it, then if the vessel is placed in water with its 
top above the surface water will flow up into the vessel 
through the bottom, the work required to lift the water 
being supplied by the expansion of the molecules of the 
dissolved salt. This constitutes the well-known phenomenon 
of osmosis. 

A diaphragm which is said to be impervious to all salts 
though it allows water to pass through it can be made by 
allowing weak solutions of sulphate of copper and ferrocyanide 
of potassium to diffuse into a porous plate from opposite 
sides, these solutions when they meet form a membrane 
of the kind desired. Detailed instructions for making these 
membranes are given in Pfeffer's Osmotische Untcrsuchwigen, 
Leipzig, 1877. By following his directions I have succeeded 
in making such membranes though the number of failures 
was very large compared with the number of successes. 
Mr Adie, who is making some investigations on this subject 
at the Cavendish Laboratory, finds that the membranes are 
formed more readily if ferric chloride is used instead of 
copper sulphate. 

We shall now attempt to find by means of Hamilton's 
principle the height to which the fluid will rise in the 
osmometer. Let us suppose that the osmometer is a long 
tube with a diaphragm of the kind we have been describing 
at the bottom, and that it contains water and salt. Let f 
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be the mass of the salt, 17 that of the water inside the tube, 
£ that of the water outside, and let v be the volume of 
the tube occupied by the solution. Then, using the same 
notation as hitherto, the mean Lagrangian function for the 
salt is 

R0£ log + £/(6) - £ K + gz) (192), 

where z is the height of the centre of gravity of the salt 
molecules above some fixed plane. 

The mean Lagrangian function for the liquid in the tube 
is 

•qy'6 + 77/ / (6) - v (wj +gz) (193), 

and for the liquid outside the tube 

£YFL + 4 / , + (i94), 

where y is the height of the centre of gravity of the water 
outside the osmometer: the quantities for the liquid inside 
the tube are denoted by affixing dashes to the symbols 
denoting the corresponding quantities for the water outside 
the tube. 

By the Hamiltonian principle the value of H, the sum 
of (192), (193) and (194), is stationary when there is equili­
brium. Let us suppose that a quantity of water S17 flows 
into the osmometer. 

Then since if there is no contraction 

dv dz 1 
dr] ' dy 2a.' 

where a is the area of the cross section of the osmometer, 
and 
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where h is the height of the top of the fluid in the osmometer 
above the level of that outside : the condition 

dH_ 
drj 

leads to the equation 

+ V~dr,-- dr, <*">:) + " S [h + ^ = o . . . ( ,95); 

if the properties of the solution are not altered by the pre­
sence of the salt then 

/ = *//(<>)=/,(*)> < = «'. 
and equation (195) becomes 

p =• go-(h + ±h'), 
where / is the pressure due to the molecules of the dissolved 
salt, and h' the height of a column of water whose mass is 
the same as that of the salt dissolved in the osmometer. If 
the strength of the solution in the osmometer is one equiva­
lent per litre, / is about 22 atmospheres, so that in this case 
h + \h' is about 6fio feet; that is the water would flow into 
the osmometer until the height of the liquid in the tube is 
nearly an eighth of a mile above the level of the water 
outside. 

If the liquid is not allowed to expand but confined 
in a constant volume we can easily prove in a similar way 
that if the properties of the solvent are not changed by the 
addition of the salt then when there is equilibrium the 
pressure exerted by the fluid in the osmometer must be 
the same as that due to the molecules of the salt. This 
result is given by Van t' Hoff (L'équilibre chimique, Archiv 
Néerlandais t. 20, p. 239). 

Pfeffer (Osmoiische Untersuchungen, p. 12) gives as the 
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pressure for a i °/0 solution of potassium sulphate that due to 
192-6 centimetres of mercury and for a 1 °/0 solution of 
potassium nitrate that due to 178-4 centimetres. The 
pressure calculated on the above principles for potassium 
sulphate is 97 centimetres if we assume that the molecule 
is K 2 S0 4 and 194 if the molecule is £ (K 2 S0 4 ) , for potassium 
nitrate it is 167 if the molecule is KNO a . 

We see as in § 90 that the terms in (195) depending 
upon the alteration of the properties of the solvent by the 
addition of the salt do not contain any powers of the strength 
of the solution below the second. 

A measurement of the osmotic pressure produced by any 
salt solution will on the above assumptions give the same 
information about the structure of the molecule of the salt 
in the solution as a vapour density determination does about 
the structure of the gas whose vapour density is determined, 
for it enables us to find the number of molecules in a given 
mass of the gas. Thus Pfeffer's measurement of the os­
motic pressure due to potassium sulphate suggests that the 
relation between the composition of the molecule of this 
salt and that of potassium nitrate is represented by i K a S 0 4 

and KNO a , and not by K 2 S 0 4 and KNO a . 
Even if we do not assume that the molecules of a salt 

produce a pressure analogous to that of a gas, it would still 
follow from the Hamiltonian principle that there would be 
a rise in the osmometer if the increase in the mean I.agran-
gian function of the liquid inside the osmometer caused by 
the addition of unit mass of water is greater than the 
diminution in the mean Lagrangian function in the water 
outside the osmometer caused by the abstraction of unit 
mass of water. 

Anything that causes a change of this kind will increase 
the height to which the fluid will rise in the osmometer; 
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thus, if the addition of water to the solution inside the os­
mometer is attended by an evolution of heat, the solution 
will rise higher in the osmometer than one of similar strength 
in which no heat was evolved in dilution. On this account 
the indications of the osmometer are somewhat ambiguous, 
and before coming to any definite conclusion as to the 
structure of the molecule of the salt it would be necessary 
to use several solvents and to show that the osmotic height 
varied as the absolute temperature. 

99. Sur face T e n s i o n of S o l u t i o n s . The experi­
ments of Rontgen and Schneider already alluded to have 
proved that for most solutions the product of the height to 
which the solution rises in a capillary tube into the density 
of the solution is greater for a solution of a salt than for pure 
water, and that for dilute solutions of most (though not all) 
substances this product increases with the strength of the 
solution. It follows from this that the tension of the surface 
of contact of the solution with air increases with the strength 
of the solution, while the tension of the surface of contact 
of the solution with glass or any other solid body diminishes 
as the solution gets stronger. 

The variation of the surface tension with the strength of 
solution may cause the strength of the solution to vary near 
the surface. 

To investigate the magnitude of this effect let us suppose 
that we have a thin film whose area is S and surface tension 
T, connected with the bulk of the liquid by a capillary 
thread. Let £ be the mass of salt in the thin film, rj that in 
the rest of the liquid ; then if £ is the mass of water in the 
film, E that of the rest of the water, the mean Lagrangian 
function of the liquid and salt in the film is, using the 
same notation as before, 
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S U R F A C E T E N S I O N . I G I 

W log VP« + tf(6) - + TY6 + if (6) - iw, - ST. 

where v is the volume of the film. 
The mean Lagrangian function for the rest of the liquid 

is 

y?<9 log Vp°- + r/f(8) - nwl + *y0 + *A(8) - C "V 

Let us suppose that a mass of salt SI goes into the film, 
the change in the mean Lagrangian function is 

and this by the Hamiltonian principle must vanish; thus if 
P, P are the masses of salt in unit volume of the film and 
liquid respectively, we get 

< 6· ¿7· 

P 

or if 7" is the increase in the surface tension when the mass 
of salt in unit volume is increased by unity 

/ 27"' 

P. -f~JiSt 
P 

where / is the thickness of the film. Thus if the surface 
tension is increased by the addition of the salt there will be 
less salt per unit volume in the film than in the liquid in 
bulk, while if the surface tension is diminished by the addi­
tion of salt there will be more salt in unit volume of the film 
than in unit volume of the rest of the liquid. We saw that 
the surface tension of a solution in contact with a solid di­
minished as the strength of the solution increased, thus if we 
had a film in contact with a solid there would be more salt 
in unit volume of the film than in unit volume of the bulk of 
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the liquid; if we dipped for example a piece of filter paper 
in such a solution, the solution in the filter paper would be 
stronger than the rest. Or, again, if such a solution were to 
flow through a capillary tube the salt would have a tendency 
to flow to the sides, so that the more quickly moving fluid 
at the centre would get weaker and weaker. Many experi­
mental illustrations of this could be given ; one of these is 
an experiment tried by Dr Monckman and myself at the 
Cavendish Laboratory, in which a deep coloured solution of 
potassium permanganate emerged almost colourless after 
trickling through finely divided silica. Again, if a piece of 
filter paper be dipped into a coloured solution of a salt such 
as potassium permanganate, unless the salt has a very strong 
affinity for the water the solution after rising some height 
in the filter paper becomes colourless. 

If a small quantity of paraffin oil be mixed with water 
the surface tension of the solution against a solid is greater 
than that of water, and such a solution will increase in 
strength when it flows through finely divided silica. 
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C H A P T E R X I I I . 

D I S S O C I A T I O N . 

IOO. THE Hamiltonian method can be used for the pur­
pose of obtaining the laws which govern the phenomena of 
dissociation, i.e. the splitting up of a molecule into its atoms, 
such as the iodine molecule I 2 into the atoms I and I ; or 
of a complex molecule into simpler ones, as in the case of 
nitrogen tetroxide, where the molecule N 2 0 4 splits up into 
two molecules of NO, , or when the molecule of chloride of 
ammonium splits up into ammonia and hydrochloric acid. 

This phenomenon has some analogy with that of 
evaporation ; as in the latter case we have equilibrium 
between portions of matter in two different states, the 
gaseous and the liquid, matter being able to pass from the 
one state to the other by evaporation and condensation, so 
in dissociation we have also equilibrium between portions of 
the same substance in two different conditions, both in the 
gaseous state, the molecules in the one condition being 
more complex than those in the other, and matter being 
able to pass from one condition into the other by the more 
complex molecules splitting up, " dissociating" as it is called 
into the simpler ones, while on the other hand some of the 
simpler ones combine and form the more complex molecules. 
Equilibrium is attained when the number of the complex 

T. D. 13 
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molecules which split up in any time is the same as the 
number formed in the same time. 

Let us first investigate the case when the complex 
molecules contain two of the simpler ones ; this is the case 
when, as in iodine, the more complex systems are di-atomic 
molecules and the simpler ones atoms, as well as in such 
cases as the dissociation of N 2 0 4 . 

Let us suppose that the system is contained in a closed 
vessel and that £ is the mass of the complex molecules, 17 
that of the simpler ones. We shall for the present assume 
that both gases obey Boyle's law and that the fundamental 
equation for the complex gas is 

and for the simpler gas 

where p is the pressure, p the density and 0 the absolute 
temperature. 

Since the molecules of the complex gas consist of two of 
those of the simpler gas, the density of the simpler gas will 
at the same pressure and temperature be half that of the 
complex gas and therefore 

The mean Lagrangian function of the complex gas is 

£ ^ 0 log ^ + ¿ 7 , (196), 

where v is the volume of the vessel in which the gas is 
contained and œ\ the potential energy of unit mass of the 
complex gas. 

The mean Lagrangian function for the simpler gas is 

, je . f l log^s-' + i , / , ^ ) - ^ , (197), 

where w2 is the potential energy of unit mass of this gas. 
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The mean Lagrangian function H for the two gases, 
assuming that the properties of each are not modified by 
the presence of the other, is the sum of the expressions 
(196) and (197)- By the Hamiltonian principle the value 
of H is stationary when the system is in equilibrium. Let 
us suppose that the state of equilibrium is disturbed by 
a mass S£ of the simpler molecules combining to form 
complex ones. Then since the value of H is stationary 
we must have 

dH 

Since the mass of the gas is constant 

H£ + S77 = o 
and the condition 

dll 

is equivalent to 

Rfi log ^ - Rfi + / (6) - a,, - Rfi log ^ 

+ RF-Ft{ff) + W, = O (198), 

or since Ra = 2RX 

we have 

Rfi log + Rfi + / , V) V . <*> = " *V 

This can be written 
2 !Z>1 — Wu 

^ = ^ ( 0 ) « ^ - . ( I 9 9 ) , 

where <p (#) is a function of 6 but not of f, 17 or z/. 
In experiments on dissociation the quantity usually 

measured is the vapour density of the mixture at some 
standard pressure jr. 
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and 

Let A be the density of the mixture of the two gases at 
this pressure, D that of the complex or undissociated gas at 
the same pressure. 

The pressure in the vessel is 

v v 

or since R2 — 2Rlt 

the pressure equals Rfi. 
v 

The density of the gas at this pressure is 

l + V 
v ' 

so that A the density at the pressure w is given by the 
equation 

the density Z> of the complex gas at this pressure is given 
by the equation 

so that A = Ĵ l D, 
£ + Z T I 

j . _ « n-\ 
and therefore . = —^— , 

¿ + 2 7 7 D 

£ 2\-D 

t+2V~ D ' 
since pv = (f + 2ii) Rfi, 

, pv Z>-A 
we have ^nfi-D ' 
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so that equation (199) becomes 

(200), 

where 

(6)=j?ie<P(6). 

roi . Before discussing this equation we shall investigate 
the way in which it must be modified if the gas does not 
obey Boyle's law. 

Formulae connecting the pressure and volume in such 
gases have been given by Van der Waals (Die Continuität 
des gasformigen una flüssigen Zustandes) and Clausius (Wied. 
Ann. ix. p. 337). 

Van der Waals' formula, which is rather the simpler of 
the two, is 

where R is the value of pjpd for a perfect gas of the same 
specific gravity, and 6 and a constants depending upon the 
nature of the gas. 

Clausius' formula is 

K 
P ~ v - a 6(i+B)" 

where R is the same as in Van der Waals' formula for the 
same gas, and a, B, K are small constants depending upon 
the nature of the gas. We shall now investigate the differ­
ence produced in the state of equilibrium of a dissociable 
gas if it and the components into which it is decomposed 
obey Van der Waals' law instead of Boyle's. 

Re a 
v~b v' s y 
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P=-
and 

where 

v - bx 2/ 

Rfi a. 
P'~v-b. 

as before. 
Then we can easily prove that instead of the term 

tRfi log P " 
P 

in the mean Lagrangian function, we have the term 

l o g ( i ^ P o ) + ^ l P , 

where p is the density of the complex gas; with a corre­
sponding term in the expression for the Lagrangian function 
of the simpler gas. 

The condition 
dH 
-dC° 

will now lead to the equation 

^ { l o g f i - ^ + l o g * - ^ } 

- Rj* J log (1 - bj>') + log >̂ - J + 2a,p - 2 « / 
+ / . ( A ) - / . W - ( « / , - « ; , ) = o (20T) 

and not to the equation (198). 

Let the fundamental equations of the complex and 
simple gases be respectively 

J?,0 a, 
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•Rfi \ log + log ^ -5 + log ^% — , + 

2 - « 2 IJ) 

Now if we suppose that the deviations from Boyle's Law 
are slight, so that b1 and 6a are so small that their squares 
may be neglected, we may write this equation as 

s _ a(«I-FI)F-zCaa-a^)T (tai i v 2 ) 
^=4> (<?) « rf9 e R l B ' (202); 

since QvRfi is approximately equal to p'/p and al and p 
are both small fractions while p — 10 s if the pressure is one 
atmosphere, equation (202) may be written as 

an equation of the same form as when the gases obeyed 
Boyle's law. The connexion between the masses of the 
complex and simple gases and the vapour density of the 
mixture will not however be the same as when the gases 
obeyed Boyle's law, and so the relation between the vapour 
density, the pressure and the temperature may be different 
although equation (202) shows that the relation between the 
masses of the dissociated and undissociated gases is the 
same. 

It would be an interesting problem to find an expression 
for the vapour density of the mixture in terms of the masses 
of the two gases in this case, we shall not however stop to 

Equation (201) may be written, since R2 = 2R1, 
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investigate it as it would not be of any use for the purpose 
of connecting theory with experiment, for in determining 
the vapour density from the experiments Boyle's law was no 
doubt assumed. 

102. Formulae corresponding to equation (200) deduced 
from thermodynamical considerations have been given by 
Willard Gibbs (Equilibrium of Heterogeneous Substances, p. 
239) and Boltzmann (Wied. Ann. xxn. p. 39, 1884). 

Thus according to Gibbs 

.g&^'ai ( « 3 ) , 
D (2A - D) 

this agrees with (200) if 0 1 (0) is constant. 

According to Boltzmann 

47L% 
and this agrees with (200) if 4>, ($) is proportional to 9. 

Gibbs in his paper (" On the vapour densities of per­
oxide of nitrogen, formic acid, acetic acid and perchloride of 
phosphorus," American Journal of Science and Art, xvm. p. 
277, 1879), discusses the results of experiments on the vapour 
densities of these substances at different temperatures and 
pressures and has found that they agree fairly well with the 
results calculated by formula (203). Quite recently however 
E. and L. Natanson have made a most elaborate investigation 
of the vapour density of nitrogen tetroxide at various tempe­
ratures and pressures (Wied. Ann. xxvn. p. 306). They 
found that so long as the temperature remains constant the 
vapour density of nitrogen tetroxide at different pressures is 
given with great accuracy by the formula (200) but that if the 
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temperature changes the difference between the observed 
results and those calculated from either Gibbs' or Boltz-
mann's formula, assuming that the quantity a which occurs 
in it is constant, is greater than can be accounted for 
by errors of experiment. Part of this difference may arise 
because the N 2 0 4 does not obey Boyle's law. The differ­
ences seem however to be too great to be explained 
altogether in this way, and a value of 0, (0) different from 
that adopted by either Gibbs or Bolt/mann would probably 
fit in better with the observations. 

103. In the Philosophical Magazine for October, 1884, 
I considered the question of dissociation from the point of 
view of the kinetic theory of gases, supposing that the 
complex molecules are continually being broken up while 
the simpler ones are continually combining, and that the gas 
attains a steady state when the number of complex molecules 
broken up in the unit time is the same as the number formed 
in that time. It is shown that, using the same notation as 
in § 99, these conditions lead to the equation 

if, and only if, the average time a complex molecule lasts 
without splitting up into simpler ones, is independent of the 
number of molecules of the gas in unit volume. This will 
evidently not be the case if the breaking up of the complex 
molecules is due to their collision with other molecules, for in 
this case the greater the number of molecules the greater the 
number of collisions, and therefore the shorter the time the 
complex molecule lasts. Since the results of a large number 
of experiments prove that equation (200) holds when the 
temperature is constant we conclude that the dissociation of 
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the complex molecules is not due to the collision with other 
molecules. We have however deduced (200) from mechani­
cal principles which hold whenever the two gases obey Avo-
gadro's law and whenever the pressure produced by a mixture 
of gases is the sum of the pressures which would be produced 
by each of the gases separately if the other were removed. 
Hence we conclude that when we have a gas some of whose 
molecules are complex and keep breaking up into simpler 
molecules which after a time recombine to form the complex 
molecules, then if the splitting up of the complex mole­
cules is due to their striking against other molecules, the 
pressure due to the gas will not be the sum of the pressures 
which the dissociated and undissociated gases would produce 
if each were by itself in the vessel. 

104. We shall now consider how external influences 
may modify the amount of dissociation which takes place in 
some given gas at a given temperature and pressure. 

If we denote if]v£ by X and use \ as a measure of the 
amount of dissociation, then if the Lagrangian function from 
some external cause is increased by x we see by equation 
(198) that S \ the change in X is given by the equation 

VM=° ( - 5 ) . 
Thus if x increases as £ diminishes—that is as dissoci­

ation goes on—S\ will be positive, that is dissociation will go 
on further than it did in the undisturbed state. This is 
another illustration of the general principle stated in § 84— 
that any slight alteration in the conditions under which a 
system is placed which increases the rate of increase of the 
mean Lagrangian function with any change in the system, 
will cause that change to go on further before equilibrium is 
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attained than it had to do in the undisturbed system and 
vice versa. 

We shall now consider the effects on dissociation of such 
things as surface tension, electrification, the presence of 
other gases, corresponding to those we considered in the 
analogous case of evaporation. 

105. Effect of surface tens ion upon dissocia­
tion. Though the effects of surface tension are not nearly 
so prominent in gases as in liquids, still, since there is perfect 
continuity from the liquid to the gaseous state, we should 
expect that the outer layer of molecules of a gas which was 
not in the "perfect" condition would like the outer layer in a 
liquid be under different conditions from the other molecules, 
and would therefore not possess the same amount of energy 
as the same number of molecules in the midst of the gas. 

In Van der Waals' theory of the relation between the 
pressure and volume in an imperfect gas, the result of which 
is expressed by the relation 

the term a/112 is due to the action of the surface tension of 
the gas (Van der Waals, Die Continuität des gasformigen 
und flüssigen Zus.tan.ds, p. 34). 

Though it is much more difficult to detect the existence 
of the action of surface tension experimentally in gases than 
in liquids there is still some evidence of its existence from 
experiments such as those of Bosscha on the forms of 
clouds of fog and tobacco smoke. 

There must therefore be a term in the expression for the 
potential energy of a gas proportional to its surface. We 
shall write this term 

TS, 
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where TMs the quantity corresponding to the surface tension 
and S is the area of the surface of the gas. Thus the change 
X in the Lagrangian function, § 104, is 

- rs. 
so that by (205) 

^ y - | ( r c ) = ° (206J. 

Thus, if the surface tension diminishes as dissociation 
goes on, in which case dT/d$ is positive, the dissociation will 
be greater the larger the surface of the gas. We should 
expect a priori that the surface tension of the dissociated 
gas would be smaller than that of the undissociated, for in 
most cases the dissociated gas approaches more nearly than 
the other to the state of a perfect gas : thus in most cases 
dTldi will be positive, so that dissociation will be facilitated 
by increasing the surface of the gas. 

Let us now endeavour to form a rough estimate of the 
magnitude of this effect. According to Van der Waals the 
energy of unit area of surface of gas is measured by 

xa 

where x is a distance comparable with molecular distances. 
Now for a cubic centimetre of ether vapour at oD C. and 
under atmospheric pressure alvs is a pressure of about 
324 x 10"'. atmospheres, or in absolute measure 3'24 x io 4 . 
If we take the molecular distance x as io~ 7, we have 
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Now by equation (206) 

In order to form a rough estimate of the value of dT/d£, 
let us suppose that the complex gas possesses surface 
tension but that the simpler one does not; this is an 
approach to the truth, as the value of a and therefore of 
the surface tension is very much greater for complex gases 
than for simple ones. Let p be the density of the complex 
gas, v the volume in which it is contained, then 

£ = vp. 
Since the surface tension varies as <z/z/*, it is proportional 
to the square of the density, so that 

1 dT 2 dp 
T dJ = 'Pdl 

and thus 

so that we have 

2 

Vp' 

dT zT 
d£ = vp' 

S\ 2 ST .(207;. 
A Rfip v 

Now at the atmospheric pressure, at which we reckoned T, 

£fip = i o ° , 
and substituting for Z"its value, we have 

8A 2.S ·; . , — = — -^-j. approximately. \ v 10 
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If the gas be supposed to be a film of thickness t, then 
8X 1.2 
X ~ TXTJO" ' 

so that if the thickness of the film were comparable with 
molecular dimension, say if t— ro~7, then the surface 
tension would produce very large effects. 

This example may be sufficient to show that if we have 
the gas in thin films surface tension may produce a very con­
siderable effect; such films occur adhering to glass fibres or 
to matter in a fine state of division, such as spongy platinum 
or charcoal- The value of Tgiven above is only part of the 
surface tension of the surface of contact of the gas and the 
solid. The surface tension of the surfaces separating A and 
B is due to the energy of thin layers of A and B next 
their junction differing by a finite amount from the energy 
possessed by equally thin layers in their interior. The ab­
normal energy of these layers is due to the want of symmetry 
of the action on the two sides. In the preceding investigation 
we have calculated the part of the energy of the layer of one 
of these substances arising from the effects produced by its 
own molecules, in addition to this there is the energy arising 
from the action of the glass on the gas as well as the energy 
in the thin film of glass. Thus the value of the surface 
tension may be much greater than that given "above and the 
effects due to it may therefore be greater than our estimate. 

106. The value of T may depend upon the substance 
to which the film adheres, and thus the nature of the walls 
of vessels used for chemical experiments may affect the 
chemical combination which goes on inside them. V a n ' t 
Hon has described some experiments which seem to show 
that effects of this kind do exist. He shows [Etudes de 
Dynamique Chimique, p. 56) that the rate at which the 
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polymerization of cyanic acid goes on is increased by 
increasing the area of the walls of the vessel in which it is 
contained, the volume being kept constant. Thus when 
the area of the walls was increased six times, the rate of 
polymerization was increased in the ratio of 4 to 3. He 
also found that when the walls of the vessel were covered 
with a deposit of cyamelide the rate of polymerization of 
cyanic acid was increased threefold. Victor Meyer too 
found that the decomposition of carbonic acid takes place in 
a porcelain vessel at a temperature several hundred degrees 
lower than in a platinum vessel. When the effects produced 
are of this magnitude, it is doubtful whether they can be 
due to the effect of surface tension, but it is probable that 
in the case of many catalytic actions, where we have thin 
films of gas, the effects observed might be explained by 
considerations of this kind. 

107. Effect of E l e c t r i c i t y u p o n D i s s o c i a t i o n . 
When there is no electric discharge electrification will not 
produce any effect upon the final state of the system, unless 
the specific inductive capacity of the gas changes as disso­
ciation goes on. As all the specific inductive capacities 
of gases which have been determined are very nearly equal, 
the effect of electrification on dissociation must be very 
small, and we shall not stop to determine it. 

108. Effect of a n e u t r a l ga s . If the properties of the 
neutral gas are not affected in any way by the presence of the 
gas which is dissociating, the value of the mean Lagrangian 
function of the neutral gas will not change as dissociation 
goes on. The presence of this gas will therefore not affect 
the maximum amount of dissociation. The presence of a 
foreign gas certainly alters the rate of dissociation, and 
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in some cases the experiments seem to show that it does 
alter the maximum amount of dissociation. This is contrary 
to the result we have just arrived at, and the only way of 
reconciling the two is to suppose that the gas is not per­
fectly neutral but has its properties affected to some extent 
by the presence of the other gases. If the dissociation 
were at all catalytic, we might explain the action of the 
neutral gas by supposing that by itself forming a film on 
the surface of the vessel it prevented to some extent the 
dissociating gas from doing so. 

log. In the preceding investigations we have assumed 
that the complex molecule splits up into two molecules or 
atoms of the same kind. In some cases however the 
constituents into which the molecule splits up are different, 
as for example when PC15 splits up into PCl a and Cl2. 

We can easily modify the preceding investigation to 
suit cases of this kind. 

Let us take the dissociation of phosphorus pentachloride 
as a typical case, and let £, rj, £ be the masses of PC15, PC13, 
and Cl 3 respectively. 

Then the mean Lagrangian functions for these gases are 
respectively 

Now if ct, cs, c3 are the molecular weights of these gases 
respectively, then since the increase in the number of mole-
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cules of PCl a is the same as that in the number of Cl2 and 
to the decrease in the number of PC10, we have 

rf£ _ drj _ 

where d£, dy], d£ are the alterations in the masses of PC1„ 
PC13, and Cl 2 respectively; hence, remembering that 

we see that the condition 
dH 
dJ-° 

leads to the equation 

g-<M*) * ^ (»08), 

and thus i)£/£v is constant as long as the temperature is 
constant. 

Let us suppose that the values of f, TJ, £ before dissoci­
ation commenced were £0, ij0, £0 and that the mass c^p of 
PCI,, gets decomposed, then we have 

É = f„-',A 
v = v„ + ctP, 

and the equation to find p is 

(Vo + 'tP) (4 + cj) = kv - ej>) (209). 

where k is a function of the temperature. 
We shall now discuss the effect upon p of alterations in 

the values of v, ija and £u. 
Differentiating (209) we get, writing y for 

—5—+ '· -+—JJL-
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v 
I 

( 2 I O ) , 

I 

I 
( 2 1 2 ) . 

( 2 1 1 ) , 

We see from ( 2 1 0 ) that dpjdv is positive, so that dissociation 
will be promoted by increasing the volume in which a given 
quantity of gas is confined. From equations ( 2 1 1 ) and ( 2 1 2 ) 
we see that both dp/dr]0 and dpjdla are negative, so that the 
presence of free PCI, and CI tends to stop the dissociation. 
Wiirtz proved experimentally that there was very little 
dissociation of PC15 when it was placed in an atmosphere of 
PC1V We can also see from general principles that this must 
be so, for as soon as the molecule PC15 breaks up the free 
chlorine will be surrounded by such a multitude of mole­
cules of PC1 3 that most of it will recombine and form PC1S, 
and in this way stop the dissociation. 

In this case, as in the former, theory indicates that if 
there is no catalytic action the presence of a neutral gas 
would not produce any effect. 

In some cases, though the results of the dissociation 
are in the gaseous state, the body which dissociates is in 
the solid or liquid state instead of, as in the previous 
instances, the gaseous. The dissociation of NH S S into 
H 2 S and N H a is an example of this kind. 

We have only to slightly modify the preceding work to 
make it applicable to this case. Let as before £ be the mass 
of the dissociating body, i j and £ those of the components 
into which it is dissociated. Then the mean Lagrangian 
function for the solid or liquid dissociating body is by § (81) 
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The mean Lagrangian functions of the gases into which 
it dissociates are respectively 

i j^f l l o g - J ' + 

and W l o g ^ + C / i W - f e v 

Then from the condition 

dH 

we get, since d£=- (drj + dÇ), 

dv i 
d£ = 

and —' = — , 

where c2 and c are the combining weights of the gases into 
which the solid dissociates, and <r the density of the solid 
or liquid 

((ci + c,)-w1-c.iw.i-c,vj,) , , ; i , f \ i 

. ^ = 0 , ( 0 ) . — w + < r * + ' J U + ^ « . 

It follows from this equation that, as before, dissociation 
is hindered by the presence in excess of either of the results 
of the dissociation. 

In this case the dissociation would be affected to a small 
extent by the presence of a neutral gas, for if the system is 
confined in a closed vessel the volume of the solid or liquid 
diminishes as it evaporates, the neutral gas above it expands, 
and its Lagrangian function therefore increases. Hence 
we see by § (84) that the presence of the neutral gas will 
increase the dissociation. 
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By an investigation similar to that in § (89) we can 
easily show that if K denotes the value of Tjljv*, and 8K the 
change produced by the presence of the neutral gas, then 

Sk _ c3 + ca £ 

where c is the mass of the neutral gas, c its combining 
weight and <r the density of the solid or liquid. Since thio­
ls the ratio of the mass of the gas to the mass of the same 
volume of the dissociable solid, we see that the effect 
produced by the neutral gas, unless its pressure amounts 
to some hundreds of atmospheres, is extremely small. If 
we take the case of sal-ammoniac, where cr is about 1 5 , 
we see that for a pressure of 100 atmospheres 

8< . 
— = '3 approximately, 
K 

so that if the pressure were increased by about 3"3 atmo­
spheres the change in K would be about one per cent. 

n o . Dissoc iat ion of Salts in Solution. We have 
seen § 92 that Van 't Hoff has given reasons for believing 
that the molecules of a salt in a dilute solution exert the 
same pressure as they would if they were in the gaseous 
state at the same temperature and volume : and that the 
mean Lagrangian function of the molecules in the solution 
is therefore the same as that of the same number of gaseous 
molecules. We might therefore expect from analogy that 
in some cases these molecules would be dissociated though 
the effects of this dissociation might not be so recognisable 
as in the case of gases. Many cases of the dissociation 
of salts in solution have been observed, sodium sulphate 
and the ammonium salts are well-known examples (Muir's 
Principles of C/iemistry, p. 367). Indeed the theory has 
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recently been started that in dilate aqueous solutions the 
dissolved acid or salt is in most cases dissociated and that 
to a very considerable extent; thus it has been stated that in 
dilute solutions of H O as much as 90 per cent, of the acid 
is dissociated. The reasons given for this conclusion do not 
seem to me to be very convincing, and the experimental 
results on which they are based seem to admit of a differ­
ent interpretation. The supporters of this theory urge 
that for the salt to produce the effect which in some cases 
it does, it is necessary to suppose that the molecules of the 
salt exert a greater pressure than they would if they 
occupied the same volume at the same temperature when in 
the gaseous condition. This reasoning is founded on the 
assumption that all the effects due to the dissolved salt may 
be completely explained merely by supposing the volume 
occupied by the solvent to be filled with the molecules of 
the salt in the gaseous condition. Now though we may 
admit that the salt does produce the effects that would be 
produced by this hypothetical distribution of gaseous mole­
cules, still it does not follow that these are the only effects 
produced by the salt. The salt may change the properties 
of the solvent and the effects attributed to the dissociation 
of the molecules may in reality be due to this change. The 
investigation in § 97 proves that this must be so in some cases, 
for we saw that the effects of the addition of salt on the 
compressibility of the solution were much too large to be 
explained by any amount of dissociation. 

In the case of the dissociation of salt solutions the proper­
ties of the solution might alter as the dissociation progressed. 
Thus the dissociation might alter the surface tension of the 
solution, in which case the amount of dissociation would 
depend upon the shape and volume of the solution ; or it 
might alter the coefficient of compressibility or the volume 

IRIS - LILLIAD - Université Lille 1 



of the solution, and then the amount of dissociation would 
be influenced by external pressure. In fact the dissociation 
of the dissolved salt would probably be much more sus­
ceptible to external physical influences than the dissociation 
of a gas. We shall however discuss these as particular 
cases of the next investigation, which deals with a much 
more general case of chemical equilibrium between either 
gases or dilute solutions. 
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C H A P T E R X I V . 

G E N E R A L C A S E O F C H E M I C A L E Q U I L I B R I U M . 

i n . THE case we shall consider in this chapter is the 
equilibrium of four substances A, B, C, D, either gases or 
in dilute solutions, such that A by its action on B pro­
duces C and D, while C by its action on D produces A 
and B. 

A well-known example of this kind of action is the case 
in which the four substances A, B, C, 1) are respectively 
nitric, acid, sodium sulphate, sulphuric acid and sodium 
nitrate : the nitric acid acts on the sodium sulphate and 
forms sodium nitrate and sulphuric acid, while the sulphuric 
acid acts on the sodium nitrate and forms sodium sulphate 
and nitric acid. 

The problem we have to discuss is to find, when any 
quantities of four such substances are mixed together, the 
quantity of each when there is equilibrium. 

Let r/, £, t be the masses of the substances A, B, C, 
D respectively, wv wp wa, wt the mean potential energy of 
unit mass of each of these substances, w the mean potential 
energy of the mixture. Let us suppose that each of these 
substances obeys Boyle's law; and p denoting the density 
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of any one at the temperature 6 and pressure p , let the 
fundamental equation of A be 

that of B p = Bsp&, 
that of C p = B3pO, 
and that of D p = J?j>&. 

Then the mean Lagrangian functions of A, B, C and D 
are respectively 

f * , 0 i o g ^ - + . y , ( i 9 ) - t w . , 

t i P . f l l o g ^ + c / . 

where w is the volume in which the substances are confined. 
The above expressions represent the mean Lagrangian 

functions equally well whether the substances A, B, C, D 
are gases or dilute solutions, provided the solutions are so 
dilute that the molecules of the substances dissolved in 
them exercise the same pressure as they would if placed at 
the same temperature in the same volume when empty. 

If we are considering solutions we shall require, the 
mean Lagrangian function of the solvent, for the properties 
of this may alter as chemical combination goes on. If TT is 
the mass of the solvent, wb the potential energy of unit mass, 
then its mean Lagrangian function will be of the form 

iryB + Trfa(8) — 7 T K ' S . 

We must now investigate the relations between the 
changes in £, y, £ , E as chemical action goes on. 
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Let us denote by ( A ) the molecule of the substance A , 
with a similar notation for the other molecules, and let the 
chemical action which goes on between the four substances 
be represented by 

Thus, in the case of the mixture of sulphuric and nitric 
acids, sodium nitrate and sodium sulphate, since the equation 
which expresses the reaction is 

2 H N O a + N a 2 S 0 4 - H 2 S 0 4 +2NaN0 a , 

if the molecules of nitric acid, sodium sulphate, sulphuric 
acid and sodium nitrate in the solution are represented 
respectively by H \ 0 3 , Na 2 S0 4 , H 2 S 0 4 and NaNO a, then 
«= 2, ¿ = 1 , c= 1, d=2. If however the molecules of these 
substances are represented by H 2 N 2 0 6 , Na 2 S0 4 , H 2S.0 4, 
Na 2 N 3 0 6 , then A = b = c = d=I. 

Thus we see that it is necessary to know the structure of 
the molecule as well as its relative composition. 

From equation (214) we see that if A molecules of A 
disappear it must be because they have combined with b of B 
to produce c of C and d of D, so that b molecules of B have 
also disappeared, while c of C and d of D have appeared. 

Let Slt 8s,S ; i,84 represent the relative densities of A, B, C, D 
at the same temperatures and pressures, then 

If the masses of A , B , C, D are altered by D£, DRJ, D£, DE 
respectively, then the alterations in the number of molecules 
of A , B , C, D are respectively proportional to 

a{A) + b(B)-c(C) + D(D) («3)-

(214). 

DI DRJ DL DT 

8, ' v v 8/ 
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Thus, since the alterations in the number of molecules 
are proportional to a, b, — c, - d respectively, we have 

dj 
a8, 

So that 

drj di 

dr, 
di 
di 
di 
de dSt 

«8, ^ 

de_ 
dJ: 

•(215)· 

Now when the system is in equilibrium the value of the 
Hamiltonian function must be stationary, so that if we 
suppose the equilibrium displaced by the quantity d£ of A 
combining with the proper quantity of B the change in 
the Hamiltonian function must be zero, hence we must 
have 

Let us take first the case when A, B, C, U are gases, 
then since Id is the sum of the mean Lagrangian function 
for these substances the condition (216) with the help of 
equations (215) gives the equation 

a\Hfi log - a^Rfi + 1,8^6 log ^ - dS^Sfi 

• AX. • log " J c\Bae - ds^e log 

• *Kftf) + b8Ja{6) - àjjft - d&JJff) - a81 

+- d8tB4e 

dw 
di 

where w = + 4- ̂ w^ + ewt. 

I hen by ( 314 ) we may write this equation in the form 
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yc d a 

^L. = Vc+d-a-6 ^ ( 9 ) E A - 7 9 ~di (ZI7) 
when $(0) is a function of 6 but does not involve £, r), £ or e. 

112. In the case of dilute solutions the equation corre­
sponding to (217) is easily seen to be 

yc d drv a dQ 
^-i-<t'(&)vc+d-a-i e^di c~7w di (218) 

where Q is the mean Lagrangian function of the solvent and 
equals 

Try6 + Tr/S(9) - TTW^. 
The value of dQjd^ will be zero if the properties of the 

solvent do not change as chemical action goes on; in any case 
since the solutions are very dilute the properties of the 
solvent may be assumed to be changed by an amount pro­
portional to the quantity of salt dissolved, Q will therefore 
be a linear function of i, £, er and dQ/d£ will not involve 
any of these quantities, and in this case as in the former one 
we have 

yc d a dlv 
= $Xd)v'+d-*-b & (219) 

so that the equations of equilibrium for gases and dilute 
solutions are of exactly the same form. 

113. The value of dw/d£ measures the increase in the 
potential energy of the system when the mass of £ is increased 
by unity. Now if heat is produced when C and D combine 
to form A and B, the potential energy diminishes as ( in­
creases, and when the quantity of heat is large its mechanical 
equivalent may be taken as a measure of the decrease in 
the potential energy. 

If the combination of C and D is accompanied by the 
production of heat, dwjdtg is negative, and we see therefore 
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that if 6 = o 

£v7£V = o, 
or either £ or c must vanish, that is, the combination of Cand 
D will go on until one of these substances gives out, in other 
words the reaction attended by the production of heat will at 
the zero of absolute temperature go on as far as possible. 

According to Berthelot's law of " M a x i m u ? n Work" the 
reaction accompanied by the formation of heat goes on as far 
as possible at all temperatures, the equation (218) however 
shows that this is strictly true only at the zero of temperature. 

For substances which give out large quantities of heat 
when they combine equation (218) shows that the com­
bination increases so rapidly as the temperature diminishes, 
that if there is any combination at all at temperatures as 
high as iooo°C, Berthelot's law will be practically true at 
all ordinary temperatures. To illustrate this let us take 
the case of hydrogen and oxygen, where the combination 
is represented by the equation 

2 H 2 + O e = 2 H Z O . 
Let £, 17, £ be the quantities of hydrogen, oxygen and 

water respectively, then a =2 , b—i, c-2, d=o, and equa­
tion (218) becomes 

If we substitute for f(Q) its value given on page 270 we 
shall find that <p (6) in this case = Cjff3'5. For hydrogen at 
o° C. Rfi = i ' i x io'°, and since in the combination of one 
gramme of hydrogen with oxygen 34000 calories are given out, 

dw 12 

dC1-43X10 • 
Let us suppose that equivalent quantities of hydrogen 

and oxygen are mixed together, and that the number of 
equivalents which combine to form water is to the whole 
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number of equivalents of either oxygen or hydrogen present 
initially as x to i, then x is given by the equation 

( i - x f 
Suppose that at 1092° C. one half of the equivalents 

combine, then the value of x at 546 0 C. is given by the 
equation 

(!) (I-X)° 
I - 3 4 

thus approximately 1 - x — - E 

- - X I O - 5 . 
5 

So that at this temperature only about one in five hun­
dred thousand of the molecules will be left uncombined. 
Thus in a case like this very considerable dissociation at one 
temperature is compatible with almost complete combina­
tion at a temperature not very much lower. 

1x4. T h e effect of pressure on chemical equi­
librium. We have by equation (219) 

thus if a + b = c + d 
the ratio C^l£"'tf is independent of the volume, so that if we 
mix given quantities of the four substances the amount of 
chemical action which will go on will be independent of 
the volume into which the substances are put. Since the 
chemical reaction is such that when A acts on B, a molecules 
of A and b of B disappear while c of C and d of D are 
produced, we see that if a + b = c + d the number of mole­
cules in the vessel does not change as the reaction goes on. 
This is sometimes expressed by saying that the combination 
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takes place without change of volume, and in this case, as 
we have just seen, the amount of chemical combination is 
not affected by the volume in which the combining sub­
stances are placed. If a + b is greater than c+d then the 
larger the volume v, the smaller will be the ratio of to 
¿"7;*. Now the action of C on D tends to diminish this ratio, 
while that of A on B tends to increase it, and if a + b is 
greater than c + d the number of molecules is increased 
when C acts on D and diminished when A acts on B. 
Thus we see from equation (219) that when chemical com­
bination alters the number of molecules the state of equi­
librium depends upon the volume within which the substances 
are confined, and that the effect of increasing the volume is 
to favour that reaction which is accompanied by an increase 
in the number of molecules. In other words, the chemical 
action which produces an increase in volume is hindered by 
pressure, while that which produces a diminution is helped 
by it. This is another example of the law stated in § ( 8 4 ) . 

115 . Let us now consider a little more closely some of 
the results of equation (219), taking for the sake of simplicity 
the case when a = b = c = d= t . 

Let us suppose that the masses of the four substances 
A, B, C, D before combination begins are £ 0 , TJ0, £„> ^ a n d 
that when they have reached the state of equilibrium a 
quantity S,/ of A has disappeared, then by equations (215) 
we have 

v = Vo -
* = £„ + 8 , j» 

« = + 

=<<p (6) t * 1« di (220) 

IRIS - LILLIAD - Université Lille 1 



Let us suppose that the quantities of the substances 
mixed together initially were proportional to their combining 
weights, i.e. that initially equivalent quantities of the four 
substances were taken, then we may put 

And equation (220) becomes 

5 5j a div 
if we put - y . <f,(6)t "J *i = V, 

then t+p 
'-t-p 

and is called the affinity coefficient of the reaction (Muir's 
Principles of Chemistry, p. 417). Thus we may write equa­
tion (220) in the form 

(&±_8 3/)(«. + M ) _ ; f c , ¥ 1 ( 2 2 1 ) 

( f . - 8 , / T k - 8 , / ) " 8 , 8 . { ' 

where k is constant as long as the temperature remains 
unchanged. 

The effects due to what are called "mass actions," that 
is the effects produced by varying the quantities of the four 
substances initially present may be deduced at once from 
this equation. 

Let 8/1 be the increase in p when £0 is increased by 8F0, 
the quantities TJ0, £0> £

u remaining constant; and let 8/.,, S/>:1, 
S/4 be the respective increases when -rj0, £u, ea are increased 
by 8RY0, 8£0, 8E0 respectively. Then we get at once from 
equation (221) 
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where y is the positive quantity 

£o - 87/ + v„ -\p + £„ + \p + ~*o +\p' 

We see from these equations that 8pJ8iB and 8pJ8^a are 
positive whde 8pJ8£a, 8pJ8e0 are negative, so that any increase 
in the quantity of A and B initially present increases the 
amount of combination that goes on between these sub­
stances, while any increase in the quantities of C and D 
initially present decreases the amount of combination, and 
further that the effects of equal small changes in the masses 
of A, B, C, D before combination takes place are inversely 
proportional to the amount of these substances present in 
the state of equilibrium. 

In the more general case, where a, b, c, d are not each 
put equal to unity, we may easily prove that 

ySp, 

J 
V 

y8p. 

y8pt 

e 
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and that if &p be the change in p due to an increase §7/ 
in volume, everything else being constant, 

Iv 
ySp = (c + d-a-b)~ , 

, «8, ¿8, cS. dh. 

where y = -jr + + - ^ H 4 ; 
£ V £ £ 

here aBxp is the mass of A which has disappeared. 
i t 6 . The expression (221) agrees with the formula ob­

tained by Guldberg and Waage from quite different principles 
(see Muir's Principles uf Chemistry, p. 407, and Lothar Meyer, 
Modernen Theorien der Chemie, chap. xin). The case when 

a — 6 — c— d is the only one however in which the expression 
deduced from Hamilton's principle agrees with that given by 
Guldberg and Waage. According to their theory, as given 
in the works we have just cited, the equation (221) is 
always true, while according to the theory we have been 
explaining it is only true when a = b = c= d. It would seem 
however that the principles from which Guldberg and Waage 
deduced their equations would when a, b, c and d are not 
all equal lead to equation (219) rather than (221), for their 
point of view seems to be as follows. Consider first the 
case when a = b = c = d=^ 1, then in a certain proportion 
of the collisions which occur between the molecules of A 
and B, chemical combination between A and B will take 
place. The number of collisions in unit time is propor­
tional to the product of the numbers of molecules of A 
and B, and so is proportional to ¿17. The number of cases 
in which combination takes place may be taken therefore 
to be k£r, when k is a quantity which is independent of the 
quantities of A, B, C, D present. In other words, the 
number of molecules which leave the A, B states and enter 
those of C and D is k£r\; in a similar way we can see that 
the number of molecules of C and D which become A and 

T. d. 15 
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B is &'££. Now when the system is in a steady state the 
number of molecules of A and B formed must be the same 
as the number which disappear, and therefore 

which is Guldberg's and Waage's equation. We can easily 
see however that the above reasoning is only applicable 
when chemical combination takes place between one 
molecule of A and one of B, and again between one of C 
and one of D, or in other words when a = b = c = d= i. If 
on the other hand the equation which represents the chemi­
cal reaction is 

2 (A) + (B) = (C) + 2 (D), 
then chemical combination will take place when one mole­
cule of B is in collision with two of A simultaneously; the 
number of such combinations will be proportional to rj^' and 
not to i j f , and thus the number of molecules of A which 
disappear owing to their combination with B molecules 
may be represented by krj^"; similarly the number of 
molecules of B> which disappear and of A which appear by 
the combination of C and D may be represented by &'£e2; 
and since in the state of equilibrium the number of molecules 
of A which disappear must be the same as the number 
which appear we must have 

which agrees with equation (219) but not with Guldberg and 
Waage's equation. 

1 1 7 . As we noticed before in § ( 1 0 7 ) , there is some 
ambiguity as to what the molecule of the dissolved salt or 
acid really is. For example, take the case already mentioned 
where the reaction is represented by the equation 

I I , S 0 4 + 2 N a N 0 3 - 2 H N O s + Na^SO,, 
we do not know whether the'molecule of sodium nitrate is 
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represented by N a N 0 3 or by Na a N 2 O s , or whether the 
molecule of nitric acid is represented by HKO, or H 2 N 2 O a . 
This point could probably be settled by experiments on 
osmotic pressure, the lowering of the vapour pressure of the 
solution and the effect of the salt or acid upon the freezing 
point. If the molecules are represented by Na 2 N 2 0 6 , H 2 N 2 0 6 

and not by NaNO a , H N O a , it would be necessary to dissolve 
170 and J 26 grammes of these substances in a litre of water, 
instead of 85 and 63 to produce the effects observed in 
solutions of one gramme equivalent per litre. 

We can however use the formula (2x9) giving the amount 
of chemical action between these substances to decide this 
point. If the molecules are represented by H N 0 3 , Na 2 S0 4 , 
H 2 SO t and NaNo 3 then by equation (219) c^/^rf is constant 
provided the temperature remains unaltered, if however the 
molecules are represented by H 2 N 2 0 6 , Na 3 S0 4 , H B S0 4 , and 
Na 3 N 2 0„ (or by H N O a , | N a a S 0 4 , £H sSO«, NaNO a) then 
eH$rj is constant as long as the temperature is unaltered, 
where t, -q, £, e are the masses of the sulphuric acid, sodium 
nitrate, nitric acid and sodium sulphate respectively. 

This reaction has been investigated by Thomsen (Thermo-
chemischt Untersuchungen 1. p. 121) and in the following table 

n 

00 2.07 4=. 5 
4 2.6 33 
2 2-5 i3-o5 
1 3-3 8 

4-i 3-2 
i 4.1 1.0 

the values of tC/^rf' t £ / ^ . calculated from his experiments 
'5—2 
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for different proportions of the substances, are given, n is 
the ratio of the number of equivalents of sodium sulphate 
to the number of equivalents of nitric acid before chemical 
combination commences. 

It will be seen from this tabic that when there is only a 
very small quantity of nitric acid present initially, formula 
(219) seems to agree with the observations as well as (221), 
but that it ceases to be any approximation when the solution 
gets stronger, and that now equation (221) agrees better 
with the experiments. From this we should conclude that 
in very dilute solutions the molecules of nitric acid and 
sodium nitrate may possibly be represented by H N 0 3 , 
N a N 0 3 , but that in stronger solutions either they are re­
presented by H 2 N 2 0 6 , N"a2N2Oa, or else that the molecules 
of sulphuric acid and sodium sulphate are represented by 
£ H s S 0 4 , £Na z S0 4 . rfeffer's determination § (98) of the 
osmotic pressure produced by a potassium sulphate solution 
suggests that the molecule is represented by \ (K 2 S0 4 ) . We 
ought not however to attach as much weight to the experi­
ments with dilute solutions as to those with strong, because 
in the weak solutions a very small error in the determina­
tions will produce a considerable error in the value of 
cSVfcj" or ttlb,. 

If there was any change of this kind in the constitution 
of the molecules as the strength of the solution increased 
it would probably show itself in the effect of the substance 
on the osmotic pressure, on the vapour pressure, and on 
the lowering of the freezing point, even though these effects 
were complicated by the alteration in the properties of the 
solvent produced by the addition of the salt. 

118. In the case we have just been considering the 
four substances A, B. C, D were supposed to be either 
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gaseous or soluble. We must now see how the equations 
have to be modified when one or more of the substances is 
a solid, and if we are considering the case of solutions an 
insoluble one. 

Let us take first the case when only one of the substances 
D is an insoluble solid, for example when the four bodies 
are oxalic acid, calcium chloride, hydrochloric acid, and 
calcium oxalate. 

The mean Lagrangian function for D will now be of the 
form 

ey6 + c/(6) - twt, 
and the condition 

dH 

* = ° 
will lead to the equation 

- ifi-a-h$ (9) c^6 « (222). 

If two of the substances are insoluble solids, as for 
example when A is potassium carbonate, B barium sulphate, 
C potassium sulphate, D barium carbonate, then we can 
easily prove that 

| - = 7 ^ ( f l ) « ™ « (223). 

We see from these equations that the amount of com­
bination which goes on does not depend on the masses of 
the insoluble substances. 

119. As an example of a case where the conditions 
are rather more complicated than in those discussed in the 
last paragraph, we shall consider a case investigated by 
Horstmann (Walts' Dictionary of Chemistry, 3rd Supple­
ment, p. 433) where hydrogen, carbonic oxide and water 
were exploded, and water and carbonic acid produced. 
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Here we have to consider five substances, hydrogen, 
carbonic oxide, oxygen, water, and carbonic acid; let £, 17, 
£, c, 7r, be the masses of these substances respectively, and 
let fj, c2,...ci, be their molecular weights. 

Let the relation between the pressure p . the density p, 
and the absolute temperature 6 be for hydrogen 

p = £fip, 
for carbonic acid 

p = R$P, 

with a corresponding notation for the others. 
Let the mean Lagrangian function for the hydrogen be 

where v is the volume in which the gases are confined, and 
w, the mean potential energy of unit mass of hydrogen. 
The mean Lagrangian function of the other gases will be 
given by analogous expressions. 

Now whatever changes go on among the various gases we 
have since the quantity of hydrogen is constant 

— 1 — = a constant; <r, ct 

since the carbon is constant 

7) 7T — + - = a constant; 
c c 
2 5 

since the oxygen is constant 
A - + - + * - h— -=a constant : 

c , 2 ' 4 '„ 
these are three equations between five unknown quantities, 
so that if we give arbitrary variations to two of them the 
variations of the others will be determinate. 
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and the second 

™ , = <?<>2 (0) V f c o n s t a n t (225), 
V? 

where w is the mean potential energy of the mixture of 
gases. 

These are of the same form as the equations I obtained 
from kinematical considerations alone in my paper on the 
Chemical Combination of Gases already referred to. 

If we divide (224) by (225) we get 

« 7 _ M * > ^ *(£)-(£)( 
h ~ (8) 

Let us choose f and 77 as the independent variables, then 
when rj is constant we have 

d£ . c3 dc ct dir 
# = V dl=~7,' d$ = °' 

and when £ is constant 

dt 1 c, di dir c. 
•—- = — — = o _ = s 
drj z c,' d£ ' d£ c2' 

When the system is in equilibrium the mean Lagrangian 
function is stationary for all possible variations, so that we 
must have 

( — \ - o ( d J ^ \ 
\ di Jn CONSTANT ' \ dl\ J £ CONSTANT 

Remembering that 

the first equation gives 

^ 1 fdiv\ 
—J. = <£, (6) S ^ C O N S T A " T (224), 
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232 D Y N A M I C S . 

so that, as long as the temperature is constant, the ratio of 
the quantity of water formed to the quantity of carbonic 
acid always bears a constant ratio to the ratio of the 
quantity of free hydrogen to that of free carbonic oxide. 
This was the result obtained by Horstmann in the experi­
ments before mentioned. 
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C H A P T E R X V . 

E F F E C T S P R O D U C E D B Y A L T E R A T I O N S I N T H E 

P H Y S I C A L C O N D I T I O N S O N T H E C O E F F I C I E N T 

O F C H E M I C A L C O M B I N A T I O N . 

120. S I X C E the value of 

is independent of the values of £, 17, £, c, and since when it 
is known the amount of chemical combination can be 
determined, it is convenient to have a name for it, we 
shall therefore call it the coefficient of chemical combination 
for A and B and denote it by k. The more intense the 
chemical action between A and B the smaller the values 
of £, rj in the state of equilibrium and therefore the larger 
the value of k. 

We have by equation (220) 
a dQ a dit) 

k = <t>l (6)e~W# eRfi ~*t (226). 

The alterations which we shall suppose to take place 
in the physical conditions can be represented by changes 
8 Q and Sw in the values of Q and w, and we see from 
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equation (226) that if M be the corresponding change 
in k 

If the substances with which we have to deal are gases 
we must put Q and EQ equal to zero. We considered when 
we were discussing dissociation in chapter xiv. most of the 
changes in the physical conditions which could influence the 
state of chemical equilibrium in this case, and the results 
obtained then will apply to the more general problem we 
are discussing now. We see from (227) that any cause 
producing a change in the potential energy which increases 
as any chemical action goes on will tend to stop this action 
which will not have to go on so far before attaining equili­
brium as it would if the disturbing cause had been absent 
and vice versa. 

We shall now go on to consider more particularly the 
cases of dilute solutions and the effects produced upon 
chemical equilibrium by changes in the properties of the 
solvent arising from the progress of chemical change. 

121. Effect of Surface Tens ion . The first effect 
we shall consider is that due to the surface tension of the 
solution. We know that the surface tension depends upon 
the strength and the nature of the solution, so that since 
the composition changes as chemical action goes on the 
surface tension of the solvent and therefore its mean 
Lsgrangian function will change, and therefore by the 
principle we have just stated the conditions for equilibrium 
will be altered by the surface tension. 

Let A be the area of the surface of the solution, T the 
surface tension, then the potential energy due to the surface 

Ji,6 ~dè Jifi di 

a d&Q a dim 
(227). 
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tension is TA and there is therefore in the expression for 
the mean Lagrangian function the term — TA, so that by 
equation (227) the effect of the surface tension on the 
coefficient of chemical combination is given by the 
equation 

U _ a_d . _ 

Let us endeavour to get some idea of the magnitude of 
this effect. If c is the molecular weight of the substance 
whose mass is $, then since at o° C. 

%cRl0 = i-i X IO", 

we have, if for simplicity a be put equal to unity, 

= _2-2 X TO 1 0 di^AT^' 

Now cd (AT)/d£ is the increase in AT when the quantity 
£ in the solution is increased by one gramme-equivalent. 
If v be the volume of the vessel whose surface we shall 
suppose to remain constant as combination goes on, then 

c ^ A T ) - ^ T ^ , 

where T' is the increase in T when the quantity £ is increased 
by one gramme-equivalent per litre. Now the experiments 
of Röntgen and Schneider ("Oberflächen Spannung von 
Flüssigkeiten," Wied. Ann. xxix. 165) show that T' even in 
the case of simple salts may be as much as 5 or 6 so that 

^ • r ^ A Z A — is of the order — , , 

k io v 

and if the solution be spread out in a film of thickness 
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Ajv- 2¡t so that 

Sk . , , , 6 i 
t is of the order —, - : 
* io ' ¿ ' 

thus if the thickness of the film is I/IOOOO of a centimetre 
the value of k is altered by about '6 per cent. If the 
thickness of the layer is comparable with molecular distance, 
say about io~ 7, then Ekjk might be as large as 6. This of 
course implies that the conditions of equilibrium would 
be completely altered. Thus in very thin films the in­
fluence of capillarity might be sufficient to modify com­
pletely the nature of chemical equilibrium, though we 
should not expect it to do much in the body of a fluid. 

If the surface tension increases as the chemical action 
goes on the capillarity will tend to stop the action, while if 
the surface tension diminishes as the action goes on, the 
capillarity will tend to increase the action. 

Thus the chemical action in a space such as a thin 
film throughout which the forces producing capillary 
phenomena are active might be very different from the 
chemical action in the same substance in bulle when most 
of it would be free from the action of such forces. 

This point docs not seem to have received as much 
attention as it deserves, but there are some phenomena 
which seem to point to the existence of such an effect. One 
of these is that called by its discoverer Liebreich " the dead 
space in chemical reactions," which is well illustrated by 
the behaviour of an alkaline solution of chloral hydrate. 
If the proportion of alkali to chloral is properly adjusted, 
chloroform is slowly deposited as a white precipitate, and if 
this solution is placed in a test-tube, then at the top of the 
liquid there is a thin film which remains quite clear and free 
from chloroform, showing that, unless this effect is due to 
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some chemical action of the air, the alkali and chloral do 
not combine, or if they do chloroform is not precipitated. 
In fine capillary tubes too, no deposit seems to be formed. 
This phenomenon could be explained on the above 
principles if the surface tension of the alkaline solution 
increases when the alkali combines with the chloral and 
chloroform is deposited, for in this case the surface tension 
would increase as chemical action went on, and would 
therefore tend to stop this action. Dr Monckman made 
some experiments in the Cavendish Laboratory on the 
changes in the surface tension of the solution as the 
reaction went on, and he found that it increased to a 
very considerable extent, so that this case is in accordance 
with our theory. The thickness of the dead space (from 1 
to 2 mm. in Liebreich's experiments) is somewhat greater 
than we should harve expected, but any want of uniformity 
in the liquid such as that produced by the deposition of 
chloroform itself would increase the thickness of the dead 
space. 

Some other effects produced by surface tension are 
discussed by Prof. Liveing in his paper " On the Influence 
of Capillary Action in some Chemical Decompositions" 
[Proceedings Camb. Phil. Sec. vi. p. 66). 

122. Effects due t o pressure. Pressure can pro­
duce effects of two kinds upon chemical action. The first 
is when the volume of the liquid under pressure alters as 
chemical action goes on, the effect of pressure in this case 
is proportional to the amount of the pressure: the second 
effect is when the coefficient of compressibility of the liquid 
changes as the chemical action goes on, the effect of 
pressure due to this cause is proportional to the square of 
the pressure. 

Let us suppose that P is the external pressure, v 
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the volume, we may regard the external pressure as 
produced by an external system whose mean Lagrangian 
function is 

and we have by equation (227) 
Bk a d . 
-k^RfdtW 

R*1 d i ( 2 2 8 ) ' 
Thus if v increases with £, Bk is positive, in other words 

the value of ^c'/f"11* is increased and therefore f and 17 are 
less than they would be if there were no external pressure. 
Thus the external pressure tends to stop that action which 
is accompanied by an increase in volume, and vice versa. 

Let us now endeavour to form some estimate of the 
probable size of this effect. If the molecules of the 
substance produce the same pressure as if they were in 
the gaseous state, then at o° C. 

1 _ c 

R~fl ~ 2-2 X 1 0 1 0 ' 

where c is the combining weight of the substance. Thus if 
the volume increases by y cubic centimetres per gramme of 
A formed we have by (228) if the pressure is x atmospheres, 

Bk cxya 
k 2'2 X I O 4 ' 

The cases in which in general y will have the greatest 
value are those in which we have some of the bodies in 
solution while others are precipitated, if we suppose that 
when a salt is dissolved the volume of the solvent is not 
altered then y will in general be not greatly different from 
unity, and in this case we have 
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hk cax 
k 2 . 2 x io" ' 

so that it would require a pressure of 220/«^ atmospheres to 
change the coefficient of combination by one per cent., thus 
if the substances taking part in the reaction have large 
combining weights, the reaction will be sensitive to the 
influence of pressure. 

Let us now consider the effect on the chemical equi­
librium when the coefficient of compressibility changes as 
the chemical action goes on. 

Let <T be the expansion or contraction of the solution, 
K its bulk-modulus, v its volume, then in the expression for 
the potential energy of the solvent there is the term 

and therefore in the expression for the mean Lagrangian 
function the term 

Tf Sk be the change in the coefficient of combination due to 
the change in K as the chemical action progresses we have 
by equation (227) 

Sk a , „dic 
- = — v a - . k 2Aq0 d£ 

Now if P be the external pressure 
K<T = P. 

Substituting for a- the value given by this equation we 
get 

8k av P* dK , s 

k=7R-& «' d i < 2 2 9 ) -

To get some idea of the magnitude of this effect let us 
suppose that when the mass of A in the solution is in­
creased by one gramme-equivalent per litre the value of K 
is increased in the proportion of y to 1. 
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Then i ^ y^JCR_ 
K ai; v x c 

where c is the molecular weight of f, we have therefore by 
equation (229) 

U AY F 1 

= 1̂ - y TO . 

k 2RxtO K 
Now CR16 = 2'2 x io 1 0 , 

and for water, 
K — 2 '2 x io 1 0 . 

So that if the pressure is x atmospheres 
8k ax'y 

= —- r- approximately. 
From the results of Rbntgen and Schneider's experi­

ments given in § (97) we see that y will often be as large 
as 1/10, so that in this case, supposing a unity, the effect 
of a pressure of 100 atmospheres would be to alter k by 
1/10 per cent, while a pressure of 1000 atmospheres would 
alter it by 10 per cent. 

If the bulk-modulus increases as £ increases then the 
action of the pressure is to retard the chemical action by 
which £ increases. 

123. Effect of m a g n e t i s m on chemical action. 
The magnetic properties of solutions are generally so feeble 
that we cannot expect magnetism to produce any effect 
except upon those which contain iron. In some of the 
chemical actions however in which iron is dissolved or 
deposited magnetism does seem to affect the result. Thus 
when a solution of copper sulphate is placed on an iron 
plate copper is deposited and iron dissolved, and if this 
plate be placed over the poles of a powerful electro-magnet 
it is found that the copper deposit is thinnest over the poles, 
the places where the magnetic force is the most powerful. 

IRIS - LILLIAD - Université Lille 1 



The effect of the magnetic force is easily found. Let I 
be the intensity of magnetization of the solution, I' that 
of the iron plate, H and Hf the magnetic forces and k' and 
k" the coefficients of magnetization of the solution and iron 
plate respectively, v and if the volumes of these substances, 
then if k' and k" are constant there is by § 34 the term 

_ 1

 v + (L* A + HIv + HTv 
2 (k k ) 

in the expression for the mean Lagrangian function. 
Thus we have by equation (227) 

J'VtfJ \~ Fid£V~ k''a-+ " a- ) ' 

where o- is the density of the iron, and £ the quantity of 
iron in the solution. 

Since H = k' I, 

H' = k'T', 
we get 

&k_ / r 2
 _ J 2 dk_ \ 

k ~~ Jl\e \Fo- Y2
 d£ v)" 

dk' 
Since in practice J'2jk"o- is greater than I* - j - v\k' we 

see that Sk will be positive and will increase with / ' , hence 
since k = ic€dli"rjb, the quantity of iron dissolved will be 
least where I' is greatest, that is where the magnetic field 
is strongest, which agrees with the results of experiment 

We can show in a similar way that any chemical action 
which produces an increase in the coefficient of magnetiza­
tion is hindered by the action of magnetic forces. 

If we place a solution of an iron salt in a magnetic field 
where the strength is not uniform the magnetic force will 
cause the strength of the solution to be greater in those 

T. D. 16 
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parts of the field where the force is intense than in those 
where it is weak. 

To calculate the magnitude of the effect due to this 
cause let us suppose that the solution is contained in two 
vessels connected with each other by a tube of small bore, 
and that one vessel is placed in a region where the magnetic 
force vanishes, the. other in one where it is constant and 
equal to H. Then if £ and 77 are the number of molecules 
of the salt in unit volume of the first and second of these 
vessels respectively, we can easily prove by equating to zero 
the variation of the mean Lagrangian function for the liquid 
in the two vessels that 

„ i 1 P dk' 

where k' is the coefficient of magnetization of the solution. 
Thus if the coefficient of magnetization increases with the 
strength of the solution the magnetic force will tend to drive 
the salt from the weak to the strong parts of the magnetic 
field. 
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C H A P T E R X V I . 

C H A N G E O F S T A T E F R O M S O L I D T O L I Q U I D . 

124. T H E cases we have hitherto considered have 
been those in which gases and dilute solutions have been 
chiefly concerned, in this chapter we shall consider the 
phenomena of solution, fusion and solidification in which 
liquids and solids play the chief part. 

125. Let us consider the case of a mixture of salt 
and solvent in equilibrium, and endeavour to find how 
the amount of salt dissolved depends upon various physical 
circumstances. 

Let £ be the mass of the salt, rj that of the solution. 
Let us for brevity denote dpjdQ for unit volume of the salt 
by cu and the corresponding quantity for the solution 
by (d. Let w„ be the potential energies of unit 
masses of the salt and solution respectively. 

Then the mean Lagrangian function for the salt is 

Solution. 

16—2 
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•where / , (9) is the part of the mean kinetic energy of unit 
mass which does not depend upon the controllable coordi­
nates. 

If v be the volume of the salt and we put 

then the Lagrangian function for the salt may be written 

The mean Lagrangian function for the solution is with a 
similar notation 

where ft (&) is the part of the kinetic energy of unit mass of 
the liquid which does not depend upon the controllable co­
ordinates, and v is the volume of the solution. We must 
remember that though C and wt do not depend upon the 
values of £ and 77 yet the values of fi', w2 and f2 (6) may do 
so as the properties of the solution may and generally do alter 
when the amount of salt the solution contains is altered. 

By the Hamiltonian principle the value of the mean 
Lagrangian function of the salt and solution when in 
equilibrium is stationary. 

Let us suppose that when the system is in equilibrium 
the conditions are disturbed by a mass 8£ of the salt 
melting, then the change in the value of H is, if a-
be the density of the salt, p that of the solution, 

Since the value of H is stationary this quantity must 

ea'v' +1?/2 ((9) -
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vanish when there is equilibrium so that we get 

+ da' , i d 
d-q 8 d-r] e 

...(230) 

if we knew how the quantities in this equation varied with 
the amount of salt dissolved we could use it to determine 
the amount of salt dissolved when the solution is saturated. 
But though we have not this knowledge and therefore can­
not use this equation to determine the solubility of a salt 
in a given solvent, we can still get a good deal of informa­
tion from it about the effect produced by various physical 
circumstances on the solubility. 

126. The first effect of this kind we shall consider 
is that of pressure; and, just as in the case of chemical 
combination, pressure will produce two effects, one de­
pending on the change of volume which takes place on 
solution, the other on the change produced in the co­
efficient of compressibility. 

Let us consider first the effect due to the change in 
volume. 

We may suppose that the external pressure is produced 
by a weight placed on a piston which presses on the fluid, 
the mean Lagrangian function of this system is 

where Vis the volume of the salt and solution ; the increase 
in this when £ diminishes by 8$ is 

-pv, 

Hp 
dV 
d£' 
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so that in this case instead of (230) we have now 

O' da' i d , r/a\, a 1 

- p

+ l f ^ + - 6 d r i ^ ^ - < r - e f ^ 

I / dw2 ^dV\ 

drj 

We shall endeavour to find the change in temperature 
which would produce the same effect on the solubility as 
the pressure p . 

We may regard the expression 

fi' da' , i d . a i . i ( dw \ 

as a function of £, say /(è), then if 6 be increased by W the 
corresponding change Sf in £ is, by equation (230), approxi­
mately given by the equation 

/ '(É)8£ = - £ ( « ' , + ' ^ , - * \ ) 80; 

this equation is only approximate as we have neglected 
the variations of n, fi', / {6)j6 and f,(0)/O with the tem­
perature. 

If 8£] be the change produced by the pressure the 
temperature remaining constant, we have by equation (231) 

so that the change SO in the temperature which would pro­
duce the same effect as the pressurep is given by the equation 

1 / dwa \ s . / d V . . 
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dw 
Now wa + 77 — 7 ^ is the increase in the potential 

energy when unit mass of the salt dissolves] this will be 
measured by q the mechanical equivalent of the heat 
absorbed in this process at zero temperature, or at any 
temperature, if the specific heat of the system does not 
change as the salt dissolves: making this substitution 
equation (232) becomes 

e dV . . 

If the volume diminishes as the salt dissolves dVjd£ 
is positive, so that if q be positive the effect of pressure 
is the same as that of an increase in temperature, while 
if the volume increases as the salt dissolves the effect of 
pressure will be the same as that of a diminution in 
temperature. 

The effect of pressure upon the solubility of various 
salts has been investigated by Sorby {Proceedings Royal 
Society, xii. p. 538, 1863). The salts he examined were 
sodium chloride, copper sulphate, and the ferri- and ferro 
cyanides of potassium. He found that when the volume 
increased on solution the solubility was diminished by 
pressure, while when the volume diminished on solution 
the solubility was increased by the same means. This 
agrees with the results of equation (233). 

The results of his experiments are given in the following 
table—the first column of which gives the name of the salt 
dissolved, the second the increase in volume when roo c.c. 
of the salt crystallizes out, the third the increase in the 
salt dissolved when a pressure of 100 atmospheres is ap­
plied, and the fourth the value of this quantity calculated 
BY (233) 
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Sodium Chloride r3-57 •419 •56 
Copper Sulphate 4-83 3 1 8 3 2-4 
Potassium Ferricyanide 2-51 °'335 •28 
Potassium Sulphate 31-21 2-914 4 4 
Potassium Ferrocyanide 8-9 2-845 

The numbers required to calculate by the aid of (233) 
the theoretical amount of the alteration in the solubility are 
given below. 

The heat absorbed when the salt dissolves depends upon 
the strength of the solution and the temperature, the value 
of q required for our purpose is that which corresponds to a 
saturated solution at the zero of absolute temperature; as 
the variations in the value of q with temperature are probably 
due to changes in the specific heat the effect of these 
changes will be smaller the lower the temperature, we shall 
always therefore take the heat of dissolution for the lowest 
temperature at which it has been observed, though when 
the variation with temperature is rapid this can only be a 
very rough approximation. 

Sodium chloride. 

q at o° C. for a strong solution = x 4-1 x 10 5 

(Ostwald's Lehrbuch der Allgemeinen Chemie, 11. p. 170). 

Specific gravity = 2-i (Watts' Dictionary of Chemistry, 
v. p. 3 3 5 ) · 

According to Gay-Lussac {Annates de Chemie et de Phy­
sique, xi. p. 310, 1819) the increase in solubility for each 
degree centigrade is 

35-15 3 / 0 

Sulphate of copper. C U S 0 4 + 5 F L O . 
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2*7 '2 
q at I5°C.? = — — x 4-1 x to" (Ostwald, Lehrbuch, n. 

2 49'3 p. 2 S o ) . 
Specific gravity = z'2 (Watts' Dictionary of Chemistry, v. 

590-
Increase of salt dissolved for a rise in temperature of 

i° C. = 1-7% (Watts' Dictionary of Chemistry, v. 591). 

Ferricyanide of Potassium. 

q at 15° C. ? = x 4 < I x IOg (Ostwald, Lehrbuch, 11. 
2 5 1 P- 352). 

Specific gravity = 1'8 (Watts' Dictionary of Chemistry, 
11. 247). 

Increase of salt dissolved for a rise in temperature of 
i° C. = i-27°/ 0 (Watts' Dictionary, 11. 247). 

Potassium sulphate. 

q at i 5 ° C ? = x 4-1 x i o 9 (Ostwald, Lehrbuch, 11. p. 162). 

Specific gravity = 2"6 (Watts' Dictionary, v. 607). 
Increase of salt dissolved for a rise in temperature of 

i° C. = 2°/„ (Gay-Lussac, Annates de Chemie et de Physique, 
xi. p. 311 , 1819). 

I have not been able to find corresponding data for the 
ferrocyanide of potassium. 

As an example of the way in which the effects of pres­
sure can be calculated from these data let us take the case 
of sodium chloride: since 13-57/100 is the increase in 
volume when 1 c.c. of the salt crystallizes out, and 2-1 is 
the specific gravity of the salt, 

d v

 = '1357 
d£ 2-I ' 
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When the pressure is 100 atmospheres and the temperature 
is°c. 

0 = 288, 
so that by equation (233) 

se - —8 x 5 8 x 1 3 5 7 x i q 3 

5"6 x 4 T x 2'i x io" 

Sô = 4-4 0C., 
and since the solubility increases 'i37 0 for each degree, the 
solubility is increased by the pressure by '56 parts in 100. 

Considering the imperfect nature of the data at our 
disposal the agreement between the theory and the experi­
ments seems as close as could have been expected. 

So far we have neglected the effect of the difference 
between the compressibility of the salt and the solution, but 
as this may be very considerable it is necessary to investi­
gate this effect in order to see when it may legitimately be 
omitted. 

If the bulk modulus of the salt is k, and that of the 
solvent k', then in the mean Lagrangian function of the 
two there is the term 

— 1 ke'v - — k'e'2v, 
2 2 

where as before v and if are the volumes of the salt and the 
solution respectively, and e and e' their contractions. 

Taking this term into account we find that the condition 
dH 

leads to the equation 
Q' dW 

dr] + ~ " ' ' - £ + 5 [ £ < t f . < * » - / . w " 

i f dwa dV i p2
 i i p" d ,, ; 

6 ( 2 d-q 1 r dè, 2 k o- 2 k dg 
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and if 80 is the increase in temperature which would 
produce the same effect as the pressure 

Since k' is of the order 10" , we see that if the change 
which takes place in the volume of the salt when it dissolves 
amounts to one per cent, of its original volume the terms 
involving p" are not so important as those involving p if 
the pressure is not more than 100 atmospheres. For very 
much larger pressures however the terms depending upon 

p 2 will be the most important, and in this case the effect 
of the pressure will be proportional to the square of the 
pressure and not to its first power, as in the cases examined 
by Sorby. 

127. Effect of Surface T e n s i o n upon the 
Solubil ity. Surface tension may affect the amount of 
salt required to saturate a solution in several ways. 

In the first place the surface tension of the solution may 
change as the salt dissolves; secondly, the alteration which 
takes place in the volume may change the area of the 
surface in contact with the glass or the air, and again when 
the salt dissolves or is deposited the surface of contact of 
the salt and solution may change; when the salt is pre­
cipitated as a fine powder this increase in surface may be 
very considerable. 

To find the effect of these changes on the solubility, let 
iS be a surface of the solvent, T its surface tension. Then 
in the expression for the mean Lagrangian function of the 
solvent there is the term 

where the summation is extended over all the surfaces of 
the solvent. 

IRIS - LILLIAD - Université Lille 1 



Then we get by applying the same methods as before, 
a' , n i 

V h -
P di) <r 6 
a da' , n i fd . .... -

+ v' - - + - J ^ fo/, (6)} -/ ,(*) 

~ o e dir ' 

proceeding as in § 126 we see that the increase SO in the 
temperature which would produce the same effect as the 
surface tension is given by the equation 

*d=°*UTS) (234)' 
so that if TS increases as the salt dissolves the effect of the 
surface tension will be to retard solution, while it will 
increase the solubility if TS diminishes. 

Let us take as an example the case when the fluid is in 
spherical drops and consider the effect of the change in 
volume which takes place as the salt dissolves. If a is the 
radius of the drop and / the increase in volume when unit 
mass of the salt dissolves, then 

1 da 
= ~A™d£' 

so that if 5 be the surface 
dS da 
d£ = 8 m z d(' 

__ 21 
~~a~' 

and therefore by equation (234) 

80 — — 21 . 
qa 
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Let us take the case of potassium sulphate, for which 
?'= 1/12 and q = 1*5 x io 9 , 

80 2T 1 
6 a i-8 x i o 1 0 ' 

since y i s about 81, we have at the temperature of 2j°C. 

89 = -^-j - approximately, 

so that if the radius of the drops was 1/10000 of a milli­
metre 

8 0 - ^ - , 10 

and since the solubility increases by 2 °/0 for each degree of 
temperature the solubility of spray of this fineness would be 
diminished by about -6 "/„• 

In this case the effect of the surface tension is very 
small, but if the salt were deposited from its solution as a 
very fine powder the effect of the increase in the surface 
might be much more considerable. 

Let us suppose that the salt is deposited in the shape of 
small spheres of radius a, then 

^ ? = J _ 
d£ era' 

and if T' be the surface tension of the salt and solution we 
shall have 

6 era q ' 

in some cases the particles in which the salt is deposited are 
fine enough to scatter light, so that their diameter must be 
much less than the wave length of the blue rays, we may 
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therefore put a = io~ a ; we do not know the value of T' but 
it is probably greater than T for the surface of contact 
of air and the solution; even though it were no greater 
we should have with these numbers for potassium sulphate 

so that at 27° C. the solubility would be changed by about 
60 per cent. This effect would help the salt to dissolve 
and prevent its deposition from the solution. If the salt 
before solution was not in a very finely divided condition 
the diminution in the surface caused by the solution would 
be much less than the increase in the surface due to the 
deposition of the salt, so that surface tension would be much 
more efficacious in preventing deposition from the solution 
than in helping the salt to dissolve, it would thus tend to 
promote something analogous to super-saturation. 

Let us now consider the effect due to the alteration in 
the surface tension of the solution with the quantity of salt 
dissolved. We have as before 

According to Rontgen and Schneider (Wied. Annakn, 
xxix. p. 209, 1886) the surface tension of an 8 °/0 solution of 
potassium sulphate is about 3 % greater than that of pure 
water, for this substance we have therefore, approximately, 

80 

"0 10 

S0 SdT 

9 q dè, 

dT 

dè 
3i *3 

where v is the volume of solution; substituting this value for 
dTjd^'m equation (235) and putting q= 1-5 x io 9 , 
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IL X 3 S 
x — a 8 X R J N 1 0 v 

2 S . 
= — — -B — approximately. 

If the solution is in a cylindrical tube of radius a, S\v — 2/a, 
and therefore 

80 4 . , -Q = - 8 a approximately. 

The sign is changed because if the angle of contact 
vanishes the increase in the surface tension of the surface 
separating the solution and air is equal to the diminution. 
in that separating the solution and the walls of the tube. 
If we suppose that these cylindrical tubes are of the dimen­
sions of the pores in such substances as meerschaum or 
graphite, then since we know by the laws of diffusion of 
gases through these substances that the diameter of the 
pores must be comparable with the mean free path of a 
molecule of the gas we may assume that a is of the order 
10 ~8. In this case 

80 _ 4 

0 ~ i o o ' 
so that at 27°C. the value of 80 would be about I 2 ° C , 
which in the case of potassium sulphate is equivalent to 
an increase in the solubility by nearly 25 °/„- In most cases 
the surface tension of the surface separating a solution 
from air increases with the amount of salt in it, so that 
the salt will be more soluble in liquid in capillary spaces 
than in liquid in bulk. 

Liquefaction. 

128. Under this head we shall consider the influence 
of changes in the physical condition on the passage of a 
substance from the solid to the liquid state and vice versa. 
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This problem has much in common with that of solution, 
but since in this case the liquid and solid are the same 
substances in different states, the properties of the liquid 
will not, as in that case, change as the solid melts. 

Let £ be the mass of the solid, by § 81 its mean Lagran-
gian function is 

where is the potential energy of unit mass of the 
substance in the solid state. 

Since the Lagrangian function is proportional to the 
volume, we may put 

where v is the volume of the solid. 
If T I 1 is the mass of the liquid, v' its volume, w2 the 

potential energy of unit mass, the Lagrangian function of 
the liquid is 

6v'Q'+ T,/t(8)- T)W£, 

where fi' is defined by the equation 

J aft 
The terms /,{&)>/,{&) are the parts of the Lagrangian 

function which do not depend upon strain &c, that is, they 
do not involve the controllable coordinates. They are 
therefore independent of the arrangement of the molecules 
and depend merely upon the number of the molecules and 
the kinetic energy possessed by each. We should therefore 
expect that so long as the temperature remains constant 
these terms would not alter much however the arrangement 
of the molecules might change, provided the molecules were 
not decomposed. 
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If there is no external pressure the change in the mean 
Lagrangian function of the solid and liquid when the mass 
8£ of the liquid freezes is 

sf {& (" - j) +A m - / . w - k - * o } , 

where o- and p are the densities of the solid and liquid 
respectively. 

This change must vanish by the Hamiltonian principle 
when the system is in equilibrium, so that in this case we 
have 

6 {" " f } + / l { 6 ) ~ f > { 6 ) ~ K " W ' ] = °" - ( 2 3 6 ) -
We may regard the left-hand side of this equation as a 
function of 8, say <f> (6), which when equated to zero gives 
8 the temperature at which melting takes place. 

Let us now consider the effect of a slight change in the 
physical conditions. If this change increases the Lagrangian 
function by ^ and does not affect appreciably the values of 
O/tr, ii'/p, we have if the melting point is now 8 + 88, 

or since <f> (8) = o 

M S+W = - £ (-37). 

Let us consider the effect of pressure upon the freezing 
point. If the external pressure is p then 

x = -p (v + v'), 
and since 

d 1 <\ 1 1 

dk{v + V)=-«--p' 
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so that 

But from equation (116) we have 

SC2 = 08v (I) 
\ u v / v constant 

and if the heat supplied is just sufficient to melt unit mass 
of ice, S<2= X, the latent heat of liquefaction and Sv = r/p — R/TR, 
hence 

whence if 80 be the increase in 0 caused by the pressure p 

and equation (237) becomes 

So that if the Lagrangian function increases when the liquid 
freezes, the temperature at which freezing takes place is 
raised, in other words freezing is facilitated. This is 
another example of the principle of § 84. 

We see from equation (238) that if the body expands 
on solidification 80 is negative or the melting point is 
lowered by pressure, if the body contracts on solidification 
80 is positive and the melting point is raised by pressure. 
This is the well-known effect predicted by Prof. James 
Thomson and verified by the experiments of Sir William 
Thomson. 

This however is not the only effect produced by pressure 

comparing this with (237) we see that 
d<p(6) _X 

d6 ~ 0 ' 
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on the melting point, there is another effect arising from the 
difference between the energy due to strains produced by 
the pressure in unit mass before and after solidification. 
This energy is proportional to the square of the pressure, so 
that the lowering of the freezing point from this cause will 
also be proportional to the square of the pressure. 

Let as before p be the pressure per unit area acting on 
the solid and liquid, let k be the modulus of compression 
•of the solid, k' that of the liquid, the potential energy due 
to the strain in the solid and liquid is 

so that in the mean Lagrangian function of the solid and 
liquid there is the term 

where 8 and 8' are the compressions and va and v0' the 
volumes, a-0 and p 0 the densities of the solid and liquid when 
free from pressure. 

If 89 be the rise in the melting point due to this cause 
we see from (239) that 

So that unless itr0 — k'pa the freezing point will be altered 
by an amount proportional to the square of the pressure. 

Let us find the magnitude of this effect in the case of ice 
and water. The only constant of elasticity for ice which 
has been determined is Young's modulus, which Bevan de­
termined by flexure experiments to be about 6 x io1", the 
modulus of compression k is therefore not likely to be less 

-p k (* - 8) + < (1 - 80) - 1 ^ s 2 - X # 8 " , 

17—2 
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than 4 x io l G . The value of this quantity for water is about 
2 x io 1 0 . Substituting these values we get 

roughly. 
This acts in the same direction as the effect due to 

the alteration in volume on solidification. Comparing this 
expression with equation (238) we see that for pressures less 
than about 9000 atmospheres the effect depending on the 
change in volume is the more important, while for pressures 
greater than this the effect we have just been investigating 
is the larger. If k<r is greater than k'p then this effect in 
the case of substances which contract when they solidify 
is in the opposite direction to that which is proportional to 
the first power of the pressure, so that in these cases the 
effect of pressure upon the freezing point is reversed when 
the pressure exceeds a critical value. 

129. Effect of tors ion upon the freezing point. 
Let us suppose that we have a cylindrical bar of ice twisted 
with a uniform twist about its axis ; it will possess energy 
in virtue of the strain, but if it melts (suppose on the 
outside) the water will be free from strain, and will not 
therefore possess any energy corresponding to that possessed 
by the twisted ice. Thus the potential energy will diminish, 
and the Lagrangian function therefore increase as the ice 
melts, so that by the principle stated in § 84 the torsion 
will facilitate the melting of the ice, that is, it will lower the 
freezing point. 

We can easily calculate the magnitude of this effect. 
Let us take the case of a thin cylindrical tube of ice, since 
in this case the strain is uniform, and let a and b be 
respectively the external and internal radii of the tube, 
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/ its length, n the coefficient of rigidity of ice, <p the 
uniform twist produced by a force P acting at an arm b, 
then in the mean Lagrangian function of the tube there are 
the terms 

Pity- - itfnia'-F) 
4 

= Pbl^~\^nv(d1 + b*), 

where v is the volume of the ice. 
So that if SO be the rise in the freezing point produced 

by the torsion we have 

If the sides melt equally we have since a and b are 
approximately equal 

so that 

d 
(a' + b1) = (a' + b1) = 

&6 
e: 2crA. 

dv r 

To get some estimate of the magnitude of this effect let 
us suppose that the cylinder is 1 centimetre in radius, and 
that cp is 1/40. Since Young's modulus for ice is 6 x io'°, 
n is probably about 2 - 4 x io 1 0 , substituting these values we 
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find 
Sfl i . f . 
-pr- = approximately, 
6 400 

so that S0 = --68°C. 
So that in this case the ice on the surface would melt 

unless the temperature was lower than — -68° C. 

130. Effect of surface t ens ion on the freezing 
point. If a portion of a drop of water freezes, the form­
ation of the ice will cause a diminution in the surface of 
separation of the water and air if the ice rises to the 
surface of the drop, to balance this however we have two 
fresh surfaces formed where the ice meets the water and air;, 
the diminution in the first surface would tend to promote 
freezing, the formation of the other two would tend to pre­
vent it, but as we do not know the surface tension between 
ice and water and between ice and air we cannot calculate 
which of these tendencies would have the upper hand. 

131. T h e effect of d i s so lved salt on the freezing 
point. When a salt solution freezes the salt appears to 
remain behind, and the ice from such a solution is identical 
with that from pure water. Thus when a portion of a salt 
solution freezes, the particles of salt are brought closer to­
gether, and work has therefore to be done upon them, the 
Lagrangian function therefore diminishes, and we see by 
equation (239) that the presence of the salt will tend to 
prevent the water from freezing. To calculate the magni­
tude of this effect, let £ be the mass of the salt, then using 
the same notation as before, the mean Lagrangian function 
for the salt if the solution is dilute is 
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where w3 is the mean potential energy of unit mass of the 
salt. When the mass of ice is increased by S£ the only 
quantity which changes in the expression is 1/ which dimin­
ishes by S£/p. 

Thus equation (239) becomes 

where 8 and 8/J6) are the changes in Q'/p and ft(0) 
due to the salt. If •m be the pressure due to the molecules 
of salt in the solution, 

net V 
so that 

If we suppose that the salt does not alter the properties 
of the solvent we have 

86 

Let us first suppose that the solvent is water; if we 
consider solutions whose strength is such that a number of 
grammes equal to the formula weight is dissolved in one 
litre of water, then OT is about 22 atmospheres, or in absolute 
measure about 2 ' 2 x io 7 , A. = 80 x 4 • 2 x io 7 , 6 = 273, and 
p is unity; substituting these values we get 

80 = - i-8"C. 

Raoult, Annales de Chimie et de Physique, v. in. p. 324, 1886, 
found that solutions of this strength of many substances, 
chiefly organic salts, froze at — I 'g", but that the freezing 
points of solutions of salts and acids were generally lower 
than this; he attributed the increased effect to the dis-
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sociation of the molecules; it might however, as in the 
analogous cases we considered before, be due to the altera­
tion of the properties of the solvent by the addition of the 
salt. It would also take place if there were any chemical 
action between the salt and solvent of such a nature that 
heat is evolved when the solution is diluted. 

When the solvent is acetic acid, X= 44^34 x 4-2 x io 7 

(Landholt and Bornstein Tabellen) p = i - o 5 and 6 = 290; 
substituting these values we get for the lowering of the 
freezing point of any solution of the same strength as before 

80 — 3 \ S ° C 

In this case Raoult found 80 = - yg. 
When the solvent is benzine, A = 29 x 4 '2 x 10', P = '9 

and 0 = 275, so that the lowering of the freezing point of a 
solution of the same strength as before is 

80 = -5-4° C. 

Raoult found in this case that 80 was — 4-9° C. 
Raoult found that the effect of dissolved salts on the 

freezing points of acetic acid and benzine was much more 
regular than their effect on the freezing point of water. 
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C H A P T E R X V I I . 

T H E C O N N E X I O N B E T W E E N E L E C T R O M O T I V E F O R C E 

A N D C H E M I C A L C H A N G E . 

132. T H E principle that when a system is in equilibrium 
the Hamiltonian function is stationary can be applied to de­
termine the connexion between the electromotive force of a 
battery and the nature of the chemical combination which 
takes place when an electric current flows through it. 

We shall begin by considering Grove's gas battery, as 
this is the case where the chemical changes seem on the 
whole to be the least complex. In this battery the two 
electrodes are covered with finely divided platinum, the 
upper half of one is surrounded by some gas, say hydrogen, 
while the lower half dips into acidulated water; the upper 
half of the other electrode is surrounded by some other 
gas, say oxygen, the lower half again dipping into acidu­
lated water. The two electrodes are well coated with 
hydrogen and oxygen respectively. If the electrodes are 
connected a current will flow through the battery and the 
hydrogen and oxygen above the electrodes will gradually 
disappear, while the water will increase during the passage 
of the current. 

To investigate the electromotive force of a battery of 
this kind let us suppose that the electrodes have got into a 
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permanent condition, so that the gases attached to them are 
not altered during the passage of the current, let us also 
suppose that the electrodes are connected with the plates of 
a condenser whose capacity is C, these plates being made 
of the same material. Then if unit quantity of positive 
electricity flows from the plate of the condenser which 
is connected with the hydrogen electrode through the cell to 
the other plate, by Faraday's Law an electrochemical equiva­
lent of hydrogen will appear at the electrode covered with 
oxygen and one of oxygen at the electrode covered with 
hydrogen; the hydrogen and the oxygen will combine and 
the result of the passage of the unit of electricity will be that 
an electrochemical equivalent of hydrogen and one of oxygen 
will disappear and an electrochemical equivalent of water 
will appear. The systems whose mean Lagrangian functions 
change during this process are (i) the condenser, (2) the 
hydrogen above one electrode, (3) the oxygen above the 
other, and (4) the water. 

Let Q be the quantity of positive electricity on the plate 
of the condenser connected with the oxygen electrode, and 
let £, rj, £ be the masses of the hydrogen and oxygen above 
the electrodes and of the acidulated w~ater respectively. 

The mean Lagrangian function for the condenser is 

_ I & 
2 C' 

The mean Lagrangian function for the hydrogen is £LM 

where using the same notation as hitherto, 

L H = Rfi LOG J + / ( * ) - * * , . 

The mean Lagrangian function for the oxygen is r;Z0 

where 

Z0 = £,6\og P4+A(8)-rvs, 
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and for the acidulated water where 

Z7„ = r 0+/ 3 (0)-ze> 3 . 

Now when unit of electricity passes from the one plate to 
the other of the condenser, the electrochemical equivalent 
of hydrogen is carried to the oxygen and there combines with 
it at one electrode, while the electrochemical equivalent of 
oxygen is carried to and combines with the hydrogen at the 
other electrode. Thus if ET and E 2 are the electrochemical 
equivalents of hydrogen and oxygen, the net result of 
the process is that Q has increased by unity, £ and 17 
diminished by E, and E 2 respectively, while £ has increased 
by (T, + E 2 ) . Hence by the principle that the Hamiltonian 
function is stationary when there is equilibrium we must 
have 

but QjC is the amount by which the potential of the plate 
connected to the oxygen electrode exceeds that of the one 
connected to the hydrogen electrode, in other words it is 
the electromotive force of the battery, which we shall call 
hence 

(U„)-t,-r ivLo) + (C, + £,) - ^ . ( £ Q . . . ( 2 4 O ) . If Lw be the mean Lagrangian function of unit mass of 
aqueous vapour above the acidulated water and in equilibrium 
with it, we have by § 83 

d 

{£LH)-<t-r(7lL0) + (t1 + ti 

. d 5, . Q 

Lw- = £t6\ogp-'„ +/;{(>)-w\ 

Substituting these values in (240) we get 
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p = ^Rfi log ? + %R26 log ̂  - ( E l + «,) R36 log J £ 

+ { C , * , + t t R t - («, + C.) * 3 } 0 - - <J2{6) + (E, + O / 3 (0 ) 

But ^ , = 2 « ^ , = ^ + . , ) * . ; 

and by (83) 

is of the form A'6 +£6 log 9. 
Lastly £,ic, + W - (E, + CA) w 3 ' 
is the loss of potential energy which occurs when an electro­
chemical equivalent of hydrogen combines with one of 
oxygen and may be measured by the quantity of heat 
developed by the combination of an electrochemical equiva­
lent of hydrogen at the zero of absolute temperature; we 
shall denote it by E ^ , making these substitutions we see <i 

p=t1Rfi\ogp-^i + A9 + £6\og6 + iiq... (241), 

where A = A' + txRl log - P-°-, 

PoPo 
hence we have + / = w (242). 

do do 
Thus if we know the way in which p depends upon 6 we can 
determine q, so that by measurements of the electromotive 
force of a cell and the variations of this force with the tem­
perature we can calculate the mechanical equivalent of the 
heat developed in the combination which takes place in the 
cell. 

133. Equations (241) and (242) are not confined to the 
case of the Gas Battery. We can prove in a similar way that 
if / is the electromotive force of any battery where the 
solutions used are dilute, then 

/ = t^Rfi log + A6 + B6 log 9 + <q...(243), 
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where e ; is the electrochemical equivalent of hydrogen, Rt 

the value of R for this gas, p,, p s . . . the masses in unit volume 
of those substances which disappear as the chemical action 
which produces the current goes on, while o ,̂ o-s... are 
the masses in unit volume of those which appear, a, b,...c,d,... 
are the ratios of the electrochemical equivalents of the sub­
stances to that of hydrogen, divided by the molecular weight 
of the substance, tq is the mechanical equivalent of the 
heat which would be evolved at the absolute zero of tempera­
ture by the chemical action which takes place when unit of 
electricity passes through the cell. 

From this equation we get as before 

By v. Helmholtz's principle § (48) 8dp\d8 is the heat 
which must be supplied to the cell in order to keep the 
temperature constant when the unit of electricity passes 
through the cell, or in other words — 8dp/d8 is the mechanical 
equivalent of the heat which is reversibly generated when 
unit of electricity passes through the cell. Now / the work 
done in driving this quantity of electricity through the cell 
plus — OdpjdQ the heat reversibly generated must be equal to 
tw the heat equivalent of the chemical action which takes 
place in the cell, hence by (243) we have 

t q ~ d8" = e W ( 2 4 5 ) -

Now iw and eq are the mechanical equivalents of the 
heat developed by the same combination when it takes place 
at the temperatures 8 and absolute zero respectively, and 
the difference between these quantities must be the differ­
ence between the mechanical equivalents of the quantities of 
heat required to raise them from zero to 8 degrees in their 
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combined and uncombined states. If we consider the 
case when two gases A and B combine to form two others 
C and D, then if cx, fs, c3, ct are the mechanical equivalents 
of the specific heats at constant volume of these gases, 
€j, e2, e 3, «4 their electrochemical equivalents, if we start 
with A and B at zero and raise them to 6 degrees and then 
let them combine, we shall spend (c/, + e2c3) 8 units of work 
in raising the temperature and gain ew by their combination, 
so that the net result in our favour will be 

ew - (e,^ + t / 2 ) 6. 

If we let them combine at zero temperature and then 
raised them to 6° we should gain eq and spend (e/ 3 -i c4i4) 8 
units of work, hence since the balance of work in our favour 
must be the same in both cases, we have 

*i ~ ( E / 3 + VO 6 = €W- for, + c¿a) 6, 

and therefore by (245) 

But by (241) 

so that B = C3ÍT3 + ticl — Ejij - e /- z (246). 

If the combination is attended by the production of an 
amount of heat comparable with that which occurs when 
hydrogen and oxygen combine, then B^d^pjdO2, which is com­
parable with the heat required to raise the temperature of 
the substances 6 degrees and is therefore at the most a few 
hundred calories per gramme of substance, will be small 
compared with q, which is measured by thousands of calories, 
so that when the combination is attended by the evolution 
of a large quantity of heat we may at ordinary temperature 
neglect e'd'p/dB* and write 
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p-B 

Since by Dulong's and Petit's law c„ c2, c3, ct are in­
versely proportional to the combining weights of the gases 
A, B, C, D, we see that whenever the combination leaves 
the number of molecules unaltered B will vanish and the 
equation 

will be rigorously true. We see by this equation that when 
the electromotive force increases as the temperature in­
creases the electromotive force is greater, while when the 
electromotive force diminishes as the temperature increases 
it is less than that calculated from the formula p = tq, which 
is often employed. 

If k be the coefficient of the chemical combination (§115) 
which goes on in the cell, i.e. the value of 

when the densities of the gases or solutions have the values 
they possess when in chemical equilibrium with each other, 
then since any small change cannot alter the value of the 
mean Lagrangian function of the gases or dilute solutions 
when in equilibrium, we get if we suppose the change is that 
which would take place if unit of electricity were to pass 
through the solutions 

o = \ogk + A6 + B6 log 6 + iq (247); 
combining this with (245) we get 

or logt = l o g E i ^ e 
(248). 
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This equation affords a very easy method of finding the 
coefficient of any chemical combination if we can make a 
cell in which this combination takes place, for then if we 
measure the electromotive force and the densities of the 
solutions, equation (247) will at once give k. Thus the 
Daniell's cell enables us to calculate the coefficient of the 
combination 

Zn + H 2 S 0 4 + CuS0 4 = ZnS0 4 + H 2 S 0 4 + Cu. 
Here if p and a are the masses per unit volume of the 

CuS0 4 and ZnS0 4 respectively when there is chemical 
equilibrium 

log k = log , 

so that if p and a-' are the densities of the CuS0 4 and the 
ZnS0 4 when the electromotive force is p we have 

Now at o° C. tjtfl is nearly io 8 and p is about io" so that 

\ogk=-\og—,~ 100, 2 a 

or approximately since for ordinary strengths of solution 
logp'/o-' is small compared with 100 

l o g F - = - 200, 

hence we see that in this case when there is equilibrium 
practically all the sulphuric acid goes to the zinc. 

If we determined the electromotive force of a battery 
when lead wire dipped respectively into acid solutions of 
lead nitrate and lead chloride, we should be able by equation 
(247) to determine the coefficient of the action 

zHCl + Pb(NOJ a = 2HNO3 + Pb Cl2, 
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and so determine the way in which lead divides itself 
between hydrochloric and nitric acids. 

If we return now to the hydrogen and oxygen gas 
battery, equation (247) is for this case 

We can easily deduce from this equation the way in 
which the electromotive force of a gas battery depends 
upon the pressure of the gases in the vessels above the 
electrodes. If p x is the electromotive force of the battery 
when the densities of the hydrogen and oxygen are p, p 
respectively, p t the electromotive force when the densities 
are a and </, then we have by (249) 

PP 
If the densities of the oxygen and hydrogen were 

diminished one thousand times then at the temperature 
0° C. since c, = io" 4 , Rfi= I ' I x io 1 0 

so that the electromotive force is diminished by rather less 
than the ninth of a volt. By making the densities of the 
gases above the electrodes sufficiently small we could 
reverse the electromotive force, though in the case when 
the gases are oxygen and hydrogen the rarefaction required 
would be more than could practically be obtained. 

The diminution in the electromotive force caused by 
rarefaction does not however depend upon the magnitude 
of the electromotive force of the battery, so that in the case 

T. D. 18 

P = clRfilog (249). 

A - p x = - I "I X IO" log, IOS-

— — I ' I X 4'5 X 2*3 X IO° 

— - I "14 x I O 7 approximately, 
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of gas batteries with small electromotive forces this reversal 
might be practicable. 

The condensation which accompanies the combination 
of oxygen and hydrogen diminishes the effect of rarefaction; 
if the combination were to take place without condensation, 
the diminution in the electromotive force caused by 
diminishing the density one thousand times would be about 
one-seventh of a volt. 

We see too from equation (249) that the electromotive 
force in all cases tends to produce a current the chemical 
action of which would make the densities of the gases 
or dilute solutions approach the values they have when in 
chemical equilibrium with each other. When they have 
these values the electromotive force of the battery is zero, 
and the electromotive force is in one direction or the oppo 
site according as there is more or less of some substance 
present than there would be if the mixture of gases or dilute 
solutions were in chemical equilibrium. 

Experiments on the electromotive force of gas batteries 
charged with various gases have been made by Pierce 
(Wiedemann's Annalen, vni. p. 98). The following table 
taken from his paper gives the electromotive force of a large 
number of batteries at 15° C. and of a few at 75"—80° C. 

It will be seen from this table that the effect of an 
increase in temperature on the electromotive force of gas 
batteries is very variable, for of the five batteries whose 
electromotive forces were determined at different tempera­
tures, the electromotive forces of three were less and of two 
greater at the high temperature than the low. 
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E L E C T R O M O T I V E F O R C E . 

E L E C T R O M O T I V E F O R C E A T I 8 ° C . 

GASES. 

I I AND 
II AND 
H AND 
H AND 
II AND 
H AND 
H AND 
H AND 
H AND 
H AND 
H AND 
II AND 
H AND 
H AND 
II AND 

O 
N 2 0 
C 0 3 

N O 
AIR 
H 2 0 
C O 
O 
C O , 
N O 
O 
O 
O 
C 0 2 

N O 

FLUID BETWEEN THE 
ELECTRODES. 

WATER 
WATER 
WATER 
WATER 
WATER 
WATER 
WATER 

H 2 S 0 4 +WATER 
H 2 S 0 4 - F WATER 
I I Z S 0 4 -F WATER 
N A 2 S 0 4 + WATER 
K 2 S 0 4 + WATER 
Z N S 0 4 - F WATER 
Z N S 0 4 +WATER 
Z N S 0 4 + WATER 

RATIO OF ELEC­
TROMOTIVE 

FORCE TO THAT 
OF A DANIELL. 

•874 
•7QO 
•981 
'933 
•807 
•807 
•404 
•926 
-897 
•768 
•698 
•698 
•77· 
•820 
•860 

GASES. 

I AND BR 
H AND BR 
H AND BR• 
O AND BR 
O AND I 
H AND I 
H AND N O 
I I AND O 
H AND CL 
H AND CL 
H AND CL 
H AND O 
H AND C O Z 

H AND N O 

WATER 
NABR 4-WATER 
KBR +WATER 
KBR +WATER 
KL + WATER 
KL + WATER 
HCL + WATER 
HCL -r WATER 
HCL + WATER 
KCI4-WATER 
NACL + WATER 
NACL + WATER 
NACL +WATER 
NACL-(-WATER 

ELECTRO­
MOTIVE 
FORCE. 

E L E C T R O M O T I V E F O R C E A T 7 5 ° C - 8 o " C . 

H AND O 
H AND N O 
II AND C O , 

WATER 
WATER 
WATER 

•828 
'945 
•875 

H AND N 2 0 
H AND H , 0 

WATER 
WATER 

"335 
I'ÎÂ^ 

'5 
'05 7 
•86r 
•765 
•8?5 

1-36 
1-39 
I'39 
•766 
•846 

•780 
'954 

The electromotive force of the hydrogen and oxygen gas 
battery where eq — 3'4 X 4 ' 2 X TO 7 is less than that given by 
the formula (246) even when the variation of the electro­
motive force with temperature is taken into account. This 
seems most probably to arise from the arrangements being 
such that the complete combination of the hydrogen and 
oxygen contemplated in the preceding theory would not 
take place, for we see from the table that the substitution 
of acidulated water for water between the terminals increases 
the electromotive force, this change favours the production 
of ozone instead of oxygen when the current passes and so-
increases the chance of complete combination. 

1 8 — Z 
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In the case of the hydrogen and chlorine battery with a 
solution of hydrochloric acid between the electrodes, q in 
formula (244) will be the heat in mechanical units given 
out in the combination of one gramme of hydrogen with 
chlorine plus the heat given out when 36'5 grammes of 
hydrochloric acid are dissolved in a large quantity of water. 

The gas battery will work even if we have the same 
gas (say hydrogen) above the electrodes provided it is at 
different pressures. In this case on closing the circuit there 
will be no change in the volume of the liquid between the 
terminals, but when the unit of electricity passes through the 
battery an electrochemical equivalent of hydrogen will be 
transferred from the vessel where the pressure is high to 
the one where it is low. The electromotive force in this 
case is easily seen to be 

t^Rfi log pi'0-, 

where p and a- are the densities of the hydrogen (or oxygen) 
in the two vessels, at o° C. this equals 

io" logp/u-approximately, 

so that if the density in one vessel is e times that in the 
other the electromotive force will be one-hundredth of a 
volt. 

In fact when we have any arrangement in which the 
passage of an electric current in a certain direction increases 
the Lagrangian function of the system, there will be an 
electromotive force tending to produce a current in this 
direction and equal to the increase in the mean Lagrangian 
function produced by the passage of unit of electricity. 

134. We can sometimes transform equation (244) by 
means of the following considerations. If we have a mixture 
of chemical reagents in various proportions we can in many 
cases though not in all find a temperature at which they 
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•would be in equilibrium if mixed in these proportions. Let 
us suppose that it is possible to find a temperature 60 at 
which the reagents constituting the battery would be in 
equilibrium in the proportion in which they exist in the 
battery at the temperature 6. 

Then by (243) 

| = ̂ l o g V ^ + . 4 + i ? l o g 0 + f, 

and by (246) 

o = log + A + B log e0 + f . 
Subtracting these equations we get 

i=€?(i~d+£l0g^(250)' 
If a considerable quantity of heat is given out by the 
combination which takes place when unit of electricity 
passes through the cell, then at ordinary temperatures the 
last term on the right-hand side of this equation will be 
small compared with the first and we may write equation 
(250) in the form 

An equation identical in form with this is given by Professor 
Willard Gibbs in a letter to the Electrolysis Committee of 
the British Association (British Association Report, 1886, 
p. 388). According to Prof. Gibbs 60 is the highest 
temperature at which the radicles can combine with evolu­
tion of heat, while according to our view it is the tempera­
ture at which the chemical system forming the battery 
would be in equilibrium, and as it is not always possible 
to find such a temperature the formula is not of universal 
application. 'We see that for all cells to which the formula 
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can be applied the temperature coefficient of the electro 
motive force must be negative, and therefore by v. Hclm-
holtz's principle, the passage of the current through the cell 
must be attended by the evolution of heat. When the 
temperature 90 exists it is given by the equation 

S0 = --T- approximately. dp 
dO 

We shall now investigate under what conditions it is 
possible to find a temperature 8a at which the system would 
be in equilibrium. We shall consider the case of the 
equilibrium of four substances (A), (B), (C), (D). 

If p„ p2, cr„ <ra are the densities of (A), (B), (C), (B>) 
when there is equilibrium we have by equation (246) 

a b 
o = log ^ + A6 + BO log 6 + tq. 

Now if elt e2, eg, et are the electrochemical equivalents 
and £, £s, £3, c4 the specific heats at constant volume of the 
substances (A), (B), (C), (JD) respectively, then by equation 
(246) 

so that 
a b (gii7t + fsyr2 - gy:s - KjCj) _ qe^ 

p* = CO K ^ e •S,e'1 

Now if Mx, M3, Afa, Mi are the molecular weights of the 
substances 

e.x^Mxa, e^ = Mc, 
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and for gases by Dulong and Petit's Law 

= Mtc3 = Mac3 = MiCi - c say 

{a+b-c~d) C 
e 

eg is the heat given out when the quantity of (A) decomposed 
by one unit of electricity combines with the equivalent 
quantity of B. Let us first suppose that this quantity is 
positive, and consider the following cases. 

1st case. When a + b = c + d, i.e. when there is no change 
in volume on combination. In this case as 6 increases from 
zero to infinity pfpflo-'a-* ranges from zero to C, and there­
fore since it never exceeds C it is not always possible to find 
a temperature which should be one of equilibrium for any 
arbitrarily chosen set of values of pv pa, o-lt TR2. 

2nd case. When a + b <c + d, i.e. when there is an in­
crease in volume after combination. In this case as 0 in­
creases from zero to infinity p"pi

b\a~{0~* starts from zero then 
reaches a maximum and decreases again to zero, so that 
again as p'p'jo-'a^ never exceeds a certain maximum it is 
not always possible to find a temperature which should be 
one of equilibrium for any arbitrarily chosen set of values of 
PI> PA> ° V ° Y 

3rd case. When a + b => c + d, i.e. when there is a diminu­
tion in volume after combination. In this case as 6 increases 
from zero to infinity p°p%

b l<r'a* also increases from zero to 
infinity, so that in this case it is always possible to find 
a temperature which should be one of equilibrium for any 
arbitrarily chosen set of values of p p p2, o ,̂ o-a. 

We see too that when the combination is attended with an 
absorption of heat it is in general only possible to find a tem­
perature which shall be one of equilibrium for any arbitrarily 
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chosen set of values of px, p2, o ,̂ <r2 when the combination is 
attended by an increase of volume. 

Summing up the results of this investigation we see that 
equation (250) can only in general be applied to cases 
where the reaction producing heat is accompanied by a 
diminution in volume. 

In these cases where p'p^l"'"* h a s a maximum value 
at a finite temperature the mixture of gases after passing 
this temperature will be in an unstable state, for any 
increase in the temperature will promote combination 
and produce an evolution of heat which will increase the 
temperature still further. 
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C H A P T E R X V I I I . 

I R R E V E R S I B L E E F F E C T S . 

J 35- W E have hitherto left out of consideration the 
effect of such things as fractional and electrical resistances 
which destroy the reversibility of any process in which they 
play a part. If however we take the view that the properties 
of matter in motion, as considered in abstract dynamics, are 
sufficient to account for any physical phenomenon, then 
irreversible processes must be capable of being explained as 
the effect of changes all of which arc reversible. 

It would not be sufficient to explain these irreversible 
effects by means of ordinary dynamical systems involving 
friction, as friction itself ought, on this view, to be explained 
by means of the action of frictionless systems. 

But if every physical phenomenon can be explained by 
means of frictionless dynamical systems each of which is 
reversible, then it follows that if we could only control the 
phenomenon in all its details, it would be reversible, so that 
as was pointed out by Maxwell, the irreversibility of any 
system is due to the limitation of our powers of manipulation. 
The reason we can not reverse every process is because we 
only possess the power of dealing with the molecules en masse 
and not individually, while the reversal of some processes 
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'would require the reversal of the motion of each individual 
molecule. 

We are not only unable to manipulate very minute 
portions of matter, but we are also unable to separate events 
which follow one another with great rapidity. The finite 
time our sensations last causes any phenomenon which 
consists of events following each other in rapid succession 
to present a blurred appearance, so that what we perceive 
at any moment is not what is happening at that moment, 
but merely an average effect which may be quite unlike the 
actual effect at any particular instant. In consequence of 
the finiteness of the time taken by our senses to act, we are 
incapable of separating two events which happen within a 
very short interval of each other, just as the finiteness of the 
wave length of light prevents us from seeing any separation 
between two points which are very close together. Thus if 
we observe any effect we cannot tell by our senses whether 
it represents a steady state of things or a state which is 
rapidly changing, and whose mean is what we actually 
observe. We are therefore at liberty, if it is more convenient 
for the purposes of explanation, to look upon any effect as 
the average of a series of rapidly changing effects of a 
different kind. 

Let us now consider the case of a system whose motion 
is such that in order to represent it frictional terms 
proportional to the velocity have to be introduced, and let 
us assume at first that the motion is represented at each 
instant by the equations with these terms in, .so that the 
dynamical equations are not equations which are merely 
true on the average. 

It might appear at first sight as if we could explain the 
frictional terms in the equations of motion as arising from 
the connexion of subsidiary systems with the original system 
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just as in § 11 we explained the "positional" forces as 
due to changes in the motion of a system connected with 
the original system. Let us suppose for a moment that 
this is possible. Then if T is the kinetic energy of the 
original system, and T' that of the subsidiary system whose 
motion is to explain the frictional forces, we have, by 
Lagrange's equations, 

d dT dT d dT dT> dV -,- —. ; y —. + = external force of type x : 
dt dx dx dt dx dx dx 

thus the term 
d dT dT 
dt dx dx 

must be equal to the "frictional term" which is proportional 
to x. For this to be the case, it is evident that T' must 
involve x. The momentum of the system is, however, 
d(T+ T')jdx, and this momentum must be the same as 
that given by the ordinary expression in Rigid Dynamics, 
viz. dTjdx. If these two expressions are identical, dT'/dx 
must vanish for all values of x, that is, T' cannot involve x, 
which is inconsistent with the condition necessary in order 
that the motion of the subsidiary system should give rise 
to the " frictional" terms. Hence we conclude that the 
frictional terms cannot be explained by supposing that any 
subsidiary system with a finite number of degrees of freedom 
is in connexion with the original system. 

If we investigate the case of a vibrating piston in con­
nexion with an unlimited volume of air, we shall find that 
the waves starting from the piston dissipate its energy just 
as if it were resisted by a frictional force proportional to its 
velocity; this, however, is only the case when the medium 
surrounding the piston is unlimited, when it is bounded 
by fixed obstacles the waves originated by the piston get 
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reflected from the boundary, and thus the energy which 
went from the piston to the air gets back again from the 
air to the piston. Thus the frictional terms cannot be 
explained by the dissipation of the energy by waves starting 
from the system and propagated through a medium sur­
rounding it, for in this case it would be possible for energy 
to flow from the subsidiary into the original system, while, 
if the frictional terms are to be explained by a subsidiary 
system in connexion with the original one, the connexion 
must be such that energy can flow from the original into 
the subsidiary system, but not from the subsidiary into the 
original system. 

Hence we conclude that the equations of motion, when 
they contain frictional terms, represent the average motion 
of the system, but not the motion at any particular instant. 

Thus, to take an example, let us suppose that we have a 
body moving rapidly through a gas ; then, since the body 
loses by its impacts with the molecules of a gas more 
momentum than it gains from them, it will be constantly 
losing momentum, and this might on the average be repre­
sented by the introduction of a term expressing a resistance 
varying as some power of the velocity; but the equations of 
motion, with this term in, would not be true at any instant, 
neither when the body was striking against a molecule of 
the gas, nor when it was moving freely and not in collision 
with any of the molecules. Again, if we take the resistance 
to motion in a gas which arises from its own viscosity, the 
kinetic theory of gases shows that the equations of motion 
of the gas, with a term included expressing a resistance 
proportional to the velocity, are not true at any particular 
instant, but only when the average is taken over a time 
which is large compared with the time a molecule takes to 
traverse its own free path. 
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Since frictional forces cannot be explained by means of 
a system in a uniform state, we shall consider the dynamics 
of a system which is subject to the action of forces which 
last only for a short time but which recur very frequently. 

Let us suppose that in the expression for the Lagrangian 
function of the system we are considering there is a term 
L' which is intermittent. It has for some small time a 
finite value, then vanishes, then springs into existence 
again, then vanishes, and so on, repeating its value n times 
in a second. We shall for brevity speak of each of the 
epochs during which the function U has a finite value as 
a collision, and shall call n the number of collisions per 
second. For example, in the case of a body moving through 
a gas L' may be the part of the Lagrangian function which 
represents the action of a molecule of the gas on the body, 
when the body is in collision with a molecule L! has a finite 
value, when however the body is free from collision L is so 
small that it may be assumed to be zero without appreciable 
error. 

Lagrange's equation corresponding to the coordinate x 
is, if L is the steady part of the Lagrangian function, 

Now unless the structure of the system is steadily chang­
ing \dL'jdx\l will either vanish oc be exceedingly small, so 
that in general we may neglect it and write 

Integrating this equation over a time Twe get 

•T/d dZ dL 
) a \dt dx dx, 
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Let us choose T so that though a great many collisions 
occur in this time, yet the values of x, x, 'x are not 
changed in it by a finite amount. 

Now if T be the time a collision lasts and if there are n 
of them per second 

!TdZ , „ dL' 

if as in a numerous class of cases x may be supposed to 
remain constant during the collision, we may write (252) as 

?d4dt=nTdf, 
dx dx 

where X = 1 L'dt. 

Since 

Jo \dtdx dx J \dt dx dxj 

equation (251) becomes 
d dL dL dx 
dtdx dx dx' 

Thus the effect produced by these intermittent forces is 
the same as that which would be produced by a steady 
force X of type x and given by the equation 

dx 

Similarly they would produce the same effect as a force 
Y of type y where 

Y=nd}. 
dy 

If dx/dx, dx'dy do not involve the velocities x, y and 
if rt the number of collisions per second is a linear function 
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of these velocities, these forces will be of the character of 
frictional forces. 

If n does not involve the coordinates x, y explicitly then 
we have 

dY dX , . 

dx dy ( 2 S 3 ) ' 

the consequences of this equation will be similar to those 
developed in § 44. Thus for example suppose we were to 
find that the logarithmic decrement of the torsional vibra­
tions of a wire depended on the extension of the wire, then 
it would follow from (252) that when the wire was vibrating 
there would be a force tending to alter its length. If the 
frictional resistance to the torsional vibrations were ¡¿6, 
where 6 is the angular velocity of a pointer attached to the 
wire, then if the above equation is true, there would be a 
force X tending to lengthen the wire and given by the 
equation 

^ = - 6-!*', where x is the length of the wire. 
do dx ° 

Thus if — is constant we have 
dx 

X--66dp. 
dx 

Whence it follows that if the torsional vibrations were 
periodic there would be a force tending to produce longi­
tudinal vibrations of half their period; or again, if the 
viscosity of an iron wire were altered by magnetization 
there would be a periodic magnetizing force acting on a 
vibrating wire whose period would he half that of the 
torsional vibrations. 

The relation (253) is only satisfied when n is in­
dependent of x and y, if n is a function of these quantities 
we shall have the relation 
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dV dX_^.d\ogn d\ogn 
dx dy dy dx 

instead, and if we consider forces of a third type z, the 
two additional relations 

dX dZ dlagn d\ogn 
, = Z, -— — JC 

dz dx dx dz 

a r l d - dJt= Y D l o I ^ _ Z —°G " 
dy dz dz dy 

so that 

r.fdY dX\ (dX dZ\ v(dZ dY\ t . 
Z{-dx-Ty) + V { d z - d x ) + X { d y - & ) = ° - < a 5 4 ) . 

In these relations X, Y, Z are only those parts of the 
forces of types x, y, z which are intermittent in their action. 

If from the nature of the case we can see that the 
number of collisions is independent of some one coordinate 
x, then it follows from the above equations that 

[i/dY dX\ J f i (dZ dX\ J 

l ° 8 n = j x ( l i x - d y ) d y + jx{dx--dz)dz-

If the viscous forces arise from collisions with several 
distinct systems, instead of with one as we have hitherto 
assumed, we shall have 

where na are the numbers of collisions per second with 
the systems (i), (2)... respectively, and 

where 14 is the Lagrangian function of the rth system. 
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If n„ ns... are independent of x, y then as before 

dX dY 
dy dx ' 

but if nlt n2 involve the coordinates x, y, then the relation 
( 2 5 3 ) must be replaced by one involving higher differential 
coefficients. 

The preceding considerations show that in those cases 
where the viscous forces are due to "collisions" we have 
several criteria the fulfilment or non-fulfilment of which will 
afford us information about the constitution of the system. 
Thus if (252) is not fulfilled we conclude that the number 
of collisions depends upon the value of the coordinates, if 
(253) is not fulfilled we conclude that the viscous forces are 
due to collisions with more systems than one and so on. 

There is a great dearth of experiments on the influence 
of various physical conditions on viscous forces except 
when these forces are those which resist the passage of 
electricity through conductors. It does not seem probable 
however that in this case the resistance can be due to a suc­
cession of impulses whose number is proportional to the 
strength of the current; for the case is not analogous to 
that of a viscous force depending on the change of shape 
or configuration of a system, where we might reasonably 
expect the number of effective collisions to be propor­
tional to the velocity of the change. 

In order to get some idea as to how discontinuous 
forces can produce the effect of electric resistance, let us 
consider some cases in which effects analogous to resistance 
are produced by a succession of changes following one 
another in quick succession. A very good example of a 
case of this kind is the arrangement given by Maxwell 
(Electricity and Magnetism, n . p. 3^5) for measuring in 

T. D. 19 
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electromagnetic measure the capacity of a condenser, in 
which by means of a tuning fork interruptor the plates of a 
condenser are alternately connected with the poles of a 
battery and with each other. If the rate of discharge is 
very rapid, this arrangement of condenser and tuning fork 
produces the same effect as a resistance i/nC where C is 
the capacity of the condenser and n the number of times it 
is discharged per second. Thus in this case a combination 
of induction and discharge produces the same effect as a 
resistance. Another case in which the conditions are plainly 
discontinuous but which produces the same effect as a 
continuous current, if the rate of alternation is sufficiently 
rapid, is when electricity passes through a closed glass tube 
filled with air. If electrodes are fused into the tube and 
connected to an electrical machine in action there will be 
no discharge of electricity across the tube until the electro­
motive force gets large enough to break down the electric 
strength of the air, when a spark will pass, an interval will 
elapse before the second spark passes, during which the 
electromotive force inside the tube will be increasing to the 
value necessary to overcome the electric strength of the air. 
If this interval is very short then the successive discharges 
will produce the same effect as a continuous current through 
the tube. The consideration of this case may also throw 
some light on the mechanism by which the discharge is 
effected, for there are many reasons for believing that in 
this case the discharge is accomplished by the decomposi­
tion of the molecules of the gas, the energy required for 
this decomposition coming from the electric field, and the 
consequent exhaustion of the electric energy producing the 
electric discharge. The reasons which lead us to this con­
clusion are as follows : 

(1 ) Different gases differ much more in their electric 
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strengths than they do in other physical qualities, the 
difference is much more comparable with the differences 
between their chemical properties than their physical ones, 
and the difference between a chemical and a physical pro­
cess seems to be that in the chemical process the mole­
cules are split up while in the physical one they are not. 

(z) In many cases there is direct evidence from both 
spectroscopic and chemical analysis that this decomposition 
takes place, and again gases of complex composition 
whose molecules are easily split up are also electrically very 
weak. 

(3) We can explain by this hypothesis in a general way 
(Proc. Came. Phil. Soc. v. 400) why the electric strength 
should gradually diminish as the gas gets rarer and rarer, 
until when the pressure is about that due to a millimetre 
of mercury the electric strength is a minimum, when the 
pressure falls below this value the electric strength increases 
again until at the highest exhaustion which can be got by 
the best modern air pumps the strength is so great that it 
is almost impossible to get a spark through the gas. 

(4) Dr Schuster has shown (Proc. Royal Society, xxxvu. 
p. 318) that the electrical discharge through mercury vapour 
which is supposed to be a monatomic gas presents a 
peculiar appearance and passes with great difficulty, and 
quite recently Hertz (Wied. Ann. xxxi. p. 983, 1887) has 
shown that the electric discharge passes more easily through 
a gas when it is exposed to the action of violet or ultra-violet 
light than when it is in the dark; since ultra-violet light has 
a strong tendency to decompose the molecules of a gas 
through which it is passing, this is very strong evidence in 
favour of the view that the discharge is caused by the 
splitting up of the molecules of the gas. 

In the case of the electric discharge through gases the 

19—2 
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insulation seems to be perfect until the electromotive force 
reaches a definite value, when a spark passes. Thus the field 
can apparently not be discharged by a rearrangement of the 
molecules unaccompanied by decomposition. There is evi­
dence however that when the molecules are split up into 
constituents a state of molecular structure is produced in 
which the discharge may be produced by rearrangement 
without further decomposition. Thus Dr Schuster has shown 
(Proc. Roy. Sac. XLII . p. 371) that when a strong electric dis­
charge passes through a gas, a very small electromotive force 
is sufficient to produce a current in a region of the gas 
screened off from the electrical influence of the primary dis­
charge. Again Hittorf found that a gas was weakened for 
discharges in the horizontal direction by passing a vertical 
discharge through it. The diminution in the electric strength 
of a gas after the passage of a spark can be accounted for in 
the same way. Again in Mr Varley's experiments on the 
electric discharge through gases (Proc. Roy. Soc. xix. 236) 
the quantity of electricity which passed through a tube filled 
with gas was proportional to E - E0 where E is the difference 
between the potentials of the electrodes and £ 0 a constant 
electromotive force, in other words the quantity of electricity 
which flowed through the tube was proportional to the excess 
of the electromotive force above that which broke the dielec­
tric down; this seems to indicate that the electromotive 
force E0 produces a supply of atoms in the nascent condi­
tion and that the rearrangement of these atoms discharges 
the field. 

In the case of fluid insulators the insulation for low 
electromotive forces is not as in the case of gases perfect. 
A condenser the plates of which are separated by a liquid 
dielectric always leaks however small the difference between 
the potentials of the plates may be. Some experiments 
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recently made by Mr Newall and myself (Proc. Roy. Soc. 
XLII . p. 410) showed that for small electromotive forces the 
leakage obeyed Ohm's law, that is, was proportional to the 
difference of potential between the plates. This indicates 
that the leakage is produced by the rearrangement under 
the electromotive force of some molecular condition, and 
that this condition is not produced by the electric field, for 
if it were the leakage would vary as a higher power than the 
first of the electromotive force. Quincke, who investigated 
the passage of electricity through the same liquids, using 
however electromotive forces comparable with those which 
would produce sparks through the dielectric, found that under 
these circumstances the quantity of electricity passing through 
the dielectric varied as a higher power than the first of the 
electromotive forces, which is just what we should have ex­
pected if the electric field split up the molecules of the fluid. 

There are many liquids which, though they only conduct 
electricity with great difficulty when pure, yet when salts or 
other substances (which may themselves be non-conductors) 
are dissolved in them, conduct readily. This kind of con­
duction is called electrolytic and is accompanied by effects 
which are not observed in other cases. 

Since the solvent is not a conductor, the discharge of 
the electric field which constitutes conduction must in some 
way or other be due to the action of the substance dissolved 
in it. The consideration of the discharge through gases as 
well as the chemical decomposition which always accom­
panies this kind of conduction suggests that in this case the 
discharge is caused either by the splitting up of the mole­
cules of the salt by the electric field, or else by the 
rearrangement when in a nascent condition of the atoms of 
a molecule of the salt or the constituents of a more complex 
molecule containing both salt and solvent, the splitting up of 
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the molecule being done independently of the electric field. 
The first of these methods is unlikely for the following reasons. 

( 1 ) If it were true it would require a finite electro­
motive force to start a current through an electrolyte, just 
as to send a spark through a gas, whilst from the evidence 
of many experiments it seems clear that the smallest electro­
motive force is sufficient to start a current through an 
electrolyte. 

(2) The experiments of Prof. Fitzgerald and Mr Trouton 
(Report of the British Association Committee on Electrolysis, 
1886, p. 312) have shown that Ohm's Law is obeyed with 
great exactness by a current flowing through an electrolyte, 
whereas if the electromotive force had to break up the 
molecules the current would be proportional to a higher 
power than the first of the electromotive force. 

(3) If the molecules were split up by the current then 
the salt will form a greater number of individual systems 
when the current is flowing than when it is not. Now the 
rise of the solution in an osmometer, and the lowering of its 
vapour pressure depend upon the number of molecules in 
unit volume of the liquid and not upon their kind, so that if 
the number of separate systems is increased by the passage of 
the current these effects ought to be increased by the passage 
of a current through the solution. I have lately made some 
experiments on both these effects and have not been able 
to detect that the slightest change was made by the current. 

For these reasons we conclude that the splitting up of 
the molecules which allows the current to pass is not caused 
by the electromotive force but takes place quite indepen­
dently of the electric field. 

The forces between the atoms in a molecule are usually 
too strong to allow of any arrangement under the electric 
field, but when the molecule breaks up and these interatomic 
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forces either vanish or become very small the constituents 
of the molecule are free to move under the electro­
motive force, and they will move so as to diminish the 
strength of the electric field. In order to form a definite 
idea of the way in which the field gets discharged, we 
may take the usual view that the constituents into which 
the molecule splits up are charged with opposite kinds 
of electricity, and that when the molecule splits up the 
positively charged constituent travels in one direction, the 
negatively charged one in the other; in this way we get 
two layers of positive and negative electricity formed, the 
electric force due to which neutralizes in the region between 
the layers the external electric force. The positively charged 
molecules soon come into the neighbourhood of some 
negatively charged ones travelling in the opposite direction 
and they recombine, while the negatively charged ones 
do the same with some positive molecules, thus the 
force due to the layers vanishes and the external electric 
field is re-established to be soon demolished again by the 
decomposition and rearrangement of other molecules. 

Although we suppose that the current is transmitted by 
the molecules of the electrolyte breaking up, this does not 
necessarily imply that the electrolyte should when free from 
electromotive force be largely dissociated, for all that is 
necessary on this view for the passage of a current is that 
the molecules of the electrolyte should split up, and there is 
nothing to prevent our supposing, if other reasons render it 
probable, that they would instantly re-unite if no electromo­
tive force acted upon them. And since the state of dissoci­
ation depends upon the ratio of the time the atoms remain 
dissociated to the time during which they are combined, we 
may make this as small as we please and yet have continual 
splitting up of the molecules. 
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There does not seem any necessity for supposing that 
the passage of electricity through metals and alloys is 
accomplished in a fundamentally different -way from that 
through gases and electrolytes. For the chief differences 
between conduction through metals and through electrolytes 
are (i) that in electrolytic conduction the components of 
the electrolyte appear at the electrodes, and we have polar­
ization, and (2) that the conductivities of electrolytes in­
crease while those of metals diminish as the temperature 
increases. 

Let us begin by considering the first of these differences, 
that of polarization. A little consideration will show that we 
could hardly expect to detect it in the case of metals or 
alloys, for here instead of, as in electrolytes, the property of 
splitting up being confined to a few molecules sparsely scat­
tered through a non-conducting solvent, the whole of the 
molecules can split up, thus the rate of disappearance of 
any abnormal condition would be almost infinitely greater 
than in the case of electrolytes, so that if any polarization 
were produced it would probably die away before it could 
be detected. Let us next consider the appearance of the 
constituents of the conductor at the electrodes. The only 
case in which we could expect to detect this is that of the 
alloys, but even in this case Prof. Roberts-Austen was 
unable to detect any change of composition in the alloy 
round the electrodes; we must remember however that an 
alloy differs very materially from an electrolyte because 
while in the latter we have a few " active" molecules 
embedded in a non-conductor, in the former it is as if the 
solvent as well as the salt conducted, so that the discharge 
is not concentrated on a few molecules of definite com­
position but can travel by an almost infinite variety of 
paths. 
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Then again the statements about the effect of heat on 
the conductivity of elements and electrolytes though true in 
general are subject to exceptions, thus the conductivities of 
selenium, phosphorus and carbon increase as the tempera­
ture increases; that of bismuth is said to increase at certain 
temperatures, and I have lately found that the conductivity 
of an amalgam containing about 30 per cent, of zinc and 
70 of mercury is greater at 8o° C. than at i5°C. We must 
remember too that the rate of increase of conductivity with 
temperature for electrolytes diminishes as the concentration 
increases. No sharp line of demarcation can therefore be 
drawn between the two classes of conductors on this 
account. 

There does not seem any difference between metallic 
and electrolytic conduction which could not be attributed 
to the vastly greater number of molecules taking part in 
metallic conduction, whilst assuming that in all cases the 
current consists of a series of intermittent discharges caused 
by the rearrangement of the constituents of molecular 
systems. 

We shall therefore proceed to examine the dynamical 
results to which such a conception of the electric current 
leads. 

Let us consider the case of an electric field where the 
electromotive force is everywhere parallel to the axis of x. 
Let the electric displacement in this direction be f, then in 
the Lagrangian function of unit volume of the medium there 
is the term 

K ' 

where K is the specific inductive capacity of the medium. 
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This term gives rise to the force 
_ 4 T T / 

K 

parallel to the axis of x. In consequence of the continual 
rearrangement of the molecular systems f/A~is not uniform 
but keeps alternately vanishing and rising to a maximum 
value. If these alterations are sufficiently rapid the effect 
represented by this term will be the same as that of a steady 
force equal to its mean value, that is to 

Let us suppose that in consequence of the rearrange­
ment of molecular systems f vanishes n times a second, and 
that T is the period which elapses between the end of one 
period of extinction and the end of the next, then 

where i is the maximum value of f, and S a quantity which 
depends upon the ratio of the time the field is destroyed to 
that during which it exists. 

When the molecular systems rearrange themselves so as 
to discharge the electric field molecules charged with f 
units of electricity pass through unit area in one direction, 
while f units of negative electricity are carried by molecules 
moving in the opposite direction. 

Thus 2ni is the sum of the positive electricity moving 
in one direction and of the negative in the opposite passing 
through unit area in unit time, it is therefore equal to u 
where u is the intensity of the, current, and since m is 
equal to unity, the force we are considering equals 

27T0 

nK u. 
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so that this continual breaking down of the field produces 
the same effect as if the substance possessed the specific 
resistance nvfilnK. Thus the greater the number of times 
per second the displacement breaks down &c, the better 
the conductivity. 

Now the breaking down of the displacement is caused 
by the rearrangement of the molecules, and the rearrange­
ment of the molecules in a solid will produce much the 
same effects as the collisions between the molecules of a 
gas, and will tend to equalize the condition of the solid, 
thus we might expect the rate of equalization of temperature 
to increase with the number of molecular rearrangements. 
The electrical conductivity would also increase in the same 
way, so that this view fits in with the correspondence which 
exists between the orders of the metals when arranged ac­
cording to thermal and to electrical conductivities. 

The preceding investigation of the resistance of such a 
medium is only valid when the electromotive force is ap­
proximately constant over a time which includes a great 
many discharges. If the displacement were to be reversed 
during the interval between two successive rearrangements 
of the molecules the substance would behave like an insula­
tor and not like a conductor. If a is the specific resistance 
of the substance then 

27T/3 
— — O", 
nK 

2TT/8 
or n =. — , 

where all we know about ¡3 is that it cannot be greater 
than unity. To find a superior limit to n let us assume 
that ¡3 has its maximum value, and that K is 7/9 x 1 0 " 
which is about the same as for light flint glass, then the 
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number of times the field breaks down a second is given 
by the following table : 

n 

Silver I-6 X I O 3 5 X I O 1 7 

Copper I-6 X I O 3 5 X I O " 

Gold 2'I X I O 3 4 X I O 1 7 

Platinum 9 X I O 3 9 X I O 1 6 

Lead 2 X IO* 4 X I O 1 6 

Mercury 9-6 X I O 1 8 X I O " 

Water with 
sulphuric 

B"3 per cent, of 
acid y 3 X I O 9 2 - 4 X I O 1 ' 

Copper sulphate and water 
(CuS0 4 + 4SH,0) I ' 9 X I O 1 0 4'2 X I O 1 0 

According to the electromagnetic theory of light the 
electric displacements which constitute light are reversed 
nearly i o I S times per second; comparing this with the 
number of times the field is discharged in an electrolyte, we 
see that the displacement would be reversed many times 
a second before it was discharged and hence that such 
substances would behave like insulators to these rapidly 
alternating displacements, and so according to the electro­
magnetic theory of light should be transparent, which as a 
matter of fact most of them are. Again, we have certainly 
overestimated /3 and probably underestimated K\ if we take 
this into consideration we may conclude that the number 
of times the field is discharged is probably even in the 
best metallic conductors not much greater than the number 
of times the displacements accompanying the propagation 

IRIS - LILLIAD - Université Lille 1 



of light are reversed, hence we need not be surprised that 
metals in thin films possess a transparency almost infinitely 
greater than that calculated on the assumption that their 
conductivity is the same as that for steady currents. 

The number of times the field is discharged at any point 
will depend upon the number of molecules which split up 
in unit time and the distance which these travel before 
combining. If m is the number of times the molecules 
in unit volume split up in unit time and if it requires q 
molecules per unit area to be split up in order to discharge 
the field, then if the molecules after being split up travel 
a distance x under the influence of the electromotive force 
before again entering into combination, we shall have 

771 71= — X, 
2 

since any q molecules which break up within a distance xJ2 
on either side will discharge the field. Since both x and q 
will be directly proportional to the electromotive force, 
n will be independent of it, if the splitting up of the 
molecules is accomplished by other means. 

Since u = 2ni = 2 — xi, 
and since, if the substance is an electrolyte, 

f = qt, 

where « is the charge on either of the ions into which the 
molecule splits up, we have 

u = 2mxt. 
So that if JVBE the number of molecules of the salt in 

unit volume 

U 771 
2M ~JVX 
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= x x (number of times each molecule breaks up per second) 
= the distance between the two ions at the end of one 

second. 
But u\*N* is, see Lodge, Report on Electrolysis, British 

Association Report, 1885, p. 755, the quantity called by 
Kohlrausch the sum of the velocities of the ions, and if 
we assume that the ratio' of the velocities is given by 
experiments on the migration of the ions, this view of the 
current would lead to the same expression for the absolute 
distance travelled by each ion in unit time as that given by 
Kohlrausch. 

A full discussion of this would however lead us too far 
from our purpose, which is merely to use this conception of a 
current to deduce reciprocal relations from the effects of 
various physical agencies on resistance. 

The specific resistance of a substance according to our 
view is 

nK' 

and if this varies when the circumstances are changed it 
may be because either 8, n, or K are changed. To take 
an example the resistance of a metal wire seems to be 
slightly affected by strain, this may arise either from the 
specific inductive capacity being altered by strain, or by the 
strain altering the number of times a second the molecules 
split up, or finally by an alteration in the time the field 
remains discharged. The term 

_ 27R/ 2 

K 

in the Lagrangian function corresponds, see § 35J to a force 
equal to 

_ / a d I 
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tending to produce an extension e. Thus unless the altera­
tion in the resistance was due to the alteration of K with 
the strain there would be no corresponding elastic force. 
If however it does arise from the alteration of K with the 
strain the mean value of the elastic force is 

where a is a number which cannot be greater than unity, 
' and which like [3 depends upon the time the field remains 
discharged. 

Thus the mean value of the elastic force 

2TTU2A Í/log K 

~Kt? ' de 

TRU2A dlog K 

¡3fí de 

For good conductors this term will be exceedingly small 
on account of the smallness of <r/n, see the table p. 300, 
and even for bad conductors it will never get large enough 
to make it comparable with the large forces required to 
produce an appreciable change in the extension. 

If x is a coordinate of any type this term indicates a 
force of type x equal to 

o- <XU2 dlog K 

or as it may be written 

CT2U'O.Kd\QgK 

2TTJ32 dx 
Now jS'is of the order 1 0 " " and <ru, the electromotive 
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force, even for a fall of 10 volts per centimetre, is only io", 
so that in this case the force of type x is of the order 

_ 3 a d log K 
1 0 2^/3" ~dx ~ ' 

and so is exceedingly small; hence we conclude that the 
reciprocal effects corresponding to the effects observed on 
the resistances are probably much too small to be capable 
of detection unless for very bad conductors under the 
influence of electromotive forces comparable with those 
used in experiments on static electricity. 
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