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PREFACE 

[TO THE FIRST EDITION] 

T HERE is a certain well-defined range in Electromagnetic Theory, which 
every student of physics may be expected to have covered, with more 

or less of thoroughness, bèfore proceeding to the study of special branches 
or developrnents of the subject. The present book is intended to give the 
mathematical theory of this range of electromagnetism, together with the 
mathematical analysis required in its treatment. . 

The range is very approximately that of Maxwell's original Treatise, but 
the present book is in many respects more elementary than that of Maxwell. 
Maxwell's Treatise was written for the fully-equipped rnathematician: the 
present book is written more especially for the student, and for the physicist 
of limited mathematical attainments. 

The questions of mathematical analysis which are treated in the text 
have been inserted in the places where they are first needed for the 
development of the. physical theory, in the belief that, in many cases, 
the mathematical and physical theories illuminate one another by being 
studied simultaneously. For exarnple, brief sketches of the theories of 
spherical, zona1 and ellipsoidal harmonics are given in the chapter on 
Special Prohlems in Electrostatics, interwoven with the study of harmonic 
potentials and electrical applications: Stokes' Theorem is similarly given 
in connection with the magnetic vector-potential, and so on. One result 
of this arrangement is to destroy, at  least in appearance, the balance of 
the amounts of space allotted t o  the different parts of the subject. For 
instance, more than half the book appears to be devoted to Electrostatics, 
but this space will, perhaps, not seem excessive when i t  is noticed how 
many of the pages in the Electrostatic part of the book are devoted to 
non-electrical subjects in applied mathematics (potential-theory, theory of 
stress, etc.), or in pure mathematics (Green's Theorem, harmonic analysis, 
complex variable, Fourier's series, conjugate functions, curvilinear coordi- 
nates, etc.). 
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vi Preface 

A number of examples, taken mainly from the usual Cambridge 
examination papers, are inserted. These may provide problems for the 
mathematical stndent, but i t  is hoped that they mny also form a sort of 
compendium of results for the physicist, shewing what types of problem 
admit of exact mathematical solution. 

It is again a pleasure to record my thanks to the oficials of the 
University Press for their unfailing vigilance and help during the printing 
of the book. 

J. H. JEANS. 

[TO THE SECOND EDITION] 

The second Edition will be found to differ only very slightly from the 
first in al1 except the last few chapters. The chapter on Electromagnetic 
Theory of Light has, however, been largely rewritten and considerably 
amplsed, and two new chapters appear in the present edition, on the 
Motion of Electrons and on the General Equations of the Electromagnetic 
Field. These last chapters attempt to give an introduction to the more 
recent developments of the subject. They do not aim a t  anything like 
completeness of t r e a t ~ e n t ,  even in the small parts of the subjects with 
which they deal, but it is hoped they will form a useful introduction to more 
complete and specialised works and monographs. 

J. H. JEANS. 

[TO THE THIRD EDITION] 

I n  preparing a third Edition 1 have made only a few changes in the 
latter chapters, which were necessary to bring the book up to date. 

J. H. JEANS. 
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INTRODUCTION 

TIIE THREE nIVISIONS O F  ELECTROMAGNETISM 

1. THE fact that a piece of amber, on being rubbed, attracted to itself 
other smaII bodies, was known to the Greeks, the discovery of this fact being 
attributed to Thales of Miletus (640-548 B.C.). A second fact, namely, that 
a certain minera1 ore (lodestone) possessed the property of attracting iron, 
is mentioned by Lucretius. These two facts have formed the basis from 
which the modern science of Electromagnetism has grown. It has been 
found that the two phenomena are not isolated, but are insignificant iinits in 
a vast and intricate series of phenomena. To study, and as far as possible 
interpret, these phenomena is the province of Electromagnetisrn. And the 
mathematical development of the subject must aim at  bringing as large 
a number of the phenomene as possible within the power of exact mathe- 
matical treatment. 

2. The first great branch of the science of Electromagnetism is known 
as Electrostatics. The second branch is commonly spoken of as Magnetism, 
but is more accurately described as Magnetostatics. We may Say that 
Electrostatics has been developed from the single property of amber already 
mentioned, and that Magnetostatics has been developed from the single 
property of the lodestone. These two branches of Electrornagnetism deal 
solely with states of rest, not with motion or changes of state, and are 
therefore concerned only with phenomena which can be described as statical. 
The developments of the two statical branches of Electromagnetism, namely 
Electrostatics and Magnetostatics, are entirely independent of one another. 
The science of Electrostatics could have been developed if the properties of 
the lodestone had never been discovered, and similarly the science of 
Magnetostatics could have been developed without any knowledge of the 
properties of amber. 

The third branch of Electromagnetism, namely, Electrodynamics, deals 
with the motion of electricity and magnetism, and i t  is in the development 
of this branch that we first find that the two groups of phenomena of 
electricity and magnetism are related to one another. The relation is 
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2 Introduction 

a reciprocal relation: it is found that magnets in motion produce the same 
effects as electricity a t  rest, while electricity in motion produces the same 
effects as magnets a t  rest. The third division of Electromagnetism, then, 
connects the two former divisions of Elecîxostatics and Magnetostatics, and 
is in a sense syrnmetrically placed with regard to thern. Perhaps we may 
compare the whole structure of Electromagnetism to an arch made of three 
stones. The two side stones can be placed in position independently, neither 
in any way resting on the other, but the third cannot be placed in position 
until the two side stones are securely fixed. The third stone rests equally 
on the two other stones and forms a connection between them. 

3. I n  the present book, these three divisions will be developed in the 
order in which they have been mentioned. The mathematical theory will be 
identical, as regards the underlying physical ideas, with that given by 
Maxwell in his Treatise on Elect~icity and Magnetism, and in his various 
published papers. The principal peculiarity which distinguished Maxwell's 
mathematical treatment from that of al1 writers who had preceded him, was 
his insistence on Faraday's conception of the energy as residing in the 
medium. On this view, the forces acting on electrifled or magnetised bodies 
do not form the whole system of forces in action, but serve only to reveal 
to us the presence of a vastly more intricate system of forces, which act 
a t  every point of the ether by which the material bodies are surrounded. 
It is only through the presence of matter that such a system of forces can 
become perceptible to human observation, so that we have to try to 
construct the whole system of forces from no data except those given by the 
resultant effect of the forces on matter, where matter is present. As might - 
be expected, these data are not sufficient to give us full and definite knowledge 
of the system of ethereal forces; a great number of system of ethereal 
forces could be constructed, each of which woiild produce the same effects on 
matter as are observed. Of these systems, however, a single one seems so 
very much more probable than any of the others, that i t  was unhesitatingly 
adopted both by Maxwell and by Faraday, and hm been followed by al1 
subsequent workers a t  the subject. 

4. As soon as the step is once made of attributing the mechanical 
forces acting on matter to a system of forces acting throughout the whole 
ether, a further physical development is made not only possible but also 
necessary. A stress in the ether may be supposed to represent either an 
electric or a magnetic force, but cannot be both. Faraday supposed a stress 
in the ether to be identical with electrostatic force, and the accuracy of this 
view has been confirmed by al1 subsequent investigations. There is now 
no possibility, in this scheme of the universe, of regarding magnetostntic 
forces as evidence of simple stresses in the ether. 
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The three divisions of Electromagnetism 3 

I t  has, however, been said that magnetostatic forces are found to be 
produced by the motion of electric charges. Now if electric charges a t  rest 
produce simple stresses in the ether, the motion of electric charges must be 
accompanied by changes in the stresses in the ether. I t  is now possible to 
identify magnetostatic force with change in the system of stresses in the 
ether. This interpretation of magnetic force forms an essential part of 
Maxwell's theory. If we compare the ether to an elastic material medium, 
we may say that the electric forces must be interpreted as the statical 
pressures and strains in the medium, which accompany the compression, 
dilatation or displacement of the medium, while magnetic forces must be 
interpreted as the pressures and strains in the medium caused by the motion 
and momentum of the medium. Thus electrostatic energy must be regarded 
as the potential energy of the medium, while magnetic energy is regarded as 
kinetic energy. Maxwell has shewn that the whole series of electric and 
magnetic phenomena may without inconsistency be interpreted as phenomena 
produced by the motion of a medium, this motion, being in conformity with 
the laws o f  dynamics. More recently, Larmor has shewn how an imaginary 
medium can actually be constructed, which shall produce al1 these phenomena 
by its motion. 

The question now arises: If magnetostatic forces are interpreted as 
motion of the medium, what properties are. we to assign to the magnetic 
bodies from which these magnetostatic forces originate ? An answer sug- 
gested by Ampère and Weber needs but little modification to represent the 
answer to which modern investigations have led. Recent experimental 
researches shew that al1 matter must be supposed to consist, either partially 
or entirely, of electric charges. This being so, the kinetic theory of matter 
tells us that these charges will possess a certain amount of motion. Every- 
thing leads us to suppose that al1 magnetic phenomena can be explained by 
the motion of these charges. If the motion of the charges is governed by a 
regularity of a certain kind, the body as a whole will shew magnetic pro- 
perties. If this regularity does not obtain, the magnetic forces produced by 
the motions of the individual charges will on the whole neutralise one 
another, and the body will appear to be non-magnetic. Thus on this view 
the electricity and magnetism which a t  first sight appeared to exist inde- 
pendently in the universe, are resolved into electricity alone-electricity 
and magnetism become electricity a t  rest and electricity in motion. 

This discovery of the ultimate identity of electricity and magnetism is 
by no means the last word of the science of Electromagnetism. As far back 
as the time of Maxwell and Faraday, it was recognised that the forces at  
work in chemical phenomena must be regarded largely if not entirely, as 
electrical forces. Later, Maxwell shewed light to be an electromagnetic 
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4 Introduction 

phenornenon, so that the whole science of Optics became a branch of 
Electromagnetism. 

A still more modern view attributes a11 material phenomena to the action 
of forces which are in their nature identical with those of electricity and mag- 
netism. Indeed, modern physics tends to regard the universe as a continuous 
ocean of ether, in which material bodies are represented merely as peculiarities 
in the ether-formation. The stndy of the forces in this ether must therefore 
enibrace the dynamics of the whole universe. The study of these forces is 
best approached through the study of the forces of electrostatics and magneto- 
statics, but does not end until al1 material phenornena have been discussed 
from the point of view of ether forces. I n  one sense, then, it may be 
said that the science of Electrornagnetism deals with the whole material 
universe. 
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CHAPTER 1 

PHYSICAL PRINCIPLES 

1. State of ElectriJication of a Body. 

5. WE proceed to a discussion of the fundamental conceptions which 
form the basis of Electrostatics. The first of these is that of a state of 
electrification of a body. When a piece of amber has been rubbed so that it 
attracts small bodies to itself, we say that it is in a state of electrification- 
or, more shortly, that i t  is electrified. 

Other bodies besides amber possess the power of attracting small bodies 
after being rubbed, and are therefore susceptible of electrification. Indeed 
i t  is found that al1 bodies possess this property, although i t  is less easily 
recognised in the case of most bodies, than in the case of amber. For 
instance a brass rod with a glass handle, if rubbed on a piece of silk or cloth, 
will shew the power to a marked degree. The electrification here resides in 
the brass ; as will be explained immediately, the interposition of glass or 
some similm substance between the brass and the hand is necessary in order 
that the brass may retain its power for a sufficient time to enable us to 
observe it. I f  we hold the instrument by the brass rod and rub the glass 
handle we find that the same power is acquired by the glass. 

II .  Conductors and Insulators. 

6. Let us now suppose that we hold the electrified brass rod in one hand 
by its glass handle, and that we touch it with the other hand. We find that - 
after touching it its power of attracting small bodies will have completely 
disappeared. I f  we imrderse it in a stream of water or pass it through a 
flame we find the same result. If on the other hand we touch it with 
a piece of silk or a rod of glass, or stand it in a current of air, we find 
that its power of attracting small bodies remahs unimpaired, at  any rate 
for a time. It appears therefore that the human body, a flame or water 
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have the power of destroying the electrification of the brass rod when placed 
in contact with it, while silk and glass and air do not possess this property. 
It is for this reason that in handling the electrified brass rod, the substance 
in direct contact with the brass has been supposed to be glass and not the 
hand. 

I n  this way we arrive a t  the idea of dividing al1 substances into two 
classes according as they do or do not remove the electrification when touch- 
ing the electrified body. The class which remove the electrification are 
called conductors, for as we shall see later, they conduct the electrification 
away from the electrified body rather than destroy i t  altogether; the class 
which allow the electrified body to retain its electrification are called non- 
conductors or insulators, The classification of bodies into conductors and 
insulators appears to have been iirst discovered by Stephen Gray (1696- 
1736). 

At the same time it must be explained that the difference between 
insulators and conductors is one of degree only. If Our electrified brass rod 
were left standing for a week in contact only with the air surrounding i t  and 
the glass of its handle, we should find it hard to detect traces of electrifica- 
tion after this time-the electrification would have been conducted away by 
the air and the glass. So also if we had been able to immerse the rod in a 
flame for a billionth of a second only, we might have found that it retained 
considerable traces of electrification. It is therefore more logical to speak of 
good conductors and bad conductors than to speak of conductors and insula- 
tors. Nevertheless the difference between a good and a bad conductor is so 
enormous, that for Our present purpose we need hardly take into account the 
feeble conducting power of a bad conductor, and may without serious incon- 
sistency, speak of a bad conductor as an insulator. There is, of course, nothing 
to prevent us imagining an ideal substance which has no conducting power 
at  all. It will often simplify the argument to imagine such a substance, 
although we cannot realise it in nature. 

It may be mentioned here that of al1 substances the metals are by very 
n~uch the best conductors. Next come solutions of salts and acids, and lastly 
as very bad conductors (and therefore as good insuletors) come oils, waxes, 
silk, glass and such substances as sealing wax, shellac, indiarubber. Gases 
under ordinary conditions are good insulators. Indeed it is worth noticing 
that if this had not been so, we should probably never have become acquainted 
with electric phenornena a t  all, for al1 electricity would be carried away by 
conduction through the air as soon as i t  was generated. Flames, however, 
conduct well, and, for reasons which will be explained later, al1 gases become 
good conductors when in the presence of radium or of so-called radio-active 
substances. Distilled water is an almost perfect insulator, but any other 
sample of water will contain impurities which generally cause it to conduct 
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6, 7 J The Fundamental Conceptions of Electrostatim 7 

tolerably well, and hence a wet body is generally a bad insulitor. So also an 
electrified body suspended in air loses its electrification rnuch more rapidly in 
damp weather than in dry, owing to conduction by water-particles in the air. 

When the body is i n  contact with insulators only, i t  is said to be 
"insulated." The insulation is said to be good when the electrified body 
retains its electrification for a long interval of time, and is said to be poor 
when the electrification disappears rapidly. Good insulation will enable a 
body to retain most of its electrification for some days, while with poor insula- 
tion the electrification will last only for a few minutes or seco~ds. 

III. Quantity of Electricity. 

7. We pass next to the conception of a definite quantity of electricity, 
this quantity measuring the degree of electrification of the body with which 
i t  is associated. I t  is found that the quantity of electricity associated with 
any body rernains constant except in so far as i t  is conducted away by con- 
ductors. To illustrate, and to some extent to prove this law, we may use ' 

an instrument known as the gold-leaf electroscope. This consists of a glass 
vessel, through the top of which a metal rod is passed, supporting at its lower 
end two gold-leaves which under normal conditions hang flat side by side, 
touching one another throughout their length. When an electrified body 
touches or is brought near to the brass rod, the two gold-leaves are seen to 
separate, for reasons which will become clear later (5 21), so that the instru- 
ment can be used to examine whether or not a body is electrified. 

Let us fix a metal vessel on the top of the brass rod, the vessel being 
closed but having a lid through which bodies can be in- 
serted. The lid must be supplied with an insulating 
handle for its manipulation. Suppose that we have 
electrified some piece of rnatter-to make the picture 
definite, suppose that we have electrified a small bras9 
rod by rubbing i t  on silk-and let us suspend this body 
inside the vessel by an insulating thread in such a 
manner that i t  does not touch the sides of the vessel. 
Let us close the lid of the vessel, so that the vessel 
entirely surrounds the electrified body, and note the 
amount of separation of the gold-leaves of the electro- 
scope. Let us try the experiment any number of times, 
placing the electrified body in different positions inside 
the closed vessel, takiner care onlv that it does not corne " 
into contact with the sides of the vessel or with any 
other conductors. We shall find that in every case the separation of the 
gold-leaves is exactly the same. 
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I n  this way then, we get the idea of a definite quantity of electrifieation 
associated with the brass rod, this quantity being independent of the position 
of the rod inside the closed vessel of the electroscope. We find, further, that 
the divergence of the gold-leaves is not only independent of the position of 
the rod inside the vessel, but is independent of any changes of state which 
the rod may have experienced between succeseive insertions in the vessel, 
provided only that it has not been touched by conducting bodies. We 
might for instance heat the rod, or, if it was sufficiently thin, we might 
bend it into a different shape, and on replacing i t  inside the vessel we 
should find that i t  produced exactly the same deviation of the gold-leaves 
as before. We may, then, regard the electrical properties of the rod as being 
due to a quantity of electricity associated with the rod, this quantity remaining 
permanently the same, except in so far as the original charge is lessened by 
contact with conductors, or increased by a fresh supply. 

8. We can regard the electroscope as giving an indication of the magni- 
tude of a quantity of electricity, two charges being equal when they produce 
the same divergence of the leaves of the electroscope. 

I n  the sarne way we c m  regard a spring-balance as giving an indication 
of the magnitude of a weight, two weights being equal when they produce 
the same extension of the spring. 

The question of the actual quantitative measurement of a quantity of 
electricity as a multiple of a specified unit has not yet been touched. We 
can, however, easily devise means for the exact quantitative measurement 
of electricity in terms of a unit. We c m  charge a brass rod to any degree 
we please, and agree that the charge on this rod is to be taken to be the 
standard unit charge. By rubbing a number of rods until each produces 
exactly the same divergence of the electroscope as the standard charge, we 
can prepare a number of unit charges, and we can now Say that a charge is 
equal to n units, if it produces the same deviation of the electroscope as 
would be produced by n units al1 inserted in the vessel of the electroscope 
at  once. This method of measuring an electric charge is of course not one 
that any rational being would apply in practice, but the object of the 
present explanation is to elucidate the fundamental principles, and not to 
give an account of practical methods. 

9. Positive and Negative Electrkity. Let us suppose that we insert in 
the vessel of the electroscope the piece of silk on which one of the brass 
rods has been supposed to have been rubbed in order to produce its unit 
charge. We shall find that the silk produces a divergence of the leaves of 
the electroscope, and further that this divergence is exactly equal to that 
which is produced by inserting the brass rod alone into the vessel of the 
electroscope, If, however, we insert the brass rod and the silk together into 
the electroscope, no deviation of the leaves can be detected. 
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7-11] The Fzcndamental Conceptions of Electrostatieics 9 

Again, let us suppose that we charge a brass rod A with a charge which 
the divergence of the leaves shews to be n units. Let us rub a second brass 
rod B with a piece of silk C until i t  has a charge, as indicated by the electro- 
scope, of m units, rn being smaller than n. If we insert the two brass rods 
together, the electroscope will, as already explained, give a divergence corre- 
sponding to n+ m units. If, however, we insert the rod A and the silk C 
together, the deviation will be found to correspond to n - m units. 

I n  this way i t  is found that a charge of electricity must be supposed to 
have sign as well as magnitude. As a matter of convention, we agree to 
speak of the m units of charge on the silk aa m positive units, or more briefly 
as a charge +ml while we speak of the charge on the brass as m negative 
units, or a charge - m. 

10. Ceneration of Electricity. It is found to be a general law that, on 
rubbing two bodies which are initially uncharged, equal quantities of positive 
and negative electricity are produced on the two bodies, so that the total 
charge generated, measured algebraically, is nit. 

We have seen that the electroscope does not determine the sign of the 
charge plnced inside the closed vessel, but only its magnitude. We can, 
however, determine both the sign and magnitude by two observations. Let 
us first insert the charged body alone into the vessel. Then if the divergence 
of the leaves corresponds to m units, we know that the charge is either + m 
or - m, and if we now insert the body in Company with another charged body, 
of which the charge is known to be +n, then the charge we are attempting 
to measure will be +rn or - m according as the divergence of the leaves 
indicates n f m  or TL N rn units. With more elaborate instruments to be 
described later (electrometers) i t  is possible to determine both the magnitude 
and sign of a charge by one observation. 

11. If we had rubbed a rod of glass, instead of one of brass, on the silk, 
we should have found that the silk had a negative charge, and the glass of 
course an equal positive charge. It therefore appears that the sign of the 
charge produced on a body by friction depends not only on the nature of the 
body itself, but also on the nature of the body with which i t  has been 
rubbed. 

The following is found to be a general law : If rubbing a substance A on 
a second substance B charges A positively and B negatively, and if rubbing 
the substance B on a third substance C charges B positively and C negatively, 
then ~ubbing  the substance A on the substance C wil1 charge A positively 
and C negatively. 

It is therefore possible to arrange any number of substances in a list such 
that a substance is charged with positive or negative electricity when rubbed 
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with a second substance, according as the first substance stands above or 
below the second substance on the list. The following is a list of this kind, 
which includes some of the most important substances: 

Cat's s k z ,  Glass, Ivory, Si&, Rock crystal, Y'hs Hand, Wood, Xulphur, 
Flannel, Cotton, Skellac, Caoutchouc, Resins, Quttapercha, Metals, Guncotton. 

A substance is said to be electropositive or electronegative to a second 
substance according as i t  stands above or below i t  on a list of this kind. 
Thus of any pair of substances one is always electropositive to the other, the 
other being electronegative to the first. Two substances, although chemically 
the same, must be regarded as distinct for the purposes of a list such as the 
above, if their physical conditions are different ; for instance, i t  is found that 
a hot body nîust be placed lower on the list than a cold body of the same 
chemical composition. 

IV. Attraction and Repulsion of Electric Charges. 

12. A small ball of pith, or some similarly light substance, coated with 
gold-leaf and suspended by an insulating thread, fonns a convenient instru- 
ment for investigating the forces, if any, which are brought into play by the 
presence of electrjc charges. Let us electrify a pith ball of this kind positively 
and suspend it from a fixed point. We shall find that when we bring a 
second small body charged with positive electricity near to this first body 
the two bodies tend to repel one another, whereas if we bring a negatively 
charged body iiear to it, the two bodies tend to attract one another. From 
this and similar experiments i t  is found that two small bodies charged with 
electricity of the same sign repel one another, and that two srnall bodies 
charged with electricity of different signs attract one another. 

This law can be well illustrated by tying together a few light silk threads 
by their ends, so that they form a tassel, and allowing the threads to hang 
vertically. If we now stroke the threads with the hand, or brush them with 
a brush of any kind, the threads al1 become positively electrified, and there- 
fore repel one another. They consequently no longer hang vertically but 
spread themselves out into a cone. A similar phenornenon can often be 
noticed on brushing the hair in dry weather. The hairs become positively 
electriûed and so tend to stand out from the head. 

13. On shaking up a mixture of powdered red lead and yellow sulphur, 
the particles of red lead will become positively electrified, and those of the 
sulphur will become negatively electrified, as the result of the friction which 
has occurred between the two sets of particles in the shaking. If some of 
this powder is now dusted on to a positively electrified body, the particles of 
sulphur will be attracted and those of red lead repelled. The red lead will 
therefore fa11 off, or be easily removed by a breath of air, while the sulphur 
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11-16] The Fundamental Conceptions of EZectrostatks 11 

particles will be retained. The positively electrified body will therefore 
assume a yellow colour on being dusted with the powder, and similarly a 
negatively electrified body would become red. It may sometimes be con- 
venient to use this ruethod of determining whether the electrification of a 
body is positive or negative. 

14. The attraction and repulsion of two charged bodies is in many 
respects different from the force between one charged and one uncharged 
body. The latter force, as we have explained, was known to the Greeks : it 
must be attributed, as we shall see, to what is known as "electric induction," 
and is invariably attractive. The forces between two bodies both of which 
are charged, forces which may be either attractive or repulsive, seem hardly 
to have been noticed until the eighteenth century. 

The observations of Robert Symmer (1759) on the attractions and 
repulsions of charged bodies are a t  least amusing. H e  was in the habit 
of wearing two pairs of stockings simultaneously, a worsted pair for comfort 
and a silk pair for appearance. I n  pulling off his stockings he noticed that 
they gave a crackling noise, and sometimes that they even emitted sparks 
when taken off in the dark. On taking the two stockings off together from 
the foot and then drawing the one from inside the other, he found that both 
became inflated so as to reproduce the shape of the foot, and exhibited 
attractions and repulsions at  a distance of as much as a foot and a half 

" When this experiment is performed with two black stockings in one 
hand, and two white in the other, it exhibits a very curious spectacle ; the 
repulsion of those of the same colour, and the attraction of those of different 
colours, throws them into an agitation that is not unentertaining, and 
makes them catch each a t  that of its opposite colour, and at a grester 
distance than one would expect. When allowed to come together they al1 
unite in one mass. When separated, they resume their former appearance, 
and admit of the repetition of the experiment as often as you please, till 
their electricity, gradually wasting, stands in  need of being recruited" 

The Law of Force between charged Particles. 

15. The Torssion Balance. Coulomb (1185) devised an instrument known 
as the Torsion Balance, which enabled him not only to verjfy the laws of 
attraction and repulsion qualitatively, but also to form an estitnate of the 
actual magnitude of these forces. 

The apparatus consists essentially of two light balls A, C, fixed a t  the two 
ends of a rod which is suspended a t  its middle point B by a very fine thread 
of silver, quartz or other material. The upper end of the thread is fastened 
to a movable head D, so that the thread and the rod can be made to 
rotate by screwing the head. If the rod is acted on only by its weight, the 
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for equilibrium is obviously that there shall be no torsion in 
the thread. If, however, we fix a third small ball E' in the same plane as 

the other two, and if the three balls are elec- 
trified, the forces between the fixed ball and 
the movable ones will exert a couple on the 
moving rod, and the condition for equilibrium 
is that this couple shall exactly balance that 
due to the torsion. Coulomb found that the 
couple exerted by the torsion of the thread 
was exactly proportional to the angle through 
which one end of the thread had been turned 
relatively to the other, and in this way was 
enabled to measure his electric forces. I n  
Coulomb's experiments one only of the two 
movable balls was electrified, the second serv- 

. ing merely ~ l s  a counterpoise, and the fixed 
- bal1 was a t  the same distance from the torsion __ .- thread aa the two movable balls. 

Fm. 2. 
Suppose that the head of the thread is 

turned to such a position that the balls when uncharged rest in equilibrium, 
just touching one another without pressure. Let the balls receive charges 
e, el, and let the repulsion between them result in the bar turning through 
an angle 8. The couple exerted on the. bar by the torsion of the thread 
is proportional to 8, and may therefore be taken to be rc8. If a is the 
radius of the circle described by the movable ball, we may regard the couple 
acting on the rod from the electric forces as made u- of a force F, equal 
to the force of repulsion between the two balls, multiplied by acos@J, 
the arm of the moment. The condition for equilibrium is accordingly 

aF COS 48 = tc8. 

Let us now suppose that the torsion head is turned through an angle + 
in such a direction as to make the two charged balls approach each other; 
after the turning has ceased, let us suppose that the balls are allowed to 
corne to rest. I n  the new position of equilibrium, let us suppose that the 
two charged bal19 subtend an angle 8' a t  the centre, instead of the former 
angle 0. The couple exerted by the torsion thread is now K (8'+ +), so that 
if F' is the new force of repulsion we must have 

aF' cos 40' = tc (0' + 4). 
By observing the value of + required to give definite values to 8' we can 

calculate values of F' corresponding to any series of values of 8'. From a 
series of experiments of this kind i t  is found that so long as the charges on 
the two balls remain the same, P' is proportional to cosec2~0', from which 
it is easily seen to follow that the force of repulsion varies inversely as the 
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square of the distance. And when the charges on the two balls are varied 
it is found that the force varies as the product of the two charges, so long as 
their distance apart remains the same. As the result of s series of experi- 
ments conducted in this way Coulomb was able to enunciate the law: 

The force between two small charged bodies i s  proportional to  the product 
of their charges, and i s  inver.sely proportional to the square of their distance 
apart, the force being one of .~.epulsion or attrctction accordkg as the two 
charges are of the sume or of opposite Ends. 

16. I n  mathematical language we may say that there is a force of repul- 
sion of amount 

cee' - ....................................... (1) 

where e, e' are the charges, r their distance apart, and c is a positive 
constant. 

If e, e' are of opposite signs the product ee' is negative, and a negative 
repulsion must be interpreted as an attraction. 

Although this law was first published by Coulomb, i t  subsequently 
appeared thnt it had been discovered at  an earlier date by Cavendish, 
whose experiments were much more refined than those of Coulomb. Caven- 
dish was able to satisfy himself that the law was certainly intermediate 
between the inverse 2 + and 2 -&th power of the distance (see below, 
$5 46-48). Unfortunately liis researches remained unknown until his 
manuscripts were published in 18'19 by Clerk Maxwell. 

The experiments of Coulomb and Cavendish, i t  need hardly be said, 
were very rough compared with those which are rendered possible by modern 
refinements of theory and practice, so that these experiments are no longer 
the justification for using the law expressed by formula (1) as the basis of 
the Mathematical Theory of Electricity. More delicate experiments with the 
apparatus used by Cavendish, which will be explained later, have, however, 
been found to give a complete contirmation of Coulomb's Law, so long as 
the charged bodies rnay both be regarded as infinitely small compared with 
their distance apart. Any deviation from the law of Coulomb must accord- 
ingly be attributed to the finite sizes of the bodies which carry the charges. 
As i t  is only in the case of infinitely small bodies that the symbol r of 
formula (1) has had any meaning assigned to it, we may regard the law (1) 
as absolutely true, a t  any rate so long as r is large enough to be a measurable 
quantity. 
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The Unit of Electricity. 

17. The law of Coulomb supplies us with a convenient unit in which 
to measure electric charges. 

The unit of mass, the pound or gramme, is a purely arbitrary unit, and 
al1 quantities of mass are measured simply by comparison with this unit. 
The same is true of the unit of space. If i t  were possible to keep a charge 
of electricity unimpaired through al1 time we might take an arbitrary charge 
of electricity as standard, and measure al1 charges by comparison with this 
one standard charge, in the way suggested in 5 8. As i t  is not possible to do 
this, we find i t  convenient to measure electricity with reference to the units 
of mass, length and time of which we are already in possession, and Coulomb's 
Law enables us to do this. We define as the unit charge a charge such that 
when two unit charges are placed one on each of two small particles a t  
a distance of a centimetre apart, the force of repulsion between the particles 
is one dyne. With this definition i t  is clear that the quantity c in the 
formula (1) becomes equal to unity, so long as the c.a.s. systern of units 
is used. 

I n  a similar way, if the mass of a body did not remain constant, we might 
have to define the unit of maas with reference to those of time and length 
by saying that a mass is a unit mass provided that two such masses, placed 
a t  a unit distance apart, produce in each other by their mutual gravitational 
attraction an acceleration of a centimetre per second per second. In  this 
case we should have the gravitational acceleration f given by an equation 
of the form 

and this equation would determine the unit of mass. 

18. i'hysical dimensions. If the unit of mass were determined by 
equation (2), m would appear to have the dimensions of an acceleration 
multiplied by the square of a distance, and therefore dimensions 

L T 2 .  

As a matter of fact, however, we know that mass is something entirely apart 
from length and time, except in so far as i t  is connected with thein through 
the law of gravitation. The complete gravitational acceleration is given by 

where y is the so-called <<gravitation constant." 

By our proposed definition of unit mass we slould have made the value 
of y numerically equal to unity; but its physical dimensions are not those of 
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a mere number, so that we cannot neglect the factor y when equating 
physical dimensions on the two sides of the equatioa 

So also in the formula 

.................................... * (3) 

we can and do choose our unit of charge in such a way that the m e r i c a l  
value of c is unity, so that the numerical equation becomes 

but we muet remember that the factor c  still retains its physical dimensions. 
Electricity is something entirely apart from inass, length and time, and it 
follows that  we ought to treat the dimensions of equation (3), by introducing 
a new unit of electricity E and saying that c is of the dimensions of a force 
divided by Ea/P and therefore of dimensions 

MLsE-a2.  

If, however, we compare dimensions in equation (4), neglecting to take 
account of the physical dimensions of the suppressed factor c, i t  appears as 
though a charge of electricity can be expressed in terms of the units of 
mas ,  length and time, just as i t  might appear from equation (2) as though 
a mass could be expressed in terms of the units of length and time. The 
apparent dimensions of a charge of electricity are now 

M * L ~ T - ~  ............................. .. ... (5). 

It will be readily understood that these dimensions are merely apparent 
and not i n  any way real, when i t  is stated that other systems of ilnits are 
also in use, and that the apparent physical dimensions. of a charge of 
electricity are found to be different in the different systems of units. The 
system which we have just described, in which the unit is defined as 
the charge which makes c numerically equal to unity in equation (3), is 
known as the Electrostatic system of units. 

There will be different electrostatic systems of units corresponding to 
different units of length, mass and time. In  the C.G.S. system these units 
are taken to be the centimetre, gramme and second. I n  passing from one 
systern of units to another the unit of electricity will change as if i t  were 
a physical quantity having dimensions M ~ L Q T - ' ,  so long as we hold to the 
agreement that equation (4) is to be numerically true, i.e. so long as the 
units remain electrostatic. This gives a certain importance to the apparent 
dimensions of the unit of electricity, as expressed in formula (5). 
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V. ElectriJication Oy Induction. 

19. Let us suspend a metul rod by ineiulating supports. Suppose that 
the rod is originally uncharged, and that we bring a small body charged 
with electricity near to one end of the rod, without allowing the two bodies 
to touch. We shall find on sprinkling the rod with electrified powder of the 
kind previously described (3 13), that the rod is now electrified, the signs of 
the charges at the two ends being different. This electrification is known as 
electriiîcation by induction. We speak of the electricity on the rod as an 
induced charge, and that on the originally electrified body as the inducing or 
exciting charge. We find that the induced charge at  the end of the rod 
nearest t o  the inducing charge is of sign opposite to that of the inducing 
charge, that a t  the further end of the rod being of the same sign as the 
inducing charge. If the inducing charge is removed to a great distance 
from the rod, we find that the induced charges disappear completely, the rod 
resuming its original unelectrified state. 

If the rod is arranged so that it can be divided into two parts, we can 
separate the two parts before removing the inducing charge, and in this way 
can retain the two parts of the induced charge for further examination. 

If we insert the two induced charges into the vesse1 of the electroscope, 
we find that the total electrification is nil: in generating electricity by 
induction, as in generating it by friction, we can only generate equal 
quantities of positive and negative electricity; we ~annot  alter the algebraic 
total charge. Thus the generation of electricity by induction is in no way 
a violation of the law that the total charge on a body remains unaltered 
except in so far as it is removed by conduction. 

20. I f  the inducing charge is placed on a sufficiently light conductor, we 
notice a violent attraction between i t  and the rod which carries the induced 
charge. This, however, as we shall now shew, is only in accordance with 
Coulomb's Law. Let us, for the sake of argument, suppose that the 
inducing charge is a positive charge e. Let us divide up that part of the 

rod which is negatively charged into small parts AB, BO, . . . , beginning from 
the end A which is nearest to the inducing charge 1, in such a way that each 
part contains the same small charge - e, of negative electricity. Let us 
similarly divide up the part of the rod which is positively charged into 
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sections A'B', B'C', ... , beginning from the further end, and such that each of 
these parts contains a charge + a  of positive electricity. Since the total 
induced charge is zero, the number of positively charged sections A'B', 
B'C', ... must be exactly equal to the number of negatively charged sections 
AB, BO, . . . . The whole series of sections can therefore be divided into a 
series of pa.irs 

AB and A'B' ; BQ and B'C' ; etc. 
such that the two sections of any pair contain equal and opposite charges. 
The charge on A'B' being of the same sign as the inducing charge e, repels 
the body I which carries this charge, while the charge on AB, being of the 
same sign as the charge on 1 ,  attracts I. Since A B  is nearer to I than A'B', 
i t  follows from Coulomb's Law that the attractive force eelra between AB 
and 1 is numerically greater than the repulsive force eelr9etween A'B' and 
1, so that the resultant action of the pair of sections AB, A'B' upon 1 is an 
attraction. Obviously a similar result is true for every other pair of sections, 
so that we arrive a t  the result that the whole force between the two bodies 
is attractive. 

This result fully accounts for the fundamental property of a charged body 
to attract small bodies to which no charge has been given. The proxiinity of 
the charged body induces charges of different signs on those parts of the body 
which are nearer to, and further away from, the inducing charge, and although 
the total induced charge is zero, yet the attractions will always outweigh the 
repulsions, so that the resultant force is always one of attraction. 

21. The same conceptions explain the divergence of the gold-leaves of 
the electroscope which occurs when a charged body is brought near to the 
plate of the electroscope or introduced into a closed vessel standing on this 
plate. A11 the conducting parts of the electroscope-gold-leaves, rod, plate 
and vessel if any-inay be regarded as a single conductor, and of this the 
gold-leaves form the part furthest removed from the charged body. The 
leaves accordingly become charged by induction with electricity of the same 
sign as that of the charged body, and as the charges on the two gold-leaves 
are of similar sign, they repel one another. 

22. On separating the two parts of a conductor while an induced charge 
is on it, and then removing both from the influence of the induced charge, 
we gain two charges of electricity without any diminution of the inducing 
charge. We can store or utilise these charges in any way and on replacing 
the two parts of the conductor in position, we shall again obtain an induced 
charge. This again may be utilised or stored, and so on indefinitely. There 
is therefore no limit to the magnitude of the charges which can be obtained 
from a small initial charge by repeating the process of induction. 

This principle underlies the action of the Electrophorus. A cake of resin 
is electrified by friction, and for convenience is placed with its electrified 
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surface uppermost on a horizontal table. A rnetal disc is held by an insulating 
handle parallel to the cake of resin and at a slight distance above it. The 
operator then touches the upper surface of the disc with his finger. When 
the process ha8 reached this stage, the metal disc, the body of the operator 
and the earth itself form one conductor. The negative electricity on the resin 
induces a positive charge on the nearer parts of this conductor-primarily 
on the metal disc-and a negative charge on the more rernote parts of the 
conductor-the further region of the earth. When the operator removes 
his finger, the disc is left insulated and in possession of a positive charge. 
As already explained, this charge may be used and the process repeated 
indefinitely. 

I n  al1 its essentials, the principle utilised in the generation of electricity 
by the "influence machinesJ' of Voss, Holtz, Wimshurst and others is identical 
with that of the electrophorus. The machines are arranged so that by the 
turning of a handle, the various stages of the process are repeated cyclically 
tirne after time. 

23. Electric Equilibrium. Returning to the apparatus illustrated in 
fig. 3, p. 16, it is found that if we remove the inducing charge without 
allowing the conducting rod to corne into contact with other conductors, 
the charge on the rad disappears gradually as the inducing charge recedes, 
positive and negative electricity combining in equal quantities and neutral- 
ising one another. This shews that the inducing charge must be supposed 
to act upon the electricity of the induced charge, rather than upon the 
matter of the conductor. Upon the same principle, the various parts of the 
induced charge must be supposed to act directly upon one another. Moreover, 
in a conductor charged with electricity at rest, there is no reaction between 
matter and electricity tending to prevent the passage of electricity through 
the conductor. For if there were, it would be possible for parts of the induced 
charge to be retained, after the inducing charge had been removed, the parts 
of the induced charge being retained in position by their reaction with the 
matter of the conductor. Nothing of this kind is observed to occur. We 
conclude then that the elements of electrical charge on a conductor are each 
in equilibrium under the influence solely of the forces exerted by the remaining 
elements of charge. 

24. An exception occurs when the electricity is actually at  the surface 
of the conductor. Here there is an obvious reaction between matter and 
electricity-the reaction which prevents the electricity from leaving the 
surface of the conductor. Clearly this reaction will be normal to the surface, 
so that the forces acting upon the electricity in directions which lie in the 
tangent plane to the surface must be entirely forces from other charges of 
electricity, and these must be in equilibrium. To balance the action of the 
matter on the electricity there must be an equal and opposite reaction of 
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electricity on matter. This, then, will act norrnally outwards at  the surface of 
the conductor. Experimentally it is best put in evidence by the electrification 
of soap-bubbles. A soap-bubble when electrified is observed to expand, the 
normal reaction between electricity and matter at  its surface driving the 
surface outwards until equilibrium is reestablished (see below, 5 94). 

25. Also when two conductors of different material are placed in con- 
tact, electric phenomena are found to occur which have been explained by 
Helmholtz as the result of the operation of reactions lnetween electricity and 
matter at  the surfaces of the conductors. Thus, although electricity can pass 
quite freely over the different parts of the same conductor, it is not strictly 
true to say that electricity can pass freely from one conductor to another of 
different material with which it is in contact. Compared, however, with the 
forces with which we shall in general be dealing in electrostatics, i t  will be 
legitimate to disregard entirely any forces of the kind just described. We 
shall therefore neglect the difference between the materials of different con- 
ductors, so that any nurnber of conductors placed in contact may be regarded 
as a single conductor. 

THEORIES TO EXPLAIN ELECTRICAL PHENOMENA. 
26. One-Jluid Theory. Franklin, as far back as 1'751, t k d  to include 

al1 the electrical phenomena with which he was acquainted in one simple 
explanation. He suggested that al1 these phenomena could be explained by 
supposing the existence of an indestructible " electric fluid," which could be 
associated with matter in different degrees., Corresponding to the normal 
state of matter, in which no electrical properties are exhibited, there is 
a definite normal amount of "electric fluid." When a body was charged 
with positive electricity, Franklin explained that there was an excess of 
" electric fluid" above the normal amount, and similarly a charge of negative 
electricity represented a deficiency of electric fluid. The generation of equal 
quantities of positive and negative electricity was now explained: for instance, 
in rubbing two bodies together we simply transfer " electric fluid" from one 
to the other. T o  explain the attractions and repulsions of electrified bodies, 
Franklin supposed that the particles of ordinary matter repelled one another, 
while attracting the "electric fluid." I n  the normal state of matter the 
quantities of " electric 0uid " and ordinary matter were just balanced, so that 
there was neither attraction nor repulsion between bodies in the normal state. 
A'ccording to a later modification of the theory the attractions just out-balanced 
the repulsions in the normal state, the residual force accounting for gravitation. 

27. Two-Jluid l'heory. A further attempt to explain electric phenomena 
was made by the two-fiuid theory. In this there were three things concerned, 
ordinary matter and two electric fluids-positive and negative. The degree 
of electrification was supposed to be the measure of the excess of positive 
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electricity over negative, or of negative over positive, according to the sign 
of the electrification. The two kinds of electricity attracted and repelled, 
electricities of the same kind repelling, and of opposite kinds attracting, and 
in this way the observed attractions and repulsions of electrified bodies were 
explained without having recourse to systems of forces between electricity 
and ordinary matter. It is, however, obvious that the two-fluid theory was 
too elaborate for the facts. On this theory ordinary matter devoid of both 
kinds of electricity would be physically different from matter possessing 
equal quantities of the two kinds of electricity, although both bodies would 
equally shew an absence of electrification. There is no evidence that i t  is 
possible to establish any physical difference of this kind between totally 
unelectrified bodies, so that the two-fluid theory must be dismissed as 
explaining more than there is to be explained. 

28. Modern view of Electm'city. The two theories which have just been 
mentioned rested on no experimental evidence except such as is required 
to establish the phenomena with which they are directly concerned. The 
modern view of electricity, on the other hand, is based on an enormous mass 
of experimental evidence, to which contributions are made, not only by the 
phenomena of electrostatics, but also by the phenomena of almost every 
branch of physics and chemistry. The modern explanation of electricity is 
found to bear a very close resemblance to the older explanation of the one- 
fluid theory-so much so that i t  will be convenient to explain the modern 
view of eléctricity simply by making the appropriate modifications of the 
one-fluid theory. 

We suppose the "electric-fluid" of the one-fluid theory replaced by a 
crowd of small particles-" electrons," it will be convenient to cal1 them-al1 
exactly similar, and each having exactly the same charge of negative electricity 
permanently attached to it. The electrons are almost unthinkably small; the 
mass of each is about 8 x 10-* grammes, so that about as many would be 
required to make a gramme as would be required of cubic centimetres to make 
a sphere of the size of our earth. The charge of an electron is enormously 
large compared with its mass-the charge of each being about 4.5 x 10-l0 
in electrostatic units, so that a gramme of electrons would carry a charge 
equal to about 5.6 x 10'7 electrostatic units. To form some conception of the 
intense degree of electrification represented by these data, i t  may be noticed 
that two grammes of electrons, if placed a t  a distance of a metre apart, would 
repel one another with a force equal to the weight of about 3.2 x 10aa tons. 
Thus the electric force outweighs the gravitational force in the ratio of about 
5 x 10" to 1. 

A piece of ordinary matter in its unelectrified state contains a certain 
number of electrons of t h s  kind, and this nuinber is just such that two 
pieces of matter each in this state exert no electrical forces on one another- 
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Modem View qf Electrkity 

this condition in fact defines the unelectrified state. A piece of matter 
appears to be charged with negative or positive electricity according as the 
number of neptively-charged electrons it possesses is in excess or defect of 
the nuniber i t  would possess in its unelectrified state. 

, Three important consequences follow from these facts. 
I n  the first place i t  is clear that we cannot go on dividing a charge of 

electricity indefinitely-a natural limit is imposed as soon as we come to the 
charge of one electron, just as in chemistry we suppose a natural limit to be 
imposed on the divisibility of matter as soon as we corne to the mass of an 
atom. The modern view of electricity may then be justly described as an  
"atomic" view. And of al1 the experimental evidence which supports this 
view none is more striking than the circumstance that these "atoms" 
continually reappear in experiments of the most varied kinds, and that the 
atomic charge of electricity appears always to be precisely the same. 

I n  the second place, the process of charging an ordinary piece of matter 
with positive electricity consists simply in  removing some of its electrons. 
Thus rnatter without electrons must possess the properties of positive charges 
of electricity, but it is not a t  present known hom these properties are to be 
accounted for. The origin of negative electric foi-ces (Le., forces which repel 
a negatively-charged particle) must be looked for in electrons, but the origin 
of positive electric forces remains unknown. 

I n  the third place, in charging a body with electricity we either add to or 
subtract from its mass according as we charge i t  with negative electricity 
(ie., add to i t  a number of electrons), or charge i t  with positive electricity 
(i.e., remove from i t  a number of electrons). Since the mass of an electron is 
so minute in cornparison with the charge i t  carries, i t  will readily be seen 
that the change in its mass is very much too small to be perceptible by any 
methods of measurement which are a t  Our disposal. Maxwell mentions, as 
an example of a body possessing an electric charge large compared with its 
mass, the case of a gramme of gold, which may be beaten into a gold-leaf one 
square metre in area, and Gan, in this state, hold a charge of 60,000 electro- 
static units of ne@tive electricity. The mass of the number of negatively 
electrified electrons necessary to carry this charge will be found, as the result 
of a brief calculation from the data already given, to be about 10-l3 grammes. 
The change of weight by electrification is therefore one which i t  is far beyond 
the power of the most sensitive balance to detect. 

On this view of electricity, the electrons must repel one another, and 
must be attracted by matter which is devoid of electrons, or in  which there is 
a deficiency of electrons. The electrons move about freely through conductors, 
but not through insulators. The reactions which, as we have seen, must be 
supposed to occur a t  the surface of charged conductors between " matter" and 
" electricity," can now be interpreted simply as systems of forces between the 
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electrons and the remainder of the matter. Up to a certain extent these 
forces will restrain the electrons from leaving the conductor, but if the electric 
forces acting on the electrons exceed a certain limit, they d l  overcome the 
forces acting between the electrons and the remainder of the conductor, and 
an electric discharge takes place from the surface of the conductor. 

Thus an essential feature of the modern view of electricity is that it 
regards the flow of electricity as a material flow of charged electrons. Good 
conductors and good insulators are now seen to mean simply substances in 
which the electrons move .with extreme ease and extreme difficulty re- 
spectively. The law that equal quantities of positive and negative electricity 
are generated simultaneously means that electrons may 0ow about, but 
cannot be created or annihilated. 

The modern view enables us also to give a simple physical interpret a ta ion 
to the phenonlenon of induction. A positive charge placed near a conductor 
will attract the electrons in the conductor, and these will flow through the 
conductor towards the charge until electrical equilibrium is established. 
There will be then an excess of negative electrons in the regions near the 
positive charge, and this excess will appear as an induced negative charge. 
The deficiency of electrona in the more remote parts of the conductor will 
appear as an induced positive charge. If the inducing charge is negative, 
the flow of electrons will be in the opposite direction, so that the signs of the 
induced charges will be reversed. In  an insulator, no flow of electrons can 
take place, so that the phenomenon of electrification by induction does not 
occcr. 

On this view of electricity, negative electricity is essentially different in 
its nature from positive electricity: the difference is something more funda- 
mental than a mere difference of sign. Experimental proof of this difference 
is not wanting, e.g., a sharply pointed conductor c m  hold a greater charge of 
positive than of negative electricity before reaching the limit at which a 
discharge begins to take place from its surface. But until we come to &ose 
parts of electric theory in which the flow of electricity has to be definitely 
regarded as a flow of electrons, this essential difference between positive and 
negative electricity will not appear, and the difference between the two will 
be adequately repiesented by a difierence of sign. 

SUMMARY. 
29. It will be useful to conclude the chapter by a summary of the 

results which are arrived at  by experiment, independently of al1 hypotheses 
as to the nature of electricity. 

These have been stated by Maxwell in the form of laws, as follows: 
Law 1. The total electrification of a body, or system of bodies, 

remains always the same, except in so .far as it receives electrification 
from or gives electrification to other bodies. 
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Law II. When one body electrifies another by conduction, the 
total electrification of the two bodies remains the same; that is, the 
one loses as much positive or gains as much negative electnfication as 
the other gains of positive or loses of negative electrification. 

Law III. When electrification is produced by friction, or by any 
other known method, equal quantities of positive and negative electrifi- 
cation are produced. 

DeJinition. The electrostatic unit of electricity is that quantity of 
positive electricity which, when placed at  unit distance from an equal 
quantity, repels i t  with unit of force. 

' h w  IV. The repulsion between two small bodies charged respect- 
ively with e and e' units of electricity is numerically equal to the 
product of the charges divided by the square of the distance. 

These are the forms in which the laws are given by Maxwell. Law 1, i t  
will be seen, includes II and III. As regards the Definition and Law IV, 
i t  is necessary to specify the medium in <hich the srnall bodies are placed, 
since, as we shall see later, the force is different when the bodies are in air, 
or in a vacuum, or surrounded by other non-conducting media. It is usual 
to assume, for purposes of the Definition and Law IV, that the bodies are in - 
air. For strict scientific exactness, we ought further to specify the density, 
the temperature, and the exact chemical composition of the air. Also we 
have seen that when the electricity is not jnsulated on small bodies, but is 
free to move on conductors, the forces of Law I V  must be regarded as acting 
on the charges of electricity themselves. When the electricity is not free to  
move, there is an action and reaction between the electricity and matter, so 
that the forces which really act on the electricity appear to act on the bodies 
themselves which carry the charges. 
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CHAPTER II 

THE ELECTROSTATIC FIELD OF FORCE 

1. The Intensity at a point. 

30. THE space in the neighbourhood of charges of electricity, considered 
with reference to the electric phenornena occurring in this space, is spoken of 
as the electric field. 

A new charge of electricity, placed at  any point O in an electric field, 
will experience attractions or repulsions from al1 the charges in the field. 
The introduction of a new charge will in general disturb the arrangement 
of the charges on al1 the conductors in the field by a process of induction. 
If, however, the new charge is supposed to be infinitesimal, the effects of 
induction will be negligible, so that the forces acting on the new charge may 
be supposed to arise from the charges of the original field. 

Let us suppose that we introduce an infinitesimal charge e on an infinitely 
small conductor. Any charge e, in the field at  a distance r, from the point O 
will repel the charge with a force ee,/rt. The charge e will experience a 
similar repulsion from every charge in the field, so that each repulsion will be 
proportional to E. 

The resultant of these forces, obtained by the usual rules for the com- 
position of forces, will be a force proportional to e-say a force RE in some 
direction OP. We define the electric intensity a t  Q to be a force of which 
the magnitude is R, and the direction is OP. Thus 

The electric intensity at any point is given, in magnitude and direction, by 
the forcepeer unit charge which would act on a charged particle placed at this 
point, the charge on the particle behg supposed 60 small that the distribution 
of electricity on the conductors in thejeld it~ not afected by its presence. 

The electric intensity at  0, defined in this way, depends only on the 
permanent field of force, and has nothing to do with the charge, or the size, 
or even the existence of the small conductor which has been used to explain 
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the meaning of the electric intensity. There will be a definite intensity at  
every point of the electric field, quite independently of the presence of small 
charged bodies. 

A small charged body might, however, conveniently be used for exploring 
the electric field and determining experimentally the direction of the electric 
intensity a t  any point in the field. For if we suppose the body carrying a 
charge e to be held by an insulating thread, both the body and thread being 
so light that their weights may be neglected, then clearly al1 the forces 
acting on the charged body may be reduced to two:- 

(i) A force Re in the direction of the electric intensity a t  the point 
occupied by e, 

(ii) t h  tension of the thread acting along the thread. 

For equilibrium these two forces must be equnl and opposite. Hence the 
direction of the intensity a t  the point occupied by the small charged body is 
obtained a t  once by producing the direction of the thread through the charged 
body. And if we tie the other end of the thread to a delicate spring balance, 
we can measure the tension of the spring, and since this is numerically equal 
to Re, we should be able to determine R if E were known. We might in 
this way determine the magnitude and direction of the electric intensity a t  
any point in the field. 

In  a similar way, a float a t  the end of a fishing-line might be used to determine the 
strength and direction of the current at any point on a small lake. And, just as with the 
electric intensity, we should only get the true direction of the current by aupposing the 
float to be of infinitesimal size. We could not imagine the direction of the curen t  
obtnined by anchoring a battleship in  the lake, because the presence of the ship would 
disturb the whole system of currents. 

II. Lines of Force. 

31. Let 11s start a t  any point O in the electric field, and move a short 
distance O P  in the direction of the electric intensity a t  O. Starting from P 
let us move a short distance PQ in the direction of the intensity at  P, 

and so on. Iu  this way we obtain a broken path OPQR ..., formed of 
a number of small rectilinear elements. Let us now pass to the limiting 
case in which each of the elements OP, PQ, QR, ... is infinitely small. 
The broken path becomes a continuous curve, and i t  has the property that 
at  every point on it the electric intensity is in the direction of the tangent 
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to the curve a t  that point. Such a curve is called a Line of Force. We 
rnay therefore define a line of force as fol1ows:- I 

A Eine of force is a curve in the electric jeld, such th& the tangent at evwy 
point is i n  the direction of the electric intensity at that point. 

If  we suppose the motion of a charged particle to be so much retarded by frictional 
resistance that i t  cannot acquire any appreciable momentum, then a charged particle set 
free in the electric field would trace out a line of force. I n  the same way, we should have 
lines of current on the surface of a lake, such that the tangent to  a line of current a t  any 
point coincided with the direction of the ourrent, and a small float set free on the lake 
would describe a current-line. 

32. The resultant of a number of known forces has a definite direction, 
so that there is a singIe direction for the electric intensity at every point of 
the field. It follows that two lines of force can never intersect; for if they 
did there would be two directions for the electric intensity at  the point of 
intersection (namely, the two tangents to the lines of force a t  this point) so 
that the resultant of a number of known forces would be acting in two 
directions at  once. An exception occurs, as we shall see, when the resuItant 
intensity vanishes at any point. 

The intensity R may be regarded as cornpounded of three componenta 
X, Y, 2, parallel to three rectangiilar axes Ox, Oy, Oz. 

The magnitude of the electric intensity is then given by 

R a = X s +  YB+Za, 
and the direction cosines of its direction are 

X Y Z  - R' RI R' 

These, therefore, are also the direction cosines of the tangent at s, y, z 
to the line of force through the point. The differential equation of the 
system of lines of force is accordingly 

I I I .  The Poterztial. 

33. I n  n~oving the small test-charge E about in the field, we may either 
have to do work against electric forces, or we may find that these forces 
will do work for us. A small charged particle which has been placed at  a 
point O in the electric field rnay be regarded as a store of energy, this 
energy being equal to the work (positive or negative) which has been done 
in taking the charge to O in opposition to the repulsions and attractions of 
the field. The energy can be reclaimed by allowing the particle to retrace 
its path. Assume the charge on the moving particle to be so srnall that 
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the distribution of electricity on the condiictors in the field is not affected 
by it. Then the work done in bringing the charge e to a point O is pro- 
portional to e, and may be taken to be Te. The amount of work done will 
of course depend on the position from which the charged particle started. 
I t  is convenient, in measuring VE, to suppose that the particle started at a 
point outside the field altogether, i.e. from a point so far removed from al1 
the charges of the field that their effect at  this point is inappreciable-for 
brevity, we may Say the point at  infinity. We now define V to be the 
potential a t  the point O. Thus 

The potential a t  any point i n  the jeld is  the work per unit charge which 
hm to be done on a charged particle to bring it to that point, the charge on the 
particle being supposed so small that the distribution of electricity on the 
conductors i n  the jield is not afected by its presence. 

In moving the small charge e from x, y, a to x + dx, y + dy, z + dz, we 
shall have to perform an amount of work 

- (Xdx + Pdy + Zdz)  e, 

so that in bringing the charge e into position a t  x, y, z fiom outside the field 
altogether, we do an amount of work 

- e j  ( x d x  + Y d y  + Zdz), 

where the integral is taken along the path followed by e. 

Denoting the work done on the charge e in bringing it to any point 
x, y, z in the electric field by Ve,  we clearly have 

x, #, z 
- ( X c h + Y d y + Z d z )  .................. (6)7 

giving a mathematical expression for the potential at  the point x, y, z. 

The same result can be put in a different form. If  ds is rtny element of 
the path, and if the intensity R a t  the extremity of this element makes an 
angle 0 with ds, then the component of the force acting on E when moving 
along ds, resolved in the direction of motion of e, is B e  cos 8. The work 
done in moving a along the element ds is accordingly 

- Ke COS eds, 

so that the whole work in bringing e from infinity to x, y, z is 

and since this is equal, by definition, to Te, we mirst have 
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We see a t  once that the two expressions (6) and (7) just obtained for V 
are identical, on noticing that 6 is the angle between two lines of which the 
direction cosines are respectively 

X Y Z dz dy dû 
71, j j Y  R and -, - 

ds a i J  ds' 

Xdx Fdy  Z d z  
We therefore have cos 8 = - - + - - + - - n ds R ds K ds' 

so that R cos 8ds = Xd& + Ydy  + Zdz, 

and the identity of the two expressions becomes obvious. 

If the Theorem of the Conservation of Energy is true in the Electro- 
static Field, the work done i n  bringing a small charge a from infinity to any 
point P must be the same whatever path to P we choose. For if the 
amounts of work were different on two different paths, let these amounts 
be Ge and GE, and let the former be the greater. Then by taking the 
charge from P to infinity by the former path and bringing it back by the 
latter, we should gain an amount of work (& - Vp?e, which would be 
contrary to the Conservation of Energy. Thus and must be equal, 
and the potential a t  P is the same, no matter by what path we reach P. 
The potential. a t  P will accordingly depend only on the coordinates x, y, z 
of P. 

As soon as we introduce the special law of the inverse square, we shall 
find that the potential must be a single-valued function of q y, a, as a 
consequence of this law ($39), and hence shall be able to prove that the 
Theorem of Conservation of Energy is true in an Electrostatic field. For 
the moment, however, we assume this. 

34. Let us denote by W the work done in moving a charge e from P 
to &: In bringing the charge from infinity to P, we do an amount of work 

which by definition is eqiial to 5 E where G denotes the value of Vat the 
point P. Hence in taking i t  from infinity to Q, we do a total amount of 
work Pp a f W. This, however, is also equal by definition to & E. Hence 
me have 

or 

IRIS - LILLIAD - Université Lille 1 



35. DEFINITION. A surface in  the electric jield such that ut every point 
on it the potential has the same value, is called am Equipotential Surface. 

I n  discussing the phenornena of the electrostatic field, i t  is conveuient to think of the 
whole field as  mapped out by systems of equipotential surfaces and lines of force, just au 
in geography we think of the earth's surface as divided up by parallels of latitude and of 
longitude. A more exact paraIIel is obtained if we think of the earth's surface as mapped 
out by "contour-lines" of equal height above sea-level, and by lines of greatest slope. 
These reproduce al1 the properties of equipotentials and lines of force, for in  point of fact 
they are actual equipotentials and lines of force for the gravitational field of force. 

THEOREM. Equipotential surfaces cut lines of force at right angles. 

Let P be any point in the electric field, and let Q be an adjacent point 
on the same equipotential as P. Then, by definition, = G, so that by 
equation (8) W = O, W being the arnount of work done in moving a charge e 
Tom P to Q. If R is the intensity a t  Q, and 0  the angle which its direction 
makes with QP, the amount of this work must be -Re cos 0  x PQ, so that 

RE cos 6 = 0. 

Hence cos 0 =  0, so that the line of force cuts the equipotential a t  right 
angles. As in a former theorem, an exception has to be made in favour of 
the case in  which R =  0. 

36. Instead of P, Q being on the same equipotential, let them now be 
on a line parallel to the axis of x, their coordinates being x, y, z and z + dx, 
y, z respectively. I n  moving the charge e from P to Q the work done is 
- X ~ d x ,  and by equation (8) i t  is also (VQ- G) )B. Hence 

-Xdz=&,-Vp. 

Since Q and P are adjacent, we have, from the definition-of a differential 
coefficient, 

Z - P o - k - X ;  
ax dz 

hence we have the relations 

results which are of course obvious on differentiating equation (6)  with 
respect to x, y and z respectively. 

Similarly, if we imagine P ,  Q to be two points on the same line of force 
we obtain 

a where - denotes differentiation along a line of force. Since R is necessarily 
as 

av 
positive, it follows that - is negative, i.e. V decreases as s increases, or the as 
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intensity is in the direction of V decreasing. Thus the lines of force run 
from higher to lower values of P, and, as we have already seen, cut al1 
equipotentials a t  right angles. 

37. At a point which ia occupied by conducting material, the electric 
charges, as has already been said, must be in equilibrium under the action of 
the forces from al1 the other charges in the field. The resultant force from 
al1 these charges on any element of charge 6 is however RE, so that we must 
have R=O. H e n c e X = P = Z = O ,  so that 

I n  other words, P must be constant throughout a conductor for electro- 
static equilibrium to be possible. And in particular the surface of a 
conductor must be an equipotential surface, or part of one. The equi- 
potential of which the snrface of a conductor is part has the peculiarity 
of being three-dimensional instead of two-dimensional, for i t  occupies the 
whole interior as well as the surface of the conductor. 

I n  the same way, in considering the analogous arrangement of contour-lines and lines 
of greatest slope on a map of the earth's surface, we find that the edge of a lake or sea 
must be a contour-line, but that in  strictness this particular contour must be regarded a s  
two-dimensional rather than one-dimensional, since it coinoidas with the whole surface of 
the lake or sea. 

If Vis  not constant in any conductor, the intensity is in the direction of 
V decreasing. Hence positive electricity tends to flow in the direction of V 
decreasing, and negative electricity in the direction of V increasing. I f  two 
conductors in which the potential has different values are joined by a third 
conductor, the intensity in the third conductor will be in direction from 
the conductor a t  higher potential to that a t  lower potential. Electricity will 
flow through this conductor, and will continue to flow until the redistribution 
of potential caused by the transfer of this electricity is such that the potential 
is the same a t  al1 pointa of the conductors, which may now be regarded as 
forming one single conductor. 

Thus although the potential has been defined only with reference to 
single points, it is possible to speak of the potential of a whole conductor. 
I n  fact, the mathematical expression of the condition that equilibrium shaIl 
be possible for a given system of charges is simply that the potential shall 
be constant throughout each conductor. And when electric contact is 
established between two conductors, either by joining them by a wire or by 
other means, the new condition for equilibrium which is made necessary by 
the new physical condition introduced, is simply that the potentials of the 
two conductors shall be equal. 
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The earth is a conductor, and is therefore a t  the same potential through- 
out. In al1 practical applications of electrostatics, i t  will be legitimate to 
regard the potential of the earth as zero, a distant point on the earth's 
surface replacing the imaginary point a t  infinity, with reference to which 
potentials have so far been measured. Thus any conductor can be reduced 
to potential zero by joining i t  by a metallic wire to the earth. 

1. Values of Potential and Intensity. 

38. We now djscuss the values of the potential and components of 
electric intensity when the space between the conductors is air, so that 
the electric forces are determined by Coulomb's Law. 

If we have a single point charge el a t  a point P, the value of R, the 
resultant intensity a t  any point O, is 

and its direction is that of PO. Rence if 8 is the angle between OP and 

OO', the line joining O to an adjacent point 0', the work done in moving a 
charge e from O to O' 

=&cos8 .0û '  
= ER ( O P  - O'P) 
= - &dr, 

where O P  = r ,  O'P = r + dr. Hence the work done against the repulsion 
of the charge el in bringing e from infinity to O' by any path is 

R d r  = - E  
el e el ? d r  =- 

Tl ' 
where rl = O'P. 

If there are other charges q, e,, ... the work done sgainst al1 the 
repulsions in bringing a charge e to O' will be the sum of terms such as the 
above, Say 
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where r,, r,, ... are the distances from O' to e,, e,, .... so that by definition 

39. It is now clear that the potential a t  any point depends only on the 
coordinates of the point, so that the work done in bringing a small charge 
from infinity to a point P is always the same, no matter what path we 
choose, the result assumed in 5 33. 

I t  follows that we cannot alter the amount of energy in the field by 
moving charges about in such a way that the final state of the field is the 
same as the original state. I n  other words, the Conservation of Energy is 
true of the Electrostatic Field. 

40. Analÿtically, let us suppose that the charge el is a t  xl, y,, zl ; e, at  
x2, y,, z,; and so on. The repulsion on a small charge e at a;, y, z resulting 
from the presence of el a t  gl, yi, zl is 

and the direction-cosines of the direction in which this force scts on the 
charge e, are 

x-$1 Y - Y1 etc. 
[(x -GY + ( y  - + (Z - QI'' [(x - XJ + (y - yly + (2 - z~ylfJ 
Hence the component paraliel to the axis of x is 

By adding al1 such cornponents, we obtain as the component of the 
electric intensity at  x, y, z, 

and there are similar equations for Y and 2. 

We have as the value of 7 at  x, y, z, by equation (ô), 
. >Y,5 

V = - ( X d g  + Ydy  + Zdz) 

= z  el 

[(x - x1>" + (y - y1y + (z - 2,)23t9 

giving the same result as equation (10). 
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41. If the electric distribution is not confined to points, we can imagine 
it divided into small elements which may be treated as point charges. For 
instance if the electricity is spread throughout a volume, let the charge on 
sny element of volume dx'dy'dz' be pdx'dy'dz' so that p may be spoken of as 
the " density " of electricity a t  x', y', 2'. Then in fortnulx (11) we can replace 
el by pdx'dy'dz', and xlJ y,, g, by x', y', z'. Instead of summing the charges 
el, ... we of course integrate pdx'dy'dz' through al1 those parts of the space 
which contain electrical charges. In  this way we obtain 

p (x - J) ds'dy'dz' 
- etc., 

and 

These equations are one form of mathematical expression of the law of 
the inverse square of the distance. An attempt to perfonn the integration, 
in even a few simple cases, will speedily convince the student that the form 
is not one which lends itself to rapid progress. A second form of mathe- 
matical expression of the law of the inverse square is supplied by a Theorem 
of Gauss which we shall now prove, and i t  is this expression of the law which 
will form the basis of Our development of electrostatical theory. 

II. Gauss' Theorem. 

42. THEOREM. If any closed surface is  taken i n  the electric Jield, and 
.ifX denotes the component of the electric intensity at a?ty point o f th is  surface 
in t h  direction of the outward normal, then 

/ / N ~ s  = 47rE, 

uihere the integration extends ovey the whole of the surface, and E i s  the total 
charge enclosed by the surface. 

Let us suppose the charges in the field, both inside and outside the closed 
surface, to be e, a t  e, e, at E, and so on. The intensity a t  any point is 
the resultant of the intensities due to the charges separately, so that at  any 
point of the surface, we msy write 

N = N l + N 2 +  ... ...... . (W*, 
where N,, N*, ... are the normal components of intensity due to q, e,, ... 
separately. 

Instead of attemptiog to calculate I I N d S  directlg, n e  shall calculate 

separately the values of / / f l l d ~ ,  //lV2d8, .... The value of will, 

by equation (12), be the sum of these integrals. 

J. 

IRIS - LILLIAD - Université Lille 1 



34 Electrostatics-Field of Force [CH.  II 

Let us take any small element dS of the closed surface in the neighbour- 
hood of a point Q on the surface and join each point of its boundary to the 
point <. Let the small cone so formed cut off an element of area du from 

a sphere drawn through Q with I: as centre, and an element of area d o  from 
a sphere of unit radius drawn about I: as centre. Let the normal to the 
closed surface a t  Q in the direction away from I: make an angle 8 with EQ. 

The intensity a t  Q due to the charge el a t  Z is e,/EQ2 in the direction 
' ZQ, so that the component of the intensity dong the normal to the surface 

in the direction away from is 

el 
COS 0. 

The contribution to N,dS from the element of surface is accordingly II 
& 3 cos ûdS, e&" 

the + or - sign being taken according as the normal at  Q in the direction 
away from I: is the outward or inward norrnal to the surface. 

Now cos 0 dS is equal to do, the projection of dS on the sphere through Q 
having 4 as centre, for the two normals to dS and dg are inclined a t  an 
angle B. Also du=E&adw. For dm, ddw are the areas cut off by the same 
cone on spheres of radii <& and unity respectively. Hence 

If E: is inside the closed surface, a line from 8 to  any point on the unit 
sphere surrounding I: may either cut the closed surface only once as a t  
Q (fig. 8)-in which case the normal to the surface at  Q in the direction 
away from I: is the outward normal to the surface-or it may cut three 
times, as at Q', Q ,  Q-in which case two of the norinals away from I: (those 
at Q', Q in fig. 8) are outward normals to the surface, while the third normal 
away from (that at  &" in the figure) is an inward normal-or it may 
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cut five, Eceven, or any odd number of times. Thus a cone through a small 
element of area d o  on a unit sphere about E may cut the closed surface any 
odd number of times. However many times it cuts, the first small area cut 

off will contribute e,dw to the second and third small areas if they 

occur will contribute - eldo and + eldw respectively, the fourth and fifth if 
they occur will contribute - e,dw and + e,do respectively, and ao on. The 
total contribution from the cone surrounding d o  is, in every case, + eldo. 

Summing over al1 cones which can be drawn in this way through I: me obtain 

the whole value of ] b d ~ ,  which is thus seen to be simply e, multiplied by 

the total surface area of the unit sphere round Z, and therefore 47rel. 
3-3 
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On the other hand if I: is outside the closed surface, as in fig. 9, the 
cone through any element of area do on the unit sphere may either not cut 
the closed surface a t  all, or may cut twice, or four, six or any even number 
of times. If the cone through d o  intersects the surface at  all, the first pair 
of elements of surface which are cut off by the cone contribute -e,dw and 

-i-e,do respectively to I\r,dS. The second pair, if they occur, make a similsr II 
contribution and so on. In  every case the total contribution'from any small 
cone through I: is nil. By summing over al1 such cones we shall include 
the contributions from al1 parts of the closed surface, so that if 8 is outside 

the surface /fid&' is equal to zero. 

We have now seen that / / N ~ ~ s  is egual to 47~6 when the charge el is 

inside the closed surface, and is equal to zero when the charge e, is outside 
the closed surface. Hence 

= 4v-r x (the sum of al1 the charges inside the surface) 
=  TE, 

which proves the theorem. 

Obviously the theorem is true also when there is a continuous distribution 
of electricity in addition to a number of point charges. For clearly we can 
divide up the continuous distribution into a nurnber of small elemeuts and 
treat each as a point charge. 

av Since N, the' normal component of intensity, is equal by $ 36 to - - 
an ' 

a 
denotes differentiation along the outward normal, i t  appears that 

we can also express Gauss' Theorem in the form 

Gauss' theorem forms the most convenient method a t  Our disposal, of 
expressing the law of the inverse square. 

We can obtain a preliminary conception of the physical meaning under- 
lying the theorem by noticing that if the surface contains no charge a t  all, 
the theorern expresses that the average normal intensity is nil. If there is 
a negative charge inside the surface, the theorem shews that the average 
normal intensity is negative, so that a positiveiy charged particle placed a t  
a point on the imaginary surface will be likely to experience an attraction to 
the interior of the surface rather than a repulsion away from it, and vice 
versâ if the surface contains a positive charge. 
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Corollaries to Gauss' Theorem. 

43. THEOREM. If a closed surface be drawn, such that svery point on it 
is occupied by conducting material, the total charge inside it is nil. 

We have seen that a t  any point occupied by conducting material, the 
electric intensity must vanish. Hence a t  every point of the closed surface, 

N =  O, so that N d S  = 0, and therefore, by Gauss' Theorem, the total charge II 
inside the closed surface must vanish. 

The two following special cases of this theorem are of the greatest 
importance. 

44. THEOREM. There is no charge at any point which 2s occupied by con- 
ducting mate~ial, unless this point is on the surface of a conductor. 

For if the point is not on the surface, i t  will be possible to surround the 
point by a small sphere, such that every point of this sphere is inside the 
conductor. By the prececling theorem the charge inside this sphere is nil, 
hence there is no charge at the point in  question. 

This theorem is often stated by saying:- 
The charge of a conductor resides on its surface. 

45. THEOHEM. If we have a hollow closed conductor, and place any 
number of charged bodies insz'de it, the charge on its inner surface will be eqzlal 
in magnitude but opposite in sign, to the total charge on the bodies inside. 

For we can draw a closed surface entirely inside the material of the 
conductor, and by the theorem of 5 43, the whole charge inside this surface 
must be nil. This whole charge is, however, the sum of (i) the charge on the 
inner surface of the conductor, and (ii) the charges on the bodies inside the 
conductor. Hence these two must be equal and opposite. 

This result explains the property of the electroscope which led us to the 
conception of a definite quantity of electricity. The vesse1 placed on the 
plate of the electroscope formed a hollow closed conductor. The charge on 
the inner surface of this conductor, we now see, must be equal and opposite 
to the total charge inside, and since the total charge on this conductor is nil, 
the charge on its outer surface must be equal and opposite to that on the 
inner surface, and therefore exactly equal to the sum of the charges placed 
inside, independently of the position of these charges. 

The Cavendish Proof of the Law of the Inverse Square. 

46. We have deduced from the law of the inverse square, that the 
charge inside a closed conductor is zero. We shall now shew that the 
converse theorem is also true. Hence, in the known fact, revealed by the 
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observations of Cavendish and Maxwell, that the charge inside a closed 
conductor is zero, we have experimental proof of the law of the inverse 
square which admits of much greater accuracy than the experimental proof 
of Coulomb. 

The theorem that if there is no charge inside a spherical conductor the 
law of force muse be that of the inverse square is due to Laplace. We need 
consider this converse theorem only in its application to a spherical conductor, 
this being the actual form of conductor used by Cavendish. The apparatus 
illustrated in fig. 10 is not that used by Cavendish, but is an improved 
form designed by Maxwell, who repeated Cavendish's experiment in a more 
delicate form. 

Two spherical shells are fixed by a ring of ebonite so as to be concentric 
mith one another, and insulated from one another. 
Electrical contact can be established between the two 

Fm. IO. 

by letting d o m  the small trap-door B through which 
a wire passes, the wire being of such a length as just 
to establish contact when the trap-door is closed. The 
experiment is conducted by electrifying the outer 
shell, opening the trap-door by an insulating thread 
without discharging the conductor, afterwards dis- 
charging the outer conductor and testing whether any 
charge is to be found on the inner shell by placing it 
in electrical contact with a delicate electroscope by 
means of a conducting wire inserted through the trap- 
door. I t  is found that there are no traces of a charge 
on the inner sphere. 

47. Suppose we start to find the law of electric 
force such that there shall be no charge on the inner - 

sphere. Let us.assume a law of force such that the repulsion between two 
charges e, e' at  distance r apart is ee'+(r). The potential, calculated as 
explained in CJ 33, is 

t e  ITm9 (r)  dr ............................. (13), 

where the summation extends over al1 the charges in the field. 

Let us calculate the potential at  a point inside the sphere due to a charge 
E spread entirely over the surface of the sphere. If the sphere is of radius cc, 
the area of its surface is 4rraa, so that the amount of charge per unit area is 
EJ4ma2, and the expression for the potential becomes 

v =p (jag (9 . )  tir) d s i n  MW+ ............... 
4raa i (14h 

the summation of expression (13) being now replaced by an integration which 
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extends over the whole sphere. In  this expression r is the distance from the 
point at  which the potential is evaluated, to the element a2sin BdBd+ of 
spherical surface. 

If we agree to evaluate the potential at  a point situated on the axis 0 = 0  
a t  a distance c from the centre, we may write 

7'a=a2-+c2- 2nccos0. 

Since c is a constant, we obtain as the relation between d r  and dg, by 
differentiation of this last equation, 

r d r  = acsin 8dB .............................. (15). 

If we integrate expression (14) with respect to +, the limits being of 
course + = O and + = 27r, we obtain 

P= a~r= '  (Irw C$ (T) d r )  sin 0 dB, 
e=o 

or, on changing the variable from 8 to r,  by the help of relation (15) 

If we introduce a new function f (r), defined by 

we obtain as the value of V, 

I f  the inner and outer spheres are in electrical contact, their potentials 
are the same ; and if, as experiment shews to be the case, there is no charge 
on the inner sphere, then the whole potential must be that just found. This 
expression must, accordingly, have the same value whether c represents the 
radius of the outer sphere or that of the inner. Since this is true whatever 
the radius of the inner sphere may be, the expression must be the same for 
al1 values of c. We must accordingly have 

where V is the same for al1 values of c. Differentiating this equation twice 
with respect to c, we obtain 

O =  f " ( a +  C )  - f l ' (a- c). 

Since by definition, f (r) depends only on the law of force, and not on a or c, 
it follows from the relation 

f l ' (a+ c)= f " (a  - c), 

that $" ( r )  must.be a constant, say 0. 
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and by definition 

so that on equating the two values o f r  (r), 
m 

B +  cr=rlr cj(r)dri 

Th ere fore 
B 

so that the law of force is that of the inverse square. 

48. Maxwell has examined what charge would be produced on the inner 
sphere if, instead of the law of force being accurately Bir" i t  were of the 
form B]r2+q, where q is some small quantity. I n  t h i ~  way he found that if q 
were even so great as itT&, the charge on the inner sphere would have been 
too great to escape observation. As we have seen, the limit which Cavendish 
was able to assign to q was $6. 

I t  may be urged that the form B/r2+4 is not a sufficiently general 
law of force to assume. To this Maxwell has replied that i t  is the most 
general law under which conductors which are of different sizes but geometri- 
cally similar can be electrified similarly, while experiment sheivs that in point 
of fact geometrically similar conductors are electrified similarly. We may 
say then with confidence that the error in the law of the inverse square, if 
any, is extremely small. It should, however, be clearly understood that 
experiment has only proved the law B/ra for values of r which are great 
enough to admit of observation. The law of force between two electric 
charges which are at  very small distances from one another still remains 
entirely unknown to us. 

III. The Equations of Po.issolz and Laplace. 

49. There is still a, third way of expressing the law of the inverse 
square, and this can be deduced most readily from 

Iz Gauss' Theorem. 
Let us examine the small rectangular parallel- 

epiped, of volume dxdydz, which is bounded by 
the six plane faces 

x=E+&dx, y=q+$dy,  z=Pfgdz. 

i/ We shall suppose that this element does not con- 
O tain any point charges of electricity, or part of 

fie. 11. any charged surface, but for the sake of generality 
we shall suppose that the whole space is charged 
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with a continuous distribution of electricity, the volume-density of electrifi- 
cation in the neighbourhood of the small element under consideration being 
p. The whole charge contained by the element of volume is accordingly 
pdxdyda, so that Gauss' Theorem assumes the form 

The surface integral is the sum of six contributions, one froin each face of 
the parallelepiped. The contribution from that face which lies in the plane 
x = 5 - +dx is equal to dydz,  the area of the face, multiplied by the mean 
value of N over this face. To a sufficient approximation, this may be 
supposed to be the value of N a t  the centre of the face, i.e.'at the point 
[ - + d ~ ,  7, cl and this again may be written 

av 

so that the contribution to /!Nd8 from this face is 

Similarly the contribution from the opposite face is 

the sign being different because the outward normal is now the positive asis 
of x, whereas formerly i t  was the negative axis. The sum of the contributions 
from the two faces perpendicular to the axis of x is therefore 

............ - ) ,} 
5 t 5% s, t 5 - Bas, s, 

(17). 

av The expression inside curled brackets is the increment in the function - 
ax 

a av 
when z undergoes a small increment dx. This we know is dx- (-), so a& as 
thet expression (17) can be put in the form 

-- :J dz dy da. 

The whole value of N d 8  is accordingly II 
and equation (16) now assumes the form 
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This is known as Poisson's Equation; clenrly if we know the value of the 
potential at  every point, i t  enables us to find the charges by which t h k  
potential is produced. 

50. In  free space, where there are no electric charges, the equation 
assumes the form 

aav azv aav 
- + - + - = O  ........................... 
ax2 aya  azZ (19X 

and this is known as Laplace's Equation. We ;hall denote the operator 

by Va, so that Laplace's equation may be written in the abbreviated form 

V2V= O .................................... (20). 

Equations (18) and (20) express the same fact as Gauss' Theorem, but 
express it in the form of a differential equation. Equation (20) shews that 
in a region in which no charges exist, the potential satisfies a differential 
equation which is independent of the charges outside this region by which 
the potential is produced. It will easily be verified by direct differentiation 
that the value of V given in equation (10) is a solution of equation (20). 

We can obtain an idea of the physical meaning of this differential 
equation as follows. 

Let us take any point O and construct a sphere of radius r about this 
point. The mean value of V averaged over the surface of the sphere is 

where Y, 8, $ are polar coordinates, having O as origin. If we change the 
radius of this sphere from r t o  r + dr, the rate of change of 7 is 

= 0, by Gauss' Theorem, 

shewing that F i s  independent of the radius r of the sphere. Taking r = 0, 
the value of r i s  seen to be equal to the potential at the origin O. 

This gives the following interpretation of the differential equation : 

T varies from point to point in such a way that the average value of V 
takm over any sphere surro.unding any point O is eequal to  the value of V a t  O. 
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51. THEOREM. The potential cannot have a maxinzunt or a mininmm 
value at any point in space which is not occupied by an electric charge. 

For if the potential is to be a maximum a t  any point 0, the potential at  
every point on a sphere of small radius r surrounding O must be less than 
that a t  O. Hence the average value of the potential on a small sphere 
surrounding O must be less than the value a t  O, a result in opposition to 
that of the last section. 

A similar proof shews that the value of V cannot be a minimum. 

52. A second proof of this theorem is obtained at  once from Laplace's 
equation. Regarding V,simply as a function of x, y, z, a necessary condition 

w a v  a2v 
for P to have a maximum value at  any point is that - , - and - shall axz ay2 aza 
each be negative a t  the point in question, a condition which is inconsistent 
with Laplace's equation 

a2r azv azr -+,+-=o. 
axa ,y2 az2 

So also for T to be a minimum, the three differential coefficients would 
have to be al1 positive, and this again would be inconsistent with Laplace's 
equation. 

63. If V is a maximum at  any point O,  which as we have just seen 
e av 

rnust be occupied by an electric charge, then the value of - must be 
ar 

neptive as we cross a sphere of small radius 1: Thus l / g d ~  is negative 

where the integration is taken over a small sphere surrounding 0 ,  and by 
Gauss' Theorem the value of the surface integral is - h e ,  where e is the 
total charge inside the sphere. .Thus e must be positive, and similarly if Y 
is a minimum, e must be negative. Thus: 

I f  V is a maximum at any point, the poiat must be occupied by cc positive 
cAavge, and i f  7 is a minimum ut any point, the point must be occupied by a 
negative charge. 

54. We have seen (5 36) that in moving along a line of force we are 
moving, a t  every point, from higher to lower potential, so that the potential 
continually decreases as we move along a line of force. Hence a line of 
force can end only at  a point a t  which the potential is a minimum, and 
similarly by tracing a line of force backwsrds, we see that i t  can begin only 
a t  a point of which the potential is a maximum. Combining this result 
with that of the previous theorem, it follows that: 

Lines of force can begin only on positive charges, and can end only on 
negative charges. 
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I t  is of coiirse possible for a line of force to begin on a positive charge, 
and go to infinity, the potential decreasing al1 the way, in which case the 
line of force has, strictly speaking, no end at all. So also, a line of force may 
come from infinity, and end on a negative charge. 

Obviously a line of force cannot begin and end on the same conductor, 
for if it did so, the potential at  its two ends would be the same. Hence there 
cari be no lines of force in the interior of a hollow conductor which contains 
no charges ; consequently there can be no charges on its inner surface. 

Tubes of Force. 

55. Let us select any small area dS in the field, and let us draw the 
lines of force through every point of the boundary of this small area. If 
dS is taken sufikiently small, we can suppose the electric intensity to be the 
same in magnitude and direction at every point of dS, so that the directions 
of the lines of force at  al1 the points on the boundary will be approximately 
al1 parallel. By drawing the lines of force, then, we shall obtain a " tubular" 
surface-i.e., a surface such that in the neighbourhood of any point the 
surface nmy be regarded as cylindrical. The surface obtained in this way 
is called a "tube of force." A normal cross-section of a " tube of force " is a 
section which cuts al1 the lines of force through its boundary a t  right angles. 
I t  therefore forins part of an equipotential surface. 

56. THEOREM. If ml, 3e the areas of two normal cross-sectioons of the 
same tube of force, and RI, R, the intensitiei at these sections, then 

R1o, = R,w,. 

Consider the closed surface formed by the two cross-sections of areas 
o,, w,, and of the part of the tube of force 

M2 
joining them. There is no charge inside this 

surface, so that by Gauss' theorem, NdX = 0. li 
If the direction of the lines of force is from 

~1 a>, to w,, then the outmard normal intensity 
FIQ. 1% over o, is R,, so that the contribution from this 

area to the surface integral is R,w,. So also 
over w, the outward normal intensity is - R,, so that o, gives a contribution 
-RI@,. Over the rest of the surface, the outward normal is perpendicular to 
the electric intensity, so that N =  0, and this part of the surface contributes 

nothing to / / N ~ s .  The whole value of this integral, then, is 

and since this, as we have seen, must vanish, the theorem is proved. 
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57. Cour.om's LAW. if R i s  the outward intensity ut  a point just 
o~rtside a conductor, then R = 47w, wkere u i s  the surface density of electri- 
jîcntion on the conductor. 

We have already seen that the whole electrification of a conductor must 
reside on the surface. Therefore we no longer deal with a volume density 
of electrification p, siich that the charge in the element of volume d s d y d z  is 
p dxdydz ,  but with a surface-density of electrification o such that the charge 
on an element dS of the surface of the conductor is <rd#. 

The surface of the conductor, as we have seen, is an equipotential, so that 
by the theorem of p. 29, the intensity is in a direction normal to the 
surface. Let us draw perpendiculars to the surface at  every 
point on the boundary of a small element of aren dS ,  these per- 
pendiculars each extending a small distance into the conductor 
in one direction and a small distance away fiom the conductor 
in the other direction. We can close the cylindrical surface so 
formed, by two small plane areas, each equal and parallel to the 
original element of area dS.  Let us now apply Gauss' Theorem 
to this closed surface. The normal intensity is zero over every 
part of this surface except over the cap of area d S  which is 
outside the conductor. Over this cap the outward normal in- 13. 
tensity is R, so that the value of the surface integral of normal 
intensity taken over the closed surface, 'consists of the single term R d S .  
The total charge inside the surface is a d S ,  so that by Gauss' Theorem, 

R d #  = Q m ~ d s  . .... ... . . . . . . . . . .. . .. .. . . . . .. Pl}, 
and  coulomb'^ Law follows on dividing by dS. 

58. Let us draw the complete tube of force which is formed by the 
lines of force starting fiorn points on the boundary of the element d S  of the 
surface of the conductor. Let us suppose that the surface density on this 
element is positive, so that the ares dfi' forms the normal cross-section a t  

the positive end, or beginning, of the tube of force. Let us suppose that a t  
the negative end of the tube of force, the normal cross-section is dS'. that 
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the surface density of electrification is a', a' being of course negative, and 
that the intensity in the direction of the lines of force is R'. Then, as in 
equation (21), 

R'dS' = - Brro'dS', 

since the outward intensity is now - R'. 

Since R, .R' are the intensities a t  two points in the same tube of force 
at  which the normal cross-sections are dS, dS', it follows from the theorem 
of 5 56, that 

RdS = R'dS' 

and hence, on comparing the values just found for RdS and R'dS: that 

Since ad8 and o'dS' are respectively the charges of electricity from which 
the tube begins and on which i t  terminates, we see that : 

The negative charge of electricity on which a tube of force tm ina te s  is 
numerically equal to the positive charge from which i t  starts. 

If we close the ends of the tube of force by two small caps inside the 
conductors, as in fig. 14, we have a closed surface such that the normal 
intensity vanishes a t  every point. Thus, by Gauss' Theorem, the total 
charge inside must vanish, giving the result a t  once. 

59. The numerical value of either of the charges at  the ends of a 
tube of force may conveniently be spoken of as the strength of the tube. A 
tube of unit strength is spoken of by many writers as a unit tube of force. 

The strength of a tube of force is odS in the notation already used, and 
1 

this, by Coulomb's Law, is equal to - RdS where R is the intensity a t  the 
47r 

end dS of the tube. By the theorem of 5 56, RdS is equal to R,w, where 
&, o, are the intensity and cross-section a t  any point of the tube. Bence 
R,o, = 47r times the strength of the tube. It follows that : 

The intensity at any point is equnl to 47r times the aggregate strength per 
unit area of the tubes which cross a plane drawn ut rZght angles to the 
direction of the Êntensity. 

In  terms of unit tubes of force, we may say that the intensity is 4rr 
times the number of unit tubes per unit area which cross a plane drawn a t  
right angles to the intensity. 

The conception of tubes of force is due to Faraday: indeed i t  formed 
alrnost his only instrument for picturing to himself the phenornena of the 
Electric Field. It will be found that a number of theorerns connected with 
the electric field become almost obvious when interpreted with the help of 
the conception of tubes of force. For instance we proved on p. 37 that 
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when a number of charged bodies afe placed inside a hollow conductor, they 
induce on its inner surface a charge equal and opposite to the sum of al1 
their charges. This may now be regarded as a special case of the obvious 
theorem that the total charge associated with the beginnings and termi- 
nations of any number of tubes of force, none of which pass to infinity, must 
be nil. 

60. It will be of advantage to study a few particular fields of electric 
force bÿ means of drawing their lines of force and equipotential surfaces. 

1. Two E p a l  Point Charges. 

61. Let A, B be two equal point charges, say at  the points x = - a, + a. 
The equations of the lines of force which are in the plane of rt., y are 
easily found to be 

Y %=- Y ..m..... .." ....S.... (22h 

where P is the point x, y. 

This equation admits of integration in the form 

$ + a  & - a  - + -- = cons. ....................... .(2à). PB 
From this equation the lines of force can be drawn, and will be found to lie 
as in fig. 15. 

62. There are, however, only a few cases in mhich the difîerential 
equations of the lines of force can be integrated, and i t  is frequently simplest 
to obtain the properties of the lines of force directly from the differential 
equation. The following treatment illustrates the method of treating lines 
of force without integrating the differential equation. 

From equation (22) we see that obvious lines of force are 

(i) y = O ,  -=O, giving the sais AB; ax 
ay (ii) x = O, PA =PB,  - = oo , giving the line which bisects AB at  ax 

right angles. 

These lines intersect a t  C, the middle point of AB. At this point, then, 
ay y 9 has two values, and since - = - , it follows that we must have X = O, ax as x 

Y= O. In  other words, the point C is a point of equilibrium, as is otherwise 
obvious. 
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The same result can be seen in another way. If we start from A and 
draw a small tube surrounding the line AB, i t  is clear that the cross-section 
of the tube, no matter how small i t  was initially, will have become infinite 
by the time i t  reaches the plane which bisects AB at  right angles-in fact 
the cross-section is identical with the infinite plane. Since the product of 
the cross-section and the normal intensity is constant throughout a tube, i t  
follows that a t  the point Cl the intensity must vanish. 

At a great distance R from the points A and B, the fraction 

PB - PAB 
PB, + PA8 

vanishes to the order of 1/R, so that 

except for terms of the order of 1/R2. Thus at  infinity the lines of force 
become asymptotic to straight lines passing through the origin. 

Let us suppose that a line of force starts froin A making an angle B with 
BA produced, and is asymptotic a t  infinity to a line through C which makes 
an angle c$ with BA produced. By rotating this line of force about the 
axis AB we obtain a surface which may be regarded as the boundary of 
a bundle of tubes of force. This surface cuts off an area 

IRIS - LILLIAD - Université Lille 1 



621 Charges -t. e, + e 49 

from a small sphere of radius r drawn about A, and at every point of 
this sphere the intensity is e/ra normal to the sphere. The surface again 
cuts off an area 

27r (1 - COS $I) Ra 
from a sphere of very great radius R drawn about C, and at  every point 
of this sphere the intensity ia 2elRz. Hence, applying Gauss' Theorem 
to the part of the field enclosed by the two spheres of radii r and R, 
and the surface formed by the revolution of the line of force about AB, 
we obtain 

from which follows the relation 

s i n g e =  tJ2 sin%+. 

In particular, the line of force which leaves A in a direction perpendicular 
to AB is bent through an angle of 30" before it reaches its asymptote at  
infinity. 

The sections of the equipotentials made by the plane of xy for this case 
are shewn in fig. 16 which is drawn on the same scale as fig. 15. The equa- 
tions of these curves are of course 

1 1  + PB = cons., 

curves of the sixth degree. The eyuipotential which passes through C is 
of interest, as it intersects itself at  the point C, This is a necessary conse- 

quence of the fact that C is a point of equilibrium. Indeed the conditions 
for a point of equilibrium, namely 

av av av 
- = O ,  - = O ,  -=O, a s  ay a2 

may be interpreted as the condition that the equipotential (V-constant) 
through the point should have a double tangent plane or a tangent eone at 
the point. 
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I I .  Point charges + e, - e. 

63. Let charges + e be at the points x = It cc ( A ,  B) respectively. The 
differential equations of the lines of force are found to be 

and the integral of this is 
x+a x-a ---- 
P A  PB - cons. 

The lines of force are shewn in fig. 17. 

Fra. 17. 

64. An important case occurs when we have two large chnrges + e, - e, 
equal and opposite in sign, at a small distance apart. Taking Cartesian 
coordinates, let us suppose we have the charge + e at a, O, O and the charge 
- e at  - a, O, O, so that the distance of the charges is 2a. 

The potential is 

and when a is very srnall, so that squares and higher powers of a may be 
neglected, this becoines 

If a is made to vanish, while e becomes infinite, in such a wny that 
2ea retaina the finite value p, the system ia described as an electric 
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doublet of strength p having for its direction the positive axis of a. Its 
potential is 

or, if we t u q  to polar coordinates and write z = r cos 8, is 

p cos 0 . . . . . .. .. -. ..... . . . . . . . . . . .. . . . . . . ..(24). 

The lines of force are shewn in fig. 18. Obviously the lines at the 
centre of this figure become identical with those shewn in fig. 1'7, if the 
latter are shrunk indetinitely in size. 

4 -2 
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65. Fig. 19 represents the distribution of the lines of force when the 
electï-ic field is produced by two point charges, + 4e at  A and - e a t  B. 

At  infinity the resultant force will be 3e/P, where r is the distance from 
a point near to A and B. The direction of this force is outwards. Thus no 
lines of force can arrive a t  B fkom infinity, so that al1 the lines of force 
which enter B must corne from A. The remaining lines of force from A go 
to infinity. The tubes of force from d to B form a, bundle of uggregate 

strength e. while those from A to infinity have aggregate strength 3e. The 
two bundles of tubes of force are separated by the lines of force through C. 
At C the direction of the resultant force is clearly indeterminate, so that C 
is a point of equilibrium. As the condition that C is a point of equilibrium 
we have 

So that AB = BC. At C the two lines of force from A coalesce and then 
separate out into two distinct lines of force, one from C to B, and the other 
from C to infinity in the direction opposite to CB. 

The equipotentials in this field, the systern of curves 

4 1 
= - P B =  cons., 

are represented in fig. 20, which is drawn on the same scale as fig. 19. 
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Since C is a point of equilibrium the equipotential through the point C 
must of course cut itself at G. At O the potential 

4e e e ---=- 
CA CB AB' 

since CA =WB.  From the loop of this equipotential which surrounds B, 
the potential must fa11 continuously to - CO as we approqch B, since, by the 
theorem of § 51, there can be no maxima or minima of potential between 
this loop and the point B. Also no equipotential can intersect itself since 
there aie obviously no pointa of equilibri-um 

\ 

except C. One of the inter- 

inediate equipotentials is of special interest, namely that over which the 
potential is zero. This is the locus of the point P given by 

and is therefore a sphere. This is represented by the outer of the two 
closed curves which surround B in the figure. 

I n  the same way we see that the other loop of the equipotential through 
C must be occupied by equipotentials for which the potential rises steadily 
to the value +KI a t  A. So also outside the equipotential through C, the 
potential fa119 steadily to the value zero at infinity. Thus the zero equi- 
potential consists of two spheres-the sphere a t  infinity and the sphere 
surrounding B which has already been mentioned. 
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V. Three e q r d  charges at the corners of an equilateral triangle, 

66. As a further example we may examine the disposition of equi- 
potentials when the field is produced by three point charges at  the corners 
of an equilateral triangle. The intersection of these by the plane in which 
the charges lie is represented in fig. 21, in which A, B, C are the points at 
which the charges are placed, and D is the centre of the triangle ABC. 

I t  will be found that there are three points of equilibrium, one on each 
of the lines AD, BD, CD. Taking AD = a, the distance of each point of 
equilibrium from D is just less than aa. The same equipotential passes 
through ail three points of equilibrium. If the charge at  each of the points 

Fm. 21. 

A, B, C is taken to be unitg, this equipotential has a potential *, The a 
equipotential has three loops surroundhg the points A, B, C. In each of 
these loops the equipotentials are closed curves, which finally reduce to 
srnall circles siirrounding the points A, B, C. Those drawn correspond to 

3.25 3.5 3-75 the potentials -, - - 4 , and - 
a a '  a a' 

3.04 
Outside the equipotential -, the equipotentisls are closed ciirves 

a 
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surrounding the former equipotential, and finally reducing to circles at  in- 
2 2.25 2-5 

finity. The curves drawn correspond to potentials - - - 2.75 , and -. 
a '  a g a  a 

3.04 
There remains the region between the point D and the equipotential - . 

a 

At D the potential is E, so that the potential falls as r e  reoede from the 
a 

equipotential and reaches its minimum salue at D. The potential at  
a 

D is of course not a minimum for al1 directions in space: for the potential 
increases as we move away from D in directions which are in the plane 
ABC, but obviously decreases as we move away from D in a direction per- 

pendicuhr to this plane. Taking D as origin, and the plane ABC as plane 
of &y, it d l  be found that near D the potential is 

Thus the equipotential through D is shaped like a right circular cone in 
the immediate neighbourhood of the point D. From the equation just 
found, i t  is obvious that near D the sections of the equipotentials by the 
plane ABC will be circles surrounding D. 
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From a study of the section of the equipotentials as shewn in fig. 21, i t  is 
easy to construct the complete surfaces. We see that each equipotential for 
which V has a very high value consista of three small spheres surrounding the 
points A, B, C. For smaller values of V, which must, however, be greater - 

than E, each equipotential still consists of three closed surfaces surround- 
a 

ing A, B, C, but these surfaces are no longer spherical, each one bulging out 
towards the point D. As V decreases, the surfaces continue to swell out, 

3.04 
until, when V = - , the surfaces touch one another simultaneously, in a 

a 
way which will readily be understood on examining the section of this equi- 
potential as shewn in fig. 21. I t  will be seen that this equipotential js 
shaped like a flower of three petals from which the centre has been cut away. 

As V decreases further the surfaces continue to snell, and when V = 3 the 
a' 

space at  the centre becomes filled up. For still smaller values of V the 
equipotentials are closed singly-connected surfaces, which finally become 
spheres a t  i d n i t y  correspo~iding to the potential V = O. 

The sections of the equipotentials by a plane through DA perpendicular 
to the plane ABC are shewn in fig. 22. 

SPECIAL PROPERTIES OF EQUIPOTENTIALS AND L~NES OF FORCE. 

The Equipotentials and Lines of Force ut injînity. 

67. I n  $40, we obtained the general equation 

If r denotes the distance of x, y, z from the origin, and rl the distance of 
xl, y,, zl, from the origin, we may write this in the form 

v = 2  el 

[ra - 2 (ml + yyl + ml) + ria] 4. 
At a great distance from the origin this may be expanded in descending 
powers of the distance, in the form 

"="p + XXI + yyl + zz, 3 (xzl + yy, f zz,)B 1 r,B 
+ z  r2 r4 

1 . Se, The term of order - 1s - . 
r r 

1 1  The term of order - is y Ce, (xx, + yy, + 22,). 
?"a 1 
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If the origin is taken at the centroid of el a t  s l ,  YI, z l ,  e, at  x2, y2 ,  2%. etc., 
we have 

Le1q = O, Se1 y* = O, Ce,zl = 0. 
1 

Thus by taking the origin at  this centroid, the term of order 2 will 

disappear. 
1 

The term of order - is 
9 3  

Let A, B, C, be the moments of inertia about the axes, of el at  x l ,  y,, z l ,  
etc., and let 1 be the moment of inertia about the line joining the origin to 
rc, y,  z ; then 

LeIr? = + ( A + B + C ) ,  
Se, (xxl + yy, + ~ 2 , ) ~  = 19 (Çelvi.) - I),  

1 
and the terms of order - become 

1.a 

Thus taking the centroid of the charges as origin, the potential a t  a great 
distance from the origin can be expanded in the form 

Thus except when the total charge Xe vanishes, the field at  infinity is 
the same as if the total charge Ce were collected at  the centroid of the 
charges. Thus the equipotentials approximate to spheres having this point 
as centre, and the asymptotes to the lines of force are radii drawn through 
the centroid. These results are illustrated in the special fields of force 
considered in $5 61-66. 

The L.ines of Force f rom collinear charges. 

68. When the field is produced solely by charges al1 in the same straight 
line, the equipotentials are obviously surfaces of revolution about this line, 
while the lines of force lie entirely in planes through this line. I n  this 
important case, the equation of the lines of force admits of direct integrntion. 

Let E ,  e, e, ... be the positions of the charges el, e,, es, .... Let Q, Q' 
be any two adjacent points on a line of force. Let N be the foot of the 
perpendicular from Q to the axis ee, ... , and let a circle be drawn perpen- 
dicular to this axis with centre N and radius QN. This circle subtends 
at a solid angle 

27r (1 - cos dl), 
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where 8, is the angle QeN. Thus the surface integral of normal force 
arising from el, taken over the circle QN, is 

erre, (1 - cos 8,) 

and the total surface integral of normal force taken over this surface is 

2rCel (1 - cos 8,). 

If we draw the similar circle through Q', we obtain a, closed surface 
bounded by these two' circles and by the surface formed by the revolution 

of QQ'. This contnins no electric charge, so that the scrface integral of 
normal force taken over iii must be nil. Hence the integral of force over 
the circle QN must be the same as that over the similar circle drawn 
through &'. This gives the equations of the lines of force in the form 

(integral of normal force through circle such as QN) = constant, 

which as we have seen, becomes 

Xe, cos 8, = constant. 

Analytically, let the point I: have coordinates a,, O, O, let I: have 
coordinates a,, O, 0, etc. and let Q be the point x? y, z. Then 

x- x1 
cos 8, = 

d(x - %,)a + ya+ z2' 

and the equation of the surfaces formed by the revolution of the lines of 
force is 

I t  will easily be verified by differentiation that this is an integral of the 
differential equation 

Y ay=- zi X '  
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Eqz~ipotentials which intersect themselves. 

69. We have seen that, in general, the equipotential through any point 
of equilibrium must intersect itself at  the point of equilibrium. 

Let x, y, z be a point of equilibrium, and let the potential at  this point be 
denoted by K. Let the potential at  an adjacent point x + e, y + 7, z + c, be 
denoted by 5, ,, I ,  By Taylor's Theorem, if f (x, y, z) is any function of 
x, y, z, we have 

af  ' af af f ( x + ~ y + . i , z + ~ ) = f ( x , y , . c ) + ~ ~  +q-+c,+ ay 4(@f+zh axa + ...), 
where the differential coefficients of f are evaluated at x, y, z. Taking 
f (x, y, z) to be the potential at  x, y, z, this of course being a function of the 
variables x, y, z, the foregoing equation becomes 

If x, y, z is a point of equilibrium, 

av av av 
= O, 

so that 

Eeferred to x, y, z as origin, .the coordinates of the point x+& y+ 7 ,  
z + beconle E, 7, 5, and the equation of the equipotential V =  C becomes 

In the neighbourhood of the point of equilibrium, the values of & q, r are 
small, so that in general the terms containing powers of 5, q, r higher than 
.squares may be neglected, and the equation of the equipotential V =  C 
becomes 

In particular the equipotential V= becomes identical, in the neighbourhood 
of the point of equilibrium, with the cone 

Let this cone, referred to its principal axes, become 

then, since the sum of the coefficients of the squares of the variables is an 
invariant. 
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Now a + ï5 + c =  O is the condition that the cone shall have three per- 
pendicular generators. Hence we see that a t  the point a t  which un 
equipotential cuts itself, we can always find three perpendicular tangents to 
the equipotential. Moreover we can find these perpendicular tangents in an 
infinite number of ways. 

I n  the pa~ticular case in which the cone is one of revolution (e.g., if the 
whole field is synimetrical about an axis, as in figures 16 and 20), the 
equation of the cone must become 

p + $2 - 2 p  = O, 

where the axis of is the axis of symmetry. The section of the eqnipotential 
made by any plane through the axis, Say that of t'y, must now become 

,y- 2 p = o  

in the neighbourhood of the point of equilibrium, and this shews that the 
tangents to the equipote~tials each make a constant angle tan+ 2/2 (= 54" 44') 
with the axis of symmetry. 

In  the more general cases in which there is not symmetry about an axis, 
the tmo branches of the surface mil1 in general intersect in a line, and the 
cone reduces to two planes, the equation being 

aE12 + bqta = 0, 

where the axis of 5' is the line of intersection. We now have a + 6 =O, so 
that the tangent planes to the equipotential intersect a t  right angles. 

An ahalogous theorem can be proved when n sheets of an equipotential 
intersect a t  a point. The theorem states that the n sheets make equal 
angles ?r/n with one another. (Ranlcin's Theorem, see Maxwell's Electm'city 
and Magnetism, 5 115, or Thomson and Tait's Natural Philosophy, § 780.) 

70. A conductor is always an equipotential, and can be constructed so as 
to cut itself at  any angle we please. It will be seen that the foregoing 
theorenis can fail either through the a, b and c of equation (24) al1 vanishing, 
or through their al1 becoming infinite. In the former case the potential near 
a point a t  which the conductor cuts itself, is of the form (cf. equation (25)), 

so that the components of intensity are of the forms 

The intensity near the point of equilihriiim is therefore a small quantity of 
the second order, and since by Coulomb's Law R = $rra, it follows that the 
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surface density is zero along the line of intersection, and is proportional to 
the square of the distance froni the line of intersection at  adjacent points. 

If, Iiowever, a, b and c are al1 i@nite, we have the electric intensity also 
infinite, and therefore the surface density is infinite along the line oi inter- 
section. 

I t  is clear that the surface density will vanish when the condiicting 
surface cuts itself in such a way that the angle less than two right angles 
is external to the conductor; and that the surface density will become 
infinite when the angle greater than two right angles is external to the 
conductor. This becomes obvious on examining the arrangement of the 
lines of force in the neighbourhood of the angle. 

FIB. 24. Angle greater thm two rigiit angles external to conductor. 

FIG. 25. Angle less than two right angles exteriial to conductor. 

71. The arrangement shewn in fig. 25 is such as will be found a t  the 
point of a lightning conductor. The object of the lightning conductor is 
to ensure that the intensity shall be greater at its point than on any part 
of the buildings i t  is designed to protect. The discharge will therefore take 

IRIS - LILLIAD - Université Lille 1 



62 ~tec t ros ta t im-~ie ld  of Force [ C H .  II 

place from the  point of the lightning conductor sooner than from any part of 
t h e  building, and by putting the conductor in good electrical communication 
w i t h  t h e  earth, i t  is possible to ensure that no harm shall be  done to  the 
m a i n  buildings by the electrical discharge. 

An application of the same principle will explain the danger t o  n human 
being or animal' of standing in the open air in the presence of a thunder cloud, 
or of s tanding under an isolated tree. The upward point, whether t he  head 
of man or animal, or the summit of the tree, tends to collect t he  lines of force 
which pass froni the cloud to the ground, so that a discharge of electricity 
will t a k e  place from the head or tree rather than frorn the  ground. 

72. The property of lines of force of clustering together in this way is 
utilised also in the manufacture of electrical instruments. A cage of wire is 

 FI^. 27. 

placed round the instrument and  almost al1 the lines of force from any 
charges which there may be outside the  instrument will cluster together on 
the convex surfaces of the wire. Very few lines of force escape through this 
cage, so that the instrument inside the  cage is hardly affected at al1 by any 
electric phenornena which may  take  place outside it. Fig. 2'1 shews the 
way in which lines of force are  absorbed by a wire grating. I t  is drawn to 
represent the lines of force of a uniform field meeting a plane grating placed 
at right angles to the field of force. 
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EXAMPLES. 

1. Two particles each of mass m and charged with e units of electriçity of the same 
sign are suspended by strings each of length a from the same point; prove that the 
inclination 8 of each string to the vertical is given by the equation 

4mga2 sin3 8 = ee cos 8. 

2 Charges + 4e, - e are placed a t  the points A, B, and C is the point of equilibrium. 
Prove that the ,line of force which passes through 0 meets AB a t  an angle of 60" rtt A and 
at  right angles a t  (7. 

3. Find the angle a t  A (quncrtion 2) between AB and the line of force which leaves B 
at right angles to AB. 

4. Two positive charges el and e2 are placed at  the points A and B respectively. 
Shew that the tangent a t  infinity to the line of force which starts from el making an angle 
a with BA produced, makes an angle 

with BA, and passes through the point C in AB such that 

AC : Ci3=ez : el. 

5. Point charges +e, - o  are placed a t  the points A, B. The line of force which leaves 
A making an angle a with AB meets the plane which bisects AB a t  right angles, in P. 
Shew that 

PAB sin %= J2 sin - . 
2 2 

6. If any closed surface be drawn not enclosing a charged body or any part of one, 
shcw that a t  every point of a certain closed line on the surface it  intersecta the equi- 
potential surface through the point a t  right angles. 

7. The potential is given a t  four points near each other and not aii in one plane. 
Obtain an approximate construction for the direction of the field in their neighbourhood. 
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8. The potentials a t  the four corners of a sinall tetrahedron A, B, C, D are VI, V2, 
V,, V4 respectively. G is the centre of gravity of masses Ml a t  A, Ba a t  B, M3 a t  C, 
Hp a t  D. Shew that the potential a t  Q is 

9. Charges 38, -e, - e  are placcd a t  A, B, C respectively, wbere B is the middle 
point of AC'. Draw a rough diagram of the liues of force; ahew that a line of force which 
starts from A making an angle a with AB>cos-l(-+) will not reach B or O, and shew 
that the asymptote of the line of force for which a=cos-'(-4) is a t  right angles to AC. 

10. If there are three elcctrified points A, B, C in a straight line, such that AC=f, 
a2 

BC=-, and the charges are e, = and Va respectively, shew that there is always a f f 
spherical equipotential surface, and discuss the position of the pointa of equilibrium on 

f + a  the line ABC when V=e - f -a  and when V=e 
Cf- a)" (f+ u ) ~ .  

11. A and C are spherical conductors with charges e+e' and -e respectively. Shew 
that there is either a point or a line of equilibrium, depeuding on the relative size and 
positions of the spheres, and on $le. Draw a diagrnm for each case giving the lines of 
force and the sections of the equipotentials by a plane through the centres. 

12. An electrified body i s  placed in the vioinity of a conductor in  the form of a 
surface of anticlastic curvatrire. Shew that a t  that point of any line of force pasving from 
the body to the conductor, a t  which the force is a miiiimum, the principal curvatures of 
the equiyotential surface are equal and opposite. 

13. Shew that it is not possible for every family of non-intersecting surfacw in free 
space to be a family of equipotentials, and that the condition that the family of surfacas 

f (1, 4 Y, 4 =O 
shall be capable of being equipotentials iu that 

a2X a2X a2x 
@+@+rn 

fihall be a fuuction of X only. 

14. I n  the last question, if the condition is satisfied find the potentiaL 

15. Shew that the confocal ellipsoids 

can form a system of equipotentials, and express the potential as  a function of X. 

16. If two charged concentric shells be connected by a mire, the inner one is wholly 
1 

discharged. If the law of force were +-, prove that there would be a charge B on the 

inner shell such that if A were the charge on the outer shell, andf, g the sum and differ- 
ence of the radii, 

29B= - 4 {(f -9) 1% (f +9) -f logf +9 1% gl 
approximately. 
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17. Three infinite parallel wires out a plane perpendicular to them in the angular 
A, B, C of an equilateral triangle, and have charges e, e, -e' per unit length 

respecti~ely. Prove that the extrerne lines of force which pass from A to C make a t  
2e - 5d 

starting angles - w and - with AC, provided that ef+2e. 
6e 6e  

18. A negative point charge -% lies between ~ W O  positive point charges el and e, on 
the line joining them and a t  distances a, from them respectively. Shew that, if the 
magnitudes of the charges are given by 

'2'3 and if 1 <.P< 

there is a circle a t  every point of which the force vanishes. Determine the general form 
of the equipotential surface on which this circle lies. 

19. Charges of electricity 81, - e z ,  e3,  (e3>el) are placed in a straight line, the 
negative charge being midway between the other two. Shew that, if 4e2 lie between 

(e3Q- 46)s  and (e39+e14)3, the number of unit tubes of force that pass from el to % is 
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CHAPTER III 

CONDUCTORS AND CONDENSERS 

73. RY a conductor, as previously explained, is meant any body or 
system of bodies, such that electricity can flow freely over the whole. When 
electricity is a t  rest on such a conductor, we have seen (§ 44) that the charge 
will reside entirely on the outer surface, and (5 37) that the potential will 
be constant over this surface. 

A conductor may be used for the storage of electricity, but i t  is found 
that a much more efficient arrangement is obtained by taking two or more 
conductors-generally thin plates of metal-and arranging them in a certain 
way. This arrangement for storing electricity is spoken of as a "con- 
denser." I n  the present Chapter we shall discuss the theory of single 
conductors and of condensers, working out in  full the theory of some of the 
simpler cases. 

A Sphericnl Condactor. 

74. The simplest example of a conductor is supplied by a sphere, i t  
being supposed tliat the sphere is so far removed from al1 other bodies that 
their influence may be neglected. In this case i t  is obvious from symmetry 
that the charge will spread itself uniformly over the surface. Thus if e is 
the charge, and a the radius, the surface density a is given by 

total charge e 
a =  = - 

total area of surface 4aa2' 

The electric intensity at  the surface being, as we have seen, equal t o  
4 ~ a ,  is e/a2. 

From symmetry the direction of the intensity at  any point outside the 
sphere must be in a direction passing through the centre. To find the 
amount of this iutensity a t  a distance r from the centre, let us draw a sphere 
of radius T, concentric with the conductor. At eaery point of this sphere 
the amount of the outward electric intensity is hy symmetry the same, eay R, 
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and its direction as we have seen is normal to the surface. Applying Gauss' 
Theorem to this sphere, we find that the surface jntegral of normal intensity 
r r  

J ~ N ~ s  becomes simply R multiplied bg the area of the surface 4+ so that 

4ar2R = 4 ~ e ,  

This becomes e/a2 a t  the surface, agreeing with the value previously 
obtained. 

Thus the electric force at  any point is the same as if the charged sphere 
were replaced by a point charge e, at  the centre of the sphere. And, just 
as in the case of a single point charge e, the potential a t  a point outside the 
sphere, distant r from its centre, is 

e so that at  the surface of the sphere the potential is -.  
a 

Inside the sphere, as has been proved in § 37, the potential is constant, 
and therefore equal to e/a, its value at  the surface, while the elec'tric intensity 
vanishes. 

As we gradually charge up the conductor, i t  appears that the potential 
a t  the surface is always proportional to the charge of the conductor. 

I t  is customary to speak of the potential at  the surface of a conductor as 
"the potential of the conductor," and the ratio of the charge to this potential 
is defined to be the " capacity " of the conductor. From n general theorem, 
which we shall soon arrive at, i t  will be seen that the ratio of charge to 
potential remains the same throughout the process of charging any conductor 
or condenser, so that in every case the capacity depends only on the shape 
and size of the conductor or condenser in question. For a sphere, as we 
have seen, 

charge e 
capacity = =-=  

potential - e a, 
a 

so that the capacity of a sphere is equal to its radius. 

A Cylindrical Conductor. 

75. Let us next consider the distribution of electricity on a circular 
cylinder, the cylinder either extending to infinity, or else having its ends so 
far away from the parts under consideration that their influence may be 
neglected. 

As in the case of the sphere, the charge distributes itself symmetrically, 
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so that if a is the radius of the cylinder, and if i t  has a charge e per unit 
length, we have 

e 
O-=--- 

27~a ' 

To find the intensity at  any point outside the condixctor, construct a Gauss' 
surface by first drawing a cylinder of radius r,  coaxal with the original 
cylinder, and then cutting off a unit length by two parallel planes at  
unit distance apart, perpendicular to the axis. Frorn sym- 
metry the force at  every point is perpendicular to the axis 
of the cylinder, so that the normal intensity vanishes at  
every point of the plane ends of this Gauss' surface. The 
surface integral of normal intensity will therefore consist 
entirely of the contributions from the curved part of the 
surface, and this curved part consists of a circular band, of 
unit width and radius Y-hence of area 2n-r. If R is the 
outward intensity at  every point of this curved surface, 
Gauss' Theorem supplies the relation 

Sm-R = 4 ~ e ,  

so that 

This, we notice, is independent of a, so that the intensity is the same as 
i t  would be if a were very small, ie., as if we had a fine wire electrified with 
a charge e per unit length. 

In the foregoing, we nmst suppose r to be so small, that a t  a distance r 
from the cylinder the influence of the ends is still negligible in cornparison 
with that of the nearer parts of the cylinder, so that the investigation does 
not hold for Iarge values of r. It follows that we cannot find the potential 
by integrating the intensity from infinity, as has been done in the cases of 
the point charge and of the sphere. We have, however, the general 
differential equahon 

so that in the present case, so long as r remains sufficiently small 

a V  2e -=-- 
Ûr T '  

giving upon integration 
V=C-2elogr .  

The constant of integration C cannot be determined without a knowledge 
of the conditions at  the ends of the cylinder. Thus for a long cylinder, the 
intenlsity at  points near the cylinder is independent of the conditions at the 
ends, but the potential and capacity depend on these conditions, and are 
therefore not investigated here. 
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76. Suppose we have a plane extending to infinity in al1 directions, and 
electrified with a charge u per unit area. From symmetry i t  is obvious that 
the lines of force will be perpendicular to the plane a t  every point, so that 
the tubes of force will be of uniform cross-section. Let us take as Gauss' 
surface the tube of force whic.h has as cross-section any element o of area 
of the charged plane, this tube being cIosed by two cross-sections each of 
area o at distance r from the plane. If R is the intensity over either of 
these cross-sections the contribution of each cross-section to Gauss' integral 
is Ro, so that Gauss' Theorem gives a t  once 

whence R = 2nu. 

The intensity is therefore the same at al1 distances from the plane. 

The result that at  the surface of the plane the intensity is 27m, may at  
first seem to be in opposition to Coulomb's Theorem ($ 57) which states that 
the intensity at  the surface of a conductor is 4~o. It will, however, be seen 
from the proof of this theorem, that it deals only with conductom in 
which the conducting matter is of finite thickness; if we wish to regard 
the electrified plane as a conductor of this kind we must regard the 
total electrification as being divided between the two faces, the surface 
density being $a on each, and Coulomb's Theorem then gives the correct 
result. I 

If the plane is not actually infinite, the result obtained for an infinite 
plane will hold within a region which is sufficiently near to the plane for the 
edges to have no influence. As in the former case of the cylinder, we can 
obtain the potential within this region by integration. If r measures the 
perpendicular distance from the plane 

so that P= C - 2rur, 

and, as before, the constant of integration cannot be determined without 
a knowledge of the conditions a t  the edges. 

77. It is instructive to compare the three expressions which have been 
obtained for the electric intensity a t  points outside a charged sphere, cylinder 
and plane respectively. Taking r to be the distance from the centre of the 
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sphere, from the axis of the cylinder, and from the plane, respectively, we 
have found that 

1 
outside the sphere, R is proportional to - 

ra' 

1 
outside the cylinder, R is proportional to - r ' 
oubside the plane, R is constant. 

From the point of view of tubes of force, these results are obvious enough 
deductions from the theorem that the intensity varies inversely as the cross- 
section of a tube of force. The lines of force from a sphere meet in a point, 
the centre of the sphere, so that the tubes of force are cones, with cross- 
section proportional to the square of the distance from the vertex. The 
lines of force from a cylinder al1 meet a line, the axis of the cylinder, a t  right 
angles, so that the tubes of force are wedges, with c.ross-section proportional 
to the distance from the edge. And the lines of force fiom a plane al1 meet 
the plane a t  right angles, so that the tubes of force are prisms, of which the 
cross-section is constant. 

78. We may also examine the results from the point of view which 
regards the electric intensity as the resultant of the attractions or repulsions 
from different elements of the charged surface. 

Let us first consider the charged plane. Let P, P' be two points at  
distances r, r' from the plane, and let Q be the 
foot of the perpendicular froin either on to the 
plane. If P is near to Q, it will be seen that 
almost the whole of the intensity a t  P is due 
to the charges in the immediate neighbourhood 
of Q. The more distant parts contribute forces 
which make angles with QP nearly equal to a 
right angle, and after being resolved along QP 
these forces hardly contribute anything to the 
resultant intensity at P. 

Owing to the greater distance of the point P', 
the forces from given elements of the plane are 
smaller a t  P' than a t  P, but have to be resolved 
through a smaller angle. The forces from the 
regions near Q are greatly diminished from the 
former cause and are hardly affected by the latter. 
The forces from remote regions are hardly affected 
by the former circumstance, but their effect is 
greatly increased by the latter. Thus on moving 
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from Y to P' the forces exerted by regions near Q decrease in efficiency, 
while those exerted by more remote regions gain. The result that the 
total resultant intensity is the same at  P r  as at P, shews that the 
decrease of the one just balances the gain of the other. 

I f  we replace the infinite plane by a sphere, we find that the force a t  
a near point P is as before contributed 
almost entirely by the charges in the 
neighbourhood of Q. On inoving from P 
t o  P', these forces are diminished just as 
before, but the number of distamt elements 
of area which now add contributions to 
the intensity at  P' is much less than 

or 
before. Thus the gain in the contributions Fm. 30. 

from these elements does not suffice to 
balance the diminution in the contributions from the regions near Q, so that 
the resultant intensity falls off on withdrawing from P to P' 

The case of a cylinder is of course intermediate between that of a plane 
and that of a sphere. 

Spherical Coadenser. 

79. Suppose that we enclose the spherical conductor of radius a dis- 
cussed in § '14, inside a second spherical conductor of interna1 radius b, the 
two conductors being placed so as to be concentric and insulated from one 
another. 

I t  again appears from syminetry that the intensity at  every point must 
be in a direction passing through the common centre of the two spheres, and 
must be the same in amount at every point of any sphere concentric with 
the two conducting spheres. Let us imagine a concentric sphere of radius r 
drawn between the two conductors, and when the charge on the inner sphere 
is e, let the intensity at  every point of the imaginary sphere of radius T be 
R. Then, as before, Gauss' Theorem, applied to fhe sphere of radius T, gives 
the relation 

4n-f-R = 47re, 

so that 

This only holds for values of r intermediate between a and b, so that to 
obtain the potential we cannot integrate from infinity, but must use the 
differential equation. This is 
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which upon integration gives 

Wo can determine the constant of integration as soon as we know the 
potential of either of the spheres. Suppose for instance that the outer 
sphere is put to earth so that P= O over the sphere r = b, then we obtain at  
once from equation (21) 

so that C= - elb, and equation (2'1) becomes 

On taking r = a, we find that the potential of the inner sphere is e - - - c 3, 
and its charge is e, so that the capacity of the condenser is 

1 ab 
i l  

or - 
b-a'  

80. In the more general case in which the outer sphere is not put to 
earth, let us suppose that V,, T$ are the potentials of the two spheres of 
radii a and b, so that, from equation (27) 

Then we have on subtraction 

so that the capacity is 

The lines of force which start from the inner sphere must al1 end on the 
inrier surface of the outer sphere, and each line of force has equal and 
opposite charges at  its two ends. Thus if the charge on the inner sphere is 
e, that on the inner surface of the outer sphere must be - e. We can there- 
fore regard the capacity of the condenser as being the charge on either of 
the two spheres divided by the difference of potential, the fraction being 
taken always positive. On this view, however, we leave out of account any 
charge which there may be on the outer surface of the outer sphere: this 
is not regarded as part of the charge of the condenser. 
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An examination of the expression for the capacity, 

nb - 
b - a '  

will shew that i t  can be made as large as we please by making b - a  
sufficiently small, This explains why a condenser is so much more 
efficient for the storage of electricity than a single conductor. 

81. By taking more than two spheres we can form more complicated 
condensers. Suppose, for instance, we take concentric spheres of radii 
a, b, c in ascending order of magnitude, and connect both the spheres of 
radii a  and c to earth, that of radius b remaining insulated. Let V be the 
potential of the middle sphere, and let e, and e, be the total charges on its 
inner and outer surfaces. Regarding the inner surface of the middle sphere 
and the surface of the innermost sphere as forming a single spherical 
condenser, we have 

Vab 
el =- 

b-a '  

and again regarding the outer surface of the middle sphere and the outermost 
sphere as forming a second spherical condenser, we have 

Hence the total charge E of the middle sheet is given by ' 

so that regarded as a single condenser, the system of three spheres has a 
capacity 

ab bc -+-' b - a  c - b  

which is equal to the sum of the capacities of the two constituent condensers 
into which we have resolved the system. This is a special case of a general 
theorem to be given later (5 85). 

Coaxal Cylinders. 

82. A conducting circular cylinder of radius a  surrounded by a second 
coaxal cylinder of interna1 radius b will form a condenser. If e is the charge 
on the inner cylinder per unit length, and if V is the potential a t  any point 
between the two cylinders a t  a distance r from their common axis, we have, 
as in 5 75, 

V =  C- 2e logr, 
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and it is now possible to determine the constant C as soon as the potential of 
either cylinder is known. 

Let q, S be the potentials of the inner and outer cylinders, so that 

x s  C-2eloga, 

x=C-2elogb.  

By subtraction 

so that the capacity is 
1 , log (;) ' 

. . 
per unit length. 

ParaElel Plate Condenser. 

83. This condenser consists of two pamllel plates facing one another, 
Say at distance d apart. Lines of force will pass from the inner face of one 
to the inner face of the other, and in regions sufficiently far removed from 
the edges of the plate these lines of force will be perpendicular to the plate 
throughout their length. If u is the surface density of electrification of one 
plate, that of the other will be - u. Since the cross-section of a tube 
remaine the same throughout its length, and since the electric intensity 
varies as the cross-section, i t  follows that the intensity must be the same 
throughout the whole length of a tube, and this, by Coulomb's Theorem, 
will be $TU, its value at  the surface of either plate. Hence the difference of 
potential between the two plates, obtained by integrating the intensity  TU 
along a line of force, will be 

4.rrud. 

The capacity per unit area is equal to the charge per unit area a 
divided by this diEerence of potential, and is therefore 

The capacity of a condenser formed of two parallel plates, each of area A, 
is therefore 

A 
4Ad ' 

except for a correction required by the irregularities in the lines of force 
near the edges of the plates. 

Inductive Capncity. 

84. It was found by Cavendish, and afterwards independently by 
Faraday, that the capacity of a condenser depends not only on the shape 
and size of the conducting plates but also on the nature of the insulating 
material, or dietectric t o  use Faraday's word, by which they are separated. 
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I t  is further found that on replacing air by some other dielectric, the 
capacity of a condenser is altered in a ratio which is independent of the 
shape and size of the condenser, and which depends only on the dielectric 
itself. This constant ratio is called the specific inductive capacity of the 
dielectric, the inductive capacity of air being taken to  be unity. 

We shall discuss the theory of dielectrics in a later Chapter. At present 
i t  will be enough to know that if C is the capacity of a condenser when its 
plates are separated by air, then its capacity, when the plates are separated 
by any dielectric, will be KC, where K is the inductive capacity of the 
particular dielectric used. The capacities calculated in this Chapter have al1 
been calculated on the supposition that there is air between the plates, so 
that when the dielectric is different from air each capacity must be multi- 
plied by K. 

The values of K for some gases are given on p. 132. 

The following table whl give some idea of the values of K actualiy observed for 
different dielectrics. For e great many substances the value of K is found to Vary widely 
for different specimens of the material and for diffmnt physical conditions. 

Condensers in Parallel. 

Suiphur 2'8 to  4'0. 
Mica 6'0 to  8.0. 
Glass 6'6 to 9.9. 
Paraffin 2.0 to 2.3. 

85. Let us suppose that we take any number of condensers of capacities 
G;, O,, .. . and connect al1 their high potential plates together by a conducting 

Ebonite 2.0 to 3.15. 
Wster 75 to 81. 
Ice at  - 23' 78.0. 
Ice at  - 185" 2.4 to 2.9. 

wire, and al1 their low potential plates together in the same way. This is 
known as connecting the condensers in parallel. 

The high potential plates have now al1 the sarne potential, Say r1, while 
the low potential plates have a11 the same potential, say Vo. If e,, e,, ... are 
the charges on the separate high potential plates, we have 

e l=  G ( K  - Tr,), 
e2 = 4 (V, - TTo), etc., 
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and the total charge E is given by 

E = e , + e , +  ... 
= ( C ; + C , +  ...)(VI- V0). 

Thixs the system of condensers behaves like a single condenser of capacity 

4+ Ca+C*+ .... 
I t  will be noticed that the compound condenser discussed in 5 81 con- 

sisted virtually of two simple spherical condensers connected in parallel. 

Condensers Zn Cascade. 

86. We might, however, connect the low potential plate of the first to 
the high potential plate of the second, the low potential plate of the second 
to the high potential plate of the third, and, so o a  This is known as 
arranging the condensers in cuscude. 

Suppose that the high potential plate of the first has a, char& e. This 
induces a charge - e on the low potential plate, and since this plate together 
with the high potential plate of the second condenser now form a single 
insulated conductor, there must be a charge + e on the high potential plate 
of the second condenser. This induces a charge - e on the low potential 
plate of this condenser, and so on indefinitely ; each high potential plate will 
have a charge + e, each low potential plate a charge - e. 

Thus the difference of potential of the two plates of the first condenser 
will be elCl, that of the second condenser will be ejC,, and so on, so that the 
total fa11 of potential from the high potential plate of the first to the low 
potential plate of the last will be 

We see that the arrangement acts like a single condenser of capacity 
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The Leyden Jar 

Practical Units. 

87. As wiIl be explained more fully later, the practical units of 
electricians are entirely different from the theoretical units in which we 
have so far supposed measurements to be made. The practical unit of 
capacity is called the farad, and is equal, very approximately, to 9 x 1011 times 
the theoretical C.G.S. electrostatic unit, i.e., is equal to the actual capacity 
of a sphere of radius 9 x 10" cms. This unit is too large for most purposes, 
so that iC is convenient to introduce a subsidiary unit-the microfarad- 
equal to a millionth of the farad, and therefore to 9 x 1 0 ~ . a . s .  electrostatic 
units. Standard condensers can be obtained of which the capacity is equal 
to a given fraction, frequently one-third or one-fifth, of the microfarad. 

The Leyden Jar. 

88. For experimental purposes the commonest form of condenser is the 
Leyden Jar. This consists essentially of a glass vessel, bottle-shaped, of 
which the greater part of the surface is coated 
inside and outside with tinfoil. The two coatings 
form the two plates of the condenser, contact with 
the inner coating being established by a brass 
rod which cornes through the neck of the bottle, 
the lower end having attached to it a chain 
which rests on the inner coating of tinfoil. 

To form a rough numerical estimate of the 
capacity of a Leyden Jar, let us suppose that the 
thickness of the glass is cm., that its specific Fm. 33. 
inductive capacity is 7, and that the area covered 
with tinfoil is 400 sq. cms. Neglecting corrections required by the irregu- 
larities in the lines of force a t  the edges and a t  the sharp angles a t  the 
bottom of the jar, and regarding the whole system as a single parallel plate 
condenser, we obtain as an approximate value for the capacity 

K A  - electrostatic units, 
4lTd 

in which we must put K = 7, A = 400 and d = 4. On substituting these 
values the capacity is found to be approximately 450 electrostatic units, 
or about & microfarad. 

Parallel Plates. 
89. A more convenient condenser for some purposes is a modification of 

the parallel plate condenser. Let us suppose that we arrange n plates, each 
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of area A,  parallel to one another, the distance between any two adjacent 
plates being d. If alternate plates are joined together so as to be in electrical 
contact the space between each adjacent pair of plates may be regarded as 

KA 
forming a single parallel plate condenser of capncity -, so that the capacity 

47rd 
of the compound condenser is (n - 1) I K A l 4 d  By making n large and d 
small, we can make this capacity large without causing the apparatus to 
occupy an unduly large amount of space. For this reason standard con- 
densers are usually made of this pattern. 

90. Guard Ring. In  both the condensers described the capacity can 
only be calculated approximately. Lord Kelvin has devised a modification 
of the paralle1 plate condenser in which the error caused by the irregularities 
of the lines of force near the edges is dispensed with, so that i t  is possible 
accurately to calculate the capacity from measurements of the plates. 

The principle consists in making one plate B of the condenser larger tlian 
the second plate A, the remainder of the space opposite B being occupied by 
a "guard ring" C which fits A so closely as almost to touch, and is in the 
same plane witli it. The guard ring C and the plate A, if at the same 
yotential, may without serious error be regarded as forming a single plate of 
a parallel plate condenser of which the other plate is B. The irregularities 
in the tubes of force now occur at the outer edge of the guard ring C, while 
the lines of force from A to B are perfectly straight and uniform. Thus if A 
is the area of the plate A its capacity tnay be supposed, with great accuracy, 

where d is the distance between the plates A and B. 
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Mechanical. Force 

91. Unfortunately for practical electricians, a submarine cable forms 
a condenser, of which the capacity is frequently very considerable. The 
effect of this upon the transmission of signals will be discussed later. A cable 
consists generally of a core of strands of copper wire surrounded by a layer of 
insulating material, the whole being enclosed in a sheathing of iron wire. 
This arrangement acts as a condenser of the type of the coaxal cylinders 
investigated in $ 82, the core forming the inner cylinder whilst the iron 
sheathing and the sea outside form the outer cylinder. 

In  the capacity formula obtained in 5 82, namely 

K 

. . log (k) ' 
let us suppose that b = 2a, and that K = 3.2, this being about the value for 
the insulating material generally used. Using the value log, 2 = -69315, we 
find a capacity of 2.31 electrostatic units per unit length. Thus a cable 
2000 miles in length has a capacity equal to that of a sphere of radius 
2000 x 2.31 miles, Le., of a sphere greater than the earth. I n  practical units, 
the capacity of such a cable would be about 82'7 microfarads. 

92. Let Q be any point on the surface of a conductor, and let the 
surface-density a t  the point Q be cr. Let us draw any small aria dS 

enclosing Q. By taking dS sufficiently small, we may regard the area as 
perfectly plane, and the charge on the area will be odS. The electricity on 
the remainder of the conductor will exert forces of attraction or repulsion on 
the charge mdS, and these forces will shew themselves as a mechanical force 
acting on the element of area dS of the conductor. We require to find the 
amount of this mechanical force. 
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The electric intensity at  a point near Q and just outside the conductor is 
4nu, by Coulomb's Law, and its direction is normally away from the surface. 
Of this intensity, part arises from the charge on dX itself, and part from the 
charges on the remainder of the conductor. As regards the first part, which 
arises from the charge on d 8  itself, we may notice that when we are con- 
sidering a point sufficiently close to the surface, the elemerit dX may be 
treated as an infinite electrified plane, the' electrification being of uniform 
density a. The intensity arising from the electrification of d S  at such a 
point is accordingly an intensity 27rr normally away from the surface. Since 
the total intensity is 47ro normally away from the surface, it follows that the 
intensity arising from the electrification of the parts of the conductor other 
than dS must also be 27rc normally away from the surface. I t  is the forces 
cornposing this intensity which produce the mechanical action on dX. 
The charge on d S  being cd8, the total force will be 2 r d d S  normally away 
from the surface. Thus per unit area there is a force 2.rrua tending to repel 
the charge normally away from the surface. The charge is prevented from 
leaving the surface of the conductor by the action between electricity and 
matter which has already been explained. Action and reaction being equal 
and opposite, i t  follows that there is a mechanical force 2rrua per unit area 
acting normally outwards on the material surface of the conductor. 

Remembering that R = 4ro,  we find that the mechanical force can also 

be expressed 
RZ 

as - per 
87T 

unit 

93. Let us try to form some estimate of the magnitude of this mechanical 
force as compared with other mechanicd forces with which we are more 
familiar. We have already mentioned Maxwell's estimate that a gramme of 
gold, beaten into a gold-leaf one square metre in area, can hold a charge of 
60,000 electrostatic units. This gives 3 units per square centimetre as the 
charge on each face, giving for the intensity at the surface, 

R = 4n-a = 38 C.G.S. units, 

and for the mechanical force 

Ra 
2ra2 = - = 56 dynes per sq. cm. 

8 7  

Lord Kelvin, however, found that air was capable of silstaining a 
tension of 9600 grains wt. per sq. foot, or about 700 dynes per aq. cm. 
This gives R = 130, a = 10. 

Ra 
Taking R =  100 as a large value of R, we find - = 400 dynes per 8rr 

sq. cm. The pressure of a normal atrnosphere is 

1,013,570 dynes per sq. cm., 
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so that the force on the conducting surface would be only about ah of an 
atmosphere : say '3 mm. of mercury. . 

If a gold-leaf is beaten so thin that 1 gm. occupies 1 sq. metre of area, 
the weight of this is .O981 dyne per sq. cm. In order that 2 x 8  may be 
equal to '0981, we must have u =.1249. Thus a small piece of gold-leaf 
would be lifted up from a charged surface on which i t  rested as soon as the 
surface acquired a charge of about of a unit per sq. cm. 

Electri$ed Soap-Bubble. 

94. As has already been said, this mechanical force shews itself well on 
electrifying a soap-bubble. 

Let us first suppose a closed soap-bubble blown, of radius a. If the 
atmospheric pressure is II, the pressure inside will be somewhat greater than 
II, the resulting outward force being just balanced by the tension of the 
surface of the bubble. If, however, the bubble is electrified there will be an 
additional force acting normally outwards on the surface of the bubble, namely 
the force of amount  TC? per unit area just investigated, and the bubble will 
expand until equilibriurn iu reached between this and the other forces acting 
on the surface. 

As the electrification and consequently the radius change, the pressure 
inside d l  Vary inversely as the volume, and therefore inversely as aa. Let 

us, then, suppose the pressure to be rc/as, Consider the equilibrium of the 
small element of surface cut off by a circular cone through the centre, of small 
semi-vertical angle 8. This element is a circle of radius ad, and therefore 
of area rra2&. The forces acting are: 

(i) The atmospheric pressure TIrra2da normally inwards. 
IC 

(ii) The interna1 pressure - 7ra'da normally outwards. 
aa 

J. 6 
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(iii) The mechanical force due to electrification, 27rua x lra2da normally 
outwards. . 

(iv) The system of tensions acting in the surface of the bubble across 
the boundary of the element. 

If T is the tension per unit length, the tension across any element of 
length ds of the sinall circle will be Tds acting at an angle 8 with the tangent 
plane at  P, the centre of the circle. This may be resolved into Tdscos û in 
the tangent plane, and Tds sin d along PO.  Combining the forces al1 round 
the small circle of circumference Z ~ a û ,  we find that the coniponents in the 
tangent plane destroy one another, while those along P O  combine into a 
resultant 2 m û  x Tsin 6. To a sufficient approximation this may be writ ten 
as 27raOT. 

The equation of equilibrium of the eleinent of area is accordingly 

K 
or, simplifying, 

2T 
II- - -2 raa+-=O .......,................ 

aa . a (28). 

Let a, be the radius when the bubble is uncharged, and let the radius Le 
a, when the bubble has a charge e, so that 

We can without serious error assume T to be the same in the two cases. 
If we eliminate Y' from these two equations, we obtain 

giving the charge in terms of the radii in the charged and uncharged states. 

95. We have seen ($ 93) .that the maximum pressure on the surface 
which electrification can produce is only about v 5 .  atmosphere: thus it is 
not possible for electrification to change the pressure insicle by more than 
about atmosphere, so that the increase in the size of the bubble is 
necessarily very slight. 

If, however, the bubble is blonn on a tube which is open to  the air, 
equation (28) becomes 

2' 
7ru2= -. 

a 
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As a rough approximation, we may still regard the bubble as a uniformly 
charged sphere, so that if V is its potential, 

u = T/4ra1 

and the relation is 'VZ = 16raT,  

giving Vin terms of the radius of the bubble, if the tension T is known. In 
this case the electrification can be made to produce a large change in the 
radius, by using films for which T is very small. 

Energy oJ Dischatye. 

96. On discharging a conductor or condenser, a certain amount of 
energy is set free. This rnay shew itself in various ways, e.g. as a spark or 
sound (as in lightning and thunder), the heating of a wire, or the piercing 
of a hole through a solid dielectric. The energy thus liberated has been 
previously stored up in charging the conductor or condenser. 

To calculate the amount of this energy, let us suppose that one plate of 
a condenser is to earth, and that the other plate has a charge e and is a t  
potential Vl so that if C is the capacity of the condenser, 

8 = CV ................................. (29) 

If we bring up an additional charge de from infinity, the work to be 
done is, in accordance with the definition of potential, Tde. This is equal 
to dW, where W denotes the total work done in charging the condenser up 
to this stage, so that 

dW= V d e  

-- - et by equation (29). 

On integration we obtain 
ea w = + c  .......................................... (3% 

no constant of integration being added since W must vanish when e = O. 
This expression gives the work done in charging a condenser, and therefore 
gives also the energy of discharge, which may be iised in creating a spark, 
in heating a wire, etc. 

Clearly an exactly similar investigation will apply to a single conductor, 
so that expression (30) gives the energy either of a condenser or of a single 
conductor. Using the relation e = CV, the energy may be expressed in any 
one of the forms 

ea W = h - = g  e V =  + O P  ........................ 
G (31). 

97. As an example of the use of this formula, let us suppose that me 
have a parallel plate condenser, the area of each plate being A, and the 

6-2 
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distance of the plates being dl so that C = A/47rd, by § 83. Let a be the 
surface density of the high potential plate, so that e = UA. Let the low 
potential plate be at  zero potential, then the potential of the high potential 
plate is 

8 V =  --4ndc, c- 
and the electrical energy is 

W = $eV= 2rdu2A. 

Now let us pull the plates apart, so that d is increased to d'. The 
electricd energy is now 27rd'uzA, so that there has been an increase of 
electrical energy of amount 

27ru2A (d' - d). 

It is easy to see that this exactly represents the work done in separating 
the two plates. The mechanical force on either plate is 2 r c a  per unit area, 
so that the total mechanical force on a plate is 2acFA. Obviously, then, , 

the above is the work done in separating the plates through a distance 
d' - d. 

I t  appears from this that a yarallel plate condenser affords a ready means 
of obtaining electrical energy at  the expense of mechanical. A more valuable 
property of such a condenser is that i t  enables us to increase an initial 
difference of potential. The initial difference of potential 

4 r d a  

is increased, by the separation, to 

47rd'a. 

By tnking d small and d' large, an initial small difference of potential 
may be multiplied almost indefinitely, and a potential difference which is 
too small to observe may be increased until i t  is sufficiently great to affect 
an instrument. By making use of this principle, Volta first succeeded in 
detecting the difference of electrostatic potential between the two terminals 
of an electric battery. 

REFERENCES. 
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294. 

EX AMPLES. 

1. The two plates of a paralle1 plate condenser are each of area A,  and the distance 
between them is d, this distance being small compared with the size of the plutea Find 
the attraction between them when charged to potential difference V,  neglecting the 
irrogultlritiev caused by the edges of the plates. Fiud also the energy set free when the 
plates are oonnected by a wire. 
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2. A sheet of metal of thickness t is introduced between the two plates of a parallal 
plate condenser which are a t  a dktance d apart, and is placed so as to be parallel to the 
plates. Shew that the capacity of the condenser is increased by an amount 

per unit area. Examine the case in which t is very nearly equal to d. 

3. A high-pressure main convists first of a central conductor, which is a copper tube 
of inner and outer diameters of and $2 inches. The outer conductor is a second copper 
tube coaxal with the first, from mliich it  is separated by insulating material, and of 
diameters 18% and 118 inches. Outside this is more insulating material, and enclosing 
the whole is an iron tube of interna1 diameter 2& inches. The capacity of the conductor 
is found to be .367 microfarad per mile : calculate the inductive capacity of the insulating 
material. 

4. An ~nfinite plane is charged to surface density U, and P is a point distant half an 
inch from the plane. Shew that of the total intensity 2 r m  at  P, half is due to the charges 
at points which are within one inch of P, and half to the charges beyond. 

5. A disc of vulcanite (non-conducting) of radius 5 inches, is charged to ri. iiniform 
snrface density u by friction. Find the electric intensities a t  points on the axis of the 
disc distant respectively 1, 3, 5, 7 inches from the surface. 

6. A condenser consists of a sphere of radius a surrounded by a concentric spherical 
ahell of radius b. The inner sphere is put to earth, and the outer shell is insulated. 

ba Shew that the capacity of the condenser so formed is -- 
b-a' 

7. Four equal large conducting plates A, B, C, D are fixed parallel to one another. 
A and D are connected to earth, B has a charge E per unit area, and C a charge E' per 
unit area. The distance between A and B is a, between B and C is b, and between C and 
D is c. Find the potentials of B and C. 

8. A circular gold-leaf of radius b is laid on the surface of a charged conducting 
sphere of radius a, a being large compared to b. Prove that the loss of electrical energy 
in removinp the leaf from the conductor-assurning that i t  carries away its whole charge- 
is approximately ) bZP/a3, where E is the charge of the conductor, and the capacity of the 
leaf is comparable to b. 

9. Two condensers of capacities Cl and C2, and possessing initially charges Q1 and Q2, 
are connected in parallel. Shew that there is a loss of energy of amount 

10. Two Leyden Jars A, B have capacities Cl, C.  respectively. A ia charged and a 
spark taken : i t  is then cbarged as before and a spark passed between the knobs of 
A and B. A and B are then separated and are each discharged by a spark. Shew that 
the energies of the four sparks are in the ratio 

(c1+Czy : (C1+C2)Ca : Cl2 : CIC.,. 

11. Assuming an edequate nurnber of condensers of equal capacity C, ahew how a 
compound condenser can be formed of equivalent capacity BC, wliere B is any rational 
nurnber. 
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12. Three insulated concentric spherical conductors, whose radii in ascending order 
of magnitude are a, b, c, have charges el, e2, e3 respectively, find their gotentials and shew 
that if the innermost sphere be connected to earth the potentid of the outermost is 
diminished by 

13. A conducting sphere of radius a is surrounded by two thin concentric spherical 
conducting shells of redii b and c, the intervening spaces being filled with dielectrics of 
inductive capacities E and L respectively. If the shell b receives a charge E, the othcr 
two being uncharged, determine the loss of energy and the potential a t  any point when 
the spheres A and C are connected by a wire. 

14. Three thin conducting sheets are in the form of concentric spheres of radii 
a+d,  a, a-c respectively. The dielectric between the outer and middle sheet is of 
inductive capacity K, that between the middle and inner sheet is air. At  first the outer 
sheet is uninsulated, the inner sheet is uncharged and insulated, the middle sbeet is 
charged to potential V and insulated. The inner sheet ia now uninsulated without 
connection with the middle sheet. Prove that the potential of the middle sheet falls to  

KVc(a+d) 
Iic(a+d)+d (a-c)' 

15. Two insulated conductors A and B are geometrically similar, the ratio of their 
linear dimensions being as L to L'. The conductors are placed so as  to be out of each 
other's field of induction. The potential of A is V and its charge is E, the potential 
of B is V' and itu charge is  Et. The conductors are then connected by a thin wire. 
Prove that, after electrostatic equilibrium has been restored, the loss of electrostatic 
energy is 

(EL'- E'L) ( V -  V') * L+Lt  
16. If two surfaces be taken in any family of equipotentials in  free sp.zce, and two 

metal conductors formed so as to occupy their  position^, then the capacity of the 

condenser thus formed is - C1C2- where Cl, C2 are the capacities of the external and 
c,-C,' 

internal conductors when existing alone in an infinite fiold. 

17. A conductor (B) with one internal cavity of radius 6 is kept at poteutial U. A 
conducting sphere (A) ,  of radius a, a t  great height above B containa in  a cavity water 
which Ieaks down a very thin wire passing without contact into the cavity of B through 
a hole in the top of B. At the end of the wire spherical drops are formed, conceiitric 
with the cavity ; and, when of radius d, they fa11 passing without contact through e srnall 
hole in the bottom of B, and are received in a cavity of a third conductor (C)  of capacity c 
a t  a great distance below B. Initially, before leaking commences, the conductors A and C 
are uncharged. Prove that after the r th  drop has fallen the potential of C is 

where the disturbing effect of the wire and hole on the capacities is neglected. 

18. An insulated spherical conductor, formed of two hemispherical shells in contact, 
whose inner and outer radii are b and b', has within it  a concentrio spherical conductor of 
radius a, and without it  another spherical conductor of which the internal rudius is c. 
These two conductors are earth-connected and the middle one receives a charge. Shew 
tbat the two shells will not separate if 

2ac> bc+ b'u. 
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Exa fmples 

19. Outside a spherical charged conductor there is a concentric insulated but un- 
charged conducting spherical shell, which consists of two segments. Prore that the two 
segmenta will not separate if the distance of the separating plane from the centre is lem 
than 

ab 

(a2 + Z@ ' 
where a, b are the interna1 and external radii of the shell. 

20. A soap-bubble of radius a is formed by a film of tension T, the external 
atmospheric pressure being II. The bubble is touched by a wire from a large conductor 
a t  potential P, and the film is an electrical conductor. Prove that its radius increases to 
P', given by 

1 ' 2 ~  
ïï (1.3-a3)+2T(r2-a2)=-. 

897 

21. If the radius and tension of ri, spherical soap-bubble be a and T respectively, 
shew that the charge of electricity required to expand the bubble to twice ik linear 
dimensions would be 

4 .,/sa3 (6T+ 7na), 

being the atmospheric pressure. 

22. A thin spherical conducting envelope, of tension !i' for al1 magnitudes of its 
radius, and with no air iriside or outside, is insulated and charged with a qiiantity Q of 
electricity. Prove that the total gain in mechanical energy involved in biinging a charge 
q from an infinite distance and placing i t  on the envelope, which both initially and finally 
1s in mechanical equilibrium, is 

g (z=T)+ {(Q+&- Q ~ I .  

23. A spherical soap-bubble is blown inside another concentric with it, and the 
former has a charge E of electricity, the latter being originally uncharged. The latter 
now bas a small charge given to it. Shew that if a and 2a were the original radii, the 
new radii will be approximately a+x, 2a+y, where 

where n is the atmospheric pressure, and T is the surface-tension of each biibble. 

24. Shew that the electric capacity of a conductor is less than that of any other 
conductor which can completely surround it. 

25. If the inner sphere of a concentric spherical condenser is moved slightly out of 
position, so that the two apheres are no longer concentric, shew that the capaci t~ is 
increased. 
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CHAPTER IV 

SPSTEMS OF CONDUCTORS 

98. IN the present Chapter we discuss the general theory of an electro- 
static field in  which there are any number of conductors. The charge on 
each conductor will of course influence the distribution of charges on the other 
conductors by induction, and the problem is to investigate the distributions 
of electricity which are to be expected after allowing for this mutual 
induction. 

We have seen that in an electrostatic field the potential cannot be a 
maximum or a minimum except at  points where electric charges occur. It 
follows that the highest potential in the field must occur on a conductor, or 
else a t  infinity, the latter case occurring only when the potential of every 
conductor is negative. Excluding this case for the moment, there must be 
one conductor of which the potential is higher than that anywhere else in 
the field. Since lines of force run only from higher to lower potential (5 36), 
i t  follows that no lines of force can enter this conductor, there being no 
higher potential from which they can come, so that lines of force must leave 
i t  a t  every point of its surface. I n  other words, its electrification must be 
positive at  every point. 

So also, except when the potential of every conductor is positive, there 
must be one conductor of which the potential is lower than that anywhere 
else in the field, and the electrification at  every point of this conductor must 
be negntive. 

If the total charge on a conductor is nil, the total strength of the tubes 
of force which enter it must be exactlg equal to the total strength of the 
tiibes which leave it. There must therefore be both tubes which enter and 
tubes which leave its surface, so that its potential must be intermediate 
between the highest and lowest potentials in the field. For if its potential 
were the highest in the field, no tubes could enter it, and vice versa. On 
any such conductor the regions of positive electrification are separated from 
regions of negative electrification by " lines of no electrification," these lines 
being loci along which o = O, I n  general the resultant intensity a t  any 
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point of a conductor is h a .  At any point of a line of no electrification, 
this intehsity vanishes, so that every point of a " line of no electrification" 
is also a point of equilibrium. 

At a point of equilibrium we have already seen that the equipotentia1 
through the point cuts itself. A line of no electrification, however, Iies 
entirely on a single equipotential, so that this equipotential must cut itself 
along the line of no electrification. Moreover, by § 69, i t  niust cut itself nt 
right angles, except when i t  consists of more than two sheets. 

99. We can prove the two following propositions : 

1. If the potential of every cmductor i n  the jield i s  given, t h e ~ e  is  only 
one distribution of electric charges which will produce this distribution of 
potential. 

II. If the total char,qe of every conductor in the $eld i s  given, there is 
only one way in  which these charges can distribute themselves so as to be in  
equilibriurn. 

If proposition 1. is not true, let us suppose that there are two different 
distributions of electricity which will produce the required potentials. Let 
a denote the surface density a t  any point in the first distribution, and d in 
the second. Consider an imaginary distribution of electricity such that the 
surface density at  any point is a- a'. The potential of this distribution 
at  any point P is 

where the integration extends over the surfaces of al1 the conductors, and 
r is the distance from P 
of any conductor, 

are by hypothesis equal, 

to the element dS. If P is a point on the surface 

11: d S  and / / c d S  r 

each being equal to the given potential of the 
conductor on which P lies. Thus 

so that the supposed distribution of density a - a' is such that the potential 
vanishes over al1 the surfaces of the conductors. ThCre can therefore be no 
lines of force, so that there can be no charges, ie., a - a' = O everywhere, so 
that the two distributions are the sarne. 

And again, if proposition II. is not true, let us suppose that there are 
two different distributions a and G' such that the total charge on each 
conductor has the assigned value. A distribution u-a' now gives zero 
as the total charge on each conductor. It follows, aa in § 98, that the 
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potential of every conductor must be intermediate between the highest and 
lowest potentials in the field, a conclusion which is obviously absurd, a s  
i t  prevents every conductor from having either the highest or the lowest 
potential. I t  follows that the potentials of al1 the conductors must be equal, 
so that again there can be no lineti of force and no charges at  any point, 
ie., Q = u' everywhere. 

It is clear from this that the distribution of electricity in the field is fully 
specified when we know either 

@-,the total charge on each conductor, 

or (ii) the potential of each conductor. 

100. Suppose we have two equilibriurn distributions: 

(i) A distribution of which the surface density is u a t  any point, 
giving total charges El, E., ... on the different conductors, and potentials 
K, K, .-.. 

(ii) A distribution of surface density o', giving total charges E:, E,', ... 
and potentials Y ,  V, . . . . 

Consider a distribution of surface 'density u + ut. Clearly the total 
harges on the conductors will be El + E,', E, + E,f . . . , and if is the 
)otential a t  any point P, 

where the notation is the same as before. If 
however, we know that 

P is on the first conductor, 

so that V, = 'C: + ; and similarly when P is on any other conductor. Thus 
the imaginary distribution of surface density is an equilibrium distribution, 
since it makes the surface of each conductor an equipotential, and the 
potentials are 

K + T ,  K+V, S . . .  

The total charges, as we have seen, are El + E,', E, + E,', . . . , and from 
the proposition previously proved, i t  follows that the distribution of surface- 
density u + u' is the only distribution corresponding to these charges. 

We have accordingly arrived a t  the following proposition : 

If charges E,, E,, ... give rise to p t e ~ t r a i s  K, 'V,, ... , and c h a n p  
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E,', EL . . . give rise to potentials l?', K, . . . , then charges El + E,', E, + E,', .. . 
will give rise to potentials K + K', K + K, . . . . 

In  words: if we superpose two systems of charges, the potentials produced 
can be obtained by adding together the potentials corresponding to the two 
component systems. 

Clearly the proposition can be extended so as to apply to the superposition 
of any number of systems. 

We can obviously deduce the following : 

If charges El, E,, ... give rise to potentials K, q, ..., then charges 
KE,,  KE,, ... give rise to potentials KK, KG, .... 

101. Suppose now that we have n conductors fixed in position and 
uncharged. Let us refer to these conductors as conductor (l), conductor (2), 
etc. Suppose that the result of placing unit charge on conductor (1) and 
leaving the others uncharged is to produce potentials 

Pll, p12,.--p17%, 
on the n conductors respectively, then the result of placing El on (1) and 
leaving the others uncharged is - to produce potentials 

pilE1, pi&, pin&* 

Similady, if placing unit charge on (2) and leaving the others uncharged 
gives potentials 

then placing E, on (2) and leaving the others uncharged gives potentials 

p21E2, p,E*, -.. pmE2. 

In the same way we can calculate the result of placing E3 on (3), E, on 
(41, and so o n  

If we now superpose the solutions we have obt.ained, we find that the 
effect of siinultaneous charges E,, E,, . .. En is to give potentials K, K, ... K, 
where 

K=piiEl +paE2 +p3i&4 + 
K = piz El + pz2 Es + psz E3 + . . . . . . . . . . . . . . . . . . . . .(32). 
etc. 

1 
1 

These equations give the potentials in terms of the charges. The 
coefficients p,, pa, ... do not depend on either the potentials or charges, 
being purely geometrical quantities, which depend on the size, shape and 
position of the different condu-t \, ors. 
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Green's Reciprocation Theorem. 

102. Let us suppose that charges e,, eo, ... on elements of conducting 
surfaces at  P, Q, ... produce potentials q, q, ... at  P, Q, ..., and that 
similarly charges e,', e i ,  .. . produce potentials V,', V4/, .... Then Green's 
Theorem states that 

Z e p r  = 2e/&,  

the summation extending in each case over al1 the charges in the field. 

To prove the theorem, we need only notice that 

the summation extending over al1 charges except e,, so that in T,e,'V, the 
1 

coefficient of - is epfeQ from the term epfV, ,  and e,ei frorn the term 

eu&. Thus 
Y& 

S e  '7 - 22 epeo + eae,' 
P P- PQ 

= tepV, ' ,  from symmetry. 

103. The following theorem follows a t  once : 

If total charges El, E, on the separate conductors of a system produce 
potentials y, K, . .., n ~ ~ d  if charges E,', E,i ... produce potentials 'Ci', 
Taf ,  . .. , then 

X E V ' = Z E f V  ..., ..................... , ,... (33h 
the summation extending in e m h  case over al1 the conductom. 

To see the truth of this, we need only divide up the charges El, E,, ... 
into small charges e,, e4, . . . on the different small elenlents of the surfaces 
of the conductors, and the proposition becomes identical with that just 
proved. 

104. Let us now consider the special case in which 

E l = l ,  E,=E3=E4= ... = O ,  

so that V = p i i ,  K=pia, etc.; 

and &'=O, B,'=l, E,'=E,'= ... =O. 

so that K t  = pPI,  K' = pP2, etc. 

Then X E V ' = P ~ ~  and f .E fV=pl , ,  so that the theorem just proved becomes 

pia = pn 

I n  words: the potential to which (1) is raised by putting unit charge on 
(2), al1 the other conductors being uncharged, is equal to the potential to 
which (2) is raised by putting unit charge on (l), al1 the other conductors 
being uncharged. 
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As n special case, let us reduce conductor (2) to a point P, and suppose 
that the system contains in addition only one other conductor (1). Then 

The potential to which the condzcctor i s  raised by placing a unit charge 
at  P, the conductor itself being uncharged, i s  equal to the potential at P when 
unit charge is placed on the conductor. 

For instance, let the conductor be a sphere, and let the point P be at  a 
distance r frorn its centre. Unit charge on the sphere produces potential 
1 1 - at  P, so that unit charge a t  P raises the sphere to potential -. 
r r 

Coejicients of Potential, Capcrcity and Indriction. 

105. The relations pl, =p,, etc. reduce the nurnber of the coefficients 
pli, p12, ... pnn, which occur in equations (32), to & n  (n ,z+ 1). These coeffi- 
cients are called the coe$cients of potential of the n conductors. Knowing 
the values of these coefficients, equations (31) give the potentials in terms 
of the charges. 

If we know the potentials r, z, .... we can obtain the values of the 
charges by solving equations (32). We obtain a system of equations of 
the form 

El = q,,'C: + q.>,T; + ... 
E,=ql,K+q,x+ (34)- 
etc. 

The values of the q's obtained by actual solution of the equations (321, are 

w here 

Thus q,, is the CO-factor of p,, in A, divided by A. 

The relation Pra- = !lm 

follows as an algebraical consequence of the relation prs = pW, or is at once 
obvious from the relation 

LET = XE'V, 
and equations (34), on taking the same sets of values as in Ej 104. 
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There are n coefficients of the type gii, qza, ... qnn. These are known as 
coeficients of capacity. There are 3 n ( n  - 1) coefficients of the type p,,, and 
these are known as coq$cients of induction. 

From equations (34), i t  is clear that q,i is the value of El when 
K= 1, = V, = ... = O. This leads to an . extended definition of the 
capacity of a conductor, in which account is taken of the influence of the 
other conductors in the field. We define the capacity of the conductor 1, 
when in the presence of conductors 2, 3, 4, ..., to be pi,, namely, the charge 
required to raise conductor 1 to unit potential, al1 the other conductors being 
put to earth. 

106. Suppose we require to find the energy of a system of conductors, 
their charges being E l ,  E,, .. . E,, so that their potentials are x, g, . .. 
given by equations (32). 

Let W denote the energy when the charges are kE,, kE,, ... kE,. 
Corresponding to these charges, the potentials will be kK, kl:, ... k x .  If 
we bring up an additional small charge d k .  El from infinity to conductor 1, 
the work to be done d l  be dkE, . k r ;  if we bring up dkE, to  conductor 2 
the work will be dleE,kZ and so on. Let us now bring charges dkE, to 1, 
dkE, to 2, &E, to 3, ... dhEn to n. The total work done is 

kdk (EIK + E2K + ... + . . . . . .. . . . . . . . . . . . . . .(36), 

and the final charges are 

( k + d k ) E l ,  ( k + d k ) E , ,  ...( k + d k ) E , .  
The energy in this state is the same function of k + dk W is of Ic, and may 
therefore be expressed as 

aw W +  - dk. 
ah 

aw 
Expression (36), the ikcrease in energy, is therefore equal to - dk, whence 

dk 

BO that on integration 

W =  $rCa(EIs+ESK+ ... + E n z ) .  

No constant of integration is added, since W must vanish when Ic = 0. 
Taking k = 1, we obtain the energy corresponding to the final charges 
El, E2, ... En, in the form 

w = +CEV . . . . . . a .  . . . . . . . . . e s .  .. .... .... ( 3 0  
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If we substitute for the 'Cr's their values in terms of the charges as given by 
equations (31), we 

and similarly from 

107. If W is 
entiation of (35), 

obtain 

w=&(pl,E? + 2p12ElE2 +pZ2Ez2+ ...) ..........,.... (3% 
equations (34), 

.. W = 4 (qllV + 2qIzTN + q,'Caa + .). ................. (39). 

expressed as a function of the E's, we obtain by differ- 

= 'C: by equation (32). 

This result is clear from other considerations. If we increase the charge 
aw 

on conductor 1 by dE,, the increase of energy is - dEl,  and is also xdEl 
aE1 

since this is the work done on bringing up a new charge dE, to potential 'V,. 
Thiis on dividing by dEl, we get 

aw 
So also - aY: = El. ................................... (41) 

as is at  once obvious on differentiation of (39). 

108. I n  changing the charges from El, E,, ... to El', Ei, ... let ils suppose 
that the potentials change from x, K, ... to F', q, .... The work done, 
W' - W, is given by 

W' - W = 42 (E'V' - EV). 

Since, however, by $ 103, 2EV1 = 2ErV, this expression for the work done 
can either be written in the form 

3 2 {E'V' - ET- (EV' - EIV)] ,  

which leads at  once to 

W1-W=&X(E ' -  E)(V'+ V) .................. (42) ; 
1 

or in the form +Ç [E'V' - EV + (EV' - E'V)}, 
................. which leads to W ' -  W=&c(v'- V ) ( E ' +  E ) .  (43)- 

109. If the changes in the charges are only small, we may replace E' by 
E + dE, and find that equation (42) reduces to 

dW = LVdE, 

from which equation (40) is obvious, while equation (43) reduces to 

d W = XEdV, 
leading at  once to (41). 
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110. I t  is worth noticing that the coefficients of potential, capacity and 
induction can be expressed as differential coefficients of the energy ; thus 

az w 
p 1 1 = 1 ,  a 4  

a2 w 
Prn5aE,aE,' 

a= w 
qy8=wls~ 

and so on. 

The last two equations give independent proofs of the relations 

111. A certain number of properties can be deduced at once from the 
fact that the energy must always be positive. For instance since the value 
of W given by equation (38) is positive for al1 values of El, E,, ... En, i t  
follows a t  once that 

q,, , y,,, q,, . . . are positive, 
and there are other relations similar to those above. 

pl,, p2,, pd3, .. . are positive, 

that pilp, - f i a  is positive, that 

112. More valuable properties can, however, be obtained from a con- 
sideration of the distribution of the lines of force in the fieId. 

pupi2p13 

piap,pm 

Pl3 PsP33 

Let us first consider the field when 

E l = l ,  E,=E,= ...= O. 

The potentials are x =pu,  K = p n ,  etc. 

is positive 

Since conductors 2, 3, ... are uncharged, their potentials must be inter- 
mediate between the highest and lowest potentials in the field. Thus the 
potential of 1 must be either the highest or the lowest in the field, the other 
extreme potential being at  infinity. I t  is impossible for the potential of 1 
to be the lowest in the field; for if i t  were, lines of force would enter in a t  
every point, and its charge would be negative. Thus the highest potential 
in  the field must be that of conductor 1, and the other potentials must al1 

and so on. Similarly from equation (39), i t  follows that 
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be intermediate between this potential and the potential at infinity, and 
must therefore al1 be positive. Thus pl,, pl,, p,,, ... pl, are al1 positive and 
the Jirst is the greatest. 

Next let us put K = l ,  K=T<= ... =O, 
so that the charges are qll, qlg, qls, . . . qln. 

The highest potential in the field is that of conductor 1. Thus lines of . 

force leave but do not enter conductor 1. The lines may either go to the 
other conductors or to infinity. No lines can leave the other conductors. 
Thus the charge on 1 must be positive, and the charges on 2,3, . . . al1 negative, 
i.e., q,, is positive and q,,, q,,, . .. are al1 negative. Moreover the total strength 
of the tubes arriving a t  infinity is q, +pl, + q,, + ... + q,,, so that this must 
be positive. 

113. To aum up, we have seen that 

(i) Al1 the coefficients of potential (p,,, p,,, . . .) are positive, 

(ii) Al1 the coefficients of capacity (q,,, q,, . ..) are positive, 

(iii) Al1 the coefficients of induction (pl,, q,,, .. .) are negative, 
and we have obtained the relations 

(pu - pl,) is positive, 
(pl, + qlz + . . . + pl,) is positive. 

In  limiting cases it is of course possible for any of the quantities which 
have been described as always positive or always negative, to vanish. 

Electric Screening. 

114. The firat case in which we shall consider the values of the 
coefficients is that in which one conductor, Say 1, is completely surrounded 
by a second conductor 2. 

If El = 0, the conductor 2 becomes a closed conductor with no charge 
inside, so that the potential in its interior is constant, and therefore F= K. 
Putting El = 0, the relation K =  gives the equation 

(pl2 -1329) EB + (pl8 -p23) E8 + . . = O. 
J. 7 
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This being trae for al1 values of E,, E,, ... we must have 

Next let us put unit charge on 1, leaving the other conductors uncharged. 
The energy is $pl,. If we join 1 and 2 by a wire, the conductors 1 and 2 
form a single conductor, so that the electricity will al1 Aow to the outer 
surface. This wire inay now be removed, and the energy in the system is +p,,. 
Energy must, however, have been iost in the flow of electricity, eo that p,, 
must be less than p,. 

Since we have already seen that pl,=p,, and pl, -pl,,, cannot be negative, 
i t  is clear that p, cannot be greater than pl,. The foregoing argument, 
however, goes further and enables us to prove that p, -p ,  is actually 
positive. 

Let us next suppose that conductor 2 is put to earth, so that K=0 .  
Then if E, =O, it followvs that q= O.  Hence from the equations 

E , = q l i ~ t  q,,z+.., +qlnK ..................... (44) 
we obtain in this special case that 

q&+ql4K+ .S. + q I , ~ ~ , = o .  
.... This is true, whatever the values of K, K, so that 

qls=qI4=. . .  =qln=O. 

Suppose that conductor 1 is raised to unit potential while al1 the other 
conductors are put to eartb. The aggregate strength of the tubes of force 
which go to infinity, namely q,, + q,, + ... + qln ($ 112), is in this case zero, so 
that q,, = - q,,. 

The system of equations (44) now reduces, when = O, to 

El = qil K ................................. (45), 
E 9 = q 1 , ~ + q , ~ + q , , l : +  ........................ (461, 

Equations (47) shew that the relations between charges and potential 
outside 2 are qixite independent of the electricnl conditions which obtain 
inside 2. So also the conditions inside 2 are not affected by those outside 2. 
as is obvious from equation (45). These 'results become obvious when we 
consider that no lines of force can cross conductor 2, and that there is no way 
except by crossing conductor 2 for a line of force to pass from the conductors 
outside 2 to those inside 2. 

An electric system which is cornpletely surrounded by a conductor a t  
potential zero is said to be " electrically screened " from al1 electric systems 
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outside this conductor ; for charges outside this " screen " cannot affect the 
screened system. The principle of electric screening is utilised in electro- 
static instruments, in order that the instrument may not be affected by 
external electric actions other than those which i t  is required to observe. As 
a complete conductor would prevent observation of the working of the 
instrument, a cage of wire is frequently used as a screen, this being very 
nearly as efficient as a completely closed conductor (see § 72). I n  more 
delicate instruments the screening may be complete except for a small 
window to admit of observation of the interior. 

Spherical Condenser. 

115. Let us apply the methods of this Chapter to the spherical con- 
- denser described in § 79. Let the inner sphere of radius u be taken to be 

conductor 1, and the outer sphere of radius b be taken to be conductor 2. 

The equations connecting potentials and charges are 

K = pli& s p, E2, 
K=pinE~ +p22E2. 

A unit charga placed on 2 raises both 1 and 2 to potential l l b ,  so that on 
putting El= O, Es= 1, we must have = K = l /b.  Hence i t  follows that 

1 
b .  

If we leave 2 uncharged and place unit charge on 1, the field of force is that 
investigated in 5 '79, so th& T? = l la ,  %= llb. Hence 

These results exemplify 

(i) the general relation pl, = pu, 

(ii) the relation peculiar to electric screening, pin =p,. 

The equations now become 
E E2 S=-l+-, a b  

Solving for El and E, in terms of l? and K, we obtain 
ab ab 

El= - q--  b - a  b - a  K, 

a O ab bg so that pl, = - ~ Z ~ = - T ~ I  q ~ =  - 
b - a '  b - a' 
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We notice that q,,=qn, that the value of each is negative, and that 
&= - q,,, in accordance with 5 113. The value of q,, is the capacity of 
sphere 1 when 2 is to earth, and is in agreement with the result of $ 79. 

b2 Thiscan The capacity of 2 when 1 is to earth, q,,, is seen to be -- b-a '  
also be seen by regarding the aystem as composed of two condensers, the 
inner sphere and the inner surface of the outer sphere form a single spherical 

condenser of capacity while the outer surface of the outer sphere has 
b - a '  

capacity b. The total capacity accordingly 

Two spheres at a great distance apart. 

116. Suppose we have two spheres, radii a, b, placed with their centres 
at a great distance c apart. Let us first place unit charge on the former, the 

charge being plnced so that the surface density is constant. This will not 
produce uniforrn potential over 2 ; at  a point distant r from the centre of 1 
it will produce potential l/r. We can, however, adjust this potential to the 
uniforin value l / c  by placing on the surface of 2 a distribution of electricity 

1 . 1  such that it produces a potential - - - over this surface. 
C T 

Take B, the centre of the second sphere, as origin, and AB as axis of x. 
Then we may write 

1 1 r - c  x ---=-- - -  1 
as far as - 

G r CT 8' ca ' 

Let u be the surface density required to produce this potential, then 
clearly o is an odd function of x, and therefore the total charge, the value of 
a integrated over the sphere, vanishes. Thus the potential of 2 cm be 
adjusted to the uniform value 1/c  without altering the total charge on 2 
from zero, neglecting l/cs. The new surface density being of the order of 
l/ca, the additional potential produced on 1 by it will be at  rnost of order l/c9, 
so that if we neglect l /cS we have found an equilibrium arrangement which 
makes 
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Substituting these values in the equations 

K =pl& +p1o,,E*, 
E=pis& +pet&, 

we find at  once that 
1 1 

p,, = - neglecting - a c8 ' 
1 1 

Pm= ; - 
c8 ' 

and similarly we can see that 
1 1 

p, = neglecting - c3 ' 

Solving the equations 
E, Ea s=-+-, 
a T 

1 we find that, neglecting - 
CS ' 

We notice that the q a c i t y  of either sphere is greater than i t  would be if 
the other were removed. This, as w e  shall see later, is a particular case of a 
general theorem. 

Two cond,t~ctors in contact. 

117. If two conductors are placed in contact, their potentials must be 
equal. Let the two conductors be conductors 1 and 2, then the equation 
T( = la becomes 

(pl1 - pl,) El+ (pl2 -pnJ + . . . = 0, 

or, say, uE, + ,BE, + YE, + ... = O .  

If we know'the total charge E on 1 and 2, we have 

and on solving these two equations we can obtain El and E,. We find that 

R 1  BE-tyEs+6E,+ ... z-- aE+yE8+6E4+ ...' 
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giving the ratio in which the charge E will distribute itself between the 
two conductors 1 and 2. If the conductors 3, 4, ... are either absent or 
uncharged, 

El ~ - P B - P ~ P  
Z=-  a pli-pis' 

which is independent of E and always positive. I t  is to be noticed that El 
vanishes only ifp, =plz, t e . ,  if 2 entirely surrounds 1. 

118. We have already seen that the mechanical force on a conductor js 
the resultant of a system of tensions over its surface of amount 27i-ug per unit 
area. The resiilts of the present Chapter enable us to find the resultant 
force on any conductor in terms of the electrical coefficients of the system. 

Suppose that the positions of the conductors are specified by any co- 
ordinates &, E,, ..., so that p,,, p,,, .... q,,, q,,, .... and consequently also W, 
are functions of the Fs. If & is increased to el + d&, without the charges on 

aw 
the conductors being altered, the increase in electrical energy is - d&, and 

36 
this increase must represent mechanical work done in  moving the conductors. 
The force tending to increase 5, is accordingly 

aw - -~ 
a& 

Since the charges on the conductors are to be kept constant, i t  will of 
course be most convenient to use the form of W given by equation (38), and 
the force is obtained in the form 

I t  is however possible, by joining the conductors to the terminals of 
electric batteries, to keep their potentials constant. In  this case, however, 
we must not use the expression (39) for W, and so obtain for the force 

for the batteries are now capable of supplying energy, and an increase of 
electrical energy does not necessarily mean an equal expenditure of mechanical 
energy, for we must not neglect the work done by the batteries. Since the 
resultant mechanical force on any conductor may be regarded as the resultant 
of tensions 27i-va per unit area acting over its surface, it is cleax that this 
resultant force in any position depends solely on the charges in this position. 
It is therefore the same whether the charges or potentials are kept constant, 
and expression (48) will give this force whether the conductors are connected 
to batteries or not. 
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119. AS an illustration, we may consider the force between the two 
charged spheres discussed in 5 116. 

aw The force tending to increase c, nainely - - , is ac 

and substituting the values 

1 
P 2 2  = 6 + 9 ,  t) 

i t  is found that this force is 

El E* 1 - + terms in - 
ca c4 ' 

Thus, except forterms in r4, the force is the same as though the charges 
were collected at  the centres of the spheres. Indeed, i t  is easy to go a stage 
further and prove that the result is true as far as c4. We shall, however, 
reserve a full discussion of the question for a later Chapter. 

120. Let us write 

i l (~llE,2+2~12E,&+ ... ) = K  
+ ( q l 1 F  + 2 q n m  + ...)= w,. 

Then K and W, are each equal to the electrical energy +CEP, so that 

E+ Wv-ZEV=O s.............. (50). 

In whatever way we.change the values of 

equation (50) remains true. We may accordingly differentiate it, treating the 
expression on the left as a function of al1 the E's, V's and g's. Denoting the 
fimction on the left-hand of equation (50) by 4, the result of differentiation 
will be 

-=-- a$ a% = O, by equation (40). 
ÛE, aEl 

so that w e  are left with 2-&=O, a$ a& 
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and since this equation is true for al1 displacements and therefore for al1 
values of 6&, 6f2, .... it follows that each coefficient must vanish separately. 

aw, ...................... - + - = O .....( 51). a& aEl 

ame As we have seen, - - 
ah 

is the inechanical force tending to increase &, 

and this has now been shewn to be equal to 3, which is expression (49) 
851 

with the sign reversed. Thus the mechanical force, whether the charges or 
the potentials are kept constant, is 

a form which is convenient when we know the potentials, but not the 
charges, of the system. 

I n  making a small displacement of the system such that f ,  is changed 
aw 

into &+ d&, the mechanical work done is -e d&. If the potentials are a& 
awv kept constant the increase in electrical energy is - d4;. The difference of 
%l 

these expressions, namely 

("2 - 2) d&, 

represents energy supplied by the batteries. From equation (51), i t  appears 
awl that this expression is equal to 2 - d&, so that the batteries supply energy a& 

equal to twice the increase in the electrical energy of the system, and of this 
energy half goes to an increase of the final electrical energy, while half is 
expended as mechanical work in the motion of the conductors. 

Introduction of a nezu conductor into the je ld .  

121. When a new conductor is introduced into the field, the coefficients 
pli, pl?, .... qll, q12, ... are naturally altered. 

Let us suppose the new conductor introduced in infinitesimal pieces, 
which are brought into the field uncharged and placed in position so that 
they are in every way in their final places except that electric communication 
is not established between the different pieces. So far no work bas been 
done and the electrical energy of the field remains unaltered. 

Now let electric communication be established between the different 
pieces, so that the whole structure becomes a single conductor. The separate 
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pieces, originally at  different potentials, are now brought to the same 
potential by the flow of electricity over the surface of the conductor. 
Electricity can only flow from places of higher to places of lower potential, 
so that electrical energy is lost in this flow. Thus the introduction of the 
new conductor has diminished the electric energy of the field. 

If we now put the new conductor to earth there is in general a further 
flow of electricity, so that the energy is still further diminished. 

Thus the electric energy of any field is diminished by the introduction of 
a new conductor, whether insulated or not. 

Consider the case in which the new conductor remains insulated. Let 
the energy of the field before the introduction of the new conductor be 

Q(pllE:12+ 2pizEiEa+ ... +pnnEnB) S.. ...........-...(53). 

After introduction, the energy may be taken to be 

i(p,:E?+2piaElEz+ a.. +pn,'E?:) 54), 

where p,,', etc., are the new coefficients of potential. Further coefficients of 
the type fi,,+,, pz,,+,, .... p,,,,,,, are of course brought into existence, but do 
not enter into the expression for the energy, since by hypothesis En+, = 0. 

Since expression (54) is less than expression (53), it follows that 

(pli- pl;) w + 2  (P=-W;) E J ~  + ... 
.... is positive for al1 values of El, E,, Hence pl, -pl,' is ~ositive, and other 

relations may be obtained, as in § 111. 

I. The Attracted Disc Electrometer. 

FIG. 40. 

122. This instrument is, as regards its essential principle, a balance in 
which the beam has a weight fixed at one end and a disc suspended from 
the other. Under normal conditions the fixed weight is sufficiently heavy 
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to outweigh the disc. I n  using the instrument the disc is made to become 
one plate of a parallel plate condenser, of which the second plate is adjusted 
until the electric attraction between the two plates of the condenser is just 
sufficient to restore the balance. 

The inequalities in the distribution of the lines of force which would 
otherwise occur at  the edges of the disc are avoided by the use of a guard- 
ring (5 90), so arranged that when the beam of the balance is horizontal 
the guard-ring and disc are exactly in one plane, and fit as closely as is 
practicable. 

Let us suppose that the disc is of area A and that the disc and guard- 
ring are raised to potential IT Let the second plate of the condenser be 
placed. parallel to the disc at  a distance h from it, and put to earth. Then 
the intensity between the dise and lower plate is uniform and equal to F/h, 
so that the surface density on the lower face of the disc is CT= F / 4 ~ h .  The 
mechanical force acting on the disc is therefore a force 27ra2A or V2A/8rrh2 
acting vertically downwards through the centre of the disc. If this just 
suffices to keep the beam horizontal, i t  must be exactly equal to the weight, 
say W, which would have t o  be placed on this disc to maintain equilibrium 
if it were uncharged. This weight is a constant of the instrunient, so that 
the equation 

enables us ta determine T in terms of known quantities by observing h. 
The instrument is arranged so that the lower plate can be moved parallel 
to itself by a micrometer screw, the reading of which gives h with great 
accuracy. We can accordingly determine V in absolute units, from the 
equation 

I f  me  wish to determine a difference of potential we can raise the upper 
plate to one potential K,  and the lower plate to the second potential Ti, 

A more accurate method of deterinining a difference of potential is to keep 
the disc at  a constant potent,ial v, and raise the lower plate successively to 
potentials and E. If h, and h2 are the values of h which bring the disc to 
its standard position when the potentials of the 
have 

lower plate are '6: and g, we 
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It is now only necessary to measure h, - h,, the distance through which 
the lower plate is moved forward, and this can be determined with great 
accuracy, as it depends solely on the motion of the micrometer screw. 

II .  The Quadrant Electrometer. 

123. Meusurement of Potential Diference. This instrument is more 
delicate than the disc electrometer just described, but enables us only to 
compare two potentials, or potential differ- ' 

ences; we cannot measure a single potentinl 
in terms of known units. 

The principal part of the instrument 
consists of a metal cylinder of height small 
compared with its radius, divided into four 
quadrants A, B, C, D by two diameters a t  
right angles. These quadrants are insulated 
separately, and then opposite quadrants 
are connected in pairs, two by wires joined 
to a point E and two by wires joined to 
some other point E: 

The inside of the cylinder is hollow and 
inside this a metal disc or " needle " is free 
to move, being suspended by a delicate 
fibre, so that it can rotate without touching 
the quadrants. Before using the instrument 
the needle is charged to a high potential, 
say v, either by means of the fibre, if this FIO. 41. 
is a conductor, or by a small conducting 
wire h'mging from the needle whick passes through the bottom of the 
cylinder. The fibre is adjusked so that when the quadrants are a t  the same 
potential the needle rests, as shewn in the figure, in  a symmetrical position 
with respect to the quadrants. In  this state either surface of the needle 
and the opposite faces of the qnadrants may be regarded as forming a parallel 
plate condenser. 

If, however, the potential of the two quadrants joined to E is different 
from that of the two quadrants joined to FI there is an electrical force 
tending to drag the needle under that pair of quadrants of which the potential 
is more nearly equal to W. The needle accordingly moves in this direction 
until the electric forces are in equilibrium with the torsion of the fibre, and 
an observation of the angle through which the needle turns will give an 
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indication of the difference of potential between the two pairs of quadrants. 
This angle is niost easily observed by attaching a small mirror to the fibre 
just above the point at  which i t  emerges from the quadrants. 

Let us suppose that when the needle has turned through an angle 8, 
the total area A of the needle is placed so that an area S is inside the pair 
of quadrants at  potential q, and an area A - S inside the pair a t  potential 
K. Let h be the perpendicular distance from either face of the needle to 
the faces of the quadrants. Then the systern may be regsrded as two 
parallel plate condensers of area S, distance h, and difference of potential 
v - 4 ,  and two parallel plate condensers for which these quantities have the 
values A - S, h, v -K. There are two condensers of each kind because 
there are two faces, upper and lower, to the needle. The electrical energy 
of this system is accordingly 

The energy here appears as a quadratic function of the three potentials 
concerned: i t  is expressed in the same form as the W, of 5 120. The 
mechanical force tending to increase 8, ie . ,  the moment of the couple tending 

aw, to turn the needle in the direction of 6 increasing, is therefore -. Now ae 
in W, the only term in the coefficients of the potentials which varies with 4' 
is 8, so that on differentiation we obtain 

If r is the radius of the needle-measured from its centre, which is under 
as 

the line of division of the quadrants-we clearly have - = ra, so that we can ae 
write the equation just obtained in the form 

I n  equilibriun~ this couple is balanced by the torsion couple of the fibre, 
which tends to decrease 8. This couple may be taken to be k0, where Ic is a 
constant, so that the equation of eqiiilibrium is 

For smnll displacements of the needle, rZ may be replaced by aa, the 
radius of the needle a t  its centre line. Also v is generally large conipared 
with and K. The last equation accordingly assumes the simpler form 
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shewing that 8 is, for small displacements of the needle, approximately 
proportional to the difference of potential of the two pairs of quadrants. 
The instrument can be made extraordinarily sensitive owving to the possibility 
of obtaining quartz-fibres for which the value of k is very small. 

If the difference of potential to be measured is large, we rnay charge the 
needle simply by joining it to one of the pairs of quadrants, say the pair a t  
potential K. We then have v = K, and equation (55)  becomes 

so that 6 is now proportional to the square of the potential difference to be 
measured. 

a2 
Writing = C, 80 that C is a constant of the instrument, we have, 

.rr h k 
when v is large 

e = c u ( ~ - q  .............................. ( 5 0  
when v = x, 

e = s c ( v ; - K ) z  .......................m... (57). 

124. Measzcrement of charge. Let us speak of the pairs of quadrants 
a t  p~tentials 4, '6: as conductors 1, 2 respectively, and let the needle be 
conduct~r 3. When the quadrants are to enrth and the needle is a t  
ptent ial  q, the charge E induced on the first pair of quadrants by the 
charge on the needle will be given by 

E = q13K 
where ql, is the coefficient of induction. This coefficient is a function of the 
angle 8 which defined the position of the needle. If the instrument is 
adjusted so that 8 = 0 when both pairs of quadrants are to earth, we must 
use the value of q,, corresponding to 6 = 0, Say (q,,),, so that 

E = (q&K ...........m.................. (58). 

Now suppose that the first pair of quadrants is insulated and receives 
an additional charge Q, the second pair being still t o  earth. Let the needle 
be deflected through an angle 8 in consequence. Since the charge on the 
first pair of quadrants is now E'+ Q, we have 

E + Q = ( q J e  K + (q& K. 
On subtracting equation (58)  from this we obtain 

& = (qii)ox $ [(qi3)8 - (qis)o] K. 
If 8 is small this may be written 
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where g,, , !@ are supposed calculated for 6 = 0. Since K = O, we have from ae 
equation (56), 

so that 

shewing that for small values of O, Q is directly proportiona1 to 8. 

Let us suppose that we join the first pair of quadrants (conductor 1) 
to a condenser of known capacity l? which is entirely outside the electro- 
meter. Since the needle (3) is entirely screened by the quadrants the value 
of q,, remains unaltered, while q,, will become q,,+ l?. If B' ia now the 
deflection of the needle, we have 

so that, by combination with the lest equation, we have 

If 8" is the deflection obtained by joining the pairs of quadrants to the 
terminals of a battery of known potential difference D, we have from 
equation ( 5 6 ) ,  

and on substituting this value for Cg, our equation becomes 

- -- 
B 0 

giving Q in terms of the known quantities FI D and the three readings 
8, 0' and 8". 
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EX AMPLES. 

1. If the algebraic sum of the charges on a system of conductors be positive, then on 
one a t  least the surface density is everywliere positive. 

2. There are a number of insulated conductors in given fixed positions. The 
capacities of ccny two of them in their giveii positions are Cl and C., and their mutual 
cocfficient of induction is B. Prove that if these conductors be joined by a thin wire, the 
capacity of the combined condiictor is 

CI + Ca + M. 

3. A system of insulated conductors having been charged in any manner, charges are 
traiisferred from one conductor to another till they are al1 brought to the sanie potential T? 
Shew that 

V= E/(sI + 282)) 

where 81, sa are the algebraic sums of the coefficients of capacity and induction respectively, 
and E is the sum of the charges. 

4 Prove that the effect of the operation described in the last question is a decrease 
of the electrostatic energy equal to what would be the energy of the system if each of the 
original potentials were diminished by V; 

5. Two ecliial similar condensew, each consisting of two spherical shells, radii a, b, 
are insulated and placed a t  a great distance r apart. Charges e, e' are given to the inner 
shells. If the outer surfaces are now joined by a wire, shew that the loss of energy is 
approximately 

6. A condenser is formcd of two thin concentric spherical shells, radii a, b. A small 
hole exists in the outer sheet through which an insulated wire passes connecting the 
inner sheet with a third conductor of capacity c, a t  a great distance r from the condenser. 
The outer sheet of the condenser is put to earth, and the charge on the two connected 
conductors is E. Prove that approximately the force on the third conductor is 

% Two closed equipotentials VI, Vo are such that V, contains Po, and Vp is the 
potential a t  any point P between them. If now a charge B be put a t  P, and both 
equipotentials be replaced by conducting shells and earth-connected, then the chargeii 
El, Eo induced on the two surfaces are given by 

8. A conductor is charged from an electrophorus by repeated contacts with a plate, 
which after each contact is rechargeci with a quantity E of dectricity from the electro- 
phorus. Prove that if 6 is the charge of the conductor after the fimt operation, the 
ultimate charge is 

Es 
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Systerns of Conductors 

9. Four equal uuchürged iusulated couductors are placed symmetrically a t  the corners 
of a regular tetrahedron, and are touched in turn by a moving spherical conductor a t  the 
points nearest to the centre of the tetrahedron, receiving charges el, ez, es, e,. Shew that 
the charges are in geometrical progression. 

10. In  question 9 replace " tetrahedron" by LLsq~are,"  and prove that 

(el - ed (eles - e,2) = el (e& - e d .  

11. Shew that if the distance x between two conductors is so great as compared with 
the linear dimensions of either, that the square of the ratio of these linear dimensions to 
x may be neglected, then the coefficient of induction between them is - C'C'lx, where C, C' 
are the capacities of the conductors when isolatcd. 

12. Two insulated fixed condensers are a t  given potentials when alone in the electric 
6eld and charged with quantities El, EZ of electricity. Their coefficients of potential are 
pli, pie, pzz. But if they are surrounded by a spherical conductor of very large radius R 
a t  potential zero with its centre near them, the two conductors require charges El', E; to  

1 
produce the given potentials. Prove, neglecting B ,  that 

13. Shew that the locus of the positions, in which a unit charge will induce a given 
charge on a given uninsulated conductor, is an equipotential surface of that conductor 
supposed freely electrified. 

14. Prove (i) that if a conductor, insulated in free space and raised to unit potential, 
produce at  any external point P a potential denoted by (P), then a unit charge placed a t  
P in the presence of this conductor uninsulated will induce on it a charge - (P) ; 

(ii) that if the potential a t  a point Q due to the induced gharge be denoted by (PQ), 
then (PQ) is a symmetrical functiou of the positions of P and Q. 

15. Two small uninsulated spheres are placed near together between two large 
parallel planes, one of which is charged, and the other connected to earth. Shew by 
figures the nature of the disturbance so produced in the uniform field, when the line of 
centres is (i) perpendicular, (ii) parallel to the planes. 

16. A hollow conductor A is a t  zero potential, and contains in its cavity two other 
insulated conductors, B and 6, which are mutually external : B has a positive charge, and 
C is uncharged. Analyse the different types of lines of force within the cavity which are 
possible, claasifying with respect to the conductor from which the line starts, and the 
conductor a t  which it  ends, and proving the impossibility of the geometrically possible 
types which are rejected. 

Reuce prove that B and C are at  positive potentials, the potential of C beirig less than 
that of B. 

17. A portion P of a conductor, the capacity of which is C, can be separated from the 
conductor. The capacity of this portion, when at  a long distance froin other bodies, is c. 
The conductor is insulated, and the part P when a t  a considerable distance from the 
remitinder is charged with a quantity e and allowed to move under the mutual attractiori 
up to  it ; describe and explain the changes which take place in the electrical energy of the 
tryatem. 
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18. A conductor having rt charge QI is siirrounded by a second conductor with charge 
Q,. The inner is connected by a wire to a very distant uncharged conductor. I t  is then 
disconnected, and tho outer conductor connected. Shew tbat the charges Q;, Qi, are now 

where C, C( l+m)  are the coefficients of capacity of the near conductors, and Cn is the 
capacity of the distant one. 

19. If one conductor contains al1 the others, and there are n+l  in all, sliew that 
there are n+l relations between either the coefficients of potential or the coefficients of 
induction, and if the potential of the largeat be Vo, and that of the others VI, V2, ... Vn., 
then the most general expression for the energy is $CVoZ increased by a quadratic function 
of VI- Vo, Pz- Vo, ... Vn- Po; where C is a definite constant for al1 positions of the 
iniier conductors. 

20. The inner sphere of a spherical condenser (radii a, b) has a constant charge E, 
and the outer conductor is a t  potential zero. Under the interna1 forces the outer 
conductor contracts from radius b to radius 4. Prove that the work done by the 
electric forces is 

21. If, in  the last question, the inner conductor has a constant potential V, its charge 
being variable, shcw that  the work done is 

and invwtigate the quantity of energy supplied by the battery. 

2 2  With the usual notation, prove that 

23. Shew that if pw,&, pss be three coefficients before the introduction of a new 
conductor, and p,', pT8, pB; the same coefficients afterwards, then 

24. A system consista of p+p+2 conductors, Al, A,, ... A,, BI, B2, ... Bq, C, D. Prove 
that when the charges on the A's and on C, and the potentials of the Bs and of C are 
knomn, there cannot be more than one possible distribution in equilibrium, unless C ia 
electrically screened from D. 

25. A, B, G, D are four conductors, of which B surrounds A and B surrounds C. 
Given the coefficients of capacity and induction 

(i) of A and B when C and D are removed, 

(ii) of C and D when A and B are removed, 

(iii) of B and D when A and C are removed, 

determine those for the complete system of four condiictors. 

26. Two equal and similar conductors A and B are charged and placed symmetrically 
with regard to each other; a third moveahle conductor C is carried so 8s to occupy 

J. 8 
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successively two positions, one practically wholly within A, the other within B, the 
positions being similar and such that the coefficients of potential of C in either position 
are p, p, r in ascending order of magnitude. I n  each position C is in turn connected with 
the conductor surrounding it, put to earth, and then ins~ilated. Determine the charges 
on the conductors after any nuuber of cycles of such operations, and shew that they 
ultimately lead to the ratios 

1 : -,8 : PX-1, 
where fi is the positive root of 

T X ' - ~ X + ~ - T = ~ .  

27. Two conductors are of capacities Cl and Ci, when each is  alone in the field. 
They are both in the field at  potentials P; and V2 respectively, at a great distance r 
apart. Prove that the repulsion between the conductors is 

1 As far as  what power of - is this result accurate '2 

28. Two equal and similar insulated conductors are placed syrnmetrically with regard 
to each other, one of them being uncharged. Another insulated conductor is made to 
touch them alternately in a symmetrical manner, beginning with the one which has a 
charge. If el, e2 be their charges when i t  has touched each once, shew that their charges, 
when it has touched each r tirnes, are respectively 

29. Three conductors Al ,  A, and d3 are such that A3 is practically inside 8%. Al is 
alternately connected with A, and As by means of a fine wire, the first contact being with 
AS. Al has a charge E initially, A, and As being unchaiged. Prove that the charge on 
Al after it  hm been connected n times with Ba is 

where a, 8, 7 stand for pl1 -pl', p2z -1712 and p3~ -pi2 respectively. 

30. Two spheres, radii a, 4 have their centres a t  a distance c apart. Shew that 
neglecting (a/c)0 and (b/c)'J, 
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CHAPTER V 

DIELECTRICS AND INDUCTIVE CAPACITY 

125. MENTION has already been made (5 84) of the fact, discovered 
originally by Cavendish, and afterwards rediscovered by Faraday, that the 
capacity of a conductor depends on the nature of the dielectric substance 
between its plates. 

Let us imagine that we have two parallel plate condensers, similar in al1 
respects except that .one has nothing but air between its plates while in the 
other this space is filled with a dielectric of inductive cayacity K. Let us 
suppose that the two high-potential plates are connected bg a wire, and also 
the two low-potential plates. Let the conciensers be charged, the potential 
of the high-potential plates being q, and that of the low-potential plates 
being K. 

Then it is found that the charges possessed by the two condensers are not 
equal. The capacity per unit area of the air-condenser is 1 / 4 d  ; that of the 
other condenser is found to be K/47rd. Hence 
the charges per unit area of the two condensers 
are respectively 

K - K  '-' and g- 
47rd 4 ~ d  ' 

The work done in taking unit charge from the 
low-potential plate to the high-potential plate is 
the samc in either condenser, narnely K- l$, so 
that the intensity between the plates in either 
condenser is the aame, ilamely 

In  the air-condenser this intensity may be regarded as the resultant of the 
attraction of the negatively charged plate and the repulsion of the positively 

e climged plate, the law of attraction or repulsion being Coulomb's law - 
P ' 
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116 Dieleetries and Inductive Capacity [CH.  v 

It is, however, obvious that if we were to calculate the intensity in the 
second condenser from this law, then the value obtained would be k times 

, I n  point of that in the first condenser, and would therefore be K- 
d 

S - K  fa&, the actual value of the intensity is known to be - 
d '. 

Thus Faraday's discovery shews that Coulomb's law of force is not of 
universal validity : the law has only been proved experimentally for air, and 
i t  is now found not to be true for dielectrics of which the inductive capacity 
is different from unity. 

This discovery has far-reaching effects on the development of the mathe- 
matical theory of electricity. I n  the present book, Coulomb's law was 
introduced in 5 38, and formed the basis of al1 subsequent investigations. 
Thus every theorem which has been proved in the present book from FJ 38 
onwards requires reconsideration. 

126. We sha11 follow Faraday in treating the whole subject from the 
point of view of lines of force. The conceptions of potential, of intensity, and 
of lines of force are entirely independent of Coulomb's law, and in the present 
book have been discussed (§§ 30-37) before the law was introduced. The 
conception of a tube of force follows at once from that of a line of force, 
on imagining lines of force drawn through the different points on a small 
closed curve. Let us extend to dielectrics one form of the definition of the 
strength of a tube of force which has already been used for a tube in air, and 
agree that the strength of a tube is to be measured by the charge enclosed 
by its positive end, whether in air or dieIectric. 

I n  the dielectric condenser, the surface density on the positive plate is 

K -, and this, by definition, is also the aggregate strength of the 
4rd  

tubes per unit area of cross-section. The intensity i n  the dielectric is '-', so that in the dielectric the intensity is no longer, as in air, equal 
d 

to 47r times the aggregate strength of tubes per unit area, but is equal to 
4rlK times this amount. 

Thus if P is the aggregate strength of the tubes per unit area of cross- 
section, the intensity R is related to P by the equation 

in the dielectric, instead of by the equation 

R = 4lrP . . . . . . . . . . . . . . .. . . . . . . . . .. . . ..(GO) 
which mas found to hold in air. 
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127. Equation (59) has been proved to be the appropriate generalisation 
of equation (60) only in a very special case. Faraday, however, believed the 
relation expressed by equation (59) to be universally true, and the results 
obtained on this supposition are found to be in cotnplete agreement with 
experiment. Hence equation (59), or some equation of the same significance, 
is universally taken as the basis of the mathematical theory of dielectrics. 
We accordingly proceed by assuming the universal truth of equation (59), 
an assumption for which a justification will be found when we come to study 
the molecular constitution of dielectrics. 

I t  is convenient to have a single word to express the aggregate strength 
of tubes per unit are& of cross-section, the quantity which has been denoted 
hy P. We shall speak of this quantity as the "polarisation," a term due to 
Faraday. Maxwell's explanation of the meaning of the term " polarisation " 
is that "an elementary portion of a body inay be said to be polarised when 
i t  acquires equal and opposite properties on two opposite sides." Faraday 
explained the properties of dielectrics by means of his conception that the 
molecules of the dielectric were in a polarised state, and the quantity P 
is found to measure the amount of the polarisation a t  any point in the 
dielectric. We shall come to this physical interpretation of the quantity P 
at  a later stage: for the present we simply use the term "polarisation" as 
a name for the mathematical quantity. P. 

This same qiiantity is called the " displacement " by Maxwell, and under- 
lying the use of this term also, there is a physical interpretation which we 
shall come upon later. 

128. We now have as the basis of our mathematical theory the 
following : 

DEFINITION. The strength of a tube of force is dejined to Oe the charge 
enclosed by th.e positive end of the tube. 

DEFINITION. The polarisation ut any point i s  defilzed to be the aggregate 
strength of tubes of force per unit area of cross-section. 

EXPERIMENTAL LAW. The intensity at any  point i s  4 ~ r / K  times the 
polarisation, whel-e K i s  the inductive capacity of the dielectric a t  the point. 

I n  this last relation, we measure the intensity along a line of force, while 
the polarisation is measured by considering the flux of tubes of force across 
a small area perpendicular to the lines of force. Suppose, however, that we 
take some direction 00' making an angle B with that of the lines of force. 
The aggregate strength of the tubes of force which cross an area dS 
perpendicular to 00' will be Pcos  OdS,  for these tubes are exactly those 
which crosa an area dScos 6 perpendicular to the lines of force. Thus, 
consistently with the definition of polarisation, we may say that the polari- 
sation in the direction 00' is equal to P cos 0. Since the polarisation in 
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any direction is equal to P multiplied by the cosine of the angle lnetween 
this direction and that of the lines of force, i t  is clear that the polarisation 
inay be regarded as a vector, of which the direction is that of the lines of 
force, and of which the magnitude is P. 

The polarisation having been seen to be a vector, we may speak of its 
components f, g, h. Clearly f is the number of tubes per unit area which 
cross a plane perpendicular to the axis of x, and so on. 

The result just 'obtained may be expressed analytically by the equations 

129. The polarisation P being measured by the aggregate strength of 
tubes per unit area of cross-section, i t  follows that if w is the cross-section 
at any point of a tube of strength e, we have e = op. Now we have defined 
the strength of a tube of force as being equal to the charge a t  its positive 
end, so that by definition the strength e of a tube does not Vary from point 
to point of the tube. Thus the product w P  is constant along a tube, or 
oKR is constant along a tube, replacing the result that oR is constant 
in air (5 56). 

The value of the product oP at  any point O of a tube, being equal to 

CR, depends only on the phgsical conditions prevailing at  the point O. 
4%- 

I t  is, however, known to be equal to the charge at  the positive end of the 
tube. Hence it nlust also, from symmetry, be equal to minus the charge at  
the negative end of the tube. Thus the charges at the two ends of a tube, 
whether in the same or in different dielectrics, will be equal and opposite, 
and the numerical value of either is the strength of the tube. 

130. Let S be any closed surface, and let ê be the angle between the 
direction of the outward normal to any element of surface dS and the direction 
of the lines of force at  the element. The aggregate strength of the tubes of 
force which cross the element of area dS is P cos e dS, and the integral 

which may be called the surface integral of normal polarisation, will measure 
the aggregate strength of al1 the tubes which cross the surface S, the strength 
of a tube being estimated as positive when i t  crosses the surface from inside 
to outside, and as negative when it crosses in the reverse direction. 

A tube which enters the surface from outside, and which, after crossing 
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the space enclosed by the surface, leaves it again, will add no contribution to 

//P cos E ~ S ,  its strength being counted negatively where it enters the 

surface, and positively where i t  emerges. A tube which starts from or ends 
on a charge e inside the surface 8 will, however, supply a contribution to 

//PCOS edS on crossing the surface. If e is positive, the strength of the 

tube is e ;  and, as i t  crosses from inside to outside, it is counted positively, 
and the contribution to the integral is e. Again, if e is negative, the strength 
of the tube is - e, and this is counted negatively, so that the contribution is 
again e. 

Thus on summing for al1 tubes, 

/ / ~ c o a ~ d ~ =  E, 

where E is the total charge inside the surface. The left-hand member is 
simply the algebraical sum of the strengths of the tubes which begin or end 
inside the surface; the right-hand member is the algebraical sum of the 
charges on which these tubes begin or end. Putting 

the eqiiation becomes 11 KR COS edS = 4rE. 

The quantity R cos e is, however, the component of intensity along the 
outward normal, the quantity which has been previously denoted by N, BO 

that we arrive at  the equation 

When the dielectric was air, Gauss' theorem was obtained in the form 

Equation (el) is therefore the generalised form of Gauss' Tiieorem which 
must be used when the inductive capacity is different from unity. Since 

av N =  - -, the equation may be written in the form an, 

131. The f o m  of this equation shews at  once that a great many results 
which have been shewn to be true for air are true also for dielectrics other 
than air. 

It is obvious, for instance, that V cannot be a maximum or a minimum 
at  a point in a dielectric which is not occupied by an electric charge: as 
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a consequence al1 lines of force must begin and end on charged bodies, 
a result which was tacitly assumed in defining the strength of a tube of 
force. 

A number of theorems were obtained in the discussion of the electrostatic 
field in air, by taking a Gauss' Surface, partly in air and partly in a con- 
ductor. Gauss' Theorem was used in the form 

but we now see that if the inductive capacity of the conductor were not 
equal to unity, this equation ought to be replaced by equation (61). I t  is, 
however, clear that the difference cannot affect the final result; N is zero 
inside a conductor, so that i t  does not matter whether N is multiplied by K 
or not. 

Thus results obtained for systems of conductors in air upon the assumption 
that Coulomb's law of force holds throughout the field are seen to be true 
whether the inductive capacity inside the conductors is equal to unity or not. 

The Equations of Poisson and Laplace. 

132. In  5 49, we appIied Gauss' theorem to a surface which was formed 
by a small rectangular parallelepiped, of edges dx, dy, dz, parallel to the 
axes of coordinates. If we apply the theorem expressed by equatioii (61) to 
the same element of volume, we obtain 

where p is the volume density of electrification. This, then, is thegeneralised 
form of Poisson's equation: the generalised form of Laplace's equation is 
obtained at  once on putting p = 0. 

I n  terms of the components of polarisation, equation (62) may be written 

while if the dielectric is uncharged, 

Electric Charges i n  an infinite hornogeneous Dielectric. 

133. ' Consider a charge e placed by itself in an infinite dielectric. If 
the dielectric is homogeneous, i t  follows from considerations of symmetry 
that the lines of force, must be radial, as they would be in air. By application 
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of equation (61) to a sphere of radius r, having the point charge as centre, i t  
is found that the intensity at  a distance r from the charge is 

The force between two point charges e, e', at  distance r apart in a homo- 
geneous unbounded dielectric is therefore 

and the potential of any number of charges, obtained by integration of this 
expression, is 

1. e v = X z T  .............................. (66). 

Coulomb's Equation. 

134. The strength of a tube being measured by the charge at  its end, i t  
follows that a t  a point just outside a conductor, P, the aggregate strength 
of the tubes per unit of cross-section, becomes numerically equal to a, the 
surface density. We have also the general relation 

and on replacing P by a, we arrive a t  the generalised form of Coulomb's 
equation, 

in which K is the inductive capacity a t  the point under consideration. 

135. Let us examine the conditions which will obtain at  a boundary at  
which the inductive capacity changes abruptly from K, to K,. 

The potential must be continuous in crossing the boundary, for if P, Q, 
are two infinitely near points on opposite sides of the boundary, the work done 
in bringing a small charge to P must be the same as that done in bringing 
i t  to Q. As a consequence of the potential being continuous, it follows that 
the tangential components of the intensity must also be continuous. For if 
Y, Q are two very near points on different sides of the boundary, and P', Q' 
a similar pair of points at  a small distance away, we have V, = VQ, and 
V/ = Vd, so that 

v,- v/- v,-v; --- 
PP' QQ' 

The expressions on the two sides of this equation are, however, the two 
intensities in the direction PP', on the two sides of the boundary, which 
establishes the result. 
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Also, if there is no charge on the boundary, the aggregate strength of 
the tubes which rneet the boundary in any srrial1 area on this boundary is 
the same whether estimated in the one dielectric or the other, for the tubes 
do not alter their strength in crossing the boundary, and none can begin or 
end in the boundary. Thus the normal component of the polarisation is 
continuous. 

138. If RI is the intensity in the first medium of inductive capacity K,, 
measured a t  a point close to the boundary, and if el is the angle which the 
lines of force make with the normal to the boundary a t  this point, then the 
normal polarisation in the first medium is 

Ki - R, cos G ~ .  
47r 

Similarly, that in the second medium is 

K, - R2 COS 4, 
47r 

so that K1R~cos el = K2R2 cos E, ........................ (69 
Since, in the notation already used, 

the equation just obtained may be put in either of the forms 

KINl = K2N8 ............................. (6% 

I n  these equations, i t  is a matter of indifference whether the normal is 
drawn from the first medium to the second or in the reverse direction; i t  is 
only necessary that the same normal should be taken on both sides of the 
equation. Relation (70) is obtained a t  once on applying the generalised 
form of Gauss' theorem to a small cylinder having parallel ends at  infinitesimal 
distance apart, one in each medium. 

137. To sum up, we have found that in passing from one dielectric to 
another, the surface of separation being uncharged : 

(i) the tangential cornponents of intensity have the same values on the 
two d e s  of the boundary, 

(ii) the normal components of polarisation have the same values. 

Or, in terms of the potential, 
(i) V i s  contimous, 
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Refraction of the lines of force. 

138. From the continuity of the tangential components of intensity, i t  
follows : 

(i) that the directions of R, and &,the intensities on the two sides of 
the boundary, must lie in a plane containing the normal, and 

(ii) that RI sin el = R, sin ea. 

Cornbining the last relation with equation (68), we obtain 

K, cot cl= K, cot ea ....... ... . . . ... . .... . . ....( T l ) .  

From this relation, it appears that i f  KI is greater than K,, then is greater 
than s, and vice versa. Thus in passing from a smaller value of K to a 
greater value of K, the lines are bent away from the normal. In illustration 
of this, fig. 43 shews the arrangement of lines of force when a point charge 
is placed in front of an infinite slab of dielectric (K = 7). 
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A sniall chargea pa.rticle placed at  any point of this field will experience 
a force of which the direction is along the tangent to the line of force through 
the point. The force is produced by the point charge, but its direction will 
not in general pass through the point charge. Thus we conclude that in 
a field in which the inductive capacity is not uniform the force between two 
point charges does not in general act along the line joining them. 

139. As an example of the action of a dielectric let us imagine a parallel 
plate condenser in which a slab of dielectric of thickness t is placed between 
the plates, its two faces being parallel to the plates and 
at distances u, b from them, so that a + b + t = d, where 
d is the distance between the plates. 

I t  is obvious from symmetry that the lines of force 
are straight throughout their path, equation (71) being 
satisfied by 6, = s = 0. 

Let o be the charge per unit area, so that the polari- 
sation is equal to o everywhere. The intensity, by 
equation (671, is 

R = 4no in air, 

and R = u in dielectric. K 

Hence the difference of potential between the plates, or the work done in 
taking unit charge from one plate to the other in opposition to the electric 
intensity, 

and the capacity per unit area is 

Thus the introduction of the slab of dielectric ha* the same effect as 

rnoving the plates a distance (1 - i) t nearer together. 

Suppose now that the slab is partly outside the condenser and partly 
between the plates. Of the total area A of the condenser, let an area B be 
occupied by the slab of dielectric, an area A - B having only air between 
the plates. 
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The lines of force will be straight, except for those which pass near to the 
edge of the dielectric slab. Neglecting a small correction required by the 
curvature of these lines, the capacity C of the condenser is given by 

C =  B A - B  

a quantity which increases as B increases. If V is the potential difference 
and E the charge, the electrical energy 

Ea = gcp = * ,. 
If we keep the charge constant, the electrical energy increases as the 

slab is withdrawn. There must therefore be a mechanical force tending to 
resist withdrawal : the slab of dielectric will be sucked in between the plates 
of the condenser. This, as will be seen later, is a particular case of a general 
theorem that any piece of dielectric is acted on by forces which tend to  
drag it from the weaker to the stronger parts of an electric field of force. 

Charge on the 8urface of a Dielectric. 

140. Let dS be any small area of a surface which separates two media 
of inductive capacities KI,  K,, and let this bounding surface have a charge of 
electricity, the surface density over dS being u. If we apply 
Gauss' Theorem to a small cylinder circumscribing dS we obtain 

av av Ki - + K, = - 4n-a ...... .... .... . au, au, (W2 
a 

where - in either medium denotes differentiation with respect av 
to the normal drawn away from dS into the dielectric. 

141. As we have seen, the surface of a dielectric may be 
charged by friction. A more interesting way is by utilising 
the conducting powers of a flame. EIO. 45. 

Let us place a charge e in front of a slab of dielectric as in fig. 43. 
A flame issuing from a metal larnp held in the hand may be regarded as 
a conductor a t  potential zero. On allowing the dame to play over the 
surface of the dielectric, this surface is reduced to potential zero, and the 
distribution of the lines of force is now exactly the same as if the face of 
the dielectric were replaced by a conducting plane at potential zero. The 
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lines of force from the point charge terminate on this plane, so that there 
must be a total charge - e spiead over it. If the plane were actually a 
conductor this would be simply an induced charge. If, however, the plane 
is the boundary of a dielectric, the charge differs from an induced charge on - - 

a conductor in that it cannot disappear if the original charge e is removed. 
For this reason, Faraday described i t  as a " bound " charge. The charge has 
of course corne to the dielectric through the conducting flame. 

142. From the observed influence of the structure of a dielectric upon 
the electric phenomena occurring in a field in which i t  was placed, Faraday 
waa led to suppose that the particles of the dielectric themselves took part 
in this electric action. After describing his researches on the electric 
action-" induction " to use his own term-in a space occupied by dielectric 
he saysq: 

" Thus induction appears to be essentially an action of contiguous parti- 
cles, through the intermediation of which the electric force, originating or 
appearing at a certain place, is propagated to or sustained at a distance ...." 

"Induction appears to consist in a certain polarised state of the particles, 
into which they are thrown by the electrified body sustaining the action, the 
particles assuming positive and negative points or parts.. .." 

" With respect to the terrn polarity ..., 1 mean at present ... a disposition 
of force by which the saine molecule acquires opposite powera on different 
parts." 

And again, latert, 

"1 do not consider the powers when developed by the polarisation as 
limited to two distinct points or spots on the surface of each particle to be 
considered as the poles of an axis, but as resident on large portions of that 
surface, as they are upon the surface of a conductor of sensible size when it 
is thrown into a polar state." 

" In  such solid bodies as glass, lac, sulphur, etc., the particles appear to 
be able to  become polarised in al1 directions, for a mass when experimented 
upon so as to ascertain its inductive capacity in three or more directions, 
gives no indication of a difference. Now, as the particles are fixed in the 
mass, and as the direction of the induction through them must change with 
its charge relative to the inass, the constant effect indicates that they can 
be polarised electrically in any direction." 

Experimental Resea~ches, 1295, 1298, 1304. (Nov. 1837.) 
t Ezperimental Researches, 1686, 1688, 1679. (June, 1838.) 
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"The particles of an insulating dielectric whilst under induction may be 
compared ... to a series of small insulated conductors. If the space round 
e charged globe were filled with a mixture of an insulating dielectric and 
small globular conductors, the latter being a t  a little distance from each 
other, so as to be insuluted, then these would in their condition and action 
exactly resemble what 1 consider to be the condition and action of the 
particles of the insulating dielectric itself. If the globe were charged, these 
little conductors would al1 be polar ; if the globe were discharged, they would 
al1 return to their normal state, to be polarised again upon the recharging 
of the globe..,." 

As regards the question of what actually the particles are which undergo 
this polarisation, Faraday says" : 

"An important inquiry regarding the electric polarity of the particles of 
an insulating dielectric, is, whether i t  be the molecules of the particular 
substance acted on, or the component or ultimate particles, which thus act 
the part of insulated conducting polarising portions." 

"The conclusion 1 have arrived s t  is, that . i t  is the molecules of the 
substance which polarise as wholes; and that however complicated the 
composition of a body may be, al1 those particles or atoms which are held 
together by chemical affinity to form one molecule of the resulting body 
act as one conducting mass or particle when inductive phenonlena and 
polarisation are produced in the substance of which it is a part." 

143. A mathematical discussion of the acbion of a dielectric co~ t ruc t ed  
as imagined by Faraday, has been given by Mossotti, who utilised a mathe- 
matical method which had been developed by Poisson for the examination of 
a similar question in magnetism. For this discussion the molecules are 
represented provisionally as conductors of electricity. 

To obtain a first idea of the effect of an electric field on a dielectric of 
the kind pictured by Faraday, let us consider a parallel plate condenser, 
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having a number of insulated uncharged conducting molecules in the space 
between the plates. Imagine a tube of strength e meeting a molecule. At  
the point where this occurs, the tube terminates by meeting a, conductor, so 
that there must be a charge - e  on the surface of the molecule. Since the - 
total charge on the molecule is lzil there must be a corresponding charge on 
the opposite surface, and this charge may be regarded as a point of restarting 
of the tube. The tube then may be supposed to be continually stopped and 
restarted by molecules as i t  crosses from one plate of the condenser to the 
other. At each encounter with a molecule there are induced charges - e, + +e 

on the surface of the molecule. Any such pair of charges, being a t  only a 
small distance apart, may be regarded as forming a small doublet, of the kind 
of which the field of force was investigated in 5 64. 

144. We have now replaced the dielectric by a series of conductors, the 
medium between which may be supposed to be air or ether. I n  the space 
between these conductors the law of force will be that of the inverse square. 
I n  calculating the intensity a t  any point from this law we have to reckon 
the forces from the doublets as well as the forces from the original charges 
on the condenser-plates. A glance a t  fig. 46 will shew that the forces from 
the doublets act in opposition to the original forces. Thus for given charges 
on the condenser-plates the intensity at  any point between the plates is 
Eessened by the presence of conducting molecules. 

This general result can be seen a t  once from the theorem of § 121. The 
introduction of new conductors (the molecules) lessens the energy cor- 
responding to given charges on the plates, i.e. increases the capacity of the 
condenser, and so lessens the intensity between the plates. 

145. In calculating that part of the intensity which arises from the 
doublets, i t  will be convenient to divide the dielectric into concentric spherical 
shells having as centre the point at  which the intensity is required. The 
volume of the shell of radii r and r + d r  is $7~.16 dr, so that the number of 
doublets included in it will contain r2dr as a factor. The potential produced 

cos e 
by any doublet at  a point distant r from i t  is - , so that the intensity 

r a 

1 
will contain a factor - Thus the intensity arising 'fmm al1 the doublets in 

r3 ' 
1 

the shell of radii r, r + dr will depend on r through the factor - . Fdr 
f 

The importance of the different shells is accordingly the same, as regards 
comparative orders of magnitude, as that of the corresponding contributions 

to the integral . The value of this integral is log r -I- a conirtant, and this E 
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is infinite when r = O and when r = m. Thus the important contribiitions 
come from very srnall and very large values of r. I t  tan however be seen 
khat the contributions from large values of r neutralise one another, for the 
term cos 8 in the potentials of the different doublets will be just as often 
positive as negative. 

Hence i t  is necessary only to consider the contributions from shells for 
which r is very small. so that the whole field at  any point may be regarded 
as arising entirely froin the doublets in the immediate neighboiirhood of the 
point. The force will obviously Vary as we move in and out amongst the 
rnolecules, depending largely on the nearness and position of the nearest 
molecules. If, however, we average this force throughout a small volume, we 
shall obtain an average intensity of the field produced by the doublets, and 
this will depend only on the strength and nurnber of the doublets in and 
near to this element of volume. Obviously this average intensity near any 
point will be exactly proportional to the average strength of the doublets 
near the point, and this again will be exactly proportional to the strength of 
the inducing field by which the doublets are produced, so that a t  any point 
we may say that the average field of the doublets stands to the total field in 
a ratio which depends only on the structure of the medium at the point. 

146. Now suppose that our measurements are not sufficiently refined to 
enable us to take account of the rapid changes of intensity of the electric 
field which must occur within small distances of molecular order of magnitude. 
Let us suppose, as we legitimately may, that the forces which we measure 
are forces averaged through a distance which contains a great nun~ber of 
molecules. Then the force which we measure will consist of the sum of the 
average force produced by the doublets, and of the force produced by the 
external field. The field which we observe may accordingly be regarded as 
the superposition of two fields, or what amounts to the same thing, the 
observed intensity R may be regarded as the resultant of two intensities 
R,, R,, where 

R, is the average intensity arising from the neighbouring doublets, 

R* is the intensity due to the charges outside the dielectric, and to 
the distant doublets in the dielectric. 

These forces, as we have seen, must be proportional to one another, so 
that each must be proportional to the polarisation P. I t  follows that P is 
proportional to R, the ratio depending only on the structure of the medium 
a€ the point. If we take the relation to be 

then K is the induative capacity at  the point, and the relation between R 
and P is exactly the relation upon which our whole theory has been based. 
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147. The theory could accordingly be based on Mossotti's theory, instead 
of on Faraday's assumption, and from the hypothesis of molecular polarisa- 
tion we should be able to deduce al1 the results of the theory, by first 
deducing equation (73) from Mossotti's hypothesis, and then the required 
results from equation ('13) in the way in which they have been deduced in 
the present chapter. 

Thus the influence of the conducting moleculés produces physically the 
same result as if the properties of the medium were altered in the way 
suggested by Faraday, and mathematically the properties of the medium are 
in either case represented by the presence of the factor IK in equation (73). 

Relation between Imductive Cupacity a.nd Structure of Medium. 

148. The electrostatic unit of force was defined in such a way that the 
inductive capacity of air was taken as unity. I t  is now obvious that i t  would 
have been more scientific to have taken ether as standard medium, so that 
the inductive capacity of every medium would have been greater than unity. 
Unfortunately, the practice of referring al1 inductive capacities to air as 
standard has become too firmly established for this to be possible. The 
difference between the two standards is very slight, the inductive capacity 
of normal air in terins of ether being 1.000590. Thus the inductive capacity 
of a vacuum may be taken to be -99941 referred to air. 

So long as the molecules are a t  distances apart which are great compared 
with their linear dimensions, we may neglect the interaction of the charges 
induced on the different molecules, and treat their effects as additive. It 
follows that in a gas K - K,, where KO is the inductive capacity of free ether, 
ought to be proportional to the density of the gas. This law is found to be 
in exact agreement with experiment *. 

149. It is, however, possible to go further and calculate the actual value 
of the ratio of K- K, to the density. We have seen that this will be 
a constant for a given substance, so that we shall determine its value in the 
simplest case: we shall consider a thin slab of the dielectric placed in a 
parallel plate condenser, as described in 3 139. Let this slab be of thickness E, 

and let i t  coincide with the plane of yz. Let the dielectric contain n mule- 
cules per unit volume. 

The element dydz  will contain nédydz  molecules. If each of these is 
a doublet of strength p, the element dydz  will have a field which will be 
equivalent a t  al1 distant points to that of a single doublet of strength 
n p d y d z .  This is exactly the field which would be produced if the two 
faces of the slab were charged with electricity of surface density f np. 

* Boltzmann, Wiener Sitzungsber. 69, p. 812. 
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We can accordingly a t  once find the field produced by these doublets-it 
is the same as that of a parallel plate condenser, in which the plates are a t  
distance e apart and are charged to surface density f np. There is no 
intensity except between the plates, and here the intensity of the field is 
4mp.  

Thus if R is the total intensity outside the slab, that inside will be 
R - 47rnp. If K is the inductive capacity of the material of the slab, and 
K,, that of the free ether outside the slab, we have 

EOR = K ( R  - 47rnp), 

so that 
K - K ,  4 m p  -=- .............. K "...,......... (74)- 

It remains to determine the ratio ,u/R. The potential of a doublet is - while that of the field R may be taken to be -Ra + CL. Thus the total 
rJ 
potential of a single doublet and the external field is 

and this makes the surface r = a an equipotential if y= R. Thus the 
. as 

surfaces of the molecules will be equipotentials if we imagine the molecules 
to be spheres of radius a, and the centres of the doublets to coincide with 
the centres of the spheres, the strength of each doublet being Ra8. 

Putting p = RaS, equation (74) becomes* 

Now in unit volume of dielectric, the space occupied by the n. molecules 
4~ K-K,  

is - naS. Calling this q~an t i t~y  6, we have -- 
3 K - 38, or, silice our calcu- 

lations only hold on the hypothesis that B is small, 

If the lines of force went straight across from one plate of the condenser 

* Clausius (Mech. Wiirnzetheo~ie, 2, p. 94) has obtained the relation 

by considering the field inside a sphere of dieleotric. The value of K must of course be inde- 
pendent of the shape of the pieoe of the dielectric considered. The apparent discrepancy in  the 
two values of K obtained, is removed as soon as we reflect thet both proceed on the assumption 
that K - Ko is srnrtll, for the results agree as far a8 fir6t powers of X- Ko. Pagliani (Accad. dei 
Li~icei, 2, p. 48) finds that in point of fact the equation 

= 4rrnas 
a 

agrees better with experiment then the formula of Clausius. 
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to the other, the proportion of the length of each which mould be inside a 
conductor would, on the average, be B. Since there is no fa11 of a potential 
inside a conductor, the total fa11 of potential from one plate to the other 
would be only 1 - 8 times what it would be if the molecules were absent, 
and the ratio K/Ko would be 1/(1 - 8)  or, if 6 is small, 1 + 8. Since, 
however, the lines of force tend to run through conductors wherever possible, 
there is niore shortening of lines of force than is shewn by this simple 
calculation. Equation (75) shews that when the molecules are spherical the 
effect is three times that given by this simple calculation. For other shapes 
of molecules the multiplying factor might of course be different. 

Equation ('15) gives at  once a method of determining B for substances 
for which 8 is small, namely gases, but, owing to the unwarranted assumption 
that the molecules are spherical, the results will be true as regards order of 
magnitude only. If the dielectric is a gas a t  atmospheric pressure, the 
value of n is known, being roughly 2.75 x 10T8, and this enables us to calcu- 
late the value of a. 

K 150. The following table gives series of values of - for gases at  atmo- 
KO 

spheric pressure: 

K 
observed 

1 .O000724 

1-000264 
1.000264 

1.000543 

1 .O00566 

1'000590 
1 .O00586 

1'000594 

1 .O00690 
1 .O00694 

1 .O00946 
1 *O00984 

1 .O00994 
1'001158 

1 .O01312 
1 .O01458 

Gas 

Helinm ... 
Hydrogen ... 
Oxygen ... . . . 
Argon ... ... 
Air ... ... 
Nitrogen ... 
Carbon Monoxide 

Carbon Dioxide 

Nitrous Oxide ... 
Ethylene ... 

~utlio. 
rity * 

- 
3 

1 
2 

3 

3 

1 
2 

3 

1 
2 

1 
2 

1 
2 

1 
2 

1 

a calculated 
(Mossotti's 

Theory) 

.596x10-8 

-916x 10-8 

1-17 x 10-8 

1 . 1 8 ~  10-8 

1 1 9  x 10-8 

1'20 x 10-8 

1-26 x 10-8 

1 . 4 0 ~  10-8 

1.46 x 10-8 

1-60 x 10-6 

* Authorities:-1. Bolt.zmann, Wiener Sitzungsber. 69, p. 795. 
2. J. RlemenBiC, Wiener Sitzungaher. 91, p. 712. 

a calculated 
(Theory of 

Gases) t 

1.09 x 10-8 

1 . 2 0 ~  10-8 

1 .63~10-8 

1.68 x 10-8 

1 . 6 7 ~  10-8 

1 . 7 2 ~  10-8 

1 . 7 2 ~  10-8 

2.04 x 10-8 

2.11 x10-0 

2.30~10-8 

3. These values are calouiated from the refractive indices for Sodium Light. 
-t Jeans, Dynnmical Theory of Gases, p. 340. The value# here given have Leen recaloulated, 

using the value a=2.76 x 101@. 
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The last tmo columns give respectively the values of a calculated from 
equation (75), and the value of a given by the Theory of Gases. The two 
sets of values do not agree exactly-this could not be expected when we 
remember the magnitude of the errors introduced in treating the molecules 
as spherical. But what agreement there is supplies very significant evidence 
as to the truth of the theory of molecular polarisation. 

151. I t  still remains to explain what physical property of the molecule 
justifies us in treating its surface as a perfect conductor. It has already 
been explained that al1 matter has associated with it-or perhaps entirely 
composing it-a number of charged electric particles, or electrons. I t  is to 
the motion of these that the conduction of electricity is due. I n  a dielectric 
there is no conduction, so that each electron must remain pernlanently 
associated with the same molecule. There is, however, plenty of evidence - - 
that the electrons are not rigidly fixed to the molecules but are free to move 
within certain limits. The molecule may be regarded as consisting partially 
or wholly of a cluster of electrons, normally at rest in positions of equilibrium 
under the various attractions and repulsions present, but capable of vibrating 
about these positions. Under the influence of an external field of force, 
the electrons will move slightly from their equilibrium positions-we may 
imagine that a kind of tidal motion of electrons takes place in the molecule. 
Obviously, by the time that equilibhum is attained, the outer surface of the 
molecule miist be an equipotential. This, however, is exactly what is required 
for Mossotti's hypothesis. We may accordingly abandon the conception of 
conducting spheres, which was only required to make the surface of the 
molecule an equipotential, and may, without impairing the power of Mossotti's 
explanation, replace these conducting spheres by shells of electrons. If in 
some way we can further replace these shells by rings of electrons in rapid 
orbital motion, the modified hypothesis will be in very close agreement with 
modern beliefs as to the structure of matter. 

On this view, the quantity a tabulated in the sixth column of the table 
on p. 132, will measure the radius of the outermost shell of electrons. Even 
outside this outermost shell, however, there will be an appreciable field of - - 
force, so that when two molecules of a gas collide there will in general be a 
considerable distance between their outermost layers of electrons. Thus if 
the collisions of molecules in a gas are to be regarded as the collisions of 
elastic spheres, the radius of these spheres must be supposed to be con- 
siderably greater than a. Now it is the radius of these irnaginary elastic 
spheres which we calculate in the Kinetic Theory of Gases: there is therefore 
no difficulty in understanding the differences between the two sets of values 
for a given in the table of p. 132. 

I t  is known that molecules are not in general spherical in shape, but, as 
we shall see below, there is no difficulty in extending Mossotti's theory to 
cover the case of non-spherical molecules. 
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152. There are some dielectrics, generally of crystalline structure, in 
which Faraday's relation between polarisation and intensity is found not 
to be true. The polarisation in such dielectrics is not, in general, in the 
same direction as the intensity, and the angle between the polarisation and 
intensity and also the ratio of these quantities are found to depend on the 
direction of the field relatively to the axes of the crystal. We shall find that 
the conception of molecular action accounts for these peculiarities of crjstalline 
dielectrics. 

Let us consider an extreme case in which the spherical molecules of 
fig. 46 are replaced by a number of very elongated or neidle-shaped bodies. 
The lines of force will have their effective lengths shortened by an amount 
which depends on whether much or little of them falls within the material of 
the needle-shaped molecules, and, as in 5 149, there will be an equation of 
the form 

where 8 is the aggregate volume of the number of molecules which occur in 
a unit volume of the gas, and s is a numerical multiplier. But i t  is a t  once 
clear that the value of s will depend not only on the shape but also on the 
orientation of the molecules. Clearly the value of s will be greatest when 
the needles are placed so that their gieatest length lies in the direction of 

the lines of force, as in fig. 46 a, and will be least when the needles lie a t  
right angles to this position, as in fig. 46 b. Or to put the matter in another 
way, a piece of dielectric in which the molecules are needle-shaped and 
parallel will exhibit different values of K according as the field of force is 
parallel or a t  right angles to the lengths of the needles. 
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This extreme case illustrates the fundamental property of crystalline 
dielectrics, but i t  ought to be understood that in actixal substances the values 
of K do not differ so much for different directions as this extreme case might 
be supposed to suggest. For instance for quartz, one of the substances in 
which the difference is inost nîarked, Curie finds the extreme values of K to 
be 4.55 and 4-49, 

Before attempting to construct a mathematical theory of the behaviour 
of a crystalline dielectric we may examine the case of a dielectric having 
needle-shaped molecules placed parallel to one another, but so as to make 
any angle 8 with the direction of the lines of force, as in fig. 46 c. 

It is at  once clear that not only are the effective lengths of the lines of 
force shortened by the presence of the molecules, but also the directions of 
the lines of force are twisted. I t  follows that the polarisation, regarded as a 
vector as in $ 128, must in general have a direction different from that of the 
average intensity R of the field. 

To analyse such a case we shall, as in $146, regard the field near any 
point as the superposition of two fields: 

(i) the field which arises from the doublets on the neighbouring 
molecules, Say a field of components of intensity XI, Y,, 2,; 

(ii) the field caused by the doublets arising from the distant molecules 
and from the charges outside the dielectric, Say a field of components of 
intensity X,, Y,, 2,. 

Clearly in the case we are now considering, the intensities R,, & of 
these fields will not be in the same direction. 

The components of intensity of the whole field are given by 

X =  Xl+X2, etc. 

To discuss the first part of the field, let us regard the whole field as 
the superposition of three fields, having respectively components (X, O, O), 
(O, Y, O) and (0, 0, 2). If the molecules are spherical, or if, not being 
spherical, their orientations in space are distributed at  random, fhen clearly 
the field of components (X, O, O) will induce doubIets which will produce 
simply a field of components (K'X, O, O) where R' is a constant. But if the 
molecules are neither spherical in shape nor arranged at  random as regards 
their orientations in space, it will be necessary to assume that the induced 
doublets give rise to a field of components 
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On superposing the doublets induced by the three fields (X, O, O), 
(O, F, 0) and (0, 0, Z), we obtain 

X I =  li",,X + K', Y +  K',Z 

Y,=K',,X+K',Y+K',,Z ..................... (76). 
Zl = K i 8 X  + IC',, Y + K'& 1 

Thus we have relations of the form 

expressing the relations between polarisation and intensity. 

Tliese are the general equations for crystalline media. If the medium 
is non-crystalline, so that the phenornena exhibited by it are the same for al1 
directions in  space, then the two vectors, the intensity and the polarisation, 
must have the same direction and stand in a constant ratio to one another. 
In  this case we must have 

.Iia=K2,= m.. = O ,  

Km = Irv2 = Xa3 = K. 

In  the more general equations ('17), there are not nine, but only six, 
independent constants, for, as we shall afterwards prove (§ 1'761, we must 
have 

ICl,=Km, KB=Ka,  I i , , = l C l s  .................. (78). 
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EXAMPLES. 

1. A spherical condenser, radii a, b, has air in the space betmeen the spheres. The 
inner sphere receives a coat of paint of uniform thickness t and of a material of which 
the inductive capitcity is K. Find the change produced in the capacity of the condenser. 

2. A conductor has a charge a, and VI, V2 are the potentials of two equipotential 
surfaces completely surrounding i t  (VI 7 V,). The space between these two surfaces is 
now filled with a dielectric of inductive capacity K. Shew that the change in the 
energy of the system is 

3 e  ( Y1 - Va) (E- 1)lE. 

3. The surfaces of an air-condenser are concentric spheres. If half the spnce between 
the spheres be filled with solid dielectric of specific inductive capacity K, the diriding 
surface betmeen the solid and the air being a plane through the centre of the spheres, 
shew that the capacity will be the sarne fis though the mhole dielectric were of uniform 
specific inductive capacity & (1 f K). 

4. The radii of the inner and outer shells of two equal spherical condeusers, remote 
from each other and irnmersed in an infinite dielectric of inductive capacity K, are 
respectively a and b, and the inductive capacities of the dielectric inside the condensers 
are KI, Ka. Both surfaces of the first condenser are insulated and charged, the second 
being uncharged. The inner surface of the second condenser is now connected to earth, 
and the outer surface is connected to the outer surface of the first condenser by a wire 
of negligible cltpacity. Shew thtlt the loss of energy is 

wliere Q is the quantity of electricity which flows along the wire. 

5. The outer coating of a long cylindiical condenser is a thin shell of radius a, and 
the dielectric between the cylinders has inductive capacity on one side of a plane 
through the axis, and K' on the other aide. Shew that when the inner cylinder is 
connected to earth, and the nuter has a charge q yer unit length, the resultant force on 
the outer cylinder is 

492 (A'- K') 
ra (K+ Kt )  

per unit leiigth. 

6. A heterogeneous dielectric is formed of n concentric ~pherical layers of specific 
inductive capacitics KI ,  K2, ... K,, starting from the innermost dielectric, which forms a 
solid sphere; also the outermost dielectric extends to infinity. The radii of the spherical 
boundary surfaces are al, a,, ... a,-l respectively. Prove that the potential due to a 
quantity Q of electricity a t  the centre of the spheres a t  a point disbut  r from the centre 
in the dieleütrio K, is 
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7. A condenser is formed by two rectangular parallel coriductjng plates of breadth 
b and area A a t  distance d from each other. Also a parallel slab of a dielectric of thickness 
t and of the same area is between the plates. This slab is pulied along its length from 
between the plates, so that only a length x is between the platw. Prove that the electric 
force sucking the slab back to its original position is  

2*E2dbt' (d- t') 
{ A  (d- t')+xbt'}= ' 

where t l=t  (K- 1)/K, K is the specific inductive capacity of the slab, E is the charge, and 
the disturbances produced by the edges are neglected. 

8. Three closed surfaces 1, 2, 3 are equipotentials in an electric field. If the spnce 
between 1 and 2 is filled with a dielectric K, and that between 2 and 3 is filled with a 
dielectric K', shew that the capacity of a condenser having 1 and 3 for faces is C, given by 

where A, B are the cappacities of air-condensers having as faces the surfaces 1, 2 and 2 , 3  
respectively. 

9. The surface separating two dielectrjcs (Ki, K,) hns a n  actual charge u per unit 
area. The electric forces on the two sides of the boundary are f i ,  F2 a t  angles q, cz with 
the common normal. Shew how to determine F2, and prove that 

10. The space between two concentric spheres radii a, b which are kept a t  potentials 
A, B, is filled with a heterogeneous dielectric of which the inductive capacity varies as 
the nth power of the distance from their cornrnon centre. Shew that the potential a t  any 
point between the surfaces is 

Aan+l-Bbn+l a n + l b n + l  A - B  
-- an+l-bn+l ~ n + l  a n + l - & a + l '  

11. A condenser is fornied of two parallel plates, distant h apart, one of which iu 
at  zero potential. The space between the plates is filled with a dielectric whose inductive 
capacity increases uniformly from one plate to the other. Shew that the capacity per unit 
area is 

where Kl and Ka are the values of the inductive capacity a t  the surfaces of the plate. The 
inequalities of distribution a t  the edges of the plates are neglected. 

12. A spherical coilductor of radius a is surrounded by a concentric spherical 
coi~ducting shell whose interna1 radius is b, and the intemening space is occupied by a 

c + r  dielectric whose specific inductive capacity a t  a distance r from the centre is -. If the 

inner sphere is insulated and has a charge E, the shell being connected with the earth, 
E b(c+r) prove that the potential in the dielectric a t  a distance r from the centre is - log - 
c r(c+Ei)' 
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13. A aphericd condiictor of radius a is surroiinded hy a concentric spherical shell of 
radius b, and the spaoe hetween them is filled with a dielectric of which the inductive 
capacity a t  distance r from the centre is pe-~Pp-3 where p=r/a. Prove that the capacity 
of the condenser so forrned is 

'? 
2pa (eo2-e)-l. 

Y 

14. If the specific inductive capacity varies as e-2, where r is the distailce from a 
fixed point in the medium, verify that a solution of the differential equation satisfied by 
the potential is 

cos 6, 

and hence determine the potential a t  any point of a sphere, whose inductive capacity is 
the above function of the distance from the centre, when placed in a, uniform field of 
force. 

15. Shew that the capacity of a condenser consisting of the condncting spheres r=a, 
r=b, and a heterogeneoue dielectric of inductive capacity K=f(B, $), is 

A (O,+) sin B do dm. 
4 r  ( b  .- a )  

16. In an imagjnary crystnlline medium the molecules are discs placed so aa to be 
al1 pardlel ta the plane of xy. Shew that the components of intensity and polarisation 
are connected by equations of the form 
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CHAPTER VI 

THE STASE OF THE MEDIUM IN THE ELECTROSTATIC FIELD 

153. THE whole electrostatic theory has so far been based simply upon 
Coulomb's Law of the inverse square of the distance. We have supposed 
that one charge of electricity exerts certain forces upon a second distant 
charge, but nothing has been said as to the mechanism by which this action 
takes place. I n  handljng this question there are two possibilities open. We 
may either assume "action a t  a distance" as an ultimate explanation-i.e. 
simply assert that two bodies nct on one another across the intervening 
space, without attempting to go any further towards an explanation of how 
such action is brought abou t -o r  we may tentatively assume that some 
medium connects the one body with the other, and examine whether i t  is 
possible to ascribe properties to this medium, such that the observed action 
will be transmitted by the medium. Faraday, in Company with almost al1 
other great natural philosophers, definitely refused to admit "action at 
a distance" as an ultimate explanation of electric phenomena, finding such 
action unthinkable unless transmitted by an intervening medium. 

154. It is worth enquiring whether there is any valid d priori argument which 
compels us to  resort to action through a medium. Some writers have attenipted to use 
the phenomenon of Inductive Capacity to prove that the energy of a condenser must 
reside in the space between the charged plates, rather than on the plates themselves-for, 
they say, change the medium between the plates, keeping the plates in the same condition, 
and the energy is changed. A study of Faraday's molecular explanation of the action in 
a dielectric will shew that this argument proves nothing as to  the real question a t  issue. 
It goes so far as to prove that when there are molecules placed between electric charges, 
these molecules themselves acquire charges, and so may he said to be new stores of energy, 
but i t  leaves untouched the question of whether the energy resides in the chargea on the 
molecules or in the ether between them. 

Again, the phenomenon of induction is sometimes qnoted against action a t  a distance- 
a small conductor placed a t  a point P in an electrostatic field shews phenomena which 
depend on the electric intensity a t  P. This is taken to shew that the state of the ether 
a t  the point P before the introduction of the canductor was in sorne way different from 
what it  would have been if there had not heeii electric charges in the neighbourhood. Eiit 
al1 that is proved is that the state of the point P aftw the introduction of the conductor 
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will be different from what it would have been if there had not been electric charges in 
the neighbourhood, and this can be explained eqimlly well either by action at  a distance or 
action through a medium. The new conductor is a collection of positive and negative 
charges : the phenomena under qirestion are produced by these charges being acted upon 
by the other charges in the field, but whether this action is action a t  a distance or action 
throiigh a medium cannot be told. 

Indeed, it will be seen that, viewed in thelight of the electron-theory and of Faraday's 
theory of dielectric polarisation, electrical aotion stands on just the same level as 
gravitational action. In  each case the system of forces to be explained may be regarded 
as a system of forces between indestructible centres, whether of electricity or of matter, 
and the law of force is the law of the inverse square, independently of the s h t e  of the 
space between the centres. And although scientists may be said to be agreed that 
gravitational action, as well as  electrical action, is in point of fact propagated through 
a medium, yet a consideration of the case of gravitational forces will shew that there is 
no obvious dpriori argument which can be used to disprove action a t  a distance. 

Failing an d priori argument, an attempt may be made to disprove action a t  a distance, 
or rather to make it  improbable, by an appeal to experience. I t  may be argued that as  
al1 the forces of which we have experience in every-day life are forces between substances 
in contact, therefore it  follows by analogy that forces of gravitation, electricity and 
magnetism, must ultimately reduce to forces between substances in contact-i.e. must be 
transmitted through a medium. Upon analysis, however, i t  will be seen that this argument 
divides al1 forces into two clasues : 

(a) Forces of gravitation, electricity and magnetism, which appear to  act a t  a 
distance. 

@) Forces of pressure and impact bctween solid bodies, hydrostatic pressure, etc. 
which appea,r to act throngh a medium. 

The argument is now seen to be that because class (fi) appear to act throiigh a medium, 
therefore class (a )  miist in reality act through a medium. The argument could, with equal 
Iogical force, be used in the exactly opposite direction : indeed it has been so used by the 
followers of Boscovitch. The Newtonim discovery of gravitation, and of apparent action 
a t  a distance, so occiipied the attention of scientists a t  the time of Boscovitch that it 
seemed natural to regard action at  a distance as the ultimate basis of force, and to 
try to interpret action through a medium in terms of action a t  a distance. The reversion 
from this view came, as has been said, with Faraday. 

Hertz's subsequent discovery of the finite velocity of propagation of electric action, 
which had previously been predicted by Maxwell's theory, came to the support of Faraday's 
view. To see exactly what is meant by this finite velocity of propagation, let us imagine 
that we place two unchargéd conductoia A, B a t  a distance T from one another. By 
charging A, and so performing work a t  A,  we c m  induce charges on conductor B, and 
when this has been done, there will be an attraction between conductors A and B. We 
can suppose that conductor A is held fast, and that conductor B is allowed to move 
towards A, work being performed by the attraction h m  conductor A. We are now 
recovering from B work whiich was originally performed at  A. The experiments of Hertz 
shew that a finite time is required before any of the work spent a t  A becomes available 
a t  B. A natural explanation is to suppose that work spent on A assumes the form of 
energy which spreads itself out through the whole of space, and that the finite tirne 
obscrved before energy becomes available a t  B is the time reqoired for the first part of 
the advancing energy to travel from A to B. This explanation involves regarding energy 
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as a definite physical entity, capable of being localised in space. It ought to be noticed 
that our senses give us no knowledge of energy as a physical entity : we experience force, 
not energy. And the fact that energy appears to be propagated through space with finite 
velocity does not justify us in concluding that it  hm a real physiml existence, for, as we 
shall see, the potential appears to be propagated in the same way, and the potential can 
only be regarded as a convenient mathematical fiction. 

155. We accordingly make the tentative hypothesis that al1 electric 
action can be referred to the action of an intervening medium, and we have - 
to examine what properties must be ascribed to the medium. If it is found 
that contradictory properties would have to be ascribed t o  the medium, then 
the hypothesis of action through an intervening medium will have to be 
abandoned. If the properties are found to be consistent, then the hypotheses 
of action at  a distance and action through a medium are still both in the 
field, but the latter becomes more or less Probable just in proportion aa the 
properties of the hypothet&al medium seem probable or improbable. 

Later, we shall have to  conduct a similar enquiry with respect to the system of forces 
which two eurrents of electricity are found to exert on one another. It will then be fouud 
that the law of force required for action a t  a distance is an extremely improbable law, 
while the properties of a medium required to explain the action appear to be very natural, 
and therefore, in our sense, probable. 

156. Since electric action takes place even across the most complete 
vacuum obtainable, we conclude that if this action is transmitted by a 
medium, this medium must be the ether. Assuming that the action is 
transmitted by the ether, we must suppose that a t  any point in the electro- 
static field there will be an action and reaction between the two parts of the 
ether a t  opposite sides of the point. The ether, in other words, is in a state 
of stress at  every point in the electrostatic field. Before discussing the 
particular system of stresses appropriate to an electrostatic field, we shall 
investigate the general theory of stresses in a medium a t  rest. 

GENERAL TREORP OF STRESSES IN A MEDIUM AT REST. 

157. Let us take a small area dS in the medium perpendicular to the 
axis of x. Let us speak of that part of the mediur~ near to dS for which x 

is greater than its value over dS as x+, and that for which x is less than this 
value as x-, so that the area dS separates the two regions a+ and x-. 
Those parts of the medium by which these two regions are occupied exert 
forces upon one another across dS, and this system of forces is spoken of as 
the stress across dS. Obviously this stress will consist of an action and 
reaction, the tmo being equal and opposite. Also i t  is clear that the amount 
of this stress will be proportional to dS. 

Let us assume that the force exerted by z+ on x- has components 

P,dS, .P,,dS, P,,dS. 
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then the force exerted by x- on x+ will have components 
- e n d s ,  -l&dS, - G d X .  

The quantities Pm, Pi', P,, are spoken of as the components of stress 
perpendicular to Ox. Similarly there will be components of stress P,,, P,,, 
P,, perpendicular to Oy, and components of stress P,, EZ,,  P, perpendicular 
to Oz. 

Let us next take a small parallelepiped in the 
medium, bounded by planes 

~ = t ,  x = t + d x ;  

The stress acting upon the parallelepiped [/ 
across the face of area d y d z  in the plane x= ,!j O x 

Fm. 47. 
will have components 

while the stress acting upon the parallelepiped across the opposite face will 
have componentb 

(ez)n=#+dzdydz, (P,y)n=t+&Jyd., (P,),-t+d,dydz. 
Compounding these two stresaes, we find that the resultant of the stresses 

acting upon the parallelepiped acfoss the pair of faces parallel to the plane 
of yz, has components 

Similarly from the other pairs of faces, we get resultant forces of com- 
ponents 

dxdydz ,  % &ay&, 3 d z d y h ,  
ay a~ 

and 

For generality, let us suppose that; in addition to the action of these 
stresses the medium is acted upon by forces acting from a distance, of 
amount .El, H, Z per unit volume. The. components of the forces acting on 
the parallelepiped of volume d x d y d z  will be 

E dxdydz ,  H d x d y d z ,  Z d x d y d z .  
Compounding al1 the forces which have been obtained, we obtain as equations 
of equilibrium 

apm a% ap, a+- +--+-=O ........................ a~ i3y 3.5 (79) 
and two similar equations. 
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158. These three equations ensure that the medium shall have no 
motion of translation, but for equilibrium i t  is also necessary that there 
should be no rotation. To a first approximation, the stress across any face 
may be supposed to act a t  the centre of the face, and the force E, H, Z at  
the centre of the parallelepiped. Taking moments about a line through the 
centre parallel to the axis of Ox, we obtain as the equation of equilibrium 

This and the two similar equations obtained by taking moments about 
lines parallel to Oy, Oz ensure that there shall be no rotation of the medium. 
Thus the necessary and sufficient condition for the equilibrium of the medium 
is expressed by three equations of the form of (79), and three equations of the 
form of (80). 

159. Suppose next that we take a small area dS anywhere in the 
medium. Let the direction cosines of the normal 
to dS be f 1, + na, n. Let the parts of the 
medium close to d S  and on the two sides of i t  be 
spoken of as S+ and 8-, these being named so 
that a line drawn from dS with direction cosines 
+ Z, + m, + n will be drawn into S+, and one 
with direction cosines - 1, - m, - n will be drawn 
into S-. Let the force exerted by S+ on S- 
across the area dS have components 

PdS, Gds, HdS, b FIO. 48. y 

then the force exerted by 8- on S+ will have 
components 

-Pd& -QdS, -HdS. 

The quantities Y, G, H are spoken of as the components of stress across 
a plane of direction cosines 1, m, n. 

To find the values of F, G, H, let us draw a small tetrahedron having 
three faces parallel to the coordinate planes and a fourth having direction 
cosines 1, m, n. If dS is the area of the last face, the areas of the other 
faces are ZdS, mdS, fzdS and the volume of the parallelepiped is 
4 d~ (dg)$. Resolving parallel to Ox, we have, since the medium inside 
this tetrahedron is in equilibrium, 

giving, since dS is supposed vanishingly srnali, 

.......................... P= ZP, + mP,  + nl& .(81) 

and there are two similar equations to determine G and B. 
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160. Assuming that equation (80) and the two similar equations are 
satisfied, the normal conlponent of stress across the plane of which the 
direction cosines are 1, m, n is 

The quadric 

is called the stress-quadric. If r is the length of its radius vector drawn in 
the direction 1, m, TI, we have 

It is now clear that the normal stress across any plane E, m, n is measured 
by the reciprocal of the square of the radius vector of which the direction 
cosines are 1, m, n. Moreover the direction of the stress across any plane 
1, m, TI is that of the normal to the stresu-quadric at  the extremity of this 
radius vector. For r being the length of this radius vector, the coordinates 
of ihs extremity will be ri, rm, m. The direction cosines of the normal a t  
this point are in the ratio 

rlP,+rmPw+rnP,: rlP,,+rmP,,+rnP,, : r l ~ z + r m P , , + r n &  

or P: Q : H, which proves the result. 

The stress-quadric has three principal axes, and the directions of these 
are spoken of as the axes of the stress. Thus the stress at  any point has 
three axes, and these are always a t  right angles to one another. I f  a small 
area be taken ~erpendicular to a stress axis a t  any point, the stress across 
this area will be normal to the area. If the amounts of these atresses are 
e, e, $, then the equation of the stress-quadric referred to its principal 
ixes will be 

E$+Zq"+p=l .  

Clearly a positive principal stress is a simple tension, and a negative 
principal stress is a simple pressure. 

Bs simple illustrations of this theory, i t  may be noticed that 

(i) For a simple hydrostatic pressure P, the stress-quadrio becomes an imaginary 
sphere 

P (p+q2+p)= - 1. 
The pressure is the same in aii directions, and the pressure across any plane is a t  right 
angles to the plane (for the tangent plane to a sphere is a t  right angles to the radius 
vector). 

(ii) For a simple pull, as in a rope, the stress-quadrio degenerates into two parallel 
planes 

Pi#= 1. 

J.  1 O 

IRIS - LILLIAD - Université Lille 1 



146 The State of the Medium in the Blectrostatic ic'ield [ C H .  VI 

161. If an infinitesimal charged particle is introduced into the electric 
field a t  any point, the phenomena exhibited by i t  must, on the present view 
of electric.action, depend solely on the state of stress a t  the point. The 
phenomena must therefore be deducible from a knowledge of the stress- 
quadric at  the point. The only phenornenon observed is a mechanical force 
tending to drag the particle in a certain direction-namely, in the direction 
of the line of force through the point. Thus from inspection of the stress- 
quadric, i t  must be possible to single out this one direction. We conclude 
that the stress-quadric must be a surface of revolution, having this direction 
for its axis. The equation of the stress-quadric at  any point, referred to 
its principal axes, must accordingly be 

ep+e(Tz+p)=l ............,.............. @3), 

where the axia of f coincides with the line of force thmugh the point. Thus 
the system of stresses must consist of a tension E: along the lines of force, 
and a tension perpendicular to the lines of force-and if either of the 
quantities I: or is found to be negative, the tension must be interpreted 
as a pressure. 

Since the electrical phenomena at any point depend only on the stress- 
quadric, i t  follows that R must be deducible from a knowledge of e and e. 
Moreover, the only phenomena known are those which depend on the 
magnitude of R, so that i t  is reasonable to suppose that the only quantity 
which can be deduced from a knowledge of 1: and is the quantity R- 
in other words, that I: and E are functions of R only. We shall for the 
present assume this as a provisional hypothesis, to be rejected if it is found 
to be incapable of explaining the facts. 

162. The expression of 8 as a function of R can be obtained at  once 
by considering the forces acting on a charged conductor. Any element dS 

R" of surface experiences a force - dS urging i t  normally away frorr the con- 
87r 

ductor. On the present view of the origin of the forces in the electric field, 
we must interpret this force as the resultant of the ether-stresses on its two 
sides. Thus, resolving normally to the conductor, we must have 

where (aB, (e), denote the values of 8 when the intensity is R and O 
respectivelp. Inside the conductor there is no intensity, so that the 
stress-quadrics become spheres, for there is nothing to differentiate one 
direction from another. Any value which (e), may have accordingly arises 
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simply from a hydrostatic pressure or tension throughout the medium, and 
this cannot influence the forces on conductors. Leaving any such hydrostatic 
pressure out of account, we may take (Q, = 0, and so obtain (elB in the 
form 

R2 I+eT ................................. (84) .  

163. We can most easily arrive at  the function of R which must be 
taken to express the value of e, by considering a special case. 

Consider a spherical condenser formed of spheres of radii a, b. If this 
condenser is cut into two equal halves by a plane through its centre, the 
two halves will repel one another. This action must now be ascribed to the 
stresses in the medium across the plane of section. Since the lines of force 
are radial these stresses are perpendicular to the lines of force, and we see 
a t  once that the stress perpendicular to the lines of force is a pressure. To 
calculate the function of R which expresses this pressure, we may suppose 
b - a  equal to some very small quantity c, so that R may be regarded as 
constant along the length of a line of force. The area over which this 
pressure acts is r (b2 - a2), and since the pressure per unit area in the 
medium perpendicular to a line of force is - e, the total repulsion 
between the two halves of the condenser will be - Er(b2 - a2). 

The whole force on either half of the condenser is however a force 2ru2 
per unit area over each hemisphere, normal to its surface. The resultant of 
al1 the forces acting on the inner hemisphere is rd x 2ra3, or putting 
2mPa = E, so that E is the charge on either hemisphere, this force is ,?P,k2a2. 
Similarly, the force on the hemisphere of radius b is Ea/2b2 Thus the re- 

sultant repulsion on the complete half of the condenser is 4EZ - - -- . Since 
(:a 2 

this haa been seen to be also equal to -ET (ba - a2), we have 

on taking a = b in the limit. 

Thus in order that the observed actions may be accounted for, i t  is 
necessary that we have 

Moreover, if these stresses exist, they will account for al1 the observed 
mechanical action on conductors, for the stresses result in a mechanical force 
27rd per unit area on the surface of every conductor. 

164. I t  remains to examine whether these stresses are such as c m  be 
transmitted by an ether at  rest. 

10-3 
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As a preliminary we must find the values of the stress-components P,,, 
P,, ... referred to fixed axes Ox, Oy, Oz. 

The stress-quadric a t  any point in the ether, referred to its principal axes, 
is seen on comparison with equation (83) to be 

Here the axis of 5 is in the direction of the line of force at  the point. 
Let the direction-cosines of this direction be 11, n%, a. Then on transforming 
to axes Ox, Oy, Or we may replace 5 by 1,s + m,y + n,z. 

Equation (85) may be replaced by 

and on transforming axes P + q2 + transforms into d + ya + zZ. Thus the 
transforrned equation of the stress-quadric is 

Corriparing with equation (82), we obtain 

and similar values for the remaining components of stress. 

Or again, since X = l,R, Y = %R, Z = lz,R, 
these equations may be expressed in the form 

) 

I n  this system of stress-components, the relations P,, = P,, are satisfied, 
as of course they must be since the system of stresses has been clerived by 
assuming the existence of a stress-quadric. Thus the stresses do not set up 
rotations in the ether (cf. equation (80)). 

In  order that there may be also no tendency to translation, the stress- 
components must satisfy equations of the type 

expressing that no forces beyond these stresses are required to keep the 
ether at  rest (cf. equation (79)). 
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On substituting the values of the stress-components. we have 

we find at  once that 

shewing that equation (88) is satisfied. 

165. Thus, to recapitulate, we have found that a system of stresses 
consisting of 

Ra 
(i) a tension - per unit area in the direction of the lines of force, 

8 7 ~  

Ra 
(ii) a pressure - per unit area perpendicular to the lines of force, 8 7  

r .  

is one which can be transmitted by the medium, in that i t  does not tend to 
set up motions in the ether, and is one which will explain the observed 
forces in the electrostatic field. Moreover i t  is the only system of stresses 
capable of doing this, which is such that the stress a t  a point depends only 
on the electric intensity at  that point. 

Examples of Stress. 

166. Assuming this system of stressés to exist, it is of value to try to 
picture the actual stresses in the field in a few simple cases. 

Consider first the field surrounding a point charge. The tubes of force 
are cones. Let us consider the equilibrium of the ether enclosed by a 
frustum of one of these cones which is bounded by two ends p, p. If 
CO,, w, are the areas of these ends, we find that there are tensions of 
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RpZop Rq2mq 
amounts -- - . Since Rpop = Ra wp, the former is the greater. 

87~ ' 87~ 
so that the forces on the two ends have as I / 

resultant a force tending to move the ether 
inwards towards the charge. This tendency 
is of course balanced by the pressures acting 
on the curved surface, each of which hns a 
component tending to press the ether inside 
the frustum away from the charge. 

167. A more complex example is afforded ' PIQ. 49. 

by two equal point charges, of which the lines of force are shewn in 
fig. 50. 

The lines of force on either charge fa11 thickest on the side furthest 
removed from the other charge, so that their resultant action on the charges 
amounts to a traction on the surface of each tending to drag it away from 
the other, and this traction appears to us as a repulsion between the bodies. 

We can examine the matter in a different way by considering the action 
and reaction across the two sides of the plane which bisects the line joining 
the two charges. No lines of force cross this plane, which is accordingly 
made up entirely of the side walls of tubes of force. Thus there is a pressure 
Ra - per unit area acting across this plane a t  every point. The resultant of 
87r 
al1 these pressures, after transmission by the ether from the plane to the 
charges iminersed in the ether, appears as a force of repulsion exerted by 
the charges on one another. 
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168. In  setting up the system of stresses in a medium originally un- 
stressed, work must be done, analogous to the work done in compressing 
a gas. This work must represent the energy of the stressed medium, and 
this in turn must represent the energy of the electrostatic field. Clearly, 
from the form of the stresses, the energy per unit volume of the medium 
at  any point must be a function of R only. To determine the form of this 
function, we may examine the simple case of a parallel plate condenser, 

R" 
and we find at  once that the function must be - 

S r '  

We have now to examine whether the energy of any electrostatic field 
R2 

c m  be regarded as made up of a contribution of amount -per unit volume 
8~ 

from every part of the field. 

In fig. 51, let PQ be a tube of force of strength e, passing from P at  
potential 5 to Q at  potential &. The ether inside this tube of force 

R2 
being supposed to possess energy - per unit volume, 

8 rr 1 
the total energy enclosed by the tube will be 

- 0 as, 
where w is the cross section at  any point, and the 
integration is along the tube. Since Rw = 47e, 
this expression , 

FIU. 61. 

= + e ( V , - 5 ) .  

This, however, is exactly the contribution made by the charges & e a t  
P, Q to the expression 4 ZeF. Thus on summing over al1 tubes of force, we 
find that the total energy of the field + X e 7  may be obtained exactly, by 

Ra 
,assigning energy to the ether at the rate of - per unit volume. 

8x 

Energy in a Dielectric. 

169. By imagining the parallel plate condenser of 5 168 filled with 
dielectric of inductive capacity E, and calculating the energy when charged, 

KR= we find that the energy, if spread through the dielectric, must be -- 
87i- 

per unit volume, 
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Let us now examine whether the total energy of any field can be regarded 
as arising from a contribution of this amount per unit volume. The energy 
contained in a single tube of force, with the notation already used, will be 

Q KR2 

or, since - KR = P, where P is the polarisation, this energy 
47T 

=$e(Yp-Vg) ,  
so that the total energy is 3 LeV, as before. Thus a distribution of energy of 

KR2 
amount - per unit volume will account for the energy of any field. 

87r 

Crystallirte dielectrics. 

170. We have seen (FJ 152) that in a cr~stalline dielectric, the com- 
ponents of polarisation and of electric intensity will be connected by equations 
of the form 

47rf = K,,X + KaY + Kaz 
.................. 4n-g- K,,X + K,,Y+ K& (89). 

4 ~ h  = K,,X + K=Y + K,Z 

The energy of any distribution of electricity, no matter what the dielectric 
may be, will be 4 CET. If x, are the potentials at  the two ends of 
a unit tube, the part of this sum which is contributed by the charges at  the 
ends of this tube will be & (K - K). If ô/& denote differentiation along the 

tube, this may be written - 3 $ 1: po ds, where P is the 

polarisation, and o the cross section of the tube. Thus the energy may be 
av 

supposed to be distributed a t  the rate of - 4 - P per unit volume. If e is the 
as 

angle between the direction of the polarisation and that of the electric 
av 

intensity, we have - - = R cos E, so that the energy per unit volume 
as 

I n  a slight increase to the electric charges, the change in the energy of 
the system is, by 5 109, equal to ZV8h', so that the change in  the energy per 
unit volume of the medium is 

8 W = Xsf  + Y69 + Z6h. 
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From formulae (89) and (go), we must have 

W = g ( f X + g Y + h Z )  
1 

= - {KllXa +(Ki, + Kzl) XY+ . ..), 
87r 

nom which 

We must also have 

Comparing these expressions, we see that we inust have 

Kla = Ksi2 KIS = KSI, KB = 

The energy per unit volume is now 

171. Maxwell attempted to construct a picture of the phenornena 
occurring in the electric field by means of his conception of "electric dis- 
placement." Electnc intensity, according to Maxwell, acting in any medium- 
whether this medium be a conductor, an insulator, or fkee ether-produces 
a motion of electricity through the medium. I t  is clear that Maxwell's 
conception of electricity, as here used, must be wider than that which we 
have up to the present been using, for electricity, as we have so far under- 
stood it, is incapable of moving through insulators or free ether. Maxwell's 
motion of electricity in conductors is that with which we are already familiar. 
As me have seen, the motion will continue so long as the electric intensity 
continues to exist. According to Maxwell, there is also a motion in an 
insulator or in free ether, but with the difference that the electricity cannot 
travel indefinitely through these media, but is simply displaced a small 
distance within the medium in the direction of the electric intensity, the 
extent of the displacement in isotropic media being exactly proportional 
t o  the intensity, and in the same direction. 

The conception will perhaps be understood more clearly on comparing a conductor to  
a liquid and an insulator to an elastic solid. A small particle immersed in a liquid will 
continue to move through the liquid so long as there is a force acting ou it, but a particle 
imrneraed iu an elastic solid will be merely "displaced" by a force acting on it. The 
amount of this displacement will be proportional to the force acting, and when the force 
is removed, the particle will return to i ts origiual positicii. 
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Thus a t  nny point in any medium the displacement has magnitude and 
direction. The displacement, then, is a vector, and its component in any 
direction rnay be measured by the total quantity of electricity per unit area 
which has crossed a small area perpendicular to this direction, the quantity 
being memired from a time at  which no electric intensity was acting. 

172. Suppose, now, that an electric field is gradually brought into 
existence, the field at  any instant being exactly similar to the final field 
except that the intensity a t  each point is less than the final intensity in 
some definite ratio n. Let the displacement be c times the intensity, so 
that when the intensity a t  any point is K R ,  the displacement is cnR. The 
direction of 'this displacement is along the lines of force, so that the 
electricity may be regarded as moving through the tubes of force : the lines 
of force become identical now with the current-lines of a stream, to which 
they have already been compared. 

Let us consider a small element of volume cut off by two adjacent 
equipotentials and a tube of force. Let the cross section of the tube of 
force be o ,  and the normal distance between the equipotentials where they 
meet the tube of force be ds, so that the element under 
consideration is of volume w ds. On increasing the intensity 
from UR to ( n  + dn)  R, there is an increase of displacement 
from caR to c (n  + dn)  R, and therefore an additional dis- - 
placement of electricity of amount cRdn per unit area. 

Thus of the electricity originally inside the small element 
of volume, a quantity c R o d n  flows out across one of the 

across the other. Let v, be the potentials of these 

l l 
bounding equipotentials, whilst an equal quantity flows in 

63. 

surfaces, then the whole work done in displacing the electricity originally 
inside the element of volume ods, is exactly the work of tramferring a 
quantity cRdn of electricity from potential to potential K. I t  is 
therefore cRw (x- q) ddn and, since Ta - E = nRds, this may be written as 
c R ~ o d s ~ d n .  Thus as the intensity is increased from O to R, the total work 
spent in displacing the electricity in the element of volume oda 

This work, on Maxwell's theory, is simply the energy stored up in the 
R" 

element of volume ods of the medium, and is therefore equal to -- ods. 
87r 

1 
Thus c must be taken equal to -, and the displacement at  any point is 

4Tr 
measured by 

R 
Ga 
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If the element of volume is taken in a dielectric of inductive capacity K, 
KB9 K 

the energy is -, so that c = - , and the displacement is 
87r 47r 

173. It is now evident that Maxwell's "displacement" is identical in 
magnitude and direction with Faraday's "polarisation" introduced in 
Chap. V. 

Denoting either quantity by P ,  we had the relation 

II P 
cos E dS  = E . .. .. . . . . . . . . . . . . . . . . . . . . . . . . .(93), 

expressing that the normal component of P integrated over any closed 
surface is equal to the total charge inside. On Maxwell's interpretation of 

the quantity P, the surface integral P cos E d S  simply measures the total II 
quantity of electricity which has crossed the surface from inside to outside. 
Thus equation (93) expresses that the total outward displacement across any 
closed surface is equ.al to the total charge inside. 

I t  follows that if a new conductor with a charge e is introduced a t  any 
point in space, then a quantity of electricity equal to e flows outwards across 
every surface surrounding the point. I n  other, words, the total quantity of 
electricity inside the surface remains unaltered. This total quantity consists 
of two kinds of electricity-(i) the kind of electricity which appears as a 
charge on an electrified body, and (ii) the kind which Maxwell imagines to 
occupy the whole of space, and to undergo displacement under the action of 
electric forces. On introducing a new positively charged conductor into any 
space, the total amount of electricity of the first kind inside the space is 
increased, but that of the second kind experiences an exactly equal decrease, 
so that the total of the two kinds is left unaltered. 

174. This result a t  once suggests the analogy between electricity and 
an incompressible fluid. We can picture the motion of electric charges 
through free ether as causing a displacement of the electricity in the ether, 
in just the same way as the motion of solid bodies through an incompressible 
liquid would cause a displacement of the liquid. 
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CHAPTER VI1 

GENERAL ANALYTICAL THEOREMS 

175. A THEOREM, first given by Green, and commonly called after him, 
enables us to express an integral taken over the surfaces of a nuinber of 
bodies as an integral taken through the space between them. This theorem 
naturally has many applications to Electrostatic Theory. I t  supplies a means 
of handling analytically the problems which Faraday treated geometrically 
with the help of his conception of tubes of force. 

176. THEOREM. If u, v, w are conliwous fmctions of the Cartesian 
coordinates LE, y, z, t l w  

~ ~ h + m ~ + n w ) d ~ = -  Ill(: + g + $) dxdydz ...... (94). 

Here Z denotes that the surface integrals are summed over any number of 
closed surfaces, which may include as special cases either 

(i) one of finite size which encloses al1 the others, or 

(ii) an imaginary sphere of infinite radius, 

and 1, m, n are the direction-cosines of the normal drawn in every case from 
the element dS into the space between the surfaces. The volume integral is 
taken throughout the space between the surfaces. 

Consider first the value of - dxdydz. Take any small prism with its II " 
nxis parallel to that of x, and of cross section dydz. Let i t  meet the surfaces 
at  P, &, R, S, T, U, ... (fig. 53), cutting off areas dSp, dSQ, dSBj .... 

The contribution of this prism tol[gdmlydz is dydz/; dx, where the 

integral is taken over those parts of the prism which are between the surfaces. 
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where %, uq, u~,... are the values of u a t  P, Q, R ,.... Also, since the pro- 
jection of each of the areas dSp, dSQ,. .. on the plane of yz is dydz, we have 

d y d ~ = l ~ d S ~ = - Z ~ d S ~ = l , d S ~ =  ..., 
where Z,, Z Q ,  Z R  ,... are the values of 2 at  Pl &, R ,.... The signs in front of 
Z,, l,, Z R ,  ... are alternately positive and negative, because, as we proceed 
along PQR.. ., the normal drawn into the space between the surfaces makes 
angles which are alternately acute and obtuse with the positive axia of E. 

Thus 

dydz - d x =  dydz(-u,+uQ-uR+ ...) 18 
- -........... =- lpu,dSp - Z,u,dS, l,u,dS, .(95), 

and on adding the similar equations obtained for al1 the prisms we obtain 

the terms on the right-hand sides of equations of the type (95) cornbining so 
as exactly to give the term on the right-hand side of (96). 

We can treat the functions v and w similarly, and so obtain altogether 

+ f + 2) dxdydz = - lu + mu + nw) dSJ .JI< 
proving the theorem. 

177. If y v, w are the three components of any vector F, then the- 
expression 

is denoted, for reasons which will becomedear later, by div F. If N is t he  
component of the vector in the direction of the normal (1, m, n) to dS, then 

. .  , N =  lu +mu+ nw. 
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Thus Green's Theorem assumes the form 

A vector F which is such that div F = O at  every point within a certain 
region is said to be "solenoidal" within that region. If F is solenoidal 
within any region, Green's Theorem shews that 

I J x d s  = O, 

where the integral is taken over any closed surface inside the region within 
which F is solenoidal. Two instances of a solenoidal vector have so far 
occurred in this book-the electric intensity in free space, and the polarisa- 
tion in an uncharged dielectric. 

178. Integration through space extemal to clased surfaces. Let the 
outer surface be a sphere a t  infinity, Say a sphere of radius r, where r is 
to be made infinite in the limit. The value of 

taken over this sphere will vanish if u, V, and w vanish more rapidly a t  
1 infinity than - Thus, if this condition is satisfied, we have that 
r2 ' 

where the volume integration is taken through al1 space external to certain 
closed surfaces, and the surface integration is taken over these surfaces, 
1, m, n being the direction-cosines of the outward normal. 

179. Integration through the interior of a closed surface. Let the inner 
surfaces in fig. 53 al1 disappear, then we have 

where the volume integration is throughout the space inside a closed surface, 
and the surface integration is over this area, 1, m, n being the direction- 
cosines of the inward normal to the surface. 

180. Integration through a region in which u, v, w are discontinuaus. 
The only case of discontinuity of u, v, w which possesses any physical import- 
ance is that in which u, v, w change discontinuously in value in crossing 
certain surfaces, these bejng finite in number. To treat this case, we enclose 
each surface of discontinuiby inside a surface drawn so as to fit i t  closely on 
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both sides. I n  the space left, after the interiors of such closed surfaces have 
been excluded, the functions u, v, w are continuous. We may accordingly 
apply Green's Theorem, and obtain 

Cr (lu + mv + nw) dS II 

where Z denotes summation over the closed surfaces by which the original 
space was limited, and 2' denotes snmmation over the new clvsed surfaces 
which surround surfaces of discontinuity of u, v, W. Now 

Thus the wholé value of 2' u + rnv + nw) dS rnay be expressed in 

the form 
1/41 

B" /)il (3 - Q + m, (vl - v d  + n, (wl - WJ} dS, 

corresponding to any element of area dS on a surface of dis- 
continuity there will be two elements of area of the enclosing 
surface. Let the direction-cosines of the two normals to dS be 
Il, ns, n1 and S, m, n,, so that Z, = - l,, m, = - m, and 
n = - Let these direction-cosines be those of norrnals n, 
drawn from dS to the two sides of the surface, which we shall 
denote by 1 and 2, and let the values of u, v, w on the two 
sides of the surface of discontinuity at the element dS be 
u1, v,, w1 and %, v,, w,. Then clearly the two elements of 

where the integation is now over the actual surfaces of discontinuity. Thus 
Green's Theorem becomes 

1 na 

the enclosing surface, which fit against the element dS of FI@. 54. 
the original surface of discontinuity, will contribute to 
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Special Form of Green's Theorem. 

181. An important case of the theorem occurs when u, v, w have the 
special values 

where @ and '4 are any functions of x, y and z. The value of (lu +mu + nzu) 
j s  now 

a 
where - denotes differentiation along the normal, of which the direction- 

an 
cosines are Z, m, n. 

We a190 have 

Thus the theorem becomes 

a@ aur a@ aur a m a w  I//{@v2!P + - - + - - + - - d s d y d t  = - 
am ax ay ay a~ az 1 

This theorem is true for al1 values of @ and T, so that we may inter- 
change @ and T, and the equation remains true. Subtracting the equation 
so obtained from equation (100), we get 

\k@vaq - W.@) dxdydz  = - 2. Il(@ g - V E) dS.. . . . .(lOl). 
an 

182. In equation (101) put @ = 1 and ' P  = V, where V denotes the 
electrostatic potential. We obtain 
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Let us divide the s11m on the right into Il, the integral over a single 
closed surface enclosing any nuinber of conductors, and I,, the integrals over 
the surfaces of the conductors. Thus 

a where - denotes differentiation along the normal dramn Znto the surface. 
an 
av 

Thus - - is equal to the component of intensity along this normal, and 
an 

therefore to -N,  where N is the component along the outward normal. 
Hence 

av 
At the surface of a conductor - = - $rra, so that 

an 

I, = 4 r l / / a d ~  over conductors 

= 47;- x total charge on conductors. 

I f  there is any volume electrificntion, Va V= - 4rp, so tha6 

/ / / V 2 ~ d x d y  dz = - 47r ///pdxdydi, 

and the integral on the right represents the total volume electrification. 

Thus equation (102) becomes 

/ /N~s = 47r x (total charge on cohduotors + total volume electrification), 

so that the theorem reduces to Gauss' Theorem. 

183. Next put @ and Y each equal to P. Then equation (100) becomes 

Take the surfaces now to be the surfaces of conductors, and a sphere of 
1 av 

radius r a t  infinity. At infinity V is of order -, so that - is of order 
r an 

1 av 
- and hence P- , integrated over the sphere a t  infinity, vanishes (5  178). 
r2 ' an 

The equation becoines 
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The first and last terms together give - ~ I T  x ZeT, where e is any 
element of charge, either of volume-electrification or surface-electrification. 
Thus the whole equation becomes 

shewing that the energy may be regarded as distributed through the space 
RB ' 

outside the conductors, to tlie amount - per unit volume-the result 
8n  

already obtained in $ 168. 

184. In Green's Theorem, take 

Here K is ultimately to be taken to be the inductive capacity, which 
may Vary discontinuously on crossing the boundary between two dielectrics. 
We accordingly suppose u, v, w to be discontinuous, and use Green's Theorem 
in the form given in 5 180. We have then 

aur 
= - 2 //K@ aR ds 

where 2 5 have the meanings assigned to thern in 1 140. au, av, 
If we put = 1, Y = V, in this equation, it reduces, as in 5 130, to 

I\K g d ~  = - 4, x total charge inside surface, 

so that the result is that of the extension of Gauss' Theorem. Again, if we 
put @ = 9? = V, the equation becomes 

and the result is that of 5 169. 

IRIS - LILLIAD - Université Lille 1 



Un&peness of Solution 

Gveen's Reciprocation Theorent. 

185. I n  equation (101) put @ = V, Y? = V', where V is the potential 
of one distribution of electricity, and V' is that of a second and independent 
distribution. The equation becomes 

which is simply the theorem of 5 102, namely 

............................. Xe V' = 2e'V .(104). 

If we assign the same values to @, T in equation (103), we again obtain 
equation (104), which is now seen' to be applicable when dielectrics are 
present. 

186. We can use Green's Theorem to obtain analytical proofs of the 
theorems already given in § 99. 

TEEOREM. I f  the vdue of the potential V is known at evey  point on 
a number of closed surfaces by which a space is 6oun.ded internally and 
externally, there is only one value for V at eliery point of this intervening 
space, which satisjies the condition that WV eithe?. vanishes or has an assigned 
value, at every point of this space. 

For, if possible, let V, F denote two values of the potential, both of which 
satisfy the requisite conditions. Then V' - V =  O at every point of the 
surfaces, and Va (VI - V )  = O at every point of the space. Putting cP and T 
each equal to V'- Vin equation (100), we obtain 

and this integral, being a sum of squares, can only vanish through the 
vanishing of each term. We must therefore have 

or V' - 7 equal to a constant. And since V I -  V vanishes at the surfaces, 
this constant must be zero, so that V = V' everywhere, i.e. the two solutions 
V and P' are identical : there is only one solution. 

av 187. THEOREM. Give~z the value of - at every point of a number of 
an 

closed surfaces, there is only one possible value for V (ezcept for additive 
constants), ut each point of the intervenin9 spa.ce, subject to the condition thnt 
V2V = O throughout th& spnce, or has an assigned value at each point. 

11-2 
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The proof is almost identical with that of the last 
difference being that at  every point of the surfaces we 

theorem, the only 
hrtve 

instead of the former condition V' - V = O. We still have 

so that equation (105) is true, and the result follows as before, except that 
V and P' may now differ by a constant. 

188. Theorems exactly similar to these last two theorems are easily 
seen to be true when the dielectric is different from air. 

For, let V, V' be two solutions, such that 

a t  a11 points of the space, and a t  the surface either V- P' =O,  or 

By Green's Theorem 

= O by hypothesis. 

Equation (105) now follows as before, so that the result is proved. 

189. THEOREM. If any number o f  surfaces are Jixed i n  position, and a 
givm charge is placed on each surface, then the energy i s  a m i n i m m  when 
the charges are placed so that every surface is an epu$mtential. 

Let V' be the actual potential at  any point of the field, and V 
the potential when the electricity is arranged so that each surface is 
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an equipotential. Calling the corresponding energies W' and W2 we 
have 

If we put @ = V, ? = V' - V, in equation (100), we find that the last 
integral becomes 

or, since V is by hypothesis constant over each conductor, 

and this vanishes since each total charge u'dS is the same as the corre- il 
sponding total charge Il rnd~ .  Thus 

This integral is essentially positive, so that W' is greater than W, which 
proves the theorem. 

If any distribution is suddenly set free and allowed to flow so that the 
surface of each conductor becomes an equipotential, the loss of energy 
W' - W is seen to be equal to the energy of a field of potential V J -  P at 
any point. 

190. THEOREM. The introduction of a new conductor lessens the energy 
of the jield. 

Let accented symbols refer to the field after a new conductor S  has been 
introduced, insulated and uncharged. Then 

R a d z d y d z  through the field before S is introduced 
87r 

- + / f l ~ ~ d x d ~ d i :  through the field after S  is introduced 
87r 

= 87r ' N ~ z a ~ a ~ d e  through the space ultirnately occupied by S 

+ ' / / / ( a  - RI2) through the field after S is introdoced. 
87~ 
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The last integral 

and this, as in the last theorem, is equal to 

where Z denotes suinmation over al1 conductors, including S. 

This last sum of surface integrah vanishes, so that 

Radzdydz  through S 

av av a + - =) + . . .) d z d y d z  thmogh the field after 87  

S has been introduced. 

!Chus W - W' is essentially positive, which proves the theorem. 

On putting the new conductor to the earth, i t  follows from the preceding 
theorem that the energy is still further lessened. 

191. THEOREM. A.ny increase i n  the inductive capacity of the dielectric 
between conductors lessens the energy of thejîeld. 

Let the conductors of the field be supposed fixed in position and in- 
sulated, so that their total charge remains unaltered. Let the inductive 
capacity at  any point change from K to K + 6K, and as a consequence let 
the potential change from V to V +  SV, and the total energy of the field 
from W to W + 6 W. 

If El, E, ,... denote the total charges of the conductors, K, V, ,... their 
potentials, and p the volume density at  any point, 

so that, since the E's and p remain unaltered by changes in K, we have 

8 W =  a ~ ~ 8 ~ +  + ~ / ~ 8 ~ d x d y d r  ............... (106). 

We also have 
av 

w='I f l~  8 7 ~  {fgy + gr + (aZ)} &dyd.z, 
so that 

IRIS - LILLIAD - Université Lille 1 



190-1021 Earnshaw's Theorem 167 

By Green's Theorem, the last line 

the summation of surface integrals being over the surfaces of al1 the 
conductors, 

=26W 

by equation (106). Thus equation (107) becomes 

so that 8 W = - l / / k 8 ~ d x d ~ d z .  87r 

Thus 6 W is necessarily negative if 6K is positive, proving the theorem. 

It is worth noticing that, on the molecular theory of dielectrics, the increa,se in the 
inductive capacity of the dielectric a,t any point will be most readily accomplished by 
introducing new molecules. If, as in Chap. v, these molecules are regarded as unoharged 
conductors, the theorem just proved becomes identical with that of Ij 190. 

192. THEOREN. A charged body placed in an electric fild of force 
cannot rest in stable eqcdibrium under the injluence of the electric forces 
alone. 

Let us suppose the charged body A to be in any position, in the field 
of force produced by other bodies B, B: . . . . First suppose al1 the elec- 
,tricity on A, B, B', ... to be fixed in position on these conductors. Let 
V denote the potential, at any point of the field, of the electricity on 
B, Br, . . Let x, y, s be the coordinates of any definite point in A, say its 
centre of gravity, and let x + a, y + b, z + c be the coordinates of any other 
point. The potential energy of any element of charge e at  x + a, y + b, z + c 
is eV, where V is evaluated at  s + a, y + b, z + C. Denoting eV by w, we 
clearly have 

aaw aaw aaw -+-+-=O, ax2 a y  az2 

fiince P i s  a solution of Laplace's equation. 
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Let W be the total energy of the body A in the field of force from 
B, Br, .... Then W = Zw, and therefore 

i.e. the sum W = Zw satisfies Laplace's equation, because this equation is 
satisfied by the terins of the sum separately. I t  follows from this equatioii, 
as in § 52, that W cannot be a true maximum or a true minimum for any 
values of x, y, z. Thus, whatever the position of the body A, i t  will always 
be possible to find a displacement-ie. a change in the values of x, y, z-for 
which W decreases. If, after this displacement, the electricity on the con- 
ductors A, B, B', ... is set free, so that each surface becomes an equipotential, 
i t  follows from 5 189 that the energy of the field is still further lessened. 
Thus a displacement of the body A has been found which lessens the energy 
of the field, and therefore the body A cannot rest in stable equilibrium. 

One physical application of Earnshaw's Theorem is of extreme importance. The 
theorem shews that an electron cannot rest in stable equilibrium under the forces of 
attraction and repulsion from other charges, so long as these forces are supposed to obey 
the law of the inverse square of the distance. Thus, if a molecule ia to be regarded as a 
cluster of electrons and positive charges, as in § 151, then the Iaw of force must be some- 
thing different from that of the inverse square. 

There seems to be no dificulty about the supposition that a t  very small distances the 
law of force is different from the inverse square. On the contrary, there would be a very 
real difficulty in supposing that the law l /r% held down to zero values of r. For the force 
between two charges at  zero distance would be infinite ; we should have charges of oppo- 
site sign continually rushing together and, when once together, no force would be adequate 
to separate them. Thus the unirerse would in time consist only of doublets, each 
consisting of permanently interlocked positive and negative charges. If the law l/re 
held down to zero values of r, the distance apart of the charges would be zero, so that 
the strength of each doublet would be mil,  and there would be no way of detecting its 
presence. Thus the matter in the universe would tend to shrink into nothing or to 
diminish indefinitely in size. The observed permanence of matter precludes any such 
hypothesis. 

We should however probably be wrong in regarding a molecule as a cluster of electrons 
and positive charges. A more likely suggestion, put forward by Larmor and others is that 
the molecule may consist, in pad a t  least, of rings of electrons in rapid orbital motion. 
So long as  the motion of these rings is supposed to be governed by ordinary dynamical 
laws, the mechanics of sach a molecule are very difficult to understand. The molecule is 
regarded as a sort of '' perpetual motion" machine, but it is impossible to  understand how 
its energy can be continually replenished. On this hypothesis, too, there would be a want 
of definiteness in the size of the molecules of matter if the electrons were supposed to obey 
the law l /rZ down to infinitesimal distances (cf. Larmor, Aetizer and Natter, 5 122). 

The view which seems most likely to commaiid ultimate acceptance is that the atom 
and molecule consist, partially at  least, of electrons in rapid orbital motion, but that the 
laws by which these motions are goverried are of an entirely different nature from ordinary 
mech anical laws. 
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193. Let us take any surface S in the medium, enclosing any number 
of charges a t  points and on surfaces SI, S,, . . . . 

Let 1, m, n be the direction-cosines of the norn~al a t  any point of 
SI, S,, ... or S, the normal being supposed drawn, as in Green's Theorem, 
into the space between the surfaces. 

The total mechanical force acting on al1 the matter inside this surface 
is compounded of a force eR in the direction of the intensity acting on every 
point charge or element of volume-charge e, and a force 2rua or +UR. per 
unit area on each element of condixcting surface. If X, Y, Z are the com- 
ponents parallel to the axes of the total mechanical force, 

where the surface integral is taken over al1 conductors SI, S,, ... inside the 
surface S, and the volume integral throughout the space between S and these 
surfaces. Substituting for p and u, 

By Green's Theorem, 

IRIS - LILLIAD - Université Lille 1 



170 General Auaï~ytical Theorems 

so that the last equation becomes 

Substituting these values, equation (108) becomes 

Since we have at every point of the surface of a conductor 
av av av - - ax @ az -=-=- 

, . . , . . . .m . . . , , . . . . . , . . , . . . * . . .  

Z m n  (1091, 

it follows that the integral over each conductor vanishes, leaving only the 
integral with respect to dS, which gives 

where 

If Ne write also 

the resultant force parallel to the axis of Y will be 

Y = - J ~ I P ,  + m ~ ,  + ne,) d ~ ,  

and there is a similar value for 2. The action is therefore the same (cf 
$159) as if there was a system of stresses of components 

Ez, G y ,  Ezj $2, Es, 
given by the above equations: i e .  these may be regarded as the stresses of 
the medium. 
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194. I t  remains to investigate the couples on the system inside S. If 
L, M, N are the moments of the resultant couple about the axes of x, y, z, 
we have 

Now ///g ( y  g- z g) d x d y d ~  

so that 

av a a av ava -- Y--"-  +-- y - - z -  a a a y )  a y a y (  av  az .ay '7 

The first term in this expression 

The second term in expression (110) for L may, in virtue of the relations 
(log), be expressed in the form 

which is exactly cancelled by the first term in expression (111). 
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We are accordingly left with 

verifying that the couples are a190 accounted for by the supposed system of 
ether-stresses. 

195. Thus the stresses in the ether are identical with those already 
found in  Chapter TI, and these, as we have seen, may be supposed to 

R" consist of a tension - per unit area across the lines of force, and a 
877 

R2 
pressure - per unit area in directions perpendicular to the lines of force. 

87~ 

196. Let us begin by considering a field in which there are no surface 
charges, and no discontinuities in the structure of the dielectrics. We shall 
afterwards be able to treat surface-charges and discontinuities as limiting 
cases. 

Let us suppose that the mechanical forces on material bodies are 2, H, Z 
per unit volume at  any typical point x, y, z of this field. 

Let us displace the material bodies in the field in such a way that the 
point x, y, z comes to the point x + 8s) y + 6y, z + 62. The work done in 
the whole field will be 

and this must shew itself in an equal increase in the electric energy. The 
electric energy W can be put in either of the forms 

When the displacement takes place, there will be a slight variation in 
the distribution of electricity and a slight alteration of the potential. 
There is also a slight change in the value of K a t  any point owing to 
the motion of the dielectrics in the field. Thus we can put 

S W = S q  = (SW;),, + (0%) ,, 
s w = 8% = (SI'& + (6%) ,, 

where (Sll()p denotes the change produced in the function W; by the varia- 
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tion of electrical density alone, (6W& that produced by the variation of 
potential alone, and so on. 

We have 

avasv av asv avasv) ,,, 
( " v = & / p ( a ,  a;,+ay a,+ aI 

By Green's Theorem, the last expression transforms into 

We accordingly have 

SW = 26W; - 6W; = 2 (SW,) ,  - (SW,), , 
the variation ~roduced by alterations in V no longer appearing. 

Now (SIV;), = 4 //bP r d x  dy dz, 

so that S W = \ H V S ~ -  S K }  dxdydz  .................. (113). 

The change in p is due to two causes. In  the first place, the electriûca- 
tion at  x, yy, z was originally at rc - 6 5  y - Sy, z - 62, so that 6p has as part 
of its vaIue 

Again, the element of volume dxdydz  becomes changed by displacement 
into an element 

so that, even if there were no motion of translation, an original charge 
pdxdydz would after displacement occupy the volume given by expression 
(115), and this would give an increase in p of amount 
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Cornbining the two parts of 6p given by expressions (114) and (Ils) ,  
we find 

The change in K is also dile to two causes. In the first place the point 
which in the displaced position is a t  x, y, z was originally a t  x - 68, y - Sy, 
z - 82. Hence as part of the value in SK we have 

Also, with the displacement, the density of the medium is changed, so 
that its molecular structure is changed, and there is a corresponding change 
in K. If we denote the density of the medium by 7, and the increase in T 
produced by the displacement by 67, the increase'in 6 due to this cause 
will be 

and we know, as in equation (llS), that 

We now have, as the total value of 6K, 

and hence, on substituting in equation (113) for Sp and 6K, 

Integrating by parts, this becomes 
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or, rearranging the teiins, 

Coniparing with expression (112), we obtain 

etc., giving the body forces acting on the matter of the dielectric. 

197. This may be written in the form 

Thus in addition to the force of components (PX, pY, PZ) acting on the 
charges of the dielectric, there is an additional force of components 

arising from variations in K, and also a force of components 

which occurs when either the intensit~ of the field or the structure of the 
dielectric varies from point to point. 

STRESSES IN DIELECTRIC MEDIA. 

198. Replacing p by its value, as given by Laplace's equation, we obtain 
equation (117) in the form 

av 

av a av a av i -2- -  a x â (  E-  as) + K -  a x ( o J  7 

a av + ~ - Z ( K E ) + K ~ ( ~ ~ ) .  ax ay 

av a 
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K avav P ----,etc. ....................................... 
* Y -  4~ ax ay (W, 

this becomes 

Let us suppose that a medium is subjected to a system of internai 
stresses P,, P,, etc.; and let i t  be found that a system of body forces 
of components E', H f ,  Z' is just sufficient to keep the medium at  rest 
when under the action of these stresses. Then from equation (79) we 
must have 

Thus if Pm, Pw, etc. have the values given by equations (118) and (119), 
we have 

E' = - E, etc. 

This shews that the mechanical force 2, H, Z reversed would just be 
in equilibrium with the system of stresses Pm, Pw, etc. given by equations 
(118) and (119). In other words, the mechanical forces which have been 
found to act on a dielectric can exactly be accounted for by a system of 
stresses in the medium, these stresses being given by equations (118) and 
(1 19). 

199. The system of stresses given by equations (118) and (119) can be 
regarded as the superposition of two systems: 

1. A system in which 

il KXY 
pm= - ( X S - Y ~ - Z * ) ;  P,,= - , etc. ; 8%- 47r 

II. A system in which 
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The first system is exactly K times the system which has been found to 
occur in free ether, while the second system represents a hydrostatic pressure 
of amount 

aK (In general - will be positive, so that this pressure will be negative, and a7 
must be interpreted as a tension.) 

Hence, as in § 165, the system of stresses may be supposed to consist of: 

KR" 
(i) a tension - per unit area in the direction of the lines of force ; 

81r 

KR" (ii) a pressure -- per unit area perpendicular to the lines of force; 
87r 

R q K  
(iii) a hydrostatic pressure of amount - - T - in al1 directions. 

87r ô~ 

The system of stresses we have obtained was first given by Helmholtz. The system 
Ra aK 

differs from that given by Maxwell by inoluding the pressure -- T --. The neglect of 
R a  

this pressure by Maxwell, and by other writers who have followed him, does not appear to 
be defensible. Helmholtz has shewn that still further terms are required if the dielectric 
is such that the value of K changes when the medium is subjeoted to  distortion without 
change of volume. 

200. This system of stresses has not been proved to be the only system 
of stresses by which the mechanical forces can be replaced, and, as we have 
seen, it is not certain that the mechanical forces must be regarded as arising 
from a system of stresses a t  all, rather than from action at  a distance. 

I t  may be noticed, however, that whether or not these stresses actually 
exist, the resultant force on any piece of dielectric must be exactly the 
same as it would be if the stresses actually existed. For the resultant 
force on any piece of dielectric has a component X parallel to the axis 
of x, given by 

by Green's Theorem, and this shews that the actual force is identical with 
what it would be if these stresses existed (cf. 5 193). 

J. 12 
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201. The mechanical force on the surface of a charged conductor 
immersed in a dielectric can be obtained at  once by regarding i t  as 
produced by the stresses in the ether. There will be no stresses in the 
jnterior of the conductor, so that the force on its surface may be regarded 
as due to the tensions of the tubes of force in the dielectric. The tension 
is accordingly of amount 

XRQ~ aK 
- + - 7 -  
8 7 ~  87~ a7 

per unit area, an expression which can be written in the simpler form 

Force at boundary of a dielectric. 

202. Let us consider the equilibrium of a dielectric a t  a surface of 
discontinuity, a t  which the lines of force undergo refraction on passing 
from one medium of inductive capacity K, to a second of inductive 
capacity K,. 

Let axes be taken so that the boundary is the plane of xy, while the 
lines of force a t  the point under consideration lie 
in the plane of xz. Let the components of 
intensity in the firit medium be (XI, O, Z,), while 
the corresponding quantities in the second medium 
are (X,, O, 2,). The boundary conditions ob- 
tained in § 137 require that 

where h is the normal component of polarisation. 1 
F m  65. 

I n  view of a later physical interpretation of 
the forces, i t  will be convenient to regard these forces as divided up into 
the two systems mentioned in 5 199, and to consider the contributions frorn 
these systems separately. 

As regards the contribution from the first system, the force per unit area 
acting on the dielectric from the first medium has components 

while that from the second medium has components 
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Since KIXIZl =liT,X,Z,, i t  follows that the resultant force on the 
boundary is parallel to Oz-te. is normal to the surface. I t s  amount, 
ineasured as a tension dragging the surface in the direction from medium 1 
to medium 2 

which after simplification can be shewn to be equal to 

This is always positive if KI > K,. Thus this force invariabfy tends to 
drag the surface from the medium in which K is greater, to that in  which 
K is less-i.e. to increase the region in which K is large at  the expense of 
the region in which K is small. This normal force is exactly similar to the 
normal force on the surface of a conductor, which tends to increase the 
volume of the region enclosed by the conducting surface. 

On Maxwell's Theory, the forces which have now been considered are the only ones in 
existence, so that according to this theory the total mechanical force is that just found, 
and the boundary forces ought always to tend to increase the region in which K is large. 
This theory, as  we have said, is incomplete, so that it is not surprising that the result just 
stated is not confirmed by experiment. 

We now proceed to consider the action of the second system of forces- 
the system of negative hydrostatic pressures. There are pressures per unit 
area of amounts 

acting respectively on the two sides of the boundary. There is accordingly 
a resultant tension of amount 

per unit area, tending to drag the boundary surface from region 1 to region 2. . 

Thus the total tension per unit area, dragging the surface into region 1, is 

I n  § 139, in considering a parallel plate condenser with a movable 
dielectric slab, we discovered the existence of a mechanical force tending 
to drag the dielectric in between the plates. This force is identical with the 
mechanical force just discussed. But we have now arrived a t  a mechanical 
interpretation of this force, for we can regard the pull on the dielectric as 
the resultant of the pulls of the tubes of force a t  the different parts of the 
surface of the dielectric. 

12-2 
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Let us attempt to assign physical interpretations to the terins of ex- 
pression (120) by considering their significance in this particular instance. 
Consider first a region in the condenser so far removed from the edges of 
the condenser and of the slab of dielectric, that the field may be treated 

47rh 
as absolutely uniform (cf. fig. 44, p. 124). We put K, = 1, X, = O, R - 

l-z 

in expression (120) and obtain 

as the force per unit area on either face of the dielectric, acting normally 
outwards. 

The forces will of course act in such a direction that they tend to 
decrease the electrostatic energy of the field. Now this energy is made up 

zrha 
of contributions 27rha per unit volume from air, and - per unit volume 

KI 
from the dielectric. From the conditions of the problem h must remain 
unaltered. Thus the total energy c m  be decreased in either of two ways- 
by increasing the volume occupied by dielectric and decreasing that occupied 
by air, or by increasing the value of K in the dielectric. There will therefore 
be a tendency for the boundary of the dielectric to move in such a direction 
as to increase the volume occupied by dielectric, and also a tendency for this 
boundary to move so that IT will be increased by the consequent change 
of density. These two tendencies are represented by the two terms of 
expression (121). 

ali- 
I f  - is negative, an expansion of the dielectric will both increase the a~ 

volume occupied by the dielectric, and will also increase the value of E 
inside the dielectric. I n  this case, then, both tendencies act towards an 
expansion of the dielectric, and we accordingly find that both terms in 
expression (121) are positive. 

I f  - is positive, the tendency to expansion, represented by the first a T 
(positive) term of expression (121) is checked by a tendency to contraction 
(to increase T, and therefore K) represented by the second (now negative) 

aK 
tenn of expression (121). If - is not only positive, but is numerically aT 
large, expression (121) may be negative and the dielectric will contract. I n  
this case the decrease in energy resulting on the increase of K produced by 
contraction wiIl more than outweigh the gain resulting from the diminution 
of the volume occupied by dielectric. 
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These considerations enable us to see the physical significance of al1 the 
X i  terms in expression (120), except the first term - (KI - 1). To interpret 
8 7 ~  

this term we must examine the conditions near the edge of the dielectric 
slab, for it is only here that X,  has a value different from zero. We see a t  
once that this term represents a pull at  and near the edge of the dielectric, 
tending to suck the dielectric further between the plates-in fact this force 
alone gives rise to the tendency to motion of the slab as a whole, which was 
discovered in 5 139. 

Returning to the general systems of forces of § 199, we may Say that 
the first system (which as we have seen always tends to drag the surface 
of the dielectric into the region in which N has the greater value) represents 
the tendency for the system to decrease its energy by increasing the volume 
occupied by dielectrics of large inductive capacity, whilst the second system 
(which tends to compress or expand the dielectric in such a way as to increase 
its inductive capacity) represents the tendency of the system to decrease its 
energy by increasing the inductive capacity of its dielectrics. That any 
increase in the inductive capacity is invariably accompanied by a decrease 
of energy has already been proved in 3 191. 

Electrostrictz'on. 

203. I t  will now be clear that the action of the various tractions on the 
surface of a dielectric must always be accompanied not only by a tendency 
for the dielectric to move as a whole, but also by a slight change in shape 
and dimensions of the dielectric as this yields to the forces acting on it. 
This latter phenomenon is known as electrostriction. I t  has been observed 
experimentally by Quincke and others. A convenient way of shewing its 
existence is to fil1 the bulb of a thermometer-tube mith liquid, and place 
the whole in an.electric field. The pulls on the surface of the glass result 
in an increase in the volume of the bulb, and the liquid is observed to 
fall in the tube. From what has already been said i t  will be clear that 
a dielectric may either expand or contract under the influence of electric 
forces. 

The stresses in the interior of a dielectric, as given in 5 199, may also 
be accompanied by mechanical deformation. Thus it has been observed by 
Kerr and others, that a piece of non-crystalline glass acquires crystalline 
properties when placed in an electric field. Such a piece of glass reflects 
light like a uniaxal crystal of which the optic axis is in the direction of the 
lines of force. 
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GHEKN'S EQUIVALENT STRATUM. 

204. Let S be any closed surface enclosing a number of electric charges, 
and let P be any point outside it. The potential at  P due to the charges 
inside S is 

where r is the distance from P to the element h d y d z ,  and the integration 
extends throughout S. By Green's Theorem (equation (101)) 

where the normal is now drawn outwards from the surface S. 

1 
I n  this equation, put U = - then, since VaV = - 4.rrp, we have as the r ' 

value of the first term, 

/ l j o v ~ v à s a y d ~  = - 4 . ~ 5  

And since VaU = O, the second term vanishes. The equation accordingly 
becomes 

205. Suppose, first, that the surface S is an equipotential. Then 

so that equation (122) becomes 
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Thus the potential of any system of charges is the same at  every point 
outside any selected equipotential which surrounds al1 the charges, as that 
of a charge of electricity spread over this equipotential, and having surface ' 

Obviously, in fact, if the equipotential is reglaced by a density - - - 
4~ an ' 

conductor, this will be the density on its outer surface. 

206. If the surface is not an equipotential, the term 

will not vanish. Since, however, p ,an - (:) is the potential of s doublet of 

strength ,u and direction that of the outward normal, it follows that 

//JT; (:) dS is the potential of a system of doublets arranged over the 

surface 8, the direction a t  every point being that of the outward normal, and 
the total strength of doublets per unit area a t  any point being V. 

Thus the potential & may be regarded as due to the presence on the 
surface S of 

I av, 
(i) a surface density of electricity - - - 4a an ' 

V 
(ii) a distribution of electric doublets, of strength - per unit area, 47r 

. and direction that of the outward normal. 

207. Equation (122) expresses the potential a t  any point in the space 
av 

outside S in terrris of the values of V and - over the boundary of thia space. 
an 

We have seen, however, that the value of the potential is uniquely determined 
a 7  

by the values either of V or  of - over the boundary of the space. I n  actual 
an 

electrostatic problems, the boundaries are generally conductors, and therefore 
equipotentials. I n  this case equation (123) expresses the values of the 

a r  potential in  terms of - only, amounting in fact simply to 
an 

What is generally required is a knowledge of the value of Vp in terms of the 
values of V over the boundaries, and this the present method is unable to 
give. For special shapes of boundary, solutions have been obtained by 
various special methods, and these it is proposed to discuss in the next 
chapter. 
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EX AMPLES. 

1. If the electricity in the field is confined to a given system of conductors a t  given 
potentials, and the inductive capacity of the dielectric is slightly altered according to any 
law such that a t  no point is it diminished, and such that the differential coefficients of the 
increment are also srnall a t  al1 points, prove that the energy of the field is increased. 

2. A slab of dielectric of inductive capacity K and of thickness x is placed inside a 
parallel plate condenser so as to be parallel to the plates. Shew that the audace of the 
slab experiences a tension 

3. For a gas K=l+Op, where p is the density and 0 is amall. A conductor is 
immersed in the gas : sherv that if 82 is neglected the mechanical force on the conductor 
is 2 ~ d  per unit area. Give a physieal interpretation of this result. 
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METHODS FOR THE SOLUTION OF SPECIAL PROBLEMS 

THE METHOD OF IMAGES. 

Charge induced on an injnite un.insulated plane. 

208. THE potential at  P of charges e at  a point A and -e  at  anotlier 
point A' is 

and this vanishes if P is on 
Cal1 this plane the plane S. 

the plane which bisects AA' at  right angIes. 
Then the above value of V gives V=O over 

the plane S, V= O at  infinity, and satisfies Laplace's ecpation in the region 
to the right of S, except at the point A, a t  which i t  gives a point charge e. 

These conditions, however, are exactly those which would have to be satisfied 
by the potential on the right of S if S were a conducting plane at  zero 
potential under the influence of a charge e at  A. These conditions amount 
to a knowledge of the value of the potential a t  every point on the boiindary 
of a certain region-namely, that to the right of the plane S-and of the 
charges inside this region. There is, as we know, only one value of the 
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potential inside this region which satisfies these conditions (cf 5 186), so that 
this value must be that given by eqiiation (124). 

To the right of S the potential is the same, whether we have the 
charge - e a t  A' or the charge on the conducting plane S. To the left of S 
in the latter case there is no electric field. Hence the lines of force, when 
the plane S is a conductor, are entirely to the right of S, and are the same 
as in the original field in which the two point-charges were present. The 
lines end on the plane S, terminating of course on the charge induced on S. 

We can find the amount of this induced charge at  any part of the plane 
by Coulomb's Law. Taking the plane to be the plane of yz, and the point A 
to be the point (a, 0, O) on the axis of x, we have 

where the last line has to be calculated nt the point on the plane S at which 
we require the density. We must therefore put 8 = O after differentiation, 
and so obtzlin for the density at  the point O, y, a on the plane S, 

2ae 
$TU = - 

(a+ y2 + z2,$ ' 
or, if a2+ y2+z~=P, so that r is the distance of the point on the plane S 
from the point A, 

Thus the surface density fàlls off inversely as the cube of the distance 
from the point A. The distribution of electricity on the 
plane is represented graphically in fig. 58, in which the 
thickness of the shaded part is proportional to the surface 
density of electricity. The negative electricity is, so to 
speak, heaped up near the point A under the influence 
of the attraction of the charge at  A. The field produced 
by this distribution of electricity on the plane S at  any -125 e A 
point to the right of S is, as we know, exactly the same as .099 
would be produced by the point charge - e at A'. 

-044 

209. This problem affords the simplest illustration of a .oz1 
general method for the solution of electrostatic problems, .012 
which is known as the "method of images." The principle :007 
underlying this mcthod is that of finding a system of electric pro. b8. 
charges such that a certain surface, ultimately to be niade 
into a conduclor, is causcd to coincide with the equipotential V=O. We 
then replace the charges inside this equipotential by the Green's equivalcnt 
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stratum on its surface (cf Cj 204). Assthis surface is an equipotential, we 
can imagine it to be replaced by a conductor and the charges on it will be 
in equilibrium. These charges now become charges induced on a conductor 
at  potential zero by charges outside this conductor. 

From the analogy with optical images in a mirror, the system of point 
charges which have to be combined with the original charges to produce zero 
potential over a conductor are spoken of as the " electrical images" of the 
original charges. For instance, in the example already discus'sed, the field is 
produced partly by the charge a t  A, partly by the charge induced on the 
infinite plane : the method of images enables us to replace the whole charge 
induced on the plane by a single point charge at A'. So also, if A were a 
candle placed in front of an infinite plane mirror, the illumination in front of 
the mirror would be produced partly by the candle at A, partly by the light 
reflected from the infinite mirror; the method of optical images enables us to 
replace the whole of this reflected light by the light from a single source a t  A'. 

210. I n  an electrostatic field produced by any number of point charges, 
we can, as we have seen, select any equipotential and replace i t  by a con- 
ductor. The charges on either side of this equipotential are then the 
"imagesJ' of those on the other side. 

Thns if we can mite the equation of any surface in the form 

where r is the distance from a point outside the surface, and r', r", . . . are the 
distances from points inside the surhce, then we may say that charges 
e', e", ... a t  these latter points are the images of a charge e a t  the former 
point. 

The method of images may be applied in a similar way to two-dimensional 
problems. Suppose that the equation of a cylindrical surface can be expressed 
in the form 

c - 2e log r - 2e' log r' - 2e" log r" - ... = 0, 

where r is the perpendicular distance from a fixed line on one side of the 
surface, and r', r", . . . are perpendicular distances from fixed lines on the other 
side. Then line-charges of line-densities e', et', ... a t  these latter lines may be 
taken to be the image of a. line-charge of line-density e a t  the former line. 

Illustrations of the use of images in three dimensions are given in 
§$ 211-219. An illustration of the use of a two-dimensional image will 
be found in 5 220. 
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Charges induced on Intersecting plafies. 

211. I t  will be found that charges 

e at  8, y, O, 
- e at  - x, y, O, 
- e at x, - y, O, 

e at  - x, -y, O 

give zero potential over the planes x  = O, y = 0. 
The potential of these charges is therefore the 
same, in the quadrant in which E, y are both 
positive, as if the boundary of this quadrant 
were a conductor put to earth under the in- \ 
fluence of a charge e at  the point x, y, 0. 

i 
It will be found that a conductor consisting L i -------- ------- 2 

of three planes intersecting at right angles can 4 -a  
be treated in the same way. FICL 59. 

212. The method of images also supplies a solution when the conductor 
7r 

consists of two planes intersecting at any angle of the form -, n where n is 

a=v 
are 

FIG. 60. 

positive integer. If we take polar coordinates, so that the two planes 
7r B = 0, 0  = -, and suppose the charge to be a charge e at  the point r, 8, 
n 

we shall find that charges 

e a t  (r, 61, (r, 8 + F) , (r, O+:), ..., 

- e  at  @ , - O ) .  (r, -@+Sn-)), (r, -@+;)), # . * ,  

give zero potential over the planes 
7T e = o ,  8 = -  
n' 
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Charge induced on. a sphere. 

213. The most obvious case, other than the infinite plane, of a surface 
whose equation can be expressed in the form (125) ie a sphere. 

If R, Q are any two inverse points in the sphere, and P any point on the 
surface, we have 

R P :  PQ=OC: OQ, 

so that 

OC Thus the image of -a charge e at Q is a charge - e - at R, or the 
OQ 

image of any point at a distance f from the centre of a sphere of radius a 
ea 

is a charge -7 at  the inverse point, i.e. at  a point on the same radius 

a2 
distant - from the centre. f 

Let us take polar coordinates, having the centre of the sphere for origin 
and the line OQ as B=0. Our result is that at any point S outside the 
sphere, the potential due to a charge e.at Q and the charge induced on the 
surface of the sphere, supposed put to earth, is 

- - - 
1/p +p - 2fr cos B f 2 / p + f ? - 2 f  a4 a5 r m s e '  

where r, B are the coordinates of S. 
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214. We can now find the surface-density of the induced charge. For 
at  any point on the sphere 

in which we have to put r = a after differentiation. Clearly 

a4 
sa ( r  - cos e) a'V e(r-fcose) --- - - 

Putting T = a we obtain 

e 
,y-=- 

a -  fcosB - . a2f2-a3fcosB 

4" Ga. +f - 2fa cos O$ (a? f + a4 - 2as f cos O$ i 

Thus the surface-density varies inversely as Sv, so that it is greatest at 
C and falls off continually as we recede from the radius OC. The total 

ea 
charge on the sphere is - - , as can be seen at  once by considering that the 

f 
total strength of the tubes of force which end on i t  is just the same ay would 
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be the total strength of the tubes ending on the image at R if the conduotor 
were not present. 

Figure 62 shews the lines of force when the strength of the image is a 
quarter of that of the original charge, so that f = 4a. It is obtained from 
fig. 19 by replacing the spherical equipotential by a conductor, and annihi- 
lating the field inside. 

Supeî.po&tioa of Fields. 

215. We have seen that by adding the potentials of two separate fields 
a t  every point, we obtain the potential produced by charges equal to the total 
charges in the two fields. In  this way we can arrive at  the field produced 
by any number of point charges and uninsulated conductors of the kind we 
have described. The potential of each conductor is zero in the final solution 
because i t  is zero for each separate field. 

There is also another type of field which niay be added to that 
obtained by the method of images, namely the field produced by raising the 
conductor or conductors to  given potentials, without other charges being 
present. By superposing a field of this kind we can find the effect of point 
charges when the conductors are at any potential. 

216. For instance, suppose that, as in fig. 62, we have a point charge e 
and the conductor at  potential O. Let us superpose on to the field of force 
aIready found, the field which is obtained by raising the conductor to potential 
V when the point charge is absent. The charge on the sphere in the second 
field is aV, so that the total charge is 

By giving different values to V, we can obtain the total field, when the 
sphere has any given charge or potential. 

e If the sphere is to be uncharged, we must have V =  - so that a point 
f' 

charge placed at  a distance f from the centre of an uncharged sphere raises 
e i t  to potential - , a result which is also obvious frorn the theorem of 5 104. 
f 
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Sphere in a uniform field of force. 

217. A uniform field of force of which the lines are parallel to the axis 
of x may be regarded as due to an infinite charge E at  x = R, and a charge 
- E at x = - R, when in the limit E and R both become infinite. The 
intensity a t  any point is 

2E -- 
R" 

parallel to the axis of cc, so that to produce a uniform field in which the 
intensity is F parallel to the axis of x, we must suppose E and R to 
become i d n i t e  in such a way that 

Since, in this case, B = - -? the potential of such a field will clearly 
ax 

Suppose that a sphere is placed in a uniform field of force of this kind, 
its centre being a t  the origin. We can suppose the charge E a t  x = R to 
have an image of strength 

Ea -- aa 
R at % = -  R '  

while the other charge has an image 

These two images may be regarded as a doublet (cf 64)  of strength 
Ea 2aa 
- x - , and of direction parallel to the negative axis of x. The strength R R 

Thus a e  may Say that the image of a uniform field of force of strength F 
is a doublet of strength Fa3 and of direction parallel to that of the intensity 
of the uniform field. 

The potential of this doublet is 

Ba3 cos û 
9 ' 

and that of the field of original field of force is 

or, in polar coordinates, -Ft-cosB+ O, 
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so that the potential of the whole field 

As i t  ought, this gives a constant potential O over the surface of the 
sphere. 

The lines of force of the uniform field P disturbed by the presence of a 
doublet of strength Fa3 are shewn in fig. 63. On obliterating al1 the lines 
of force inside a sphere of radius a,  we obtain fig. 64, which accordingly 
shews the lines of force ~ ~ h e n  a sphere of radius a is placed in a field of 
intensity E. These figures are taken from Thomson's Reprint of Papers on 
Electrostutics and Magnetism (pp. 488, 489)*. 

* 1 am indebted to Lord Kelvin for permission to use these figures. 
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218. Lins of no electrijcation. The theory of lines of no electrification 
has already been briefly given in § 98. We have seen that on any conductor 
on which the total charge is zero, and which is not entirely screened from 
an electric field, there must be some points at which the surface-density u 
is positive, and some points at which it is negative. The regions in which CT 

is positive and those in which u is negative must be separated by a line or 
system of lines on the conductor, at every point of mhich u = O. These lines 
are known as lines of no electriJication. 

If R is the resultant intensity, we have at any point on a line of no 
electrification, 

R = 4 m ~ = 0 ,  

so that every point of a line of no electrification is a point of equilibrium. 
A.t such a point the equipotential intersects itself, and there are two or more 
lines of force. 

If the conductor possesses a single tangent plane at a point on a line of 
no electrification, then one sheet of the equipotential through this point will 
be the conductor itself: by the theorem of 5 69, the second sheet must 
intersect the conductor at right angles. 

These results are illustrated in the field of fig. 64. Clearly the line of no 
electrification on the sphere is the great circle in a plane perpendicular to 
the direction of the field. The equipotential which intersects itself dong 
the line of no electrification (V = C) consists of the sphere itself and the 
plane containing the line of no electrification. Indeed, from formula (126), 

'Ir 
it is obvious that the potential is equal to C, either when 0 = -  or 

2 ' 
when r = a. 

The intersection of the lines of force along the line of no electrification 
is shewn clearly in fig. 64. 

Plane face with hemispherical boss. 

219. If we regard the whole equipotential V= C as a conductor, we 
obtain the distribution of electricity on a plane conductor on which tihere 
is a hemispherical boss of radius a. If we take the plane to be a: = O, we 
have, by formula (126), 

At a point on the plane, 

and on the hemisphere 
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The whole charge on the hemisphere is fonnd on integration to be 

while, if the hemisphere were not present, the charge on 
plane now covered by the base of the hemisphere would 

the part of the 
be 

Thug the presence of the boss results in there being three times as much 
electricity on this part of the plane as there would otherwise be: this is 
compensated by the diminution of surface-density on those parts of the plane 
which immediately surround the boss. , 

Cnpacity of a telegraph-wire. 

220. An important practical application of the method of images is the 
determination of the capacity of a long straight wire placed parallel to  an 
infinite plane at potential zero, a t  a distance h from the plane. This rnay be 
supposed to represent a telegraph-wire at  height h above the surface of the 
earth. 

Let us suppose that the wire has a charge e per unit length. To find 
the field of force we imagine an image charged with a charge - e per unit 
length at  a distance h below the earth's surface. The potential at a point at 
distances r, r' from the wire and image respectively is, by $$ 75 and 100, 

C - 2e log r + 2e log r', 

and for this to vanish at the earth's surface we must take C= O. Thus the 
potential is 

?' 
2e log - . 

r 

At a small distance a from the line-charge which represents the telegraph- 
wire, we rnay put r'= 2h, so that the potential is 

2h 
2e log - 

a '  

frorn which it appears that a cylinder of small radius a surrounding the 
wire is an equipotential. We may now suppose the wire to have a finite 
radius a, and to coincide with this equipotential. Thus the capacity of the 
wire per unit length is 

1 - 
2h' 2 log -- 
a 
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InJinite series of Images. 

221. Suppose we have two spheres, centres A, B and radii a, b, of which 
the centres are a t  distance c apart, and that we require to find the field when 

both are charged. We can obtain this field by superposing an infinite series 
of separate fields (cf 5 116). 

Suppose first that A is a t  potential P while B is at potential zero. As a 
first field we can take that of a charge Va at A. This gives a uniform 
potential Ir over A, but does not give zero potential over B. We can reduce 
the potential over B to zero by superposing a second field arising from 

Vab . 
the image of the original charge in sphere B, narnely a charge - - a t  B', 

C 

ba 
mhere BB' = - . This new field has, however, disturbed the potential over 

C 

A. To reduce this to its original value we superpose a nem fieId arising 
Va6 a 

from the image of the charge a t  B' in A, namely a charge - .T a t  A', 
C 

O - -  
C 

a? 
where AB'= - This field in turn disturbs the potential over B, and so oz ' 

C-- 
c 

we superpose another field, and so on indefinitely. The strengths of the 
various fields, however, continually diminish, so that although we get an 
infinite series to express the potential, this series is convergent. As we shall 
see, this series can be summed as a definite integral, or i t  may be that a good 
approximation will be obtained by taliing only a finite number of terms. 

The total charge on A is clearly the sum of the original charge V a  plus 
the strengths of the images A', A", ... etc., for this sum measures the 
aggregate strength of the tubes of force which end on A. Similarly the 
charge on B is the sum of the strengths of the images at  B', B", .... 

To obtain the field corresponding to given potentials of both A and B we 
superpose on to the field already found, the similar field obtained by raising 
B to the required potential while that of A remains zero. 
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I f  q,,, q,, q,, are the coefficients of capacity and induction, the total charge 
on A when B is to earth and V =  1 is qll ; similarly that on B is q,. In  this 
way we can find the coefficients q,,, qn from the series of images already 
obtained. The residt is found to be 

As far as A ,  these results clearly agree with those of 3 116. 
c3 

222. The series for qll, q12, q2a have been put in  a more manageable form by Poisson 
and Kirchhoff. 

.... Let A, denote the position of the sth of the series of points A', A", and Ba the 8th 
... of the series B', B", ; then A, is the image of Ba in the sphere of radius a, and similsrly 

Ba is the image of A,-i in the sphere of radius b. Let a,=AA,, b,=B& and let the 
charges a t  A,, B, be e,, e', respectively. 

Then aa (c  - b,) =a2 since A, in the image of Ba, 

b,(c- a,-d=b5 ,, B, ,, ,, 4 - 1 .  

Further, by comparing the strengths of a charge and its image, 

so that 

and similarly 

and 

By addition we eliminate a,, and obtain 
es - + e, -ca-a2-ba 

- 1  a +  ab ' 
1 

or, if we put -=u,, 
*a 

c Z - ~ Z -  ba .............................. '% + 1 - ---- ~+u,-,=O (1281, ab 
and from symmetry it  is obvious that the same difference equation must be satisfied by a 

1 
quantity u;= - 

et, ' 

The solution of the difference equation (128) may be taken to be 
us= Aaa+BP, 

mhere a, B are the mots of 
c2-a%-b2 

t2- ab 
t+l=O. 
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The prodiict of these roots is unity, so that if a is the root which is less than unity, we 
can suppose 

e u,= Aaa+- 
a= ' 

and similarly as d, = --- 
Bae" + B" 

a' We now have q~l=a+e~+e~+. . .=a+E-- -  
1 AaLB+B' 
O 0 d  

ql2= &+ena+ ... = 8--- 
1 A'a28 + B' ' 

To determine A, B, we have 
1 eo=- - 

A +  B-" 
a a2b 

el=g,z+B=ce_hai 

BO that 
A B  1 
-3-=- -Ea 1 a(1-p)' 

a+ba where E=-. 
C 

and 

To determine A', BI, we have 

a2 e' --= - a2bz 
'-A'u~+B' c(ca-a2-bz)' 

from which, in the same way, 

The value of 922 can of course be written down by symmetry from that of qll. 

The coefficients each depend on a sum of the type 

This series cannot be summed algebraically, but has been expressed aa a definite integral 
by Poisson. From the known formula 

sin pt 

ne  obtain a t  once 

so that on putting p=log &28 we have 
a" -- a8 a' sin (log Pazd) t 

1 - p f  - 
+a" - dt. 
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From this follows 

Both the series on the right can be summed. We have 

Za8sin(2logE+2sl0ga) t= sin (2 t  log [) - a sin ( e t  log [/a) 
~ - 2 a ~ o ~ ( Z t l 0 g a ) + a ~  ' 

- i sin (2t  log .$) - a sin (2t log [/a) 
(eZrt - 1) (1 - 2a cos (2t log a) + az) & 

and on replacing E by unity, we obtain 

These are the series which occur in pl, and y,,. 

223. Having calculated the coefficients, either by this or some other 
method, we can a t  once o b t i h  the relations between the charges and 
potentials, and can find also the mechanical force between the spheres. If 
this force is a force of repulsion F, we have 

The foilowing table, applicable to two spheres of equal radius, taken to be unity, is 
compiled from materials given by Lord Kelvin? 

* Papm on Electrostatics and Bfflgnetism, p. 96, g 142. 
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Images in dielectrics. 

224. The method of images can also be applied to find the field 
produced by point charges when half of the field is occupied by dielectric, 
the boundary of the dielectric being an infinite plane. 

We begin by considering the field produced by a single charge e a t  P, i t  
being possible to obtain the most general field by the superposition of simple 
fields of this kind. 

We shall shew that the field in air is the same as that due to a charge 
e at P and a certain charge e' at Pr, the image of P, while the field in the 
dielectric is the same as that due to a certain charge e" at P, if the whole 
field were occupied by air. 

Let PP' be taken for axis of x, the origin O being in the boundary 
of the dielectric, and let OP= a. Then we have to shew that the potential 
& in air is 

while that in the dielectric is 

e" V - A. 

D -  J(x+a)z+Y~+z2 

These potentials, we notice, satisfy Laplace's equation in each medium, 
everywhere except at the point P ,  and they arise from a distribution of 
charges which consists of a single point charge e at P. The potential in air 
at the point O, y, z on the boundary is 

e+e' &= 
 da^+ y 2 + ~ '  
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while that in the dielectric at the same point is 

Thus the condition that the potentinl shall be continuous at each point 
of the boundary can be satisfied by taking 

The remaining condition to be satisfied is that at  every point of the 
av 

boundary, gin air shall be equal to K - in the dielectric ; i.e. that ax 
av, avA g = -  , when x = O. ax ax 

Now, when x = 0, 

so that this last condition is satisfied by taking 

lie" = e - e' .............................. (130). 
Thus the conditions of the problem are completely satisfied by giving 

e', e" values such as will satisfy relations (129) and (130); Le. by taking 

225. The pull on the dielectric is that due to the tensions of the lines 
of force which cross its boundary. In. air these lines of force are the same 
as if we had charges e, e' at  P, P' entirely in air, so that the whole tension 
in the direction P'P of the lines of force in air is 

This system of tensions shews itself as an attraction between the 
dielectric and the point charge. If the dielectric is free to move and 
the point charge fixed, the dielectric will be drawn towards the point 
charge by this force, and conversely if the dielectric is fixed the point 
charge will be attracted towards the dielectric by this force. 
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226. The geometrical method of inversion may ~iometimes be used to 
deduce the solution of one problem from that of another problem of which 
the solution is already known. 

Cfeometrical Theo y. 

227. Let O be any point which we shall call the centre of inversion, and 

let AB be a sphere drawn about O with a radius K which we shall call the 
radius of inversion. 

Corresponding to any point P we can find a second point P', the inverse 
to P in the sphere. These two points are on the same radius a t  distances 
from O such that O P .  OP1 = Ka. 

As P describes any surface PQ ..., P' will describe some other surface 
P'Q'. . . , each point Q' on the second 'surface being the inverse of some point 
Q on the original surface. This second surface is said to be the h m m e  
of the original surface, and the process of deducing the second surface from 
the first is described as inverting the first surface. 

I t  is clear that if P'Q'... is the inverse of PQ ..., then the inverse of 
P' Q'... will be PQ .... 

If the polar equation of a surface referred to the centre of inversion 
as origin be f (r, 8, +) = O, then the equation of its inverse will be 

f ($, 8, 4)  =O. For the polar equation of the inverse surface is by 

definition f (r', 8, +)=O,  where TT'= Ka for al1 values of 8 and +. 
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Ifiverse of a sphere. Let chords PP', QQ', . . . of a sphere rneet in O 
(fig. 68). Then 

O P .  OP1=0Q. oq= ...= ta, 
where t ia the length of the tangent from O to the sphere. Thus, if t is the 
radius of inversion, the surface PQ.. . is the inverse of P'q.. . , i.e. the sphere 

is its own inverse. With some other radius of inversion K, let; P Q  ... be 
the inverse of P& . . . , then 

0P.0P"=0&.0$'= ...= li", 
so that 

and the locus of P': Q ,  ... is seen t o  be a sphere. Thus the inverse of a 
sphere is always another sphere. 

A special investigation is needed 
when the sphere passes through O. Let 
OS be the diameter through 0, and let 
S' be the point inverse to 8. Then, if 
P is the inverse of' any point P on the 
circle, 

oP.oP'=oS.oS', 
O 

OP OS' 
or -=- 

OS OP" 
so that PO#, S'OP' are similar triangles. 
Since OPS  is a right angle, i t  follows 
that OX'P' is a right angle, so that the 
locus of P' is a plane through S' perpen- 
dicular to OS'. Thus the inverse of a FIG. 69. 
sphere which passes through the centre 
of inversion is a plane, and, conversely, the inverse of any plane is a sphere 
which passes through the centre of inversion. 
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228. If P ,  Q are djacent points on a surface, and P', Q' are the corre- 
sponding points on its inverse, then OPQ, 
O&'P are similar triangles, so that PQ, 
P'Q' make equal angles with OPP'. By 
making PQ coincide, we find that the 
tangent plane a t  P to the surface P Q  
and the tangent plane at  P' to the sur- 
face P'Q' make equal angles with OPP. 
Hence, if we invert two surfaces which 

AP Fm. 70. 

iniiersect in P ,  we find that the angle 
between the two inverse surfaces at  P' is equal to the angle bstween the 
original surfaces at  P ,  i.e. an angle of intersection is not altsred by inversion. 

Also, if a small cone through O cuts off areas dS, ds' from the surface 
PQ ... and its inverse P'Q'..., it follows that 

. d S  OP2 ==p. 

Electrical Applications. 

229. Let PP', QQ' be two pairs of inverse points (fig. '70). Let a charge 
e at Q produce potential Vp at  P, and let a charge e' at Q' produce potential 
l$' at  P', so that 

Take 

then 

Now let Q be a point of a conducting surface, and replace e by ad#, 
the charge on the element of surface d S  at Q. Let denote the potential 
of the whole surface at P, and let denote the potential at  Pt due to a 
charge d on each element dS' of the inverse surface, such that 

e' O&' -=- 
udX K ' 

K 
Then, since l$.' = l$ -, for each element of charge, we have by addition OP 

Thus charges e' on dB', etc. produce a potential 
- 

E S  at P: 
OP' 
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- Now suppose that P is a point on the conducting surface Q, so that 
Vp becomes simply the potential of this surface, Say V. The charges e' on 
dS', etc. now produce a potential 

so that if with these charges we combine a charge - VE at 0, the potential 
produced at  P' is zero. Thus the given system of charges spread over the 
surface P'Q' . . ., together with a charge - VK a t  the origin, make the 
surface P' Q'.. .  an equipotential of potential zero. I n  other words, from a 
knowledge of the distribution which raises PQ . .. to potential V, we can 
find the distribution on the inverse surface P'Q' ... when i t  is put to earth - 
under the influence of a charge - VK a t  the centre of inversion. 

If e, e' are the charges on corresponding elements dB, dS' a t  Q, Q', we 
have seen that 

while 

Hence 

giving the ratio of the surface densities on the two conductors. 

Conversely, if we know the distribution induced on a conductor P& . . . a t  
potential zero by a unit charge a t  a point O, then by inversion about O we 
obtain the distribution on the inverse conductor P'Q' ... when raised to 

1 potential - As before, the ratio of the densities is given by equation (132). 
K .  

Examples of Inversion. 

230. Sphere. The simplest electrical problern of which we know the 
solution is that of a sphere raised to a given potential. Let us examine 
what this solution becomes on inversion. 

If we invert with respect to a point P outside the sphere, we obtain the 
distribution on another sphere when put to earth under the influence of a 
point charge P. This distribution has already been obtained in  5 214 by 
the method of images. The result there obtained, that the surface-density 
varies inversely as the cube of the distance from P, can now be seen at  once 
from equation (132). 

S o  also, if P is inside the sphere, we obtain the distribution on an 
uninsulated sphere produced by a point charge inside it, a result which c m  
again be obtained by the method of images. 

When P is on the sphere, we obtain the distribution on an uninsulated 
plane, already obtained in 5 208. 
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231. Intersecting Planes. As a niore complicated example of inversion, 
let us invert the results obtained in Cj 212. We there shewed how to find 

'Ir the distribution on two planes cutting a t  an angle - when put to earth 
92 ' 

under the influence of a point charge anywhere in the acute angle between 
thern. If we invert the solution we obtain the distribution on two spheres, 
cutting a t  an angle r l n ,  raised to a given potential. By a suitable choice 
of the radius and origin of inversion, we can give any radii we like t o  the 
two spheres. 

If we take the radius of one to be infinite, we get the distribution on a 
plane with an excrescence in the form of a piece of a sphere : in the par- 
ticular case of n = 2, this excrescence is hemispherical,. and we obtain the 
distribution of electricity on a plane face with a hemispherical boss. This 
can, however, be obtained more directly by the method of § 219. 

SPEIERICAL HARMONICS. 

232. The problem of finding the solution of any electrostatic problem is 
equivalent to that of finding a solution of Laplace's equation 

V2V= 0 
throughout the space not occupied by conductors, such as shall satisfy certain 
conditions at  the boundaries of this space4.e. a t  infinity and on the surfaces 
of conductors. The theory of ,spherical harmonics atterripts to provide a 
general solution of the equation VaV = 0. 

This is no convenient general solution in finite terms: we therefore 
examine solutions expressed as an infinite series. If each term of such 
a series is a solution of the equation, the sum of the series is necessarily 
a solution. 
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233. Let us take spherical polar coordinates r, ê, 6, and search for 
solutions of the form 

V = RS, 

where R is a function of r only, and S i s  a function of 8 and C# only. 

Laplace's equation, expressed in spherical polars, can be obtained analyti- 
cally from the equation 

azv azv aav -+-+-=O axa ay2 a,, 
by changing variables from a y, z to r, 0, +, but is most easily obtained by 
applying Gauss' Theorem to the small element of volume bounded by the 
spheres r and r + dr ,  the cones 0 and B + dB, and the diametral planes + and 

+ + d+. The equation is found to be 

1 a av i a .  1 aav -- 9- +--(sine- +--- 
,.a ar ( ar ) ya sin 8 ae , t!) y2 S I ~ ~  e a y - o. 

Substituting the value V =  RX, we obtain 

or, simplifying, 

The first term is a function of r only, while the last two terme are inde- 
pendent of r. Thus the equation can only be satisfied by taking 

where E is a constant. Equation (133), regarded as a differential equation 
for R,  can be solved, the solution being 

B R = A P + ~ ~  ........................... (135), 

where A, B are arbitrary constants, and n (n + 1) = K. Afker simplification 
equation (134) becomes 

a - (sin s a) + 
sin Ba6 

a a s + n ( n + l ) ~ = O  ......... (136). ae =Zp 
Any solution of this equation will be denoted by Sn, the solution being a 

function of n as well as of 8 and +. The solution of Laplace's equation we 
have obtained is now 

V = R S =  

and by the addition of such solutions, the most general solution of Laplace's 
equation may be reached. 
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234. DEFINITIONS. Any solution of Laplace's equation is said to be a 
spherical hamnonic. 

A solution which is homogeneous in x, y, z of dimensions n is said to be a 
spherical harmonic of degree n. 

A spherical harmonic of degree n must be of the form rn multiplied by 
a function of 0 and +, i t  must therefore be of the form ArnSn, where Sn 
is a solution of equation (136). 

Any solution Sn of equation (136) is said to be a surface-harmonic of 
degree n. 

235, THEOREM. I f  V is any spherical harmonie of degree n, then 
V/r2"+l is a spherical harmonic of degree - (n  + 1). 

For V must be of the form ArnSn, so that 
v ASn -- 

. p + i  - Tnfi 3 

which is known to be a solution of Laplace's equation, and is of dimensions 
- (n + 1) in r. Conversely if 'CT is a spherical harmonic of degree - (n + l), 
then ++lV is a spherical harmonic of degree n. 

236. THEOREM. I f  V iS any spherical harmonie of degree n, then 
as+t+ec y 
arc"ayt a p  3 

where s, t ,  and zc are an y integers, is a spherical harmonie of degree n - s - t - u. 

For 

so that on differentiation s times with respect to x, t times with respect to y, 
and u times with respect to z, 

which proves the theorem. 

237. THEOREM. I f  Sm, Sn are two surface harmonies of diferent degrees 
m, n, then 

where the integration is over the surface of a unit sphere. 

put @ = p&,, Y = and take the surface to be the unit sphere. 
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Thus the volume integral vanishes, and the equation becomes 

or, since n is, by hypothesis, not equal to m, 

Harmonics of Integral Deyree. 

238. The following table of examples of harmonics of integral degrees n-O, - 1, - 2, 
+ 1, is taken from Thomson and Tait's ATatzcral Philosophy. 

a vo a vo a vo Also if Vo is any one of these htirmonics - - , - are harmonics of degree- 1, 60 ax ) ay az 
air, avo avo 

that r  - , T - , r -- are harmonics of degree zero. As examples of harmonics derived ax ay az 
in this way may be given 

By differentiating any harmonic 6 any number 8 of times, multiplying by r28-1 and 
differentiating again s - 1 times, we obtain more harmonics of degree zero. 

n= - 1. Any harmonic of degree zero divided by T or differentiated with respect to 

n= -2. By differentiating harrnonics of degree - 1 with respect to xl y or z we obtain 
harmonics of degres - 2, e.g. 

x y z z  z r+z 5 ;8, a, t a n  ;ilog- T-z' rz' 

n=l. Multiplying harmonics of degree -2 by I;: we obtain harrnonics of degree 1, e.g. 
r+z x,y,z, s t a n l $ ,  .zlog--2ri 
r-Z 

Rational Integral Harmonics. 

239. An important clam of harmonic consists of rational integral algebraic 
functions of z, y, B. In the most general homogeneous function of x, y, z of 
degree n there are + (n + 1) (n + 2) coefficients. If w e  operate with Va we 
are left with a homogeneous function of x, y, z of degree n - 3, and therefore 
posseasing 4 n (n - 1) coefficients. For the original function to be a spherical 
harmonic, these in (n - 1) coefficients must al1 vanish, so that we  must 
have i n  (n  - 1) relations between the original 4 (n + 1) ( n  + 2) coefficients. 

14 
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Thus the number of coefficients which may be regarded as independent in 
the original function, subject to the condition of its being a harrnonic, is 

+(n+ 1) (n  + 2)- i n  (n- l), 
or 212 + 1. This, then, is the 
degree n, 

For instance, when n = 1 

possessing three independent 

number of independent rational harrnonics of 

the most general harrnonic is 
As + By + Oz, 

arbitrary constants, and so representing three 
independent harrnonics which may conveniently be taken to be x, y and z. 

When n =  2, the most general harrnonic is 

a& + +ye + cza + dyz + ezx + fxy, 
where a, b, o are subject to a + b + c = O. The five independent harrnonics 
may conveniently be taken to be 

yz, ZX, xy, ma - ya, x2 - za. 

When TL = 0, 2n + 1 = 1. Thus there is only one harrnonic of degree zero, 
and this may be taken to be V =  1. 

Corresponding to a rational integral harrnonic V ,  of positive degree n, 

v, there is the harrnonic of degree - (n  + 1). These harrnonics of degree 

- (n + 1) are accordingly 2n t 1 in number. Thus the only harrnonic of 
1 

this kind and of degree - 1 is -. r 

Consider now the various expressions of the type 

where s + t + u = n .  

These, as we know, are harrnonics of degree - (n  + l), and from § 235 
v, it is obvious that they must be of the form *, where K is a rational 

1 
integral harmonic of degree n. Since - is harmonic, Va r 

The most general harrnonic obtained by combining the harmonics of 
type (13'1) is 

........................ (139), 
but by equation (138) this can be reduced at  once to the form 
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where p + p = n - 1 and p' + q' = n. This again may be replaced by 

so that there are 2n + 1 arbitrary constants in all, and it is obvious 
on examination that the harrnonics, multiplied by al1 the coefficients 

1 
B,, . . . B i ,  . . . are independent. Thus, by differentiating - n times, we have 

r 
ttrrived at 2n + 1 independent rational integral harmonics, and i t  k known 
that this is as many as there are. 

Expansion i n  Rational Integral Ha~monics. 

240. THEOREM*. The value of any jnite single-valued function of 
position on a spherical surface can be expressed, ut euery point of the. 
surface at which the function is continuous, as a series of rational integral 
ha~monics, provided the function has only a Jinite nurnber of lines and points 
of discontinuity and of maxima and minima on the surface. 

Let 3 be the arbitrary function of position on the sphere, and let the 
sphere be supposed of radius a. Let P be any point outside the sphere a t  a 
distance f from its centre 0, and let Q be any point on the surface of 
the sphere. 

Let PQ be equal to R, so that 
R2 = f + a2 - 2af cos POQ. 

We have the identity 

where the integration is 
which i t  is easy to prove 

A point charge e placed at 

taken over the surface of the sphere, a result 
by integration. 

e f2 -aZ  P induces surface density -- - on the surface of 
4na R3 

ea the sphere (§ 214), and the total induced charge is --. The identity is therefore 

obvioua from electrostatic principles. 
f 

* The proof of this theorem is stated in the form whioh seems best suited to the requirements 
of the student of electricity and makes no pretenoe at absolute mathematical rigour. 

14-2 
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Now iotroduce a quantity u defined by 

us- f ;-Jg ....... . . . . . . ... . .. . . . ... . . (I41), 
so that u is a function of the position of P. If P is very close to the 
sphere, f2 - aa is small, and the important contributions to the integral mise 
from those terms for which R is very small: i.e. from elements near to P. 

I f  the value of F does not change abruptly near to the point P, or 
oscillate with infinite frequency, we can suppose that as P approaches the 
sphere, al1 elements on the sphere from which the contribution to the 
integral (141) are of importance, have the same F. This value of F will of 
course be the value a t  the point at which P ultimately touches the sphere, 
say fi. Thus in the limit we have 

a 
= Fp - , by equation (140), f 
= f i ,  

when in the limit f becomes equal to a. 
If the value of P oscillates with infinite frequency near to the point P, we obviously 

may not take F outside the sign of integration in passing from equation (141) to 
equation (142). 

If the value of F is discontinuous at the point P' of the sphere with which P 
ultimately coincides, we again cannot take F outside the sign of integration. Suppose, 
however, that we take üoordinates p, 9 to express the position of a point P' on the surface 
of the sphere very near to P', the coordinate p being the  distance^^^', and 9 being the 
angle which Pr' makes with any line through P in the tangent plane at P. Shen 3' 
may be regarded as a function of p, 9, and the faot that F i s  discontinuous a t  P is expressed 
by saying that as we approach the limit p = O, the limiting value of F (assuming such a 
limit to exist) is a function of 9-be. depends on the path by which P' ia approached. 
Let P (9) denote this limit. Shen 

= p ( 9 )  (y) d9, by equation (140). 
2s 

On passing to the limit and pht ing a=f, we find that 
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i.e. u is the arerage value of F t a k e n  on a srnaII circle of infinitesimd radius surrounding 
P. In particular, if P changes abruptly on crossing a certain line through P', having a 
value FI on one side, and a value F2 on the other, then the limiting value of u is 

u=+ (FI+ Pz). 
If we take 8 to denote the angle PO&, 

a2 - 2af cos 8 
f" 

or, arrangmg in descending powers of J., 

... in which e, e, are functions of 8, being obviously rational integral 
functions of cos 8. When 8 = 0, 

1 1  a a2 
R'rf=;(1+7+f"+... . 

and when 8 = T. 

so that when 8 = 0, 
< = E =  ...= 1, 

and when 0 = T, 
-I:=e=-E-... =l. 

It is clear, therefore, that the series (144) is convergent for 8 = O  and 
8 =T; and a consideration of the geometrical interpretation of this series 
will shew that i t  must be convergent for al1 intermediate values*. 

Differentiating equation (144) with respect to f, we get 

If we multiply this equation by 2f, and add corresponding sides to 
equation (144), we obtain 

and integrating over the surface of the Multiplying this equation by - - 
47ra ' 

* Being B power series in cos8 it oan only have a single radius of oonvergence, and this 
cannot be between cos 8=1 and oos O= - 1. 
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or, by equation (141), 
1 "  u=- z (2, + 11 / k n  (;y+' as. 

47ra2 0 

If the function P is continuous and non-oscillatory at  the point P, then 
on passing to the limit and putting f = a, we obtain 

If F is discontiniious and non-oscillatory, the11 the value of the series on the right is 
not 4 but is the function defined in equation (143). 

Now i t  is known that I J r  is a spherical harmonic, so that we have 

where the differentiation is with respect to the coordinates of Q. Hence 1/R 
must be of the form (cf. 5 233) 

where Sn is a surface harmonic of order m. Cornparhg with equation (144), 
and remernbering that a in this equation is the same as the r of equation 
(147), we see that P,, regarded as a function of the position of Q, is a surface 
harmonic of order n, and we have already seen that i t  is a series of powers 

of cos 0, or of -, the highest power being the nth, so that rm& is a rational r 
integral harmonic of orcler n. I t  follows th& 

being the sum of a number of terms eacli of the forrn r n e ,  is also a rational 
integral harmonic of order TL, Say K. On the surface of the sphere 

so that equation (146) becornes 
1 " 2 n + l  Y=:--2- V, ....................... .(14S), 

47raa an 
which establishes the result in question. 

241. THEOREM. The ex~nnsz'on of an a r b i t ~ a y  function of position on the 
mface  of a sphere as a series of rational integral harmonies is unique. 

For if possible let the same function P be expanded in two ways, say 

P =  dm, ............................ ..(149), 
P= xJg)I .............................. (150), 

where Wn, W,' are rational integral harmonics of order n. Then the function 

u=Z(K-Xl) 
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is a spherical harmonic, which vanishes at  every point of the sphere. Since 
Vau = O a t  every point inside the sphere i t  is impossible for u to have either 
a maxinium or a minimum value inside the sphere (cf. 5 52), so that u = O  
a t  every point inside the sphere. Since W, - W,' is a harmonic of order n, 
it must be of the form raS,, where Sn is a surface harmonic, so that 

u = ZrnSn = o. 
Thus u is a power series in r which vanishes for al1 values of r frorr. C =  O 
t o  r = a. Thus Sn = 0 for al1 values of n. Hence W,= W,', and the two 
expansions (149) and (150) are seen to be identical. 

242. I t  is clear that in electrostatics we shall in general only be 
concerned with functions which are finite and single-valued at  every point, 
and of which the discontinuities are finite in number. Thus the only classes 
of harrnonics which are of importance are rational integral harmonics, and in 
future we confine our attention to these. We have found that 

(i) The rational integral harmonics of degree lz are (2n + 1) in number, 
1 and may al1 be derived from the harmonic - by differentiation. 
r 

(ii) Any function of position on a spherical surface, which satisfies the 
conditions which obtain in a physical problem, can be 
expanded as a series of rational integral harinonice, P"P P' 
and this can be done only in one way. 

243. Before considering these harmonics in detail, 
we may try to form some idea of the physical concep- 
tions which lead t o  them most directly. 

1 
The function - is the potential of a unit charge 

r 
at the origin. If, as in $64, we consider two charges 
f e at  points O', O" at  equal small distances a, -a 1 Q'o O' 

from the origin along the axis of x, we obtain as the Fia. 73. 

potential at  P, 

I f  we take - e . P F  = 1, we have a doublet of strength - 1 parallel to the 
- 

axis of x, and the potential a t  P is . In fact this potential is exactly ax 
x 

the same as -- already found in $ 64. 
P 
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Thus the three harmonics of order - 1 obtained by dividing the rational 
a i  a i  a i  integral harmonics of order 1 by ra, namely - - 
a8 (7 ) .  (J 5 (F), are 

simply the potentials of three doublets each of unit strength, parallel to 
the negative axes of x, y, a respectively. 

If in fig. 73 we replace the charge e a t  0' by a doublet of strength e 
parallel to the negative axis of x, and the charge - e a t  O" by a doublet 
of strength - e parallel to the negative axis of x, we obtain a potential 

If instead of the doublets being parallel to the axis of x, we take them 
parallel to the axis of y, we obtain a potential 

So we can go on indefinitely, for on differentiating the potential of 
a system with respect to x we get the potential of a system obtained 
by replacing each unit charge of the original system by a doublet of unit 
strength parallel to the axis of x. Thus al1 harmonics of type 

(cf. 5 236) can be regarded as potentials of systeins of doublets a t  the prigin, 
and, as we have seen (§ 239), i t  is these potentials which give rise to the 
rational intepal harmonics. - 

244. For instance in finding a sgstem to give potential , we may replace the 

1 1 
charge O in fig. 73 by a charge - a t  distance 2a from O and -- a t  O. The charge a t  O' 

2a 2a 
may be similarly treated, so that the whole system is seen to consist of charges 

E, - 2E, E, 
1 at the points x= - b, O, b where b=2a, and Ea=- a=. 

A sgstem of this kind placed a l o ~ g  each axis gives a charge -6E a t  the origin md 
a charge E a t  each corner of a rcgular octahedron having the origin as centre. The 
potential 

=O, 

so that such a system sends out no lines of force. 

245. The most important elass of rational integral harmonics is formed 
by harmonics which are symmetrical about an axis, say that of x. There is 
one harmonic of each degree n, namely that derived from the function 

These harmonics we proceed to investigate. 
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LEGENDRE'S COEFFICIENTS. 
246. The function 

1 . .  ......................... (151) 
Jaa - 2ar cos B + 3.2 

can, as we have already seen (cf. equation (144)), be expanded in a convergent 
series in the form 

1 1 r rZ T~ ...- ... = - + P - + E , +  tP,- + ...( 152) 
da2 - 2ar cos 8 + ra a ' aP a*l 

if a is greater than r. Here the coefficients e, E,  ... are functions of cos 8, 
and are known as Legendre's coefficients. When we wish to specifp the 
particular value of cos 8, we write P, as P, (cos 0). 

Interchanging r and a in equation (152) we find that, if r > a, 

1 =-+e,+&,+ 1 n na ............ (1.53). 
Ja2- 2ar cos 0 + r2 r 

We have already seen that the functions z, e, ... are surface harmonies, 
each term of the equations (152) and (153) separately satisfying Laplace's 
equation. The equation satisfied by the general surface harmonic 8, of 
degree PZ- namely equation (136), is 

a a2sn 
-(Sh0 sin B a8 2) + n (n + 1) Sn = 0. 

I n  the pres& case P, is independent of +, so that the differential equation 

or, if we write p for cos 8, 

a a% 
{ ( l  - pz) .')a;} + n (n + 1) P. = O ............... (154). 

This equation is known as Legendre's equation. 

247. By actual expansion of expression (151) 

so that on picking out the coeEcient of rfi, we obtain 

Thus eL is an even or odd function of p according as n is even or odd. It 
will readily be verified that expression (155) is a solution in series of 
equation (154). 
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Let us take axes OX, Oy, Oz, the axis Ox to coincide with the line 0 = 0, 
then pr = r cos 0 = 8. Then it appears that P,rn is a rational integral function 
of x, y, and z of degree PI,  and, being a solution of Laplace's equation, i t  must 
be a rational integral harmonic of degree n. We have seen that there can 
only be one harrnonic of this type which is also symmetrical about an axis ; 
this, then, must be grn. 

248. If we write 
R (a2 - 2 a r p  + r 2 ) - -  = f (a) 

we have, by Maclaurin's Theorem, 

If P is the point whose polar coordinates are a, O and 
1 

Q is the point T, 0, then f (a )  = - . The Cartesian co- 
P& 

ordinates of P may be taken to be a, O, O ;  let those of & be 

Then f (a) = 
1 

a Y, 5. , so that as regards 
d(x - a)a + yz + za 

differentiation off (a), 
a a O 
-- Fra. 74. 
&--Ga 

so that equation (156) becomes 

and on cornparison with expansion (153), we see thatr 

giving the form for P, which we have already found to exist in 5 245. 

249. A more convenient form for ea can be obtained as follows. 

Let 1-hy=(l-2hp-t-ha)* .,.....,..........,,. (157), 
ya -1  

so that y=p+h-  .... ............,.......... 2 
(158). 
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From this relation we can expand y by Lagrange's Theorem (cf. Edwards, 
Diferential Calculus, 5 511) in the form 

Differentiating with respect to P, 

From equation (157), however, we find 

Equating the coefficients of hn in the two expansions, we find 

250. This l a ~ t  formula supplies the easiest way of calculating actual 
values of P,. The values of z, e, ... 8 are found to be 

(P) = PI 

(P) = 4 ( 3 ~ a  La l)J 

(P )  = ('p3 - 3 ~ ) J  
8 (p) = & (35p4 - 30p2 + 3), 

15 (p) = Q (63p5 - 70pS + 15p), 

(p)  = & (23lP6 - 315p4 + 105p2 - 5) ,  

%(p)  = & (42gPv - 693p5 + 315p8- 35p). 

251. The equation ($ - 1)" = O has 2n real roots, of which n may be 
regarded as coinciding at  p = 1, and n at p = - 1. By a well-known theorem, 
the first derived equation, 

a - (p2 - 1)" = O, 
ap 

will have 2n - 1 real roots separating those of the originaI equation. 
Passing to the nth derived equation, we find that the equation 

has n real roots, and that these must al1 lie between p = - 1 and p= t 1. 
The roots are al1 separate, for two roots could only be coincident if the 
original equation (pa - i)n = O had n + 1 coincident roots. 

Thus the n roots of the equation P, (EL) = O are al1 real and sepamte and 
lie between p = - 1 and p = + 1. 
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252. Putting p = 1, we obtain 

= I + h + h z +  ..,, 
so that = = . .. = 1. Similarly, when p = - 1, we find (cf. 5 240) that 

-e=+z =-e= ...=- 1. 
We can now shew that throughout the range from p =- 1 to p= + 1, 

the nurnerical value of P, is never greater than unity. We have 

(1 -2hcos~+h3-*=(1-he~-* ( l -he+e) - f r  

so that on picking out coefficients of hn, 
1 . 3  ... 2 n - 1  1 1 . 3  ... 212-3 P,= 2 cos + - 2cos(n-2)6+ .... 

2 . 4  .,. 2n 2 ' 2 . 4  ... 2 n - 2  

Every coefficient is positive, so that P, is numerically greatest when each 
cosine is equal to unity, i.e. when @=O. Thus P, is never greater than 
unity. 

Fig. 75 shews the graphs of e, E, E,  3, from p = - 1 to p = + 1, the 
value of 0 being taken as abscissa. 
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Relations between coeficients of di$erent orders. 

253. We have 
m 

(1  - 2hp+hn)-4 = 1 + 2 h n Z  ..................... 
1 

(160). 

Differentiating with regard to h, 

m m 

so that (p - h) ( 1  + ChnP,) = ( 1  - 2hp + h2) %ha-'P,. 
1 1 

Equating coefficients of hn, we obtain 

(n+l )P ,+ l+nP, - ,=  (2n+ 1 ) p G  .................. (1  62). 

This is the difference equation satisfied by three successive coefficients. 

Agnin, if we differentiate equation (160) with respect to p 

z, h ( i - 2 h p + h 2 ) - g = ~ h n -  a~ ' 
so that, by combining with (161), 

0 ap, ZnhnG = ( p  - h) Shn - . 
1 aP 

Equating coefficients of hn, 

Differentiating (162), we obtain 

ae Eliminating p - from this and (163), 
aP 

ae+, a&, ( 2 n + l ) P , = - - - -  ..................... a~ aP 
(1  64). 

By integration of this we obtain 

EL+l b.4 - E - 1  ( p )  .................. (16% 

whilst by the addition of successive equations of the type of (164), we 
ob tain 

a 
- P , = (  Zn-1)  P,-,+( 2 n - 5 )  P,-,+... ............ 
acl 

(166). 

IRIS - LILLIAD - Université Lille 1 



222 Methodsfor the S'olution of SpeciaZ Problerns [CH. VIII 

254. We have had the general theorem (5 237) 

//&,&,,dm =O, 
from which the theorem 

follows as a special case. Or since 

........................ II: E(p )  Pm(p)dp= 0 (167). 

To find /+' P (p) dp, let US square the equation 

multiply by dp, and integrate from p = - 1 to p =  + 1. 
The result is 

al1 products of the form P,P, vnnishing on integration, by equation (167). 

Thus I t l ~ d p  is the coefncient of hZG in 
-1 

ie. in 

and this coefficient 

We accordingly 

3 
is easily seen to be --- 

2 n + 1 '  
have 

255. We can obtain this theorem in another way, and in a more general form, by 
using the expansion of 3 240, namely 

F~ = k2 ! (28 + 1) (COS e)  a, 
w'nere 8 is the angle between the point P and the element dS on the sphere. This 
expansion is true for any function P subject to ce r t~ in  restrictions. Taking 3' to be a 
surface harmonic Sn of order n, we obtain 
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al1 other integrals vanishing by the theorem of 8 237. Thus 

This is the general theorern, of which equation (168) expresses a prticular case. To 
pass to this particulm case, we replace Sn by P,, and obtain, instead of equation (169), 

e 

agreeing with equation (168). 

Expansions in  .Legendre's Coeficients. 

256. THEOREM. The value oj' any function of 8, which is $nite and 
sin-qle-valued from 8 = 0 to B = T, and which has only a $mite lzz~mber of 
discontinuities and of maxima and minima within this range, can be 
expressed, for every value of 0 within thh  range for which the function is 
continuous, as a series of Legendre's Coeficients. 

This is simply a particular case of the theorem of 5 240. I t  is therefore 
unnecessary to give a separate proof of the theorem. 

The expansion is easily found. Assume i t  to be 

then on multiplying by P, (p,) dp, and integrating from p = - 1 to p = + 1, 
we obtain 

II: P. ( P ) f  G*) d~ = o=o aJ+l -1 E (P) Pn (p) dp 

every integral vanishing, except that for which s = n. Thus 

giving the coefficients in the expansion. 

If f ( p )  has a discontinuit~ when p = the value assumed by the 
series (168) on putting p = b is, as in $ 240, equal to 

4 {fi (f i) +fi ( P O ) ]  ....................S...... (lm 
where fi&), fP(b) are the values o f f  &) on the two sides of the discon- 
tinuity. 
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257. We are now in a position to apply the results obtained to problems 
of electrostatics. 

Consider first a sphere having a surface density of electricity Sm. The 
potential at any inteinal point P is 

47T r" 
= m a 2  F~ (S,,)oo,s=i, by the theorems of $5 237 and 255, 

this expression being evaluated at P. 

Similarly the potential at any external point P is 

These potentials are obviously solutions of Laplace's equation, and i t  is 
easy to verify that they correspond to the given surface density, for 

This gives us the fundamental property of harrnonics, on which their 
application to potential-problems depends : A distribution of surface density 
Sn on a spl~ere gives rise to a potential whzch at every point zs proportional 
to Sn. 

258. The density of the most general surface distribution can, by the 
theorem of Ej 240, be expressed as a sum of surface harrnonics, say 

u=s,,+ sl+s*+ ..., 
in which 8, is of course simply a constant. The potential, by the results of 
the last section, is 

V =  ha bo + (:) + $(:y+ ...} at  an interna1 point ,..(174), 

V = 4?ia k, c) + 5 (a)' + (E)' + ... 1 at an external point . . . (175). 
3 r  5 r  
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1. Potential of spherical cap and circular ring. 

259. As a first example, let us find the potential of a spherical cap 
of angle a-Le. the surface cut from a sphere by 
a right circular cone of semivertical angle a- 
electrified to a uniform surface densify a,. 

We can regard this as a complete sphere 
electrified to surfiace density o, where 

a=o, from B=0 to 8=a,  

a=O from 8 = a  to O = T .  

The value of u being symmetrical abont the 
axis 8 = 0, let us assume for the value of a 
expanded in harmonies FIG. 76. 

c=ao i-a,E:(cos 6)+a2&(cos 6)+ .... 
then, by equation (171), 

P, (cos 8)  d (cos 0) 

= B CO (COS a) - P , + 1  (COS a)} 

by equation (165), except when n =O. For this case we have 
e=o 

a, = 4 a, d (cos 8) = 4 go (1 - cos a). 

P,, (cos a) - P,,, (cos a) P, (cos O) . 
n=l 1 

It is of interest to notice that when 8= cc, the value of a given by 
this series is a= *go, as it otight to be (cf. expression (172)). 

The potential a t  an externai point may now be written down in the 
form 

........ .(176), 
and that a t  an interna1 point is 

e-l (cos a) - P,+l (cos a) 
V =  Bsao, [Q - w s  a) + I 

~ = l  Sn +1 
(:Y P. (cos B)] 
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On differentiating with respect to a, we obtain the potential of a ring of 
line density goada. At a point a t  which r > a, we differentiate expression 
(1'16), and obtain 

n- m 

P. (cos a) sin a (:r+'& (cos O)] , 
or, putting auodcr = r and simplifying, 

~ t = m  n+i 

V = 2 , ~  Z p. (CO. a) sin pi (:) (COS 8) . . . . . . . . . . . . (1 78). 
n=O 

Obviously the potential at a point at which r <  a can be obtained on 

260. These last results can be obtained more directly by considering 
that at  any point on the axis 8 = O  the potential is 

2 a m  sin a v=-- 
dr2 i- aa - aar cos a ' 

or, if T > a, 
21ra~ sin a n=m V =  B E, (cos a) (:r, 

n-O 

and expression (178) is the only expansion in Lagrange's coefficients which 
satisfies Laplace's equation and agrees with this expression when 8 = 0. 

II. Unitwulatecl sphere in field of force. 

261. The method of harmonics ennbles us to find the field of force 
produced when a conducting sphere is introduced into any permanent field 
of force. Let us suppose first that the sphere is uninsulated. 
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259-3611 Spherical Harmonies 227 

Let the sphere be of radius a. Round the centre of the field describe 
a slightly larger sphere of radius a', so small as not to enclose any of the 
fixed charges by which the permanent field of force is produced. Between 
these two spheres the potential of the field will be capable of expression in 
a series of rational integral harrnonics, Say 

V = K + K + K +  .......................... .(1?'9). 

The problem is to superpose on this a potential, produced by the 
induced electrification on the sphere, which shall give a total potential 
equal to zero over the sphere r = a. Clearly the only form possible for 
this new potential is 

Thiis the total potential between the spheres r = a and r = a' is 

K { ~ - ; } + K ~ - ~ / + E { ~ -  (;)\+...+.r1- ( 

Putting K = rnSn, the surface density of electrification 
by Coulomb's Law, 

1 a um+l 
- 4%- - 2 SB {i (yn)  - (-)} P-a 

1 =-- 
4%- 

2 aW1(2n + 1) Sn 

=-- l Z(Zn+l)V,. 
47ra 

on the sphere is, 

If n is different from 

where the integration is 

This result is indeed obvious from $ 258, on considering that the 
surface electrification must give rise to the potential (MO), 

zero, 

over any sphere, so that 

and 

Thus the total charge on the sphere 

1 =-- K .  47raa = - Xa, 
4n-a 

and G: was the potential of the original field at  the centre of the sphere. 
15-2 
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262. Incidentally we may notice, as a consequence of (1811, that the 
mean value of a potential averaged over the surface of any sphere which 
does not include any electric charge is equal to the potential at the 
centre (cf. 5 50). 

If the sphere is introduced insulated, we superpose on to the field 
already given, the field of a charge E spread uniformly over the surface of 

E 
the sphere, and the potential of this field is -. We obtain the particular 

r 
case of an uncharged sphere by taking E = Ka, and the potential of this 

field, nsmely $ (:) , just annihilates the first term in expression (IBO), to 

which i t  has to be added. 

It will easily be verified that, on taking the potential of the original 
field to be E=Fx, we arrive at the results already obtained in § 217'. 

III. Dielectric sphere in a jîeld of force. 

263. An analogous treatnlent will give the solution when a homo- 
geneous dielectric sphere is placed in a permanent field of force. The 
treatment will, perhaps, be suficient'y exemplified by considering the case 
of the simple field of potential 

x s  Fx= ?BI. 

and for the potential T$ inside the sphere 

9= /3rSi, 
no t e m  of the form 5 being iucluded in Y;, it would give infinite 

r" 
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potential a t  the origin. The constants a, are to be determined from 
the conditions 

a 
These give a+ - =Ba, 

ua 

whence 

so  that 

Thus the lines of force inside the dielectric are al1 parallel t o  those of 

The the original field, but the intensity is diniinished in the ratio - 
K + 2 '  

field is shewn in fig 78. 

IV. Nearly spherical surfaces. 

264. If Y= a, the surface r = a + X, where x is a function of iî and 4, wilI 
represent a surface which is nearly spherical if x is small. I n  this case x 
anay be regarded as a function of position on the surface of the sphere r = a, 
and expanded in a series of rational integral harmonies in the form 

x=S,+S,+S,+ ..- 
in which S,, S,, ... are al1 small. 

The volume enclosed by this surface is 

If S, = 0, the volume is that of the original sphere r = a. 
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The following special cases are of importance : 

r = a + €Pl. To obtain the form of this surface, we pass a distance a cos B 
along the radius at each point of the sphere r = a. I t  is easily seen that 
when e is small the locus of the points so obtained is a sphere of radius a, 
of which the centre is at  a distmce e from the origin. 

r = a + qS,. The niost general form for aJ, is lx + my + nz, and this 
may be expressed as a€ cos 8, where 8 is now rneasured from the line of 
which the direction cosines are in the ratio E : rn: n. Thus the surface is 
the same as before. 

r = a + S,. Since r is nearly equal to a, 

+= aa+ 2aS, 

this may be written 

or d + ya + za = aa + an expression of the second degree. 

Thus the surface is an ellipsoid of which the centre is at  the origin. I t  will 
e easily be founa that r = a + el: represents a spheroid of semi-axes a + e, a - - 
2 '  

3e 
and therefore of ellipticity - . 

2a 

265. We can treat these nearly spherical surfaces in the same way in 
which spherical surfaces have been treated, neglecting the squares of the 
small harinonics as they occur. 

266. As an example, suppose the surface r = a + 8, to be a conductor, 
raised to unit potential. We assume an external potential 

.where A and B have to be found from the condition that V-1 when 
r = a + 8,. Neglecting squares of Sn, this gives 

a an 
and V=T+Tii+lSw 

By applying Gauss' Theorem to a sphere of radius greater than a we 
1 

readily find that the total charge is a, the coefficient of -. Thus the r 
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capncity of the conductor is different from that of the sphere only by 
terms in S,1, but the surface distribution is different, for 

the surface density becoming uniform, as i t  ought, when n = 1, i e .  when the 
conductor is still spherical. , 

267. As a second example, let us examine the field inside a spherical 
condenser when the two spheres are not quite concentric. Taking the centre 
of the inner as origin, let the equations of the two spheres be 

We have to find a potential which shall have, say, unit value qver r=a,  
and shall vanish over r = b + EE. Assume 

when B and D are sinall, then we must have 

These equations must be true ail over the spheres, so that the coefficients 
of 8 and the terms which do not involve < must vanish separately. Thus 

From the first two eaiiations 
b - a  A = -  

ab ' 
1 

and this being the coeûîcient of - in the potential, is the capacity of the r 
condenser. Thus to a 6rst approximation, the capacity of the condenser 
remnins unaltered, but since B and D do not vanish, the surface distribution 
is altered. 
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V. Collection of Electric Charges. 

267a. If a collection of electric charges are arranged in any wrty 
whatever subject only to the condition that none of them lie outside the 
sphere r=a ,  then the potential at any point outside the sphere must be 

where e is the total charge inside the sphere (cf. 5 266) and S,, S,, ... are 
surface harmonics which depend on the arrangeinent of the charges inside 
the sphere. 

If the total charge is not zero, the potential can also be treated as in 
5 67, and on comparing the two expressions obtained for the potential, we 
c m  idmtify the harmonics S,, S,, .... We find that 

and i t  will be easily verified by differentiation that the expressions on the 
right are harmonics. 

This example is of some interest in connection with the electron-theory of matter, for 
a collection of positive and negative charges al1 collected within a distance a of a centre 
may give some representation of the structure of a molecule. The to td  charge on a 
molecule is zero, so that we must take e=O, and the potential becoues 

1 
The most general form for SI is (cf. fj 239) ; ( A s  + By + Oz), or p cos O, where B is the 

angle between the linea from the origin to the point x, y, z and that to the point A, B, 0 
and p is J(Aa+B2+C3.  

p cos O Thus the term which is important in  the potentid when p. is large is - , shewing 
r2 

that a t  a sufficient distance themolecule hm the same field of force as a certain doublet of 
strength p. Clearly when p has anyvalue different from zero, the molecule is "poliirisedu 
(cf. fi 142) in Faraday's sense. If p=O,the potential becomes 

shewing that the force now falls off as the inverse fourth power of the distance. 

It is worbh noticing that the average force a t  any distance r is always zero, so that to 
obtain forces which are, on the average, repulsive, we have to assume the presence of 
terms in the potential which do not satisfy Laplace's equation, and which accordirigly 
are not derivable from forces obeying the simple law e/rz (cf. 3 192). 
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General Theory of  Zona1 Hamnonics. 

268. The general equation satisfied by a surface harrnonic of order n, 
which is syinmetrical about an axis, has already been seen to be 

One solution is known to be P,, so that we can find the other by 
a known method. Assume Sn=P,u as a solution, where u is a function 
of p. The equation becomes 

and, since P, is itself a solution, 

Multiplying this by u and subtracting from (183), we are left with 

or, multiplying by Pn and rearranging, 

On integration this becomes 
a . ~  

(1 -pz) P,a - = constant. 
ap 

We may therefore take 
d~ .=A+. / - -  (/A" 1)e9 

in which the limits may be any we please. If we write 

the complete solution of equation (182) is 

Sn=P,u=AP,+B&. 

269. The two solutions Pn and Q, can be obtained directly by solving 
the original equation (182) in a series of powers of p. 

Assume a solution 
S, = bO,d + hltLr+' + b2p"+P + .... 
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substitute in equation (182), and equate to zero the coefficients of the 
different powers of p. The first coefficient is fonnd to be boy ( r -  l), so 
that if this is to vanish we must have r =  O or r = 1. The value r = O leads 
to thc solution 

n ( n + l )  ( n - 2 ) n ( n + l ) ( n + 3 )  u. - 1 - ---- 
O - 1 . 2  rP+  EL'- ... 

1 , 2 . 3 . 4  

while the value r = 1 leads to the solution 

The complete solution of the equation is therefore 

au, 4- f lzb, .  

If n is integral one of the two series terminates, while the other does 
not. If n is even the series u, terminates, while if n is odd the terminating 
series is u,. But we have already found one terminating series which is 
a solution of the original eqiiation, namely P,. Hence in either case the 
terminating series must be pïoportional to P,, and therefore the infinite 
series must be proportional to Q,. 

270. We can obtsin a more useful form for Q, from expression (184). 
The roots of P, (P) = O  are, as we have seen, n in number, al1 real and 
separate, and lying between - 1 and + 1. Let us take these roots to be 

on resolving into partial fractions. Putting p = +- 1 and - 1, we find a t  once 
that a = + ,  b = - Q .  

In the general fraction 
1 - -- 1 
U - (z-a-,)(a-a&.. ' 

let us suppose al1 the factors in the denomi~letor to be distinct, so that we 
may write 

1 Cl -=- Ca -1- --+ ..*. D x-a, s - a s  

On putting a: = a,, we obtain a t  once 

c, = 
1 , cto. 

(a, - 1 4  ((I? - a3) (a, - a,) . . . 
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Now let a, and a., become very nearly equal, say a,= a, + dy ,  then 

cl= - 1 
da, (a, - a,) (a, - a,) . . . ' 

while 

The fractions 

L 
c, = da, (a, - a 3  (a, - a3 . . . ' 

now combine into (cl + 4) x - (cl a, - c2 CS) 
(Z - a,Y 9 ., 

and on putting this equal to 

it is clear that the value of c l  must be taken to be cl + c,. Now 

Cl + c, = - ' i  1 - 1 

da1 (n, - a,) (a, - a,) . .. (al - as) (a: - a,) ... 1 
a (8 - a1>a{ =-{ 
a 5  D )+=a,' 

and this remains true however many of the roots a,, a, . .. , coincide among 
themselves, 'so long as they do not coincide with the root a;. Thus, in 
expression (185), the value of c, is 

Putting PA O= R (P), 
P - '-78 

we find that 

Since (p  - a,) R (p) is a solution of equation (182), we find that 

On putting p = cc,, this reduces to 

giving, on multiplication by R (a,), 

a - [ ( l  - a,,!') .IR (a,)j2] = 0. 
3% 

Hence c, = O. 
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Equation (185) now becomes 
1 =i(- 1 -- )+2  AL- 

( p -  - P + I  b-Q' 
so that, on integration, 

On multiplying by P, (p), we obtain from equation (184), 

where Wnp1 is a rational integral function of p  of degree n - 1. 

It is now clear that Q, (p) is finite and continuous from p  =- 1 to p  = + 1, 
but becomes i d n i t e  at  the actual values p = f 1. 

To find the value of W,-, we substitute expression (186) in Legendre's 
equation, of which it is known to be a solution, and obtain 

Since W,, is a rational integral algebraic function of p of degree n - 1, it  
can be expanded in the form 

K-l=alEL-,+aP+2+ ... , 
so that 

Comparing with (187), we find that a, = O  when s is odd, and is equal to 

when s is even. 

p + 1  212-1 2n - 5 
and Qn = (p) log .- -- l+i.nP,-l+3(n-1)P,3+-.. . 
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271. When we are dealing with complete spheres i t  is impossible for 
the solution Q, to occur. If the space is limited in such a way that the 
infinities of the Q, harmonie are excluded, i t  may be necessary to take 
into account both the P, and Q, harmonics. An instance of such a case 
occurs in considering the potential at  points outside a conductor of whieh 
the shape is that of a complete cone. 

Tesseral Harmonies. 
272. The equation satisfied by the general surface harmonic Sn is 

As a solution, let us examine 
8, = O@, 

where O is a function of 0 only, and is a function of $I only. On 
substituting this value in the equation, and dividing by @@/sin2 8, we obtain 

sin 0 ô a@ 1 a2@ 
sin 0 - +-+n( l i+1 ) s in2B=0 .  ( O ae as) @ap 

We must therefore have 
1 a2Q (aw= b, 

sin 9 a aB (sin B $) + n (n + 1) sin2 0 = - K. 

The solution of the former equation is single valued only when K is of the 
form - mP, where m is an integer. In this case 

@ = Cm cos na+ + D, sin m+, 
and O is given by 

1 a m2 

- sin 0 -(sin d e  0 5) + {n(n+~)--} sina B @ = O ,  

or, in terms of p, 

an equation which reduces to Legendre's equation when m = 0. 

273. To obtain the general solution of equation (188j, consider the 
differential equation 

2.2 ........................ (1 - $) - + 2 n p  = 0 (189), + 
of which the solution is readily seen to be 

.............................. z= C(l-$)n (190). 
If we differentiate equation (189) s times we obtain 
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If in this we put s =n,  and again differentiate with respect to p, we 
obtain 

an z 
which js Legendre's equation with - as variable. Thus a solution of this 

apn 
eauation is seen to be 

giving a t  once the forrn for P, already obtained in 5 249. The general 
solution of equation (192) we know to be 

If we now differeptiate (192) m times, the result is the same as that of 
differentiating (189) m+ n+ 1 times, and is therefore obhrtined by putting 
s = m + n + 1 in (191). This gives 

!!! 
or, multiplying by (1 - , 

- .  
I 
I 

, by equation (193), = - v  (m+n+l ) (n -m)+nz-  -- 
1 -tc" 

Thus v satisfies 

and this is the same as equation (188), which is satisfied by 8. 
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274. The solution of equation (158) has now bsen seen to be 

where 

Hence 

The functions 

are known as the associated Legendrian functions of the first and second 
kinds, and are generally denoted by P," (p), Q! (p). AS regards the former 
we may replace P,, from equation (159), by 

and obtain the function in the form 

It is clear from this form that the function vanishes if m+n> 2n, i.e. if 
m > n. I t  is also clear that i t  is a rational integral function of sin 0 and 
cos 0. From the form of Qn (,), which is not a rational integral function of p, 
i t  is clear that Qn (P) cannot be a rational integral function of sin 0 and 
cos 0. 

Thus of the solution we have obtained for Sn, only the part 

1'; (p) (Cm COS nz+ + Dm sin m+) 

gives rise to rationa1 integral harmonics, The terms P,"(~)cos m+ and 
PE (p) sin m+ are known as tesseral harmonics. 

Clearly there are (2n + 1) tesseral harmonics of degree n, namely 

E (p), cos + PA (a), sin + Pk (p), . . . cos n+ P; (P), sin TL+ E (pl. 
These may be regarded as the (2.n + 1) independent rational integral har- 
monics of degree li of which the existence has already been proved in $ 239. 

Using the formula 
@ 8 2  (a) Pz (p) = sinm 0 --- apqn 

and substituting the value obtained in § 247 for P, (,u) (cf, equation (155)), 
we obtain P," (p) in the form , 
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The values of the tesseral harmonics of the first four orders are given in 
the following table. 

Order 1. cos 8, sin 4 cos +, sin 8 sin +. 
Order 2. 4 (3 cosa e - 1), 3 sin 8 cos 8 cos +, 3 sin 8 cos 8 sin #, 

3 sin2 8 cos 2+, 3 sin2 8 sin 2+. 

Order 3. 4 (5 cosS 8 - 3 cos 8), 4 sin 8 (5 cosa 8 - 1 )  cos 4, 
+sin 8 (5 cos2 0 - 1 )  sin $, 15 sin2 8 cos 8 cos 24,  

15 sin2 8 cos ôsin 24, 15 sin3 8 cos 3+, 15 sin3 8 sin 34. 

Order 4. $ (35 cos4 0 - 30 cosa 8 + 3), 4 sin 8 (7 cos3 0 - 3 cos 8)  cos +, 
g sin 8 (7 cosS 8 - 3 cos 8 )  sin +, J+ sin2 8 (7 cosa 8 - 1) cos 24, 

y sina 8 (7 cosa 8 - 1) sin 24,  105 sin8 0 cos 0 cos 3+, 
105 sina 8 cos 8 sin 34, 105 sin4 8 cos 4+, 105 sin4 8 sin 44. 

275. We have now found that the most general rational integral surface 
harmonic is of the form 

n 
8% = X P," ( p )  ( A m  cos m+ f Bm sin m+), 

O 

in which P;(p) is to be interpreted to rnean P, (p), d e n  m = 0. 

Let us denote any tesseral harmonics of the type 

Pz ( p )  (A  cos m+ + B sin nu$) by 82. 

Then by 5 237, /J@S: dm=O 

if n ) nt. If n = n', then 

112 AS'$ =Il P; 01) P:' ( p )  (Am cos mm + B, sin m+) 

(A,: cos m' + + B,, sin m' +) do, 
and this vanishes except when rn = m'. 

When 12 =nt and rn = m.' the value of S z  82' dw clearly depencls on Il 
that of f: {PE (,A)]' dp, and this we now prooeed to obtaie 

We have 
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anz 
Since - = P, is a solution of equation (191), we obtain, on taking s = m + n 

apn 
in this equation, and multiplying throughout by (1 - 

which, again, may be written 

I n  equation (195) the first term on the right-hand vanishes, so that 

a reduction formula from which we readily obtain 

2 (9% + m) ! =--- 
2n+l(n-m)! '  

These results enable as to find any integral of the type / / & ~ ' ~ d a i .  

276. It is often convenient to be able to express zonal harmonics 
referred to one axis in terms of harmonics referred to other axes-ie. to 
be able to change the axes of reference of zonal harmonics. 

Let P, be a harmonic having O P  as axis. At  Q the value of this is 
P, (cos y), where y is the angle PQ, and Our problem is to express this 
harrnonic of order n, as a sum of zonal and tesseral harmonics referred to 
other axes. With reference to these axes, let the coordinates of Q be 8, +, 
let those of P be O, CD, and let us assume a series of the type 

8=n 

(cos y) = C Pn (cos 8) (A ,  cos s+ + B, sin s+). 
s=o 

Let us multiply by Pm (cos 8) cos s+ and integrate over the surface of a unit 
sphere. We obtain 
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By equation (169), 

II 47r 
P, (cos y) (cos 8) cos s+j dw = - {Pm (COS 8) COS s+ly=O 2n + 1 

47r =- Pa (cos O) cos sa, 
2n+ 1 

(n, - S )  ! Al, = 2 --- P; (COS 0) COS sa, 
(n+s)!  

and similarly 
(n-s)! B , = 2 -  Pi (cos O) sin s@. 
(n+s) !  

This analysis needs modification when s = 0, but it is readily found that 

A, = P, (cos O), Bo = O, 
so that 

6=m (n-s)! 
P,(cos y)=P,(cos8)P,(cosO)+Z 2- Pt (cos 8) Pm (cos 0) cos s (+ - @) 

,=I (n+s) !  
. . . . . . . . . (1 9 6). 

277. Let us write 
9 ( 4  Y, 4 = 5 
I. ("2 Y. z) = ru., 
X (4 Y, 2) = y,  

where +,$, x denote any functions of x, y, z. Then we may suppose a point 
in space specified by the values of h, p, v a t  the point, i.e. by a knowledge of 
those members of the three families of surfaces 

C# (x, y, Z) = cons. ; + (x, y, z) = cons. ; x (x, y, z) = cons. 

which pass through it. 

The values of Ïî, p, v are called "curvilinear coordinates" of the point, 
A p e a t  simplification is introduced into the analysis connected with 
ciirvilinear coordinates, if the three families of surfaces are chosen in such 
a way that they cut orthogonally at  every point. In what follows we shall 
suppose this to be the case-the coordinates will be "orthogonal curvilinear 
coordinat es." 

The points X, p, v and Ïî + dh, p, v will be adjacent points, und the 
distance between them will be equal to da multiplied by a function of 
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d x  
X, p, and v-let us assume i t  equal to -. Similarly, let the distance 

IL1 
dP from X, p, v to X, p -f dp, v be - , and let the distance from h, p, v to 
h, 

Then the distance ds from X, p, v to X + dX, p + dp, v + du will be 
given by 

this being the diagonal of a rectangular parallelepiped of edges 

dh. d p  du - h ,  h; and -. 
h, 

Laplace's equation in curvilinear coordinates is obtained most readily by 
applying GaussJ Theorem to the small rectangular parallelepiped of which 
the edges are the eight points 

~ f + d a ,  p f + d p ,  v f i d v .  

In this way we obtain the relation 

/ / E d s  = O ....... ....................... (197) 

in the form 
a h, av a h av a h av ---+-a-+--3- 

axd,n,a*) ap(h,h,ap) av(hln, a u k 0  ...... ( lgs) ,  

and as we have already seen that equation (197) is exactly equivalent to 
Laplace's equation VaV = O, i t  appears that equation (198) must represent 
Laplace's equation transformed into curvilinear coordinates. 

I n  any particular system .of curvilinear coordinates the method of pro- 
cedure is to express b, h,, h, in terms of h, p and u, and then try to obtain 
solutions of equation (198), giving V as a function of )I, p and v. 

278. The system of surfaces r = cons., 6 = cons., 4 = cons. in spherical 
polar coordinates gives a system of orthogonal curvilinear coordinates. I n  
these coordinates equation (198) assumes the form 

alwady obtained in § 233, which has been found to lead to the theory of 
spherical harmonics. 

16-2 
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279. After spherical polar coordinates, the system of curvilinear coordi- 
nates which cornes next in order of simplicity and importance is that in 
which the surfaces are confocal ellipsoids and hyperboloids of one and two 
sheets. This system will now be examined. 

Taking the ellipsoid 

as a standard, the conicoid 

will be confocal with the standard ellipsoid whatever value B may have, and 
al1 confocal conicoids are represented in turn by this equation as tî passes 
from - a to + a. 

If the value5 of x, y, z are given, equation (200) is a cubic equation in B. 
It can be shewn that the three roots in tî are al1 real, so that three confocals 
pass through any point in space, and i t  can further be shewn that a t  every 
point these three confocals are orthogonal. It can also be shewn that of 
these confocals one is an ellipsoid, one a hyperboloid of one sheet, and one 
a hyperboloid of two sheets. 

Let a, p, v be the three values of B which satisfy equation (200) at  any 
point, and let A, p, v refer respectively to the ellipsoid, hyperboloid of one 
sheet, and hyperboloid of two sheets. Then A, p, v rnay be taken to be 
orthogonal curvilinear coordinates, the families of surfaces = cons., p = cons., 
v = cons. being respectively the system of ellipsoids, hyperboloids of one 
sheet, and hyperboloids of two sheets, which are confocal with the standard 
ellipsoid (199). 

280. The first problem, as already explained, is to find the quantities 
which have been denoted in 5 2'17 by S, h,, h,. As 2 step towards this, we 
begin by expressing x, y, z as functions of the curvilinear coordinates A, p, u. 

is elearly a rational integral function of B of degree 3, the coefficient of tî3 
being - 1. I t  vanishes when 8 is equal to A, p or v, these being the curvi- 
linear coordinates of the point x, y, z. Hence the expression must be equal, 
identically, to 

- ( e - ~ ) ( e - ~ ) ( e -  VI. 

Putting 8 = - a2 in the identity obtained in this way, we get the relation 

a2 (b2 - aa) (ca - aa) = (aa + h) (aa $. p) (a2 + v), 
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so that E, y, z are given as functions of h, p, v by the relations 

281. To examine changes as we move along the normal to the surface - - 
h = cons., we must keep p and v constant. Thus we have, on logarithmic 
differentiation of equation (201), 

dx dh. 2-=- 
fl a2+h' 

and there are of course similar equations giving dy and dz. Thus for the 
length ds of an element of the normal to X =  constant, we have 

= a  (dh)" 2 (a" +) (a2 + +) 
6, (aa + A) (ba - a2) (ca - 2) 

dx The quantity ds is, however, identical with the quantity called - in 
h 

fj 277, so that we have 

and clearly h, and h3 can be obtained by cyclic interchange of the letters 
X, ,u and v. 

282. If for brevity we write 

we find that 

ao that by substitution in equation (198), Laplace's equation in the present 
coordinates is seen to be 

On multiplying throughout by A*A,A,, this equation becomes 
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Let us now introdiice new variables a, P, y, given by 

a = I A E ,  

then we have 

and equation (204) becomes 

Distribution of Electricity on a freely-charged Ellipsoad. 

283. Before discussing the general solution of Laplace's equation, i t  will 
be advantageous to exaMine a few special problems. 

In  the f ist  place, it is clear that a particular solution of equation (205) is 
V = A + B a  .............................. (206), 

where A, B are arbitrary constants. The equipotentials are the surfaces 
a = constant, and axe therefore confocal ellipsoids. Thus we can, from this 
solution, obtain the field when an ellipsoidal conductor is freely electrified. 

For instance, if the ellipsoid 

is raised to unit potential, the potential a t  any external point will be given 
by equation (206) provided we choose A and B so as to have V =  1 when 
X =O, and V = O when )l = a. In this way we obtain 

L= 2 v=- ................................ .(207). 

The surface density at  any p i n t  on the ellipsoid is given by 
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Thus the surface density at different points of the ellipsoid is proportional 
to h,. 

284. The quantity h, admits of a simple geometricd interpretation. 
Let Z, m, n be the direction-cosines of the tangent plane to the ellipsoid a t  

Fig. 79. 

any point X, p, v, and let p be the perpendicular from the origin on to this 
tangent plane. Then froin the geometry of the ellipsoid we have 

p=(aa+ +X)la+(b2+X)m2+ (cPf h ) n 9  ............ (209). 
Moving along the normal, we shall corne to the point + dX, f i  u. The 

tangent plane at this point has the same direction-cosines 1, m, n as before, 
dx 

but the perpendicular from the origin will be p + dp,. where d p  = -. To 
hl 

obtain dp we differentiate equation (209) allowing +X alone to Vary, and so 
have 

2pdp = dX (E + ma + na) = dX. 
d h  

Comparing this with dp = - , we see that h, = 2p. 
hl 

Thus the surface density at anypoint ici proportional to the perpendicular 
from the centre on to the tangent plane at the point. 

In  fig. 79, the'thickness of the shading at any point is proportional to 
the perpendicular from the centre on to the tangent plane, so that the 
shading represents the distribution of electricity on a freely electrified 
ellipsoid. 

I t  will be easily verified that the outer boundary of this shading must 
be an ellipsoid, similar to and concentric with the original ellipsoid. 

285. Replacing h, by 2p in equation (208), we find for the total charge E 
on the ellipsoid, 

~ = b d s =  l j-j~dfi. 
2 m ~ x  lOm 

Since / j P d s  is three times the volume of the ellipsoid, and therefore 

equal to 4?rabc, this reduces to 
n 
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Since the ellipsoid is supposed to be raised to unit potential, this quantity 
E gives the capncity of an ellipsoidal conductor electrified in free space. 

The capacity c m  however be obtained more readily by examining the 
form of the potential at  infinity. At points which are a t  a distance r 
from the centre of the ellipsoid so great that a, b, c may be neglected in 

8 
comparison with r, X becomes equal to r: so that Ah = r z ,  and 

" d h  2 I, & = Y L  
Thus at  idn i ty  the limiting form assumed by equation (207) is 

E 
and since the value of V a t  infinity must be ; the value of 4 follows at  

once. 

A freely-charged spheroid. 

286. The integral is integrable if any t a o  of the semi-axes 

become equal to one another. 

If b = c, the ellipsoid is a prolate spheroid, and its capacity is found to be 

2 - - 2ae 
dx 

E = r ( P + i ) ( d + i ) l  1% (E) ' 
where e is the eccentricity. 

If a = b, the ellipsoid is an oblate spheroid, and its capacity is found to be 

287. In  the preceding analysis, let a become vanishingly s m d ,  then 
the conductor becornes an 

The perpendicular from 
the ellipsoid, by 

elliptic disc of semi-axes b and c. 

the origin on to the tangent-plane is given, as in 
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and when o is made very small in the limit, this becomes 

so that the surface density at  any point x, y in the disc is proportional to 

288. On further simplifying by putting b = c, we arrive at  the case of a 
circular disc. The density of electrification is seen at  once from expression 
(210) to be proportional to 

and therefore varies inversely as the shortest chord which can be drnwn 
through the point. 

Moreover, when a, = O and b = c, we have Ah = (c2 + h) 2/%, so that 

" " d h  2 *dl rr 1, à,=c tan-1 [A) and la &= - c ' 
2c Thus the capacity of a circular disc is -, and when the disc is raised to 
'li- 

potential unity, the potential at any external point is 

where X is the positive root of 

289. Lord Kelvin* quotee some interesting experiments by Coiilomb on the density 
at different points on a circular plate of radius 5 inches. The results are given in the 
following table : 

5 ins. 
4 
3 
2 
I 
0.5 
O 

Distances from the 
plate's edge Cdoulated Densities Observed 

Papen on Elect. and Mag. p. 179. 
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Much more remarkable is Cavendish's experimental determination of the capacity of a 
1 

circular disc. Cavendish found this to be - times that of a sphere of equal radius, 
1 5 7  

while theory shews the true value of the denorninator to be or 1.5708 1 
2 

290. By inverting the distribution of electricity on a circular disc, taking 
the origin of inversion to be a point in the plane of the disc, Kelvin* has 
obtained the distribution of electricit~ on a disc influenced by a point charge 
in its plane, a problem previously solved by another method by Green. The 
general Green's function for a circular disc has been obtained by Hobsont. 

291. Lord Kelvin has also, by inversion, obtained the solution for a 
spherical bowl of any angle freely electrified. Let the bowl be a piece of 
a sphere of diameter f. Let the distance from the 
middle point of the bowl to any point of the bowl 
be r, and let the greatest value of r ,  t e .  the dis- 
tance from a point on the edge to the middle point 
of the bowl, be a. Then Kelvin finds for the elec- 
tric densities inside and outside the bowl: 

v 2 - .a f"- 
P' = {Jf- - tan-1 a2 - :l 

Some numerical results calculated from these formiils are of interest. The six values 
in the following tables refer to the middle point and the five points dividing the arc from 
the middle poinb to the edge into six equal parts, 

Plane disc Curved disc arc IO0 Curved disc ara 20° 

Papem on Elect. and Mag. p. 183. 
f' Tram. Camk Phil. Soc. xvm. p. 277. 
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Bowl ara 270' 

Harmonies 

Bowl arc 340' 

Disciissing these results, Lord Kelvin says : <' It is remarkable how slight an amount 
of cumature produces a very sensible excess of densitp on the convex side in the h t  two 
cases (10" and 207, yet how nearly the mean of the densities on the convex and concave 
sides a t  any point agrees with that a t  the corresponding point on a plane dise shewn in 
the fimt columu. The results for bowls of 270" and 340" illustrate the tendency of the 
whole charge to the convex surface, as the case of a thin spherical conducting surface with 
an infinitely small aperture is approached." 

292. We now return to the general equations (205), namely 

and examine the nature of the general solutions of this equation. 

Let us assume a tentative solution 

V =  LMN, 
in which L is a function of h only, M a function of p only, and N a function 
of v only. Substituting this solution the equation reduces to  

We cannot solve this equation by methods of the kind used in developing 
the theory of spherical harmonics, but i t  is easy to obtain solutions of limited 
generality in which 

1 a2z 1 aaM -- -- 1 a2ïv 
L aa=' M a p l  

and - - 
N a 9  

are rational integral functions of h, p and u respectively. These will be 
found to correspond to the solution, in  spherical polar coordinates, in a series 
of rational integral harmonics. 
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293. Assume general power series of the form 

then on substitution in equation (211), i t  d l  be found that we must have 
A " = A 1 = A ,  

B U = B ' = B ,  
C = C ' = C U =  ... -0. 

Thus we must have 

and similar equations, with the same constants A and B, must be satisfied 
by M and N.  

Equation (212), on substituting for a in terms of X, becomes 

a differential equation of the second order in X, while M and N satisfy 
equations which are identical except that p and v are the variables. 

The solution of equation (213) is known as a Lame's function, or ellip- 
soidal harmonie. The function is commonly written as Eg(h), where p, n 
are new arbitrary constants, eonnected with the constants A and B by the 
relations 

n(n+l)=B,  and ( b a + c z ) p = - A .  

Thus E:(X) is a solution of 

and a solution of equation (211) is 

..................... 7= 82Eg (h) E$ (p,) Eg (v) (214). 
P B  

294. Equation (213) being of the second order, must have two inde- 
pendent solutions. Denoting one by L, let the other be supposed to be Lu. 
Then we must have 

-- a 2 ( L U ) - ( ~  +Bk) Lu;.  
au2 
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so that on multiplying the former equation by u, and subtracting from the 
latter, 

and the complete solution is seen to be 

where C and D are arbitrary constants. 

Accordingly, the complete solution of equation (211) can be written as 

This corresponds exactly to the general solution in rational integral 
spherical harmonies, namely 

V = 22 (Cnprn + Dflp~-(n+l)) 
P fi 

(Cnprei~+ + Dnp'e-ip@) 
(Ca/ Pg(cos 8) + Dn/ Pg(cos 19)). 

Ellipsoid in uniforrn field of force. 

295. As an illustration of the use of confocal coordinates, let us examine 
the field produced by placing an uninsulated ellipsoid in a uniform field of 
force. 

The potential of the undisturbed field of force may be taken to be Y = Px, 
or in confocal coordinates (cf. equation (201)) 

This is of the form 8= CLMN, 

where C is the constant F (b2 - aa)-i (Cd - aa)-g , knd A, M, N are functions of 
A only, f . ~  only and v only, respectively, namely 1; = da2 + h, etc. 

Since V =  LMN is a solution of Laplace's equation, there must, as in 5 294, 
be a second solution y= Lu. MN, where 
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The upper limit of integration is arbitrary: if we take i t  to be infinite, 
both u and Lu will vanish a t  infinity, while M and N are in any case finite 
a t  infinit~. Thus Lu.  MN is a potential which vanishes at  infinity and is 
proportional (since u is a function of h. only) at  every point of any one of the 
surfaces h. = cons., to the potential of the original field. Thus the solution 

..................... P= CLMN+ DLu.MN (215) 

can be made to give zero potential over any one of the surfaces X = cons., by 
a suitable choice of the constant D. 

For instance if the conductor is h. = O, we have, on the conductor, 

Thus on the conductor we have 

The condition for this to vanish gives the value of D, and on substituting 
this value of D, equation (215) becomes 

This gives the field when the original field is parallel to the major axis 
of the ellipsoid. If the original field is in any other direction we can resolve 
it into three fields parallel to the three axes of the ellipsoid, and the final 
field is then found by the superposition of three fields of the type of that 
given by equation (216). 

296. When any two semi-axes of the standard ellipsoid become equal 
the method of confocal coordinates breaks down. For the equation 
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reduces to a quadrntic, and has therefore only two roots, Say X, p. The 
surfaces X = cons. and p = cons. are now confocal ellipsoids and hyperboloids 
of revolution, but obviously a third family of surfaces is required before the 
position of a point can be fixed. Such a family of surfaces, orthogonal to 
the two present families, is supplied by the system of diarnetral planes 
through the axis of revolution of the standard ellipsoid. 

The two cases in which the standard ellipsoid is a prolate spheroid and 
an oblate spheroid require separate examination. 

Prolate Spheroids. 

297. Let the standard surface be the prolate spheroid 

in which u > b. If we m i t e  

y = w COS 4, z = a sin 4, 
then the curvilinear coordinates may be taken to be A, p, 4, where X, p are 
the roots of 

In  this equation, put a2 - b" = c2 and aa + 9 = c28'a, then the equation 
becomes 

If p, q2 are the roots of this equation in 6"2, we readily find that d = gqac2, 
so that we may take 

.......................................... x = cfv (219), 

in which q is taken to be the greater of the two roots. 

The surfaces f: = cons., q = cons. are identical with the surfaces 9 = cons., 
and are accordingly confocal ellipsoids and hyperboloids. The coordinates 
f, q, 4 nlay now be taken to be orthogonal curvilinear coordinates. 

I t  is easily found that 

from which Laplace's equation is obtained in the form 
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298. Let us search for solutions of the form 

where El, H, @ are solutions solely of t ,  17 and <P respectively. On substituting 
this tentative solution and simplifying, we obtain 

As in the theory of spherical harmonies, the only possible solution results 
from taking. 

where -ma is a constant, and m must be an integer if the solution is to be 
single valued. The solution is 

..................... @=Ccosm++Dsinm<p (22 1). 
We must now have 

and this can only be satisfied by taking 

............... +sB=O (2% 

togeiher with 

............... + sH = O  (223).  

Equations (222) and (223) are identical with the equation already dis- 
cussed in §§ 273, 2'14. The solutions are known to be 

= A P X 3  +Barn 
H = BfQ';(q), 

where s = n (n + 1) and e, Q; are the associated ' ~ e ~ e n d r i a n  functions 
already investigated. Combining the values just obtained for Z, H with 
the value for given by equation (221), we obtain the general solution 

V = XZZH@ 
mm 

= 68 {APE(E) + BQ:(tj)} { A ' P ~ ) ( T )  -k B'Qg(.17)3 {Ccos md, + D sin m+]. 
m 12rb 

At infinity it is easily found that 
x 

1 7 = w ,  ~=-=--=~~~e, 
4x2 + mZ 

while at  the origin ~ = 1 ,  t = O .  
Thus in the space outside any spheroid, the solution e(E) Q B ( E )  is finite 

everywhere, while, in the space inside, the finite solution is PB(f)  P:(q-). 
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Oblats Spheroids. 

299. For an oblate spheroid, a2 - b5s  negative, so that in equation (218) 
we replace ba - aa by nca, so that IC = ic, and obtain, in place of equations (219) 
and (220), 

Lx = Kr$+, 

m =  Kd(1 -P)(1 -Ta). 

Replacing i~ by r?,, we may take f ,  ', and #I as real orthogonal curvilinear 
coordinates, connected with Cartesian coordinates by the relations 

= m, 
m- = K d(1- E2) (1 + 5"). 

We proceed to search for solutions of the type 

v= ZZ@, 
and find that g, @ must satise the same equations as before, while Z must 
satisfy 

The solution of this is 

z = A'P; ($0 + PQn (q), 
and the most general solution may now be written down as before. 

300. Often when a solution of a three-dimensional problem cannot be 
obtained, i t  is found possible to solve a similar but simpler two-dimensional 
problem, and to infer the main physical features of the three-dimensional 
problem from those of the two-dimensional problem. We are accordingly 
led to examine methods for 'the solution of electrostatic problems in two 
dimensions. 

At the outset we notice that the unit is no longer the point-charge, but 
the uniform lhe-charge, a line-charge of line-density o having a potential 
(cf. § 75) 

C - 20 log r. 

Method of  Images. 

301. The method of images is available in two dimensions, but presents 
no special features. An example of its use has already been given in $220. 

J. 17 
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Method of Inversion. 

302. I n  two dimensions the inversion is of course about a line. Let this 
be represented by the point O in fig. 81. 

Let PP', QQ' be two pairs of inverse pointa. Let a line-charge e a t  Q 
produce potential 5 a t  P, and let a 
line-charge e' a t  Q produce potential Vp 
a t  PD so that 

& = O- 2elog PQ;  

Vp. = C' - 2e' log P'&. 
O 

If we take e = e', we obtain 

AP Fm. 81. 

PQ 'Pp - Vp, = O"- 2elog- 
P'Q' 

OQ = C" - 2e log -? ..................... OP (224). 

Let P be a point on an equipotential wheii there are charges el a t  Q,, 
e, a t  a, etc., and let V denote the potential of this equipotential. Let 7 
denote the potential a t  Pr under the influence of charges el, e,, ... a t  the 
inverse points of Q,, Q,, .... Then, by summation of equations such as (224), 

7- Tr= - C (2e log OP') + 2, (2e log OQ) + constants, 

.................. or B= constants - 2 (Ze) log OP' (225). 

The potential at  P' of charges el, e,, ... a t  the inverse points of Q,, Q,, ... 
plus a charge - Çe at  O js 

a+ O + 2 (Xe) log OP', 

and this by equation (225) is a constant. This result gives the method of 
inversion in two dimensions : 

If a surface S 2s an equ-otential urzder the influence of line-charges 
e,, e,, ... ut Q,, Q,, .... then the surface which is the inverse of S about 
a line O will be an equ+otential under the influence of line-charges el, e,, ... 
on the lines inverse to Q,, Q,, ... together with a charge -Ce ut the bine O. 

303. A solution of Laplace's equation can be obtained which is the 
analogue in two dimensions of the three-dimensional solution in spherical - 
harmonies. 

I n  two dimensions 
identical with ordinary 
tion becomes 

we have two coordinates, r, 8, these becoming 
two-dimensional polar coordinates. Laplace's equa- 
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and on assuming the form 
V =  RB, 

in which R is a function of r only, and O a function of 8 only, we obtain the 
solution in the form 

Thus the " harmonie-functions " in two dimensions are the familiar sine 
and cosine functions. The functions which correspond to rational integral 
harrnonics are the functions 

rqa sin n8, rn cos ni?. 

In x, y coordinates these are obviously rational integral functions of x 
and y of degree n. 

Corresponding to the theorem of 5 240, that any function of position 
on the surface of a sphere c h  (subject to certain restrictions) be expanded 
in a series of rational integral harrnonics, we have the famous theorem of 
Fourier, that any function of position on the circumference of a circle can 
(subject to certain restrictions) be expanded in a series of sines and cosines. 
In the proof which follows (as also in the proof of § 240), no attempt is made 
a t  absolute mathematical rigour: as before, the form of proof given is that 
which seems best suited to the needs of the student of electrical theory. 

Fourier's Theorem. 

304. 2% value o f  any finction P of position on the circumference o f  a 
circle can be expressed, at every point of the circmference at which the 
function is  continuous, as a series of sines and cosines, provided the function i s  
single-valuecl, and h m  only a jnite number of disconthuities and of maxima 
an.d minima on the circurnference of the circle. 

Let P (.A a) be any point outside the circle, then if & is the distance 
from P to t h e  element d s  of the circle 
(a, 8) we have 

[g as = 1. 

This reeult can easily be obtained by i n t e  
gration, or can be seen a t  once from physical 
considerations, for the integrand is the charge 
induced on a conducting cylinder by unit line- 
charge a t  P. 

PI@. 8% 

17-2 
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Let us now introduce a function u defined by 

Then, subjecb to the conditions stated for P we find, as in 240, that on 
the circumference of the circle, the function u becomes identical with F. 
Alao we have 

1 -- 1 
Ra- f~ + aa- e a f  cos (8 - a) 

Hence 

and on pmsing to the limit and putting a =f, this becomes 

F cos n (0 - a) d8 ....... ..(227), 

expressing F as a series of sines and cosines of multiples of a. 

We can put this result in the form 
m 

6 = P + 2 (a,  cos na + b, sin na), 
1 

and 

an =A/" P cos 128 de, 
7r O 

so that P is the mean value of F. 

If F has a diacontinuity at  any point 8 = /3 of the circle, and if F,,  $ are 
the vaIues of F a t  the discontinuity, then obviously at  the point 8 = f i  on 
the circle, equation (226) becomea 

u=3(E:+Z), 
so that the value of the series (227) at a discontinuity is the arithmetic 
mean of the two values of F at  the discontinuity (cf. § 256). 
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305. We could go on to develop the theory of ellipsoidal harrnonics etc. 
in two dimensions, but al1 such theories are sirnply particular cases of a very 
general theory which will now be explained. 

CONJUGATE FUNCTIONS. 

General Theory. 

306. In  two-dimensional problems, the equation to be satisfied by the 
potential is 

and this has a general solution in finite terms, namely 

V =  f ( x  + iy) + P ( x  - i y )  ..................... (229), 

where f and P are arbitrary f~mctions, in which the coefficients may of 
course involve the imaginary i  

For V to be wholly real, P must be the function obtained from f on 
changing i into - i .  Let f ( a  + iy) be equal to u + i v  where u and v are 
real, then F ( x  + i y )  must be equal to u - iv, so that we must have P= 2u. 
I f  we introduce a second function U equal to - 2v, we have 

U + i V = - 2 v + 2 &  

= 2i(u + iv )  

= 2 i f ( x + i y )  

= 4 ( x + i y )  ........................ (230), 

where + ( x  + ;y) is a completely general function of the single variable x  + i y .  

Thus the most general forrn of the potential which is wholly real, can be 
derived from the most general arbitrary function of the single variable a  + i y ,  
on taking the potential to be the imaginary part of this function. 

307. If $ ( x  + ;y) is a function of x  + iy, then i+ (x + i y )  will also be 
a, function, and the imaginary part of this function will also give a possible 
potentiaL We have, however, from equation (230), 

i + ( x + i y ) = i ( L T + i V )  

= - v+ iu, 
shewing that U is a possible potential. 

Thus when we have a relation of the type expressed by equation (230) 
either U or Y will be a possible potential. 
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308. Taking V to 5e the potential, we have by differentiation of 
equation (230), 

and hence 

Equating real and imaginary parts in the above equation, we obtain 

au av --- - ax ay ' 

so that 
auav auav 
A- + - - = O.. .. . .. . . . . . . . . . . . . . . . . .(231). 
a8 ax ay ay 

This however is the condition that the families of curves U =  cons., 
V =  cons., should cut orthogonally at  every point. Thus the curves 
U =  cons. are the orthogonal trajectories of the equipotentia1sA.e. are 
the lines of force. 

Representation of complex quant.itzé8. 

z = a + i y  

so that z is a complex quantity, we can suppose 
the position of the point P indicated by the value 
of the single complex variable z. If z is expressed 

"(XY 1 
in Demoivre's form 

z = reie=r(cose +isinO), 0 p - 

then we find that r = 43 + ya and 0 = tan+ The 
. FIO. 83. 

quantity r is known as the modulus of z and is denoted by 1 z 1, while 8 is 
known as the argument of z and is denoted by arg z. The representation of 
a complex quantity in a plane in this way is known as an Argand diagram. 

310. Addition of complex piantities. Let P be B = n: + iy, and let P' be 
z' = x' + iyf. The value of z + z' is (x + xi) + i (y +y'), so that if & represents 
the value z +  zf it is clear that OPQP' will be a parallelogram. Thus to 
add together the complex quantities z and z' we complete the parallelogram 
OPP, and the fourth point of this parallelogram will represent z + 8'. 
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The matter may be put more simply by supposing the complex quantity 
r = x + iy represented by the direction and length of a line, such that its 
projections on two rectangular axes are fi, y. For instance in fig. 83, the 
value of z will be represented equally b j  either O P  or P'Q. We now have 
the following rule for the addition of complex quantities. 

To h d  z + z', describe a path from the origin representing z in magnitude 
and direction, and h m  the extremity of this describe a path representing z'. 
The line joining the origin to the extremity of this second path will repre- 
sent z + z' 

311. Multiplication of complea: quantities. If 
z = L E  + i y  = r  (cos B +isin8),  

and z' = aj + iy' = r' (cos 8' + i sin 8'), 
then, by multiplication 

zd  = TT' {cos (8 + 8') + i sin (6 f û')}, 
so that ) zz f I=r r '= Iz (  [il, 

arg (22') = 9 + 9' = arg z + arg z', 
and clearly we can extend this result to any number of factors. Thus we 
have the important rules : 

The modulus of a product is the product of the moduli of the factors. 
The argument of a product is the sum of t l~e  argzcments of the factor$. 
There is a geometrical interpretation of multiplication. 
In fig. 84, let O A  = 1, O P  = z, OP'= d and O& = zd. 

Then the angles QOA, P'OA being equal to i3 + # and 8' respectively, 
the angle &OP' must be equal to 6, and therefore to P O A .  

each ratio being equal to r ,  so that the triangles 
&OP' and P O A  are similar. Thus to multiply 
the vector OP' by the vector O P ,  we simply P ' 
construct on OP'  a triangle similar to B O P .  

The same result can be more shortly ex- 
pressed by saying that to multiply z' (= OP') by 
z (= OP),  we multiply the length O P  by 1 s 1 and 
turn i t  through an angle arg z. 

So also to divide by z, we divide the length O A 

of the line representing the dividend by J z  1 and FIQ. 84. 

turn through an angle - arg z. I n  either case an angle is positive when 
the turning is in the direction which brings us from the a i s  x to that 
of y after an angle ~ / 2 .  
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Conformal Representation. 

312. We can now consider more fully the meaning of the relation 

U+iV=+(x+Zy).  

Let us write a = x + iy, and W = U+ iV, z and W being complex 
imaginaries, which we must now suppose in accordance with equation (230) 
to be connected by the relation 

We can represent values of z in one Argand diagram, and values of W in 
another. The plane in which values of z are represented will be called the 
z-plane, the other will be called the W-plane. Any point P in the z-plane 
corresponds to a definite value of z and this, by equation (232), may give one 
or more values of W, according as + is or is not a single-valued function. 
If Q is a point in the W-plane which represents one of these values of W, 
the points P and Q are said to correspond. 

As P describes any curve S in the z-plane, the point Q in the W-plane 
which corresponds to P will describe some curve T in the W-plane, and the 
curve T is said to correspond t o  the curve S. In  particular, corresponding 
to any infinitesimal linear path PP' in the z-plane, there will correspond 
a small linear element QQ' in the W-plane. If OP, OP represent the values 
z, z + dz respectively, then the element Pl" will represent dz. Similarly the 

dW 
element QQ' will represent d W or - da. 

da 

Hence we can get the element QQ' from the element PP on multiplying 
d w  a it by -, i.e. by - 4 (z), or by +' (x + iy). This multiplier depends solely 
dz az 

on the position of the point P in the z-plane, and not on the length or 
dW 

direction of the element dz. If we express - or +'(rc+ Zy) in the form 
dz 

we find that the element dW can be obtained from the corresponding 

element dz by multiplying its length by p or , and turning it through l da l 
an angle X, or arg . I t  follows that any element of area in the a-plane 

is represented in the W-plane by an element of area of which the shape 
is exactly similar to that of the original element, the linear dimensions are 
p times as great, and the orientation is obtained by turning the original 
element through an angle X. 
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From the circumstance thitt the shapes of two corresponding elements 
in the two planes are the same, the process of passing from one plane to 
the other is known as conformal represmtation. 

313. Let us examine the value of the quantity p which, as we have 
seen, measures the Iinear magnification produced in a small area on passing 
from the z-plane to the W-plane. 

The quantity p, or , is ealled the " rnodulus of transformation." 
Id;. l 

We now see that if V is the potential, this modulus measures the electric 

intensity R, or 2/(:~ + fgy. fince B = 4m, this circumstance pro- 

vides a simple means of finding u, the surface-density of electricity at  
any point of a conducting surface. 

a 
314. If denote differentiation along the surface of a conductor, on 

-- 
which the potential T is constant, we have 

so  that 

The total charge on a strip of unit width between any two points P, Q of 
the conductor is accordingly 

315. If, on equating real and imaginary parts of any transformation of 
the form 

U + i V = + ( x + i y )  .S...................... (2341, 
i t  is found that the curve f(x, y) = 0 corresponds to the constant value 
V =  C, then clearly the general value of V obtained from equation (234) 
will be a solution of Laplace's equation subject to the condition of having 
the constant value V =  C over the boundary f (G, y) = O. I t  will therefore 
be the potential in an electrostatic field in which the curve f (x, y) = O may 
be taken to be a conductor raised to potential C. 
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316. From a given transformation it is obviously always possible to 
deduce the corresponding electrostatic field, but on being given the con- 
ductors and potentials in the field, it is by no menns always possible to 
deduce the required transformation. We shall begin by the examination of 
a few fields which are given by simple known transformations. 

SPECIAL TRANSFORMATIONS. 

1. W = 2". 

317. Considering the transformation W = B*, we have 

U + i V  = (x + iy)n = rn (cos ne + i sin ne), 

so that V = @sin ne. Thus any one of the surfaces rn sin ne = constant 
m y  be supposed to be an equipotential, including as a special case 

P sin r d  = 0, 
7r 

in which the equipotential consists of two planes cutting at an angle -. n 

This transformation can be further discussed by assigning particular 
values t o  n. 

n = 1. This gives simply V = x, a uniform field of force. 

n = 2. This gives V = 2xy,  so that the equipotentials are rectangular 
hyperbolic cylinders, including as a special case two planes intersecting 
at right angles (fig. 85). 
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This transformation gives the field in the immediate neighbourhood of 
two conducting planes meeting at  right angles in any field of force. It also 
gives the field between two coaxal rectangular hyperbolas. 

m = +. This gives z + iy = ( U +  iV)a, so that 

x = U 2 - v 2 ,  y=2ur, 
and on eliminating U we obtain 

y= = 4 va (Lz + PZ). 

Thus the equipotentials are confocal and coaxal parabolic cylinders, in- 
cluding as a special case ( P =  O) a semi-infinite plane bounded by the line 
of foci. 

This transformation clearly gives the field in the immediate neighbour- 
hood of a conducting sharp straight edge in any field of force (fig. 86). 

n = - 1. This gives 
1 

U+iV=-(cos&-isind), 
r 

and the equipotentials are 

rT= sin 8 or d+ ys-Y= 0. V 

Thus the equipotentials are a series of circular cylinders, al1 touching 
the plane y = 0 along the axis x = O, y =  O (fig. 87). 
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II. ?P = logz. 

318. The transformation W =  log z gives 

U+ iV=logr + iB, 
so that the equipotentials are the planes 8 =constant, a system of planes al1 
intersecting in the same line. As a special case, we may take B = 0 and 
8=lr to be the conductors, and obtain the field when the two halves of a 
plane are raised to different potentials. The lines of force, U = constant, are 
circles (fig. 88). 

If we take U to be the potential, the equipotentials are concentric 
circular cylinders, and the field is seen to be simply that due to a uniform 
line-charge, or uniformly electrified cylinder. 

It may be noticed that the transformation 

\ W = log(z -a) 

gives the transformation appropriate to a line-charge at  z= a. 

Also we notice that 
2 -a  W =  log - 
z + a  

gives a field equivalent to the su~erposition of the fields given by 

W=log(z-a) and W=-log(z+a). 

This transformation is accordingly that appropriate to two equal and opposite 
line-charges along the parallel lines z = a and z = - a. 

This last transformation gives U =  O when y = 0, so that it gives the 
transformation for a line-charge in front of a parallel infinite plane. 
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319. Suppose that the coordinates of a point on a conductor can be 
expressed as real functions of a real parameter, which varies as the point 
movea over the conductor, in such a way that the whole range of variation 
of the parameter just corresponds to motion over the whole conductor. In 
other words, suppose that the coordinates x, y car1 be expressed in the form 

z = f ( p h  Y=F(P)Y 

and that al1 real values of p give points on the conducto!:, while, conversely, 
al1 points on the conductor correspond to real values of p. 

Then the transformation 

z= f ( W ) + i F ( W )  ........................... (235) 

will give V = O over the conductor. For on putting V =  O in equation (235) 
we obtain 

+ i y = f ( U ) + i F ( U ) ,  

so that ~ = f ( u ) ,  y=F(U) ,  

and by hypothesis the elirnination of U will lead to the equation of the 
conductor. 

320. For example, consider the parabola (referred to its focus as origin), 

ya = 4a (a + a). 

We can m i t e  the coordinates of any point on this parabola in the form 

and the transformation is seen to be 

~ = a W ~ - a + 2 a i W = a ( W - i ) ~ ,  

agreeing with that which has 
as a possible equipotential. 

already been seen in § 317 to give a parabola 

IRIS - LILLIAD - Université Lille 1 



a70 Methods for the Solution of Special Problems [CH. VIII 

321. As a second example of this method, let us consider the ellipse 

The coordinates of a point on the ellipse may be expressed in the form 

x = a COS +, y = b sin +, 
and the transformation is seen to be 

s = a cos W + ib sin W. 

We can take a = c cosh a, b = c sinh g where CG a2 - 6': and the trans- 
formation becomes 

z=ccos(W+icr)=c cos{U+i(V+a)j .  

The same transformation may be expressed in the better known form 

z = c cosh W. 

The equipotentials are the confocal ellipses 

while the lines of force are confocal hyperbolic cylinders. On taking V 
as the potential, we get a field in which the equipotentials are confocal 
hyperbolic cylinders. 
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II. Schwarz's Transformation. 

322. Schwarz has shewn how to obtain a transformation in which one 
equipotential can be any linear polygon. 

At any angle of a polygon i t  is clear that the property that small elements 
remain unchanged in shape can no longer hold. The reason is easily seen to 
be that the modulus of transformation is either infinite or zero (cf. figs. 24 
and 25, p. 61). Thus, at  the angles of any polygon, 

The sarne result is evidenf from electrostatic considerations. At an angle of a 
conductor, the surface-density u is either infinite or zero (§ 70), while we have the 
relation (§ 313), 

Let us suppose that the polygon in the z-plane is to correspond to the 
line V =  O in the W-plane, and let the angular points correspond to 

U = ui: U = u2, etc. 

Then, when W = ui, W = %, etc., 

dz -,must either vunish or become infinite. We must accordingly have 
dW 

where &, &, ... are numbers which may be positive or negative, while P 
denotes a function, a t  present unknown, of W. 

Suppose that, as we move along the polygon, the values of 17 at  the 
angular points occur in the order u,, zl,, . . . . Then, on passing along the 
side of the polygon which joins the two angles U = u,, U = %, we pass along 
a range for which V =  O, and u,< U < 262. Thus, along this side of the 
polygon, W - u,, W - u,, W - u,, etc. are real quantities, positive or negative, 
which retairi the same sign along the whole of this edge. I t  follows that, as 

we pass dong hhis edge, the change in the value of arg (&) , as given 

by equation (236), is equal to the change in arg F, the arguments of the 
factors 

(W - ~ $ 1  (W-u2)& ... 
undergoing no change. 

Now arg ($) measures the inclination of the sais V = O to the edge of 

the polygon at  any point, so that if the polygon is to be rectilinear, this 
must remain constant as we pass along any edge. It follows that there must 
be no change in arg B' as we pass along any side of the polygon. 
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This condition can be satisfied by supposing F to be e pure numerical 
constant. Taking it to be real, we have, from equation (236), 

......... arg (&) =harg(W-uJ+X,arg(W-us)+ (231). 

On passing through the angular point a t  which W= u,, the quantities 
W - u,, W - u,, etc. remain of the same sign, while the single quantity 
W - u, changes sign. Thus arg ( W - u,) increases by T, whence, by equa- 

. dz 
tion (231), arg (-) increases by hrr. 

dW 

The axis P= O does not tuni  in the W-plane on passing through the 

value W = u,, while arg ($) measures the inclination of the element of 

the polygon in the 2-plane to the corresponding element of the axis V =  O in 
the W-plane. 

Hence, on passing through the value W = %, the perimeter of the 
polygon in the z-plane must turn through an angle equal to the increase in 

arg ($) , namely LT, the direction of turning being fmm 0x to Oy. Thus 

h , ~ ,  X,T, ... must be the exterior angles of the polygon, these being positive 
when the polygon is convex to the axis Os. Or, if al, a,, ... are the interior 
angles, reckoned positive when the polygon is concave to the axis of x, we 
must have 

a1 hl = - - 1, etc. 
T 

Thus the transformation required for a polygon having interna1 angles 
al, C(2, ... is 

where q, %, ... are real quantities, which give the values of U a t  the angular 
points. 

323. As an illustration of the use of Schwarz's transformation, suppose 
the conducting system to consist of a semi-infinite plane placed parallelo an 
i n h i t e  plane. 

In fig. 90, let the conductor be supposed to be a polygon ABCDE, which 
is described by following the dotted line in the direction of the arrows. The 
points A, B, C, E are al1 supposed to be a t  idni ty ,  the points B and C 
coinciding. Let us take A to  be W = - CO, B or C to be W = 0, D to be 
W = 1 and E to be W = + a. The angles of the polygon are zero at  (BQ) 
and 27r at  D. Thus the transformation is 

dz W - 1  -- ~ w - ~ T ,  
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giving upon integration 

..................... z= C{W-log W +  Dj (239), 

where C, D are constants of integration which may be obtained from the 

W= -w 

Fm. QO. 

condition that the two planes are to be, Say, y=  O and y= h. Prom these 
h 

conditions we obtain C = - D = i ~ ,  so that the transformation is 
%- ' 

On replaciiig z, W by - z, - W, the transformation assumes the simpler fonn 

III. Successive Transformations. 

324. If r = C$ (z), W = f (c) are any two transformations, then by elimi- 
nation of c, a relation 

lV = P (z) ............................. .(242) 

is obtained, which may be regarded as a new transfbrmation. 

We may regard the relation r= $I (z) as expressing a transformation from 
the z-plane into a <-plane, while the second relation W =  f (5) expresses a 
further transformation from the r-plane into a W-glane. Thus the final 
transformation (242) may be regarded as the result of two successive trans- 
formations. 

Two uses of successive transformations are of particular importance. 

325. Conductor injuenced By line-charge. The transformation 

gives, as we have seen (5 318) the solution when a. line-charge is placed at  
Z;= a in front of the plane represented by the real axis of r. Let the further 
transformation Z;= f (2) transform the real axis of Z; into a surface 8, and the 
point I;= a into the point z = z,, so that a = f (2,). Then the transformation 

w = log .f (4 -- .f (%> 
f ( 4 + f  (20) 
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gives the solution when a line-charge is placed a t  z= 2, in the presence of 
the surface S. I n  this transformation it must be remembered that U, and 
not 'P, is the potential (cf 5 318). 

326. Conductors at different potentials. Let us suppose that the trans- 
formation C=qi (z) transforma a conductor into the real axis of 5. The 
further transformation W = C + D log 5 (5  318) will give the solution when 
the two parts of this plane on different sides of the origin are raised to 
different potentials C and C + TI). 

Thus the transformation obtained by elimination of 5; namely 

W=C+Diog+(z) ,  

will transform two parts of the same conductor into two parallel planes, 
and so will give the solution of a problem in which two parts of the same 
conductor are raised to different potentials. 

327. Two examples of practical importance will now be given to illus- 
trate the use of the methods of conjugate functiom. 

Exmple  I. Parallel Plate Condenser: 

328. The transformation 

has been found to transform the two plates in  fig. 90 into the positive and 
negative parts of the real axis of c. The further transformation W =  log 5 
gives the solution when these two parts of the real axis of 5 are a t  potentials 
O and T respectively (5 326). 

Thus the transformation obtained by the elimination of 5, namely 

will transform the two planes of fig. 90-one infinite and one semi-infinite- 
into two infinite parallel planes. Thus equation (243) gives the trans- 
formation suitable to the case of a semi-infinite plane at  distance h from 
a ~aral lel  infinite plane, the potential difference being T. 

By the principle of images it is obvious that the distribution on the 
upper plate is the same as it would be if the lower plate were a semi- 
infinite plane a t  distance 2h instead of an infinite plane at  distance h. The 
equipotentials and lines of force for either problem are shewn in fig. 91. 
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Separating real and imaginary parts in equation (243), 

On the former equipotential, the relation between x and U is 

When U = - ca , x = + a ; as U increases, x decreases until it reaches a 
minimum value x = h/7- when U = O ; and as 17 further increases through 
positive values x again increases, reaching x =  m when U=+ m. Thus as 
U varies while V =  0, the path described is the path PQR in fig. 91. 

The intensity a t  any point is 

dW 'Tl- R =  - = 1 dz 1 .A lew-1 , '  

At a point on the equipotential Y = 0, the surface-density is 
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1 
At P, U =  - 00, 80 that u= a ; as we approach Q, o iocreases and finally 

becomes infinite a t  Q, while after passing Q and moving dong QR, the upper 
side of the  lat te, r decreases, and ultimately vanishes to the order of e-u. 

The total charge within any range U,, Ua is, by equation (233), 

It therefore appears that the total charge on the upper part of the plate QR 
is infinite. 

Let us, however, consider the charges on the two s'ides of a strip of the 
plate of width Z from Q, i.e. the strip between x = h/.rr and x = Z + h/.rr. The 
two values of U corresponding to the points in the upper and lower faces a t  
which this strip terminates, are from equation (244) the two real roots of 

Of these roots we know that one, Say U,, is negative and the other (U,) 
is positive. If 1 is large, we find that the negative root U, is, to a h b  
approximation, equal to 

and this is its actual value when 1 is very large. Thus the charge on the 
lower plate within a large distance 1 of the edge is 

and therefore the disturbance in the distribution of electricity as we approach 
Q results in an increase on the charge of the lower plate equal to what would 
be the charge on a strip of width h / ~  in the undisturbed state. 

I f  Z is large the positive root of equation (245) is 

so that the total charge on a strip of width 1 of the upper plate approximates, 
when 1 is large, to 

Thus although the charge on the upper plate is infinite, i t  vanishes in 
comparison with that on the 'lower plate. 
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Eccampte II.. Bend of a Leyden Jav. 

329. The method of conjugate functions enables us to approximate to 
the correction required in the formula for the capacity of a Leyden Jar, on 
account of the presence of the sharp bend in the plates. 

As a preliminary, let us find the capacity of a two-dimensional condenser 
formed of two conductors, each of which consists of an infinite plate, bent 
into an L-shape, the two L's being fitted into one another as in fig. 92. 

Let us assume the five points A, B, (CD), E, P to be (=- C O ,  -a, O, 
+ b, +CO respectively, and let us for convenience suppose the potential 
difference which occurs on passing through the value c= 0 to be crr. Then 
the transformation is 

where W = log t: (cf. 5 326). 

To integrate, we put 21 = (c+ a)-+ (5  - b)i, and obtain 

where C is a constant of integration. 

To make C vanish, we must have z = 0 when 2~ = 0, i.e. at the point E. 
We shall accordingly take E as origin, so that C =  O. 
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At B, we now have = - a, u = a>, and therefore 

Thus the distances between the pairs'of arms are T - A  and TA 2/6 
respectively. 

Let P be.any point in EF which is a t  a distmce from E great compared 
with EB. Let the value of { a t  P be {,, so that cp is positive and greater 
than b. 

We have W = U+iV  = log so that along the condiictor FED, V =  O 
and U = log 5 

The total charge per unit width on the strip EP is, by formula (233), 

If P is far removed from E, the value of I, is very great, and since 

the value of t h 2  will be nearly equal to unity a t  P. 

From equation (246), 

in which the terms log (1 -UV), - z /A,  are large a t  P in comparison with the 
others. Again, from equation (248), we have 

log r= log (aua + b)  - log (1 -us) ............... (250), 

in which log {, log (1 - u2) are large at  P, in comparison with the term 
log (au2+ b). Combining eyuations (249) and (250), 

Z 
i n  which the terms log 5 and - are large at  P in comparison with the other A 
terms. At P we may put u = 1 in al1 terms except log f: and ZIA, and obtain 
rn an approximation - - 

~ = 1 0 g ( a + b ) -  2 loge + z d: tan-l2/:+$. 
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The value of z, is of course xp+iy,, or EP. Thus, from the equation 
just obtained, equation (24'1) may be thrown into the form 

P 1 
I p d  = (log t - log b) 

If the lines of force were not disturbed by the bend, we should have 

Equation (252) shews that uds is greater than this, by an amount 1% 

Let us denote the distances between the plates, namely 'ti-ii and TA,  JE - 

by h and k respectively, so that 1/: = h . , Expression (253) now beeomes 

so that the charge on the plate EP is the same as it would be in a parallel 
plate condenser in which the breadth of the strip was greater than EP by 

'ti- 

+ + 2h tan+ i} , 

When h = k, this becomes 

" - log. 2 or -279h. rG ) 
.MULTIPLE-VALUED POTENTIALS. 

330. There are many problems to which mathematical analysis yields 
more than one solution, although i t  may be found that only one of these 
solutions will ultimately satisfy the actual data of the problem. I n  such 
a case it will often be of interest to examine what interpretation has to 
be given to the rejected solutions. 

The problem of deterrnining the potential when the boundary conditions 
are given is not of this class, for i t  has already been shewn ($$ 118-188) 
that, subject to specified boundary conditions, the termination of the poten- 
tiel is absolutely unique. But i t  may happen that, in searching for the 
required ~olution, we corne upon a multiple-valued solution of Laplace's 
equation. Only one value can satisfy the boundary conditions, but the 
interpretation of the other values is of interest, and in this way we arrive 
a t  the study of multiple-valued potentials. 
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Conjugate Fwnctions on a Riemawn's Surface. 

331. An obvious case of a multiple-valued potential srises from the 
conjugate function transformation 

W=+(z )  .............................. (2541, 
when 4 is not a single-valued function of a, Such cases have already 
occurred in $5 317, 320, 323, etc. 

The meaning of the multiple-valued potential becomes clear as soon 
as we construct a Riemann's surface on which 4 (z) can be represented as 
a single-valued function of position. One point on this Riemann's surface 
must now correspond to each value of W, and therefore to each point in 
the W-plane. Thus we see that the transformation (254) transforms the . . 

complete W-plane into a complete Riemann's surface. Corresponding to 
a given value of r there may be many values of the potential, but these 
values will refer to the different sheets of the Riemann's surface. If any 
region on this surface is selected, which does not contain any branch points 
or lines, we can regard this region as a real two-dimensional region, and the 
corresponding value of the potential, as given by equation (254), will give 
the solution of an electrostatic problem. 

332. To illustrate this by a concrete case, consider the transformation 

W = Z ~  ................................. (255)' 

W-plane. z-surface. 
Fm. 93. 

which has already been considered in § 317. The Riemann's surface appro- 

priate for the representation of the two-valued function z* may be supposed 
to be a surface of two infinite sheets connected along a branch line which 
extends over the positive half of the real axis of z. 

To regard this surface as a deformation of the W-plane, we must suppose 
that a slit is eut along the liner OB (fig. 93) in the W-plane, and that the 
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two edges of the slit are taken and turned so that the angle 2n; which they 
originally enclosed in the W-plane, is increased to 4- after which the edges 
are again joined together. 

The upper sheet of the Riemann's surface so formed will now represent 
the upper half of the W-plane, while the lower sheet will represent the lower 
half. Two points e, e, which represent equal and opposite values of W, 
Say f x, will (by equation (255)) be represented by points a t  which s has 
the same value; they are accordingly the two points on the upper and 
lower sheet respectively for which z has the value W. 

A circular path pqrs surrounding O in the W-plane beconles a double 
circle on the z-surface, one circle being on the upper sheet and one on 
the lowei, and the path being continuous since i t  crosses from one sheet 
to the other each time i t  rneets the branch-line. 

A line a6 in the upper half of the W-plane becomes, as we have seen, 
a parabola ab  on the upper sheet of the z-surface. Sirnilarly a line a'P' in 
the lower half of the W-plane will become a parabola a'@ on the lower sheet 
of the z-surface. The space outside the parabola c@ on the upper sheet of 
the z-surface transforms into a space in the W-plane bounded by the line a6 

and the line at infinity. Consequently the transformation under consideration 
gives the solution of the electrostatic problem, in which the field is bounded 
only by a conducting parabola and the region at infinity. The same is not 
true of the space inside the parabola a& for this transforms into a space in 
the W-plane bounded by both the line $3 and the axis AOB. I t  is now 
clear that the transformation has no application to problems in which the 
electrostatié field is the space inside a parabols. 

In  general i t  will be seen that two points, which are close to one another 
on one sheet of the z-surface, but are on o~posite sides of a branch-line, 
will transform into two points which are not adjacent to one another in the 
W-plane, and which therefore correspond to different potentids. Conse- 
quently we cannot solve a problem by a transformation which requires a 
branch-line to be introduced into that part of the Riemann's surface which 
represents the electrostatic field. 

\ 

Irna,ges on a Riemann's Surface. 

333. I n  the theory of electrical images, a system of imaginary charges is 
placed in a region which does not form part of the actual electrostatic field. 
When a two-dimensional problem is solved by a conjugate function trans- 
formation, the electrostatic field must, as we have seen, be represented by 
a region on a single sheet of the corresponding Riemann's surface, and this 
region must not be broken by branch-lines. The same, however, is not true 
of the part of the field in which the imaginary images are placed, for this 
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may be represented by a fegion on one of the other sheets of the Riemann's 
surface. 

To take the simplest possible illustration, suppose that in the (-plane we 
have a line-charge e along the line represented by the point Pl in froht of 

z- surfacc 

P a  (uppet sheet) 

B 
A O B O A 

P i m e  Pi (lower sheet) 

Fm. 94. 

the uninsulated conducting plane represented by the real axis AB. The 
solution, as we know, is obtained by placing a charge - s a t  the point P', 
which is the image of P in AOB. The value of the potential (U) is given, 
as in $318, by ' 

c- CP U+ iB= A log - r- 5~1' 

Let us now transform this solution by means of the transformation 

................................ 5 = z4 .(256). 

The conducting plane AOB transforms into a semi-infinite plane OB, which 
may be taken to coincide with the branch-line of the Riemann's surface. 
The charge e a t  P becomes a charge a t  a point P on the upper sheet of the 
surface, while the image a t  P' becomes a charge a t  a point P' on the lower 
sheet. Thus we can replace the semi-infinite conductor OB in the a-plane 
by an image a t  a point P on the lower sheet of a Riemann's surface, and we 
obtain the field due to a line-charge and a semi-infinite conductor iri an 
ordinary two-dimensional space. 

From the transformation used, the potential is found to be given by 

in which U is the potential, z = a is the point (a, a) on the upper sheet, and 
z = - a is the image on the lower sheet. 

I n  calculating a potential on a Riemann's surface, we must not assume 
the potential of a line-charge e at  the point (a, a) to be 

C - 2e log R ............................. .(25'1 j, 

mhere R is the distance from the point (a, a). I n  fact, this potential would 
obviously have an infinity both a t  the point (a, a) on the upper sheet, and 
also at the point (a, a) on the lower sheet, and O would be the potential of 
two line-charges, one a t  the point (a, a) on each sheet. 
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The appropriate potential-function for a single charge a n  easily be 
found.. 

As in the problem just discussed, it is clear that the potential due to the 
single line-charge a t  (a, a) on the upper sheet is the value of U given by 

U+iP= c+ A log(&- &) 

e 

so that 

= C + $ A l o g { r - 2 G r c o s + ( 0 - a ) + a } ,  

and if this is to be the potential due to a line-charge e, i t  is clear, on 
examining the value of U near the point (a, a), that the value of A must be 
- 2e. Thus the potential function must be 

instead of that given by expression (25'7), namely, . 

.............. C - e log [qa - 2nr cos (0 - a) + aa} .(259). 

It will be noticed that both expressions are single-valued for given values 
of (r,  B), but that for a given value of z, expression (258) has two values, 
corresponding to two values of 0 differing by 2 ~ ,  while expression (259) has 
only one value. Or, to state the same thing in other words, the expression 
(259) is periodic ili 0 with a period 2n; while expression (258) is periodic 
with a period 4a. 

Potential in  a Riemann's Space. 

334. Sommerfeld* has extended these idem so as to provide the solution 
of problems in three-dimensional space. 

His method rests on the determination of a multiple-valued potential 
function, the function being capable of representation as a single-valued 
function of position in a " Riemann's space," this space being an irnaginary 
space which bears the same relation to real three-dimensional space as a 
Riemann's surface bears to a plane. 

335. The best introduction to this method will be found in a study of 
the simplest possible example, and this will be obtained by considering the 
three-dimensional problem analogous to the two-dimensional problem already 
discussed in 5 333. 

Ueber verzweigte Potentiale irn Raurn," Pîoc. Lond. Math. Soc. 28, p. 395, and 30, p. 161. 
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We suppose that we have a single point-charge in the presence of an 
uninsulated conducting serni-infinite plane bounded by a straight edge. Let 
us take cylindrical coordinates r ,  8, z, taking the edge of the plane to be 
r = 0, the plane itself to be û = O, and the plane through the charge a t  right 
angles to the edge of the conductor to be z = O. Let the coordinates of the 
point-charge be a, a, O. 

The Riemann's space is to be the exact analogue of the Riemann's 
surface described in § 332. That is to Say, it is to be such that one revolu- 
tion round the line r = O takes us from one " sheet " to the other of the 
space, while two revolutions bring us back to the starting-point. Thus, for 
a function to be a single-valued function of position in this space, i t  must be 
a periodic function of 0 of period $TT. 

Let us denote by f (r, 8, z, a, a, O) a function of r, 8, and z which is to 
satisfy the following conditions : 

(i) it must be a solution of Laplace's equation ; 

(ii) i t  must be a continuous and single-valued function of position in 
the Riemann's space ; 

(iii) it must have one and only one infinity, th& being a t  the point 
a, a, O on. the first "sheet" of the space, and the function 

1 
approximating near the point to the function -, where R is R 
the distance from this point; 

(iv) i t  must vanish when T = co . 
I t  can be shewn, by a method exactly similar to that used in $186, that 

there can be only one function satisfying these conditions. Hence the func- 
tion f (r, 8, z, a, a, 0) can be uniquely determined, and when found it will be 
the potential in the Riemann's space of a point-charge of unit strength a t  the 
point a, a, O. 

Consider now the function 
f ( r ,O,z ,a ,a ,O)- f ( r ;û ,a ,a , -u ,O)  ............... @GO), 

which is of course the potential of equal and opposite point-charges at the 
point a, a, 0, and at its image in the plane 8 = 0, namely, the point 
a, - a, O. 

This function, by conditions (i) and (iv), satisfies Laplace's equation and 
vanishes at infinity. On the 6rst sheet of the surface, on which a varies 
from O to 2rr (or from 47r to 67r, etc.), i t  has only one infinity, namely, at  

a, a, O, a t  which it assumes the value 
1 
R' 

From the conditions which it satisfies, the function f (r, 8, z, a, a, O) must 
clearly involve B and cr only through 0 - a, and must moreover be an even 
function of 9 - a. It follows that, when 0 = O, expression (260) vanishes. 
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Again, since the function f is periodic in 8 with a period 2 ~ >  it follows 
that, when 8 = - 27, expression ( 2 6 0 )  may be written in the form 

f (y, 2 ~ ,  2, a, a, O )  -f (y, - 2 ~ ,  2, a, -a, O ) ,  
and this clearly vanishes. Thus expression (260) vanishes when 0 = 0 and 
when 0 = 2 ~ .  That is to say, i t  vanishes on both sides of the semi-infinite 
conducting plane. 

I t  is now clear that expression (260) satisfies al1 the conditions which 
have to be satjsfied by the potential. The problem is accordingly reduced 
to that of the determination of the function f (r, 8, z, a, u, O). 

336. Let us write 
T = eq  a = e~',  

then the distance R from r ,  8, z to a, a, O is given by 
R2=ra- 2ar cos(6-a)+ aa+.z2 

= 2ar Icos i (p - p') - cos (8 - a)} + z2, 

Take new funckions R' and f (u) given by 
Ea=2ar {cosi(p - p') -cos (8 -u)} +z2, 

The function f (4 has infinities when u = a, a 1 27r, a 2 47r, . . . , its residue 
being unity a t  each iniinity. Also, when ,a - a, the value of R' becomes R. 
Hence the integraI 

\& (u) du ................... . .. . ....... ( z e l ) ,  

where the integral is taken round any closed contour in the u-plane which 
surrounds the value u = a, but no other of the infinities off (u), will have as 

1 
its value 2i7~ x - We accordingly have 

B' 

The integral just found gives a form for the potential fumtion in ordinary 
space which, as we shall now see, can easily be modified so as to give the 
potential function in the Riemann's space which we are now considering. 

1 
We notice first that - regarded as a function of r, 0, and z, is solution R 

of Laplace's equation, whatever value u may have. Hence the integral (261) 
will be a solution of Laplace's equation for al1 values off (u), for each term 
of the integrand will satisfy the equation separately. 

If we take * 
1 i e a  

f ( ~ ) = ~ -  i,, - 
e8 - e2  
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we see that the infinities o f f  (u) occur when u = a, a + 47r, a I 87r, etc., and - . .  

the residue at  each is unity. Hence, if we take the integral round one 
infinity only, say u =a, the value of 

2 1' (u) du. . .. . . . . ........ . .. ..., . .. ..(263) 
2i7r R' 
1 

will become identical with - at  the, point at  which R'= O. Moreover, R 
expression (263) is, as we have seen, a solution of Laplace's equntion: i t  
is seen on inspection to be a single-valued function of position on the 
Riemann's surface, and to be periodic in 8 with period 4m. Hence i t  is the 
potential-function of which we are in search. Thus 

The details of the integration can be found in Sommerfeld's paper. The 
value of the integral is found to be 

337. Other systerns of coordinates can be treated in the same way, and 
the construction of other Riemann's spaces can be made to give the solutions 
of other problems. The details of these will be found in the papers to which 
reference has already been made. 

REFERENCES. 

On the Theory of Images and Inversion : 

~ ~ A X W E L L .  Electricity and Bagnelism. Chap. XI. 
THOMSON AND TAIT. Natural Philosophy. Vol. II. §S 510 et sep. 
THOMBON, Sir W. (Lord KELVIN). Papers on Electrostatics and Magnetisrn. 

On the Mathematical Theory of Spherical and Zonal Harmonies: 
FERRERS. Spherical Barnmica. (Macmillan & Co., 1877.) 
TODHUNTER. The Punctions of Laplace, Lame; and Bessel. (Macmillan & Co., 

1875.) 
HEINE. Theorie der Kugelfunctionen. (Berlin, Reimer, 1878.) 
MAXWELL. Electricity and Nagnetism Chap. IX. 
THOMSON AND TAIT. Nadural Philosophy. Chap. 1. Appendix B. 
BYERLY. Foum'er'~ Series and Spherical Barnzoî~ics. (Ginn & Co., Boston, 1893.) 

On confocal coordinates, and ellipsoidal and spheroidal harmonics: 
TODHUNTER. Th Punctiom of Laplace, Lamé, and Bessel. 
MAXWELL. Electricity and Magnetism. Chap. X. 
LAMB. Eydrodynamics. Chap. V. 

BYERLY. Fouriw'~ Series and Spherical Harmoniw. 

IRIS - LILLIAD - Université Lille 1 



On Oonjugate Functions and Conforma1 Representation : 
MAXWELL. Elechicity and Magnetism. Chap. XII. 
LAMB. Eydrodynantics. (Camb. Univ Press, 1895 and 1906.) Chap. IV. 

J. J. THOMSON. R~cent Researches in Electricity and Magnethz. (Clarendon 
Press, 1893.) Chap. III. 

WEBSTER. Electricity and Magnetism. Introduction, Chap. IV. 

EXAMPLES. 

1. An infinite conducting plane a t  zero potential is under the influence of a charge of 
electricity at  a point O. Shew that the charge on any area of the plane is proportional to 
the angle i t  subtends a t  0, 

2. A charged particle is placed in the space between two uninsulated planes which 
intersect a t  right angles. Sketch the sections of the equipotentials made by an imaginary 
plane through the charged particle, a t  right angles to the planes. 

3. In question 2, let the particle have a charge e, and be eqiiidistant from the planes. 
Shew thst the total charge on a strip, of which one edge is the line of intersection of the 
planes, and of which the midth is equal to the distance of the particle from this line of 
intersection, is - &e. 

4. In  question 3, the strip is insulated from the remainder of the planeu, theve being 
stili to earth, and the particle is removed. Find the potential a.t the point formerly 
occupied by the particle, produced hy raising the strip to potential V. 

5. If two infinite plane uninsulated conductors meet a.t an angle of 60°, and there is a 
charge e a t  a point equidistarit from each, and distant r from the line of intersection, find 
the electrification at  any point of the planes. Shew that a t  a point in  a principal plane 
through the charged point at a distance r J3 from the line of intersection, the surface 
density ie 

- 

6. Two small pith b a h ,  each of mass m, are connected by a light insulating rod. 
The rod is supported by parallel threads, and hangs in a horizontal position in front of an 
infinite vertical plane a t  potential zero. I f  the balls when charged with e unih of 
electricity are a t  a distance a from the plate, equal to half the length of the rod, shew 
that the inclination B of the strings to the vertical is given by 

7. What is the least positive charge that must be given to a spherical conductor, 
insulated and influeneed by an external point-charge e a t  distance 1. from its centre, in 
order that the surface density may be everywhere positive? 

8. An uninsulated conducting sphere is under the influence of an external electric 
charge; find the ratio in which the induced charge is divided betmeen the part of its 
surface in direct view of the external charge and the remaining part. 

9. A point-charge e is brought near to a spherical conductor of radius a having a 
charge E. Shew that the particle will be repelled by the sphere, unless its distance from 

1- 

the nearest point of its surface is less than & a  - approximately. 
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10. A hollow conductor ha8 the form of a quarter of a sphere bounded by two 
perpendicular diametral planes. Find the image of a charge placed a t  any point 
inside. 

11. A conducting surface consists of two infinite planes which meet at right angles, 
and a quarter of a sphere of radius a fitted into the right angle. I f  the conductor is a t  zero 
potential, and a point-charge e is symmetrically placed with regard to the planes and the 
spherical surface a t  a great distance f from the centre, shew that the charge induced on 
the s1)herical portion is approxiinately -5eas l r f s .  

12. A point-charge is placed in front of an infinite slab of dielectric, bounded by a 
plane face, The angle between a line of force in the dielectric and the normal to the face 
of the slab is a ; the angle between the same two lines in the immediate neighbourhood of 
the charge is 8. Prove that a, /3 are coiinected by the relation 

- 
sin 2 a = 2/& sin a 

13. An eledrified particle is placed in front of an infinitely thick plate of dielectric. 
Shew that the particle is urged towards the plate by a force 

K-1 e2 -- 
~ + 1  4d2' 

where d is the distance of the point from the plate. 

14. Two dielectrics of inductive capacities and K* are àeparated by an in6nite plane 
face. Charges e l ,  e2 are placed a t  points on a line a t  right angles to the plane, each a t  a 
distance a from the plane. Find the forces on the two charges, and esplain why they are 
unequal. 

15. Two conductors of capacities q, c2 in air are on the same normal to the plane 
boundary between two dielectrics K I ,  K Z ,  a t  great distances a, b from the boundary. They 
are connected by a thin wire and charged. Prove that the charge is distributed between 
them approximately in the ratio 

16. A thin plane cond~cting lamina of auy shape and size is under the influence of a 
fixed eiectrical distribution on one side of it. If <rl be the density of the induced charge 
at  a point P on the side of the lamina facing the fixed distribution, and ua that a t  the 
corresponding point on the other side, prove that cl -us= uo, where uo is the density a t  P 
of the distribution induced on an infinite plane conductor coinciding with the lamina. 

17. An infinite plate with a hemispherical boss of radius a is a t  zero potential under 
the influence of a point-charge e on the axis of the boss distant f from the plate. Find the 
surface density at  any point of the plate, and shew that the charge is attracted towards 
the plate with a force 

e V e 2 a 3  f 3 
- -  
44'2' ( f l - a 4 ) 2 '  

18. A conductor is formed by the outer surfaces of two equal spheres, the angle 
between tkieir radii a t  a point of intersection being 2 ~ 1 3 .  Shew that the capacity of the 
conductor so formed is 

where a is the radius of either sphere. 
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19. Within a spherical hollow in a conductor connected to earth, equal point-charges 
e are placed a t  equal distances f from the centre, on the same diameter. Shew that each 
is acted on by s force equal to 

4a3f3 1 

20. A hollow sphere of sulphur (of inductive oapacity 3) whose inner radins is half its 
outer is introduced into a uniform field of electric force. Prove that the intensity of the 
field in the hollow will be less than that of the original field in the ratio 27 : 34. 

21. A conducting spherical shell of radius a is placed, insulated and without charge, 
in a uriiform field of electric force of intensity F. Shew that if the sphere be cut into two 
hemispheres by a plane perpeudicular to the field, these hemispheres tend to separate and 
require forces equal to &azF2 to  keep them together. 

22. An uncharged insulated conductor formed of two equal spheres of radius a 
cutting one another at  right angles, is placed in a uniform field of force of intensity F, 
with the line joining the centres parallel to the lines of force. Prove that the charges 
induced on the two spheres are +Pa2 and - 8 F a <  

23. A conducting plane has a hemispherical boss of radius a, and a t  a distance f from 
the centre of the boss and along its axis there is a point-charge e. If the plane and the 
boss be kept a t  zero potential, prove that the charge induced on the boss is 

24. A conductor is bounded by the larger portions of two equal spheres of radius a 
cutting a t  &an angle +r, and of a third sphere of radius c cutting the two former 
orthogonally. Shew that the capacity of the conductor is 

25. A spberical conductor of interna1 radius b, which is uncharged and insulated, 
surrounds a spherical conductor of radius a, the distance between their centres being c, 
which is small. The charge on the inner conductor is 3, Find the potential function 
for points between the conductors, and shew that the surface density a t  a point P on the 
inner conductor is 

E 1 3c cos 6 
(G 7 

where 6 is the angle that the radius through P makes with the line of centres, and terms 
in c2 are neglected. 

26. If a particle charged with a quantity e of electricity be placed a t  the middle point 
of tha line joining the centres of two equal spherical conductors kept a t  zero poteiitial, 
shew that the charge induced on cach sphere is 

neglecting higher powers of m, which is the ratio of the radiua to the distance between the 
centres of the spheres. 

27. TWO insulated condiicting spheres of radii a, 6, the distance c of whose centres 
is large compared with a and b, have charges El, E, respectively. Shew that the potential 
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28. Shem that the force between two insulated spherical conductors of radius a ylaced 
in an electric field of uniform intensity P perpendicular to their line of centres ia 

c being the distance between their centres. 

29. Two uncharged iusulated spheres, radii a, b, are placed in a uniform field of force 
so that their line of centres is parallel to the lines of force, the distance c between their 
centres being great compared with a  and b. Prove that the surface density a t  the point 
a t  which the line of centres cuts the first sphere (a) is approximately 

6b3 15abV2a2b3 5 7 ~ 3 6 3  R{3+,+,+p+- ce + ...}. 4 s 

30. A conducting sphere of radius a is embedded in a dielectric ( K )  whose outer 
boundary is a concentric sphere of radius 2a. Shem that if the systern be placed in 
a uniform field of force F, equal quantities of positive 2nd negative electricity are 
separated of amount 

9Fa2K 
5 K t 7 '  

31. A sphere of glass of radius a is held in air with its centre a t  a distance c from a 
point a t  which there is a positive charge e. Prove that the resultant attraction is 

where p= (K- l ) / ( K + l ) .  

32. A conducting spherical shell of radius a is placed, insulated and without charge, 
in a uniform field of force of intensity F. Shew that if the sphere be cut into two 
hemispheres by a plane perpendicular to the field, a force &aaP is required to prevent 
the hemispheres from separating. 

33. A spherical shell, of radii a, b and inductive capacity K, is placed in a uniform 
held of force F. Shew that the force inside the shell is uniform and equai to  

9KF 
9K- 2 ( K  - 1 ) 2  (b3/a3 - 1) ' 

34. The surface of a conduotor being one of revoliition whose equation is 

where r, S are the distances of any point from two fixed points a t  distance 8 apart, find 
the electric density a t  either vertex when the conductor has a given charge. 

35. The curve 

when rotated round the axis of x generates a single closed surface, which is made the 
bounding surface of a conductor. Shew that its capacity will be a, and that the surface 
density a t  the end of the axis will be e/3sa2, where e is the total charge. 

36. Two equal spheres each of radius a  are in contact. Shew that the capacity of the 
conductor so formed is 2a log, 2. 
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37. Two spheres of radii a, b are in  contact, a being large compared with b Shew 
that if the conductor so formed is raised to potential V; the charges on the two spheres are 

38. A conducting sphere of radius a is in  contact with an infinite condiicting plane. 
Shew that if e unit point-charge be plaoed beyond the sphere and on the diameter through 
the point of contact a t  distance c from that point, the charges induced on the plane and 
sphere are 

Ta rra sa r a  -- cet - and - cot - - 1. 
C c c C 

39. Prove that if the centres of two equal uninsulated spherical conductors of radius 
a he a t  a distance 2c apart, the charge induced on each by a unit charge a t  a point 
midway between them is 

00 

( - 1)" sech na, 
1 

where c= a cosh a. 

40. Shew that the capacity of a spherical conductor of radius a, with its centre at  a 
distance c from an inîinite conducting plane, is 

m 

a siuh a 2 cosech na, 
1 

where c= a cosh a. 

41 An insulated conducting sphere of radius a is placed midway between twn 

paralle1 infioite uninsulated planes a t  a great distaoce 2c apart Negleeting (:)2, shav 

that the capacity of the sphere is approximately 

42 Two spheres of radii rl, r2 touch each other, and their capacities in this position 
arecl;cz. Shewthat 

where f=&. 
9.1 + 93 

43. A conducting sphere of radius a is placed in air, with its centre a t  a distance e 
from the plane face of an infinite dielectric. Shew that its capacity is - K-1 R - 1  

asinh a 2 ( +1) cosechna, 
1 

where a=c/a. 

44. A point-charge e is placed between two pa.rallel uninsulated infinite conducting 
planes, a t  distances a and b from them respectively. Shew that the potential a t  a point 
between the planea which is a t  a distance z from the charge and is on the line through the 
charge perpendicular to the planes is 
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45. A spherical conductor of radius a is surrounded by a uniform dielectrio h', which 
is boiinded by a sphere of radius b having its centre a t  a small distance y from.the centre 
of the conductor. Prove that if the potential of the conductor is Ti, and there are no 
other condiictors in the field, the surface density a t  a point where the radius makes an 
angle B with the line of centres is 

K m  6 ( K -  1 )  yu2 cos e 
4ra( (K- l )a+b)  

46. A shell of glass of inductive capacity K, which is tiounded by concentric sphericill 
surfaces of radii a, b (a<b), surrounds an electrified particle with charge E which is a t  a 
point Q a t  a small distance c from 0, the centre of the spheres. Shew that the potential 
a t  a point P outside the shell a t  a distance r from & is approximately 

2Ec(b3-a3)(K-l)2 cos0 :+ 2a3 ( K -  1)'- b3 (K+2) (2B+ 1 )  7' 
where 6 is the angle which QP makes with O& produced. 

47. If the centres of the two shells of a spherical condenser be separated by a small 
distance d, prove that the capacity is approsimately 

48. A condenser is formed of tmo spherical conducting sheets, one of radius b 
surrounding the other of radius a. The distance between the centres is c, this being so 
small that (c/a)z may be neglected. The surface densities on the inner conductor a t  the 
extremities of the axis of symmetry of the instrument are ml, uz, and the mean auphce 
density over the i~iner conductor is ü. Prove that 

49. The equation of the surface of a conductor is r=u ( 1  +cP,), where c ia very small, 
and the conductor is placed in a uniform field of force P parallel to  the asis of harmonies. 
Shew that the surface density of the indiiced charge a t  any point is greater than it would 
be if the surface were perfectly spherical, by the amount 

50. A conductor at  potential V whose surface is of the form r=a(l+cP,) is sur- 
rounded by a dielectric ( K )  whose boundary is the surface r= b ( 1  +$'J, and outside this 
the dielectric is air. Shew that the potential in the air a t  a distance r from the origin is 

. where squares and higher powers of c and t) are neglected. 

51. The surface of a conductor is nearly spherical, its equation being 

r = a (1 +€Sn), 

where E is smalL Shew that if the conductor is uninsulated, the charge induced on 
it by a unit charge a t  a distance f from the origin and of angular coordinates B, c$ is 
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52. A uniform circular wire of radius a charged mith electricity of line density e 
surrounds an uninsulated concentric spherical conductor of radius c ;  prove that the 
electrical density a t  any point of the surface of the conductor is 

53. A dielectric sphere is surrouuded by a thin circular wire of larger radius b 
carrying a charge E. Prove that the potential within the sphere is 

54. If within a conductor formed by a cone of semi-vertical angle cos-lp,, and two 
spherical surfaces r=a, r= b with centres a t  the vertex of the cone, a charge p on the axis 
a t  distance r' from the vertex gives potential V, and if we write 

the summation with respect to  rn extending to al1 positive integers, and that mith respect 
to p to al1 numbers integral or fractional for which P, (pO]=O, determine A,. Effecting 
the summa.tion with respect to m, shew that when r < r', 

and that when r > r', 

55. A spherical shell of radius a with a little hole in it  is freely electrified to potential 
V.  Prove that the charge on its inner surface is less than VSISra, where Sis the area of 
the hole. 

56. A thin spherical conducting shell from which any portions have been removed is 
freely electrified. Prove that the difference of densities inside and outside a t  any point is 
constant. 

57. Electricity is induced on an uninsulated spherical conductor of radius a, by a 
nniform surface distribution, density a, over an external concentric non-conducting 
spherical segment of radius c. Prove that the surface density at  the point A of the 
conductor a t  the nearer end of the axis of the segment is 

where B is the point of the segment on its axis, and D is any point on its edge. 

58. Two conducting dises of radii a, a' are fixed a t  right angles to the line which 
joins their centres, the length of this line being 9; large compared with a. If the îîrst 
have potential V and t h e  second is uninsulated, prove that the charge on the 6rst is 

59. A apherical conductor of diameter a is kept a t  zero potential in the presence of a 
h e  uniform mire, in the form of a circle of radius c in a tangent plane to  the sphere with 
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its centré a t  the point of contact, which haa a charge E of electricity; prove that the 
electrical density induced on the sphere a t  a point whose direction from the centre of the 
ring makes an angle .JI with the normal to the plane is 

60. Prove that the capacity of a hemispherical shell of radius a is 

61. Prove that the capacity of tln elliptic plate of small eocentricity e and area A is 
approximately 

62. A circulm disc of radius a is  under the influence of a charge q a t  a point in its 
phne a t  distance b from the centre of the disc. Shew that the density of the induced 
distribution a t  a point on the disc is 

where r, R are the distances of the point from the centre of the disc and the charge. 

63. An ellipsoidal conductor differs but little from a sphere. I t s  volume is equal to  
thàt of a sphere of radius r, its axes are 2r (l+a), 2r (1+@, 2r (l+~). Shew that neg- 
lecting cubes of a, 13, y, its capacity is 

T (1 + T% (a2 + p2 + ya)}. 

64. A prolate conducting spheroid, semi-axes a, b, has a charge E of electricity. Shew 
that repulsion between the two halves into which it is divided by its diametral plane is 

Determine the value of the force in the case of a sphere. 

65. One face of a condenser is a circular plate of radius a: the other is a segment of 
a sphere of radius II, R being so large that the plate is almost flat. Shew that the 
capacity is +KR logtl/to where tl, to are the thickness of dielectric a t  the middle and edge 
of the condenser. Determine also the distribution of the charge. 

66. A thin circular disc of radius a is electrified with charge E and sumounded by a 
spheroidal conductor with charge El, placed so that the edge of the disc is the locus of the 
focua X of the generating ellipse. Shew that the energy of the system is 

B being an extremity of the polar axis of the apheroid, and C the centre. 

67. If the two surfaces of a condenser are concentric and coaxial oblate spheroids of 
small ellipticities E and E' and polar axes 2c and 2cf, prove that the capacity is 

c d ( d - ~ ) - ~ { c ' - c + ; % ( c c ' - ~ ' ~ ) ) ,  
neglectbg squares of the ellipticities; and find the distribution of electrioity on each 
surface to the same order of approximation. 
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68. An accumulator is formed of two confocal prolate spheroids, and the specific 
inductive capacity of the dielectric is KZ/w, where QI is the distance of any point from the 
axis. Prove that the capacity of the accumulator is 

where a, b and q, bl are the semi-axes of the generating ellipses 

69. A thin spherical bowl is formed by the portion of the sphere d+y8+z2=cz 
.z y2 - - 

bonnded by and lying within the cone - + Z;, - c2, and is put in connection with the earth 
a2 

by a fine wire. O is the origin, and C, diametrically opposite to O, is the vertex of the 
bowl; & is any point on the rim, and P is any point on the great circle arc CQ. Shew 
that the surface density induced at P by a charge E placed at O is 

Ec -- QQ 

4nabI OP2 ( O P -  O&')*' 

where 

70. Three long thin wires, eqaally electrified, are placed parallel to each other so that 
they are cut by a plane perpendicular to them in the angular points of an equilateral 
triangle of side J3c ; shew that the polar equation of an equipotential curve drawn on the 
plane is 

To + c6 - 2+c3 ces 38 =constant, 
the pole being a t  the centre of the triangle and the initial line passing through one of the 
wires. 

71. A flat piece of corrugated metal (y=asinmx) is charged with electricity. Find 
the surface density at any point, and shew that i t  exceeds the average density approxi- 
mately in the ratio my : 1. 

72. A long hollow cylindrical conductor is divided into two parts by a plane through 
the axis, and the parts are separated by a small interval. If the two parts are kept at 
potentials VI and Pz, the potential at any point within the cylinder is 

where P' is the distance from the axis, and B is the angle between the plane joining the 
point to the axis and the plane through the axis norme1 to the plane of separation. 

73. Shew that the capacity per unit length of a telegraph wire of radius a a t  height h 
above the surface of the earth is 

[4 tanh-1 d2l-l. 
74. An electrified line with charge e per unit length is parallel to e circular cylinder 

of radius a and inductive capacity K, the distance of the wire from the centre of the 
cylinder being c. Shew that the force on the wire per unit length is 

K -  1 4a2e9 -- 
K+1 c(@-az)' 

75. A cylindrical conductor of infinite length, whose cross-section is the outer 
boundary of three e q d  orthogonal circles of radius a, has a charge e per unit length. 
Prove that the electric density a t  distance r from the axis is 
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76. If the cylinder r=a+bcos8 be freely charged, shew that in free space the 
resultant force wries as 

T- i (Pa+~rCCOS e+cz)-+ 

and makes with the line Be0 an angle 

where a2- b2=2bc. 

77. If ++i+=f (x+iy), and the curves for which +=constant be closed, shew that 
the capacity C of a condenser with boundary surfaces + = $1, C$ = is 

per unit length, where [+] is the increment of + on passing once round a 4-curve. 

78. Using the transformation x+ iy=e cot 4 ( U+ i V), ahew that the capacity C per 
unit length of a condenser formed by two right circula cylinders (radii a, b), one inside 
the other, with parallel areas a t  a distance d apart, is given by 

79. A plane infinite electric grating is made of equal and equidistant parallel thin 
metal plates, the distance between their successive central lines being s, and the breadth 

of each plate Zain-' - . Shew that when the grating is electrified to constant (2 
potential, the potential'and charge functiona V, U in the surrounding space are given 
by the equetion 

sin(U+iV)=Ksin (%+;y). 

Deduce that, when the grating is to earth and is placed in a uniform field of force of unit 
intensity at right angles to its plane, the charge and potential functions of the portion of 
the field which penetrates through the grating are expressed by 

u+ i v- (x + iy), 

and expand the potential in the latter problem in a Fourier Series. 

80. A cylinder whose cross-section is one branch of a redangular hyperbola is 
maintained at zero potential under the influence of a line-charge parallel to its axis 
and on the concave side. Prove that the image consists of three such line charges, and 
hence find the density of the induced distribution. 

81. A cylindrical space is bounded by two coaxial and confocal parabolic cylinders, 
wiiose latera recta are 4a and 4b, and a uniformly electrified line which is parallel to the 
generators of the cylinder intersects the axes which pass through the foci in points distant 
c from them (a > o > b). Shew that the potential throughout the spaco is 

Tf cos L (r+ sin : - $) )l 2 coah - - COS . . 

where 1; 0 are polar coordinetes of a section, the focus being the pole. Determine A in 
. terms of the electrification per unit length of the line. 
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82. An infinitely long elliptic cylinder of inductive capacity given by ,$=a where 
x++c cosh ([+ill), is in a uniform field P parallel to the major axis of aoy section. 
Shew that the potential a t  any point inside the cylinder is 

83. Two insulated uncharged circular cylinders outside each other, given by q=a and 
7 = - where x + iy=c tan & (6 + iq), are placed in a uniform field of force of potential Fx. 
Shew that the potential due to the distribution on the cylinders is 

00 en(*-a) sinh np+e-* h+B)sinh na 
-2FcZ (-)" 

sinh n (a + 8) sin nt. 
1 

84. Two circular cylinders outvide each other, given by q=o and II= - B  where 

x+iy=ctan (,$+i?), 

are put to earth under the influence of a line-charge E on the line x=0, y=O. Shew that 
the potential of the induced charge outside the cylinders is 

1 sinh n (q + p) +e-nB sinh n (a - ?) 
- 4 E 2  - 

sinh n(a+/i?) - cos mg+ constant, 
n 

the summation being taken for all odd positive integral values of n. 

85. The cross-sections of two infinitely long metallic cylinders are the curves 

(~z+y"c~)~-  4cba=a4 and ( ~ ~ + g ~ + c ~ ) ~ -  4eW= b4, 

where h> a > c. If they are kept a t  potentials VI and V2 respectively, the intervening 
space being filled with air, prove that the surface densities per unit length of the 
electricity on the opposed surfaces are 

- v2-v1 J-- '- " m y a  and - ad+p 
b 

4ra2 log - 
b 

a 
471 b2 logi 

respectively. 

86. What problems are solved by the transformation 

where a > 1 ? 
87. What problem in Electrostatics is solved by the transformation 

x+iy=cn (+++), 
where + is taken as the potential function, + being the function conjugate to it ? 

88. One half of a hyperbolic cylinder is given by q =  f 71, where 1111 1 <:, and 5, s are 

given in terms of the Cartesian coordinates q y of a principal section by the trans- 
formation 

x+iy=c cosh ([+iv). 

The half-cylinder is uninsulated and under the influence of a charge of density E per unit 
length placed along the line of interna1 fooi. Pruve that the surface density at any point 
of the cylinder iu 

-- - ~/J2cq ,  C O S ~  * Jcosh 25 -cos ~ I I , .  . 211 
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89. Verify that, if r, s be real positive constants, s = x +  iy, a;=pCB, - = - '+:,the 
c r 

neld of force outside the conductors &+ya+Psx=O, ~ ~ + ~ ~ - 2 r x = O  due to a doublet at 
the point z=a, outside both the circles, of strength p and inclination a to  the axis, is 
given by putting 

where z=a,, is the inverse point to z=a  with regard to either of the circles. 

93. A very thin indefinitely great conducting plane is bounded by a straight edge of 
indefinite length, and is connected with the earth. A unit charge is placed a t  a point P. 
Prove that the potential a t  any point Q due to the charge a t  P and the electricity induced 
on the conducting plane is 

where P' is the image of P in the plane, the cylindrical coordinates of Q and P are 
(r, $, z), (r', c#J', z'), the straight edge is the axis of 8, the anglea $, $' lie between O and 2r, 
$ =O on the conductor, 

and those values of the inverse functions are taken which lie between 4s and r. 

91. A semi-infinite conducting plane is a t  zero potential under the influence of an 
electric charge p a t  a point Q outside it. Shew that  the potentiel a t  any point P is 
given by 

- {cash - cos (O+ dl)} -*tan-' 
CO& ?jq + COS fr (8 + 81) 

- COS 4j (0 t el) I ' 
where r, 8, z are the cylindrical coordinates of the point P, (rl, 81, O) of the point Q, 8 = 0  
is the equation of the conducting plane, and 

2 q  coshtl=S+rla+z2. 

Heuce obtain the potential a t  any point due to a spherical bowl a t  constant potential, 
and shew that the capacity of the bowl is 

wliere a is the radius of the aperture, and a is the angle suhtended by this radius a t  the 
centre of the sphere of which the bowl is  a part. 

92. A thin circular conducting disc is connected to earth and is under the influence 
of a charge q of electricity a t  an external point P. The position of any point Q is denoted 
hy the peri-polar coordinates p, 8, 4, where p is the logarithm of the ratio of the distances 
from Q to the two points R, X in  which a plane QRS through the axis of the disc cuts its 
rim, 8 is the angle RQS, and is the angle the plane QRS makes with a fixed plane 
through the axis of the disc, the coordinate 0 having values between -r and +r, and 
changing from +IF to - r in passing through the disc. Prove or rerify that the potential 
of the charge induced on the disc a t  any point Q (p, 0, 4) is 
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where po, $, $0 are the coordinates of P, Bo being positive, the point P'is the optical 
image of P in the disc, a is given by the equation . 

cos a = cosh p cosh po - sinh p sinh po cos ($ - 
and the smallest values of the inverse functions are to be taken. 

Prove that the total charge on the disc is - pOo/r. 

Explain how to adapt the formula for the potential to  the case in which the circular 
disc is replaced by a spherical bowl with the same rim. 

93. Shew that the potential a t  any point P of a circular bowl, electrified to potential 

where O is the centre of the bowl, and A, B are the points in which a plane through P 
and the axis of the bowl cuts the circular rim. 

Find the density of electricity a t  a point on either side of the bowl and shew that the 
capacity is 

a - (a  + sin a), 
w 

where ca is the radius of the sphere, and 2a is the angle subtended a t  the centre. 

94. TWO spheres are charged to potentiaIs 6 and V;. The ratio of the distances of 

any point from the two limiting point8 of the spheres being denoted by e%nd the angIe 
between them by #, prove that the potential a t  the point 5, q is 
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STEADY CURRENTS IN LINEAR CONDUCTORS 

338. IF two conductors charged with electricity to different potentials 
are connected by a conducting wire, we know that a flow of electricity will 
take place along the wire. This flow will tend to, equalise the potentials 
of the two conductors, and when these potentials become equal the flow of 
electricity will cease. If we had some means by which the charges on the 
conductors could be replenished ae quickly as they were carried away by 
conduction through the wire, then the current would never cease. The con- - 
ductors would remain permanently a t  different potentials, and there would 
be a steady flow of electricity from one to the other. Means are known by 
which two conductors can be kept permanently at  different potentials, so that 
a steady flow of electricity takes place through any conductor or conductors 
joining them. We accordingly have to discuss the mathematical theory of 
such. currents of electricity. 

We shall begin by the consideration of the flow of electricity in linear 
conductors, by a linear conductor being mea~it oneb which has a definite 
cross-section a t  every point. The commonest instance of a linear conductor 
is a wire. 

339. DEFINITION. The strength o f  a current a,t any  point in in a i re  or 
other linear conductor, i s  memured by the number of units of electricity which 
ji?ow across any cross-section of the cond,uctor per unit t h e .  

If the units of electricity are measured in Electrostatic Units, then the 
current also wiil be measured in Electrostatic Units. These, however, as will 
be explained later, are not the units in which currents are usually measured 
in practice. 

Let P, Q be two cross-sections of a linear conductor in which a steady 
current is flowing, and let us suppose that no other conductors touch this 
conductor petween P and Q. Then, since the current is, by hypothesis, 
steady, there must be no accumulation of electricity in the region of the 
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conductor between P and Q. Hence the rate of flow into the section of the 
conductor across P must be exactly equal to the rate of flow out of this 
section across Q. Or, the currents at  P and Q must be equal. Hence we 
speak of the current in a conductor, rather than of the current a t  a point in 
a conductor. For, as we pass along a conductor, the current cannot change 
except a t  points at  which the conductor is touched by other conductors. 

Ohm's Law. 

340. I n  a linear conductor in which a current is flowing, we have 
electricity in motion at every point, and hence must have a continuous 
variation in potential as we pass along the conductor. This is not in 
opposition to the result previously obtained in Electrostatics, for in the 
previous analysis it had to be assumed that the electricity was a t  rest. 
In the present instance, the electricity is not at rest, being in fact kept 
in motion by the difference of potential under discussion. 

The analogy between potential and height of water will perhaps help. A lake in  
which the water is a t  rest is analogous to a conductor in whioh electricity is in equi- 
librium. The theorem that the potential is constant over a conductor in  which electricity 
i~ in equilibrium, is analogous to the hydrostatic theorem that the surface of still water 
mu& al1 be a t  the same level. A conductor through which 3, current of electricity is 
flowing finds its analogue in a stream of ruuning water. Here the level is not the same a t  
al1 points of the river-it is the difference of level which causes the water to flow. The 
water will flow more rapidly in 3, river in which the gradient is large than in one in 
which it is small. The electrical analugy to this is expressed by Ohm's Law. 

OHM'S LAW. The diference of potential between any two points of a wire 
w other linear conductor i n  which a current is Jlowing, stands to the current 
jlowinf through the conductor i n  a constant ratio, zuhich is called the resistance 
between the two points. 

I t  is here assumed that there is no junction with other conductors 
between these two points, so that the current through the conductor is 
a definite quantity. 

341. Thus if C is the current flowing between two points P, Q a t  which 
the potentials are V,, &, we have 

G-%=CR .............................. (2641, 

where R is the resistance between the points P and Q. Very delicate 
experiments have failed to detect any variation in the ratio 

(fa11 of potential)/(current), 

as the current is varied, and this justifies us in speaking of the resistance as 
a definite quantity associated with the conductor. The resistance depends 
naturally on the positions of the two points by which the current enters and 
leaves the conductor, but when once these two points are fixed the resistance 
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is independent of the amount of current. In general, however, the resistance 
of a conductor varies with the temperature, and for some substances, of which 
seleniuin is a notable example, it varies with the amount of light falling on 
the conductor. 

The VoEtak Cell. 

342. The simplest arrangement by which a steady flow of electricity can 
be produced is that known as a, Voltaic Cell. This is repesented diagram. 
mstically in Fig. 95. A voltaic ceIl consists essentially of two conductors 

A, B of different materials, placed in a liquid which acts chemically on at 
least one of them. On establishing electrical contact between the two ends 
of the conductors which are out of the liquid, i t  is found that a continuous 
current flows round the circuit which is formed by the two conductors and 
the liquid, the energy which is required to maintain the current being 
derived from chemical action in the cell. 

To explain the action of the cell, it will be necessary to touch on a subject 
of which a full account would be out of place in the present book. As an 
experimental fact it is found that two conductors of dissimilar material, when 
placed in contact, have different potentials when there is no flow of electricity 
from one to the other*, although of course the potential over the whole of 
either conductor inust be constant. In the light of this experimentàl fact, 
let us consider the conditions prevailing in the voltaic ceIl before the two 
ends a, b of the conductors are joined. 

So  long as the two conductors A, B and the liquid C'do not form a closed 
circuit, there can be no flow of electricity. Thus there is electric equilibrinm, 

For a long time there has been a divergence of opinion as to whether this difierence of 
potential is not due to tiie chemioal change s t  the surfsoes of the conductors, and therefore 
dependent on the presence of a layer of air or other third substance between the conduotors. It 
seems now to be almost certain that this is the case, but the question is not one of vital 
importance as regrt-rds the mathematical theory of electric ourrents. 
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and the three conductors have definite potentials c',, G',, P,. The difference 
of potential between the two " terminals" a, b is K - G, but the peculiarity 
of the voltaic ce11 is that this difference of potential is not equal to the 
difference of potential between the two conductors when they are placed 
in contact and are in electrical equilibrium without the presence of the 
liquid C. Thus on electrically joining the points a, b in the voltaic ce11 
electrical equilibrium is an impossibili.ty, and a current is established in the 
circuit which will continue until the physical conditions become changed or 
the supply of chemical energy is exhausted. 

Electromotive Force. 

343. Let A, B, C be any three conductors arranged so as to form a closed 
circuit. Let K B  be the contact difference of potential between A and B wheri 
there is electric equilibrium, and let V,,, 'V, have similar meanings. 

I f  the three substances can be placed in a closed circuit without any - 
current flowing, theu we can have equilibrium in which the three conductors 
will have potentials G ,  G, q, such that 

Thus we must have 
P a s + ~ c + K * = O ,  

a result known as Volta's Law. 

If, however, the three conductors form a voltaic cell, the expression on 
the left-hand of the above equation does not vanish, and its value i's called 
the electromotive force of the cell. Denoting the electromotive force by E, 
we have 

Y,,i-T&,,-t T&=E .......... : ............. (265). 

We accordingly have the following definition : 

DEFINITION. The Electromotive Force of a ce11 is the algeb~aic sum of the 
discontinuities of poteritial encoumtered in passing in order through the series 
of conductors of which the ce11 is composed. 

Clearly an electromotive force has direction as well as magnitude, It 
iu usual to speak of the two conductors which pass into the liquid as the 
high-potential terminal and the Iow-potential terminal, or sometimes as the 
positive and negütive terininals. Enowing which is the positive or high- 
potential terminal, we shall of course know the direction of the electromotive 
force. 

344. If the conductors C, A of a voltaic ce11 ABC are separated, and 
then joined by a fourth conductor D, such that there is no chemical action 
between D and the conductors C or A, i t  will easily be seen that the sum of 
the discontinuities in the new circuit is the same as in the old. 
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For by hypothesis CDA can form a closed circuit in which no chemical 
action can occur, and therefore in which there can be electric equilibrium. 
Hence we must have 

........................... l?&+-&A+Ec=O (266). 

Moreover the sum of al1 the discontinuities in the circuit is 

EB+TJBc+Ek+VDB 
= EB + G o  - Ec, by equation (266) 

=L+VBc+VCB 
= E, by equation ( 265 )  

proving the result. A similar proof shews that we may introduce any series 
of conductors between the two terminals of a cell, and so long as there is no 
chemical action in which these new conductors are involved, the sum of al1 the 
discontinuities in the circuit will be constant, and equal to the electromotive 
force of the cell. 

Let ABC ... MX be any series of conductors, including a voltaic cell, 
and let the material of N be the same as that of A. If N and A are joined 
we obtain a closed circuit of electrornotive force 3, such that 

EB+yBC+ . . -+GN+V,d=E.  
Moreover GA =O, since the material of N and A is the same. Thus the 
relation may be rewritten as 

In the open series of conductors ABC ... MN, there can be no current, so 
that each conductor must be at a definite uniform potentiaL I f  we denote 
the potentials by z, V,, ... G> G, we have 

K-yB=KB,  
. m .  

Hence equation (267) becomes 

K-'CT,=E. 

We now see that the electromotive force of a ce11 Zs the difference of 
potential between the ends of the ce11 when the cell fornzs an open circuit, 
and the materials of the two ends are the same. 

A series of cells, joined in series so that the high-potential terminal of 
one is in electrical contact with the low-potential terminal of the next, and 
YO on, is called a battery of cells, or an " electric battery " arranged in series. 

I t  will be clear fiom what has just been proved, that the electromotive 
force of such a battery of cells is equal to the sum of the electromotive forces 
of the separate cells of the series. 
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345. On the electrostatic system, a unit current has been defined to be 
a current such that an electrostatic unit of electricity crosses any selected 
cross-section of a conductor in unit time. For practical purposes, a different 
unit, known as the ampère, is in use. The ampère is equal very approximately 
to 3 x log electrostatic units of current (see below, § 587). 

To form some idea of the actual magnitude of this unit, i t  may be stated that the 
amount of current required to ring an electric bell is about half a n  ampkre. About the 
snme amount is required to light a 50 C.P. 100-volt metallic filament incandescent lamp. 

As an electromotive force is of the same physical nature as a difference 
of potential, the electrostatic unit of electromotive force is taken to be the 
same as that of potential. The practical unit is about &of the electrostatic 
unit, and is known as the volt (see below, $ 587). 

It may be mentioned that the electromotive force of a single voltaic ce11 iu generally 
intermediate between one and two volts; the electromotive force which prodnces a 
perceptible shock in the human body is about 30 volts, while an electromotive force 
of 500 volts or more is dangerous to life. Both of theae latter quantities, however, Vary 
enormously with the condition of the body, and particularly with the state of dryneas 
or moisture of the skin. The electromotive force used to work an electric bell ici 
commonly 6 or 8 volts, while a n  electric light installation wiU generallg have a voltage 
of about 100 or 200 volts. 

The unit of resistance, in al1 systems of units, is taken to be a resistance 
such that unit difference of potential between its extremities produces unit 
current through the conductor. We then have, by Ohm's Law, 

difference of potential at  extremities 
current = ........ . 

resistance (268). 

In the practical sp tem of units, the unit of resistance is called the ohm. 
From what has already been said, it follows that when two points having a 
potential-difference of one volt are connected by a resistance of one ohm, the 
current flowing through this resistance will be one ampère. In this case the 
difference of potential is electrostatic units, and the current is 3 x IO9 
electrostatic units, so thqt by relation (268), i t  follows that one ohm must be 

electrostatic units of resistance (me below, $ 587). equal to - 
9 x 101' 

Some idea of the amoimt of this unit may be gathered from the statement that 
the resistance of a mile of ordinary telegraph wire is about 10 ohms. The resistance 
of a good telegraph hsulator may be billions of ohms 
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Electron-theory of cmduction. 

345 a. As has been already explained ($ 28), the modern view of 
electricity regards a current of electricity as a material flow of electric 
charges. I n  al1 conductors except a small class known as electrolytic 

. conductors (see below, 5 345 b), these charged bodies are believed to be 
identical with the electrons. 

In  a solid some of the electrons are sup~osed to be permanently bound to 
particular atoms or molecules, whilst others, spoken of as " free" electrons, 
inove about in the interstices of the solid, continually having their courses 
changed by collisions with the molecules. Both kinds of electrons will be 
influenced by the presence of an electric field. It is probable that the 
restricted motions of the " bound " electrons account for the phenornenon of 
inductive capacity ($ 151) whilst the unrestricted motion of the free electrons 
explains the phenornénon of electric conductivity. 

Even when no electric forces are applied, the free electrons move about 
through a solid, but they move a t  random in al1 directions, so that as many 
electrons move from right to left as from left to right and the resultant 
current is nil. If an electric force is applied to the conductor, each electron 
has superposed on to its random motion a motion impressed on i t  by the 
electric force, and the electrons as a whole are driven through the conductor 
by the continued action of the electnc force. If it; mere not for their collisions 
with the molecules of the conàuctor, the electrons would gain indefinitely in 
momentum under the action of the impressed electric force, but the effect of 
collisions is continually to check this powth of momentum. 

Let us suppose that there are N electrons per unit length of the 
conductor, and that at  any moment these have an average forward velocity 
u through the material of the conductor. If m is the mass of each electron, - 
the total momentum of the moving electrons will be Nmu. The rate at 
which this total momentum is checked by collisions will be proportional to 
N and to y and may be taken to be Nyu. The rate a t  which the momentum 
is increased by the electric forces acting is NXe, where X is the electric 
intensity and e is the charge, rneasured positively, of each electron. Thus 
we have the equation 

d 
- (Nmu) = NXe - N p  . . . . . . . . . . . . . . . . . . . . . . . . 
dt (a). 

I n  unit time the number of electrons which pass any fixed point in the 
conductor is Nu, so that the total 0ow of electricity per unit time past any 
point is Neu. This is by definition equal to the current in the conductor, so 
that if we cal1 this i, we have 

Neu = i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(b). 
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This enables us to reduce equation (a) to the form 

The equation shews that if a steady electric force is applied, such that 
the intensity a t  any point is XI the current will not increase indehitely 
but will remain stationary after i t  has reached a value i given by 

If V iis the potential at  any point of a conducting wire, and if s is a 
av coordinate measured along the wire, we have X = - - , so that 
as 

Integrating between any two points P and Q of the conductor, we have 

This is the electron-theory interpretation of equation (264), and explains 
how the truth of Ohm's Law is involved in the modern conception of the 
nature of an electric current. I t  will be noticed that on this view of the 
matter, Ohm's Law is only true for steady currents. 

We notice that the resistance of the conductoi-, on this theory, is y/ATe2 
per unit length. Thus, generally speaking, bodies in which there are many 
free electrons ought to be good conductors, and conversely. 

Taking the charge on the electron to be 4.5 x 10-10 electrostatic units, we may notice 
that a current of one ampkre (3x 109 electrostatic units of current) is one in which 
6.6 x 1018 electrons pass any given point of the conductor every second. Cmsider a 
conductor in which the number of electrons per cubic centimetre is 1OZ1 (cf. 5 613 b, below). 
Then in a wire of 1 square mm. cross-section there are 10m electrons per unit leng-th, so 
that the average velocity of these when the wire is conveying a current of 1 ampère is of 
the order of one cm. per sec, This average velocity is superposed on to e random velocity 
which is known to be of the .der of magnitude of 107 cms. per sec., so that the additional 
velocity produced by even a strong current is only very alight in cornparison with the 
normal velocity of agitation of the electrons. 

Electrolytic conduction. 

345 b. Besides the type of electric conduction just explained, there is a 
second, and entirely different type, known as Electrolytic conduction, the 
distinguishing characteristic of which is that the passage of a current is 
accompanied by chemical change in the conductor. 

For instance, if a current is passed through a solution of potassium 
chloride in water, it will be found that some of the salt is divided up by the 
passage of the current into its chemical constituents, and that the potassium 

20-2 
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appears solely a t  the point at which the current leaves the liquid, while the 
chlorine similarly appears a t  the point at which the current enters. I t  thus 
appears that during the passage of an electric current, there is an actual 
transport of matter through the liquid, chlorine moving in one direction and 
potassium in the other. I t  is moreover found by experiment that the total 
amount, whether of potassium or chlorine, which is liberated by any current 
is exactly proportional to the amount of electricity which has flowed through 
the electrolyte. 

These and other facts suggested to Faraday the explanation, now 
universahy accepted, that the carriers of the current are identical with the 
matter which is transported through the electrolyte. For instance, in the 
foregoing illustration, each atom of potassium carries a positive charge to the 
point where the current leaves the liquid, while each atom of chlorine, 
moving in the direction opposite to that of the current, carries a negative 
charge. The process is perhaps explained more dearly by regarding the total 
current as made up of two parts, first a positive current and second a negative 
current flowing in the reverse direction. Then the atoms of chlorine are the 
carriers of the negative current, and the atoms of potassium are the carriers 
of the positive current. 

Electrolytes may be solid, liquid, or gaseous, but in most cases of 
importance they are liquids, being solutions of salts or acids. The two parts 
into which the molecule of the electrolyte is divided are called the ions 
(lob), that which carries the positive current being called the positive ion, 
and the other being called the negative ion. The point at which the current 
enters the electrolyte is called the anode, the point at  which i t  leaves is 
called the cathode. The two ions are also called the anion or cation 
according as they give up their charges at  the anode or cathode respectively. 
Thus we have 

The anion carries - charge against current, and delivers it at  the 
anode, 

The cation carries + charge with current, and delivers it at  the 
cathode. 

When potassium chloride is the electrolyte, the potassium atom is the 
cation, and the chlorine atom is the anion. If experiments are performed 
with different chlorides (say of potassium, sodium, and lithium), it will be 
found that the amount of chlorine liberated by a given current is in every 
case the same, while the amounts of potassium, sodium, or lithium, being 
exactly those required to combine with this fiked amount of chlorine, are 
necessarily proportional to their atomic weights. This suggests that each 
atom of chlorine, no matter what the electrolyte may be in which it occurs, 
always carries the same negative charge, say - e, while each atom of potassium, 
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sodium, or lithium carries the same positive charge, say + E. Moreover E 
and s must be equal, or else each nndissociated molecule of the electrolyte 
would have to be supposed to cany a charge E - e, whereas its charge is 
known to be r d .  

I t  is found to be a general rule th& every anion which is chemically 
monovalent carries the same charge -e, while every monovalent cation 
carries a charge + e. Moreover divalent ions carry charges f 2e, trivalent 
ions carry charges f 3e, and so on. 

As regards the actual charges carried, it is found that one ampère of 
current flowing for one second through a Salt of silver liberates 0.001118 
grammes of silver. Silver is monovalent and its atomic weight is 107.92 
(referred to 0 = 16), so that the amount of any other monovalent element of 
atomic weight m deposited by the same current will be 0.00001036 x rn 
grammes. It follows that the passage of one electrostatic unit of electricity 

will result in the liberation of or 3.45 x 10-16 x rn grammes 3 x log  
of the substance. 

We can calculate from these data how many ions are deposited by one unit 
of current, and hence the amount of charge carried by each ion  It is found 
that, to within the lirnits of eqerimentaf error, the negative charge carried 
by each monovalent anion is exactlÿ equal to the charge carried by the electron. 
I t  follows that each monovalent anion has associated with i t  one electron 
in excess of the number required to give i t  zero charge, while each monovalent 
cation has a deficiency of one electron; divalent ions have an excess or 
deficiency of two electrons, and so on. 

345 c. Ohm's Law appears, in general, to be strictly true for the resist- 
ance of electrolytes. In  the light of the explanation of Ohm's Law given in 
§ 345 a, this will be seen to suggest that the ions are free to move as soon as 
an  electric intensity, no matter how small, begins to act on them. They 
must therefore be already in a state of dissociation; no part of the electric 
intensity is required to effect the separation of the molecule into ions. 

Other facts confirm this conclusion, such as  for inatance the fact that various phyeicai 
properties-eledric conductivity, colour, optical rotatory power, etc.-are additive in the 
seme that the amount possessed by the whole electrolyte is the suni of the amounttl 
known to  be possessed by the separate ions. 

We may therefore suppose that as soon as an electric force begins to act, 
al1 the positive ions begin to move in the direction of the electric force, while 
al1 the negative ions begin to move in the opposite direction. Let us suppose 
the average velocities of the positive and negative ions to be u, v respectively, 
and let us suppose that there are N of each per unit length of the electrolyte 
measured along the path of the current. Then across any cross-section of the 
electrolyte there pms in unit time Nu positive ions each carrying a charge se 

IRIS - LILLIAD - Université Lille 1 



310 Steady Currents in Linear Conductors [ C H .  IX 

in the direction in which the current is measured, and Nv negative ions each 
carrying a charge -se in the reverse direction, s being the valency of each 
ion. It follows that the total current is given by 

i=Nse (u + v) .............................. (4. 
Each unit of time N z ~  positive ions cross a cross-section close to the 

anode, having started from positions between this cross-section and the 
anode. Thus each unit of time Nu molecules are separated in the neigh- 
bourhood of the anode, and similarly Nv molecules are separated in the 
neighbourhood of the cathode. The concentration of the salt is accordingly 
weakened both at  the anode and a t  the cathode, and the ratio of the amounts 
of these weakenings is that of u : v. This provides a method of determining 
the ratio of u : v. 

Also equation (d) provides a method of determining u+v, for i can be 
readily measured, and Nse is the total charge which must be passed through 
the electrolyte to liberate the ions in unit length, and this c m  be easily 
determined. 

Knowing u + v and the ratio u:v, i t  ie possible to determine u and W .  

The following table gives results of the experiments of Kohlrausch on three 
chlorides of alkali metals, for different concentrations, the current in each 
case being such as to give a potential fa11 of 1 volt per ceritimetre. 

Concentration Potassium I v 

[The unit in  every case is a velocity of 10-= cms. per second.] 

We notice that when the solution is weak, the velocity of t8he chlorine 
ion is the same, no matter which electrolyte it has originated in. This 
gives, perhaps, the best evidence possible that the conductivity of the 
electrolyte is the sum of the conductivities of the chlorine and of the metal 
separately. 

By arranging for the ions to produce discoloration of the electrolyte as 
they move through it, Lodge, Whetham and others have been able to observe 
the velocity of motion of the ions directly, and in al1 cases the observed 
velocities have agreed, within the limits of experimental error, with the 
theoretically determined values. 
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Conduction through gases. 

345 d. I n  a gas in its normal state, an electric current cannot be carried 
in either of the ways which are possible in a solid or a liquid, and i t  is 
consequently found that a gas under ordinay conditions conducts electricity 
only in a very feeble degree. I f  however Rontgen raya are passed through 
the gas, or ultra-violet light of very short wave-length, or a stream of the 
rays from radium or one of the radio-active metals, then i t  is found that the 
gas acquires considerable conducting powers, for a time a t  least. For this 
kind of conduction i t  is found that Ohm's Law is not obeyed, the relation 
between the current and the potential-gradient being an extremely complex 
one. 

The complicated phenornena of conduction through gases can al1 be 
explained on the hypothesis that the gas is conducting only when " ionised," 
and the fknction of the Rontgen rays, ultra-violet light, etc. is supposed to 
be that of dividing up some of the molecules into their component ions. 
The subject of conduction through gases is too extensive to be treated here. 
I n  what follows it is assumed that the conductors under discussion are not 
gases, so that Ohm's Law will be assumed to be obeyed throughout. 

346. Probblems occur in which the flow of electricity is not through 
a single continuous series of conductors: there may be junctions of three or 
more conductors at  which the current of electricity is free to distribute itself 
between different paths, and i t  may be ihportant to determine how the 
electricity will pass through a network of conductors containing junctions. 

The first principle to be used is that, since the currents are supposed 
steady, there c m  be no accumulation of electricity a t  any point, so that the 
sum of al1 the currents which enter any junction must be equal to the sum 
of al1 the currents which leave it. Or, if we introduce the convention that 
currents flowing into a junction are to be counted as positive, while those 
leaving it are to be reckoned negative, then we may state the principle in 
the form: 

The algehraic sum of  the currents at any jumction must be zero. 

Prom this law it follows that any network of currents, no matter how 
complicated, can be regarded as made up of a number of closed currents, each 
of uniforrn strength throughout its length. I n  some conductors, two or more 
of these currents may of course be superposed. 

Le t  the various junctions be denoted by A, B, C, ..., and let their 
potentials be K, G, K, .... Let BA, be the resistance of any single con- 
ductor connecting two junctions A and B, and let CA, be the current flowing 
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through it from A to B. Let us select any path through the network of 
conductors, such as to start from a junction and bring us back to the starting 
point, Say ABC ... NA. Then on applying Ohm's Law to the separate con- 
ductors of which this path is formed, we obtain ($ 341) 

K-  v,= CDRA,, 

G - G = OBoRBm 
..................... 
&-K=C,,R,. 

By addition we obtain ZCR = O . .  .................................. (269), 

where the summation is taken over al1 the conductors which form the closed 
circuit. 

I n  this investigation i t  has been assumed that there are no discontinuities 
of potential, and therefore no batteries, in the selected circuit. If dis- 
continuities occur, a slight modification will have to be made. We shall 
treat points at  which discontinuities occur as junctions, and if A is a junction 
of this kind, the potentials at  A on the two sides of the surface of separation 
between the two conductors will be denoted by and K. Then, by Ohm's 
Law, we obtain for the falls of potential in the different conductors of the 
circuit, 

Pa' - K = c.&AB> 

- = CBCRBC, etc., 

and by addition of these equations 

2 (c - q) = ZCR. 

The left-hand member is simply the sum of al1 the discontinuities of 
potential met in passing round the circuit, each being measured with its 
proper sign. It is therefore equal to the sum of the electromotive forces of 
al1 the batteries in the circuit, these also being measured with their proper 
signs. 

Thus we may write SCR = ZE .............................. (2'1% 

where the summation in each term is taken round any closed circuit of 
conductors, and this equation, together with 

in which the summation now refers to al1 the currents entering or leaving a 
single junction, suffices to determine the current in each conductor of the 
network. 

Equntion (271) expresses what is known as Kirchhoff's First Law, while 
equation (270) expresses the Second. Law. 
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Conductors in Series. 

347. When al1 the conductors form a single closed circuit, the current 
through each conductor is the same, Say C, so that equation (2'10) becomes 

CL R = XE. 
The sum ZR is spoken of as the "resistance of the circuit," so that the 

current in the circuit is equal to the total electromotive force divided by the 
total resistance. Conductors arranged in such a way that the whole current 
passes through each of them in succession are said to be arranged "in 
series." 

Conductors in  Parallel. 

348. It is possible to connect any two points A, B by a number of 
conductors in such a Ray that the current divides itself between al1 these 

conductors on its journey from A to B, no part of i t  passing through more 
than one conductor. Conductors placed in this way are said to be arranged 
" in parallel." 

Let us suppose that the two points A, B are connected by a number of 
conductors arranged in parallel. Let RI, &, ... be the resistances of the 
conductors, and Cl, C,, . .. the currents flowing through them. Then if K, V, 
are the potentials at  A and B, we have, by Ohm's Law, 

K-VB= CIRI= C2R2= .... 
The total current which enters a t  A is C,+C9+ ..., Say C. Thus we 

have 
Cl cé p*-vB=-=-= ... = C 
1 1  1 1  - 
RI R, -+-+ ... 

RI R, 

The arrangement of conductors in parallel is therefore seen to offer the 
same resistance to the current as a single conductor of resistance 

The reciprocd of the resistance of a conductor is called the " conductivity " 
of the conductor. Tbe conductivity of the system of conductors arranged 

1 1  
in parallel is - + - + ..., and is therefore equal to the sum of the 

R, R2 
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conductivities of the separate conductors. Also we have aeen that the 
current divides itself between the different conductors in the ratio of their 
conductivities. 

The Measurement of Current. 

349. The instrument used for measuring the current passing in a, circuit 
a t  any given instant is called a galvanometer. The theory of this instrument 
will be given in a later chapter (Chap. XIII). 

For measuring the total quantity of electricity passing within a given 
time an instrument called a voltameter is sometimes used. The current, 
in passing through the voltameter, encounters a number of discontinuities 
of potential in crossing which electrical energy becomes transformed into 
chemical energy. Thus a voltameter is practically a voltaic ce11 run back- 
wards. On measuring the amount of chemical energy which has been stored 
in the voltameter, we obtain a measure of the total quantity of electricity 
which has passed through the instrument. 

The Measurement of Resistance. 

350. The Resistance Box. A resistance box is -t piece of apparatus 
which consists essentially of a collection of coils of wire of known resistances, 
arranged so that any combination of these coils can be arranged in series. 
The most usual arrangement is one in which the two extremities of each 
coil are brought to the upper surface of the box, and are there connected 
to a thick band of copper which runs over the surface of the box. This 

band of copper is continuous, except between the two terminals of each coil, 
and in these places the copper is crut away in such a way that a copper plug 
can be made to fit exactly into the gap, and so put the two sides of the gap 
in electrical contact through the plug. The arrangement is shewn diagram- 
matically in fig. 97. When the plug is inserted in any gap DE, the plug 
and the coil beneath the gap DE form two conductors in parallel connecting 
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the points D and E. Denoting the resistances of the coil and plug by R,, R,, 
the resistance between D and E will be 

1 - 
1 1 '  -+-  

Rc R p  

and since R, is very small, this may be neglected. When the plug is 
removed, the resistance from D to E may be taken to be the resistance of 
the coil. Thus the resistance of the whole box will be the sum of the 
resistances of al1 the coils of which the plugs have been removed. 

351. The Wheatstone Bridge. This is an arrangement by which i t  is 
possible to compare the resistances of conductors, and so determine an 
unknown resistance in terms of known resistances. 

The "bridge" is represented diagrammatically in fig. 98. The current 
enters i t  at A and leaves i t  a t  D, these points being connected by the lines 

ABD, ACD arranged in parallel. The line A D  is composed of two con- 
ductors AB, BD of resistances R,, R,, and the line ACD is similarly composed 
of two conductors AC, CD of resistances R,, R,. 

If current is allowed to flow through this arrangement of conductors, it 
will not in general happen that the points B and C will be a t  the same 
potential, so that if B and I: are connected by a new conductor, there will 
usually be a current flowing through BC. The method of using the 
Wheatstone bridge consists in varying the resistances of one or more of the 
conductors R,, R,, a, R, until no current flows through the conductor BQ. 

When the bridge is adjusted in this way, the points B, C must be a t  the 
same potential, Say v. Let K, V, denote the potentials a t  A and D, and 
let the current through ABD be C. Then, by Ohm's Law, 

va-v=C&, v-&=Cl&,  

so that 

From a similar consideration of the flow in ACD, we obtain 

so that we must have 3, R3 - R, =- R4.......-.......-.--.....-......-.... (272), 
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as the condition to be satisfied between the resistances when there ia no 
current in BO. 

Clearly by adjusting the bridge in this way we can determine an unknown 
resistance R, in terms of known resistances R,, R,, R,. In the simplest 
form of Wheatstone's bridge, the line ACD is a single uniform wire, and the 
position of the point C can be varied by moving a "sliding contact" along' 
the wire. The ratio of the resistances R, : R4 is in this case simply the ratio 
of the two lengths AC, CD of the wire, so that the ratio R, : R, can be found 
by sliding the contact C along the wire ACD until there is observed to be 
no current in BC, and then reading the lengths AC and CD. 

EXAMPLES OF CURRENTS IN A NETWORK. 
1 Wheatstone's Bridge not in adjustnzent. 

352. The condition that there shall be no current in the "bridge" BC 
in fig. 98 has been seen to be that given by equation (272). 

Suppose that this condition is not satisfied, and let us examine the flow 
of currents which then takes place in the network of conductors. Let the 
conductors AB, BD, AC, CD as before be of resistances R,, R,, R,, R,, and 
let the currents flowing through them be denoted by xl, x2, x8, x4. Let the 
bridge BC be of resistance Rb, and let the current flowing through i t  from 
B to Cbe a. 

From Kirchhoff's Laws, we obtain the following equations : 
(Law 1, point B) a;- x2- xb= O S................. (2731, 
(Law 1, point C )  x3-x4+xb=0  .................. (274), 
(Law II, circuit ABC) xlR, + xbRb - x3R3 = O .................. (27% 
(Law II, circuit BCD) xbRb + x,R, - x2R2 = O .................. (276). 

These four equations enable us to determine the ratios of the five currents 
x,, x2, x3, x,, xb. We may begin by elitiiinating x, and LZ, from equations 
(273), (274) and (276), and obtain 

(& + R2 + Rd) + x3R4 - X& = O, 
and from this and equation (270), 
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The ratios of the other currents can be written down from symmetry, 

If the total current entering a t  A is denoted by X ,  we have X = sz + sa. 
Thus if each of the fractions of equations (277) is denoted by 8, 

x=e{(&+Ra)(R~+R4)+Ra(&+R,+Ra+R4)}......(à78) , 
and this gives 8, and hence the actual values of the currents, in terms of the 
total current entering a t  A. 

The fa11 of potential from A to D is given by 

fi- %=RI%+ Rs%, 
and from equations (277) this is found to reduce to 

v,-%=a@ 
where 

x = R1R3 (R2 + 3 4 )  + && (R, + &) + Rïï (RI& + Rd34 + RlR4 + Rd, 
so that X is the sum of the products of the five resistances taken three a t  
a time, omitting the two products of the three resistances which meet a t  the 
points B and C. 

There is now a current X flowing through the network, and having a 
fa11 of potential G - G. Hence the equivalent resistance of the network 

by equation (278). 

IL Te'elegraph wire with faults. 

353. As a more complex exampIe of the flow of electricity in a Eiystem 
of linear conductors, we may examine the case of a telegraph wire, in which 
there are a number of connexions through which the current c m  Ieak to 
earth. Such leaks are technically known as " faults." 

Let AB be the wire, and let $, 4, . . . qe1, F, be the points on i t  a t  
which faults occur, the resistances through these faults being a, R,, ... 
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Rn-, , a, and the resistances of the sections A 4 ,  &&, ... and &B 
being v v . . . r ,  Y .  Let the end B be supposed put to earth, and let the 
current be supposed to be generated by a battery of which one terminal is 
connected to A while the other end is to earth. 

The equivalent resistance of the whole network of conductors from A to 
earth can be found in a very simple way. Current arriving at  F, from the 
section passes to earth through two conductors arranged in parallel, 
of which the resistances are Rn and r,+,. Hepce the resistance from F, to 
earth is 

1  
1 1 :  -+- 

Rn rn+1 

and the resistance from &-l to earth, through &, is 
1  rnS1  ........................... (279). 

-+- 
Rn. Tn+1 

Current reaching F,, can, however, pass to earth by two paths, either 
through the fault a t  E7,,, or past Fm. These paths may be regarded as 
arranged in parallel, their resistances being R,,, and expression (279) 
respectively. Thus the equivalent resistance from a,',_, ia 

-+- 
Rn va+~ 

or, written as a continued fraction, 

We can continue in this way, until finally we find as the whole resistance 
from A to earth, 

1 1 1  
rl +- - - 1 1  1 

R,-l+r, + fi-l+ '" +va +Ra1+r,+, '  . 

If the currents or potentials are required, it will be found best to attack 
the problem in a different rnanner. 

Let VA, x, g,  ... be the potentials at  the points A, 4, 4, ..., then, by 
Ohm's Law, 

Y-1 - K the current from Fel to &= ----, 
7-8 

K - K+l 
¶> Y? ,, &toE8,1=---, 

' 8 ,  

'G8 
39 J3 ,, 4 through the fault = - & 
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Hence, by Kirchhoff's first law, 

or Kfl r,+l' - K (Ra-l + Q-1 + r,+,-l) + TL T,-~ = 0, 

and from this and the system of similar equations, the potentiaIs may be 
found. 

, If al1 the R's are the same, and also al1 the r's are the same, the equation 
reduces to a difference equation with constant coeffici~nts. These conditions 
might arise approximately if the line were supported by a series of similar 
imperfect insulators at equal distances apart. The difference equation ig in 
this case seen to be 

T 
and if we put 1 + - - cosh a, 2R - 
the solution is known to be 

= A cosh sa + B sinh sa . .............. .... . . (280), 

in which A and B are constants which must be determined from the 
conditions a t  the ends of the line. For instance to express that the end B 
is to earth, we have G+l = 0, and therefore 

A = - B t a n h ( n + l ) u .  

I I I .  Submarine cable imperfectly Znsulated. 

354. If we pass to  the limiting case of an infinite number of faults, we 
have the analysis appropriate to a line from which there is leakage at  every 
point. The conditions now contemplated may be supposed to be realised in 
a submarine cable in which, owing to the imperfection of the insulating 
sheath, the curr;ent leaks through to the sea at  every point. 

The problem in this forrn cm also be attacked by the methods of the 
infinitesimal calculus. Let V be the potential at  a distance x along the 
cable, V now being regarded as a continuous function of S. Let the 
resistance of the cable be supposed to be R per unit length, then the re- 
sistance from x to x + dix will be Rdx. The resistance of the insulation from 

S 
a: to s + dx, being inversely proportional to dx, may be supposed to be - dx 

Let C be the current in the cable at the point x, so that the leak from 

the cable between the points x and x + dz: is - -da  This leak is a curent dx 
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S which flows through a resistance - with a fa11 of potential v. Hence bp 
dx 

Ohm's Law, 

Also, the fa11 of potential along the cable from LZ to  x + ds is - gdx, the 

current is C, and the resistance is Rdx. Hence by Ohm's Law, 

Eliminating C from equations (281) and (282), we find as the differential 
equation satisfied by V, 

If R and S have the same values nt al1 points of the cable, the solution - 
of this equation is 

V = d  c O s h ~ ~ x +  

which is easily seen to be the limiting form assumed by equation (280). 

The Joule Efect. 
355. Let P, Q be any two points in a linear conductor, let G ,  PQ be 

the potentials a t  these points, R the resistance between them, and x the 
current flowing from P to &. Then, by Ohm's Law, 

V p - & = R ~  .............................. (283). 

I n  moving a single unit of electricity from Q to P an amount of work is 
done against the electric field equal to Vp - VQ. Hence when a unit of 
electricity passes from P to Q, there is work done on i t  by the electric field 
of amount V'- G. The energy represented by the work shews itself in 
a heating of the conductor. 

The electron theory gives a simple explanation of the mechanism of this transforma- 
tion of energy. The electric forces do work on the electrons in driving them through the 
field. The total kinetic energy of the electrons can, as we have seen (§ 345 a), be segarded 
as made up of two parts, the energy of random motion and the energy of forward motion. 
The work done by the electric field goes directly towards incrensing this second part of 
the kinetic energy of the eleotrons. But after a number of collisions the direction of the 
velocity of forward motion is completely changed, and the energy of this motion has 
become indistingukhable from the energy of the random motion of the electrons. Thus 
the collisions are continually transforming forward motion into random motion, or what 
is the same thing, into heat. 
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We are supposing that s units of electricity pass per unit time from 
P to Q. Hence the work done by the electric field per unit time within the 
region PQ is x(G - VQ), and this again, by equation (283), is equal to R&. 

Thus in unit time, the heat generated in the section PQ of the con- 
ductor represents Rsa units of mechanical energy. Each unit of energy is 

1 
equal to - units of heat, where J is the "mechanical equivalent of heat." J 
Thus the number of heat-units developed in unit time in the conductor PQ 
will be 

RsZ - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(284). 

I t  is important to notice that in this formula x and R are measured in 
electrostatic units. If the values of the resistance and current are given in 
practical units, we must transform to electrostatic units before using forinula 
(284). 

Let the resistance of a conductor be R' ohms, and let the current floming through it 
be d ampéres. Then, in electrostatic units, the values of the resistauce R and the current 
x are given by 

R ' 
R = --- and x = 3 x 109~'. 

0 x 10l1 

Thus the number of hmt-unit8 produced yer unit time is 

and on substituting for J its value 4.2 x 107 in C.G.S.-centigrade units, this becomes 

0.24 R'i'a. 

Generation of Heat a minnimum. 

356. I n  general the solution of any physical problem is arrived a t  by the 
solution of a system of equations, the number of these equations being equal 
to the number of unknown quantities in  the problem. The condition that 
any function in which these unknown quantities enter as variables shall be a 
maximum or a minimum, is also arrived at  by the solution of an equal 
number of equations. If i t  is possible to discover a function of the unknown 
quantities such that the two systems of equations become identical,-i.e. if 
the equations which express that the function is a maximum or a minimum 
are the saine as those which contain the solution of the physical problem- 
then we may Say that the solution of the problem is contained in the single 
statement that the function in question is a maximum or a minimum. 

Examples of functions which serve this purpose are not hard to find. I n  
5 189, we proved that when an electrostatic system is in equilibriurn, its 
potential energy is a minimum. Thus the solution of any electrostatic 
probletn is contained in the single statement that the function which 

J. 41 
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expresses the potential energy is a minimum. Again, the solution of any 
dynamical problem is contained in the statement that the " action" is a 
minimum, while in thermodynamics the equilibrium da te  of any system 
can be expressed by the condition that the "entropy" shall be a maximum. 
I t  will now be shewn that the function which expresses the total rate of 
generation of heat plays a similar r81e in the theory of steady electric 
CU rrents. 

357. THEOREM. W h n  a steady cur~ent JEows through a networh of 
conductors in which lu, discontinuities of potential occur (and which, thmefore, 
contains no batteries), the cwrrents are distributed i n  such a way that the rate of 
generation of heat in the networh is a minimum, mbject only to the conditions 
imposed by Kirchhof 's $rst law ; and conversely. 

To prove this, let us select any closed circuit PQR ... P in the network, 
and let the currents and resistances in the sections PQ, QR, ... be zl, x,, ... 
and R,, R2, .... Let the currents and resistances in those sections of the net- 
work which are not included in this closed circuit be denoted by xa, xb, ... 
and Ra, Rb, .... Then the total rate of production of heat is 

........................... 2Rax,2 + ZR,xf (285). 

A different arrangement of currents, and one moreover which does not 
violate Kirchhoff's first law, can be obtained in imagination by supposing al1 
the currents in the circuit PQR ... P increased by the same amount e. The 
total rate of production of heat is now 

XRa:ca2'+ ER, (LEl + f)B, 
and this exceeds the actual rate of production of heat, as given by expression 
(285), by .......................... 2, R1 (2x1 e + e2) (286). 

Now if the original distribution of currents is that which actually occurs 
i n  nature, then 

SR,xl = 0, 

by Kirchhoff's second law. Thus the rate of production of heat, under the 
sew imaginary distribution of currents, exceeds that in the actual distribu- 
'&ion by $CRl, an essentially positive quantity. 

The most general- alteration which can be supposed made to the original 
qrstem of currents, consistently with Kirchhoff's first law remaining satisfied, 
will consist in superposing upon this system a number of currents flowing 
in closed circuits in the network. One subh current is typified by the 
current E ,  already discussed. If we have any number of such curreqts, the 
resulting increase in the rate of heat-production 

= ZR1 (xl + E + 8' 3- E" $ .. .)= - ERlx:, 
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where E, e', e", ... are the additional currents flowing through the resistance 
R,. As before this expression 

= 2E.R1xl(e+d+e"+ ...)+ SRl(e+e'i-e"+ ...y 
= 2 Rl (e + e' + e" + .. .)al 

by Kirchhoff's second law. This is an essentially positive quantity, so that 
any alteration in the distribution of the currents increases the rate of heat- 
production. In  other words, the original distribution was that in which the . 

rate was a minimum. 

To prove the converse it is sufficient to notice that if the rate of heat- 
production is given to be a minimum, then expression (286) must vanish as 
far as the first power of el so that we have 

and of course similar equations for al1 other possible closed circuits. These, 
however, are known to be -the equations which determine the actual dis- 
tribution. 

358. THEOREN. When a system of steady currents JEows th~ough a net- 
work of conductors of resistances RI, &, .... containilzg batteries of electromotive 
j'orces El, E,, ..., t h  currents xl, x2, ... are distributed i n  such a way that the 
function 

.............................. B f i a  - 2ZEx (287) 

is a minimum, mbject to the conditions imposed by Ki~chhof ' s  $rst law ; and 
conversely. 

As before, we can imagine the most general variation possible to consist 
of the superposition of sman currents el d, et', ... flowing in closed circuits. 
The increase in the function (287) produced by this variation. is 

C R [ ( z + e + e f +  ...y-$]- BZE[(x+e+e'+ ...)- x] 
= 2e. (CR* - XE) + 26' (...) + . . . .  

........................... + S R ( e + e f  +...)a (288). 

If the system of currents x, x', ... is the natural system, then the first line 
of this expression vanishes by Kirchhoff's second law (cf. equations (2'70)), 
and the increase in heat-production is the essentially positive quantity 

S R ( € +  e'+ ...)a, 

shewing that the original value of function (28'1) must have been a minimum. 

Conversely, if the original value of function (287) was given to be a 
minimum, then expression (288) must vanish as far as first powers of el É, .... 
so that we must have 

CRS = E, etc., 

... shewing that the currents x, x', must be the natural system of currents. 
21-2 
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359. THEOREM. I f  two points A, B are connected by  a networlc of con- 
ductors, a decrease in the resbtance of any  one of these condzrctors will decrease 
(or, in special cases, leave unaitered) the equivalent resistance f rom A to B. 

Let x be the current flowing from A to B, R the equivalent resistance of 
the network, and P, - & the fa11 of potential. The generation of heat per 
unit time represents the energy set free by x units moving through a 
potential-difference K -  'V,. Thus the rate of generation of heat is 

K - G)J 
or, since - = Rx, the rate of generation of heat will be R ~ .  

Let the resistance of any single conductor in the network be supposed 
decreased from R, to g, and let xl be the current originally flowing through 
the network. If we imagine the currents to remain unaltered in spite of the 
change in the resistance of this conduct,or, then there will be a decrease in 
the rate of heat-production equal to (R, - R i )  $1". The currents now flowing 
are not the natural currents, but if we allow the current entering the network 
to distribute itself in the natural way, there is, by 5 35'7, a further decrease 
in the rate of heat-production. Thus a decrease in the resistance of the 
single conductor has resulted in a decrease in the natural rate of heat- 
production. 

If R, R' are the equivalent resistances before and after the change, the 
two rates of heat-production are Rxa and R'9. We have proved that 
R'$ < R ~ ,  so that R'< R, proving the theorem. 

360. In addition to depending on the resistances of the conductors, the 
flow of currents through a network depends on the order in which the con- 
ductors are connected together, but not on the geometrical shapes, positions 
or distances of the conductors. Thus we can obtain the most general case of 
flow through any network by considering a number of points 1, 2, . .. n, con- 
nected in pairs by conductors of general resistances which may be denoted by 
R R . If, in any special problem, any two points P, Q are not joined 
by a conductor, we must simply suppose RPg to be infinite. Discontinuities 
of potential must not be excluded, so we shall suppose that in passing through 
the conductor Y&, we pass over discontinuities of algebraic sum EpQ. This 
is the same as supposing that there are batteries in the arm PQ of total 
electromotive force Epg. We shall suppose that the current flowing in PQ 
from P to Q is xpy ,  and shall denote the potentials at  the points 1, 2, . . . by 
K, K, .... 

The total fa11 of potential froin P to Q is T$- VQ, but of this an amount 
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- EPO is contributed by discontinuities, so that the aggregate fa11 from P to 
Q which arises from the steady potential gradient in  conductors will be 

'CP-~'sEpo.  

Hence, by Ohm's Law, 

6- 5 + EPQ= Rpg~pQ. . 
1 If we introduce a symbol KpO to denote 'the condi~ctivity -, we have 

the current given by 
RPQ 

................. x p Q = K P O ( ~ ~ & +  EPe) ....( 289). 

Suppose that currents X I ,  X,, ... enter the system from outside a t  the 
points 1,  2, .... then we must have 

xi =x1z+x13+x,,+ .... 
since there is to be no accumulation of electricity at  the point 1, and so on 
for the points 2, 3, .... Substituting from equations (289) into the right 
hand of this equation, 

XI= K,,(K- pS+EIJ i- K , 3 ( K - l ~ + E l J +  ..- 
= S(K12+E13+ ...) 

............... - (Kl,K+ KI3K+ ...)+ K1,E1,+ Kl,E,,+ (290). 

The symbol Km has so far had no meaning assigned to it. Let us use it 
to denote - (Kpl+ Kp,  + Kp,  + ...) ; then equation (290) may be written in 
the more concise form 

X1 = - (K11K + KI,? + .. .) + Kl,E12 + Kl3 E,, + ........ .(ZN). 

There are n equations of this type, but i t  is easily seen that they are not 
al1 independent. For if we add corresponding members we obtain 

X I  + x2+ - .a  + X ~ = - ~ E ( K ~ ~ +  K=+ S.. +Kin) + 22 (KpQEpQ+dl,Ew).  
1 

The fimt terrn on the right vanishes on account of the meaning which has been 
assigned to KI,, etc. ; while the second term vanishes because EpQ = - E,,, 
while KpQ = Ei,,. Thus the equation reduces to 

x 1 + x 2 +  ... + x n = o ,  
which simply expresses that the total flow into the network is equal to the 
total flow out of it, a condition which must be satisfied by X, ,  X,, ... X, a t  
the outset. Thus we arrive at  the conclusion that the equations of system 
(291) are not independent. 

This is as it should be, for if the equations were independent, we should have 
n equatione from which it  would be po~sible to determine the values of VI, V2, ... in 
terms of X I ,  X,, ...; whereas clearly from a knowledge of the currents entering the 
network, we must be able to determine dt$wencea of potential only, and not absolute 
values. 
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To the right-hand side of equation (291), let us add the expression 

(Ki1 + Ki2 + + Km) K, 
of which the value is zero by the definition of KI,. The equation becomes 

Ki1 (K- K) + Ki2 (K - K) + - + Ki,%-1 ( L I  - Ka) 
= - Xi + KlsEi,+ Kit&*+ . .a  + Kl,Em. 

There are n equations of this type in all. Of these the first (n - 1) may 
be regarded as a system of equations determining 

q - K & ,  K - R ,  m . . ,  K-1-K. 

That these equations are independent will be seen d posteriori from the fact 
that they enable us to determine the values of the n - 1 independent 
quantities 

K- K, K-K,  S.., K&-l-K. 
Solving these equations, we have 

S-v ,  
- XI + K12& + . + Km Em, EL;,, Km * - d G  ,a-1 

-X, +K21Em + ... + KB,E2,, KB, K?s, aq-sKz,n-i .......................................................................................... 

The current flowing in conductor l n  follows a t  once from equation (289), 
and the currents in the other conductors can be written down from 
symmetry. 

If we denote the determinant in the denominator of the foregoing 
equation by A, and the minor of the term KpQ by A,,, we find that the 
value of E- cm be expressed in the form 

361. Suppose first that the whole system of currents in the network is 
produced by a current X entering a t  P and leaving at  Q, there being no 
batteries in the network. Then al1 the E s  vanish, and al1 the X's vanish 
except X,  and X,, these being given by 

x , = - X , = X .  
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Equation (292) now becomes 

X 
= a (Agi - ApJ, 

so that S-S=(K-KV,,-(S-K) 
X =h(Aw-Ae-Am+Am) ..................... (293). 

Replacing 1, 2 by P, Q and P, Q by 1, 2, we find that if a current X 
enters the network at  1 and leaves it a t  2, the fa11 of potential from P 

and since A, = A,, it is clear that the right-hand members of equations 
(293) and (294) are identical. 

From this we have the theorem: 
The potential-fall from A to B when unit current traverses the network 

from C to D is the sarne as the pote~tial-fall from C to B when unit current 
t~averses the network from A to B. 

362. Let i t  now be supposed that the whole flow of current in the 
network is produced by a battery of electromotive force E placed in the 
conductor PQ. We now take al1 the X's equal to zero in equation (292) 
and al1 the E s  equal to zero except EpQ which we put equal to E, and 
EQp which we put equal to -E. We then have 

Hence r(- K = ~ ( A , - A , - A ,  +aQ2) ............ 
A (295), 

and, by equation (289), the current flowing in the arm 12 is 

This expression rernains unaltered if we replace 1 ,2  by P, Q and P, Q by 
1, 2. From this we deduce the theorem: 

The current which Jlows from A to B when an electronzotiue force E .is 
introduced Znto the arm CD of the network, is equal to the current whichflows 
from C to D whm the same electromotive force is introduced into the 
a m  AB. 
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Conjugate Conductors. 

363. The same expression occurs as a factor in the right-hand members 
of each of the equations (293), (294), (295), and (296), namely, 

Am+Am-A,-A,  ........................ (29'1). 

If this expression vanishes, the two conductors 12 and PQ are said to be 
'' conjugate." 

By examining the form assumed by equations (293) to (296), when 
expression (29'1) vanishes, we obtain the following theorems. 

THEOREM 1. If the conductors AB and CD are conjugate, a currmt 
entering a t  A and leaving a t  B u d l  produce no current in. CD. Similarly, 
a current entering at O and leaving at D will produce no current in AB. 

THEOREM II. If the conductors AB and CD are conjugate, a battery 
introduced into the arrn AB produces no current in CD. Similarly, a battery 
introduced into the arrn CD produces no current in AB. ' 

As an illustration of two conductors which are conjugate, i t  rnay be 
noticed that when the Wheatstone's Bridge (5 352) is in adjustment, the 
conductors AD and BC are conjugate. 

E'quations expressed in Symmetrical Form. 

364. The determinant A is not in form a symmetric function of the 
n points 1, 2, ..., n, so that equations and conditions which must necessarily 
involve these 12 points symmetrically have not yet been expressed in 
symmetrical form. 

We have, for instance, 

in which the points which enter unsymmetrically are not only 1 and 3, but 
also lz. Similarly, we have 

9 A13= 

A,*=- Km, &2, Km, Ka,  .'. ,K9,%-i 
K,,, Ka, K33, Km, ..-, &,fi-1 

........................................................... 
Kn-l,l, Km-l,2, Kn-l,s, Kn-i,e, Kqh-1,n-1 

K29i Ka, K26, -..,Kz,n-i 

Ka, K32> K34, K35, ..., 411.-1 ........................................................... 
Kn-i,i, Kn-i,z, Kn-l,r, K,i,,, Kw,, 

, 

so that, on subtraction, 
. A14= Ksi, Kza, K2, + Es,, Km, .-.,Ka,, 

Es=, K32r K33+K34, Ks, ...,K3,11-l 
.................................................................... 
K-I,~, Kn-1,z Km-1,~ + Kn-1,4? &-1,i5, . . - ,  K+i,n-~ 
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From the relation 

K P I +  Kpa+.-.+Kp,n-i+Kp,n=O ............... (298), 

it follows that the sum of al1 the terms in the $rst row of the above deter- 
minant is equal to - K,,, the sum of al1 the terms in the second row is equal 
to - K,,,, and so on. Thus the equation may be replaced by 

These two determinants differ only in their first row, so that on sub- 

..................... I Krn-41, Kn-i,PB Km-i,a, - m . ,  Kn-1,n 
(299), 

Kn,i, Kn,z, Kn,5, - - - ,Kn ,n  
the last transformation being effected by the use of relation (298). 

traction, 

(Am - 44)  - (A23 - AN) 

The relation which has now been obtained is in a symmetrical shape. If 
D is a symmetrical determinant given by 

=(- l )n  

then the determinant on the right-hand of equation (299) is obtained from 
D by striking out the lines and columns which contain the terms K, and K,. 
Thus equation (299) may be written in the form 

Ku+Kai, K12+K22, Ks+K2,, .... Kj,n+Ks,n 
Ksi, Km, K35 i a. . ,  K3,n 
................................................................. 
- Kn-i,a, Kn-i,fi, 

= 1 1 Km K,, Y 3 ,  1 
.............................................. 
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330 Steady Currents in Linear Conductors [CH. IX 

Again the determinant tî given by 

may be written in the forrn 
aD A = -  
aKn, n ' 

This is not of symmetrical forrn, for the point n entera unaymmetrically. 
We cm, however, easily shew that the value of A is symmetrical, although its 
form is unsymmetrical. 

By application of relation (298), we can transform equation (300) into 

Thus A is the differential coefficient of D with respect to either KI, or 
Kt&,,, or of course with respect to any other one of the terms in the leading 
diagonal of D. Thus, if E denote any term in the leading diagonal of D, 
we have 

and this virtually expresses A in a symmetrical form. 

We can now express in symmetrical form the relations which have been 
obtained in $ 360 to 362, as follows : 

1. (5 362.) The conductors 1, 2 and P, Q will Oe conjugate if 
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II. (Equation 293.) If the conductors 1,2 and P, Q are not conjugate, 
a current X entering at P and leawing at Q produces in 1, 2 a fall of 
potential given by 

a 2 0  

III. (Equation 295.) If t h  conductors 1, 2 and P, Q we not conjugate, 
a battery of electromotive force E placed in  the arrn PQ produces in 1,2 a fa11 
of potential given by 

azD 

ahr 
and a current from 1 to 2 given by 

Al1 these results and formulm obtain illustration in the results already 
obtained for the Wheatstone's Bridge in $351 and 352. . 

365. Al1 the analysis of the present chapter has proceeded upon the 
assumption that the currents are absolutely steady, shewing no variation 
with the time. Changes in the strength of electric currents are in general 
accompanied by a series of phenomena, which may be spoken of as 
"induction phenomena," of which the discussion is beyond the scope of the 
present chapter. If, however, the rate of change of the strength of the 
currents is very small, the importance of the induction phenomena also 
becomes very small, so that if the variation of the currents is slow, the 
analysis of the present chapter will give a close approximation to the truth. 
This method of dealing with slowly-varying currents will be illustrated by 
two examples. 

1. Discharge of a Condenser through a high ResZstance. 

366. Let the two plates A, B of a condenser of capacity C be connected 
by a conductor of high resistance R, and let the condenser be clischarged by 
leakage through this conductor. A t  any instant let the potentials of the two 
plates be &, G, so that the charges on these plates will be & C (VA - G). 
Let i be the current in the conductor, measured in  the direction fiom A to B. 
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332 Steady Currents i n  Linear Conductors [OH. IX 

Then, by Ohm's Law, 
v,-%=ni, 

whence we find that the charges on plates A and B are respectively + CRi 
and - CRi. Since i units leave plate A per unit time, we must have 

a differential equation of which the solution is 

t -- 
i = i o e  CR, 

where i,, is the ciirrent a t  time t = O. The condition that the strength of 
the current shall only vary slowly is now seen d. posteriori t o  be that CR 
shall be large. 

At time t the charge on the plate A is CRi or 

This may be written as 
t -- 

Qoe CR, 

where Qo is the charge at time t = O. Thus both the charge and the current 
are seen to fa11 off exponentially with the time, both having the same modulus 
of decay CR. 

Later (5 516) we shall examine the same problem but without the limita- 
tion that the current only varies slowly. 

II. Transmission of S ipa l s  dong a Cabie. 

367. I t  has already been mentioned that a cable acts as an electrostatic 
condenser of considerable capacity. This fact retards the transmission of 
signals, and in a cable of high-capacity, the rate of transmission may be so 
slow that the analysis of the present chapter can be used without serious 
error. 

Let x be a coordinate which measures distances alotig the cable, let V, i 
be the potential a t  x and the current in the direction of x-increasing, and let 
K and R be the capacity and resistance of the cable per unit length, these 
latter yuantities being supposed independent of x. 

The section of the cable between points A and B at distances x and 
x + dx is a condenser of capacity Kdx,  and is a t  the same time a conductor 
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of resistance Rdg. The potential of the condenser is E so that its charge is 
VKdx. The fa11 of potential in the conductor is 

so that by Ohm's Lam, 
av - A dx = ZRdx ........................... 
a8 

(301). 

The current enters the section AB at  a rate i units per unit time, and 
a i  

leaves at a rate of i + - dx units per unit tirne. Hence the charge in this ax 
ai  

section decreases at  a rate - dx per unit time, so that we must have ax 

Eliminating $ fiom equations (301) and (302), we obtain 

368. This equation, being a partial differential equation of the second 
order, must have two arbitrary functioas in its complete solution. We shall 
shew, however, that there is a particular solution in which V is a function of 
the single variable x/dt, and th& solution will be found to give us al1 the 
information we require. 

Let us introduce the new variable u, given by u = XI& and let us assume 
provisionally that there is a solution B of equation (303) which is a function 
of u only. For this solution we must have 

a2v i d 2 v  - 
axa t duz 

av arau -=--=- m dV 
at d ~ a i  

so that equation (303) becomes 

The fact that this equation involves a.nd u only, shews that there is an 
integral of the original equation for which T is a function of u only. This 
integral is easily obtained, for equation (304) can be put in the form 

in which C is a constant of integration. 
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Integrating this, we find that the solution for V is 

in which the lower limit to the integral is a second constant of integration. 
Introducing a new variable y such that ya = tKRul, and changing the 
constants of integration, we may write the solution in the form 

x 

.................. 6 -  yady (305). 

369. We must remember that this is not the general solution of equa- 
tion (303), but is simply one particular solution. Thus the solution cannot 
be adjusted to satisfj any initial and boundary conditions we please, but will 
represent only the solution corresponding to one definite set of initial and 
boundary conditions. We now proceed to examine what these conditions are. 

At  time t =O, the value of x/dt is infinite except a t  the point $=O.  
Thus exoept at  this point, we have V =  'Co when t = O. At this point the 
value of x/dt is indeterminate a t  the actual instant t = 0, but immediately 
after this instant assumes the value zero, which it retains throngh al1 time. 
Thus a t  x= 0, the potential has the constant value 

. . 
or, Say, V =.y, where O' = 

2(K-Q 
Jr  . 

At x = oo , the value of V is V = through al1 time. 

Thus equation (305) expresses the solution for a line of infinite length 
which is initially at  potential V =  'Go, and of which the end x = oo remains at  
this potential al1 the time, while the end x =  O is raised to potential 'Ci by 
being suddenly connected to a battery-terminal a t  the instant t = 0. 

The current a t  any instant is giaen by 

i av i = - - - , from equation (301), 
R a$ 

KRxz 
= - fi 'I/F B -7, frorn equation (305). 

R 2 

We see that the current vanishes only when t = O and when t = m. 

Thus even within an infinitesimal time of rnaking contact, there will, 
according to equation (306), be a current at  al1 points along the wire. I t  
must, however, be remembered that equation (306) is only an approxima- 
tion, holding solely for slowly-varying citrrents, so that we must not apply 
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the solution at  the instant t = O  at  which the currents, as given by equation 
(306), Vary with infinite rapidity. For larger values of t, however, we may 
suppose the current given by equation (306). 

The maximum current at  any point is found, on differentiating equation 
(306), to occur a t  the instant given by 

t = 3 KR& ............................. .(30'7), 
so that the further along the wire we go, the longer it takes for the current 
to attain its maximum value. The maximum value of this current, when it 
occurs. is 

1 and so is proportional to -. Thus the further we go from the end a:= 0, the 
x 

smaller the maximum current will be. 

We notice that K occurs in expression (307) but not in (308). Thus the 
electrostatic capacity of a cable will not interfere with the strength of signals 
sent along a cable, but will interfere with the rapidity of their transmission. 
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EX AMPLES. 

1. A length 4a of uniform wire is bent into the form of a square, and the opposite 
augular points are joined with straight pieces of the same wire, which are in contact 
a t  their intersection. A given current enters a t  the intersection of the diagonals and 
leaves a t  an angular point : find the current strength in the various parts of the network, 
and shew that its whole resistance is equal to that of a length 

a J5 
iqZT-1 

of the wire. 

2. A network is formed of uniform wire in the shape of a rectangle of sides 2a, 3% 
with parallel wires arranged so a s  to  divide the interna1 space into six squares of sides a, 
the contact a t  poinh of intersection being perfect. Shew that if a curen t  enter the 
framework by one corner and leave it by the opposite, the reiistance is equivalent to that 
of a length 121a/69 of the wire. 
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3. A fault of given earth-resistance develops in a telegraph line. Prove that the 
current a t  the receiving end, generated by an assigned battery a t  the signalling end, is 
least when the fault is at  the middle of the line. 

4. The resistances of three wires BC, CA, AB, of the same uniform section and 
material, are a, b, c respectively. Another wire from A of canstant resistance cl can make 
a sliding contact with BC. If a current enter a t  A and leave at  fhe point of contact 
with BC, shew that the maximum resistance of the network is 

and determine the least resistance. 

5. A certain kind of ce11 has a resistance of 10 ohms and an electromotive force of 
.85 of a volt. Shew that the greatest current which can be produced in a wire whose 
resistance ici 22.5 ohms, by a battery of five such cells arranged i u  a single series, of 
which any element is either one cell or a set of cells in pardlel, is exactly .O6 of an 
ampère. 

6. Six points A, A', B, B', C, C' are connected to  one another by copper wire whose 
lengths in  yards are as follows: AA1=16, BC=BIG=l, BC'=B'Cf=2, AB=A1B'=6, 
AC'=A1C'=8. Also B and B' are joined by wires, eaoh a yard in length, to the terminals 
of a battery whose interna1 resistance is equal to that of r yards of the wire, and al1 the 
wires are of the same thickness. Shew that the current in the wire AB' is equal to  that 
which the battery would maintain in a simple circuit consisting of 31r+104 yards of 
the wire. 

7. Two places A,  B are connected by a telegraph line of which the end at  A is  
connected to one terminal of a battery, and the end a t  B to one terniinal of a receiver, 
the other terminals of the battery and receiver being connected to earth. At a point C 
of the line a fault is developed, of which the resistance is r. If the resistances of AC, CB 
be p, q respectively, shew that the current in the receiver is diminished in the ratio 

~ ( P + P )  : qr+f.P+P% 
the revistances of the battery, receiver and earth circuit being neglected. 

8. Two cells of electromotive forces e,, e, and resistauces rl ,  rz are connected in 
parallel to the ends of a wire of resistance B. Shew that the ourreiit in the wire is 

and find the rates a t  which the cells are working. 

9. A network of conductors is in the form of a tetrahedron PQRS ; there is a battery 
of electromotive force E in PQ, and the resistance of PQ, including the battery, is R. 
If the resistances in QR, R P  are each equal to r, and the resistances in PS, RS are each 
equd to gr, and that in QS=@-, find the current in each branch. 

10. A, B, C, D are the four junction points of a Wheatstone's Bridge, and the 
resistances c, a 6,  y in AB, BD, AC, CD respectively are such that the battery sends no 
current through the galvanometer in BC;. If now a new battery of electromotive force E 
be introduced into the galvanometer circuit, and so raise the total resistance in that 
circuit to a, find the ciment that will flow through the galvanometer. 

11. A cable AB, 50 miles in length, is known to have one fault, and it  is necessary to  
localise it. If the end A is attached to a battery, and has its potential maintained 
a t  200 volts, while the other end B i s  insulatcd, it is foilnd that the potential of R when 
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steady is 40 volts. Similarly when A is insulated the potential to which B must be raised 
ta give A a steady potential of 40 volts is 300 volts. Shew that the distance of the fault 
from A is 19.05 miles. 

12. A wire is interpolated in a circuit of given reaistance and electromotive force. 
Find the resistance of the interpolated wire in order that the rate of generation of heat 
may be a maximum. 

13. The resistances of the opposite aides of a Wheatstone's Bndge are a, a' and 6,b' 
respectively. Shew that when the-two diagonaki which contain the battery and galvano- 
meter are interchanged. - - 

E E-(a-al)(b-b')(Q-R) 
--y 

C Cf- ad - bb' 3 

where G a,nd G' are the currents through the galvanometer in the two cases, Q and R are 
the resistances of the galvanometer and battery conductors, and E the electromotive force 
of the battery. 

14 A current C is introdoced into a network of linear conductors a t  A, and taken 
out a t  B, the heat generated being BI. If the network be closed by joining A, B by a 
resistance r in which an electromotive force E is inserted, the heat geneiated is Hz. 
Prove that 

15. A number of incandescent lamps, each of misdance r, are fed by a machine of 
resistance R (including the leads). If the light emitted by any lamp is proportional to 
the square of the heat produced, prove that the most economical way of arranging the 
lamps is to place them in parailel arc, e&ch arc containing n lamps, where n is the integer 

-- 
neareut to . / ~ ~ R I T .  

16. A battery of electromotive force E and of resistance B is connected with the two 
terminals of two wires arranged in pmallel. The first wire includes a voltameter which 
contains discontinuities of potential such that a unit current passing through it  for a 
unit time does p units of work The resistance of the h s t  wire, including the voltameter, 
is R: that of the second is r. Shew that if E is greater than p (B+T)/T, the current 
through the battery is 

17. A system of 30 conductors of equal resistance are connected in the same way as 
the edgcs of a dodecahedron. Shew that the resistance of the network between a pair of 
opposite corners is of the resistance of a single conductor. 

18. In  a network PA, PB, PC; PD, AB, BC, CD, DA, the tesistances are a, 8, y, 8, 
y+%, %+a, a + &  f3+y respectively. Shew that, if AD contains a battery of electromotiva 
force E, the current in BO is 

P(aB+y8). E 
2P2Q+(P% - ay)=' 

where P=a+B+y+%, Q=fiy+ya+aP+a8+@+~8. 

19. A wire forms a regular hexagon and the angular points are joined to the centre 
1 

by wires each of which has a resistance of the resistmce of a aide of the hexagoa ." 
Shew that the resistance to a current entering a t  one angular point of the hexagon and 
leaving it  by the opposite point is 

2 (n+3) 
, . a  

(m+ 1) (n+4) 
times the resistance of a side of the hexagon. 

J. 
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20. Two long q u a 1  parallel wires AB, A'B', of length 2, have their ends B, B' joined 
by a a r e  of negligible resistance, while A, A' are joined to the poles of a ce11 whose 
resistance is equal to that of a length r of the wire. A similar ce11 is placed as a bridge 
across the wires a t  a distance s h m  3, A'. Shew that the effect of the second ceil ia to 
increase the current in BB' in the ratio 

2 (2Z+r) (x+f /{r (41+r)+22 (21 -r) -439. 

21. There are n points 1,2, ... n, joined in pairs by linear conductors. On intmducing 
a current C a t  electrode 1 and taking it  out a t  2, the potentiah of these are VI, V2, ... Vn. 
If xla is the actual current in the direction 12, and xl/ any other that merely satisfies the 
conditions of introduction a t  1 and abstraction a t  2, shew that 

2 (~12~12~12')=( ri - Ve) c = E  (hxu2),  
and interpret the result physically. 

I f  s typify the actual current when the'current enters a t  1 and leaves a t  2, and y 
typify the actual current when the current enters a t  3 and leaves a t  4, shew that 

2 ( ~ n ~ 1 2 ~ 1 2 )  = (X3 - X4) C=( Yi - Ya) C, 
where the X's are poteutials corresponding to currents x, and the Y's are potentials 
corresponding to currents y. 

22. A, B, C are three stations on the sarne telegraph wire. An operator at A knows 
that there is a fault between A apd B, and observes that the current a t  A when he uses a 
given battery is i, zY or il1, a&ording as B is insulated and C to earth, B to earth, or B 
and C both insulated. Shew that the distance of the fault from A is 

{ka - Kb + (b - a)t(ka - k'b)P}/(k-K), 

where 

23. Six conductors join four points A, B, C, D in pairs, and have resistances 
a, a, b, B, c, y, where a, a refer to BC, AD respectively, and so on. If this network 
be used as  a resistance coil, with A, B as electrodes, shew that the tesistance cannot 
lie outside the limits 

24. Two equal straight pieces of a ire  BOA,, BoBn are each divided into n equal parts 
a t  the points Al ... A,-' and BI ... Bn-l respectively, the resistance of each part and 
that of AnB, being R. The corresponding points of each wire from 1 to n inclusive 
are joined by cross wires, and a battery is placed in BOBO. Shew that, if the current 
through each cross wire is the same, the resistance of the cross wire A,B, is 

((n-q+(n-s)+l} R. 

25. If n points are joined two and two by wires of equal resistance r, and two of 
them are connited to the electrodes of a battery of electromotive force E and resistance 
R, shew thitt the current in the wire joining the two points is 

26. Six points A, B, C, Dl P, 'Q are joined by nine conductors AB, AP, BC, BQ, PQ, 
QC, PD, DC, AD. An electromotive force is inserted in the conductor AD, and a 
galvanometer in  PQ. Denoting the resistance of any conductor XY by rxy, shew thnt 
if no current passes thmugh the galvanometer, 
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. 27. A network is made by joining the five points 1, 2,3,4, 5 by conductors in every 
possible way. Shew that the condition that conductors 23 and 14 are conjugate is 

( G a + &  + &5 +&) (&z& - K13K24) 
= K62 (&4K13- x34 K1&i) + K63 ( &dg61 - K ~ K ~ 8 ) 9  

where Kv8 is conductivity of conductor rs. 

28. Two endless wires are each divided into mn equal parta by the successive 
terminais of mn connecting wires, the resistance of each part being R. There is an 
identically similar battery in every mth connecting wire, the total resistance of each 
being the same, and the resistance of each of the other mn-n connecting wires is h. 
Prove that  the current through a connecting wire which is the r th  from the nearest 
battery ia 

frC(1 -tan a) (tanv a+  tanm-' a)/(tan a- tanm a), 

mhere Ois  the current through each battery, and sin 2a=h/(hf R). 

29. A long line of telegraph wire BAIA2 ... AnA,+l is supporied by n equidistant 
insulators a t  Al ,  Ba, ... A,. The end A is connected to one pole of a battery of electro- 
motive force E and reaistance B, and the other pole of this battery is put to earth, as 
also the other end Antl of the wire. The resistance of each portion AA1, AIAa, ... 
AnAnt1 is the aame, B. I n  wet weather there is a leakage ta earth a t  each insulator, 
whose resistance may be taken equal to r. Shew that the current strength in  A,A,,1 is 

Ecosh (2n-2p+l)  a 
B c o s h ( ~ n +  l)o+@sinh (2n+2)aY 

where esinha=.\/- 

30. A regular polygon AlAB ... An is formed of n pieces of uniform wire, each of 
resistance cr, and the centre O is joined to each angular point by a straight piece of the 
same wire. Shew that, if the point O is maintained a t  zero potential, and the point Al 
a t  potential P, the current that flows in the conductor A,AT+l is 

where a is given by the equation 

31. A resistance network is constructed of 2n rectangular meshes forming a truncated 
cylinder of 2n faces, with two ends each in the form of a regular polygon of Bn sidea 
Each of these sidea is of resistance r, and the o t h p  edges of resistance R If the 
electrodes be two opposite corners, then the resistance is 

tanh e tnr+*R- 
tanh ne ' 

where sinha 6 = -?- 
ZR' 

32. A network is formed by a system of conductors joining every pair of a set of 
n points, the resistances of the conductors being all equal, and there is an electromotive 
force in the conductor joining the points A,, An. Shew that there is no current in any 
conductor except those which pass through Al or A2, and find the current in  these 
conductors. 

22-2 
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33. Each member of the series of n points Al, A t ,  ... A, is united to its successor 
by a wire of resistance p, and similarly for the series of n points BI, Ba, ... B,. h h  
pair of points corresponding in the two series, such as. A, and Er, is united by a wire 
of resistance R. A steady cu i~ent  i enters the network a t  A, and leaves it at  B,. Shew 
that the current a t  Al divides itself between AlAa and AIBl in the ratio 

where cosh a=-. R+P R 

34. An underground cable of length a is badly insulated so that it has faults 
throughout ite length indefinitely near to one another and uniformly distributed. The 
conductivity of the faulta is l / p f  per unit length of cable, and the reaistance of the 
cable is  p per unit length. One pole of a battery is connected to one end of a cable 
and the other pole is earthed. Prove that the current a t  the farther end is the same 
as if the oable were frce from faults and of total resistance 

35. Two parallel conducting wires a t  unit distance are connected by n+ 1 cross piecea 
of the same wire, so as to form n squares. A current enters by an outer corner of the 
first square, and leaves by the diagonally opposite corner of the kt .  Shew that, if 
the resistance is that of a length +n+a, of the wire, 

36. A, B are the ends of a long telegraph wire with a number of faulta, and C is 
an intermediate point on the wire. The resistance to a current sent from A is R when 
C is earth connected, but if C is not earth connected the resistance is S or T according 
as the end B is to earth or insidated. If R )  S', T' denote the resistances under similar 
circumstances when a current is sent from B towards A, shew that 

T'(R-B)=R1(R-T) .  

37. The inner plates of two condensers of capacities G, Cf are joined by wires of 
resistances R, R' to  a point P, and their outer plates by wires of negligible resistance 
to a point Q. If the inner plates be also connected through a galvmometer, shew that 
the needle will suffer no sudden deflection on joining P, Q to the poles of a battes; 
if CR=C'R'. 

38. A n  infinita cable of capacity and resistance K and R per unit length is a t  zero 
potential; At the instant t=0 one end is suddenly connected to a battery for an 
infinitesimal interval and then insulated. Shew that, except for very small values of t, 
the potential a t  any instant a t  a distance x from this end of the cable will be pro- 
portional to 
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CHAPTER X 

STEADY CURRENTS IN CONTINUOUS MEDIA 

Components of Current. 

370. IN the present chapter we shall consider steacly currents of elec- 
tricity flowing through continuous two- and three-dimensional conductors 
instead of through systems of linear conductors. 

We can find the direction of flow a t  any point P in a conductor by 
imagining that we take a small plane of area dS  and turn it about at  the 
point P until we find the position in which the amount of electricity crossing 
it per unit time is a maximum. The normal to the pIane when in this 
position will give the direction of the current a t  P, and if the total amount 
of electricity crossing this plane per unit time when in this position is CdS, 
then C may be defined to be the strength of the current a t  P. 

If 2, m, n are the direction-cosines of the direction of the current a t  P, 
then the current O may be treated as the superposition of three currents 
IC, mg,  nC parallel to the axes. To prove this we need only notice that the 
flow across an area dS of which the normal makes an angle 6 with the direc- 
tion of the current, and has direction-cosines I', m', lz', must be Cd8 cos 6, or 

Cd8 (Il' + mm' + nn'). 

The first term of this expression may be regarded as the contribution from 
a current 1C parallel to the axis Ox, and so on. The quantities ZC, mC, nC 
are called the components of the current a t  the point P. 

Lines and Tubes of Flow. 

371. DEFINITION. A lilze of $ow is  a lin8 drawn Zn a condu.ctor such 
that ut every point its tangent is in  the direction of the current ut the point. 

DEFINITION. A tube of JEow is  a tuh lar  region of infinitesimal cross- 
section, boun.ded by lines of jow. 
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Steady Currents Zn conthauous Media 

I t  is clear that a t  every point on the surface of a tube of flow, the current 
is tangential to the surface. Thus no current crosses the boundary of a tube 
of flow, from which i t  follows that the aggregate current flowing across al1 
cross-sections of a tube of flow will be the same. 

The amount of this current will be called the strength of the tube. 

Thus if C is the current at any point of a tube of flow, and if o is the 
cross-section of the tube a t  that point, then Cm is constant throughout the 
length of the tube, and is equal to the strength of.the tube. 

There is a n  obvious analogy between tubes of flow in current electricity and tubes 
of force in statical electricity, the current C corresponding to the polarisation P. 
In current electricity, Cm is constant and equd to the atrength of the tube of flow, 
while in statical electricity Po is constant and equal to the strength of the tube of forcc 
($3 129). 

Specijic Resistance. 

372. The speciih resistmce of a substance is defined to be the resistance 
of a cube of unit edge of the substance, the current entering by a perfectly 
conducting electrode which extends over the whole of one face, and leaving 
by a similar electrode on the opposite face. 

If T is the specific resistance of any substance, the resistance of a wire 

The specific resistances of some substances of which conductors and insulators are 
frequently made are given in the following table. The imits are the centimetre and 
the ohm. 

of length 1 and crosa-section a will clearly be -. 
a 

Silver . . . . . .  1-61 x 10-6. 
Copper ... 1 . 6 4 ~  
Iron (soft) ... 9.83 x 10-6. 
,, (hard) ... 9 . 0 6 ~  10-6. 

Mercury ... 9 6 . 1 5 ~  10-6.  

Ohm's Lnw. 

Dilute sulphuric acid (&- acid at 22" C.) 3.3. 
3, j9 ,, (3 acid a t  22" C.) 1.6. 

Glaas (at 200" C.) . . . . . . . . .  9.47 x 107. 
,, (at 400" C.) . . . . . . . . .  7.36 x 104. 

Guttapercha, about . . . . . . . . .  3 x 10'~. 

373. I n  a conductor in which a current is flowing, different points 
will, in general, be a t  different potentials. Thus there will be a system 
of equipotentials and of lines of force inside a conductor similar to those 
in an electrostatic field. I t  is found, as an experimental fact, that in a 
homogeneous conductor, the lines of flow coincide with the lines of force- 
or, in other words, the electricity a t  every point moves in the direction of 
the forces acting on it. 

I n  considering the motion of material particles in general it is not usually true that the 
motion of the particles is in the direction of the forces acting upon them. The velocity 
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of a particle a t  the end of any small interval of time is compounded of the velocity a t  
the beginning of the interval together with the velocity generated during the intervaL 
The latter velocity is in the direction of the forces acting on the'particle, but is generally 
insignificant in comparison with the original velocity of the particle. I n  the particular 
case in which the original velocity of the particle was very small, the direction of motion 
a t  the end of a small intervttl will be that of the force acting on the particle. If the 
particle moves in a resisting medium, it  may be that the velocity of the particle is kept 
pbrmanently very small by the resistance of the medium: in  this case the direction of 
motion of the particle a t  every instant, relatively to the medium, may be that of the 
forces acting on it. 

On the modern view of electricity, a ourrent of electricity is composed of electrons 
which are driven through a conductor by the electric forces acting on them, and in 
th& motion experience frequeut collisions with the molecules of the conductor. The 
effect of these collisions is continually to check the forward relocity of the electrons, so 
that this forward velocity is kept small just as if they were moving through a resisting 
medium of the ordinary kind, and so it  comes about that the direction of flow of current 
is in the direction of the electric intensity (cf. fi 345 a). 

374. Let us select any tube of force of small cross-section inside a 
conductor, and let P, Q be any two points on this tube of force, a t  which 
the potentials are V, and q, the former being the greater. Let these 
points be so near together that throughout the range PQ the cross-section 
of the tube of force may be supposed to have a constant value o, while the 
specific resistance of the material of the conductor may be supposed to 
have a constant value T. 

From what has been said in $373, i t  follows that the tube of force under 
consideration is also a tube of flow. If C denotes the current, then the 
current fiowing through this tube of flow in the direction from P to Q 
will be Cw. This current may, within the range PQ, be regarded as flowing 
through a conductor of cross-section o and of specific resistance T. The 

resistance of this conductor from P to Q is accordingly while the fa11 
(d 

of potential is V, - %. Thus by Ohm's Law 

a If - denotes differentiation along the tube of force, the fraction on the as 
left of the foregoing equation reduces, when P and Q are made to coincide, 

av to - - so that the equation assumes the form 
as 
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Let 1, m, n be the direction-cosines of the line of flow a t  P, and let u, v, w 
be the components of the current at  P, so that u = 1C; etc. Then 

and we see that equation (309) is equivalent to the three equations 

These equations express Ohm's Law in a form appropriate to flow through 
a solid conductor. 

Equation of Contindty. 

375. Since we are supposing the currents to be steady, the amount of 
current which flows into any closed region must be exactly equal to the 
amount which flows out. This can be expressed by saying that the integral 
algebraic flow into any closed region must be nil. 

Let any closed surface S be taken entirely inside a conductor. Let 1, m, n 
be the direction-cosines of the inward normal to any element dS of this 
surface, and let u, v, w be the components of current a t  this point. Then 
the normal component of flow across the element di3 is lu + mu + nw, and the 
condition that the integral algebraic flow across the surface S shall be ni1 is 
expressed bp the equation 

By Green's Theorem (5 176), this equation may be transformed into 

and since this integral has to vanish, whatever the region through which i t  is 
taken, each integrand nmst vanish separately. Hence at  every point inside 
the conductor, we must have 

This is the so-called "equation of continuity," expressing that no elec- 
tricity is created or destroyed or allowed to accumulate during the passage 
of a steady current through a conductor. 

IRIS - LILLIAD - Université Lille 1 



374-3771 Equatwn of Continuity 345 

The same equ&on can be obtained at  once on considering the current- 
flow across the different faces of a small rectangular parallelepiped of edges 
dx, dy, dz (cf. 5 49). 

Equation (310) of course expresses that the vector C of which the 
components are u, v, w, must be solenoidal. The equation of continuity 
can accordingly be expressed in the form 

div C = O. 

Equation satisfied by the Potential. 

376. On substituting in equation (311) the values for es, v, w given by 
equations (310), we obtain 

The potential must accordingly be a solution of this differential equation. 
The equation is the same as would be satisfied by the potential in an 
uncharged dielectric in an electrostatic field, provided the inductive capacity 

1 
a t  every point is proportional to -. If the specific resistance of the con- 

7 

ductor is the same throughout, the differential equation to be satisfied by 
the potential reduces to 

vav= O. 

377. We may for convenience suppose that the current enters and Ieaves 
by perfectly conducting electrodes, and that the conductor through which the 
current flows is bounded, except at the electrodes, by perfect insulators. Then, 
over the surface of contact between the conductor and the electrodes, the 
potential will be constant. Over the remaining boundaries of the conductor, 
the condition to be satisfied is that there shall be no flow of current, and this 

is eapmsed mathematically by the condition that - shall vanish. 
an 

Thus the probIem of determining the current-flow in a conductor amounts . 
mathematically to determining a function V siich that equation (312) is satis- 

fied throughout the volume of the conductor, while either -= O, or else P has 
an 

a specified value, a t  each point on the boundary. By the mithod used in 5 188, 
it is easily shewn that the solution of this problem is unique. 

I t  is only in a very few simple cases that an exact solution of the problem 
c m  be obtained. There are, however, various artifices by which approxima- 
tions can be reached, and various ways of regarding the problem fiom which i t  
may be possible to form sonie ideas of the phpical processes which determine 
the nature of the flow in a conductor. Some of these will be discussed later 
($386-394). At present we consider general characteristics of the flow of 
currents through conductors. 
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CONDITIONS TO BE SATISFIED AT THE BOUNDARY OF TWO 

CONDUCTIN~ MEDIA. 
378. The conditions to be satisfied at  a boundary a t  which the current 

flows from one conductor to another are as follows :, 

(i) Since there must be no accumulation of electricity a t  the boundary, 
the nomal flow across the boundary must be the same whether calculated in 
the first medium or the second. I n  other words 

i av 
7% must be continuous, 

a where - denotes differentiation along the normal to the boundary. 
al% 

'(ii) The tangential force must be continuous, or else the potential would 
not be continuous. Thus 

av 
- must be continuous, 
as 

a 
where - denotes differentiation along any line in the boundary. as 

These boundary conditions are just the same as would be satisfied in an 
electrostatical problem at  the boundary between two dielectrics of inductive 

1 
capacities equal to the two values of -. Thus the equipotentials in this 

7 

electrostatic problem coincide with the equipotentials in the actual current 
problem, and the lines of force in the electrostatic problem correspond with 
the lines of flow in the current problem. 

Clearly these results could be deduced at once frorn the differential equation (312) on 
passing to the limit and making r become discontinuous on crossing a boundary. 

Refraction of Lines of Flow. 

379. Let any line of flow cross the boundary between two different 
conducting media of specific resistances T,, T,, making angles el ,  s with the 
normal a t  the point a t  which it meets the boundary in the two media 
respectively. The lines of flow satisfy the same conditions as would be 
satisiied by electrostatic lines of force crossing the boundary between two 

1 1  dielectrics of inductive capacities - , -, so that we must have (cf. equa- 
TI 7 2  

tion (71)) 

Hence TI tan q = ra tan e2, 

expressing the law of refraction of lines of flow. 
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380. As an example of refraction of Iines of current flow, we may 
consider the case of a steady uniform current in a conductor being dis- 
turbed by the presence of a sphere of different metal inside the conductor. 
The lines shewn in fig. 78 will represent the Iines of flow if the speciiic 
resistance of the sphere is less than that of the main conductor. The lines 
of flow tend to crowd into the sphere, this being the better conductor-in 
the language of popular science, the current tends to take the path of least 
resistance. 

Charge on a Surface of Discontinuity. 

381. If u is the normal component of current flowing across the 
boundary between - ' two different conductors, we have by Ohm's Law, 

a where - denotes differentiation along the normal which is drawn in the 
an 

direction in which .u is measured (say from (1) to (2)), and SI K are the 
potentials in the two conductors. 

If there is no charge on the boundary between the two conductors we 
must, from equation (70), have the relation 

where KI, K, are the inductive capacities of the two conductors. This 
condition will, however, in general be inconsistent with the condition which, 
as we have just seen,,is made necessary by the continuity of u. Thus there 
will in general be a surface charge on the boundary between two conductors 
of different materials. 

The amount of this charge is given a t  once by equation (72), p. 125. If o 
denotes the surface density at any point, we have 

This surface charge is very small couipared with the charges which occur in statical 
electriüity. For instance, if we have current of 100 ampbres per sq. cm. passing from one 
metallic conductor to  another, we take in formula (313), 

u = 100 ampères = 3  x 10" electrosta.tic units, 

10-6 
r=lO+ ohms =- 

9x10" " n 

the last two being true as regards order of magnitude only. The value of 47ru is of the 
order of magnitude of K w ,  or &x  10-6 in electrostatic units. As has been said, the value 
of 4 7 1 ~  a t  the surface of a conductor charged as highly a9 possible in air is of the order 
of 100. 
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382. As an example of the distribution of a surface charge, we may 
notice that the surface-density of the charge on the surface of the sphere 

av considered in 5 380 will be proportional to either value of -, and therefore 
an 

to cos 9, where B is the angle between the radius through the point and the 
direction of flow of the undisturbed current. 

GENERATION OF HEAT. 

383. Consider any sinall element of a. tube of flow, length ds, cross- 
i av 

section o. The current per unit area is, by equations (310), - -- a~ Ho 

that the ciment flowing through the tube is -- l - The resistance of 
as 

rds 
the element of the tube under consideration is - . Hence, as in  5 355, the 

W 

amount of heat generated per unit time in this element ia 

1 av4 
Thus the heat generated per unit time per unit volume is - (-) , and 

7 as 
the total generation of heat per unit time will be 

Thus the heat generated per unit time is 8.rr times the energy of the 
whole field in the analogous electrostatic problem (§ 169). 

Rate of generation of heat a minimum. 

384. It can be shewn that for a given current flowing through a con- 
ductor, the rate of heat generation is a minimum when the current distributes 
itself as directed by Ohm's Law. To do this we have to compare the rate of 
heat generation just obtained with the rate of heat generation when the 
current distributes itself in some other way. 

Let us suppose that the cornponents of current a t  any point have no 
longer the values 

iav iav iav --- --- T a ~ '  T a y D  T a ~  
assigned to them by Ohm's Law, but that they have different values 
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In  order that there may be no accumulation a t  any point under this new 
distribution, the components of current must satisfy the equation of con- 
tinuity, so that we must have 

By the same reasoning as in § 383, we find for the rate at which heat is 
generated under the new system of currents, 

which, on expanding, is equal to 

On transforming by Green's Theorem, the second term 

The volume integral vanishes by equation (315), the integrand of the 
surface integral vanishes over each electrode from the condition that the total 
flow of current across the electrode is to remain unaltered, and at  every point 
of the insulating boundary from the condition that there is to be no %ow 
across this boundary. Thus the new rate of generation of heat is represented 
by the h t  and third terms of expression (316). The first term represents 
the old rate of generation of heat, the third term is an essentially positive 
quantity. Thus the rate of heat generation is increased by any deviation 
from the natural distribution of currents, proving the result. 

385. An immediate result of this is that any increase or decrease in the 
specific resistance of any part of a conductor is accompanied by an increase 
or decrease of the resistance of the conductor as a whole. For on decreasing 
the value of T a t  any point and keeping the distribution of currents 
unaltered, the rate of heat production will obviously decrease. On allow- 
ing the currents to assume their natural distribution, the rate of heat 
production will further decrease. Thus the rate of heat production with a 
naturd distribution of currents is lessened by any decrease of specSc 
resistance. But if 1 is the total current transmitted by the conductor, and 
R the resistance of the conductor, this rate of heat production is RI2. 
Thus R decreases when T is decreased at  any point, and obviously the 
converse must be true (cf. $ 359). 
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386. A good approximation to the conditions of electric flow can 
occasionally be obtained by neglecting the restrictive influence of the 
boundaries of a conductor, and regarding the problem as one of flow between 
two electrodes in an infinite conductor. For simplicity, we shall consider only 
the case in which the conductor is homogeneous. 

The conditions to be satisfied by the potential T are as follows. We 
must have Tr= over one electrode, and Tr= over the second electrode, 

av 1 
while - must vanish nt infinity to a higher order than - and throughout 

ar 1.a 
the conductor we must have V2V= 0 (fj 376). We can'easily see (cf. $186, 
187) that these conditions determine V uniquely. 

Consider now an a~alogous electrostatic problem. Let the conducting 
medium be replaced by air, while the electrodes remain conductors. Let 
the electrodes receive equal and opposite charges of electricity until their 
difference of potential is x- K. At this stage let IjF denote the electro- 
static potential a t  any point in the field. Let +,, jb, be the values of y% over 
the two electrodes, so that ql - q2 = - K. Then there will be a constant 
C (namely K - +), such that + + C assumes the values K, 'Ga respectively 
over the two electrodes. Moreover V%,b = 0 throughout the field, so that 
V"$ + C) = O throughout the field, and $r = O a t  infinity except for terms 

1 a 
in - (cf 5 67), so that %(+ + (7) vanishes a t  infinity to a higher order 

ra 

Hence -i- C satisfies the conditions which, as we have seen, must be 
satisfied by the potential P in the current problem, and these are known to 
suffice to determine V uniquely. I t  follows that the value of V must be 
9 + C. 

Thus the lines of flow in the current problem are identical with the lines 
of force when the two electrodes are charged to different potentials in air. 

The normal current-flow a t  any point on the surface of an electrode is 

so that the total flow of current outwards from this electrode 

=-;J /Ed .=- -  7 'II" -*,y, 
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If E is the charge on this electrode in the analogous electrostatic problem 
we have, by Gauss' Theorem, 

47rE 
00 that the total Row of current is seen to be -. 

7 

If pli, pla, pa are the coefficients of potential in the electrostatic problem 

If 1 is the total current, and R the equivalent resistance between the 
electrodes, we have just seen that 

4aE I =  - 
7 '  

so that 

If we regard the two electrodes in air as forming a condenser, 
its capacity by C, we have 

and denote 

....( 318). 

387. As instances of the applications of formulae (317) and (318) to 
special problems, we have the following : 

1. The resistance per unit length between two concentric cylinders of 
radii a, b (as, for instance, the resistance between the'core of a submaxine 
cable and the sea), is, by formula (318), 

II. The resistance per unit length between two straight parallel 
cylindrical wires of radii a, b, placed with their centres at  a great distance T 
apart, in  an infhite conducting medium, is, by formula (317), 

7 -- (log a - 2 log r + log b )  
2 1  

7 rs -- - log -. 
27r ab 
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III. The resistance between two spherical electrodes, radii a, 6, at  a 
great distance r apart, in an infinite conducting medium, is, by formula (31'1), 

388. If two electrodes of any shape are placed in an infinite medium at  
a distance r apart, which is great compared with their linear distances, we 

1 
rnay take p,, in formula (317) equal, to a first approximation, to -. This is 

r 
small compared with pl, and pB, so that, to a fbst approximation, we may 
repl~ce formula (317) by 

It accordingly appears that the resistance of the infinite medium may be 
TP11 regarded as the sum of two resistances-a resistance - a t  the crossing of 
47T 

the current from the first electrode to the medium, and a resistance 3% at  
47T 

the return of the current from the medium to the second electrode. Thus 
we may legitimately speak of the resistance of a sing1.e junction between an 
electrode and the conducting medium surrounding it. 

For instance, suppose a circular plate of radius a is buried deep in the earth, and acts 
as electrode to distribute a current through the earth. The value of pl1 for a disc of 

radius a is -, so that the resistance of the junction is Z So also if a disc of radius a 
2a 8a' 

is placed on the earth2s surîace, the resistance a t  the junction is - and clearly this 
4a' 

also is the resistance if the electrode is a semicircle of radius a buried vertically in the 
mrth with its diameter in the surface. 

Flow in n Plane Sheet of Metnl. 

389. When the flow takes place in a sheet of metal of uniform thickness 
and structure, so that the current a t  every point may be regarded as flowing 
in a plane parallel to the surface of the sheet, the whole problem becomcs 
two-dimensional. If x, y are rectangular coordinates, the problem reduces to 
that of finding a solution of 

a2v aav -+-=O axa ay2 
av which shall be such that either V has a given value, or else - = O, a t  every 
an 

point of the boundary. The methods already given in Chap. VIII for obtain- 
ing two-dimensional solutions of Laplace's equation are therefore available 
for the present problem. The method of greatest value is that of Conjugate 
Functiong. 
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If the conducting medium extends to infinity, or is bounded entirely by 
the two electrodes, the transformations will be identical with those already 
discussed for two conductors a t  different potentials (§ 386). If the medium 

av 
has also boundaries a t  which - = 0, the procedure must be slightly different. 

8.n 
We must try to transform the two electrodes into lines V =  constant, and the 
other boundaries into lines U=constant, so that the whole of the medium 
becomes transformed into the interior of n rectangle in the U, Vplane. 

Let U+iV= f (.+;y) 
be a transformation which gives the required value for 7 over both electrodes, 

av 
and gives - = O over the boundary of a conductor. Then P will be the 

an 
potential a t  any point, the lines V = constant will be the equipotentials, and 
the lines U =  constant, being the orthogonal trajectories of the equipotentials, 
will be the lines of fiow. 

At any point the direction of the current is normal to the eqÛipotential 
through the point, and the amount of the current is given by 

i av c=- -, 
7 an 

av au a 
But - is equal to -, where - denotes differentiation in the equipotential. 

an as as 
Thus the current flowing across any piece P Q  of an equipotential 

If P, Q are any two points in the conductor, a path from P to Q can be 
regarded as made up of a piece of an equipotential PN,  and a piece of a line 
of flow NQ. The flow across NQ is zero, that across P X  is 

This is accordingly the total flow across PQ, and since UN= UQ, i t  may 
be written as 

390. As an illustration, let us suppose that the conducting plate is a 
polygon, two or more edges being the electrodes. We can transform this 
into the real axis in the (-plane by a transformation of the type 
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and this real axis has to be transformed into a rectangle formed (say) by the 
lines 8= K, V =  K, U = O, U = C in the W-plane. The transformation 
for this will be 

where G, a, and a,, a, are the points on the real axis of which determine 
the ends of the èlectrodes. By elimination of r from the integrals of equa- 
tions (319) and (320) we obtain the transformation required. 

391. The following example of this method is taken from a paper by 
H. F. Moulton (Proc. Lond. Math. Soc. III. p. 104). 

I n  fig. 101, let ABCD be a rectangular plate, the piece PQ of one or more 
sides being one electrode, and the piece R S  of one or more other sides being 
the other electrode. Let the rectangle PQRS in fig. 102 be its transforma- 
tion in the W-plane. In  the intermediate c-plane, let the points A, B, C, D 
transform to r= a, b, c, d respectively, and let the points P, Q, R, S transform 
to C=p, q, r ,  s respectively. Then the transformations are 

the integrals are 

K iK( of 
The sides AB, AD of the first rectangle are the periods --, - 

m m 
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sn mz (modz); the sides PQ, PX of the second rectangle are the periods in 
L iL' W, say -/, - of sn m' W (mod A). 
m m" 

L' 
In  the W-plane, the potential difference of the tu10 electrodes is PS,  or - 

m' ' 
1 L' . 

while the current is - PQ, or -. The equivalent resistance of the plate 
7- m'7 

is accordingly'rLf/l, so that the quantity we are trying to determine is L'IL. 

Let the coordinates of P ,  Q, R, S in the z-plane be z,, z,, z,, z,. I n  the 
c-plane the coordinates of these points are p, q, r ,  S. Hence from .equations 
(321), we have 

a ( b - d ) - b ( a - d ) s n a m r , ( r n o d ~ )  " = ( b  - d) - (a - d) sn%z, (mod EC) ' 

and similar equations for q, r, S. The ratio L'IL of which we are in search 
is now given by 

the whole being to rnodulus K. The values of snmz can be obtained from 
Legendre's Tables. 

Moulton has calculated the resistance of a square sheet with electrodes, 
each of length equal to one-fifth of a side, in the following four cases : 

(1) Electrodes a t  middle of two opposite sides, Resistance = 1-745B, 

(2) Electrodes at  ends of two opposite sides and facing one another, 
Resistance = 2.408B, 

(3) Electrodes at  ends of two opposite sides and not facing one 
another, Resistance = 2.589R, 

(4) Electrodes bent equally round two opposite corners of square, 
Resistance = 3.02'7R' 

where R is the resistance of the square when the whole of two opposite sides 
fortn the electrodes. A cornparison of the results in cases (2) and (3) shews 
how large a part of the resistance is due to the crowding in of the lines of 
force near the electrode, and how small a part arises from the uncrowded 
part of the path. 

Limits to the Resistance of a Conductor. 

392. The result obtained in § 386 enables us to assign an upper and 
a lower limit to the resistance of a conductor, when this resistance cannot be 
calculated accurately. For if any parts of the conductor are made into 
perfect conductoru, the resistance of the whole will be lessened, and it may 
be possible to change parts of the conductor into perfect conductors in such 

23-2 
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a way that the resistance of the new conductor can be calculated. This 
resistance will then be a lower limit to the resistance of the original con- 
ductor. 

As an illustration, we may examine the case of a straight wire of variable 
cross-section S. Let us imagine that at  small distances along its length we 
take cross-sections of infinitely small thickness, and make these into perfect 
conductors. The resistance between two such sections at  distance ds apart, 

T ds 
will be - where S is the cross-section of either. Thus a lower limit to 

S '  
the resistance is supplied by the formula 

393. Again, if we replace parts of the conductor by insulators, so causing 
the current to flow in given channels, the resistance of the whole is increased, 
and in this way we may be able to assign an upper limit to the resistance 
of a conductor. 

394. As an instance of a conductor to the resistance of which both 
upper and lower limits can be assigned, let us consider the case of a 
cylindrical conductor AB terminating in an infinite 
conductor C of the same material. This example is 
of practical importance in connection with mercury 
resistance standards. The appropriate analysis was 
first given by Lord Rayleigh, discussing a parallel 
problem in the theory of sound. 

Let 1 be the length and a the radius of the tube. C 
Fm. 103. 

To obtain a lower lirnit to the resistance, we imagine - 
a perfectly conducting plane inserted a t  B. The resistance then consists of 
the resistance to this new electrode at B, plus the resistance from this with 

ZT 
the infinite conductor C. The former resistance is -, the latter, by § 388, 

7ra2 
7 

is - , so that a lower limit to the whole resistance is 
4a 

which is the resistance of a length 1 + " of the tube. 4 

To obtain an upper limit to the resistance, we imagine non-conducting 
tubes placed inside the main tube AB, so that the current is constrained to 
fiow in a uniforrn stream parallel to the axis of the main tube until the 
end B is reached. After this the current flows through the semi-infinite 
conductor C as directed by Ohm's Law. 
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17 The resistance of the tube AB is, as before, -. To obtain the resist- 
n-a2 

ance of the conductor C, we must examine the corresponding electrostatic 
problem. If 1 is the total current, the flow of current per unit area over 
the circular mouth at B is 1 / w a 2 .  In  order that the potentials in the 
electrostatic problem may be the saine, we must have a uniform surface 
density of electricity 

71 

on the surface of the disc. 

The heat generated is P R ,  where R is the resistance of the conductor C. 
I t  is also ///{(gy + ("$y + ("Zn dxdy dz ............ 

r (323), 

taken through the conductor C. Now if  W is the electrostatic energy of 
71 

a disc of radius a, having a uniform surface density o = -- on each side, 
4+a2 

we have 

where the intepaI is taken through al1 space, or again, 

where the integral is taken through the semi-infinite space on one side of 
the disc, i.e. through the space O, if the disc is made to coincide with the 
mouth B. On substituting for the volume integral in expression (323), we 
find that . 

4n- W igR = - .............................. 
7 

(324). 

Following Maxwell, we shall find it convenient to calculate W directly 
from the potential. If a disc of radius r has a uniforrn surface density o 
on each side, the potential at a point P on its edge wilI be 

where the integral is taken over one side of the disc, and r is the distance 
from P to the element dxdy. Taking polar coordinates, with P as origin, 
the equation of the circle will be r = 2b cos 8 ; we may replace dxdy by 
rdrd8, and obtain 
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358 Steady Currents in  contintcous Media [CH. x 

On increasing the radius of the disc to b + db, we bring up a charge 
4 ~ b a d b  from infinity to potential 8bu, so that the work done is 

and integrating from b = O to b = a, we fhd for the potential energy of the 
complete disc of radius a, 

W = ~~~a3$. 
Thus, from equation (324), 

47~ W 128raasaa R =  -- - 
1% 31% ' 

or, since 

Thus an upper limit to  the whole resistance is 

8 
which is the resistance of a length I + -a of the tube. 

3 7r 

Thus we may say that the resistance of the whole is that of a length 
%- 8 I +  aa of the tube, where a is intermediate between - and -, ie .  between 
4 3%- 

-785 and .849. Lord Rayleigh*, by more elaborate analysis, has shewn that 
the upper limit for u must be less than .8242, and believes that the true 
value of a must be pretty close to -82. 

395. Since even the best insulators are not wholly devoid of conducting 
power, i t  is of importance to consider the flow of electricity in dielectrics. 

Using the previous notation, we shall denote the potential at any point 
in the dielectric by V, the spec3c resistance by T, and the inductive capacity 
by K. We shall consider steady fiow first. 

If the fiow is to be steady, the equation of continuity, namely 

a l a v  a i a v  aiar +- -- +-  -- = O  
5 (Y G) a y  (r  a y  ) az (r  az) .......*.....m. ~ 3 2 5 ) ~  

must be satisfied. Also if there is a volume density of electrification p, the 
potential must satisfy equation (62), namely 

Theory of Sound, Vol. II. Appendix A. 
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From a comparison of equations (32.5) and (326), it is clear that steady 
flow will not generally be consistent with having p = O.  Hence if currents 
are started flowing through an uncharged dielectric, the dielectric will 
acquire volume charges before the currents become steady. When the 
currents have become steady, the value of V will be determined by 
equation (325) and the boundary conditions, and the value of p is then 
given by equation (326). 

From equations (325) and (326), we obtain 

The condition that p shall vanish, whatever the value of V, is that KT shall 
be constant throughout the dielectric: if this condition is satisfied the vaIue 
of p necessarily vanishes a t  every point for al1 systems of steady currents. 
The most important case of this condition being satisfied occurs when the 
dielectric is homogeneous throughout. If KT is not constant throughout 
the dielectric, equation (327) shews that we can have p= O a t  every point 
provided the surfaces V =  cons. and KT = cons. cut one another at right 
angles a t  every point, i.e. provided KT is constant along every line of flow. 

We have already had an illustration ($ 381) of the accumulation of 
charge which occurs when the value of KT varies in passing along a line 
of flow. 

Tirne of Relaxation im a Homogeneous Dielectric. 

396. Let a homogeneous dielectric be charged so that the volume 
density at any point is p. 

If any closed surface is taken inside the dielectric, the total charge 
inside this surface must be 

while the rate at which electricity flows into the surface will, as in $ 375, be 

where w, v, su are the components of current and 1, m, .n are the direction 
cosines of the normal drawn into the surface. Since this rate of flow into 
the surface must be equal to the rate aii which the charge inside the surface 
increases, we must have 
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The integral on the left may, by Green's Theorem, be transformed into 

and this again is equal, by equations (310), to 

Thus we have 

and since this is true whatever surface is taken, each integrand must vanish 
separately, and we must have, at  every point of the dielectric, 

We have also, as in equation (:326), 

so that 

The integral of this equation is 

where p, is the value of p at time t = O. 

Thus the charge at  every point in the dielectric falls off exponentially 
47r KT with the time, the modulus of decay being - The time - , in which KT' 47 

al1 the charges in the dielectric are reduced to l / e  times their original 
value, is called the "time of relaxation," being analogous to the corresponding 
quantity in the Dynamical Theory of Gases*. 

The relaxation-time admits of experimental determination, and as T is 
easily determined, this gives us a means of determining K experimentally 
for conductors. I n  the case of good conductors, the relaxation-time is too 
small to be observed with any accuracy, but the method has been employed 
by Cohn and Aronsf- to determine the inductive capacity of water. The 
value obtained, K =  73.6, is in good agreement with the values obtained in 
other ways (cf. 5 84). 

Cf. Maxwell, Gollected Works, II. p. 681,. or Jeans, Dynamical Theoly of Gases, p. 294. 
f Wied. Ann. XXVIII. p. 454. 
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396, 397) Passage of Electricity through Dielectrim 361 

Discharge of a Condenser. 

397. Let us suppose that a condenser is charged up to n certain 
potential, and that a certain amount of Ieakage takes place through the 
dielectric between the two plates. Then, as we have just seen, the dielectric 
will, except in very special cases, become charged with electricity. 

Now suppose that the two plates are connected by a wire, so that, in 
ordinary laquage, the condenser is discharged. Conduction through the 
wire is a very much quicker process than conduction through the dielectric, 
so that we may suppose that the plates of the condenser are reduced t o  the 
same potential before the charges imprisoned in the dielectric have begun to 
move. For simplicity, let us suppose that the plates of the condenser are 
both raduced to potential zero. Then the surface of the dielectric may, 
with fair accuracy, be regarded as an equipotential surface, the potential 
being zero al1 over it. It follows that there can be no lines of force outside 
this equipotential: al1 lines of force which originate on the charges im- 
prisoned in the dielectric, and which do not terminate on similar charges, 
must terminate on the surface of the dielectric. Thus we shall have a 
system of charges on the surface of the dielectric, these charges being equal 
in magnitude but opposite in sign to those of the Green's "equivalent 
stratum " corresponding to the system of charges imprisoned in the dielectric. 
This system of charges on the surface of the dielectric is of the kind which 
Faraday would cal1 a " bound" charge (cf 5 141). 

Suppose the plates of the condenser t o  be again insulated. The system 
of charges inside the dielectric and at its surface is not an equilibrium dis- 
tribution, so that currents will be set up in the dielectric, and a general 
rearrangement of electricity will take place. The potentials throughout the 

. dielectric will change, and in particular the potentials of the condenser-plates 
at the surface of the dielectric will change. I n  other words, the charge on 
these plates is no longer a " bound" charge, but becomes, at least partially, a 
"free" charge. On joining the two plates by a wire, a new discharge will 
take place. 

This is Maxwell's explanation of the phenomenon of " residual discharge." 
I t  is found that, some time after a condenser has been discharged and 
insulated, a second and smaller discharge can be obtained on joining the 
plates, after this a third, and so on, almost indehitely. I t  should be 
noticed that, on the explanation which has been given, no residual discharge 
ought to take place if the dielectric is perfectly homogeneous. Maxwell's 
theory accordingly receives confirmation from the experiments of Rowland 
and NicholsY and others, who shewed that the residual discharge disappeared 
when homogeneous dielectrics were employed. 

* Phil. Mag. [5] vol. II. p. 414 (1881). 
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1. The ends of a rectangular conducting lamina of breadth c, length a, and uniform 
thickness r, are maintained a t  different potentials. If f (x, y) be the specific resistance p 
at  a point whose distances from an end and a side are x, y, prove that the resistance of 
the lamina cannot be l&s than 

or greater than 

2. Two large vessele 6lled with niercury are connected by a capillary tube of uniform 
bore. Find superior and inferior limits to the conductivity. 

3. A cylindrical cable consists of a conducting core of copper surrounded by a thin 
insulating sheath of material of given specific resistance. Shew that if the sectional 
areas of the core and sheath are given, the resistance to lateral leakage is greatest when 
the surfaces of the two materials are coaxal right circular cylinders. 

4. Prove that the product of the resistance to leakage per unit length between two 
practically infinitely long parailel wires insulated by a unifo~rn dielectric and at different 
potentials, and the capaoity per unit length, is Xp/4r, where K is the inductive capacity 
and p the specific resistance of the dielectric. Prove ako that the time that elapses before 
the potential difference sinks to a given fraction of its original value is independent of the 
sectional dimensions end relative positions of the wires. 

5. If the rigbt sections of the wires in the last question are semicircles described on 
opposite sides of a square as diameters, and outside the square, while the cylindrical space 
whose section is the semicirclw similarly described on the other two sides of the square 4s 
filled up with a dielectric of infinite specific resistance, and al1 the neighbouring space is 
filled up with a dielectric of resistance p, prove that the leakage per unit bngth in unit 
time is 2 V / p ,  where V is the potential difference. 

6. If $ +i+= f (x+Êy), and the curves for which $=cons. be closed curves, shew that 
the insulation resistance between lengths 1 of the surfaces $ =Qo, is 

P ($1 - $0) -- 

Ir+] ' 
where [.J;1 is the increment of JI on passing once ronnd a $-curve, and p is the specific 
resistance of the dielectric. 
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7. Current entera and leaves a uniform circular disc through two circular wires of 
small radius e whose central lines pass through the edge of the dise a t  the extremities of 
a chord of length d. Shew that the total resistance of the sheet is 

(2vI.r) 1% (44. 
8. Using the transformation 

log(x+iy)=5++, 
prove that the resistance of an infinite strip of uniform breadth a between two electrodes 
distant 2a apart, situated on the middle line of the strip and having equal radii 8, is 

5 log (i tanh a ) .  
'iT 

9. Shew that the transformation 

d + iy' = cosh a (x+ iy)/a 
enables us to obtain the potential due to any distribution of electrodes upon a thin 
conductor in the form of the semi-infinite strip bounded by y=O, y=a,  and x-0. 

If the margin be uninsulated, find the potential and flow due to a source at the point 
a x = c, y = - Shew that if the flows across the t h e  edges are equal, then T C  = a cosh-l2. 
2 '  

10. Equal and opposite electrodes are placed a t  the extremities of the base of an 
isosceles triangular lamina, the length of one of the equal sides being a, and the vertical 

2a angle - . Shew that the lines of flow and equal potential are given by 
3. 

where 

and the mod~ilus of cn zc is sin 75; the origin being a t  the vertex. 

11. A circular sheet of copper, of specific resistance v, per unit area, is inserted in a 
very large sheet of tinfoil (q), and currents flow in the composite sheet, entering and 
leaving a t  electrodes. Prove that the current-function in the tinfoil corresponding to an 
electrode a t  which a current e enters the tinfoil is the coefficient of i in the irnaginary 
part of 

where a is the radius of the copper sheet, z is a complex variable with its origin a t  the 
centre of the sheet, and c is the distance of the electrode from the origin, the real agis 
passing thmugh the electrode. 

Generalise the expression for any position of the electrode in the copper or in the 
tinfoil, and investigate the corresponding expressions determining the lines of flow in the 
copper. 

12. A uniform conduding sheet has the form of the catenary of revolution 

Prove that the potential a t  any point due to an electrode a t  XO, ?/O, .ÛO, introducing a 
current C. is 
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CHAPTER XI 

PERMANENT MAGNETISM 

398. IT is found that certain bodies, known as magnets, will attract or 
repel one another, while a magnet will also exert forces on pieces of iron 
or steel which are not themselves magnets, these forces being invariably 
attractive. The most familiar fact of magnetism, namely the tendency of 
a magnetic needle to point north and south, is simply a particular instance 
of the first of the sets of phenomena just mentioned, i t  being found that 
the earth itself inay be regarded as a vast aggregation of magnets. 

The simplest piece of apparatus used for the experimental study of 
magnetism is that known as a bar-magnet. This consists of a bar of steel 
which shews the property of attracting to itself small pieces of steel or iron. 
Usually i t  is found that the nlagnetic properties of a bar-magnet reside 
largely or entirely at its tmo ends. For instance, if the whole bar is dipped 
into a collection of iron filings, i t  is found that the filings are attracted in 
great numbers to its two ends, while there is hardly any attraction to the 
middle parts, so that on lifting the bar out fi-om the collection of filings, we 
shall find that filings continue to cluster round the ends of the bar, while 
the middle regions will be comparatively free. 

Poles of a Magnet. 

399. The two ends of a magnet-or, more strictly, the two regions 
in which the magnetic properties are concentrated-are .spoken of as the 
"poles" of the magnet. If the magnet is freely suspended, it will turn 
so that the line joining the two poles points approximately north and 
south. ' The pole which places itself so as to point towards the north is 
called the " north-seeking pole," while the other pole, pointing to the south, 
is called the " south-seeking pole." 

By experimenting with two or more niagnets, it is found to be a general 
law that similar poles repel one another, while dissimilar poles attract one 
another. 
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The earth may roughly be regarded as a single magnet of which the two 
magnetic poles are a t  points near to the geographical north and aouth poles. 
Since the northern magnetic pole of the earth attracts the north-seeking 
pole of a suspended bar-magnet, i t  is clear that this northern magnetic pole 
must be a south-seeking pole; and similarly the southern pole of the earth 
must be a north-seeking pole. Lord Kelvin speaks of a south-seeking pole as 
a " true north" pole-i.e. a pole of which the magnetisrn is of the kind found 
in the northerly regions of the earth. But for purposes of mathematical 
theory i t  will be most convenient to distinguish the two kinds of pole by 
the entirely neutral terms, positive and negative. And, as a matter of 
convention, we agree to cal1 the north-seeking pole positive. Thus we 
have the following pairs of terms : 

North-seelcing = True South = Positive, 

South-seeleing = Tme North = h'egntive. 

Law of Force between Magnetic Poles. 

400. By experirnents with his torsion-balance, Coulomb established that 
the force between two magnetic poles varies inversely as the square of the 
distance between them. I t  was found also to be proportional to the product 
of two quantities spoken of as the " strengths " of the poles. Thus if P is the 
repulsion between two poles of strengths nz, m' at  a distance r apart, we have 

I t  is found that c depends on the medium in which the poles are placed, 
but is otherwise constant. Clearly if we agree that the strength of positive 
poles is to be reckoned as positive, while that of negative poles is reckoned 
negative, then c will be a positive quantity. 

The Unit Magnetic Pole. 

401. Just as Coulomb's electrostatic law of force supplied a convenient 
way of measuring the strength of an electric charge, so the law expressed 
by equation (328) provides a convenient way of measuring the strength of a 
rnagnetic pole, and so gives a system of magnetic units. A system of units, 
analogous to the electrostatic system (5s 17, 18) is obtained by defining the 
unit pole to be such as to make c = 1 in equation (328). This system is 
cdled the Magnetic (or, more generally, Electromaqetic) system of units. 
We define a unit pole, in this system, to be a pole of strength such that 
when placed at  unit distance from a pole of equal strength the repulsion 
between the two poles is one of unit force. 
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Permanent M a g n e t h  

Thus the force B between two poles of strengths m, m', measured in the 
Electromagnetic system of units, is given by 

mm' p=-- .............................. (329). 
The physical dimensions of the magnetic unit can be discussed in just 

the same may in which the physical dimensions of the electrostatic unit 
have already been discussed in 5 18. 

Montent of a Line-Magnet. 

402. I t  is found that every positive pole has associated with it s 
negative pole of exactly equal strength, and that these two poles are 
always in the same piece of matter. 

Thus not only are positive and negative magnetism necessarily brought 
into existence together and in equal quantities, as is the case with positive 
and negative electricity, but, further, it is impossible to separate the positive 
and negative magnetism after they have been brought into existence, and in 
this respect magnetism is unlike electricity. 

I t  follows that i t  is impossible to have a body " charged with magnetism " 
in the way in which we can have a body charged with electricity. A mag- 
netised body may possess any nurnber of poles, and a t  each pole there is, in 
a sense, a charge of magnetism; but the total charge of magnetism in the 
body will always be zero. 

Hence i t  follows that the simplest and rnost fundamental piece of matter 
we can imagine which is of interest for the theory of magnetism, is not a 
small body carrying a charge of magnetism, but a small body carrying (so 
t o  speak) two equal and opposite charges at a certain distance apart. 

This leads us to introduce the conception of a line-magnet. A line- 
magnet is an ideal bar-magnet of which the width is infinitesimal, the 
length h i t e ,  and the poles at  the two extreme ends. Thus geometrically 
the ideal line-magnet is a line, while its poles are points. 

The strengths of the two poles of a line-magnet are riecessarily equal 
and opposite. The product of the numerical strength of either pole and the 
distance between the poles is called the " moment " of the line-magnet. 

Magnetic Particle. 

. 403. If we imagine the distance between the two poles of a line-magnet 
to shrink until i t  is infinitesimal, the magnet becomeu what is spoken of as a 
magnetic particle. If + m are the strengths of its poles and ds ia the distance 
between the two poles, the moment of the magnetic particle is mds. 
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Phy&aZ Phenornena 

I t  is easily shewn that, as regards al1 phenomena occurring a t  a finite 
distarice away, two magnetic particles have the same effect if their moments 
are equal ; their length and the strengths of their poles separately are of no 
importance. To see this we need only consider the case of two magnetic 
particles, each having poles rt: m, and length ds, and therefore moment ntds. 
Clearly these will produce the same effect at finite distances whether they 
are placed end to end or side by side. In  the latter case, we have a magnet 
of length ds, poles f 2m, while in the former case the two contiguous poles, 
being of opposite sign, neutralise one another, and the arrangement is in 
effect a magnet of length 2ds and poles f m. Thus in each case the moment 
is the same, namely Bmds, while the strengths of the poles and their distances 
apart are different. 

If we place a large number n of similar magnetic particles end to end, 
al1 the poles will neutralise one another except those at  the extreme ends, 
so that the arrangement produces the satne effect as a line-magnet of length 

7 
C 

nds. By taking n = - where 1 is a finite length, we see that the effect of 
ds '  

a line-magnet of length 2 can be produced exactly by n magnetic particles 
of length ds. 

The two arrangements will be indistinguishable by their magnetic effects 
a t  al1 external points. There is, however, a way by which i t  would be easy 
to distinguish them. If the arrangement were simply two poles f m, at  the 
ends of a wire of length 2, then on cutting the wire into two pieces, we should 
have one pole remaining in each piece. If, however, the arrangement were 

Fra. 104. 

that of a series of magnetic particles, we should be able to divide the series 
between two particles, and should in this way obtain two complete magnets. 
The pair of poles on the two sides of the point of division which have so far 
been neutralising one another now figure as independent poles. 

As a matter of experiment, i t  is not only found to be possible to produce 
two complete magnets by cutting a single magnet between its poles, but i t  
is found that two new magnets are produced, no matter a t  what point the 
cutting takes place. The inference is not only that a natural magnet must 
be supposed to consist of magnetic particles, but' also that these particles 
are so small that when the magnet is cut in two, there is no possibility of 
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368 Permanent MagnetZsm [CH. XI 

cutting a magnetic particle in two, so that one pole is left on each side of 
the division. I n  other words, we must suppose the magnetic particles either 
to be identical with the molecules of which the matter is composed or else 
to be even srnaller than these molecules. At the same time, it will not 
be necessary to limit the magnetic particle of mathematical analysis by 
assigning this definite meaning to it : any collection of molecules, so small 
that the whole space occupied by i t  may be regarded as infinitesimal, will 
be spoken pf as a magnetic particle. 

404. Axis of a magnetic particle. The axis of a magnetic particle is 
defined t o  be the direction of a line drawn from the negative to the positive 
pole of the particle. 

I t  will be clear, from what has already been said, that the effect of 
a magnetic particle at  al1 external points is known when we know its 
position, axis and moinent. 

Intensity of  Mqnetisation. 

405. In considering a bar-magnet, which must be supposed to have 
breadth as well as length, we have to consider the magnetic particles as 
being stacked side by side as well as placed end to end. For clearness, let , 

us suppose that the magnet is a rectangular parallelepiped, its length being 
parallel to the axis of s, while its height and breadth are parallel to the two 
other axes. The poles of this bar-magnet may be supposed to consist of 
a uniform distribution of infinitesimal magnetic poles over each of the two 
faces parallel to the plane of yz, let us Say a distribution of poles of aggregate 
strength I per unit area at  the positive pole, and -1 per unit area at  the 
negative pole, so that if A is the area of each of these faces, the poles of 
the magnet are of strengths f I A .  

As a first step, we may regard the magnet as made up of an infinite 
number of line-magnets placed side by side, each line-magnet being a 
rectangular prism parallel to the length of the magnet, and of very small 
cross-section. Thus a prism of cross-section dydz may be regarded as a line- 
magnet having poles f Idydz. This again may be regarded as made up of 
a number of magnetic particles. As a type, let us consider a particle of 
length dx, so that the volume of the magnet occupied by this particle is 
dxdydz. The poles of this particle are of strength f Idydz, so that the 
moment of the particle is 

I h d y d z .  

If we take any small cluster of these particles, occupying a small volume 
dv, the sum of their moments is clearly Idv, and these produce the same 
magnetic effects at external points as a single particle of moment 

I dv. 
I 
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403-4071 The Hagnetie Field of Force 369 

The quantity I is called the " intensity of magnetisation " of the magnet. 
The magnetisation has direction as well as magnitude. I n  the present 
instance the direction is that of the axis of x. 

406. In  general, we define the intensity and direction of magnetisation 
as follows : 

The intensity of magnetisation at any point of a magnetised bod,y is defined 
to be the ratio of the magnetic nzonzent of any sma,ll particle at this point to 
the votume of the particle. 

The direction of magnetisation at any point of a magnetised body is dejîned 
to be the direction of the magnetic axis of a small particle of magnetic matter 
at the point. 

Instead of specifying the magnetisation of a body in terms of its poles, 
i t  is both more convenient from the niathematical point of view, and more 
in accordance with truth from the physical point of view, to specify the 
intensity a t  every point in magnitude and direction. Thus the bar-magnet 
which has been under consideration would be specified by the statement 
that its intensity of magnetisation at  every point is I parallel to the axis 
of x. A body such that the intensity is the same a t  every point, both in 
magnitude and direction, is said to be uniformly magnetised. 

407. The field of force produced by a collection of magnets is in many 
respects similar to an electrostatic field of force, so that the various conceptions 
which were found of use in electrostatic theory will again be employed. 

The first of these conceptions was that of electric intensity a t  a point. 
I n  electrostatic theory, the intensity a t  any point was defined ho be the 
force per unit charge which would act on a small charged particle placed 
a t  the point. It was necessary to suppose the charge to be of infinitesimal 
amount, in order that the charges on the conductors in the field might not 
be disturbed by induction. 

There is, as we shall see later, a phenomenon of magnetic induction, 
which is in many respects similar to that of electrostatic induction, so that 
in defining magnetic intensity we have again to introduce a condition to 
exclude effects of induction. 

Also, to avoid confusion between the magnetic intensity and the intensity 
of magnetisation defined in 5 406, it will be convenient to speak of magnetic 
force a t  a point, rather than of magnetic intensity. We accordingly have the 
following definition, analogous to that given in $30. 

J. 24 
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The magnetic force at any point i s  given, in magnitude and direction, 
6y the force per unit strmgth of pole, which would act on a magnetic pole 
situated ut this point, the strength of the pole being supposed so srna11 that 
the magnetim of the field is not afected by its presence. 

408. The other quantities and conceptions follow in order, as in 
Chapter II. Thus we have the following definitions: 

A line of force is a curve in the magnetic Jield, such that the tangent ut 
every point is in the direction of the magnetic force at that point (cf § 31). 

The potential nt any point in the Jield is the work per unit strength of pole 
which hm to be done on. a magnetic pole to bring it to that point from injnity, 
the strength of the pole being suppossd so mal1 that the rnagnetism of the field 
is not afected by its presence (cf. 5 33). 

Let fi denote the magnetic potential and a, P, y the components of 
magnetic force at  any point x, y, z, then we have from this definition 
(cf. equation (6)), 

3, Y. s ................... ( ~ & + f i d y + ~ d z )  (3301, 

and the relations (cf. equations (9)), 

A surface in the magnetic jeld such that at every point on it the potential 
has the same value, is called an Equipotential Surface (cf 5 35). 

From this definition, as in 5 35, follows the theorem : 

Equipotential Surfaces cut lines of force at right angles. 

The law of force being the same as in electrostatics, we have as the value 
of the potential (cf. equation (10))' 

n a ?  ................................. 
?' 

(33% 

where nb is the strength of any typical pole, and r is the distance from it  
to the point. at  which the potential is being evaluated. 

As in 5 42, we have Gauss' Theorem: 

where the integration is over any closed surface, and Lm is the sum of 
the strengths of al1 the poles inside this surface. If the surface is drawn 
so as not to cut through any magnetised matter, Lm will be the aggregate 
strength of the poles of complete magnetic particles, and therefore equal 
to zero. Thus for a surface drawn in this way 
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If the position of the surface S is determined by geometrical conditions- 
if, for instance, i t  is the boundary of a small rectangular element dxdydz- 
then we cannot suppose it to contain only complete magnetic particles, and 
equation (334) will not in general be true. 

If there is no magnetic matter present in a certain region, equation (334) 
is true for any surface in this region,.and on applying i t  to the surface of the 
small rectangular element dxdydz, we obtain, as in 5 50, 

the differential equation satisfied by the magnetic potential at every point 
of a region in which there is no magnetic matter present. 

Tubes of Force. 

409. A tubular surface bounded by lines of force is, as in electrostatics, 
called a tube of force. Let w,, oz be the areas of any two normal cross- 
sections of a thin tube of force, and let Hl, H, be the values of the 
intensities at  these points. By applying Gauss7-Theorem to the cIosed 
surface formed by the two cross-sections and the portion of the tube 
which lies between them, we obtain, as in § 56, 

H1w, - H2wa= 0, 

provided there is no magnetic matter inside this closed surface. 

Thus in free space the product H w  remains constant. The value of this 
product is called the strength of the tube. 

In electrostatics, it was found convenient to define a unit tube to be one which ended 
on a unit charge, so that the product of intensity and cross-section was not equal to unity 
but to 4s. 

Potentiai of a Magnetic Particle. 

410. Let a magnetic particle consist of a pole of strength -m, at  0, and 
a pole of strength +ml at P, the distance OP being 
infinitesimal. 

' The potential at any point Q will be 

ml - m, .................. RQ=pQ (336). /C( 
O P If we put O&= r, and denote the angle PO& by O, -m, 

this becomes FIO. 105. 

n, = m,(OQ- PQ)-% opcos  OP CL COS e 
......... PQ-OQ - PQ. O& pz (337), 

-\ 

where p =mm,. OP, the moment of the particle. 

IRIS - LILLIAD - Université Lille 1 



372 Permanent M a g n e t h  [CH. XI 

The analysis here given and the result reached are exactly similar to 
those already given for an electric doublet in 5 64. The same result can also 
be put in a different form. 

a 
Let us put O P  = ds, and let - denote differentiation in the direction of as 

OP, the axis of the particle. Then equation (336) admits of expression in 
the form 

Let 1, m, n be the direction-cosines of the axis of the particle, then 
formula (338) can also be written 

n,=p 1- - + m -  - t n -  -............ { ax (i) (i) az (:)] ( 3 3 9 ~  

where, in differentiation, x) y, z are supposed to be the coordinates of the 
particle, and not of the point Q. 

411. Resolution of a magnetic particle, Equation (339) shews that the 
potential of the single particle we have been considering is the same as the 
potential of three separate particles, of strengths pl, pm and pn, and axes in 
the directions Ox, Oy, Oz respectively. Thus a magnetic particle may be 
resolved into components, and this resolution follows the usual vector law. 

The same result can be seen geometrically. 

Let us start from O and move a distance lds parallel to the axis of x, then 
a distance mds parallel to the axis of y, and then 
a distance nds parallel to the axis of z. This 
series of movements brings us from O to P ,  a 
distance ds in the direction 1, rn, a. Let the 
path be OqrP in fig. 106. The magnetic particle 
under consideration has poles - mi at O and + 7n1 
at  P. Without altering the field, we can super- 
pose two equal and opposite poles f m, at  q, and 
also two equal and opposite poles f m, at r. 

The six poles now in the field can be taken 
in three pairs so as to constitute three doublets 
of strengths ml. Oq, m, . qr and m l .  rP respec- 
tively along Oq, qr and rP. These, however, are 
doublets of strengths pl, pm and pn parallel to the coordinate axes. 

Potential of a Magnetised Body. 

412. Let I be the intensity of magnetisation at  any point of a mag- 
netised body, and let Z, m, n be the direction-cosines of the direction of 
mapetisation a t  this point. 
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The matter occupying any element of volume dxdydz a t  this point will 
be a magnetic particle of which the moment is Idxdydz and the axis is in 
direction 1, m, n. By formula (339), the potential of this particle at any 
external point is 

so that, by integration, we obtain as the potential of the whole body at any 
external point Q, 

in which r is the distance from Q to the element dxdydz, and the integration 
extends over the whole of the magnetised body. 

If we introduce quantities A, B, G deîmed by 

A =II 
.............................. (341), 

C= I n  

then equation (340) can be put in the form 

The quantities A ,  B, C are called the components of magnetisation at the 
point Z, y, z. Equation (342) shews that the potential of the original magnet, 
of magnetisation 1, is the same as the potential of three superposed inagnets, 
of intensities A, B, C parallel to the three axes. This is a1so obvious from 
the fact that the particle of strength Idxdydz, which occupies the element of 
volume dxdydz, may be resolved into three particles parallel to the axes, of 
which the strengths will be Adxdydz, Bdxdydz and Cdxdydz, if A, B, C are 
given by equations (341). 

Potential of a ulzifornzly Magnetised Body. 

413. If the magnetisation of any body is uniform, the values of A, B, C 
are the same at al1 points of the body. 

Let the coordinates of the point Q in equation (342) be x', y', sr, so that 

1 
- = [(Z - %'y+ (y - y'y + (z - zry1-4. 
r 

Then, clearly, a i a i 
- (-) = - (;) , etc. a$ r 
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Replacing differentiation with respect to x, y, z by differentiation with 
respect to x', y', z' in this way, we find that equation (342) assumes the form 

the quantities A, B, C and the operators 4, a a being taken outside the ax a y  azr 
sign of integration, since they are not affected by changes in x, y, z. 

If Vdenote the potential of a uniform distribution of electricity of volume 
density unity throughout the region occupied by the magnet, we have 

so that equation (343) becomes 

where X, Y ,  Z are the componenta of electric intensity at Q produced by 
this distribution. 

d 
Or again if denotes differentiation with respect to the coordinates of Q as 

in a direction parallel to that of the magnetisation of the body, namely that 
of direction-cosines 1, nt, n, equation (345) becomes 

414. Yet another expression for the potential of a uniformly magnetised 
body is obtained on transforming equation (342) by Green's Theorem. If 
Zr2 m', n' are the direction-cosines of the outward-drawn normal to the magnet 
at  any element dS of its surface, the equation obtained after transformation is 

1 
( A t  + Bm' + Cn') dS. 

By equations (341), 
Ad' + Bm' + On' = 1 (Il' + mm' + nn') 

= I cos 8, 

where 8 is the angle between the direction of magnetisation and the outward 
normal to the element dS of surface. The equation now becomes . 

shewing that the potential at  any external point is the same as that of a 
surface distribution of magnetic poles of density I cos 8 per unit area, spread 
over the surface of the magnet. 
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The Magnetic Field of Force 

This distribution is of course simply the " Green's Equivalent Stratum" 
($ 204) which is necessary to produce the observed external field. 

The bar-magnet already considered in 5 405, provides an obvious illustra- 
tion of these results. 

415. Uniformly magnetised sphere. A second and interesting example 
of a uniformly magnetised body is a sphere, magnetised with uniform 
intensity 1. This acquires its interest from the fact that the earth may, to 
a very rough approximation, be regarded as a uniformly magnetised sphere. 

If we follow the method of $ 313, we obtain for the value of VQ, defined 
by equation (344), 

where a is the radius of the sphere. If we suppose the magnetisation to be 
in the direction of the axis of x, we have 

Thus the potential a t  any external point is the same as that of a magnetic 
particle of moment +ra31 at the centre of the sphere. 

To treat the problem by the method of 5 414, we have to calculate the 
potential of a surface density Icos  û spread over the surface of the sphere. 
Regarding cos 8 as the first zona1 harmonic P,(cos 8), the result follows at 
once from 5 257. 

Poisson's imaginary Magnetic Matter. 

416. If the magnetisation of the body is not uniform, the value of ClQ 
given in equation (342) cannot be transformed into a surface integral, so 
that the potential of the magnet cannot be represented as being due to a 
surface charge of magnetic matter. If we apply Green's Theorem to the 
integral which occurs in equation (342), we obtain 

dxdyde + (CA + ml3 + nC) dS ,  

where 1, m, n are the direction-cosines of the outward-drawn normal to the 
element dS of surface. 
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where p, m are given by 

........................ (349), 

Thus the potential of the magnet a t  any external point Q is the same as 
if there were a distribution of magnetic charges throughout the interior, of 
volume-density p given by equation (349), together with a distribution over 
the surface, of surface-density a given by equation (350). 

Potential of a Magnetic 8hell. 

417. A magnetised body which is so thin that its thickness a t  every point 
may be treated as inhitesimal, is called a " magnetic shell." Throughout 
the small thickness of a shell we shall suppose the magnetisation to remain 
constant in magnitude and direction, so that to specify the magnetisation of 
a shell we require to know the thickness of the shell and the intensity and 
direction of the magnetisation a t  every point. 

Shells in which the magnetisation is in the direction of the normal to the 
surface of the shell are spoken of as " normally-magnetised shells." These 
form the only class of magnetic shells of any importance, so that we shall deal 
only with normally-magnetised shells, and it will be unnecessary to repeat in 
every case the statement that normal magnetisation is intended. 

If I is the intensity of magnetisation a t  any point inside a shell of this 
kind, and if 7 is its thickness a t  this point, the product IT is spoken of as 
the " strength " of the shell at this point. Any element dX of the shell will 
behave as a magnetic particle of moment I d S ,  so that the strength of a 
shell is the magnetic moment per unit area, just as the intensity of magneti- 
sation of a body is the magnetic moment per unit volume. 

A n y  element dS of a shell of strength: 4 behaves like a n~agnetic particle of 
strength +dS of which the agis .is normal to da. 

The magnetisation of a magnetic shell may often be conveniently pictured 
as being due to the presence of layers of positive and negative poles on its 
two faces. Clearly if + is the strength and T the thickness of a shell a t  + any point, the surface-density of these poles must be taken to be f -. 

7 

418. To obtain the potential of a shell a t  an  external point, we regard 
any element cl8 of the shell as a magnetic particle of moment +dS and axis 
in the direction of the normal to the shell a t  this point, i t  being agreed that 
this normal must be drawn in the direction of magnetisation of the shell. 
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The potential of the element dS of the shell at a point Q distant r from d s  
is then 

so that the potential of the mhole shell a t  Q is given by 

cos 0 =/Io -p- 05% 

where 0 is the angle between the normal at di3 and the line joining dX to P. 

Clearly dS  COS^ is the projection of the element dS on a plane perpendicular 

'Os * is the solid angle subtended by to the line joining dB to P ,  so that - 
rSL 

dS at Q. Denoting this by dw, -ive have the potential in the form 

(351). .............................. 

419. Uniform shell. If the shell is of uniform strength, #I may be taken 
outside the sigri of integration in equation (351), so that we obtain 

where Cl is the total solid angle subtended by the shell at Q. 

420. The potential energy of a magnet in an external field of force is 
equal to the work done in bringing up the magnet from idnity,  the field of 
force being supposed to remain unaltered during the process. 

Consider first the potential energy of a single particle, consisting of a pole 
of strength - ml at O and a pole of strength +ml at  P. Let 
the potential of the field of force at O be Cl0 and at P be Cl,. /LI Then the amounts of work done on the two  pole^ in bringing 
up this particle from infinity are respectively -mlClo and -mi 

w&l,, so that the potential energy of the particle when in Fio. 107. 

the position O P  

an 
= m, . OP - , in the notation already used, 

as 
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The potential energy of any magnetised body can be found by integration 
of expression (353), the body being regarded as an aggregation of magnetio 
particles. 

421. Equation (353) assumes a special form if the magnetic field is due 
solely to the presence of a second magnetic particle. Let this be of moment 
P', its axis having direction cosines l', m', n', and its centre having coordinates 
x', y', 2'. Then we have as the value of Cl, from 5 410, 

Substituting these values for f2 in the formulae just obtained, we have as 
the niutual potential energy of the two rnagnets, 

This is symmetricd with respect to the two magnets, as of course it ought to be-it is 
immaterial whether we bring the first magnet into the field of the second, or the second 
into the field of the first. 

If we now put 

we obtain on 

so that 

1 -- - 1 

{(s - xfy + (y - y')" + (2 - .'>'y 
differentiation, 

Henoe we obtain as the value of W, 

PPI W= - ( I I '  + ,mm' + nn') 
rS 

Let us now denote the angle between the axes of the two magnets by e, 
and the angles between the line joining the two magnets and the axes of the 
first and second magnets respectively by û and 8'. Then 

COS e = Il' + mm' + nn', 
1 

cos6 =- il(%-XI) +m(y-yf)+n(z-z')), 
r 
1 

COS 0' = - {Z' (x - x') + m' (y - y') + n' (z - d) ] ,  r 
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so that W can be expressed in the form 

If we take the line drawn from the first magnet to the second as pole in 
spherical polar coordinates, and denote the azimuths of the axes of the two 
magnets by +, y!/, then the polar coordinates of the directions of the axes of 
the two magnets will be 8, + and û', +' respectively, and Ive shall have 

cos e = cos 8 cos B' + sin 8 sin 8' cos ($ - +'). 

On substituting this value for cos e in equation (354), we obtain 

422. ' Hnowing the mutual potential energy W, we can derive a know- 
ledge of al1 the mechanical forces by differentiation. For instance the 
repulsion between the two magnets, i.e. the force tending to increase r ,  is 

3 ~ '  {sin 8 sin 8. cos (+ - +') - 2 cos 8 cos Y}. 
li' 

Thus, whatever the position of the magnets, the force between them 
varies as the inverse fourth power of the distance. 

If the magnets are parallel to one another, 8 = 8' and i j r  = y, so that the 
repulsion 

3 w '  = - (sine 0 - 2 cosa 8). 
r"' 

Thus when 8 = O, i.e. when the magnets lie along the line joining them, 
~ P P '  7 the force is an attractive force - . When 8 = %, so that the magnets are 
.p 

3 w 1  at right angles to the line, joining them, the force is a repulsive force - 
. p .  

I n  passing from the one position to the other the force changes from one of 
attraction to one of repulsion when sin2 8 - 2 cos2 8 = O, i.e. when 0 = tan+ 42. 

The couples can be found in the same way. If x is any angle, the couple 
aw 

tending to increase the angle x is - -, or 
2% 

--- l"li a {sin 8 sin û' cos (+ - +') - 2 cos 8 cos û'j, 
r3 ax 

so that al1 the couples Vary inversely as the cube of the distance. 

IRIS - LILLIAD - Université Lille 1 



380 Permanent Magnetbm [ C H .  X I  

For instance, taking x to be the same as +, we find that the couple 
tending to rotate the first magnet about the line joining i t  to the second, 
in the direction of + increasing 

aw I - sin 0 sin û' sin (+ - +'), 

so that this couple vanishes if éither of the magne& is along the line joining 
them, or if they are in the same plane, results which are obvious enough 
geometrically. 

Potenticcl Energy of a Shell in a Field of Force. 

423. Consider a shell of which the strength a t  any point is +, placed 
in a field of potential $2. The element dh" of the shell is a magnetic particle 
of strength $di$ so that its potential energy in the field of force will, by 
formula (353), be 

an 
+dS ,, 

a 
mhere - denotes differentiation along the normal to the shell. Thus the 

an 
potential energy of the whole shell will be 

If the shell is of uniform strength, this may be replaced by 

Since the normal component of force at  a point just outside the shell 

and on its positive face is - - it is clear that dS is equal to minus an 
the surface integral of normal force taken over the positive face of the shell, 
and this again is equal to minus the number of unit tubes of force which 
emerge froin the shell on its positive face. Denoting this number of unit 
tubes by n, equation (357) may be expressed in the form 

............................. W=- #n (358). 

Here i t  must be noticed that we are concerned only with the original 
field before the shell is supposed placed iri position. Or, in other terms, the 
number n is the number of tubes which would cross the space occupied by 
the shell, if the shell were annihilated. Since the tubes are counted on the 
positive face of the shell, we see that n may be regarcied as the number of 
unit tubes of the external field which cross the shell in the direction of its 
magne tisation. 
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424. Consider a field consisting only of two shells, each of unit strength. 
Let n, be the number of tubes from shell 1 which cross the area occupied 
by 2, and let 12, be the number of tubes fronl shell 2 which cross the area 
occupied by 1. The potential energy of the field may be reganled as being 
either the energy of shell 1 in the field set up by 2, or as  the energy of 
shell 2 in the field set up by 1. Regarded in the first manner, the energy 
of the field is found to be - n,; regarded in the second manner, the energy 
is found to be -n,. Hence we see that 12, = n,. This result, which is 
of great importance, will be obt,ained again later (5 446) by a purely 
geometrical method. 

Potentiat Energy of any Mqnetised Body in  a Ma,qnetic Field of Force. 

425. Let I be the intensity of magnetisation and 1, nL, n the direction- 
cosines of the direction of magnetisation at  any point x, y, z of a magnetised 
body, and let fi be the potential, a t  this point, of an external field of magnetic 
force. The element dxdydz of the magnetised body is a magnetic particle 
of strength Idxdydz, of which the axis is in the direction 1, m, n. Thus its 
potential energy in the field of force is, by formula (353), 

and by inteqation 

or 

the potential of the whole magnet is 

426. So far the magnetic force has been defined and discussed only in 
regions not occupied by magnetised matter: i t  is now necessary to consider 
the more difficult question of the measuretment of force a t  points inside a 
magnetised body. 

At the outset we are confronted with a difficulty of the same kind as 
that encountered in discussing the measurement of electric force inside a 
dielectric, on the molecular hypothesis explained in 3 143. We found that 
the molecules of a dielectric could be regarded as each possessing two equal 
and opposite charges of electricity on two opposite faces. If we replace 
"electricity" by "magnetism" the state is very similar to what we believe 
to be the state of the ultimate magnetic particles. In the electric problem 
a difficulty arose from the fact that the electric force inside matter varied 
rapidly as we passed from one molecule to another, because the intensity of 
the field set up by the charges on the molecules nearest to any point was 
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comparable with the whole field. A similar difficulty arises in the magnetic 
problem, but will be handled in  a way slightly different from that previously 
adopted. There are two reasons for this difference of t r e a t m e n t i n  the first 
place, we are not willing to identifj the ultimate magnetic particles with 
the molecules of the matter, and in the second place, we axe not willing to 
assume that the magnetism of an ultimate particle may be localised in the 
form of charges on the two opposite faces. We shall follow a method which 
rests on no assumptions as to the connection between molecular structure 
and magnetic properties, beyond the mell-established fact that on cutting 
a magnet new magnetic poles appear on the surfaces created by cutting. 

427. One way of measuring the force at  a point Q inside a magnet will 
be to imagine a cavity scooped out of the magnetic matter so as to enclose 
the point Q, and then to imagine the force measured on a pole of unit 
strength placed a t  Q. This method of measurement wilI only determine 
a definite force a t  Q if it can be shewn that the force is independent of 
the position, shape and size of the cavity, and this, as will be obvious from 
what follows, is not generally the case. 

428. Let us suppose that, in order to form a cavity in which to place 
the imaginary unit pole, we remove a small cylinder of magnetic matter, the 
axis of this cylinder being in the direction of magnetisation a t  the point. 
Let this cylinder be of length 1 and cross-section 8, and let the intensity of 
magnetisation a t  the point be 1. Let the size of the cylinder be supposed to 
be very great in comparison with the scale of molecular structure, although 
very small in comparison with the scale of variation in the magnetisation 
of the body. 

In  steel or iron there are roughly 1OZ3 molecules to the cubic centimetre, so that a 
length of 1 millimetre may be regarded as large when measured by the molecuiar scale, 
although in most magnets the magnetisation may be treated as constant within a length 
of a millimetre. 

At  a point near the centre of this cavity we are at  a distance from the 
nearest magnetic particles, which is, by hypothesis, great compared with 
molecular dimensions. Hence, by 5 416, we may regard the potential at  
points near the centre of the cavity as being that due to the following 
distributions of imaginary magnetic matter :- 

1. A distribution of surface-density ZA + rnB + no, spread over the 
surface of every magnet. 

II. A distribution of volume-density 

spread throughout the whole space which is occupied by magnetic matter 
after the cavity has been scooped out. 
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III. A distribution of surface-density 1A + mB+ nC, spread over the 
walls of the cavity. 

From the way in which the cavity has been chosen, i t  follows that 
ZA + mB + nC vanishes over the side-walls, and is equal to f I on the 
two ends. 

The force acting on an imaginary unit pole placed a t  or near the 
centre of the cavity may be regarded as the force arising from these 
three distributions. 

429. The force from distribution III can be made to vanish by taking 
the length of the cavity to be very great in comparison with the linear 
dimensions of its ends. For the ends of the cavity may then be treated as 
points, and the force exerted by either end upon a unit pole placed at the 
centre of the cavity will be 

SI  
(9' 

and this will vanish if X is small compared with la. The resultant force will 
therefore arise solely fi-om distributions 1 and II. 

The force arising from distribution II may be segarded as the force 
arising from a distribution of volume-density 

spread throughout the whole of the magnetised matter, regardless of the 
existence of the cavity, together with a distribution of volume-density 

aA aB ac + -+-+- ( a s  a~ a~ ) 
spread through the space occupied by the cavity. The force from this 
latter distribution vanishes in the lirnit when the size of the cavity is 
infinitesimal, so that the force from distribution II may be regarded as 
that from a volume-density 

spread through al1 the original magnetised matter. 

We have now arrived at a force which is independent of the shape, size 
and position of the cavity, provided only that these satisfy the conditions 
which have already been laid down. This force we define to be the magnetic 
force, at the point under discussion, inside the magnetised body. 

430. I n  the notation of 5 416, the force which has just been defined is 
due to a distribution of surface-density CT, and a distribution of volume-density 
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p throughout the whole magnetised matter. The potential of these distribu- 
tions is 

or fl, if we regard this as dejned by equation (348). Thus, with this 
meaning assigned to a,, the components of force at a point & inside a 
magnetic body will be 

afl, afl, -- a~ ay I a~ a 

At the same time it must be remembered that ClQ has not been shewn to 
be the true value of the potential except when the point Q is outside the 
magnetic matter. The true potential inside magnetised matter will vary 
rapidly as we pass from one magnetic particle t o  another. 

431. Let us next suppose that the length 1 of the cylindrical cavity is 
very small compared with the linear dimensions of an 
end. The force, as before, is that due to the distributions 
1, II and III of 8 428. The force fiom distribution III, 11 
however, will no longer vanish, for this distribution con- 

\\ 
sists of distributions + I over the ends of the cavity, 
and the force from these is not now negligible. From FIQ. 108. 

analogy with the distribution of electricity on a parallel plate condenser, i t  
is clear that the force arising from distribution III is a force 4 r I  in the 
direction of magnetisation. The forces from distributions 1 and II are 
easily seen to be the same as in the former case. Thus the force on a unit 
pole placed at a point Q inside a cavity of the kind we are now considering 
is the resultant of 

(i) the magnetic force a t  Q, as defined in § 429, 

(ii) a force 4 d  in the direction of the intensity of magnetisation at Q. 

The resultant of these forces is called the magnetic induction at Q. 

432. The magnetic force will be denoted by H, and its components 
by a, B, Y. 

The induction will be denoted by B, and its components by a, b, c. 

We have seen that the force B is the resultant of a force H and a force 
4 ~ 1 .  The components of this latter force are 4rA, 47rB, 47i-C, Hence we 
have the equations 

........................... (359). 
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433. Let us next consider the force on a unit pole inside a cylindrical 
cavity when the cavity is disc-shaped, as in 5 431, but its 
axis is not in the direction of magnetisation. The force cm, 
as in 5 428, be regarded as arising froin three distributions. 

Distributions 1 and II are the same as beforc, but ' /  
distribution III will now consist of charges both on the 
end and on the side-walls of the cylinder. By making the 
length of the cylinder small in cornparison with the linear 

FIO. 109. 
dimensions of its cross-section, the force from the distri- 
bution in the side-wdls can be made to vanish. And if 0 is the angle 
between the axis of the cavity and the direction of magnetisation, the 
distribution on the ends is one of density + I cos 8. Thus the force arising 
from distribution III is a force 4aIcos 9 in the direction of the axis of 
the cavity. 

Thus the force on a pole placed inside this cavity may be regarded a s  
compounded of the force H (arising from distributions 1 and II), and a force 
4771 cos 8 in the direction of magnetisation, arising from distribution III. 

Let e be the angle between the direction of the force H and the axis of 
the cavity, then the component force in the direction of the axis of the cavity 

= Hcos e + 4 d c o s  8. 

If 1, m, n are the direction-cosines of this last direction, 

4rI cos 8 = 477 (la+ mB + nC), 

so that, by equations (39.5) 

Thus the component of the force in the direction of the axis of the cavity 
is the same as the component, in the same direction, of the magnetic induc- 
tion, namely la + mb + nc. 

434. We are now in a position to understand the importance of the 
vector which has been called the induction. This arises entirely from the 
property of the induction which is expressed in the following theorem : 

THEOREM. The surface-integral of the normal component of induction, 
taken over any surface whatever, vanishes, 

or in other words (cf. $ 177), 

The iîzductiolz zS a solenoidal vector throughout the whole of the magnetic 
field. 

J. 25 
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To prove this let us take any closed surface S in the field, this surface 
cutting any number of magnetised bodies. Along those parts of the surface 
which are inside magnetic bodies, let us remove a layer of matter, so that the 
surface no longer actually passes through any magnetic matter. 

Then by Gauss' Theorem (5  409), 

where N is the component of force in the direction of the outward normal to 
S, acting on a unit pole placed a t  any point of the surface S. This force, 
however, is exactly identical with that considered in § 433, and its normal 
component has been seen to be identical with the normal component of the 
induction. Thus N, in equation (360), will be the normal component of 
induction, so that this equation proves the theorern. 

Analytically, the theorem may be stated in  the form 

and this, by Green's Theorern (5 179), is identical with 

435, DEFINITION. By a line of induction is meant a. curve in the 
magnetic field such that the tangent at every point is in the direction of 
the magnetic induction at that point. 

DEFINITION. A tube of induction is a tubular surface of small cross- 
section, which is bounded erhtirely by lines of induction. 

By a proof exactly similar to that of 5 409, it can be shewn that the 
product of the induction and cross-section of a tube retains a constant value 
along the tube. This constant value is called the strength of the tube. 
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In  free space the lines and tubes of induction become identical with the 
lines and tubes of force, and the foregoing definition of the strength of a tube 
of induction is such as to make the strengths of the tubes also become 
identical. 

436. At any point of a surface let B be the induction, and let e be the 
angle between the direction of the induction and the normal to the surface. 
The aggregate cross-section of al1 the tubes which pass through an element 
dS of this surface is dS cos e, so that the aggregate strength of al1 these tubes 
is B cos edS. Since B cos e = N, where N is the normal induction, this rnay 
be written in the form Nd#. Thus the aggregate strength of the tubes of 
induction which cross any area is equal to 

This, we may Say, is the number of unit-tubes of induction which cross 
this area. 

The theorem that d# = O, 

where the integration extends over a closed surface, may now be stated in 
the form that the number of tubes which enter any closed surface is equal 
to the number which leave it. This is true no matter where the surface 
is situated, so that we see that tubes of induction can have no beginning 
or ending. 

437. Let us take any closed circuit s in space, and let n be the number 
of tubes of induction which pass through this circuit in a specified direction. 

Then n will also be the number of tubes which cut any area whatever 
which is bounded by the circuit S. If S is any such area, this number is 

. .." 
known to be NdS, where the integration is taken over the area S, so that II 

N =  NdS. II 
The number n, however, depends only on the position of the curve s by 

which the area S is bounded, so that i t  must be possible to express n in a 
form which depends only on the position of the curve s, and not on the area S. 

In  other words, i t  must be possible to replace / / N ~ s  by an expression whieh 

depends only on the boundary of the area S. This we are enabled to do by 
a theorem due to Stokes. 
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438. THEOREM. If X ,  Y, Zare continuous functions of position in space, 
then 

where the line integrul is talcm round uny closed curve in  space, and the surface 
integral is taken over any area (or shell) bounded by the cowtour. 

Here 1, m, n are the direction-cosines of the normal to the surface. A 
rule is needed to fix the direction in which the normal is to be drawn. The 
following is perhaps the simplest. Imagine the shell turned about in space 
so that the tangent plane at any point P is parallel to the plane of xy, and 
so that the direction in which the line integral is taken round the contour 
is the same as that of turning from the axis of 8 to the axis of y. Then 
the normal at  P must be supposed drawn in the direction of the positive 
axis of a. 

439. To prove the theorem, let us select any two points A, B on the 
contour, and let us introduce a quantity I defined by 

the path from A to B being the same as that follomed in the integral of , 

equation (363). Let us also introduce a quantity J equal to the same 

integral taken from A to B, but along the opposite edge of the shell. Then 
the whole integral on the left of equation (363) is equal t o  1- J. 
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I t  will be possible to connect A and B by a series of non-intersecting 
lines drawn in the shell in such a way as t o  divide the whole shell into 
narrow strips. Let us denote these lines by the letters a, b, ... n, the lines 
being taken in order across the shell, starting with the line nearest to that 
along which we integrate in calculating 1. Let us denote the value of 

taken along the line a by Ia. 

Then the left-hand member of equation (363) 

= 1 - J  

= ( r - I a ) +  (Ia-Ib)$(lb-Io)+..- $(In- J) .  

Let us consider the value of any term of this series, Say Ia - I b .  

Let us take each point on the line a and cause it to undergo a slight 
displacement, so that the coordinates of any point x, y, z are changed to 
x i 62, y + 6y, z + 6.2. If 6x, 8y, Sz are continuous functions of x, y, z the 
result will be to displace the line a into some adjacent position, and by a 
suitable choice of the valuis of 6x, 6y, €5 this displaced position of line a can 
be made to coincide with line b. If this is done, it is clear that the value of 
l a ,  after replacing x, y, z by x + 6x, y + 6y, z + 82, will be Ib. Hence if we 
denote this new value of 1, by I, + 61, we shall have 

ra+ 8 r = I b ,  

so that 1,-Ib=-81 

and the value of this quantity can be obtained by the ordinary rules of the 
calculus of variations. 

We have 

and since 6x vanishes both at A and B, the term may be omitted, 

and the whole expression put equal to 
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or again, on simplifying, to 

This may be written in the form 

Now in fig. 112, let P, Q, P' be the points x, y, z ;  x + dx, y + dy, z + dz; 
and x + 6x, y + Sy, a + 62. Let dS denote the area of the parallelogram 
PQQ'P', and let 1, ml n be the direction-cosines of the normal to its plane. 
Then the projection of the parallelogram on the plane of xy will be of area 
ndS, while the coordinates of three of its angular points will be x, y ; x + dx) 
y + dy ; and x + 8x, y + +y. Using the usual formula for the area, we obtain 

ndS = (6ydx - 6xdy), 

and using this relation in expression (364), we obtain 

the integral denoting summation over al1 those elements of area of the shell 
which lie between lines a and b. By summation of three equations of the 
type of (365)) we obtain 

where the integration has the same meaning as before. If we add a system 
of equations of this type, one for each strip, the left-hand, as already seen, 
becomes 1 - J, which is equal to the left-hand member of equation (363), 
while the right-hand member of the new equation is also the right-hand 
member of equation (363). This proves the theorem. 
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440. Stokes' Theorem can be readily expressed in a vector notation. If 
X, Y, Z are the components of any vector F ,  it is usual to denote by curl F 
the vector of which the components are 

Hence Stokes' Theorem assumes the form 

/(cornPonent of F along ds) ds 

= /(oomponents of curl F along normal to dS) dS. 

The theorem enables us to transform any line integral taken round a 
closed circuit into a surface integral taken over any area by which the circuit 
can be filled up. The converse operation of changing a surface integral into 
a line integral may or may not be possible. 

441. THEOREM. I t  wibl be possible to transform the surface integral 

+ mv + nw) dS.. ......................... (366) 

into a 1ine integral taken round the contour of the area S if, and only if, 

at every point of the area S. 

It is easy to see that this condition is a necessary one. Let S' denote any 
area having the same boundary as S, and being adjacent to it, but not 
coinciding with it. Then if I is the line integral into which the surface 
integral can be transformed, we must have 

I =  (Zu+mv+nw)dS ........................ II (3681, 

.................... and also 1 = ( 1 ' ~  + m'v + n'w) dS'. II (369). 

On equating these two values for I we obtain an equation which may be 
expressed in the form 

........................ lhl u+mv+nw)dS=O (370), 

where the integration is over a closed surface bounded by S and S', and 
2, m, n are the direction-cosines of the outward normal to the surface at any 
point. From equkion (370), the necessity of condition (367) follows at once. 

Condition (367) is rnost easily proved to be sufficient by exhibiting an 
actual solution of the problem when this condition is satisfied. We have to 
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shew that, subject to condition (367) being satisfied, there are functions 
X, Y. Z tiuch that 

for if this is SO, the required line integral is (1X i- mY 7 aZ) dS. I 
By inspection a solution of equations (371) is seen to be 

X =  I vdz, ~ = - j u d i i >  Z = O  ............... (37% 

for it is obvious that the first two equations are satisfied, and on substituting 
in the third, we obtain 

shewing that the proposed solution satisfies al1 the conditions. 

442. The absence of symmetry from solution (372) suggests that this 
solution is not the most general solution. The most general sdution can, 
however, be easily found. If we assume i t  to be 

......... Y:  Z=S (3731, 

then we find, on substitution in equations (3'111, that we must have 

and if we introduce a new variable x defined by x = X'dx, we find at once 

that 
I 

so that the most general solution of equations (371) is 

Substituting these values, the line integral is found to be 

/[(IV dz) g - (b dz) $1 + 1% d. 

and the condition that this shall be equal to the surface integral is that 

or that x shall be single-valued. 
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Thus if x is any single-valued function, eqxations (375) represent a solu- 
tion, and the most general solution, of equations (371). 

443. The discussion as to the transformation frotn surface to line inte- 

grnls arose in connection with the integral Nd8 or (la + mb + nc) dS, in il II 
which a, b, c are the components of magnetic induction. Since the condition 

is satisfied throughout al1 space, it must always be possible (cf. 5 441) to 
transform the surface integral into a line integral by a relation of the form 

The vector of which the components are F, G, E is lmown as the nzagnetic 
vector-potential. 

From what has been said in § 442, it is clear that the vector-potential is 
not fully determined when the magnetic field is given. On the other hand, 
if the vector-potential is given the magnetic field is fully determined, being 

We shall calculate some possible values of the components of vector- 
potential in a few simple cases. It must be ren~embered that the values 
obtained, although solutions of equations (376), will not be the most general 
solutions. 

Magnetic Particle. 

444. Let us fimt suipose that the field is produced by a single magnetic 
particle at  the point sr, y', z' in free space, parallel to the axis of z. Then, 

a i 
by equation (338), a= p y (;) , so that at any point 4, Y, 8, 

and similarly 
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The equations to be solved (equations (376)) are 

and the simplest solution, similar to that given by equations (3'12), is 

F ) ,  O = -  
J 5" 

The components of vector-potential for a magnet parallel to the axes of 
x or y can be written down from symmetry. In terms of the coordinates 
x: y', z' of the magnetic particle, this solution may be expressed as 

445. Let us superpose the fields of a magnetic particle of strength Zp 
parallel to the axis of LE, one of strength rnp parallel to the axis of y, and 
one of strength np pawllel to the axis of z. Then we obtain the vector- 
potential ah x, y, z due to a magnetic particle of strength p  and axis (Z, rn, n) 
at  x', y', z' in the forms 

The number of lines of induction which cross the circuit from a magnetic 
particle is (5 437) 

which may be written in  the form 

the integral being taken round the circuit in the direction determined by the 
rule given in § 438 (p. 388). 
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Uniform Magnetic rShell. 

446. Next let us suppose that the lines of force proceed from a uniform 
magnetic shell, supposed for simplicity to be of unit strength. Let Z', ml, n' 
be the direction-cosines of the normal to any element dS' of this shell. 
Then the element dS' will be a magnetic particle of moment dSr and of 
direction-cosines l', m', n'. The element accordingly contributes to F a t e m  
which, by equations (3'777, is seen to be 

where xf, y', z' are the coordinates of the element dSt.  Thus the whole value 
of F is 

This surface integral satisfies the condition of 5 441, so that it must be 
possible to transform it into a line integral of the form 

The equations giving f i  9, h are 

so that on substitution the value of P is 

Similarly 

Thus the number of tubes of induction crossing the circuit s from a 
magnetic shell of unit strength bounded by the circuit s', is given by 
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If E is the angle between the two elements ds, ds', the direction of these 
elements being taken to be that in which the integration takes place, then 

dxdx' dydy' dz dz' --+- -+--=Cos€, 
ds ds' ds ds' ds ds' 

so that 

From the rule as to directions given on p. 388, i t  will be clear that if the 
integration is taken in the same direction round both circuits, then the 
direction in which the m lines cross the circuit will be that of the direction 
of magnetisation of the shell. 

Clearly n is symmetrical as regards the two circuits s and s', so that we 
have the important result : 

The number of tubes of induction crossilzg the circuit s from a shell of unit 
strength bownded by the circuit s' is eqzcal to the number of tubes of induction 
crossing the circuit s'front a shell of unit strmgth bounded by the circuit S. 

Here we have arrived at a purely geometrical proof of the theorem 
already obtained from dynamical principles in 5 424. 

447. Let a, b, c, . . .n be a system of magnetised bodies, the magnetisation 
of each being permanent, and let us suppose tbat the total magnetic field 
arises solely from these bodies. Let us suppose that the potential Cl at any 
point is regarded as the sum of the potentials due to the separate magnets. 
Denoting these by n a ,  Lnb, ... a,, we shall have 

n=n,+n,+ ...+ a,. 
Let us denote the potential energy of magnet a, when placed in the field 

of force of potential Cl, by Cl (a); if placed in the field of force arising from 
magnet b alone, by (a), etc. 

Let us imagine that we construct the magnetic field by bringing up the 
magnets a, b, c, . .. n in this order, from infinity to their final positions. 

We do no work in bringing magnet a into position, for there are no 
forces against which work c m  be done. After the opieration of placing a in 
position, the potentiaI of the field is ln,. The operation of bringing magnet 
a from inûnity has of course been simply that of moving a field of force of 
potential Cl, from inhity,  where this same field of force had previously 
existed. 

On bringing up magnet b, the work done is that of placing magnet b in 
a field of force of potential Cl,. The work done is accordingly fia (h).  

IRIS - LILLIAD - Université Lille 1 



446-4481 Energy of a Magnetic Field 397 

The work done in bringing up magnet c is that of placing magnet c in a 
field of force of potential ila + Clb. I t  is therefore il, (c) + C l 6  (c). 

Continuhg this process we find that the total work done, W, is given by 
w= na (b) 

+ na ( C I  + Q b  (c )  
+ fia ( d )  + .IZb ( d )  + 0, (d )  + etc. 

If, however, the magnets had been brought up in the reverse order, we 
should have had 

W=fZ,(a)+Q,(a)+nd(a)+ ...+fi, (a)  

+a,( b)+Qd(b)+ ... +a,@) 
+ n, (c)  + ... + f i ,  (c) 

+ etc. 

so that by addition of these two values for W, we have 
2 W =  slb(a)+il,(a)+fld(a)+ ...+ %(a)  

... + .na (b) + ,2,(b)+il,(b) + + f i * ( b )  
+ n a  ( c )  + 0, (CI + f l d ( c ) + - - . + f l a ( ~ )  

+ Q a  (4 + Ob (4 + a0 (4 + m . .  + G ( d )  
+ etc. 

The first line is equal to (a)  except for the absence of the term na (a), 
and so on for the other lines. Thus we have 

2W= n ( a ) - a , ( a )  

+ (b) - .IZb (b) + etc. 

= dn (a) - Zs, (a)  ........................ (378). 

The quantity Qa(a), the potential energy of the magnet a in its own 
field of force, is purely a constant of the magnet a, being entirely independent 
of the properties or positions of the other magnets b, c, d, .... Thus in 
equation (378), we may regard the term dLl,(a) as a constant, and may 
replace the equation by 

........................ W = (a) + constant (3'19). 

448. If we take the magnets a, 6, c, ... n t o  be the ultimate magnetic 
particles, the values of Cla (a), .Rb (b) ,  ... etc. al1 vanish, and their sum also 
vanishes. Thus equation (379) assumes the form 

W = ksfl (a). ............................. (380), 

where the standard configuration from which W is measured is one in which 
the ultirnate particles are scattered at  infinity. The value of fl (a)  for a 
single particle is (cf 5 420) 

IRIS - LILLIAD - Université Lille 1 



398 Permanent Magnetkm [CR. XI 

On replacing p by Idzdydz, we find for the energy of a system of 
magnetised bodies 

the integration being taken throughout al1 magnetised matter. 

449. An alternative proof can be given of equations (380) and (381), 
following the method of $106, in which we obtained the energy of a system 
of electric charges. , 

Out of the magnetic materials scattered at inbity,  i t  will be possible to 
construct n systems, each exactly similar as regards arrangement in space to 
the final system, but of only one-nth the strength of the final system. If n 
is made very great, it is easily seen that the work done in constructing a 

1 
single system vanishes to the order of - , so that, in the limit when n is very 

na 
great, the work done in constmcting the series of n systems is infinitesimal. 
Thus the energy of the final system may be regarded as the work done in 
superposing this series of n systems. 

Let us suppose so many of the component systems to have been super- 
posed, that the system in position is K: times its final strength, where n 
is a positive quantity less than unity. The potential of the field at any 
point will be w f l .  On bringing up a new system let us suppose that w is 
increased to IC + dtc, so that the strength of the new system is d~ times that 
of the final system. In bringing up the new system, we place a magnet of 
dn times the strength of a in a field of force of potential tcQ, and so on with 
the other magnets. Thus the work done is 

dw.w i l (a~+dK: .K: f l ( b )+ . . . ,  
and on integration of the work performed, we obtain 

w = / : K : ~ I c  (R (a )  + (6) + . ..} 
= @fi (a), 

agreeing with equation (380), and leading as before to equation (381). 

450. If the magnetic matter consists solely of normally magnetised 
shells, we may replace equation (381) by 

where ds denotes thickness and dX an element of area of a shell. Replacing 
I d s  by +, so that #I is the strength of a ahell, we have 
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For uniform shells, + may be taken outside the sign of integration, and 
the equation becomes 

TV= tX+//- dh' = - I ~ + n  
an 

(cf. $423), where n is the number of lines of induction which cross the shell. 

This calculation measures the energy from a standard configuration in 
which the magnetic materials are al1 scattered a t  infinity. To calculate 
the energy measured from a standard configuration in which the shells have 
already been constructed and are scattered a t  infinity as complete shells, we 
use equation (378), narnely 

W =  42 {CL(a)-fl,(a)}, 

an1 
from which we obtain W = &z// 9 dS, 

anf aa 
where - denotes the values - a t  the surface of any shell if the shell itself 

an .an 
is supposed annihilated. 

If al1 the shelIs are uniform, this may again be written 

W=-+2+nr .............................. ( 3 W ,  

where nf is the number of tubes of force from the remaining shells, which 
cross the shell of strength 4. An example of this has already occurred in 
9 424. 

451. We have seen that the energy of a magnetic field is given by 
(cf equation (381)) 

the integration being taken over al1 magnetic matter. As a preliminary to 
transforming this into an integral taken through al1 space, we shall prove 
that 

the integration being through al1 space. 

The integral on the left can be written as 

and this, by Green's Theorem, may be transformed into 

IRIS - LILLIAD - Université Lille 1 



400 Permanent Magnetbm [ C H .  X I  

the latter integral being taken over a sphere at infinity. Now at infinity fl 
1 

is of the order of 5 (cf. 5 67), while la + mb + nc vanishes, and dS is of ra 
the order of la2, so that the surface integral vanishes on passing to the limit 
r = ca . Also the volume integral vanishes since 

and hence the theorem is proved. 

Replacirg a, b, c by their values, as given by equations (359), we find that 
equation (384) becomes 

jj](aa + @ + ya) d x d y d z  + 4 l i j O  (AU + BB + Cy) dxdydz  = 0 . . .(386). 

Both integrals are taken through al1 space, but since A = B =  C= 0 
except in magnetic matter, we can regard the latter integral ag being taken 
only over the space occupied by magnetic matter. This integral is therefore 
equal, by equation (383), to - 2 W, so that equation (385) becomes 

the integral being taken through al1 space. 

This expression is exactly analogous to that which has been obtained for 
the energy of an electrostatic system, namely, 

w = l j j j  877 ( X a +  Y'+ Z2) dxdydz.  

And, as in the case of an electrostatic system, equation (386) may be 
interpreted as meaning that the energy may be regarded as spread through 

1 
the medium at a rate - (a2 + P2 + y2) per unit volume. 

8n- 

452. The magnetism of the earth is very irregularly distributed and is 
constantly changing. The simplest and roughest approximation of al1 to the 
state of the earth's magnetism is obtained by regarding it as a bar magnet, 
possessing two poles near to its surface, the position of these in 1906 being 
as follows : 

North Pole 70" 30' N., 97" 40' W. 
South Pole* '73" 39'S., 146" 15' E. 

Another approximation, which is better in many ways although still 
very rough, is obtained by regarding the earth as a uniformly magnetised 
sphere. 

* Sir E. Shackleton gives the position of the South Pole in 1909 as 7Z0 25' S., 155O 16' E. 
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With the help of a compass-needle, i t  will be possible to fmd the 
direction of the lines of force of the earth's field a t  any point. I t  will 
also be possible to measure the intensity of this field, by comparing it with 
known magnetic fields, or by ineauring the force with which i t  acts on 
a magnet of known strength. 

453. At any point on the earth, let us suppose that the angle between 
the line of magnetic force and the horizontal is 8, this being reckoned 
positive if the l&e of force points down into the earth, and let the horizontal 
projection of the line of force make an angle 6 with the geographical 
meridian through the point, this being reckoned positive if this line points 
west of north. The angle B is called the dip a t  the point, the angle S is 
called the declination. 

Let H be the horizontal component of force, then the total force may be 
regarded as made up of three components : 

X = H cos 6, towards the north, 
Y = H sin 6, towards the west, 
Z = H tan 8, vertically downwards. 

If fl is the potential due to the earth's field at a point of latitude 1, 
longitude A, and a t  distance r from the centre, we have (cf. equations (331)) 

1 an x=--- 1 an y = - - -  z=- acn ar ...... - .... 
r al ' rcos i  a h '  (387). 

Analysis of Potential of Earth's jeld. 

454. Since fl is the potential of a magnetic system, the value of Cl in 
regions in which there is no magnetisation must (by 5 408) be a solution of 
Laplace's equation, and must therefore (by 5 233) be capable of expansion in  
the form 

+( S;+Sir+S,'rz+ ...) ......... (389, 

in which SI,  S,, ... S,', Si', fJ;, ... are surface harmonics, of degrees indicated 
by the subscripts. 

At  the earth's surface, the first term is the part of the potential which 
arises from magnetism inside the earth, while the second term arises from 
magnetism outside. 

The surface harmonie Sn can, as in § 275, be expanded in the form 
m=m 

Sn = E I" (sin 1) (A,,,  cos mh + B,,, sin a), 
9n=O 

so that fl can be put in the form 
98=m m= 

P: (sin ') ( A , ,  cos ma + B, , sin ma) ,=B Z {  
m = ~  ,=O rn+l 
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Hence from equations (387) we obtain the values of X, Y, Z at any point 
in terms of the longitude and latitude of the point and the constants such 
as An,,, Ba,,, A ' , , ,  B'n,,. 

By observing the values of X, Y, Z at a great number of points, we 
obtain a system of equations between the constants A,,, etc., and on 
solving these we obtain the actual values of the constants, and therefore 
a knowledge of the potential as expressed by equation (388). 

If the 'magnetic field arose entirely from magnetism inside the earth, 
we should of course expect to find 8,' = S,' = . . . = O, while if the magnetic 
field arose from magnetism entirely outside the earth, we should find 
s,=s*= ...= o. 

455. The results actually obtained are of extreme interest. The mag- 
netic field of the earth, as Ive have said, is constantly changing. In  addition 
to a slow, irregular, and so-called " secular" change, i t  is found that there 
are periodic changes of which the periods. are, in general, recognisable as 
the periods of astronomical phenomena. For instance there is a daily 
period, a yearly period, a period equal to the lunar month, a period of 
about 264 days (the period of rotation of the inner core of the sun*), 
a period of about 11 years (the period of sun-spot variations), a period of 
19 years (the period of the motion of the lunar nodes), and so on. Thus 
the potential can be divided up into a number of periodic parts and a 
residual constant, or slowly and irregularly changing, part. Al1 the periodic 
parts are extremely small in comparison with the latter. I t  is found, on 
analysing the potentials of these different parts of the field, that the constant 
field arises from magnetisation inside the earth, while the daily variation 
arises mainly from rnagnetisation outside the earth. The former result 
might have been anticipated, but the latter could not have been predicted 
with any confidence. For the variation might have represented nothing 
more than a change in the permanent magnetism of the earth due to the 
cooling and heating of the earth's mass, or to the tides in the solid matter of 
the earth produced by the sun's attraction. 

This daily variation is not such as could be explained by the magnetism 
of the Sun itself; Chreej- has found that i t  cannot be explained by the 
cooling and heating either of the earth's mass, or of the atmosphere as 
suggested by Faraday. Schusterf, who has analysed the daily-varying 
terms in the potential, and Balfour Stewart have suggested that the cause of 
this variation is to be found in the field produced by electricity induced in 

* The outer surface of the sun is not riyid, and rotates at different rates in different latitudes. 
Thus it is impossible to discover the aotual rate of rotation of the inner core exoept by such 
indirect methods as that of observing periods of magnetio variation. 

.I. Roy. Soc. Phil. Trass., 203, p. 336. 
$ ROY. Soc. PhiE. Trans., 1889, p. 467. 
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the upper strata of the atmosphere, as they move across the earth's magnetic 
field, a suggestion which has received a large amount of experirnental 
confirmation*. I n  addition to this field produced by external sources, 
Schuster finds that there is a smaller field, roughly proportional to the former, 
having its source inside the earth. This he attributes to the magnetic action 
of electric currents induced in the earth by the atmospheric currents already 
men tioned. 

456. The non-periodic part of the earth's field, since i t  is found to arise 
entirely from magnetism inside the earth, has a potential of the form 

81 8 2  ^y min {Pz (sin 1) a=-+-+ ... = 
r2 13 n=1 m=o + (&.w cos mk + Bn,, sin rnX) 

in which the values of the coefficients may be obtained in the manner 
already explained. 

This method of analysing the earth's field is due to Gauss, who calculated 
the coefficients, with such accuracy as was then possible, for the year 1830. 
The most complete analysis of the field which now exists has been calculated 
by Neumayer for the year 1883, using observations of the field a t  1800 
points on the earth's surface. 

The first few coefficients obtained by Neumayer are as follows: 
1 A , ,  = -0248, 

A,,, = 31.57 
i BI,, = - .0603, 

A , ,  = -0079 { A,,,=--0498, A2,8=-.0037, 
4 1  = .0130, B,, = - -0126, 

= ' 036 ,  As,,= - ~0279, AI,= -.0033, 
&,,=.0074, B,,=--OOO+&, B3,,=-.OOFjj, 

A , ,  = - '0.344 A,1=-'0306, A,,,=--0198, A4,,='0068, A,,=-'0008, 
B4, 1 = - .0119, .0071, B,,= .005l, B4,,= .0010. 

457. The simplest approximation is of course obtained by ignoring al1 
harmonies beyond the first. This gives as the magnetic potential 

1 
= - {3l57 sin 1 + cos Z (-0248 cos X - .O603 sin k)} . 

ra 

The expression in brackets is necessarily a biaxial harmonic of order unity 
(cf. § 276); i t  is essily found to be equal to '3224 cos y, where y is the 
angular distance of the point (1, X) from the point 

lat. 78" 20' N., long. 67" 17' W. .................. (389). 
" Yee, for instance, a paper by van Bemmelen, Konink. Akad. Wetenschappen (Amsterdam), 

Versl. 12, p. 313, in which it i s  shewn that the field of daily variation may be regarded roughly 
as revolving around the pole of the durora Borealis (80*5'N., BO0 W.). 

26-2 
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cm3 Y The potential is now (n = -3224 - 
9 '  

which is the potential of a uniforrnly magnetised sphere, having as direction 
of magnetisation the radius through the point (5 41.5). Or again, it is the 
potential of a single magnetic particle at the centre of the ear th ,  pointing 
in this same direction. It is naturally impossible to distinguish between 
these two possibilities by a survey of the field outside the earth. Green's 
theorem has already shewn that we cannot locate the sources of a field 
inside a closed surface by a study of the field outside the surface. 
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EX AM PLES. 

1. Two small magnets float horieontally on the surface of water, one along the 
direction of the straight line joining their centres, and the other a t  right angles to it. 
Prove that the action of each magnet on the other reduces to a single force a t  right angles 
to the straight line joining the centres, and meeting that line a t  one-third of its length 
from the longitudinal magnet. 

2. A small magnet ACB, free to turn about its centre C, is acted on by a small k e d  
magnet PQ. Prove that in  equilibrium the axis ACB lies in the plane PQC, and that 
tan 6= -+tan O', where 8, 8' are the angIes which the two magnets make with the line 
joining them. 

3. Three small magnets having their centres a t  the angular points of an equilsteral 
triangle ABC, and being free to move about their centres, can rest in equilibrium with 
the magnet at A parallel to BC, and those a t  B a n d  Crespectively a t  right angles to A B  
and AC. Prove that the magnetic moments are in the ratios 

4. The axis of a srna11 magnet makes an angle + with the normal to a plane. Prove 
that the line from the magnet to the point in the plme where the number of lines of 
force crossing it per unit area is a maximum makes an angle O with the axis of the 
magnet, such that 

2tan8=3tan2(@-O). 
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5. Two small magnets lie in the same plane, and make angles 8, 8' with the line 
joining their centres. Shew that the line of action of the resultant force between them 
divides the line of centres in the ratio 

tan BI+ 2 tan 8 : tan 8+2 tan 8'. 

6. Two small magneta have their centres at distance r apart, make angles 8, 8' with 
the line joining them, and an angle r with each other. Shew that the force on the first 
magnet in its own direction is 

Shew thet the couple about the line joining them which the magnets exert on one 
another is 

mm' - dsins 1.4 

where d is the shortest distance between their axes produced. 

. 7. Two magnetic needlea of moments LW, MM' are soldered together so that their 
directions include an angle a. Shew that when they are suspended so as to swing freely 
in a uniform horizontal magnetic field, their directions wiU make angles 8, BI with, the 
lines of force, given by 

sin 8 sin O' sin a 

=T=(~z+Mf2+2MiK>co8a)&g 

8. Prove that if there are two magnetic molecules, of moments M and Nt, with their 
centres fixed a t  A and B, where AB=T, and one of the molecules swings freely, while the 
other is acted on by a given couple, so that when the system is in equilibrium this 
molecule makes an angle 8 with AB, then the moment of the couple is 

$MMf sin 28/@ (3 cos2 8 + 1)$ 

where there is no external field. 

9. Two small equal niagnets have their centres fixed, and can turn about them in a 
magnetic field of uniform intensity E, whose direction is perpendicular to the line r 
joining the centres. Shew that the position in which the magnets both point in the 
direction of the lines of force of the unifom field is stable only if 

10. Two magnetic particles of equal moment are ûxed with their axes parallel to the 
axis of z, and in the same direction, and with their centres at the points +a, O, O. Shew 
that if another magnetic molecule is free to turn about its centre, which k fixed a t  the 
point (O, y, z), its axis will rest in the plane x=0, and will make with the axis of s the 
angle 

Examine which of the two positions of equilibrium is stable. 

11. Prove that there are four positions in which a given bar magnet may be placed 
so as to destroy the earth's contml of a compass-needle, so that the needle can point 
indifferently in al1 directions. If the bar is short compared with its distance from the 
needle, shew that one pair of these positions are about 1) times more distant than the 
other pair. 
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12. Three small magnets, each of magnetic moment p, are fixed a t  the angular points 
of an equilateral triangle ABC, so that  their north poles lie in the directions AC, AB, BQ 
respectively. Another small magnet, moment is placed a t  the centre of the triangle, 
and is free to  move about its centre. Prove that the period of a small oscil1a;tion is the 
same as that of a pendulum of length 1b3~/.\/%&', where b is the length of a side of the 
triangle, and 1 the moment of inertia of the rnovable magnet about its centre. 

13. Three magnetic particles of equal moments are placed a t  the corners of an 
equilateral triangle, and can turn about those points so as to point in any direction in the 
plane of the triangle. Prove that there are four and only four positions of equilibrium 
such that the angles, measured in the same sense of rotation, between the axes of the 
magnets and the bisectors of the corresponding angles of the triangle are equal. Also 
prove that the two symmetrical positions are unstable. 

14. Four small equal magnets a re  placed a t  the corners of a square, and oscillate 
under the actions they exert on each other. Prove that the times of vibration of the 
principal oscillations are 

2r {rn23 (P:;";2 J 2 ) P 7  

where rn is the magnetic moment, and HP the moment of inertia, of a magnet, and d is a 
side of the square. 

15. A system of magnets lies entirely in one plane and it  is found that when the 
axis of a small needle travels round a contour in  the plane that contains no magnetic 
poles, the needle turns completely round. Prove that the contour contains a t  least one 
equilibrium point. 

16. Prove that the potential of a body uniformly magnetised with intensity 1 is, a t  
any extemal point, the same as  that due to a complex magnetic shell coinciding with the 
surface of the body and of strength 13, where 3 is a coordinate measured parallel to  the 
direction of magnetisation. 

17. A sphere of hard steel is magnetised uniformly in a constant direction and a 
magnetic particle is held a t  an esternal point with the axis of the particle parallel to the 
direction of magnetisation of the sphere. Find the couplee acting on the sphere and On 
the particle. 

18. A spherical magnetic shell of radius a is normally magnetised so that its strength 
a t  any point is Si, where Si is a spherical surface harmonic of positive order .i. Shew 
that the potential a t  a distance r from the centre is 

%"+ 1 I - 4 Si ( )  when r < a, 

19. If a smali spherical cavity be made within a magnetised body, Prove that the 
components of magnetic force within the cavity are 

.+$A, a + v ,  Y+QC. 
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20. If the earth were a uniformly mngnetised sphere, shew that the tangent of the 
dip a t  any point would be equal to twice the tangent a t  the magnetic latitude. 

21. Prove that if the horizontal component, in the direction of the meridian, of the 
wrth's rnagnetic force were known al1 over its surface, all the other elements of its 
magnetic force might be theoretically deduced. 

22. Prom the principle that the line integral of the magnetic force round any circuit 
ordiaarily vaniahes, shew that the two horizontal components of the magnetic force a t  any 
station may be deduced approxiniately from the known values for three other stations 
which lie around it. Shew that these six known elements are not independent, but must 
satisfy one equation of condition. 

23. If the earth were a sphere, and its magnetism due to two small straight bar 
magnets of the same strength situated a t  the poles, with their axes in the same direction 
along the earth's axis, prove that the dip 6 in latitude X would be given by 

24. Assuming that the earth is a sphere of radius a, and that the magnetic potential 
Q is represented by 

shew that a is completely determined by observations of horizontal intensity, declination 
and dip at four stations, and of dip at four more. 

25. Assuming that in the expa,neion of the earth's magnetic ptential the fifth and 
higher harmonics mity be neglected, shew that observations of the resultant magnetic 
force at eight points are sufficient to determine the potential everywhere. 

26. Assuming that the earth's magnetism is entirely due to interna1 causes, and that 
in latitude X the northerly component of the horizontal force is d cos h+Bcos3A, prove 
that in this latitude the vertical component reckoned downwards is 

2 (A  + +B) sin Ab 4B ein3 A. 
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CHAPTER XII 

IN DUCED MAGNETISM 

458. REFERENCE has already been made to the well-known fact that 
a magnet will attract small pieces of iron or steel which are not themselves 
magnets. Here we have a phenomenon which at first sight does not seem 
to be explained by the law of the attractions and repulsions of magnetic 
poles. It is found, however, that the phenomenon is due to a magnetic 
"induction" of a kind almost exactly similar to the electrostatic induction 
already discussed. It can be shewn that a piece of iron or steel, placed in 
the presence of a magnet, will itself become magnetised. Temporarily, this 
piece of iron or steel will be possessed of magnetic poles of its own, and the 
system of attractions and repulsions between these and the poles of the 
original permanent magnet will account for the forces which are obsemed 
to act on the metal. 

It has, however, been seen that pairs of corresponding positive and 
negative poles cannot be separated by more than molecular distances, so 
that we are led to suppose that each particle of the body in which magnetism 
is induced must become magnetised, the adjacent poles neutralising one 
another as in a permanent magnet. 

Taking this view, it will be seen that the attraction of a niagnet for an 
unmagnetised body is analogous to the attraction of an electrified body for 
a piece of dielectric (5 197), rather than to its attraction for an uncharged 
conductor. The attraction of a charged body for a fragment of a dielectric 
has been seen t o  depend upon a molecular phenomenon taking place in the 
dielectric. Each molecule becomes itself electrified on its opposite faces, with 
charges of opposite sign, these charges being equal and opposite so that the 
total charge on any molecule is nil. In  the same way, when magnetism is 
induced in any substance, each molecule of the substance miist be supposed to 
become a magnetic particle, the total charge of magnetism on each particle 
being nil. I t  follows that the attraction of a magnet for a non-magnetic 
body is merely the aggregate of the attractive forces acting on the different 
individual particles of the body. 

459. Confirmation of this view is found in the fact that the intensity 
of the attraction exerted by a magnet on a non-rnagnetised body depends on 
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the material of the latter. The significance of this fact d l ,  perhaps, best be 
realised by comparing i t  with the corresponding fact of electrostatics. When 
an uncharged conductor is attracted by a charged body, the phenomena in 
the former body which lead to this attraction are mass-phenomena : currents 
of electricity flow through the mass of the body until its surface becomes 
an equipotential. Thus the attraction depends solely upon the shape of 
the body and not upon its structure. On the other hand, the phenomena 
which lead to the attraction of a fragment of dielectric are, as we have seen, 
molecular phenomena. They are conditioned by the shape and arrangement 
of the molecules, with the result that the total force depends on the nature 
of the dielectric material. 

A11 magnetic phenomena, occurring in material bodies must be molecular, 
as a consequence of the fact that corresponding positive and negative poles 
cannot be separated by more than molecular distances. Hence we should 
naturally exiect to fiid, as we do find, that al1 magnetic phenomena in 
material bodies, and in particulaf the attraction of unmagnetised matter 
by a magnet, would depend on the nature of the matter. There would be 
a real difficulty if the attraction were found to depend only on the shape 
of the bodies. 

460. The amount of the action due to magnetic induction varies 
enormously more with the nature of the matter than is the case with the 
corresponding electric action. Among common substances the phenomenon 
of magnetic induction is not a t  al1 well-marked except in iron and steel. 
These substances shew the phenomenon to a deg-ree which appears very 
surprising when compared with the corresponding electrostatic phenomenoa 
After these substances, the next best for shewing the phenomena of induction 
are nickel and cobalt, although these are very inferior to iron and steel. I t  
is worth noticing that the atomic weights of iron, nickel and cobalt are very 
close together*, and that the three elements hold corresponding positions in 
the table of elements arranged according to the periodic law. 

I t  has recently been found that certain rare metals shew magnetic 
induction to an extent comparable with iron, and that alloys can be formed 
to shew great powers of induction although the elements of which these 
alloys are formed are almost entirely non-magnetic?. 

It appears probable that al1 substances possess some power of magnetic 
induction, although this is generally extremely feehle in comparison with 
that of the substances already mentioned. I n  some substances, the effect 
is of the opposite sign from that in iron, so that a fragment of such matter 
is repelled from a magnetic pole. Substances in which the effect is of the 

* Iron=555, nickel= 58.3, cobalt=58*56. 
t- For 5n.sccount of the composition and properties of Heuder's alloys, see a paper bp 

J. C. MaLennsn, Phys. Review, Vol. 24, p. 449. 
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same kind as in iron axe called paramagnetic, while substances in which the 
effect is of the opposite kind are called diamagnetic. 

The phenomenon of magnetic induction is much more marked in para- 
magnetic, than in diamagnetic, substances. The most diamagnetic substance 
known is bismuth, and its coefficient of susceptibility ( 5  461, below) is only 

1 
about - of that of the most paramagnetic samples of iron. 

i o9 

Coeficients of Susceptibility and Permeability. 

461. When a body which possesses no permanent magnetism of its own 
is placed in a magnetic field, each element of its volume will, for the time it. 
remains under the influence of the magnetic field, be a magnetic particle. 
If the body is non-crystalline the direction of the induced magnetisation at. 
any point will be that of the magnetic force a t  the point. Thus if H denote 
the magnetic force a t  any point, we can suppose that the induced magnetism, 
of an intensity 1, has its direction the same as that of H. 

Thus if a, P, y are the components of magnetic force, and A, B, C the 
components of induced magnetisation, we shall have equations of the form 

the quantity IC being the same in each equation because the directions of 1 
and H are the same. 

The quantity n is called the rnagnetic susceptibility. 

If the body has no permanent magnetisation, the whole components of 
magnetisation are the quantities A, B, C given by equations (390), and the 
components of induction are given (cf equations (359)) by 

a =  a + 4 r A =  a(1+4.n1~), 
b = ~ + 4 ~ B = , 8 ( 1 + 4 ~ n ) ,  
c = y + 47rC = y (1 + 47rn). . 

If we put p = 1 + 4 ~ 1 c  .............................. (391), 

we have 

and p is called the magnetic permeability. 

462. The quantities IC and p are by no means constant for a given 
substance. Their value depends largely upon the physical conditions, 
particularly the temperature, of the substance, upon the strength of the 
magnetic field in which the substance is placed, and upon the previous 
magnetic experiences of the substance in question. 
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We pass to the consideration of the way in which the magnetic coefficients 
Vary with some of these circumstances. As IG and p are connected by a simple 
relation (equation (391)), i t  will be sufficient to discuss the variations of one 
of these quantities only, and the quantity p will be the most convenient for 
this purpose. Moreover, as the phenomenon of induced magnetisation is 
almost insignifiant in  al1 substances except iron and steel, it will be sufficient 
to consider the magnetic phenornena of these substances only. 

463. Dependence of p on H. The way in which the value of p depends 
on H is, in its main features, the same for al1 kinds of iron. For small forces, 
p is a constant, for larger forces P increases, finally it reaches a maximum, 
and after this decreases in such a .way that ultirnately pH approximates to 
a constant value, known as the "saturation" value. This is represented 
graphically in a typical case in fig. 113, which represents the results obtained 
by Ewing from experirnents on a piece of iron Tire. 

The abscissae rapresent values of A, the ordinate of the thick curve the 
value of pH, and the ordinate of the thin curve the value of p. The corre- 
sponding numerical values are as follows : 
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464. Retentivenem and Hysteresis. I t  is found that after the magnetising 
force is removed from a sample of iron, the iron still retains some of its mag- 
netism. Here we have a phenomenon similar to the electrostatic phenomenon 
of residual charge already described in 5 397, 

Fig. 114 is taken from a paper by Prof. Ewing (Pha. Trans. Roy. Soc. 
1885). The abscissae represent values of H, and ordinates values of B, 
the induction. The magnetic field was increased from H = O to H =  22, 
and as H increased the value of B increased in the manner shewn by the 
curve O P  of the graph. On again diminishing H from H= 22 to  H =  0, the 
graph for B was found to be that given by the curve PE. Thus during this 
operation there was always more magnetisation than a t  the corresponding 
stage of the original operation, and finally when the inducing field was 
entirely removed, there was magnetisation left, of intensity represented by 
OE. The field was then further decreased from H = O to H = - 20, and 
then increased again from H = - 20 to H = 22. The changes in B are 
shewn in the graph. 

465. Dependence of p on temperature. As has already been said, the 
value of p depends to a large extent on the temperature of the metal. In  
general, the value of p continually increases as the-temperature is raised, this 
increase being slow at first but afterwards more rapid, until a temperature 
known as the " temperature of recalescence" is reached. This temperature 
has values ranging from 600" to 700" for steel and from 700" to 800" for iron. 
This temperature takes its name h m  the circumstance that a piece of metal 
cooling through t h i s  temperature will sink to a du11 glow before reaching it, 
and will then become brighter again on passing through it. 

After passing the temperature of recalescence, the value of p falls with 
extreme rapidity, and a t  a temperature only a few degrees above this 
temperature, iron appears to be almost completely non-magnetic. 
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For paramagnetic substances, it appears to be a general law that the 
susceptibility IC varies inversely as the absolute temperature (Curie's Law). 

MATHEMATICAL THEORY. 

466. If n is the magnetic potential, supposed to be defined at points 
inside magnetic matter by equation (348), we have, as in equations (341) 

an etc., so that (cf. § 430), a = - - ax 

The quantities a, b, c, as we have seen (§ 454), satisfy 

aa ab a~ 
- + - - + - = O  ........................... a~ ay a2 (393) 

at every point, and 
P P 

I j ( la  + mb + nc) dS = O. ....................... (394), 

where the integration is taken over any closed surface. In terms of the 
potential, equation (393) becomes 

while equation (394) becomes 

If p is constant throughout any volume, equation (395) becomes 

Thus inside a mass of homogeneous non-magnetised matter, the magnetic 
potential satisfies Laplace's Equation. 

467. At a surface a t  which the value of p changes abruptly we may 
take a closed surface formed of two areas fitting closely about an element dS 
of the boundary, these two areas being on opposite sides of the boundary. 
On applying equation (396), we obtain 

a a 
where p,, p, are the permeabilities on the two sides, and avl - 2 au, - denote 

differentiations mith respect to normals to the surface drawn into the two 
media respectively. 

Equations (397) and (395) (or (:396)), combined with the condition that 
0 must be continuous, suffice to determine Cl uniquely. The equations 
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satisfied by a, the magnetic potential, are exactly the same as those which 
would be satisfied by V, the electrostatic potential, if p were the Inductive 
Capacity of a dielectric. Thus the law of refraction of lines of magnetic 
induction is exactly identical with the law of refraction of lines of electric 
force investigated in § 138, and figures (43) and (78) may equally well be 
taken to represent lines of magnetic induction passing from one medium to 
a second medium of different permeability. 

468. At any external point Q, the magnetic potential of the magnetisation 
induced in a body i n  which p and K have constant values is, by equation (342), 

ana i ana i ana i 
= -I\jj{à. z& (;) +.Va, (;)+a;% (;)}d+z -.-(398). 

Transforrning by Green's Theorem, 

shewing that the potential is the same if there were a layer of rnagnetic 
an 

matter of surface density - K - spread over the surface of the body. This 
an 

is Poisson'$ expression.for the potential due to induced magnetism. 

We c m  also transform equation (398) into 

shewing that the potential at any external point Q of the induced magnetism 
is the same as if there were a magnetic shell of strength - nfl coinciding 
with the surface of the body. 

Body in which permanent and induced magnetisnz coexist. 

469. If a permanent magnet has a permeability different from unity, we 
shall have a magnetisation arising partly from permanent and partly from 
induced magnetism. If K is the susceptibility and I the intensity of the 
permanent magnetisation at any point, the components of the total maghet- 
isation at  any point will be 

A =II + ua, etc. ........... :. .............. (401 ), 
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and the components of induction are 

a=a+4rA=4rr iZ+pa,  etc. .................. (402). 

For such a substance, it is clear that equations (395) and (396) will not 
in general be satisfied. 

470. To obtain the energy of a magnetic field in which both permanent 
and induced magnetism may be present, we return to the general equation 
obtained in § 451, 

.................. (aa+bfi+cy)dxdydz=O (403). 

On substituting for a, b, c from equations (402), this becomes 

Whether or not indnced magnetism is present, i t  is proved, in 5 448, that the 
energy of the field is 

where the integral is taken through al1 space. This is equal to - 1 times the 
87T 

first term in equation (404). Thus 

w = +/or (a2 + @ + dxdydz ............... 
8 r  

(405). 

This could have been foreseen from analogy with the formula 

w-, ';~\K(x~+ P+Z2)dzdyd; 

which'gives the eriergy of an electrostatic field. 

From formula (405) we see that the energy of a magnetic field may be 

pHz supposed siread throughout the medium, at a rate - per unit volume. 
87r 

471. The mechanical forces acting on a piece of matter in a magnetic 
field can be regarded as the superposition of two systems-first, the forces acting 
on the matter in virtue of its permanent magnetism (if any), and, secondly, 
the forces acting on the matter in virtue of its induced magnetism (if any). 

The problem of finding expressions for the mechanical forces in a magnetic 
field is mathematically identical with that of finding the forces in an electro- 
static field. This is. the problem of which the sohtion has already been 
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given in § 196. The result of the analysis there given may at once be 
applied to the magnetic problem. 

I n  equation (117), p. 1'15, we found the value of 8, the a-component of 
the mechanical force per unit volume, in the form 

- ~ ' C T  R = ~ K  a R~ a~ a=-p  ---- +- - 7 -  
as 8~ ax ax (t3= a~ ) * 

So translate this result to the magnetic problem, we must regard p as 
specifying the density of rnagnetic poles, R must be replaced by H, the 
magnetic intensity, and K by p, the magnetic permeability. Also the 
electrostatic potential V must be replaced by the magnetic potential fl. We 
then have, as the value of B in a magnetic field, 

Clearly the first term in the value of 2 is that arising from the per- 
manent magnetism of the body, while the second and third terms arise from 
the induced magnetism. The first term can be transformed in the manner 
already explained in the last chapter. I t  is with the remaining terms that 
we are a t  present çoncerned. These will represent the forces when no per- 
manent magnetism is present. ~ e n o t i n g  the components of this force by 
8; H', Z', we have 

472. This general formula assumes a special form in a case which is of 
great importance, namely when the magnetic medium is a fluid. 

Al1 liquid magnetic media in which the susceptibility is at al1 marked 
consist of solutions of salts of iron, and the magnetic properties of the liquid 
arise from the presence of the salts in solution. According to Quincke, the 
solution having the greatest susceptibility is a solution of chloride of iron in 
methyl alcohol, and for this the value of p- 1 is about -*. In  such a 
liquid, the field arising from the induced magnetism will be small compared 
with that arising from the original field, so that the magnetisation of any 
single particle of the Salt in the solution may be regarded as produced 
entirely by the original field. Hence we have conditions similar to those 
which obtain electrostatically in a gas. The induced field may be regarded 
simply as the affgregate of the fields arising from the different particles of 
the magnetic medium, and is therefore jointly proportional to the density of 
these particles and to the strength of the inducing field. The latter fact 
shews that, for a given density of the medium, p ought to be independent of 
H, a result to which we shall return later. The former fact shews that, as 

Cf. G. T. Walker, 6 6  Aberration'' (Cambridge Univ. Press, 1900), p. 76. 

IRIS - LILLIAD - Université Lille 1 



the density T changes, p - 1 ought to be proportional to ?-a result analogous 
to the result that K - 1 is proportional t o  the density in a gas. I t  has been 
found experimentally by Quincke* that p - 1 is approximately proportional 
to 7. 

I n  gases we have conditions precisely similar to those which obtain when 
a gas is placed in an electrostatic field. Hence p- 1 must, for a gas, be 
proportional to T, for exactly the same reason for which K- 1 is proportional 
to r. This result also has been verified by Quincket. 

Thus we may say that for fluid media, whether liquid or gaseous, p - 1 
is, in general, proportional to T, where 7 is the density of the magnetic liquid, 
in the case of a liquid in solution, or of the gas itself, in the case of a gas. 

473. If we assume the relation 

where c is a constant, we find that expression (407) may be put in the 
simpler form 

shewing that the whole mechanical force is the same as would be set up by a 

P-1  hydrostatic pressure at  every point of the medium of amount -Hz .  
87r 

If H varies from point to point of the field, the effect of this pressure will 
clearly be to urge the medium to congregate in the more intense parts of the 
field. This has been observed by Matteucci: for a medium consisting of 
drops of chloride of iron dissolved in alcohol placed in a medium of olive oil. 
The drops of solution were observed to move towards the strongest parts of 
the field. 

Magnetostriction. 

474. If a liquid is placed in a magnetic field, i t  yields under the 
influence of the mechanical forces acting upon it, so that we have a 
phenomenon of magnetostriction, analogoug to the phenomenon of electro- 
striction already explained ( 5  203). Clearly the liquid will expand until the 

pressure is decreased by an amount - Ha a t  each point, the new pressure 
8rr 

and the mechanical forces resulting from the magnetic field now producing 
equilibrium in the fluid. By measuring the expansion of a liquid placed in 
a magnetic field Quincke has been able to verify the agreement between 
theory and experiment. 

' Wied. Ann. 24, p. 347. i- Wied. Ann. 34, p. 401. 
$ Comptes Rendus, 36, P. 917. 

f. 

IRIS - LILLIAD - Université Lille 1 



Induced Magnetism 

Poisson's Molecular Theory of Induced Magnetism. 

475. I n  Chapter v i t  was found possible to account for al1 the electro- 
static properties of a dielectric by supposing it to consist of a number of 
perfectly conducting molecules. Poisson atteinpted to apply a similar 
explanation to the phenomenon of magnetic induction. 

Poisson's theory can, however, be disproved at  once, by a consideration of 
the numerical values obtained for the permeability p. This quantity is 
analogous to the quantity K of Chapter V, so that its value may be estimated 
in terms of the molecular structure of the magnetic matter. The fact with 
respect to which Poisson's theory breaks down is the existence of substances 
(namely, different kinds of soft iron) for which the value of p is very large. 
To understand the significance of the existence of such substances, let us 
consider the field produced when a uniform infinite slab of such a substance 
is placed in a uniform field of magnetic force, so that the face of the slab is 
at right angles to the lines of force. If the value of p is very large, the fa11 
of potential in crossing the slab is very small. Throughout the supposed 
perfectly-conducting magnetic molecules the potential would, on Poisson's 
theory, be constant, so that the fa11 of potential could occur only in the 
interstices between the molecules. I n  these interstices (cf. fig. 46), the fa11 of 
potential per unit length would be comparable with that outside the slab. 
Hence a very large value of p could be accounted for only by supposing the 
molecules to be packed together so closely as to leave hardly any interstices. 
Samples of iron can be obtained for which p is as large as 4000 ; it is known, 
from other evidence, that the molecules of iron are not so close together that 
such a value of /I could be accounte,d for in the manner proposed by Poisson. 

I t  is worth noticing, too, that Poisson's theory does not seem able, without 
modification, to give any reasonable account of the phenomena of saturation, 
hysteresis, etc. 

Weber's Molecular Theory of Induced Magnetism. 

476. A theory put forward by Weber shews much more ability than 
the theory of Poisson to explain the facts of induced magnetism. 

Weber supposes that, even in a substance which shews no magnetisation, 
every molecule is a permanent magnet, but that the effects of these different 
magnets counteract one another, owing to their axes being scattered a t  
random in al1 directions. When the matter is placed in a magnetic field 
each molecule tends, under the influence of the field, to set itself 50 that 
its axis is alang the li.nes of force, just as a compass-needle tends to set 
itself along the lines of force of the earth's magnetic field. The axes of the 
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Molecular Theories 

molecules no longer point in al1 directions indifferently, so that the magnetie 
fields of the different molecules no longer destroy one another, and the body 
as a whole shews magnetisation. This, on Weber's theory, is the magnetisa- 
tion induced by the external field of force. 

Weber supposes that each molecule, in its normal state, is in a position 
of equilibrium under the influence of the forces from al1 the neighbouring 
molecules, and that when i t  is moved out of this position by the action of 
an external magnetic field, the forces from the other molecules tend to 
restore i t  to its old position. I t  is, therefore, clear that so long as the 
external field is small, the angle through which each axis is turned by the 
action of the field will be exactly proportional to the intensity of the field, 
so that the magnetisation induced in the body will be just proportional to 
the strength of the inducing field. I n  other words, for small values of H, 
p must be independent of Hm 

There is, however, a natural limit imposed upon the intensity of the 
induced magnetisation. Under the influence of a very intense field al1 the 
molecules will set themselves so that their axes are along the lines of force. 
The magnetisation induced in the body is now of a quite definite intensity, 
and no increase of the inducing field can increase the intensity of the 
induced magnetisation beyond this limit. Thus Weber's theory accounts 
quite satisfactorily for the phenomenon of saturation, a phenomenon which 
Poisson's theory was unable to explain. 

477. I n  connection with this aspect of Weber's theory, some experi- 
ments of Beetw are of great importance. A narrow line was scratched in 
a coat of varnish covering a silver wire. The wire was placed in a solution 
of a Salt of iron, arranged so that iron could be deposited electrolytically 
on the wire at the points at  which the varnish had been scratched away. 
The effect was of course to deposit a long thin filament of iron along the 
scratch. If, however, the experiment was performed in a magnetic field 
whose lines of force were in the direction of the scratch, i t  was found not 
only that the filament of iron deposited on the wire was magnetised, but 
that its magnetisation was very intense. Moreover, on causing a powerful 
magnetising force to act in the same direction as the original field, it was 
found that the increase in the intensity of the induced magnetisation was 
very small, shewing that the magnetisation h d  previously been nearly at 
the point of saturation. 

Now if, as Weber supposed, the molecules of iron were already magnets 
before being deposited on the silver wire, then any magnetic force sufficient 
to arrange them in order on the wire ought to have produced a filament in 
a state of magnetic saturation, while if, as Poisson suyposed, the magnetism 
in the molecules was merely induced by the external magnetic field, then 
the magnetisation of the filament ought -to have been proportional to the 

27-2 
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original field, and ought to have disappeared when the field was destroyed. 
Thus, as between these two hypotheses, the experiments decide conclusively 
for the former. 

478. Weber's theory is illustrated by the following analysis. 

Consider a molecule which, in the normal state of the matter, has 
its axis in the direction OP, and let 
the fieId of force from the neigh- 
bouring molecules be a field of in- 
tensity D, the direction of the lines 
of force being of course parallel to 
OP ,  Now let an external field of A 
intensity H be applied, its direction 
being a direction OA making an 
angle a with OP. The total field 
acting on the molecule is now com- 
pounded of D along OP and H 
along 08. FIQ. 115. 

I n  fig. 115, let SO, O P  represent H and D in magnitude and direction, 
then SI' will represent the resultant field, so that the new direction of the 
axis of the molécule will be SI'. Suppose that there are n molecules per 
unit volume, each of moment m. Originally, when the axes of the molecules 
were scattered indifferently in al1 directions, the number for which the 
angle a had a value between a and a + dix was 8% sin ada. These molecules 
now have their axes pointing in the direction SP, and therehre making an 
angle PSA (='O, say) with the direction of the external magnetic field. The 
aggregate moment of al1 these molecules resolved in  the direction of OA is 
accordingly 

ama sin a cos Bda, 

and on integration the aggregate moment of al1 the molecules per unit 
volume, which is the same as the intensity of the induced magnetisation 1, 
is given by 

If R is the value of SP, measured on the same scale on which 80 and OP 
represent ET and D respectively, then 

so that, on changing the variable from u to  R, we must have the relation, 
obtained by differentiation of the above equation, 

RdR = HD sin uda. 
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We also have cos 8 = 
R2+Ha-Da 

2RH 
so that equation (409) becomes 

I n  fig. 115 the limits of integration for R are R = D + H and R = D - B. 
I f ,  however, H >fi, then the point S falls outside the circle APB and the 
limits for R are R = D + H and R = H - D. 

On integrating, we find as the values of I, 

when X < D, X 
1=3mn- ,  D 

Fm. 116. 

I n  fig. 116, the abscissae represent values of H, the ordinates of the 
thick curve the values of 1, and the ordinates of the dotted curve the 
values of B or pE,  drawn on one~tenth of the vertical scale of the graph 
for 1. 

1Maxwell's Molecular Theory of Induced Mapeéisnz. 

479. I t  will be seen that Weber's theory fails to account for the 
increase in the value of p before I reaches its maximum, and also that 
i t  gives no account of the phenornenon of retentiveness. Naxwell has 
shewn how the theory may be modified so as to take account of these 
two phenornena. He supposes that, so long as the forces acting on the 
molecules are small, the molecules experience small deflexions as imagined 
by Weber, but that as soon as these deflexions exceed a certain amount, 
the molecules are wrenched away entirely froin their original positions 
of equilibrium, and take up positions relative to some new position of 
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equilibrium, It might be, for instance, that originally the molecule had two 
possible positions of equilibrium, O P  and OQ in fig. 117. Suppose the 
molecule to be in position O P  and to be 
acted upon by a grndually increasing force 
in some direction OA. At first the molecule 
will turn from the position O P  towards OA. 

b; > 

-.----.s 
But i t  may be that, as soon as the molecule /.------- _a-_.__----- 

passes some position OR, i t  suddenly swings O A 

round and takes up a position in which i t  Fm. 117. 

must be regarded as being deflected from the position of equilibrium OQ and 
not from OP. Let its new position be 08, then the deflexion produced is 
the angle SOP instead of the angle R O P  which would be given by Weber's 
theory. I n  this way Maxwell suggested i t  might be possible to account for 
the induced magnetisation increasing more rapidly than the inducing force, 
i.e. for p increasing with H. 

I f  the magnetising force is now removed, the molecule in the position 
OS will not return to its original position OP, but to the position O&. I t  
will therefore still have a deflexion QOP, called by Maxwell its "permanent 
set," and this will account for the " retentiveness " of the substance. 

No molecular theory of this kind can, however, be regarded as a t  al1 
complete. We shall return to the discussion of molecular theories of mag- 
netism in Chapter XVI. 
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EX AMPLES. 

1. A small magnet is placed at the centre of a spherical shell of radii a and b. 
Determine the magnetic force a t  any point outside the shell. 

2. A system of permanent magnets is such that the distribution in al1 planes parallel 
to a certain plane is the same. Prove that if a right circulai. solid cylinder be placed in 
the field with its axis perpendicular to these planes, the strength of the field at any point 
inside the cylinder is thereby altered in a constaiit ratio. 
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3. A magnetic particle of moment m. lies a t  a distance a in front of an infinite block 
of soft iron bounded by a plane face, to which the axis of the particle is perpendicular. 

' Findthe force acting on the magnet, and shew that the potential energy of the system is 

- m2 ( p  - 1)/8a3 (p+ 1).  

4. The whole of the 8pace on the uegative aide of the yz plane is filled with soft iron, 
and a magnetic particle of moment m a t  the point (a, O, O) points in the direction 
(cos a, 0, sin a). Prove that the magnetic potential at the point X, y, z inside th& iroh is 

5. A small magnet of moment dl is held in the presence of a .very large fixed mass of 
soft iron of permeability p with a very large plane face : the magnet is a t  a distance a 
from the plane face and makes an angle 8 with the shortest distance from i t  to the plane. 
Shew that a certain force, and a couple 

( p -  l )X2sin e ~ o s 6 / 8 ( ~ + 1 ) a ~ ,  
are required to keep the magnet in position. 

6. A small sphere of radius b is placed near a circuit which, when carrying unit 
current, would produce a field of strength H a t  the point where the centre of the sphere is 
placed. Shew that if K is the coefficient of magnetic inductïon For the sphere, the presence 
of the sphere increases the self-induction of the wi~e  by, approximately, 

7. If the magnetic field within a body of permeability p be uniform, shew that any 
spherical portion can be removed and the cavitfr filled up with a concentric spherical 
nucleus of permeability p, and a concentric shell of permeability pz without affecting the 
external field, provided p lies between pl and h, and the ratio of the volume of the nucleus 
to that of the shell is properly chosen. Prove also that the field inside the nucleus is 
uniform, and that its intensity is greater or less than that outside according as p is greater 
or less than pl. 

8. A sphere of radius a has a t  any point (x, y, z )  components of prmanent magneti- 
sation (Px, Qy, O), the origin of coordinates being at ita centre. It is surrounded by a 
spherical shell of uniform permeability p, the bounding radii being a and b. Determine 
the vector potential a t  an, outside point. 

9. A sphere of soft iron of radius a is placed in a field of iiniform magnetic force 
parallel to the axis of z. Shew that the lines of force external to the sphere lie on surfaces 
of revolution, the equation of which is of the form 

T Lleing the distance from the centre of the sphere. 

10. A sphere of soft iron of permeability p is introduced into a field of force in which 
the potential is a homogeneous polynomial of degree n in s, y, z. Shew that the potential 
inside the ~phere is rediiced to its original value multiplied by 

2n+ 1 
np+n+l '  

11. If a shell of radii a, b is introduced in place of the sphere in the last question, 
shew that the force inside the cavity is altered in the ratio 
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12. An infinitely long hollow iron cylinder of permeability p, the cross-section being 
concentric circles of radii a, b, is placed in a uniform field of magnetic force the direction 
of which is perpendicular to the generators of the cylinder. Shew that the number of 
lines of induction through the space occupied by the cylinder is changed by inserting the 
cylinder in the field, in the ratio 

b ~ ( p + l ) ~ - a z ( p - l ) e :  Zp{ba(p+l)-a2(p-l)}. 

13. A cylinder of iron of permeability p has for cross-section the curve 

r = a (1 +r cos 2û), 

where r%ay be negleded. Find the distribution of potential when the cylinder ia place6 
in a field of force of which the potential before the introduction of the cylinder was 

14. An infinite elliptic cylinder of soft iron is placed in a uniform field of potential 
9 yz - (Xx+ Yy), the equation of the cylinder being a, + -= 1. Shew that the potential of 

b2 

the induced magnetism a t  any interna1 point is 

15. A solid elliptic cylinder whose equation is 5 =a given by 

x+iy=ccosh({+i1) 
is placed in a field of magnetic force whose potential is A (sa-y*). Shew that in the 
space external to the cylinder the potential of the induced rnagnetism is 

- &Ac2 cosech 2 (a +fi) sin 4a ee(a-B-o COS 2?, 
where coth 2fi is the permeability. 

16. A solid ellipsoid of soft iron, semi-axes a, b, c and permeability p, is placed in a 
uniform field of force X parallel to  the axis of x, which is the major axis. Verify that the 
internal and external potentials of the induced magnetisation are 

n, = PA,%, na, = PA@, 

where d , = r  d$ A , = / .  4 
0 (a2++)% (bz++)g (c2++)h7 "(a2 + +)a (b2 + +)f (c2 + +)* ' 

P = ( P - ~ )  X/{(,W- 1) A,+2 (abc)-'), 

and X is the parameter of the confocal through the point considered. 

17. A unit magnetic pole is placed on the axis of z a t  e distance f from the centre of 
a sphere of soft iron of radiua a. ~ h e w  that the potential of the induced megnetism a t  
itny external point is 

1 - 
t"+' dtdû 

Z + L ~ C O S ~ -  - 

where z, w are the cylindrical coordinates of the point. Find also the potential a t  an 
internal point. 

18. A rnagnetic pole of strength m is placed in front of an iron plate of permeabiiity 
p and thickness c. If this pole be the origin of rectangular coordinates x, y, and if a be 
perpendicular and y parallel to  the plate, shew that the potential behind the plate is 
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CHAPTER XII1 

THE MAGNETIC FIELD PRODUCED BY ELECTRIC CVRRENTS 

480. So far the subjects of electricity and magnetism have been developed 
as entirely separate groups of physical phenomena. Although the mathe- 
matical treatment in the two cases has been on parallel lines, we have not 
had occasion to deal with any physical links connecting the t a o  series of 
phenomena. 

The first definite link of the kind was discovered by Oersted in 1820. 
Oersted's discovery was the fact that a current of electricity produced a 
magnetic field in its neighbourhood. 

The nature of this field can be invesfigated in a simple manner. We 
first double back on itself a wire in which 
a current is flowing (fig. 118, 1). I t  is 
found that no magnetic field is produced. 

Next we open the end into a small 
plane loop PQ* (fig. 118,2). I t  is found 
that a t  distances from the loop which are 
great compared with its linear dimensions, 
such a loop exercises the same magnetic 
forces as a magnetic particle of which the Fra. 118. 
axis is perpendicular to the plane PQRS, 
and the moment is jointly proportional to the strength of the current and 
to the area PQRS. The single current flowing in the circuit OPQRST is 
obviously equivalent to two currents of equal strength, the one flowing in 
the circuit OPST obtained by joining the points P and A', and the other 
flowing in the closed circuit PQRSP. The former current is shewn, by 
the preliminary experiment, to have no magnetic effects, so that the whole 
magnetic field may be mcribed to the small closed circuit PQRS. 
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481. Instead of regarding this field as due to a particle of moment jointly 
proportional to the area PQRS and to the current-strength, we may regard 
it as due to a small magnetic shell, coinciding with the area PQRS, and of 
strength simply proportional to the current flowing in PQRS. 

482. Next, let us consider the current flowing in a closed circuit of any 
shape we please, and not necessarily in 
one plane. Let us cover in the closed 
circuit by an area of any kind having the 
circuit for its boundary, and let us cut 
up this area into infinitely srnaIl meshes 
by two systems of lines. A current of 
strength i flowing round the boundary 
circuit, is exactly equivalent to a current 
of strength i flowing round each mesh in 
the same direction as the current in the 
boundary. For, if we imagine this latter 

Fro. 119. system of currents in existence, any Iine 
such As AB in the interior will have two currents flowing through it, one 
from each of 'the two meshes which it separates, and these currents will 
be eqiial but in opposite directions. Thus al1 the currents in the lines 
which have been introduced in the interior of the circuit annihilate one 
another as regards total effect, while the currents in those parts of the 
meshes which coincide with' the original circuit just combine to reproduce 
the original current flowing in this circuit. 

Thus the original circuit is equivalent, as regards magnetic effect, to a 
system of currents, one in each mesh. By taking the meshes sufficiently 
small, we may regard each mesh as plane, so that the magnetic effect of a 
current circulating in it is known: the magnetic effect of the current in a 
single mesh is that of a magnetic shell of strength proportional to the current 
and coinciding in position with the mesh. ~ h u s ,  by addition, we find that 
the whole system of currents produces the same magnetic effects as a single 
magnetic shell coinciding with the surface of which the original current- 
circuit is the boundary, and of strength proportional to the current. This 
shell, then, produces the same magnetic effect as the original single current. 
The , magnetic shell is spoken of as the " equivalent magnetic shell." . 

Thus we have obtained the following result : 

" A  current jowing in  any closed circuit produces the same magnetic jeld 
us a certain magnetic shell, Imown as the ' equivalent magmtic shell.' This 
shell rnay be taken to be any shell having the circuit for its boundary, its 
strength bei~zg ulzifw~wt and proportional to that of the current." 
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Law of Signs. If an observer is imagined to stand on that side of the 
" equivalent magnetic shell" which contains the negative poles, the current 
flows round him in the same direction as that in which the sun rnoves round 
an observer standing on the earth's surface in the northern hemisphere. 

We can also state the law by saying that to drive an ordinary right- 
handed screw (e.g. a cork-screw) in the direction 
of magnetisation of the shell, the screw would 
have to be turned in the direction of the 
current. 

Cui-rent 
The law of signs expresses a fact of nature, not a 

mathematical convention. At  the same time, it must be 
+ i l f f  

noticed that the law does not express that nature shews 1 
any preference in this respect for right-handed over loft- ? 

Direction of Magnetisation 
handed screws. Two conventions have already been made of equivalent shell. 
in deciding which are to be oalled the positive directions 

FIG. 120. 
of current and of magnetisation, and if either of these 
conventions had been different, the word "right-handed" in the law of signs would have 
had to be replaced by "left-handed." 

483. Since, by 5 346, any system of currents can be regarded as the 
superposition of a number of simple closed currents, it follows that the 
magnetic field produced by any system of currents can always be regarded as 
that produced by a number of magnetic shells, each of uniform strength. 

Electromagnetic Unit of Current. 

484. If i is the strength of the current fiowing in a circuit, and + the 
strength of the equivalent magnetic shell, then 

+ = t i ,  

where t is a constant, which is positive if the law of signs just stated has 
been obeyed in determining the signs of + and i. 

I n  the system of units known as Electromagnetic, we take Ic = 1, and 
define a unit current as one such that the equivalent magnetic shell is of 
unit strength. The strength of a current, in these units, is therefore 
measured by its magnetic effects. Obviously the strength measured in  this 
way will be entirely different from the strength measured by the number of 
electrostatic units of electricity which pass a given point. This latter method 
of measurement is the electrostatic method. A full discussion of systems of 
units will be given later (5  584); a t  present it may be stated that a current 
which is of unit strength when measured electrornagnetically in C.G.S. units is 
of strength 3 x 101° (very approxirnately) when measured electrostatically. The 
practical unit of current, the ampère, is, as already stated, equal to 3 x los 
electrostatic units of current, so that the electromagnetic unit of current is 
equal to 10 ampères. 
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A unit charge of electricity in electromagnetic units will be the amount 
of electricity that passes a fixed point per unit time in a circuit in which an 
ielectromagnetic unit of currerit is flowing. I t  is therefore equal to 3 x 101° 
electrostatic units. 

485. I n  fig. 121 let the thick line represent a circuit in which a current 
is flowing, and let the thin line through ._-- __.---.__ -... 
the point P represent the outline of ,,' -'. 

,(' h., 
any equivalent magnetic shell, P ,,, 

being any point in the shell. Let us i 
imagine that we thread the circuit by j 
any closed path beginning and ending :,, 
a t  P, this path being represented by ',., 
the dotted line in the figure. At  every 
point of this path except P, we have a .- --_____..-- /' 

full knowledge of the magnetic forces. FIG. 121. 

It will be convenient to regard the shell as having a definite, although 
infinitesimal, thickness a t  P. Let P+, P- denote the points in 
which the path intewects the positive and negative faces of the 

:Q- 
shell. Shen we may Say that the forces are known a t  al1 points of 
the path, except over the small range P+F. iQ+ 

i P- 
The original current can, however, be represented by any - 

number of equivalent magnetic shells, for any shell is capable of % 
representing the current, provided only i t  has as boundary the ; 

circuit in which the current is flowing. Fra. 122. 

Let any other equivalent shell cut the path in the points Q+Q-. From 
Our knowledge of the forces exerted by this shell, we can determine the 
forces exerted by the current a t  al1 points of the path except those within 
the range of &+CS_. I n  particular we can deterniine the forces over the range 
I+P, and i t  is a t  once obvious that on passing to the limit and making the 
range el?. infinitesimal, the forces a t  the points &, p, and a t  al1 points on the 
infinitesimal range P , P _  must be equal. Obviously the forces are also finite. 

The work done on a unit pole in taking i t  round the complete circuit 
from P_ back to EL, is accordingly the same as that done in  taking i t  from P_ 
round the path to 4. This can be calculated by supposing the forces to be 
exerted by the first equivalent shell, for the path is entirely outside this 
shell. If the potential due to the shell is Clp+ a t  P+ and is .Cl, - a t  P., the 
work done is Clp+ - Cl9. 

Now fl, the potential of the shell a t  any point, is, as we know (§ 419), 
equal to iw,  where w is the solid angle subtended by the shell and i is the 
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current, rneasured in electromagnetic units. The change in the solid angle 
as we pass from E to P, is, as a matter of geometry, equal to 47r. Thus 

a,+ - a,- = 47n .......,................... (410). 

The work done in taking a unit pole round the path described is accord- 
ingly 47ri. 

486. Let us fix upon a definite equivalent shell to represent a current of 
strength i. Let us bring a unit pole from in- 

- 

finity to any point A, by a path which cuts 
the equivalent shell in pointk P, Q, ... 2, For 
simplicity, let us at first suppose that at each 
of these points the path pa&es from the 
positive let the points to the on negative the two side sides of of the the shell, shell and be @ Q+ 

denoted, as before, by P+, P_; Q+, Q-; and FIQ. 123. 

so on. 

Then, if denotes the magnetic potential due to the equivalent shell, 
the work done in bringing the unit pole from iniinity to P, will be Op+. I n  
the limit P, and P_ are coincident, so that the work in taking the unit pole 
on from P+ to P- is idnitesimal. In  taking it from P- to Q+ work is done of 
amount fiB+ - fip-, from Q+ to Q-, the work is infinitesimal, and so on, until 

ultimately we arrive at A. Thus the total work done in bringing the unit 
pole to A is 

n, + PQ+ - fi,-) + P B +  - fi,-) 4- . S .  + (a* - az), 

or, rearranging, is 
.... a, + (a,+ - a,-) -t (a,+ - Q,-) + 

Now each of the terms fipA- Cls, Cl, - a,, etc. is equal by equation 
(410) to 4ai, so that if n is the nurnber of these terms, the whole expression 
is equal to 

Cl,  + 47rni. 

Replacing a, by io, where w is the solid angle subtended by the shelI at 
A, we find for the potential at A due to the electric current 

If the path cuts the equivalent shell ri times in the direction from + to -, 
and rn times in the opposite direction, the quantity n must be replaced by 

Expression (411) shews that the potential at a point is not a single-valued 
function of the coordinates of the point. The forces, which are obtained by 
differentiation of this potential, are, however, single-valued. 
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Current in  injnite straight wire. 
487. As an illustration of the results obtained, let us consider the 

magnetic field produced by a current flowing in a straight wire which is of 
such great length that i t  may be regarded as infinite, the return current 
being entirely at  infinity. 

Let us take the line itself for axis of z. Any semi-infinite plane termi- 
nated by this line may be regarded as an equivalent nlagnetic shell. Let us 
fix on any plane and take it as the plane of xz. 

Consider any point P such that OP, the shortest distance from P to 
the axis of z, makes an angle 8 with Oz. The cone 
through P which is subtended by the aemi-inhite 
plane Ox, is bounded by two planes-one a plane 

P parallel to the plane 20%. These contain an angle 
a - 8, so that the solid angle subtended by the plane 

k-; through P and the axis of z ; the other a plane through 

z0x at P is 2 (T-  O). Giving this value to o in 
formula ($Il), we obtain as the magnetic potential at P FIO. 124. 

Cl = { 2 ( ~ - 8 ) + 4 n ~ j i .  
an Since - = O it is clear that there is no radial magnetic force, and the 
ar 

force at any point in the direction of 8 increasing 

This result is othenvise obvious. If the work done in taking a unit pole 
round a circle' of circumference 2 a r  is t o  be 47ri, the tangential force at  

2 i  
every point must be -. 

r 

488. This result admits of a simple experimental confirmation. 

Let PQR be a disc suspended in such a way that the only motion of 
which it is capable is one of pure rotation about a 
long straight wire in which a current is flowing. 
On this disc let us suppose that an imaginary unit 
pole is placed at a distance r from the wire. There 
will be a couple tending to turn the disc, the 

2i 
moment of this couple being - x r or 2i. Similarly 

r 
if we place a unit negative pole on the disc there is P 

a couple - 2i. 

On placing a magnetised body on the disc, there 
will be a system of couples consisting of one of 
moment 2i for every positive pole and one of moment FICI. 126. 
- 2i for every negative pole. Since the total charge 
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in any magnet is nit, it appears that the resultant couple must vanish, so 
that the disc will shew no tendency to rotate. This can easily be verified. 

489. Let us find the potential due to a current of strength i flowing in a 
circle of radius a. The equivalent magnetic shell may be supposed to be a 
hemisphere of radius a bounded by this circle. 

The potential at any point on the axis of the circle can readily be found. 
For at a point on the axis distant r from the centre 
of the circle, the solid angle o subtended by the 
circle is given by 

r 
a>=2r(l-cosa)=2T(1--), da2 + r2 

so that the potential at this point is 

r 
a=2n-i(1--) - ' 

This expression can be expanded in powers of r I 
by the binomial theorem. We obtain the following FIG. 126. 

expansions : 

n o m  this it is possible to deduce the potential a t  any point in space. 
Let us take sphericaI polar coordinates, taking the centre of the circle as 
origin, and the axis of the circle as the initial line O= 0. Inside the sphere 
r = a, the potential is a solution of V2f) = O which ia symmetrical about the 
a& 8=.0, and rernains finite at the origin. I t  is therefore capable of 
expansion in the form 

m 
Cl = 2A,rnP, (cos 8). 

O 

Along the axis we have B = O, so that this assumed value of fl becomes 

and the coefficients may be determined by cornparison with equation (412) 
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Thus we obtain for the potentials, 

1 , 3  ... 212-1 r 21L+1 

( -  2 . 4 .  . . 2 n  (~1) P,, (cos 8) + . . .1 . . .(414), 
1 

when r c a, and 

3 a4 

when r > a. 
.Id 

At points so near to the origin that - may be neglected, the potential is 
a3 

an 2?n 
where z= r cos 0, and the magnetic force is a uniforrn force -- = - 

a 
parallel to the axis. 

Solenoids. 

490. A cylinder, wound uniformly with wire through which a current 
can be sent, is called a " solenoid." 

Consider first a circular cylinder of radius a and 
height h, having a wire coiled round it a t  the uniform 
rate of n turns per unit length, 'the wire carrying a 
current 2. Let z be a coordinate measuring the 
distance of any cross-section from the base of the 
solenoid. Then the sinal1 layer between z and z + dz, 
being of thickness ds, will contain ndz turns of wire. ' 

Fut. 127. The currents flowing in al1 these turns may be re- 
garded as a single current nids flowing in a circle, this circle being of radius 
a and at distance z from the base of the solenoid. The magnetic potential 
of this current may be written down from the formula of the last section, and 
the potential of the whole solenoid follows by integration. 

491. Endlcss Solenoid. In the lirniting case in which the solenoid is of 
infinite length (or in which the ends are so far away that the solenoid may 
be treated as though it were of infinite length), the field can be determined 
in a simpler manner. 

Consider first the field outside the solenoid. I n  taking a unit pole round 
any path outside the solenoid which completely surrounds the solenoid, the 
work done is, by 5 485, 47ri. The current flowing per unit length of the 
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solenoid is ni. I n  general we are concerned with cases in which this is finite 
n being very large and i being ve r -  small. The quantity 47ri may accordingly 
be neglected, and we can suppose that the work done in taking unit pole 
round the solenoid ' is zero. 

It follows that the force outside the solenoid can have no component a t  
right angles to planes through the axis, and clearly, by a similar argument, 
the h m e  must be true inside the solenoid. Hence the lines of induction 
must lie entirely in the planes through the axis of the 
solenoid. From symmetry, there is no reason why 
the lines of induction at  any point should converge l Fl p 
towards, rather than diverge from, the axis, or vice 
versa. Hence the lines of induction will be parallel 
to the axis, and the force a t  every point will be entirely F, 
parallel to the axis. P Q R 

- Let the lines PQR, P'Q'R' in fig. 128 be radii 
- - 

meeting the axis, the lines PP', QQ', BR' being - 

- - 

parallel to  the axis and each of length e. Let the FIO. 128. 
magnetic forces along these lines be 4, and 4 
respectively. 

In  taking unit pole round the closed path PP'Q'QP the work done is 

, . 4€-&6, 
and since this must vanish, we. must have f l=E.  Hence the force a t  al1 
points outside the solenoid must be the same; i t  must be the same as the 
force a t  infinity and must consequently vanish. Thus there is no force a t  al1 
outside the solenoid. 

I n  taking unit pole round the closed path PP'R'BP, the work done is 
4 ~ ,  and this must be equal to 4 ~ n i e ,  so that we must have E e  = 41~ni .  Thus 
the force a t  any point inside the solenoid is a force 47rni parallel to the axis. 

Thus the field of force arising from an infinite solenoid consists of a 
uniform field of strength 47rni inside the solenoid, there being no field a t  al1 
outside. The construction of a solenoid accordingly supplies a simple way of 
obtaining a uniform magnetic field of any required strength. 

GALVANOMETERS. 

492. A'galvanometer is an instrument for measuring the strength of an 
electric current, the method of measurement usually being to observe the 
strength of the magnetic field produced by the current by noting its action 
on a small movable magnet. 

. .There are naturally various clnsses and types of galvanonieters designed 
to fulfil various special purposes. 

J. 28 
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The Tangent Calvanometer. 

493. I n  the tangent galvanometer the current flows in a vertical 
circular coil, a t  the centre of which a small magnetic needle is pivoted 
so as to be free to turn in a horizontal plane. 

Before use, the instrument is placed so that the plane of the coil contains 
the lines of magnetic force of the earth's field. The needle accordingly rests 
in the plane of the coil. When the current is allowed to flow in the coil 
a new field is originated, the lines of force being at  right angles to the 
plane of the coil and the needle will now place itself so as to be in equi- 
librium under the field produced by the superposition of the two fields-the 
earth's field and the field produced by the current. 

As the needle can only move in a horizontal plane, we need consider 
only the horizontal components of the two fields. Let H, as usual, denote 
the horizontal component of the earth's field. Let i be the c u r r e ~ t  flowing 
in the coil, measured in electromagnetic units, let a be the radius and let TL 

be the' number of turns of wire. Near the centre of the coil the field 
produced by the current is, by 5 489, a uniform field a t  right angles to 

2r in 
the plane of the coil, of intensity -- . The total 

a 4 .  
horizontal field is therefore compounded of a field of 
strength H in the plane of the coil, and a field of F a  2rin -- 

2 ~ i n  
strength - at  right angles to it. 

a 
FIQ. 129. 

The resultant will make an angle 8 with the plane 
of the coil, where 

(?Te) 
..................... tan 8=- .... H (W, 

and the needle will set itself along the lines of force of the field. Thus the 
needle will, when in equilibrium, make an angle 8 with the plane of the 
coil, where 8 is given by equation (416). If we observe 0 we can determine 
i from equation (416). We have 

where G is a constant, known as the galvanometer constant, its value 
27rn 

being - , 
a 

The instrument is .called the tangent galvanometer from the circum- 
stance that the current is proportional to the tangent of the angle 8. 
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The tangent galvanometer has the advantage that al1 currents, no matter 
how small or how great, can be measured without altering the adjustment 
of the instrument. A disadvantage is that the readings are not very sensi- 
tive when the currents to be .measured are large-only a very small change 
in the reading is produced by a considerable change in the current. Let 
the current be increased by an amount di, and let the corresponding change 
in B be dB, then from equation (417), 

so that if i is large, - is small. Thus, although the instrument may be 
d i  

used for the measurement of large currents, the measurements cannot be 
effected with much accuracy. 

A second defect of the instrument is caused by the circumstance that 
the field produced by the current is not absolutely uniform near the centre 
of the coil. If a is the radius of the coil, and b the distance of either pole 
of the milgnet from its centre, the poles will be in a part of the field in 
which the intensity differs from that a t  the centre of the coil by terms of 

b3 
the order of - .. For instance, if the magnet is one inch long, while the 

as 
coil has a diameter of 10 inches, the intensity of the field will be different 
from that assurned, by terms of the order of (&)a, so that the reading will be 
subject to an error of about one part in a thousand. 

By replacing the single coil of the tangent galvanometer by two or more 
parallel coils, i t  is possible to make the field in the region in which the 
magnet moves, as uniform as we please. I t  is therefore possible, although 
a t  the expense of great complication, to make a tangent galvanometer which 
shall read to any required degree of accuracy. 

The Sine Gnlvanorneter. 

494. The sine galvanometer differs from the tangent galvanometer in 
having its coil adjusted so that i t  can be turned about a vertical axis. 
Before the current is sent through the coil, the instrument is turned until 
the needle is a t  rest in the plane of the coil. The coil is then in the direc- 
tion of the earth's field a t  the point. 

As soon as a current is sent through the coil, the needle is deflected, as 
in the tangent galvanometer. The coi1 is now slowly turned in the direction 
in which the needle has rnoved, until i t  overtakes the needle, and as soon 
as the needle is again at  rest in the plane of the coi5 a reading is taken, 
giving the angle through which the coil has been turned. Let 0 be this 
angle, t hen  the earth's field may be resolved into components, H cos 0 in 

28-2 
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the plane of the coil and Hsin  0 at  right angles to this plane. Since the 
needle rests ïn the plane of the coil, the latter component must be just 
neutralized by the field set up by the current, this being, as we have seen, 
entirely nt right angles to the plane of the coil. We accordingly have 

so that we must have 

where 0, the galvanometer constant, has the same meaning as before. 

This instrument has the disadvantage that it cannot be used to measure 
H 

currents greater than -. I t  is, however, sensitive over the whole range 
CS 

through which it can be used: if dû is the increase in 6' caused by a change 
di in i, we have 

G dB = - sec 0 di, H 

so that the greater the current the more sensitive the instrument. 

The great advantage of this form of galvanometer, however, is that when 
the reading is taken the magnet is always in the same position relative 
to the field set up by the current in the coil. Thus the deviations from 
uniformity of intensity at the centre of the field do not produce any error 
in the readings obtained : . they result only in the galvanonieter constant 
having a value different from that whioh it has so far been supposed to 
have. But when once the right value has been assigned to the constant O, 
equation (418) will be true absolutely, no [natter how large the movable 
needle may be in coinparison with the coil. 

495. There are various other types of galvanometers in use to serve 
various purposes other than the exact measurement of a current. For full 
descriptions of these the reader may be referred to books treating the 
theory of electricity and niagnetism from the more experimental side. The 
following inay be briefly mentioned here: 

1. The D'Arsonval Calvanometer. This instrument is typical of a class 
of galvanometer in which there is no moving needle, the moving part being 
the coil itself, which is free to turn in a strong magnetic field. The coil 
is suspended by a torsion fibre between the poles of a powerhl horseshoe 
magnet. When a current is sent through the coil, the coil itself produces 
the same field as la magnetic shell, and so tends to set itself across the 
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lines of force of the permanent magnet, this motion being resisted by no 
forces except the torsion of the fibre. 

II. The Mirror Galvanometer. This is a galvanometer originally designed 
by Lord Kelvin for the measurement of the small currents used in the trans- 
mission of signala by submarine cables. The design is, in its main outliries, 
identical with that of the tangent galvanometer, but, to make the instrument 
as sensitive as possible, the coil is made of a great number of turns of fine 
Mre, wound as closely as possible round the space in which the needle 
moves, and the needle is siispended as delicately as possible by a fine 
torsion-thread. To make the instrument still more sensitive, permanent 
magnets can be arranged so as to neutralize part of the intensity of the 
earth's field. The instrument is read by observing the motion of a ray of 
light reflected from a small mirror which moves with the needle: i t  is from 
this that the instrument takes its name. I n  the most sensitive form of this 
instrument a visible motion of the spot of light can be produced by a current 
of 10-l0 ampères. 

III. The Ballistic Galvanometer. This instrument does not measure 
the current passing at  a given instant, but the total flow of electricity 
which passes 'during an infinitesimal interval. If the needle is at rest in 
the plane of the coil, a current sent through the coil will establish a 
magnetic field tending to turn the needle out of this plane. So long as 
the needle is approximately in the plane of the coil, the couple acting on 
the nee'dle will be proportional to the current in the coil: let i t  be denoted' 
by ci, where i is the current. 

Then if CO is the angular velocity of the needle at  any instant, we shall 
have an equation of the form 

do . 
lnka - = cz, 

dt  

where m/ca is the moment of inertia of the needle. Integrating through the 
small interval of time during which the current may be supposed to flow, 
we obtain 

Here ln is the angular velocity with which the needle starts into motion, 

and i d t  is the total current which passes through the coil. Thus the total I 
flow i d t  can be obtained by measuring n, and this again can be obtained by I 
observing the angle through which the needle swings before coming to rest 
a t  the end of its oscillation. 
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496. From the formulae obtained in 5 446 for the vector-potential of a 
uniform magnetic shell, we can a t  once write down expressions for the vector- 
potential of a field due to currents. 

For, by 5 483, the field due to any system of currents may be segarded as 
the field due to a number of shells of uniforin strength, so that the vector- 
potential at  any point will be the sum of the vector-potentials due to these 
different shells. Hence if +, +', ... are the strengths of the various shells, 
the vector-potential at  any point P has components (cf. 5 446) 

F = C - -r ds', etc., E : 
where the summation is over al1 the shells, and dx', ds' refer to an elernent of 
the edge of a shell of strength +, this element being a t  a distance r from the 
point P. 

The equations just found may clearly be replaced by 

where ds is now an  element of any wire or linear conductor in  which a 
current of strength i is flowing, and the integration is now along al1 the 
conductors in  the field. 

By the use of equations (376), we may at  once obtain the components of 
magnetic force or induction a t  any point x', y', z' in the forms 

aH aG a=--- 
ayl a i  

a i az a i i d y  
=/iIG (--) z-z (--J &} ds, etc. ............ (420). 

MECHANICAL ACTION IN THE FIELD. 
Ampère's rule lfor the force frowa n circuit. 

497. Let O (x, y, z) be the position of any element ds of a circuit, and 
let P be any point (x', y', z') in free space. 

From equations (420) it follows that the magnetic force a t  P may be 
regarded as made up of contributions from each element of the circuit such 
that the contribution from the element ds at  O has components 
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On putking 1.a = (X - xl)a + (y - y')1+ (z - z ' ) ~ ,  and differentiating, these 
components becorne 

y-y'dz z-zfdy ids z - d d x  x-x'dz ----- , etc. .. .(421). r ds r as}' F{ r E - r z  
x-  x' y-y' z-2' Let us denote - - - by l , ,  m,, n,, these being the direction- 

r '  r '  T 

drc dy dz 
cosines of the line OP, and let - , - , - 

ds ds ds 
be denoted by l,, m,, n,, these being the 
direction-cosines of ds. Then the com- 
ponents of force (421) become 

i ds i ds 
- (%na - ~ 4 ,  7 (nlh - d l ) ,  r a i 

ids 
- (l lm2 - &ml) .. .(422). FIG. 129 a.  
ra 

Clearly the resultant is a force at right angles both to O P  and to ds, and 
of amount 

ids sin 9 .............................. 
va (423), 

where 0 is the angle between O P  and ds. 

Thus the total force at P rnay be regarded as made up of contributions 
siich as (423) from each element of the circuit. This is known as Ampère's 
law. 

, Mechanical action o n  a circuit. 

498. ' We are a t  present assuming the currents to be steady, so that 
action &d reaction rnay be supposed to be equal and opposite. I t  follows 
that the force exerted at a unit pole a t  P upon the circuit of which the 
element ds is part, may be regarded as made iip of forces of amount 

i sin B 
ra 

per unit length, acting a t  right angles to O P  and to ds. If we have poles of 
strength m at P, m'.'at P', etc., the resultant force on the circuit may be 
regarded as made' tip of contributions 

inasinû im'sinû' 
rZ ' rr2 ".. 

per unit length. The resultant of these forces may be put in the form 
i H  sin x .............................. (4% 

where H is the resultant rnagnetic intensity a t  O of al1 the poles m, m', etc., 
and x is the angle between the direction of this intensity and ds. This 
resultant force acts a t  right angles to the directions of H and of ds. 
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A set of forces has now been obtained such that the resultant is the 
resultant force acting on the circuit. It has not, however, been proved that 
a force (424) will actually be exerted on the element of current a t  0; the 
total force on the circuit may be distributed between the different elements 
in a great many ways, and the equation (424) only gives one of these. 

498 a. Let us now examine what is the most general type of foice which 
will account for the action exerted on the circuit. It will be suti+ient to 
consider the force exerted by a single pole, for a general magnetic field can 
always be regarded as the superposition of .fields produced by single poles. 

Let 9, H, Z be supposed to be the components of the force actually 
exerted by a single pole at  P (fig. 129 a)  on an element ds at  O, measured per 
unit length of the element ds, and let these differ from the particular forces 
found iri 5 498 (expression (422)) by Bo, Ho, Z,, so that 

i s=-- (%TL, - W L ~ ~ J  + EO, etc. . . . . .. . . . . . . . . . . . . 
r2 

(425). 

The component of force in the direction 1, m, n is 13 + mH +nZ, and the 
value of this integrated round the circuit must be the same as that of 

integrated round the circuit. We must accordingly have 

I ( E 0  +mHo+nZo) ch= O. 

a4 It follows that lEo + mH, + nZ, must be of the form - , where I$ is of as 
course a linear function of 2, rn, n. I n  order that the resulting force Z, H, Z 
rnay be independent of the p&ticular aet of axes to which Lt is referred, I$ 
must be of the form 

where + is a function of x, y, z only. 

We must accordingly have 

so that a, = - etc., and equations (425) become 
axas * 
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The first terrns compound to give the force already found, which is per- 
pendicular to r and ds. The last terrns give the force arising from the potential 

-- a+ Since + can depend only on r and ds, this latter force must necessarily 
as . 

be in the plane determined by the two lines r and ds, so that the whole force 
must have a component out of the plane of r and ds. It is almost incon- 
ceivable that such a force could be the result of pure action at a distance, so 
that we are led to attribute the forces acting on a circuit conveying a current 
to action through the medium. 

Action between two circuits. 

499. Before leaving this question, however, mention must be made of 
various attempts to resolve the forces between two circuits into forces between 
pairs of elements, 

If the currents, say of strengths i, i', are replaced by their equivalent shells, 
the mutual potential eriergy of these shells is, by $ 423, 446, 

where 6 is the angle between the two elements ds, ds' and r is their distance 
apart. The forces tending to move the circuits in any specified way may be 
obtained by differentiation. 

I t  is obvious that these forces can be accounted for if we suppose the 
elements dsds' to act on one another with forces of which the mutual poten- 
tial energy is 

- 

ii' COS e -- 
T 

dsds'. 

This, however, is not the most general way of decomposing the resultant 
force. Obviously we shall get the same form for W if we assume for the 
mutual potential energy of the two elements 

where + is any single-valued function of position of the elements ds, ds'. 
Clearly + must have the physical dimensions of a length. Pollowing Helm- 
holtz, let us takc + = ~ r ,  where rc is a constant, as yet undetermined. We 
have 

Now 

so that 
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a2r cos 8 cos 8 - cos e 
Hence -- 

as as' - r , 

where 8, 8' are the angles between r and ds, ds' respectively, and e as before 
is the angle between ds, ds', so that 

cos e = cos 8 cos 8' + sin 8 sin 8' cos (+ - +'), 
where 4, 4' are the azimiiths of ds, ds: 

From this last equation, we have 

a2r sin 8 sin 8' cos (+ - 4') -- 
as a d  - - 2 

T 

and the mutual potential energy w of the two elements now assumes the form 

- ii' ds ds' {cos 8 cos 8' + (1 - K )  sin 6 sin B' cos (4 - +')]. 
r 

From this value of w the system of forces can be found in the usual way. 
The forces acting on the element ds will consist of 

(a) a repulsion - - along the line joining ds afid dsl, 
ar 

aw (b )  a couple - - ae tending to increase 8, 

aw (c) a couple - - 
a4 

tending to increase +. 
I f  we take K =  1 we obtain a system of forces originally suggested by 

Ampère. We have 
ii' ds ds' 

W=-- e cos Y, 
r 

so that the forces are 

ii' ds ds' 
(a) a repulsion --- ra cos d cos along the line joining ds and ds', 

ii' ds ds' 
(b)  a couple - ---- sin 8 cos 8' tending to increase 8. 

r 

and couple (c) vanishes. 

If we take K = #, we obtain a system of forces derivable from the energy- 
function 

ii'dsds' w = --- {sin B sin 8' cos (+ - (P') - 2 COS 8 cos Y], 
2r 

which is the same as the energy-function of two magnetic particles of strengths 
ids and i'ds', multiplied by +r2. Thus force (a) is &P times the correspond- 
ing forces for the magnetic particles, while couples (b) and (c) are +rZ times 
the corresponding couples. 
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500. There are of course innumerable other possible systems of forces, 
but none of these seem a t  al1 plausible, so that we are almost compelled to 
give up al1 attempts a t  explaining the action between the circuits by theories 
of action at  a distance. We accordingly attempt to construct a theory on 
the hypothesis that the forces result from the transmission of stresses by the 
medium. This in turn compels us to assume that the energy of the system 
of currents resides in the medium. 

501. The energy of a magnetic field, as we have seen (5 470), is 

If the energy resides in the medium, this expression may be regarded as 
the energy of the field, no matter how this field is produced. If the field is 
produced wholly by currents, expression (424) may be regarded as the energy 
of the system of currents. As we shall now see, it can be transformed in a 
simple way, so as to express the energy of the field in terms of the currents 
by which the field is produced. 

The integral through al1 space, as given by expression (424), may be 
regarded as the sum of the integrals taken over al1 the tubes of induction by 
which space is filled. The lines of induction, ae we have seen, will be closed 
Cumes, so that the tubes are .dosed tubular spaces. 

If ds is an element of length, and d S  the cross-section a t  any point, of a 
tube of unit strength, we may replace dxdydz by dSds, and instead of inte- 
grating with respect to di3 we may sum over al1 tubes. Thiis expression (424) 
becomes 

& 2 l l p  (%' + Ba + 7') d s ~  

where the summation is over al1 unit tubes of induction. I f  H a  = aa + @ + ry: 
we have, by the' definition of a unit tube, pHdS = 1, so that 

p (aa + pa + f )  dS  = pHadS = H, 

and the integral becomes 

Now 1 ~ d s  is the work perforrned on a unit pole in taking it once round 

the tube of induction, and this we know is equal to 47rZ'i, where Z'i is the 
sum of a11 the cufrents threaded by the tube, taken each with its proper 
sign, Thus the energy becomes 
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This indicates that for every time that a unit tube threads a current i, 
a contribution ai is added to the energy. Thus the whole energy is 

&Zii?. ............................... .(426 a), 

where the summation is over al1 the currents in the field, and N is the 
number of unit tubes which:thread the current i. 

502. We have seen that a shell of strength 4 is equivalent, as regards 
the field produced a t  al1 external points, to a current i, if $ = i. The energy 
of a system of currents has however been found to be &2X, whereas the 
energy of a system of shells was found ($ 450) to be 

............................ - +S+N ..(426 b). 

The'difference of sign can readily be accounted for. Let us consider a 
single shell of strength 4, and let dS be an elernent of area, and dm an element 
of length 'inside the shell measured normally to the shell. A t  any point just 
outside the shell, let the three components of magnetic force be a, j3, y, the 
first being a component normal to the shell, and the others being components 
in directions which lie in the shell. On passing to the inside of the shell, the 
normal induction is discontinuous owing to the permanent magnetism which 
must be supposed to reside on the surface of the shell. Thus inside the shell, 

a 
we may.suppose the components of force to be S + - , P, y, where CL is the 

El 
permeability of the matter of which the shell is composed, and 5' is the 
force originating from the permanent magnetism of the shell. 

The contribution to the energy of the field which is made by the space 
inside the shell is 

where the integral is'taken throughout the interior of the shell; or 

This can be regarded as the sum of three integrals, 
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On reducing the thickness of the shell indefinitely, S becomes infinite, for 
a t  any point of the shell, 

I ~ d n =  - (difference of potential between the two forces of shell) 

= - 4744 

so that S becomes infinite when the thickness vanishes. 

Thus on passing to the limit, the first integral 

becomes infinite. This quantity is, however, a constant, for i t  represents the 
energy required to separate the shell into infinitesimal poles scattered a t  
infinity. 

The second integral vanishes on passing to the kirnit, and so need not be 
further considered. 

The third integral can be simplified. We have 

Sdn= - 474, while udS is the integral of normal induction over II 
the shell, and may therefore be replaced by N, the number of unit tubes of 
induction Tom the external field, which pass through the shell. Thus the 
third integral is seen to be equal to 

- +AT. 

I n  calculating expression (424) when the energy is that of a system of 
currents, the contribution from the space occupied by the equivalent mag- 
netic shells is infinitesimal. Thus al1 the terms which we have .discussed 
represent differences between the energies of shells and of circuits. 

Terms such as the first integrals of sclieme (427) represent merely that 
the energies are measured from different standard positions. In the case of 
the shells, we suppose the shells to have a permanent existence, and merely 
to be brought ihto The currents, on the other hand, have to be 
created, as well as placed in position. Beyond this difference, there is an 
outstanding difference of amount +N for each circuit, and this exactly 
accounts for the difference between expressions (425) and (426). 

503. Let u s  suppose that we have a system of circuits, which we shall 
denote by the nunlbers 1, 2, .... Let us suppose that when a unit current 
flows through 1, al1 the ,other circuits being devoid of currents, a magnetic 
field is produced such that the numbers of tubes of induction which cross 
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Similarly, when a unit current flows through 2, let the numbers of tubes 
of induction be 

Ln, Lm, Lm, - . - *  
The theorem of 5 446 shews a t  once that 

COS e ...................... L, = =[- dadsl, etc r 
(428). 

I f  currents il, i,, ... flow through the circuits simultaneously, and if the 
numbers of tubes of induction which cut the circuits are N I ,  N,, AT3, ..., we 
have 

Ni = Ll1i1 + L,,ia + Llsi, + ... .............. .(429). 
N,= L,i,+L,i,+L,i,+ ..., etc. 

The energy of the system of currents is 

E = a&X, 

504. The energy required to starte the single cilrrent i in circuit 1 will 
be &Llli". We might expect to obtain the value of L,, froni equation (428) 
by making the two circuits ds and ds' coincide. I t  is, however, easily found 
that the value of Lll, calculated in this way, is infinite. 

This can be seen in another way. The energy of the current is 

2i 
Near to the wire, at  a small distance r from it, the force is -, so that 

r 
aa + @ +y  = 4ia/ra. Thus the energy within a thin ring formed of coaxal 
cylinders of radii r,, r,, bent so as to follow the wire conveying the ciirrent 
will be 

where the integration with respect to r is from r, to r,, that with respect 
to 8 is from O to 2a,  and that with respect to s is along the wire. Integrat- 
ing we find energy 

zg log (r2lr1) I 

per unit length, and on taking r, =O, we see that this energy is infinite. 

505. In  practice, the circuits which convey currents are not of infini- 
tesimal cross-section, a,nd so may not be treated geometrically as lines in 
calculating LI,. The current will distribute itself throughout the cross- 
section of the wire, and the energy is readily seen to be finite so long as the 
cross-section of the wire is h i t e .  
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EXAMPLES. 

1. A current i flows in a very long straight wire. Find the forces and couples it 
eserts upon a small magnet. 

Shew that if the centre of the small magnet is fixed a t  a distance c from the wire, it 
has two free small oscillations about its position of equilibrium, of equal period 

where Mk2 is the moment of inertia, and the magnctic moment, of the maguet. 

2. Two parallel streight infirute wires convey equal currents of strength i in opposite 
directions, their distance apart being 2a. A magnetic particle of strength p and moment 
of inertia mka is free to turn about a pivot a t  i ts centre, distant c fmm each of the wireu. 
Shew that the time of a smtlll oscillation is that of a pendulum of length Z given by 

3. Two equal magnetic poles are observed to repel each other with a force of 40 dynes 
when at a decimetre apart. A current is then sent thmugh 100 metres of thin wire 
wound into a circular ring eight decimetres in diameter and the force on one of the polea 
placed a t  the centre is 25 dynes. Find the strength of the current in ampbres. 

4. Regarding the earth as a uniformly and rigidly magnetised sphere of radius a, 
and denoting the intensity of the magnetic field on the equator by 8, shew that a wire 
surrounding the earth dong the pamllel of south latitude A, and carrying a current i 
fmm west to east, would experience a resultant force towards the south pole of the 
heavens of amount 

6 m i H  sin X cos2 A. 

5. Shew that a t  any point along a line of force, the vector potential due to a current 
i n  a circle is invewely proportional to the distance between the centre of the circle and 
the foot of the perpendicular from the point on to the plane of the circle. Hence trace 
the lines of constant vector potential. 

6. A current i flows in a circuit in  the shape of an ellipse of area A and length l. 
Shew that the for& a t  the centre is r i l / A .  
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7. A current i flows round a circle of radius a, and a current i' flows in a very long 

straight wire in the same plane. Shew that the mutual attraction is 4rii '  (sec a - l), where 
a is the angle subtended by the circle a t  the nearest point of the straight wire. 

8. If, in the last question, the circle is placed perpendicular to the straight wire with 
its centre a t  distance c from it, sliem that there is a couple tending to set the two wires in  
the aame plane, of moment 2riz"aZlc or 2riifc, according as c > or <a. 

9. A long straight current intersects a t  right angles a diameter of a circular current, 
a,nd the plane of the circle makes an acute angle a with the plane through this diameter 
and the straight current. Shew that the coefficient of mutual induction is 

4 r  {c sec a - (c2 seoz a - oz)+} or 4nc tan (o - y) 
4 2 '  

according as the straight current passes within or without the circle, a being the redius of 
the cirole, and c the distance of the straight current from its centre. 

10. Prove that the coefEcient of rnutual induction between a pair of infinitely long 
straight wirea and a circular one of radius a in the same plane and with its centre a t  a. 
distance b (> a) from each of the straight wires, is 

8n ( b -  l / b2 -  a2). 

11. A circuit contains a straight wire of length 2a conveying a current. A second 
straight wire, infinite in both directions, makes an angle' a with the first, and their 
common perpendicular is of length c and meets the first wire in its middle point. Prove 
that the additional electromagnetic forces on the first straight wire, due to the presence 
of a current in the second wire, constitute a wrench of pitch 

a sin a 
a sin a) /sin 2. tan - 1 - . asina-ctan-l-- 

C C 

12. Two circular wires of radii a,  b have a common centre, and are free to  turn on an 
insufathg axis which is a diameter of both. Shew thst when the wires carry currents 
i, i', a couple of magnitude 

a 

is required to hold them with their planes at  right angles, it being assurned that b/a is so 
small that its fifth power may be neglected. 

13. Two circular circuits are in planes a t  right angles to the line joining their centres. 
Shew that the coefficient of induction 

7T 

=2r(a2-cZ 
2 cos 28d8 
O ~ ~ ~ ~ B + c ~ c o ~ ~ B '  

where a, c are the longest and shortest lines which can be drawn from one circuit to the 
other. Find the force between the circuits. 

14. Two currents $ if flow round two squares each of side a, placed with their edges 
parallel to one another and a t  right angles to the distance c between their centres. ~ h e w  
that they attract with a force 

sii, ~J2= + 1 - a2 + 2c" 
a2+c2 c J&2I . 

15. A current i flows in a rectangular circuit whose sides are of lengths 2a, 2b, and 
Dhs circuit is free to rotate about an ?xis throngh its centre parallel to the sides of length 
2a. Another current i' flows in a long straight wire parallel to the axis and a t  a distance 
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d from it. Pmve that the couple required to keep the plane of the rectangle inclined a t  
tm aiigle c$ to the plane through its centre and the straight current is 

Uiz'abd (be+d2) sin 4 
b4+d4-2b2di cos2+' 

16. Two circular wires lie with their planes pmallel on the same sphere, and carry 
opposite currents inversely proportional to the areas of the circuits. A small magnet has 
its centre fixed a t  the centre of the sphere, and moves freely about it. Ehew that it  will 
be in equilibrium when its axis either is a t  right angles to the planes of the circuits, or 
makes an angle tan-19 with them. 

17. An infinitely long straight wire conveys a current and lies in front of and parallel 
to an infinite block of soft iron bounded by a piane face. Find the magnetic potential a t  
all points, and the force which tends to  displace the wire. 

18. A small sphere of radius b is placed in the neighbourhood of a circuit, which 
when carrying a current of unit strength would produce magnetic force H e t  the point 
where the centre of the sphere is placed. Shew that, if K is the coefficient of induced 
magnetization for the sphere, the presence of the sphere increases the coefficient of self- 
induction of the wire by an amount approximately equal to 

19. A circulm wire of radius a is concentric with a spherical shell of soft iron of radii 
b and c. If a steady unit current flow round the wire, shew that the presence of the iron 
increnses the nurnber of lines of induction through the wire by 

approxiniately, where a is small compared with b and c. 

20. A right circular cylindrical cavity is made in an infinite mass of iron of perme- 
ability p. I n  this cavity a wire runs pardlel to the axis of the cylinder carrying a steady 
current of strength 1. Prove that the wire is attracted towards the nearest part of the 
surface of the c h t y  with a force per unit length equal to 

where d is the distance of the wire from its electrostatic image in the cyiinder. 

21. A steady current G flows dong one wire and back along another one, inside a 
long cylindrical tube of soft iron of permeability p, whose interna1 and external radii are 
al and q, the wires being paritllel to the axis of the cylinder and a t  equal distance a on 
opposite sides of it. Shew that the magnetic potential outside the tube will be 

where 

Hence shew that a tube of soft iron, of 150 cm. radius and 5 cm. thickness, for which the 
effective value of p is 1200 C.G.S., will reduce the magnetic field a t  a distance, due to the 
current, to less than one-tweritieth of its natural strength. 

J .  29 
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22. A wire is wound in a spiral of angle a on the surface of an insulating cylinder of 
radius a, so that it makes n complete turns on the cylinder. A current i flows through 
the wire. Prove that the resultant magnetic force at the centre of the cylinder is .' - Brin 

a (1 + r'h2 tan2 a)* 
along the axis. 

23. A current of strength i flows along an infinitely long straight wire, and returns in 
a parallel wire. Theae wiree are insulated and touch along generators the surface of an 
infinite uniform circular cylinder of material whose coefficient of induction is k. Prove that 
the cylinder becomes magnetized as a lamellar magnet whose strength is 2ak i / ( l+2ak ) .  

24. A fine wire covered with insulating material is wound iu the form of a circular 
disc, the ends being at the centre and the circumference. A current is sent through the 
wire such that 1 is the quantity of electticity that flows per unit time across unit length 
of any radius of the disc. Shew that the magnetic force a t  any point on the axis of the 
disc is 

2aI{cosh-1 (sec a)-sina), 

where a is the angle subtended a t  the point by any radius of the disc. 

25. Coils of wire in the form of circlw of latitude are wound upon a sphere and 
produce a magnetic potential AFP, at internal points when a current is sent through 
them. Find the mode of windiig and the potential a t  external points. 

26. A tangent galvanometer is to have five turns of copper wire, and is to be made so 
that the tangent of the angle of deflection is to be equal to the number of ampkres flowing 
in the coil. If the earth's horizontal force is -18 dynes, shew that the radius of the coil 
must be about 17.45 cms. 

27. A given current sent through a tangent galvanometer deflects the magnet through 
an angle 8. The plane of the coil is slowly rotated round the vertical axis through the 
centre of the magnet. Prove that if 8 > $a, the rnagnet will describe complete revolu- 
tions, but if B < ir, the magnet will oscillate through an mgle sin-1 (tan 8) on each side of 
the meridian. 

28. Prove that, if a slight error is made in reading the angle of deflection of a tangent 
galvanometer, the percentage error in the deduced value of the current is a minimum if the 
angle of deilection is an. 

29. The circumference of a sine galvanometer ici 1  metre: the earth's horizontal 
magnetic force is -18 C.G.S. units. Shew that the greatest current which can be memured 
by the galvanometer is 4.56 ampbres approxirnately. 

30. The poles of a battery (of electromotive force 2.9 volts and internal resistance 
4 ohms) are joined to those of a tangent galvanometer whose coil has 20 turns of wire and 
is of mean radius 10 cms. : shew that the deflection of the galvanometer is approximately 
45". The horizontal intensity of the earth's magnetic force is 1.8 and the resistance of 
the galvanometer is 16 ohms. 

31. A tangent galvanometer is incorrectly fixed, so that qua1 and opposite currents 
give angular readings a and f l  measured in the same sense. Shew that the plane of the 
coil, supposed vertical, makes an angle c with its proper position such that 

32. If there be an error a in the determination of the magnetic meridian, find the 
true strength of a current which is i as ascertained by mearis of a sitie galvanometer. 
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33. In a tangent galvanometer, the semibility is measured by the ratio of the incre- . 
ment of defiection to the increment of current, estimated per unit current. Shew that 

the galvanometer will be most sensitive when the deflection is F ,  and that in measuring 
4 

the current given by a generator whose electromotive force is E, and interna1 resistance 
R, the galvanometer will be most sensitive if there be placed across the terminala a shunt 
of resistance 

HRr 
E-EI(R+~) ' 

where + is the resistance of the galvanometer, and H is the constant of the instrument. 
What is the meaning of the result if the denominator vanishes or is negative 1 

34. A tangent galvanometer consists of two equal circles of radius 3 cms. placed on a 
common axis 8 cms. apart. A steady current sent in opposite directions through the two 
circles deflects a small needle placed on the axis midway between the two circles t,hrough 
an angle a. Shew that if the earth's horizontal magnetic force be H in C.G.S. units, then 
the strength of the current in c.a.s. units will be 125 Htan a/36n. 

35. A galvanometer coi1 of n turns is in the form of an anchor-ring described by the 
revolution of a circle of radius b about an axis in its plane distant a from its centre. 
Shew that the constant of the galvanometer 
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CHAPTER XIV 

INDUCTION OF CUR.RENTS I N  LINEAR CIRCUITS 

506. IT has been seen that, on moving a magnetic pole about in the 
presence of electric currents, there is a certain amount of work done on the 
pole by the forces of the field. If the conservation of energy is to be true of 
a field of this kind, the work done on the magnetic poIe must be represented 
by the disappearance of an equal amoua  of energy in some other part of the 
field. If al1 the currents in the field remain steady, there is only one store 
of energy fi-om which this amount of work can be drawn, namely the energy 
of the batteries which maintain the currents, so that these batteries must, 
during the motion of the magnetic poles, give up more than sufficient energy 
to maintain the currents, the excess amount of energy representing work 
performed on the poles. Or again, if the batteries supply energy a t  a. 
uniform rate, part of this energy must be used in perforrning work on the 
moving poles, so that the currents maintained in the circuits will be less 
than they would be if the moving poles were a t  rest. 

Let us suppose that we ha. an imaginary arrangement by which addi-. 
tional electromotive forces c m  be inserted into, or removed from, each circuit. 
as required, and let us suppose that this arrangement is manipulated so as to 
keep each current constant. 

Consider first the case of a single movable pole of strength m and a single 
circuit in which the curreiit is maintainecl at  a uniform strength i. If w is 
tbe solid angle subtended by the circuit a t  the position of the pole a t  any 
instant, the potential energy of the pole in the field of the current is miw, so 
that in an infinitesimal interval dt of the motion of the pole, the work per- 

d o  
formed on the pole by the forces of the field is mi - dt. The current which 

dt 
has flowed in this time is idt, so that the extra work done by the additional 

dw 
batteries is the same as that of an additional electromotive force m - ,  

dt 
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Thus the motion of the pole must have set up an additional electromotive 
dm 

force in the circuit of amount -nz- to counteract which the additional 
d t  ' 

d o  
electromotive forces are needed. The electromotive force - m -  which 

dt 
appears to be set up by the motion of the magnets is called the electromotive 
force due to induction. 

The number of tubes of induction which start from the pole of strength m 
is $m, and of these a number mo pass through the circuit. Thus if n is the 
number of tubes of induction which pass through the circuit a t  any instant, 

d n  
the electromotive force may be expressed in the form - - 

d t  

So also if we have any number of magnetic poles, or any rnagnetic system 
of any kind, we find, by addition of effects such as that just considered, that 

d N  
there will be an electromotive force -- arising from the motion of the 

d t  
whole system, where N is the total number of tubes of induction which cut 
the circuit. 

It will be noticed that the argument we have given supplies no reason for taking N to 
be the number of tubes of induction rather than tubes of force. But if the number of 
tubes crossing the circuit is to  depend only on the boundary of the circuit we must take 
tubes of induction aud not tubes of force, for the induction is a solenoidal vector while 
the force, in general, is not. 

d N  
507. The electromotive force of induction -- has been supposed to 

d t  
be measured in the same direction as the current, and on comparing this 
with the law of signs previously given in § 483, we obtain the relation 
between the directions of the electromotive force round the circuit, and of 
the lines of induction across the circuit. The magnitude and direction of 
the electromotive force are given in the two following laws: 

NEUMANN'S LAW. . Whenever the nwmber of tubes of magnetic induction 
which are enclosed by a circuit i s  changing, there i s  a n  electromotive force 
a.cting rownd the circuit, i n  addition to the electromotive force of m y  batteries 
which rnay be in the circuit, the amoumt of this additional electromotive force 
b e k g  eqzial lo the rate of diminution of the n.umber of tubes o f  induction 
enclosed by the circuit. 

LENZ'S LAW. The positive direction of the electromotive ;force - - ( 3 ana 
the direction in which a 6ube of force mzcst pass throuyh the cz'rcz~it in order to 
be cownted as positive, are related in the s m e  w a y  as  the forward mot& and 
rotation of a mght-handed screw. 
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If there is no battery in the circuit, the total electromotive force will be 

-- anl and the current originated by ihis electroiotive force is spoken of as 
dt 

an " induced " current. 

508. I n  order that the phenomena of induced currents may be consistent 
with the conservation of energy, i t  must obviously be a matter of indifference 
whether we cause the mapet ic  lines of induction to move across the circuit, 
or cause the circuit to move across the lines of induction. Thus Neumann's 
Law must apply equally to a circuit a t  rest and a circuit in motion. So also 
if the circuit is flexible, and is twisted about so as to change the number of 
lines of induction which pass through it, there will be an induced current of 
which the amount will be given by Neumann's Law. 

509. For instance if a metal ring is spun about a diameter, the number 
o f  lines of induction from the earth's field which pass through i t  will change 
continuously, so that currents will flow in it. Furthermore, energy will be 
consumed by these currents so that work must be expended to keep the ring 
in rotation. Again the wheels and axles of two cars in motion on the same 
line of rails, together with the rails themselves, may be regarded as forming 
a closed circuit of continually changing dimensions in the e<arth's mapet ic  
field. Thus there will be currents flowing in the circuit, and there will be 
electromapetic forces tending to retard or accelerate the motions of the cars. 

510. If, as we have been led to believe, electromagnetic phenomena are 
the effect of the action of the medium itself, and not of action a t  a distance, 
i t  is clear that the induced current must depend on the motion of the lines of. 
force, and cannot depend on the manner in which these lines of force are pro- 
duced. Thus induction must occur just the same whether the mapet ic  field 
originates in  actual magnets or in electric currents in other parts of the field. 
This consequence of the hypothesis that the action is propagated through the 
medium is confirmed by experiinent-indeed in Faraday's original investiga- 
tions on induction, the field was produced by a second current. 

511. Let us suppose that we have two circuits 1, 2, of which 1 contains 
a battery and a key by which the circuit 
can be closed and broken, while circuit 2 
remaini permanently closed, and contains a 
galvanometer but no battery. On closing 
the circuit 1, a current flows through circuit 
1, setting up a magnetic field. Some of the 
tubes of induction of this field pass through 
circuit 2, so that the number of these' tubes 
changes as the current establishes itself in Bat tey  

circuit 1, and the galvanometer in 2 will FI& 130. 

accordingly shew a current. When the current in 1 haq reached its steady 

IRIS - LILLIAD - Université Lille 1 



value, as given by Ohm's Law, the number of tubes through circuit 2 will no 
longer Vary with the time, so that there will be no electromotive force in  
circuit 2, and the galvanometer will shew no current. If we break the 
circuit 1, there is again a change in the number of tubes of induction passing 
through the second circuit, so that the galvanometer will again shew a 
momentary current. 

512. Let us suppose that we have any number of circuits 1, 2, .... 
Let their resistances be R,, &, ..., let them contain batteries of electro- 
motive forces El, E,, ..., and let the currents flowing in them a t  any instant 
be i l ,  i2, .... 

The numbers of tubes of induction Nl, N,, ... which cross these circuits 
are given by (cf. equations (429)) 

Nl=Llli,+L,,i,+Ll,i,+ ..., etc. 

I n  circuit 1 there is an electromotive force El due to the batteries, and an 
dfll electromotive force - - 
dt 

due to induction. Thus the total electromotive 

dfll force at any instant is El - -- , and this, by Ohm's Law, must be equal to 
dt 

R,.i,. Thus we have the equation 
d ............ E,-dt(L,il+L12i,+ L1,i3+ ...)= R,i, (431). 

Similarly for the second circuit, 

d 
Ez-a(L21G+Lmi2+L23 ;,+-...)=RA ............ ( 4 3 9  

and so on for the other circuits. 

Equations (431), (432), ... may be regarded as. differential equations from 
which we can derive the currents i l ,  i,, ... in terms of the time and the 
initial conditions. We shall consider various special cases of this problem. 

INDUCTION IN A SINGLE CIRCUIT. 

513. If there is only a single circuit, of resistance R and self-induction L, 
equation (431) becomes 

d E - - ( L Q  = Ri,. .......................... 
dt 

(433). 

Let us use this eqnation first to find the effect of closing a circuit pre- 
viously broken. Suppose that before the time t = O  the circuit has been 
open, but that a t  this instant it is suddenly closed with a key, so that the 
current is free to flow under the action of the electromotive force E. 
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The first step will be to determine the conditions immediately after the 
d 

circuit is closed. Since -(Lil) is, by equation (433), a finite quantity, i t  
dt 

follows that Li, must increase or decrense continuously, so that immediately 
after closing the circuit the value of Li, must be zero. 

To find the way in which il increases, we have now to solve equation (433), 
in which E, L and R are al1 constants, subject to the initial condition that 
il = O when t = O. Writing the equation in the form 

we see that the general solution is 

where C ie a constant, and in order that il may vanish when t = O, we must 
have C = E,  so that the solution is 

The graph of .i, as a funetion, of t is shewn i n  fig. -131. It will be seen 
that the current rises gradually to its final 
value E/R given by Ohm's Law, this rise i 

being rapid if L is small, but slow if L is 
great. Thus we may Say that the increase in 
the current is retarded by its self-induction. 
We c m  see why this should be. The energy 
of the current i, is $Li:, and this is large when 
L is large. This mergy represents work per- r FIG. 131. 

formed by the electric forces: when the current 
is 6,  t,he rate at which these forces perform work is Ei,, a quantity which 
does not depend on L. Thus when L is large, a great time is required for 
the electric forces to establish the great amount of energy Li,". 

A simple analogy m y  make the effect of this self-induction clearer. Let the flow of 
the current be represented by the turning of a mill-wheel, the action of the electric forces 
being represented by the falling of the water by which the mill-wheel is turned. A large 
value of L means large energy for a finite current, and must therefore be represented by 
supposing the mill-wheel to have a large moment of inertirt. Clearly a wheel with a small 
moment of inertia will increase its speed up to its maximum speed with great rapidity, 
while for a wheel with a large moment of inertia the speed will only increase slowly. 

Alternating Current. 

514. Let us next suppose that the electromotive force in the circuit is 
not produced by batteries, but by moving the circuit, or part of the circuit, 
in a magnetic field. If N is the number of tubes of induction of the 
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external magnetic field which are enclosed by the circuit a t  any instant, 
the equation is 

d - - (Li, + N )  = Ri, ........................ 
d t (435). 

The simplest case arises when N is a simple-harmonie function of the 
time, proportional let us Say to cospt. We can simplify the problem by sup- 
posing that N is of the form C (cos pt + i sinpt). The real part of N will 
give rise to a real value of il, and the imaginary part of N to an imaginary 
value of il. Thus if we take IV= CeiPt we shall obtain a value for i, of which 
the real part will be the true value required for il. 

Assuming N =  C(cospt + i sin pt) = CeiPt, the equation becomes 

d - -(Li, + Ceipt) = Ri,, 
d t  

and clearly the solution will be proportional to e*t. Thus the differential 
d 

operator - will act only on a factor eipt, and will accordingly be equivalent to 
dt 

multiplication by ip. We inay accordingly write the equation as 

- ip (Li, + ceq = RG, 

a simple algebraic equation of which the solution is 

Let the modulus and argument of this expression be denoted by p and X, 
so that the value of the whole expression is p (cos x + i sin x). The value of 
p, the modulus, is equal (Ej  311) to the product of the moduli of the factors, so 
that 

PC 
p = JZW' 

while the argument X, being equal (5 311) to the sum of the arguments of 
the factors, is given by 

The solution required for .i, is the real terrn p cos X, so that 

The electrornotive force produced by the change in the number of tubes 
of the external field is 

dN d --=-- 
dt d t  

(C cospt) =pCsinpt. 
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Thus, if self-induction were neglected, the current, as given by Ohm's 
Law, would be 

sin pt, 

and this of course would agree with that which would be given by equation 
(436) if L were zero. 

The modifications produced by the existence of self-induction are repre- 
sented by the presence of L in expression (436), and are two in number. In  
the first place the phase of the current lags behind that of the impressed 

LP electromotive force by tan-l -, and in the second place the apparent resist- R 
ance is increased from R to J R ~  + L2p2, 

515. The conditions assumed in this problem are sufficiently close to 
those which occur in the working of a dynamo to illustrate this working. A 
coi1 which forms part of a complete circuit is caused to rotate rapidly in a 
magnetic field in such a way as to cut a varying number of lines of induction. 

P The quantity - may be supposed to represent the number of alterna- 
2%- 

tions per second. I n  the simple case of a two-pole alternator this will be 
equal to the number of revolutions of the engine by which the dynamo is 
driven, so that the current sent through the circuit will be an " alternating" 
current of frequency equal to that of the engine. I n  the example given, the 
rate a t  which heat is generated is (p  cos x)I  R, and the average rate, averaged 
over a large number of alternations, is ip2R or 

. . - pZCaR s fp+ 

This, then, would be the rate at which the engine driving the dynamo 
would have to perform the work. 

fischarge of a Condenser. 

516. A further example of the effect of induction in a single circuit which 
is of extreme interest is supplied by the phenomenon of the discharge of a 
condenser. 

Let us suppose that the charges on the two plates at any instant are Q 
and - Q, the plates being connected by a wire of resistance R and of self- 
induction L. If C is the capacity of the condenser, the difference of potential 

Q of the two plates will be -, and this will now play the same part as the c 
electromotive force of a battery. The equation is accordingly 
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The quantities Q and i are not independent, for i measures the rate of 
flow of electricity to or from either plate, and therefore the rate of diminution 

of Q. We accordingly have i = -g, and on substituting this expression for 
dt 

i, equation (437) becomes 

The solution is known to be 

Q=Ae "t+Be-"t ........................ (43% 

where A, B are arbitrary constants, and hl, A, are the roots of 

If the circuit is completed at time t = 0, the charge on each plate being 
initially Qo, we must have, a t  time t = O, 

dQ Q=QO, i = - - = O  
dt ' 

and these conditions determine the constants A and B. The equations 
giving these quantities are 

A+B=Q,, A X , + B ~ , = O .  

If the roots of equation (439) are real, it is clear, since -both their sum 
and their product are positive, that they must themselves be positive quanti- 
ties. Thus the value of Q given by equation (438) will gradually sink from 
Q, to zero. The current at any instant is 

and this starts by being zero, rises to a maximum and then falls again to 
zero. The current is always in the same direction, so that Q is always of the 
same sign. 

It is, however, possible for equation (439) to have imaginary roots. This 
will be the case if 

4L 
is negative. Denoting Ra - - , when negative, by - K ~ ,  the roots will be c 
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si that the solution (438) becomes 

where D, e are new constants. In this case the discharge is oscillatory. The 
27rL 

charge Q changes sign at intervals - , so that the charges surge backwards 
fc 

and forwards from one plate to the other. The presence of the exponential 
Rt -- 

B 2L shews that each charge is less than the preceding one, so that the 
charges ultimately die away. The graphs for Q and i in the two cases of 

4L 
(i) R2 > - (discharge continuous), 

C 

4L 
(ii) Rz < - (discharge oscillatory), 

C 
are given in figs. 132 and 133. 

FIG. 132. 

(i) discharge ooiltinuous. 

FI@. 133. 

(ii) disoharge osailletory. 

The existence of the oscillatory discharge is of interest, as the possibility 
of a discharge of this type was ~redicted on purely theoretical grounds by 
Lord Kelvin in 1853. Four years later the actual oscillations were observed 
by Feddersen. 
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517. It is of value to compare the physical processes in the two kinds of 
discharge. 

Let us consider first the continuous discharge of which the graphs are 
shewn in fig. 132. The first part of the discharge is similar to the flow 
already considered in § 513. At first we can imagine that the condenser is 

Q exactly equivalent to a battery of electromotive force E = - , and the act of C 
discharging is equivalent to completing a circuit containing this battery. 
After a time the difference between the two cases comes into effect. The 
battery would maintain a constant electromotive force, so that the current 

E 
would reach a constant final value - , whereas the condenser does not supply R 
a constant electromotive force. As the discharge occurs, the potential differ- 
ence between the plates of the condenser diminishes, and so the electromotive 
force, and consequently the cnrrent, also diminish. Thus the graph for i in 
fig. 132, can be regarded as shewing a gradual increase towards the value 

in the earlier stages, combined with a gradual falling off of R 
the current, consequent on the diminution of E, in the later stages. 

For the oscillatory discharge to occur, the value of A must be greater than 
for the continuous discharge. The energy of a current of given amount is 
accordingly greater, while the rate a t  which this is dissipated by the genera- 
tion of heat, namely Rz3, remains unaltered by the greater valne of L. Thus 
for sufficiently great values of L the current may persist even after the con- 
denser is fully discharged, a continuation of the current meaning that the 
condenser again becomes charged, but with electricity of different signs from 
the original charges. In this way we get the oscillatory discharge. 

INDUCTION IN A PAIR OF CIRCUITS. 

518. If L, M, N are the coefficients of induction (L,,, L,,, L,) of a pair of 
circuits of resistances IZ ,  S, in which batteries of electromotive forces E,,  3; 
are placed, the general equations become 

ci (MG + ~ i , )  = Si, ..................... E2 - - 
dt 

(441). 

Sudden Conzpleting of Circuit. 

519. Let us consider the conditions which must hold when one of the 
circuits is suddenly completed, the process occupying the infinitesimal inter- 
val from t = O to t = T. Let the changes which occur in i, and .i, during this 
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interval be denoted by Ai, and Ai,. Equations (440) and (441) shew that 
d 

during the interval from t = O to t = T the values of - (Lil + Mi,) and of 
dt 

d 
- (llfi, + Ni,) are finite, so that when T is infinitesimal, the changes in dt 
L$ + Mi2 and Mil + Ni, must vanish. Thus we must have 

LA4 + +Ai2 = O, 

MAi, + NAi, = o. 
Except in the special case in which L N -  Mf = O (a case of importance, 

which will be considered later), these equations can be satisfied only by 
Ai, = A&. = O. Thus the currents rernain unaltered by suddenly making a 
circuit, and the change in the currents ie gradua1 and not instantaneous. 

520. Suppose, for instance, that before the instant t = O circuit 2 is 
closed but contains no battery, while circuit 1, containing a battery, is broken. 
Let circuit 1 be closed e t  the instant t = O ,  then the initial conditions are 
that at time t = O, .i, = i ,  = O. The equations to be solved are 

The solution is known to be 

i - &-Al + P e - A ' t  
2 -  , 

where A ,  A', B, B' are constants, and X,  X' are the roots of 

( R  - Lh) ( S  - Nh) - M2X2 = O, 

or of R S - ( R N + S L ) X + ( L N - M ~ ) X ~ = O  ............ (444). 

The energy of the currents, namely 

4 (Li: + 2Miliz + NQ), 

being positive for al1 values of .i, and i,, it follows that LN - Ma is necessarily 
positive. Since RS and RN+ SL are also necessarily positive, we see that al1 
the coefficients in equation (444) are positive, so that the roots A, h' are both 
positive. 

When t = O, we must have 
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and in order that equation (443) may be satisfied at  every instant, we must 
have 

- MAX8-M - MA'X'e-ut -+ (S  - NX) Be-" + (S - NX') B'e-"t = 0, 

for al1 values of t, and for this to be satisfied the coefficients of e-At and e-A't 
must vanish separately. Thus we must have 

....................... (S - ATX) B =MAX .(447), 

........................ (S - NA,') B' = MA'X' (44% 

and if these relations are satisfied, and h, h' are the roots of equation (444), 
then equation (442) will be satisfied identically. From equations (445), (446), 
(447) and (448), we obtain 

and the solution is found to be 

. (S- NA) El 
2, = 

(S - Nx') El 
(1 - e-At) + R,!.,Xl - A-l) (1 - e-"t), RSn (A-l - A'+) 

E 
We notice that the current in 1 rises to its steady value -, the rise being R 

similar in nature to that when only a single circuit is concerned (5 513). The 
rise is quick if X and Xf are large-i.e. if the coefficients of induction are 
small, and conversely. The current in 2 is initially zero, rises to a maximum 
and then sinks again to zero. The changes in this current are quick or slow 
according as those of current 1 are quick or slow. 

521. The breaking of a circuit may be represented mathematically by 
supposing the resistance to become infinite. Thus if circuit 1 is broken, the 
process occurring in the interval from t = O to t = r, the value of R will 
become infinite during this interval, while the value of 6 becomes zero. The 
changes in il and i, are still deterrniiied by e,quuation (440) and (441), but we 
can no longer treat R as a constant, and we cannot assert that in the interval 
from O to r the value of Ri, is always finite. 

d 
I t  follows, however, from equation (441) that -(Mi, + AT&) remains b i t e  dt 

throughout the short interval, so that we have, with the same notation as 
before, 

MAi, + NAi, = O. 
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Suppose for instance that before the circuit 1 was broken we had a steady 
El current - in circuit 1, and no current in circuit 2. We shall then have R 

so that 

and therefore immediately after the break, the initial current in circuit 2 is 

. ME, 
x2 = - 

NR ' 
This current simply decays under the influence of the resistance of the 

circuit. Putting E2 = O and 2, = O in equation (441) we obtain 

di, S .  - 3 - - p ,  

ME1 and the solution which gives i2 = - initially is 
NR 

. ME, -:t 
2--e . a - N R  

The changes in the current il during the infinitesimal interval T are of 
interest. These are governed by equation (440), the value of R not being 
constant. 

The value of E, is finite, and may accordingly be neglected in comparison 
with the other terms of equation (44O), which are very great during the 
interval of transition. Thus the equation becomes, approximately, 

d (Li, + Mi,) = - Ri, . . . . . . . . . . . .. . . . . . . . . . . . (449). 

d 
The value of - (Mi, + Ni,) is, as we have already seen, finite, so that we 

dt 
M 

rnay subtract - times this quantity from the ieft-hand meniber of equation N 
(449) and the equation remains true. By doing this we eliminate i,, and 
obtain 

The solution which gives to il the initial value (i,), is 

giving the way in which the current falls to zero. We notice that if 
LN- M2 is very small, the current falls off a t  once, while if LM- Ma is large, 
the current will persist for a longer time. I n  the former case t'he breaking 
of the circuit is accompanied only by a very slight spark, in the latter case 
by a stronger spark. 
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One Circuit containing a Periodic Electromotive Force, 

522. Let us suppose next that the circuits contain no batteries, but that 
circuit 1 is acted upon by a periodic electromotive force, Say E cospt, such as 
might arise if this circuit contained a dynamo. 

As in $ 514, it is simplest to assume an electromotive force Eeipt: the 
solution actually required will be obtained by ultimately rejecting the 
imaginary terms in the solution ohtained. 

The equations to be solved are now 

d Ee@t - - (Li, + Mi,) = RG .................... .(450), 
dt 

d - - (Mi, + Ni,) = S& ..................... 
dt 

(451). 

As before both il and i,, as given by these equations, will involve the 
d 

time only through a factor e$t, so that we may replace - by ip, and the 
dt 

equations become 
Ri, + fipi + Mipi, = Eeipt, 

si, + Mi& + Nipi, = O, 
from which we obtain 

The current i, in the primary is given, from these equations, by 
EeW 

2, = M F  R+ Lip +- 
S + Nip 

where 

The case of no secondary circuit being present is obtained a t  once by 
putting S= oo, and the solution for i, is seen to be the same as if no 
secondary circuit were present, except that R', L' are replaced by R and L. 
Thus the current in the primary circuit is affected by the presence of the. 
secondary in just the same way as if its resistance were increased from 
R to R', and its coefficient of self-induction decreased from L' to L. 
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The amplitudes of the two currents are 1 il 1 and 1 i2 1, 00 that the ratio of 
the amplitude of the current in the secondary to that in the primary is 

The difference of phase of the two currents 

= arg i, - arg i, 

= arg (i&) 

Mip 
= arg (' ) 

S+N@ 

523. The analysis is of prnctical importance in connection with the 
theory of transformers. In such applications, the current usually is of very 
high frequency, so that p is.large, and we find that approximately the ratio 

M 
of the amplitudes (cf. expression (452)) is -, while the difference of phase N 
(cf. expression (453)) is T. These limiting results, for the case of p infinite, 
can be obtained at  a glance from equation (451). The right-hand member, - a 
Si,, is finite, so that - (Mi, + Ni,) is finite in spite of the infinitely rapid 

at 
variations in .i, and i, separately. In other words, we must have approxi- 
mately Mi, +Ni, constant, and clearly the value of this constant must be 
zero, giving at once the two results just obtained. 

524. Whatever the value of p, the result expressed in equation (452) can 
be deduced at  once from the principle of energy. The current in the primary 
is the same as it would be if the secondary circuit were removed and R, L 
changed to R', L'. Thus the rate at which the generator performs work is 
Ri:, or averaged over a great number of periods (since i, is a simple-harmonic 
function of the time) is R' 1 i, 12. Of this an amount 3 R 1 il 1- is consumed in 
the primary, so that the rate at  which work is performed in the secondary is 
+(K-R)Ii,p, or 

This rate of performing work is also known to be +S(i, (a, and on 
equating these two expressions we obtain a t  once the result expressed 
by equation (452). 
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Case in which L N -  Ma tk small. 

525. 'The energy of currents il, i, in the two circuits is 

4 (Li? + 2Mi1ia + Ni,a) ........................ (454), 

and since this must always be positive, it follows that L N -  Ma must neces- 
sarily be positive. The results obtained in the special case in which L N -  M2 
is so small as t o  be negligible in cornparison with the other quantities 
involved are of special interest, so that we shall now examine what special 
features are introduced into the problems when LN- MZ is very small. 

Expression (454) can be transformed into 

L N -  M2 
*(&+Mi,)a+ ZL ia2, 

so that when LN- Ma is neglected the energy becomes 

+ (Li ,  + Mi$, 
and this vanishes for the special case in which the currents are in the ratio 
i = - M L .  This enables us to find the geoinetrical meaning of the relation 
LN- M2 = O. For since the energy of the currents, as in CJ 501, is 

we see that this energy can only vanish if the magnetic force vanishes at 
every point. This requires thabthe equivalent magnetic shells rnust coincide 
and be of strengths mhich are equal and opposite. Thus the two circuits 
must coincide geometrically. The number of turns of wire in the circuits 
may of course be different if we have r turns in the primary and s in the 
secondary, we must have 

L M r  -=- =- 
M N 5 '  

and when the currents are such as to give a field of zero energy, each fraction 
is equal to -i&. 

526. Let 11s next examine the modifications introduced into the analysis 
by the neglect of LN- Ma in problems in which the value of this quantity is 
small. We have the general equations (5  518), 

If we multiply equation (455) by M and equation (456) by L and SUE- 
tract, we obtain 

ME, - LE,  = RMi, - SLi, ..................... (457), 
an equation which contains no differentials. 
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527. To illustrate, let us consider the sudden making of one circuit, 
discussed in the general case in 5 519. The general equations there obtained, 
namely 

LA;, + MAi, = O, 

NA;, + NA;, = O, 

now become identical. We no longer can deduce the relations Ai, = Ai, = 0, 
but have only the single initial conditions 

But by supposing equations (455) and (456) replaced by equations (455) 
and (457) we have only one differential coefficient and therefore only one 
constant of integration in the soIution, and this can be determined from 
the one initial condition expressed by equation (458). 

Let ils, for instance, consider the definite problem discussed (for the 
general case) in 5 520. Circuit 2 contains no battery so that E, = 0, and at 
time t = O  circuit 1 is suddenly closed, so that the electromotive force El 
comes into play in the first circuit. The initial currents are given by 

.............................. (from equation (458)), L<+Mi,=O (459), 

(from equation (45'7)), MEl = RMil - SLi, ........................ (46% 

so that 

Thus finite currents come into existence at  once, but the system of 
currents is one of zero energy, since equation (459) is satisfied. To find the 

L 
subsequent changes, we multiply equation (455) by - and equation (456) by R 
M 
- (putting E, = O), and find on addition s 

LE, L N d  +- - (Lili-M&)=Li,+ MG, R - ( R  A d t  

of which the solution, subject to the initial condition L% + Mi, = O, is 
EN -- 

Li, + ~ i ,  = 2 1 - R N + L S ~ )  , 
H LE ( 

This and equation (460) determine the currents at  any tirne. 

These results can of course be deduced also by examining the limiting 
forrn assumed by the solution of 5 520, when LN- Ma vanishes. 

The problem of the breakilig of a circuit, discussed in 5 521, can be 
exainined in a similar way in the special case in which LAT- M g =  O. 
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EXAMPLES. 

1. A coil is rotated with constant angular velocity w about an axis in its plane in a 
uniform field of force perpendicular to the axis of rotation. Find the current in the coil 
at any tirne, and shew that it is greatest when the plane of the coil makes an angle 

with the lines of magnetic force. 

2. The resistance and self-induction of a coil are R and L, and its ends A and B are 
connected with the electrodw of a condenser of capacity C by wires of negligible mistance. 
There is a current Icospt  in a circuit connecting A and B, and the charge of the con- 
denser is in the same phase aa this current. Shew that the charge at any time is 

-cosPt! and that C(Ra+p"I)z)=L. Obtain also the current in the coil. 
R 

3. The ends B, D of a wire (R, L) are connected with the plates of a condenser of 
capacity C. The wire rotates about BD which is vertical with angular velocity o, the 
area between the wire and BD being A. If H is the horizontal component of the earth's 
magnetism, shew that the average rate at tvhich work must be done to maintain the 

4. A closed solenoid consists of a large number N of circular coiis of wire, each of 
radius a, wound iiniforrnly upon a circular cylinder of height 2h. At the centre of the 
cylinder is a small magnet whose axis coincides with that of the cylinder, and whose 
moment is a periodic quantity psinpt. Shew that a current flows in the solenoid whose 
intenaity is approximately 

2npA% 
sin (pt+ a), 

{(a2 + h2) (Re +L%')}* 

where R, L are the resistance and self-induction of the solenoid, and tan a= RJLp. 

5. A circular coil of m turns, of radiua a and resistance R, spins with angular velocity 
o round a vertical diameter in thé earth's horizontal magnetic field E: shew that the 
average electromagnetic damping couple which resists ib motion is *Bd&r2a4oR. Given 
H=0.17, n=50, R= 1 ohm, a =  10 cm., and that the coil makes 20 turns per second, 
express the couple in dyne-centimetres, and the mean square of the current in ampbm. 

6. A condenser, capacity C, is discharged through a circuit, resistance R, induction L, 
containing a periodic electromotive force Esin nt. Shew that the "forced" current in the 
circuit is 

where tan 8 = (neCL - 1)InUR. 
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7. Two circuits, resistances Iil and R2, coefficients of induction L, ier, N, lie near each 
other, and an electromotive force E is switched into one of them. Shew that the total 
quantity of electricity that traverses the other is EX/RlR2. 

8. A current is induced in a coil B by a. current I s inpt  in a coil A, Shew that the 
mean force tending to increase any coordinate of position û is 

F ~ ~ L Y  aier 

where L, N, N are the coefficients of induction of the coils, and R is the resistance of B. 

9. A plane circuit, area 8, rotates with uniform velocity o about the axis of z, mhich 
lies in its plane a t  a distance h from the centre of gravity of the rtrea. A magnetic 
molecule of strength p is fixed in the axis of x a t  a great distance a from the origin, 
pointing in the direction Ox. Prove that the current at time t is approximately 

2Sop cos (ut - c) + 9 S W ~ h  co"2ut - v), 
a3 (RZ + Lad)+ a4 ( ~ 2  + 4~2o2)4 

where v, E are determinate constants. 

10. Two points A, B are joined by a wire of resistance R without self-induction; 
B is joined to a t h i d  point C by two wires each of resistance R, of which one is without 
self-induction, and the other has a coeflicient of induction L. If the ends A, C are kept 
at a potential difference Ecospt, prove that the difference of potentials a t  B and C will 
be E' cos (pt - y), where 

11. A condenser, capacity C, charge Q, is discharged through a circuit of resistance 
R, there being a,nother circuit of resistance S in the field. If LN=Y2, shew that there 
will be initial currents - NQ/C (RN+ HL) and MQIC (RN+ SL), and find the currents a t  
any time. 

12. Two insulated mires A, B of the same resistance have the same coefficient of 
self-induction L, while that of mutud induction is slightly less than L. The ends of B 
are connected by a wire of small resistance, and those of A by a battery of small resistance, 
and at the end of a time t a current i is passing through A .  Prove that except when t is 
very small, 

i = l ( i  z o+i') 

approximately, where i,, is the permanent current in A, and if is the current in each after 
a time t, when the ends of both are connected in multiple arc by the battery. 

13. The ends of a coil forming a long straight uniform solenoid of rn turns per unit 
length are connected with a short solenoidttl coil of n. turns and cross-section A, situated 
inside the solenoid, so that the whole forms a single complete circuit. The latter coil can 
rotate freely about an axis at right angles to the length of the solenoid. Shew that in free 
motion without any external field, the current i and the angle 0 between the cross-sections 
of the coils are determined by the equations 

where LI, L2 are the coefficients of self-induction of the two coils, 1 is the moment of 
inertia of the rotating coil, R i s  the resistance of the whole circuit, and the effect of the 
ends of the long solenoid is neglected. 
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14. Two electrified conductors whose coefficients of electrostatic capacity are y*, yz, r 
are conneoted through a coil of resistance R and large inductance L. Verify that the 
frequency of the electric oscillations thus establishd is 

15. An electric circuit contains an impressed electromotive force which alternates 
in an arbitrary manner and also an inductance. 1s i t  possible, by connecting the 
extreruities of the inductance to the poles of a condenser, to arrauge so that the current 
in the circuit shall always be in step with the electrornotive force and proportional to i t  2 

16. Two coils (resistances R, 8; coefficients of induction L, M, N )  are arranged in 
parallel in such positions that when a steady current is divided between the two, the 
Eesultant magne& force vanishes at a certain suspended galvanometer needle. Prove 
that if the currents are suddenly started by completing a circuit including the coils, then 
the initiai magnetic force on the needle will not in general vanish, but that there wiil be 
a "throw" of the needle, equal to that which would be produced by the steady (final) 
current in the first wire flowing through that wire for a time interval 

17. A condenser of capacity C is discharged through two circuits, one of resistance R 
and self-induction L, and the other of resistance R' and containing a condenser of capacity 
Cf. Prove that if Q is the charge on the condenser at any tirne, 

18. A condenser of capacity C is connected by leads of resistance 1; so as to be in 
parallel with a coil of self-induction L, the resistance of the coi1 and its leads being R. If 
this arrangement forms part of a circuit in which there is an electromotive force of period 
277 -, shew that i t  can be replaced by a wire without self-induction if 
P 

(R2 - L/G) =p2LC(r2 - LIC), 

and that the resistance of this equivalent wire must be (R~+L/C)/(R+T). 

19. Two coils, of which the coefficients of self- and mutual-induction are LI, L2, M, 
and the resistances RI, &, mrry steady currents Cl, C2 produced by constant eledro- 
motive forces inserted in them. Shew how to calculate the total extra currents produced 
in the coils by inserting a given resista.nce in one of them, and thus also increating its 
coefficients of induction by given amounts. 

In the primary coil, supposed open, there is an electromotive force which would 
produce a steady current C, and in the secondary coil there is no electrornotive force. 
Love that the current induced in the secondary by cloosing the primary is the same, as 
regards its effects on a galvanometer and an electrodynamonieter, and also with regard to 
the heat produced by it, as a steady current of magnitude 

lasting for a time 

while the current induced in the secondary by suddenly breaking the primary circuit may 
be represented in the same respects by a steady current of magnitude CX/2Z2 lasting for 
a time 2La/Rz. 
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20. Two conductors ABD, ACD are arranged in multiple arc. Their resistances are 
R, S and their coefficients of self- and mutual-induction are L, N,  and N. Prove that 
when placed in serias with leads conveying tt current of frequency p, the two circuits 
produce the same effed as a single circuit whose coefficient of self-induction is 

and whose resistance is 

RS(S+ R)+p"(R ( N -  M)"S(L - Y)? 
( L + N -  2dl)2pZ+(R+S)2 

21. A condenser of capacity C containing a charge Q is discharged round a circuit in 
the neighbourhood of a second circuit. The resistances of the circuits are R, 8, and their 
coefficients of induction are L, &, LV. 

Obtain equations to  determine the currents a t  any moment. 

If IL. is the current in the primary, and the disturbance be over in  a time less than 7, 

ahew that 

and that 

Examine hqw 2 d t  varies with S. L 
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CHAPTER XV 

INDUCTION OF CURRENTS I N  CONTINUOUS MEDIA 

GENERAL EQUATIONS. 

528. WE have seen that when the number N, of tubes of induction, 
d N  

which cross any circuit, is changing, there is an electromotive force - - 
dt 

acting round the circuit. Thus a change in the magnetic field brings into 
play certain electric forces which would otherwise be absent. 

TQe have now abandoned the conception of action a t  a distance, so that 
we must suppose that the electrio force a t  any point depends solely on the 
changes in the magnetic field a t  that point. Thus at  a point a t  which the 
magnetic field is changing, we see that there must be electric forces set up 
by the changes in the magnetic field, and the amount of these forces must be 
the same whether the point happens to coincide with an element of a closed 
conducting circuit or not. 

Let ds be an element of any closed circuit drawn in the field, either in a 
conducting medium or not, and let X, Y, Z denote t.he components of electric 
intensity a t  this point. Then the work done by the electric forces on a unit 
electric charge in taking i t  round this circuit is 

and this, by the principle just explained, must be equal to -- à; where N is 

the number of tubes of induction which cross this circuit. 

529. We have (cf 5 437) 

d N  
so that on equating expression (461) to - - dt , we have 
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The left-hand member is equal, by Stokes' Theorem (5 438), to 

the integration being over the same area as that on the right hand of equa- 
tion (463). Hence we have 

This equation is true for every surface, so that not only must each inte- 
grand vanish, but i t  must vanish for al1 possible values of Z, m, n. Hence each 
coefficient of 1, m, n must vanish separately. We must accordingly have 

530. The components J', G, E of the magnetic vector-potential are 
given, as in equations (376), by 

On comparing these equations with equations (464)-(466), i t  is clear 
that the simplest solution for the vector-potential is given by the relations 

If F, (3, H is the most general vector-potential, we must have relations of 
the form (cf. equations (375)) 

a~ a* % = - X - - ,  etc. ........................ 
as (469), 

where V is an arbitrary function replacing the - x of equations (375). 

531. Writing these relations in the form 

we have equations giving the electric forces explicitly. 
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The function Y has, so far, had no physical meaning assigned to it. 
Equations (470), (4'11), (472) shew that the electric force (X, Y, 2) can be 
regarded as compounded of two forces : 

dH) arising from the changes in the m a g  (i) a force (- T ,  - - - - 
dt ' dt 

netic field ; 

(ii) a force of components 
a q .  ap which is present when 

az 
there are no magnetic changes occurring. 

We now see that the second force is the force arising from the ordinary 
electrostatic field, so that we may identify 'P with the electrostatic potential 
when no changes are occurring. The meaning to be assigned to Y when 
changes are in progress is discussed below (Chapter xx). 

532. If the medium is a conducting medium, the presence of the electric 
forces sets up currents, and the components u, v, w of the current a t  any 
point are, as in 5 3'74, connected with the currents by the equations 

x=w,  Y=w,  z = r w ,  

these equations being the expression of Ohm's Law, where T is the specific 
resistance of the conductor at  the point. 

On substituting these values for X, Y, 2 in equations (464H466)  or 
(470)-(472), we obtain a system of equations connecting the currents in 
the conductor with the changes in the magnetic field. 

533. There is, however, a further system of equations expressing rela- 
tions between the currents and the magnetic field. We have seen (5 480) 
that a current sets up a magnetic field of known intensity, and since the 
whole magnetic field muse arise either from currents or from permanent 
magnets, this fact gives rise to a second system of equations. 

I n  a field arising solely from permanent magnetisrn, we can take li, unit 
pole round any closed path in the field, and the total work done will be nil. 
Hence on taking a unit pole round a closed circuit in the most general 
magnetic field, the work done will be the same as if there were no perma- 
nent magnetism, and the whole field were due to the currents present. The 
amount of this work, as we have seen, is 4 ~ 2 i ,  where Çi is the sum of al1 the 
currents which flow through the circuit round which the pole is taken. If 
u, v, w are the components of current at  any point, we have 

the integration being over any area which has the closed path as boundary. 
Hence our experimental fact leads to the ,equation 
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Transforming the line integral into a surface integral by Stokes' Theorem 
(5 438) we obtain the equation in the form 

As with the integral of 5 529, each integrand inust vanish for al1 values 
of 1, m, n, so that we must have 

a~ aa 477u=- -- aZ "....""..............*.. 
ay 

(4731, 

534. If we differentiate these three equations with respect to rc, y, 
respectively and add, we obtain 

au av aw -+-+-=O ...................a....... ax ay a~ (476), 

of which the meaning (cf. § 375, equation (311)) is that no electricity 
destroyed or created or allowed to accumulate in the conductor. 

The interpretation of this result is not that it is a physical impossibility for electricity 
to accumulate in a condiictor, but that the assumptions upon which we are working are 
not sufficiently general to cover cases in  which there is such an accumulation of electricity. 
It is ea.sy to  see directly how this has corne about. The supposition underlying our 
equations is that the work done in taking a unit pole round a circuit is equal t o  4~ times 
the total current flow through the circuit. It is only when equation (476) is satisfied by 
the current components that the expression <'total flow through a circuit " has a definite 
significance : the current flow across every area bounded by the circuit must be the same. 
We tlhall see later (Chapter XVII) how the equations must be modified to  cover the case 
of a n  electric flow in which the condition is not satisfied. For the present we proceed upon 
the supposition that the condition is satisfied.. 

Cuwents in homogeneous media. 

535. Let us now &ppose that we are considering the currents in a 
homogeneous non-magnetised medium. We write 

a = pu, etc., X = TU, etc., 

in which p and T are constant. The systems of equations of $5 529 and 533 
now become 

a7 aa 4irru = .- - - ............................ 
ay az , etc (478). 
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Differentiating eqixation (478) with respect to the time, we obtain 

in virtue of equation (476). 

Similar equations are satisfied by the other current-components, so that . 
we have the system of differential equntions 

If we eliminate the current-components from the system of equations 
(477) and (478), we obtain 

and similar equations are satisfied by b and c. 

536. The equation which bas been found to be satisfied by u, v, W, 

a, f l  and y is the well-known equation of conduction of heat. Thus 
we see that the currents induced in a mass of metal, as well as the com- 
ponents of the magnetic field associated with these currents, will diffuse 
through the metal in the same way as heat diffuses through a uniform 
conductor. 

Rapidly alternating cur rmts .  

537. The equations assume a f o m  of special interest when the currents 
are alternating currents of high frequency. We may assume each component 
of current to be progortional to eipt (cf. 3 514), and may then replme the 

d 
operator - by the multiplier ip. The equations now assume the form 

d t  

47Tpip a = Vau, etc., 
7 
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and if p is so large that i t  may be treated as infinite, these equations assume 
the simple form 

u = v = w = o ,  

Thus for currents of infinite frequency, there is neither current nor 
magnetic field in the interior. The currents are confined to the surface, 
and the only part of the conductor which comes into play a t  al1 is a thin 
skin on the surface. 

Equations (481) enable us to form an estimate of the thickness of this 
skin when the frequency of the currents is very great without being actually 
infinite. 

At  a point O on the surface of the conductor, let us take rectangular 
axes so that the direction of the current is that of Ox while the normal to 
the surface is Os. If the thickness of the skin is very small, we need not 
consider any region except that in the immediate neighbourhood of the 
origin, 80 that the problem is practically identical with that of current 
flowing parallel to Ox in an infinite slab of metal having the plane O x y  
for a boundary. 

Equation (481) reduces in this case to 

47TI-4~ - and if we put - - 8, the solution is 
7 

The value of K is found to be 

- 
- 4%. - J-0. 

so that u = Ae e +Be T , 

and the condition that the current is to be confined to a thin skin may now 
be expressed by the condition that IL = O when z = ca , and is accordingly 
B = O. The multiplier A is independent of z, but will of course involve 
the time through the factor eipt; let us put A =u,eipt, and we then have 
the solution 
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Rejecting the imaginary part, we are left with the real solution 

from which we see that as we pass inwards froni the surface of the con- 
ductor, the phase of the current changes at  a uniform rate, while its amplitude 
decreases exponentially. 

We can best forrn an idea of the rate of decrease of the amplitude by considering a 
concrete case. For copper we may take (in c. c.s. electromagnetic units) p= 1, r= 1600. 
T h w  for a current which alternates 1000 times per second, we have 

I t  follows that a t  a depth of 1 cm. the current will be only e-6 or W67 times its value 
a t  the surface. Thus the current is practically confined to a skin of thickuess 1 cm. 

The total current per unit width of the surface at  a tirne t is r=mudz ,  of 

which the value is found to be 

u, cos pt - -- ( 3 d% . 

Thus, if we denote the amplitude of the aggregate current by U, the 

value of uo will be ~~'5, 
r 

The heat generated per unit time in a strip of unit width and unit 
length is 

Thus the resistance of the conductor is the same as would be the 

resistance for stesdg currents of a skin of depth 1/1/?. 

The results we have obtained will suffice to explain whp it  is that the conductors used 
to convey rapidly alternating currents are made hollow, as also why it is that lightning 
conductors are made of strips, rather than cylindera, of metal. 
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538. We next examine the phenomenon of the induction of currents 
in a plane sheet of metal. 

Let the plane of the current-sheet be taken to be r = O. Let us introduce 
a current-function @, which is to be defined for every point in the sheet by 
the statement that the total strength of al1 the currents which flow between 
the point and the boundary is @. Then the currents in the sheet are known 
when the value of Q, is known at  every point of the sheet. If we assume 
that no electricity is introduced into, or removed from, the current-sheet, or 
allowed to accumulate a t  any point of it, then clearly @ will be a single- 
valued function of position on the sheet. 

The equation of the current-lines will be @=constant, and the line 
@ = O  will be the boundary of the current-sheet. Between the lines and 
@ + d a  we have a current of strength d@ flowing in a closed circuit. The 
magnetic field produced by this current is the same as that produced by 
a magnetic shell of strength d@ coinciding with that part of the current- 
sheet which is enclosed by this circuit, so that the magnetic effect of the 
whole system of currents in the sheet is that of a shell coinciding with 
the sheet and of variable strength @. This again may be replaced by a 
distribution of magnetic poles of surface density @le on the positive side of 
the sheet, together with a distribution of surface density -@le on the 
negative side of the sheet, where e is the thickness of the sheet. 

Let P denote the potential a t  any point of a distribution of poles of 
strength @, so that 

where drç'dy' is any element of the sheet. The magnetic potential a t  any 
point outside the current-sheet of the field produced by the currents is then 

If u is the resistance of a unit square of the sheet at  any point, and 
u, v the components of current, we have, by Ohm's Law, 

The components u, v are readily found to be given by 
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so that we have the equations 

true at  every point of the sheet. 

Hence, by equation (466), 

The total magnetic field consists of the part of potential 8 due to the 
currents and a part of potential (say) a', due to the magnetic system by which 
the currents are induced. Thus the total magnetic potential is a+ R', and 
at  a point just outside the current-sheet (taking p = 1) 

dc d a --=- dt dt ( a  + a')' 

the equation (485) becomes 

The function P (equation (482)) is the potential of a distribution of poles 
of surface density on the sheet. Hence P satisfies Laplace's equation a t  
al1 points outside the sheet, and at a point just outside the sheet and on its 

ap positive face - - = 27rQ. 
a2 

Hence, at  a point just outside the positive face of the sheet, 

by equation (483), so that equation (486) becomes 

and similarly, at  the negative face of the sheet, we have the equation 

539. Suppose that in an infinitesimal interval any pole of strength TIL 

moves from Y to Q. This movement rnay be represented by the creation 
of a pole of strength - rn at P and of one of strength + m  a t  Q. Thus 

J. 31 
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the most general motion of the inducing field may be replaced by the crea- 
tion of a series of poles. The simplest problem arises when the inducing 
field is produced by the sudden creation of a single pole, and the solution 
of the most general problem can be obtained frorn the solution of this simple 
problem by addition. 

d a 
From equations (487) and (488) i t  is clear that --(Cl +CI') remains 

dt az 
finite on both surfaces of the sheet during the sudden creation of a new 

a 
pole, so that - ( a  + Cl') remains unaltered in value over the whole surface a~ 

a 
of the sheet. Let the increment in -(Cl + Cl') a t  any point in space be 

az 
denoted by A, then A is a potential of which the poles are known in the 
space outside the sheet, and of which the value is known to be zero over 
the surface of the sheet. The methods of Chapter YIII are accordingly 
available for the determination of 4: the required value of A is the 
electrostatic potential when the current-sheet is put to earth in the 

ant 
presence of the point charges which would give a potential - if the sheet a~ 
were absent. 

d 
Physically, the fact that -(Il +a) remains unaltered over the whole 

a2 

surface of the sheet means that the field of force just outside the sheet 
remains unalt,ered, and hence that currents are instantaneously induced in 
the sheet such that the Iines of force at the surfaces of the sheet remain 
unaltered. 

The induced currents can be found for any shape of current-sheet for 
which the corresponding electrostatic problem can be solved*, but in general 
the results are too complicated to be of physical interest. 

Inj'inite Plane Current-&et. 

540. Let the current-sheet be of infinite extent, and occupy the whole 
of the plane of xz, and let the moving magnetic system be in the region 
in which z is negative. Then throughout the region for which z is positive 
the potential SZ + fi' has no poles, and hence the potential 

* See a paper by the author, '4Finite Current-sheets," Proc. Lond. Zath. Soc. Vol. x x x ~ .  
p. 151. 
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has no poles. Moreover this potential is a solution of Laplace's equation, 
and vanishes over the boundary of the region, namely at  infinity and over 
the plane z = 0  (cf equation (487)). Hence i t  vanishes throughout the 
wliole region (cf. $ 186), so that equation (487) must be true a t  every point 
in the region for which z is positive. We may accordingly integrate with 
respect to z and obtain the equation in the form 

no arbitrary function of x, y being added because the equation must be 
satisfied at  infbity. 

The motion of the system of magnets on the negative side of the sheet 
may be replaced, as in § 539, by the instantaneous creation of a number of 
poles. At the creation of a single pole currents are set up in the sheet such 
that Cl + nl remains unaltered (c£ equation (489)) on the positive side of 
the sheet. Thus these currents form a magnetic screen and shield the space 
on the positive side of the sheet from the effects of the magnetic changes on 
the negative side. 

To examine the way in which these currents decay under the influence 
of resistance and self-induction, we put a'= 0 in equation (489) and find 
that must be a solution of the equation 

The general solution of this equation is 

and this corresponds to the initial value 

Thus the decay of the currents can be traced by taking the field of 
potential at tirni t = O  and rnoving it parallel to the axis of z with a 

0- 
velocity - 

25- ' 
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EXAMPLES. 

1. Prove that the currents induced in a solid with an infinite plane face, owing to 
magnetic changes near the face, circulate parallel to it, and may be regarded as due to 
the diffusion into the solid of current-sheets induced at each instant on the surftlce so as 
to screen off the magnetic changes from the interior. 

Shew that for periodic changes, the current penetrates to a depth proportional to the 
square root of the period. Give a solution for the case in which the strength of a fixed 
inducing magnet varies as cospt. 

2. A magnetic system is moving towards an infiriite plane conducting sheet with 
velocity W. Shew that the magnetic potential on the other side of the sheet is the sarne 
as it would be if the sheet were away, and the strengths of al1 the elements of the magnetic 
system were changed im the ratio R/(R+w), where 2aR is the specific resistance of the 
sheet per unit area. Shew that the result is unaltered if the system is moving away from 
the sheet, and examine the case of w= - R. 

If the ~ystem is a magnetic particle of niass M and moment m, with its axis perpen- 
dicular to the sheet, prove that if the particle has beeti projected a t  right angles to the 
sheet, then when it is at a distance z from the sheet, its velocity B is given by 

& M ( i  - R)2 = C- m2/8z3. 

3. A small magnet horizontally mqpetised is moving with a velocity u parallel to a 
thin horizontal plate of metal. Shew that the retarding force on the magnet due to the 
currents induced in the plate is 

sa2 UR 
(20)4 &(&+R) ' 

where m is the moment of the magnet, c its distance above the plate, 2aR the resistance 
of a sq. cm. of the plate, and Q~=uZ+R~. 

4. A slowly alternating current I cosp t  is traversing a small circular coil whose 
magnetic moment for a unit current is M. A thin spherical shell, of radius a and specific 
resistance U, has its centre on the axis of the coil a t  a distance f from the centre of the 
coil. Shew that the currents in the shell form circles round the axis of the coil, and tha,t 
the strength of the current in any circle whose radius subtends an angle COS-1 p at the 
centre is 

where 
(2n+l)u  

tan en = ---- 
4 ~ p a  

5. An infinite iron plate is bounded by the parallel planes x=h, x=  - h ;  wire ia 
wound uniformly round the plate, the layers of wire being parallel to the axis of y. If an 
alternating current is sent through the wire producing outside the plate a magnetic force 
Hocospl parallel to z, prove that H, the magnetic force in the plate a t  a distance x from 
the centre, will be given by 

H= Ho cosh 2 n d ~  +cos. 2mh 

sinhm (h+x)  sinm (h-x)-sinhm ( h - c )  sin ,n (h+x) 
tan/3= 

wshm (h+x)cosm(h-x)+cosh rn (h-x)cosm (h+x)' 

where m'd=2~~p/u .  

Discuss the special cases of (i) mh small, (ii) mh large. 
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CHAPTER XVI 

DYNAMICAL THEORY OF CURRENTS 

541. WE have so far developed the theory of electromagnetism by 
starting from a number of simple data which are furnished or confirmed by 
experiment, and examining the mathematical and physical consequences 
which can be deduced from these data. 

There are always two directions in which it is possible for a theoretical 
science to proceed. It is possible to start from the simple experimental data 
and from these to deduce the theory of more complex phenomena. And i t  
may also be possible to start from the experimental data and to analyse these 
into something still more simple and fundamental. We may, in fact, either 
advance from simple phenomena to complex, or we may pass backwards from 
simple phenomena to phenomena which are still simpler, in the sense of 
being more fundamental. 

As an example of a theoretical science of which the development is almost 
entirely of the second kind nlay be mentioned the Dynamical Theory of 
Gases. The theory starts with certain simple experimental data, such as 
the existence of pressure in a gas, and the relation of this pressure to the 
temperature and density of a gas. And the theory is developed by shewing 
that these phenomena may be regarded as consequences of still more funda- 
mental phenomena, namely the motion of the molecules of the gas. 

In  our development of electromagnetic theory there has so far been but 
little progress in this second direction. It is true that we have seen that the 
phenomena from which we started-such as the attractions and repulsions 
of electric charges, or the induction of electric currents-may be interpreted 
as the consequences of other and more fundamental phenomena taking place 
in the ether by which the material systems are surrounded. We have even 
obtained formulae for the stresses and the energy in the ether. But it has 
not been possible to proceed any further and to explain the existence of these 
stressea and energy in terms of the ultimate rnechanism of the ether. 
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The reason why we have been brought to a halt in the development of 
electromagnetic theory will become clear as soon as we contrast this theory 
with the theory of gases. The ultimate mechanism with which the theory of 
gases is concerned is that of molecules in motion, and we know (or a t  least 
can provisionally assume that we know) the ultimate laws by which this 
motion is governed. On the other hand the ultimate mechanism with which 
electromagnetic theory is concerned is that of action in the ether, and we are 
in utter ignorance of the ultimate laws which govetn action in the ether. 
We do not know how the ether behaves, and so can make no progress towards 
explaining electromagnetic phenomena in terms of the behaviour of the ether. 

542. There is a branch of dynamics which attempts to explain the 
relation between the motions of certain known parts of a mechanism, even 
when the nature of the remaining parts is completely unknown. We turn to 
this branch of dynamics for assistance in the present problem. The whole 
mechanism before us consists of a system of charged conductors, magnets, 
currents, etc., and of the ether by which al1 these are connected. Of this 
mechanism one part (the motion of the material bodies) is known to us, while 
the remainder (the flow of electric currents, the transmission of action by the 
ether, etc.) is unknown to us, except indirectly by its effect on the first part 
of the mechanism. 

543. An analogy, first suggested by Professor Clerk Naxwell, will ex- 
plain the way in which we are now attacking the problem. 

Imagine that we have a complicated machine in a closed room, the only 
connection between this machine and the exterior of the room being by 
meanp, of a number of ropes which hang through holes in the floor into the 
room beneath. A man who cannot get into the room which contains the 
machine will have no opportunity of actually inspecting the mechanisni, but 
he can manipulate i t  to a certain extent by pulling the different ropes. If, 
on pulling one rope, he finds that others are set into motion, he will under- 
stand that the ropes must be connected by some kind of mechanism above, 
although he may be unable to discover the exact nature of this mechanism. 

In this analogy, the concealed mechanism is supposed to represent those parts of the 
univeme which do iiot directly affect our senses4.g. the ether-while the ropes represent 
those parts of which we can observe the motion-e.g. material bodies. In nature, there 
are certain acts which we can perform (analogous to the pulling of certain ropes), and these 
are invariably followed by certain consequences (analogous to the motion of other ropes), 
but the ultimate mechanism by which the cause produces the effect is unknown. For 
instance we can close an electric circuit by pressing a key, and the needle of a distant 
galvanometer may be set into motion. We infer that there must be some mechanism 
connecting the two, but the nature of this mechanism is almost completely unknown. 

Suppose now that an observer may handle the ropes, but may not pene- 
t r i te  into the room above to examine the mechanism to which they are 
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attached. He will know that whatever this mechanism may be, certain laws 
must govern the manipulation of the ropes, provided that the mechanism is 
itself subject to the ordinary laws of mechanics. 

To take the simplest illustration, suppose thet there are two ropes only, A and B, and 
that when rope A is pulled down a distance of one inch, it  is found that rope B rises 
through two inchas. The mechankm connecting A and B may be a lever or an arrange- 
ment of pulleys or of clockwork, or something different from any of these. But whatever 
it is, provided that i t  is subject to the laws of dynamics, the experirnenter will know, 
from the mechanical principle of "virtual work," that the downward motion of rope d 
can be restrained on applying to B a force equal to half of that applied to A. 

544. The branch of dynamics of which we are now going to make use 
enables us to predict what relation there ought to be between the motions of 
the accessible parts of the mechanism. If these predictions are borne out by 
experiment, then there will be a presumption that the coricealed mechanism 
is subject to the laws of dynamics. If the predictions are not confimed by 
experiment, we shall know that the concealed mechanisin is not governed by 
the laws of dynamics. 

Hamilton's Principle. 

545. Suppose, first, that we have a dynamical system composed of dis- 
crete particles, each of which moves in accordance with Newton's Laws of 
Motion. Let any typical particle of mass ml have at any instant t coordi- 
nates xl, y,, z, and components of velocity u,, v,, w,, and let i t  be acted on by 
forces of which the resultant has components X,, Y,, 2,. Then, since the 
motion of the particle is assumed to be governed by Newton's Laws, we have 

Let us compare this motion with a slightly different motion, in which 
Newton's Laws are not obeyed. At the instant t let the coordinates of this 
same particle be xl + 6x,, y, + Sy,, z, + 8.2, and let its components of velocity 
be q + ah, vl + Sv,, tu, + 8w1. Let us multiply equations (490), (491) and 
(492) by Sx,, 6y1, Gz, respectively, and add. We obtain 

Now 
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If we sum equation (493) for al1 the particles of the system, replacing the 
tenns on the left by their values as just obtained, we arrive at the equation 

d 
- 2% (u,~x,+ V, 6y1 + W, 62,) - 2% (u, SU, + VI SV, + W, 6.~1) dt 

= 2 (X, 6~ + Y, 6y1 + Zl 62,) . . . . . . (494). 
Let T denote the kinetic energy of the actual motion, and Tt- 6T that of 

the slightly varied motion, then 

T = *Zm,  (.u? + vla + tu:), 
BO that 6T = Cm, (u, 6u, + v, 6v, + W, 6w1), 
and this is the value of the second term in equation (494). 

I f  W and W + 6 W are the potential energies of the two configurations 
(assuming the forces to form a conservative system), we have 

and 6 W = - Ç. (X16x1 + Y,6y, + Z16zl), 
and so the value of the right-hand member of equation (494) is - 6 W. 

We may now rewrite equation (494) in the form 

This equation is true at  every instant of the motion. Let us integrate i t  
throughout the whole of the motion, Say from t = O to t = T. We obtain 

The displaced motion has been supposed to be any motion which 
differs only slightly from the actual motion. Let us now limit it by the 
restriction that the configurations at  the beginning and end of the motion 
are to coincide with those of the actual motion, so that the displaced motion 
is now to be one in which the system starts fiom the same configuration as in 
the actual motion at  time t = 0, and, after passing through a series of con- 
figurations slightly different from those of the actual motion, finally ends in 
the same corhguration at  time t = r as that of the actual motion. Mathe- 
matically this new restriction is expressed by saying that at  times t = O and 
t = r we must have 6% = 6y = 6.2 = O for each particle. Equation (495) now 
becomes 

(T-W)dt=O ........................ (496). 

546. Speaking of the two parts of the mechanism under discussion 
as the "accessible" and " concealed" parts, let us suppose that the kinetic 
and potential energies T and W depend only on the configuration of the 
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accessible parts of the mechanism. Then throughout any imaginary motion 
of the accessible parts of the system we shall have a knowledge of T and W 
at  every instant, and hence shall be able to calculate the value of 

/)T- W )  dt .............................. (497). 

We can imagine an infinite number of motions which bring the system 
from one configuration A at  time t = O to.a second configuration B at  time t = T, 
and we can calculate the value of the integral for each. Equation (496) shews 
that those motions for which the value of the integraI is stationary would be 
the motions actually possible for the system. Having found which these 
motions were, we should have a knowledge of the changes in the accessible 
parts of the system, although the concealid parts remained unknown to us, 
both as regards their nature and their motion. 

547. Equation (496) has been proved to  be true only for a system con- 
aisting of discrete material particles. At the same time the equation itself 
contains, in its fora, no reference to the existence of discrete particles. It 
is at least possible that the equation may be the expression of a general 
dynamical principle which is true for al1 systems whether they consist of 
discrete particles or not. We cannot of course know whether or not this 
is so. What we have to do in the present chapter is to examine whether 
the phenomena of electric currents are in accordance with this equation. 
We shall find that they are, but we shaIl of course have no right to deduce 
from this fact that the ultimate mechanism of electric currents is to be found 
in the motion of discrete particles. ~ e f o r e  setting to work on this problem, 
however, we shall express equation (496) in a diffèrent form. 

Lagrange's Xquations for  Conservative Systems of Forces. 

548. Let O,, 4, . .. O, be a set of qixantities associated with a mechanical 
system such that when their value is known, the configuration of the system 
is fully determined. Then O,, O,, .. . O, are known as the generalised coordi- 
nates of the system. 

The velocity of any moving particle of the system will depend on the values 
de, de,  

of -, -, etc. Let us denote these quantities by &, &, etc. Let x be a 
d t  d t  

Cartesian coordinate of any moving particle. Then by hypothesis x is a 
function of O,, O,, ..., Say 

x = f ( k  6 ,  m. . ) ,  

so that by differentiation, 

bi- af è,+dfè%+ 
dt - ae, . . . a  
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Thus each component of velocity of each moving particle will be a linear 
function of dl, 8,, . . . , from which i t  follows that the kinetic energy of motion 
of the system rnust be a quadratic function of el, &, . .. , the coefficients in this 
function being of course functions of BI, B,, . . . . 

Let us denote T- W by L, so that L is a function of O,, B,, ... O,, 
and of el, e2, . . . è,, say 

. . 
L = 4 ( 4 ,  B,, .. . B,, dl, O,, . . . 0,). 

If L + 6L is the value of L in the displaced configuration 0, + SB,, 
& +  60,, ... B,+ SB,, we have 

so that equation (496), which may be put in the form 

now assumes the form 

/ 0 T @ ~ 8 ~ 1 + ~ 7 ~ e 1  d t = o  .................. 
n a L  

(498). 
1 ae, 

We have 84, = (0, + se,) - 0, 

d dB, 
= - (0, + SB,) - dt 

so that 

' aL se, àt + se1 . =-Io, Cas;) [;a 1: 
The last term vanishes since, by hypothesis, 88, vanishes at  the beginning 

and end of the motion, and equation (498) now assumes the form 

p {aL - SBldt = o. ae, dt a 4  
Let us denote the integrand, namely 

aL a aL 2 {- - - se1 
1 ae, dt ad, 

by 1, so that the equation becomes 
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The varied motion is entirely at our disposal, except that i t  must be 
continuous and must be such that the configurations in the varied motion 
coincide with those in the actual motion at  the instants t = O and t =T. 
Thus the values of SB,, S0,, ... at every instant may be any we please which 
are permitted by the mechanism of the system, except that they must be 
continuous functions of t and must vanish when t = O and when t = 7. Whatever 
series of values we assign to SB,, 68,, .... we have seen that the equation 

is true. Hence the value of 1 must vanish at  every instant, and we must 
have 

549. At this stage there are two alternatives to be considered. It rnay - 

be that whatever values are assigned to Ml, SB,, ... Mn, the new configura- 
tion 0, + 60,, 8, + Se2, ... 0, + 80, will be a possible configuration-that is to 
say, will be one in which the system can be placed without violating the 
constraints imposed by the mechanism of the system. In this case equation 
(499) must be true for al1 values of W,, 602, ... Mn, so that each term must . . 

vanish separately, and we have the system of equations 

... There are n equations between the n variables 0,, O,, 0, and the time. 
... Hence these equations enable us to trace the changes in O,, O,, 0, and to 

express their values as functions of the time and of the initial values of . . 
01, 63, en, 01, 02, - m m  0,- 

550. Next, suppose that certain constraints are imposed on the values of 
O,, B,, ... 8, by the mechanism of the system. Let these be rn in number, 
and let them be such that the small increments S8,, 60,, ... 68, are connected 
by equations of the &rm 

q 6 8 1 + ~ 6 B 2 +  . S .  +an6Bn=0 .................. (501), 

... .................. b1Ml -k b,S& + + bn6& = O (5021, 

etc. 

Then equation (499) must be true for a11 values of S0,, Se,, ... which are 
such as also t o  satisfy equations (501), (502), etc. Let us multiply equations 
(501), (508), ... by X, p, ... and add to equation (499). 

We obtain an equation of the form 
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Let us assign arbitrary values to SB,,,, SB,,,, ... SB,, and then a s s i p  to 
the m quantities 881, Se,, ... 68, the values given by the m equations (501), 

... (502), etc. I n  this way we obtain a system of values for M l ,  SB,, 68, 
which is permitted by the constraints of the system. 

The m niultipliers X, p, ... are at  our disposa1 : let these be supposed to 
be chosen so that the m equations 

are satisfied. Then equation (503) reduces to 

and since arbitrary values have been assigned to SB,,,, ... 68,, it follows that 
each coefficient in this equation must vanish separately. Combining the 
system of equations so obtained with equations (504), we obtain the complete 
system of equations 

@ - (-) + ha, + pb, + ... = O, (s = 1, 2, ... n). ..... (506). 
ad, dt aè, 

Lagiwnge's Equations for General (including Non-conservative) Forces. 

551. I f  the system of forces is not a conservative system, we cannot 
replace the expression 

B (X, 6x1 + Y, Syi + 2, 82,) 

in 5 545 by - S W where W is the potential energy. We may, however, still 
denote this expression for brevity by - 16 W } ,  no interpretation being assigned 
to this symbol, and equation (496) will assume the form 

By the transformation used in 5 548, we may replace j O T 8 ~ d t  by 

ôT ' d  âT 1' {- - - (-)] 68,dt. ae, dt aè, 
Now - (6 W} is, by definition, the work done in moving the system from 

the configuration 81, e,, ... 0, to the configuration 8, .,. + SB,, 8, + SB,, ... 8, + SB,. 
It is therefore a linear function of Se,, Se,, ... Mn,  and we may write 

- {SW]=O,SB~+O,SB,+ ... +0,68,, 

where O,, O,, .:: O, are functions of B,, O,, ... 8,. 
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We now have equation (507) in the form 

aT d aT /'i {- - - (,) + B,) se,dt = o. 
0 1 ae, d t  ae, 

As before each integrand must vanish. We have therefore at  every instant 

E - fi (aT) + w,} Se ,  = o. 
1 ae, dt aè, 

If the coordinates el, O,, ... 8, are al1 capable of independent variation, 
this leads at  once to the system of equations 

d aT\ aT -(- --= a,, ( ~ = 1 ; 2  .... n) ............... 
dt ae,) ae, (608), 

while if the variations in 8,, d,, ... are connected by the constraints implied 
in equations (501), (502), ... we obtain, as before, the system of equations 

.. The quantities B,, a , ,  ... are called the generalised forces" correspond- 
ing to the coordinates e,, e,, .... 

Lagrange's Eyuations for Inzplsive Forces. 

552. Let us now suppose that the system is acted on by a series of 
impulsive forces, these lasting through the infinitesinial interval from t = O 
to t = T. If we multiply equations (508) by dt and integrate throughout this 
interval we obtain 

- ITar I),dt 
ae, t=o  ae, 

i3T 
The interval T is to be considered as infinitesimal, and - is finite. 

ads 
Thus the second term may be neglected and the equation becomes 

We call the generalised impulse corresponding to the generalised 

force Q,, and then, from the analogy between equation (510) and the equation 

change in momentum = impulse, 
a T 

we call -c the generalised momentum corresponding to the generalised ae, 
coordinate 8,. 
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553. We have already obtained expressions for the energy of an electro- 
static system, a system of magnets, of currents, etc., and in every case this 
energy can be expressed in terms of coordinates associated with "accessible " 
parts of the mechanism. We can ah0 find the work done in any smalI change 
in the systein, so that we can obtain the values of the quantities denoted in 
the last section by O,, CY),, . . . . Al1 that remains to be done before we can 
apply Lagrange's equations provisionally (cf 5 547) to the interpretation of 
electromagnetic phenornena is to determine whether the different kinds of 
energy are to be regarded ks kinetic energy or potential energy. 

~ine t ic  and Potential Energy. 

554. At first sight it might be thought obvious that the energy of 
electric charges at rest and of magnets at  rest ought to be treated as 
potential energy, while that of electric charges or magnets in motion ought 
t o  be treated as kinetic. On this view the energy of a steady electric 
current, being the energy of a series of charges in motion, ought to be 
regarded as kinetic energy. We have also seen that this energy is to be 
regarded as being spread throughout the medium surrounding the circuit in 
which the current flows, and not as concentrated in the circuit itself. Thus 
we must regard the medium as possessing kinetic energy at  every point, the 

pH' 
amount of this energy being, as we have seen, - per unit volume. 

87r 

But we have also been led to suppose that the medium is in just the 
same condition whether the magnetic force is produced by steady currents or 
by magnetic shells at  rest. Thus, on the simple view which we are now 
considering, we are driven to treat the energy of magnets at  rest as kinetic- 
a result which is inconsistent with the simple conceptions from which we 
started. Having arrived at this contradictory result, there is no justification 
left for treating electrostatic energy, any more 'than magnetostatic energy, 
as potential rather than kinetic. 

555. Abandoning this simple but unsatisfactory hypothesis, let us turn 
our attention in the first place to the definite discussion of the nature of the 
energy of a steady electric current. 

Let us suppose that we have two currents i, i' flowing in small circuits at 
a distance r apart. As a matter of experiment we know that these circuits 
exert mechanical forces upon one another as if they were magnetic shells of 
strengths i, i'. Let us suppose that a force R is required to keep them apart, 
so that initially the circuits attracted one another with a force R, but are 
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now in equilibrium under the action of their mutual attraction and this force 
R acting in the direction of r increasing. 

r COS e 
If Y is the quantity -dsdsf, we know that the value of R is 

. 

this value being found directly from the experimental fact that the circuits 
attract like their equivalent magnetic shell (cf. 5 499). 

The energy of the two currents is known to be 

.................... E = 4 (LiZ + 2Mii' + Ni'*) .(512). 

Let us suppose, for the sake of generality, that this consists of kinetic 
energy T and potential energy W. Shen, assuming for the moment that the 
mechanism of these currents is dynarnical, in the sense that Lagrange's 
equations may be applied, we shall have a dynamical system of energy 
T+ W, and one of the coordinates may be taken to be r ,  the distance apart 
of the circuits. 

The Lagrangian equation corresponding to the coordinate r is found to 
be (cf. equation (508)), 

and since we know that, in the equilibrium configuration, 

we obtain on substitution in equation (513), 

From equation (512) we see that the right-hand member is the value of 
ôE -, or of a (T+ W )  aw 
ar 

. Hence our equation shews that -= O, from which we 
ar ar 

deduce that W=O. I n  other words, assuming that a system of steady 
currents forins a dynamical system, the energy of this system must be 
wholly kinetic. 

This result compels us also to accept that the energy of a system of 
magnets at  rest must also be wholly kinetic. We shall discuss this result 
later. For the preserit we confine our attention to the case of electric 
phenomena only. We have found that if the mechanism of these pheno- 
mena is dynamical (the hypothesis upon which we are going to work), then 
the energy of electric currents must be kinetic. 
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Induction of Currents. 

556. Let us consider a number of currents flowing in closed circuits. 
Let the strengths of the currents be i l ,  &, ... and let the number of tubes of 
induction wh$h cross these circuits a t  any instant be N, ,  N,, ..., so that if 
the magnetic field arises entirely from the currents, we have (cf 5 503) 

NI= LI,{ + Ll,i2+ ... ..................... 
N2 = L216 + L,i, + etc. 

(514). .... 
The energy of the currents is wholly kinetic so that we may take 

T = + ( N l i l + N , i 2 +  ...) 
= 9 (Llli? + 2L12i1i, + .. .) 

as before ($ 503). 

In the general dynamical problem, it will be remembered that T was a 
quudratic function of the velocities. Thus i l ,  $, ... must now be treated as 
velocities and we must take as coordinates quantities xl, x2, .... defined by 

. dxl 
'hl=-, 

d.2 
dt 

i - -, etc. 
2- dt 

Clearly x, measures the quantity of electricity which has flowed past any 
point in circuit 1 since a given instant, and so on. Thus in terms of the 
coordinates E,, xz, ... we have 

There is no potential energy in the present system, but the system is 
acted on by external forces, ~iamely the electromotive forces in the batteries 
and the reaction between the currents and the material of the circuits which 
shews itself in the resistance of the circuits. We have therefore to evaluate 

.... the generalised forces H l ,  a,, 
Consider a small change in the system in which xl is increased by 6x1, so 

that the current il flows for a time dt given by ildt = 8x1. The work per- 
forxued by the battery is E,6xl, the work performed by the reaction with the 
matter of the circuit, being equal and opposite to the heat generated in the 
circuit, is - B,i?dt. Thus if X, is the generalised force corresponding to the 
coordinate xl, me have 

X16x1 = EISxl - Rli:dt, 

so that xi = El - &il. 
The Lagrangian equation corresponding to the coordinate k1 is 

or 

or again 
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The equations corresponding to the coordinates 4, x3, . . . are 

3x2 & - - = fi,&, etc. 
at 

Thus the Lagrangian equations are found to be exactly identical with the 
equations of current-induction already obtained, shewing not only that the 
phenomenon of induction is consistent with the hypothesis that the whole 
mechanism is a dynamical system, but also that this phenomenon follows as 
a direct consequence of this hypothesis. In  this system the accessible parts 
of the mechanism are the currents flowing in the wires; the inaccessible 
parts consist of the ether which transmits the action from one circuit to 
another. 

556 a. On the electron theory, the kinetic energy must be supposed made 
up partly of magnetic energy, as before, and partly of the kinetic energy of 
the motion of the electrons by which the current is produced. 

Let the average forward velocity of the electrons a t  any point be U, (cf. 
5 345 a), and let u + u0 be the actual velocity of any single electron, so that the 
average value of u is nil. The kinetic energy of motion of the electrons, say 
Te, is then 

Te=26rn(u+ uo>a 

The first term represents part of the heat-energy of the matter, and this 
does not depend on the values of the currents &, ka, ... . To evaluate the 
second terrn we use equation ( b )  of g 345 a, 

and obtain the kinetic energy of the electrons in the  complete system of 
currents in the form 

Thus the total kinetic energy may still be expressed in the form (515) if 
we take 

L,,=L',,+ -as, etc ......................... (517), /Na, 
and in this the first term is the contribution from the magnetic energy 
(cf 5 503), and the second term is the contribution from the kinetic energy of 
the electrons. 

Equation (516) assumes the form 
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If the induction terrns on the left are omitted, we have as the equation 
of a circuit in which induction is negligible 

This, with the help of the formulae of $ 3 4 5  a, may be expressed in the form 

di, m 
[ ~ d s - i ~ / & d s - - / ~ & = o ,  dt  Ne 

which in turn is seen to be exactly identical with equation ( c )  of $ 345 a, 
integrated round the circuit. 

Thus we see that the analysis of $ 556 applies perfectly to the electron 
theory of matter, provided L,,, L,, . .. are supposed to have t,he values given 
by equation (517), and equation (51'1 a )  is then the general equation of 
induction of currents, when the inertia of the electrons is taken into account. 

Electrokinetic Momentum. 

557. The generalised momentum corresponding to the coordinate x1 is 
ar 
- or Nl. Thus the generalised momenta corresponding to the currents in a4 
the difïerent circuits are NI,  NE, . . . , the numbers of tubes of induction which 
cross the circuits. The quantity Nl is accordingly sometimes called the 
electrokinetic momentum of circuit 1, and so on. 

If we give to Lll the value obtained in equation (517) of 556 a, the 
value of the electrokinetic momentum is (cf. equations (514))  

in which clearly the last term cornes from the momentum of the electrons, 
&d the remaining terms from the momentum of the magnetic field. 

Discharge of a Condenser, 

558. As a further illustration of the dynamical theory, let us consider 
the discharge of a condenser. Let Q be the charge on the positive plate 
at any instant, and let this be taken as a Lagrangian coordinate. The 

current i is given by i = - 9 = - Q. I n  the notation already employed 
at 

(§ 516) we have 
T= &Lia = ~ L O ~ ,  
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and Lagrange's equation is 

which is the equation already obtained in g 516, and leads to the solution 
already found. 

Oscillatiolzs in a network. of conductors. 

559. The equations governing the currents flowing in any network of 
conductors when induction is taken into account can be obtained from the 
general dynamical theory, 

Let us suppose thst the currents in the different conductors are 
il, &, ... in, and let the corresponding coordinates be xl, x2, ... x,, these 

hl being given by il= -, etc. If any conductor, Say 1, terminates on a 
dt 

condenser plate, let xl denote the actual charge on the plate, and let the 
d.1 current be measured towards the plate, so that the relations il = - etc. 
dt ' 

will still hold. Let conductor 1 contain an electromotive force E, and be 
of resistance R,. 

The quantities xl, x2, ... may be taken as Lagrangian coordinates, but 
they are not, in general, independent coordinates. If  any number of the 
conductors, say 2, 3, . .. s meet in a point, the condition for no accumulation 
of electricity at  the point is, by Kirchhoff's first law, 

from which we h d  that variations in x,, x3, ... are connected by the 
relations 

s ~ ~ & 8 x 3 _ + . . . + f s x 8 = o .  

Let us suppose that there are m junctions. The corresponding con- 
straints on the values of 6x1, 6x2, . . . c m  be expressed by m equations of 
the form 

etc., in which each of the coefficients a,, a,, ... a,, b,, ... has for its value 
either O, + 1 or - 1. 

The kinetic energy T will be a quadratic function of xl, 4, etc., while 
the potential energy R (arising from the charges, if any, on the condensers) 

32-8 
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will be a quadratic function of x,, x2, . . . . The dynamical equations are now 
n in number, these ùeing of the form (cf. equations (509)) 

These equations, together with the m equations obtained by applying 
Kirchhoff's first law to the different junctions, form a system of fit + n equa- 
tions, from which we can eliminate the rn multipliers A, p, ... , and then 
determine the n variables x,, x,, ... LE"&. 

560. As an exarnple of the use of these equations, let us imagine that 
a current 1 arrives at  A and divides into two parts il, i,, which flow along 

arms ACB, ADB and reunite at B. Neglecting induction between these 
arms and the leads to A and B, we may suppose that the part of the kinetic 
energy which involves il and i, is 

+LQ + Mil i, + 4 NGa. 

There are no batteries and no condenser in the arms in which the 
currents il and i, flow. The currents are, however, connected by the 
relation 

i,+i,=I ............................. .(520), 

so that the corresponding coordinates x, and x, are connected by 

Sx, + 6x, = O. 

The dynamical equatibns are now found to be (cf. equation (519)) 

d 
- (Li, + Mi,) = - Ri, + x, 
dt 

d -(Mi, +Ni,) = - Si, + A .  
d t  

If we subtract and replace i, by 1-i, from equation (520), we eliminate 
X and obtain 

di d l  ( L + N - 2 M )  -$+(M-N)-=SI-(R+S)i,. dt 

If I is given as a function of the time, this equation enables us to deter- 
mine il, and thence i,. 
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For instance, suppose thar, the current 1 is an alternating current of 
frequency p. If we put 1- i,eiPt, the solution of the equation is 

R - ( M - L ) i p  I. 
while similarly i - 

. " ( L + N -  2M)@..+(R+ 8 )  
When p= 0, the solution of course reduces to that for steady currents. 

As p increases, we notice that the three currents il, i, and 1 become, in 
general, in different phases, and that their amplitudes assume values 
which depend on the coeficients of induction as. well as on the resistances. 
Finally, for very great values of p, the values of il and i, are given by 

shewing that the currents are now in the same phase and are divided in a 
ratio which depends only on their coefficients of induction. For instance, 
if the arms A(=, ADB are arranged so as to have very little mutual 
induction (M very small), the current will distribute itself between the 
two a m s  in the inverse ratio of the coefficients of self-induction. 

I t  is possible to arrange for values for L, M and N such that the two 
currents 2; and i, shall be of opposite sign. I n  such a case the current in one 
at least of the branches is greater than that in the main circuit. Let us, for - 
instance, suppose that the branches consist of two coils having r and s turns 
respectively, and arranged so as to have very little magnetic leakage, so 
that LN- Ma is negligible (cf. § 525). We then have approximately 

L M N  - = -= -  
r2 r s  s2 ' 

and the equations become 
il ie 1 - -- 
s - r  S - T I  

so that the currents will flow in opposite directions, and either may be greater 
than the current in the main circuit. By making s nearly equal to r and 
keeping the rnagnetic leakage as small as possible, we can make both 
currents large compared with the original current. But when 8 = r exactly, 
we notice from equations (524) that the original current simply divides itself 
equally between the two branches. 

Rapidly altwnating czrr~ents. 

561. This last problem illustrates an important point in the general 
theory of rapidly alternating currents. I n  the general equations (519), 
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let us suppose that the whole system is oscillating with frequency p, which 
is so great that i t  rnay be treated as infinite. We rnay assume that every 

d 
variable ib proportional to e> and rnay accordingly replace - by the multi- 

dt 
plier a$. The equations now become 

and al1 the terms on the left hand rnay be neglected in comparison with the 
first, which contains the factor ip. The terrns on the right cannot legitimately 
be neglected because h, p, . . . are entirely undetermined, and rnay be of the 
same large order of magnitude as the terms retained. If we replace X. p, . . . 
by ipXf, @pr, . . . , the equations become 

in which A', p', . . . are now undetermined multipliers. These, however, are 
exactly the equations which express that T is a maximum or a minimum 
for values of 4, &, ... which are consistent with the relations (cf. § 559) 
necessary to satisfy Kirchhoff's first law. Since T can be made as large as 
we please, the solution must clearly make T a minimum. 

Thus we have seen that 

As the frepuency of a system of alternating currents becomes very 
great, the currents tend to distribute themselves in such a way as to malce 
the lcinetic enerqy of the currmts a minimum. subject only to the relations 
inqosed by Kirchhofs 3rd lnw. 

This result rnay be compared with that previously obtained (§ 357) for 
steady currents. We see that while the distribution of steady currents is 
determined entirely by the resistance of the conductors, that of rapidly 
alternating currents is, in the limit in which the frequency is inhi te ,  
determined entireIy by the coefficients of induction. 

562, As a consequence it follows that, in a continuous medium of any 
kind, the distribution of rapidly alternating currents will depend only on the 
geometrical relations of the medium, and not on its conducting properties. 
In  point of fact, we have already seen that the current tends to flow entirely 
in the surface of the conductor ($ 537'). We now obtain the further result 
that it will, in the limit, distribute itself in the same way over the surface 
of this conductor, no matter in what way the specific resistance varies from 
point to point of the surface. 
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563. Let 8 be any geometrical coordinate, and let O be the generalised 
force tending to increase the coordinate 6, so that to keep the system of 
circuits at  rest we must suppose i t  acted on by an external force - O. Then 
Lagrange's equation for the coordinate 0 is 

and therefore, since the system is in equilibrium, we must have 

If the energy of the system were wholly potential and of amount W, the 
force O would be given by 

Thus the mechanical forces acting are just the same as they would be if 
the system had potential energy of amount - T. 

564. Let us suppose that any geometrical displacement takes place, this 
resulting in increases Ml, M,, . . . in the geometrical coordinates O,, t?,, . . . , and 
let the currents in the circuits remain unaltered, additional energy being 
supplied by the batteries when needed. 

The increase in the kinetic energy of the system of currents is 

while the work done by the electrical forces during displacement is 2 8 d O  
which, by equation (521), is also equal to 

These two quantities would be equal and opposite if the system were a 
conservative dynamical system acted on by no external forces. I n  point of 
fact they are seen to be equal but of the same sign. The inference is that 
the batteries &ipply during the motion an amount of energy equal to twice 
the increase in the energy of the system. Of this supply of energy half 
appears as an increase in the energy of the system, while the other half is 
used in the performance of mechanical work. 

This result should be compared with that obtained in 5 120. 
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565. As an example of the use of formula (521), let us examine the 
force acting on an element of a circuit. Let the 
components of the mechanical force acting on any 
element ds  of a circuit carrying a current i be de- 
noted by X, Y, 2. 

To find-the value of X, we have to consider a 

A dx 

displacement in which the element ds is displaced a 
FIO. 135. 

distance d x  parallel to itself, the remainder of the 
circuit being left unmoved. Let the component of magnetic induction 
perpendicular to the plane containing ds and d x  be denoted by N, then if 
T denotes the kinetic energy of the whole system, the increase in  T caused 
by displacement will be equal to i times the increase in the number of 
tubes of induction enclosed by tlit! circuit, and therefore 

d%= i f ld sdx .  

Thus, using equation (521), 
aT 

X = - = i N d s ,  
a 8  

and there are similar equations giving the values of the components Y and 2. 

If B is the total induction and if B cos e is the component a t  right angles 
to ds, then the resultant force acting on ds  is seen to be a force of amount 
i B  cos eds ,  acting a t  right angles to the plane containing B and ds, and in 
such a direction as to increase the kinetic energy of the system. This is a 
generalisation of the result already obtained in 5 498. 

MAGNETIC ENERGIY. 

566. We have seen that the energy of the field of force set up by a 
system of electric currents must be supposed to be kinetic energy. We 
know also that this field is identical with that set up by a certain systein of 
magnets at  rest. These two facts can be reconciled only by supposing that 
the energy of a system of magnets at  rest is kinetic energy-a suggestion 
originally due to Ampère. 

Weber's theory of magnetism (5 4'16) has already led us to regard any 
magnetic body as a collection of permanently magnetised particles. Ampère 
imagined the magnetism of each particle to arise from an electric current 
which flowed permanently round a non-resisting circuit in the interior of the 
particle. The phenornena of magnetism, oa this hypothesis, become in al1 
respects identical with those of electric currents, and in particular the energy 
of a magnetic body must be interpreted as the kinetic energy of systerns of 
electric currents circulating in the individual molecules. For instance two 
magnetic poles of opposite sig& attract because two systems of currents 
flowing in opposite directions attract. 
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We have seen that the mechanical forces in a system of energy E are 
aB -- aE 
a6 ' 

etc., if the energy is potential, but are + -, etc., if the energy is ae 
kinetic. I t  might therefore be thought that the acceptance of the hypothesis 
that al1 magnetic energy is kinetic would compel us to suppose al1 mechanical 
forces in the magnetic system to be the exact opposites of what we have 
previously supposed them to be. This, however, is not so, because accepting 
this hypothesis compels us a190 to suppose the energy to be exactly opposite 

amount to what we previously supposed i t  to be. Instead of supposing 
ôE 

that  we have potential energy E and forces - - etc., we now suppose that ax , 
we have kinetic energy - E and forces + a(-E), etc., so that the arnounts of 

ax 
the forces are unaltered. 

To understand how it is that the amount of the magnetic energy must be 
supposed to change sign as soon as we suppose i t  to originate from a series 
of molecular currents, we need only refer back to 5 502. 

567. The molecular currents by which we are now supposing magnetism 
to be originated must be supposed to be acted on by no resistance and by no 
batteries, but if the assemblage of currents is to constitute a true dynamical 
system we must suppose them capable of being acted upon by induction 
whenever the number of tubes of force or induction which crosses them is 
changed. In the general dynamical equation 

aie may put E and R each equal to zem, and - is already k n o m  to vanish. a x  . 
ô T Thus the equation expresses that - remains unaltered. 
a2 

We now see that the strengt'ns of the molecular currents will be changed 
by induction in such a way that the electrokinetic momentum of each remains 
unaltered. If the molecule is placed in a rnagnetic field whose lines of force 
run in  the same direction as those from the molecule, then the effect of induc- 
tion is to decrease the strength of the molecule until the aggregate number 
of tubes of force which cross it is equal to the number originally crossing it. 
This effect of induction is of the opposite kind from that required to explain 
the phenomenon of induced magnetism in iron and other paramagnetic sub- 
stances. I t  has, however, been suggested by Weber that i t  may account for 
the phenomenon of diamagnetism. 

568. Modern views as to the structure of matter compel us to abandon 
Ampère's conception of molecular currents, but this conception can be 
replaced by another which is equally capable of accounting for magnetic 
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phenomena. On the modern view al1 electric currents are explained as the 
motion of streams of electrons. The flow of Ampère's molecular current may 
accordingly be replaced by the motion of rings of electrons. The rotation 
of one or more rings of electrons vctould give rise to a magnetic field exactly 
similar t o  that which would be produced by the flow ~f a current of electricity 
in a circuit of no resistance. 

I t  is on these lines that it appears probable that an explanation of 
magnetic phenomena will be found in the future. No complete explanation 
has so far been obtained, for the simple and sufficient reason that the arrange- 
ment and behaviour of the electrons in the molecule or atom is still unknown. 
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EX AMPLES. 

1. Two wires are arranged in parallel, their resistances being R and 8, and their 
coefficients of induction being L,  M, A< Shew that for an alternating current of frequency 
p the pair of wires act like a single conductor of resistance R and self-induction L, given by 

R 
RS ( R +  4 +pz  { R  ( N -  M)z + S ( L  - M)2) 

- - L 1 
NRZ+LS2$ 2MRS'+p2 ( L N -  Y2) ( L f  N -  2 M )  = (R+S)2+p2(L+N- 2M)Z' 

2. A conductor of considerable capacity S is discharged through a wire of self-induc- 
tion L .  At  a series of points along the wire dividing it into n equal parts, (n- 1) equal 
conductors each of capacity 8' are attached. Find an equation to determine the periods 
of oscillations in the wire, and shew that if the resistance of the wire may be neglected, 
the equation may be written 

2 tan +$ ( S  - $8') = S' cot n$, 

where the current varies as e-'", and sin2 $=X'XZL/4n. 

3. A Wheatstone bridge arrangement is used to compare the coefncieiit of mutual 
induction M of two coi18 with the coefficient of self-induction L of a third coil. One of the 
coils of the pair is placed in the battery circuit AC, the other is connected to B, D as a 
shunt to  the galvanometer, and the third coil is placed in AD. The bridge is first balanced 
for steady currents, the resistances of AB, BC, CD, DA being then Hl, R2, R3, Rh: the 
resistance of the shunt is altered till there is no deflection of the galvanometer needle at  
make and break of the battery circuit, and the total resistance of the shunt is then R. 
Prove that 

LRR22= MR, (R2 + R.42. 
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4. Two circuits each containing a condenser, having the same natural frequency when 
at a distance, are brought close together. Shew that, unless the mutual induction between 
the circuits is small, there wiil be in each circuit two fundamental periods of oscillation 
given by 

where Cl, Ca are the capacities, LI, L2 the coefficients of self-induction, and Y the coefficient 
of mutud induction, of the circuits. 

5. Let a network be formed of conductors A, B, ... arranged in any order. Prove that 
when a periodic electromotive force Pcos pt is placed in A the current in B is the same in 
amplitude and phase as the current is in A when an electromotive force F cos pt is placed 
in B. 
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CHAPTER XVII 

DISPLACEMENT CURRENTS 

569. OUR development of the theory of electromagnetism has been based 
upon the experimental fact that the wirk done in  taking a unit magnetic 
pole round any closed path in the field is equal to 41r times the aggregate 
current enclosed by this path. But it has already been seen ($534) that this 
development of the theory is not .sufficiently general to take account of 
phenomena in which the flow of current is not steady : " the aggregate current 
enclosed by a path " is an expression which has a definite meaning only when 
the flow of current is steady. Before proceeding to a more general theory, 
which is to cover al1 possible cases of current flow, it is neceisary to deter- 
mine in what way the experimental basis is to be generalised, in order to 
provide material for the construction of a more complete theory. 

The answer to this question has been provided by Maxwell. According 
to Maxwell's displacement theory (§ 171), the motion of electric charges is 
accompanied by a " displacement " of the surrounding medium. The motion 
produced by this displacement will be spoken of as a " displacement-current," 
and we have seen that the total flow which is obtained by compounding the 
displacement-current with the current produced by the motion of electric 
charges (which will be called the conduction-current), will be such that the 
total flow into any closed surface is, under al1 circumstances, zero. Thus if 
SI, 8, are any two surfaces bounded by the same closed 
path s, the total flow of current across 8, is the same as 
the total flow, in the same direction, across S2, so that s<A>.8 

either may be taken to be the flow through the circuit Sa 

Fm. 136. 
s. Maxwell's theory proceeds on the supposition that 
in any flow of current, the work done in taking a unit magnetic pole round s 
is equal to the total flow of current, including the displacement-current, 
through s. The justification for this supposition is obtained as soon au i t  is 
seen how i t  brings about a complete agreement between electromagnetic 
theory and innumerable facts of observation. 

570. Let us first put the hypothesis of the existence of displacement- 
currents into mathematical language. Let u, v, w be the coniponents of the 
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current at any point which is produced by the motion of electric charges, and 
let this be measured in electromagnetic units (cf $ 484). Let y, h be 
the components of displacement (or polarisation) at this point, this being 
supposed measured in electrostatic units. Let any closed surface be taken, 
and let 1, m, n be the direction-cosines of the outward normal to any element 
di3 of the surface. Then if E is the total charge of electricity enclosed - 

by this surface, we have, by Gauss' Theorem, 

\filf+ mg + nh) d~ = E ..................... (522). 

Let us suppose that there are C electrostatic units of charge in one 
electromagnetic unit. Then the total charge of electricity enclosed by the 

E 
surface, measured in electromagnetic inits, is -, and the rate at which this C 
quantity increases is measured by the total inward flow of electricity across 
the surface 8, these currents of electricity being measured also in electro- 
magnetic units. Thus we have 

dE 
Rubstituting for - its value, as found by differentiation of equation 

dt 
(522), we obtain 

Now u, v, w are the components of the conduction-current, while - 

1 df 1 dg 1 dh 
G d t '  C a '  C d t  are the components of the displacement-current, both 

currents being measured in electromagnetic units. Thus 

are the components of Maxwell's "total current" and equation (524) expresses 
that the total current is a solenoidal vector'(cf. § 177)-the fundamental fact 
upon which Maxwell's theory is based. 

571. The hypothesis upon which the theory proceeds is, as we have 
already said, that the work done in taking a magnetic pole round any closed 
circuit is equal to 47~ times the total flow of current through the circuit, 
this current being measured in electromagnetic units. As in § 533, this is 
expressed by the equation 
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in which the line-integral is taken round the closed path, and the surface- 
integral is taken over any area bounded by this closediath. We proceed as 
in 5 533, and find that equation (525) is equivalent to the system of equa- 
tions 

as aa J 4T w+-- =--- ( a 2) a a~ 
These are the equations which must replace equations (473)-(475) in 

the most general case of current-flow, 

572. I n  addition we have the system of equations already obtained in 
5 529, namely 

da az au --- dt - 5 - z, etc., 

in which al1 the quantities are expressed in electromagnetic units. If the 
electric forces X, Y, Z are expressed in electrostatic units, we must replace 
the right hand of this equation by 

and t'he system of equations becomes 

The set of six equations, (526) and (527), form the most general system of 
equations of the electromagnetic field. In these equations u, v,  w, a, 6, c, 
a, p, y are expressed in electromagnetic units, while f, g, h, X, Y, Z are 
expressed in electrostatic units. 

LOCALISATION AND FLOW OF ENERGY. 

572 a. We have already found reasons for thinking that neither electric 
nor magnetic energy is confined to the regions in which electric charges 
and permanent magnetism are found. We are now supposing further that a 
current of electricity is not confined to the conductor in which i t  appears to 
be flowing, but is accompanied by disturbances through the surrounding 
ether, The two suppositions are consistent with, and complementary to, one 
another. For instance, a motion of electric charges will in general alter the 
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electrostatic energy of the field, requiring a transference and adjustment of 
energy throughout the ether : the nîechanism of this flow of energy is to be 
looked for in the displacement-currents which accompany the motion of the 
charges. 

The flow of energy in the ether iu dealt with in Poynting's Theorem, 
which follows. 

Poynting's Theorem. 

572 b. The total energy T+ W in .any region is given by 

whence, on differentiating, and replacing pa by a, KS by 4n-f, etc., 

on substitution from equations (526), (527). The first line 

by Green's Theorem (5 179), 1, m, n being the direction cosines of the normal 
inwards into the region. 

I n  equation (528), the last term represents exactly the rate a t  which 
work is performed or energy dissipated by the flow of currents, so that the 
remainder (expression (529)) represents the rate a t  which energy flows into 
the region from outside. 

C 
If II,, II,, II, denote G ( Y y  - ZP), etc., we see that the value of 

d &(T+ W) is the same as if there were a flow of energy in the direction 

1, m, n of amount ln,+mn,+nlI,. The vector II of which II,, II,, II, 
are components is of amount 

where R, H are the electric and magnetic intensities and 8 is the angle 
between them. The direction of the vector II is a t  right angles to both R 
and H, and the flow of energy into or out of the surfaces is the same as if 
there were,a flow equal to il in magnitude and direction a t  every point of 
space. This vector Il is called the " Yoynting flux of energy." 
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I t  is to be noticed that we have only found the total flux of energy over 
a closed surface; we have no right to assume that the flux at  any single 
point is that given by Poynting's formula. 

But if we are right in supposing (cf. 5 161) that the state of the medium 
at every point depends only on the values and directions of R and H, then 
the flow pf energy at every point must be exactly that given by the Poynting 
flux, for the integral (529) can be distributed in no other way consistently 
with the supposition in question. 

573. I n  an isotropic medium we may put (cf. 5 128) 

The values of u., v, w are also given in terms of X, Y, Z by Ohm's Law. The 
electric forces, measured in electromagnetic units (the components of force 
acting on an electromagnetic unit of charge), will be CX, CY, CZ, so that we 
have the relations 

CX , ............................. 21 = - etc.. 
7 

(5301, 

and equations (526) become 

.................. , etc. (531). 

Thus the present system of equations differs from that previously obtained, 
in which the displacement-current was neglected, by the presence of the term 
K dX -- c dt  ' 

To form an estimate of the relative importance of this term, let us 

examine the case of an alternating current in which the time factor is eipt. 
d 

We may as usual replace - by ip, and equations (531) become 
d t  

a, aa ( T + ~ ) x = ~ - ~ ,  etc. .................. (532). 

Thus neglecting the displacement-current amounts to neglecting the 
ratio K i p ~ / h C ~ .  Clettrly the neglect of this ratio produces the greatest 
error in problems in which T is large (conductors of high resistance) and in 
which p is large (rapidly changing fields). On substituting numerical values 
it will be found that in problems of conduction through metals, the neglect 
of the factor K+n/4.rrC2 produces a quite inappreciable error unless p is com- 
parable with 1016-Le. unless we are dealing with oscillating fields of which 
the frequency is comparable with that of light-waves. Thus the effect of 
the displacement-current in metals has been inappreciable in the problems 
so fiar discussed, so that the neglect of this effect may be regarded as 
justifiable. The matter stands differently as regards the problems to be 
discussed in the next chapter, in which the oscillations of the field are 
identical with those of light-waves. 
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574. The equations assume special importance when the medium is 
isotropic and non-conducting. There can be no conduction-current, so that 
w e p u t u = v = w = O .  Wealsoput  

41i-f = KX,  etc., a = Pa, etc. 

The equations now become 

K d Y  ôa 
-- ,, =, -2: ......(A), . . . . . . (B). c dt a~ ax 

Of these two systems of equations the former may be regarded as giving 
the magnetic field in terms of the changes in the electric field, while the 
latter gives the electric field in terms of the changes in the magnetic field. 
We notice that, except for a difference of sign, the two systems of equations 
are exactly symmetrical. Thus in an isotropic non-conducting medium 
magnetic 'and electric phenomena play exactly similar parts. 

The two systems of equations may be regarded as expressing two facts for 
which we have confirmation, although indirect, from experiment. System (A) 
expresses, as we have seen, that the line-integral of magnetic force round a 
circuit is equal to the rate of change (measured with proper sign) of the 
surface integral of the polarisation, this rate of change being equal to 47r 
times the total current through the circuit, while similarly system (B) ex- 
presses that the line-integral of electric force round a circuit is equal to the 
rate of change of the surface integral of the magnetic induction. These two 
facts, however, are not independent of one another: the latter can be shewn 
to follow from the former if we assume the whole mechanism of the system 
to be dynamical in its nature. This might be suspected from what has 
already been seen in 5 556, but we shall verify i t  before proceeding further. 

575. Assuming the whole field to form a dynamical system, the kinetic 
and potential energies are given by 

The quantities a, P, must f~ndamen ta l l~  be of the nature of velocities : 
let us denote them by g, 6, t, so that 5, 7 ,  are positional coordinates, and 
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giving the kinetic energy as a quadratic function of the velocities. The 
motion can be obtained from the principle of least action, expressed by equa- 
tion (496), namely 

s (T-  W)dt=O. 1,' 
We cannot, however, obtain the equations of motion until we know the 

relation between the coordinates f ,  7, t; which enter in the kinetic energy, 
and the coordinates X, Y,  Z which enter in the potential energy. We shall 
find that if we suppose this relation to be that expressed by equations (A), 
then equations (B) will be obtained as the equations of motion. 

676. Assuming that the magnetic coordinates 6 7, are connected with 
the electric coordinates X, Y, Z by equations (A), we have 

so that on integation we obtain 

except for a series of constants which may be avoided by assigning suitable 
values to 5, 7 and Using equations (533), we have the potential energy 
'expressed as a function of t, 7 and y, and the kinetic energy expressed as a 
function of e, 4 and k, and rnay now proceed to find the equations of motion 
by the principle of least action. 

We have 

ST =L///&i8t 4~ + pj& +P!8b d x d y d i  

As in § 545, we suppose the values of SE, 87, S c  al1 to vanish at the 
instants t = O and t  = T, so that the first term on the right hand disappears. 

R e  have also 

IRIS - LILLIAD - Université Lille 1 



675-5771 Isotropie Media 515 

on substituting the values of K6X, etc,, from equations (533). The volume 
integral may be transformed by Green's Theorem, and we obtain 

Collecting terms, we find that 

Since the variations @, Sr are independent and may have any values 
a t  al1 points in the field, their coefficients must vanish separately, and we 
must have 

az ay 
- + - - - = 0, etc. .C dy a~ 

These are the equations which the principle of least action gives as the 
equations of motion, and we see a t  once that they are simply the equations 
of system (B). 

Homogeneous medium. 

577. Let us next consider the solution of the systems of equations (A) 
and (B) (of page 513) when p and K are constants throughout the medium, 
and the medium contains no electric charges. From the first equation of 
system (A), we have 

P dry P dB and on substituting the values of - - and - - from the last two equa- 
C dt C d t  

tions of system (B), this equation becomes 

Since the medium is supposed to be uncharged, we have 
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a2x 
so that the last term may be replaced by +a;, . and the equation becomes 

By exactly similar analysis we can obtain the differential equation satis- 
fied by P, 2, a, fi and y, and in each case this differential equation is found 
to be identical with that satisfied by X. Thus the three components of 
electric force and the three components of magnetic force al1 satisfy exactly 
the saine differential equation, namely 

where a stands for CI=. This equation, for reasons which will be seen 
from its solution, is known as the " equation of wave-propagation." 

Solution for spherical waves. 

578. The general solution of the equation of wsve-propagation is best 
approached by considering the special form assumed when the solution 2 
is spherically symmetrical, If x is a function of r only, where r is the 
distance from any point, we have 

which may be transformed into 

and the solution is 
T X =  f ( r -u t )+@(r+a t )  ..................... (5361, 

where f and are arbitrary functions. 

The form of solution shews that the value of a t  any instant over a 
sphere of any radius r depends upon its values a t  a time t previous over 
two spheres of radii r - at  and r + ut. In other words, the influence of any 
value of x is propagated backwards and forwards with velocity a. For 
instance, if a t  time t = O  the value of x is zero except over the surface of 
a sphere of radius r ,  then a t  time t the value of x is zero everywhere except 
over the surfaces of the two spheres of radii r I at  ; we have therefore two 
spherical wave's, converging and diverging with the same velocity a. 
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General solutiwn (Liouville). 

579. The general solution of the equation can be obtained in the 
following manner, originally due to Liouville. 

Expressed in spherical polars, r ,  B and 9, the equation to be solved is 

Let us multiply by sin BdBd+ and integrate this equation over the surface 
of a sphere of radius r 

the equation becomes 

surrounding the origin. If we put 

........................ x = sin ddBd+ (537), 

the remaining terms vanishing on integration. The solution of this equation 
(cf. equation (536)) is 

1 
h =-i f ( a t - r ) + @ ( a t  + r ) ]  .................. r (538). 

For small values of r this assumes the form 

... ra 
{ f (ut) + @ (ut)] - r { f' (ut) - @' (at)}  + { f" (ut) + @" (at)} + 1 

......... (539). 

I n  order that h may be h i t e  at the origin through al1 time, we must 
have 

f (at) + @ (ut) = O 

at every instant, so that the function must be identical with -j On 
putting r = O ,  equation (539) becomes 

(A)v-o = - y' (ut), 

and from equation (537), putting r = O, we have 

(h)r-o = 4~ &)r-o> 

so that 47r (x)+~ = - 2f' (ut) ........................ (540). 

Equation (538) may now be written as 

rX = f (ut - r)  - f (ut + r). 
On differentiating this equation with respect to r and t respectively, 
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and on addition we have 
a i a - 2f' (ut + r )  = -. (rX) + - - (rk). 
ar a at 

This equation is true for al1 values of r and t : putting t = O, we have 

a T .  - 2f' ( r )  = - (T&-~) + - Xt-O a~ a 

as an equation which is true for al1 values of r. Giving to r the special 
value r = at, the equation becomes 

The left hand is, by equation (520), equal to 4 x ( ~ ) ~ , ~ .  If we use 2,g to 
denote the mean values of x and X averaged over a sphere of radius ut at 
any instant, the equation becomes 

Thus the value of x at any point (which we select to be the origin) at 
any instant t depends only on the values of x and a t  time t = O over a 
sphere of radius at surrounding this poinb The solution is of the same 
nature as that obtained in $ 578, but is no longer limited to spherical waves. 

580. A still more general form of solution has been given by Kirchhoff. 
Let and 1I' be any two independent solutions of the original equation, so 
that 

By Green's Theorem (equation (101)) 

by" equations (542). The volume integrations extend through the interior 
of any space bounded by the closed surfaces S,, S,, ..,, and the normals to 
S,, S,, ... are drawn, as usual, into the space. I f  we integrate the equation 
just obtained throughout the interval of time from t =  - t' to t = + t", we 
obtain 
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So far T has denoted any solution of the differential equation. Let us 
1 

now take it to be - P ( r  + ut), this being a solution (cf. equation (536)) what- 
r 

ever function is denoted bg FI and let F(x) be a function of x such that it 
and al1 its differential coefficients vanish for al1 values of x except x = O, while 

Such a function, for instance, is F(x)=Lt  
o=o s (9 + P) ' 

We can choose t' so that, for al1 values of r considered, the value of 
r - ut' is negative. The value of r + ut" is positive if t" is positive. Thus 
F (r + ut) and al1 its differential coefficients vanish at  the instants t = t" and 
t = - t', so that the right-hand member of equation (543) vanishes, and the 
equation becomes 

Let us now suppose the surfaces over which this integral is taken to be 
two in number. First, a sphere of infinitesimal radius r,, surrounding the 
origin, which will be denoted by SI, and second, a surface, as yet unspecified, 
which will be denoted bg S. Let us first calculate the value of the contribu- 
tion to equation (544) from the f i r ~ t  surface. We have, on this f i s t  surface, 

1 V = - P (r, + ut), 
Y0 

av av i -- - ----- 1 
an a r  r: 

3' (ro + at) + - TO P1 (r, + ut), 

so that when r, is made to vanish in the limit, we have 

and therefore 

since the integrand vanishes except when t = 0. 
Thus equation (544) becomes 
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Integrating by parts, we have, as the value of the first term under the 
time integral, 

The first term vanishes at both lirnits, and equation (545) now becomes 
t" . 

@T-o = - / / d ~ / - ,  B ( r + a t )  - - - - @ -  1 at- d a  a - 1 +- -  1 a@i dt. 
1=0 47r { a r a n d t  a n L )  T a n i  

We can now integrate with respect to the time, for F ( r  +at )  exists only 
at  the instant t = - r/a. Thus the equation becomes 

giving the value of Q, at the tirne t  = O  in terms of the values of @ aiid 6 
taken at previous instants over any surface surrounding the point. Tbe 
solution reduces to that of Liouville on taking the surface S to be a sphere, 

a a 
so that -=-- 

an are 

As with the former solutions, the result obtained cIearly indicates propa- 
gation in al1 directions with uniform velocity a. 

PROPAGATION OF ELECTROMAGNETIC WAVES. 
581. It is now clear that the system of equations 

etc., obtained in 5 577 indicate that, in a homogeneous isotropie dielectric, al1 
electromagnetic effects ought to be propagated with the uniform velocity 

This enables us to apply a severe test to the truth of the theory of 
d q i '  

* Rapportspr68entés aîi Congrèa du Physique, Paris, 1900. Vol. Ir, p. 267. 

displacement-currents. The value of C can of course be determined experi- 
mentally, and the velocity of propagation of electromagnetic waves can also 
be determined. In air, in which Ii = p = 1, these two quantities ought, if 
the hypothesis of displacement-currents is sound, to be identical. 

582. For the value of C, the ratio of the two units, the following ex- 
perimental results are collected by Abraham*, as likely to be most accurate : 

Himstead ... 3.0057 x 101° 

Rosa . . . . . .  3.0000 x IOL0 

J. J. Thomson ... 2.9960 x 1010 

Abraham ... 2.9913 x 1010 
Pellat . . . . . .  3'0092 x 101° 

Hurmuaescu ... 3.0010 x 101° 

Perot and Fabry 2.9973 x 10'0 
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The mean of these quantities is 

C = 3.0001 x 10IO. 

For the velocity of propagation of electromagnetic waves in air, the 
following experimental values are collected by Blondlot and Gutton* : 

Blondlot ... ... 3.022 x 10'0, 2'964 x 10l0, 2'980 x 1O10 

Trowbridge and Duane ... 3.003 x 10" 
MacLean ... ... 2.9911 x 1010 
Saunders ... ... 2.982 x 10'0, 2.997 x 10'0 

The mean of these quantities is 2.991 x 
Thus the two quantities agree to within a difference which is easily within 

the limits of experimental error. 

583. Both these quantities are equal, or very nearly equal, to the 
velocity of light, and this led Maxwell to suggest that the phenomena of 
light propagation were, in effect, identical with the propagation of electric 
waves. Out of this suggestion, amply borne out by the results of further 
experiments, has grown the Electromagnetic Theory of Light, of which a short 
account will be given in the next chapter. From an examination of different 
experimental results, Cornut gives as the most probable value of the velocity 
of light in fkee ether 

3.0013 _+ .O027 x 101° cms. per second. 

Dividing by 1.000294, the refractive index of light passing from a vacuum 
to air, we find as the velocity of light in air, 

3.0004 + -0027 x 101° cms. per second. 

This quantity, again, is identical, except for a difference which is well 
within the limits of experimental error, with the quantities already obtained. 

Thus we may Say that the ratio of units O is identical with the velocity 
of propagation of electromagnetic waves, and this again is identical with the 
velocity of light. 

UNITS. 

584. We can a t  this stage sum up al1 that has been said about the 
difTerent systems of electrical units. 

There are three different systems of units to be considered, of which two 
are theoretical systems, the electrostatic and the electromagnetic, while the 
third is the practical system. We shall begin by discussing the two 
theoretical systems and iheir relation to one another. 

* Rapports pr6sentés au Congrès du Physique, Paris, 1900. VOL II. p. 283. 
1- I.c. p. 246. 
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585. I n  the Electrostatic System the fundamental unit 'is the unit of 
electric charge, this being defined as a charge such that two such charges at 
unit distance apart in air exert unit force upon one another. There will, of 
course, be different systems of electrostatic units corresponding to different 
units of length, mass and time, but the only system which need be considered 
is that in which .these units are taken to be the centimetre, gramme and 
second respectively. 

I n  the Electromagnetic System the fundamental unit is the unit mag- 
netic pole, this being defined to be such that two such poles a t  unit distance 
apart in air exert unit force upon one another. Again the only system 
which need be considered is that in which the units of length, mass and 
time are the centimetre, gramme and second. 

From the unit of electric charge can be derived other units-e.g. of 
electric force, of electric potential, of electric current, etc.-in which to 
measure quantities which occur in electric phenomena. These units will 
of course also be electrostatic units, being derived fiom the fundamental 
electrostatic unit. 

So also from the unit magnetic pole can be derived other units-e.g. of 
magnetic force, of magnetic potential, of strength of a magnetic shell, etc.- 
in which to measure quantities which occur in .magnetic phenomena. These 
units will belong to the electromagnetic system. 

If electric phenomena were entirely dissociated from magnetic phenomena, 
the two entirely different sets of units would be necessary, and there could be 
no connection between them. But the discovery of the connection between 
electric currents and magnetic forces enables us a t  once to form a connection 
between the two sets of units. I t  enables us to measure electric quantities- 
e.g. the strength of a current-in electromagnetic units, and conversely we 
can measure magnetic quantities in electrostatic units. 

We find, for instance, that a magnetic shell of unit strength (in electro- 
magnetic measure) produces the same field as a current of certain strength. 
We accordingly take the strength of this current to be unity in electro- 
magnetic measure, and so obtain an electromagnetic unit of electric current. 
We find, as a matter of experiment, that this unit is not the same as the 
electrostatic unit of current, and therefore denote its measure in electro- 
static units of current by C. This is the same as taking the electromagnetic 
unit'of charge to be C times the electrostatic unit, for current is measured 
in either systern of units as a charge of electricity per unit time. 

In  the same way we can proceed to connect the other units in the two 
systems. For instance, the electromagnetic unit of electric intensity will be 
the intensity in a field in which an electromagnetic unit of charge experiences 
a force of one dyne. An electrostatic unit of charge in the same field 
would of course experience a force of 1/C dynes, so that the electrostatic 
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measure of the intensity in this field would be l/C. Thus the electro- 
magnetic unit of intensity is 1/C times the electrostatic. The following 
table of the ratios of the units can be constructed in this way: 

Charge of Electricity. . 
Electromotive Force. 
Electric In  tensit y. 
Potential. 
Electric Polarisation. 
Capacity. 
Current. 
~es is tanie  of a conductor. 
Strength of magnetic pole. 
Magnetic Intensity. 

,, Induction. 
Inductive Capacity. 
Magnetic Permeability. 

One electromag. unit = C electrostat. units. 
> >  ,, ,, = 1lC ,, 9 ,  

>, 9,  ,, = l /C ,, >> 

>I >> ,, = l /C ,, J> 

3, . ,> ,, = Q  3, I l  

57 >> ,,' =C'a Y, ,Y 

?J 9,  ,, =c  ,? JS 

>, >, >, = l/ca ,, 92 

79 >> ,, = IlC ,, >> 

>> >> ,, = Q  21 >3 

,> I>  ,, = 1/c  ,, >> 

>> 1, ,, = CI 3, 2, 

>> J2 ,, = l/ca ,, ,* 

586. The value of C, a8 we have said, is equal to about 3 x 101° in 
C.G.S.  units. If units other than the centimetre, gramme and second are 
taken, the value of C will he different. Since we have seen that C represents 
a velocity, it is easy to obtain its value in any system of units. 

For instance a velocity 3x 101° in C.G.S. units=67lx los miles per hour, so that if 
miles and hours are taken as units the value of C will be 6.71 x 108. 

587. The practical system of units is derived from the electromagnetic 
systern, each practical unit differing only from the correspondhg electro- 
magnetic unit .by a certain power of ten, the power behg selected so as to 
make the unit of convenient size. The actual measures of the practical units 
are as follows : 

Quantity 
Charge of Electricity 
Electromotive Force 
Electric Intensity 
Potential 
Capacit~ 

>> 

Current 

Resistance 

Meesure in 
Name of Unit electromag. units 

Coulomb 1 O-1 

Volt. 108 

Farad 10- 
Microfarad 1 0-l6 
Ampère 10-l 

Ohm 

Messure in 
electrostatio unite 

(Taking C=3 x 1010) 

3 x 10" 
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For legal and commercial purposes, the units are defined in terms of materid utandarda. 
Thus wcording to the resolutions of the International Conference of 1908 the legal (Inter- 
national) ohm is defined to be the resistance offered to a steady current hy a uniform 
column of mercury of length 106.300 cms., the temperature being O" C., and the mas8 
being 14.4521 grammes, this resistance being equal, as nearly as can he determined by 
experiment, to  109 electromagnetic units. Similarly the legal (International) ampère is 
defined to be the current which, when passed through a solution of silver nitrate in water, 
deposits silver a t  the rate of .O0111800 grammes per second. 

588. As explained in § 18, al1 the electric and tnagnetic units will have 
apparent dimensions in mass, length and time. These are shewn in the 
following table : 

Charge of Electricity e 

Density ,, ,, P 

Electromotiw Force E 

Electric Intensity fi (4 Ir, 2) 
Potential 4' 

Electric Polarisation P(,f, g, h) 

Capacity C 

Current i 

Current per u i t  area (u, v, w )  

Resistance R 

Specific resistance T 

Strength of magnetic pole n3 

Xagnetic Force H(a,  k t  Y) 
,, Induction B (a, 4 4 

Inductive Capacity K 
Magnetic Permeability p 
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CHAPTER XVIII 

THE ELECTROMAGNETIC THEORY OF LIOHT 

589. IT has been seen that, on the electromagnetic theory of light, the 
propagation of waves of light in vacuo ought to take place with a velocity 
equal, within limits of experimental error, to the actual observed velocity 
of light. A further test can be applied to the theory by examining whether 
the observed and calculated velocities are in agreement in media other than 
the free ether. 

According to the electromagnetic theory, if V is the velocity in any 
medium, and the velocity in free ether, we ought to have the relation 

where K,, po refer to free ether. 

For fiee ether and al1 media which will be considered, we may take p = 1. 
Also if v is the refractive index for a plane wave of light passing from free 
ether to any medium, we have from optical theory the relation 

so that, according to the electromagnetic theory, the refiactive index of any 
medium ought to be connected with its inductive capacity by the relation 

One difficulty appears at  once, According to this equation there ought 
to be a single definite refractive index for each medium, whereas the pheno- 
menon of dispersion shews that.the refractive index of any medium varies with 
the wave-length of the light. It is easy to trace this difûculty to its source. 
The phenornenon of dispersion is supposed to arise from the periodic motion 
of charged electrons associated with the molecules of the medium (cf § 610, 
below), whereas the theoretical value which has been obtained for the velocity 
of light has been deduced on the supposition that the medium is uncharged 
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at every point (5 577). It is only when the light is of infinite wave-length 
that the effect of the motion of the electrons disappears. Thus according to 

the electromagnetic theory the value of lx ought to be identical with the 2 Ka, 
refractive index for light of infinite wave-length. Unfortunately it is not 
possible to measure the refractive index with accuracy except for visible 
light. 

590. I n  the following table, the values of are mean values taken 

from the table already given on p. 132 of the inductive capacities of gases. 
The values of v refer to sodium light. 

Gas 

Hydrogen ... 

Air ... ... 
Carbon Monoxide 

Carbon Dioxide 

Nitrous Oxide ... 

Ethylene ... 

luthority Mean v 

Authorities :-1. Mascart. 2. G. W. Walker (Phil. Tram. A. 201, p. 435). 
3. Preston (Theory of LigAt, p. 137). 

From this it will be seen that for these substances there is quite good 
agreement between theory, and experiment, in spite of the failiire of the 
theory to take al1 the facts into account. In  the case of vapours the agree- 
ment is much less good, and for many solids and liquids there is no agreement 
a t  all. For instance, the observed inductive capacity of water varies from 75 
to 81 (see p. 75) while the value of v is 1.33. 

Solution of Difirential Equation. for Plane Waves. 

591. The equation of wave propagation ' 

has, as a particular solution, 
= A eiL (zx+ m ~ + l w - a t j  . . . , . . . . . . . , . . . . . . . . . . . . (547), 

IRIS - LILLIAD - Université Lille 1 



689-6921 Non-wnducthg Media 527 

provided la+ mg + n" 1. This value of x is a complex quantity of which 
the real and imaginary parts' separately must be solutions of the original 
equation. Thus we have the two solutions 

x = A sin K (lx i: my + nz - ut). 

Either of these solutions represents the propagation of a plane wave. 
'The direction-cosines of the direction of propagation are 2, m, n, and the 
velocity of propagation is u. Usually it will be found simplest to take the 
value of x given by equation (547) as the solution of the equation and reject 
imaginary terms after the analysis is completed. This procedure will be 
followed throughout the present chapter; it will of course give the same 
result as would be obtained by taking equation (548) as the solution of the 
differential equation. 

Propagation of a Plane Wave. 

592. Let us now consider in detail the propagation of a plane wave of 
light, the direction of propagation being taken, for simplicity, to be the axis 
of m. The values of X, Y, 2, a, 6, y must al1 be solutions of the differential 
equation, each being of the form 

The six values of X, Y, 2, a, p, y are not independent, being connected 
by the six equations of § 574, namely 

...... (B). 

From the form of solution (equation (549)), i t  is clear that al1 the differ- 
ential operators may be replaced by multipliers. We may put 

d a .  
- = ZK, a a -=-=o.  

Tt= - ax ay az 

The equations now becorne 

Ka - y = -  ..... C ...... (Ar), C .(Br). 

C C 
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Since 5 = O, a = O, i t  appears that both the electric and magnetic forces 
are, at every instant, at right angles to the axis of 8, ie.  to the direction of 
propagation. Froni the last two equations of system (A') we obtain 

py+lyz=o, 
shewing that the electric force and the magnetic force are also at right angles 
to one another. 

On comparing the results obtained from the electromagnetic theory of 
light, with those obtained from physical optics, i t  is found that the wave of 
light which we have been examining is a plane-polarised ray whose plane of 
polarisation is the plane containing the magnetic force and the direction of 
propagation. Thus the magnetic force is in the plane of polarisation, while 
the electric force is at right angles to this plane. 

Conditions at a Boundary between two diferent media. 

593. Let us next consider what happens when a wave meets a boundary 
between two different dielectnc media 1, 2, Let the suffix 1 refer to quanti- 
ties evaluated in the h t  medium, and the suffix 2 to quantities evaluated in 
the second medium. For simplicity let us suppose the boundary to coincide 
with the plane of yz. 

At the boundary, the conditions to be satisfied are @137, 467) : 

(1) the tangential components of electric force must be continuous, 

(2) the normal components of electric polarisation must be continuous, 

(3) the tangential components of magnetic force must be continuous, 

(4) the normal components of magnetic induction must be continuous. 

Analytically, these conditions are expressed by the equations 

K,X,=K,X,, Y,=Y8, Z,=Z, ...... , ..... (550), 

plal = ,%am A=&, yi=y2 ....,....... (551) 

It will be at once seen that these six equations are not independent : if 
the last two of equations (550) are satisfied, then the first of equations (551) 
is necessarily satisfied also as a consequence of the relation 

being satisfied in each medium, while similarly, if the last two of equations 
(551) are satisfied, then the first of equations (550) is necessarily satisfied. 
Thus there are only four independent conditions to be satisfied at the 
boundary, and each of these must be satisfied for al1 values of y, z and t. 
It is most convenient to suppose the four boundary conditions to be the 
continuity of Y, Z, p, y. 
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Refraction of a Wave polarised in  plane of incidence. 

594. Let us now imagine a wave of light to be propagated through 
medium (l), and to meet the boundary, this wave being supposed polarised in 
the plane of incidence. Let the boundary, as before, be the plane of yz, and 
let the plane of incidence be supposed to be the plane of xy. Since the 
wave is supposed to be polarised in the plane of incidence, the magnetic 
force must be in the plane of xy, and the electric force must be parallel to 
the axis of z. Hence for this wave, we 
may take 

X = Y = O ,  
= 2' eie, (xcos@,+vsinB,- P, 1 )  

9 (2) 
a = a' ~ Z K ,  (ZOOS O,+ysinO,- V, t ) ,  

p = pl e i ~ ,  (x cos 81 +#sin &- V,t)  O 

r = 0, 

and it is found tkat the six equations 
i 0' /.--! 

(A), (B) of p. 527 are satisfied if k e  have 1 

The angle 9, is seen to be the "angle of incidence" of the wave, namely, 
the angle between its direction of propagation and the normal (0s) to the 
boundary. 

Let us suppose that in the second medium there is a refractive wave, 
given by 

X =  Y=O, 

where, in order that the equations of propagation may be satisfied, we must 
have 

I t  will be fiund on substitution in the boundary equations (550) and 
(551) that the presence of an incident and refracted wave is not sufficient 
to enable these'equations to be satisfied. The equations Gan, however, all 

J. 34 
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be satisfied if we suppose that in the first medium, in addition to the incident 
wave, there is a reflected wave given by 

X=Y=O, 
= 2'" e i ~ 3  (2. W8 B3+g sin 8,- V, t), 

where, in order that the equations of propagation may be satisfied, we must 
have 

a',' P" - = --- - 2"' 
--...................a.... 

sin 8, -cos 8, /L (554). 

The boundary conditions must be satisfied for al1 values of y and t. Since 
y and t enter only through exponentials in the different waves, this requires 
that we have 

rt,sin9,=~~sinO,=rc,sinO ,..................... (555), 

V 1  =/c2V2 =rtaTl ........................ (556). 

From (556) we must have cl = K,, and hence from (555) sin 0, =sin 9,. 
Since 0, and 8, must not be identical, we must have 8, = rr - 8,. Thus 

The angle of  incidence Cs equal to the angle of rejection. 

We further have, from equations (555) and (5&6), 

sin 8, VI -- --= v ........................... 
sin O, V2 (55'0, 

where v is the index of refraction on passing from medium 1 to medium 2, 
so that the sine of the angle of  incidence i s  equal to  v times the sine of the 
angle of  refraction. 

Thus the geometrical laws of reflection and refraction can be deduced at 
once from the electromagnetic theory. These laws can, however, be deduced 
from practically any undulatory theory of light. A more severe test of a 
theory is its ability to predict rightily the relative intensities of the incident, 
reflected and refracted waves, and this we now proceed to examine. 

595. .The only boundary conditions to be satisfied are the continuity, 
at the boundary, of Z and /3 (cf. 593). Thus we must have 

2' + 2'" = 2". ............................. (55% 

.............................. pJ + pl" = fi'' (559). 

On substituting from equations (552), (553) and (554), the last relation 
beiomes 

dz  cos O, (8' = ,J- cos 0,~" ............ 
l-h 

(560), 
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so that al1 the boundary conditions are satisfied if 

where 

For al1 media in which light can be propagated, we may take p= 1, so 
that 

Thus the ratio of the amplitude of the reflected to the incident ray is 

2"' 1 - u tan Oz - tan 8, sin (Og - dl) - - = ---- - - 
2' 1 +u tan@,+ tane, sin(&+ 81)"""""" 

(564). 

This prediction of the theory is in good agreement with experiment. 
Z" 

This being so, the predicted ratio of is necéssarily in agreement with Z 
experiment, since both in theory and experimènt the energy of the incident 
wave must be equal to the mm of the energies of the reflected and refracted 
waves. 

Total rejection. 

596. , We have seen (equation (551)) that the angle 8, is given by 

1 
sin 8, = - sin O,, 

v 

where v is the index of refraction for light passing from medium 1 to 
1 

medium 2. If v is less than unity, the value of -sin 8, may be either 
v 

greater or less than unity according as 8, > or c sin-' v. In the former 
case sin 82 is greater than unity, so that the value of 0, is imaginary. 

This circumstance does not affect the value of the foregoing analysis in a 
case in which 8, > s i r 1  v, but the geometrical interpretation no longer holds. 

1 Let us denote -sin 8, by p, and ,dp2 - 1 by q. Then in the analysis we 
v 

may replace sin 8, by p, and cos 8, by iq, both p and q being real quantities. 
The exponential which occurs in the refracted wave is now 

eke lx w s  @,+y sin 8,- Pn t )  

Thus the refracted wave is propagated parallel to the axis of y, i.e. 
normal to the boundary, and its magnitude decreases proportionally to the 
factor e-Kggx. At a small distance from the boundary the rekacted wave 
becomes imperceptible. 
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Algebraically, the values of Z', Zr' and 2"' are still given by equations (561), 
but we now have 

so that u is an imaginary quantity, Say u = iv, and, from equations (561), 

1 - i v  
Since v is real, we have = 1, so that we may take 

where x = arg -- = - 2 tan-lv. (; 3 
In the reflected wave, we now have 

Z Z1/' e i ~ ,  (-x~~sO,+ysinB,-V,t) 

= 2' eki (-xcosOl+ysin 6,- V, t -  2 tan-lu), 

Comparing with the incident wave, in which 

we see that reflection is now accompanied by a change of phase - 21c tan+ v, 
but the amplitude of the wave remains unaltered, as obviously it must from 
the principle of energy. 

Refraction of a Wave polarised perpendicular to plane of incidence. 

597. The analysis which has been already given can easily be modified 
so as to apply to the case in which the polarisation of the incident wave is 
perpendicular to  the plane of incidence. Al1 that is necessary is to inter- 
change corresponding electric and magnetic quantities: we then have an 
incident wave in which the rnagnetic force is perpendicular to the plane of 
incidence, and this is what is required. 

Clearly al1 the geometrical laws which have already been obtained will 
remain true without modification, and the analysis of 5 591 (total reflection) 
will also hold without modification. 

Formula (5631, giving the amplitude of the reflected ray, will, however, 
require alteration. We have, as in equation (564), for the ratio of the 
amplitudes of the incident and ieflected rays, 

but the value of u, instead of being given by equation (563), must now be 
supposed to be given by 

pe KI COS' 0% 
u B = - - -  

K2 f i  cosa 0,' 
IRIS - LILLIAD - Université Lille 1 



596-5991 Metaltic Media b33 

this eqnation being obtained by the interchange of electric and magnetic 
terms in equntion (562). Taking = pl = 1, we obtain 

= 2/% cos 0. sin 0, cos 8, sin 28, 

whence, from equation (565), 

giving the ratio of the amplitudes of the incident and reflected waves. This 
result a190 agrees well with experiment. 

598. We notice that if 8, + 6, = 90°, then $" = 0. Thus there is a 
certain angle of incidence such that no light is reflected. Beyond this 
angle y"' is negative, so that the reflected light will shew an abrupt 
change of phase of 180". This angle of incidence is known as the polarising 
angle, because if a beam of non-polarised light is incident a t  this angle, 
the reflected beam will consist entirely of light polarised in the plane of 
incidence, and will accordingly be plane-polarised light. 

It has been found by Jamin &at formula (566) is not quite accurate 
a t  and near to the polarising angle. I t  appears from experiment that a 
certain small amount of light is reflected at al1 angles, and that instead of 
a sudden change of phase of 180" occurring at this angle there is a gradua1 
change, beginning at a, certain distance on one side of the polarising angle 
and not reaching 180" until a certain distance on the other side. Lord 
Rayleigh ha~.shewn that this discrepancy between theory and experiment 
c m  often be attributed largely to the presence of thin films of grease and 
other impurities on the reflecting surface. Drude has shewn that the 
outstanding discrepancy can be accounted for'by supposing the phenornena 
of reflection and refraction to occur, not actually at the surface between 
the two media, but throughout a small transition layer of which the thick- 
ness must be supposed finite, although small compared with the wave-length 
of the light. 

599. I n  a metallic medium of specific resistance 7, equations (A), namely 

etc., must be replaced (cf. equation (531)) by 

etc. 
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For a plane wave of light of frequency p we can suppose the time to 
d 

enter through the complex imaginary eipt and replace - by ip. Thus on the 
dt 

Kip 
left-hand of equation (567) we have -X, while on the left-hand of c 
equation (568) we have - i- - X. I t  accordingly appears thab the (": Kz) 
conducting power of the medium can be allowed for by replacing K by 

4?rC2 
K + ~ -  

600. In  a non-conducting medium, equation (535), satisfied by each of 
the quantities X, P, 2, a, B, y, reduces to 

when the wave is of frequency p. The corresponding equation for a con- 
ducting medium must, by what has just been said, be 

For a plane wave propagated in a direction which, for simplicity, we shall 
suppose to be the axis of x, the solution of this equation will be 

x = Aecpt eA 'q+:r) ........................... ( 5 7 9  

where 

Clearly the solution (570) represents the propagation of waves with a 
velocity V equal to plr, the amplitude of these waves falling off with a 
modulus of decay q per unit length. 

On equating imaginary parts of equation (5'11) we obtain 

so that p is given by 
2rrjAp 2 r V p  ........................ q = - = -  7 T T (573). 

601. For a good conductor T is small, so that q is large, shewing that 
good conductors are necessarily bad tranamitters of light. For a wave of 
light in silver orbcopper we may take as approximate values in C.G.S. units 
(remembering that T as given on p. 342 is measured in practical units) 

r = 1.6 x 10- ohms = 1.6 x IO3 (electromag.), p = 1, V= 3 x 101°, 

from which we obtain q = 1.2 x IO8. I t  appears that, according to this theory, 
a ray of light in a good conductor ought to be almost extinguished before 
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traversing more than a small portion of a wave-length. This prediction of 
the theory is not borne out by experiment, and for a long time this fact was 
regarded as a difficulty in Maxwell's Electromagnetic Theory. 

We shall see below that the difficulty disappears as sobn as the simple 
theory of Maxwell is replaced by a more complex theory in which the 
existence of electrons is definitely taken into account. But before passing 
to this more complete theory, we shall examine to what extent the present 
simple theory is capable of accounting for the phenornena of metallic 
reflection. 

Metallic Rejectioît. 

602. Let us suppose, as in fig. 137, that we have a wave of light inci- 
dent at  an aqgle 8, upon the boundary between two media, and let us suppose 
medium 2 to be a conducting medium of inductive capacity Ki.  Then (cf. 
$ 599) al1 the analysis which has been given in $ 590-593 will still hold if 
we take K2 to be a complex quantity given by 

Since K, is complex, it follows at  once that V2 is complex, being given by 

and hence that the angle 8, is complex, b e i q  given (cf. equation (557)) by 

The value of u is now given, from equation (562), by 

(cf equation (575)) for light polarised in the plane of incidence- F o r l k h t  

polarised perpendicular to the plane of incidence, the value of u is found, as 
before, by interchanging electric and magnetic symbols. 

If we put u = a + ip, we have, as before (equation (564)), 

I f  we put this fraction in the form peix, then the reflected wave is 
given by 

= pl e i q ( - s ~ ~ s  Bltysin 0,- V, 0 = 2' p e k l ( - ~ ~ 8  el+# sin#,- P, t + .  
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Comparing this with the incident wave, for which 
= 2' ekl(zcos81+ysin8~-Vit) 

9 

we see that there is a change of phase tcl% at reflection, and the amplitude 
is changed in the ratio 1 : p .  The electric force in the refracted wave is 
accompanied by a system of currents, and these dissipate energy, so that 
the amplitude of the reflected wave must be less than that of the incident 
wave. 

We have 

so that 

shewing that p < 1, as i t  ought to be. Also 

603. Experimental determinations of the values of p and x have been 
obtained, but only for light incident normally, the first medium being air. 
For this remon .we shall only carry on the analysis for the case of 8 = O. I t  
is now a matter of indifference whether the light is polarised in or at right 
angles to the plane of incidence ; indeed it is easily verified that the values 
given for p and x by equations (577) and (578) are the same in either 
case. 

Taking for simplicity the analysis appropriate to light polarised in the 
plane of incidence, and putting 6' = 0, p, = 1, K, = 1, we have from equation 

(576) - 
K2 K 47rC2 ~ a = - = -  +- 
PZ I*2 2PTClaJ 

and, since u * a + iP, this gives 
K' a 2 - p = -  ...................m.......... 

Pz 
(579), 

604. Let us consider the results as applied to light of great wave-length, 
for which p is very small. For such values of p, a@ is clearly very large 
compared with aa - Pa, so that a and ,8 are nearly equal numerically, and we 
may suppose as an approximation that (cf. equation (580)) 

When a and /3 are equal and large, equation (577) becomes 
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Let us suppose that an incident beam has intensity denoted by 100, and 
that of this a beam of intensity R is reflected from the surface of the metal, 
while a beam of intensity 100 - R enters the metal. Then R may be called 
the reflecting power of the metal. 

The intensity of the absorbed beam is 
100 - R = 100 (1 - pz) 

We notice that for waves of very great wave-length (p very small) 
R approximates to 100, so that for waves of very great wave-length al1 
metals become perfect reflectors. This is as i t  should be, for these waves of 
very long period may ultimately be treated as slowly-changing electrostatic 
fields, and the electrons at the surface of the metal screen its interior from 
the effects of the electric disturbances falling upon it (cf, § 114). 

Equation (583) predicts the way in which 100 - R ought to increase as 
p increases, and an extremely important series of experiments have been 
conducted by Hagen and Rubens* t o  test the truth of the formula for 
light of great wave-length. The following table will illustrate the results 
obtainedt : 

100 -R for A=Up 

Meta1 

I 1 observed 1 calcuiated 

Silver . . . . . . . . . . . .  . . . . . . . . . . . .  Copper 
Gold . . . . . . . . . . . .  
Platinum . . . . . . . . . . . .  
Nickel . . . . . . . . . . . .  
Steel . . . . . . . . . . . .  
Bismuth . . . . . . . . .  

. . . . . . . . .  Patent ~ i c k é l  P 
. . . . . .  99 ,, M... 

Constantin . . . . . . . . .  
Rosse's alloy . . . . . . . . .  
Brande's and Sohünemann's alloy 

In  the calculated values, the value of K is assumed to be unity, and an 
erior is of course introduced from the fact that the wave-length dealt with, 
X = 1 2 ~ ,  dthough large is stiIl f i t e .  

It will be seen that the agreement between the calculated and the 
observed values is surprisingly good, when allowance is made for the extreme 
difficulty of the experiments and for the roughness of some of the approxi- 
mations which have to be made. 

* Annalen der Phypik, 11, p. 873 ; Phil. Nag. 7, p. 157. 
1- Phil. Mag. 7, p. 168. 
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605. Hagen and Rubens also conducted experiments for light of 
wave-lengths X = 2 5 . 5 ~ ~  and 4 p  On comparing the whole series it is 
found that the differences between observed and calculated values become 
progressively greater on passing to light of shorter wave-length. Drude 
has conducted a series of experiments on visible light, from which it appears 
that the simple theory so far given fails entirely to agree with observation 
for wave-lengths as short as those of visible light. 

606. We have now reached a stage in the development of electromagnetic 
theory in which it is clear that the simple conceptions which have so far been 
employed are no longer adequate to give a complete explanation of the 
phenornena. The conceptions on which the preceding analysis has been based 
have been the original conceptione of Maxwell's theory : i t  is natural now to 
examine in what way the theory can be modsed or improved by the intro- 
duction of the more modern conceptions of the electron theory. Instead of 
regarding a current as a continuous flow of electricity, we shall take definite 
account of the presence of electrons. We shall have to consider two sets 
of electrons, the " free " and " bound " electrons of § 345 a, these being the 
mechanisms respectively of conduction and of inductive capacity. 

The application of an electric force X will result in a motion of free 
electrons similar to that investigated in 5 345 a, and in a motion of the 
bound electrons similar to that discussed in 5 151. But if X is variable 
with the time, the inertia of the electrons will corne into play and the 
resulting motions will be different from those given by Ohm's law and 
Faraday's law. We shall suppose that at  any instant the current produced 
by the motion of the free electrons is uf, and that that produced by the 
motion of the bound electrons is ub. 

607. We may consider first the evaluation of uf. Taking N to be the 
number of free electrons per unit volume, and allowing for change of notation, 
equation (c) of s 345 may be re-vitten in the form 

- .. 
in which, as throughout this chapter, X is expressed in electrostatic units, 
while uf is in electromagnetic units, and 7' stands for y/Nea, so th& 7' becomes 
identical with the specific resistance T when the currents are steady. 

This equation is applicable t o  Our present investigation if we suppose 
X t o  be periodic in the time of frequency p. Taking X = X,eipt, the 
solution of equation (584) is 

uj = 
C X ,  efpt ........................... 

m 
(585). 

T' + - ip Ne2 
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The quantity 7' here rnay depend on p, and without a full knowledge of the 
structure of matter i t  is impossible to decide how important the dependence 
of 7' on p rnay be. We are therefore compelled to retain it as an unknown 
quantity in our equations, remembering that i t  becomes identical with r when 
p = 0, and is probably numerically comparable with 7 for al1 values of p. 

We rnay note that the real part of the current, corresponding to the force 
X = X,, COS pt, is 

QX" 
-cos (pt - e )  cos €, 
7' 

mp shewing. that the inertia of the electrons, as repre- in which tan s =, - jjTeZr" . . 

sented in the last term of equation (584), results in a lag e in the phase of 
the current, accompanied by a change in amplitude. The rate of generation 
of heat by the current u ~ ,  being equal to the average value of ufX,cospt, 

caxoa (72x2 
is found to be 4 cos2 e or f -, where 

711 

It is worth noticing that for light of short wave-length the last term in T,, 
may be more important than the first term 7'. Thus rp rnay be largest for 
good conductors, and smallest for bad conductors. 

608. We t u m  to the evaluation of ub, the current produced by the small 
excursions of the bound electrons, as they oscillate under the periodic electric 
forces. 

We shdl  regard a molecule (or atom), as in  5 151, as a cluster of electrons, 
and these electrons will be supposed capable of perfornling small excursions 
about their positions of equilibrium. As has already been said (5 192) it is 
probable that this conception of the structure of the molecule represents only 
a half-way house towards the truth, but it provides a picture or mode1 of the 
structure with the help of which many properties rnay be explained. 

Let B,, O,, ... be generalised coordinates (cf 5 548) determining the 
positions of the electrons in the molecule, these being chosen so as to be 
measured from the position of equilibrium. So long as we consider only 
small vibrations, the kinetic energy T and the potential energy W of the 
molecule can be expressed in the forms 

..., ... in which the coefficients G,, q,, a,, b,,, may be treated as constants. 
By a known algebraic process, new variables +1, +,, ... can be found, such 
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that equations (581), (588) when expressed in. terms of these variables 
assume the forms 

2 W = a,$: + a,+: + ....................... .(589), 

.... these equations involving only squares of the new coordinates +,, +,, 
The coordinates found in this way for any dynamical system are spoken of 
as the "principal coordinates" of the system, 

The equation of motion of the molecule, when acted on by no external 
forces, is readily found to be (cf. equations (500)) 

These eqiiations are known to represent simply periodic changes in 
... ... +1, +,, of frequencies n,, n,, given by 

The frequencies of vibration of the molecule are, homever, the frequencies 
of which we have evidence in the lines of the spectrum emitted by the 
substance under consideration, so that equations (592) connect the frequencies 
of the spectral lines with the coefficients of the principal coordinates of the 
molecule. 

609. If now the molecule is supposed to vibrate under the influence of 
externally applied forces (such, for instance, as would occur during the 
passage of a wave of light through the medium), equation (591) must be 
replaced (cf equation (508)) by 

where a, is that part of the "generalised force" corresponding to the 
coordinate +,, which originates in the externally applied forces. 

If X is the electromotive force in the wave of light at any instant, each 
electron will experience a force Xe, and there will be a contribution of the 
form axe to Q. 

Again the electrostatic .field created by the displacements of the electrons 
in the various neighbouring molecules will contribute a further term to @,. 
The displacement of any electron through a distance f will produce the same 
field as the creation of a doublet of strength ef. Thus if there axe M molecules 
per unit volume, the total strength of the doublets per unit volume, Say r, 
may be supposed to be of the form ". . . 

r = Me (%& + + .. .) ..................... (594), 
, < , . 

and these will produce an electric intensity of which the average value may 
be taken to be (cf. 5 145) KI?, which must be added to the original intensity 
X of the wave. 

IRIS - LILLIAD - Université Lille 1 



608, 6091 Electron Theory 541 

The total value of @, is therefore r8e (X + Kr), 80 that on replacing a, by 
its value from equation (592), ,. . equation (593) becomes 

(& + n:+8) = &e (X + cl?) .................. (595). ..... 
If we suppose X to depend on the time through the factor eipt, then 

t#I will clearly depend on the time through the same factor, and we may 
replace 4, by -pz$,. Equation (595) now becomes 

. t#I8= 
Ge ( X  + ........................... 
@8 ( T ~ :  - pa) 

( 5 9 0  

whence, by equation '(594), 

l? = Me" (X + .O .................. (597), Ba (n," -pz) 
and if we write 

Y& 1 8=MeaZ-  - ........................ 
P 8  (128 -pz) (59% 

this gives, as the value of r, - 

The current produced by the motion of the bound electrons is ub in 
electromagnetic, and therefore Cuo in electrostatic units. Its value in 

a E electrostatic units is also (cf 5 345 a) Neu or Ce-, where the summation 
at - 

is taken through a unit volume, and this in turn is equal to I'. Thus 

The total current, expressed in electromagnetic units, is 

In calculating f we must remember that the 
the motion of the bound electrons is already allowed for in 

produced by 
the presence 

of the term ub. We accordingly take f equal simply to X/47r, and on 
further replacing ub and 9 by t h e  values found for them, the total 
current becomes 

In place of equation (569), the equation of propagation is 
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As in 5 600,'the solution is 

........................... x = A eiPt e* [q+iT) .)O (601), 

where 

Non-conductinq media. 

610. For a non-cmducting medium T' = a, so that the last term in 
equation (602) vanishes, and the right-hand member becomes wholly real. 
For certain values of 8, this right-hand member is negative, so that q =O, 
shewing that light is transmitted without diminution; the medium is 
perfectly transparent. 

For transparent media we may take ,u = 1, and the velocity of propagation 
V is given by 

l e 1  47~0 a=p=o (l+-). 

If 'v is the refiactife indexw6f the medium, as compared with that of 
a vacuum, V= C/u, so that 

whence 

4~ 
in  which a =- - 1, c. = ex, so that a and c8 are constants. , 

R P s  
Clearly (cf. Ej 609) the values of s can be calculated if we make 

assumptions as to the arrangement of the molecules in the medium. On 
assuming that the molecules are regularly arranged in cubical piling, K is 

47T found to have the value -, so that a becomes equal to 2. 
3 

Formula (604) in  which a is neglected altogether becomes exactly 
identical with the well-known Sellmeyer or Ketteler-Helmholtz formula 
for the dispersion of light, of which the accuracy is known to be very 
considerable. If a is put equal to 2, the formula becomes identical with 
dispersion formulae . . which have been suggested by Larmor and Lorentz. 

It has been shewn by Maclaurin* that formula (604) will give results in 
almost perfect agreement with experiment, a t  least for certain solids, if a is 
treated as an adjustable constant. The agreement of the formula is so very 
good that little doubt can be felt that i t  is founded on a true basis. Mac- 
laurin finds for a values widely different from 2 (for rocksalt a =  5-51) for 

* Proc. Roy. Soc. A, 81, p. 367 (1908). 
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fluorite a =  1-08), the differences between these numbers and 2 pointing 
perhaps to the crystalline arrangement of the molecules. For liquids and 
gases we ahould expect to find a equal to 2. 

Since M is proportional to p, the density of the substance, formula (604) 
va - 1 indicates that - ought to vary directly as p when p varies. This law, 
va+ a 

with a taken equal to 2, was announced by H. A. Lorentz* of Leyden and 
L. Lorenzt of Copenhagen in 1880. Its truth has been verified by various 
observers, and, in particular, by Magrif .for a large range of densities of air. 

9 - 1  
From equation (604) i t  also follows that the values of - for a mixture 

u2 + a 
va-  1 

of liquids or gases ought to be equal to the sum of the values of - for its 
Y" a 

ingredieats, a law which is also found to agree closely with observation on 
taking a = 2. 

611. For certain other values of 8, the right hand of equation (601) (in 
which T is taken infinite) is found to be real and positive. We now have r = O 
and the solution (601) becomes 

shewing that there is no wave-motion proper, but simply extinction of the 
light. Thus there are certain ranges of values of p (namely those which make 
(q positive in equation (601)) for which light cannot be transmitted 
at  all. Clearly these represent absorption bands in the spectrum of the 
substance. 

Clearly (y + ir)2 becomes positive when 8 is large and negative. I t  d l  
be noticed that 8, as given by equation (598), becomes infinite when p has 
any of the values r i , ,  n,, . . . , changing from - x, to + co as p passes through 
these values. Thus the absorption bands will occur close to the frequencies 
of the natural vibrations of the molecule. But just in these regions we have 
to consider certain new physical agencies which cannot legitimately be 
neglected when p has values near t o  R, n,, . . . , although probably negligible 
in other regions of the crpectrum. 

612. Equation (593) is not strictly true with the value we have assigned 
t o  a,. For, in the first place the vibrations represented by the changes in +, 
are subject to dissipation on account of the radiation of light, and of this no  
account has been taken. I n  the second place there must be sudden forces 
acting in liquids and gases occasioned by molecular impacts and requiring the 
addition of terms to @, throughout the short periods of these impacts. There 

Wied. A m .  9, p. 641 (1880). t Wied. Ann. 11, p. 70 (1880). 
$ Phys. Zeitschrift, 6, p. 629 (1905). 
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must be analogous changes to be considered in the case of a solid, although 
our ignorance of the processes of molecular motion in a solid makes it im- 
possible to specify them with any precision. 

The effect of these agencies must be to throw the $,'s of the different 
molecules out of phase with one another and also out of phase with X and l?. 
The analysis of 5 609 has made the ratios of X : r : wholly real (cf. equa- 
tions (596) and (597)), indicating that X, ï and @, are exactly in the sarne 
phase. The considerations just brought forward shew that these ratios ought 
also to contain small imaginary parts. 

The process of separating real and imaginary parts in equation (602) now 
becomes much more complicated, but i t  will be obvious that for al1 values of 
p, both q and r will have some value different from zero. Thus there is 
always some extinction of light and some transmission, for al1 values of p, and 
there is no longer the sudden change from total extinction to perfect trans- 
mission. The edges of the absorption band become gradua1 and not sharp. 
Hardly enough is known of the details of molecular action to make it worth 
trying to represent the conditions now under discussion in exact analysis: 

Conducting media. 

613. For a &nducting medium we retain T in equation (602), and 
obtain on equating imaginary parts (cf. equation (572)) 

so that instead of equation (573) we have 

.. 27r-vp 
q = .  

TP 

For visible light this gives a very much smaller value of p than that 
.discussed in 5 600, and the value of q will obviously be still further modified 
by the considerations mentioned in 5 612. 

On comparing the total current, as given by formula (600), with the value 

ipKX assigned to it in the analysis of $$ 594-598, we see that al1 this 
4%-O 

earlier analysis will apply to the present problem if we suppose K to be 
a complex quantity given by 

where v ia given by formula (603). 
IRIS - LILLIAD - Université Lille 1 



6 1 2-6 1 3 a] Dispersion {n Conducting Media 

If, as in $ 603, we put 

2 ( 2 = - =  Ka (a  + ipy, 
P2 

we find 

27Toa @=-- 
P T P P ~ '  

from which, in combination with equation (577), the reflecting power R of 
a metal may be calculated. 

On comparing these formulae with experiment, the general result appears 
to emerge, that, in order to account for the optical properties of conductors 
in this way, the number of free electrons in conductors must be comparable 
with the number of atoms. According t o  a paper by Schuster, published in 
1904*, the ratio of the number of free electrons to atoms must range from 
1 to 3 in various substances; Nicholsont, as the result of a more elaborate 
investigation, obtains values for this ratio ranging from 2 to 7. 

613 a. This result, however, discloses a difficulty fmm which the electron 
theory has so far shewn little power of extricating itself. 

According to the well-known law of Dulong and Petit the atomic heats 
of a large number of elements have values which are approximately al1 equal. 
Nernst and Lindemann have recently determined the specific heats of a large 
number of elements, and have found that, for al1 the elements they have 
examined, the atomic heats measured for constant volume (i.e. after correction 
for expansion arising out of change of temperature) have al1 the same value 
5.95. Now the atomic heat represents the increase per unit rise of tempera- 
ture in the energy of the solid measured per atom of its structure. This 
energy can be regarded as the sum of two contributions, namely the energy 
of the atoms and the energy of the free electrons. The energy of the atoms 
can be calculated by the well-known methods of the Kinetic Theory of matter, 
and it is found that this energy wi l  provide a contribution to the atomic heat 
equal exactly to the total amount of the atomic heat, namely 5.95 ; in other 
words the contribution from the energy of the free electrons is as small as 
the experimental error. But the contribution from a given number of free 
electrons also admits of theoretical calculation. If there were as many free 
electrons as one-tenth of the number of atoms, the contribution to the atomic 
heat would be .30, so that the total atomic heat would be 6.25, a number 
much too large to be reconciled with the experiments of Nernst and 
Lindemann. 

The foregoing figures refer only to matter a t  comparatively high ternpera- 
tures. The specific heats of the elements have however been determined by 

* Phil. Mag. Pebruary 1904. t PhiZ. Mag. Bug. 1911. 
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Nernst and Lindemann through a very wide range of temperatures, namely 
from normal ternperatures down to the lowest temperatures now available in 
the laboratory. And it has recently been shewn by Debye that the atomic 
heats found by these experiments are, at al1 temperatures, almost exactly 
equal to those to be expected on theoretical.grounds on the supposition that 
the free electrons contribute nothing to the specific heat. The observed 
atomic heats agree so well with those calculated from theory, for al1 substances 
examined and at al1 temperatures available, that the conclusion seems to be 
inevitable that the number of free electrons is very small compared with the 

, . number of atoms. 

Thus we are led to the conclusion that although the electron theory 
may shew a certain power of explaining 'the optical properties of metals, 
qualitatively at least, yet the explanation given by the electron theorj 
demands the presence of' a far greater number of free electrons than can be 
reconciled with the values of the specific heats. 

613 b. A similar difficulty has been found to arise in connection with a 
much simpler phenornenon, namely the conductivity of metals. We have 
seen (3 345 a) that the electron theory reyuires that in.a good conductor the 
number of free electrons should be large; approximately how large i t  must 
be is a matter which can also be determined by further analysis. The 
requisite analysis has been given by Drude. 

We may suppose, as a rough approximation to the truth, that in a 
conductor each free electron moves freely for a certain length of time t 
between two consecutive collisions with molecules. In  the notation already 
used in 5 345a, the momentum gained in this time will be Xet. If we 
suppose this momentum to be entirely checked at  each collision ,(cf. 355, 
373), the average forward momentum of al1 the electrons at  any instant will 
be iXet, and since this is equal to mu in the notation of 5 345 a, we have 

and hence (by equation (b), 5 345 a) 

Thus the quantity y of § 345 a is, as regards order of magnitude at  least, 
211~ 

equal to - , and the specific resistance 7 of a substance will be given by 
t 

where N is the number of free electrons per cubic centimetre. Now for silver 
or copper T = 1.6 x 10+ ohms = 1-8 x 10-18 in electrostatic units. The value of 
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1- in electrostatic units is 1-2 x IOE, and hence to give to 7 the value 
2 m 
appropriate for silver or copper we must have Nt = 5x log approximately. In 
silver or copper the number of atoms per cubic centimetre is of the order of 
IOz3, so that if the observed values of the specific heats do not allow of N being 
more than one-hundredth part of this we must a t  most suppose that N is of 
the order of IOz1, and this requires t to be comparable with 5 x 10-l2 at  least. 
Since the average velocity of the free electrons is belieied to be about I O 7  cms. 
per second (5  345 a), this would require each electron to otravel an average 
distance of 5 x IO-$ cms. betveen consecutive violent collisions. This appears 
to be too large to be reconciled with present beliefs as to the structure of 
matter. 

The difficulty becomes more glaring if we consider the phenomenon a t  
low temperatures. Kamerlingh Onnes has found for silver at a temperature 
of 13-88' abs. a resistance only equal to 0.7 per cent. of that at  O" C, Thus 
in silver at  this low temperature we must have Nt of the order of 10la, so tha.t 
if we take N =  lOa1 as above; t = 10pO. This velocity of free electrons at this 
low temperature is of the order of 2 x 10" so that the average distance 
travelled would be about &cms. 

The difficulty seems to be inherent to the whole electron theory of 
conduction, and so tfar no explanation has been suggested. 

614. Let us consider the propagation of light, on the electromagnetic 
theory, in a crystalline medium in which the ratio of the polarisation to the 
electric force is different in different directions. 

By equation (92), the electric energy W per unit volurne in such a medium 
is given by 

1 
W=g-(Kl,X'+2KfiXY+ ...). 

If we transform axes, and take as new axes of reference the principal axes 
of the quadric 

Kllx2+2Kl,xy+ ... =1 ........................ (605), 

then the energy per unit volume becomes 

1 
W=-(KlXz$EZ,Y2+ K3Z2), 

877 

where KI,  K,, K, are the coefficients which occur in the equation of the 
quadric (605) when referred to its principal axes. The components of polari- 
sation are now given by (cf. equations (89)) 

47rf = KIX, 47rg = K,Y, 47rh = KJ. 
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The equations of propagation (putting p = 1) now become 

K, d x  ay ap 

I f  we differenfiate the first system of equations with respect to the time, 

da da 9 from the second system as before, and substitute the values of - 
d t '  dt' dt 

we obtain 
a ax ay az K 1 d a x - v ~ x - -  -+-+- , etc. 

Ca dta ax i ax ay a~ ) 
On assuming a solution in which X, Y, Z are proportional to 

efe (h+mg+nz-vt) ........................... (GOG), 
these equatious become 

Va -- ET,X=X-l ( lX+rnY+nZ)=O,  etc. 
Cf2 

On eliminating X, Y and Z from these three equations, we obtain 

C2 If we put - = v:, etc., and simplify, this becomes 
KI 

This equation gives the velocity of propagation V i n  terms of the direction- 
cosines 1, nz, n of the normal to the wave-front. The equation is identical 
with that found by Fresnel to represent the results of experiment. It can be 
shewn that the corresponding wave-surface is the well-known Fresnel wave- 
surface, and al1 the geometrical phenornena of the propagation of light in a 
crystnlline medium follorv directly. For the development of this part of the 
theory, the reader is referred to books on physical optics. 

Assuming that ci, P, y as well as X, Y, Z are proportional to the exponen- 
tial (606), the original system of equations become 

KI V -- 
C X = my - nB, etc. 

V 
- a  =mZ-nY, etc. c IRIS - LILLIAD - Université Lille 1 



614, 6151 Mechanical dction' 549 

If we multiply the three equations of system (607) by 1, nh, n respectively 
and add, we obtain 

lK,X+ mK2Y+nK2Z= O ...................,. (Gog), 

while a similar treatnient of equations (608) gives 

la+mp+nY=O ........................... (610). 

From equation (609) we see that the electric polarisation is in the wave- 
front. From equation (610), the magnetic force also is in the wave-front. 

From this point onwards the development of the subject is the same on 
the electromagnetic as on any other theory of light. 

615. For a wave of .light propagated along the axis of Ox, and having 
the electric force parallel to Oy, we haie (cf. § 592) the solution 

X = Z = O ;  Y= Y0cos~(x-at), 

and this satisfies al1 the electromagnetic equations, provided the ratio of y. to 
Y, is given by 

--=--A- ........................ '(611). 

The energy per unit volume at the point x is seen to be 

From equation (611) we see that the electric energy is equal to the 
magnetic at  every point of the wave. The average energy per unit volume, 
obtained by averaging expression (612) with respect either to x or to t, 

As Maxwell has pointed out*, these formulae enable us to determine the 
magnitude of the electric and magnetic forces involved in the propagation of 
light. According to the determination of Langley, the mean energy of sun- 
light, after allowing for partial absorption by the earth's atmosphere, is 
4.3 x ergs per unit volume. This gives, as the maximum value of the 
electric intensity, 

Y, = .33 C.G.S. electrostatic units 

= 9.9 volts per centimetre, 

+ Maxwell, Electricity and M a y n e t i m  (Third Edition), § 793. 
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and, as the maximum value of the magnetic force, 

7, = ,033 C.G.S. electromagnetic units, 
. . 

which is about one-sixth of the horizontal component of the earth's field in 
Englnnd. 

. - 
The Pressure of Radiation.. 

616. I n  virtue of the existence of the electric intensity Y, there is in free 
KY2 

ether (5  165) a pressure 8.1r a t  right angles to the lines of electric force. 

Ya 
Thus there is a pressure -- per unit area over each wave-front. Similnrly 

87 

ma the msgnetic field results ($471) in a pressure of arnount - per unit Orea. 
87 

Thus the total pressure per unit'arei 

This is exactly equal to the energy per unit volume as given by expression 
(612). Thus we see that over every wave-front there ought, on the electro- 
magnetic theory, to be n pressure of amount per unit area equal to the energy 
of the wave per unit volume a t  that point. The existence of this pressure 
has been demonstrated experimentally by Lebedew * and by Nichols and Hull+, 
and their.resn1-ts agree .quantitatively with those predicted by Maxwell's 
Theory. 
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CHAPTER XIX 

THE MOTION OF ELECTRONS 

617. TEE motion of aa  electron or other electric charge gives rise to 
a system of displacement currents, which in t u m  produce tt magnetic field. 
The motion of the magnetic lines of force gives rise to new electric forces, 
and so on. Thus the motion of electrons or other charges is accompanied by 
magnetic and electric fields, mutually intericting. To examine the nature 
and effects of these fields is the object of the present chapter. 

The necessary equations have already been obtained in $571-2, but the 
current u, v, w will now be regarded as produced by the motion of charged 
bodies. If a t  any point a, y, z there is a volume density p of electricity 
moving with a velocity of components U, V, W, then the current a t  x, y, z has 
components pu, pv, p w in electrostatic units. Since tr, v ,  w in equations (526) 
are measured in electromagnetic units, they must be replaced by pt./C, pv/C, 
pur/C, and the.eq&tions become 

.................. 
C 

etc. (613). 

Equations (527), namely 
I da. az au ------- ..................... c dt - ay az 

etc. (614), 

remain unaltered, and the two sets of equations (613) and (614) provide the 
material for Our present discussion. 

618. If we differentiate equations (613) with respect to x, y?/, z and add, 
we obtain, after simplification .from equation (63), 

Clearly this is simply a hydrodynamical equation of continuity, expressing 
that the increase in p in any small element of volume is accounted for by the 
flow of electricity across the faces by which the element is bounded. 
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At a point at which there is no electric charge (p = O), equations (613) and 
(614) become identical with the equations of 5s 5'14 and 577, and the 
quantities X, Y, 2, ci, p, y must al1 satisfy the differential equation (534), 
namely 

9 = a2vax .............................. 
d t a 

(6 15). 

Motim with unifornt velocity. 

619. Some of the simplest, and a t  the same time most interesting, 
problems occur when the motion of the system of charges is such that every 
point moves with the same uniform velocity. 

For simplicity let us take this to be a velocity u parallel to the axis of x. 
The rate of change of any quantity $J as we follow it  in its motion must be 

. - 

nil ,  so that we must have . 

d 
whatever + may be. I t  follows that throughoiit our equations, may be dt 

d 
replaced by - o - a$- 

 batio ions (613) now become 

4 m a h  ap aa -pu=--- ay ...... -..." ........ (618), 

whilst equation (615), satisfied by X, Y, .Z, a, b, y, becomes 

620. If p,f ,  g, h, which specify the electric field, are regnrded as known 
in eqiiations (616)-(618), then the simplest solution for ci, P, y is easily seen 
to be 

47r u a=(), p=--- 47r u ............... 
C 

h, ~ = ~ g  (620). 

The most general solution is clearly obtained by adding to these values 
terms aO, Po, 'yo such as satisfy 

---- a% a s ~ - ~ J  etc  
ay a2 
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These equations express that the forces a,, &, y. are derivable from 
a potential, so that they represent the field of any permanent magnetism 
which may accompany the charges in their motion. 

The field of which 'we are in search, arising solely h m  the motion of the 
electric charges, is represented by equations (620). 

Since ci= O, it appears that the lines of magnetic force are curves parallel 
to the plane of yz, and therefore perpendicular to the direction of motion. 

47r v 
The magnetic force at any point is - times the component of polarisation C 
in the plane of yz, and its direction, is perpendicular both to that of the 
component of polarisation and of the direction of motion. 

621. Equations (620) would give the magnetic field immediately, if the 
electric field accompanying the moving charges were known. But as we have 
seen, this latter field is influenced by the magnetic field, and so is not the 
same as i t  would be if the charges were at rest. 

For a field moving with al1 ordinary velocities, u/C is a small quantity, so 
that (cf. equations (620)), ci, /3, y will be small quantities of the order of 
magnitude of u/C. The changes produced in the electric field are now of the 
order of magnitude of (v/C)2, and, in rnost problems, this is a negligible 
quantity. 

Assuming that (u/CY nlay be neglected, the electric field surrounding the 
moving charges may be supposed to be the same as i t  would be if the charges 
were at rest. 

Field of a single mouhg electrolt (u2/C2 neglected). 

622. Let us use our equations to examine in detail the field produced by 
a single point-charge, moving with a velocity u so small that valCa may be 
neglected. 

Taking the position of the point at any instant as origin, the components 
of polarisation are 

so that, by equations (620), the magnetic forces a.t LE, y, z are 

The lines of magnetic' force are circles about the path of the electron, 
and the intensity a t  distance r from the electron is 

eu  sin 8 ...... r" "........................ (622), 

where 8 is the angle between the distance r and the direction of motion. 
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623. Clearly the field produced by the motion of any number of electrons, 
with any velocities and in any directions, can be obtained by the superposition 
of fields such as (621). If charges e,, e,, ... at x,, y,, 2,; x2, y*, 2,; ... move 
with velocities .u1, v,, w1 ; ce, v,, W, ; .... the magnetic force a t  x, y, z will 
have components 

el 1 (2 - 1 - 1 Y - Y , etc a = 2 -  
c {(x - XI>" + (y - y$ + (2 - 2 , ) p  

624. If a small elenlent ds of a circuit in which a current i (measured 
in electromagnetic units) is iiowing contains Nds electrons moving with an 
average forward velocity u,, we have (cf. equation (b )  of 5 345) 

Ne u, = Ci. 

The magnetic force at  distance r produced by the motion of the electrons 
in the element d s  of the circuit is (cf expression (622)) 

eu, sin 8 sin 8 Nds -- - C ra or idsr?- 
..................... (623). 

. , 

This is exactly identical with the force given by Ampère's. Law ( 5  497). 
But Ampère's formula was only proved' to be true when integrated round 
a closed circuit, whereas formula (623) is now shewn to be true for every 
element of a circuit. 

ELECTROMAUNETIC MASS (ua/C2 neglected). 

625. Suppose next that an electric charge e is distributed uniformly over 
a sphere of radius a, moving with velocity v. At points inside the sphere 
there is no electric polarisation; while at external points the electric 
polarisation, and therefore the magnetic field, will be the same as if the 
charge were concentrated at  the centre of the sphere. Thus at  a distance r, 
greater than a, from the centre of the sphere, there will be niagnetic force, as 
given by formula (E22), and therefore magnetic energy in the ether of amount 
(cf. $451) 

e2ua sin2 8 -- 
87rCa r< 

per unit volume. 

By integration, the total magnetic energy consequent on the motion is 

This energy may perhaps be most simply regarded as the energy of the 
displacement currents set up by the motion of the sphere, but in whatever 
way we regard it the energy must be classified as kinetic. IRIS - LILLIAD - Université Lille 1 



If the charged body is of mass m, the kinetic energy of its forward 
motion is 

" ) u2.. ......................... 4 (625). 

An analogy from hydrodynamics will illustrate the result a t  which we have arrived. 
Suppose we have a balloon of mass m moving in air with a velocity v and displacing a 
mass rn' of a h .  If the velocity v is  small compared with the velocity of propagation of 
waves in air, the motion of the balloon will set up currents in  the air surrounding it, such 
that  the velocity of these cnrrents will be proportional to  v a t  every point. The whole 
kinetic eiiergy of the motion will accordingly be 

Q ( m + W  v: 
the term +mu2 being contributed by the motion of the matter of the balloon itself, and the 
term SMVZ by the air currenta outside the balloon. The value of M i s  comparable with m', 
the mass of air displaced-for instance if the balloon is spherical, and if the motion of the 
air is irrotabional, the value of dl is known to be Qm' (cf. Lamb, Hydrodynamics, Cj 91). 

626. Strictly speaking, fomula (625) is true only when ~7 remains steady 
through the motion. Any change in the value of u will be accompanied by 
magnetic disturbances in the ether which spread out with velocity C fmrn 
the sphere. An examination of integral (624) will, however, shew that the 
energy is concentrated round the sphere-the energy outside a sphere of 
radius R is only a fraction a / R  of the whole, and if R is taken to be a large 
multipIe of a this may be disregarded. The time required for the energy to 
readjust itself after a change of velocity is now comparable with R/C. 

Thus if we exclude sudden changes in u, and limit our attention to 
gradua1 changes extending over periods great compared with RIC, we may 
take expression (625) to represent the kinetic energy, both for steady and 
variable motion. 

The problem gains al1 i ts  importance from its application to the electron. For this 
a=2 x 1 0 - l 3  cms. (see below, 628), so that all except one per cent. of the magnetic energy 
is contained within a sphere of radius R=2  x 10-11 cms. Since C=3 x 1010, the time of 
readjustment of this energy is -66 x 10-21  seconds, an interval small cnough to be disregarded 
in almost al1 physical problems. 

627. Remembering now that, by the piinciples of Chapter xvr, the 
whole motion of any system can be determined from a knowledge of its 
energy alone, i t  appears that the charged body under consideration will move 
(so long as its velocity is srnaIl compared with that of light, and the changes 
in this velocity are not too rapid) as though i t  were an uncharged body of 
mass rn given by . 

e2 . ........................... m=nz,+j ,  
aC 

(626). 

Observations of the motion of the body mil1 give us the value of m, but  
ea 

we shall not be able to determine m, and # - separately, a t  any rate so long 
aCa 

as the motion is subject to the limitations mentioned above. 
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628. Thus it appears that the charge on a body produces an apparent 
increase of mass, which is greater the smaller the dimensions of the body are. 

A numerical calculation will shew that the most intense charge which 
can be placed on a body by laboratory methods will result only in a quite 
inappreciable increase of mass. The case stands differently when we consider 
the permanent charge of the electron. Observation enables us to determine 
m in formula (626), and the value of m is found to be 8 x 10-2s grammes. 
As we review in imagination the different possible sizes of electrons we come' 
a t  last to electrons so small that the whole value of m in formula (626) 

e2 is contributed by the electromagnetic term 3 -. The radius of such an 
aC2 

election is about 2 x 10-lS cms. For such an electron the value of QI, would 
be zero ; and the kinetic energy of such an electron would consist entirely of 
the electromagnetic energy of the displacement currents set up by its motion. 

We shall see below ($656-662) that when we pass to velocities such that 
u/C is not small, formula (626) requires modification, and this modification is 
of such a nature that i t  is possible experimentally to determine the values of 
the two parts of m-namely m, and the electromagnetic term--separately. 
The most recent experiments seem to indicate that m, is exactly zero, so that 
m is entirely electromagnetic. If so, we are enabled to fix the radius of the 
electron a t  2 x 10-l3 cms. . . 

629. If, as in § 623, we have a number of electric charges moving with 
different velocities, the electromagnetic energy of their. motion can be found 

1 
by integrating - ( a 2 + ~ 2  +y2) through the free ether, where a, B, y are 

8~ 
given by the equations of $623. Clearly the result will be a quadratic function of 

o,, v,, wl, a,, v,, w,, ... , and in addition to the terms $ - (u: + v: + w:), etc. 
a,C2 

which arise from the ,electromagnetic masses of the separate charges, there 
will be cross terms involving the products u,u,, u,v,, etc., etc. 

If the charged bodies are electrons, it is readily seen that the cross terms are negligibIe 
except when the electrons approach one another to within a distance less than the R of 
$ 626. 

630. The assumption we have made that u/C is small is the same as 
assuming to a first approximation that C is so great that the medium may 
be supposed to adjust itself instantaneously to changes occurring in it, just 
as an incompressible fluid would do. The time taken for action to pass from 
one point to another may be neglected. We may accordingly assume that at  
any instant the mechanical actions of any two parts of 'the field upon one 
another are such that action and reaction are equal and opposite. IRIS - LILLIAD - Université Lille 1 
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Frorn equations'(621), i t  appears that an electron moving with velocity 
u, O, O at  the origin will exert a force of components 

upon a pole of strength na a t  x, y, z. I t  follows that a pole of strength m a t  
x, y, z will exert a force of components 

upon the moving electron at  the origin. 

I f  we have a number of magnetic poles, the resultant force upon the 
moving electron has components 

and the components of magnetic force at  the origin are given by (cf. 5 408 
and equation (11)) 

mm 
a = - X 7 ,  etc. 

Thus the force on the moving electron may be put in the form 

Plainly the force on the electron will be given by formulae (627), whether 
the magnetic field arises from poles of permanent magnetism or not. I t  is 
clearly a force a t  right angles both to the direction of motion of the electron, 
and to the magnetic force a, ,û, y at  the point. If H is the resultant magnetic 
force, and 6 the angle between the directions of H and the axis of x, then 
the resultant of the mechanical force is ue Hsin  8/C. 

If the electron has components of velocity c, v, w, the component of the 
mechariical force on it will be 

Since the mechanical force is always perpendicular to the direction of 
motion, it does no work on the moving particle; and, in particular, if a 
charged particle moves freely in a magnetic field, its velocity remains con- 
stant. 

The existence of this force explains the mechanism by which an induced current is set 
up  in a wire moved across magneticlines of force. The force (628) has its direction dong 
the wire and so sets each electron into motion, producing a current proportional jointly to 
the velocity and strength of the field-Le. to dN/dt. 

IRIS - LILLIAD - Université Lille 1 



The Motion o j  Electrons [CH, XIX 

Motion of a charged particle in a uniform magnetic Jield. 

631. Let a particle of charge e move freely in a uniform magnetic field 
of intensity Hm Let its velocity be resolved into a component A parallel to 
the lines of force, and a component B in the plane perpendicular to them. 
By what has just been said (3 630) both' A and B must remain constant 
throughout the motion, and there will be a force eHB/C acting on the particle 
in a direction perpendicular to that of B, and i n  the plane perpendicular to 
the lines of force. Thus if m is the mass of the particle, its acceleration rnust 
be eHBlmC in this same direction. . . 

Considering only the motion in a plane perpendicular to the lines of force, 
we have a velocity B and an acceleration eHB/rnC perpendicular to it. This 
latter must be equal to B2lp, where p is the curvature of the path. Thus 

BmC, a constant, shewing that the motion in question is circular. P ' x  

- Combining this circular motion with the motion parallel to  the lines of 
force we find that the complete orbit is a circular helix, of radius BmCleH, 
described about one of the lines of magnetic force as axis. 

By measuring the curvature of an orbit described in  this manner, it is 
found possible to determine e/m experiiaentally for electrons and other 
charged particles. Incidentally the fact that curvature is observed at  al1 
provides experimental confirmation of the existence of the force acting on 
a moving electron. 

The " Hall Efecd." 

632. Further experimental evidence of the existence of this force is 
provided by the "Hall Effect." Hall* found that when a metallic conductor 
conveying a current is placed in a magnetic field, the lines of flow rearrange 
themselves as they would under a superposed electromotive force at  right 
angles both to the direction of the current and of the magnetic field. The 
same effect has also been detected in electrolytes and in gases. 

The Hal1 Effect is of interest as exhibiting a definite point of divergence 
between Maxwell's original theory and the modern electron-theory. Accord- 
ing to Maxwell's theory, a magnetic field could act only on the material 
conductor conveying a current, and not on the current itself, so that if the 
conductor was held a t  rest the lines of 0ow ought to remain unalteredt. 
The electron-theory, confirmed by the experimental evidence of the Hall 
Effect, shews that this is not so, and that the lines of flow must be altered 
in the presence of a transverse magnetic field. 

* Pkil .  Mag. 9 (1880), p. 223. 
t Maxwell, E l e c t ~ i c i t y  aizd Magnetism, 5 501. 
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Th Zeeman Efect. 
633. When a source of light emitting a line-spectrum is placed in a 

strong magnetic field, the lines of the spectrum are observed to undergo 
certain striking modifications. The simplest form assumed by the pheno- - .  
nienon is as follows. 

If the light is examined in a direction parallel to the lines of magnetic 
force, each of the spectral lines appears split into two lines, on opposite sides 
of, and equidistant from, the position of the original line, and the light of 
these two lines is found to  be circularly polarised, the direction of polarisation 
being different for the two. 

If the light is examined across the lines of force, these same two lines 
appear, accompanied now by a line at  the original position of the line, so 
that the original line nom appears split into three. The side lines are 
observed to be plane polarised in a plane through the line of sight and the 
lines of force, while the middle line is plane polarised in a plane perpendicular 
to the lines of force. 

634. These various phenomena were observed by Zeeman in 1896, and 
an explanation in terms of the electron-theory was at  once suggested by 
Lorentz.', , 

; Let us first examine a simple artificial case in which the spectrum contains 
one lin; only, produced by the oscillatioris of a single electron about a position 
of equilibrium. 

- If p is the frequency of this oscillation, the equations of motion of the 
electron must be of the form 

d2x 
m - = - p2x, etc., 

dt2 
in which x, y, z are the coordinates of the electron, referred to its position of . . 
equilibrium. 

Next suppose the electron to move in a field of force of intensity Il 
parallel t o  the axis of x. In addition to the force of restitution of components 
-p2x, -pv, -p2z, the electron will be acted on by a force (cf formulae (628)) 
of components 

eHdz e H  dy 
O, --- -- 

C dt '  C d t '  

In  place of the former equations, the equations of motion are now 
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and the solutions of these equations are 

x = A cos (pt - e), 

y = A, cos (q,t - el) -t A, cos (q,t - e,), 

z = A l  sin (q,t - el) +A, sin (q,t - 4, 
in which A, A,, A,, e, e,, e, are constants of integration, and q,, q, are the 
roots of 

For even the strongest fields which are available in the laboratory, the 
value of the last term in  this equation is small compared with that of the 
other terms, so that the solution may be taken to be 

The original vibrations of the electron, al1 of frequency p; may now be 
replaced by the three following vibrations : 

eH II. s = O ,  y = ~ , c o s [ ( p + Z n o ) t - ~ ] ,  z =  ~ , s in [ (~+*) t - e l ] .  2mC 

III. x = 0 ,  y = ~ , c o s [ ( p - ~ ) t - e g ] ,  . z = - ~ , s i n [ ( ~ - & ) t - ~ ~ ] .  

Vibration 1 of frequency p is a linear motion of the electron parallel 
to OX, the direction of the lines of magnetic force. The magnetic force in 
the emitted radiation is accordingly always parallel to the plane of yz and 
vanishes immediately behind and in front of the electron (cf. § 622). Thus 
there is no radiation emitted in the direction of the axis of x, and the 
radiation emitted in the plane of yz will be polarised (5 592) in this plane. 

Vibrations II and III represent circular motions in the plane of yz of 
eH 

Clearly the radiation emitted along the axis of LZ will frequencies p + - 2mC ' 
be circularly polarised, while that emitted in the plane of ys will be plane 
polarised in a plane through the line 0% and the line of sight (the motion 
along the line of sight sending no radiation in this direction). Thus the 
observed appearances are accounted for. 

635. More complicated analysis leads to an explanation which is more 
true to the facts, and also accounts for some of the more complex phenornena 
observed. 

Let the molecule (or atom) be regarded, as in 5 608, as a cluster of 
electrons, capable of vibrating with frequencies n,, n,, . . . , and let the "principal 
coordinates" (§ 608) corresponding to these vibrations be +,, +,, ... . 
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With the notation of $ 608, the equation satisfied by any coordinate 4, is 

,e,g;,=-a&+<P ........................... (629), 

in which the generalised force a, is now produced by the presence of the 
magnetic field. Clearly @, must be a linear function of the components of 

e H  e H  
force - v, - w acting on the separate electrons, so that we may assume C C 

QI = e H  (w& + cl& + .. .), 
@,=eH(c,#,+c,,$,+ ...), etc. 

The rate at  which work is done by these forces is . 
@1$1+@2+a+ ... =eH[c,,$,"+(c,,+~) dl$,+ ...], 

and since this must vanish for al1 possible motions, we must have cl, = O, 
cl, = - c,, etc., so that equations (629) become 

............ ~ ~ ~ ~ = - ~ ~ + ~ + e ~ ( c ~ , ~ , + c , , # , +  ...), etc. (630). 

If light of frequency p is emitted, there must be a solution of this set of 
equations such that each of the +'s involves the time through the factor ekt. 
Thus we may replace dldt by ip, and on further replacing a,, etc., by the 
values from equation (592), equations (630) become 

P1(n?-pa)+l- i p e H ( ~ ~ & + c ~ ~ + ~ +  ... )=O, etc. 

The elimination of the +'s leads to 

which gives the possible values of p. 

Pl (n? - pz), - ipeHclz, - ipeHcla, ... 

When H =  O, the determinant becomes the product of the terms in its 
leading diagonal, so that the values for p are n,, n,, .... as they should be. 
If the sign of H is reversed, the determinant remains unaltered in value (for 
c , ~  = - czl, etc.), so that the expansion of the determinant contains only even 
powers' of H. 

- ipeHc,,, P,(n.: -pz), -ipeHc,, ... 1 ................................................... 
= 0 -.....(631), 

in which al1 terms are put equal to zero in which either suffix is not one of 
the series r, s, .... Then the expansion of equation (631) is 

s=n 
We write II for the continued product II P,(n:-p2), and ri for the 

e = l  m... 

same product with the r, s, ... terms omitted. We shall write A for the 
+S... 

determinant 

.... ... IT - 2 p2ea Hac,biI + 2 p4e4 H4 A T l  - = O ..(632). 
Y. 8 rs r.8,t.n rstu rstu 

O, cm GIS,... 

CPI, O, C9.3,-.. 

.................. 
> 
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Clearly the values of pz will in-general be of the forms 

pz = n: + QI Ha, p2 = h* + B, H: etc., 

giving displacements of the spectral lines proportional to HB. This cannot 
explain the Zeeman Effect, in which the displacement is proportional to B. 

Guided by the results of § 634, let us next assume that a number s of 
the original free periods coincide ; for instance, let lz,, %, ..., n, be each equal 
to n, and let us search for roots of the form pB = n2+ g, where is small. As 
regards small quantities, the first term of equation (632) contains 58, the sum 
in the second term contains H Z P ,  lYZp-1, Pt-; the next sum contains 
H45", H4p-l, H4P4, H4p-3, H4p-4; and so on. The only terms of 
importance are those containing 

p ,  H"-, H 4 p 4  > S . .  2 

and the equation assumes the form 

in which a,,, h, ... are coefficients whose exact values need not concern us. 

I t  is at  once clear that there will be s values of { each proportional to H, 
Moreover these values will occur in pairs of equal and opposite values, except 
that  when s is odd c=0 will be one value. This exactly explains the 
observed separations of the lines both in  simple and in complex cases. The 
divided lines are found to be always symmetrically arranged about the 
original position of the line, one of the lines coinciding with this position 
when the total number of lines is even. 

636. According to the simple theory of 5 634, the frequency difference 
8p ought to be given by 

e 6p = H ............................. .(634), 

so that SplH ought to be constant for al1 lines of the spectrum. After the 
analysis of § 635 i t  will not seem surprising that this simple law is not 
altogether fulfilled. Nevertheless 6plH is found to be fairly constant for 
al1 lines, and the observed values of 6p/H lead to values for e/m which are 
in good agreement with those obtained in other ways. 

I t  is observed that the divided lines in the Zeeman Effect are always 
comparatively sharp. Now it does not seem likely that the Mbrating atoms 
c m  al1 assume the same orientation in a magnetic field no matter how feeble 
this field may be, for this would be contrary to al1 the principles of the 
Kinetic Theory of Matter. We must therefore suppose that the vibrations 
of each atom are affected in precisely the same way, no matter what its 
orientation may be. I t  is difficult to see how this can be unless the atoms 
are of a spherically symmetrical structure. Thus the Zeeman Effect con- 
firms the evidence already suggested by the Kinetic Theory of Cases as to 
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atomic formation. If however the view is accepted that the atom consists of 
rings of electrons in rapid orbital rotation, the sharpness of the lines shewn in 
the Zeeman Effect raises a real difiiculty. There is, however, little to be 
gained by discussing tbis difficulty so long as we remain in  ignorance of the 
dynamical laws which govern the motions of the electrons in their orbits. 

637. Before leaving the question of the motion of electrons, one remark 
of a very general nature must be made. The theoretical equations for the 
motion of electrons have been obtained from the classical equations of 
Maxwell, making use of the additional supposition that the laws which 
Maxwell shewed to govern large-scale electrical phenomena apply equally to 
the small-scale phenomena of the motion of single electrons. This latter 
assumption is not one which ought to be accepted without due consideration, 
and the developments of theoretical physics which have taken place in recent 
years suggest that i t  is very much open to challenge. A new dynamics, 
associated primarily with the name of Planck, has grown up out of the 
discussion of the problem of black-body radiation. This new dynsmics is 
still in a very incomplete state, but in so far as it has been developed, i t  
seems to indicate that Maxwell's equations must not be applied without 
modification to the motion of single electrons. 

It is not within the scope of the present book to give even the briefest 
account of the new system of dynamics ; it will be sufficient to record that i t  
is coming into existence, and that i t  is a t  least possible that in the light of 
the new dynamics, many of the results obtained in the present chapter may 
be found to require amplification or revision. 
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CHAPTER XX 

THE GENER.AL EQUATIONS OF THE ELECTROMAGNETIC FIELD 

638. WE pass next to the consideration of the most general equations of 
the electromagnetic field, covering, in particular, the motion of electronc 
without any restriction as to the smallness of their velocities. 

The material on which to base the discussion is found in equations (613) 
and (614) of $617 ; 

etc. .................. (635), 

1 da a2 a Y  ------- 
dt - ay , etc. .................. (636). 

Introduction of the Potentials. 

639. With equations (636) we combine the relation 

(equation (362)), and i t  follows, as in 5 443, that we can find a vector- 
potential of components F, G, EI connected with a, b, c by the relations 

aH a G  a=---- aZ , etc ............................ 
ay 

(638), 

and with X, Y, Z by the relations (cf. $530) 

av x+--=-- etc. .................... .(639), c dt a ~ '  
in which T is a function, at present undetermined in the general case, which 
becomes identical with the electrostatic potential when there is no motion. 

640. We have seen (5 442) that equations (638) are not adequate to 
determine F, G, H completely, and hence V' also (cf. equation (639)) is not 
fully determined. 
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Let Fo, Go, Ho, To be any special set of values satisfying equations (638) 
and (630). Then the most general values of F ,  G, EI are given by (cf. 5 442) 

ax F = & + - ,  etc ............................ ax ( 6 4 ~  

. where x is any arbitrary single-valued function. 

To find the most general value of T ,  we have from equation (639) 

so that, on integration, 

'P=T,,-'%+a constant ..................... c at (6411). 

From (640) and (641) we obtain 

............ (642). 
The function is entirely a t  our disposal, so that 

may have any value we please to assign to it. Let 11s agree to give to x such 
a value, for every instant of time and al1 values of x, y, z, as shall rnake the 
right-hand member of equation (642) vanish. 

The value of is now definitely settled, except for a set of values of x 
such that 

a t  every instant and point, these values of x representing of course con- 
tributions that might mise from a set of disturbances propagated through 
the medium from outside. 

Except for such additional values of X, the values of F, G, H, T are now 
uniquely determined by equations (640) and (641). The vector potential 
will in future mean the special vector of which these values of 4 G, H 
are the components, while the corresponding special value of Y d l  be 
called the " Electric Potential." 

From equation (642) i t  follows that the vector potential and the electric 
potential are connected by the relation 

IRIS - LILLIAD - Université Lille 1 



566 General Equatiom of the Electromapetic Field [CH.  xx 

Difirential Equations satisjed Oy the Potentials. 

641. If we differentiate equations (639) with respect to LE, y, z and add, 
we obtain 

which, on substituting from equations (643) and (63), becomes 

the differential equation satisfied by T. We notice that for a steady field it 
becomes identical with Poisson's equation, while in regions in which there 
are no charges i t  becomes identical with the equation of wave-propagation. 

642. To obtain the differential equation satisfied by F, we transform 
equation (635) by the use of equation (638). We have 

whence, fronl equations (643) and (639), 

the differential equation satisfied by 3'. Similar equations are of course 
satisfied by G and H. 

Di$erentZal Equations satisjed by the Forces. 

KP d' we 643. Operating on equation (639) with the operator Va - - - 
C2 dt2 ' 

have 

This is the differential equation satisfied by X. and sipilar equations are 
satisfied by Y and 2. 
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644. For the differential equation satisfied by a, f i ,  7 we have, from 
equations (638) and (645), 

and similar equations for B and 7. 

Solution of the Difirential Equations. 

645. I t  will be seen that al1 the differential equations are of the same 
general form, namely 

1 d 2 x - -  ........................ vax---- 4Ii-o 
a2 di? (64% 

where o arises from electric charges, at  rest or in motion. 

Clearly the value of x may be regarded as the sum of contributions from 
the values of u in the different small elements of volume. The simplest 
solution for x is that arising from a distribution of u a t  and close to the 
origin, <r being zero everywhere else. 

For this special solution x is a function of r only which must satisfy 

everywhere except a t  the origin. Proceeding as in § 578, and rejecting the 
term which represents convergent waves, as having no physical importance, 
we obtain the solution (cf. equation (536)) 

where f is so far a perfectly arbitrary function. 

Close to the origin, this reduces to 

and it now appears that in equation (648) the middle term becomes insig- 
nificant near the origin in coinparison with the first term Vb. Thus close 
to the origin the equation becomes identical with Poisson's equation, and the 
integral is 

j-jp d î  dy dz 7 

x= ........................ =-  
r (651), 
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where the integral is taken only through the element of volume at  the origin 
in which a exists, and T represents the integral of u taken through this 
element of volume. 

On comparing solutions (650) and (651), both of which are true near the 
origin, we find that 

f (-a t )=r  ..............a............... (65% 

and this determines the function f completely. The general solution (649) 
is now fully known, and by summation i f  such solutions the general solution 
of equation (648) is obtained. 

Let P, Q be any points distant r apart ; let t be any instant of time, and 
let t, denote the instant of time r /a  previous to it, so that t,= t - r /a .  
Clearly t, is the instant of departure from P of a disturbance reaching Q at  't. 
Following Lorentz, we shall speak of t, as the " local time " a t  P corresponding 
to the time t at  Q. 

With this meaning assigned to t,, we have 

where T is evaluated a t  time to (cf. equation (652)). If we agree to denote 
by [+] the value of + estimated a t  the local time a t  the point a t  which C#J 

occurs, then this value of T will be expressed by [TI, and solution (649) 
becomes 

The most general solution of equation (648), obtained by the summation 
of solutions such as (653), is 

the last form applying when the distribution of a occurs only a t  points or in 
small regions so small that the variations of local time through each region 
are negligible. 

The malogy of Poisson's equation and its solution in electrostatics (cf. 
C& 49, 40, 41) is obvious. 

646. From equations (644) and (645) i t  follows that the potentials are 
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If the moving electrons in formula (656) are conveying currents in linear 
circuits, the formula becomes (on taking p = 1) 

where the summation is over the different circuits and & denotes the 
dx 

z-component of the current, which may also be expressed as i -. This 
ds 

formula may be compared with (419) from which it differs only in that i t  
takes account of the finite time required for the propagation of electro- 
magnetic action. 

The solution of equations (646) and (647) may be similarly written down, 
but it is usually easier to evaluate the forces by differentiation of the 
potentials. 

The Field set up by rnoving Electrons. 

647. We now suppose the carriers of the charges to be electrons or 
other bodies, so small that the variations of local tirne over each may be 
neglected. 

~ é t  a, B, +y refer to the force a t  a point xf, y', z' produced by the motion 
of charges e at x, y, z, etc. We have 

1 aH aG 1 a  [ew] a [ev] 
a = - ( I  - -) --(- 2 - - - z -) ...... ...( 657). ay ad - c ayl a ~ '  

Since [ew] is a function of t - rla, we have 

and on substitution in equations (657) we obtain formulae for a, 6, y. 

These formulae are seen to contain terms both in r1 and r4. At a great 
distance from the electron the former alone are of importance, and the corn- 
ponents of force become 

a = - L { ~ e [ ~ ~ + ] - ~ ~ $ f [ ~ f i ] } ,  a C ,  P etc. ......... (658). 

Similarly we find for the electric forces a t  a great distance 

P ceel X = - @ Z 7 ,  etc. ....................... (659). 
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648. For a single electron in free ether, moving with an acceleration Ù 
along the axis of x, the components of force assurne the simple forms 

z' - z a=o,  @=-- - Y ' - Y  ............ 
C2r2 [ eu ] ,  y-- [ec] C 2 P  (660), 

1 x=-- 
C2 r ................ [eù], Y=O, Z = 0  (661). 

We can now find the rate a t  which energy is radiated away, using the 
theorem of 572 b. The direction of the Poynting flux a t  any point is 
perpendiculitrly away from the line of acceleration of the electron; its 

C 
amount is HX per unit area, where H is the resultant magnetic force 

47r 

On integration over a sphere of very great radius r we find for the rate of 
emission of energy by radiation 

I t  is now clear that if we had retained terms of order r+ in formulae 
(658) and (659), these would have contributed only terms of order r4 to the 
Poynting flux, and so would have added nothing to the final radiation. Thus 
the radiation of an  electron arises solely from its acceleration; its velocity 
contributes nothing, 

649. It is to be noticed that the value of expression (662) a t  any instant 
T does not give the emission of radiation from the electron a t  time r, for i t  is 
obtained by summing up radiation which left the electron a t  an instant r/c 
before the tirne 7. Also, expression (662) cannot be taken to givo the rate of 
emission of radiation a t  time T - TIC, because this radiation depends also on 
the terms of order r-= in formulae (658) and (659), which drop out of view on 
following the radiation out to the sphere of great radius r. 

The emission of radiation through a great interval of time, Say from O to 
t will, however, be accurately given on ititegrating expression (662) with 
respect to the time through this interval. The integral so obtained may be 
transformed, by integration by parts, and we have 

2 eaoe  
in  which terms - - a t  the limits t = O, t are omitted as vanishing by com- 

3 C3 
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The right-hand rnember of equation (663) shews that the emission of 
radiation-i.e. transfer of energy from the electron to the ether-is the same 
as though the electron were acted upon by a retarding force F of amount 

acting at every instant in the direction of motion of the electron. 

This is known as Lorentz's expression for the force on a moving electron. 
Lorentz shews* that this force must really exist and that formula (663 a) is 
a direct consequence of the equations of electron motion which have been 
assumed in the present chapter. 

It must be added that the new dynamics referred to in 5 637 seems to 
throw doubt on these formulne for emission of radiation. Many physicists 
now question whether any emission of radiation is produced by the acceleration 
of an electron, except .under certain special conditions. Bearing this caution 
in mind, we may proceed to examine sorne of the consequences of formulae 
(662) and (663 a.). 

650. If each of a cluster of electrons is so near to the point x, y, z 

that differences of local tirne may be neglected throughout the cluster, the 
field set up by the motion of the cluster in free ether will be (cf. equations 

in which terms of order r-3, which contribute nothing to the radiation, are 
omitted. 

The radiation from the cluster is the same as from a single electron of 
charge E moving with components of acceleration U, f7, W, such that 

E Ù = P ~ U ;  etc. 

Thus, taking such a cluster to represent a molecule, we see that the 
radiation from a molecule is the same as that from a single electron moving 
in a certain way. 

The condition that there shall be no radiation from a molecule is 

Zeù= Zet;=Zew=O. 

I f  this condition is not satisfied, the rate of emission of radiation is 
(cf. formrila (662)) 

2 
{(Zeuy + (ZeF)z+ (ZeUryj. 

The Theory of Eleetrons, p. 251. 
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651. Consider next the field produced by a particle of charge E 
oscillating along the axis of x with simple harmonic motion, its coordinate 
a t  any instant being xo cospt. We have 

from which the field can be written doum by substituting in formulae (660) 
and (661). 

From formula (662) the average rate of emission of radiation is 
found to be 

lp4EEax: 16+E%:C --- - -- 
3 Ca 3h4 ' 

where h is the wave-length of the emitted light. 

A particle moving in this way is spoken of as a simple Hertzian vibrator. 
I t s  motion was taken by Hertz to represent the oscillating flow of current in 
an oscillatory discharge of a condenser. Such an oscillation formed the 
source of the Hertzian waves in the original experiments of Hertz (1888)*, 
and forms the source of the ethereal waves used in modern wireless 
telegraphy. 

The radiation from any single free vibration of a molecule (cf. $5 608,650) 
will be the sarne as that radiated from the simple harnîonic motion of a single 
electron, so that the formulae we have obtained will give the field of force 
and intensity of radiation of a molecule vibrating in any one of its free 
periods. 

652. A case of great interest is that in which the velocity of a moving 
electron undergoes a very sudden change, such as would occur during a 
collision with matter of any kind. Let us represent such a sudden change 
by supposing that eu, eV, ew vanish except through a very srnall interval 
surrounding the time t =O,  during which they are very great. At  a point 
at  distance r, [eU], [eV] and [ew]  will vanish except through a small interval 
of time surrounding the instant t = rla. During this short interval, the 
electric and magnetic forces will be very great ; before and after this iiiterval 
they will have the smaller values arising from the steady motion of the 
electron. Thus the sudden check on the motion of the electron results in 
the outward spread of a thin sheet of electric and magnetic force, the force 
being very intense and of very short duration. Such a sheet of force is 
commonly spoken of as a "pulse." 

It was suggested by Sir G. Stokes, and is nonr widely accepted, that the 
Rontgen rays consist of thin pulses of force produced somewhat in the manner 
above described. On this view the Rontgen rays may be compared roughly 

* Electric Waves, by H. Hertz (translated by D. E. Jones), London, 1893. IRIS - LILLIAD - Université Lille 1 



651-6531 Stresses {rh Medium 573 

to isolated waves or half-waves of light of very short wave-length. They are 
known not to undergo refraction by solid matter, and it is worthy of notice 
that formula (604) gives v = 1 for very short wave-lengths. 

Qeneral dynanzical equations. 

653. The total energy of a system of charges of any kind moving in free 
ether is T + W, where 

Let us suppose that, on account of the electromagnetic forces a t  work, 
each element of charge experiences a mechanical force of components Z, H, Z 
per unit charge. We can find the forces 3, H, Z by the rnethods of 5 196 
and the general principle of least action. 

Let us imagine a small displaced motion in which the coordinates of any 
point cü, y, a are displaced to x + Sx, y + 6y, a + Sz, while the components of 
electric polarisation are changed fronl f, g, h to f + S i  g + 6g, h + 61~, these 
new components of polarisation as well as the old satisfying relation (63) 
Thus if p is the density of electricity a t  any point in the original motion 
and p + Sp the corresponding density in the displaced motion, we must have 

Let us denote the total work performed by the mechanical forces in  this 
small displacement by - {SU} (cf. § 551), so that 

Then the eqixations of motion are contained in (cf. equation (507)) 

/ ~ ( ~ ~ - s w - p u j ) d t = ~  ..................... (667). 

We have 6 T = & ] b a h + b 6 / 3 + ~ 6 7 )  
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on applying Green's Theorem; and on further using equation (635), this 
becomes 

d I) 
Let 6, - refer to a point fixed in space, and let A, - refer to a point dt Dt 

moving with the moving material. Then we have the two formulae for Au, 

so that on cornparison 

We now have 
d 

6 ( p u + A =  ~ . S ~ + p 8 ~ + ~ 8 f  

On substituting for dpldt and 6p their values (cf 5 618), 

and simplifying, we obtain 

d a a 
6 ( p ~ + f ) = - ( p a x +  +f)+- ( p ~ 8 x - p ~ 8 Y ) - - ( P ~ 6 ~ -  pw~x) ,  dt ay az 

whence 

Transforming by Green's Theorem, the second line in 6T becomes 

= ~ ~ P 8 x ( c ~ -  bw) +P8y(aw-cu)+ p&(bu- av)} dxdydz. 
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On integrating with respect to the time, and transforming the first term 
on integration by parts, we have 

... I ~ ~ d t = . / ~ d t  [ - ~ ~ ~ ~ ( p & + ~ f ) + ~ b ( c v - b w ) +  1 dxdydr.  

We have from variation of equation (664), 

6 W = (X6f + Y6g + Z6h) dxdydz.  ill 
Hence, freed from the integration with respect to the time, equation 

(667) becomea 

We may not equate coeficients of the differentials, for 6f, 6g, ah are not 
independent, being connected by 

We multiply this by an undetermined multiplier T ,  a function of x, y, z, 
and integrate through al1 space. We obtain 

or, after integration by parts, 

Adding this integral to the left hand of equation (668), me may equate 
coefficients, and obtain 

1 d~ av x = - - - -  ........................... c d t  ax , etc. (669), 

1 = X  + - (cv- bm), etc. ........................ (670). C 

The first equation is simply equation (639) of which we have now obtained 
a proof direct frorn the principle of least action (cf. 5 575); the second gives 
us the mechanical forces acting on moving charges. It will be seen that the 
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forces given by formula (670) are identical with those obtained in § 630, but 
they have now been obtained without any limitation as to the smallness of 
the velocities. 

Stresses in Medium. 

654. We can next evaluate the stresses in the medium, following the 
method of 5 193 and assuming the medium to be free ether. 

Let X be the total x-component of force acting on any finite region of the 
medium, so that 

On substituting for p v, p w from equations (655), the last term becomes 

On substituting for p from equation (63), and for dP/dt, dy/dt from 
equations (636), and collecting terms, this becornes 

ax au az  ET ax ~=q\[(~+~+-% 4~ 1 x - Y  a --- a y ) + z ( ~ ~ - ~ ) ] d x d ~ d z  ax az 

in which Ii, as in $5'72 b denotes the x-component of the Poynting flux. 

The first line a t  once transforms to 

aa ap ay 
and similarly the second, since - + -- + - = O, to 

a8 ay az 

but the last line will not transform into a surface integral at all. I t  therefore 
appears that the n~echanical action in a medium in which TI,, ll,, II, are 
different from zero-i.e. in which the' Poynting flux is not steady in value-is 
not such as can be transmitted by ether at rest. 
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655. If a medium is in motion, having momentum PX, PY, PZ per unit 
volume, and is acted on by stresses Es, P,, Pm, etc. (cf. $193) at its surface, 
we have 

dt 

and equation (671) becomes identical with this if we take 

etc. j 
1 

PI=w- Ca Us, etc. .......................................... (6'13). 

The quantity of which the components are p.,, fi, pz has been called the 
"electromagnetic momentum." We may Say that the forces are such as 
would be transmitted by stresses specified by equations (6'12) in an ether 
moving with momentum pz, pV, ) ( l ~  per unit volume, but whether this 
momentum resides in the ether in a form a t  al1 similar to the momentum 
of ordinary matter has to remain an open question. 

General Equations. 

656. We return to the discussion of a system moving with a uniform 
velocity (cf. §$ 619, 620), in which there is now no limitation as to the 

d a smallness of the velocity. As in § 619, we replace - by - u-, and the 
dt a m  

general equation (648) becomes 

in which B stands for ~ / a ,  or if we write x' for a (1 - p')-P, 

We may conveniently speak of rc', y, z as the "contracted" coordinates 
corresponding to the original coordinates x, y, z, since if two surfaces have 
the sanie equation, one in x', y, z and the other in x, y, z coordinates, 
the former will be identical with the latter contracted in the ratio (1 - p)f 
paritllel to the axis of x. 

J .  37 IRIS - LILLIAD - Université Lille 1 



6'78 General Equations of the. Eleetromagnetic Field [CH. xx 

Equation (675) is Poisson's equation in  contracted coordinates. I t s  
solution is 

where r' denotes distance measured in the contracted space. 

Hence (cf. equations (644), (645)) the values of Y and F, O, H are 
given by 

1 e 
'Y=-(1 -p) -h7 ........................... ... K (6761, 

so that the potentials are the same in contracted coordinates as they would be 
in ordinary coordinates if the system were a t  rest, multiplied by the factor 

(1 -p ) -* ,  

Motion of a wniforrnly electr@ed sphere. 

657. To illustrate the method just explained, we shall examine the 
field produced by a uniformly electrified sphere of radius a, moving with 
velocity o. 

The surface in the contracted space is a sphere of radius a, so that that 
in the uncontracted space is a prolate spheroid of serni-axes a (1 - PZ)-$, a, a, 
and therefore of eccentricity 8. To find the distribution of electricity, we 
imagine the charge on the sphere to be uniformly spread between the spheres 
r = a and r = a + e, where E is infinitesimal. The charge on the spheroid is 
now seen to be uniformly spread between the spheroid itself and another 
similar spheroid of semi-axes (a + e )  (1 - ,@)-3, a + e, a + e. Thus the dis- 
tribution of electricity in the spheroid in the uncontracted space is just 
what i t  would be if the spheroid were a freely charged conductor, and is 
given by the analysis of $5 283, 284. 

We find for the total electric energy 

log -- '" - 21 ................. .......( 678), 
1-P 

where e is the total charge, and for the total magnetic energy produced by 
the motion of the sphere, 

IRIS - LILLIAD - Université Lille 1 



656-6591 Motion with uniforrn Telocity 679 

which agrees with the result of 5 624 when /3 is small, and becomes infinite 
when p = 1. 

658. Abraham*, who first worked out the above formulae, suggested that 
the electron might be so constituted as to remain spherical and uniformly 
charged a t  al1 velocities. If so formula (679) would give the kinetic energy 
of an electron moving wit,h any velocity, whether small compared with the 
velocity of light or not. 

Other hypotheses as to the constitution of the electron would of course 
lead to other formulae for the value of T. I n  1908, Kaufmann performed an - 
important series of experimentst to test which of the formulae for T agreed 
most closely with observation on the motion of electrons. I t  was found that 
none of the hypotheses agreed with Kaufmann's experiments completely, 
but that Abraham's hypothesis agreed to within a small error. Later 
experiments by Bucherert seem to shew that the hypothesis of Lorentz (see 
below, 5 662) agrees completely with observation, and that Abraham's theory 
must be discarded accordingly. . 

Motion of any system in. equilibriurn. 

659. When a material system moves with any velocity U, the electric 
field produced by its charges is different from the field when at  rest. The 
difference between these fields must shew itself in a system of forces which 
must act on the moving system and in  some way modiSr its configuration. 

Let us consider first a simple system which we shall cal1 rS in which al1 
the forces are electrostatic, and al1 the charges are supposed concentrated in 
points (e.g. electrons). Let us suppose that when the system is at rest there 
is equilibrium when a charge e, is a t  x = x l ,  y = y,, z = z,; e, a t  x =x2, 
y = y,, z = z,, and so on. 

Let us compare this with a second system X' consisting of the same 
electrons but moving with a uniform velocity U, and having the charges e, 
a t  x' = E,, y = y,, z = z, ; e, a t  d = xs, y = y,, z = z,, etc., so that each electron 
hm the position in the contrncted space which corresponds to its original 
position in the original space. Then if V denotes the electrostatic potential 
in  the original system, the potentials in the moving system are (cf. equations 
(6W,  (677Nj 

* ''Die Grundhgpothesen der Elektronentheone," Phya. Zcitschrzft, 5 (1904), p. 576. 
f Annalen der Physik, 19, p. 487. 
$ Phys. Zeitschrzft, 9, p. 755. 
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and the forces in the moving system are 

aul =-- 4 ax - = -  , 

Thus if, as we have assumed, the original system S was in equilibriurn 
under electrostatic forces only, then the system X' moving with uniform 
velocity u will be in equilibrium also. 

Lorentz, to whom the development of this set of ideas is mainly due, 
and Einstein have shewn how the theorem may be extended to cover electro- 
magnetic as well as electrostatic forces, and the theorem can also be extended 
so as to apply not only to steady motion with uniform velocity, but to 
systems performing small motions superposed upon a uniform motion of 
translation *. 

The Lorentz-Fitzgerald contraction hypothesis. 

660. It is now natural to make the conjecture, commonly spoken of as 
the Lorentz-Fitzgerald hypothesis, that the system S when set in motion 
with a velocity u assumes the configuration of the system S', this latter 
being a configuration of equilibrium for the moving system. Indeed, if we 
suppose al1 forces in the ether to be electrical in origin, this view is more 
than a conjecture; it becomes inevitable. Put  in the simplest form i t  
asserts that any system when set in motion with uniform velocity u is 

contrasted, relstively to its dimensions when a t  rest, in the ratio (1 -$y 
in the direction of its motion. 

For instance, every sphere becomes an oblate spheroid of eccentricity u/C! 
The contraction is of course very small until the velocity becomes comparable 
with that of light ; the diameter of the earth will be contracted by only about 
6 cms. on account of its motion in its orbit. Even if i t  were not for its 
smallness, i t  would be impossible to measure this contraction by any material 
means, since the measuring rod would always shrink in just the same ratio 
as the length to be measured. But, as we shall now see, optical methods are 
available where material means fail, and enable us to obtain proof of the 
shrinkage. 

See Lorentz, The Theory of Electrons, Chapter v. IRIS - LILLIAD - Université Lille 1 
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661. Lét a system (which for definiteness may be thought of as the 
earth) be moving with a velocity rr, then the apparent velocity of a ray of 
light travelling in the direction of this motion will be C -  c if measured 
relatively to the moving system. If the light travel in the reverse direction 
its apparent veIocity will be C +  U. If a ray travel over a path 1 and is then 
reflected back to its starting-point, the time t, taken will be given by 

Suppose next that a ray is made to travel a distance L across the direction 
of motion and back to its starting-point, the system moving with velocity u 
as before. Let the whole time be f ,  then the distance travelled by the 
system is 6%. The actual path of the ray through the etlier consists of two 
equal parts, one before reflection and one after ; each part is the hypotenuse 
of a right-angled triangle of sides L and &u&, and the time of describing 
each part is &ta. Hence 

&tac= ( ~ 2 +  ac~t$,  

TV hence 

From formulae (680) and (681) it appears that the times taken by a ray 
of light to travel a distance 1 and be reflected back, while the systern is in 
motion, will be different according as the path of the r a p  is along or across 
the direction of motion of the system. 

According to the Lorentz-Fitzgerald hypothesis, however, the length t 
described from one point of the material system must, on account of the 

motion, have shrunk from an initial length 1, = 1 ( 1 - - 6:) -' measured in the 

system a t  rest. In terms of the apparent length 1,, formula (680) becomes 

and is now in exact agreement with (681). 

The famous experiment of Michelson and Morley, of which details can be 
found in any treatise on physical optics, was in effect designed to test whether 
formulae (681) and (682) ought to be the same or different. I t  was found 
that the apparent velocity was exactly the same, whether the double path 
\vas across or with the motion of the earth in its orbit. Thus the expriment, 
although designed for another purpose, has as its result to afford what. 
amounts almost to positive proof of the Lorentz-Fitzgerald contraction 
hypothesis. 
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The Lorentz deformable electron. 

662. Lorentz has suggested that the electron itself mzly suffer contraction 
in the direction of its motion, just as a material body made up of electrons 
must be supposed to do. Thus an electron which when a t  rest is a sphere 
of radius a, becomes when in motion an oblate spheroid of semi-axes 

Lorentz calculates as the total apparent mass of the electron 

when moving in the direction of the velocity U, and 

when moving transverse to this direction. 

The second of these formulae has been tested by Bucherer, in a series of 
experiments of great delicacy*, and is found to agree exactly with experiment 
provided nt, is taken to be zero. Thus Bucherer's experiments seem to lead 
to the following conclusions : 

1. They confirm Lorentz's theory of the deformable electron. 

II. They provide further confirmation of the Lorentz-Fitzgerald hypo- 
thesis, on which Lorentz's theory of the electron is based. 

III. They indicate that the mass of the electron is purely electromagnetic 
in its nature. 
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Ellipsoidaï analgsie, 230, 244, 251 

,, conductors, 246, 255 
,, harmonica, 251 

Elliptic cyünders, 270 
,, disc, 248 

Energy, conservrttion of, 28, 32 
,, fiow of, 510 
,, localisation of, 151, 399, 415, 443, 

494, 504, 510, 547 
,, of conductors and condensers, 83, 106 
,, ,, light-waves, 549 
,, ,, magnetic field, 396, 399, 415, 5Oi 
,, ,, magnetised bodies, 377, 380, 381 
,, ,, systems of currents, 443 

Equiiibrium, points of, 59, 167 
Equipotential surfaces, 29, 47-62, 370 
Eguivalent stratum (Green's), 182, 361, 375 
Expansione in harmonics, 211 

9 ,  ,, LegendreY6 coefficients, 223 
9 9  ,, sines and cosines, 259 

Farad (unit of capacity), 77, 523 
Faraday, 3, 74, 115, 116, 126, 140, 155, 308 
Pinite current sheets, 481 
Fïtzgerald, 680 
Fiame, conductiug power of, 6, 125 
Flux of energy, 511 
Force, lines of, 25, 29, 43, 47-58, 62, 370 
,, magnetic, 381 
,, mechanical, see Mechanical force 
,, tubes of, 44, 47-58, 117, 371 

Fourier's theorem, 259 IRIS - LILLIAD - Université Lille 1 



Index 
Franklin, 19 
Fresnel, 548 

Galvanometer, 433 
Gases, conduction in, 311 

,, inductive capacity of, 132 
,, velocity of light in, 526 

Gauss' theorem, 33, 118, 161, 162, 370, 
386 

Generalised coordinates, 489 
,, forces, 493 
,, momenta, 493 

aeneration of electricity, 9 
,, ,! heat, 320, 348 

Green, analytical theorem of, 156 
,, equivalent stratum of, 182, 361, 375 
,, reciprocation theorem of, 92, 163 

Guard-ring, 78, 106 

Hagen and Rubens, 537 
Hall effect, 558 
Hamilton's principle, 487 
Harmonic potential, 224 
Hmonics, biaxal, 241 

,, ellipsoidal, 251 
,, spherical, 206-223, 233-242, 243 
,, tesseral, 237 
,, zonal, 233 
,, tables of- 

integral degrees, 258 
Legendre's coefficients, 219 
tesseral, 240 

Heat, generation of, 320, 348 
Helmholtz, stresses in dieleotrios, 177 
Hertzian vibrator, 572 
Holtz influence machine. 18 
Hyperbolic cylinders, 267, 270 
Hysteresis, magnetic, 412 

Images in electrostatics, 185-201, 258, 281 
Impulsive forces, 493 
Induction, coefficients of, 93, 96, 97 

,, electnfication by, 16, 125, 186 
,, magnetic, 384 
,, of currents, 452, 557 

Inductive capacity of dielectric, 74, 115, 134, 
525 

,, ,, ,, crystals, 135 
>, ,, ,, gases, 132, 526 

I ,, ,, liqnids, 75, 360 
>, ,, in terme of molecular 

structure, 130, 134, 542 
Inlinite conductors, resistance in, 350 
Inrinity, field at, 56 
Insulators and conductors, 5, 534 
Intensity (electric), 24, 32, 33, 549, 566, 569, 
580 

Intensity of magnetisation, 368 
Intemeeting planes, 188, 206 

,, spheres, 206 
Inverse square, law of, 13, 31, 37, 168, 365 
Inversion, 202, 258 
Ion, 308 
,, velocity of, 310 

Ionisation, 311 

Joule effect in conductors, 320 

Kamerlingh Onnes, 547 
Kaufmann, 579 
Kelvin (Lord), 193, 199, 249, 250, 365, 469 
Ketteler-Helmholtz formula, 542 
Kirchhoffs laws, 311 

,, solution of wave-equation, 518 

Lagrange's equations, 489, 492, 493 
Lamé's functions, 252 
Laplace's equation, 40, 42, 120, 243, 245 

I ,, solution in spherical har- 
monica, 206 

,, solution in ellipsoidal har- 
monics, 251 

,, solution in spheroidd har- 
monics, 206 

Larmor, 3, 168, 542 
Law of force, 13, 31, 37, 168, 365 

,, between current elements, 441 
Least action, 488, 514, 573 
Lebedew, 550 
Legendre's coefficients, 217, 225, 231 
Lenz's law of induction of currents, 453 
Leyden jar, 77, 277 
Light, electromagnetic theory of, 3, 521, 525 

,, velocity of, 521, 525 
,, dispersion of, 542 

Lightnhg conductor, 61, 479 
Lines of force (electrostatic), 25, 29, 43, 47, 

62 
, , , (magnetic), 370 
,, ,, flow, 341 
,, ,, induction, 386 

Liouville, solution of wave-equation, 516 
Lorentz (H. A.), 642, 543, 559, 571, 580, 
582 

Lorenz (L.), 543 

Magnetic field, 369 
a ,  ,, produced by currents, 425 
3s ,, energy of, 396, 415, 494, 504 
19 ,, of moving elecbons, 553, 554, 

570 
,, matter, Poieson'e imaginary, 375 
,, Partlcle, 366 
> Y  ,, potential of, 372 
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Magnetic particle, potentiai energy of, 377 

, , ,, resolution of, 372 
Y I  , , vector-potential of, 393 
,, ehell, 376, 426 
9 I ,, potential of, 376 
$ 9  ,, potential energy of, 380 
9 9 ,, vector-potentiel of, 395 

Magnetised body, 367 
9 9 ,, potential of, 372 
9 v ,, potential energy of, 381 
9 9 , measurement of force inside 

a, 381 
Magnetim, physical facts of, 364, 408, 425 

,, terrestrial, 400 
,, theories of, 3, 418, 504 

Magnetostriction, 417 
Mass, electromagnetic, 554, 582 
Matter, structure of, 20, 130, 134; see a2so 

Electron and Molecule 
,, imaginary magnetic, 375 

Maxwell, 2, 3 et passim 
,, displacement theory, 153, 508 
,, theory of induoed magnetism, 421 
,, theory of light, 521, 525 

Meaeurements : 
charge of electricity, 8, 77, 109, 437 
current of electricity, 314, 433 
inductive capacity, 74, 360 
potential difference, 106, 107 
resistance, 314 

Mechanical action in the ether, 3, 140, 573 
9 9 ,, ,, dielectrics, 172 
9 ,  ,, ,, magnetic media, 415 
,, force on a circuit, 439, 503 
Y , ,, ,, conductor, 102 
,, . ,, ,, dielectric, 124, 172 
9 ,  ,, ,, moving electron, 556, 

558, 575 
I I ,, ,, surface, 79, 178 

Medium between conductors, 140, 151, 510 
Metallic media, reflection and refraction of 

light in, 535, 544 
9 1  ,, absorption in, 534 

Michelson and Morley, 581 
aiirror gaivanometer, 437 
Molecular theory of dielectric action, 126, 361 

9 ,  ,, ,, magnetism, 3, 366, 409, 
418, 421, 504 

I 9 ,, ,, light propagation, 540 
Molecuie and Atom, structure of, 133, 168, 

232, 539, 560, 562 
,, radiation of light from, 559, 563, 

571 
Moment of a magnet, 366 
Momentum, eIeotrokinetic, 498 

,, electromagnetic, 574 
,, generalised, 493 

Xoesotti'r theory of dieleatrio action, 127, 
168 

Multiple-valued potentiale, 279, 429 

Network of conductore, eteady currents in, 
311, 316, 322 

1 9  9 ,  ,, oscillations in, 499 
Neumann's law of current induction, 453 
Nichole and Hull, 550 
Nicholson. 545 

Oersted, 445 
Ohm (unit of resistance), 305, 523, 524 
Ohm's law, 301, 307, 309, 343 
Osciiiatione in a network of conductors, 

499 
OsciUatory discharge of a condenser, 460 

Parabolic cylindere, 267, 269 
Paralïel plate condeneer, 77, 115, 272, 274 
Paramagnetism, 410, 413 
Particle, magnetic, 366, 372, 377, 393 
PermeabiIity, magnetic, 410 
Physical dimensions of electric quantities, 14, 

524 
Planck, 563 
n a n e  conductors and condensers, 69, 185, 194, 

272 
,, curent  sheets, 480, 482 
,, eemi-infinite (electrified), 266, 273, 282 
,, waves of light, 526 

Poieson's equation, 40, 121 
,, imaginary magnetic matter, 375, 418 
,, theory of induced magnetism, 127, 

418 
Polarisation (electrostatic), 117, 118, 126, 105, 

232, 547 
,, of light, 528, 533, 560 

Polarlsing angle of light, 633 
Polarity of molecules, 126 
Potential (electrostatic), 26, 31, 121, 345 

9 ,  ,, maxima and minima, 
43, 167 

,, (electric), 565 
,, (magnetic), 370, 413, 429 
,, (vector), 393 
,, coefficients of, 93, 96, 97 

Poynting's theorem, 511 
Practical units, 523 
Pressure of radiation, 550 
Pr$cipal coordinates, 639 
Pulse of electric action, 572 

Quadrant electrometer, 107 
Quadrfc, stress-, 147 
Quantity of electricity, 7, 8, 77, 109, 437 
Quincke, 181, 416, 417 
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Radiation, pressure of, 550 
,, of light from electrons, 560, 570, 

571 
Rapidly alternating currents, 477, 501 
Rayleigh (Lord), 358 
Recalescence, 412 
Reciprocation theorem of Green, 92, lfi3 
Reflection of light, 530, 531, 535 
Refraotion of light, 529 

,, ,, lines of force, 123 
$ 9  9,  3 ,  flow, 346 

Refractive index, 525, 542 
Relaxation, time of (for a dielectric), 359 
Residual discharge, 361 
Resiatance of a oonductor, 301, 314, 355, 539, 

546 
,, measurement of, 314 
,, specific, 342 
,, -box, 314 

Resolution of a magnetic particle, 372 
Retentiveness (magnetic), 412, 422 
Riemann's surface, 280 
Rontgen raya, 311, 572 

Saturation (magnetic), 411 
Schuster, 545 
Schwarz's transformation, 271 
Screening, electric, 62, 97, 537 
Self-induction, 456 
Sellmeyer's dispersion formula, 542 
Shell, magnetic, see Magnetio shell 
Signala, transmission of, 332 
Sine-galvanometer, 435 
Soap-bubble, electriîication of, 81 
Solenoid, magnetic, 432 
Solenoidal vector, 158 
Sommerfeld, 283 
Speciflc heats, 545 
Speciflc inductive capacity, see Inductive 

capacity 
Spherical conductors and oondensers, 66, 71, 

99, 100, 189, 192, 196, 226, 228, 
231, 264 

,, bowl, 250 
,, harmonics (theory), 206, 233, 243 

9 ,, (appliaations), 224, 401 
Spheroidal conductor, 248 

,, harmonics, 254, 257 
Stokes, 672 
Stokes' theorem, 388 

Stresses, general theory of, 142 
,, electrostetic, 146, 169 
,, in dielectrics, 175 
,, ,, electromagnetia field, 576 
,, ,, msgnetic media, 415 

Submarine cable, 79, 319, 332, 351 
Superposition of fields, 90, 191 
Surface-electriiication in conduotors, 18, 21, 

37, 45, 61, 121, 
194 

2,  , 9 ,, dielectrics, 125 
,, harmonics, 208 

Susceptibiïity, msgnetic, 410 

Tangent galvanometer, 434 
Telegraph wire, capacity of, 195 

9 ,  ,, transmission of signals along, 
317, 332 

Terrestrial magnetism, 400 
Tesseral harmonics, 237 
Time of relaxation, 359 
Torsion balance, 11, 365 
Transformer, theory of, 465 
Tubes of force (electrostatic), 44, 46, 47, 117 
,, ,, ,, O = w e W ,  371 
,, ,, flow, 341 
,, ,, induction, 386 

Unicursal curves, 269 
Uniformly magnetised body, 373 
Uniqueneas of solution, 89, 163 
Units, 14, 77, 305, 365, 427, 522 

Vector-potential, 393, 438, 474 
Velocity of electromagnetic waves, 520 

,, ,, light, 621, 525 
Volt (unit of potential), 306, 523 
Volta's law, 303 
Voltaic cell, 302 
Voltmeter, 314 

Wave-propagation, eqnation of, 516, 526, 567 
3 ,, in dielectrios, 520 

Y Y  ,Y ,, metals, 533 
39 > t  ,, crystalline media, 548 

Weber's theory of magnetism, 3, 418, 505 
Wheatstone's bridge, 315, 316 

Zeeman eiTect, 559 
Zonai harmonica, 233 
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