MINERI OGY ATD CRYSIALLOGRPPHY

3/-

MINERALOGY AND CRYSTALLOGRAPIIY:

BEING

A CLASSIFICATION OF CRYSTALS,

ACCORDING TO THEIR FORM;

AND

AN ARRANGEMENT OF MINERALS.

after their chemical composition:

BY

PROFESSOR TENNANT, F.G.S.,
Professor of Meneralogy and Geology, King's Goul, London ; and by Appointment, Mfineralogist it Her Mavesty.

RBV. WALTER MITCHELD, Min,
Queen's Coll., Late Lethurer on Natural Phtlosophy at St. Barth tomew's

Hospital.

> LONDON:

GRIFFIN AND COMPATF, 10, stationers'-hall court.

INTRODUCTORY NOTICE.

The following pages are intended to supply the student with an elementary treatise on the science of Crystallography, and a systematic arrangement and description of the various Minerals found in nature.

These treatises will, it is hoped, be found to contain all the information which can be required by a student wishing to master the elements of those sciences.

The various forms of Crystals are referred to six great classes or systems; under each system will be found a complete list of all the Minerals known to have assumed forms and faces belonging to it, together with the angular elements which determine their relation to their axes. Each form belonging to the system is then described; its mathematical properties discussed; simple geometrical constructions are given for modelling every variety which can occur in nature, as well as rules for representing them on paper, and laying down their poles on the sphere of projection or its map. This is followed by a list of all the species of the form which have been observed in the Mineral Kingdom, the symbols used by various authors for their description, and their respective angles.

All the important formula for the calculations of the angles of Crystals are given, and these formulx are solved for nearly every case which has been recorded in the best and most recent works on Mineralogy. Indeed, it may be stated, with perfect propriety and truth, that this is the only treatise at all available to the student in which the systems of Crystallography are treated in a manner suitable for the class or lectureroom.

In the systematic description of the principal physical properties of Minerals, the chemical arrangement of the British Museum has been followed, as possessing great advantages for those who may avail themselves of the facilitics afforded them in consulting one of the finest collections of Minerals in the world.

The student is thus presented with two distinct classifications of Minerals,--one in the Crystallography, according to the forms of their crystals, and the other following their chemical composition.

London, January, 1856.

CRYSTALLOGRAPHY.

Page
Artificial Crystals 290
Crystals, Crystalline, and Amorphons Substances 290
Faces, Edges, Angles, and Axes of Crystals 290
Compound Crystalline Forms 291
Modifications of Crystalline Forms 292
Forms of Crystals Independent of the
Size of their Faces and Edges 202
Cleavage 283
Systems of Crystals. 293, 294
The Cube 295-297
The Octahedron 298, 299
Rhombic Dodecahedron 300, 301
Three-Faced Octahedron 302-304
The Twenty-four-Faced Trapezohe- dron 305-307
The Four-Faced Cube 308, 309
Six-Faced Octahedron 310-314
Combination of the Forms of the Cube and Octahedron 315
Combination of Cabe and Rhombio Dodecakedron 316
Combination of Cube and Three-Faced Octahedron. 316
Combination of Cube and Twenty- four-Faced Trapezohedron 317
Combination of Cube with Four-faced Cube 318
Combination of Cube and Six-Faced Octahedron. 319
Combination of Octnhedron and Rhom-bic Dodecahedron320
Combination of the Octakedron and Three-Faced Octahedron 320
Combination of the Octahedron andTwenty-four-Freed Trapezohedron. 320
Combination of the Octahedron andFour-faced Cube321
Combination of the Octahedronand Six-Faced Octahedron322
PienCombination of the Rhombic Dodeca-hedron and Three-Faced Octahe-dron322
Combination of the Rhombic Dodeca-hedron and Twenty four-Faced Tra-pezohedron 823
Combination of the Rhombic Dodeca-cahedron and Four-Faced Cube . . $\mathbf{3 2 4}$Combination of the Rhombic Dodeca-hedron and Six-Faced Octahedron . 324
Complicated Combinations of the
Forms of the Cubical System 325
Sphere of Projection 326
Zones 326
Maps of Crystals 326
Map of the Principal Zones of the Cubical System 827.329
Hemihedral Forms of the CubicalSystem330
The Tetrahedron 330, 331
The Twelve-Faced Trapezohedron332, 338
The Three-Faced Tetrahedron . 394, 335
Six-Faced Tetrahedron 336-338
Hemihedral Forms with Inclined Faces 839
Hemihedral Forms with Parallel Faces 839
The Pentagonal Dodecahedron. 339, 340The Irregular Twenty-four-Faced Tra-pezohedron 341, 344Combination of the Cube and Tetra-hedron345
Combination of the Cube and Twelve-
Faced Trapezohedron 345
Combination of Cube and Three-Faced Tetrahedron 346
Combination of Cube and Sir.Faced Tetrahedron 346
Combination of the Positive andNegative Tetrahedron347
Combination of the Tetrahedron andRhombic Dodecahedron347
Combination of the Tetrahedron and Twelve-Faced Trapezohedron 347
Combination of the Tetrahedron and Three-Faced Tetrahedron 348
Combination of the Tetrahedron andSix-Faced Tetrahedron349
Combination of Rhombic Dodecahe- dron and Twelve-Faced Trapezo- hedron 350
Combination of Rhombic Dodecahe- dron with Three-Faced Tetra- hedron 850
Combination of Rhombic Dodecahe. dron and Six-Faced Tetrahedron 351
Combination of Cube with the Pen- tagonal Dodecahedron 351
Combination of the Cube with the
Hemihedral Form of the Six-FacedOctahedron with Parallel Faces . . 352
Combination of the Octahedron andPentagonal Dodecahedron352
Platonic Bodies 353
Combination of the Octahedron with the Hemihedral Form of the Six- Faced Octahedron with Parallel Faces. 353
Combination of the Rhombic Dodeca-hedron with the Pentagonal Dode-cahedron3.54
Combination of the Rhombic Dodeca-hedron with the Hemihedral Formof the Sir.Faced Octahedron withParallel Faces354
Complex Combination of Hemihedral
Forms354
Molecules 355
Law of Decrements 355
Decrements on Edges 355-358
Spherical and Spheroidal Molecules 359
The Pyramidal System 8.9
The Square Prism 360
Parameters 8 il
Symbols 361, 302Double Four-Faced Pyramid of theFirst Order
P191- . . 363-965
Double Four-Faced Pyramid of theSecond Order366
Double Four-Faced Pyramids Derived from the Form $1 \propto 1$. . . . 367, 368
Double Four-Faced Pyramids Derivedfrom the Pyramid of the SecondOrder369, 370
Sphenoid Derived from the Pyramid of the First Order 371
Sphenoid Derived from the Pyramid of the Second Order 371
Octagonal Prism 372, 373
Double Eight-Faced Pyramid 374-376
Hemihedral Double Four-Faced Py- ramid 377
Tetartohedral Form 378
Pyramidal Trapezohedron 378
Pyramidal Scalenohedron. 379.383
The Rhombohedral System 384, 385
Hexagonal Prisms of the First and
Second Order 386
Axes of the Hexagonal Prism, and of the Rhomboidal System 387
Parameters 388.391
Double Sir-Faced Pyramid of the First Order 392
Double Six-Faced Pyramids Derivedfrom the Pyramid of the First Order393.395
Double Six-Faced Pyramid of the Second Order 896
Double Six-Faced Pyramids Derivedfrom the Pyramid of the SecondOrder397
Rhomboid 398-410
Rhomboids 401, 402
The Right Prism on the Twelve-SidedBase403-405
The Double Twelve-Faced Pyra-mid 406
Hexagonal Scalenohedron 406-417
The Right Rectangular Prism 418
Parameters 418-420
Right Rhombic Prism of the First Order. 421
Sphere of Projection for the Prismatic System 422.424
Right Rhombic Prism of the Second Order 425
Right Rhombic Prisms Derived from those of the Second Order 426
Right Rhombic Prism of the Third Order 27, 428
Rhombic Pyramid 429, 430
Derived Rhombic Pyramids 431
Derived Rhombic Pyramid of the First Class 431
Derived Rhombic Pyramid of theSecond Class 432, 433
Derived Rhombic Pyramid of theThird Class434
Rhombic Sphenold 435
Principal Combinations of the Prisma- tic System 436.438
The Oblique Rectangular Prism 439
Parameters. 440, 441
Sphere of Projection for the ObliqueSystem442
Oblique Rhombic Prism of the First Order. 448-445
Right Prism on an Oblique RhombicBase446, 447
Prisms Derived from the Right Prism on an Oblique Rhombic Base 448
Oblique Prism on a Rhombic Base of the Second Order 449
Oblique Rhombic Prisms Derived from
those of the Second Order. 450
Oblique Rhombic Octahedron 451, 452
Derived Oblique Rhombicn Octa-
hedron 453
Derived Oblique Octahedron of the First Class 453
Derived Oblique Octahedron of the Second Class 454, 455
Derived Oblique Octahedron of the Third Class 458
Parameters and Axes 458
Doubly Oblique Prism-First Order 459, 460
Donbly Oblique Rhombic Prism,Second Order461
Noubly Oblique Prisms Derived from that of the Second Order 462
Doubly Oblique Prism, Third Order 468
Derived Doubly Oblique Prisms of the Third Order 463
Doubly Oblique Prism of the Fourth Order 464
Derived Doubly Oblique Prism of the
Fourth Order 464
Doubly Oblique Octahedron 465, 466
Derived Doubly Oblique Octahedrons467, 468
Twin Crystals 469-478
Pseudomorphous Crystals 474, 475
Dimorphism 476
Isomorphism 476
Goniometers 477-480
MINERALOGY.
Mineral 481
Species of Minerals 481
Characteristics of Minerals 481
Crystalline Form 482
Chemical Composition 482
Hardness 483
Streak 484
Specific Gravity 484, 485
Nicholson's Areometer 486
Double Refraction and Polarized,Light $487-490$
Arrangement and Description ofMinerals491
Native Metals 491, 492
Tullerides. 493
Antimonides 494

CONTENTS.

Index, Explanatory and Referential, 557.

CRYSTALLOGRAPHY AND MINERALOGY.

Cbystallography, while it is of great value to the chemist and natural philosopher in their researches, is so important a branch of Mineralogy, that it is impossible to make any progress in that science without some knowledge of its principles. We therefore intend to make our Treatise on Crystallography serve as an introduction to Mineralogy. The hardness, specific gravity, chamical composition, and other properties of minerals, as well as the localities in which they are found, and their scientific arrangement, will follow the Treatise on Crystallography.

Crystallography.-In the mineral kingdom a great variety of solid bodies are met with, bounded by plane smooth surfaces. These bodies are called crystals, and it is the province of the science of Crystallography to investigate their mathematical properties, to classify and arrange them. The surfaces of crystals are not always plane ; they are sometimes curved; but these curved surfaces are comparatively rare. Crystals are not confined to the mineral kingdom; they occur very frequently among the products of the chemical laboratory. Almost all the salts, and a great many other substances, under favourable circumstances, assume the form of crystals.

Some crystals are very simple in their forms, and present solids remarkable for their symmetry; while others are exccedingly complex, being bounded by more than a hundred different surfaces.

We are ignorant, as yet, of the manner in which the majority of crystals belonging to the mineral kingdom are formed. Very few can be reproduced by the chemist; and those which can, are generally smaller than the natural ones, and present few of their
modifications. Crystals of quartz occur of an immense size in nature, some single crystals weighing many pounds. It is doubtful if any crystals of this substance have been obtained artificially. Crystals of carbonate of lime occur in nature of almost every size, and in almost numberless varieties of form ; while the artificial crystals are almost microseopical in character. The diamond, which is carbon in a crystallized state, has never been produced by art; but some very minute crystals of a few of the other gems have been formed by the chemists.

Though we are ignorant of the means by which the great majority of crystals have been formed in the great laboratory of ruture, we can crystallize an immense variety of substancess Nothing can be more interesting, and at the same time more instructive to the student of crystallography, than to watell the process of crystallization for himself, and observe the gradual growth of crystals:

Axtificial Gxystals.-Crystals may be obtained by various methods. Most of the salts, as-woll assome other substances which are soluble in water, deposit crystals as their solutions are gradually evaporated. Bismuth, and most other metals, assume the crystalline formr as they pass from the fluid to the solid state after being melted. Some bodies become crystallized by the process of sublimation. Grystals are formed by the electro-galvanic decomperition of some solutions; thus, tin crystallizes by the reduction of a solution of its protochloride by a gadvanic current. Crystals of sulphur may be obtained in three ways,-by sublimation, by the evaporation of its solution in bisulphide of carbon, and by cooling from a state of fusion.

Crystals, Crystalline, and Amorphous Substances.-All solid substances which do not owe their structure to the vital forces of the animal or vegetable kingdom are crystals, crystalline, or amorphous. Crystals have been already described. A crystalline body consists of a confused aggregation of minute or imperfect crystals; and an amorphous body is one in which, as its name implies, no form or structure can be observed. Sugar-candy consists of erystals of sugar; loaf-sugar is crystalline, and barley-sugar is amorphous. We meet with crystals of carbonate of lime in calcarcous spar and arragonite ; marble is a crystalline, and chalk an amorphous form of the same substance.

Faces, Edges, Angles, and Axes of Crystals.-The plane surfaces by which a crystal is bounded are called its faces. An edge is the line formed by the union

Fig. 1.-The Cube. of two faces. The solid angle of a crystal is produced by the union of more than two faces, and may be threefaced, four-faced, six-faced, \&c. The plane angles are the angles on a face, bounded by

Fig. 2.-The Octahedron. the intersection of its boundary edges. Axes are imaginary lines, drawn through a crystal for the convenience of calculation, or for the purpose of describing its geometrical properties. Crystalline forms are the simplest mathematical solids in which crystals occur, or to which their faces are parallel.

If as much common salt be thrown into boiling water as it will dissolve, beautiful cubes will be seen to form rapidly on its surface as it cools, as well as on the sides of the vessel in which it is contained. The same thing will occur more slowly, if a saturated solution of salt in cold water be allowed to evaporate spontaneously. A warm solution of alum will deposit octahedral crystals on strings suspended in it, as well as on the sides of the vessel containing it as it cools. The surfaces of the cube are all squares, those of the octahedron equilateral triangles; the cube is bounded by six squares, the octahedron by eight triangles.

Compound Crystalline Forms.-If an octahedral crystal of aluit be left suspended, at the ordinary temperature of the atmosphere, for a day or two, in the solution of alum in which it was formed, though the crystal will increase in size, its form will generally be altered. The six solid angles, formed by the junction of four of the equilateral faces, will be found replaced by flat square surfaces; so that the crystal will present the appearance represented in

Fig. 3. Fig. 3, where the cight faces, bounded by six edges, and markcd $0,0_{2}$, \&c., 0_{3}, will be

Fig. 4. parallel to those of the octahedron first formed by the solution.

If the six square faces, marked P_{1}, P_{2}, \&c., P_{k}, be produced till they intersect one another, these intersections will give the outline of a cube, while the faces O_{1}, O_{2}, \&c., O_{8}, being similarly produced, will complete the figure of an octahedron, as shown by Fig. 4.

Such a crystal as this is called a combination of the forms of the cube and octahedron. The faces which, boing produced, form a cube, are called the cubical faces; and those which form the octahedron, octahedral faces.

Fig. •

Far more complicated forms are found in nature. Fig. 5 represents a cube of fluor

Fig. 6.
Rhombic Dodecahedron.

Fig. 7.
Twenty-four-faced Trapezohedron.

Fig. 8.
Three-faced Octahedron. spar, every edge of which is modificd or replaced by a plane surface, inclined to the sur-
face of the cube; and every solid angle of the cube is replaced by twelve planes. The crystal has therefore one hundred and fourteen faces.

The six faces, $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$, \&c., P_{6}, are parallel to the faces of the cube (Fig. I).

The faces, $r_{1}, r_{2}, r_{3}, \& c ., r_{12}$, which replace the edges of the cube, are parallel to a twelve-faced figure, called the Rlombic Dodecahedron (Fig. 6).

The twenty-four faces a_{1}, a_{2}, a_{3}, \&c., which modify each solid angle of the cube, are parallel to the surfaces of the twenty-four-faced trapezohedron, bounded by twentyfour similar and equal four-sided faces, callcd deltoids, or trapeziums (Fig. 7).

Fig. 9.一Six-faced Octahedron.

The twenty-four faces, $b_{1}, b_{2}, b_{3}, \& c$., are parallel to the surfaces of the twenty-fourfaced figure called the three-faced octahedron, each of whose faces is a similar and equal isosceles triangle (Fig. 8).

And the forty-eight faces, $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}, \& c$., are paralld to the surfaces of a forty-eight-faced figure, called the six-faced octahedron, cach of whose faces are scalcne triangles, similar and equal to each other (Fig. 9).

MIodifications of Forms. -Crystals of simple forms, such as the octahedron, are sometimes formed with as much accuracy as the geometrical solid; but at other times the faces are so modified as to render it difficult, at first sight, to recognise the form to which they belong. The three accompanying figures (Figs. 10, 11, and 12) represent modifications of the octahedron frequently observed among the crystals

Fig. 10.

Fig. 11.

Fig. 12.
of alum. On examination, it will be found that the faces $o_{1}, o_{2}, \& c$., o_{B}, are each parallel to a face of an octahcdron; and that the inclination of any one face, such as o_{1} on any of the adjacent faces, such as o_{4}, or o_{5}, is an angle of $109^{\circ} 28^{\prime}$, as it is in the regalar octahedron.

Forms of Crystals independent of the size of their Faces and Edges. -From what has been stated, with regard to the octahedron, it appears that the geometrical form, to which the faces of a natural crystal are referred, is independent of the size of the face, or even the form of its outline. Thus, the faces of an octahedron are all equilateral triangles, while some of the faces in the three preceding figures are bounded by four edges, as o_{1} and o_{5} (Fig. 10), o_{4} and o_{5} (Fig. 11), and some by six, as o_{1} (Fig. 12). A regular octahedron, or cube, may be of any size, from one requiring a
microscope to perceive it, to one whose edges are several inches in length. The faces of a compound crystal are always referred to the simplest symmetrical solid to which they are parallel. This parallelism is determined by the measurement of the inclination of one face to another. This inclination is determined by instruments called goniometers, which will be described hereafter.

Cleavage.-Some minerals are found to split, or cleave, with greater ease and readiness in some directions than others. In some cases, as in calcareous spar and fluor spar, this cleavage takes place with great facility, and displays very smooth surfaces. The cleavage is generally parallel to some crystalline form ; that of calcareous spar being parallel to the six faces of a figure called the rhombohedron, and that of fluor spar parallel to the eight faces of the octahedron.

If a cube of fluor spar, A_{1}, A_{2}, \&c., A_{3}, have diagonals, $A_{1} A_{3}, A_{2} A_{4}$, joining the opposite angles of its square faces, scratched upon them. It will be found that a knife being applied, with its edge on one of the diagonals $\mathbf{A}_{1} \mathbf{A}_{3}$, and the blade of the knifo in the same plane with the triangle $A_{1} A_{3} A_{81}$ a smart blow from a hammer, on the back of the knife, will detach the solid pyramid $A_{1} A_{3} A_{8} A_{4}$, from the cube. In a similar manner, the pyra$\operatorname{mids} A_{1} A_{3} A_{5} A_{2}, A_{1} A_{8} A_{6} A_{5}$, and $A_{3} A_{8}$ $A_{6} A_{7}$, may be removed, leaving a regular tetrahedron, $A_{1}, A_{3}, A_{8}, A_{6}$, as the nucleus of the cube.

By removing the four pyramids whose

Fig. 13. vertices are, A_{3}, A_{1}, A_{8}, and A_{8}, another tetrahedron in the position $A_{2} A_{4} A_{7} A_{5}$, might have been obtained.

Nature thus affords a demonstration of the lst proposition of the 15 th Book of Euclid-" How to inscribe a regular Tetrahedron in a Cube."

By removing the cight solid pyramids, whose vertices are respectively $A_{1}, A_{2}, \& c$., A_{8}, and replacing the removed fragments, we

Fig 14. should see, within our transparent cube of fluor spar, a regular octahedron $P_{1} P_{2}$ \&c., P_{6}, inclosed within the cube, and regularly inscribed in it, as the octahedron is inscribed in a cube by the 3rd Prop. of the 15 th Book of Euclid.

Systems of Crystals.-We have seen that one substance, such as fluor spar, presents on its crystals faces parallel to several different mathematical symmetrical solid forms. All these forms can be shown to have certain mathematical relations to the cube or the regular octahcdron. Other substances, whose crystals occur in the form of the cube or octahedron, or have faces parallel to these forms. present us with crystals either in the form, or with faces parallel to the same mathemathical solids.

These solids, thus associated in nature, and possessing certain mathematical properties in common, are classed together in one system, called the cubical or octahedral system.

Other substances occur in forms similar to, or with their faces parallel to, other mathematical solids, differing in their mathematical properties from those of the cubical system. These forms are classed together under other systems.

It may be observed, that faces parallel to the forms of one system are not found on the same crystal combined with faces parallel to the faces of forms belonging to a diff rent system of crystallization. Thus, faces parallel to the eight faces of the regular octahedron are found on crystals, associated only with faces parallel to the forms of the cubical system, and not to forms belonging to the other systems.

Some one form may be taken as the type or primitive form, from which all others of the same system may be easily derived. This typical or primitive form is quite arbitrary; and it may be either a prism, an octahedron, or some other simple form.

1st system.-'The cubical, or octahedral ; according as we consider the regular cube or regular octahedron its typical or primitive form.

2nd system.-Square, prismatic, or pyramidal. Typical form, a prism on a square base, or octahedron on a square base.

3rd system.-Rhombohedral, or hexagonal. Typical form, the rhomboid or the hexagonal prism.

4th system.-Prismatic, or rhombic. Typical form, a right prism on a rhombic base, or octahedron on a rhombic base.

5th system.-Oblique. Typical form, an oblique prism on a rhombic base, or oblique pyramid on a rhombic base.

6th system.-Anorthic, or doubly oblique. Typical form, a doubly oblique prism or octahedron.

FIRST SYSTLM.-THE CLBICAL.

This system is called the cubical or tesseral (tessera, a cube), if its forms are regarded as derived from the cube; the octahedral, if its forms are derived from the regular octahedron. It is also called the regular or isometrical, from the properties of its axes.

The axes of this system will be described under the Cube.
The holohedral forms of this system, or those forms which possess the highest degree of symmetry, are the cube, octahcdron, rhombic, dodecahedron, three-faced octahedron, tuce ty-four-faced trapezol edron, four-faced cube, and the six-faced octahedron.

From each of these, with the exception of the cube and rhombic dodecahedron, other forms are produced by the development of half their faces; these are called hemihedral.

The hemihedral form of the octahedron is the tetraliedron; that of the three-faced octahedron, the tuelve-faced-trapezohedron; that of the twenty-four-faced trapezohedron, the three-faced-tetiahedron; and that of the four-faced cube the pentagonal dodecahedron. The six-faced octahedron has two hemihedral forms; the six-faced tetrahedron and a twenty-four-faced trapezohedron having two sides of its trapezoidal face parallel. Of these, two-the pentagonal dodecakedron and the hemihedral twenty-four-faced tra-
pezohedron-have their faces parallel to one another, in pairs, and are called hemihedral forms with parallel faces.

The other hemihedral forms are called heminedral forms with inclined faces.
The Cube.-The cube or hexahedron (six-faced), is a solid bounded by six square faces; it has eight solid four-faced angles, $\mathrm{A}_{1} \mathrm{~A}_{2}, \mathcal{\& c} ., \mathrm{A}_{8}$ (Fig. 15), and twelve edges, $A_{1} A_{2}, A_{3} A_{6}$, \&c. Every face is inclined to its adjacent faces at an angle of 90°.

Axes of the Cube and the Cubical System.

Cubical Axes.-If diagonals be drawn through the opposite angles of the faces

Fig. 15.

Fig. 16.
of the cube, they will intersect one another in the centre of each facc. Let P_{1}, P_{2}, P_{3}, $\mathrm{P}_{41} \mathrm{P}_{51} \mathrm{P}_{5}$ (Fig. 16), be these six centres.

Join $\mathrm{P}_{1} \mathrm{P}_{6}, \mathrm{P}_{2} \mathrm{P}_{4}$, and $\mathrm{P}_{3} \mathrm{P}_{5}$.
These three lines will intersect one another in the point C. They are called the regular or rectangular axes of the cubical system.

Reckoning from C , which is the centre of the cube, each of the six lines, $\mathrm{CP}_{1} \mathrm{CP}_{2}$, \&c., CP_{6}, are equal to each other, and they are each perpendicular to a face of the cube at the point P, and the adjacent ones are inclined

Fig. 17.

Octahedral Axes. - If lines be drawn from one solid angle of the cube to the solid angle opposite to it, we shall then have four lines, A_{1} $\mathrm{A}_{7}, \mathrm{~A}_{2} \mathrm{~A}_{8}, \mathrm{~A}_{3} \mathrm{~A}_{3}$, and $\mathrm{A}_{4} \mathrm{~A}_{6}$ (Fig. 17), intersecting one another at the same point, C , as the cubical axes. These lines are all equal, and inclined to one another at an angle of $70^{\circ} 32^{\prime}$.

The eight lines $\mathrm{CA}_{1} \mathrm{CA}_{2}$, \&cc., CA_{8}, are each perpendicular to a face of the octahedron inscribed in the cube. They are therefore called the octahedral axes. If $C P_{1}$ or CP_{2} be taken as the unit, $\mathrm{CA}_{1} \mathrm{CA}_{2}$, dec., will each be equal to $\sqrt{ } 3$.

CuBE.
Rhombic Axes-Let $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{\text {; }}$, \&c., B_{12}, be the centres of each of the twelve edges

Fig. 18. of the cube. Join $\mathrm{B}_{1} \mathrm{~B}_{11}, \mathrm{~B}_{2} \mathrm{~B}_{12}$, \&c. These six lines will intersect one another in C, the centre of the cube. Each of the lines $\mathrm{CB}_{\mathrm{I}} \mathrm{CB}_{2}, \& c ., \mathrm{CB}_{12}$, are equal to one another, and perpendicular to a face of the rhombic dodecahedron inscribed in the cube. They are called the rhombic axes, and the adjacent ones are inclined to each other at an angle of 60°. Taking CP_{1}, the cubical axis as $=1, \mathrm{CB}_{1}, \mathrm{CB}_{2}$, \&c., each $=\sqrt{ } 2$.

Normals.-A line drawn through a given point perpendicular to the face of a crystalline form, is called a normal to that face from the given point. Thus the cubical axes are normals to the faces of the cube from the point C, and the octahedral and rhombic axcs are normals to the faces of the octahedron and rhombic dodecahedron from the same point.

To draw a Cube,-The perspective used in drawing crystals is called isometrical. In this, the lines which in the ordinary system of perspective are drawn converging to a point, are drawn parallel to one another. It is the most convenient method for representing geometrical solids.

Describe a square, $A_{1} A_{5} A_{8} A_{4}$ (as at Figs. 2 and 15), of any convenient size. Draw the line $A_{1} A_{2}$, at an angle of about 30° to the line $A_{1} A_{4}$. Then, through $A_{4} A_{5}$ and A_{8} draw $A_{4} A_{3}, A_{5} A_{6}$, and $A_{8} A_{7}$ parallel to $A_{1} A_{2}$. Make $A_{1} A_{2}, A_{4} A_{3}, A_{5} A_{6}$, and $A_{8} A_{7}$ each half the length of one of the sides of the square $A_{1} A_{5} A_{4} A_{8}$.

Join $A_{2} A_{3}, A_{7} A_{6}, A_{2} A_{6}, A_{3} A_{;}$, and the representation is completed.
Crystallographical Symbol for the Cube.-The relations of the faces of the cube to its rectangular or cubical axes, affords a ready means for adopting a symbol which shall express some of its properties. It will be readily seen that every face cuts one of the cubical axes, and is parallel to the directions of the other two. A line, or plane, which is parallel to another line or plane, is said, in mathematical language, to cut it at an infinite distance, and as ∞ is the symbol for infinity, regarding CP, the perpendicular distance of the cube from its centre as the unit, the symbol $1, \infty, \infty$ signifies that every face of the cube cuts one of the axes at distance 1 from its centre, and the other two axes at an infinite distance. Naumann's symbol for the cube is $\infty 0 \infty$, Miller's, 100, and Brooke and Levy's modification of Haüy, P.

Generally in Naumann's symbols the figures represent the distances at which the faces of the form cut the rectangular axes, the figure 1 being always understood. In Millcr's they signify the parts of some arbitrary unit, at which the faces cut the axcs. In Brooke and Levy's, b^{m} indicates that every plane is parallel to an edge of the cube, m being the ratio which the two edges cut by the plane bear to one another; a^{m} and $b^{h} b^{k} b^{l}$ reprosent that the planes are parallel to one cutting off a solid angle of the cube the figures m, h, k, and l, indicating the ratios of the cut edges of the solid angle.

Net for the Cube.-One of the simplest, most useful, and at the same time most inexpensive means of modelling the forms of crystals, is to draw their faces on pastcboard, and arrange them in such a manner that some of the edges being cut partially, and others quite through the pasteboard, the whole may readily fold up into the required form. The loose edges being glued together, a firm model will be formed in a few
minutes. A drawing of the faces of a solid, arranged so that the model may be folded up from a single piece of pasteboard, is called a net.

To make a net for the cube, describe a square equal to a face of the required model, and arrange six such squares in the manner represented in Fig. 19. If a knife be drawn so as to cut the pastcboard half through along the light lines, and quite through along the dark ones, the figure will readily fold into the form of the cube.

In this and the other nets which will be described, it is very convenient to draw one face on tracing paper. The other faces may then be readily pricked off from this one on the pasteboard, in the required form, with greater ease, and even more accurately than by describing each face geometrically. It will also be found convenient to leave a margin to one edge where two edges are to be glued together. Glue is better than paste, as it dries more quickly, and does not, like paste or gum, warp the surfaces of the model.

Fig. J9.

Minerals whose crystals occur in the form of the cube, or present, in their m difurations, faces parallel to it :-

Alabandine (sulphuret of manganese).
Altaite (telluride of lead).
Alum.
Analgam.
Analcime.
Argentite (sulphuret of silver).
Blende (sulphuret of zinc.
Boracite.
Bornite (purple copper).
Bromite.
Clausthalite fseleniuret of lcad).
Cobaltine (bright white cobalt).
Copper.
Cubane.
Cuprite (red oxide of conper).
Diamond.
Embolite.
Eulytine (bismuth blerde).
Fahlerz (gray copper).
Fluor.
Franklinite.

Gahnite (automalite).
Galenn (sulphuret ot lead.
Garnet.
Gersdorffite.
Gold.
Grünauite (sulphuret of nickel and bismuth).
Hauerite.
Hauyne.
Iridium.
Jron.
It erine.
K frute (muriate of silver).
Lerbachite (seleniulet of lead and mercury).
Linnéite (sulphuret of cobalt.
Magnetite (magnetic iron oic).
Naumannite.
Percylite.
Periclase.
Perowskite.
Petzite (telluride of silve:).

Pharmacosiderite (arseniate od iron).
Platinum.
Pyrite (sulphuret of iron).
Pyrochlore.
Rammelsbergite (white arsenical nickel).
Saftlorite (arsenical cobalt). Sal ammoniac.
Salt.
Silver.
Skutterudite.
Smaltine (tin white cobalt .
Sodalite.
Stannine (sulphuret of tin).
Steinmannite.
Sylvine.
Tennantite.
Ullmanite (sulphuret of nickel and antimony).

Ifinerals whose crystals cleare parallel to the fuces of the cube,-those printed in italics indicating that the clewvage is easy and perfect :-

Alabandine.	Galena.
Altaite.	Gcrsdorffite.
Analcine.	Hauerite.
Argentite.	Iridium.
Chromite.	Iron.
Clausthalite.	Lerbachite.
Cobaltine.	Linnéite.
Cubane.	Magnetite.
Embolite.	Naumannite.
Franklinite.	Pahnite.

TRIS - LILLIAD - Université Lille 1

The Octahedron-Called the regular octahedron, to distinguish it from other octahedrons, whose faces are not equilateral triangles. This form is bounded by eight equal and similar faces, each being an equilatcral triangle. It has twelve equal edges, $\mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{P}_{2} \mathrm{P}_{3}$, \&c., and six four-faced solid angles, P_{1} $P_{2} P_{3} P_{4} P_{5}$, and P_{6}. Each face is inclined to its adjacent face at an angle of $109^{\circ} 28$.'

To draw the Octahedron-A cube being described as previously directed-

The contre of each face $P_{1} P_{2}$, \&c., P_{6}, may easily be found by joining $A_{1} A_{3}, A_{2} A_{4}$, \&c. Join $P_{1} P_{6}, P_{2} P_{4}$, and $P_{3} P_{5}$, meeting in C. These are the cubical axes of

Fig. 20. the cube. Join $\mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{P}_{1} \mathrm{P}_{3}, \mathrm{P}_{1} \mathrm{P}_{4}, \mathrm{P}_{1} \mathrm{P}_{5}, \mathrm{P}_{2} \mathrm{P}_{3}, \mathrm{P}_{3} \mathrm{P}_{4}$, \&c., as shown in Fig. 21, and an octahedron, $\mathrm{P}_{1} \mathrm{P}_{2}$, \&c., P_{6}, will be delineated inscribed in the cube; or two equal lines, $\mathrm{P}_{1} \mathrm{P}_{6}$, and $\mathrm{P}_{2} \mathrm{P}_{4}$ may be drawn perpendicular to one another, and intersecting each other in their centre C ; draw CP_{3}, making an angle of 30° with CP_{2}, produce CP_{3} to CP_{5}, and make $\mathrm{CP}_{3}, \mathrm{CP}_{5}$, each half of CP_{2}; and join the points $\mathrm{P}_{1} \mathrm{P}_{2}$, \&c., as before.

Relations of the Octahedron to the different Axes of the Cube.-From the previous figure it is evident that the cubical axes join the opposite solid angles of the octahedron.

Let $P_{1} P_{2} P_{5}$ (Fig. 22), be one of the faces of

Fig. 21. the octahedron. Bisect $P_{1} P_{2}, P_{2} P_{5}$, and $P_{1} P_{5}$ in R_{1}, R_{5} and R_{4}. Join $P_{1} R_{5}, P_{2} R_{4}$, and $P_{5} R_{1}$.

These lines will intersect in 0_{1}, and each of the lines RO will be one-third of the line PR.

Suppose every face of the octahedron similarly divided, as shown in Fig. 23.

If now the octahedral axes $A_{1} A_{i}, A_{3} A_{6}$, \&c., be drawn, joining the opposite solid angles of the cube, as in Fig. 17, each octah dral axis will pass through the face of the octahedron inscribed

Fig. 22. in the cube at the point 0 (Fig. 23), and will be perpendicular to it. The distance of O, from the centre of the cube, will be one-third of that of A; so that the octahedral axes of the octahedron will be a third of the octahedral axes of the cube in which it is inscribed.

The rhombic axes of the cube being drawn by joining the centres of its opposite edges, as in Fig. 18 , th se axcs will pass through the centre of each edge of the octahedron, as $R_{1} R_{4}$ and R_{5} (Fig. 23). The distance of R, from the centre of the cube, will b s one-half of that of B. Hence the rhombic axes

Fig. 23. of the octahedron will be one-half of the rhombic axes of the cube in which it is inscribed.

Symbols.-Each face of the octahedron cuts the three cubical axes at an equal distance CP from the centre of the cube, and taking CP as unity, 111 will be the symbol which expresses this relation of the faces of the octahedron to the cubical axes. Naumann's symbol for the octahedron is 0 , Miller's 111, and Brooke and Levy's modification of Haüy A^{1} or a^{1}.

To describe a Net for the Octahedron.-If a model of a cube be formed by glueing the edges of six square pieces of glass, the different forms of the cubical system may be modelled of such a

Fig. 24.
 size as to be inscribed in the cube in the manner reprosented in their respective figures.

Describe a square $\mathrm{P}_{1} \mathrm{~B}_{1} \mathrm{P}_{2} \mathrm{C}$ (Fig. 24), having its side $P_{1} B_{1}$ equal to half the edge of the cube in which the model of the octahedron is to be inscribed.

Draw the diagonals $\mathrm{P}_{1} \mathrm{P}_{2}$, and $\mathrm{B}_{1} \mathrm{C}$; on either of these diagonals, as a base, describe an equilateral triangle (Fig. 22), and arrange eight such equilateral triangles, as in Fig. 25. When this net is cut out along the dark lines, and partially along the lighter lines, it will fold up into an octahedron, whose solid angles will just touch the centres of the faces of a cube the edge of which is twice the length of the line PB. In this and the following forms, the face of the crystal is described of such a size that the model may be inscribed in a cube whose edge is one inch in length. The faces on the

Fig. 25. net are only made half the size.
Minerals whose crystals occur in the form of the Octahedron, or whose modifications present faces parallel to it :-
Alabandine (sulphuret of man- Gersdorffite.
ganese). Alum.
Amalgam.
Argentite (sulphuret of silver).
Arquerite.
Arsenite (oxide of arsenic).
Blende (sulphuret of zinc).
Boracite.
Bornite (purple copper).
Bromite.
Chromite (chromate of iron).
Cobaltine (bu ight white cobalt
Copper.
Cuprite (red oxide of copper).
Diamond.
Bisennickelbies.
Embolite.
Eulytine (bismuth blende .
Fahlerz (gray copper).
Fluor.
Franklinite.
Gahnite automolit).
Galena (sulphuret of lead .

Gold.
Grünauite (sulphuret of nickel and bismuth).
Hauerite.
Hauyne.
Helvin.
Iridium.
Irite.
Iron.
Iserine.
Kerate (muriate of silv \mathbf{r}.
Lead.
Linneite (sulphuret of cobalt .
Magnetite (magnetic ir n ore .
Mercury.
Palladiam.
Pechuran pitch blende).
Percylite.
Periclise.
Perowskite.
Pharmacosiderite (arseniate of iron.

Pyrite (sulphuret of iron .
Pyrochlore.
Kammelsbergite white ar cnical nickel.
Rhodiate.
Safflorite farsenical c bult.
Sal ammoniac.
Salt.
Senarmont te.
Silver.
Skutterudite.
Smaltine tin white coblt.
Spinelle.
Steinmannite.
Sylvine,

Tennantite.

Tritonite.
Ullmanite sulphuret of nickel and antimony).
Uwarrowite.
Voltaite.

Miner lls whose crystals cleave parallel to th faces of the Octahedror :-

Alum.	Damond.	Grünauite.
Arsenite.	Eisennickelkies.	Magnetite.
Boracite.	Fahlerz.	Sal ammoniac.
Bornite.	Fluor	Snarmontite.
Chromite.	Franklinite.	Smaline.
Cuprite.	Gahnite.	Spinelle.

Rhombic Dodecahedron.-The rhombic dodecahedron is a solid, bounded by twelve equal and similar four-sided figures, called t hombs. A rhomb is a figure such as $\mathrm{O}_{1} \mathrm{P}_{2} \mathrm{O}_{5} \mathrm{P}_{5}$ (Fig. 26), which has all its sides equal, the angle at O_{1} being equal to that at O_{5}, and that at P_{2} to the angle at P_{5}. This form is sometimes called the granatoëdron, because it is a characteristic form of the garnet. The rhombic dodecahedron has twenty-four equal edges, $\mathrm{P}_{1} \mathrm{O}_{1}, \mathrm{P}_{1} \mathrm{O}_{4}$, \&c., six four-faced solid angles, $\mathrm{P}_{1} \mathrm{P}_{2}$, \&c., P_{B}, and eight three. faced solid angles, $\mathrm{O}_{1} \mathrm{O}_{2}$, \&c., O_{8}. Each face is inclined to its adjacent faces at an angle of 160°; the great angle of the rhombic face as $\mathrm{P}_{2} \mathrm{O}_{1} \mathrm{P}_{5}$, is $109^{\circ} 28^{\prime}$, and the smaller

Fig. 26. angle, as $\mathrm{O}_{1} \mathrm{P}_{5} \mathrm{O}_{5}$, is $70^{\circ} 32^{\prime}$.

To draw the Rhombic Dodecahedron.-De. scribe a cube $A_{1} A_{2} A_{3}$ \&c., A_{8}, (Fig. 27). Join $\mathrm{A}_{1} \mathrm{~A}_{7} \mathrm{~A}_{2} \mathrm{~A}_{\mathbf{8}}$, \&c., meeting in C.

Find P_{1} the centre of the face $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4}$. Join CP_{1} and $\mathrm{P}_{1} \mathrm{~A}_{1}$.

Bisect $A_{1} B_{5}$ in E. Through E draw ED parallel to $\mathrm{P}_{1} \mathrm{~A}_{1}$, and cutting CA_{1} in O_{1}.

Through O_{1} draw $\mathrm{O}_{1} \mathrm{O}_{2}$ parallel to $\mathrm{A}_{1} \mathrm{~A}_{2}$, cutting CA_{2} in $\mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{O}_{3}$ parallel to $\mathrm{A}_{2} \mathrm{~A}_{3}$, and $\mathrm{O}_{3} \mathrm{O}_{4}$ parallel to $\mathrm{A}_{3} \mathrm{~A}_{4}$.

Also, through O_{1} draw $\mathrm{O}_{1} \mathrm{O}_{5}$ parallel to $\mathrm{A}_{1} \mathrm{~A}_{5}$, cutting CA_{5} in O_{5}; draw $\mathrm{O}_{5} \mathrm{O}_{6}, \mathrm{O}_{6} \mathrm{O}_{7}$, and $O_{7} O_{8}$ parallel to $A_{5} A_{6}, A_{6} A_{7}$, and $A_{7} A_{8}$.

Fig. 27.
$\mathrm{O}_{1} \mathrm{O}_{2}$ \&c. O_{8}, will be the eight solid angles of a cube inserted in the cube $A_{1} A_{2} \& c . A_{8}$, with the same centre, and having its edges half the length of the edges of $A_{1} A_{2} \& c . A_{8}$.
$P_{1} P_{2}$, \&c., P_{6} (Fig. 28, which are not marked on Fig. 27, to avoid crowding the figure), will be the six points where the six four-faced solid angles of the rhombic dodecahedron, inscribed in the cube $A_{1} A_{2}, \& c$., A_{8}, will touch its faces.
$\mathrm{O}_{1} \mathrm{O}_{2}, \& \mathrm{c} ., \mathrm{O}_{\mathrm{s}}$, the eight points where the octahedral axes of the cubs pass through the eight three-faced solid angles of the inscribed rhombic dodecahedron.

Joining the lines $\mathrm{P}_{1} \mathrm{O}_{1}, \mathrm{O}_{1} \mathrm{P}_{2}, \mathrm{O}_{1} \mathrm{P}_{5}, \& \mathrm{c}$, as shown in Fig. 29, the rhombic dodecahedron will be represented in perspective.

Fig. 28.

If the opposite angles of each face be joined, such as $O_{1} O_{2}, \mathrm{P}_{1} \mathrm{P}_{2}$, the rhombic axes of the cube will be found to pass through the intersection of these lines, and will also be perpendicular to the face through which they pass. The cubical axes of the rhombic dodecahedron are equal to the cubical axes of the cube, and join the opposite four-faced solid angles.

The octahedral axes of the rhombic dodecahedron are one-half the octahedral axes of the cube, and join the opposite three-faced solid angles.

The rhombic axes are half the rhombic axes of the cube in which it is inscribed, and join the centres of the opposite faces.

Symbols of the Rhombic Dodecaledron.-Each face of the rhombic dodecahedron cuts two of the cubical axes at equal distances from its centre, and the other at an infinite distance, or is parallel to it. Thus the face, $\mathrm{P}_{1} \mathrm{O}_{1} \mathrm{P}_{2} \mathrm{O}_{2}$ cuts the axis CP_{1} in P_{1}, and CP_{2} in P_{2}, and is parallel to the axis CP_{5}. The symbol of the rhombic dodecahedr n , which represents this relation of all it faces to the rectangular axes, is 11∞. Naumann's symbol is $\infty 0$, Miller's 110, and Brooke and Levy's modification of Haüy, D^{1} or b^{2}.

To deseribe the net of a Rhombic Dodecahedron which may be inscribed in a given e be. -Describe a square, $\mathrm{P}_{1} \mathrm{~B}_{1} \mathrm{P}_{2} \mathrm{C}$, having its side cqual to half the edge of the given cube. Join $\mathrm{B}_{1} \mathrm{C}$, and $P_{1} P_{2}$ meeting in R_{1}. Produce $B_{1} P_{1}$ to A_{1}, and $P_{2} C$ to B_{5}. Make $\mathrm{P}_{1} \mathrm{~A}_{1}$, and CB_{5}, equal to CB_{1}, and CR_{5} equal to CR_{1}.

Join CA_{1}. Bisect $\mathrm{A}_{1} \mathrm{~B}_{5}$ in E . Through E draw $E O_{1} D$ parallel to $A_{1} P_{1}$, cutting $A_{1} C$ in O_{1}. Join $\mathrm{P}_{1} \mathrm{O}_{1}, \mathrm{o}_{1} \mathrm{R}_{5}$.

Fig. 29.
$P_{1} A_{1} B_{5} C$ represents the fourth part of the section of the cube, with its inscribed rhombic dodecahedron, through the lines $A_{1} A_{3} A_{7} A_{3}$ (Fig. 28), and $P_{1} B_{1} P_{2} C$, the fourth part of the section, through the lines joining the points $B_{1} B_{3} B_{11} B_{9}$ (Fig. 18) of the cube.

To describe the face of the Rhombic Dodecahedron.-Draw a line, $\mathrm{P}_{1} \mathrm{P}_{2}$ (Fig. 30),

Fig. 30. equal $P_{1} P_{2}$ of Fig. 29. On it describe an isosceles triangle, having its sides $P_{1} O_{1}, P_{2} O_{1}$, equal $P_{1} O_{1}$ of Fig. 29. Make a similar triangle $\mathrm{P}_{1}, \mathrm{O}_{2} \mathrm{P}_{2}$ on the other side of $P_{1} P_{2}$. Then $P_{1} O_{2} P_{2} 0_{1}$ is the face of the rhombic dodecahedron, which may be inscribed in a cube whose edr c is twice the length of $\mathrm{P}_{1} \mathbf{B}_{1}$, or $\mathrm{P}_{2} \mathrm{C}$ of Fig. 29 . Twelve of these rhombs, arranged as in Fig. 31, will give the required net of the rhombic dodecahedron.

Fig. 31.

Minerals whose crystals occur in the form of the rhombic dodecahcdron, or uhose modifications present faces parallel to it:-

Aiabandine (sulphate of magne- Bornite (purple copper). sia. Alum.
Amalgam.
Argentite (sulphuret of silver). Blande (sulphuret of zinc) B sracite.

Cuprite (red oxide of copper). Diamond. Dufrenoysite. Eulvtine (bismuth blende). F: hlerz (gray copper). Fluor.

Franklinite.
Galena (sulphuret of lead.)
Garnet.
Gold.
Hauerite.
Hauyne.
Iserine.

Ittnerite.
Kerate (muriate of silver).
Leucite.
Magnetite (magnetic iron ore). Percylite.
Perowskite.
Pharmacosiderite.
Pyrite (sulphuret of iron).

Pyrochlore.
Rammelsbergite (white arsenical nickel).
Rhodizite.
Sal ammoniac.
Salt.
Silver.
Skutterudite.

Smaltine (tin white cobalt).
Sodalite:
Spinelle.
Stinnine (sulphuret of tin). Tennantite.
Ullmanite (sulphuret of nickel and antimony.) Voltaite.

Minerals whose crystals cleave parallel to the faces of the rhombic dodecahedron:-

Alabandine.	Grrnet.	Smaltine.
Amalgam.	Hauyne.	Sodalite.
Argentite.	Ittnerite.	Stannine.
Blende.	Leucite.	Sennantite.
Eulytine.	Skutterudite.	

The cube, octahedron, and rhombic dodecahedron, are the only forms parallel to which clearages have been observed in crystals belonging to the cubical system.

Fhree-Faced Octahedron.-This figure, called also the triakisoctahedron, and

Fig. 32. by Haidinger, galenoid, as a characteristic form of galena, is a solid bounded by twenty-four isosceles triangles.

Solid Angles.-It has six cight-faced solid angles, $\mathrm{P}_{1} \mathrm{P}_{2}$, \&c., P_{6}; and eight threc-faced solid angles, O_{1} O_{2}, \&c., O_{8}.

Edges.-There are twelve longer edges joining the eight-fased solid angles, $\mathrm{P}_{1} \mathrm{P}_{5}, \mathrm{P}_{5} \mathrm{P}_{2}, \mathrm{P}_{5} \mathrm{P}_{4}$, \&c., and twentyfour shorter edges joining each three-faced solid angle to three of the eight-fac d solid angles $O_{1} P_{5}, O_{1} P_{2}$, $0_{1} P_{1}$, \&o.

An infinite number of varieties of this solid might exist; only seven different species have been observed in the mineral kingdom. The forms vary from that of the octahedron to the rhombic dodecahedron.

If a triangular pyramid, whose base is an equilateral triangle, and cach of its faces an isosceles triangle, be apl lied to each face of a regular octahedron, the resulting form would be a three-faced octahedron. For every variation in height of this triangular pyramid as we may conceive it increasing in altitude, from the surface of the octahedron till it arrived at such a height that two adjacent triangular faces, such as $P_{1} O_{1}$ P_{5}, and $\mathrm{P}_{1} \mathrm{O}_{4} \mathrm{P}_{5}$, should lie in the same plane, when the figure would become a rhombic dodecahedron, we should have a distinct three-faced octahedron. When the threefaced octahedron is inscribed in the cube. the eight-faced solid angles touch the centre of each face of the cube, and the thrce-faced solid angles always lie in its octahedral axes.

Symbols of the Three-faced Octahedron.-Every face of this solid cuts two of the cubical axes passing through its centre, at a distance equal to that of its eightfaced solid angle from the centre, and the third axis produced at a greater distance. If the shorter distance be represented by 1 , and the greater by n, where n may be any number or fraction greater than 1 ; $11 n$ will be the symbol for the three-faced octahedron.

Naumann's symbol is $n \mathrm{O}$; Miller's $h 7 k$, h being greater than k; and Brooke and Levy's modification of Haüy $A^{\frac{1}{n}}$ or $a^{\frac{1}{n}}$.

To draw the Three-faced Octahedron.- Let the figure be that whose symbol is $11 n$. Describe a cube, $A_{1} A_{2} A_{3} \& c ., A_{8}$ (Fig. 33). Let P_{1} be the centre of the face $A_{1} \quad A_{2} A_{3} A_{4} ; B_{5}$ the centre of the edge $A_{1} A_{5}$. Take $B_{5} E$ equal the ${ }_{2 n+1}^{n}$ th part of $B_{5} A_{1}$; that is if $n=2$, as in the accompanying figure (Fig. 33), take $\mathrm{B}_{5} \mathrm{~B}=\frac{2}{5}$ th of $B_{5} A_{1}$. Through E draw $E D$, parallel to $A_{1} P_{1}$, cutting $A_{1} C$ in O_{1}. Through O_{1} draw $\mathrm{O}_{1} \mathrm{O}_{2}$ parallel to $\mathrm{A}_{1} \mathrm{~A}_{2}, \mathrm{O}_{2} \mathrm{O}_{3}$ parallel to $\mathrm{A}_{2} \mathrm{~A}_{3}$, \&cc., as in the preceding figure 27.
$\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$ \&c., O_{8} will be the cube whose centre coincides with that of $\mathrm{A}_{1} \mathrm{~A}_{2}, \& \mathrm{c} ., \mathrm{A}_{8}$, and has its edge $O_{1} O_{3}=\frac{n}{2 n+1}$ th part

Fig. 33. of the edge $A_{1} A_{5}, O_{1} O_{2}, \& c ., O_{8}$ will be the points where the octahedral axes pass thr ugh the threc-faced solid angles of the thre faced octahedron inscribed in the cube. Joining' $\mathrm{P}_{1} \mathrm{O}_{1}, \mathrm{P}_{2} \mathrm{O}_{1}, \mathrm{P}_{5} \mathrm{O}_{1}, \mathrm{P}_{1} \mathrm{P}_{2}$, \&e., as in Fir. 34, the three-faced-octahedron will be drawn

Fig. 34. edgcs.

As n varies from 1 when the threc-fac d octahedr n coincid s with th octrh dron to ∞ when it coincides with the rhombic dod cahedron, the octah dral ax s vary from the $\frac{1}{3}$ rd to the $\frac{1}{2}$ of the octahedral axes of the cube, or th distance of th p int 0 from C varies from the $\frac{1}{3} \mathrm{rd}$ to the $\frac{1}{2}$ of CA_{1}.

Inclination of tle Faces of the Three-faced Octahedron.—If θ be the angle of inclination of any two adjacent faces, measured across the longer edge PP, then $\cos . \theta=$ $\frac{2 n^{2}-1}{2 n^{2}+1}$, and if ϕ be the angle of two adjacent faces, measured across the short r edge $2 \overline{n^{2}+1}, \quad n(n+2)$. $\mathrm{OP}, \cos \phi=2 n^{2}+1$

To describe a Net for the Three-faced Octahedron which may be inseribed in a given cube.-Describe a square, $\mathrm{P}_{1} \mathrm{~B}_{1} \mathrm{P}_{2} \mathrm{C}$ (Fig. 35), having its sides equal to half the edge of the given cube. Join $P_{1} P_{2}$, and B_{1} \mathbf{C} meeting in R_{1}. Produce $\mathrm{B}_{1} \mathrm{P}_{1}$ to A_{1}, and $\mathrm{P}_{2} \mathrm{C}$ to B_{5}; make $A_{1} P_{1}$ and $B_{5} C$ both equal to $B_{1} C$. In

Fig. 35.
$C B_{3}$ make $C R_{5}$ equal to $C R_{1}$, join $A_{1} C$. Take $C D$ equal to $\frac{n}{2 n+1}$ th part of CP_{1}, and through D draw $D E$, parallel to $A_{1} P_{1}$, cutting $A_{1} C$ in O_{1}. Join $P_{1} O_{1}, O_{1} R_{5}$.

Take $\mathrm{P}_{1} \mathrm{P}_{2}$ (Fig. 36), equal $\mathrm{P}_{1} \mathrm{P}_{2}$ of Fig. 35, and on it, as a base, describe an

Tig. 36. isosceles triangle, $\mathrm{P}_{1} \mathrm{O}_{1} \mathrm{P}_{2}$ having its sides $\mathrm{P}_{1} \mathrm{O}_{1}, \mathrm{P}_{2}, \mathrm{O}_{1}$, equal to $\mathrm{P}_{1} \mathrm{O}_{1}$ of Fig. 35.
$\mathrm{P}_{1} \mathrm{O}_{1} \mathrm{P}_{2}$ will be the face of the three-faced octahedron, which may be inscribed in the given cube. And twentyfour of these isosccles triangles, arranged as in Fig. 37, will form a net from which its model may be constructed.
Torms of three-fuced Octaledron.-The three. fac d octahedron, whose symbol is 112,20 of Naumann, 122 of Miller, and $a^{\frac{1}{2}}$ of Brooke and Levy, has its cubical axes equal those of the cube in which it is inscribed, its octahedral axes the $\frac{2}{5}$ th, and its rhombic axes half those of the cube. Inclination of faces over shortcr edge, $152^{\circ} 44^{\prime}$, that of their normals $27^{\circ} 16^{\prime}$; over the longer edge, $141^{\circ} 3^{\prime}$, that of their nor-

$\mathrm{Fi}_{\mathrm{g}} .37$. mals, $38^{\circ} 57^{\prime}$.

The following ninerals present faces parallcl to this form:-

Amalgam.	Fluor.
Argentite.	Franklinite.
Blende.	Galena.
Cuprite.	Magnetite.
Diamond.	Perowskite.

Pharmacosiderite Pyrite.
Skutterudite. Spinelle.

The form 113, 30 of Naumann, 133 of Miller, and $a^{\frac{1}{3}}$ of Brooke and Levy, has its octahedral axis equal $\frac{3}{7}$ ths of those of the cube in which it is inscribed. Inclination of its faces over shorter edge, $142^{\circ} 8^{\prime}$, that of their normals $37^{\circ} 52^{\prime}$; over the longer edge $1.53^{\circ} 28^{\prime}$, that of their normals, $26^{\circ} 32^{\prime}$. Cuprite, Fluor, and Galena, are the only minerals which present faces of this form.

The form 113 $\frac{3}{2}, \frac{3}{2} 0$ of Naumann, 233 of Miller, and a^{3} of Brooke and Levy, has its octahedral axes equal $\frac{3}{6}$ ths of those of the cube in which it is inscribed. Inclination of faces over shorter edge, $162^{\circ} 40^{\prime}$, that of their normals, $17^{\circ} 20^{\circ}$; over the longer edge, $129^{\circ} 31^{\prime}$, that of their normals, $50^{\circ} 29^{\circ}$.

Faces of this form occur in Fahlerz and Garnet.
The form 114, 40 of Naumann, 144 of Miller, and $a^{\frac{1}{4}}$ of Brooke and Levy. Octahedral axes $\frac{4}{9}$ ths of those of the cube. Inclination of faces over shorter edge, 136, 39^{\prime}; their normals, $43^{\circ} 21^{\prime}$; over longer edge, $159^{\circ} 57^{\prime}$, normals, $20^{\circ} 3^{\prime}$.

Faces of this form have been observed in crystals of Galena and Kcrato.
The form 11需, $\frac{7}{4} 0$ of Naumann, 477 of Miller, and $a^{\frac{4}{7}}$ of Brooke and Levy, has its octahedral axis equal $\frac{7}{18}$ th of those of the cube. Inclination of faces over shorter edge, $157^{\circ} 5^{\prime}$, normals, $22^{\circ} \overline{5} \overline{5}^{\prime}$; over longer edge, $136^{\circ} 00$, normals, 44°. Faces of this form have been observed on crystals of Galena.

The form 114, $\frac{50}{40}$ of Naumann, 455 of Miller, and $a^{\frac{5}{8}}$ of Brooke and Levy, has its octahedral asis $\mathbb{1}^{5} \mathbf{4}^{4}$ ths of those of the cube. Inclination of faces over shorter edge, $170^{\circ} 1^{\prime}$,
normals, $9^{\circ} 59^{\prime}$; over the longer edge $121^{\circ} 00^{\prime}$, normals, $59^{\circ} 00^{\prime}$. This form occurs in Galena.

The form $11 \frac{6}{6} 5, \frac{65}{64} \mathrm{O}$ of Naumann, 64, 65,65 of Miller, and $a \frac{64}{6} 5$ of Brooke and Levy, has its octahedral axes $\frac{65}{194}$ th of those of the cube. Inclination of faces over shorter edge, $179^{\circ} 17^{\prime}$, normals, $0^{\circ} 43^{\prime}$; over longer edge, $110^{\circ} 18^{\prime}$, normals, $69^{\circ} 42^{\prime}$. This threefaced octahedron approximates very closely to the octahedron, and has only been observed on some crystals of Alum.

The Twenty-four Faced Trapezohedron.-This form is called the twents-four-faced trapezohedron, or deltohedron, bccause it has twenty-four faces, each of the form of the figure called a deltoid or trapezium. It is known also by the names of the icositessarahedron; and being a characteristic crystal of the mineral leucite, it has been called leucitoid.

Faces.-This form is bounded by twenty-four equal and similar deltoids, or trapeziums, such as the figure $P_{1} R_{4} O_{1} R_{1}$, which has the sides $P_{1} R_{4}$ equal $P_{1} R_{1}$, and $R_{4} O_{1}=R_{1} O_{1}$, the angle $P_{1} R_{4} 0=$ angle $P_{1} R_{1} O_{1}$, but the angle $R_{4} P_{1} R_{1}$ not equal to the angle $\mathrm{R}_{4} \mathrm{O}_{1} \mathrm{P}_{1}$.

Solid Angles.-It has six four-faced solid angles, $P_{1} P_{2}, \& c ., P_{6}$, which touch the centres of the faces of the cube in which it is inscribed, at the extremities of the cubical axes.

Twelve four-faced solid angles $\mathrm{R}_{1} \mathrm{R}_{2}$, \&c., R_{12}, which always lie in the rhombic axes of the cube in which it is inscribed. Eight three-faced solid angles, $\mathrm{O}_{1} \mathrm{O}_{2}$,

Fig. 38. \&c., 0_{8}, which are always the octahedral axes of the cube in which it is inscribed.

Edges.-The edges are twenty-four longer, joining the four-faced solid angles, which terminate the cubical and rhombic axes, such as $P_{1} R_{1}, P_{1} R_{2}, P_{1} R_{3}$, \&c., and twentyfour shorter, joining the four-faced solid angles which terminate the rhombic axes to the three-faced solid angles which terminate the octahedral axes, as $O_{1} R_{1}, O_{1} R_{1}, O_{1} R_{s}$, \&c.

Symbols.-Every face of this form cuts one of the cubical axes at a distance from its centre, equal CP, and the other two axes produced at equal distances greater than CP.

Taking the lesser distance as 1 , and the other two as m, where m may be any whole number or fraction greater than unity, the symbol which expresses this relation of the faces to the cubical axes will be 1 mm . Naumann's symbol is $m 0 \mathrm{~m}$; Miller's $\hbar h k, h$ being less than k; Brooke and Levy's modification of Haüy, A^{m} or $a^{\prime \prime \prime}$, where $t n$ is greater than 1.

To Draw the Figure.-Describe a cube $\mathrm{A}_{1} \mathrm{~A}_{2}$, \&c., A_{7} (Fig. 39), with its cubical axes $\mathrm{CP}_{1}, \mathrm{CP}_{2}$, \&c.; octahedral axes $\mathrm{CA}_{1}, \mathrm{CA}_{2}$, \& ., and rhombic axes $\mathrm{CB}_{1} \mathrm{CB}_{2}$, \&c., CB_{12}.

Take E in $B_{5} A_{1}$, so that $B_{5} E=\frac{m, 2}{m+2}$ th part of $B_{5} A_{1}$; and G, such that $B_{3} G=$ $\frac{m}{m+1}$ th part of $\mathrm{B}_{5} \mathrm{~A}_{1}$.

Thus if $m=2 B_{5} E=\frac{2}{4}$ or $\frac{1}{2}$ of $B_{5} A_{1}$, and $B_{5} G=\frac{3}{3}$ of $B_{5} A_{1}$, if $m=3 B_{5} E$ $=\frac{3}{5}$ of $B_{5} A_{1}$, and $B_{5} G=\frac{3}{4}$ of $B_{5} A_{1}$.

In CP_{1} take $\mathrm{CD}=\mathrm{B}_{5} \mathrm{E}$, and $\mathrm{CF}=\mathrm{B}_{5} \mathrm{G}$. Join FG and DE, the latter cutting CA_{1} in O_{1}.

Through O_{1} draw $\mathbf{O}_{1} O_{2}$ parallel to $\mathbf{A}_{1} \mathbf{A}_{2}$, outting CA_{2} in $\mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{~A}_{3}$ parallel to $\mathrm{A}_{2} \mathrm{~A}_{3}$, cutting CA_{3} in O_{3}, and so on till a cube $\mathrm{O}_{1} \mathrm{O}_{2}$, \&c., O_{8}, is inscribed in the cube $A_{1} A_{2}, \& c ., A_{8}$ with its edges parallel to it.

Through the point where FG cuts CA_{1}, draw lines parallel to $A_{1} A_{2}$, and $A_{1} A_{4}$ to meet $C A_{2}$ and CA_{4}, and complete the cube, of which these two lines will be edges.

Let $\mathrm{R}_{1} \mathrm{R}_{2}$, \&c., R_{12}, be the points where the

Fig. 40. lines $\mathrm{CB}_{1}, \mathrm{CB}_{2}, \& \mathrm{c}$., CB_{12}, cut the edges of this cube.

Now join the points PR and 0 as shown in Fig. 40, and the resulting form will be a representation of the twenty-four-faced trapezohedron inscribed in a cube.

Axes.-The cubical axes of this trapezohedron coincide with those of the cube in which it is inscribed, and join the opposite four-faced solid angles, $P_{1} P_{2}$, \&c., P_{6}. The octahedral axes are the $\frac{m}{m+2}$ th part of those of the cube, and join the opposite threefaced angles $\mathrm{O}_{1} \mathrm{O}_{2}, \& c ., \mathrm{O}_{6}$.

The rhombic axcs are the $\frac{m}{m+1}$ th part of those of the oube, and join the opposite four-faced angles $R_{1} R_{2}$, \&c., R_{12}.

Inclination of Adjacent Faces-If θ be the angle of inclination of two adjacent faces, measured over the edge PR, joining the extremities of the rhombic and cubical axes, $\cos \theta=\frac{m^{2}}{m^{2}+2}$; and if ϕ be the angle of inclination mersured over the edge OR, joining the extremities of the rhombic and octahedral axes, $\cos . \phi=\frac{2 n+1}{n^{2}+2}$.

Limits of the Form.-This form varies as m increases from 1 to an infinitely great number, from that of the octahedron to that of the oube. In this case θ increases from $109^{\circ} 28^{\prime}$ to 180°, and ϕ decreases from 180° to 90°; the octahedral axes from the $\frac{1}{3} \mathrm{r}$ d to the whole, and the rhombic from the $\frac{1}{2}$ to the whole of the corresponding ares of the cube, in which the figure can be inscribed.

To construct a Net of twenty-four-faced Trapewohedron, which can be inscribed in a given Cube.-Describe a square $\mathrm{P}_{1} \mathrm{~B}_{1} \mathrm{P}_{2} \mathrm{C}$ (Fig. 41), having one of its sides cqual half the edge of the given cube. Join CB_{1}, produce $\mathrm{P}_{2} \mathrm{C}$, and $B_{1} P_{1}$ to B_{5} and A_{1}.

Make CB_{3} and $\mathrm{P}_{1} \mathrm{~A}_{1}$ equal CB_{1}. Join $\mathrm{A}_{1} \mathrm{~B}_{5}$ and $\mathrm{CA}_{1} \quad$ Take $\mathrm{CD}=\frac{m}{m+2} \mathrm{CP}_{1}, \mathrm{CF}=\frac{m}{m+1}$ CP_{1}.

Draw DE and FG parallel to $\mathrm{A}_{1} \mathrm{~B}_{1}$.

Fig. 41.

Let O_{1} be the point where $E D$ cuts $A_{1} C_{1}$, and R_{1} the point where $F G$ cuts

${ }^{1}$ Fig. 42. CB.

Take CR_{5} in CB_{5} equal to CR_{1}. Join $\mathrm{P}_{1} \mathbf{R}_{1}, \mathrm{R}_{1} \mathrm{P}_{2}, \mathrm{P}_{1} \mathrm{O}_{1}$ and $0_{1} R_{5}$.

Draw a line $\mathrm{P}_{1} \mathrm{O}_{1}$ (Fig. 42), equal $P_{1} O_{1}$ of Fig. 41, and on it describe a triangle having its sides $P_{1} R_{1}$ and $O_{1} R_{1}$ equal to $P_{1} R_{1}$, and $O_{1} R_{5}$ of Fig. 41. Describe a similar and equal triangle $P_{1} R_{1} O_{1}$ on the other side of $P_{1} O_{1}$.

Then $P_{1} R_{1} O_{1} R_{4}$ will be a face of the required twenty-four faced trapezohedron;

rig. 43. and twenty-four of these being arranged as in Fig. 43, will form the net.

Forms of the Twenty-four faced Trapezohedron.-The form 122, 202 of Naumann, 112 of Miller, and a^{2} of Brooke and Levy, has its octahedral axes $\frac{1}{2}$, and its rhombic axes $\frac{2}{3}$ of the corresponding axes of the cube in which it can be inscribed. Inclination of faces over any edge PR, $131^{\circ} 49^{\prime}$, of their normals $48^{\circ} 11^{\prime}$; over any edge 0 R $146^{\circ} 27^{\prime}$, normals $33^{\circ} 33^{\prime}$.

Crystals of the following minerals have faces parallel to this form:-

Amalgam.	Fahlerz.	Pyrite.
Argentite.	Franklinite.	Pyrochlore.
Analcime.	Fluor.	Sal ammoniac.
Boracite.	Gold.	Sodalite.
Cuprite.	Galena.	Smaltine.
Dufrenoysite.	Garnet.	
Eulytine.	Leucite.	

The form 133, 303 of Naumann, 113 of Miller, and \boldsymbol{a}^{3} of Brooke and Levy, has its octahedral axes $\frac{3}{5}$, and rhombic $\frac{3}{4}$ of those of the cube. Inclination over PR $144^{\circ} 54^{\prime}$ normals, $35^{\circ} 6^{\prime}$; oper OR $129^{\circ} 31^{\prime}$, normals $50^{\circ} 29^{\prime}$. It occurs in

Blende.	Gold.	Perowsite.
Copper.	Galena.	Prrochiore.
Fahlerz.	Magnetite.	Spinelle.
Floor.	Pyrite.	

The form $1 \frac{3}{2} \frac{3}{2}, \frac{3}{2} 0 \frac{3}{3}$, of Naumann, 223 of Miller, and $a \frac{3}{2}$ of Brooke and Levy; octahedral axes $\frac{3}{3}$, rhombic $\frac{3}{5}$. Inclination over PR 12158^{\prime}, normals 582^{\prime}; over OR $160^{\circ} 15^{\prime}$, normals $19^{\circ} 45^{\prime}$. It occurs in

$$
\text { Argentite, } \quad \text { Gold, } \quad \text { and Tennantite. }
$$

The form $1 \frac{4}{5} \frac{4}{3}, \frac{4}{3} 0 \frac{4}{3}$ Naumann. 334 Miller, and $a^{\frac{4}{8}}$ Brooke and Levy, octahedral axes $\frac{2}{5}$, rhombic 4 . Inclination over PR $118^{\circ} 4^{\prime}$, normals $61^{\circ} 56^{\prime}$, over OR $166^{\circ} 4^{\prime}$, normals $13^{\circ} 56^{\prime}$. Occurs in Galcna.

The form $1 \frac{9}{4} \frac{9}{4}$, $\frac{9}{4} 0 \frac{9}{4}$ Naumann, 449 Miller, and $a \frac{9}{4}$ Brooke and Levy, octahedral axes $\frac{\rho}{17}$, rhombic $\frac{9}{13}$. Inclination over PR $137^{\circ} 48^{\prime}$, normals $44^{\circ} 12$, over OR $141^{\circ} 9^{\prime}$, normals $38^{\circ} 51^{\prime}$. Occurs in Perowskite.

The form $1 \frac{9}{3} \frac{8}{3}, \frac{9}{3} 0 \frac{8}{3}$ Naumann, 338 Miller, $a^{\frac{8}{3}}$ Brooke and Levy, octahedral axes $\frac{4}{7}$, rhombic $\frac{8}{11}$. Inclination over PR $141^{\circ} 18^{\prime}$, normals $38^{\circ} 42^{\prime}$; over OR $134^{\circ} 2^{\prime}$, normals $45^{\circ} 58^{\prime}$. Occurs in Fluor.

The forms 144, 110 10, 11212 , 116 16, and 140 40, whose octahedral axes are respectively $\frac{5}{3}, \frac{5}{6}$, $\frac{5}{7}, \frac{8}{8}$, and $\frac{\frac{7}{2} 9}{2}$, of those of the cube in which they are inscribed, and
rhombic axes the $\frac{4}{3}, \frac{10}{1}, \frac{13}{13}, \frac{15}{1}$, and $\frac{40}{41}$. Their respective inclinations over PR being $152^{\circ} 44^{\prime}, 168^{\circ} 38^{\prime}, 172^{\circ} 52^{\prime}$, and $177^{\circ} 8^{\prime}$; over OR $120^{\circ} 00^{\prime}, 101^{\circ} 53^{\prime}, 99^{\circ} 52^{\prime}, 97^{\circ} 21^{\prime}$, and $92^{\circ} 54^{\prime}$, those of the normals of the former being $27^{\circ} 16^{\prime}, 11^{\circ} 22^{\prime}, 9^{\circ} 30^{\circ}, 7^{\circ} 8^{\prime}$, and $2^{\circ} 52^{\prime}$; of the latter $60^{\circ} 00^{\prime}, 78^{\circ} 7^{\prime}, 80^{\circ} 8^{\prime}, 82^{\circ} 39^{\prime}$, and $87^{\circ} 6^{\prime} .144$ occurs in Kerate, 110 10, and 11616 in Magnetite, 11212 in Blende, and 14040 in Pharmacosiderite.

The Four-Faced Cube, called also the pyramidal cube and tetrakis-hexahedron. Being a charactcristic form of fluor spar, Haidinger gave it the name of Fluoride.

Faces.-This form is bounded by twenty-four equal and similar isosceles triangles. As the three-faced octahedron may be derived from the octahedron by placing on every face of the octahedron a pyramid with three trian. gular faces on a triangular base equal to the face of the octahedron, so this form may be derived from the cube by placing on every face of the cube a pyramid with four isosceles triangles for its faces, on a square base equal to the face of the cube.

Fig. 44.

Solid Angles.-It has six four-faced solid angles, $\mathbf{P}_{1} \mathbf{P}_{2}$, \&c., \mathbf{P}_{6}, which touch the centres of the faces of the cube in which it is inscribed, at the extremities of the cubical axes.

Eight six-faced solid angles, $\mathrm{O}_{1} \mathrm{O}_{2}, \& c ., \mathrm{O}_{8}$, which always lie in the octahedral axcs of the cube in which it is inscribed.

Edges.-There are twelve longer equal edges ($\mathrm{O}_{1} \mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{O}_{6}$, \&c.) joining the sixfaced solid angles together, and twenty-four shorter equal edges, $\mathrm{P}_{1} \mathrm{O}_{1}, \mathrm{P}_{1} \mathrm{O}_{2}$, \&c., joining the four-faced solid angles with the six-faced ones.

Symbols.-Every face of this form cuts one of the cubical axes at a distance, CP (Fig. 45), from its centre, another axis at a distance m times CP from the contre, and is parallel to the third axis; n may be any whole number or any fraction greator than one. Taking CP $=1$, the symbol which will represent this relation is $1 \mathrm{~m} \infty$. Naumann's symbol is $\infty \mathrm{Om}$, Miller's $h \hbar o$, and Brooke and Levy's modification of Hauy, b^{m} or B^{m}.

To draw the Four-faced Cube. - Describe a cube $A_{1} A_{2}$, \&c., A_{8} (Fig. 45), with its octahedral axes $A_{1} A_{7}, A_{2} A_{8}$, \&c., meeting in C, and its rhombic axes $B_{1} B_{11}, B_{3} B_{9}$, \&c.

Take E in $B_{5} A_{1}$, so that $B_{5} E=\frac{m}{m+1} C A_{1}$.
Thus, if in $=2 \mathrm{~B}_{3} \mathrm{E}=\frac{2}{3} \mathrm{CA}_{1}$.

Fig. 45.

Thus, if $m=3 \mathrm{~B}_{5} \mathrm{E}=\frac{3}{4} \mathrm{CA}$.
In CP_{1} take $\mathrm{CD}=\mathrm{B}_{5} \mathrm{E}$. Join DE , cutting CA_{1} in O_{1}.
Through 0_{1} draw $\mathrm{O}_{1} \mathrm{O}_{2}$ parallel to $\mathrm{A}_{1} \mathrm{~A}_{2}$, cutting CA_{2} in O_{2}. Through O_{2} draw $\mathrm{O}_{2} \mathrm{O}_{3}$ parallel to $\mathrm{A}_{2} \mathrm{~A}_{3}$, cutting CA_{3} in O_{3}; and so on, till a cube $\mathrm{O}_{1} \mathrm{O}_{2}, \& \mathrm{c}$., O_{8}, is inscribed in the cube $A_{1} A_{2}, \& c ., A_{8}$, with its edges parallel to it.

Join the points $\mathrm{P}_{1} \mathrm{O}_{1}, \mathrm{P}_{1} \mathrm{O}_{2}$, \&c., as in Fig. 45, and the resulting figure will be a representation of the four-faced cube inscribed in a cube.

Axes.-The cubical axes, $\mathrm{P}_{1} \mathrm{P}_{6}, \mathrm{P}_{2} \mathrm{P}_{4}$, and $\mathrm{P}_{5} \mathrm{P}_{3}$ of the four-faced cube coincide
with those of the cube in which it is inscribed, and join the opposite four-faced solid angles, $\mathrm{P}_{1} \mathrm{P}_{2}$, \&c., P_{6}.

The octahedral axes are the $\frac{m}{m+1}$ th part of those of the cube, and join the opposite six-faced solid angles, $\mathrm{O}_{1} \mathrm{O}_{2}, \& c \mathrm{c}, \mathrm{O}_{8}$.

The rhombic axes are the $\frac{m}{m+1}$ th part of those of the cube, and join the centres of the opposite longer edges, $\mathrm{O}_{1} \mathrm{O}_{2}, \mathrm{O}_{8} \mathrm{O}_{7}$, \&c.

Inclination of Adjacent Faces.-If θ be the angle of inclination of two adjacent faces, measured over the edge, joining the extremities of the octahedral axcs, such as $\mathrm{O}_{1} \mathrm{O}_{2}$, cos. $\theta=\frac{2 m}{1+m^{2}}$; and if ϕ be the angle of inclination measured orer the edge joining the extremities of the octahedral axes with those of the cubical, such as $\mathrm{P}_{1} \mathrm{O}_{1}$, then $\cos \phi=\frac{m^{2}}{1+m^{2}}$.

Limits of the Form.-The four-faced cube varies as m increases in magnitude, from 1 to ∞, from the rhombic dodecahedron to the cube. In this case θ decreases
from 180° to 90°, and ϕ increases from 120° to 180°. The octahedral and rhombic axes increase from the $\frac{1}{2}$ to the whole of the corresponding axes of the cube in which the figure can be inscribed.
To construct a Net of the forr-faced Cube which can be inscribed in a given Cube.
Describe a square, $\mathrm{P}_{1} \mathrm{~B}_{1}, \mathrm{P}_{2} \mathrm{C}$ (Fig. 46), having
Join CB_{1}. Produce $\mathrm{P}_{2} \mathrm{C}$, and $\mathrm{B}_{1} \mathrm{P}_{1}$ to B_{5} and A_{1}.

Fig. 46.

Make CB_{3} and $\mathrm{P}_{1} \mathrm{~A}_{1}$ both equal

Fig. 47.
$J o i n A_{1} B_{5}$, and $A_{1} C$.
Take $\mathrm{B}_{5} \mathrm{E}=\frac{m}{m+1} \mathrm{~A}_{1} \mathrm{~B}_{5}$.
Through E draw ED parallel $A_{1} P_{1}$, cutting $A_{1} C$ in O_{1}. Join \mathbb{P}_{1} $P_{1} O_{1}$.

Draw a line, $P_{1} P_{2}$ (Fig. 47), equal $C B_{1}$, or $P_{1} P_{2}$ of Fig. 46. On this base describe an isosecles triangle $O_{1} P_{1} P_{2}$, having each of its sides, $P_{1} O_{1}, O_{1} P_{2}$, equal $P_{1} O_{1}$ of Fig. 46.
$P_{1} O_{1} P_{2}$ will be a face of the required fourfaced cube; twenty-four of these faces being arranged together, as in Fig. 48, will form the required net.

Forms of the four-faced cube.
The form $12 \infty, \infty 02$ of Naumann, 210 Miller, and b^{2} of Brooke and Levy, has its octahedral and rhombic axes $\frac{2}{3}$ of those of the cube in which it is inscribed. Inclination of faces over any edge, such as $\mathrm{O}_{1} \mathrm{O}_{2} 143^{\circ} 8^{\prime}$ of

Fig. 48. their normals $36^{\circ} 52^{\prime}$; over any edge, such as $P_{1} O_{1} 143^{\circ} 8^{\prime}$ normals $36^{\circ} 52^{\prime}$.

Crystals of the following minerals have faces parallel to this form:-

Argentite.	Fluor.	Garnet.	Pereslite.
Copper.	Gold.	Magnetite.	Salt.
Cubaltine.	Gersdorffite.	Prrite.	Silver.
Cuprite.			

The form 13∞, ${ }^{\circ}{ }^{\prime} 03$ Naumann, 310 Miller, b^{3} Brooke and Levy, has its octahedral and rhombic axcs $\frac{3}{4}$ of the cube ; inclination over $\mathrm{O}_{1} \mathrm{O}_{2} 126^{\circ} 52^{\prime}$, normals $53^{\circ} 8^{\prime}$; over $\mathrm{P}_{1} \mathrm{O}_{1} 154^{\circ} 9^{\prime}$, normals $25^{\circ} 51^{\prime}$. It occurs in

> Amalgam, Fahlerz, Fluor, Hanerite, and Pyrite.

The form $1{ }_{2}^{3} \infty, \infty 0_{\frac{3}{2}}$ Naumann, 320 Miller, $b^{\frac{3}{2}}$ Brooke and Levy, has its octahedral and rhombic axes $\frac{3}{5}$ of the cube, inclination over $\mathrm{O}_{1} \mathrm{O}_{2} 157^{\circ} 23^{\prime}$, normals $22^{\circ} 37^{\prime}$; over $\mathrm{P}_{1} \mathrm{O}_{1} 133^{\circ} 49^{\prime}$, normals $46^{\circ} 11^{\prime}$. It occurs in

Argentite, Blende, Diamond, Pyrite, and Perowskite.
The form $1 \frac{5}{2} \infty, \infty O_{\frac{5}{2}}$ Vaumann, 520 Miller, $b^{\frac{5}{2}}$ Brooke and Levy, has its octahedral and rhombic axes $\frac{5}{7}$ th those of the cube, inclination over $0_{1} \mathrm{O}_{2} 133^{\circ} 56^{\prime}$, normals $46^{\circ} 24^{\prime}$; over $P_{1} \mathrm{O}_{1} 149^{\circ} 33^{\prime}$, normals $30^{\circ} 27^{\prime}$. It occurs in

Copper and Fluor.

The form $1 \frac{4}{3} \infty, \infty 0 \frac{4}{3}$ Naumann, 430 Miller, and $b^{\frac{4}{3}}$ Brooke and Levy, has its octahedral and rhombic axes $\frac{4}{7}$ th those of the cube, inclination over $\mathrm{O}_{1} \mathrm{O}_{2} 163^{\circ} 44^{\prime}$, normals $16^{\circ} 16$; over $\mathrm{P}_{1} \mathrm{O}_{1} 129^{\circ} 48^{\prime}$, normals $50^{\circ} 12^{\prime}$. It occurs in

Diamond and Perowskite.

The form $14 \infty, \infty 04$ Naumann, 410 Miller, and b^{4} Brooke and Levy, has its octahedral and rhombic axes $\frac{4}{5}$ of the cube, inclination over $\mathrm{O}_{1} \mathrm{O}_{2} 118^{\circ} 4^{\prime}$, normals $61^{\circ} 56^{\prime}$; over $\mathrm{P}_{1} \mathrm{O}_{1} 160^{\circ} 15^{\prime}$, normals $19^{\circ} 45^{\prime}$. It occurs in

Cobaltine and Silver.
The form $1 \frac{5}{4} \infty, \infty 0 \frac{5}{4}$ Naumann, 540 Miller, $b^{\frac{5}{4}}$ Brooke and Levy, has its octahedral and rhombic axes sth of the cube, inclination over edge $0_{1} \mathrm{O}_{2} 167^{\circ} 19^{\prime}$, normals $12^{\circ} 41^{\prime}$; over edge $P_{1} 0_{1} 127^{\circ} 34^{\prime}$, normals $52^{\circ} 26^{\prime}$. It occurs in

Perowskite.

The form $15 \infty, \infty 05$ Naumann, 510 Miller, b^{5} Brooke and Levy, has its octahedral and rhombic axes $\frac{5}{6}$ of the cube, inclination over $\mathrm{O}_{1} \mathrm{O}_{2} 112^{\circ} 38^{\prime}$, normals $67^{\circ} 42^{\prime}$, over $\mathrm{P}_{1} \mathrm{O}_{1} 164^{\circ} 4^{\prime}$, normals $25^{\circ} 51^{\prime}$. It occurs in

Cuprite.

The form $1 \frac{5}{4} \infty$ approaches nearer to the rhombic dodecahedron, and the form $1.5=0$ to the cube, than any of the other forms which have been described as occuring in nature.

Six-faced Octahedron.-The six-faced octahedron, called also the hexakisoctahedron, tetra-kontaoktaedron, pyramidal-granatohedron, triagonal polyhedron. Being a characteristic form of the diamond, Haidinger named it Adamantoid.

Faces, Edges, and Solid Angles.-The six-faced octahedron is bounded by fortyeight equal and similar scalene triangles, such as $P_{1} O_{1} R_{1}, P_{1} O_{1} R_{4}$, \&c. It has
six eight-faced solid angles, $\mathrm{P}_{1} \mathrm{P}_{2}$, \&c., P_{6}, whose apices terminate the cubic axes and touch the faces of the cube in which the figure can be

Fig. 49. inscribed. Eight six-faced solid angles, $0_{1} O_{2}$, \&e., O_{8}, whose apices always lie in the octahedral axes, and twelve four-faced solid angles, $R_{1} R_{2} R_{3}$, \&c., R_{13}, whose apices always lie in the rhombic axes of the cube in which the six-faced octahedron can be inscribed. It has twentyfour long edges, $\mathrm{P}_{1} \mathrm{o}_{1}, \mathrm{P}_{1} \mathrm{o}_{2}, \& \mathrm{cc}$. $\mathrm{P}_{6} \mathrm{O}_{8}$, joining the apices of the eight-faced and six-faced solid angles, twenty-four intermediate edges, $P_{1} R_{4}, R_{4} P_{5}$, \&c., joining the apices of the eight-faced and four-faced solid angles, and tw ntyfour short edges, $\mathrm{O}_{1} \mathrm{R}_{1}, \mathrm{O}_{1} \mathrm{R}_{4}, \mathrm{O}_{1} \mathrm{R}_{5}$, \&c., joining the apices of the six-faced and four-faced solid angles.

Symbols for the Six-faced Octahedron.-Wvery face of the six-faced octahedron, if produced, will cut three of the cubical axes produced in three points at uncqual distances from the centre of the axes. Thus, in Figs. 49 or 50 , the face $0_{1} R_{0} Y$ produced cuts the axis C_{2} at the point P_{2}, the axis C_{5} produced at a distance $\frac{3}{2}$ of $C P_{5}$, and $C P_{1}$ produced at a distance three times $C P_{1}$ from C, the centre of the axes and figure. Similarly, every face of the figure cuts one axis at a distance CP , another produced at $\frac{3}{2}$ of $\mathbf{C P}$, and the third cubical axis produced at a distance three times C P. Taking CP, the distance of the centre of the figure from the apex of one of its eight-faced solid angles, as our unit, the symbol which will represent this relation of the faces to the cubical axes will be $1, \frac{3}{2}, 3$. The general symbol will be $1, m, n$, where $n 2$ and n are any whole numbers or fractions greater than one, and n less than n.

Naumann's symbol is $m 0 n$, Miller's $k k l, k, k$ and l being all three whole numbers; and Brooke and Levy's modification of Haüy, $\mathrm{B}^{\frac{1}{k}} \stackrel{\frac{1}{\mathrm{~B}}}{ } \mathrm{~B}^{\stackrel{1}{\rightarrow}}$ or $b^{\frac{1}{2}} b_{k}^{\frac{1}{k}}, b_{1}$ -

To draw the Six-faced Octahedron, whose symbob is $1, m, n$.

Describc a cube $A_{1} A_{2}$, \&c., $A_{7} A_{5}$ (Fig. j0) with its octahedral axes, $\mathrm{CA}_{1}, \mathrm{CA}_{2}$, \&c. CA_{8}, rhombic axes $\mathrm{CB}_{1}, \mathrm{CB}_{2}$, \&c. CB_{12}, and cubic axes $\mathrm{CP}_{1}, \mathrm{CP}_{2}, \& c$. CP_{6}; only one of the latter, CP_{1}, is shown in Fig. 52, in order not to crowd the figure unnecessarily.

Take a point E in $B_{5} A_{1}$, such that

$$
\mathbf{B}_{5} \mathbf{E}=\frac{1}{1+\frac{1}{m}+\frac{1}{n}} B_{5} A_{1}
$$

For the form $1, \frac{3}{2}, 3 \quad B_{5} E=\frac{1}{1+\frac{2}{3}+\frac{1}{3}}$ $B_{5} A_{1}=\frac{3}{6} B_{5} A_{1}$, or $B_{5} E=\frac{1}{2} B_{5} A_{1}$.

Take another point G in $B_{5} A_{1}$, such that

Fig. 50.

$$
B_{s} G=\frac{1}{1+\frac{1}{1 n}} B_{s} A_{1} .
$$

For the form 1, $\frac{3}{2}, 3 \quad B_{5} \mathbf{E}=\frac{1}{1+\frac{2}{3}} B_{6} A_{1}=\frac{3}{3} B_{5} A_{1}$.
Join $P_{1} A_{1}$ and $C B_{5}$; through E and G, draw E D, and E F parallel to $A_{1} P_{1}$ or $B_{5} C_{2}$ Let E D cut CA_{1} in O_{1}. Through O_{1} draw O_{2} parallel to $\mathrm{A}_{1} \mathrm{~A}_{2}$, cutting $\mathbf{C} \mathrm{A}_{2}$
in $O_{2} ; O_{2} \mathrm{O}_{3}$ parallel to $\mathrm{A}_{2} \mathrm{~A}_{3}$, cutting CA_{3} in O_{3}, and so on, till a cube $\mathrm{O}_{1} \mathrm{O}_{2}$, \&c., O_{8}, is inscribed in $\mathrm{A}_{1} \mathrm{~A}_{2}$, \&c., A_{8}; having $\mathrm{C}_{1} \mathrm{CO}_{2}$, \&c., C_{8} for its octahedral axes.

Similarly, commencing from the point where

Fig. 51.

F G cuts C A $_{1}$, draw another cube whose edges are parallel to the one just described, and having $C R_{1}$, $\mathrm{CR}_{2}, \mathrm{CR}_{3}$, \&c., CR_{12} for its rhombic axes, as shown in Fig. 50. Join the points $\mathrm{P}_{1} \mathrm{O}_{1}, \mathrm{O}_{1} \mathrm{R}_{4}, \mathrm{P}_{1}$ R_{4}, \&c., as shown in Fig. 51, and the six-faced octahedron will be drawn, with all its axes inscribed in a cube. In this, as in the preceding forms, if it is only required to show the form itself, as in Fig. 49, the Figure 51 may be first drawn in pencil, and the outlines of the form being drawn in ink, the other lines may be rubbed out. The form drawn in Figs. 49 and 51 is that whose symbol is $1, \frac{3}{2}, 3$, but the student is advised to draw for himself some of the other forms which occur in nature of the six-faced octahedron, in order to familiarise himself with the diffcrent properties of the figure, and its relations to the axes of the cube in which it is inscribed.

Axes of the Six-faced Octahedron.

The cubical axes of the six-faced octahedron join the opposite eight-faced solid angles, and are equal to the cubical axes of the cube in which it is inscribed.

The octahedral axes join the opposite six-faced solid angles, and are equal to the 1
$1+\frac{1}{m}+{ }_{n}^{1}$ th part of the octahedral axes of the cube in which the figure is inscribed.
The rhombic axes join the opposite four-faced solid angles, and are cqual to the 1 $1+\overrightarrow{1}_{\sqrt{n}}$ th part of the rhombic axes of the cube in which the figure is inscribed.

Inclination of the Adjacent Faces.
If θ be the angle of inclination of two adjacent faces over the edge P 0 (Figs. 49 and 51), joining the eight-faced and six-faced solid angles,

$$
\text { Cos. } \theta=\frac{1+\frac{2}{m n}}{1+\frac{1}{m^{2}}+\frac{1}{n^{2}}} .
$$

If ϕ be the angle of inclination over the edge. OR, joining the six-faced and fourfaced solid angles,

$$
\operatorname{Cos} \phi=\frac{\frac{2}{m}+\frac{1}{n^{2}}}{1+\frac{1}{m^{2}}+\frac{1}{n^{2}}}
$$

If ψ be the angle of inclination over the edge RP, joining the four-faced and eightfaced solid angles,

$$
\operatorname{Cos} . \psi=\frac{1+\frac{1}{m^{2}}-\frac{1}{n^{2}}}{1+\frac{1}{1}+\frac{1}{2}}
$$

Limits of the Form of the Six-faced Octahedros.

The six-faced octahedron may be regarded as the most general form of the cubical system, and that from which all the others may be easily derived, Thus, as m and n approach in magnitude to unity, the six-faced octahedron approximates to the octahedron; and when m and n are both equal to unity, it becomes the octahedron. In this case, the six faces forming the six-faced solid angle all lie in the same plane, and the edges $P_{1} R_{4}$ and $R_{5} P_{5}$ lie in the same line.

As m and n both increase in magnitude and in equality to each other, the six-faced octalhedron approximates to the cubc; and when m and n are both infinitely great it becomes the cube. In this casc, the eight planes which form each eight-faced solid angle all lie in the same plane, and the edges $\mathrm{O}_{1} \mathrm{R}_{4}$ and $\mathrm{R}_{4} \mathrm{O}_{4}$ lie in the same line.

As m approaches to unity while n increases in magnitude, the six-faced octahedron approximates to the rhombic dodecaledron; and when m equals unity, and n is infinitely great, it becomes the rhombic dodecahedron. - In this case, the four planes which form each four-faced solid angle lie in the same plane.

When m equals unity while n remains finite, the six-faced octahedron becomes tho three-faced octahedron; and the planes on each side of the edge R0 lie in the same plane.

When m and n are equal to each other, both finite and greater than unity, the sirfaced octahedron becomes the twenty-four-faced trapczohedion; and the planes on cach side of the edge PO lie in the same plane.

When m remains finite, and n becomes infinite, the six-faced octahedron becomes the four-faced cube, and the planes on each side of the edge PR lie in the same plane.

All the formula for the axes and the inclination of the faces, \&c., for all the holohedral forms of the cube may be derived from those of the six-faced octahedron, by substituting $\frac{1}{d}$ for m and n, for the cube; 1 for m and n for the octahedron; 1 for m and $\frac{1}{\delta}$ for n for the rhombic dodecahedron; 1 for m for the three-faced octahedron; m for n for the twenty-four-faced trapezohedron; and $\frac{1}{6}$ for n for the four-faced cubc.
To describe a Net for the Six-faced Octahedron which may be inscribed in a given Cube.
Describe a square, $\mathrm{P}_{1} \mathrm{~B}_{1} \mathrm{P}_{2} \mathrm{C}$ (Fig. 52), having one of its sides half the edge of the given cube. Join CB_{1}.

Produce $\mathrm{B}_{1} \mathrm{P}_{1}$ to A_{1}, and $\mathrm{P}_{2} \mathrm{C}$ to B_{5}.
Make $A_{1} P_{1}$ and $C B_{5}$ both equal $C B_{1}$. Join $A_{1} B_{5}$ and $A_{1} C$. Take $B_{s} E=\frac{1}{1+\frac{1}{m}+\frac{1}{n}} B_{5} A_{1}$ and $B_{5} G=\frac{1}{1+{ }_{m}^{1}} B_{5} A_{1}$

Through G and Edraw G F and E D parallel to $\mathrm{A}_{1} \mathrm{P}_{1}$.

Fig. 52.

Fig. 53.

Fig. 54.

In $C B_{5}$ take $C R_{5}$ equal $C R_{1}$ and join $R_{5} O_{1}$.
Then draw a line $0_{1} P_{1}$ (Fig. 53), equal $0_{1} P_{1}$ (Fig. 52) on $O_{1} P_{1}$ (Fig. 53), as a base, describe a triangle, $O_{1} R P_{1}$, having its side $0_{1} R$ equal to $O_{1} R_{5}$ (Fig. 52), and the side $P_{1} R$ equal to $P_{1} R_{1}$ of Fig. 52 , then $0_{1} R P_{1}$ will be a face of the required figure.

Forty-eight such faces arranged together, as in Fig. 54, will form the required net from which a model of the six-faced octahedron can be formed, which can be inscribed in the given cube.

Forms of the Six-faced Octahedron which occur in Nature.

The form 1, $\frac{5}{4}, \frac{5}{3}$ whose symbols are $\frac{5}{3} 0 \frac{5}{4}$, Nawnamn ; $5,4,3$, Miller; and $b \frac{1}{5}, b \frac{1}{4}, b \frac{1}{3}$, Brooke and Levy, has its octahedral axes $\frac{5}{12}$ th and rhombic sth those of the cube in which it is inscribed.

Cos. $\theta=\frac{49}{50} \theta=168^{\circ} 31^{\prime}, \cos . \phi=\frac{49}{50} \phi=168^{\circ} 31^{\prime} \cos . \psi=\frac{3^{\circ}}{30} \psi=129^{\circ} 18^{\circ}$.
Inclination of normals of faces whose inclinations to each other are $\theta \phi$ and ψ respectively, $11^{\circ} 29^{\prime}, 11^{\circ} 29^{\prime}$, and $50^{\circ} 12^{\prime}$.

Faces parallel to this form occur in crystals of Pyrite.
The form $1, \frac{64}{6} 5,64 ; 640 \frac{54}{6}$, , Naumann ; 64, 63, 1 , Millor ; $b^{1}, b \frac{7}{65}, b \frac{1}{64}$, Brooke and Levy. Octahedral axes $=\frac{1}{2}$; rhombic $=\frac{64}{127}$.

Cos. $\theta=\frac{4292}{8066} \theta=121^{\circ} 34^{\prime} ; \cos . \phi=\frac{8065}{80} 6_{5}^{5} \phi=179^{\circ} 6^{\prime} ; \cos . \psi=\frac{8054}{8066} \psi=178^{\circ} 43^{\prime}$. Inclination of normals $58^{\circ} 26^{\prime}, 0^{\circ} 54^{\prime}$, and $1^{\circ} 17^{\prime}$.

Faces parallel to this form oecur in crystals of Garnet.
The form 1, $\frac{4}{3}, 2 ; 20 \frac{4}{3}$, Naumann ; 4, 3, 2, Miller; and $b \frac{1}{4}, b \frac{1}{3}, b \frac{1}{2}$, Brooke and Levy, Octahedral axes $\frac{4}{8}$ and rhombic 禾.

Cos. $\theta=\frac{2}{2 g}, \theta=164^{\circ} 55^{\prime} ; \cos . \phi=\frac{2 \theta}{29}, \phi=16455^{\prime} ; \cos . \psi=\frac{21}{2 g}, \psi=136^{\circ} 24^{\prime \nu}$ Inclination of normals, $15^{\circ} 5^{\prime}, 15^{\circ} 5^{\prime}$, and $43^{\circ} 36^{\prime}$.

Faces parallel to this form occur in crystals of Linneite.
 Brooke and Levy ; octahedral axes, $\frac{1}{3}$; rhombic, $\frac{75}{25}$.

Cos. $\theta=\frac{37}{37} 9, \theta=163^{\circ} 38^{\prime} ; \cos . \phi=\frac{379}{395}, \phi=163^{\circ} 38^{\prime} ; \cos . \psi=\frac{29}{39} 9, \psi=138$. 45^{\prime}. Inclination of normals, $16^{\circ} 22^{\prime}, 16^{\circ} 22^{\prime}$, and $41^{\circ} 15^{\prime}$.

Faces parallel to this form occur in Linneite.
The form 1, $\frac{4}{3}, 4 ; 40 \frac{4}{3}$, Naumann; 4, 3, 1, Miller ; and b^{1}, $b t, b 1$, Brooke and Levy. Octahedral axes, $\frac{1}{2}$; rhombic. $\frac{4}{5}$.

Cos. $\theta=\frac{22}{26}, \theta=147^{\circ} 48^{\prime} ; \cos . \phi=\frac{25}{26} . \phi=164^{\circ} 3^{\prime} ; \cos . \psi=\frac{24}{26}, \psi=157^{\circ} 23^{\prime}$. Inclination of normals, $32^{\circ} 12^{\prime}, 15^{\circ} 57^{\prime}$, and $22^{\circ} 37^{\prime}$.

Faces parallel to this form occur in Garnet.
The form $1, \frac{3}{2}, 3 ; 30 \frac{3}{2}$, Naumann; 3,2 , 1 , Miller; and $b^{1}, b_{\frac{1}{2}}^{\frac{1}{2}} b_{\frac{1}{3}}$, Brooke and Levy. Octahedral axes $=\frac{1}{2}$; rhombic, $\frac{3}{3}$.

Cos. $\theta=\frac{13}{4}, \theta=158^{\circ} 13^{\prime} ; \cos . \phi=\frac{13}{14}, \phi=158^{\circ} 13^{\prime} ; \cos . \psi=\frac{12}{1}, \psi=149^{\circ} 0^{\prime}$. Inclination of normals, $21^{\circ} 47^{\prime}, 21^{\circ} 47$,' and $31^{\circ} 0^{\circ}$.

Faces parallel to this form occur in

Amalgam.	Diamond.	Hauerite.
Cobaltine.	Fahlerz.	Magnetite.
Cuprite.	Garnet.	Pyrite.

The form 1, $\frac{5}{3}, 5 ; 50 \frac{5}{3}$, Naumann ; $5,3,1$, Miller ; $b^{1}, b_{3}^{2}, b_{2}^{1}$, Brooke and Levy; octahedral axes, $\frac{5}{8}$; rhombic, 㝵.

Cos. $\theta=\frac{3}{3} 3^{3}, \theta=152^{\circ} 20^{\prime} ; \cos . \phi=\frac{3}{5}, \phi=152^{\circ} 20^{\prime} ; \cos . \psi=\frac{33}{3}, \psi=160^{\circ} 32^{\prime}$.

Faces parallel to this form occur in Boracite and Pyrite.
The form 1, 2, 4; 40 2, Naumann ; 4, 2, 1, Miller; b^{1}, b_{1}, b_{1}^{1}, Brooke and Lexy. Octahedral axes, $\frac{4}{7}$; rhombic, $\frac{2}{3}$.
 Inclination of normals, $17^{\circ} 45^{\prime}, 35^{\circ} 57^{\prime}$, and $25^{\circ} 13^{\prime}$.

Faces parallel to this form occur in Fluor, Gold, and Pyrite.
The form 1, $\frac{12}{5}, \frac{12}{3} ; \frac{4}{3} 0 \frac{11}{5}$, Naumann; 11, 5,3 , Miller; $6 \frac{1}{11}, 6^{1}, 61$, Brooke and Levy. Octahedral axcs, $\frac{1}{\frac{1}{4}}$; rhombic axes, $\frac{11}{6}$

Cos. $\theta=\frac{157}{153}, \theta=165^{\circ} 57^{\prime} ; \cos . \phi=\frac{11}{135}, \phi=140^{\circ} 9^{\prime} ; \cos . \psi=\frac{137}{153}, \psi=1.527^{\prime}$. Inclination of normals, $13^{\circ} 3^{\prime}, 39^{\circ} 51^{\prime}$, and $27^{\circ} 53^{\prime}$.

Faces parallel to this form occur in crystals of Fluor.
 Levy. Octahcdral axes, $\frac{10}{27}$; rhombic axes, $\frac{16}{26}$.

Cos. $\theta=\frac{312}{32}, \theta=166^{\circ} 24^{\prime} ; \cos \phi=\frac{240}{321}, \phi=138^{\circ} 23^{\prime} ; \cos \psi=\frac{28}{8} \frac{1}{2}, \psi=1541 n^{\prime}$. Inclination of normals, $13^{\circ} 36^{\prime}, 41^{\circ} 37^{\prime}$, and $25^{\circ} 48^{\prime}$.

Faces parallel to this form occur in crystals of Fluor.
The form 1, $\frac{7}{3}, 7 ; 70 \frac{7}{3}$, Naumann ; 7, 3, 1, Miller; $b^{1}, 63,61$, Brooke and Levy. Octahedral axes, $\frac{\text { IT }}{}$; rhombic, $\frac{7}{10}$.

Cos. $\theta=\frac{5}{5} 5, \theta=158^{\circ} 47^{\prime} ; \cos . \phi=\frac{4}{8} \frac{3}{3}, \phi=136^{\prime} 47^{\prime} ;$ с s. $\psi=\frac{57}{5}, \psi=16 \overline{0} \quad \because^{\prime}$. Inclination of normals, $21^{\circ} 15^{\prime}, 43^{\circ} 13^{\prime}$, and $14^{\circ} 58^{\prime}$.

Faces parallel to this form occur in crystals of Fluor.
The form 1, 4, 8; 80 4, Naumann ; 8, 2, 1, Niller ; $b^{1}, b_{ \pm}^{2}, b^{2}$, Brooke and Levy. Octahedral axes, $\frac{8}{15}$; rhombic axes, $\frac{4}{5}$.
 Inclination of normals, $9^{\circ} 46^{\prime}, 61^{\circ} 26^{\prime}$, and $13^{\circ} 50^{\circ}$.

Faces parallel to this form have been found in crystals of Galena.

Fig. 55.

Fig. 56.

Fig. 57.

Combination of the Forms of the Cube and Octahedron. - When the faces of the cube $\mathrm{P}_{1} \mathrm{P}_{2}, \& c ., \mathrm{P}_{6}$ (Fig. 55), predominate, the solid angles of the cube are replaced by triangular faces $o_{1} o_{2}, \& c$., o_{8}, which are parallel to those of the inscribed octahedron. When the faces $o_{1} o_{2}, \& c$., o_{8}, are so large that the angles of their triangles meet, $\mathrm{P}_{1} \mathrm{P}_{2}, \& \mathrm{c} ., \mathrm{P}_{6}$, are squares (Fig. 56). When the faces of the octahedron predominate, as in Fig. 57, the solid angles of the octahedron are replaced by square planes of the cube $\mathrm{P}_{1} \mathrm{P}_{2}$, \&c., P_{8}.

If θ be the angle of inclination of a face of the octahedron, as o_{1}, to any of the adjacent faces of the cube, as $\mathrm{P}_{1} \mathrm{P}_{2}$, or P_{5},

$$
\operatorname{Cos} \theta=\frac{1}{1 / 3} \theta=125^{\circ} .16^{\prime}
$$

Inclination of normals, o_{1} and Pr $_{1}=1$

Combination of Cube and Rhombic Dodecahedron.-When the faces of the cube $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{5}$, \&c., (Fig. 58), predominate, the faces of the rhombic dodecahedron, $r_{1} r_{4} r_{5}$, replace the edges of the cube.

When the faces of rhombic dodecahedron predominate (Fig. 59), the faces of the cube $P_{1} P_{2} P_{5}$, replace the four-faced solid angles of the rhombic dodecahedron with square planes, $\mathrm{P}_{1} \mathrm{P}_{2}$, \&c.

If θ be the angle of inclination of the face of the cube \mathbf{P}_{1} to the adjacent faces of the rhombic dodecahedron $r_{1} r_{4}$, \&c., and θ^{\prime} the inclination of their normals,

$$
\operatorname{Cos.} \theta=\frac{1}{12} \theta=135^{\circ}, \text { and } \theta^{\prime}=45^{\prime}
$$

Fig. 58.

Fig. 59.

Fig. 60.

Combination of Cube and Three-faced Octahedron.-When the faces of the cube, $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{5}$, \&c. (Fig. 60), predominate, the solid angles of the cube are replaced by the three-faced solid angles of the three-faced octahedron, forming three trapezoidal planes, $b_{1} b_{2}$, and b_{3}, for each solid angle of the cube.

When the faces of the three-faced octahedron, $b_{1} b_{2} b_{3}$, \&c., predominate (Fig. 61), the eight-faced solid angles of the threefaced octahedron are replaced by octagonal planes of the cube $P_{1} P_{2} P_{5}$, \&c.

Let θ be the angle of inclination of P_{1} to b_{1} or b_{3}, θ^{\prime} that of

Fig. 61. their normals, and ϕ the angle of inclination of P_{1} to $b_{2} ; \phi^{\prime}$ that of their normals. If $11 n$ be the symbol of the three-faced octahedron,

$$
\cos , \theta=\frac{1}{\sqrt{2+\frac{1}{n^{2}}}} \theta^{\prime}=180^{\circ}-\theta \cos . \phi=\frac{\cos . \theta}{n} \varphi^{\prime}=180^{\circ}-\phi
$$

For the form $1,1, \frac{65}{64} \cos . \theta=\sqrt{\mathrm{I}^{4 \frac{225}{2546}}} \theta^{\prime}=125^{\circ} 28^{\prime} \theta^{\prime}=54^{\circ} 32^{\prime}$.
$\cos \phi=\sqrt{\frac{409 \theta^{-}}{2546}} \phi=124^{\circ} 51^{\prime} \phi^{\prime}=55^{\circ} 9^{\circ}$.
For the form $1,1, \frac{5}{4}, \cos . \theta=\sqrt{\frac{2}{65}} \quad \theta=127^{\circ} 59^{\prime} \theta^{\prime}=52^{\circ} 1^{\prime}$.
$\cos \phi=\sqrt{\text { 둥 }} \quad \phi=119^{\circ} 29^{\prime} \phi^{\prime}=60^{\circ} 31^{\prime}$.
For the form $1,1, \frac{3}{2}, \cos . \theta=\sqrt{\frac{9}{22}} \quad \theta=129^{\circ} 46^{\prime} \theta^{\prime}=50^{\circ} 14^{\prime}$.
$\cos . \phi=\sqrt{\frac{4}{22}} \quad \phi=115^{\circ} 15^{\prime} \phi^{\prime}=64^{\circ} 45^{\prime}$.
For the form $1,1, \frac{7}{4}, \cos . \theta=\sqrt{4_{14}^{4} 7} \quad \theta=130^{\circ} 58^{\prime} \theta^{\prime}=49^{\circ} 2^{\prime}$.
$\cos . \phi=\sqrt{\frac{11}{1 \beta_{4}}} \quad \phi=112^{\circ} 0^{\prime} \quad \phi^{\prime}=68^{\circ} 0^{\prime}$.

$\cos \phi=\sqrt{\bar{h}} \quad \phi=109^{\circ} 29^{\prime} \phi^{\prime}=70^{\circ} 31^{\prime}$.

For the form 1, 1, 3, cos. $\theta=\sqrt{\frac{9}{T_{9}}} \quad \theta=133^{\circ} 30^{\prime} \theta^{\circ}=46^{\circ} 30^{\circ}$.
$\cos . \phi=\sqrt{\frac{1}{19}} \quad \phi=103^{\circ} 16^{\prime} \phi^{\prime}=76^{\circ} 44^{\prime}$.
For the form 1, 1, 4, cos. $\theta=\sqrt{\frac{1}{33}} \overline{\frac{\sigma}{3}} \quad \theta=134^{\circ} \quad 8^{\prime} \theta^{\prime}=45^{\circ} 52^{\prime}$.
$\cos . \phi=\sqrt{\frac{1}{3} 3} \quad \phi=100^{\circ} 1^{\prime} \phi^{\prime}=79^{\circ} 59^{\prime}$.
Combination of Cube and Twenty-four-faced Trapezohedron.-When the faces of the cube $\mathrm{P}_{1} \mathbf{P}_{\mathbf{2}} \mathrm{P}_{\mathbf{3}}$, \&c., predominate (Fig. 62), the solid angles of the cube are replaced by the three-faced solid angles of the Trapezo-

Fig. 62. hedron forming three triangular planes $a_{1} a_{2} a_{3}$ for each solid angle of the cube.

When the faces of the trapezohedron predominate (Fig. 63), the four-faced solid angles of the trapezohedron, which terminate the cubical axes, are replaced by square planes of the cube $\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{5}$, \&cc. Let θ be the angle of inclination of P_{1} to a_{1}, θ^{\prime} that of their normals, and ϕ the angle of inclination of P_{1} to a_{2} or a_{3}, ϕ^{\prime} that of their normals.

Fig. 63.

If I $m m$ be the symbol of the twenty-four-faced trapezohedron,

$$
\cos \theta=\frac{1}{\sqrt{1+\frac{2}{m^{2}}}}, \theta^{\prime}=180^{\circ}-\theta, \phi=\underset{m}{\cos \theta}, \phi^{\prime}=180^{\circ}-\phi
$$

For the form $1, \frac{4}{3}, \frac{4}{3}, \cos . \theta=\sqrt{\frac{1}{3} \frac{5}{4}} \theta=133^{\prime} 19^{\prime} \theta^{\prime}=4641^{\circ}$.
$\cos . \phi=\sqrt{\frac{9}{34}} \phi=120^{\circ} 58^{\prime} \phi^{\prime}=59^{\circ} 2^{\prime}$.
For the form $1, \frac{3}{2}, \frac{3}{2}, \cos . \theta=\sqrt{\frac{9}{1_{7}}} \theta=136^{\circ} 41^{\prime} \theta^{\prime}=43^{\circ} 19^{\circ}$.
cos. $\phi=\sqrt{\frac{4}{\mathrm{~T}^{7}}} \phi=119^{\circ} \mathrm{I}^{\prime} \quad \phi^{\prime}=60^{\circ} 59^{\circ}$.
For the form $1,2,2, \cos . \theta=\sqrt{\frac{2}{3}} \theta=144^{\circ} 41^{\prime} \theta^{\prime}=35^{\circ} 16^{\circ}$.
cos. $\phi=\sqrt{\frac{1}{6}} \phi=114^{\circ} 6^{\prime} \phi^{\prime}=65^{\circ} \delta 4^{\prime}$.
For the form $1, \frac{9}{4}, \frac{9}{4}, \cos \theta=\sqrt{\frac{81}{113}} \theta=147^{\circ} 51^{\prime} \theta^{\prime}=32^{\circ} 9^{\prime}$.
$\cos . \phi=\sqrt{\frac{18}{11^{3}}} \phi=112^{\circ} 6^{\prime} \phi^{\prime}=67^{\circ} 54^{\prime}$.
For the form 1, $\frac{8}{3}, \frac{8}{3}, \cos . \theta=\sqrt{\frac{\bar{\sigma}_{8}^{2}}{2}} \quad \theta=152^{\circ} 4^{\prime} \quad \theta^{\prime}=27^{\circ} 56^{\prime}$.
$\cos \phi=\sqrt{\frac{8}{\partial^{2}}} \phi=109^{\circ} 21^{\prime} \phi^{\prime}=70^{\circ} 39^{\prime}$.
For the form 1, 3, 3, $\cos . \theta=\sqrt{ } \frac{9}{\text { TI }} \quad \theta=154^{\circ} 46^{\prime} \theta^{\prime}=25^{\circ} 14^{\circ}$.
$\cos \phi=\sqrt{\frac{1}{\mathrm{~T}}} \phi=107^{\circ} 33^{\prime} \phi^{\prime}=72^{\circ} 27^{\prime}$.
For the form $1,4,4, \cos . \theta=\sqrt{\frac{1}{1} \frac{6}{8}} \theta=160^{\circ} 32^{\prime} \theta^{\prime}=19^{\circ} 28^{\circ}$.
$\cos \phi=\sqrt{\frac{1}{18}} \phi=103^{\circ} 38^{\prime} \phi^{\prime}=76^{\circ} 22^{\prime}$.
For the form 1, $10,10, \cos \theta=\sqrt{\frac{170}{10}{ }_{2}^{2}} \theta=171^{0} 57^{\prime} \theta^{\prime}=3^{0} 3^{\prime}$.

For the form $1,12,12, \cos . \theta=\sqrt{\frac{144}{146}} \theta=173^{\circ} 17^{\prime} \theta^{\prime}=6^{\circ} 43^{\prime}$.

$$
\cos . \phi=\sqrt{\mathrm{T}^{1} \mathrm{E}} \phi=99^{\circ} 45^{\prime} \phi^{\prime}=85^{\circ} 15^{\prime} .
$$

For the form 1, 16, 16, cos. $\theta=\sqrt{\frac{25}{2} \frac{5}{56}} \theta=174^{\circ} 57^{\prime} \theta^{\prime}=5^{\circ} 3^{\prime}$.

$$
\cos . \phi=\sqrt{\frac{1}{2 \delta^{\prime}}} \phi=93^{\circ} 34^{\prime} \phi^{\prime}=86^{\circ} 26^{\prime} .
$$

For the form 1, 40, 40, cos. $\theta=\sqrt{\frac{\overline{60}}{601}} \theta=177^{\circ} 8^{\prime} \theta^{\prime}=2^{\circ} 52^{\prime}$.

$$
\cos \phi=\sqrt{\mathrm{Tb} \frac{1}{\mathrm{~T}_{2}}} \phi=91^{\circ} 26^{\prime} \phi^{\prime}=88^{\circ} 34^{\prime} .
$$

Combination of Cube and Four-faced Cube.-When the faces of the cube $P_{1} P_{2} P_{5}$, \&c. (Fig. 64) predominate, each edge of the cube is replaced or bevelled by two faces of the four-faced cube

Fig. 64. $c_{1} c_{2}, c_{3} c_{4}, c_{5} c_{6}$, \&c.

When the faces of the fourfaced cube $c_{1} c_{2} c_{3}$, \&c. (Fig. ${ }^{65}$) predominate, every fourfaced solid angle of the fourfaced cube is replaced by a square plane, $\mathbf{P}_{1} \mathbf{P}_{2}$, \&c., of the cube.

If $1, m, \infty$ be the symbol of

Fig. 65.
the four-faced cube,
θ the angle of inclination of P_{1} to c_{1} or c_{3}, θ^{θ} that of their normals.
ϕ the angle of inclination of P_{1} to c_{2} or c_{4}, ϕ^{\prime} that of their normals.
Then $\cos . \theta=\frac{1}{\sqrt{1}+m_{n^{2}}^{\frac{1}{2}}}$ or cot. $\theta=m, \theta^{\prime}=180-\theta, \cos . \phi=\frac{\cos . \theta}{m}$,

$$
\text { and } \phi^{\prime}=180^{\circ}-\phi .
$$

The inclination of P_{1} to c_{5} or c_{6} is 90° in every case.
For the form $1, \frac{3}{4}, \infty$, cos. $\theta=\sqrt{\frac{2}{4} \frac{5}{4}} \cot . \theta=\frac{3}{4} \theta=141^{\circ} 20^{\prime} \theta^{\prime}=36^{\circ} 40^{\circ}$.

$$
\cos \phi=\sqrt{\frac{1}{41}} \quad \phi=128^{\circ} 40^{\prime} \phi^{\prime}=51^{\circ} 20^{\circ} .
$$

For the form $1, \frac{4}{3}, \infty, \cos . \theta=\sqrt{\frac{15}{2}} \cot . \theta=\frac{4}{3} \theta=143^{\circ} 8^{\prime} \quad \theta^{\prime}=36^{\circ} 52^{\prime}$.

$$
\cos \phi=\sqrt{\frac{\circ}{2^{\circ} 5}} \quad \phi=126^{\circ} 52^{\prime} \phi^{\prime}=53^{\circ} 8^{\prime}
$$

For the form $1, \frac{3}{2}, \infty, \cos . \theta=\sqrt{\frac{9}{13}} \cot . \theta=\frac{3}{2}, \theta=146^{\circ} 19^{\prime} \theta^{\prime}=33^{\circ} 41^{\prime}$.

$$
\cos \phi=\sqrt{\frac{0}{4^{3}}} \quad \phi=123^{\circ} 41^{\prime} \phi^{\prime}=56^{\circ} 19^{\prime}
$$

For the form $1,2, \infty, \cos . \theta=\sqrt{\frac{4}{3}} \cot . \theta=2 \theta=153^{\circ} 26^{\prime} \theta^{\prime}=26^{\circ} 34^{\prime}$.

$$
\cos \phi=\sqrt{\underline{\frac{1}{3}}} \quad \phi=116^{\circ} 34^{\prime} \phi^{\prime}=63^{\circ} 26^{\prime}
$$

For the form $1, \frac{5}{2}, \infty, \cos . \theta=\sqrt{\frac{2}{2} \frac{2}{2}} \cot \theta=\frac{5}{2} \theta=158^{\circ} 12^{\prime} \theta^{\prime}=21^{\circ} 48^{\prime}$.

$$
\cos \phi=1^{\prime} \frac{4}{2 \sigma} \quad \phi=111^{\circ} 48^{\prime} \phi^{\prime}=68^{\prime} 12^{\prime} .
$$

For the form $1,3, \infty, \cos \theta=\sqrt{ } \frac{\circ}{10} \cot . \theta=3 \theta=161^{\circ} 34^{\prime} \theta^{\prime}=18^{\circ} 26^{\prime}$.

$$
\operatorname{cos.} \phi=\sqrt{\frac{1}{10}} \quad \phi=108^{\circ} 26^{\prime} \Phi^{\prime}=71^{\circ} 34^{\prime}
$$

For the form $1,4, \infty, \cos . \theta=\sqrt{\frac{1}{7}} \cot . \theta=4 \theta=165^{\circ} 58^{\prime} \theta^{\prime}=14^{\circ} 2^{\prime}$.

$$
\cos \phi=\sqrt{\frac{1}{12}} \quad \phi=104^{\circ} 2^{\prime} \quad \phi^{\prime}=75^{\circ} 58^{\prime}
$$

 IRIS - LILCldA. ϕ_{ϕ} - Un η verersité Lille $1 \quad \phi=101^{\circ} 19^{\prime} \phi^{\prime}=78^{\circ} 41^{\circ}$.

Combination of Cube and Six－faced Octahedron．－When the faces of the cube $P_{1} P_{2} P_{5}$ ，\＆c．（Fig．66），predominate，each solid angle of the cube is replaced by a six－faced solid angle of the six－faced octahedron，forming six trian－

Fig． 67. gular planes $e_{1} e_{2} e_{3} e_{4} e_{5} e_{6}$ for each solid angle of the cube．

When the faces of six－faced octahe－ dron $e_{1} e_{2} e_{3}$ ，\＆c．（Fig．67），predomi－ nate，the eight－faced solid angles of the six－faced octahedron are replaced by oc－

Fig． 66. tagonal planes $P_{1} P_{2}$ ，\＆c．，of the cube．

If $1, m, n$ be the symbol of the six－faced octahedron， θ the angle of inclination of P_{1} to e_{1} ，or e_{6}, θ^{\prime} that of their normals．
ϕ the－angle of inclination of P_{1} to e_{2} ，or e_{5}, ϕ^{\prime} that of their normals．
ψ the angle of inclination of P_{1} to e_{3} ，or e_{4}, ψ that of their normals．
Cos．$\theta=\frac{1}{\sqrt{1+\frac{1}{m^{2}}+\underset{n^{2}}{1}}} \theta^{\prime}=180^{\circ}-\theta \cos \phi=\frac{\cos . \theta}{\theta^{m}} \phi^{\prime}=180^{\circ}-\phi ; \cos \psi=$ $\frac{\cos . \theta}{n} \psi^{\prime}=180^{\circ}-{ }^{*} \psi^{\prime}$ ．

Por the form 1，$\frac{5}{4}, \frac{5}{3}, \theta=135^{\circ} 0^{\prime}, \theta=45^{\circ} 0^{\prime} ; \phi=124^{\circ} 27^{\prime}, \phi^{\prime}=5533^{\prime}$ ； $\psi=115^{\circ} 16^{\prime}, \psi^{\prime}=64^{\circ} 54^{\prime}$ ．

For the form 1，$\frac{64}{65}, 64, \theta=135^{\circ} 37^{\prime}, \theta^{\prime}=44^{\circ} 33^{\prime} ; \phi=134^{\circ} 33^{\prime}, \phi^{\prime}=4027^{\prime} ;$ $\psi=90^{\circ} 38^{\prime}, \psi^{\prime}=89^{\circ} 22^{\prime}$ 。

For the form $1, \frac{4}{3}, 2, \theta=137^{\circ} 58^{\prime}, \theta^{\prime}=422^{\prime} ; \phi=123^{\circ} 51^{\prime}, \phi^{\prime}=56^{\circ} 9^{\prime} ; \psi=$ $111^{\circ} 48^{\prime}, \psi^{\prime} 68^{\circ} 12^{\prime}$ ．

For the form $1, \frac{1+}{1} \frac{\gamma^{\prime}}{\gamma^{\prime}}, \theta=139^{\circ} 0,^{\prime} \theta^{\prime}=41^{\circ} 0^{\prime} ; \phi=123^{\circ} 36^{\prime}, \phi^{\prime}=56^{\circ} 24^{\prime}$ $\psi=110^{\circ} 37^{\prime}, \psi^{\prime}=69^{\circ} 23^{\circ}$ ．

For the form $1, \frac{4}{3}, 4, \theta=141^{\circ} 40^{\prime}, \theta^{\prime}=38^{\circ} 20^{\prime} ; \phi=126^{\circ} 2^{\prime}, \phi^{\prime}=53^{\circ} 58^{\prime}$ $\psi=101^{\circ} 19^{\prime}, \psi^{\prime}=78^{\circ} 41^{\prime}$ 。

For the form $1, \frac{3}{2}, 3, \theta=14318^{\prime}, \theta^{\prime}=36^{\circ} 42^{\prime} ; \phi=122 \quad 19^{\prime}, \phi^{\prime}=57^{\circ} 41^{\prime} ;$ $\psi=105^{\circ} 30^{\prime}, \psi^{\prime}=74^{\circ} 30^{\prime}$ 。

For the form 1，$\frac{5}{3}, 5, \theta=147^{\circ} 41^{\prime}, \theta^{\prime}=32^{\circ} 19^{\prime} ; \phi=12028^{\prime}, \phi^{\prime}=59^{\circ} 32^{\prime}$ ； $\psi=994^{\prime}, \psi=80^{\circ} 16^{\prime}$ ．

For the form 1，2，4，$\theta=150^{\circ} 48^{\prime}, \theta^{\prime}=29^{\circ} 12^{\prime} ; \phi=115^{\circ} 53^{\prime}, \phi=64^{\circ} 7^{\prime}$ ； $\psi=10236^{\prime}, \psi^{\prime \prime}=7724^{\prime}$.

For the form 1，$\frac{1}{3}, \frac{11}{3}, \theta=1 \jmath^{\prime} 4^{\prime}, \theta^{\prime}=27^{\circ} 56^{\prime} ; \phi=113^{\circ} 41^{\prime}, \phi^{\prime}=66^{\circ} 19^{\prime} ;$ $\psi=103^{\circ} 57^{\prime}, \psi^{\prime}=76^{\circ} 3^{\prime}$ ．

For the form $1, \frac{16}{7}, 4, \theta=153^{\circ} 15^{\prime}, \theta^{\prime}=26^{\circ} 45^{\prime} ; \phi=113^{\circ} 0^{\prime}, \phi^{\prime}=67^{\circ} 0^{\prime}$ ； $\psi=102^{\circ} 54^{\prime}, \psi^{\prime}=77^{\circ} 6^{\prime}$ ．

For the form $1, \frac{7}{5}, 7, \theta=15541^{\prime}, \theta^{\prime}=24^{\circ} 19^{\prime} ; \phi=112^{3}, 59^{\prime}, \phi^{\prime}=67^{\circ} 1^{\prime}$ $\psi=97^{\circ} 29^{\prime}, \psi^{\prime}=82^{\circ} 31^{\prime}$ 。

For the form $1,4,8, \theta^{\prime}=164^{\circ} 23^{\prime}, \theta^{\prime}=15^{\circ} 37^{\prime} ; \phi=103^{\circ} 56^{\prime}, \phi^{\prime}=76^{\circ} 4^{\prime}$

Combination of Octahedron and Rhombic Dodecahedron.-When the faces of the octahedron predominate, as $o_{1} o_{4} o_{6}$, \&c. (Fig. 68), the planes of the rhombic dodecahedron $r_{1} r_{3} r_{4}$, \&c., replace

Fig. 69 or truncate the edges of the octahedron.

When the faces of the rhombic dodecahedron predominate, as $r_{1} r_{4} r_{5}$, \&c. (Fig. 69), the three-faced solid angles of the rhombic dodecahedion are replaced by triangular planes o_{1} $0_{4} o_{8}$, \&c. of the octahedron.

Fig. 68.

The inclination of o_{1} to any of the adjacent faces r_{1}, r_{4}, or r_{5}, is $144^{\circ} 44^{\prime}$, that of their normals $35^{\circ} 16^{\prime}$.
Combination of the Octahedron and Three-faced Octahedron.-When the faces of the octahedron $o_{1} o_{4} o_{5}^{-} o, \& c$. (Fig. 70), predominate, the edges of thel octahedron are replaced or bevelled by

Fig. 71. two planes of the three-faced octahedron.

When the faces of the three-faced octahedron $b_{1} b_{2} b_{3}$, \&c. (Fig. 71), predominate, the three-faced solid angles of the three-faced octahedron are replaced by triangular planes $o_{1}, o_{4}, o_{5}, o_{8}$, \&c., of

Fig. 70. the octahedron.

If $11 n$ be the symbol of the three-faced octahedron, θ the angle of inclination of o_{1} to b_{1}, b_{2}, or b_{3}, θ^{\prime} that of their normals,

Then $\cos . \theta=\frac{2+\frac{1}{n}}{\left.\sqrt{3\left(2+\frac{1}{n^{3}}\right.}\right)}$ and $\theta^{\prime}=180^{\circ}-\theta$.

For the form 1, $1, \frac{65}{64} \theta=179^{\circ} 30^{\prime} \theta^{\prime}=0^{\circ} 25^{\prime}$.
For the form 1, $1, \frac{5}{4} \theta=174^{\circ} 14^{\prime} \theta^{\prime}=5^{\circ} 46^{\prime}$.
For the form 1, 1 , 咅 $\theta=169^{\circ} 57^{\prime} \theta^{\prime}=10^{\circ} 3^{\prime}$.
For the form 1, $1, \frac{7}{4} \theta=166^{\circ} 44^{\prime} \theta^{\prime}=13^{\circ} 16^{\prime}$.
For the form $1,1,2 \theta=164^{\circ} 12^{\prime} \theta^{\prime}=15^{\circ} 58^{\prime}$.
For the form $1,1,3 \theta=158^{\circ} \quad 0^{\prime} \theta^{\prime}=22^{\circ} 0^{\prime}$.
For the form 1, 1, $4 \theta=154^{\circ} 46^{\prime} \theta^{\prime}=25^{\circ} 14^{\prime}$.

Combination of the Octahedron and Twenty-four Faced Trapezo-hedron.-When the faces of the octahedron $o_{1} o_{4} o_{5} o_{8}$ (Fig. 72) predominate, the solid angles of the octahedron are replaced by the four-faced solid angles of the trapezohedron, which Rednitadte-la

When the faces $a_{1} a_{2} a_{3}$ ，\＆e．（Fig．73），of the trapezohedron predominate，the three－
 faced solid angles of the trapezo－ hedron are replaced by triangula planes $o_{1}, o_{4}, o_{5}, o_{8}$ ，of the octahe dron．

If $1, m, m$ be the symbol of the twenty－four－faced trapezohedron， θ the angle of inclination of the face o_{1} to a_{1}, a_{2} ，or $a_{3} ; \theta^{\prime}$ that of their normals．

Fig． 73.

Fig． 72.

$$
\text { Cos. } \theta=\frac{1+\frac{2}{m}}{\sqrt{3\left(1+\frac{2}{m^{2}}\right)}} \quad \theta=180^{\circ}-\theta .
$$

For the form 1，矣，告 $\quad \theta=171^{\circ} 57^{\prime} \quad \theta^{\prime}=8^{\circ} 3^{\prime}$ ．
For the form 1，$\frac{3}{2}, \frac{3}{2} \quad \theta=168^{\circ} 35^{\prime} \quad \theta^{\prime}=11^{\circ} 25^{\prime}$ ．
For the form 1，2， $2 \quad \theta=160^{\circ} 32^{\prime} \quad \theta^{\prime}=19^{\circ} 28^{\prime}$ ．
For the form $1, \frac{9}{4}, \quad \frac{9}{4} \quad \theta=157^{\circ} 25^{\prime} \quad \theta^{\prime}=22^{\circ} 35^{\prime}$ ．
For the form 1，昜，㝵 $\theta=153^{\circ} 12^{\prime} \quad \theta=26^{\circ} 48^{\circ}$ ．
For the form 1，3， $3 \quad \theta=150^{\circ} 30^{\prime} \quad \theta^{\prime}=29^{\circ} 30^{\circ}$ ．
For the form 1，4， $4 \quad \theta=144^{\circ} 44^{\prime} \quad \theta^{\prime}=35^{\circ} 16^{\prime}$ ．
For the form 1，10， $10 \quad \theta=133^{\circ} 19^{\prime} \quad \theta^{\prime}=46^{\circ} 41^{\prime}$ ．
For the form 1，12， $12 \quad \theta=131^{\circ} 69^{\prime} \quad \theta^{\prime}=48^{\circ} 1^{\prime}$ ．
For the form $\mathrm{x}, 16,16 \quad \theta=130^{\circ} 19^{\circ} \quad \theta^{\prime}=49^{\circ} 41^{\prime}$ ．
For the form 1， $40,40 \quad \theta=127^{\circ} 17^{\prime} \quad \theta^{\prime}=52^{\circ} 43^{\prime}$ ．
Combination of the Octahedron and Four－faced Cube．When the faces of

Fig． 74. the octahedron， $0_{1} 0_{4} 0_{6} 0_{8}$（Fig．74），pre－ dominate，the solid angles of the octahe－ dron are replaced by the four－faced solid angles of the four－faced cube $c_{1} c_{2}$ ，\＆c．

When the faces of the four－faced cube $c_{1} c_{2} c_{3}$ \＆c．（Fig．75），predomi－ nate，the six－faced solid angles of the four－faced cube are replaced by planes of the octahedron $o_{1}, o_{4}, o_{3}, o_{B}$ ，\＆c．

If θ be the angle of inclination of

Fig． 75. the face o_{1} of the octahedron，to any of the faces $c_{1} c_{2} c_{3} c_{4} c_{3} c_{6}$ of the four－faced cube whose symbol is $1 m \infty, \theta$ that of their normals．

For the form $1, \frac{3}{4}, \infty \quad \theta=144^{\circ} 15^{\circ} \quad \theta^{\prime}=35^{\circ} 45^{\circ}$ ．
For the form $1, \frac{4}{3}, \infty \quad \theta=143^{\circ} 56^{\prime} \quad \theta=36^{\circ} 49^{\circ}$ ．
For the form $1, \frac{3}{2}, \infty \quad \theta=143^{\circ} 11^{\prime} \quad \theta^{\circ}=36^{\circ} 49^{\circ}$ ．
For the form $1,2, \infty \quad \theta=141^{\circ} 46^{\prime} \quad \theta=39^{\circ} 14^{\circ}$ ．

For the form 1, 3, ∞	$\theta=136^{\circ} 55^{\prime}$	$\theta^{\prime}=43^{\circ} 5^{\prime}$.
For the form 1, 4,	$\theta=134^{\circ} 26^{\prime}$	$\theta^{\prime}=45^{\circ} 34^{\prime}$.
For the form 1, $5, \infty$	$\theta=132^{\circ} 48^{\prime}$	$\theta^{\circ}=47^{\circ} 12^{\prime}$.

Combination of the Octahedron and Six-faced Octahedron. - When the

Fig. 76. faces $o_{1} o_{4} o_{5} o_{8}$ (Fig, 76), of the octahedron predominate, the solid angles of the octahedron are replaced by the eightfaced solid angles of the six-faced octahedron.

When the faces $e_{1} e_{2} e_{3} e_{4}$, \&c. (Fig. 77), of the six-faced octahedron predominate, each six-faced solid angle of the six-faced octahedron is replaced by a plane, $a_{1} o_{4} o_{5}$, \&c. of the octahedron.

Fig. 77.

If $1, m, n$ be the symbol of the six-faced octahedron, θ the angle of inclination of a face of the octahedron o_{1} to any of the six adjacent faces $e_{1} e_{2} e_{3} e_{4} e_{5}$ or e_{6} of the six-faced octahedron, θ^{\prime} that of their normals,

$$
\operatorname{Cos} \theta=\frac{1+\frac{1}{m}+\frac{1}{n}}{\left.\sqrt{3\left(1+\frac{1}{m^{2}}\right.} \quad \frac{1}{n^{2}}\right)} \theta=180^{\circ}-\theta .
$$

	$\theta=168^{\circ} 28^{\prime}$	$\theta^{\prime}=11^{\circ} 32^{\prime} .$
	$\theta=145^{\circ} 22^{\prime}$	
For the form 1, ${ }^{5}, 2$	$\theta=164^{\circ} 47^{\prime}$	3^{\prime}.
For the	$\theta=163^{\circ} 28^{\prime}$	$\theta^{\prime}=16^{\circ} 32^{\prime}$.
or the form 1 ,	$\theta=154^{\circ} 56^{\prime}$	25°
For the form 1, ${ }^{\text {, }}$,	$57^{\circ} 47^{\prime}$	$\theta^{\prime}=22^{\circ} 13^{\prime}$.
For the form 1, 荐,	$6^{\prime \prime}$	=28 34.
For the form 1, 2,	$\theta=151^{\circ} 52^{\prime}$	28°
or the form 1, $\frac{1}{8}$, प\%	$\theta=151^{\circ} 47^{\prime}$	$=28^{\circ}$
r the form 1, $\frac{18}{7}, 4$	$\theta=150^{\circ}$	$\theta^{\prime}=29^{\circ} 32$.
For the form 1, $\frac{7}{3}$,	$\theta=145^{\circ} 46^{\circ}$	$\theta^{\prime}=34^{\circ} 14^{\prime}$.
For the form 1, 4, 8	$\theta=139^{\circ} 52^{\prime}$	$\theta^{\prime}=40^{\circ}$

Combination of the Rhombic Dodecahedron and Three-faced Octa-

Fig. 78. hedxon.-When the faces of the rhombic dodecahedron $r_{1} r_{4} r$ stc. (Fig. 78), predominate, a three-faced solid angle of the three-faced octahedron replaces each three-faced solid angle of the rhombic dodecahedron.

When the faces of three-faced octahedron $b_{1} b_{2} b_{3}$, \&c. (Fig. 79), predominate, each edge of the three-faced octahedron, which joins its eight-faced solid angles, is replaced by a plane of the rhombic dodecahedron.

If $11 n$ be the symbol of the three-faced octahedron, θ

Fig. 79.
the angle of inclination of b_{1} to r_{1}, or b_{3} to r_{4}, θ^{\prime} that of their normals, IRIS - LILLIAD - Universite Lille 1

$$
\operatorname{Cos} \theta=\frac{2}{\sqrt{2\left(2+\frac{1}{n^{2}}\right)}} \quad \theta^{\prime}=180^{\circ}-\theta
$$

	$\theta=145^{\circ} 9^{\circ}$	
$\frac{8}{4}$	${ }^{\circ}$	
For the form 1，1，妾	$\theta=154^{\circ} 46^{\prime}$	$=25^{\circ} 14^{\prime}$ ．
1，$\frac{7}{4}$	$\theta=158^{\circ} \quad 0^{\circ}$	
1， 2	$\theta=160^{\circ} 32^{\circ}$	$\theta^{\prime}=19^{\circ} 28^{\circ}$ ．
，	$=166^{\circ} 44$	$=13^{\circ}$
1,	$\theta=169^{\circ} 58$	θ

Combination of the Rhombic Dodecahedron and Twenty－four－Faced

 Trapezohedron．－For the trapezohedron，whose symbol is $1,2,2$ ，When the faces of the rhombic dodecahedron $r_{1} r_{4} r_{5}$ \＆c．（Fig．80），predominate，

Fig． 80. the edges of the rhombic dodecahedron are replaced by planes $a_{1} a_{2} a_{3}$ ，\＆cc．of the trapezohedron．

When the faces of the same form of the trapezohedron $a_{1} a_{2} a_{3}$ ，\＆c． （Fig．81），predominate，each four－ faced solid angle of the trapezohedron， which terminates its rhombio axis，is replaced by a plane of the rhombic dodecahedron $r_{1} r_{4} r_{5}$ \＆c．

If 1 mm be the symbol of the trapezohedron，when m is greater than 2，the four－faced solid angles of the rhombic dodecahedron are replaced by the four－

Fig． 81. faced solid angles of the trapezohedron，which terminate its cubical axes．When m is less than 2，the three－faced solid angles of the rhombic dodecahedron are replaced by the three－faced solid angles of the trapezohedron．

If 1 mm be the symbol of the twenty－four－faced trapezohedron，θ the inclination of a_{1} to r_{1} or r_{b} of a_{2} to r_{1} or r_{b} \＆c．，θ that of their normals，

$$
\operatorname{Cosi} \theta=\frac{1+\frac{1}{m}}{\sqrt{2\left(1+\frac{2}{m^{2}}\right)}} \theta^{\prime}=180^{\circ}-\theta
$$

For the form 1，$\frac{4}{3}, \frac{4}{3}$	$0=148^{\circ} 5^{\circ}$	$\theta^{*}=31^{\circ} 55^{\circ}$ ．
For the form 1，$\frac{3}{2}$ ，$\frac{3}{2}$	$\theta=149^{\circ} \quad 2^{\prime}$	$\theta^{\circ}=30^{\circ} 58^{\prime}$.
For the form 1，2， 2	$\theta=150^{\circ} 0^{\prime}$	$\theta^{\prime}=30^{\circ} \quad 0^{\circ}$ ．
For the form 1，星，$\frac{9}{4}$	$\theta=149^{\circ} 51^{\prime}$	$\theta^{\prime}=30^{\circ} 9^{\prime}$ ．
For the form 1，昜，㝵	$\theta=149^{\circ} 12^{\prime}$	$\theta^{\circ}=30^{\circ} 48^{\prime}$ ．
For the form 1，3， 3	$\theta=148^{\circ} 31^{\prime}$	$\theta^{\prime}=31^{\circ} 29^{\prime}$ ．
For the form 1，4， 4	$\theta=146^{\circ} 27^{\prime}$	$\theta^{\prime}=33^{\circ} 33^{\prime}$ ．
For the form 1，10， 10	$\theta=140^{\circ} 22^{*}$	$\theta=39^{\circ} 38^{\prime}$ ．
For the form 1，12， 12	$\theta=139^{\circ} 32^{\prime}$	$\theta^{\prime}=40^{\circ} 28^{\circ}$ ．
For the form 1，16， 16	$\theta=138^{\circ} 27^{\circ}$	$\theta^{\prime}=41^{\circ} 33^{\circ}$ ．
For the form 1，40， 40	$\theta=136^{\circ} 25^{\prime}$	$\theta^{\prime}=43^{\circ} 35^{\circ}$ ．

Combination of the Rhombic Dodecahedron and Four-faced Cube.-

Fig. 82.

When the faces $r_{1} r_{4} r_{5}$, \&c. (Fig. 82), of the rhombic dodecahedron predominate, each four-faced solid angle of the rhombic dodecahedron is replaced by a fourfaced solid angle of the four-faced cube.

When the faces of the four-faced cube $c_{1} c_{3} c_{4} c_{5}$, \&c. (Fig. 83), predominate, the edges of the fourfaced cube which join its threefaced solid angles are replaced by planes of the rhombic dodecahedron $r_{1} r_{4} r_{5}$, \&c.

Fig. 83.

If $1, m, \infty$ be the symbol of the four-faced cube, θ the inclination of c_{3} or c_{4} to r_{4}, or of e_{1} or c_{2} to $r_{1}, \& c ., \theta^{\prime}$ that of their normals,

$$
\operatorname{Cos} \theta=\frac{1+\frac{1}{m}}{\sqrt{2\left(1+\frac{1}{m^{2}}\right)}} \theta^{\prime}=180^{\circ}-\theta
$$

For the form 1, $\frac{5}{4}, \infty$	$\theta=173^{\circ} 40^{\prime}$	$\theta^{\prime}=6^{\circ} 20^{\circ}$.
For the form 1, $\frac{5}{3}, \infty$	$\theta=171^{\circ} 52^{\prime}$	$\theta^{\prime}=8^{\circ} 8^{\prime}$.
For the form 1, $\frac{3}{2}, \infty$	$\theta=168^{\circ} 41^{\prime}$	$\theta^{\prime}=11^{\circ} 19^{\prime}$.
For the form 1, 2, ∞	$\theta=161^{\circ} 34^{\prime}$	$\theta^{\prime}=18^{\circ} 26^{\prime}$.
For the form 1, $\frac{5}{2}, \infty$	$\theta=156^{\circ} 48^{\prime}$	$\theta^{\prime}=23^{\circ} 12^{\prime}$.
For the form 1, 3, ∞	$\theta=153^{\circ} 26^{\prime}$	$\theta^{\prime}=26^{\circ} 34^{\prime}$.
For the form 1, 4, ∞	$\theta=149^{\circ} 2^{\prime}$	$\theta^{\prime}=30^{\circ} 58^{\prime}$.
For the form 1, 5, ∞	$\theta=146^{\circ} 19^{\prime}$	$\theta^{\prime}=33^{\circ} 41^{\prime}$.

Combination of the Rhombic Dodecahedron and Six-faced Octahedron.

Fig. 84.
-When the symbol of the six-faced octahedron is $1, m, n$, and the form such that $m n=m+n$. If the faces of the rhombic dodecahedron $r_{1} r_{4} r_{5}$ \&c. (Fig. 84), predominate, the edges of the rhombic dodecahedron are replaced or bevelled by two planes of the six-faced octahedron.

When the faces $e_{1} e_{2} e_{4}$, \&c., of the six-faced octahedron (Fig. 85), predominate, each four-faced solid angle of the six-faced octahedron is replaced by a plane of the rhombic dodecahedron.

When $m n$ is greater than $m+n$, the four-faced solid

Fig. 85. angles of the rhombic dodecahedron are replaced by the eight-faced solid angles of the octahedron.

When $m n$ is less than $m+n$, the three-faced solid angles of the rhombic dodeca-

If $1, m, n$ be the symbol of the six-faced octahedron, θ the inclination of r_{1} to e_{1} or e_{23} or of r_{4} to e_{5} or $\theta_{6}, \& c$., θ^{\prime} that of their normals,

$$
\cos \theta=\frac{1+\frac{1}{m}}{\sqrt{2\left(1+\frac{1}{m^{2}}+\frac{1}{n^{2}}\right)}} \theta=180-\theta .
$$

For the form 1, $\frac{5}{4}$, $\frac{3}{3}$	$\theta=153^{\circ} 56^{\prime}$	
For the form	$\theta=179^{\circ} 13^{\circ}$	
For the form 1, 㐌, 2	$\theta=156^{\circ} 48^{\prime}$	$\theta^{\prime}=23^{\circ} 12^{\prime}$.
For the form 1, $\mathrm{lt}^{\frac{5}{1} \text {, } \frac{18}{7}}$	$\theta=157^{\circ} 40^{\circ}$	$\theta^{\prime}=22^{\circ} 20^{\prime}$.
For the form 1, $\frac{4}{3}, 4$	$\theta=166^{\circ}$	$\theta^{\prime}=13^{\circ} 54^{\prime}$.
For the form 1,	$\theta=160^{\circ} 54^{\prime}$	9°
For the form 1,	$\theta=162^{\circ} 59^{\prime}$	$\sigma^{\prime}=17^{\circ}{ }^{\prime}$.
For the form 1, 2, 4	$\theta=157^{\circ} 47^{\circ}$	$\theta^{\prime}=22^{\circ} 13^{\prime}$.
For the form 1, y, y	$\theta=155^{\circ} 20^{\prime}$	
For the form 1, $\frac{18}{7 \%}, 4$	$\theta=155^{\circ} 12^{\prime}$	$\theta^{\prime}=24^{\circ} 48^{\circ}$.
For the form 1, ${ }^{3}$,	$\theta=157^{\circ} l^{\prime}$	$\theta^{\prime}=22^{\circ} 59^{\circ}$.
For the form 1, 4, 8	$\theta=148^{\circ} 21^{\prime}$	$\theta^{\prime}=31^{\circ} 39^{\prime}$.

Complicated Combinations of the Forms of the Cubical System.Instances of more complicated combinations of the forms of the cubical system than those already given frequently occur; but a diligent study of the simple ones, already given, will enable us to determine readily to what form each face of the crystal should be referred. The determination of the forms to which the faces of a crystal are parallel, is techaically termed "reading a crystal;" the particular species to which each form belongs is generally found by measurement of the angles with a goniometer. Many species, however, may be recognised by observing the parallelism of the edges of the faces to one another, according to what is called the zone theory. This will be described hereafter.

Fig. 86.

We have already given an instance of a complicated combination of forms in a crystal of Fluor spar.

The simple combinations of forms already given enable us to read this crystal with ease, and show that the faces $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{5}$, \&c., are faces of the cube ; $r_{1} \boldsymbol{r}_{2}$, \&c., \boldsymbol{r}_{12}, trose of the rhombic dodecahedron; $a_{1} a_{2}$ and a_{3}, are faces of the twenty-four-faced trapezohedron; $b_{1} b_{2}$ and b_{3} of a three-faced cube ; and $e_{1} e_{2} e_{3}$, \&c., e_{0} the faces of a six-faced octahedron.

It requires, however, actual measurement of the inclination of the faces to determine the particular species of the last three forms.

In some works on Mineralogy, as, for instance, the early editions of Phillips's "Mineralogy," the inclinations only of such faces are given without any reference 'o th ir

by Levy, from which Fig. 86 is talen, the faces are indicated only by their symbols, and the angles are not given.

The tables annexed to the previously described simple combinations will afford the student a ready means of recognising the species of the forms from the angular measurements given by Phillips; or of supplying those measurements to the crystals described by Levy.

The faces $a_{1} a_{2} a_{3}$, are marked a^{3} in Levy's figure; hence, they are faces of a twenty-four-faced trapezohedron, whose symbol is 133 (see symbols of this figure, p. 305).

The faces $b_{1} b_{2} b_{3}$ are marked $a^{\frac{1}{t}}$ in Levy; they are faces of a three-faced octahedron, whose symbol is 112 . The faces $e_{1} e_{2} e_{3} e_{4} e_{5} e_{6}$ are marked $i=b^{1} b^{\frac{1}{2}} b^{\ddagger}$, and are faces of a six-faced octahedron, whose symbol is $1,2,4$ (see p. 315).

The inclination of the face P_{5} to any of the faces $r_{4} r_{5} r_{6}$ or r_{12}, is 135° (p. 316).
The inclination of P_{5} to a_{3} is $154^{\circ} 46^{\prime}$, and of P_{5} to a_{1} or $a_{2}, 107^{\circ} 33^{\prime}$ ($\mathbf{p} .317$).
The inclination P_{5} to δ_{2} or δ_{3} is $131^{\circ} 49^{\prime}$, and of P_{5} to b_{1}, is $109^{\circ} 29^{\prime}(p .316$).
The inclination of P_{5} to e_{4} or e_{5} is $150^{\circ} 48^{\prime}$, to e_{3} or e_{6} is $115^{\circ} 53^{\prime}$, and to e_{1} or e_{2}, $102^{\circ} 36^{\prime}$ (p. 319).

The inclination of r_{4} to e_{5} or e_{6}, or of r_{5} to e_{4} or e_{3}, is $157^{\circ} 47^{\prime}$ (p. 325).
The above is sufficient to show how the inclinations of the faces of a crystal to each other may be determined from a knowledge of their symbols.

Sphere of Projection.-If we suppose the cube in which each of the forms of the cubical system have been inscribed, placed in a sphere, whose centre shall coincide with the centre of the cube; then, if lines be drawn perpendicular to the faces of each form from the centre of the sphere, and produced till they cut the surface of the sphere; the points where they cut the sphere will serve as indications of the faces to which they are perpendicular, or to which, in mathematical language, they are the normals. These points are called the poles of the faces of the crystal to which they are perpendicular. A map of all the forms which we have hitherto described may thus be indicated on a globe; and since the inclination of the normals to any two planes is always the inclination of the faces, less 180°; a globe, with the poles of the faces of all the forms of a crystalline substance described on it, will enable us speedily to determine the inclination of any one face to another, by simply measuring the distance between their poles, and subtracting this from 180°.

This method of mapping crystals was invented by Professor Neumann, of Königsberg.

Zones.-In the combinations of crystals, it frequently occurs that some edges are parallel to one another ; instances of this will be seen in Figs. 58, 69, 64, 65, 70, 71, and many others. The poles of the faces, whose intersections are parallel to each other, all lie in a great circle of the sphere of projection-a great circle being the intersection of a plane passing through the centre of the sphere and its surface. When three or more faces of a crystal have their poles in the same great circle, they are said to form a sone, and the great circle is ealled a zone circle.

Maps of Crystals.-A map may be drawn on a plane surface, representing the sphere of projection, with the poles of all the faces of a crystal. Such maps, when understood, convey to the mind a vast degree of information relative to the inclinations of the faces, which could not otherwise be represented, solve many problems in crystallography, and exhibit the position of the most important zones. Professor Miller, of Cambridge, haR
the last edition of Phillips's mineralogy. The authors of the present treatise take this opportunity of expressing their obligation to Professor Miller's work, to which they would beg to refer all those who would wish to master the science of crystallography.

The stereographic projection of the sphere, in which the eye of the observer is supposed to be placed on the surface of the sphere in the pole of the great circle upon which the sphere is projected, is that generally made use of for these maps. It possesses this advantage : all circles on the sphere are represented on the map by straight lines or arcs of circles.

Map of the principal Zones of the Cubical System.—With P_{1} as a ceatre, and a radius $P_{1} P_{2}$ of any convenient length, describe a circle $P_{2} P_{3} P_{4} P_{5}$.

Through P_{1} draw the diameters $P_{3} P_{6}$ and $\mathrm{P}_{2} \mathrm{P}_{4}$ perpendicular to each other.

With P_{5} as a centre, and radius equal $P_{5} P_{2}$ or $P_{5} P_{4}$, describe the arc $P_{4} r_{2} P_{2}$, cutting $P_{3} P_{1}$ in r_{2}.

With P_{3}, P_{2} and P_{4} as centres, and radii equal to the former, describe similar ares, cutting $P_{1} P_{5}$ in $r_{4}, P_{1} P_{4}$ in r_{3}, and $P_{1} P_{2}$ in r_{1}.

Let $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4}$ be the points where these arcs intersect each other.

Join $\mathrm{P}_{1} \mathrm{O}_{1}, \mathrm{P}_{1} \mathrm{O}_{2}, \mathrm{P}_{1} \mathrm{O}_{3}, \mathrm{P}_{1} \mathrm{O}_{4}$, and produce them to cut the circle $P_{2} P_{3} P_{4}$ in the points $r_{6} r_{6} r_{7}$ and r_{8}.

Figure 87, thus described, is an orthographic projection of the sphere,

Fig. 87. representing a hemisphere with the principal zone circles of the cubical system.
$\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{\mathbf{3}}, \mathrm{P}_{4}$, and P_{8}, are the poles of the faces of the cube, indicated by the same letters in the preceding figures; $o_{1} o_{2} o_{3} o_{4}$ the poles of the octahedron; $r_{1} r_{2} r_{8}$ the poles of the faces of the rhombic dodecahedron. $P_{1} r_{1}, r_{1} P_{2}, P_{2} r_{5}$, and the similar lines and arcs, represent arcs of great circles 45° in length.

If the north pole on a globe be chosen as the pole of P_{1}, the equator will represent the circle $P_{2} P_{3} P_{4}$. Let P_{2} be the point where the first meridian of longitude, $\mathbf{P}_{1} \mathbf{P}_{p}$ cuts the equator; then P_{4} will be the point where the meridian of 180°, and \mathbf{P}_{3} and \mathbf{P}_{6}, the points where the meridians of 90° east and west longitude, cut the equator.

Let $r_{1} r_{2} r_{3} r_{4}$ be the points where the circle of latitude of 45° cuts these meridians; $r_{5} r_{6} r_{7} r_{8}$ points in the equator equidistant from $P_{2} P_{5}$, \&c. Draw great circles passing through $P_{1} r_{55} P_{5} r_{1}, P_{2} r_{4}$ intersecting in o_{1}, and similar circles for the other octants of the sphere, and the map Fig. 87 will be described on the globe. If such a map be thus delineated on a black globe, or one of slate, an approximation to the angles given in the description of the faces and their combinations, in the previous part of this treatise, may be made, - particularly when the poles of other forms are marked on the globe by methods which will be presently described. The are $P_{1} P_{2}$, measured by the brazen meridian, or by the flexible brass meridian usually sold with globes, will give the inclination of two adjacent faces of the cube; the distance between r_{1} and r_{4}, simil
rhombic dodecahedron; $o_{1} o_{2}$ that of the normals, of adjacent faces of the octahedron; $P_{1} o_{1}$ of the normals of the faces of the cube to that of the octahedron, represented by those letters; $r_{1} o_{1}$ of the rhombic dodecahedron to the octahedron; and so on.

The great circles represented in Fig. 87 by the lines $P_{2} P_{4}$ and $P_{3} P_{5}$, and by the circle $\mathbf{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}$, are the zones in which the poles of the four-faced cube always lie, one pole lying in each of the arcs represented by the letters P and r, and at the same distance from P in each arc.

The poles of the four-faced cube lie, therefore, in the zone circle passing through the poles of the cube and rhombic dodecahedron.

The poles of the teventy-four-faced trapezohedron always lie in one of the arcs terminated by the letters P and o, one in each. Thus one pole will lie in $P_{1} o_{1}$, one in $\mathrm{P}_{2} o_{1}$, one in $o_{1} \mathrm{P}_{5}$, \&c., and each pole will be at the same angular distance in those arcs from $P_{1} P_{2} P_{5}$, \&c.

The poles of the three-faced octahedron always lie in the arcs terminated by the letters o and r, one in each. The poles, therefore, of every form of the twenty-fourfaced trapezohedron and three-faced octahedron lie in zones, which pass through poles of the cube octahedron and rhombic dodecahedron.

The poles of the six-faced octahedron never lie in any of the zones represented in Fig. 87. They always lie within one of the spherical triangles Por, one in each triangle, and similar situated to its angular points.

The above facts will be seen more clearly by a reference to Figs. 89 and 90 , in which the letters $a_{1} a_{2} a_{3}$ represent the poles of a twenty-four-faced trapezohedron; $b_{1} b_{2} b_{3}$, those of a three-faced octahedron; $c_{1} c_{2}, \& c$., c_{6}, those of a four-faced cube; $e_{1} e_{2} e_{3}$, \&c., e_{6}, those of a six-faced octahedron.

Describe a square (Fig. 88), $\mathrm{B}_{5} \mathrm{~B}_{6} \mathrm{~B}_{7} \mathrm{~B}_{8}$, about the circle $\mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}$, touching it in the points $\mathrm{P}_{2} \mathrm{P}_{3} \mathrm{P}_{4}$ and P_{5}. Join $\mathrm{P}_{3} \mathrm{P}_{5}, \mathrm{P}_{2} \mathrm{P}_{4}, \mathrm{~B}_{6} \mathrm{~B}_{8}$, and B_{7} B_{5}; the last two cutting the circle in the points r_{6}, r_{8}, r_{7} and r_{5}.

With B_{8} as a centre and radius equal $\mathrm{B}_{8} r_{5}$ or $\mathrm{B}_{8} r_{7}$, describe the arc $r_{7} r_{2} r_{1} r_{5}$, cutting $P_{1} P_{3}$ in r_{2}, and $P_{1} P_{2}$ in r_{1}. With B_{5}, B_{6} and \mathbf{B}_{7} as centres, and with the same radius, describe the arcs $r_{8} r_{3} r_{6}$, $r_{7} r_{3} r_{5}$, and $r_{6} r_{1} r_{8}$.

The points indicated by the letters P and r will represent the same poles as in Fig. 87. Each arc such as $r_{7} r_{2} r_{1} r_{5}$ will represent the half of a zone circle, in which all the poles of the sixfaced octahedron whose symbols are of the form $1, \frac{n}{n-1}, n$ will

Fig. 88. lie.

The six-faced octahedrons $1, \frac{3}{2}, 3 ; 1, \frac{4}{3}, 4$; and $1, \frac{64}{6}, 64$, fulfil this condition. When we 品et with the D edgelidectitéridtarte dodecahedron bevelled by planes of
the six-faced octahedron, as shown in Fig. 84; we know that the poles of the six-faced octahedron lie in this zone, and must have its symbol of the form $1, \frac{n}{n-1}, n$.

Draw the arcs $\mathrm{P}_{3} r_{1}, \mathrm{P}_{2} r_{2}$, and $\mathrm{P}_{3} r_{1}$, as in Fig. 88. Let a_{1} be the point where $r_{2} r_{1}$ cuts $\mathrm{P}_{1} r_{6}, a_{2}$ that where $r_{1} r_{6}$ cuts $r_{2} \mathrm{P}_{2}$, and a_{3} that where $r_{2} r_{6}$ cuts $\mathrm{P}_{3} r_{1}$.
$a_{1} a_{2} a_{3}$ will be poles.of the twenty-four-faced trapezohedron whose symbol is 122. These lie in the same zone as those of the six-faced octahedrons whose symbols are of the form $1, \frac{n}{n-1}, n$.

When, therefore, the intersections of the rhombic dodecahedron with a twenty-fourfaced trapezehedron make parallel edges, as in Fig. 80, we know, without measuring its angles, that the trapezohedron is that whose symbol is $\mathbf{L} 2$.

To Determine the Position of the Poles of the Faces of the Different Forms of the Cubical System on the Sphere of Projection.

The Trenty-four-faced Trapezohedron.-The angles marked θ^{*} under the article "Combination of Cube and Twenty-four-faced Trapezohedron," page 317, will give tine

Fig. 69. circle of latitude which will cut the zone $P_{1} r_{6}$ in a_{1} (Fig. 89) for each form of the trapezohedron, and the angle ϕ^{\prime} the circle of latitude, which will cut the zones $\mathrm{P}_{2} r_{2}$, and $P_{3} r_{1}$, in a_{2} and a_{3}, reckoning each circle of latitude from P_{1} as the north pole. Thus, for the form $1,2,2, a_{1}$ is the point where the circle of latitude $35^{\circ} 16^{\prime}$ cuts $\mathrm{P}_{1} \digamma_{8}$, and a_{2} and a_{3} the points where the circle of latitude $65^{\circ} 54^{\prime}$ cuts $r_{2} \mathrm{P}_{2}$ and $r_{1} \mathrm{P}_{3}$.
Three poles may be similarly described in each of the other octants of the sphere, and thus the poles of the twenty-four faces of the trapezohedron may be placed on the sphere of projection.

The Three-faced Octahedron.-Onder the article "Combination of Cube and Threefaced Octahedron," page 316, θ^{\prime} gives the circle of latitude for each particular form of the three-faced octahedron which cuts the zones $r_{1} \mathrm{P}_{3}$, and $r_{2} \mathrm{P}_{2}$ in the poles b_{1} and b_{3}, ϕ the circle of latitude which cuts the zone $\mathrm{P}_{1} r_{8}$ in b_{2}.

By means of the angles θ and ϕ^{\prime}, the poles of all the known forms of the three-faced octahedron may be fixed on the sphere of projection.

The Four-faced Cube.-Under the article "Combination of Cube and Four-faced Cube," page 318, $\boldsymbol{\theta}^{\prime}$ gives the circle of latitude which cuts the zones $P_{1} P_{2}$ and $P_{1} P_{3}$ in the poles of the four-faced cube c_{1} and c_{3}, and ϕ^{\prime} the circle of latitude which cuts the same zones in the poles c_{2} and c_{4}; the poles c_{5} and c_{6} are distant from P_{2} and P_{3} respectively θ^{\prime} degrees in the zone $\mathrm{P}_{2} \mathrm{P}_{3}$.

We can thus determine the position of the poles of all

Fig. 90. the known forms of the four-faced cube on the sphere of projection.

The Six-faced Octahedron.-The following table will enable us to fix the poles of the six-faced octahedron on the sphere of projection, considering P_{1} (Fig. 90) as the north

For the form $1, \frac{5}{4}, \frac{5}{3}$ ．Latitude of pole $e_{1}=45^{\circ}$ ．
Longitude of $e_{1}=36^{\circ} 52^{\prime}$ ．
Latitude of pole $e_{2}=55^{\circ} 33^{\circ}$ ．
Longitude of $e_{2}=30^{\circ} 58^{\circ}$ ．
Latitude of pole $e_{3}=64^{\circ} 54^{\prime}$ ．
Longitude of $e_{3}=38^{\circ} 39^{\circ}$ ．
For the form 1，麔多，64，Lat．$e_{1}=44^{\circ} 33^{\prime}$ ．Lat．$e_{2}=45^{\circ} 27^{\prime}$ ．Lat．$e_{3}=89^{\circ} 22^{\prime}$ ．
Lon．$e_{1}=0^{\circ} 55^{\prime}$ ．Lon．$e_{2}=0^{\circ} \quad 54^{\prime}$ Lon．$e_{3}=44^{\circ} 33^{\circ}$ ．
For the form 1，$\frac{3}{3} 2, \quad$ Lat．$e_{1}=42^{\circ} 2^{\prime} . \quad$ Lat．$e_{2}=56^{\circ} 9^{\prime}$. Lat．$e_{3}=68^{\circ} 12^{\circ}$ ．
Lon．$e_{1}=33^{\circ} 41$ ．Lon．$e_{2}=26^{\circ} 34^{\prime}$ ．Lon．$e_{3}=36^{\circ} 52^{\prime}$ ．
For the form $1, \frac{1}{1} 1, \frac{v^{\prime}}{y^{\prime}}$ ，Lat．$e_{1}=41^{\circ} 0^{\circ}$ ．Lat．$e_{2}=66^{\circ} 24^{\circ}$ ．Lat．$e_{3}=69^{\circ} 23^{\circ}$ ． Lon．$e_{1}=32^{\circ} 28^{\circ}$ ．Lon．$e_{2}=25^{\circ} 1^{\circ}$ ．Lon．$e_{3}=36^{\circ} 15^{\prime}$.
For the form 1，垂 4，Lat．$e_{1}=38^{\circ} 20^{\circ}$ ．Lat．$e_{2}=63^{\circ} 58^{\circ}$ ．Lat．$e_{3}=78^{\circ} 41^{\circ}$ ．
Lon．$e_{1}=18^{\circ} 26^{\prime}$ ．Lon．$e_{2}=14^{\circ} 2^{\prime}$ ．Lon．$e_{3}=36^{\circ} 52^{\prime}$ ．
For the form 1，$\frac{3}{2}, 3, \quad$ Lat．$e_{1}=36^{\circ} 42$ ．Lat．$e_{2}=57^{\circ} 41^{\circ}$ ．Lat．$e_{3}=74^{\circ} 30^{\circ}$ ．
Lon．$e_{1}=26^{\circ} 34^{\circ}$ ．Lon．$e_{2}=18^{\circ} 26^{\prime}$ ．Lon．$e_{3}=33^{\circ} 41^{\circ}$ ．
For the form 1，8，5，Lat．$e_{1}=32^{\circ} 19^{\prime}$ ．Lat．$e_{2}=69^{\circ} 32^{\prime}$ ．Lat．$e_{3}=80^{\circ} 16^{\prime}$ ．
Lon．$e_{1}=18^{\circ} 26^{\prime}$ ．Lon．$e_{2}=11^{\circ} 19^{\prime}$ ．Lon．$e_{3}=30^{\circ} 58^{\prime}$ ．
For the form 1，2，4，Lat．$e_{1}=29^{\circ} 12^{\prime}$ ．Lat．$e_{2}=64^{\circ} 7^{\prime}$ ．Lat．$e_{3}=77^{\circ} 24^{\prime}$ ．
Lon．$e_{1}=26^{\circ} 34^{\prime}$ ．Lon．$e_{2}=14^{\circ} 2^{\prime}$ ．Lon．$e_{3}=26^{\circ} 34^{\circ}$ ．
For the form 1，군，눌，Lat．$e_{1}=27^{\circ} 56^{\prime}$ ．Lat．$e_{2}=66^{\circ} 19^{\circ}$ ．Lat．$e_{3}=76^{\circ} 3^{\prime}$ ．
Lon．$e_{1}=30^{\circ} 58^{\circ}$ ．Lon．$e_{2}=15^{\circ} 15^{\circ}$ ．Lon．$e_{3}=24^{\circ} 26^{\prime}$.
For the form 1， Y $^{\prime}, 4, \quad$ Lat．$e_{1}=26^{\circ} 45^{\circ}$ ．
Lat．$e_{2}=67^{\circ} 00^{\circ}$ ．Lat．$e_{3}=77^{\circ} 6^{\circ}$.
Lon．$e_{1}=29^{\circ} 45^{\circ}$ ．Lon．$e_{2}=14^{\circ} 2^{\prime}$ ．Lon．$e_{3}=23^{\circ} 38^{\circ}$ ．
For the form 1， 7 ， $7, \quad$ Lat．$e_{1}=24^{\circ} 19^{\circ}$ ．Lat．$e_{2}=67^{\circ} 1^{\prime}$ ．Lat．$e_{3}=82^{\circ} 31^{\circ}$ ．
Lon．$e_{1}=18^{\circ} 26^{\circ}$ ．Lon．$e_{2}=8^{\circ} 8^{\prime}$ ．Lon．$e_{3}=23^{\circ} 12^{\circ}$ ．
For the form 1，4，8，Lat．$e_{1}=16^{\circ} 37^{\prime}$ ．Lat．$e_{2}=76^{\circ} 4^{\circ}$ ．Lat．$e_{3}=83^{\circ} 5^{\prime}$ ．
Lon．$e_{1}=26^{\circ} 34^{\prime}$ ．Lon．$e_{2}=6^{\circ} 23^{\prime}$ ．Lon．$e_{3}=14^{\circ} 2^{\prime}$ ．
The latitudes of the poles $e_{6} e_{5}$ and e_{4}（Fig．90）are the same respectively as those of $e_{1} e_{2}$ and e_{3} ；and the longitudes of $e_{6} e_{5}$ and e_{4} are respectively 45° greater than those of $e_{1} e_{2}$ and e_{3} ．

Hemihedral Forms of the Cubical System．－It has been already observed （page 294）that，with the exception of the cube and rhombic dodecahedron，another series of forms may be derived from the forms of the cubical system which we have

Fig．91： Another tetrahedron，$A_{1} A_{3} A_{8} A_{6}$（Fig．93）may be formed by the development of the
faces of the octahedron opposite to the angular points $A_{2} A_{4} A_{5}$ and A_{7} of the cube. This tetrahedron is precisely similar to the former in magnitude, but differs

Fig. 92.

Fig. 93.
from it in its position with regard to the cube in which is is inscribed. It is called the negative tetrahedron. With some forms, the combinations of the positive tetrahedron are different from those of the negative tetrahedron.

Faces, Angles, Edges, \&c.-The tetrahedron is bounded by four similar and equal plane faces, such as $A_{1} A_{8} A_{6}$ (Fig. 93), each of which is an equilateral triangle. It has four three-faced solid angles, which touch the alternate three-faced solid angles of the cube in which it is inscribed; six equal edges, one of which corresponds with one diagonal of the face of the cube, for every face; the cubical axes join the centres of the opposite edges; one half of each octrahedral axis coincides with that of the cube, while the other half is cut by a face of the tetrahedron at a third of its distance from the centre. The adjacent faces of the tetrahedron are inclined to each other at an angle of $70^{\circ} 32^{\prime}$, and their normals consequently at an angle of $109^{\circ} 28^{\prime}$.

Symbols.-The symbol for this form is $1 \frac{11}{2}$. Naumann's symbol for the tetrahedron is $\frac{0}{2}$; Miller's, $\kappa 111$; frequently the same symbol is used as for the octahedron, only intimating that it is a hemihedral form.

To describe a net for the Tetrahedron which may be inseribed in a given cube.
Draw a line $A_{4} A_{5}$ (Fig. 94) equal to the line $A_{4} A_{5}$ (Fig. 91); on this describe an

Fig. 94.

Fig. 95.
equilaterai trigngle A A Four such face, arranged as in Fig. 6 , with form the required net.

Crystals of the following ninerals have faces parallel to the Tetrahedron.

Blende (sulphuret of zinc).
 Boracite. Diamond.

Eulytine (bismuth blende). Fahlerz (gray copper). Pharmacosiderite (arseniate of iron).

> Rhodizite. Tennantite. Tritonite.

Twelve-faced Trapezohedxon.-The twelve-faced trapezohedron is the hemihedral form of the three-faced octahedron. It has been called also the deltoidal, or the trapezoidal dodecahedron.

As there are two tetrahedrons, one positive and the other negative, so there are two twelve-faced trapezohedrons-the positive one, Fig. 96, and the negative, Fig. 97.

The positive trapezohedron is formed by the development of the faces of the threefaced octahedron, forming its three-faced solid angles opposite to the edges $A_{1} A_{3} A_{6}$ and A_{8} of the cube (Fig. 34, p. 303); the negative trapezohedron by the development of the solid angles opposite to the edges $A_{2} A_{4} A_{5}$ and A_{7} of the cube (Fig. 34).

These trapezohedrons are in all respects similar to each other, except in their position with respect to their circumscribing cube, and their combinations with other forms.

Fig. 96.

Fig. 97.

Faces, Angles, Edges.-The twelve-faced trapezohedron is bounded by twelve similar and equal trapeziums, such as $b_{4} P_{1} 0_{1} P_{5}$ (Fig. 96), having the edge $P_{1} b_{4}$ equal $\mathrm{P}_{5} b_{4}$, and $\mathrm{O}_{1} \mathrm{P}_{5}$ equal $\mathrm{O}_{1} \mathrm{P}_{1}$. It has four three-faced solid angles which always lie in the octahedral axes of the cube, such as $O_{1}, O_{3}, O_{8}, O_{6}$ (Fig. 96), four three-faced solid angles $b_{2}, b_{4}, b_{5}, b_{7}$ (Fig. 96), more acute than the former, which lie on opposite sides of the same octahedral axes; and six four-faced solid angles, which always lie in the exiremities of the cubical axes $\mathbf{P}_{1} \mathbf{P}_{\mathbf{2}} \mathbf{P}_{\mathbf{4}}$ \&c. (Fig. 96). There are twelve shorter edges joining the solid angles marked P and 0 , and twelve longer joining the solid angles indicated by P and B.

Symbols.-The symbol for this form is $\frac{.1 m}{2}$; Naumann's is $\frac{n O}{2}$; Miller's $\kappa . h h k$.

To draw the Twelve-faced Trapezohedron. Make the same construction as for Fig. 33, page 303, and add the following, as in Fig. 98.

Fig. 98. The letters B_{5} and C have been omitted in Fig. 98; they may easily be supplied by a reference to $\mathrm{F} \mid \mathrm{ig} \mathrm{S}^{33}$. LILLIAD - Université Lille 1

In $B_{5} A_{1}$ take a point H, such that $B_{3} H=\frac{1}{2-\frac{1}{n}} B_{3} A_{1}$.
Thus if $n=2 \quad B_{5} H=\frac{1}{2-\frac{1}{2}} B_{5} A_{1}=\frac{2}{3} B_{5} A_{1}$.
Take C K in C P_{1} equal to $B_{5} H$. Join $H K_{1}$ cutting $A_{1} C$ in b_{1}.
Through b_{1} draw $b_{1} b_{2}$ parallel to $\mathbf{A}_{1} \mathbf{A}_{2}$ cutting CA_{2} in b_{2}, and $b_{1} b_{4}$ parallel to $\mathrm{A}_{1} \mathrm{~A}_{4}$ cutting $\mathrm{C} \mathrm{A}_{4}$ in b_{4}; and so on till the cube $b_{1} b_{2} b_{3}$, \&c. b_{8}, is described as shown in Fig. 98.

Joining the points $\mathrm{P}_{1}, \mathrm{P}_{2}$, \&c., $\mathrm{P}_{6}, \mathrm{O}_{1} \mathrm{O}_{8}$, \&c., $b_{2} b_{4}$, \&c., as in Fig. 96, the positive trapezohedron will be described ; and joining $\mathrm{P}_{1} \mathrm{P}_{2}$, \&c., $\mathrm{P}_{6}, \mathrm{O}_{2} \mathrm{O}_{4}$, \&c., $b_{1} b_{3}$, \&c., as in Fig. 97, the negative trapezohedron.

Axes.-The cubical axes terminate the opposite four-faced solid angles, and coincide with those of the cube. One half of each octahedral axis is cut by a three-faced solid angle at a distance $C O_{1}=\frac{1}{2+\frac{1}{n}}$ from the centre C, and the other half by the other three-faced solid angle at a distance $C b=\frac{1}{2-\frac{1}{n}}$ from C.

As n varies from 1 when this form coincides with tetrahedron to ∞ when it eoincides with the rhombic dodecahedron, CO increases from a $\frac{1}{3} \mathrm{rd}$ to $\frac{1}{2}$ of CA , and $\mathrm{C} b$ diminishes from C A to $\frac{1}{2} \mathrm{CA}$.

Inclination of Faces of the Twelve-faced Trapezohedron.-If θ be the angle of inclinntion of two adjacent faces, over an edge $\mathbf{P} b$, and ϕ the angle over the shorter edge $P 0$,

$$
\cos \theta=\frac{n(n-2)}{2 n^{2}+1} \quad \cos \phi=\frac{n(n+2)}{2 n^{2}+1}
$$

To Describe a Net for the Twelve-faced Trapezohedron, which may be inscribed in a given Cube.

Describe the figure $A_{1} P_{1} C B_{5}$ (Fig. 99) the same as $A_{1} P_{1} C B_{5}$ (Fig. 35) page 303
Take C K and H B_{5}, both $=\frac{1}{2-\frac{1}{n}}$ CP $_{1}$ 。
Join $A_{1} \mathbf{C}$ and $H K$, cutting in b and then join $P_{1} b$.

Fig. 99.

Fig. 100.

Fig. 101.

Let $P_{1} 0_{1} P_{2}$ (Fig. 100) be the same triangle as $P_{1} O_{1} P_{2}$, Fig. 36, page 304.
On $P_{1} P_{2}$ as a base describe an isosceles triangle $P_{1} b P_{2}$ (Fig. 100), having each of

Twelve such figures as $O_{1} P_{1} b P_{2}$, arranged as in Fig. 101, will give the required net.

Forms of the Twelve-faced Trapezohedron.-The form $\frac{112}{2}, \frac{20}{2}$ Naumann; к. 122 Miller; has $\mathrm{CO}=\frac{2}{5} \mathrm{CA}$, and $\mathrm{C} b=\frac{2}{3} \mathrm{CA}$. Inclination of faces over $\mathrm{Pb} 90^{\circ}$, that of their normals 90°; over the edge PO $152^{\circ} 44^{\prime}$, that of their normals $27^{\circ} 16^{\prime}$.

Faces of this form occur in Blende, Diamond, and Pharmacosiderite.
The form $\frac{11 \frac{3}{4}}{2}, \frac{\frac{3}{2} \mathrm{O}}{2}$ Naumann; к. 233 Miller; has $\mathrm{CO}=\frac{3}{8} \mathrm{CA}$ and $\mathrm{Cb}=\frac{3}{4} \mathrm{CA} . \mathrm{In}^{-}$ clination of faces over the edge $\mathrm{Pb} 82^{\circ} 9^{\prime}$, that of their normals $97^{\circ} 51^{\prime}$; over the edge PO $162^{\circ} 40^{\prime}$, that of their normals $17^{\circ} 20^{\prime}$.

Faces of this form have been observed in Fahlerz.
The Three-Faced Tetrahedron.-The three-faced tetrahedron has three faces corresponding to each face of the regular tetrahedron; it is called also the trigonal dodecahedron, triakistetrahedron, pyramidal tetrahedron, and by Haidinger kuproid.

This form is derived from the twenty-four-faced trapezohedron by the development of half its faces. The faces forming the three-faced solid angles $\mathrm{O}_{1} \mathrm{O}_{3}$, \&c., opposite the solid angles $A_{1} A_{3} A_{6}$ and A_{8} of the cube (Fig. 39, p. 305), producing the positive

Fig. 102.

Fig. 103.
three-faced tetrahedron $\mathbf{A}_{2} \mathbf{A}_{\mathbf{4}} \mathbf{A}_{5} \mathbf{A}_{\mathbf{7}}$ (Fig. 102); and those opposite the solid angles A_{2} $A_{4} A_{7}$ and \mathbf{A}_{5} (Fig. 39), the negative three-faced tetrakedron $A_{1} A_{3} A_{3} A_{6}$ (Fig. 103.)

These three-faced tetrahedrons are, in all respects, similar, except in their position and consequent modification of their combinations with other forms.

Faces, Angles, and Edges-The three-faced tetrahedron is bounded by twelve equal and similar isosceles triangles. It has four three-faced solid angles, $\mathrm{O}_{1} \mathrm{O}_{2}$ \&c., opposite the alternate three-faced solid angles of the cube in which it is inscribed, and four sixfaced solid angles $\mathrm{A}_{2} \mathrm{~A}_{4}$ \&c., which touch the other alternate three-faced solid angles of the cube. The edges are twelve shorter AO, AO, \&c., joining the three-faced and sixfaced solid angles, and six longer AA, AA \&c., each lying along a diagonal of a face of the cube, and joining the six-faced solid angles togetier.

Symbols.-The symbol for the three-faced tetrahedron is $\frac{1 \mathrm{~mm}}{2} ;$ Naumann's is $\frac{\mathrm{mOm}}{2}$; and Miller's firftit: LILLIAD - Université Lille 1

To draw the Three-faced Tetrahedron.-Describe the same figure as durected (Fig. 39, p. 305), for drawing the twenty-four-faced trapezohedron.

Join the points $\mathrm{A}_{1} \mathrm{~A}_{4} \mathrm{O}_{1} \mathrm{~A}_{5} \mathrm{~A}_{7}$, \&c., as shown in Fig. 102, for the positive three-faced tetrahedron, and the points $\mathrm{A}_{1} \mathrm{~A}_{3} \mathrm{O}_{2} \mathrm{O}_{4} \mathrm{~A}_{8} \mathrm{O}_{5}$, \&c., as shown in Fig. 103, for the negative three-faced tetrahedron.

Axes.-The cubical axes join the centres of the opposite longer edges of the three-faced tetrahedron; one half of each octahedral axis coincides with that of the cube, and the other half, as $\mathbf{C O}$ is the $\frac{m}{m+2}$ th part of CA.

Fig. 104.

Inclination of adjacent Faces.-If θ be the angle of inclination of two faces over one of the longer edges, as $\mathrm{A}_{1} \mathrm{~A}_{3}$, and ϕ over one of the shorter edges as 0 A ,

$$
\text { Cos. } \theta=\frac{m^{2}-2}{m^{2}+2} \quad \cos \phi=\frac{2 m+1}{m^{2}+2}
$$

Limits of Farm.-As m increases in value from 1 to ∞, this form varies from that of the tetrahedron to that of the cube, and CO increases from the $\frac{1}{3} \mathrm{rd}$ to the whole of CA.

To construct a Net of the Three-faced Tetrahedron which can be inseribed in a given Cube.-Draw a face $\mathrm{P}_{1} \mathrm{R}_{4} \mathrm{O}_{1} \mathrm{R}_{1}$ (Fig. 105), of the twenty-four faced trapezohedron from which the three-fuced tetrahedron is derived, as described in Fig. 42, p. 307.

Fig. 105.

Fig. 106.

Through P_{1} draw $A_{4} A_{2}$ perpendicular to $P_{1} O_{1}$.
Produce $O_{1} R_{4}$ to meet $P_{1} A_{4}$ in A_{4}; and $O_{1} R_{1}$ to meet $P_{1} A_{2}$ in A_{2}. Then the isosceles triangle $O_{1} A_{4} A_{2}$ will be a face of the required three-faced tetraluedron; and twelve such faces, arranged as in Fig. 106, will form the required net.

Forms of the Three-faced Tetrahedron. - The form $\frac{122}{2}, \frac{202}{2}$ Naumann, к. 112 Miller; has ${ }^{\circ} \mathrm{CO}=\frac{1}{2} \mathrm{CA}$. Inclination of faces over the longer edge AA $109^{\circ} 28^{\circ}$, that of their normals $70^{\circ} 32^{\prime}$; over the shorter edge OA $146^{\circ} 27^{\prime}$, normals $33^{\circ} 33^{\prime}$

This form occurs in Boracite, Eulytine, Fahlerz, and Tennantite.
The form $\frac{133}{2}, \frac{303}{2}$ Naumann, $\kappa .113$ Miller, has $\mathrm{CO}=\frac{3}{5} \mathrm{CA}$. Inclination of faces over the longer edge AA $129^{\circ} 31^{\prime}$, that of their normals $50^{\circ} 29^{\prime}$; over the shorter edge OA $129^{\circ} 31^{\circ}$, that of their normals $50^{\circ} 29^{\circ}$.-This form occurs in Blende and Fahlerz.

The form $\frac{1 \frac{3}{2} \frac{3}{2}, \frac{3}{2} \mathrm{O}^{\frac{3}{2}}}{2}$ Naumann, $\kappa .223$ Miller, has $\mathrm{CO}=\frac{\mathrm{y}}{\boldsymbol{7}} \mathrm{CA}$. Inclination of IR's's - LíLIAD - Université Lille 1
faced over the longer edge AA, $93^{\circ} 22^{\prime}$, that of their normals $86^{\circ} 38^{\prime}$; over the shorter edge $0 \mathrm{~A}, 160^{\circ} 15^{\prime}$, that of their normals $19^{\circ} 45^{\prime}$.

This form occurs in Tennantite.
Six-faced Tetrahedron.-The six-faced tetrahedron, called also the hexakistetrahedron, and by Haidinger boracitoid, is a hemihedral form derived from the six-faced octahedron, by the development of the faces constituting four of its solid sixfaced angles, opposite the alternate solid angles of the cube in which it is inscribed.

Thus, if the faces constituting the six-faced solid angles $0_{1} \mathrm{O}_{5} \mathrm{O}_{6} \mathrm{O}_{8}$, opposite the angles $A_{1} A_{5} A_{6} A_{8}$ (Fig. 50, page 311), of the cube, be produced to meet one another, the resulting figure is the positive six-faced tetrahedron (Fig. 107). If the faces of the solid

Fig. 107.

Fig. 108.
ngles $\mathrm{O}_{4} \mathrm{O}_{2} \mathrm{O}_{5} \mathrm{O}_{7}$, opposite the angles $\mathrm{A}_{2} \mathrm{~A}_{4} \mathrm{~A}_{5}$ and A_{7} (Fig. 50) of the cube be produced to meet, the resulting figure will be the negative six-faced tetrahedron (Fig. 109).

Faces, Solid Angles, and Edges.-The six-faced tetrahedron is bounded by twenty-four equal and similar scalene triangles, such as $\mathrm{P}_{1} \mathrm{O}_{1} \mathrm{~b}_{4}$ (Fig. 107). It has four six-faced solid angles $\mathrm{O}_{1} \mathrm{O}_{6}$, \&c., which are the same as those of the six-faced octahedron from which it is derived; these always lie in the octahedral axis of the cube in which the figure can be inscribed. The four six-faced solid angles $b_{2} b_{4}$, \&c. more acute than the former, always lie in the octahedral axes of the cube, but on the other side of the centre of the figure from the former; thus each octahedral axis, as $A_{1} A_{7}$ (Fig. 50) of the cube has one six-faced solid angle, such as O_{1}, on one side of its centre C, and on the other side a more acute six-faced solid angle b_{7}. There are six four-faced solid angles, $P_{1} P_{2}$ \&c., P_{6}, which terminate the cubical axes, and touch the cube in which the figure is inscribed in the centre of each face. It has twelve shorter edges joining the four-

Fifs ${ }^{109}$-LILLIAD - Université Lille 1 faced solid angles with the obtuse six-faced solid angles, such as $\mathrm{P}_{1} \mathrm{O}_{1}$ (Fig. 107) ; twelve intermediate joining the four-faced with the acute six-faced solid angles, such as $\mathrm{P}_{1} b_{4}$; and twelve longer joining the acute and obtuse six-faced solid angles, such as $\mathrm{O}_{1} b_{4}$.

To Draw the Six-faced Tetrahedron.-Describe a cube $A_{1} A_{2} A_{3} \& c ., A_{8}$ (Fig. 100); draw its octahedral axes, and in it inscribe a cube $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{2} \& c$., O_{8}, as directed in Fig. 50, page 311, such that $O_{1} O_{2}=\frac{1}{1+\frac{1}{m}+\frac{1}{n}} A_{1} A_{2}$.
rsité Lille 1

The letters $\mathrm{A}_{1} \mathrm{~B}_{5} \mathrm{E}_{1} \mathrm{D}$ and P_{1} having the same position in Fig. 109 that they have in Fig. 50, make the following additional construction.

In $B_{5} A_{1}$ take a point K such that,

$$
B_{6} K=\frac{1}{1+\frac{1}{m}-1} A_{1} B_{5} .
$$

In CP_{1} take $\mathrm{CH}=\mathrm{B}_{5} \mathrm{~K}_{1}$. Join HK cutting CA_{1} in b_{1}.
Through b_{1} draw $b_{1} b_{2}$ parallel to $A_{1} A_{2}$ and meeting CA_{2} in δ_{2}, and $b_{1} b_{4}$ parallel to $\mathrm{A}_{1} \mathrm{~A}_{4}$ meeting CA_{4} in b_{s}, and so on, till a cube $b_{1} b_{2} b_{3}$, \&c., b_{8} is inscribed in the cube $\mathrm{A}_{1} \mathrm{~A}_{2}$ \& \&c., A_{4} having $\mathrm{Cb}_{1} \mathrm{C} b_{2}$ \&c., $\mathrm{C} b_{3}$ for its octahedral axes.

Join the points $P_{1} O_{1} b_{2} \& c$., as shown in Fig. 107, for the positive six-faced tetrahedron, and $\mathrm{P}_{\mathbf{1}} \mathrm{O}_{\mathbf{2}} b_{1}$, \&c., as in Fig. 108, for the negative six-faced tetrahedron.

Symbols.-The symbol for the six-faced tetrahedron is $\frac{1 m n}{2}$, Naumann's $\frac{m 0 n}{2}$, and Miller's $\kappa . h k l$.

Axes of the Six-faced Tetrahedron.-The cubical ases join the opposite four-faced solid angles, and the octahedral axes join the obtuse four-faced solid angles to the acute four-faced solid angles opposite to them ; the former at a distance equal to the $\frac{1}{1+\frac{1}{1}}$ th part of the extremity of the octahedral axis from the oentre, and the $1+\frac{1}{m}+\frac{1}{n}$
latter at the $\frac{1}{1+\frac{1}{m}-\frac{1}{n}}$ th part of that distance.
Inclination of the adjacent faces.-If θ be the angle of inclination of two adjacent faces over the edge PO (Figs. 107 and 168), joining the four-faced and obtuse sir-faced solid angles,

$$
\operatorname{Cos.\theta }=\frac{1+\frac{2}{m n}}{1+\frac{1}{m^{2}}+\frac{1}{n^{2}}}
$$

If ϕ be the angle of inclination over the edge $0 b$, joining the obtuse and acute sixfaced solid angles,

$$
\cos \phi=\frac{\frac{2}{m}+\frac{1}{n^{2}}}{1+\frac{1}{m^{2}}+\frac{1}{n^{2}}}
$$

If ψ be the angle of inclination over the edge Pb , joining the four-faced and acute six-faced solid angles,

$$
\operatorname{Cos} \psi=\frac{1-\frac{2}{m n}}{1+\frac{1}{m^{2}}+\frac{1}{n^{2}}}
$$

Limits of the form of the six-faced tetrahedron.-As m and n approach in magnitude to nnity, the six-faced octahedron approximates to the tetrahedron; and when m and n
row. IV.
IRIS - LILLIAD -Úniversité Lille 1
are both equal to unity, it becomes the tetrahedron. In this case the six faces forming the obtuse six-faced solid angle, as well as the edges PO and 0 , all he in the same plane; and the edges, such as $\mathrm{P}_{1} b_{4}$ and $\mathrm{P}_{1} b_{2}$, in the same straight line.

As m and n increase in magnitude and equality to each other, the six-faced tetrahedron approximates to the cube; and when n and n are both infinitely great, it coincides with it. In this case the four planes which form each four-faced solid angle lie in the same plane.

As m approaches to unity, while n increases in magnitude, the six-faced tetrahedron approximates to the rhombic dodecahedron; and when m equals unity, and n is infinitely great, it becomes the rhombic dodecahedron. In this case the planes on each side of the edge $0 b$ lie in the same plane.

When m equals unity, while n remains finite, the six-faced tetrahedrow becomes the twelve-faced trapezohedron; and the faces on each side of the edge $0 b$ lie in the same plane.

When m and n are equal to each other, both finite and greater than unity, the sice faced tetrahedron becomes the three-faced tetrahedran, and the faces on each side of the edge PO lie in the same plane.

When m remains finite, and n becomes infinite, the six-faced tetrahedron becomes the four-faoed cube, and the faces each become equal and similar isosceles triangles.

From the above it will be seen that the cube, mhombic dodecahedron, and, four-faced cube, are limiting forms of the hemihedral form, the six-faced tetrahedron.

To describe a Net for the Six-faced Tetrahedren whick may be inseribed in a given Cube.
Draw $A_{1} P_{1} B_{5} C$ (Fig. 110), intersected by $A_{1} C$ and ED, meeting in O_{1}, as directed for Fig. 52, page 313.

$$
\text { Take } C H=\frac{1}{1+\frac{1}{m}-\frac{1}{6}} P_{1} C
$$

Make $\mathrm{B}_{5} \mathrm{~K}=\mathrm{CH}$. Join KH , outting $\mathrm{A}_{1} \mathbf{C}$ in b_{1}.
Join $P_{1} O_{1}, P_{1} b_{1}$.
Produce $A_{1} B_{5}$ to A_{5} and $P_{1} C$, to $P_{4} \quad$ Make $B_{5} A_{5}=A_{1} B_{5}, C P_{6}=P_{1} C$.
Take $B_{5} \mathbf{E}^{\prime}=B_{5} E$, and $C D^{\prime}=\mathbf{C D}$.
Join $E^{\prime} D^{\prime}, A_{5} P_{s}$.

Fig. 110.

Fig. 111.

Fig. 112.

In $\mathrm{E}^{\prime} \mathrm{D}^{\prime}$ take $\mathrm{E}^{\prime} \mathrm{O}_{5}=\mathbf{E} \mathbf{O}_{1}$.
Join $b_{i} \mathrm{O}_{5}$,
Then Fig. 111, draw $b_{0}=b_{1} \mathrm{O}_{5}$ of Fig. 110, and on it describe a triangle $\mathrm{P} b_{0} o_{\text {, }}$

Then Pbo (Fig. 111), is a face of the six-faced tetrahedron required, and twentyfour such faces arranged, as in Fig. 112, will give the required net.

Forms of the six-faced Tetrahedron.-The form $\frac{1, \frac{5}{5}, 5}{2}, \frac{5,0, \frac{5}{2}}{2}$ Naumann, and c. $5,3,1$ Miller, is the only one which has been observed in nature.

Its obtuse six-faced angles cut the octahedral axes of the cube at a distance $=3$ and its acute six-faced angles at a distance $=\frac{5}{7}$ of the centre, from the extremity of the octahedral axis.

$$
\theta=152^{\circ} 20^{\circ} \phi=152^{\circ} 20^{\prime}, \text { and } \psi=122^{\circ} 53^{\circ} .
$$

Faces parallel to this form have been observed in crystals of boracito.
Femihedral Forms with inclined Faces.-The preceding hemihedral forms which we have considered, may be referred to the tetrahedron as their type, and may all be derived, as we have shown, from the six-faced tetrahedron; none of these forms have a face parallel to any other face of the same form. There are two hemihedral forms with parallel faces.

Hemihedral Forms with Parallel Faces. One hemihedral form with parallel faces is derived from the four-faced oube, and is a twelve-faced pentagon; the other is obtained from the six-faced octahedron, and is a twenty-four faced trapezohedron.

The Pentagonal Dodecahedron.-The pentagonal dodecahedron, called also the pyritoid, has twelve pentagonal faces, and is a hemihedral form of the four-faced cubs derived from it, according to the following laws:

The alternate faces of each six-faced solid angle $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$, \&o., O_{6} (lig. 44, page 308), of the four-faced cube, are produced to meet each other.

Thus the faces $P_{1} \mathrm{O}_{2} \mathrm{O}_{4}, \mathrm{P}_{5} \mathrm{O}_{1} \mathrm{O}_{6}$, and $\mathrm{P}_{2} \mathrm{O}_{1} \mathrm{O}_{2}$ (Fig. 44), of the angle O_{1}, and three similarly situated faces of the other six-faced solid angles, produce the positive pentagonal

Fig. 113.

Fig. 114.
dodecakedron (Fig. 113). The remaining faces $\mathrm{O}_{4} \mathrm{O}_{1} \mathrm{P}_{6}, \mathrm{O}_{5} \mathrm{O}_{1} \mathrm{P}_{5}$, and $\mathrm{O}_{2} \mathrm{O}_{1} \mathrm{P}_{1}$, and thoes similarly situated to them, produce the negative pentagonal dodecahedron (Fig. 114).

Faces, Solid Angles, and Edges.-This form is bounded by twelve equal and similar pentagonal faces, such as $b_{1} 0_{1} b_{9} 0_{4} b_{5}$ (Fig. 113). These pentagonal faces have always four of their edges equal to each other, the fifth, $b_{1} b_{3}$, generally unequal to the others. The only case in which $b_{1} b_{3}$ is equal to the others, is that of the regular pentagonal dodecahedron, which is one of the five platonic bodies; this form has not been observed in nature.

The pentagonal dodecahedron has eight threc-faced soldd angles which always lie in the

And twelpe three-faced solid angles which do not lie in any one of the three species of axes belonging to the cube. They always lie, however, in a face of the circumscribing cube. There are twenty-four edges (O b) joining the three-faced solid angles, bounded by equal plane angles lying in the octahedral axes, with the three-faced solid angles bounded by unequal plane angles, and six edges (bb) joining the two species of three-faced solid angles together. These six edges ($b b$) always lie in a face of the circumscribing cube, in a line passing through the centre of the face parallel to one of "its edges, and the cribical axes always pass through the centre of this edge.

Symbols.-The symbol for the pentagonal dodecahedron is $\frac{1 m \infty}{2}$, Naumann's $\frac{\infty m}{2}$, and Miller's $\pi . h k o$.

To draw the Pentagonal Dodecahedron.-Prick off the points $\mathbf{P}_{1} \mathbf{P}_{2}$ \&c., $\mathbf{P}_{6}, \mathbf{B}_{1} \mathbf{B}_{\mathbf{2}} \mathbf{B}_{3}$, \&c., B_{12}, and $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3} \mathrm{O}_{4}$, \&c., O_{8}, of Fig. 45, page 308.

Join $P_{1} P_{6}, P_{2} P_{4}$, and $P_{5} P_{3}$.
Also $B_{1} B_{39}, B_{2} B_{4}, B_{1} B_{9}, B_{5} B_{6}$, \&c., $\mathrm{O}_{1} \mathrm{O}_{2}, \mathrm{O}_{1} \mathrm{O}_{4}$, \&cc. (Fig. 115).

Along each of these lines take $P_{1} b_{1}, P_{2} b_{2}$ \&c., $=\left(\frac{1}{m}-1\right) P_{1} B_{1},\left(\frac{1}{m}-1\right) P_{2} B_{2}$ \&c.

The portions $b_{1} B_{1}, b_{2} B_{3}$ are omitted in Fig. 115.
Then joining the points $b_{1} b_{3} b_{9}$, with $0_{1} O_{4}, b_{3} b_{11} b_{9}$, with $\mathrm{O}_{5} \mathrm{O}_{1}$, \&c., as in Fig. 113, the positive twelve-faced pentagon will be delineated. The negative twelve-faced pentagon will be drawn by joining $\mathrm{O}_{1} \mathrm{O}_{2}$ with $b_{4} b_{2}$ and b_{5}, and O_{1} and O_{5} with $b_{3} b_{10}$ and b_{6}, \&c., as in Fig. 114.

Axes.-The cubical axes join the centres of the

Fig. 115. opposite six unequal edges; the octahedral axss join the opposite three-faced solid angles contained by equal plane angles.

Inclination of Adjacent Faces.-If θ be the angle of inclination of two adjacent faces measured over the edge $b b_{1}$, and ϕ the angle of inclination of adjacent faces over the edge $0 b$, then

$$
\cos \theta=\frac{1-\frac{1}{m_{2}}}{1+\frac{1}{m_{2}}} \text { and } \cos \phi=\frac{\frac{1}{m}}{1+\frac{1}{m_{2}}}
$$

Linits of the Form.-As m increases from 1 to ∞, the pentagonal dodecahodron varies from the rhombic dodecahedron to the cube. The nearer the pentagonal dodecahedron approaches to the rhombic dodecahedron, or m to 1 , the smaller becomes the edge $b b$, till, when $m=1$, it vanishes altogether; and the greater m becomes, or the form approximates to that of the cube, the nearer the edge $6 b$ approaches to two, or the length of the edge of the circumscribing eube.

To construct a Net of the Treloe-frced Pentagon which can be inscribed in a given Cube. -The same construetion being made (Fig. 216), as directed for Fig. 46, page 309, add the following:-

Let H be the point where $E O_{1}$ cuts $B_{1} P_{2}$.
Take b in $B_{1} P_{v}$, so that $B_{1} b=\frac{1}{m} B_{1} P_{1}$.
Take $C L=P_{1} b$. Join $b L, b P_{s}$, the latter cutting $E H$ in M.
$\mathbf{J}_{\text {oin }} \mathbf{L} \mathbf{M}$. 'Lake $\mathbf{L} \mathbf{S}=\mathbf{L} \mathbf{M}$. Through \mathbf{S} draw $\mathbf{S} \mathbf{T}$ parallel $\mathbf{A}_{\mathbf{A}} \mathbf{B}_{\mathbf{\prime}}$; meeting $\mathbf{E} \mathbf{H}$ in T, and join bfis - LILLIAD - Université Lille 1

Then (Fig. 117) draw P $0=P_{1} 0_{1}$, Fig. 116. On P 0 describe the triangle P b 0 , нaving its side $b 0=T b$, Fig 116, and the side $P b=P_{1} b$, Fig. 116.

Fig. 116.

Fig. 117.

Fig. 118.

On the other side of $\mathbf{P} \mathbf{0}$ (Fig 117), describe the triangle $\mathbf{P} b^{\prime \prime}, 0$ having the side $0 b^{\prime \prime}=\mathrm{T} \delta$, Fig. 116, and side $\mathbf{P} b^{\prime \prime}=P_{2}$, Fig. 116.

On the opposite side of $\mathrm{P} b^{\prime \prime}$ describe the figure $\mathbf{P} \boldsymbol{b}^{\prime} 0^{\prime} b^{\prime \prime}$, similar and equal to P $b 0 b^{\prime \prime}$. Then $b^{\prime} b 0 b^{\prime \prime} 0^{\prime}$ is a face of the required form, and twelve such pentagonal faces, arranged as in Fig. 118, will give the required net.

Forms of the Pentagoral Dodecahedron.-The form $\frac{12 \infty}{2} \frac{\infty 02}{2}$ Naumann, and r. 210 Miller, has

$$
\theta=126^{\circ} 52^{\circ}, \text { and } \phi=113^{\circ} 35^{\prime},
$$

the angles of their normals being $53^{\circ} 8^{\prime}$, and $66^{\circ} 25^{\circ}$.
This form occurs in crystals of Cobaltine, Gersdorfite, and Pyrite.
The form $\frac{13 \infty}{2}, \frac{\infty 03}{2}$ Naumann, and $\pi .310$ Miller, has

$$
\theta=143^{\circ} 8^{\prime}, \text { and } \phi=107^{\circ} 27^{\prime},
$$

the angles of their normals being $36^{\circ} 52^{\prime}$, and $72^{\circ} 33^{\circ}$.
It occurs in Hauderite and Pyrite.
The form $\frac{1 \frac{y}{8} \infty}{2} \frac{\infty 0 \text { 星 }}{2}$ Naumann, $\pi .320$ Miller, has

$$
\theta=112^{\circ} 37^{\prime}, \text { and } \phi=117^{\circ} 29^{\prime},
$$

the angles of their normals being $67^{\circ} 23^{\prime}$, and $62^{\circ} 31^{\circ}$.
Occurs in Pyrite.
The form $\frac{14 \infty}{2}, \frac{\infty 04}{2}$ Naumann, $\pi, 410$ Miller, has

$$
\theta=151^{\circ} 56^{\prime}, \text { and } \phi=103^{\circ} 37^{\prime} ;
$$

the angles of their normals being $28^{\circ} 4^{\prime}$, and $76^{\circ} 23^{\circ}$.
It occurs in crystals of Cobaltine.
The Irregular Twenty-four-faced Trapezohedron.-Called the irregular twenty-four-faced traperohedron because its trapezoidal faces have only two edges equal to each other, and to distinguish it from the tecenty-four-faced trapezohedron, which is a holohedral form, and has its four edges equal to each other in pairs. This form is called also the Trapezoidal icositetrahedron, the Dyakis dodecahedron, the Diploid, and the Tiplopyritoid.

IRIS - LILLIAD - Université Lille 1

It is derived from the six-faced octahedron by the development of half its taces, according to the following law.

Fig. 119. Each alternate face of the sixfaced solid angle O_{1} (Fig. 49, page 311), and the similarlysituated faces of the other seven six-faced solid angles are produced, till they meet to form the positive twenty-four-faced trapszohedron (Fig. 119). The remaining faces, when produced, form the negatipe twenty-

Fig. 120.
four-faced trapezohdron (Fig. 120).
Faces, Solid Angles, and Edges.-This form is bounded by twenty-four irregular trapeziums, such as $\mathrm{P}_{1} b_{2} o_{1} b_{11}$ (Fig. 119), having only two sides equal, as $o_{1} b_{2}$ and $o_{1} b_{11}$ It has six four-faced solid angles, such as $\mathbf{P}_{1} \mathbf{P}_{2}$, \&c., \mathbf{P}_{61} which terminate the opposite extremities of the cubical axes, and touch the centre of each face of the circumscribing cube. Eight three-faced solid angles, $o_{1} o_{2}, \& c ., o_{8}$, which always lie in the octahedral axes of the circumscribing cube. Twelve four-faced solid angles, $b_{1} b_{2}$, \&c., which do not lie in the cubic, octahedral, or rhombic axes of the cube. It has twelve shorter edges, $\mathrm{P}_{1} b_{1}, \mathrm{P}_{1} b_{2}$, \&o. ; twelve longer, $\mathrm{P}_{1} b_{11}, \mathrm{P}_{6} b_{12}, \& c$.; and twenty-four intermediate edges, $\theta_{1} b_{2}, o_{1} b_{11}$, \&c.

Symbols.-The symbol for this form is $\left[\frac{1 m n}{2}\right]$. Naumann $\left[\frac{m 0}{2} n\right]$, and Miller $\pi, h k \neq$

To Draw the Irregular Twenty-four-faced Trapesohedron--Prick off the points $\mathbf{P}_{1} \mathbf{P}_{2}$

FYg. 121. $\& c ., \mathrm{P}_{6}, o_{1} o_{2}, \& c ., o_{8}, \& \mathrm{C}$, from Fig. 51, page 312, for the Figs. 121 and 122. Join CP $_{1}$ CP $_{2}$, \&c. $c_{1} o_{1} \theta_{3} o_{3}$, \&c. In CP $P_{1}, C P_{2}$, \&c., $C P_{6}$, take points $e_{1} e_{2}$, \&c., e_{4} (Figs. 121 and 122), such that

$$
\theta \theta=\frac{1-\frac{1}{n}}{1-\frac{1}{m n}} \text { CP. }
$$

In Fig. 121, through e_{1}

Fig. 122.
and e_{6} draw $b_{1} b_{2}$, and $\delta_{7} \delta_{8}$, parallel to $C P_{2}$; through e_{2} and $e_{4}, \delta_{3} b_{4}$, and $b_{5} b_{6}$, parallel to $C P_{3}$; and through e_{5} and $e_{3}, b_{11} b_{12}$, and $b_{5} b_{10}$ parallel to $C P_{1}$. Also, in Fig. 122, draw $b_{13} b_{14}$, and $b_{23} b_{24}$, parallel to $\mathbb{C} P_{3} ; b_{12}$ and b_{18}, and $b_{18} b_{16}$ parallel to $\mathbb{C} P_{1}$; and $b_{19} b_{20}, b_{21} b_{22}$, parallel to $\mathrm{CP}_{\mathbf{2}}$.

Throughout both flgures take $\bar{b}=\frac{1-\frac{1}{m}}{1-\frac{1}{m n}}$ C f for the lines parallel C P_{1} or © P_{2}, and half that quantity for those parallal $\boldsymbol{C P}_{5}$.

Join $P_{1} a_{1}, b_{2} b_{11}$, \&c., Fig. 119, for the positive trrenty-four-faced trapezohedron, and

Axes.-The cubicat ax
the octahedral the opposite six-faced solid angles, and are equal to the axes of the six-faced octahedron, from which the form is derived.

Inclination of the Adjacent Faces.-If θ be the angle of inclination of two adjacent angles over the shorter edge $\mathbf{P} b_{1}$,

$$
\cos \theta=\frac{1-x^{1} x+n^{\frac{1}{2}}}{1+\frac{2}{m^{2}}+\frac{1}{n^{2}}}
$$

ϕ the angle of inclination of two adjacent faces over the longer edge $P_{1} \boldsymbol{b}_{11}$,

$$
\cos \phi=\frac{1+\frac{1}{m^{2}}-\frac{1}{n^{2}}}{1+\frac{1}{m^{2}}+\frac{n^{2}}{2}}
$$

And if ψ be the angle of inclination of two adjacent faces over edge $0 b$,

$$
\cos . v=\frac{\frac{1}{m}+\frac{1}{n}+{ }_{m n}^{1}}{\frac{m^{2}}{2}+\frac{1}{n}}
$$

Limits of the Form of the Irregular Twenty-four-faced Trapesohedron.-As m and n approach in maßnitude to unity, the irregular twenty-four-faced trapezohedron approximates to the octahedron; and when m and n both equal unity, it becomes the octahedron. In this case the planes constituting the threo-faced solid angle all lie in the same plane, and the edges, such as $P b$ and $b \mathrm{P}$, are in the same line.

As and n both increase in magnitude, and finally become infinitely great, this form approximates to and becomes the cube. In this case, the four planes forming the forer-faced solid anglss at the extremity of the cubic axes lie in the same plane, and the edges $0 b$ and $b o$ in the same line.

As m approaches to umity while n increases in magnitude, and becomes finally infinitely great, the form approaches that of the rhombic dodecahedron; in this case two planes, on each side one of the longer edges $\mathbf{P} b$, approach to and finally become in one plane, while the ahortest edge, $b \mathbf{P}$, becomes ahorter and shorter, and finally vanishes. When m equals unity, while n remains finito, the form becomes the three-faced octahedron, and the trapezoidal faces change from trapeziums to isosceles triangles. When m and n equal each other, are both finite and greater than unity, the irregular twenty-four-faced trapezohedion becomes the regular twenty-four-faced trapezohedron, and the irregular trapariums regular ones.

When m remains finite, and is greater than unity, and n becomes infinite, the form becomes that of the pentagoral dodecahedron, and the planes on each side the longer edge $\mathbf{P} b$ lie in the same place.

From what has been said of the limits of the above form, it appears that each of the holohedral forms of the cubical system, with the exception of the four-faced cube and six-faced octahedron, which have their own hemihedral forms with parallel faces, may be regarded as limiting forms of the hemihedral forms with parallei faces.

As yet, the two hemihedral forms with parallel faces have only been observed in nature combined with one another and those of the holohedral forms, with the exception of the six-faced oetahedron and four-faced cubv, but never with any of the hemihedral forms with inclined faces.

To describe a Net for the Irregular Troenty-four faced Trapezohedron.-Describe the same figure (Fig. 123) as directed page 313, Fig. 52, with the exception of the lines

Take $C N=\frac{1-\frac{1}{n}}{1-\frac{1}{m s}} C P_{1}$ and $P_{\mathbf{z}} R=C N$. Join $N R$.
Also take $P_{1} K=\frac{1-\frac{1}{m}}{1-\frac{1}{m n}} P_{1} B_{1}$ and $C L=P_{1} K$. Join $K L$, cutting $N R$ in $b_{\text {: }}$
Join P_{1} b. Let M be the point where $E 0_{1}$ produced cuts $C B_{1}$.
Join LM. Take LS in $\mathrm{P}_{2} \mathrm{~B}_{5}=\mathrm{L} M$.
Through S draw S T parallel $A_{1} B_{5}$ meeting $E M$ in T, and join $T b$.

Fig. 123.

Fig. 124.

Fig. 125.

Then (Fig. 124) draw $\mathrm{P} 0=\mathrm{P}_{1} \mathrm{O}_{1}$ (Fig. 123). On it describe a triangle P b 0 , having the side $\mathrm{P} b=\mathrm{P}_{1} b$ (Fig. 123), and $b 0=\mathrm{T} b$ (Fig. 123).

On the other side of PO describe the triangle PCO having the side $\mathrm{PC}=b \mathrm{P}_{2}$ (Fig. 123), and $0 \mathrm{C}=b \mathrm{~T}$ (Fig. 123).

Pb0C will be the face of the irregular twenty-four faced trapezohedron, and twentyfour such faces, arranged as in Fig. 125, will form the required net.

Forns of the Irregular Twenty-four faced Trapezohedron which occur in Nature.The form $\left[\frac{1, \frac{4}{4}, \frac{5}{8}}{2}\right],\left[\frac{\frac{5}{8} 0 \frac{4}{4}}{2}\right]$ of Naumann, and $\pi 5,4,3$ of Miller has

$$
\theta=111^{\circ} 6^{\prime} \quad \phi=129^{\circ} 48^{\prime} \quad \psi=160^{\circ} 3^{\prime}
$$

Normals, whose faces are inclined at θ, ϕ, and $\psi, 68^{\circ} 54^{\prime} ; 50^{\circ} 12^{\prime}$ and $19^{\circ} 57$. Faces parallel to this form occur in crystals of Pyrite.

The form $\left[\frac{1, \frac{4}{3}, 2}{2}\right],\left[\frac{203_{3}}{2}\right]$ of Naumann, and $\pi 4,3,2$ of Miller, has

$$
\theta=112^{\circ} 17^{\prime} \quad \phi=136^{\circ} 24^{\circ} \quad \text { and } \psi=153^{\circ} 43^{\prime}
$$

- Inclination of normals $67^{\circ} 17^{\prime}, 43^{\circ} 36^{\prime}$, and $26^{\circ} 17^{\prime}$.

Faces parallel to this form oceur in Linneite.
The form $\left[\frac{1, \mathrm{Hf}, \mathrm{y}}{2}\right],\left[\frac{4 / 0}{2}\right]$ of Naumann, and $\pi .4,3,2$ of Miller, has

$$
\theta=112^{\circ} 47^{\prime} \quad \phi=138^{\circ} 45^{\prime} \quad \text { and } \psi=151^{\circ} 28^{\prime}
$$

Inclination of normals $67^{\circ} 13^{\prime}, 41^{\circ} 15^{\prime}$, and $28^{\circ} 32^{\circ}$.
Faces parallel to this form occur in Linneite.
The form $\left[\frac{1, \frac{3}{2}, 3}{2}\right],\left[\frac{30}{2}\right]$ of Naumann, and $\pi 3,2,1$ of Miller, taa

$$
\theta=119^{\circ} 4^{\prime} \quad \phi=149^{\circ} 00^{\prime} \quad \text { and } \psi=141^{\circ} 4 T
$$

Inclination of normals $64^{\circ} 37^{\prime}, 31^{\circ} 00^{\prime}$, and $38^{\circ} 13^{\prime}$.

The form $\left[\frac{1, \frac{5}{3}, 5}{2}\right],\left[\begin{array}{c}50 \\ \frac{0}{2} \\ \frac{3}{5}\end{array}\right]$ of Naumann, and $\pi, 5,3,1$ of Miller, has

$$
\theta=119^{\circ} 4^{\circ} \quad \phi=160^{\circ} 32^{\circ} \quad \text { and } \psi=131^{\circ} 5^{\circ}
$$

Inclination of normals $60^{\circ} 56^{\prime}, 19^{\circ} 28^{\prime}$, and $48^{\circ} 55^{\prime}$.
Faces parallel to this form occur in Pyrite.
The form $\left[\frac{1,2,4}{2}\right],\left[\frac{402}{2}\right]$ of Naumann, and $\pi, 4,2,1$ of Miller, has

$$
\theta=128^{\circ} 15^{\prime} \quad \phi=154^{\circ} 47^{\prime} \quad \text { and } \psi 131^{\circ} 49^{\circ}
$$

Inclination of normals $51^{\circ} 45^{\prime}, 25^{\circ} 13^{\prime}$, and $48^{\circ} 11^{\circ}$.
Faces parallel to this form occur in Pyrite.
Combination of the Cube and Tetrahedron, - When the faces of the cube P P, \&c. (Fig. 126), predominate, the alternate solid angles of the cube are replaced by four triangular planes, 00 , \&o., which are parallel to those of the

Fig. 126.

Fig. 127.
inscribed tetrahedron. When the faces 00 , \&c. (Fig. 127), of the tetrahedron predominate, each soid edge of the tetrahedron is replaced or truncated by a plane of the cube $\mathrm{P}_{1} \mathbf{P}$, \&o.

Combination of Cube and Twelve-faced Trapezohedron.- When the faces of the cube P P, \&c. (Fig. 128), predominate, the alternate solid angles of the cube are replaced by an obtuse three-faced solid angle $b b b$ of the trapesohedron, pro-

Tig. 128.

Fig. 129.

faced trapezohedron $b \leqslant 6$ (Fig. 129) predominate, each four-faced solid angle of the trapezodedron is replaced by a rhomboidal plane of the cube P P, \&c.

Combination of Gube and Three-faced Tetrahedron.-When the faces of the cube P P, \&c. (Fig. 130), predominate, the alternate solid angles of the cube are

Pig. 130.

Fig. 131.
replaced by a three-faced solid angle of the three-faced tetrahedron, presenting three triangular planes a a a for each solid angle replaced.

When the faces of the three-faced tetrahedron a a a predominate (Fig. 131), the six longer edges of the three-faced tetrahedron are replaced by a plane of the cube PPP.

Combination of Cube and Six-faced Tetrahedron.- When the faces of the cube P P, \&c. (Fig. 132), predominate, the alternate solid angles of the cube are each replaced by a six-faced solid angle e e e, \&c., of the six-faced tetrahedron, consequently each alternate solid angle of the cube is replaced by six triangular planes.

Fig. 132.

Fig. 133.

When the faces of the six-faced tetrahedron $\in \in($ (Fig. 133) predominate, each fourfaced solid angle of the the three-faced tetrahedron is replaced by a rhombic plane $\mathbf{P} \mathbf{P}$, \&c., of the cube.

In the precoding combinations, it will be seen by comaparing Figures 126, 128, 130, and 132 with $55,60,62$, and 66 , that half the solid angles of the cube are replaced by the same planes, when combined with the hemihedral forms with inclined faces; that

Combination of the Positive and Negative Tetrahedron-In this comcombination (Fig. 134), the fous three-faced solid angles of the positive tetraliedron e a, \&c., whose faces predominate, are replaced by triangular planes $\sigma^{\prime} \theta^{\prime}$, \&c.. of the negative tetrahedron. The four faces of the predominating tetrahedron o o, \&c., are irregular hexagons. As the faces $o^{\circ} o^{\circ}$, \&c., become larger, three edges of the hexahedron diminish; and when $0^{\circ} 0^{\circ}, \& c$., becomes so great that these edges disappear, the combination resolves itself into the regular octahedron.

This combination occurs in crystals of Blende (sulphuret of zinc), Boracite, Helvin, and Tennantite.

Fig. 134.

Combination of the Tetrahedron and Rhom-
 bic Dodecahedron.-In this combination (Fig. 135), the three-faced solid angles of the tetrahedron are each replaced by a three-faced solid angle of the rhombic dodecahedron; so that we have each solid angle of the tetrahedron replaced by three triangular faces $r r r$, of the rhombic dodecahedron, each triangular face being an isosceles triangle. When the faces of the rhombic dodecahedron predominate, half its three-faced solid angles are replaced by triangular planes of the tetrahodron, like those represented in Fig. 69.

Fig. 185.
Combination of the Tetrahedron and Twelve-faced Trapezohedron.When the faces of the twelve-faced trapezohedron b bb, \&c. (Figs. 136 and 137), predominate, the obtuse three-faced solid angles of the positive twelve-faced trapseohedron are replased by triangular planes oo, \&c., of the positive tetrahedron (Fig. 136), and its

Fig. 136.

Fig. 137.
acute three-faced solid angles by trianguler planes oo, \&c. (Fig. 137), of the megatios etrahedron.

When the faces of the positive tetrahedron oo, \&c. (Figs. 138 and 139), predominate, the three-faced solid angles of the positive tetrahedron are replaced by the acute three-faced solid angles $b b b$, \&c., of the positive twelve-faced trapezohedron (Fig. 138), and by the obtuse three-faced solid angles $b b b$, \&cc., of the negative twelve-faced trapezohedron (Fig. 139.)

Fig. 138.

Fig. 139.

In Figs. 136 and 137, the faces of the tetrahedron oo, \&c., are equilateral triangles; those of the trapezohedron $b b$, \&c., irregular pentagons. In Figs. 138 and 139, the faces of the tetrahedron oo, \&c., are irregular hexagons, and those of the trapezohedron $b b$, \&c., isosceles triangles.

Combination of the Tetrahedron and Three-faced Tetrahedron.When the faces of the positive three-faced tetrahedron a a a, \&c. (Figs. 140 and 141), predominate, the three faced solid angles of the three-faced tetrahedron are replaced by

Fig. 140.

Fig. 141.
triangular planes oo, \&c. (Fig. 140) of the positive octahedrom, and its six-faced solid angles by irrequlpis Pantaap

When the faces of the positive octahedron oo, \&o. (Figs. 142 and 143), predominate, its solid edges are each replaced by two planes of the positive three-faced tetrahedron, as $a \operatorname{a}$, \&c. (Fig. 142), and its three-faced solid angles by three trapezoidal

Fig. 142.

Fig. 143.
planes a a, \&c. (Fig. 143), forming the three-faced solid angles of the nsgative threefaced tetrahedron.

Combination of the Tetrahedron and 8ix-faced Tetrahedron.-When the faces of the six-faced tetrahedron e e e, \&c. (Figs. 144 and 145), predominate, the obtuse six-faced solid angles of the six-faced tetrahedron are each replaced by an irre-

Fig. 144.

Fig. 145.
gular hexagonal plane e0, \&c. (Fig. 144), of the positive tetrakedron; while its acute six-faced solid angles are each replaced by an irregular hexagonal plane o o, (Fig. 145), of the negative tetrakedrom.

When the faces of the tetrahedron predominate, each threo-faced solid angle of the tetrahedron is replaced by six planes constituting the acute six-faced solid angle of the positive six-faced tetrahedron, or by six planes constituting the obtuce six-faced solid angle of the negative six-faced tetrahedron.

Combination of Rhombic Dodecahedron and Twelve-faced Txapez-ohedron.-When the faces of the twelve-faced trapssohedron bb, \&e. (Fig. 146), predominate, the acute three-faced solid angles of the three-faced rapezohedron are each replaced by three planes of the rhombic dodecahedron $r r$, \&c., which form one of its three-faced solid angles. When the faces of the rhombic dodecahedron predominate, the alternate three-faced solid angles of the rhombic dodecahedron are replaced by the obtuse three-faced solid angles of the twelve-faced trapezohedron.

Fig. 146.

Combination of Rhombic Dodecahedron and Three-faced Tetrahe-dron.-Figures 147 and 148 show the combinations of the whombic dodecahedron with

Fig. 147.

Fig. 148.
the three-faced tetrahedron, whose symbol is $\frac{122}{2}$; and Fig. 149 its combination with
 the three-faced tetrahedron whose symbol is $\frac{133}{2}$. In Fig. 147, where the faces $r \boldsymbol{r}, \& \mathrm{cc}$., of the rhombic dodecatedron predominate, the edges of the four-three-faced solid angles of the rhombic dodecahedron, opposite the three-faced solid angles of the threcfaced tetrahedron are replaced by planes a a of the latter. In Fig. 148 the six-faced solid angles of the three-faced tatrahedron are each replaced by a threefaced solid angle of the shombio dodecahedron. In Fig. 149 each four-faced solid angle of the rhombic dodecahedron is replaced by two planes, a a of the three-faced tetrahedron.
r dRis - LILLIAD - Unive-fasited Litle 1

Combination of Rhombic Dodecahedxon with Six-faced Tetrahedron. -Figs. 150 and 151 represent the combinations of the rhombio dodeoahedron with the six-faced tetrahedron whose symbol is $\frac{1 \frac{3}{2}}{2}$, the faces marked r being those of the rhombic dodecahehrom, and those marked e the faces of the six-faced tetrahedron. In Fig. 150 the three-faced solid angles of the rhombic dodeoahedron, opposite to the

Fig. 150.

Fig. 151.
obtuse six-faced solid angles of the six-faced tetrahedron, have their edges replaced by two planes of the six-faced tetrahedron. In Fig. 151 where the faces of the six-faced tetrahedron predominate, the acute six-faced solid angles of that form are each replaced by a three-faced solid angle of the rhombic dodecahedron.

Combination of Cabe with the Pentagonal Dodecahedron.-When the faces of the cube (P P, \&c.,) predominate (Fig. 152), the edges of the cube are each replaced by a plane $c c$, \&c., of the pentagonal dodecahedron. This combination is

Fig. 152.

F1g. 158.
distinguished from that of the rhombic dodecahedron with the cube by the inclination of P on c , not being 135°. When the faces of the pentagonal ar decahedron, eas prodominate (Fig. 153), the edges of that form through which the cubical axee pass, are replaced by rectangular planes P P, \&c., of the cube.

Combination of the Cube with the EIemihedral form of the Six-faced Octahedron with parallel faces._When the faces of the cube P P, \&c. (Fig. 154), predominate, the solid angles of the cube are each replaced by a three-faced solid angle,

Fig. 154.

Fig. 155.
eee, of the trapezohedron. When the faces eee, \&c., of the trapezohedron (Fig. 155) predominate, the four-faced solid angles of that form which terminate the cubical axes are each replaced by a plane P of the cube.

Combination of the Octahedron and Pentagonal Dodecahedron.-When the faces of the octahedron 0 o, \&c. (Fig. 156) predominate, each four-faced solid angle of that form is replaced by two planes, $c c$, of the pentagonal dodecahedron. When the faces of the penlagonal dodecaliedron, cc, \&c. (Fig. 158), predominate, each of its three-faced solid angles which lie in the octahedral axes is replaced by a triangular plane, 00 , of the octahedron. When the faces of the octahedron 00 , \&c. (Fig. 157), so

Fig. 156.

Fig. 157.
far prevail that their angular points touch each other, the combination presents the form shown in Fig. 157, bounded by eight equilateral triangles, 0 a, \&c., and twelve isosceles triangles co - \&ILEIAD - Université Lille 1

Platonic Bodies.-If the pentagonal dodecahedron be bounded by twelve regular pentagons,-that is, pentagons whose sides and angles are all equal,-it is called the regular pentagonal dodecahedron. In this case the isosceles triangles, ce, \&c. (Fig 157), are equilateral triangles; and the combination of the regular pentagonal dodecahedron with the octahedron is a regular solid, bounded by twenty similar and equal equilateral triangles, and is called the icosahedron.

The tetahedron, cube, octahedron, regular pentagonal dodecahedron, and the icosahedron, are the only regular solids which can be formed; a regular solid being one that is bounded by equal and similar regular rectilineal figures. These five solids are called the platonic bodies. The regular pentagonal dodecahedron and the icosahedron have not been observed among crystals.

Fig. 158.
"The ancient geometricians made a great many geometrical speculations respecting these bodies; and they form almost the whole subject of the last books of Euclid's Elements. They were suggested to the ancients by their believing that these bodies were endowed wilh mysterious properties, on which the explanation of the most secret phenomena of nature depended."-Ozanam's Mathematical Recreations.

Combination of the Octahedron with the Eremilhedral form of the 太izfaced Octahedron with parallel faces.- When the faces 00 , \&oc., of the octahedron (Fig. 159) predominate, its solid angles are each replaced by four planes, eeee, of the

Fig. 159.

trapezodedron. When the faces of the trapeozedron ee, \&c. (Fig. 160), predominate, each of its three-faced solid angles is replaced by a triangular plane, 0 , of the octahedron.
vol. Iv. IRIS - LILLIAD - Université Lille 1

Combination of the Bhombic Dodecahedron with the Pentagonal

 Dodecahedron.-When the faces r r, \&c., of the rhombic dodecahedron (Fig. 161)

Fig. 161.

Fig. 162.
predominate, its four-faced solid angles are each replaced by two planes, c c, of the pentagonal dodecahedron. When the faces of the pentagonal dodecahedron, c c, \&c. (Fig. 162), predominate, its four-faced solid angles are each replaced by a triangular plane, rr, \&c., of the rhombic dodecahedron.

Combination of the Rhombic Dodecahedxon with the Eemihedral form of the Six-faced Octahedron with parallel faces.In this combination, the four-faced solid angles of the trapezohedron, $e \in$ (Fig. 163), are each replaced by a plane, r r, \&c., of the rhombic dodecahedron.

Complex Combination of EIemihedral

 Forms.-A crystal of Fahlerz, or grey copper ore, is represented in Fig. 164 as an instance of a complex combination of the hemihedral forms. The faces marked P are those of the tetahedron; f those

Fig. 163. of the cube; l are the faces of the positive

Fig. 164. IRIS - LILLIAD - Université Lille 1

Molecules.-Under the head of cleavage, we have seen that crystals of many substances split in directions parallel to certain crystalline forms; thus Galena splits into rectangular fragments parallel to the sides of a oube; Fluor spar, into octahedral or tetrahedral particles parallel to the planes of the regular ootahedron; and Blende (sulphuret of zinc), in particles parallel to the faces of a rhombic dodecahedron. To this cleavage there appears no limit but the practical difficulty of applying an instrument to the minute particles so as to split them. In the case of Calcite (carbonate of lime), which cleaves in obtuse rhomboids, it is found that the finest dust to which this substance can be reduced presents, under a powerful microscope, nothing but perfect though minute rhomboids. From these circumstances Haüy deduced the theory that the ultimate molecules, or particles of matter of Galena, were minute cubes; those of Fluor spar, regular tetrahedrons; of Blende, irregular tetrahedrons, having their faces parallel to three planes of the rhombic dodecahedron; and generally, that all crystals were composed of molecules whose forms might be determined from their cleavage, or inferred by analogy from their crystalline forms when the cleavage could not be discovered. These hypothetical solids Haüy calls the primitive solids of the substances from which they are deduced. Taking this primitive solid for his primary form, he deduces all the other crystalline forms in which the substance occurs from it, according to certain laws of decrement-that is, supposing his primary form to be composed of a large number of minute primitive solids, arranged together in a mass of the same form as themselves, he conceives the secondary forms to be derived from the primary one, by abstracting certain groups of these primitive solids, in regular order, from its solid angles and edges.

Law of Decrements.-Galena occurs in the forms both of the octahedron and rhombic dodecahedron as well as the cube. Haüy supposes these forms to be built up entirely of minute cubical particles, and formed from the cube by abstracting rows of cubical particles according to certain laws.

Decrements on Edges.-Rhombic Dodecahedron.-If a single row of cubical particles be removed from the edge of the large cubical mass, then two rows adjacent to the one removed, then three more rows adjacent to these, and so on, as in Fig. 165. If we conceive these cubical particles to be so small that the edges formed by their removal could not be perceived, the cubical mass would present the appearance of its edge being cut off by a plane $a b c d$, Fig. 165, or r_{1}, Fig. 166. Let the process be

Fig. 165.

Fig. ${ }^{166 .}$

Fig. 167.
repeated on every edge of the cube, as in Fig. 166, and carried still further by the removal of more rows of cubical particles, as in Fig. 167, at length the form of the rhombic dodec媵edrom witheppequniversité Lille 1

Instead of producing the rhombic dodecahedron from the cube by decrements of the

Fig. 168. cubical molecules, we might suppose it built upon the cube by the addition of layers of these molecules; each successive layer being one row less, all the way round, than its preceding one, as shown in Fig. 168.
Marking the edges of the cube by the letters B, as in Fig. 18, the law of decrement for the formation of the rhombic dodecahedron is represented by the symbol B^{1}, the 1 above the B indicating the abstraction of single rows of cubical molecules parallel to the edges of the cube.

Four-faced Cube. - If we remove particles from the edge consisting of rows two in height and one in breadth, as in Fig. 169, the edge of the cube will be replaced by a plane, $a b c d$, corresponding to the plane c_{1}, Fig. 170. Considering \mathbf{P}_{2} as the upper

Fig. 169.

Fig. 170.

Fig. 171.
surface of the cube, similar rows of particles might be abstracted parallel to the edge between P_{2} and P_{1}, producing the plane c_{2}. Repeating the process for every edge of the cube, we should have the form Fig. 170 ; and, abstracting equally more rows according to the above law, parallel to every edge, Fig. 65, we should ultimately form the four-faced cube.

The symbol for this decrement is $\mathrm{B}^{\frac{1}{2}}$; the figure $\frac{1}{2}$ indicating that rows of molecules, one in breadth and two in height, are abstracted symmetrically in every possible manner from every edge of the cube.

[^0]Fig. 172 represents the decrements which produce the pentagonal dodecahedron, which is the hemibedral form of the four-faced cube, whose symbol, according to Haüy's notation, is $B^{\frac{1}{2}}$. It is formed by decrements of rows along the edges of the cube two in height.

Decrements on the angles of the primary form.-If a single cubical molecule be removed from one of the solid angles of the cube, then the row of cubical molecules which touched the ones removed, then the next row which touched these, and so on, the solid angle of the cube would be replaced by a single plane, $a b c$ (Fig. 173).

This law of decrement gives rise to the eight planes, $O_{1} O_{2}$, \&c.,

Fig. 172. o_{B}, Figs. 55, 56, 57, producing the octahedron. The solid angles of the cube being

Fig. 173. indicated by the letter A, as in Fig. 14. The symbol for this decrement is A^{1}, the decrements from the solid angle being one in breadth and one in height.

If the decrements from the solid angle consist of rows of groups of particles m in breadth and n in height, the symbol will be A^{n}.
When n is greater than m, or the height of each group greater than its breadth, a triangular plane $a b c$ (Fig. 174), which is an isoseles triangle, having its sides greater than its base, replaces the solid angle of the cube and corresponds to the plane b

Fig. 174.

Fig. 175.

Fig. 176.
(Fig. 60). Since it is perfectly arbitrary on which face we suppose the cube to stand, by altering its position the same law would produce two similar planes b_{2} and b_{3}, so that the solid angle would be replaced by the planes $b_{1} b_{2}$ and b_{3}. Supposing every solid angle replaced by similar planes, this law of decrement gives rise (Figs. 60 and 61) to the three-faced octahedron.

When n is less than m, or the groups are less in height than breadth, the solid angle of the cube is replaced by an isosceles triangle $a b c$ (Fig. 175), whose base is greater than its sides pRisrreqponding to the plane, af (Fig. 62). This law of decrement replaces
every solid angle of the cube by three planes $a_{1} a_{2} a_{3}$ (Fig. 62), producing, as shown by Fig. 63, the twenty-four faced trapezohedron.

If the rows of particles removed from the solid angle consist of groups, such as those represented in Fig. 176, where each group is two cubical molecules in breadth, three in height, and four in length, the symbol for the decrement will be $\mathrm{B}^{\frac{1}{2}}, \mathrm{~B}^{\frac{1}{3}}, \mathrm{~B}^{\frac{1}{4}}$, and the triangular plane replacing the solid angle will be a scalene triangle. According to the laws of symmetry, each solid angle of the cube may be replaced by six such triangles producing the planes $e_{1} e_{2}$, \&c., e_{6} (Fig. 66). This law of decrement is that by which the six faced octahedron (Figs. 66 and 67) is derived from the cube.

Mr. Brooke, whose modifications of Haüy's decrements we have given above, in his treatises on Crystallography, considers all substances whose crystals occur in any of the forms of the cubical system, as derived from the cube according to these laws, regarding the cube without reference to their cleavages as the primitive form of all.

By decrements of octahedral or tetrahedral particles from the edges and angles of the octrahedron, when the cleavage of a substance is octahedral and of irregular tetrahedrons from the edges and angles of the rhombic dodecahedron when the cleavage is parallel to it, Haüy derives all their other forms.

When a cube is supposed to consist of cubical molecules, the faces of these molecules

Fig. 177.

Fig. 179.

Fig. 178.

Fig. 180.
touch each other so as to leave no interstiees, just as a solid wall is built up with bricks.

each other's edges, leaving tetrahedral spaces. Similarly a tetrahedron(Fig.179) consisting of octahedral molecules must have tetrahedral spaces between them. An octahedron (Fig. 178) and tetrahedron (Fig. 180) composed of tetrahedral molecules will have octahedral spaces left between the molecules.

Spherical and Spheroidal Molecules.-Hooke and Wollaston contend that the ultimate molecules of substances crystallizing in forms of the cubical system are perfect spheres. Fig. 181 shows the arrangement of these spheres which produces the octahedron ; Fig. 182, the tetrahedron; and Fig. 183, the cube. According to this

Fig. 181.

Fig. 182.

Fig. 183.

Fig. 184.
theory, the sphere may be substituted for the cube in every one of the cubical decrements we have described.

They derive the forms of the other systems of crystals from the combinations of prolate and oblate spheroids (Fig. 184).

Crystallographers generally have now abandoned these theories of the forms of the ultimate molecules of crystalline substances, on account of the numerous difficulties which a more extended view of the science has presented to their reception. They are now interesting as the means by which the relations of the faces of the crystalline forms to their axes were discovered, and we have given the outline of them, because they have had such a powerful influence on the nomenclature, and becomes so incorporated in the technical language of Chemistry and Mineralogy.

EECOND SYBTEM-THE PYRAMTDAL.

This system is called the pyramidal or tetragonal if its forms are derived from the octahedron on a square base, or double four-faced pyramid; the square prismatic, or quadratio, if derived from the right prism on a square base. It is also called the monodimetrical, or two and one axial system, from the properties of its axes.

The holohedral forms of this system are,-two right prisms on a square base, two double four-faced pyramids, the double eight-faced pyramid, and the right prism on an octagonal base.

From each of these, with the exception of the prisms on a square base, hemihedral forms are produced by the development of half their faces, and from one of the hemihedral forms of the double eight-faced pyramid, by the development of half its faces, a form is produced having only a fourth of the faces of the original form; this is called a tetartohedral, or fourth-faced form.

The hemihedral forms with inclined faces are the sphenoid or tetrahedron, the cightfaced trapezohedron, and the scalenohedron.

The hemihedral forms with parallel faces, -a double four-faced pyramid, and a prism on a square base.

The tetratohedral form is a tetrahedron or sphenoid IRIS - LILLIAD - Universite Líle 1

Atphabetical List of the Minerals belonging to the Fyramidal System, together with the Angular Elements from which their Typical Form and Axes may be derived.

Autunite $51^{\circ} 25^{\prime}$.
Braunite $54^{\circ} 19^{\prime}$.
Calomel $60^{\circ} 99^{\prime}$.
Cassiterite $33^{\circ} 55^{\prime}$.
Chiolite $47^{\circ} 8^{\circ}$.
Edingtonite $43^{\circ} 39^{\prime}$.
Fanjasie $52^{\circ} 45^{\prime}$.
Fergusonite $55^{\circ} 40^{\prime}$.
Gehlenite Unknown,

Hausmannite (Pyramidal and Manganese Earth) . . $58^{\circ} 57^{\prime}$.
Idocrase (Pyramidal Garnet) $28^{\circ} 9^{\prime}$.
Lanthanite (Carbonate of Cerium) Unknown.
Matlockite $60^{\circ} 26^{\prime}$.
Mellite $36^{\circ} 44^{\prime}$.

Naggagite (Black Tellurium) $61^{\circ} 23^{\circ}$,
Phosgenite (Murio-carbonate of Lead) . . . $47^{\circ} 20^{\circ}$.
Rutile (Oxide of Titanium) $32^{\circ} 47^{\prime}$.
Sarcolite $41^{\circ} 35^{\prime}$.
Scapolite $23^{\circ} 45^{\prime}$.
Scheelite $56^{\circ} 1^{\prime}$.
Somervillite $32^{\circ} 51^{\prime}$.
Stolzite (Tungstate of Lead) $57^{\circ} 27^{\prime}$.
Tin $21^{\circ} 5^{\prime}$.
Torberite $51^{\circ} 25^{\prime}$.
Towanite (Pyramidal Copper Pyrites) $44^{\circ} 34^{\prime}$.
Wulfenite (Molybdate of Lead) $57^{\circ} \mathbf{3 3}^{\prime}$.
Zenotine (Phosphate of Yttria) $41^{\circ} 0^{\prime}$.
Zircon $32^{\circ} 38^{\prime}$.
The Square Prism.-The square prism, also called the tetragonal prism and

Fig. 185. the right prism on a square base, is a solid form bounded by six faces, four of which are rectangular parallelograms, such as $A_{1} A_{2} A_{5} A_{6}$ (Fig. 185), forming the sides of the prism, and the other two-its top and bottom-are squares.

By some writers, the four faces alone which are parallelograms are considered the faces of the square prism; it is then called an open form, and the two square faces which are required to enclose it are considered distinct forms, under the name of basal pinacoids.

Axes of the Square Prism and the Pyramidal System.-Let P_{1} and P_{2} be the centres of the squares $A_{1} A_{2} A_{3} A_{4}$, and $A_{5} A_{6} A_{7} A_{8}$, which enclose the square prism; $M_{1} M_{2} M_{3}$ and \mathbf{M}_{4} the centres of the four rectangular faces. Join $\mathbf{P}_{1} \mathbf{P}_{2}, M_{1} M_{3}, M_{2} M_{4}$ cutting each other in C. IRIS - LILLIAD - Université Lille 1

The three lines, $M_{1} M_{3}, M_{2} M_{4}$, and $P_{1} P_{2}$, which are at right angles to each other, are the axes of the square prism, and also of the pyramidal system.

Parameters.-The base of the square prism, and consequently the length of the equal axes CM_{1} and CM_{2}, is perfectly arbitrary; the height of $\mathbf{C} \mathrm{P}_{1}$, or the height of the prism when a length has been chosen for $\mathbf{C M} M_{1}$ or $\mathbf{C M}_{2}$, depends upon the angular element already given for each mineral belonging to this system. This angular element is determined from the angular measurement of some pyramid or octahedron whose faces occur most frequently among the crystals of any particular substance.

To determine CP_{1}, draw $C M$ and $C P$ (Fig. 186) at right

Fig. 186. angles to each other; take $C M$ any convenient length, as the arbitrary unit of the system of axes.

Through C draw CD, making an angle with C P equal to the angular unit of the substance whose axes are to be represented.

Thus, for Anatase the angle PCD will be $60^{\circ} 38^{\prime}$; for Apophyllite, $51^{\circ} 21^{\circ}$; for Calomel ${ }_{2 \boldsymbol{m}} 60^{\circ} 9^{\prime}$; and so on for other substances belonging to the pyramidal system.

From M let fall M E perpendicular to C D, and produce M E to meet the line C P in the point P.

The distances $C M_{1}, C M_{2}$, and $C P_{1}$, Fig. 185, of the points $M_{1} M_{2}$ and P_{1} from C thus determined, are called the parameters of the pyramidal system.

It appears, therefore, that the axes of the pyramidal system sre rectangular, and two of its parameters are equal.

The edges of the basal pinacoids, or the breadth of the sides of the square prism, are twice the length of the equal parameters CM_{1} or CM_{2}, and the height of the prism or its edge, such as $\mathrm{A}_{1} \mathrm{~A}_{\varepsilon}$ (Fig. 185) is twice the length of $\mathrm{C} P$.

To drave the square Prism.-Draw the line $\mathbf{A}_{\mathbf{g}} \mathrm{A}_{5}$ (Fig. 185) equal to twice $\mathbf{C M}$ (Fig. 186).

Through \mathbf{A}_{8} draw $\mathbf{A}_{8} \mathbf{A}_{7}$, making an angle of about 30° with $\mathbf{A}_{8} \mathbf{A}_{5}$.
Make $A_{8} A_{7}$ equal half $A_{8} A_{8}$. Through \mathbf{A}_{5} draw $\mathbf{A}_{6} \mathbf{A}_{6}$ equal and parallel to $\mathrm{A}_{6} \mathrm{~A}_{7}$.

Through $\mathbf{A}_{\mathbf{8}}$ draw $\mathbf{A}_{\mathbf{8}} \mathbf{A}_{4}$ perpendicular to $\mathbf{A}_{\mathbf{8}} \mathbf{A}_{5}$, and equal twice $\mathbf{C} \mathbf{P}$ (Fig. 186).

Through $A_{5} A_{6}$ and A_{7}, draw $A_{5} A_{1}, A_{6} A_{2}$ and $\mathbf{A}_{7} \mathbf{A}_{3}$ parallel and equal to $\mathrm{A}_{4} \mathrm{~A}_{3}$.

Join $A_{4} A_{3}, A_{4} A_{1}, A_{1} A_{2}$, and $A_{3} A_{2}$ and the square prism will be represented in perspective.

Symbols.-Each face of the Square Prism we have described, cuts one of the axes at a distance from the centre C of the axes, equal to the length of one of the equal parameters, and is parallel to the other two axes. The two basal pinacoids cut the axis at a distance equal to the unequal parameter and are parallel to the other two axes. Adopting, therefore, the same principle we have used in the cubical system, our symbol for this square prism will be $1 \infty \infty$, and for the Busal Pinacoid $\infty \infty 1$.

For this square prism Naumann's symbol is ∞ P ∞, Miller's 100 , Brooke and Levy's modification of Haüy M, and Moh's [$\mathbf{P} \div \infty$].

For the basal pinacoid Naumann's is o P, Miller's 00 1, Brooke and Levy's P, and Mohs P - ∞.

IRIS - LILLIAD - Université Lille 1

To describe a net for the Square Prism.-Take the parallelogram $A_{1} A_{4} A_{5} A_{8}$ (Fig. 185) for one of the faces of the square prism, range four such parallelograms as in Fig. 187. Describe two squares having their sides equal to $A_{1} A_{4}$ (Fig. 185) and place them as in Fig. 187, and the net will be formed.

Fig. 187.
Minerals whose crystals present faces parallel to the square prism whose symbol is $1 \infty \infty$:-

Apophyllite.
Cassiterite. Calomel. Edingtonite. Gehlenite. Idocrase.
Lanthanite.

Mellite.
Naggagite. Phosgenite. Rutile. Sarcolite. Scapholite. Sommervillite.

Tin. Torberite. Towanite. Wulfenite. Zenotine。 Zircon.

Minerals whose crystals cleave parallel to this form,-those printed in italics indicating that the cleavage is easy and perfect :-

Cassiterite.
Calomel.
Edingtonite.

Gehlenite.
Phosgenite. Rutile.

Scapolite.
Sommervillite. Zenotine.

Minerals whose crystals present faces parallel to the basal pinacoids:-

Anatase.
Apophyllite.
Braunite.
Cassiterite.
Calomel.
Fergusonite. Gehlenite.
Hausmanite.

Idocrase.
Lanthanite. Matlockite. Mellite. Naggagite. Phosgenite. Ratile. Barcolite.

Scapolite.
Scheelite.
Sommervillite.
Stolzite.
Torberite.
Towanite.
Wulfenite.

Cleavages parallel to the basal pinacoids occur in the following minerals:-

Anatase.
Apophylite, Gehlenite. Hausmannite.

Idocrase. Lanthanite. Naggagite. Phoggenite.

Sommervilite.
Stolzite.
Torberite.
Towanite. Wulfenite.

To draw the Second Square Prism.-Draw the axes $\mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{M}_{1} \mathrm{M}_{3}$, and $\mathrm{M}_{2} \mathrm{M}_{4}$ as in

parallel and equal to $P_{1} P_{2}$. Join $B_{1} B_{2}, B_{2} B_{3}$, \&c., and a second square prism will be described in a different position from the former one.

In this prism the axes in which the equal parameters lie, pass through its edges, while in the prism previously described they are perpendicular to its faces.

This prism, like the former, is an open form, closed by the same basal pinacoids perpendicular to the axis $\mathrm{P}_{1} \mathrm{P}_{2}$.

Symbols.-Each face of this prism cuts two of the axes at a distance equal to that of the equal parameters from the centre \mathbf{C}, and is parallel to the third. Thus the plane $B_{1} B_{2} B_{6} B_{6}$ cuts the axes CM_{1} and CM_{2} in the points M_{1} and M_{2}, and is parallel to C P_{1}. The symbol, therefore, which represents this relation of the faces of the prism to the axes is 11 m .

Fig. 188.

Naumann's symbol is ∞ P, Miller's 110 , Brooke and Levy's g1, Moh's $P+\infty$. This form being in all respects similar to that of the preceding square prism, except in the breadth of its faces, and its position with regard to the axes, its net will be described in the same manner as Fig. 187.

Faces parallel to the Square Prism whose Symbol is 11∞, occur in the following minerals :-

Anatase. Apohyllite. Cassiterite. Calomel. Idocrase. Matlockite. Naggagite.

Phosgenite.

 Rutile. Sarcolite. Scapolite. Scheelite. Bomervillite.Btolzite. Tin. Torberite. Towanite. Wulfenite. Zircon.

The following Minerals have cleavages parallel to the Square Prism whose Symbol is 11∞ :-

| Cassiterite. | Phosgenite. |
| :--- | :--- | :--- |
| Idocrase. | Scapolite. |
| Rutile. | Zrcon. | Matlockite.

Double Four-Faced Pyramid of the First Order.-The double four-faced pyramid, or octahedron on a square base, is a solid bounded by eight triangular faces, such as $P_{1} G_{1} G_{4}$, Fig. 189, each face being an isosceles triangle; it has four four-faced solid angles, $G_{1} G_{2} G_{3} G_{\mathbf{4}}$, formed by the equal angles of the isosceles triangles, and two fourfaced solid angles, P_{1} and P_{2}, formed by the unequal angles of the
 -isosceles triangles. Four equal edges, $\mathbf{G}_{1} \mathbf{G}_{2}$, \&c.. which are the bases of the isosceles triangles, and eight other edges, $P_{1} G_{1}, P_{1} G_{2}$, \&c., equal to one another, but unequal to the former, which are the sides of the isosceles triangles.

To Draw the Double Four-Faced Pyramid of the First Order. -Describe the square prism $A_{1} A_{2}$ sec., A_{8}, with its axes $P_{1} P_{2}$, \&c., as directed for Fig, 185.

Through $M_{4} M_{2} M_{3}$ and M_{4}, Fig. 190, draw $G_{4} G_{1}, G_{1} G_{2} G_{2} G_{3}$, and $G_{3} G_{4}$, parallel to $A_{4} A_{1}, A_{1} A_{2}, A_{2} A_{3}$, and $A_{3} A_{4}$, and cutting Fig. 190. IRIS thegledgespof theipeisgte in the points $G_{1} G_{2} G_{3}$ and G_{4}.

Join $P_{1} G_{1}, P_{1} G_{2}, P_{1} G_{3}$, \&c., as in Fig. 190, and the pyramid will be drawn.
Axes.-From the description of this pyramid it is evident that the axes in which the equal parameters are taken join the centres of the edges $G_{1} G_{2}, G_{2} G_{3}, G_{3} G_{4}$, and $G_{4} G_{1}$, which are the edges of the bases of two equal square pyramids which joined together form the figure, while the third axis joins the apices $P_{1} P_{2}$ of the pyramids.

Symbols.-Each face of this double pyramid cuts one axis at a distance equal that of one of the equal parameters, the second axis at a distance equal to the unequal parameter, and is parallel to the third axis.

Thus the face $P_{1} G_{1} G_{2}$, Fig. 190, cuts the axis $\mathrm{C} \mathrm{M}_{2}$ in M_{2}, is parallel to the axis C M_{1}, and cuts the axis C_{1} in P_{1}.

The symbol which expresses this relation to the axes is $1 \infty 1$.
Naumann's symbol for this form is Poo, Miller's 101 , Brooke and Levy's b1, and Moh's P - 1 .

Inchration of the Faces.-Let ϕ be the inclination of the adjacent faces measured over the edges $G_{1} G_{2}$, \&c., θ their inclination over the edges $P_{1} G_{1}$, \&c., and a the angular clement given, page 360.

$$
\text { Then } \tan \cdot \frac{\pi-\phi}{2}=\text { cot. } a \text { and } \cos . \pi-\theta=\left(\sin . \frac{\pi-\phi}{2}\right)^{2}
$$

are the formulm from which these inclinations may be determined.
To Describe a Net of the Double Four-Faced Pytamid whose Symbol is 1∞ 1.Describe a square, $G_{1} G_{2} G_{3} G_{4}$, Fig. 191, having its sides equal to twice $C^{\prime} M_{2}$, Fig. 190, or equal to twice the length of one of the equal parameters. This square will be the base of the double pyramid. Let C be its centre. Join $\mathrm{CG}_{1}, \mathrm{CG}_{2}, \mathrm{CG}_{3}$, and CGG_{4}. Then (Fig. 192), draw CP perpendicular to $C G$. Take CP $=C P_{1}$ Fig. 190, and $\mathbf{C G}=\mathrm{CGG}_{1}$, Fig. 191. Join P G.

Fig. 191.

Fig. 192.

Fig. 193.

Fig. 194.

Draw $G_{1} G_{2}$, Fig. 193, equal to $G_{1} G_{3}$, Fig. 191.
On $G_{1} G_{2}$ describe an isosceles triangle, $P_{1} G_{1} G_{2}$, having its equal sides, $P G_{1}, P G_{2}$, equal to $P G$ (Fig. 192). $\quad P G_{1} G_{2}$ will be a face of the double four-faced pyramid, and eight such faces arranged, as in Fig. 194, will give the required net.

To Draw a Map of the projection of the Poles of the Double Four-Faced Pyramid whose Symbol is $1 \infty 1$, upon the Sphere of Projection, as well as those of the Square Prisms already described. - With P_{1} as centre, and any convenient radius $P_{1} M_{1}$, describe the circle $M_{1} M_{2} M_{3}$. Let $M_{1} M_{4}$, and $M_{2} M_{3}$, be any two diameters perpendicular to each other, $d_{1} d_{3}$, and $d_{2} d_{4}$, two diameters bisecting the right angles $M_{1} P_{1} M_{2}$, and $M_{2} P_{1} M_{4}$. Then P_{1} will represent the north pole of the sphere of projection, and $M_{1} M_{2} M_{3}$ its equator.

IRIS - LILLIAD - Université Lille 1
P_{1} will represent the pole of the basal pinacoid. $M_{1} M_{2} M_{3} M_{4}$ the poles of the faces of the square prism whose symbol is $1 \infty \infty$, $d_{1} d_{2} d_{3}$ and d_{4} those of the faces of the square prism whose symbol is 11∞.

The poles $a_{1} a_{2} a_{3} a_{4}$ of the double four-faced pyramid, whose symbol is $1 \infty 1$, always lie where the circle of their latitude cuts the meridians $\mathrm{C} \mathrm{M}_{1}$, C $\mathrm{M}_{2}, \mathrm{CH}_{3}$, and CM_{4}; their latitude being equal to the angular element of the substance to which the crystal belongs.

Fig. 195.

Crystals whose Faces occur parallel to the Double Four-Faced Pyramid, whose symbol is 11∞, together with the latitude of their poles on the sphere of projection.
Anatase $60^{\circ} 38^{\prime}$ ।
Braunite $54^{\circ} 20^{\circ}$
Cassiterite $33^{\circ} 65^{\circ}$
Calomel 609 $\mathbf{9}^{\prime}$
Edingtonite $43^{\circ} 39^{\circ}$
Fanjasite $52^{\circ} 45^{\prime}$
Hausmannite $58^{\circ} 57$ 1
Idocrase $28^{\circ} 90$
Matlockite $60^{\circ} 26$
Mellite $36^{\circ} 44^{\prime}$
Naggagite $61^{\circ} 23^{\circ}$

Phosgenite $47^{\circ} 20^{\circ}$
Rutile $32^{\circ} 47^{\circ}$
Sarcolite $41^{\circ} 35^{\circ}$
Scapolite $23^{\circ} 45^{\prime}$
Scheelite $56^{\circ} 1^{\text {1 }}$
Somervillite $32^{\circ} 61^{\prime}$
Stolzite $67^{\circ} 27^{\circ}$
Tin $21^{\circ} 5^{\prime}$
Torberite $51^{\circ} 25^{\circ}$
Towanite $44^{\circ} 34^{\prime}$
Wulfenite $57^{\circ} \mathbf{3 3 ^ { \circ }}$
Zenotine $41^{\circ} 0^{\circ}$
Zircon $32^{\circ} 38^{\circ}$
Three of these minerals cleave parallel to the form 11∞, Anatase, Braunite, and

Double Four-Faced Pyramid of the Second Order.-This pyramid differs from the former only in the position and size of its base. The same figure being described (Fig. 197) as Fig. 185.

Join $M_{1} M_{2}, M_{2} M_{3}, M_{3} M_{4}$, and $M_{4} M_{1}$; also join $P_{1} M_{1}, P_{1} M_{2}, P_{1} M_{3}, P_{1} M_{4}$, and $P_{2} M_{1}, P_{2} M_{2}, P_{2} M_{3}, P_{2} M_{4}$.

And the double four-faced pyramid, $\mathrm{P}_{1} \mathrm{M}_{1} \mathrm{M}_{2} \mathrm{P}_{2}$, Figs. 196 and 197, of the second order, will be inscribed in the square prism.

In this prism, the axes in which the equal parameters lie, join the solid angles at the base of the pyramids $M_{1} M_{3}$, and $M_{2} M_{4}$.

In Fig. 191, let $\mathbf{M}_{1} \mathbf{M}_{2} \mathbf{M}_{3} \mathbf{M}_{4}$ be the centres of the sides of the square.
Join $\mathrm{CM}_{1} \subset \mathrm{M}_{2}$, \&c., $C \mathrm{M}_{4}$, and $\mathrm{M}_{1} \mathrm{M}_{2}, \mathrm{M}_{2} \mathrm{M}_{8}, \mathrm{M}_{3} \mathrm{M}_{4}$, and $\mathrm{M}_{4} \mathrm{M}_{1}$.
Then $M_{1} M_{2} M_{3} M_{4}$ will represent the common base of the pyramids of the second order, $G_{1} G_{2} G_{3} G_{4}$ that of the pyramids of the first order, and $M_{1} M_{2}$, and $M_{2} M_{4}$, the position of the axes with respect to these bases.

Fig. 196.

Fig. 197.

Fig. 198.

To find the face of this form, produce G C to M (Fig. 192). Make C M equal to $\mathrm{C} \mathrm{M}_{1}$, Fig. 191. Join P M.

Draw $\mathbf{M}_{1} \mathbf{M}_{2}$, Fig. 198, equal to $\mathbf{M}_{1} \mathbf{M}_{2}$, Fig. 191,
On it describe the isosceles triangle, $\mathbf{P} \mathbf{M}_{1} \mathbf{M}_{2}$, having the equal sides $\mathbf{P} \mathbf{M}_{1}, \mathbf{P} \mathbf{M}_{2}$, equal to $P \mathrm{M}$, Fig. $192 \quad \mathrm{P} \mathrm{M}_{1} \mathrm{M}_{2}$ will be a face of the pyramid.

Eight such triangular faces, arranged as in Fig. 194, will form the net of the double four-faced pyramid of the second order

Symbols.-Every face of this form cuts the three axes at distances from its centre equal to that of the parameters; the symbol which expresses this relation is 111 .

Naumann's symbol is P, Miller's 11 , Brooke and Levy's a, Moh's P.
Inclination of Faces.-If ϕ be the angle of inclination of adjacent faces over the edges $M_{1} M_{2}, M_{2} M_{3}$, \&c., θ that over the edges $P_{1} M_{1}, P_{2} M_{2}$, \&c., and a that of the angular element, page 360.

$$
\begin{aligned}
& \tan \frac{\pi-\phi}{2}=\cot a \cos .45^{\circ} \\
& \cos .(\pi-\theta)=\left(\frac{\sin . \pi-\phi}{2}\right)^{2}
\end{aligned}
$$

Position of the Poles of this Form on the Sphere of Projection.-The latitude of the poles of this form is the same for all, four lying in the same parallel of north latitude, and four in the same parallel of south latitude. Four poles lie in the zone passing through the polfris of 把保m
whose symbol is 11∞. Thus $b_{1} b_{2} b_{3} b_{4}$, Fig. 195, represent the poles of the double four-faced pyramid, whose symbol is 111 .

Faces parallel to this form occur in the following minerals, the angles are the latitude of their poles :-

Of these, Fergusonite, Hausmannite, Stolzite, Wulfenite, and Zircon, have cleavages parallel to this double four-faced pyramid.

Double Four-Faced Pyramids derived from the Form 1 al 1.—Retaining

Fig. 189. the same base $G_{1} G_{2} G_{3} G_{4}$, Fig. 190. Take $C P_{8}$ and $C P_{6}$, Fig. 199, equal to m times $C P_{1}$, Fig. 190, m being any fraction or whole number greater than unity. Join $P_{6} G_{1}, P_{5} G_{2}$ \&cc., as in Fig. 199, and the pyramid will be constructed.

For Fig. 200 take C P $_{3}$, C P $_{4}=m$ C P $_{1}$ Fig. 190, m being a fraction less than unity.

Join $\mathrm{P}_{3} \mathrm{G}_{1}, \mathrm{P}_{3} \mathrm{G}_{2}$ \&c., as in Fig. 200, and the pyramid will be constructed.

The series of pyramids, such as Fig. 199, are more acute, and those of Fig. 200 more obtuse, than the original pyra$\operatorname{mid} 1 \infty 1$.

Symbols.-The symbol for these double four-faced pyramids is $1 \infty \mathrm{~m}$, as each

Fig. 200.
face cuts one axis at a distance equal to one of the equal parameters, is parallel to the other, and cuts the third at a distance equal to m times the greater parameter.

Naumann's symbol is $m \mathbf{P} \infty$, Miller's $h \circ$, Brooke and Levy's, $\delta_{m}^{\text {L }}$. IRIS - LILLIAD - Université Lille 1

Poles.-The poles of these pyramids always lie in the zone M P M, Fig. 195, those of the acute pyramids being between a and M , those of the obtuse between P and a : the poles of the upper pyramid lie in the same circle of north latitude, those of the lower in the same circle of south latitude.

Axes.-The axes $\mathrm{CM}_{1}, \mathrm{CM}_{2}, \& c$., in which the equal parameters are taken, join the centres of sides of the base, Fig. 199 and 200, while the third joins the apices of the two pyramids.

Inclination of Faces.-If ϕ be the angle of inclination of adjacent faces over the edges $G_{1} G_{2}, G_{1} G_{4}$, \&c., θ that over the edges $P_{5} G_{1}, P_{5} G_{4}$, \&c., and a the angular element of the substance,

$$
\begin{aligned}
& \text { Tan. } \frac{\pi-\phi}{2}=\frac{1}{m} \cot \alpha \\
& \text { Cos. }(\pi-\theta)=\left(\sin \cdot \frac{\pi-\phi}{2}\right)^{2}
\end{aligned}
$$

Iorms of the double four-faced pyramid whose symbol is $1 \infty m$ which have been observed in nature, together with the latitude of their poles on the sphere of projection.

The form $1 \propto \frac{1}{3}, \frac{1}{5} \mathrm{P} \infty$ Naumann; 105 Miller; and b^{s} Brooke and Levy.
Anatase $19^{\circ} 34^{\prime}$.
Apophyllite $14^{\circ} 3^{\prime}$.
Scheelite $16^{\circ} 31^{\prime}$.
The form $1 \infty \frac{1}{3}, \frac{1}{3} \mathrm{P} \infty$ Naumann; 103 Miller; and b^{3} Brooke and Levy.
Calomel $30^{\circ} 9^{\prime}$.
Hausmannite $28^{\circ} 58^{\prime}$.
Wulfenite $27^{\circ} 40^{\prime}$.
Hausmannite cleaves parallel to this form.
The form $1 \infty \frac{1}{2}, \frac{1}{2} P \infty$ Naumann; 102 Miller; b^{2} Brooke and Levy.
Apophyllite $32^{\circ} 2$.
Edingtonite $25^{\circ} 26^{\prime}$.
Scheelite $36^{\circ} 34^{\prime}$.
Torberite $32^{\circ} 4^{\prime}$.
Wulfenite $38^{\circ} 11^{\prime}$.
The form $1 \propto \frac{2}{3}, \frac{2}{3} \mathbf{P} \infty$ Naumann; 203 Miller; $b \frac{3}{2}$ Brooke and Levy. .
Torberite $39^{\circ} 53^{\prime}$.
Towanite $33^{\circ} 18^{\prime}$.
Wulfenite $46^{\circ} 21^{\prime}$.
The form $1 \propto \frac{5}{2}, \frac{3}{2} \mathrm{P} \infty$ Naumann; 302 Miller; $b \frac{2}{3}$ Brooke and Levy.
Towanite $55^{\circ} 55^{\prime}$.
Wulfenite $67^{\circ} 2^{\prime}$.
The form $1 \infty 2,2 \mathrm{P} \infty$ Naumann; 201 Miller; $b \frac{1}{2}$ Brooke and Levy.
Anatase $74^{\circ} 14^{\prime}$.
Braunite $70^{\circ} 15^{\prime}$.
Idocrase $46^{\circ} 57^{\prime}$.
Torberite 68 ${ }^{\circ} 5^{\prime}$.
Towanite 63 6°.
Torberite cleaves perfectly parallel to this form. IRIS - LILLIAD - Université Líle 1

The form $1 \infty 3,3$ P ∞ Naumann; 301 Miller; b^{t} Brooke and Lery. Rutile $62^{\circ} 38^{\circ}$. Tin $49^{\circ} 10^{\circ}$.
The form $1 \infty 5,5 \mathrm{P} \infty$ Naumana; 501 Miller; $b^{\frac{1}{3}}$ Brooke and Levy. Cassiterite $73^{\circ} 26^{\prime}$.
When m becomes infinitely great this pyramid passes into the square prism whose sign is $1 \infty \infty$; as m approaches to zero the pyramid approximates to the basal pinaeoid.

Double Foux-faced Pyramids derived from the Pyramid of the Second Order.-Retaining the same base $\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4}$, as in Fig. 196

Fig. 201. Take C $\mathrm{P}_{3}, \mathrm{CP}_{8}$, as in Fig. 201, equal to m times $\mathbf{C} \mathrm{P}_{1}$, Fig. 196, m being any fraction or whole number greater than unity.

Join $P_{2} M_{1}, P_{3} M_{2}$, \&c., as in Fig. 201.
For Fig. 201 take CP_{5}, or CP_{4} equal to m times $C P_{1}$ (Fig. 196), m being less than unity.

Join $P_{5} M_{1}, P_{5} M_{2}$, \&c., as in Fig. 202, and the pyramid will be constructed.

The series of pyramids, such as Fig. 201, are more acute, and those described as Fig. 202 are more obtuse than the original pyramid whose symbol is 111 .

Symbols. - The symbol for these pyramids whose faces cut two of the axes at a distance

Fig. 202. centre, and the third at a distance m times the greater paramenter, is 11 m. Naumann's symbol is $m \mathrm{P}$, Miller's $k h l$, Brooke and Levy's $a^{\frac{1}{m}}$.

Poles.-The poles of these pyramids always lie in the sone $\mathbf{d P d}$ (Fig. 195), those of the acute pyramids being between b and d, those of the acute being between P and b.

Axes.-The axes join the opposite four-faced solid angles.
Inclination of Faces.-If ϕ be the angle of inclination of adjacent faces over the edges $M_{1} M_{2}, M_{2} M_{3}$, \&c. (Figs. 201 and 202), θ that over the edges $P_{5} M_{1}, P_{6} M_{2}$ \&c., a the angular element of the substance,

$$
\begin{aligned}
& \tan \frac{\pi-\phi}{2}=\frac{1}{m} \cot \cdot a \cos .45^{\circ} . \\
& \operatorname{cos.}(\pi-\theta)=\left(\sin , \frac{\pi-\phi}{2}\right)^{2}
\end{aligned}
$$

Forms of the Double four-faced Pyramid, whose Symbol is $11 m$, which have been observed in Nature, together with the Latitude of their Potes on the Sphere of Projection.

The form 1, 1, $\frac{1}{16}$; $\frac{1}{16}$ P Naumann ; 1, 1, 16 Miller; a^{16} Brooke and Lery. Wulfenite $7^{\circ} 55^{\circ}$.
The form 1, 1, \ddagger; \ddagger P Naumann; 1, 1, 7 Miller; a^{7} Brooke and Lery. Anatase $19^{\circ} 45^{\circ}$.
rint. TV.
IRIS - LILLIAD - Université Lille 1

The form 1， $1, \frac{2}{y} ; \frac{2}{y}$ P Naumann；2，2， 9 Miller；$a^{\frac{9}{2}}$ Brooke and Levy． Wulfenite ．．．．． $26^{\circ} 18^{\prime}$ ．
The form 1， $1, \frac{3}{4}$ P Naumann；1，1， 4 Miller；a^{4} Brooke and Levy． Towanite ．．．．． $19^{\circ} 23^{\circ}$ ．
The form 1，1，支；； P Naumann；1，1， 3 Miller；a^{3} Brooke and Levy． Anatase ．．．．．． $30^{\circ} 38^{\circ}$ ．
Idocrase ．．．．．． $14^{\circ} 10^{\circ}$ ．

Towanite ．．．．．． $24^{\circ} 55^{\circ}$ ．
Apophyllite ．．．．． $30^{\circ} 32^{\prime}$ ．
Sarcolite ．．．．． $22^{\circ} 41^{\circ}$ ．
Wulfenite ．．．．． $36^{\circ} 33^{\prime}$ ．
Calomel ．．．．． $39^{\circ} 24^{\circ}$ ．
Scheelite ．．．．． $34^{\circ} 58^{\prime}$ ．
Wulfenite cleaves parallel to this pyramid．
The form 1，1，立；$\frac{1}{\frac{1}{2}} P$ Naumann ；1，1， 2 Miller；a^{2} Brooke and Lery． Idocrase ．．．．． $20^{\circ} 44$ ．
Scheelite ．．．．． $46^{\circ} 22^{\circ}$ ．
Stolzite ．．．．． 47° 55
Towanite ．．．．． $34^{\circ} 52^{\circ}$ ．
The form 1， $1, \frac{3}{5} ; \frac{3}{5}$ P Naumann；3，3， 5 Miller；$a^{\frac{5}{3}}$ Brooke and Levy． Cassiterite ．．．．． $29^{\circ} 43^{\circ}$ ．
The form 1，1，咅；六 P Naumann ；3，3， 2 Miller；a ${ }^{\frac{2}{3}}$ Brooke and Levy． Towanite ．．．．． $64^{\circ} 26^{\prime}$ ． Wulfenite ．．．．． $73^{\circ}{ }^{19}$ ．
The form 1，1，2； 2 P Naumann；2，2， 1 Miller ；$a^{\frac{1}{2}}$ Brooke and Levy． Idocrase ．．．．． $56^{\circ} 33^{\circ}$ ．
Stolzite ．．．．． $77^{\circ} 17^{\prime}$ ．
Towanite ．．．．． $70^{\circ} 16^{\circ}$ ．
Zircon ．．．．． $61^{\circ} 6^{\prime}$ ．
The form 1，1，$\frac{5}{2} ; \frac{5}{2}$ P Naumann；5，5， 2 Miller ；$a^{\frac{2}{3}}$ Brooke and Levy． Cassiterite ．．．．． $67^{\circ} 21^{\prime}$ ．
The form 1，1， 3 ； 3 P Naumann ；3，3， 1 Miller；$a^{\frac{1}{3}}$ Brooke and Lery．

The form 1，1， 4 ； 4 P Naumann ；4，4， 1 Miller；$a^{\frac{1}{4}}$ Brooke and Levy． Idocrase ．．．．． $71^{\circ} 43^{\prime}$ ．
As m increases in magnitude，this pyramid approaches to the square prism whose symbol is 11 dRR，

Sphenoid derived from the Pyramid of the First Order.-By developing half the faces of the double four-faced pyramid of the first order, a hemihedral form, with inclined faces is produced, which is called a sphenoid, or irregular tetrahedron. Thus (Fig. 203), the four-faces $P_{1} G_{1} G_{4}, P_{1} G_{2} G_{3}$, $P_{2} G_{1} G_{2}$, and $P_{2} G_{3} G_{4}$ of the pyramid $P_{1} G_{1} G_{2} P_{3}$ (Fig. 189) being produced till they meet, form the sphenoid $Q_{1} Q_{2} Q_{3} Q_{4}$ (Fig. 203). This sphenoid may be called the positive sphenoid. The other four faces being produced till they meet, form another sphenoid equal in all respects to the former, and differing only in position; this is called the negative sphenoid.

The sphenoid, so called from its wedge-like shape, is bounded by four isosceles triangles, such as $Q_{1} Q_{2} Q_{3}$; has six equal edges, such as $Q_{1} Q_{2}$; and four three-

Fig. 208. faced solid angles Q_{1}, Q_{2}, Q_{3} and Q_{4}.

To Draw the Sphonoid derived from the Pyramid of the First Order.-Through \mathbf{P}_{1} (Fig. 203) draw $Q_{1} Q_{2}$ parallel to $G_{1} G_{4}$; and through $P_{2}, Q_{3} Q_{4}$ parallel to $G_{1} G_{2}$.

Fig. 204 Make $P_{1} Q_{1}$ and $P_{1} Q_{2}$ equal to $G_{1} G_{4}$, and $P_{2} Q_{4}$ and $P_{2} Q_{3}$ equal to $G_{1} G_{2}$ Join $Q_{1} Q_{3}, Q_{1} Q_{4}, Q_{2} Q_{3}$, and $Q_{2} Q_{4}$. In a similar manner the sphenoids, derived from the double four-faced pyramids (Figs. 199 and 200), may be drawn.

To Construct the Net for the Sphenoid. -Draw the line $Q_{1} Q_{2}$ (Fig. 2C4) equal to twice $G_{1} G_{2}$ (Fig. 193); on it describe the isosceles triangle $Q_{1} Q_{3} Q_{2}$, having each of its sides, $Q_{1} Q_{3}, Q_{2} Q_{3}$, equal twice $P G_{1}$ (Fig. 192). $Q_{1} Q_{2} Q_{3}$ will be a face of the sphenoid; and four such

Fig. 205.
faces, arranged as in Fig. 205, will form the required net.

Crystals whose Faces ocour parallel to the Sphonoid derived from the Pyramids of the First Order.

The sphenoid, derived from the pyramid whose symbol is $11 \infty 0$, occurs in Edingtonite, Stobzite, Towanite and Wulfenite; and from the pyramid whose sign is $1 \infty \frac{1}{2}$ in Edingtonite.

The poles $a_{1} a_{3}$ of the positioe sphenoid lie in the zone $M_{1} P_{1} M_{4}$ (Fig. 195), in the northern hemisphere of the sphere of projection; and the other two poles in the zone, $\mathrm{M}_{2} \mathrm{P}_{2} \mathrm{M}_{6}$, in the southern hemisphere: $a_{2} a_{6}$, poles of the negatice sphenoid, lie in the zone $M_{2} P_{1} M_{3}$ of the northern hemisphere; the poles in the southern lie in the zone $M_{1} \mathbf{P}_{1} \mathbf{M}_{2}$.

Sphenoid derived from the Pyramid of the Second Oxder.-By developing, as in the last case, the alternate faces of the double four-faced pyramid (Fig. 197) whose symbol is 111 , two hemihedral forms with inclined faces will be produced, which are sphenoids.

To Construct the Sphenoid.-Draw the prism $A_{1} A_{2} A_{5} A_{7}$ (Fig. 206) as in Fig. 196. Join $A_{1} A_{3}, A_{6} A_{9} A_{1} A_{97} A_{1} A_{6}, A_{3} A_{8}$, and $A_{3} A_{6}$, and the positive sphonoid $A_{1} A_{3} A_{8} A_{6}$ TRIS ${ }^{-1}$ LiLLl'AD'-Université Lillé 1
(Fig. 207) will be drawn. The negative sphenoid may be constructed by joining the points $A_{2} A_{4}, A_{6} A_{7}, A_{2} A_{5}, A_{4} A_{57} A_{2} A_{7}$, and $A_{4} A_{8}$.

Fig. 206.

Fig. 207.

Fig. 208.

To Construct the Face of this Sphenoid. - Draw $\mathrm{A}_{1} \mathrm{~A}_{3}$ (Fig. 208) equal to twice $\mathrm{M}_{1} \mathrm{M}_{2}$ (Fig. 198) ; on it describe the isosceles triangle $\mathrm{A}_{1} \mathrm{~A}_{8} \mathrm{~A}_{3}$, having its sides $\mathrm{A}_{1} \mathrm{~A}_{8}$, and $\mathrm{A}_{3} \mathrm{~A}_{8}$, equal to twice P_{1} (Fig. 198). Four such triangles, arranged as in Fig. 205, will form the net for this sphenoid.

In a similar manner the sphenoids and their nets may be constructed, which are derived from the pyramids whose symbols are of the form 11 m .

Crystals whose Faces occur parallel to the Sphenoids derived from Pyramids of the Second Order.

The sphenoid derived from the pyramid whose symbol is 111 occurs in Stolzite, Towanite, and Wulfenite; and from the pyramids whose symbols are $11 \frac{1}{4}$ and $11 \frac{1}{3}$ in Towanite.

The poles $b_{1} b_{2}$ (Fig. 195) of the positive sphenoid lie in the zone $d_{4} \mathrm{P}_{1} d_{2}$ of the northern hemisphere; and its other poles in the zone $d_{3} \mathrm{P}_{1} d_{1}$ of the southern hemisphere of the sphere of projection. The poles $b_{3} b_{4}$ of the negative sphenoid lie in the zone $d_{1} \mathrm{P}_{1} d_{3}$ of the northern, and its other poles in the zone $d_{4} \mathrm{P}_{1} d_{2}$ of the southern hemisphere.

Octagonal Prism.-The octagonal prism, also called the ditetragonal prism, and

Fig. 209. the right prism on an octagonal base, is a solid bounded by ten faces, eight of which, such as $M_{1} E_{1} E_{5} M_{5}$, are rectangular parallelograms, forming the sides of the prism. The other two, forming the top and bottom of the prism, are irregular octagons. When this prism is considered an open form, its sides alone are considered the planes of the prism, and the two faces which inclose it are the planes of the basal pinacoids.

Axes.-The rectangular axes, in which the equal parameters are taken, join the points $M_{1} M_{3}$, and $M_{2} M_{4}$; while the third axis coincides with the geometrical axis of the prism.

Symbols.-Each face of the octagonal prism cuts one of the axest, as C M ${ }_{1}$ (Fig. 190), at a distance CM_{1} equal to the length of one of the equal parameters; the other axis, as CM_{2}, at a dirdidicelequalADtimdesiterssitáratheter, where n may represent any whole
number or fraction greater than unity, and the face is parallel to the third axis $\mathbf{C} P_{1}$, in which the unequal parameter is taken.

The symbol which expresses this relation to the axes is $1 n \infty$.
Naumann's aymbol for this form is $\infty \mathrm{P} n$, Miller's $k k 0$, Brooke and Levy's g.
Inclination of the Faces.-Let ϕ be the angle of inclination of the faces measured over the edges $E_{1} E_{5 t} E_{2} E_{6}$, \&c., and θ over the edges $M_{2} M_{6}, M_{3} M_{7}$.

$$
\operatorname{Cos} .(\pi-\theta)=\frac{n^{2}-1}{n^{2}+1} \text { or } \tan .\left(\frac{\pi-\theta}{2}\right)=\frac{1}{n}, \text { and } \phi=270^{\circ}-\theta .
$$

To Drawe the Octagonal Prism.-Describe a square, $\mathbf{G}_{1} \mathbf{G}_{\mathbf{3}} \mathbf{G}_{3} \mathrm{G}_{4}$ (Fig. 210) having each of its sides equal to twice the arbitrary unit chosen for the equal parameters of the system. Let \mathbf{C} be the centre of the square, $M_{1} M_{2} M_{3}$ and M_{4} the centres of its sides. Join $M_{1} M_{3}$ and $M_{2} M_{4}, G_{2} G_{4}$, and $G_{1} G_{3}$.

Let $M_{1} E_{1}$ be a line drawn from M_{1} to meet C_{M} v produced in a point at a distance equal to n times CM_{2} from C; and let E_{1} be the point where this line cuts C_{G}. Take $C E_{2}, \mathrm{CE}_{3}$ and CE_{4}, each equal to CE_{1}. Join $E_{1} M_{2}, M_{2} E_{2}, E_{2} M_{3}, M_{3} E_{3}$, \&c. Through E_{1} and E_{4} draw $D_{1} D_{2}$ and $D_{4} D_{3}$, parallel to $G_{1} G_{2}$,
$\mathrm{M}_{1} \mathbf{E}_{1} \mathrm{M}_{2} \mathrm{E}_{3} \& \mathrm{c}$. E_{4}, is the octagonal base of the

Fig. 210. prism whose symbol is $1 \mathrm{~m} \infty$. To draw the prism, draw $G_{1} G_{4}$ (Fig. 214); make $G_{1} G_{4}$ equal $G_{1} G_{4}$ (Fig. 210), and divide it similarly in the points $D_{1} M_{1}$ and D_{4}.

Through G_{1} and G_{4} draw $G_{1} G_{2}$, and $G_{4} G_{3}$ (Fig. 214), making an angle of about 30° with $G_{1} G_{4}$. Take $G_{4} M_{4}, G_{3} M_{2}, M_{4} G_{3}$, and $M_{2} G_{1}$, equal to half $G_{4} M_{4}, G_{3} M_{2}, M_{4} G_{3}$, and $M_{2} G_{1}$ of Fig. 210. Through D_{4} and D_{1} draw $D_{4} D_{2}$, and $D_{1} D_{2}$, parallel to $\mathbf{G}_{1} \mathbf{G}_{\mathbf{2}}$.

Take $D_{1} E_{1}, D_{1} E_{2}, D_{4} E_{4}$, and $D_{4} E_{3}$, equal to half $D_{1} E_{1}, D_{1} E_{2}, D_{4} E_{4}$, and $D_{4} E_{2}$ (Fig. 209). Join $M_{1} E_{1}, E_{1} M_{2}$, \&c. Then $M_{1} E_{1} \& c_{0} M_{4} E_{4}$ (Figg. 214 and 209) will be a perspective representation of the octagonal base of the prism.

Through M_{1} draw $M_{1} M_{5}$ (Fig. 209), perpendicular to $M_{1} E_{1}$, and of any height. Through $\mathrm{E}_{1}, \mathbf{M}_{3}, \mathrm{E}_{3}, \mathrm{M}_{3}$, \&c., draw $\mathrm{E}_{1} \mathrm{E}_{5}, \mathrm{M}_{2} \mathrm{M}_{6}, \mathrm{E}_{2} \mathrm{E}_{6}, \mathrm{M}_{3} \mathrm{M}_{7}$, \&cc., parallel and equal to $M_{1} M_{5}$. Join $E_{5} M_{6}, M_{6} E_{6}$, \&cc., and Fig. 209 will be the representation of the octagonal prism in isometrical perspective.

Position of the poles of the Faces of the Octagonal Prism on the sphere of projection.The poles of the faces of the octagonal prism always lie in the same zone, and that gone is the equator of the sphere of projection; $c_{1} c_{2}$, \&c., c_{8} (Fig. 195) represent these poles, each situated at the same angular distance from the points M_{1}, M_{2}, M_{3}, and M_{4}. The angle θ, given above, is this angular distance, and is the longitude of the pole reckoning from M_{1}.

Forms of the Octagonal Prisin, parallel to which faces have been observed in nature, together with the longitude of their poles on the sphere of projection.

The form $1 \frac{1}{2} \infty, \infty$ P $\frac{1}{4}$ Naumann; 230 Miller; and $g \frac{2}{9}$ Brooke and Levy, whose longitude is $33^{\circ} 41^{\circ}$, occurs in erystals of Cassiterite, Fergusonite, Rutile, and Wulfenite.

26 ${ }^{\circ}$ 34', occurs in Apophyllite, Cassiterite, Idocrase, Phosgenite, Rutile, Scarcolite, and Sommervillite.

The form $13 \infty, \infty$ P 3 Naumann; 310 Miller; and g^{3} Brooke and Lery, longitude $18^{\circ} 26^{\prime}$ occurs in Idocrase, Rutile, Scapolite, Towanite, and Wulfenite.

The form $14 \infty, \infty$ P 4 Naumann; 410 Miller; and g^{4} Brooke and Levy, longitude $14^{\circ} 2^{\prime}$, occurs in Rutile.

The form $17 \infty, \infty$ P 7 Naumann; 710 Miller; and g^{7} Brooke and Levy, longitude $8^{\circ} 8^{\prime}$, occurs in Rutile.

To describe a Net for the Octagonal Prism.-Draw two irregular octagons, equal to $M_{1} E_{1} M_{2} E_{4}$ (Fig. 210), and eight rectangular parallelograms, each equal to $M_{1} \mathbf{E}_{1} \mathbf{E}_{5}$ M_{5} (Fig. 209), and arrange these ten figures as in Fig. 211, and the net will be constructed.

Fig. 211.

Fig. 212.

Hemihedral Form of the Octagonal Prism.-The same figure being constructed (Fig. 212) as in Fig 210. Produce $M_{1} E_{1}, M_{2} E_{2}, M_{3} E_{3}$, and $M_{4} E_{4}$ to meet in N_{6}, N_{7}, N_{8}, and N_{5}. Also produce $\mathrm{E}_{4} \mathrm{M}_{1}, \mathrm{E}_{1} \mathrm{M}_{2}, \mathrm{E}_{2} \mathrm{M}_{3}$, and $\mathrm{E}_{3} \mathrm{M}_{4}$ to meet in $\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$, and N_{4}.
$N_{1} N_{2} N_{8} N_{4}$ and $N_{6} N_{7} N_{8} N_{5}$ will be two squares, which will be the bases of the square prisms which are the positive and negative hemihedral forms of the octagonal prisms with parallel faces.

This hemihedral form has been observed in crystals of Fergusonite and Wulfenite, derived from the octagonal prism whose symbol is $1 \frac{3}{2} \infty$.

Double Eight-faced Pyramid.-The double eight-faced pyramid, or pyramid on an octagonal base, called also the ditetragonal pyramid, is a solid bounded by sixteen faces, each face, such as $P_{1} E_{1} M_{1}$ (Fig. 213), being a scalene triangle. It has eight four-faced solid angles $\mathrm{M}_{1}, \mathrm{E}_{1}, \mathrm{M}_{2}$, \&c., corresponding to the angular points of the octagonal base of the pyramid; and two eight-faced solid angles P_{1} and P_{i}, forming the apices of the pyramids.

It has eight equal edges, such as $P_{1} M_{1}$, joining the eight-faced solid angles with the four-faced solid angles, through which the axes pass; eight other equal edges, such as $P_{1} E_{1}$, joining the double eight-faced solid angles to the other four-faced solid angles; and eight more equal edges, such as $\mathbf{M}_{1} \mathbf{E}_{1}$, joining the two kinds of fourfaced solid angles.

Axes and Symbols.-The axes in which the equal parameters are taken join the four-faced solid angles $M_{1} M_{2}$ and $M_{2} M_{4}$ (Fig. 214), and the axis in which the unequal

Every face of this pyramid cuts one of the axes, such as $M_{1} M_{2}$, at a distance equal to the arbitrary

Fig. 213. unit, the second $M_{2} M_{4}$ ata distance n times that unit, n being any whole number or fraction greater than unity, and the third axis $C P_{1}$ at a distance m times that of the unequal parameter, m being any whole number or fraction greater or less than unity.

The symbol which expresses this relation of the figure to the

Fig. 214.
axes of the pyramidal system, is 1 mm ; Naumann's symbol is $m \mathrm{Pn}$; Miller's $h \mathrm{kl}$; and Brooke and Levy's bt bl g^{t} -

To draw the Double Eight-faced Pyramid.-The same construction being made for the base of the pyramid (Fig. 210), as for the base of the octagonal prism whose symbol is $\infty \mathrm{P}_{n} n$, this base is to be drawn in perspective (Fig. 214), in the manner in which the base of the octagonal prism was directed to be drawn. Through Cdraw $\mathbf{P}_{1} \mathbf{C} P_{2}$ perpendicular to $M_{2} M_{4}$, take $C P_{1}$ and $C P_{3}$ equal to m times the unequal parameter.

Join $P_{1} M_{1}, P_{1} E_{1}, P_{1} E_{2}, P_{1} M_{2}$, \&c., $P_{2} M_{1}, P_{2} E_{1}$, \&c., and the pyramid will be constructed.

To describe a Net for the Double Eight-faced Pyramid.-Draw C N (Fig. 215), equal to $C N$ (Fig. 211), and CP perpendicular to CN. Make CP equal to m times the unequal parameter, the length of this parameter being determined by the method given in page 361, Fig. 186. Join P N.

Fig. 215.

Fig. 216.

Fig. 217.

Then Fig. 216.-Draw $N_{1} N_{2}$ equal $N_{1} N_{2}$ (Fig. 212), and take in it the points \mathbf{E}_{1} and M_{2} at the same distances from N_{1} and N_{2} they are in Fig. 212.

On $N_{1} N_{2}$ describe an isosceles triangle, $P N_{1} N_{2}$, having its sides, $P N_{1}$ and $P N_{2}$, equal to $\mathbf{P N}$ (Fig. 215). Join P E and $^{\text {P }} \mathrm{M}_{2}$
$P E_{1} M_{2}$ will be She scahendtriangiveraifétillil be a face of the double eight-faced
pyramid, and sixteen such triangles, arranged as in Fig. 217, will form the required net.

Inclination of the Faces of the Double Eight-faced Pyramid.-Let a be the angular element for the substance among whose crystals faces of this pyramid oseur, given in page 360. θ the inclination of adjacent faces, measured over the edges $P_{1} E_{1}, P_{1} E_{2}$ \&c. (Figs. 212 and 213); ϕ over the edges $\mathrm{E}_{1} \mathrm{M}_{1}, \mathrm{E}_{1} \mathrm{M}_{2}$ \&c.; and ψ over the edges $\mathrm{P}_{1} \mathrm{M}_{1}$, $\mathrm{P}_{1} \mathrm{M}_{2}$, \&c.

Then if β be such an angle that cot. $\beta=n$,
$\cot . \frac{\phi}{2}=\frac{1}{m} \cot \alpha \cos \beta \quad \cos \cdot \frac{\theta}{2}=\sin .{ }_{2}^{\phi} \cos .\left(45^{\circ}+\beta\right) \quad \cos . \frac{\psi}{2}=\sin . \beta \sin . \frac{\phi}{2}$.
Position of the Poles of the Faces of the Double Eight-faced Pyramid ors the sphere of projection.-The poles of the faces $T_{1} T_{2}$, \&c., T_{8} (Fig. 213), are represented on the map of the sphere of projection (Fig. 195), by $\mathrm{T}_{1} \mathrm{~T}_{2}$, \&c., T_{3}. All the poles of the upper faces of the pyramid occur in the same circle of latitude in the northern hemisphere of the sphere of projection, reckoning the latitude from P_{1}, and those of the lower faces of the pyramid in the same circle of south latitude, reckoning from P_{r}

The angle $\frac{\phi}{2}$ in the preceding article will be the angle of latitude for the faces of the pyramid; and β will be the longitude of T_{1}, reckoning the longitude from $P_{1} M_{1}$ as the first meridian of longitude.

The longitude of T_{2} will be $90^{\circ}-\beta$, of $T_{9} 90^{\circ}+\beta$, of $T_{4} 180^{\circ}$ - β, east of M_{1}, while the longitude of $\mathrm{T}_{4}, \mathrm{~T}_{7}, \mathrm{~T}_{s}$, and T_{5} will be the same angles west of M_{1}.

Crystals whose Faces ocour parallel to the Double Eight-faced Pyramid, together with their Latitude and Longitude on the sphere of projection.
The form 1, 5 , $\frac{5}{15} ; \frac{5}{19}$ P 5 Naumann; 5, 1, 19 Miller; and $b^{1} \delta_{5}^{\frac{1}{5}} \mathrm{~g} \frac{1}{15}$ Brooke and Levy.

Anatase, Lat. $25^{\circ} 30^{\circ}$. Lon. $11^{\circ} 18$.
The form 1, 3, $\frac{1}{\frac{1}{2}}$; $\frac{1}{2} \mathrm{P} 3$ Naumann; 3, 1, 6 Miller; and $b^{1} b^{\frac{1}{3}} g^{\frac{1}{8}}$ Brooke and Lery. Towanite, Lat. $27^{\circ} 27^{\prime}$. Lon. $18^{\circ} 26^{\circ}$.
The form 1, 2,1; P 2 Naumann; 2, 1, 2 Miller; and $b^{1} b^{\frac{1}{2}} g^{\frac{1}{2}}$ Brooke and Levy. Scheelite, Lat. $58^{\circ} 55^{\prime}$. Lon. $26^{\circ} 34^{\prime}$.
The form 1, 3,1; P3 Naumann; 3,1, 3 Miller; and $b^{1} b^{\frac{1}{3}} g^{\frac{1}{3}}$ Broake and Levy. Cassiterite, Lat. $35^{\circ} 20^{\prime}$. Lon. $18^{\circ} 26^{\prime}$.
Rutile Lat. $34^{\circ} 11^{\prime}$. Lon. $18^{\circ} 26^{\prime}$.
Sarcolite, Lat. $43^{\circ} 5^{\prime}$ Lon. $18^{\circ} 26$.
The form 1, 3, $\frac{3}{2}$; $\frac{3}{2}$ P 3 Naumann; 3, 1, 2 Miller; $b^{1} b^{\frac{1}{3}} g^{\frac{1}{2}}$ Brooke and Lery. Idocrase, Lat. $40^{\circ} 41^{\prime}$. Lon. $18^{\circ} 26^{\prime}$.
The form 1, 2, 2 ; 2 P 2 Naumann; 2, 1, 1 Miller; $b^{1} b^{\frac{1}{2}} g^{1}$ Brooke and Levg. Idocrase, Lat. $50^{\circ} 7^{\prime}$. Lon. $26^{\circ} 34^{\prime}$. Phosgenite, Lat. $67^{\circ} 36^{\circ}$. Lon. $26^{\circ} 34^{\prime}$.
The form 1, $\frac{2}{3}, 3 ; 3$ P $\frac{3}{8}$ Naumann; 3, 2, 1 Miller; $b^{\frac{1}{2}} b^{\frac{1}{t}} g^{1}$ Brooke and Levs. Cassiterite, Lat. $67^{\circ} 35^{\prime}$. Lon. $33^{\circ} 41^{\prime}$. Fergusonite, Lat. $79^{\circ} 17^{\prime}$. Lon. $33^{\circ} 41^{\prime}$.
IRIS - LRtitikg - Untutersité tille Fon. $33^{\circ} 41^{\circ}$.

The form 1, 3, 3; 3 P 3 Naumann; 3, 1, 1 Miller; $b^{1} b^{3} g^{1}$, Brooke and Levy.

Braunite,	Lat. $77^{\circ} 13^{\prime}$.	Lon. $18^{\circ} 26^{\prime}$.
Idocrase,	Lat. $59^{\circ} 25^{\prime}$.	Lon. $18^{\circ} 26^{\circ}$.
Sarcolite,	Lat. $70^{\circ} 23^{\prime}$.	Lon. $18^{\circ} 26^{\prime}$.
Scapolite,	Lat. $64^{\circ} 18^{\prime}$.	Lon. $18^{\circ} 26^{\prime}$.
Scheelite,	Lat. $77^{\circ} 58^{\circ}$.	Lon. $18^{\circ} 26^{\prime}$.
Zircon,	Lat. $63^{\circ} 52^{\circ}$.	Lon. $18^{\circ} 26^{\prime}$.

The form 1, 2, 4; 4 P 2 Naumann; 4, 2, 1 Miller; $b^{\frac{1}{2}} b^{\frac{1}{2}} g^{1}$ Brooke and Levy. Idocrase, Lat. $67^{\circ} 20^{\circ}$. Lon. $26^{\circ} 34^{\prime}$.
The form 1, 4, 4; 4 P 4 Naumann ; 4, 1, 1 Miller; $b^{1} b^{\frac{1}{4}} g^{1}$ Brooke and Levy. Idocrase, Lat. $66^{\circ} 37^{\prime}$. Lon. $14^{\circ} 2^{\prime}$. Zircon, Lat. $69^{\circ} 23^{\prime}$. Lon, $14^{\circ} 2^{\prime}$.
The form 1, 5, 5 ; 5 P 5 Naumann; 5, 1, 1 Miller; $b^{1} b^{\frac{1}{8}} g^{2}$ Brooke and Levy. Idocrase, Lat. $69^{\circ} 63^{\prime}$. Lon. $11^{\circ} 18^{\prime}$. Towanite, Lat. $78^{\circ} 44^{\prime}$. Lon. $11^{\circ} 18^{\prime}$. Zircon, Lat. $73^{\circ} 0^{\circ}$. Lon. $11^{\circ} 18^{\circ}$.
Hemihedral Double Four-faced Pyramid.-If we represent the eight uppar faces of the double eight-faced pyramid (Fig. 213) by the symbols $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{2}, \mathrm{~T}_{4}, \mathrm{~T}_{4} \mathrm{~T}_{4}$

Fig. 218.

Fig. 219.
T_{7} and T_{8}, and the corresponding lower faces by $\mathrm{T}_{1}, \mathrm{~T}_{2}{ }_{2}, \mathrm{~T}_{3}{ }_{3}, \mathrm{~T}_{4}, \mathrm{~T}^{\prime}{ }_{8}, \mathrm{~T}^{4}{ }_{6}, \mathrm{~T}_{7}{ }_{7}$, and T_{8}. Then if the eight faces $T_{1}, T_{1}, T_{3}, T_{3}, T_{6}, T_{s}, T_{7}$, and T_{7}, be produced till they meet, the resulting form will be the double four-faced pyramid $\mathrm{P}_{1} \mathrm{~N}_{5} \mathrm{~N}_{6} \mathrm{P}_{2}$ \&c. (Fig. 219). If the other eight faces of the double eight-faced pyramid, $\mathrm{T}_{2}, \mathrm{~T}_{2}^{\prime}, \mathrm{T}_{4}, \mathrm{~T}_{4}, \mathrm{~T}_{6}, \mathrm{~T}^{\prime}, \mathrm{T}_{8}$, and T_{8} be produced to meet, they will form the double four-faced pyramid. $\mathrm{P}_{1} \mathrm{~N}_{1} \mathrm{~N}_{2} \mathrm{P}_{2}$ \&c. (Fig. 218.)

These pyramids are equal to each other in every respect, and differ only in their situation with regard to the axes of the pyramidal system. They are the pasitive and negative hemihedral forms with parallel faces of the double eight-faced pyramid.

The axis in which the unequal parameters are taken join the apices P_{1} and P_{2} in both pyramids. IRThe_rquitipanin-whifhethfethife two axes cut the bases of these pyra-
mids will be seen by referring to Fig. 212, where the lines $\mathrm{N}_{1} \mathrm{~N}_{2}, \mathrm{~N}_{2} \mathrm{~N}_{3}, \mathrm{~N}_{3} \mathrm{~N}_{4}$, and $N_{4} N_{1}$, forming the square $N_{1} N_{2} N_{3} N_{4}$, formed by producing the edges $E_{1} M_{2}, E_{2} M_{3}$, $\mathrm{E}_{3} \mathrm{M}_{4}$, and $\mathrm{E}_{4} \mathrm{M}_{1}$ of the base of the double eight-faced pyramid, is the base of the pyramid Fig. 218; and the square $N_{5} \mathrm{~N}_{6} \mathrm{~N}_{7} \mathrm{~N}_{8}$ formed by the other edges of the base of the double eight-faced pyramid, is the base of the pyramid Fig. 219.
$M_{1} M_{3}$ and $M_{2} M_{4}$ will be the axes in both pyramids.
To draw the Hemihedral Double Four-faced Pyramids.-Draw the double eight-faced pyramid as deseribed for the construction of Fig. 214. Produce $E_{1} M_{2}, E_{2} M_{3}, E_{3} M_{4}$, and $\mathrm{E}_{4} \mathrm{M}_{1}$ (Fig. 218), to meet in the points $\mathrm{N}_{1} \mathrm{~N}_{2} \mathrm{~N}_{3}$ and N_{4}. Join $\mathrm{P}_{1} \mathrm{~N}_{1}, \mathrm{P}_{1} \mathrm{~N}_{2}$ \&c., $\mathrm{P}_{2} \mathrm{~N}_{1}, \mathrm{P}_{2} \mathrm{~N}_{2}$, \&ce., and Fig. 218 will be constructed.

Produce $M_{1} E_{1}, M_{2} E_{2}, M_{3} E_{3}$ and $M_{4} E_{4}$ to meet in $N_{5} N_{6} N_{7}$ and N_{8}, and join these points with P_{1} and P_{2}, and Fig. 219 will be constructed.

To Construct a Net for the Hemihedral Double Four-faced Pyramid.-The isosceles triangle $P N_{1} N_{2}$ (Fig. 216) is a face of the double four-faced pyramid derived from the double eight-faced pyramid whose face is $\mathbf{P} \mathbf{E}_{1} \mathbf{M}_{2}$; and eight of these triangles, arranged as in Fig. 194, will form the required net. -

Faces Parallel to the Hemihedral Double Four-faced Pyramid which ocour in Nature.

In Scheelite from the pyramids $1,2,1$, and 1, 2, 3. Sarcolite from the pyramid 1, 3, 1, and Fergusonite from the pyramid 1, $\frac{3}{2}, 3$.

Tetartohedral Form,-From each of the hemihedral double four-faced pyramids, two sphenoids may be derived by the development of half their faces, just as sphenoids are derived from the other double four-faced pyramids of the pyramidal system. These sphenoids would consequently be formed by the development of a fourth of the faces of the double eight-faced pyramids, and are therefore called tetartohedral forms of that solid. It is doubtful whether any of these forms have been observed in nature.

Pyramidal Trapezohedron, - The pyramidal trapezohedron, also called the tetragonal trapezohedron, is a solid (Fig. 220),

Fig. 220. bounded by eight faces, each of which is an irregular trapezium, such as $P_{1} L_{1} S_{1} L_{2}$ (Fig. 220), or $\mathrm{P}_{1} \mathrm{~S} \mathrm{~L}_{2}$ (Fig. 216). It has two four-faced solid angles, P_{1} and P_{2}, and eight more four-faced solid angles equal to one another $L_{1} L_{2} L_{3} L_{4}$, and $S_{1}, S_{2}, S_{3}, S_{4}$. It has eight edges equal to $P L_{1}$ (Fig. 216) four equal to $L_{1} S_{1}$, and four equal to $L_{2} S_{1}$.

The pyramidal trapezohedron is a hemihedral form, with inclined faces of the double eight-faced pyramid, and is formed by producing the eight faces $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$, $\mathbf{T}^{\mathbf{u}}, \mathrm{T}_{5}, \mathbf{T}_{6}{ }^{\mathbf{g}} \mathrm{T}_{7}$ and T^{\prime}, to meet one another. A similar and equal trapezohedron would be formed by producing the faces $T_{1}, T_{2}, T_{3}^{v}, T_{4}, T_{5}, T_{6}, T_{7}$, and T_{8} to meet.

This trapezohedron may also be regarded as formed by the combination of the upper half of a positive hemihedral four-faced pyramid, with the lower half of its corresponding negative hemihedral four-faced pyramid.
To Draw the Pyramidal Trapezohedron.-Draw the base of the double eight-faced

$\mathrm{M}_{2} \mathrm{E}_{2}$, \&c., to meet in $\mathrm{N}_{5} \mathrm{~N}_{6} \mathrm{~N}_{7}$ and N_{8}, as in Fig. 212; and $\mathrm{E}_{1} \mathrm{M}_{2}, \mathrm{M}_{\boldsymbol{y}} \mathrm{E}_{7}$, \&c., to meet in $\mathrm{N}_{1} \mathrm{~N}_{2} \mathrm{~N}_{3} \mathrm{~N}_{4}$.

Join N_{1}, N_{2}, N_{3} and N_{4} with P_{1} and N_{6}, N_{6}, N_{7} and N_{8} with P_{2}.

Then (Fig. 212) join CN_{1}, cutting $\mathrm{M}_{1} \mathrm{E}_{1}$ in K .
In Fig. 215, take CK equal to CK (Fig. 212), and through K draw $K L$ perpendicular to $C N$ meeting $P N$ in L.

In Fig. 221, take CH_{1} and CH_{2} in $\mathrm{P}_{1} \mathrm{P}_{2}$, equal to K L (Fig. 215).

Through H_{1} draw $L_{1} L_{3}$ parallel to $N_{1} N_{3}$, meeting $P_{1} N_{1}$ and $P_{1} N_{3}$ in L_{1} and L_{3}, and $L_{2} L_{4}$ parallel to $\mathrm{N}_{2} \mathrm{~N}_{4}$, meeting $\mathrm{P}_{1} \mathrm{~N}_{3}$, and $\mathrm{P}_{1} \mathrm{~N}_{4}$, in L_{2} and L_{4}.

Through H_{2} draw $S_{1} S_{3}$ parallel to $N_{8} N_{8}$, and $\mathrm{S}_{2} \mathrm{~S}_{4}$ parallel to $\mathrm{N}_{7} \mathrm{~N}_{\mathrm{s}}$.

Join $L_{1} S_{1} L_{2}, L_{2} S_{2} L_{33}$ \&cc, as in Fig. 220, and the trapezohedron will be constructed.

Fig. 221.

To Describe a Net for the Pyramidal Trapasohedron,-In Fig. 216, take $\mathrm{P} \mathrm{L}_{1}$ and

Fig. 222. and $P L_{2}$ in $P N_{1}$ and $P N_{2}$ equal to P L, Fig. 215.

Join $L_{1} E_{1}$ and $L_{2} M_{2}$, and produce these lines to meet in S .
$P L_{1} S L_{2}$ will be a face of the trapezohedron; and eight such faces, arranged as in Fig. 222, will form the required net.
Faces parallel to the Pyramidal Trapezohedron which occur in Nature.-Faces parallel to the pyramidal trapezohedron have only been observed in crystals of Scapolite, derived from the double eight-faced pyramid whose symbol is 133.

Pyramidal Scalenohedron. - The pyramidal scalenohedrom, also called the tetragonal scalenohedron, and by some the diplotetrahedron, is a solid bounded by eight faces, each of which, such as $P_{1} K_{1} K_{3}$ (Fig. 223), is a scalene triangle.

This is a hemihedral form, with inclined faces, of the double eight-faced pyramid, and is derived from it by producing the faces $T_{8}, T_{1}, T_{z}^{\prime}, T_{s}^{\prime}$, $\mathrm{T}_{4}, \mathrm{~T}_{5}, \mathrm{~T}_{8}$ and T_{7} (Fig. 213), to meet one another. Another scalenohedron, equal in all respects to this one, but differing in position, will be formed by producing $T_{s}, T_{1}^{\prime}, T_{2}, T_{0}, T_{s}, T_{s}, T_{6}$ and T_{r}. One of these may be called the positive and the other the negative scalenohedron.

This form has two four-faced solid angles P_{1} and P_{3} equal to each other; and four others, $\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{\mathrm{s}}$ and K_{4}, equal to each other.

Fig. 225.

To draw the Pyramidal Scalenohedron.-Draw the base of the double eight-faced

Produce $M_{1} E_{1}$ and $M_{3} E_{2}$ to meet in $R_{1}, M_{1} E_{4}$ and $M_{3} E_{3}$ to meet in R_{2}, also $M_{2} E_{1}$

Fig. 224. $M_{4} E_{4}$ to meet in R_{3}, and $M_{2} E_{2}$ and $M_{4} E_{3}$ to meet in R_{4}.

Join $P_{1} M_{1}$ and produce it to meet $P_{2} R_{3}$ in $K_{2}, P_{2} M_{2}$ to meet $P_{1} R_{1}$ in $K_{1}, P_{1} M_{3}$ to meet $P_{2} R_{4}$ in K_{4}, and $\mathrm{P}_{2} \mathrm{M}_{1}{ }^{\circ}$ to meet $\mathrm{P}_{1} \mathrm{R}_{2}$ in K_{2}.

Join $K_{1} K_{4}, K_{4} K_{2}, K_{2} K_{3}$, and $\mathrm{K}_{3} \mathrm{~K}_{1}$, as in Fig. 223, and the scalenohedron will be constructed.

To describe a Net for the Pyramidal Scalenohedror.-Draw a line C P_{1} (Fig. 225), perpendicnlar to the line $\mathbf{C} \mathrm{R}_{\mathbf{3}}$. Take CP_{1} equal to CP (Fig. 215), and CM_{1} equal CM_{1} (Fig. 212). Make CR_{2} equal m, times $\mathrm{CM}_{1} ; 1 \mathrm{mn}$ being the symbol of the double eight-faced pyramid, from which

Fig. 225. the scalenohedron is to be derived.

In CP_{1} take $C \mathrm{M}_{2}$ equal CM_{1}. Join $P \mathrm{M}_{1}$ and $M_{2} \mathrm{R}_{2}$.

In $\mathrm{M}_{2} \mathrm{R}_{2}$ take $\mathrm{M}_{2} \mathrm{~K}_{3}$ equal $\mathrm{M}_{2} \mathrm{E}_{1}$ (Fig. 212). Join $\mathrm{M}_{1} \mathrm{~K}_{\mathrm{s}}$.

Produce $\mathrm{P}_{1} \mathrm{C}$ to P_{2}, and make $C P_{2}$ equal to C_{1}. Join $P_{2} R_{2}$, and produce $P_{1} M_{1}$ to meet $\mathrm{P}_{2} \mathrm{R}_{3}$ in K_{2}.

Then Fig. 226. Draw the line $\mathrm{M}_{2} \mathrm{R}_{3}$ equal to $\mathrm{M}_{2} \mathrm{H}_{2}$ (Fig. 225), and on this as a base describe the tri-

Fig. 226, angle $M_{2} P R_{3}$, having its side $M_{2} P$ equal $M_{1} P_{1}$ (Fig. 225), and its side $P R_{3}$ equal to

Fig. 227. $\mathrm{R}_{2} \mathrm{P}_{2}$ (Fig. 225).

In $M_{2} R_{3}$ take $M_{2} E$ equal $M_{2} K_{3}$ (Fig. 225), and in $R_{3} P, R_{3} K_{3}$ equal to $R_{2} K_{2}$ (Fig. 225).

Join $\mathrm{K}_{3} \mathrm{E}$, and produce it to meet $\mathrm{P} \mathrm{M}_{1}$ produced in K_{1}. $P K_{1} K_{3}$ will be a face of the required scalenohedron; and eight such faces, arranged as in Fig. 227, will form the net for the scalenohedron.

Faces parallel to the Pyramidal Scalenohedron which occur in Naturs.
Faces parallel to this form have only been observed in crystals of Towanite or pyramidal copper pyrites, derived from the two double eight-faced pyramids whose symbols are 1, 3/

Fig. 229.

Fig. 232.

Fig. 283.

Fig. 234.

Fig $\mathrm{R}^{38^{3} S^{\circ}}$ - LILLIAD - University Lille 1

Fig. 286.

Fig. 285.

Fig. 287.

Fig. 940

Principal combinations of the Pyramidal System.-A diligent study of the figures of these combinations, as already given, will enable us to read most, if not all, of the more complex combinations of this system. It is impossible, consistently with the limited space of an elementary work, to give all these combinations; but we hope those we have given will be quite sufficient for the purposes of the student.

Fig. 228. The double eight-faced pyramid, a a a, \&c., whose symbol is $1 n m$, with the alternate four-faced angles at its base replaced by faces $b b$, \&c., of the four-faced pyramid whose symbol is $11 \mathrm{~m}^{\prime}$.

Fig. 229. The dowble eight-faced pyramid, a a a, \&c., whose symbol is $1 n m$, with the edges of its base replaced by faces $b b$, \&c., of the octagonal prism whose symbol is $1, n, \infty$.

Fig. 230. The double eight-faced pyramid, a a a, \&e., whose symbol is $1 n m$, with the alternate four-faced solid angles of its base replaced by two faces, $b b$, \&c., of the octagonal prism whose symbol is $1, n^{\prime}, \infty$.

Fig. 231. The double eight-faced pyramid, a a a, \&c., whose symbol is $1 n m$, with the alternate four-faced solid angles of its base replaced by faces $b b$, \&c., of the square prism whose symbol is 11∞.

Fig. 232. The double eight-faced pyramid, $a \operatorname{a} a$, \&c., with its eight-faced solid angles replaced by planes P P of the basal pinacoid whose symbol is $\infty \infty 1$.

Fig. 233. The double four-faced pyramid, a a a \& \&c., whose symbol is 111 , with the edges at its base replaced by faces $b \boldsymbol{b}$, \&c., of the double four-faced pyramid whose symbol is 11 m .

Fig. 234. The double four-faced pyramid, a a a, \&c., whose symbol is 111 , with its edges replaced by faces $b b$, \&c., of the double four-faced pyramid $1 \infty 1$.

Fig. 235. The double four-faced pyramid, a a a, \&c., whose symbol is 111 , with the four-faced angles at its base replaced by two planes of the octagonal prism $1 n 00$.

Fig. 236. The double four-faced pyramid, a a a, \&ce, whose symbol is 111 , with the edges at its base replaced by faces $b b$, \&c., of the square prism 11 c .

Fig. 237. The double four-faced pyramid, a a a \& \&c., whose symbol is 111 , with the four-faced angles at its base replaced by faces $b b$, \&c., of the square prism $1 \infty \infty$.

Fig. 238. The square prism, a a a, \&c., whose symbol is $1 \infty \infty$, inclosed by faces $b b$, \&c., of the double four-faced pyramid 111.

Fig. 239. The square prism, bbb, \&c., whose symbol is 11∞, with its edges replaced by planes $a a, \& c$., of the octagonal prism $1 n \infty$, and inclosed by the planes \mathbf{P}, \mathbf{P} of the basal pinacoid.

Fig. 240. The square prism, $b b b$, \&c., whose symbol is 11∞, with its edges replaced by planes a a, \&c., of the square prism $1 \infty \infty$, and enclosed by planes P, P of the basal pinacoid.

Fig. 241. The positive sphenoid, a a, \&c., derived from the double four-faced pyramid 111 , with its three-faced solid angles replaced by planes $b b$, \&e, of the negative sphenoid derived from the same pyramid.

Fig. 242. The positive sphenoid, a a, \&c., with its three-faced solid angles replaced by faces $b b$, \&e., of the square prism 11∞.

Fig. 243. The positive sphenoid, a a, \&c., with four of its edges replaced by faces $b b$, \&c., of the square prism $1 \infty \infty$.

Fig. 244. The double four-faced pyramid, a a, \&c., whose symbol is $1 \infty 1$, with four of its edges replaced by faces $b b$, \&cc., of the sphenoid derived from the double fourfaced pyramid 1 Rust - LILLIAD - Université Lille 1

Fig. 241.
Fig. 248.
Fig. 248.

Fig. 244.
Fig. 245.
Fig. 246,

Fig. 247.

Fig. 248,

Fig. 245. The double four-faced pyramid, a a, \&c., whose symbol is $1 \infty 1$, with the solid angles at its apices replaced by faces $b b$, \&c., of the scalenohedron, derived from the double eight-faced pyramid 1 nm .

Fig. 246. The double four-faced pyramid, a a, \&c., whose symbol is $1 \propto 1$, the solid angles at its apices replaced by faces $b b$, \&c., of the sphenoid derived from the double four-faced pyramid 11 m .

Fig. 247. A complex holohedral combination of several forms of the pyramidal system in a crystal of Idocrase or pyramidal Garnet described by Mohs.

P, planes of the basal pinacoid $\infty \infty 1$.
Square prisms, M of the prism $1 \infty \infty, d$ of the prism 11∞.
Octagonal prisms, f of the prism $1,2, \infty-h$ of the prism $1,3, \infty$.
Double four-faced pyramids, 0 of the pyramid $1 \infty 1-c$ of the pyramid 1, 1, $1-3$ of the pyramid $1,2,1 — r$ of the pyramid $1,4,1$.

Double eight-faced pyramids, z of the pyramid $1,2,2-8$ of the pyramid $1,3,3$ x of the pyramid $1,4,4-e$ of the pyramid $1,2,4-a$ of the pyramid $1,3, \frac{3}{2}$.

Fig. 248. A complex hemihedral combination of forms of the pyramidal system in a crystal of Towanite or Pyramidal Copper Pyrites, described by Naumann, to whose works we take this opportunity of expressing our great obligation.
p, faces of the positive sphenoid derived from the four-faced pyramid 111.
p^{\prime}, faces of the negative sphenoid derived from the same pyramid.
k, faces of the sealenohedron derived from the double eight-faced pyramid 155.
c, faces of the four-faced pyramid $1, \infty, 2$, and m those of the square prism 11∞.

THIRD EYETEM-RHOMBOHEDRAL.

This system is called the rhombohedral when its forms are derived from the rhomboid; the hexagonal when derived from the regular hexagonal prism, or the double pyramid on a hexagonal base. It has also been called the monotrimetrical and three-and-one axial, from the properties of its axes.

The holohedral forms of this system are, two kinds of right prisms on a regular hexagonal base; two orders of double six-faced pyramids on regular hexagonal bases; the double twelve-faced pyramid; and the right prism on a twelve-sided base.

From each of these, by producing half their faces to meet one another, hemihedral forms are derived.

The hemihedral forms, with inclined faces, are the triangular prism, derived from the hexagonal prism; the double three-faced pyramid, derived from the double six-faced pyramid; the double six-faced trapezohedron, derived from the double twelve-faced pyramid.

The hemihedral forms, with parallel faces, are the hexagonal prism, derived from the twelve-faced prism; the double six-faced pyramid, from the double twelve-faced pyramid; the thomboid, from the double six-faced pyramid; and the hexagonal scalenohedron, derived from the double twelve-faced pyramid.

The tetartohedral forms are the triangular prism from the twelve-faced prism; the rhomboid, double three-faced pyramid, and double three-faced trapezohedron,-all derived from the double twelve-faced pyramid.

Some of these forms are either so rare or so dorabtful, that we shall confine our descriptions to the different kinds of prisms, the double six-faced pyramids, the rhomboid, and the scalspeghedroltiAD - Université Lille 1

Ah'Rabetical List of Minerals belonging to the Rhombohedral System, together with the Angular Elements from which their Typical Form and Axes may be derived.

Hexagonal Prisms of the First and Second Oxdex,-As in the pyramidal system, the two square prisms differ only in size and position, so in the rhomboidal

Pig. 249.

Fig. 25
system the hexagonal prisms differ from one another in the same manner. The hexagonal prism is a right prism standing on a base which is a regular hexagon; it is bounded therefore by eight faces, six of which-such as $B_{1} B_{6} B_{12} B_{7}$ (Fig. 249), and $A_{1} A_{6} A_{12} A_{7}$ (Fig. 250)-are rectangular parallelograms forming the sides of the IRIS. - LILLIAD - Université Lille 1
prism; the other two faces, forming the top and bottom of the prism, are regular hexagons.

By many writers the sides only of the hexagonal prism are considered as the faces of the hexagonal prism; the form being considered an open one. The two hexagonal faces which inclose it are then called basal pinacoids.

Axes of the Eexagonal Prism, and of the Rhomboidal System.Let P_{1} and P_{2} be the contres of the hexagonal faces of the two hexagonal prisms (Figs. 249 and 250).

Join $\mathrm{P}_{1} \mathrm{P}_{\mathbf{r}} \quad$ Bisect $\mathrm{P}_{1} \mathrm{P}_{\mathbf{z}}$ in 0.
Let M_{1}, M_{2}, \&c., M_{8}, be the centres of the edges $B_{1} B_{7}, B_{2} B_{6}$ \&cc., $B_{6} B_{12}$ of the hexagonal prism of the first order (Fig. 249).

Join $M_{1} M_{2} M_{2} M_{3}, \& c ., M_{1} M_{1}$
Bisect $M_{6} M_{1}, M_{2} M_{2}, M_{2} M_{3}$ \&c., by G_{1}, G_{2}, G_{3}, \&c.
Join $G_{1} G_{4}, G_{2} G_{5}$, and $G_{3} G_{G}$, cutting one another in C.
Let $G_{1}, G_{2}, \& c$., G_{6}, be the centres of the edges of the hexagonal prism of the second ordcr (Fig. 250).

Join $G_{1} G_{4}, G_{2} G_{5}$, and $G_{3} G_{6}$ cutting one another in C.
Then in the case of both prisms, $P_{1} P_{2}, G_{1} G_{4}, G_{2} G_{5}$, and $G_{2} G_{6}$ will be the axes of the prisms, and of the rhomboidal system.

It followa, therefore, that in this system there are four axes, three of which lie in the same plane, and are inclined to each other at an angle of 60°; and the third passes through their intersection, and is perpendicular to their plane. $\mathrm{CG}_{1} \mathrm{CG}_{2} \mathrm{CG}_{\mathrm{n}}$, are the three equal parameters of this system, and a fourth unequal parameter is taken in the axis C $_{1}$. The forms of the rhomboidal system are derived from these axes by most of the continental crystallographers; but Professor Miller refers them to three equal axes derived from a particular rhomboid for each substance, in the following manner.

Let $P_{1} R_{1} R_{2 z} \&{ }^{2}$ c., P_{z} ((Fig. 251), be a particular rhomboid (i. e., a figure bounded by six equal rhombs), chosen, for each substance which crystallizes in this system, as its typical form. Join the opposite angles of every face. Let H_{1} be the point where $P_{1} R_{1}$ meets $R_{2} R_{6} ; H_{1}$ is the centre of the face $P_{1} \mathrm{H}_{1} \mathrm{R}_{2} \mathrm{R}_{6}$. Let $\mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{4}, \mathrm{H}_{5}$ and H_{6}, be the centres of the other faces of the rhomboid found in a similar manner.

Join $\mathrm{H}_{2} \mathrm{H}_{4}, \mathrm{H}_{2} \mathrm{H}_{5}$, and $\mathrm{H}_{3} \mathrm{H}_{6}$, the centres of the opposite faces of the rhomboid, eutting each other in the point C.

Fig. 251.
$\mathrm{H}_{1} \mathrm{H}_{4}, \mathrm{H}_{2} \mathrm{H}_{5}$, and $\mathrm{H}_{3} \mathrm{H}_{6}$, will be the three equal axes of Professor Miller, and $\mathrm{CH}_{1}, \mathrm{CH}_{2}$ and CH_{3}, the three equal parameters.

Professor Miller refers the forms of the rhomboidal system to these three axee, equally inclined to one another, and with equal parameters. The inclination of these axes, and the length of the equal parameters, will differ for each particular substance, and depend upon its angular element. In the previous system of four axes, the inclination of the axes are the same for every substance; but the length of the unequal parameter will depend upen the angular element for each substance.

the method adopted in other systems, as all of them are referred to three axes, and his formulw also possess the advantage of being readily translated into those of Haüy, and the modifications of his system by Brooke and Levy. The system of four axes, however, by its formulx, gives a clearer view of the relations of the various forms to each other; and the axis in which the unequal parameter is taken is one of considerable importance, being the optic axis, in the case of every transparent substance crystallizing in the forms of the rhomboidal system. For these reasons we shall adopt the system. of four axes, translating its formulæ into those of Professor Miller.

Parameters.-Take any arbitrary line CG_{1} (Fig. 252) as the length of the three

Fig. 252.

Fig. 253. equal parameters. With C as a centre, and CG_{1} as radius, describe the circle $\mathbf{G}_{1} \mathbf{G}_{2} \mathbf{G}_{3}$.

Take chords $G_{1} G_{2}, G_{2} G_{3}$, \&c., $G_{6} G_{1}$, each equal to CG_{1}. Join $\mathrm{CG}_{2}, \mathrm{CG}_{3}$, \&c., CG_{6}. $\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}$, \&c., G_{6}, will be a regular hexagon inscribed in the circle $\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}$.
$G_{1} G_{4}, G_{2} G_{5}$, and $G_{3} G_{6}$, will be three axes which Lie in the same plane; $\mathrm{CG}_{1}, \mathrm{CG}_{2}, \mathrm{CG}_{3}$, the three equal parameters.

To determine the fourth parameter which lies in the axis passing through C perpendicular to this plane, draw $C H$ perpendicular to $G_{1} G_{2}$. Then (Fig. 253) take CH equal CH (Fig. 252), and draw C P, making an angle PCH, equal to the angle given as the angular element for the particular substance whose parameters are to be obtained.

Through H draw H P perpendicular to CH, and meeting CP in P, HP will be the length of the fourth parameter.

To Draw the two Hexagonal Prisms.-Through each of the points $G_{1} G_{2}$, \&c., G_{6} (Fig. 252), draw $\mathrm{M}_{6} \mathrm{M}_{1}, \mathrm{M}_{1} \mathrm{M}_{2}$, \&ce., $\mathrm{M}_{5} \mathrm{M}_{6}$, perpendicular to $\mathrm{CG}_{1}, \mathrm{CG}_{2}$, \&c., CG_{6}, meeting each other in the points $\mathrm{M}_{1} \mathrm{M}_{2}$, \&c., $\mathrm{M}_{6} . \mathrm{M}_{1} \mathrm{M}_{2}$ and M_{6} is a regular hexagon circumscribing the circle $\mathrm{G}_{1} \mathrm{G}_{2} \mathrm{G}_{3}$.
$\mathrm{M}_{1} \mathrm{M}_{2}$, \&c., M_{6}, is the hexagonal base of the hexagonal prism of the first order. $\mathrm{G}_{1} \mathrm{G}_{2}, \& \mathrm{c} ., \mathrm{G}_{6}$, that of the hexagonal prism of the second order.

Through M_{1} and M_{4} draw $D_{1} D_{2}$ and $D_{4} D_{3}$ parallel to $G_{6} G_{3}$, meeting $M_{5} M_{6}$ and $M_{3} M_{2}$ produced in the points $D_{4} D_{1} D_{2}$ and D_{3}.

Join $G_{2} G_{4}$ and $G_{1} G_{5}$, and produce both ways to meet $D_{1} D_{2}$ in E_{2} and E_{1}, and $D_{3} D_{4}$ in E_{3} and E_{4}.

Then for the hexagonal prism of the first order (Fig. 249) draw $\mathrm{D}_{1} \mathrm{D}_{4}$ equal $\mathrm{D}_{1} \mathrm{D}_{4}$ (Fig. 252), and $D_{4} D_{3}$, making an angle of about 30° with $D_{4} D_{1}$. Draw $D_{1} \quad D_{2}$ parallel to $\mathrm{D}_{4} \mathrm{D}_{3}$.

In $D_{1} D_{4}$ (Fig. 249) take $D_{1} M_{6}, D_{1} G_{6}$, and $D_{1} M_{6}$, equal to $D_{1} M_{6}, D_{1} G_{6}$, and $\mathrm{D}_{1} \mathrm{M}_{5}$ (Fig. 252); also in $\mathrm{D}_{1} \mathrm{D}_{2}$ take $\mathrm{D}_{1} \mathrm{E}_{1}, \mathrm{D}_{1} \mathrm{M}_{1}, \mathrm{D}_{1} \mathrm{E}_{2}, \mathrm{D}_{1} \mathrm{D}_{2}$ (Fig. 249), each equal the half of $D_{1} E_{1}, D_{2} M_{1}, D_{1} E_{2}$, and $D_{1} D_{2}$ (Fig. 252).

Take $D_{4} E_{4}, D_{4} M_{4}, D_{4} E_{2}, D_{4} D_{3}$ (Fig. 249), each equal to $D_{1} E_{1}, D_{1} M_{1}, D_{1} E_{2}$, and $D_{1} D_{2}$ of thersme fi\&ure $A D$ Join $D_{2} D_{2}$ and make $D_{2} M_{2}, D_{4} G_{3}, D_{2} M_{3}$, each equal to $\mathrm{D}_{1} \mathrm{M}_{6}, \mathrm{D}_{1} \mathrm{G}_{6}, \mathrm{D}_{1} \overline{\mathrm{M}}_{5}^{\mathrm{L}}$.

Join $M_{1} M_{8}, M_{1} M_{2}, M_{3} M_{4}$, and $M_{4} M_{5}$, also $E_{1} E_{4}$, cutting $M_{1} M_{6}$ in G_{1}, and $M_{4} M_{5}$ in G_{5}, likewise join $\mathrm{E}_{1} \mathrm{E}_{2}$, cutting $\mathrm{M}_{4} \mathrm{M}_{3}$ in G_{4}, and $\mathrm{M}_{1} \mathrm{M}_{2}$ in \mathbf{G}_{2}.

Join $G_{1} G_{4}, G_{2} G_{5}$, and $G_{3} G_{6}$, intersecting in the point C.
Through M_{6} draw $M_{6} B_{6}$ perpendicular to $M_{6} M_{5}$. Take $M_{6} B_{6}$ of any convenient length. Produce $B_{6} M_{6}$ to B_{12} make $M_{6} B_{12}$ equal to $M_{6} B_{6}$.

Through $M_{1} M_{2}$, \&c., M_{51} draw $B_{1} B_{7}, B_{2} B_{8}$, \&c., $B_{5} B_{11}$, each parallel to $B_{6} B_{12}$, and take $M_{1} B_{1}, M_{1} B_{7}$, \&c., each equal to $M_{6} B_{c}$.

Join $B_{1} B_{2}, B_{2} B_{3}$, \&cc., $B_{6} B_{1}$, and $B_{7} B_{8}, B_{8} B_{9}$, \&c., $B_{12} B_{7}$.
And the hexagonal prism of the first order will be constructed.
Through C draw $P_{1} P_{2}$ parallel to $B_{1} B_{7}$; take $C P_{1}$ and $C P_{2}$ equal to $M_{1} B_{1}$. Then $P_{1} P_{2}, G_{1} G_{4}, G_{2} G_{55}$, and $G_{3} G_{6}$, are the four axes of this prism.

To draw the hexagonal prism of the second order, let $P_{1} P_{2}, G_{1} G_{2} G_{3}$ \&ec., G_{6} (Fig. 250), be determined in the same manner as in Fig. 249.

Through $G_{1} G_{2}$, \&c., G_{6}, draw $A_{1} A_{7}, A_{2} A_{8}$, \&c., $A_{8} A_{12}$, parallel to $P_{1} P_{2}$, and $G_{1} A_{1}, G_{1} A_{6}, G_{2} A_{2}$, \&c., each equal to $C P_{1}$.

Join $A_{1} A_{2}, A_{2} A_{3}$, \&rc., and $A_{7} A_{8}, A_{8} A_{9}$ \&c., and the hexagonal prism of the second order will be described.
$P_{1} P_{2}, G_{1} G_{4}, G_{2} G_{5}$, and $G_{3} G_{6}$, are the four axes of this prism.
Symbols.-Each face of the hexagosal prism of the first order cuts one of the axes in which the equal parameters are taken at distances equal to that parameter, and the two adjacent axes in the same plane at distances equal to twice the equal parameter, and is parallel to the axes in which the fourth unequal parameter is taken.

Thus the face $B_{1} B_{7} B_{12} B_{6}$ (Fig. 249), if produced, would cut the axis $C G_{1}$ in G_{1}, the ares CG_{6}, and $C \mathrm{G}_{2}$ produced in points at a distance equal to twice CG_{2} from C ; it is also parallel to $\mathbf{C} \mathbf{P}_{1}$.

The symbol which represents these relations to the axes is $1,2, \infty$.
Naumann's symbol is ∞ P 2, Miller's o $\overline{1} 1$, Brooke and Levy's modification of Haüy d^{n}, or g^{1}, according as the rhomboid or heragonal prism is taken for the primitive.

Each face of the hexagonal prism of the second order cuts two adjacent axes, in which the equal parameters are taken, at distances from the centre, equal to the equal parameter, and is parallel to the axis in which the unequal parameter is taken.

Thus (Fig. 250) the face of the prism, $A_{1} A_{2} A_{8} A_{7}$, cuts the axes $C G_{1}$ and $C G_{2}$ in the points G_{1} and $G_{2}, C G_{1}$ and $C G_{2}$ being both equal to the equal parameter, and is parallel to the axis CP_{1}.

The symbol which represents these relations to the axes is 11∞, Naumann's symbol is ∞ P, Miller's, $2 \overline{1} \overline{1}$, Brooke and Levy's, θ^{2} or m, according as the rhomboid or hexagonal prism is taken for the primitive.

The basal pisacoids, which inclose the prisms of both orders, are perpendicular to the axis CP, and parallel to the other axes; their symbol, therefore, is $\infty \infty 1$.

Naumann's symbol is o P, Miller's, 111 , Brooke and Levy's a^{1} or p, according as the rhomboid or heragonal prism is taken for the primitive.

To deseribe a Net for the Hexagonal Prioms.-The regular heragon $M_{1} M_{2}$, \&c., M_{4} (Fig. 252), will form the top and bottom of the hexagonal prism of the first order, the hexagon $G_{1} G_{2}, \& c$., G_{8}, those of the hexagonal prism of the second order. Draw a rectangular parallelogram, having two of its opposite sides equal to the side of the regular heragon, and the other two equal sides of any convenient length. Arrange two equal regular IRIS - LILLIAD - Université Lille 1
hexagons, and six equal parallelograms, as in Fig. 253, and the net will be constructed.

Fig. 254.
The hexagons being taken equal to $M_{1} M_{2}$, \&c., M_{m} for the prism of the first order, and to $G_{1} G_{2}, \& c ., G_{\infty}$ for that of the second order.

Mrinerals whose erystals present faces parallel to the hesagonal prism of the frot order, whose symbol is 12∞, Naumank os P 2, Miller 01 1, and Brookd and Levy do :-

Arsimony-
Apatite.
Biotite.
Breithanptite.
Bruciae.
Culamine.
Calcite.
Chabasie.
Chalybite.
Connellite.
Coquimbite.
Corundum.

Covelline.
Davyne.
Diallogite.
Dioptase.
Dolomite.
Emerald.
Endialyte.
Fluocerites
Gmelinite.
Greenockite.
Hematite.
Hydrargillite.

Iee.
Ilmenite.
Kupfernickel. Millerite. Mimetite. Molyledenite. Kepheline. Osmiridiurns Phenakite. Plattnerite. Polybasite, Proustite.

Pyrargyrite.
Pyromorphite. Prosmalitea Pyrrhotine.
Quartz.
Ripidolite.
Spartalite.
Tourmalise.
Vanadinite.
Willemite.

Sirmerals whose erystale aleave parallel to thts form, thase printed th italics indicating that the eletruage is edsy and porfect :-

Antimeny.
A patite.
Brucite.

Caleite.
Emerald.
Endialyte.

Greenotitity
Nepheline.
Phenatite.

Pyrosmalite. Spardalite.

Minerals whase diystals present faces parattel to the hexagonal prism of the second order, whose symbal is $1 \mathbf{1} \infty$, Nammann $\infty \boldsymbol{P}$, Miller $2 \overline{1} \overline{1}$, Brooke and $L_{t} \cdot y c^{2}$:-

Apatite.
Calcite.
Chalybite.
Cinnabar. Connellite. Coquimbite. Corundum.
Cronstedtite Ilmenite.
Daryne.

Emerala.
Endialyte.
Graphite.
Greenoekites
Hematite.
Hydrargillite.
Ilmenite.

Mimetite
Molybdenite.
Nephelime.
Phenakite.
Proustite.
Pyrargyrite.
Pyromorphite،

Ripidolite.
Susannite.
Tamarite.
Tellarium.
Tellurwismath.
Tourmaline.
Willemite.

Claavages parallel to the prism of the second order acour in-

Calcite.	Cronstedtite	Quartz.
Ginnabar.	Pyrrhotine.	Tellurium.

Calcite.
Cinnabar.

Cronstedtite.
Pyrrhotine.

Tellurium.
Minerals whose crystals present faces parallel to tho basal pinacoids, symbol $\infty \infty \mathbf{1}_{\text {, }}$ Natrmaren o P, Miller 111, Brooks and Looy al

Alunite.	Coquimbite.	Ilmenite.	Quarts.
Ankerite.	Corundum.	Kupfernickel.	Ripidolite
Antimony.	Cronstedtite.	Levyne.	Bpartaile.
Apatite.	Covelline.	Mesitine.	Stilpnomelane.
Arsenic.	Davyne.	Mimetite.	Susannite.
Biotite.	Diallogite.	Molybdenite.	'ramarite.
Bismuth.	Dolomite.	Nepheline.	Tellurium.
Breithauptite.	Emerald	Osmiridium.	Tellurwismath.
Brucite.	Eudialyte.	Parasite.	Tetradymite.
Calamine.	Fluocerite.	Ptattnerite.	Tourmaline.
Calcite.	Gmelinite.	Polybasite.	Vanadinite.
Chabrsie.	Graphite.	Proustite.	Wiliemite.
Chalybite.	Greenockite.	Pyrargyrite.	Xenthocone.
Clintonite.	Hematite.	Pyromorphite.	
Chlorite.	HyArargillite.	Pyrosmalite.	
Cinnabar.	Ice.	Pyrrhotine	

Cleavages parallel to the basal pinacoids ocowr in the following minerals :-

Alunite. Antimony. Apatite. Arsenic. Biotite. Bismuth. Brucite. Calcite. Chntonite. Chlorite.

Corundum.
Cronstedtite.
Covellize.
Emeraid.
Endialyte.
Graphite.
Greenockite
Hematite.
Hydrargillita.
Ice.

Ilmenite. Nepheline. Oamiridiume Parasite. Polybasite. Pyrosmalites Pyrrhotine. Ripidolite. Spartalite. Stilpnomelane.

Aveamnite. Tamarite. Tellurium. Tellurwoismuth. Tetradymite. Willemite. Kanthoeone.

Position of the poles of the hexagonal prisus and basal pinacoid on the spliere of praiection of the rhomboidal system.-With C as centre, and any convenient radius CM_{1} describe the circle $M_{1} M_{2} M_{4}$.

Let $M_{1} M_{4}$ and $G_{2} G_{5}$ be any two diameters at right angles to each other.

Take arcs $M_{1} \quad G_{1}$, $G_{2} M_{2}, G_{2} M_{3}$, and $M_{4} G_{3}$ each equal to 30°.

Through $\mathrm{G}_{1}, \mathrm{M}_{\boldsymbol{y}} \mathrm{M}_{3}$ and G_{3}, draw the diameters $\mathbf{G}_{1} \mathbf{G}_{5}, \mathbf{M}_{2} \mathbf{M}_{5}$ $M_{3} M_{6}$, and $G_{3} G_{6}$.

Then C will represent the narth pole of the sphere of projection, and the circle $\mathbf{M}_{\mathbf{1}} \mathbf{G}_{\mathbf{1}} \mathbf{M}_{\mathbf{4}}$ ite equator.

Fig. 255.

IRIS - LILLIAD - Université Lille 1
\mathbf{C} will represent the pole of the upper basal pinacoid, $\mathrm{G}_{1} \mathrm{G}_{2}$, \&c.. G_{6}, the poles of the hexagonal prisn of the first order, $\mathrm{M}_{1} \mathrm{M}_{2}, \& \mathrm{c} ., \mathrm{M}_{4}$, the poles of the hexagonal prism of the second order, $\mathrm{G}_{1} \mathbf{C G} \mathrm{G}_{4}, \mathrm{G}_{2} \mathrm{CG}_{5}$, and $\mathrm{G}_{3} \mathbf{C} \mathrm{G}_{6}$, the zones in which the poles of the six-faced syramids of the first order lie, and $\mathrm{M}_{1} \mathrm{CM}_{4}, \mathrm{M}_{2} \mathrm{CM}_{5}$, and $\mathrm{M}_{3} \mathrm{CM}_{\omega}$ the zones in which the poles of the six-faced pyramids of the second order lie.

One pole of the twelve-faced prism will lie in each of the ares M G, and one pole of the double tweive-faced pyramid in each compartment of the sphere bounded by the arcs $\mathbf{C M}, \mathbf{M G}$, and GC.

Double Six-Faced Pyramid of the First Order.-The double six-faced pyramid consists of two pyramids joined together, one on each side of a regular hexagonal base. It is bounded by twelve triangular faces, such as $P_{1} M_{1} M_{6}$ (Fig. 256), each face being an isosceles triangle. It has six four-faced solid angles, $\mathbf{M}_{1} \mathbf{M}_{2}$ \&c., \mathbf{M}_{6}, and two six-faced solid angles, P_{1} and P_{2}.

There are six equal edges, $M_{1} M_{2}$, \&c., which are the sides of the common hexagonal base, and twelve other edges, $\mathbf{P}_{1} \mathrm{M}_{1}, \mathrm{P}_{2} \mathrm{M}_{2}$ $\& c$., equal to each other, but unequal to the former, which form the sides of the isosceles triangles. The hexagonal base of this pyra-

Fig. 256. mid is the heragon circumscribing the circle described with one of the equal parameters for its radius.

To Draw tho Dowble Six-faced Pyramid of the First Order.-Prick off the points $M_{1}, M_{2}, \& c ., M_{\&}, G_{1}, G_{2}$, \&c., G_{6}, P_{1}, P_{2}, and C, from Fig. 249.

Join $M_{1} M_{2}, M_{2} M_{3}$, \&c., $M_{6} M_{1}, G_{1} G_{4}, G_{2} G_{s}$ \& $c_{\text {. }}$ and $P_{1} P_{2}$
Take C P_{1} and $C P_{2}$, equal $H P$ (Fig. 253), the unequal parameter.
$J_{\text {oin }} \mathbf{P}_{1} \mathbf{M}_{1}, \mathbf{P}_{1} \mathbf{M}_{2}$, \&cc., $\mathbf{P}_{\mathbf{2}} \mathbf{M}_{1}, \mathbf{P}_{2} \mathbf{M}_{2}$, \&c., and the pyramid will be constructed.
Axes.-The axes $G_{1} C_{1}, G_{2} C_{1}$, and $G_{3} C$, in which the equal parameters lie, join the centres of the opposite edges of the hexagonal base of the pyramid; while the fourth axis, $\mathrm{P}_{1} \mathrm{P}_{2}$, along which the unequal parameter is measured, joins the opposite apices of the pyramids.

Symbols.-Each face of the pyramid would, if produced, ent one of the axes in which the equal parameters are taken at the extremity of the parameter, the neighbouring axis in the hexagonal base at a distance from its centre twice that of the equal parameter, and the fourth axis perpendicular to the base at the extremity of the unequal parameter. Thus the face $P_{1} M_{1} M_{G}$ if produced, cuts the axis $\mathbf{C G}_{1}$ at $G_{1}, \mathbf{C} G_{6}$ at a distance from C equal twice $C G_{1}$, and $C P_{1}$ at P_{1}.

The symbol which expresses this relation to the axes is 1, 2, 1. Naumann's symbol for this form is P 2, or R^{∞}, Miller's $5,2, \overline{1}$, Brooke and Levy's $d^{2} d \ddagger b^{2}$, if the rhomboid, and a^{2} if the hexagonal prism be taken as the primitive form.

Inclinatios of the Faces.-Let ϕ be the angle of inclination of the faces measured over the edges $M_{1} M_{2}, M_{2} M_{3}$ \&c.; θ their inclination over the edges $P_{1} M_{1}, P_{1} M_{2}$ \&c.; a the angular element; and λ the latitude of the faces measured from the pole C (Fig. 255), or the angle between the axis $P_{1} \vec{F}_{2}$, and the normals of the faces.

Then $\tan , \lambda=\cos .30^{\circ} \tan . a \quad \cos \frac{\theta}{2}=8^{i n} .30^{\circ} \sin \lambda \quad$ and $\phi=2 \lambda$.
Position of the Poles on the Sphere of Projection.-The meridians of longitude in which the poles of this pyramid lie, will be those of $30^{\circ}, 90^{\circ}$, and 150°, on both sides of $M_{1} C M_{4}$; or four poles will lie in each zone $G_{1} C G_{4}, G_{2} C G_{5}$, and $G_{3} C G_{8}$. Six poles will lie in the circle of latitude λ° north, and six in the same parallel of south latitude.

Crystals whose Faces occur parallel to the Double Six-faced Pyramid of the first order, with the Latitude of their Poles on the sphere of projection.

Double Six-faced Pyramide derived from the Pyramid of the First Order.-From the preceding pyramid others may be derived, by retaining the same base, and joining its angular points with points equidistant from C in the line $P_{1} P_{2}$, or $P_{1} P_{2}$ produced. Let Q_{1} and Q_{2} be these points, $C Q_{1}$ and $C Q_{2}$ are always some multiple m of the line C P. m may be any whole number or fraction.

When m is less than unity, or a proper fraction, Fig. 257 represents the pyramid which is more obtuse than Fig. 256, from which it is derived.

When m is greater than unity, Fig. 258 represents the pyramid which in this case is more acute than Fig. 256, from which it is derived.

Symbols.-Each face of this pyramid would, if produced, cut one of the axes in which the equal parameters are taken at the extremity of the parameter; the neigh.

Fig. 257.

Fig. 258.
bouring axis in the heragonal base, at a distance from its centre being twice that of the equal parameter, and the fourth axis perpendicular to the plane of the base of the pyramid, at a distance from the centre equal to m times the unequal parameter.

When m becomes infinitely great, the pyramid becomes the prism of the first order.
The symbol which expresses this relation tin the axes is $1,2, m$. Naumann's symbal
for these pyramids is $m \mathrm{P} 2$, or $m \mathrm{R}^{\infty}$; Miller's h, k, l; and Brooke and Levy's modification of Haüy $\frac{2}{a^{\prime \prime \prime}}$, if the hexagonal prism be taken as the primitive form. Their symbol, if the rhomboid be taken as the primitive form, will be given under each particular form,

Inclination of the Faces.-If λ be the angle of latitude of the faces, θ their inclination over the edges $Q_{1} M_{1}, Q_{2} M_{2}$, \&c., ϕ over the edges $M_{1} M_{2}, M_{2} M_{3}$, \&c., a the angular element for the substance,

Then
$\tan . \lambda=m \cos .30^{\circ}$ tan. a,
$\cos \frac{\theta}{2}=\sin .30^{\circ} \sin . \lambda$, and $\phi=2 \lambda$.
Position of the Poles of this Form on the Sphere of Projection.-The poles of these

Fig. 259. pyramids always lie in the same zones as the pyramid of the first order from which they are derived; six being in the circle of latitude λ° north, and six in the same latitude south.

To describe the net for these Pyramids.Draw CM_{1} and CP (Fig. 259) perpendicular to each other. Take $\mathrm{C} \mathrm{M}_{1}$ equal to $\mathbf{C} \mathrm{M}_{1}$ (Fig. 252), $\mathbf{C P}$

Fig. 261. equal C P_{1} (Fig. 256), or CQ_{1} (Figs. 257 and 258). Join $P M_{1}$.

Then Fig. 260.-Draw $\mathrm{M}_{1} \mathrm{M}_{2}$ equal $\mathrm{M}_{1} \mathrm{M}_{2}$ (Fig. 252). On M ${ }_{1} \mathrm{M}_{2}$ describe the isoseeles triangle $P M_{1} M_{2}$ having its sides $P M_{1}$ and $P M_{2}$

Fig. 260. equal $P M_{1}$ (Fig. 259).

P $M_{1} M_{2}$ will be a face of the pyramid, and twelve such faces, arranged as in Fig. 261, will form the required net.

Forme of the Double Six-faced Pyramids derived from the pyramid of the first order which occur in nature, together with the Latitude of their Faces.
The form 1, 2, \ddagger; $\ddagger 2$ Naumann; 231 Miller; a^{6} or $b^{1} b^{\frac{1}{2}} b^{\frac{1}{3}}$ Brooke and Levy.

The form 1, 2, 妾; 妾P 2 Naumann; $37 \overline{1}$ Miller ; $a^{\frac{6}{4}}$ or $d^{\frac{1}{3}} d^{\frac{1}{7}} b^{\frac{1}{3}}$ Brooke and Lery. Ripidolite $60^{\circ} 00^{\circ}$.
The form 1, 2, $\frac{4}{3}$; $\frac{4}{3}$ P 2 Naumann; $13 \overline{1}$ Miller; $a^{\frac{3}{2}}$ or e_{3} Brooke and Lery.

Nepheline		－	－	62°	40° ．
Osmiridium				62°	0 ．
Parasite		－		82°	29^{\prime}.
Phenakite				19°	$17^{\prime \prime}$
Pyromorphite		－	－	69°	32° ．
Pyrosmalite				50°	47°
Pyrrhotine		－		63°	25^{\prime}.

The form 1，2，㝵；㝵P 2 Naumann； 120 Miller；a^{3} or b^{2} Brooke and Levy．
Apatite ．．．． $40^{\circ} 13^{\prime}$ ．
Calcite ．．．． $29^{\circ} 40^{\circ}$ ．
Chabasie ．．．． $35^{\circ} 15^{\circ}$ ．
Coquimbite ．．．． $29^{\circ} 0^{\circ}$ ．
Dafyne ．．．． $44^{\circ} 8^{\circ}$ ．
Emerald ．．．． $29^{\circ} 67^{\circ}$ ．
Gmelinite ．．．． $40^{\circ} 4^{\prime}$ ．
－Greenockite ．．． $43^{\circ} 37^{\circ}$ ．
Hematite ．．．． $42^{\circ} 11^{\circ}$ ．
Kupfernickel ．．．． $43^{\circ} 25^{\circ}$ ．
Mimetite ．．．． $40^{\circ} 54^{\circ}$ ．
Molybdenite ．．．．Undetermined．
Nepheline ．．． $44^{\circ} 3$ ．
＋Phenakite ．．．． $11^{\circ} 37^{\circ}$ ．
Plattnerite ．．．．Undetermined．
－Polybasite ．．．． $68^{\circ} 30^{\circ}$ ．
Pyrargyrite ．．．． $27^{\circ} 43^{\prime}$ ．
Pyromorphite ．．． $40^{\circ} 22^{\circ}$ ．
Pyrosmalite ．．．． $31^{\circ} 30^{\circ}$ ．
Pyrrhotine ．．．． $63^{\circ} 25^{\circ}$ ．
Mimetite and Pyrumorphite cleave parallel to this form．
 Corundum ．．．． $64^{\circ} 45^{\circ}$ ．
The form 1，2， 2 ； 2 P 2 Naumann； $14 \overline{2}$ Miller；a^{1} or d^{1} d $b 1$ Brooke and Levy． Apatite ．．．． $68^{\circ} 29^{\circ}$ ．
Biotite ．．．． $78^{\circ} \mathbf{8}^{\circ}$ ．

Corundum ．．．． $69^{\circ} 51^{\circ}$ ．
Quartz ．．．．65 33° ．
The form 1，2，$\frac{7}{3}$ ； 7 P 2 Naumann； $29 \overline{\overline{5}}$ Miller；a_{i} or $d \ddagger$ dt $b t$ Brooke and Levy． Corundum ．．． $72^{\circ} 31^{\circ}$ ．
The form 1，2，是；量P2 Naumann； $15 \overline{3}$ Miller；at or $d^{1} d \ddagger$ brooke and Lefy． Biotite ．．．．81 3＇． Caloite ．．．． $66^{\circ} 18^{\prime}$ ． Corundum ．．．． $74^{\circ} 36^{\circ}$ ． －Greenockite ．．． $75^{\circ} 18^{\circ}$ ． Mimetite ．．．． $73^{\circ} 54^{\circ}$ ． Pyromorphito－\quad－ $73^{\circ} 37^{\circ}$ ． IRIS SartalitéD－Université Lillé 1 － $\mathbf{6 0}^{\circ} \mathbf{3 4} \mathbf{4}^{\prime}$ ．

The form 1, 2, 1 ; 19 P 2 Naumann; 164 Miller ; $a^{\frac{3}{3}}$ or $d^{1} d^{\frac{1}{6}} b^{\frac{1}{4}}$ Brooke and Lery.

| Hematite | . | . | . | $\quad 77^{\circ} 33^{\prime}$. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Imenite | . | . | . | $77^{\circ} 33^{\prime}$. |

The form 1, 2, 4; 4 P 2 Naumann; $17 \overline{5}$ Miller ; $a^{\frac{1}{2}}$ or $d^{1} d^{\frac{1}{7}} b^{\frac{1}{5}}$ Brooke and Levy.

The form 1, 2, 5; 5 P 2 Naumann; 2, 17, $\overline{13}$ Miller; $a^{\frac{2}{5}}$ or $d^{\frac{1}{2}} d^{\frac{1}{4}} b^{\frac{1}{3} 3}$ Brooke and Levy. Emerald $76^{\circ} 58^{\prime}$.
 Corundum $82^{\circ} 10^{\circ}$.
 Corundum $84^{\circ} 45^{\circ}$.
The forms of Greenockite, marked thus *, are sometimes hemihedral, with parallel faces ; that of Phenakite, marked \dagger, hemihedral, with inclined faces. The hemihedral forms, with parallel faces, are rhomboids; those with inclined faces, double three-faced pyramids.

Double Six-faced Pyramid of the Second Order.-The double six-faced pyramid of the second order is the same form of solid as the pyramid of the first order, and differs from it only in its position and rela-

Fig. 262. tion to the axes of the system. The base of this pyramid, $G_{1} G_{2}$, \&c., G_{6} (Fig. 262) is the hexagon $G_{1} G_{2}$, \&c., G_{6} (Fig. 252) inscribed in the circle whose radius, CG_{1}, is equal to one of the equal parameters.

To Draw the Double Six-faced Pyramid of the Second Order.-Prick off the points $G_{1} G_{2}$, \&c., G_{6}, $\mathrm{P}_{1} \mathrm{C}_{1} \mathrm{P}_{2}$, from Fig. 250. Take CP_{1} and CP_{2}, equal HP (Fig. 253), the unequal parameter. Join $P_{1} G_{1}, P_{1} G_{2}$ \&c., and the pyramid will be constructed.
Axes.-The axis $\mathrm{P}_{1} \mathrm{P}_{\mathfrak{y}}$, in which the unequal parameter is taken, joins the opposite six-faced solid angles P_{1} and P_{2}; while the axes in which the equal parameters are taken, such as $\mathbf{G}_{1} \mathbf{G}_{4}$, join the opposite four-faced solid angles. Each face, therefore, of this pyramid cuts three axes at the extremities of their parameters.

Symbols.-The symbol which expresses the above relation of the faces of this pyramid to its axis is 111.

Naumann's symbol for this form is P. Miller, Brooke, and Levy do not treat this pyramid as a distinct form, but regard it as a combination of the two equal rhomboids which are its parallel hemihedral forms.

the edges $P_{1} G_{1}, P_{2} G_{2}$, \&c., θ their inclination over the edges $G_{1} G_{2}, G_{2} G_{3}$, \&c., a the angular element.

$$
\theta=2 a \quad \cos . \quad \frac{\phi}{2}=\frac{1}{2} \sin \alpha
$$

Position of the Poles on the Sphere of Projection. -The poles of the faces of this pyramid lie in the meridians of $0^{\circ}, 60^{\circ}$, and 120°, six in the circle of latitude a° north, and six in the same circle of south latitude; or four poles lie in each of the zones $\mathrm{M}_{1} \mathrm{CM}_{4}$, $\mathrm{M}_{2} \mathrm{CM}_{5}$, and $\mathrm{M}_{3} \mathrm{C} \mathrm{M}_{6}$ (Fig. 255).

Double Six-faced Pyramids derived from the Pyramid of the Second Order.-Retaining the same base, other pyramids may be derived from that of the second order by taking points Q_{1} and Q_{8} in $\mathbf{C P}$ or $C P$ produced, such that $C Q_{1}$ or $C Q_{2}$ is equal to m times $C P_{1}$ (Fig. 262); m being a whole number or fraction greater than unity for the pyramid Fig. 264, and less than unity for Fig. 263.

Fig. 263.
When m becomes infinitely great, the pyramid becomes the prism of the second order.

Fig. 264.

Symbols.-The symbol for these pyramids is 11 m , Naumann's m P.
Inclination of the Faces.-If ϕ be the angle of inclination of the faces measured over the edges $Q_{1} G_{1}, Q_{2} G_{1}$, \&c., θ over the edges $G_{1} G_{2}, G_{2} G_{3}$, \&c., a the angular element of the substance, and λ the inclination of the normals of the faces to $Q_{1} Q_{2}$, or their latitude on the sphere of projection,

$$
\tan \cdot \lambda=m \tan \alpha \quad \theta=2 \lambda, \text { and } \cos \frac{\phi}{2}=\frac{1}{2} \sin . \lambda
$$

Pasition of the Poles on the Sphere of Projection.-The poles of the faces of these pyramids lie in the meridians of $0^{\circ}, 60^{\circ}$, and 120°, six for each pyramid in the eircle of latitude λ° north, and six in the same circle of south latitude; or four poles lie in each of the zones $\mathrm{M}_{1} \mathrm{C} \mathrm{M}_{4}, \mathrm{M}_{2} \mathrm{C} \mathrm{M}_{3}$, and $\mathrm{M}_{3} \mathrm{CM}_{6}$ (Fig. 255).

Fig. 265.

Nets for these Pyramids.-Take B C (Fig. 265), equal to C G (Fig. 252). Draw B A perpendicular to BC. Take AB equal to C Q (Figs. 262 or 263); that is, equal to m times the unequal parameter. Join AC.

Then (Fig. 266) draw $G_{1} G_{2}$ equal $G_{1} G_{2}$ (Fig. 252); on it describe the isosceles triangle $P G_{1} G_{2}$, having the sides $P G_{1}$ and $P G_{2}$ equal $A C$ (Fig. 265).

Fig. 266.

P $G_{1} G_{2}$ is a face of the prramid; and twelve guch faces, arranged as in Fig. 261, will form the requilfed ret.

These pyramids occur so seldom, as homohedral or perfect forms in nature, that when they do so, they are regarded as combinations of the two hemihedral forms derived from them; we shall therefore describe them under their hemihedral forms.

Rhomboid.-The rhomboid may be considered as a hemihedral form with parallel faces of the double six-faced pyramid. The positive rhomboid (Fig. 267) is derived

Fig. 267.

Fig. ${ }^{268}$.
from the pyramid Fig. 262 by producing the faces $P_{1} G_{1} G_{2}, P_{1} G_{3} G_{4}, P_{1} G_{3} G_{6}, P_{2} G_{1}$ $G_{6}, P_{2} G_{2} G_{3}$, and $P_{2} G_{4} G_{5}$ to meet one another. The negative rhomboid (Fig. 268) is formed by producing the other six faces of the pyramid.

The rhomboid is bounded by six equal faces, each of which, such as $P_{1} R_{6} R_{1} R_{2}$, are rhombs; that is, four-sided figures, with equal sides and opposite angles, but all the angles not equal. It has twelve equal edges, two three-faced solid angles, \mathbf{P}_{1} and \mathbf{P}_{2} (Figs. 267 and 268), formed by the union of three equal angles of the rhombic faces, and six three-faced solid angles, $\mathrm{R}_{1} \mathrm{R}_{2}$, \&c. (Fig. 267), $\mathrm{R}_{10} \mathrm{R}_{11}$, \&c. (Fig. 268), formed by the union of two equal angles of the rhombic faces with an unequal one.

To draw the Rhomboid.-Though the Rhomboid is derived from the double six-faced pyramid as its hemihedral form, and might be constructed from that figure by producing its faces, it is more easily obtained from the hexagonal prism of the first order.

Fig. 269.

Fig. 270.

For Figs. 269 and 270, prick off from Fig. 249 all the points marked PCB and M. Take P C and $\mathrm{B}_{1} \mathrm{M}_{1}, \mathrm{~B}_{2} \mathrm{M}_{2}$, \&c., in both Figs. equal to the unequal parameter P C (Fig. 262), as determined for the particular substance whose rhomboid is to be drawn. Join all the B 's and $\mathrm{P}_{1} \subset \mathrm{P}_{2}$.

$M_{1} R_{1}$ one-third of $M_{1} B_{7}$, and so on, taking care that the points R are alternately above and below the points M .

Join P_{1} with R_{6}, R_{2} and R_{4}; and P_{2} with R_{1}, R_{3} and R_{5}; and $R_{8} R_{1} R_{2} R_{3} R_{4} R_{5}$ and R_{e}, and the positive rhomboid will be constructed.

The negative rhomboid is constructed by taking M R one-third of M B alternately above and below M, as shown in Fig. 270, and joining the points B and R.

Symbols.-The symbol for the rhomboids derived from the pyramid whose symbol is 111 , is $+\left[\frac{111}{2}\right]$ and $-\left[\frac{111}{2}\right]$, Naumann's symbol is $+\frac{P}{2}$ and $-\frac{P}{2}$ or $+R$ and $-R$.

Miller's symbol for the positive thomboid is 100, Brooke and Levy's P, if that rhomboid be taken as the primative form, $\frac{1}{9}\left(b^{1}\right)$ if the hexagonal prism be chosen for the primative.

Miller's symbol for the negative rhomboid is $\overline{1} 22$, Brooke and Lcry's et or $\frac{1}{2}\left(b^{\prime}\right)$, according as the rhomboid or the hexagonal prism are taken as the primative form.

Inclination of the Faces of the Rhomboid,-If θ be the angles of inclination over any of the edges P R (Figs. 267 and 268), ϕ over the edges R R, and α the angular element.

$$
\cos \frac{\theta}{2}=\sin .60 \sin a \quad \text { and } \phi=180^{\circ}-\theta
$$

a is the latitude of the faces of the rhomboids on the sphere of projection.
Poles of the Rhomboids on the Sphere of Projection.-The poles of the positive rhomboid on the northern half of the sphere of projection (Fig. 255), are the points where

Fig. 271.

Fig. 272.

Fig. 273.
the circle of latitude, a, cuts the meridian $C M_{1}, \mathrm{CM}_{3}$ and $C M_{5}$, the poles of the negative rhomboid where the same circle cuts the meridians $\mathrm{CM}_{2}, \mathrm{CM}_{4}$, and CM_{8}.

Nets for the Rhemboids.-Take CM (Fig. 271) equal CM (Fig. 252), draw $\mathrm{P}_{1} \mathrm{CP}_{2}$ perpendicular to M_{1}, take $\mathbf{C} \mathrm{P}_{1}$ and CP_{2} equal $\mathbf{C} \mathrm{P}_{1}$ (Fig. 269 or 270).

Through M draw $B_{1} B_{7}$ parallel to $P_{1} P_{2}$ and through P_{1} and $P_{2}, P_{1} B_{1}$ and $P_{2} B_{1}$, parallel to C M.

Take $R M$ one-third of $B_{1} M$. Join $P_{1} R$ and $R P_{2}$.
Then (Fig. 272) draw A B equal $R P_{2}$ (Fig. 271), on A B describe an isosceles triangle A C B, having its sides A C, B C equal P_{1} R (Fig. 271). Describe a similar and equal triangle $A D$ B on the other side of $A B$. The figure C AD B will be a face of

Faces parallel to those of the Positive Rhomboid occur in nature in the following substances, The angles are those of the inclinations of their faces θ and ϕ. The angle of their latitude, being the same as the angular element, is not given.

Cieavages parallel to the positive Rhomboid occur in the following minerals, the cleavage being perfect in those printed in italics.

Alunite.	Diallogite.	Mesitine.	Pyrargyrite.
Ankerite.	Dolomite.	Millerite.	Quartz.
Calcite.	Eudialyte.	Nitratine.	Tournaline.
Chabasie.	Hematite.	Phenakite.	Willemite.
Chalybite.	IImenite.	Proustite.	Xanthocone.

Cronstedtite, Phenakite, and Pyrargyrite present hemihedral forms of the six-faced pyramid with inclined faces. This form is a double three-faced pyramid.

Faces parallel to the negative Rhomboid occur in the following minerals.

Millerite and Quartz are the only minerals which cleave parallel to the negative rhomboid, the cleavage of the first being perfect.

Rhomboids may be dcrived from each of the double six-faced pyramids (page 397), whose symbol is 11 m ; to draw them we have only to make C P in Figs. 269 and 270 equal to m times the unequal parameter. Their nets may be constructed in a similar manner by making C P in Fig. 271 equal to the same quantity.

Symbols.-The symbols for these rhomboids will be $\left[\frac{11 m}{2}\right]$, Naumann's $\frac{m P}{2}$ or $m \mathrm{R}$, and Miller's $k k k$, where $m=\begin{gathered}h-k \\ k+2 k\end{gathered}$ is the relation existing between the numbers used by Naumann and Miller; Brooke and Levy's symbol will be $b^{\frac{1}{m}}$ when they take the hexagonal prism for their primitive form; when they regard the positive rhomboid as their primitive form, their symbols for the derived rhomboids will be given with each particular case.

Inclination of the Faces of the Rhomboids.-If λ be the latitude of the face of the rhomboid, and α its angular element, ϕ the angle of inclination over the edges PR, θ that over the edges RR (Figs. 267 and 268),

$$
\begin{gathered}
\tan . \lambda=m \tan . \alpha, \quad \cos . \frac{\phi}{2}=m \sin .60 \cos . \lambda \tan . a \\
\text { and } \theta=180^{\circ}-\phi .
\end{gathered}
$$

Rhomboids derived from the Double Six-faced Pyramids (p. 397), whose Faces have beet observed in nature, together with their Latitude on the Sphere of Projection.
$\frac{1}{16}$ R Naumann; 655 Miller; $a^{\frac{6}{5}}$ Brooke and Levy.
Hematite . . $5^{\circ} 36^{\prime}$

- $\frac{1}{6}$ R Naumann; 233 Miller; $a^{\frac{2}{3}}$ Brooke and Levy.

Hematite. . $11^{\circ} 6^{\prime}$

$\frac{1}{4}$ R Naumann; 211 Miller; a^{2} Brooke and Levy.
Antimony . $20^{\circ} 40^{\circ} \mid$ Cinnabar . . $33^{\circ} 28^{\prime} \mid$ Hematite . . $21^{\circ} 25^{\prime} \mid$ Pyrargyrite . $12^{\circ} 49^{\prime}$ Calcite . . $13^{\circ} 52^{\prime} \mid$ Endialyte . . $31^{\circ} 22^{\prime} \mid$ Proustite . . $13^{\circ} 3^{\prime} \mid$ Tetradymite . $42^{\circ} 30^{\prime}$ Eudialyte cleaves parallel to this form.

- $\frac{1}{4}$ R Naumann; 255 Miller; $a^{\frac{2}{2}}$ Brooke and Levy. Calcite . . . $13^{\circ} 52^{\prime} \mid$ Hematite. . $21^{\circ} 25^{\prime}$
$-\frac{2}{7}$ R Naumann; 133 Miller ; $a^{\frac{1}{3}}$ Brooke and Levy. Hematite . . $24^{\circ} 9^{\circ}$
${ }_{3}^{\frac{1}{3}}$ R Naumann ; 522 Miller ; $a^{\frac{5}{2}}$ Drooke and LevyCorundum . $27^{\circ} 41^{\prime} \mid$ Cinnabar . . $41^{\circ} 24^{\prime}$
$\frac{2}{5}$ R Naumann; 311 Miller; a3 Brooke and Levy. Cinnabar - . $46^{\circ} 39^{\prime} \mid$ Ilmenite . . $32^{\circ} 7^{\prime}$
${ }_{2}^{1}$ R Naumann ; 411 Miller ; a^{4} Brooke and Levy.

$-\frac{1}{2}$ R Naumann; 011 Miller; b^{1} Brooke and Levy.

Ankerite .	2^{\prime}	Calcite.	. $26^{\circ} 15^{\prime}$	Dolomite .	- $25^{\circ} 40^{\prime}$	Phenakite	
${ }_{\text {Antimony }}^{\text {Anatite }}$		Chabasie ${ }^{\text {Cals }}$	$\underbrace{312^{\circ}}_{25^{\circ}}$	Eudialyte.		Prous	
${ }_{\text {Arsen }}^{\text {Apatite }}$		Chalybite	- 2205	Hematite		${ }_{\text {Pu }}$	
th	${ }_{36}{ }^{36} 58^{\prime}$	Diallogite ${ }^{\text {a }}$	- $255^{5} 23^{\circ}$	Mesit	'	Tamarit	
reunnerit	25°	Dioptase .	${ }_{31}{ }^{2} 22^{\prime}$	Millerite	$10^{\circ} 4$	Tourmaline	

Antimony, Bismuth, Chalybite, Diallogite, Hematite, Ilmenite, Proustite, Dioptase, and Millerite, cleave parallel to this form, the last two perfectly.
홓 R Naumann; 611 Miller ; a^{6} Brooke and Levy. Hematite . . $44^{\circ} 27^{\prime}$
$\stackrel{?}{3}$ R Naumann; 711 Miller; \boldsymbol{a}^{7} Brooke and Levy. Calcite . . . $33^{\circ} 20^{\prime}$
$-\frac{4}{5}$ R Nanmann; $\overline{1} 33$ Miller ; $e^{\frac{1}{s}}$ Brooke and Levy. Calcite . . . $38^{\circ} 17^{\circ}$
$-\frac{6}{5}$ R Naumann ; $\overline{2}, 11,11$ Miller; $\epsilon^{T^{2}}$ Brooke and Levy. Calcite . . . $49^{\circ} 49^{\prime}$

- $\frac{3}{4}$ R Naumann ; 233 Miller; $e^{\frac{2}{3}}$ Brooke and Levy. Calcite . . . $50^{\circ} 55^{\prime}$
$-\frac{3}{2}$ R Naumann; $\overline{4} 55$ Miller; $e^{\frac{4}{3}}$ Brooke and Levy. Arsenic . . $67^{\circ} 16^{\prime} \mid$ Calcite. . . $55^{\circ} 57^{\prime} \mid$ Hemstite. . $6^{\circ} 599^{\prime} \mid$ Proustite . . $55^{\prime} 19^{\prime}$
$\stackrel{5}{2}$ Naumann; 13, $\overline{2}, \overline{2}$ Miller ; $e^{\frac{13}{2}}$ Brooke and Lcvy. Quartz. . . $64^{\circ} 43^{\circ}$
${ }_{4}$ R Naumann; 6, $\overline{1}, \overline{1}$ Miller ; e^{6} Brooke and Levy. Ripidolite . $75^{\circ} 45^{\circ}$
2 R Naumann; $5 \overline{1} 1 \overline{1}$ Miller ; es Brooke and Levy. Aptite . . . $71^{\circ} 91$ Quartz . . $68^{\circ} 31^{\prime}$
- 2 R Naumann; ill Miller; al Brooke and Levy. Antimony . $71^{\circ} 40^{\circ}{\text { Chabasie . . } 677^{\circ} 47^{\prime}}^{\prime}$ Ilmenite . . $72^{\circ} 2 \sigma^{\circ}$ Ripidolite $.77^{\circ} 25^{\circ}$ Apatite - $71^{\circ} 9^{\prime}$ Chaijbite . $62^{\circ} 7^{\prime}$ Lersne . $62^{\circ} 37^{\prime}$ Susannite $.78^{\circ} 56^{\prime}$ Biotite . . $79^{\circ} 41^{\prime}$ Corundum . $72^{\prime} 22^{\prime} \mid$ Phenakite $.56^{\circ} 44^{\prime}$ Tetradymite $82^{\circ} 14^{\prime}$ Bismuth . . $71^{\circ} 37^{\prime}$ Dolomite . . $6231^{\prime} \mid$ Proustite . . $61^{\circ} 41^{\prime} \mid$ Tourmaline . $45^{\circ} 57^{\prime}$ Calamine. . $61^{\circ} 46^{\prime} \mid$ Eudialyte . $78^{\circ} 25^{\prime}$ Pyrargyrite . $71^{\circ} 13^{\prime}$ Willemite. $49^{\circ} 14^{\prime}$ Calcite. . . $63^{\circ} 77^{\prime} \mid$ Hematite . . $72^{\circ} 20^{\prime} \mid$ Quartz . . $68^{\circ} 31^{\prime} \mid$ Xanthocone . $79^{\circ} 25^{\prime}$ Antimony, Bismuth, Levyne, and Tourmaline, cleave parallel to this form.

[^1]$-\frac{5}{2}$ R Naumann ; $\overline{8} 77$ Miller ; $e^{\frac{9}{7}}$ Brooke and Levy. Calcite . . . $677^{5} 6^{\prime}$
3 R Naumann; $72 \overline{2}$ Miller; $e^{\frac{7}{2}}$ Brooke and Lery. Quartz. . . $75^{\circ} 18^{\circ}$

- 3 R Naumann; $\overline{5} 44$ Miller; $e^{\frac{5}{4}}$ Brooke and Levt. Calcite. . . $71^{\circ} 20^{\prime} \mid$ Lergne . . $70^{\circ} 57^{\prime} \mid$ Millerite . . $48^{\circ} 47^{\prime}$
$-\frac{7}{2}$ R Naumann; $\overline{4} 33$ Miller; $e^{\frac{4}{3}}$ Brooke and Levy. Calamine . . $72^{\circ} 56^{\circ} \mid$ Calcite . . . $73^{\circ} 51^{\prime} \mid$ Quartz $. .77^{\circ} 19^{\circ} \mid$ Tourmaline $.61^{\circ} 4^{\prime}$
4 R Naumann; $3 \overline{1} \overline{1}$ Miller; e Brooke and Levg.
 Calcite. . $75^{\circ} 47^{\prime}$ Hematite . . 80 57 \mid Quartz . $78^{\circ} 52^{\prime} \mid$ Tourmaline $64^{\circ} 11^{\prime}$ Chalybite . . $75^{\circ} 11^{\prime}$
- 4 R Naumann; $\overline{7} 55$ Miller; e^{7} Brooke and Levy. Calcite. . . $75^{5} 4 \mathrm{i}^{\prime}$
- 5 R Naumann ; $\overline{3} 22$ Miller; $e^{\frac{3}{2}}$ Brooke and Levy. Calamine . $77^{\circ} 53^{\prime} \mid$ Chalybite . $78^{\circ} 3{ }^{\prime} \mid$ Ilmenite . . $82^{\circ} 44^{\prime} \mid$ Tourmaline . $68^{\circ} 51^{\circ}$ Calcite. . . $78^{\circ} 32^{\prime} \mid$ Hematite . . $8244^{\prime} \mid$ Pyrargyrite . 8i $11^{\prime} \mid$
UY R Naumann; $8 \overline{3} \overline{3}$ Miller ; $e^{\frac{8}{3}}$ Brooke and Lery. Quartz . . $81^{\circ} 51^{\prime}$
6 R Naumann; 13, $\overline{5}, 5$ Miller; e^{13} Brooke and Lery. Quartz . . 82 31'
- 7 R Naumann; 13, 8, 8 Miller ; e ${ }^{13}$ Brooke and Lery. Quartz . . $833^{35^{\prime}}$! Susannte . $68^{\circ} 38^{\prime}$
- 8 R Naumann ; 533 Miller; $e^{\frac{3}{3}}$ Brooke and Lery. Calcite. . . 82 47
- 11 R Naumann; 744 Miller; $e^{\frac{7}{4}}$ Brooke and Levg. Quartz . . $85^{\circ} 51^{\prime}$

Poles of the derived Rhomboids.-The poles of the positive rhomboids, that is of those rhomboids whose symbol, according to Naumann, is of the form $m \mathrm{R}$, will be found by observing the points where the circle of latitude for λ north cuts the meridians CM_{1}, CM_{3}, and CM_{5} (Fig. 255), of the northern hemisphere of the sphere of projecti n , and where the same circle of south latitude cuts the meridians $\mathrm{CM}^{(} \mathrm{CM}_{4}$, and CM_{6} in the southern hemisphere. In the case of the negative rhomboids, or those those symbol is - $m \mathrm{R}$, the poles will be the intersection of the circle of north latitude λ, with the meridians $\mathrm{CM}_{2} \mathrm{CM}_{4}$, and CM_{6}, and the same circle of south latitude with the moridian $\mathrm{CM}_{1}, \mathrm{CM}_{3}$, and CM_{5}.

Circle of Latitude on Sphere of Projection.-We here b g to call our readers' attention to an omission which we find we have made in the early part of our treatise. We ought to have warned our students that it is far more convenient for purposes of crystall graphy to reckon the d grees of latitude from the pole to the equator instead of from the equator to the pole. Strictly speakinr, the angle which we hive called the an le of latitude is the north or south polar di tan . Our angle of latitude is always, therefore, the difference b twe $a 90$ and th angle of latitude as reckoned on a cel tial or terr strial globe. This ob ervati n applies to the cubical and pyramidal systems.

The Right Prism on a Twelve-siaed Base.-This prism, also call d th dhexagonal p ism, is a solid b und d by f urt en fac s, twelve of whi h, su h as
 th ther two, which terminate the prism, $\mathrm{b} \mathrm{in}_{\mathrm{b}} \mathrm{irr}$ ular polyg ns, with ts iv sid .

When this prism is considered an open form, its sides alone are taken for the planes of the prism, and the two faces which inclose it are considered faces of the same basal pinacoids which inclose the hexagonal prisms.

To Draw the Dihexagonal Prism.-Take any arbitrary line, CG_{1} (Fig. 275), for one of the three equal parameters (as in Fig. 252, page 385) ; draw $\mathrm{CG}_{2}, \mathrm{CG}_{3}, \mathrm{CG}_{4}$, \&c.,

Fig. 274.

Fig. 275.
$C G_{6}$, ench equal to $C G_{1}$, and inclined to each other at an angle of 60°. Join $G_{1} G_{n}$, $G_{2} G_{3}$, \&c., $G_{5} G_{6} ; G_{1} G_{2} G_{3}$ \&c. G_{6} will be a regular hexagon, and $G_{1} G_{4}, G_{2} G_{5}$, and $G_{3} G_{6}$ will represent the three axes of the hexagonal system in which the equal parameters are taken.

Draw $\mathrm{CL}_{1}, \mathrm{CL}_{2}, \mathrm{CL}_{3}$, \&c., CL_{6} bisecting the angles $\mathrm{G}_{2} \mathrm{CG}_{2}, \mathrm{G}_{2} \mathrm{CG}_{3}$, \&c., $\mathrm{G}_{6} \mathrm{CG}_{1}$. Then Fig. 276, draw the equilateral triangle $\mathrm{CG}_{1} \mathrm{G}_{2}$ equal

Fig. ${ }^{276 .}$ $\mathrm{CG}_{1} \mathrm{G}_{2}$ (Fig. 275) ; bisect $\mathrm{G}_{2} \mathrm{CG}_{2}$ by CH , produce CG_{1} and CG_{2} to K_{1} and K_{2}; take CK_{1} and CK_{2} each equal n times $C G_{1}$, the symbol for the prism being $1 n \infty$. Join $G_{1} K_{2}$ and $\mathrm{G}_{2} \mathrm{~K}_{1}$ cutting CH produced in L. Lastly, in Fig. 275, take $\mathrm{CL}_{1}, \mathrm{CL}_{2}, \mathrm{CL}_{3}, \& c ., \mathrm{CL}_{6}$ each equal to CL (Fig. 276); join $G_{1} L_{1}, L_{1} G_{2}, G_{2} L_{2}, L_{2} G_{3}$, \&c., and $G_{1} L_{1} G_{2} L_{2}$ \&c. $L_{g} G_{1}$, will be the base of the prism. Through G_{6} and G_{3} draw the lines $D_{4} G_{6} D_{1}$ and $D_{3} G_{3} D_{2}$ parallel to $L_{4} \mathrm{CL}_{1}$; take $G_{6} D_{1}$ equal to any line greater than $C L_{1} ; G_{6} D_{4}$, $G_{3} D_{2}$ and $G_{3} D_{3}$, each equal to $G_{6} D_{1}$.

Join $\mathrm{D}_{1} \mathrm{D}_{2}$ and $\mathrm{D}_{4} \mathrm{D}_{3}$; produce $\mathrm{L}_{3} \mathrm{~L}_{6}$ to mect $\mathrm{D}_{2} \mathrm{D}_{3}$ in M_{3}, and $\mathrm{D}_{1} \mathrm{D}_{4}$ in M_{6}, and $\mathrm{L}_{2} \mathrm{~L}_{5}$ to meet $\mathrm{D}_{2} \mathrm{D}_{3}$ in M_{2}, and $\mathrm{D}_{1} \mathrm{D}_{4}$ in M_{5}.

Join $L_{5} L_{6}, G_{5} G_{1}, G_{4} G_{2}$ and $L_{3} L_{2}$, and produce these lines as well as $L_{4} L_{1}$ to meet $D_{1} D_{2}$ and $D_{4} D_{3}$ in the points $N E$ and M, as indicated in Fig. 275.

Draw $\mathrm{D}_{1} \mathrm{D}_{4}$ (Fig. 274) equal $\mathrm{D}_{1} \mathrm{D}_{4}$ (Fig. 275), and $\mathrm{D}_{1} \mathrm{D}_{2}$ and $\mathrm{D}_{4} \mathrm{D}_{3}$, each making an angle of 30°, to $D_{1} D_{2}$. Take $D_{1} D_{2}$ and $D_{4} D_{3}$ equal to the half of $D_{1} D_{2}$ and $\mathrm{D}_{4} \mathrm{D}_{3}$ in Fig. 275.

In $\mathrm{D}_{1} \mathrm{D}_{2}$ (Fig. 274) take $\mathrm{D}_{1} \mathrm{~N}_{1}, \mathrm{D}_{1} \mathrm{E}_{1}, \mathrm{D}_{1} \mathrm{~N}_{1}, \mathrm{D}_{1} \mathrm{E}_{2}, \mathrm{D}_{1} \mathrm{~N}_{2}$, each half of $\mathrm{D}_{1} \mathrm{~N}_{1}$, $\mathrm{D}_{1} \mathrm{E}_{1}, \mathrm{D}_{1} \mathrm{M}_{1}$, \&c., respectively, in Fig. 275.

Through $\mathrm{N}_{1}, \mathrm{E}_{1}, \mathrm{M}_{1}, \mathrm{E}_{2}$ and N_{2} draw $\mathrm{N}_{1} \mathrm{~N}_{5}, \mathrm{E}_{1} \mathrm{E}_{4}, \mathrm{M}_{1} \mathrm{M}_{4}, \mathrm{E}_{2} \mathrm{E}_{3}$ and $\mathrm{N}_{2} \mathrm{~N}_{3}$ parallel to $D_{1} D_{4}$. Take $N_{1} L_{6}, N_{1} I_{5}, E_{1} G_{1}, E_{1} G_{5}, M_{1} L_{1}, M_{1} L_{4}, E_{2} G_{2}, E_{2} G_{4}$, $N_{2} L_{2}, N_{2} L_{3}, D_{1} G_{6}$ and $D_{2} G_{3}$ respectively equal to $N_{1} L_{6}, N_{1} L_{3}, E_{1} G_{1}, E_{1} G_{5}$, \&c. (Fig. 275). Draw $G_{6}^{L} \mathrm{G}_{12}^{L}$ perpendiverarite $\mathrm{I}_{1} \mathrm{D}_{4}^{1}$, take $\mathrm{G}_{6} G_{12}$ equal the height of the
prism intended to be represented; draw $\mathrm{L}_{6} \mathrm{~L}_{12}, \mathrm{G}_{1} \mathrm{G}_{7}, \mathrm{~L}_{1} \mathrm{~L}_{7}$, \&c., as in Fig. 274, parallel and equal to $\mathrm{G}_{6} \mathrm{G}_{12}$; join $\mathrm{G}_{12} \mathrm{~L}_{12}, \mathrm{~L}_{12} \mathrm{G}_{7}$, \&e., and the right prism on a twelvesided base will be drawn in isometrical perspective.

Axes. $-G_{1} G_{4}, G_{2} G_{j}$, and $G_{3} G_{6}$ (Fig. 274) represent the three axes in which the equal parameters are taken. The fourth axis corresponds to the geometrical axis of the prism, and would be represented by a line drawn through C parallel to $G_{6} G_{12}$.

Symbols.-Each face of the prism, if produced, would cut one of the three equal axes at a distance from the centre equal to the arbitrary unit, and an adjacent axis at n times this distance, and is parallel to the fourth axis.

The symbol which expresses this relation to the axes is $1 n \infty$. Naumann's symbol for this form is $\infty \mathrm{P} n$; and Miller's $k k l$. $h k l$ and n may be obtained from each other by the furmule

$$
n=\frac{h-l}{h-k} \text { and } h+k+l=0 .
$$

To describe a Net for the Right Prism on a Twelve-sided Base.-Draw two twelve-sided polygons, each equal to $G_{1} L_{1} G_{2} L_{3}$, \&c., $L_{3} G_{1}$ (Fig. 275), and twelve rectangular parallelograms, each equal in breadth to $\mathrm{G}_{1} \mathrm{~L}_{1}$ (Fig. 275), and of a length equal to that of the prism intended to be represented. Arrange these fourteen figures as in Fig. 277, and the net will be constructed.

Position of the Poles of the Prism on the Sphere of Projection.-The poles of the faces of the dihexagonal prism always lie in the same zone, and that zone is the equator of the sphere of projection; S_{1}, $\mathrm{S}_{3}, \mathrm{~S}_{3}, \mathrm{~S}_{4}, \& c ., \mathrm{S}_{12}$ (Fig. 255) represent these poles, the arcs $G_{1} S_{1}, G_{1} S_{2}, G_{2} S_{5}$,

Fig. 277. $G_{2} S_{4}$, \&c., being equal to each other. Let θ be the angle $M_{1} \mathrm{CS}_{1}$, or the longitude of the pole S_{1} reckoning from M_{1}.

$$
\tan \theta=\sqrt{3} \frac{n-1}{n+1}=\sqrt{ } 3 \frac{k-l}{2 k-k-l} .
$$

Forms of the Dihexagonal Prism, parallel to which Faces have been observed in natule, with the Longitude of their Poles on the Sphere of Projection.
 longitude $6^{\circ} 35^{\prime}$ occurs in Corundum and ${ }^{\circ}$ Dioptase.

The form $1 \frac{5}{3} \infty ; \infty$ P $\frac{\substack{3}}{}$ Naumann; $11 \overline{4} 7$ Miller $; d^{\frac{1}{4}} d^{\frac{1}{7}} b^{\frac{1}{1}}$ Brooke and Lery; longitude $8^{\circ} 57^{\prime}$ occurs in Quartz.

The form $1 \frac{3}{4} \infty ; \infty$ P $\frac{5}{4}$ Naumann; $3 \overline{1} \overline{2}$ Miller; $d^{1} d^{\frac{1}{2}} b^{\frac{1}{3}}$ Brooke and Levy; longitude $10^{\circ} 54^{\circ}$ occurs in *Apatite, Emerald, Hematite, *Phenakite, and Tourmaline.
 longitude 13 ${ }^{\circ} 54^{\prime}$ occurs in Calcite and *Dioptase.

The form $1 \frac{7}{5} \infty ; \infty$ P $\frac{7}{5}$ Naumann; $4 \overline{1} \overline{3}$ Miller; $d^{1} d^{\frac{1}{3}} b^{\frac{1}{4}}$ Brooke and Eevy; longitude $16^{\circ} 6^{\prime}$ occurs in Tourmaline.

The form $1 \frac{3}{2} \infty ; \infty \mathrm{P} \frac{3}{2}$ Naumann; $5 \overline{1} \overline{4}$ Miller ; $a^{1} d^{\frac{1}{4}} l^{\frac{1}{5}}$ Brooke and Levy; longitude $19^{\circ} 6^{\prime}$ occurs in *Apatite, *Dioptase, and Millerite.

The forms marked thus * are hemihedral, with parallel faces; the hemihedral form of this prism with parallel faces is a regular hexagonal prism, arising from the development of the alternate faces, and differs only from the prisms of the First and Sccond Order, in its position with regard to the axes.

Double Twelve-faced Pyxamid.-The double twelve-faced pyramid, or, as it is generally called, the dihexagonal pyramid, consists of two pyramids joined together, one on each side of the dihexagonal base given in Fig 275. It is bounded by twentyfour equal and similar scalene triangles, it has twelve fonr-faced solid angles at the base of the pyramids, and two twelve-faced solid angles, one at each apex of the double pyramid.

This pyramid may be easily drawn; through C, in Fig 274, draw a line perpendicular to $L_{1} L_{4}$, tako two points in this line equidistant from C, and each equal m times $C P_{1}$ (Fig. 256), and join these points with $G_{1} G_{2}$, \&c., G_{6} and $L_{1} L_{2}, \& c ., L_{c}$; ${ }_{m} \mathrm{P} n$ being the symbol of the pyramid.

This pyramid has never been observed alone, and scarcely ever in combination with other forms. When these latter occur, they may be regarded as the combination of the positive and negative scalenohedron derived from it.

Symbols.-Each face of the pyramid would, if produced, cut one of the axes in which the equal parameters are taken at the extremity of the parameter; the neighbouring axis in the hexagonal base at a distance from its centre n times that of the equal parameter, n being any fraction greater than one, and less than two; and the fourth axis, which is perpendicular to the base, at a distance from the centre m times that of the unequal parameter, n being a fraction or whole number equal to, greater, or less than unity. The symbol which expresses this relation is $1 m n$. Naumann's symbol is $m \mathrm{P} n$, and Miller's $h k l$.

When m becomes infiuitely great this pyramid passes into the diliexagonal prism, and when m is finite and n becomes equal to two, it passes into a double six-faced pyramid, derived from that of the First Order.

Position of the Polcs on the Sphere of Projection.-Twclve poles lie in the same circle of north latitude and twelve in the same circle of south latitude, one pole lies within each spherical triangle C G M (Fig. 255), two poles lie in the same circle of latitude at equal angular distances on each side of every meridian $C G$, such as $T_{2} \mathrm{~T}_{2}$ on both sides of $C G_{1}$ and $V_{1} V_{2}$ on both sides of $C G_{2}$.

The formulæ for determining the latitude and longitude of these poles, from the symbols for their forms, as well as the relation between $n n h k$ and l, will be given under the description of the hexagonal sealenohedron.

Bexagonal Scalenohedron.-The hexagonal scalenohedron is a hemihedral form with parallel faces, derived from the double twolve-faced pyramid by producing half the faces of the upper pyramid taken in pairs to meet half the faces of the lower one which do not correspond to those taken from the upper. Thus the faces whose poles are $T_{1}, V_{6}, T_{3}, V, V_{4}$, and T_{5} in the northern hemisphere of projection (Fig. 255), being produced textreethdablathbtnisersides whose poles are $\mathrm{T}_{2}, \mathrm{~V}_{1}, \mathrm{~T}_{4}, \mathrm{~V}_{3}, \mathrm{~T}$, and V_{5} of the southern hemisphere, will form the positive scalcnohedron. The
twelve remaining faces if produced to meet each other will form the negative scalenohedron.

The hexagonal sealenohedron is bounded by twelve equal and similar scalene triangles, such as $K_{1} R_{1} \mathrm{R}_{2}$ (Fig. 278), and $\mathrm{K}_{1} \mathrm{R}_{12} \mathrm{R}_{7}$ (Fig. 279); it has two six-ficed solil

Fig. 978.

Fig. 279.
angl $\mathrm{s}, \mathrm{K}_{1}$ and K , (Figs. 278 and 279), and six four-faced solid angles R_{1}, R_{2}, \&e, P (Fig. 278), and R_{i}, R_{3}, \&c., R_{12} (Fig. 279). The four-faced solid angles are j incd

Fig. 280.

Tig. 231.
together by six edges correspond to the edges of a rhomboid which myy be inscribed in the scalen he-
dron, with the same axes as the figure in which it is inscribed. The remaining twelve edges are equal in pairs, six being longer and six shorter, the longer and shorter edges joining the six-faced solid angles with the four-faced, alternately, as shown in Figs. 278 and 279.

To draw the Hexagonal Scalenohedron.-Though the hexagonal scalenohedron is derived from the double twelve-faced pyramid, by the development of half its faces, and might be constructed from that figure, it is more readily obtained from the positive or negative rhomboid which may be supposed to be inscribed in the scalenohedron.

Let two rhomboids (Figs. 280 and 281) be drawn as directed for Figs. 269 and 270. Produce C P_{1} and C P_{2} to K_{1} and K_{2} (Figs. 280 and 281), make C K K_{1} equal C K_{2}, then (Fig. 280) join $K_{1} R_{1}, K_{1} R_{2}$, \&c., $K_{1} R_{6} ; K_{2} R_{1}, K_{2} R_{2}$, \&c., $K_{2} R_{6}$, also in Fig. 281 join $K_{1} R_{7}, K_{1} R_{8}$, \&c., $K_{1} R_{12} ; K_{2} R_{7}, K_{2} R_{8}$, \&c., $K_{2} R_{12}$. Fig. 280 will give the positive, and Fig. 281 the negative scalenohedron, the combination of whose faces together would give the double twelve-faced pyramid.

Symbols. - If m P n be Naumann's symbol for the double twelve-faced pyramid from which the scalenohedron is derived, his symbol for the latter will be $+\left[\frac{m \mathrm{P} n}{2}\right]$ or $-\left[\frac{m \mathrm{P} n}{2}\right]$ according as the scalenohedron is positive or negative.

Naumann's symbol for the rhomboid inscribed in the scalenohedron whose symbol is $\left[\begin{array}{c}m \mathrm{P} n \\ 2\end{array}\right]$ is $\frac{n(2-n)}{n} \mathrm{R}$; and CK is equal to $\frac{n}{2-n}$ times C P , hence Naumann chooses the arbitrary symbol $\frac{m(2-n)}{n} \mathrm{R}^{\frac{n}{2-n}}$ to represent the scalenohedron $\left[\frac{m \mathrm{P} n}{2}\right]$.

To describe, therefore, the scalcnohedron derived from the double twelve-faced pyramid $m \mathrm{P} n$, we must describe the rhomboid $\frac{m(2-n)}{n} \mathrm{R}$, produce $\mathrm{C} \mathrm{P}_{1}$ and $C \mathrm{P}_{2}$ (Figs. 280 and 281), and make C K equal $\frac{n}{2-n}$ times CP.

Miller's symbol for the scalenohedron is $\pi\left\{\begin{array}{ll}h & k\end{array}\right\}$; where $m=\frac{h-l}{h+k+l}$ and $n=\frac{h-l}{h-\frac{l}{k}}$ are the relations between Naumann's and Miller's symbols for the same furm.

Nets for the Scalenoluedrons.
Describe the triangle $\mathrm{RP}_{1} \mathrm{P}_{2}$ (Fig. 282) as in Fig. 271, to form the net of the rhomboid whose symbol is $\frac{m(2-n)}{n} \mathrm{R}$. Bisect $\mathrm{P}_{1} \mathrm{P}_{2}$ in C , produce $C P_{1}$ to K_{1}, make CK_{1} equal $\frac{n}{2-n}$ times CP_{1}, produce CP_{2} to K_{2}, and make CK_{2} equal CK_{1}. Join $\mathrm{K}_{1} R$ and $K_{2} R$.

Then (Fig. 283) draw LM equal RP_{1}; on LM describe the triangle LMN, having its side $L N$ equal $R K_{1}$, and its side $M N$ equal RK_{2}. LMN will be a face of the scalenohedron $\frac{m(2-n)}{\frac{n}{2-n}}$, and twelve such faces, arranged as in Fig. 284, will IR1'S - LILLIAD - Université Lille 1 form the net required.

Position of the Poles of the Hexagonal Scalenohedron on the Sphere of Projection.If $m \mathrm{P} n$ be the symbol of the double twelve-faced pyramid from which the scalenohedron is derived, take an $\operatorname{arc} \mathrm{M}_{1} \mathrm{~S}_{1}$, such that $\tan \mathrm{MS}_{1}=\sqrt{\bar{s}} \frac{n-1}{n+1}$, mark off $\operatorname{arcs} \mathrm{M}_{1} \mathrm{~S}_{12}$, $M_{2} S_{2}, M_{2} S_{5}$, \&c., $M_{6} S_{10}, M_{6} S_{11}$, as in Fig. 255. Join $\mathrm{CS}_{1}, \mathrm{CS}_{3}, \mathrm{CS}_{3}$, \&c., CS_{12}. Let θ be the angular distance of a circle of latitude from C, such that $\tan \theta=$ $\frac{m}{n} \sqrt{n^{2}-n+1} \tan \alpha$, where a is the angular element for the substance of the crystal

Fig. 252. given in pages 385 and 386 . Then this circle of latitude will cut the meridians $\mathrm{CS}_{1}, \mathrm{CS}_{2}, \mathrm{CS}_{5}, \mathrm{CS}_{5}$, \&c., in the points $\mathrm{T}_{1}, \mathrm{~T}_{2}$, $\mathrm{V}_{1}, \mathrm{~V}_{2}$, \&c., as in Fig. 255.
$T_{1}, T_{2}, V_{1}, V_{2}$, \&c., will be the poles of the double twelvefaced pyramid on the sphere of projection.

Fig. 283.

Fig. 294.

The poles $T_{1} V_{2} T_{3} V_{4} T_{5} V_{6}$ will be those of the positive, and $T_{2} V_{1} T_{4} V_{3} T_{6} V_{5}$ those of the negative scalenohedron on the northern sphere of prcjection.

The are MS, which we may consider the longitude of the pole T, from the meridian CM_{1}, we shall represent by the symbol ϕ.

Faces of Scalewohedrons and other forms derived from the Double Ticelve-faced Pyramids occur in Nature, in Crystals of the following substances.
 Levy. $\phi=3^{\circ} 58^{\circ}$, in Quartz $\theta=86^{\circ} 24^{\prime}$.

The form $\frac{\pi}{5} P_{\frac{1}{2}}^{5}$, or $\mathrm{R}^{\frac{9}{5}}$, Naumann; $110 \overline{1}$ Miller; a^{4} Brooke and Levf. $\varphi=4^{\circ} 18^{\prime}$, in Dioptase $\theta=54^{\circ} 35^{\prime}$ 。

The form $\frac{3}{2} \mathrm{P} \frac{9}{8}$, or $\frac{7}{8} \mathrm{R}^{\frac{9}{7}}$ Naumann; $71 \overline{2}$ Miller; $d^{\frac{1}{7}} d^{1} b^{\frac{1}{2}}$ Brooke and Levy. $\phi=5^{\circ} 49^{\prime}$, in Pyrargyrite $\theta=52^{\circ} 20^{\circ}$.
 and Levy. $\phi=6^{\circ} 3 \overline{5}^{\prime}$, in Quartz $\theta=36^{\circ} 25^{\circ}$.
 in Dioptase $\theta=56^{\circ} 55^{\circ}$.
 $\phi=6^{\circ} 35^{\prime}$, in Quartz $\theta=84^{\circ} 3^{\circ}$.

The form $\frac{7}{8} \mathrm{P}_{6}^{7}$, or $\frac{5}{8} \mathrm{R}^{7}$, Naumann; 710 Miller ; b^{7} Brooke and Levy. $\phi=7^{\circ} 30^{\prime}$, in Calcite $\theta=38^{\circ} 58^{\circ}$.

The form $\frac{7}{5} \mathrm{P}_{\frac{7}{6}}^{6}$, or R^{7}, Naumann ; $60 \overline{1}$ Miller; \bar{u}^{6} Brooke and Levy. $\phi=7^{\circ} 35^{\prime}$, in Calcite $\theta=52^{\circ} 18^{\prime}$.

The form $\frac{8}{7} \mathrm{P}_{5}^{6}$, or $\frac{4}{7} \mathrm{R} \frac{3}{2}$, Naumann ; 610 Miller; b^{6} Brooke and Levy. $\phi=8^{\circ} 57^{\prime}$, in Calcite $\theta=38^{\circ} 8^{\prime}$.

The form $\frac{3}{2} \mathrm{P} \frac{5}{5}$, or $\mathrm{R}^{\frac{3}{2}}$, Naumann; $\overline{0} \overline{\mathrm{I}}$ Miller; \bar{d}^{5} Brooke and Levy. $\phi=3^{\circ} 57^{\prime}$, in Calcite $\theta=53^{\circ} 57^{\prime}$.

The form $6 \mathrm{P}_{\frac{5}{5}}$, or $4 \mathrm{R}^{3}$, Naumann; $4 \overline{1} 2$ Miller; $d^{1} d^{\frac{1}{2}} \frac{1}{4}$ Brooke and Levy. $\phi=\delta^{\circ} 57^{\prime}$, in Dolomite $\theta=79^{\circ} 25^{\prime}$, and Quartz $\theta=81^{\circ} 57^{\prime}$.

The form $\frac{10}{9} \mathrm{P}_{4}^{5}$, or ${ }_{3}^{2} \mathrm{R}^{\frac{5}{3}}$, Naumann; $\overline{3} 75$ Miller; $d^{\frac{1}{7}} d^{\frac{1}{5}} b^{\frac{1}{3}}$ Brooke and Levy. $\phi=10^{\circ} 54^{\prime}$, in Corundunı $\theta=58^{\circ} 2^{\prime}$.

The form $\frac{5}{3}$ P吕, or R $\frac{5}{3}$, Naumann; $4 \overline{1}$ Miller ; a^{4} Brooke and Levy. $\phi=10^{\prime} 54^{\prime}$, in Apatite $\theta=69^{\circ} 57^{\prime}$, Calcite $\theta=56^{\circ} 26^{\prime}$, Emerald $\theta=55^{\circ} 44^{\prime}$, and Pyrargyrite $\theta=54^{\circ} 16^{\prime}$.

The form $-{ }_{3}^{5} \mathrm{P}_{4}^{\prime 5}$, or $-\mathrm{R}_{3}^{3}$, Naumann; $23 \bar{Z}$ Miller; e_{2}^{3} Brooko and Lery. $\phi=10^{\prime} 54^{\prime}$, in Apatite $\theta=69^{\circ} 57^{\prime}$, and Emerald $\theta=56^{\circ} 44^{\prime}$.

The form - $\frac{70}{3} P_{5}^{5}$, or $-2 \mathrm{R}^{\frac{6}{3}}$) Naumann; $\overline{5} 35$ Miller; $e_{\frac{3}{3}}$ Brooke and Levy. $\phi=10^{\circ} 54^{\prime}$, in Calcite $\theta=71^{\circ} 39^{\prime}$.

The form $5 \mathrm{P}_{4}^{5}$, or $3 \mathrm{R}^{\frac{5}{3}}$, Naumann; $10 \overline{2} 5$ Miller; $a^{\frac{1}{2}} d^{\frac{1}{3}} b^{\frac{1}{10} 0}$ Brooke and Levy. $\phi=1051^{\prime}$, in Quartz $\theta=80^{\circ} 10^{\prime \prime}$.

The form $\frac{7}{4} \mathrm{P}_{1 \frac{1}{1}}^{1}$, or $\mathrm{R}^{\frac{7}{4}}$, Naumann; $110 \overline{3}$ Miller; $a^{\frac{11}{3}}$ Brooke and Levy. $\phi=11^{\circ} 44^{\prime}$, in Calcite $\theta=\delta 7^{\circ} 35^{\circ}$.

The form - $\frac{9}{4} \mathrm{P}_{\frac{9}{7}}$, or $-\frac{5}{4} \mathrm{R}_{5}^{9}$, Naumann; ${ }^{4} 35$ Miller; $d^{\frac{1}{5}} d^{\frac{1}{5}} b^{\frac{1}{4}}$ Brooke and Levy. $\phi=12^{\circ} 13^{\prime}$, in Calcite $\theta=63^{\circ} 39^{\prime}$.

The form - $\frac{4}{8} \mathrm{P}_{\frac{4}{3}}$ or $-\frac{2}{9} \mathrm{R}^{2}$ Yaumann; 11142 Miller; $b^{\frac{1}{11}} b^{\frac{7}{14}} l^{\frac{1}{2}}$ Brooke and Levy. $\phi=13^{\circ} 54^{\prime}$ in Quartz $\theta=26^{\circ} 58^{\circ}$.

The form $\frac{4}{5} \mathrm{P} \frac{4}{3}$, or $\frac{2}{5} \mathrm{R}^{2}$ Naumann; 410 Miller ; b^{4} Brooke and Lery. $\phi=13^{\circ} 54^{\prime}$ in Calcite $\theta=35^{\prime} 26^{\prime}$ and Pyrargyrite $\theta=33^{\circ} 16^{\prime}$.

The form 2 P $\frac{4}{3}$, or R^{2} Naumann; $30 \overline{1}$ Miller ; a^{3} Brooke and Levy. $\phi=13^{2} 54^{\prime}$ in Calcite $\theta=60^{\circ} 39^{\prime}$, Dioptase $\theta=65^{\circ} 33^{\prime}$, Hematite $\theta=46^{\circ} 4^{\prime}$, Phonakite $\theta=53^{\circ} 37^{\prime}$, and Tourmaline $\theta=42^{\circ} 59^{\prime}$.

The form-2 P $\frac{4}{3}$, or - R^{2} Naumana; $74 \overline{\tilde{o}}$ Miller; $d^{\frac{1}{7}} l^{\frac{1}{4}} l^{\frac{1}{3}}$ Drooke and Levy. $\phi=13^{\circ} 54^{\prime}$, in Dioptase $\theta=65^{\circ} 33^{\circ}$.

The form $4 P \frac{4}{3}$, or $2 R^{2}$ Naumann; $8 \overline{1} \overline{4}$ Miller ; $d^{1} d^{\frac{1}{4}} b^{\frac{1}{5}}$ Brooke and Levy. $\phi=13^{\circ} 54^{\prime}$ in Quartz $\theta=77^{\circ} 41^{\prime}$.

The form $-4 \mathrm{P} \frac{4}{3}$, or $-2 \mathrm{R}^{2}$ Naumann; $\overline{2} 12$ Miller; $e_{\frac{1}{2}}$ Brooke and Levy. $\phi=13^{\circ} 54^{\prime}$, in Calcite $\theta=74^{\circ} 18^{\prime}$, Phenakite $\theta=70^{\circ} 0^{\prime}$, Quartz $\theta=77^{\circ} 41^{\prime}$, and Tourmaline $\theta=61^{\circ} 47^{\prime}$.

The form - $\frac{11}{3} \mathrm{P} \frac{12}{8}$, or $-\frac{5}{3} \mathrm{R}^{\frac{1}{5}}$ Naumann; 16178 Miller; $i^{\frac{1}{17}} d^{\frac{1}{8}} b^{\frac{1}{v}}$ Brooke and Levy. $\phi=15^{\circ} 18^{\prime}$, in Quartz $\theta=76^{\circ} 31^{\prime}$.

The form $\frac{7}{6}$ Prf in Apatite $\theta=56^{\circ} 44^{\prime}$.

The form－$\frac{7}{6} \mathrm{P} \frac{3}{3}$ ，or $-\frac{1}{2} \mathrm{R}^{\frac{7}{3}}$ Vaunann； 352 Miller；$a^{\frac{1}{5}} d^{\frac{1}{5}} b^{\frac{1}{2}}$ Brooke and Levy．$\phi=16^{\circ} \mathrm{C}^{\prime}$ ，in Apatite $\theta=56^{\circ} 44^{\prime}$ ．
 $\phi=16^{\circ} 6^{\prime}$ ，in Calcite $\theta=53 \quad \Xi^{\circ}$ ．

The form ${ }_{3}^{7} \mathrm{P} \frac{7}{5}$ ，or $\mathrm{R}^{\frac{7}{3}}$ Yaumann；$\theta \sigma 2$ Xiller ；$a^{\frac{5}{2}}$ Brooke and Lery．$\phi=10^{2} 6^{6}$ ， in Apatite $\theta=750^{\prime}$ ，and Calcite $\theta=642^{\prime}$ ．

The form－$\frac{7}{3} P \frac{7}{5}$ ，or $-R^{\frac{7}{3}}$ Naumann； 342 Miller ；$d^{\frac{1}{3}} d^{\frac{1}{4}} b^{\frac{3}{3}}$ Brooke and Lery． $\phi=16^{\circ} 6^{\prime}$ ，in Apatite $\theta=75^{\circ} 0^{\prime}$ and Calcite $\theta=64^{\circ} 2^{\prime}$ ．
 and Levy．$\phi=17^{\circ} 0^{\prime}$ ，in Quartz $\theta=757^{\prime}$ ．

The form－$\frac{3}{b} P \frac{s}{2}$ ，or 一 $\frac{1}{b} \mathrm{R}^{3}$ Naumann； 023 Miller；b^{3} Broonc and Lery． $\phi=196^{\prime}$ ，in Calcite $\theta=27^{\circ} 34^{\prime}$ ．

The form $\frac{3}{4} \mathrm{P} \frac{3}{2}$ ，or $\ddagger \mathrm{R}^{3}$ Naumann； 310 Miller；$b \mathrm{Br}$ ke and Levy．$\phi=196^{\prime}$ ， in Calcite $\theta=338^{\prime}$ ，Phenakite $\theta=26^{\circ} 40^{\prime}$ ，Proustite $\theta=3132^{\prime}$ ，and Pyrargy ritc θ $=31{ }^{2}$ ．

The form $\frac{5}{5} \mathrm{P} \frac{3}{2}$ ，or ${ }_{5}^{2} \mathrm{R}^{n}$ Naumann ； 511 Mill r ；e_{3} Brooke and Levy．$\phi=19 \mathrm{G}^{\prime}$ ， in Corundum $\theta=59^{\circ} 1^{\prime}$ ，Hematite $\theta=58^{\circ} 57^{\prime}$ ，and Prargyite $\theta=43^{\circ} 55^{\circ}$ ．

The form $\frac{3}{2} P \frac{3}{2}$ ，or $-\frac{1}{2} \mathrm{R}^{3}$ Naumann； 112 Mill r；e_{2} Brooke anl L vy． $\phi=196^{\prime}$ ，in Calcite $\theta=5233^{\prime}$ ，Dioptase $\theta=5813^{\prime}$ ，Hematite $\theta=6417^{\prime}$ ， Phenakite $\theta=4514^{\prime}$ ，Pyrargyrite 5017^{\prime} ，and Tourmaline $\theta=3422^{\prime}$ ．

The firm $\frac{18}{8} \mathrm{P} \frac{3}{2}$ ，or $\frac{\kappa}{6} \mathrm{R}^{3}$ Naumann； $111 \overline{4}$ Miller；$a^{n} d$ 产 $b^{\frac{1}{4}}$ Brooke and Levy． $\phi=196^{\circ}$ ，in Pyrargyrite $\theta=5624^{\prime}$ ．

The $\mathrm{frm}-\frac{12}{5} \mathrm{P}_{\frac{3}{2}}$ ，or $-\frac{6}{6} \mathrm{R}^{3}$ Naumann； 53 Miller；$a^{\frac{1}{3}} d^{\frac{1}{7}} b^{\frac{1}{3}}$ Broche and Levy．$\quad \phi=196^{\prime}$ ，in Calcite $\theta=64 \quad 25^{\circ}$ ．

The form 3 P $\frac{3}{2}$ ，or $\mathrm{R}^{\text {i }}$ Naumann； 201 Mill r；$d^{2} \mathrm{Br}$ oke and L ry．$\phi=196^{\prime}$ ， in Calcite $\theta=692^{\prime}$ ，Chalybite $\theta=58^{\circ} 30^{\circ}, \mathrm{D}$ lomite $\theta=6832^{\prime}$ ，Eudialste $\theta=81 \mathrm{11}$ ， Hematite $\theta=76^{\circ} 28^{\prime}$ ，Phenakite $\theta=6338^{\prime}$ ，Proustite $\theta=6750^{\prime}$ ，Pyrargyrite $\theta=67^{\circ} 27^{\prime}$ ，and Tourmaline $\theta=5349^{\circ}$ ．Calcite has an imperfect el avage parall 1 to this form．

The form－ 3 P s，or $-R^{3}$ Naumann；$\overline{4} 25$ Miller；$d^{\frac{d}{3}} d^{\frac{1}{5}} b^{\frac{1}{4}}$ Brooke and Levy． $\phi=19^{\circ} 6^{\prime}$ ，in Calcite $\theta=69^{\circ} 2^{\prime}$ and Quartz $\theta=73^{\circ} 26^{\circ}$ ．

The form ${ }^{\frac{2}{3}} \mathrm{P} \frac{3}{2}$ ，or $\frac{9}{5} \mathrm{R}^{3}$ Naumaun； 1519 Miller；$a^{1} d^{\frac{1}{d}} b^{\frac{1}{3}}$ Brooke and Lery． $\phi=196^{\prime}$ ，in Calcite $\theta=76^{\circ} 32^{\prime}$ ．

The form－ $6 \mathbf{P} \frac{8}{2}$ ，or－ $2 \mathrm{R}^{3}$ Naumann； 313 Miller； $\boldsymbol{c}_{\ddagger}$ Brooke and Levy． $\phi=196^{\prime}$ ，in Calcite $\theta=799^{\prime}$ ，Hematite $\theta=83^{\circ} 8^{\prime}$ ，and Pyrargyrite $\theta=7816^{\circ}$ ．

The form ${ }^{4} \mathrm{P} \frac{11}{2}$ ，or R^{Y} Naumann； 704 Miller；$d^{\frac{7}{4}}$ Brooke and Levy． $\phi=19^{\circ} 6^{\prime}$ ，in Calcite $\theta=72^{\circ} 30$ ．

The form－ 2 P 各，or $-\frac{1}{8} \mathrm{R}^{4}$ Naumann； 325 Miller；$d^{\frac{2}{2}} d^{\frac{1}{5}} l^{\frac{1}{3}} \mathrm{Bro}$ ke and Levy．$\phi=196^{\prime}$ ，in Calcite $\theta=595^{\circ}$ ．

The form－$\frac{9}{3}$ P $\frac{9}{5}$ ，or 一 $\frac{2}{3}$ R4 Naumann； 10145 Miller；$d^{\frac{1}{4} \frac{1}{4}} d^{\frac{1}{2}} b^{r^{\frac{1}{0}}}$ Broohe and Levy．$\phi=2147^{\prime}$ ，in Quartz $\theta=71^{\circ} 21^{\prime}$ ．
 in Calcite $\theta=7351$ ．

The form $\frac{5}{4} \mathrm{P} \frac{5}{3}$, or $\frac{1}{4} \mathrm{R}^{5}$ Naumann ; $41 \overline{1}$ Miller ; e_{4} Brooke and Levy. $\phi=23^{\circ} 25^{\prime}$, in Corundum $\theta=59^{\circ} 45^{\prime}$, Emerald $\theta=47^{\circ} 24^{\prime}$, and Hematite $\theta=59^{\circ} 41^{\prime}$.

- The form - $\frac{5}{4} \mathrm{P} \frac{5}{3}$, or $-\frac{1}{4} \mathrm{R}^{5}$ Naumann ; $511 \overline{4}$ Miller ; $d^{\frac{1}{5}} d^{\frac{7}{14}} b^{\frac{1}{4}}$ Brooke and Levy. $\phi=23^{\circ} 25^{\prime}$, in Emerald $\theta=47^{\circ} 24^{\circ}$.

The form - $\frac{10}{7} \mathrm{P} \frac{5}{5}$, or $-\frac{2}{7} \mathrm{R}^{5}$ Naumann; 337 Miller ; e_{7} Prooke and Levy. $\phi=23^{\circ} 25^{\prime}$, in Calcite $\theta=50^{\circ} 52^{\prime}$.

The form $\frac{5}{3} \mathrm{P} \frac{5}{3}$, or $\frac{1}{3} \mathrm{R}^{5}$ Naumann; $\overline{4} 112$ Miller ; $d^{\frac{1}{2}} d^{\frac{1}{11}} b^{\frac{1}{4}}$ Brooke and Levy. $\phi=23^{\circ} 25^{\prime}$, in Quartz $\theta=61^{\circ} 33^{\prime}$.

The form - $\frac{2}{2} \mathrm{P} \frac{3}{3}$, or $-\frac{1}{2} \mathrm{R}^{5}$ Naumann; $\overline{2} 13$ Miller ; $d^{1} d^{\frac{1}{3}} b^{\frac{1}{3}}$ Brooke and Levy. $\phi=23^{\circ} 20^{\prime}$, in Calcite $\theta=65^{\circ} 4^{\prime}$, and Hematite $\theta=73^{\circ} 42^{\prime}$.

The form $5 \mathrm{P} \frac{3}{3}$, or R^{5} Naumann; $30 \overline{2}$ Miller; d^{3} Brooke and Levy. $\phi=23^{\circ} 25^{\prime}$, in Calcite $\theta=76^{\circ} 55^{\prime}$, Emerald $\theta=77^{\circ} 3$, Proustite $\theta=76^{\circ} 7^{\prime}$, Pyrargyrite $\theta=75^{\circ} 51^{\prime}$, and Tourmaline $\theta=66^{\circ} 4^{\prime}$.

The form - 5 P $\frac{5}{3}$, or - R^{5} Naumann; $28 \overline{7}$ Miller ; $d^{\frac{3}{3}} d^{\frac{1}{8}} b^{\frac{1}{7}}$ Brooke and Levy. $\phi=23^{\circ} 25^{\prime}$, in Emerald $\theta=77^{\circ} 3^{\prime}$.

The form - $\frac{1}{3} P \frac{12}{7}$, or $-\frac{2}{5} \mathrm{R}^{6}$ Naumann ; $\overline{14} 227$ Miller; $d^{\frac{1}{2} \frac{1}{2}} d^{\frac{1}{7}} b^{\frac{1}{14}}$ Brooke and Levy. $\phi=24^{\circ} 30^{\prime}$, in Quartz $\theta=69^{\circ} 20^{\circ}$.

The form ${ }^{\frac{7}{10}} \mathbf{P} \frac{7}{4}$ or $\frac{1}{10} \mathrm{R}^{7}$ Naumann; 730 Miller; $b^{\frac{7}{3}}$ Brooke and Levy. $\phi=25^{\circ} 17^{\prime}$, in Calcite $\theta=37^{\circ} 37^{\prime}$.

The form - $\frac{7}{3} \mathrm{P} \frac{7}{4}$, or $-\frac{1}{5} \mathrm{R}^{7}$ Naumann; $\overrightarrow{2} 25$ Miller; $e_{\frac{5}{2}}$ Brooke and Levy. $\phi=25^{\circ} 17^{\prime}$, in Calcite $\theta=57^{\circ} 1^{\prime}$.

The form $\frac{7}{4} \mathrm{P} \frac{7}{4}$, or $\frac{1}{4} \mathrm{R}^{\boldsymbol{i}}$ Naumann; $51 \overline{2}$ Miller ; $d^{d^{1}} d^{\frac{1}{5}} b^{\frac{1}{2}}$ Brooke and Levr. $\phi=25^{\circ} 17^{\prime}$, in Pyrargyrite $\theta=54^{\circ} 9^{\prime}$.

The form 7 P $\frac{7}{4}$, or R^{7} Naumann; $40 \overline{3}$ Miller ; $d^{\frac{4}{3}}$ Brooke and Levg. $\phi=25^{\circ} 17^{\prime}$, in Calcite $\theta=82^{\circ} 36^{\prime}$, and Pyrargyrite $\theta=79^{\circ} 46^{\prime}$.

The form - $\frac{9}{2} \mathrm{P}$ 景, or 一 $-\frac{1}{1} \mathrm{R}^{9}$ Naumann; $51 \frac{1}{4}$ Miller ; $d^{1} d^{\frac{1}{5}} b^{\frac{1}{3}}$ Brooke and Levy. $\phi=26^{\circ} 20^{\prime}$, in Dolomite $\theta=74^{\circ} 58^{\prime}$.

The form $9 \mathrm{P} \frac{9}{5}$, or R R^{9} Naumann ; $50 \overline{4}$ Miller ; $d^{\frac{5}{4}}$ Prooke and Levy. $\phi=26^{\circ} 20^{\circ}$, in Calcite $\theta=82^{\circ} 30^{\circ}$.

The form $11 \mathrm{P} \frac{12}{8}$, or R^{11} Naumann; $60 \overline{5}$ Miller; $d^{\frac{6}{5}}$ Brooke and Levg. $\phi=27^{\circ} 0^{\prime}$, in Calcite $\theta=83^{\circ} 56^{\prime}$.

The form 12 P $\frac{2}{1} \frac{4}{5}$, or R^{13} Naumann; 130 i1 Miller; $a^{\frac{13}{13}}$ Brooke and Levy. $\phi=27^{\circ} 15^{\prime}$, in Calcite $\theta=84^{\circ} 26^{\prime}$.

Other forms derived from the Double Twelve-faced Pyramid. - If the faces of the upper pyramid, whose poles are marked by $T_{1} \mathrm{~V}_{1} \mathrm{~T}_{3} \mathrm{~V}_{3} \mathrm{~T}_{5}$ and V_{5} (Fig. 255), are produced to meet the corresponding faces of the lower pyramid; the resulting form will be a double six-faced pyramid similar in form, but different in position to the double six-faced pyramids derived from those of the first and second order. The remaining twelve faccs being produced to meet each other will produce a similar double six-faced pyramid.

From these double six-faced pyramids, rhomboids and double three-faced pyramids may

If the alternate faces of the upper pyramid, whose poles are $T_{1} V_{1} T_{3} V_{8} T_{5}$ and V_{5}
(Fig. 255), be produced to meet the faces of the lower pyramid corresponding to $\mathrm{Y}_{6} \mathrm{~T}_{2}$ $\mathrm{Y}_{2} \mathrm{~T}_{4} \mathrm{~V}_{4}$ and T_{6}, the resulting figure will be a double six-faced trapezohedron.

Half the faces of this trapezohedron, namely those corresponding to $\mathrm{T}_{1} \mathrm{~T}_{3}$ and T_{5}, for the upper pyramid, and $T_{2} T_{4}$ and T_{6} for the lower, when produced to meet will form a double three-faced trapezohcdron. This figure may also be formed by producing the alternate faces of the upper part of the scalenohedron to mect the alternate faces of the lower scalenohedron which do not correspond to them.

The double three-faced trapezohedron may be regarded as a hemihedral form of cither the double six-faced trapezohedron or the hexagonal scalenohedron, and consequently a tetartohedral form of the double twelve-faced pyramid. The forms of quartz given under the head of scalenohedrons, generally present in their combinations this species of the tetartohedral forms.

PRINCIPAL COMBINATIONS OF THE RHOMBOHEDRAL SYSTEM.

Fig. 286. Combination of the double six-faced pyramid of the second order, with the hexagonal prism of the second order. a, faces of the negative rhomboid - R Naumann,

Fig. 296.

lig. 28\%.

Fig. 288.
$\overline{1} 22$ Miller, $e^{\frac{3}{3}}$ Brooke and Lery. b, faces of the negative rhomboid R Naumann, 100 Miller, and P Brooke and Levy. c, faces of the hexagonal prism of the second order, ∞ P Naumann, 211 Miller, and e^{2} Brooke and Levy.

Fig. 287. Combination of the double six-faced pyramid of the second order with the hexagonal prism of the first order. a, faces of the negative rhomboid. b, faces of the positive rhomboid. e, faces of the hexagonal prism of the first order, ∞ P 2 Naumann, 01 i Miller, and d Brooke and Lery.

Fig. 288. Combination of the hexagonal prism of the second order with the double six-faced pyramid of the second order. a, faces of negative rhomboid. b, faces of positive rhomboid. c, faces of hexagonal prism of the second order.

Fig. 289. Combination of two positive rhomboids. r, faces of the rhomboid whose symbols are R Naumann, 100 Miller, and P Brooke and Levy. 8 , faces of the rhomboid whose symbols are 2 R Naumann, 511 Miller, es Brooke and Levy.

Fig. 290. Combination of a positive and negative rhomboid. r, faces of the rhomboid 2 R Naumann, $5 \overline{1} 1$ Miller, s^{5} Brooke and Levg. s, faces of the rhomboid

Fig. 291. Combination of a scalenohedron and rhomboid. r, faces of the rhomboid

Fig. 259.

Fig. 290.

Fig. 291.

R Naumann, 100 Miller, P Brooke and Lery, t, faces of the scalenohedron, R^{3} Naumann, $20 \overline{1}$ Miller, d^{2} Brooke and Levy.

Fig. 292. Combination of the positive rhomboid with the hexagonal prism of the first order. r, faces of the rhomboid. e, faces of the prism.

Tig. 292.

Fig. 233.

Fig. 234.

Tig. 293. Combination of a positive scalenohedron with the hexagonal prism of the second order. t, faces of scalenohedron. c, faces of prism.

Fig. 291. Combination of a positive scalenohedron with the hoxagonal prism of the frist order. t, faces of scalenohedron. e, faces of prism.

Fig. 295. Cphisination $1 A^{f}$ hagaronal prism of the second order with positive rhomboid. c, faces of prisin. R , faces of rhomboid.

Fig. 296. Combination of hexagonal prism of the first order with a positive rhomboid. e, faces of prism. R , faces of rhomboid.

Fig. ${ }^{295}$.

Fig. 296.

Fig. 297.

Fig. 297. Complex combination of forms in a crystal of Beryl.
m, face of basal pinacoid, 0 P Naumann, 111 Miller, a^{1} Brooke and Levy.
P, faces of the double six-faced pyramid P Naumann; or faces of the rhomboid R Naumann, 100 Miller, P Brooke and Levy, and the rhomboid - R Naumann, $\overline{1} 22$ Miller, $e^{\frac{1}{2}}$ Brooke and Levy.
u, faces of the double six-faced pyramid 2 P Naumann; or faces of the rhomboid 2 R Naumann, 511 Miller, 5 Brooke and Levs, and of the rhomboid - 2 R Naumann, 11 $\overline{1}$ Miller, al Brooke and Levy.

8 , faces of the double six-faced pyramid 2 P 2 Naumann, 142 Miller, $a^{2} d^{\frac{1}{4}} b^{\frac{1}{2}}$ Brooke and Lery.
v, faces of the scalenohedron R^{3} Naumann, $20 \overline{1}$ Miller, d^{2} Brooke and L vy.
x, faces of the scalenohedron - R^{3} Naumann, 425 Miller, $d^{\ddagger} d^{\frac{1}{5}} b \neq$ Brooke and Lery.
x and v, together, giving the faces of the double twelve-faced pyramid $3 \mathrm{P} \frac{3}{2}$ Naumann.

M, faces of the hexagonal prism $\infty \mathrm{P}$ Naumann, $2 \overline{1}_{1}$ Miller, e^{2} Bro ke and Levr.
Fig. 298. Complex combination of forms in a crystal of Apatite.
P, face of basal pinacoid, O P Naumann, 111 Miller, a^{1} Brooke and Levy.
M, faces of the hexagonal prisms, ∞ P Naumann, $21 \overline{1}$ Miller, c^{2} Bro ke and Lñ7.
e, faces of the hexagonal prism, ∞ P 2 Naumann, 011 Mill r, d Broohe and L vy.
a, faces of the pyramid, P2 Naumann, 521 Mill $\mathrm{r}, d^{\frac{1}{3}} d^{\frac{1}{2}} b$ Bro ke and L ry.
ε, faces of the pyramid, 2 P 2 Naumann, 142 Nill r, $a^{1} d^{3} b^{\frac{1}{3}}$ Brooke and Lery.
d, faces f the pyram $\mathrm{d}, 4 \mathrm{P} 2$ Naumann, $170 \mathrm{M} 1 \mathrm{ll}, d d^{\prime} \frac{1}{3} \mathrm{Br}$ oh and y.
x, fac s of the pyramid, P Naumann; or of the rhomb ids, R Naum R n, 1 Inll r,

z, faces of the pyramid, 2 P Naumann; or of the rhomboids, 2 R Naumann, $\overline{1} 1$ Miller, e^{5} Brooke and Levy; and of -2 R Naumann, $\overline{1} 11$ Miller, e^{1} Brooke and Levs.
r, faces of the pyramid, $\frac{1}{2}$ P Naumann; or of the rhomboids, $\frac{1}{2}$ R Naumann, 411 Miller, a^{4} Brooke and Levy; and of $-\frac{1}{2}$ R Naumann, 011 Miller, and b^{1} Brooke and Levy.

Fir. 298.

Fig. 209.

Fig. 300.

Fig. 299. Complex combination of forms in a crystal of calcareous spar. P, faces of the rhomboid, R Naumann, 100 Miller, P Brooke and Levy. m, faces of the rhomboid, 4 R Naumann, $3 \overline{1} \overline{1}$ Miller, e^{3} Brooke and Levy. y, faces of the scalenohedron, R^{3} Naumann, $30 \overline{2}$ Miller, $d^{\frac{3}{2}}$ Brooke and Levy. r, faces of the scalenohedron, R^{3} Naumann, $20 \overline{1}$ Miller, d^{2} Brooke and Levy. z, faces of the scalenohedron, 各 R^{3} Naumann, $15 \overline{1} \overline{9}$ Miller, $d^{1} d^{\frac{3}{3}} b^{\frac{1}{1} 5}$ Brooke and Levy.
c, faces of the hexagonal prism, ∞ P Naumann, $2 \overline{1} \overline{1}$ Miller ; c^{2} Brooke and Lery. Fig. 300. Complex combination of forms in a crystal of quartz.
P, faces of the pyramid, P Naumann; or of the rhomboids, R Naumann, 100 Miller, P Brooke and Levy; and - R Naumann, ī 22 Miller, $e^{\frac{1}{2}}$ Brooke and Levy.
b, faces of the pyramid, $\frac{5}{3} \mathrm{P}$ Naumann; or of the rhomboids, $\frac{8}{3} \mathrm{R}$ Naumann, $13 \overline{2} \overline{2}$ Miller, $e^{\frac{13}{2}}$ Brooke and Levy; and - $\frac{5}{3} \mathrm{R}$ Naumann, $78 \overline{8}$ Miller, e e_{8}^{7} Brooke and Levy.
m faces of the pyramid, 3 P Naumann; or of the rhomboids, 3 R Naumann, $72 \overline{2}$ Miller, e^{7} Brooke and Levy; and - 3 R Naumann, $\overline{5}_{4} 4$ Miller, $e^{\frac{5}{4}}$ Rrooke and Levy.
a faces of the pyramid, 4 P Naumann; or of the rhomboids, 4 R Naumann, $3 \overline{\mathrm{I}} \overline{\mathrm{I}}$ Miller, \& Brooke and Lery, and - 4 R Naumann, $\overline{7} 55$ Miller, $e^{\frac{?}{5}}$ Brooke and Levg.
s faces of a double three-faced nyramid derived from the double six-faced pyramid, 2 P 2 Naumann, 142 Niller, $d^{1} d^{\frac{1}{4}} b^{2}$ Brooke and Levy.
o faces of the double three-faced trapezohedron derived from the scalenohedron — R^{3} Naumann, $\overline{4} 25$ Miller, $d^{\frac{1}{2}} d^{\frac{1}{5}} b^{\frac{1}{4}}$ Brooke and Levy.
x faces of the double three-faced trapezohedron derived from the scalenohedron $2 \mathrm{R}^{2}$ Naumann, $8 \overline{1}^{-1}$ Miller, $d^{1} d^{\frac{1}{4}} b^{\frac{1}{8}}$ Brooke and Levy.
g faces of the trapezohedron $3 R^{\frac{5}{3}}$ Naumann, $10 \overline{2} \overline{5}$ Miller, $d^{\frac{1}{3}} d^{\frac{7}{5}} b^{\frac{1}{10}}$ Brooke and Levy.
u faces of the trapezohedron $4 R^{\frac{3}{3}}$ Naumann, $4 \overline{1} \overline{2}$ Miller, $d^{1} d^{\frac{d}{2}} b^{\frac{1}{2}}$ Brooke and Levy.
v faces of the trapezohedron $6 \mathrm{R}^{\frac{4}{3}}$ Naumann, $16 \overline{5} \overline{8}$ Miller, $d^{\frac{7}{5}} d^{\frac{1}{8}} b^{\frac{1}{15}}$ Brooke and Levy.
r faces of the hexagonal prism ∞ P Naumann, $2 \overrightarrow{1} \overline{1}$ Miller, e^{2} Brooke and Levy.
d faces of the dihexagonal prism ∞ P $\frac{3}{2}$ Naumann, $\overline{5} 4$ Miller, $d^{1} d^{\frac{1}{4}} b^{\frac{1}{5}}$ Brooke and Levy.

FOURTH SYSTEM-PRISMATIC OR RHOMBIC.

This system is called the Prismatic or Rhombic, as its forms may be derived either from the prism, or octahedron on a rhombic base. It has also been called the orthotype and the one and one axial system.

The holohedral forms of this system are a right prism on a rectangular base, threc kinds or orders of right prisms on a rhombic base, and the double four-faccd pyramid on a rhombic base. The hemihedral form is the rhombic sphenoid derived from the double four-faced pyramid.

Alphabetical list of Minerals belonging to the Prismatic System, with the Angular Elements froin which their Typical Forms and Axes may be derived.

Aeschynite	$26^{\circ} 20^{\prime} ; 333^{46}{ }^{\prime \prime}$	Fudnopbite	Inknown.
Alstonite	$30^{\circ} 34^{\prime} ; 36^{\circ} 27^{\prime}$	Fayalite .	$42^{3} 40^{\circ}$; $4911{ }^{1}$
Amblygonite	Unknown.	Fluellite .	$3735^{\prime \prime} ; 615^{\prime \prime}$
Andalusite	$44^{\circ} 38^{\prime \prime} ; 35^{5} 5^{\prime \prime}$	Gadolonite	
Anglesite (sulphate of lead).	$38^{\circ} 11^{\prime \prime} ; 523^{\circ} 16^{\prime}$	Glaserite (sulphate of potash)	$29.48^{\prime} ; 364{ }^{\prime \prime}$
Antimonsilber	$30^{\circ} 0^{\circ} ; 339^{\circ} 53^{\circ}$	Glaucodote	Inknown.
Antimonite	$44^{\circ} 377^{\prime} ; 45^{\circ} 36^{\prime}$	Gosiarite (sulphate of zinc)	$44{ }^{39}$; $290{ }^{\circ} 58^{\prime}$
Aragonite (carbonate of lime)	$31^{\circ} 55^{\prime \prime} ; 335^{4} 47^{\prime}$	Güthite	$4{ }^{49} 34^{\prime} ; 3115^{\prime}$
Baryte (sulphate of barytes)	$39^{\circ} 10^{\prime}$; $52^{\circ}{ }^{4} 2^{\prime}$	Haidungerite	$4{ }^{10}{ }^{\circ}{ }^{\circ} ; 2631{ }^{\circ}$
Bismuthine	$44^{\circ} 30^{\circ}$; Unkn.	Harmotome	
Bournonite	$45^{\circ} 10^{\prime} ; 41^{\circ} 53^{\prime}$	Herderite	$3233^{\prime} ; 231$ 1
Brochantite	$3 \mathrm{j} 35^{\prime \prime} ; 14^{\circ}{ }^{\prime \prime}$	Jlvaite	$3 \pm 2 t^{\prime} ; 2+31^{\prime}$
Brookite	$40^{\circ} 5^{\prime} ; 432{ }^{\prime}$	J.amesonite	39 20; Enkn.
Caledonite (cupreous sulphatocarbonate of lead)	${ }^{42^{\circ}} 30^{30} ; 55^{\circ}{ }^{\circ} 31^{\prime}$	Karstenite (anlydrons sulphate of lime)	41 ${ }^{\circ} 42^{\prime}$; 4123°
Celestine (Eulphate of strontian)	370 $599^{\prime} ; 52^{\circ} 4^{\prime}$	Leadhillite (sulphato-carbonate	
Cerussite (carbonate of lead)	$31^{\circ} 23^{\prime \prime}$; $35^{\circ} 52^{\prime}$	of lead)	$2950{ }^{\prime} ; 513{ }^{\prime}$
Childrenite		Libetbenite (phorphateof coppe	43 50'; 35 t'
Cbloanthite	Unknown.	Liroconite (octuhedral arsemate	
Chrysoberyl	${ }^{25} 11^{\prime} ; 30^{\circ} 7^{\prime}$	of copper)	$\begin{array}{ll}30 & 20^{\circ} ; 3820\end{array}$
Comptonite	Unknown.	Loganite -	Coknown. 00
Cordierite		Lülıngite.	
Cotannite	$40^{\circ}{ }^{7 \prime}{ }^{\prime \prime} 26{ }^{38}$	Manganite	$40^{\circ} 10^{\prime} ; 288^{\circ} 35^{\prime}$
Cryolite	Unknown.	Marcasite	$36^{\circ} 577^{\prime} ; 49^{\circ} \mathrm{su}$
Datholite.	$3822^{\circ} ; 22^{5}{ }^{34}$	Mascagnine (sulph. of ammonia)	$29^{9} 26^{\prime} ; 36^{\circ} 10$
Diaspore	$43^{\circ} 4^{\circ}$; 300039°	Mendipite	Lnknorn.
Dufrenite (phosphate of iron)	Unknown.	Mengite	
${ }_{\text {Epistilbite }}$ Epomite (sul phate of maguesia)		Mesotype -	
Epemroite	41° $10^{\circ} ;$	Mispickel	

$40^{\prime} ; 41^{\circ} 16^{\prime \prime}$	Staurol	25	$34^{\circ} 26$
$30^{\circ} 35^{\prime} ; 35^{\circ} 1^{\prime}$	Stephanite		$34^{\circ} 26^{\prime}$
	Sternbergite	$30^{\circ} 15$	
$43^{\circ} 45^{\circ}$; 響 33°	Stilbite	42°	
$5^{\prime \prime} ;{ }^{\text {\% }}$	Strontianite strontian		
Unknown.	Stromeyerite	30°	44°
$44^{\circ} 24^{\prime} ; 34^{\circ} 5$	8 8truvite	$28^{\circ} 35$	$31^{\circ} 34$
$26^{\circ} 34^{\prime} ; 16^{\circ} 48^{\prime}$	Sulphur .	39×1	$62^{\circ} 12^{\prime}$
$43^{\circ} 34^{\prime} ; 31^{\circ} 0^{\circ}$	Sylvanite.	$34^{\circ} 3$	$31^{\circ} 26^{\prime}$
knnown.	Tantalite	${ }^{39}{ }^{\circ} 14$	33°
$20^{\circ} 0^{\circ} ; 18^{\circ} 5$	Thenardite (sulphate of soda)	$25^{\circ} 19$	${ }_{28} 8^{\circ} 50^{\prime}$
	Thermonatrite (prismatic cur-		
Unknown.	bonate of soda)	20°	48°
$40^{\circ} 2^{\prime \prime} ; 40^{\circ} 9$	Topaz		
$43^{\circ} 10^{\prime} ; 2000$	Triplite (phosplate of man-		
aknown.	ganese)	Unkn	
${ }^{\circ} 12$; 44°	Tyrolite	kn	
$33^{\circ} 50^{\prime} ; 37^{\circ} 1 \theta^{\prime}$	Valentinite	$21^{\circ} 311^{\prime}$	54°
$23^{\circ} 36^{\prime} ; 311^{\circ} 51^{\prime}$	Wavellite	$26^{\circ} 47^{\prime}$;	$20^{\circ} 34^{\prime}$
${ }^{\circ} 40^{\prime} ; 41^{\circ} 16^{\prime}$	Witherite (carbonate of barytes)	$30^{\circ} 45^{\prime}$;	$36^{3} 33^{\prime}$
now	Wölchite.	Unknow	
	Wolfram (tungstate of iron)	390 ${ }^{3}{ }^{\prime \prime}$	
599; 43³9	Wolfsbergite Zinckenite	$22^{\circ}{ }^{\circ} 44^{\prime} ;$	${ }_{8^{0}}^{\text {Unkn }}{ }_{30}$
$88^{\circ} 3^{\prime} ; 25^{\circ} 46^{\prime}$	Zwiselite .	Unkn	

Niobite
Nitre (nitrate of potash)
Olivenite (right prismatic ar-
seniate of conper)

Olivine ${ }^{\text {seniate }}$.		
Orpiment	-	
Patrinite.	-	
Phillipsite		

Picrosmine

Schulzite
Scorodite (martial arseniate of copper)
Smithsonite (siliceous oxide of zinc)

The Right Rectangulay Prism.-The right rectangular prism, or the right prism on a rectangular base, is a solid form bounded
 by six faces; these faces are all rectangular parallelograms, and equal to each other in pairs; thus (Fig. 301), the face $B_{1} B_{5} B_{8} B_{4}$ is equal to the face $B_{2} B_{6} B_{7} B_{3}, B_{1} B_{2} B_{6} B_{5}$ to $B_{4} B_{3} B_{7} B_{8}$, and $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4}$ to $\mathrm{B}_{5} \mathrm{~B}_{6} \mathrm{~B}_{7} \mathrm{~B}_{8}$.

Modern writers consider this prism as a combination of three open forms, each form consisting of a pair of parallel faces; the bases of the prism are then called the basal pinacoids, the wider sides macro-pinacoids, and the narrower brachy-pinacoids.

Axes of the Right Reotangular Prism and the Prismatic System.-Join $\mathrm{B}_{1} \mathrm{~B}_{3}$ and $\mathrm{B}_{2} \mathrm{~B}_{3}$, cutting each other in P_{1}, also $B_{6} B_{8}$ and $B_{5} B_{7}$, cutting each other in P_{2}. Bisect $\mathrm{B}_{1} \mathrm{~B}_{5}, \mathrm{~B}_{2} \mathrm{~B}_{6}, \mathrm{~B}_{3} \mathrm{~B}_{7}$, and $\mathrm{B}_{4} \mathrm{~B}_{3}$ in the points M_{1}, M_{2}, M_{3} and M_{4}. Join $M_{1} M_{2}$, $M_{2} M_{3}, M_{3} M_{4}$, and $M_{4} M_{1}$. Bisect $M_{1} M_{2}$ and $M_{3} M_{4}$ in the points G_{1} and G_{2}, and $M_{1} M_{4}$ and $M_{2} M_{3}$ in H_{1} and H_{2}. Join $\mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{H}_{1} \mathrm{H}_{2}$, and $\mathrm{G}_{1} \mathrm{G}_{2}$, cutting each other in C. The three lines $P_{1} P_{2}, H_{1} H_{2}$, and $G_{1} G_{2}$, which are at right angles to each other, are the axes of the rectangular prism, and also of the prismatic system. $\mathbf{P}_{1} \mathbf{P}_{2}$ is called the principal axis, and $\mathrm{H}_{1} \mathrm{H}_{2}$ and $\mathrm{G}_{1} \mathrm{G}_{2}$ the secondary axes.

Parameters.-The semi-axes $\mathrm{CP}_{1}, \mathrm{CG}_{1}$, and OHI_{1}, are the parameters of the prismatic system ; the length of CG_{1} is perfectly arbitrary, but its length once chosen, the lengths of CP_{1} and CH_{1} depend upon the angular elements already given for each mineral belonging to the system.

To determine CP_{1} and CH_{1} draw CG (Fig. 302) of any convenient length, as the abit ary unit dritie-sybterlaf axdn!iversité Lille 1

Draw CP perpendicular to GC. Let a be the angle given in the first, and β the angle given in the second column of the angular elements.

Draw HG making the angle a, and PG making the angle β, with GC.

Let H and P be the points where GH and GP meet the perpendicular CP.

For Aeschynite, the angle CGH is $26^{\circ} 20^{\circ}$, and the angle CGP $33^{\circ} 46^{\circ}$; for Alstonite, the angle CGH is $30^{\circ} 34^{\prime}$, and the angle CGP $36^{\circ} 28^{\prime}$; and so on for the other substances belonging to the prismatic aystem.

The lines CG, CH, and CP, thus determined, are the parameters of the prismatic system; it appears, therefore, that the axes of this system are rectangular, and its three parameters all unequal to

Fig. 302. each other.

To draw the Right Rectangular Prism.-Draw $\mathrm{B}_{8} \mathrm{~B}_{5}$ (Fig. 301) equal to twice GC (Fig. 302). Through B_{8} draw $B_{8} B_{7}$, making an angle of about 30°, with $B_{8} B_{5}$.

Make $B_{8} B_{7}$ equal to $C H$ (Fig. 302). Through B_{5} draw $B_{5} B_{6}$ equal and parallel to $\mathrm{B}_{8} \mathrm{~B}_{7}$; join $\mathrm{B}_{7} \mathrm{~B}_{6}$.

Through B_{8} draw $B_{8} B_{4}$ perpendicular to $B_{8} B_{5}$ and equal to twice $C P$ (Fig. 302).
Through $B_{50} B_{6}$ and B_{7} draw $B_{5} B_{1}, B_{6} B_{2}$ and $B_{7} B_{3}$ parallel and equal to $B_{8} B_{4}$.
Join the points $B_{1} B_{2} B_{3}$ and B_{4}, and the prism will be represented in perspective.
Syinbols.-EEach face of the rectangular prism cuts one of the three axes at a distance from C (Fig. 301), the centre of the axes, equal to the length of one of the prameters, and is parallel to the other two axes.

The two basal pinacoids, or extremities of the prism $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{2} \mathrm{~B}_{4}$ and $\mathrm{B}_{5} \mathrm{~B}_{6} \mathrm{~B}_{7} \mathrm{~B}_{8}$, cut the axis $P_{1} P_{2}$ in the points P_{1} and P_{2}, and are parallel to the axes $G_{1} G_{9}$ and $H_{1} H_{2}$. 'Ihe symbol which represents the relation of these faces of the prism to the axes is $\infty \infty$.

Naumann's symbol is $0 P$; Miller's 001 ; Brooke and Levy's modification of Haüy is P , when they regard the right rhombic prism as the primitive form of the crystal.

The two macro-pinacoids, or broader sides of the prism, $\mathrm{B}_{1} \mathrm{~B}_{4} \mathrm{~B}_{8} \mathrm{~B}_{5}$ and $\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{7} \mathrm{~B}_{6}$ cut the axis $\mathrm{H}_{1} \mathrm{H}_{2}$ in the points H_{1} and H_{2}, and

Fig. 303. are parallel to the axes $P_{1} P_{2}$ and $G_{1} G_{2}$. The symbol representing this relation is $\infty 1 \infty$.

Naumann's symbol is $\infty \widetilde{\mathrm{P}} \infty$, Miller's 010 , Brooke and Levy's H .

The two brachy-pinacoids, or narrower sides of the prism, $B_{1} B_{2} B_{6} B_{5}$ and $B_{4} B_{B_{7}} B_{3}$, cut the axis $G_{1} G_{2}$ in the points G_{1} and G_{2}, and are parallel to the aves $H_{1} H_{2}$ and $P_{1} P$. The symbol r presenting this relation is $1 \infty \infty$. Naumann's symbol is $\infty \breve{\mathrm{P}} \infty$, Miller's 100 , Brooke and L ry's G.

To describ a Net for the Right Rectangular Prism. - Take two parallelograms equal to $\mathrm{B}_{1} \mathrm{~B}_{4} \mathrm{~B}_{8} \mathrm{~B}_{5}$ (Fig. 301), to represent the macro-pinac ids, two others equal in length to

parallelograms each twice GC (Fig. 302) in breadth, and twice CH in length for the basal-pinacoids; arrange these six rectangular parallelograms as in Fig. 303, and the required net will be constructed.

Crystals of the following minerals have Faces parallel to the Basal Pinacoids $\infty \infty 1$. 0 P Naumann, 001 Miller, P Brooke and Levy.

Aeschynite	Comptonite	Ilvaite	Olivine	Strontianite
Andalusite	Cordierite	Jamesonite	Polyhalite	Stromeyerite
Anglesite	Cotunnite	Karstenite	Polymignite	Sulphur
Antimonsilber	Cryolite	Leadhillite	Prehnite	Sylvanite
Antimonite	Datholite	Loganite	Pyrolusite	Tantalite
Aragonite	Diaspore	Lölingite	Redruthite	Thenardite
Baryte	Euchroite	Manganite	Roselite	Thermonatrite
Bismuthine	Eudnophite	Marcasite	Scorodite	Topaz
Bournonite	Fagalite	Mascagnine	Smithsonite	Tyrolite
Brookite	Fluelitite	Mendipite	Staurolite	Witherite
Caledonite	Gadolonite	Mispickel	Stephanite	Wölchite
Celestine	Glaserite	Niobite	Sternbergite	Wolfram
Cerussite	Herderite	Nitre	Stilbite	Wolfsbergite

The following present Cleavages parallel to this form.

Anglesite	Chrysoberyl	Jamesonite	Mascagnine	Sternbergite
Antimonsilber	Comptonite	Karstenite	Mispickel	Tantalite
Antimonite	Cryolite	Leadhillite	Niobite	Thenardite
Baryte	Erdnophite	Loganite	Prehnite	Topaz
Bournonite	Fayalite	Lolingite	Roselite	Tyrolite
Caledonite	Glaserite	Manganite	Smithsonite	Wolfsbergite

Minerals whose Crystals present Faces parallel to the Macro-pinacoids $\infty 1 \infty$. $\infty \overline{\mathbf{P}} \infty$ Naumann, 010 Miller, H Brooke and Levy.

Aeschynite	Comptonite	Haidingerite Andalusite	Cordierite	Nitre
Harmotome	Olivenite	Remolinite		
Anglesite	Cotunnite	Herderite	Olivine	Schulzite
Antimonsilber	Cryolite	Ilvaite	Orpiment	Smithsonite
Antimonite	Datholite	Jamesonite	Phillipsite	Stephanite
Aragonite	Epsomite	Karstenite	Picrosmine	Stilbite
Baryte	Eudnophite	Libethenite	Polianite	Struvite
Bismathine	Fayalite	Loganite	Polykrase	Suphur
Bournonite	Gadolonite	Manganite	Polymignite	Sylvanite
Brookite	Glaserite	Mascagnine	Prehnite	Prantalite
Celestine	Goslarite	Mendipite	Pyrolusite	Wölchite
Cerussite	Göthite	Niobite	Redruthite	Wolfram

Cleavages parallel to this form occur in the following minerals.

Aeschynite	Chrysoberyl	Jamesonite	Niobite	Pyrolusite
Andalusite	Conptonite	Karstenite	Olivine	Scorodite
Antimonite	Cryolyte	Loganite	Orpiment	Stilbite
Baryte	Eudnophite	Aanganite	Phillipsite	Struvite
Bournonite	Fayalite	Mascagnine	Picrosmine	Tantalite
Celestine	Harmotome	Mendipite	Polymignite	Wolfram

Minerals whose Crystals present Faces parallel to the Brachy-pinacoids $1 \infty \infty$ $\infty \widetilde{\mathrm{P}} \infty$ Naumann, 100 Miller, G Brooke and Levy.

Aescbymite	Bismuthine	Chrysoberyl	Epsomite	Harmotome
Alstonite	Bournonite	Comptonite	Euchroite	Herderite
Audalusite	Brochantite	Cordierite	Eudnophite	Ilvaite
Anglesite	Brookite	Cotunnite	Fayalite	Jamesonite
Antimonsilber	$r \quad$ Caledonite	Cryolite	Glaserite	Karstenite
Antimonite	Celestine	Datholite	Goslarite	Leadhillite
Aragonite	RISCerufeita	Riappoive	Göthite	Libethenite
Baryte	Chindrenite	Epistibite	Haidingerite	Loganite

Manganite	Olivenite	Prehnite	Sternbergite	Topaz
Mascagnine	Olivine	Pyrolusite	Stilbite	Tyrolite
Mendipite	Orpiment	Redruthite	Strontianite	Valentinite
Mengite	Phillpsite	Remolinite	Stromeserite	Wavellite
Mesotype	Picrogmine	Roselite	Struvite	Witherite
Migpickel	Polianite	Scorodite	Sylvanite	Wolchite
Monticellite	Polyhalite	Smithsonite	Tantalite	Wolfram
Niobite	Polykrase	Staurolite	Thenardite	Wolfsbergite
Nitre	Polymignite	Stephanite	Thermonatrite	Zinckenite

Cleavages parallel to this form occur in the following minerals.

Alstonite	Childrenite	Glaserite	Nitre	Stephanito
Andalusite	Chrysoberyl	Göhite	Olivine	Stilbite
Angleaite	Comptonite	Haidingerite	Orpiment	Strontianite
Antimonite	Cordierite	Harmotome	Phillipsite	Tantalite
Aragonite	Cryolite	Jamesonite	Picrosmine	Thermonatrite
Baryte	Datholite	Karstenite	Polianite	Wavellite
Bournonite	Diaspore	Leadhillite	Polymignite	Witherite
Broohantite	Episfilbite	MGanganite	Pyrolusite	Wollhite
Brookite	Rpsomite	Mascagnine	Remolinite	Wolfram
Caledonite	Eudnophite	Mendipite	Scorodite	Folfsbergite
Celestine	Fayalite	Niobite	Staurolite	

Right Rhombic Prism of the First Oxder. -The right rhombic prism of the

Fig. 304. first order, or the rectangular prism on a rhombic base, is a solid bounded by six faces, four of which are rectangular parallelograms, such as $\mathbf{A}_{1} \mathbf{E}_{2} \mathbf{E}_{3} \mathbf{A}_{3}$ (Fig. 304); the other two are rhombs. When this prism is considered as an open form, the four rectangular faces only are taken as its faces, the two rhombic faces which inclose it being then regarded as the basal pinacoids.

To draw the Rhombic Priom of the First Order.-Bisect

Fig. 305.

Fig. 306. the edges $B_{1} B_{4}, B_{2} B_{3}, B_{8} B_{5}$, and $B_{6} B_{9}$ of the prism (Fig. 301), in the points A_{1}, A_{2}, A_{3}, and A_{4}; also $B_{1} B_{2}, B_{4} B_{3}$ $B_{5} B_{8}$, and $B_{8} B_{7}$, in E_{1}, E_{2}, E_{3}, and E_{4}. Prick off the points $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \mathbf{A}_{4}, \mathbf{E}_{1}, \mathbf{E}_{2}, \mathbf{E}_{3}$ and \mathbf{E}_{i}, and join these points, as in Fig. 304, and the prism will be represented.

Symbols.-Each face of this prism, considered as an open form, cuts two of the axes $G_{1} G_{2}$ (Fig. 301) and $H_{1} H_{2}$, at the extremities of their parameters, and is parallel to the third axis $P_{1} P_{2}$; the symbol representing this property is 11∞; Naumann's is ∞ P, Miller's 11∞, and Brooke and Levy's M.

To Describe a Net for the Rhombic Prism-Draw two lines, $\mathrm{G}_{1} \mathrm{G}_{2}$ and $\mathrm{H}_{1} \mathrm{H}_{2}$ (Fig. 305), cutting each other at right angles in the point C. Make $C G_{1}$ and CG_{2} each equal CG (FibpiO2), and $\mathrm{CH}^{2}, \mathrm{CH}_{2}$ equal to CH_{4} (Fig. 302).

Join $H_{1}, \mathrm{G}_{1}, \mathrm{HI}_{2}$ and G_{2} as in Fig. 305. Draw two such rhombs, also four equal
rectangular parallelograms, their breadths bemg equal to $H_{1} G_{1}$, and of any convennent length. Arrange these figures as in Fig. 306, and the net will be described.

Sphere of Projection for the Prismatic System.-To draw a map of the sphere of projection of the prismatic system, with P_{1} (Fig. 307) as a centre, and any convenient radius $P_{1} G_{1}$ describe the circle $G_{1} H_{1}$ G_{2}. Let $\mathrm{G}_{1} \mathrm{G}_{2}$, and $\mathrm{H}_{1} \mathrm{H}_{2}$, be any two diameters drawn perpendicular to each other. Then P_{1}, representing the north pole of the sphere of projection, is the pole of the upper basal pinacoid $\infty \infty 1$, or 0 P , Naumann; G_{1} and G_{2} are the poles of the brachypinacoids $1 \infty \infty$, or $\infty \widetilde{\mathrm{P}} \infty$, Naumann; and H_{1} and H_{2} are the poles of the macro-pinacoid $\infty 1 \infty$, or $\infty \overline{\mathbf{P}} \infty$, Naumann.

Fig. 307.

Faces parallel to the Rhombic Prism of the First Order, $11 \infty ; \infty \mathrm{P}$ Naumann; 110 Miller; M Brooke and Levy; occur in the following minerals: the angles are the longitude of their poles.

Aeschynite	$63^{\circ} 4$	Göthite	$4^{47^{\circ}} 26^{\prime}$	Polyhalite	10
Alstonite	$59^{\circ} 26^{\prime}$	Haidingerite .	$50^{\circ} 0^{\prime}$	Polykrase	70°
Andalusite	$45^{\circ} 22^{\prime}$	Harmotome	- $45^{\circ} 53^{\prime}$	Polymignite	54
Anglesite	$51^{\circ} 49$	Herderite	$57^{\circ} 57^{\prime}$	Prehnite	
Antimonsilber	- $60^{\circ}{ }^{\prime}$	Ilvaite	$55^{\circ} 36^{\prime}$	Pyrolusite	46°
Antimonit	- $45^{\circ} 23^{\prime}$	Jamesonite	$50^{\circ} 40^{\circ}$	Redruthite	59°
Aragonite	$58^{\circ} 5^{\prime}$	Karstenite	$48^{\circ} 18^{\prime}$	Remolinite	
Baryte	$50^{\circ} 50^{\prime}$	Leadhillite	$6^{60} 10^{\circ}$	Roselite	$6^{66^{\circ}} 2{ }^{\prime \prime}$
ismuthi	$45^{\circ} 30^{\prime}$	Libethenit	$4^{46^{\circ} 10^{\prime}}$	Scorodite	49
Bournont	$46^{3} 50^{\prime}$	Liroconite	$59^{\circ} 40^{\prime}$	Smithsonite	
Brochant	$52^{\circ} 5^{5}$	Loganite	Unkn.	Staurolite	
Brookite	$49^{\circ} 55^{\prime}$	Lolingite	$6_{61}{ }^{1} 13^{\prime}$	Stephanite	
Caledonite	$47^{\circ} 30^{\prime}$	Manganite	${ }^{499^{\circ} 50^{\prime}}$	Sternbergite	${ }^{59} 9^{\circ} 45^{\circ}$
Celestine	$52^{\circ} 1^{\prime}$	Marcasite	53°	Stilbite	${ }^{47 \circ} 8^{\circ}$
russite	${ }^{58^{\circ}} 37^{3} 7^{\prime}$	Mascagnine	${ }^{60} 0^{\circ} 34^{\prime}$	Strontian	
Chloanthite	$62^{\circ} 0^{0}$	Mendipite	$51^{\circ} 18^{\circ}$	Struvite	610 25°
Chrysoberyl	$64^{\circ} 49^{\prime}$	Mengite	$68^{68} 10^{\circ}$	Sulphur	$50^{\circ} 59$ 550 18
Comptonite	$45^{\circ} 20^{\circ}$	Mesotype	$4^{45^{\circ}} 30^{\circ}$	Sylvanite	$5^{55^{\circ}} 24^{\prime}$
Cordierite	$59^{50} 3{ }^{\circ}$	Mispickel	$5^{55^{\circ}} 36^{\prime \prime}$	Thenardite	
Cotunnite	$49^{\circ} 53^{\prime}$	Monticellit	${ }^{48^{\circ}} 55^{\circ}$	Topaz	
atholite	$51033{ }^{\prime}$	Niobite	${ }^{500^{\circ} 20^{\circ}}$	Tyrolite	
Epistilbite	$67^{\circ} 3{ }^{\prime}$	Nitre	$59^{\circ} 25^{\circ}$	Valentinite	$63^{\circ} 13^{\circ}$
Epsomite	${ }^{45^{\circ}} 17^{\prime}$	Olivenite	${ }^{466^{\circ}} 15^{\prime}$,	Wavellite	$6^{63^{\circ}} 13^{\prime \prime}$
Euchroite	$58^{\circ} 40^{\circ}$	Olivine	$470^{4}{ }^{\prime}$	Witherite	- $59^{\circ} 15^{\prime}$
Fadnophit	$60^{\circ} 0^{0}$	Orpiment	$58^{\circ} 55{ }^{\circ}$	Wülchite	
Fayalite	${ }^{47^{\circ} \circ} 20^{\prime}$	Phillipsite	${ }^{45^{\circ}} 33^{\circ} 6^{\prime}$	Wolfram	
Gadolonite Glaserite	$\begin{aligned} & 59^{3} 45^{\prime} \\ & 60^{\circ} 12^{\prime} \end{aligned}$	Picrosmine Polianite		Wolfsbergite	
Goslanit	-				

The following aninerals present Cleavages parallel to this form.

Alstonite	Brochantite	Jamesonite	Mispickel	Strontianite
Andalusita	Caledonite	Leadhillite	Nitre	Sulphur
Anglesite	Celestine	Liroconite	Olivenite	Thenardite
Antimonsilber	r Cerussite	Loganite	Prehnite	Topaz
Antimonite	Datholite	Aranganite	Pyrolusite	Valentinite
Aragonite	IS Epspmita	Marcirite	Redruthite	Wavellite
Baryte	RIS Excmote	\%enttota	Smithsonito	Witherite
Bismuthine	Giaserite	Mesotype	Staurolite	

Position of the Poles of the Right Rhombic Prism on the Sphere of Projection.-The poles of this prism all lie in the equator, if θ be the angle of longitude for each substance given above ; and if (in Fig. 307) $G_{1} D_{1}, G_{1} D_{2}, G_{2} D_{3}$, and $G_{2} D_{4}$, be cach taken equal to $\theta, D_{1}, D_{2}, D_{3}$ and D_{4}, will represent the four poles of the prism.

Right Rhombic Prisms derived from the Right Rhombic Prism of the First Order by increasing the greater $A x i s G_{1} G_{2}$.-These prisms will be similar, in all respects, to the prism of the first order, from which they are derived, except that CG_{1} and CG_{2} (Fig. 301) must be taken n times greater than GC (Fig. 302). Making this alteration, the points $A_{1}, A_{4}, A_{3}, A_{4}, E_{1}, E_{2}, E_{3}$, and L_{4}, will give the angular points of the derived prism. Their symbols will be $n 1 \infty, \infty$ P Naumann, $n k$ o Miller, $H^{\frac{n+1}{n-1}}$ Brooke and Levy.

Faces parallel to the following forms of these Prisms have been observed in ; re ; tlo angle is that of their longitude.
The form $\boldsymbol{f}^{1} \infty ; \infty \overline{\mathrm{P}}^{4}$ Naumann; 340 Miller; H^{7} Brooke and Levg. Faralite . . $55^{\circ} 20^{\circ} \mid$ Manganite . . 55^{40}
The form $\frac{8}{8} 1 \infty ; \infty$ P $\frac{9}{2}$ Naumann; 230 Miller ; H Brooke and Lerg. Baryte . . . 6130 |Bournonite . . 577^{59}
The form ${ }_{3} 1 \infty$; \propto P f Naumann ; 350 Miller ; H ${ }^{4}$ Brooke and Levy. Cerussite - . 6900°
The form $2 \mathrm{I} \infty ; \infty \overline{\mathrm{P}} 2$ Naumann; 120 Miller; H^{3} Brooke and Levy.

Diaspore has an imperfect cleazage parallel to the above form.
The form 41∞; ∞ P 4 Naumann; 140 Miller ; H Brooke and Levy. Brookite . . 78° rl|Manganite . . 783^{\prime}
The form $\frac{11}{2} i \infty ; \infty \overline{\mathrm{P}} \frac{1}{2}$ Naumann; 2110 Miller; $\mathrm{H}^{\mathcal{Y}}$ Brooke and Lery. Brookite - . $81{ }^{18}$
The form ${ }^{\frac{23}{4}} 1 \infty ; \infty$ P $\frac{23}{4}$ Naumann; 4230 Miller; H ${ }^{\frac{7}{7}}$ Brooke and Levy. Brootite - . $81^{\circ} 40^{\circ}$
Poles of these derived Rhombic Prisms of the First Order on the Sphere of Projection, §c. -If $G_{1} l_{1}, G_{1} l_{2}, G_{2} l_{3}$, and $G_{2} l_{4}$, on the equator of the sphere of projection, be each taken equal to the angle of longitude given above, in Fig. 307, l_{1}, l, l, and l_{4}, will be the four poles of the prism. If a be the angular element given in the first column, θ the longitude of the prism $n l \infty$, for any particular substance, then

$$
\tan \theta=n \cot \alpha .
$$

2θ will be the inclination of the faces of the prism over the edges $\mathrm{E}_{1} \mathrm{E}_{3}$ or $\mathrm{E}_{2} \mathrm{E}_{4}$ (Fig. 304) ; $180^{\circ}-2 \theta$, their inclination over the edges $\mathrm{A}_{1} \mathrm{~A}_{3}$ and $\mathrm{A}_{2} \mathrm{~A}_{4}$.

Right Rhombic Prisms derived fron the Right RI, bic Prisn of the F'rst $0 \cdot d e r, l_{f}$ increasing the Less r Axis $H_{1} H_{2}$.-These prisms are deriv d fiom the privm of the first order, by making CH_{1} and CH_{2} (Fig. 301) equal to n times CH (Fig. 301). With this alteration $A_{4} A_{2} A_{1}, A_{4} E_{1}, E_{,} E_{i}$ and E_{4}, will give the angular points of the new prism!

The symbol of these derived prisms will be $1 n \infty ; \infty \widetilde{\mathbf{P}}_{n}$ Naumann; $k \pi$ o Miller ; $n+1$
$G^{\overline{n-1}}$ Brooke and Levy.

Faces parallcl to the following forms of these Prisms have been observed in nature; the angle is that of their longitude.
The form $14 \infty ; \infty \breve{\mathbf{P}}_{\frac{4}{3}}$ Naumann; 430 Miller; G^{2} Brooke and Levy. Auglesite - . $43^{\circ} 34^{\prime} \mid$ Antimonite . . $37^{2} 14^{\prime} \mid$ Bournonite . $38^{\circ} 39^{\prime}$ Wavellite . . $56^{\circ} 3^{\prime}$
The form $1 \frac{3}{2} \infty ; \infty \widetilde{\mathrm{P}} \frac{9}{2}$ Naumann; 320 Miller; Gs Brooke and Levy.

The form $1{ }_{2}^{5} \infty ; \infty$ 교 $\frac{5}{2}$ Naumann; 520 Miller; G3 Brooke and Levy. Fayalite • $\quad 23^{\circ} 27^{\prime} \mid$ Manganite - $25^{\circ} 21^{\prime}$
The form $12 \infty ; \infty \breve{\mathrm{P}} 2$ Naumann; 210 Miller; G^{3} Brooke and Levy.

Aeschynit	${ }^{450} 17^{\prime}$	Diaspore	${ }^{28}{ }^{\circ}{ }^{9}$	Remolinite	${ }^{\text {a }}$
Anglesite Antimonsiber	- $32^{\circ} 27^{\prime}$	Epsomite	$26^{\circ} 49^{\prime}$	Schulzite	$30^{\circ} 8^{\prime}$
Antimonsilber	- $40^{\circ} 54^{\prime}$	Euchroite	$39^{\circ} 24^{\prime}$	Scorodite	$29^{\circ} 55^{\prime}$
Baryte	- $311^{\circ} 33^{\prime}$	Goslarite	$26^{\circ} 43^{\prime}$	Sulphur	31
Bournonite	- $28{ }^{\circ}{ }^{4}$	Göthite	$28^{\circ} 34^{\prime}$	Sylvanite	$35^{\circ} 56^{\prime}$
Brochantite	- $32^{\circ} 42^{\circ}$	Ilvaite	$36^{\circ} 8^{\prime}$	Thermonatrite	$53^{\circ} 55^{\prime}$
Celestine ${ }^{\text {- }}$	- $322^{\circ} 38^{\prime}$	Manganite	$30^{\circ} 38^{\prime}$	Topaz	$43^{\circ} 26^{\prime}$
Chrysoberyl	- $56^{\circ} 47^{\prime}$	Olivin	$28^{\circ} 13^{\prime}$	Wolfram	31
Cotunnite	303 ${ }^{30^{\circ}} 41^{\prime}$	Orpiment	${ }^{39} 9^{\circ} 40^{\circ}$	Wolfsbergite	50
Datholite	$32^{\circ} 17^{\prime}$	Polymignite	$35^{\circ} 2$		

The form $1 \frac{9}{4} \infty$; $\infty \widetilde{\mathrm{P}} \frac{9}{4}$ Naumann; 940 Miller; $\mathrm{G}^{\frac{13}{3}}$ Brooke and Levs.
Tantalite . . $28^{\circ} 33^{\circ}$
The form $13 \infty ; \infty \widetilde{\mathrm{P}} 3$ Naumann; 310 Miller; G^{2} Brooke and Levy.

The form $1 \frac{7}{2} \infty ; \infty \breve{\mathbf{P}} \frac{7}{2}$ Naumann; 720 Miller; $G \frac{9}{5}$ Brooke and Levy. Chrysoberyl . . $31^{\circ} 17^{\prime}$
The form $14 \infty ; \infty \widetilde{\mathrm{P}} 4$ Naumann; 410 Miller ; $\mathrm{G}^{\frac{5}{3}}$ Brooke and Levy.
Ilvaite . . $20^{\circ} 33^{\prime} \mid$ Polymignite - $\left.19^{\circ} 35^{\circ}\right|^{\text {Topaz }}$. . $25^{\circ} 20^{\circ}$
Leadhillite : $\quad 23^{\circ} 33^{\circ} \mid$ Remolinite : $\quad 20^{\circ} 28^{\prime} \mid$
The form $15 \infty ; \infty \widetilde{\mathrm{P}} 5$ Naumann; 510 Miller; $\mathrm{G}^{\frac{3}{2}}$ Brooke and Levy.
Antimonsilber $\quad 16^{\circ} 6^{\prime} \mid$ Antimonite - $11^{\circ} 27^{\prime} \mid$ Smithsonite . . $14^{\circ} 20^{\circ}$
Polcs of thesc dericed Rhombic Prisms of the First Order on the Sphere of Projection, \&c. -Take $G_{1} K_{1}, G_{1} K_{2}, G_{2} K_{3}$ and $G_{2} K_{4}$ (Fig. 307) on the equator of the sphere of projection, each equal to the angle of longitude given above. $K_{1} K_{2} K_{3}$ and K_{4} will be the four poles of the prism.

If a be the angular element given in the first column, θ the longitude of the prism, $1 n \infty$ for any particular substance, then

$$
\cot \theta=n \tan \alpha
$$

2θ will be the inclination of the faces of the prism over the edges $A_{1} A_{3}, A_{2} A_{4}$ (Fig. 304); $180^{\circ}-2 \theta$, theirinclinattondrè

Right Rhombic Prism of the Second Oxdex.-The right rhombic prism of the second order is similar in form, but different in position, to that of the first order. The four faces (Fig. 308) which are rectangular parallelograms, cut the two axes $P_{1} P_{2}$ and $G_{1} G_{2}$ (Fig. 301) in the points P and G, and are parallel to the third axis $H_{1} H_{2}$ (Fig. 301).

The rhombic planes $A_{1} M_{1} A_{3} M_{4}$ and $A_{2} M_{2}$ $\mathrm{A}_{4} \mathrm{M}_{3}$ which inclose the prism are the macro-pinacoids.

To draw this prism, we have only to prick off the points $A_{1}, A_{2}, A_{3}, A_{4}, E_{1}, E_{2}, E_{3}$, and E_{4} from the Fig. 301, and join them as in Fig. 308.

Symbols.-The symbol which represents the relation of this prism to the axes of the prismatic system is $1 \infty 1$; Naumann's $\breve{\mathrm{P}} \infty$; Miller's 101 ; Brooke and Levy's $\mathrm{E}^{\frac{1}{2}}$.

Fig. 308.

Faces parallel to the Irism of the Second Order ocour in the following Minerals: the angle is that of their latitude.

The following present Cleavages parallel to this form.

Andalnaite Antimonsilber	Aragonite Bournonite	Epsomite Euchroite	Lolingite Marcasite	Nitre Topaz

Position of the poles of the Right Rhombic Prism of the Second Order on the Sphere of Projection.
The four poles of this prism all lie in the same meridian or zone $G_{1} P_{1} G_{2}$, (Fig. 307). The poles a_{1}, a_{2} in the northern hemisphere for any particular substance are determined by observing where the circle of latitude, whose north polar distance is equal to the angle of latitude given above, cuts the meridian $G_{1} P_{1} G_{2}$, the other two poles are where the same circle of south latitude cuts the same meridian.

The angle for determining the latitude of the poles of this form is that given in the second column of the angular elements, for substances belonging to the prismatic system. Let β represent this angle.

Right Rhombic Prisms dexived from those of the Second Order.-

 By increasing or diminishing the axis $\mathrm{P}_{1} \mathrm{P}_{2}$ (Fig. 301), by making CP_{1} (Fig. 301) equal to m times the parameter CP (Fig. 302), where m may be any whole number or fraction greater or less than unity, and then from Fig. 301 so altered constructing a right rhombic prism of the second order, a new series of prisms may be described.Symbols,-The symbol which will represent the relation of these prisms to the axes of the prismatic system is $1 \infty m$; Naumann's is $m \widetilde{\mathrm{P}}_{\infty}$; Miller's h o $\%$; Brooke and Levy's $\mathrm{E}^{\frac{m_{2}}{2}}$.

Faces parallel to these derived Rhombic Prisms of the Second Order, with the following angles for determining the latitude of their poles, have been observed in nature.
The form $1 \propto \frac{1}{T_{2}} ; \frac{1}{12} \breve{\mathrm{P}} \propto$ Naumann; 1, 0,12 Miller; $\mathrm{E}^{\frac{-1}{24}}$ Brooke and Levy. Celestine . . $6^{\circ} 6^{\prime}$
The form $1 \propto \frac{1}{6} ; \frac{\frac{1}{6}}{6} \propto \infty$ Nauniann; 106 Miller; E ${ }^{\frac{1}{2}}$ Brooke and Levy. Tantalite . . $6^{\circ} 11^{\prime}$
The form $1 \infty \frac{1}{4} ; \frac{1}{4} \breve{\mathrm{P}} \infty$ Naumann; 104 Miller; E $\mathrm{E}^{\frac{1}{8}}$ Brooke and Levy. Gadolinite . . $16^{\circ} 52^{\prime} \mid$ Marcasite . . $16^{\circ} 30^{\prime} \mid$ Mispickel . . $16^{\circ} 16^{\prime}$
The form $1 \propto \frac{1}{\frac{3}{3}} ; \frac{1}{3} \breve{\mathrm{P}} \infty$ Naumann; 103 Miller; E $\mathrm{E}^{\frac{1}{6}}$ Brooke and Levy.
 Valentinite . . $25^{\circ} 14^{\prime}$
The form $1 \infty \frac{1}{2} ; \frac{1}{\overline{4}} \widetilde{\mathrm{P}} \infty$ Naumann; 102 Miller; $\mathbf{E}^{\frac{1}{4}}$ Brooke and Levy.

Antimonite	$270{ }^{2}$	Ilvaite	$12^{\circ} 51^{\prime}$	Olivine .	$30^{\circ} 24$
Aragonite	$19^{\circ} 49^{\prime}$	Leadhillite	- $32^{\circ} 16^{\prime}$	Smithsonite .	$13^{\circ} 34^{\prime}$
Baryte .	$33^{\circ} 17^{\prime}$	Mispickel	$31^{\circ} 4^{\prime}$	Stromeyerite.	$25^{\circ} 55^{\prime}$
Cerussite	$19^{\circ} 52^{\prime}$	Marcasite	$30^{\circ} 38^{\prime}$	Thermonatrite	$29^{\circ} 7^{\prime \prime}$
Fajalite	30° 告	Nitre	$19^{\circ} 19^{\prime}$	Witherite	$20^{\circ} 21^{\prime}$
Glaserite	$56^{\circ} 11^{\prime}$				

The form $1 \infty \frac{2}{3} ;{ }_{3} \widetilde{P}_{\infty}$ Naumann; 203 Miller; $E^{\frac{1}{3}}$ Brooke and Levy.
Datholite . . ${ }^{180^{\circ}} 26^{\prime} \mid$ Roselite $\quad .22^{\circ} 30^{\prime} \mid$ Topaz . . . $32^{\circ} 19^{\circ}$ Redruthite . . $32^{\circ} 54^{\prime} \mid$ Sulphur . . $51^{\circ} 40^{\prime} \mid$ Wolfram $\quad .29^{\circ} 54^{\prime}$
The form $1 \infty \frac{4}{3} ; 4 \longdiv { S ^ { 3 } } \infty$ Naumann; 403 Miller; $E^{\frac{2}{3}}$ Brooke and Levy. Brookite . . $51^{\circ} 322^{\prime}$ Datholite . . $33^{\circ} 41^{\prime}$
The form $1 \infty \frac{3}{2} ; \frac{3}{2} \breve{\mathbf{P}} \infty$ Naumann; 302 Miller; $\mathbf{E}^{\frac{3}{4}}$ Brooke and Levy. Aragonite . . $47^{\circ} 14^{\prime} \mid$ Herderite - $32^{\circ} 30^{\prime} \mid$ Staurolite . . $45^{\circ} 48^{\prime}$ Strontianite - . $47^{\circ} 22^{\prime}$
The form $1 \infty 2 ; 2 \breve{\mathrm{P}} \infty$ Naumann; 201 Miller ; E ${ }^{1}$ Brooke and Levy.

Aeschynite	$53^{\circ} 18^{\prime}$	Epsomite	49°	Redruthite	62°
Alstonite	$55^{\circ} 55^{\prime}$	Harmotome	$54^{\circ} 15^{\prime}$	Smithsonite	44^{3}
Antimonsilber	$53^{\circ} 20^{\circ}$	Ilvaite	$42^{\circ} 23^{\prime}$	Stephanite	53°
Aragonite	$55^{\circ} 15^{\prime}$	Leadbillite	$68^{\circ} 24$	Sternbergite	59°
Brookite	$62^{\circ} 6^{\prime}$	Mascagnine	$55^{\circ} 37^{\prime}$	Strontianite	$35^{\circ} 22^{\circ}$
Cerussite	$55^{\circ} 20^{\circ}$	Niobite	- $60^{\circ} 20^{\prime}$	Sylvanite	$50^{\circ} 43$
Childrenite	$52^{\circ}{ }^{\circ}$	Nitr	$54^{\circ} 30^{\circ}$	Topaz	$62^{\circ}{ }^{3}$
Datholite	45°	Olivin	$66^{\circ} 55^{\prime}$	Witherite	$56^{\circ} 0^{\prime}$

Cerussite, Stephanite, Strontianite, and Witherite cleave parallel to this form.
The form $1 \propto 3 ; 3 \widetilde{\mathrm{P}} \infty$ Nammann; 301 Miller; $\mathrm{E}^{\frac{3}{2}}$ Brooke and Levy.

The form 1 分 $4 ; 4 \widetilde{\mathrm{P}} \infty$ Naumann; 401 Miller; E^{2} Brooke and Levy.

The form $1 \infty 5 ; 5 \breve{\mathrm{P}} \infty$ Naumann; 501 Miller; $\mathrm{E}^{\frac{5}{2}}$ Brooke and Lery. Aragonite . . $74^{\circ} 29^{\prime} \mid$ Smithsonite . . $67^{\circ} 30^{\circ}$
The form $1 \infty 6 ; 6 \breve{\mathrm{P}} \infty$ Nauman 601 Niller; E^{3} Brooke and Levy. Aragonite . . $76^{\prime} 59^{\prime} \mid$ Herderite . . $68^{\circ} 34^{\prime} \mid$ Strontianite . . $77^{\circ} 2^{\prime}$
The form $1 \infty 7 ; 7 \breve{\mathrm{P}} \infty$ Naumann ; 701 Miller; $\mathrm{E}^{\frac{7}{2}}$ Prooke and Levy. Smithsonite . . $73^{\circ} 31^{\circ}$
The form $1 \infty 8 ; 8 \breve{\mathrm{P}} \infty$ Naumann; 801 Niller; Et Brooke and Levy. Strontianite . . $80^{\circ} 12^{\prime}$
The form $1 \propto 10 ; 10 \breve{\mathbf{P}} \infty$ Naumann; 10, 0 , 1 Millur; Es B-ooke and Lery. Sternbergite . . $83^{\circ}{ }^{\circ} 2^{\prime}$
The form $1 \infty 12 ; 12 \breve{\mathbf{P}} \infty$ Naumann; 12, 0, 1 Miller; \mathbf{E}^{6} Brooke and Levy. Strontianite . . 8326°

Poles of the derived Rhombic Prisns of the Second Order on t7e Sphere of Projection.一 Let λ be the angle given in the list above for determining the latitude of any form for a particular substance. The two points where the circle of north latitude, whose polar distance from P_{1} is λ, cuts the meridian or zone $G_{1} P_{1} G_{2}$ (Fig. 307); and the two points where the same circle of south latitude cuts the same zone, will give the four poles of the derived rhombic prism.

Let β be the angle given in the secoud column (pages 417, 418),
$\tan \lambda=m \tan \beta$.
Right Rhombic Prism of the Thixd Ordex.-The right rhombic prism of the third order is similar in form to that of the first order, but differs in position with regard to the axes.

Symbols.-Each face passes through one of the extremities of the axes $\mathrm{P}_{1} \mathrm{P}_{2}$ and $\mathrm{H}_{1} \mathrm{H}_{2}$, and is parallel to the third axis $\mathrm{G}_{1} \mathrm{G}_{2}$. The symbol which expresses this relation is $\infty 11$; Naumann's is $\widetilde{\mathbf{P}} \infty$; Miller's 011 ; Brooke and Levy's $A^{\frac{1}{3}}$.

Fig. 303.

To draw this prism prick off the points $E_{1}, E_{2}, E_{3}, E_{4}$ and $M_{1}, M_{2}, M_{3}, M_{4}$ from Fig. 301, and join them as in Fig. 309.

Faces parallel to the Prism of the Third Order occur in the following minerals: the angle is that of their latitude.

The following present Cleavages parallel to this form.

Bournonite. Liroconite. Remolinite. Smithsonite. Topaz.
Position of the Poles of the Right Rhombic Prism of the Third Order on the Sphere of Pro-jection.-Let λ be the angle given in the above list for determining the latitude for any particular substance. The two points b_{1}, b_{2} (Fig. 307) where the circle of north latitude, whose polar distance from P_{1} is λ, cuts the meridian $G_{1} P G_{2}$, and the two points where the same circle of south latitude cuts the same meridian, will give the four poles of the rhombic prism of the third order.

Let α be the angle given in the first column, and β that given in the second column (pages 417, 418). Then λ may be obtained from the formula

$$
\tan \lambda=\frac{\tan \beta}{\tan \alpha}
$$

Right Rhombic Prisms derived from those of the Third Order.-By taking CP_{1} (Fig. 301) m times CP (Fig. 302) where m may be any fraction or whole number; and from Fig. 301 so altered, describing a right rhombic prism of the third order, a series of prisms similar in form and position, but differing in magnitude from Fig. 309, may be formed.

Symbols.- Each face of these derived prisms cuts two of the axes $\mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{H}_{1} \mathrm{H}_{2}$, and is parallel to the third $G_{1} G_{2}$, and the symbol which expresses this relation to the axes is $\infty 1 \mathrm{~m}$; Naumann's is $m \overline{\mathrm{P}} \infty$; Miller's o $k l$; and Brooke and Levy's $\mathrm{A}^{\frac{m}{2}}$

Faces parallel to these derived Rhombic Prisms of the Third Order, with the following angles for determining the latitude of their poles, have been observed in nature.
The form $\infty 1 \frac{1}{\delta} ; \frac{\downarrow}{\delta} \overline{\mathrm{P}} \infty$ Naumann; 016 Miller; A ${ }^{\frac{1}{2}}$ Brooke and Levy. Baryte . - . $15^{\prime} 2^{\prime} \mid$ Niobite . . . $10^{\circ} 0^{\prime}$
The form $\infty 1 \frac{1}{3} ; \frac{1}{5} \overrightarrow{\mathrm{P}} \infty$ Naumann; 0 I 5 Miller; $A^{\frac{1}{10}}$ Brooke and Levy. Baryte - . . $17^{\circ} \mathbf{5 2}$
The form $\infty 1 \frac{1}{4} ; \frac{1}{\mathrm{P}} \infty$ Naumann; 014 Miller; $A^{\frac{1}{8}}$ Brooke and Levy.

The form $\infty 1 \frac{1}{3} ; \frac{1}{3} \overline{\mathrm{P}} \infty$ Naumann; 013 Miller; $A^{\frac{1}{6}}$ Brooke and Levy.

The form $\infty 1 \frac{1}{3} ; \frac{1}{2} \overline{\mathrm{P}} \infty$ Naumann ; 012 Miller; $A^{\frac{1}{4}}$ Brooke and Levy.

Baryte has an imperfect clcavage parallel to this form.
The form $\infty 1 \frac{2}{3} ; \frac{e_{3}}{\mathbf{P}} \infty$ Naumann; 023 Miller; $A^{\frac{1}{3}}$ Brooke and Levy. Bournonite - . $32^{\top} 31^{\prime} \mid$ Chrysoberyl - $39^{\circ} 27^{\prime} \mid$ Niobite . . . $35^{\prime} 12^{\prime}$
The form $\infty 1 \frac{3}{3} ; 3^{3} \times \infty$ Naumann; 034 Miller ; $A^{\frac{3}{8}}$ Brooke and Levy. Celestine IRIS'-L1

The form $\infty 1 \frac{3}{2} ; \frac{3}{2} \overline{\mathrm{P}} \infty$ Naumann; 032 Miller; $\mathrm{A}^{\frac{3}{2}}$ Brooke and Lery. Datholite - . $43^{\circ} 27^{\prime} \mid$ Sylvanite . . $53^{3} 2^{\prime}$
The form $\infty 12 ; 2 \overline{\mathrm{P}} \infty$ Naumann; 021 Miller ; A^{1} Brooke and Levy.

The form $\infty 13 ; 3 \overline{\mathrm{P}} \infty$ Naumann; 031 Miller; $\mathrm{A}^{\frac{3}{2}}$ Brooke and Levy. Ilvaite . . . $63^{\circ} 25^{\circ} \mid$ Smithsonite . . $61^{\circ} 3 j^{\circ}$
The form ∞ 14;4 $\overline{\mathbf{P}} \infty$ Naumann; 04 i Niller; A^{2} Brooke and Levs. Haidingerite . $67^{\circ} 11^{\circ}$
The form $\infty 16 ; 6 \overline{\mathrm{P}} \infty$ Naumann ; 061 Miller; A^{3} Brooke and Levy. Sternbergite . . $\mathbf{7 6}^{\text { }} 31^{\prime}$
Position of the Poles of the derived Rhombic Prisms of the Third Order on the Sphere of Projection.-Let b_{1} and b_{2} (Fig. 307) be the points where the circle of latitude, whose polar distance from P_{1} is the angle λ given for each particular substance in the preceding article, cuts the meridian $\mathrm{H}_{1} \mathrm{PH}_{2}$; these points, together with two similar ones where the same circle of south latitude cuts $\mathrm{H}_{1} \mathrm{PH}_{2}$, will be the four poles of the rhombic prism.

If α be the angle in the first, and β that in the second column (pages 417, 418),

$$
\tan \lambda=m \frac{\tan \beta}{\tan \alpha}
$$

Rhombic Pyramid.-The double four-faced pyramid or octaliedron on a rhombic base is a solid bounded by eight triangular faces; each face, such as $\mathrm{P}_{1} \mathrm{H}_{1} \mathrm{G}_{1}$ (Fig. 310) being a scalene triangle. It has six four-faced solid angles, equal to one another in pairs, that at P_{1} being equal to that at P_{2}, at H_{1} to H_{2}, and at G_{1} to G_{2}. The edge $P_{1} H_{1}$ equals $H_{1} P_{2}, H_{2} P_{2}$, and $P_{1} H_{2}$; the edge $P_{1} G_{1}$ equals $P_{1} G_{2}, P_{2} G_{1}$, and $P_{2} G_{2}$; and the edge $H_{1} G_{1}$ equals $G_{1} H_{2}, H_{2} G_{2}$, and $\mathrm{G}_{2} \mathrm{H}_{1}$.

To draw the Rhombic Pyramid.-Prick off from Fig. 301 the points $P_{1}, P_{2}, H_{1}, H_{2}, G_{1}$ and G_{2}, and join these as in Fig. 310.

Axes.-The prismatic axes join the opposite :four-faced solid angles of the rhombic pyramid.

Symbols.-Every face of the pyramid cuts the three axes $P_{1} P_{2}, G_{1} G_{2}$, and $H_{1} H_{2}$ at the extremities of the parameters ; the symbol which expresses this relation is 111 ; Naumann's is P; Miller's 111 ; and Brooke and Levy's B.

Fig. 310.

Position of the Poles of the Rhombic Pyramid on the Sphere of Projection.-Four of the poles of this pyramid lie in the same parallel of north latitude, and four in the same parallel of south latitude.

Let λ be the polar distance of the pole c_{1} (Fig. 307) of the face $\mathbf{P}_{1} \mathbf{H}_{2} \mathbf{G}_{1}$ (Fig. 310) from $P_{1} ; \mu$ its longitude from G_{1} or the arc $G D_{1}$.

Then the eight poles of the rhombic pyramid will be"where the north and south circles of latitude, whose polar distances are equal to λ, cut the meridians of longitude μ, $180-\mu, 180+\mu$, and $360-\mu$.
as. If a and β be the angles given in the first and second columns (pages 417 and 418),

To describe a Net for the Rhombic Pyramid.
Draw two lines, CG and CP (Fig. 311); at right angles to each other; take CP

Fig. 311.

Fis. 312.
equal CP (Fig. 302), and CG and CH equal to CG and CH (Fig. 302). Join PH and PG.

Then (Fig. 312) take GH equal to GH (Fig. 302), and on GH, as a base, describe the triangle PGH,

Fig. 313. having its sides $P G$ and $P H$ equal to $P G$ and $P H$ (Fig. 311). Eight of these triangles, arranged as in Fig. 313, will give the required net.

Faces parallel to the Rhombic Prism whose symbol is 111 , with the following Angles for determining the position of their Poles, have been observed in nature.

Aeschynite					
Alstonite	$\hat{\lambda}=55^{\circ} 2 z^{\prime}$	$\mu=59^{\prime} 26^{\prime}$	Mascagnine	50	$0^{2} 34^{\prime}$
glesite	$64^{\circ} 27^{\prime}$	$\mu=51^{\circ} 49^{\prime}$	Mengite		39 $5^{\circ} 46^{\prime}$
Antimons	53' 20^{\prime}		Mesotype		
Antimon	$55^{\circ} 29^{\prime}$	$\mu=45^{\circ} 23^{\prime}$	Mispickel	5	
Aragoni	50^{4}		Niobite		0^{\prime}
Baryte			$\begin{aligned} & \text { Nit } \\ & \text { Oli } \end{aligned}$		
Bournonit	$\begin{aligned} & \lambda=52^{\circ} 40^{\prime} \\ & \lambda=55^{\circ} 43^{\prime} \end{aligned}$		Olivine Orpiment		
Brookite Caledoni	$55^{\circ} 43^{\prime}$	$\begin{aligned} & =49^{\circ} 55 \\ & =47^{\circ} 30 \end{aligned}$	Orpiment Philhpsite		
Celestine	64°	$\mu=52^{\circ}$	Polykrase		${ }^{\prime}$
Cerussite	$\lambda=54^{\circ} 14^{\prime}$	$\mu=58^{\circ} 37$	Polymirnite		53'
Childrenit	4805	$\mu=55^{\circ}$	Redruthite.	53	${ }^{8}$
rysob	${ }^{\circ}$		Ren	53	$1{ }^{\prime}$
Cordier	$\lambda=47^{\circ} 48$	$\mu=59^{\circ} 35$	Roselite		
tu	37° อ	51'			
Datholite	38 $3^{\circ} 51^{\prime}$		Scorodite Stephanite		
Diaspore Epsomite	57,	$\begin{aligned} & \mu=46^{\circ} 56^{\circ} \\ & \mu=47^{\circ} 10 \end{aligned}$	Stephanite . Sterabergite	$\begin{aligned} & 52^{\circ} 10^{\prime} \\ & 59^{\circ} \\ & \hline 0^{\prime} \end{aligned}$	45
Fayalite	$59^{\circ} 39^{\prime}$	$\mu=47^{\circ} 20$	Stilbite		
Fluellite	$72^{\circ} 0^{\prime}$	$=48^{\circ} 54^{\circ}$	Strontianit	$5 \pm^{\circ} 17$	
Gadolonit	$67^{\circ} 27^{\circ}$	$\mu=390$			
laserite	,		Sylvanite		$\begin{aligned} & 59 \\ & 24^{\prime} \end{aligned}$
Goslarite	$=39$ $=41^{\prime} 2^{\prime}$ $=53^{\prime}$	$\begin{aligned} & 0^{2}+1^{\prime} \\ & \hline \end{aligned}$	Sylvanite Tantalite		$\begin{aligned} & 24^{\prime} \\ & 46^{\prime} \end{aligned}$
Güthite Harnotome	$\begin{aligned} & 41^{\prime}-53^{\prime} \\ & 46^{\prime} \end{aligned}$	$\begin{aligned} & 47 \quad 26 \\ & 45^{\prime} \end{aligned}$	Thanardit	λ	= $64^{\circ} 41^{\circ}$
Herderite	$33^{41} 1^{\prime}$	$=57^{\circ} 57^{\prime}$	Thermonatrite	- $\lambda=72^{\prime} 56^{\prime}$	9^{\prime}
Ilvaite		55	Topaz		10^{\prime}
enite	30	$\mu=18^{\circ} 18^{\circ}$ μ	Wavel		
Leadhillite	=68 $8^{\circ} 30^{\prime}$				
	$45^{c} 23^{\prime}$		W		$50^{\prime} 53^{\prime}$

Inctination of the Taces of the Rhombic Pyramid.-If θ be the angle of inclination of two faces.over any of the edges HG (Fig. 310), ϕ over the edges PH, and ψ over the elges $P G$,

IRIS ${ }^{\theta}=$ LiLLIAD $^{2}-2 \cos ^{\phi}=\tan \tan ^{\beta} \cos \operatorname{cin}^{\lambda}{ }_{1} \sin _{2}^{\psi}=\frac{\tan \beta \cos \lambda}{\tan \alpha}$

Derived Rhombic Pyxamids.-From the rhombic pyramid just described, a series of rhombic pyramids may be derived, similar in position, but differing in magnitude from the fundamertal pyramid from which they are derived. These pyramids may conveniently be divided into three classes,

Dexived Rhombic Pyxamid of the First Class,-This pyramid is derived from the fundamental pyramid, by making the vertical axes CP_{1} and CP_{2} (Fig. 301) equal to m times the parameter CP (Fig. 302), where m may be any whole number, or fraction greater or less than unity.

Symbols.-The symbol for this pyramid is 11 m ; Naumann's $m \mathrm{P}$; Millerss $h h l$; and Brooke and Levj's $B^{\frac{1}{n+}}$

Inclination of Faces, Position of Poles, \& c.-If the symbols $\alpha, \beta, \lambda, \mu, \theta, \phi$, and ψ represent the same angles as in the case of the fundamental pyramid,

$$
\begin{aligned}
& u=\left(90^{\circ}-\alpha\right) \tan \lambda=m \tan \beta \operatorname{cosec} a \\
& \theta=2 \lambda \quad \cos _{2}^{\phi}=m \tan \beta \cos \lambda \quad \sin _{2}^{\psi}=m \frac{\tan \beta \cos \lambda}{\tan \alpha}
\end{aligned}
$$

The poles of this pyramid always lie in the two zones $D_{1} P_{1} D_{3}$ and $D_{2} P_{1} D_{4}$ (Fig. 307), being between the points P and C when n is luss than unity, and between \mathbf{C} and \mathbf{D} when m is greater than unity.

Faces parallel to the following Pyramids of the First Class have been observed in nature.
The form $11 \frac{1}{8}$; $\frac{1}{8}$ P Naumann; 118 Miller; B8 Brooke and Levy. Baryte . . $\lambda=1434^{\prime} \mu=5050^{\prime}$
The form $11 \frac{1}{6}$; $\frac{1}{6}$ P Naumann; 116 Miller ; B6 Brooke and Levy. Anglesite . . $\lambda=19^{22^{\prime}} \mu=5149^{\prime}$
The form $11 \frac{1}{3} ; \frac{1}{}$ P Naumann; 115 Miller; Bs Brooke and Levs. Barste . . $\lambda=2233^{\prime} \mu-50^{\circ} 50^{\prime} \mid$ Sulphur . . $\lambda=315^{\prime} \mu-5059^{\prime}$
The form $114 ; \ddagger$ P Naumann; 114 Miller ; B 4 Brooke and Levy.

Paryte	$\lambda=272 \%^{\prime} \mu=50^{\circ} 50^{\circ}$	Sylvinite . . $\quad \begin{array}{llllllll} & 15 & 4^{\prime} & \mu & 5.5 & 24^{\prime}\end{array}$
Celestiu	$\lambda=2731^{\circ} \mu-521^{\prime}$	Topaz . . $\lambda-26^{\prime} 6^{\prime} \mu-6.10{ }^{\prime}$
Stromeycrite	- $\lambda=2544^{\prime} \mu=59^{\circ} 48^{\prime \prime}$	

The form $11 \frac{1}{3}$; $\frac{1}{3} \mathrm{P}$ Naumann; 113 Miller; B^{3} Br ohe and Lery.

Antimonite	$=2553^{\prime}$	$\mu=4523^{\prime}$	Salphur	43	59
Baryte	- $\lambda-3443^{\prime}$	$\mu-50^{\circ} 50^{\prime}$	Sylvanite	- λ - 19 44'	$\mu=5524^{\prime}$
Ccestine	- $\lambda=3440^{\prime}$	$\mu-521^{\prime}{ }^{\prime}$	Thenardite	- λ - ${ }^{\text {a }}$, 5^{\prime}	$\mu-64{ }^{4} 1^{\prime}$
Cerussite .	- $\lambda=2.450^{\circ}$	μ js 3:	T pus	- λ-3 ${ }^{\circ}{ }^{\prime}$	$\mu=62^{\prime} 10^{\prime}$
harstenite	- $\lambda=2611^{\prime}$	$\mu-49^{\circ} 18^{\prime}$	W olfram	$\lambda-2430^{\circ}$	$\mu=5053$
Redruthite	- $\lambda=3244^{\prime}$	$\mu-5948$			

The form $11 \frac{1}{2} ; \frac{1}{2} \mathrm{P}$ Naumann; 112 Miller ; B^{2} Brooke and Levy.

Anglesite	16^{\prime}	5149	Redruthite	$\lambda-435 i^{\prime}$	$\mu=59^{\circ} 48^{\prime}$
Antimons	33^{51}	$\mu-60{ }^{\mu}$	Scorodite	$1{ }^{\prime}$	$\mu-2955^{\circ}$
Baryte	6^{\prime}	$\mu=50^{\circ} 50^{\circ}$	Stephanite	$32^{\circ} 46^{\prime}$	$\mu-5750^{\prime}$
Bournonite	$3{ }^{14}$	$\mu-4650^{\prime}$	Str ntianite	$\lambda=344^{\prime}$	$\mu \quad 58$
Brookite	$36{ }^{15^{\prime}}$	$\mu-4955^{\prime}$	Stromeserite	$\lambda=4357^{\circ}$	$\mu=59$
Cerussite	$3446^{\text {c }}$	$\mu-583{ }^{\prime}$	Sulphur	$\lambda=56{ }^{2} 6^{\prime}$	$\mu=5039$
Cordierite.	2353^{\prime}	$\mu=59^{\circ} 3{ }^{\prime}$	Sylvanite	$\lambda=28{ }^{1} 7^{\prime}$	$\mu-5524^{\circ}$
Claserite	$36{ }^{54}$	$\mu=60^{\circ} 12$	Top 2	$\lambda=452^{2}$	$62^{3} 10^{\circ}$
Kar	$36^{\circ} 23^{\prime}$	$\mu=48^{\circ} 18^{\prime}$	Withe	$\lambda-3{ }^{\circ} 56^{\prime}$	5915°
ead	. $\lambda=511^{6}$	$\mu=6010{ }^{\circ}$			

The form $11 \frac{2}{3}$; 条P Naumann; 223 Miller; $B^{\frac{3}{2}}$ Brooke and Levy.
Caledonite $\quad \lambda=54^{\circ} 10^{\circ} \mu=4730^{\circ} \quad$ Childrenite . $\lambda=3725^{\circ} \mu=5537^{\prime}$

The form $11 \frac{4}{3} ; \frac{4}{3}$ P Naumann; 443 Miller ; $B^{\frac{3}{4}}$ Brooke and Levy. Prehnite . . $\lambda=68^{\circ} 15^{\prime} \mu=49^{\circ} 58^{\prime}$
The form 11_{i}^{s}; $\frac{3}{2} P$ Naumann; 332 Miller; B ${ }^{\frac{2}{3}}$ Brooke and Levy. Strontianite - $\lambda=64^{\circ} 24^{\prime} \mu=58^{\circ} 40^{\prime}$ | Sylvanite . . $\lambda=58^{\circ} 13^{\prime} \mu=.55^{\circ} 24^{\prime}$
The form 112 ; 2 P Naumann; 221 Miller; $B^{\frac{1}{2}}$ Brooke and Levy.

Alstonite	71°	$\mu=59^{\circ} 26^{\circ}$	Stephanite	$=68^{\circ}$	$\mu=57^{\circ} 50^{\circ}$
Brookite	$\lambda=71^{\circ} 11^{\circ}$	$\mu=49^{\circ} 55^{\circ}$	Sternbergite	- $\lambda=73^{\circ} 17^{\prime}$	$\mu=59^{\circ} 45^{\circ}$
Datholite .	$\lambda=58^{\circ} 10^{\prime}$	$\mu=51^{\circ} 38^{\prime}$	Strontianite	$\lambda=70^{\circ} 14^{\prime}$	$\mu=58^{\circ} 40^{\circ}$
Manganite	$\lambda=30^{\circ} 37^{\prime}$	$\mu=49^{\circ} 50^{\circ}$			

The form 113 ; 3 P Naumann; 331 Miller; $B^{\frac{1}{3}}$ Brooke and Levy. Herderite . . $\lambda=67^{\circ} 25^{\circ} \mu=57^{\circ} 57^{\prime} \mid$ Strontianite $. ~ \lambda=76^{\circ} 31^{\prime} \mu=58^{\circ} 40^{\circ}$

Da	$\lambda=72^{\circ} 45^{\circ} \mu$	Pr
He	$\lambda=72^{\circ} 39{ }^{\prime} \mu=57^{\circ} 57^{\prime}$	Strontiani

The form 118 ; 8 P Naumann; 881 Miller; $B^{\frac{1}{8}}$ Brooke and Levy. Strontianite - $\lambda=84^{\circ} 52^{\prime} \mu=58^{\circ} 40^{\circ}$
Derived Rhombic Pyramid of the Second Class,—This pyramid isfderived from the fundamental pyramid by making the vertical axes CP_{1} and CP_{2} (Fig. 301) equal to m times the parameter CP (Fig. 302) ; where m may be any whole number or fraction, equal to, greater, or less than unity; and the lesser horizontal axes CH_{1} and CH_{2} (Fig. 301) equal to n times the parameter CH (Fig. 302), where n may be any whole number or fraction greater than unity.

Symbols.-The symbol for these pyramids is $1 n m$; Naumann's $m \widetilde{\mathrm{P}} n$; Miller's $h k l$; Brooke and Levy's $\mathrm{B}^{1} \mathrm{~B}^{\frac{n+1}{n-1}} \mathrm{G}^{m(n+1)}{ }^{2 n}$.

Inclination of Faces, Position of Poles, \&c.-If the symbols $\alpha, \beta, \lambda, \mu, \theta, \varphi$, and ψ represent the same angles as in the case of the fundamental pyramid,

$$
\cot \mu=n \tan \alpha \quad \tan \lambda=m \tan \beta \sec \mu \quad \theta=2 \lambda
$$

$\cos \frac{\phi}{2}=m \tan \beta \cos \lambda \quad \sin \frac{\psi}{2}=\frac{m}{n} \frac{\tan \beta \cos \lambda}{\tan \alpha}$.
Four of the poles $\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$, and E_{4} (Fig. 307) lie in the same circle of north latitude, and the other four in the same circle of south latitude, each within one of the spherical triangles GPD.

Faces parallel to the following Pyramids of the Second Class have been observed in nature.
The form $1 \frac{8}{7} 2 ; 2 \breve{\mathbf{P}}$ 㝵 Naumann; 874 Miller; $B^{1} B^{15} G^{\frac{15}{8}}$. Brooke and Levy. Brookite . . $\lambda=69^{\circ} 51^{\prime} \mu=46^{\circ} 7^{\prime}$
The form $1 \frac{4}{3} 2 ; 2 \widetilde{\mathbf{P}}_{\frac{4}{3}}$ Naumann; 432 Miller; $\mathrm{B}^{1} \mathrm{~B}^{7} \mathrm{G}^{\frac{7}{4}}$ Brooke and Levr. Brookite . . $\lambda=68^{\circ} 26^{\prime} \mu=41^{\circ} 42^{\prime}$
The form $1 \frac{3}{2} \frac{3}{2}$; $\frac{3}{2} \breve{\mathrm{P}} \frac{5}{2}$ Naumann; 322 Miller; $\mathrm{B}^{1} \mathrm{~B}^{5} \mathrm{G}^{\frac{5}{4}}$ Brooke and Levy.
 Olivine - - $\lambda=65^{\circ} 12^{\prime} \mu=35^{\circ} 35^{\prime}$
The form $1 \frac{9}{2} 3 ; 3 \overline{\mathbf{P}} \frac{3}{2}$ Naumann; 321 Miller; $\mathbf{B}^{1} \mathbf{B}^{5} G^{\frac{5}{2}}$ Brooke and Levy. Datholite . $\lambda=63^{\circ} 0^{\prime} \mu=40^{\circ} 6^{\prime}$
 Baryte - $\lambda=37^{\circ} 36^{\prime} \mu=31^{\circ} 33^{\prime}$ j Jeadhillite $\quad \lambda=68^{\circ} 51^{\prime} \mu=41^{\circ} 5^{\prime}$

The form $12 \frac{2}{3} ;{ }_{3}^{\frac{0}{3}} \breve{\mathrm{P}} 2$ Naumann; 213 Miller; $\mathrm{B}^{1} \mathrm{~B}^{3} \mathrm{G}^{\frac{1}{2}}$ Brooke and Lery. Antimonite $\quad: \lambda=3=20^{70^{2}} 21^{\prime} \mu=\left.\left.26^{\prime} 52^{\prime}\right|^{\prime}\right|^{\text {Topaz }} \quad . \quad \lambda=41^{\circ} 4^{\prime} \mu=43^{\circ} 26^{\circ}$
The form 121 ; $\breve{\mathbf{P}}_{2}$ Naumann; 212 Miller; $\mathrm{B}^{1} \mathrm{~B}^{3} \mathrm{G}^{\frac{3}{4}}$ Brooke and Levy.

		-			
Aragonite	${ }^{\prime}$	$=38^{\circ} 45^{\prime}$	Chrysoberyl	$46^{\circ} 38^{\prime}$	
Bar	$57{ }^{6}$	$31^{\circ} 33^{\prime}$			
Bro	$47{ }^{41}$	$\mu=59^{\prime} 1{ }^{\prime}$	Le	'	

The form $12 \frac{8}{5}$; $\frac{5}{5} \breve{\mathrm{P}} 2$ Naumann; 635 Miller; $\mathrm{B}^{1} \mathrm{~B}^{3} \mathrm{G}$ 옹 Brooke and Levy. Manganite $\quad \lambda=37^{\circ} 14^{\prime} \mu=30^{\circ} 38^{\circ}$
The form $12 \frac{4}{3}$; ${ }_{3}^{3} \breve{P} 2$ Naumann; 423 Miller ; $B^{1} B^{3} G^{1}$ Brooke and Levy. Datholite. . $\lambda=38^{\circ} 15^{\prime} \mu=32^{\circ} 1 i^{\prime}$
The form $122 ; 2$ P 2 Naumann; 211 Miller; $B^{1} B^{3} G^{\frac{3}{2}}$ Brooke and Levy.

Anglesi	λ	$\mu=32^{\circ}$	Manganite	$\lambda=51^{\circ} 42^{\prime}$	$\mu=30^{\circ} 38^{\prime}$
Antimonite	$\lambda=66^{3} 24^{\prime}$	$\mu=26^{\circ} 52^{\prime}$	Orpiment.	$\lambda=59^{\circ} 21^{\prime}$	$\mu=39{ }^{\circ} 40^{\prime}$
Aragonite .	$\lambda=61^{\circ} 30^{\prime}$	$\mu=38^{\circ} 45^{\circ}$	Smithsonite	4844°	$\mu=32^{\text {a }} 3{ }^{\prime}$
Brookite	$\lambda=65^{\circ} 32^{\prime}$	$\mu=59^{\circ} 17^{\prime}$	Sternbergite	$\lambda=653^{38}$	$\mu=40^{\circ} 37^{\prime}$
Cerussite	$\lambda=61{ }^{52^{\prime}}$	$\mu=50^{\circ} 40^{\circ}$	Sylvanite	$\lambda=56^{\circ} 28^{\prime \prime}$	$\mu=355{ }^{\prime}$
Chrysoberyl	$\lambda=59^{\circ} 26^{\prime}$	$\mu=56^{\circ} 47^{\prime}$	Topaz	$\lambda=69^{\circ} 5^{\prime}$	$\mu=43^{3} 26^{\prime}$
Datholite	$\lambda=4947^{\prime}$	$\mu=32^{\circ} 17^{\prime}$	Valentinite	$\lambda=77^{\circ} 38^{\prime}$	$\mu=514^{\circ}$
Epistilbite	$\lambda=42^{\circ} 21^{\prime}$	$\mu=50^{\circ} 29^{\prime}$	Wavellite .	$\lambda=46^{\prime} 33^{\prime}$	$\mu=444^{\prime}$
Epsomite .	$\lambda=51^{\circ} 59^{\prime}$	$\mu=26^{\circ} 49^{\prime}$	Wolfram .	$\lambda=63^{\circ} 49^{\prime}$	35^{\prime}
Goslarite	5	2			

The form 124 ; $4 \breve{\mathrm{P}} 2$ Naumann; 421 Miller; $\mathrm{B}^{1} \mathrm{~B}^{3} \mathrm{G}^{3}$ or E_{3} Brooke and Levy. Datholite - . $\lambda=67^{\circ} 5^{\prime} \mu=32^{\circ} 17^{\prime}$
The form $1 \frac{5}{2} \frac{5}{2}$; $\frac{5}{2} \breve{\mathrm{P}} \frac{8}{8}$ Naumann ; 522 Miller ; $\mathrm{B}^{1} \mathrm{~B}^{7} \mathrm{G}^{7}$ Brooke and Levs. Göthite - $\quad \lambda=58^{\circ} 52^{\prime} \mu=23^{\circ} 32^{\prime}$
 Levy.

$$
\text { Brookite - . } \lambda=38^{\circ} 35^{\prime} \mu=22^{\circ} 59^{\circ}
$$

The form $13 \frac{3}{8}$; 音 P 3 Naumann; 318 Miller; $B^{1} B^{2} G^{\frac{2}{2}}$ Brooke and Levs. Sylvanite . . $\lambda=1427^{\prime} \mu=25^{\circ} 47^{\prime}$
 Celestine . . $\lambda=399^{36} ; \mu=23^{\circ} 7^{\prime \prime} \mid$ Topaz . . $\lambda=33^{\circ} 57^{\prime} \mu=3216^{\prime}$ Sulphur - $\lambda=50^{\circ} 54^{\prime} \mu=22^{\circ} 22^{\prime}$
 Bournonite . . $\lambda=35^{\circ} 31^{\prime} \mu=1934^{\prime} \mid$ Sylvanite . . $\lambda=26^{\circ} 59^{\prime} \mu=2547^{\prime}$
The form $131 ; \breve{\mathrm{P}} 3$ Naumann; 313 Miller; $\mathrm{Br}^{2} \mathrm{G}^{\frac{2}{3}}$ Brooke and Levy. Antimonsilber - $\lambda=37^{\circ} 47^{\prime} \mu=3 n^{\circ} \boldsymbol{\sigma}^{\prime} \mid$ Sulphur . . $\lambda=64^{\circ} \sigma^{\circ} \mu=222 y^{\prime}$ Celestine - . $\lambda=5422^{\prime} \mu=23 \quad$ r1
The form $13 \frac{3}{2}$; ${ }^{\mathbf{3}} \mathbf{P} 3$ Naumann; 312 Miller; $\mathrm{B}^{1} \mathrm{~B}^{2} \mathrm{G}^{1}$ Brooke and Levy.

The form 133 ; $3 \breve{\mathbf{P}} 3$ Naumann; 311 Miller; $\mathrm{B}^{1} \mathrm{~B}^{2} \mathrm{G}^{2}$ or E_{2} Brooke and Levy.

The form $1{ }_{j}^{1 \rho} 5 ; 5 \longdiv { \mathrm { P } } { } _ { 3 } ^ { 1 \rho }$ Naumann; 10, 3, 2 Miller; $\mathrm{B}^{1} \mathrm{~B}^{4} G^{13}$ Brooke axid Levy.

Brookite - - $\lambda=72^{\circ} 43^{\prime} \mu=19^{\circ} 33^{\prime}$ IRIS - LILLIAD - Université Lille 1

The form $1 \frac{7}{2} \frac{7}{2} ; \frac{7}{2} 队 \frac{7}{2}$ Naumann; 722 Miller; $B^{1} B^{\frac{9}{5}} G^{\frac{9}{4}}$ Brooke and Levy. Brookite - . $\lambda=74^{\circ} 1^{\prime} \mu=18^{\circ} 45^{\prime}$
The form $141 ; \breve{\mathrm{P}} 4$ Naumann; 414 Miller ; $B^{1} B^{\frac{5}{3}} G^{\frac{5}{8}}$ Brooke and Levy. Celestine - $\lambda=58^{53^{\circ}} 25^{\prime}, \mu=17^{\circ} 48^{\prime} \mid$ Leadhilite $\quad \lambda=54^{\circ} 2^{\prime} \mu=23^{\circ} 33^{\prime \prime}$ Harmotome : $\lambda=35^{\circ} 39^{\prime} \mu=14^{\circ} 27^{\prime}$
The form $14 \frac{4}{3}$; $\frac{4}{3} \breve{\mathrm{P}} 4$ Naumann ; 413 Miller; $\mathrm{B}^{1} \mathrm{~B}^{\frac{8}{3}} \mathrm{G}^{\frac{6}{6}}$ Brooke and Levy. Celestine . . $\lambda=69^{\circ} 23^{\prime} \mu=17^{\circ} 48^{\prime}$ | 'Topaz . . $\lambda=54^{\circ} 27^{\prime} \mu=25^{\circ} 20^{\prime}$
The form 142 ; $2 \breve{\mathrm{P}} 4$ Naumann; 412 Miller; $\mathrm{B}^{1} \mathrm{~B}^{\frac{5}{3}} \mathrm{G}^{\frac{5}{4}}$ Brooke and Levy. Anglesite . . $\lambda=73^{\circ} 7^{\prime} \mu=17^{\circ} 33^{\prime}$
The form $144 ; 4 \breve{\mathrm{P}} 4$ Naumann; 411 Miller ; $\mathrm{B}^{1} \mathrm{~B}^{5} \mathrm{G}^{\frac{5}{2}}$ Brooke and Levy. Datholite . - $\lambda=64^{\circ} 33^{\prime} \mu=17^{\circ} 32^{\prime} \mid$ Smithsonite . $\lambda=63^{\circ} 45^{\prime} \mu=17^{\circ} 43^{\prime}$
The form $1 \frac{9}{2} \frac{9}{2}$; $\frac{3}{2} \breve{\mathrm{P}} \frac{9}{2}$ Naumann; 922 Miller ; $\mathrm{B}^{1} \mathrm{~B}^{\frac{11}{7}} \mathrm{G}^{\frac{4}{4}}$ Brooke and Levy. Diaspore - . $\lambda=69^{\circ} 58^{\prime} \mu=13^{\circ} 22^{\prime}$
The form $155 ; 5 \breve{\mathrm{P}} 5$ Naumann; 511 Miller; $\mathrm{B}^{1} \mathrm{~B}^{\frac{3}{2}} \mathrm{G}^{3}$ Brooke and Levy. Brookite . . $\lambda=78^{\circ} 22^{\prime} \mu=13^{\circ} 22^{\prime} \mid$ Datholite . . $\lambda=68^{\circ} 48^{\prime} \mu=14^{\circ} 10^{\prime}$
The form $162 ; 2 \breve{\mathbf{P}} 6$ Naumann ; 613 Miller; $\mathrm{B}^{1} \mathrm{~B}^{\frac{7}{5}} G^{\frac{7}{6}}$ Brooke and Levy.
Niobite - $\lambda=60^{\circ} 49^{\circ} \mu=11^{\circ} 2 \boldsymbol{2}$
Derived Rhombic Pyramid of.the Third Class.-This pyramid is derived from the fundamental pyramid, by making the vertical axes CP_{1} and CP_{2} (Fig. 301) cqual to m times the parameter CP (Fig. 302), where m may be any whole number or fraction, equal to, greater, or less than unity; and the greater horizontal axes $\mathrm{CG}_{1}, \mathrm{CG}_{2}$ (Fig. 301) equal to n times the parameter CH (Fig. 302) where n may be any whole number or fraction greater than unity.

Symbols.-The symbol for these pyramids is $n 1 m$; Naumann's, $m \overline{\mathrm{P}} n$; Miller's, Ik l ; Brooke and Levy's, $\mathrm{B}^{1} \mathrm{~B}^{\frac{n+1}{n-1}} \mathrm{H}^{\frac{m(n+1)}{2 n}}$.

Inclination of Faces, position of Poles, \&c.-If the symbols $\alpha, \beta, \lambda, \mu, \theta, \phi$, and ψ r present the same angles as in the case of the fundamental pyramid,

$$
\tan \mu=n \cot \alpha \quad \tan \lambda=\frac{m}{n} \tan \beta \text { sec } \mu
$$

$$
\theta=2 \lambda \quad \cos \frac{\phi}{2}=\frac{m}{n} \tan \beta \cos \lambda \quad \sin _{2}^{\psi}=m \frac{\tan \beta \cos \lambda}{\tan \alpha}
$$

Four of the poles f_{1}, f_{2}, f_{3}, and f_{4} (Fig. 307), lie in the same circle of north latitude, and the other four in the same circle of south latitude, whose polar distances are both equal to λ, each within one of the spherical triangles DPH.
Faces parallul to the following Pyramids of the Third Class have been observed in nature.
The form $\frac{4}{3} 14 ; 4 \mathrm{P}_{3}^{4}$ Naumann; 341 Miller ; $\mathrm{B}^{1} \mathrm{~B}^{7} \mathrm{H}^{\frac{7}{2}}$ Brooke and Levy. Smithsonite $\quad \lambda=70^{\circ} 42^{\prime} \mu=59^{\prime} 35^{\prime}$
The form $\frac{3}{2} 1 \frac{1}{2} ; \frac{1}{2} \overline{\mathrm{P}}_{\frac{3}{2}}$ Naumann; 236 Miller ; $\mathrm{B}^{1} \mathrm{~B}^{5} \mathrm{H}^{\frac{5}{12}}$ Brooke and Levy. Brookite - . $\lambda=32^{\circ} 46^{\prime} \mu=60^{\circ} 42^{\prime}$
The form $\frac{3}{2} 1 \frac{3}{4} ; \frac{3}{4} \overline{\mathrm{P}}_{\frac{3}{2}}$ Naumanan; 234 Miller; $\mathrm{B}^{1} \mathrm{~B}^{5}$ H H $_{8}^{8}$ Brooke and Levy. Anglesite . . $\lambda=54^{\prime} 18^{\prime} \mu=62^{2} 20^{\prime}$
The form $\frac{3}{2} 1 \frac{3}{2} ;{ }^{\frac{3}{2}} \overline{\mathrm{P}} \frac{5}{2}$ Naumann; 232 Miller ; $\mathrm{B}^{1} \mathrm{~B}^{5} \mathrm{H}^{\frac{5}{4}}$ Brooke and Levy.

The form $\frac{5}{4} 1 \frac{6}{2} ; \frac{5}{2} \overline{\mathrm{P}} \frac{5}{4}$ Naumann; 452 Miller; $\mathrm{B}^{1} \mathrm{~B}^{9} \mathrm{H}^{\frac{9}{4}}$ Brooke and Levy. Haidingerite $\cdot \lambda=60^{\circ} 43^{\prime} \quad m=56^{\circ} 7^{\prime}$
The form $211 ; \overline{\mathrm{P}} 2$ Naumann; 122 Miller ; $\mathrm{B}^{1} \mathrm{~B}^{2} \mathrm{H}^{\frac{3}{4}}$ Brooke and Levy.

The form 212 ; 2 P 2 Naumann; 121 Miller; $\mathrm{B}^{1} \mathrm{~B} \mathrm{H}^{\frac{3}{2}}$ Brooke and Levr.

Bournonite.	- $\lambda=644^{0} 0^{\prime}$		Epsomite	= 52	$\mu=63^{\circ} 40^{\circ}$
	$74^{\circ} 18^{\prime}$	$73{ }^{2}$	Inv aite	列	$\mu=71^{\circ}{ }^{6}$
Chrys	- $\lambda=6828^{\circ}$	$76^{3} 46^{\prime \prime}$	Smithso	$2{ }^{5} 7$	$\mu=68^{\circ} 38^{\prime}$
Datho	53 39'	6824	Tant		

The form 214 ; $4 \widetilde{\mathrm{P}} 2$ Naumann; 241 Miller; $\mathrm{B}^{1} \mathrm{~B}^{3} \mathrm{H}$, or A_{3}, Brooke and Levy. Haidingerite $\quad \lambda=68^{\circ} 47^{\prime} \mu=67^{\circ} 14^{\prime}$
The form $311 ; \overline{\mathbf{P}} 3$ Naumann; 133 Miller; $\mathrm{B}^{1} \mathrm{~B}^{2} \mathrm{H}^{\frac{2}{3}}$ Brooke and Levy.
Manganite $\quad . \lambda=3851^{\prime} \mu=74^{\circ} 17^{\prime}$
The form $31 \frac{3}{2}$; $\frac{3}{2} \overline{\mathrm{P}} 3$ Naumann; 132 Miller; $\mathrm{B}^{1} \mathrm{~B}^{2} \mathrm{HI}^{1}$ Brooke and Levy. Baryte . . $\lambda=6814^{\prime}, \mu=7448^{\prime} \mid$ Mispickel . . $\lambda=69^{\circ} 42^{\prime}, \mu=7718^{\prime}$ Datholite • $\lambda=4425^{\prime} \mu=7513^{\prime} \mid$ Sylvanite : $\lambda=9156^{\prime} \mu=773^{\prime \prime}$
The form $313 ; 3 \overline{\mathrm{P}} 3$ Naumann; 131 Miller; $\mathrm{B}^{1} \mathrm{~B}^{2} \mathrm{H}$;, or \mathbf{A}_{2}, Brooke and Levy. Güthite - $\lambda=6416^{\prime} \mu=72 \quad 59^{\prime}$

The form $\frac{3}{2} 13$; $3 \mathrm{P}_{\frac{3}{2}}$ Naumann; 231 Miller; $\mathrm{B}^{1} \mathrm{~B}^{5} \mathrm{H}^{\frac{5}{2}}$ Brooke and Levy. Smithsonite - $\lambda=6424^{\prime} \mu=6227^{\prime}$
The form $411 ; \overline{\mathrm{P}} 4$ Naumann; 144 Miller; $\mathrm{B}^{1} \mathrm{~B}^{\frac{8}{8}} \mathrm{H}^{\frac{5}{8}}$ Brooke and Levy. Olivine . $\lambda=5222^{\prime} \mu=76^{\circ} 54^{\prime}$

Rhombic Sphenoid.-The Rhombic Sphenoid, or, Irregular Tetrahedron, is a hemihedral form, derived from the double four-faced rhombic pyramid, by the development of half its faces. It is bounded by four equal and similar triangular faces, each face, such as $B_{1} B_{8} B_{6}$

Fig. 314. (Fig. 314), or $\mathrm{B}_{4} \mathrm{~B}_{2}$ B_{5} (Fig. 315), b ing a scalene triangle. This solid has four three-faced solid angles, $B_{1}, B_{3}, B_{8}, B_{6}$ (Fig. 314), and $\mathrm{B}_{2} \mathrm{~B}_{4}$, $\mathrm{B}_{3}, \mathrm{~B}_{7}$ (Fig. 315), each equal to one another; the six edges are equal to one another in pairs.

A sph nid may be derived from every one of the pyramids previously de ribed.

Fig. 315.

To draw the Rhombic Sphenoid.-Fig. 301 b ing drawn with axes $\mathrm{P}_{1} \mathrm{P}_{3} \mathrm{H}_{\mathrm{H}_{2}}$, and

pricked off and joined, as in Fig. 314, will give the positive sphenoid, and the points

Fig. 316. $\mathrm{B}_{2}, \mathrm{~B}_{4}, \mathrm{~B}_{5}$, and B_{7}, joined, as in Fig. 315, will givc the negative sphenoid.

To Describe a Net for the Rhombic Sphenoid.Let PGH (Fig. 312) be the face of the pyramid from which the sphenoid is derived; a triangle, each of whose sides is twice the corresponding side in PGH, will be a face of the derived sphenoid; and four such faces, arranged as in Fig. 316, will form the required net.
Principal Combinations of the Prismatic System.-Fig. 317. Combination of a double four-faced rhombic pyramid with the faces of the right rectangular prism. a, faces of the pyramad; b, faces of the basal pinacoids $\infty \infty 1$; 0 P Naumann; 001 Miller; P Brooke and Levy; replacing the solid angles P_{1} and P_{2} (Fig. 310) of the pyramid by planes.
c, faces of the brachy-pinacoids $1 \infty \infty ; \infty \breve{\mathbf{P}} \infty$ Naumann; 100 Miller; G Brooke and Lery ; replacing the solid angles G_{1} and G_{2} (Fig. 310) of the pyramid.

Fig. 317.

Fig. 318.
d, faces of the macro-pinacoids $\infty 1 \infty ; \infty \overline{\mathrm{P}} \infty$ Naumann; 010 Miller; 且 Brooke and Levy ; replacing the solid angles H_{1} and H_{2} (Fig. 310) of the pyramid.

Fig. 318. Combination of the double four-faced rhombic pyramid with the faces of the right rhombic prism of the first order.

If $a, a, \& c$., represent the faces of the rhombic pyramid whose symbol is 111 ; P Naumann; 111 Miller; B Brooke and Levy; or of the pyramid $11 m, m$ P Naumann; $h h k$ Miller ; $\mathrm{B}^{\frac{1}{m}}$ Brooke and Levy ; b, b, \&c., will represent the faces of the prism 11∞; ∞ P Naumann; 110 Miller; M Brooke and Levy; replacing the edges HG (Fig. 310) of the pyramid.

If a, a, \&c., represent the faces of the pyramid $n 1 m ; m \overline{\mathrm{P}} n$ Naumann ; b, b, \&c., will represent the faces of the prism $n 1 \infty ; \infty \overline{\mathbf{P}} n$ Naumann.

If $a, a, \& c$. , represent the faces of the pyramid $1 n m ; m \stackrel{\mathrm{P}}{ } n$ Naumann ; $b, b, \& c$., will represent the faces of the prism $1 n \infty ; \infty \breve{P}_{n 3}$ Naumann.

Fig. 319. Combination of the pyramid with a right rhombic prism of the second order.

If a, a, \&c., represent faces of the prramid $11 m ; m \mathrm{P}$ Naumann; b, b, \&c., will
 (Fig. 310) of the pyramid.

In a similar manner the faces of the prism $\infty m 1 ; m \overline{\mathrm{P}} \infty$ Naumann; will replace the edges PH (Fig. 310) of the pyramid.

Fig. 320. Combination of the pyramid with prisms of the first and second orders.

Fig. 319.

Fig. 320.
b, faces of the rbombic prism of the second order $1 \infty m ; m \overline{\mathrm{P}} \infty$ Naumann; replacing the solid angles $\mathrm{P}_{1} \mathrm{P}_{2}$ (Fig. 310) of the pyramid a, a, \&c., whose symbol is $11 m^{\prime} ; m^{\prime} \mathrm{P}$ Naumann-where m^{\prime} is less than n.
c, faces of the rhombic prism of the first order $1 n \infty ; \infty \breve{\mathbf{P}}_{m}$ Naumann; replacing the solid angles $\mathrm{G}_{1}, \mathrm{G}_{2}$ (Fig. 310), of the pyramid a, a, \&c., whose symbol is $1 n^{\prime} m$; ${ }^{\prime \prime} \mathrm{P} n^{\prime}$, where n ' is less than n.
d, faces of the rhombic prism of the first order $n \cdot 1 \infty ; \infty \overline{\mathrm{P}} n$ Naumann; replacing the solid angles $\mathrm{H}_{1} \mathrm{H}_{2}$ (Fig. 310) of the pyramid a, a, \&c., whose symbol is $n^{\prime} \mathbf{l m}$; m $\mathrm{P} n^{\prime}$ Naumann, where n^{\prime} is greater than n.

Fig. 321. Combination of the pyramid with the prisms of the second and third orders.
b, faces of the prism of the third order $\infty 1 m ; m \overline{\mathrm{P}} \infty$ Naumann; replacing the solid angles P_{1}, P_{2} (Fig. 310) of the pyramid a, a, \&c., whose symbol is $1 n m^{\prime}$, or $m^{\prime} \overline{\mathrm{P}} n$ Naumann: or $n \mathbf{1} n^{\prime} ; m^{\prime} \overline{\mathrm{P}} n$ Naumann, where m^{\prime} is greater than m.

Fig. 321.

Fig. 322.
c, faces of the prism of the second order $1 \infty m ; m \widetilde{\mathrm{P}} \infty$ Naumann; replacing the solid angles $G_{1} G_{2}$ (Fig. 310) of the preceding prramids, where m^{\prime} is less than m.
d, faces of the prism of the third order $\infty 1 m ; m \overline{\mathrm{P}} \propto$ Naumann; replacing the solid angles $\mathrm{H}_{1} \mathrm{H}_{\mathbf{2}}$ (Fig. 310) of the same pyramids, where n^{\prime} is less than m.

Fig. 322. Combinations of rhombic pyramids.

b, faces of the pyramid $1 n m^{\prime} ; m^{\prime} \breve{\mathrm{P}} n$ Naumann; repiacing the solid angles P_{1} and P_{2} of the pyramid a, a, \&c., with a four-faced solid angle, where m^{\prime} is less than m.
c, faces of the pyramid $1 n m^{\prime \prime} ; m^{\prime \prime} \breve{\mathrm{P}} n$ Naumann; beveling the edges HG (Fig. 310) of the pyramid a, a, \&c, where $m^{\prime \prime}$ is greater than m.

The same figure shows the combinations of the pyramid $n 1 m ; m \overline{\mathrm{P}} n$ Naumann; with the pyramids $n 1 m^{\prime} ; m^{\prime} \overline{\mathbf{P}} n$ Naumann, and $n 1 m^{\prime \prime} ; m^{\prime \prime} \overline{\mathbf{P}} n$ Naumann under similar conditions.

Figs. 323 and 324. Combinations of the prism of the frst order with other forms.

Fig. 3 23.

Fig. 324.

Fig. 323. a, faces of the prisms $1 \downarrow \infty ; \infty P$ Naumann.
b, faces of the basal pinacoid $\infty \infty 1$; 0 P Naumann.
c, faces of the prism $1 \infty 1 ; \widetilde{\mathrm{P}} \infty$ Naumann.
d, faces of the prism $n \mathrm{I} \infty ; \infty \overline{\mathrm{P}}_{n}$ Naumann.
Fig. 324. a, faces of the prism $n 1 \infty ; \infty \overline{\mathrm{P}} n$ Naumann.
b, faces of the basal pinacoid, $\infty \infty 1 ; 0 \mathrm{P}$ Naumann.
c, faces of the brachy pinacoid, $1 \infty \infty ; \infty \breve{\mathrm{P}} \infty$ Naumann.
d, faces of the pyramid 111 ; P Naumann.

TIFTH SYSTCM-THE OBLIQLF.

This system is called the oblique, because its forms may be derived from the oblique prism, or oblique octahedron on a rhombic base. It has also been called the monoclinohedric, hemiprismatic, hemiorthotype, clinorhombic, hesnihedric-rhombic, and two and orimembered system.

The forms of this system are the oblique prism on a rectangular base; two orders of prisms on rhombig, hases, a series of right prisms on oblique rhombic bases, and the inclinerd or oblique double four-ficea Ayraniator octatedion on a rhombic base.

Alphabetical list of minerals belonging to the $O b$ ique Systen, with the angular eleme ts, fro n which their typical forms and axes may be derived. Blanks are left in the cases where the angular elements have not been determined.

The Oblique Rectangular Prism. -The oblique r ctangular prism, or the oblique prism on a rectangular base, is a solid bounded by six faces; two of these faces (Fig. 325), $B_{1} B_{9} B_{3} B_{4}$ and $B_{5} B_{8} B_{7} B_{89}$ are equal and similar rectangular parallelograms; two other faces, $B_{1} B_{2} B_{6} B_{5}$ and $B_{4} B_{3} B_{7} B_{9}$ are also equal and similar rectangular parallelograms, differing in magnitude from the former pair; and the remaining sides, $B_{1} B_{4} B_{8} B_{3}$ and $B \quad B_{2} B_{6} B_{7}$, are equal and similar ${ }^{\circ}$ ' lique parallelograms.

This form is now generally r garded as a combination of three

Fg. 32^{2}.

itself in combination with other forms without the other two. $B_{1} B_{2} B_{3} B_{4}$ and $\mathrm{B}_{5} \mathrm{~B}_{6} \mathrm{~B}_{7} \mathrm{~B}_{8}$ are then called the basal pinacoids, $\mathrm{B}_{1} \mathrm{~B}_{4} \mathrm{~B}_{8} \mathrm{~B}_{5}$ and $\mathrm{B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{7} \mathrm{~B}_{6}$ the clino-pinacoids, and $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{6} \mathrm{~B}_{5}$ and $\mathrm{B}_{4} \mathrm{~B}_{3} \mathrm{~B}_{7} \mathrm{~B}_{8}$ the ortho-pinacoids.

Axes of the Oblique Prism and Oblique System.-Bisect the edges $\mathrm{B}_{1} \mathrm{~B}_{5}, \mathrm{~B}_{2} \mathrm{~B}_{6}$, \&e., Fig. 325, by the points $\mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{M}_{3}$, and M_{4}; the edges $\mathrm{B}_{1} \mathrm{~B}_{2}, \mathrm{~B}_{4} \mathrm{~B}_{3}$, \&c., by the points E_{1}, E_{2}, E_{3}, and E_{4}; and the edges $B_{1} B_{4}, B_{2} B_{3}$, \&c., by the points A_{1}, A_{2}, A_{3}, and A_{4}.

Join $M_{1} M_{2} M_{3}$ and $M_{4} ; E_{1} E_{2}$ and $A_{1} A_{2}$ cutting in $P_{1} ;$ and $E_{3} E_{4}$ and $A_{3} A_{4}$ cutting in P_{2}.

Bisect $M_{1} M_{2}$ and $M_{4} M_{3}$ in G_{1} and G_{2}; and also $M_{1} M_{4}$ and $M_{2} M_{3}$ in H_{1} and H_{2}.
Join $P_{1} P_{2}, H_{1} H_{2}$, and $G_{1} G_{2}$, cutting each other in C.
Then $\mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{H}_{1} \mathrm{H}_{2}$, and $\mathrm{G}_{1} \mathrm{G}_{2}$, are the three axes of the prism, and also of the oblique system.
$\mathrm{P}_{1} \mathrm{P}_{2}$ is called the chief or principal axis; $\mathrm{H}_{1} \mathrm{H}_{2}$ and $\mathrm{G}_{1} \mathrm{G}_{2}$ the secondary axes. $\mathrm{H}_{1} \mathrm{H}_{2}$ is the ortho-diagonal, and $\mathrm{G}_{1} \mathrm{G}_{2}$ the clino-diagonal of Naumann.
$P_{1} P_{2}$ and $G_{1} G_{2}$ are inclined to one another, at some angle greater or less than, but never equal to, a right angle; $H_{1} H_{2}$ is perpendicular to both $P_{1} P_{2}$ and $G_{1} G_{2}$, and consequently to the plane in which they lie.

Paxameters.-The semi-axes $\mathrm{CP}_{1}, \mathrm{CG}_{1}$, and CH_{1}, are the parameters of the oblique system; the length of CG_{I} is perfectly arbitrary, but its length once chosen, the magnitude of CP_{1} and CH_{1} for any particular mineral depends upon the angular elements previously given.

To determine CP and CH. Draw CG (Fig. 326) of any convenient length.

Fig. 326.

Fig. 327.

Then if α, β and γ be the three angles given as the angular elements of any particular substance,

Draw CP making an angle equal to $180^{\circ}-(\alpha+\beta)$ with CG, and through G the line GP, making an angle equal to β with CG.

Let CP and GP meet in the point P; through C draw CL perpendicular to PG.

Then (Fig. 327) draw CL equal to CL (Fig. 326). Through C draw CH perpendicular to CL , and through L, LII making an angle equal to γ with CL. Let H be the point where CII and LH meet.

The lines CG, CH and CP thus determined are the parameters of the oblique

It appears, therefore, that in the oblique system one axis only is perpendicular to the other two; and the three paramelers are unequal.

To draw the Oblique Rectangular Prism.-Draw $\mathrm{B}_{8} \mathrm{~B}_{5}$ (Fig. 325) equal to twice CG (Fig. 326). Through B_{8} draw $B_{8} B_{7}$, making an angle of about 30° with $B_{8} B_{7}$; make $B_{8} B_{7}$ equal CH (Fig 327), through B_{5} draw $B_{5} B_{6}$ equal and parallel to $B_{8} B_{7}$, join $\mathrm{B}_{7} \mathrm{~B}_{6}$.

Through B_{8} draw $B_{8} B_{4}$ equal to twice CP (Fig. 326), and making the angle $B_{4} B_{8} B_{5}$ equal to the angle PCG (Fig. 326); through B_{5}, B_{6} and B_{7} draw $B_{6} B_{1}, B_{6} B_{2}$, and $B_{7} B_{3}$, each parallel and equal to $B_{3} B_{4}$. Join B_{15}, B_{2}, B_{3} and B_{4}, and the prism will be represented in perspective.

Symbols.-Each face of the oblique rectangular prism cuts one of the three axes, at a distance frof thein eqntate equalverstite langth of one of the parameters, and is parallel to the other two axes.

The two basal pinacoids $\mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4}$ and $\mathrm{B}_{5} \mathrm{~B}_{6} \mathrm{~B}_{7} \mathrm{~B}_{8}$ cut the axis $\mathrm{P}_{1} \mathrm{P}_{2}$ in the points P_{1} and P_{2}, and are parallel to the axes $H_{1} H_{2}$ and $G_{1} G_{2}$.

The symbol which represents the relation of these faces to the axes is $\infty \infty 1$.

Naumann's symbol is 0 P ; Miller's, 001 ; Brooke and Levy's modification of Haüy is P, when they regard the oblique rhombic prism as the primitive form of the crystal.

The two ortho-pinacoids $\quad \mathrm{B}_{1} \quad \mathrm{~B}_{2} \quad \mathrm{~B}_{6} \quad \mathrm{~B}_{5}$ and $B_{4} B_{3} B_{7} B_{8}$ cut the axis $G_{1} G_{2}$ in the points G_{1} and G_{2}, and are parallel to the ares $\mathrm{H}_{1} \mathrm{H}_{2}$ and $\mathrm{P}_{1} \mathrm{P}_{2}$. The symbol whioh repre-

Fig. 328. sents this relation is $1 \infty \infty$.

Naumann's symbol is ∞ P ∞; Miller's 100 ; Brooke and Levy's II.
The two clino-pinacoids $B_{1} B_{4} B_{8} B_{5}$ and $B_{2} B_{2} B_{7} B_{c}$ cut the axis $H_{1} H_{2}$ in the points H_{1} and H_{2}, and are parallel to the axes $P_{1} P_{2}$ and $G_{1} G_{2}$. The symbol which represents this relation is $\infty 1 \infty$.

Naumann's symbol is (∞ P ∞); Miller's 010 ; Brooke and Levy's G.
To describe a Net for the Oblique Rectangular Prism. - Describe a parallelogram

Fig. 329.

Fig. 330.
$\mathrm{B}_{8} \mathrm{~B}_{5} \mathrm{~B}_{1} \mathrm{~B}_{4}$ (Fig. 328) equal and similar to $\mathrm{B}_{\mathrm{e}} \mathrm{B}_{5} \mathrm{~B}_{1} \mathrm{~B}_{4}$ (Fig. 32ō). Through B_{1} draw

B_{5} draw $\mathrm{B}_{3} \mathrm{~B}_{6}$ perpendicular to $\mathrm{B}_{1} \mathrm{~B}_{3}$ ，making $\mathrm{B}_{5} \mathrm{~B}_{6}$ equal to $\mathrm{B}_{1} \mathrm{~B}_{2}$ ，and join $\mathrm{B}_{3} \mathrm{~B}_{6}$ ． Through B_{8} draw $B_{3} F$ perpendicular to $B_{3} B_{5}$ ，and equal to $B_{5} B_{6}$ ，and through B_{5} ， $B_{5} D$ parallel and equal to $B_{5} F$ ．Join FD．

Then arrange two parallelograms equal and similar to each of the parallelograms $\mathrm{B}_{1} \mathrm{~B}_{5} \mathrm{~B}_{8} \mathrm{~B}_{4}, \mathrm{~B}_{1} \mathrm{~B}_{3} \mathrm{~B}_{6} \mathrm{~B}_{5}$ ，and $\mathrm{B}_{3} \mathrm{~B}_{5} \mathrm{CD}$ ，as in Fig．329，and the required net will be constructed．

Sphexe of Projection for the Oblique System．－To draw a map of the sphere of projection for the oblique system，with \mathbf{C}（Fig．330）as a centre，and any convenient radius CG_{1} describe a circle $\mathrm{G}_{1} \mathrm{P}_{1} \mathrm{G}_{3}$ ．

Let $P_{1} C P_{2}$ ，and $G_{1} C G_{2}$ be two diameters intersecting one another in such a manner，that the angle $P_{1} C G_{1}$ is equal to $\alpha+\beta$ ．Then C ，the north pole of the hemisphere，may be taken as the pole of the clino－pinacoid $\mathrm{B}_{1} \mathrm{~B}_{4} \mathrm{~B}_{3} \mathrm{~B}_{5}$（Fig．325）， G_{1} and G_{2} as the poles of the ortho－pinacoids，and P_{1} and P_{2} as the poles of the basal pinacoids．

Crystals of the following minerals present faces parallel to the Basal Pinacoids $\infty \infty 1$ ； 0 P ，Naturann； 001 ，Willer；P，Brooke and Levy．The angle is the longitude of the pole P_{1} from G_{1} ．

Allanite	$114^{3} 55^{\prime}$	Glauberi	－68 ${ }^{\circ} 16^{\prime}$	Monazite	$76^{3} 14$
Amphibole	$75{ }^{2}$	Heulandite	$91^{\circ} 25^{\prime}$	Pargasite	$75^{\circ}{ }^{2}$
Augite	$73^{\text {c }} 59^{\prime}$	Humite．	$100^{\circ} 48^{\prime}$	Pharmacolite	
Barytocalc	$109^{\circ} 26^{\prime}$	Johannite	$85^{\circ} 29^{\prime}$	Plagionite	72
Bieberite	$70^{\circ} 6^{\prime}$	Kermes	$37^{\circ} 45^{\prime}$	Realgar	13
Botryogen	． $1173{ }^{\prime}$	Klaprothin	$88^{\circ} 15^{\prime}$	Rhodonite	
Bragati nite	． $114^{\circ} 55^{\prime}$	Klinoclase	$80^{\circ} 30^{\prime}$	Rhyacolite	16°
Brewsterite	$86^{\circ} 20^{\prime}$	Lehmannit		Sphene	94
Bronzi	$73^{\circ} 59$	Lepidolite，	determined	Spodumene	$110^{\circ} 30^{\prime}$
Bucklandite	$114^{\circ} 5{ }^{\prime}$	Linarite	－ $102^{\circ} 45^{\prime}$	Tincal	106°
Chessylite	$92^{\circ} 21^{\prime}$	Lunnite	$90^{\circ} 0^{\prime}$	Triphy	
Epidote ．	$115^{3} 24^{\prime}$	Malachite	$61^{5} 45^{\prime}$	Vauquelinite	
Euclase．	$71^{\circ} 7^{\prime}$	Melanterite	$75^{\circ} 40^{\prime}$	Vivianite	
Felspar	． $116^{\circ} 7^{\prime}$	Miargyrite	$81^{\circ} 36^{\prime}$	Wagnerite	$108^{\circ} 7^{\prime}$
Freieslebeni	$87^{\circ} 46^{\prime}$	Mica	$80^{\circ} \mathrm{l}^{\prime}$	Whewellite	$107^{\circ} 19^{\prime}$
Gaylusite	$78^{\circ} 27^{\prime}$	Mirabilit	$107^{\circ} 45^{\prime}$	Woolastonite	10°

The following present Cleavages parallel to this form．

Bronzite	Humite	Malachite	Realgar	Triptryline
Fpidote	Klinocase	Melanterite	Rhodonite	Wagnerite
Felspar	Lehmannite	Mica	Rhyacolite	Whewellite
Gaylusite	Lepidolite	Ifirabilits	Sphene	Woolastonite
Glauberite	Linarite	Monazite		

Faces parallel to the Ortho－pinacoids $1 \infty \infty ; \infty \mathrm{P} \infty$ Vaumann； 100 Miller； H Brooke and Levy，occur in Crystals of

Acmite	Epidote	Humite	Malachite	Rhodonite
Aigerite	Erythrine	Hureaulite	Melanterite	Rbyacolite
Allanite	Euclase	Hyperstene	Miargyrite	Scolezite
Amphibole	Felspar	Kermes	Mirabilite	Spodumene
Augite	Feuerblende	Klaprothine	Monazite	＇lincal
Bragationite	Freieslebenite	Klinoclase	Natron	Vauquelinite
Brewstenite	Gaylusite	Laumonite	Placodine	Vivianite
Bronzite	Glanberite	Lehmammite	Plagionite	Wagnerite
Bucklandite｜	－G化驰猃D	VeinssititeLille	Realgar	Woolastonite
Chessylite	Henlandite	Lunnite		

The following present Cleavagcs parall l to th's form.

Acmite	Epidote	Laumonite	Virabilite	Spodumeie
Amphibole	Erythrine	Lehmannite	Monazite	Tincal
Augite	Euclase	Linar te	Placoine	Vivianite
Brewsterite	Gypsum	Lunnite	Realrar	Wagne ite
Bronzite	Hypelstene	Miargyrite	Rhosonite	Woolstonite
Chessylite	Kermes			

 G Brooke and Levy, oc ur in Crysta7s of

Aemite	Epidote	Klaprotbine	Mica	Scolezite
Alorite	Erythrine	Küttigite	Mirabilite	St hene
Amphibole	Euclase	Laumonite	Monaz te	spodumene
Arnabergite	Felspar	Lehmannite	Nitron	Simpl citu
Arfs dsonite	Feuerblende	Lepidolite	Pargasite	Tincal
Augite	Gyps 1 m	Linarite	Phirm colite	[ıiphyline
Botryogen	Heulandite	Malachite	Realgar	Vivismite
Brewaterite	Humite	Melanterite	Rhodonite	Whewellite
Bronzite	Hyperstene	Miargyrite	Rhyacolite	Zoinite
Chessglite	Johannite			

The foll " $^{\prime}$ ag pr sent Cleavages parallel to this f rom.

Acmite	Er thriue	Kottig ${ }^{\text {. }}$	V nazite		Rhyocolite
Amphi ole	E cas	Launo	Natron		Sjiplesite
An zaber to	Felspar	Lepitiolı e	Pargas te		Inncal
Arfredsonit	G psum	M clach !	Pharna	\%	Triphyline
Augite	Mrulandite	M Ca	Realgar		V ciat its
Brewosterite	Hyperstene	Mirabulite	Rhodonito		Whenel ite

Oblique Rhombic Prism of the First Oxder.-The obliq ce rho bic pi, or the oblig te prism on a rhombic base, is a solid bunded by six faces, fo u of which are similar and equal oblique parall 1 -

Fig. 331. gramp, such as $A_{1} \mathbf{E}_{1} \mathbf{E}_{3} \mathbf{A}_{3}$ (Fig. 331, and the oth r two are similar and equ. 1 rhombs.

This prism is g nerally regarded a an open form; the four oblique parallelograms are then considered its faces, and the two rhombs which inclose it th basal pinac ids.

To Draw the Oblique Rhombic P, sm . -Pick off the points $A_{1}, A_{2}, A_{3}, A_{4}$, E, E_{n}, E_{3}, E_{4}, from Fig. 325 ; join these p ints as in Fig. 331, and the prism will be repr sented in perspective.

Symbols.-Each face of this prism, considered as an open form, cuts two of the axes $G_{1} G_{2}$ (Fig. 325) and $H_{1} H$, at the extremities of their parameters, and is parall 1 to the third axis $P_{1} P_{\text {. }}$. The symb 1 represeating this property is 11∞; Naumann's is 0 P , Mill r's 1 I 0 , Brooke and Levy's M. IRIS - LILLIAD - Université Lille 1

To Describe a Net for the Oblique Rhombic Prism of the First Order.-Bisect $\mathrm{B}_{5} \mathrm{~B}_{8}$ (Fig. 328) and F D by the points $A_{3} A_{4}$, also the lines $\mathrm{B}_{5} \mathrm{D}$ and $\mathrm{B}_{8} \mathrm{~F}$ by E_{3} and E_{4}.

Fig. 332.

Join $\mathbf{E}_{3}, A_{3}, \mathbf{E}_{4}$, and A_{4}; then $\mathbf{E}_{4} \mathrm{~A}_{3} \mathbf{E}_{3} \mathrm{~A}_{4}$ will be the rhomb which forms the base of the prism.

Through B_{5} (Fig. 328) draw $B_{5} K$ perpendicular to $B_{4} B_{8}$. In $B_{6} B_{2}$ take $B_{6} L$ equal $B_{5} K$. Join $B_{5} L$.

Then (Fig. 332) draw MN equal $\mathrm{B}_{5} \mathrm{~L}$ (Fig. 328), M P perpendicular to M N and equal $\mathrm{B}_{8} \mathrm{~K}$ (Fig. 328).

Join P N, and bisect it in Q; produce PM to R , and make $P R$ equal $B_{5} B_{1}$ (Fig. 325). Through Q draw Q S parallel and equal to $P R$; and join R S.

PQRS will be one of the four oblique parallelograms forming one of

Fig. 333.
the sides of the prism. Four such parallelograms, and two rhombs equal $A_{4} E_{3} A_{3} E_{4}$, arranged as in Fig. 333, will form the required net.

Poles of the Oblique Rhombic Prism of the First Order on the Sphere of Projection.-The four poles of this form lie in the zone or meridian $\mathrm{G}_{1} \mathrm{CGG}_{2}$ (Fig. 330): two, A_{1} and $\mathrm{A}_{\mathbf{2}}$ (Fig. 330), where the circle of north latitude, whose polar distance from C the north pole is λ, cuts the zone $G_{1} \mathrm{C} \mathrm{G}_{2}$; and two where the circle of south latitude, whose polar distance from the south pole is λ, cuts the same zone. λ is determined from the formula-

$$
\tan . \lambda=\sin . \beta \tan . \gamma \operatorname{cosec}(\alpha+\beta)
$$

where a, β, and γ are the three angles previously given as the angular elements, for the substance, whose poles for this form are required.

Poles parallel to the Oblique Rhombic Prism, $11 \infty ; \infty$ P Naumann; 110 Miller; M Brooke and Levy, occur in the following Minerals. The angle is the angle λ, which Cetermines the Latitude of their Poles.

Acmite	寿	Gla	,	Monazite	$46^{\circ} 35$
Algerite	$47^{\circ} 0^{\prime}$	Gypsum	$55^{\circ} 41^{\prime}$	Natron.	38°
Amphibole	${ }^{62^{\circ}}{ }^{6} 6^{\prime}$	Heulandite	$6^{68^{\circ}} 2^{\prime \prime}$	Pargasit	${ }^{620} 1$
Arfvedsoni	$62^{\circ} 6^{\prime}$	Humite	$25^{5} 15^{\prime}$	Pharmacol	${ }^{58^{\circ}}{ }^{4}$
Augite	$43^{\circ} 33^{\prime}$	Hureau	$31^{\circ} 15^{\prime}$	Placodine	32
Barytocale	$42^{\circ} 26^{\prime}$	Hyperstene	- $43^{\circ} 15^{\prime}$	Realgar	37
Bieberite	$41^{\circ} 10^{\circ}$	Johannite	- $34^{\circ} 30^{\circ}$	Rhodon	43
Botryogen	$59^{\circ} 58^{\prime}$	Klaprothine	- $4.5{ }^{\circ} 45^{\prime}$	Scolezite	45
Brewsterite	$68^{\text {c }}{ }^{\text {or }}$	Klinoclase	$28^{\circ} 0^{\prime}$	Sphene	66°
Bronzite	$4^{43^{\circ}} 33^{\prime}$	Laumonite	$43^{\circ} 8^{\prime}$	Spodumen	$43{ }^{\circ}$
Bucklandite	$31^{\circ} 34$	Lehmannit	$46^{\circ} 52^{\prime}$	Tincal	43
Chessylite	$49^{\circ} 46^{\prime}$	Lepidolite	59 30°	Triphyline	66
Epidote .	$31^{\circ} 34^{\prime}$	Linarite	$30^{\circ} 30^{\circ}$	Vivianite	咗
Fuclas	${ }^{57^{\circ}} 25^{\circ}$	Malachite	$53^{\circ} 40^{\circ}$	Wagnerite	47°
Felspar	$59^{\circ} 24^{\prime}$	Melanterite	$41^{\circ} 10^{\circ}$	Whewellite	50°
1	${ }^{69} 9^{3} 36^{\prime}$	Miargyrite	${ }^{19} 0^{\circ} 49^{\circ}$	Woolastonite.	4780
			23°	Zoisite .	

The following present Cleavages parallel to this prism.

Acmite	Felspar	Laumonite	Pargasite	Sphene
Amphibole	Freieslebenite	Lehmannite	Placodine	Spodumene
Arfoedsonite	Gaylussies	Lepidolite	Realgar	Tincal
Augite	Glauberite	Melanterite	Rhodonite	Triphyline
Botryogen	Hyperstene	Mica	Scolezite	Whewellite
Chessslite	Johannite	Natron		

Oblique Rhombic Prisms derived from the Obliqua Rhombic Prism of the First Order 11∞, by increasing the axis CH_{1}, or the Orthodiagonal $\mathrm{H}_{1} \mathrm{H}_{2}$.-These prisms will be similar in magnitude and position to the prism 11∞ (Fig. 331) from which they are derived, but will differ in magnitude. To draw these prisms and describe their nets, we must make $H_{1} H_{2}$ (Fig. 325) equal to n times the parameter CH (Fig. 327), where n may be any whole number or fraction greater than unity. Making this alteration in Fig. 325, the points $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{1}$, and $\mathbf{E}_{1}, \mathrm{E}_{2}, \mathbf{E}_{3}, \mathbf{E}_{4}$, will give the angular points of the derived prism. From Fig. 325 so altered, the net for the derived prism may be obtained in the way described for the prism 11∞.

The symbol which represents the relation of this derived prism to the axes of the oblique system is $1 n \infty$; Naumann's is $\infty \mathrm{P} n$; Miller's $k h o$; Brooke and Levy's $H^{\frac{n+1}{n-1}}$.

Position of the Poles of these derived Prisms on the Sphere of Projection.-The four polcs of these prisms lie in the zone or meridian $\mathrm{G}_{1} \mathrm{C} \mathrm{G}_{2}$ (Fig. 330). Two where the circle of north latitude, whose polar distance from C, the north pole, is λ, cuts the zone $G_{1} \subset G_{2}$, these points b_{1} and b_{2} always lie between $A_{1} G_{1}$ and $A_{2} G_{2}$; the other two poles will be where the circle of latitude, whose south polar distance is λ, cuts the same zone. λ is determined from the formula

$$
\tan \lambda=n \sin \beta \tan \gamma \operatorname{cosec}(\alpha+\beta)
$$

Faces parallel to the following forms of these Prisms have been observed; the angle givon for each Mineral is λ.
The form $1 \frac{4}{3} \infty ; \infty$ P $\frac{4}{3}$ Naumann; 430 Miller; H ${ }^{\text { }}$ Brooke and Levy. Euclase . . $64^{\circ} 24^{\prime} \mid$ Freienlebenite - $66^{\circ} 24^{\prime}$ (Realgar . . $45^{\circ} 20^{\circ}$
The form $1 \frac{3}{2} \infty ; \infty P_{\frac{s}{2}}$ Naumann; 320 Miller; Hs Brooke and Levy. Chessylite - . $60^{5} 35^{\prime} \mid$ Euclase . . $66^{\circ} 55^{\prime} \mid$ Placodine . . $43^{\circ} 23^{\prime \prime}$ Erythrine : $\quad 65^{\circ} 5^{\prime} \mid$ Lehmannite : $58^{\circ} 1^{\prime} \mid$ Wagnerite ! $55^{\circ} 46^{\prime}$
The form 12∞; ∞ P 2 Naumann; 210 Miller; H ${ }^{3}$ Brooke and Levy.

Amphibole	$62^{\circ} 15^{\prime}$	Euclase	$72^{\circ} 17^{\prime}$	Realgar		S^{\prime}
Botryogen	$40^{\circ} 52^{\prime}$	Lehmannite	64, 54^{\prime}	Wagnerite		${ }^{650} 32^{\prime}$
Chessylite	$67^{\circ} 4^{\prime}$	Mirabilite	$22^{3} 59^{\prime}$	Zoisite		72°
Epid						

Botryogen has a cleavage parallel to this form.
The form $1 \frac{8}{2} \infty ; \infty$ P $\frac{8}{2}$ Naumann; 520 Miller; H^{3} Brooke and Levy. Realgar. . . $62^{\circ} 14^{\prime}$
The form $13 \infty ; \infty$ P 3 Naumann; 310 Miller; H2 Brooke and Levy. Amphibole . . $80^{\circ} 3^{\prime} \mid$ Freieslebenite $\quad 78^{\circ} 56^{\circ} \mid$ Pharmacolite . $78^{\circ} 33^{\circ}$ Aagite . : $70^{\circ} 40^{\circ} \mid$ Miargyrite . $45^{\circ} 15^{\circ} \mid$ Vivianite . . $77^{\circ} 7^{\circ}$ Felspar . - $29^{\circ} 25^{\prime}$ |
Oblique Rhombic Prisms derived from the Oblique Prism 11∞, by increasing the axis CG_{1}, or the Clino-diagonal $\mathrm{G}_{1} \mathrm{G}_{2}$.-These prisms also will be similar in magnitude and position to the prism 11∞ (Fig. 331), from which they are derived; they may be drawn and their nets described by making CG_{1} and CG_{2} (Fig. 325) equal to n times the parameter CG (Fig. 326), where n may be any whole number or fraction greater than unity.

IRIS - LILLIAD - Université Lille 1

The symbol which represents the relation of the derived prism to the axes of the oblique system is $n 1 \infty$; Naumann's is ($\infty \mathrm{P} n$); Miller's $h k 0$; Brooke and Levy's $\mathrm{G}^{\frac{n+1}{n-i}}$.

Position of the Poles of these derived Prisms on the Sphere of Projection.—The four poles of these prisms lie in the zone or meridian $\mathrm{G}_{1} \mathrm{CG}_{2}$ (Fig. 330), two where the circle of north latitude, whose polar distance from C, the north pole, is λ, cuts the zone $\mathrm{G}_{1} \mathrm{CG}_{2}$; these points d_{1} and d_{2} always lie detween CA_{1} and CA_{2}; the other two poles will be where the circle of latitude, whose south polar distance is λ, cuts the same zone. λ is determined from the formula

$$
\tan \lambda=\frac{1}{n} \sin \beta \tan \gamma \operatorname{cosec}(\alpha+\beta) .
$$

Faces parallel to the followiny forms of thest Prisms have been observed; the angle given for each Mineral is λ.
The form Freieslebenite . $54^{\circ} 51^{\prime}$
The form $\frac{4}{3} 1 \infty ;\left(\infty \mathrm{P} \frac{4}{8}\right)$ Naumann; 340 Miller ; $\mathrm{G}^{\boldsymbol{r}}$ Brooke and Levy. Erythrine . . $47{ }^{\circ}{ }^{6}{ }^{\prime}$
The form $\frac{3}{2} 1 \infty$; (∞ P $\frac{3}{2}$) Naumann; 230 Miller; Gs Brooke and Levy. Realgar

- $26^{\circ} 51^{\prime}$

The form $\frac{8}{3} 1 \infty ;\left(\infty P \frac{5}{3}\right)$ Naumann; 350 Miller; \mathbf{G}^{4} Brooke and Levy.
Freieslebenite - $45^{\circ} 39^{\prime}$
The form 21∞; (∞ P 2) Naumann; 120 Miller; G^{5} Brooke and Levy.

Augite	$25^{\circ} 25^{\prime}$	Gypsum	${ }^{56} 6^{\circ} 12^{\circ}$	Monazite		77°
Brewsterite	$51^{\circ} 4^{\prime}$	Lelimannite	$28^{\circ} 5^{\circ}$	Wagnerite		$28^{\circ} 47^{\prime}$
Chessylite	$30^{\circ} 35^{\prime}$	Lunnite	$19^{\circ} 28^{\circ}$	Whewellite		$31^{\circ} 3^{\prime}$
Freiesleben	$40^{\circ} 26^{\prime}$					

Freieslebenite and Wagnerite have cleavages parallel to this form.
The form 31∞; (∞ P 3) Naumann; 130 Miller; G² Brooke and Levy.

Right Pxism on an Oblique Rhombic Base, - This prism has two faces .$_{1} A_{2} M_{2} M_{1}$ (Fig. 334) $A_{3} A_{4} M_{3} M_{4}$, which are similar and equal rectangular parallelograms, two other faces $A_{1} A_{2} M_{3} M_{4}$ and $M_{1} M_{2} A_{4} A_{3}$ also rectangular parallelograms, and
 similar and equal to each other, all inclosed by the two faces $A_{1} M_{1} A_{3} M_{4}$ and $M_{2} A_{2} M_{3} A_{4}$ which are similar and equal oblique parallelograms.

The four rectangular parallelograms are the faces of this prism when it is regarded as an open form ; the oblique parallelograms which inclose it are then the faces of the clino-pinacoids.

The four faces of this prism cut the two axes $P_{1} P_{2}$ and $G_{1} G_{2}$, in the points P and G, and are parallel to the third axis $\mathrm{H}_{1} \mathrm{H}_{2}$ (Fig. 325).

The two faces $A_{1} A_{2} M_{2} M_{1}$ and $M_{4} M_{3} A_{4} A_{3}$ are
 the negative ortho-domes.

To draw this prism we have only to prick off the points $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$. and E_{4} (Fig. 325), and join them as in Fig. 334.

Symbols.-The symbol which represents the relation of this prism to the axes of the oblique system is $1 \infty 1$; Naumann's is $\mathbf{P} \infty$, Miller's 101 , Brooke and Levy's 0^{1}, for the positive ortho-domes; and $\overline{\mathrm{I}} \infty 1,-\mathrm{P} \infty$ Naumann, $\overline{\mathrm{I}} 01$ Miller, A^{1} Brooke and Levy, for the negative ortho-domes.

Net for the Right Prism on an Oblique Rhombic Base.-Describe two oblique rhombic parallelograms similar and equal to $\mathrm{A}_{1} \mathrm{M}_{1} \mathrm{~A}_{3} \mathrm{M}_{4}$ (Fig. 334), tro rectangular parallelograms, having their breadth equal to $A_{1} M_{1}$ and length to twice $M_{1} A_{1}$, and two other rectangular parallelograms of the same length, but having their breadth equal to $M_{1} A_{3}$; arrange these six parallelograms as in Fig. 335, and the net will be constructed.

Position of the Poles of the Prism on an Oblique Rhombic Base on the Sphere of Projection.-The four poles of this prism always lic in the equator, $\mathrm{E}_{1} \mathrm{P}_{1} \mathrm{E}_{\text {, }}$, Fig. 330, the poles of the positive ortho-domes between $P_{1} G_{1}$ and $P_{2} G_{2}$,

Fig. 335. the arc $G_{1} \mathbf{E}_{1}$ being equal to the are $\mathbf{G}_{2} \mathbf{E}_{2} ; \mathbf{F}_{1}, \mathbf{F}_{2}$ the poles of the negative orthodomes between $P_{1} G_{2}$ and $P_{2} G_{1}$, the arc $G_{1} F_{1}$ being equal to $G_{2} F_{2}$.

To determine the longitude of \mathbf{E}_{1} from \mathbf{G}_{1}, we have the following formulx :-
If ϕ be such an angle that $\tan \phi=\sin \beta \mathrm{cs}(\alpha+\beta) \operatorname{cosec} \alpha$,
And μ such an angle that $\cot \mu=\sin \phi \mathrm{c} \sec \left(45^{\circ}+\phi\right) \sin 45 \tan (\alpha+\beta$.
Then longitude of E_{1} equals $\mu+\alpha+\beta-90$.
To determine the longitude of F_{1}, we have

$$
\begin{gathered}
\tan \phi=-\sin \beta \cos (\alpha+\beta) \operatorname{cosec} \alpha, \\
\text { And } \cot \mu=\sin \phi \operatorname{cosec}\left(45^{\circ}+\phi\right) \sin 45 \tan (\alpha+\beta) .
\end{gathered}
$$

Faces parallel to the Right Prism on a Rhombic Base have becn observed in the $f l l_{l}$ ig Ninerals; the ar gle is that of their longitude.

The form $1 \infty 1 ; P_{\infty}$ Naumann; 101 Miller; $0^{\frac{1}{3}}$ Brooke and L vr.

The form $\overline{1} \infty 1 ;-P \infty$ Naumann; $\overline{1} 01$ Miller; $A^{\overline{2}}$ Brooke and Levy.

Amphibole	1060. ${ }^{\prime}$	Hypersthene	$105^{\circ} 7$	Natron	126 ${ }^{\circ}{ }^{\prime}$
Augite	- $105^{\circ} 7^{\prime}$	Klaprothine	- $1499^{\circ} 45^{\prime}$	Placodine	- $120^{\circ} 5^{\prime}$
Barytocalcite	$134^{\circ} 52^{\prime}$	Lehmannite	- $128^{\circ} 58^{\prime}$	Sphene	- $148^{\circ} 28^{\prime}$
Bieberite	- $133^{\circ} 31^{\prime}$	Melanterite	- $137^{\circ} 38^{\prime}$	Triphyline	undet.
Chessylite	- $137^{\circ} 13^{\prime}$	Miargyrite	- $1311^{\circ} 46^{\prime}$	Vivianite	$144^{\circ} 20^{\prime}$
Gypsum	$113^{\circ} 46^{\prime}$	Monazite	- $126^{\circ} 8^{\prime}$		1

Barytocalcite has a cleavage parallel to this form.
Prisms derived from the Right Prism on an Oblique Rhombic Base.By making CP_{1} and CP_{2} (Fig. 325) equal to m times the parameter CP (Fig. 326); and from (Fig. 325) so altered deriving a prism, as in Fig. 334, a new series of prisms, similar in form and position, but differing in magnitude from the prism (Fig. 334), may be formed.
m may be any fraction or whole number greater or less than unity.
The symbols for these prisms will be $\pm 1, \infty, m ; \pm m \mathrm{P} \infty$ Naumann; $h o k$, or Tho k Miller; and $0^{\frac{m}{2}}$ or $\mathrm{A}^{\frac{m}{2}}$ Brooke and Levy, according as the ortho-domes are positive or negative.

The formula for determining the longitude for the poles of these prisms, which all lie in the equator, are,
$\tan \varphi= \pm m \sin \beta \cos (\alpha+\beta) \operatorname{cosec} a$
$\cot \mu=\sin \phi \operatorname{cosec}(45+\phi) \sin 45 \tan (\alpha+\beta)$
and longitude equal to $\mu+\alpha+\beta-90$.

Faccs parallel to these derived Prisms, with the following angles for determining the Longitude of their Poles, have been observed in nature.
The form $1 \infty \frac{1}{8} ; \frac{1}{8} \mathrm{P} \infty$ Naumann; 108 Miller ; $\hat{0}^{\frac{1}{16}}$ Brooke and Levy. Chessylite - $84^{\circ} 55^{\prime} \mid$ Linarite . . $99^{\circ} 16^{\prime}$
The form $\mathrm{I} \propto \frac{1}{3} ; \frac{1}{f} \mathrm{P} \infty$ Naumann; 105 Miller ; $0^{\frac{1}{2}}{ }^{\frac{1}{0}}$ Brooke and Lery. Chessylite . . $80^{\circ} 32^{\prime}$
The form $1 \infty \frac{1}{3}$; $\frac{1}{3} \mathrm{P} \infty$ Naumann; 103 Miller; ${ }^{\frac{1}{6}}$ Brooke and Levy.

Bucklandite	- $988^{\circ} 38^{\prime}$	Kermes	$102^{\circ} 9$	Melanterite		$54^{\circ} 46^{\prime}$
Epidote	- $98^{\circ} 38^{\prime}$	Klaprothine	- $58^{\circ} 30^{\prime}$	Virianite		$89^{\circ} 5^{\prime}$
Erythrine	$89^{\circ} 52 \cdot$					

Erythrine : - $89^{\circ} 52^{\prime}$
Erythrine has a cleavage parallel to this form.
The form $1 \infty \frac{2}{5} ; \frac{2}{5} \mathrm{P} \infty$ Naumann; 205 Miller; $0^{\frac{2}{5}}$ Brooke and Levy. Woolastonite . ${ }^{49^{\circ}} 18^{\circ}$
The form $1 \infty \frac{1}{2} ; \frac{1}{2} P \infty$ Naumann; 102 Miller; $0 \frac{1}{\frac{1}{t}}$ Brooke and Levs.
Bragationite. . $8^{88^{\circ}} 58^{\prime} \mid$ Epidote . . ${ }^{89} 9^{\circ} 27^{\prime} \mid$ Lunnite . . ${ }^{76^{\circ} 34^{\circ}}$
Chessylite - . $64^{\circ} 25^{\circ} \mid$ Laumonite - $68^{\circ} 40^{\circ} \mid$ Sphene - . $55^{\circ} 33^{\prime}$
The form $1 \infty \frac{2}{3} ; \frac{2}{3} \mathrm{P}_{\infty}$ Naumann; 203 Miller; $0^{\frac{1}{3}}$ Brooke and Levy.
Felspar . . $81^{\circ} 54^{\prime} \mid$ Linarite - . $83^{\circ} 42^{\prime} \mid$ Woolastonite - $40^{\circ} 7$
The form $1 \propto \frac{5}{6} ; \frac{5}{6} \mathrm{P} \infty$ Naumann ; 506 Miller; $0^{\frac{5}{1} 2}$ Brooke and Levy. Iinarite - . $78^{\circ} 59^{\circ}$
The form $1 \infty \frac{4}{3} ; \frac{4}{3} \mathrm{P} \infty$ Naumann; 403 Miller; $0^{\frac{2}{3}}$ Brooke and Levy.

The form $1 \infty \frac{3}{2} ; \frac{3}{2} \mathrm{P} \infty$ Naumann; 302 Miller; $0^{\frac{3}{2}}$ Brooke and Levy. Allanite - . $34^{\circ} 30 \mid$ Chessylite . . $33^{3} 22^{\prime} \mid$ Epidote . . $45^{\circ} 37^{\prime}$
The form 1 ∞ 2; $2 \mathrm{P} \infty$ Naumann; 201 Miller; 0^{1} Brooke and Lery.

Bragationite	34°	Heulandite	25	Piacodine	- $45^{\circ} 15$
Chessylite	$26^{\circ} 9$	Humite	$40^{3} 37^{\prime}$	Realgar	44
Epidote	- $34^{\circ} 21^{\prime}$	Lehmannit	$23^{\circ} 55^{\prime}$	Rhyacolite	
Felspar	$35^{\circ} 45^{\prime}$	Linarite	$51^{\circ} 54^{\prime}$	Vivianite	
Gaylussite	$51^{\circ} 5 t^{\prime}$	Mirabilite	$32^{\circ} 26^{\prime}$	Woolaston	

The form $1 \infty 3 ; 3$ P ∞ Naumann; 301 Miller; $0^{\frac{3}{2}}$ Brooke and Levs.
Bragationite . . $22^{2} 22^{\prime \prime} \mid$ Chess lite . . $18^{\circ} 1^{\prime} \mid$ Miargyrite . . $17^{\circ} 33^{\prime}$
The form $1 \infty 4 ; 4 \mathrm{P} \infty$ Naumann; 401 Miller; 0^{2} Brooke and Levy.
Humite. - $21^{\circ} 38^{\prime} \mid$ Lehmannite . . $1^{3^{\circ}} 6^{\prime}$
The form $\overline{1} \infty \frac{1}{3} ;-\frac{1}{3} P \infty$ Naumann; $\overline{3} 01$ Miller ; $A^{\frac{1}{6}}$ Brooke and Levy. Angite . . . $144^{\circ} 2^{2 \prime} \mid$ Gjpsum - . $92^{\circ} 2^{\prime}$
The form $\overline{1} \infty \frac{1}{2} ;-\frac{1}{2} P \infty$ Naumann; $\overline{2} 01$ Miller; $A^{\frac{1}{4}}$ Brooke and Levy. Augite . . . ${ }^{89} 9^{2} 20^{\circ} \mid$ Laumonite . . $125^{\circ} 41^{\circ} \mid$ Ladnite. . . $103^{\circ} 26^{\circ}$ Chesylite - . $119^{9} 16^{\prime}$
 Woolastonite . $114^{\circ} 1 \mathrm{iP}^{\prime}$
The form $\overline{1} \infty \frac{4}{3} ;-\frac{4}{3} \mathrm{P} \infty$ Naumann; $\overline{4} 03$ Miller; $\mathrm{A}^{\frac{\pi}{3}}$ Brooke and Levy. unmite. . . ${ }^{137^{\circ} 36^{\prime}}$
The form $\overline{1} \infty \frac{3}{2} ;-\frac{8}{2} P \infty$ Naumann; 302 Miller; $A^{\frac{3}{3}}$ Brooke and Levy. Erythrine . . $152^{\circ} \mathrm{ir} \mid$ Glauberite . . 133 46 $6^{\prime} \mid$ Klinoclase . . 16100^{\prime}
The form $\overline{1} \infty 2 ;-2 P \infty$ Naumann; $\overline{2} 01$ Miller; A^{1} Brooke and Levy.

Amphibole	. 130°	Clanberite	44	Mi	- $153{ }^{4}$
Bragationite Cluessclite	- 15720	$\underset{\text { Humite }}{\text { Heulandite }}$		${ }_{\text {Pargasite }}^{\text {Pale }}$ Wolstonite	${ }_{154^{\circ}}^{130} \mathrm{C}^{\mathrm{b}^{\prime}}$
Pelspar.	. 157				

The form $1 \propto 3$;-3 $\mathbf{P} \infty$ Naumann; $\overline{3} 01$ Miller; $A^{\frac{3}{2}}$ Brooke and Lery.
Lebmannite . . 16041°
The form $1 \infty 4$; - 4 P ∞ Naumann; 401 Miller ; A Brooke and Levy. Humitc. . . $1610^{\prime} \mid$ Lehmannite . . 165 31

Oblique Prism on a Rhombic Base of the Second Order.-The oblique rhombic prism of the second order is similar in form to that of the first order, but differs in its position with regard to the axes of the system. The faces of this prism are called clino-domes.

Symbols.-Each face passes through one of the extremities of the axes $\mathrm{P}_{1} \mathrm{P}_{\text {- }}$ (Fig. 325) and $H_{1} H_{2}$, and is parallel to the third axis $G_{1} G_{2}$. The symbol which expresses this relation is $\infty 11$; Naumann's is ($\mathrm{P} \infty$); Miller's 011 ; Brooke and Levy's $E^{\frac{1}{3}}$.

To draw this prism prick off the points $E_{1}, E_{2}, E_{3}, E_{4}$, and $M_{1}, M_{2}, M_{3}, M_{4}$, from

Fig. 336. Fig. 325, and join them as in Fig. 336.

Position of the Poles of the Oblique Rhon bic Prism of the Sc ont Order on tle Sple.e of Projection.-The poles af this prism all lif in the zone or meridian $\mathrm{P}_{1} \mathrm{CP}_{2}$ Fig. 330 ;
two where the circle of north latitude, whose polar distance from c is λ, cuts the meridian $\mathrm{P}_{1} \mathrm{CP}_{2}$; and two where the circle of south latitude, whose south polar distance is λ, cuts the same zone.

The formula for determining λ is

$$
\tan \lambda=\frac{\tan \gamma \sin a}{\sin (\alpha+\beta)}
$$

Faces parallel to the Oblique Rhombic Prism ocour in the following Minerals: the angle is λ which determines the latitude of their poles.

Allanite	$35^{\circ} 25^{\prime}$	Humite	35	Natron	5
Augite	- $60^{\circ} 20^{\prime}$	Hureaulite	- $44^{\circ} 0^{\prime \prime}$	Pharmacolíte	-700 34
Bieberite	- $32^{\circ} 55^{\prime}$	Klaprothine	- $30^{\circ} 42^{\prime \prime}$	Realgar	- $48^{\circ} \mathrm{El} 1^{\prime}$
Bragationite	- $35^{\circ} 25^{\prime}$	Laumonite	- $59+43^{\prime}$	Sphene .	- $56^{\circ} 44^{\prime}$
Chessylite	- $48^{\circ} 41^{\prime}$	Lehmannite	- $47^{\circ} 31^{\prime}$	Spodumene	-39 ${ }^{\circ} 45^{\prime}$
Epidote	- $35^{\circ} 4^{\prime}$	Lunnite	- $56^{\circ} 18^{\prime}$	Vivianite	- $55^{\circ} 33^{\prime}$
Feuerblende	- $37^{\circ} 0^{\prime}$	Melanterite	- $33^{\circ} 44^{\prime}$	Wagnerite	- $54^{\circ} 25^{\prime}$
Freieslebenite	- $47^{\circ} 10^{\prime}$	Miargyrite	- $19^{\circ} 9^{\prime}$	Whewellite	- $37^{\circ} 25^{\prime}$
Gypsum	- $67^{\circ} 47^{\prime}$	Mirabilite	- $43^{\circ} 15^{\prime}$	Woolastonite	$43^{\circ} 44^{\prime}$
Heulandite	- $49^{\circ} 20^{\circ}$	Monazite	- $48^{\circ} 8^{\prime}$		

Sphene has a cleavage parallel to this form.
Oblique Rhombic Prisms derived from those of the Second Order.By taking CP_{1} and CP_{2} (Fig. 325) m times the parameter CP (Fig. 326), where m may be any fraction or whole number; and from Fig. 325, so altered, describing an oblique rhombic prism of the second order, a series of prisms, similar in form and position, but differing in magnitude from Fig. 336, may be formed. The faces of these prisms are called clino-domes.

Symbols.-Each face of these derived prisms. cuts two of the axes $\mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{H}_{1} \mathrm{H}_{2}$, and is parallel to the third $G_{1} G_{2}$; the symbol which expresses this relation to the axes is $\infty 1 m$; Naumann's is ($m \mathrm{P} \infty$); Miller's okl; Brooke and Levy's $\mathrm{E}^{\frac{m}{2}}$.

Position of the Poles of the derived Oblique Prisms of the Second Order on the Sphere of Projection.-The poles of these prisms all lie in the zone or meridian $\mathrm{P}_{1} \mathrm{CP}_{2}$ (Fig. 330); two for each prism where the circle of north latitude, whose polar distance from \mathbf{C} is λ, cuts the meridian $\mathrm{P}_{1} \mathrm{CP}_{2}$, and two where the circle of south latitude, whose south polar distance is λ, cuts the same zone.

The formula for determining λ is,

$$
\tan \lambda=\begin{gathered}
1 \sin \gamma \sin \alpha \\
m \sin (\alpha+\beta) .
\end{gathered}
$$

Faces parallel to the derived Oblique Rhombic Prisms of the Sesond Order, with the following angles for determining the latitude of their poles, have been observed in nature.

The form $\infty 1 \frac{1}{3} ;\left(\frac{1}{3} \mathrm{P} \infty\right)$ Naumann ; 013 Miller; E $E^{\frac{1}{6}}$ Brooke and Lery.
Melanterite . . $63^{\circ} 28^{\circ} \mid$ Sphene . . $77^{\circ} 40^{\circ}$
The form $\infty 1 \frac{2}{5} ;\left(\frac{2}{5} \mathrm{P} \infty\right)$ Naumann; 025 Miller; $\mathrm{E}^{\frac{1}{5}}$ Brooke and Levy.

$$
\text { Chessylite . . } 20^{\circ} 38^{\circ}
$$

The form $\infty 1 \frac{1}{3}$; $\left(\frac{1}{2} P \infty\right)$ Naumann; 012 Miller; E $E^{\frac{1}{4}}$ Brooke and Levy.

The form $\infty 1 \frac{2}{3} ;\left({ }_{3} \mathrm{P} \infty\right)$ Naumann ; 023 Miller; $\mathrm{E}^{\frac{1}{3}}$ Brooke and Levy.

The form $\infty 1 \frac{3}{2}$; ($\left.\frac{3}{2} \mathrm{P} \infty\right)$ Naumann; 032 Miller; $\mathrm{E}^{\frac{3}{4}}$ Brooke and Levy.
Frcieslebenite . ${ }^{350}{ }^{\circ} 3^{\prime} \mid$ Realgar . . $36^{\circ} 51^{\prime} \mid$ Wagnerite . . $420^{5} 59^{\prime}$
The form ∞ 12; (2 P ∞) Naumann; 021 Miller; E Brooke and Levy.

Amphibole	-600 26^{\prime}	Gaylussite	35	Monazite		29°
Augite	-410 27^{\prime}	Humite	- 19329	Hhyacolite		$45^{\circ} 16^{\prime}$
Chessylite	$29^{\circ} 37^{\prime}$	Lehmannite	- $28^{\circ} 38^{\prime}$	Tincal		$24^{\circ} 51^{\prime}$
$\underset{\text { Felspar }}{\text { Friaglebenite }}$	- $\mathbf{4 5}^{5^{\circ}}{ }^{30}$	мica	- $24^{\circ} 45^{\circ}$	Wagnerite		57

Chessylite has a perfect cleavage parallel to this form.
The form $\infty 14$; (4 P ∞) Naumana; 041 Miller; E^{2} Brooke ana Levy. Augite . . . ${ }^{23}{ }^{\circ} 42^{\prime}$
The form $\infty 16$; ($6 \mathrm{P} \infty$) Naumann; 061 Miller; E^{3} Brooke and Levy.
Felspar . . . $18^{\circ} 29^{\circ}$
Oblique Rhombic Octahedron.-The oblique rhomb coctahedron, or the do cble four-faced oblique pyramid on a rhombic base, which is also called the monoclinohedric pyramid, is a solid bounded by eight scalene triangles. These triangular faces are of two kinds; the faces $\mathrm{P}_{1} \mathrm{H}_{1} \mathrm{G}_{1}$ (Fig. 337), $\mathrm{P}_{1} \mathrm{H}_{2} \mathrm{G}_{2}, \mathrm{P}_{2} \mathrm{H}_{1} \mathrm{G}$, and $\mathrm{P}_{2} \mathrm{H}_{2} \mathrm{G}_{2}$, being equal and similar scalene triangles; and the faces $\mathrm{P}_{1} \mathrm{G}_{2} \mathrm{H}_{1}, \mathrm{P}_{1} \mathrm{H}_{2} \mathrm{G}_{2}, \mathrm{P}_{2} \mathrm{H}_{1} \mathrm{G}_{1}$, and $\mathrm{P}_{2} \mathrm{H}_{2} \mathrm{G}_{1}$ being also similar and equal scalene triangles, which ars not similar or equal to the former. This solid may be regarded as a combination of two open forms, each consisting only of those fuces which are similar and equal to each other.

To drav tho Oblique Rhombic Octahedron-Prick off from Fig. 325 the points $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{G}_{1}, \mathrm{G}_{2}$, and join these as in Fig. 337.

Axes.-The axes of the oblique system join the points $\mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{H}_{1} \mathrm{H}_{2}$, and $\mathrm{G}_{1} \mathrm{G}_{2}$, Fig. 337 .

Sjmbols.-Every face of the pyramid cuts the three axes

Fig. 3.i. $\mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{H}_{1} \mathrm{H}_{2}$, and $\mathrm{G}_{1} \mathrm{G}_{2}$, at the extremities of the parameters.

111 may be taken as the symbol for the form whose faces are $P_{1} H_{1} G_{1}, P_{1} H_{\sim} G_{1}$, $P_{2} H_{1} G$, and $P_{2} H_{2} G_{2}$. Naumann's symbol for this form is P; Miler's, 111 ; Brooke and Levy's, D. This form is called the posit ve hemi-pyramid.
$\overline{1} 11$ may be taken as the symbol for the form whose fuces are $P_{1} H_{1} G_{2}, P_{1}$ II, G_{2}, $P_{1} H_{1} G_{1}$, and $P_{2} H_{2} G_{1}$. Naumann's is $-P$; Miller's, 111 ; Brooke and Lery's B. This form is called the negative hemi-pyramid.

Position of the Poles on the Sphere of Projection.-Two of the poles of each of these forms lie in the same circle of north latitude, and two in the circle of 'south latitude, whose south polar distance λ is equal to the north polar distance of the former.

Let μ be the longitude of the pole nearest to G_{1} (Fig. 330) on the northern hemisphere, rechoning its longitude from G_{1}, of the form 111 , the four poles of this form will be where the circles of latitule mhose north and south polar distances are λ cut the meridians μ and 180 - $+\frac{L}{L}$ LIAD - Université Lille 1

If μ be the longitude of the nearest pole of $\overline{1} 11$ to G_{2}, reckoning its longitude from G_{1}, its four pales will be where the circles of latitude, whose north and south polar distances are λ, cut the meridians μ and $180+\mu$.

The following formula are used for the determination of λ and μ for the form 111 . If ϕ be such an angle that $\tan \phi=\sin \beta \cos (\alpha+\beta) \operatorname{cosec} \alpha$ and ψ such that $\cot \psi=\sin \phi \operatorname{cosec}(45+\phi) \sin 45 \tan (\alpha+\beta)$
Then $\mu=\psi+\alpha+\beta-90^{\circ}$ and $\tan \lambda=\sin \beta \tan \gamma \sec \psi$
For the form 111 the formule are the same, except that
$\tan \phi=-\sin \beta \cos (\alpha+\beta) \operatorname{cosec} \alpha$.

Fig. 338.

Fig. 339.

Fig. 340.

To describe a Net for the Obiique Rhonbic Octahedron.-Draw CH and CP (Fig. 338) at right angles to each other; take CH

Fig. 341. and CP equal to the parameters CH and CP (Figs. 326 and 327), and in CP take CG equal to the parameter CG (Fig. 326). Join HG and HP.

Then (Fig. 339) describe the triangle $H_{1} P_{1} G_{1}$, having its sides $H_{1} G_{1}$ and $H_{1} P_{1}$ equal to HG and HP (Fig. 338), and the side $G_{1} P_{1}$ equal to a line joining G_{1} and P_{1} (Fig. 325).

Likewise (Fig. 340) describe the triangle $\mathrm{H}_{2} \mathrm{P}_{1} \mathrm{G}_{2}$, having its sides $\mathrm{H}_{2} \mathrm{G}_{2}$ and $\mathrm{H}_{2} \mathrm{P}_{1}$ equal to HG and HP (Fig. 338), and the side $G_{2} P_{1}$ equal to a line joining G_{2} and P_{1} (Fig. 325).

Then four triangles equal and similar to $P_{1} H_{1} G_{1}$ (Fig. 339), and four other equal and similar to $\mathrm{P}_{1} \mathrm{H}_{2} \mathrm{G}_{2}$ (Fig. 340) arranged as in Fig. 341, will form the required net.

Faces parallel to the Positive Hemipyramid 111; P Naumann; 111 Miller; D Brooke and Levy, have been observed in the following Minerals.

		$\mu=63^{\circ} 40^{\circ}$	Laumonite	$\lambda=66^{\circ} 43$	$\mu=46^{\circ} 37$
Amphibole	$\lambda=77^{\circ} 13^{\prime}$	$\mu=50^{\circ} 35^{\prime}$	Lehmannite	$\lambda=59^{\circ} 29^{\prime}$	$\mu=39^{\text { }} 2^{\prime}$
Augite	- $\lambda=65^{\circ} 42^{\prime}$	$\mu=49^{\circ} 50^{\prime}$	Lunnite	$\lambda=58^{\circ} 54^{\prime}$	$\mu=64^{\prime} 23^{\prime}$
Barytocalcite	- $\lambda=53^{\circ} 27^{\prime}$	$\mu=61^{\circ} 0^{\prime}$	Melanterite	$\lambda=50^{\circ} 46^{\prime}$	$\mu=31^{\circ} 53^{\prime}$
Botryogen.	- $\lambda=62^{\circ} 41^{\prime}$	$\mu=63^{\circ} 5^{\prime}$	Miargerite	$\lambda=26^{\circ} 38^{\prime}$	$\mu=40^{\circ} 2^{\prime}$
Bragationite	- $\lambda=35^{\circ} 48^{\prime}$	$\mu=63^{\circ} 25^{\prime}$	Mica	$\lambda=64^{\circ} 46^{\prime}$	$\mu=25^{\circ} 19{ }^{\prime}$
Chessylite -	- $\lambda=58^{\circ} 3^{\prime}$	$\mu=45^{\circ} 4^{\prime}$	Mirabilite	$\lambda=46^{\circ}$	$57^{\circ} 55^{\prime}$
Epidote	- $\lambda=35^{\circ} 16^{\prime \prime}$	$\mu=63^{\circ} 43^{\prime}$	Monazite	$\lambda=59^{\circ} 41$	$39^{\circ} 20^{\circ}$
Erythrine	- $\lambda=59^{\circ} 12^{\prime}$	$\mu=55^{\circ} 9^{\prime}$	Plaziouite .	$71^{\circ} 1^{\prime}$	$54^{\circ} 51^{\prime \prime}$
Euclase	- $\lambda=75^{\circ} 54^{\prime}$	$\mu=49^{\circ} 17^{\prime}$	Realgar	46°	$73^{\circ} 33^{\circ}$
Felspar	- $\lambda=63^{\circ} 7^{\prime}$	$\mu=65^{\circ} 48^{\prime}$	Rhyacolite.		$\mu=65^{\circ} 37^{\prime}$
Preieslebenit	$\lambda=64^{\circ} 1^{\prime}$	$\mu=31^{\circ} 41^{\prime}$	Scolezite	$\lambda=72^{\circ} 20^{\prime}$	$\mu=69^{\circ} 599^{\prime}$
Gaylussite.	$\lambda=55^{\circ} 15^{\circ}$	$\mu=73^{\circ} 50^{\circ}$	Spodumene	$\lambda=45^{\circ} 33^{\prime}$	$49^{\circ} 50^{\circ}$
Giauberite	- $\lambda=58^{\circ} 10^{\circ}$	$\mu=37^{\circ} 23^{\prime}$	Tincal	$\lambda=48^{\circ} 20^{\prime}$	$\mu=52^{\circ} 33$
Gypsume	$\lambda=711^{\circ} 51^{\prime}$	$\mu=52^{\circ} 16^{16^{\prime}}$	Vauquelinite	determined.	
Heulandite		$43^{\circ} 53^{\circ}$	Vivianite ${ }^{\text {Wagnerite }}$	35^{\prime}	$\mu=54{ }^{\text {P }} 13{ }^{\circ}$ $\mu=63^{\circ}$ a
Klamite ${ }^{\text {Ela }}$		$\mu=640^{\circ}$ $\mu=29^{\circ} 25^{\prime}$	Wagnerite	= ${ }^{\text {a }}{ }^{\circ} 3^{\prime}{ }^{\prime}$	= $633^{\circ} 25^{\circ}$ $=32^{\circ} 4^{\prime}$

Faces parallel to the Negative Hemipyramid $\overline{\mathbf{1}} 11$; - P Naumann; $\overline{\mathbf{1}} 11$ Niller; B Brooke and Levy, have been observed in the following Minerals.

Amph		$\mu=106^{3} 2^{\prime}$	Lehm		
		$105^{\circ}{ }^{\prime}$	Mica	${ }^{\circ} 27^{\prime}$	$\mu=150^{\circ} 27^{\prime}$
Chessyb	- $\lambda=59^{\circ} 8^{\prime}$	$137^{\circ} 13^{\prime}$	Mirabilite	$55^{\circ} 21^{\prime}$	$141^{\circ} 42$
pidote	48°	$145^{\circ} 17^{\prime}$	Monazite	$=53^{3} 18^{\prime}$	126
Euclase	$71^{\circ} 55^{\circ}$	$=99^{\circ} 59^{\circ}$	Pargasite	- $4^{\circ} 14$	106°
els		145°		$67^{\circ} 13^{\circ}$	
lau	- $\lambda=47^{\circ} 41^{\prime}$	$117{ }^{\circ}$	Scol	$1{ }^{\circ}$	$=108^{\circ} 25^{\circ}$
Gypsum		113°	Vivi	$67^{\circ} 7^{\prime}$	$144^{\circ} 20$
Humit		131	Wagnerit	63°	

Augite has a cleavage parallel to this form.
Dexived Oblique Rhombic Octahedrons.-From the oblique rhombic octahedron just described, a series of oblique rhombic octahedrons may be derived, similar to it in position, but differing in magnitude. These octahedrons may conveniently be arranged under three classes.

Dexived Oblique Octahedron of the Fixst Class.-These pyramils may be drawn by making CP_{1} and CP_{2} (Fig. 325) equal to m times the parameter CP (Fig. 326), where m may be any whole number or fraction greater or less than unity.

Syınbols.-The symbol for the positive hemipyramid is $11 m ; m$ P Narmann; $h h l$ Miller; D^{n} Brooke and Levy. For the negative hemipyramid $\overline{\mathrm{I}} \mathbf{1} m$; $-m \mathrm{P}$, Naumann; Bm Brooke and Levy.

Poles.-The poles of the positive hemipsramids lie in the zone $\mathrm{E}_{1} \mathrm{CE}_{2}$ (Fig. 330), and those of the negative in the zone $\mathrm{F}_{1} \mathrm{CF}_{2}$. To determine λ and μ we have the following formulx :-

$$
\begin{aligned}
& \tan \phi= \pm m \sin \beta \cos (\alpha+\beta) \operatorname{cosec} \alpha \\
& \cot \psi=\sin \phi \operatorname{cosec}(45+\phi) \sin 45 \tan (\alpha+\beta) \\
& \mu=\psi+\alpha+\beta-90 \text { and } \tan \lambda=\sin \beta \tan \gamma \sec \psi .
\end{aligned}
$$

Faces parallel to the following Pyramids of the First Class have been observed in Nature.
The form $11 \frac{1}{10} ; \frac{1}{10}$ P Naumann; 1, 1, 10 Miller; D ${ }^{10}$ Brooke and Levy.
Miargyrite - $\lambda=73^{\circ} 12^{\prime \prime} \mu=75^{\prime} 49^{\circ}$

Miargyrite . . $\lambda=63^{\circ} 51^{\prime \prime} \mu=72^{\circ} 13^{\circ}$
The form $11 \frac{1}{4} ; \frac{1}{4}$ P Naumann; 114 Miller ; D4 Brooke and Levy. Miargyrite - . $\lambda=54^{\circ} 26^{\prime} \quad \mu=67^{\circ} 50^{\circ}$
The form 11 f; \& P Naumann ; 113 Miller; D^{3} Brooke and Levs.

Miargyrite $\quad \lambda=47^{\circ} \quad 9^{\prime} \quad \mu=63^{\circ} 37^{\prime}$
The form $11 \frac{1}{3}$; $\frac{1}{2}$ P Naumann; 112 Miller ; D ${ }^{2}$ Brooko and Levy.

Plagionite has a perfect cleavage parallel to this form.
The form $11 \frac{2}{3} ; \frac{3}{3} P$ Naumann; 223 Miller; $D^{\frac{3}{2}}$ Brooke and Levy.

'I he form 112; 2 P Naumann; 291 Miller; $D^{\frac{1}{2}}$ Erooke and Levy.

The form 113 ; 3 P Naumann; 331 ATiller; $D^{\frac{1}{3}}$ Brouke and Levy. Euclase . . $\lambda=6 j^{\circ} 8^{\prime} \mu=2731^{\prime}$
The form 114 ; 4 P Naumann; 41 Miller ; $D^{\frac{1}{4}}$ Brooke and Levy. Lehmannite - $\lambda=49^{\circ}$ \& $\mu=13^{\circ} 16^{\prime}$
The form $\overline{1} 1 \frac{1}{2} ;-\frac{1}{2} P$ Saumann; $\overline{1} 12$ Miller ; B^{2} Brooke and Levy. Brygationite $\cdot \lambda=60^{\circ} 33^{\prime} \mu=13327^{\prime} \mid$ Vivianite. . $\lambda=74^{\circ} 41^{\prime} \quad u=130^{5} 51^{\prime}$ Miargyrite $\cdot \lambda=34^{\circ} 33^{\prime} \quad \mu=110^{\circ} 30^{\prime} \mid$ Whewellite $\quad \lambda=6539^{\prime} \mu=138^{\circ} 40^{\circ}$
The form $11: 2$ - ${ }_{3}^{1}$ P Naumann; $\overline{1} 13$ Miller; B^{3} Brooke and Levy. Glauberite $\quad \lambda=71^{\circ} 22^{\prime}, \mu=84^{\prime} 27^{\prime}, \mid$ Klaprothine $\quad \lambda=63^{\circ} 3 z^{\prime} \mu=118^{\circ} 5^{\prime}$ Gypsum - . $\lambda=8$ º $^{\circ} 8^{\prime} \mu=922^{\prime}$
The form 112 ;-2 P Naumann, 21 Miller; $\mathrm{B}^{\frac{1}{2}}$ Brooke and Levy.
 Humite . $\lambda=320^{\circ}, \mu=147^{2} \mathrm{~S}^{\prime}$
The form $\overline{1} 13 ;-3 \mathrm{P}$ Nuumann ; 331 Miller ; $B^{\frac{1}{3}}$ Brooke and Lery. Augite - . $\lambda=41^{\circ} 4^{\prime} \mu=143^{\circ} 17^{\prime} \mid$ Glauberite . $\lambda=71^{\circ} 22^{\prime} \mu=84^{\circ} 27^{\prime}$

Derived Oblique Octanedron of the Second Class.-This octahedron may be drawn and its net described, by making CP_{1} and CP_{2} (Fig. 325̄) m times the parameter CP (Fig. 326); where m may be any whole number or fraction equal to, greater, or less than unity: and CH_{1} and CH_{2} (Fig. 325) n times the parameter CH (Fig. 327), where n may be any whole number or fraction greater than unity.

Symbols.-The symbol for the positive hemipyramid of this octakedron is 1 nm ; m P n Naumann ; h 合 l Miller ; $\mathrm{D}^{1} \mathrm{D}^{\frac{n+1}{n-1}} \mathrm{H}^{\frac{n(n+1)}{2 n}}$ Brouke and Levy : for the negative hemipyramid $\overline{1} n m ;-m P_{n}$ Naumann $; \bar{b} k l$ Miller $; B^{1} B^{n+1} F^{n-1} H^{\frac{m(n+1)}{2 n}}$ Brooke and Levy.

Poles.-To determine the position of the poles we have the following formulas:$\tan \phi= \pm m \sin \beta \cos (\alpha+\beta) \operatorname{cosec} \alpha$ $\cot \psi=\sin \phi \operatorname{cosec}(45+\phi) \sin 45 \tan (\alpha+\beta)$ $\mu=\psi+a+\beta-\psi$ and $\tan \lambda=n \sin \beta \tan \gamma \sec \psi$.
The positive or negative sign being used for $\tan \phi$, according as the hemipyramid is positive or negative.

Faces parallel to the following Pyramids of the Second Class have been observed in nature.
The form $12 \frac{1}{2} ; \frac{1}{2} \mathrm{P} 2$ Naumann; 214 Miller; $\mathrm{D}^{1} \mathrm{D}^{3} \mathrm{H}^{\frac{3}{8}}$ Brooke and Levy. Sphene - . $\lambda=82 \quad 16^{\prime} \quad \mu=55^{\circ} 33^{\prime}$
The form 121 ; P 2 Naun:ann; 212 Miller; $D^{1} D^{3} H^{\frac{3}{7}}$ Brooke and Levy.
Klaprothine $\quad \lambda=67^{\circ} 22^{\circ} \mu=29^{\circ} 25^{\circ} \mid$ Spodumene $\quad \lambda=45^{\circ} 33^{\prime}, \mu=4950^{\circ}$
Miarpyrite $\quad \lambda=45^{\circ} 5^{\prime} \mu=40^{\circ} 2^{2^{\prime}} \quad$ Wagnerite $\quad \lambda=71^{\circ} 24^{\prime} \mu=63^{\circ} 25^{\prime}$
Realgar

cille 1arallel to this form.

The form $12 \frac{4}{5}$; $\frac{4}{3} \mathrm{P} 2$ Naumann; 423 Miller; $D^{1} D^{3} H^{1}$ Brooke and Levy. Humite - . $\lambda=52^{2} 2^{\prime} \mu=54^{\circ} 29^{\circ}$
The form $122 ; 2$ P 2 Naumann; 211 Miller; $D^{2} D^{3}$ H $^{\frac{3}{2}}$ Brooke and Levy.
 Humite $\quad . \lambda=4553^{\prime} \mu=40^{\circ} 37^{\prime}$

The form 124 ; 4P2 Naumann; 421 Miller ; $D^{1} D^{3} \mathrm{H}^{3}$ or ${ }_{3}$ A Brooke and Levy. Miargyrite $\quad \lambda=35^{\circ} 34^{\prime} \mu=13^{\circ} 4^{\prime} \mid$ Realgar $\quad . \lambda=5415^{\prime} \mu=26^{\circ} 7^{\prime}$

The form $1 \frac{7}{3} 7$; 7 P $\}$ Naumann; 731 Miller ; Di $D^{\frac{5}{3}} H^{5}$ Brooke and Levy. Miargyrite - $\lambda=3856^{\prime} \mu=7^{\circ} 39^{\prime}$
The form $13 \frac{3}{4}$; ${ }^{3} 3$ Naumann; 314 Miller; D D^{2} H 3 Brooke and Levy. Wagnerite . $\lambda=79^{\circ} 35^{\circ} \mu=73^{\circ} 37^{\circ}$
The form $13 \frac{3}{2}$; $\frac{3}{2} \mathrm{P} 3$ Naumann; 312 Miller ; $\mathrm{D}^{1} \mathrm{D}^{2} \mathrm{H}^{1}$ Brooke and Levy. Freieslebenite $\quad \lambda=79^{\circ} 55^{\prime} \quad \mu=22^{\circ} 34^{\prime}$
The form 132 ; 2 P 3 Naumann; 623 Miller; $\mathrm{D}^{1} \mathrm{D}^{2} \mathrm{H}^{\frac{4}{3}}$ Brooke and Levy Humite - - $\lambda=55^{\circ} 1^{\prime} \mu=40^{\circ} 37^{\prime}$
The form 1 33; 3 P 3 Naumann; 311 Miller; $D^{1} D^{2} H^{2}$ or ${ }_{2} A$ Brooke and I vy. Miargyrite - $\lambda=47^{3} 59^{\prime} \mu=1738^{\prime}$
The form $141 ; \mathrm{P}_{4}$ Naumann; 414 Miller ; $\mathrm{D}^{1} \mathrm{D}^{\frac{5}{5}} \mathrm{H}^{\frac{8}{8}}$ Brooke and Levy. Freieslebenite. $\lambda=83 \quad 3^{\prime} \quad \mu=31^{\prime} 4^{\prime}$
The form 142 ; 2 P 4 Naumann; 412 Miller; $D^{1} D^{\frac{8}{8}} \mathrm{H}^{\frac{3}{4}}$ Brooke and Levg. Realgar - . $\lambda=7119^{\prime} \mu=45^{\circ} 2^{\prime}$
The form 144 ; 4 P 4 Naumann; 411 Miller; $D^{1} D^{\frac{7}{3}} \mathrm{H}^{\frac{8}{2}}$ Brooke and Levy. Chessylite - $\lambda=78^{\circ} 16^{\prime} \mu=1410^{\prime}$
The form 155 ; 5 P 5 Naumann; 511 Miller; $\mathrm{D}^{1} \mathrm{D}^{\frac{3}{2}} \mathrm{H}^{3}$ Brooke and Lery. Miargyrite $\quad \lambda=6023^{\prime} \mu=10^{\circ} 34^{\prime}$
The form 16 3; 3P6 Naumann; 612 Miller; $D^{1} D^{\frac{7}{7}} \mathrm{H}^{\frac{7}{4}}$ Brooke and Levy. Realgar . . $\lambda=i 63 t^{\prime} \mu=20^{\circ} 25^{\circ}$
The form $\overline{1} \frac{3}{2} 1 ;-P \frac{3}{2}$ Naumann ; $\overline{3} 21$ Miller; $B^{1} B^{s} H^{\hat{3}}$ Brooke and Levy. Pharmacolite. $\lambda=6938^{\prime} \mu=14842^{\prime} \mid$ Euclase . . $\lambda=6710^{\prime} \mu=9059^{\prime}$
The form 121 ; - P 2 Naumann; $\overline{2} 12$ Miller; $B^{1} B^{s} H^{3}$ Brooke and Levy. Realgar . . $\lambda=7233^{\prime} \mu=13946^{\prime}$
The form $\overline{1} 22$;-2 2 Naumann; $\overline{2} 11$ Miller; $B^{1} B^{3} H^{\frac{3}{2}}$ Brooke and Levy. Bragationite . $\lambda=59^{\circ} 8^{\prime} \mu=15720^{\prime} \mid$ Lelmannite . $\lambda=6549^{\prime} \mu=12855^{\prime}$

The form $\overline{1} 24 ;-4 \mathrm{P} 2$ Naumann; 421 Miller; $\mathrm{B}^{1} \mathrm{~B}^{3} \mathrm{H}^{3}$ or A_{3} Brooke and Levy. Humite . . $\lambda=46{\mathbf{~} 52^{\prime}}^{\mu}=161 \quad 0^{\circ}$
The form $\overline{1} 31$; - P 3 Naumann ; 313 Miller ; $\mathrm{B}^{1} \mathrm{~B}^{2} \mathrm{H}^{\frac{2}{3}}$ Brooke and Levy. Gyprum . . $\lambda=67^{\circ} 30^{\prime} \mu=11346^{\circ} \mid$ Miargyrite . $\lambda=5310^{\circ} \mu=13146^{\prime}$
The form $\overline{1} 33$; - 3 P 3 Naumann; 311 Miller; $B^{1} \mathrm{~B}^{2} \mathrm{H}^{2}$ or A_{2} Brooke and Levy.

Amphibole $\quad \lambda=49^{\prime} 52^{\prime} \mu=106^{\circ} 2^{\prime} \quad$ Glauberite $\quad \lambda=68 \quad 4 \quad \mu-155 \quad 25^{\prime \prime}$

The form $\overline{1} 61$; - P 6 Naumann; 616 Miller ; $B^{1} B^{\frac{7}{5}} H^{\frac{7}{12}}$ Brooke and Levy. Miargyrite $\quad \lambda=70^{\circ} 30^{\circ} \mu=131^{\circ} 46^{\prime}$

Derived Oblique Octahedron of the Third Class.-This octahedron may be drawn and its net described, by making CP_{1} and CP_{1} (Fig. 325) m times the parameter CP (Fig. 326); where m may be any whole number or fraction, equal to, greater, or less than unity; and $\mathrm{CG}_{1}, \mathrm{CG}_{2}$ (Fig. 325) equal to n times the parameter CG (Fig. 326), where n may be any whole number, or fraction greater than unity.

Symbols.-The symbol for the positive hemipyramid of this octahedron is $n 1 \mathrm{~m}$; ($n \mathrm{P} n$) Naumann; $k h l$ Miller; $\mathrm{D}^{1} \mathrm{D}_{n-1}^{n+1} \mathrm{G}^{\frac{m^{\prime}(n+1)}{2 n}}$ Brooke and Levy. For the ncgative hemipyramid $\bar{n} 1 m$; 一 $(m \mathrm{P} n)$ Naumann ; $\bar{k} h l$ Miller ; $\mathrm{B}^{1} \mathrm{~B}^{\frac{n+1}{n-1}} \mathrm{G}^{\frac{m(n+1)}{2 n}}$ Brooke and Levy.

Poles.-To determinc the position of the poles we have the following formule :-

$$
\begin{gathered}
\tan \phi= \pm \frac{m}{n} \sin \beta \cos (\alpha+\beta) \operatorname{cosec} a \\
\cot \psi=\sin \phi \operatorname{cosec}(45+\phi) \sin 45 \tan (\alpha+\beta) \\
\mu=\psi+\alpha+\beta-\psi \text { and } \tan \lambda=\frac{1}{n} \sin \beta \tan \gamma \sec \psi
\end{gathered}
$$

The positive or negative sign being used for $\tan \phi$ according as the hemipyramid is positive or negative.

Faces parallel to the following Pyramids of the Third Class have been observed in nature.
The form $\frac{3}{2} \mathrm{I} \frac{3}{2} ;\left(\frac{3}{2} \mathrm{P} \frac{3}{2}\right)$ Naumann ; 232 Miller ; $\mathrm{D}^{1} \mathrm{D}^{5} \mathrm{G}^{\frac{5}{4}}$ Brooke and Levy. Realgar - . $\lambda=35^{\circ} 33^{\prime \prime} \mu=73^{\circ} 33^{\prime}$
The form $21 \frac{2}{5}$; ($\frac{2}{5}$ P 2) Naumann; 12 5, Miller; $D^{1} D^{3} G^{\frac{3}{10}}$ Brooke and Levy. Chessylite . . $\lambda=71^{\circ} 35^{\prime} \mu=80^{\circ} 32^{\prime}$
The form $21 \frac{2}{3}$; (${ }_{(3)}^{3} \mathrm{P}$ 2) Naumann; 123 Miller; $\mathrm{D}^{1} \mathrm{D}^{3} \mathrm{G}^{\frac{1}{2}}$ Brooke and Levy. Sphene. . . $\lambda=63^{\circ} 2^{\prime} \mu=66^{\prime}{ }^{2} 2^{\prime}$
The form $21 \frac{4}{5}$; ($\frac{1}{5}$ P 2) Naumann ; 245 Miller; D ${ }^{1} D^{3} G^{\frac{3}{b}}$ Brooke and Lery. Chessylite . . $\lambda=56^{\prime} 35^{\circ} \mu=69^{\prime} 29^{\prime}$
The form 211 ; (P 2) Naumann; 122 Miller; $\mathrm{D}^{1} \mathrm{D}^{3} \mathrm{G}^{\frac{3}{4}}$ Brooke and Levy. Epidote - . $\lambda=32^{\circ} 23^{\prime} \mu=89^{\circ} 27^{\prime} \mid$ Wagnerite. . $\lambda=53^{\circ} 2^{\prime} \mu=85^{\circ} 4^{\prime}$
The form $21 \frac{4}{3}$; (${ }^{4} \mathrm{P}$ 2) Naumann; 243 Miller ; Di $D^{3} \mathrm{G}^{1}$ Brooke and Levy. Chessylite . . $\lambda=45^{\circ} 29^{\prime} \mu=56^{\circ} 57^{\prime}$
The form 212 ; (2 P 2) Naumann; 121 Miller; $D^{1} D^{5} G^{\frac{3}{2}}$ Brooke and Levy.

$$
\begin{aligned}
& \text { Barytocalcite - } \lambda=34^{\circ} \sigma^{\gamma} \mu=61^{\circ} \sigma^{\prime} \mid \text { Monazite - . } \lambda=40^{\circ} 32^{\circ} \mu=35^{\circ} 20^{\circ} \\
& \text { Freieslebenite . } \lambda=76^{\circ} 18^{\prime} \mu=31^{\circ} 41^{\prime} \mid \text { Natron } \quad . \lambda=39^{\circ} 50^{\prime} \quad \mu=58^{\circ} 52^{\prime}
\end{aligned}
$$

The form 214 ; (4P 2) Naumann; 241 Miller ; D $D^{1} D^{3} G^{3}$ or E_{3} Brooke and Levy. Chessylite . . $\lambda=32^{\circ} 50^{\circ} \mu=26^{\circ} 9^{\prime} \mid$ Felspar . . $\lambda=37^{\circ} 35^{\prime} \mu=35^{\circ} 45^{\prime}$
The form $51 \frac{3}{4}$; ($\frac{3}{2}$ P 3) Naumann; 134 Miller ; D $D^{1} \mathrm{G}^{\frac{1}{2}}$ Brooke and Levs. Chessylite. . $\lambda=57^{\circ} 12^{\circ} \mu=i 7^{\circ} 41^{\prime}$

The form 313 ; (3 P 3) Naumann ; 131 Miller ; $D^{1} \mathrm{D}^{2} \mathrm{G}^{2}$ or E_{2} Brooke and Lery.

$$
\begin{aligned}
& \text { Luclase } \quad . \lambda=53^{\circ} 0^{\circ} \mu=49^{\circ} 17^{\circ}
\end{aligned}
$$

The form 414 ; (4 P 4) Naumann; 141 Miller ; $D^{1} D^{\frac{5}{3}} G^{5}$ Brooke and Levy.
Sphene - $\lambda=33^{\circ} 52^{\prime} \quad \mu=34^{\circ} 27^{\prime}$
The form $51 \frac{5}{2}$; ($\frac{5}{2}$ P 5) Naumann; 15.2 Miller; $D^{1} D^{\frac{3}{2}} \cdot G^{\frac{3}{2}}$ or $\mathrm{E}_{\frac{3}{2}}$ Brooke and Levy.

$$
\text { Augite } \quad . \lambda=37^{\circ} 49^{\prime} \mu=60^{\circ} 29^{\prime}
$$

The form 612 ; (2 P 6) Naumann; 163 Miller ; $D^{1} D^{7} G^{7}$ Lrooke and Levs. Sphenc - . $\lambda=39^{\circ} 34^{\prime} \mu=60^{\circ} 52^{\prime}$
 Euclase - . $\lambda=49^{\circ} 52^{\circ} \mu=140^{\circ} 20^{\circ}$
The form 211 ; ((2 2) Naumann; 122 Miller; $\mathrm{B}^{1} \mathrm{~B}^{3} \mathrm{G}^{\frac{5}{2}}$ Brooke and Levs. Wagnerite - $\lambda=59^{\circ} 30^{\circ} \mu=126^{\circ} 32^{\prime} \mid$ Lunnite $\quad . ~ \lambda=56^{\circ} 58^{\prime} \mu=103^{\circ} 26^{\prime}$
The form $\overline{2} 1 \frac{\text { 手; (}}{3}$ P 2) Naumann ; $\overline{\mathrm{Z}} 43$ Miller; $\mathrm{B}^{1} \mathrm{~B}^{3} \mathrm{G}^{1}$ Brooke and Levy. Chessylite $\quad . \lambda=46^{\circ} 36^{\circ} \mu=126^{\circ} 12^{\circ}$
The form 212 ; (2 P 2) Naumann; $\overline{1} 21$ Miller; $B^{1} B^{3} G^{3}$ Drooke and Levy.

$$
\begin{aligned}
& \text { Chessylite . . } \lambda=3955^{\prime} \mu=137^{\circ} 13^{\prime} \mid \text { Gypsum . . } \lambda=59^{\circ} 50^{\circ} \lambda=113^{\circ} 46^{\prime} \\
& \text { Luclase : } \lambda=56^{\circ} 52^{\prime} \quad \mu=99^{\circ} 59^{\prime} \mid \text { sphene : } \lambda=5527^{\prime} \lambda=148^{\circ} 28^{\prime}
\end{aligned}
$$

The form $\overline{2} 18$; - (${ }^{\mathbf{8}}$ P 2) Naumann; $\overline{4} 83$ Miller, $\mathrm{B}^{1} \mathrm{~B}^{3} \mathrm{G}^{2}$ Brooke and Levy.

$$
\text { Augite . . } \lambda=34^{\circ} 51^{\prime} \mu=114^{\circ} 31^{\prime}
$$

The form $\overline{2} 14$; - (4P2) Naumann; 241 Miller; $\mathrm{Bl}^{1} \mathrm{~B}^{3} \mathrm{G}^{3}$ or ${ }_{3} \mathrm{E}$ Brooke and Levy.

$$
\text { Felspar . . } \lambda=49^{\prime} 10^{\circ} \mu=157^{\circ} 7^{\prime}
$$

The form 313 ; - (3 P 3) Naumann; ī 31 Miller ; $\mathrm{B}^{1} \mathrm{~B}^{2} \mathrm{G}^{2}$ or ${ }_{2} \mathrm{E}$ Brooke and Levg.

The combinations of this system are so like those of the Prismatic, that we necd not give any examples of them.

sixth system-anorthic, or doubly oblique.

This system is called the anorthic from the want of symmetry of its forms; and the doubly oblique because its forms may be derived from the doubly oblique prism, and doubly oblique octahedron. It has also been called the Triclinohedric, Anorthotype, Tetartoprismatic, Tetarto-rhonbic, and the One-and-one-membered system.

To this system all forms may be referred which cannot be placed under any of the preceding systems.

Only two forms belong to the anorthic system : the doubly cblique prism, and the

Alphabetical list of Minerals belonging to the Anorthic or Doubly Oblique System, with the Angular Elements from which their typical forms and axes may be derived. Blanks are left in the cases where the Angular Elements have not been determined.

Albite (cleavelandite : Tetartoprismatic felspa: . . Axinite Babingtonite . Blue vitriol (sulphate of copper) . Christianite (anorthite) . Kyanite (disthene)
Latrobite

α	β,	${ }_{0} \gamma$,	${ }^{\text {A }}$,	B	${ }^{\text {C }}$,	${ }^{\delta}$,	${ }^{\text {E }}$
9446	6326	938	9336	6336	9118	5826	4135
9149	822	10236	$90 \quad 5$	8214	10230	520	5121
4336	8647	11239	9234	880	11230	3918	2349
7312	678	8256	7022	$65 \quad 4$	10041	$28 \quad 4$	2716
9311	6346	8841	9412	6338	8658	5731	4055
9146	6326	938	93	6336	9118	5826	4135
9446	$63 \quad 26$	938	9336	6336	9118	5826	4135
9232	10418	5942	9232	10418	9020	2959	2751

Paxameters and Axes.-In the anorthic system the three parameters are unequal, and no two axes are inclined to each other at right angles. By means of the

Fig. 342. angular elements α, β, A, δ and \in we may determine the lengths of the parameters and the inclination of the axes.

To deterpine the Lengths of the Parameters.-Take a straight line OT (Fig. 342) of any convenient length to represent one of the parameters; this will be the arbitrary unit of the system. Through one of its extremities 0 , draw $0 Q$ perpendicular to OT; through T draw TX, making an angle δ; and TP making an angle \in with $O T$; let $T M$ and $T P$ cut $O Q$ in M and P .
Then $O M$ and $O P$ will represent the lengths of the other two parameters.
To represent the Inclination of the Axce in Perspective.-Draw a straight line XOX' (Fig. 343), and through 0 a point in it the line $O Z$ perpendicular to $X X^{\prime}$, and the line $O Y$ making with $0 X^{\prime}$ an angle of about 30° with OX'. Along $0 X$ take OT_{1} equal OT (Fig. 342).

Then (Fig. 344) draw a line $A B C$, and through B a point in

Fig. 343. it draw BD making the angle γ with AB , take BD equal to 0 M (Fig. 342), and

Fig. 34.

Fig. 345 through D draw DF perpendicular to AC. In OY (Fig. 343) take OD equal to half of DF (Fig. 344), and through D (Fig. 343) draw DM_{1} parallel to OX and equal to BF (Fig. 344). Join OM_{1} and produce it to OY^{\prime}.

Now (Fig: 344) draw FG making the angle β with $F C$, take $F G$ equal to $O P$ (Fig. 342), andthough G Afaw Griversendifular to DF.

Draw HK and KL (Fig. 345) at right angles to each other, take KH equal
to FE (Fig. 344) ; through H draw HL , making the angle $90^{\circ}-\mathrm{A}$ with HK and meeting KL in L .

In OY (Fig. 343) take OE equal to half of LK (Fig. 345), through \mathbf{E} draw EF parallel to OZ and equal to HK (Fig. 345).

Through F draw FP_{1} parallel to OX and equal to EG (Fig. 336) ; join $0 \mathrm{P}_{1}$ and produce it to any point Z :

Then $O X, O Y^{\prime}$ and $O Z$ ' will represent the direction of the axes for any substance whose angular elements α, β and A are given (page 458), and $0 \mathrm{~T}, 0 \mathrm{M}$, and 0 P will represent the magnitude of its parameters, depending upon the angles δ and ϵ.

Doubly Oblique Prism-First Order. -The doubly oblique prism is a solid bounded by six faces, which are all oblique parallelograms, and equal to each other

Fig. 346.
only in pairs. The face $A_{1} E_{1} O_{1} I_{1}$ (Fig. 346) being equal and parallel to the face $A_{1} E_{2} O_{2} I_{2}$; the face $0_{1} I_{1} I_{2} O_{2}$ equal and parallel to $E_{1} A_{1} A_{2} E_{2}$; and the face $A_{1} I_{1} I_{2} A_{2}$ equal and parallel to $E_{1} O_{1} O_{2} E_{2}$.

This prism, like the oblique prism, is now gencrally regarded as a combination of three open forms, each consisting of a pair of parallel faces.

Symbols.-The basal pinacoids $\mathrm{O}_{1} \mathrm{I}_{1} \mathrm{~A}_{1} \mathrm{E}_{1}, \mathrm{O}_{2} \mathrm{I}_{2} \mathrm{~A}_{2} \mathrm{E}_{2}$ cut the axis $\mathrm{P}_{1} \mathrm{P}_{2}$ at the extremities of the parameters $\mathrm{OP}_{1}, \mathrm{OP}_{2}$, and are parallel to the axes $\mathrm{M}_{1} \mathrm{M}_{2}, \mathrm{~T}_{1} \mathrm{~T}_{2}$; the symbol which expresses this relation is $\infty \infty 1$; Naumann's symbol is $O P$; Miller's 001 ; Brooke and Levy's P.

The macro-pinacoids $\mathrm{O}_{1} \mathrm{E}_{1} \mathrm{E}_{2} \mathrm{O}_{2}$ and $\mathrm{A}_{1} \mathrm{I}_{1} \mathrm{I}_{2} \mathrm{~A}_{2}$ cut the axis $\mathrm{M}_{1} \mathrm{M}_{2}$ at the extremities of the parameters $0 \mathrm{M}_{1}, 0 \mathrm{M}_{2}$, and are parallel to the axes $\mathrm{P}_{1} \mathrm{P}_{2}$ and $\mathrm{T}_{1} \mathrm{~T}_{2}$. Their symbol is $\infty 1 \infty ; \infty \mathrm{P} \infty$ Naumann; 010 Miller; and M Brooke and Levy.

The brachy-pinacoids $\mathrm{O}_{1} \mathrm{I}_{1} \mathrm{I}_{2} \mathrm{O}_{2}$ and $\mathrm{E}_{1} \mathrm{~A}_{1} \mathrm{~A}_{2} \mathrm{E}_{2}$ cut the axis $\mathrm{T}_{1} \mathrm{~T}_{2}$ at the extremities of the parameters $0 T_{1}, O T_{2}$, and are parallel to the axes $P_{1} P_{2}, M_{1} M_{2}$. Their symbol is $1 \infty \infty ; \infty$ Р ∞ Naumann; 100 Miller; T Brooke and Levy.

To drate the Doubly Oblique Prism, First Order.-Prick off from Fig. 343 the points $0, P_{1}, M_{1}$ and T_{1}. Join $M_{1} O$ and produce it to M_{2}, making $0 M_{2}$ equal $0 M_{1}$.

Join $\mathrm{P}_{1} \mathrm{O}$ and produce to P_{2}, making OP_{2} equal to OP_{1}. And join $\mathrm{T}_{1} \mathrm{O}$, produce it to T_{2}, making OT_{2} equal to OT_{1}.

Through M_{1} and M_{2} draw $H_{1} G_{2}$ and $G_{1} H_{2}$ parallel to $T_{1} T_{2}$, making $M_{1} H_{1}, M_{1} G_{2}$, $M_{2} G_{1}$, and $M_{2} H_{2}$ each equal to $O T_{1}$.

Join $H_{1} G_{1}$ and $H_{2} G_{2}$. Thraugh H_{11}, G_{1}, H_{2}, and G_{2} draw $O_{1} O_{2}, I_{1} I_{1}, A_{1} A_{2}$ and $E_{1} E_{2} p$ arallel to $\mathrm{P}_{1} \mathrm{P}_{2}$.

Make $O_{1} H_{1}, O_{2} H_{1}, G_{1} I_{1}, G_{1} 1_{2}, H, A_{1}, H_{2} A_{31} G_{2} E_{1}$ and $G_{2} E_{2}$ each equal to $O P$.

To describe a Net for the Houbly Oblique Prism.—Draw CD (Fig. 347) equal twice OT (Fig. 342) and DB, making the angle γ with $C D$, and equal to twice OM (Fig. 342).

Through C draw CA parallel to BD , and through B, BA parallel to CD meeting in A.

Draw GH (Fig. 348) equal twice OT (Fig. 342) and GE, making the angle β with GH, and equal to twice $O P$ (Fig. 342).

Through E draw EF parallel to GH and through $H, H F$ parallel to EG meeting in F .

Fig. 348.
Also draw MN (Fig. 349) equal to twice OM (Fig. 342) and MK, making the angle a with MN and equal to twice OP (Fig. 342).

Through K draw KiL parallel to MN and through N , NL parallel to MK meeting in L .

Then arrange six par allelograms, equal and similar in pairs to the three parallelograms (Figs. 347,348 , and 349), as in Fig. 350, and the net will be described.

Fig. 350.

Crystals of the following minerals have Faces parallel to the Basal Pinacoids $\infty \infty 1$; 0 P Naumann; 001 Miller; P Brooke and Levy. The north and south poles of the Sphere of Projection may be considered the poles of the two faces of the Basal Pinacoids.

Albite Axinite	Babingtonite Blue Yitriol	Christianite Labradorite	Oligoclass Sassoline
The follouing present Cleavages parallel to this form.			
Albite Axinite	IRIS - LILLIAXAbind baivie Christianite	Labradorite Oligoclase	Sassoline

Crystals of the following minerals have Faces parallel to the Macro-pinacoids $\infty 1 \infty$; $\infty \overline{\mathrm{P}} \infty$ Naumann; 010 Miller; M Brooke and Levy. The angles will determine the position of one of the poles.

Albite	North	Polar	distance	$86^{\circ} 24^{\prime}$	Longitude	West	90^{3}	0°
Axinite	North	"	"	$89^{\circ} 55^{\prime}$	"	"	90°	0^{\prime}
Babingtonite	North	"	"	$87^{\circ} 26^{\prime}$	"	"	90°	0^{\prime}
Blue Vitriol	South	"	"	$70^{\circ} 22^{\prime}$	"	,	90^{\prime}	0^{\prime}
Christianite	North	"	"	$85^{\circ} 48^{\prime}$	"	"	90^{3}	0^{\prime}
Labradorite	North	"	"	$86^{\circ} 24^{\prime}$	"	"	90°	0^{\prime}
Oligoclase	North	"	"	$86^{\circ} 24^{\prime}$	"	"	90°	0^{\prime}

The following present Cleavages parallel to this form.
Abite Δx inite Christianite Labradorite Oligoclace.

Crystals of the following minerals kave Faces parallel to the Brachy-pinacoids $1 \infty \infty$; $\infty \underset{\mathrm{P}}{\infty} \infty$ Naumann; 100 Miller; T Brooke and Lety.

Axin	South	Polar	c	$82^{\circ} 14^{\prime}$	Longitu	West	12
Babingtonite	South			$88^{\circ} 0^{\circ}$		West	$22^{\circ} 39^{\prime}$
Blue Vitriol	South		$"$	$65^{\circ}{ }^{\prime}$	"	East	
ssoline	North			$75^{\circ} 42^{\circ}$		East	$0^{\circ} 18^{\prime}$

Axinite and Babingtonite have imperfect cleavages parallel to this form.

Doubly Oblique Rhombic Prism, Second Ordex.-If we bisect the cdges $0_{1} I_{1}$ (Fig. 346) $O_{2} I_{2}$ in F_{1} and F_{2}, the edges $A_{1} E_{1}$ and $\Lambda_{2} E_{2}$ in B_{1} and B_{2}; the edges $O_{1} E_{1}, O_{2} E_{2}$ in D_{1} and D_{2}; and the edges $A_{1} I_{1}, A_{2} I_{2}$ in C_{1} and C_{2} : and then prick off the points B_{1}, D_{1}, F_{1}, $\mathrm{C}_{1}, \mathrm{~B}_{2}, \mathrm{D}_{2}, \mathrm{~F}_{2}, \mathrm{C}_{2}$, and join them as in Fig. 350, we shall derive from the doubly oblique prism (Fig. 346) another doubly oblique prism, similar in form, but differing in position and magnitude with respect to the oblique axes of the anorthic system.

This prism is generally considered as the combination of three forms, each consisting of a pair of parallel

Fig. 351. faces.
$B_{1} D_{1} C_{1} F_{1}$ and $B_{2} D_{2} C_{2} F_{2}$ are regarded as faces of the basal pinacoid.
Symbols.-The form whose faces are $\mathrm{D}_{1} \mathrm{~F}_{1} \mathrm{~F}_{2} \mathrm{D}_{2}$ and $\mathrm{B}_{1} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{~B}_{2}$ cutseach of the axes $M_{1} M_{2}, T_{1} T_{2}$ at the extremities of their parameters, and is parallel to the third axis $P_{1} \mathbf{P}_{2}$. Its symbol is $11 \infty ; \infty$ P| Naumann; 110 Miller; H^{1} Brooke and Levy.

The form whose faces are $B_{1} D_{1} B_{2} D_{2}$ and $C_{2} F_{1} C_{2} F_{2}$ cuts each of the aves $\mathrm{M}_{1} \mathrm{M}_{2}, \mathrm{~T}_{1} \mathrm{~T}_{2}$ (Fig. 346) at the extremities of their parameters, and is parallel to the third

The form $11 \infty ; \infty$ P! Naumann; 110 Miller ; H ${ }^{1}$ Brooke and Levy, occurs in

Albite	South	Polar	distance	$69^{69}{ }^{\prime}$	git		$3^{33^{\circ} 50}$
Axinite ${ }_{\text {Blue }}$	South South						
${ }_{\text {Blue }}^{\text {Blice }}$ Citriol	$\xrightarrow{\text { South }}$ South		"			est	
dorite	South			${ }_{69} 6$			
	So		"	6969^{\prime}		West	
ssoline	th			$80^{\circ} 33^{\prime}$			

Blue Titriol, Labradorite, and Oligoclase have imperfect cleavages parallel to this form.

The form $\overline{1} 1 \infty ; \infty$; P Naumann; $\overline{1} 10$ Miller; G^{1} Brooke and Levy.

Albite	North Polar distance			$64^{\circ} 55^{\prime}$	Longitude	West	$150^{\circ} 44^{\circ}$
Axinite	North	"	"	$83^{\circ} 33^{\prime}$	"	West	$150{ }^{\circ} 1^{\prime}$
Babingtonite	North	"	"	$85^{\circ} 54^{\prime}$	"	West	$137^{\circ} 49^{\prime}$
Blue Vitriol	South	",	"	$83^{\circ} 8^{\prime}$	"	West	$116^{\circ} 24^{\prime}$
Christianite	North	"	"	$65^{\circ} 38$		West	$146^{\circ} 35^{\prime}$
Labradorite	North	",	"	$64^{\circ} 55^{\prime}$	",	West	$150{ }^{\circ} 44^{\prime}$
Oligoclase	North	"	"	$64^{\circ} 55^{\circ}$		West	$150^{\circ} 44^{\prime}$
Sassoline	South	"	"	$84^{\circ} 57^{\prime}$		West	$119^{\circ} 55^{\prime}$

Albite and Blue Vitriol have cleavages parallel to this form.
Doubly Oblique Prisms derived from that of the Second Oxder.-By making OT_{1} and OT_{2} in Fig. $346 n$ times greater than the parameter OT (Fig. 342), where n is any whole number or fraction greater than unity, we may from Fig. 346, so altered, derive another prism of the second order composed of the basal pinacoids and two forms whose symbols will be
$n \mathrm{I} \infty$; $\infty \overline{\mathrm{P}}_{\mathrm{l}} n$ Naumann; $\mathbf{1} n 0$ Miller; H^{n} Brooke and Levy.
and $\bar{n} 1 \infty ; \infty{ }_{1} \overline{\mathrm{P}} n$ Naumann; $\overline{\mathbf{1}} n 0$ Miller; G^{n} Brooke and Levy.

By making OM_{1} and OM_{2} (Fig. 346) n times greater than the parameter OM (Fig. 342), where n is any whole number or fraction greater than unity, we may from Fig. 346, so altered, derive a prism of the second order composed of the basal pinacoids and two forms whose symbols will be
$1 n \infty ; \infty \widehat{\text { P }}{ }^{\prime} n$ Naumann; $n 10$ Miller ; H ${ }^{\frac{1}{n}}$ Brooke and Levy. and $\overline{1} n \infty ; \infty$! n Naumann; $\bar{n} 10$ Miller; $\mathrm{G}^{\frac{1}{n}}$ Brooke and Levy.
The form $310 ; \infty \overline{\mathrm{P}}_{\mathrm{l}}^{\prime} 3$ Naumann; 13.0 Miller; H^{3} Brooke and Levy.

	South	Polar distance		Longitude West	
ligoclase			$79^{\circ} 56^{\prime}$		

The form $\overline{3} 10 ; \infty{ }_{1} \overline{\mathrm{P}} 3$ Naumann; $\overline{1} 30$ Miller; G ${ }^{3}$ Brooke and Levy.

The form $210 ; \infty \overline{\mathrm{P}} ; 2$ Naumann; 120 Miller ; H^{2} Brooke and Lery. Axinite, South Polar distazce $80^{\circ} 14^{\prime}$ Longitude West $61^{\circ} 7^{\prime}$

The form $210 ; \infty$ |P 2 Naumann; 120 Miller; G^{2} Brooke and Levy. Blue Vitriol, South Polar distance $77^{\circ} 47^{\circ}$ Longitude West $101^{\circ} 22^{\circ}$
The form $120 ; \infty$ ㄱ́ 2 Naumann; 210 Miller ; H ${ }^{\frac{1}{2}}$ Brooke and Levy. Babingtonite, North Polar distance $89^{\circ} 35^{\circ}$ Longitude West $47^{\circ} 10^{\circ}$
The form $\overline{\mathrm{I}} 20 ; \infty \overline{\mathrm{P}} 2$ Nammann; $\overline{2} 10$ Miller ; $\mathrm{G}^{\frac{\pi}{2}}$ Brooke and Levy. Blue

Longitude West $133^{\circ} 5^{\prime}$

Doubly Oblique Prism, Third Oxder.-The doubly oblique prism of the third order may be drawn by pricking off the points $\mathrm{D}_{1}, \mathrm{C}_{1}, \mathrm{H}_{1}$, $\mathrm{G}_{1}, \mathrm{D}_{2}, \mathrm{C}_{2}, \mathrm{H}_{2}$, and G_{2} from Fig. 346, and joining them as in Fig. 352. It is similar in form, but differs both in magnitude and position, from that of the first order. It may be regarded as composed of three

Fig. 352. forms, each consisting of two parallel faces. $D_{1} H_{1} G_{2} D_{2}$ and $C_{1} G_{1} C_{2} H_{2}$ are the faces of the macro-pinacoid.

Symbols.-The faces of both the other forms cut the axes $\mathrm{P}_{1} \mathrm{P}_{\mathbf{2}}$ (Fig. 346), $\mathrm{T}_{1} \mathrm{~T}_{2}$ at the extremities of their parameters, and are parallel to the third axis $M_{1} M_{2}$.

The symbol for the form whose faces are $D_{1} C_{1} H_{1} G_{1}$ and $G_{2} H_{2} C_{2} D_{2}$ is $1 \propto 1$; ${ }_{1} \breve{\mathrm{p}^{1}} \infty$ Naumann; 101 Miller; F^{1} Brooke and Levy.

The symbol for the form whose faces are $D_{1} C_{1} H_{2} G_{2}$ and $H_{1} G_{1} C_{2} D_{2}$ is $1 \infty 1$; ${ }^{1} \breve{P}_{1} \infty$ Naumann; 101 Miller ; Br Brooke and Lers.

The form $1 \propto 1 ;{ }_{1} \breve{\mathbf{p}}^{1} \infty$ Naumann; 101 Miller; F ${ }^{1}$ Brooke and Levy, occurs in

Albite	North P	Polar distance	$52^{\circ} 37^{\circ}$	Longitude	West	3	${ }^{\circ}$
	,	"		"	${ }_{\text {Fest }}$	12	${ }^{4}$
${ }_{\text {Cluristianite }}$	"	"	$513{ }^{29}$	"	East	d	${ }^{4}$
Oligoclase	"̈		$55^{29} 37$		${ }_{\text {west }}$		8^{\prime}
Sassoline			241°		East		

Axinite has an imperfect cleavage parallel to this form.
The form $\overline{\mathrm{I}} \infty 1 ; \breve{\mathrm{P}}_{1} \infty$ Naumann; 101 Miller; B ${ }^{1}$ Brooke and Levy.

Derived Doubly Oblique Prisms of the Third Ox ${ }^{3}$ cr. - By making OP_{1} and OP_{2} in Fig. 346, m tines the parameter OP (Fig. 342), and from the figure so altered obtaining a prism of the third order, another series of doubly oblique prisms similar in form and position, but differing in magnitude from Fig. 352, may be derived. m may be any whole number or fraction greater or less than unity.

Symbols.-The symbol for the form whose faces are $\mathrm{D}_{1} \mathrm{CH}_{1} \mathrm{G}_{1}$ and $\mathrm{G}_{2} \mathrm{II}_{2} \mathrm{C}_{2} \mathrm{D}_{2}$, is $1 \infty m ; m \breve{1}^{\mathrm{P}^{1}} \infty$ Naumann; $m 01$ Miller; F m Brooke and Levy.

The symbol for the form whose faces are $D_{1} C_{1} H_{2} G_{-}$and $H_{1} G_{1} C_{-} D_{2}$, is $1 \infty m$; $m \breve{P}_{1} \infty$ Naumann; m 01 Miller; ${ }^{1}{ }^{m}$ Brooke and Levy.
 Christianite North Polar distance $\$ 44^{4}$ Longitude East 11 .

The form $1 \infty 2 ; 2{ }_{1} \widetilde{\mathrm{P}}^{1} \infty$ Naumann; 201 Miller ; $\mathrm{F}^{\frac{1}{2}}$ Brooke and Levy.

The form $\overline{\mathrm{I}} \infty 2 ; 2 \breve{\mathrm{P}}_{1} \infty$ Naumann; $\overline{2} 01$ Miller; $\mathrm{B}^{\frac{1}{2}}$ Brooke and Levy. Christianite North Polar distance $41^{\circ} 14^{\prime}$ Longitude West $178^{\circ} 41^{\prime}$
The form $1 \infty 3 ; 3_{1} \breve{P}^{1} \propto$ Naumann; 301 Miller; $\mathrm{F}^{\frac{1}{3}}$ Brooke and Levs. Blue Vitriol North Polar distance $74^{\circ} 42^{\prime} \quad$ Longitude East $7^{\circ} 4^{\prime}$

Doubly Oblique Pxism of the Fourth Oxdex.-By pricking of the points $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}, \mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{G}_{1}$ and G_{2} from Fig. 346, and joining them as in Fig. 353, a doubly oblique prism of the fourth order may be derived, similar in form but differing in magnitude and position from that of the first order. This prism is a combination of three forms, each consisting of a pair of parallet faces. $F_{1} \mathrm{H}_{1} \mathrm{~F}_{2} \mathrm{G}_{1}$ and $\mathrm{B}_{1} \mathrm{H}_{2} \mathrm{~B}_{2} \mathrm{G}_{2}$ are regarded as faces of the brachy-pinacoids, being parallel to the axes $\mathrm{P}_{1} \mathrm{P}_{2}$ and $\mathrm{M}_{1} \mathrm{M}_{2}$ (Fig. 346).

Symbols.-The faces of both the other forms cut the axes $\mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{M}_{1} \mathrm{M}_{2}$, at the extremities of their parameters, and are parallel to the third axis $\mathrm{T}_{1} \mathrm{~T}_{2}$ (Fig. 346).

The symbol for the form whose faces are $B_{1} F_{1} H_{1} G_{2}$ and $H_{2} G_{1} F_{2} B_{2}$ is $\infty 11$; $\overline{1}^{1} \infty$ Naumann; 011 Miller ; D^{1} Brooke and Levy.

The symbol for the form whose faces are $B_{1} F_{1} G_{1} H_{2}$ and $G_{2} H_{1} F_{2} B_{2}$ is $\infty \overline{1} 1$; ${ }_{1} \overline{\mathrm{P}}_{1} \propto$ Naumann: $0 \overline{\mathrm{I}} 1$ Miller; C^{1} Brooke and Levy.

The form $\infty 11 ;{ }_{1} \overline{\mathrm{P}}_{1} \infty$ Naumann; 011 Miller ; D ${ }^{1}$ Brooke and Levy, occurs in-
 Axinite has a cleavage parallel to this form.
The form $\infty \overline{1} 1 ; \overline{1}_{1} \infty$ Naumann; 011 Miller ; C ${ }^{1}$ Brooke and Levy. Axinite South polar distance $44^{\circ} 48^{\prime}$ Longitude West $90^{\circ} 0^{\circ}$

Derived Doubly Oblique Prisms of the Fourth Order. - By making OP_{1} and OP_{2} (Fig. 346) m times the parameter OP (Fig. 342), where m may be any whole number or fraction greater or less than unity; and from Fig. 346, so altered, obtaining a prism of the fourth order, a series of prisms may be derived, similar in form and position, but differing in magnitude from Fig. 353.

Symbols.-The symbol for the form whose faces are $\mathrm{B}_{1} \mathrm{~F}_{1} \mathrm{H}_{1} \mathrm{G}_{2}$ and $\mathrm{H}_{2} \mathrm{G}_{1} \mathrm{~F}_{2} \mathrm{~B}_{2}$,

The symbol for the form whose faces are $B_{1} F_{1} G_{1} H_{2}$ and $G_{2} H_{1} F_{2} B_{2}$, is $\infty \overline{1} m$; ${ }_{n} \mathrm{P}, \infty$ Naumann; $0-\frac{1}{m} 1$ Miller; $\mathrm{C}^{\frac{1}{m}}$ Brooke and Levy.

The form $\infty 1 \frac{1}{2}$; $\frac{1}{2} \cdot \overline{\mathrm{P}}{ }^{\prime} \infty$ Naumann; 012 Miller ; D^{\prime} Brooke and Levr. Axinite North polar distance $26^{\circ} 21^{\circ}$ Longitude West $90^{\circ} 0^{\circ}$
The form $\infty 12 ; 2{ }^{\prime} \overline{\mathrm{P}} \infty$ Naumann; 021 Miller; $\mathrm{D}^{\frac{1}{d}}$ Brooke and Lery.

Albite	North polar distance	$49^{20} 34^{\prime}$	Longitude West	90°
Christianite		$42^{\circ} 38^{\prime}$	" "	90^{3}
Oligoclase	", ",	$42^{3} 34{ }^{\prime}$	" \quad	$90^{\prime} 0^{\prime}$

The form $\infty 12 ; 2, \stackrel{\rightharpoonup}{\mathrm{P}}, \infty$ Naumann; 021 Miller; $\mathrm{C}^{\frac{1}{2}}$ Brooke and Levy.

Doubly Oblique Octahedxon.-The"doubly oblique octaledron, or the trichnohedric pyramid, is a solid bounded by eight scalene triangles. These triangular faces are only equal and sisilar to each other in pairs; every face, such as $P_{1} M_{1} T_{1}$ (Fig. 354), haring a similar and equal face, $\mathrm{P}_{\mathbf{2}} \mathrm{M}_{2} \mathrm{~T}_{2}$, parallel to it. This solid may be regarded as a combination of four open forms, each form consisting of a pair of similar and parallel faces. These forms are called te arto-pyram de,

Fig. 354. and ean only appear in combination with oth $\mathrm{r} f$ mons.

To draw the d ubl/ obl'q is octal cdron.-Pich off from Fir. 346 the points $\mathrm{P}_{1}, \mathrm{P}_{2}$, M_{1}, M_{2}, T_{1} and T_{3}, and join then $2 \beta \cdot n$ Fir. 354 .

Axes.-The axes of the doubly oblique or an rthic syst m join the points $\mathrm{P}_{1} \mathrm{P}_{2}$, $M_{1} M_{2}$, and $T_{1} T_{2}$ (Fig. 354).

Symbols.- Dvery face of the doubly oblique ocahedron cuts the three azes $\mathrm{P}_{1} \mathrm{P}_{\mathrm{A}}$, $M_{1} M_{2}$, and $T_{1} T_{-}$at the extremities of their parameters.

The symbol $f r$ the form whose faces are $P_{1} M_{1} T$ and $P_{2} M_{2} T$ is 111 ; P^{1} Naumann; 111 Miller; 0^{1} Brooke and Levs.

The symbl for the form whose fac s are $\mathrm{P}_{1} \mathrm{M}_{1} \mathrm{~T}_{\sim}$ and $\mathrm{P}_{\sim} \mathrm{M}_{3} \mathrm{~T}_{1}$ is 111 ; ${ }^{1} \mathrm{P}$ Naumann; 111 Miller; E Brocke and L ys.

The symbol $f r$ the $f r m$ whose faces are $P_{1} M . T$ and $P_{2} V_{1}$ is 111 ; P_{1} Naumann; 11 i Miller; A ${ }^{1}$ Broohe and Levg.

The symbol for the form whose faces are $\mathrm{P}_{1} \mathrm{M}_{-} \mathrm{T}_{1}$ and $\mathrm{I}_{\text {_ }} \mathrm{M}_{\text {: }} \mathrm{T}_{-}$is 111 ${ }_{1}$ P Natmann; $1 \overline{1} 1$ Miller ; I Brooke and Levy.

Fig. 855.

To deseribe a Ae for t7 D bly Oblique Octaledron.I $\mathrm{t} a, \beta$, and γ be the threc angular elements given under those lett rs for a particular substance (page 458), whose oetuhedron is to be constructed.

Draw two lines $\mathrm{OM}_{1}, \mathrm{OP}_{1}$ (Fig. 355), making the angle a, with each other, produce OM_{1} to M_{2}, make $\mathrm{OM}_{1}, \mathrm{OM}_{2}$ each equal to the parameter OM (Fig. 342)
 $J o i n P_{1} M_{1}$ and $P_{1} M_{2}$.

Draw $0 \mathrm{P}_{1}, 0 \mathrm{~T}_{1}$ (Fig. 356), making the angle β with each other, produce OT_{1} to T_{2}, make $0 T_{1}$ and $0 T_{2}$ equal to $0 T$ (Fig. 342), and $0 \mathrm{~F}_{1}$ equal to 0 P (Fig. 342). Join $\mathrm{P}_{1} \mathrm{~T}_{1}$ and $\mathrm{P}_{1} \mathrm{~T}_{2}$.

Fig. 356.

Fig. 357.

Also draw $0 T_{1}$ and $0 \mathrm{M}_{1}$ (Fig. 357), making the angle γ with each other, produce $0 \mathrm{~T}_{1}$ to T_{2}, make $0 \mathrm{~T}_{1}$ and $0 \mathrm{~T}_{2}$ equal to

Fig. 358. OT (Fig. 342), and OM_{1} equal to OM (Fig. 342). Join $\mathrm{M}_{1} \mathrm{~T}_{1}$ and $\mathrm{M}_{1} \mathrm{~T}_{2}$.

Then Fig. 358, draw $M_{1} T_{1}$ equal to $\mathrm{M}_{1} \mathrm{~T}_{1}$ (Fig. 357), on it construct the triangle $M_{1} P_{1} T_{1}$ having its side $M_{1} P_{1}$ equal $M_{1} P_{1}$ (Fig. 355), and the remaining side $P_{1} T_{1}$ equal $P_{1} T_{1}$ (Fig. 356).

On $P_{1} M_{1}$ construct the triangle $P_{1} T_{2} M_{1}$, haring $M_{1} T_{2}$ equal $M_{1} T_{2}$ (Fig: 357) and $P_{1} T_{2}$ equal to $P_{1} T_{2}$ (Fig. 356).

On $\mathrm{P}_{1} \mathrm{~T}_{3}$ construct the triangle $P_{1} T_{2} M_{2}$ having $T_{2} M_{2}$ equal $T_{1} M_{1}$ (Fig. 357) and $P_{1} M_{2}$ equal $P_{1} M_{2}$ (Fig. 355).

On $\mathrm{P}_{1} \mathrm{M}_{2}$ construct the triangle $\mathrm{P}_{1} \mathrm{M}_{2} \mathrm{~T}_{3}$ having $\mathrm{M}_{2} \mathrm{~T}_{3}$ equal $\mathrm{M}_{1} \mathrm{~T}_{2}$ (Fig. 357) and $P_{1} T_{3}$ equal $P_{1} T_{1}$ (Fig. 356).

Then construct four other triangles equal and similar to each of these, and arrange them as in Fig. 358, and the net will be described.

The form 111 ; P1 Naumann; 111 Miller; 0^{1} Brooke and Levy, has been ${ }^{\circ}$ bserved in

Albite	North Polar	distance	$54^{\circ} 44^{\prime}$	Longitude	West	$33^{\circ} 50^{\circ}$
Axinite	"	"	$64^{\circ} 57^{\prime}$	"	"	$45^{\circ} 41^{\prime}$
Christianite	"	'	$54^{\circ} 22^{\prime}$	"	"	$31^{\circ} 33^{\prime}$
Oligoclase	"	"	$54^{\circ} 44^{\prime}$	"	"	$33^{\circ} 50$
Sassoline	"	"	$41^{\circ} 6^{\prime}$	\%	"	$59^{\circ} 6^{\prime}$

The form ${ }^{-1} 11$; ${ }^{1} \mathrm{P}$ Naumann; $\overline{1} 11$ Miller; E^{1} Brooke and Levy.

Avinite	North Polar	distance	$50^{\circ} 36^{\prime}$	Longitude	West	150°	,
Blue Vitriol	",	,	$48^{\circ} 51^{\prime}$	",	,	116°	24^{\prime}
Christianite	"	,'	$45^{\circ} 14^{\prime}$	",	,	146°	35^{\prime}
Sassoline	"	"	$48^{\circ} 0^{\prime}$	"	"	119°	$55^{\prime \prime}$

 sassomine North Polar austance 5 fol $52{ }^{1}$ Longitude East $120^{\circ} 54^{\prime}$

The form $1 \overline{1} 1$; ${ }_{1}$ P Naumann; $1 \overline{1} 1$ Miller; I^{1} Brooke and Levy.

Albite	North Polar distance			$57^{\circ} 3{ }^{\prime}$	Longitude	East	$29^{\circ} 16^{\prime \prime}$
Axinite	South	"	"	$60^{\circ} 0^{\prime}$,"	West	$150^{\circ} 1^{\prime \prime}$
Christianite	North	"	9	$58^{\circ} 10^{\prime}$	\%	East	$33^{\circ} 25^{\prime}$
Oligoclase	North	13	\%	$57^{\circ} 3{ }^{\prime \prime}$	"	East	$29^{\circ} 16^{\prime}$
Sassoline	North	"	"	$42^{\circ} 511^{\prime}$		East	$60^{\circ} 5^{\prime}$

Angular Elements of the Anorthic System.-Five of the angular elements given in page 458 are necessary for the construction of any of the forms of the anorthic system; α is the inclination of the axis $0 P_{1}$ (Fig. 340) to $0 M_{1}, \beta$ of the axis $0 P_{1}$ to $0 T_{1}$, and γ of the axis OM_{1} to $\mathrm{OT}_{1} ; \mathrm{A}$ is the inclination of the plane $\mathrm{P}_{1} \mathrm{OT}_{1}$ to the plane $\mathrm{M}_{1} 0 \mathrm{~T}_{1} ; B$ is the inclination of the plane $\mathrm{P}_{1} 0 \mathrm{M}_{1}$ to the plane $\mathrm{M}_{1} 0 \mathrm{~T}_{1}$; and c is the inclination of the plane $\mathrm{P}_{1} \mathrm{OM}_{1}$ to the plane $\mathrm{P}_{1} \mathrm{OT}_{1}$; the remaining elements δ and ϵ depend upon the ratios which the unequal parameters $0 \mathrm{P}_{1}, 0 \mathrm{M}_{1}$ and $0 \mathrm{~T}_{1}$ bear to each other.

Derived Doubly Oblique Octahedrons.-By making $O P_{1}$ and OP_{2} equal to m times the parameter OP (Fig. 342) where m may be any whole number or fraction greater, equal to, or less than unity; and $0 \mathrm{~T}_{1}$ and $0 \mathrm{~T}_{3}$ equal to n times the parameter OT (Fig. 342), where n is any whole number or fraction greater than unity, we may from Fig. 342 so altered derive a series of doubly oblique octahedrons, whose general symbol will be $n 1 \mathrm{~m}$. By making OM_{1} and OM_{2} equal to n times OM (Fig. 342) instead of $0 T_{1} n$ times $0 T_{1}$, we may obtain another serics of octahedrons whose general symbol will be 1 nm .

Symbols for the For ns composing the Derived Octahelrons.

The symbols for the form $11 m$ are $m \mathrm{P}^{1}$ Naumann; m m 1 Miller; $0^{\prime \prime}$ Brooke and Lery.

For the form $\overline{1} 1 m, m^{1} \mathrm{P}$ Naumann; $\bar{m} m 1$ Miller; \mathbf{E}^{m} Brooke and Levy.
For the form $1 \overline{1} m ; n_{1} \mathrm{P}$ Naumann ; $m m \mathrm{I}$ Miller; I ${ }^{\text {' Brooke and Levy. }}$
For the form $11 \bar{m} ; m P_{1}$ Naumann; $m m 1$ Miller ; An Brooke and Lers.
For the form $1 n 1 ; \bar{P}_{1} n$ Naumann ; $n 1 n$ Miller ; $n 0$ Brooke and Levg.
For the form $\overline{1} n 1 ;$ 1 $\overline{\mathrm{l}} n$ Naumann; $\overline{2} 1 n$ Miller; ${ }_{n}$ E Brooke and Levy.
For the form $1 \bar{n} 1 ; \overline{1} n$ Naumann ; $n 1 n$ Miller; ${ }_{n} \mathrm{I}$ Brooke and Levg.
For the form $1 \dot{n} 1 ; \bar{P}_{1} n$ Naumann; $n 1 \bar{n}$ Niller ; ${ }_{n}$ A Brooke and Levy.
For the form $n 11 ; \overline{P_{1}} n$ Naumann; $1 n n$ Miller; 0, Brooke and Levy.
For the form $n 11$; ${ }^{1}{ }^{2} n$ Naumann; $1 n n$ Miller; E, Brooke and Levy.
For the form $n 11 ;{ }_{1} \mathrm{P} n$ Naumann; $1 n n$ Miller ; I_{n} Brooke and Levy.
For the form $n 11 ; P_{1} n$ Naumann; $1 n \bar{n}$ Miller; $A, ~ B r o o k e ~ a n d ~ L e v y . ~$
For the form $1 n m ; m \breve{\mathrm{P}}{ }^{n} n$ Naumann; $h k l$ Miller ; $\mathrm{D}^{1} \mathrm{~F}^{1} \mathrm{H}^{1} l^{1}$ Brooke and Levy.
For the form $\overline{\mathrm{I}} n m ; m \breve{\mathrm{P}} n$ Naumann; $h k l$ Miller ; $\mathrm{B}^{\frac{1}{4}} \mathrm{D}^{\frac{1}{k}} \mathrm{G}^{\frac{1}{l}}$ Brooke and Levy.
For the form $1 n m ; m_{1} \breve{\mathrm{P}} n$ Naumann; $h k l$ Miller ; $\mathrm{F}^{1} \mathrm{C}^{1} \mathrm{G}^{\frac{1}{7}}$ Brooke and Levy. For the form $1 n \bar{m} ; m \widetilde{P}_{1} n$ Naumann ; $k k \bar{l}$ Miller; $C^{h} B^{k} H^{i}$ Bro ke and Levy.

For the form $\bar{n} 1 m ; m \overline{\mathrm{P}} n$ Naumann ; $\bar{h} k l$ Miller ; $\mathrm{B}^{n} \mathrm{D}^{\bar{k}} \mathrm{G}^{\underline{l}}$ Brooke and Levy. For the form $n \overline{1} m ; m_{1} \overline{\mathrm{P}} n$ Naumann ; $n \bar{k} l$ Miller ; $\mathrm{F}^{\frac{1}{h}} \mathrm{C}^{\frac{1}{k}} \mathrm{G}^{\frac{1}{l}}$ Brooke and Levs. For the form $n \mathrm{I} \bar{m} ; m \mathrm{P}_{1} n$ Naumann ; $h k \bar{l}$ Miller ; $\mathrm{C}^{\frac{1}{n}} \mathrm{~B}^{\bar{k}} \mathrm{H}^{\bar{i}}$ Brooke and Levy. The relation between the symbols $h k l$, and $1 n m$, is that the former are the numerators of the reciprocals of the latter reduced to a common denominator.

The form $11 \frac{1}{2}$; $\frac{1}{2} \mathrm{P}^{1}$ Naumann ; 1122_{2}^{2} Miller ; $0^{\frac{1}{2}}$ Brooke and Levy occurs in Albite North Polar distance $29{ }^{\circ} 50^{\circ}$ Iongitude West $33^{\circ} 50^{\prime}$
The form $1 \overline{1} \frac{1}{2} ;{ }_{\frac{1}{2}}^{2}{ }_{1} P$ Naumann; $1 \overline{1} 2$ Miller; $I^{\frac{1}{2}}$ Brooke and Levy. Albite
Alinite
South Axinite South $\quad, \quad 3 \quad 38^{\circ} 4^{\prime} \quad "$ West $150^{\circ} 1^{\prime}$
The form $1 \overline{1} 2 ; 2{ }_{1} \mathrm{P}$ Naumann; $2 \overline{2} 1$ Miller ; I^{2} Brooke and Levy.

The form 133 ; $3 \breve{\mathrm{P}^{1}} 3$ Naumann; 311 Miller; $\mathrm{D}^{\frac{1}{3}} \mathrm{~F}^{1} \mathrm{H}^{1}$ Brooke and Levy. Blue vitriol North Polar distance $86^{\circ} 23^{\prime}$ Longitude West $26^{\circ} 51^{\prime}$
The form $\overline{12} 2$ 2; $2 \overline{1}{ }_{\mathrm{P}}^{2} 2$ Naumann ; $\overline{2} 11$ Miller, $\mathrm{B}^{\frac{1}{2}} \mathrm{D}^{1} \mathrm{G}^{1}$ Brooke and Levy. Blue Vitriol North Polar distance $51^{\circ} 1^{\prime}$ Longitude West $133^{\circ} 5^{\prime}$
The form $1 \overline{2} 2 ; 2{ }_{1} \breve{\mathrm{P}} 2$ Naumann; $2 \overline{1} 1$ Miller ; $\mathrm{F}^{\frac{1}{3}} \mathrm{C}^{1} \mathrm{G}^{1}$ Brooke and Levy. Axinite South Polar distance $75^{\circ} 27^{\prime}$ Longitude West $169^{\circ} 59^{\prime}$
The form $214 ; 4 \overline{\mathrm{P}}^{1} 2$ Naumann; 241 Miller ; $D^{\frac{1}{2}} F^{\frac{1}{4}} H^{1}$ Brooke and Levt. Christianite North Polar distance $81^{\circ} 23^{\prime}$ Longitude West $51^{\circ} 21^{\prime}$
The form $2 \overline{1} 4 ; 4{ }_{1} \overline{\mathrm{P}} 2$ Naumann ; $2 \overline{4} 1$ Miller; $F^{\frac{1}{2}} \mathrm{C}^{\frac{1}{4}} \mathrm{G}^{1}$ Brooke and Levy. Christianite North Polar distance $88^{\circ} 4^{\prime}$ Longitude East $55^{\circ} 22^{\prime \prime}$
The form 212 ; $2 \overline{\mathrm{P}^{1}} 2$ Naumann; 121 Miller; $\mathrm{D}^{1} \mathrm{~F}^{\frac{1}{2}} \mathrm{H}^{1}$ Brooke and Levy. Axinite North Polar distance $72^{\circ} 9^{\circ}$ Longitude West $61^{\circ} 17^{\prime}$
The form 313 ; $3 \overline{\mathrm{P}^{1}} 3$ Naumann ; 131 Miller ; D ${ }^{1} \mathrm{~F}^{\frac{1}{3}} \mathrm{H}^{1}$ Brooke and Levy. Axinite North Polar distance $76^{\circ} 34^{\prime}$ Longitude West $69^{\prime} 8^{\prime}$
To deternize the position of the poles of any form on the sphere of projection.-If h, k and l be Miller's symbols for any face, and λ the north polar distance of the pole of one of its faces on the sphere of projection, and μ the longitude of that pole, west from the point where the axis $0 \mathrm{~T}_{1}$ euts the sphere, the point where the axis 0 Z cuts the sphere, or the pole of the face $\infty \infty 1$, being taken as the north pole of the sphere.

$$
\begin{array}{ll}
\tan \phi=\frac{\hbar}{\hbar} \cos \gamma \tan \delta & q=k \cos (45+\varphi) \cot \delta \operatorname{cosec} \gamma \sec 4 \overline{s e c} \phi \\
\tan \theta={ }_{l}^{h} \cos \beta \tan \epsilon & q^{\prime}=l \cos (45+\theta) \cot \in \operatorname{cosec} \beta \sec 45 \sec \theta \\
\tan \psi=\frac{q}{q^{\prime}} \cos \mathrm{A} & ,=q^{\prime} \cos (45+\psi) \operatorname{cosec} \mathrm{A} \sec 45 \sec \psi \\
\tan \mu=\frac{q}{\hbar} & \tan \lambda=\frac{h}{r} \sec \mu
\end{array}
$$

When $k=0$ and $k=0$ then $q=0$; when $k=0$ and $l=0$ then $q=0$; and

TWIN CRYSTALS.

A Twin Crystal, or Macle Crystal, is composed of two crystals, or similar portions of tro erystals joined tog ther in such a manner that one would come into the position

Fig. 359.

Fig. 360.
of the other by revolving through two right angles round an axis which is perpendicular to a plane, which either is, or may be, a face of either crystal. From this property, twin crystals are called hemitrope crystals, by Hauy.

The axis about which the crystals are supposed to revolve is called the twin axis, and the plane to which it is perpendicular the twin plane.

Twin Ciystal of the Octahedron about the Octahedral Axis.-If we bisect the edges $\mathrm{P}_{1} \mathrm{P}_{4}$
(Fig. 361), $P_{1} P_{5}, P_{5} P_{2}, P_{2} P_{8}, P_{3} P_{6}$, and

Fig. 361. $\mathrm{P}_{3} \mathrm{P}_{4}$ of the octahedron $\mathrm{P}_{1} \mathrm{P}_{5} \mathrm{P}_{6}$, by the points $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ and a_{6}, and join these points; then suppose the octahedron cut in half by a plane passing through $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}$, and a wire axis or pin passed through the centre of the octahedron perpendicular to the plane $a_{1} a_{2} a_{3} a_{4} a_{5} a_{6}$. Thisaxis will correspond to the octahedral axis $A_{2} A_{8}$ (Fig. 17 , if the octah dron be inscribed in a cube, as in $\Gamma^{\prime} \mathrm{g}$. 21.

Let now the lower portian of the octahedron be separated from the upper and made to revolve through an angle of 130°, round the axis $A_{z} A_{m}$ till it comes suc-
cessively into the position shown in Figs. 360 and 359 ; and a twin crystal will be formed. The plane $a_{1} a_{2} \& c . a_{6}$, is the twin plane, and the line $A_{2} A_{8}$, which is perpendicular to it, the twin axis.

This twin crystal is of frequent occurrence among crystals of the diamond and the spinelle ruby.

Twin Crystal of the Cube about the Octakedral Axis.By bisecting the edges of the cube $A_{4} A_{3}$ (Fig. 362), $A_{1} A_{1}$, $A_{1} A_{5}, A_{3} A_{6}, A_{6} A_{7}, A_{7} A_{3}$, in the points $a_{1} a_{2} a_{3} a_{4} a_{5}$ and a_{6}; making a section of it by a plane passing through these points, and causing the lower section to revolve through an angle of 180° round the axis $\mathrm{A}_{2} \mathrm{~A}_{8}$, when it will come into the position indicated in Fig. 363, we shall obtain a twin crystal of the cube.

The twin crystal of the octahedron (Fig. 361), and of the cube (Fig. 363), present cases of some of the faces being inclined to each other at re-entering angles. This is a general characteristic of twin crystals; though there are instances, of which the twin

Fig. 364.

Fig. 365.
of the rhombic dodecahedron is one, where the twins are united without producing reentering angles.

Twin Crystals of the Rhombic Dodecahedron about the Octahedral Axis.—Take points $a_{1} a_{2} a_{3}$ and a_{4} on the edges of the rhombic dodecahedron (Fig. 365), such that $0_{4} a_{1}$ is one-third of $\mathrm{P}_{1} \mathrm{O}_{4} ; \mathrm{O}_{1} a_{2}$ one-third of $\mathrm{P}_{5} \mathrm{O}_{1} ; \mathrm{O}_{5} a_{3}$ one-third of $\mathrm{O}_{5} \mathrm{P}_{2}$, and $\mathrm{O}_{6} a_{4}$ onethird of $\mathrm{O}_{6} \mathrm{P}_{6}$; join $a_{1} a_{2} a_{3}$ and draw $a_{1} a_{6}$ parallel to $a_{3} a_{4}, a_{6} a_{5}$ to $a_{2} a_{3}$, and $a_{5} a_{4}$ to $a_{1} a_{2}$. The plane passing through $a_{1} a_{2} a_{3} \& c$., a_{6} will be perpendicular to the octahedral axis $A_{2} A_{8}$; a section being made through this plane and the lower part of the rhombic dodecahedron made to revolve about the axis $A_{2} A_{8}$ until it comes into the position (Fig. 364), a twin crystal will be formed, which has no re-entering angles.

It is not esquand that then meprivensief ailferin crystal should be exactly the half of the form from which they are derived. Thus two sections of the octahedron, similar
to that shown in Fig. 11, may be united to form a twin. Sometimes the two members of the twin may both be completely formed, so as to produce the appearance of two crystals penetrating one another. Thus Fig. 366 represents each cube in Fig. 363

Fig. 306.

Fig. 367. completed, and forming, as it wore, two cubes penetrating each other. This form of twin crystal is frequently found in fluor spar and iron pyrites.

Fig. 367 represents two octahedrons of fablerz, or gray copper ore, intersecting each other, and forming a twin crystal.

Nets for Twin Crystals of the Octahedron.

Fin. 368.

Fig. 369.

Fig. 370.

Prick off the points $P_{1} P_{5} P_{2} O_{1} R_{1} R_{1}$ from Fig. 22; join $P_{1} P_{5}, P_{5} P_{2}, P_{1} P_{2}$ and $R_{4} R_{1}$, then one triangle similar and equal to $P_{1} P_{5} P_{2}$, three equal to $P_{1} R_{4} R_{1}$ and three trapeziums similar and equal to $R_{1} R_{4} P_{5} P_{2}$, and a regular hexagon having its sides equal to $\mathrm{R}_{1} \mathrm{R}_{1}$ arranged as in Fig. 369; will form the net for one member of the twin; the axis will pass through the point O_{1} of the triangle $P_{1} P_{5} P_{2}$ and the centre of the hexagonal face.

Net for the Twin Crystal of the Rhombic Dodecahedron. -Draw the rhomb $\mathrm{P}_{1} \mathrm{O}_{1} \mathrm{O}_{2} \mathrm{P}_{2}$ (Fig. 370) similar and equal to the rhomb (Fig. 30). Through R_{1} the centre of the rhomb draw the line $a_{1} \mathrm{R}_{1} a_{2}$ perpendicular to

Fig. 371.
$\mathrm{P}_{1} \mathrm{O}_{2}$ or $\mathrm{O}_{1} \mathrm{P}_{2}$. Then three rhombs similar and equal to $\mathrm{P}_{1} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{O}_{1}$; six trapeziums similar and equal to $\mathrm{P}_{1} \mathrm{O}_{1} a_{2} a_{1}$, and a regular hexagon having its sides equal to $a_{1} a_{2}$, arranged as in Fig. 371, will form a net for one member of the twin. The twin axis will gaps thrpugh 他e pgint phere the three rhombs meet, and the centre of the heragonal face.

When the crystallographic axes of the two members of the twin erystal are parallel to each other, as in the case of the twin, Fig. 367, so that the cleavages of the one are parallel to or continued one into the other without interruption; we cannot determine with certainty whether such crystals are to be considered as twins, or only single crystals whose faces are repeated with a certain degree of regularity. Thus it is doubtful whether Fig. 367 is a twin, or a regular combination of the positive and negative tetrahedrons, Figs. 92 and 93.

In pyrites the positive and negative pentagonal dodecahedrons, Figs. 113 and 114, and in the diamond the positive and negative six-faced tetrahedrons, Figs. 107 and 108, are united together in a similar manner, forming doubtful twins.

Tuin Crystals, Cubical System.
Twin face parallel to a face of the octabedron.

Twin face rarallel to a face of the square prism $1 \infty \infty$. Towanite
Twin face parallel to a face of the square prism 1100. Scheelite
Twin face parallel to a face of the pyramid $1 \propto 1$. Cassitcrite Fanjasite Rutile Schcelite Towanite
Twin face parallel to a face of the pyramid $1 \infty 3$. Rutile
Twin face parallel to a face of the pyramid 111. Hansmonnite Tin Towanite
Twin face parallel to a face of the pyramid 113. Tin

Tutir Crystals Rhombohedral System.
Twin face parallel to a face of the basal pinacoid $\infty \infty 1$.

Ankerite	Cinnabar	Hematite	Lcrine
Calcite	Dolomite	Ilmenite	Pyrargyrite
Chabasite	Gmelinite	Ice	Quartz

Twin face parallel to a face of the hexagonal prism of the second order 11∞. Phenakite
Twin face parallel to a face of the six-faced pyramid of the first order 121 . Quartz
Twin face parallcl to a face of the positive rhomboid $+R$.
Calcite Corundum Hematite Quartz Pyrargyrite

Twin face parallel to a face of the positive rhomboid $+\frac{1}{2} \mathrm{R}$. Tetradymite Pyrargyrite
Twin face parallel to a face of the negative rhomboid $-\frac{1}{8}$ R.

Ankerite Arsenic
 Calcite

The following figures show some of the beautiful forms assumed by twin crystals of ice or snow.

Twin Crystals-Prismatic S $_{\mathrm{J}}$ stem.
Twin-face parallel to a face of the macro-pinacoid $\infty 1 \infty$. Wolfram.
Twin-face parall I to a face of the brachy-pinacoid $1 \omega \infty$. Struvite.
Twin-face parallel to a face of the prism of the Ist order 1100.

Alstonite.	Epistilbite.
Antimonsilber.	Glaserite.
Aragonite.	Marmotome.
Bournonite.	Marcasite.
Cerussite.	Misplehel.

Phillípsite. Redruthite. Sternbergite. Stephanite. Str ntianite.

Stromeyerite. Sulphur. ${ }^{4}$ atherite. Zinckenite.

Twin-face parallel to a face of the prism of the 2 nd order $1 \infty 1$. Chryeoberyl.

Leadhillite.
Manganite.
Twin-face parallel to a face of the prism of the 2nd order 1∞ ? Etaurolite.
Twin-face parallel to a face of the prism of the 2nd order $1 \infty 2$. Niobite.
Twin-face parallel to a face of the prism of the 2 nd order $1 \propto 3$. Wolfram.
Twin-face parallel to a face of the prism of the 3rd order $\infty 11$. Marcasite. Mispickel. Smithsonite. Stilbite.
Twin-face parallel to a face of the pyramid cf the lst class $11 \frac{1}{2}$. Redruthite. Stromeserite.
Twin-face parallel to a face of the pyramid of the 2 nd class $1{ }_{2}^{3} \frac{9}{2}$. Staurolite.

Tioin Crystals-Oblique System.
Twin-face parallel to a face of the basal pinacoid $\infty \infty 1$. Epidote. Felspar. Mirabilite.
Twin-face parallel to a face of the ortho-pinacoid $1 \infty \infty$.

Acmite.	Felspar. Gypsurn.	Rhyacolite.
Amphibolfris	Feuethlendersité Lille 1 Linarite.	Scolezite.
Augite. Epidote.	Preiembemte. Lill Malachite.	Vauquelinite.

Twin-face parallel to a face of the prism 31∞. Felspar.
Twin-face parallel to a face of the prism $1 \propto 1$. Chessylite. Gypsum. Natron. Sphene. Whewellite.
Twin-face parallel to a face of the prism $1 \infty 2$. Humite.
Twin-face parallel to a face of the prism $\infty 11$. Woolastonite.
Twin-face parallel to a face of the prism $\infty 12$. Felspar.

Rhyacolite.
Twin Crystals—Anorthic System.
Twin-face parallel to a face of the basal-pinacoid $\infty \infty 1$. Labradorite.
Twin-face parallel to a face of the macro-pinacoid $\infty 1 \infty$. Albite. Christianite. Labradorite. Oligoclase.
Twin-axis perpendicular to the plane passing through the poles of the forms $\overline{1} 1 \infty$, $\infty 1 \infty$, and 11∞.

Albite.
Twin-axis perpendicular to a face of the plane passing through the poles of the forms $\infty \infty 1,1 \propto 1$, and $1 \infty 2$.

> Albite. Oligoclase.

Twin-axis perpendicular to a face of the plane passing through the poles of the forms $1 \infty \infty, 11 \infty$, and $\overline{1} 1 \infty$.

Sassoline.
Pseudomorphous Crystals,-Pseudomorphous crystals are those which present the form of a mineral differing from that of which they are composed. They may be produced by the decomposition of the crystal after it has been formed, or by another substance being deposited upon it so as to assume its form. Sometimes after another substance has been deposited on a crystal, the crystal may have been removed, and a third mineral deposited in its cast.

The following is a list of pseudomorphous substances quoted bs Professor Miller from Blum :-

Pseudomorphous by Loss of an Ingredient.

Pseudomorphous by the Addition of an Ingredient.

Pseudomorphous by Exchange of Ingredients.

Pseudomorphous by total Change of Substance.

Dimorphism. -Bodies of the same chemical composition, which crystallize in forms belonging to two different systems, or if in the same system in forms which can only be referred to two different sets of parameters, which will be indicated by their having different angular elements, are said to be dimorphoous. Sulphur and carbonate of lime are instances of dimorphous substances, the system of crystallization to which each of these will belong seems to dopend upon the temperature at which the crystal is formed. Titanic acid is tri-morphous, as Brookite it is prismatic, as Anatase and Rutile it is pyramidal, but the angular elements of Anatase and Rutile differ.

Isomorphism—Substances forming crystals belonging to the same system, if their angular elements differ but a few minutes, are said to be isonorphows, homamorphous, or plesiomorphous. Alumina, red oxide of iron, and oxide of chrome; carbonates of lime (calcite), of magnesia (magnesite), of protoxide of iron (chalybite), of protoxide of manganese (diallogite), of oxide of zinc: antimony, bismuth, arsenic, and tellurium form three isomorphous groups of the rhombohedral system. Carbonate of lime (aragonite), of barytes, of strontian, and of oxide of lead; Sulphate of potash, seleniate of potash, chromate of potash, and manganate of potash ; sulphate of soda, seleniate of soda, sulphate of oxide of silver, and seleniate of oxide of silver, are three isomorphous groups of the prismatic system. Gypsum, sulphate of iron, and seleniate of iron is an isomorphous group of the oblique system. Seleniate of oxide of copper, sulphate of oxide of copper, and sulphate of protoxide of manganese are isomorphous forms of the anorthic system.

Any chemical elements or compound substances which will replace each other without altering the crystallographic character of the compound in which the change takes place, are also said to be isomorphous. Thus in the garnets and alums, iron, calcium,
 phous.

Goniometers.-Instruments which enable us to determine the angles at which adjacent faces of crystals are inclined to each other, are called goniometers. Professor Miller's description of the method of using them having been given in the chemical department of this work, we here quote Mr. Brooke's, from the "Encyclopædia Metro-politana:"-
"The mutual inclination of any two planes, as of a and b, Fig. 372, is indicated by the angle formed by two lines, ed,ef, drawn upon them from any point e on the edge at which they meet, and perpendicular to that edge.
"Now it is known that if two right lines, as $g f, d h$, Fig. 373 cross each other at any point e, the opposite angles $d e f, g e h$, are equal. If, therefore, the lines, $g f, d h$, are supposed to be very thin and narrow plates, and to be attached together

Fig. 372.

Fig. 373.

Fig. 3i4.
by a pin at e, serving "as an axis to permit the point, f, to be brought nearer either to d, or to h, and that the edges, $e d, e f$, of those plates, are applied to the planes of the crystal, Fig. 372, so as to rest upon the lines, e d, ef, it is obvious that the angle, $g e h$, of the moveable plates would be exactly cqual to the angle, $d e f$, of the crystal.
"The common goniometer is a small instrument for measuring this angle, $g \in h$, of the moveable plates. It consists of a semicircle, Fig. 374, divided into 360 equal parts, or half degrees, and a pair of moveable arms, $d h, g f$, Fig. 375, the semicircle having a pin at i, which fits into a hole in the moveable arms at e.
"The method of using this instrument is to apply the edges, $d e, e f$, of the moveable arms to the two adjacent planes of any crystals, so that they sinall actually touch or rest upon those planes in directions perpendicular to their ed,e. The arm, $d h$, is

Fig. 375.

Fig. 376.
then to be laid on the plate, $m n$, of the semicircle, Fig. 374, the hole at e being suffered to drop on the pin at i, and the edge nearest to h of the arm $g e$ will then indi-
 angle contains.
"When this instrument is applied to the planes of a crystal, the points, \dot{d} and f, Fig. 375 , should be previously brought sufficiently near together for the edges, $d e, e f$, to form a more acute angle than that about to be measured. The edges being then gently pressed upon the crystal, the points, d and f, will be gradually separated, until the edges coincide so accurately with the planes that no light can be perceived between them.
"The common goniometer is, however, incapable of affording very precise results, owing to the occasional imperfection of the planes of crystals, their frequent minuteness, and the difficulty of applying the instrument with the requisite degree of precision.
"The more perfect instrument, and one of the highest value to crystallography, is the reflecting goniometer, invented by Dr. Wollaston, which will give the inclination of planes whose area is less than $\frac{1}{100000}$ of an inch, to less than a minute of a degree. This instrument has been less resorted to than might, from its importance to the science, have been expected, owing, perhaps, to an opinion of its use being attended with some difficulty. But the observance of simple rules will render its application easy. The principle of the instrument may be thus explained:-
"Let $a b$, Fig. 377 represent a crystal, of which one plane only is visible in the

Fig. 377.

Fig. 378.
figure, attached to a circle, graduated on its edge, and moveable on its axis at o; and let a and b mark the position of the two planes whose mutual inclination is required.
"And let the lines, oe, og, represent imaginary lines, resting on those planes in directions perpendicular to their common edge, and the dots at i and h, some permanent marks in a line with the centre, 0. .
"Let the circle be in such a position that the line, o e, would pass through the dot at h, if extended in that direction, as in Fig. 378.
"If the circle now be turned round with its attached crystal, as in Fig. 377, until the imaginary line, og, is brought into the position of the line, o e, in Fig. 378, the number 120 will stand opposite the dot at i. This is the number of degrees at which the planes a and b incline to each other. For if the line og be extended in the direction $o i$, as in Fig. 377, it is obvious that the lines, $o e, o i$, which are perpendicular to the common edge of the planes, a and b, would intercept exactly 120° of the circle.
" Hence an instrument constructed upon the principle of these diagrams is capable of giving with accuracy the mutual inclination of any two planes which reflect objects
 the relative positions shown in the two preceding figures.
"This purpose is effected by causing an object, as the line at m (Fig. 379), to be reflected successively from the two planes, a and b, at the same angle. It is well known that the images of objects are reflected from bright planes at the same angle as that at which their rays fall on those planes; and that when the image of an object reflected from a horizontal plane is observed, it appears so much below the reflecting surface as the object itself is above.
"If, therefore, the planes a and b (Fig. 379) are successively brought into such positions as will cause the reflection of the line at m, from each plane, to

Fig. 379.

Fig. 380.
appear to coincide with another line at n, both planes will be successively placed in the relative positions of the corresponding planes in Figs. 377 and 378 . To bring the planes of any crystal successively into these relative positions, the following directions will be found useful.
"The instrument, as shown in the sketch (Fig. 380) should be first placed on a pyramidal stand, and the stand on a small steady table, about sis to ten or twelve feet from a flat window. The graduated circular plate should stand perpendicularly from the window, the pin GH being horizontal, not in the direction of the axis, as it is usually figured, but with the slit end nearest to the eye.
"Place the crystal which is to be measured on the table, resting on one of the two planes whose inclination is required, and with the edge, at which those planes meet, nearest and parallel to the window.
"Attach a portion of was, about the size of d, to one side of a small brass plate, e (Fig. 381); lay the plate on the table with the edge, f,

Fig. 381. parallel to the window, the side to which the wax is attached being uppermost, and press the end of the wax against the crystal until it adheres; then lift the plate with its attached crystal, and place it in the slit of the pin GH, with that side uppermost which rested on the table.
"Bring the eye now so near the crystal, as, without perceiving the crystal itself, to permit the impges of phjects reffected frop, its, planes to be distinctly observed, and raise or lower thatena of the pincth which has the small circular plate on it, until one of
the horizontal upper bars of the window is seen reflected from the upper or first plane of the crystal, corresponding with the plane a (Fig. 377), and until the image of the bar appears to touch some line below the window, as the edge of the skirting-board where it joins the floor.
"Turn the pin GH on its own axis also, if necessary, until the reflected image of the bar of the window coincides accurately with the observed line below the window.
"Turn now the small circular handle, S, on its axis, until the same bar of the window appears reflected from the second plane of the crystal corresponding with plane b (Figs. 377 and 378), and until it appears to touch the line below; and having, in adjusting the first plane, turned the pin GH on its axis, to bring the reflected image of the bar of the window to coincide accurately with the line below, now move the lower end of the pin laterally, either towards or from the instrument, in order to make the image of the same bar, reflected from the second plane, coincide with the same line below.
"Haring ascertained by repeatedly looking at, and adjusting both planes, that the image of the horizontal bar, reflected successively from each plane, coincides with the obscrved lower line, the crystal may be considered ready for measurement.
"Let the 180° on the graduated circle be now brought opposite the 0 of the vernier at I , by turning the handle, M ; and while the circle is retained accurately in this position, bring the reflected image of the bar from the first plane to coincide with the line below, by turning the small circular handle, S. Now turn the graduated circle, by means of the handle, M, until the image of the bar, reflected from the second plane, is also obscrved to coincide with the same line below. In this state of the instrument the vernier at L will indicate the degrees and minutes at which the two planes are inclined to each other.
"The accuracy of the measurements taken with this instrument will depend upon the precision with which the image of the bar, reflected successively from both planes, is made to appear to coincide with the same line below; and also upon the 0 , or the 180°, on the graduated circle, being made to stand precisely even with the lower line of the vernier, when the first plane of the crystal is adjusted for measurement. A wire being placed horizontally between two upper bans of the window, and a black line of the same thickness being drawn parallel to it below the window, will contribute to the exactness of the measurement, by being used instead of the bar of the window and any other line.
" Persons beginning to use this instrument are recommended to apply it first to the measurement of fragments at least as large as that represented in Fig. 381, and of some substance whose planes are bright. Crystals of carbonate of lime will nupply good fragments for this purpose, if they are merely broken by a slight blow of a smail hammer.
"For accurate mcasurement, however, the fragments ought not, when the planes are bright, to excced the size of that shown in Fig. 380, and they ought to be so placed on the instrument, that a line passing through its axis should also pass through the centre of the small minute fragment which is to be measured. This position on the instrument ought also to be attended to when the fragments of crystal are large. In which case the common edge of the two planes, whose inclination is required, should be brought very nearly to coincide with the axis of the goniometer; and it is fre-
 stripe on each close to the edge over which the measurement is to be taken."

MINERALOGY.

The science which enables us to classify and arrange those inorganic productions of nature which are called minerals, and enables us to identify or distinguish them from one another, is termed mineralogy.

Mineral.-By the word mineral we understand all substances found in nature, which are homogeneous or of the same composition throughout their structure, and do not owe their origin to the action of animal or vegetable life. This definition excludes all rocks which are variable in their character and composition, as well as all substances, such as coal, which are products of vegetable life. Some of these are retained in most descriptions of minerals though they do not strictly belong to the subject of mineralogy.

Species of Minerals.-The various members of the mineral kingdom which essentially differ from one another are divided into kinds or species. By far the majority of mineral substances are found to assume definite mathematical forms, bounded, for the most part, by plane surfaces and straight lines-these are called crystals. The subject of crystallography we have already discussed at some length, particularly in its relation to minerals. Generally speaking, substances which differ in chemical composition from other substances constitute distinct mineral species; again, substances which agree in chemical constitution, but differ in the character of their crystalline forms, are divided into separate mineralogical species. Thus native gold, silver, and copper, which have the same crystalline forms, but differ in chemical composition, give three distinct species of minerals. Calcite and aragonite,-which have the same chemical composition, being both carbonate of lime, but present different kinds of crystalline forms, one series belonging to the rhomboidal and the other to the prismatic system,-constitute two distinct species. Difference in chemical composition, independently of crystalline form, or difference in the class of crystalline form, while the chemical composition remains the same, principally determine the division of minerals into species. This rule does not hold true universally, for some bodies admit of considerable change in their chemical composition without affecting their form and many other properties-several classes of such substances, of which the garnets and alums may be taken as an illustration, have by the common consent of mineralogists been considered as similar species, though differing from one another in chemical composition.

Characteristics of Minerals.-The crystalline form and chemical constitution of minerals are the principal characteristics by which, when known, their species and names may be discovered. Though these, in general, are sufficient for the identifcation of a mineral; yet, when the crystalline form is not apparent, or the chemical constitution determined without great trouble, there are many other characteristics which will enable us to describe and identify the species. The chief of these are the hardness, specific gravity, fracture, lustre, colour, brittleness, flexibility, malleability, taste, smell, and other natural properties of the substance. Sometimes the optical and electrical propeftes affbrala

Crystalline Form.-This subject has already been discussed at such considerable length, that it is unnecessary to say anything more here than to quote from Dana that, "To learn to distinguish minerals by their colour, weight, and lustre, is so far very well; but the accomplishment is of a low degree of merit, and when most perfect makes but a poor mineralogist. But when the science is viewed in the light of chemistry and crystallography, it becomes a branch of knowledge perfect in itself, and surprisingly beautiful in its exhibitions of truth. We are no longer dealing with peظbles of pretty shapes and tints, but with objects modelled by a divine hand, and every additional fact becomes to the mind a new revelation of His wisdom."

Chemical Composition.-There are sixty-two or sixty-three elementary bodies known (See Chemistry, page 29) ; all species of minerals are formed by some one of these elements, or else result from their combinations. The following is a list of their symbols and chemical equivalents :-

The letters or symbols placed before these elementary bodies enable us to express with great conciseness the chemical composition of any mineral, and the numbers which follow them, to determine the comparative weights of its component elements.

Thus, ZnO represents the red oxide of zinc, spartalite, consisting of one equivalent of zinc and one of oxygen.
FeS^{2}, iron pyrites consisting of one equivalent of iron and two equivalents of sulphur.
$\mathrm{Fe}^{2} \mathrm{O}^{3}$ the red oxide of iron or hematite, consisting of two equivalents of iron and three of oxygen.
$\mathrm{As} \mathrm{O}^{5}$, arsenic acid, consisting of one equivalent of arsenic and five equivalents of oxygen.

HO, water consisting of one equivalent of hydrogen and one of water.
Pharmacosiderite, an arseniate of iron, is represented by the more complex symbol $3 \mathrm{Fe}^{2} \mathrm{O}^{3}+2 \mathrm{As}^{5}+12 \mathrm{HO}$, showing that it consists of 3 equivalents of red oxide of iron, 2 of arsenic acid, and 12 of water. The following formulæ will show the relative weights of the constituents of the above substances.

Spartalite.			Iron Pyrites.		
$\mathrm{Zn}=1$ equir. of	Zinc $=406.60$ or	80-2 6	$\mathrm{Fe}=1$ equiv. of	Iron $\quad=350.00$ or	$46 \cdot 67$
$0=1$	Oxygen $=100.00$	19.74	$\mathrm{S}^{2}=2$	Sulphur $=400 \cdot 00$	53.30
$\mathrm{ZnO}^{0}=1$	Spartalite $=506.60$	100.00	$\mathrm{FeS}^{2}=1$	Iron Pyrites $=750 \cdot 00$	100.00

The first column is obtained by multiplying the equivalent number of the elements by the number of its equivalents in the substance, and shows that 506.60 parts by weight of spartalite contain 406.60 parts of zine and 100 parts of oxygen, or that 750 parts of iron pyrites contain 350 parts of iron and 400 of sulphur.

The second column shows that 100 parts by weight of spartalite contain 80.26 parts of zinc and 19.74 of oxygen; and 100 parts of iron pyrites contain 46.67 of iron and 53.30 of sulphur. This column is found by multiplying the number for the zinc, oxsgen, iron, or sulphur of the first column by 100 and dividing it by the equivalent number for the substance, thus,
$\frac{406.60 \times 100}{506.60}=80.26 \frac{100.00 \times 100}{506.60}=19.74 \frac{350 \times 100}{750}=46.67 \frac{400 \times 100}{750}=53.30$
To determine the relative weights of the constituents of pharmacosiderite we have the following calculations:-

There are two methods of investigating the chemical composition of a mineralthe qualitative and the quantitative. The qualitative analysis determines the nature of the constituents, and the quantitative their relative proportions. For the method of conducting these analyses we must refer the student to the science of chemistry, contenting ourselves with expressing the chemical composition of the mineral in symbols, according to the best authorities, and indicating after the letter B whether they are fusible or not before the blowpipe, and also whether they are soluble or insoluble in acids.

Hardness. -The comparative hardness of minerals is of great assistance in

perty has not been more accurately observed. The following scale introduced by Mohs is that generally adopted for indicating the hardness of minerals :-

1. Talc.
2. Calctite.
3. Apatite.
4. Quartz.
5. Corundum.
6. Rock Salt.
7. Fluor.
8. Felspar.
9. Topaz.
10. Diamond.

The specimens of the above minerals used for testing the hardness of other minerals are generally fragments of transparent or cleavable varieties.

The hardness of talc is said to be 1 , of rock salt 2 , of calcite 3 , and so on. A mineral which neither scratches nor is scratched by any member of the series is said to be of the same hardness. Thus, a mineral which neither scratches nor is scratched by quartz is said to be of the hardness of 7, generally indicated thus, H 7. A mineral which scratches calcite, and is scratched by fluor, is said to be of a degree of hardness between 3 and 4 , which is indicated by $3 \cdot 25,3 \cdot 5$, or $3 \cdot 75$, according as it is regarded as $\frac{1}{4}$, $\frac{1}{2}$, or $\frac{3}{3}$ harder than calcite, No. 3. To ascertain these fractional degrees of hardncss the three minerals are passed successively over a finely-cut hard steel file, one end of the file being held by the hand, while the other rests on a table. The degree of hardness of the intermediate substance is determined by observing the degree of resistance it affords to the file, the quantity of powder left on its surface, and the sound produced by the operation. Care must be taken to use specimens nearly of the same form and size, and also of great purity.

Streak.-This is a property examined by scratching the mineral by a substance harder than itself, or when it is not too hard, by rubbing it on a piece of unglazed porcelain. A writing diamond will scratch all other minerals; but a fragment of corundum, quartz, or a hard steel point, will be sufficient for most. The scratch may be a rough or smooth line, and it may be accompanied by the powder of the mineral.

The colour of this powder determines the colour of the streak, and it is distinguished as shining or dull, according as the scratch is of a greater or less lustre than the surface of the mineral scratched.

Specific Gravity.-Equal volumes of different substances are frequently found to differ in their weights. To determine the relative weights, or the specific gravity of equal volumes of substances, distilled water at a temperature of 60° of Fahrenheit, or 15.55° centrigrade, is taken as the standard unit of comparison. As it would be extremely difficult to obtain equal volumes of the substances whose specific gravity is

Fig. 382. required, advantage is taken of the hydrostatical property, that a body immersed in water displaces a mass of water equal in volume to itself, and has its weight diminished by that of the equal volume of water it displaces. The specific gravity of a body being the ratio of its weight to an equal volume of distilled water at the temperature of 60° Fah., all we have to do to determine it, is to weigh the substances first in air, and then in distilled water at $60^{\circ} \mathrm{Fah}$. For this purpose the hydrostatic balance (Fig. 382) is made use of.

The hydrostatic balance is an ordinary balance, the scale pan of which is removed from one side, apd reqlace diby a countecp ise b_{1} which balances the other scale pan; under b is placed a hook, to which the substance to be weighed is suspended by a fine
fibre or platinum wire. For accurate experiments the balance should be sufficiently delicate to weigh to the one-hundredth part of a grain. Let A be the weight of the substance in air, W its apparent weight when suspended in water, and S G its specific gravity-then :

$$
S G=\frac{A}{A-W}
$$

When great accuracy is required, it may be necessary to take into account the weight of the mass of air displaced by the body when weighed in air. Since water is 815 times heavier than air, we must subtract from the specific gravity obtained above-

$$
\frac{\mathrm{W}}{815(\mathrm{~A}-\mathrm{W})}
$$

Thus in a specimen of cordierite, whose weight in air is 311.91 grains, weight in water $195 \cdot 46$ grains.

$$
\text { Here } S G=\frac{311 \cdot 91}{311.91-190^{\circ} \cdot 46}=2.678
$$

If we take into account the weight of the air displaced when it is weighed in air, we must deduct from the above -

$$
\frac{195 \cdot 46}{815 \times(311 \cdot 91-195 \cdot 46)}=.002
$$

which makes the corrected specific gravity $2 \cdot 676$. The bubbles of air which attach themselves to the surface of the mineral when suspended in water, are removed by boiling the water in which it is suspended briskly for some minutes, the whole being left to cool down to the temperature of $60^{\circ} \mathrm{Fah}$.

If the mineral be so light as to float on the water, a sinker of brass, or some other substance whose apparent weight when suspended by itself in the distilled water is B, is attached to it, so as to cause it to sink.

Let A be the weight of the light mineral, B that of the sinker suspended by itself in the distilled water, C the weight of A and B when suspended in the water together; then in this case

$$
S G=\frac{A}{A+B-C}
$$

Thus, to find the specific gravity of a substance which weighs 20 grains in air, it is sunk by a weight which weighs $87 \cdot 22$ grains when immersed by itself in water; the two substances being suspended in the water together, weigh 23.89 grains. In this case

$$
\mathrm{S} \mathrm{G}=\frac{20}{20+87 \cdot 22-23 \cdot 89}=\frac{20}{83 \cdot 33}=\cdot 240
$$

If the mineral can only be obtained in small fragments, or if it be supposed to contain vacuities it must be reduced to fine powder, and the specific gravity bottle (Fig. 383) made use of. This instrument is equally applicable for the determination of the specific gravity of solids or fluids. It consists of a thin glass bottle of a globular shape, and is generally made to contain either 500 or 1,000 grains of distilled water at 60° Fah. It is furnished with a ground glass stopper which is pierced through the centre with a stratghtho of fetsitinciubre. The ol ject of this is, that when
the bottle is filled up to the neck with water or any other liquid, the stopper may be inserted, and, the excess of liquid escaping through the hole in the stopper, the bottle

Fig. $3^{\circ} 3$. may be filled with a definite volume of liquid. Suppose our object is to find the specific gravity of a liquid, and that we use a 1,000 grain bottle, we proceed as follows:-Having placed the empty bottle in one pan of a balance, we counterpoise it by a weight in the other; we then fill the bottle with the liquid at $60^{\circ} \mathrm{Fah}$. in the way described, wipe it dry, replace it in the scales and restore the equilibrium by adding more weights. The weight added is evidently that of the liquid, but as the same volume of water at 60° weighs $1,000 \mathrm{grs}$., if the bottle be accurately made, the specific gravity of the liquid is equal to its weight expressed in grains divided by 1,000 . As the bottlos are seldom made with such accuracy as to contain exactly the right quantity of water, let W be the weight of bottle full of air, W' its weight filled with distilled water at 60° Fah., then making an allowance for the weight of the air contained in the bottle, the weight of the water contained in the bottle will be

$$
\frac{815\left(W-W^{\prime}\right)}{814}
$$

and the weight of the bottle will be the difference between this quantity and W^{\prime}. A piece of lead equal to this must be cut and kept as a counterpoise for the bottle. If a bottle, which has thus been found to contain $500 \cdot 72$ grains of water, be counterpoised by a piece of lead, and filled with sea water weighs 516.86 grains, the specific gravity of the sea water will be $\frac{516 \cdot 86}{500.72}$ or 1.032 .

To determine the specific gravity of a powdered mineral, a known weight M of the substance is introduced into the specific gravity bottle, which is then carefully filled with water and weighed.

Let M be the weight of the mineral introduced.
\mathbf{M}^{\prime} the weight of the water it displaces in the bottle.
w the weight of the water which the bottle would contain when full.
W the weight of the bottle filled with the mineral and water, the lead counterpoise for the weight of the bottle itself being in the opposite scale.
Then the specific gravity of the substance $=\frac{M}{M^{\prime}}$

$$
\begin{gathered}
\text { and } \mathrm{W}=\mathrm{w}+\mathrm{M}-\mathrm{M}^{\prime} \text {, or, } \mathrm{M}^{\prime}=\mathrm{w}+\mathrm{M}-\mathrm{W} \\
\quad \text { and therefore } \mathrm{SG}=\frac{\mathrm{M}}{\mathrm{w}+\mathrm{M}-\mathrm{W}} .
\end{gathered}
$$

Let 86.02 grains of a mineral be introduced into a bottle formed to contain 500.72 grains of water, and the bottle filled with distilled water, let it then weigh 554.74 grains.

$$
\text { Then } S G=\frac{86.02}{500.72+86.02-554.74}=2.688
$$

Wicholson's Areometer.-A cheap and convenient substitute for the balance is found in a little instrument represented in Fig. 384, and called Nicholson's Areometer, which we will briefly describe. V is a metallic ball or float having a descending hook, to which is hypg a litite weighted pan lto hold the substance which is weighed in water; the wire stem f supports a cupp c. Almark t, on the stem, shows the point at
which the whole apparatus will float in a tall vessel of water, when a certain known weight (called the balance-weight) is put in the cup c. The specimen under examination must not exceed in weight the balance-weight, this being the limit of the instrument. Suppose the limit to be 100 grains. To find by this instrument the specific gravity of a substance, place it on c, and add weights till the instrument sinks to the mark t, the added weight being subtracted from 100, gives the weight of the specimen in air. Now place the specimen in the pan l, and again add weights to c. As much more weight on c will now be required as corresponds to the weight of a bulk of water equal to the specimen, which, it must be remembered, is buoyed up by a power just equal to such weight. The difference of weight thus found will be the divisor of the weight of the specimen, and the quotient will be the specific gravity sought.

This instrument is generally made of brass or tin-plate, but may be more elegantly made of glass.

Fig. 384.

For example, put the specimen in balance-weight $=\ldots . .100 \cdot 00$
Weights added to sink instrument to $t=\ldots . .$. . . . $22 \cdot 57 \mathrm{grs}$.
Weight of specimen in air = $77 \cdot 43$
Spccimen placed in lower pan requires additional weights $=35 \cdot 43$
$35 \cdot 43-22 \cdot 57=12 \cdot 86$, the weight of a like bulk of water; then $\frac{77 \cdot 43}{21 \cdot 86}=6 \cdot 02$, the specific gravity sought.

When the specific gravity of two substances are known, by taking the specific gravity of their compound, we may find the relative weights of the two components. Thus, knowing the weight of a nugget of quartz and gold, by means of its specific gravity we can determine the weight of the gold contained in it.

Let G be the weight of gold in a nugget. g its specific gravity. Q the weight of the quartz in a nugget. q its specific gravity. N the weight of the nugget. $\quad n$ its specific gravity.
then

$$
\begin{aligned}
& G+Q=N \\
& \frac{G}{g}+\frac{Q}{q}=\frac{N}{n}
\end{aligned}
$$

and
From which equations we may obtain the following,

$$
G=N \cdot \frac{(n-q) g}{(g-q) n}
$$

Thus, if the specific gravity of a nugget whose weight is $11 \frac{1}{2} \mathrm{oz}$. be $7 \cdot 43$, considering the specific gravity of the quartz as $2 \cdot 62$ and that of fine gold as $19 \cdot 35$, we shall have from the above formula

$$
G=11 \cdot 5{ }_{19 \cdot 35-2 \cdot 62}^{7 \cdot 43-2 \cdot 62}+{ }_{7 \cdot 13}^{19 \cdot 35}=\frac{10703452 \cdot 5}{1243039}=8.6107
$$

or the amount of fine gold in the nugget will be about 8.6107 ounces.
The asperities on the surface of the quartz, as well as the cavities it contains, causes the nugget to displace more water than it should; consequently the amount of gold is rather understated. (Galbraith and Haughton's "Manual of Hydrostaties.")

Double Refraction and Polarized Light.-If a ray of light fall obliquely on a plate of glass or any other transparent medium, its diuection is changed as it

law of sines. There are certain transparent substances which possess the power of splitting the refracted ray into two, one of which mostly follows the ordinary law of refraction, which belongs to transparent substances, and the other a more complicated law. Such substances are said to possess the power of double refraction. Calcite

Fig. 385. possesses this property in so high a degree, that all objects seen through it appear double. This is most strikingly observed in the very transparent varieties called Iceland spar.

If a ray of light $\mathrm{R} \boldsymbol{r}$ fall obliquely on any one of the surfaces of a cleavage rhomboid of calcite (Fig. 385), it will be divided on entering into the crystal into two rays, one $\boldsymbol{r} 0$ in the same plane as the ray $\mathrm{R} r$, following the ordinary law of refraction, and therefore called the ordinary ray; and the other, $r \mathrm{E}$, following a more complicated law, and called the extraordinary ray. If the rhomboid be placed on a piece of paper having a black dot, the dot seen through the crystal will appear double, and one image of the dot will seem to be above the other; and in whatever position the rhomboid is placed, an imaginary line joining the two dots will always be parallel to the axis, $\mathrm{P}_{1} \mathrm{P}_{n}$, which joins the two three-faced solid angles, P_{1} and P_{2}, of the rhomboid (Fig. 386), formed by three equal and similar oblique angles. A line or printed characters viewed through the rhomboid will appear double; the distance between the two images will depend on the thickness of the rhomboid, being greater as the rhomboid is thicker.

Fig. 386.

If the solid angles, P_{1} and P_{2}, of the rhomboid be ground down and replaced by two triangular surfaces, as in Fig. 387, perpendicular to the axis, $\mathrm{P}_{1} \mathrm{P}_{2}$, and these surfaces be polished, it will be found that a ray passing

Fig. 387. directly through these triangular surfaces will not suffer double refraction; and any object viewed through these planes will appear single. The axis, $P_{1} \mathbf{P}_{2}$, parallel to which there is no double refraction, is called the optic axis of the crystal. All transparent crystals, with the exception of those belonging to the cubical system, possess the property of double refraction, though few so powerfully as to cause objects seen through them to appear double. Nitrate of soda possesses the same crystalline form, cleavage, and the property of double refraction in the same degree of energy as calcite, and may be substituted for it in experiments on these optical peculiarities.

The light which passes through a doubly-refracting crystal suffers a peculiar change, which is called polarization. A ray of light which has been once split by passing through a doubly-refracting substance, will not be divided again on passing through another doubly-refracting surface, and there is a certain angle for every substance which is not metallic, and is capable of reflecting ordinary light, at which the ray of light Rich idefflfereniversite tideration cannot be reflected. A ray of
light which has acquired these two properties, is called polarized light. Light may be polarized not only by passing through a doubly-refracting substance, but also by being reflected at a particular angle by a non-metallic reflector, or by being refracted at a particular angle through parallel plates of a transparent substance, which does not possess the property of double-refraction.

Fig. 388.

Tourmaline, especially the green and brown transparent varieties, can be so prepared as to polarize light. If a crystal of tourmaline be cut into plates, parallel to any one of the faces of the hexagonal prism, or to the principal or optic axis of the crystal, ordinary light on passing through the plate of tourmaline will be

Fig. 389.
doubly refracted; but one of the two rays into which the ray is split will be completely absorbed by the tourmaline, if the plate be thick enough, and the other will be transmitted. If we look through the plates of tourmaline in the position of Fig. 386. as they are cut from the crystal, we can see through them; but if they be placed across each other, as in Fig. 389, we shall not be able to see through them, where the planes of the two plates are placed in contact with each other.

If we cause one plate of tourmaline to revolve on the other, in its own plane, through an angle of 360°, we shall find that there are two positions in which it is incapable of transmitting polarized light. A bundle of plates of glass, consisting of eight or ten similar pieces, with their edges united together with sealing-wax, or any other means, held in such a manner as to cause the light to pass through the plates obliquely, as in Fig. 390, may be substituted for the plate of tourmaline. There is also an instrument called Nicol's prism, consisting of two prisms of Iceland spar, united together with Canada balsam, at such an angle as to allow only one of the two rays of the duubly-refracted light to pass through the prism. The Nicols' prism and the plates of glass, have this advantage over the plates of tourmaline, that the light which is polarized by passing through them is not coloured.

Tig. 390.

If a ray of light, which has been polarized, pass through a doubly refracting crystal, it becomes depolarized, or recovers its property of being reflecting at all angles by a nonmetallic reflector, and of passing through the plate of tourmaline, the bundle of glass, or the Nicol's prism, in every position in which they may be held.

This property affords a ready test of double refraction,-if a plate, with parallel surfaces, be cleared or cut from any doubly-refracting crystal and placed between the two plates of the tourmaline, in the position, Fig. 389, in which they lose their transparency, the transparency will be restored; and if the plate be of a certain degree of thinness, depending upon the substance of which it is composed, it will appear coloured. The plate of tourmaline, through which the light in passing is polarized, is called the polarizer, the doubly-refracting plate the depolarizer, and the other plate of tourmaline through which it is seen the analyzer. Any non-metallic reflector, a plate of tourmaline, a bundle of glass plates, or the Nicol's prism, may be used as the polarizer or as the analyzer. Any instrument arranged with any combination of any two of these for the analyzer and polarizer, for the puthbse

The most convenient analyzer is a polished mahogany table or sheet of glass lying on the table, reflecting the light of the sky falling on it through a window. If a thin plate of mica or selenite, held in the hand with its plane perpendicular to that of the table, be viewed through a plate of Tourmaline, a bundle of glass held obliquely, or a Nicol's prism, by advancing or retiring from the table its polarizing angle will soon be discovered by the brilliant tints assumed by the mica or selenite. When this angle has been determined,-if we substitute for the plate of mica a thicker slice cut from any transparent crystal belonging to the rhombohedral system, perpendicular to the principal or optic axis, or to any of the faces of the hexagonal prism, taking care to hold the slice close to the analyzer,-as we cause the analyzer to revolve round its

Fig. ${ }^{391}$.

Fig. 392. axis we shall see a black cross, surrounded by a brilliant series of rings, exhibiting all the colours of the spectrum, as in Fig. 391, succeeded by another series of rings, intersected by a transparent cross (Fig. 392). The cleavage rhomb of calcite, or that of nitrate of soda, prepared as in Fig. 387, and viewed through the two triangular planes, will exhibit these phenomena with great brilliancy, if the thickness of the plate, or the distance between the triangular planes, be from a quarter to an cighth of an inch. The intervals between the rings are smaller as the thickness of the slice increases, or, the thickness of the slice being the same, as the doubly refracting energy of the substance from which it is cut. In crystals of the pyramidal system, the slice must be cut parallel to the basal pinacoids of the crystal.

Quartz is an exception to other substances belonging to the rhombohedral system as it presents the phenomena of circular polarization. The slice of quartz, cut perpendicular to the optic axis or any of the planes of the hexagonal prism, presents in every position of the analyzer the rings without the cross, the centre of the inner ring being of one colour, which passes through all the varieties of the spectrum as the analyzer is rotated on its axis. In some specimens the colours succeed in their order from red to violet, as the analyzer is moved from right to left, and in others when it is moved from left to right.

Slices cut in proper directions from translucent crystals belonging to the prismatic,

Fig. 393.

Fig. 394. oblique, and anorthic systems, all of wheh have two axes of doubled refraction, when
viewed as above, present a double system of rings round each axis, when the axes are sufficiently near to be observed at once, as in the case of nitrate of potash, the analyzer being held in the position in which it would show the black cross in the preceding case, Figs. 393 and 394 will be seen, consisting of two series of oval-coloured rings, intersected by dark brushes, which will change from the position, Fig. 393, to that in Fig. 394, as the slice of the crystal is made to rotate round its axis, while the analyzer is held fixed. If the slice of the crystal be fixed while the analyzer is made to revolve, the dark brushes will alternately vanish and re-appear, as in the crystals with one optic axis.

Arrangement and Description of Minexals.-Most modern works ou Mineralogy haring followed a chemical arrangement of minerals, we shall adopt that of Berzelius, as modified in the collection in the British Mruseum. The British Museum contains probably the finest collection of minerals in the world; it is public property, and easy of access to every student; we shall, therefore, in our description of each mineral indicate the number of the case in which it my be found. For the sake of distinguishing the specimens of one mineral from those of another, in the British Museum, the name of each mineral in the case is printed on a label with a border coloured red, green, blue, or yellow; a thin slip of wood, of the same colour as the border, surrounds all the specimens of the mineral indicated by the name on the label. Some idea of the value of the collection in the British Museum may be formed from the fact that it cost government more than $£ 30,000$, and has been greatly enriched by many valuable contributions presented to it, especially the rich private collection of the Rev. Mr. Cracherode.

In describing each mineral we shall give its name and synonymes, chemical composition in symbols, crystalline system, hardness, and specific gravity, indicated by the letters H and G; case in the British Muscum ; fracture, transparency, or opacity; lustre, colour, streak; brittleness, or other remarkable property; fusibility or infusibility before the blowpipe; the manner in which it is affected by acids, followed by some of its principal localities, and any observations which may be necessary as to its uses and properties.

Iron.-Native Iron.-Fe. cubic. $\mathrm{H}=4 \cdot 5 \mathrm{G} 7 \cdot 0 \ldots 7 \cdot 8$. Case 1. Soluble in Lydrochloric acid. B. infusible. Frac. hackly. Opaque. Lus. metallic. Col. pale, steel-gray. Str. the same.

Native iron of terrestrial origin is mised with a small portion of other metals, but without nickel. Dauphine, Auvergne, Brazils, Yates, United States. Mcteoric iron: Erolite, Meteorite.-Found in meteoric stones, with nickel, cobalt, and other metals. Siberia, Pern, Mexico, North America, Cape of Good Hope, several parts of Europe. Meteoric iron forms the substance of the rough-shaped knives of some of the Esquimaux tribes of North America. Iron is most extensively nsed in the arts and manufactures.

Copper.-Native Copper.—Cu. cubic. HI $2.5 \ldots 3.0$ G $8.5 \ldots 8.9$. Case 1 Soluble in nitric acid. B. easily fusible. Frac. hackly. Lus. metallic. Col. red. Str. shining.

Found in veins and beds. Disseminated through rocks of all formations. Hungary, Siberia, Cornwall, Waterford, Mansfield, Kaursdorf, Chessy, Spain, F'ahlun, North America, Cuba, Brazils, China, Japan, Nassau, Saxony. Copper, either by itself or else in combina-
 for the stamping machinery of powder-mills, because it does not emit sparks.

Bismuth.—Native Bismuth.—Bi. rhombohedral. H $2.0 \ldots 2 \cdot 5 \mathrm{G} 9.6 \ldots 9.8$. Case 1. Soluble in nitric acid. B. easily fusible. Frac. indistinct. Opaque. Lus. metallic. Col. reddish-silver-white.

Found in veins, in granite, gneiss, mica slate, and transition rocks. Saxony, Thuringia, Bohemis, Norway, Sweden, the Pyrenees, Connecticut, Cornwall. Bismuth enters into several alloys used in the arts, such as pewter, solder, and type metal.

Lead.-Native Lead.—Pb. cubic. H $1.5 \mathrm{G}=11.35$. Case 1 . Soluble in nitric acid. B. easily fusible. Frac. hackly. Opaque. Lus. metallic. Col. lead-gray. Str. shining.

Said to be found in lava and carboniferous limestone. Madeira; Bristol ; Kenmare Ireland; Alston, Cumberland. Used extensively in the arts and manufactures.

Silver.-Native Silver.-Ag. cubic. H $2.5-3.0$ G 10.1 - 11.0 . Case 2. Soluble in nitric acid. B. easily fusible. Frac. hackly. Opaque. Lus, metallic. Col. white. Str. shining.

Found in veins, rarely in beds; in crystalline slate rocks, gneiss, mica slate, hornblende slate, granite, syenite, porphyry. Norway, Sweden, Saxony, Bohemia, Hungary, Transylvania, Siberia, the Hartz, Baden, the Tyrol, France, Peru, Mexico, Chili, Cornwall, Alva, Scotland. Used extensively in the arts and manufactures; mised with copper in the proportion of $12 \frac{1}{2}$ to 1 , it forms the standard silver of British coinage.

MTercuxy.—Native Mercury.-Hg. cubic. H.0. G 13.6. Case 2. Soluble in nitric acid. B. volatilizes. Opaque. Lus. bright metallic. Col. tin-white.

Found in cavities or crevices of rock containing cinnabar. Carniola, Spain, Bohemia, the Palatinate, the Tyrol, Carinthia, Peru, China, the Hartz.

Amalgam.-Hydrarguret of Silver.-Ag. Hg. cubic. H $3.0-3.5 \mathrm{G} 13.7-14.1$ Soluble in nitric acid. B. volatilizes. Frac. conchoidal. Opaque. Lus. bright metallic. Col. silver-white. Str the same.

Found in beds containing mercury and cinnabar. The Palatinate, Hungary, Spain, France, Sweden. That found in the Arquero mine, in Chili, has been called Arquerite. Extensively used in the arts and for philosophical apparatus, and in the manufacture of chemical and pharmaceutical preparations.

Palladium,_Native Palladium. Pd. cubic. H 4.5-5.0 G 11.8-12.14. Case 2. Soluble in nitric acid. B. infusible. Frac. hackly. Opaque. Lus.metallic. Col. light steel gray.

Occurs in rolled grains with platina, and particles imbedded in and combined with gold. Brazils, Tilkerode in the Hartz. Does not tarnish. Has been used in the manufacture of philosophical instruments, particularly balances.

Platinum.-Native Platina.-Pt. cubic. H $4.0-4.5$ G $17.3-18 \cdot 94$. Case 2 . Soluble only in nitro-muriatic acid. B. infusible. Frac. hackly. Opaque. Lus. metallic. Col. steel gray. Str. the same, bright. Ductile.

Found with gold in veins of quartz, in syenite, and in alluvial sand. The Ural, Brazils, St. Domingo, Borneo, the Rhone, North Carolina. Of great value in the construction of philosophical and chemical apparatus. It is used in painting on porcelain.

Osmiridium.-Alloy of Iridium and Osmium.-Ir. Os. shombohedral. H 7.0 G 19.3 - $21 \cdot 2$. Case 2. Insoluble in acids. B. infusible. Frac. uneven. Opaque. Lus. metallic. Col. tin-white and lead-gray. Str: the same.
 Ural, Borneo.

Iridium.-Alloy of Iridium and Platinum. Ir. Pt. cubic. H1 6.0-7.0 G $22.65-22.80$. Insoluble in acids. B. infusible. Opaque. Lus. metallic. Col. silver-white. Highly ductile.

Occurs with platinum and osmi-iridium. The Ural, Ava. Harder, heavier, and paler in colour than platinam.

Gold.-Native Gold.-Au. cubic. H $2 \cdot 5-3 \cdot 0$ G 14.55-19.1. Case 3. Soluble in nitro-muriatic acid. B. fusible. Frac. hackly. Opaque. Lus, metallic. Col. gold yellow. Str. bright. Ductile and malleable.

Occurs in felspathic and hornblende rocks, in conglomerates, in alluvial deposits and sands of rivers, in veins of greenstone and syenitic porphyry, in veins of quartz, in seleniuret of lead; generally combined with silver-when the proportion is considerable, it is called Electrum. Hungary, Transylvania, Mexico, Peru, and New Spain; California, Brazils, North Carolina, Australia, St. Domingo, Bohemia, Africa, Thibet, China, Java, Borneo, Sumatra, the Hartz, Danube, Rhine, Wicklow, Perthshire, Cornwall. The most ductile and flexible of all metals; extensively used for coinage, articles of luxury, and in the arts.

Tellurium.—Native Tellurium.-Te. rhombohedral. Case 3. H $2.0-2.5$ G 6.1-6.3. Soluble in nitric acid. B. easily fusible. Opaque. Lus. metallic. Col. tin-white. Str. the same.

Occurs in a sandstone rock. Faceby, Transylvania.
Tetradymite.—Tellurwismuth, Bornine, Molybdena-silver, Sulpho-telluret of Bismuth. Rhombohedral. Case 3. H $1.0-1.5$ G 7.4-7.5. Soluble in nitric acid. B. easily fusible. Opaque. Lus. metallic. Col. bright steel-gray. Str. the same.

Occurs in conglomerate. Schoublkan in Hungary, Deutsch Pilsen, near Grard.
Petzite.-Hessite, Tellur Silber, Telluret of Silver.-Ag. Te. cubic. Case 3, H $2.5 \ldots 3.0$ G 8.31 - 8.83. Soluble in hot nitric acid. B. volatilizes. Frac. even. Opaque. Lus. metallic. Col. steel-gray. Str. the same. Malleable.

Occurs with iron and copper pyrites in talk-slate. Siberia, Transylvania.
Nagyagite,-Black or Foliated Tellurium. Auro-plumbiferous telluret.-Pb. Te. Au. pyramidal. Case 3. H $1.0-1.8$ G $7.0-7.2$. Soluble in nitric acid. B. easily fusible. Opaque. Lus. metallic. Col. blackish lead-gray. Str. the same.

Occurs in veins with quartz. Nagyag and Offenbanya, Transylvania. Prized for the gold it contains.

Altaite.-Telluret of Iead.-Pb. Te. cubic, H 3.0-3.5 G 8.15. Soluble in nitric acid. B. fusible. Frac. uneven. Opaque. Lus. metallic. Col. tin-white. Str. the same.

Fonnd with petzite in Sawodinski mine, in the Altai.
Sylvanite,-Graphic and Yellou Tellurium, Schrift-erf, Mfullerine.-Te. Pb. Au. prismatic. Case 3. H $1.5-2.0$ G 7.99—8.33. Soluble in nitric acid. B. fusible. Frac. uneven. Opaque. Lus. metallic. Col. steel-gray. Str. the same.

Found in porphyry. Offenbanya and Nagyag, Transylvania. A very rare mineral.
Antimony.-Native Antimony.-Sb. rhombohedral. H $3.0-3.5$ G 6.6-6.7. Case 3. Soluble in nitro-muriatic acid. B. easily fusible. Opaque. Lus. metallic. Col. tin-white. Str. the same.

Occurs in veins in crystalline rocks. Sahlberg in Sweden, Allemont in Danphine, Przi-
 particularly type metal ; it is also used for some pharmaceutical preparations.

Antimonsilber.-Antimonial Silver.-Ag4 Sb. prismatic. H 3.5 G 9.4-9.8. Case 3. Soluble partially in nitric acid. B. easily fusible. Frae. uneven. Opaque. Lus. metallic. Col. silver white. Str. the same.

Occurs in veins in granite, porphyry, and crystalline slate rocks. Andreasberg in the Hartz, Guadal canal in Spain, Allemont in France, Mexico. A rare mineral, highly valuable for extracting silver, when found in sufficient quantity.

Breithauptite,—Nickel Antimonial.-Ni. ${ }^{2}$ Sb, rhombohedral, H $5 \cdot 0$ G 7.54. Soluble in nitro-muriatic acid. B. volatilizes. Frac. uneven-conchoidal. Opaque. Less. metallic. Col. light copper-red. Str. reddish-brown. Brittle.

Occurs with ores of cobalt at Andreasberg in the Hartz.
Arsenic.-Native Arsenic.-As. rhombohedral. II 3.5 G 5.7-5.8. Case 4. With nitric acid changes to arsenious acid. B. easily fusible, on charcoal volatilizes. Frac. uneven. Opaque. Lus. metallic. Col. tin-white. Str. the same. Brittle.

Occurs in veins, seldom in beds, in crystalline slate rocks. The Hartz, Saxony, Baden, Bohemia, Transylvania, the Banat, Dauphine, Alsace, Norway. A virulent poison, it is used in metallurgical processes and in the manufacture of glass and colours.

Kupfernickel.-Copper Nickel, Arseniate of Nickel.-Ni. ${ }^{2}$ As. yhombohedral. H $5 \cdot 5 \mathrm{G} \mathrm{7} \cdot 2-7.8$. Case 4. Soluble in nitro-chloric acid. B. fusible. Frac. conchoidal. Opaque. Lus. metallic. Col. copper-red. Str. brownish-black. Brittle.

Occurs in veins, seldom in beds, in granite, clay, slate, and transition rocks. Saxony, Bohemia, Thuringia, Hessia, the Hartz, Baden, Dauphine, Styria, the Banat, Spain, Connecticut, Cornwall, Linlithgowshire. Distinguished from native copper by its brittle nature, and the green deposit it forms in nitric acid.

Rammelsbergite.-White Arserical Nickel.-Ni. As. cubic. H5.5 G 6.43 6.73. Case 4. Soluble in nitric acid. B. easily fusible. Frac. uneven. Opaque. Lus. metallic. Col. tin-white. Brittle.

Found_at Schneeberg in Saxony, Richelsdorf in Hessia, Kamsdorf near Salfield.
Chloanthite.-White Nickel.-Ni. As. prismatic. IH $5 \cdot 5 \mathrm{G} 7 \cdot 09-7 \cdot 18$. Opaque. Lus, metallic. Col. tin-white.

Found at Riechelsdorf and Schneeberg.
Smaltine.-Tix-white Cobalt, Arsenical Cobalt.-Co. As. cubic. H 5.5 G 6.3 6.6. Case 4. Soluble in nitric acid. B. casily fusible. Frac. uneven. Opaque. Lus. metallic. Col. tin-white. Str. grayish-black.

Found in veins in slate rocks. Saxony, Bohemia, Hessia, Styria, Hungary, Piedmont, Cornwall. Distinguished from native bismuth and copper nickel by its perfect cleavage, inferior hardness, and reddish tinge. Roasted to drive off the arsenic, and finely powdered, it affords a blue colour for painting porcelain, \&c.; with silex and potash it produces smalt.

Saffloxite.-Cobalt Arsenical, Chathamite, Iron Cobalt.-Co. As. and Fe. As. cubic. H $5.5 \mathrm{G} 6.92-7.3$. Soluble in nitric acid. Frac. uneven. Col. light steel-gray.

Found in veins traversing primitive rocks. Schneeberg.
Skutterudite.-Modumite, Hard uhite Cobalt.-Co. ${ }^{2}$ As. ${ }^{3}$ cubic. H 6.0 G 6.74 - 6.84. Case 4. Soluble in nitric acid. B. easily fusible. Frac. conchoidal. Opaque. Lus metallic. Col.tin-white.

Found in mica state, at Skiticunivereité Lille 1

Lolingite.-Arsenical Pyrites, Leucopyrite.-Fe.4 As. ${ }^{3}$ prismatic. H 5.5 G $7.0-7 \cdot 3$. Soluble in nitric acid, partially. B. fusible. Frac. uneven. Opaque. Lus. metallic. Col. silver white. Str. grayish-black.

Found in veins in clay slate, in beds of chalybite, and in serpentine. Andreasberg, Carinthia, Styria, Silesia, Norway. The accidental admixture of silver renders some of the varieties of this species useful as an ore of that metal. It is employed in the manufacture of white arsenic and of realgar. Sometimes it contains a small portion of gold.

Placodine.-Ni. ${ }^{4}$ As. oblique. H $5.0-5.5 \mathrm{G} 7.99-8.06$. Soluble in nitric acid. B. easily fusible. Opaque. Lus. metallic. Col. between bronze-yellow and copper-red. Str. black. Brittle.

Found at Muisen in Siegen.
Domeykite.-Arseniuret of Copper, Condurrite.-Cu. ${ }^{6}$ As. H 3.5 G 4.20 - 4.29. Case 4. Not soluble in hydro-chloric acid. B. easily fusible. Opaque. Lus. metallic. Col. tin-white.

Found in veins in porphyritic mountains. Peru, Chili, Cornwall.
Diamond.-C. cubic. $H=10.0 \mathrm{G}-3.5-3.6$. Case 4. Insoluble in acids Frac. conchoidal. Transparent-translucent. Lus. adamantine. Col. colourless, white, gray, brown, green, yellow, red, blue, rarely black. Str. gray.

Found in quartz, conglomerate, in strata of clay and sand containing an iron oxide, in alluviums, and in a micaceous sandstone. The Deccan, Malacea, Borneo, Celebes, Java, Brazils, Mexico, the Ural, North Carolina, Georgia. The most valued of all the gems. Employed for cutting glass, and its powder for cutting and polishing hard gems and stones.

Graphite.-Plumbago, Carburet of Iron.-C. rhombohedral. H 1.0-2.0 G 1.8-2.1. Case 4. Insoluble in acids. B. infusible. Frac. uneven. Opaque. Lus. metallic. Col. iron-black, dark steel gray. Str. black, shining.

Found in beds in gneiss, trap, and in the coal formation. Norway, Bavaria, the Pyrenees, North America, Austria, Styria, Rohemia, Moravia, Cumberland, Aberdeenshire, Kilkenny, Ayrshire, Spain, Ceylon, the Brazils, Massachnsetts. Used for the manufacture of pencils and crucibles; also to diminish friction in machines.

Anthracite_Glance Coal. H 2.0 - 2.5 G 1.3-175. Case 4. Frac. conchoidal. Lus. vitreous or waxy. Col. black. Str, black. Brittle.

Found in several parts of the Alps, the Pyrenees, France, Pennsylvania, Massachusetts, Bohemia, Silesia, Saxony, Staffordshire, Brecknockshire, Carmarthenshire, Pembrokeshire, Kilmarnock, and Kilkenny. Used as fuel for furnaces, and in the manufacture of metals.

Selenium.-Se. Case 4. H $2 \cdot 0$ G 4.3. Frac. conchoidal. Translucent. Lus. vitreous. Col. pale dull red.

Found incrusting sulphur in Sicily, Mexico.
Berzeline.-Seleniuret of Copper.-Cu. ${ }^{2} \mathrm{Se}$. Case 4. Crystalline. Lus, metallic. Col. silver-white. Str. shining. Soft and malleable.

Found coating calcite at Skrickerum, Sweden, rarely in the Hartz.
历ukairite.-Seleniuret of Silver and Copper. Cu. ${ }^{2}$ Se. + Ag. Se. Case 4. Soluble in hot nitric acid. B. fusible. Crystalline. Opaque. Lus. metallic. Col. lead-gray. Str. shining. Sefts - LILLIAD - Université Lille 1

Found in serpentine at Skrickerum, Sweden.

Naumannite.-Seleniuret of Siver.-Ag. Se. cubic. HI $2 \cdot 4 \mathrm{G} 8.0$. Soluble in concentrated nitric acid. B. fusible. Opaque. Lus. metallic. Col. iron-black. Str. same. Malleable.

Found in narrow veins in diabase at Tilkerode in the Hartz.
Clausthalite.—Seleniuret of Lead.—Pb. Se. cubic. Case 4. HI $2.5-3.0$ G 8.2 - 8.8 . Soluble in nitric acid partially. B. volatilizes. Opaque. Lus. metallic. Col. Lead-gray. Str. gray.

Found in transition rocks in the Hartz and Saxony.
Lerbachite.—Seleniuret of Lead and Mercury.- Pb . Se. and Hg. Se. Case 4. Cubic. Soft. G73. Opaque. Lus, metallic. Col. lead-gray. Str. black.

Found in transition rocks in the Hartz.
Zorgite,—Seleniuret of Lead and Copper.—Pb. Se. with Cu. Se. Case 4. H $2 \cdot 5$ G7.0-7.5. B. volatilizes. Frae. conchoidal. Opaque. Lus. metallic. Col. light lead gray, grass-yellow. Str. darker than colour.

Found in transition rocks and in a vein in clay slate. The Hartz and Thuringia.
Riolite.-Ag. Se. ${ }^{2}$ rhombohedzal. Colour lead-gray. Very malleable.
Found in Tasco in Mexico.
Onofrite.—Seleniuret of Mercury.-Hg. Se. with Hg. S. Case 4. H $2 \cdot 5$. Lus. metallic. Col. blackish, lead-gray. Str. shining.
: Found massive in veins at San Onofre, Mexico.
Sulphur.-S. prismatic. H $1.5-2 \cdot 5 \mathrm{G} 2 \cdot 0-2 \cdot 1$. Case 5. Frac. conchoidal, uneven. Transparent. Translucent on the edges. Lus. resinous, inclining to adamantine. Col. sulphur-yellow, passing into red-brown, gray. Str. sulphur, yellowwhite.

Found in mica slate, lime-stone, metallic veins, beds of gypsum, sandstone, in alluvium, as a volcanic sublimate, and a deposit from hot springs, Anito, Hungary, the Black Forest, Sicily, Tuscany, Spain, Cracow, Hanover, Greenland, Thuringia, Naples, Ætna, Iceland, Java, Teneriffe, Bourbon. Used in the manufacture of gunpowder, sulphuric acid, cinnabar, and various pharmaceutical preparations.

Alabandine.-Sulphuret of Manganese, Hexahedral Glance Blende.-Mn. S. cubic. H 4.0 - G $3 \cdot 9$ - 4.01 . Case 5. Frac. uneven, imperfect, conchoidal. Opaque. Lus. metallic, imperfect. Col. iron-black. Str. dark-green. B. fusible. Soluble in hydrochloric acid.

A rare mineral, found in veins. Nagyag, Transylvania, and in Mexico.
Hauerite.-Mn. S ${ }^{2}$. cubic, $\mathrm{H} 4 \cdot 0-\mathrm{G} 3 \cdot 46$. Case 5. Lus. adamantine. Col. dark reddish-brown. Str. brownish-red

Found in clay with gypsum, and sometimes with sulphur. Kalinka, Hungary.
Blende.-Sulphuret of Zinc, Dodecaheairal Garnet Blende, Black Jack of Miners.Zn . S. cubic. H $3.5-4.0 \mathrm{G} 3 \cdot 9-4 \cdot 2$. Case 5. Frac. conchoidal. Lus. adamantine. Col. green, yellow, red, brown, and black. Transparent. B. fusible with difficulty. Soluble in powder in concentrated nitric acid, with exception of the sulphurs.

Widely diffused in veins and beds, in crystalline slate and transition rocks. Hungary, Transylvania, Bohemia, Saxony, the Hartz, Sweden, Derbyshire, Flintshire, Cornwall, Perthshire, Leadhills, and Lanarkshire. Distinguished from the varieties of galena, garnet, and tin, which it as an ore of zinc, from the difficulty of extracting that metal from it.

Pyxite.—Iron Pyrites, Sulphuret of Iron, Hexahedral Iron Pyrites. Fe. S². cubic. H 6-0 - 6.5 G $4.9-5 \cdot 1$. Case 6. Frac. conchoidal, uneven. Opaque. Lus. metallic. Col. brass-yellow, gold-yellow, brown. Brittle. B. fusible. Partly soluble in nitric acid. Some varieties contain a small quantity of gold.

A very common mineral, universally diffused in beds and veins of the most different formations. Elba, Piedmont, Saxony, Bohemia, Hungary, Norway, Sweden, Dauphine, Derbyshire, Cornwall, \&c. Used in the manufacture of sulphur, sulphate of iron, and sulphuric acid. Distinguished from copper pyrites by being too hard to be cut by a linife; from the ores of silver by its pale bronze colour, and hardness and difficulty of fusion. Gold is sectile, malleable, and does not give off a sulphur odour before the blow-pipe.

Maxcasite.-White Iron Pyrites. Prismatic Iron Pyrites.-Fe. \mathbf{S}^{3} prismatic. H $6.0-6.5$ G 4.65-4.9. Case 6. Frac. uneven. Opaque. Lus. metallic. Col. pale bronze-yellow, sometimes inclining to green or gray. Str. dark greenish-gray. Brittle.

Not so common as pyrite, and not found in the older rocks. Saxony, Bohemia, Hessia, the Hartz, Condé, Cornwall, Derbyshire. Used for the same purposes as pyrite.

Pyrrhotine.—Nhombohedral or Mragnetic Iron Pyrites. $5 \mathrm{Fe} . \mathrm{S}+\mathrm{Fe} .{ }^{2} \mathrm{~S}^{3}=\mathrm{Fe} . \mathrm{T}^{7} \mathrm{~S}^{\mathbf{3}}$ zhombohedxal. H $3.5-4.5$ G $4 \cdot 6-47$. Case 6. Frac. conchoidal. Opaque. Lus. metallic. Col. brass-yellow. Str. grayish-black. Feebly magnetic. Brittle.

Occurs principally in beds in the older rocks, and sometimes in meteorites. The Hartz, Mavaria, Saxony, Silesia, Cornwall, Argyleshire, and Galloway.

Linneite.—Sulphuret of Cobalt. Isometrical Cobalt-Kies.—Co. $\mathrm{S}+\mathrm{Co} .{ }^{3} \mathrm{~S}^{3}$ cubic. H $5.5 \mathrm{G} 4.8-5.0$. Frac. conchoidal-uneven. Opaque. Lus. metallic. Col. silverwhite, inclining to steel-gray. Str. blackish-gray. Brittle. B. fusible. Partly soluble in warm nitric acid.

Found in Sweden in beds of gneiss.
Syeyoorite.—Sulphuret of Cobalt.-Co. S. Col. steel-gray, inclining to yellow.
Found in Syepoor; in Hindostan.
Millerite.-Sulphuret of Nickel. Nickel Pyrites. Native Nickel.-Ni. S. yhombohedral, H 3.5 G $5 \cdot 25-5 \cdot 30$. Case 6. Opaque. Lus. metallic. Col. brassyellow. Str. bright. B. easily fusible. Soluble in nitro-muriatic acid. Green.

Occurs in carities, and dispersed am ng the crystals of other minerals. Bohemis, Saxony, Andreast erg, and Cornwall.

Eisennickelkieg, 2 Fe. $S+$ Ni. S. cubic. H $3 \cdot 5-4.0$ G 4.6. Frac. uneven. Opaque. Lus. metallic. Col. light pinchbeck-brown. Str. rather darker. Brittle.

Found in crystalline masses with towanite in amphibole, Norway.
Gersdorfitte.-Disomose. Arsenical Nickel.-Ni. $\mathrm{S}^{2}+\mathrm{Ni} . \mathrm{As}^{2}$ or $2 \mathrm{Ni} . \mathrm{S}+\mathrm{Ni} . \mathrm{As}^{2}$ cubic. H 5.0-5.5G6.1-6.13. Case 6. Frac. uneven. Opaque. Lus. metallic. Col. Light lead-gray. Str. grayish-black. Brittle. B. fusible. Partially soluble in nitric acid.

The Hartz, Sweden, Hungary, Spain, and the Brazils.
Ullmanite.-Nickeliferous Gray Antimony. Hartmannite.-Ni. Sb + Ni. \mathbf{S}^{2}

Str. grayish-black. Brittle. B. fusible. Partially soluble in nitro-muriatic acid, forming a green solution.

Found in iron-stone veins. Nassan, Prussia, and the Hartz.
Grunauite.-Saynite. Nickel Bismuth Glance. Bismuthiferous Sulphuret of Nickel. cubic. $\mathrm{H} 4.5 \mathrm{G}=5 \cdot 13$. Opaque. Lus. metallic. Col. light steel-grey. Str. dark gray. Brittle. B. fusible. Green solution in nitric acid.

Found in veins. Bohemia and Cornwall.
Greenockite.-Sulphuret of Cadmizm. Cd. S. rhombohedral. H 3.8 G 4.8-4.9. Case 6. Translucent. Lus. adamantine. Col. yellow. Str. orange. Soluble in warm hydrochloric acid.

Occurs in crystals in porphyritic amygdaloidal trap, at Bishopton, in Renfrewshire.
Redruthite.-Vitreous Copper. Prismatic Copper Glance.-Cu. ${ }^{2}$ S. prismatic. H $2.5-3.0$ G $5.5 \ldots 5.8$. Case 7. Frac. conehoidal. Opaque. Lus. metallic. Col. blackish lead-gray. Str. the same, shining. Very sectile. B. easily fusible. Blue solution in warm nitric acid.

Found in beds and veins in bituminous copper slate, iron stone and clay slate. Silesia, the Hartz, Sweden, Norway, North America, Peru, Mexico, Cornwall, Yorkshire, Ayrshire, the Orkneys, and Shetland. Cu. ${ }^{2}$ S. formed by the fusion of copper glance, or of copper and sulphur in the same proportions, can be obtained in octahedral crystals; this substance is therefore dimorphous. It is a rich and highly valuable ore of copper.

Covelline.-Kupferindig. Indigo Copper. Blue Copper.-Cu. S.rhombohedral. H1.5-2.0 G $3.8-3.82$. Case 7. Opaque. Lus. resinous. Col. indigo-blue. Str. black, shining. Sectile. B. fusible. Soluble in nitric acid.

Found in Thuringia, Salzburg, Foland, Vesuvius.
Tennantite.-Dodecahedral dyston e Glance.-4 (Fe, 2Cu.) $\mathrm{S}+\mathrm{As} . \mathrm{S}^{3}$ cubic. H $4.0 \mathrm{G} 4.3-4.5$. Case 7. Opaque. Lus. metallic. Col. blackish lead-gray-ironblack. Str. dark reddish-gray. Brittle. B. fusible.

In veins in granite and clay slate. Redruth, and St . Day, in Cornwall.
Bornite.-Purple Copper. Variegated Copper. Octahedral and Hepatic Copper Pyrites. Bunthupfererz. Erabescite.-3 Cu. ${ }^{2} \mathrm{~S}+\mathrm{Fe} .^{2} \mathrm{~S}^{3}$ cubic. H $3 \cdot 0$ G 4.9-5.1. Case 7. Frac. conchoidal-uneven. Opaque. Lus. metallic. Col. between copperred and pinchbeck-brown . Str. grayish-black. Rather sectile. B. fusible. Partially soluble in concentrated hydrochloric acid.

Found in beds and veins of the older rocks. The Banat, Norway, Thuringia, Silesia, Siberia, Greenland, Sweden, North America, Saxony, the Hartz, Cornwall. A valuable mineral for extracting copper.

Cubane_-Cu. ${ }^{2} \mathrm{~S} \mathrm{Fe} .{ }^{2} \mathrm{~S}^{3}+2 \mathrm{FeS}$ or $\mathrm{Cu} . \mathrm{S}+\mathrm{Fe}^{2} \mathrm{~S}^{3}$ cubic. H 4.0 G 4.026 $4 \cdot 042$. Opaque. Lus. metallic. Col. brass-yellow. Str. black. B. fusible.

Found at Bacaranao in Cuba.
Towanite.-Pyramidal Copper Pyrites. Tellow Copper Ore. Chalkopyrite.Cu. ${ }^{2} \mathrm{~S}+\mathrm{Fe} .{ }^{2} \mathrm{~S}^{3}$. pyramidal. H $3.5-4.0$ G $4 \cdot 1-4.3$. Case 7. Frac. conchoidal. Opaque. Lus. metallic. Col. brass-yellow. Str. greenish-black. Slightly brittle. B. fusible. Soluble partially in nitro-muriatic acid. It sometimes contain, traces of silver or gold.

Occurs in bedblantal veifis withnidersitéthille minerals. Saxony, Bohemia, Norways

Sweden, the Hartz, Cornwall, Anglesea, Derbyshire, Camberiand, Perthshire, Shetland. Wicklow, Hungary, Siberia, North and South America, Africa, Japan. An important ore of copper. Also used in the manafacture of blue vitriol, or salphate of copper.

Patrinite. - Plumbo cupriferous sulphuret of Bismuth. Nadelerz Needle Ore Arikinite, Aciculite- $\left(3 \mathrm{Cu}^{2} \mathrm{~S}+\mathrm{Bi} . \mathrm{S}^{3}\right)+2\left(\mathrm{~Pb} .{ }^{3} \mathrm{~S}+\mathrm{Bi} . \mathrm{S}^{3}\right)$ prismatic. H 2.0 - 2.5 G 6.75. Opaque. Lus, metallic. Col. Blackish lead-gray. Str. blackishgray. Slightly brittle. B. easily fusible. Partially soluble in nitric acid.

Imbedded in quartz, associated with gold. Beresow in Siberia.
Stromeyexite.-Sulphuret of Silvor and Copper. Argentiferous Copper Glance.Cu. ${ }^{2} S+$ Ag. S prismatic. H $2.5-3.0$ G 6.255 . Case 10. Frac. conchoidal. Opaque. Lus. metallic. Col. blackish lead-gray. Str. the same, shining. Perfectly sectile. B. fusible. Partially soluble in nitric acid.

A rare mineral. Schlangenberg in Siberia, Chile, Silesia.
Galena.—Sulphuret of Lead, Hexahedral Lead Glance, Blue Lead.-Pb S, cubic. H 2.5 G $7 \cdot 4 \ldots 7 \cdot 6$. Case 8 . B. fusible. Soluble, partially in nitric acid. Frac. conchoidal. Opaque. Lets. metallic. Col. lead-gray. Str. the same. Rather sectile.

Occurs very abunelantly in rocks of the most different formations, Saxony, Bohemia, the Hartz, Hungary, France, Norway, Sweden, Spain, Sllesia, North America, Greenland, Cumberland, Durbam, Northumberland, Flintshire, Wales, several places in Scotland. This is the ore which yields most of the lead which is produced; it sometimes contains a small quantity of silver, which is extracted from it. Galena reduced to powder, or the litharge produced from it, is nsed for glazing coarse pottery.

Steinmannite_Octahedral Lead Glance.—Pb S, Sb S3, cubic. H 2.5. G 6.83. Frac. uneven. Opaque. Lus. metallic. Col. lead-gray. Str. gray, shining. Sectile. B. fusible.

Found at Pezibram, in Bohemia, with silver, blende, pyrite, and quartz.
Bismuthine.-Sulphuret of Bismuth, Prismatic Bismuth Glance.-Bi S ${ }^{3}$ prismatic. H 2.0 G 6.4-6.5. Case 9. Frac. imperfect, conchoidal. Opaque. Lus. metallic. Col. lead-gray. Str. the same. B. easily fusible. Soluble easily in nitric acid.

Rather a rare mineral. Sweden, Saxony, Bohemia, Norway, Siberia, Cornwall, and Cumberland.

Stannine.-Sulphuret of Tin, Tin Pyrites.一($\left.2 \mathrm{Cu}^{2} \mathrm{~S}+\mathrm{Sn} \mathrm{S}^{2}\right)+(2 \mathrm{Fe} \mathrm{S}+\mathrm{Sn} \mathrm{S})$ cubic. $\mathrm{H} 4.0 \mathrm{G}=4.3-4.51$. Case 9. Frac, uneven. Opaque. Ius. metallic. Col. steel-gray, inclining to bronze-yellow. Str. black. Brittle. B. fusible. Blue solution in nitric acid.

Found in veins in Bohemia and Cornwall. Sometimes called bell-metal ore, from its yellowish tinge; distinguished from copper pyrites, and fahlerz by its colour and bl ck streak.

Cinnabax.-Sulphuret of Mercury, Peritomous Ruby Blende.-Hg S zhombohedxal. H $2.5-\mathrm{G} 8.0-8.2$. Case 9. Semitransparent, translucent on the edges. Less. adamantine. Col. cochineal-red, passing into lead-gray and scarlet-red. Str. scarlet. Sectile. Soluble in nitro-muriatic acid.

In beds and veins. Spain, Syria, Bohemia, Saxony, the Hartz, the Ural, Mexico, Peru, China, Japan. It is the most abundant and important ore of mercury. Vermilion is pure cinnabar, and|

Axgentite.-Sulphuret of Silver, Henkelite, Hexahedral Silver Glance.-Ag S cubic. H $2 \cdot 0-2 \cdot 5 \mathrm{G} 7 \cdot 196$. Case 10. Frac. uneven, hacliy. Opaque. Lus. metallic. Col. blackish, lead-gray. Str. shining. Malleable. B. fusible. Soluble partially in concentrated nitric acid.

Found in veins. Saxony, Norway, Bohemia, Hungary, the Hartz, Spain, Sardinia, Siberis, Mexico, Pera, Cornwall. A valuable silver ore.

Sternbergite. - Flexible Silver, Prismatic Eutom Glance.-Ag $\mathrm{S}+2 \mathrm{Fe}^{2} \mathrm{~S}^{3}$ prismatic. H 1.0-1.5 G4.215. Case 10. Lus. metallic. Col. pinchbeck-brown. Str. black. Sectile. B. fusible. Decomposible by nitro-muriatic acid, leaving sulphur and chloride of silver.

Found in veins with pyrargyrite and argentite. Bohemia and Saxony.
Antimonite.-Sulphuret of Antimony, Gray Antimony, Prismatic Antimony Glance.-Sb S^{3} prismatic. H $2 \cdot 0 \mathrm{G} 4 \cdot 6-4^{\circ} 7$. Case 10. Frac. conchoidal, imperfect. Opaque. Lus. metallic. Col. lead-gray. Str. lead-gray. Sectile. B. fusible. Soluble in warm hydrochloric acid.

Found in vcins in granite and slate rocks. Hungary, Transylvania, Saxony, the Hartz, France, Tuscany, Cornwall, Spain, North and South America. Almost the only ore of antimony found in sufficient quantities for commercial purposes.

Plumosite.-Capillary Sulphuret of Antimony, Federerz. $-2 \mathrm{~Pb} \mathrm{~S}+\mathrm{Sb}^{3}$ H $3.0 \mathrm{G} 5 \cdot 7-5.9$. Case 10. Opaque. Lus. metallic, feeble. Col. blackish lead-gray. Sectile.

Found in flexible, fine, capillary crystals in veins with antimonite, galena, \&c. The Hartz.
Bournonite. -Plumbo-cupriferous Sulphuret of Antimony, Diprismatic Copper Glance. $-\left(3 \mathrm{Cu}^{2} \mathrm{~S}+\mathrm{Sb} \mathrm{S}^{3}\right)+2\left(3 \mathrm{PbS}+\mathrm{Sb} \mathrm{S}^{3}\right)$ prismatic. H $2 \cdot 5-3.0 \mathrm{G} 5 \cdot 70$ 5.87. Case 11. Frac. conchoidal, unéven. Opaque. Lus. metallic. Col. steel-gray Str. the same. Brittle. B. fusible. Partially soluble in nitric acid.

Found in veins in slate rocks. The Hartz, Saxony, Transllvania, Hungary, Savoy, France, Piedmont, Cornwall, Devonshire, Siberia, Mexico. Used as a copper ore when found in sufficient quantity.

Wolchite_-Antimonial Copper Glance,-prismatic. H 3.0 G 5.7 - 5.8 . Frac. imperfect, conchoidal. Opaque. Lus. metallic. Col. blackish lead-gray. Str. the same. Brittle. B. fusible.

Found in a bed of chalybite at St. Gretrand in Carinthia.
Wolfsbergite.-Sulphuret of Copper and Antimony. $-\mathrm{Cu}^{2} \mathrm{~S}+\mathrm{Sb} \mathrm{S}^{3}$ prismatic. H $3 \cdot 5 \mathrm{G} 4.748$. Frac. conchoidal, uneven. Opaque. Lus. metallic. Col. lead-gray, iron-black. Str. black, dull. B. fusible.

Found with quartz and other minerals at Wolfsberg in the Hartz.
Boulangerite.-Sulphuret of Antimony and Lead, Embrithite.-3 $\mathrm{Pb} \mathrm{S}+\mathrm{Sb} \mathrm{S}^{3}$ H 3.0 G $5.96-6.0$. Case 11. Opaque. Lus. metallic. Col. blackish lead.gray. Str. darker. Slightly brittle. B. fusible. Soluble in warm hydrochloric acid.

Found in granular or fibrous masses. France, Sayn, Lapland, Siberia.
Schulzite.-Geokronite, Kilbrickenite.-5 $\mathrm{Pb} \mathrm{S}+\mathrm{Sb} \mathrm{S}^{\mathbf{3}}$ prismatic. H 2.5 -3.0-G5.8-6.54. Frac. conchoidal, even. Opaque. Lus. metallic. Col. leadgray. Str. the same. Brittle. B. easily fusible,

Found in galena. Sphia, Iuscany, Smeden, Ireland.

Zinckenite.-Rhombohedral Dystom Glance_- $\mathrm{PbS}+\mathrm{Sb} \mathrm{S}^{3}$ pxismatic. H 3.0 - 3.5 G $5 \cdot 30-6 \cdot 35$. Case 11. Frac. uneven. Opaque. Lus. metallic. Col. dark steel-gray. Str. the same. Slightly brittle. B. fusible. Decomposed by warm h_{y} drochloric acid, forming chloride of lead.

Found in a vein with antimonite and quartz at Wolfsberg, in the Hartz, and near St. Trudport in the Black Forest.

Jamesonite.-Axotomous Antimony Glance.-3 $\mathrm{PbS}+2 \mathrm{Sb} \mathrm{S}^{3}$ prismatic. H $2 \cdot 0$ 2.5 G 5.564-5.616. Case 11. Opaque. Lus, metallic. Col. steel-gray. Str. the same. Ductile. B, easily fusible. Decomposed by warm hydrochloric acid, forming chloride of lead.

Found sometimes with bournonite. Cornwall, Estramadura, Hungary, France, Siberia, Brazils.

Berthierite.—Haidingerite, Sulphuret of Antimony and Iron.-Fe. $\mathrm{S}+\mathrm{Sb} \mathbf{S}^{3}$ H $2.0 \ldots 3.0$ G $4.0-4.3$. Case 11. Frac. uneven. Lus. metallic. Col. ironblack. B. fusible. Soluble in hydrochloric acid.

Found in crystalline masses in gneiss. Auvergne, La Creuse, Saxony, Hungary. Yields antimony of such inferior quality that the manufacturers cannot use it.

Stephanite.-Brittle Sulphuret of Silver, Prismatic Melane Glance, Black Sulphuret of Antimony and Silver.-6 Ag S + Sb S ${ }^{3}$ prismatic. H 2.5 G 6.2-6.3. Case 11. Frac. conchoidal, uneven. Opaque. Lus. metallic. Col. iron-black. Str. the same. Sectile. B. fusible.

Found in veins in crystalline slate rocks, transition rocks, trachyte. Saxony, Bohemia, Hungary, the Hartz, Mexico. This is a valuable ore of silver.

Proustite.-Red Silver, Ruby-blende.-3 Ag S + As S's shombohedxal. H $2 \cdot 0$ 25 G $5 \cdot 5-5 \cdot 6$. Case 11. Frac. conchoidal, uneven. Semi-transparent. Lus. adamantine. Col. cochineal-red, carmine-red. Str. Aurora-red. Slightly sectile. B. easily fusible. Soluble partially in nitric acid.

Found with other minerals in veins. Saxony, Bohemia, Baden, Alsace, Dauphiné, Spain, Mexico, Peru.

Pyrargyrite.-Red Silver, Sulphuret of Silver and Antimony, Rhombohedral Rubyblonde. $3 \mathrm{AgS}+\mathrm{Sb} \mathrm{S}^{3}$ zhombohedral. H 2.0-2.5 G 5.75-5.85. Case 11 . Frac. conchoidal. Translucent on the edges. Opaque. Lus. adamantine. Col. ada-mantine-red, blackish lead-gray. Sir. cochineal-red, cherry-red. Slightly sectile. B. easily fusible. Soluble partially in nitric acid.

Found in veins in crystalline slate and transition rocks, granite and trachyte. The Hartz, Saxony, Bohemia, Baden, Hungary, Merico, Cornwall. Distinguished from red orpiment by the yellow streak of the latter and its specific gravity; from cinnabar by forming a metallic globule before the blowpipe. A valuable ore of silver.

Miargyrite_Hemiprismatic Ruby-blende.-Ag S $+\mathrm{Sb} \mathrm{S}^{3}$ oblique. H 2.5 G 5.3-5.4. Case 11. Frac. imperfect, conchoidal. Opaque. Lus. adamantine. Col. blackish lead-gray. In thin splinters,-blood-red by transmitted light. Str. Cherry-red. Very sectile.

A very rare mineral, from Baiunsdorf, in Saxony.
Kobellite,-Sulphurot of Antimony, Lead, ana Bismuth.- $\left(3 \mathrm{FeS}+2 \mathrm{Sb}^{2} \mathrm{~S}^{5}\right)+$ 4 (3 PbS + $\mathrm{Bi}^{2} \mathrm{~S}^{3}$). Soft. G $6.29-6.32$. Case 11. Opaque. Lus. metallic. Col. dark lead-gray. Str. black.

Kermes.-Red Antimony, Prismotic Purple Blende Sulphuret of Oxide of Antimony. $-\mathrm{Sb} \mathrm{O}+2 \mathrm{Sb} \mathrm{S}^{3}$ oblique. $\mathrm{H} 1.5 \mathrm{G} 4.5-4.6$. Case 38. Faintly translucent. Lus adamantine. Col. cherry-red. Strn the same. Sectile. B. fusible. Soluble in hydrochloric acid.

Found in reins in crystalline, slate, and transition rocks. Saxony, Bohemia, Hungary, Danphiné.

Plagionite,-Hemiprismatic Dystom Glance.-4 $\mathrm{Pb} \mathrm{S}+3 \mathrm{Sb} \mathrm{S}^{3}$ oblique, H 2.5 G 5.4. Case 12. Frac. imperfect, eonchoidal. Opaque. Lus. metallic. Col. blackish lead-gray. Str, the same. Brittle. B. fusible.

Forud in a vein of quartz. Wolfsberg, in the Hartz.
Feuerblende--H 2.0 G 4.2 oblique. Translucent. Lus. pearly. Sectile and rather flexible.

Found in the Kurprinz, near Freiberg, and at Andreasberg.
Fahlexz.-Gray Copper, Tetrahedral Copper Glance. (4 Pb S, 4 Fe S, 4 Zn S, $\left.4 \mathrm{Cu}^{2} \mathrm{~S}\right)+\mathrm{Sb} \mathrm{S}^{3}$ cubic. H $3.0-4.0 \mathrm{G} 4.5-5.2$. Case 12. Frac. conchoidal, uneven. Opaque. Lus. metallic. Col. steel-gray, iron-black. Str. black, dark red. Rather brittle. B. fusible. Decomposed by nitric acid.

Found in beds and veins. The Hartz, Nassau, Tyrol, Transylvania, Hungary, Bohemia, Siberia, Mexico, Chili, Peru, Cornwall, Devonshire, East Lothian. Accompanies copper pyrites, is worked as a copper ore, also occasionally for the silver it contains.

Freieslebenite.-Sulphuret of Silver and Antimony, Peritomous Antimony Glance- $\left(\mathrm{Ag} \mathrm{S}+\mathrm{Sb} \mathrm{S}^{3}\right)+2\left(3 \mathrm{AgS}+\mathrm{Sb} \mathrm{S}^{3}\right)$, the Ag is sometimes replaced by Pb . Oblique. H 2.5 G 6.19 - 6.38. Frac. mneven. Opaque. Lus. metallic. Col. steel-gray, Str. the same. Brittle. B. fusible.

A very rare mineral, found in veins in gneiss, Freiburg in Saxony.
Orpiment.-Yellow Sulphuret of Arsenio, Prismatoidal Sulphur. As. S ${ }^{3}$ prismatic. H $1 \cdot 5-\mathrm{G} 3.48$. Case 12. Semi-transparent, translucent on the edges. Lus. resinous. Col. lemon yellow. Sectile. Soluble in nitro-muriatic acid.

Found in beds and in veins. The Hartz, St. Gotthardt, the Tyrol, Solfatara, Fesuvius, Guadaloupe, Japan. Employed as a pigment.

Realgar.—Red Sulphuret of Arsenic, Hemiprismatic Sulphur.-As. S² oblique. H 1.5 G 3.556 . Case 12. Frac. conchoidal. Semi-transparent, translucent. Lus. resinous. CoL aurora red. Str. orange yellow. Sectile. B. fusible. Partially soluble in hot nitro-muriatic acid.

Found in veins. Transylvania, Hungary, Bohemia, Saxony, the Hartz, Baden, Hungary, St. Gotthardt, the Tyrol, Peru, United States, Vesuvius, Ætna, Japan. Used as a pigment.

Mispickel.—Arsenical Iron, Prismatic Arsenical Pyrites.-Fe $\mathrm{S}^{2}+\mathrm{Fe}$ As. prismatic. H $5.5 \mathrm{G} 6.0-6.3$. Case 12. Frac. uneven. Opaque. Laus. metallic. Col. silver-white. Str. grayish-black. Brittle. B. fusible. Soluble in nitric acid.

Found in veins and beds. Saxony, Bohemia, Silesia, Hungary, Transylvania, Sweden, Cornwall, Norway, United States. Worked as an ore of arsenic, the white oxide of commerce being principally obtained from it.

Dufrenoysite. $-2 \mathrm{~Pb} \mathbb{S}+$ As S^{3} cubic. G 5.549 . Erac. nneven. Opaque. Lus metallic. Col. steel-gray. Str. reddish-brown. Brittle. B. fusible. Decamposed by hot nitric acid.

Yanthocone.-(3 $\left.\mathrm{AgS}+\mathrm{As}^{5} \mathrm{~S}^{5}\right)+2\left(3 \mathrm{AgS}+\mathrm{As}^{\mathrm{S}} \mathrm{S}^{4}\right.$. rhombohedral. H $2 \cdot 0-3 \cdot 0 \mathrm{G}=5 \cdot 158-5 \cdot 191$. Frac. conchoidal, uneven. Transparent, translucent. Lus. adamantine. Col orange yellow-brown. Str. the same, darker. Brittle. B. fusible.

Found in the Himmelsfirst mine near Freiberg in Saxony.
Cobaltine.-Bright White Cobalt, Hexagonal Cobalt Pyrites, Cobalt Glance.Co $\mathrm{S}^{2}+\mathrm{Co}$ As. cubic. H5.5 G6.1-6.3. Case 12. Frac. imperfect, conchoidal, uneven. Opaque. Lus. metallic. Col. silver-white. Str. grayish-black. Brittle. B. fusible. Soluble in warm nitric acid.

Found in beds in crystalline rocks. Norway, Sweden, Silesia, the Banat.
Glaucodote.-R $\mathrm{S}^{2}+\mathrm{R}$ As where R is Co and Fe. prismatic. H 5.0 $\mathrm{G}=5.975-6.003$. Opaque. Lus. metallic. Col, dark tin-white. Str. black. B. fusible.

Found in veins in chlorite slate. Huasko in Chili.
MLolybdenite,—Sulphuret of Molybdena, Dirhombohedral, Eutom Glance.—Mo S2. rhombohedral. H $1.0-1.5$ G $4.5-4.6$. Case 12. Opaque. Lus. metallic. Col. lead-gray. Str. the same. Very sectile. Green solution with hot nitric acid.

Saxony, Bohemia, Sweden, Norway, France, United States, Peru, the Brazils, Cornwall, Cumberland, Westmoreland, Inverness-shire.

Voltzine.-4ZnS + ZNS. H 4.5 G 3.66. Frac. conchoidal, translucent on the edges. Opaque. Lus. pearly. Col. brick-red.

Found in a vein of quartz. Rosières, Pay de Dome in France, and in some zinc furnaces.

Manganite.-Gray Oxide of Manganes, Prismatoidal Mangancse Ore. $-\mathrm{Mn}^{2} \mathrm{O}^{3}+$ H0. prismatic. H $3.5-4.0$ G $4 \cdot 22-434$. Case 13. Opaque. Lus. metallic, imperfect. Col. dark steel-gray, brownish, black-velvet-black. $S r$. reddish-brown. Brittle. B. infusible. Soluble in hydrochloric acid.

Found in veins in porphyry, gnei s, and vit es of amygdaloidal trap. The Hartz, Thuringia, Aberdeenshire, Norway, Sweden, N va Scotia. The purest and m tbantifully erystallized ore of manganese.

Pyrolusite.-Prismatic oxide of Manga e, Anhydrous Peroxide of Manganese.MnO^{2}. prismatic. H $2.0-2.5 \mathrm{G4} 47-5 \cdot 0$. Case 13. Frac. un ven. Opaque. Col. dark steel-gray, light iron-black. Brittle. B. infusible. Soluble in hydrochloric acid.

Found at Thuringia, Moravia, the Hartz, S vony, Bohem a, Arstria, Silesia, the Brazils. It is an ore of mangnnese most ext nsi y worked in many countri s. It d nves its name from $\pi y \rho$ firs, and $\lambda o u \omega I$ wush, on acconnt of its property of clearing glass from its brown and green tir ts, a prop r ch uhes t of gr at value to the manufac.

Polianite_-MnO․ prismatic. H 6.5-7.0 G $4.838-4830$. Case 13. Opaque. Las. metallic, feeble. C l. lioht ste l-gray. $S r$. gray. B. infusible. Soluble in hydrochloric anid.

Found in Bohemia, Sasony, and Siegen.
Psilomelane:-Oncleavable MFangancse Ore, compact and fibrows Ifa goneso Ore,

even, flat, conchoidal. Opaque. Lus, metallic, imperfect: Col. bluish-black, grayishblack, dark steel-gray. Str. brownish-black, shining. Brittle.

The Hartz, Saxony, Styria, Siegen, Black Forest, Silesia, Bohemia, Hungary, Norway, Devonshire, Cornwall, North America. One of the most widely diffused ores of manganese : it derives its name $\psi i \lambda \delta \delta$ smooth, and $\mu \in \lambda a s$ black, from its black colorr and smooth botryoidal shapes.

Bxaunite.-Brachytypous Manganese Ore.- $\mathrm{Mn}^{2} \mathrm{O}^{3}$, pyxamidal. H 6.0-6.5 G $4.8-4.9$. Case 13. Frac. uneven. Opaque. Lus. metallic, imperfect. Col. dark brownish-black. Str. brownish-black. Brittle. B. infusible. Soluble in hydrochloric acid.

Found in veins in quartzose porphyry. Thuringia, Mannsfeld, Westphalia, Piedmont. Distinguished from other ores of manganese by its hardness.

Hausmannite, - Pyramidal Manganese Ore, Black Manganese. $-\mathrm{MnO}+\mathrm{Mn}^{2} \mathrm{O}^{3}$, pyramidal. H $50-5.5 \mathrm{G} 4.7-4.8$. Case 13. Frac. uneven. Opaque. Lus. imperfect metallic. Col. brownish-black. Str. dark red̀dish-brown. B. infusible. Soluble in warm hydrochloric acid.

Found in veins in porphyry. Oehrenstock in Thuringia, Shelefield in the Hartz. Rather a scarce mineral.

Wad_-Hydrous Oxide of Manganese, Earthy Manganese.-Amorphous. H 6.5 G 2.179-3.700. Case 13. Opaque. Las. imperfect, metallic, feeble. Col. clovebrown, passing into gray. Str. brown, shining. Very sectile, unctuous to the touch.

The Hartz, Franconia, Siegen, Nassau, Carinthia, Piedmont, Mayenne, Arriege, Cornwall, and Deronshire. Supposed to afford the colouring matter in dendritic delineations upon limestone, steatite, and other substances.

Crednexite.-Oxide of Manganese and Copper.-Cu $0+\left(\mathrm{Mn} \mathrm{O}+\mathrm{Mn}^{2} 0^{3}\right)$ oblique. H $4.5-5 \cdot 0 \mathrm{G} 4.89-6.07$. Frac. uneven. Lus. metallic. Col. iron black. Str. black. Soluble in hydrochloric acid.

Found at Friedrichrode in Thuringia.
Senarmontite. $-\mathrm{Sb} \mathrm{O}^{3}$. cubic. H $2 \cdot 5-3.0 \mathrm{GE} 5 \cdot 22-5 \cdot 30$. Frac. uneven. lamellar. Transparent-translucent. Lus. resinous. Colourless. Str. white. B. fusible. Soluble in nitro-muriatic acid.

Found at Sensa in Algiers.
Magnetite,-Magnetic Iron Ore, Octahedral Iron Ore, Oxydulated Iron.-Fe $0+$ $\mathrm{Fe}^{2} \mathrm{O}^{3}$. cubic. $\mathrm{H} 5 \cdot 5-6.5 \mathrm{G} 4.96-5.20$. Case 14. Frac. conchoidal, uneven. Opaque. Lus. metallic. Col. iron black. Str. black. B. fusible with great difficulty. Soluble in warm hydrochloric acid, highly magnetic, more so than any other ore of iron.

Found in Norway, Sweden, Lapland, the Ural, the Hartz, Saxony, Bohemia, Corsica, Elba, the Savoy, Spain, New York, New Jersey, Mexico, the Brazils, East Indies, Cornwall, Wicklow. Siberia and the Hartz produce the most powerful natural magnets or loadstones. This ore is distinguished from specular iron by its streak and action on the magnet; it is a very valuable ore, the steel made from its iron being excellent in quality.

Fematite.-Specular Iron, Red Iron Ore, Rhombohedral Iron Ore, Iron Glance,
 conchoidal, uneven. Upaque, very thin lamine translucent. Luss. metallic. Cor.
steel-gray, iron black. Str. cherry-red, reddish-brown. Brittle. B. infusible. Soluble in warm hydrochloric acid.

Found chiefly in beds and veins in the older rocks. Elba, the Alps, Saxony, Brazils, Salzburg, Cornwall, Lanarkshire, Siberia. A considerable portion of the iron produced in different parts of the globe is obtained from this ore; it requires a greater heat than some other ores, but affords an excellent metal. Ground hematite is used for polishing metals and glass, and also as a colouring substance.

Gothite,—Prismatic Iron Ore, Hydrous Oxide of Iron, Brown hematite, Pyrrhosiderite Onegite.- $\mathrm{Fe}^{2} \mathrm{O}^{3}+\mathrm{H} 0$. prismatic. $\mathrm{H} 5 \cdot 0-5 \cdot 5 \mathrm{G} 4 \cdot 12-4 \cdot 37$. Case 16. Frac. imperfect, conchoidal. Translucent on the edges. Opaque. Lus adamantine. Col. yellowish-brown, reddish-brown, blackish-brown. Str. yellowish-brown. Brittle, B. fusible with great difficulty. Soluble in hydrochloric acid.

In veins and carities. Clifton, Cornwall, Oberstein, Bavaria, Nassau, Saxony, Silesia, Bohemia, Hungary, Rassia, Mount Sinai, Brazils. A good iron ore.

Limnite,-Brown Hematite, Hydrous Oxide of Iron.- $2 \mathrm{Fe}^{2} \mathrm{O}^{3}+3 \mathrm{HOH} 5 \cdot 0-$ $5 \cdot 5$ G $3.4-3.95$. Case 16. Opaque. Lns. resinous. Col. yellowish-brown, blackishbrown. Str. yellowish-brown. Brittle. Soluble in warm hydrochloric acid.

Carinthia, Styria, Hungary, Saxony, Nassau, the Hartz, Black Forest, Bohemia, Silesia, the Pyrenees, Spain, Scotland, Cornwall, Siberia, Brazils, United States.

Turgite.-2 $\mathrm{Fe}^{2} \mathrm{O}^{3}+\mathrm{H} \mathbf{O}$. massive. H $5 \cdot 0 \mathrm{G} 3.56-3.74$. Frac. even, conchoidal. Opaque. Lus, dull. Col. brownish-red. Str. blood-red. B. infusible.

Found in copper mines in the Ural and the Altai.
Cuprite,-Red Oxide of Copper, Ruby Copper, Octahedral Copper Ore.-Cu² 0. cubic. H $3.5-4.0$ G $5.89-6.15$. Case 17. Frac. conchoidal, uneven. Semitransparent, translucent on the edges. Lus. adamantine. Col. cochineal red, leadgray. Str. brownish-red, shining. Brittle. B. reducible. Soluble in nitric acid, and in ammonia.

Found in beds and veins in granite and crystalline slate rocks. The Banat, Siberia, Lyons, Cornwall, Cuba, Spain, Saxony, Norway, Australia, Peru and Chili. When found in sufficient quantity one of the most valuable ores of copper.

Ice_H 0 xhombohedral. H 1.5 G 0.918 at 0° centigrade. Frac. conchoidal. pellucid. Lus. vitreous. Sectile, rather brittle.

Hexagonal prisms said to be observed in the levels of the Lorenz Gengentrum mine near Freiberg.

Irite. $-\operatorname{Ir} \mathrm{O}^{3}+\mathrm{Os}^{3}, \mathrm{Cr}^{\mathbf{3}}$ probably. cubic. $=6.056$. Case 2. Lus. metallic. Col. iron black. Insoluble in acids.

In fine scales in cavities of the larger pieces of platinum, and in the ferruginous platinum sand of the Ural.

Periclase - Mg 0 . cubic. If 6.0 - G 3.75. Transparent. Lus. vitreous. Col. dark green. B. infusible. Soluble when in powder in acids.

Found in Monte Somma near Naples.
Bracite.—Rhombohedral Kuphon Glimmer. $-\mathrm{Mg} \mathrm{O}+$ HO. xhombohedral. H 2.0 G 2.3-2.4. Frac. scarcely observable. Semi-transparent-translucent. Lus. pearly. Col. white, sometimes inclining to gray and green. Str. white. Sectile. B. infusible. Soluble in acids.

Wismuthocher.-Bismuthochre, Oxide of Bismuth.-Bi O3. Soft. G 4.361. Case 17. Frac. uneven, earthy. Opaque. Lus. adamantine, feeble. Col. yellow-gray, variable. B. reducible. Soluble in nitric acid.

Found with bismuth in Saxony, Bohemia, Siberia.
Spartalite_-Red Oxide of Zine, Zincite, Spartalite, Red Zine, Prismatic Zine Ore.Zn 0. Rhombohedral. H 4.0-4.5 G 5.43-5.53. Case 17. Frac. conchoidal, Translucent on the edges. Liss. adamantine; when pure colourless, usually red, inclining to yellow. Str. orange-yellow. Brittle. B. infusible. Soluble in nitric acid.

Found in beds with franklinite and calcite in iron mines in New Jersey and near Sparta. Also found distinctly crystallized in the iron and zinc furnaces of Silesia and Líege.

FrankInite, -Dodecahedral Iron Ore.-RO $+\mathrm{R}^{12} \mathrm{O}^{3}$ where R is Fe , Mn , or Zn , and R^{1}, Fe , or Mn. cubic. H $6.0-6.5 \mathrm{G} 5 \cdot 07-5 \cdot 13$. Case 17. Frac. conchoidal. Opaque. Lus. metallic. Col. iron-black. Str. dark brown. Brittle. B. infusible. Soluble in warm hydrochloric acid.

Found with spartalite and calcite in New Jersey; with calamine and smithsonite at Altenberg. A rare mineral, distinguished from magaetic iron by its streak.

Asbolane.-Earthy Cobalt, Blach Cobalt Ochre, Black Oxide of Cobalt.-(Co 0 or $\mathrm{Cu} 0)+2 \mathrm{Mn} \mathrm{O}^{2}+4 \mathrm{HO}$. amorphous. H $1 \cdot 0-1 \cdot 5 \mathrm{G} 2 \cdot 2$. Case 17. Frac. conchoidal. Opaque. Las. resinous, glimmering, dull. Col. Bluish and brownishblack, blackish-blue. S/r. black, shining. Sectile. B. infusible.

Found in Thuringia, Hessia, Black Forest, Lusatia, the Tyrol, Siberia, Cheshire, Howth, near Dublin. Used in the manufacture of smalt.

Pechuran.—Pitch Blende, Uran Ochre, Uraine, Oxide of Uranium.- $\mathrm{U} 0+\mathrm{U}^{2} \mathrm{O}^{3}$. cubic. H 5.5 G 6.4-6.71. Case 17. Frac. conchoidal, uneven. Opaque. Lus. resinous. Col. pitch-black, greenish-black, grayish-black. Str. greenish-black. Brittle. B. infusible. Dissolves in hot nitric acid.

Found accompanying ores of silver and lead. Saxony, Bohemia, and Cornwall. A valuable ore for the porcelain painter, producing a fine orange colour, and also a black.

Minium,_Native Minium, Red Oxide of Lead, Mennige. $-2 \mathrm{~Pb} 0+\mathrm{Pb} 0^{2}$ H $2.0-3.0$ G 4.6. Case 18. Frac. earthy, even, flat, conchoidal. Opaque. Eus. resinous. Col. aurora red. Str. orange-yellow. B. fusible. Partially soluble in nitric acid.

Found in veins in clay slate. Anglesea, Yorkshire, Siberia; often a produce of the decomposition of other lead ores.

Cassitexite.-Oxide of Tin, Tin Stone, Pyramidal Tin Ore.—Sn O*. pyramidal. H 6.0-7.0 G $6.8-7.0$ Case 18. Frac. imperfect, conehoidal, Semi-transparent. Opaque. Lus. adamantine. Col. colourless, gray, yellow, red, brown-black. Str. light-gray, light-brown. Brittle. B. infusible. Not acted upon by acids.

Found in veins and beds. Sumatra, Siam, Pega, Malecca, Brazils, Cornwall, Bohemia, Saxony, Silesia, Spain, France, Mexico, Chili, Sweden, Russia, North and Soath America A valuable tin ore. Upwards of 4000 tons of tin are annually obtained from the mines in Cornwall. It is extensively used for covering vessels of copper and iron; also in the
 and calico printer.

Plattnexite.-Superoxyd of Lead.- $\mathrm{Pb} 0^{2}$. xhombohedral. G 9.392-9.448. Frac. uneven. Opaque. Lus. adamantine. Col. iron-black. Str. brown. Brittle. B. easily reduced.

Supposed to have been foand at Leadhills.
Corzndum_-Rhombohedral Corundum, Corindon.-AlO ${ }^{3}$. Thombohedral. H 9.0 G $3.93-4.98$. Case 19. Frac. conchoidal, uneven. Transparent, translucent on the edges. Col. white, colourless, red, blue, green, yellow, brown, and gray. B. infusible. Insoluble in acids.

The red varieties are called rubies and the blue sapphires, and are found in gravel and river sand in Ceylon, Pegu, the Elbe, Bohemia, and Puy in France. The other crystallized varieties are called corundum, and adamantine spar when of a brown colour, and are found in China, Ceylon, the Carnstic, Mysore, the Ural, Piedmont, Sweden, Lapland, New Jersey, Connecticut, the Rhine. The granular and massive variety called emery is found in Saxony, Italy, Spain, and Asia Minor. The red sapphire, or oriental raby, when perfect in colour and transparency, and of a considerable size, almost rivals the diamond in value. Some of the blue sapphires, cut perpendicularly to the axis of the sir-sided prisms, pr sent a bright opalescent star with six rays, and are called star sapphines. Emery is used extensiv ly for polishing and cutting gems, stones, and other articles.

Diaspore, Euklastic Distherre Spar.—Al $0^{3}+$ H O. prismatic. II 5.5 G 3.30 - 3.43. Case 19. Frac. conchoidal, uneven. Transparent, translucent. Lus. vitreous, pearly. Col. colourless, white, green, blue, dark violet, yellowish-brown. Str. white. B. infusible.

Found in the Ural, Hungary, St. Gotthardt, Ephusus, an extremely rare mineral distingaished from kyanite by its superior lustre.

Eydrargillite.-Al $0^{3}+3 \mathrm{H} 0$. rhombohedral. H $2 \cdot \mathrm{j}-3.0$ G 2.340 — $2 \cdot 387$. Case 19. Lus. vitreous, pearly, bright. Col. colourless, light reddish-white. B. infusible. Soluble with difficulty in hot sulphuric acid or hydrochloric acid.

The Ural, Brazils, and Massachusetts.
Tolknexite, $6 \mathrm{Mg} 0+\mathrm{Al}^{3} \mathrm{O}^{3}+16$ HO. mhombohedxal. G 2.04. Lus. pearly. Col. white. Unctuous to the touch. B. infusible. Solubl in acids.

Found at Schischimskaja, in the Ural.
Spinelle.-Aluminate of Magnesia, Dodecahedral Corundum.-Mg $0+\mathrm{Al} \mathrm{O}^{3}$. The Mg sometimes replaced by Fe, and the Al by 2 Fe . Cubic. H 7.5-8.3 G 3.52 3.95. Case 19. Frac. conchoidal. Transparent, translucent, opaque when black. Lus. vitreous. Col. white, red, blue, green, yellow, brown, black. Str. white. Brittle. B. infusible. Insoluble in hydrochl ric acid, partially so in sulphuric acid.

Red and violet spiselle, found in allurial soll and in the sand of rivers. C $\mathrm{Cl} \mathrm{n}, \mathrm{A}$, Mysore. The scarlet is called the spinelle ruby; the rose-red, balas ruby; the jell w or orange-red, the rub celle; and the violet-col ared, almand rby. Blue spi elle in gran lar limestone and dolomite; Sweden, Finland, Moravia, and Ceylon. Black spi ell, c ll d pleonaste ; Ceylon. Bohemia, Montp llier, the I yrol, Vesuvius, the Ural, New York. It hit spinelle, found with black garnet and green angite, a La Ricia, near Rome. G as sp nelle, called chloro-sp neil, in the chorite slat of Sl toust, in the L ral. Tl s n I e ruby is a gem, and when well coloured and large is highly prized. Distinguished fr m the oriental ruby by being softer, from garnet by its lighter colo $1 r$, and from red topaz, whos colour has been produced artificial 5 , by its not possessiug double refractı n.

G $4.23-4 \cdot 29$. Case 19. Frac. conchoidal. Lus. vitreous. Col. dark leek-green, blackish-green, grayish-green, blue, black. Str. gray. Brittle. B. infusible. Not acted upon by acids.

Found embedded in tale slate, in Sweden, Finland, Connecticut.
Chrysoberyl.-Cymophane, Prismatio Corundum.-G O + Al 0^{3}. prismatic. H 8.5 G $3.680-3.754$. Case 19. Frac. conchoidal. Transparent, semi-transparent. Lus. vitreous. Col. greenish-white, asparagus-green, oil-green, greenish-gray. Str. white. B. infusible. Insoluble in acids.

Found in the Ural, Connecticut, New York, Moravia, Ceylon, Pegu, the Brazils. When transparent and cut with facets, it forms a brilliant yellow gem. When it presents its peculiar milky or opalescent appearance, from which it derives the name of cymophane, or floating light, it is cut en cabochon. Chrysoberyl is distinguished from moon-stone and opalescent quartz by its superior hardness; from yellow topaz by not becoming electric when heated.

Wolframocher.-Oxide of Tungsten.-W 0^{3}. earthy. Opaque. Lus. dull. Col. yellow. Soluble in ammonia.

Found at Huntington, in the United States, with wolfram and scheelite.
Coracite.- $\mathrm{U}^{2} \mathrm{O}^{3}$. amorphous. H 3.0 G 4.378 . Frac. uneven. Col. pitchblack. Str. gray. B. infusible. Soluble in hydrochloric acid.

Found on the north shore of Lake Superior.
Plombgomme.-Hydrous Aluminate of Lead, Plunbo Resinite.- $\left(\mathrm{PbO}+2 \mathrm{AL}^{2} \mathrm{O}^{3}\right)$ +6 HO . globular masses. H 5 G $4.88-6.421$. Case 19. Frac. conchoidal. translucent. Lus. resinous. Col. yellowish, reddish-brown. Str. white. B. fusible. Soluble in concentrated nitric acid.

Found in Brittany, Cumberland, and Missouri, in lead mines. Much resembles some varieties of mammilated blende.

Quartz.—Rhombohedral Quartz, Rock Crystal.—SiO ${ }^{2}$. rhombohedral. H 7.0 G 2.5-2.8. Cases 21-24. Frae. conchoidal. Transparent, translucent. Irs. vitreous. Col. white, colourless, violet, blue, rose-red, brown, green. Str. white. B. infusible. Insoluble in all acids except hydro-ftuoric acid.

Amethyst.-This term is now applied to all the violet, purple, blue, white, yellow, and green crystals of quartz which, when fractured, present the peculiar undulated structure described by Sir David Brewster,-it was formerly restricted to the violet specimens. The finest violet amethysts are found in Siberia, India, Ceylon, and Persia; when uniform in tinge, and transparent, they form a gem of great beauty. Crystals of inferior colour to these are forund in Transylvania, Hungary, Saxony, the Hartz, and Ireland. White and yellow crystals from the Brazils, when cut, are frequently substituted for the topaz.

Rock Crystal.-This term is used for the transparent crystals found in Switzerland, Savoy, Dauphiné, Piedmont, Quebec, Bristol, Ireland, \&ce. When pure, it is cut into lenses for spectacles, called pebbles; it is also used for vases and other ornamental purposes.

Smoky Quartz.-Applied to the wine-yellow, clove-brown crystals found in Scotland, Bohemia, Pennsylvania, and the Brazils ; also called the Scottish cairngorum, and much used as an ornamental stone.

Rose or Milk Quartz.-Massive quartz of a rose-red and milk-white colour, found in Bavaria, Finland, and Connecticut.

Prase.-Quartz, coloured of a dark leek-green by admixture of amphibole, found massive in the iron mines of Saxony.

Siderite.-Indigo or berlin-blue quartz. Saltzburg.
Common Quartz comprehends all the massive varieties of quartz not mentioned above; it is found in great abundance, forming veins in primitive and transition rocks, sometimes

Hornstone, Flinty Slate, Iydian Stone, and Flint, are names given to the compound varieties of quartz which possess a fine texture.

Float-stone, or spongiforn quarty, consists of numerous minute white or gray crystals of quartz, which will swim on water, till the air in its numerous cavities is displaced.

Chalcedony is a mixture of crystalline and amorphous quartz, found at Chalcedon, in Asia Minor, Iceland, Faroe Islands, Hungary, Western Islands, Cornwall, India, and Siberia. The red, brown, and yellow varieties are called carnelians; the yellow are known to lapidaries as sarde, Most oriental cornelians are originally dark gray, and owe their fine red hue to an artificial exposure to heat; found in Arabia, India, Surinam, Saxony, and Scotland.

Agates are composed of irregular layers of chalcedony of various colours.
Mocha-stone and moss-agates, are transparent varieties,
The onyx is formed of chalcedony, arranged in alternate layers of different colours.
Catseye is chalcedony of a brownish-red or greenish-gray colour, penetrated by amianthus, and exhibiting a play of light; found in Ceylon and Malabar.

Chrysopruse is of an apple-green colour, produced by oxide of nickel; found in Silesia and Vermont.

Avanturine contains many minate fissares or else scales of mica, which reflect bright points of light, and give polished specimens a shining spangle-like appearance; found in Spain and India.

Plasma, a transparent chalcedony of a grass-green or leek-green colour; found in India and China.

Heliotrope, or blood-stone, chalcedony coloured by a green earth, and containing spots of yellow or blood-red jasper; found in Bucharia, Tartary, Siberia, and the Hebrides.

Iron-fint, Eisenkiesel, or ferruginous quartz, contains five per cent. of iron; is found in Saxony, Bohemia, and Hungary.

Jasper is rendered opaque by a mixture of iron and clay. The striped jasper, from Siberia, Saxony, and Devonshire, is distinguished by its ribbon-like delineations; the Egyptian jasper, by its red and brown colours and globular structure.

Fig. 395.
Fig. 395 is a crygtal of quartz in the British Museum, which shows most beantifully the gradual growtin of crystals; atransparent hexagonal crystal, terminated by
its planes, similar to Fig. 395 or Fig. 396, was first formed of pure quartz, a deposit of green chlorite then took place on its terminal planes, the crystal was then increased by fresh accessions of silica, still retaining its proper crystalline form, when, after it had considerably increased, another sprinkling of chlorite fell upon its terminal planes; this seems to have been repeated four times. The crystal being very transparent, the chlorite reveals most distinctly four successive stages of its formation. Fig. 396 is a specimen of Egyptian jasper in the British Museum, which is remarkable on account of the natural markings of its fractured surface representing a very tolerable likeness of Chaucer, the poet.

Many agate, onyx, and cornelian cylinders were brought from the ruins of Ninereh, by Mr. Layard.

The moss agates, heliotropes, and flints, from the upper beds of chalk, contain marine organisms, principally sponges.

Opal.—Resinous Quartz, Uncleavable Quarts.—Amorphous. H $5.5 — 6.5$ G 1.9 $-2 \cdot 3$. Case 24. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, white, yellow, red, brown, green, gray, black. Some varicties exhibit a beautiful play of colours. Very brittle.

Hyalite, or Muller's glass appears in small uniform, botryoidal, and sometimes stalactitic shapes, either of a white colour or transparent; found in amygdaloid and in clinkstone. Frankfort, Hungary, and Bohemia.

Five opal, or girasol of the French, possesses bright hyacinth red and yellow tints; found in Mexico and the Faroe Islands.

Noble opal, or precious opal, includes all those specimens which exhibit the play of prismatic colours; these are found emibedded in porphyry at Czervenitza in Hangary and at Honduras in America, also in Mexico and in Iceland. When large and pure, it is considered a gem of great value.

Common opal and semiapal are devoid of the play of colours, and are distinguished by their different degrees of transparency, lustre. and perfection of their conchoidal fracture; found in porphyry and in the carities of amygdaloid rocks, Hungary, Faroe, Iceland, Ginnt's Causeway, and the Hebrides.

Cacholong, nearly opaque, contains a small portion of alumina, and adheres to the tongue; Bucharia, Faroe, Iceland, and Giant's Causeway.

Hydrophane is a variety of opal which is opaque when dry, but transparent when immersed in water; Saxony.

Wood opal is distinguished by its ligneous structure and semi-transparency; found in Hungary, Transylvania, Bohemia, Faroe, and New South Wales.

Siliceous sinter, a deposit from hot springs; the Geyser, in Icelard.
Pearl s inter, or fiorite, found in the cavities of volcanic tufa.
Wollastonite.-Tabular Spar, Prismatic Augite Spar.- $\mathrm{CaO}+\mathrm{Si} \mathrm{O}^{2}$. oblique. H $5 \cdot 0$ G $2 \cdot 8-2 \cdot 9$. Case 25. Frac. uneven. Semi-transparent, translucent on the edges. Less. vitreous. Col. white, passing into gray, yellow, red, and brown. Str. white. Rather brittle. B. fusible with diffculty. Soluble in hydrochloric acid, leaving a j Uy of silica.

Fonnd in granular limestone, lava, gneiss, and trap. The Banat, Finland, Sweden, Vesnvius, Canada, United States, Saxony, Ceylon, and Edinburgh. Can be formed artificially by fusing lime and silica.

Okenite.-Dysclasite.-Ca $\mathrm{O}+2 \mathrm{Si} \mathrm{O}^{2}+2 \mathrm{HO}$. prismatic. H. $4.5-5.0$ G 2.28-2.36. Case 28. Translucent. Lus. pearly. Col. yellowish, white, bluishwhite. B. fusible. Gelatinizes in hydrochloric acid.

Soapstone.-Steatite. $-6 \mathrm{Mg} \mathrm{O}+5 \mathrm{Si} \mathrm{O}^{3}+2 \mathrm{H}$. massive. H $1 \cdot 5$ G 2.266. Case 25. Frac. uneven. Translucent on edges. Lus. dull. Col. yellowish and grayish-white, bluish-gray. Str. shining, unctuous. B. fusible. Soluble in sulphuric acid.

Found in serpentine, limestone, \&c. Cornwall, Bayreuth, Greenland, St. Helena, China. Used in the manufacture of fine poreelain, for fulling, marking cloth and glass, polishing mirrors and marble, diminishing the friction of machinery, and as a fire-stone for furnaces.

Ottrelite. - Phyllite. $-3\left(1 \mathrm{Fe} 0+\mathrm{SiO}^{2}\right)+\left(2 \mathrm{Al} \mathrm{O}^{3}+3 \mathrm{Si} 0^{2}\right)+3 \mathrm{H} 0$. Scratches glass. G 4•4. Frac. uneven. Translucent. Lus. vitreous. Col. grayish-black, inclining to green. Str. grayish-white. B. fusible. Soluble in hot sulphuric acid.

Found in small hexagonal crystals in clay slate. Ottrez Luxembourg, and Massa chasetts.

Meerschaum.-Earthy Carbonate of Magnesia, Magnesite, Sepiolite, Keffehil.$\mathrm{Mg} 0+\mathrm{Si} 0^{3}+\mathrm{HO} ? \mathrm{H} 2 \cdot 5 \mathrm{G} \mathrm{1} \cdot 2-1 \cdot 6$. Case 25. Frac. earthy. Opaque. Lus. dull. Col. white, inclining to yellow, red, or gray. Str. shining. Adheres to the tongue.

Found in nodules in Greece, Spain, Portugal, Moravia, Sweden, Asia Minor. Used for pipe-bowls. Derives its name, which signifies froth of the sea, from its lightness and whitish colour.

Lithomarge.-Steinmart.-H $2 \cdot 5$ G $2 \cdot 496$. Case 25. Frac. conchoidal. Opaque. Lus. dull. Col. blue, passing into red and gray. Str. shining. Sectile. Adheres to the tongue. B. infusible.

A silicate of alumina and iron, found at Planitz in Saxony.
Sexpentine.- Ophite, Marmolite, Retinalite, Chrysotile, Mfetaxite, Baltimorite, Picroilite.-2 $\left(\mathrm{Mg} 0+\mathrm{SiO}^{2}\right)+(\mathrm{Mg} 0+2 \mathrm{H} 0)$. H 3.0 G $2 \cdot 47-2 \cdot 60$. Case 25. Frac. uneven, conchoidal. Translucent, opaque. Lus. resinous, dull. Col. green, of various shades. Str. white, shining. B. fusible on the edges. Decomposed in powder by hydrochloric and suiphuric acids.

Occrrs in masses forming rocks, in beds and veins, and pseudomorphous. Saxoay, Bohemia, Moravia Austria, Styria, Saltzburg, the Tyrol, Hungary, Si sia, Italy, Corsica, Norway, Sweden, Siberia, United States, England, and Scotland. The term noble is applied to those serpentines which are of a uniform green colour, and are translucent and fit for catting. Serpentine is easily cut or turned, and admits of a high pol'sh; it is used for vases, architectural decorations, and oth \mathbf{r} ornamental purpos \mathbf{s}. It derives the name of serpentine, or ophite, from its spotted or variegated a pearance like the skin of a snake.

Antigorite. $3(\mathrm{RO}+\mathrm{Si} 0)+(\mathrm{MgO}+\mathrm{HO})$ where R is Mg and Fe . H2.5 G 2.62. Case 25. Transparent, translucent. Lns. feeble. Col. green, Str. white. B. fusible on the edges. Decomposed by sulphuric acid.

Found in the valley of Antigorio in Piedmont.
Villarsite.-Prismatic. Soft. G 2.978. Case 25. Frac. granular. Translucent. Col. yellowish-green. B. infusible. Decomposed by strong acids.

Found in a bed of magnetite in Piedmont, supposed to be an altered olirine.
Bronzite.-He niprismatic Schiller Spar, Diallage. $\mathrm{RO}+\mathrm{Si} \mathrm{O}^{2}$, where R is

metallic, pearly, frequently resembling bronze. Col. dark-green, brown, ash-gray. Str. grayish. Slightly brittle. B. fusible with difficulty. Not soluble in acids.

Found in serpentine and basalt. Styria, Bayreuth, Moravia, Cornwall, the Tyrol, Hessia, Silesia, Spain.

Clintonite. - Xanthophyllit, Chrysophane, Seybertite, Holmesite, Brandisite. xhombohedral. H $4 \cdot 5-6.5$ G $3.01-3 \cdot 10$. Case 25. Lus. vitreous. Col. jellow, brown, green. B. infusible. Decomposed by strong hydrochloric acid.

Found in the Ural, Tyrol, and New York.
Olivine.-Chrysolite, Peridot, Irismatic Chrysolith, Hyalosiderite.- $2 \mathrm{MgO}+\mathrm{SiO}^{2}$. prismatic. H 6.5-7.0 G 3.3-3.44. Case 25. Frac. conchoidal, transparent, translucent. Lus. vitreous. Col. green, Jellow, brown. Str. white. Decomposed by sulphuric acid, forming a jelly.

Found in Egypt, Natolia, the Brazils, Styria, Vesavius, Mexico, Sweden, Baden. The transparent varieties are called chrysolite, the brown hyalosiderite. Chrysolite is prized as a gem when large, free from flaws and of a good colonx; it is so soft as to lose its polich unless worn with care. Chrysolite is softer than ehrysoberyl, harder and heavier than apatite, and distinguished from the green tourmaline by infusibility and absence of electrical properties when heated. Chrysolite is derived from χ puros gold, and λ_{1} tos stone; and hyalo. ${ }_{s i}$ terite from vianos glass, and σ бionpos iron.

Picyosmine. - Prismatic picrosmine steatite. $-2 \mathrm{MgO}+\mathrm{SiO}^{2}+\mathrm{HO}$. prismatic. $\mathrm{H} 2 \cdot 5-3.0 \mathrm{G} 2 \cdot 59-2 \cdot 66$. Frac. uneven, opaque. Lus. pearly. Col. greenishwhite, blackish-green. Str. white, very sectile. B. infusible.

Found in masses in Bohemia, the Tyrol, and Saxony; distinguished from asbestos by the bitter argillaceous odour it exhales when moistened ; hence its name fiom mıkpds bitter, and $\sigma \sigma \mu \eta$ smell.

Batrachite. $-\left(2 \mathrm{Ca} 0+\mathrm{Si} 0^{2}\right)+\left(2 \mathrm{Mg} \mathrm{O}+\mathrm{Si} 0^{2}\right)$. crystalline system undetermined. H 5.0 G 3.033 , Case $2 \overline{5}$. Frac. imperfect, conchoidal. Translucent. Lus. resinous. Col. light greenish-gray, white. Str. white. B. fusible.

Found at Rizoni in the Tyrol.
Monticellite. $-\left(2 \mathrm{CaO}+\mathrm{Si}^{2}\right)+\left(2 \mathrm{Mg} 0+\mathrm{Si} \mathrm{O}^{2}\right)$. prismatic. $\mathrm{H} \boldsymbol{5} 5$ G. $3.245-3 \cdot 275$. Case 25. Nearly transparent. Lus. vitreous. Col. colourless, yellowish. Soluble in hydrochloric acid.

Found in granular limestone at Monte Somma. Named after the Neapolitan mineralogist Monticelli.

Smithsonite_-Prismatic Zinc Baryte, Prismatic or Electric Calamine, Siliceous Oxide of Zinc, Zinkglas, Galmei.-2 $\mathrm{ZnO}+\mathrm{Si}^{2}+$ HO. prismatic. H 5.0 G $3.35-3.50$. Case 26. Frac. uneven, transparent, translucent. Lus. vitreous. Col. colourless, white, yellow, brown, green, blue. Str. white. Brittle. Becomes electric when heated. B. infusible. Soluble in acids, leaving a jelly of silica.

Found in veins. Aix-la-Chapelle, Liege, Carinthia, Silesia, Poland, Gallicia, Baden, Derbyshire, Cumberland, Scotland, the Tyrol, Hungary, the Banat, Spain, Siberia, the Hartz. Used as an ore of zinc.

Willemite.-Siziceous Oxide of Zinc, Brachytype Zinc Baryta, Troostite.-2 Zn
 choidal, semi-transparent, translucent. Lus. vitreous. Col. colourless, white, yellow,
brown. Str. white. Brittle. B. fusible on the edges. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found at Moresnet, Stolberg, Carinthia, Servia, and New Jersey.
Rhodonite. - Siliciferous Oxide of Manganese, Diatomous Augite Spar.$\mathrm{MnO}+\mathrm{Si} \mathrm{O}^{2}$. oblique. $\mathrm{H} 5 \cdot 0-5.5 \mathrm{G} 3.61-3.65$. Case 26. Frac. uneven. Translucent. Lus. vitreous. Col. red, brown, spotted with green. Str. reddishwhite. B. fusible. Insoluble in hydrochloric acid.

Found in masses. Sweden, 'Iransylvania, the Hartz, New Jersey, Piedmont, Algiers, Cornwall. Allagite, photizite, and corneous manganese, are all varieties of Rhodonite.

Tephroite. $-2 \mathrm{Mn} 0+\mathrm{Si}^{2}$. Crystalline system undetermined. H 5.5 G 4.06-4.12. Case 26. Frac. uneven. Lus. adamantine. Col. ash-gray, tarnish brown or black. Str. ash-gray. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found with franklinite at Franklin in New Jersey.
Cexerite_Rhombohedral Cerium Ore, Siliciferous Oxide of Cerium, Cerite, Red Siliceous Oxide of Cerium. $-\mathrm{RO}+\mathrm{Si} \mathrm{O}^{2}+2 \mathrm{H} 0$, where R represents cerium, lanthanium, and didymium. xhombohedxal, H 5.5 G 4.9-5.0. Case 26. Frac. uneven, translucent on edges. Opaque. Col. brown, red, gray. Str. grayish-white. Brittle. B. infusible. Soluble in hydrochloric acid, leaving a jelly of silica.

Found only in an old copper mine at Bastnäs, in Sweden. Resembles red granular corundum, but easily distinguished from it hy its inferior hardness.

Tritomite.-Cubic. H $5 \cdot 5$ G 4.16-4.66. Frac. conchoidal. Opaque, Ius. vitreous. Col. dark-brown. Str. yellowish-brown. Very brittle. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found at Lamö in Norway in syenite.
Chloxophæite.-Soft. G 2.02. Case 26. Dull green, and afterwards black. B. infusible. Decomposed by hydrochloric acid.

Found imbedded in amygdaloid rock in the island of Rum, and in Fife.
Chloropal.—Nontromite, Pinguite.- $\mathrm{Fe}^{2} \mathrm{O}^{3}+2 \mathrm{Si} 0^{3}+3$ HO. Massive. H $3.0-4.0$ G 2.0. Case 26. Frac. conchoidal. Opaque. Translucent on the edges. Col. greenish-yellow and pistachio green. Lus, vitreous, dull. Brittle. B. infusible.

Found in Hungary and the Hartz.
Stilpnomelane.-Rhombohedral. H $3.0-4.0$ G 3.0-3.4. Case 26. Opaque. Lus. vitreous. Col. black, blackish-green. Str. olive-green. Rather brittle. B. fusible. Imperfectly decomposed by acids.

Found in clay slate in Silesia; derives its name from $\sigma \tau \lambda \lambda \pi \nu o s$ shining and $\mu \in \lambda$ as black.

Eisingerite.-Thraulite, Gillingite, Polyhydrite.-Reniform masses. H 3.0 G 2.79 - 3.05 . Case 26. Frac. conchoidal. Opaque. Lus. resinous. Col. black. Str. yellowish-brown. Brittle. B. fusible. Partially soluble in hydrochloric acid.

Fonnd in Bavaria and Sweden.
Cronstedtite,—Sideroschizolite, Rhombohedral Melane Mica. $-2 \mathrm{Fe}^{2} 0^{3}+\mathrm{Si}^{2}$ $+2\left(2 \mathrm{FeO}+\mathrm{Si}^{2}\right)+5 \mathrm{H} \mathrm{O}$. Reniform and fibrous masses. H 2.5 G 3.348 . IRIS - LILLIAD - Université Lille 1

Case 26. Translucent. Opaque. Lus. vitreous. Col. black. Str. dark green. Brittle. B. infusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found in Bohemia, Cornwall, Brazils, and Chili.
Fayalite.—Iron Chrysolite.-2 $\mathrm{Fe} 0+\mathrm{Si} 0^{2}$. prismatic. H $6 \cdot 5 \mathrm{G} 4 \cdot 11-4 \cdot 14$. Case 26. Frac. imperfect, conchoidal. Opaque. Lus. imperfect, metallic. Col. ironblack, inclining to green or brown, brass-yellow tarnish. Magnetic. B. fusible.

Found on the sea-shore at Fayal, and on one of the Morne mountains, Ireland. Crystals having the composition of Fayalite and the form of Olivine, are found in refining cinders and the slag of copper furnaces.

Anthosiderite. $-\mathrm{Fe}^{2} \mathrm{O}^{3}+4 \mathrm{Si} 0^{2}+\mathrm{H} 0$. fibrous. H 6.5 G 30 . Case 14. Opaque. Lus. silky. Col. yellow ochre and brown. Str. the same. Very tough. B. fusible. Decomposed by hydrochloric acid.
 iron.

Palagonite,-Amorphous. H $3 \cdot 0-4 \cdot 5$ G $2 \cdot 40-2 \cdot 43$. Frac. conchoidal. Transparent, translucent. Lus. waxy. Col. yellow, brown. Str. yellow. B. fusible. Decomposable by hydrochloric acid.

Found in volcanic tufa, in Sicily and Iceland.
Chrysocolla.-Hydrosiliceous Copper, Copper-green, Uncleavable Staphyline Malachite, Kiessel Malachite.-Cu $0+\mathrm{Si}^{2}+2 \mathrm{H} 0$. amorphous. H $2 \cdot 0-3 \cdot 0 \mathrm{G} 2 \cdot 0$ -2.2. Case 26. Frac. conchoidal. Semi-transparent. Lus. resinous. Col. green, sky-blue. Str. greenish-white. Slightly brittle. B. infusible. Decomposed by nitric or hydrochloric acid.

Found, with other ores of copper, in the Banat, Hungary, the Tyrol, Bohemia, Saxony, the Ural, Altai, Spain, Norway, New Jersey, Cornwall, Mexico, Chili, Australia

Dioptase.-Rhombohedral Emerald Malachite, Emerald Copper Achirite, Kupfersmaragd. $-\mathrm{Cu} 0+\mathrm{SiO}^{2}+\mathrm{HO}$. rhombohedxal. H $5 \cdot 0$ G $3 \cdot 27-3 \cdot 348$. Case 26. Frac. conchoidal, uneven Transparent, translucent. Lus. vitreous. Col. emeraldgreen. Str. green. Brittle. B. infusible. Soluble in nitric and hydrochloric acids, leaving a jelly of silica.

Found in limestone in the Kirghese Steppes, in Siberia. Derives its name from δ oa through, and 'ontoual to see, in allusion to the possibility of seeing the natural joints by transmitted light. Distinguished from the emerald by inferior hardness, higher specific gravity, and by acquiring negative electricity by friction.

Eulytine.-Bismuth Blende, Silicate of Bismuth.- $2 \mathrm{BiO}^{3}+3 \mathrm{SiO}^{3}$. cubic. H 4.5 -50 G $5 \cdot 965$. Case 26. Frac. uneven. Semi-transparent. Opaque. Lrws, adamantine. Col. brown or yellow. Str. yellowish-gray. Brittle. B. fusible. Soluble in hydrochloric acid, leaving a jelly of silica.

Found in minute crystals in cobalt veins. Sohneeberg and Braünsdorf in Saxony.
Zixcon.-Pyramidal Zircon, Hyacinth.-ZrO $+\mathrm{SO}^{2}$. pyramidal. H 7.5 G 4.0 - 4.7. Case 26. Frac. conchoidal, uneven. Transparent, translucent on the edges. Lus. vitreous. Col. red-brown, yellow, gray, green, white. Str. white. B. infusible. Partially decomposed by sulphuric acid.

The term hyacinth is applied to' transparent and bright-coloured warieties, Jargoon to crystals devoid of colonr and of a smoky tinge, occasionally sold as inferior diamonds; IRIS - LILLIAD - Université Lille 1

Zirkomite to the gray und brown, rough and wpaque varieties. Found in gneiss, granite, volcanic matter, alluviam, and sand of rivers. Ceylon, Norway, Siberia, New Jersey, Sweden, Greenland, Egypt, Carinthia, France, Italy, Vesurius, the East Indies, Saxony, the Ural, Transylvania.

Ostranide is a grayish-brown zircote from Fredrioksuärn.
Malacone and Oerstedtite, names given to two minerals having the form of zircon, and supposed to be that mineral in a stage of decomposition.

Thorite. $-2 \mathrm{ThO}+\mathrm{SiO}^{2}+2 \mathrm{HO}$. massive. H 45 G 4.63 . Case 26. Frac. conchoidal. Lus. vitreous. Col. black, Str. dark-brown. Brittle. B. infusible. Gelatinizes in hydrochloric acid.

Found with mesotype, at Lüvö in Norway. It was from this mineral B rzelius first obtained the rare metal thorium.

Andalusite.-Prismatic Andalusite.-AIO ${ }^{3}+\mathrm{SiO}^{2}$. prismatic. $\mathrm{H} 7 \cdot 5$ G 3.1-3.2. Case 26. Frac. uneven, flat, conchoidal. Transparent, translucent on the edges. Lus. vitreous. Col. reddish, passing into pale gray. Str. white. B. infusible. Slightly affected by acids.

Found in granite, gneiss, and mica slate. Spain, the Tyrol, Bavaria, Bohemia, Moravia, Silesia, Saxony, France, Siberia, Brazils, Banffshire, Ireland, Connecticut, Massachusetts. Distinguished from felspar by its hardness and infusibility, from corundum by its structure and specific gravity.

Chiastolite, or hollow spar, appears to be a variety of andalusite, having prisms of a darker substance in the centre and sometimes in each ancle, connected by thin lates of the same. H $5.0-5.5 \mathrm{G} 2.9-2.95$. Deriv s its name from the summits of its crystals being marked in the form of the Greek letter X. Found in the Pyrences, Spain, Normandy, Cumberland, Wicklow.

Kyanite.-Disthéne, Sillimanite. Bucholzite, Fibrolite, Prismatic Disthene Spar, Monrolite, Rhoetizit.—AlO ${ }^{3}+\mathrm{SiO}^{2}$. anorthic. H $5.0-6.0$ G $3.58-3.62$. Case 26. Frac. uneven. Transparent, translucent. Lass. pearly, vitreous. Col. blue, white, gray, black, colourless. Str. white. Brittle. B. infusible. Insolubl in acids.

Found in mica slate, granite, gneiss, \&c. Switzerland, Styria, Carinthia, Banffihire, United States, Bohemia. South America, Massachusetts, the Tyrol, Shetland. Di tin uish d from actinolite by its infusibility, cleavage, and specific gravity. When blue and trausparent, is cut and polished as an ornamental stone, resembling sapphire.

Bamlite,-H 6.5-G 2.984. Frac. uneven. Translucent. Lus, vitreous. Col. white, inclining to green.

Found in slender prisms and crystalline masses, with quartz, in Norway.
Worthite. $4 \mathrm{AlO}^{8}+5 \mathrm{SiO}^{2}+2 \mathrm{HO}$. Granular aggregations. H 7.0-7.5 G 3.0. Case 26. Feebly translucent. Lus. pearly. Col. white. E. infusible. Insoluble in acids.

Found in the neighbourhood of St. Petersburg.
Allophane.-Riemanite. $-3 \mathrm{Al}^{2} \mathrm{O}^{8}+2 \mathrm{Si} \mathrm{O}^{3}+16 \mathrm{H} 0$. Reniform and botryoidal masses. IH 3.0 G 1-852-1.889. Case 26. Frec, fat, conchoidal, semitransparent. Translucent on the edges. Lus. waxy. Col. white, yellow, red, brown, blue and green. Brittle. B. infusible. Gelatinizes with acids.

Found in Sasony, Mararis, and Bobemia. Derives its name from ád λ os and palvw to appear, from its change of appearance ander the blowpipe.

G 1.92-2.12. Case 26. Frac. conchoidal. Opaque. Lus. waxy. Col. white, blue, green, yellow. B. infusible. Gelatinizes with sulphuric acid.

Found in reniform masses. Silesia, France, New Granads.
Collyrite.-Scarbroite.-A hydrous silicate of alumina. H $1.0-2.0$ G 2.06 2•11. Case 26. Frac. earthy. Opaque. Lus. dull. Col. white, reddish, greenish. Str. shining. Unctuous to the touch. B. infusible.

Found in reniform masses in the Pyrenees.
Bole.-A silicate of alumina and iron. \quad H $1.5-2.5$ G $1 \cdot 6-2 \cdot 0$. Case 26. Frac. conchoidal. Opaque. Col. brown. Str, resinous. Sectile.

Found in nodules. Silesia, Bohemia, Saxony, Hebrides.
Schrottexite.-4 $\mathrm{Al}^{2} \mathrm{O}^{3}+\mathrm{Si}^{3}+3$ H 0 . Amorphous. H $3.0-3.5$ G 1.9852.015. Case 26. Frac. conchoidal. Translucent. Lus. vitreous. Col. light emerald green. Str. white. Brittle. B. infusible. Gelatinizes with hydrochloric acid.

Found in nodules in Styria.
Miloschine.-Serbian.-Al $0^{3}+\mathrm{Si}^{2}+3$ H 0 . Massive. H 1.5-2.0 G 2.131. Frac. conchoidal. Lus. glimmering dull. Col. blue-green. B. infasible. Partially decomposed by hydrochloric acid.

Fonnd massive in Servia.
Groppite-Crystalline masses. H $2 \cdot 5$ G $2 \cdot 73$. Frac. splintering. Semitransparent' in thin fragments. Col. Rose-red, brown, red. Str. light. Brittle. B. fusible on the edges.

Dillnite.- H $3 \cdot 5$ G $2: 835$. Frac. conchoidal. Opaque. Lus. dull. Col. white. Case 26.

Found in veins of limestone at Schemnitz in Hungary.
Agalmatolite.—Figure stone, Talcglaphique, Bildstein.-H 3.0 G 2.75-2.85. Case 26. Frac. uneven. Col. white, pale gray, green, yellow, flesh red. Str. white and shining. Slightly brittle, almost sectile. B. fusible on the thinnest edges. Decomposed by hot sulphuric acid.

Found in China, Saxony and Hungary. Carved by the Chinese into grotesque figures and ornaments.

Apophyllite.-Pyramidal Kouphone Spar, Oxhaverite, Pyramidal Zeolite, Ichthyopthalmile, Tessalite, Alvine. $-3(\mathrm{CaO} \mathrm{K} 0, \mathrm{H} 0)+2 \mathrm{Si}^{3}+2 \mathrm{H} 0$. pyramidal. H $4.5-5.0$ G $2.35-2.39$. Case 27. Frac. imperfect, conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, yellow, blue, red, green. Str. white. Brittle. B. fusible. Decomposed by hydrochloric acid.

Found in carities of amygdaloid rocks, in veins in transition slate, and in beds of mag. netite. The Banat, the Tyrol, Iceland, the Hartz, Hindostan, Bohemia, Sweden, Greenland, Siberia, North America, Fifeshire. Apophyllite derives its name from ano and фu入入ov a leaf, on account of its tendency to exfoliate under the blowpipe. The peculiar pearly lustre of the crystallized varieties, which is one of the most decided characteristics of this mineral, gave rise to the name ichthyopthalmite, or fish eye-stone, from cxAus a fish and oф $\theta a \lambda \mu o s$ an eye."

Chabasie.-Rhombohedral Kouphone Spar, Phacolite, Rhombohedral Zeolite.-(Ca 0 $\left.+\mathrm{Si} 0^{2}\right)+\left(\mathrm{Al}^{\mathbf{3}} \mathrm{O}^{3}{ }^{3} \mathrm{Si}^{2} \mathrm{O}^{2}+6 \mathrm{H} \mathbf{0}\right.$. yhombohedral. H $4.0-4.5 \mathrm{G} 2.08$ -

white, reddish, gellowish. Str. white. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found in cavities and veins in amygdaloid and plutonic rocks. Bohemia, the Tyrol, Faroe, Iceland, Greenland, Sweden, Ireland, Renfrewshire, Hungary, Siberia, Massachusetts:

Mesotype,-Zeolith, Natrolith, Bergmannite, Mesolite, Radiolite, Peritomous Kouphone Spar. $-\left(\mathrm{Na} 0+\mathrm{Si} 0^{2}\right)+\left(\mathrm{Al} \mathrm{O}^{3}+2 \mathrm{Si} 0^{2}\right) \mathrm{H}^{2} \mathrm{H} 0$. prismatic. H $5 \cdot 0-$ 5.5 G 2.24-2.26. Case 27. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Coi. colourless, gray, yellow, red, pale green. Str. white. Brittle. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found in basalt, syenite, and transition rocks. Greenland, Iceland, Bohemia, the Tyrol, Ireland, Norway.

Scolezite.-Needlestone, Poonahlite, Antrimolite.-(Ca $\left.0+\mathrm{Si} 0^{2}\right)+\left(\mathrm{Al} \mathrm{O}^{3}+\right.$ $2 \mathrm{Si}^{2}$) +3 H 0 . oblique. H $5.0-5 \cdot 5$ G $2.2-2 \cdot 3$. Case 28. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, white, gray, reddish, yellowish. Brittle. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found in cavities of amygdaloid rocks. Staffa, Faroe, Iceland, Greenland, Hindostan, the 'tyrol, Ireland. Curls up before the blowpipe, whence its name from $\sigma \kappa \omega \lambda \eta \xi$ a worm.

Comptonite.-Thomsonite, Orthotonous Kouphone Spar.-3 ($\mathrm{Al} 0^{3}+\mathrm{Si} 0^{2}$) + 3 ($\mathrm{CaO}+\mathrm{SiO}^{2}$) $\mathrm{H} \boldsymbol{7}$ H 0 . pxismatic. $\mathrm{H} 5 \cdot 0-5 \cdot 5 \quad \mathrm{G} 2 \cdot 31-2 \cdot 38$. Case 27. Frac. imperfect, conchoidal. Transparent, translucent. Col. white, yellow, red. Str. white. Brittle. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found in amygdaloid rocks. Vesuvius, Hessia, Bohemia, Greenland, Iceland, the Tyrol, Scotland-

Gmelinite.-Hydrolite, Sarcolite, Heteromorphous Kouphone Spar, Herschelite.$\left(\mathrm{RO}+\mathrm{Si} 0^{2}\right)+\left(\mathrm{AlO}+3 \mathrm{Si} 0^{2}\right)+6 \mathrm{H} 0$, where R is K , Ca , and Na. yhombohedral. H 4.5 G 2.04-2.12. Case 27. Frac. uneven. Translucent. Lus, vitreous. Col. white, reddish. Str. white. Brittle. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

- Found in cavities of amygdaloid rocks. Vicentine, Ireland, Sicily. :

Levyne.-Macrotypous Kouphonc Spar.-(Ca $\left.0+\mathrm{Si}^{2}\right)+\left(\mathrm{Al} 0^{2}+3 \mathrm{Si} \mathrm{O}^{2}\right)+$ 6 H O. xhombohedral. H 4.0 G 2.1-2.2. Case 27. Frac. imperfect, conchoidal. Semi-transparent. Lus, vitreous. Col. white, grayish. Str. white. Britule. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found in cavities in trap. Ireland, Renfrewshire, Faroe, Iceland, Skye.
Gyrolite.-Gurolite. $2 \mathrm{CaO}+3 \mathrm{Si} \mathbf{O}^{2}+3 \mathrm{HO}$. H 3.0-4.0. Case 28. Lus. vitreous, thin plates, transparent. Col. white. Very tough. B. fusible.

Occurs in small spherical concretions in the cavities of basalt, from Storr in Skye.
Edingtonite.-Pyramidal Brythine Spar, Hemi-pyramidal Spar. Pyramidal. H $4.0-4.5$ G 2.71. Case 28. Frac. imperfect, conchoidal. Semi-transparent, translucent. Col. grayish-white. Str. white. Brittle. B. fusible. Forms a jolly in hydrochloric acid without being completely decomposed.

Algexite.-Oblique. H $3.0-3.5$ G $2697-2.948$. Translucent. Opaque. Lus. vitreous. Col. yellowish-white. Str. light-brown. B, fusible. Slightly acted on by hydrochloric acid.

Found in white limestone. Franklin, New Jersey.

Analcime,-Hexahedral Kouphone Spar.- $\left(\mathrm{NaO}+\mathrm{Si} \mathrm{O}^{2}\right)+\left(\mathrm{AlO}^{3}+3 \mathrm{Si} \mathrm{O}^{2}\right)$ + 2 HO. cubic. H 5.5 G $2 \cdot 22-2.28$. Case 28. Frac. uneven, translucent. Lus. vitreous. Col. colourless, white, gray, reddish-white. Str. white. Brittle. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found in cavities of amygdaloid rocks, in beds of magnetite, gneiss, porphyry. The Tyrol, Scotland, Ireland, Bohemia, the Ural, Faröe, Iceland, Korway, the Hartz.

Eudnophite.- $\left(\mathrm{Na} O+\mathrm{Si} \mathrm{O}^{2}\right)+\left(\mathrm{AlO}^{3}+3 \mathrm{Si} \mathrm{O}^{2}\right)+\mathrm{HO}$. prismatic. H $5 \cdot 5$ G 227. Frac. even. Transparent. Lus. pearly. Col. white, gray, brown. Str. white. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found in syenite. Lamö, near Brevig.
Stilbite.-Desmin Prismatoidal Kouphone Spar.-(Ca $0+3 \mathrm{Si} \mathrm{O}$) + (Al $\left.0^{3}+3 \mathrm{Si} \mathrm{O}^{2}\right)+6 \mathrm{HO}$. prismatic. $\mathrm{H} 3.5-4 \cdot 0$ G $2 \cdot 1-2 \cdot 2$. Case 28. Frac. uneven. Semi-transparent. Lus vitreous. Col. colourless, white, yellow, red, brown. Str. white. Bittle. B. fusible. Decomposed by acids.

Found in cavities of amygdaloidal rocks, also in beds and veins in granite and slate. Iceland, Faröe, Slyye, Hindostan, the Tyrol, Norway, Sweden, Silesia, the Hartz, the Alps, Scotland, Siberia.

Epistilbite.-Diplogenous Kouphone Spar.-(Ca $\left.0+3 \mathrm{SiO}^{2}\right)+\left(\mathrm{Al} \mathrm{O}^{s}+3 \mathrm{Si}\right.$ $\left.\mathrm{O}^{2}\right)+5 \mathrm{HO}$. prismatic. $\mathrm{H} 3 \cdot 5-4 \cdot 0$ G $2 \cdot 24-2 \cdot 25$. Case 28.' Frac. uneven, transparent, Lus. vitreous. Col. colourless, white. Str. white. B. fusible. Decomposed by strong hydrochloric acid.

Found in cavities of amygdaloidal rocks. Iceland, Faröe.
Eeulandite. - Hemipsismatic Kouphone Spar:- $\left(\mathrm{CaO}+3 \mathrm{Si} 0^{2}\right)+\left(\mathrm{Al} \mathrm{O}^{3}+\right.$ $3 \mathrm{Si} 0^{2}$) +5 HO. oblique. H $3 \cdot 5-40$ G $2 \cdot 18-2 \cdot 22$. Case 28. Frac. uneven, transparent. Lus. vitreous. Col. colourless, white, gray, brown, red. Str. white. Brittle. B fusible. Decomposed by hydrochloric acid.

Found in cavities of amygdaloidal rocks. Iceland, Faröe, Hindostan, Nova Scotia, Bohemia, the Tyrol, Transylvania, Norway, the Hartz, Saxony, Siberia, Scotland, Skye.

Brewsterite. - Megalagonous Kouphone Spar. - Oblique. H 5 - $\boldsymbol{\theta}$-5 G $2 \cdot 12$ - 2%. Case 28. Frac. uneven. Brittle. B. fusible with difficulty. Decomposed by hydrochloric acid.

Fonnd in cavities of amygdaloidal rocks. Scotland, Ireland, France, and the Pyrenees. .
Laumonite. - Leonhardite, Diatomous Kouphone Spar, Di-prismatif Zeolite.$\left(\mathrm{CaO}+\mathrm{SiO}^{2}\right)+\left(\mathrm{AlO}^{3}+3 \mathrm{SiO}\right)+4 \mathrm{HO}$. oblique. $\mathrm{H} 3 \cdot 5$ G $2 \cdot 33-2 \cdot 41$. Case 28. Frac. uneven. Translucent. Lus. vitreous. Col. yellowish and grayish-white, flesh-red. Str. white. Very brittle. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found in cavities of amygdaloid, and in metallic veins. Bretagne, Bohemia, the Tyrol, Hungary, Sweden, the Ural, North America, Faröe, Feeland, Skye, Ireland, Scotland. Spe-
 the rapid decomposition which takes place when they are exposed to the air.

Prehnite.-Axotomors Triphane Spar, Koupholite, Edelith, Chiltonite.-2(CaO + $\left.\mathrm{SiO}^{2}\right)+\left(\mathrm{AlO}^{3}+\mathrm{SiO}^{2}\right)+\mathrm{HO}$. prismatic. H6.0-7.0 G $2 \cdot 92-3 \mathrm{ol}$. Case 29. Frac. uneven. Semitransparent, translucent. Lus. vitreous. Col. green, yellow, gray. str. white. Brittle. Becomes clectric by the application of heat. B. fusible. Partially soluble in hydrochloric acid.

Found in granite and crystalline rocks. Dauphiné, the Tyrol, Pyrenees, Switzerland, Saxony, the Hartz, Norway, Sweden, Massachusetts, South Africa, Scotland, Gloucestershire, Staffordshire, Land's End, China. The grass-green varieties have been mistaken for chrysolite, chrysoprase, and emerald.
' Nephrite.—Jade, Uncleavable Nephrite Spar, Beilstein.—(CaO $\left.+\mathrm{SiO}^{3}\right)+(3 \mathrm{Mg} 0$ $\left.+2 \mathrm{SiO}^{3}\right)$. H $5.5-6.0 \mathrm{G} 2 \cdot 65-3 \cdot 0$. Case 29. Frac. splintery. Translucent on the edges. Lus. resinous, dark. Col. leek-green, greenish-white, greenishgray. Str. white, shining. Tough. Slightly unctuous to the touch. B. fusible on the edges.

Found massive and in blocks with slate and limestone. India, Turkey, Leipsig, Little Thibet, China, Lgypt, the Amazon. Vessels made from Jade are as sonorons as porcelain, It is wrought into hatehets by the New Zealanders. Derives its name from $\boldsymbol{\nu} \boldsymbol{1} \Phi \rho o s a$ kidney, because it was supposed to be a remedy for diseases of that organ.

Harmotome.-Paratomous Kouphone Spar, Staurolite, Pyramidat Z lite or Cross stone, Morvenite, Andieolite, Andreasbergolite. $-\left(\mathrm{BaO}+2 \mathrm{SiO}^{2}\right)+\left(\mathrm{AlO}^{3}+3 \mathrm{SiO}\right)+5 \mathrm{HO}$. prismatic. H 4.5 G $2.39-2.50$. Case 29. Frac. uneven, imperfect eonchoidal. Transpurent, translucent. Lus. vitreous. Col. white, colourless, gray, yellow, brown, red. Str. white. Biittle. B. fusible. In powder decomposed by hydrochloric acid.

Found in metallic veins, and in cavities of amygdaloidal rocks and basalt. Scotland, the Hartz Norway, Silesia, Oberstein. Derives its name from ap $\mu \mathrm{s}$ a joint, and $\tau \in \mu \nu \mathrm{m}$ to cut, from the appearance of its twin crystals.

Phillipsite, -Gismondine, Zeagonite, Lime Harmotome, Christianite, Abrazite, Staurotypous Kouphone spar.- $\left(\mathrm{RO}+\mathrm{SiO}^{2}\right)+\left(\mathrm{AlO}^{3}+3 \mathrm{SiO}^{2}\right)+5 \mathrm{HO}$. prismatic. II 4.5 G $2.14-2.213$. Case 29. Frac. conchoidal, uneven. Translucent, translucent on the edges. Lus. vitreous. Col. white, gray, colourless, blue, yellow, red. Str. white. Brittle. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found in cavities of amygdaloid and basalt. Bohemia, Silesia, Bonn, Oberstein, Vesnvius, Sicily, Rome, Giant's Causeway. Resembles Harmotome, but distingaished from it by its lower specific gravity.

Felspax.-Orthoclase, Orthotomozs Felspar, Adularia, Murchisonite, ${ }^{\text {E Sanidine, Mik- }}$ roklin, Amazon stone, Perthite. $-\left(\mathrm{KO}+3 \mathrm{SiO}^{2}\right)+\left(\mathrm{AlO}^{3}+3 \mathrm{SiO}^{2}\right)$. oblique. H 6.0 G 2.53-2.59. Case 29. Frac. conchoidal, uneven. Transparent, translucent on the edges. Lus. vitreous. Col. colourless, white, gray, green, brown, red, flesh-red, verdigris-green. Str. grayish-white. Brittle. B. fusible with difficulty. Not acted on by acids.

Adularia, or transparent Felspar, is found in platonic and metamorphic rocks. St. Gotthardt, Mont Blanc, Dauphiné, Norway, Arran, Cornwall, Snowdon, Ceylon, Greenland.

Moon Stone, a transparent colourless felspar, from Ceylon, which presents a play of. light; used as an ornamental stone.

Common F lspar. Italy, Silesia, Ireland, the Ural, Bohemia, Brazils.
Green Felspar (Amazon Stone), found on the east side of Lake Ilmen.

masses. The Rhine, Mexico, Chili, Baden, Hungary, Italy, Iceland, Cassel, Yesuvius, Arran.

Murchisonite is a flesh-red rariety of felspar, found in rolled pebbles. Heavitree, Exeter.

Crystals of flesh-red felspar have been found in a copper furnace, and of adularia in an iron furnace.

The porcelain earth, or Kaolin of the Chinese, is produced by the decomposition of felspar. Felspar is extensively used in the manufacture of porcelain.

Pollux.-A hydrosilicate of alumina and potash. H $6.0-6.5$ G $2.868-2.892$. Case 29. Frac. conchoidal. Transparent. Luts. vitreous. Col. white, colourless. B. fusible on the edges. Decomposed by acids.

Found with petalite in cavities of granite at Elba.
工abradorite,-Labrador Felspar, Anhydrous Scolecite, Mranilite, Silicite, Opaline Felspar, Polychromatic Felspar.-($\left.\mathrm{RO}+\mathrm{Si} \mathrm{O}^{2}\right)+\left(\mathrm{Al} \mathrm{O}^{3}+2 \mathrm{Si}^{2}\right)$ where R is Ca or Na. anorthic. H 6.0 G $2.67-2 \%$. Case 30 . Frac. imperfect conchoidal. Faintly translucent. Lus. vitreous. Col. gray, red, green, white, blue. B. fusible. Decomposed by concentrated hydrochloric acid when in powder.

Occurs principally as a constituent of rocks. The varieties which exhibit a play of colours are mostly derived from a coarse-grained hypersthene rock. Labrador, Russia, Finland, Ireland, the Tyrol, the Hartz, Scotland, Corsica, Saxony, Hessia, Sweden, Faröe, Norway, Ætna, Vesuvins. The play of colours is supposed to be produced by microscopic crystals of quartz included in the labradorite. It receives a good polish, and is valued for ornamental purposes on account of its beautiful colours.
: Pectolite.—Stellite, Osmelite, Woolastonite. $-4 \mathrm{RO}+3 \mathrm{Si} \mathrm{O}^{2}+\mathrm{H} \mathrm{O}$ where R is Ca and Na. H $4.0-5.0$ G $2.745-2.756$. Case 29. Translucent on the edges. Lus. pearly. Col. grayish-white. Brittle. B. fusible. Decomposed by hydrochloric acid.

Found in spherical masses, in amygdaloid and felspar. Verona, the Tyrol, Lake Superior, New Jersey, Scotland, Bavaria.

Faujasite.- $\left(\mathrm{RO}+\mathrm{Si} \mathrm{O}^{2}\right)+\left(\mathrm{Al}^{2} \mathrm{O}^{3}+2 \mathrm{Si} \mathrm{O}^{2}\right)+9 \mathrm{HO}$ where R is Na and Ca. pyramidal. H $5 \cdot 0$ G $1 \cdot 923$. Case 29. Frac. uneven. Transparent, translucent on the eảges. Lus. vitreous. Col. white, brown, colourless. Brittle. B. fusible. Decomposed by hydrochloric acid.

Found in cavities of amygdaloidal rock. Sassbach.
Iatrobite. - Diploite.-A hydrosilicate of alumina. anorthic. H $5.0-6.0$ G 2.720-2.722. Case 29. Frac. uneven. Translucent. Lus. vitreous. Col. pale red. B. fusible.

Found with felspar, mica and calcite. Labrador and Massachusetts.
Albite, - Pericline, Cleavelandite, Heterotomous Felspar, Tetartine, Tetartoprismatic Felspar.- $\left(\mathrm{NaO}+3 \mathrm{SiO}^{2}\right)+\left(\mathrm{AlO}^{3}+3 \mathrm{SiO}^{2}\right)$. anoxthic. H $6.0-6.5$ G $2.54-2.64$. Case 30. Frac. imperfect conchoidal. Transparent, translucent on the edges. Lus. vitreous. Col. colourless, white, red, yellow, green, gray. Str. white. Brittle. B. fusible. Not decomposed by acids.

Found in granite, gneiss, greenstone, and lava. Dauphiné, the Pyrenees, Italy, Saxony, Silesia, the Hartz, the Tyrol, Moravia, Baden, Greenland, Siberia, the Alps, Sweden, Scotland, Ireland, Cornwall, Egypt, the Brazils, Massachusetts. Derives its name from albus, white. IRIS - LILLIAD-Université Lille 1

Chxistianite.-Anorthite, Amphodelite, Indianite, Lepolite, Anorthotomous Felspar. $-\left(\mathrm{CaO}+\mathrm{SiO}^{2}\right)+\left(\mathrm{AlO}^{3}+\mathrm{SiO}^{2}\right)$. anorthic. H 6.0 G $2 \cdot 656-2.763$. Case 30. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, white. Str. white. Brittle. B. fusible. Decomposed by hydrochloric acid.

Found in dolomite, in lava, and in meteoric stones. Vesuvius, Java, Iceland, Columbia. Distinguished from topaz by inferior hardness and specific gravity.

Oligoclase.-Antitomous Felspar, Soda Spodumene, Unionite.- $\left(2 \mathrm{NaO}+3 \mathrm{SiO}^{2}\right)$ $+2) \mathrm{AlO}^{3}+3 \mathrm{SiO}^{2}$). anorthic. H 6.0 G $2.63-274$. Case 30. Frac. conchoidal, uneven. Translucent. Lus. vitreous. Col. greenish white and gray, red. Str. white. B. fusible. Not acted on by acids.

Found in granite, syenite, gaeiss, porphyw, and basalt. Norway, Finland, the Ural, United States, the Hartz, Iceland. The oligoclase from Norway, which presents a play of colours produced by thin plates of hematite, is called avanturine felspar and sunstone. Derives its name from onços little, and $\kappa \lambda a \omega$ to cleave.

Porzellanspath. $-\left(3 \mathrm{AlO}^{3}+\mathrm{SiO}^{2}\right)+3\left(\mathrm{CaO}+\mathrm{SiO}^{2}\right)+\left(\mathrm{NaO}+3 \mathrm{SiO}^{2}\right)$. prismatic. H 5.5 G $2.65-2 \cdot 68$. Frac. uneven. Translucent on the edges. Lus. vitreous. Col. yellowish and grayish-white. Brittle. B. fusible. Decomposed by concentrated hydrochloric acid.

Found in felspar and granite. Obernzell, near Passau. Decomposed by exposure to the sir.

Leucite.-Amphigene, Dodecahedral Zeolite, Trapezoidal Amphigene Spar.— $\left(\mathrm{KO}+\mathrm{SiO}^{2}\right)+\left(\mathrm{AlO}^{3}+3 \mathrm{SiO}^{2}\right)$. cubic. H $5.5-6.0 \mathrm{G} 2 \cdot 45-2 \cdot 50$. Case 31. Frac. conchoidal, uneven. Semi-transparent, translucent. Lus. vitreous. Col. grayish, yellowish, and reddish-white. Brittle. B. infusible. In powder decomposed by hydrochloric acid.

Found in lava, trachyte, and dolerite. Italy and the Rhine. Millstones formed of lava in which leucite was imbedded, have been found at Pompeii. It derives its name from λ evkos, white, It has been called the white garnet.

Spodumene.—Triphane, Prismatic Triphane Spar.-A silicate of alumina.Oblique. H 6.5-7.0 G $3.07-3.20$. Case 31. .Frac. uneven, splintery. Translucent on the edges. Lus. vitreous. Col. greenish-white and gray. Str. white. B. fusible. Not acted on by acids.

Found in gneiss and granite. Utö, the Tyrol, Ireland, Scotland, Massachusetts. Named from $\sigma \pi 0 \delta o s$ ashes, because it becomes ashy before the blowpipe.

Petalite._Prismatic Petaline Spar, Castor.-A silicate of alumina. H 6.0-6.5 G $2.38-2.43$. Case 31. Frac. imperfect, conchoidal. Translucent. Lus. vitreous. Col. white, green, red. Str. white. Brittle. B. fusible. Not decomposed by acids.

Found in masses and in granite. Utö, Massachusetts, Ontario, Elba. It was in the analysis of this mineral that lithia was first discovered.

Davyne.-Davytic Kouphone Spar, Cancrinite, Cavolinite.-A silicate of alumina, soda, and lime. Rhombohedral. H $5 \cdot 5$ G $2 \cdot 42-2 \cdot 46$. Case 31. Frac. conehoidal. Translucent. Lus. vitreous. Col. colourless, white, rose-red. B. fusible. Soluble in hydrochloric acid, leaving a jelly of silica.

Found in lava and miascite. Vesurius, Maine, the Cral. Named in hon ur of Sir Humphrey DavfRIS - LILLIAD - Université Lille 1

Nepheline.-Rhombohedral Felspar, Rhombohedral Elain Spar, Eloolite, Sommite.$\left(4 \mathrm{R} \mathrm{O}+3 \mathrm{Si}^{2}\right)+2\left(2 \mathrm{Al} \mathrm{O}^{3}+3 \mathrm{Si} \mathrm{O}^{2}\right)$, where R is Na, K, and Ca. Rhombohedral. H5.5-6.0 G $2 \cdot 58-2.64$. Case 31. Frac. conchoidal, uneven. Transparent, feebly translucent. Lus. vitreous. Col. colourless, greenish-gray, bluishgreen, flesh-red. Str. white. Brittle. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found in basalt, dolerite, and syenite. Vesavius, Rome, Heidelberg, Hessia, Saxony, Norway, the Ural. Derives its name from $\nu \in \phi \in \lambda \eta$ a cloud, from the nebulous appearance assumed when fragments are thrown into nitric acid,

Scapolite.-Meionite, Dypyre, Wernerite, Terenite, Paranthine Elain Spar, Glaucolite, Ekebergite, Tetraklasit, Nuttallite. Stroganowite. $-\left(3 \mathrm{CaO}+2 \mathrm{Si} \mathrm{O}^{2}\right)+2\left(\mathrm{Al} 0^{3}\right.$ + Si 0^{2}). pyramidal. $\mathrm{H} 5.0-5.5 \mathrm{G} 2.61-2.78$. Case 31. Frac. conchoidal. Translucent, opaque. Lus. vitreous. Col. colourless, white, gray, green, red. Str. white. Brittle. B. fusible. Decomposed when in powder by hydrochloric acid.

Found in limestone and in iron mines. Vesuvius, Norway, Sweden, Finland, Moravia, Greenland, France, and North America. The name meionte is applied to the transparent varieties.

Dipyre.-Schmelzstein.-4 (RO + Si 0^{2}) $+3\left(\mathrm{Al}^{2} \mathrm{O}^{3}+\mathrm{Si} 0^{2}\right) . \quad$ G 2.646. Scratches glass. Case 31. Transparent, translucent. Col. whitish or areddish. B. fusible.

Found in hexagonal prisms with talc or chlorite in the Pyrenees.
Rhyacolite.-Empyrodoxous Felspar.- $\left(\mathrm{RO}+\mathrm{Si} 0^{2}\right)+\left(\mathrm{Al} 0^{3}+2 \mathrm{Si} 0^{2}\right)$, where R is Na. K, and Ca. oblique. H 6.0 G $2.57-2.62$. Frac. conchoidal, transparent, translucent. Lus. vitreous. Col. colourless, white, grayish, yellowish, Str. white. Very brittle. B. fusible. Decomposed by hydrochloric acid.

Found in lava and volcanic matter. Vesuvius, Eiffel, Laach. Derives its name from puag, a lava stream.

Latrobite.-Diploite.-A silicate of alumina. anorthic. H 5.0-6.0 G $2.720-$ 2.722. Case 31. Frac. uneven, translucent. Lus. vitreous. Col. pale red.

Found with felspar, mica, and calcite. Amitok, near Labrador,
Ittnexite.—Dodecahedral Amphigene Spar, Haüyn.-A bydrosilicate of alumina, soda, and lime. cubic. H 5.5 G $2 \cdot 373-2 \cdot 377$. Case 31. Frac. flat conchoidal, translucent on the edges. Lus. resinous. Col. dark bluish-gray, smoke-gray, ash-gray. B. fusible. Decomposed by hydrochloric acid, keaving a jelly of silica.

Found in basalt. The Fichberg Baden.
Sarcolite. - Octahedral Kouphone Spar.-A silicate of lime and alumina. pyramidal. H6.0 G 2.545. Frac. conchoidal, semi-transparent, translucent. Lus vitreous. Col. flesh-red, white. Yery brittle. B. fusible.

A rare mineral, found at Vesavius.
Mica.-Oblique Mica, Biaxial Mica, Potash Mica, Hemiprismatic Tallk Glimoter, Mus-covite.-A silicate of alumina. oblique. H 2.5 G $2.8-3 \cdot 1$. Case 32. Frac. conchoidal. Transparent. Col. colourless, white, various shades of gray, brown, green, black. Str. white, gray. Sectile. B. fusible. Not decomposed by acids.

An essential constituent of granite, gneiss, and mica slate; found also in veins and cevi-

land, United States, Norway. Occasionally found in the slags of furnaces. In Siberia thin sheets of mica are used for glazing windows, whence it has been called Muscovy glass. It is divisible into plates the $\frac{\frac{1}{2}^{3} 0000}{}$ th part of an inch in thickness.

Biotite.-Hexagonal Mica, Uniaxial Mica, Magnesia Mica, Rubellan, Rhombohedral Talk Gliminer, Meroxen. $-\left(3 \mathrm{RO}+2 \mathrm{SiO}^{2}\right)+\left(\mathrm{Al} \mathrm{O}^{3}+\mathrm{SiO}^{2}\right)$ where R is Mg, K, and Fe. zhombohedral. \quad H $2.0-2.5 \mathrm{G} 2.78-2.95$. Case 32 . Transparent, translucent. Lus. metallic. Col. dark green, brown, verging into black. Str. white, pale greenish gray. Sectile. Thin leaves. Elastic. B. fusible with difficulty. Decomposed by sulphuric acid.

Found in granite and chlorite slate. The Ural, New Jersey, Greenland, Vesuvius, Siberia.

Lepidolite -Lithia Mica, Lithonite, Hemiprismatic Talk Glimmer.-A silicate of alumina. oblique. H $2.0-3.0$. G $2 \cdot 8-3.0$. Case 32 . Frac. conchoidal. Transparent, translucent on the edges. Lus. pearly, inclining to adamantine, vitreous. Col. white, green, gray, red, violet. Str. white. In thin loaves, elastic. B. fusible. Acted on by acids.

Occurs principally in granite. Moravia, Saxony, the Ural, Maine, Connecticat, Boh mia. Saxony and Cornwall.

Wichtisite.-A silicate of alumina and iron. G 3.03. Frac. imperfect ${ }_{2}$ conchoidal. Lus. dull. Col. black. Magnetic.

Found at Wichtis, in Finland. -
' Glaucophane.-A silicate of alumina and iron. H 5.5 G 3.103-3.113. Frac. conchoidal. Translucent, nearly opaque. Lus. vitreous. Col. bluish-gray. Str. the same. Magnetic in powder. B. fusible. Imperfectly decomposed by acids.

Found in mica slate in the Island of Syra. Derives i.s name from $\gamma \boldsymbol{\lambda}$ auкos bluish-gray, and фaive to appear.

Maxgaxite.-Hemiprismatic Perl Glimmer, Emerylite, Corundellite, Clingmanite.A silicate of alumina. oblique. H $3.5-4.5$ G $3.0-3 \cdot 1$. Frac. conchoidal. Semi-transparent, translucent, Lus. pearly, vitreous. Col. reddish- and greenishwhite, pearl gray. Str. white. Rather brittle. B. fusible. Acted on by acids. 2f Fourd in the Tyrol with chlorite. United States, Asia Minor, the Ural.

Iepidomelane.- $\left(\mathrm{R}^{2} 0^{3}+\mathrm{Si} 0^{2}\right)+\left(\mathrm{R}^{1}+\mathrm{Si} 0^{2}\right)$. H 3.0 G 3.0. Opaque. Lus. vitreous. Col. black. Str. green. Rather brittle. B. fusible. Easily decomposed by hydrochloric acid.

Found at Persberg, in Sweden. Derives its name from its colour and structure, λ etis a scale, and $\mu \in \lambda a s$ black.

T'alc.—Prismatic Talk Glimmer, Potstone, Soapstone, Steatite. $-6 \mathrm{MgO}+5 \mathrm{Si} \mathrm{O}^{2}+$ 2 HO. pxismatic? H $1.0-1.5$ G $2.6-28$. Case 32. Frac. splintery. Lus. pearly, more or less translucent. Col. blue, green-gray by transmitted, and silver-white by reflected, light. Str. white. Thin leaves flexible but not elastic, unctuous to the touch. B. fusible with great difficully. Not acted on by acids.

Occurs alone as talk slate, and is a constitu nt of some granular rocks. The Tyrol, St. Gotthard, Sweden, Bavaria, Siberia, Scotland, Saxony, Bohemia, United States, Greenland. Pot-stone, or lapis ollaris, is a coarse and indstinctly granular variety, which, from its stness and tenacity, may be readily turned. It is used for the manufacture of cooking utensils and other vessels, for fire stones in furnaces, in powder for diminishing friction in

Chlorite,-Talk Chlorite, Ripidolith, Prismatic Talk Glimmer.-A hydrosilicate of alumina and magnesia. rhombohedral. H1.0-1.5 G 2.78-2.96. Case 32. Transparent, translucent. Lus. pearly. Col. green, blue, red. Str. green. In thin leaves, flexible; not elastic. B. fusible on the edges. Decomposed by strong sulphuric acid.

Found in granite, gneiss, diabase, and slaty rocks. The Ural, Norway, Sweden, Switzerland, the Tyrol, Saxony, Comwall, Arran, Bute. Derives its name from χ ג $\omega \rho o s$, green.

Ripidolite_Chlorite, Prismatic Talk Glimmer, Kämmercrite, Leuchtenbergite, Pennine, Rodochrome.-A hydrosilicate of alumina and magnesia. Rhombohedral. H $2.0-3.0$ G $2.615-2.774$. Case 32 . Semi-transparent, translucent. Lus. vitreous. Col. green, violet. Str. white. In thin leaves, flexible, but not elastic. B. fusible on the edges. Decomposed by hot sulphuric acid.

Found in beds and veins in crystalline rocks. The Tyrol, Piedmont, the Ural, Silesia, the Pyrenees, Norway, Siberia, Styria, Baltimore. The violet varieties are called kämmererite. Its name is derived from pıtis a fan.

Loganite.-A hydrosilicate of alumina and magnesia. Prismatic. H 3.0 G $2 \cdot 60-2 \cdot 64$, Frac. uneven. Subtranslucent. Lus. vitreous. Col. brown. Str. grayish-white. B. infusible. Partly decomposed by acids.

Found in limestone at Ottawa in Canada.
Pyrophillite.-2 (Al $\left.{ }^{3} 0^{3}+3 \mathrm{Si}^{2}\right)+3 \mathrm{HO} 0$ prismatic. H 1.0 G 2.785. Case 32. Transiucent. Lus. pearly. Col. green, white. Str. White. B. fusible with difficulty. Partially decomposed by sulphuric acid.

Found in granite. The Ural, Belgium, the Brazils, United States.
Amphibole.-Hornblende, Hemiprismatic Augite Spar, Smaragdite, Tremolite, Actinolite, Asbestos, Strahlstein, Raphilite, Cummingtonite. $-3\left(\mathrm{R} 0+\mathrm{S} \mathrm{O}^{2}\right)+(2 \mathrm{R} 0$ $+\mathrm{S} 0^{2}$), where R is Mg, Ca, and Fe . oblique. $\mathrm{H} 5 \cdot 0-6 \cdot 0$ G $2 \cdot 90-3 \cdot 40$. Cases 33 and 34. Frac. imperfect, conchoidal. Slightly translucent, opaque. Lus. vitreous. Col. colourless, white, green, brown, yellow, gray, black. Str. grayish-white, brown. Brittle. B. fusible. Slightly soluble in hydrochloric acid.

Grammatite.-The white, green, gray, semi.transparent, and translucent varieties, found in granular limestone, granite, and marble. St. Gotthardt, Transylvania, Bohemia, the Tyrol, Sweden, France, the Banat, Massachusetts, Aberdeenshire, Iona.

Actinote.-The greenish varieties, found in beds of iron ore. Saxony, Bohemia, Norway, Sweden, the Tyrol, Styria, Moravia.

Anthophyllite.-Found in Norway, Greenland, and United States.
Mountain Wood, Mountain Cork, \&c., are fibrous varieties. Found in the Tyrol, Sazony, Bohemia, Sweden, Switzerland, Spain, the United States, Scotland.

Asbestos, or Amianthus.-A variety in flexible slender fibres. Corsica, Piedmont, Savoy, Saltzburg, the Tyrol, Dauphiné, Hungary, Silesia, United States, Cornwall, Aberdeenshire. (ar $\beta \in \sigma \tau o s$, unconsumable). The ancients wove this substance into cloth, which could be purified by burning.

Common Hornblende.-In dark green or black crystals, found in beds of iron ore. Norway, Sweden, Finland, Saxony, Bohemia, the Tyrol, Carinthia.

Basaltic Hornblende.-Black opaque crystals, embedded in basaltic rocks. Bohemia and Spain.

Pargasite.-Hornblende.-Oblique. H 5.0-6.0 G 3.07-3.08. Case 33. Frac. conchoidal. Translucent. Lus. vitreous. Col. bluish-green. Str. white. B. fusible. IRIS - LILLIAD - Université Lille 1

Found in limestone at Pargas in Finlond.

Masonite.-Chlorite Spar, Chloritoid, Barytophyllite.-A hydrosilicate of alumina and iron. H $5 \cdot 5-6.0$ G $3 \cdot 45-3.55$. Case 33. Translucent in thin leaves. Lus. pearly. Col. blackish-green. Str. greenish-white. Brittle. B. fusible on the edges. Not acted on by acids.

Found in chlorite slate. Siberia, Rhode Island, the Tyrol, the Ural.
Arfvedsonite.-Peritomous Augite Spar, Agirine.-Oblique. H 6.0 G 3.328 - 3.44. Case 33. Frac.imperfect, conchoidal. Opaque. Lus. vitreous. Col. black. Str. green. B. fusible.

Found in slate rock and beds of iron ore. Greenland, Norway, Arendal.
Krokydolite.—Blue Asbestos.-A hydrosilicate of iron. H 4.0-4.5 G 3.2 - 3.3. Case 34. Delicate fibres like asbestos. Translucent. Lus. silky. Col. indigoblue. Tough, elastic, flexible. B. fusible. Not acted on by acids.

Found in syenite and quartz. South Africa, Norway, Greenland, Saltzbarg. Derives its name from коokus a flock of wool, on account of the slender threads into which it is divisable.

Augite.-Pyroxene, Diopside, Amianth, Malacolith, Paratomous, Augite Spar, Alalite, Baikalite, Jeffersonite, Goccolite, Sahlite, Omphazite, Pyrgome, Fassite.-(Ca $0+$ $\left.\mathrm{Si} 0^{2}\right)+\left(\mathrm{R} 0+\mathrm{Si} 0^{2}\right.$), where R consists essentially of Mg and Fe . oblique, H $5 \cdot 0-6.0$ G 3.2-3.4. Case 34. Frac. conchoidal, uneven. Transparent, opaque. Lus. vitreous. Col. colourless, white, green, gray, black. Str. white, gray. Brittle. B. fusible. Slightly affected by acids.

Found in hasalt, lava, limestone, meteoric stones, and slag of iron furnaces. Bohemia, France, Vesuvius, Teneriffe, Scotland, Finland, North America, Switzerland, Sweden, Norway. Can be formed artificially by fusing silica, lime, and magnesia in the right proportions. Some of the transparent varieties, when cut and polished, form handsome ornamental stones, of colours varying from the emerald to the yellow topar.

Hypersthene,-Paulite, Prisinatoidal Sckiller Spar, Labrador Hornblende, Diallage Metalloide.- $\mathrm{RO}+\mathrm{SiO}^{2}$, where R is Mg and Fe . oblique. H $6.0 \quad \mathrm{G} 3.39$. Case 34. Frac. uneven, opaque, translucent on the edges. Lus. pearly-vitreous. Col grayish or greenish black. Str. greenish gray. B. fusible. Insoluble in acids.

Found imbedded in a greenstone rock, also associated with Labrador felspar. Labrador, Greenland, Norway, Skye, Saxony, Bohemia, the Tyrol, Sweden, Silesia, Berlin. Distinguished from bronzite by its cleavage. Cut and polished it presents a beautiful red colour and pearly lustre.

Diallage.-Prismatic Schiller Spar, Diatomous Schiller Spar.-Oblique, H 4.0 G 3.2-3.3. Case 34. Frac. uneven. Opaque. Lus. pearly or silky. Col. gray, greenish, brown. Str. white. B. fusible. Insoluble in acids.

Found with amphibole. The Hartz, Silesia, Apennines, the Ural.
Ilvaite.-Lievrite, Yenite, Fer Calcaréo Siliceux, Diprismatic Iron Ore.-($\mathrm{Fe}^{2} \mathrm{O}^{3}+$ $\left.\mathrm{Si} \mathrm{O}^{2}\right)+2\left(\mathrm{R}^{2} 0+\mathrm{Si} 0^{2}\right)$, where R is Ca and Fe. prismatic. H $5.5-6.0$ G 3.989-4.015. Case 34. Frac. imperfect conchoidal. Opaque. Ius. imperfect metallic. Col. black, inclining to gray, brown, and green. Str. black. Brittle. B. fusible. Decomposed by warm hydrochloric acid, leaving a jelly of silica. Found imbedded in augite in Elba, Norway, Silesia, Moravia, Siberia, Greenland.
Acmite_-Paratomous Augits Spar.- $\left(2 \mathrm{Fe}^{2} 0^{3}+3 \mathrm{Si} \mathrm{O}^{2}\right)+2\left(\mathrm{Na} 0+\mathrm{Si}^{2}\right)$.

Nearly opaque. Lus. vitreous. Cbl. Brownish-black or reddish-brown. Str. greenishgray. B. fusible. Partially decomposed by hydrochloric and sulphuric acids.

Found in granite and syenite. Norway. A scarce mineral. Derives its name from aк $\mu \eta$, a point; on account of the form of its crystals, some of which have been found a foot in length.

Epidote.-Prismatoidal Augite Spar, Pistacite, Thallite, Withamite, Akanticon, Scorza, Delphinite, Arendalite, Thudite, Puschkinite, Achmatite.- $\left(3 \mathrm{Oa} \mathrm{O}+2 \mathrm{Si} 0^{2}\right)+$ $2\left(\mathrm{R}^{2} \mathrm{O}^{3}+\mathrm{Si} \mathrm{O}^{2}\right)$, where R^{2} is $\mathrm{Al}, \mathrm{Fe}^{2}$, or Mn^{2}. oblique. 亚6.5 G $3.0-3.5$. Case 35. Frac. uneven, semi-transparent. Lus. vitreous. Col. green, yellow, brown, red, black. Str. gray. Brittle. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

- Occurs in granite, syenite, trap, porphyry, and slate rocks. Norway, Sweden, the Alps, Dauphiné, the Ural, Pyrenees, Bohemia, Finland, Greenland, Norway.

Zoisite.—Oblique, Case 35. Lus. vitreous. Col. grayish-white, yellowishgray, brown, green. B. fusible.

Found in Carinthia, the Tyrol, Saltzburg, Bayreuth, Bavaria, the Ural.
Somervillite.—Melilite, Humboldtilite, Zurlite.-2 (3 RO $+2 \mathrm{Si}^{2}$) + ($\mathrm{R}^{\prime} \mathrm{O}^{3}+\mathrm{Si} \mathrm{O}^{2}$), where R is $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}$, and K , and R^{\prime} is Al and Fe^{2}. pyxamidai. H 5.0-5.5 G 2.90-3.104. Case 35. Frac. conchoidal, uneven, semi-transparent. Opaque. Less. vitreous. Col. white, green, yellow, brown. Str. white. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found with calcite and in lava. Monte Somma and Capo di Bove.
Bastite.-Schiller Spar, Metalloid Diallage. $-4\left(\mathrm{RO}+\mathrm{Si} \mathrm{O}^{2}\right)+(\mathrm{Mgo}+4 \mathrm{HO})$ where R is Mg, Ca and Fe. H $3.5-4.0$ G 2.62 .8 . Case 35. Frac. uneven. Translucent. Lus. pearly. Col. green, brown, yellow. Str. greenish-white. B. fusible on the edges. Decomposed by sulphuric acid.

Fonnd in the euphotide of the Hartz.
Babingtonite.-Axotomous Augite Spar.-anorthic, H 5.5-6.0, G 3.355 - 3406. Case 35. Frac. imperfect, conchoidal. Lus. vitreous. Col. black. Str. greenish-gray. Brittle. B. fusible. Decomposed by boiling hydrochloric acid.

Found in magnetite, quartz, felspar, and prelnite. Norway, Shetland, New York, Massachusetts.

Idocxase._Pyramidal Garnet, Vesuvian, Egerax, Loboit, Frugardit, Cyprine.$\left(3 \mathrm{CaO}+2 \mathrm{SiO}^{2}\right)+\left(\mathrm{AlO}^{3}+\mathrm{SiO}^{2}\right)$. pyramidal. H 6.5 G $3.35-3.45$. Case 35. Frac. imperfect conchoidal. Transparent, translucent. Las. vitreous. Col. green, yellow, brown, black. Str. white. B. fusible. Imperfectly decomposed 'by hydrochloric acid.

Found in dolomite, serpentine, "and limestone. The Ural, St. Gotthardt, Norway, Bohemia, Sweden, Finland, the Pyrenees, Saxony, Ireland, Spain, North America. At Naples and Turin ornaments are formed of idocrase, which takes a good polish, and are sold ander the denomination of hyacinth, crysolite, de.

Uwarowite.-Chrome and Lime Garnet.- $\left(3 \mathrm{CaO}+2 \mathrm{SiO}^{2}\right)+\left(\mathrm{Cr}^{2} \mathrm{O}^{3}+\mathrm{SiO}^{2}\right)$. cubic, $\mathbf{H} 7.5-8^{\circ} 0$ G 3.418 . Case 36. Frac. imperfect, conchoidal. Translucent. Zus. vitreous. Col. emerald-green. Wtr. greerish-white. B. infusible Found in the UTras, ILLIAD - Université Lille 1

Garnet.-Allochroit, Dodecahedral Garnet.- $\left(3 \mathrm{RO}+2 \mathrm{SiO}^{2}\right)+\left(\mathrm{R}^{1} \mathrm{O}^{3}+\mathrm{SiO}^{2}\right)$, where R is $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Fe}$; and R^{1} is $\mathrm{Al}, \mathrm{Fe}^{2}$. cubic. H $6 \cdot 5-7 \cdot 5 \mathrm{G} 3 \cdot 1-4 \cdot 3$. Case 36. Frac. conchoidal. Transparent, opaque. Lus. vitreous. Col. red, brown, yellow, white, green, black. Str. white, gray. B. fusible. Soluble imperfectly in hydrochloric acid.

Almandine, the transparent red garnet, found in sand, allavial soil, and greiss. Pegu, Ceylon, Hindostan, Brazils.

Common Garnet, found in Saxony, Narway, Sweden, Finland, Hungary, Stiria, the Tyrol, Moravia, Silesia, Siberia.

Calophonite, granular brown garnet. Arendal and North America.
Orosaular Garnet and Pyrenaite, a light-green variety. Kamtschatka.
Melanite, black garnet. Vesuvius, Rome, Norway, the Pyrenees.
Topazolite, honey-yellow garnet. Piedmont.
Essonite or Cinnamon Stone, Romanozovite, reddish-yellow garnet. Ceylon, Egypt. Finland, Piedmont.

Pyrope, dark-red variety of garnet. Saxony, Bohemia, Ceylon.
When the garnet is of a rich colour and free from flaws, it forms a raluable gem; it may be distinguished from corundum or spinel by its colour being dull r, Coarse garnets reduced to a fine powder, are used instead of emery for polishing metals.

Gehlenite.-Stylobite, Pyramidal Adiaphanc Spar.-(3 $\left.\mathrm{CaO}+\mathrm{SiO}^{2}\right)+\left(\mathrm{AlO}^{3}\right.$ $+\mathrm{SiO}^{2}$). pyramidal. H $5.5-6.0$ G $2 \cdot 99-3.10$. Case 36 . Frac. imperfect conchoidal. Translucent on the edges. Lus. resinous. Col. gray, brown, green. Str. white. B. fusible with great difficulty. Decomposed by warm hydrochloric acid, leaving a jelly of silica.

Found imbedded in calcite, near Vigo; alıo in the slags of iron furnaces.
Cordierite.-Iolite, Pelioma, Prismatic Quartz, Dichroite, Steinheil te.-(Al $0^{3}+$ $\left.3 \mathrm{Si} \mathrm{O}^{2}\right)+2(\mathrm{Mg} \mathrm{O}+\mathrm{Si} 0$) . prismatic. $\mathrm{H} 7.0-7.5 \mathrm{G} 2.600-2.718$. Case 36. Frac. conchoidal. Transparent. Lus. vitreous. Col. blue, inclining to gray or black. Str. White. B. fusible on the edges. Imperfectly decomposed by acios.

Found in greiss. Spain, Bavaria, Finland, N rway, Sweden, Gr enland, Sib ria, North Ameries, Ceylon. Pinite, Gieseckite, Oosite, K 1 ll nute, Fahlunile, Tr classt, Bonsdo fft , Esmarkite, Aspasiolite, Pyrargyllite, Chloroph llite, Gigantohte, Praseolte, Iberle, Itessı e, are supposed to be Cordierite, more or less changed by decomposition. A transparent variety from Ceylon, of an intense blue colour, is called Sapphire deau; it is inferior in hardness and lustre to the sapphire, and its specific grarity is less.

历ordawalite.—Massive. H $4.0-4.5$ G $2.55-2.62$. Case 36. Frac. conchoidal. Opaque. Lus. resinous. Col. black, brown, green. S r. brown. Brittle. B. fusible. Imperfectly decomposed by acids.

Found at Sordawla in Finland.
Bragationite,-Oblique. H 6.3 G 4.115. Frac. meven. Opaque. Lrs. vitreous. Col. black. Str. dark brown. B. fusible.

Found at Slatoust in the Ural. ${ }^{\text {² }}$
Bucklandite - Thystomic Augite Spar.-(3 $\left.\mathrm{Fe} 0+2 \mathrm{Si} \mathrm{O}^{2}\right)+2\left(\mathrm{Fe}^{2} 0^{3}+\mathrm{Si} 0-\right)$. oblique. H 64 G 3.865 . Case 36. Frac. uneven. Opaque. Lus. vitroous. Col. dark brown, black. Str. gray. B. fusible.
 having a general resemblance to augite.

Staurolite.-Grenatite, Prismatic Garnet, Prismatoidal Garnet. $-\mathrm{R}^{2} \mathrm{O}^{3}+\mathrm{Si}^{2}{ }^{2}$ where R is Al and 2 Fe . prismatic. H $7 \cdot 0-7.5 \mathrm{G} 3.52-3.79$. Case 31. Frac. conchoidal, uneven. Translucent. Lus. vitreous, inclining to resinous. Col. reddishbrown, blackish-brown. Str. white. B. nearly infusible. Partially decomposed by sulphuric acid.

Found in mica, talc, or clay slate, rarely in gneiss. St. Gotthardt, Transylvania, Moravia, Spain, Var, Hebrides, Aberdeenshire, the Ural, New England. The crystals of this mineral are sometimes curiously associated with those of Kyanite, the crystals of the two substances being disposed sometimes parallel, as if forming one crystal, and sometimes at right angles to the axis. Named from σ тaupos a cross.

Karpholite.-A hydrosilicate of manganese. H5.0-5.5 G 2.935. Case 36. Feebly translucent. Opaque. Lus. vitreous. Col. yellow. Str. white. B. fusible, Scarcely acted on by hydrochloric acid.

Found in acicular and capillary crystals in granite. Bohemia. Named from кap申os, a straw, on account of its colour.

Emerald_-Beryl, Aquamarine, Davidsonite, Goshenite, Dirhomboheäric Smaragd.$\left(\mathrm{Al} 0^{2}+3 \mathrm{Si} \mathrm{O}^{2}\right)+3\left(\mathrm{G} 0+\mathrm{SiO}^{2}\right)$. rhombohedral. H7.5-8.0 G $2 \cdot 67-2 \cdot 75$. Case 37. Frac. conchoidal, uneven. Transparent, translucent. Lus. vitreous. Col. green in the emerald, colourless blue, yellow and red for the beryl. Str. white. B. fusible on the edges.

The Emerald is found in Peru, Egypt, Siberia, and Norway.
The Beryl, or aquamarine, in Saxony, Bohemia, Bavaria, Elba, France, Norway, Sweden, Finland, Siberia, North America, Brazils, Ireland, and Aberdeenshire. The emerald is most valuable as a gem.

Euclase.—Prismatic Smaragd.-(A1 $\left.0^{3}+3 \mathrm{Si}^{2}\right)+6\left(2 \mathrm{GO} 0+\mathrm{Si}^{2}\right)$. Oblique. H $7 \cdot 5$ G $3.0-3 \cdot 1$. Case 37. Frac. conchoidal. Transparent, semitransparent. Lus. vitreous. Col. green, yellow, blue, very pale. Str. white. B. fusible. Not acted on by acids.

A rare mineral; found in chlorite slate, mica and fluor. Brazils, Connecticut, Peru. Derives its name from $\epsilon \hat{v}$ easily, and $\kappa \lambda a \omega$ to break, on account of its brittleness.

Phenakite. - Rhombohedral Smaragd.-2 G $0+\mathrm{Si}^{2}$. xhombohedral. H $7.5-8.0$ G $2.96-3.0$. Case 37. Frac. conchoidal, uneven. Transparent, translucent. Luss, vitreous. Col. colourless, yellow, brown. B. Infusible. Insoluble in acids.

Found with iron ore, emerald, green felspar, and topaz. Alsace and Siberis. Derives its name from фevag a deceiver, on account of its having been mistaken for quartz.

Helvin.-Tetrahedral Garnet. $-3\left(2 \mathrm{RO}+\mathrm{Si} \mathrm{O}^{2}\right)+\mathrm{MnS}$ where R is Fe, Mn, and G. cubic. H $6.0-6.5$ G $3.1-3.3$. Case 37. Frac. uneven. Translucent on the edges. Lus. vitreous. Col. brown, yellow, green. Str. white. Brittle. B. fusible. Decomposed by hydrochloric acid leaving a jelly of silica.

A very rare mineral; found in gneiss. Saxony, Norway, and Bavaria. Named from $\dot{\eta} \lambda i o s$ the sun, on account of its yellow colour.

Gadolonite.-Hemiprismatic Melane ore, Ytterbite. prismatic. H $6.5 \quad \mathrm{G} 4 \cdot 2$ 4•4. Case 37. Frac. conchoidal, uneven. Opaque. Lus. vitreous. CoL black, seldom red. Str. greenish-gray. B. infusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found in granite, gneiss, syenite' and trap. Stockholm, Fahlun, Ceylon, Galmay in

Allanite.—Orthite, Cerine, Bagrationite, Uralorthite, Xanthortite, Pyrorthite, Black Siliceous Oxide of Cerium, Tetarto Prismatic Afelane Ore, $\left(3 \mathrm{R} 0+2 \mathrm{Si} \mathrm{O}^{2}\right)+$ ($\mathrm{R}^{1} \mathrm{O}^{3}+\mathrm{Si} \mathrm{O}^{3}$) where R is Ca, Ce, and Fe , and R^{\prime} is Fe^{2} or Al. oblique. H 6.0 G 3.1-4.2. Case 38. Frac. conchoidal. Opaque. Lus. imperfect, metallic. Col. black. brown, green. Str. greenish or brownish-gray. Brittle. B. fusible.

Found in granite. Greenland, Norway, Sweden, the Ural.
Tscheffkinite.-H $5 \cdot 3$ G 4.508-4.549. Case 37. Frac. conchoidal. Almost opaque. Lus, vitreous. Col. black. Str. brown. B. fusible. Soluble in hydrochloric acid, leaving a jelly of silica.

Found with felspar in the Iimen mountains near Miask.
Rutile.-Oxide of Titanium, Peritomous Titanium Ore, Titanschorl, Nigrine, Gallicinite, Sagenite, Crispite.—Ti O^{2}. pyramidal. H 6.0-6.5 G $4.22-4.30$. Case 37. Frac. conchoidal, uneven. Translucent, opaque. Lus. adamantine. Col. reddishbrown, red, yellow, black. Str. very light brown. B. infusible. Soluble with difficulty, when powdered, in hot concentrated sulphuric acid.

In veins and beds with quartz, felspar, and in alluvium. Hungary, Styria, Norway, the Tyrol, Bohemia, Switzerland, Ceylon, France, Siberia, North and South America, Fife, Perthshire, Shetland. Used in painting porcelain.

Anatase.-Pyramidal Titanium Ore, Octakedrite, Oisanite.-Ti O^{2}. pyramidal. H $5 \cdot 5-6.0$ G 3.83-3.93. Case 37. Frac. conchoidal. Semi-transparent, translucent. Lus. adamantine. Col. blue, black, red, yellow, brown. Str. white. Brittle. B. infusible. Not decomposed by acids.

Found in granite and mica slate. Dauphiné, Switzerland, Cornwall, Spain, the Ural, Norway, Brazils. The crystals from the Brazils resemble the diamond so much in colour and general appearance, as often to deceive lapidaries and mineral dealers.

Pyrochlore,-Microlite, Octahedral Titanium Ore_Cubic. H 5•3-5.5 G 4•19 - 4.33. Case 37. Frac. conchoidal. Opaque, translucent on the edges. Lns. resinous. Col. dark brown. Str. light brown. Rather brittle. B. fusible. Decomposed in powder by concentrated sulphuric acid.

Found in syenite and granite. Norway, the Ural.
Sphene.-Titanite, Brown and Yellow Mfenachine Ore, Calcarco-siliceous Titanium, Greenovite, Lederite, Pictite, Arpidelite, Prismatic Titanium Ore.-(2 Ca O + Si 0-) 十 (2 Ti 0 + $\mathrm{Si} \mathrm{O}^{2}$). oblique. $\mathrm{H} 5 \cdot 0-5 \cdot 5$ G $3.3-3.7$. Case 37 . Frac. imperfect, conchoidal. Transparent. Lus, adamantine. Col. yellow, green, brown, red. B. fusible on the edges. Decomposed by sulphuric acid.

Found in granite, syenite, gneiss, slate, marble, basalt, and lava. Piedmont, the Tyrol, the Pyrenees, the Ural, Norway, Sweden, Bohemia, Moravia, France, Scotland, Ireland, Greenland, Brazils, United States, Greek Islands. Derives its name from $\sigma \phi \eta \nu$ a we lge, on account of the shape of its crystals.

Brookite.—Prismatic Titanium Ore, Juranite, Arkansite, Eumanite. $\mathrm{Ti} 0^{3}$. pxismatic. H 6.0 G 4.125-4.170. Case 37. Frac. uneven. Translucent, opaque. Lus, metallic. Col. yellowish-brown, reddish-brown, hyacinth-red. Str. yellowish-white. Brittle. B. infusible. In powder soluble in hot concentrated sulphuric acid.

Dauphiné, Switzerland, the Ural, Caernarvonshire, 在tna, Arkansas. It is not a common mineral.

R is Fe or Ti . cubic. $\mathrm{H} 6.0-6.5 \quad \mathrm{G} 4.86-5 \cdot 10$. Case 37. Frac. conchoidal Opaque. Lus. metallic. Col. iron-black. Str. black. Brittle. Magnetic. B. infusible

Found in basalt and dolorite, also as sand in alluvium. Saxony, Upper Lusatia, Unkel, the Rhine, France, Calabria. Distinguished from nigrine, a variety of ratile, by its inferior hardness and hlack streak.

Ilmenite.-Titanitic Iron, Axotomous Iron Ore, Crichtonite, Kibdelophane, Mrenac-canite.-Ti O^{3} with $\mathrm{Fe} \mathrm{O}^{3}$ in various proportions. rhombohedral. H $5.0-6.0$ G $4 \cdot 66-5 \cdot 31$. Case 37. Frac. conchoidal. Opaque. Lus. imperfect metallic. Col. iron-black. Str. black, brown. Brittle. B. infusible.

Found imbedded in serpentine, and also disseminated through sand. Saltzburg, Siberia, France, Bohemia, St. Domingo.

Niobite.-Tantalite, Baierine, Torrelite, Hemiprismatic Tantal Ore, Columbite. prismatic. H 6.0 G $5.32-6.39$. Case 38. Frac. imperfect conchoidal. Opaque. Lus. imperfect metallic. Col. black. Str. dark-brown or black. B. infusible. Not acted on by acids.

Found in granite. Rabenstein, Imen, Connecticut, Massachusetts, and New Hampshire.

Tantalite.-Prismatio Tantalune Ore, Columbite. $-\mathrm{Fe} \mathrm{O} \perp \mathrm{Ta} \mathrm{O}^{3}$. prismatic. H $6.0-6.5$ G 7.0-8.0. Case 38. Frac. conchoidal. Opaque. Lus. imperfect metallic. Col. iron-black. Str. brown. B. fusible. Not acted on by acids.

Found in granite, felspar, and quartz. Sweden, Bavaria, Bohemia, Connecticut, Massachisetts.

Yttrotantalite.- ($3 \mathrm{RO}+\mathrm{Ta} \mathrm{O}^{3}$), where R is $\mathrm{Y}, \mathrm{Ca}, \mathrm{Fe}, \mathrm{U}$. H 5.0-5.5 G $5.39-5.88$. Case 38. Frac. conchoidal. Opaque. Lus. imperfect metallic. Col. black, brown. Str. gray or white. B. infusible. Not acted on by acids.

Found in indistinctly formed crystals, in felspar and granite. Sweden, Fahlun, and the Ural.

Samarskite.—Uranotantal, Yttro-ilmenite. prismatic. H 5.5 G 5.617-5.715. Case 38. Frac. conchoidal. Opaque. Lus. imperfect metallic. Col. black. str. dark-brown. B. fusible on the edges. Soluble in hydrochloric acid.

Found in felspar. Imen, near Miask.
Wohlerite.-H 5.5 G 3.41. Case 38. Frac. conchoidal. Translucent. Lus. vitreous. Col. yellow, brown, gray. Str. yellowish-white. B. fusible. Decomposed by warm concentrated hydrochloric acid.

Found in tabular and columnar crystals in syenite. Norway.
Euxenite.-H 6.5 G4.6. Case 38. Frac. imperfect conchoidal. Translucent. Lus. resinous. Col. brownish-black. Str. reddish-brown. B. infusible. Not acted on by acids.

A rare mineral, found in Norway, named from ev $\xi \in \nu 0 s$ a stranger, on account of its rarity.

Schorlomite.-Ferrotitanite.-2(RO + SiO-) + ($2 \mathrm{RO}+\mathrm{TiO}$), where R is Fe , Ca , and Mg. amorphous. H 7.5 G $3.783-3.807$. Frac. conchoidal. Opaque. Lus. vitreous. Col. black, iridescent. B. fusible on the edges. Decomposed partially by hydrochloric acid.

Found ma sive with brookite. Arkansas. IRIS - LILLIAD - Université Lille 1

Antimonocher.-Cervantite, Antimonial Ochre, Antimonial Oxide.— $\mathrm{SbO}^{3}+\mathrm{SbO}^{3}$ +2 HO . amorphous. Very soft. G 5.28. Case 38. Frac. uneven, earthy. Opaque. Lus. dull. Col. yellow. Str. yellowish-white, shining. Brittle. B. volatilizes.

Found with antimonite, in Spain, Hungary, Bavaria, Mexico, Padstow, Cornwall.
Kermes.-Red Antimony, Antimony Blerde, Prismatic Purple Blende.- $\left(\mathrm{SbO}^{3}+\right.$ $2 \mathrm{SbS}^{3}$). oblique. H 1.5 G $4.5-4.6$. Case 38 . Faintly translucent. Lus. adamantine. Col. cherry-red. Str. red. Sectile. B. fusible. Soluble in hydrochloric acid.

Found in crystaline slate and transition rocks. Saxony, Bohemia, Hungary, Dauphiné.
Zunderezz.-An impure arsenical sulphuret of antimony and lead. Col. dirty red.

Found in capillary crystals interlaced, and presenting the appearance of flakes of tinder. The Hartz.

Valentinite.-Exitèle, Oxide of Antimony, White Antimony, Prismatic Antinony Baryte.—SbO ${ }^{3}$. prismatic. H $2.5-3.0$ G 5.566. Case 38. Semi-transparent, translucent. Lus. adamantine. Col. white, gray, yellow, brown, red. Str. white. Sectile. B. fusible. Soluble in nitro-muriatic acid.

Found in Bohemia, Saxony, Hungary, Nassau, Dauphiné. Oxide of antimony, crystallized artificially, is dimorphous; the crystals belonging to the cubical or prismatic system, according as they are formed at a high or low temperature.

Schee!ite.—Tungstate of Lime, Tungsten, Pyramidal Scheel Baryta.—CaO + WO ${ }^{3}$. pyramidal. H 4.5 G 5.9-6.22. Case 38. Frcc. imperfect conchoidal. Semitransparent, translucent on the edges. Lus. vitreous. Col. white, gray, jellow, brown, orange, red, green. Str. white. Brittle. B. fusible. Decomposed when in powder by warm hydrochloric and nitric acids.

Found in gold, tin, and copper mines. Bohemia, Saxony, Cornwall, Cumberland, Connecticut, Hungary, France, the Hartz, Siberia, Chili.

Wolfram.-Tungstate of Iron, Prismatic Scheel Ore.- $\left(\mathrm{RO}+\mathrm{W} 0^{3}\right)$, where R is Fe and Mn. prismatic. H $5 \cdot 5$ G 7.0-7.5. Case 38. Frac. uneven. Opaque. Lus, adamantine. Col. brownish-black. Str. brown, black. Slightly magnetic. B. fusible. Decomposed by hydrochloric acid.

Found in veins of quartz and granite. Bohemia, Saxony, France, the Hartz, Cornwall Cumberland, Hebrides, Ceylon, Siberia, Connecticut, South America.

Stolvite.—Tungstate of Lead, Scheel Lead, Dystomous Lead Baryta.—PbO + W03. pyramidal. H 3.0 G 7.9-8.09. Case 38. Frac. conchoidal. Semi-transparent. Lus. resinous. Col. gray, brown, yellow, grcen. Str. grayish-white. Brittle. B. fusible. Soluble in nitric acid.

Found with quartz and mica, in the tin mines of Zimmwald, in Bohemia. Carinthia, Chili.

Vanadinite, -Vanadiate of Lead, Johnstonite. $-\mathrm{PbCl}+2 \mathrm{PbO}+\left(3 \mathrm{PbO}+3 \mathrm{VO}^{3}\right)$. chombohedral. H 3.0 G 6.83-6.89. Case 38. Frac. conchoidal. Feebly translucent. Opaque. Lus. vitreous. Col. yellow, brown, green, white. Str. white, yellow. B. fusible. Soluble in nitric acid.

Found in Mexifis the Ural and Dumfriesthiry

Dechenite. $-\left(\mathrm{PbO}+\mathrm{VO}^{3}\right)$, H 4.0 G 5.81. Lus. greasy. Col. dull-red. Str yellowish. B. fusible,

Found in Bavaria.
Volborthite.-Vanadiate of Copper.-4CuO $+\mathrm{VO}^{3}+\mathrm{HO}$, part of the Cu replaced by Ca. thombohedral. H $3.0-3.5$ G 3.459-3.860. Case 38. Translucent. Lus. pearly, Col. green, gray. Str. yellowish-green.

Found in the permian formation. Ingowskoi, Thuringia.
Molybdanocher.-Oxide of Molybdenum, Molybdic Acid.-Mo 03. Earthy. Case 39. Opaque. Lus, dull. Col. orange-yellow. B. fusible. Soluble in hydrochloric acid, in potash, and in ammonia.

Found with molybdanite. Norway, Scotland, and the Tyrol.
Wulfenite,—Molybdate of Lead, Yellow Lead Ore, Carinthite, Pyramidal Lead Bargta.- $\mathrm{PbO}+\mathrm{MoO}^{3}$. pyramidal. H 3.0 G 6.3-6.9. Case 39. Frac. conchoidal. Transparent, translucent on the edges. Lus. resinous. Col colourless, yellow, green, red, gray, brown. Str. white. Brittle. B. fusible. Decomposed by acids.

Found in crystals and massive, and in lead mines. Carinthia, Anstria, Hungary, the Banat, the Tyrol, Saxony, Bavaria, Massachusetts, Pennsylvania, Mexico.

Wolchonskoite.-(A hydrosilicate of chrome ?) H 2.0-2.5 G 2.213-2.303. Case 39. Frac. conchoidal. Opaque. Lus, dull. Col. green. Str. lighter green. B. infusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found in veins and nodules. Perm in Russia.
Chromochre.-Massive and investing other minerals. Case 39. Opaque. Lus. dull. Col. green.

Found in conglomernte and porphyry. France, Sweden, Silesia.
Lehmannite.-Chronate of Lead, Red Lead Ore, Hemiprismatic Lead Baryta, Kalochrome, Crocoisite, Krokoite. $-\mathrm{PbO}+\mathrm{CrO}^{3}$. oblique. H $2.5-3.0$ G 5.9 -6.1. Case 39. Frac. conchoidal, uneven. Translucent, Lus. adamantine. Col. red. Str. orange. Sectile. B. fusible. Decomposed by warm hydrochloric acid.

Found with quartz in granite and talcose slate. Siberia, the Ural, Brazils.
Phœnicite.-Melanochroite, Phönikochroit, Phönicit.-3 $\mathrm{PbO}+2 \mathrm{CrO}^{3}$ H 3.0 -3.5 G $5 \cdot 75$. Translucent on the edges. Lus. resinous. Col. red. Str. brick-red. Slightly brittle. B. fusible. Decomposed by hydrochloric acid.

Found in veins of quartz in the Ural.
Vanquelinite,-Chromate of Lead and Copper, Hemiprismatic Olive Malachite.$\left(3 \mathrm{CuO}+2 \mathrm{CrO}^{3}\right)+2\left(3 \mathrm{PbO}+2 \mathrm{CrO}^{3}\right)$. oblique. $\mathrm{H} 30-3.5$ G $5 \cdot 75$. Case 30. Frac. flat, conchoidal. Slightly translucent. Opaque. Lus. waxy. Col. green, brown. Str. green. B. fusible. Soluble in nitric acid.

Found in veins of quartz. The Ural, Brazils, North America.
Chromite.-Chromate of Iron, Octahedral Chrome Ore, Prismatic Chrome Ore.$\mathrm{RO}+\mathrm{R}^{\prime 2} \mathrm{O}^{3}$, where R is Fe, Mr, or Cr , and R^{\prime} is Cr, Al, and perhaps Fe . cubic. H $5 \cdot 5$ G $4 \cdot 40-4.59$. Case 39. Frac. uneven, imperfect conchoidal. Opaque. IRIS - LILLIAD - Université Lille 1

Lus. metallic. Col. iron-black, brownish-black. Str. dark-brown. Brittle. Sometimes slightly magnetic. B. infusible. Soluble in bisulphate of potash.

Found in serpentine, limestone, and in streams. France, Stiria, Banffshire, Stirlingshire, Silesia, Bohemia, Norway, Siberia, Maryland, Pennsylvania, Vermont, New Jersey, Massachusetts, Baltimore, St. Domingo. The large proportion of chrome renders this a highly valuable mineral. In combination with the oxides of other minerals it yields green, yellow, and red pigments, used in oil painting, dyeing and colouring porcelain.

Sassoline.-Native Boracic Acid, Prismatic Boracic Acid.- $\mathrm{BoO}^{3}+3 \mathrm{HO}$. amorthic. H 1.0 G 1•48. Case 39. Transparent, translucent. Lus, pearly. Col. white, colourless, grayish-white, yellowish-white. Str. white, unctuous to the touch. Taste, acid and bitter. Soluble in water and in alcohol.

Found, mixed with sulphur, in the islands of Vulcano and Strombali, and in the water of the hot springs of Sasso, in Tuscany. Used in the manufacture of borax.

Hayesine - Hydroborocalcite. $-2\left(\mathrm{CaO}+\mathrm{BO}^{3}\right)+6 \mathrm{H}$. Case 39. Col. white.
Found abundantly, in fibrous masses, on the dry plains near Iquique, in Peru.
Hydroboracite. $-\left(3 \mathrm{CaO}+4 \mathrm{BO}^{3}\right)+\left(3 \mathrm{MgO}+1 \mathrm{BO}^{3}\right)+18 \mathrm{H} 0$. $\mathrm{H} 2 \cdot 0 \quad \mathrm{G} 1 \cdot 9$. In thin leaves translucent. Cul. white. B. fusible. Soluble in hot hydrochoric and nitric acids.

Found in fibrous masses in the Caucasus.
Tincal.-Borate of Soda, Prismatic Borax Salt. $-\mathrm{NaO}+2 \mathrm{BO}^{3}+10 \mathrm{HO}$. oblique. H $2.0-2.5$ G 1.716. Case 39. Frac. conchoidal. Transparent, translucent. Lus. resinous. Col. colourless, white, gray, yellow, green. Str. white. Rather brittle. Taste, alkaline, sweetish. B. fusible. Soluble in water.

Found on the shores of some lakes. Thibet, Nepanl, China, Ceylon, South America, Tincal, when purified, forms the refined borax of commerce. It is used as a flux in glass manufactories and in soldering.

Boxacite -Borate of Magnesia, Tetrahedral Boracite. $-3 \mathrm{MgO}^{+}+4 \mathrm{BO}^{3}$. cubic. II 7.0 G 2.83-2.98. Case 39. Frac. conchoidal. Transparent, translucent on the edges. Lus. vitreous. Col. white, colourless, gray, yellow, green, brown. Str. White. Pyroelectric. B. fusible. Soluble when in powder in hydrochloric and nitric acids.

Found in gypsum. Brunswick, Holstein, France,
Rhodizite. $-3 \mathrm{CaO}+4 \mathrm{BO}$. cubic. $\mathrm{H}: 8.0$ G $3 \cdot 416$. Translucent. Lus. vitreous. Col. white, yellowish, grayish. Pyroelectric. B. fusible with difficulty.

Found with red tourmaline and quartz, in the Ural.
Datholite.-Siliceous Borate of Lime, Botryolite, Humboltite, Esmarkite, Prismatic Dystome Spar.- $\left(2 \mathrm{CaO}+\mathrm{SiO}^{2}\right)+\left(\mathrm{BO}^{3}+\mathrm{SiO}^{2}\right)+\mathrm{HO}$. prismatic. $\mathrm{H} 5 \cdot 5$ G $2.8-3 \cdot 0$. Case 39. Frac. imperfect conchoidal. Translucent, transparent. Lus. vitreous. Col, white, inclining to green, yellow, and gray. Str, white. Brittle. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found in slate, sandstone, serpentine, and greenstone. The Hartz, Bavaria, the Tyrol. Tuscany, Italy, Connecticut, New Jersey, and Scotland.

Tourmaline.-Schorl, Aphrizite, Rubellite, Indicolite.-rhombohedral. H 7.0 -7.5 G $3.0-3.3$. Case 40. Frac. imperfect conchoidal. Transparent, almost

Str. white. Pyroelectric. B. fusible. Decomposed by concentrated sulphuric acid after fusion.

Found in gneiss, granite, mica slate, pebbles and sand of rivers. The Grimsel, Saxony, Moravia, Massachusetts, Siberia, Bothnia, Carinthia, Ceylon, Pegu, Madagasear, Brazils, the Tyrol, Devonshire, Cornwall, Sweden, Norway, Greenland, the Pyrenees, Banffshire, Elba The black opaque varieties are called schorl, the blue crystals from Sweden indicolite, and the red varieties rubellite, or siberite. The specimen of rubellite in the British Museum, presented by the King of Ava to Colonel Symes, has been valued at $£ 500$. The blue, green, and brown transparent crystals are much prized, on account of their property of polarizing light, when cut in thin plates parallel to the axes of the hexagonal prism. Some of the transparent varieties are used as gems, and are sometimes sold for emeralds, topaz, and red sapphire. The yellow tourmaline is quite as valuable as the topaz; but the green and red are inferior to the emerald and sapphire. The specific gravity affords a ready test for their discrimination.

Axinite.-Prismatic Axinite, Thumite, Thumerstein.-anorthic. H 6.5-7.0 G 3.29-3.30. Case 40. Frrc. conchoidal. Transparent, translucent on the edges. Lus, vitreous. Col. brown, blue, gray. Brittle. Acquires vitroous electricity by friction, pyroelectric. B. fusible. Decomposed by hydrochloric acid after fusion, leaving a jelly of silica.

Found 'in granite, dionite, diabase, gneiss, mica slate, and clay slate. Dauphiné, Cornwall, the Pyrenees, Savoy, St. Gotthardt, the Tyrol, Saxony, Norway, Sweden, the Lral, the Hartz. Though susceptible of a high polish, it wants the brillancy requiste for an orn mental stone.

Natron.-Carbonate of Sodu, Hemiprismatic Natron Salt.- $\left(\mathrm{Na} \mathrm{O}+\mathrm{CO}^{-}\right)+10 \mathrm{H}()$. oblique. H $1.0-1.5$ G 1.423. Case 41. Frac. conchoidal, transparent, semitransparent. Lus. vitreous. Col. colourless, white, yellow, gray. tr. White. S ctile. Taste alkaline, pungent. B. fusible. Soluble in water.

Hungary, the Asiatic Steppes, Bohemia, Vesuvius, Etna, Teneriffe, Guadaloup, Lgypt.
Trona.-Prismatoidal Trona Salt, Striated Soda.-($2 \mathrm{NaO}+3 \mathrm{CO})+4 \mathrm{H} 0$. oblique. H $2 \cdot 5 \mathrm{G} 2 \cdot 112$. Case 41. Frac. uneven. Transparent, translucent. Lus. vitreous. Col. colourless, white, gray. Str. white. Brittle. Taste alkaline. B. fusible. Soluble in water.

Found on the banks of natron lakes, and under a stratum of clay. Egypt, Fezzan, Columbia.

Thermonatrite. - Prismatic Carbonate of Sora. - Na $0+\mathrm{CO}^{2}+\mathrm{IIO}$. prismatic. H 1.5 G $1.5-1.6$. Frac. conchoidal. Transparent, translucent. L cs. vitreous. Col. colourless, white, yellowish. Str. white. Sectile. Taste pun ent, alkaline.

Found with natron. Debreczin, Vesuvins, Egypt, Asia, and America. Supp d to be the nitre of the Old Testament.

Alstonite.-Right Prismatic Baryto-calcite. $-\left(\mathrm{BaO}+\mathrm{CO}^{2}\right)+\left(\mathrm{Ca} \mathrm{O}+\mathrm{Co}^{-}\right)$ prismatic. H 4.0-4.5 G 3.65-3.70. Trac. conchoidal. Transpar t, tianslucent. Lus. vitreous. Col. colourless, grayish, white. Str: white. Solubl in acids with effervescence.

Found in veins with galena, Alston Moore and Fallowfield.
Baryto-Calcite - Hemiprismatic Hal-Baryta.-($\left.\mathrm{BaO}+\mathrm{CO}-)_{\mathrm{CaO}}^{\mathrm{C}} \mathrm{C} 0\right)$.

translucent. Lus. vitreous. Col. grayish, yellowish, or greenish-white. Str. white Brittle. B. infusible. Soluble with effervescence in hydrochloric and in nitric acids.

Found in mountain limestone. Cumberland.
Witherite. - Carbonate of Baryta, Diprismatic Hal-Baryta.-Ba $0+\mathrm{C} \mathrm{O}^{\prime}$. prismatic. H $3.0-3.5$ G $4.2-4.4$. Case 41. Frac. uneven. Semi-transparent, semi-translucent. Lus. vitreous. Col. white inclining to yellow, gray, green, and red. Brittle. B. fusible. Soluble with effervescence in dilute hydrochloric acid.

Found in transition rocks, granite and porphyry. Lancashire, Cumberland, Durham, Westmoreland, Shropshire, Flintshire. Styria, Saltzburg, Silesia, Hungary, Siberia, Sicily, Chili. Distinguished from barytes by its solubility in acids.

Strontianite.-Carbonate of Strontian, Peritomous Hal-Baryta. $\mathrm{Sr} \mathrm{O}+\mathrm{C} \mathrm{O}^{2}$. pxismatic, H 3.5 G $3.59-3.65$. Case 41. Frac. uneven. Transparent, translucent. Lus. vitreous. Col. colourless, white, gray, yellow, green. Str. white. Brittle. B. fusible on the edges. Soluble with effervescence in hydrochloric and nitric acids.

Found in linestone, clay, ironstone, basalt. Strontian, Leadhills, Yorkshire, Freiherg, Clausthal, Saltzburg, Westphalia, the Grisons, Giant's Causeway, Poland, New York, Peru. Strontia and all its combinations possess the property of giving a red colour to flame, and is therefore used for flre-works.

Aragonite,-Prismatic Lime Haloide, Tarnowitzite, Satin Spar, Needle Spar, Igbite. —Ca $\mathrm{O}+\mathrm{CO}^{2}$. prismatic. H $3.5-4.0$ G $2.93-3.01$. Cases 41 and 42. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, white, gray, yellow, green, blue. Str. grayish-white. B. infusible. Soluble with efferrescence in nitric and hydrochloric acids.

Found in gypsum, basaltic rocks, beds of brown iron ore, serpentine, lava, and deposited by hot springs. Aragon, Valencia, Bohemia, Baden, Hessia, Auvergne, the Tyrol, Hungary, Siberia, Greenland, Thuringia, the Hartz, Styria, Piedmont, Vesuvius, Iceland, Carlsbad, Cumberland, Carinthia, Devonshire, Buckinghamshire, Leadhills, Galloway. This mineral is named from Aragon, a province of Spain. The corralloid varieties which occur in beds of iron ore are called Flos ferri; and the massive, silky, fibrous variety derives the name of Satin spar from its appearance. Aragonite is distinguished from calcite by the form of its cleavage, and by flying into powder on being exposed to heat. When carbonate of lime crystallizes from its solution in boiling water containing carbonic acid, it forms crystals of Aragonite; if, however, it crystallizes from the same solution at the ordinary temperature of the atmosphere, it takes the form of calcite.

Calcite.-Carbonate of Lime, Rhombohedral Lime Haloide.- $\mathrm{Ca} \mathrm{O}+\mathrm{CO}^{2}$. yhom_ bohedral. H 3.0 G $2.69-2.75$. Cases 42-46. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, white, blue, green, yellow, red, brown, black. Str.'white. Brittle. B. infusible. Soluble with effervescence in hydrochloric and aitric acids.

Found in limestone and almost every kind of rock, also in cavities of amygdaloidal rocks. Iceland, the Hartz, Derbyshire, Cumberland, Prague, Carinthia, Bohemia, Saxony, Erance, United States, Thuringia. The beautiful transparent varieties from Iceland are called Iceland spar, and are remarkable for the beautiful manner in which they exhibit the properties of double refraction.

Schiffer Spath or Slate Spar, a lamellar variety of carbonate of lime, is found in Saxony, Bohemia, Norway, Cornwall, Scotland, Wicklow.

Granular Limestone and Statuary Marble consists of minute crystals of carbonate of lime.

a good polish. Naxos, Paros, Tenedos, Carrara. Marbles variously coloured by foreign substances form the greater part of the transition rocks.

Oolite or Roestone consists of an aggregation of minute globular masses of carbonate of lime. The Portland and Bath stones are varieties of oclite.

Stalactites are pendulous masses of carbonate of lime, hanging from the roofs of caverns, and formed by the water trickling through the roof charged with carbonate of lime.

Tufa or Calcareous Tuff is a porous variety of limestone, deposited by calcareous springs. It possesses the valuable property of hardening on exposure to the air.

Chalk is a massive opaque carbonate of lime, consisting almost entirely of minute fossil infusoria.

Ankerite.-Paratomous Lime Haloide, Phoe Wand, Wandstein.-rhombohedral, H $3.5-4.0$ G $3.040-3.08 \bar{j}^{\text {. }}$ Frac. uneven. Translucent. Lus. vitreous. Col. yellowish, white, gray, brown. Str. white. Brittle. Soluble with effervescence in nitric acid.

Found in beds of mica slate. Styria. Highly prized as an iron ore and as a flux for smelting.

Dolomite—Bitter Spar, Pearl Spar, Tharandite, Brown Spar, Miemite, Rhomb Spar, Magnesian Carbonate of Lime, Magnesian Limestone, Macrotypons Lime Haloide.- $\mathrm{Ca} \mathrm{O}+$ $\mathrm{CO}^{2}, \mathrm{Mg} \mathrm{O}+\mathrm{CO}^{2}$. xhombohedral. H $3.5-4.5 \quad$ G $2.80-2.95$. Case 47. Frac. conchoidal. Scmi-transparent, translucent. Lus. vitreous. Col. colourless, white, green, yellow, red, blue, brown, gray, black. Str. grayish-white. Brittle. B. infusible. Soluble in hydrochloric acid.

Forms rocks by itself, and occurs in beds in other rocks. The Apennines, the Tyrol, Switzerland, Piedmont, Tuscany, Saxony, Bohemia, Hungary, the Hartz, Norway, Sweden, Scotland, England. Better adapted for mortar than common limestone, as it absorbs less carbonic acid. The white marble of Paros and Iona belong to this species. It admits of being cut and polished, and is said to be durable.

Magnesite,-Carbonate of Magnesia.-Mg $0+\mathrm{CO}^{2}$. shombohedral.-H 4.5 - 5.0 G $2 \cdot 88-3.02$. Case 48. Frac. conchoidal. Transparont, translucent on the edges. Lus. vitreous. Col. colourless, yellow, brown, black. Str. white. B. infusible. Soluble in dilute sulphuric acid, and in nitric acid. Adberes to the tongue.

Found in serpentine. Sweden, Silesia, Moravia, Styria, the Tyrol, East Indies, Spain, America.

Fyydromagnesite.-Native Magnesia, Hydrocarbonate of Magnesia. Lancasterite. $3\left(\mathrm{Mg} \mathrm{O}+\mathrm{C} \mathrm{O}^{2}\right)+(\mathrm{Mg} \mathrm{O}+4 \mathrm{H} 0)$. oblique. H $3.5 \mathrm{G} 2 \cdot 14-2.35$. Case 47. Faintly translucent. Lus. pearly. Col. White, green. Str. white. B. infusible. Soluble in hydrochloric acid.

Found in earthy masses in serpentine. New Jersey, New York, Shetland Islands. Resembles talc, but distinguished from it by its hardness and specific gravity.

Gaylusite.-Hemiprismatic Kouphone Haloide. $-\left(\mathrm{NaO}+\mathrm{CO}^{2}\right)+\left(\mathrm{CaO}+\mathrm{CO}^{2}\right)$ +5 H O. oblique. H 2.5 G $1.928-1.950$. Case 48. Frac. conchoidal. Transparent, translucent. Lts. vitreous. Col. colourless, white, gray, yellow. Str. white. Brittle. B. fusible. Soluble in nitric or hydrochloric acid.

Found in crystals in a bed of clay at Lagunilla in Columbia; it is called clavos or n 'ls by the natives, from tbe appearance of its crystals.

Chaiybite.—Spathose Iron, Sparry Iron, Carbonate of Oxide of Iron, Sphurosiderite,
 Frac. imperfect conchoidal. Transparent, translucent. Opaque. Lus. vitreous. Cl.
yellow, brown, gray, white, red. Str. yellowish-white. Brittle. Soluble in warm nitric acid.

Found in gneiss, slate and limestone, in metallic veins, and in cavities in trap rocks. The Hartz, Nassan, Styria, Carinthia, Westphalia, the Pyrenees, Bohemia, Saxony, Devonshire. Clay Ironstone, which is a mixture of chalybite and clay, is found in Staffordshire, South Wales, Bohemis, Moravia, Silesia, Poland, United States, A very valuable iron ore. The Styrian steel is obtained from the iron made from it.

Diallogite.-CCarbonate of Manganese, Red Manganese, Rhodocrosite. $-\mathrm{Mn} 0+\mathrm{C} 0^{2}$. rhombohedral. H $3 \cdot 5-4.5$ G $3 \cdot 43-3 \cdot 63$. Case 48 . Frac. uneven. Slightly translucent. Lus. vitreous. Col. rose red, flesh red. Str. white. Brittle. B. infusible. Soluble in hydrochloric acid.

Found in gneiss, porphyry, and hematite. Sacony, Hungary, Transylvania, the Hartz, Switzerland, Ireland. Distinguished from manganese spar by its hardness. Some varieties become brown by exposure to air.

Calamine-CCarbonate of Zinc, Zinc Spar, Rbombohedral Zinc Baryta, Smithsonitc.$\mathrm{Zn} 0+\mathrm{CO}^{2}$. xhombohedral. H $5 \cdot 0 \quad \mathrm{G} 4.34-4 \cdot 45$. Case 49. Frac. uneven. Semi-transparent, translucent. Lus. vitreous. Col. colourless, white, gray, green, brown. Str. white. Brittle. B. infusible. Soluble in hydrochloric acid.

Found in the slate, transition, coal and oolite formations. Westphalia, Silesia, Carinthia, the Banat, Poland, Hungary, Servia, the Altai, Siberia, France, Belgium, United States, Scotland, Somersetshire, Derbyshire, Cumberland. Zinc is extracted from this ore.

Buratite.-Aurichalcite, Orichalcite.-(3 $\left.\mathrm{Zn} 0+\mathrm{C} 0^{2}\right)+\left(2 \mathrm{Cu} \mathrm{O}+\mathrm{C} 0^{2}\right)+$ 3 H 0 . H $2 \cdot 0$. Case 49. Translucent. Lus. pearly. Col. green. Soluble in hydrochloric acid.

Found in the Ural and in France.
Selbite.-Carbonate of Silver, Gray Silver.-Amorphous. Frac. wneven, earthy. Lus. dull. Col. gray. Soft. Sectile. B. fusible. Soluble in nitric acid.

Found in the Black Forest and Mexico.
Cerussite.—Carbonate of Lead, Lead Spar, Diprismatic Lead Baryta.-Pb $0+\mathrm{C}^{2}$. prismatic. H 3.5 G 6.4-6.6. Case 49. Frac. conchoidal. Transparent, translucent. Lus. adamantine. Col. colourless, white, gray, green, blue. Str. white. Brittle. B. fusible. Decomposed by hydrochloric acid.

Found in crystals, masses, and psendomorphous, after other substances. Bohemia, Carinthia, Hungary, Saxcny, the Hartz, Silesia, Westphalia, France, the Altai, Siberia, Devonshire, Cornwall, Cumberland, Derbyshire, Scotland. Valuable as an ore of lead; distinguished from sulphate of lead by its crystals being usually macled.

Agnesite.-Bismutute, Carbonate of Bismuth. - $4 \mathrm{Bi}^{3}+3 \mathrm{CO}^{2}+4$ H 0 . Amorphous. H 4.0-4.5 G 6.909-7.670. Case 49. Frac. conchoidal. Opaque. Translucent on the edges. Lus, vitreous, dull. Col. green, yellow. Str. gray or white. B. fusible. Soluble in hydrochloric acid.

Found investing other minerals, and in pseudomorphous crystals. Schneeberg, Cornwall.

Lanthanite.—Carbonate of Ceriam. $-3 \mathrm{La} 0 \div \mathrm{CO}^{2}+3 \mathrm{HO}$. pyramidal. H $2.5-3.0$. Case 49. Les. pearly. C l. white, gray, yellow. Str. white. Soluble in acids.

Found with|Racrite

Parisite. - Mussonite, Carbonate of Cerium Lanthanium and Didynium.yhombohedral. H 4.5 G 4.35 . Case 49. Frac. small conchoidal. Lus. vitreous. Col. brown, yellow. Str. yellowish-whitc. B. infusible. Soluble with dificulty in bydrochloric acid.

Fonnd in the emerald mines of Mazo, in New Granada.
Breunnerite.-Brachytypous Lime Haloide, Carbonate of Magnesia and Iron. Mg 0 +C 0^{2}. xhombohedral. H $4.0-4.5$ G $3.0-3.2$. Case 49. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, white, yellow, brown. Str. grayish-white. Brittle. B. infusible. Soluble in acids.

Found in chlorite, tale, sometimes in serpentine, rarely in gypsum. The Tyrol, St. Gotthardt, Norway, United States, Sbetlind. Distinguished from dolomite by its crystallization, hardness, and speeific gravity.

Mesitine.-Mesitine Spar. Pistonesite.-rhombohedral. H $3.5-4.0$ G 3.35 -3.42 . Case 49. Transparent, translucent. Lus. vitreous. Col. gray, yellow, green. Str. white. Brittle. B. infusible. Soluble in hydrochloric acid.

Foand with quartz and hematite, Piedmont and Saltzburg.
Chessylite.-Blue Carbonate of Copper, Azurite, Lasur Malachite, Hemiprismatic Azure Malachite.- $\left(\begin{array}{c}\mathrm{Cu} \\ \mathrm{O}\end{array} \mathrm{CO}^{2}\right)+(\mathrm{Cu} \mathrm{O}+\mathrm{H} 0)$. oblique. H 3.5-4.0 G $3 \cdot 766-3.831$. Case 50. Frac. conchoidal. Transparent, transluce 1 t on the edges. Lus. vitreous. Col. azure-blue, passing into blackish-bluc. Str. blue. Brittle. B. fusible. Soluble in nitric acid.

Found in veins with green carb ante and red oxide of c pper. Chessy, the Alt i , the Banat, Servia, Poland, the Tyrol, Bohemia, Spain, Cornw ill, Cumberland, Scotl nd, Siberia, Thuringia, Hessia, Silesia, Chili. A valuable ore of copp rwhen fuund in snfficient quantity.

Malachite.-Green Carbonate of C pper. $-\left(\mathrm{CuO}+\mathrm{CO}^{2}\right)+(\mathrm{Cu} \mathrm{O}+\mathrm{H} 0)$. oblique. H 3.5-4.0 G 3.71-4.01. Case 51. Frac. conchoidal. Transpar nt, or translucent on the edges. L is. adamantine. Col. green. Str. gr en. Brittle. B. partly infusible. Soluble in nitric acid.

Found in copper mines. Chessy, Spain, Prassia, Thuringia, the Trrol, the Banat, Poland, Siberia, Cornwall, Wales, Ireland, Australia. Malachite bas b en divid dinto the fibrous and mass've. The crystallized var' ety is extr mely rare, and onl fod in min ansparent twins coating the cavities of the fibrous 1 inds. It is a valuable r of copper, ut is most prized by the lapidary on account of the b anty of its colour, and the hi h p 'sh of which it is susecptihle. The valuable vases and tables of $m \mathrm{l}$ chit man f cturd at St . Petersburgh are mostly formed of thin plat $s \mathrm{ftl}$ is subst n es $\mathrm{l} \mathrm{lly}_{\mathrm{y}} \mathrm{n} \mathrm{n}$ er d .

Nitre.-Aitrate of Potash, Silt fet $\mathrm{K} 0+\mathrm{N} 0^{\mathbf{s}}$. prismatic. II $2 \cdot 0$ G 1-933. Case 52. Frac. conchoidal. Transparent, transluc nt. Lus. vitreous. Col. colourless, white, gray, yellow. Str. white. S luble in water.

Found as an efflor scence on the surface of the earth. Hungary, Podolia, Spa. Italy, France, Arabia, East Indies. Calabria, Virgma, the Brazils. It is also pio ured at illy from the decomposition of animal and vegctable matter. Used in the manufacture of unpowder and of nitric acid.

Nitratine.-Nitrate of Soda.-($\left.\mathrm{Na} \mathrm{O}+\mathrm{N}^{-} \mathrm{O}^{5}\right)_{\text {. }}$ shombohedral. II $1 \cdot 5-2 \cdot 0$ G 2.096. Case 52. Frac. conchoidal. Transparent, translucent. Lus vitr us, Col. colourless, white, gray, brown. St r. white. B. fusible. Soluble in water.
 paca in Peru.

Mixabilite.-Sulphate of Soda, Glauber Salt. $-\mathrm{Na} \mathrm{O}+\mathrm{S} 0^{3}+10$ H 0 . oblique. H1.5-2.0 G1.481. Case 52. Frac. conchoidal. Transparent. Lus. vitreous. Col. colourless, white. Str. white. Sectile, B. fusible, Soluble in water.

Found in salt springs as an efflorescence on the soil, and dissolved in mineral waters. Austria, Saltzburg, Bohemia, the Tyrol, Hungary, Spain, the Hartz, Switzerland, Siberia, Egypt. Employed in some countries as a substitute for soda in the manufacture of glass.

Astrakhanite. $-\left(\mathrm{Na} 0+\mathrm{S}^{3}\right)+\left(\mathrm{Mg} 0+\mathrm{S} 0^{3}\right)+4 \mathrm{H} 0$. Transparent. Col. colourless. Efflorescent. Soluble in water.

Found in prismatic crystals in the salt lakes of Astrakhan.
Glauberite.-Anhydrous Sulphate of Soda and Lime, Hemiprismatic Brythine Spar, Brongniartin.-($\left.\mathrm{Na} \mathrm{O}+\mathrm{S} \mathrm{O}^{3}\right)+\left(\mathrm{CaO}+\mathrm{S} \mathrm{O}^{3}\right)$. oblique. H2.5-3.0 G $2 \cdot 75$ - $2 \cdot 85$. Case 52. Frac. conchoidal. Semi-transparent, translucent. Lus. vitreous. Col. colourless, white, gray, red. Str. white. Brittle. B. fusible. Partially soluble in water.

Found in rock salt. Spain, Bavaria, Atacama, Chili.
Thenardite.-($\mathrm{Na} 0+\mathrm{S} \mathrm{O}^{3}$). prismatic. H $2 \cdot 5$ G $2 \cdot 67-2 \cdot 73$. Case 52. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, white. B. fusible. Soluble in water.

Found in crystals in the brine springs at Salinas d'Espartinas, near Madrid.
Glaserite.-Sulphate of Totash, Arcanite.-K $0+\mathrm{SO}^{3}$. prismatic. H $2 \cdot 5-$ 3.0 G $2.689-2.709$. Frac. conchoidal. Transparent. Lus. vitreous. Col. colourless, white, yellow, gray. Str. white. Brittle. B. fusible. Soluble in water.

Found on the lava of Vesurius and in some springs.
Mrascagnine. -Sulphate of Ammonia.-N $\mathrm{H}^{+1} \mathrm{O}+\mathrm{S} 0^{3}$. prismatic. H $2 \cdot 0$ 2.5 G 1.68-1.78. Frac. imperfect conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, white, gray, yellow. Str. white. Sectile. B. vola ilizes. Soluble in water.

Found associated with sulphur, with rolcanic productions, and in coal mines. Vesurins, Etna, Solfatara, Lipari, Aveyron, Staffordshire.

Baryte.-Sulphate of Barytes, Heavy Spar, Hepatite, Prismatic Hal-Baryta.-Ba O $+\mathrm{S} \mathrm{O}^{3}$. prismatic.-H $3.0-3.5$ G $4.35-4.59$. Cases 52 and 53. Frac. conchoidal. Transparent or translucent. Lus. vitreous. Col. colourless, white, gray, blue, yellow, red. Str. white. Brittle. B. fusible with difficulty. Insoluble in hydrochloric acid.

Found in beds and veins in various formations. Westphalia, the Hartz, Saxony, Bohemia, Hungary, the Tyrol, Transylvania, France, Baden, Hessia, Cumberland, Surrey, Staffordshire, Derbyshire. Hepatite or fetid baroselenite is a variety of baryte, containing bitumen. Norway, The Cawk of Staffordshire and Derbyshire is an opaque, massive variety of baryte. The white varieties are ground and used as paint. All the salts of barytes but one are violent poisons. The nitrate of barytes is used for producing a green flame.

Celestine.—Sulphate of Strontia, Prismatio Hal-Baryta.- $\mathrm{Sr} 0+\mathrm{S} 0^{3}$. prismatic. H $3.0-3.5$ G 3.85-4.0. Case 53. Frac. imperfect conchoidal. Transparent, translucent. Opaque. Lus. vitreous. Col. colourless, white, gray, blue, fleshred. Brittle. B. fusible. Insoluble in hydrochloric acid.

Found in sulphur mines, limestones, metallic veins, and in fossils. Sicily, France, Hun-
 by its specific gravity.

Gypsum.-Sulphate of Lime, Selenite.-Ca $\mathrm{O}+\mathrm{S} 0^{3}+2$ H 0 . oblique. H $1.5-2.0$ G $2.28-2.33$. Case 54 . Frac. flat, conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, red, yellow, blue, gray. Str. white. Sectile. B. fusible. Very slightly soluble in water and acids.

Found in new red sandstone, in older rocks, clay, in sulphur, and in fossils. Brunswick Hessia, Thuringia, the Tyrol, Switzerland, Paris, Oxford, Sicily, Spain, Siberia, Yorkshire, Cheshire, Derbyshire, Nottinghamshire, Scotland, the United States. The large blocks are wrought into alabaster figures and ornaments. Calcined and powdered it forms plater of Paris. Distinguished by its softness from limestone.

Karstenite.-Anhydrite, Anhydrous Sulphate of Line, Cube Spar, Muriacite.-Ca 0 $+\mathrm{S} \mathrm{O}^{3}$. prismatic. H $3.0-3.5$ G $2.8 \mathrm{j}-3.05$. Case 54 . Frac. imperfect conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, white, gray, yellow, red, blue. Str. grayish-white. Brittle. B. fusible with difficulty. Slightly soluble in water and hydrochloric acid.

Found in beds and veins, and in clay. Styria, the Tyrol, Switzerland, Savoy, Italy, New York, the Hartz, Sweden.

Epsomite.-Sulphate of Magnesia, Epsom Salt, Prismatic Bitter Salt.-Mg $0+$ $\mathrm{S} 0^{3}+7 \mathrm{H} 0$. prismatic. $\mathrm{H} 2.0-2.5$ G $1.7-1.8$. Case 55. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, white, red. Str. white. Taste bitter and saline. B. fusible. Soluble in water.

Found as an efflorescence and in mineral springs. Hungary, Bohemia, the Tyrol, Spain, South Africa, Milo, Sedlitz, Epsom, Chili. Is used for pharmaceutical purposes, but is generally obtained by manufucturing chemists from magnesian limestone, and other sources.

Kalotrichite.-Alurogen, Feather Alum, Hair Salt.-(Al $\left.\mathrm{O}^{3}+\mathrm{S} \mathrm{O}^{3}\right)+18 \mathrm{H} 0$. H 2. Case 55. Frac. uneven. Translucent on the edges. Lus. dull. Col. white, gray, yellow. B. fusible. Soluble in water,

Found in alum shale, coal mines, and volcanic craters. Tharingia, Dresden, Bonn, Columbia, Bogota, Quito, Chili, Milo, Neapolitan Solfatara.

Polyhalite.-(K $\left.0+\mathrm{S} 0^{3}\right)+(\mathrm{Mg} 0+\mathrm{S} 0)+2\left(\mathrm{Ca} 0+\mathrm{S} 0^{3}\right)+2 \mathrm{II} 0$. prismatic. H 3.5 G $2.73-2 \cdot 78$. Case 55. Frac. uneven. Tramslucent. Lus. waxy. Col. red. Str. white. Brittle. B. fusible. Partially soluble in water.

Found in Styria, Austria, and Bavaria. Derives its name from dodvs many, and ads salt, on account of the variety of its saline constituents.

Goslarite.-Sulphate of Zinc, White Vitriol. $-\mathrm{Zn} \mathrm{O}+\mathrm{S} 0^{3}+7 \mathrm{H} 0$. prismatic. H $2 \cdot 0-2 \cdot 5 \quad$ G $1 \cdot 9-2 \cdot 1$. Case 55. Frac. conchoidal. Transparent, translucent. Lus. vitreous, Col. colourless, white, red, blue. Str. white. Brittle. B. infusible. Soluble in water.

Found in old mines. Sweden, the Hartz, Hungary, France, Spain, Holywell, Cornwall. Is not found in great abundance in nature, but is prepared artificially. Used in medicine and in dyeing. A permanent white colour. Zinc white is prepared from it.

Bieberite.-Sulphate of Cobalt, Cobalt Vitriol. - $\mathrm{Co} 0+\mathrm{S}^{3}+7 \mathrm{H} \mathrm{O}$. oblique. Case 55. Frac. uneven. Translucent, opaque. Lus. vitreous. Col. red. Str. reddishwhite. Soluble in water.

Found in old mines. Bieber, Siegen, and Saltzburg.

H 2.6 G1.8-1.9. Case 55. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. green, white. Str. white Rather brittle. Soluble in water.

Found in old mines. Bavaria, Sweden, the Hartz, Saxony, Hungary. Used in dyeing and in the manfacture of sulphuric acid, ink, and Prussian blue.

Botryogen. - Red Sulphate of Iron, Red Vitriob.-oblique. HI $2.0-{ }^{\prime} 2.5$ G 2.039. Case 55. Frac. conchoidal. Translucent. Lus. vitreous. Col. red, yellow. Str. yellow. Sectile. B. infusible. Soluble partially in boiling water.

Found at Fahlun in Sweden. Derives its name from Botpus a bunch of grapes, because it freqnently occurs in the form of globules with a crystalline surface.

Copiapite.-A hydrous sulphate of iron. Six-sided prisms. ? Translucent. Lus. pearly. Col. yellow.

Found at Coquimbo in Chili.
Coquimbite. $-2 \mathrm{Fe} \mathrm{O}^{3}+3 \mathrm{~S} \mathrm{O}^{3}+9$ H 0 . rhombohedral. H $2 \cdot 0-2.5$ G 2.0-2.1. Frac. conchoidal, uneven. Translucent. Col. white, blue, green. Soluble in water.

Found in green felspar. Coquimbo.
Blue Vitriol.-Sulphate of Copper, Cyanose.- $\mathrm{Cu} 0+\mathrm{S} 0^{3}+5$ H O. anorthic. H 25 G $2 \cdot 19-2 \cdot 30$. Case 55. Frac. conchoidal. Semi-transparent, translucent. Lus. vitreous. Col. blue. Str. white. Rather brittle. B. fusible. Soluble in water.

Found in mines, and in the water of mines. Sweden, Hungary, Cornwall, Anglesea, Wicklow, Seville, Cyprus, Siberia. After being purified, used in the manufactures, for dyeing and electrotyping.

Brochantite.—Prismatic Dystome, Malachite, Kriswigite.—(Cu $\left.0+\mathbf{S} \mathbf{0}^{3}\right)+$ $3(\mathrm{CuO}+\mathrm{H} O)$. prismatic. H $3.5-4.0$ G $3.87-3.9$. Case 55. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. green. Str. green. B. infusible. Soluble in acids.

Found in Siberia, Hungary, Iceland, France.
Lettsomite.-Velvet Copper Ore, Kupfersammterz.-2 S $0^{2}+6 \mathrm{Cu} 0+\mathrm{Al} \mathrm{O}^{3}+$ 12 H 0. Case 55. Capillary crystals. Translucent. Lus. pearly. Col. smalt blue.

Found with malachite at Moldawa, in the Banat, coating the cavities of an oxide of iron. It is extremely rare.

Linarite.-Cupreous Sulphate of Lead, Diplogenic Lead Baryta. $-\left(\mathrm{Pb} 0+\mathrm{S}^{3}\right)+$ ($\mathrm{Cu} \mathrm{O}+\mathrm{H} \mathrm{O}$). oblique. H $2.5-3.0$ G 5.3-5.43. Case 55. Frac. conchoidal. Feebly translucent. Lus. adamantine. Col. deep blue. Str. pale blue. Slightly brittle.

A rare mineral. Found at Leadhills, in Scotland, Spain, and Cumberland.
Johannite.—Subsulphate of Uranium, Hemiprismatic Euchlore Salt.-oblique. H $2.0-2.5$ G $3 \cdot 191$. Case 55. Frac. imperfect conchoidal. Semi-transparent. Lus. vitreous. Coi. green. Str. green. Sectile. Taste slightly bitter. Soluble in hydrochloric acid.

A very rare mineral. Found at Joachimsthal, in Bohemia.
Anglesite.-Sulphate of Lead, Prismatic Lead Baryta, Lead Vitriol.- $\mathrm{Pb} 0+\mathrm{S}^{3}$.

lucent. Lus. adamantine. Col. colourless, yellow, gray, browh, blua, green. Str. white. Brittle. B. fusible. Slightly soluble in nitric acid.

Produced by the decomposition of galena. Baden, Siegen, Silesia, the Hartz, Spain, Siberia, Massachusetts, Missouri, Anglesea, Cornwall, Scotland. It sometimes contains silver.

Lanarkite.-Sulphato-Carbonate of Lead, Prismatoidal Lead Baryta.- $(\mathrm{Pb} 0+$ $\left.\mathrm{S} \mathrm{O}^{3}\right)+\left(\mathrm{Pb} 0+\mathrm{C}^{2}\right)$. Thin plates. $\mathrm{H} 2.0-2.5 \mathrm{G} 6.8-70$. Case 55. Transparent. Lus. adamantine. Col. greenish or yellowish-white. Str. white. Sectile. B. fusible. Partially soluble in nitric acid.

Found at Leadhills in Scotland, and in Siberia.
Susannite.- $\left(\mathrm{Pb} 0+\mathrm{S} 0^{3}\right)+3\left(\mathrm{~Pb} 0+\mathrm{CO}^{2}\right)$. xhombohedral. H $2 \cdot 5$ G 6.55. Case 55. Transparent, translucent. Less. resinous, adamantine. Col. white, green, yellow, black. Str. white. B. fusible. Partially soluble in nitric acid.

Found at Leadhills in Scotland, and Moldawa, in the Banat.
Caledonite.-Cupreozs Sulphato-Carbonate of Lead, Paratomous Lead Baryta.— prismatic. H $2.5-3.0$ G 6.4. Case 55. Frac. uneven. Transparent, translucent. Lus. resinous. Col. blue. Str. blue. Rather brittle. B. fusible. Partially soluble in nitric acid.

A beautiful mineral. Found at Leadhills in Scotland.
Ieadhillite.-Sulphato-Tri-carbonate of Lead, Axotomous Lead Baryta.-($\mathrm{Pb} 0+$ $\left.\mathrm{S} 0^{3}\right)+3\left(\mathrm{~Pb} 0+\mathrm{C}^{2}\right)$. prismatic. H $2 \cdot 5$ G 6.26-6.43. Case 55. Frac. conchoidal. Transparent, translucent. Lus. resinous. Col white, yellow, gray, green, brown. Str. white. Rather brittle. B. fusible. Partially soluble in nitric acid.

Found at Leadhills in Scotland.
Alum.- $\left(\mathrm{K} 0+\mathrm{S} \mathrm{O}^{3}\right)+\left(\mathrm{Al} \mathrm{O}^{3}+3 \mathrm{~S} \mathrm{O}^{3}\right)+24 \mathrm{H} 0$. cubic. HI $2.0-2.5$ G 1.9 - 2.0. Case 55. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. white. Str. white. Soluble in water.

Found as an efflorescence on aluminous rocks and lava. Lipari Islands, Sicily, St. Michael, Thuringia, Norway, Yorkshire. Used as a medic'n, in dyeir n, and in the manufacture of leather, paper, \&c.

Soda Alum. $-\left(\mathrm{NaO}+\mathrm{S} 0^{3}\right)+\left(\mathrm{AlO}^{3}+3 \mathrm{~S}^{3}\right)+24 \mathrm{H} \mathrm{O}$. cubic. $\mathrm{H} 2 \cdot 0$ - $2 \cdot 5$ G 1.88. Case 55. Frac. conchoidal. Transparent. Lus. vitreous. Col. white. Str. white. Soluble in water.

Found in the Neapolitan Solfatara, Island of Milo, and Mendoza.
Ammonia Alum.- $\left.\mathrm{NH}^{3}+\mathrm{H} 0+\mathrm{S}^{3}\right)+\left(\mathrm{Nl} 0+3 \mathrm{SO}^{3}\right)+24 \mathrm{H} 0$. cubic. HI $2.0-2.5$ G $1 \cdot 753$. Case 55. Frac. conchoidal. Translucent. Lus. vitreous. Col. colourless, grayish-white.

Found in clay and in a bed of brown coal. Thurincia, Bohemia.
Alunite.-Alum Stone, Rlomb hedral Alum Haloide.-($\mathrm{K} \quad \mathrm{O}+\mathrm{S} \mathrm{O}^{\prime}$) + $3\left(\mathrm{Al} 0^{3}+\mathrm{S} 0^{3}\right.$) +6 H 0 . rhombohedral. $\mathrm{H} 3.5-4.0$ G $2 \cdot 69-28$. Transparent, semi-transparent. Lus. vitreous. Col. colourl s, White, sell w, red, gray. Str. white. Brittle. B. infusible. Insoluble in hydrochloric acid.

Found at Tolfa, Tuscany, Hungary, France. The Hungarian varieties are so hard as t be used for millfteres.ILLIAD - Université Lille 1

Webstexite.-Subsulphate of Alumina, Aluminite.-Al $0^{3}+\mathrm{S} 0^{3}+9 \mathrm{H} 0$. H 1.0 G 1.6-17. Case 55. Frac, earthy. Opaque. Lus, dull. Col. white. Str. white. Sectile. B. infusible. Soluble in hydrochloric acid.

Found in hotryoidal concretions imbedded in clay, at Halle, Paris, Newhaven.
Garnsdorfite.-Pissophane.-A hydrated sulphate of alumina and iron. Amorphous. H 1.5-2.0 G 1.922-1.981. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. green, brown. Str. grayish-white, pale-yellow. Brittle. Soluble in hydrochloric acid.

Found in the alum shale works. Garnstorf in Thuringia, and Reichenbach in Saxony.
Voltaite.—Cubic. Frac. uneven. Lus. resinous. Col. black, inclining to brown and green. Str. grayish-green. Partially soluble in water.

Found in the Neapolitan Solfatara.
Hauyne.-Dodecahedral Amphigene Spar, Nosean, Lapis Lazuli.-cubic. H 5.5 -6.0 G $2 \cdot 25-2.5$. Case 55. Frac. conchoidal. Transparent, opaque. Lus. vitreous. Col. black, brown, gray, blue. Str. light blue. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

The brown and gray variety, nosean, is found in volcanic rocks. Laach, in Prussia, The light blue and green, hauyne, in volcanic rocks and lava. Laach, the Rhine, France, Rome, Vesuvius. The deep blue, lapis lazuli, found mixed with calcite, mica, and pyrite. The Baikal Lake, China, Thibet, Tartary, South America. Valued as an ornamental stone; formerly used as the only source of the beautiful pigment called altra-marine, which is now manufactured artificially.

Arsenite.-Oxide of Arsenic, Octahedral Arsenic Acid, Arsenious Acid.-As 0^{3}. cubic. H 1.5 G 3.699 . Case 56. Frac. conchoidal. Transparent, opaque. Lus. vitreous. Col. white. Str. white. B. volatilizes. Slightly soluble in water.

Probably produced by the decomposition of ores containing arsenic. Bohemia, Transylvania, Hanau, Alsace, the Hartz, the Pyrenees. Distinguished from pharmacolite, to which it is similar, by being slightly soluble in water. Artificially formed crystals of arsenic not only belong to the cubical system but also to the prismatic, being then isomorphous with valentinite. A very poisonous substance.

Pharmacolite.-Arseniate of Lime, Hemiprismatic Euslase Haloide.-2 Ca 0 + As $0^{5}+6 \mathrm{H} 0$. oblique. H $2.0-2.5$ G $2.64-2.73$. Case 56. Transparent, translucent. Lus. vitreous. Col. white, yellow. Str. white. Sectile, thin plates flexible. B. volatilizes. Soluble in nitric acid.

Found in Bohemia, Baden, the Hartz, Hessia, Thuringia, Alsace.
Kuhnite,-Anhydrous Arseniate of Line, Berzelite.-3 R O + As 0^{5}, where R is Ca, Mg, and Ma. H $5.0-6.0 \mathrm{G} 2.52$. Case 56. Frac. uneven. Lus. Waxy. Col. white, yellow. Brittle. B. infusible. Soluble in nitric acid.

Found in cleavable masses at Langbanshytta in Sweden.
: Eraidingerite.-Diprismatie Etclase Haloide. $2 \mathrm{Ca} 0+\mathrm{As} \mathrm{O}^{\mathbf{s}}+4 \mathrm{H} 0$. prismatic. H $2 \cdot 0-25$ G $2 \cdot 848$. Transparent, semi-transparent. Lus. vitreous. Col. white. Str. white. Sectile. B. fusible. Soluble in nitric acid.

A very rare mineral, supposed to have been found at Joachimsthal in Bohemia, formerly considered a varietry gf pharmaçite Université Lille 1

Roselite.-An arseniate of lime, magnesia, and cobalt. prismatic. H 3.0 .

Frac. conchoidal. Translucent. Lus. vitreous. Col. red. Str. white. Soluble in hydrochloric acid.

An extremely rare mineral, found at Schneeberg.
Pharmacosiderite.-Arseniate of Iron, Hexahedral Lirocone Malachite.- $3 \mathrm{Fe}^{2}$ $0^{3}+2 \mathrm{As}^{5}+12 \mathrm{H} 0$. cubic. H $2 \cdot 5$ G $2 \cdot 9-3 \cdot 0$. Case 56 . Frac. uneven, Semi-transparent, translucent on the edges. Lus. vitreous. Col. green, yellow, brown. Str. light yellow. Pyroelectric. B. fusible. Soluble in hydrochloric acid.

Found in veins of copper ores. Cornwall, France, Nassau, Saxony, United States.
Symplesite.-An arseniate of iron. oblique. H 2.5 G $2 \cdot 957$. Frac. even. Transparent, translucent. Lus. vitreous. Col. blue, green. Str. bluish-white. B. infucible.

Found at Klein Friesa, near Lobenstein.
Liroconite.-Octahedral Arseniate of Copper, Lenticular Arseniate of Copper, Chalkophacit.-prismatic. H $2.0-2.5$ G $2.83-2 \% 99$. Case 56. Frac. imperfect conchoidal. Transparent, translucent. Lus. vitreous. Col. blue, green. Str. the same. B. fusible. Soluble in acids.

Found in Cornwall, Hungary, and Voigtland; very rare on the continent.
Olivenite.-Rhight Prismatic Arseniate of Copper, Prismatic Olive Malachite.$\left(3 \mathrm{Cu} 0+\mathrm{As} \mathrm{O}^{5}\right)+(\mathrm{Cu} 0+\mathrm{H} 0)$. prismatic. H $3 \cdot 0 \quad \mathrm{G} 4 \cdot 1-4 \cdot 38$. Case 56. Frac. conchoidal. Semi-transparent, opaque. Lus. vitreous. Col. green, brown. Str. olive-green. B. fusible. Soluble in nitric acid.

Found in Cornwall, Cumberland, the Tyrol, the Banat, Siberia, the Asturias, Chili.
Euchroite.-Prismatic Enerald Aralachite,-4 Cu $0+\mathrm{As}^{5}+7 \mathrm{HI} 0$. prismatic. H $3.5-4.0$ G $3.35-3.45$. Case 56. Frac. uneven. Transparent, translucent. Lus. vitreous. Col. pale green. Brittle. Soluble in nitric acid.

A very rare mineral, found in mica slate at Libethen in Hungary; named from cuxpora beautiful colour.

Scorodite.—Martial Arseniate of Copper, Dystomic Fluor Hilorde.- $\mathrm{Fe}^{2} 0^{3}+$ As $0^{3}+4$ H 0 . prismatic. H $35-40$ G $318-3.30$. Case 56 . Frac. uneven. Semi-transparent, translucent on the edges. Lus. vitreous. Col. green, bluc, brown. Str. white. Rather brittle. B. fusible. Soluble in hydrochloric acid.

Found in Saxony, Bohemia, Carinthia, France, Cornwall, Rrazils, Columbia, Siberia.
Exinite,-Dystomic Habroneme Malachite. $-5 \mathrm{Cu} \mathrm{O}+\mathrm{As} \mathrm{O}^{5}+2$ II 0 . If $4.5-$ 5.0 G 4.043 . Frac. imperfect conchoidal. Translucent on the edges. Lus. dull. Col. green. Str. green. B. fusible. Soluble in nitric acid.

Found in the county of Limerick associated with arseniate of copper, nam d ei nite on account of its characteristic emerald-green colour and its locality.

Cornwallite.-5 $\mathrm{Cu} 0+\mathrm{As} 0^{5}+5 \mathrm{H} 0$. Amorphous. Hi 4.5 G 4.160. Frac. conchoidal. Col. green. B. fusible.

Found with olivenite in Cornwall.
Klinoclase.-Oblique Prismatic Arseniate of Copper, Strahlerz, ApI anese, Abichite. $\left(3 \mathrm{Cu} 0+\mathrm{As} \mathrm{O}^{5}\right)+3(\mathrm{Cu} \mathrm{O}+\mathrm{H} 0)$. oblique. H $2 \cdot 5-3 \cdot 0 \mathrm{G} 4 \cdot 19-4.36$. Frac. uneven. Trarslucent, opaque. Lus. vitreous. Col. green, darh blue. Str. verdigris-green. Rather brittle. B. fusible. Soluble in acids.

Tamaxite.-Rhomboidal Arseniate of Copper, Prismatic Copper Mica, Challophyliti. -xhombohedral. H $2 \cdot 0$ G 2.435-2.659. Frac. conchoidal. Transparent, translucent. Lus. pearly or vitreous. Col. green. Str. green. Sectile. B. fusible. Soluble in acids.

- Found in veins of copper ores in the mines of Cornwall.

Tyrolite.-Kupferschaum, Prismatic Euchlore Mica.-(5 Cu $\left.0+\mathrm{As} \mathrm{O}^{5}\right)+(\mathrm{Ca} 0$ $\left.+\mathrm{CO}^{2}\right)+10$ H 0 . prismatic. $\mathrm{H} 1.0-2.0$ G $3.02-3.098$. Case 56. Translucent. Lus. pearly or vitreous. Col. green, blue. Str. the same. Very sectile. In thin leaves flexible. B. fusible. Soluble in hot nitric acid.

Found with ores of copper in fibrous groups of a delicate silky lustre. The Tyrol, Hungary, the Banat, Thuringia.

Konichalcite.-2 ($\mathrm{R} 0+\mathrm{As} 0^{5}$) +3 H 0 , where R is Cu and Ca . H $4.0-4.5$ G 4.123. .Frac. splintery. Translucent on the edges. Lus. vitreous. Col. green. Str. green. Brittle.

In reniform masses supposed to have been found at Hinojosa in Andalusia.
Erythrine.-Red Cobalt, Cobalt Bloom, Arseniate of Cobalt, Prismatic Cobalt Mica.$3 \mathrm{CoO}+\mathrm{As} \mathrm{O}^{5}+8 \mathrm{H}$ O. oblique. $\mathrm{H} \mathrm{I} \cdot 5-2 \cdot 0 \quad$ G $2 \cdot 9-3 \cdot 1$. Case 56. Transparent, translucent. Col. red, gray, green. Str. red. Sectile. In thin plates flexible. B. fusible. Soluble in hydrochloric acid.

A beautiful mineral, fonnd in beds and veins with ores of cobalt. Saxony, Bohemia, Thuringia, Hessia, Baden, Danphiné, the Pyrenees, Norway. When found in sufficient quantity, it is used in the manufacture of smalt. Distinguished from red antimony and red copper ore by gielding a blue glass with boras before the blowpipe.

Tottigite, $\mathrm{ZnO}+\mathrm{As} \mathrm{O}^{5}+8 \mathrm{H} 0$. oblique. H $2.5-3.0$ G 3.l. Translucent. Lus. silky. Col. red. Str. reddish-white. Soluble in acids.

Found with smaltine in the Daniel mine, Schneeberg.
Annabergite.-Arseniate of Nickel, Nickel Bloom. $-3 \mathrm{Ni} 0+\mathrm{As}^{5}+8 \mathrm{H} 0$. oblique. H $2.5-3.0$ G $3.078-3.131$. Case 56 . Col. green. Str. greenishwhite. B. fusible. Soluble in nitric acid.

Found in the Hartz, Hessia, Thuringia, Saxony, Bohemia, Dauphiné, Texas.
Vivianite_-Phosphate of Iron, Blue Iron, Dichromatic Euclase Haloiäe, Anglarite, Mfulicite, Prismatic Iron Mica.-3 Fe $0+\mathrm{P} \mathrm{O}^{5}+8 \mathrm{H}$ O. oblique. H $1.5-$ 2.0 G 2.6-2.7. Case 57. Transparent, translucent. Lus. pearly, vitreous. Col. green, blue. Str. white, becoming blue on exposure to air, powder of the mineral brown. Sectile. Thin plates flexible. B. fusible. Soluble in hydrochloric acid.

Found in mineral veins and lava, the earthy varieties in peat-bogs. Transylvania, Cornwall, Bavaria, New Jersey, Isle of France, Crimea, Shetland Islands, Isle of Man. Sometimes used as a pigment.

Du£renite.-Phosphate of Iron, Grüneisen Stein, Green Iron Earth, Alluaudite.prismatic. H 4.0 G $3.50-3.55$. Case 57. Transparent, opaque. Lus. vitreous. Col. green. Str. light green. Brittle. B. fusible. Soluble in hydrochloric acid.

Found at Siegen, Hirschberg in Reuss, and Limoges in France.
Diadochite. $-\mathrm{Fe}^{7}+2 \mathrm{P}^{3}+4\left(\mathrm{Fe}^{3}+\mathrm{S} \mathrm{O}^{3}\right)+32 \mathrm{H} 0$. Amorphous. H 3.0 G $2.035-2.037$. Case 57. Frac. conchoidal. Transilucent, opaque. Lus.

Found in alum shale works near Gräfenthal and Saalfeld in Thuringia.

Zwiselite.-Eisen Apatite, Iron Apatite.-R Fl $+\left(\mathrm{R} 0+\mathrm{P} 0^{5}\right)$, where R is Fe and Mn. prismatic. H 5.0 G 3.97 . Frac. imperfect conchoidal. Translucent on the edges. Lus. resinous. Col. clove-brown. Str. grayish-white. B.fusible. Soluble in hot hydrochloric acid.

Found in crystalline masses at Zwisel in Bavaria.
Triplite, -Phosphate of Manganese, Pitchy Iron Ore. $-\left(4 \mathrm{Fe} 0+\mathrm{P} \mathrm{O}^{5}\right)+(4 \mathrm{Mn}$ $0+\mathrm{P} 0^{5}$). prismatic. H $5 \cdot 0-5 \cdot 5$ G $3 \cdot 6-3.8$. Case 57. Frac. imperfect, conchoidal. Translucent on the edges, opaque. Lus. resinous. Col. brownish-black. Str. yellowish-gray. Brittle. B. fusible. Soluble in hydrochloric acid.

Found in crystalline masses in granite. France, United States.
Triphyline.-Tetraphyline, Perowskine.-($\mathrm{Li} 0+\mathrm{P} \mathrm{O}^{5}$) +6 ($3 \mathrm{Fe} \mathrm{O}+\mathrm{P} \mathrm{O}^{5}$). oblique. H 5.0 G 3.6 . Case 57. Frac. imperfect conchoidal. Translucent on the edges. Lus. resinous Col. greenish-gray, spotted with blue. Str. grayish-white. B. fusible. Soluble in hydrochloric acid.

Found in granite accompanied by beryl. Rabenstein in Bavaria.
Delvauxine,-Delvauxite.-2 $\mathrm{Fe}^{2} 0^{3}+\mathrm{P}^{3}+24 \mathrm{H} 0$. Amorphous. H 2.5 G 1.85. Case 57. Frac. conchoidal. Opaque, traaslucent on the edges. Lus. waxy. Col. black, brown, yellow. Str. light brown. E. fusible. Soluble in hydrochloric acid.

Found near Visé in Belgiam.
Freterosite. $-5 \mathrm{RO}+\mathrm{P} \mathrm{O}^{5}+2 \mathrm{HI} 0$, where R is Fe and Mn . oblique. H $4 \cdot 5-5 \cdot 5$ G 3.524 . Case 57. Frac. uneven. Translucent ou the edges, op، que. Lus. resinous, dull. Col. gray, blue, violet. Str. red. B. fusible. Soluble in hydiochloric acid.

Found in granite. Hureault, near Limoges in France.
Eureaulite_-Huraulite.-5 $\mathrm{R} 0+\mathrm{P} 0^{3}+8 \mathrm{H} 0$, where R is Mn or Fo. oblique. H 5.0 G 2.270. Frac. conchoidal. Transparent. Lis. vitreouc. Col. yellow, red, brown. B. fusible. Soluble in hydrochloric acid.

Found in granite. Hureault, near Limoges in France.
Iibethenite.—Phosphate of Copper, Prismatic Olivenite, Diprismatic Olite Malachite. $-\left(3 \mathrm{Cu} 0+\mathrm{P} 0^{3}\right)+(\mathrm{Cu} \mathrm{O}+\mathrm{H} 0)$ prismatic. $\mathrm{H} 4.0 \mathrm{G} 3.6-3.8$. Case 57. Frae. conchoidal. Translucent on the edges, Lus. resinous. Col. olivegreen. Str. olive-green. Brittle. B. fusible. Soluble in nitric acid.

Found in mica slate and with malachite. Hungary, the Rhine, C rnwall, the Ur 1, Chili.

Kryptolite, -Kryptolith.-A phosphate of oxide of cerium. G 4.6. Transparent. Col. pale yellow. Decomposed by warm hydrochloric acil.

Found in parallel acicular crystals, imbedded in massive apatite, from which it is sel \mathbf{a} rated by dissolving the apatite in dilute nitric acid. Arendal in Norway.

Thrombolite. $-3 \mathrm{CaO}+2 \mathrm{PO}^{5}+6$ H 0 . H $3.0-4.0 \quad$ G $3.381-3.401$. Frac. conchoidal. Opaque, translucent on the edges. Lus. vitreous. Col. greer. Str. green. Brittle. B. fusible.

Perowskite, - ($\mathrm{CaO}+\mathrm{Ti} \mathrm{O}^{2}$). cubic. H5.8 G 3.99-4.017. Case 37. Opaque. Lus. adamantine. Col. black, reddish-brown. Str. grayish-white. B. infusible. Acted on very feebly by hydrochloric acid.

Found in limestone and chlorite slate. Vogsburg and the Ural.
Mengite,-Supposed to contain oxides of iron and manganese, titanic acid and zirconia. prismatic. H $5.0-5.5$ G 5.43. Frac. uneven, conchoidal. Opaque. Lus. metallic, Col. iron-black. Str. brown. B. infusible. Soluble in hot concentrated sulphuric acid.

Found in albite in Siberia.
Polymignite.—Prismatic Melane Ore.—Prismatic. H 6.5 G: 4.75-4.81. Case 37. Frac. conchoidai. Opaque. Lus. metallic. Col. iron-black. Str. dark brown. Brittle. B. infusible. Decomposed in powder by concentrated sulphuric acid.

Found in syenite and basalt in Norway.
Fergusonite.-Pyramidal Melane Ore.- ($6 \mathrm{RO}+\mathrm{Ta} \mathrm{O}^{3}$), where \mathbf{R} is \mathbf{Y}, Ce, and Zr. pyramidal. H $5.5-6.0$ G $5.8-5.9$. Case 37. Frac. conchoidal. Opaque. Lus. imperfect, metallic. Col. blackish-brown. Str. pale brown. Brittle. B. infusible.

Found in quartz in Greenland.
Polykxase.—Prismatic. H 6.0 G $5 \cdot 105$. Frac. conchoidal. Translucent in thin fragments. Lus. metallic. Col. black. Str. grayish-brown. B. infusible. Decomposed by hot sulphuric acid.

Found in granite in Norway.
Fischynite.-Prismatic. H $5 \cdot 5$ G $5 \cdot 1-5 \cdot 2$. Case 37. Frae. imperfect conchoidal. Faintly translucent on the edges. Opaque. Lus. imperfect metallic. Col. iron, black, brown. Str. yellowish-brown. Brittle. B. nearly infusible. Partially decomposed by concentrated sulphuric acid.

Found in a rock consisting of felspar, albite, and mica, near Miask, in the Ural.
Malacone.-Pgramidal. H 6.0 G 3.903-3.913. Frac. conchoidal. Lus. vitreous. B. infusible. Decomposed by hot sulphuric acid.

Found at Hitteröe in Norway.
Erstedite.-Pyramidal. H 5.5 G 3.629. Case 37. Translucent. Lus. adamantine. Col. yellowish-brown. B. infusible.

Found at Arendal in Norway.
Mosandrite, -H 4.0 G 2.93. Case 37. Translucent in thin fragments. Lus, resinous. Col. brown. Str. grayish-brown. B. fusible. Decomposed bs hydrochloric acid.

Found in syenite. Norway.
Zeilhauite.-Yttrotitanite. H 6.5 G 3.69. Case 37. Frac. conchoidal. Translucent. Lus. vitreous. Col. brownish-black. Str. grayish-brown, B. fusible. Decomposed by hydrochloric acid.

Found at Buön in Norway.

Lunnite,-Hydrous Phosphate of Copper, Hemiprismatic Dystome Malachite, Phosphochalcite, psendo malachite.-($3 \mathrm{Cu} 0+\mathrm{P} 0^{3}$) $+3(\mathrm{Cu} 0+\mathrm{H} 0)$. oblique. H $4.5-5.0$ G $4.0-4 \cdot 4$. Frac. conchoidal. Semi-transparent, translucent on the edges. Lus. vitreous. Col. green. Str. green. Brittle. B. fusible. Soluble in nitric acid.

Found in grauwacke-slate. Bavaria, the Rhine, Reuss, the Ural.
Ehlite. $-5 \mathrm{Cu} 0+\mathrm{P} 0^{s}+3$ H 0 . H1.5-2.0 G 38. Lus. pearly. Col. green. Str. pale green.

Found in reniform and botryoidal masses. The Rhine, the Ural. The Kupferdiaspore, a fibrous mineral from Libethen, is supposed to be ehlite.

Antunite,-Yellow Uranite, Uran-mica, Phosphate of Uranium, Pyramidal Euchlore Malachite.- $\left(\mathrm{Ca} \mathrm{O}+\mathrm{PO}^{5}\right)+\left(2 \mathrm{U}^{2} \mathrm{O}^{3}+\mathrm{PO}^{5}\right)+8 \mathrm{H} \mathrm{O}$. pyramidal. H1.0 - 2.0 G $3.0-3 \cdot 2$. Case 57. Transparent, translucent. Lus. pearly, vitreous. Col. yellow, green. Str yellow. Sectile. B. fusible. Soluble in nitric acid.

A beautiful mineral, found in granite near Autun, and near Limoges in France. Distinguished from green mica by being soluble in nitric acid, and by the brittleness and inelasticity of its thin laminc.

Torberite.-Copper Uranite, Chalcolite, Pyramidal Euchlore Malachite, Green Ura-nite.- $\left.\left(\mathrm{CuO}+\mathrm{PO}^{5}\right)+\mathrm{C}^{2} \mathrm{U}^{2} \mathrm{O}^{3}+\mathrm{PO}^{5}\right)+8 \mathrm{H} 0$. pyramidal. $\mathrm{H} 2 \cdot 0 — 2 \cdot 5$ G 3.5-3.6. Case 57. Transparent, translucent. Lats. pearly and vitreous. Col. green. Str. green. Rather brittle. Soluble in nitric acid.

Found in slate and granite. Saxony, Bohemia, Bavaria, Cornwall, United States, Belgium.

Xenotime.-Phosphate of Yttria, Phosphyttrite. $-3 \mathrm{Y} 0+\mathrm{P}^{5}$. pyramidal. H $4.5-5.0$ G $4.39-4.557$. Case 57. Frac. splintery. Translucent, translucent on the edges. Luts. resinous. Col. brown. Str. light brown. Brittle. B. infusible. Insoluble in acids.

A very scarce mineral, found in granite. Norway and Sweden.
Wavellite.-Lasionite, Devonite, Phosphate of Alumina, Prismatic Wavelline Haloide. $-3 \mathrm{Al} \mathrm{O}^{3}+2 \mathrm{PO}^{5}+12 \mathrm{H} \mathrm{O}$. prismatic. H 3.5-4.0 G $2.3-2.4$. Case 57. Frac. imperfect conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, gray, green, yellow, brown. Str. white. Brittle. B. infusible. Soluble in acids.

Found in slate and granite. Devonshire, Cornwall, Ireland, Scotland, Bohemia, Saxony, Greenland, the Brazils, Pennsylvania.

Gibbsite.-Hydrargyllite, Felsobanyite.-Al $0^{3}+\mathrm{PO}^{5}+8 \mathrm{H} 0$, mixed with $\mathrm{Al} \mathrm{O}^{3}+3 \mathrm{H} 0$. Botryoidal masses. H $3 \cdot 0$ G $2 \cdot 20-2 \cdot 44$. Case 19. Feebly translucent. Lus. dull. Col. greenish, grayish, jellowish-white. Brittle. B. infusible. Insoluble in hot hydrochloric acid.
\& In a mine of brown hematite. Richmond, Massachusetts.
Elaprothine.-Lazulite, Voraulite. Azurite, Blue Spar. $-2\left(\mathrm{RO}+\mathrm{PO}^{5}\right)+\left(\mathrm{Al} \mathrm{O}^{3}\right.$ $\left.+3 \mathrm{P} 0^{5}\right)+6 \mathrm{HI} 0$, where R is Mg, Fe, and Ca. oblique, H5.0-5.5 G $3.0-$ -3.121 Case 57. Frac. uneven. Transparent, opaque. Lus. vitreous. Col. blue. Str. white. Very brittle. B. infusible. Not soluble in acids.

Hexderite,-Prismatic Fluor Haloide.-An anhydrous phosphate of lime and alumina and hydrofluoric acid. prismatic, H 5.0 G $2 \cdot 985-2 \cdot 99$. .Frac. conchoidal. Transparent. Lus. vitreous. Col. yellow, white. Str. white. Very brittle. B. fusible with difficulty. Soluble in hot hydrochloric acid.

Found very rarely in the tin mines of Ehrenfriedersdorf in Saxony, Its crystals resemble those of that variety of apatite which is called asparagus stone.

Amblygonite, -Prismatic Amblygonits Spar.-A phosphate of alumina. prismatic. H6.0 G $3.045-3.11$. Case 57. Frac. uneven. Semi-transparent, translucent. Lus. vitreous. Col. white, gray, green. Str. white. B. fusible. Soluble in sulphuric acid.

Found with tourmaline and topaz in granite. Baxony, Norway.
Turquoise,-Calaite, Uncleavable Azure Spar.-A hydrophosphate of alumina. amoxphous. H 6.0 G 2.62-3.0. Case 57. Frac. conchoidal. Translucent on the edges, opaque. Lus. waxy. Col. blue, green. Str. greenish-white. Not very brittle. B. infusible. Soluble in hydrochloric acid.

Found in reniform and botryoidal masses. Persia, Thibet, Silesia, Lusatia, Saxony. Sold in the large towns of Persia in small masses, but in great quantities. Cut and polsshed, it is used for ormamental purposes; when its colour is good, it is greatly valued as a gem. The occidental turquoise, from Lower Languedoc, is a yery different substance, being bone coloured with phosphate of iron.

Fischerite, $-2 \mathrm{Al}^{3}+\mathrm{P} 0^{3}+8 \mathrm{H} 0$. $\mathrm{H} 5 \cdot 0 \quad$ G 2.40. Transparent. Lus. vitreous. Col. green. Soluble in sulphuric acid.

Found in small six-sided prisms. The Ural.
Kakokene.-A hydrophosphatc of alumina and iron. G 2336-3.38. Case 57. Translucent, opaque. Lus. pearly. Col. yellow. Str. yellow. B. fusible. Soluble in acids.

Found in Bohemia, Bavaria, and the United States. Derives its name from kakos bad and $\xi \in$ vos a guest, on account of the injurious effect of the phosphorus which it contalus on the quality of the iron extracted from it as an ore.

Childrenite.-A phosphate of alumina and iron. prismatic, H 4.5-50. Case 57. Frac. uneven. Transparent. Lus. vitreous. Col. white, yellow, brown. Str. white.

Found on slate and quartz. Crinnis in Cornwall and Devonshire.
Wagnerite.-Hemiprismatic Fhor Haloide.- $\mathrm{Mg} \mathrm{F}+3 \mathrm{Mg} \mathrm{O}+\mathrm{P} \mathrm{O}^{3}$. oblique, H 5.0-5.5 G $2.98-3.13$. Case 57. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. yellow, gray. Str. white. Brittle. B. fusible with difficulty. Soluble in hot nitric acid.

An extremely rare mineral, found in crystals with quartz in the crevices of a clay slate rock in the valley of Höllengraben in Saltzbarg.

Monazite.-Mengite, Edwardsite, Eremite.-A phosphate of the oxides of cerium and lanthanium. oblique. H $5 \cdot 5 \mathrm{G} 4 \cdot 8-5 \cdot 0$. Case 57. Frac. uneven. Semitransparent, translucent on the edges. Lus. resinous. Col. brown, red. Str. reddishyellow. B. fusible with difficulty on the edges. Decomposed by hydrochloric acid.

Found in a misture of felspar, albite, and mica. Siberia and the United States.

Baryta.— $(\mathrm{Pb} \mathrm{O}+\mathrm{Cl})+3\left(3 \mathrm{PbO}+\mathrm{P} \mathrm{O}^{5}\right)$. rhombohedral. H $3.5-40$ G 6.9 $-7 \cdot 1$. Case 57 a. Frac. imperfect conchoidal. Semi-transparent. Las, resinous. Col. green, brown, yellow, gray. Brittle. B. fusible. Soluble in nitric acid.

Found with galena. Bohemia, Saxony, Baden, the Hartz, France, Hungary, Cornwall, Cumberland, Durham, Yorkshire, Derbyshire, Scotland.

Mimetite.-Arseniate of Lead, Brachytypous Lead Baryta, Arsenite, Hedyphane.$\mathrm{PbCl}+3\left(3 \mathrm{PbO}+\mathrm{As} \mathrm{O}^{5}\right)$. rhombohedral. H $3 \cdot 5-4 \cdot 0$ G 7.18-7.28. Case 57 A. Frac. imperfect conchoidal. Translucent. Lus. resinous. Col. green, yellow. Str. white. Brittle. B. fusible. Soluble in nitric acia.

Found with galena. Saxony, Baden, Cornwall, Devonshire, Cumberland, France.
Apatite -Phosphate of Lime, Talkapatite, Francolite, Moroxite, Asparagus Stone, Phosphori'e, Rhombohedral Fluor Haloide.-Ca $\mathrm{Fl}+3\left(3 \mathrm{CaO}+\mathrm{PO}^{5}\right)$, yhombohedxal. H 5.0 G $3.18-3.21$ Case 57 B. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, white, gray, blue, green, yellow, red, brown. Str. white. Brittle. B. fusible with difficulty. Soluble in hydrochloric acid.

Found in granite, gneiss, slate, marble, basalt, and in metallic veins. Spain, the Tyrol, Bohemia, Saxony, Cornwall, Devonshire, Cumberland, Norway, Cnited States, Bavaria, France, the Ural. Named apatite by Werner, from a $a \pi \alpha \sigma \omega$ to deceive, on account of the deception it so long caused to the older mineralogists.

Fhosgenite.—Murio Carbonate of Lead, Horn Lead, Corneous Lead. $-\mathrm{Pb} \mathrm{Cl}+$ $\mathrm{PbO}+\mathrm{CO}^{2}$. pyramidal. II 3.0 G $6.0-6.2$. Case 57 в. Frac. conchoidal. Transparent-translucent. Lus, adamantine. Cal. colourless, white, gray, yellow, green, brown. Str. white. Brittle. B. fusible. Soluble in nitric acid.

A very rare mineral. Found in crystals and globular masses. Matlock in Derbyshire, Cornwall, Massachusetts.

Sodalite.-Dodecahedral Amphigene Spar, Dodecahedral Zeolite.-Na $\mathrm{Cl}+3$ (Na 0 $\left.+\mathrm{SiO}^{2}\right)+3\left(\mathrm{AlO}^{3}+\mathrm{Si} \mathrm{O}^{2}\right)$. cubic. H 60 G $2 \cdot 287-2 \cdot 292$. Case 57 B . Frac. conchoidal. Semi-transparent, translucent. Lus. vitrcous. Col. colourless, white, yellow, green, gray, blue. Str. white. B. fusible. Decomposed by hydrochloric acid, leaving a jelly of silica.

Found in lava, mica slate, and syenite. Sicily, Greenland, Siberia, Norway, United States.

Eudialyte, -Rhombohedral Almandine Spar.-2 ($\mathrm{R} \mathrm{O}+\mathrm{SiO}^{2}$) $+\left(\mathrm{Zr} 0+\mathrm{Si} \mathrm{O}^{2}\right)$ where R is $\mathrm{Na}, \mathrm{Ca}, \mathrm{Fe}$, and Mn . mhombohedral. $\mathrm{H} 5 \cdot 0-5 \cdot 5$ G 2.84-2.95. Case 57b. Frac. conchoidal. Translucent on the edges. Opaque. Lus. vitreous. Col. red. Str. white. Slightly brittle. B. fusible. Partly decomposed by hydrochloric acid.

Found at Kangerdluarsuk, in West Greenland.
Pyrosmalite.-Axotonous Perl Mica.-15 (Fe $\left.\mathrm{O}+\mathrm{Si} \mathrm{O}^{2}\right)+15\left(\mathrm{MnO}+\mathrm{Si} \mathrm{O}^{2}\right)$ $+3\left(\mathrm{Fe}^{2} \mathrm{O}^{3}+\mathrm{HO} 0\right)+\mathrm{Fe}^{2} \mathrm{Cl}^{3}$. xhombohedral. H $4.0-4.5$ G $3.0-3.2$. Case 57 b. Frac. uncven. Translucent, opaque. Lus. pearly or resinous. Col. brown, green. Str. lighter than the colour. B. fusible. Decomposed by hydrochloric acid.

A rare mineral, Found in attached and imbedded crystals. Sweden.
Eluoz - Fluate of Lime, Octahedral Fhoor Haloide, Fluor Spar.-Ca Fl. cubic.

GEOLOGICAL INDEX,

Glossatial, ©explantoty, and fufitential.

A

Absorption of light, 134, 135
ddelsberg, caverns of, 11.
Ldit level of a mino, $2 \boldsymbol{2 7}$.
lerial perspecti e, 1 hysi al prin ipl sof, 141.
tfrica, physical geography f, 21.
Lgricultural geology; 191; knowledse of necessary, 192.
Lgriculture, application of ge 1 gy to, 130 ; relaton of geolos: to, 195.
li, uille de Dru, in Switzerland, view of tho, 143, 144.

Ar, periolic changes of the, 10,11 (see AimoSPHFRE).
iir and wa cr, action of, on exposed coasts, 24.
Alabaster (Gr Alibastron a town in Esypl wh re the mineral abounded), wide distribution of, 209.
Therese rocks of Italian geologists, 108.
Alleghany mount ins, view of the, $1: 0$.
llenheads, the srent lead mines of, 285.
Slluvia, mining in, 251.
Alluvi il soil, deposits of, 192; derived from rivers, 194.
Alps, m untain ranze of the, $24,25$.
Nlum Bay, Isle of Wight, soft sands of, 164.
Alum shale of the Yorkshire coast, 71,96 .
Aluminous s ils, 193.
Amazon, the $\mathrm{r} v e r$, its rast magnitude, 18 ; immense deposits of the, 38 .
America, river systems of, 18; physical geography of, 22 ; numer us beds in, 119 .
Ammonttes hisulcatus (from Ammon the ram'shorned Lybian deity, and Lat. bisulcatus dou-ble-furrow d), a lias fossil, 94, 95, 96 .
. 9 . bullattts (from Lat. bullatus studded), an oolite fossil, 97.
A. Jason, an oolite fossil, 9 २, 99 .

Imygdoloid (Gr. amygdala an almond, and eidos resemblance), rocks so called, 48.
Ancyloceras (Gr. ankulos a currature, and keras a h rn), a Neocomian fussil, 104, 105.
Andes, mountain chain of the, $24,25$.
Animal life, first condition of, on the earth's surface, 77.

Animals, distribution of, on the earth, througn the different perlods of time, 61 et \& $q \cdot ;$ bones of, foun l in the Arctic reri ns, 64 , adaptation of evers part of the shel ton of, 64,65 ; on e existing in our own island, 70 ; in South Americs and A strala, $i b$.; of the red sandst ne f rmation, 92, 93 ; extinct races of, 1_6.
Anoplotherium (Gr. anoplos unarm 1, and teri n a wild be ist, a count of the, $119,123$.
Anthra ite, constituents of, 230.
A piocrinite (Gr, apion a pear, and krin n a lily), a mid lle onlite fossil, $93,99$.
Apteryx (Gr. a an t pteryx wanting winms, the wingless bird of \ew Ze land, 65.
1queous action on the earth's surface, 37.
A que us rocks, 47, 38 ; arrance nent of, 59.
Aque us the ry of min ral veing. 269.
Ar ad a, li nestoue mountains on the coast of. 152.

Archite t ral genlogy, 204.
Aret c re ions, bones of tropical animals found in the, 64.
Art, dependence of, on science, 132.
Artesian springs, the geolvoi nl principles of, 201,
Artist, importauce of sci ufte knowledge to the, 133.

Avia Mmor, extinct vol a ioe in, 180, 181.
Antarte elxgans (tr m A tarte the sidonian g ddess of lea ity, and Lat. el gans cle ant). an oolite foss 1,99 .
A thantic, mari ie currents in the, $\mathbf{1 6}$.
Atin sith re (cr. atmos vapour, and sph ira a globe), component eleme its of the, 7,8 ; its uses, 9 ; chandes of its conditi $n, 10$; its nature, 133; illusions of tl c, 135, 136 ; circulati n of water by the, 1 Jg .
Atolls, formed of coral reefs, 35, 36.
Augite rock (Gr. a' ge glittering , 52, 53.
Aulopora serpens (Gr a clos a pipe, and porz a pore: Lat. serpens creeping), a middl palan$2 \mathrm{i} \cdot \mathrm{f} \mathrm{ss} \mathrm{l}, 81$.
Aurüra bor alis, phenomena of the, 137, 13 .
Australia, fossil animals found in, 125.
Avellana cassis (Lat. avellana a filbert nut, and cassis a helmet), a greensand fossil, 107.

B

Ballahulish slate quarries in Scotland, 211.
Basalt of roicanic rocks, 177 ; soils derived from, 193.

Basaltic rocks, their nature, 53, 54 ; scenery of, 181.
Bastei, near Dresden, geological features of the, $166,167$.
Bath stone, one of the oolitic series of rocks. 7, 98 ; its qualities as a building inaterial, 207, 203.
Batrachian reptiles (Gr. batrachos a frog), fossilized, 92, 93.
Beaches, raised, tertiary deposits of, 71, 121,
Belemnites (Gr. belemnon a dart), fossil remains so called, 95,96 ; of the secondary period, 111.
B, mucronatus (Lat. mucronatus sharp-pointed), a cretaceous species, 106, 109.
Bellerophon, a fossil so called, 84.
Berdan's machine, used for crushing and amalgamating of ores, 258.
Bird, imprint of the foot of a fossil species, 61.
Birds, gigantic, fossils of, found in New Zealand, 125.

Bituminous coal, 228 ; cancel a remarkable specimen of, $i b$.
"Black bands," the ironstone of the Clyde district, 263.
Blackdown fossils, group of, $106,107$.
Black-gang Chine, Isle of Wight, stratifled sandrock of, 165 ; waterfall of, 171.
Blasting, operations cf, in mining, 284.
Boghead coal, analysis of, $239 n$.
Boring for coal, process of, 236.
Boulders, erratic. 121 ; composition of, 185.
Bradford clay, a subdivision of the oolite series, account of, 71, 98.
Brard's method of testing building stones, 205
Brazils, method of working the gold ore in, 253, 254.

Brick clays, geology and contents of, 213, 214
Building, sandstones used for, 206 ; limestones used for, 207 ; granite, marbles, \&c. used for, 209.

Building materials, properties of, 204; Brard's method of testiug building stones, 205.

C

Caino-zoic (Gr. kainos new, and zoos life) roeks so called, 117 , note.
Caithness flagstones, account of, 212.
Calamite (Lat. calamus a reed), account of the fossil so called, 83, 224; of the carboniferous period, 83.
Calcareous soils, 193.
Calcareous rock3, 194.
California, methods of worklng the gold ore in, 256.

Calymene Blumenlachii (Gr. kalymma a covering), a silurfipangssi, 阿LIAD - Univers

Cancer Maerscheilus (Lat. cancer a crab), a tertiary fossil, 120.
Candles used in coal mines, 244, 245.
Cannel coal, nature of, 228.
Carboniférous linestone, 153.
Carboniferous rocks, hard sands of the, 168 .
Carboniferons sea, condition of the, during the palxozoic epoch, 85 ; shelis and fishes of the, 86 .
Carboniferous series of fossuls, 82 et seq.; group of, 84 ; plants of the, 87 ; coal furmations, 87, 88.
Cardia (Gr. kardia the heart), a marine fossil, 117, 118.
Cardīta pectuncularis (Gr. kardia: Lat. pecten a comb), a tertiary fossil, 118.
Cardium peregrinum (Gr. kardzu; Lat. peregrinum foreign), a Neocomian fossil, 103, 104.
C. Hillanum, a greensand fossil, 105

Carn Brea mine, its inmense depth, 278.
Cascalho, the Brazilian name given to the auriferous detritus, $254 n$.
Catakecaumene, in Asia Minor, extinct volcano of, 180.
Caverns of Dudley Castle, 158; of Adelsber's, 161 ; at Nottingham Castle, and in Saxon Switzerland, 166,16 ,.
Cements, geology of, 213, 214.
Ceratites (Gr. kerus a horn), a sandstone fossid, 92, 93.
C. nodosus (Gr. keras, and Lat. nodosus, knobby), a sandstone species, 03.
Cerithĭum hexagŏnum (Gr. keras; hex six, and gonia an angle), a tertiary fossil, 118.
Chalk cliffs of England, 156.
Chalk formation of the secondary epoch, 106 ; fossils of the, 106, 107; the highest deposit of the secondary series, 108.
Chalk sponge, flgture of, 109.
Cheddar cliffs, limestone rocks of, 155.
Cheese grotto in the Eifel, 54.
Chelonia Benstedi (Gr. chelys a tortoise), a greensand fossil, 10%.
Chili, method of working the gold ore in, 256 .
Chonetes Dalmaniana (Gr. chone a funnel), 84,
Cidăris (Lat. cidaris a turban), tigure of, 95, 96.
C. glandiformis (Lat. glandeformis acom. shaped), an oolite fossil, 100.
Cirrus clouds, 139, 140.
Classiffcation, law of, in geology, 66; of stratifed rocks, 70; table of, 71 ; of fossilized fishes, 70.
Clay, soft, picturesque forms of, 172.
Clay ironstones of the lias formation, 262.
Clay rocks, nature of, 171,172 ; varieties of slates of, 174 .
Clay slate, a metamorphic rock, 56.
Clays of London and Hampshire, 71, 117; of the secondary rocks, 173; peculiarities of, varied in plains, $i b$.; varieties of, 174 ; vaious colours of, 175; varieties in England, 193. 194, the é L9Pfetifuents of brick, porcelain, \&c .. 213, 214.
-leavage of slate rock, 57.
Cliffs at the Isle of Wight, Hastings, Hythe, \&ce., 165.

Clinate, physical conditions of, 25, 26 ; influence of, on civilization, 2°; the effect of local canses, $i b$.
Clouds, phenomena of, 17, 139; formation of, 17; varieties of, 139, 140, 141 ; accidental colours of, 141.

Clyde district, its beds of ironstone, 263
Clymenia Sedgroickii (Gr. krymenos celebrated), a sandstone fossil, 81.
Coal, deposits of, In Germany, 71; of the carboliferous series, 71,83 ; the true vegetable origin of, 87 ; its use and value as a fuel, 221, 222 : its extensive distribution, 221 ; its geological origin, 223-225; chiefly formed from the plants Sigillaria, Stigmaria, Lepidodendron, and the Calamite, ib.; thickness of the beds of, 225 n ; mineralization of, 226 ; its appearance at the surface of the earth, $i b . ;$ its relative position. 227, 231 ; varieties and essential pecultarities of, 228; bituminous coal, ib.; cannel a remarkable variety of, ib.; obtained In Northumberland, Durham, fic., 229 ; steam coal, i6.; anihracite, 230 ; relative value of, $i b$.; age of, ib.; Interruptions of coal beds, or faults, 231233 ; appearance of the coal field after disturbance, 232; dykes in coal flelds, 233, 234n; value of sections of, 234 ; ironstone and pyrites of, 235 ; many seams contain iron, $i b . ;$ importance of to England, 249.
Coal Mines and Coal Mining, surface seams the simplest form of mining, 235 ; deep workings, 336 ; process of boring, $i b . ;$ shaft sinking, 237 ; various methods of tubbing, ib.; different plans of working. 238; the Newcastle method, ib.; explosive gases, 239 : fire-damp. 239, 240 , on the proper ventilation of, 240 et seq.; accidents from Gre-damp, 241, 242 ; various methods of ventilating, 243,244 ; the safety lamp, 244 et seq.; accidents in, from water, 248 ; miscellaneous accidents in, ib.; dangers of, 250; necessity of legislation respecting, 250.
Cologne, volcantc action in the ne ghbourhood of, 179
Colour, nature and phenomena of, 136, 137.
Colours of clouds, 141.
Conglomerate rocks (Lat. conglomero to heap together), 48.
Continents of Europe, Asia, and Africa, physical georraphy of the, 21 ; of America, 22.
Conularia ornata (Gr. konos a cone; Lat. ornata adorned), a sandstone fossil, 81.
Coral racks (Gr. korallion, from kore and als danghter of the sea), formation of, 35, 161.
Coral islands built by the polyp, 41, 42; recent limestones of, 160 .
Coral rag, a variety of the oolite series, 71, 100.
Coralline arag, a deposit of the middle tertiary

Coralline fossils of the oolite formation, 97, 104.
Corals of the carbonifenons period, 85.
Cornbrash, a variety of the coiite rormation, 71, 98.

Cornwall, great depth of the mines in, 284.
Costeauing, the method adopled for discovering the presence of a mineral vein, 273
Cotopaxi, volcano of, 178.
Cotteswolds, oolitic hills of the, 156 .
Conrsing the air, a process for ventilating coal mines, 243.
Crag, mammeliferous, of Norfolk, 71, 121 ; tertiary deposits of, $i b$.
Crag-cliffs of the Loire and Garonne, 71.
Crania (Gr. kranion the skull), a fossil of tho chalk formation, 106, 109.
Cretaceous fossils (Lat. areta chalk), 105, 106.
Cretaceous limestones, 156.
Crinoidal group (Gr.kriron a lily, and eidos resemblance), red sandstone fossils, 92.
Crushing mill, used for the preparation of ores, $257,258$.
Crystalline limestones, 162.
Crystalline rock, peculiarities and scenery of, 177.
Crystals iGr. krystallosice), nature and properties of, 44.
Ctenoid fishes (Gr. ktenion a little comb, and cidos resemblance), scales of the, 79 .
Cumberland, vast mineral ficlds of, $2061,262$.
Currents, marine. phenomena of, 15 ; th ir courso in the Atlantic, 16.
Cynthocrinus caryocrinoldes (Gr. kyathos a cup, and krinon a lijs; kargon a nut, krinon a lily, and eidos resemblunce), a carboniferous fossil, 84.
Cyathophyllum caspitosum (Gr. kyathos and phyllon a cup-shaped leaf; Lat. corspilosus turfy), a Silurian fossil, 75.
Cycadeoldea (Gr. kykas the Ethiopian palm, and eidos resemblance), an oolite fussil, 100.
Cyclas antigua (Gr. kyklos a shield, and Lat. antiqua ancient), a tertiary fossil, 117, 118.
Cycloid fishes (Gr. kyklos, and eidos resemblance), scales of the, 79.
Cyclostoma Arnoldut (Gr. kyklos, and stoma the stomachy, a tertiary fussil, 118.
Cypraa elegane (Gr. Cypran the name of Yenus, and Lat. eleg a ne beautiful), a turtiary fossil, 118.
Cythäre auriculata (Gr. Cytherea Venus, and Lat. auriculata eared), a Wealden fossil, 101.

D

Damp in coal mines, 239, 942.
Davy lamp, its value in coal mines, 245. 247 ; number of hamps in the Wallsend pit, 245 ; accidents with the, 246 ; orders respecting the, in the period, 71, 119|RIS - LILLIAD - Université Lillêvqlisend colliery, 246.

Dean's island, formed of coral rock, 36.
velabole slate quarry, coanty Cornwall, 211.
Deltas, modern tertiary deposits of, 71 .
Deposits of animal origin, 41 .
Derbyshire, mountain scenery of, 154 ; vast mineral fields of, 261.
Desert, scenery of the, 143.
Development, law of, in geology, 69.
Devonian period of the earth's surface, 78; group of fossils of the, 81 .
Diallage rock (Gr. diallage difference), 52.
Diamond washing in mining operations, 259.
Dinotherium (Gr. deinos terrible, and therion a wild beast), fussil remains of the, $119,123,124$.
Dimerocrinites Icosidactylus (Gr. dimeres divided into two parts, and krinon a lily; eikosi twenty, and daktyloi fingers), a Silurian fossil, 75.
Distribution of organic beings, law of, 67
Divining rod, adopted for the discovery of a mineral vein, $2 \boldsymbol{2 7} n$.
Dodo, an extinct species of bird, 65.
Doors for preventing explosions in coal mines, 244.
Dove Dale, county of Derby, scenery of, 155.
Drainage in mines, 283, 284.
Draining of land, operations for the, 195, 196, 197. Dressing the ore in mines, 281 .
Drift, deposits of, 121.
Dr fts in mines, 278 .
Dudley Castle, caverus of, 158.
Durham, vast mineral fields of, 261.
1yykes, appearance of, in coal fields, 233 ; mineral specimens from, 234 R .
Dysaster (Gr. dys imperfect, and aster a star), an oolite fossil, 97 .

E

EARTH, physical history of the, 1 et seq.; its form, 2 ; its surface, $i b$. ; scenery on the surface, 3 ; different climates and varieties, ib.; its ancient history, ib.; materials of which it is founded, 5 ; proportion of land and sea, ib.; map of the, 6 ; its geographical and geological features, 19; skeleton of the, 20 ; continents of the, 21 ; its interior heat, 27, 28 ; change of level of land, 33,34 ; a large portion of its crust exposed to sudden changes, $i b . ;$ important changes on its surface from aqueous and igneous action, 36, $37 \mathrm{et} \mathrm{ee7.}, \mathrm{77;} \mathrm{deposits} \mathrm{of} \mathrm{animal} \mathrm{origin}, \mathrm{41;}$ continual changes on its surface, 43,70 ; materials of its crust arranged in definite order, and in various layers, 43, 65 ; theory of its first formation, 44 ; order in the arrangement of its surface materials, 45 ; primæval state of the, 76 ; its azoic condition, 77; great changes that have affected its surface, 126 ; its form and structure, 142 ; constituent elements of the, 198.
Larthquakes, physical characteristics of, 31,32; violent effects of, $\mathrm{P}_{3}, \mathrm{~S}_{33}$, LILLIAD - Universite

Eastern Archipelago, insect formation of coral rocks in the, 3.
Egmont, Mount, volcanic cone of, in New Zealand, 179.

Flba, Isle of, iron ore found in the, 270.
Electrical theory of the formation of mineral veins, 271.

Elements, the substances so called, 6; difficulty of understanding their properties, ib.; forces acting upon them, ib.; treir action on the earth's surface, 42, 43.
Elephants, frozen in Siberia, 64 ; of the newer tertiaries, 124.
Elk, great Irish, fossilized, 93.
Encrinital stems (Gr. Erinon a lily), carboniferous fossils, 84.
Encrinītes moniliformis (Gr. krinon, and Lat. monile and forma necklace-form), rea saudstone fossils, 92, 93.
Engineering, application of geology to, 130, 196.
Eocēne (Gr. eos dawn, and kuinos new), a term applied to the furmution of the tertiary epocin 116 note.
Lryon arctiformis (Gr. eryo to draw; Lat. arctus slender, and forma shape), an oolite fossil, 99, 101.
Escars, hills so called, 151.
Europe, physical geography of, 21, 22; its mild temperature, 26.
Explosions, in coal mines. 241 ; plans for preventing, 243, 244; effects of weather and season on, 247.

F

Fatamor ${ }^{\prime}$ ana, atmospheric illusion of the, 136.
Faults in coal beds, 231-233.
Felspar rock (Ger. felspath a crystallized mineral), 52.
Fens, drainage of, 196; of Lincolnshire, 19%.
Ferns of the carboniferous period, 89.
Fertility of solls, causes of, 193.
Fine arts, application of geology to the, 131.
Tingal's Cave, Staffa, basaltic formation of, 181.
Fire clays, properties of, 214.
Fire-damp in coal mines, 239,240; accidents from, 241, 242; fatal effects of the, 250.
Firestone of Mantel, 106.
Fisher, classification of, 79 ; fossilized scales of, $i b . ;$ tails of, 80 ; of the palwozoic period, 85 ; of the carboniferous period, 86 ; of the lias formation, 95,96 ; fossil remains of, in the chalk formation, 108; of the secondary period, 111 ; of the tertiary period, 117 ; of the older tertiaries, 122.
Flagstones, silicious rock combined with argillaceous matter, 210,211 ; various qualities of, 212. Flat veins in miniug, 265.
Foraminiferous shells (I.at. foramen an opening or door), greensand fossils, 107.
Foreground, an important feature in landiscape, Lilloz. 1

H 4.0 G 3.017 - 3.188 . Case 58. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, white, gray, yellow, red, blue, green, black. Sir. white, Brittle. B. infusible. Soluble in nitric and hydrochloric acids.

Found in veins in tertiary limestone, porphyry, and porphyritic greenstone. Saxony, Bohemia, Baden, Cornwall, Devonshire, Derbyshire, Cumberland, Northumberland, the Banat, Norway, Paris, Renfrewshire, Siberia, United States, Mexico, Vesuvius. The large crystalline masses of Derbyshire presenting a concentric arrangement of various colours, principally blue, is known by the name of Blue John. It is turned on the lathe into vises and other ornaments. Fluor is used as a flux for the metallic ores, hence its name from the Latin fluo to flow.

Fluellite.-Fluoride of Aluminium.-prismatic. Case 58. Translucent. Col. white.

A v ry rare mineral, found on granite, at Stenna Gwyn, in Cornwall.
Fluocerite.-Neutral Fluate of Cerium.-Ce F $+\mathrm{Ce}^{2} \mathrm{~F}^{3}$. rhombohedral. II $4.0-5.0$ G 4%. Case 68. Frac. uneven. Opaque. Lus. fecble. Col. red, yellow. Str. yellowish-white. B. infusible.

A very rare mineral, found in albite and quartz. Broddbo, near Fahlun, in Sweden.
Yttrocexite.-Pyramidal Cerium Baryta.-Ca F, Y F, Ce F. Case 5s. Frac. nneven. Translucent, opaque. Lits. vitreous. Col. purple, bluc, red, gray, white. Str. white. Brittle. B. infusible. Decomposed by sulphuric acid.

Found in quartz. Sweden, Massachusetts.
Chiolite. $-3 \mathrm{Na} \mathrm{F}+2 \mathrm{Al} \mathrm{F}^{3}$. pyramidal. H 4.0 G2.84-2.90. Case 58. Transparent, translucent. Lus. resinous. Col. col urless, white. B. fu ible. Decomposed by sulphuric acid.

Found in granite. Miask, in Siberia,

- Cryolite.-3 Na $\mathrm{F}+\mathrm{Al} \mathrm{F}$. prismatic. H 2.5-3.0 G 2.953-2963. Case 58. Frac. uncven. Semi-transparent, translucent. Lus. vitreous. Col. white, yellow, red, brown, Sir. white. Brittle. B. fu ible. Suluble in strong sulphuri acid.

Found in gneiss and granite. West Gre nland, Siberia.
Chodnewite-2 $\mathrm{Na} \mathrm{F}+\mathrm{Al} \mathrm{F}^{3}$. H 4.0 G $3.0-3.08$. Tran parent, tranclucent. Lus. resinous. Col. colourless, white. B. fusible. D coniosed by sulphuric acid.

Found in granite. Miask, in Siberia.
工eucophane. $-3(\mathrm{CaO} \mathrm{O}+\mathrm{SiO})+(3 \mathrm{GO}+2 \mathrm{SiO})+\mathrm{Na} \mathrm{F}$. anorthic. II 3.5-4.0 G 2.974. Frac. unercn. Transparent, translucent. Lus. vithe us. Col. yellow, green Str. white. Very tough. B. fusible.

Found imbedded in syenite, n ar llrtvig, in N rway.
 $+\mathrm{Si} \mathrm{O}^{2}$). prismatic. H $8 \cdot 0$ G $3 \cdot 4-36$. Case 58 A . Frac. conchoidal. Transparent, translucent on the edges. Lus. vitrcous. Col. colourless, white, yellow, red, blue, green. Str. white. B. infusible. By ignition, the yellow varieti s become red, and the pale yellow colourless, without losing their transparency.

Found in grapite, gneiss and porphyry, Siberia, Moravia, Asia Iinor, Saxony, the Brazils, Bohemiar, ©ornwat, APeland, Sebsitad, ilyweden. New S uth Wales. The purest
varieties from the Brazils, called the Goutte d'eau, when cut in facets, like the diamond, closely resemble it in lustre and brilliance. The topaz is used as an ornamental stone. The Brazilian topaz, which has been made red by exposure to heat, when polished, can be distinguished from the bales ruby only by its becoming electric by friction.

Humite,-Chondrodite, Hemiprismatic Chrysolite, Macherite, Brucite. -3 (2 Mg 0 $\left.+\mathrm{Si} 0^{3}\right)+\mathrm{Mg}$ Fl. oblique. H 6.j Gr $3 \cdot 10-3 \cdot 20$. Case 58 A . Frac. uneven. Transparent, translucent. Lus. vitreous. Col. yellow, brown, gray. Str. white. B. infusible. Soluble in hydrochloric acid, leaving a jelly of silica.

Found in limestone and dolomite. Finland, Sweden, United States, Vesurius.
Salt.—Muriate of Soda, Chloride of Sodium, Rock Salt.-Na Cl. cubic. H 2.0 G 2-22. Case 59. Frac. conchoidal. Transparent, translucent. Lus. vitreous. Col. colourless, white, gray, yellow, red, green, blue. Str. white. Taste, saline. Rather brittle. B. fusible. Soluble in water.

Found widely disseminated, in thick beds and masses in various formations, and as an efflorescence covering large tracts of country. Hungary, Moldavia, Styria, the Tyrol, Bavaria, Wurtemberg, Switzerland, Spain, Cheshire, the Brazils, Mexico, Africa, Arabia. Used extensively for culinary purposes, agricultural and metallurgic operations, also in the manufacture of earthenware, soap, soda, \&c.

Sylvine.—Chloride of Potassium.-K Cl. cubic, G 1.9-2.0. Transparent, translucent. Lus. vitreous. Col. colourless, white. Taste, salt, rather bitter. B. fuses and volatilizes. Soluble in water.

Found in crystals, and as an efflorescence. Vesuvius,
Sal Ammoniac.-Muriate of Ammonia, Octahedral Ammonia Salt, Salmiak.$\mathrm{N} \mathrm{H}^{4} \mathrm{Cl}$. cubic. $\mathrm{H} 1 \cdot \bar{o}-2 \cdot 0$ G $1 \cdot 528$. Case 59. Transparent, translucent. Lus. vitreous. Col. colourless, white, gray, yellow, brown, black. Str. white. Taste, saline. Very sectile. B. volatilizes without melting. Suluble in water.

Found in crystals and massive. Vesuvius, Etna, Solfatara, Lipari, Bourbon, Iceland, Bucharian 'Tartary, Himalaya Mountains, France, Scotland, Newcastle. Employed in medicine, metallurgic operations, and in tinning and soldering.

Cotunnite.- Pb Cl. prismatic. G 5.238. Case 59. Transparent. Lus. adamantine. Col. colourless, white. Str, white. B. fusible. Soluble in water.

Found in the crater of Vesuvius aster the irruption of 1822.
Matlockite. $-\mathrm{PbCl}+\mathrm{Pb} 0$. pyramidal. $\mathrm{H} 2.5-3.0 \quad \mathrm{G} 7.21$. Case 59. Frac. uneven. Transparent, translucent. Lus. adamantine. Col. yellowish. B. fusible.

Found in old heaps in the Cromford level, near Matlock.
Mendipite. - Kerasine, Peritomous Lead Baryta. $\mathrm{Pb} \mathrm{Cl}+2 \mathrm{~Pb} 0$. prismatic. H $2.5-3.0$ G 7.0-7.1. Case 59. Frac. conchoidal. Translucent. Lus. adamantine. Col. white, yellow, red, blue. Str. white. B. fusible. Soluble in nitric acid.

Found with ores of lead. Mendip Hills, Somersetshire, Westphalis.
Remolinite.-Muriate of Copper, Smaragdochalcit, Atacamite.- $\mathrm{Cu} \mathrm{Cl}+3$ (Cu 0十 H O). pxismatic. $\mathrm{H} 3.0-3.5$ G $3.69-3.71$. Case 59. Frac. conchoidal. Semi-transparent, translucent on the edges. Lus. vitreous. Col. green. Str. green. Rather brittle. B. fusible. Soluble in acids.
 Vesurius, Etna.

Connellite.—Sulphato-chloride of Copper. rhombohedral. Lus. vitreous. Translucent. Col. blue. B. fusible. Soluble in hydrochloric acid.

Found with arseniate of oxide of copper. Cornwall.
Percylite - A Hydrochloride of Lead and Copper. cubic. H $2.5 . \quad$ Case 59. Lus. vitreous. Col. sky-blue. Str. the same. Soluble in nitric acid by boiling.

Found with gold in a matrix of quartz. La Sonora in Mexico.
Kerate.-Muriate of Silver, Hexahedral Perl Kerate, Hornsilver.-Ag Cl. cubic. H $1.0-1.5$ G $5.55-5.60$. Case 59. Frac. conchoidal. Transparent, translucent on the edges. Lus. waxy. Col. pearl-gray, blue, green, brown, yellowish-white. Str. shining. Malleable and sectile. B. fusible. Soluble in ammonia.

A rare mineral, found in veins with ores of silver. Mexico, Peru, Chili, Siberia, France, Cornwall, the Hartz. Derives its name from $\kappa \in \rho a s h o r n$, on occount of its appearance.

Embolite. $-2 \mathrm{Ag} \mathrm{Br}+3 \mathrm{Ag}$ Cl. cubic. H 2.0 G $5 \cdot 789-5.806$. Frac. hackly. Lus. adamantine. Col. yellow, green. Perfectly malleable.

Found in limestone. Copiapo in Chili.
Bromite.—Bromide of Silver. Ag Br. cubic. H 1.0-2.0 G 5.8-6.0. Case 59. Lus, bright. Col. green, yellow. Str. green. B. fusible. Soluble in warm concentrated ammonia.

Found with kerate. Mexico, Chili, Bretagne.
Iodite.—Iodic Silver.—Ag I. H $1 \cdot 0$ G 5.504. Lus. resinous. Col. yellow, green. Str. shining. B. fusible. Soluble in strong hydrochloric acid.

Found in serpentine and porphyry. Mexico, Chili, Spain.
Calomel.-Muriate of Mercury, Pyramidal Perl Kerate, Horn Quichsilver. $-\mathrm{Hg}^{n} \mathrm{Cl}$ pyxamidal. H l.5 G 6.4-6.5. Case 59. Frac. conchoidal. Translucent, translucent on the edges. Lus. adamantine. Col. gray, green, yellow, brown. Str. white. Sectile. B, volatilizes. Soluble in nitro-murintic acid.

Found with mercury and cinnabar. Bohemia, the Palatinate, Carniola, Spain.
Coccinite.-Toduret of Mercury.—Lus. adamantine. Col. red. Molts and sublimes easily.

This mineral is probably identical with the red crystals of Iodil of Merenry, Hg I. formed by cooling a saturated solution of lodid of Mercury in an aqueous solution of Ioda, of Mercury and Potassium. These crystals are pyramedal; wh n heat d they sublime and form yellow crystals belonging to the prismatic system. The yellow crystals become red by being scratched or rubbed.

Mellite.-Mellate of Alumina, Honey Stone, PJramid l Mchecir se Resin.-Al $0^{3}+$ $\mathrm{C}^{4} \mathrm{O}^{3}+18 \mathrm{H} 0$. pyramidal. H $2 \cdot 0-2 \cdot 5$ G $1 \cdot 5-1 \cdot 6$. Case 60. Frac. conchoidal. Transparent, translucent. Lus. resinous. Col. Honey-ycllow, inclining to red or brown. Str. white. Sectile. Soluble in nitric acid.

Found in beds of brown coal. Thuringia, Bohemia, M ravia.
Eumboltine.—Oxalate of Iron, Oxalit.-2 (Fe $0+\mathrm{C}^{2} 0$) $+3 \mathrm{H} \mathbf{O}$. H $2 \cdot 0$ G $2 \cdot 15-2 \cdot 25$. Case 60. Frac, uneven. Opaque. Lus, waxy. Col. yellow. Str. yellow. Slightly sectile. Soluble in acids.

Whewellite.-Oxalate of Lime.-Ca $\mathrm{O}+\mathrm{C}^{2} \mathrm{O}^{3}+\mathrm{H} \mathrm{O}$. oblique. H 2.5 3.0 G 1.833. Frac. conchoidal. Transparent, opaque. Lus. vitreous, colourless. Str. white. Very brittle.

Found with calcite. Hungary.
Struvite.-Guanite- $\left(2 \mathrm{Mg} 0+\mathrm{P} \mathrm{O}^{5}\right)+\mathrm{N} \mathrm{H}^{3}+13 \mathrm{HO}$. prismatic. H $1.5-2.0$ G $1.66-1.75$. Case 60A. Frac. conchoidal. Transparent, semitransparent. Lus. vitreous. Col. colourless, yellow, brown. Str. white. B. fusible. Soluble in hydrochloric acid.

Found in crystals in 1845, when digging the foundation of the new charch of St. Nicholas, Hamburgh, having been produced by the decomposition of animal matter; it has also been discovered in guano from the coast of Africa.

Ambex.—Bernstein, Succinite.- $\mathrm{C}^{10} \mathrm{H}^{8}$ 0. Amorphous. H2.0-2.5 G1.0-1.1. Case 60. Transparent, translucent. Lus. waxy. Col. yellow, red, brown, white. Str. yellowish-white. Slightly brittle.

Found in rounded masses and disseminated, occurs principally in the tertiary coal formntions. Sicily, Prussia, Pomerania, Holstein, Courland, Livonia, Greenland, China, France, Italy, Spain, England, Ireland. It frequently contains insects which are now extinct. Used for ornamental purposes, and also in the manufacture of varnishes.

Copaline -Fossil Copal, Highgate Resin.—Amorphous. H $2 \cdot 5$ G 1.046. Case 60. Frac. conchoidal. Semi-transparent, translucent. Lus. waxy. Col. yellow, brown. Brittle. Slightly soluble in ether.

Found in blue clay. Highgate near London, and in the East Indies.
Retinasphalt.-Retinite.-Amorphous. H $1.0-2 \cdot 0$ G 1.05-1.20. Case 60. Frac. conchoidal. Semi-transparent, opaque. Col. yellow, brown, gray. Str. yel-lowish-brown. Brittle.

Found in brown coal, stone coal and peat. Halle, Vogelsgebirge, Devonshire, Maryland, Bohemia, Osuabrück.

Naphtha.-Earth Oil, Bitunen. Liquid. G 0.7-0.8. Case 60. Transparent, translucent. Col. colourless, yellow, brown. Unctuous to the touch. Smell aromatic and bituminous. Soluble in pure alcohol.

Found oozing out of clefts in rocks or the ground. Italy, the Alps, Pyrenees, United States, Persia, East Indies, China, Baku. When exposed to the air becomes thick and at last solid. Petroleum, Elaterite, and Asphaltum, are supposed to be naphtha thus altered.

Petroleum, found in Hanover, Brunswick, Alsace, Auvergne, Barbadoes, Trinidad, Lancashire, Coalbrookdale, Edinburgh, Ava.

Elaterite, found in Derbyshire, France, and Connecticut.
Asphaltum, found in Hanover, Soult, the Rhone, the Dead Sea, Cornwall, Shropshire, East Lothian.

Scheerexite.-C H^{2}. oblique. Soft. G $1.0-1 \cdot 2$. Case 60. Frac. conchoidal. Transparent, translucent. Lus. resinous. Col. white, gray, Jellow, green. Str. whiteBrittle. Unctuous to the touch. Soluble in nitric acid.

Found in brown coal. St. Gallen, Westerwald.
Eonleinite.-Konlite.-C ${ }^{2}$ H. G 0.88. Col. white.
 Bavaria.

Fichtelite.-A hydrocarbon. Transparent. Lus. pcarly, colourless. Unctuous to the touch. Without taste or smell. Soluble in ether.

Found in acicular crystals, between the yearly rings of pine stems in a bed of turf. Redwitz, near the Fichtelgebirge.

Eartite. - A hydrocarbon. H 1.0 G 1.016. Case 60. Frac. conchoidal. Translucent. Lus. fatty, feeble. Col. white. Not flexible. Sectile. Soluble in ether.

Found in brown coal. Oberhart in Austria.
Ozokexite.-C H. 'H 1.0 G 0.94 - 0.97. Frac. conchoidal. Lus. waxy. Translucent on the edges. Col. green, brown, yellow, red. Str. yellowish-white. Sectile, tough and flexible. Soluble in oil of turpentine.

Found in Moldaria, Austria, Newcastle.
Fatchettine.-C H. H 1.0 G 0.6078 . Case 60. Translucent, nearly opaque. Lus. pearly. Col. yellow. Partially soluble in ether.

Found in masses resembling wax or train oil, in the coal formations of Ln and and Scotland.

Middletonite.-G l'6. Thin fragments, transparent. Lis. resinvus. C l. br un. Str. light brown. Soluble in concentrated sulphuric acid.

Found in small rounded masses between layers of coal. Leeds, Newca the.
Psathyrite.—Hartin.-G 1•115. Col. white. Soluble in petroleum.
Found in masses resembling train oil in brown coal. Oberhart in Austria.
Guyaquillite.-Amorphous, soft. G 1.092. Opaque. Col. bright y llow. Soluble in alcohol.

Found at Guyaquil in South America. A sulstance found in the Irish bogs, and called bog butter, seems to be allied to guyaquillite.

Berengelite.-Amorphous. Trac. oonchoidal. Les. resinous. Col. daik bi wn. Str. yellow. Taste, bitter. Soluble in etber.

Found in large masses in the province of St. Juan de B rengela in South Ameri a.
Walchowite.-Amorphous. II 1.5-2.0 G 1.035-1.069. Frac. conch idal. Translucent. Translucent on the edges. Lus. fatty. Col."yellow, brown. Str. yellowish-white. Brittle. Soluble in sulphuric acid.

Found in brown coal. Walchow in Moravia.
Ixolyte.-Amorphous. H $1 \cdot 0$ G $1 \cdot 00$ s. Case 60. Frac. conchoidal. Lus. resinous. Col. red. Str. yellow. S ctile. Smell, aromatic.

Found in brown coal. Oberhart in Austria.
Piauzite.-H 1.5 G 1.220. Frac. imperfect conchoidal. Translucent on th.e thinnest edges. Col. blackish-brown. Str. ycllowish-brown. Sectile.

Found in a bed of brown coal, near Piauze in Carniola.
Anthracite. H $2 \cdot 0-2.0$ G $1.3-1.75$. Case 60. Frac. conchoidal. L s. vitreous. Col. black. Str. black. Brittle.

Found in the Alps, Pyrenees, France, Pennsylvania, Massachusetts, B hemia, S 4i,
 Ireland. Used as a fuel for farnaces.

Black Coal.-Bituminous coal. H $2 \cdot 0-2 \cdot 5$. Case 60. Frac. conchoidal. Lus. waxy. Col. black. Str. black. Slightly sectile. Brittle.

Found in England, Germany, Bohemia, Moravia, Belgium, France, North America, China, Japan, Australia. Most valuable as a fuel. Upwards of $50,000,000$ tons are obtained from the coal fields of England annually.

Brown Coal.-Lignite. H $1.0-2.5 \mathrm{G} 0.5-1.5$. Case 60. Frac. conchoidal. Lus. waxy. Col. brown, black. Str. browu.

Found in Germany, Switzerland, Hungary, Italy, Greece, Iceland, Greenland, Devonshire, Sussex, Scotland, Faroe Isles, Ireland.

WALTER MITCHELL, M,A.
J. TENNANT, F.G.S.

INDEX

TO
 CRYSTALLOGRAPHY AND MINERALOGY.

Abichite, 545.
Abrazite, 519.
Aciculite, 499.
Achmatite, 526.
Achırite, 514.
Acmite, 439, 442, 443, 444, 525.
Actinolite, 524.
Adamantine spar, 507.
Adnalaria, 519.
五girine, 525.
Arolite, 491.
Fischynite, 417, 420, 422, 424, 430, 530.
Agalmatolite, 516.
Agates, 509.
Agnesite (carbonate of bismuth), 538.
Akanticon, 526.
Alabandine (kulphuret of manganese), 297, 299, 301, 302, 496.
Alabite, 525.
Albite (Lat. albus, white), 458, 460, 461, 462, $463,464,466,467,468,520$.
Algerite, 439, 442, 443, 444, 518.
Allanite (black siliceous oxide of cerium), 439, $442,447,450,452,453,529$.
Allochroit, 527.
Allophane (Gr. allos, and phaino, to appear), 515.

Allos of iridium and osmium, 492.
Alloy of iridium and platinum, 498.
Alluaudite, 546.
Almandine, 527.
Almandine ruby, 507.
Alstonite, 417, 421, 422, 425, 426, 430, 585.
Altaite (telluride of lead), 297, 493.
Alum, 297, 299, 401, 543.
Alum, ammonia, 543.
Alum, soda, 543.
Alumina, phosphate of, 548.
Aluminate of magnesia, 507.
Aluminite, 5.4.
Alunite, 391, 400, 401, 543.
Alunogen (hair salt) S^{541}

Alvine, 516.
Amalgam (hydrarguret of silver), 297, 299, $301,302,304,307,310,314,492$.
Amazon stone, 519.
Amber, 554.
Amblygonite (prismatio amblygonite spar), 417, 549.
Δ methyst, 508.
Amianthus, 524.
Ammonia, sulphate of, 417, 420, 421, 422, 42 $425,426,430,540$.
Ammonia alum, 548.
Amphibole (hornblende), 439, 442, 443, 444: $445,446,447,448,449,451,452,453,4.54$, 456, 457, 524.
Amphigene, 621.
Amphodelite, 521.
Analcime, 297, 307, 518.
Anatase (pyramidal titaniam ore), 300,362 , $363,365,367,368,370,376,529$.
Andalusite, 417, 420, 421, 422, 423, 425, 427, 515.

Andreolite, 519.
Andreasbergolite, $\$ 19$.
Anglarite, 546.
Angles of crystals, 290.
Anglesite (tulphate of lead), 417, 420, 42), 422, $424,425,428,430,431,433,542$.
Angles of latitude, explanation of, 403.
Anhydrous perozide of manganese, 503.
Anhydrous scolecite, 520.
Ankerite, 391, 400, 401, 402, 537.
Annabergite (arsepiate of nickel), $439,443,546$.
Anorthic system of crystals, 457 ; minerule
belonging to, 558 ; parameters and ares, ib.
Anorthite, 521.
Anorthotomous felspar, 521.
Anorthotype system, 457.
Anthophillite, 524.
Anthosiderite, 514.
Anthracite (glance coal), 495, 355.
Antigorite, 511.
Antimonite gray antimony), 420, 421, 429, Lilfen $\left.\right|^{424,425,426,430,431,433,800 .}$

Antimonsilber (antimonial silver), 417, 420, $422,424,425,426,427,430,431,433,494$.
Antimonocher, 532.
Antimony (native), 385, 390, 391, 400, 402, 493.
Antimonial copper glance, 500.
Antimonial nickel, 494.
Antitomous felspar, 521.
Antrimolite, 517.
Apatite (phosphate of lime, Gr. apatao, to deceive), $390,391,393,394,395,400,401$, 402, 405, 410, 411, 550.
Aphanese, 545.
Aphrizite, 534.
Apophyllite (Gr. apo, and phyllon, a leaf), 360, $362,363,367,516$.
Aquamarine, 528.
Aragonite, 417, 420, 421, 422, 430, 536.
Arcanite, 540.
Arendalite, 526.
Areometer, Nicholson's, 486.
Arfvedsonite (peritomous augite spar), 439, $443,444,525$.
Argentiferous copper glance, 499.
Argentite (6ulphuret of silver), 297, 299, 302, 304, 307, 310, 500.
Arikinite, 499.
Arkansite, 529.
Arpedelite, 529.
Arrangement and description of minerals, 491.

Arsenic, 391, 400, 499.
Arsente, oxide of, 544.
Arsenical cobalt, 494.
Arsenical iron, 502.
Arsenical nickel, 497.
Arsenical pyrites, 495.
Arseniate of nickel, 494.
Arsenite, 299, 544.
Arseniuret of copper, 495.
Artificial crystals, 290.
Asbestos, 524, 525.
Asbolane (earthy cobalt), 506.
Aspasialite, 527.
Astrakhanite, 540.
Atacamite, 552.
Augite, 439, 442, 443, 444, 447, 448, 450, 451, $452,453,454,456$.
Aurichalcite, 538.
Auro-plambiferous telluret, 493.
Automalite, 507.
Autunite (yellow mranite), 360, 548.
Avanturine, 509.
Axes of crystals, 290.
Axes of the cube, 295.
Axinite, 458, 460, 461, 462, 463, 475, 466, 467, 468, 535.
Axis, 290, et seq.
Axotomous antimony glance, 501.

Axotomous triphane spar, 519.
Azurite, 539, 548.

B

Babingtonite, 458, 460, 461, 462526.
Baierine, 531.
Baikalite, 525.
Balas ruby, 507.
Baltimorite, 511.
Bamlite, 515.
Baryte (sulphate of barytes), 417, 420, 421, 422, 423, 424, 430, 540.
Baryto-calcite, 439, 442, 444, 447, 448, 452, 535.

Barytophillite. 525.
Basal pinacoids, 360.
Bastite (schiller spar), 526.
Batrachite, 512.
Beilstein, 519.
Berengelite, 555.
Bergmannite, 517.
Bernstein, 554.
Berthierite (sulphuret of antimony and iron), 501.

Beryl, 528.
Berzeline (seleniuret of copper), 495.
Berzelite, 544.
Biaxial mica, 522.
Bieberite (sulphate of cobalt), 439, 442, 444. 448, 450, 451, 541.
Bildstein, 516.
Biotite (hexagonal mica), 523.
Biotite, 390, 391, 400.
Bismuth (native), 391, 400, 492.
Bismuth blende, 514.
Bismuthine, 417, 420, 422, 424, 499.
Bismuthiferous sulphuret of nickel, 408.
Bismuthite, 538.
Bismuthochre, 506.
Bitumen, 554.
Bituminous coal, 556.
Black coal (bituminous coal), 556.
Black cobalt ochre, 506.
Black Jack, 496.
Black hematite, 503.
Black manganese, 504.
Black oxide of cobalt, 506.
Black spinelle, 507.
Black sulphuret of antimony and silver, 501.

Blende, antimony, 532.
Blende (sulphuret of zinc, the Black Jack of miners), 297, 299, 301, 302, 304, 307, 310, 496.

Blood stone, 509.
Blue asbestos, 525.
Blue copper, 498.
Blue lead, 499.
Bline, spinelle, 507.

Blue vitriol (sulphate of copper), 458, 460, 461, $462,463,464,466,468,544$.
Bole, 516.
Bonsdorffite, 527.
Boracite, 297, 299, 301, 307, 534.
Boracitoid, the, 336.
Boracic acid, 458, 460, 461, 462, 463, 466, 467.

Bornine, 493.
Bornite (purple copper), 297, 299, 498.
Botryogen (red vitriol; Gr. botrus a bunch of grapes), 439, 442, 443, 444, 452, 542.
Botryolite, 534.
Boulangerite, 500.
Boulangerite (sulphuret of antimony and lead), 500.
Bournonite, 417, 420, 421, 422, 423, 424, 430, 500.

Brachy-pinacoids, 418.
Brachytypous manganese ore, 504.
Brachytspe zinc baryte, 51%.
Bragationite, 439, 442, 449, 450, 454, 527.
Brandisite, 512.
Braunite, 360, 362, 365, 504.
Breithaupite (antimonial nickel), 390, 391, 394, 494.

Breunnerite (carbonate of magnesia), 400
Brewsterite, 439, 442, 448, 444, 518.
Bright white cobalt, 503.
British Museum, classification of minerals in, 491.

Brittle sulphuret of silver, 501.
Brochantite, 417, 421, 422, 424, 542.
Brogmartin, 540.
Bromite, 297, 299, 553.
Bronzite (hemiprismatio schiller spar), 439, 442, 443, 444, 511.
Brookite, 417, 420, 421, 422, 423, 430, 529.
Brown coal, 556.
Brown hematite, 505.
Brucite (rhombohedral kuphone glimmer), 390, 391, 505.
Bucholzite, 615, 539.
Bucklandite, 439, 442, 447, 527, 450, 527.
Bulstein, 519.
Buntkupfererz, 498.
Buratite, 538.

C

Cacholong, 510.
Calaite, 549.
Calamine (carbonate of zinc), 538,
Calamine, 390, 391, 400.
Calcite, 390, 391, 400, 401, 536.
Caledonite (cupreous aulphato-carbonate of lead), 417, 420, 421, 422, 430, 543.
Calophonite, 527.

Calomel (muriate of mercury), 360, 362, 363, $365,367,553$.
Cancrinite, 521.
Capillary sulphuret of antimony, 500 .
Carburet of iron (plumbago), 495.
Carnelians, 509.
Cassiterite (tin stone, oxide of tin), 360, 362, 363, 365, 367, 506.
Castor, 521.
Catsere, 509.
Caucrinite, 521.
Cavolinite, 521.
Caws, 540.
Celestine (sulphate of strontia), 417, 420, 421, 422, 424, 430, 540.
Ceretite, 513.
Cerine, 529.
Cerite, 513.
Cerussite (carbonate of lead), 417, 420, 422 424, 430, 538.
Cervantite, 532.
Chalamite, 499.
Chabasie, 390, 391, 400, 401, 516.
Chalcolite, 548.
Chalcedony, 509.
Chalk, 537.
Chalkophyllit, 546.
Chalkopyrite, 498.
Chalybite (spathose iron), 390, 391, 394, 400, $401,537$.
Characteristics of minerals, 481.
Chathamite, 494.
Chemical composition of minerals, 482.
Chessylite (blue carbonate of copper, 49 , $442,443,444,447,448,449,450,431,43 .$, 453, 454, 455, 456, 459, 539.
Chiastolite, 515.
Childrenite, 417, 421, 430, 549.
Chiolite, 360, 967, 551.
Chloanthite, 417, 422, 494.
Chlorite Gr. chloros green), 391, 524.
Chlorite spar, 525.
Chloritoid, 525.
Chloropal, 513.
Chlorophsite, 513.
Chlorophylite, 527.
Chloro-spinelle, 507.
Chodnewite, 551.
Chondrodite, 552.
Chrichtonite, 531 .
Christianite, 45s, 460, 461, 462, 463, 464, 4 , $467,468,519,511$.
Chromite chromate of ir n), 297, 299, 533.
Chromochre, 533.
Chrysoberrl, 417, 420, 421, 422, 424, 40.
Chrysocolla copper green , 514.
Chrysolite Gr. chrysos gold, and lithos st ne), 312.

Chrysoprase, 59.

Chrysophane, 512.
Chrysotile, 511.
Cinnamon stone, 527.
Cinnabar, 390, 391, 400, 499.
Circles of latitude on sphere of projection, 403.
Cistirite, 529.
Classification of crystals, 293.
Clausthalite (seleniuret of lead), 297, 496.
Clay ironstone, 538.
Cleavage, 293.
Cleavelandite, 520.
Clingmanite, 523.
Clino-domes (faces of the oblique prism), 449.
Clinorhombic system, 438.
Clintonite, 391, 512.
Cloanthite (white nickel), 494.
Coal, 556.
Cobalt, sulphate of, 439.
Cobalt arsenical, 494.
Cobaltine (bright white cobalt), 297, 299, 310.
Cobaltine (cobalt glance), 503.
Coccinite (ioduret of mercury), 553.
Collyrite, 516 .
Columbite, 531.
Combinations of the pyramidal system, 381384.

Combinations of the rhombohedral system, 413 et seq.
Combinations of the prismatic system, 436 et seq.
Combination of the forms of the cube and octahedron, \&c., 315-325.
Combination of the cube and tetrahedron, \&c., 345-354.
Common opal, 510.
Common felspar, 519.
Compound crystalline forms, 291.
Comptonite (kuophone spar), 417, 420, 421, 422, 424, 517.
Condurrite, 495.
Connellite (sulphato-chloride of copper), 390, 553.

Copiapate, 542.
Copal, fossil, 554.
Copaline, 554.
Copper, octahedral arseniate of, 417, 422.
Copper, 297, 299, 307, 310, 491.
Copper used for stamping machinery because it does not emit sparks, 491.
Copper, lenticular arseniate of, 545.
Copper, prismatic arseniate of, 418, 421, 422.
Copper, nickel, 494.
Copper, green, 514.
Coquimbite, 390, 391, 542.
Coracite, 508.
Cordierite, 417, 420, 421, 422, 424, 430, 527.
Cornwallite, 545.
Corundum, 390, 391, 394, 395, 400, 401.
Corandellite, 523.

Corindon, 507.
Cotunnite, 417, 420, 422, 430, 552.
Covelline (blue copper), 498.
Covelline, 390, 391.
Crednerite (oxide of manganese and copper), 439, 504.
Crocoisite, 533.
Cronstedite (rhombohedral melane mica), 391, $400,513$.
Cross stone, 519.
Cryolite, 417, 420, 421, 551.
Crysoberyl (prismatic corundum), 508.
Crystals, artificial, 290.
Crystals, crystalline and amorphous substances, 291.
Crystals, forms of, independent of their faces and edges, 292
Crystals, the six systems of :-the cubical, the square, the hexagonal, the prismatic, the oblique, and the anorthic or doubly oblique, 294.

Crystals, systems of, 293.
Crýstals, twin, 469.
Crystals which become psendomorphous by total change of substance, 475.
Crystallography, explanation of the science, 289.

Cubane, 297, 498.
Cube, the, 294 ; axes of the, 295 ; symbol of, 296 ; how to describe a net for, 297.
Cubical system, the, of crystals, 294.
Cummingtonite, 524.
Cuprite (redoxide of copper) 297, 299, 301, 301, 307, 310, 505.
Cyanose, 542.
Cymophane, 508.
Cyprine, 526.

D

Datholite (siliceous borate of lime), 417, 420, 421, 422, 424, 430, 534.
Davidsonite, 528.
Davyne (named in honour of Sir H. Davy), 390, 391, 394, 395, 521.
Darytic kouphone spar, 521.
Dechenite, 533.
Decrement, illustrations of the law of, 355, et seq. ; spherical molecules, 359.
Decrement on edges, 355, et seq.
Dihexagonal prism, to draw the, 404 ; form of the, 405.
Delphinite, 52
Deltohedron, the, 305.
Delvauxine, 547.
Delvauxite, 547.
Derived rhombic pyramids, 431 ; of second order, 432 ; third order, 434.
Derived oblique rhombic octahedrons, 453.
Derived oblique octaheciron of the secon*
olass, 454 ; of the third class, 456 ; symbols, forms, \&c, 455.
Derived doubly oblique octahedrons, 46\%.
Devonite, 548.
Diadochite, 546.
Diallage, 439, 511, 525.
Diallogite, 390, 391, 400, 401.
Diallogite (carbonate of manganese), 538 .
Diamond, 297, 299, 301, 304, 310, 495.
Diamorphism, 476.
Diaspore, 417, 420, 421, 423, 424, 430, 50\%.
Diatomous augite spar, 513 .
Diatomous kouphone spar, 518.
Diatomous Schiller spar, 525.
Dichroite, 527.
Dillnite, 516.
Diopside, 525.
Dioptase (emerald copper, Gr. dia through, and optomai to see), 390, 400, 401, 514.
Diplogenous kouphon spar, 518.
Diploid, the, 341.
Diploite, 520, 322.
Diprismatic copper glance, 500.
Diprismatic zeolite, 518 .
Dipyre, 522.
Dirhombohedral eutom glance, 503.
Dirhombohedric smaragd, 528.
Disomose, 497.
Disthene, 515.
Ditetragonal prism, the, 372.
Dodecahedral amphigene spar, 522.
Dodecahedral corundum, 507.
Dodecahedral dystome glance, 498.
Dodecahedral garcet blende, 496.
Dodecahedral iron ore, 506.
Dodecahedral zeolite, 521.
Dolomite, 390, 391, 400, 401.
Dolomate (bitter spar), 537.
Domeykite (arseniuret of copper), 435.
Double six-faced pyramid of the second order, $3^{\circ} 6$; axes, symbols, \&c., of, ib.
Double six-faced prramid, derived from the pyramid of the second order, 397.
Double four-faced pyramid of the first order, 363 ; axes, symbols, net, \&c., 364 ; crystals peculiar to, 365 .
Double four-faced pyramid of the second ord r with axes, symbols, \&c., 366-370; sphen id, the, 371.
Double six-faced pyramid of the first order, 392 ; axes, symbols, faces, \&c., ib.
Double six-faced pyramid derived from the pyramid of the first order, 392 ; folms of, which occur in nature, 394.
Double eight-faced pyramid, 374 ; axes, symbols, \&c. of, 375 ; net for, ib.; crystals whose faces occur parallel to the, 376 .
Doubly-oblique rhombic prism of the second order, 461.

Doubly-oblique prism, first order, 459; syinbols, ib.; net for, 460 ; crystals belonging to, 461.
Doubly-oblique rhombic prism of the third order, 463.
Doubly-oblique rhombic prism of the fourth order, 464.
Doubly-obiique octahedron, 465 ; axes, symbols, \&c. of, ib.; net for, 466.
Double refraction and polarized light, 487.
Dufrenite (phosphate of iron), 417, 546.
Dufrenoysite, 301, 307, 502.
Dypyre, 522.
Dysclasite, 510.

E

Earthy carbonate of magnesia, 511.
Earthy manganese, 504.
Earthy cobalt, 506.
Edingtonite (pyramidal brythine spar), 360 , $362,365,517$.
Edwardsite, 549.
Edges of crystals, 290.
Egeran, 526.
Ehlite, 548.
Eisennickelkies, 299, 497.
Eisenkiesel, 509.
Ekebergite, 522.
Elementary bodies, list of, with their symbols, 482.

Elcolite, 522.
Embolite, 297, 299, 553.
Embrithite, 500.
Emeral 1 copper, 514.
Emerald, 390, $391,394,395,400,401,5.8$.
Emerslite, 523, 5_8.
Emprro lovous felspar, 522.
Epidote prismatoidal tugite spar), 43,442, $443,444,447,448,450,4,2,453,526$.
Epistilbite, 417, 421.4 2, 518.
Epsomite (Epsom salt), 417, 421, 422, 424, 430, 541.

Eremite, 549.
Erinite, 545.
Erythine (red cobalt), 546.
Erythrine cobilt blo m), $439,443,447,452$.
Frubescite, 498.
Esmarkite, 527, 534.
Essonite, 527.
Eucbarite, 417, 420, 422, 424.
Euchrovice prismatic emerald malachite; Gr. euchroia, beantiful colour, 545 .
Fuclase (prismatic smarigd; Gr. eu easily, and klao to breik $, 439,442,443,444,447$, 452, 453, 454, 456, 5. 3.
Fudnophite, 417, 420, 421, 423.
Eulytine (bismuth blende), 297, 299, 3 1, 3 2, illèsp 514.

Eudialyte (rhombohedral almandrine spar), $390,391,400,401,550$.
Eukairite (seleniuret of copper and silver), 495.

Eudnophite, 518.
Euklastic disthene spar, 507.
Eulytine, 514.
Fumanite, 529.
Euxenite (Gr. euxenos a stranger), 531.
Explanation of the terma, faces, edgee, angles, axes, \&c., of crystals, 290.

F

Faces, edges, angles, and axes of crystals $\}$, 290.

Faces of crystals, inclination of, 290 et seq.
Fahlerz (gray copper), 297, 299, 301, 307, 310, 502.

Fahlunite, 527.
Fanjasite, 360, 365, 520.
Fayalite, 417, 420, 421, 422, 423, 430.
Fassite, 525.
Federerz, 500.
Felsobanyite, 548.
Felspar (amazon stone), 439, 442, 443, 444, 447, $449,452,453,454,456,519$.
Fer calcaréo siliceux, 525.
Fergusonite (pyramidal melane ore), 360, 362, 367, 530.
Ferrotitanite, 531.
Fenerblende, $439,442,443,444,450$.
Fibrolite, 515.
Fichtelite, 555.
Fifth system of crystals-the oblique, 438.
Figure stone, 516.
Finor, 304.
Fiorite, or pearl sinter, 510.
Fire-stones, talc used for, 523.
Fire opal, or girasol, 510.
First system of crystals, 294.
Fischerite, 549.
Flexible silver, 500.
Flint, 509.
Float-stone, or spongiform quartz, 509.
Flosferri, 536.
Fluerblende, 502.
Fluellite (fluoride of aluminium), 417, 420, 430, 551.

Fluocerite (neutral fluate of cerium), 390,391, 551.

Fiuor (fluate of lime; Lat. fluo to flow), 550.
Forms of crystals, 291, 292.
Four-faced cube, faces, symibols, \&c., 308; forms of and net for the, 309 ; crystal having faces parallel to this form.
Fourth system of crjstals, the prismatic or rhombic, 417.
Franklinite (dodec thedral iron ore), 297, 299, 301, 304, 307, 509 शIS - LILLIAD - Université

Francolite, 550.
Freieslebenite (sulphuret of silver and antimony), 439, 442, 444, 447, 450, 451, 452.
Frugardit, 526.

G

Gahnite (automalite), 297, 299, 507.
Galena (sulphuret of lead), 297, 299, 304, 306, 307, 499.
Galmei, 512.
Gallicinite, 529.
Gadolonite (from Gadolin, its discoverer), 528.
Garnet, 297, 301, 302, 307, 310, 527.
Garnets, coarse, used instead of emery for polishing metals, 527.
Garnsdorfite, 544.
Gaylussite, 439, 442, 444, 449, 452, 537.
Gehlenite (pyramidal adiaphane spar), 360, 362, 527.
Geokronite, 500.
Gersdorfitte (arsenical nickel), 297, 299, 310, 497.

Gibbsite, 548.
Giesechite, 527.
Gigantolite, 527.
Gillingite, 513.
Gismondinc, 519.
Glaserite (sulphate of potash), 417, 420, 421, 422, 424, 430, 540.
Glassy felspar (sanidine), 519.
Glaucodote, 417, 522.
Glance coal (anthracite), 495.
Glaucophane (Gr, glankos bluish-gray, aul phaine to appear), 523.
Glauber salt, 540.
Glauberite, 439, 442, 444, 452, 453, 5.46.
Glaucolite, 503.
Gmelinite (heteromorphous kouphone spar), $390,391,400,517$.
Goccolite, 525.
Gold, 297, 299, 307, 301, 300, 493.
Goniometers (instruments with which to measure angles), 293, 477.
Goslarite (sulphate of zinc), 417, 422, 424, 430, 541.

Goshenite, 528.
Gothite (prismatic iron ore), 417, 421, 422, 423, 424, 430, 505.
Grammatite, 524.
Graphic tellurium, 493.
Graphite (plumbago), 390, 391, 45 ©.
Gray copper, 502.
Gray oxide of manganese, 503.
Gray silver, 538.
Greenockite (sulphuret of cadmium), 390,391 , 394, 395, 498.
Greenovite, 529.
Gray antimony, 500.
Grgppite, 516.

Grossular garnet, 527.
Grünauite (sulphuret of nickel), 297, 299, 498.
Guanite, 554.
Gurolite, 517.
Guyaquillite, 555.
Gypsum (suiphate of lime), 439, 443, 444, 447, $448,450,452,453,456,541$.
Gyrolite, 517.

H

Häidingerite, 417, 421, 422, 501.
Halloysite, 515.
Haloide (octahedral fluor), 545, 546, 548, 550.
Halotrichite (feather alum), 541.
Hardness, specific gravity, fracture, colour, lustre, brittleness, flexibility, malleability, taste, smell, \&c., of minerals, 483 et seq.
Hard white cobalt, 494.
Harmotome, 417, 421, 422, 430, 519.
Hartite, 555.
Hartin, 555.
Hartmannite, 497.
Hatchettine, 555.
Hauerite, 297, 299, 301, 310, 496.
Hausmannite (black manganese), 360, 362, 365, 367, 504.
Haüỵn, 5:2.
Hauyne, 297, 299, 301, 302, 544.
Hayesine, 534.
Hedyphane, 550.
Heliotrope, or bloodstone, 509.
Helvin (tetrabedral garnet, Gr. elios, the sun), 229, 528.
Memutite, 390, 391, 394, 395, 400, 401.
Hemihedric rhombic system, 438.
Hemihedral forms of the cubical system, 330.
Hemihedral forms with inclined faces, 339; parallel faces, $\mathbf{i b}$.
Hemihedral four-faced pyramid, 377.
Hemiorthotype system, 438.
Hemiprismatic talk glimmer, 522.
Hemiprismatic sulphur, 502.
Hemipyramid, the, 453.
Hemipyramidal spar, 517.
Hemiprismatic dystom glance, 502.
Hemiprismatic Schiller spar, 511.
Hemiprismatic ruby blende, 501.
Hemitrope crystals, 469.
Henkelite, 500.
Hepatite, 540 .
Herderite (prismatic fluor haloid), 417, 420, $422,430,549$.
Hermatite (iron glance), 504.
Herschelite, 517.
Hesingerite, 513.
Hessite, 493.
Heterosite, 439, 547.
Heterotomous felspar, 520.
Heulundite, 439, 442, 443, 444, 449, 450, 452, 518.

Hewkelite, 500.
Hexakistetrahedron (six-faced tetrahedron), 336.

Hexahedral kouphone spar, 518.
Hexahedral glance blende, 496.
Hexagonal scalenohedron, the, 407.
Hexagonal cobalt pyrites, 503 .
Hexahedral iron pyrites, 497.
Hexahedral lead glance, 499.
Hexahedral silver glance, 500.
Hisingerite, 513.
Holmesite, 512.
Holohedral forms of the pyrami lal system, 359.

Honerstone, 553.
Homæmorphous bodies, 476.
Hornblende, basaltic, 524.
Hornblende, common, 524.
Hornstone, 509.
Horn quicksilver, 553.
Hornsilver, 553.
Humboldtılite, 526.
Humboltine oxalate of iron), 553.
Humbolite, 534.
Humite, 439, 442, 443, 444, 447, 449, 450, 451, $452,453,454,455,552$.
Huraulite, 547.
Hureaulite, 439, 442, 444, 450, 51%.
Hyacinth, 514.
Hyalite, or Muller's glass, 510.
Hyalosiderite, 512.
Hydrarguret of silver, 492.
Hydrargyllite, $390,391,507,549$.
Hydrous oxide of manganese, 504.
Hydroboracite, 534.
Hydrolite, 517.
Hydromagnesite (native magnesia), 557.
Hydrophane, 510.
Hydrosiliceous copper, 514.
Hydrous oxide of iron, 55.
Hyperstene, 439, 442, 443, 44 .
Hypersthene, 525.

I

Iberite, 527.
Ice, 390, 391, 505.
Ice or snow, crystals of, 473.
Ichthyopthalmite, 516.
Idocrase (prramidal garn t, 360, 362, 363, 365, 367, 526.
Jgbite, 53f.
Ilmenite titanitic ir n), 390, 391, 391, 400, 581,
Ilvaite, 417, 4.0, 422, 4.3, 4.9, $4,525$.
Indigo copper, 494.
Iodite (iodic silver), 553.
Iolite, 527.
Iridium alloy of iridium and latinum), 27 , 299, 403.

Lievrite, 525.
Lime, anhydrous sulphate of, 417, 420, 421, 422, 430.
Lime harmotome, 519.
Limnite (hydrous oxide of iron), 505.
Linarite (cupreous sulphate of lead), 439, 442, $443,444,542$.
Linneite (sulphuret of cobalt), 297, 299, 497.
Liroconite (octahedral arseniate of copper), 417, 422, 545.
Loboit, 526.
Loganite (hydrosilicate of alumina and magnesia), 417, 420, 422, 524.
Lolingite (arsenical pyrites), 417, 420, 422, 495.

Lithonite, 523.
Lithomarge, 511.
Lithia mica, 523.
Lunnite (hydrous phosphate of copper), 548.
Lydian stone, 509.

M

Macherite, 552.
Macro-pinacoids, 418.
Maerotypous kouphone spar, 517.
Magnesian limestone, 537.
Magnesite (carbonate of inagnesia), 537.
Magnesia, 511.
Magnetic iron prrites, 497.
Magnetite (magnetic iron ore), 297, 299, 302, 304, 307, 310, 504, 511.
Magnesia, sulphur of (Epsom salt), 541.
Magnesite, 400, 511.
Malachite (green carbonate of copper), 439, $442,443,444,514,539$.
Malachite (dystomic habroneme), 545.
Malacone, 515, 530.
Malacolith, 525.
Malachite, hemiprismatic dystome, 548.
Malachite, pseudo, 548.
Malachite, prismatic olive, 545.
Malachite, diprismatic olive, 547.
Malachite, pyramidal euchlore, $5 \div 8$.
Malachite, hexahedral lirocone, 545.
Manganese, phosphate of, 418 .
Manganite, 417, 420, 421, 422, 423, 424, 430.
Manganite (gray oxide of manganese), 503.
Manilite, 520.
Map of principal zones in the cubical system, 327 et seq.
Map of crystals, 326.
Marble for stituiny, 536.
Marcasite (white iron psrites), 417, 420, 422, 430, 497.
Margyrite, 439, 442, 443, 444, 447, 448, 450, 454, 455.
Margarite (hemiprismatic perl glimmer), 430, 523.

IRIS - LILLIAD - Université

Marmolite, 511.
Mascagnine (sulphate of ammonia), 417, 420, 421, 422, 424, 430, 540.
Masonite (chlorite spar), 525.
Matlockite, $360,362,363,365,367,552$.
Meerschaum, 511.
Megalagonous kouphone spar, 518.
Melanterite (green vitriol), 541.
Melanochroite, 533.
Melanterite, 442, 439, 443, 444, 447, 448, 450.
Melanite, 527.
Melilite, 526.
Mellite (mellate of alumina), 360, 362, 365, 367, 553.
Menaccanite, 531.
Mendipite, 417, 420, 421, 422, 552.
Mengite, 417, 422, 424, 430, 530, 549.
Mennige, 506.
Mercury (native), 299, 492.
Meroxen, 523.
Meionite, 522.
Mesitine, 390, 391, 400, 539.
Mesotype, 417, 422, 430, 517.
Mesolite, 517.
Metalloid diallage, 525, 526.
Meteoric iron, 491.
Meteorite, 491.
Metaxite, 511.
Method of obtaining artiqcial crystals, 290.
Miargyrite (hemiprismatic ruby-blende), 501.
Mıca, 439, 442, 443, 444, 451, 452, 453, 522.
Microlite, 5:9.
Middletonite, 555.
Middlerine, 498.
Miemite, 537, 549.
Mikroklin, 519.
Millerite (nickel pyrites), 390, 400, 401, 497.
Milk quartz, 508.
Miloschine, 516.
Mmetite (arseniate of lead), 390, 391, 39t, 393, 400, 401, 550.
Mineral, what we understand by the word, 431.

Minerals assume mathematical forms, 481.
Minerals, species of, characteristics of, 481 ; forms and chemical composition of, 482; symbols of, 483 ; hardness, \&c., 484 ; streak of, ib. ; specific gravity of, with illustrations explanators, ib. ; arrangement and description of, 491.
Minerals belonging to the pyramidal system, 360.

Mineralogy, definition of the science, 481.
Minium (red oxide of lead), 506.
Mirabilite (sulphate of soda), 439, 442, 443,444, $449,452,453,540$.
Mispickel (arsenical iron), 417, 420, 422, 430, 502.

LMecha stone and moss agates, 509.
lrite, 299, 505.
Iron (native iror), 297, 299, 491.
Iron, chrysolite, 514.
Iron, sulphate of, 541.
Iron, tungstate of $418,420,421,422,423$.
Iron cobalt, 494.
Iron glance, 504.
Iron pyrites, 497.
Iron flint, 509。
Iron-flail, or erruginous quartz, 509.
irregular twenty-four faced trapezohedron,
341 ; faces, angles, symbols, \&c., of, 342;
net for, 344.
Iserine, 297, 299, 301, 530.
Isomorphism, 476.
Isometrical cobalt-kies, 497.
Ittnerite, 302, 522.
Ixolyte, 555.

J

Jade, 519.
Jamesonite (axotomous antimony glance), 417, 420, 421, 422, 501.
Jasper, 509.
Jeffersonite, 525.
Johannite, 439, 442, 443, 444, 447, 542.
Johnsonite, 532.
Judianite, 521.
Judicolite, 534.
Juranite, 529.

K

Kakokene (Gr. kakos bid, and xenos a guest), 549.

Kalochrome, 533 ,
Kämmererite, 524.
Kaolin (porcelain earth, felspar), 520.
Kaproid, the, 324.
Karpholite, 528.
Karstenite (anhydrous sulphate of lime), 417, $420,421,422,430,541$.
Kanite (prismatic disthene spar), 458, 515.
Keffekil, 511.
Keilhauite, 530.
Kerate (muriate of silver), 297, 299, 302, 553.
Kerasine, 552.
Kermes (red antimony), 439, 442, 447, 502, 532.
Kibdelophane, 531.
Kilbrickenite, 500.
Kiessel malachite, 514.
Killinite, 527.
Klaprothine (lazulet), 439, 442, 443, 447, 448, $450,452,453,543$.
Klinoclase (oblique prismatic arseniate of соррет), 439, 442, 447, 545.
Kobellite (snlphuret of antimony, lead, and bismuth), 501.
Konichalcite, 546.
Koulite, 554 .
Kötticite, 439, 443, 546.
Krissavigite, $54 \nmid \mathrm{RIS}$ - LILLIAD - Universit $犬$

Krokydolite, blue asbestos (Gr. krokus, a flock of wool), 525 .
Krokoite, 583.
Kryptolite (a phosphate of oxide of cerium), 547.

Kunite, 544.
Kupfernickel (coppernickel), 390, 391, 395, 494.
Kupferindig, 498.
Kupfershaum, 546.
Kupfersmaragd, 514.
Kyanite, 515.

L

Labradorite (Labrador felapar), 520.
Labrador hornblende, 525.
Labradorite, 458, 460, 461, 462.
Labrotite, 520.
Lannite (hydrous phosphate of copper), 439, 442, 450.
Lanarkite, 543.
Lapis lazuli, 544.
Lapis ollaris, 523.
Lasionite, 548.
Lasur malachite, 539.
Latrobite, 453, 462, 522.
Lancasterite, 537 .
Lanthanite (carbonate of cerium), 360, 362, 538.

Laumonite, 439, 442, 443, 444, 452, 518.
Lazulite, 548.
Lead, native, 299, 492.
Lead, sulphate of, 417 et seq.
Leadhillite (sulphato-carbonate of lead), 417, 420, 421, 422, 424, 430, 543.
Leucophane, 458.
Lehmannite (chromate of lead), $439,443,444$, $447,448,449,452,453,454$.
Lehmannite (red lead ore), 533.
Lenneite (sulphuret of cobalt), 497.
Lenzinite, 515.
Lerbachite (seleniuret of lead and mercurs), 297, 496.
Leonbardite, 518.
Levyne (macrotypous kouphone epar), 39], 400, 517.
Lepidomelane (Gr. le e_{1} is a scale, and me'os black), 523.
Lepidolite, 439, 442, 443, 444, 523.
Lepolite, 521.
Lettsomite, 542 .
Leucite (Gr. leukos white), 302, 307, 521.
Leucopyrite, 495.
Leucitoid (the twenty-four-faced trapezohedron), 305.
Leucophane, 551.
Leuchtenbergite, 524.
Libethenite (phosphate of copper), 417, 422, 423, 430, 547.

Modificzivons of form of crystals, 292.
Modumite, 494.
Molecules, 355.
Molybdena silver, 493.
Molybdenite, 390, 391, 395, 503.
Molybdanocher, 533.
Molybdic acid, 533.
Monazite, 439, 442, 443, 444. 447, 448, 450, 452, 453, 549.
Monoclinohedric system, 438.
Monrolite, 515.
Monticellite, 417, 422, 423, 512.
Moon stone, 519.
Mountain wood, 521.
Moroxite, 550.
Morvenite, 519.
Mosandrite, 530.
Mullerine, 493.
Muller's glass, 510.
Mullicite, 546.
Murchisonite, 519.
Muscovite, 522.
Muriacite, 541.
Mussonite, 539.

N

Nadelerz (needle ore), 499.
Nagyagite (black or foliated tellurium), 360, $362,363,365,367,493$.
Naphtha (earth oil), 554.
Natrolith, 517.
Natron (carbonate of soda), 439, 443, 444, 447, 448, 450, 535.
Natural properties of all minerals, 481, et seq.
Naumannite (seleniuret of silver), 297, 496.
Needle ore, 499.
Needle spar, 536,
Needle stone, 517.
Nephrite (jdde, Gr. nephros, a kidney), 519.
Nepheline (Gr. nophele, a cloud), 390, 391, 395, 522.
Nickel pyrites, 497.
Nickel, arseniate of, 439.
Nigrine, 529.
Nickeliferous gray antimony, 498.
Nickel bismuth glance, 498.
Niobite, 418, 420, 421, 422, 423, 424, 430, 531.
Nitratine (nitrate of eoda), 400, 401, 539.
Nitre (nitrate of potash), 418, 420, 421, 422, 430, 539.
Noble opal, 510.
Noseau, 544.
Nontromite, 413.
Nuttalite, 522.

0

Oblique mica, 522.
Oblique prismatic arseniate of copper, 545.

Oblique rectangular prism, 439 ; parameter, axes, symbols, \&c. of, 440 ; net for, 441.
Oblique rhombic octahedron, 451 ; axes, symbols, \&c. of, ib. ; net for, 452.
Oblique rhombie prisms derived from those of the second order, 450.
Oblique rhombic prism of the first order, 443 ; symbols, \&c. of, ib.; net for, 444.
Oblique right prisms on a rhombic base of the second order, 449.
Oblique system of crystals, 438 ; minerals belonging to, 439 ; sphere of projection for the, 442.
Octagonal prism, the, 372 ; how to draw forms of the, 373 ; net for, 373 .
Octahedral ammonia salt, 552.
Octahedral and hepatic copper cyrites, 498.
Octabedral arseniate of copper, $54 \overline{0}$.
Octahedral arsenic acid, 544.
Octahedral chrome ore, 533.
Octahedral copper ore, 505.
Octahedral corundum, 507.
Octahedral fluor haloide, 550.
Octahedral iron ore, 504.
Octahedral kouphone spar, 522.
Octahedral lead glance, 499.
Octahedral titanium ore, 529.
Octahedrite, 529.
Octahedron, the, 298 ; relations of, to the cube, ib. ; symbols of, 299 ; net for, ib.
Grstedite, 515, 530.
Oil stains in cloth, tale used for remoring, 523.

Oisanite, 529.
Okenite (dyclasite), 510.
Oligiate iron, 504.
Oligoclase (Gr. oligos little, and klao to cleare), $458,462,463,465,466,467,521$.
Olivenite (right prismatic arseniate of copper), 545.

Olivenite (prismatic arseniate of copper), 418, 421, 422, 424, 430, 545.
Olivine, $418,420,422,423,424,512$.
Omphazite, 625.
One-and-one-membered system, 457.
Onegite, 505.
Onofrite (seleniuret of mercury), 496.
Oolite, 537.
Oozite, 527.
Opaline felspar, 520.
Opal (resinous quartz), 510.
Ophite, 511.
Orichalcite, 538.
Orpiment (yellow sulphuret of arsenic), 418, 421, 422, 424, 430, 502.
Orthite, 529.
Orthoclase, 519.
Orthotomous felspar, 519.

Orthotype（one and axial）system， 417.
Osmelite， 520.
Osmiridium，390，391，395， 492.
Osmitidium（alloy of iridium and osmium）， 492.

Ostranite， 515.
Ottrelite， 511.
Oxalate of iron， 553.
Oxalate of lime， $5 \check{4} 4$ ．
Oxalit， 553.
Oxhaverite， 516.
Oxide of antimony， 532.
Oxide of arsenic， 544 ．
Oxide of bismuth， $\mathbf{E 0 6}$ ．
Oxide of manganese and copper， 504.
Oxide of molybdenum， 533.
Oxide of tin， 506.
Oxide of titanium， 529.
Oxide of tungsten， 508.
Oxide of uranium， 56.
Oxydulated iron， 504.
Ozokerite， 555.

P

Palagonite， 514.
Palladium，299， 492.
Paranthine elain epar， 522.
Parasite，391，395， 539.
Paratomous augite spar， 525.
Paratomous lead baryta， 543 ．
Paratomons lime haloide，537．
Pargasite，439，442，443，444， 453.
Pargasite（hornblende）， 524.
Parisite， 539.
Patrinite（plumbo－cupriferous sulphuret of bismuth），418， 499.
Paulite，525．
Pearl sinter， 510.
Pearl spar， 537.
Pechuran（pitch－blende），209， 506.
Pectolite， 520.
Peerschaum，earthy carbonate of， 55.
Pelioma（prismatic quartz）， 527.
Pennine， 524.
Pentagonal dodecahedron，339；faces，angles， symbols，edges，\＆c．，of， 340 ；net for， $3+1$ ．
Percylite（a hydrochlorade of lead a：d copi er）， 297，299，302，310， 553.
Periclase， 505.
Pericline， 520.
Peridot， 512.
Peritomous antimony glance， 52.
Peritomous augite spar， 5 Zo．
Peritomous hal－baryta， 536.
Peritomous kouphone spar，517， 519.
Peritomous lead biryta， 552.
Peritomous rubs blende，493， 517.
Peritomous titanium ore，5．9．

Perowskine， 547.
Perowskite，297，299，302，204，307，310， 530.
Pertbite， 519.
Petalite（prismatic petaline spar）， 521.
Petroleum， 554.
Petzite（telluride of silver），297， 493.
Petzite（telluret of silver），symbol and system， characteristics and country， 493.
Phacolite， 516.
Pharmacosiderite（arseniate of iron），297，299， 302，301， 545.
Pharmacolite（arseniate of lime），439，442， $443,444,540,544$.
Phenakite（rhombohedral smaragd，Gr．phe－ nax，a deceiver）， $390,395,40$ ）， 4 1， 528.
Phillipsite，418，421，422，430， 519.
Phœnicite， 533.
Phünicit， 533.
Phönikochroit， 533.
Phosgenite（murio－carbonate of lead），360， $362,363,365,367,350$.
Phosphate of alumina， 543.
Phosphate of copper， 547 ．
Phosphate of iron， 546.
Phosphate of lead， 549.
Phosphate of lime， 550.
Phosphate of manganese 547．
Phosphate of uranium， 54 ．
Phosphate of yttria， 548.
Phosphocalcite， 548.
Phosphorite， 550.
Phrehnite ）uxotomous triphane spar）， 519.
Phyllite， 511.
Piauzite， 555.
Picrolite， 611.
Picrosmine（Gr．pikros bitter，and osme smell），418，421，422， 512.
Pictite， 529.
Pinacoids， 420.
Pingoite， 513.
Pinite， 527.
Pissophane，544．
Pistomesite，539．
Pistacite， 526.
Pitch－blende， 506.
Pitchy iron ore，547．
Placodine， $439,444,447,44,449,45$.
Plagınite hemiprismatic dystom glance）， 139 ， 411，452， $43,502$.
Plas na， 509.
Platinum（native platina），297， 492.
Platonic bodies， 353.
Plattnerite，390，391， 507.
Plausite， 555.
Plesiomorphous bodies，476．
Plomgomme hydrous aluminate of 1 ad）， 58 ． Plumbigo（black lead， 495.
Plumbo－cupriferous sulphuret of antim ns，

Perliclase，297，29限阿5．LILLIAD－Université Lili申e ${ }^{0} 1$

Plumbo-cupriferous sulphuret of bismuth, 499. Plumbo-resinite, 508.
Plumosite (capillary sulphate of antimony),500.
Polarised light, 487 et seq.
Poles of crystals, 290 et seq.
Polianite, 418, 421, 422, 503.
Polichromatic felspar, 520.
Pollux, 520.
Poonahlite, 517.
Potash mica, 522.
Potash, nitrate of, 418.
Potash, sulphate of, $417,420,421,422,424,430$, 540.

Potstone, 523.
Polyallite (Gr. polus many, and als salt), 541.
Polybasite, 390, 391, 395.
Rolyhalite, 418, 420, 421, 422, 541.
Polyhydrite, 513.
Polykrase, 418, 422, 430, 530.
Polymignite, 418, 420, 422, 424, 430.
Polymignite (prismatic melane ore), 530.
Polssphcrite, 549.
Porzellanspath, 418, 521.
Prase, 508.
Praseolite, 527.
Prehnite, 418, 420, 422, 519.
Prismatic amblygonite spar, 549.
Prismatic andalusite, 515.
Prismatic antimony glance, 500.
Prismatic arsenical pyrites, 502.
Prismatic augite spar, 510.
Prismatic axinite, 535.
Prismatic bismuth glance, 499.
Prismatic bitter salt, 541.
Prismatic boracic acid, 534.
Prismatic borax salt, 534.
Prismatic calamine, 512.
Prismatic carbonate of soda, 535.
Prismatic chrome ore, 533.
Prismatic chrysolith, 512.
Prismatic cobalt mica, 546.
Prismatic copper glance, 498.
Prismatic copper mica, $\breve{J} 46$.
Prismatic corundum, 508.
Prismatic eutom glance, 500.
Prismatic disthene spar, 515.
Prismatic dyatome, 542.
Prismatic dystome spar, 534 ,
Prismatic emerald malachite, $5 \mathbf{4 5} 5$.
Prismatic euchlore mica, 5 ± 6.
Prismatic fluor halolde, 549.
Prismatic garnet, 528.
Prismatic hal-baryta, 540.
Prismatic iron ore, 505.
Prismatic iron mica, 546.
Prismatic iron pyrites, 497.
Prismatic lead baryta, 542.
Prismatic lime haloide, 535.

Prismatic melane ore, 539.
Prisinatic olive malachite, 545.
Prismatic olivenite, 547.
Prismatic ore, 505.
Prismatic or rhombic system, 417; sphere of projection for the, 422.
Prismatic oxide of manganese, 503.
Prismatic petaline spar, 521.
Prismatic picrosmine steatite, 512.
Prismatic purple blende, 502, 532.
Prismatic quartz, 527.
Prismatic scheel ore, 532.
Prismatic smaragd, 528.
Prismatic tale glimmer, 523, 524.
Prismatic tantalum ore, 531 .
Prismatic titanium ore, 529.
Prismatic topaz, 551.
Prismatic waveline haloide, 548.
Prismatic zinc baryte, 512.
Prismatic zinc ore, 506.
Prismatoidal augite spar, 526.
Prismatoidal lead baryta, 543.
Prismatoidal manganese ore,503
Prismatoidal schiller spar, 525.
Prismatoidal sulphur, 502.
Prismatoidal trona salt, 585.
Proustite (red silver), 390, 391, 400, 501.
Psathyrite, 555.
Pseudomalachite, 548.
Pseudomorphous crystals, 474 ; crystals which become pseudomorphous by exchange of ingredients, 475.
Psilomelane (Gr. psilos smooth, and melas black, black hematite), 503.
Purple copper (bornite), 498.
Puschkinite, 526.
Pycnite, 551.
Pyramidal adiaphane spar, 527.
Prramidal brythine spar, 517.
Pyramidal cerium baryta, 551.
Pyramidal copper pyrites, 493.
Pyramidal euchlore malachite, 548 .
Pyramidal garnet, 520.
Pyramidal kouphone spar, 516.
Pyramidal lead baryta, 533.
Pyramidal manganese ore, 504.
Pyramidal melane ore, 530 .
Pyramidal melichrome resin, 553.
Pyramidal perl kerate, 553.
Pyramidal scheel baryta, 532.
Pyramidal system, 359 ; list of minerals beJnging to, 360 ; combinations of the, 381-384.
Pyramidal tin ore, 506.
Pyramidal titanium ore, 529.
Prramidal zircon, 514.
Pyramidal zeolite, 516.
Pyrargyrite, 390, 391, 400, 501.

Pyrenaite, 527.
Pyrgome, 525.
Pyritoid, the, 339.
Pyrite (iron pyrites, sulphuret of iron), 297, $299,302,304,307,310,497$.
Pyrophyllite, 418, 524.
Pyrosmalite (axotomous perl mica), 550.
Pyrochlore, 297, 299, 302, 307.
Pyrope, 527.
Pyromorphite (phosphate of lead), 390, 391, 395, 401, 549.
Pyrophysalite, 551.
Pyrochlore (octahedral titanium ore), 529.
Pyrorthite, 529.
Pyrolusite, 418, 420, 421, 422, 503.
Pyrosmalite, 390, 391, 395, 503.
Pyroxene, 525.
Pyrrhotine, 390, 391, 395, 400, 401, 497.
Pyrrhosiderite, 505.

Q

Quartz, 508.

\boldsymbol{R}

Radiolite, 517.
Rammelsbergite (white arsenical nickel), 207, 299, 302, 494.
Raphilite, 524.
Realgar (red sulphuret of arsenic), 439, 442, $443,444,447,449,450,452,454,155,456,502$.
Red antimony, 502,532.
Red cobalt, 546.
Red iron ore, 504.
Red lead ore, 533.
Red manganese, 538.
Red oxide of copper, 305.
Red oxide of lead, 506.
Red oxide of zinc, 506.
Redruthite (vitreous copper), 41S, 4:0, 422, 430, 498.
Red silver, 501.
Red zinc, 506.
Red siliceous oxide of cerium, 5:3.
Red sulphuret of arsenic, 502.
Red sulphute of iron, 512 .
Red vitriol, 542.
Regular pentagonal dodecahedron, 353.
Remolinite (muriate of copper), 418, 421, 424, 430, 552.
Resin (pyramidal melichrone), 553.
Resin, Highate, 554.
Resinous quartz, 510.
Retinalite, 511.
Retinite, 554.
Retinasphalt, 554.
Rhodocrosite, 538.

439, 442, 443, 414, 513 .

Rhodozite, 299, 302, 534.
Fhœtzit, 515.
Rhoe wand, 537.
Rhombic dodecahedron, 300 ; symbols of, 301 ; net for, ib .; to describe the face of, ib .; minerals with crystals of this form, ib .
Rhombic pyramid 429; axes, symbols, \&ce., of, ib., net for, 430.
Rhombic sphenoid, the, 435.
Rhombohedral almandine spar, 550.
Rhombohedral alum haloide, 573.
Rhombohedral arseniate of copper, 546.
Rhombohedral cerium ore, 513.
Rhombohedral corundum, 507.
Khombohedral dystom glance, 501.
Rhombphedral elain spar, 522.
Rhombohedral emerald malachite, $51 t$.
Rhombohedral felspar, 522.
Rhombohedral fluor halorde, 550.
Rhombohedral iron ore, 504.
Rhombohedral iron pyrites, 497.
Rhombohedral kouphone glimmer, 55.
Rhombohedral kouphone si ar, 516.
Rhombohedral lead baryta, 549.
Rhombohedral lime haloide, 536.
Rhombohedral melane mica, 513.
Rhombohedral quartz, 508.
Rhombohedral ruby-blende, 501.
Rhombohedral smaragd, 5:8.
Rhombohedral system of crystals, 384 et seq.
Rhombohedral system, combinations of, 413 et seq.
Rhombohedral talc glimmer, 5.3.
Rhombohedral zeolite, 516.
Rhombohedral zinc baryta, 533.
Rhomb spar, 537.
Rhomboid, the, 398; Eymbols, poles, \&c., of, and nets for, 399 ; minerals with their faccs parallel to, 400 ; may be derived from doubie six-faced pyramid, 401 ; illustrations of th s, 402 ; poles of the derived, 403 et seq.
Rhyacolite (Gr. ryax a lava stream), 439, 412, $443,447,449,451,452,522$.
Riemanite, 515.
Right prismatic arseniate of copper, 545.
Right prismatic beryta-calcite, 535.
Right rhombic prism of the first order, 421 ; symbols, \&c., for it, ib. ; net for, ib.
Right rhombic prism of the second order, 425; symbols, \&c., of, 426 ; poles of, $42^{\text { }}$.
Right rhombic prism of the third order, 427.
Right prism of an oblique rhombic base, 446 ; symbols, \&c., of, ib.; net for, 447 ; prisms derived from the right prism on an oblique rhombic base, 448.
Right rectangular prism, 418 ; to draw symbols, \&c., 419 ; net for the, ib. ; parameters

Ripidolite (Gr. ripis, a fan), 390, 391, 394, 400, 401,524.
Ripodolith, 524.
Rock crystal, 508.
Rock salt, 552.
Rodochrome, 524.
Roestone, 537.
Romanozite, 527.
Roselite, 418, 420, 422, 430, 544.
Rose or milk quartz, 508.
Rubellite, 534.
Rubellan, 523.
Rutile (oxide of titanium), $360,362,363,365$, 367, 529.
Ruby blende, 501.
Ruby copper, 505.

S

Sagenite, 529.
Sahlite, 525.
Sal ammoniac, 297, 299, 302, 552.
Saltpetre, 539.
Silt, rock, 552.
Salt, 297, 299, 302, 310, 552.
Salmiak, 552.
Safforite (arsenical cobalt), 297, 299, 307, 494.
Samarskite, 418, 531.
Sanidine, 519.
Sarcolite (octahedral kouphone spar), 360, 362, $363,365,367,517,522$.
Bassoline (native boracic acid), 458, 460, 461, $462,463,466,467,534$.
Satin spar, 536.
Saynite, 498.
Scalenohedron, the, 379, et seq.
Scalenohedron, forms of the, 409, et seq.
Scapolite, 360, 362, 363, 365, 367, 522.
Scarbroite, 516.
Scheel lead, 532.
Schrotterite, 516.
Scheelite (tungstate of lime), $360,362,363$, $365,367,532$.
Scheererite, 439, 554.
Schiffer spar, 536.
Schiller spar, 526.
Schmelzstein, 522.
Schorl, 534.
Scholezite (needlestone, Gr. skolex, a worm), $439,443,444,452,453,517$.
Schorlomite, 531.
Schulzite, 418, 424, 430, 500,
Scorodite (martial arseniate of copper), 418, $420,421,422,424,430,545$.
Scorza, 526.
Schrifterz, 493.
Second system of crystals, the pyramidal, 359.
Seleniuret of copper and silver, 495.
Seleninret of lead and mercury, 496.

Semi-opal, 510.
Selbite (carbonate of silver), 538.
Seleniuret of copper, 495.
Seleniuret of lead, 496.
Seleniuret of mercury, 496.
Seleniuret of silver, 496.
Selenium, 495.
Selenite, 541.
Senarmontite, 299, 504.
Sepiolite, 511.
Serbian, 516.
Serpentine (so called from its spotted or snabe-
like markings), 511 .
Seybertite, 512.
Siderite, 508, 537.
Sideroschizolite, 513.
Silicate of bismuth, 514.
Siliceous borate of lime, 534 .
Siliceous oxide of zine, 512.
Siliceous sinter, 510.
Siliciferous oxide of manganese, $5: 3$.
Siliciferous oxide of cerium, 513 .
Silicite, 520.
Sillimanite, 515.
Silver (native), 297, 299, 302, 310, 492.
Six-faced octahedrou, 310 ; symbols for, 311 ; to draw, ib.; axes of, 312 ; to deseribe a net for, 313 ; forms of the which occur in nature, 314.
Six-faced tetrahedron, 336 ; faces, edges, angles, \&c., of 336 ; net for, 337.
Sixth system of erystals, the anorthic, or doubly oblique, 457.
Skutterudite (hard white cobalt), 297, 299, 302, 304, 494.
Slate spar, 536.
Smaltine (arsenical cobalt), 297, 299, 302, 307, 494.

Smaragdite, 524.
Smaragdochalcit, 552.
Smectite, 515.
Smithsonite (siliceous ozide of zinc), 418, 420, 422, 512, 538.
Smoky quartz, 508.
Snow or ice, crystals of, 473.
Soapstone (steatite), $511,523$.
Soda, sulphate of, 418, 420.
Soda alum, 543.
Soda, muriate of, 552.
Soda, striated, 535.
Sodalite, 297, 302, 307, 550.
Sodium, chloride of, 552.
Sommervillite, 360, 362, 363. 365, 526.
Sommite, 522.
Sordawalite (from Sordanla in Finland), 527.
Sparry iron, 538.
Spartalite (red oxide of zinc), 390, 391, 400,

Species, various, of minerals, 481.
Specular iron, 504.
Sphenoid, the (irregular tetrabedron), 359.
Specific gravity of minerals, how to take the, 484.

Sphrosiderite, 537.
Sphene (Gr. sphen a wedge), 439, 442, 443, $444,447,448,450,456,529$.
Sphere of projection, 326 ; for the oblique system, 492.
Spinelle (aluminate of magnesia), 297, 299, $302,304,307,507$.
Spodumene (Gr. spodos ashes), 439, 442, 443, 444, 450, 452, 521.
Square prism, 351 ; paramaters, symbols, \&c., of, ib.; net for, 362 ; minerals peculiar to the, $362,363$.
Stalactites, 537.
Stannine (sulphuret of tin), 297, 302, 499.
Statuary marble, 536.
Staurotypous kouphone spar, 519.
Stanrolite (prismatic garnet, (Gr. stauros a cross), 418, 420, 421, 422, 519, 528.
Steatite, 511, 523.
Steinmannite (octahedral lead glance), 297, 299, 499.
Stellite, 520.
Steinheilite, 527 .
Sternbergite (flexible silver), 418, 420, 422, 430, 500.
Steinmark, 511.
Stephanite (brittle sulphuret of silver), 418, $420,421,422,430,501$.
Stereographic projection of the sphere used in mapping crystals, 327.
Stilpnomelane, 391, 513.
Stilbite, 418, 420, 421, 422, 430, 511, 518.
Stolzite, 360, 362, 363, 365, 367, 532.
Strablerz, 545.
Strahlstein, 524.
Streak, the property 80 called in minerals, 484.

Striated soda, 535.
btrontian, carbonate of, 418, 430.
Strontian, sulphate of, 417 et seq.
Strontianite carbonate of strontian), 418, 420, 421, 400, 536.
8troganowite, 522.
8tromeyerite (sulphuret of silver and oopper). 418, 420, 422, 499.
Strunite, 418, 422, 423, 430, 554.
Stylobite, 527.
Subsulphate of uranium, 542.
Succinite, 54 .
Sulphate of alumina, 544 .
Sulphate of mmonia, 540 .
Sulphate of barytes, 540.
Sulphate of cobalt, 541.

Sulphate of iron, 541.
Sulphate of lead, 542.
Sulphate of lime, 541.
Sulphate of magnesia, 541.
Sulphate of potash, 540.
Sulphate of soda, B 40 .
Sulphate of strontia, 540 .
Sulphate of zine, 541.
Sulphato-carbonate of lead, 543 .
Sulphato-tri-carbonate of lead, 543.
Sulphato-chloride of copper, 533 .
Sulpho-telluret of bismuth, 493.
Sulphur, 418, 420, 422, 424, 430, 496.
Sulphuret of manganese, 496 ,
Sulphuret of zinc, 496.
Sulphuret of iron, 497.
Sulpharet of cobalt, 497.
Sulphuret of nickel, 497.
Sulphuret of cudmium, 498.
Sulphuret of silver and copper, 499.
Sulphuret of lead, 499.
Sulphuret of bismuth, 499.
Sulphuret of tin, 499.
Sulpharet of mercury, 499.
Sulphuret of silver, $300,501$.
Bulphuret of antimony, 500.
Sulphuret of copper and antimony, 500.
Bulphuret of antimony and lead, 500 .
Sulphuret of antimony and iron, 501.
Sulphuret of silver and antimony, 501, 502.
Sulphuret of antimony, lead, and bismuth, 501.

Sulphuret of molybdena, 503.
Sulphuret of oxide of antimony, 502.
Superoxide of lead, 507.
Susannite, 390, 391, 400, 401, 543.
Syepoorite (sulphuret of cobalt, 497.
Bylvine (chloride of potassium , 297, 209, 552.
Sylvanite, 418, 420, 422, 424, 430, 493.
Symbol for the cube, 296.
Symbols of minerals, 482 et seq.
Symbols for the cube, 296 ; the equare, 361 ; the hexagon, 384 ; the rhomboid, 419 ; the oblique, 440 ; the doubly oblique, 459.
Symplesite, 439, 443, 545.
Systems of crystals, 293.

\mathbf{T}

Tabular spar, 510.
Talc-glaphique, 516.
Talc (potstone), 523.
'Talkapatite, 550.
Talk-chlorite, 524.
Tamarite (rhomboidal arseniate of copper), 390, 391, $400,546$.
Tantalite, 418, 420, 421, 450, 531.
Tarnowitzite, 536.
LTHedurium, native, 391, 400, 493.

Tellurwismuth, $390,391,493$.
Telluret of lead, 493.
Telluret of silver, 403.
Tellur silver, 493.
Tephroit, 513.
Terenite, 522.
Tennantite, 498.
Tessalite, 516.
Tetarto-priswatic felspar, 820.
Tetarto-prismatic melane ore, 529.
Tetarto-prismatic system, 457.
Tetartine, 520.
Tetarto-pyramids, 465.
Tetarto-rhombic system, 457.
Tetraphyline, 547.
Tetrakis-hexahedron (thefour-faced cube), 308
Tetradymite (sulpho-telluret of bismuth), 493.
Tetrahedron, 350 ; faces, angles, edges, \&c., of, and net for, 331.
Tetraklasit, 522.
Tetrahedral copper glance, 502.
Tetrahedral boracite, 534.
Tetrahedral garnet, 528.
Tennantite (dodecahedral dystome glance), 297, 299, 302, 307, 498.
Thallite, 526.
Tharandite, 537.
Thenardite (sulphate of soda), 418, 420, 422, 430, 540.
Thermonatrite (prismatic carbonate of soda, $418,420,421,424,430,535$.
Third system of minerals-the rhombohedral, 385; forms of, ib.; minerals belonging to, 394; axes of the, 373 ; parameters, 388 ; hexagonal prisms, 389 ; map of the, 391.
Thomsonite, 517.
Thorite, 515.
Thraulite, 513.
Three-faced octahedron, 302; symbols of, ib.; how to draw the, 303 ; axes of, ib. ; inclination of the faces of, ib.; to describe a net for, ib .
Three-faced tetrahedron, 334; faces, angles, axes, edges, \&c., of, ib. ; net for, 855 ; forms of the, $\mathbf{i b}$.
Thrombolite, 547.
Thulite, 526.
Thumerstein, 535.
Thumite, 535.
Tincal (borate of soda), 439, 442, 443, 444, 451, 452, 534.
Tin, 360, 362, 363, 365, 367 .
Tin Stone, 506.
Tin-white cobalt, 494.
Tin pyrites, 499.
Titanite, 529.
Titanitic iron, 531.
Titanschorl, 529.
Thorite, 515.

Topazolite, 527.
Topaz, 418, 420, 421, 422, 424, 430, 551.
Torberite (copper uranite), 360, 362, 363, 365. 367, 548.
Towanite, 360, 362, 363, 365, 367, 498.
Torrelite, 531.
Tourmaline, 390, 400, 534.
Trapezoidal icositetrahedron, 541.
Trapezoidal amphigene spar 521.
Tremolite, 524.
Triakistetrahedron, 334.
Triclassite, 527.
Trichlohedric system, 457.
Trigonal dodecahedron, 334.
Triphane, 521.
Triphyline, 439, 442, 443, 44t, 447, 448; 547.

Triplite (phosphate of manganese), 417, 547.
Tritomite, 299, 518.
Trona (prismatoidal soda salt), 439, 535.
Troostite, 512.
Tschefflkinite, 529.
Tungsten, 632.
Tungstate of lime, 532.
Tungstate of iron, 532.
Tungstate of lead, 585.
Tufa, or calcareous tuff, 537.
Turgite, 505.
Turquoise, 549.
Twelve-faced trapezohedron, 552; faces, angles, edges, symbols, axes, \&c., of, and net for, 555.
Twenty-four-faced trapezohedron, 595; how to draw the figure of, ib . ; net for, 505 ; forms of the 507 ; crystals which hare faces parallel to this form, ib .
Twin crystals, 469 ; net for, 471 ; prismatic system of, 475 ; oblique system, ib. ; anorthic system, 474.
Tro-and-one membered system, 458.
Typical forms of crystals, 294.
Tyrolite, 418, 420, 421, 422, 546.

U

Ulimanite (sulphuret of antimony), 297, 299. $302,497$.
Ultimate molecules, 555.
Uncleavable staphyline malachite, 514.
Unionite, 521.
Uncleavable azure spar, 549.
Uncleavable quartz, 510 .
Uncleavable manganese ore, 503.
Uncleavable nephrite spar, 519.
Uninxial mica, 523.
Uraine (oxide of uranium), 506.
Uralorthite, 529.
Uran-mica, 548.
Uran-ochre, 506.

Urantoantal, 531.
Uwarowite, 299, 526.

∇

Valentinite, 418, 422, $5 \cdot 3$.
Vanadinite, 590, 591, 532.
Vanadiate of lead, 532.
Vanadiate of copper, 533.
Vanquelinite (chromate of lead), 439, 442, 447, 452, 533.
Variegated copper, 498.
Velvet copper ore, 542.
Vermilion, 499.
Vesuvian, 526.
Villarsite, 511.
Vitreous copper, 498.
Vitriol, white, 541.
Vivianite (phosphate of iron), 439, 442, 443, $444,447,448,449,450,452,453,454,516$.
Volborthite (vanadiate of copper), 533.
Volknerite, 507.
Voltaite, 297, 502, 544.
Voltzine, 503.
Voraulite, 548.
W
Wad (earthy manganese), 504.
Wagnerite, 439, 442, 44t, 447, 450, 451, 452, 453, 454, 549.
Walchowite, 555.
Walframocher (oxide of tungsten), 508.
Wandstein, 537.
Wavellite, 418, 422, 430, 548.
Websterite, 544.
Weissite, 527.
Wernerite, 522.
White arsenical nickel, 494.
White antimony, 532.
White nickel, 494.
White iron pyrites. 497.
White vitrol, 541.
Whewellite (oxalate of lime), 439, 442, 443, 444, 447, 554.
Wichtisite, 523.
Willemite, $390,391,400,512$.
Wismuthocher (oxide of bismuth), 506.
Witherite (carbonate of barytes), $418,420,421$, 422, 430, 536.
Withamite, 526.
Wohlerite, 531,
Wolchite, 418, 420, 421, 422, 500 .

Wul honstoite, 533.
Wolchite (antimoninl copper glance), 500 .
Wolfram (tungstate of 1 ron), 418, 420, 421, $422,423,424,430,632$.
Wolfram ochre, 508.
Wolfsbergite (sulphuret of copper and antimony), 418, 420, 421, 422, 424, 500.
Wood opal, 510.
Woolastonite (tabular spar), 439, 442, 444, 449 450, 452, 454, 510, 520.
Worthite, 515.
Wulienite, 360, 362, 363, 365, 367, 533.

X

Xanthocone, 391, 400, 503.
Xanthopbylit, 512.
Xanthortite, 529.
Xenotine, 548.

Y

Yellow copper ore, 493.
Yellow sulphuret of arsenic, 502.
Yellow lead ore, 53).
Yellow uranite, 548 .
Yellow tellurium, 493.
Yemte, 825.
Ytterbite, 528.
Yttro-illmenite, 631.
Yttria, phosphate of, 5 ± 8.
Yitrotitanite, 830.
Yttrocerite prramidal cerium baryta), 851.
Yttrotantalite, 531.

Z

Zinckenite (rhombohedral dystom glance), 501.
Zeagonite, 519.
Zenotyne, 360, 362, 365.
Zeolith, 517.
Zircon, 360, 362, 363, 365, 367, 514.
Zincite, 506.
Zinc, sulphate of, 417, 422, $424,430$.
Zinc spar, 588.
Zinc glass, 512.
Zinckente, 418, 421, 422.
Zones, 326.
Zoisite, 439, 443, 444, 526.
Zorgite selemuret of lead and copper), 196,
Zundererz, 532.
Zurlite, 526.
Zurselite, 418.
Zwiselite (iron apatite), 418, 847.

[^0]: $\mathrm{B}^{\frac{m}{n}}$ would indicate a law of decrement by rows of particles m in breadth and n in height.

 IRIS - LILLIAD - Université Lille 1

[^1]: ${ }_{5} \mathrm{R}$ Naumann;
 4R ${ }^{\mathrm{M}} \mathrm{Mip}$

