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P R E F A C E 

r p H E p a p e r s c o n t a i n e d i n t h e p r e s e n t v o l u m e . f o r m i n e f f e c t a s i n g l e 

i n v e s t i g a t i o n i n s p e c u l a t i v e a s t r o n o m y . T h e t i d a l o s c i l l a t i o n s o f t h e 

m o h i l e p a r t s o f a p l a n e t m u s t b e s u b j e c t t o f r i c t i o n a l r e s i s t a n c e , a n d t h i s 

s i m p l e c a u s e g i v e s r i s e t o a d i v e r s i t y o f a s t r o n o m i c a l e f f e c t s w o r t h y o f 

e x a m i n a t i o n . 

T h e e a r l i e r p o r t i o n o f t h e i n v e s t i g a t i o n w a s u n d e r t a k e n w i t h t h e o b j e c t 

o f e x p l a i n i n g , i f p o s s i b l e , t h e o b l i q u i t y o f t h e e a r t h ' s e q u a t o r t o t h e e c l i p t i c , 

a n d t h e r e s u l t s a t t a i n e d w e r e s o f r u i t f u l a n d p r o m i s i n g t h a t i t s e e m e d w e l l 

t o e x a m i n e t h e w h o l e s u b j e c t w i t h t h e c l o s e s t a t t e n t i o n , a n d t o d i s c u s s t h e 

v a r i o u s c o l l a t e r a l p o i n t s w h i c h a r o s e i n t h e c o u r s e o f t h e w o r k . 

I t i s t h e e x p e r i e n c e o f e v e r y i n v e s t i g a t o r t h a t h e r e a c h e s h i s g o a l b y 

a d e v i o u s p a t h , a n d t h i s , a t l e a s t , h a s b e e n t h e c a s e i n t h e p r e s e n t g r o u p 

o f p a p e r s . I f t h e n t h e w h o l e field w o r e n o w t o b e r e t r a v e r s e d , i t i s a l m o s t 

c e r t a i n t h a t t h e r e s u l t s m i g h t b e o b t a i n e d m o r e s h o r t l y . T h e n , a g a i n , 

t h e r e i s a n o t h e r c a u s e w h i c h p r e c l u d e s b r e v i t y , f o r w h e n a n e n t i r e l y n e w 

s u b j e c t i s u n d e r c o n s i d e r a t i o n e v e r y b r a n c h r o a d m u s t b e e x a m i n e d w i t h 

c a r e . B y f a r t h e g r e a t e r n u m b e r o f t h e f o r k s i n t h e r o a d l e a d o n l y t o 

b l i n d a l l e y s ; a n d i t i s o f t e n i m p o s s i b l e t o f o r e s e e , a t t h e c r o s s r o a d s , w h i c h 

w i l l b e t h e m a i n h i g h w a y , a n d w h i c h a b l i n d a l l e y . C l e a r n e s s o f v i e w i s 

o n l y r e a c h e d b y t h e p i o n e e r a f t e r m u c h l a b o u r , a n d a s h e first p a s s e s a l o n g 

h i s p a t h h e h a s t o g r o p e h i s w a y i n t h e d a r k w i t h o u t t h e h e l p o f a n y s i g n 

p o s t . 

T h i s m a y b e i l l u s t r a t e d b y w h a t a c t u a l l y o c c u r r e d t o m e , f o r w h e n I 

first f o u n d t h e q u a r t i c e q u a t i o n ( p . 1 0 2 ) w h i c h e x p r e s s e s t h e i d e n t i t y b e t w e e n 

t h e l e n g t h s o f t h e d a y a n d o f t h e m o n t h , I o n l y r e g a r d e d i t a s g i v i n g t h e 

c o n f i g u r a t i o n t o w a r d s w h i c h t h e , r e t r o s p e c t i v e i n t e g r a t i o n w a s l e a d i n g b a c k . 

I w e l l r e m e m b e r t h i n k i n g t h a t i t w a s j u s t a s w e l l t o f i n d t h e o t h e r r o o t s 

o f t h e e q u a t i o n , a l t h o u g h I h a d n o s u s p i c i o n t h a t a n y t h i n g o f i n t e r e s t w o u l d 

b e d i s c o v e r e d t h e r e b y . A s o f c o u r s e I o u g h t t o h a v e f o r e s e e n , t h e r e s u l t 

t h r e w a flood o f l i g h t o n t h e w h o l e s u b j e c t , f o r i t s h o w e d h o w t h e s y s t e m 

m u s t h a v e d e g r a d e d , t h r o u g h l o s s o f e n e r g y , f r o m a c o n f i g u r a t i o n r e p r e s e n t e d 

b y t h e first r e a l r o o t t o a n o t h e r r e p r e s e n t e d b y t h e s e c o n d . M o r e o v e r t h e 

m o t i o n i n t h e first c o n f i g u r a t i o n w a s f o u n d t o b e u n s t a b l e w h i l s t t h a t i n 
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t h e s e c o n d w a s s t a b l e . T h u s t h i s q u a r t i c e q u a t i o n l e d t o t h e r e m a r k a b l y 

s i m p l e a n d i l l u m i n a t i n g v i e w o f t h e t h e o r y o f t i d a l f r i c t i o n c o n t a i n e d i n 

t h e fifth p a p e r ( p . 1 9 5 ) ; a n d y e t a l l t h i s a r o s e f r o m a p o i n t w h i c h a p p e a r e d 

a t first s i g h t b a r e l y w o r t h e x a m i n i n g . 

I w i s h n o w , a f t e r t h e l a p s e o f m o r e t h a n t w e n t y y e a r s , t o a v a i l m y s e l f 

o f t h i s o p p o r t u n i t y o f c o m m e n t i n g o n s o m e p o r t i o n s o f t h e w o r k a n d o f 

r e v i e w i n g t h e t h e o r y a s a w h o l e . 

T h e o b s e r v a t i o n s o f D r H e c k c r * a n d o f o t h e r s d o n o t a f f o r d e v i d e n c e o f 

a n y c o n s i d e r a b l e a m o u n t o f r e t a r d a t i o n i n t h e t i d a l o s c i l l a t i o n s o f t h e s o l i d 

e a r t h , f o r , w i t h i n t h e l i m i t s o f e r r o r o f o b s e r v a t i o n , t h e p h a s e o f t h e o s c i l l a 

t i o n a p p e a r s t o b e t h e s a m e a s i f t h e e a r t h w e r e p u r e l y e l a s t i c . T h e n a g a i n 

m o d e r n r e s e a r c h e s i n t h e l u n a r t h e o r y s h o w t h a t t h e s e c u l a r a c c e l e r a t i o n o f 

t h e m o o n ' s m e a n m o t i o n i s s o n e a r l y e x p l a i n e d b y m e a n s o f p u r e g r a v i t a t i o n 

a s t o l e a v e b u t a s m a l l r e s i d u e t o b e r e f e r r e d t o t h e e f f e c t s o f t i d a l f r i c t i o n . 

W e a r e t h u s d r i v e n t o b e l i e v e t h a t a t p r e s e n t t i d a l f r i c t i o n i s p r o d u c i n g i t s 

i n e v i t a b l e e f f e c t s w i t h e x t r e m e s l o w n e s s . B u t w e n e e d n o t t h e r e f o r e h o l d 

t h a t t h e m a r c h o f e v e n t s w a s a l w a y s s o l e i s u r e l y , a n d i f t h e e a r t h w a s e v e r 

w h o l l y o r i n l a r g e p a r t m o l t e n , i t c a n n o t h a v e b e e n t h e c a s e . 

I n a n y c a s e f r i c t i o n a l r e s i s t a n c e , w h e t h e r i t b e m u c h o r l i t t l e a n d w h e t h e r 

a p p l i c a b l e t o t h e s o l i d p l a n e t o r t o t h e s u p e r i n c u m b e n t o c e a n , i s a t r u e c a u s e 

o f c h a n g e , a n d i t r e m a i n s d e s i r a b l e t h a t i t s e f f e c t s s h o u l d b e i n v e s t i g a t e d . 

N o w f o r t h i s e n d i t w a s n e c e s s a r y t o a d o p t s o m e c o n s i s t e n t t h e o r y o f f r i c t i o n -

a l l y r e s i s t e d t i d e s , a n d t h e h y p o t h e s i s o f t h e e a r t h ' s v i s c o s i t y a f f o r d e d t h e o n l y 

a v a i l a b l e t h e o r y o f t h e k i n d . T h u s t h e f i r s t p a p e r i n t h e p r e s e n t v o l u m e i s 

d e v o t e d t o t h e t h e o r y o f t h e t i d e s o f a v i s c o u s s p h e r o i d . I t m a y b e t h a t 

n o t h i n g m a t e r i a l i s a d d e d b y s o l v i n g t h e p r o b l e m a l s o f o r t h e c a s e o f e l a s t i c o -

v i s c o s i t y , b u t i t w a s w e l l t h a t t h a t h y p o t h e s i s s h o u l d a l s o b e e x a m i n e d . 

I h a d a t a p r e v i o u s d a t e e n d e a v o u r e d t o d e t e r m i n e t h e a m o u n t o f m o d i 

fication t o w h i c h L o r d K e l v i n ' s t h e o r y o f t h e t i d e s o f a n e l a s t i c g l o b e m u s t 

b e s u b j e c t i n c o n s e q u e n c e o f t h e h e t e r o g e n e i t y o f t h e e a r t h ' s d e n s i t y , a n d 

t h i s i n v e s t i g a t i o n i s r e p r o d u c e d i n t h e s e c o n d p a p e r . D r H e r g l o t z h a s a l s o 

t r e a t e d t h e p r o b l e m b y m e a n s o f s o m e l a b o r i o u s a n a l y s i s , a n d finds t h e 

c h a n g e d u e t o h e t e r o g e n e i t y s o m e w h a t g r e a t e r t h a n I h a d d o n e . B u t w e 

b o t h b a s e o u r c o n c l u s i o n s o n a s s u m p t i o n s w h i c h s e e m t o b e b e y o n d t h e 

r e a c h o f v e r i f i c a t i o n , a n d t h e p r o b a b i l i t y o f c o r r e c t n e s s i n t h e r e s u l t s c a n 

o n l y b e e s t i m a t e d b y m e a n s o f t h e p l a u s i b i l i t y o f t h e a s s u m p t i o n s . 

T h e d i f f e r e n t i a l e q u a t i o n s w h i c h s p e c i f y t h e r a t e s o f c h a n g e i n t h e v a r i o u s 

e l e m e n t s o f t h e m o t i o n s o f t h e m o o n a n d t h e e a r t h w e r e f o u n d t o b e t o o 

* Veröffentl. d. K. Preuss. Geodät. Inst., N e u e F o l g e , N o . 3 2 , P o t s d a m , 1 9 0 7 . 
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c o m p l e x t o a d m i t o f a n a l y t i c a l i n t e g r a t i o n , a n d i t t h e r e f o r e b e c a m e n e c e s s a r y 

t o s o l v e t h e p r o b l e m n u m e r i c a l l y . I t w a s i n t e n d e d t o d r a w c o n c l u s i o n s a s 

t o t h e h i s t o r y o f t h e e a r t h a n d m o o n , a n d a c c o r d i n g l y t h e t r u e v a l u e s o f 

t h e m a s s , s i z e a n d s p e e d o f r o t a t i o n o f t h e e a r t h w e r e t a k e n a s t h e b a s i s 

o f c o m p u t a t i o n . B u t t h e e a r t h w a s n e c e s s a r i l y t r e a t e d a s b e i n g h o m o g e n e o u s , 

a n d t h u s e r r o n e o u s v a l u e s w e r e i n v o l v e d f o r t h e e l l i p t i c i t y , f o r t h e p r e c e s s i o n a l 

c o n s t a n t a n d f o r t h e i n e q u a l i t i e s i n t h e m o o n ' s m o t i o n d u e t o t h e o b l a t e n e s s 

o f t h e e a r t h . I t w a s n o t u n t i l t h e w h o l e o f t h e l a b o r i o u s i n t e g r a t i o n s h a d 

b e e n c o m p l e t e d t h a t i t o c c u r r e d t o m e t h a t a n a p p r o p r i a t e c h a n g e i n t h e 

l i n e a r d i m e n s i o n s o f t h e h o m o g e n e o u s e a r t h m i g h t a f f o r d a p p r o x i m a t e l y 

c o r r e c t v a l u e s f o r e v e r y o t h e r e l e m e n t . S u c h a m e c h a n i c a l l y e q u i v a l e n t 

s u b s t i t u t e f o r t h e e a r t h i s d e t e r m i n e d o n p . 4 3 9 , a n d i f m y i n t e g r a t i o n s 

s h o u l d e v e r b e r e p e a t e d I s u g g e s t t h a t i t w o u l d b e a d v a n t a g e o u s t o a d o p t 

t h e n u m e r i c a l v a l u e s t h e r e s p e c i f i e d a s t h e f o u n d a t i o n f o r t h e c o m p u t a t i o n s . 

T h e t h i r d p a p e r c o n t a i n s t h e i n v e s t i g a t i o n o f t h e s e c u l a r c h a n g e s i n t h e 

m o t i o n s o f t h e e a r t h a n d m o o n , d u e t o t i d a l f r i c t i o n , w h e n t h e l u n a r o r b i t i s 

t r e a t e d a s c i r c u l a r a n d c o i n c i d e n t w i t h t h e e c l i p t i c . T h e d i f f e r e n t i a l e q u a t i o n s 

a r e o b t a i n e d b y m e a n s o f t h e d i s t u r b i n g f o r c e s , b u t t h e m e t h o d o f t h e 

d i s t u r b i n g f u n c t i o n i s m u c h m o r e e l e g a n t . T h e l a t t e r m e t h o d i s u s e d i n 

t h e s i x t h p a p e r ( p . 2 0 8 ) , w h i c h i s d e v o t e d e s p e c i a l l y t o finding t h e c h a n g e s 

i n t h e e c c e n t r i c i t y a n d t h e i n c l i n a t i o n o f t h e o r b i t . H o w e v e r t h e a n a l y s i s i s 

s o c o m p l i c a t e d t h a t I d o n o t r e g r e t h a v i n g o b t a i n e d t h e e q u a t i o n s i n t w o 

i n d e p e n d e n t w a y s . A s t h e s i x t h p a p e r w a s i n t e n d e d t o b e s u p p l e m e n t a r y 

t o t h e t h i r d , t h e d i s t u r b i n g f u n c t i o n i s d e v e l o p e d w i t h t h e s p e c i a l o b j e c t o f 

finding t h e e q u a t i o n s f o r t h e e c c e n t r i c i t y a n d t h e i n c l i n a t i o n , b u t a n a r t i f i c e i s 

d e v i s e d w h e r e b y i t m a y a l s o b e m a d e t o f u r n i s h t h e e q u a t i o n s f o r t h e o t h e r 

e l e m e n t s . I t w o u l d o n l y n e e d a s l i g h t a m o u n t o f m o d i f i c a t i o n t o o b t a i n t h e 

e q u a t i o n s f o r a l l t h e e l e m e n t s s i m u l t a n e o u s l y b y s t r a i g h t f o r w a r d a n a l y s i s . 

T h i s p a p e r a l s o c o n t a i n s a n i n v e s t i g a t i o n o f t h e m o t i o n o f a s a t e l l i t e 

m o v i n g a b o u t a n o b l a t e p l a n e t b y m e a n s o f e q u a t i o n s , w h i c h g i v e s i m u l 

t a n e o u s l y t h e n u t a t i o n s o f t h e p l a n e t a n d t h e c o r r e s p o n d i n g i n e q u a l i t i e s 

i n t h e m o t i o n o f t h e s a t e l l i t e . T h e e q u a t i o n s a r e a f t e r w a r d s e x t e n d e d s o 

a s t o i n c l u d e t h e e f f e c t s o f t i d a l f r i c t i o n . I f o u n d t h i s p o r t i o n o f t h e w o r k 

f a r m o r e a r d u o u s t h a n a n y t h i n g e l s e i n t h e w h o l e s e r i e s o f r e s e a r c h e s . 

T h e d e v e l o p m e n t s a n d i n t e g r a t i o n s i n a l l t h e s e p a p e r s a r e c a r r i e d o u t 

w i t h w h a t m a y p e r h a p s b e r e g a r d e d a s a n u n n e c e s s a r y d e g r e e o f e l a b o r a t i o n , 

b u t i t w a s i m p o s s i b l e t o f o r e s e e w h a t t e r m s m i g h t b e c o m e i m p o r t a n t . I t 

d o e s n o t , h o w e v e r , s e e m w o r t h w h i l e t o c o m m e n t f u r t h e r o n m i n o r p o i n t s 

s u c h a s t h e s e . 
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F o r t h e a s t r o n o m e r w h o i s i n t e r e s t e d i n c o s m o g o n y t h e i m p o r t a n t p o i n t 

i s t h e d e g r e e o f a p p l i c a b i l i t y o f t h e t h e o r y a s a w h o l e t o c e l e s t i a l e v o l u t i o n . 

T o m e i t s e e m s t h a t t h e t h e o r y h a s r a t h e r g a i n e d t h a n l o s t i n t h e e s t e e m o f 

m e n o f s c i e n c e d u r i n g t h e l a s t 2 5 y e a r s , a n d I o b s e r v e t h a t s e v e r a l w r i t e r s a r e 

d i s p o s e d t o a c c e p t i t a s a n e s t a b l i s h e d a c q u i s i t i o n t o o u r k n o w l e d g e o f 

c o s m o g o n y . 

U n d u e w e i g h t h a s s o m e t i m e s b e e n l a i d o n t h e e x a c t n u m e r i c a l v a l u e s 

a s s i g n e d f o r d e f i n i n g t h e p r i m i t i v e c o n f i g u r a t i o n o f t h e e a r t h a n d m o o n . I n 

s o s p e c u l a t i v e a m a t t e r c l o s e a c c u r a c y i s u n a t t a i n a b l e , f o r a d i f f e r e n t t h e o r y 

o f f r i c t i o n a l l y r e t a r d e d t i d e s w o u l d i n e v i t a b l y l e a d t o a s l i g h t d i f f e r e n c e i n t h e 

c o n c l u s i o n ; m o r e o v e r s u c h a r e a l c a u s e a s t h e s e c u l a r i n c r e a s e i n t h e m a s s e s 

o f t h e e a r t h a n d m o o n t h r o u g h t h e a c c u m u l a t i o n o f m e t e o r i c d u s t , a n d p o s s i b l y 

o t h e r c a u s e s a r e l e f t o u t o f c o n s i d e r a t i o n . 

T h e e x a c t n a t u r e o f t h e p r o c e s s b y w h i c h t h e m o o n w a s d e t a c h e d f r o m 

t h e e a r t h m u s t r e m a i n e v e n m o r e s p e c u l a t i v e . I s u g g e s t e d t h a t t h e fission o f 

t h e p r i m i t i v e p l a n e t m a y h a v e b e e n b r o u g h t a b o u t b y t h e s y n c h r o n i s m o f t h e 

s o l a r t i d e w i t h t h e p e r i o d o f t h e f u n d a m e n t a l f r e e o s c i l l a t i o n o f t h e p l a n e t , 

a n d t h e s u g g e s t i o n h a s r e c e i v e d a d e g r e e o f a t t e n t i o n w h i c h I n e v e r 

a n t i c i p a t e d . I t m a y b e t h a t w e s h a l l n e v e r a t t a i n t o a h i g h e r d e g r e e o f 

c e r t a i n t y i n t h e s e o b s c u r e q u e s t i o n s t h a n w e n o w p o s s e s s , b u t I w o u l d m a i n 

t a i n t h a t w e m a y n o w h o l d w i t h c o n f i d e n c e t h a t t h e m o o n o r i g i n a t e d b y a 

p r o c e s s o f f i s s i o n f r o m t h e p r i m i t i v e p l a n e t , t h a t a t first s h e r e v o l v e d i n a n 

o r b i t c l o s e t o t h e p r e s e n t s u r f a c e o f t h e e a r t h , a n d t h a t t i d a l f r i c t i o n h a s b e e n 

t h e p r i n c i p a l a g e n t w h i c h t r a n s f o r m e d t h e s y s t e m t o i t s p r e s e n t c o n f i g u r a t i o n . 

T h e t h e o r y f o r a l o n g t i m e s e e m e d t o l i e o p e n t o a t t a c k o n t h e g r o u n d 

t h a t i t m a d e t o o g r e a t d e m a n d s o n t i m e , a n d t h i s h a s a l w a y s a p p e a r e d t o m e 

t h e g r e a t e s t d i f f i c u l t y i n t h e w a y o f i t s a c c e p t a n c e . I f w e w e r e s t i l l 

c o m p e l l e d t o a s s e n t t o t h e j u s t i c e o f L o r d K e l v i n ' s v i e w s a s t o t h e p e r i o d o f 

t i m e w h i c h h a s e l a p s e d s i n c e t h e e a r t h s o l i d i f i e d , a n d a s t o t h e a g e o f t h e 

s o l a r s y s t e m , w e s h o u l d a l s o h a v e t o a d m i t t h a t t h e t h e o r y o f e v o l u t i o n u n d e r 

t i d a l i n f l u e n c e i s i n a p p l i c a b l e t o i t s f u l l e x t e n t . L o r d K e l v i n ' s c o n t r i b u t i o n s 

t o c o s m o g o n y h a v e b e e n o f t h e first o r d e r o f i m p o r t a n c e , b u t h i s a r g u m e n t s 

o n t h e s e p o i n t s n o l o n g e r c a r r y c o n v i c t i o n w i t h t h e m . L o r d K e l v i n c o n t e n d e d 

t h a t t h e a c t u a l d i s t r i b u t i o n o f l a n d a n d s e a p r o v e s t h a t t h e p l a n e t s o l i d i f i e d 

a t a t i m e w h e n t h e d a y h a d n e a r l y i t s p r e s e n t l e n g t h . I f t h i s w e r e t r u e 

t h e e f f e c t s o f t i d a l f r i c t i o n r e l a t e t o a p e r i o d a n t e c e d e n t t o t h e s o l i d i f i c a 

t i o n . B u t I h a v e a l w a y s f e l t c o n v i n c e d t h a t t h e e a r t h w o u l d a d j u s t i t s 

e l l i p t i c i t y t o i t s e x i s t i n g s p e e d o f r o t a t i o n w i t h c l o s e a p p r o x i m a t i o n . T h e 

c a l c u l a t i o n s c o n t a i n e d i n P a p e r 9 , t h e p l a s t i c i t y o f e v e n t h e m o s t r e f r a c t o r y 
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f o r m s o f m a t t e r u n d e r g r e a t s t r e s s e s , a n d t h e c o n t o r t i o n s o f g e o l o g i c a l s t r a t a 

a p p e a r t o m e , a t l e a s t , c o n c l u s i v e a g a i n s t L o r d K e l v i n ' s v i e w . 

T h e r e s e a r c h e s o f M r S t r u t t o n t h e r a d i o - a c t i v i t y o f r o c k s p r o v e t h a t w e 

c a n n o t r e g a r d t h e e a r t h s i m p l y a s a c o o l i n g g l o b e , a n d t h e r e f o r e L o r d K e l v i n ' s 

a r g u m e n t a s t o t h e a g e o f t h e e a r t h a s d e r i v e d f r o m t h e o b s e r v e d g r a d i e n t o f 

t e m p e r a t u r e m u s t b e i l l u s o r y . I n d e e d e v e n w i t h o u t r e g a r d t o t h e i n i t i a l 

t e m p e r a t u r e o f t h e e a r t h a c q u i r e d b y m e a n s o f s e c u l a r c o n t r a c t i o n , i t i s h a r d 

t o u n d e r s t a n d w h y t h e e a r t h i s n o t h o t t e r i n s i d e t h a n i t i s . 

I t s e e m s p r o b a b l e t h a t M r S t r u t t m a y b e a b l e t o o b t a i n a r o u g h n u m e r i c a l 

s c a l e o f g e o l o g i c a l t i m e b y m e a n s o f h i s m e a s u r e m e n t s o f t h e r a d i o - a c t i v i t y o f 

r o c k s , a n d a l t h o u g h h e h a s n o t y e t b e e n a b l e t o f o r m u l a t e s u c h a s c a l e w i t h 

a n y d e g r e e o f a c c u r a c y , h e i s a l r e a d y c o n f i d e n t t h a t t h e p e r i o d s i n v o l v e d m u s t 

b e m e a s u r e d i n h u n d r e d s o r p e r h a p s e v e n t h o u s a n d s o f m i l l i o n s o f y e a r s * . 

T h e e v i d e n c e , t a k e n a t i t s l o w e s t , p o i n t s t o a p e r i o d m a n y t i m e s a s g r e a t a s 

w a s a d m i t t e d b y L o r d K e l v i n f o r t h e w h o l e h i s t o r y o f t h e s o l a r s y s t e m . 

L a s t l y t h e r e c e n t d i s c o v e r y o f t h e c o l o s s a l i n t e r n a l e n e r g y r e s i d e n t i n t h e 

a t o m s h o w s t h a t i t i s u n s a f e t o c a l c u l a t e t h e a g e o f t h e s u n m e r e l y f r o m 

m e c h a n i c a l e n e r g y , a s d i d H e l m h o l t z a n d K e l v i n . I t i s t r u e t h a t t h e t i m e 

h a s n o t y e t a r r i v e d a t w h i c h w e c a n e x p l a i n e x a c t l y t h e m a n n e r i n w h i c h t h e 

a t o m i c e n e r g y m a y b e a v a i l a b l e f o r m a i n t a i n i n g t h e s u n ' s h e a t , b u t w h e n t h e 

g r e a t a g e o f t h e e a r t h i s firmly e s t a b l i s h e d t h e i n s u f f i c i e n c y o f t h e s u p p l y 

o f h e a t t o t h e s u n b y m e a n s o f p u r e l y m e c h a n i c a l e n e r g y w i l l p r o v e t h a t 

a t o m i c e n e r g y d o e s b e c o m e a v a i l a b l e i n s o m e w a y . O n t h e w h o l e t h e n i t 

m a y b e m a i n t a i n e d t h a t d e f i c i e n c y o f t i m e d o e s n o t , a c c o r d i n g t o o u r p r e s e n t 

s t a t e o f k n o w l e d g e , f o r m a b a r t o t h e f u l l a c c e p t a b i l i t y o f t h e t h e o r y o f 

t e r r e s t r i a l e v o l u t i o n u n d e r t h e i n f l u e n c e o f t i d a l f r i c t i o n . 

I t i s v e r y i m p r o b a b l e t h a t t i d a l f r i c t i o n h a s b e e n t h e d o m i n a n t c a u s e o f 

c h a n g e i n a n y o f t h e o t h e r p l a n e t a r y s u b - s y s t e m s o r i n t h e s o l a r s y s t e m i t s e l f , 

y e t i t s e e m s t o t h r o w l i g h t o n t h e d i s t r i b u t i o n o f t h e s a t e l l i t e s a m o n g s t t h e 

s e v e r a l p l a n e t s . I t e x p l a i n s t h e i d e n t i t y o f t h e r o t a t i o n o f t h e m o o n w i t h h e r 

o r b i t a l m o t i o n , a s w a s l o n g a g o p o i n t e d o u t b y K a n t a n d L a p l a c e , a n d i t 

t e n d s t o c o n f i r m t h e c o r r e c t n e s s o f t h e o b s e r v a t i o n s a c c o r d i n g t o w h i c h V e n u s 

a l w a y s p r e s e n t s t h e s a m e f a c e t o t h e s u n . F i n a l l y i t h a s b e e n h e l d b y D r S e e 

a n d b y o t h e r s t o e x p l a i n s o m e o f t h e p e c u l i a r i t i e s o f t h e o r b i t s o f d o u b l e s t a r s . 

L o r d K e l v i n ' s d e t e r m i n a t i o n o f t h e s t r a i n o f a n e l a s t i c s p h e r e a n d t h e 

s o l u t i o n o f t h e c o r r e s p o n d i n g p r o b l e m o f t h e t i d e s o f a v i s c o u s s p h e r o i d 

s u g g e s t e d a n o t h e r i n t e r e s t i n g q u e s t i o n w i t h r e s p e c t t o t h e e a r t h . T h i s 

p r o b l e m i s t o find t h e s t r e n g t h o f t h e m a t e r i a l s o f w h i c h t h e e a r t h m u s t b e 

* S o m e of Mr S t r u t t ' s p r e l i m i n a r y c o m p u t a t i o n s are g i v e n i n Proc. Roy. Hoc. A , V o l . 8 1 , 

p. 2 7 2 ( 1 9 0 8 ) . 
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b u i l t s o a s t o p r e v e n t t h e c o n t i n e n t s f r o m s i n k i n g a n d t h e s e a b e d f r o m 

r i s i n g ; t h i s q u e s t i o n i s t r e a t e d i n P a p e r 9 ( p . 4 5 9 ) . T h e e x i s t e n c e o f a n 

i s o s t a t i c l a y e r , a t w h i c h t h e h y d r o s t a t i c p r e s s u r e i s u n i f o r m , a t n o g r e a t d e p t h 

b e l o w t h e e a r t h ' s s u r f a c e , i s n o w w e l l e s t a b l i s h e d . T h i s p r o v e s t h a t I h a v e 

u n d e r e s t i m a t e d i n m y p a p e r t h e s t r e n g t h o f t h e s u p e r f i c i a l l a y e r s n e c e s s a r y 

t o p r e v e n t s u b s i d e n c e a n d e l e v a t i o n . T h e s t r e n g t h o f g r a n i t e a n d o f o t h e r 

r o c k s i s c e r t a i n l y b a r e l y a d e q u a t e t o s u s t a i n t h e c o n t i n e n t s i n p o s i t i o n , a n d 

M r H a y f o r d * s e e k s t o a v o i d t h e d i f f i c u l t y b y a r g u i n g t h a t t h e e a r t h i s 

a c t u a l l y ' a f a i l i n g s t r u c t u r e , ' a n d t h a t t h e s u b s i d e n c e o f t h e c o n t i n e n t s i s 

o n l y p r e v e n t e d b y t h e c o u n t e r v a i l i n g e f f e c t s o f t h e g r a d u a l l y i n c r e a s i n g 

w e i g h t o f s e d i m e n t a t i o n o n t h e a d j o i n i n g s e a - b e d s . 

I n h i s a d d r e s s t o t h e G e o l o g i c a l S e c t i o n o f t h e B r i t i s h A s s o c i a t i o n a t 

D u b l i n ( 1 9 0 8 ) P r o f e s s o r J o l y m a k e s a n i n t e r e s t i n g s u g g e s t i o n w h i c h b e a r s o n 

t h i s s u b j e c t . H e s u p p o s e s t h a t t h e h e a t g e n e r a t e d b y t h e r a d i o - a c t i v e 

m a t e r i a l s i n s e d i m e n t h a s e x e r c i s e d a n i m p o r t a n t i n f l u e n c e i n b r i n g i n g a b o u t 

t h e e l e v a t i o n o f m o u n t a i n r a n g e s a n d o f t h e a d j o i n i n g c o n t i n e n t s . 

A s u b s i d i a r y o u t c o m e o f t h i s s a m e i n v e s t i g a t i o n w a s g i v e n i n V o l . I . o f 

t h e s e p a p e r s , w h e n I a t t e m p t e d t o d e t e r m i n e t h e e l a s t i c o s c i l l a t i o n s o f t h e 

s u p e r f i c i a l l a y e r s o f t h e e a r t h u n d e r t h e v a r y i n g p r e s s u r e s o f t h e t i d e s a n d o f 

t h e a t m o s p h e r e . D r H e c k e r m a y p e r h a p s b e a b l e t o v e r i f y o r d i s p r o v e t h e s e 

t h e o r e t i c a l c a l c u l a t i o n s w h e n h e m a k e s t h e final r e d u c t i o n o f h i s v a l u a b l e 

o b s e r v a t i o n s w i t h h o r i z o n t a l p e n d u l u m s a t P o t s d a m . 

W h e n t h e f i r s t v o l u m e o f t h e s e p a p e r s w a s p u b l i s h e d L o r d K e l v i n w a s 

s t i l l a l i v e , a n d I h a d t h e p l e a s u r e o f r e c e i v i n g f r o m h i m a c o r d i a l l e t t e r o f 

t h a n k s f o r m y a c k n o w l e d g e m e n t o f t h e d e e p d e b t I o w e h i m . H i s n a m e a l s o 

o c c u r s f r e q u e n t l y i n t h e p r e s e n t v o l u m e , a n d i f I d i s s e n t f r o m s o m e o f h i s 

v i e w s , I n o n e t h e l e s s r e g a r d h i m a s a m o n g s t t h e g r e a t e s t o f t h o s e w h o h a v e 

t r i e d t o g u e s s t h e r i d d l e o f t h e h i s t o r y o f t h e u n i v e r s e . 

T h e c h r o n o l o g i c a l l i s t o f m y p a p e r s i s r e p e a t e d i n t h i s s e c o n d v o l u m e , 

t o g e t h e r w i t h a c o l u m n s h o w i n g i n w h i c h v o l u m e t h e y a r e o r w i l l b e 

r e p r o d u c e d . 

I n c o n c l u s i o n I w i s h t o t h a n k t h e p r i n t e r s a n d r e a d e r s o f t h e C a m b r i d g e 

U n i v e r s i t y P r e s s f o r t h e i r m a r v e l l o u s a c c u r a c y a n d c a r e i n s e t t i n g u p t h e 

t y p e a n d i n d e t e c t i n g s o m e m i s t a k e s i n t h e c o m p l i c a t e d a n a l y s i s c o n t a i n e d i n 

t h e s e p a p e r s . 

G . H . D A R W I N . 

October, 1 9 0 8 . 

* Phil. Soc. Washington, V o l . 15 (1907) , p . 5 7 . 
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1 8 7 5 O n s o m e p r o p o s e d f o r m s o f s l i d e - r u l e . L o n d o n M a t h . S o c . P r o a , 6 , I V 
1 8 7 5 , p . 1 1 3 . 

1 8 7 5 T h e m e c h a n i c a l d e s c r i p t i o n o f e q u i p o t e n t i a l l i n e s . L o n d o n M a t h . S o c . I V 

P r o a , 6 , 1 8 7 5 , p p . 1 1 5 — 1 1 7 . 

1 8 7 5 O n a m e c h a n i c a l r e p r e s e n t a t i o n o f t h e s e c o n d e l l i p t i c i n t e g r a l . M e s - I V 

s e n g e r o f M a t h . , 4 , 1 8 7 5 , p p . 1 1 3 — 1 1 5 . 

1 8 7 5 O n m a p s o f t h e W o r l d . P h i l . M a g . , 5 0 , 1 8 7 5 , p p . 4 3 1 — 4 4 4 . I V 

1 8 7 6 O n g r a p h i c a l i n t e r p o l a t i o n a n d i n t e g r a t i o n . B r i t . A s s o c . R e p . , 1 8 7 6 , I V 

p . 1 3 . 

1 8 7 6 O n t h e i n f l u e n c e o f g e o l o g i c a l c h a n g e s o n t h e E a r t h ' s a x i s o f r o t a t i o n . I l l 

R o y . S o c . P r o a , 2 5 , 1 8 7 7 , p p . 3 2 8 — 3 3 2 ; P h i l . T r a n s . , 1 6 7 , 1 8 7 7 , 

p p . 2 7 1 — 3 1 2 , 

1 8 7 6 O n a n o v e r s i g h t i n t h e Mecaniqw Celeste, a n d o n t h e i n t e r n a l d e n s i t i e s I I I 

o f t h e p l a n e t s . A s t r o n . S o c . M o n t h . N o t . , 3 7 , 1 8 7 7 , p p . 7 7 — 8 9 . 

1 8 7 7 A g e o m e t r i c a l p u z z l e . M e s s e n g e r o f M a t h . , ff, 1 8 7 7 , p . 8 7 . I V 

1 8 7 7 A g e o m e t r i c a l i l l u s t r a t i o n o f t h e p o t e n t i a l o f a d i s t a n t c e n t r e o f f o r c e . I V 

M e s s e n g e r o f M a t h . , 6 , 1 8 7 7 , p p . 9 7 , 9 8 . 

1 8 7 7 N o t e o n t h e e l l i p t i c i t y o f t h e E a r t h ' s s t r a t a . M e s s e n g e r o f M a t h . , 6 , I I I 

1 8 7 7 , p p . 1 0 9 , 1 1 0 . 

1 8 7 7 O n g r a p h i c a l i n t e r p o l a t i o n a n d i n t e g r a t i o n . M e s s e n g e r o f M a t h . , 6 , I V 

1 8 7 7 , p p . 1 3 4 — 1 3 6 . 

1 8 7 7 O n a t h e o r e m i n s p h e r i c a l h a r m o n i c a n a l y s i s . M e s s e n g e r o f M a t h . , 6, I V 

1 8 7 7 , p p . 1 6 5 — 1 6 8 . 

1 8 7 7 O n a s u g g e s t e d e x p l a n a t i o n o f t h e o b l i q u i t y o f p l a n e t s t o t h e i r o r b i t s . I l l 

P h i l . M a g . , 3 , 1 8 7 7 , p p . 1 8 8 — 1 9 2 . 

1 8 7 7 O n f a l l i b l e m e a s u r e s o f v a r i a b l e q u a n t i t i e s , a n d o n t h e t r e a t m e n t o f I V 

m e t e o r o l o g i c a l o b s e r v a t i o n s . P h i l . M a g . , 4 , 1 8 7 7 , p p . 1 — 1 4 . 
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1 8 7 8 O n P r o f e s s o r H a u g h t o n ' s e s t i m a t e o f g e o l o g i c a l t i m e . R o y . S o c . P r o a , I I I 

2 7 , 1 8 7 8 , p p . 1 7 9 — 1 8 3 . 

1 8 7 8 O n t h e b o d i l y t i d e s o f v i s c o u s a n d s e m i - e l a s t i c s p h e r o i d s , a n d o n t h e I I 

O c e a n t i d e s o n a y i e l d i n g n u c l e u s . R o y . S o c . P r o c , 2 7 , 1 8 7 8 , 

p p . 4 1 9 — 4 2 4 ; P h i l . T r a n s . , 1 7 0 , 1 8 7 9 , p p . 1 — 3 5 . 

1 8 7 8 O n t h e p r e c e s s i o n o f a v i s c o u s s p h e r o i d . B r i t . A s s o c . R e p . , 1 8 7 8 , o m i t t e d 

p p . 4 8 2 — 4 8 5 . 

1 8 7 9 O n t h e p r e c e s s i o n o f a v i s c o u s s p h e r o i d , a n d o n t h e r o m o t e h i s t o r y o f I I 

t h e E a r t h . R o y . S o c . P r o c . , 2 8 , 1 8 7 9 , p p . 1 8 4 — 1 9 4 ; P h i l . T r a n s . , 

1 7 0 , 1 8 7 9 , p p . 4 4 7 — 5 3 8 . 

1 8 7 9 P r o b l e m s c o n n e c t e d w i t h t h e t i d e s o f a v i s c o u s s p h e r o i d . R o y . S o c . I I 

P r o c . , 2 8 , 1 8 7 9 , p p . 1 9 4 — 1 9 9 ; P h i l . T r a n s . , 1 7 0 , 1 8 7 9 , p p . 5 3 9 — 5 9 3 . 

1 8 7 9 N o t e o n T h o m s o n ' s t h e o r y o f t h e t i d e s o f a n e l a s t i c s p h e r e . M e s s e n g e r I I 

o f M a t h . , 8 , 1 8 7 9 , p p . 2 3 — 2 6 . 

1 8 7 9 T h e d e t e r m i n a t i o n o f t h e s e c u l a r e f f e c t s o f t i d a l f r i c t i o n b y a g r a p h i c a l I I 

m e t h o d . R o y . S o c . P r o c . , 2 9 , 1 8 7 9 , p p . 1 6 8 — 1 8 1 . 

1 8 8 0 O n t h e s e c u l a r c h a n g e s i n t h e e l e m e n t s o f t h e o r b i t o f a s a t e l l i t e I I 

r e v o l v i n g a b o u t a t i d a l l y d i s t o r t e d p l a n e t . R o y . S o c . P r o c . , 3 0 , 

1 8 8 0 , p p . 1 — 1 0 ; P h i l . T r a n s . , 1 7 1 , 1 8 8 0 , p p . 7 1 3 — 8 9 1 . 

1 8 8 0 O n t h e a n a l y t i c a l e x p r e s s i o n s w h i c h g i v e t h e h i s t o r y o f a fluid p l a n e t o f I I 

s m a l l v i s c o s i t y , a t t e n d e d b y a s i n g l e s a t e l l i t e . R o y . S o c . P r o c , 3 0 , 

1 8 8 0 , p p . 2 5 5 — 2 7 8 . 

1 8 8 0 O n t h e s e c u l a r e f f e c t s o f t i d a l f r i c t i o n . A s t r . N a c h r . , 9 6 , 1 8 8 0 , o m i t t e d 

c o L 2 1 7 — 2 2 2 . 

1 8 8 1 O n t h e t i d a l f r i c t i o n o f a p l a n e t a t t e n d e d b y s e v e r a l s a t e l l i t e s , a n d o n I I 

t h e e v o l u t i o n o f t h e s o l a r s y s t e m . R o y . S o c . P r o c . , 3 1 , 1 8 8 1 , 

p p . 3 2 2 — 3 2 5 ; P h i L T r a n s . , 1 7 2 , 1 8 8 1 , p p . 4 9 1 — 5 3 5 . 

1 8 8 1 O n t h e s t r e s s e s c a u s e d i n t h e i n t e r i o r o f t h e E a r t h b y t h e w e i g h t o f I I 

c o n t i n e n t s a n d m o u n t a i n s . P h i l . T r a n s . , 1 7 3 , 1 8 8 2 , p p . 1 8 7 — 2 3 0 ; 

A m e r . J o u r n . S c i . , 2 4 , 1 8 8 2 , p p . 2 5 6 — 2 6 9 . 

1 8 8 1 ( T o g e t h e r w i t h H o r a c e D a r w i n . ) O n a n i n s t r u m e n t f o r d e t e c t i n g a n d I 

m e a s u r i n g s m a l l c h a n g e s i n t h e d i r e c t i o n o f t h e f o r c e o f g r a v i t y . 

B r i t . A s s o c . R e p . , 1 8 8 1 , p p . 9 3 — 1 2 6 ; A n n a l . P h y s . C h e m . , B e i b L 6 , 

1 8 8 2 , p p . 5 9 — 6 2 . 

1 8 8 2 O n v a r i a t i o n s i n t h e v o r t i c a l d u e t o e l a s t i c i t y o f t h e E a r t h ' s s u r f a c e . I 

B r i t . A s s o c . R e p . , 1 8 8 2 , p p . 1 0 6 — 1 1 9 ; P h i l . M a g . , 1 4 , 1 8 8 2 , 

p p . 4 0 9 — 4 2 7 . 

1 8 8 2 O n t h e m e t h o d o f h a r m o n i c a n a l y s i s u s e d i n d e d u c i n g t h e n u m e r i c a l o m i t t e d 

v a l u e s o f t h e t i d e s o f l o n g p e r i o d , a n d o n a m i s p r i n t i n t h e T i d a l 

R e p o r t f o r 1 8 7 2 . B r i t . A s s o c . R e p . , 1 8 8 2 , p p . 3 1 9 — 3 2 7 . 

1 8 8 2 A n u m e r i c a l e s t i m a t e o f t h e rigidity o f t h e E a r t h . B r i t . A s s o c . R e p . , I 

1 8 8 2 , p p . 4 7 2 — 4 7 4 ; § 8 4 8 , T h o m s o n a n d T a i t ' s N a t . P h i l , s o c o n d 

e d i t i o n . 
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YEAR 

1 8 8 3 

1 8 8 3 

1 8 8 3 

1 8 8 4 

1 8 8 4 

1 8 8 5 

1 8 8 5 

1 8 8 5 

1 8 8 6 

TITLE AND REFERENCE 

1 8 8 6 

1 8 8 6 

1 8 8 6 

1 8 8 6 

1 8 8 6 

1 8 8 7 

1 8 8 7 

1 8 8 8 

1 8 8 8 

R o y . 

I l l 

I V 

o m i t t e d 

I I 

o m i t t e d 

R e p o r t o n t h e H a r m o n i c a n a l y s i s o f t i d a l o b s e r v a t i o n s . B r i t . A s s o c . 
R e p . , 1 8 8 3 , p p . 4 9 — 1 1 7 . 

O n t h e figure of e q u i l i b r i u m o f a, p l a n e t o f h e t e r o g e n e o u s d e n s i t y . 

R o y . S o c . P r o a , 3 6 , p p . 1 5 8 — 1 6 6 . 

O n t h e h o r i z o n t a l t h r u s t o f a m a s s o f s a n d . I n s t i t . C i v . E n g i n . P r o a , 

7 1 , 1 8 8 3 , p p . 3 5 0 — 3 7 8 . 

O n t h e formation o f r i p p l e - m a r k i n s a n d . R o y . S o c . P r o a , 3 6 , 1 8 8 4 , I V 

p p . 1 8 — 4 3 . 

S e c o n d R e p o r t o f t h e C o m m i t t e e , c o n s i s t i n g o f P r o f e s s o r s Q . I I . D a r w i n 

a n d J . C . A d a m s , f o r t h e h a r m o n i c a n a l y s i s o f t i d a l o b s e r v a t i o n s . 

D r a w n u p b y P r o f e s s o r Q . H . D a r w i n . B r i t . A s s o c . R e p . , 1 8 8 4 , 

p p . 3 3 — 3 5 . 

N o t e o n a p r e v i o u s p a p e r . R o y . S o c . P r o a , 3 8 , p p . 3 2 2 — 3 2 8 . 

R e s u l t s o f t h e h a r m o n i c a n a l y s i s o f t i d a l o b s e r v a t i o n s . ( J o i n t l y w i t h 

A . W . B a i r d . ) R o y . S o c . P r o a , 3 9 , p p . 1 3 5 — 2 0 7 . 

T h i r d R e p o r t o f t h e C o m m i t t e e , c o n s i s t i n g o f P r o f e s s o r s G. H . D a r w i n I 

a n d J . C . A d a m s , f o r t h e h a r m o n i c a n a l y s i s o f t i d a l o b s e r v a t i o n s . 

D r a w n u p b y P r o f e s s o r G. H . D a r w i n . B r i t . A s s o c . R e p . , 1 8 8 5 , 

p p . 3 5 — 6 0 . 

R e p o r t o f t h e C o m m i t t e e , c o n s i s t i n g o f P r o f e s s o r G. H . D a r w i n , I 

S i r W . T h o m s o n , a n d M a j o r B a i r d , f o r p r e p a r i n g i n s t r u c t i o n s f o r 

t h e p r a c t i c a l w o r k o f t i d a l o b s e r v a t i o n ; a n d F o u r t h R e p o r t o f t h e 

C o m m i t t e e , c o n s i s t i n g o f P r o f e s s o r s G. H . D a r w i n a n d J . C. A d a m s , 

for t h e h a r m o n i c a n a l y s i s o f t i d a l o b s e r v a t i o n s . D r a w n u p b y 

P r o f e s s o r G. n . D a r w i n . B r i t . A s s o c . R e p . , 1 8 8 6 , p p . 4 0 — 5 8 . 

P r e s i d e n t i a l A d d r e s s . S e c t i o n A , M a t h e m a t i c a l a n d P h y s i c a l S c i e n c e . I V 

B r i t . A s s o c . R e p . , 1 8 8 6 , p p . 5 1 1 — 5 1 8 . 

O n t h e c o r r e c t i o n t o t h e e q u i l i b r i u m t h e o r y o f t i d e s for t h e c o n t i n e n t s . I 

I. B y G. H . D a r w i n , i l B y H . H . T u r n e r . R o y . S o c . P r o a , 4 0 , 

p p . 3 0 3 — 3 1 5 . 

I l l O n J a c o b i ' s figure o f e q u i l i b r i u m f o r a r o t a t i n g m a s s o f fluid. 

S o c . P r o a , 4 1 , p p . 3 1 9 — 3 3 6 . 

O n t h e d y n a m i c a l t h e o r y o f t h e t i d e s o f l o n g p e r i o d . R o y . S o c . P r o a , 

4 1 , p p . 3 3 7 — 3 4 2 . 

A r t i c l e ' T i d e s . ' ( A d m i r a l t y ) M a n u a l o f S c i e n t i f i c I n q u i r y . 

O n figures o f e q u i l i b r i u m o f r o t a t i n g m a s s e s o f f l u i d . R o y . S o c . P r o a , 4 2 , 

p p . 3 5 9 — 3 6 2 ; P h i l . T r a n s . , 178A , p p . 3 7 9 — 4 2 8 . 

N o t e o n M r D a v i s o n ' s P a p e r o n t h e s t r a i n i n g of t h e E a r t h ' s c r u s t i n 

c o o l i n g . P h i l . T r a n s . , 178A, p p . 2 4 2 — 2 4 9 . 

A r t i c l e ' T i d e s . ' E n c y c l o p a e d i a B r i t a n n i c a . C e r t a i n s e c t i o n s i n I 

O n t h e m e c h a n i c a l c o n d i t i o n s o f a s w a r m o f m e t e o r i t e s , a n d o n t h e o r i e s I V 

o f c o s m o g o n y . R o y . S o c . P r o a , 4 5 , p p . 3 — 1 6 ; P h i l . T r a n s . , 180A, 

p p . 1 - 6 9 . 

I 

I 

I I I 

I V 
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TITLE AND REFERENCE YEAR 
1 8 8 9 S e c o n d s e r i e s o f r e s u l t a o f t h e h a r m o n i c a n a l y s i s o f t i d a l o b s e r v a t i o n s , o m i t t e d 

R o y . S o c . P r o c , 4 5 , p p . 5 5 6 — 6 1 1 . 

1 8 8 9 M e t e o r i t e s a n d t h e h i s t o r y o f S t e l l a r s y s t e m s . R o y . I n s t . R e p . , F r i d a y , o m i t t e d 
J a n . 2 5 , 1 8 8 9 . 

1 8 9 0 O n t h e h a r m o n i c a n a l y s i s o f t i d a l o b s e r v a t i o n s o f h i g h a n d l o w w a t e r . I 
R o y . S o c . P r o c , 4 8 , p p . 2 7 8 — 3 4 0 . 

1 8 9 1 O n t i d a l p r e d i c t i o n . B a k e r i a n L e c t u r e . R o y . S o c . P r o c , 4 9 , p p . 1 3 0 — I 
1 3 3 ; P h i L T r a n s . , 182A, p p . 1 5 9 — 2 2 9 . 

1 8 9 2 O n a n a p p a r a t u s f o r f a c i l i t a t i n g t h e r e d u c t i o n o f t i d a l o b s e r v a t i o n s . I 
R o y . S o c . P r o c , 5 2 , p p . 3 4 5 — 3 8 9 . 

1 8 9 6 O n p e r i o d i c o r b i t s . B r i t , A s s o c . R e p . , 1 8 9 6 , p p . 7 0 8 , 7 0 9 . 

1 8 9 7 P e r i o d i c o r b i t s . A c t a M a t h e m a t i c a , 2 1 , p p . 1 0 1 — 2 4 2 , a l s o ( w i t h 

o m i s s i o n o f c e r t a i n t a b l e s o f r e s u l t s ) M a t h c m . A n n a l e n , 5 1 , 
p p . 5 2 3 — 5 8 3 . 

[ b y S . S . H o u g h . O n c e r t a i n d i s c o n t i n u i t i e s c o n n e c t e d w i t h p e r i o d i c 
o r b i t s . A c t a M a t h . , 2 4 ( 1 9 0 1 ) , p p . 2 5 7 — 2 8 8 . ] 

1 8 9 9 T h e t h e o r y o f t h e figure o f t h e E a r t h c a r r i e d t o t h e s e c o n d o r d e r o f 
s m a l l q u a n t i t i e s . R o y . A s t r o n . S o c . M o n t h . N o t . , 6 0 , p p . 8 2 — 1 2 4 . 

1 9 0 0 A d d r e s s d e l i v e r e d b y t h e P r e s i d e n t , P r o f e s s o r Q . H . D a r w i n , o n I V 

p r e s e n t i n g t h e G o l d M e d a l o f t h e S o c i e t y t o M . I I . P o i n c a r é . 
R o y . A s t r o n . S o c . M o n t h . N o t , 6 0 , p p . 4 0 6 — 4 1 5 . 

1 9 0 1 E l l i p s o i d a l h a r m o n i c a n a l y s i s . R o y . S o c P r o c , 6 8 , p p . 2 4 8 — 2 5 2 ; I I I 

1 9 0 1 

1 9 0 2 

1 9 0 2 

o m i t t e d 

I V 

I V 

I I I 

O n t h e p e a r - s h a p e d f i g u r e o f e q u i l i b r i u m o f a r o t a t i n g m a s s of l i q u i d . I l l 
R o y . S o c . P r o c , 6 9 , p p . 1 4 7 , 1 4 8 ; P h i l . T r a n s . , 198A, p p . 3 0 1 — 3 3 1 . 

A r t i c l e ' T i d e s . 1 E n c y c l o p a e d i a B r i t a n n i c a , s u p p l e m e n t a r y v o l u m e s . 

C e r t a i n s e c t i o n s i n I 

T h e s t a b i l i t y o f t h e p e a r - s h a p e d figure o f e q u i l i b r i u m o f a r o t a t i n g m a s s I I I 
o f l i q u i d . R o y . S o c . P r o c , 7 1 , p p . 1 7 8 — 1 8 3 ; P h i l . T r a n s . , 200A, 
p p . 2 5 1 — 3 1 4 . 

1 9 0 3 O n t h e i n t e g r a l s o f t h e s q u a r e s o f e l l i p s o i d a l s u r f a c e h a r m o n i c f u n c t i o n s . I l l 
R o y . S o c . P r o c , 7 2 , p . 4 9 2 ; P h i l . T r a n s . , 203A , p p . 1 1 1 — 1 3 7 . 

1 9 0 3 T h e a p p r o x i m a t e d e t e r m i n a t i o n o f t h e f o r m o f M a c l a u r i n ' s s p h e r o i d . I l l 
T r a n s . A m e r . M a t h . S o c , 4 , p p . 1 1 3 — 1 3 3 . 

1 9 0 3 T h e E u l e r i a n n u t a t i o n o f t h e E a r t h ' s a x i s . B u l l . A c a d . R o y . d e I V 
B e l g i q u e ( S c i e n c e s ) , p p . 1 4 7 — 1 6 1 . 

1 9 0 5 T h e a n a l o g y b e t w e e n L e s a g e ' s t h e o r y o f g r a v i t a t i o n a n d t h e r e p u l s i o n I V 
o f l i g h t . R o y . S o c . P r o c , 76A, p p . 3 8 7 — 4 1 0 . 

1 9 0 5 A d d r e s s b y P r o f e s s o r G. H . D a r w i n , P r e s i d e n t . B r i t . A s s o c . R e p . , I V 
1 9 0 5 , p p . 3 — 3 2 . 

1 9 0 6 O n t h e figure a n d s t a b i l i t y o f a l i q u i d s a t e l l i t e . R o y . S o c . P r o c , 77A, I I I 
p p . 4 2 2 — 4 2 5 ; P h i l . T r a n s . , 206A , p p . 1 6 1 — 2 4 8 . 
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E R R A T U M I N V O L . I . 

p . 2 7 5 , e q u a t i o n ( 2 6 ) , l i n e 9 f r o m f o o t o f p a g e , s h o u l d r e a d 

•Î2. = 4]) + 2 ^ , K m - K U . 

1 9 0 8 T i d a l o b s e r v a t i o n s o f t h e ' D i s c o v e r y . ' N a t i o n a l A n t a r c t i c E x p e d i t i o n I 

1 9 0 1 — 4 , P h y s i c a l O b s e r v a t i o n s , p p . 1 — 1 2 . 

1 9 0 8 D i s c u s s i o n o f t h e t i d a l o b s e r v a t i o n s o f t h e 1 S c o t i a . ' N a t i o n a l A n t a r c t i c o m i t t o d 

E x p e d i t i o n 1 9 0 1 — 4 , P h y s i c a l O b s e r v a t i o n s , p . 1 6 . 

1 9 0 8 F u r t h e r c o n s i d e r a t i o n o f t h e figure a n d s t a b i l i t y o f t h e p e a r - s h a p e d figure 1 1 1 
o f a r o t a t i n g m a s s o f l i q u i d . R o y . S o c . P r o c , 80A, p p . 1 6 6 — 7 ; P h i l . 
T r a n s . , 208A , p p . 1 — 1 9 . 

1 9 0 8 F u r t h e r n o t e o n M a c l a u r i n ' s E l l i p s o i d . T r a n s . A m e r . M a t h . S o c , 9 , I I I 
p p . 3 4 — 3 8 . 

1 9 0 8 ( T o g e t h e r w i t h S . S . H o u g h . ) A r t i c l e ' B e w e g u n g d e r H y d r o s p h ä r e ' I V 
( T h e T i d e s ) . E n c y k l o p ä d i e d e r m a t h e m a t i s c h e n W i s s e n s c h a f t e n , 
v i . 1, 6. 8 3 p p . 

U n p u b l i s h e d A r t i c l e ' T i d e s . ' E n c y c l o p a e d i a B r i t a n n i c a , n o w e d i t i o n t o 

b e p u b l i s h e d h e r e a f t e r ( b y p e r m i s s i o n o f t h e p r o p r i e t o r s ) . 
C e r t a i n s e c t i o n s i n I 
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O N T H E B O D I L Y T I D E S O F V I S C O U S A N D S E M I - E L A S T I C 

S P H E R O I D S , A N D O N T H E O C E A N T I D E S U P O N A 

Y I E L D I N G N U C L E U S * . 

[Philosophical Transactions of the Royal Society, P a r t 1. V o l . 1 7 0 ( 1 8 7 9 ) , 

p p . 1 — 3 5 . ] 

I n a w e l l - k n o w n i n v e s t i g a t i o n S i r W i l l i a m T h o m s o n h a s d i s c u s s e d t h e 

p r o b l e m o f t h e b o d i l y t i d e s o f a h o m o g e n e o u s e l a s t i c s p h e r e , a n d h a s d r a w n 

t h e r e f r o m v e r y i m p o r t a n t c o n c l u s i o n s a s t o t h e g r e a t r i g i d i t y o f t h e e a r t h y . 

N o w i t a p p e a r s i m p r o b a b l e t h a t t h e e a r t h s h o u l d b e p e r f e c t l y e l a s t i c ; 

f o r t h e c o n t o r t i o n s o f g e o l o g i c a l s t r a t a s h o w t h a t t h e m a t t e r c o n s t i t u t i n g t h e 

e a r t h i s s o m e w h a t p l a s t i c , a t l e a s t n e a r t h e s u r f a c e . W e k n o w a l s o t h a t 

e v e n t h e m o s t r e f r a c t o r y m e t a l s c a n b e m a d e t o flow u n d e r t h e a c t i o n o f 

s u f f i c i e n t l y g r e a t f o r c e s . 

A l t h o u g h S i r W . T h o m s o n ' s i n v e s t i g a t i o n h a s g o n e f a r t o o v e r t h r o w t h e 

o l d i d e a o f a s e m i - f l u i d i n t e r i o r t o t h e e a r t h , y e t g e o l o g i s t s a r e s o s t r o n g l y 

i m p r e s s e d b y t h e f a c t t h a t e n o r m o u s m a s s e s o f r o c k a r e b e i n g , a n d h a v e b e e n , 

p o u r e d o u t o f v o l c a n i c v e n t s i n t h e e a r t h ' s s u r f a c e , t h a t t h e b e l i e f i s n o t y e t 

e x t i n c t t h a t w e l i v e o n a t h i n s h e l l o v e r a s e a o f m o l t e n l a v a . U n d e r t h e s e 

c i r c u m s t a n c e s i t a p p e a r s t o b e o f i n t e r e s t t o i n v e s t i g a t e t h e c o n s e q u e n c e s 

w h i c h w o u l d a r i s e f r o m t h e s u p p o s i t i o n t h a t t h e m a t t e r c o n s t i t u t i n g t h e 

e a r t h i s o f a v i s c o u s o r i m p e r f e c t l y e l a s t i c n a t u r e ; f o r i f t h e i n t e r i o r is 

* [ S i n c e t h e data of t h i s p a p e r i m p o r t a n t c o n t r i b u t i o n s t o t h e s u b j e c t h a v e b e e n m a d e by 
Professor H o r a c e L a m b i n h i s p a p e r s o n " T h e O s c i l l a t i o n s of a V i s c o u s S p h e r o i d , " Proc. Lond. 
Math. Soc, V o l . x m . ( 1 8 8 1 - 2 ) , p . 5 1 ; " O n t h e V i b r a t i o n s of a n E l a s t i c S p h e r e , " ibid., p . 189 , 
and " O n t h e V i b r a t i o n s of a S p h e r i c a l S h e l l , " ibid., V o l . xrv. ( 1 8 8 2 - 3 ) , p . 5 0 . S e e a l s o a p a p e r 
by T . J . B r o m w i c h , Proc. Lond. Math. Soc, V o l . x x x . ( 1 8 9 8 - 9 ) , p . 9 8 . ] 

t S ir W i l l i a m s t a t e s t h a t M. L a m e h a d t r e a t e d t h e subjec t a t a n ear l ier d a t e , b u t i n a n 
ent ire ly dif ferent m a n n e r . I a m n o t a w a r e , h o w e v e r , t h a t M. L a m e h a d fu l l y d i s c u s s e d t h e 
subject i n i t s p h y s i c a l aapect . 

D . I I . 1 
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2 I N T R O D U C T I O N . [ 1 

c o n s t i t u t e d i n t h i s w a y , t h e n t h e s o l i d c r u s t , u n l e s s v e r y t h i c k , c a n n o t 

p o s s e s s r i g i d i t y e n o u g h t o r e p r e s s t h e t i d a l s u r g i n g s , a n d t h e s e h y p o t h e s e s 

m u s t g i v e r e s u l t s f a i r l y c o n f o r m a b l e t o t h e r e a l i t y . T h e h y p o t h e s i s o f 

i m p e r f e c t e l a s t i c i t y w i l l b e p r i n c i p a l l y i n t e r e s t i n g a s s h o w i n g h o w f a r 

S i r W . T h o m s o n ' s r e s u l t s a r e m o d i f i e d b y t h e s u p p o s i t i o n t h a t t h e e l a s t i c i t y 

b r e a k s d o w n u n d e r c o n t i n u e d s t r e s s . 

I n t h i s p a p e r , t h e n , I f o l l o w o u t t h e s e h y p o t h e s e s , a n d i t w i l l b e s e e n t h a t 

t h e r e s u l t s a r e f u l l y a s h o s t i l e t o t h e i d e a o f a n y g r e a t m o b i l i t y o f t h e i n t e r i o r 

o f t h e e a r t h a s i s t h a t o f S i r W . T h o m s o n . 

T h e o n l y t e r r e s t r i a l e v i d e n c e o f t h e e x i s t e n c e o f a b o d i l y t i d e i n t h e e a r t h 

w o u l d b e t h a t t h e o c e a n t i d e s w o u l d b e l e s s i n h e i g h t t h a n i s i n d i c a t e d b y 

t h e o r y . T h e s u b j e c t o f t h i s p a p e r i s t h e r e f o r e i n t i m a t e l y c o n n e c t e d w i t h t h e 

t h e o r y o f t h e o c e a n t i d e s . 

I n t h e f i r s t p a r t t h e e q u i l i b r i u m t i d e - t h e o r y i s a p p l i e d t o e s t i m a t e t h e 

r e d u c t i o n a n d a l t e r a t i o n o f p h a s e o f o c e a n t i d e s a s d u e t o b o d i l y t i d e s , b u t 

t h a t t h e o r y i s a c k n o w l e d g e d o n a l l h a n d s t o b e q u i t e f a l l a c i o u s i n i t s 

e x p l a n a t i o n o f t i d e s o f s h o r t p e r i o d . 

I n t h e s e c o n d p a r t o f t h i s p a p e r , t h e r e f o r e , I h a v e c o n s i d e r e d t h e d y n a m i c a l 

t h e o r y o f t i d e s i n a n e q u a t o r i a l c a n a l r u n n i n g r o u n d a t i d a l l y - d i s t o r t e d 

n u c l e u s , a n d t h e r e s u l t s a r e a l m o s t t h e s a m e a s t h o s e g i v e n b y t h e e q u i 

l i b r i u m t h e o r y . 

T h e first t w o s e c t i o n s o f t h e p a p e r a r e o c c u p i e d w i t h t h e a d a p t a t i o n o f 

S i r W . T h o m s o n ' s w o r k * t o t h e p r e s e n t h y p o t h e s e s ; a s , o f c o u r s e , i t w a s 

i m p o s s i b l e t o r e p r o d u c e t h e w h o l e o f h i s a r g u m e n t , I f e a r t h a t t h e i n v e s t i g a t i o n 

w i l l o n l y b e i n t e l l i g i b l e t o t h o s e w h o a r e e i t h e r a l r e a d y a c q u a i n t e d w i t h t h a t 

w o r k , o r w h o a r e w i l l i n g t o a c c e p t m y q u o t a t i o n s t h e r e f r o m a s e s t a b l i s h e d . 

A s s o m e r e a d e r s m a y l i k e t o k n o w t h e r e s u l t s o f t h i s i n q u i r y w i t h o u t 

g o i n g i n t o t h e m a t h e m a t i c s b y w h i c h t h e y a r e e s t a b l i s h e d , I h a v e g i v e n i n 

P a r t I I I . a s u m m a r y o f t h e w h o l e , a n d h a v e a s f a r a s p o s s i b l e r e l e g a t e d t o 

t h a t p a r t o f t h e p a p e r t h e c o m m e n t s a n d c o n c l u s i o n s t o b e d r a w n . I h a v e 

t r i e d , h o w e v e r , t o g i v e s o m u c h e x p l a n a t i o n i n t h e b o d y o f t h e p a p e r a s w i l l 

m a k e i t c l e a r w h i t h e r t h e a r g u m e n t i s t e n d i n g . 

T h e c a s e o f p u r e v i s c o s i t y i s c o n s i d e r e d f i r s t , b e c a u s e t h e a n a l y s i s i s 

s o m e w h a t s i m p l e r , a n d b e c a u s e t h e r e s u l t s w i l l a f t e r w a r d s a d m i t o f a n e a s y 

e x t e n s i o n t o t h e c a s e o f e l a s t i c o - v i s c o s i t y . 

* H i s p a p e r w i l l be f o u n d i n Fh.il. Trans., 1 8 6 3 , p . 5 7 3 , a n d §§ 7 3 3 — 7 3 7 a n d 834—84G of 
T h o m s o n a n d T a i f B Natural Philosophy. 
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1 8 7 9 ] T H E E Q U A T I O N S O F M O T I O N . 3 

T h e B o d i l y T i d e s o f V i s c o u s a n d E l a s t i o o - v i s c o u s S p h e r o i d s . 

1 . Analogy between the flow of a viscous body and the 

strain of an elastic one. 

T h e g e n e r a l e q u a t i o n s o f f l o w o f a v i s c o u s f l u i d , when the effects of inertia 

are neglected, a r e 

ax 

dp 

dy 

dp 

• • ( 1 ) 

- " r + « A 7 2 7 + Z = 0 
dz , 

w h e r e x, y, z a r e t h e r e c t a n g u l a r c o o r d i n a t e s o f a p o i n t o f t h e f l u i d ; a , ft, y 

a r e t h e c o m p o n e n t v e l o c i t i e s p a r a l l e l t o t h e a x e s ; p i s t h e m e a n o f t h e t h r e e 

p r e s s u r e s a c r o s s p l a n e s p e r p e n d i c u l a r t o t h e t h r e e a x e s r e s p e c t i v e l y ; X , Y , Z 

a r e t h e c o m p o n e n t f o r c e s a c t i n g o n t h e fluid, e s t i m a t e d p e r u n i t v o l u m e ; 

v i s t h e c o e f f i c i e n t o f v i s c o s i t y ; a n d V 2 i s t h e L a p l a c i a n o p e r a t i o n 

d^ d^ 

dx2 dy2 dz' 

x i · i i i i • r- . . da d@ dy _ 
B e s i d e s t h e s e w e h a v e t h e e q u a t i o n o l c o n t i n u i t y j - + - 5 — h - r - = 0 . 

M J dx ay dz 

A l s o i f P , Q , R , S , T , U a r e t h e n o r m a l a n d t a n g e n t i a l s t r e s s e s e s t i m a t e d 

i n t h e u s u a l w a y a c r o s s t h r e e p l a n e s p e r p e n d i c u l a r t o t h e a x e s 

~ dot 
P = - p + 2 u 

• ( 2 ) 
dx' * ' " dy 

"=«(I+S)J 
N o w i n a n e l a s t i c s o l i d , i f a , / 3 , 7 b e t h e d i s p l a c e m e n t s , m — }n t h e 

c o e f f i c i e n t o f d i l a t a t i o n , a n d n t h a t o f r i g i d i t y , a n d i f 8 = ^ + ^ + ^ ', t h e 

e q u a t i o n s o f e q u i l i b r i u m a r e 

m ^ - + w V 2 a + X = 0 N 

dx 

m ~ + n V s / S + Y = 0 L 

dS 
+ nV*y + Z = 0 

. ( 3 ) * 

* T h o m s o n a n d T a i t ' s Natural Philosophy, § 6 9 8 , eq . (7) a n d (8). 
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A l s o 

P = ( m - n ) S + 2 n ^ , Q = ( m - n ) 8 + 2n , ll = (m-n)B + 2 n ^ 

( 4 ) 

a n d S , T , U h a v e t h e s a m e f o r m s a s i n ( 2 ) , w i t h n w r i t t e n i n s t e a d o f v. 

T h e r e f o r e i f w e p u t — p = ^ ( P + Q + R ) , w e h a v e p = — ( m — £ n ) 8, s o t h a t 

( 3 ) m a y b e w r i t t e n 

^-r- ^ + n V 2 o + X = 0 , & c , & c . 
m — \ n dx 

A i -n m — n _ da _ . n o 
A l s o P = — p + 2n T- , Q = & c , R = & c . 

m — ^n ax 

N o w i f w e s u p p o s e , t h e c h i s t i c s o l i d t o b e i n c o m p r e s s i b l e , s o t h a t m i s 

i n f i n i t e l y l a r g e c o m p a r e d t o n, t h e n i t i s c l e a r t h a t t h e e q u a t i o n s o f e q u i 

l i b r i u m o f t h e i n c o m p r e s s i b l e e l a s t i c s o l i d a s s u m e e x a c t l y t h e s a m e f o r m a s 

t h o s e o f f l o w o f t h e v i s c o u s f l u i d , n m e r e l y t a k i n g t h e p l a c e o f v. 

T h u s e v e r y p r o b l e m i n t h e e q u i l i b r i u m o f a n i n c o m p r e s s i b l e e l a s t i c s o l i d 

h a s i t s c o u n t e r p a r t i n a p r o b l e m t o u c h i n g t h e s t a t e o f flow o f a n i n c o m 

p r e s s i b l e v i s c o u s fluid, w h e n t h e e f f e c t s o f i n e r t i a a r e n e g l e c t e d ; a n d t h e 

s o l u t i o n o f t h e o n e m a y b e m a d e a p p l i c a b l e t o t h e o t h e r b y m e r e l y r e a d i n g 

f o r " d i s p l a c e m e n t s " " v e l o c i t i e s , " a n d f o r t h e c o e f f i c i e n t o f " r i g i d i t y " t h a t o f 

" v i s c o s i t y . " 

2 . A sphere under influence of bodily force. 

S i r W . T h o m s o n h a s s o l v e d t h e f o l l o w i n g p r o b l e m : 

T o find t h e d i s p l a c e m e n t o f e v e r y p o i n t o f t h e s u b s t a n c e o f a n e l a s t i c 

s p h e r e e x p o s e d t o n o s u r f a c e t r a c t i o n , b u t d e f o r m e d i n f i n i t e s i m a l l y b y a n 

e q u i l i b r a t i n g s y s t e m o f f o r c e s a c t i n g bodily t h r o u g h t h e i n t e r i o r . 

I f f o r " d i s p l a c e m e n t " w e r e a d v e l o c i t y , a n d f o r " e l a s t i c " v i s c o u s , w e h a v e 

t h e c o r r e s p o n d i n g p r o b l e m w i t h r e s p e c t t o a v i s c o u s fluid, a n d mutatis 

mutandis t h e s o l u t i o n i s t h e s a m e . 

I 5 u t w e c a n n o t find t h e , t i d e s o f a v i s c o u s s p h e r e b y m e r e l y m a k i n g t h e 

e q u i l i b r a t i n g s y s t e m o f f o r c e s e q u a l t o t h e t i d e - g e n e r a t i n g i n f l u e n c e o f t h e 

s u n o r m o o n , b e c a u s e t h e s u b s t a n c e o f t h e s p h e r e m u s t b e s u p p o s e d t o h a v e 

t h e p o w e r o f g r a v i t a t i o n . 

F o r s u p p o s e t h a t a t a n y t i m e t h e e q u a t i o n t o t h e f r e e s u r f a c e o f t h e e a r t h 

( a s t h e v i s c o u s s p h e r e m a y b e c a l l e d f o r b r e v i t y ) i s r = a + 2 o - j , w h e r e a \ i s 
2 
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a s u r f a c e h a r m o n i c . T h e n t h e m a t t e r , p o s i t i v e o r n e g a t i v e , filling t h e s p a c e 

r e p r e s e n t e d b y X o - f e x e r c i s e s a n a t t r a c t i o n o n e v e r y p o i n t o f t h e i n t e r i o r ; 

a n d t h i s a t t r a c t i o n , t o g e t h e r w i t h t h a t o f a h o m o g e n e o u s s p h e r e o f r a d i u s a, 

m u s t b e a d d e d t o t h e t i d e - g e n e r a t i n g i n f l u e n c e t o f o r m t h e w h o l e f o r c e 

i n t h e i n t e r i o r o f t h e s p h e r e . A l s o i t i s a s p h e r o i d , a n d n o l o n g e r a t r u e 

s p h e r e w i t h w h i c h w e h a v e t o d e a l . I f , h o w e v e r , w e c u t a t r u e s p h e r e o f 

r a d i u s a o u t o f t h e s p h e r o i d ( l e a v i n g o u t S o - ; ) , t h e n b y a p r o p e r c h o i c e o f 

s u r f a c e a c t i o n s , t h e t i d a l p r o b l e m m a y b e r e d u c e d t o f i n d i n g t h e s t a t e o f flow 

i n a t r u e s p h e r e u n d e r t h e a c t i o n o f ( i ) a n e x t e r n a l t i d e - g e n e r a t i n g i n f l u e n c e , 

( i i ) t h e a t t r a c t i o n o f t h e t r u e s p h e r e , a n d o f t h e p o s i t i v e a n d n e g a t i v e m a t t e r 

filling t h e s p a c e S e r f , b u t ( i i i ) s u b j e c t t o c e r t a i n s u r f a c e f o r c e s . 

S i n c e ( i ) a n d ( i i ) t o g e t h e r c o n s t i t u t e a b o d i l y f o r c e , t h e p r o b l e m o n l y 

d i f f e r s f r o m t h a t o f S i r W . T h o m s o n i n t h e f a c t t h a t t h e r e a r e f o r c e s a c t i n g 

o n t h e s u r f a c e o f t h e s p h e r e . 

N o w a s w e a r e o n l y g o i n g t o c o n s i d e r s m a l l d e v i a t i o n s f r o m s p h e r i c i t y , 

t h e s e s u r f a c e a c t i o n s w i l l b e o f s m a l l a m o u n t , a n d a n a p p r o x i m a t i o n w i l l b e 

p e r m i s s i b l e . 

I t i s c l e a r t h a t r i g o r o u s l y t h e r e i s t a n g e n t i a l a c t i o n * b e t w e e n t h e l a y e r o f 

m a t t e r 2 o " i a n d t h e t r u e s p h e r e , b u t b y f a r t h e l a r g e r p a r t o f t h e a c t i o n 

i s n o r m a l , a n d i s s i m p l y t h e w e i g h t ( e i t h e r p o s i t i v e o r n e g a t i v e ) o f t h e 

m a t t e r w h i c h l i e s a b o v e o r b e l o w a n y p o i n t o n t h e s u r f a c e o f t h e t r u e 

s p h e r e . 

T h u s , i n o r d e r t o r e d u c e t h e e a r t h t o s p h e r i c i t y , t h e a p p r o p r i a t e s u r f a c e 

a c t i o n i s a n o r m a l t r a c t i o n e q u a l t o — gwXat, w h e r e g i s g r a v i t y a t t h e 

s u r f a c e , a n d w i s t h e m a s s p e r u n i t v o l u m e o f t h e m a t t e r c o n s t i t u t i n g t h e 

e a r t h . 

I n o r d e r t o s h o w w h a t a l t e r a t i o n t h i s n o r m a l s u r f a c e t r a c t i o n w i l l m a k e i n 

S i r W . T h o m s o n ' s s o l u t i o n , I m u s t n o w g i v e a s h o r t a c c o u n t o f h i s m e t h o d o f 

a t t a c k i n g t h e p r o b l e m . 

H e first s h o w s t h a t , w h e r e t h e r e i s a p o t e n t i a l f u n c t i o n , t h e s o l u t i o n o f 

t h e p r o b l e m m a y b e s u b d i v i d e d , a n d t h a t t h e c o m p l e t e v a l u e s o f ot, / 9 , 7 

c o n s i s t o f t h e s u m s o f t w o p a r t s w h i c h a r e t o b o f o u n d i n d i f f e r e n t w a y s . 

T h e first p a r t c o n s i s t s o f any v a l u e s o f a , / 3 , 7 , w h i c h s a t i s f y t h e e q u a t i o n s 

t h r o u g h o u t t h e s p h e r e , w i t h o u t r e f e r e n c e t o s u r f a c e c o n d i t i o n s . A s f a r a s 

r e g a r d s t h e s e c o n d p a r t , t h e b o d i l y f o r c e i s d e e m e d t o b e n o n - e x i s t e n t a n d i s 

r e p l a c e d b y c e r t a i n s u r f a c e a c t i o n s , s o c a l c u l a t e d a s t o c o u n t e r a c t t h e s u r f a c e 

a c t i o n s w h i c h c o r r e s p o n d t o t h e v a l u e s o f a, / 3 , 7 f o u n d i n t h e first p a r t 

o f t h e s o l u t i o n . T h u s t h e first p a r t s a t i s f i e s t h e c o n d i t i o n t h a t t h e r e i s a 

* I s h a l l c o n s i d e r s o m e of t h e effects of t h i s t a n g e n t i a l a c t i o n i n a future, p a p e r , -viz.: 
" P r o b l e m s c o n n e c t e d w i t h t h e T i d e s of a V i s c o u s S p h e r o i d , " read before t h e R o y a l S o c i e t y o n 
December 1 9 t h , 1 8 7 8 . [ P a p e r 4 . ] 
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- I a * r "i 
i + 2 d *•-*+•) 

( 2 i ' a - f - 1 > dx i - 1 L ( 2 i 1 + l ) ( 2 i + l ) dx 

1 d $ > i + 1 

. ( 5 ) 
+ 2 t ' ( 2 i + l ) dx + v 

w i t h s y m m e t r i c a l e x p r e s s i o n s f o r / 3 a n d 7 ; w h e r e . W a n d <S> a r e a u x i l i a r y 

f u n c t i o n s d e f i n e d b y 

^ = r ' }dx 

. ( 6 ) 

I n t h e c a s e c o n s i d e r e d b y S i r W . T h o m s o n o f a n e l a s t i c s p h e r e d e f o r m e d 

b y b o d i l y s t r e s s a n d s u b j e c t t o n o s u r f a c e a c t i o n , w e h a v e t o s u b s t i t u t e 

i n ( 5 ) a n d ( 6 ) o n l y t h o s e s u r f a c e a c t i o n s w h i c h a r e e q u a l a n d o p p o s i t e t o t h e 

s u r f a c e f o r c e s c o r r e s p o n d i n g t o t h e f i r s t p a r t o f t h e s o l u t i o n + ; b u t i n t h e 

c a s e w h i c h w e n o w w i s h t o c o n s i d e r , w e m u s t a d d t o t h e s e l a t t e r t h e c o m 

p o n e n t s o f t h e n o r m a l t r a c t i o n — gw%a-i, a n d b e s i d e s m u s t i n c l u d e i n t h e 

b o d i l y f o r c e b o t h t h e e x t e r n a l d i s t u r b i n g f o r c e , a n d t h e a t t r a c t i o n o f t h e 

m a t t e r o f t h e s p h e r o i d o n i t s e l f . 

N o w f r o m t h e f o r m s o f ( 5 ) a n d ( 6 ) i t i s o b v i o u s t h a t t h e t r a c t i o n s w h i c h 

c o r r e s p o n d t o t h e first p a r t o f t h e s o l u t i o n , a n d t h e t r a c t i o n — giuZai p r o d u c e 

q u i t e i n d e p e n d e n t e f f e c t s , a n d t h e r e f o r e w e n e e d o n l y a d d t o t h e c o m p l e t e 

s o l u t i o n o f S i r W . T h o m s o n ' s p r o b l e m o f t h e e l a s t i c s p h e r e , t h e t e r m s w h i c h 

a r i s e f r o m t h e n o r m a l t r a c t i o n - j m S i t j . F i n a l l y w e m u s t p a s s f r o m t h e 

e l a s t i c p r o b l e m t o t h e v i s c o u s o n e , b y r e a d i n g v f o r n, a n d v e l o c i t i e s f o r 

d i s p l a c e m e n t s . 

* T h o m s o n a n d T a i t ' s Natural Philosophy, 1867 , § 737, e q u a t i o n (52) . 
f W h e r e t h e s o l i d i s i n c o m p r e s s i b l e , t h i s sur face t r a c t i o n i s n o r m a l to t h e sphere at every 

p o i n t , p r o v i d e d t h a t t h e p o t e n t i a l of t h e b o d i l y force i s e x p r e s s i b l e in a s er i e s of so l id h a r m o n i e s . 

b o d i l y f o r c e , a n d t h e s e c o n d a d d s t h e c o n d i t i o n t h a t t h e s u r f a c e f o r c e s a r e 

z e r o . T h e f i r s t p a r t o f t h e s o l u t i o n i s e a s i l y f o u n d , a n d f o r t h e s e c o n d p a r t 

S i r W . T h o m s o n d i s c u s s e s t h e c a s e o f a n e l a s t i c s p h e r e u n d e r t h e a c t i o n 

o f a n y s u r f a c e t r a c t i o n s , b u t w i t h o u t a n y b o d i l y f o r c e a c t i n g o n i t . T h e 

c o m p o n e n t s u r f a c e t r a c t i o n s p a r a l l e l t o t h e t h r e e a x e s , i n t h i s p r o b l e m , a r e 

s u p p o s e d t o b e e x p a n d e d i n a s e r i e s o f s u r f a c e h a r m o n i c s ; a n d t h e h a r m o n i c 

t e r m s o f a n y o r d e r a r e s h o w n t o h a v e a n e f f e c t o n t h e d i s p l a c e m e n t s i n d e 

p e n d e n t o f t h o s e o f e v e r y o t h e r o r d e r . T h u s i t i s o n l y n e c e s s a r y t o c o n s i d e r 

t h e t y p i c a l c o m p o n e n t s u r f a c e t r a c t i o n s A j , Bt, d o f t h e o r d e r i. 

H e p r o v e s t h a t ( f o r a n i n c o m p r e s s i b l e e l a s t i c s o l i d f o r w h i c h m i s i n f i n i t e ) 

t h i s o n e s u r f a c e t r a c t i o n A . ; , B i ; C j p r o d u c e s a d i s p l a c e m e n t t h r o u g h o u t t h e 

s p h e r e g i v e n b y 
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I p r o c e e d t h e n t o f i n d t h e s t a t e o f i n t e r n a l f l o w i n t h e v i s c o u s s p h e r e , 

w h i c h r e s u l t s f r o m a n o r m a l t r a c t i o n a t e v e r y p o i n t o f t h e s u r f a c e o f t h e 

s p h e r e , g i v e n b y t h e s u r f a c e h a r m o n i c S ; . 

I n o r d e r t o u s e t h e f o r m u l a s ( 5 ) a n d ( 6 ) , i t i s first n e c e s s a r y t o e x p r e s s t h e 

c o m p o n e n t t r a c t i o n s — S j , - - S f a s s u r f a c e h a r m o n i c s . 
a a a 

N o w i f V j b e a s o l i d h a r m o n i c , 

S o t h a t 

dx 

T h e r e f o r e J 8 , = ̂ - p sH"^^^^ ) 
T h e q u a n t i t i e s w i t h i n t h e b r a c k e t s [ ] b e i n g i n d e p e n d e n t o f r, a n d 

b e i n g s u r f a c e h a r m o n i c s o f o r d e r s i — 1 a n d i + 1 r e s p e c t i v e l y , w e h a v e — S { 

e x p r e s s e d a s t h e s u m o f t w o s u r f a c e h a r m o n i c s A i _ ! , A f + 1 , w h e r e 

S i m i l a r l y ^ S i , ^ S i m a y b e e x p r e s s e d a s B ^ + B ; + 1 a n d C i ^ + C i + i , 

w h e r e t h e B ' s a n d C ' s o n l y d i f f e r f r o m t h e A ' s i n h a v i n g y, z w r i t t e n f o r x. 

W e h a v e n o w t o f o r m t h e a u x i l i a r y f u n c t i o n s ^ - 2 , <fy c o r r e s p o n d i n g t o 

A ; . ! , B f _ 1 ( C i _ ! a n d M'V, * & l + 2 c o r r e s p o n d i n g t o A , - + i , Bi+1, C l + ] . 

T h e n b y t h e f o r m u l a ? ( 6 ) 

( 2 i + , ) ^ = . ( * + * + * ) ^ S ( = 0 

[ ] - - ' 
= - ( t + l ) ( 2 i + 3 ) 7 - « S i 

2 i + 1 ^ d r . , , d , „ . ~| d 

- ( 2 i + l ) ¥ , = r ^ + ^ C r - ^ S O 

+ dz 

_ 

_ 2 i _ + 1 _ / ¿ 1 , j ^ . , 

d j / 2 T d z ' 
- 1 S i = o 

T h u s 

* i - 2 — u » ^ 1 2 l + l I 2 l + 1 ^ 1 + 2 " 

T h e n b y ( 5 ) w e f o r m a c o r r e s p o n d i n g t o A i _ , , B ^ , C i _ 1 ; a n d a l s o t o 
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1 > ' ( * ' + 2 ) a 2 _(i + l ) ( 2 i + 3 ) 

va* l \ 2 ( i - l ) [ 2 ( i + l f + l] 2 ( 2 i + l ) [ 2 ( i + l ) 2 + l ] 

( 7 ) 
O ' + 1 ) [ 2 0" + l ) a + 1 ] d a ; 

a n d s y m m e t r i c a l e x p r e s s i o n s f o r ¡3' a n d 7 ' . 

a, ¡3', 7 ' a r e h e r e w r i t t e n f o r a, ¡3, 7 t o s h o w t h a t t h i s i s o n l y a p a r t i a l 

s o l u t i o n , a n d v i s w r i t t e n f o r n t o s h o w t h a t i t c o r r e s p o n d s t o t h e v i s c o u s 

p r o b l e m . I f w e n o w p u t S i = — gwa-i, w e g e t t h e s t a t e o f f l o w o f t h e fluid 

d u e t o t h e t r a n s m i t t e d p r e s s u r e o f t h e d e f i c i e n c i e s a n d e x c e s s e s o f m a t t e r 

b e l o w a n d a b o v e t h e t r u e s p h e r i c a l s u r f a c e . T h i s c o n s t i t u t e s t h e s o l u t i o n a s 

f a r a s i t d e p e n d s o n ( i i i ) . 

T h e r e r e m a i n t h e p a r t s d e p e n d e n t o n ( i ) a n d ( i i ) , w h i c h m a y f o r t h e 

p r e s e n t b e c l a s s i f i e d t o g e t h e r ; a n d f o r t h i s p a r t S i r W . T h o m s o n ' s s o l u t i o n i s 

d i r e c t l y a p p l i c a b l e . T h e s t a t e o f i n t e r n a l s t r a i n o f a n e l a s t i c s p h e r e , s u b j e c t 

t o n o s u r f a c e a c t i o n , b u t u n d e r t h e i n f l u e n c e o f a b o d i l y f o r c e o f w h i c h 

t h e p o t e n t i a l i s W j , m a y b e a t o n c e a d a p t e d t o g i v e t h e s t a t e o f flow o f 

a v i s c o u s s p h e r e u n d e r l i k e c o n d i t i o n s . T h e s o l u t i o n i s 

V 

» ( » + 2 ) 2 ( * + l ) ( 2 * + S ) J[dW_i 
2 ( i - l ) [ 2 ( » + l ) » + l ] " ' 2 ( 2 t + l ) [ 2 ( ¿ 4 - 1 ) 2 + 1 ] J da 

( 8 ) * 
1 r * ; + 3 ~ ( r - * ' - 1 W 4 ) 

( 2 i + l ) [ 2 ( t ' + i y + 1 ] dx 

w i t h s y m m e t r i c a l e x p r e s s i o n s f o r (3" a n d 7 " . 

I w i l l f i r s t c o n s i d e r ( i i ) ; i.e., t h e m a t t e r o f t h e e a r t h i s n o w s u p p o s e d 

t o p o s s e s s t h e p o w e r o f g r a v i t a t i o n . 

T h e g r a v i t a t i o n p o t e n t i a l o f t h e s p h e r o i d r = a + ( t a k i n g o n l y a t y p i c a l 

t e r m o f a) a t a p o i n t i n t h e i n t e r i o r , e s t i m a t e d p e r u n i t v o l u m e , i s 

a c c o r d i n g t o t h e u s u a l f o r m u l a i n t h e t h e o r y o f t h e p o t e n t i a l . 

T h e first t e r m , b e i n g s y m m e t r i c a l r o u n d t h e c e n t r e o f t h e s p h e r e , c a n 

c l e a r l y c a u s e n o flow i n t h e i n c o m p r e s s i b l e v i s c o u s s p h e r e . W e a r e t h e r e f o r e 

l e f t w i t h ( r ~ 
2i + 1 \ a . 

* Natural Philosophy, § 8 3 4 , e q u a t i o n (8) w h e n m i s in f in i t e c o m p a r e d w i t h n, a n d 1 —1 

w r i t t e n for i, a n d u r e p l a c e s n. 

A i + 1 , B j + 1 , Gi+1, a n d a d d t h e r n t o g e t h e r . T h e f i n a l r e s u l t i s t h a t a n o r m a l 

t r a c t i o n S i g i v e s 
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N o w i f 2f i ( - J ° » b ° s u b s t i t u t e d f o r W i i n ( 8 ) , a n d i f t h e r e s u l t i n g 

e x p r e s s i o n b e c o m p a r e d w i t h ( 7 ) w h e n — gwo-i i s w r i t t e n f o r S ^ , i t w i l l 

3 

b e s e e n t h a t — a" = —. , a. 
2i + l 

T h u s 

A n d i f 

a ' + a » = « " ( l - ? Ì ± i ) * = - | ( i - l ) a ' 

i ( i + 2) 

2 ( i - l ) [ 2 ( i + l ) ' - r l ] 

(i + 1 ) (2i + 3 ) 

" 2 ( 2 * > l ) [ 2 ( i + l ) » ' + l ] d a 1 

i ) v ; ; ( 9 ) ( 2 ' i - - | - l ) [ 2 ( i + l ) 2 + l ] dx 

w i t h s y m m e t r i c a l e x p r e s s i o n s f o r ft' + ft" a n d 7 ' + 7 " . 

E q u a t i o n ( 9 ) t h e n e m b o d i e s t h e s o l u t i o n a s f a r a s i t d e p e n d s o n ( i i ) a n d 

( i i i ) . A n d s i n c e ( 9 ) i s t h e s a m e a s ( 8 ) w h e n — f (i — 1 ) Vt i s w r i t t e n f o r W i , 

w e m a y i n c l u d e a l l t h e e f f e c t s o f m u t u a l g r a v i t a t i o n i n p r o d u c i n g a s t a t e o f 

flow i n t h e v i s c o u s s p h e r e , b y a d o p t i n g T h o m s o n ' s s o l u t i o n ( 8 ) , a n d t a k i n g 

i n s t e a d o f t h e ; t r u e p o t e n t i a l o f t h e l a y e r o f m a t t e r o-it — — 1 ) t i m e s t h a t 

p o t e n t i a l , a n d b y a d d i n g t o i t t h e e x t e r n a l d i s t u r b i n g p o t e n t i a l . 

W e h a v e n o w l e a r n t h o w t o i n c l u d e t h e s u r f a c e a c t i o n i n t h e p o t e n t i a l ; 

a n d i f W f b e t h e p o t e n t i a l o f t h e e x t e r n a l d i s t u r b i n g i n f l u e n c e , t h e effective 

p o t e n t i a l p e r u n i t v o l u m e a t a p o i n t w i t h i n t h e s p h e r e , n o w f r e e o f s u r f a c e 

a c t i o n a n d o f m u t u a l g r a v i t a t i o n , i s W j -
2 g w ( i - l ) 

i s u p p o s e . 
2i + l 

T h e c o m p l e t e s o l u t i o n o f o u r p r o b l e m i s t h e n f o u n d b y w r i t i n g r l T i i n 

p l a c e o f W » i n T h o m s o n ' s s o l u t i o n ( 8 ) f . 

I n o r d e r h o w e v e r t o a p p l y t h e s o l u t i o n t o t h e c a s e o f t h e e a r t h , i t w i l l b e 

c o n v e n i e n t t o u s e p o l a r c o o r d i n a t e s . F o r t h i s p u r p o s e , w r i t e wriSi f o r W i , 

a n d l e t r b e t h e r a d i u s v e c t o r ; 8 t h e c o l a t i t u d e ; t h e l o n g i t u d e . L e t 

p, TZ, v b e t h e v e l o c i t i e s r a d i a l l y , a n d a l o n g a n d p e r p e n d i c u l a r t o t h e m e r i d i a n 

r e s p e c t i v e l y . T h e n t h e e x p r e s s i o n s f o r p , TO-, V w i l l b e p r e c i s e l y t h e s a m e 

d d 

d d 

f o r 
dr' dy' r s i n ö d a V 

a n d f o r 
dz' r d 6 ' 

* T h e c a s e of § 8 1 5 i n T h o m s o n a n d T a i t ' s Natural Phitosophy i s a s p e c i a l c a s e of t h i s . 

t T h e i n t r o d u c t i o n of t h e effects of g r a v i t a t i o n m a y be a l s o carr ied o u t s y n t h e t i c a l l y , a s i s 

done b y Sir W . T h o m B o n (§ 8 4 0 , Natural Philosophy) ; b u t t h e effects of t h e l a g g i n g of t h e t ide -

wave render t h i s m e t h o d s o m e w h a t art i f ic ial , a n d I prefer to e x h i b i t t h e proof i n t h e m a n n e r 

here g i v e n . C o n v e r s e l y , t h e e l a s t i c p r o b l e m m a y be s o l v e d a s in t h e t ex t . 
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9 2 ( « - l ) [ 2 ( i t l ) ! t l l / * 

w h e r e T , = w ( S £ - 2g ~ - —) 
1 \ 1 y 2i + 1 W 

l ) [ 2 f t + l ) * + l ] 

i ( ¿ + 2 ) a} - ( t - J L ) ft + 3 ) r 2 ^ d T ( 

: " " 2 f t - l ) ~ [ 2 f t + l ) a + i ] u " ' 

t ft + 2 ) a" - Q' - 1 ) ft + 3 ) r 2 r ^ 1 cZT, 

: 2 f t - l ) [ 2 ft+l)«+l]~7j ~ s m 8 <fy 

i - 1 

. ( 1 0 ) * 

T h e s e e q u a t i o n s f o r p, TS, V g i v e u s t h e s t a t e o f i n t e r n a l flow c o r r e s p o n d i n g 

t o t h e e x t e r n a l d i s t u r b i n g p o t e n t i a l r ' ' S ; , i n c l u d i n g t h e e f f e c t s o f t h e m u t u a l 

g r a v i t a t i o n o f t h e m a t t e r c o n s t i t u t i n g t h e s p h e r o i d . 

3 . The form of the free surface at any time. 

I f p b e t h e s u r f a c e v a l u e o f p, t h e n 

9 2 f t - l ) [ 2 f t + l ) 2 + l ] v 1 

H e n c e a f t e r a s h o r t i n t e r v a l o f t i m e St, t h e e q u a t i o n t o t h e b o u n d i n g 

s u r f a c e o f t h e s p h e r o i d b e c o m e s r = a + <r; + p'St; b u t d u r i n g t h i s s a m e 

i n t e r v a l , <x; h a s b e c o m e St, w h e n c e 

dat _ i ' ( 2 i + l ) „ i gwa 

5 7 = 9 = 2 ( 7 - 1 ) [ 2 f t + i y + i ] ~u~ * 2 7 7 + i y + i 

dtTi i gwa _ i ( 2 i + 1 ) w a i + 1 „ . 

° r ~dJ + 2 f t + l ) 2 + I ~ V 0 - 1 = 2 f t - l ) [ 2 f t + l ) 2 + l ] ~ V & i · • • • ( ! 1 ) 

T h i s d i f f e r e n t i a l e q u a t i o n g i v e s t h e m a n n e r i n w h i c h t h e s u r f a c e c h a n g e s , 

u n d e r t h e i n f l u e n c e o f t h e e x t e r n a l p o t e n t i a l r ' S j . 

I f S j b e n o t a f u n c t i o n o f t h e t i m e , a n d i f Si b e t h e v a l u e o f o-j w h e n t = 0 , 

2 i + l a ^ i 

2 ( 7 7 : 1 } - y l 1 " « P ( [ 2 (^/i7+i]J] + « e x p ( [ 2 f t / i 7 + i j J ( 1 2 ) t 

W h e n £ i s i n f i n i t e a t = ^ . ( 1 3 ) 
2 f t - l ) g 

a n d t h e r e i s n o f u r t h e r s t a t e o f flow, f o r t h e fluid h a s a s s u m e d t h e f o r m 

* T h e r e s e e m s t o bo a m i s p r i n t as to t h e s i g n s of t h e OS's i n t h e s e c o n d a n d t h i r d of 

e q u a t i o n s (13) of § 8 3 4 of t h e Natural Philosophy (1867) . W h e n t h i s i s c o r r e c t e d a n d v a d m i t 

of r e d u c t i o n t o t o l e r a b l y s i m p l e f o r m s . I t a p p e a r s to m e a l s o t h a t t h e d i f f eren t ia t i on of p i n (15) 

i s i n c o r r e c t ; a n d t h i s fa l s i f i es t h e a r g u m e n t i n t h r e e f o l l o w i n g l i n e s . T h e c o r r e c t i o n i s n o t , 

h o w e v e r , i n a n y w a y i m p o r t a n t . 

t I w r i t e " e x p " for " e t o t h e p o w e r of." 

T h e n a f t e r s o m e r e d u c t i o n s w e h a v e 
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4 . Digression on the adjustments of the earth to a form of equilibrium. 

I n a f o r m e r p a p e r I h a d o c c a s i o n t o r e f e r t o s o m e p o i n t s t o u c h i n g t h e 

p r e c e s s i o n o f a v i s c o u s s p h e r o i d , a n d t o c o n s i d e r i t s r a t e o f a d j u s t m e n t t o a 

n e w f o r m o f e q u i l i b r i u m , w h e n i t s a x i s o f r o t a t i o n h a d c o m e t o d e p a r t f r o m 

i t s a x i s o f s y m m e t r y * . I p r o p o s e t h e n t o d i s c u s s t h e s u b j e c t s h o r t l y , a n d t o 

e s t a b l i s h t h e l a w w h i c h w a s t h e r e a s s u m e d . 

S u p p o s e t h a t t h e e a r t h i s r o t a t i n g w i t h a n a n g u l a r v e l o c i t y to a b o u t t h e 

a x i s o f z, b u t t h a t a t t h e i n s t a n t a t w h i c h w e c o m m e n c e o u r c o n s i d e r a t i o n 

t h e a x i s o f s y m m e t r y i s i n c l i n e d t o t h e a x i s o f z a t a n a n g l e a i n t h e p l a n e o f 

xy, a n d t h a t a t t h a t i n s t a n t t h e e q u a t i o n t o t h e f r e e s u r f a c e i s 

w h e r e m i s t h e r a t i o o f c e n t r i f u g a l f o r c e a t t h e e q u a t o r t o p u r e g r a v i t y , a n d 

t h e r e f o r e e q u a l t o . 
9 

T h e n p u t t i n g i' = 2 i n ( 1 2 ) , a n d d r o p p i n g t h e s u f f i x e s o f S , s , <r, 

T h e n , s u b s t i t u t i n g f o r S a n d s , a n d p u t t i n g K — — J — 
1 9 u 

o- = \ma \{\ - c o s 2 8) [ 1 - e x p ( - xt)] 

+ ( J — [ c o s a c o s 9 + s i n a s i n 8 e o s <ff) e x p (— « * ) } 

* " O n t h e I n f l u e n c e of G e o l o g i c a l C h a n g e s o n t h e E a r t h ' s A x i s of R o t a t i o n , " Phil. Trans., 

Vol . 167 , P a r t r., s ec . 5. [ T o be i n c l u d e d i n Vol . m . of t h e s e Col l ec ted P a p e r s . ] 

r = a { 1 - f \m — [ c o s a. c o s 8 + s i n a s i n 8 c o s </>] 2)} 

W e m a y c o n c e i v e t h e e a r t h t o b e a t r e s t , i f w e a p p l y a p o t e n t i a l 

wr"S = J O J 2 w 2 {\ — c o s 2 8) 

s o t h a t S = lay1 - c o s 2 8) 

B y ( 1 2 ) w e h a v e 

w h i c h i t w o u l d h a v e d o n e i f i t h a d n o t b e e n v i s c o u s . T h i s r e s u l t i s o f c o u r s e 

i n a c c o r d a n c e w i t h t h e e q u i l i b r i u m t h e o r y o f t i d e s . 

I f S j b e z e r o , t h e e q u a t i o n s h o w s h o w t h e i n e q u a l i t i e s o n t h e s u r f a c e o f a 

v i s c o u s g l o b e w o u l d g r a d u a l l y s u b s i d e u n d e r t h e i n f l u e n c e o f s i m p l e g r a v i t y . 

W e s e e h o w m u c h m o r e s l o w l y t h e c h a n g e t a k e s p l a c e i f i b e l a r g e ; t h a t i s 

t o s a y , i n e q u a l i t i e s o f s m a l l e x t e n t d i e o u t m u c h m o r e s l o w l y t h a n w i d e 

s p r e a d i n e q u a l i t i e s . I s i t n o t p o s s i b l e t h a t t h i s s o l u t i o n m a y t h r o w s o m e 

l i g h t o n t h e l a w s o f g e o l o g i c a l s u b s i d e n c e a n d u p h e a v a l ? 
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5 . Bodily tides in a viscous earth*. 

T h e o n l y c a s e o f i n t e r e s t i n w h i c h S , o f e q u a t i o n ( 1 1 ) i s a f u n c t i o n o f t h e 

t i m e , i s w h e r e i t i s a s u r f a c e h a r m o n i c o f t h e s e c o n d o r d e r , a n d i s p e r i o d i c i n 

t i m e ; f o r t h i s w i l l g i v e t h e s o l u t i o n o f t h e t i d a l p r o b l e m . S i n c e , m o r e o v e r , 

w e a r e o n l y i n t e r e s t e d i n t h e c a s e w h e r e t h e m o t i o n h a s a t t a i n e d a p e r m a n e n t l y 

p e r i o d i c c h a r a c t e r , t h e e x p o n e n t i a l t e r m s i n t h e s o l u t i o n o f ( 1 1 ) m a y b e s e t 

a s i d e . 

L e t S 2 = S c o s (vt + rj), a n d i n a c c o r d a n c e w i t h T h o m s o n ' s n o t a t i o n y , l e t 

^ = Cf, a n d = t : a n d t h e r e f o r e = £ _ 
5a B 5iva2 ' 19v X 

* I n c e r t a i n c a s e s t h e forces d o n o t f o r m a r i g o r o u s l y e q u i l i b r a t i n g BVBtem, b u t t h e r e i s a 

v e r y s m a l l c o u p l e t e n d i n g t o t u r n t h e e a r t h . T h e effects of t h i s u n b a l a n c e d c o u p l e , w h i c h v a r i e s 

3 m 
a s t h e s q u a r e of - ^ , wi l l be c o n s i d e r e d i n a s u c c e e d i n g p a p e r [ P a p e r 3 ] o n t h e " P r e c e s s i o n of 

a V i s c o u s S p h e r o i d . " ( R e a d before t h e R o y a l S o c i e t y , D e c e m b e r 1 9 t h , 1 8 7 8 . ) 

t Natural Philosophy, § 840 , eq . (27) . 

N o w [ 1 — c x p (— KtJ] c o s 2 8 + o x p (— let) ( c o s a c o s 6 + s i n a s i n 6 c o s <jif 

= c o s 2 0 [ 1 — s i n 2 a e x p (— « £ ) ] + s i n 2 a s i n 2 0 c o s 2 <j> e x p (— /r f ) 

+ 2 s i n a c o s a s i n 9 c o s 6 c o s e x p (— /rf ) 

T h e r e f o r e t h e C a r t e s i a n e q u a t i o n t o t h e s p h e r o i d a t t h e t i m e t i s 

~\~ 11^ -J™ 

l + s m = « 2 - 1 ™ {* 2 ( 1 - « e x P ( ~ * 0 ) 

+ a? s i n 2 a e x p (— at) + 2xz s i n a c o s a e x p (— ict)} 

o r a ? { 1 + \m s i n 2 a e x p (— id)} + y* + ¡ 1 + f m ( 1 — s i n 2 a e x p (— / r f ) ) } 
+ 5m s i n a c o s a a?.z e x p (— « i ) = a 2 ( 1 + f r a ) 

L e t a ' b e t h e i n c l i n a t i o n o f t h e p r i n c i p a l a x i s a t t h i s t i m e t o t h e a x i s 

o f z, t h e n 

t a n 2 a ' = s i n 2 g e x P < ~ * * ) 
1 — 2 s i n 2 a e x p (— /r f ) 

I f a b e s m a l l , a s i t w a s i n t h e c a s e I c o n s i d e r e d i n m y f o r m e r p a p e r , t h e n 

a' = a e x p (— id) a n d ^ = - # a ' 

T h e r e f o r e t h e v e l o c i t y o f a p p r o a c h o f t h e p r i n c i p a l a x i s t o t h e a x i s o f 

r o t a t i o n v a r i e s a s t h e a n g l e b e t w e e n t h e m , w h i c h i s t h e l a w a s s u m e d . 

A l s o k= , s o t h a t k ( t h e v o f m y f o r m e r p a p e r ) v a r i e s i n v e r s e l y a s 

t h e c o e f f i c i e n t o f v i s c o s i t y , — a s w a s a l s o a s s u m e d . 
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H e n c e A = - S c o s e, a n d B = ™ — e. 
s 

T h e r e f o r e t h e s o l u t i o n o f ( 1 4 ) i s 

o- = ^ S c o s e c o s (vt + y — e) ( 1 5 ) 

, , vx 19vv 
w h e r e t a n e = — = . 

g zgaw 

B u t i f t h e g l o b e w e r e a p e r f e c t fluid, a n d i f t h e e q u i l i b r i u m t h e o r y o f 

t i d e s w e r e t r u e , w e s h o u l d h a v e b y ( 1 3 ) , 

cr = ~ . a S c o s (vt + v) = c o s ( v t + v) 

¿9 2 

T h u s w e s e e t h a t t h e t i d e s o f t h e v i s c o u s s p h e r e a r e t o t h e e q u i l i b r i u m 

t i d e s o f a fluid s p h e r e a s c o s e : 1 , a n d t h a t t h e r e i s a r e t a r d a t i o n i n t i m e 

o f 6 - . 
V 

A p a r a l l e l i n v e s t i g a t i o n w i l l b e a p p l i c a b l e t o t h e g e n e r a l c a s e w h e r e t h e 

d i s t u r b i n g p o t e n t i a l i s wr1 S j c o s (vt + v); a n d t h e s a m e s o l u t i o n w i l l b e 

f o u n d t o h o l d s a v e t h a t w e n o w h a v e t a n e = "*" ^ . t a n d t h a t i n 

, , 2 ( i - l ) g 
p l a c e o f tt w e h a v e , ~ 7 ^ . 
r B ( 2 i + l ) a 

gaw 

6 . Diminution of ocean tides on equilibrium theory. 

S u p p o s e n o w t h a t t h e r e i s a s h a l l o w o c e a n o n t h e v i s c o u s n u c l e u s , a n d 

l e t u s f i n d t h e e f f e c t s o n t h e o c e a n t i d e s o f t h e m o t i o n o f t h e n u c l e u s 

a c c o r d i n g t o t h e e q u i l i b r i u m t h e o r y , n e g l e c t i n g t h e g r a v i t a t i o n o f t h e w a t e r . 

T h e p o t e n t i a l a t a p o i n t o u t s i d e t h e n u c l e u s i s 

9 + f 9 ( * ) ' * + r'S c o s (vt + , ) ( 1 6 ) 

a n d i f t h i s b e p u t e q u a l t o a c o n s t a n t , w e g e t t h e f o r m w h i c h t h e o c e a n 

T h e n p u t t i n g i = 2 i n ( 1 1 ) , a n d o m i t t i n g t h e s u f f i x o f <r f o r b r e v i t y , 

w e h a v e 

J + S . r = ? S c o s ( » « + , ) ( 1 4 ) 

I t i s e v i d e n t t h a t a m u s t b e o f t h e f o r m A c o s (vt + B ) , a n d t h e r e f o r e 

A{—vX s i n (vt + B ) + g c o s (vt + B)\ = aS c o s (vt + T>) 

o r i f w e p u t t a n e = ^ , 

A g s e c e c o s (vt + B + e ) = a S c o s (vt + n) 
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1 4 D I M I N U T I O N O F O C E A N T I D E S O N V I S C O U S E A R T H . [ 1 

m u s t a s s u m e . L e t r=a + u b e t h e e q u a t i o n t o t h e s u r f a c e o f t h e o c e a n . 

T h e n s u b s t i t u t i n g f o r r i n t h e p o t e n t i a l , a n d n e g l e c t i n g u i n t h e s m a l l t e r m s , 

a n d e q u a t i n g t h e w h o l e t o a c o n s t a n t , w e f i n d 

— gu + \ga + a 2 S c o s (vt + 17) = 0 

a? 
o r m = I o- + — S c o s (vt + 77) 

B u t t h e r i s e a n d f a l l o f t h e t i d e r e l a t i v e t o t h e n u c l e u s i s g i v e n b y u — a, a n d 

u — a — — ^ c o s (vt + TJ) — \o~ 
3 

= I — [ c o s (vt - f v) — c o s
 € c o s (vt + ?) — e ) ] 

9 

= — I - — s i n e s i n (vt + rj — *?) ( 1 7 ) 

N o w i f t h e n u c l e u s h a d b e e n r i g i d , t h e r i s e a n d f a l l w o u l d h a v e b e e n 

g i v e n b y 

I — c o s (vt + v) = H c o s (vt + v) s u p p o s e 
S 

T h e r e f o r e u — o- = — H s i n e s i n (vt + v — e) ( 1 8 ) 

H e n c e t h e a p p a r e n t t i d e s o n t h e y i e l d i n g n u c l e u s a r e e q u a l t o t h e t i d e s 

o n a r i g i d n u c l e u s r e d u c e d i n t h e p r o p o r t i o n s i n 6 : 1 ; a n d s i n c e 

— s i n (vt + 7] — e) = c o s (vt + v + \-k — e) 

t h e y a r e r e t a r d e d b y ~ ( e ~~ i 7 1 " ) - A s e i s n e c e s s a r i l y l e s s t h a n ^tt, t h i s i s 

e q u i v a l e n t t o a n a c c e l e r a t i o n o f t h e t i m e o f h i g h w a t e r e q u a l t o - (\tt — e). 

I t i s , h o w e v e r , w o r t h y o f n o t i c e t h a t t h i s i s o n l y a n a c c e l e r a t i o n o f p h a s e 

r e l a t i v e l y t o t h e n u c l e u s , a n d t h e r e i s a n a b s o l u t e r e t a r d a t i o n o f p h a s e e q u a l 

3 s i n e c o s e 
t o a r c - t a n — — . 

3 + 2 c o s 5 e 

7 . Semidiurnal and fortnightly tides. 

L e t t h e a x i s o f z b e t h e e a r t h ' s a x i s o f r o t a t i o n , a n d l e t t h e p l a n e o f xz 

b e f i x e d i n t h e e a r t h ; l e t c b e t h e m o o n ' s d i s t a n c e , a n d m i t s m a s s . 

S u p p o s e t h e m o o n t o m o v e i n t h e e q u a t o r w i t h a n a n g u l a r v e l o c i t y a 

r e l a t i v e l y t o t h e e a r t h , a n d l e t t h e m o o n ' s t e r r e s t r i a l l o n g i t u d e , m e a s u r e d 

f r o m t h e p l a n e o f xz, a t t h e t i m e t b e at. 

T h e n a t t h e t i m e t, t h e g r a v i t a t i o n p o t e n t i a l o f t h e t i d e - g e n e r a t i n g f o r c e , 

e s t i m a t e d p e r u n i t v o l u m e o f t h e e a r t h ' s m a s s , i s 

— I — wr2 — s i n 2 8 c o s 2 (cb — tot)} 
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w h i c h i s e q u a l t o 

£ m - wr2 — c o s a 6) + f ~ wi& [ s i n 2 8 c o s 2cf> c o s 2a>t + s i n 2 9 s i n 2</> s i n 2ait] 
c c 

T h e f i r s t t e r m o f t h i s e x p r e s s i o n i s i n d e p e n d e n t o f t h e t i m e , a n d t h e r e f o r e 

p r o d u c e s a n e f f e c t o n t h e v i s c o u s e a r t h , w h i c h w i l l h a v e d i e d o u t w h e n 

t h e m o t i o n h a s b e c o m e s t e a d y ; i t s o n l y e f f e c t i s s l i g h t l y t o i n c r e a s e t h e 

e l l i p t i c i t y o f t h e e a r t h ' s s u r f a c e . 

T h e t w o l a t t e r t e r m s g i v e r i s e t o t w o t i d e s , i n o n e o f w h i c h ( a c c o r d i n g t o 

p r e v i o u s n o t a t i o n ) 

171 
S c o s (vt + rf) — i ^ s i n 5 ^ w s 2<£ c o s 2a>t 

a n d i n t h e s e c o n d o f w h i c h 

S c o s (vt + i)) = — £ - 3 s i n 2 9 s i n 2 $ c o s (2mt + ^TT) 
c 

N o w e, w h i c h d e p e n d s o n t h e f r e q u e n c y o f t h e t i d e - g e n e r a t i n g p o t e n t i a l , 

w i l l c l e a r l y b e t h e s a m e f o r b o t h t h e s e t i d e s ; a n d t h e r e f o r e t h e y w i l l e a c h b e 

e q u a l t o t h e c o r r e s p o n d i n g t i d e s o f a fluid s p h e r o i d , r e d u c e d b y t h e s a m e 

a m o u n t a n d s u b j e c t t o t h e s a m e r e t a r d a t i o n . T h e y m a y t h e r e f o r e b e 

r e c o m p o u n d e d i n t o a s i n g l e t i d e ; a n d s i n c e v w i l l h e r e b e e q u a l t o 2 » , i t 

f o l l o w s t h a t t h e r e t a r d a t i o n o f t h e b o d i l y s e m i d i u r n a l t i d e i s ^— , w h e r e 
* Zft) 

t a n e = = ^ v a > . A l s o t h e h e i g h t o f t h e t i d e i s l e s s t h a n t h e c o r r e s p o n d -

i n g e q u i l i b r i u m t i d e o f a f l u i d s p h e r o i d i n t h e p r o p o r t i o n o f c o s e t o u n i t y . 

S i m i l a r l y b y s e c t i o n ( 6 ) t h e h e i g h t o f t h e o c e a n t i d e o n t h e y i e l d i n g 

n u c l e u s i s g i v e n b y t h e c o r r e s p o n d i n g t i d e o n a r i g i d n u c l e u s m u l t i p l i e d b y 

77- e 
s i n e, a n d t h e r e i s a n a c c e l e r a t i o n o f r e l a t i v e h i g h w a t e r e q u a l t o — ^ ~ . 

T h e c a s e o f t h e f o r t n i g h t l y t i d e i s s o m e w h a t s i m p l e r . 

I f i l b e t h e m o o n ' s o r b i t a l a n g u l a r v e l o c i t y , a n d I t h e i n c l i n a t i o n o f t h e 

p l a n e o f t h e o r b i t t o t h e e a r t h ' s e q u a t o r , t h e n t h e p a r t o f t h e t i d e - g e n e r a t i n g 

p o t e n t i a l , o n w h i c h t h e f o r t n i g h t l y t i d e d e p e n d s , i s 

17} 
I - wr2 s i n 3 1 ( 1 - c o s 2 9) c o s 2 f l « 

c 

a n d w e s e e a t o n c e b y s e c t i o n s ( 5 ) a n d ( 6 ) t h a t t a n e = _ T h e b o d i l y 

t i d e i s t h e t i d e o f a fluid s p h e r o i d m u l t i p l i e d b y c o s e ; t h e r e d u c t i o n o f o c e a n 

t i d e i s g i v e n b y s i n e ; a n d t h e r e i s a t i m e - a c c e l e r a t i o n o f r e l a t i v e h i g h w a t e r 

o f -j^r — jr^r o r 1 — - o f a w e e k . 
4 1 1 2 f i 2 7T 

I n o r d e r t o m a k e t h e m e a n i n g o f t h e p r e v i o u s a n a l y t i c a l r e s u l t s c l e a r e r , I 

h a v e f o r m e d t h e f o l l o w i n g n u m e r i c a l t a b l e s , t o s h o w t h e e f f e c t s o f t h i s h y p o -
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t h e s i s o n t h e s e m i d i u r n a l a n d f o r t n i g h t l y t i d e s . T h e c o e f f i c i e n t o f v i s c o s i t y 

i s u s u a l l y e x p r e s s e d i n g r a v i t a t i o n u n i t s o f f o r c e s o t h a t t h e f o r m u l a f o r e 

b e c o m e s , t a n e = — . I n t h e t a b l e s v i s e x p r e s s e d i n t h e c e n t i m e t r e -wa 
g r a m m e - s e c o n d s y s t e m , a n d i n g r a v i t a t i o n u n i t s o f f o r c e ; a i s t a k e n a s 

6 ' 8 7 x 1 0 8 , a n d w a s 5 ' 5 , a n d t h e a n g u l a r v e l o c i t y eu o f t h e m o o n r e l a t i v e l y t o 

t h e e a r t h a s ' 0 0 0 0 7 0 2 5 r a d i a n s p e r s e c o n d . 

W i t h t h e s e d a t a I f i n d v = 1 0 1 2 x 2 6 2 5 t a n e. A s a s t a n d a r d o f c o m p a r i s o n 

w i t h t h e c o e f f i c i e n t s o f v i s c o s i t y g i v e n i n t h e t a b l e s , I m a y m e n t i o n t h a t , 

a c c o r d i n g t o s o m e r o u g h e x p e r i m e n t s o f m y o w n , t h e v i s c o s i t y o f B r i t i s h p i t c h 

a t n e a r t h e f r e e z i n g t e m p e r a t u r e ( 3 4 ° F a h r . ) , w h e n i t i s h a r d a n d b r i t t l e , i s 

a b o u t 1 0 s x 1"3 w h e n m e a s u r e d i n t h e s a m e u n i t s . 

L u n a r S e m i d i u r n a l T i d e 

H e i g h t of H e i g h t of H i g h t ide 
Coeff icient R e t a r d a t i o n b o d i l y t ide i s o c e a n t ide i s r e l a t i v e l y t o 

of v i s c o s i t y of b o d i l y t ide t ide of t i d e o n v i s c o u s n u c l e u s 

x 1 0 - 1 0 I 6 \ fluid s p h e r o i d r i g i d n u c l e u s acce l era ted b y 

(v x I f r 1 0 ) m u l t i p l i e d b y m u l t i p l i e d by '\ 
(cos E) ( s i n e) " 2 J 

H r a . m i n . H r s . m i n . 
F l u i d 0 0 0 1 - 0 0 0 • o o o 3 6 

4 6 O 2 1 •985 • 1 7 4 2 4 6 
9 6 0 4 1 • 9 4 0 • 3 4 2 2 2 5 

1 5 2 1 2 • 866 • 5 0 0 2 4 
2 2 0 1 2 3 • 766 • 6 4 3 1 4 4 
3 1 3 1 4 4 • 6 4 3 • 7 6 6 1 2 3 
4 5 5 2 4 • 5 0 0 • 8 6 6 1 2 
7 2 1 2 2 5 •342 • 9 4 0 0 4 1 

1 , 4 8 8 2 4 6 •174 • 9 8 5 0 2 1 
R i g i d oo 3 6 • o o o 1 - 0 0 0 0 0 

F o r t n i g h t l y T i d e 

D a y s bra . D a y s h r s . 
F l u i d 0 0 0 1 - 0 0 0 • o o o 3 1 0 

1 , 2 0 0 0 9 • 9 8 5 • 1 7 4 3 1 
2 , 5 0 0 0 1 8 •940 • 3 4 2 2 1 6 
4 , 0 0 0 1 3 •866 • 5 0 0 2 6 
5 , 8 0 0 1 1 2 • 766 • 6 4 3 1 2 1 
8 , 3 0 0 1 2 1 •643 •766 1 1 2 

1 2 , 0 0 0 2 6 • 5 0 0 •866 1 3 
1 9 , 0 0 0 2 1 6 •342 • 9 4 0 0 1 8 
3 9 , 3 0 0 3 1 • 1 7 4 •985 0 9 

R i g i d ao 3 1 0 • 0 0 0 1-000 0 0 

I n o w p a s s o n t o a c a s e w h i c h i s i n t e r m e d i a t e b e t w e e n t h e h y p o t h e s i s o f 

S i r W . T h o m s o n a n d t h a t j u s t t r e a t e d . 
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8 . The tides of an elastico-viscous spheroid. 

T h e t e r m e l a s t i c o - v i s c o u s i s u s e d t o d e n o t e t h a t t h e s t r e s s e s r e q u i s i t e t o 

m a i n t a i n t h e b o d y i n a g i v e n s t r a i n e d c o n f i g u r a t i o n d e c r e a s e t h e l o n g e r t h e 

b o d y i s t h u s c o n s t r a i n e d , a n d t h i s i s u n d o u b t e d l y t h e c a s e w i t h m a n y s o l i d s . 

I n t h e p a r t i c u l a r c a s e w h i c h i s h e r e t r e a t e d , i t i s a s s u m e d t h a t t h e s t r e s s e s 

d i m i n i s h i n g e o m e t r i c a l p r o g r e s s i o n , a s t h e t i m e i n c r e a s e s i n a r i t h m e t i c a l 

p r o g r e s s i o n . I f , f o r e x a m p l e , a c u b i c a l b l o c k o f t h e s u b s t a n c e b e s t r a i n e d t o 

a g i v e n a m o u n t b y a s h e a r i n g s t r e s s T , a n d m a i n t a i n e d i n t h a t p o s i t i o n , t h e n 

a f t e r a t i m e t, t h e s h e a r i n g s t r e s s , i s T e x p ^— . T h e t i m e t m e a s u r e s t h e 

r a t e a t w h i c h t h e s t r e s s f a l l s o f f , a n d i s c a l l e d ( I b e l i e v e b y P r o f e s s o r M a x w e l l ) 

" t h e m o d u l u s o f t h e t i m e o f r e l a x a t i o n o f r i g i d i t y " ; i t i s t h e t i m e i n w h i c h 

t h e i n i t i a l s t r e s s h a s b e e n r e d u c e d t o e~l o r ' 3 6 7 9 o f i t s i n i t i a l v a l u e . I d o 

n o t s u p p o s e , h o w e v e r , t h a t a n y s o l i d c o n f o r m s e x a c t l y t o t h i s l a w ; b u t I c o n 

c e i v e t h a t i t i s o f t e n u s e f u l i n p h y s i c a l p r o b l e m s t o d i s c u s s m a t h e m a t i c a l l y a n 

i d e a l c a s e , w h i c h p r e s e n t s a s u f f i c i e n t l y m a r k e d l i k e n e s s t o t h e r e a l i t y , w h e r e 

w e a r e u n a b l e t o d e t e r m i n e e x a c t l y w h a t t h a t r e a l i t y m a y b e . 

M r J . G . B u t c h e r h a s f o u n d t h e e q u a t i o n s o f m o t i o n o f s u c h a n i d e a l 

s u b s t a n c e f r o m t h e c o n s i d e r a t i o n t h a t t h e e l a s t i c i t y o f g r o u p s o f m o l e c u l e s i s 

c o n t i n u a l l y b r e a k i n g d o w n , a n d t h a t t h e g r o u p s r e a r r a n g e t h e m s e l v e s a f t e r 

w a r d s * . T h e s e c o n s i d e r a t i o n s l o a d h i m t o t h e f o l l o w i n g r e s u l t s f o r t h e 

s t r e s s e s a c r o s s r e c t a n g u l a r p l a n e s a t a n y p o i n t i n t h e i n t e r i o r , v i z . ( w i t h t h e 

n o t a t i o n o f § 1 ) : 

' - < — > « + - G + « r ( » + s - ) ' s =»(T + 2Hf+t) 
a n d s i m i l a r e x p r e s s i o n s f o r Q , E , T , U ; w h e r e m — \n i s t h e c o e f f i c i e n t o f d i l a 

t a t i o n , n t h a t o f r i g i d i t y , S t h e d i l a t a t i o n , a n d a, ¡3, 7 , t h e c o m p o n e n t s o f f l o w . 

T h e s e e x p r e s s i o n s a r e c l e a r l y i n a c c o r d a n c e w i t h t h e a b o v e d e f i n i t i o n o f 

. . . . , dS S /dj3 dy\ 
e l a s t i c o - v u s c o s i t y , f o r + T = „ + T y ) . 

I f t h e e x p r e s s i o n s f o r P , S , & c , b e s u b s t i t u t e d i n t h e e q u a t i o n s o f e q u i 

l i b r i u m o f t h e e l e m e n t a r y p a r a l l e l o p i p e d , i t i s f o u n d b y a i d o f t h e e q u a t i o n o f 

., dS da d/3 dy x l , . . . , . , 
c o n t i n u i t y ^ = ^ + -j—1- ~ - , t h a t w h e n i n e r t i a i s n e g l e c t e d 

' 1 d y 1 f . . , 1 

a n d t w o s i m i l a r e q u a t i o n s . 

* Proe. Land. Math. Soc, D e c . 1 4 , 1 8 7 6 , p p . 1 0 7 - 9 . I t s e e m a to m e t h a t t h e h y p o t h e s i s o u g h t 

to represent t h e o l a s t i o o - v i s o o s i t y of i c e v e r y c lo se ly . 

D. II. 2 
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B y t h e s a m e r e a s o n i n g a s i n § 1 , w e m a y p u t , S = - •p , a n d t h e e q u a t i o n s 

b e c o m e 

a d 
« J

 +dt. 
1 m d~ 
t m — I n dt dx ) 

T h e n s u p p o s i n g t h e s u b s t a n c e t o b e i n c o m p r e s s i b l e , s o t h a t m i s i n f i n i t e l y 

l a r g e c o m p a r e d t o n, a n d t h e r e f o r e m-~ m^-^n i s u n i t y , t h e e q u a t i o n s b e c o m e 

a n d t w o s i m i l a r e q u a t i o n s . 

N o w t h e s e e q u a t i o n s h a v e e x a c t l y t h e s a m e f o r m a s t h o s e f o r t h e m o t i o n 

o f a v i s c o u s fluid, s a v e t h a t t h e c o e f f i c i e n t o f v i s c o s i t y v i s r e p l a c e d b y 

n + . W e m a y t h e r e f o r e a t o n c e p a s s t o t h e d i f f e r e n t i a l e q u a t i o n 

( 1 1 ) w h i c h g i v e s t h e f o r m o f t h e s u r f a c e o f t h e s p h e r o i d a t a n y t i m e . 

S u b s t i t u t i n g , t h e r e f o r e ^ + i n ( 1 1 ) f o r - , w e g e t 

1 + gwa do-; gwa 
2(i+iy + l n J dt 2 ( i + l ) 2 + l nt 

i (2i +1) WW ' + 1 / I lì ' 

2 ( * - - l ) [ 2 ( 4 ' + l ) 2 + l ] n I t dt) 

T h i s e q u a t i o n a d m i t s o f s o l u t i o n j u s t i n t h e s a m e w a y t h a t e q u a t i o n ( 1 1 ) w a s 

s o l v e d ; b u t I s h a l l c o n f i n e m y s e l f t o t h e c a s e o f t h e t i d a l p r o b l e m , w h e r e i — 2 

a n d S 2 = S c o s (vt + w). I n t h i s s p e c i a l c a s e t h e e q u a t i o n b e c o m e s 

"1 2gwa\ do- 2gwa _ 5was 

+ ~19n) dt + T 9 n t ° " = Ï 9 n 

A n d i f w e p u t 
1 9 n 

2gwa 

c o s (vt + 7]) — v s i n (vt + v) s 

+ 1 = ^ , t a n i/r = vt, a n d g = ^ , t h i s m a y b e w r i t t e n 
5a ' 

do- k vak 
j - + t o- = — . — - S c o s (vt + i\ + ^r) 
dt t D s i n f 

I n t h e s o l u t i o n a p p r o p r i a t e t o t h e t i d a l p r o b l e m , w e m a y o m i t t h e e x p o 

r t 

n e n t i a l t e r m , a n d a s s u m e tr = A c o s (vt + B ) . T h e n i f w e p u t t a n % = j-

^ A o - ^ J ^ - c o s ( « * + B + tf 
dt t s i n % 

W h e n c e i t f o l l o w s t h a t B = V + f ~ %· a n d 

n s i n v a c o s x 
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9 . Ocean tides on an elastico-viscous nucleus. 

I f r = a• + u b e t h e e q u a t i o n t o t h e o c e a n s p h e r o i d , w e h a v e , a s i n s e c . ( 6 ) , 

t h a t t h e h e i g h t o f t i d e r e l a t i v e l y t o t h e n u c l e u s i s g i v e n b y 

a 2 

u — a- = — S c o s (vt + v) — \a 

a n d s u b s t i t u t i n g t h e p r e s e n t v a l u e o f cr, 

a f - c o s y u - a- = f - S I c o s (vt + iy) - c ^ * - c o s (vt + V + •dr - X ) 

_ a „, s i n ( y — -dr) . , . 
= - l - S v * , T / s i n (vt + v - y ) 

° g c o s -d/- v 

I f t h e n u c l e u s h a d b e e n r i g i d t h e rise a n d f a l l w o u l d h a v e b e e n g i v e n b y 

* Natural Pliiloiophy, § 8 4 0 . 

H e n c e t h e b o d i l y t i d e o f t h e e l a s t i c o - v i s c o u s s p h e r o i d i s e q u a l t o t h e e q u i 

l i b r i u m t i d e o f a fluid s p h e r o i d m u l t i p l i e d b y C ! ( ) E i - ^ - a n d h i g h t i d e i s r e t a r d e d 
r r " c o s t//-

° y X ~ Y+V-
T h e f o r m u l a f o r t a n ^ m a y b e e x p r e s s e d i n a s o m e w h a t m o r e c o n v e n i e n t 

19nvt 
f o r m : w e h a v e t a n -dr = vt, a n d t h e r e f o r e t a n v = t a n -dr + ~ . 

T 2gwa 
B u t w t i s t h e c o e f f i c i e n t o f v i s c o s i t y , a n d i n t r e a t i n g t h e t i d e s o f t h e p u r e l y 

1 9 w 
v i s c o u s s p h e r o i d w e p u t t a n e = ^ — — x c o e f f i c i e n t o f v i s c o s i t y ; t h e r e f o r e 

a d o p t i n g t h e s a m e n o t a t i o n h e r e , w e h a v e t a n x = t a n -dr + t a n e. 

I f t h e m o d u l u s o f r e l a x a t i o n t b o z e r o , w h i l s t t h e c o e f f i c i e n t o f r i g i d i t y n 

b e c o m e s i n f i n i t e , b u t n t finite, t h e s u b s t a n c e i s p u r e l y v i s c o u s , a n d w e h a v e 

•dr = 0 a n d X = e, s o t h a t t h e s o l u t i o n r e d u c e s t o t h e c a s e a l r e a d y c o n s i d e r e d . 

I f t b e i n f i n i t e ; t h e s u b s t a n c e i s p u r e l y e l a s t i c , a n d w e h a v e -dr = \tt, X = ^tt 

a n d s i n c e = & ^ - D ^ t h e r e f o r e 
c o s Y s i n -yr 

O- = - - S c o s (vt + 7]) 
9 

1 9 t i t d 
B u t a c c o r d i n g t o T h o m s o n ' s n o t a t i o n * — = - , s o t h a t a= S c o s (vt + y), 6 2gwa g r + g 
w h i c h i s t h e s o l u t i o n o f T h o m s o n ' s p r o b l e m o f t h e p u r e l y e l a s t i c s p h e r o i d . 

T h e p r e s e n t s o l u t i o n e m b r a c e s , t h e r e f o r e , b o t h t h e c a s e c o n s i d e r e d b y h i m , 

a n d t h a t o f t h e v i s c o u s s p h e r o i d . 
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H c o s (vt + y), w h e r e H = £ - S ; t h e r e f o r e o n t h e y i e l d i n g n u c l e u s i t i s 
s 

g i v e n b y 

M - < r = - I I 8 i n - ( X ^ s i n ( ^ + , - X ) 
c o s Y V 

= — H c o s ^ ( t a n x — t a n Y) s i n (vt + y — x) 

= — H c o s x t a n e s i n (vt + y — X) 

H e n c e t h e a p p a r e n t t i d e s o n t h e y i e l d i n g n u c l e u s a r e e q u a l t o t h e c o r r e s p o n d 

i n g t i d e s o n a r i g i d n u c l e u s r e d u c e d i n t h e p r o p o r t i o n o f c o s y_ t a n e t o u n i t y , 

a n d t h e r e i s a n a c c e l e r a t i o n o f t h e t i m e o f h i g h w a t e r e q u a l t o (^v — x)jv. 

A s t h e s e a n a l y t i c a l r e s u l t s p r e s e n t n o c l e a r m e a n i n g t o t h e m i n d , I h a v e 

c o m p i l e d t h e f o l l o w i n g t a b l e s . I n t h e s e t a b l e s I h a v e t a k e n t h e t w o c a s e s 

c o n s i d e r e d b y S i r W . T h o m s o n , w h e r e t h e s p h e r o i d h a s t h e r i g i d i t y o f g l a s s , 

a n d t h a t o f i r o n , a n d h a v e w o r k e d o u t t h e r e s u l t s f o r v a r i o u s t i m e s o f 

r e l a x a t i o n o f r i g i d i t y , f o r t h e s e m i d i u r n a l a n d f o r t n i g h t l y t i d e s . T h e l a s t 

l i n e i n e a c h d i v i s i o n o f e a c h t a b l e i s T h o m s o n ' s r e s u l t . 

S p h e r o i d w i t h R i g i d i t y o f G l a s s ( 2 ' 4 4 x 10 S ) . 

L u n a r S e m i d i u r n a l T i d e 

M o d u l u s of 
r e l a x a t i o n of 

r i g i d i t y 
(t) 

Coeff icient of 
v i s c o s i t y 

(«t x i o - 1 » ) 

O c e a n t ide 
i s t ide o n r ig id 

n u c l e u s 
m u l t i p l i e d b y 

(cos x t a n e) 

H i g h t i d e 
r e l a t i v e l y to 

n u c l e u s i s 
a c c e l e r a t e d b y 

H r s . 
F l u i d Ü 

1 
2 
3 
4 
5 

E l a s t i c co 

0 
8 8 

1 7 6 
2 6 4 
3 5 1 
4 3 9 

00 

• 0 0 0 
• 2 5 6 
• 3 4 2 
• 3 7 0 
• 3 8 2 
• 3 8 8 
• 3 9 8 

H r s . m i n . 
3 6 
1 4 4 
1 3 
0 4 5 
0 3 4 
0 2 8 
0 0 

F o r t n i g h t l y T i d e 

D a y s h r s . 
F l u i d 0 0 

0 6 
0 1 2 
1 0 
2 0 
3 0 

E l a s t i c co 

0 
5 0 0 

1 , 1 0 0 
2 , 1 0 0 
4 , 2 0 0 
6 , 3 0 0 

oc 

• 0 0 0 
• 0 9 9 
•181 
•285 
•357 
• 3 7 9 
• 3 9 8 

D a y s h r s . 
3 1 0 
2 2 1 
2 9 
1 1 6 
1 0 
0 1 6 
0 0 
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S p h e r o i d w i t h R i g i d i t y o f I r o n (7 - 8 x 10 B ) . 

L u n a r S e m i d i u r n a l T i d e 

M o d u l u s R e d u c t i o n A c c e l e r a t i o n 
of V i s c o s i t y of of 

r e l a x a t i o n o c e a n t ide h i g h w a t e r 

H r s . m i n . H r s . rain. 
F l u i d 0 0 0 • o o o 3 6 

0 3 0 1 4 0 • 4 2 0 1 4 7 
1 0 2 8 0 •573 1 7 
2 0 5 6 0 •647 0 3 6 
3 0 8 4 0 •665 0 2 5 

E l a s t i c oo 00 •67!) 0 0 

F o r t n i g h t l y T i d e 

D a y s h r s . D a y s h r s . 
F l u i d 0 0 0 • o o o 3 1 0 

0 6 1 , 7 0 0 • 2 9 4 2 11 
0 1 2 3 , 4 0 0 • 4 7 0 1 1 8 
1 0 6 , 7 0 0 •602 1 1 
2 0 1 3 , 5 0 0 •657 0 1 3 
3 0 2 0 , 2 0 0 •669 0 9 

E l a s t i c co CO • 6 7 9 0 0 

I m a y r e m i n d t h e r e a d e r t h a t t h e m o d u l u s o f r e l a x a t i o n o f r i g i d i t y i s t h e 

t i m e i n w h i c h t h e s t r e s s r e q u i s i t e t o r e t a i n t h e b o d y i n i t s s t r a i n e d c o n 

figuration f a l l s t o - 3 6 8 o f i t s i n i t i a l v a l u e . 

1 0 . The influence of inertia. 

I n e s t a b l i s h i n g t h e s e r e s u l t s i n e r t i a h a s b e e n n e g l e c t e d , a n d I w i l l n o w 

s h o w t h a t t h i s n e g l e c t i s n o t s u c h a s t o m a t e r i a l l y v i t i a t e m y r e s u l t s * . 

S u p p o s e t h a t t h e s p h e r o i d i s c o n s t r a i n e d t o e x e c u t e s u c h a v i b r a t i o n a s i t 

w o u l d d o i f i t w e r e a p e r f e c t f l u i d , a n d i f t h e e q u i l i b r i u m t h e o r y o f t i d e s w e r e 

t r u e . T h e n t h e e f f e c t i v e f o r c e s w h i c h a r e t h e e q u i v a l e n t o f i n e r t i a , a c c o r d 

i n g t o D ' A l e m b e r t ' s p r i n c i p l e , a r e f o u n d b y m u l t i p l y i n g t h e a c c e l e r a t i o n o f 

e a c h p a r t i c l e b y i t s m a s s . 

I n e r t i a m a y t h e n b e s a f e l y n e g l e c t e d i f t h e e f f e c t i v e f o r c e o n t h a t p a r t i c l e 

w h i c h h a s t h e g r e a t e s t a m p l i t u d e o f v i b r a t i o n i s s m a l l c o m p a r e d w i t h t h e 

* I n a fu ture p a p e r (read o n D e c e m b e r 19 th , 1878) [ P a p e r 4 ] I s h a l l g i v e a n a p p r o x i m a t e 
so lut ion of the p r o b l e m , i n c l u s i v e of t h e effects of i n e r t i a . 
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I I . 

A T i d a l Y i e l d i n g o f t h e E a r t h ' s M a s s , a n d t h e 

C a n a l - t h e o r y o f T i d e s . 

I n t h e first p a r t o f t h i s p a p e r t h e e q u i l i b r i u m t h e o r y h a s b e e n u s e d f o r 

t h e d e t e r m i n a t i o n o f t h e r e d u c t i o n o f t h e h e i g h t o f t i d e , a n d t h e a l t e r a t i o n o f 

p h a s e , d u e t o b o d i l y t i d e s i n t h e e a r t h . 

S i r W . T h o m s o n r e m a r k s , w i t h r e f e r e n c e t o a s u p p o s e d e l a s t i c y i e l d i n g o f 

t h e e a r t h ' s b o d y : " I m p e r f e c t a s t h e c o m p a r i s o n s b e t w e e n t h e o r y a n d o b s e r 

v a t i o n a s t o t h e a c t u a l h e i g h t o f t h e t i d e s h a v e b e e n h i t h e r t o , i t i s s c a r c e l y 

p o s s i b l e t o b e l i e v e t h a t t h e h e i g h t i s i n r e a l i t y o n l y t w o - f i f t h s o f w h a t i t 

t i d e - g e n e r a t i n g f o r c e o n i t . I n t h e c a s e o f a v i s c o u s s p h e r o i d , t h e i n e r t i a 

w i l l h a v e c o n s i d e r a b l y l e s s e f f e c t t h a n i t w o u l d h a v e i n t h e s u p p o s e d c o n 

s t r a i n e d o s c i l l a t i o n . 

N o w s u p p o s e w e h a v e a t i d e - g e n e r a t i n g p o t e n t i a l wr" S c o s (vt + »7), t h e n , 

a c c o r d i n g t o t h e e q u i l i b r i u m t h e o r y o f t i d e s , t h e f o r m o f t h e s u r f a c e i s 

g i v e n b y 

5 a 3 

0- = - g — S c o s (vt + Tj) 

¿9 
a n d t h i s f u n c t i o n g i v e s t h e p r o p o s e d c o n s t r a i n e d o s c i l l a t i o n . I t i s c l e a r t h a t 

i t i s t h e p a r t i c l e s a t t h e s u r f a c e w h i c h h a v e t h e w i d e s t a m p l i t u d e o f o s c i l l a t i o n . 

T h e e f f e c t i v e f o r c e o n a u n i t e l e m e n t a t t h e s u r f a c e i s 

d2a 5a? „ , . 
— w j — = wv2

 S c o s (vt + v) 

B u t t h e n o r m a l d i s t u r b i n g f o r c e a t t h e s u r f a c e i s 2wa S c o s (vt + rf). T h e r e -

5 c z 2 

f o r e i n e r t i a m a y b e n e g l e c t e d i f — wv2 i s s m a l l c o m p a r e d w i t h 2wa, o r i f 

5a 

^ v2 i s a s m a l l f r a c t i o n . T h e t i d e o f t h e s h o r t e s t p e r i o d w i t h w h i c h w e h a v e 

t o d e a l i s t h a t i n w h i c h v = 2a>, s o t h a t w e m u s t c o n s i d e r t h e m a g n i t u d e o f 

t h e f r a c t i o n 4 x • I f «*> w e r e t h e e a r t h ' s t r u e a n g u l a r v e l o c i t y , i n s t e a d o f 
i t s a n g u l a r v e l o c i t y r e l a t i v e l y t o t h e m o o n , t h e n w o u l d b e t h e e l l i p t i c i t y 

o f i t s s u r f a c e i f i t w e r e h o m o g e n e o u s . T h i s e l l i p t i c i t y i s , a s i s w e l l k n o w n , 

. H e n c e t h e f r a c t i o n , w h i c h i s t h e c r i t e r i o n o f t h e n e g l i g e a b i l i t y o f 

i n e r t i a , i s a b o u t J g . 

I f , t h e n , i t b e c o n s i d e r e d t h a t t h i s w a y o f l o o k i n g a t t h e s u b j e c t c e r t a i n l y 

e x a g g e r a t e s t h e i n f l u e n c e o f i n e r t i a , i t i s c l e a r t h a t t h e n e g l e c t o f i n e r t i a i s 

n o t s u c h a s t o m a t e r i a l l y v i t i a t e t h e r e s u l t s g i v e n a b o v e . 
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w o u l d b e if, a s h a s b e e n u n i v e r s a l l y a s s u m e d i n t i d a l t h e o r i e s , t h e e a r t h w e r e 

p e r f e c t l y r i g i d . I t s e e m s , t h e r e f o r e , n e a r l y c e r t a i n , w i t h n o o t h e r e v i d e n c e 

t h a n i s a f f o r d e d b y t h e t i d e s , t h a t t h e t i d a l e f f e c t i v e r i g i d i t y o f t h e e a r t h 

m u s t b e g r e a t e r t h a n t h a t o f g l a s s * . " 

T h e e q u i l i b r i u m t h e o r y i s q u i t e f a l l a c i o u s i n i t s e x p l a n a t i o n o f t h e s e m i 

d i u r n a l t i d e , b u t S i r W . T h o m s o n i s o f o p i n i o n t h a t i t m u s t g i v e a p p r o x i m a t e l y 

c o r r e c t r e s u l t s f o r t i d e s o f c o n s i d e r a b l e p e r i o d . I t i s t h e r e f o r e o n t h e o b s e r v e d 

a m o u n t o f t h e f o r t n i g h t l y t i d e t h a t h e p l a c e s r e l i a n c e i n d r a w i n g t h e a b o v e 

c o n c l u s i o n . U n d e r t h e s e c i r c u m s t a n c e s , a d y n a m i c a l i n v e s t i g a t i o n o f t h e 

e f f e c t s o f a t i d a l y i e l d i n g o f t h e e a r t h o n a t i d e o f s h o r t p e r i o d , a c c o r d i n g t o 

t h e c a n a l t h e o r y , i s l i k e l y t o b e i n t e r e s t i n g . 

T h e f o l l o w i n g i n v e s t i g a t i o n w i l l b e a p p l i c a b l e e i t h e r t o t h e c a s e o f t h e 

e a r t h ' s m a s s y i e l d i n g t h r o u g h e l a s t i c i t y , p l a s t i c i t y , o r v i s c o s i t y ; i t t h u s 

e m b r a c e s S i r W . T h o m s o n ' s h y p o t h e s i s o f e l a s t i c i t y , a s w e l l a s m i n e o f 

v i s c o s i t y a n d c l a s t i c o - v i s c o s i t y . 

1 1 . Semidiurnal tide in an equatorial canal on a yielding nucleus. 

I s h a l l o n l y c o n s i d e r t h e s i m p l e c a s e o f t h e m o o n m o v i n g u n i f o r m l y i n t h e 

e q u a t o r , a n d r a i s i n g t i d e w a v e s i n a n a r r o w s h a l l o w e q u a t o r i a l c a n a l o f 

d e p t h h. 

T h e p o t e n t i a l o f t h e t i d e - g e n e r a t i n g f o r c e , a s f a r a s c o n c e r n s t h e p r e s e n t 

. ma,s 

i n q u i r y , i s , w i t h t h e o l d n o t a t i o n , s i n 2 8 c o s 2 (<£ — rot), w h e r e r = § . 

T h i s f o r c e w i l l r a i s e a b o d i l y t i d e i n t h e e a r t h , w h e t h e r i t b e e l a s t i c , p l a s t i c , 

o r v i s c o u s . S u p p o s e , t h e n , t h a t t h e g r e a t e s t r a n g e o f t h e b o d i l y t i d e a t t h e 

e q u a t o r i s 2 E , a n d t h a t i t i s r e t a r d e d a f t e r t h e p a s s a g e o f t h e m o o n o v e r t h e 

m e r i d i a n b y a n a n g l e %e. T h e n t h e e q u a t i o n t o t h e b o u n d i n g s u r f a c e o f t h e 

s o l i d e a r t h , a t t h e t i m e t, i s r = a + E s i n 2 6 c o s [2 — tot) + e]; o r w i t h 

f o r m e r n o t a t i o n a = E s i n 2 8 c o s [ 2 (cf> — ait) + e]. 

T h e w h o l e p o t e n t i a l V , a t a p o i n t o u t s i d e t h e n u c l e u s , i s t h e s u m o f t h e 

p o t e n t i a l o f t h e e a r t h ' s a t t r a c t i o n , a n d o f t h e p o t e n t i a l o f t h e t i d e - g e n e r a t i n g 

f o r c e . T h e r e f o r e 

as r1
 t t 2 

Y=g~ + \g - E s i n 2 6 c o s [2 (<£ - wt) + e] + J - - s i n 2 8 c o s 2 (<£ - tot) 

= g ~ + {F c o s [ 2 (<}> - at) + e] + G s i n [2 (<£ - at) + e ] } ~ s i n 2 8 

w h e r e F = f g r E + \ t COS e , G = \i s i n e. 

* Natural Philosophy, § 8 4 3 . 
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S i r G e o r g e A i r y s h o w s , i n h i s a r t i c l e o n " T i d e s a n d W a v e s " i n t h e 

Encyclopcedia Metropolitana, t h a t t h e m o t i o n o f t h e t i d e - w a v e i n a c a n a l 

r u n n i n g r o u n d t h e e a r t h i s t h e s a m e a s t h o u g h t h e c a n a l w e r e s t r a i g h t , a n d 

t h e e a r t h a t r e s t , w h i l s t t h e d i s t u r b i n g b o d y r o t a t e s r o u n d i t . T h i s s i m p l i f i 

c a t i o n w i l l b e a p p l i c a b l e h e r e a l s o . 

A s b e f o r e s t a t e d , t h e c a n a l i s s u p p o s e d t o b e e q u a t o r i a l a n d o f d e p t h h. 

A f t e r t h e c a n a l h a s b e e n d e v e l o p e d , t a k e t h e o r i g i n o f r e c t a n g u l a r c o 

o r d i n a t e s i n t h e u n d i s t u r b e d s u r f a c e o f t h e w a t e r , a n d m e a s u r e x a l o n g t h e 

c a n a l i n t h e d i r e c t i o n o f t h e m o o n ' s m o t i o n , a n d y v e r t i c a l l y d o w n w a r d s . 

W e h a v e n o w t o t r a n s f o r m t h e p o t e n t i a l V , a n d t h e e q u a t i o n t o t h e 

s u r f a c e o f t h e s o l i d e a r t h , s o a s t o m a k e t h e m a p p l i c a b l e t o t h e s u p p o s e d 

d e v e l o p m e n t . I f v b e t h e v e l o c i t y o f t h e t i d e - w a v e , t h e n eoa = v; a l s o t h e 

w a v e l e n g t h i s h a l f t h e c i r c u m f e r e n c e o f t h e e a r t h ' s e q u a t o r , o r ira; a n d l e t 

•m = 2 / u . T h e n w e h a v e t h e f o l l o w i n g t r a n s f o r m a t i o n s : 

0 = ^ 7 r , 0 = ^mx, r = a + h—y 

A l s o i n t h e s m a l l t e r m s w e m a y p u t r = a. T h u s t h e p o t e n t i a l b e c o m e s 

V = c o n s t . + gy + F c o s [m (x — vt) + e ] + G s i n [TO (x — vt) + e] 

A g a i n , t o f i n d t h e e q u a t i o n t o t h e b o t t o m o f t h e c a n a l , w e h a v e t o 

t r a n s f o r m t h e e q u a t i o n 

r = a + E s i n 2 9 c o s [ 2 (</> - cot) + e ] 

I f y' b e t h e o r d i n a t e o f t h e b o t t o m o f t h e c a n a l , c o r r e s p o n d i n g t o t h e 

a b s c i s s a x, t h i s e q u a t i o n b e c o m e s a f t e r d e v e l o p m e n t 

y' = h — E c o s [m (x — vt) + e ] 

W e n o w h a v e t o find t h e f o r c e d w a v e s i n a h o r i z o n t a l s h a l l o w c a n a l , u n d e r 

t h e a c t i o n o f a p o t e n t i a l V , w h i l s t t h e b o t t o m e x e c u t e s a s i m p l e h a r m o n i c 

m o t i o n . A s t h e c a n a l i s s h a l l o w , t h e m o t i o n m a y b e t r e a t e d i n t h e s a m e w a y 

a s P r o f e s s o r S t o k e s h a s t r e a t e d t h e l o n g w a v e s i n a s h a l l o w c a n a l , o f w h i c h 

t h e b o t t o m i s s t a t i o n a r y . I n t h i s m e t h o d i t a p p e a r s t h a t t h e p a r t i c l e s o f 

w a t e r , w h i c h a r e a t a n y t i m e i n a v e r t i c a l c o l u m n , r e m a i n s o t h r o u g h o u t t h e 

w h o l e m o t i o n . 
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S u p p o s e , t h e n , t h a t x + £ = x i s t h e a b s c i s s a o f a v e r t i c a l l i n e o f p a r t i c l e s 

P Q , w h i c h , w h e n u n d i s t u r b e d , h a d a n a b s c i s s a x. 

L e t v b e t h e o r d i n a t e o f t h e s u r f a c e c o r r e s p o n d i n g t o t h e a b s c i s s a x. 

L e t pq b e a n e i g h b o u r i n g l i n e o f p a r t i c l e s , w h i c h w h e n u n d i s t u r b e d w e r e 

d i s t a n t f r o m P Q b y a s m a l l l e n g t h k. 

C o n c e i v e a s l i c e o f w a t e r c u t o f f b y p l a n e s t h r o u g h P Q , pq p e r p e n d i c u l a r 

t o t h e l e n g t h o f t h e c a n a l , o f w h i c h t h e b r e a d t h i s b. T h e n t h e v o l u m e o f 

t h i s s l i c e i s b x P Q x N n . 

N o w P Q = h — E c o s [m (x — vt) + e] - v 

a n d N / j = fc('l + C p ^ 

\ ax 
H e n c e t r e a t i n g E a n d rj a s s m a l l c o m p a r e d w i t h h, t h e v o l u m e o f t h e 

s l i c e i s 

b h k { 1 + i x - i C 0 S ^ ( * ' - * t ) + ^ - l } 

B u t t h i s s a m e s l i c e , i n i t s u n d i s t u r b e d c o n d i t i o n , h a d a v o l u m e bhk. 

T h e r e f o r e t h e e q u a t i o n o f c o n t i n u i t y i s 

v = h ~ — E c o s [m (x — vt) + e ] 

N o w t h e h y d r o d y n a m i c a l e q u a t i o n o f m o t i o n i s a p p r o x i m a t e l y 

dp _ dV _ d 2 ! 

dx' ~~ dx' dt2 

T h e d i f f e r e n c e o f t h e p r e s s u r e s o n t h e t w o s i d e s o f t h e s l i c e PQqp a t a n y 

dt) 
d e p t h i s N n x ~ , ; a n d t h i s o n l y d e p e n d s o n t h e d i f f e r e n c e o f t h e d e p r e s s i o n s 

o f t h e w a v e s u r f a c e b e l o w t h e a x i s o f x o n t h e t w o s i d e s o f t h e s l i c e , v i z . a t P 

a n d p . T h u s = — 0 4 ^ , · 1 dx y dx 
S u b s t i t u t i n g t h e n f o r 77 f r o m t h e e q u a t i o n o f c o n t i n u i t y , a n d o b s e r v i n g 

d 2 ? d?£ 
t h a t ^ J -, i s v e r y n e a r l y t h e s a m e a s ^ - ^ , w e h a v e a s t h e e q u a t i o n o f w a v e 

m o t i o n , 

9 dtf+m9 S m ^™ ^ " V -* + ^ = ~ dx' + dt2 

dV 

B u t ^ 7 = — m F s i n [ m (x' — vt) + e] + m G c o s [m (x' — vt) + e ] 

S o t h a t 

f l = g h ^ + m ^ G c o s ^ w ^ ' ~ v t ^ + e ^ - ( F ~ s i n [ ™ ( x ' - v i ) + e ^ 
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I n o b t a i n i n g t h e i n t e g r a l o f t h i s e q u a t i o n , w e m a y o m i t t h e t e r m s w h i c h 

a r e i n d e p e n d e n t o f G , F , E , b e c a u s e t h e y o n l y i n d i c a t e f r e e w a v e s , w h i c h m a y 

b e s u p p o s e d n o t t o e x i s t . 

T h e a p p r o x i m a t i o n w i l l a l s o b e s u f f i c i e n t l y c l o s e , i f x b e w r i t t e n f o r x' o n 

t h e r i g h t h a n d s i d e . 

A s s u m e , t h e n , t h a t 

f = A c o s [ m (x — vt) + e ] + B s i n [ m (x — vt) + e] 
B y s u b s t i t u t i o n i n t h e e q u a t i o n o f m o t i o n a n d o m i t t i n g m (x — vt) + e f o r 

b r e v i t y , w e f i n d 

- rri* (v2 — gh) [A c o s + B s i n ] = m [ G c o s — ( F — Eg) s i n | 
A n d a s t h i s m u s t h o l d f o r . a l l t i m e s a n d p l a c e s , 

G — ^ar s i n e 

m (v2 — gh) 2 ( a 2 w 2 — gh) 

F-Eg = a ( ^ T C O S e -JgE) 

in (v2 - gh) 2 ( « 2 & J 2 - gh) 

I n t h e c a s e o f s u c h s e a s a s e x i s t i n t h e e a r t h , t h e t i d e - w a v e t r a v e l s f a s t e r 

t h a n t h e f r e e - w a v e , s o t h a t a-co2
 i s g r e a t e r t h a n gh; a n d t h e d e n o m i n a t o r s o f 

A a n d B a r e p o s i t i v e . 

W e h a v e t h e n 

? = 2 (aW^gli) C 0 S 6 ~" S i n ~~ ^ S i n 6 C°S} 
B u t t h e p r e s e n t o b j e c t i s t o f i n d t h e m o t i o n o f t h e w a v e - s u r f a c e r e l a t i v e l y 

t o t h e b o t t o m o f t h e c a n a l , f o r t h i s w i l l g i v e t h e t i d e r e l a t i v e l y t o t h e d r y 

l a n d . N o w t h e h e i g h t o f t h e w a v e r e l a t i v e l y t o t h e b o t t o m i s 

P Q = h — E c o s [m (x — vt) + e] — v 

= h-hDJ ax 
dP 1 

A n d dx = 'aW^gh ^ T C 0 S 6 ~ C 0 S + ^T s i n 6 sin^ 
H e n c e r e v e r t i n g t o t h e s p h e r e , a n d p u t t i n g a f o r a 4 - h, w e g e t a s t h e e q u a t i o n 

t o t h e r e l a t i v e s p h e r o i d o f w h i c h t h e w a v e - s u r f a c e i n t h e e q u a t o r i a l c a n a l 

f o r m s p a r t 

B u t a c c o r d i n g t o t h e e q u i l i b r i u m t h e o r y , i f V h a s t h e s a m e f o r m a s a b o v e , v i z . 

9 7 + IFF ~f E s i n 2 ^ c o s [ 2 ( 0 - tot) + e ] 4 - £ T ~ s i n 2 8 c o s 2 (</> - cot) 

a n d i f r = a 4- u b e t h e e q u a t i o n t o t h e t i d a l s p h e r o i d , w e h a v e , a s i n P a r t I . , 

s i n 2 8 

u = {\r COS 2 ( 0 — cot) 4 - f - # E c o s [ 2 (<p — cot) + e ] } 

9 
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a n d t h e e q u a t i o n t o t h e r e l a t i v e t i d a l s p h e r o i d i s 

r = a + u—a 

s i n * ft 

= a + { £ T c o s 2 (<tj - CB«) - f s f E c o s [ 2 (<£ - « 0 + e ] } 

N o w e i t h e r i n t h e c a s e o f t h e d y n a m i c a l t h e o r y o r o f t h e e q u i l i b r i u m 

t h e o r y , i f E b e p u t e q u a l t o z e r o , w e g e t t h e e q u a t i o n s t o t h e t i d a l s p h e r o i d 

o n a r i g i d n u c l e u s . A c o m p a r i s o n , t h e n , o f t h e a b o v e e q u a t i o n s s h o w s a t o n c e 

t h a t b o t h t h e r e d u c t i o n o f t i d e a n d t h e a c c e l e r a t i o n o f p h a s e a r e t h e s a m e i n 

o n e t h e o r y a s i n t h e o t h e r . B u t w h e r e t h e o n e g i v e s h i g h w a t e r , t h e o t h e r 

g i v e s l o w w a t e r . T h e r e s u l t i s a p p l i c a b l e t o a n y k i n d o f s u p p o s e d y i e l d i n g o f 

t h e e a r t h ' s m a s s ; a n d i n t h e s p e c i a l c a s e o f v i s c o s i t y , t h e t a b l e o f r e s u l t s f o r 

t h e f o r t n i g h t l y t i d e a t t h e e n d o f P a r t I . i s a p p l i c a b l e . 

I I I . 

S u m m a r y a n d C o n c l u s i o n s . 

I n § 1 a n a n a l o g y i s s h o w n b e t w e e n p r o b l e m s a b o u t t h e s t a t e o f s t r a i n o f 

i n c o m p r e s s i b l e e l a s t i c s o l i d s , a n d t h e f l o w o f i n c o m p r e s s i b l e v i s c o u s f l u i d s , 

w h e n i n e r t i a i s n e g l e c t e d ; s o t h a t t h e s o l u t i o n s o f t h e o n e c l a s s o f p r o b l e m s 

m a y b e m a d e a p p l i c a b l e t o t h e o t h e r . S i r W . T h o m s o n ' s p r o b l e m o f t h e 

b o d i l y t i d e s o f a n e l a s t i c s p h e r e i s t h e n a d a p t e d s o a s t o g i v e t h e b o d i l y t i d e s 

o f a v i s c o u s s p h e r o i d . T h e a d a p t a t i o n i s r e n d e r e d s o m e w h a t c o m p l e x b y t h e 

n e c e s s i t y o f i n t r o d u c i n g t h e e f f e c t s o f t h e m u t u a l g r a v i t a t i o n o f t h e p a r t s o f 

t h e s p h e r o i d . 

T h e s o l u t i o n i s o n l y a p p l i c a b l e w h e r e t h e d i s t u r b i n g p o t e n t i a l i s c a p a b l e 

o f e x p a n s i o n a s a s e r i e s o f s o l i d h a r m o n i c s , a n d i t a p p e a r s t h a t e a c h h a r m o n i c 

t e r m i n t h e p o t e n t i a l t h e n a c t s a s t h o u g h a l l t h e o t h e r s d i d n o t e x i s t ; i n 

c o n s e q u e n c e o f t h i s i t i s o n l y n e c e s s a r y t o c o n s i d e r a t y p i c a l t e r m i n t h e 

p o t e n t i a l . 

I n § 3 a n e q u a t i o n i s f o u n d w h i c h g i v e s t h e f o r m o f t h e f r e e s u r f a c e o f t h e 

s p h e r o i d a t a n y t i m e , u n d e r t h e a c t i o n o f a n y d i s t u r b i n g p o t e n t i a l , w h i c h 

s a t i s f i e s t h e c o n d i t i o n o f e x p a n s i b i l i t y . B y p u t t i n g t h e d i s t u r b i n g p o t e n t i a l 

e q u a l t o z e r o , t h e l a w i s f o u n d w h i c h g o v e r n s t h e s u b s i d e n c e o f i n e q u a l i t i e s 

o n t h e s u r f a c e o f t h e s p h e r o i d , u n d e r t h e i n f l u e n c e o f m u t u a l g r a v i t a t i o n 

a l o n e . I f t h e f o r m o f t h e s u r f a c e b e e x p r e s s e d a s a s e r i e s o f s u r f a c e h a r m o n i c s , 

i t a p p e a r s t h a t a n y h a r m o n i c d i m i n i s h e s i n g e o m e t r i c a l p r o g r e s s i o n a s t h e 

t i m e i n c r e a s e s i n a r i t h m e t i c a l p r o g r e s s i o n , a n d h a r m o n i c s o f h i g h e r o r d e r s 

s u b s i d e m u c h m o r e s l o w l y t h a n t h o s e o f l o w e r o r d e r s . C o m m o n s e n s e , i n d e e d , 

w o u l d t e l l u s t h a t w i d e - s p r e a d i n e q u a l i t i e s m u s t s u b s i d e m u c h m o r e q u i c k l y 
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t h a n w r i n k l e s , b u t o n l y a n a l y s i s c o u l d g i v e t h e l a w c o n n e c t i n g t h e r a p i d i t y o f 

t h e s u b s i d e n c e w i t h t h e m a g n i t u d e o f t h e i n e q u a l i t y * . 

I h o p e a t s o m e f u t u r e t i m e t o t r y w h e t h e r i t w i l l n o t b e p o s s i b l e t o t h r o w 

s o m e l i g h t o n t h e f o r m a t i o n o f p a r a l l e l m o u n t a i n c h a i n s a n d t h e d i r e c t i o n o f 

f a u l t s , b y m e a n s o f t h i s e q u a t i o n . P r o b a b l y t h e b e s t w a y o f d o i n g t h i s w i l l b e 

t o t r a n s f o r m t h e s u r f a c e h a r m o n i c s , w h i c h o c c u r h e r e , i n t o B e s s e l ' s f u n c t i o n s . 

I n § 4 t h e r a t e i s c o n s i d e r e d a t w h i c h a s p h e r o i d w o u l d a d j u s t i t s e l f t o a 

n e w f o r m o f e q u i l i b r i u m , w h e n i t s a x i s o f r o t a t i o n h a d s e p a r a t e d f r o m t h a t o f 

f i g u r e ; a n d t h e l a w i s e s t a b l i s h e d w h i c h w a s a s s u m e d i n a p r e v i o u s p a p e r y . 

I n § 5 I p a s s t o t h e c a s e w h e r e t h e d i s t u r b i n g p o t e n t i a l i s a s o l i d h a r m o n i c 

o f t h e s e c o n d d e g r e e , m u l t i p l i e d b y a s i m p l e t i m e h a r m o n i c . T h i s i s t h e c a s e 

t o b e c o n s i d e r e d f o r t h e p r o b l e m o f a t i d a l l y d i s t o r t e d s p h e r o i d . A r e m a r k 

a b l y s i m p l e l a w i s f o u n d c o n n e c t i n g t h e v i s c o s i t y , t h e h e i g h t o f t i d e , a n d t h e 

a m o u n t o f l a g g i n g o f t i d e ; i t i s s h o w n t h a t i f v b e t h e s p e e d o f t h e t i d e , a n d 

i f t a n e v a r i e s j o i n t l y a s t h e c o e f f i c i e n t o f v i s c o s i t y a n d v, t h e n t h e h e i g h t o f 

b o d i l y t i d e i s e q u a l t o t h a t o f t h e e q u i l i b r i u m t i d e o f a p e r f e c t l y fluid s p h e r o i d 

m u l t i p l i e d b y c o s e, a n d t h e t i d e l a g s b y a t i m e e q u a l t o ^ . 

I t i s t h e n s h o w n ( § 6 ) t h a t i n t h e e q u i l i b r i u m t h e o r y t h e ocean t i d e s o n 

t h e y i e l d i n g n u c l e u s w i l l b e e q u a l i n h e i g h t t o t h e o c e a n t i d e s o n a r i g i d 

n u c l e u s m u l t i p l i e d b y s i n e, a n d t h a t t h e r e w i l l b e a n a c c e l e r a t i o n o f t h e t i m e 

o f h i g h w a t e r e q u a l t o ^ — ^ . 

T h e t a b l e s i n § 7 g i v e t h e r e s u l t s o f t h e a p p l i c a t i o n o f t h e p r e c e d i n g 

t h e o r i e s t o t h e l u n a r s e m i d i u r n a l a n d f o r t n i g h t l y t i d e s f o r v a r i o u s d e g r e e s o f 

v i s c o s i t y . A c o m p a r i s o n o f t h e n u m b e r s i n t h e f i r s t c o l u m n s w i t h t h e v i s c o s i t y 

o f p i t c h a t n e a r t h e f r e e z i n g t e m p e r a t u r e ( v i z . , a b o u t 1"3 X 10 S , a s f o u n d b y 

m e ) , w h e n i t i s h a r d , a p p a r e n t l y s o l i d a n d b r i t t l e , s h o w s h o w e n o r m o u s l y s t i f f 

* On t h i s L o r d l l a y l e i g h r e m a r k s , t h a t if w e c o n s i d e r t h e p r o b l e m i n t w o d i m e n s i o n s , a n d 
i m a g i n e a n u m b e r of paral le l r idges , the d i s t a n c e b e t w e e n w h i c h i s X, t h e n i n e r t i a b e i n g n e g l e c t e d , 
t h e e l e m e n t s o n w h i c h t h e t i m e of s u b s i d e n c e d e p e n d s are gw ( force per u n i t m a s s due t o w e i g h t ) , 
i) t h e coefficient of v i s c o s i t y , a n d A. T h u s the t i m e T m u s t h a v e t h e f o r m 

T h e d i m e n s i o n s of gw, v, X are r e s p e c t i v e l y H L - 2 T - 2 , M L - 1 T - 1 , L ; h e n c e 

x + y = 0 

- 2 x ~y + 2 = 0 

- 2 x - y = l 

A n d x= - 1 , « = 1, z = - 1 , so t h a t T v a r i e s a s —^- . 

I f w e t a k e t h e case o n t h e s p h e r e , t h e n w h e n i, t h e order of h a r m o n i c s , i s g r e a t , X c o m p a r e s 

w i t h ? : s o t h a t T v a r i e s as . 
i gwa 

+ Phil. Trans., V o l . 167 , Par t i . , sec . 5 of m y p a p e r . [ T o be i n c l u d e d i n Vol . i n . of t h e s e 
c o l l e c t e d p a p e r s . ] 
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t h e e a r t h m u s t b e t o r e s i s t t h e t i d a l l y d e f o r m i n g i n f l u e n c e o f t h e m o o n . F o r 

u n l e s s t h e v i s c o s i t y w e r e v e r y m u c h l a r g e r t h a n t h a t o f p i t c h , t h e v i s c o u s 

s p h e r e w o u l d c o m p o r t i t s e l f s e n s i b l y l i k e a p e r f e c t f l u i d , a n d t h e o c e a n t i d e s 

w o u l d b e q u i t e i n s i g n i f i c a n t . I t f o l l o w s , t h e r e f o r e , t h a t n o v e r y c o n s i d e r a b l e 

p o r t i o n o f t h e i n t e r i o r o f t h e e a r t h c a n e v e n d i s t a n t l y a p p r o a c h t h e f l u i d s t a t e . 

T h i s d o e s n o t , h o w e v e r , s e e m t o b e c o n c l u s i v e a g a i n s t t h e e x i s t e n c e o f 

b o d i l y t i d e s i n t h e e a r t h o f t h e k i n d h e r e c o n s i d e r e d ; f o r a l t h o u g h ( a s 

r e m a r k e d b y S i r W . T h o m s o n ) a v e r y g r e a t h y d r o s t a t i c p r e s s u r e p r o b a b l y 

h a s a t e n d e n c y t o i m p a r t r i g i d i t y t o a s u b s t a n c e , y e t t h e v e r y h i g h t e m p e r a 

t u r e w h i c h m u s t e x i s t i n t h e e a r t h a t a s m a l l d e p t h w o u l d t e n d t o i n d u c e a 

s o r t o f v i s c o s i t y — a t l e a s t i f w e j u d g e b y t h e b e h a v i o u r o f m a t e r i a l s a t t h e 

e a r t h ' s s u r f a c e . 

I n § 8 t h e t h e o r y o f t h e t i d e s o f a n i m p e r f e c t l y e l a s t i c s p h e r o i d i s d e v e l o p e d . 

T h e k i n d o f i m p e r f e c t i o n o f e l a s t i c i t y c o n s i d e r e d i s w h e r e t h e f o r c e s r e q u i s i t e 

t o m a i n t a i n t h e b o d y i n a n y s t r a i n e d c o n f i g u r a t i o n d i m i n i s h i n g e o m e t r i c a l 

p r o g r e s s i o n a s t h e t i m e i n c r e a s e s i n a r i t h m e t i c a l p r o g r e s s i o n . T h e r e c a n b e 

n o d o u b t t h a t a l l b o d i e s do p o s s e s s a n i m p e r f e c t i o n i n t h e i r e l a s t i c i t y o f t h i s 

g e u e r a l n a t u r e , b u t t h e e x a c t l a w h e r e a s s u m e d h a s n o t , a s f a r a s I a m a w a r e , 

a n y e x p e r i m e n t a l j u s t i f i c a t i o n ; i t s a d o p t i o n w a s r a t h e r d u e t o m a t h e m a t i c a l 

n e c e s s i t i e s t h a n t o a n y o t h e r r e a s o n . 

I t w o u l d , o f c o u r s e , h a v e b e e n m u c h m o r e i n t e r e s t i n g i f i t h a d b e e n 

p o s s i b l e t o r e p r e s e n t m o r e e x a c t l y t h e m e c h a n i c a l p r o p e r t i e s o f s o l i d m a t t e r . 

O n e o f t h e m o s t i m p o r t a n t o f t h e s e i s t h a t f o r m o f r e s i s t a n c e t o r e l a t i v e d i s 

p l a c e m e n t , t o w h i c h t h e t e r m " p l a s t i c i t y " h a s b e e n s p e c i a l l y a p p r o p r i a t e d . 

T h i s f o r m o f r e s i s t a n c e i s s u c h t h a t t h e r e i s a c h a n g e i n t h e l a w o f r e s i s t a n c e 

t o t h e r e l a t i v e m o t i o n o f t h e p a r t s , w h e n t h e f o r c e s t e n d i n g t o c a u s e flow h a v e 

r e a c h e d a c e r t a i n d e f i n i t e i n t e n s i t y . T h i s i d e a w a s f o u n d e d , I b e l i e v e , b y 

M M . T r e s c a a n d S t V e n a n t o n a l o n g c o u r s e o f e x p e r i m e n t s o n t h e p u n c h i n g 

a n d s q u e e z i n g o f m e t a l s * ; a n d t h e y s p e a k o f a s o l i d b e i n g r e d u c e d t o t h e 

s t a t e o f f l u i d i t y b y s t r e s s e s o f a g i v e n m a g n i t u d e . T h i s t h e o r y i n t r o d u c e s a 

d i s c o n t i n u i t y , s i n c e i t h a s t o b e d e t e r m i n e d w h a t p a r t s o f t h e b o d y a r e r e d u c e d 

t o t h e s t a t e o f fluidity a n d w h a t a r e n o t . B u t a p a r t f r o m t h i s d i f f i c u l t y , t h e r e 

i s a n o t h e r o n e w h i c h i s a l m o s t i n s u p e r a b l e , i n t h e f a c t t h a t t h e d i f f e r e n t i a l 

e q u a t i o n s o f flow a r e n o n - l i n e a r . 

T h e h o p e o f i n t r o d u c i n g t h i s f o r m o f r e s i s t a n c e m u s t b e a b a n d o n e d , a n d 

t h e i n v e s t i g a t i o n m u s t b e c o n f i n e d t o t h e i n c l u s i o n o f t h o s e t w o o t h e r c o n 

t i n u o u s l a w s o f r e s i s t a n c e t o r e l a t i v e d i s p l a c e m e n t — e l a s t i c i t y a n d v i s c o s i t y . 

A s a b o v e s t a t e d , t h e l a w o f e l a s t i c o - v i s c o s i t y a s s u m e d i n t h i s p a p e r h a s 

n o t g o t a n e x p e r i m e n t a l f o u n d a t i o n . I n d e e d , K o h l r a u s c h ' s e x p e r i m e n t s o n 

* " Sur l ' é c o u l e m e n t d e s Cor ps S o l i d e s , " Mém. des Savants Etrangers, T o m . x v i n . a n d 
T o m . x x . , p . 75 a n d p . 1 3 7 . S e e a l so Comptes Rendus, T o m . x x v i . , L x v i n . , a n d Liouville's 
Journ., 2 m e s ér ie , x n i . , p . 3 7 9 , a n d x v i . , p . 3 0 8 , for papers o n t h i s subjec t . 
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g l a s s * s h o w t h a t t h e e l a s t i c i t y d e g r a d e s r a p i d l y a t first, a n d t h a t i t t e n d s t o 

a t t a i n a final c o n d i t i o n , f r o m w h i c h i t d o e s n o t s e e m t o v a r y f o r a n a l m o s t 

i n d e f i n i t e t i m e . B u t g l a s s i s o n e o f t h e m o s t p e r f e c t l y e l a s t i c s u b s t a n c e s 

k n o w n , a n d , b y t h e l i g h t o f T r e s c a ' s e x p e r i m e n t s , i t s o e m s p r o b a b l e t h a t 

e x p e r i m e n t s w i t h l e a d w o u l d h a v e b r o u g h t o u t v e r y d i f f e r e n t r e s u l t s . I t 

s e e m s , m o r e o v e r , h a r d l y r e a s o n a b l e t o s u p p o s e t h a t t h e m a t e r i a l s o f t h e e a r t h 

p o s s e s s m u c h m e c h a n i c a l s i m i l a r i t y w i t h g l a s s . N o t w i t h s t a n d i n g a l l t h e s e 

o b j e c t i o n s , I t h i n k , f o r m y p a r t , t h a t t h e r e s u l t s o f t h i s i n v e s t i g a t i o n o f t h e 

t i d e s o f a n i d e a l e l a s t i c o - v i s c o u s s p h e r e a r e w o r t h y o f a t t e n t i o n . 

T h e r e a r e t w o c o n s t a n t s w h i c h d e t e r m i n e t h e n a t u r e o f t h i s i d e a l s o l i d : 

first, t h e c o e f f i c i e n t o f r i g i d i t y , a t t h e i n s t a n t i m m e d i a t e l y a f t e r t h e b o d y h a s 

b e e n p l a c e d i n i t s s t r a i n e d c o n f i g u r a t i o n ; a n d s e c o n d l y , " t h e m o d u l u s o f t h e 

t i m e o f r e l a x a t i o n o f r i g i d i t y , " w h i c h i s t h e t i m e i n w h i c h t h e f o r c e r e q u i s i t e 

t o r e t a i n t h e b o d y i n i t s s t r a i n e d c o n f i g u r a t i o n h a s f a l l e n a w a y t o " 3 6 8 o f i t s 

i n i t i a l v a l u e . 

I n t h i s s e c t i o n i t i s s h o w n t h a t t h e e q u a t i o n s o f flow o f t h i s i n c o m p r e s s i b l e 

e l a s t i c o - v i s c o u s b o d y h a v e t h e s a m e m a t h e m a t i c a l f o r m a s t h o s e f o r a p u r e l y 

v i s c o u s b o d y ; s o t h a t t h e s o l u t i o n s a l r e a d y a t t a i n e d a r e e a s i l y a d a p t e d t o t h e 

n e w h y p o t h e s i s . 

T h e o n l y c a s e w h e r e t h e p r o b l e m i s c o m p l e t e l y w o r k e d o u t , i s w h e n t h e 

d i s t u r b i n g p o t e n t i a l h a s t h e f o r m a p p r o p r i a t e t o t h e t i d a l p r o b l e m . T h e l a w s 

o f r e d u c t i o n o f b o d i l y t i d e , o f i t s l a g g i n g , o f t h e r e d u c t i o n o f o c e a n t i d e , a n d 

o f i t s a c c e l e r a t i o n , a r e s o m e w h a t m o r e c o m p l e x t h a n i n t h e c a s e o f p u r e 

v i s c o s i t y ; a n d t h e r e a d e r i s r e f e r r e d t o § 8 f o r t h e s t a t e m e n t o f t h o s e l a w s . 

I t i s a l s o s h o w n t h a t b y a p p r o p r i a t e c h o i c e o f t h e v a l u e s o f t h e t w o c o n s t a n t s , 

t h e s o l u t i o n s m a y b e m a d e e i t h e r t o g i v e t h e r e s u l t s o f t h e p r o b l e m f o r a 

p u r e l y v i s c o u s s p h e r e , o r f o r a p u r e l y e l a s t i c o n e . 

T h e t a b l e s g i v e t h e r e s u l t s o f t h i s t h e o r y , f o r t h e s e m i d i u r n a l a n d f o r t 

n i g h t l y t i d e s , f o r s p h e r o i d s w h i c h h a v e t h e r i g i d i t y o f g l a s s o r o f i r o n — t h e t w o 

c a s e s c o n s i d e r e d b y S i r W . T h o m s o n . A s i t i s o n l y p o s s i b l e t o j u d g e o f t h e 

a m o u n t o f b o d i l y t i d e b y t h e r e d u c t i o n o f t h e o c e a n t i d e , I h a v e n o t g i v e n t h e 

h e i g h t s a n d r e t a r d a t i o n s o f t h e b o d i l y t i d e . 

I t a p p e a r s t h a t i f t h e t i m e o f r e l a x a t i o n o f r i g i d i t y i s a b o u t o n e - q u a r t e r 

o f t h e t i d a l p e r i o d , t h e n t h e r e d u c t i o n o f o c e a n t i d e d o e s n o t d i f f e r m u c h 

f r o m w h a t i t w o u l d b e i f t h e s p h e r o i d w e r e p e r f e c t l y e l a s t i c . T h e a m o u n t o f 

t i d a l a c c e l e r a t i o n s t i l l , h o w e v e r , r e m a i n s c o n s i d e r a b l e . A l i k e o b s e r v a t i o n 

m a y b e m a d e w i t h r e s p e c t t o t h e a c c e l e r a t i o n o f t i d e i n t h e c a s e o f p u r e 

v i s c o s i t y a p p r o a c h i n g r i g i d i t y : a n d t h i s l e a d s m e t o t h i n k t h a t o n e o f t h e 

m o s t p r o m i s i n g w a y s o f d e t e c t i n g s u c h t i d e s i n t h e e a r t h w o u l d b e b y t h e 

* PoygendorF's Ann., Vo l . 119 , p . 3 3 7 . 
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d e t e r m i n a t i o n o f t h e p e r i o d s o f m a x i m u m a n d m i n i m u m i n a t i d e o f l o n g 

p e r i o d , s u c h a s t h e f o r t n i g h t l y i n a h i g h l a t i t u d e . 

I n § 1 0 i t i s s h o w n t h a t t h e e f f e c t s o f i n e r t i a , w h i c h h a d b e e n n e g l e c t e d 

i n finding t h e l a w s o f t h e t i d a l m o v e m e n t s , c a n n o t b e s u c h a s t o m a t e r i a l l y 

a f f e c t t h e a c c u r a c y o f t h e r e s u l t s . 

[ * T h e h y p o t h e s i s o f a v i s c o u s o r i m p e r f e c t l y e l a s t i c n a t u r e f o r t h e m a t t e r 

o f t h e e a r t h w o u l d b e r e n d e r e d e x t r e m e l y i m p r o b a b l e , i f t h e e l l i p t i c i t y o f a n 

e q u a t o r i a l s e c t i o n o f t h e e a r t h w e r e n o t v e r y s m a l l . A n e l l i p s o i d a l figure 

w i t h t h r e e u n e q u a l a x e s , e v e n i f t h e o r e t i c a l l y o n e o f e q u i l i b r i u m , c o u l d n o t 

c o n t i n u e t o s u b s i s t v e r y l o n g , b e c a u s e i t i s a f o r m o f g r e a t e r p o t e n t i a l e n e r g y 

t h a n t h e o b l a t e s p h e r o i d a l f o r m , w h i c h i s a l s o a figure o f e q u i l i b r i u m . 

N o w , a c c o r d i n g t o t h e r e s u l t s o f g e o d e s y , w h i c h u n t i l v e r y r e c e n t l y h a v e 

b e e n g e n e r a l l y a c c e p t e d a s t h e m o s t a c c u r a t e — n a m e l y , t h o s e o f C o l o n e l 

A . R . C l a r k e + — t h e r e i s a d i f f e r e n c e o f 6 , 3 7 8 f e e t b e t w e e n t h e m a j o r a n d 

m i n o r e q u a t o r i a l r a d i i , a n d t h e m e r i d i a n o f t h e m a j o r a x i s i s 1 5 ° 3 4 ' E a s t 

o f G r e e n w i c h . 

T h e h e t e r o g e n e i t y o f t h e e a r t h w o u l d h a v e t o b e v e r y g r e a t t o p e r m i t s o 

l a r g e a d e v i a t i o n f r o m t h e o b l a t e s p h e r o i d a l s h a p e t o b e e i t h e r p e r m a n e n t , o r 

t o s u b s i d e w i t h e x t r e m e s l o w n e s s . B u t s i n c e t h i s p a p e r w a s r e a d , C o l o n e l 

C l a r k e h a s p u b l i s h e d a r e v i s i o n o f h i s r e s u l t s , f o u n d e d o n n e w d a t a J ; a n d h e 

n o w finds t h e d i f f e r e n c e b e t w e e n t h e e q u a t o r i a l r a d i i t o b e o n l y 1 , 5 2 4 f e e t , 

w h i l s t t h e m e r i d i a n o f t h e g r e a t e s t a x i s i s 8 ' 1 5 ' W e s t . T h i s e x h i b i t s a 

c h a n g e o f m e r i d i a n o f 2 4 ° , a n d a r e d u c t i o n o f e q u a t o r i a l e l l i p t i c i t y t o a b o u t 

o n e - q u a r t e r o f t h e f o r m e r l y - r e c e i v e d v a l u e . M o r e o v e r , t h e n e w v a l u e o f t h e 

p o l a r a x i s i s a b o u t 1 , 0 0 0 f e e t l a r g e r t h a n t h e o l d o n e . 

C o l o n e l C l a r k e h i m s e l f o b v i o u s l y r e g a r d s t h e e l l i p s o i d a l f o r m o f t h e 

e q u a t o r a s d o u b t f u l . T h u s t h e r e i s a t a l l e v e n t s n o p r o v e d r e s u l t o f g e o d e s y 

o p p o s e d t o t h e p r e s e n t h y p o t h e s i s c o n c e r n i n g t h e c o n s t i t u t i o n o f t h e e a r t h . 

S i r W . T h o m s o n r e m a r k s i n a l e t t e r t o m e t h a t " w e m a y l o o k t o f u r t h e r 

g e o d e t i c o b s e r v a t i o n s a n d r e v i s a l s o f s u c h c a l c u l a t i o n s a s t h o s e o f C o l o n e l 

C l a r k e f o r v e r i f i c a t i o n o r d i s p r o o f o f y o u r v i s c o u s t h e o r y . " ] 

I n t h e first p a r t o f t h e p a p e r t h e e q u i l i b r i u m t h e o r y i s u s e d i n d i s c u s s i n g 

t h e q u e s t i o n o f o c e a n t i d e s ; i n t h e s e c o n d p a r t I c o n s i d e r w h a t w o u l d b e t h e 

t i d e s i n a s h a l l o w e q u a t o r i a l c a n a l r u n n i n g r o u n d t h e e q u a t o r , i f t h e n u c l e u s 

y i e l d e d t i d a l l y a t t h e s a m e t i m e . T h e r e a s o n s f o r u n d e r t a k i n g t h i s i n v e s t i g a 

t i o n a r e g i v e n a t t h e b e g i n n i n g o f t h a t p a r t . I n § 1 1 i t i s s h o w n t h a t t h e 

h e i g h t o f t i d e r e l a t i v e l y t o t h e n u c l e u s b e a r s t h e s a m e p r o p o r t i o n t o t h e 

* T h e part w i t h i n b r a c k e t s [ ] w a s a d d e d i n N o v e m b e r , 1 8 7 8 , i n c o n s e q u e n c e of a c o n v e r s a 

t ion w i t h S ir W . T h o m s o n . 

t Quoted i n T h o m s o n a n d T a i t , Natural Philosophy, § 797 . 

J Phil. Mag., A u g u s t , 1 8 7 8 . 
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h e i g h t o f t i d e o n a r i g i d n u c l e u s a s i n t h e e q u i l i b r i u m t h e o r y , a n d t h e 

a l t e r a t i o n o f p h a s e i s a l s o t h e s a m e ; b u t w h e r e t h e o n e t h e o r y g i v e s h i g h 

w r a t e r t h e o t h e r g i v e s l o w w a t e r . 

T h e c h i e f p r a c t i c a l r e s u l t o f t h i s p a p e r m a y b e s u m m e d u p b y s a y i n g t h a t 

i t i s s t r o n g l y c o n f i r m a t o r y o f t h e v i e w t h a t t h e e a r t h h a s a v e r y g r e a t e f f e c t i v e 

r i g i d i t y . B u t i t s c h i e f v a l u e i s t h a t i t f o r m s a n e c e s s a r y first c h a p t e r t o t h e 

i n v e s t i g a t i o n o f t h e p r e c e s s i o n o f i m p e r f e c t l y e l a s t i c s p h e r o i d s , w h i c h w i l l b e 

c o n s i d e r e d i n a f u t u r e p a p e r * . I s h a l l t h e r e , a s I b e l i e v e , b e a b l e t o s h o w , b y 

a n e n t i r e l y d i f f e r e n t a r g u m e n t , t h a t t h e b o d i l y t i d e s i n t h e e a r t h a r e p r o b a b l y 

e x c e e d i n g l y s m a l l a t t h e p r e s e n t t i m e . 

A p p e n d i x . ( N o v e m b e r 7, 1878 . ) 

On the observed height and phase of the fortnightly oceanic tide. 

[ T h i s c o n t a i n e d a n i n c o m p l e t e i n v e s t i g a t i o n a n d i s r e p l a c e d b y P a p o r 9, 

V o l . I . p . 3 4 0 . ] 

* R e a d before t h e R o y a l S o c i e t y o n D e c e m b e r 1 9 t h , 1 8 7 8 . [ P a p e r 3 i n t h i s v o l u m e . ] 
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N O T E O N T H O M S O N ' S T H E O R Y O F T H E T I D E S O F A N 

E L A S T I C S P H E R E * . 

[Messenger of Mathematics, v m . ( 1 8 7 9 ) , p p . 2 3 — 2 6 . ] 

THE r e s u l t s o f t h e t h e o r y o f t h e e l a s t i c y i e l d i n g o f t h e e a r t h w o u l d o f 

c o u r s e b e m o r e i n t e r e s t i n g , i f i t w e r e p o s s i b l e f u l l y t o i n t r o d u c e t h e e f f e c t s o f 

t h e w a n t o f h o m o g e n e i t y o f e l a s t i c i t y a n d d e n s i t y o f t h e i n t e r i o r o f t h e e a r t h ; 

b u t b e s i d e s t h e m a t h e m a t i c a l d i f f i c u l t i e s o f t h e c a s e , t h e c o m p l e t e a b s e n c e o f 

d a t a a s t o t h e n a t u r e o f t h e d e e p - s e a t e d m a t t e r m a k e s i t i m p o s s i b l e t o d o s o . 

I t i s , h o w e v e r , p o s s i b l e t o m a k e a m o r e o r l e s s p r o b a b l e e s t i m a t e o f t h e e x t e n t 

t o w h i c h a g i v e n y i e l d i n g o f t h e surface w i l l a f f e c t t h e o c e a n t i d e - w a v e , w h e n 

t h e e a r t h i s t r e a t e d a s h e t e r o g e n e o u s . A n d a s w e c a n o n l y j u d g e o f t h e 

a m o u n t o f t h e b o d i l y t i d e i n t h e e a r t h b y o b s e r v a t i o n s o n t h e o c e a n t i d e s , 

t h i s e s t i m a t e m a y b e o f s o m e v a l u e . 

T h e h e t e r o g e n e i t y o f t h e i n t e r i o r m u s t o f c o u r s e b e a c c o m p a n i e d b y 

h e t e r o g e n e i t y o f e l a s t i c i t y f , a n d u n d e r t h e i n f l u e n c e o f a g i v e n t i d e - g e n e r a t i n g 

f o r c e , t h i s w i l l a f f e c t t h e i n t e r n a l d i s t r i b u t i o n o f s t r a i n , a n d t h e f o r m o f t h e 

s u r f a c e t o a n u n k n o w n e x t e n t . T h e d i m i n u t i o n o f o c e a n t i d e w h i c h a r i s e s 

f r o m t h e y i e l d i n g o f t h e n u c l e u s i s e n t i r e l y d u e t o t h e a l t e r a t i o n i n t h e f o r m 

o f t h e l e v e l s u r f a c e s o u t s i d e t h e n u c l e u s . B u t i t i s b y n o m e a n s o b v i o u s 

h o w f a r t h e p o t e n t i a l o f t h e e a r t h , w h e n i t s s u r f a c e i s d i s t o r t e d t o a g i v e n 

a m o u n t , m a y d i f f e r f r o m t h a t o f t h e h o m o g e n e o u s s p h e r o i d c o n s i d e r e d b y 

S i r W . T h o m s o n ; a n d i n f a c e o f o u r i g n o r a n c e o f t h e l a w o f i n t e r n a l 

e l a s t i c i t y , t h e p r o b l e m d o e s n o t a d m i t o f a p r e c i s e s o l u t i o n . 

I p r o p o s e , h o w e v e r , t o m a k e a n h y p o t h e s i s , w h i c h s e e m s a s p r o b a b l e a s 

a n y o t h e r , a s t o t h e l a w o f t h e e l l i p t i c i t y o f t h e i n t e r n a l s t r a i n e l l i p s o i d s , 

w h e n t h e s u r f a c e i s s t r a i n e d t o a g i v e n a m o u n t , a n d t h e n t o f i n d t h e p o t e n t i a l 

a t a n e x t e r n a l p o i n t . 

* [ T h i s subject h a s s i n c e b e e n t r e a t e d m o r e fu l ly b y D r G. H e r g l o t z , Zeitschr. fur Math, und 
Physik, Vo l . i n . (1905) , p . 2 7 3 . ] 

t T h a t i s to say , if t h e e a r t h i s e l a s t i c at al l . 

D. II. 3 
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S u p p o s e t h a t u n d e r t h e i n f l u e n c e o f a b o d i l y h a r m o n i c p o t e n t i a l o f t h e 

s e c o n d d e g r e e t h e e a r t h ' s s u r f a c e a s s u m e s t h e f o r m r = a + a-, w h e r e tr i s 

•a s u r f a c e h a r m o n i c o f t h e s e c o n d o r d e r . T h e n I p r o p o s e t o a s s u m e t h a t t h e 

e l l i p t i c i t y o f a n y i n t e r n a l s t r a i n e l l i p s o i d i s r e l a t e d t o t h a t o f t h e s u r f a c e b y 

t h e s a m e l a w a s t h o u g h t h e e a r t h w e r e h o m o g e n e o u s , e l a s t i c , a n d i n c o m 

p r e s s i b l e , a n d h a d i t s s u r f a c e b r o u g h t i n t o t h e f o r m r = a + a- b y a t i d e -

g e n e r a t i n g p o t e n t i a l o f t h e s e c o n d o r d e r . I f fi b e t h e c o e f f i c i e n t o f r i g i d i t y 

o f a n e l a s t i c i n c o m p r e s s i b l e s p h e r e u n d e r t h e a c t i o n o f a b o d i l y f o r c o , o f w h i c h 

t h e p o t e n t i a l i s wr2S2, t h e n S i r W . T h o m s o n ' s s o l u t i o n * s h o w s t h a t t h e r a d i a l 

d i s p l a c e m e n t a t a n y p o i n t r i s g i v e n b y 

8 a 2 - 3 r 2 „ 

5a" 
P u t t i n g r = a, w o h a v e a = ^ S 2 . A n d i f r = a + a b e t h e e q u a t i o n t o a 

s t r a i n e l l i p s o i d o f m e a n r a d i u s a', w e h a v e b y o u r h y p o t h e s i s 

a' ^ a _ 8 a 2 - 3 a ' 2 

a' ' a 5a? 
a 

a n d <T = — a a- =f(a') <r s u p p o s e 

N o w t h e p o t e n t i a l o f a h o m o g e n e o u s s p h e r o i d r = a' + af(a), o f d e n s i t y q, a t 

a n e x t e r n a l p o i n t i s 

a ' 3 4 7 r g 
* * • ? — + - f r j B ' / ( a ) » 

a n d t h e r e f o r e t h e p o t e n t i a l o f a s p h e r o i d a l s h e l l o f d e n s i t y q, w h o s e i n n e r a n d 

o u t e r s u r f a c e s a r e g i v e n b y r = a +f(a') a a n d r — a + 6 a ' +f(a' + 8 a ' ) a, i s 

4 ^ ^ ' + ^ ^ { a y ( a - ) } aha' 

I f t h e n w e i n t e g r a t e t h i s e x p r e s s i o n f r o m a =a t o a' = 0 , a n d t r e a t q a s a 

f u n c t i o n o f ft', w e h a v e t h e p o t e n t i a l o f t h e e a r t h o n t h e p r e s e n t h y p o t h e s i s . 

T h e i n t e g r a l i s 

- J o « a « a + - g i r j o ? a 5 > { a V ( a r ) } « f a 

a? 

T h e f i r s t o f t h e s e t w o t e r m s i s c l e a r l y g — ( w h e r e g i s g r a v i t y ) , a n d i s t h e 

s a m e a s t h o u g h t h e e a r t h w e r e h o m o g e n e o u s ; a n d i t o n l y r e m a i n s t o e v a l u a t e 

t h e s e c o n d . N o w , a c c o r d i n g t o t h e L a p l a c e a n l a w o f i n t e r n a l d e n s i t y o f t h e 

e a r t h , i f D b e t h e m e a n d e n s i t y , a n d f t h e r a t i o o f D t o t h e s u r f a c e d e n s i t y , 

a n d 0 a c e r t a i n a n g l e w h i c h i s a b o u t 1 4 4 ° , 

D a, s i n a'8/a 
q=JmT0- a' 

* T h o m s o n a n d T a i t ' s Natural Philosophy, § B34, e q u a t i o n (14) . 
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1 8 7 9 ] E X T E R N A L P O T E N T I A L O F T H E S T R A I N E D E A R T H . 3 5 

S u b s t i t u t i n g t h i s v a l u e f o r q, a n d f o r f(a') i t s v a l u e , w e h a v e 

^ r >\-IJ > 9 & ama'8/af , 9 a ' c \ , 
g - 7 - , [ a 8 / ( a ) ] d a = $ r ~ M 1 6 a 3

 r l d a 3 a a L ^ sfam0 a \ a2/ 

T h e n i f w e c h a n g e t h e v a r i a b l e o f i n t e g r a t i o n b y p u t t i n g x = — , a n d p u t 

4>TTD = — , w e g e t f o r t h e s e c o n d t e r m o f t h e e a r t h ' s p o t e n t i a l 

N o w |<7 j <r w o u l d b o t h e p o t e n t i a l o f t h e s u r f a c e l a y e r g i v e n b y r = a + c , 

i /" £/ ie e a r f / i w e r e homogeneous and had a density D, a n d t h e r e s t o f t h e 

e x p r e s s i o n i s a n u m e r i c a l f a c t o r ( w h i c h m a y b e c a l l e d K), b y w h i c h t h i s 

p o t e n t i a l m u s t b e r e d u c e d i n o r d e r t o g e t t h e p o t e n t i a l o f t h e h e t e r o g e n e o u s 

e a r t h o n t h e p r e s e n t h y p o t h e s i s . 

I f t h e i n t e g r a t i o n b e e f f e c t e d i t w i l l b e f o u n d t h a t 

7 7 6 _ 2 1 6 ' 

6 + 63 6° \fK = - c o t 0 

= 5 1 4 4 2 , w h e n 0 = 1 4 4 ° 

W h e n c e K = 

— c o s e c 6 

2 0 5 7 7 

3 2 2 1 6 " 

F 

A l s o / = 3 (J-, - ) = 2 - 1 1 7 8 b y L a p l a c e ' s t h e o r y . 

T h e r e f o r e K = = " 9 7 2 

Z'LL to 

H e n c e , o n t h e p r e s e n t h y p o t h e s i s , t h e p o t e n t i a l o f t h e e a r t h a t a p o i n t o u t s i d e 

i t s m a s s i s 

T h i s d i f f e r s b y v e r y l i t t l e f r o m w h a t i t w o u l d b e i f t h e e a r t h w e r e h o m o 

g e n e o u s ; f o r i n t h a t c a s e ' 9 7 2 w o u l d b e m e r e l y r e p l a c e d b y u n i t y . 

T h e r e f o r e , i f a t a n y f u t u r e t i m e i t s h o u l d b e f o u n d t h a t t h e f o r t n i g h t l y 

t i d e * i s l e s s t h a n i t w o u l d b e t h e o r e t i c a l l y o n a r i g i d n u c l e u s , i t w i l l t h e n b e 

p r o b a b l e t h a t t h e s u r f a c e o f t h e e a r t h r i s e s a n d f a l l s b y a b o u t t h e s a m e 

a m o u n t a s w o u l d f o l l o w f r o m t h e t h e o r y o f t h e b o d i l y t i d e s o f a homogeneous 
e l a s t i c s p h e r e w h o s e d e n s i t y i s e q u a l t o t h e e a r t h ' s m e a n d e n s i t y . T h i s i n 

v e s t i g a t i o n b e i n g f o u n d e d o n c o n j e c t u r e , c a n n o t c l a i m a n y t h i n g b e t t e r t h a n a 

p r o b a b i l i t y f o r i t s r e s u l t ; b u t w i t h o u t c a l c u l a t i o n , I , a t l e a s t , c o u l d n o t f o r m 

a n y s o r t o f g u e s s o f w h a t t h e r e s u l t m i g h t b e , a n d t h e q u e s t i o n i s o f u n d o u b t e d 

i n t e r e s t i n t h e p h y s i c s o f t h e e a r t h . 

* Sir W . T h o m s o n re l ies p r i n c i p a l l y o n o b s e r v a t i o n of t h e f o r t n i g h t l y o c e a n t ide for d e t e c t i n g 
bodily t ides i n t h e e a r t h . [ S e e P a p e r 9, V o l . i . , a n d W . S c h w e y d a r , Beitraye.n zur (leophysik, 
Vol. i x . (1907) , p . 4 1 . S e e a l s o a n i m p o r t a n t p a p e r b y L o r d R a y l e i g h o n the f o r t n i g h t l y t i d e i n 
Phil. Mag., J a n . 1 9 0 3 , p . 1 3 6 . ] 

3 — 2 
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3 . 

O N T H E P R E C E S S I O N O F A V I S C O U S S P H E R O I D , A N D O N 

T H E R E M O T E H I S T O R Y O F T H E E A R T H . 

[Philosophical Transactions of the Royal Society, P a r t I I . 

V o l . 1 7 0 ( 1 8 7 9 ) , p p . 4 4 7 — 5 3 0 . ] 

T h e f o l l o w i n g p a p e r c o n t a i n s t h e i n v e s t i g a t i o n o f t h e m a s s - m o t i o n o f 

v i s c o u s a n d i m p e r f e c t l y e l a s t i c s p h e r o i d s , a s m o d i f i e d b y a r e l a t i v e m o t i o n o f 

t h e i r p a r t s , p r o d u c e d i n t h e m b y t h e a t t r a c t i o n o f e x t e r n a l d i s t u r b i n g b o d i e s ; 

i t m u s t b e r e g a r d e d a s t h e c o n t i n u a t i o n o f m y p r e v i o u s p a p e r * , w h e r e t h e 

t h e o r y o f t h e b o d i l y t i d e s o f s u c h s p h e r o i d s w a s g i v e n . 

T h e p r o b l e m i s o n e o f t h e o r e t i c a l d y n a m i c s , b u t t h e s u b j e c t i s s o l a r g e 

a n d c o m p l e x , t h a t I t h o u g h t i t b e s t , i n t h e f i r s t i n s t a n c e , t o g u i d e t h e 

d i r e c t i o n o f t h e s p e c u l a t i o n b y c o n s i d e r a t i o n s o f a p p l i c a b i l i t y t o t h e c a s e o f 

t h e e a r t h , a s d i s t u r b e d b y t h e s u n a n d m o o n . 

I n o r d e r t o a v o i d a n i n c e s s a n t u s e o f t h e c o n d i t i o n a l m o o d , I s p e a k s i m p l y 

o f t h e e a r t h , s u n , a n d m o o n ; t h e f i r s t b e i n g t a k e n a s t h e t y p e o f t h e r o t a t i n g 

b o d y , a n d t h e t w o l a t t e r a s t y p e s o f t h e d i s t u r b i n g o r t i d e - r a i s i n g b o d i e s . 

T h i s c o u r s e w i l l b e j u s t i f i e d , i f t h e s e i d e a s s h o u l d l e a d ( a s I b e l i e v e t h e y w i l l ) 

t o i m p o r t a n t c o n c l u s i o n s w i t h r e s p e c t t o t h e h i s t o r y o f t h e e v o l u t i o n o f t h e 

s o l a r s y s t e m . T h i s p l a n w a s t h e m o r e n e c e s s a r y , b e c a u s e i t s e e m e d t o m e 

i m p o s s i b l e t o a t t a i n a f u l l c o m p r e h e n s i o n o f t h e p h y s i c a l m e a n i n g o f t h e l b n g 

a n d c o m p l e x f o r m u l a ; w h i c h o c c u r , w i t h o u t h a v i n g r e c o u r s e t o n u m e r i c a l 

v a l u e s ; m o r e o v e r , t h e d i f f e r e n t i a l e q u a t i o n s t o b e i n t e g r a t e d w e r e s o c o m p l e x , 

t h a t a l a b o r i o u s t r e a t m e n t , p a r t l y b y a n a l y s i s a n d p a r t l y b y n u m e r i c a l q u a d 

r a t u r e s , w a s t h e o n l y m e t h o d t h a t I w a s a b l e t o d e v i s e . A c c o r d i n g l y , t h e 

e a r t h , s u n , a n d m o o n f o r m t h e s y s t e m f r o m w h i c h t h e r e q u i s i t e n u m e r i c a l 

d a t a a r e t a k e n . 

* " O n t h e B o d i l y T i d e s of V i s c o u s a n d S e m i - e l a s t i o S p h e r o i d s , " & c , Phil. Tram., 1 8 7 9 , 
P a r t i . [ P a p e r 1.] 
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I t w i l l o f c o u r s e b e u n d e r s t o o d t h a t I d o n o t c o n c e i v e t h e e a r t h t o b e 

r e a l l y a h o m o g e n e o u s v i s c o u s o r e l a s t i c o - v i s c o u s s p h e r o i d , b u t i t d o e s s e e m 

p r o b a b l e t h a t t h e e a r t h s t i l l p o s s e s s e s s o m e p l a s t i c i t y , a n d i f a t o n e t i m e i t 

w a s a m o l t e n m a s s ( w h i c h i s h i g h l y p r o b a b l e ) , t h e n i t s e e m s c e r t a i n t h a t 

s o m e c h a n g e s i n t h e c o n f i g u r a t i o n o f t h e t h r e e b o d i e s m u s t h a v e t a k e n p l a c e , 

c l o s e l y a n a l o g o u s t o t h o s e h e r e a f t e r d e t e r m i n e d . A n d e v e n i f t h e e a r t h h a s 

a l w a y s b e e n q u i t e r i g i d , t h e g r e a t e r p a r t o f t h e s a m e e f f e c t s w o u l d r e s u l t 

f r o m o c e a n i c t i d a l f r i c t i o n , a l t h o u g h p r o b a b l y t h e y w o u l d h a v e t a k e n p l a c e 

w i t h l e s s r a p i d i t y . 

A s s o m e p e r s o n s m a y w i s h t o o b t a i n a g e n e r a l i d e a o f t h e d r i f t o f t h e 

i n q u i r y w i t h o u t r e a d i n g a l o n g m a t h e m a t i c a l a r g u m e n t , I h a v e a d h e r e d t o 

t h e p l a n a d o p t e d i n m y f o r m e r p a p e r , o f g i v i n g a t t h e e n d ( i n P a r t I I I . ) a 

g e n e r a l v i e w o f t h e w h o l e s u b j e c t , w i t h r e f e r e n c e s b a c k t o s u c h p a r t s a s i t d i d 

n o t s e e m d e s i r a b l e t o r e p r o d u c e . I n o r d e r n o t t o i n t e r r u p t t h e m a t h e m a t i c a l 

a r g u m e n t i n t h e b o d y o f t h e p a p e r , t h e d i s c u s s i o n o f t h e p h y s i c a l s i g n i f i c a n c e 

o f t h e s e v e r a l r e s u l t s i s g i v e n a l o n g w i t h t h e s u m m a r y ; s u c h d i s c u s s i o n s w i l l 

m o r e o v e r b e f a r m o r e s a t i s f a c t o r y w h e n t h r o w n i n t o a c o n t i n u o u s f o r m t h a n 

w h e n s c a t t e r e d i n i s o l a t e d p a r a g r a p h s t h r o u g h o u t t h e p a p e r . I h a v e t r i e d , 

h o w e v e r , t o p r e v e n t t h e m a t h e m a t i c a l p a r t f r o m b e i n g t o o b a l d o f c o m m e n t s , 

a n d t o p l a c e t h e r e a d e r i n a p o s i t i o n t o c o m p r e h e n d t h e g e n e r a l l i n e o f 

i n v e s t i g a t i o n . 

E o f b r e e n t e r i n g o n a n a l y s i s , i t i s n e c e s s a r y t o g i v e a n e x p l a n a t i o n o f h o w 

t h i s i n q u i r y j o i n s i t s e l f o n t o t h a t o f m y p r e v i o u s p a p e r . 

I n t h a t p a p e r i t w a s s h o w n t h a t , i f t h e i n f l u e n c e o f t h e d i s t u r b i n g b o d y 

b e e x p r e s s e d i n t h e f o r m o f a p o t e n t i a l , a n d i f t h a t p o t e n t i a l b e e x p r e s s e d a s 

a s e r i e s o f s o l i d h a r m o n i c f u n c t i o n s o f p o i n t s w i t h i n t h e d i s t u r b e d s p h e r o i d , 

e a c h m u l t i p l i e d b y a s i m p l e t i m e - h a r m o n i c , t h e n e a c h s u c h h a r m o n i c t e r m 

r a i s e s a t i d e i n t h e d i s t u r b e d s p h e r o i d , w h i c h i s t h e s a m e a s t h o u g h a l l t h e 

o t h e r t e r m s w e r e n o n - e x i s t e n t . T h i s i s t r u e , w h e t h e r t h e s p h e r o i d b e fluid, 

e l a s t i c , v i s c o u s , o r e l a s t i c o - v i s c o u s . F u r t h e r , t h e f r e e s u r f a c e o f t h e s p h e r o i d , 

a s t i d a l l y d i s t o r t e d b y a n y t e r m , i s e x p r e s s i b l e b y a s u r f a c e h a r m o n i c o f t h e 

s a m e t y p e a s t h a t o f t h e g e n e r a t i n g t e r m ; a n d w h e r e t h e r e i s a f r i c t i o n a l 

r e s i s t a n c e t o t h e t i d a l m o t i o n , t h e p h a s e o f t h e c o r r e s p o n d i n g s i m p l e t i m e 

h a r m o n i c i s r e t a r d e d . T h e h e i g h t o f e a c h t i d e , a n d t h e r e t a r d a t i o n o f p h a s e 

( o r t h e l a g ) a r e f u n c t i o n s o f t h e f r e q u e n c y o f t h e t i d e , a n d o f t h e c o n s t a n t s 

e x p r e s s i v e o f t h e p h y s i c a l c o n s t i t u t i o n o f t h e s p h e r o i d . 

E a c h s u c h t e r m i n t h e e x p r e s s i o n f o r t h e f o r m o f t h e t i d a l l y d i s t o r t e d 

s p h e r o i d m a y b e c o n v e n i e n t l y r e f e r r e d t o a s a s i m p l e t i d e . 

H e n c e i f w e r e g a r d t h e w h o l e t i d e - w a v e a s a m o d i f i c a t i o n o f t h e 

e q u i l i b r i u m t i d e - w a v e o f a p e r f e c t l y f l u i d s p h e r o i d , i t m a y b e s a i d t h a t t h e 

e f f e c t o f t h e r e s i s t a n c e s t o r e l a t i v e d i s p l a c e m e n t i s a d i s i n t e g r a t i o n o f t h e 

w h o l e w a v e i n t o i t s c o n s t i t u e n t s i m p l e t i d e s , e a c h o f w h i c h i s r e d u c e d i n 
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h e i g h t , a n d l a g s i n t i m e b y i t s o w n s p e c i a l a m o u n t . I n f a c t , t h e m a t h e m a t i c a l 

e x p a n s i o n i n s u r f a c e h a r m o n i c s e x a c t l y c o r r e s p o n d s t o t h e p h y s i c a l b r e a k i n g 

u p o f a s i n g l e w a v e i n t o a n u m b e r o f s e c o n d a r y w a v e s . 

I t w a s r e m a r k e d i n t h e p r e v i o u s p a p e r * , t h a t w h e n t h e t i d e - w a v e l a g s 

t h e a t t r a c t i o n o f t h e e x t e r n a l t i d e - g e n e r a t i n g b o d y g i v e s r i s e t o f o r c e s o n t h e 

s p h e r o i d w h i c h a r e n o t r i g o r o u s l y e q u i l i b r a t i n g . N o w i t w a s a p a r t o f t h e 

a s s u m p t i o n s , u n d e r w h i c h t h e t h e o r y o f v i s c o u s a n d e l a s t i c o - v i s c o u s t i d e s 

w a s f o r m e d , t h a t t h e w h o l e f o r c e s w h i c h a c t o n t h e s p h e r o i d should b e 

e q u i l i b r a t i n g ; b u t i t w a s t h e r e s t a t e d t h a t t h e c o u p l e s a r i s i n g f r o m t h e n o n -

e q u i l i b r a t i o n o f t h e a t t r a c t i o n s o n t h e l a g g i n g t i d e s w e r e p r o p o r t i o n a l t o t h e 

s q u a r e o f t h e d i s t u r b i n g i n f l u e n c e , a n d i t w a s o n t h i s a c c o u n t t h a t t h e y w e r e 

n e g l e c t e d i n f o r m i n g t h a t t h e o r y o f t i d e s . T h e i n v e s t i g a t i o n o f t h e e f f e c t s 

w h i c h t h e y p r o d u c e i n m o d i f y i n g t h e r e l a t i v e m o t i o n o f t h e p a r t s o f t h e 

s p h e r o i d , t h a t i s t o s a y i n d i s t o r t i n g t h e s p h e r o i d , m u s t b e r e s e r v e d f o r a 

f u t u r e o c c a s i o n 7 . 

T h e e f f e c t o f t h e s e c o u p l e s , i n m o d i f y i n g t h e m o t i o n o f t h e r o t a t i n g 

s p h e r o i d a s a w h o l e , a f f o r d s t h e s u b j e c t o f t h e p r o s e n t p a p e r . 

A c c o r d i n g t o t h e o r d i n a r y t h e o r y , t h e t i d e - g e n e r a t i n g p o t e n t i a l o f t h e 

d i s t u r b i n g b o d y i s e x p r e s s i b l e a s a s e r i e s o f L e g e n d r e ' s c o e f f i c i e n t s ; t h e t e r m 

o f t h e first o r d e r i s n o n - e x i s t e n t , a n d t h e o n e o f t h e s e c o n d o r d e r h a s t h e t y p e 

I c o s 2 — \ . T h r o u g h o u t t h i s p a p e r t h e p o t e n t i a l i s t r e a t e d a s t h o u g h t h e 

t e r m o f t h e s e c o n d o r d e r e x i s t e d a l o n e , b u t a t t h e e n d i t i s s h o w n t h a t t h e 

t e r m o f t h e t h i r d o r d e r ( o f t h e t y p e f c o s 3 — § c o s ) w i l l h a v e a n e f f e c t w h i c h i s 

f a i r l y n é g l i g e a b l e c o m p a r e d w i t h t h a t o f t h e f i r s t t e r m . 

I n o r d e r t o a p p l y t h e t h e o r y o f e l a s t i c , v i s c o u s , a n d e l a s t i c o - v i s c o u s t i d e s , 

t h e f i r s t t a s k i s t o e x p r e s s t h e t i d e - g e n e r a t i n g p o t e n t i a l i n t h e f o r m o f a 

s e r i e s o f s o l i d h a r m o n i c s r e l a t i v e l y t o a x e s fixed i n t h e s p h e r o i d , e a c h h a r m o n i c 

b e i n g m u l t i p l i e d b y a s i m p l e t i m e - h a r m o n i c . 

A f t e r w a r d s i t w i l l b e n e c e s s a r y t o e x p r e s s t h a t t h e w a v e s u r f a c e o f t h e 

d i s t o r t e d s p h e r o i d i s t h e d i s i n t e g r a t i o n i n t o s i m p l e l a g g i n g t i d e s o f t h e 

e q u i l i b r i u m t i d e - w a v e o f a p e r f e c t l y f l u i d s p h e r o i d . 

T h e s y m b o l s e x p r e s s i v e o f t h e d i s i n t e g r a t i o n a n d l a g g i n g w i l l b e k e p t p e r 

f e c t l y g e n e r a l , s o t h a t t h e t h e o r y w i l l b e a p p l i c a b l e e i t h e r t o t h e a s s u m p t i o n s 

o f e l a s t i c i t y , v i s c o s i t y , o r e l a s t i c o - v i s c o s i t y , a n d p r o b a b l y t o a n y o t h e r c o n 

t i n u o u s l a w o f r e s i s t a n c e t o r e l a t i v e d i s p l a c e m e n t . I t w o u l d n o t , h o w e v e r , b e 

a p p l i c a b l e t o s u c h a l a w a s t h a t w h i c h i s supposed t o g o v e r n t h e r e s i s t a n c e t o 

s l i p p i n g o f l o o s e e a r t h , n o r t o a n y l a w w h i c h a s s u m e s t h a t t h e r e i s n o r e l a t i v e 

d i s p l a c e m e n t o f t h e p a r t s o f t h e s o l i d , u n t i l t h e s t r e s s e s h a v e r e a c h e d a 

d e f i n i t e m a g n i t u d e . 

* " B o d i l y T i d e s , " &c. [ P a p e r 1.] S e c . 5 . 
t S e e t h e n e x t p a p e r " O n P r o b l e m s c o n n e c t e d w i t h t h e T i d e s of a V i s c o u s S p h e r o i d . " 

P a r t 1 . [ P a p e r 4 . ] 
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A f t e r t h e f o r m o f t h e d i s t o r t e d s p h e r o i d h a s b e e n found, t h e c o u p l e s 

w h i c h a r i s e f r o m t h e a t t r a c t i o n o f t h e d i s t u r b i n g b o d y o n t h e w a v e s u r f a c e 

w i l l b e f o u n d , a n d t h e r o t a t i o n o f t h e s p h e r o i d a n d t h e r e a c t i o n o n t h e 

d i s t u r b i n g b o d y w i l l b e c o n s i d e r e d . 

T h i s p r e l i m i n a r y e x p l a n a t i o n w i l l , I t h i n k , m a k e s u f f i c i e n t l y c l e a r t h e 

o b j e c t s o f t h e r a t h e r l o n g i n t r o d u c t o r y i n v e s t i g a t i o n s w h i c h a r e n e c e s s a r y . 

P a r t I . 

§ 1. The tide-generating potential. 

T h e d i s t u r b i n g b o d y , o r m o o n , i s s u p p o s e d t o m o v e i n a c i r c u l a r o r b i t , 

w i t h a u n i f o r m a n g u l a r v e l o c i t y — 17. T h e p l a n e o f t h e o r b i t i s t h a t o f t h e 

e c l i p t i c ; f o r t h e i n v e s t i g a t i o n i s s u f f i c i e n t l y i n v o l v e d w i t h o u t c o m p l i c a t i n g i t 

b y g i v i n g t h e t r u e i n c l i n e d e c c e n t r i c o r b i t , w i t h r e v o l v i n g n o d e s . 1 h o p e 

h o w e v e r i n a f u t u r e p a p e r t o c o n s i d e r t h e s e c u l a r c h a n g e s i n t h e i n c l i n a t i o n 

a n d e c c e n t r i c i t y o f t h e o r b i t a n d t h e m o d i f i c a t i o n s t o b e m a d e i n t h e r e s u l t s 

o f t h e p r e s e n t i n v e s t i g a t i o n . 

L e t m b e t h e m o o n ' s m a s s , c h e r d i s t a n c e , a n d T = 4 ^ . 
' c 

L e t X , Y , Z ( f i g . 1 ) b e r e c t a n g u l a r a x e s f i x e d i n s p a c e , X Y b e i n g t h e 

e c l i p t i c . 

Via. 1 . 

L e t M b e t h e m o o n i n h e r o r b i t m o v i n g f r o m Y t o w a r d s X , w i t h a n 

a n g u l a r v e l o c i t y fi,*. 

L e t A , B , 0 b e r e c t a n g u l a r a x e s fixed i n t h e e a r t h , A B b e i n g t h e e q u a t o r . 

L e t i, b e t h e c o o r d i n a t e s o f t h e p o l e C r e f e r r e d t o X , Y , Z , s o t h a t i i s t h e 

o b l i q u i t y o f t h e e c l i p t i c , a n d t h e p r e c e s s i o n o f t h e e q u i n o x e s . 

* [ T h e s y s t e m o f c o o r d i n a t e s c h o s e n i s u n f o r t u n a t e l y w h a t L o r d K e l v i n c a l l s " p e r v e r t e d , " 

b u t I d o n o t t h i n k i t w o r t h w h i l e t o g o t h r o u g h t h e w h o l e i n v e s t i g a t i o n a n d c h a n g e t h e s i g n s . ] 
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L e t r, 9, <f> b e t h e p o l a r c o o r d i n a t e s o f a n y p o i n t P i n t h e e a r t h r e f e r r e d 

t o A , B , C , a s i n d i c a t e d i n t h e figure. 

L e t &>!, g > 2 j ws b e t h e c o m p o n e n t a n g u l a r v e l o c i t i e s o f t h e e a r t h a b o u t t h e 

i n s t a n t a n e o u s p o s i t i o n s o f A , B , C . 

T h e n w e h a v e , a s u s u a l , t h e g e o m e t r i c a l e q u a t i o n s , 

di • . j t = - » 1 s i n x + t u 2 c o s x | 

• ( 1 ) ^ s i n i = — (Uj c o s x — &i2 s i n x 

dy dylr 
~dt+lTtC0Bl= 0,3 

L e t I I c o s e c i b e t h e p r e c e s s i o n o f t h e e q u i n o x e s , o r , s o t h a t 

^ = I I c o t i — (w, * . N o w t h e e a r t h r o t a t e s w i t h a n e g a t i v e a n g u l a r v e l o c i t y , 

dy 

t h a t i s f r o m B t o A ; t h e r e f o r e i f w e p u t = n, n i s e q u a l t o t h e t r u e 

a n g u l a r v e l o c i t y o f t h e e a r t h + I I c o t t . B u t f o r p u r p o s e s o f n u m e r i c a l c a l 

c u l a t i o n n m a y b e t a k e n a s t h e e a r t h ' s a n g u l a r v e l o c i t y ; a n d c a r e n e e d 

m e r e l y b e t a k e n t h a t i n e q u a l i t i e s o f v e r y l o n g p e r i o d a r e n o t m i s t a k e n f o r 

s e c u l a r c h a n g e s . 

L e t t h e e p o c h b e t a k e n a s t h e t i m e w h e n t h e c o l u r e Z C w a s i n t h e p l a n e 

o f Z X , w h e n x w a s z e r o a n d t h e m o o n o n t h e e q u a t o r a t Y . I t w i l l b e c o n 

v e n i e n t a l s o t o a s s u m e l a t e r t h a t t h e r e w a s a l s o a n e c l i p s e a t t h e s a m e 

i n s t a n t . A n u m b e r o f t r o u b l e s o m e s y m b o l s a r e t h u s g o t r i d of , w h i l s t t h e 

g e n e r a l i t y o f t h e s o l u t i o n i s u n a f f e c t e d . 

T h e n b y t h e p r e v i o u s d e f i n i t i o n s w e h a v e 

X = nt, M N = D,t, N R = ^ 7 r - R D = ^ 7 r - ( ^ ) - X ) 

N o w i f w b e t h e m a s s o f t h e h o m o g e n e o u s e a r t h p e r u n i t v o l u m e , t h e 

t i d e - g e n e r a t i n g g r a v i t a t i o n p o t e n t i a l V o f t h e m o o n , e s t i m a t e d p e r u n i t 

v o l u m e , a t t h e p o i n t r, 6, <f> o r P i n t h e e a r t h i s , b y t h e w e l l - k n o w n f o r m u l a , 

V = w r r 2 ( c o s 2 P M - i ) 

T h i s i s t h e f u n c t i o n o n w h i c h t h e t i d e s d e p e n d , a n d a s a b o v e e x p l a i n e d , i t 

m u s t b e e x p a n d e d i n a s e r i e s o f s o l i d h a r m o n i c s o f r, 6, <p, e a c h m u l t i p l i e d b y 

a s i m p l e t i m e h a r m o n i c , w h i c h w i l l i n v o l v e n a n d 1 2 . 

F o r b r e v i t y o f n o t a t i o n nt, Clt a r e w r i t t e n s i m p l y n, il, b u t w h e r e v e r t h e s e 

s y m b o l s o c c u r i n t h e a r g u m e n t o f a t r i g o n o m e t r i c a l t e r m t h e y m u s t b e u n d e r 

s t o o d t o b e m u l t i p l i e d b y t t h e t i m e . 

* T h e l i m i t of II cot i is s t i l l s m a l l w h e n i i s zero . I n c o n s i d e r i n g t h e p r e c e s s i o n w i t h o n e 
d i s t u r b i n g b o d y o n l y , H c o s e c i i s m e r e l y t h e p r e c e s s i o n d u e to t h a t b o d y ; b u t a f t e r w a r d s w h e n 
t h e effect of t h e s u n i s a d d e d i t m u s t b e t a k e n as t h e full p r e c e s s i o n . 
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We have cos PM = sin 8 cos MR -f- cos 8 sin MR sin MRQ 
and cos MR = cos MN cos NR + sin MN sin NR cos i 

= cos XI sin (0 — n) + sin XI cos (0 — n) cos i 

also sin MR sin MRQ = sin MQ = sin XI sin i 
Therefore 

cos PM = sin 8 sin (0 — n) cos XI + sin 8 cos (0 — n) sin XI cos i + cos 8 sin XI sin i 

= f) sin 8 {sin [0 - (n - XI)] + sin [0 - (« + XI)]} 
+ ̂  sin 0 cos i {sin [0 — (n — XI)] — sin [0 — (m + XI)]] + cos 8 sin XI sin i 

Let p = cos \i, q = sin ̂  i 

Then 
cos PM sin 8 sin [0 — (n — XI)] + 2p<7 cos 8 sin XI + sin 0 sin [0 — (n + XI)] 

(2) 
Therefore 

cos2 PM = \pl sin2 8 {1 - cos [20 - 2 (w - XI)]} + 2pY cos2 8(1- cos 2X1) 
+ £g4 sin2 8 {1 - cos [20 - 2 (n + XI)]] + 2p3g sin 0 cos 0 {cos (0 - n) 

- cos [0 - (/i - 2X1)]] 
+ 2pg3 sin 8 cos 0 {cos [0 - (n + 2X1)] - cos (0 - «)] 

+ flq1 sin2 0 {cos 2X1 - cos (20 - 2m)} 
Collecting terms, and noticing that 

\ (P1 + 9*) sin2 9 + 2PY cos2 9 = s + H1 ~ 6P¥) (I - cos2 8) 
we have 

V 

wrr2 = cos2 PM - J 
= - ¿ sin2 0 {p4 cos [20 - 2 (ra - XI)] + 2pY cos [20 - 2m] 

+ Í4 cos [20-2(n + Xl)]} 
— 2 sin 0 cos 8 {p3q cos [0 — (n — 2X1)] — pq (p1

 — <72) cos (0 — n) 

-pífeos [0 - (ti + 2X1)]} 
+ (J - cosS <?) {3PY c o s 2Í1 + i (1 - 6>Y)} (3)* 

Now if all the cosines involving 0 be expanded, it is clear that we have V 
consisting of thirteen terms which have the desired form, and a fourteenth 
which is independent of the time. 

It will now be convenient to introduce some auxiliary functions, which 
may be defined thus, 

<í> (2n) = \p* cos 2 (n - XI) + p'q2 cos 2n + \q* cos 2 (n + XI) 
Mir («) = 2£)3<7 cos (rc — 2X1) — 2pq (p2 — q2) cos n — 2jY cos (n + 2X1) J 

X (2X1) = 3pY cos 2a 
( 4 ) 

* [ T h i s t r a n s f o r m a t i o n i s o b t a i n e d b y a n e a t e r p r o c e s s i n t h e p a p e r o n " H a r m o n i c A n a l y s i s 

o f t h e T i d e s , " p . 7, V o l . i . ] 
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<t> ( 2 n — \TT), (n — ^ 7 r ) , X ( 2 1 2 — \TT) a r e f u n c t i o n s o f t h e s a m e f o r m w i t h 

s i n e s r e p l a c i n g c o s i n e s . W h e n t h e a r g u m e n t s o f t h e f u n c t i o n s a r e s i m p l y 2n, 

n, 2 X 2 r e s p e c t i v e l y , t h e y w i l l b e o m i t t e d a n d t h e f u n c t i o n s w r i t t e n s i m p l y <J>, 

X ; a n d w h e n t h e a r g u m e n t s a r e s i m p l y In — \TT, n — \ir, 2 f J — \ir, t h e y 

w i l l b e o m i t t e d a n d t h e f u n c t i o n s w r i t t e n <J>', ^ F ' , X ' . T h e s e f u n c t i o n s m a y o f 

c o u r s e b e e x p a n d e d l i k e s i n e s a n d c o s i n e s , e.g., (n — a) = c o s a + M*' s i n a 

a n d (n - a ) = V c o s a — ^ s i n a . 

I f n o w t h e s e f u n c t i o n s a r e i n t r o d u c e d i n t o t h e e x p r e s s i o n f o r V , a n d i f w e 

r e p l a c e t h e d i r e c t i o n c o s i n e s s i n 6 c o s <f>, s i n 6 s i n <f>, c o s 9 o f t h e p o i n t P b y 

f , 7], £ w e h a v e 

^ = - ( f 2 - *? 2) * - 2 ^ * ' - - VW + + 2 p ) [ X + H i - W ) ] 

( 5 ) 

£* — i j 2 , 2^77, f £ , + t ; 2 — 2 f 2 ) a r e s u r f a c e h a r m o n i c s o f t h e s e c o n d 

o r d e r , a n d t h e a u x i l i a r y f u n c t i o n s i n v o l v e o n l y s i m p l e h a r m o n i c f u n c t i o n s o f 

t h e t i m e . H e n c e w e h a v e o b t a i n e d V i n t h e d e s i r e d f o r m . 

W e s h a l l r e q u i r e l a t e r c e r t a i n f u n c t i o n s o f t h e d i r e c t i o n c o s i n e s o f t h e 

m o o n r e f e r r e d t o A , B , C e x p r e s s e d i n t e r m s o f t h e a u x i l i a r y f u n c t i o n s . T h e 

f o r m a t i o n o f t h e s e f u n c t i o n s m a y b e m o s t c o n v e n i e n t l y d o n e b e f o r e p r o c e e d i n g 

f u r t h e r . 

L e t x, y, z b e t h e s e d i r e c t i o n c o s i n e s , t h e n 

c o s P M = a?f + yv + z£ 
w h e n c e 

c o s 8 P M - £ = ( a f + yn + + f ) 

= + V2 (F - I) + ¥ 0 2 - H) + 2 i ? & * + 2 ? f M + 2FRXY 

( 6 ) 

B u t f r o m ( 5 ) w e h a v e o n r e a r r a n g i n g t h e t e r m s , 

c o s 2 P M - I = f { - <£ + £ X + I- ( 1 - 6PY)} + y> {<& + J X + £ ( 1 - 6 p V ) } 

+ ? { - f X - i ( 1 - 6 p Y ) J - 2 , ? . - 2 f f . & - 2 f r * \ . . ( 5 ' ) 

E q u a t i n g c o e f f i c i e n t s i n t h e s e t w o e x p r e s s i o n s ( 5 ' ) a n d ( 6 ) 

2 / 2 - i = * + i X + i ( i - W ) 

= - | X - i ( l - 6 i > Y ) 

W h e n c e y* - z* = <t> + X + J ( 1 - 6 W ) ' 

&-a?= * - X - i ( l - ° W ) 

a ? _ = _ 2<J> 

a l s o 1/2; = -

zx = -
xy = — <&' 

T h e s e s i x e q u a t i o n s ( 7 ) a r e t h e d e s i r e d f u n c t i o n s o f x, y, z i n t e r m s o f t h e 

a u x i l i a r y f u n c t i o n s . 

• a ) 

IRIS - LILLIAD - Université Lille 1 



§ 2 . The form of the spheroid as tidally distorted. 

T h e t i d e - g e n e r a t i n g p o t e n t i a l h a s t h i r t e e n t e r m s , e a c h c o n s i s t i n g o f a 

s o l i d h a r m o n i c o f t h e s e c o n d d e g r e e m u l t i p l i e d b y a s i m p l e h a r m o n i c f u n c t i o n 

o f t h e t i m e , v i z . : t h r e e i n O , t h r e e i n <£>', t h r e e i n "ty, t h r e e i n •'I'', a n d o n e i n 

X . T h e f o u r t e e n t h t e r m o f V c a n r a i s e n o p r o p e r t i d e , b e c a u s e i t i s i n d e 

p e n d e n t o f t h e t i m e , b u t i t p r o d u c e s a p e r m a n e n t i n c r e m e n t t o t h e e l l i p t i c i t y 

o f t h e m e a n s p h e r o i d . 

H e n c e a c c o r d i n g t o o u r h y p o t h e s i s , e x p l a i n e d i n t h e i n t r o d u c t o r y r e m a r k s , 

t h e r e w i l l b e t h i r t e e n d i s t i n c t s i m p l e t i d e s ; t h e t h r e e t i d e s c o r r e s p o n d i n g 

t o <£>' m a y h o w e v e r b e c o m p o u n d e d w i t h t h e t h r e e i n <I>, a n d s i m i l a r l y 

t h e W t i d e s w i t h t h e "V t i d e s . H e n c e t h e r e a r e s e v e n t i d e s w i t h s p e e d s * 

[ 2 n - 2 0 , 2n, 2n + 2 1 2 ] , [n - 2 1 1 , n, n + 2 1 2 ] , [ 2 1 2 ] , a n d e a c h o f t h e s e w i l l b e 

r e t a r d e d b y i t s o w n s p e c i a l a m o u n t . 

T h e <J> t i d e s h a v e p e r i o d s o f n e a r l y a h a l f - d a y , a n d w i l l b e c a l l e d t h e s l o w , 

s i d e r e a l , a n d f a s t s e m i - d i u r n a l t i d e s , t h e "̂ P t i d e s h a v e p e r i o d s o f n e a r l y a d a y , 

a n d w i l l b e c a l l e d t h e s l o w , s i d e r e a l , a n d f a s t d i u r n a l t i d e s , a n d t h e X t i d e h a s 

a p e r i o d o f a f o r t n i g h t , a n d i s c a l l e d t h e f o r t n i g h t l y t i d e . 

T h e r e t a r d a t i o n o f p h a s e o f e a c h t i d e w i l l b e c a l l e d t h e " l a g , " a n d t h e 

h e i g h t o f e a c h t i d e w i l l b e e x p r e s s e d a s a f r a c t i o n o f t h e c o r r e s p o n d i n g e q u i 

l i b r i u m t i d e o f a p e r f e c t l y f l u i d s p h e r o i d . T h e f o l l o w i n g s c h e d u l e g i v e s t h e 

s y m b o l s t o b e i n t r o d u c e d t o e x p r e s s l a g a n d r e d u c t i o n o f t i d e : 

S e m i - d i u r n a l D i u r n a l 
F o r t 

n i g h t l y 

T i d e . 

H e i g h t 

L a g . . 

S l o w 

E 1 

2*i 

S i d e r e a l 

( 2 » ) 

E 

2 f 

F a s t 
( 2 r a + 2 ß ) 

E 2 

2 c 2 

S l o w 
( w - 212) 

E,' 

«V 

S i d e r e a l 

( « ) 

E' 

t' 

F a s t 
(w + 2 Q ) 

E% 

* 2 

( 2 Q ) 

E" 

2 t " 

T h e E's a r e p r o p e r f r a c t i o n s , a n d t h e e ' s a r e a n g l e s . 

L e t r = a + or b e t h e e q u a t i o n t o t h e s u r f a c e o f t h e s p h e r o i d a s t i d a l l y 

d i s t o r t e d , a b e i n g t h e r a d i u s o f t h e m e a n s p h e r e , — f o r w e m a y p u t o u t o f 

a c c o u n t t h e p e r m a n e n t e q u a t o r i a l p r o t u b e r a n c e d u e t o r o t a t i o n , a n d t o t h e 

n o n - p e r i o d i c t e r m o f V . 

I t i s a w e l l - k n o w n r e s u l t t h a t , i f wr2 S c o s (vt + rj) b e a t i d e - g e n e r a t i n g 

p o t e n t i a l , e s t i m a t e d p e r u n i t v o l u m e o f a h o m o g e n e o u s p e r f e c t l y f l u i d 

s p h e r o i d o f d e n s i t y w, ( S b e i n g o f t h e s e c o n d o r d e r o f s u r f a c e h a r m o n i c s ) , t h e 

* T h e use fu l t e r m " s p e e d " i s d u e , I be l i eve , t o S ir W i l l i a m T h o m s o n , a n d i s m u c h w a n t e d 

to i n d i c a t e t h e a n g u l a r v e l o c i t y of the r a d i u s of a c i rc l e , t h e i n c l i n a t i o n of w h i c h t o a fixed 

radius g ives t h e a r g u m e n t of a t r i g o n o m e t r i c a l t e r m . I t w i l l be u s e d t h r o u g h o u t t h i s p a p e r to 

i n d i c a t e v, a s i t o c c u r s i n e x p r e s s i o n s of t h e t y p e c o s (vt + rj). 
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O" T 
a ---E^p4sin2 6 c o s 2 o S c o s [ 2 (n-il)- 2 e , ] 

A l l t h e o t h e r t i d e s m a y b e t r e a t e d i n t h e s a m e w a y , b y i n t r o d u c i n g t h e 

p r o p e r E's a n d e ' s . 

T h u s i f w e w r i t e 

O e = E1 c o s ( 2 n - 2 1 2 - 2 e i ) + Ep*q* c o s ( 2 n - 2 c ) 
+ E2 \q* c o s (2n + 2 1 1 - 2 e 2 ) [ 

^„ = E1' 2psq c o s (n- 2 1 2 -e^)-E' 2pq ( p 2 - g 2 ) c o s ( w - e ' ) I - - - ( S ) 

- E3' 2pq3 c o s ( n + 2 1 2 - e 2 ' ) | 
X e = E" 3p*q' c o s ( 2 1 2 - 2 e " ) 

a n d i f i n t h e s a m e s y m b o l s a c c e n t e d s i n e s r e p l a c e c o s i n e s , t h e n , b y c o m p a r i s o n 

w i t h ( 5 ) , w e s e e t h a t 

? ^ = - ( P - -n2) * £ - 2 ^ 0 / - - + H P + * ? 2 - 2 f ) x r . . . ( 9 ) 

T h i s i s m e r e l y a s y m b o l i c a l w a y o f w r i t i n g d o w n t h a t e v e r y t e r m i n t h e 

t i d e - g e n e r a t i n g p o t e n t i a l r a i s e s a l a g g i n g t i d e o f i t s o w n t y p e , b u t t h a t t i d e s 

o f d i f f e r e n t s p e e d s h a v e d i f f e r e n t h e i g h t s a n d l a g s . 

T h i s s a m e e x p r e s s i o n m a y a l s o b e w r i t t e n 

! £ = _ ! • { < ] > , _ ^ X e } _ l f { _ c j> , - J X . } - ? | X , - 2 ^ M " / - 2 f f - 2 f r * . ' 
T E* 

(9 ' ) 
T h e n i f w e p u t c - b = < & 6 + X , ] 

a - c = $ , - X , 

b - a = - 2 * c 

c = | X . [ ( 1 0 ) 

5 a , 2 

e q u i l i b r i u m t i d e d u e t o t h i s p o t e n t i a l i s g i v e n b y a- = S c o s (vt + rj). I f w e 

2 f 7 <r S 
w r i t e g = , t h i s r e s u l t m a y b e w r i t t e n - = - c o s (vt + rj). 

N o w c o n s i d e r a t y p i c a l t e r m — s a y o n e p a r t o f t h e s l o w s e m i - d i u r n a l t e r m 

— o f t h e t i d e - g e n e r a t i n g p o t e n t i a l , a s f o u n d i n ( 3 ) : i t w a s 

— wrH^p* s i n 2 9 c o s 2 $ c o s 2 (n — £ 2 ) 

T h e e q u i l i b r i u m v a l u e o f t h e c o r r e s p o n d i n g t i d e i s f o u n d b y p u t t i n g ^ e q u a l 

t o t h i s e x p r e s s i o n d i v i d e d b y w r 2 g . 

I f w e s u p p o s e t h a t t h e r e i s a f r i o t i o n a l r e s i s t a n c e t o t h e t i d a l m o t i o n , 

t h e t i d e w i l l l a g a n d b e r e d u c e d i n h e i g h t , a n d a c c o r d i n g t o t h e p r e c e d i n g 

d e f i n i t i o n s t h e c o r r e s p o n d i n g t i d e o f o u r s p h e r o i d i s e x p r e s s e d b y 
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i t i s c l e a r t h a t 

T H E C O U P L E S A C T I N G O N T H E E A R T H . 4 5 

S - = - a ^ - b 7 ?

2 - c f i + 2 d 7 ? Ç ' + 2 e ^ + 2 f ^ ( 1 1 ) 
T CL 

W h e n c e 

D\ ÇDR 

8 (y d - d 

2 7 ( ? D\ ~ * i v I = - { ( a ~ c ) & ~ e ~ p ) - f , ? r + d ^ [ • • - < 1 2 > 

^ ( f ^ - ^ 3 f ) s l C b - a ) f t , - f ( p _ ^ ) - d g E + e , f } . 

O f w h i c h e x p r e s s i o n s u s e w i l l b e m a d e s h o r t l y . 

§ 3. The couples about the axes A , B , C caused by the moons attraction. 

T h e e a r t h i s s u p p o s e d t o b e a h o m o g e n e o u s s p h e r o i d o f m e a n r a d i u s a, 

a n d m a s s w p e r u n i t v o l u m e , s o t h a t i t s m a s s M= ^irwa3. W h e n u n d i s t u r b e d 

b y t i d a l d i s t o r t i o n i t i s a s p h e r o i d o f r e v o l u t i o n a b o u t t h e a x i s C , a a d i t s 

g r e a t e s t a n d l e a s t p r i n c i p a l m o m e n t s o f i n e r t i a a r e C , A . U p o n t h i s m e a n 

s p h e r o i d o f r e v o l u t i o n i s s u p e r p o s e d t h e t i d e - w a v e a. 

T h e a t t r a c t i o n o f t h e m o o n o n t h e m e a n s p h e r o i d p r o d u c e s t h e o r d i n a r y 

p r e c e s s i o n a l c o u p l e s 2 r ( C — A)yz, — 2 T ( C — A)zx, 0 a b o u t t h e a x e s A , B , C 

r e s p e c t i v e l y ; b e s i d e s t h e s e t h e r e a r e t h r e e c o u p l e s , 1 L , J ^ l , i S s u p p o s e , 

c a u s e d b y t h e a t t r a c t i o n o n t h e w a v e s u r f a c e a. 

A s i t i s o n l y d e s i r e d t o d e t e r m i n e t h e c o r r e c t i o n s t o t h e o r d i n a r y t h e o r y 

o f p r e c e s s i o n , t h e f o r m e r m a y b e o m i t t e d f r o m c o n s i d e r a t i o n , a n d a t t e n t i o n 

c o n f i n e d t o t h e d e t e r m i n a t i o n o f H, 

T h e m o o n w i l l b e t r e a t e d a s a n a t t r a c t i v e p a r t i c l e o f m a s s m. 

N o w <r a s d e f i n e d b y ( 9 ) i s a s u r f a c e h a r m o n i c o f t h e s e c o n d o r d e r ; h e n c e 

b y t h e o r d i n a r y f o r m u l a i n t h e t h e o r y o f t h e p o t e n t i a l , t h e g r a v i t a t i o n 

p o t e n t i a l o f t h e t i d e - w a v e a t a p o i n t w h o s e c o o r d i n a t e s r e f e r r e d t o A , B , C 

a r c rg, rrj, r£ i s ^irwa a o r | a. H e n c e t h e m o m e n t s a b o u t t h e a x e s 

A , B , C o f t h e f o r c e s w h i c h a c t o n a p a r t i c l e o f m a s s m , s i t u a t e d a t t h a t p o i n t , 

a r e | — ^ j j ^ — £ , & c , & c . T h e n i f t h i s p a r t i c l e h a s t h e m a s s o f t h e 

m o o n ; i f r b e p u t e q u a l t o c , t h e m o o n ' s d i s t a n c e ; a n d i f f , y, K b e r e p l a c e d 

i n a b y x, y , z ( t h e m o o n ' s d i r e c t i o n c o s i n e s ) i n t h e p r e v i o u s e x p r e s s i o n s , i t i s 

c l e a r t h a t - \Mar [y ^ — z , & c , & c , a r e t h e c o u p l e s o n t h e e a r t h c a u s e d 

b y t h e m o o n ' s a t t r a c t i o n . 

T h e s e r e a c t i v e c o u p l e s a r e t h e r e q u i r e d %, i l t l , jfl. 
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Hence referring back to ( 1 2 ) and remarking that %Ma' = C, the earth's 
moment of inertia, we see at once that 

% 2 x a 

= y [(c - b) yz - d {y* - z2) - exy + tzx] C 
M 

c 

2 T 2 = — [(a — c) zx — e (z2 — of) — {yz + dxy] 
2 

C g L^b • a) xy — f (a? — y2) — dzx + eyz] 

. ( 1 3 ) 

where the quantities on the right-hand side are defined by the thirteen 
equations ( 7 ) and (10) . 

I shall confine my attention to determining the alteration in the uniform 
precession, the change in the obliquity of the ecliptic, and the tidal friction; 
because the nutations produced by the tidal motion will be so small as to 
possess no interest. 

In developing 1L and Jtt I shall only take into consideration the terms 
with argument n, and in ¿3, only constant terms; for it will be seen, when we 
come to the equations of motion, that these are the only terms which can 
lead to the desired end. 

§ 4. Development of the couples 1L and jUft. 
Now substitute from ( 7 ) and ( 1 0 ) in the first of (13) , and we have 

§ - Y = - 4 [<&. + X«} + {* + X +1 (1 - 6pY)] - + 
( 1 4 ) 

A number of multiplications have now to be performed, and only those 
terms which contain the argument n to be retained. 

The particular argument n can only arise in six ways, viz.: from products 
of terms with arguments 

2 (n, - D), n - 2 1 1 ; 2n,n; 2 {n +12), n + 2D; n- 2D, 2D; n + 2D, 2D 

and from terms of argument n multiplied by constant terms. 
If <$> and and $' and 'v?' be written underneath one another in the 

various combinations in which they occur in the above expression, it will be 
obvious that the desired argument can only arise from terms which stand one 
vertically over the other; this renders the multiplication easier. The M?, X 
products are comparatively easy. 

Then we have 
(a) - % <S>tW = -{[- ElP

7q sin {n - 2 6 l ) + 2Ep3q3 {p> - g2) sin (n - 2 e ) 

+ E2pq7 sin (n — 2 e a ) ] 
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1879] D E V E L O P M E N T O F T H E C O U P L E S . 4 7 

(j8) + i ^ . ' f c = + i t - Eitfq sin (n + e,') + lE'fq* (p* - g2) sin (n -I- e') 

+ Ei'pq7 sin (w -f ea')] 

( 7 ) - = same as (£) 

(S) + = same as (a) 

(e) - i X . ^ ' = - { [E%pY sin (n - 2e") - E"%ff sin (n + 2e")] 

(f) + JV.'X = + i [£76py sin (n - e,') - tf,'6pY sin (» - *,')] 

(ij) 4- (1 - 6>2g2) = - fff'2/jg (p 2 - g2) (1 - 6p2g2) sin (n - e ' ) 

1 
Put £j = F sin n + G cosn. Then if the expressions (a), (fi)... (£) be added 

up when w = ^7r, and the sum multiplied by 2r !/g ) we shall get F ; and if we 
perform the same addition and multiplication when n = 0, we shall get G. 

In performing the first addition the terms (a), (8) do not combine with any 
other, but the terms (j3), (y), (£"), (77) combine. 

- \v\ + = - hp'q (p* - 3ga) 

pfif- q2) - \pq {p1 - q2) (1 - 6PY) = - ipq (p* - f) (p* + q4 - 6PY) 

4P3» - f p V = - i pg 6 (3p» - f) 

- f ^ V + %piq* — — fp 3 g 3 ( p s - g s) 

Now 

Hence 

F — = \Erfq cos 2 £ l - .tfpag» (p 2 - g 2) cos 2e - \E^ cos 2e. 

- \Elp*q (p1 - 3g2) cos e/ - £.E"pg (p 2 - g2) (p 4 + g4 - QpY) cos e' 

- (3p* - g 2) cos e/ 

- fE"psq3 (p2 - g 2) cos 2e" (15) 

Again for the second addition when n = 0, we have 

- W<i - W = - \P*<1 (P2 + 3?2) 

P y (p* - g 2) + \pq (p* - g2) (1 - 6> 2g 2) = \pq (p 2 - g 2) ! 

| p g 7 + f p 3 g B = i p g 6 (3p2 + g 2) 

f T^g3 + |p 3 g B = !jo3g3 

So that 

2T 2 

G -=--— = - ^ j / g sin 2ê! + Ep3q3 (p 2 - g2) sin 2e + i-E^g' sin 2ea 

- i ^ V g (p 2 + 3g2) sin e/ + i# ' pg (p a - g a ) s sin e' 

+ Wpql (3p2 + g 2)sine 2 ' 

+ %E"p3q» sin 2e" 
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G -=- - = - 1EPQ (1 - IQ2) sin 2e - £ E'PQ? sin e' + %E"Q* sin 2e" 

s . ( 1 9 ) 

§ 5. Development of the couple ffi,. 

In the couple about the axis of rotation of the earth we only wish to 
retain non-periodic terms, and these can only arise from the products of terms 
with the same argument. 

By substitution from (7) and (10) in the last of (13) 
ja O T 2 

+ —- = 2*e<I>' - 2 * / * - + (20) 

1L 
And £f = F sin w + G cos « (17) 

To find JUJI it is only necessary to substitute n — for n, and we have 

4̂  = - F c o s t t + Gsinn (18) 
There is a certain approximation which gives very nearly correct 

results and which simplifies these expressions very much. It has already 
been remarked that the three <t>-tides have periods of nearly a half-day and 
the three ^-tides of nearly a day, and this will continue to be true so long as 
fl is small compared with n; hence it may be assumed with but slight error 
that the semi-diurnal tides are all retarded by the same amount and that 
their heights are proportional to the corresponding terms in the tide-
generating potential. That is, we may put = e2 = e and A\ = E2 = E. The 
similar argument with respect to the diurnal tides permits us to put 
eJ = 6 a ' = e ' and E{ = E3' = E'. 

Introducing the quantities P =p2 — q2 = cos i, Q = 2pq = sin i and observing 
that 

\tfq - ftf (p2 - q2) - \pq" 

= \pq [(p 2 - <z2) O4
 +PY +1) - W (p* - <i2)] = \PQ (i -1<?) 

\p*q (p2 - 3q2) + \pq (p2 - q2) (p* + q* - 6p2q2) + ^ptf (3p2 - q2) 

= pq (p2 - q2) (1 - 6>Y) = {PQ (1 - |Q 2) 

i>psq (p2 + 3q2) - \pq (p2 - q2)3 - \pq* (Sp2 + q2) 

= \pz (p2 - <f) C1 + 2pY -1 + 4/>Y) = l-fQ3 

we have 
F-f- —— \EPQ (1 - fQ2) cos 2e - E'PQ (1 - fQ2) cos e' - f t f 'TQ 3 cos 2e"^ 

9 
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As far as we are now interested, 

2 * , * ' = - 2 * / * = E^p* sin 2 « ? ! + Epy sin 2 e + E2\qs sin 2 e , 

- ^„"¥' = tfP.-V = E^py sin e/ + £ " ^ p Y (;>a - 5 s)8 sin e + E2'^pY sin e,' 

Hence 

-5- - = ^ p 8 sin 2 6 l + ^ 4 p V sin 2e 4 - #ag» sin 2 e 2 
u 8 

+ ^ ' 2 p Y sin t l ' 4- £ " 2 j > Y - ?2)2 sin e' + Ea'2p*q* sin e/ ( 2 1 ) 

If as in the last section we group the semi-diurnal and diurnal terms 
together and put Ex = E2= E, &c., and observe that 

p » + 4pY + qs = (p* + ?)> + 2 p y = (1 - iQ 2) 8 + iQ 4 = i12 + |Q 4, 
2 p Y + 2 ^ Y ( p 2 - 52)2 + 2 ^ Y = 4pY [p* + qi -py] = Q2 (1 - \ Q>), 

whence A*- ~ - = E(P5 + |Q 4) sin 2 e + i?'Q2 (1 - |Q'-) sin e' ( 2 2 ) 

§ 6. The equations of motion of the earth about its centre of inertia. 

In forming the equations of motion we are met by a difficulty, because 
the axes A, B, C are neither principal axes, nor can they rigorously be said 
to be fixed in the earth. But M. Liouville has given the equations of motion 
of a body which is changing its shape, using any set of rectangular axes which 
move in any way with reference to the body, except that the origin always 
remains at the centre of inertia. 

If A, B, C, D, E, F be the moments and products of inertia of the body 
about these axes of reference at any time; H,, H 2 , H 3 the moments of 
momentum of the motion of all the parts of the body relative to the 
axes; a>1, o j 2 , < b 3 the component angular velocities of the axes about their 
instantaneous positions, the equations may be written 

j t (Aw, - Vto, - EOJ, + HO + D (o 3

2 - <o.f) + (C - B) a>2<o3 

+ Fa^G)! — E&J2&)! 4 - &»2H3 — &>3H2 = L (23) 

and two other equations found from this by cyclical changes of letters and 
suffixes*. 

Now in the case to be considered here the axes A, B, C always occupy the 
average position of the same line of particles, and they move with very nearly 
an ordinary uniform precessional motion. Also the moments and products of 
inertia may be written A 4 - a', B 4 - b', C 4 - c', d', e', f", where a', b', c', d', e', f 
are small periodic functions of the time and a' 4 - b' 4 - c' = 0 , and where 

* R o u t h ' s Rigid Dynamics ( f i r s t e d i t i o n o n l y ) , p . 1 5 0 , o r m y p a p e r i n t h e Phil. Trans., 1 8 7 7 , 

V o l . 1 6 7 , p . 2 7 2 [ t o b e r e p r o d u c e d i n V o l . i n . ] . T h e o r i g i n a l i s i n Liouvilh's Journal, 2 n d s e r i e s , 

V o l . m . , 1 8 5 8 , p . 1 . 

n . I I . 4 
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B ^ + ( A - C ) « w 

C ^ + ( B - A ) 

de 
d t + n d + 

dU, 
dt + nU 

dd' 
- d t - n e + 

dH2 

dt -nR 

+ dll3 

~dt 

Y - ( 2 4 ) 

As before with the couples, so here, we are only interested in terms with the 
argument n in the small terms on the left-hand side of the first two of 
equations (24), and in non-periodic terms in the last of them. 

* E o u t h ' s Rigid Dynamics, 1 8 7 7 , p . 4 9 5 . 

A, B, C are the principal moments of inertia of the undisturbed earth, so that 
B is equal to A. 

The quantities a', b', &c, have in effect been already determined, as may 
be shown as follows: By the ordinary formula* the force function of the 

moon's action on the earth is h (A + B + C — 31), where I is the 
c 

moment of inertia of the earth about the line joining its centre to the moon, 
and is therefore 

= A*2 + By2 + O 2 + a V + b y + c'z> - 2d'yz - 2c''zx - 2i'xy 

But the first three terms of I only give rise to the ordinary precessional 
couples, and a comparison of the last six with (11) and (13) shows that 

a ' _ b ' _ c ' _ d ' _ e ' _ f ' _ T C 

a b c d e f g ' 
Also in the small terms we may ascribe to alt &>2, w3 their uniform pre

cessional values, viz.: a>l = — II cos n, co.2 = — II sin n, <o3 = — n. 

When these values are substituted in (23), we get some small terms of the 
form a ' l l 2 sin n, and others of the form a'II?i sin n ; both these are very small 
compared to the terms in 1L and —the fractions which express their 
relative magnitude being I I 2 / ' T and 1I«,/T. 

There is also a term — IIH 3 sin n, which I conceive may also be safely 
neglected, as also the similar terms in the second and third equations. 

I t is easy, moreover, to show that according to the theories of the tidal 
motion of a homogeneous viscous spheroid given in the previous paper, and 
according to Sir William Thomson's theory of elastic tides, H n H 2 , H 3 are all 
zero. Those theories both neglect inertia but the actuality is not likely to 
differ materially therefrom. 

Thus every term where m1 and a>2 occur may be omitted and the equations 
reduced to 

A ~ + (C - B) wa<o3 + n 
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Now for each term in the moon's potential, as developed in Section 1, 
there is (by hypothesis) a corresponding co-periodic flux and reflux through
out the earth's mass, and therefore the H 1 ; H 2 , H 3 must each have periodic 
terms corresponding to each term in the moon's potential. Hence the only 
term in the moon's potential to be considered is that with argument n, with 
respect to and H a in the first two equations; and H 3 may be omitted from 
the third as being periodic. 

Suppose that was equal to h cos n + h' sin n, then precisely as we 
found J t \ from TL by writing n — \ir for n we have H 2 = h sin n — h' cos n. 

dH dH 

Thus ^ 1 + «H 2 = 0, A — M H J = 0, and the H's disappear from the first two 

equations. 

Next retaining only terms in argument n in d' and e', we have from ( 1 0 ) 

e' = C j E'pq (p» -q'2)cos(n - e), d' = C - E'pq(p*-q2) sin (re - e') 

Therefore ^ + nd' = 0, ^ — me' = 0, and these terms also disappear. 

Lastly, put B = A, and our equations reduce simply to those of Euler, viz.: 

A ^ ! + ( C - A ) 

A ^ s - ( C - A ) W 3 W l = J t t > (25) 

Now ¿3 is small, and therefore w3 remains approximately constant and 
equal to — n for long periods, and as C — A is small compared to A, we may 
put o)s = — n in the first two equations. But when C — A is neglected com
pared to C, the integrals of these equations are the same as those of 

dt~ C dt G ' dt C K > 

apart from the complementary function, which may obviously be omitted. 
The two former of (26) give the change in the precession and the obliquity of 
the ecliptic, and the last gives the tidal friction. 
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§ 7. Precession and change of obliquity. 

By (17), (18), and (26) the equations of motion are 

da)-, ,, , 1 

—,r = l sinn + Gcosw 
dt 

-rr = — .b cos n + G sin n 
dt 

.(27) 

and by integration 

!>! = -[— F cos n + G sin n i OJ™ = - \— F sin re — G cos 7 i l (28) 
re J n 

The geometrical equations (1) give 

di 
% dt~ ~ Wl S m U W'1 C°S ?l 

d-Jr . . 

- ~ sm i = — w, cos n — <u2 sin n 

Therefore, as far as concerns non-periodic terms, 

di G a > . . F 
-,,= , ,T sini = - (29) 
dt n dt n 

If we wish to keep all the seven tides distinct (as will have to be done 

later), we may write down the result for ^ and from (15) and (16). 
But it is of more immediate interest to consider the case where the semi

diurnal tides are grouped together, as also the diurnal ones. In this case we 
have by (19) 

di T 2 

I t = gre [ l P Q ( 1 ~ ^ E s i n 2 e + i P Q 3 E ' s i n 6 ' ~ I Q 3 £ " 8 i n 2 e " ] ( 3 0 ) 

and since sin i = Q 

= £ ( | p (i _ |Q.) E cos 2e - P (1 - ¡0») tf'cos e' - lPQ*E" cos 2e"j (31) 

In these equations P and Q stand for the cosine and sine of the obliquity 
of the ecliptic. 

Several conclusions may be drawn from this result. 

If e, e', e" arc zero the obliquity remains constant. 

Now if the spheroid be perfectly elastic, the tides do not lag, and therefore 
the obliquity remains unchanged; it would also be easy to find the correction 
to the precession to be applied in the case of elasticity. 

It is possible that the investigation is not, strictly speaking, applicable to 
the case of a perfect fluid; I shall, however, show to what results it leads if 

IRIS - LILLIAD - Université Lille 1 



1879] PRECESSION OF A LIQUID SPHEROID. 53 
we make the application to that case. Sir William Thomson has shown that 
the period of free vibration of a fluid sphere of the density of the earth would 
be about 1 hour 34 minutes*. And as this free period is pretty small com
pared to the forced period of the tidal oscillation, it follows that E, E', E", 
will not differ much from unity. Putting them equal to unity, and putting 
e, e, e" zero, since the tides do not lag, we find that the obliquity remains 
constant, and 

w=- £ *p ( 1 - *«=- *p c o s i ( l - *sin° { ) ( 3 2 ) 

This equation gives the correction to be applied to the precession as 
derived from the assumption that the rotating spheroid of fluid is rigid. 
This result is equally true if all the seven tides are kept distinct. Now if the 
spheroid were rigid its precession would be re cos ijn, where e is the ellipticity 
of the spheroid. 

The ellipticity of a fluid spheroid rotating with an angular velocity n is 
%n*a/g or \n2JQ; but besides this, there is ellipticity due to the non-periodic 
part of the tide-generating potential. 

By (3) § 1 the non-periodic part of V is \ w T r 2 ( \ — cos2 — 6p252); such 

a disturbing potential will clearly produce an ellipticity £ - (1 — 6p"q"). 

S 
If therefore we put e0 = \ —, and remember that ftp* a* = § sin2 i, we have 

S 
e = e„ + i ^ (1 - | sin2 i) 

Hence if the spheroid were rigid, and had its actual ellipticity, we should 
have 

§f = —0 cos i + i — cos i (1 -1 sin2 i) (32') 
dt n 2 %n v * ' v ' 

Adding (32') to (32), the whole precession is 

§ = T < 3 W (32") 
dt n ' 

We thus see that the effect of the non-periodic part of the tide-generating 
potential, which may be conveniently called a permanent tide, is just such as 
to neutralise the effects of the tidal action. The result (32") may be ex
pressed as follows: 

The precession of a fluid spheroid is the same as that of a rigid one which 
has an ellipticity equal to that due to the rotation of the spheroid. 

* Phil. Trans., 1 8 6 3 , p . 6 0 8 . 
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From this it follows that the precession of a fluid spheroid will differ by 
little from that of a rigid one of the same ellipticity, if the additional 
ellipticity due to the non-periodic part of the tide-generating influence is 
small compared with the whole ellipticity. 

Sir William Thomson has already expressed himself to somewhat the same 
effect in an address to the British Association at Glasgow*. 

flz
 . . . T 

Since e0 = A —, the criterion is the smallness of — . 
I t may be expressed in a different form; for T / H 2 is small when {jefii) n 

is small compared with e, and (re/n) 4 - n is the reciprocal of the precessional 
period expressed in days. Hence the criterion may be stated thus: The 
precession of a fluid spheroid differs by little from that of a rigid one of the 
same ellipticity, when the precessional period of the spheroid expressed in 
terms of its rotation is large compared with the reciprocal of its ellipticity. 

In his address, Sir William Thomson did not give a criterion for the case 
of a fluid spheroid without any confining shell, but for the case of a thin rigid 
spheroidal shell enclosing fluid he gave a statement which involves the above 
criterion, save that the ellipticity referred to is that of the shell itself; for he 
says, " The amount of this difference (in precession and nutation) bears the 
same proportion to the actual precession or nutation as the fraction measuring 
the periodic speed of the disturbance (in terms of the period of rotation as 
unity) bears to the fraction measuring the interior ellipticity of the shell." 

This is, in fact, almost the same result as mine. 

This subject is again referred to in Part III . of the succeeding paper. 

§ 8. The disturbing action of the sun. 

Now suppose that there is a second disturbing body, which may be con
veniently called the sunf. 

* S e e Nature, S e p t e m b e r 1 4 , 1 8 7 6 , p . 4 2 9 . [ S e e G - . H . B r y a n , Phil. Trans., V o l . 1 8 0 , A ( 1 8 8 9 ) , 

p . 1 8 7 . ] 

•f- I t i s n o t a t f i r s t s i g h t o b v i o u s h o w i t i s p h y s i c a l l y p o s s i b l e t h a t t h e s u n s h o u l d e x e r c i s e a n 

i n f l u e n c e o n t h e m o o n - t i d e , a n d t h e m o o n o n t h e s u n - t i d e , s o a s t o p r o d u c e a s e c u l a r c h a n g e i n 

t h e o b l i q u i t y o f t h e e c l i p t i c a n d t o c a u s e t i d a l f r i c t i o n , f o r t h e p e r i o d s o f t h e s u n a n d m o o n 

a b o u t t h e e a r t h a r e d i f f e r e n t . I t s e e m s , t h e r e f o r e , i n t e r e s t i n g t o g i v e a p h y s i c a l m e a n i n g t o t h e 

e x p a n s i o n o f t h e t i d e - g e n e r a t i n g p o t e n t i a l ; i t w i l l t h e n b e s e e n t h a t t h e i n t e r a c t i o n w i t h w h i c h 

w e a r e h e r e d e a l i n g m u s t o c c u r . 

T h e e x p a n s i o n o f t h e p o t e n t i a l g i v e n i n S e c t i o n 1 i s e q u i v a l e n t t o t h e f o l l o w i n g s t a t e m e n t : — 

T h e t i d e - g e n e r a t i n g p o t e n t i a l o f a m o o n o f m a s s m , m o v i n g i n a c i r c u l a r o r b i t o f o b l i q u i t y i 

a t a d i s t a n c e c , i s e q u a l t o t h e t i d e - g e n e r a t i n g p o t e n t i a l o f t e n s a t e l l i t e s a t t h e s a m e d i s t a n c e , 

w h o s e o r b i t s , m a s s e s , a n d a n g u l a r v e l o c i t i e s a r e a s f o l l o w s : — 
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I I cosec i must henceforth be taken as the full precession of the earth, and 
the time may be conveniently measured from an eclipse of the sun or moon. 

1. A SATELLITE OF MASS jn COS4 MOVING IN THE EQUATOR IN THE SAME DIRECTION AND WITH THE, 

SAME ANGULAR VELOCITY AS THE MOON, AND COINCIDENT WITH IT AT THE NODES. THIS GIVES THE s l o w 

SEMI-DIURNAL TIDE OF SPEED 2 (n - ii). 

2. A SATELLITE OF MASS M SIN 4 J I , MOVING IN t h e EQUATOR IN THE OPPOSITE DIRECTION FROM THAT OF 

THE MOON, BUT WITH THE SAME ANGULAR VELOCITY, AND COINCIDENT WITH IT AT THO NODES. THIS GIVES 

THE FAST SEMI-DIURNAL TIDE OF SPEED 2 (N + Q). 

3. A SATELLITE OF MASS m . 2 SIN2 JT COS2 £ I , FIXED AT THE m o o n ' S NODE. THIS GIVES THE SIDEREAL 

SEMI-DIURNAL TIDE OF SPEED 2N. 

4. A REPULSIVE SATELLITE OF MASS - M . 2 SIN J I COS3 J I , MOVING IN N . DECLINATION 4J° WITH 

TWICE THE MOON'S ANGULAR VELOCITY, IN THE SAME DIRECTION AS THE MOON, AND ON THE COLURE 9 0 ° IN 

ADVANCE OF THE MOON, WHEN SHE IS IN HER NODE. 

5. A SATELLITE OF MASS m SIN i COS3 MOVING IN THE EQUATOR WITH TWICE THE MOON'S ANGULAR 

VELOCITY, AND IN THE s a m e DIRECTION, AND ALWAYS ON THE SAME MERIDIAN AS THE FOURTH SATELLITE. 

(4) AND (5) GIVE THE SLOW DIURNAL TIDE OF SPEED n - 2(1. 

6. A SATELLITE OF MASS M SIN 3 £ I COS J I , MOVING i n N . DECLINATION 4 5 ° WITH TWICE THE m o o n ' S 

ANGULAR VELOCITY, BUT IN THE OPPOSITE' DIRECTION, AND ON THE COLURE 90° IN ADVANCE OF THE MOON 

WHEN SHE i s IN HER NODE. 

7. A REPULSIVE SATELLITE OF MASS - M . \ SIN 3 J T COS J i, MOVING IN THE EQUATOR WITH TWICE THE 

m o o n ' S ANGULAR VELOCITY, BUT i n THE OPPOSITE DIRECTION, AND ALWAYS ON THE SAME MERIDIAN AS THE 

SIXTH SATELLITE. (6) AND (7) GIVE THE FAST DIURNAL TIDE OF SPEED n + 2Q. 

8. A SATELLITE OF MASS m SIN i COS i FIXED i n N . DECLINATION 4 5 ° ON THE COLURE. 

9. A REPULSIVE SATELLITE OF MASS - m . J SIN i COS 2 , FIXED IN THE EQUATOR ON THE SAMI MERIDIAN 

AS THE EIGHTH SATELLITE. (8) AND (9) GIVE THE SIDEREAL DIURNAL TIDE OF SPEED n. 

10. A RING OF MATTER OF MASS M, ALWAYS PASSING THROUGH THE m o o n AND ALWAYS PARALLEL TO 

THE EQUATOR. THIS RING, OF COURSE, EXECUTES A SIMPLE HARMONIC MOTION IN DECLINATION, AND ITS 

MEAN POSITION IS THE EQUATOR. THIS GIVES THE FORTNIGHTLY TIDE o f SPEED 2 0 . 

NOW IF WE FORM THE POTENTIALS OF EACH OF THESE SATELLITES, AND o m i t THOSE PARTS WHICH, BEING 

INDEPENDENT OF THE TIME, ARE INCAPABLE OF RAISING TIDES, AND ADD THEM ALTOGETHER, WE SHALL OBTAIN 

THE EXPANSION FOR THE MOON'S TIDE-GENERATING POTENTIAL USED ABOVE; HENCE THIS B y s t e m OF SATELLITES 

¡3 MECHANICALLY EQUIVALENT TO THE ACTION OF THE MOON ALONE. THE SATELLITES 1, 2, 3 , IN FACT, GIVE 

THE SEMI-DIURNAL OR $ TERMS; SATELLITES 4, 5 , 6, 7, 8, 9 g i v e THE DIURNAL o r ^ TERMS; AND SATEL

LITE 1 0 GIVES THE FORTNIGHTLY OR X TERM. 

THIS IS ANALOGOUS TO " Q a u s B ' S WAY OF STATING THE CIRCUMSTANCES ON WHICH 'SECULAR' VARIATIONS 

IN THE ELEMENTS OF THE SOLAR SYSTEM DEPEND " ; AND THE ANALYSIS WAS SUGGESTED TO m e BY A PASSAGE 

IN THOMSON a n d TAIT'S Natural Philosophy, § 8 0 9 , REFERRING TO THE ANNULAR SATELLITE 10 . 

IT WILL APPEAR i n SECTION 2 2 THAT THE 3RD, 8TH, a n d 9TH SATELLITES, WHICH ARE FIXED IN THE 

HEAVENS AND WHICH g i v e THE SIDEREAL TIDES, ARE EQUIVALENT TO A DISTRIBUTION OF THE MOON'S MASS 

IN THE FORM OF A UNIFORM CIRCULAR RING COINCIDENT WITH HER ORBIT. AND PERHAPS SOME OTHER 

SIMPLER PLAN MIGHT b e GIVEN WHICH WOULD REPLACE THE OTHER REPULSIVE SATELLITES. 

THESE TIDES, HERE CALLED " SIDEREAL," ARE KNOWN, IN THE REPORTS OF THE BRITISH ASSOCIATION ON 

TIDES FOR 1872 AND 187FI, AS THE K TIDES [SEE VOL. 1 . , PAPER 1 ] . 

IN A PRECISELY SIMILAR WAY, IT IS CLEAR THAT THE SUN'S INFLUENCE MAY BE ANALYSED INTO THE 

INFLUENCE OF NINE OTHER SATELLITES AND ONE RING, OR e l s e TO SEVEN SATELLITES AND TWO RINGS. THEN, 

WITH REGARD TO t h e INTERACTION OF SUN AND MOON, IT IS CLEAR THAT THOSE SATELLITES OF EACH SYSTEM 

WHICH ARE FIXED IN e a c h SYSTEM (VIZ.: 3 , 8 , AND 9 ) , OR THEIR EQUIVALENT RINGS, WILL n o t ONLY EXERCISE 

AN INFLUENCE ON THE TIDES RAISED BY THEMSELVES, BUT EACH WILL NECESSARILY EXERCISE AN INFLUENCE ON 

IRIS - LILLIAD - Université Lille 1 



Let m„ e, be the sun's mass and distance; O, the earth's angular velocity in a 

circular orbit; and let T , = f —'. 

I t would be rigorously necessary to introduce a new set of quantities to 
give the heights and lagging of the seven solar tides: but of the three solar 
semi-diurnal tides, one has rigorously the same period as one of the three 
lunar semi-diurnal tides (viz.: the sidereal semi-diurnal with a speed 2») , and 
the others have nearly the same period; a similar remark applies to the solar 
diurnal tides. Hence we may, without much error, treat E, e, E', e' as the 
same both for lunar and solar tides; but E'", e" must replace E", e", because 
the semi-annual replaces the fortnightly tide. 

If new auxiliary functions <i>/t W,, Xt be introduced, the whole tide-
generating potential V per unit volume of the earth at the point rf, rr/, is 
given by 

X = - ( T * + T f ^ ) ( f * _ n*) &c. 

Next if, as in (10), we put 

c - b = <&„ + X t , &c, c, - b, = <& e + Xlt, &o. 

the equation to the tidaily-distorted earth is r = a + a + a,, where 

T a T , a 

Also if x, y, z and w,, y,, zt be the moon's and sun's direction cosines, we 
have as in (7) , 

y>- - ^ = (j, + X + i (1 - 6pV). &c, y* - z'f = <t>, + X, + \(1 - 6p2q2), &c. 

Then using the same arguments as in Section 3 , the couples about the 
three axes in the earth may be found, and we have 

1L 
C 

ÏL ( / d d \ , ' ( T t r 1 \ ( d d \ / t r a: 

C = - r [y dz - Z dy) U + a ) + T ' Tz,'21 dy) (a + a. 

where in the first term x, y, z are written for y, Ç in rr + trand in the second 
term x/t ylt zt are similarly written for £, y, %. 

Now let lL m 2, lLm/i, ILmm, indicate the parts of the couple % which depend 
on the moon's action on the lunar tides, the sun's action on the solar tides, 

t h e t i d e s r a i s e d b y t h e o t h e r , s o a s t o p r o d u c e t i d a l f r i c t i o n . A l l t h e o t h e r s a t e l l i t e s w i l l , o f 

c o u r s e , a t t r a c t o r r e p e l t h e t i d e s o f a l l t h e o t h e r s a t e l l i t e s o f t h e o t h e r s y s t e m s ; b u t t h i s i n t e r 

a c t i o n w i l l n e c e s s a r i l y b e p e r i o d i c , a n d w i l l n o t c a u s e a n y i n t e r a c t i o n i n t h e w a y o f t i d a l f r i c t i o n 

o r c h a n g e o f o b l i q u i t y , a n d a s s u c h p e r i o d i c i n t e r a c t i o n i s o f n o i n t e r e s t i n t h e p r e s e n t i n v e s t i g a 

t i o n i t m a y b e o m i t t e d f r o m c o n s i d e r a t i o n . I n t h e a n a l y s i s o f t h e p r e s e n t s e c t i o n , t h i s o m i s s i o n 

o f a l l b u t t h e f i x e d s a t e l l i t e s a p p e a r s i n t h e f o r m o f t h e o m i s s i o n o f a l l t e r m s i n v o l v i n g t h e m o o n ' s 

o r s u n ' s a n g u l a r v e l o c i t y r o u n d t h e e a r t h . 
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and the moon's and sun's action on the solar and lunar tides respectively, then 

Obviously 

" t P *f=(C -B> y<*>+<c< -b') y+&c-

As before, we only want terms with argument n in 1 f f l r a / , jfflmm,, and non-
periodic terms in jfj m ,„ , . 

The quantities a, b, &c, x, y, z with suffixes differ from those without in 
having 12, in place of £1, and it is clear that no combination of terms which 
involve 12, and 12 can give the desired terms in the couples. Hence, as far as 
TLmm,, ffllmm,, iHtmm, are concerned, the auxiliary functions may be abridged 
by the omission of all terms involving 12 or Qr 

Therefore, from (4), we now simply have 
$ = <I>, = p 2 g 2 cos 2«, V = = - 2pq(pi - q*) cos n, X = X , = 0 

But c — b only differs from c, — b, in that the latter involves f2, instead of 
12, and the same applies to yz and ytzr 

Hence, as far as we are now concerned, 

( c ~ b ) y,z, = {<st-h)yz . 

and similarly each pair of terms in % m m i are equal inter se. 

Thus + ^ = ( c - b) yz - d (f - z>) - exy + fear 

Comparing this with#(14), when X is put equal to zero, we have 

% * + 4 y ^ = - i * . ^ + {* + i ( l - W ) } - + i * . " * 

This quantity may be evaluated at once by reference to (15), (16), and 
(17), for it is clear that H m m , is what 7Llrfl becomes when 2?j = E2 = 0, 
Ei = E2' = 0, and when 2 T T , replaces T 2 . 

% 
If, therefore, we put — = Fmmi sin n + G m m / cos n, and remark that 

4pY (p 2 - g2) = l-PQ3, 2pq (p* - g2) ( y + q* - 6Py) = PQ (1 - 2Q2) 
2p? (p s - g2)8 = P aQ 

we have by selecting the terms in E, E' out of (15) and (16), 

F m M l / + ^ = - l ^ P O " cos 2e - E'PQ (1 - 2Q2) cos e ' 

G m r f l , ^ = } JfPQ" sin 26 + E'P3Q sin e ' 
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I t may be shown in a precisely similar way by selecting terms out of (21) 
that 

^.rL = ^EQi sin2e + E'P*Q> sin e' (34) 
^ 8 

It is worthy of notice that (33) and (34) would be exactly the same, even 
if we did not put El = E3 = E; E( = E( = E' \ e l = e2 = e; e/ = e a' = e, because 
these new terms depend entirely on the sidereal semi-diurnal and diurnal 
tides. The new expressions which ought rigorously to give the heights and 
lagging of the solar semi-diurnal and diurnal tides would only occur in TLmii. 

In the two following sections the results are collected with respect to the 
rate of change of obliquity and with respect to the tidal friction. 

§ 9. The rate of change of obliquity due to both sun and moon. 

di 

The suffixes m", m,2, mml to will indicate the rate of change of obliquity 

due. to the moon alone, to the sun alone, and to the sun and moon jointly. 
Writing for P and Q their values, cosi and sim', we have by (19) and 

(29), or by (30), 
nfH di 

dt 
= \ sin i cos i (1 — \ sin2 i) E sin 2e + J sin3 i cos i E's'me' 

-ism2 iE" sm2e" 
ng di. ™- = A sini cos i(l dt 2 v ; sin2 i) E sin 2e + f sin3 i cos i E'sin e' 

-$ sin3iE'"sin 2e" . 

.(35) 

and by (33) and analogy with (19) and (29) 

?ig di 
dt 

- = — \ sin3 i cos i E sin 2e — sin i coss i E' sin e' .(36) 

di 
di The sum of these three values of ~ gives the total rate of change of 

obliquity due both to sun and moon, on the assumption that the three semi
diurnal terms may be grouped together, as also the three diurnal ones. 

I t will be observed that the joint effect tends to counteract the separate 
effects; this arises from the fact that, as far as regards the joint effect, the 
two disturbing bodies may be replaced by rings of matter concentric with the 
earth but oblique to the equator, and such a ring of matter would cause the 
obliquity to diminish, as was shown by general considerations, in the abstract 
of this paper (Proc. Hoy. Soc, No. 191, 1878)*, must be the case. 

* [ P o r t i o n o f t h i s a b s t r a c t i s g i v e n i n a n A p p e n d i x t o t h i s p a p e r . ] 
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§ 10. The rate of tidal friction dm to both sun and moon. 

The equation which gives the rate of retardation of the earth's rotation is 

by (26) = ; it will however be more convenient henceforward to replace 

a>3 by — n and to regard n as a variable, and to indicate by »„ the value of n 
at the epoch from which the time is measured. 

Generally the suffix 0 to any symbol will indicate its value at the epoch. 
The equation of tidal friction may therefore be written 

dt \nj Cn0 Gn0 Cn0 ^' ' 
By (22) and (34), in which the semi-diurnal and diurnal terms are 

grouped together, we have 

(S10) "H?=(cos2 *+*sin< E s i n 2 e + s i n 2 * ~ * s in2 *) E' s i n e') 

(%n0\ j a ™ 

\TT,. Cn0 

^ sin4 iE sin 2e + sin2 i cos2 iE' sin e 

§11. : 7 7 i e rate q/" change of obliquity when the earth is viscous. 

In order to understand the physical meaning of the equations giving the 
rate of change of obliquity (viz., (35) and (36) if there be two disturbing 
bodies, or (29) if there be only one) it is necessary to use numbers. The 
subject will be illustrated in two cases: first, for the sun, moon, and earth 
with their present configurations; and secondly, for the case of a planet 
perturbed by a single satellite. For the first illustration I accordingly 
take the following data: gr = 32 ,19 (feet, seconds), the earth's mean radius 
u.= 20 '9x l0 8 feet, the sidereal day '9973 m. s. days, the sidereal year 
= 365'256 m. s. days, the moon's sidereal period 27"3217 m. s. days, the ratio 
of the earth's mass to that of the moon v = 82, and the unit of time the 
tropical year 36'5'242 m. s. days. 

With these values we have 
na —2TT^- "9973 in radians per m. s. day 

T = | x B»j of 4 7 T 2 (month)2 

T = -| of 4 7 r 2 -4- (sidereal year)2 
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It will be found that these values give 

T 2 . . . 

— = '6598 degrees per million tropical years; 

£= , 1 4 2 B - " " i <39> 
S=-3064 -

These three quantities will henceforth be written M 2, U2, uur 

For the purpose of analysing the physical meaning of the differential 

equations for — and ^- (—^ , no distinction will be made between — and ^ dt dt \n0J gw 
T 2 

— , &c, for it is here only sought to discover the rates of changes. But 
when we come to integrate and find the total changes in a given time, regard 
will have to be paid to the fact that both T and n are variables. 

For the immediate purpose of this section the numerical values of u2, u2, 
uut given in (39), will be used. 

I will now apply the foregoing results to the particular case where the 
earth is a viscous spheroid. 

Let a = , where v is the coefficient of viscosity. 

Then by the theory of bodily tides as developed in my last paper 

A' = cos2e, E' = cose', E" = cos2e", E'" = cos 2e" -I 
, , 2n t , n . _ „ 212 „, 212, [•••(4«) tan2e = —, t a n e = - , tan 2e = — , tan 2e =—-

P P P P ' 
Rigorously, we should add to these 

Ei — cos2el, E.2 = cos2e2, £7 = 0 0 8 6 , ' , E2' = cos e/ 

. _ 2 ( n - f l ) , _ 2(n + fl) . , n-2il .. , n + 2&\ 
tan 2f! --- — , tan 2e2 = - , tan e/ = , tan e2 = 

P P P P> 
(40') 

But for the present we classify the three semi-diurnal tides together, as 
also the three diurnal ones. 

Then we have 

di 

^ = [A sin i cos i (1 — f sin2 i) sin 4e + § sinn i cos 1 sin 2e'] (tta + uf) 

— T

?

B sin3 i sin 4e"w2 — f$ sin3 i sin 46'"«./ 
— {\ sin3 i cos i sin 4e + £ sin i cos3 i sin 2e') itw, 
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F I G . 2 . D i a g r a m s h o w i n g t h e r a t e o f c h a n g e o f o b l i q u i t y f o r v a r i o u s d e g r e e s o f v i s c o s i t y o f t h e 

p l a n e t , w h e r e t h e r e a r c t w o d i s t u r b i n g b o d i e s . 

Xow 

\ sin i cos i (1 — | sin3 i) = fa sin 2i (5 + 3 cos 2i) = fa (5 sin 2i + 1 sin 4i) 

| sin3 i cos { = ^ sin 2i (1 — cos 2t) = fa (2 sin 2« — sin 4i) 

T

3

a sin3 ¿ = ^ ( 3 sin i - sin 3i), ^ sin3 i cos i = (2 sin 2i — sin 4i) 

£ sin i cos' i = | sin 2i (1 -f- cos 2i) = (2 sin 2i + sin 4i) 

di 
If these transformations be introduced, the equation for -j- may be written 
di \ 

64 -j- = - 9 (w2 sin 4e" + it/ sin 46'") sin i + 3 ( m 2 sin 4e" + m / sin 4e";) sin 3i 

+ [(5 sin 4e + 6 sin 2e') (w2 + w,2) - (4 sin 4e + 8 sin 2e') wit J sin 2 i ' 

+ [(I sin 4e - 3 sin 2e') (u* + w,2) + (2 sin 4e - 4 sin 2e) m m ] sin 4i. 

(41) 
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.(42) 

Substituting for a and ut their numerical values (39), and omitting the 
term depending on the semi-annual tide as unimportant, I find 

rfi 
64 5- = - 5-9378 sin 4e" sin i + 1-9793 sin 4e" sin 3i at 

+ {2-7846 sin 4e + 2-3611 sin 2e'} sin 2i 

+ {1-8159 sin 4e - 3 6317 sin 2e'} sin 4i 

The numbers are such that is expressed in degrees per million years. 
Cub 

di 
The various values which is capable of assuming as the viscosity and 

obliquity vary are best shown graphically. In figs. 2 and 3, each curve cor
responds to a given degree of viscosity, that is to say to a given value of e, 

F I G . 3 . D i a g r a m s h o w i n g t h e r a t e o f c h a n g e o f o b l i q u i t y w h e n t h e v i s c o s i t y i s v e r y g r e a t , a n d 

w h e r e t h e r e a r o t w o d i s t u r b i n g b o d i e s . 
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and the ordinates give the values of as the obliquity increases from 0° to 

90°. The scale at the side of each figure is a scale of degrees per hundred 
million years—e.g., if we had e = 30° and i about 57°, the obliquity would be 
increasing at the rate of about 3° 45' per hundred million years. 

The behaviour of this family of curves is so very peculiar for high degrees 
of viscosity, that I have given a special figure (viz.: fig. 3) for the viscosities 
for which e = 40°, 41°, 42°, 43°, 44°. 

The peculiarly rapid variation of the forms of the curves for these values 
of e is due to the rising of the fortnightly tide into prominence for high 
degrees of viscosity. The matter of the spheroid is in fact so stiff that there 
is not time in 12 hours or a day to raise more than a very small tide, whilst 
in a fortnight a considerable lagging tide is raised. 

For e = 44° the fortnightly tide has risen to give its maximum effect 
(i.e., sin4e"= 1), whilst the effects of the other tides only remain evident in 
the hump in the middle of the curve. Between e = 44° and 45° the ordinates 
of the curve diminish rapidly and the hump is smoothed down, so that when 
e = 45° the curve is reduced to the horizontal axis. 

By the theory of Paper 1, the values of e when divided by 15 give the 
corresponding retardation of the bodily semi-diurnal tide—e.g., when e = 30° 
the tide is two hours late. Also the height of the tide is cos 2e of the height 
of the equilibrium tide of a perfectly fluid spheroid—e.g., when e = 30° the 
height of tide is reduced by one-half. In the tables given in Part I., 
Section 7, of Paper 1, will be found approximate values of the viscosity 
corresponding to each value of e. 

The numerical work necessary to draw these figures was done by means of 
Crelle's multiplication table, and as to fig. 2 in duplicate mechanically with a 
sector; the ordinates were thus only determined with sufficient accuracy to 
draw a fairly good figure. For the two figures I found 108 values of each of 

di 
the seven terms of (nine values of i and twelve of e), and from the seven 

Ctu 

tables thus formed, the values corresponding to each ordinate of each member 
of the family were selected and added together. 

From this figure several remarkable propositions may be deduced. When 
the ordinates are positive, it shows that the obliquity tends to increase, and 
when negative to dimmish. Whenever, then, any curve cuts the horizontal 
axis there is a position of dynamical equilibrium; but when the curve passes 
from above to below, it is one of stability, and when from below to above, of 
instability. I t follows from this that the positions of stability and instability 
must occur alternately. When e = 0° or 45° (fluidity or rigidity) the curve 
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reduces to the horizontal axis, and every position of the earth's axis is one of 
neutral equilibrium. 

But in every other case the position of 90° of obliquity is not a position 
of equilibrium, but the obliquity tends to diminish. On the other hand, from 
e = 0° to about 30° (infinitely small viscosity to tide-retardation of two hours), 
the position of zero obliquity is1 one of dynamical instability, wrhilst from then 
onwards to rigidity it becomes a position of stability. 

For viscosities ranging from e = 0° to about 42-}° there is a position of 
stability which lies between about 50° to 87° of obliquity; and the obliquity 
of dynamical stability diminishes as the viscosity increases. 

For viscosities ranging from e = 30° nearly to about 42^°, there is a second 
position of dynamical equilibrium, at an obliquity which increases from 0° to 
about 50°, as the viscosity increases from its lower to its higher value. But 
this position is one of instability. 

From e = about 42^° there is only one position of equilibrium, and that 
stable, viz.: when the obliquity is zero. 

If the obliquity be supposed to increase past 90°, it is equivalent to sup
posing the earth's diurnal rotation reversed, whilst the orbital motion of the 
earth and moon remains the same as before; but it did not seem worth while 
to prolong the figure, as it would have no applicability to the planets of the 
solar system. And, indeed, the figure for all the larger obliquities would 
hardly be applicable, because any planet whose obliquity increased very much, 
must gradually make the plane of the orbit of its satellite become inclined 
to that of its own orbit, and thus the hypothesis that the satellite's orbit 
remains coincident with the ecliptic would be very inexact. 

I t follows from an inspection of the figure that for all obliquities there are 
two degrees of viscosity, one of which will make the rate of change of 
obliquity a maximum and the other minimum. A graphical construction 
showed that for obliquities of about 5° to 20°, the degree of viscosity for a 
maximum corresponds to about e= l7£°* , whilst that for a minimum to 
about e = 40°. In order, however, to check this conclusion, I determined the 
values of e analytically when i = 15°, and when the fortnightly tide (which 
has very little effect for small obliquities) is neglected. I find that the 
values are given by the roots of the equation 

a? + Wx2 + 13-660« - 20-412 = 0, where x = 3 cos 4e 

This equation has three real roots, of which one gives a hyperbolic cosine, 

* I m a y h e r e m e n t i o n t h a t I f o u n d w h e n e = 1 7 ^ ° , t h a t i t w o u l d t a k e a b o u t a t h o u s a n d 

m i l l i o n y e a r s f o r t h e o b l i q u i t y t o i n c r e a s e f r o m 5 ° t o 2 3 J " , i f r e g a r d w a s o n l y p a i d t o t h i s 

e q u a t i o n o f c h a n g e o f o b l i q u i t y . T h e e q u a t i o n s o f t i d a l f r i c t i o n a n d t i d a l r e a c t i o n w i l l , 

h o w e v e r , e n t i r e l y m o d i f y t h e a s p e c t s o f t h e c a s e . 
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and the other two give e = 1 8 D 15' and 6 = 41° 37'. This result therefore 
confirms the geometrical construction fairly well. 

It is proper to mention that the expressions of dynamical stability and 
instability are only used in a modified sense, for it will be seen when the 
effects of tidal friction come to be included, that these positions are continually 
shifting, so that they may be rather described as positions of instantaneous 
stability and instability. 

I will now illustrate the case where there is only one satellite to the 
planet, and in order to change the point of view, I will suppose that the 
periodic time of the satellite is so short that we cannot classify the semi
diurnal and diurnal terms together, but must keep them all separate. 

Suppose that n = 5fl; then the speeds of the seven tides are proportional 
to the following numbers, 8, 10, 12 (semi-diurnal); 3, 5, 7 (diurnal); 2 (fort
nightly). 

These are all the data which are necessary to draw a family of curves 
similar to those in figs. 2 and 3, because the scale, to which the figure is 
drawn, is determined by the mass of the satellite, the mass and density of the 
planet, and the actual velocity of rotation of the planet. 

By (16) and (29) we have 

di' T 2 

-j = —- \\p7q sin 4ej — p3q> (p 2 — q2) sin 4e — ^pq7 sin 4e2 — f p3q3 sin 4e" 
Clt wl 

+ IP'q (p 2 + 3g2) sin 2e/ - \pq (p2 - qj sin 2e - \pq* (3p2 + q2) sin 2e./] 

where p = cos \i and q = sin ^i. 
This equation may be easily reduced to the form 

It = ^ s i n * s m 4 e i _
 1 0 s i n 4e2 + 16 sin 2e/ - 16 sin 2e/ - 12 sin 4e"] 

+ cos i [15 sin 4«! — 4 sin 4e + 15 sin 4e2 + 18 sin 2e,' - 24 sin 2e + 18 sin 2e2'] 

+ cos 2i [6 sin 4>e1 — 6 sin 4e2 + 12 sin 4e"] 

+ cos 3{ [sin 4ej + 4 sin 4e + sin 4e2 — 2 sin 2e/ — 8 sin 2e' - 2 sin 2e2']} 

which is convenient for the computation of the ordinates of the family of 
di 

curves which illustrate the various values of ~ for various obliquities and 

viscosities. 
In fig. 4, the lag (e) of the sidereal semi-diurnal tide is taken as the standard 

of viscosity. The abscissse represent the various obliquities of the planet's 
equator to the plane of the satellite's orbit; the ordinates represent the values 

i ) , u . 5 
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of ^the actualscale depending on the value of a n ^ each curve repre-
di 
dt \ *· ° $r, 

sents one degree of viscosity, viz.: -when e = 10°, 20°, 30°, 40° and 44°. 

The computation of the ordinates was done by Crelle's three-figure 
multiplication table, and thus the figure does not profess to be very rigorously 
exact. 

F r o . 4 . D i a g r a m s h o w i n g t h e r a t e o f c h a n g e o f o b l i q u i t y f o r v a r i o u s d e g r e e s o f v i s c o s i t y 

o f t h e p l a n e t , w h e r e t h e r e i s o n e d i s t u r b i n g b o d y . 

This family of curves differs much from the preceding one. For moderate 
obliquities there is no degree of viscosity which tends to make the obliquity 
diminish, and thus there is no position of dynamically unstable equilibrium of 
the system except that of zero obliquity. Thus we see that the decrease of 
obliquity for small obliquities and large viscosities in the previous case was 
due to the attraction of the sun on the lunar tides and the moon on the 
solar tides. 

In the present case the position of zero obliquity is never stable, as it was 
before. The dynamically stable position at a large obliquity still remains as 
before, but in consequence of the largeness of the ratio XI -~ n (^th instead of 
g V ^ h ) , this obliquity of dynamical stability is not nearly so great as in the 
previous case. As the ratio Q - r n increases, the position of dynamical stability 
is one of smaller and smaller obliquity, until when 12 -f- n is equal to a half, 
zero obliquity becomes stable,—as we shall see later on. 
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§ 12. Rate of tidal friction when the earth is viscous. 

If in the same way the equations (37) and (38) be applied to the case 
where the earth is purely viscous, when the semi-diurnal and diurnal tides 
are grouped together, we have 

-jTQ^J = (« s + "/) [ i (cos2 i + f sin4 i) sin 4 e + £ sin2 i (1 - \ s i n 2 1) sin 2e']j 

-f uut s in 4 1 sin 4 e + £ sin2 i cos2 i sin 2 e ' ] J 
( 4 3 ) 

Fig. 5 exhibits the various values of ̂ - (^J for the various obliquities and 

di 
degrees of viscosity, just as the previous figures exhibited ^ . The calculations 
were done in the same way as before, after the various functions of the 
obliquity were expressed in terms of cos 2 i and cos 4i. 

t— 0 10° 2 0 * 3 o ° 40° 5 0 s ffo* 70» a o * 9<3° 

F i o . 5 . D i a g r a m s h o w i n g t h e a m o u n t o f t i d a l f r i c t i o n f o r v a r i o u s v i s c o s i t i e s a n d o b l i q u i t i e s , 

w h e r e t h e r e a r e t w o d i s t u r b i n g b o d i e s . 

The only remarkable point in these curves is that, for the higher degrees 
of viscosity, the tidal friction rises to a maximum for about 4 5 ' 3 of obliquity. 
The tidal friction rises to its greatest value when e = 22^° nearly; this is 
explained by the fact that by far the largest part of the friction arises from 
the semi-diurnal tide, which has its greatest effect when sin 4 e is unity. 

5 — 2 
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§ 13. Tidal friction and apparent secular acceleration of the moon. 

I now set aside again the hypothesis that the earth is purely viscous, and 
return to that of there being any kind of lagging tides. 

I shall first find at what rate the earth is being retarded when it is 
moving with its present diurnal rotation, and when the moon is moving in 
her present orbit, and no distinction will be made between n and n0; all the 
secular changes will be considered later. 

The numerical data of Section 11 are here used, and the obliquity of the 
ecliptic i = 23° 28'; then u and M , being expressed in radians per tropical 
year, I find 

-(J- i o » 1 0 6 

(44) 
i S ^ 1 ' 1 9 7 8 ^ s i n 2 6 + - 2

1

6

f t

( : 9 ^ s m e ' 

Integrating the equation (37) and putting n = n0, when t = 0 

- ^ ' c ^ l 1 - ^ ( 4 5 ) 

Integrating a second time, we find that a meridian fixed in the earth has 
fallen behind the place it would have had, if the rotation had not been 

retarded bv 1 ®^^999 seconds of arc. And at the end of a century it is 

behind time 1900-27i? sin 2e + 423-49J?' sin e i n . s. seconds of time. 

If the earth were purely viscous, and when e = 17°30'* (which by 
Section 11 causes the rate of change of obliquity to be a maximum), I find 
that at the end of a century the earth is behind time in its rotation by 
17 minutes 5 seconds. 

By substitution from the second of (44), equation (45) may be written in 
the form 

fi 1"1978 „ . „ -2669 . ,\ n = n0\l tE s i n 2e - tE'ame) (46) 

which in the supposed case of pure viscosity when e = 17° 30' becomes 

•006460 / , -006460 \ n = n«{l- —fp-t) (47) 

All these results would, however, cease to be even approximately true 
after a few millions of years. 

* T h i s c a l c u l a t i o n w a s d o n e b e f o r e I p e r c e i v e d t h a t I h a d n o t c h o s e n t h a t d e g r e e o f v i s c o s i t y 

w h i c h m a k e s t h e t i d a l f r i c t i o n a m a x i m u m , b u t a s a l l t h e o t h e r n u m e r i c a l c a l c u l a t i o n s h a v e 

b e e n w o r k e d o u t f o r t h i s d e g r e e o f v i s c o s i t y I a d h e r e t o i t h e r e a l s o . 
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The effect of the failure of the earth to keep true time is to cause an 
apparent acceleration of the moon's motion; and if the moon's motion were 
really unaffected by the tides in the earth, there would be an apparent 
acceleration of the moon in a century of 

1043"'28tf sin 2e + 232"-50£' sin e' (48) 
for the moon moves over 0" ,5490 of her orbit in one second of time. 

This apparent acceleration would however be considerably diminished by 
the effects of tidal reaction on the moon, which will now be considered. 

§ 14. Tidal reaction on the moon. 

The action of the tides on the moon gives rise to a small force tangential 
to the orbit accelerating her \inear motion. The spiral described by the moon 
about the earth will differ insensibly from a circle, and therefore we may 
assume throughout that the centrifugal force of the earth's and moon's orbital 
motion round their common centre of inertia is equal and opposite to the 
attraction between them. 

We shall now find the tangential force on the moon in terms of the 
couples which we have already found acting on the earth. These couples 
consist of the sum of tfyree parts, viz.: that due (i) to the moon alone, (ii) to 
the sun alone, and (iii) to the action of the sun on the lunar tides and of the 
moon on the solar tides, the latter two being equal inter se. 

Now since action and reaction are equal and opposite, the only parts of 
these couples which correspond with the tangential force on the moon are 
those which arise from (i), and one-half those which arise from (iii). 

We may thus leave the sun out of account if we suppose the earth only 
to be acted on by the couples %mi + ^%mmj, 0\m* + l i t t m m , . M-m? + i i ^ ™ ™ , ; 

these couples will be called %', J f i ' , and the part of the change of 
di' 

obliquity which is due to ffil' will be called . 

Let r and — fl be the moon's distance, and angular velocity at any time, 
and v the ratio of the earth's mass to the moon's. 

Let T be the force which acts on the moon perpendicular to her radius 
vector, in the direction of her motion. 

From the equality of action and reaction, it follows that Tr must be equal 
to the couple which is produced by the moon's action on the tides in the 
earth, acting in the direction tending to retard the earth's diurnal rotation 
about the normal to the ecliptic. Referring to fig. 1, we see that the direction 
cosines of this normal are — sin i cos n, — sin i sin n, cos i; hence 

Tr = — sin i (%' cos n + 0[' sin n) + 0,' cos i 
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-0- cos n + - 7 j - S I N w = G,„> + JG M O T , = — n ^-

Thus Tr = G j ^ - ' cos i + n sin i ̂ - j ( 4 9 ) 

In order to apply the ordinary formula for the motion of the moon, the 
earth must be reduced to rest, and therefore T must be augmented by the 
factor (M + m) M. Then if à be the moon's longitude, the equation of 
motion of the moon is 

d ( „ d$t\ M + m 
mdAT dt ) = ^ T r (50) 

But since the orbit is approximately circular = 12. 

AI n 9 -2 J M + m 1 +v Also m = G — 4ra J, and —j> = . 

Therefore by ( 4 9 ) and (50) 

d(nr°) 1 + 1 . 1 ^ 1 
7, — i COS i -|- « SIN % - , 

at 6
 i ' I G ai 

IL, Now let F = , whence X22 = I2,,2 + P . 

The suffix 0 to 12 indicates the value of 12 when the time is zero, and no 
confusion will arise by this second use of the symbol F. 

But since the centrifugal force is equal to the attraction between the two 
bodies, and the orbit is circular, f2 2r s= M + m; thus f l 0

2 r s = (M + m) f. 

Therefore 
r2 = (ilf +mfi?[la~*, and Or 2 = (M + mf-Î20

_*F 

and hence ~ (fir2) = (M+ nifiQ0 

But M + m = oa2 ^ — , because 3 / and in are here measured in astro-v 
nomical units of mass. 

Therefore our equation may be written 
L + C ^ N _ I ^ , , ( J J . . .di' 

go? ) Î2 0 - s =, ?a2 (1 + „) cos i + n sin » ^ 

But by (17) and ( 1 8 ) 

•Ç = ( F m S + iFmm,) sin n + ( G ^ + \Gmm) cos n 

^ = - ( F m . + i F m m < ) cos n + (G m . + ^G m M / ) sin n 
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we have 

. . . DI,ni CEv j AT- N 

P = cos U , Q = sm U , —r— = , and J\ = — J 1 tti 11 n0 

N sin i ~ = 2pq [ElP

7q sin 2 6 l -E2Py (p2 - g2) sin 2<r - E,pq7 sin 2 e 2 

(lit "I^Q 

+ E^'p'q (p2 + 3g2) sin e,' - E'pq (p» - g2)3 sin e' - E^'pq" (3p2 + q3) sin e/ 

-E"2>pY s i n 2 e " ] ...(53) 

And by ( 2 1 ) 

cos i "f^ = ^- {p- - g2) [ElP

e sin 2fl + E4plq* sin 2 e + E^ sin 2 e 2 

+ A V 2 p Y sin ei + E'2py (p2 - g2)2 sin e' + E2'2p2qs sin e2'] .. .(54) 
By (33) and (34), and remembering to take the halves of C5 r r t T O / and $imm,, 

and that sin i ^= Q, cos i = P 

Nam i dl™^ = -~Q sin 2 e + \E'P*Q sin e'] (55) 

cos «J} = H i P [fEQ* sin 2 e + lE'PQ2 sin e'] (56) 

To obtain /A -~, we have to add the last four expressions together, 

and we observe that the last two cut one another out, so that the expression for 
DP 

^ is independent of the solar tides; also the terms in sin 2 e , sin e cut one 
another out in the sum of the first two expressions, and hence it follows that 
DP 

-J- is independent of the sidereal semi-diurnal and diurnal terms. 

Now let 

s = | ^ ' ^ ( l l e t finono*=^,andlet JV = ^- ( 5 1 ) 

and we have M = ^P- cos t + iV sin Í ~ (52) 

at O n „ at ' 

It is not hard to show that the moment of momentum of the orbital 

motion of the two bodies is C -4- sil^, and that of the earth's rotation is 
obviously Cn. Hence sn is the ratio of the two momenta, and ¡M is the 
ratio of the two momenta at the fixed moment of time, which is the epoch. 

In the similar equation expressive of the rate of change in the earth's 
orbital motion round the sun, it is obvious that the orbital moment of 
momentum is so very large compared with the earth's moment of momentum 
of rotation, that /x is very large and the earth's mean distance from the sun 
remains sensibly constant (see Section 19). 

Then by (16) and (29), remembering that 
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.(58) 

If the present values of n, X2, 1 be substituted in this equation (58) 
{i.e., with the present day, month, and obliquity), and if the tropical year be 
the unit of time, it will be found that 

1 0 , 0 W = f2 ( M ' 2 > I E s i n 2 e + 4 - 1 8 £ " s i n 6 ' _ '271-E"'sin 2e") 

£ 1 2 enters into this equation because r varies as X22 and therefore as 

Rut we may here put f = 1, because we only want the present in
stantaneous rate of increase of X2. 

T.T d£ , I dil 1 C£X2 . _ _ , . . . . 
Now dt=~ ^ ~dt~ = ~ 3X2 ~CFO e n X2 = X2„; hence multiplying 

the equation by 3X20 we have at the present time 

- 101 0 ̂  = 611 HE sin 2e + 1053£" sin e' - 6&2&E" sin 2e".. .(59) 

in radians per annum. 

If for the moment we call the right-hand of this equation k, we have 

X2 = X2„ — k, - Q - . Integrating a second time, we find that the moon has fallen 

* IN A FUTURE PAPER [PAPER 6 ] ON THE PERTURBATIONS OF A SATELLITE REVOLVING ABOUT A VISCOUS 

PRIMARY, I SHALL OBTAIN THIS EQUATION BY THE METHOD OF THE DISTURBING FUNCTION. 

Thus we have 

^ ~it= ¿0 ^ L J ° 8 S I N 2 E ' ~ ^ S I N 2 6 2 + 4 J B I V ? 2
 s i n £>' - *#.'.py sin e ; 

- 6E"pY sin 2e"] (57) 

This equation will be referred to hereafter as that of tidal reaction*. 
From its form we see that the tides of speeds 2 (n +12), n 4- 2X2, and 2X2 tend 
to make the moon approach the earth, whilst the other tides tend to make it 
recede. 

If, as in previous cases, we put E1 = E2 = E; E{ = E2' = E'; e, = e2 = e; 
ej'=e2'=e (which is justifiable so long as the moon's orbital motion is 
slow compared with that of the earth's rotation), we have, after noticing 
that 

p* _ q* = (p* _ (p< 4 . qi) = cos i (1 — sin2 i) 

4p052 — 4/J 2^ 6
 = 4p2^2 (p 2 — §2) = s in 2 1 cos i 

/1 ^ - = — [cos i (1 — \ sin2 {) Z£ sin 2e + sin2 i cos iE' sin e' — § sin4 iE" sin 2e"] 

IRIS - LILLIAD - Université Lille 1 



behind her proper place in her orbit \t* . seconds of arc in the 

time t. Put t equal to a century, and substitute for k, and it will then be 
found that the moon lags in a century 

630-7£ sin 2e + 1086.E" sin e - 7042£" sin 2e" seconds of arc.. .(60) 

But it was shown in Section 13 (48) that the moon, if unaffected by tidal 
reaction, would have been apparently accelerated in a century 

1043-3.fi' sin 2« + 232-5.fi" sin e' seconds of arc. 

Hence taking the difference between these two, we find that there is an 
apparent acceleration in a century of the moon's motion of 

412-6A' sin 2e + 123-9.fi" sin e' + 7'042E" sin 2e" (61) 
seconds of arc. 

Now according to Adams and Delaunay, there is at the present time an 
unexplained acceleration of the moon's motion of about 4" in a century. For 
the present I will assume that the whole of this 4" is due to the bodily tidal 
friction and reaction, leaving nothing to be accounted for by oceanic tidal 
friction and reaction, to which the whole has hitherto been attributed. Then 
we must have 

412-6.fi7 sin 2e + 123 9£" sin e' + 7-042£"' sin 2e" = 4 (62) 

This equation gives a relation which must subsist between the heights 
E, E', E", of the semi-diurnal, diurnal, and fortnightly bodily tides, and their 
retardations e, e, e", in order that the observed amount of tidal friction may 
not be exceeded. But no further deduction can be made, without some 
assumption as to the nature of the matter constituting the earth. 

I shall first assume then that the matter is purely viscous, so that 
2n n 212 E= cos 2e, E'= cos e', E" = cos 2e", and tan 2e = — , tan e' = - , tan 2e" = — . 
P P P 

The equation then becomes 
412-6 sin 4e + 123-9 sin 2e' + 7-042 sin 4e" = 8 (63) 

If the values of e, e, e" be substituted, we get an equation of the sixth 
degree for p, but it will not be necessary to form this equation, because the 
question may be more simply treated by the following approximation. 

There are obviously two solutions of the equation, one of which represents 
that the earth is very nearly fluid, and the other that it is very nearly rigid. 

In the first case, that of approximate fluidity, e, e, e" are very small, and 
therefore 

£2 4 
sin 4e = 4e, sin 2e' = 2e' = 2e, sin 4e" = 4<?" = 4 - E = e 
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Hence (̂ 1650 + 248 + o f 7 ' 0 4 ) 6 = 8 

whence e = ^ 7 = 14' 

That is to say, the semi-diurnal tide only lags by the small angle 14'. 
But this is not the solution which is interesting in the case of the earth, for 
we know that the earth does not behave approximately as a fluid body*. 

In the other solution, 2e and e' approach 90°, so that p is small; hence 
. 4np p . 2np 2p . 

8 i n 4 * = p T - + L = n ' S m 2 e = P * + n* = 11 V E R ^ N C A R L > ' 

Hence we have 

Put ~ z = x, so that x = cot 2e"; then substituting for — its value ^J^x , 

we have 
1320'7 2x x + 7-042 
27-32 ' x* +1 

whence XS - -1655a* + 1-2921« - '1655 = 0 
This equation has two imaginary roots, and one real one, viz.: -12858. 

Hence the desired solution is given by cot 2e"= "12858 ; and 2e"= \-N— 7° 20', 
and the corresponding values of 2e and E are 2e = \TR — 16', and E =\TT — 32'. 
If these values for f, E, E" be used in the original equation (63), they will be 
found to satisfy it very closely; and it appears that there is a true retardation 
of the moon of 3"'l in a century, whilst the lengthening of the day would 
make an apparent acceleration of 7"'l,—the difference between the two being 
the observed 4". 

With these values the semi-diurnal and diurnal ocean-tides are, according 
to the equilibrium theory of ocean-tides, sensibly the same as those on a rigid 
nucleus, whilst the fortnightly tide is reduced to sin 2e" or "992 of its 

7T c" theoretical amount; and the time of high tide is accelerated by -r=r — , b J 412 il 
or 61 hours in advance of its theoretical time. 

If these values be substituted in the equation giving the rate of variation 
of the obliquity, it will be found that the obliquity must be decreasing at 
the rate of 0°'00197 per million years, or 1° in 500 million years. Thus in 
100 million years it would only decrease by 12'. So, also, it may be shown 

[* I f i t i s t h e o c e a n i c t i d e s w h i c h n o w m a k e t h e p r i n c i p a l c o n t r i b u t i o n t o t h e t i d a l r e t a r d a t i o n 

o f t h e e a r t h ' s r o t a t i o n , t h e p r e c e d i n g s o l u t i o n m u s t be a p p r o x i m a t e l y c o r r e c t . ] 
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* [APPENDIX G , ( a ) t o T h o m s o n a n d T a i t ' s Natural Philosophy, p . 5 0 3 , 

b y O. H. DARWIN.] 

The retardation of the earth's rotation, as deduced from the secular acceleration of the 
Moon's mean motion. 

I n m y p a p e r o n t h e p r e c e s s i o n o f a v i s c o u s s p h e r o i d [ t h i s p r e s e n t p a p e r ] , a l l t h e d a t a 

a re g i v e n w h i c h a r e r e q u i s i t e f o r m a k i n g t h e c a l c u l a t i o n s f o r P r o f o s s o r A d a m s ' r e s u l t i n § 8 3 0 

[of T h o m s o n a n d T a i t ' s Natural Phitosophy], v i z . : t h a t i f t h e r e i s a n u n e x p l a i n e d p a r t i n t h e 

coe f f i c i en t o f t h e s e c u l a r a c c e l e r a t i o n o f t h e m o o n ' s m e a n m o t i o n a m o u n t i n g t o 6 " , a n d i f t h i s 

be d u e to t i d a l f r i c t i o n , t h e n i n a c e n t u r y t h e e a r t h g e t s 2 2 s e c o n d s b e h i n d t i m e , w h e n c o m p a r e d 

w i t h a n i d e a l c l o c k , g o i n g p e r f e c t l y f o r a c e n t u r y , a n d p e r f e c t l y r a t e d a t t h e b e g i n n i n g o f t h e 

c e n t u r y . I n t h e p a p e r r e f e r r e d to h o w e v e r t h e e a r t h i s t r e a t e d a s h o m o g e n e o u s , a n d t h e t i d e s a r e 

s u p p o s e d t o c o n s i s t i n a b o d i l y d e f o r m a t i o n o f t h e m a s s . T h e n u m e r i c a l r e s u l t s t h e r e g i v e n 

r e q u i r e s o m e m o d i f i c a t i o n o n t h i s a c c o u n t . 

I f E, E', E" b e t h e h e i g h t s o f t h e s e m i - d i u r n a l , d i u r n a l a n d f o r t n i g h t l y t i d e s , e x p r e s s e d a s 

f r a c t i o n s o f t h e e q u i l i b r i u m t i d e s o f t h e s a m e d e n o m i n a t i o n s ; a n d i f e, c ' , e " b e t h e c o r r e s p o n d 

i n g r e t a r d a t i o n s o f p h a s e o f t h e s e t i d e s d u e t o f r i c t i o n ; i t i s s h o w n o n p . [ 6 9 o f t h i s v o l u m e ] a n d 

i n e q u a t i o n ( 4 8 ) , t h a t i n c o n s e q u e n c e o f l u n a r a n d s o l a r t i d e s , a t t h e e n d o f a c e n t u r y , t h e e a r t h , 

a s a t i m e - k e e p e r , i s b e h i n d t h e t i m e i n d i c a t e d b y t h e i d e a l p e r f e c t c l o c k 

1 9 0 0 2 7 E s i n 2<r + 4 2 3 - 4 9 E' s i n t s e o o n d s o f t i m e ( a ) 

a n d t h a t i f t h e m o t i o n o f t h e m o o n w e r e u n a f f e c t e d b y t h e t i d e s , a n o b s e r v e r , t a k i n g t h e e a r t h a s 

h i s c l o c k , w o u l d n o t e t h a t a t t h e e n d o f t h e c e n t u r y t h e m o o n w a s i n a d v a n c e o f h e r p l a c e i n h e r 

o r b i t b y 

1 0 4 3 " - 2 8 E s i n 2e + 2 3 2 " - 5 0 E' s i n c' (6 ) 

T h i s i s o f c o u r s e m e r e l y t h e e x p r e s s i o n o f t h e s a m e f a c t a s ( a ) , i n a d i f f e r e n t f o r m . 

L a s t l y i t i s s h o w n i n e q u a t i o n ( 6 0 ) t h a t f r o m t h e s e c a u s e s t h e m o o n a c t u a l l y l a g s i n a 

c e n t u r y b e h i n d h e r p l a c e 

6 3 0 " - 7 E s i n 2c +108"-6 E' s i n t ' - 7 " - 0 4 2 E" s i n 2 t " ( c ) 

I n a d a p t i n g t h e s e r e s u l t s t o t h e h y p o t h e s i s o f o c e a n i c t i d e s o n a h e t e r o g e n e o u s e a r t h , w e o b s e r v e 

i n t h e f i r s t p l a c e t h a t , i f t h e fluid t i d e s a r e i n v e r t e d , t h a t i s t o s a y i f f o r e x a m p l e i t i s l o w w a t e r 

u n d e r t h e m o o n , t h e n f r i c t i o n a d v a n c e s t h e fluid t i d e s t , a n d t h e r e f o r e i n t h a t c a s e t h e t'% a r e t o 

b e i n t e r p r e t e d a s a d v a n c e m e n t s o f p h a s e ; a n d s e c o n d l y t h a t t h e E'a a r e t o b e m u l t i p l i e d b y { \ , 

w h i c h i s t h e r a t i o o f t h e d e n s i t y o f w a t e r t o t h e m e a n d e n s i t y o f t h e e a r t h . N e x t t h e e a r t h ' s 

m o m e n t o f i n e r t i a ( a s w e l e a r n f r o m c o l . v i i . o f t h e t a b l e i n § 8 2 4 ) i s a b o u t ' 8 3 o f i t s a m o u n t o n 

t h e h y p o t h e s i s o f h o m o g e n e i t y , a n d t h e r e f o r e t h e r e s u l t s (a) a n d (b) h a v e b o t h t o b e m u l t i p l i e d 

b y 1 / - 8 3 o r 1 - 2 ; t h e r e s u l t (c) r e m a i n s u n a f f e c t e d e x c e p t a s to t h e f a c t o r T \ . 

T h u s s u b t r a c t i n g (c) f r o m (6 ) a s a m e n d e d , w e find t h a t t o a n o b s e r v e r , t a k i n g t h e e a r t h a s a 

t r u e t i m e - k e e p e r , t h e m o o n i s , a t t h e e n d o f t h e c e n t u r y , i n a d v a n c e o f h e r p l a c e b y 

YV { ( 1 - 2 x 1 0 4 3 " - 2 8 - 6 3 0 " - 7 ) E s i n 2c + ( 1 - 2 x 2 3 2 " 5 0 - 1 0 8 " 6 ) E' s i n e ' + 7 " - 0 4 2 E" s i n 2e"\ 

w h i c h i s e q u a l t o 

& ( 6 2 1 " - 2 4 E s i n 2e + 1 7 0 " - 4 0 E' s i n e' + 7 " - 0 4 E" s i n 2 e " } ( d ) 

I T h a t th is is t rue m a y be seen f r o m c o n s i d e r a t i o n of energy . I f it were a p p r o x i m a t e l y l ow water u n d e r the 
m o o n , the ear th 's ro ta t ion w o u l d be accelerated by t ida l f r i c t ion , if the t ides of Hhort pe r iod l a g g e d ; a n d th i s w o u l d 
v io late the p r i nc ip l es o f energy . 

that the moon's sidereal period is being increased by 2 hours 20 minutes in 
100 million years. 

Lastly, the earth considered as a clock is losing 13 seconds in a century*. 
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There is another supposition as to the physical constitution of the earth, 
which will lead to interesting results. 

If the earth be elastico-viscous, then for the semi-diurnal and diurnal 
tides it might behave nearly as though it were perfectly elastic, whilst for the 
fortnightly tide it might behave nearly as though it were perfectly viscous. 
With the law of elastico-viscosity used in my previous paper*, it is not 
possible to satisfy these conditions very exactly. But there is no reason to 
suppose that that law represents anything but an ideal sort of matter; it is 
as likely that the degradation of elasticity immediately after straining is not 
so rapid as that law supposes. I shall therefore take a limiting case, and 
suppose that, for the semi-diurnal and diurnal tides, the earth is perfectly 

a n d f r o m (a) a s a m e n d e d t h a t t h e e a r t h , a s a t i m e - k e e p e r , i s b e h i n d t h e t i m e i n d i c a t e d b y t h e 

i d e a l c l o c k , p e r f e c t l y r a t e d a t t h e b e g i n n i n g o f t h e c e n t u r y , b y 

T

a

T { 2 2 8 0 - 3 2 E s i n 2e + 5 0 8 - 1 9 E' s i n e ' } s e c o n d s o f t i m e (e) 

N o w i f w e s u p p o s e t h a t t h e t i d e B h a v e t h e i r e q u i l i b r i u m h e i g h t , s o t h a t t h e j&Ts a r e e a c h u n i t y ; 

a n d t h a t e' i s o n e - h a l f o f F ( w h i c h m u s t r o u g h l y c o r r e s p o n d to t h e s t a t e o f t h e c a s e ) , a n d t h a t 

E" i s i n s e n s i b l e , a n d e s m a l l , (d) b e c o m e s 

1 * T { 6 2 V ' - 2 4 + J x l 7 0 " - 4 0 } e ( / ) 

a n d (e) b e c o m e s & { 2 2 8 0 - 3 2 + { x 5 0 8 - 1 9 } e s e c o n d s o f t i m e [g) 

I f ( / ) w e r e e q u a l t o 1 " , t h e n (g) w o u l d c l e a r l y b e 

2 2 8 0 - 3 2 + i x 5 0 8 - 1 9 . , . . . , . 

6 2 1 - 2 4 + i x 1 7 0 - 4 0 ° f ^ <"> 

T h e B e c o n d t e r m , b o t h i n t h e n u m e r a t o r a n d d e n o m i n a t o r o f (h), d e p e n d s o n t h e d i u r n a l 

t i d e , w h i c h o n l y e x i s t s w h e n t h e e c l i p t i c i s o b l i q u e . N o w A d a m s ' r e s u l t w a s o b t a i n e d o n t h e 

h y p o t h e s i s t h a t t h e o b l i q u i t y o f t h e e c l i p t i c w a s n i l , t h e r e f o r e a c c o r d i n g t o h i s a s s u m p t i o n , 

1 " i n t h e c o e f f i c i e n t o f l u n a r a c c e l e r a t i o n m e a n s t h a t t h e e a r t h , a s c o m p a r e d w i t h a p e r f e c t 

c l o c k r a t e d a t t h e h e g i n n i n g o f t h e c e n t u r y , i s b e h i n d t i m e 

^£21-2i = ^ s e c o n d s a t t h e e n d o f a c e n t u r y 

A c c o r d i n g l y 6 " i n t h e c o e f f i c i e n t g i v e s 2 2 s e e s , a t t h e e n d o f a c e n t u r y , w h i c h i s h i s r e s u l t g i v e n 

i n § 8 3 0 . I f h o w e v e r w e i n c l u d e t h e o b l i q u i t y o f t h e e c l i p t i c a n d t h e d i u r n a l t i d e , w e find t h a t 

1 " i n t h e c o e f f i c i e n t m e a n s t h a t t h e e a r t h , a s c o m p a r e d w i t h t h e p e r f e c t c l o c k , i s b e h i n d t i m e 

2 4 0 7 - 3 7 
TTTT = 3 - 6 2 7 4 s e c o n d s a t t h e e n d o f a c e n t u r y 

6 6 3 - 8 0 J 

T h u s t a k i n g H a n s e n ' s 1 2 " - 5 6 w i t h D e l a u n a y ' s 6 " - l , w e h a v e t h e e a r t h b e h i n d 

6 - 4 6 x 3 - 6 2 7 4 = 2 3 - 4 s e c . 

a n d t a k i n g N e w c o m b ' s 8 " * 4 w i t h D e l a u n a y ' s 6 " - l , w e h a v e t h e e a r t h b e h i n d 2 - 3 x 3 - 6 2 7 4 = 8 - 3 s e c . 

I t i s w o r t h y o f n o t i c e t h a t t h i s r e s u l t w o u l d b e o n l y v e r y s l i g h t l y v i t i a t e d b y t h e i n c o r r e c t n e s s 

o f t h e h y p o t h e s i s m a d e a b o v e a s t o t h e v a l u e s o f t h e £ ' s a n d e ' s ; f o r E B i n 2e o c c u r s i n t h e 

i m p o r t a n t t e r m b o t h i n t h e n u m e r a t o r a n d d e n o m i n a t o r o f t h e r e s u l t f o r t h e e a r t h ' s d e f e c t a s a 

t i m e - k e e p e r , a n d t h u s t h e h y p o t h e s i s o n l y e n t e r s i n d e t e r m i n i n g t h e p a r t p l a y e d b y t h e d i u r n a l 

t i d e . H e n c e t h e r e s u l t i s n o t s e n s i b l y a f f e c t e d b y s o m e i n e x a c t n e s s i n t h i s h y p o t h e s i s , n o r b y 

t h e f a c t t h a t t h e o c e a n s i n r e a l i t y o n l y c o v e r a p o r t i o n o f t h e e a r t h ' H s u r f a c e . 

* N a m e l y , t h a t i f t h e s o l i d b e s t r a i n e d , t h e s t r e s s r e q u i r e d t o m a i n t a i n i t i n t h e s t r a i n e d 

c o n f i g u r a t i o n d i m i n i s h e s i n g e o m e t r i c a l p r o g r e s s i o n a s t h e t i m e , m e a s u r e d f r o m t h e e p o c h o f 

s t r a i n i n g , i n c r e a s e s i n a r i t h m e t i c a l p r o g r e s s i o n . S e e S e c t i o n 8 o f t h e p a p e r o n " B o d i l y T i d e s , " 

& c , Phil. Tram., P a r t i., 1 8 7 9 . [ P a p e r 1. ] 

IRIS - LILLIAD - Université Lille 1 



elastic, whilst for the fortnightly one it is perfectly viscous. This hypothesis, 
of course, will give results in excess of what is rigorously possible, at least 
without a discontinuity in the law of degradation of elasticity. 

It is accordingly assumed that the semi-diurnal and diurnal bodily tides 
do not lag, and therefore e= e = 0 ; whilst the fortnightly tide does lag, and 
E" = cos 2e". 

Thus by (38) there is no tidal friction, and by (60) there is a true 
acceleration of the moon's motion of | of 7'042 sin 4e" seconds of arc in a 
century. Then if we take the most favourable case, namely, when e" = 22° 30', 
there is a true secular acceleration of 3"'521 per century. 

It follows, therefore, that the whole of the observed secular acceleration of 
the moon might be explained by this hypothesis as to the physical constitution 
of the earth. On this hypothesis the fortnightly ocean tide should amount 
to sin 22" 30', or -38 of its theoretical height on a rigid nucleus, and the time 
of high water should be accelerated by 1 day 17 hours. Again, by (35) 
di 

^- = — -^w2 sin8 i, from whence it may be shown that the obliquity of the 

ecliptic would be decreasing at the rate of 1° in 128 million years. 
The conclusion to be drawn from all these calculations is that, at the 

present time, the bodily tides in the earth, except perhaps the fortnightly 
tide, must be exceedingly small in amount; that it is utterly uncertain how 
much of the observed 4" of acceleration of the moon's motion must be referred 
to the moon itself, and how much to the tidal friction, and accordingly that it 
is equally uncertain at what rate the day is at present being lengthened J 
lastly, that if there is at present any change in the obliquity of the ecliptic, 
it must be very slowly decreasing. 

The result of this hypothesis of elastico-viscosity appears to me so curious 
that I shall proceed to show what might possibly have been the state of 
things a very long time ago, if the earth had been perfectly elastic for the 
tides of short period, but viscous for the fortnightly tide. 

There will now be no tidal friction, and the length of day remains constant. 
The equation of tidal reaction reduces to 

dZ__v? 
dt~ P 

T 

Here v? is a constant, being the value of — at the epoch ; and m 2 f12 is 

the value of — at the time t. 

The equation giving the rate of change of obliquity becomes 
di w2 . . . . „ 
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78 RESULT FOR AN ELASTICO-VISCOUS EARTH. [3 

Dividing the latter by the former, we have* 
sin idi = fid% 

And by integration cos i = cos i'„ — fi (f — 1) 
If we look back long enough in time, we may find £ = 1"01, and f t being 

4-007, we have 
cos i = cos i'0 — "04007 

Taking i 0 = 23° 28', we find i = 28" 40'. 
This result is independent of the degree of viscosity. When, however, we 

wish to find how long a period is requisite for this amount of change, some 
supposition as to viscosity is necessary. The time cannot be less than if 
sin ie' = 1, or E " = 22° 30', and we may find a rough estimate of the time by 
writing the equation of tidal reaction 

where I is constant and equal to 24°, suppose. Then integrating we have 
r 1 ( P — 1) = — £ffu 2 sin* I 

or « = - | § ^ c o s e c « I ( f 1 3 - l ) 

When £ = l'Ol, we find from this that —t = 720 million years, and that 
the length of the month is 28'15 m.s. days. Hence, if we look back 700 million 
years or more, we might find the obliquity 28° 40', and the month 28'15 m.s. 
days, whilst the length of day might be nearly constant. I t must, however, 
be reiterated, that on account of our assumptions the change of obliquity is 
greater than would be possible, whilst the time occupied by the change is 
too short. In any case, any change in this direction approaching this in 
magnitude seems excessively improbable. 

PART II. 

§15. Integration of the differential equations for secular changes in the 
variables in the case of viscosity. 

I t is now supposed that the earth is a purely viscous spheroid, and I shall 
proceed to find the changes which would occur in the obliquity of the ecliptic 
and the lengths of the day and month when very long periods of time are 
taken into consideration. 

I have been unable to find even an approximate general analytical solution 
of the problem, and have therefore worked the problem by a laborious arith
metical method, when the earth is supposed to have a particular degree of 
viscosity. 

* C o n c e r n i n g t h e l e g i t i m a c y o f t h i s c h a n g e o f v a r i a b l e , s e e t h e f o l l o w i n g s e c t i o n . 
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The viscosity chosen is such that, with the present length of day, the 
semi-diurnal tide lags by 17° 30'. I t was shown above that this viscosity 
makes the rate of change of obliquity nearly a maximum*. It does not 
follow that the whole series of changes will proceed with maximum velocity, 
yet this supposition will, I think, give a very good idea of the minimum time, 
and of the nature of the changes which may have occurred in the course of 
the development of the moon-earth system. 

The three semi-diurnal tides will be supposed to lag by the same amount 
and to be reduced in the same proportion; as also will be the three diurnal 
tides. 

There are three simultaneous differential equations to be treated, viz.: 
those giving (1) the rate of change of the obliquity of the ecliptic, (2) the rate 
of alteration of the earth's diurnal rotation, (3) the rate of tidal reaction on 
the moon. They will be referred to hereafter as the equations of obliquity, of 
friction, and reaction respectively. 

To write these equations more conveniently a partly new notation is 
advantageous, as follows: 

The suffix 0 to any symbol denotes the initial value of the quantity in 
question. 

Let u2 = — , u.2 = — , uu, = : these three quantities are constant. 

Since the tidal reaction on the sun is neglected, T , is a constant, and since 
T varies as H 2 (and therefore as f - 6 ) ; hence 

T 2 n0 M 2 T (

2 n0 T T n0 uul 

g/i n f12' gre n '' (Jn n f6 

Let p be equal to ^ ? ^ I U

 j where v is the coefficient of viscosity of the earth. 19u 
Then according to the theory developed in my paper on tides \ 

tan 2e = — , tan e' = - , tan 2e" = (64) 
P P P 

To simplify the work, terms involving the fourth power of the sine of the 
obliquity will be neglected. 

Now let 
P = i log 1 0 e, Q = | sin 2i log10 e, R = -fa'—--. log10 e = \ Q sec i\ 

COS 1 

TT 1 • a - 1 1 - i C O s 2 * 1 \ • • • ( 6 5 ) 

U = i s i n H l o g I 0 e , \ = l o g l 0 B ' v 

W = ^ cos2 i, X = ^ sin2 i cos i, Z = ^ sin2 i cos2 i 
* I f I h a d t o m a k e t h e c h o i c e o v e r a g a i n I s h o u l d c h o o s e a s l i g h t l y g r e a t e r v i s c o s i t y a s b e i n g 

m o r e i n t e r e s t i n g . 

t Phil. Tram., 1 8 7 9 , P a r t i . [ P a p e r 1. ] 
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80 P R E P A R A T I O N F O R I N T E G R A T I O N . [3 

Also let sftoflo3 = - , — =N ] and it may be called to mind that £ = (^f) , 

9-
The terms depending on the semi-annual tide will be omitted throughout. 
With this notation the equation of obliquity (35) and (36) may be written 

di R / M A \ 
log10 e ^ = sin i cos i (1 — J s in 2 1) U ^ 4- «/J (P sin 4e 4- Q sin 2e') 

- p ' ( U s i n 4 e + V s i n 2 e ' ) - p R s i i i 4 6 " ...(66) 

The equation (43) of friction becomes 

~ ifc = ( p + " ' ^ ( W s i n 4 6 + x s i n 2 e ) + z s i n 2 e ' ( 6 V ) 

And by (58), Section 14, the equation of reaction becomes 

M djt = p (W sin 4e + X sin 2e ) (68) 

This is the third of the simultaneous differential equations which have to 
be treated. The four variables involved are i, N, t, which give the obliquity, 
the earth's rotation, the square root of the moon's distance and the time. 
Besides where they are involved explicitly, they enter implicitly in Q, E, U, 
V, W, X, Z, sin 4e, sin 2e', sin 4e". 

Q, R, &c, are functions of the obliquity i only, but P is a constant. Also 
• A 4wp _ 4w0pAr . 0 , _ 2n0pN . „_ 4NoPp 

b m 6 " 4n= + p 2 ~ 4n0

2AT2 + p2' S I ° ~~ ^ W 2 + p2' h i n 6 ~~ 4O0

2"+ 
I made several attempts to solve these equations by retaining the time as 
independent variable, and substituting for f and JV approximate values, but 
they were all unsatisfactory, because of the high powers of f which occur, and 
no security could be felt that after a considerable time the solutions obtained 
did not differ a good deal from the true one. The results, however, were 
confirmatory of those given hereafter. 

The method finally adopted was to change the independent variable from 
t to f. A new equation was thus formed between N and f, which involved 
the obliquity i only in a subordinate degree, and which admitted of approxi
mate integration. This equation is in fact that of conservation of moment of 
momentum, modified by the effects of the solar tidal friction. Afterwards the 
time and the obliquity were found by the method of quadratures. As, however, 
it was not safe to push this solution beyond a certain point, it was carried as 
far as seemed safe, and then a new set of equations were formed, in which the 
final values of the variables, as found from the previous integration, were used 
as the initial values. A similar operation was carried out a third and fourth 
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time. The operations were thus divided into a series of periods, which will 
be referred to as periods of integration. As the error in the final values in 
any one period is carried on to the next period, the error tends to accumulate; 
on this account the integration in the first and second periods was carried out 
with greater accuracy than would in general be necessary for a speculative 
inquiry like the present one. The first step is to form the approximate equa
tion of conservation of moment of momentum above referred to. 

Let A = W sin 4e + X sin 2e', B = Z sin 2e'. 

Then the equations of friction (67) and reaction (68) may be written 

^I=PA
 <70> 

We now have to consider the proposed change of variable from t to f. 

dN . dP The full expression for contains a number of periodic terms; also 

dN 
contains terms which are co-periodic with those in . The object which 
is here in view is to determine the increase in the average value of N per 
unit increase of the average value of f. The proposed new independent 
variable is therefore not but it is the average value of f; but as no occasion 
will arise for the use of f as involving periodic terms, I shall retain the same 
symbol. 

In order to justify the procedure to be adopted, it is necessary to show 
that, if f(t) be a function of t, then the rate of increase of its average value 
estimated over a period T, of which the beginning is variable, is equal to 
the average rate of its increase estimated over the same period. The 
average value of fit) estimated over the period T, beginning at the time t is 

rpl f (1) dt, and therefore the rate of the increase of the average value is 

d 1 . . 1 f'+T 

di T J W ^ C N *S e 1 u a l to r j J f (t) dt; and this last expression is 
the average rate of increase of f(t) estimated over the same period. This 
therefore proves the proposition in question. 

dN 
Suppose we have = — M + periodic terms, where M varies very 

slowly; then — M is the average value of the rate of increase of N estimated 
over a period which is the least common multiple of the periods of the several 
periodic terms. Hence by the above proposition — M is also the rate of 
increase of the average value of N estimated over the like period. 

D I I . 6 
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8 2 D I S C U S S I O N O F T H E M E T H O D O F I N T E G R A T I O N . [ 3 

Similarly if ^ | = X + periodic terms, X is the rate of increase of the 

average value of f estimated over a period, which will be the same as in the 
former case. 

But the average value of N is the proposed new dependent variable, and 
the average value of f the new independent variable. Hence, from the 

dN~ M 
present point of view, = — X" ^hi-8 argument is, however, only strictly 

applicable, supposing there are not periodic terms in or ^ of incom
mensurable periods, and supposing the periodic terms are rigorously circular 
functions, so that their amplitudes and frequencies are not functions of the 
time. 

It is obvious, however, that if the incommensurable terms do not represent 
long inequalities, and if M and X vary slowly, the theorem remains very 
nearly true. With respect to the variability of amplitude and frequency, it 
is only necessary for the applicability of the argument to postulate that the 
so-called periodic terms are so nearly true circular functions that the integrals 
of them over any moderate multiple of their period are sensibly zero. 

Suppose, for example, i/r (£) cos [vt + x (t)] were one of the periodic terms, 
we have only to suppose that -v/r (t) and % (t) vary so slowly that they remain 
sensibly constant during a period 2TT/V or any moderately small multiple 

of it, in order to be safe in assuming / yjr (t) cos (vt+y (t)) dt as sensibly zero. 
Jo 

Now in all the inequalities in N and £ it is a question of days or weeks, whilst 
in the variations of the amplitudes and frequencies of the inequalities it is a 
question of millions of years. Hence the above method is safely applicable 
here. 

It is worthy of remark that it has been nowhere assumed that the ampli
tudes of the periodic inequalities are small compared with the non-periodic 
parts of the expression. 

A precisely similar argument will be applicable to every case where 
occasion will arise to change the independent variable. The change will 
accordingly be carried out without further comment, it being always under
stood that both dependent and independent variable are the average values 
of the quantities for which their symbols would in general stand*. 

* In order to feel complete confidence in my view, I placed the question before Mr E . J . Routh, 
and with great kindness he sent me some remarks on the subject, in which he confirmed the 
correctness of my proceduro, although he arrived at the conclusion from rather a different point 
of view. 
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Then dividing ( 6 9 ) by ( 7 0 ) we have 

? - f r 1 + @ > - K ^ ( » » 

Now T-= :—; = sin ai ——— approximately. This approximation 
A w sin 4e y sin 4e 1 1 J 1 1 

sin ze 
will be sufficiently accurate, because the last term is small and is diminishing. 
For the same reason, only a small error will be incurred by treating it as 
constant, provided the integration be not carried over too large a field—a 
condition satisfied by the proposed " periods of integration." Attribute then 
to i, e, e average values, and put 

N , / T \ ' . T, . . sin2e' 

and integrate, and we have 

N = 1 + /x {(1 - f ) + ¡3 (1 - p ) + 7 ( 1 - D ] (73) 

This is the approximate form of the equation of conservation of moment of 
momentum, and it is very nearly accurate, provided f does not vary too 
widely. 

By putting /3 = 0, 7 = 0, we see that, if there be only two bodies, the 
earth and moon, the equation is independent of the obliquity, provided we 
neglect the fourth power of the sine of the obliquity. 

The equation of reaction ( 6 8 ) may be written 

^ = / i - p ( W s i n 4 6 + Xsin2e') (74) 

Also, multiplying the equation of obliquity ( 6 6 ) by we have 

log,„e di _ 1 dt 
sini cosi( l - f sin2^) d\ ~~ N d£ 

- (U sin 4e + V sin 2e') - 1 - R. sin 4e" 

dp 

By far the most important term in -~ is that in which W occurs, 

1 d£ 

and therefore ^ | o n ' v depends on the obliquity in its smaller term. 

Then, since 2 W = coss 

cos 21 V a?/ 
cos3 i 7 • , 1 sin i 

Also - ·— • -j\ 5 - — - , — . di = d. loge - 7 . = ^ = - -
sin 1 cos 1 (1 — I s i n 1 1 ) n VI — | sin2 i 

= d '. loge tan i (1 — £ sin2 i) 

when the fourth power of sin i is neglected. 

G—2 
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Hence the equation may be written 

d

: l o g 1 0 t a n t ( l - ^ i n H - ) = ^ ( 2 W d t p + u,^ (P sin 4E + Q sin 2E') 

- p R sin 4E" (U sin 4E + V sin 2e')J (75) 
The term in P (which is a constant) is by far the most important of 

those within brackets [ ] on the right-hand side, and 2W ^ has been shown 

only to involve i in its smaller term. Hence the whole of the right-hand 
side only involves the obliquity to a subordinate degree, and, in as far as it 
does so, an average value may be assigned to i without producing much error. 

In the equation of tidal reaction (68) or (74) also, I attribute to i in W 
and X an average value, and treat them as constants. As the accumulation 
of the error of time from period to period is unimportant, this method of 
approximation will give quite good enough results. 

We are now in a position to trace the changes in the obliquity, the day, 
and the month, and to find the time occupied by the changes by the method 
of quadratures. 

First estimate an average value of i and compute Q, R ... Z, yS, 7. Take 
seven values of £, viz.: 1, ' 98 , - 9 6 . . . ' 8 8 , and calculate seven corresponding 
values of N; then calculate seven corresponding values of sin 4E, sin 2e', 

dp 

sin 4E". Substitute these values in ~ , and take the reciprocals so as to 
get seven equidistant values of ~ . 

Combine these seven values by Weddle's rule, viz.: 
reh 
I Uxdx = F'RJ h [W„ + WA + u3 + M 4 + M 6 + 5 (ut + u3 + M 5 ) ] JO 

and so find the time corresponding to f = ' 8 8 . I t must bo noted that the 
time is negative because dg is negative. 

In the course of the work the values of ^ corresponding to f = 1, '96 , "92, 

•88 have been obtained. Multiply them by 2W; these values, together with 
the four values of sin 4E, sin 2e, sin 4E" and the four of N, enable us to com
pute four of ~ log10 tan i ( 1 — ^ sin2 {), as given in (75). 

Combine these four values by the rule 
rah 

uxdx = Fh [u„ + us + 3 (% + «„)] 
JO 

, . tan i ( 1 — isin 2 i) and we get log* 
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* I h a v e t o t h a n k M r E . M . L a n g l e y , o f T r i n i t y C o l l e g e , f o r c a r r y i n g o u t t h e l a b o r i o u s c o m 

p u t a t i o n s . T h e w o r k w a s c h o c k e d t h r o u g h o u t b y m y s e l f . 

from which the value of i corresponding to f = '88 may easily be found. It 
is here useless to calculate more than four values, because the function to be 
integrated does not vary rapidly. 

We have now obtained final values of i, N~, t corresponding to f = "88. 

Since the earth is supposed to be viscous throughout the changes, 
its figure must always be one of equilibrium, and its ellipticity of figure 
e=N*ea. 

Also since f = (^^J — \J ~ > "where c is the moon's distance from the 

earth, ~ = P (^j , which gives the moon's distance in earth's mean radii. 

The fifth and sixth columns of Table IV. wore calculated from these 
formulae. 

The seventh column of Table IV. shows the distribution of moment of 
momentum in the system ; it gives p the ratio of the moment of momentum 
of the moon's and earth's motion round their common centre of inertia to 
that of the earth's rotation round its axis, at the beginning of each period of 
integration. 

Table I. shows the values of 6 , e, e" the angles of lagging of the semi
diurnal, diurnal, and fortnightly tides at the beginning of each period. 

Tables II. and III . show the relative importance of the contributions of 
dp d 

each term to the values of -~ and ^ log10 tani (1 — \ sin 2i) at the beginning 

of each period. 
The several lines of the Tables II. and III. are not comparable with one 

another, because they are referred to different initial values of 12 and n in 
each line. 

I will now give some details of the numerical results of each integration. 
The computation as originally carried out* was based on a method slightly 
different from that above explained, but I was able to adapt the old computa
tion to the above method by the omission of certain terms and the application 
of certain correcting factors. For this reason the results in the first three 
tables are only given in round numbers. In the fourth table the length of 
day is given to the nearest five minutes, and the obliquity to the nearest five 
minutes of arc. 

The integration begins when the length of the sidereal day is 23 hrs. 56 m., 
the moon's sidereal period 27'3217 m. s. days, the obliquity of the ecliptic 
23° 28', and the time zero. 
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86 RESULTS OF QUADRATURES. [3 
First period. Integration from f = 1 to -88; seven equidistant values 

computed for finding the time, and four for the obliquity. 

For the obliquity the integration was not carried out exactly as 

above explained, in as much as that ^ log10 tan i was found instead of 

log I0 tan i ( 1 — i-sin2 i), but the difference in method is quite unimportant. 

The result marked * in Table III. is -yz. log10 tan i. 

AF 
The estimated average value of i was 22° 15'. 

The final result is 
iV= 1-550, {=20° 42', - ¿ = 46,301,000 

Second period. Integration from £ = 1 to 76 ; seven values computed for 
the time, and four for the obliquity. 

The estimated average for i was 19°. 

The final result is 
N= 1 559, ¿ = 17° 21', - ¿ = 10,275,000 

Third period. Integration from f = 1 to 76 ; four values computed. 

The estimated average for i was 16° 30'. 

The final result is 
JV = 1-267, ¿=15° 30', - « = 326,000 

Fourth period. Integration from £ = 1 to "76 ; four values computed. 

The estimated average for i was 15°. The small terms in /3 and y were 
omitted in the equation of conservation of moment of momentum. All the 
solar and combined terms, except that in V in the equation of obliquity, were 
omitted. 

The final result is 
N =1-160, ¿=14° 25', - «=10 ,300 

TABLE I. Showing the lagging of the several tides at the beginning of 
each period. 

SEMI-DIURNAL DIURNAL 
(V) 

FORTNIGHTLY 
(«") 

I. 17I- L»I° 0° 44' 
11. 231" 1 28̂" 1" 5' 
III. 29A° 40° 2° 27' 
IV. 32I° ' 46£° 5° 30' 
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S e m i - d i u r n a l D i u r n a l 

I . 1 2 -

• 

1-2 

I I . 6 9 - 6 - 3 

I I I . 2 2 0 0 - 2 0 0 -

I V . 7 0 0 0 0 · 6 1 0 0 -

TABLE I I I . Showing the contributions of the several tidal effects to the 

change of obliquity \ i.e., to log 1 0 tani( l — £sin*i)J at the beginning 
of each period. 

L u n a r 
s e m i 

d i u r n a l 

L u n a r 
d i u r n a l 

S o l a r 
s e m i 

d i u r n a l 

S o l a r 
d i u r n a l 

C o m 
b i n e d 
s e m i 

d i u r n a l 

C o m 
b i n e d 

d i u r n a l 

F o r t 
n i g h t l y 

d 
l o g t a n i ( 1 - 1 s i n 2 i) 

* I . • 8 2 • 1 3 • 1 8 0 3 - • 0 6 - • 4 8 - • 0 0 6 • 6 0 * 

I I . • 4 4 • 0 6 0 2 - 0 1 - • 1 6 - • 0 0 3 • 3 6 

I I I . • 2 2 0 3 ... ... ... - 0 2 - 0 0 3 • 2 3 

I V . 1 3 0 2 ... - • 0 0 4 • 1 4 

TABLE I V . Showing the physical meaning of the results of the integration. 

T i m e 

( - ' ) 

S i d e r e a l 
d a y i n 
m . s . 

h o u r s 

M o o n ' s 
s i d e r e a l 
p e r i o d 

i n m . s . 
d a y s 

O b l i q u i t y 
o f 

e c l i p t i c 

M 

R e c i p r o 
c a l o f 

e l l i p t i c i t y 
o f f i g u r e 

M o o n ' s 
d i s t a n c e 

i n e a r t h ' s 
m e a n 
r a d i i 

R a t i o o f 
m . o f m . o f 

o r b i t a l 
m o t i o n to 
m . o f m . o f 

e a r t h ' s 
r o t a t i o n 

H e a t g e n e 
r a t e d ( s e e 

S e c t i o n 1 6 ) 

I n i t i a l 

s t a t e 

Y e a r s 

0 

h . m . 

2 3 5 6 

d . 

2 7 3 2 2 3 ° 2 8 ' 2 3 2 6 0 - 4 4 - 0 1 

D e g r e e s 1 ' a h r 

0 ° 

I . 4 6 , 3 0 0 , 0 0 0 1 5 3 0 1 8 - 6 2 2 0 ° 4 0 ' 9 6 4 6 - 8 ' 2 ' 2 8 2 2 5 ° 

I I . 5 6 , 6 0 0 , 0 0 0 9 5 5 8 - 1 7 1 7 ° 2 0 ' 4 0 2 7 - 0 1 - 1 1 7 6 0 ° 

I I I . 5 6 , 8 0 0 , 0 0 0 7 5 0 3 5 9 1 5 " 3 0 ' * 2 5 1 5 6 • 6 7 1 3 0 0 ° 

I V . 5 6 , 8 1 0 , 0 0 0 6 4 5 1 - 5 8 1 4 ° 2 5 ' * 1 8 9 - 0 • 4 4 1 7 6 0 ° 

TABLE I I . Showing the contribution of the several tidal effects to tidal 

reaction ^i.e., to at the beginning of each period. The numbers to 

be divided by 10 1 0 . 
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88 THE L O S S O F ENERGY O F T H E S Y S T E M . 
[ 3 

The whole of these results are based on the supposition that the plane of 
the lunar orbit will remain very nearly coincident with the ecliptic through
out these changes. I now (July, 1879), however, see reason to believe that 
the secular changes in the plane of the lunar orbit will have an important 
influence on the obliquity of the ecliptic. Up to the end of the second period 
the change of obliquity as given in Table IV. will be approximately correct, 
but I find that during the third and fourth periods of integration there will 
be a phase of considerable nutation. The results in the column of obliquity 
marked (*) have not, therefore, very much value as far as regards the explana
tion of the obliquity of the ecliptic; they are, however, retained as being 
instructive from a dynamical point of view. 

§ 16. The loss of energy of the system. 

It IS obvious that as there IS tidal friction the moon-earth system must be 
losing energy, and I shall now examine how much of this lost energy turns 
into heat in the interior of the earth. The expressions potential and kinetic 
energy will be abbreviated by writing them P.E. and K.E. 

The K.E. of the earth's rotation is ^H(v>ri\ 

The K.E. of the earth's and moon's orbital motion round their common 
centre of inertia is 

* M U + Mj " + *™ U + M) 1 ~ * M l 1 + v 

( a\2 1 + V -J , so that 

Hence the whole K. E. of the moon-earth system IS 

Ma2 ^ n 8 + i ^ 

„ , .... t_ . Mm Mpa1 

lhe P.E. ot the system is = J R V r 
Therefore the whole energy E of the system is 

Ma' UN2 - \ 9 

1+v vr 

\ 7t^CV (LI 

and in gravitation units E = Ma \ — 

Since the earth is supposed to be plastic throughout all these changes, 
its ellipticity of figure 

r n'a 
4 9 

and E = Ma \ -Ae - A - -
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1879] THE HEAT GENERATED INSIDE THE EARTH. 8 9 

If e, e + Ae and r, r 4- Ar be the ellipticity of figure, and the moon's 
distance at two epochs, if J be Joule's equivalent, and a the specific heat of 
the matter constituting the earth; then the loss of energy of the system 
between these two epochs is sufficient to heat unit mass of the matter con
stituting the earth 

-^{^AE-2^Ar1deereeS 

and is therefore enough to heat the whole mass of the earth 

It must be observed that in this formula the whole loss of K.E. of the 
earth's rotation, due both to solar and lunar tidal friction, is included, whilst 
only the gain of the moon's P.E. is included, and the effect of the solar tidal 
reaction in giving the earth greater potential energy relatively to the sun is 
neglected. 

In the fifth and sixth columns of Table I V . of the last section the 
ellipticity of figure and the moon's distance in earth's radii are given; and 
these numbers were used in calculating the eighth column of the same 
table. 

I used British units, so that 7 7 2 foot-pounds being required to heat 1 lb. 
of water 1° Fahr., J = 7 7 2 ; the specific heat of the earth was taken as | th , 
which is about that of iron, many of the other metals having a still smaller 
specific heat; the earth's radius was taken, as before, equal to 20 '9 million 
feet. The last column states that energy enough has been turned into 
heat in the interior of the earth to warm its whole mass so many degrees 
Fahrenheit within the times given in the first column of the same table. 

The consideration of the distribution of the generation of heat and 
the distortion of the interior of the earth must be postponed to a future 
occasion. 

In the succeeding paper [Paper 4 ] I have considered the bearing of these 
results on the secular cooling of the earth, and in a subsequent paper 
[Paper 5 ] the general problem of tidal friction is considered by the aid of 
the principle of energy. 
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§ 17. Integration in the case of small variable viscosity*. 

In the solution of the problem which has just been given, where the 
viscosity is constant, the obliquity of the ecliptic does not diminish as fast as 
it might do as we look backwards. The reason of this is that the ratio of the 
negative terms to the positive ones in the equation of obliquity is not as 

sin 2e' 
small as it might be; that ratio principally depends on the fraction ^ ^ , 
which has its smallest value when e is very small. 

I shall now, therefore, consider the case where the viscosity is small, and 
where it so varies that e always remains small. 

This kind of change of viscosity is in general accordance with what one 
may suppose to have been the case, if the earth was a cooling body, gradually 
freezing as it cooled. 

The preceding solution is moreover somewhat unsatisfactory, inasmuch as 
the three semi-diurnal tides are throughout supposed to suffer the same 
retardation, as also arc the three diurnal tides; and this approximation ceases 
to be sufficiently accurate towards the end of the integration. 

In the present solution the retardations of all the lunar tides will be kept 
distinct. 

By (40) and (40'), Section 11, for the lunar tides, 

. _ 2 (n - II) , _ 2n 2(n + ¡2) „ 2fl 
t a n 2 e ! = - , tan 2e = —, t an2e a = — -. tan2e = — 

P P P P 
, n-2H ^ , n A , n + 2fi 

tan = , tan e = - , tan e2 = 
P P P 

For the solar tides we may safely neglect £2, compared with n, and we 
2n n · . 

have tan 2e = —, tan e = - for the semi-diurnal and diurnal tides respectively. 
9 9 

The semi-annual tide will bo neglected. 
If the viscosity so varies that all the e's are always small, and if we 

put — = \ , we have r n 
sin 4e! -. sin 4e" sin 4e2 
— -r = 1 — A, - . ~.— = A, . — — 1 + A. 
sin 4e sin 4e sin 4e 

.(76) 
sin 2e/ . sin 2e . sin 2ea' . 
— ; -.— = -fi- — A, —\ -.— = TR, —; Z— = * -}- A. 
sm4e sin4e * sin4e 

By means of these equations we may express all the sines of the e's in 
terms of sin 4e. 

* T h i s s e c t i o n h a s b e e n p a r t l y r e w r i t t e n a n d r e a r r a n g e d , a n d w h o l l y r e c o m p u t e d s i n c e t h e 

p a p e r w a s p r e s e n t e d . T h e a l t e r a t i o n s a r e i n t h e m a i n d a t e d D e c e m b e r 19, 1S78. 
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.(81) 

Remembering that the spheroid is viscous, and that therefore Ex = cos 2eu 

Ei =cos e/, &c, we have by Sections 4 and 7, equations (16) and (29), 
dim' I T 5 . 
- r - = -T r — [ip 7g sin 4«! — ps53

 (p 2 — g2) sin 4e — \pq7 sin 4e2 — §p 3g 3 sin 4e" etc iV g W o 

+ \P"q iP1 + 3r/) sin 2e,' - (p> - 5s)3 sin 2e' - (3j92 + g2) sin 2e2'] 
^ r ^ (77) 
=jP° = — [£pB

 sin 4ej + 2j3*54
 sin 4e + \q% sin 4e2 

+ p Y sin 2e,' + (p* - g2)2 sin 2e' + p'q" sin 2e2'] (78) 

And by (57), Section 14, 
dP T 2 

H ~ = — [£p8 sin 4e! — Ig8 sin 4e2 — Sp*q* sin 4e" 
+ 2py sin 2e/ - 2py sin 2e2'] (79) 

The first two of these equations only refer to the action of the moon on 
the lunar tides, but the last is the same whether there be solar tides or not. 

If we substitute from (76) for all the e's in terms of sin 4e, and introduce 
cos i = P = y — ga, sin i=Q = 2pq, we find on reduction 

di dN 
The parts of and which arise from the attraction of the sun on the 

solar tides may bo at once written down by symmetry, and \ = — may be 

considered as a small fraction to be neglected compared with unity. Thus 
we have 

^ = 4 ^ s i n 4 e . i P Q dt A r gn 0

 4 * 
_ d ^ , = T ; S . N 4 E ( 1 _ I < ? ) 

dt i gn 0 ^ ' 

Lastly as to the terms due to the combined action of the two disturbing 
bodies, it was remarked that they only involved e and e, which are inde
pendent of the orbital motions. 

Thus by (33) we have 
(limm, 1 T T . -nf\ \ 

d t N ^ 4 (82) 

,. =—-sin4e.iQ! 

dt g?i0 4 J 
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Collecting results from the last three sets of equations and sub

stituting cos i and sin i for P and Q, and ^ for \ , we have 

di 1 sin 4e 

dt N gn„ ? 4- sin i cos { 

dN 
dt ' 

sin 4e 

212 
T 2 + T 2 — T T — — T 2 sec i ' n 

n (1 - I s in 2 1) (r 2 + T , 2 ) + \ T T , sin2 i - T 2 COS i V(83) 

cos i r 1 sec i 
n 

sin 4e 
dt" ^ gn0 

These are the simultaneous equations which are to be solved. 
Subject to the special hypothesis regarding the relationship between the 

retardations of the several tides, and except for the neglect of a term 

— T 2 sec i in the first of them, and of — — T 2 cos i in the second, they are n n 
rigorously true. 

We will first change the independent variable in the first two equations 
from t to f. 

Dividing the first and second equations by the third, and observing that 
2di 

have sin i 

-. = d log tan 2 £ i 

1+P —TT. log tan 2 A i = • e r a 
2X1 

sec i 

N 

dN 
1 — £ sin21 

cos i 
1 + 

(l-"aect) 
+ i ( 5 ) H I N * tan i 

n 

.(84) 

If there be only one disturbing body, which is an interesting case from a 
theoretical point of view, the equations may be found by putting T ( = 0, and 
may then be written 

. 212 
^ COS I — 

—TT. log tan 2 hi = -^Tf TT-

n , 1 — A sin2 g cos i dN _ * n 
u.dP . 12 cos % 

11 

dt r = A sin 4e cos i — 

.(85) 

IRIS - LILLIAD - Université Lille 1 



From these equations we see that so long as fl is less than n cos i, the 
satellite recedes from the planet as the time increases, and the planet's 
rotation diminishes, because the numerator of the second equation may be 

written cos i ^cos t — — j + ^sin s i , which is essentially positive so long as fl is 
1 ~r* COS" % less than n cos i. But the tidal friction vanishes whenever 12 = n —„r ~ . I cos i 

1 ~\~ cos2 % 
The fraction - — is however necessarily greater than unity, and there-

£t COS % 
fore the tidal friction cannot vanish, unless the month be as short or shorter 
than the day, The obliquity increases if £1 be less than \n cos i, but 
diminishes if it be greater than cos i. Hence the equation fl = cos i 
gives the relationship which determines the position and configuration of the 
system for instantaneous dynamical stability with regard to the obliquity 
(compare the figures 2, 3, 4). From this it follows that the position of zero 
obliquity is one of dynamical stability for all values of n between 12 and 212, 
but if n be greater than 2Q, this position is unstable*. * Added on September 25, 1879.—The result in the text applies to the case of evanescent viscosity. If the viscosity be infinitely large the sines of twice the angles of lagging will be inversely instead of directly proportional to the speeds of the corresponding tides (compare p. [74]). Thus we must here invert the right-hand sides of the six equations (76). If the obliquity be very small (77), (78), (79) become 

-J:=^2

isinisin4eiri+

2

1̂ -2(1-X)l' dt N QriQ * [_ 1 - 2\ J 

1 r2 . . /l + 2X-4\2\ I 
= ^a^i8m'sln4Ell-1^2X-J \ ( 8 5 ) 

dN rf| T-2 , . , 
- - j - = p. -j- = — i B i n 4«i dt dt gjio2 

When 2X = 1, ̂  apparently becomes infinite ; but in this case the viscosity must be infinitely large in order to make the tide of speed n - 2(J lag at all, and if it be infinitely large sin 4EJ is infinitely small. If the viscosity be large but finite, then when 2X = 1, the slow diurnal tide of speed n - 20 is no longer a true tide, but is a permanent alteration of figure of the spheroid. 
di 

Thus e]' = 0 and — depends on [sin iei - sin 2e'] which is equal to sin 4ei [1 - 2 (1 - X)] when the viscosity is large, and vanishes when 2X = 1. Thus when the viscosity is very large (not infinite) 
di 

•Q- vanishes when 2f)-̂re = l, as it does when the viscosity is very small. 
When l + 2\-4X2 = 0, that is, when X = * =1-4-1-236, ̂  vanishes; and it is negative if 4 dt X be a little greater, and positive if a little less than l-i-1-236. And 1-2X is negative if X be greater than J. Hence it follows that for large viscosity of tin planet, zero obliquity is dynamically unstable, 

if the satellite's period be less than 1-236 of the planet's period of rotation; is stable if the satel
lite's period be between 1-236 and 2 of the planet's period; and is unstabfo for longer periods of the 
satellite. 

If the viscosity be very large — ^ log tan2 Ji= —j—-0.̂ ' , but if the viscosity be very small 
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We will now return to the problem regarding the earth. We may here 

regard — AS a small fraction, and I as sufficiently small to permit us to 

neglect! s i n ^ ; also ( ^ e c i / , ^ 

Our equations thus become 

d 1 + 

FID% LOGE tan 2 = • 

sec I 

(5)" 

sec I will be neglected. 

2 Q sec I n 
AT H ^ 

JS \\ sec I 
n 

. ( 86 ) 

DN 1 IT V . T . n . . . . . 

-W| = 1 + W + i-smitan* + -(sect-l)J 
The experience of the preceding integration shows that I varies very 

slowly compared with the other variables N and f ; hence in integrating these 
equations an average value will be attributed to I, as it occurs in small terms 
on the right-hand sides of these equations. 

The second equation will be considered first. 
FTA' fc , ». »Uu» if we put /3 = YV ( — ) > 7 = i ? — s m l' TJAN H a n d We have T = ~, so that 

omit the last term, we get by integrating from 1 to N and from 1 to f 

N = 1 + P [1 - £ + 0 (1 - P ) + 7 ( 1 - F)] (87) 
as a first approximation. This is the form which was used in the previous 
solution, for, by classifying the tides in three groups as regards retardation of 
phase, we virtually neglected fl compared with n. 

This equation will be sufficiently accurate so long as ^ is a moderately 

small fraction; but we may obtain a second approximation by taking account 
of the last term. 

Now - (sec I - 1) = £ s m 2 1 —. very nearly 

= I sina % • Ac 
FIN0 F 1+FJL 

by substituting an approximate value for N. 

THE SAME EXPRESSION = ——. FOR POSITIVE VALUES OF A, LESS THAN 1 AND GREATER THAN '6310 OR 

L-=-L-447, THE FORMER IS LESS THAN THE LATTER, AND IF \ BE LESS THAN L-=-L-447 AND GREATER THAN 0 THE 
FORMER IS GREATER THAN THE LATTER. 

HENCE IF THERE BE ONLY A SINGLE SATELLITE, AS SOON AS THE MONTH IS LONGER THAN TWO DAYS, THE 
OBLIQUITY OF THE PLANET'S AXIS TO THE PLANE OF THE SATELLITE'S ORBIT WILL INCREASE MORE, IN THE COURSE 
OF EVOLUTION, FOR LARGE THAN FOR SMALL VISCOSITIES. THIS RESULT IS REVERSED IF THERE BE TWO SATELLITES, 
AS WE SEE BY COMPARING FIGS. 2 AND 4. 
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A more correct form for the equation of conservation of moment of 

momentum will be given by adding to the right-hand side of equation (87) 
the integral of this Last expression from 1 to f and multiplying it by fi. And 
in effecting this integration i may be regarded as constant. 

Let k •• 

therefore 

1 + fi 

A* Then since 

1 1 
kg3

 + fca f3 + ä3 f +
 ¥(k -1) 

= 2.(1-1 + 

2(1+¿)1¿~ 0 G 
Plog|(* 1 ) 

, 1+3/* 
f + 1 + ,* i+MW) 

Hence the second approximation is 

iVr=l+At{(l-f) + /3(l-p) + 7(l-r)} 
f 1 + /*. 

+ J sin'i 

/*+ 1 
log "i + /.(i-fy .(88) 

It would no doubt be possible to substitute this approximate value of N 
in terms of f, in the equation which gives the rate of change of obliquity, and 
then to find an approximate analytical integral of the first equation. But 
the integral would be very long and complicated, and I prefer to determine 
the amount of change of obliquity by the method of quadratures. 

In the present case it is obviously useless to try to obtain the time 
occupied by the changes, without making some hypothesis with regard to 
the law governing the variations of viscosity; and even supposing the 
viscosity small but constant during the integration, the time would vary in
versely as the coefficient of viscosity, and would thus be arbitrary. The only 
thing which can be asserted is that if the viscosity be small, the changes pro
ceed more slowly than in the case which has been already solved numerically. 

To return, then, to the proposed integration by quadratures: by means of 
the equation (88) we may compute four values of N (corresponding, say, to 

f = 1, '96, "92, -88); and since r = -p , and ~ = , we may compute four 

equidistant values of all the terms on the right-hand side of the first of 
equations (86), except in as far as i is involved. Now i being only involved in 
small terms, we may take as an approximate final value of i that which is 
given by the solution of Section 15, and take as the four corresponding values 

ô, % + 3 (i
 l'o)j % + "j '̂O)J 
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Hence four equidistant values of the right-hand side may be computed, 

and combined by the rule I uxdx=^h [u„ + u3 + 3 (w, + !ta)], which will give 
J o 

the integral of the right-hand side from £ to 1; and this is equal to 
log tan 3 — log tan2 \ i0 

The integration was divided into a number of periods, just as in the 
solution of Section 15. The following were the results: 

First period. From £=1 to "88; fi= 40074; ¿=20° 28'; iy"=l"5478. 
The term in — in the expression for N added "0012 to the value of iV. 

n0 

Second period. From £ = 1 to '76; /i = 2'2784; ¿=17° 4'; N = 1-5590. 
The term in —3 added -0011 to the value of N. 

n0 

Third period. From £=1 to 76; =1-1107; ¿ = 15° 22'; N = 1-2677. 
The term in —0 added '0007 to the value of N. 

n„ 
It may be observed that during the first period of integration 12/re diminishes, 

and reaches its minimum about the end of the period. During the rest of 
the integration it increases. If we neglect the solar action and the obliquity, 

it is easy to find the minimum value of For ^ = —0 and reaches its J n n n, ivf3 

minimum when ^ r = — ^ - ; but ^r^ = — u. Therefore N = l}ru. Now 
o!£ £ a£ r J S 

N=\ + ,«(1 - £ ) , and hence £ = f If p = 4, £ ={| = '9375. This 

value of £ is passed through at near the end of the first period of integration. 
At this period there are 192 mean solar hours in the day; 22̂  mean solar 
days in the sidereal month; and 28| rotations of the earth in the sidereal 
month. This result 28} is, of course, only approximate, the true result 
being about 29*. 

The physical meaning of these results is given in a table below. 

At the end of the third period of integration the solar terms (those in T , / T ) 
have become small in all the equations, and as they are rapidly diminishing 
they may be safely neglected. To continue the integration from this point a 
slight variation of method will be convenient. 

* The subject is referred to from a more general point of view in a paper on the " Secular 
Effects of Tidal Friction," see Proc. Boy. Soc, No. 197, 1879. [Paper 5.] 
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n 

In order to find how large a diminution of obliquity is possible if the 
integration be continued, we require to stop at the point where n cos i = 2£2. 

The equation ^ = 1 + /A (1 — f) may be written 

If therefore we put x = j£2, we must stop the integration at the point 
where n = 2a? sec i, x being given by the equation 

2x* sec i =l-l-u, n0 

8/rT 

If we assume i = 14°, since fi = 1 -5 - sn0£20=, x is given by 

xi - %na cos 14" (1 + fj.) x + ~ cos 14° = 0 

At the end of the third period of integration, which is the beginning of 
the new period, I found 

logn 0 = 3-84753, log/x = 9-82338-10, and logs = 5-39378 - 10 

the unit of time being the present tropical year. 

Hence the equation is 
- 5690a; + 1958(3 = 0 

The required root is nearly V5690, and a second approximation gives 
x = £2s = 16'703 (16'51 would have been more accurate). 

But n„i = 8-616. Hence we desire to stop the integration when 
8-616 

: = -516 16-703 
Now p. = -6659 ; hence when f - -516, JV = 1-322. 
In order to integrate the equation of obliquity by quadratures, I assume 

the four equidistant values, 
N= 1-000, 1-107, 1-214, 1 321 

N - 1 

And by means of the equation f = 1 — Tgggy = 1 — (N — 1) (1-502) the 

corresponding values of f are found to be 
1-000, -8393, -6786, "5179 

p. n, 7 

Our equations may now be written approximately 

iV- = l+,.(l-0 
7 -| 1 sec i 

~ rfN & tan 2 J z = — i 

IRIS - LILLIAD - Université Lille 1 



98 
R E S U L T S O F T H E Q U A D R A T U R E S . [ 3 

n 

By means of the formula -^= — t h e corresponding values of 
71 71Q J\ C 

are found to be 

•0909, -1388, -2395, -4951 

I assumed conjecturally four values of i lying between i0 = 15° 22 ' and 
i— 14°, which I knew would be very nearly the final value of i; and then 

computed four equidistant values of — log10 tan \i. 

The values were 

•19381 , 1 6 2 3 0 , -11882, - "00684 

The fact that the last value is negative shows that the integration is 
carried a little beyond the point where n cos i = 217, but this is unimportant. 

Combining these values by the rules of the calculus of finite differences, 
I find ¿ = 1 3 ° 59' . 

This final value of £ (viz.: "5179) makes the moon's sidereal period 
1 2 hours, and the value of N (viz.: 1-321) makes the day 5 hours 5 5 minutes. 

These results complete the integration of the fifth period. 

The physical meaning of the results for all five periods is given in the 
following table:— 

Sidereal day in m.s. hours and minutes Moon's sidereal period in m.s. days Obliquity of ecliptic 
h. m. Initial 23 56 15 28 9 55 7 49 Final 5 55 

27'32 days 1862 „ 8-17 „ 359 „ 12 hours 

23° 28' 20° 28' 17° 4' 15° 22'* 14° 0'* 

It is worthy of notice that at the end of the first period there were 
28 '9 days of that time in the then sidereal month ; whilst at the end of the 
second period there wore only 1 9 - 7 . I t seems then that at the present time 
tidal friction has, in a sense, done more than half its work, and that the 
number of days in the month has passed its maximum on its way towards 
the state of things in which the day and month are of equal length—as 
investigated in the following section. 

In the last column of the preceding table the last two results in the 
column giving the obliquity of the ecliptic (which are marked with asterisks) 
cannot safely be accepted, because, as I have reason to believe, the simultaneous 
changes of inclination of the lunar orbit will, after the end of the second period 
of integration, have begun to influence the results perceptibly. 
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For this same reason the integration, which has been carried to the critical 
point where w cos i = 2 Q , and where di/dt changes sign, will not be pursued any 
further. Nevertheless we shall be able to trace the moon's periodic time, and 
the length of day to their initial condition. It is obvious that as long as n is 
greater than 12, there will be tidal friction, and n will continue to approach 12, 
whilst both increase retrospectively in magnitude. 

I shall now refer to a critical phase in the relationship between n and 12, 
of a totally different character from the preceding one, and which must occur 
at a point a little more remote in time than that at which the above 
integration stops. 

This critical phase occurs when the free nutation of the oblate spheroid 
has a frequency equal to that of the forced fortnightly nutation. 

In the ordinary theory of the precession and nutation of a rigid oblate 
spheroid, the fortnightly nutation arises out of terms in the couples acting 
about a pair of axes fixed in the equator, which have speeds n— 212 and 
n + 212. If C and A be the greatest and least principal moments of inertia, 

C — A _ 
on integration these terms are divided by — n . + n + 2X2 and give rise 

to terms in ^ and < ~ sin i of speed 2X2. When 2X2 is neglected compared 

with n, we obtain the formula for the fortnightly nutation given in any work 
on physical astronomy. 

C — A 
It is obvious that if n+n = 212, the former of these two terms 

C — A 
becomes infinite. Since in our case the spheroid is homogeneous - — = e, 

the ellipticity of the spheroid; and since the spheroid is viscous e = \ - . 
9 

tl3 

Therefore the critical relationship is £ — + n — 2X2. 
When this condition is satisfied the ordinary solution is nugatory, and 

the true solution represents a nutation the amplitude of which increases with 
the time. 

2X2 
The critical point where the above integration stops is given by — = cos i, 

2X2 n2 X2 . . and this critical point by — = J + A - ; it follows therefore that - is little 1 J n 1 g n 
larger in the second case than in the first. Therefore this critical point has 
not been already reached where the integration stops, but will occur shortly 
afterwards. 

It is obvious that the amplitude of the nutation cannot increase for an 
indefinite time, because the critical relationship is only exactly satisfied for a 

7—2 
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single instant. In fact, the problem is one of far greater complexity than 
that of ordinary disturbed rotation. The system is disturbed periodically, 
but the periodic time of the disturbance slowly increases, passing through a 
phase of equality to the free periodic time ; the problem is to find the ampli
tude of the oscillations when they are at their maximum, and to find the 
mean configuration of the system some time before and some time after the 
maximum, when the oscillations are small. This problem does not seem to 
be soluble, unless we take into account the slow variation of the argument in 
the periodic disturbing term ; and when the argument varies, the disturbing 
term is not strictly a simple time-harmonic. 

In the case of the viscous spheroid, the question would be further com
plicated by the fact that when the nutation becomes large, a new series of 
bodily tides is set up by the effects of inertia. 

I have been unable to make a satisfactory examination of this problem, 
but as far as I have gone it appeared to me probable that the mean obliquity 
of the axis of the spheroid would not be affected by the passage of the system 
through a phase of large nutation; and although I cannot pretend to say how 
large the nutation might be, yet I consider it probable that the amplitude 
would not have time to increase to a very wide extent*. 

Throughout all the preceding investigations, the periodic inequalities 
have been neglected. Now a full development of the couples 1 , jftfl, J J , 
which are due to the tides, shows that there occur terms of speeds n — 2X1, 
and 11 — 4fl in the first two, and of speeds 2fl and 4Q in the last. The terms 
in n — 2 0 in 1L and will clearly give rise to an increasing nutation at the 
critical point which we are considering, but they will be so very much smaller 
than those arising out of the attraction on the permanent equatorial pro
tuberance that they may be neglected. The terms in n — 4fl are multiplied 
by very small quantities, and I think it may safely be assumed that the 
system would pass through the critical phase where ^ rt3/(J + n = 412 with 
sufficient rapidity to prevent the nutation becoming large. 

If we were to go to higher orders of approximation in the disturbing 
forces, it is clear that we should meet with an infinite number of critical 
phases, but the coefficients representing the amplitudes of the resulting 
nutations would be multiplied by such small quantities that they may safely 
be neglected. 

* I b e l i e v e t h a t I s h a l l b e a b l e t o s h o w i n a n i n v e s t i g a t i o n , a s y e t i n c o m p l e t e , t h a t w h e n t h i s 

c r i t i c a l p h a s e i s r e a c h e d , t h e p l a n e o f t h e l u n a r o r b i t i s n e a r l y c o i n c i d e n t w i t h t h e e q u a t o r o f t h e 

e a r t h . A s t h e a m p l i t u d e o f t h i s n u t a t i o n d e p e n d s o n t h e s i n e o f t h e o b l i q u i t y o f t h e e q u a t o r 

t o t h e l u n a r o r b i t , it s e e m s p r o b a b l e t h a t t h e n u t a t i o n w o u l d n o t b e c o m e c o n s i d e r a b l e . — • 

J u n e 3 0 , 1 8 7 9 . 
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§ 18 . The initial condition of the earth and moon*. 

It is now supposed that, when the earth's rotation has been traced back 
to where it is equal to twice the moon's orbital motion, the obliquity to the 
plane of the lunar orbit has become zero. I t is clear that, as long as 
there is any relative motion of the earth and moon, the tidal friction and 
reaction must continue to exist, and n and £2 must tend to an equality. The 
previous investigation shows also that for small viscosity, however nearly n 
approaches £2, the position of zero obliquity is dynamically stable. 

As n is approaching £1, the changes must have taken place more and more 
slowly in time. For if the earth was a cooling spheroid, it is unreasonable to 
suppose that the process of becoming less stiff in consistency (which has 
hitherto been supposed to be taking place, as we go backwards in time) could 
ever have been reversed; and if it were not reversed, the lunar tides 
must have lagged by less and less, as more and more time was given by the 
slow relative .motion of the two bodies for the moon's attraction to have its 
full effect. Hence the effects of the sun's attraction must again become 
sensible, after passing through a phase of insensibility—a phase perhaps short 
in time, but fertile in changes in the system. I shall not here make the 
attempt to trace the reappearance of these solar terms. 

I t is, however, possible to make a rough investigation of what must have 
been the initial state from which the earth and moon started the course of 
development, which has been traced back thus far. To do this, it is only 
necessary to consider the equation of conservation of moment of momentum. 

When the obliquity is neglected, that equation may be written 

and it is proposed to find what values of n would make n equal to £2. 

In the course of the above investigation four different starting points were 
taken, viz. : those at the beginning of each period of integration. There are 
objections to taking any one of these, to give the numerical values required 
for the solution of the above equation ; for, on the one hand, the errors of 
each period accumulate on the next, and therefore it is advantageous to take 
one of the early periods ; whilst, on the other hand, in the early periods the 
values of the quantities are affected by the sensibility of the solar terms, and 
by the obliquity of the ecliptic. The beginning of the fourth period was 
chosen, because by that time the solar terms had become insignificant. At 
that epoch I found logn 0 = 3"84753, when the present tropical year is the unit 

* F o r f a r t h e r c o n s i d e r a t i o n o f t h i s s u b j e c t , s e e a p a p e r o n t h e . " S e c u l a r E f f e c t s o f T i d a l 

F r i c t i o n , " Proc. Boy. Soc, N o . 1 9 7 , 1 8 7 9 . [ P a p e r 5 . ] T h e a r i t h m e t i c o f t h i s s e c t i o n h a a b e e n 

r e c o m p u t e d s i n c e t h e p a p e r w a s p r e s e n t e d . 
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of time, and /JL = -6659, /M being the ratio of the orbital moment of momentum 
to the earth's moment of momentum; also log s = 5'39378 — 10, s being a 
constant. Now put x3 = n = 11, and we have 

x* — (1 + fi) n0x + - = 0 

Substituting the numerical values, 
x*- 11727a; + 40385 = 0 

This equation has two real roots, one of which is nearly equal to ^11727, 
and the other to 40385 -f- 11727. By Horner's method these roots are found 
to be 21'4320 and 3'4559 respectively. These are the two values of the cube 
root of the earth's rotation, for which the earth and moon move round as a 
rigid body. 

The first gives a day of 5 hours 36 minutes, and the second a day of about 
55-i m. s. days. 

The latter is the state to which the earth and moon tend, under the 
influence of tidal friction (whether of oceanic or bodily tides) in the far distant 
future. For this case Thomson and Tait give a day of 48 of our present 
days *; the discrepancy between my value and theirs is explicable by the fact 
that they are considering a heterogeneous earth, whilst I treat a homogeneous 
one. Since on the hypothesis of heterogeneity the earth's moment of inertia 
is about 4jMa2. whilst on that of homogeneity it is |Ma 2 , and since the -| which 
occurs in the quantity s enters by means of the; expression for the earth's 
moment of inertia, it follows that in my solution p has been taken too small 
in the proportion 5 : 6. Hence if we wish to consider the case of heterogeneity, 
we must solve the equation a? — 12664a; + 48462 = 0. The two roots of this 
equation are such that they give as the corresponding lengths of the day, 
5 hours 16 minutes and 40"4 days respectively. The remaining discrepancy 
(between 40 and 48) is doubtless due in part to the crude method of amending 
the solution, but also to the fact that they partly include the obliquity in one 
way, whilst I partly include it in another way, and I include a large part of 
the solar tidal friction whilst they neglect it. I t is interesting to note that 
the larger root, which gives the shorter length of day, is but little affected by 
the consideration of the earth's heterogeneity. 

With respect to the second solution (56 days), it must be remarked that 
the sun's tidal friction will go on lengthening the day even beyond this point, 
but then the lunar tides will again come into existence, and the lunar tidal 
friction will tend in part to counteract the solar. The tidal reaction will also 
be reversed, so that the moon will again approach the earth. Thus the effect 
of the sun is to make this a state of dynamical instability. 

* Natural Philosophy, § 2 7 6 . T h e y a a y : — " I t i s p r o b a b l e t h a t t h e m o o n , i n a n c i e n t t i m e s 

l i q u i d o r v i s c o u s i n i t s o u t e r l a y e r o r t h r o u g h o u t , w a s t h u s b r o u g h t t o t u r n a l w a y s t h e s a m e 

f a c e t o t h e e a r t h . " I n t h e n e w e d i t i o n ( 1 8 7 9 ) t h e u l t i m a t e e f f e c t s o f t i d a l f r i c t i o n a r e c o n s i d e r e d . 

IRIS - LILLIAD - Université Lille 1 



1879] I N S T A B I L I T Y O F T H E I N I T I A L C O N D I T I O N O F T H E M O O N . 1 0 3 

The first solution, where both the day and month are 5 hours 36 minutes 
in length, is the one which is of interest in the present inquiry, for this is 
the initial state towards which the integration has been running back. 

This state of things is one of dynamical instability, as may be shown as 
follows:— 

First consider the case where the sun does not exist. Suppose the earth 
to be rotating in about 5^ hours, and the moon moving orbitally around it in 
a little less than that time. Then the motion of the moon relatively to the 
earth is consentaneous with the earth's rotation, and therefore the tidal 
friction, small though it be, tends to accelerate the earth's rotation; the tidal 
reaction is such as to tend to retard the moon's linear velocity, and therefore 
increase her orbital angular velocity, and reduce her distance from the earth. 
The end will be that the moon falls into the earth. 

This subject is graphically illustrated in a paper on the " Secular Effects 
of Tidal Friction," read before the Royal Society on June 19, 1879*. 

Secondly, take the case where the sun also exists, and suppose the system 
started in the same way as before. Xow the motion of the earth relatively to 
the sun is rapid, and such that the solar tidal friction retards the earth's rotation; 
whilst the lunar tidal friction is, as before, such as to accelerate the rotation. 

Hence if the viscosity be very large the earth's rotation may be accelerated, 
but if it be not very large it will be retarded. The tidal reaction, which 
depends on the lunar tides alone, continues negative, and the moon approaches 
the earth as before. Thus after a short time the motion of the moon relatively 
to the earth is more rapid than in the previous case, whatever be the ratio 
between solar and lunar tidal friction. Hence in this case the moon will fall 
into the earth more rapidly than if the sun did not exist, and the dynamical 
instability is more marked. 

If, however, the day were shorter than the month, the moon must con
tinually recede from the earth, until it reaches the outer limit of a day of 
56 m. s. days. 

There is one circumstance which might perhaps decide that this should be 
the direction in which the equilibrium would break down; for the earth was 
a cooling body, and therefore probably a contracting one, and therefore its 
rotation would tend to increase. Of course this increase of rotation is partly 
counteracted by the solar tidal friction, but on the present theory, the mere 
existence of the moon seems to show that it was not more than counteracted, 
for if it had been so the moon must have been drawn into and confounded 
with the earth. 

This month of 5 hours 36 minutes corresponds to a lunar distance of 2'52 
earth's mean radii, or about 10,000 miles; the month of 5 hours 16 minutes 

* Paper 5 in thia volume. 
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corresponds to 2'39 earth's mean radii; so that in the case of the earth's 
homogeneity only 6,000 miles intervene between the moon's centre and the 
earth's surface, and even this distance would be reduced if we treated the 
earth as heterogeneous. This small distance seems to me to point to a break
up of the earth-moon mass into two bodies at a time when they were rotating 
in about 5 hours; for of course the precise figures given above cannot claim 
any great exactitude (see also Section 23). 

I t is a material circumstance in the conditions of the breaking-up of the 
earth into two bodies to consider what would have been the ellipticity of the 
earth's figure when rotating in 5^ hours. Now the reciprocal of the ellipticity 
of a homogeneous fluid or viscous spheroid varies as the square of the period 
of rotation of the spheroid. The reciprocal of the ellipticity for a rotation in 
24 hours is 232, and therefore the reciprocal of the ellipticity for a rotation in 

Hence the ellipticity of the earth when rotating in 5^ hours is -j^th. 
The conditions of stability of a rotating mass of fluid are as yet unknown, 

but when we look at the planets Jupiter and Saturn, it is not easy to believe 
that an ellipticity of Y%th is sufficiently great to cause the break-up of the 
spheroid. 

A homogeneous fluid spheroid of the same density as the earth has its 
greatest ellipticity compatible with equilibrium when rotating in 2 hours 
24 minutes*. 

The maximum ellipticity of all fluid spheroids of the same density is the 
same, and their periods of rotation multiplied by the square root of their 
densities is a function of the ellipticity only. Hence a spheroid, which rotates 

in 4 hours 48 minutes, will be in limiting equilibrium if its density is 

or \ of that of the earth. If this latter spheroid had the same mass as the 
earth, its radius would be $4 or l -59 of that of the earth. If therefore the 
earth had a radius of 6,360 miles, and rotated in 4 hours 48 minutes, it would 
just have the maximum ellipticity compatible with equilibrium. It is, how
ever, by no means certain that instability would not have set in long before 
this limiting ellipticity was reached. 

In Part III . I shall refer to another possible cause of instability, which 
may perhaps be the cause of the break-up of the earth into two bodies. 

I t is easy to find the minimum time in which the system can have passed 
from this initial configuration, where the day and month are both 5^ hours, 
down to the present condition. If we neglect the obliquity of the ecliptic, 

* P r a t t ' s Figure of the Earth, 2 n d e d i t i o n , A r t s . 68 a n d 7 0 . [ T h e figure i s h o w e v e r u n s t a b l e 

f o r t h i s r a p i d r o t a t i o n . ] 

5A hours is of 232 = J£6\ x 232 = 12"2. 
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the equation (57) of tidal reaction, when adapted to the case of a viscous 
spheroid, becomes 

u - ¡ 7 = * — s i n 4^ 
^ dt 2 %n0 

It is clear that the rate of tidal reaction can never be greater than 
when sin 4«! = 1, when the lunar semi-diurnal tide lags by 22-J-0. Then since 
T = T 0 / f w e shall obtain the minimum time by integrating the equation 

Whence - * = S ^ ° ( 1 - P ) 
13 T 0

2 

Now (f = , and we have found by the solution of the biquadratic that 

the initial condition is given by il^ = 21"4320; also with the present value of 

the month fi0^ = 4"38, the present year being in both cases the unit of time. 
Hence it follows that f is very nearly '2, and f13 may be neglected compared 

with unity. Thus - t = ^ . 
Id T 0

2 

Now = 4-007 and ^ is 86,844,000 years. 

Hence - 1 = 53,540,000 years. 
Thus we see that tidal reaction is competent to reduce the system from 

the initial state to the present state in something over 54 million years. 
The rest of the paper is occupied with the consideration of a number of 

miscellaneous points, which it was not convenient to discuss earlier. 

§ 19 . The change in the length of year. 

The effects of tidal reaction on the earth's orbit round the sun have been 
neglected ; I shall now justify that neglect, and show by how much the length 
of the year may have been altered. 

It is easy to show that the moment of momentum of the orbital motion of 
C 

the moon and earth round their common centre of inertia is ; , where C is 

the earth's moment of inertia, and s 

The moment of momentum of the earth's rotation is obviously Gn. The 
normal to the lunar orbit is inclined to the earth's axis at an angle i. Hence 
the resultant moment of momentum of the moon and earth is 
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The change in this quantity from one epoch to another is the amount of 
moment of momentum of the moon-earth system which has been destroyed 
by solar tidal friction. This destroyed moment of momentum reappears in 
the form of moment of momentum of the moon and earth in their orbital 
motion round the sun. 

At the beginning of the integration of Section 17, that is to say at 
the present time, I find that when the present year is taken as the unit of 
time, the resultant moment of momentum of the moon and earth is 11369 C. 

At the end of the third period of integration (after which the solar terms 
were neglected), and when the obliquity has become 15° 22', I find the same 
quantity to be 11625 C. 

Hence the loss of moment of momentum is 256 C, or 102"4il/a2. 

At the present time the moment of momentum of the moon and 

earth in their orbit is (M + 7 w ) X 2 / c <

a = Ma? ^ - ' J 12/, - i s clearly the 

sun's parallax, and with the present unit of time fl, is 2TT. 
Hence the loss of moment of momentum is equal to the present moment 

1024 v 
of momentum of orbital motion multiplied by —^— ^ (sun 's parallax)5. 

But the moment of momentum of the earth's and moon's orbital motion 
round the sun varies as I2,~^; hence the loss of moment of momentum cor
responding to a change of fl, to fl, + Sfl, is the present moment of momentum 

multiplied by \ -j~, whence it is clear that 

O, 2TT 1 + vv r ' 
SO 

But the shortening of the year is - p r - of a year; taking therefore the sun's 
parallax as 8""8, we find that at the end of the third period of integration the 
year was shorter than at present by 

_ 102-4 82 / 8-8TT V „ . K Q . . . . . 3 x —-— x • -- x „,n n n n x 365-25 x 86,400 seconds 2TT 83 V648,000/ 
which will be found equal to 277 seconds. 

Thus the solar tidal reaction had only the effect of lengthening the year 
by 2 | seconds, since the epoch specified as the end of the third period of 
integration. The whole chauge in the length of year since the initial condi
tion to which we traced back the moon would probably be very small indeed, 
but it is impossible to make this assertion positively, because, as observed 
above, the solar effects must have again become sensible, after passing through 
a period of insensibility. 
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§ 20. Terms of the second order in the tide-generating potential. 

The whole of the previous investigation has been conducted on the hypo
thesis that the tide-generating potential, estimated per unit volume of the 
earth's mass, is w n a (cos2 PM — J)*, but in fact this expression is only the 
first term of an infinite series. I shall now show what quantities have been 
neglected by this treatment. According to the ordinary theory, the next 
term of the tide-generating potential is 

V 2 = w ™ ( | cos3 PM - 1 cos PM) 

Although for my own satisfaction I have completely developed the influence 
of this term in a similar way to that exhibited at the beginning of this paper, 
yet it does not seem worth while to give so long a piece of algebra; and 
I shall here confine myself to the consideration of the terms which will arise 
in the tidal friction from this term in the potential, when the obliquity is 
neglected. A comparison of the result with the value of the tidal friction, as 
already obtained, will afford the requisite information as to what has been 
neglected. 

When the obliquity is put equal to zero (see fig. 1), 

cos PM = sin 0 sin (<£ — to) 
where to is written for n — fl for brevity. Then 

cos3 PM = f sins 6 sin (<£ - t o ) - \ sin3 9 sin 3 (</> - t o ) 
and 

cos3 PM - f cos PM = 2

3

n sin 9(1-5 cos2 9) sin (0 - t o ) - { sin3 0 sin 3 (<f> - o > ) 

Since w — (- 4 = wr - -4 
c \cj 1 c A 

we have 
V s -=- w T- r3 = --fa sin3 9 sin 3 (<f> - w ) + \ sin 0 ( 1 - 5 cos2 6) sin (<£ - t o ) 

If sin 3 (<p — t o ) and sin (0 — t o ) be expanded, we have V a in the desired 
form, viz.: a series of solid harmonics of the third degree, each multiplied 
by a simple time-harmonic. If wr3 S3 cos (vt + v) be a tide-generating po
tential, estimated per unit volume of a homogeneous perfectly fluid spheroid 
of density w, S 3 being a surface harmonic of the third order, the equi-

7a 3 

librium tide due to this potential is given by a = -r- S 3 cos (vt + rj), or 
1g 

-=-I^Lg Cos (iit + v)- Hence just as in/Section 2, the tide-generating 
a 10g 3 

* S e e S e c t i o n 1. 
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Hence the moment about the earth's axis of the forces which the attraction 
of the distorted spheroid exercises on a particle of mass m, situated at 

r, 6, d>, is 3 Mma _ If this mass be equal to that of the moon, and r = c, 
AITHO2 T T then ^ ——— = | - Ma? = f - C, where, as before, C is the moment of inertia of 

'I C C 
the earth. 

Hence the couple $HJT which the moon's attraction exercises on the earth, 

is given by $U = ~ f - C ^ , where after differentiation we put 6 = \ir and 

<J} = + 60. 
Now 

- IF' sin 6 (1 - 5 cos3 0) cos (</>-<» + / ' ) ] 

Hence ^ - i £ = f P cos (f ,r + 3/) - J J " cos (*«•+/ ' ) 

= f ^ s i n 3 / + i J ' s i n / ' 
In the case of viscosity 

F = cos3/, F' = cmf 

Therefore ^ = £ ( ^ sin 6/ + TV sin 2/') 

If the obliquity had been neglected, the tidal friction J ^ , due to the 
term of the first order in the tide-generating potential, would have been 

given by = - \ sin 4 6 l . 

Hence # = 4 W (*J^*L+™±M1 

That is to say, this is the ratio of the terms neglected previously to those 
included. 

potential of the third order of harmonics due to the moon will raise tides 
in the earth, when there is a frictional resistance to the internal motion, 
given by 

1 = 1*1°[-{'iF^EDN3(</>- „, + / ) 
+ IF' sin 6(1-5 cos2 6) sin (<f> - co +/')] 

Now <r is a surface harmonic of the third order, and therefore the potential 
of this layer of matter, at an external point whose coordinates are r, 6, <$>, is 

{AY „ MA2 
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_ 1 9 v 2 
s i n 4e t sin (TT ^IE^) J* 

and similarly ^ ^ = -Jf x 2 

So that J| = i x ft W + 2) = 

Hence it follows that the terms of the second order may bear a ratio to 

those of the first order lying between j | 

At the end of the fourth period of integration in the solution of Section 15, 
c/a or the moon's distance in earth's mean radii was 9; hence the terms of 
the second order in the equation of tidal friction must at that epoch lie in 
magnitude between ^ t h and -X\ISB of those of the first order. I t follows 

* " Bodily Tides," A c , Phil. Tram., 1879, Part i „ Section 5. [Paper 1.] 

According to the theory of viscous tides*, 

J 3 gwa 1 9 v \2gwaJ 
where v is the coefficient of viscosity. 

But throughout the previous work we have written P = . 

3(0 CO 
Hence tan 3 / = ~ , and similarly t a n / = ? $ - . 

Also tan 2e! = — . 
P 

I will now consider two cases :— 

1st. Suppose the viscosity to be small, then / , F, d are all small, and 

s i n 6 / = tan 3 / = s inJT = t a n £ = „ x , 
sin^ tan 2e1

 T 5 5 ' sin 4ex tan 2e1

 l 5 3 

i w „ „ 

2nd. Suppose the viscosity very great, then 3/, / ' , 2ex are very nearly 
equal to \ TT, and 

t a n ( i 7 r - 3 / ) = i f £ , tan ( i * r t a n - 2 C l )= ^ - , 

so that we have approximately 
sin 6f sin (TT — 6/) 
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that even at that stage, when the moon is comparatively near the earth, the 
effect of the tides of the second order (the third degree of harmonics) is 
insignificant, and the neglect of them is justified. 

In the case of those terms of this order, which affect the obliquity, a very 
similar relationship to the terms of the lower order would be found to hold 
good. 

§ 21. On certain other small terms. 

It will be well to advert to certain terms, the neglect of which might be 
suspected of vitiating my results. 

According to the hypothesis of the plastic nature of the earth's mass, 
that body must always have been a figure of equilibrium throughout 
the series of changes which are to be followed out. In consequence of 
tidal friction the earth's rotation is diminishing, and therefore its ellipticity 
(which by the ordinary theory is %n2a/g) is also diminishing; this change of 
figure might be supposed to exercise a material influence on the results, but 
I will now show that in one respect at least its effects are unimportant. 

In a previous paper* I showed that, neglecting (C — A)/A compared with 
unity, when the earth's figure changed symmetrically with respect to the axis 
of rotation, 

di T + T , . . . d n . 
dt Crc2 dtK ' 

But if e be the ellipticity of figure, 

C - A = | M œ a e 

c - , . , , 1 d . . d e .nadn n j 3 
bo that ( i - y ; b - A = T = I = - = — - - p r 

C dt dt 2 g dt g L-

and therefore ^ = -̂~>r—' sin i cos i 
dt L> 

T + T , 3-04 . 
Numerical calculation shows that at present ~z— — T T V T > a n d since 

sin i cos i is of the same order of magnitude as ; Q̂" ( o n which the 

changes of obliquity have been shown to depend), it follows that this term is 
fairly négligeable compared with those already included in the equations. 

* " On the Inflnence of Geological Changes," &c, Phil. Trans-, Vol. 167, Part i., page 272, 
Section 8. [To be reproduced in Vol. nr.] The notation is changed, and the equation presented 
in a form suitable for the present purpose. 
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As far as it goes, however, this term tends in the direction of increasing the 
obliquity with the time*. 

It will however appear, I believe, that this secular change of ellipticity of 
the earth's figure will exercise an important influence on the plane of the 
lunar orbit and thereby will affect the secular change in the obliquity of the 
ecliptic. The investigation of this point is however as yet incomplete. 

The other small term which I shall consider arises out of the ordinary 
precession, together with the fact that the tide-generating force diminishes 
with the time on account of the tidal reaction on the moon. 

The differential equations which give the ordinary precession are in effect 
(compare equations (26)) 

dw, C - A 
dt ~ C 

da>3 C — A 

sin i cos I sin N 

sin I cos I cos N dt C 

and they give rise to no change of obliquity if r be constant, but 

when t is small. 

Also = e = = i ~̂  • Hence as far as regards the change of 

obliquity the equations may be written 

dt~ s Ut)s'mi 

dùì^ _ 3r0?i a /<Zf ' 

dm1 3 T 0 7 1 2 fdP\ . . 

— - - i r s i n I c o s 11 s i n N 

(0 

DT g \DT 
s i n I c o s 11 c o s N 

If we regard all the quantities, except t, on the right-hand sides of 
these equations as constants and integrate, we have 

3 T 0 FDE\ . . . , , . , 

* In a paper in the Phil. Mag., March, 1 8 7 7 , 1 suggested that the obliquity might possibly be 
due to the contraction of the terrestrial nebula in cooling; I there neglected tidal friction and 
assumed the conservation of moment of momentum to hold good for the earth by itself, so that 
the ellipticity -was continually increasing with the time. I did not at that time perceive that 
this increase of ellipticity was antagonistic to the effocts of contraction. Though the work of 
that paper is correct, as I believe, yet the fundamental assumption is incorrect, and therefore 
the results are not worthy of attention. [ T M B paper will be reproduced in Vol. in . ] 
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§ 22. The change of obliquity and tidal friction due to an annular satellite. 

Conceive the ring to be rotating round the planet with an angular 
velocity 12, let its radius be c, and its mass per unit length of its arc ml2irc, 
so that its mass is m. Let cl be the length of the arc measured from some 
point fixed in the ring up to the element cSl; and let fit be the longitude of 
the fixed point in the ring at the time t. Let SY be the tide-generating 

m 
potential due to the element ^ - S/. Then we have by (5) 

8V - w» ^ g Si) = - (f2 - V) *i - 2ft?*,' - &c 

where the suffixes to the functions indicate that 12 + I is to be written 
for 12. Integrating all round the ring from 1 = 0 to I — 2TT it is clear 
that 

V 

= —P2Q2 sm2 9 cos 2 ((F> — n) + 2PQ (P1 — Q2) sin 6 cos 9 cos — N) 
4 - Q - c o s 2 9)i(L-6PY) 

which is the tide-generating potential of the ring. 
Hence, as in Section 2, the form of the tidally-distorted spheroid is given 

by (9), save that Eu E.£, Ej, E,f, E" are all zero. Also, as in that section, 
the moments of the forces which the tidally-distorted spheroid exerts on the 

are element of ring are § Sl^j (TJ ^ — > &c-, &c-, where fr, r/r, %r 

put equal to the rectangular coordinates of the element of ring, whose annular 
coordinate is I. 

If x, y, z are the direction cosines of the element, equations (7) are simply 
modified by O being written f2 +1. Honce the couples due to one element 
of ring may be found just as the whole couples were found before, and the 
integrals of the elementary couples from I = 0 to 27r are the desired couples 
due to the whole ring. A little consideration shows that the results of 
this integration may be written down at once by putting Elt E2, El, E2', E" 
zero in (1-5), (16), and (21). Thus in order to determine the change of 

And if those be substituted in the geometrical equations (1) we have 

di 3 T 0 . . . d£ 
-r- = — sin % cos % 
dt g dt 

On comparing this with the small term due to the secular change of 
figure of the earth, we see that it is fairly négligeable, being of the same 
order of magnitude as that term. As far as it goes, however, it tends to 
increase the obliquity of the ecliptic. 
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obliquity and the tidal friction due to an annular satellite, we have simply 
the expressions (33) and (34), save that T T , must be replaced by £ T 8 . 

It thus appears that an annular satellite causes tidal friction in its planet, 
and that the obliquity of the planet's axis to the ring tends to diminish, but 
both these effects are evanescent with the obliquity. Since this ring only 
raises the tides which are called sidereal semi-diurnal and sidereal diurnal, 
and since we see by (57), Section 14, that tidal reaction is independent of 
those tides, it follows that there is no tangential force on the ring tending to 
accelerate its linear motion. If, however, the arc of the ring be not of uniform 
density, there is a slight tendency for the lighter parts to gain on the 
heavier, and for the heavier parts to become more remote from the planet 
than the lighter. 

§ 23. Double tidal reaction. 

Throughout the whole of this investigation the moon has been supposed 
to be merely an attractive particle, but there can be no doubt but that if the 
earth was plastic, the moon was so also. To take a simple case, I shall now 
suppose that both the earth and moon are homogeneous viscous spheres 
revolving round their common centre of inertia, and that the moon is rotating 
on her own axis with an angular velocity t o , and that their axes are parallel 
and perpendicular to the plane of their orbit. Then the whole of the argu
ment with respect to the earth as disturbed by the moon, may be transferred 
to the case of the moon as disturbed by the earth. 

All symbols which apply to the moon will be distinguished from those 
which apply to the earth by an accent. 

From (21) or (43) we have 

f = | ^ i n 4 £ l ' 

and the equation which gives the lunar tidal friction is 
dot _ j T"' 

sin V (89) 

M was 

¡S ow T = 4 — = vr = —r-r„ r 
1 & w a3 

a' 2(7 w w' 
and 8 = £ ^ = K " - = — 8 

a ° a 5a w w 
So that 

Also 

? _ f w t y ? ( 9 0 ) 

8 

C wa5 

M' T 2 w2a - . / 
and therefore U = ^ 8 Ä S m 

D , I I . 
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The force on the moon tangential to her orbit, results from a double tidal 
reaction. By the method employed in Section 14, the tangential force due 
to the earth's tides is 

T = = — - sin 4e2 r 2r g 

and similarly the tangential force due to the moon's tides is 

r 2r g w 2a 

and the whole tangential force is (T + T'). 

Flence following the argument of that section, the equation of tidal 
reaction becomes 

. . UI'A . . , 
sin 4e,. H—^—, sin 4ÉJ W2A 

Taking the moon's apparent radius as 16', and the ratio of the earth's 

mass to that of the moon as 82, we have A=3 '567 and ^ = 1'806 (so 
a w 

that taking w as 5^, the specific gravity of the moon is 3) , and hence 
w2a -, = 11-64. 

w'a 
At first sight it would appear from this that the effect of the tides in the 

moon was nearly twelve times as important as the effect of those in the earth, 
as far as concerns the influence on the moon's orbit, and hence it would seem 
that a grave oversight has been made in treating the moon as a simple 
attractive particle; a little consideration will show, however, that this is by-
no means the case. 

Supposing that v, v are the coefficients of viscosity of the moon and 
earth respectively, the only tides which exist in each body being those of 
which the speeds arc 2 (w — H), 2 (n — 12) in the moon and earth respectively, 
we have 

tan 2„' = ^ and tan 2 £ l = 
g a iv gaw 

TI j- ' / ' /w'a'V But gaw =gawi I 

and hence tan 2e,' = ——^ — ( tan 2e, 
n — ll v \wa I 

It will be found that I—,—.) = 41'10. I t is also almost certain that v 
\w a I 

must for a long time be greater than v, because the moon being a smaller 
body must have stiffened quicker than the earth. Hence unless co — D, is 
very much less than n — D,, must be larger than Therefore if in the 
early stages of development the earth had a small viscosity, it is probable that 
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the effects of the moon's tides on her own orbit must have had a much more 
important influence than had the tides in the earth. 

I shall now show, however, that this state of things must probably have 
had so short a duration as not to seriously affect the investigation of this 
paper. By ( 8 9 ) and ( 9 0 ) we have, as the equation which determines the rate 
of tidal friction reducing the' moon's rotation round her axis, 

moon's rotation round her axis is reduced 1 2 , 0 0 0 times as rapidly as that of 
the earth round its axis, and therefore in a very short period the moon's 
rotation round her axis must have been reduced to a sensible identity with 
the orbital motion. As to becomes very nearly equal to X Î , sin 4 e / becomes 
very small. Hence the term in the equation of tidal reaction dependent on 
the moon's own tides must have become rapidly evanescent. While this 
shows that the main body of our investigation is unaffected by the lunar tide, 
there is one slight modification to which it leads. 

In Section 1 8 we traced back the moon to the initial condition, when her 
centre was 1 0 , 0 0 0 miles from the earth's centre. If lunar tidal friction had 
been included, this distance would have been increased ; for the coefficient of 

îv'ct'5 

x in the biquadratic (viz.: 1 1 , 7 2 7 ) would have to be diminished by - ( t o — w 0 ) . 

Now is very nearly x j r o i r t h , and the unit of time being the year, it follows 

that we should have to suppose an enormously rapid primitive rotation of the 
moon round her axis, to make any sensible difference in the configuration of 
the two bodies when her centre of inertia moved as though rigidly connected 
with the earth's surface. 

The supposition of two viscous globes moving orbitally round their common 
centre of inertia, and one having a congruent and the other an incongruent 
axial rotation, would lead to some very curious results. 

If the earth be contracting as it cools, it follows, from the principle of 
conservation of moment of momentum, that the angular velocity of rotation 
is being increased. Sir William Thomson has, however, shown that the con
traction (which probably now only takes place in the superficial strata) cannot 
be sufficiently rapid to perceptibly counteract the influence of tidal friction 
at the present time. 

hence, for the same values of e/ and the 

§ 2 4 . Secular contraction of the earth*. 

* Rewritten in July, 1879. 

8—2 
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The enormous height of the lunar mountains compared to those in the 
earth seems, however, to give some indications that a cooling celestial orb 
must contract by a perceptible fraction of its radius after it has consolidated*. 
Perhaps some of the contraction might be due to chemical combinations in 
the interior, when the heat had departed, so that the contraction might be 
deep-seated as well as superficial. 

I t will bo well, therefore, to point out how this contraction will influence 
the initial condition to which we have traced back the earth and moon, when 
they were found rotating as parts of a rigid body in a little more than 
5 hours. 

Let C, C0 be the moment of inertia of the earth at any time, and initially. 
Then the equation of conservation of moment of momentum becomes 

And the biquadratic of Section 18 which gives the initial configuration 
becomes 

^ - ( l + / i ) C ^ + g = 0 

The required root of this equation is very nearly equal to a C i -

CORT0 

Now Xs = fl ; hence XI is nearly equal to (1 + fi) —jy . But in Section 18, 
when C was equal to C 0, it was nearly equal to (1 + fj,)n0. Therefore on the 
present hypothesis, the value of fl as given in that section must be multiplied 

* Suppose a sphere of radius a to contract until its radius is a + 8a, but that, its surface 
being incompressible, in doing so it throws up n conical mountains, the radius of whose bases 
is b, and their height h, and let b be large compared with h. The surface of such a cone is 
Trb \/}il + 6 2 = 7T [b2 + Jfe"). Hence the excess of the surface of the cone above the area of the base 

is irrft2, and 47ra2 = 4jr la + 5a) 2 + ARITRFT2. Therefore — ^ = ? - ( - \ · 
a LO \aJ 

Suppose we have a second sphere of primitive radius a', which contracts and throws up 

the same number of mountains: then similarly — ^ r = ? = ( — ^ \ and ^ - - = - — = ( - ' ^ \ . Now 
a 16 \a J a a \ha J 

let these two spheres be the earth and moon. The height of the highest lunar mountain is 
23,000 feet (Grant's Physical Astron., p. 229), and the height of the highest terrestrial mountain 
is 29,000 feet; therefore we may take ^ = i§. Also ^ ='2729 (Herschel's Astron., Section 404). 

Therefore ~ = M of -2729 = -344, and (H"'Y = -1183 or f̂ Y =8-45 . Hence ™ ^ = 8*; 

ha \haJ \ha'J a' a 2 

whence it appears that, if both lunar and terrestrial mountains are due to the crumpling of the 
surfaces of those globes in contraction, the moon's radius HAB been diminished by about eight 
times as large a fraction as the earth's. 

This is, no doubt, a very crude way of looking at the subject, because it entirely omits 
volcanic action from consideration, but it seems to justify the assertion that the moon has 
contracted much more than the earth, since both bodies solidified. 
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by -J; and the periodic time must be multiplied by ~- . But in this initial 

state 0 is greater than C„; hence the periodic time when the two bodies 
move round as a rigid body is longer, and the moon is more distant from the 
earth, if the earth has sensibly contracted since this initial configuration. 

If, then, the theory here developed of the history of the moon is the true 
one, as I believe it is, it follows that the earth cannot have contracted since 
this initial state by so much as to considerably diminish the effects of tidal 
friction, and it follows that Sir William Thomson's result as to the present 
unimportance of the contraction must have always been true. 

If the moon once formed a part of the earth we should expect to trace the 
changes back until the two bodies were in actual contact. But it is obvious 
that the data at our disposal are not of sufficient accuracy, and the equations 
to be solved are so complicated, that it is not to be expected that we should 
find a closer accordance, than has been found, between the results of com
putation and the result to be expected, if the moon was really once a part of 
the earth. 

It appears to me, therefore, that the present considerations only negative the 
hypothesis of any large contraction of the earth since the moon has existed. 

PART I I I . 

Summary and discussion of results. 

The general object of the earlier or preparatory part of the paper is 
sufficiently explained in the introductory remarks. 

The earth is treated as a homogeneous spheroid, and in what follows, 
except where otherwise expressly stated, the matter of which it is formed i s 
supposed to be purely viscous. The word " earth " is thus an abbreviation of 
the expression " a homogeneous rotating viscous spheroid"; also wherever 
numerical values are given they are taken from the radius, mean density, 
mass, &c, of the earth. 

The case is considered first of the action of one tide-raising body, namely, 
the moon. To simplify the problem the moon is supposed to move in a 
circular orbit in the ecliptic*—that plane being the average position of the 

* The effect of neglecting the eccentricity of the moon's orhit is, that we underestimate the 
efficiency of the tidal effects. Those effects vary as the inverse sixth power of r the radius 

vector, and if T be the periodic time of the moon, the average value of i is i I If c be 
7* 1 J 0 7* 

the mean distance and e the eccentricity of the orbit, this integral will be found equal to 
1 I + 3e 2 + 4e* 1 1 / 15 \ 1 

- 7 - . If the eccentricity be small the average value of . is I 1 + -„ e2 ); if c is - -
c» ( l - e a ) i R« c»\ 2 J ' 20 

54 1 
this is - - of -g. There are obviously forces tending to modify the eccentricity of the moon's orbit. 

IRIS - LILLIAD - Université Lille 1 



* See Part I. of Paper o. 

lunar orbit with respect to the earth's axis. The case becomes enormously 
more complex if we suppose the moon to move in an inclined eccentric orbit 
with revolving nodes. The consideration of the secular changes in the 
inclination of the lunar orbit and of the eccentricity will form the subject 
of another investigation [in Paper 6]. 

The expression for the moon's tide-generating potential is shown to 
consist of 13 simple tide-generating terms, and the physical meaning of this 
expansion is given in the note to Section 8. The physical causes represented 
by these 13 terms raise 13 simple tides in the earth, the heights and retard
ations of which depend on their speeds and on the coefficient of viscosity. 

The 13 simple tides may be more easily represented both physically and 
analytically as seven tides, of which three are approximately semi-diurnal, 
three approximately diurnal, and one has a period equal to a half of the 
sidereal month, and is therefore called the fortnightly tide. 

By an approximation which is sufficiently exact for a great part of the 
investigation, the semi-diurnal tides may be grouped together, and the 
diurnal ones also. Hence the earth may be regarded as distorted by two com
plex tides, namely, the semi-diurnal and diurnal, and one simple tide, namely, 
the fortnightly. The absolute heights and retardations of these three tides are 
expressed by six functions of their speeds and of the coefficient of viscosity 
(Sections 1 and 2). 

When the form of the distorted spheroid is thus given, the couples about 
three axes fixed in the earth due to the attraction of the moon on the tidal 
protuberances are found. It must here be remarked that this attraction must 
in reality cause a tangential stress between the tidal protuberances and the 
true surface of the mean oblate spheroid. This tangential stress must cause 
a certain very small tangential flow*, and hence must ensue a very small 
diminution of the couples. The diminution of couple is here neglected, and 
the tidal spheroid is regarded as being instantaneously rigidly connected with 
the rotating spheroid. The full expressions for the couples on the earth are 
long and complex, but since the nutations to which they give rise are 
exceedingly minute, they may be much abridged by the omission of all terms 
except such as can give rise to secular changes in the precession, the obliquity 
of the ecliptic, and the diurnal rotation. The terms retained represent that 
there are three couples independent of the time, the first of which tends to 
make the earth rotate about an axis in the equator which is always 90° from 
the nodes of the moon's orbit: this couple affects the obliquity of the ecliptic; 
second, there is a couple about an axis in the equator which is always coin
cident with the nodes: this affects the precession; third, there is a couple 
about the earth's axis of rotation, and this affects the length of the day 
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(Sections 3, 4, and 5). All these couples vary as the fourth power of the 
moon's orbital angular velocity, or as the inverse sixth power of her distance. 

These three couples give the alteration in the precession due to the tidal 
movement, the rate of increase of obliquity, and the rate at which the diurnal 
rotation is being diminished, or in other words the tidal friction. The change 
of obliquity is in reality due to tidal friction, but it is convenient to retain 
the term specially for the change of rotation alone. 

It appears that if the bodily tides do not lag, which would be the case 
if the earth were perfectly fluid or perfectly elastic, there is no alteration 
in the obliquity, nor any tidal friction (Section 7). The alteration in the 
precession is a very small fraction of the precession due to the earth con
sidered as a rigid oblate spheroid. I have some doubts as to whether this 
result is properly applicable to the case of a perfectly fluid spheroid. At any 
rate, Sir William Thomson has stated, in agreement with this result, that a 
perfectly fluid spheroid has a precession scarcely differing from that of a 
perfectly rigid one. Moreover, the criterion which he gives of the neglige-
ability of the additional terms in the precession in a closely analogous problem 
appears to be almost identical with that found by me (Section 7). I am not 
aware that the investigation on which his statement is founded has ever been 
published. The alteration in the precession being insignificant, no more 
reference will be made to it. This concludes the analytical investigation as 
far as concerns the effects on the disturbed spheroid, where there is only one 
disturbing body. 

The sun is now (Section 8) introduced as a second disturbing body. Its 
independent effect on the earth may be determined at once by analogy with 
the effect of the moon. But the sun attracts the tides raised by the moon, 
and vice versd. Notwithstanding that the periods of the sun and moon 
about the earth have no common multiple, yet the interaction is such as to 
produce a secular alteration in the position of the earth's axis and in the 
angular velocity of its diurnal rotation. A physical explanation of this 
curious result is given in the note to Section 8. I have distinguished this 
from the separate effect of each disturbing body, as a combined effect. 

The combined effects are represented by two terms in the tide-generating 
potential, one of which goes through its period in 12 sidereal hours, and the 
other in a sidereal day*; the latter being much more important than the 
former for moderate obliquities of the ecliptic. Both these terms vanish 
when the earth's axis is perpendicular to the plane of the orbit. 

As far as concerns the combined effects, the disturbing bodies may be 
* These combined effects depend on the tides which are designated aa K t and K 2 in the 

British Association's Report on Tides for 1872 and 1876, and which I have called the sidereal 
semi-diurnal and diurnal tides. [See Paper 1, Vol. i.] For a general explanation of this result 
see the abstract of this paper in the Proceedings of the Royal Society, No. 191, 1878. [See the 
Appendix to this paper.] 

IRIS - LILLIAD - Université Lille 1 



120 HATE OF CHANGE OF THE OBLIQUITY OF THE ECLIPTIC. [3 

conceived to be replaced by two circular rings of matter coincident with their 
orbits and equal in mass to them respectively. The tidal friction due to 
these rings is insignificant compared with that arising separately from the 
sun and moon. But the diurnal combined effect has an important influence 
in affecting the rate of change of obliquity. The combined effects are such 
as to cause the obliquity of the ecliptic to diminish, whereas the separate 
effects on the whole make it increase—at least in general (see Section 22). 

The relative importance of all the effects may be seen from an inspection 
of Table III., Section 15. 

Section 11 contains a graphical analysis of the physical meaning of the 
equations, giving the rate of change of obliquity for various degrees of 
viscosity and obliquity. 

Figures 2 and 3 refer to the case where the disturbed planet is the earth, 
and the disturbing bodies the sun and moon. 

This analysis gives some remarkable results as to the dynamical stability 
or instability of the system. 

I t will be here sufficient to state that, for moderate degrees of viscosity, 
the position of zero obliquity is unstable, but that there is a position of 
stability at a high obliquity. For large viscosities the position of zero 
obliquity becomes stable, and (except for a very close approximation to 
rigidity) there is an unstable position at a larger obliquity, and again a stable 
one at a still larger one*. 

These positions of dynamical equilibrium do not strictly deserve the 
name, since they are slowly shifting in consequence of the effects of tidal 
friction; they are rather positions in which the rate of change of obliquity 
becomes of a higher order of small quantities. 

I t appears that the degree of viscosity of the earth which at the present 
time would cause the obliquity of the ecliptic to increase most rapidly is such 
that the bodily semi-diurnal tide would be retarded by about 1 hour and 
10 minutes; and the viscosity which would cause the obliquity to decrease 
most rapidly is such that the bodily semi-diurnal tide would be retarded by 
about 2J hours. 

The former of these two viscosities was the one which I chose for sub
sequent numerical application, and for the consideration of secular changes in 
the system.. 

Figure 4 (Section 11) shows a similar analysis of the case where there 
is only one disturbing satellite, which moves orbitally with one-fifth of the 
velocity of rotation of the planet. This case differs from the preceding 
one in the fact that the position of zero obliquity is now unstable for all 

* For EL general explanation of some part of these results, see the abstract of this paper in 
the Proceedings uf the Royal Society, No. 191, 1878. [See the Appendix below.] 
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viscosities, and that there is always one other, and only one other position of 
equilibrium, and that is a stable one. 

This shows that the fact that the earth's obliquity would diminish for 
large viscosity is due to the attraction of the sun on the lunar tides, and of 
the moon on the solar tides. 

It is not shown by these figures, but it is the fact that if the motion of 
the satellite relatively to the planet be slow enough (viz.: the month less 
than twice the day), the obliquity will diminish. 

This result, taken in conjunction with results given later with regard to 
the evolution of satellites, shows that the obliquity of a planet perturbed by 
a single satellite must rise from zero to a maximum and then decrease again 
to zero. If we regard the earth as a satellite of the moon, we see that this 
must have been the case with the moon. 

Figure 5 (Section 12) contains a similar graphical analysis of the various 
values which may be assumed by the tidal friction. As might be expected, 
the tidal friction always tends to stop the planet's rotation, unless indeed the 
satellite's period is less than the planet's day, when the friction is reversed. 

This completes the consideration of the effect on the earth, at any instant, 
of the attraction of the sun and moon on their tides; the next subject is to 
consider the reaction on the disturbing bodies. 

Since the moon is tending to retard the earth's diurnal rotation, it is 
obvious that the earth must exercise a force on the moon tending to 
accelerate her linear velocity. The effect of this force is to cause her to 
recede from the earth and to decrease her orbital angular velocity. Hence 
tidal reaction causes a secular retardation of the moon's mean motion. 

The tidal reaction on the sun is shown to have a comparatively small 
influence on the earth's orbit and is neglected (Sections 14 and 19). 

The influence of tidal reaction on the lunar orbit is determined by finding 
the disturbing force on the moon tangential to her orbit, in terms of the 
couples which have been already found as perturbing the earth's rotation; 
and hence the tangential force is found in terms of the rate of tidal friction 
and of the rate of change of obliquity. 

It appears that the non-periodic part of the force, on which the secular 
change in the moon's distance depends, involves the lunar tides alone. 

By the consideration of the effects of the perturbing force on the moon's 
motion, an equation is found which gives the rate of increase of the square 
root of the moon's distance, in terms of the heights and retardations of the 
several lunar tides (Section 14). 

Besides the interaction of the two bodies which affects the moon's mean 
motion, there is another part which affects the plane of the lunar orbit; but 
this latter effect is less important than the former, and in the present paper 
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is neglected, since the moon is throughout supposed to remain in the ecliptic. 
The investigation of the subject will, however, lead to interesting results, 
since a complete solution of the problem of the obliquity of the ecliptic 
cannot be attained without a simultaneous tracing of the secular changes in 
the plane of the lunar orbit. 

I t appears that the influence of the tides, here called slow semi-diurnal 
and slow diurnal, is to increase the moon's distance from the earth, whilst the 
influence of the fast semi-diurnal, fast diurnal, and fortnightly tide tends to 
diminish the moon's distance ; also the sidereal semi-diurnal and diurnal tides 
exercise no effects in this respect. The two tides which tend to increase the 
moon's distance are much larger than the others, so that the moon in general 
tends to recede from the earth. The increase of distance is, of course, 
accompanied by an increase of the moon's periodic time, and hence there is 
in general a true secular retardation of the moon's motion. But this change 
is accompanied by a retardation of the earth's diurnal rotation, and a 
terrestrial observer, taking the earth as his clock, would conceive that the 
angular velocity of an ideal moon, which was undisturbed by tidal reaction, 
was undergoing a secular acceleration. The apparent acceleration of the 
ideal undisturbed moon must considerably exceed the true retardation of the 
real disturbed moon, and the difference between these two will give an 
apparent acceleration. 

I t is thus possible to give an equation connecting the apparent acceleration 
of the moon's motion and the heights and retardations of the several bodily 
tides in the earth. 

There is at the present time an unexplained secular acceleration of the 
moon of about 4" per century, and therefore if we attribute the whole of 
this to the action of the bodily tides in the earth, instead of to the action of 
ocean tides, as was done by Adams and Delaunay, we get a numerical relation 
which must govern the actual heights and retardations of the bodily tides in 
the earth at the present time. 

This equation involves the six constants expressive of the heights and 
retardations of the three bodily tides, and which are determined by the 
physical constitution of the earth. No further advance can therefore be 
made without some theory of the earth's nature. Two theories are 
considered. 

First, that the earth is purely viscous. The result shows that the earth 
is either nearly fluid—which we know it is not—or exceedingly nearly rigid. 
The only traces which we should ever be likely to find of such a high degree 
of viscosity would be in the fortnightly ocean tide; and even here the 
influence would be scarcely perceptible, for its height would be '992 of its 
theoretical amount according to the equilibrium theory, whilst the time of 
high water would be only accelerated by six hours and a half. 
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It is interesting to note that the indications of a fortnightly ocean tide, as 
deduced from tidal observations, are exceedingly uncertain, as is shown in a 
preceding paper *, where I have made a comparison of the heights and phases 
of such small fortnightly tides as have hitherto been observed. And now (July, 
1879) Sir William Thomson has informed me that he thinks it very possible 
that the effects of the earth's rotation may be such as to prevent our trusting 
to the equilibrium theory to give even approximately the height of the fort
nightly tide. He has recently read a paper on this subject before the Royal 
Society of Edinburgh f. 

With the degree of viscosity of the earth, which gives the observed 
amount of secular acceleration to the moon, it appears that the moon is 
subject to such a true secular retardation that at the end of a century she is 
3""1 behind the place in her orbit which she would have occupied if it were 
not for the tidal reaction, whilst the earth, considered as a clock, is losing 
13 seconds in the same time. This rate of retardation of the earth is such 
that an observer taking the earth as his clock would conceive a moon, which 
was undisturbed by tidal reaction, to be 7"'l in advance of her place at the 
end of a century. But the actual moon is 3"'l behind her true place, and 
thus our observer would suppose the moon to be in advance 7'1 — 3'1 or 4" at 
the end of the century. Lastly, the obliquity of the ecliptic is diminishing at 
the rate of 1° in 500 million years. 

The other hypothesis considered is that the earth is very nearly perfectly 
elastic. In this case the semi-diurnal and diurnal tides do not lag perceptibly, 
and the whole of the reaction is thrown on to the fortnightly tide, and more
over there is no perceptible tidal frictional couple about the earth's axis of 
rotation. From this follows the remarkable conclusion that the moon may be 
undergoing a true secular acceleration of motion of something less than 3"'o 
per century, whilst the length of day may remain almost unaffected. Under 
these circumstances the obliquity of the ecliptic must be diminishing at the 
rate of 1° in something like 130 million years. 

This supposition leads to such curious results, that I investigated what 
state of things we should arrive at if we look back for a very long period, and 
I found that 700 million years ago the obliquity might have been 5° greater 
than at present, whilst the month would only be a little less than a day 
longer. The suppositions on which these results are based are such that they 
necessarily give results more striking than would be physically possible. 

The enormous lapse of time which has to be postulated renders it in the 
* See the Appendix to my paper on the " Bodily Tides," &a. [This Appendix is however 

omitted from the present volume on account of its incompleteness, and is replaced by Paper 9, 
p . 340, Vol. i.] 

+ [See Paper 11, Vol. I . An investigation by Dr W. Schweydar (Beitragen zur Geophysik, 
Vol. ix. p . 41) seems to indicate that the equilibrium theory is nearly fulfilled by the fortnightly 
tide, and it is explained by Lord Rayleigh (Phil. Slag. 1903) how this may be the case for 
an ocean interrupted by barriers of land.] 
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highest degree improbable that more than a very small change in this 
direction has been taking place, and moreover the action of the ocean tides 
has been entirely omitted from consideration. 

The results of these two hypotheses show what fundamentally different 
interpretations may be put to the phenomenon of the secular acceleration of 
the moon. 

Sir William Thomson also has drawn attention to another disturbing 
cause in the fall of meteoric dust on to the earth*. * 

Under these circumstances, I cannot think that any estimate having any 
pretension to accuracy can be made as to the present rate of tidal friction. 

Since the obliquity of the ecliptic, the diurnal rotation of the earth, and 
the moon's distance change, the whole system is in a state of flux; and the 
next question to be considered is to determine the state of things which 
existed a very long time ago (Part II.). This involved the integration of 
three simultaneous differential equations; the mathematical difficulties were, 
however, so great, that it was found impracticable to obtain a general 
analytical solution. I therefore had to confine myself to a numerical solution 
adapted to the case of the earth, sun, and moon, for one particular degree of 
viscosity of the earth. The particular viscosity was such that, with the 
present values of the day and month, the time of the lunar semi-diurnal tide 
was retarded by 1 hour and 10 minutes; the greatest possible lagging of this 
tide is 3 hours, and therefore this must be regarded as a very moderate 
degree of viscosity. It was chosen because initially it makes the rate of 
change of obliquity a maximum, and although it is not that degree of viscosity 
which will make all the changes proceed with the greatest possible rapidity, 
yet it is sufficiently near that value to enable us to estimate very well the 
smallest time which can possibly have -elapsed in the histoiy of the earth, if 
changes of the kind found really have taken place. This estimate of time is 
confirmed by a second method, which will be referred to later. 

The changes were traced backwards in time from the present epoch, and 
for convenience of diction I shall also reverse the form of speech—e.g., a true 
loss of energy as the time increases will be spoken of as a gain of energy as we 
look backwards. 

I shall not enter at all into the mathematical difficulties of the problem, 
but shall proceed at once to comment on the series of tables at the end of 
Section 15, which give the results of the solution. 

The whole process, as traced backwards, exhibits a gain of kinetic energy 
to the system (of which more presently), accompanied by a transference of 
moment of momentum from that of orbital motion of the moon and earth 
to that of rotation of the earth. The last column but one of Table IV. 
exhibits the fall of the ratio of the two moments of momentum from 4-01 

* Proceedings of Glasgow Geological Society, Vol. in . Address " On Geological Time." 

IRIS - LILLIAD - Université Lille 1 



down to '44. The whole moment of momentum of the moon-earth system 
rises slightly, because of solar tidal friction. The change is investigated in 
Section 19. 

Looked at in detail, we see the day, month, and obliquity all diminishing, 
and the changes proceeding at a rapidly increasing rate, so that an amount of 
change which at the beginning required many millions of years, at the end 
only requires as many thousands. The reason of this is that the moon's 
distance diminishes with great rapidity; and as the effects vary as the square 
of the tide-generating force, they vary as the inverse sixth power of the 
moon's distance, or, in physical language, the height of the tides increases 
with great rapidity, and so also does the moon's attraction. But there is a 
counteracting principle, which to some extent makes the changes proceed 
slower. I t is obvious that a disturbing body will not have time to raise such 
high tides in a rapidly rotating spheroid as in one which rotates slowly. As 
the earth's rotation increases, the lagging of the tides increases. The first 
column of Table I. shows the angle by which the crest of the lunar semi
diurnal tide precedes the moon; we see that the angle is almost doubled at 
the end of the series of changes, as traced backwards. I t is not quite so easy 
to give a physical meaning to the other columns, although it might be done. 
In fact, as the rotation increases, the effect of each tide rises to a maximum, 
and then dies away; the tides of longer period reach their maximum effect 
much more slowly than the ones of short period. At the point where I have 
found it convenient to stop the solution (see Table IV.), the semi-diurnal effect 
has passed its maximum, the diurnal tide has just come to give its maximum 
effect, whilst the fortnightly tide has not nearly risen to that point. 

As the lunar effects increase in importance (when we look backwards), 
the relative value of the solar effects decreases rapidly, because the solar tidal 
reaction leaves the earth's orbit sensibly unaffected (see Section 19), and 
thus the solar effects remain nearly constant, whilst the lunar effects have 
largely increased. The relative value of the several tidal effects is exhibited 
in Tables II. and III . 

Table IV. exhibits the length of day decreasing to a little more than a 
quarter of its present value, whilst the obliquity diminishes through 9°. But 
the length of the month is the element which changes to the most startling 
extent, for it actually falls to yfth of its primitive value. 

I t is particularly important to notice that all the changes might have 
taken place in 57 million years; and this is far within the time which 
physicists admit that the earth and moon may have existed. I t is easy to 
find a great many vera} causae for changes in the planetary system; but it is 
in general correspondingly hard to show that they are competent to produce 
any marked effects, without exorbitant demands on the efficieiicy of the 
causes and on lapse of time. 
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It is a question of great interest to geologists to determine whether any 
part of these changes could have taken place during geological history. I t 
seems to me that this question must be decided by whether or not a globe, 
such as has been considered, could have afforded a solid surface for animal 
life, and whether it might present a superficial appearance such as we know 
it. These questions must, I think, be answered in the affirmative, for the 
following reasons. 

The coefficient of viscosity of the spheroid with which the previous 

solution deals is given by the formula tan 35° (see Section 11, (40)), 

when gravitation units of force are used. This, when turned into numbers, 
shows that 2'055 x 107 grammes weight are required to impart unit shear to 
a cubic centimetre block of the substance in 24 hours, or 2,055 kilogs. per 
square centimetre acting tangentially on the upper face of a slab one centi
metre thick for 24 hours, would displace the upper surface through a 
millimetre relatively to the lower, which is held fixed. In British units this 
becomes,—13£ tons to the square inch, acting for 24 hours on a slab an inch 
thick, displaces the upper surface relatively to the lower through one-tenth 
of an inch. It is obvious that such a substance as this would be called a 
solid in ordinary parlance, and in the tidal problem this must be regarded as 
a rather small viscosity. 

I t seems to me, then, that we have only got to postulate that the upper 
and cool surface of the earth presents such a difference from the interior that 
it yields with extreme slowness, if at all, to the weight of continents and 
mountains, to admit the possibility that the globe on which we live may be 
like that here treated of. If, therefore, astronomical facts should confirm the 
argument that the world has really gone through changes of the kind here 
investigated, I can see no adequate reason for assuming that the whole 
process was pre-geological. Under these circumstances it must be admitted 
that the obliquity to the ecliptic is now probably slowly decreasing; that a 
long time ago it was perhaps a degree greater than at present, and that it 
was then nearly stationary for another long time, and that in still earlier 
times it was considerably less*. 

The violent changes which some geologists seem to require in geologically 
recent times would still, I think, not follow from the theory of the earth's 
viscosity. 

According to the present hypothesis (and for the moment looking forward 

* In my paper " On the Effects of Geological Changes on the Earth's Axis," Phil. Trans., 
1877, p. 271 [Vol. m . ] , I arrived at the conclusion that the obliquity had been unchanged 
throughout geological history. That result was obtained on the hypothesis of the earth's rigidity, 
except as regards geological upheavals. The result at which I now arrive affords a warning 
that every conclusion must always be read along with the postulates on which it is based. 
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in time), the moon-earth system is, from a dynamical point of view, con
tinually losing energy from the internal tidal friction. One part of this 
energy turns into potential energy of the moon's position relatively to the 
earth, and the rest developes heat in the interior of the earth. Section 16 
contains the investigation of the amount which has turned to heat between 
any two epochs. The heat is estimated by the number of degrees Fahrenheit, 
which the lost energy would be sufficient to raise the temperature of the 
whole earth's mass, if it were all applied at once, and if the earth had the 
specific heat of iron. 

The last column of Table IV., Section 15, gives the numerical results, and 
it appears therefrom that, during the 57 million years embraced by the 
solution, the energy lost suffices to heat the whole earth's mass 1760° Fahr. 

It would appear at first sight that this large amount of heat, generated 
internally, must seriously interfere with the accuracy of Sir William Thomson's 
investigation of the secular cooling of the earth *; but a further consideration 
of the subject in the next paper will show that this cannot be the case. 

There are other consequences of interest to geologists which flow from the 
present hypothesis. As we look at the whole series of changes from the 
remote past, the ellipticity of figure of the earth must have been continually 
diminishing, and thus the polar regions must have been ever rising and the 
equatorial ones falling; but, as the ocean always followed these changes, they 
might quite well have left no geological traces. 

The tides must have been very much more frequent and larger, and 
accordingly the rate of oceanic denudation much accelerated. 

The more rapid alternations of day and night f would probably lead to 
more sudden and violent storms, and the increased rotation of the earth 
would augment the violence of the trade winds, which in their turn would 
affect oceanic currents. 

Thus there would result an acceleration of geological action. 
The problem, of which the solution has just been discussed, deals with a 

spheroid of constant viscosity; but there is every reason to believe that the 
earth is a cooling body, and has stiffened as it cooled. We therefore have to 
deal with a spheroid whose viscosity diminishes as we look backwards. 

A second solution is accordingly given (Section 17) where the viscosity is 
variable; no definite law of diminution of viscosity is assumed, however, but it 
is merely supposed that the viscosity always remains small from a tidal point 
of view. This solution gives no indication of the time which may have elapsed, 
and differs chiefly from the preceding one in the fact that the change in the 
obliquity is rather greater for a given amount of change in the moon's distance. 

* Nat. Phil., Appendix, 
t At the point where the solution stops there are just 1,300 of the sidereal days of that t ime 

in the year, instead of 366 as at present. 
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There is not much to say about it here, because the two solutions follow 
closely parallel lines as far as the place where the former one left off. 

The first solution was not carried further, because as the month ap
proximates in length to the day, the three semi-diurnal tides cease to be of 
nearly equal frequencies, and so likewise do the three diurnal tides; hence 
the assumption on which the solution was founded, as to their approximately 
equal speeds, ceases to be sufficiently accurate. 

In this second solution all the seven tides are throughout distinguished 
from one another. At about the stage where the previous solution stops the 
solar terms have become relatively unimportant, and are dropped out. It 
appears that (still looking backwards in time) the obliquity will only continue 
to diminish a little more beyond the point it had reached when the previous 
method had become inapplicable. For when the month has become equal to 
twice the day, there is no change of obliquity; and for yet smaller values of 
the month the change is the other way. 

This shows that for small viscosity of the planet the position of zero 
obliquity is dynamically stable for values of the month which are less than 
twice the day, while for greater values it is unstable; and the same appears 
to be true for very large viscosity of the planet (see the foot-note on p. 93). 

If the integration be carried back as far as the critical point of relationship 
between the day and month, it appears that the whole change of obliquity 
since the beginning is 9^°. 

The interesting question then arises—Does the hypothesis of the earth's 
viscosity afford a complete explanation of the obliquity of the ecliptic ? It 
does not seem at present possible to give any very conclusive answer to this 
question ; for the problem which has been solved differs in many respects 
from the true problem of the earth. 

The most important difference from the truth is in the neglect of the 
secular changes of the plane of the lunar orbit; and I now (September, 1879) 
see reason to believe that that neglect will make a material difference in the 
results given for the obliquity at the end of the third and fourth periods of 
integration in both solutions. It will not, therefore, be possible to discuss 
this point adequately at present; but it will be well to refer to some other 
points in which our hypothesis must differ from reality. 

I do not see that the heterogeneity of density and viscosity would make 
any very material difference in the solution, because both the change of 
obliquity and the tidal friction would be affected pari pass-d, and therefore 
the change of obliquity for a given amount of change in the day would not 
be much altered. 

Although the effects of the contraction of the earth in cooling would be 
certainly such as to render the changes more rapid in time, yet as the tidal 
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friction would be somewhat counteracted, the critical point where the month 
is equal to twice the day would be reached when the moon was further from 
the earth than in my problem. I think, however, that there is reason to 
believe that the whole amount of contraction of the earth, since the moon has 
existed, has not been large (Section 24). 

There is one thing which might exercise a considerable influence favour
able to change of obliquity. We are in almost complete ignorance of the 
behaviour of semi-solids under very great pressures, such as must exist in the 
earth, and there is no reason to suppose that the amount of relative displace
ment is simply proportional to the stress and the time of its action. Suppose 
that the displacement varied as some other function of the time, then clearly 
the relative importance of the several tides might be much altered. 

Now, the great obstacle to a large change of obliquity is the diurnal 
combined effect (see Table IV., Section 15); and so any change in the law of 
viscosity which allowed a relatively greater influence to the semi-diurnal tides 
would cause a greater change of obliquity, and this without much affecting 
the tidal friction and reaction, Such a law seems quite within the bounds of 
possibility. The special hypothesis, however, of elastico-viscosity, used in the 
previous paper, makes the other way, and allows greater influence to the tides 
of long period than to those of short. This was exemplified where it was 
shown that the tidal reaction might depend principally on the fortnightly 
tide. 

The whole investigation is based on a theory of tides in which the effects 
of inertia are neglected. Now it will be shown in Part III . of the next paper 
that the effect of inertia will be to make the crest of the tidal spheroid lag 
more for a given height of tide than results from the theory founded on the 
neglect of inertia. An analysis of the effect produced on the present results, 
by the modification of the theory of tides introduced by inertia, is given in 
the next paper [Paper 4]. 

On the whole, we can only say at present that it seems probable that a 
part of the obliquity of the ecliptic may be referred to the causes here con
sidered; but a complete discussion of the subject must be deferred to a 
future occasion, when the secular changes in the plane of the lunar orbit will 
be treated. 

The question of the obliquity is now set on one side, and it is supposed 
that when the moon has reached the critical point (where the month is twice 
the day) the obliquity of the plane of the lunar orbit was zero. In the more 
remote past the obliquity had no tendency to alter, except under the influence 
of certain nutations, which are referred to at the end of Section 17. 

The manner in which the moon's periodic time approximates to the day 
is an inducement to speculate as to the limiting or initial condition from 
which the earth and moon started their course of development, 

D . I I . 9 

IRIS - LILLIAD - Université Lille 1 



So long as there is any relative motion of the two bodies there must be 
tidal friction, and therefore the moon's period must continue to approach the 
day. It would be a problem of extreme complication to trace the changes in 
detail to their end, and fortunately it is not necessary to do so. 

The principle of conservation of moment of momentum, which has been 
used throughout in tracing the parallel changes in the moon and earth, affords 
the means of leaping at once to the conclusion (Section 18). The equation 
expressive of that principle involves the moon's orbital angular velocity and 
the earth's diurnal rotation as its two variables; and it is only necessary to 
equate one to the other to obtain an equation, which will give the desired 
information. 

As we are now supposed to be transported back to the initial state, I shall 
henceforth speak of time in the ordinary way; there is no longer any con
venience in speaking of the past as the future, and vice versa. 

The equation above referred to has two solutions, one of which indicates 
that tidal friction has done its work, and the other that it is just about to 
begin. Of the first I shall here say no more, but refer the reader to Section 18. 

The second solution indicates that the moon (considered as an attractive 
particle) moves round the earth as though it were rigidly fixed thereto in 
5 hours 36 minutes. This is a state of dynamical instability; for if the month 
is a little shorter than the day, the moon will approach the earth, and ulti
mately fall into i t ; but if the day is a little shorter than the month, the 
moon will continually recede from the earth, and pass through the series of 
changes which were traced backwards. 

Since the earth is a cooling and contracting body, it is likely that its 
rotation would increase, and therefore the dynamical equilibrium would be 
more likely to break down in the latter than in the former way. 

The continuous solution of the problem is taken up at the point where 
the moon has receded from the earth so far that her period is twice that of 
the earth's rotation. 

I have calculated that the heat generated in the interior of the earth in 
the course of the lengthening of the day from 5 hours 36 minutes to 23 hours 
56 minutes would be sufficient, if applied all at once, to heat the whole earth's 
mass about 3000° Fahr., supposing the earth to have the specific heat of iron 
(see Section 16). 

A rough calculation shows that the minimum time in which the moon 
can have passed from the state where it had a period of 5 hours 36 minutes 
to the present state, is 54 million years, and this confirms the previous esti
mates of time. 

This periodic time of the moon corresponds to an interval of only 6,000 
miles between the earth's surface and the moon's centre. If the earth had 
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been treated as heterogeneous, this distance, and with it the common periodic 
time both of moon and earth, would be still further diminished. 

These results point strongly to the conclusion that, if the moon and earth 
were ever molten viscous masses, they once formed parts of a common mass. 

We are thus led at once to the inquiry as to how and why the planet 
broke up. The conditions of stability of rotating masses of fluid are un
fortunately unknown*, and it is therefore impossible to do more than speculate 
on the subject. 

The most obvious explanation is similar to that given in Laplace's nebular 
hypothesis, namely, that the planet being partly or wholly fluid, contracted, 
and thus rotated faster and faster until the ellipticity became so great that 
the equilibrium was unstable, and then an equatorial ring separated itself, and 
the ring finally conglomerated into a satellite. This theory, however, presents 
an important difference from the nebular hypothesis, in as far as that the ring 
was not left behind 240,000 miles away from the earth, when the planet was a 
rare gas, but that it was shed only 4,000 or 5,000 miles from the present surface 
of the earth, when the planet was perhaps partly solid and partly fluid. 

This view is to some extent confirmed by the ring of Saturn, which would 
thus be a satellite in the course of formation. 

I t appears to me, however, that there is a good deal of difficulty in the 
acceptance of this view, when it is considered along with the numerical 
results of the previous investigation. 

At the moment when the ring separated from the planet it must have 
had the same linear velocity as the surface of the planet; and it appears 
from Section 22 that such a ring would not tend to expand from tidal reac
tion, unless its density varied in different parts, Thus we should hardly 
expect the distance from the earth of the chain of meteorites to have 
increased much, until it had agglomerated to a considerable extent. I t 
follows, therefore, that we ought to be able to trace back the moon's path, 
until she was nearly in contact with the earth's surface, and was always 
opposite the same face of the earth. Now this is exactly what has been done 
in the previous investigation. But there is one more condition to be satisfied, 
namely, that the common speed of rotation of the two bodies should be so 
great that the equilibrium of the rotating spheroid should be unstable. 
Although we do not know what is the limiting angular velocity of a rotating 
spheroid consistent with stability, yet it seems improbable that a rotation in 
a little over 5 hours, with an ellipticity of one-twelfth would render the 
system unstable. 

Now notwithstanding that the data of the problem to be solved are to 
some extent uncertain, and notwithstanding the imperfection of the solution 
of the problem here given, yet it hardly seems likely that better data and a 

* [This statement is now no longer correct.] 
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more perfect solution would largely affect the result, so as to make the com
mon period of revolution of the two bodies in the initial configuration very 
much less than 5 hours *. Moreover we obtain no help from the hypothesis 
that the earth has contracted considerably since the shedding of the satellite, 
but rather the reverse; for it appears from Section 24 that if the earth has 
contracted, then the common period of revolution of the two bodies in the 
initial configuration must have been slower, and the moon more distant from 
the earth. This slower revolution would correspond with a smaller ellipticity, 
and thus the system would probably be less nearly unstable. 

The following appears to me at least a possible cause of instability of the 
spheroid when rotating in about 5 hours. Sir William Thomson has shown 
that a fluid spheroid of the same mean density as the earth would perform a 
complete gravitational oscillation in 1 hour 34 minutes. The speed of oscil
lation varies as the square root of the density, hence it follows that a less 
dense spheroid would oscillate more slowly, and therefore a spheroid of the 
same mean density as the earth, but consisting of a denser nucleus and a 
rarer surface, would probably oscillate in a longer time than 1 hour 34 minutes. 
I t seems to be quite possible that two complete gravitational oscillations of 
the earth in its primitive state might occupy 4 or 5 hours. But if this were 
the case, the solar semi-diurnal tide would have very nearly the same period 
as the free oscillation of the spheroid, and accordingly the solar tides would 
be of enormous height. 

Does it not then seem possible that, if the rotation were fast enough to 
bring the spheroid into anything near the unstable condition, the large solar 
tides might rupture the body into two or more parts ? In this case one would 
conjecture that it would not be a ring which would detach itself +. 

I t seems highly probable that the moon once did rotate more rapidly 
round her own axis than in her orbit, and if she was formed out of the fusion 
together of a ring of meteorites, this rotation would necessarily result. 

In Section 23 it is shown that the tidal friction due to the earth's action 
on the moon must have been enormous, and it must necessarily have soon 
brought her to present the same face constantly to the earth. This explana
tion was, I believe, first given by Helmholtzj. In the process, the inclination 
of her axis to the plane of her orbit must have rapidly increased, and then, as 
she rotated more and more slowly, must have slowly diminished again. Her 
present aspect is thus in strict accordance with the results of the purely 
theoretical investigation. 

* This is illustrated by my paper on " The Secular Effects of Tidal Friction," [Paper 5], where 
it appears that the " l ine of momentum" does not cut the "curve of rigidity" at a very small 
angle, so that a small error in the data would not make a very large one in the solution. 

t [On this subject see Professor A. E. H. Love, " O n the oscillations of a rotating liquid 
Spheroid and the genesis of the Moon," Phil. Mag., March, 1889.] 

J [Both Kant and Laplace gave the same explanation many years before.] 
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It would perhaps be premature to undertake a complete review of the 
planetary system, so as to see how far the ideas here developed accord with it. 
Although many facts which could be adduced seem favourable to their accept
ance, I will only refer to two. The satellites of Mars appear to me to afford 
a remarkable confirmation of these views. Their extreme minuteness has 
prevented them from being subject to any perceptible tidal reaction, just as 
the minuteness of the earth compared with the sun has prevented the earth's 
orbit from being perceptibly influenced (see Section 19); they thus remain 
as a standing memorial of the primitive periodic time of Mars round his axis. 
Mars, on the other hand, has been subjected to solar tidal friction. This case, 
however, deserves to be submitted to numerical calculation. 

The other case is that of Uranus, and this appears to be somewhat un
favourable to the theory; for on account of the supposed adverse revolution 
of the satellites, and of the high inclinations of their orbits, it is not easy to 
believe that they could have arisen from a planet which ever rotated about 
an axis at all nearly perpendicular to the ecliptic. 

The system of planets revolving round the sun presents so strong a resem
blance to the systems of satellites revolving round the planets, that we are 
almost compelled to believe that their modes of development have been 
somewhat alike. But in applying the present theory to explain the orbits of 
the planets, we are met by the great difficulty that the tidal reaction due to 
solar tides in the planet is exceedingly slow in its influence; and not much 
help is got by supposing the tides in the sun to react on the planet. Thus 
enormous periods of time would have to be postulated for the evolution. 

If, however, this theory should be found to explain the greater part of the 
configurations of the satellites round the planets, it would hardly be logical to 
refuse it some amount of applicability to the planets. We should then have 
to suppose that before the birth of the satellites the planets occupied very 
much larger volumes, and possessed much more moment of momentum than 
they do now. If they did so, we should not expect to trace back the positions 
of the axes of the planets to the state when they were perpendicular to the 
ecliptic, as ought to be the case if the action of the satellites, and of the sun 
after their birth, is alone concerned. 

Whatever may be thought of the theory of the viscosity of the earth, and 
of the large speculations to which it has given rise, the fact remains that 
nearly all the effects which have been attributed to the action of bodily tides 
would also follow, though probably at a somewhat less rapid rate, from the 
influence of oceanic tides on a rigid nucleus. The effect of oceanic tidal fric
tion on the obliquity of the ecliptic has already been considered by Mr Stone, 
in the only paper on the subject which I have yet seen*. His argument is 
based on what I conceive to be an incorrect assumption as to the nature of 

* Ast. Soc. Monthly Notices, March 8, 1867. 
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the tidal frictional couple, and he neglects tidal reaction; he finds that the 
effects would be quite insignificant. This result would, I think, be modified 
by a more satisfactory assumption. 

APPENDIX. 

An extract from the abstract of the foregoing paper, Proc. Roy. Soc, 
Vol. XXVNI. ( 1 8 7 9 ) , pp. 1 8 4 — 1 9 4 . 

I will now show, from geometrical considerations, how some of the results 
previously stated come to be true. I t will not, however, be possible to obtain 
a quantitative estimate in this way. 

The three following propositions do not properly belong to an abstract, 
since they are not given in the paper itself; they merely partially replace 
the analytical method pursued therein. The results of the analysis were so 
wholly unexpected in their variety, that I have thought it well to show that 
the more important of them are conformable to common sense. These 
general explanations might doubtless be multiplied by some ingenuity, but 
it would not have been easy to discover the results, unless the way had been 
first shown by analysis. 

PROP. I. If the viscosity be small the earth's obliquity increases, the rota
tion is retarded, and the moons distance and periodic time increase. 

The figure represents the earth as seen from above the South Pole, so 
that S is the Pole, and the outer circle the Equator. The earth's rotation is 
in the direction of the curved arrow at S. The half of the inner circle which 
is drawn with a full line is a semi-small-circle of S. lat., and the dotted semi
circle is a semi-small-circle in the same N. lat. 

Generally dotted lines indicate parts of the figure which are below the 
plane of the paper. 

I t will make the explanation somewhat simpler, if we suppose the tides 
to be raised by a moon and anti-moon diametrically opposite to one another. 
Accordingly let M and M' be the projections of the moon and anti-moon on 
to the terrestrial sphere. 

If the substance of the earth were a perfect fluid or perfectly elastic, the 
apices of the tidal spheroid would be at M and M'. If, however, there is 
internal friction due to any sort of viscosity, the tides will lag, and we may 
suppose the tidal apices to be at T and T'. 

Suppose the tidal protuberances to be replaced by two equal heavy 
particles at T and T', which are instantaneously rigidly connected with the 
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earth. Then the attraction of the moon on T is greater than on T' ; and of 
the anti-moon on T' is greater than on T. The resultant of these forces is 
clearly a pair of forces acting on the earth in the direction of TM, T'M'. 

The effect on the obliquity will be considered first. 

These forces TM, T'M', clearly cause a couple about the axis in the 
equator, which lies in the same meridian as the moon and anti-moon. The 
direction of the couple is shown by the curved arrows at L, L'. 

If the effects of this couple be compounded with the existing rotation 
of the earth, according to the principle of the gyroscope, it will be seen that 
the South Pole S tends to approach M, and the North Pole to approach M'. 
Hence supposing the moon to move in the ecliptic, the inclination of the 
earth's axis to the ecliptic diminishes, or the obliquity increases. 

Next, the forces TM, T'M', clearly produce a couple about the earth's 
polar axis, which tends to retard the diurnal rotation. 

Lastly, since action and reaction are equal and opposite, and since the 
moon and anti-moon cause the forces TM, T'M', on the earth, therefore the 
earth must cause forces on those two bodies (or on their equivalent single 
moon) in the directions MT and M'T'. These forces are in the direction of 
the moon's orbital motion, and therefore her linear velocity is augmented. 
Since the centrifugal force of her orbital motion must remain constant, her 
distance increases, and with the increase of distance comes an increase of 
periodic time round the earth. 

This general explanation remains a fair representation of the state of the 
case so long as the different harmonic constituents of the aggregate tide-wave 
do not suffer very different amounts of retardation; and this is the case so 
long as the viscosity is not great. 

FIB. 6. 

IRIS - LILLIAD - Université Lille 1 



PROP. II. The attraction of the moon on a lagging fortnightly tide causes 
the earth's obliquity to diminish, but does not affect the diurnal rotation ; the 
reaction on the moon causes a diminution of her distance and periodic time. 

The fortnightly tide of a perfectly fluid earth is a periodic increase and 
diminution of the ellipticity of figure; the increment of ellipticity varies as 
the square of the sine of the obliquity of the equator to the ecliptic, and as 
the cosine of twice the moon's longitude from her node. Thus the ellipticity 
is greatest when the moon is in her nodes, and least when she is 90° removed 
from them. 

In a lagging fortnightly tide the ellipticity is greatest some time after the 
moon has passed the nodes, and least an equal time after she has passed the 
point 90° removed from them. 

The effects of this alteration of shape may be obtained by substituting 
for these variations of ellipticity two attractive or repulsive particles, one at 
the North Pole and the other at the South Pole of the earth. These particles 
must be supposed to wax and wane, so that when the real ellipticity of figure 
is greatest they have their maximum repulsive power, and when least they 
have their maximum attractive power; and their positive and negative 
maxima are equal. 

We will now take the extreme case when the obliquity is 90°; this makes 
the fortnightly tide as large as possible. 

Let the plane of the paper be that of the ecliptic, and let the outer semi
circle be the moon's orbit, which she describes in the direction of the arrows. 
Let NS be the earth's axis, which by hypothesis lies in the ecliptic, and let 
L, L' be the nodes of the orbit. Let N be the North Pole; that is to say, if 
the earth were turned about the line LL', so that N rises above the plane of 
the paper, the earth's rotation would be in the same direction as the moon's 
orbital motion, 

S 

F I G . 7. 
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First consider the case where the earth is perfectly fluid, so that the tides 
do not lag. 

Let Wa, mt be points in the orbit whose longitudes are 45° and 135° ; and 
suppose that couples acting on the earth about an axis at 0 perpendicular to 
the plane of the paper are called positive when they are in the direction of 
the curved arrow at O. When the moon is at m, the particles at N and 
S have their maximum repulsion. But at this instant the moon is equi
distant from both, and there is no couple about 0. As, however, the moon 
passes to ma there is a positive couple, which vanishes when the moon is at 
tn-i, because the particles have waned to zero. From rn^ to m3 the couple is 
negative; from to m 4 positive; and from m4 to m„ negative. Now, the 
couple goes through just the same changes of magnitude, as the moon passes 
from wij to m a, as it does while the moon passes from m4 to m5, but in the reverse 
order; the like may be said of the arcs m 2m s and m 3m 4. Hence it follows 
that the average effect, as the moon passes through half its course, is nil, and 
therefore there can be no secular change in the position of the earth's axis. 

But now consider the case when the tide lags. When the moon is at ml 

the couple is zero, because she is equally distant from both particles. The 
particles have not, however, reached their maximum of repulsiveness; this 
they do when the moon has reached M,, and they do not cease to be repulsive 
until the moon has reached M2. Hence, during the description of the arc 
T W , M 2 , the couple round 0 is positive. 

Throughout the arc M2m, the couple is negative, but it vanishes when the 
moon is at 7 % , because the moon and the two particles are in a straight line. 
The particles reach their maximum of attractiveness when the moon is at M3, 
and the couple continues to be positive until the moon is at M4. 

Lastly, during the description of the arc M 4 m 5 the couple is negative. 

But now there is no longer a balance between the arcs OT^IVL, and M 4m e, 
nor between Mjirij and msM4. The arcs during which the couples are positive 
are longer and the couples are more intense than in the rest of the semi-orbit. 
Hence the average effect of the couples is a positive couple, that is to say, in 
the direction of the curved arrow round O. 

It may be remarked that if the arcs m1M_l, m 2M 2, J T J 3 M 3 , ra4M4 had been 
45°, there would have been no negative couples at all, and the positive couples 
would merely have varied in intensity. 

A couple round 0 in the direction of the arrow, when combined with the 
earth's rotation, would, according to the principle of the gyroscope, cause 
the pole N to rise above the plane of the paper, that is to say, the obliquity 
of the ecliptic would diminish. The same thing would happen, but to a less 
extent, if the obliquity had been less than 90°; it would not, however, be 
nearly so easy to show this from general considerations. 
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Since the forces which act on the earth always pass through N and S, 
there can be no moment about the axis NS, and the rotation about that axis 
remains unaffected. This can hardly be said to amount to strict proof that 
the diurnal rotation is unaffected by the fortnightly tide, because it has not 
been rigorously shown that the two particles at N and S are a complete 
equivalent to the varying ellipticity of figure. 

Lastly, the reaction on the moon must obviously be in the opposite direc
tion to that of the curved arrow at O; therefore there is a force retarding her 
linear motion, the effect of which is a diminution of her distance and of her 
periodic time. 

The fortnightly tidal effect must be far more efficient for very great vis
cosities than for small ones, for, unless the viscosity is very great, the substance 
of the spheroid has time to behave sensibly like a perfect fluid, and the tide 
hardly lags at all. 

PROP. I I I . An annular satellite not parallel to the planet's equator attracts 
the lagging tides raised by it, so as to diminish the inclination of the planet's 
equator to the plane of the ring, and to diminish the planet's rotation. The 
effects of the joint action of sun and moon may be explained from this. 

Suppose the figure to represent the planet as seen from vertically over 
the South Pole S; let L, L' be the nodes of the ring, and LRL' the projection 
of half the ring on to the planetary sphere. 

If the planet were perfectly fluid the attraction of the ring would produce 
a ridge of elevation all along the neighbourhood of the arc LRL', together 
with a compression in the direction of an axis perpendicular to the plane of 
the ring. This tidal spheroid may be conceived to be replaced by a repulsive 
particle placed at P, the pole of the ring, and an equal repulsive particle at 
its antipodes, which is not shown in the figure. 

L 

L' 

FIG. 8. 
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Suppose that the spheroid is viscous, and that the tide lags; then since 
the planet rotates in the direction of the curved arrow at S, the repulsive 
particle is carried past its place, P, to P'. The angle PSP' is a measure of 
the lagging of the tide. 

We have to consider the effect of the repulsion of the ring on a particle 
which is instantaneously and rigidly connected with the planet at P'. 

Since P' is nearer to the half L of the ring, than to the half L', the general 
effect of the repulsion must be a force somewhere in the direction P'P. 

Now this force P'P must cause a couple in the direction of the curved 
arrows K, K' about an axis, KK', perpendicular to LL', the nodes of the ring. 
The effects of this couple, when compounded with the planet's rotation, is to 
cause the pole S to recede from the ring LRL'. Hence the inclination of the 
planet's equator to the ring diminishes. 

Secondly, the force P'P produces a couple about S, adverse to the planet's 
rotation about its axis S. If the obliquity of the ring be small, this couple 
will be small, because P' will lie close to S. 

Lastly, it may be shown analytically that the tangential force on the ring 
in the direction of the planet's rotation, corresponding with the tidal friction, 
is exactly counterbalanced by a tangential force in the opposite direction, 
corresponding with the change of the obliquity. Thus the diameter of the 
ring remains constant. I t would not be very easy to prove this from general 
considerations. 

It may be shown that, as far as concerns their joint action, the sun and 
moon may be conceived to be replaced by a pair of rings, and these rings 
may be replaced by a single one ; hence the above proposition is also applic
able to the explanation of the joint action of the two bodies on the earth, and 
numerical calculation shows that these joint effects exercise a very important 
influence on the rate of variation of obliquity. 
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4. 

PROBLEMS CONNECTED WITH THE TIDES OF 
A VISCOUS SPHEROID. 

[Philosophical Transactions of the Royal Society, Part II. Vol. 170 (1879), 
pp. 539—593.] 

C O N T E N T S . 
P A G E 

I. Secular distort ion of the spheroid, and certain t ides of the second order . 141 
I I . Distr ibut ion of heat generated b y internal friction, and secular cooling . 155 

I I I . The effects of inertia in the forced osci l lations of viscous, fluid, and elastic 
spheroids . . . . . . . . . . . . 167 

I V . Discuss ion of the applicabil i ty of the results to the history of the e a r t h . 187 

I N the following paper several problems are considered, which were 
alluded to in my two previous papers on this subject*. 

The paper is divided into sections which deal with the problems referred 
to in the table of contents. I t was found advantageous to throw the several 
investigations together, because their separation would have entailed a good 
deal of repetition, and one system of notation now serves throughout. 

I t has, of course, been impossible to render the mathematical parts 
entirely independent of the previous papers, to which I shall accordingly 
have occasion to make a good many references. 

As the whole inquiry is directed by considerations of applicability to the 
earth, I shall retain the convenient phraseology afforded by speaking of the 
tidally distorted spheroid as the earth, and of the disturbing body as the 
moon. 

I t is probable that but few readers will care to go through the somewhat 
complex argumentsand analysis by which the conclusions are supported, and 

* [Papers 1 and 3 above. They will be referred to hereafter as " Tides" and " Precession" 
respectively.] 
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therefore in the fourth part a summary of results is given, together with 
some discussion of their physical applicability to the case of the earth. 

I. Secular distortion of the spfieroid, and certain tides of the 
second order. 

In considering the tides of a viscous spheroid, it was supposed that the 
tidal protuberances might be considered as the excess and deficiency of 
matter above and below the mean sphere—or more strictly the mean spheroid 
of revolution which represents the average shape of the earth. The spheroid 
was endued with the power of gravitation, and it was shown that the action 
of the spheroid on its own tides might be found approximately by considering 
the state of flow in the mean sphere caused by the attraction of the pro
tuberances, and also by supposing the action of the protuberances on the 
sphere to be normal thereto, and to consist, in fact, merely of the weight 
(either positive or negative) of the protuberances. 

Thus if a be the mean radius of the sphere, w its density, g mean gravity 
at the surface, and r = a + o-i the equation to the tidal protuberance, where 
crt is a surface harmonic of order i, the potential per unit volume of the 

protuberance in the interior of the sphere is ä · -i ( ~ ) ° i > a n < ^ the sphere is 

subjected to a normal traction per unit area of surface equal to — gwa^. 
It was also shown that these two actions might be compounded by 

considering the interior of the sphere (now free of gravitation) to be under 

This expression therefore gave the effective potential when the sphere 
was treated as devoid of gravitational power. 

I t was remarked* that, strictly speaking, there is tangential action 
between the protuberance and the surface of the sphere. And laterf it was 
stated that the action of an external tide-generating body on the lagging 
tides was not such as to form a rigorously equilibrating system of forces. 
The effects of this non-equilibration, in as far as it modifies the rotation of 
the spheroid as a whole, were considered in the paper on " Precession." 

I t is easy to see from general considerations that these previously 
neglected tangential stresses on the surface of the sphere, together with the 
effects of inertia due to the secular retardation of the earth's rotation (pro
duced by the non-equilibrating forces), must cause a secular distortion of the 
spheroid. 

This distortion I now propose to investigate. 

* "Tides ," Section 2. t " Tides," Section 5. 
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In order to avoid unnecessary complication, the tides will be supposed to 
be raised by a single disturbing body or moon moving in the plane of the 
earth's equator. 

Let r = a+o- be the equation to the bounding surface of the tidally-
distorted earth, where <J is a surface harmonic of the second order. 

I shall now consider how the equilibrium is maintained of the layer of 
matter a, as acted on by the attraction of the spheroid and under the 
influence of an external disturbing potential V, which is a solid harmonic of 
the second degree of the coordinates of points within the sphere*. The 
object to be attained is the evaluation of the stresses tangential to the 
surface of the sphere, which are exercised by the layer cr on the sphere. 

Let 8, 0 be the colatitude and longitude of a point in the layer. Then 
consider a prismatic element bounded by the two cones 6, 6 + hd, and by the 
two planes cj>, <f> + S(f>. 

The radial faces of this prism are acted on by the pressures and tangential 
stresses communicated by the four contiguous prisms. But the tangential 
stresses on these faces only arise from the fact that contiguous prisms are 
solicited by slightly different forces, and therefore the action of the four 
prisms, surrounding the prism in question, must be principally pressure. 
I therefore propose to consider that the prism resists the tendency of the 
impressed forces to move tangentially along the surface of the sphere, by 
means of hydrostatic pressures on its four radial faces, and by a tangential 
stress across its base. 

This approximation by which the whole of the tangential stress is thrown 
on to the base, is clearly such as slightly to accentuate, as it were, the 
distribution of the tangential stresses on the surface of the sphere, by which 
the equilibrium of the layer cr is maintained. For consider the following 
special case:—Suppose o- to be a surface of revolution, and V to be such that 
only a single small circle of latitude is solicited by a tangential force every
where perpendicular to the meridian. Then it is obvious that, strictly 
speaking, the elements lying a short way north and south of the small circle 
would tend to be carried with it, and the tangential stress on the sphere 
would be a maximum along the small circle, and would gradually die away to 
the north and south. In the approximate method, however, which it is 
proposed to use, such an application of external force would be deemed to 
cause no tangential stress to the surface of the sphere to the north and south 
of the small circle acted on. This special case is clearly a great exaggeration 
of what holds in our problem, because it postulates a finite difference of 
disturbing force between elements infinitely near to one another. 

* A parallel investigation would be applicable, when a and V are of any orders. 
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We will first find what are the hydrostatic pressures transmitted by the 
four prisms contiguous to the one we are considering. 

Let p be the hydrostatic pressure at the point r, 8, c/> of the layer cr. 
If we neglect the variations of gravity due to the layer cr and to V, p is 
entirely due to the attraction of the mean sphere of radius a. 

The mean pressure on the radial faces at the point in question is \gw<r ; 
where cr is negative the pressures are of course tractions. 

We will first resolve along the meridian. 

The excess of the pressure acting on the face 0 + 89 over that on the face 
9 (whose area is a a sin é?So5) is 

\k9wa • a a ™ 88<f>~\ 86, or \gwa ^(a^shi6)888$ 

and it acts towards the pole. 

The resolved part of the pressures on the faces c/> + Sc/> and c/> (whose area 
is aa86) along the meridian is 

(\gwa) (aa89) (cos 98<j>) or ^gwaa2 cos 9868$ 

and it acts towards the equator. 

Hence the whole force due to pressure on the element resolved along the 
meridian towards the equator is 

\gwa868<\> [a2 cosô — ~ (cr2 sin 9)], or — gwa898(pshx9a(^ 

But the mass of the elementary prism 8m = wa2 sin 6888$. cr. 

Hence the meridional force due to pressure is — ^ 8m 
a d6' 

We will next resolve the pressures perpendicular to the meridian. 

The excess of pressure on the face <J> + 8<J> over that on the face (F> (whose 
area is CRA89), measured in the direction of TF> increasing, is 

- A [ h g w a . aaè9] 5*3 = _ gwaa g 898$ = - f 8m ^ ^ 

Hence the force due to pressure perpendicular to the meridian is 

9 s 1 der - - cm-.—5 -,~ a sm a dq> 

We have now to consider the impressed forces on the element. 

Since cr is a surface harmonic of the second degree, the potential of the 

layer of matter cr at an external point is ^gcr . Therefore the forces 

along and perpendicular to the meridian on a particle of mass SOT, just outside 
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the layer cr but infinitely near the prismatic element, are | ^ Sm and 

i — Sm . ^ ~ , and these are also the forces acting on the element Sm due 6 a Bin 8 dtp 6 

to the attraction of the rest of the layer cr. 
1 dY 

Lastly, the forces due to the external potential V are clearly Sm -
A s 1 dV 

and cm — - . — ^ -y- j - . a sm 0 aa> 
Collecting results we get for the forces due both to pressure and attraction, 

along the meridian towards the equator 

Sm g do- g do- dY 
ad9+lia'D£JRADD 

and perpendicular to the meridian, in the direction of FFJ increasing, 
g do- 3g do- dY 

[_ a sin 8 dqb 5u sin 8 d<f> a sin 6d(p 
= Sm * -, f (V — j 7 0 - ) « sin 8 dtf>y 6 J ' 

2(7 

Henceforward ^ will be written g, as in the previous papers. 
These are the forces on the element which must be balanced by the 

tangential stresses across the base of the prismatic element. 

I t follows from the above formulae that the tangential stresses com
municated by the layer o- to the surface of the sphere are those due to 
a potential V—gscr acting on the layer <x. 

If <r= V/tttt there is no tangential stress. But this is the condition that 
a should be the equilibrium tidal spheroid due to V, so that the result fulfils 
the condition that if <r be the equilibrium tidal spheroid of V there is no 
tendency to distort the spheroid further; this obviously ought to be the case. 

In the problem before us, however, a does not fulfil this condition, and 
therefore there is tangential stress across the base of each prismatic element 
tending to distort the sphere. 

Suppose V = r 2 S where S is a surface harmonic. 

Then at the surface V = a 2 S. If Sm be the mass of a prism cut out of the 
layer cr, which stands on unit area as base, Sm = wo-. 

Therefore the tangential stresses per unit area communicated to the 
sphere are 

M 1 ~ ~ (S — g ^\ along the meridian } 
I I (1) 

and war—.—- . (S — tt -1 perpendicular to the meridian a sin 8 d<p\ 25 a/ 1 1 J 
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Besides these tangential stresses there is a small radial stress over and 
above the radial traction — guia, which was taken into account in forming the 
tidal theory. But we remark that the part of this stress, which is periodic in 
time, will cause a very small tide of the second order, and the part which is 
non-periodic will cause a very small permanent modification of the figure of 
the sphere. These effects are, however, so minute as not to be worth 
investigating. 

We will now apply these results to the tidal problem. 
Let X, Y, Z (fig. 1) be rectangular axes fixed in the earth, Z being the 

axis of rotation and XZ the plane from which 
longitudes are measured. 

Let M be the projection of the moon on the 
equator, and let at be the earth's angular 
velocity of rotation relatively to the moon. 

Let A be the major axis of the tidal ellipsoid. 
Let AX = cot, where t is the time, and let 

MA = e. 

Let m be the moon's mass measured astro

nomically, and c her distance, and T = f ^ . F I G . 1. 
* v 

According to the usual formula, the moon's tide-generating potential is 

7-r 2 [sin2 0 cos2 (<£ - wt - e) - J] 
which may be written 

^r r ' (J - cos2 6) + ^ T T 2 sin2 6 cos 2 (0 - wt - e) 
The former of these terms is not a function of the time, and its effect is 

to cause a permanent small increase of ellipticity of figure of the earth, which 
may be neglected. We are thus left with 

^ T r 2 sin2 0 cos 2 (<fi — wt — e) 
as the true tide-generating potential. 

If tan 2e = ^ v a } where v is the coefficient of viscosity of the spheroid, gaw ' r 

by the theory of the paper on " Tides," such a potential will raise a tide 
expressed by 

- = £-cos2esin 2c5cos2(<6-<»£)* (2) 
a g 

If we put S = £ T sin2 6 cos 2 (<£ - wt - e) (3) 

S _ g ^ = | T s i n 2 e s i n 2 0 s i n 2 ( o > - wt) (4) 

« " Tides," Section 5. 

D. II. 
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sin 9 d<f> 
S — g ^ = T sin 2e sin 0 cos 2 (oi — at) 

Multiplying these by WA?-, we find from (1) the tangential stresses 
a 

communicated by the layer a- to the sphere. 

They are 
T 2 

J M ' — sin 4e sin3 6 cos 0 sin 4 (o5 — cu£) along the meridian 

g 
and 

T 8 

^ — sin 4e sin3 0 [1 + cos 4 (TF> — TOT)] perpendicular to the meridian 

g 
These stresses of course vanish when e is zero, that is to say when the 

spheroid is perfectly fluid. 
In as far as they involve <£> - TOT these expressions are periodic, and the 

periodic parts must correspond with periodic inequalities in the state of flow 
of the interior of the earth. These small tides of the second order have no 
present interest and may be neglected. 

We are left, therefore, with a non-periodic tangential stress per unit area 
of the surface of the sphere perpendicular to the meridian from east to west 

T 2 

equal to \WA? — sin 4e sin3 0. 
The sum of the moments of these stresses about the axis Z constitutes 

the tidal frictional couple £L, which retards the earth's rotation. 
Therefore 

£1 = |wrx 2^ sin 4e Jjsin3
 0 . A sin 0 . A? sin 9d9dtj} 

integrated all over the surface of the sphere. 
T 2 

On effecting the integration we have £1 = ^VWA'. — sin 4e. 
s 

But if C be the earth's moment of inertia, C = -^Trwa*. 
JIT T a 

Therefore ^ = K sin 4e (5) 

0 8 w 

This expression agrees with that found by a different method in the 
paper on "Precession*." 

We may now write the tangential stress on the surface of the sphere as 

* "Precession," Section 5 (22), when ¿ = 0. 

and — g = T sin 2e sin 9 cos 6 sin 2 (0 — 

IRIS - LILLIAD - Université Lille 1 



1879] EQUATIONS FOR FINDING THE DISTORTION OF THE EARTH. 147 

4waa S sin3 6; and the components of this stress parallel to the axes X, 

Y, Z are 

— | w ' ^ sin3 6? sin oh, + A toa1 ^ sin3 6 cos c/>, 0 (6) 

We next have to consider those effects of inertia which equilibrate this 
system of surface forces. 

The couple £X retards the earth's rotation very nearly as though it were 
a rigid body. Hence the effective force due to inertia on a unit of volume of 

the interior of the earth at a point r, 0, <p is wr sin 0 -jj , and it acts in a 

small circle of latitude from west to east. The sum of the moments of these 
forces about the axis of Z is of course equal to 0,, and therefore this bodily 
force would equilibrate the surface forces found in (6), if the earth were rigid. 

The components of the bodily force parallel to the axes are in rectangular 
coordinates 

wy-Q> -wx-Q, O (7) 

The problem is therefore reduced to that of finding the state of flow in 
the interior of a viscous sphere, which is subject to a bodily force of which 
the components are (7) and to the surface stresses of which the components 
are (6). 

Let a, ft, y be the component velocities of flow at the point x, y, z, and u 
the coefficient of viscosity. Neglecting inertia because the motion is very 
slow, the equations of motion are 

dy M C 

-d

jP+ vV*y = 0 
dz 

d* + dft dj = Q 

dx dy dz 

We have to find a solution of these equations, subject to the condition 
above stated, as to surface stress. 

Let a', ft', y , p be functions which satisfy the equations (8) throughout 
the sphere. If we put a = a' + a , ¡3 = ft'+ ft,, 7 = 7 + 7,> P=P' + P,, w e s e e 

that to complete the solution we have to find at, ftt, y„ p„ as determined by 
the equations 

10—2 

.(8) 
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which they are to satisfy throughout the sphere. They must also satisfy 
certain equations to be found by subtracting from the given surface stresses 
(6), components of surface stress to be calculated from a, ¡3', 7 ' , p*. 

We have first to find a, /S', y,p. 

Conceive the symbols in equations (8) to be accented, and differentiate 
the first three by x, y, z respectively and add them; then bearing in mind 
the fourth equation, we have V ^ ^ O , of which p' = 0 is a solution. 

Thus the equations to be satisfied become 

Solutions of these are obviously 

R>- t_W 

C 

1
 w M , • a • , , w J Ì , · a , 

= — TVr — ^ S l n " s m <P =
 T7T — r3 sin a cos rf> 

v U v C 

...(10) 

These values satisfy the last of (8), viz.: the equation of continuity, and 
therefore together with p' = 0 , they form the required values of a', / 3 ' , 7 ' , p'. 

We have next to compute the surface stresses corresponding to these 
values. 

Let P, Q, R, S, T, U be the normal and tangential stresses (estimated as 
is usual in the theory of elastic solids) across three planes at right angles at 
the point x, y, z. 

p - / + f c £ . s = „ ( f + f ) a . ) 

Q, R, T, U being found by cyclical changes of symbols. 

If F, G, H denote the component stresses across a plane perpendicular to 
the radius vector r at the point x, y, z 

Fr = Vx + ~Uy + T ^ 

Gr = Ux+ Qy + Sz\ ( 1 2 ) 

H r = Tx+ Sy + Rz) 

Substitute in (12) for P, Q, &c, from (11), and put f = ax + {3'y + y'z, 

and r ^ for x<j^ + y~ + z^- . Then 
ar ax ay dz 

Fr = -p'x + v^(r~-l") « ' + ̂ ' J , Gr = &c, Hr = &c. .. . ( 1 3 ) 

These formulie give the stresses across any of the concentric spherical 
surfaces. 

* This statement of method is taken from Thomson and Tait's Natural Philosophy, § 733. 
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In the particular case in hand P' = 0, Y = 0, ?' = 0, and a', FT are homo
geneous functions of the third degree; hence 

F = --iw-f*r3sin0sin<*>, G = \w ^ r" sin 8 cos cf>, H=0. . . (14) 

and at the surface of the sphere r = a. 
According to the principles above explained, we have to find txt, /? , YT 

so that they may satisfy 

^ + vV\ = 0, &c, &c. 
dx 

throughout a sphere, which is subject to surface stresses given by subtracting 
from (6) the surface values of F, G, H in (14). ' Hence the surface stresses to 
be satisfied by A4, F3,, YT, have components 

1 1 
A 3 = \W DR (4 — sin2 8) sin 8 sin 

, B 3 = - \w a a (4 - sin2 8) sin 8 cos t̂ , C, = 0 

These are surface harmonics of the third order as they stand. 

The solution of Thomson's problem of the state of strain of an incom
pressible elastic sphere, subject only to surface stress, is applicable to an 
incompressible viscous sphere, mutatis mutandis. His solution* shows that 
a surface stress, of which the components are A;, B^, d (surface harmonics 
of the ith order), gives rise to a state of flow expressed by 

1 J (a 2 -?- 2 ) tZ^ i_ 1 + 1 
va^1 [2 (2i' 2+ 1) dx i - l _(2.i'/> + 1) (2i + l)dx 

! (15) + 1 < ' ' l i ' - ( A 
2i(2i+ 1) dx 1 

and symmetrical expressions for /8, 7 , where ST and <E> are auxiliary functions 
defined by • • < • • • 

4> i + 1 = [ I ( A ^ - ) +1 ( B ^ ) + £ ( C , , - ) } j 
In our case i = 3, and it i h easily shown that the auxiliary functions are 

both zero, so that the required solution is 

a i
 = F~ v r ( 5

 — si 1 1 ' 8) i3 s i a 9 s i n $ 

/S, = - ^ ^ a - sin2 0) sin 8 cos <£, 7 , = 0 

* Thomson and Tait'a Natural Philosophy, § 737. 
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1 9 : ) 2 CO cos2 0 (17') i. — »TT I — cos 2e 
dt ™ V g 

This equation gives the rate of change of longitude. The solution is not 
applicable to the case of perfect fluidity, because the terms introduced by 
inertia in the equations of motion have been neglected; and if the viscosity 
be infinitely small, the inertia terms are no longer small compared with those 
introduced by viscosity. 

In order to find the total change of longitude in a given period, it will be 
more convenient to proceed from a different formula. 

Let n, fi be the earth's rotation, and the moon's orbital motion at any 
time; and let the suffix 0 to any symbol denote its initial value, also let 

«-(&)'· 
It was shown in the paper on "Precession" that the equation of conserva

tion of moment of momentum of the moon-earth system is 

w 
- = l + / 4 ( l - £ ) t (18) 

* The problem might probably be solved more shortly without using the general solution, 
hut the general solution will be required in Part III. 

t "Precession," equation (73), when ¿ = 0 and T' = 0. 

If we add to these the values of a, /3', y from (10), we have as the 
complete solution of the problem, 

a = ~ S T % ^ sm* 6 s i n </>> /3 = ^ 1^ r 3 sin3 cJ.cos c/., 7 = 0...(17) nit O oV 

These values show that the motion is simply cylindrical round the earth's 
axis, each point moving in a small circle of latitude from east to west with a 

linear velocity ~ ~ r 3 sin 3 0, or with an angular velocity about the axis equal 

w & , 
— TJ % 
8u C 
In this statement a meridian at the pole is the curve of reference, but it 

is more intelligible to state that each particle moves from west to east with 

an angular velocity about the axis equal to ~ ^ (a- — sin5 0), with refer

ence to a point on the surface at the equator. 

The easterly rate of change of the longitude L of any point on the surface 

in colatitude 8 is therefore ^ cos2 8. 
Hv Li 

o - T ! • ™ j , j , „ „ 1 9 U 6 0 bmce - p f = — sin 2e cos 2e, and tan 2e = f . ; , 
C g 5 g w a 2 

dL . „ / t 
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1879] WHOLE CHANGE OF LONGITUDE OF SUPERFICIAL POINTS. 151 

where (i is a certain constant, which in the case of the homogeneous earth 
with the present lengths of day and month, is almost exactly equal to 4. 

By differentiation of (18) 
dn dp, , . 

n r - ^ i t (19) 

But the equation of tidal friction is ~j^ = ~ ^ r -

Therefore -r. = — T V ^ 
at ft Ljn0 

Now d t = H v c c o s 6 

Therefore ^ = fj.na ^— cos* 0 (19') 

All the quantities on the right-hand side of this equation are constant, 
and therefore by integration we hare for the change of longitude 

A L = / i i i o ^ ( f - l ) c o s ' 0 

But since toa = n„ — D,0, and tan 2e0 = §. " j ^ " ^ " > therefore in degrees of arc, 

A L = — pi„ cot 2ea (f - 1) cos2 0 
7T g 

In order to make the numerical results comparable with those in the 
paper on " Precession," I will apply this to the particular case which was the 
subject of the first method of integration of that paper*. I t was there sup
posed that e 0 = 17°30', and it was shown that looking back about 46 million 
years £ had fallen from unity to '88. Substituting for the various quantities 
their numerical values, I find that 

- A L = 0°-31 cos2 0 = 19' cos2 0 
Hence looking back 46 million years, we find the longitude of a point in 

latitude 30°, further west by 4 f than at present, and a point in latitude 60°, 
further west by 14^'—both being referred to a point on the equator. 

Such a shift is obviously quite insignificant, but in order to see whether 
this screwing motion of the earth's mass could have had any influence on the 
crushing of the surface strata, it will be well to estimate the amount by which 
a cubic foot of the earth's mass at the surface would have been distorted. 

The motion being referred to the pole, it appears from (17) that a point 

distant p from the axis shifts through ~ ^ p38t in the time St. There would 

* "Precession," Section 15. 
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be no shearing if a point distant p + Bp shifted through ~ y^1 p 2 (p + Bp) Bt; 

but this second point does shift through + Bp)3 Bt. 
ou G 

Hence the amount of shear in unit time is 

Therefore at the equator, at the surface where the shear is greatest, the 
shear per unit time is · 

4v G ^THGJ 0 0 8 ^•C° 
fry l - 84 

With the present values of T and to, \^ -̂J to is a shear of per annum. 
Hence at the equator a slab one foot thick would have one face displaced 

with reference to the other at the rate of cos2 2g of an inch in a million 
years. 

The bearing of these results on the history of the earth will be considered 
in Part IV. 

The next point which will be considered is certain tides of the second 
order. 

We have hitherto supposed that the tides are superposed upon a sphere; 
it is, however, clear that besides the tidal protuberance there is a permanent 
equatorial protuberance. Now this permanent protuberance is by hypothesis 
not rigidly connected with the mean sphere; and, as the attraction of the 
moon on the equatorial regions produces the uniform precession and the 
fortnightly nutation, it might be (and indeed has been) supposed that there 
would arise a shifting of the surface with reference to the interior, and that 
this change in configuration would cause the earth to rotate round a new axis, 
and so there would follow a geographical shifting of the poles. I will now 
show, however, that the only consequence of the non-rigid attachment of the 
equatorial protuberance to the mean sphere is a series of tides of the second 
order in magnitude, and of higher orders of harmonics than the second. 

For a complete solution of the problem the task before us would be to 
determine what are the additional tangential and normal stresses existing 
between the protuberant parts and the mean sphere, and then to find the 
tides and secular distortion (if any) to which they give rise. 

The first part of these operations may be done by the same process which 
has just been carried out with reference to the secular distortion due to tidal 
friction. 

The additional normal stress (in excess of — gwo-, the mean weight of an 
element of the protuberance) can have no part in the precessional and 
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nutational couples, and the remark may be repeated that, that part of it 
which is non-periodic will only cause a minute change in the mean figure of 
the spheroid which is négligeable, and the part which is periodic will cause 
small tides of about the same magnitude as those caused by the tangential 
stresses. With respect to the tangential stresses, it is À PRIORI possible that 
they may cause a continued distortion of the spheroid, and they will cause 
certain small tides, whose relative importance we have to estimate. 

The expressions for the tangential stresses, which we have found above in 
(1), are not linear, and therefore we must consider the phenomenon in its 
entirety, and must not seek to consider the processional and nutational effects 
apart from the tidal effects. 

The whole bodily potential which acts on the earth is that due to the 
moon (of which the full expression is given in equation (3) of "Precession"), 
together with that due to the earth's diumal rotation (being JnV ( J — cos20)); 
the whole may be called r 2 S. The form of the surface a is that due to the 
tides and to the non-periodic part of the moon's potential, together with that 

due to rotation—being \ — (J — cos" 0). 

If we form the effective potential a' , which determines the 

tangential stresses between A and the mean sphere, we shall find that all 
except periodic terms disappear. This is so whether we suppose the earth's 
axis to be oblique or not to the lunar orbit, and also if the sun be supposed 
to act. 

If we differentiate these and form the expressions 

we shall find that there are no non-periodic terms in the expression giving 
the tangential stress along the meridian; and that the only non-periodic 
terms which exist in the expression giving the tangential stress perpendicular 
to the meridian are precisely those whose effects have been already considered 
as causing secular distortion, and which have their maximum effect when the 
obliquity is zero. 

Hence the whole result must be— 
(1) A very minute change in the permanent or average figure of the 

globe; 
(2) The secular distortion already investigated ; 
(3) Small tides of the second order. 

The only question which is of interest is—Can these small tides be of any 
importance ? 
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The sum of the moments of all the tangential stresses which result from 
the above expressions, about a pair of axes in the equator, one 90" removed 
from the moon's meridian and the other in the moon's meridian, together 
give rise to the precessional and nutational couples. 

Hence it follows that part of the tangential stresses form a non-equilibrating 
system of forces acting on the sphere's surface. In order to find the distorting 
effects on the globe, we should, therefore, have to equilibrate the system 
by bodily forces arising from the effects of the inertia due to the uniform 
precession and the fortnightly nutation—just as was done above with the 
tidal friction. This would be an exceedingly laborious process; and although 
it seems certain that the tides thus raised would be very small, yet we are 
fortunately able to satisfy ourselves of the fact more rigorously. Certain 
parts of the tangential stresses do form an equilibrating system of forces, and 
these are precisely those parts of the stresses which are the most important, 
because they do not involve the sine of the obliquity. 

I shall therefore evaluate the tangential stresses when the obliquity 
is zero. 

The complete potential due both to the moon and to the diurnal 
rotation is 

r 2 S = \r2 (rt2 + T ) (J - cos2 8) + \T2T sin2 8 cos 2 (<f> - cot - e) 
and the complete expression for the surface of the spheroid is given by 

3 *A = HN* + T) (i ~ cos2 8) + ix COS 2e sin2 8 cos 2(<f>- cot) 

Hence S — g A = \ T sin 2e sin2 8 sin 2 (<fS — cot) 

Neglecting T 2 compared with T W 2 , and omitting the terms which were 
previously considered as giving rise to secular distortion, we find 

via* ^ ^ (S - g = wa'r sin 2e sin 8 cos 8 ( j - cos2 8) sin 2 (tp — at) 

M ! - . 1 ,, (s - a -~] = wa2T \ ~ sin 2e sin 8(1- cos2 8) cos 2 (<f> - cot) a sm 8dcj> \ * a) 1 g 3 ' v r ' 
The former gives the tangential stress along, and the latter perpendicular 

to, the meridian. 

If we put e = -j-w!/g, the ellipticity of the spheroid, we see that the intensity 
of the tangential stresses is estimated by the quantity wa' . re sin 2e. But 
we must now find a standard of comparison, in order to see what height of 
tide such stresses would be competent to produce. 

I t appears from a comparison of equations (7) and (8) of Section 2 of the 
paper on " Tides," that a surface traction S; (a surface harmonic) everywhere 
normal to the sphere produces the same state of flow as that caused by 
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a bodily force, whose potential per unit volume is -̂j S,-; and conversely 

is mechanically equivalent to a surface traction W,. 
a potential W, 

Now the tides of the first order are those due to an effective potential 

wr* ^S — 55 - ) , and hence the surface normal traction which is competent to 

produce the tides of the first order is wa? (s — g , which is equal to 

iwaV sin 2e sin2 0 sin 2 (c/> — cot). Hence the intensity of this normal traction 
is estimated by the quantity Jwtt2r sin 2e, and this affords a standard of com
parison with the quantity wa?re sin 2e, which was the estimate of the intensity 
of the secondary tides. The ratio of the two is 2e, and since the ellipticity of 
the mean spheroid is small, the secondary tides must be small compared with 
the primary ones. I t cannot be asserted that the ratio of the heights of the 
two tides will be 2e, because the secondary tides are of a higher order of 
harmonics than the primary, and because the tangential stresses have not 
been reduced to harmonics and the problem completely worked out. I think 
it probable that the height of the secondary tides would be considerably less 
than is expressed by the quantity 2e, but all that we are concerned to know 
is that they will be négligeable, and this is established by the preceding 
calculations. 

It follows, then, that the precessional and nutational forces will cause no 
secular shifting of the surface with reference to the interior, and therefore 
cannot cause any such geographical déplacement of the poles, as has been 
sometimes supposed to have taken place. 

II. The distribution of heat generated by internal friction, 
and secular cooling. 

In the paper on "Precession" (Section 16) the total amount of heat was 
found, which was generated in the interior of the earth, in the course of its 
retardation by tidal friction. The investigation was founded on the principle 
that the energy, both kinetic and potential, of the moon-earth system, which 
was lost during any period, must reappear as heat in the interior of the 
earth. This method could of course give no indication of the manner and 
distribution of the generation of heat in the interior. Now the distribution 
of heat must have a very important influence on the way it will affect the 
secular cooling of the earth's mass, and I therefore propose to investigate the 
subject from a different point of view. 

It will be sufficient for the present purpose if we suppose the obliquity of 
the ecliptic to be zero, and the earth to be tidally distorted by the moon 
alone. 
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It has already been explained in the first section how we may neglect the 
mutual gravitation of a spheroid tidally distorted by an external disturbing 

potential w? ,2S, if we suppose the disturbing potential to be wr" ( s — g ̂  , 

where r — a-r a is the equation to the tidal protuberance. 

It is shown in (4) that 

S — g - = | T sin 2e sin2 8 sin 2 (cf> — rot) 

If we refer the motion to rectangular axes rotating so that the axis of x 
is the major axis of the tidal spheroid, and that of z is the earth's axis of 
rotation, and if W be the effective disturbing potential estimated per unit 
volume, we have 

W = M ) r ! (S - g ^ = WT sin 2e . xy (20) 

It was also shown in Paper 1 that the solution of Thomson's problem 
of the state of internal strain of an elastic sphere, devoid of gravitation, as 
distorted by a bodily force, of which the potential is expressible as a solid 
harmonic function of the second degree, is identical in form with the solution 
of the parallel problem for a viscous spheroid. 

That solution is as follows: 

- I K _ [ < « - H ^ S - « - S ( ? ) ? 
with symmetrical expressions for ft and y. 

Since ~ (—'] = —. — W, the solution may be written 
da; \ r° / r 5 dx 

1 

Substituting for W from (20) we have 
WT 

dW 
(8a 2 - 5r 2) + 4*W x ax 

ft = &c, y = &c. 

a = ^ r - sin 2e [(8a2 - 5r") y + 4,x*y] 
o a f 

ft = ~ sin 2e [(8a s - 5r*) x + 4OT/2] 
OOV 

38v 
sin 2e \xyz 

.(21) 

WT 
Putting K = sin 2e, we have 

19u 

d d l = - ^ 
da 
dy 

= £K [8a2 - (a? + I5y* + 5z*)], 

^ = IK [8a2 - (15a;2 + f + 5*2)], * è = - Kxy, 
dft 
di 

= — 5Kxz 

P=2Kzx, 
dy S - 2 K * w 

See Thomson and Tait's Natural Philotophy, § 834, or " Tides," Section 3. 
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And 

dz dy dx dz a dy dx L v J ' J 

(23) 
If P, Q, R, S, T, U be the stresses across three mutually rectangular 

planes at x, y, z, estimated in the usual way, the work done per unit time 
on a unit of volume situated at x, y, z is 

dx dy dz \dz dy) \dx dz] \dy dx/ 

But P = — p + 2v'^_, S = u + , and Q, R,T, U have symmetrical 

forms. Therefore, substituting in the expression for the work ^which will be 

called , and remembering that 

da. +d0 + <h = o 

dx dy dz 
we have 

1 dE f / d a y .(^.dy^/dy day (dx d_8\° 
v dt L \\dxj + \dy) + \dz) j + W * dy) + \dx + dz) + \dy dx) 
Now from (22) 

+ + (S)'] = = ^ 8 l n 4 6 [ 1 " C°S 4 (* " 0 , 1 ) 1 • ' ( 2 4 ) 

and from (23) 

I \(dP + + til + + | ^ + 5^Y~ 
K a \d,z dy/ vd* \dy dx) 

= 9,z2 (a? + y2) + [8 (a 3 - a? - y2) - 5z2]2 

= 9r* sin2 0 cos2 0 + (8a2 - br2 - 3r2 sin2 0)3 (25) 
Adding (24) and (25) and rearranging the terms 

1 dF 
~ = - § r 1 sin4 0 cos 4 (0 - *>«) + (8a3 - 5r 2) 2 

- | r 2 sin5 0 [32a2 - r 2 (26 + sin2 0)] 
The first of these terms is periodic, going through its cycle of changes in 

six lunar hours, and therefore the average rate of work, or the average rate of 
heat generation, is given by 

w = u (TD s i n 2 e ) a i-*-8™2 ~ 5 r ^ ' ~ % r * s i n 2 6 1 3 2 ' 1 ' ~ r 2 ^ 2 6 + s i n 2 • ^ 2 G ) 

It will now be well to show that this formula leads to the same results as 
those given in the paper on " Precession." 

* Thomson and Tait, Natural Philosophy, § 670. 

2 
K 3 
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In order to find the whole heat generated per unit time throughout the 

sphere, we must find the integral j r ' s i n 8drddddi, from r = a to 0, 

8 = 7T to 0, cp = 2TT to 0. 

In a later investigation we shall require a transformation of the expression 

for -j^, and as it will here facilitate the integration, it will be more con

venient to effect the transformation now. 

If 0,2, Q i be the zonal harmonics of the second and fourth orders, 
C O S 2 0 = § Q a + J 

Now 
(8a2 - 5r 2) 2 - f r 2 sin2 8 [32a2 - (26 + sin2 6) r 2] 

= (8a2 - 5r 2) 2 - r3 [48a2 - -8

2'-r2 - f (32a2 - 28r2) cos2 8 - ijr2 cos4 8] 
= i [320a4 - 560a 2r 2 + 259r*} - f(112a 2 - 95r2) r 2 Q 3 + H r 4 Q, ( 2 7 ) 

the last transformation being found by substituting for cos2 8 and cos* 8 
in terms of Q 2 and Q 4, and rearranging the terms. 

The integrals of Q2 and Q 4 vanish when taken all round the sphere, and 

\\ (320a4 - 560a 2r 2 + 259r4) r 2 sin 8drd8d<f> = %TTO7 {a|& _ £<p + ap} 
C«2 

J/J* 
x £ x l 9 

w 1 

where C is the earth's moment of inertia, and therefore equal to y\irwa". 
Hence we have 

/ / / W ** S l n 6 d r d 6 d ^ = I (lQ a i n 2eJ Ca 2 . f x 19 = ^ ( T sin 2e)2 C 

But tan 2e = = 2 . , so that = - cot 2e. 
gaw 5gwa2 38 v g 

T 2 

Therefore the whole work done on the sphere per unit time is ̂  — sin 4e . Ca>. 

Now, it was shown in equation (5) of Part I. of the present paper that, if 
T 2 

£ \ be the tidal frictional couple, = i — s^114e-

Therefore the work done on the sphere per unit time is jfiw. 
It is worth mentioning, in passing, that if the integral be taken from \a 

to 0, we find that '32 of the whole heat is generated within the central eighth 
of the volume; and by taking the integral from | a to a, we find that one-
tenth of the whole heat is generated within 500 miles of the surface. 

* Todhunter's Functions of Laplace, <&c. B. 1 3 ; or any other work on the subject. 
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It remains to show the identity of this remarkably simple result, for the 
whole work done on the sphere, with that used in the paper on " Precession." 
It was there shown (Section 16) that if n be the earth's rotation, r the moon's 
distance at any time, v the ratio of the earth's mass to the moon's, then the 
whole energy both potential and kinetic of the moon-earth system is 

Now c being the moon's distance initially, since the lunar orbit is supposed 
to be circular, 

J V C = go? " 

Also -
r 

v 

Therefore $ ̂  = § ĵ J v> (1 + fi0 ~ § = SNO" 

according to the notation of the paper on " Precession." 

In that paper I also put - = sn„ fl0^. 

Therefore | ^ = ^ ° . 

And the whole energy of the system is ^C^n2 — ^-y2—) · 

Therefore the rate of loss of energy is — C (^n ^ + Ii 0 ^ 

But ^ = — a n ( i M shown in the first part (19), Z^0 ^ = > a ^ s o 

Therefore the rate of loss of energy is ¿ 1 (n — fl) or .Jlco, which expression 
agrees with that obtained above. The two methods therefore lead to the same 
result. 

I will now return to the investigation in hand. 

The average throughout the earth of the rate of loss of energy is 
jElco - 7 - f ira , which quantity will be called H. Then 

3 w T 2 T ! . 
H - -r—- JHW = . | M a 3 . ^ - sin 4e . TO = \wa? . - sin 4e . TO 

4VJ ft JVl ^ 
Now 

1 2 fij f3 

- ( X T J W T sin 2e)a ft* = — cot 2e . J ^ T 3 sin2 2e . VJO? = ^ wa2co — sin 4e = T ' g H 
Hence (26) may be written 
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Equator 

This expression gives the rate of generation of heat at any point in terms 
of the average rate, and if we equate it to a constant we get the equation to 
the family of surfaces of equal heat-generation. 

We may observe that the heat generated at the centre is 3^g times the 
average, at the pole 1/2^ of the average, and at the equator 1/12| of the average. 

The accompanying figure exhibits the curves of equal heat-generation; 
the dotted line shows that of 4 of the „ , 

4 Pole 

average, and the others those of \, 1, 
\ \ , 2, 2J, and 3 times the average. 
I t is thus obvious from inspection of 
the figure that by far the largest part 
of the heat is generated in the central 
regions. 

The next point to consider is the 
effect which the generation of heat 
will have on underground temperature, 
and how far it may modify the in
vestigation of the secular cooling of 
the earth. 

I t has already been shown* that the total amount of heat which might 
be generated is very large, and my impression was that it might, to a great 
extent, explain the increase of temperature underground, until a conversation 
with Sir William Thomson led me to undertake the following calculations:— 

We will first calculate in what length of time the earth is losing by 
cooling an amount of energy equal to its present kinetic energy of rotation. 

The earth's conductivity may be taken as about '004 according to the 
results given in Everett's illustrations of the centimetre-gramme-second system 
of units, and the temperature gradient at the surface as 1° C. in 27^ metres, 
which is the same as 1° Fahr. in SO feet—the rate used by Sir W. Thomson 
in his paper on the cooling of the earth f. 

4 
This temperature gradient is y y — ^ degrees C. per centimetre, and 

since there arc 31,557,000 seconds in a year, therefore in centimetre-gramme-
second units, 

the heat lost by earth per annum 
4 4 — earth's surface in square centimetres x x si TTT X 3'1557 x 107 

10 11 x 10* 
= earth's surface x 45 9 (centimetre-gramme-second heat units) 

* "Precession," Section 15, Table IV., and Section 16. 
t Thomson and Tait's Natural Philosophy, Appendix D. 
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\n0) 2vn2 while 

i _ 8 1 / \5nfa) a~ 

i lengt 
in earth's radii, 

n D If D be the length of the day, - = ~ ; and if N be the moon's distance 
Tin \y 

2w!0

2 8j/ \5n<?a} 32 x 82 
n 

r /T, \2 

the loss of energy = J^j^y ~" ••• " \^ t t N J 
x earth's present K . E . of rotation 

In the paper on " Precession" we showed the system passing from a day 
of 5 hours 40 minutes*, and a lunar distance of 2"547 earth's radii, to a day 
of 24 hours, and a lunar distance of 60"4 earth's radii. 

Xow 24-r- 5} = 423, and (2"547)"1 - ( 6 0 4 ) - ' = -376. 

* A recalculation in the paper on "Precession" gave 5 hours 36 minutes, but I have not 
thought it -worth while to alter this calculation. 

D. I I . 1 1 

If J be Joule's equivalent 
the earth's kinetic energy of rotation in heat units 

= i ^ ' - ^ W ( i^) . where C = | ^ 

= earth's surface x — j - ( |) 2 ea, where e„ = £ = 5 j 5 

(5-5)x(6'37) 2x 10 1 8x('4) 2 for a = 6'37 x 103 centimetres = earth s surface x — v — — ? — : — , T . „ . ,. S x 434 x 10* x 232 J = 434 x 104gramcentim. 
and w = 5fa 

= earth's surface x 1'2 x 101 0 nearly 
Therefore at the present rate of loss the earth is losing energy by cooling 

1"2 x 10'0 

equivalent to its kinetic energy of rotation in — — = 262 million years. 

If we had taken the earth as heterogeneous and C = J Ma2 we should have 
found 218 million years. 

We will next find how much energy is lost to the moon-earth system in 
the series of changes investigated in the paper on " Precession." 

In that paper (Section 16) it was shown that the whole energy of the 

system is iMd' — > where v is earth -=- moon, r moon's distance, 

n earth's diurnal rotation. 

Hence the loss of energy = £Ma sn 0

! 

n passes from n to 1%, and r from r to r„. 

Taking v = 82, and - ^ f - = 232, 

5g 25 / 47 ^ 100 x 232 
— — » — " i - i " —- — - a=8"84a 
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Therefore the loss of energy 
= [ (4 '23) 3 - l - ' 376 x 884] x earth's present K.E. 
= 13'57 x earth's present K.E. of rotation 

Hence the whole heat, generated in the earth from first to last, gives 
a supply of heat, at the present rate of loss, for 13'6 x 262 million years, or 
3,560 million years. 

This amount of heat is certainly prodigious, and I found it hard to 
believe that it should not largely affect the underground temperature. But 
Sir William Thomson pointed out to me that the distribution of its generation 
would probably be such as not materially to affect the temperature gradient 
at the earth's surface ; this remarkable prevision on his part has been con
firmed by the results of the following problem, which I thought might be 
taken roughly to represent the state of the case. 

Conceive an infinite slab of rock of thickness 2« (or 8,000 miles) being 
part of an infinite mass of rock; suppose that in a unit of volume, distant x 
from the medial plane, there is generated, per unit time, a quantity of heat 
equal to J) [320a4 — 56Qa2x* + 259.T 4] ; suppose that initially the slab and the 
whole mass of rock have a uniform temperature V; let the heat begin to be 
generated according to the above law, and suppose that the two faces of the 
slab are for ever maintained at the constant temperature V ; it is required 
to find the distribution of temperature within the slab after any time. 

This problem roughly represents the true problem to be considered, 
because if we replace x by the radius vector r, we have the average distri
bution of internal heat-generation due to friction; also the maintenance of 
the faces of the slab at a constant temperature represents the rapid cooling of 
the earth's surface, as explained by Sir William Thomson in his investigation. 

If ^ be temperature, 7 thermal capacity, k conductivity, the equation of 
heat-flow is 

7 ~ = k ~ + ft [320a4 - 560aW + 259^] 

Let 320 \ = 2E, 560 5=1231, 259 \ = 30X, and let the thermometric K K K 
k 

conductivity « = — . Then J 7 

Let the constant R = (L — M + N) a , and put 
Y = ^ + L a V - MaV + Nz 6 - R 

= ^ - La 4 (a 3 - x2) + Ma3 (a4 - x*) - N (a" - xe) 
When x = ± a, Y = ^. 
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Since L, M, N, R are constants as regards the time, 
DJR = D?JR 
~DT ~" DA? 

and YFR = V— 'SlFe~"lH cos qx is obviously a solution of this equation. 
Now we wish to make ^ = V, when x = ± a, for all values of £; since 

1̂· = ^ when x = + a, this condition is clearly satisfied by making 

Hence the solution may be written, 

S = V - [LoV - MaV + N**- R] - XP 2 i + 1 e " L 2 a ~ J cos(2i + 1) ~ (29) 

and it satisfies all the conditions except that, initially, when t = 0, the 
temperature everywhere should be V. This last condition is satisfied if 

S P 2 i + l cos (2i + 1) ~ = R - L a V + MaV - Na," 
o 

for all values between x = + a. 
The expression on the right must therefore be expanded by Fourier's 

Theorem; but we need only consider the range from x = a to 0, because the 
rest, from x = 0 to — a, will follow of its own accord. 

Let Y = ^ ; let TO- be written for tVu; let M' = —„, N '= —; and R' = R ^-. ^ 2a i m us a 8 

Then 

R - L a V + MaV - Ntf = 2̂ [R' - Ly," + M'y/ - N ' x

6 ] 

OC 
and this has to be- equal to 2 P a t + i cos (2i + 1) % from ^ = to 0. 

o 
/ · !"• . • 

Since I cos (2i + 1) %cos (2j + 1) xd% = 0 unless j = i 
J o 

and I cos2(2i + 1)Y,OX = \TT — jo 
therefore 

i - P ^ = L B ' - L x 2 + M V - N'X«] cos (2i + 1) X d X 

Now 

J x"coB(2* + l)Xdx = 2.^i x*-8in(2t + l) x + ̂ TcoB(2i + l) x 

. c m f9.i" _L_ 1 \ - w — ^K. ntwz fV.i' -l- 1 ^ v 4- &;n 
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7(«o 
This theorem will make the calculation of the coefficients very easy, for 

we have at once 

2» + 1 1 

(2i'+ï)> t - 2 L + 4 • 3 M ' ^ - 6 • 5 N ' < l 

1 
+ ra-T—_r.-- [ 4 . 3 . 2 . 1 M ' — 6.5.4 .3N V s ] (2î + 1 ) 4 L J 

- ( T O ) ^ - 6 - 5 - 4 - 3 - 2 - 1 ^ } 

Substituting for LI', L, M', N ' their values in terms of jj//fc we find 

r * + 1 ~ ( 2 * + ])»«r'jfe 
1988 6216 " 

JU _ i _ 

(2i+ ly-n* (2i+\y^\ Putting for tn its value, viz.: \ of 314159, and i successively equal to 
0, 1, 2, it will be found that 

P, = ^ ( 1 2 0 9 0 7 ) , P 3 = ^ (1107), P. = - (-048) 

Thus the Fourier expansion is 

120-907 cos + 1-107 cos - "048 cos ~ 
2fz 2a 2a 

which will be found to differ by not so much as one per cent, from the 
function 

to which it should be equal. 

By substitution in (29) we have, therefore, as the complete solution of the 
problem satisfying all the conditions 

' \ -, troc 
120-907 cos „ 

2a 

1 _ r ^ * ) M07 c o s ^ - ( l - e-'ffl') '048 57«:) 
2a 

The only quantity, which it is of interest to determine, is the temperature 

gradient at the surface, which is equal to — when x=la. 

If therefore FIX) be a function of X involving only even powers of X, 
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When x ± a. 
d<$ 
dx l-e 

If t be not so large but that K (l^r/a)2 i is a small fraction, we have 

This formula will give the temperature gradient at the surface when a 
proper value is assigned to I), and if t be not taken too large. 

With respect to the value of t, Sir W. Thomson took K = 400 in British 
units, the year being the unit of time; and a = 21 x 108 feet. 

and K ( ^ 7 r / a ) 5 = 5 x 1 0 - 1 1 ; if therefore t be 109 years, this fraction is 
Therefore the solution given above will hold provided the time t does not 
exceed 1,000 million years. 

We next have to consider what is the proper value to assign to h. 

By (27) and (28) it appears that I)a4 is 1/(5 x 19) of the average heat 
generated throughout the whole earth, which we called II. Suppose that 
p times the present kinetic energy of the earth's rotation is destroyed by 
friction in a time T, and suppose the generation of heat to be uniform in 
time, then the average heat generated throughout the whole earth per unit 
time is 

approximately 

and since T = — k 7 

Hence 

. ^Htt2w0

2 - r - earth's volume 

Therefore H = gj= . = jfe j r f l waea 

where ea is the ellipticity of figure of the homogeneous earth and is equal 
to \ n^ajg, which I take as equal to • 

Hence fya" = ^{fa •=,-, wae0 
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But 7 = sw, where s is specific heat. 

Therefore - ^ = & 1 *-
da 9500 s J T 

The dimensions of J are those of work (in gravitation units) per mass and 
per scale of temperature, that is to say, length per scale of temperature; 
p , e0, and s have no dimensions, and therefore this expression is of proper 
dimensions. 

Suppose the solution to run for the whole time embraced by the changes 
considered in "Precession," then t = T, and as we have shown p=13 '57 . 
Suppose the specific heat to be that of iron, viz.: ^. Taking J = 772, so 
that the result will be given in degrees Fahrenheit per foot, we have 

_ a ^ _ l 7 7 r » 1357 x 9 

~dx~ 950 X 232~x 772 

2650 
That is to say, at the end of the changes the temperature gradient would 

be 1° Fahr. per 2,650 feet, provided the whole operation did not take more 
than 1,000 million years. 

I t might, however, be thought that if the tidal friction were to operate 
very slowly, so that the whole series of charges from the day of 5 hours 
36 minutes to that of 24 hours occupied much more than 1,000 million years, 
then the large amount of heat which is generated deep down would have 
time to leak out, so that finally the temperature gradient would be steeper 
than that just found. But this is not the case. 

Consider only the first, and by far the most important, term of the 
expression for the temperature gradient. I t has the form f) (1 — e~ p T), when 
t = T at the end of the series of changes. Now {) varies as T _ 1 , and (1 — e~p T)/pT 
has its maximum value unity when T = 0. Hence, however slowly the tidal 
friction operates, the temperature gradient can never be greater than if the 
heat were all generated instantaneously; but the temperature gradient at the 
end of the changes is not sensibly less than it would be if all the heat were 
generated instantaneously, provided the series of changes do not occupy more 
than 1,000 million years*. 

* [The conclusion reached in this section might be different if the earth were to consist of a 
rigid nucleus covered by a thick or thin stratum of viscous material.] 
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III. The forced oscillations of viscous, fluid, and elastic spheroids. 

In investigating the tides of A viscous spheroid, the effects of inertia were 
neglected, and it was shown that the neglect could not have an important 
influence on the results*. I shall here obtain an approximate solution of the 
problem including the effects of inertia; that solution will easily lead to A 
parallel one for the case of an elastic sphere, and a comparison with the forced 
oscillations of A fluid spheroid will prove instructive as to the nature of the 
approximation. 

If W be the potential of the impressed forces, estimated per unit volume 
of the viscous body, the equations of flow, with the same notation as before, 
are 

dx V * dx W \dt " dx dy^^ dz) ~ I 
- J + &C. = 0, 

dy 
da dß ^ dy _ Q 

dx dy dz 
(da 

- ^ + & c . = 0 
dz 

.(30) 

The terms — w + &c. J are those due to inertia, which were neglected 

in the paper on " Tides." 

It will be supposed that the tidal motion is steady, and that W consists of 
a series of solid harmonics each multiplied by a simple time-harmonic, also 
that W includes not only the potential of the external tide-generating body, 
but also the effective potential due to gravitation, as explained in the first 
part of this paper. 

The tidal disturbance is supposed to be sufficiently slow to enable us to 
obtain a first approximation by the neglect of the terms due to inertia. 

In proceeding to the second approximation, the inertia terms depending 
on the squares and products of the velocities, that is to say, 

da . „ da da\ I da _ da da\ 
\ dx dy^^ dz) 

da 
may be neglected compared with w -. A typical case will be considered in 

CLL 

which W = Y cos (vt + e), where Y is a solid harmonic of the iih degree, and 
the e will be omitted throughout the analysis for brevity. 

If we write I = 2 ({ + l ) a + 1, the first approximation, when the inertia 
terms are neglected, is 

1 
a=Tv 

i(i + 2) 2 ( i + 1 ) ( 2 » + 3 ) 
2 ( ¿ - l ) 

Tides," Section 10. 

2(2l' + l ) 
dY 
dx 

R2I+3 ÉL (T-

2i + 1 dxK 

-1 Y)\ cos vt\ 

.(31) 

t " Tides," Section 3, equation (8), or Thomson and Tait, Natural Philosophy, % 834 (8). 
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Hence for the second approximation we must put 

dx viv { ) . 
— w^r sin vt 

dt lv [ ) 

And the equations to be solved are 

dY dp „ . dY , wv 
-y- + v\ a + -j— cos vt 4- y-
dx ax Lv 

i (i + 2) 3 _ ( ; + l ) ( 2 ¿ + _ 3 ) , 
_ 2 ( i - l ) ° 2 ( 2 i + l ) dx 

2i + 1 dx 

• ^ + &c. = 0, +&c. = 0 
ay dz 

.(32) 

These equations are to be satisfied throughout a sphere subject to no 
surface stress. I t will bo observed that in the term due directly to the 
impressed forces, we write Y' instead of Y ; this is because the effective 
potential due to gravitation will be different in the second approximation 
from what it was in the first, on account of the different form which must 
now be attributed to the tidal protuberance. 

The problem is now reduced to one strictly analogous to that solved in 
the paper on " Tides " ; for we may suppose that the terms introduced by 

di 

w -j^ , &c, are components of bodily force acting on the viscous spheroid, and 

that inertia is neglected. 
The equations being linear, we consider the effects of the several terms 

separately, and indicate the partial values of a, /9, y, p by suffixes and accents. 
First, then, we have 

_ DP + v^aa + ^ cos vt = 0, &c, &c. 
dx dx 

The solution of this has the same form as in the first approximation, viz. : 
equation (31), with a0 written for a, and Y' for Y. 

We shall have occasion hereafter to use the velocity of flow resolved along 
the radius vector, which may be called p. Then 

Hence p0 = ^ | j _ C 0 8 vt (33) 

Observing that Y' -=- r{ is independent of r, we have as the surface value 

. . o < + i t ( 2 i + l ) Y ' , 
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dp0' , wva? i (i + 2) dY . „ . .„_. 

- -ar+«• + -ur 2(7̂ i) * s i n "*=°-&c-&c (35> 
This, again, may clearly be solved in the same way, and we have 

dY , _ wva? i (i + 2) »(i + 2 ) o , (^+l)(2t- + 3 ) r l da; 

and PU 

2(2i + l ) 

" 27T1 T " + 3 ¿1 ( Y r ^ ' " ' ) } s i n (36) 

wva* i (»· + 2) fi' (t + 2) - f (* - 1 ) r*\ Y ^ . 
! I V - 2 ^ 1 ) I 21^1) }7 S m , ; f <d7> 

Its surface value is 

; + s i»(» + 2)(2t+l)Y . , 
P'=WVA •I2iu(»-i)r 7 S M ^ 

.(38) 

Thirdly, let U 10» sinu« (39) 
Iu 2 (2t+ 1) ' 

So that U is a solid harmonic of the ith degree multiplied by a simple 
time-harmonic. Then the rest of the terms to be satisfied are given in the 
following equations: 

~ dx + w V ' B ~ [(l + J ) ( 2 i + 3 ) S + 2il*+* die (U7"*-1)1 ^ 
= 0 

- ^ - + &c. = 0, 
dy fife 0 

..(40) 

These equations have to bo satisfied throughout a sphere subject to no 
surface stresses. The procedure will be exactly that explained in Part I., viz., 
put A = A' + A , /3 = y3' + /S,, 7 = 7' + 7,, p =p' +p,, and find a, ¡3', 7', any 
functions which satisfy the equations (40) throughout the sphere. 

Differentiate the three equations (40) as to x, y, z respectively and add 
them together, and notice that 

= 0 

and that 
dcS_ dß' dy' _ 0 

dx dy dz 

Then we have V°p' = 0, of which p' = 0 is a solution. 

If V„ be a solid harmonic of degree n, 

V ' V M V„ = m (In + m + 1) r m ~ ! V„ 

,dU „ . dJJ 
LIE —- = V 2 — 

dx 4 (2i + 3) dx 
? . . + 3 ^ ( U R - , - ^ V J _ ^ _ ^ ( U R -

Secondly, 
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V i va. r* ¿ r ; — F r 

4 dx 2i + 5 
} = 0 j 

Substituting from (41) in the equations of motion (40), and putting p ' = 0, 
our equations become 

i 
—V. i -t- ,1 / I [ „ — ¡ ¿ 1 — I l I I I I 

•(42) 

V" {vf3' - &c.j = 0, V* {vy - &c.} = i 

of which a solution is obviously 

u | 4 r d r + 2 i + 5 d ^ JJ (43) 

,3' = &c., 7 ' = & c . J 
It may easily be shown that these values satisfy the equation of continuity, 

and thus together with p' = 0 they are the required values of a, /3', 7 ' , p\ 
which satisfy the equations throughout the sphere. 

The next step is to find the surface stresses to which these values give 
rise. The formulae (13) of Part I. are applicable 

v?=v(a.'x + /3'y + y'z) 

4 2i + 5 4(2* + 5) 

Remembering that 

x\l = „ . 1 - \r* ^ U - r2<+3 y (r- 2 i-> U) ] 
2% + 1 ( da; da; v 7 J 

we have 
4 r ,dU ir1 D 

da; 2¿-f-l da; 2» + l da;v ; 

d £ = t(» + l)(2f + 1) L dU 
U da- ~ 4 (2i + 5) 

= 4 W 5 ) {(21'+ 5 ) ^ - ^ S < ^ U ) } ( 4 4 ) 

Again, by the properties of homogeneous functions, 

/ D , \ , / d D D\ , 
V{RDR-1)A=AX.DX + YDY + ZDZ)

A-V* 
,dU i (i + 2) ^ ( i + ! ) ( » + 2 ) 1 - - ^ + 

d 
2¿ + 5 » * t , S ^ U > - í 4 5 ) 

Also = 0. 

Adding (44) and (45) together, we have for the component of stress 
parallel to the axis of x across any of the concentric spherical surfaces, 

Fr = — p'x + v 

J j J r l ^ + i r b ^ á ^ ^ b y ( 4 4 ) a n d ( 4 5 ) 

And at the surface of the sphere, where r = a, 

dU 
dx 

+ . — w 
2i + 5 
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Ai+1~~2i+5 

Also let the other two components G and II of the surface stress due to 
ft, y, p' be given by 

G = - J5.--1 — B i + 1 , H = —Ci_J-Ci + i (47) 

By symmetry it is clear that the B's and C's only differ from the A's in 
having y and z in place of x. 

We now have got in (43) values of a', /3', y, which satisfy the equations 
(40) throughout the sphere, together with the surface stresses in (47) to 
which they correspond. Thus (43) would be the solution of the problem, if 
the surface of the sphere were subject to the surface stresses (47). It only 
remains to find or(, ¡3^ 7 ( , to satisfy the equations 

throughout the sphere, which is not under the influence of bodily force, but 
is subject to surface stresses of which A~I-I + A-I+I, Bi-i + B; + 1 , Ct_i + C; + 1 are 
the components. 

The sum of the solution of these equations and of the solutions (43) will 
clearly be the complete solution; for (43) satisfies the condition as to the 
bodily force in (40), and the two sets of surface actions will annul one another, 
leaving no surface action. 

For the required solutions of (48), Thomson's solution given in (15) and 
(16) of Part I. is at once applicable. 

We have first to find the auxiliary functions corresponding to 
Aj-!, B;_,, C;_,, and <J>l+!, corresponding to A{+,, B ; + I , CI+1. I t is easy to 
show that 

¥ i_ s = 0, <&t+2 = 0 

and = 
dx {r dx^V ^} dy { } "*~ dz 

2I -F 5 

* — ^ " " ( • • + V . [ B ( — S ) + * ( ) + E ( ) ] 

= £a i +"i - ( i - r - l ) s (2»- l )U 

The quantities in square brackets are independent of r, and are surface 
harmonics of orders i — 1 and i + 1 respectively. 

Let F = — Ai_J — Aj+i 

w h e r e A - = - - 2 ~ - F L L + 2 R ' + 1 ^ J \ (47) 
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We have next to substitute these values of the auxiliary functions in 
Thomson's solution (15), Part I. I t will be simpler to perform the sub
stitutions piece-meal, and to indicate the various parts which go to make up 
the complete value of A, by accents to that symbol. 

First. For the terms in A ( depending on Aj_], " ^ ¡ - 2 , ^>i, we have 

dtp; 
' va*-* ( 2 ( ¿ — 2 ) (*"— 1 ) ( 2 T - 1 ) DAS + 

i(i + l)2 d ü (¿ + l ) 2 d U 
v ( 4 (i - 1 ) (i - 2 ) dx 2 (i - 2 ) dx 

a 1 (i + iy dU 
. ( 4 9 ) 

v 4 (i — 1 ) dx 

(Note that i — 2 divides out, so that the solution is still applicable when 
T = 2 . ) 

Second. In finding the terms dependent on A J H I ^ i . •S'i+Î it will be 
better to subdivide the process further. 

/•\ // I I / •> -A d^î 

( » ) < " = ^ Î 7 

TT-T(T + l ) ( 2 ¿ + 3) ,dIT 

' w " 2 1 (2I" + 5 ) V ' da; 

U a « l l » ( 2 T + 3 ) R dxKr
 V J 

.(50) 

a 2 j(i + 1 ) ( 1 + 3) ̂  d 

Since 

therefore 

m ( I (2i + S) ' dxV
 " Y 2 ¿ + 5 da: 

( ¿ + 3 ) (i + 1 ) - I = i2
 + 4 ¿ + 3 - 2 R - 4 ¿ - 3 = - ¿ 5 

( r - ^ - ' U ) ! 

A = RSI+S 
d 

u l ( 2 i + 5) da; 

This completes the solution for o y . 

Collecting results from ( 4 9 ) , (50), and (51), we have 

in i 2 2 ( ( I + 1 A. = A + A + A = lj-p— 

( r - 2 i - , U ) ( 5 1 ) 

a2 [ ( T + l ) » „. do _ i ii + 1 ) (2i+3) _ dU 
1 ) da; 2 1 (2~i + 5 )

 V ° da: 

- U ) } . . . ( 5 2 ) 

1 ( 2 1 + 5 ) da;' 

Further collecting the several results, the complete value of A as the 
solution of the second approximation is 

A = a0 + A / + a + A, 

so that it is only necessary to collect the results of equations ( 3 1 ) , 
(with Y' written for Y), ( 3 6 ) , ( 4 3 ) , and ( 5 2 ) , and to substitute for U its value 
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from (39) in order to obtain the solution required. The values of /3 and Y 
may then at once be written down by symmetry. The expressions a re 
naturally very long, and I shall not write them down in the general case. 

The radial velocity P is however an important expression, because it alone 
is necessary to enable us to obtain the second approximation to the form of 
the spheroid, and accordingly I will give it. 

It may be collected from (33), (37), and by forming P' and p, from (43) 
and (52). 

I find then after some rather tedious analysis, which I did in order to 
verify my solution, that as far as concerns the inertia terms alone 

wv Y 
p = —- — sin vt l a r 4 - 3öaV2

 + C T a4] r v r 
where 

and 

¿ (¿+1) 
2.4(2¿ + 5 ) I ' 

2 3 = 
4 (i - 1 ) (2i + 5) P 

mí + 
(¿ + l)(2¿ + 3) i (i + iy 

21) \ \ i - \ J (2i+ l )(2i + 6)J 2 . 4 ( i - l ) ( 2 i + l ) I 

If i& be reduced to the form of a single fraction, 1 think it probable t h a t 
the numerator would be divisible by 2i + 1, but I do not think that t he 
quotient would divide into factors, and therefore 1 leave it as it stands. 

In the case where i = 2 this formula, becomes 

wvY . . 1 
P = S 7 S M V T 2 ' . 3 . 1 9 ' ¿ {19T-4 - 148tt2r2 4- 287a 4 

which agrees (as will appear presently) with the same result obtained i n a 
different way. 

I shall now go on to the special case where i = 2, which will be required 
in the tidal problem. ; 

wv 1 
From (39) we have 

From (36) 

U = 
v ' 2 . 5 . 1 9 

Y sin vt 

wva1 4 
; - ^ - T 9 3 

From (43) 

1 

u2 ' 2 3 . 3 . 5 . 19 
dY 2 .4 „ d 

9^ — + 
dx dx 

(Yr- E) 

s i n vt 

sin vt 
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174 THE RADIAL VELOCITY AS MODIFIED BY INERTIA. 

Adding these expressions together, and adding a,, we get 

[4 

wv 1 
a = a„ + v1 ' 2 3 . 3 . 5 . 1 9 2 

dY ( 5 . 287a4 - 37 . 4 . 7aV + 9 . 1 ~ dx 

- 1 ( 2 . 3 7 a 2 - 1 9 ^ ) r 7 ~ (Yr - B ) sin itf ...(53) 

and symmetrical expressions for ft and 7. 

In order to obtain the radial flow we multiply a. by /9 by ^ , 7 by 

and add, and find 
» 9 1 Y 

P = Po + - 2- . ^ y ^ ( 2 8 7 a 4 - 4 . 3 7 a ¥ 2 + 19r4) ^ sin(u<+ e) ...(54) 

the e which was omitted in the trigonometrical term being now replaced. 

The surface value of p when r = a is 
, wva" 79 Y . . , . 

P = P° + 0 7 1 9 ' r2 S m ( v t + ( ) ( 5 5 ) 

where pa is given by (34). 

If we write — \TT — e for e we see that a term Y sin (vt - e) in the effective 
disturbing potential will give us 

wva' 79 Y 
P = P°-^F 2T3TT9 2 * c o s ( v t ~ e } ( 5 6 ) 

Suppose wr 2 S cos vt to be an external disturbing potential per unit 
volume of the earth, not including the effective potential due to gravitation, 
and let r = a + cr/ be the first approximation to the form of the tidal spheroid. 
Then by the theory of tides as previously developed (see equation (15), 
Section 5, "Tides") 

a S 1 9 l W ' = cos e cos (vt — e), where tan e = = a g 2gr«w 
When the sphere is deemed free of gravitation the effective disturbing 

potential is wr' ^S cos vt - g ^ ; this is equal to — ivr1 sin e S sin (vt - e). 

In proceeding to a second approximation we must put in equation (56) 
Y = — wr2 sin e S. 

Thus we get from (56), at the surface where r— a, 
w'va* 79 ~ . 

P = />° + · 2~3~T9 i s i n 6 c o s ^ ~~ e ) ( 

To find pa we must put r = a+ cr as the equation to the second approxi
mation. 

p0 is the surface radial velocity due directly to the external disturbing 
potential wr'S cos vt and to the effective gravitation potential. The 
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1879] THE RADIAL VELOCITY AS MODIFIED BY INERTIA. 175 

sum of these two gives an effective potential wr2 cos vt — g - j , which is 
the Y' cos vt of (34). 

P0 is found by writing this expression in place of Y'costti in equation (34), 
and we have 

5was / „ , a\ 

P° = T9V(,SC0S^-Saj 
Substituting in (57) we have 

5wa3 /„ , tr 5wva? 79 „, , , s \ .„n. P = 19«; I s C°S
 V t ~

 9
 a + "W 2 . 3 /5= 8 m C S 0 0 8 {VI - e)) •" -(°8) 

Since tan e = 1^W> , therefore = - cot e, and (58) becomes 
2gaw 19i> g v ' 

V [ ( T V 2 \ 

p = a - cot e cos -yf — g - + T

7/jr — cos e S cos (t>{ — e)J 
But the radial surface velocity is equal to ~ , and therefore^ =p, so that 

ctt ut 
DOR 

~DT 
,- 4- v cot e . o- = a - cot e ^ S cos vt + — cos E S cos (vt — e)j. . .(59) 

If we divide o- into two parts, a', tr", to satisfy the two terms on the right 
respectively, we have 

— = cos e . - cos (vt — e) 
a 8 

which is the first approximation over again, and 

— = cos e . — . TvW — cos e cos (vt — ¿e) 
a 8 8 

Therefore 

a- = cos e . ^ jcos (vt — e) + J/g- ^ cos e cos (vt — 2e)j (60) 

This gives the second approximation to the form of the tidal spheroid. 
We see that the inertia generates a second small tide which lags twice as 
much as the primary one. 

Although this expression is more nearly correct than subsequent ones, it 
will be well to group both these tides together and to obtain a single 
expression for cr. 

Let tan y_ = ire ñS l n < r C O S e 

I + T V C ^ C O S 2 * 

Then - = - — f l + /inr - cos3 e) cos (vt - e - X) (61) 
a g cos x\ 1 / 8 0 g / * ' 
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176 FORM OF THE TIDAL SPHEROID. [4 

This shows that the tide lags by (e + %), and is in height 
cose / flJ \ 1 +I&N» (!()H E 

of the equilibrium tide of a perfectly fluid spheroid. 
v2 

By the method employed it is postulated that ^ — is a small fraction, 
because the effects of inertia are supposed to be small. Hence % must be a 
small angle, and there will not be much error in putting 

X = T

7J|j — sin e cos e, and. sec % = 1 
8 

We have for the lag of the tide fe + X

7

B«0- - sin e cos e) , and for its height 

cos e (1 + j 7 - \ - cos2 e j . 

Let V be the lag, so that 

STJ 8 sin e cos e 

whence 

Also 

and 

v2 

e = r) — T

7g?j, — sin TJ cos ij very nearly 
8 

cos e = cos 7I fl + T

7

5?y — sin2 7) j 

cos e ( l + JJ -12 cos2

 e ) = cos r, (l + f& |) 

Hence (61) becomes 
S 

where 

J = ^cost7^1 + T ^ ) c o s 

V - f& g «in „ cos , = arc tan 

.(62) 

This is probably the simplest form in which the result of the second 
approximation may be stated. 

From it we see that with a given lag, the height of tide is a little greater 
than in the theory used in the two previous papers; and that for a given 
frequency of tide the lag is a little greater than was supposed. 

The whole investigation of the precession of the viscous spheroid was 
based on the approximate theory of tides, when inertia is neglected. I t will 
be well, therefore, to examine how far the present results will modify the 
conclusions there arrived at, I t would, however, occupy too much space to 
recapitulate the methods employed, and therefore the following discussion will 
only be intelligible, when read in conjunction with that paper. 

The couples on the earth, caused by the attraction of the disturbing 
bodies on the tidal protuberance, were found to be expressible by the sum of 
a number of terms, each of which corresponded to one of the constituent 
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simple harmonic tides. Each Huch term involved two factors, one of which 
was the height of the tide, and the other the sine of the lag. Now if e be the 
lag and v the speed of the tide, it was found in the first approximation that 
tan e = 19 w -r 2gaw, and that the height of tide was proportional to cose; 
hence each term had a factor sin 2e. 

But from the present investigation it appears that, with the same value 

of e, the height of tide is really proportional to cos e 1̂ + T

7^j ^ cos2 ej ; whilst 

t;2 / „ v1 \ . 
the lag is e + T

7

Ä°jj — sin e cos e, so that its sine is 1̂ + ^ g — cos2 ej sin e. 

Hence in place of sin 2e, we ought to have put sin 2e 1̂ + — cos2 ej , or 

sin 2e^l 4- ff ^ cos2e) . 

Thus every term in the expressions for ^ , ^ , C~ should be augmented, 

each in a proportion depending on the speed and lag of the tide from which 
it takes its origin. 

In the paper on " Precession," two numerical integrations were given of 
the differential equations for the secular changes in the variables; in the first 
of these, in Section 15, the viscosity was not supposed to be small, and was 
constant, in the second, in Section 17, it was merely supposed that the 
alteration of phase of each tide was small, and the viscosity was left inde
terminate. I t is not proposed to determine directly the correction to the 
first solution. 

The correcting factor for the expression sin 2e is greatest when e is small, 
because cos2 e may then be replaced in it by unity; hence the correction in 
the second integration will necessarily be larger than in the first, and a 
superior limit to the correction to the first integration may be found. 

We have tides of the seven speeds 2 (n — 11), 2n, 2 (n +11), n — 2X1, n, 
71 + 211, 212; hence if the viscosity be small, the correcting factor for 
the expressions sin 46], sin4e, sin 4e2, sin 2g/, sin 2e', sin 2e2', sin 4e" is 

1 + ff ( sP^ e (^) j where the speed is one of the seven specified. 

If A. = ^ , the seven factors may be written 
1 + ^ n 2 [(1 — \), or 1, or (1 + \ ) a ] , for semi-diurnal terms 

1 + f£n 2 [(1 - 2\) 2 , or 1, or (1 + 2\f], for diurnal terms 

and 1 + SUI 71 \it for t h e fortnightly term 

.(63) 

D . ii. 12 
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sin 4e! • sin 4e sin 4. 
sin 4e sin 4e sm 4e . . 

sm 4e 2 v 7 sm 4e • 2 sin 4e 2 v ' sm 4e / 

We shall obtain a sufficiently accurate result, if the corrections be only 
applied to those terms in the differential equations which do not involve 
powers of q (or sin higher than the first. For the purpose of correction 
the differential equations to be corrected are by (77), (78), and (79) of 
Section 17 of " Precession," viz.: 

W = IR [IP,Q SIN 4FL + W'Q { F + 3 Q L ) SIN 2EI'~ *M {PL ~ Q*Y SIN 2E']) 

(65) 
As we are treating the obliquity as small, we may put 

= hP'l (P* + 3 2 2 ) = ?P<1 (P2 ~ = i P ( 2 a n d P* = p 

where P = cos i, Q = sin i. 
For the purpose of correction, the terms depending on the moon's 

influence become 

_d̂ = ^ J| 
And by symmetry (or by (81) " Precession") we have for the solar terms 

^ = i - ^ i p Q s i n 4 e , - ^ = A ^ P s i n 4 e (67) 
dt N gw0

 4 ^ ' eft 2 gnu

 v ' 
For the terms depending on the joint action of the sun and moon we have, 

by (82) and (33) " Precession," when the obliquity is treated as small, T̂L' = - 4 — iPQ si" 2e', = 0 (68) 

If we multiply each of the sines by its appropriate factor given in (63), 
and substitute from (64) for each of them in terms of sin 4e, and collect 
the results from (66), (67), and (68), and express by the symbol 8 the correc
tions to be introduced for the effects of inertia, we have 

dt * grc„ g ' J 

_ dP , sin 4e „ ,, „ ri2 , 

.(66) 

Also we have the equations 
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Now 4 (1 - \ ) s + 4 (1 - 2X)a - $ = (1 - 2X) (4 - 7X + 4X2). Therefore if we 

add these corrections to the full expressions for (in which I put 
dp n2 

1-$Q> = P) and given in (83) "Precession/' and write K = ^ ~ for at g 
brevity, we have 

di 1 sin 4e 

+ K [(1 - 2X) (1 - | X + X2) T 2 + T , 2 - ATTJ 

cLV_ ( sin 4e 
~ di - î gn0 

FI - J 7 = A —- sin 4eP 
^ di 2 g 7 l 0 

P j r 2 (1 - \ ) + T / + \ T T , ^ + K [(1 - X)3
 T 2 + T/]J 

.(69) 

l - ^ + K ( l - X ) 3 

The last of these equations may be written approximately 
dt 

pdÇ IF- sin 4 e P f l - p [ l - K ( l - X ) 2 ] .(70) 

If we multiply the two former of equations (69) by (70), and notice that, 
when P is taken as unity, 

( l - 2 X ) ( l - | X + X 2 ) - ( l - ^ ) ( l - X ) 2
 = i X ( l - 2 X ) 

and that 
l - ( l - X ) a

 = X ( 2 - X ) and - \ + (1 - X ) 2 = | ( 1 - 2 X ) ( 3 - 2 \ ) 

we have 

1 ~ T + ( T ) ' ~ ( T ) + K ~ 2 * ) + x ( 2 - * • ) (~f+1 ( 1 - 2 \ ) ( 3 - 2 X ) ( ^ 

dN 

.(71) 
If K be put equal to zero, we have the equations (84) which were the 

subject of integration in Section 17 " Precession." 
Since K, X, and r,2 -r- T 2 are all small, the correction to the second equation 

is obviously insignificant, and we may take the term in K in the numerator 
of the first equation as being equal to \K (1 — 2X) (3 — 2X) (TJT). This 
correction is small although not insensible. This shows that the amount of 

12—2 
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change of obliquity has been slightly under-estimated. I t does not, however, 
seem worth while to compute the corrected value for the change of obliquity 
in the integrations of the preceding paper. 

The equation of conservation of moment of momentum, which is derived 
from the integration of the second of (71), clearly remains sensibly unaffected. 

We see also from ( 7 0 ) that the time required for the changes has been 
over-estimated. If K 0, X 0 ; K, X be the initial and final values of K and X at 
the beginning and end of one of the periods of integration, it is obvious that 
our estimate of time should have been multiplied by some fraction lying 
between l - K 0 ( 1 - X „ ) 2 and 1 - K ( 1 - X ) 2 . 

At the beginning of the first period K„ ='0364 and X 0 = '0365, and at the 
end K = - 0 8 6 5 and X = '0346. 

Whence K 0 ( 1 - X 0 ) 2 = " 0 3 4 , K ( 1 - X ) 2 = ' 0 8 0 . 
Hence it follows that the time, in the first period of the integration of 

Section 1 5 , may have been over-estimated by some percentage less than some 
number lying between 3 and 8 . 

In fact, I have corrected the first period of that integration by a rather 
more tedious process than that here exhibited, and I found that the time was 
over-estimated by a little less than 3 per cent. And it was found that we 
ought to subtract from the 46 ,300 , 000 years comprised within the first period 
about 1 , 3 0 0 , 0 0 0 years. I also found that the error in the final value of the 
obliquity could hardly amount to more than 1 ' or 2 ' . 

In the later periods of integration the error in the time would no doubt 
be a little larger fraction of the time comprised within each period, but as it 
is not interesting to find the time in anything but round numbers, it is not 
worth while to find the corrections. 

There is another point worth noticing. I t might be suspected that when 
we approach the critical point where n cos i — 2Q, where the rate of change 
of obliquity was found to vanish, the tidal movements might have become so 
rapid as seriously to affect the correctness of the tidal theory used ; and 
accordingly it might be thought that the critical point was not reached even 
approximately when n cos i = 2 1 1 . 

The preceding analysis will show at once that this is not the case. Near 
the critical point the solar terms have become négligeable; if we put T , = 0 
in the first of equations (69) we have 

% = 4- • — sin 4e. iPQ [ 1 - 2 X sec i + K ( 1 - 2 X ) ( 1 - \ X + X 2 ) ] . . . ( 7 2 ) 

The condition for the critical point in the first approximation was 
2 X sec i = 1 ; if then i is so small that we may take sec t = 1 in the inertia 
term, this condition also causes the inertia term to vanish. 
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Hence the corrected theory of tides makes no sensible difference in the 

critical point where ^ changes sign. 

Having now disposed of these special points connected with previous 
results, I shall return to questions of general dynamics connected with the 
approximate solution of the forced vibrations of viscous spheroids; that is to 
say, I shall compare the results with those of— 

The forced oscillations of a liquid sphere*. 
The same notation as before will serve again, and the equations of motion 

are 

.(73) 

dp^dW ^da_^\ 
dx dx dt 

two similar equations 
, da d/3 dy A and ^ + + -r = 0 dx dy dz ' 

If the external tide-generating forces be those due to a potential per unit 
volume equal to wr£S,-, and r = a + o-i be the equation to the tidal spheroid, 
where S,-, a-,- are surface harmonics of the ith order, we must put 

W = - [ ^ + 2 ^ l ( a / - + ^ - ^ 2 " ] 
the second term being the potential of the tidal protuberance, and the last of 
the mean sphere. 

Differentiate the three equations of motion by x, y, z and add them, and 
we have 

p-w(3a2-r!)-^ 2a = 0 

Hence p = w (3a a — r3) ~ + solid harmonics + a constant 

When r = a, at the mean surface of the sphere, p = gwai, therefore 

Substituting this value of p in the equations of motion (73), 
. da d. 

dt dx 
whence 

+ 2T+-1 © ' + ~ ̂  L - <»' - ^ 2a ~ £)] 

2 ( i - l ) /ry 1] 

- +i-*uH 
lations J 

da _ d I-

dt ~ dx |_ * ~ 2i 
and two similar equations 

(74) 

* This is a slight modification of Sir Vf. Thomson's investigation of the free oscillations of 
fluid spheres, Phil. Trans., 1863, p. 608. 
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2i + l J a1 

But when r=a,p = . 

Therefore = »o'-'S, - ^J^fi 9 <r£ (75) 
dt3 2 t + l B 1 V ' 

Suppose S{ = Q j C O s ? j £ , and that the tidal motion is steady, so that <rt 

must be of the form XQ; cos vt; then substituting in (75) this form of o~i, we 
find 

X 
— + 

T 2i + l a 
Whence ai=—r-r.—— Q,cosiit (76) 

2 ^ - 1 ) ,7 

2i +1 a 
This giyes the equation to the tidal spheroid. 
Since the equilibrium tide, due to the disturbing potential, would be 

given by 

< r < = 2 ( j ^ l j g Q i C 0 a t , t 

2i +1 a 

it follows that inertia augments the height of tide in the proportion 

2i(i-\)gV 

In the ease where i = 2, the augmentation is in the proportion 1 : 1 — ^ —. 
S 

We will now consider the nature of the motion by which each particle 
assumes its successive positions. 

With the value of a-j given in (76) 

0 2 ( ¿ - 1 ) « _ - Q & . 

The expression within brackets [ ] on the right is the effective disturbing 
potential, inclusive of the effects of mutual gravitation, and thus this process 
is exactly parallel to that adopted above in order to include the effects of 
mutual gravitation in the disturbing potential in the case of the viscous 
spheroid. 

x V z 

Now p, the radial velocity of flow, is equal to at- + + 

Therefore multiplying the equations (74) by - , ^, - and adding them, we 

have, by the properties of homogeneous functions, 
dp __ 
dt ~~ 
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dx 2i (i — 1) q 
— - — 7J2 

2i +1 a 
and two similar equations 

Integrating with regard to t 
d Qirlv sin vt 

.(77) 

dx 2i(i — I) (J .(78) 
2% 4-1 a 

and two similar equations 

There might be a term introduced by integration, independent of the 
time, but this term must be zero, because if there were no disturbing force 
there would be no flow. Hence it is clear that there is a velocity potential ^, 
and that 

4(^) (79) 
2»'(*-l)g v, 

2i + l a 
Now however slowly the motion takes place, there will always be a velocity 

potential, and if it be slow enough we may omit v2 in the denominator of (79). 
In other words, if inertia be neglected the velocity potential is 

2i +1 ad 
2i(i-\) g dt 

For the sake of comparison with the approximate solution for the tides of 
a viscous spheroid, a precisely parallel process will now be carried out with 
regard to the liquid sphere. 

da. 
We obtain a first approximation for ^ , when inertia is neglected, by 

omitting v2 in the denominator of (77); whence 
* Q < ) 

Substituting this approximate value in the equations of motion (73) we 
have 

- £ + = ( w + - * ^ S ' — (80) 
and two similar equations J 

From these equations it is obvious that the second approximation to the 
form of the tidal spheroid is found by augmenting the equilibrium tide due 

to the tide-generating potential r ' Q i C o s i t f in the proportion 1 + ^r, - v2 

da = _dL t 2t'+l g ^ ^ 
dt dx \2i (i — 1) a 

2i(i-l) a 
to unity. 

Substituting in (74) 
da _ d v2 cos vt Qi?-' 
dt' ~ ~ 
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v2 

higher powers of - are négligeable. 
9 

Now in the case of the viscous tides we found the augmenting factor to 
V1 

be 1 + j ^ 9

ï ï — cos2 e. When e = 0, which corresponds to the case of fluidity, the 
S 

expressions are closely alike, but we should expect that the 7 9 ought really 
to be 7 5 . 

The explanation which lies at the bottom of this curious discrepancy will 
be most easily obtained by considering the special case of a lunar semi-diurnal 
tide. 

We found in Part II., equation (21), the following values for a, ft, 7 , 

a = ~ sin 2e [(8a2 - 5 r 2 ) y + 4aA/] ) 

.(81) ft = | g sin 2e [(8a2 - 5 r 2 ) x + ixy2] 

7 = gg sin 2e . 'kcyz 

where x = r sin 6 cos (<p — iot)~\ 

y=r sin 6 sin (cp — cot) ( 

z = r cos 8 

Consider the case when the viscosity is infinitely small: here e is small, 
38uo> 

and sin 2e = tan 2e = 5%wa2 ' 

Hence sin 2e = , which is independent of the viscosity. 

By substituting this value in (81), we see that however small the viscosity, 
the nature of the motion, by which each particle assumes its successive posi
tions, always preserves the same character; and the motion always involves 
molecular rotation. 

But it has been already proved that, however slow the tidal motion of a 
liquid sphere may be, yet the fluid motion is always irrotational. 

Hence in the two methods of attacking the same problem, different first 
approximations have been used, whence follows the discrepancy of 7 9 instead 
of 7 5 . 

V2 

When i=2 the augmenting factor is 1 + -J —. 
3 

This is of course only an approximate result; the accurate value of the 

factor is 1 -r- ( l - £ ^ ) , and we see that the two agree if the squares and 
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The fact is that in using the equations of flow of a viscous fluid, and neglect

ing inertia to obtain a first approximation, we postulate that w ^ , , w^> 

are less important than uVa, vVft, vV2y; and this is no longer the case if v 
be very small. 

It does not follow therefore that, in approaching the problem of fluidity 
from the side of viscosity, we must necessarily obtain even an approximate 
result. 

But the comparison which has just been made, shows that as regards the 
form of the tidal spheroid the two methods lead to closely similar results. 

It follows therefore that, in questions regarding merely the form of the 
spheroid, and not the mode of internal motion, we only incur a very small 
error by using the limiting case when v = 0 to give the solution for pure 
fluidity. 

In the paper on " Precession " (Section 7), some doubt was expressed as 
to the applicability of the analysis, which gave the effects of tides on the 
precession of a rotating spheroid, to the limiting case of fluidity; but the 
present results seem to justify the conclusions there drawn. 

The next point to be considered is the effects of inertia in— 

The forced oscillations of an elastic sphere*. 

Sir William Thomson has found the form into which a homogeneous 
elastic sphere becomes distorted under the influence of a potential expressible 
as a solid harmonic, of the points within the sphere. He afterwards supposed 
the sphere to possess the power of gravitation, and considered the effects by 
a synthetical method. The result is the equilibrium theory of the tides of an 
elastic sphere. When, however, the disturbing potential is periodic in time 
this theory is no longer accurate. 

It has already been remarked that the approximate solution of the problem 
of determining the state of internal flow of a viscous spheroid when inertia is 
neglected, is identical in form with that which gives the state of internal 
strain of an elastic sphere; the velocities a, ft, 7 have merely to be read as 
displacements, and the coefficient of viscosity v as that of rigidity. 

The effects of mutual gravitation may also be introduced in both problems 
by the same artifice; for in both cases we may take, instead of the external 

disturbing potential wr 2S cos vt, an effective potential wr1 ^S cos vt — g , and 

then deem the sphere free of gravitational power. 
* [Professor Horace Lamb has treated the problem of the " Vibrations of an Elastic Sphere " 

in Proc. London Math. Soc, Vol. x in . (1882), p, 189. At p. 51 of the s a m e v o l u m e he has also 
B o l v e d the problem of the " Oscillations of a Viscous Spheroid."] 
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Now Sir William Thomson's solution shows that the surface radial dis
placement (which is of course equal to a) is equal to 

5was 

~19L 
19v 

If therefore we put (with Sir William Thomson) r = g w f t 2 , we have 
<r, S — = cos vt a r + g 

This expression gives the equilibrium elastic tide, the suffix being added 
to the o- to indicate that it is only a first approximation. 

Before going further we may remark that 

S cos vt-a~= X— S cos vt (83) 
8 a r + g v ' 

When we wish to proceed to a second approximation, including the effects 
of inertia, it must bo noticed that the equations of motion in the two problems 
only differ in the fact that in that relating to viscosity the terms introduced 

by inertia are — — w < ~ ^ > ~ w < ^ ' w n ^ s t i n t n e c a s e 0 I" elasticity they are 

— w , — w ^ M r > ~ w ^rl-. Hence a very slight alteration will make the dt2' dt2 dt2 J 6 

whole of the above investigation applicable to the case of elasticity; we have, 
in fact, merely tb differentiate the approximate values for a, ft, y twice with 
regard to the time instead of once. 

Just as before, we find the surface radial displacement, as far as it is due 
to inertia, to be (compare (55)) 

ww2 a 5 79 Y 
2 . 3 . 192 r2 cos vt 

Y a 
and —̂̂  cos vt must be put equal to (the first approximation) S cos vt — g ~ . 
Hence by (57) and (83) the surface radial displacement due to inertia is 

wVa 5 79 X r, . 
- l ^ l % 2 X ^ r ^ m t 

To this we must add the displacement due directly to the effective dis

turbing potential wr2 ^S cos vt — g ^ , where a is now the second approxima

tion. This we know from (82) is equal to 

S cos vt - g -19u ^ aa 
Hence the total radial displacement is 

5wa3 / „ , er 5wa2 79i'2 X „ 
S cos vt — a - + T - T T - . T ^ T S cos vt 

IQv \ s a 19u 150 t + g 
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But the total radial displacement is itself equal to <x. 
m l P <r „ , <r 79TJ2 „ 1 nereiore I - = h cos vt — Q - + q - = 7 w c o cos w a a a 150 (r + g) 

a- S , / , 79u2 "\ and - = cos vt 1 + 
o - t + gWD " ^ T 1 5 0 (t + g)/ 

This is the second approximation to the form of the tidal spheroid, and 
from it we see that inertia has the effect of increasing the ellipticity of the 

79'tv2 

spheroid in the proportion 1 + J^KJ N • 

15U (X + g) 
Analogy with (76) would lead one to believe that the period of the 

gravest vibration of an elastic sphere is 2TT [T^J^J > this result might be 

tested experimentally*. 
If g be put equal to zero, the sphere is devoid of gravitation, and if X be 

put equal to zero the sphere becomes perfectly fluid; but the solution is then 
open to objections similar to those considered, when viscosity graduates into 
fluidity. 

It is obvious that the whole of this present part might be easily adapted 
to that hypothesis of elastico-viscosity which was considered in the paper on 
" Tides," but it does not at present seem worth while to do so. 

By substituting these second approximations in the equations of motion 
again, we might proceed to a third approximation, and so on ; but the 
analytical labour of the process would become very great. 

IV. Discussion of the applicability of the results to the history 
of the earth. 

The first paper of this series was devoted to the consideration of in
equalities of short period, in the state of flow of the interior, and in the form 
of surface, produced in a rotating viscous sphere by the attraction of an 
external disturbing body: this was the theory of tides. The investigation 
was admitted to be approximate from two causes—(i) the neglect of the 
inertia of the relative motion of the parts of the spheroid; (ii) the neglect 
of tangential action between the surface of the mean sphere and the tidal 
protuberances. 

* [At p . 211 of the p a p e r referred to above, Professor Lamb finds the period of this vibration 

to be 2 ^ " ^ - ^ -=--842, the notation b e i D g changed so as to agree with mine. My result may be 

written -i-—TJ1J£. Now —JW- is equal to -855, so that there is a close agreement 
\ V J 7T It 

between my result and the rigorous solution.] 
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In the second paper the inertia was still neglected, but the effects of 
these tangential actions were considered, in as far as they modified the 
rotation of the spheroid as a whole. In that paper the sphere was treated 
as though it were rigid, but had rigidly attached to its surface certain 
inequalities, which varied in distribution from instant to instant according 
to the tidal theory. 

In order to justify this assumption, it is now necessary to examine 
whether the tidal protuberances may be regarded as instantaneously and 
rigidly connected with the rotating sphere. If there is a secular distortion of 
the spheroid in excess of the regular tidal flux and reflux, the assumption is 
not rigorously exact; but if the distortion be very slow, the departure from 
exactness may be regarded as insensible. 

The first problem in the present paper is the investigation of the amount 
of secular distortion, and it is treated only in the simple case of a single 
disturbing body, or moon, moving in the equator of the tidally-distorted 
spheroid or earth. 

It is found, then, that the form of the lagging tide in the earth is not 
such that the pull, exercised by the moon on it, can retard the earth's 
rotation exactly as though the earth were a rigid body. In other words, 
there is an unequal distribution of the tidal frictional couple in various 
latitudes. 

We may see in a general way that the tidal protuberance is principally 
equatorial, and that accordingly the moon tends to retard the diurnal rotation 
of the equatorial portions of the sphere more rapidly than that of the polar 
regions. Hence the polar regions tend to outstrip the equator, and there is 
a slow motion from west to east relatively to the equator. 

When, however, we come to examine numerically the amount of this 
screwing motion of the earth's mass, it appears that the distortion is 
exceedingly slow, and accordingly the assumption of the instantaneous rigid 
connexion of the tidal protuberance with the mean sphere is sufficiently 
accurate to allow all the results of the paper on " Precession " to hold good. 

In the special case, which was the subject of numerical solution in that 
paper, we were dealing with a viscous mass which in ordinary parlance would 
be called a solid, and it was maintained that the results might possibly be 
applicable to the earth within the limits of geological history. 

Now the present investigation shows that if we look back 45,000.000 years 
from the present state of things, we might find a point in lat. 30° further 
west with reference to a point on the equator, by 4 | ' than at present, and a 
point in lat. 60° further west by 14|'. The amount of distortion of the 
surface strata is also shown to be exceedingly minute. 
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From these results we may conclude that this cause has had little or 
nothing to do with the observed crumpling of strata, at least within recent 
geological times. 

If, however, the views maintained in the paper on " Precession " as to the 
remote history of the earth are correct, it would not follow, from what has 
been stated above, that this cause has never played an important part; for 
the rate of the screwing of the earth's mass varies inversely as the sixth 
power of the moon's distance, multiplied by the angular velocity of the earth 
relatively to the moon. And according to that theory, in very early times 
the moon was very near the earth, whilst the relative angular velocity was 
comparatively great. Hence the screwing action may have been once 
sensible*. 

Now this sort of motion, acting on a mass which is not perfectly homo
geneous, would raise wrinkles on the surface which would run in directions 
perpendicular to the axis of greatest pressure. 

In the case of the earth the wrinkles would run north and south at the 
equator, and would bear away to the eastward in northerly and southerly 
latitudes; so that at the north pole the trend would be north-east, and at the 
south pole north-west. Also the intensity of the wrinkling force varies as the 
square of the cosine of the latitude, and is thus greatest at the equator, and 
zero at the poles. Any wrinkle when once formed would have a tendency to 

* This result is not strictly applicable to the case o f infinitely small viscosity, because i t 
gives a finite though very small circulation, i f the coefficient of viscosity be put equal to zero. 

By putting c = 0 in (17'), Part I., we find a superior limit to the rate of distortion. With the 

present a n g u l a r velocities of the earth and moon, ~ must be less than 5 x 1 0 _ B cos 3 8 in degrees 

per annum. 

It i s easy to find when ^ would he a maximum in the course of development considered in 

"Precession"; for, neglecting the solar effects, i t will be greatest when r 2 ( n - f i ) i s greatest. 

Now T 2 (n - n ) varies as [1 + p - n£ - —3-. £ - 3 ] £ - 1 2 , and this function is a maximum when 

Taking ,¿=4-0074, and ^ = 2 7 - 3 2 , we have 109-45 £ - 1 + 80-293 = 0. 

The solution of this is £=-2218. 

With this solntion DLIJDT will be found to be 56 million times as great as at present, being 
equal to 18' cos a 8 per annum. With this value of £, the length of the day is 5 hours 50 minutes, 
and of the month 7 hours 10 minutes. 

This gives a superior limit to the greatest rate of distortion that can ever have occurred. 

By (19'), however, we see that the rate of distortion p e r unit increment of t h e moon's distance 
may be made a s l a r g e as we p l e a s B by taking the coefficient of viscosity small enough. 

These considerations seem to show that there i s no reason why this screwing action of the 
earth should not once have had considerable effects. (Added October 15, 1879.) 
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turn slightly, so as to become more nearly east and west, than it was when 
first made. 

The general configuration of the continents (the large wrinkles) on the 
earth's surface appears to me remarkable when viewed in connexion with 
these results. 

There can be little doubt that, on the whole, the highest mountains are 
equatorial, and that the general trend of the great continents is north and 
south in those regions. The theoretical directions of coast line are not so 
well marked in parts removed from the equator. 

The great line of coast running from North Africa by Spain to Norway 
has a decidedly north-easterly bearing, and the long Chinese coast exhibits a 
similar tendency. The same may be observed in the line from Greenland 
down to the Gulf of Mexico, but here we meet with a very unfavourable case 
in Panama, Mexico, and the long Californian coast line. 

From the paucity of land in the southern hemisphere the indications are 
not so good, nor are they very favourable to these views. The great line of 
elevation which runs from Borneo through Queensland to New Zealand 
might perhaps be taken as an example of north-westerly trend. The Cor
dilleras run very nearly north and south, but exhibit a clear north-westerly 
twist in Tierra del Fuego, and there is another slight bend of the same 
character in Bolivia. 

But if this cause was that which principally determined the direction of 
terrestrial inequalities, the view must be held that the general position of 
the continents has always been somewhat as at present, and that, after the 
wrinkles were formed, the surface attained a considerable rigidity, so that the 
inequalities could not entirely subside during the continuous adjustment to 
the form of equilibrium of the earth, adapted at each period to the lengthening 
day. With respect to this point, it is worthy of remark that many geologists 
are of opinion that the great continents have always been more or less in 
their present positions. 

An inspection of Professor Schiapparelli's map of Mars*, I think, will 
prove that the north and south trend of continents is not something peculiar 
to the earth. In the equatorial regions we there observe a great many very 
large islands, separated by about twenty narrow channels running approxi
mately north and south. The northern hemisphere is not given beyond 
lat. 40°, but the coast lines of the southern hemisphere exhibit a strongly 
marked north-westerly tendency. I t must be confessed, however, that the 
case of Mars is almost too favourable, because we have to suppose, according 

* Appendice alls Memorie della Societa degli Spettroscopisti Italiani, 1878, Vol. vn . , for a 

copy of which I have to thank M. Behiapparelli. 
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to the theory, that its distortion is due to the sun, from which the planet 
must always have been distant. The very short period of the inner satellite 
shows, however, that the Martian rotation must have been (according to the 
theory) largely retarded ; and where there has been retardation, there must 
have been internal distortion. 

The second problem which is considered in the first part of the present 
paper is concerned with certain secondary tides. My attention was called to 
these tides by some remarks of Dr Jules Carret*, who says: 

" Les actions perturbatrices du soleil et de la lune, qui produisent les 
mouvements coniques de la précession des equinoxes et de la nutation, 
n'agissent que sur cette portion de l'ellipsoïde terrestre qui excède la sphère 
tangente aux deux pôles, c'est-à-dire, en admettant l'état pâteux de l'intérieur, 
à peu près uniquement sur ce que l'on est convenu d'appeler la croûte 
terrestre, et presque sur toute la croûte terrestre. La croûte glisse sur 
l'intérieur plastique. Elle parvient à entraîner l'intérieur, car, sinon, l'axe de 
la rotation du globe demeurerait parallèle à lui-même dans l'espace, ou 
n'éprouverait que des variations insignifiantes, et le phénomène de la pré
cession des equinoxes n'existerait pas. Ainsi la croûte et l'intérieur se 
meuvent de quantités inégales, d'où le déplacement géographique du pôle 
sur la sphère. 

"Cette idée a été émise, je crois, pour la première fois, par M. Evans; 
depuis par M. J. Péroche." 

Now with respect to this view, it appears to me to be sufficient to remark 
that, as the axes of the precessional and nutational couples are fixed relatively 
to the moon, whilst the earth rotates, therefore the tendency of any particular 
part of the crust to slide over the interior is reversed in direction every twelve 
lunar hours, and therefore the result is not a secular displacement of the 
crust, but a small tidal distortion. 

As, however, it was just possible that this general method of regarding 
the subject overlooked some residual tendency to secular distortion, I have 
given the subject a more careful consideration. From this it appears that 
there is no other tendency to distortion besides that arising out of tidal 
friction, which has just been discussed. It is also found that the secondary 
tides must be very small compared with the primary ones ; with the present 
angular velocity of diurnal rotation, probably not so much in height as one-
hundredth of the primary lunar semi-diurnal bodily tide. 

It seems out of the question that any heterogeneity of viscosity could 
alter this result, and therefore it may, I think, be safely asserted that any 

* Société Savohienne d'Histoire et d'Archéologie, May 23,1878. He is also author of a work, 

Le Déplacement Polaire. I think Dr Carret has misunderstood Mr [now Sir John] Evans. 
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sliding of the crust over the interior is impossible—at least as arising from 
this set of causes. 

The second part of the paper is an investigation of the amount of work 
done in the interior of the viscous sphere by the bodily tidal distortion. 

According to the principles of energy, the work done on any element 
makes itself manifest in the form of heat. The whole work which is done on 
the system in a given time is equal to the whole energy lost to the system in 
the same time. From this consideration an estimate was given, in the paper 
on " Precession," of the whole amount of heat generated in the earth in a 
given time. In the present paper the case is taken of a moon moving round 
the earth in the plane of the equator, and the work done on each element of 
the interior is found. The work done on the whole earth is found by 
summing up the work on each element, and it appears that the work per unit 
time is equal to the tidal frictional couple multiplied by the relative angular 
velocity of the two bodies. This remarkably simple law results from a 
complex law of internal distribution of work, and its identity with the law 
found in " Precession," from simple considerations of energy, affords a valuable 
confirmation of the complete consistency of the theory of tides with itself. 

Fig. 2 gives a graphical illustration of the distribution in the interior of 
the work done, or of the heat generated, which amounts to the same thing. 
The reader is referred to Part II. for an explanation of the figure. Mere 
inspection of the figure shows that by far the larger part of the heat is 
generated in the central parts, and calculation shows that about one-third of 
the whole heat is generated within the central one-eighth of the volume, 
whilst in a spheroid of the size of the earth only one-tenth is generated 
within 500 miles of the surface. 

In the paper on " Precession " the changes in the system of the sun, moon, 
and earth were traced backwards from the present lengths of day and month 
back to a common length of day and month of 5 hours 36 minutes, and it was 
found that in such a change heat enough must have been generated within 
the earth to raise its whole mass 3000° Fahr. if applied all at once, supposing 
the earth to have the specific heat of iron. I t appeared to me at that time 
that, unless these changes took place at a time very long antecedent to 
geological history, this enormous amount of internal heat generated would 
serve in part to explain the increase of temperature in mines and borings. 
Sir William Thomson, however, pointed out to me that the distribution 
of heat-generation would probably be such as to prevent the realisation of 
my expectations. I accordingly made the further calculations, connected 
with the secular cooling of the earth, comprised in the latter portion of 
Part II. 

I t is first shown that, taking certain average values for the increase of 
underground temperature and for the conductivity of the earth, the earth 
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(considered homogeneous) must be losing by conduction outwards an amount 
of energy equal to its present kinetic energy of rotation in about 262 million 
years. 

I t is next shown that in the passage of the system from a day of 5 hours 
40 minutes to one of 24 hours, there is lost to the system an amount of 
energy equal to 13J- times the present kinetic energy of rotation of the earth. 
Thus it appears that, at the present rate of loss, the internal friction gives a 
supply of heat for 3,560 million years. So far it would seem that internal 
friction might be a powerful factor in the secular cooling of the earth, and 
the next investigation is directly concerned with that question. 

In the case of the tidally-distorted sphere the distribution of heat-
generation depends on latitude as well as depth from the surface, but the 
average law of heat-generation, as dependent on depth alone, may easily be 
found. Suppose, then, that we imagine an infinite slab of rock 8,000 miles 
thick, and that we liken the medial plane to the earth's centre and suppose 
the heat to be generated uniformly in time, according to the average law 
above referred to. Conceive the two faces of the slab to be always kept at 
the same constant temperature, and that initially, when the heat-generation 
begins, the whole slab is at this same temperature. The problem then is, to 
find the rate of increase of temperature going inwards from either face of the 
slab after any time. 

This problem is solved, and by certain considerations (for which the 
reader is referred back) is made to give results which must agree pretty 
closely with the temperature gradient at the surface of an earth in which 
13A, times the present kinetic energy of earth's rotation, estimated as heat, is 
uniformly generated in time, with the average space distribution referred to. 
It appears that at the end of the heat-generation the temperature gradient 
at the surface is sensibly the same, at whatever rate the heat is generated, 
provided it is all generated within 1,000 million years; but the temperature 
gradient can never be quite so steep as if the whole heat were generated 
instantaneously. The gradient, if the changes take place within 1,000 million 
years, is found to be about 1° Fahr. in 2,600 feet. 'Now the actually observed 
increase of underground temperature is something like 1° Fahr. in 50 feet; 
it therefore appears that perhaps one-fiftieth of the present increase of 
underground temperature may possibly be referred to the effects of long 
past internal friction. I t follows that Sir William Thomson's investiga
tion of the secular cooling of the earth is not sensibly affected by these 
considerations*. 

If at any time in the future we should attain to an accurate knowledge of 
the increase of underground temperature, it is just within the bounds of 

* [The conclusion might be different if the earth were to consist of a rigid nucleus covered by 
a thick or thin stratum of viscous material.] 

D . ii. 13 
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possibility that a smaller rate of increase of temperature may be observed in 
the equatorial regions than elsewhere, because the curve of equal heat 
generation, which at the equator is nearly 500 miles below the surface, 
actually reaches the surface at the pole. 

The last problem here treated is concerned with the effects of inertia on 
the tides of a viscous spheroid. As this part will be only valuable to those 
who are interested in the actual theory of tides, it may here be dismissed in 
a few words. The theory used in the two former papers, and in the first two 
parts of the present one, was founded on the neglect of inertia; and although 
it was shown in the paper on " Tides " that the error in the results could not 
be important, in the case of a sphere disturbed by tides of a frequency equal 
to the present lunar and solar tides, yet this neglect left a defect in the 
theory which it was desirable to supply. Moreover it was possible that, 
when the frequency of the tides was much more rapid than at present (as was 
found to have been the case in the paper on " Precession "), the theory used 
might be seriously at fault. 

I t is here shown (see (62)) that for a given lag of tide the height of tide 
is a little greater, and that for a given frequency of tide the lag is a little 
greater than the approximate theory supposed. 

A rough correction is then applied to the numerical results given in the 
paper on " Precession" for the secular changes in the configuration of the 
system ; it appears that the time occupied by the changes in the first solution 
(Section 15) is overstated by about one-fortieth part, but that all the other 
results, both in this solution and the other, are left practically unaffected. 
To the general reader, therefore, the value of this part of the paper simply 
lies in its confirmation of previous work. 

From a mathematical point of view, a comparison of the methods employed 
with those for finding the forced oscillations of liquid spheres is instructive. 

Lastly, the analytical investigation of the effects of inertia on the forced 
oscillations of a viscous sphere is found to be applicable, almost verbatim, to 
the same problem concerning an clastic sphere. The results are comple
mentary to those of Sir William Thomson's statical theory of the tides of an 
elastic sphere. 
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5. 

THE DETERMINATION OF THE SECULAR EFFECTS OF 
TIDAL FRICTION BY A GRAPHICAL METHOD. 

[Proceedings of the Royal Society of London, xxix. (1879), pp. 168—181.] 

SUPPOSE an attractive particle or satellite of mass m to be moving in a 
circular orbit, with an angular velocity 12, round a planet of mass M, and 
suppose the planet to be rotating about an axis perpendicular to the plane of 
the orbit, with an angular velocity n; suppose, also, the mass of the planet to 
be partially or wholly imperfectly elastic or viscous, or that there are oceans 
on the surface of the planet; then the attraction of the satellite must produce 
a relative motion in the parts of the planet, and that motion must be subject 
to friction, or, in other words, there must be frictional tides of some sort or 
other. The system must accordingly be losing energy by friction, and its 
configuration must change in such a way that its whole energy diminishes. 

Such a system does not differ much from those of actual planets and 
satellites, and, therefore, the results deduced in this hypothetical case must 
agree pretty closely with the actual course of evolution, provided that time 
enough has been and will be given for such changes. 

Let C be the moment of inertia of the planet about its axis of rotation; 

r the distance of the satellite from the centre of the planet; 

h the resultant moment of momentum of the whole system ; 

e the whole energy, both kinetic and potential, of the system. 

It will be supposed that the figure of the planet and the distribution of 
its internal density are such that the attraction of the satellite causes no 
couple about any axis perpendicular to that of rotation. 

1 3 — 2 
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The two bodies revolve in circles about their common centre of inertia 
with an angular velocity fl, and, therefore, the moment of momentum of 
orbital motion is ,./ mr \' / Mr y _ Mm „„ 

\M+m) \M + m) M + m 
If /A be attraction between unit masses at unit distance, by the law of 

periodic times in a circular orbit, 

XIV = f i ( I + m) 

whence fir 2 = fjfi (M + m)~~* 

And the moment of momentum of orbital motion = fj$Mm (M + m)~^D,~K 
The moment of momentum of the planet's rotation is Cn, and therefore 

h = C n + ̂ -™(M + m)-in-l] (1) 

Again, the kinetic energy of orbital motion is 

\M (RJ^-)' fl2 + \m (-J^-)1 n2 = 1 r2fi2 = 1J Mm (M+m)-2 \M + mJ 2 \M+mj 2 M + m 2 r v ' 
The kinetic energy of the planet's rotation is |Cw2. 
The potential energy of the system is 

-,J,^ = -fj Mm (M + m)~i n $ 
Adding the three energies together 

2e = C{n*-fJ]^(M + m)-inl\ (2) 

Now, suppose that by a proper choice of the unit of time, 
% Mm,„ . _ i 

^-^-(M +m) s 

is unity, and that by a proper choice of units of length or of mass C is 
unity*, and let 

x = d~^, y=n, Y = 2e 

* If G be the mean gravity at the surface of the planet, A its mean radius, and V — MFM, 

U(M + M) = GA2 

V 
and ^MMLM + M)-H = [GA*^^ ̂  = MA?+ {(^Y (L + V)^ 
If the planet be homogeneous, and differ infinitesimally from a sphere C = $MA2, and 

JT^ { M + M) - l = l ^ f j (f ) 2 ( l + )̂j * =\, suppose 

in the case of the earth, considered as heterogeneous, the $ would be replaced by about \ . 
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It may be well to notice that x is proportional to the square root of the 
satellite's distance from the planet. 

Then the equations (1) and (2) become 

h = y + x (3) 

Y = y = _ i = ( A - ^ - I (4) 
(3) is the equation of conservation of moment of momentum, or shortly, the 
equation of momentum; (4) is the equation of energy. 

Now, consider a system started with given positive (or say clockwise) 
moment of momentum h; we have all sorts of ways in which it may be 
started. If the two rotations be of opposite kinds, it is clear that we may 
start the system with any amount of energy however great, but the true 
maxima and minima of energy compatible with the given moment of 

momentum are given by = 0, or 

Xs 

or xi-hx* + l=0 ( 5 ) 

We shall presently see that this biquadratic has either two real roots and 
two imaginary, or all imaginary roots. 

This biquadratic may be derived from quite a different consideration, viz., 
by finding the condition under which the satellite may move round the 
planet, so that the planet shall always show the same face to the satellite, in 
fact, so that they move as parts of one rigid body. 

The condition is simply that the satellite's orbital angular velocity VL—n 
the planet's angular velocity round its axis; or since n = y and XI _ ^ = x, 
therefore y = \\a?. 

It is clear that is a time ; and in the ease of the earth and moon (with K=82), 

«2 = 3 hrs. 4J mins. , if the earth be homogeneous 

and «? = 2 hrs. 41 mins., if the earth be heterogeneous 

For the units of length and mass we have only to choose them so that \ Ma2, or \Ma2, may 
be unity. 

With these units it will be found that for the present length of day n=-8056 (homog.) or 
•7026 (heterog.), and that 

h=-8056 [1 + 4-01] = 4-03 (homog.) 

or ft = -7026[l + 4-38] = 3-78 (heterog.) 

For the value 4-38 see Thomson and Tait's Natural Philosophy, § 276, where tidal friction is 

considered. 
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In my paper on the " Precession of a Viscous Spheroid" [Paper 3] 
I obtained the biquadratic equation from this last point of view only, 
and considered analytically and numerically its bearings on the history of 
the earth. 

Sir William Thomson, having read the paper, told me that he thought 
that much light might be thrown on the general physical meaning of the 
equation, by a comparison of the equation of conservation of moment of 
momentum with the energy of the system for various configurations, and he 
suggested the appropriateness of geometrical illustration for the purpose of 
this comparison. The method which is worked out below is the result of the 
suggestions given me by him in conversation. 

The simplicity with which complicated mechanical interactions may be 
thus traced out geometrically to their results appears truly remarkable. 

At present we have only obtained one result, viz.: that if with given 
moment of momentum it is possible to set the satellite and planet moving as 
a rigid body, then it is possible to do so in two ways, and one of these ways 
requires a maximum amount of energy and the other a minimum; from 
which it is clear that one must be a rapid rotation with the satellite near 
the planet, and the other a slow one with the satellite remote from the 
planet. 

Now, consider the three equations, 

h=y + x (6) 

Y = 1 (7) 

a t y = l (8) 
(6) is the equation of momentum; (7), that of energy; and (8) we may call 
the equation of rigidity, since it indicates that the two bodies move as 
though parts of one rigid body. 

If we wish to illustrate these equations graphically, we may take as 
abscissa x, which is the moment of momentum of orbital motion; so that 
the axis of x may be called the axis of orbital momentum. Also, for 
equations (6) and (8) we may take as ordinate y, which is the moment of 
momentum of the planet's rotation; so that the axis of y may be called the 
axis of rotational momentum. For (7) we may take as ordinate Y, which is 
twice the energy of the system; so that the axis of Y may be called the axis 
of energy. As it will be convenient to exhibit all three curves in the same 
figure, with a parallel axis of x, we must have the axis of energy identical 
with that of rotational momentum. 

By substituting this value of y in the equation of momentum (3), we get 
as before 

xt-hxs + 1^0 (5) 
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It will not be necessary to consider the case where the resultant moment 
of momentum h is negative, because this would only be equivalent to reversing 
all the rotations; thus h is to be taken as essentially positive. 

The line of momentum, whose equation is (6), is a straight line at 45° to 
either axis, having positive intercepts on both axes. 

The curve of rigidity, whose equation is (8), is clearly of the same nature 
as a rectangular hyperbola, but having a much more rapid rate of approach 
to the axis of orbital momentum than to that of rotational momentum. 

F i g . 1. Graphical illustration of the equations specifying the system. 

The intersections (if any) of the curve of rigidity with the line of 
momentum have abscissae which are the two roots of the biquadratic 
x* — hx3 + 1 = 0. The biquadratic has, therefore, two real roots or all 
imaginary roots. Since x = Q~^, it varies as *Jr, and, therefore, the inter
section which is more remote from the origin, indicates a configuration where 
the satellite is remote from the planet; the other gives the configuration 
where the satellite is closer to the planet. We have already learnt that these 
two correspond respectively to minimum and maximum energy. 

When x is very large, the equation to the curve of energy is Y = (h — xf, 
which is the equation to a parabola, with a vertical axis parallel to Y and 
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distant h from the origin, so that the axis of the parabola passes through the 
intersection of the line of momentum with the axis of orbital momentum. 

When x is very small the equation becomes Y = — l/x3. 
Hence, the axis of Y is asymptotic on both sides to the curve of energy. 
If the line of momentum intersects the curve of rigidity, the curve 

of energy has a maximum vertically underneath the point of intersection 
nearer the origin, and a minimum underneath the point more remote. But 
if there are no intersections, it has no maximum or minimum. 

F i g . 2. Diagram illustrating the case of Earth and Moon, 
drawn to scale. 

It is not easy to exhibit these curves well if they are drawn to scale, 
without making a figure larger than it would be convenient to print, and 
accordingly fig. 1 gives them as drawn with the free hand. As the zero of 
energy is quite arbitrary, the origin for the energy curve is displaced down
wards, and this prevents the two curves from crossing one another in a 
confusing manner. The same remark applies also to figs. 2 and 3. 

Fig. 1 is erroneous principally in that the curve of rigidity ought to 
approach its horizontal asymptote much more rapidly, so that it would be 
difficult in a drawing to scale to distinguish the points of intersection B 
and D. 

Fig. 2 exhibits the same curves, but drawn to scale, and designed to be 
applicable to the case of the earth and moon, that is to say, when h = 4 
nearly. 
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Fig. 3 shows the curves when h = 1, and when the line of momentum 
does not intersect the curve of rigidity; and here there is no maximum or 
minimum in the curve of energy. 

These figures exhibit all the possible methods in which the bodies may 
move with given moment of momentum, and they differ in the fact that in 
figs. 1 and 2 the biquadratic (5) has real roots, but in the case of fig. 3 this is 
not so. Every point of the line of momentum gives by its abscissa and 
ordinate the square root of the satellite's distance and the rotation of the 
planet, and the ordinate of the energy curve gives the energy corresponding 
to each distance of the satellite. 

Km. 3. Diagram illustrating the case where there is no 
maximum or minimum of energy. 

Parts of these figures have no physical meaning, for it is impossible for 
the satellite to move round the planet at a distance which is less than the 
sum of the radii of the planet and satellite. Accordingly in fig. 1 a strip is 
marked off and shaded on each side of the vertical axis, within which the 
figure has no physical meaning. 

Since the moon's diameter is about 2,200 miles, and the earth's about 
8,000, therefore the moon's distance cannot be less than 5,100 miles; and in 
fig. 2, which is intended to apply to the earth and moon and is drawn to 
scale, the base only of the strip is shaded, so as not to render the figure 
confused. The strip has been accidentally drawn a very little too broad. 

The point P in fig. 2 indicates the present configuration of the earth and 
moon. 
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The curve of rigidity x*y = 1 ia the same for all values of h, and by 
moving the line of momentum parallel to itself nearer or further from the 
origin, we may represent all possible moments of momentum of the whole 
system. 

The smallest amount of moment of momentum with which it is possible 
to set the system moving as a rigid body, is when the line of momentum 
touches the curve of rigidity. The condition for this is clearly that the 
equation x4 — hx3 + 1 = 0 should have equal roots. If it has equal roots 
each root must be |A, and therefore 

(\hy-h(ihy + i = o 
whence h* = 4 4 /3 3 or h = 4/3^ = 1-75. 

The actual value of h for the moon and earth is about 3 | , and hence if 
the moon-earth system were started with less than of its actual moment of 
momentum, it would not be possible for the two bodies to move so that the 
earth should always show the same face to the moon. 

Again if we travel along the line of momentum there must be some 
point for which yx3 is a maximum, and since yx3 — n/H there must be some 
point for which the number of planetary rotations is greatest during one 
revolution of the satellite, or shortly there must be some configuration for 
which there is a maximum number of days in the month. 

Now yx3 is equal to x3 (h — x), and this is a maximum when x = ^h and 
the maximum number of days in the month is {^h)a (h — |A) or 33A4/44; if 
h is equal to 4, as is nearly the case for the homogeneous earth and moon, 
this becomes 27. 

Hence it follows that we now have very nearly the maximum number of 
days in the month. A more accurate investigation in my paper on the 
" Precession of a Viscous Spheroid," [p. 96] showed that taking account of 
solar tidal friction and of the obliquity of the ecliptic the maximum number 
of days is about 29, and that we have already passed through the phase of 
maximum. 

We will now consider the physical meaning of the several parts of the 
figures. 

I t will be supposed that the resultant moment of momentum of the whole 
system corresponds to a clockwise rotation. 

Imagine two points with the same abscissa, one on the momentum line 
and the other on the energy curve, and suppose the one on the energy curve 
to guide that on the momentum line. 

Since we are supposing frictional tides to be raised on the planet, the 
energy must degrade, and however the two points are set initially, the 
point on the energy curve must always slide down a slope carrying with 
it the other point. 
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Now looking at fig. 1 or 2, we see that there are four slopes in the energy 
curve, two running down to the planet, and two others which run down to 
the minimum. In fig. 3 on the other hand there are only two slopes, both of 
which run down to the planet. 

In the first case there are four ways in which the system may degrade, 
according to the way it was started; in the second only two ways. 

i. In fig. 1, for all points of the line of momentum from C through 
E to infinity, x is negative and y is positive; therefore this indicates an anti
clockwise revolution of the satellite, and a clockwise rotation of the planet, 
but the moment of momentum of planetary rotation is greater than that of 
the orbital motion. The corresponding part of the curve of energy slopes 
uniformly down, hence however the system be started, for this part of the 
line of momentum, the satellite must approach the planet, and will fall into 
it when its distance is given by the point k. 

ii. For all points of the line of momentum from D through F to infinity, 
x is positive and y is negative; therefore the motion of the satellite is clock
wise, and that of the planetary rotation anti-clockwise, but the moment of 
momentum of the orbital motion is greater than that of the planetary 
rotation. The corresponding part of the energy curve slopes down to the 
minimum b. Hence the satellite must approach the planet until it reaches 
a certain distance where the two will move round as a rigid body. It will 
be noticed that as the system passes through the configuration corresponding 
to D, the planetary rotation is zero, and from D to E the rotation of the planet 
becomes clockwise. 

If the total moment of momentum had been as shown in fig. 3, the 
satellite would have fallen into the planet, because the energy curve would 
have no minimum. 

From i. and ii. we learn that if the planet and satellite are set in motion 
with opposite rotations, the satellite will fall into the planet, if the moment 
of momentum of orbital motion be less than or equal to or only greater by 
a certain critical amount*, than the moment of momentum of planetary 
rotation, but if it be greater by more than a certain critical amount the 
satellite will approach the planet, the rotation of the planet will stop and 
reverse, and finally the system will come to equilibrium when the two bodies 
move round as a rigid body, with a long periodic time. 

iii. . We now come to the part of the figure between C and D. For the 
parts AC and BD of the" line AB in fig. 1, the planetary rotation is slower 
than that of the satellite's revolution, or the month is shorter than the day, 
as in one of the satellites of Mars. In fig. 3 these parts together embrace the 

* With the units which are here used the excess must be more than 4 - = - 3 8 ; see p. 202. 
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whole. In all cases the satellite approaches the planet. In the case of fig. 3, 
the satellite must ultimately fall into the planet; in the case of figs, 1 and 2 
the satellite will fall in if its distance from the planet is small, or move round 
along with the planet as a rigid body if its distance be large. 

For the part of the line of momentum AB, the month is longer than the 
day, and this is the case of all known satellites except the nearer one of Mars. 
As this part of the line is non-existent in fig. 3, we see that the case of all 
existing satellites (except the Martian one) is comprised within this part 
of figs. 1 and 2. If a satellite be placed in the condition A, that is to say, 
moving rapidly round a planet, which always shows the same face to the 
satellite, the condition is clearly dynamically unstable, for the least disturb
ance will determine whether the system shall degrade down the slopes ac or 
ab, that is to say, whether it falls into or recedes from the planet. If the 
equilibrium breaks down by the satellite receding, the recession will go on 
until the system has reached the state corresponding to B. 

The point P, in fig. 2, shows approximately the present state of the earth 
and moon, viz., when x = 3'2, y = '8. 

It is clear that, if the point I, which indicates that the satellite is just 
touching the planet, be identical with the point A, then the two bodies are 
in effect part of a single body in an unstable configuration. If, therefore, the 
moon was originally part of the earth, we should expect to find A and I 
identical. The figure 2, which is drawn to represent the earth and moon, 
shows that there is so close an approach between the edge of the shaded band 
and the intersection of the line of momentum and curve of rigidity, that it 
would be scarcely possible to distinguish them on the figure. Hence, there 
seems a considerable probability that the two bodies once formed parts of a 
single one, which broke up in consequence of some kind of instability. This 
view is confirmed by the more detailed consideration of the case in the paper 
on the " Precession of a Viscous Spheroid " [Paper 3]. 

Hitherto the satellite has been treated as an attractive particle, but the 
graphical method may be extended to the case where both the satellite 
and planet are spheroids rotating about axes perpendicular to the plane of 
the orbit. 

Suppose, then, that k is the ratio of the moment of inertia of the satellite 
to that of the planet, and that z is equal to the angular velocity of the 
satellite round its axis, then kz is the moment of momentum of the satellite's 
rotation, and we have 

h — x + y + kz for the equation to the plane of momentum 

2e = y" + kz1 — i for the equation of energy 

and x*y = 1, a?z= \ for the equation to the line of rigidity. 
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The most convenient form in which to put the equation to the surface of 
energy is 

where E, y, z are the three ordinates. 
The best way of understanding the surface is to draw the contour-lines of 

energy parallel to the plane of yz, as shown in fig. 4. 

The case which I have considered may be called a double-star system, 
where the planet and satellite are equal and k = 1. Any other case may 
be easily conceived by stretching or contracting the surface parallel to z. 

Fia. 4. Contour lines of energy surface for two equal stars, revolving about 
one another. 

It will be found that, if the whole moment of momentum h has less than 
a certain critical value (found by the consideration that x* — hx? + 2 = 0 
has equal roots), the surface may be conceived as an infinitely narrow and 
deep ravine, opening out at one part of its course into rounded valleys on 
each side of the ravine. In this case the contours would resemble those of 
fig. 4, supposing the round closed curves to be absent. The course of the 
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ravine is at 45° to the axes of y and z, and the origin is situated in one of the 
valleys, which is less steep than the valley facing it on the opposite side of 
the ravine. The form of a section perpendicular to the ravine is such as the 
curve of energy in fig. 3, so that everywhere there is a slope towards the 
ravine. 

Every point on the surface corresponds to one configuration of the system, 
and, if tne system be guided by a point on the energy surface, that point 
must always slide down hill. It does not, however, necessarily follow that it 
will always slide down the steepest path. The fall of the guiding point into 
the ravine indicates the falling together of the two stars. 

Thus, if the two bodies be started with less than a certain moment of 
momentum, they must ultimately fall together. 

Next, suppose the whole moment of momentum of the system to be 
greater than the critical value. Now the less steep of the two valleys of 
the former case (viz., the one in which the origin lies) has become more 
like a semicircular amphitheatre of hills, with a nearly circular lake at 
the bottom ; and the valley facing the amphitheatre has become merely a 
falling back of the cliffs which bound the ravine. The energy curve in fig. 2 
would show a section perpendicular to the ravine through the middle of 
the lake. 

The origin is nearly in the centre of the lake, but slightly more remote 
from the ravine than the centre. 

In this figure h was taken as 4, and k as unity, so that it represents a 
system of equal double stars. The numbers written on each contour give the 
value of E corresponding to that contour. 

Now, the guiding point of the system, if on the same side of the ravine as 
the origin, may either slide down into the lake or into the ravine. If it falls 
into the ravine, the two stars fall together, and if to the bottom of the lake, 
the whole system moves round slowly, like a rigid body. 

If the point be on the lip of the lake, with the ravine on one side and the 
lake on the other, the configuration corresponds to the motion of the two 
bodies rapidly round one another, moving as a rigid body; and this state 
is clearly dynamically unstable. 

If the point be on the other side of the ravine, it must fall into it, and the 
two stars fall together. 

I t has been remarked that the guiding point does not necessarily slide 
down the steepest gradient, and of such a mode of descent illustrations will 
be given hereafter. 

Hence it is possible that, if the guiding point be started somewhere on 
the amphitheatre of hills, it may slide down until it comes to the lip of the 
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lake. As far as one can see, however, such a descent would require a 
peculiar relationship of the viscosities of the two stars, probably varying 
from time to time. I t is therefore possible, though improbable, that the 
unstable condition where the two bodies move rapidly round one another, 
always showing the same faces to one another, may be a degradation of a 
previous condition. If this state corresponds with a distance between the 
stars less than the sum of the radii of their masses, it clearly cannot be the 
result of such a degradation. 

If, therefore, we can trace back a- planet and satellite to this state, we 
have most probably found the state where the satellite first had a separate 
existence. 

The conditions of stability of a rotating mass of fluid are very obscure, 
but it seems probable that, if the stability broke down and the mass gradually 
separated into two parts, the condition immediately after separation might 
be something like the unstable configuration described above. 

In conclusion, I will add a few words to show that the guiding point on 
an energy surface need not necessarily move down the steepest path, but may 
even depart from the bottom of a furrow or move along a ridge. Of this two 
cases will be given. 

The satellite will now be again supposed to be merely an attractive 
particle. • · • -

First, with given moment of momentum, the energy is greater when the 
axis of the planet is oblique to the orbit. Hence, if we draw an energy 
surface in which one of the co-ordinate axes corresponds to obliquity, there 
must be a furrow in the surface corresponding to zero obliquity. To conclude 
that the obliquity of the ecliptic must diminish in consequence of tidal 
friction would be erroneous. In fact, it appears, in my paper on the " Pre
cession of a Viscous Spheroid " [Paper 3], that for a planet of small viscosity 
the position of zero obliquity is dynamically unstable, if the period of the 
satellite is greater than twice that of the planet's rotation. Thus the guiding 
point, though always descending on the energy surface, will depart from the 
bottom of the furrow. 

Secondly. For given moment of momentum the energy is less if the orbit 
be eccentric, and an energy surface may be constructed in which zero 
eccentricity corresponds to a ridge. Now, I shall show in [Paper 6] that 
for small viscosity of the planet the circular orbit is dynamically stable if 
eighteen periods of the satellite be less than eleven periods of the planet's 
rotation. This will afford a case of the guiding point sliding down a ridge; 
when, however, the critical point is passed, the guiding point will depart 
from the ridge and the orbit become eccentric. 
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6. 

ON THE SECULAR CHANGES IN THE ELEMENTS OF THE 
ORBIT OF A SATELLITE REVOLVING ABOUT A TIDALLY 
DISTORTED PLANET. 

[Philosophical Transactions of the Royal Society, Vol. 171 (1880), 
pp. 713—891.] 
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Introduction. 

THE following paper treats of the effects of frictional tides in a planet 
on the orbit of its satellite. I t is the sequel to three previous papers on 
a similar subject*. 

The investigation has proved to be one of unexpected complexity, and 
this must be my apology for the great length of the present paper. This 
was in part due to the fact that it was found impossible to consider adequately 
the changes in the orbit of the satellite, without a reconsideration of the 
parallel changes in the planet. Thus some of the ground covered in the 
previous paper O D " Precession " had to be retraversed; but as the methods 
here employed are quite different from those used before, this repetition has 
not been without some advantage. 

I t will probably conduce to the intelligibility of what follows, if an ex
planatory outline of the contents of the paper is placed before the reader. 
Such an outline must of course contain references to future procedure, and 
cannot therefore be made entirely intelligible, yet it appears to me that some 
sort of preliminary notions of the nature of the subject will be advantageous, 
because it is sometimes difficult for a reader to retain the thread of the argu
ment amidst the mass of details of a long investigation, which is leading him 
in some unknown direction. 

Part VIII. contains a general review of the subject in its application to 
the evolution of the planets of the solar system. This is probably the only 
part of the paper which will have any interest to the general reader. 

The mathematical reader, who merely wishes to obtain a general idea of 
the results, is recommended to glance through the present introduction, and 
then to turn to Part VII., which contains a summary, with references to such 
parts of the paper as it was not desirable to reproduce. This summary does 
not contain any analysis, and deals more especially with the physical aspects 
of the problem, and with the question of the applicability of the investigation 
to the history of the earth and moon, but of course it must not be understood 

* "On the Bodily Tides of Viscous and Semi-elastic Spheroids, and on the Ocean Tides upon 
a Yielding Nucleus," Phil. Tram., Part I., 1879. [Paper 1.] 

" On the Precession of a Viscous Spheroid, and on the remote History of the Earth," Phil. 
Tram., Part II. , 1879. [Paper 3.] 

" On Problems connected with the Tides of a Viscous Spheroid," Phil. Trans., Part II., 1879. 
[Paper 4.] 

These papers are hereafter referred to as " Tides," "Precession," and "Problems" respectively. 
There is also a fourth paper, treating the subject from a different point of view, viz.: " The 

Determination of the Secular Effects of Tidal Friction by a Graphical Method," Proc. Boy. Soc, 
No. 197, 1879. [Paper 5.] And lastly a fifth paper, " On the Analytical Expressions which give 
the history of a Fluid Planet of Small Visoosity, attended by a Single Satellite," Proc. Boy. Soc, 
No. 202, 1880, [Paper 7·] 
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to contain references to every point which seems to be worthy of notice. 
I think also that a study'of Part VII. will facilitate the comprehension of 
the analytical parts of the paper. 

Part I. contains an explanation of the peculiarities of the method of the 
disturbing function as applied to the tidal problem. At the beginning there 
is a summary of the meaning to be attached to the principal symbols em
ployed. The problem is divided into several heads, and the disturbing function 
is partially developed in such a way that it may be applicable either to finding 
the perturbations of the satellite, or of the planet itself. 

In Part II. the satellite is supposed to move in a circular orbit, inclined to 
the fixed plane of reference. I t here appears that the problem may be 
advantageously subdivided into the following cases: 1st, where the permanent 
oblateness of the planet is small, and where the satellite is directly perturbed 
by the action of a second large and distant satellite such as the sun; 2nd, 
where the planet and satellite are the only two bodies in existence; 3rd, where 
the permanent oblateness is considerable, and the action of the second satellite 
is not so important as in the first case. The first and second of these cases 
afford the subject for the rest of this part, and the laws are found which 
govern the secular changes in the inclination and mean distance of the 
satellite, and the obliquity and diurnal rotation of the planet. 

Part III . is devoted to the third of the above cases. I t was found neces
sary first to investigate the motion of a satellite revolving about a rigid 
oblate spheroidal planet, and perturbed by a second satellite. Here I had to 
introduce the conception of a pair of planes, to which the motions of the 
satellite and planet may be referred. The problem of the third case is then 
shown to resolve itself into a tracing of the secular changes in the positions 
of these two " proper " planes, under the influence of tidal friction. After a 
long analytical investigation differential equations are found for the rate of 
these changes. 

Part IV. contains the numerical integration of the differential equations 
of Parts II. and III., in application to the case of the earth, moon, and sun, 
the earth being supposed to be viscous. 

Part V. contains the investigation of the secular changes of the eccen
tricity of the orbit of a satellite, together with the corresponding changes in 
the planet's mode of motion. 

Part VI. contains a numerical integration of the equations of Part V. in 
the case of the earth and moon. The objects of Parts VII. and VIII . have 
been already explained. 

In the abstract of this paper in the Proceedings of tfie Royal Society*, 
certain general considerations are adduced which throw light on the nature 

* No. 200, 1879. ISee Appendix A below.] 

14—2 
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of the results here found. Such general reasoning could not lead to definite 
results, and it was only used in the Abstract as a substitute for analysis; [it 
is however given in an Appendix], 

I. 

T H E THEORY OF THE DISTURBING FUNCTION. 

§ 1. Preliminary considerations. 

In the theory of disturbed elliptic motion the six elements of the orbit 
may be divided into two groups of three. 

One set of three gives a description of the nature of the orbit which is 
being described at any epoch, and the second set is required to determine the 
position of the body at any instant of time. In a speculative inquiry like the 
present one, where we are only concerned with very small inequalities which 
would have no interest unless their effects could be cumulative from age to 
age, so that the orbit might become materially changed, it is obvious that 
the secular changes in the second set of elements need not be considered. 

The three elements whose variations are not here found are the longitudes 
of the perigee, the node, and the epoch; but the subsequent investigation 
will afford the materials for finding their variations if it be desirable to do so. 

The first set of elements whose secular changes are to be traced are, 
according to the ordinary system, the mean distance, the eccentricity, and the 
inclination of the orbit. We shall, however, substitute for the two former 
elements, viz.: mean distance and eccentricity, two other functions which 
define the orbit equally well; the first of these is a quantity proportional to 
the square root of the mean distance, and the second is the ellipticity of the 
orbit. The inclination will be retained as the third element. 

The principal problem to be solved is as follows: 
A planet is attended by one or more satellites which raise frictional tides 

(either bodily or oceanic) in their planet; it is required to find the secular 
changes in the orbits of the satellites due to tidal reaction. 

This problem is however intimately related to a consideration of the 
parallel changes in the inclination of the planet's axis to a fixed plane, and 
in its diurnal rotation. 

I t will therefore be necessary to traverse again, to some extent, the ground 
covered by my previous paper "On the Precession of a Viscous Spheroid." 
[Paper 3.] 

In the following investigation the tides are supposed to be a bodily de
formation of the planet, but a slight modification of the analytical results 
would make the whole applicable to the case of oceanic tides on a rigid 
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nucleus*. The analysis will be such that the results may be applied to any 
theory of tides, but particular application will be made to the case where the 
planet is a homogeneous viscous spheroid, and the present paper is thus a 
continuation of my previous ones on the tides and rotation of such a spheroid. 

The general problem above stated may be conveniently divided into two: 
First, to find the secular changes in mean distance and inclination of the 

orbit of a satellite moving in a circular orbit about its planet. 
Second, to find the secular change in mean distance, and eccentricity of 

the orbit of a satellite moving in an elliptic orbit, but always remaining in a 
fixed plane. 

As stated in the introductory remarks, it will also be necessary to investi
gate the secular changes in the diurnal rotation and in the obliquity of the 
planet's equator to the plane of reference. 

The tidally distorted planet will be spoken of as the earth, and the satel
lites as the moon and sun. 

This not only affords a useful vocabulary, but permits an easy transition 
from questions of abstract dynamics to speculations concerning the remote 
history of the earth and moon. 

§ 2. Notation.—Equation of variation of elements. 

The present section, and the two which follow it, are of general applicability 
to the whole investigation. 

For reasons which will appear later it will be necessary to conceive the 
earth to have two satellites, which may conveniently be called Diana and the 
moon. The following are the definitions of the symbols employed. 

The time is t, and the suffix 0 to any symbol indicates the value of the 
corresponding quantity initially, when t = 0. The attraction of unit masses 
at unit distance is 

For the earth, let— 
M = mass in ordinary units; a = mean radius; w =• density, or mass per 

unit volume, the earth being treated as homogeneous; g = mean gravity; 
g = f g/a; C, A = the greatest and least moments of inertia of the earth; if 
we neglect the ellipticity they will be equal to %Ma"; n = angular velocity of 
diurnal rotation; T/T = longitude of vernal equinox measured along the ecliptic 
from a fixed point in the ecliptic—-the ecliptic being here a name for a plane 
fixed in space \ i = obliquity of ecliptic; ^ the angle between a point fixed on 
the equator and the vernal equinox; p the radius vector of any point measured 
from the earth's centre. 

* Or, as to Part III. , on a nucleus which is sufficiently plastic to adjust itself to a form of 
equilibrium. 
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For Diana, let— 

c = mean distance ; f = (c/c0)^; H = mean motion ; e = eccentricity of orbit; 
T) — elliptioity of orbit; TS = longitude of perigee ; J = inclination of orbit to 
ecliptic; N = longitude of node; e = longitude of epoch; w = m a s s ; V — ratio 
of earth's mass to Diana's or MJM; I = true longitude measured from the 
node; 0 = true longitude measured from the vernal equinox; T = f / i m / c 3 , so 
that r = 3fl2/2 (1 + V), also T = r 0/f

6; R the radius vector measured from earth's 
centre. 

Also X. = 12/w ; m the ratio of the earth's moment of momentum of rotation 
to that of the orbital motion of Diana (or the moon) and the earth round their 
common centre of inertia. 

For the moon let all the same symbols apply when accents are added to 
them. 

Where occasion arises to refer merely to the elements of a satellite in 
general, the unaccented symbols will be employed. 

Let R be the disturbing function as ordinarily defined in works on physical 
astronomy. 

Other symbols will be defined as the necessity for them arises. 

Then the following are the well-known equations for the variation of the 
mean distance, eccentricity, inclination, and longitude of the node : 

dc 2fic2 dR 

SMJ 

dt ' 

de 
dl' 
DI. 
dt 

.dN 

' + M) DE 
ÎLE RI- e2 

" ft (M + M) [_ e 

fie 1 
/ i ( i ¥ + m ) Vl - e 2 

île 1 

d R _ \ / l - e 2 /DR DR\ 
DE e \DE DTSJ 

1 dR ^ 
- — . j - v y + tan I j 

\_smj dN i J 

dR 

/dR dRV 
\DE DIZ) 

•(1) 

•(2) 

•(3) 

.(4) 
DT FJ. (M+ M) V T ^ e 2 DJ 

The last of these equations will only be required in Part III. 
Let R = WC (M + M)¡MM; then if we substitute this value for R in 

each of the equations (1—4), it is clear that the right hand side of each will 
involve a factor ILCC/FIMM. 

Let 

(For a homogeneous earth 

we put 

C_ 
FTMM l î 0 c 0 . .(5) 

C 2V AN 
^ = 7 ^ , and n o C o ( < 7 « 2 ) 

1 + v Í1A Thus if 

K = SIL} 

.(6) 

•0) 
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1880] EQUATIONS OF VARIATIONS OF ELEMENTS. 215 

s% is a time, being about 3 hrs. 4J mins. for the homogeneous earth, k is also 
a time, being about 57 minutes, with the present orbital angular velocity of 
the moon, and the earth being homogeneous.) 

Since fl = fiof-*> c *= c0f2, therefore 

Again, (c/c„)* = and therefore 
1 dc _ 2 d£ 

and since 77 = 1 — Vl — e a 

dy _ e de 
dt ~ VI=7> dt (10) 

Substituting for E. in terms of W in the four equations (1—4), and using 
the transformations (8—10), we get 

dP . dW 
dt = KLU C11) 
dv hf dW dW\ 
N'-I^-DR + D^) (12> 

and if the orbit be circular, so that e = 0, dWjdta- = 0, 

dj_k/ 1 dW ,dW\ 

~ it ~ ? Isinj M +TAN -57 j ( 1 3 ) 

. . diV dW 
These are the equations of variation of elements which will be used below. 

The last two (13) and (14) will only be required in the case where the orbit 
is circular. 

The function W only differs from the ordinary disturbing function by a 
constant factor, and so W will be referred to as the disturbing function. 

I will now explain why it has been convenient to depart from ordinary 
usage, and will show how the same disturbing function W may be used for 
giving the perturbations of the rotation of the planet, 

In the present problem all the perturbations, both of satellites and planet, 
arise from tides raised in the planet. 

The only case treated will be where the tidal wave is expressible as a 
surface spherical harmonic of the second order. 

Suppose then that p = a + a is the equation to the wave surface, super
posed on the sphere of mean radius a. 
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216 THE PERTURBED ROTATION OF THE PLANET. [6 

The potential V of the wave a, at an external point p, must be given by 

V = 47r/ iwa^-j o- (15) 

Here w is the density of the matter forming the wave; in our case of a 
homogeneous earth, distorted by bodily tides, w is the mean density of the 
earth. (If we contemplate oceanic tides, the subsequent results for the dis
turbing function must be reduced by the factor -fc, this being the ratio of the 
density of water to the mean density of the earth.) 

Now suppose the external point p to be at a satellite whose mass, radius 
vector, and mean distance are in, r, c. If we put T = f /tm/c3, and observe that 
0 = •fz'K'wa?, we have 

.(16) m \rj a 

where <r is the height of tide, at the point where the wave surface is pierced 
by the satellite's radius vector. 

But the ordinary disturbing function R for this satellite is this potential 
V augmented by the factor (M + m)/M, because the planet must be reduced 
to rest. Hence our disturbing function 

W .(17) 

where cr is the height of tide at the place where the wave surface is pierced 
by r. 

Now let us turn to the ease of the planet as perturbed by the attraction 
of the same satellite on the same wave surface. The whole force function of 
the action of the satellite on the planet is, by (16), clearly equal to 

M C 1— T c in 
/cV a 
\r) a_ 

The latter term of this expression will give 
the perturbing couples; it is equal to CW. 

In the accompanying fig. 1 let X, Y, Z be axes 
fixed in space, and (adopting the phraseology for 
the case of the earth) let XY be the ecliptic; let 
A, B, C be axes fixed in the planet; let % be 
the angle AN or BCD; i the obliquity of the 
ecliptic; T/T the longitude of the vernal equinox 
from the fixed point X in the ecliptic. 

O B 
P l Q . 1. 
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If W be expressed in terms of x, i, ty, the perturbing couples, which act 
on the planet, are 

dW 

C -^j- about N, tending to increase i, 

dW 

C about Z, tending to increase T|T, 

dW 
C about C, tending to increase 

Let %, £$L, £I be the perturbing couples acting about A, B, C re
spectively. Then must 

dW 

C = — H sin i sin x — £$L sin i cos x + jEt cos i 

dW 

C .- = — H cos x + sin x 

DX 

% 1 / .dW dWN . dW 
Whence 7= = -—-. cos I -= 7—- sin y p- C O S V 

C siniV dx d^frj *• di * 
4*1 IF .dW dW\ dW . 

-^r = ——• c o s 1 rr c o s V 4 — s i n V 
C sin t \ dx difr) * di * 

But if TOL3 u>2, a>s be the component angular velocities of the planet about 
A, B, C respectively, and if we may neglect (C — A)/A compared with unity, 
the equations of motion may be written 

dio-I 1L do)2 ffll d&)3 j 3 

~dT**G' ~dT = - C~' "d7 = ~C 

as was shown in section (6) [p. 51] of my previous paper on " Precession." 

Since x = nt, we have by integration, 
1 / .dW dW\ l d W . 

to, = -.—. cos 1 —; j — cos y jv- sin Y 
n sin i \ dx dyfr/ A n di / v 

1 / .dW dW\ . 1 dW 
03« = — :—. I cos ^ —i 5^ sin y p- cos y 

7is int \ dŷ  di/r/ A B ¿1 A 

These are to be substituted in the geometrical equations, 
di 

^ = - "1 cos x + <u2 sin x 

. .dilr 

sin t -̂L = — sin x — W.2 cos y_ 
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Hence finally, . .di .dW N sin I -^r = cos I — dt dx 
dW\ 
dy 

71 sin I - V - = 

.dy dW 
dt di 
dn 

.(18)* 

dW 
dt d % 

These are the equations which will be used for determining the per
turbations of the planet's rotation. 

We now see that the same disturbing function W will serve for finding 
both sets of perturbations. 

I t is clear that it is not necessary in the above investigation that CR 
should actually be a tide wave; it may just as well refer to the permanent 
oblateness of the planet. Thus the ordinary precession and nutations may be 
determined from these formulae. 

F i o . 2. 

§ 3. To find spherical harmonic functions of Diana's coordinates 
with reference to axes fixed in the earth. 

Let A, B, C be rectangular axes fixed in the 
earth, C being the pole and AB the equator. 

Let X, Y, Z be a second set of rectangular 
axes, XY being the plane of Diana's orbit. 

Let M be the projection of Diana in her orbit. 
Let it = ZC, the obliquity of the equator to 

the plane of Diana's orbit. 
X, = AX = BCY. 
I = MX, Diana's longitude from the node X. 

Let Mj = cos MA 
M2 = cos MB L Diana's direction-cosines referred to A, B, C. 
M, = cos MC 

Then Mi = cos Z, cos x , + sin I, sin cos i, "| 
M2 = — cos lt sin x, + sin lt cos xt cos it \ (19) 
M, = sin lt sin i, J 

We may observe that M, is derivable from by writing % + %TR in 
place of x r 

These expressions refer to the plane of Diana's orbit, but we must now 
refer to the ecliptic. 

* [Although established by approximate methods, these equations are rigorously true, provided 
that i, X, \F/ receive appropriate definitions.] 
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If we refer to the sides and angles of the 
spherical triangle ABC by the letters a, b, c, 
A, B, C as is usual in works on spherical F I G . 3. 
trigonometry, we have 

A =», the obliquity of the ecliptic. 
B =j, the inclination of the orbit. 

v r _ C = i > Z C of fig. 2. 
c = N, the longitude of the node measured from A, for at present 

we may suppose i / r = 0, without loss of generality. 

Let x = DA, and we have 
X - b = DC = x( 

Again, if M be Diana in her orbit, MB = I, and since MC = I,, therefore 

I 4 - a = I, 
Whence cos Y_, = cos y_ cos b 4 - sin x sin b 

sin x, = sin x cos b — cos x sin b 
cos lt = cos I cos a — sin I sin a 
sin lt = sin I cos a 4 - cos I sin a 

Substituting these values in the first of (19) we have 
M! = cos x cos I (cos a cos b — sin a sin b cos it) 

4 - sin x cos I (cos a sin b 4 - sin a cos b cos ?',) 
— cos x sin I (sin a cos b + cos a sin b cos it) 
— sin x sin I (sin a sin b — cos a cos b cos it) 

Now cos it — — cos C, and 
cos a cos b + sin a sin b cos C = cos c = cos N 
cos a sin b — sin a cos b cos C = sin a [cot a sin b — cos b cos C] = sin a cot A sin C 

= cos i sin N 
sin a cos b — cos a sin b cos C = sin b [cot b sin a — cos a cos C] = sin b cot B sin C 

= cos j sin iV 
sin a sin b + cos a cos b cos C 

= sin a sin b + cos c cos C — sin a sin b cos2 C 
= sin a sin b sin2 C + cos c (— cos A cos B 4 - sin A sin B cos c) 
= sin A sin B sin' c 4 - sin A sin B cos2 c — cos A cos B cos c 
= sin i sinj — cos i cos j cos N 

In fig. 3, let A be the vernal equinox, B the ascending node of the orbit, 
C the intersection of the orbit with the equator, 
being the X of fig. 2, and let D be a point fixed M 
in the equator, being the A of fig. 2. 

IRIS - LILLIAD - Université Lille 1 



Substituting in the expression for M 1 ; 

Mi = cos x cos I cos N + sin % cos I sin N cos i — cos x sin I sin N cos j 
— sin £ sin J (sin i sin j — cos i cos j cos i^) 

Let P = cos Q = sin p = cos | j , q = sin | j . 
Then 

Mt = (P" +- Q2) (p* + q2) cos x cos Z cos JIT + (P2 - Q2) (p 2 + q2) sin x cos I sin Ar 

- (P 3 + Q2) (p 2 - ?2) cos x sin I sin + (P 2 - Q2) (p 2 _ ?=) H i n ^ s i n j C 0 9 jy 
— 4iPQpq sin x sin 2 

= P y cos ( x - Z - N) + P-'q2 cos ( x +1 - N) + Q2p2 cos (x +1 + iV) 
+ Q y cos ( x - l + N ) + 2PQpq [cos (x + /) - cos (x -I)].. .(20) 

Since M2 is derivable from Mj by writing x, + | 7 r for x,, therefore it is 
also derivable by writing X + ^TT for x> Hence — Ma is the same as save 
that sines replace cosines. 

Again M3 = sin I, sin it = sin I cos a sin it + cos I sin a sin i 
But sin a sin = sin i sin = 2PQ sin iV 
And cos a sin it = sin i cot a sin c = sin i (cot A sin B + cos c cos B) 

= cos i s inj + sin i cosj cos N 
= 2pq (P 2 - Q>) + 2PQ (p* - q2) cos N 

Therefore 
M3 = 2PQ [p2 sin (l+N)- q2 sin (Z - A7")] + 2p? (P 2 - Q2) sin Z ...(21) 

For the sake of future developments it will be more convenient to replace 
the sines and cosines in the expressions for the M's by exponentials, and for 
brevity the V — 1 will be omitted in the indices. 

We have therefore 
2M, = e*-1-" [Pp - Qqe^J + e*+l+N [Qp + Pqe'*]2 

+ the same with the signs of the indices of the exponentials changed, 
— 2M2 V — 1 = the same with sign of second line changed, 

M3 V ^ l = el+N [Pp - Qqe-N] [Qp + P^e""] 
— same with signs of the indices of the exponentials changed. 

Let «r = Pp-Qqe", K = QP + Pqe» ) 
v = Pp-Qqe-N, K = Qp+Pqe-») 

From these definitions it appears that is and « are two imaginary functions, 
which oscillate between the real values cos \ (i +j) and cos \ (i — j), and 
sin £ (i + j ) and sin | (i —j) as the node of the orbit moves round. 

Also let 8 = 1 + N, the true longitude of Diana measured from the vernal 
equinox. Strictly speaking, when longitudes are measured from a fixed point 
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in the ecliptic 0 = l+N—^jr, but in the present investigation nothing is 
lost by regarding >jr as zero; in § 12, and in Part III., we shall have 
however to introduce ijr. 

Then 2M, = tfe*-* 4 - K 3 e * + 9 + w2e-*+9
 4 - K2e~"-6 \ 

2Ma V^Tl = - •nT'ex-* - K 2 e * + 9 4 - w ae-*+* 4 - K 2 e - * - 9 I (23) 

M8 V ^ T = •n/ce9 - v/ce-o ) 

The object of the present investigation is to find the following spherical 
harmonic functions of the second degree of M n M2, M3, viz.: 

M^-M, 5 , 2MJVI,, 2 M X , 2M.M,, £ - M s

2 

By adding the squares of the first and second of (23), we have 

2 (M1'-Ml')= roV'x-9)
 4 - 2 B T W * 4 - * 4 e " * + * ) 

4 - CTV"21^-91
 4 - 2ra-Ve-2^ 4 - K'e^+i (24) 

From (20) we know that M, has the form 2A cos ( X + B), and — M2 the 

form 2 A s i n ( x 4 - B ) ; therefore (M 1 4 -M a )2~^ has the form SAcos(x4 - j7r4 -B) , 

and (M, —M2)2
 — ^ the form 2 A sin (y_ 4 - \TT 4 - B). Hence if we write X — {TT 

for x in Mi2 - M2

2, we obtain - 2M!M2. Therefore from (24) we obtain 

- 4 M 1 M „ V ^ 1 = OT4e""<-*i 4 - 2 r a W * 4-K4e2(*+8> 

- CT*e-
2(x-») - 2ro-2*2

0-
!»x - K*e-^+9) (25) 

The V ^ l appears on the left hand side because e^n = — (— 1) ^, 

«-*"• = ( - 1)"*. 

I t is also easy to show that 

2MaMa = - •sr'/ce^"20
 4 · * ™ (ra-ffl- - KK) ex 4 - CT«aex+28 

- ^/ce- '*- 2 9 ' 4 - p (g-w - «*) e - * 4 - ra-K3e-i*+29) .. .(26) 

21VLM, -J^l = - irVet- 2 6
 4 - BTK (OTOT -KK)e* 4 - CT/r,et+2* 

4 - CT3«e-'x-a9» - w« (CTOT - KK) e"* - BTK8e- |x+s9» .. .(27) 

$ - M3

a = 4 . - 2OTOTK« 4 - o ' r f 4 - ^Ve" 2 " (28) 

It may be here noted that •orra- 4 - = 1, so that 

These five formula1, (24) to (28) are clearly equivalent to the expansion of 
the harmonic functions as a series of sines and cosines of angles of the form 
&X+ ¡31+ yN. It r e m a i n s to explain the uses to be made of these expressions. 
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§ 4. The disturbing function. 

In the theory of the disturbing function the differentiation with respect 
to the elements of the orbit of the disturbed body is an artifice to avoid 
the determination of the three component disturbing forces, by means of 
differentiation with regard to the radius vector, longitude and latitude. In 
the present problem we have to determine the perturbation of a satellite 
under the influence of the tides raised by itself and by another satellite. 
Where the tides are raised by the satellite itself, the elements of that 
satellite's orbit of course enter in the disturbing function in expressing the 
state of tidal distortion of the planet, but they also enter as expressing the 
position of the satellite. It is clear that, in effecting the differentiations 
above referred t o , we must only regard the elements of the orbit as entering 
in the disturbing function in the latter sense. Hence it follows that even 
although there may be only one satellite, yet in the evaluation of the 
disturbing function we must suppose that there are two satellites, viz.: one a 
tide-raising satellite and another a disturbed satellite. 

In this place, where the planet is called the earth, the tide-raising satellite 
may be conveniently called Diana, and the satellite whose motion is disturbed 
may be called the moon. After the formation of the differential equations 
Diana may be made identical with the moon or with the sun at will, or the 
analysis may be made applicable to a planet with any number of satellites. 

As above stated, unaccented symbols will be taken to apply t o Diana, and 
accented symbols to the moon. 

The first B t e p , then, is to find the tidal distortion due to Diana. 
Let M be the projection of Diana on the celestial sphere concentric with 

the earth, and P the projection of any point in the earth. 
Let pf, py, pf be the rectangular coordinates of P and rM1, rM 2, 7\M3 the 

rectangular coordinates of Diana referred to axes A, B, C fixed in the earth. 
Since p, R are radii vectores, f, Y, ?and M l 5 M2, M3 are direction-cosines. 
The tide-generating potential V (of the second degree of harmonics, which 

will be alone considered) at P is given by 

V = f ^ p 2 ( c o s 2 P M - i ) 

according to the usual theory. 
Now cos I 

and 
cos PM = PL + yMa + f M, 

cos2 PM - * = 2^7/MjMa + 2 f - 7 j 2 M ^ - M , 2 

2 2 
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Also by previous definition, R = §FJ,MJC3; so that 

c( l - e2)" 
r 

M3...(29) 

Then clearly 

+ 2V£YZ + 2f CXZ 

* 3 3 
Now assume that the five functions 2XY, X 2 - Y 2 , YZ, XZ, X 2 + Y 2 - 2Z2 

are each expressed as a series of simple time-harmonics; it will appear below 
that this may always be done. We have therefore V expressed as the sum of 
five solid harmonics p2f»7, p a (f* — RF), &c, each multiplied by a simple time-
harmonic. According to any tidal theory each such term must raise a tide 
expressible by a surface harmonic of the same type, and multiplied by a 
simple time-harmonic of the same speed; moreover, each such tide must have 
a height which is some fraction of the corresponding equilibrium tide of a 
perfectly fluid spheroid, but the simple time-harmonic will in general be 
altered in phase. 

If R = a + TR be the equation to the wave-surface, corresponding to a 
generating potential V = [ T / ( 1 — e2)3] p% 2^vXY, then when the spheroid is 
perfectly fluid, a/a = [Y/g (1 — e2)3] 2f^XY, where g = f#/a, according to the 
ordinary equilibrium theory of tides. (It will now be assumed that we are 
dealing with bodily tides of the spheroid; if the tides were oceanic a slight 
modification would have to be introduced.) 

In a frictional fluid, the tide cr will be reduced in height and altered in 
phase. 

Let represent a function of the same form as XY, save that each 
simple time-harmonic term of XY is multiplied by some fraction expressive 
of reduction of height of tide, and that the argument of each such simple 
harmonic term is altered in phase; the constants so introduced will be 
functions of the constitution of the spheroid, and of the speeds of the harmonic 
terms. Also extend the same notation to the other functions of X, Y, Z 
which occur in V. 

Then it is clear that, if R = a + A be the equation to the complete wave 
surface corresponding to the potential V, 

G2 - RF 3£2 - GG2 

~ 2 2 
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This expression shows that a is a surface harmonic of the second order. 

By (17) we have for the disturbing function for the moon, due to Diana's 
tides, 

where <r is the height of tide, at the point where the moon's radius vector 
pierces the wave surface. 

Hence in the expression (30) for <r, we must put 

f = Mx', V = M2', f=M,' 

By analogy with (29), let 

X' = 
c'(l - e ' 2 ) " 

Mi', Y' = 
c' (1 - e'2)~ M ' Z' 

c'(l - e ' 2 ) " 

and we have 

g (l-e2y>(l - e ' 2 ) 3 
2X'Y'X§9 + 2 2 - - - ^ 

+ 2Y'Z'995£ + 2X'Z'X& + ft ..(31) 

This is the required expression for the disturbing function on the moon, 
due to Diana's tides. 

So far the investigation is general, but we now have to develop this func
tion so as to make it applicable to the several problems to be considered. 

II. 

SECULAR CHANGES IN THE INCLINATION OF THE ORBIT OF A SATELLITE. 

§ 5. The perturbed satellite moves in a circular orbit inclined 
to a fixed plane. Subdivision of the problem. 

In this case e = 0, e' = 0, r = c, r' = c, so that the functions X, Y, Z and 
X', Y', Z' are simply the direction cosines of Diana and the moon, referred to 
the axes A, B, C fixed in the earth. Hence X = M1 ( Y = M2, Z = M3, and the 
five formulas (24—28) give the functions X 2 - Y2, 2XY, 2YZ, 2ZX, £ - Z2. In 
order to form the functions in gothic letters we must express these functions 
as simple time-harmonics. 

The formula? (24) to (28) are equivalent to the expression of the five 
functions as a series of terms of the type A cos (a^ 4- ¡3d + 71V + S). Now is 
the angle between a point fixed on the equator and the vernal equinox, and 
therefore (neglecting alterations in the diurnal rotation and the precessional 
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motion) increases uniformly with the time, being equal to nt + a constant, 
which constant may be treated as zero by a proper choice of axes A, B, C. 

6 is the true longitude measured from the vernal equinox, and is equal to 
nt + E — Y}R, since the orbit is circular; also -v/r may for the present be put 
equal to zero, without any loss of generality. 

Then if in forming the expressions for the state of tidal distortion of the 
earth we neglect the motion of the node, the five functions are expressed as a 
series of simple time-harmonics of the type A cos (ant + /3ftf + f). 

The corresponding term in the corresponding gothic-letter function will 
be KA cos (ant + fiflt + £ — k), where K is the fraction by which the tide is 
reduced and k is the alteration of phase. 

It appears, from the inspection of the five formula? (24-8), that there are 
tides of seven speeds, viz.: 2 (n — ft), In, 2 (n + ft), n — 211, n, n + 2ft, 2ft. 

The following schedule gives the symbols to be introduced for reduction 
of tide and alteration of phase or lag. 

Semi-diurnal Diurnal Fortnightly 
, -"- ^ A> 

Slow Sidereal Faat Slow Sidereal East 
Speed 2 ( r e - Q ) %n 2 (re+f i ) n-2Q n n + 2 n 2 0 
Fraction of equil ibrium tide F ! P F 2 Gi Q G2 H 
Retardation of phase or lag 2fi 2f 2f z g! g g 2 2h 

The gothic-letter functions may now at once be written down from (24-8). 
Thus, 

2 (X 2 - | 9 ! ) = FiW 'e 8*-"-*! + F 2 G 7 ! W * - 2 ' + F^e2^-"' 
+ F1-ffi e~* +2tl + F2 in-2 /c2 e-2x+rf + F 2 K*e~2 <x+e| + r f >.. . (32) 

— 4$^D V— 1 = the same, with second line of opposite sign (33) 
2$JJS = - G^ICEX-*1-*' + GTSTK ( C T C T - KK) E*-G + G2 wK 3ex+ a«-** 

- d CT3«e-^-2S)+g' + Gra-K ( W O T - KK) e-x+e + G^K3e-^+^+«'.. .(34) 
2X25 v7— 1 = the same, with second line of opposite sign (35) 

i - J& = i - 2 ^ K K + H^Ve 2 *- 2 2 1 + H·π·2«;2e-2*+al , (36) 
The fact that there is no factor of the same kind as H in the first pair of 

(36) results from the assumption that the tides due to the motion of the nodes 
of the orbit are the equilibrium tides unaltered in phase. 

The formula for 2 ( X ' 2 - Y'2), - 4 X ' Y ' V ^ 1 , 2Y'Z', 2X 'Z 'V^1 , | - Z ' 2 are 
found by symmetry, by merely accenting all-the symbols in the five formulae 
(24-8) for the M functions. In the use made of these formulas this accentuation 
will be deemed to be done. 

At present we shall not regard % as being accented, but in § 12 and in 
Part III. we shall have to regard ^ as also accented. 
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2 2 
If we multiply (24) (with accented symbols) by (32), and (25) (with accented 

symbols) by (33), and subtract the latter from the former, we see that x dis
appears from the expression, and that, 

8X' Y'Sg? + 2 (X'3 - Y'2) (X2 - 1 9 2 ) = First line of (24) x second of (32) 
+ Second of (25) x first of (33) 

Thus as far as we are concerned 
Y ' 2 _ V ' 2 ¥ 2 — 332 

2X'Y'X^ + 2 ^ - 2 " ^ -

= i [F1nr4OT'1e2'9'-e)-2f> + 4Fisr2/eW2/c'2e-2t + F 2 «V 4 e^ s l 9 ' - 9 ) - 2 V] 

+ i [F1«*is/*<ri<fl'-»>+sf' + 4F^ 2 « a wV 2 e 2 f + Fa*4«'4e2<e'-9>4-2f»] .. .(37) 
If x had been accented in the X' functions, we should have had 2 (x — •%') 

in all the indices of exponentials of the first line, and — 2 (x — y/) in all the 
indices of the second line. These three pairs of terms will be called W T, W n , 
W n i . 

Diurnal terms. 
These are 2Y'Z'^SS + 2X'Z'X5£. 
If the multiplications be performed as in the previous case, it will be found 

that x disappears in the sum of the two products, and, as far as concerns terms 
in 8' — 6 and those independent of 6 and 8', we have 

2Y Z'pSS + 2XZX5S 
= G, w 3 « H Ve 2 1 9'-* 1-*' + Go* (mo- - KK) ( w V - «V) e~g 

+ G2^«sOTV'3e-2<e'-9,-B» 
+ G ^ W V e - 2 1 9 ' - ' ' ^ ' + r > s - «*) « V ( ^ V _ C V ) eg 

+ Gaisr«VV3
 e 2 ( 9 ' - 9 ) + 8 . (38) 

We now have to develop the several products of the X' functions multi
plied by the X functions. 

Before making these multiplications, it must be considered what are the 
terms which are required for finding secular changes in the elements, since all 
others are superfluous for the problem in hand. 

Such terms are clearly those in which 8 and 8' are wanting, and also 
those where 91 — 9 occurs, for these will be wanting in 8 when Diana is made 
identical with the moon. I t follows that we need only multiply together 
terms of the like speeds. In the following developments all superfluous 
terms are omitted. 

Semi-diurnal terms. 

These are 2X'Y' M + 2 
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If x had been accented in the X' functions we should have had x~ x in 
all the indices of the exponentials of the first line, and — (% — x) in all the 
indices of the second line. These three pairs of terms will be called W„ W,, 
W,. 

Fortnightly term. 

This i s f a - z " ) G - ^ ) . 
Multiplying ( 3 6 ) by ( 2 8 ) when the symbols are accented, and only retain

ing desired terms, 

I (i - Z'a) (I - SS2) = f (J - 2 w « s ) (J - 2wV*V) + f I f e W ' V ' e - 3 ' 9 ' - ' ' ) - * 
+ f H ^ V ^ V v ( 9 ' - ( ' > + s h . . . ( 3 9 ) 

Even if x had been accented in the X' functions, neither x nor would 
have entered in this expression. These terms will be called W 0. 

The sum of the three expressions ( 3 7 ) , ( 3 8 ) , and ( 3 9 ) , when multiplied 
by 7"r'/g, is equal to W, the disturbing function. 

If Diana be a different body from the moon the terms in 8' — 8 are periodic, 
and the only parts of W, from which secular changes in the moon's mean dis
tance and inclination can arise, are the sidereal semi-diurnal and diurnal 
terms, viz.: those in F and G, and also the term independent of H in ( 3 9 ) . 
These terms being independent of 8' are independent of e', the moon's epoch. 
Hence it follows that, as far as concerns the influence of Diana's tides upon 
the moon, dW/de' is zero, and we conclude that—the tides raised by any one 
satellite can produce directly no secular change in the mean distance of any 
other satellite *. 

But Diana being still distinct from the moon, the F and G terms and part 
of the fortnightly term, which are independent of 8, do involve JV and N'; 
for W contains terms of the forms e*aN, e*aN', e ± ( t t A r+ p A r ' ' , also it has terms 
independent of N, JV'. Hence dW/dN' will contain terms of the forms e*"3", 
gt{a.N+^m> or their equivalent sines or cosines. 

Now by hypothesis there are two disturbing bodies, and we know by lunar 
theory that the direct influence of Diana on the moon is such as to tend to 
make the nodes of the moon's orbit revolve on the ecliptic; on the other hand, 
there is a direct influence of the permanent oblateness of the earth on the 
nodes of the moon's orbit. 

If the oblateness of the earth be large, the result of the joint influence of 
these two causes may be such as either to make the nodes of the moon's orbit 
rotate with a very unequal angular velocity, or perform oscillations (possibly 

* If there he a rigorous relationship b e t w e e n the m e a n motions of a pair of satellites this 
m a y not b e true. This appears to be (at l e a H t very nearly) the c a s e between two p a i r B of satel
lites of the planet Saturn. 
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large ones) about a mean position. If this be the case the mean value of 
dW/dN' may differ considerably from zero. This case is considered in detail 
in Part III . of this paper. 

If on the other hand the oblateness be small the nodes of the orbit revolve 
with a sensibly uniform angular velocity on the ecliptic. This is the case at 
present with the earth and moon. Here then DVF/DN', as far as concerns the 
influence of Diana's tides on the moon, is sensibly periodic according to simple 
harmonic functions of the time. From this we conclude that: 

If the nodes of the satellites' orbits revolve uniformly on tlie plane of refer
ence, the tides raised by any one satellite can produce no secular change in the 
inclination of the orbit of any other satellite. 

There are thus two cases in which the problem is simplified by our being 
permitted to consider only the case of identity between Diana and the moon: 

1st. Where there are two or more satellites, but where the nodes of the 
perturbed satellite's orbit revolve with sensible uniformity on the plane of 
reference. 

2nd. Where the planet and satellite are the only bodies in existence. 

In these two cases, after differentiation of the disturbing function with 
respect to the accented elements, we shall be able to drop the accents. 

There is also a third case in which Diana's tides will produce a secular 
effect on the inclination of the moon's orbit, and this is where the nodes of 
the moon's orbit either revolve irregularly or oscillate. This case is enor
mously more complicated than the others, and forms the subject of Part III. 
of this paper; I have only attempted to solve it on the supposition of the 
smallness both of the inclination of the orbit, and of the obliquity of the 
ecliptic. 

The first of these three cases is that which actually represents the moon 
and earth, together with solar perturbation of the moon at the present time. 

In tracing the configuration of the lunar orbit backwards from the present 
state, we shall start with the first case; this will graduate into the third, and 
from this it will pass to a state represented to a very close degree of approxi
mation by the second. 

We are not at present concerned to know what are the conditions under 
which there may be approximate uniformity in the motion of the nodes; this 
will be investigated below. 

We will begin with the first of the three cases, and will find also the rate 
of change of the diurnal rotation and of the obliquity of the planet. 

The second case will then be taken, and afterwards the third case will 
have to be discussed almost ah initio in Part III . 
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§ 6. Secular change of inclination of the orbit of a satellite, where there is a 
second disturbing body, and where the nodes revolve with sensible uniformity 
on the fixed plane of reference. 
By (13) the equation giving the change of inclination is 

W dt " s i n j ' a W + t a n i ? de' 
As shown above, however, we need here only deal with a single satellite, 

so that Diana and the moon may be considered as identical and the accents 
may be dropped to all the symbols, except in the differential coefficients of W. 
Also we need only maintain the distinction between Diana and the moon as 
regards N, N' and e, e'; and after the differentiations of W these distinctions 
must also be dropped. Hence only differs from ur', K from K , TS from is', 
and K from K in the accentuation of N. 

Also since Q = ilt + e, 6' = il't + e', we may replace ff — 6 in the three 
expressions (37—39) by e — e. 

If we put eiaj = 2pq, tan = Q/P, and write (f> (N, e) for the operation 

^—=^T-,- + - 4 - 7 . putting N = N', e = e after differentiation ; then from (13) 2pq dN pde" F & v ' 
we have 

- f >w 
Also for brevity, let f ( I ) = ^ J^,, $ (E) = | ~ ; so that 

<f>(N,e) = tp(N) + <f>(e) 
The terms corresponding to the tides of the seven speeds will now be taken 

separately, the coefficients in ns, K will be developed, and the terms involving 
N' — N selected, the operation <f> (N, e) performed, and then N' put equal to 
N, and e to e'. For the sake of brevity the coefficient T 2/|J will be dropped and 
will be added in the final result. The component parts of W taken from the 
equations (37—39) will be indicated as W T , W n , W I I T for the slow, sidereal, 
and fast semi-diumal parts; as W 1 ( \V2, W 3 for the slow, sidereal, and fast 
diurnal parts; and as W 0 for the fortnightly part. 

Slow semi-diurnal terms (2n — 2X2). 
W T = 0 ' W ' ' - < , - 2 , > + •CT4

1!r'<le-2<e'-"+2f'] (40) 
Let wT = \™ V V < e , _ e ) _ 2 f 1 

Since vs = Pp — qQeN 

Therefore 
or4 = P 4 p 4 - IPTQPOQE* + 6PIQ-P"Q2e3N - 4 P Q 3 ^ 3 e s A r + Q'CFE^ 

•n-'1 = the same with — N' in place of N 
Therefore 

wT = \{P*P* + l6PSQ2pEQ2eN-N' + 36P 4 Q 4 »Ve 2 ( A T - A " , + 16 P>Q>p2QEE?TX-A"> 
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Therefore w : = 2 An Pt~m Q^p 8- 2" qm en iN~N,) +2 <•'-·> -2f' 

where n = 0, 1, 2, 3, 4. 

Then $ (N) w r = 2 — 7 = AnF
B-m(^np,-!nqm-1era^ 

2 v— 1 
4 

0 (e) w r = - 2 — = = A„P 8 - 2 »Q m p 7 - 2 n g l ! »+ 1 e- s ' ' 
2 V— 1 

Therefore by addition 

r/> (A7; e) w x = 2 [n (p 2 + g2) - 4g2] POR-TNQMP'-^QM-i 
2 V — 1 

Now when « = 0, A„ = 1, n (p 2 + g !) — 4g2 = — 4g2 

= 1, = 4 , = p 2 - 3g* 

= 2, = 9 , = 2 (p 2 - g2) 

= 3, = 4, = 3p2 - g2 

= 4, = i , = 4p 2 

If we had taken the second terra of W x we should have had the same 

coefficients but multiplied by — ^¡1 V— 1 instead of by e _ 2 f ' /2 V— 1. There

fore, since (e*' - e"2'')/2 V ^ l = sin 2fi, 
<j> (iV, e)Wl = - Fj sin 2fi [ - P*p7g + 4>PeQip"q (p 2 - 3g3) + 1 8 P 4 Q > Y (p 2 - g2) 

+ 4P 2Q 8pg 5 (3p2 - g2) + Qspg7] 
Then let 

JFi = i [ ^ P 6 - 4P" Q2p4(p* - 3g2) - 18PiQIP!Q!L (p s - g2) 
- 4P2Q°g4 (3p2 - g2) - QY] (41) 

and remembering that 2pq = s'mj, we have 

ob (JV, e) Wj. = 2jf.F, sin 2ft sin j (42) 

Sidereal semi-diurnal terms (2n). 

W„ = F [w»« a 5' a « / a e - a f + w ' / e ' ^ V V ] (43) 

Here the epoch is wanting, so that 0 (Ar, e) = 0 (Ar). 

Let 

•sr = Pp — QqeN, K=Qp + Pqe-N 

= PQ (p 2 - g2) +p9 ( P ^ - Q 2e y) 

= PQ (p 2 - g2) + pg ( P 2 ^ - Q'e"^) 

Vw^ = P2 Q2 (p 2 - g2)2 + PQpg (p 2 - g2) [P 2 + «-*) - Q? ir* + e*)] 
+ p 2 g 2 [P*c-^-2?") + QV w - y > - P 'Q 2 (e J y +- a r + e ^ ^ ' ) ] 

w n = P 4 Q* [(p 2 - g2)4 - 4p 2g 2 (p 2 - g 2) 2+4p 4 g4] + 4P« ̂ p 2 g2 (p 2 - g2)2 e~ <*-"*"' 
+ 4P 2 Q> 2 g 2 (p 2 - g 2 ) 2 e ^ ' + p 4 g 4 [P»e-»iy-*"> + Q 8 ^ ^ ' 1 ] 

0 (JV) w n = - —L= [4pg (p 2 - g2)2 P 2 Q 2 ( P 4 - Q 4 ) + 2p 3g s (P 8 - Q8)] 
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+ 3Q4 (3P 2 - Q 2 ) 2 ^ 6 + 4P*Q«1 
_ 8 ' r 4P»Q 2 p' ? + 4P 4 (P 2 - 3Q 2) 2p sq 3 + 36P2Q> (P 2 - Q2)2 p y 

+ 4Q4 (3P 2 - G a ) W + 4P2Q" | 

Adding 

w, = 

1 8 P 2 Q 2 ( P * - QJPY (P* -q2)-Q> ( 3 P 2 - QJPCF ( 3 p a - e 5 ) - 4 P 2 Q > ? ' ] 

4 ( J f , e ) W l = - \\PWQ - P* ( P a - WFQ (P2
 - 3q2) 

Ay — 1 

If we had operated on the other term of W J J wo should have got the same 
with the opposite sign, and e3f in place of e-2*. 

Then let 
JF = 1 ( i* - 0 s) {2 (p 2 - qJPQ2 + (P 4 + Q4)} (44) 

and we have (JV, e) W n = 2jfF sin 2f sin J (45) 

Fast semi-DIURNAL TERMS (2n + 2D,). 
W m = i F 2 [ K ' / t ' ^ c ' - ' i - " . + ^ V " ' - " + 2 f°] (46) 

Since «· is obtained from -or by writing Q for P , and — P for Q. therefore 
by writing — 2fa for 2£_, and interchanging Q's and P's we may write down the 
result by symmetry with the slow semi-diurnal terms. Then let 

JF* = i [ Q y - 4 P 2 Q y Qa2 - 3q2) - L&PIQIP2q2 (P1 - q2) 
- 4 P 6 £ y (3p2 - q*) - P y ] (47) 

and <P (N, E) W m = - 2„-JfaFa sin 2fa sin ; (48) 

SLOW DIURNAL TERMS. 
W\ = G, [ o » w ' s £ ' e , | , ' - H > + ^ W V e - 2 1 ' ' - ' ) 4 * ] (49) 

Let WJ = CR3*w'»*'cs'«'-·) 
For the moment let I = fyi, then since = Pp — Qa^, and since P = cos 7, 

Q — s in/ , therefore D-AJDL — — K, and therefore DIA-I/DL= — 4or3/r. 
Hence from the slow semi-diurnal term we find 

CT3* = P°QP' + P 2 (P 2 - 3Q2) J9'?e* - 3PQ (P 2 - Q^fq^ 
+ Q2 (3P 2 - Q2) p j V * - PQqV* 

ra-'V = same with — N' for A7" 
Hence 

W l = [P<>Qy + P 4 (P 2 - 3Q 2) 2p f i9 2^~^' + gP'Q 2 (P 2 - Q'Yp'q'e'i*-*'* 
+ Q4 (3P 2 - Q>YPYE3^-N"i + P"Q6gV<JV'-JV''>] e^'-"-"' 

P 4 (P 2 - 3Q2)2 pfi2 + ISP 2 ^ 2 (P 2 - Q2)2 P3q* 
7" 
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Let 
ffi, = ^ [ 4 P a Q y - P 4 ( P 2 - 3Q2)2ja4 (JO2 - 3gz) - 18P 2Q 2 ( P 2 - Q 2 ) 2 py (p 2 - 9

2 ) 
- Q* ( 3 P 2 - Q2)2 9 4 ~ 92) - 4P2Q62 a] ...(50) 

and we have <f> (N, e) = 2(§tlG1 sin gl sinj (51) 

Sidereal diurnal terms (n). 
W2 = G SJSK (-srsr — KK) (•&'•&' — «'«') e~g

 + TZK ( - n r sT — KK) T&'K' (-&'•&' — «'«') e*] 
(52) 

Here the epoch is wanting, so that <f> (N, e) = <p (iV). 
Let 

W 2 = TSTK ( a r s r — KK) n r ' / e ' (tn'-rx' — KK) 

™ = PQ(p!1- g2) + pq (P'er^ - Q2e*) 
n r ^ - K K = ( P 3 - QP)(p2-q2)-2PQpq(e* + e~N) 
TXK ( = 7 ^ - KK) = PQ(P>- Q2) [(JO2 - q j - 2p2q2] + P 2 ( P 2 - 3Q2) jig (_p» - q2) e~N 

- Q2
 (3P 2 - 0s)pq (p 2 - g2) e* - 2PQpy ( P ^ " 2 * - Q2e^) 

CT'K' (•sr'ra-' — «'*') = the same with — iV" instead of N 
w2 = P 2 ^ 2 ( P 2 - Q2)2 [(p 2 - g 2) 3 - 2p 2o 2] 2 + P 4 ( P 2 - 3Q2)2js2^2 (JJ2 - q2)2

 e-(If-N'> 
+ Q* (3P 2 - Q2)2p2q2 (p2 - qje*-*' + 4P 2 Q 2 p 4

?

4 (p*g-» + Qv< y - y ' 0 
* (ir-)w, = - {p ? (p 2 - 9

2 ) 2 [ P 4 ( P 2 - 3Q2)2 - Q4 (3P 2 - Q2)»] 
+ 8 P 2 Q 2 ( P 4 - Q 4 ) ^ y } 

Now 
P 4 ( P 2 - 3Q2)2 - Q 4 (3P 2 - Q 2 ) 2 = ( P 2 - Q 2) ( P 4 + Q 4 - 6P 2 Q 2 ) 

Put therefore 
ffi = A ( P 2 - Q2) {(p2 - g2)2 ( P - + Q4 - 6P 2Q 2) + 8 P 2 ^ Y } (53) 

and we have <f> (N, e) W2 = 2C5G sin g sin j (54) 
Fast diurnal terms (re + 2fl). 

W 3 = G 2 |Wra-V 3 e- 2
 {''~') + u / ( y * V | , ' - | + ! ' ] (55) 

By an analogy similar to that by which the fast semi-diurnal was derived 
from the slow, we have 
ffia = i [4P 2Q 6JD 6 - Q 4 (3P 2 - QPJp* (p2 - 3q2) - l S P 2 ^ 2 ( P 2 - Q 2 ) 2 p y (p» - q2) 

- P 4 (P 2 - 3Q2)2 ^ (3p2 - ?

2 ) - 4P 8 @y] (56) 
and <p (IV, e) W3 = — 2(Qf2G2 sin g 2 sinj (57) 

Fortnightly terms (2fl). 
W 0 = f [(i - 2 ^ K K ) (£ - 2inV/cV) + H A V V ! e - ! i , ' - " - ! h 

+ H O T

2 «VV 2 e 2 ' ' ' - ' i + 2 h ] (58) 
I t will be found that qb (N) performed on the first term is zero, as it 

ought to be according to the general principles of energy—for the system is 
a conservative one as far as regards these terms. 
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Let 

W o = KJ ea |<'-'>+2h 

•OK = PQp* + pq(P-- Qo) e* - PQq'e"* 

= Ptyp* + 2PQ (P 2 - Q2) p3qeN + [(P 2 - QJ - 2P2Q2] p-gW* 

- 2PQ (P 2 - Q2) pgV* + P-Q-q*^ 

OTV2 = the same with — N' for N 

w0 = { P 4 ^ 8 + 4P 2Q 2 (P 2 - Q-yp*q*e*-ir + [(P 2 - Q2)2 - 2^ 2Q 2] p-qV^-ri 

+ 4P 2Q a (P 2 - q-fp-qW*-*') + PiQ*qBei^—'f'i} e

2(''-«)+* 

0(iVr)w„ = 
a s h 

0 (<0 W 0 = -

2 V - l 

g2b 

2 V - 1 

4P 2Q 2 (P 2 - Q 2 ) 2 ^ + 2 [(P 2 - Q2)2 - 2P 2Q 2] 2p sg 3 

+ 12P 2Q 2 (P 2 - Q2)2 pg 5 + 4P4Q41' 
4 P 4 Q V Î + l ô P 2 ^ (P 2 - Q 2) 2» 5^ 

+ 4 [(P 2 — Q2)2 - 2 P 2 Q 2 p p Y + 16P 2Q 2 (P 2 - Q2)2_pgf + 4P 4Q 4 2. 

Adding and arranging the terms 

4 (tf, e) wB = - pg {4P4Q4 (p- - </) - 4P 2Q 2 (P 2 - Q2)2 (p a - g 2) 3 

- 2PY (p 2 - 5

2 ) [(P 2 - Q2)2 - 2P2Q2]2} 
Then let 

^ = f {2P4<24 (p* - f) - 2P 2Q 2 (P 2 - Q2)2 (p 2 - qj 
- P y (p* - f) [(P 2 - Q2)2 - 2P2<22]2} .. .(59) 

and we have $ (N, e) W0 = - 2 | ^ H sin 2h sin j (60) 

This is the last of the seven sets of terms. 

Collecting results from (42-5-8, 51-4-7, 60), we have 

-. % = - J | {2 JfcF, sin 2ft + 2 J?F sin 2f- 2Jf 2F 2 sin 2f2 + 2Q5& sin g l 

+ 2ffiG sin g - 2ffl2G2 sin g 2 - 2 | ^ H sin 2h} .. .(61) 

The seven gothic-letter functions defined by (41-4-7, 50-3-6-9) are 
functions of the sines and cosines of half the obliquity and of half the 
inclination, but they are reducible to forms which may be expressed in the 
following manner: 

JF t + jp2 = \ cos J [1 - £ sin2 j - 2 sin2 { (1 - f sin2 j ) + 1 sin4 i (1 - \ sin2 j)] \ 

JFI ~ = \ C O S * I1 - I sm'j ~ I s i n 2 * ( 1 - I sin2 j)] 
CRi + E52 = - I cos j [1 - sin2 j - $ sin21' (1 — sinay) + 1 sin4 i (1 - £ sin2 j)] 

• \ cos i [1 — § sin 2j — 3 sin2 i (1 — £ sin2 j ) ] 

{ cos i [{ sin2 j + sin 21 — | sin2 i sin2 j ] 

cos i" [1 — sin2_? — 2 sin2 i +1 sin2 i sin2 j ] 

• I c o s j [f s i n 2 I + I S l n 2 * (1 - f sin 2j) — -l£ sin4 i (1 — \ sin2 j)] 
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234 CASE WHEN THE PLANET IS VISCOUS. [6 

These coefficients will be applicable whatever theory of tides be used, and 
no approximation, as regards either the obliquity or inclination, has been 
used in obtaining them. 

§ 7. Application to the case where the planet is viscous. 

If the planet or earth be viscous with a coefficient of viscosity v, then 
according to the theory of viscous tides, when inertia is neglected, the tangent 
of the phase-retardation or lag of any tide is equal to 19v/2gaw multiplied by 
the speed of that tide; and the height of tide is equal to the equilibrium 
tide of a perfectly fluid spheroid multiplied by the cosine of the lag. If 

„ , 2qaw . 
therefore we put - = p, we have 

19u 

t a n 2 f l = 2 ( w - ° > , t a n 2 f = ^ , tan2fa = 2 ^ > 
P P P 

t a n g i = — p — - t a n g = p> t an2g 2 = — , tan2h=-p-
F l = cos2f1, F = cos2f, F 2 = cos2f„, Gi = cosg!, G = cosg, G a =cosg 2 

and H = cos 2h. 

Therefore 

~ raj a\=i k f r s i n 4 f i + & s i n 4 f - & s i n 4 f a + a i n 2 g i 

+ ffi sin 2g - ffi2 sin 2g2 - sin 4h} .. .(63) 
This equation involves such complex functions of I and J, that it does not 

present to the mind any physical meaning. It will accordingly be illustrated 
graphically. 

For this purpose the case is taken when the planet rotates fifteen times 
as fast as the satellite revolves. Then the speeds of the seven tides are 
proportional to the following numbers : 28, 30, 32 (semi-diurnal); 13, 15, 17 
(diurnal) ; and 2 (fortnightly). 

I t would require a whole series of figures to illustrate the equation for all 
values of i and j , and for all viscosities. The case is therefore taken where 
the inclination j of the orbit to the ecliptic is so small that we may neglect 
squares and higher powers of sinj. Then the formulae (62) become 

JFi + §* = i ( l - 2 Bin"i + f sinn) 

d F i - J F 2 = i c o s i ( l - f sin 2i) 

e3 1 + ffi2=-Jr(l - £ s i n 2 i ' + $ sin'i) 

(Si — CK, = — £ cos i" (1 - 3 sin2 i) 

JF = i cos i sin2 », Œ = £ cos i (1 - 2 sin2 i) 

?^ = - i s i n 2 i ( l - J s i n 2 i ) 
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From these we may compute a series of values corresponding to i = 0°, 
15°, 30", 45°, 60°, 75°, 90°. (I actually did compute them from the P , Q 
formulae.) 

I then took as five several standards of the viscosity of the planet, such 
viscosities as would make the lag f, of the slow semi-diurnal tide (of speed 
2n - 212) equal to 10°, 20°, 30°, 40°, 44°. I t is easy to compute tables giving 
the five corresponding values of each of the following, viz.: sin 4f1; sin 4f, 
sin 4^, sin 2gi, sin 2g, sin 2g2, sin4h. 

The numerical values were appropriately multiplied (with Crelle's three-
figure table) by the sets of values before found for the 's, C J ' S , & C . 

From the sets of tables formed, the proper sets were selected and added 
up. The result was to have a series of numbers which were proportional 
to djjsmjdt. 

The series corresponding to each degree of viscosity were set off in a curve, 
as shown in fig. 4. 
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236 CASE OF SMALL VISCOSITY. [6 

The ordinates, which are generally negative, represent dj/ainjdt, and the 
abscissa; correspond to i, the obliquity of the planet's equator to the ecliptic. 

This figure shows that the inclination j of the orbit will diminish, unless 
the obliquity be very large. 

It appears from the results of previous papers, that the satellite's 
distance will increase as the time increases, unless the obliquity be very large, 
and if the obliquity be very large the mean distance decreases more rapidly 
for large than for small viscosity. This statement, taken in conjunction with 
our present figure, shows that in general the inclination will decrease as 
long as the mean distance increases, and vice versd. This is not, however, 
necessarily true for all speeds of rotation of the planet and revolution of the 
satellite. 

The most remarkable feature in these curves is that they show that, for 
moderate degrees of viscosity less than 20°), the inclination j decreases 
most rapidly when i the obliquity is zero; whilst for larger viscosities (ft be
tween 20° and 45°), there is a very marked maximum rate of decrease for 
obliquities ranging from 30° to 40°. 

We now return to the analytical investigation. 

If the viscosity be sufficiently small to allow the phase retardations to be 
small, so that the lag of each tide is proportional to its speed, we may express 
the lags of all the tides in terms of that of the sidereal semi-diurnal tide, 
viz.: 2f. On this hypothesis we have 

sin 4f'i _ ^ ^ sin4f_^ sin 4f2 _ ^ ^ sin 2gr _ t ^ sin 2g _ } 

sin 4f — ' s in4f — ' sin 4f ' sin 4f * ' s i n 4 f — 5 

sin 2g, sin 4h , fi 
- ^ — B = h + x . ^—Te - x> w h e r e x = ~ sin 4f am 4t n 

And 

But by (62) 

J F i - J F . + I ( ® i - ® 0 = ICOAI and Jf + = $ cos i 

and J F i + J ^ + ®i + ©* + ?§ = 0 

These results may of course be also obtained when the functions are 
expressed in terms of P, Q, p, q. 

Whence on this hypothesis 
e d? T 2 

— i—^—. -f = — sin 4f. 4 cos i (64) k smj dt g * K ' 
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1880] CHANGE IN THE MEAN DISTANCE OF THE SATELLITE. 237 

§ 8. Secular change in the mean distance of a satellite, where there is a second 
disturbing body, and where the nodes revolve with sensible uniformity 
on the fixed plane of reference. 

By (11) the equation giving the rate of change of £' is 
1 d£' _dW 
k' dt ~~ de 

As before, we may drop the accents, except as regards e. 
d dW p 

In § 6 we wrote <f> (e) for the operation tan ±j ; hence -j-? =~<f>(e) W, 
and by reference to that section the result may be at once written down. 
We have 

T 8 = - ( 2 * i F i s i n 2 f i - 2*,F, sin 2f2 + 2 1 ^ sin g2 - 2r2G2 sin g2 k at g ° ° 
- 2 A H sin2h} (65) 

Where 
= \ \PY + QY + WP1P2QY (PY + QY) + 36P4<24p4o4] 

$ 2 = the same with Q and P interchanged 
r, = 2 [P*Q* (PY + QY) + P< (P 2 - 3Q*yPy + Q* (3P 2 - Q*yPy 

+ 9P>Q*(P*-Q*yP

iqi] } (66) 
ra = the same with Q and P interchanged 
A = 3 [P'Q4 (p8 + gf) + 4P 2Q 2 (P 2 - QJp>q> (p 4 + q") 

+PY [(P1 - QJ - 2P2Q2]2} ) 
These functions are reducible to the following forms 

2 ($ , + <i%) = 1 - sin2 j +1 sin'j - sin2 i (1 - 2 sin2_/ + f sin4ji) 
+ \ sin4 a (1 — 5 sin2 j + ^ sin4 j ) 

2 (<!>! - <t>2) = cos i cos j [1 - ^ sin2^' - £ sin2 i (1 - f sin 2/)] 
2 (r\ + T3) = sin 2j - 1 sin4 j + sin2 i (1 - \ sin 2j + 1 sin4 j) 

— { sin41 (1 — 5 sin3 j + ̂  sin4 j) 
2 (I \ — ra) = cos i cos j [sin 2j + sin2 i (1 — | sin 2j)] 
2A = | sin4^" + sin2 i (f sin 2j — sin4j) 

+ | sin 41 ( 1 — 5 sin 2j + ^ s i n 4 j ) ^ 

.(67) 

§ 9. Application to the case where the planet is viscous. 

As in § 7 
1 DP T 2 

-r ~ = - j4>! sin 4fj — <t>2 sin 4f2 + sin 2g, - T2 sin 2g2 - A sin 4hj ... (68) fc at § 
If j be put equal to zero this equation will be found to be the same 

as that used as the equation of tidal reaction in the previous paper on 
" Precession." 
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238 THE INCLINATION WHEN THERE IS A SINGLE SATELLITE. [6 

If the viscosity be small, with the same notation as before 
1 DF T 2 

k dt = g 8 i n 4 f [ *» ~ ° 2 + H T l ~ T s ) ~ M « & i + * . + A + r , + A)].. .(69) 

Now < & ! + £ ( r , - Ta) = £cosi cosj 

and + * a + I \ + T 2 + A = \ 

1 d£ T 2 

Therefore j - - j - = |- — sin 4f [cos i cosj — X] (70) 
We see that the rate of tidal reaction diminishes as the inclination of the 

orbit increases. 

§ 10. Secular change in the inclination of the orbit of a single satellite to 
the invariable plane, where there is no other disturbing body than the 
planet. 

This is the second of the two cases into which the problem subdivides 
itself. 

If there be only two bodies, the fixed plane of reference, which was 
called the ecliptic, may be taken as the invariable plane of the system. It 
follows from the principle of the composition of moments of momentum that 
the planet's axis of rotation, the normal to the satellite's orbit and the normal 
to the invariable plane, necessarily lie in one plane. Whence it follows that 
the orbit and the equator necessarily intersect in the invariable plane. From 
this principle it would of course be possible either to determine the motion of 
the node from the precession of the planet or vice versd, and the change of 
obliquity of the planet's axis (if any) from the change in the plane of the orbit 
or vice versd; this principle will be applied later. 

We have found it convenient to measure longitudes from a line in the 
fixed plane, which is instantaneously coincident with the descending node of 
the equator on the fixed plane. Ilence it follows that where there are only 
two bodies we shall after differentiation have to put N = i\T = 0. 

dm' 1 
Then since ta-' = Pp — QqeN' therefore ^-^> = ^ Qq, and similarly 

aV Qq die' Pq die' Pq 
I\TI ' ~ i > J ~hT/ — — 7 = — > j i f f / = ~; , when iv = 0 
dN V — 1 dN V - 1 dN V - 1 

Also after differentiation when N = 0, 

tsr = TO- = cos ^ (i + j), K = K = s i n | ( i + j) 
In order to find djjdt we must, as before, perform qb (A7, e) on W, and we 

take the same notation as before for the W's and w's with suffixes. 
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1880] THE INCLINATION WHEN THERE IS A SINGLE SATELLITE. 239 

Slow semi-diurnal term. 

dN'Kx - ' dN1 >J~\ 

and 
*(N)Q W ) = ~ • ^• -p, also 4 > ( e ) = -_L= . J e , -a f , 

7 ^ 8 1 • OT W " . -

2> P. 2 V - 1 
Hence <f> (N, e) wT = 

and <fj (N, e) = 1 3 · ^ sin 2fx 

Sidereal semi-diurnal term. 

ST = 2«V (OT ̂  + « j = - v= (*rPg + «Qg) = - _ . pg 
and since (/> (e) W n = 0, therefore 

<f> (N, e) W n = 2^3K3¥ sin 2f 

Fast semi-diurnal term. 

By symmetry <p (iV, e) W U I = -ET̂ FJ sin 2f3 

Slow diurnal term. 

TN' ^=3wVe S"'+ot3 It =- v^T(3lcQq - wP?> 
<f> (JV, E ) W L = - (3Q« — POT + 4g«r«) = - ^ * (OT2 - 3K2) 

and 0 (N, e) W, = - • s r s « ( t j a - 3K2) G, sin g, 

Sidereal diurnal term. 

Therefore <f> (N, e) wa = — ^ = (CT2 — tc2)2 

v — 1 

and $ (N, E) W z = TSK - «2)2 G sin g 

Pas* diurnal term. 

By symmetry 0 (iV, e) W 3 = OTKB (3HT2 - «2) G2 sin g 2 

Fortnightly term. 
and 

(N, E) w0 = [2«r* ( Q * - P v ) + 4«rV2g] = ^4=^ 2 « * («» - *B) 
2 v - 1 / v — l 
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i + j = 0 

FIG. 5. Diagram illustrating the rate of ohange of the inclination of a single 
satellite's orbit to the invariable plane, for various viscosities of the planet, 

and various inclinations of the orbit to the planet's equator (at)-
Fig. 5 illustrates the various values which dj/dt (the rate of increase of 

inclination to the invariable plane) is capable of assuming for various vis
cosities of the planet, and for various inclinations of the satellite's orbit to the 
planet's equator. Each curve corresponds to one degree of viscosity, the 
viscosity being determined by the lag of the slow semi-diurnal tide of speed 

Whence <j> (N, e) W 0 = 3srV (sr3 - *2) H sin 2h 
Collecting terms we have, on applying the result to the case of viscosity, 

_ | dl = it [ 1 ^ * sin 4f3 + or3*:3 sin 4f + ^ K 1 sin 4fa + f ^ V (wa - * 2) sin 4h /c etc (J 
- ^OT5K (w2 - 3K3) sin 2gj + {w* (•nr2 - K2)2 sin 2g + $OT*5 (3CTS - K3) sin 2gJ 

(H) 
In the particular case where the viscosity is small, this becomes 

~ f I = * £ s i n 4f™=* i s i n 4 f s i n ( 7 2 ) 

The right hand side is necessarily positive, and therefore the inclination of 
the orbit to the invariable plane will always diminish with the time. 

The general equation (71) for any degree of viscosity is so complex as to 
present no idea to the mind, and it will accordingly be graphically illustrated. 

The case taken is where ?i/Q = 15, which is the same relation as in the 
previous graphical illustration of § 7. 

The general method of illustration is sufficiently explained in that section. 
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2n— 212. The ordinafces give djjdt (not as before djjsmjdt) and the abscissa; 
give i+j, the inclination of the orbit to the equator. 

We see from this figure that the inclination to the invariable plane will 
always decrease as the time increases, and the only noticeable point is the 
maximum rate of decrease for large viscosities, for inclinations of the orbit 
and equator ranging from 60° to 70°. If n/D, had been taken considerably 
smaller than 15, the inclination would have been found to increase with the 
time for large viscosity of the planet. 

§ 11. Secular clurnge in the mean distance of the satellite, where there is 
no other disturbing body than the planet. Comparison with result of 
previous paper. 

To find the variation of f we have to differentiate with respect to e, and 
the following result may be at once written down 
d£ T 2 

TJ- — | - [w8 sin 4fj — K8 sin 4f2 + 4OTV sin 2gj — 4nrV sin 2g2 - 6CTV sin 4h] 
(73) 

This agrees with the result of a previous paper (viz.: (57) or (79) of 
" Precession "), obtained by a different method; but in that case the incli
nation of the orbit was zero, so that TO- and K were the cosine and sine of half 
the obliquity, instead of the cosine and sine of \ (i +j). 

In the case where the viscosity is small this becomes 

^ = ^ s i n 4 f [ c o s ( { + j ) - X ] (74) 

It will now be shown that the preceding result (71) for dj/dt may be 
obtained by means of the principle of conservation of moment of momentum, 
and by the use of the results of a previous paper. 

It is easily shown that the moment of momentum of orbital motion of the 
moon and earth round their common centre of inertia is Ctj/k, and the 
moment of momentum of the earth's rotation is clearly Cn. Also j and i are 
the inclinations of the two axes of moment of momentum to the axis of 
resultant moment of momentum of the system. Hence 

£ . . 
j- am j = n am i 

By differentiation of this equation we have 
P dj . dn . . . di d£ . . r f. cos i = -jr sin i + n cos % -j- — y-v- sin 7 k dt dt dt kdt J 

dn 
di sin (i +j) + n cos (i+j) cos j 

dn /· . -\ • /· , -\di , dgl . . 
T t i i 0 s { l + j ) - n s l n ( l + j ) d t + kdt\smj 
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§ 12. The method of the disturbing function applied to the 
motion of the planet. 

In the case where there are only two bodies, viz.: the planet and the 
satellite, the problem is already solved in the paper on " Precession," and 
it is only necessary to remember that the p and q of that paper are really 
cos ^(i+j), sin±(i+j), instead of cos^i, sin^t. This will not be reinvestigated, 
but we will now consider the case of two satellites, the nodes of whose orbits 
revolve with uniform angular velocity on the ecliptic. The results may be 
easily extended to the hypothesis of any number of satellites. 

In (18) we have the equations of variation of i, IFR, x in terms of W. But 
as the correction to the precession has not much interest, we will only take 
the two equations 

. .di .dW dW\ N s i n I ~r. = c o s % - r — , TTI dt dx dy 
.(75) 

dn = dW 
dt dx' 

which give the rate of change of obliquity and the tidal friction. 

In the development of W in § 5, it was assumed that TY, TFR were zero, and 
X, x' did not appear, because x was left unaccented in the X'-Y'-Z' functions. 

Now from equation (52) of the paper on " Precession," the second term on 
the right hand side is zero, and therefore 

But by equations (21) and (16) and (29) of the paper on "Precession" 
(when •us and K are written for the p, q of that paper) 

- T T = - — sin 4fj + 2 O T j * 4 sin 4f + ^KS sin 4f2 + mV sin 2gj at g 
+ o7 5 / c a (•ar2 — K2)8 sin 2g -f sr2*6 sin 2g2] 

di T 2 

U DI = g t ^ 7 " s * n i t 3 ' c 3 ^' = r 2~ *a) s ^ n ^ — ^ , ! r ' c 7 s * n **"2+ ^ K ^ + ^*2) s * n 

- -̂STK (CT2 - K 2) 3 sin 2g - I^K" (3ICT2 + K2) sin 2g 2 - | w V sin 4h] 

If we multiply the former of these by sin (i +j) or 2&TK, and the latter 
by cos (i+j) or ra-2 — «2, and add, we get the equation (71), which has already 
been established by the method of the disturbing function. 

I t seemed well to give this method, because it confirms the accuracy of 
the two long analytical investigations in the paper on " Precession " and in 
the present one. 
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Longitudes were there measured from the vernal equinox, but here we 
must conceive the iV, N' of previous developments replaced by N — IFR, 
N' -ty'; also D.t + e, Cl't + e' must be replaced by ilt + e - YFR, D,'t + e — ty'. 

It will not be necessary to redevelop W for the following reasons. 
il't + E' — "TFR occurs only in the exponentials, and N' — i/r' does not occur 

there; and N' — -ty' only occurs in the functions of w and K, and fl't + E — IJR' 
does not occur there. Hence 

d W _ d W dW 
' dy ~ de' + dN' .(76) 

Again, it will be seen by referring to the remarks made as to x in the 
development of W in § 5, that we have the following identities: 

For semi-diurnal terms, 
d W n d W n dW, _ _ dWj 

dx ~ de' ' dX' ' 
For diurnal terms, 

d W , = dW, dW, 
dx' * de' ' dx' = 

For the fortnightly term, 

d W „ _ -

= 0, 

di 

dW a 

dg 

d W H I 

dW3 

dX' 

' de 

i dW, 
'* de' .(77) 

Also dW T 

de' 
dW a 

de' 
Making use of (76) and (77), and remembering that cos i = P 2 — Q2, 

s ini=2PQ, we may write equations (75), thus 

(2PQ) n ft = ^ [2Q2 W T + 2P 2 W r a + * (P 2 + 3Q2) W, + 1 (3P 2 + Q2) W 3 + W 0] 

+ (-P*-Q*) 
dW T I . dW a 

df + • dg + 3 Y ( S W ) 

d« df 

.(78) 

.(79) 

It is clear that by using these transformations we may put ^ = T]R' = 0, 
X = X' before differentiation, so that T/T and x again disappear, and we may 
use the old development of W. 

The case where Diana and the moon are distinct bodies will be taken first, 
and it will now be convenient to make Diana identical with the sun. 

In this case after the differentiations are made we are not to put N=N', 
and e = e. 

The only terms, out of which secular changes in i and n can arise, are 
those depending on the sidereal semi-diurnal and diurnal tides, for all others 

16—2 
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244 DISTURBED ROTATION* OF THE PLANET. [6 

are periodic with the longitudes of the two disturbing bodies. Hence the 
disturbing function is reduced to W n and W a. Also dWu/dN' and dW,/dN' 
can only contribute periodic terms, because N—N' is not zero, and by hypothesis 
the nodes revolve uniformly on the ecliptic. 

If we consider that here p' is not equal to p, nor q' to q, we see that, as 
far as is of present interest, 

W„ = 2F cos 2f P 'Q 4 [(jo2 - g2)2 - [(p'» - g'2)2 - 2 p V ] 

W 3 = 2G cos g P-<? (P 2 - O - [CP* - 2-)2 - W J [(p* - q'J - 2»V 2 ] 

Also the equations of variation of i and n are simply 
di ~dWn dw; 

di dg _ 

dn 
dt ' 

dWn dW2 + di dg 

Thus if we put 
4> = 2P-Q 4 [(p 2 - qJ - 2 p Y ] l(p" - q'J - 2p*V] 

= | s in 4 1 (1 - f sin2 j ) (1 - f s i n 2 / ) 
£ 7 = P=Q2 (P 2 - g-)2 [(i?2 - g2)2 - 2^g 2 ] [(p'* - q'J - 2p*q'*] 

= 1 sin2» cos2 i (1 - 1 sin2jT) (1 - f sin 2j ') 

we have ^ = ? I I ' T2(f)F sin 2f + 7 G sin g] 
' dt g 

2 T T 

riy- = — 
[2<pF sin 2f + 7G sin g] cot i 

(80) 

•(81) 

dt g 
I t will be noticed that in (81) 2 T T ' has been introduced in the equations 

instead of T T ' · this is because in the complete solution of the problem these 
terms are repeated twice, once for the attraction of the moon on the solar 
tides, and again for that of the sun on the lunar tides. 

The case where Diana is identical with the moon must now be considered. 
This will enable us to find the effects of the moon's attraction on her own 
tides, and then by symmetry those of the sun's attraction on his tides. 

We will begin with the tidal friction. 
By comparison with (65) 
d 

[WT - W i n + $W, - iW 3 ] = 2 * ^ sin 2f, + 2«S»,F, sin 2f„ 

+ TiGj sin g! + TjGj sin g 2 

When we put N = N' (see (43) and (52))-

W n = 2F cos 2f. W j I a n d dWu = _ 4F sin 2f. 
dt 

.(82) 
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dW 
Also W a = 2G cos g. w2 and - ~ — — 2G sin g . w2 rig 

Let 

$ = 2w„ = 2P 4Q 4 [(p2 - q2f - 2pYp + 8P*Q2 (Pl + Q*) p2q2 (p2 - qj 

+ 2pY (P 8 + Q8) 

= 2P 4Q 4 (p 2 - q*)< + 8p2q* (p2 - qjP2Q2 (P 4 + Q4 - P2Q2) 

+ 2 p Y ( P 9 + 4 P 4 Q 4 + Q8) ...(83) 

and let 

= w2 = P 2 Q 2 (P 2 - <?)2 [(p2 - 5 s)2 - 2pY] 2 

+ [P ' (P 2 - 3Q2)2 + Q4 (3P 2 - Q2)2] p 2 g 2 (p 2 - 9

2 ) 2 + 4P 2Q 2 (P 4 + Q 4 )pY 

= P*Q2 (P 2 - 0 ) 2 (P 2 - ?2)* + [(-P2 -Q2)4-6P2Q2 (P 2 - Q2)2 

+ 8P 4Q'] p2q2 (p2 - q2)2 + 8P2Q>(Pi+Qi -P2Q2) plq* ...(84) 

And we have 

d,71 T2 

_ = 1 . [ 2 * ^ , sin 2f, + 2*F sin 2f + 2* 2 F 2 s in 2f2 + YlG1 sin & 
dt g L 

+ TG sing + r 2 G 2 sing 2 ] . . . (85) 
This is only a partial solution, since it only refers to the action of the 

moon on her own tides. 

If the second satellite, say the sun, be introduced, the action of the sun 
on the solar tides may be written down by symmetry, and the elements of 
the solar (or terrestrial) orbit may be indicated by the same symbols as 
before, but with accents. 

From (85) and (81) the complete solution may be collected. 

In the case of viscosity, and where the viscosity is small, it will be found 
that the solution becomes 

(¡7) q i t i 4,f ( 

- ~dt = i ~ g - {(1 - I sin2 i) ( r 2 + r ' 2 ) - H I - 1 sin2 i) ( T 2 sin2 j + r ' 2 sin2 j') 

— T 2 ~ cos i cos j — T'2 — cos i cos j ' + A T T ' sin2 i (1 — | sin 2j) (1 — | s in 2 j ' ) | 

(86) 

If j and j ' be put equal to zero and il'/n neglected, this result will be 
found to agree with that given in the paper on " Precession," § 17, (83). 

We will next consider the change of obliquity. 

The combined effect has already been determined in (81), but the separate 
effects of the two bodies remain to be found. The terms of different speeds 
must now be taken one by one. 
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Slow semi-diurnal term. 

n dt'' g ~ P de' + 2PQ diV7 

Wehadbefore - | J' + if = 2 ^ + * ^ A; di g j> de 2pq dN 
Now Wj is symmetrical with regard to P and p, Q and q, and so are its 

differentials with regard to e' and N'. Therefore the solution may be written 
down by symmetry with the " slow semi-diurnal" of § 6, by writing P for p and 
Q for q and vice versd. 

Let 
Fj = i [P«ps - 4P< (P 2 - 3Q2)peq* - lSPQ* (P 2 - Q 2)jay 

- 4Q4 (3P 2 - Q 2 ) ^ y - Qy} .. .(87) 

tin —2 
and m - = 2F 1 F 1 sin 2ft sin t (88) 

dt g 1 1 v 7 

Sidereal semi-diurnal term. 
di^T* _ _J L _ 

" di : g _ 2PQ ^ w ; df + diV'J 

df 
Therefore 

d W H = - 2 * F sin 2f and = 4 p y . 2jfF sin 2f 

7 I ^ - - = 2Fsin2f di g 
P - - Q 2 2 p y I 

2PQ + PQ 
On substitution from (44) and (83) for <& and and simplification, we 

find that if 

F = \ {P*Q* (P 2 - Q2) [(j32- g2)2 - 2 ^ y ] 2 + 2p*f (p* - qj(P2- Qsf 

then n^-5-- = - 2 F F a i n 2 f a i n t (90) 
dt g 

Fast semi-diurnal term. 
di T 2 P d W m 1 d W n i 

7 1 di ' g _ Q de' + 2PQ dJV'~ 
Since Win is found from Wj by writing Q for P , and — P for Q, and — 2f2 

for 2fi, therefore in this case ndi/dt is found from its value in the slow semi
diurnal term by the like changes, and if 

F2 = i {QFP* + 4Q- (3P S - Q2)p'q* + 18P 2Q 2 ( P 2 - Q2) P y 

+ 4p4 (pa _ 3Q>)p>f - p«q»} ...(91) 
then n̂ -J- - = - 2F 2F 2sin 2f2 sini (92) 

di g 
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Slow diurnal term. 

CHANGE OF OBLIQUITY. 247 

di T 2 1_ [ P 2 + 

7 1 d T S _ 2 P q | _ 2 
3Q2 dW, dW," 

de' + div"' 
dW 
^ = -2G, sin g l [P* (P 2 - 3 Q a ) 2 p y + 18P 2Q 2 (P 2 - Q a ) ^ Y 

+ 3Q* (3P 2 - Q a ) a p Y + 4 P 2 Q V ] 
dW1 

d. 
^ = 2G, s i n g e r , 

then 

Substituting these values and simplifying, it will be found that if 

Gt = i {P» (P 2 + SQ 2)^ 8 + 2P a (P 2 - 3Q 2) apGr/ - 9 (P a - Q 2 ) s p Y 

- 2Q2 (3P 2 - Q 2 ) 2 p 2 3 8 - Q> (3P 2 + Q2) qs} .. .(93) 

• — - • • ' .(94) t i T j - r - - = sin gj sin i 
dr g 

Sidereal diurnal term. 

ndr~%~2PQ y (/;"dg~ + divf7 

^ = - 2G sin g (jr) and = 4pY 2ffiG sin g 

Therefore ra ^ -r- — = 2G sin g 
dt g e 

dA^ 

p^-or- 2 « Y -
4PQ 1 + T Q 6 5 

On substitution from (53) and (84) for T and ffi and simplification, we 
find that if 

G = i {(P2 - Q2)s [(p2 - 5 2 ) 2 - 2pY] 2 - 2 (P 2 - Q2) [(P 2 - f^)2 

- 12P 2g 2] p Y (p 2 - ç 3) 2 - 4 (P 2 - Q2) (P 4 + 4P 2Q 2 + Q4) p Y } .. .(95) 

the 7 j ! ^ - h T a

= _ 2 G G sin g sini. 
dt g ë 

.(96) 

Pos£ diurnal term. 
di T 2 "3P2 + QS dW, dW, 
dt ' g - 2PQl_ 2 de' T dJV'J 

As the fast semi-diurnal is derived from the slow, so here also ; and if 

G2 = i {Q> (3P 2 + QP)p" + 2Q2 (3P 2 - Q a ) 2 p Y + 9 (P a - Q a ) s p Y 

- 2P 2 (P 2 - 3Q2)2

 P y - Pi (P 2 + 3Q2) g8J .. .(97) 
then 

Fortnightly term. 

n %\ \ — ~ 2GaGa sin g2 sin i 

di 'r2 1_ /dW 0 dW,\ 
dt ' 2PQ\der + dN'J 

.(98) 
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248 CHANGE OF OBLIQUITY. [6 

If we take the terra in \V0 which has 2h positive in the exponential, we 
have 

WW 

oW = 1 2 ~ 7 = T [ 8 P 2 Q 2 ( ^ " Q 2 f P V + 4 C ( P 2 ~ W " 2 P 2 Q 2 ? ^ V 

+ 24P 2Q 2 (P 2 - Q 2 ) 2 p Y + 8 P 4 Q y ] 

= - F 2 ^ [4P 4Q V + 16P 2Q 2 (P 2 - ( ? ) W 

+ 4 [(P 2 - Q 2) 2 - 2P 2Q 2] 2p 4g 4 + 16P»Q* (P 2 - Q 2 ) 2 p 2 g 8 + 4P 4 QY] 
If these be added and simplified, it will be found that if 

H = | (p 4 - g4) [(p4 + g4) P 2 Q 2 + 2p2g2 (P 2 - Q 2) 2] (99) 
di T 2 

then t z ^ - = - - = - 2 H H sin 2h sin i (100) 

Collecting results from the seven equations (88, 90-2-4-6-8, 100), 
di T 2 

„ = — sin i {2F ,F, sin 2f, — 2FF sin 2f- 2 F 2 F 2 sin 2f2 + 20 ,0 , sin g l 

- 2 G G s i n g - 2 G 2 G 2 s i n g 2 - 2HHsin 2h} ...(101) 

This is only a partial solution, and refers only to the action of the moon 
on her own tides; the part depending on the sun alone may be written down 
by symmetry. 

The various functions of i and j here introduced admit of reduction to the 
following forms : 

^ = i (i sm* * + i sin2 j (4 sin2 i — 5 sin4 i) + \ sin4 j (1 — 5 sin2 i + ̂  sin4 i)}' 
\T=\ {sin2 i - sin4 i + sin2 j (1 - V sin2 i + 5 sin4 i) 

— sin4 j (1 — 5 sin2 i + ̂  sin4 i)} 
(102) 

F I + F 2 = \ cos j {1 — | sin2 i — § sin2 j (1 — | sin2 i)} J 
Fj - F 2 = -| cos s in 2 1 - 2 sin2 j (1 - § sin2 i) + § sin4 j (1 - \ sin2 i')j 

d + G2 = ^ cos j" 

Q1 - G2 = i cos i {1 + J sin2 i - \ sin2 j (1 + 5 sin2 i) - F sin4 j (1 - \ sin2 i)} )• 
F = ^ cos i {{ s i n 2 1 + sin2 j (1 — F sin 2i) — F sin4 j (1 — \ sin2 i)j 

G = \ cos * {1 - sin2 i - \ sin2 j (1 —V1 sin2 i) + F sin4 (1 - 1 sin2 i)} 

H = i cos j sin2 i +1 sin2 j (1 — £ sin2 i)} 
(103) 

' I 'II 'I's, Tj, T 2 are given in equations (67), and eft and 7 in equations (80). 
The expressions for F J and F 2 are found by symmetry with those for Jf, 

and _jp2, by interchanging i and j ; the first of equations (62) then corresponds 
with the second of (103), and vice versd. 

IRIS - LILLIAD - Université Lille 1 



1880] CHANGE OF OBLIQUITY. 249 

From (103) it follows that 

F, - F, + ^ (G, - Q.) = § cos t (1 - 1 sin2 J) 

and F + £G = ^ cos I (1 — f sin2 j) 

Also Fj + F2 + Gj + G2 + Η = ^ cos j 

The complete solution of the problem may be collected from the equations 
(101) and (81). 

In the case of the viscosity of the earth, and when the viscosity is small, 
we easily find the complete solution to be 

di sin 4f 
η - τ : = — r — . i si dt g 

f _ . 2Ω 
iinr cosi J T 2 (1 — f sin2 j) + τ' 2 (1 — f sin2 j ' ) —— τ 2 sec i cos j 

2Ω' 
• T ' 2 s e c Î c o s j ' - T T ' ( 1 - f sin2 - § sin2 ...(104) 

This result agrees with that given in (83) of " Precession," when the 
squares of J and J' are neglected, and when IL'JN is also neglected. 

The preceding method of finding the tidal friction and change of obliquity 
is no doubt somewhat artificial, but as the principal object of the present 
paper is to discuss the secular changes in the elements of the satellite's orbit, 
it did not seem worth while to develop the disturbing function in such a form 
as would make it applicable both to the satellite and the planet; it seemed 
preferable to develop it for the satellite and to adapt it for the case of the 
perturbation of the planet. 

In long analytical investigations it is difficult to avoid mistakes; it may 
therefore give the reader confidence in the correctness of the results and 
process if I state that I have worked out the preceding values of di/dt and 
dnjdt independently, by means of the determination of the disturbing couples 

iftt, jfL That investigation separated itself from the present one at the 
point where the products of the X'-Y'-Z' functions and 3t-|j)-52j functions are 
formed, for products of the form Y'Z' x X|9 had there to be found. From 
this early stage the two processes are quite independent, and the identity 
of the results is confirmatory of both. Moreover, the investigation here 
presented reposes on the values found for dj'/dt and dg/dt, hence the cor
rectness of the result of the first problem here treated was also confirmed. 
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I I I . 

THE PROPER PLANES OF THE SATELLITE, AND OF THE PLANET, 
AND THEIR SECULAR CHANGES. 

§ 1 3 . On the motion of a satellite moving about a rigid oblate spheroidal 
planet, and perturbed by another satellite. 

The present problem is to determine the joint effects of the perturbing 
influence of the sun, and of the earth's oblateness upon the motion of the 
moon's nodes, and upon the inclination of the orbit to the ecliptic; and also 
to determine the effects on the obliquity of the ecliptic and on the earth's 
precession. In the present configuration of the three bodies the problem 
presents but little difficulty, because the influence of oblateness on the moon's 
motion is very small compared with the perturbation due to the sun; on the 
other hand, in the case of Jupiter, the influence of oblateness is more im
portant than that of solar perturbation. In each of these special cases there 
is an appropriate approximation which leads to the result. In the present 
problem wo have, however, to obtain a solution, which shall be applicable to 
the preponderance of either perturbing cause, because we shall have to trace, 
in retrospect, the evanescence of the solar influence, and the increase of the 
influence of oblateness. 

The lunar orbit will be taken as circular, and the earth or planet as 
homogeneous and of elliptioity T, so that the equation to its surface is 

p = a {1 + e ( i - cos2 6)} 

The problem will be treated by the method of the disturbing function, 
and the method will be applied so as to give the perturbations both of the 
moon and earth. 

First consider only the influence of oblateness. 

Let p, 6 be the coordinates of the moon, so that p = c and cos 6 = M3. 

In the formula (17) §2, r = c and - = £ (£ — M3

2), so that the disturbing 

function 
W = rt ( i - M 3

2 ) 

This function, when suitably developed, will give the perturbation of the 
moon's motion due to oblateness, and the lunar precession and nutation of 
the earth. 
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By (21) we have 

M s = sin i [p1 sin (I + iV) — g2 sin (I — iV)] + sin j cos i sin I 

where I is the moon's longitude measured from the node, and N is the 
longitude of the ascending node of the lunar orbit measured from the 
descending node of the equator. 

As we are only going to find secular inequalities, we may, in developing 
the disturbing function, drop out terms involving I; also we must write 
N — Y for N, because we cannot now take the vernal equinox as fixed. 

Omitting all terms which involve I, 

M,2 = sin2 i \_\ (pl + q<) - py cos 2 (A1" - y)] + \ sin2 j cos2 i 

+ sin j sin i cos i [p* — g2] cos (N — y) 

Since j3 = cosAj, q = sm^j, we have 

p* + q4 = 1 — £ sin2 j , p2g2 = is in 2 j , p* — g s = cosj 
and 

M/ = £ sin2 i (1 - \ sin2 j ) + £ sin2 j (1 - s in 2 1) 

+ \ sin 2i sin 2j cos (N — y) — { sin2 i sin2 j cos 2 (N~ — y) 

Now £ (sin2 i + sin2 j) — f sin2 i sin2 j — ^ = — ^ (1 — f sin2 i) (1 — f sin2 j ) 

Wherefore 

W = Tt {¿(1 - I sin2 i) (1 - 1 sin2 j ) - £ sin 2i sin 2j cos (A7 - -f) 

+ i sin21 sin2 j cos 2(N-y)} .. .(105) 
This is the disturbing function. 

Before applying it, we will assume that i and j are sufficiently small to 
permit us to neglect sin2 i sin2j compared with unity. 

Then 

I (1 — | sin2 i) (1 — § sin2 j ) = TV + i — £ s i n 2 * ~* I s i n 2 i + sin21 sin2 j — ^ sin2 i sin2 j 

= ^ + \ cos 2i cos 2j — \ sin21 sin2 j 

Hence, when we neglect the terms in ain't sin" j , 

W = \T% \ \ + cos 2i cos 2j - sin 2i sin 2j cos (A7" — y)) (106) 

Since this disturbing function does not involve the epoch or we have 
by (13), (14), and (18) 

f . .dj dW f . .dN dW 
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Thus as far as concerns the influence of the oblateness on the moon, and the 
reaction of the moon on the earth, 

P . . dj 
j sin j ^ = — \ t Z sin 2i sin 2j sin (N— i/r) 

I sin j = — ^rt (cos 2i sin 2j + sin 2i cos 2j cos (iV — 1̂ ·)} 
di 

n sin t ^ = ^ T E sin 2i sin 2j sin (iV — i|r) 

.d-^r 

.(107) 

« sin i ~ = — ^rt (sin 2i cos 2j + cos 2i sin 2j CO3 (iV — yfr)] 

If there be no other disturbing body, and if we refer the motion to the 
invariable plane of the system, we must always have N = i|r. 

In this case the first and third of (107) become 
dj = di 
rfi di 

and the second and fourth become 
P . .dN . .dilr , . „ , . , . . 
' sin j - - = w am » - ' = — ^T£ sm 2 (* + j ) 

But g/k is proportional to the moment of momentum of the orbital 
motion, and n is proportional to the moment of momentum of the earth's 
rotation, and so by the definition of the invariable plane 

k SM J = n SIN 1 
.(108) 

Wherefore = , and it follows that the two nodes remain coincident. dt dt 
This result is obviously correct. 

In the present case, however, there is another disturbing body, and we 
must now consider— 

The perturbing influence of the sun. 
Accented symbols will here refer to the elements of the solar orbit. 
We might of course form the disturbing function, but it is simpler to 

accept the known results of lunar theory; these are that the inclination of 
the lunar orbit to the ecliptic remains constant, whilst the nodes regrede with 

igular velocity f ^ j 1 — | li cosj. 

Now I f q J 12 = £ (|I2' 2) x = I — in our notation. Hence I shall write 
FI'Y F 

12, although if necessary (in Part IV.) I shall use 

an anc 

1 — f o r 3 1 X2' 
3 _ 

5 X 2 

the more accurate formula for numerical calculation. 
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For the solar precession and nutation we may obtain the results from 
(107) by putting j = 0, and T ' for T . 

Thus for the solar effects we have 

dj 
dt 

dN 
dt 
dì 
dt 

^ = 0 

= ο 
η sin i = — £τΈ sin 2i 

.(109)* 

When the system is perturbed both by the oblateness of the earth and 
by the sun, we have from (107) and (109), 
Ξ . . dj 
k S i n j DT 

Ξ . .dN 

. . di 
» S 1 I 1 1 τ = 

dt 
η sin ι dt 

• \τΙ sin 2i sin 2j sin (Ν — ψ) 

- {cos 2i sin 2j + sin 2i cos 2j cos (Ν — -ψ·)] — I ^ | sin 2j 

Art sin 2i sin 2j sin (Ν — ψ) 

%τΖ {sin 2i cos 2j + cos 2i sin 2j cos (Ν — ψ)} — ir't sin 2i 

.(110) 
The second pair of equations is derivable from the first by writing i for j 

and j for i; N for i/r and i/r for iV; n for f/A"; ra for II; and |E for ^ in the 
term in T ' . 

The first pair of equations may be put into the form 
d (2j) k 

cos 2j \^ = — - T£ sin 2i cos j cos 2j sin (iV — i|r) 
dN k 

sin 2j = — ^ T0 {cos 2i cos j sin 2j + sin 2* cos j cos 2j cos (JV — i/r)} - ^ s i n 2 j c o s j 

* The following seems worthy of remark. By the last of (109) we have d\pldt = - r't cos ijn. 

In this formula I is the precessional constant, because the earth is treated as homogeneous. 
The full expression for the precessional constant is ( 2 C - A - B ) / 2 C , where A, B, C are the 

three principal moments of inertia. 
Now if we regard the earth and moon as being two particles rotating with an angular 

velocity (1 about their common centre of inertia, the three principal moments of inertia of 
the system are Mmc'2j(M + m), Mmc2l(M+m), 0, and therefore the precessional constant of the 
system is J. Thus the formula for dN/dt is precisely analogous to that for d\j//dt, each of them 
being equal to r' x prec. const, x cos inclin. +- rotation. 
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254 EQUATIONS OF MOTION OF PLANET AND SATELLITE. [6 

Let 

Therefore 

dz 
Ldt~ 

y = \ sin 2j sin 2V, rj = ^ sin 2i sin -ty 

z = \ sin 2j cos N, (f = 2
 ß i n 2i cos 

„ 0 .d(2?') . , , . „.dN 
•• cos JV cos 2} — ,,- — sm TV sin 2i J dt J dt 

} .(111) 

k 

or 

Again 

dz 
dì '' 

dy 
di 

^ rt [cosj cos 2 j . 2IJ + cos 2i cos j . 2y\ + i C 0 S J • ^ 

/ÄTK , , T' A krt . „ . 
^-jj- cos 2Î cos^ + Ï £2 c o s J J y + -7F- C O S

 J cos 2j . 7; 

. ,T n.d(2i) ,T . n.dN 
sin JV cos 2? -—r1 + cos A sin 2i - T -17 rt« •'eft 

= — [cos j 1 cos 2j . 2£+ cos 2i cos j . 2Z] — \ ~ cosj. 2Z 

/krt N . . , . T' A ATE . 
= — cos 2i cosj + I ^ cos .z Y cos j cos 2/ . Ç 

Let 

and we have 

kre 

OI = — , I I 
n 

.(112) 

¿2 = (CTJ cos 2'i cos j + (I2 cos j ) y + »I cosj cos 2j. v 

dy 
dt ' — (a, cos 2i oosj + » 2 cos j ) z — cos j cos 2j . Ç 

and by symmetry from the two latter of (110) 

DT 

.(113) 

dt 

drj 

(òj cos 2j cos ì -f- 62 cos i) 7] + &! cos i cos 2 i . y 
.(114) 

^ = — (òj cos 2J cos i + b2 cos i) Ç" — 6X cos i cos 2i. zj 

These four simultaneous differential equations have to be solved. 

The as and b'a are constant, and if it were not for the cosines on the right 
the equations would be linear and easily soluble. 

I t has already been assumed that i and y are not very large, hence it would 
require large variations of i and j to make considerable variations in the coeffi
cients, I shall therefore substitute for i and j , as they occur explicitly, mean 
values i0 and j 0 I and this procedure will be justifiable unless it be found 
subsequently that i and j vary largely. 
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Let 

SOLUTION OF THE EQUATIONS. 255 

A = OJ COS 2ia COS j 0 + a? COS j 0 , ¡3 = by COS 2jQ COS ia + £2 COS i0 

A = OJ COS j 0 COS 2j 0, B = bx COS i0 COS 2i0 

.(115) 

(Hereafter i and j will be treated as small and the cosines as unity.) 

d z 
Then 

dt = AY + &7) 

i s — — 1 * 

d v 

d ì 

•(116) 

These equations suggest the solutions 

z = 2Z cos (id + m), £= £Z'cos(*:£ + m) 

y = 2Z sin (KI + m), 7; = %L' sin (*£ + m) 

Substituting in (116), we must have 

- LK = AL + aZ'; -L'K = 0L' + BL 

Wherefore \ - = — l c + a — — -

L a K + P 
and (K + A) (* + /3) - ab = 0 or K* + K (A + /3) + ec£ - ab = 0 

This quadratic equation has two real roots («, and K2 suppose), because 
(A + /3)2 - 4 (A/3 — ab) = (A — /3)2 + 4ab is essentially positive. 

Let «!+*,= - (A + ¿8) "1 
= - {(A - /3)2 + 4ab}*J 

and the solution is 

£ sin 2j cos N = z = Z, cos (K, ' + m,) + Z a cos (/c2£ + m2) "] 

^ sin 2j sin N = y = Z 2 sin («j4 + mj) 4- Z 2 sin + m2) 

I sin 2i cos i/r = f = Z / cos («!* + mj) + A'COS (*2* + m2) 
£ sin 2i sin Y = T) = LI sin (^f + m2) + Z 2 ' sin (K2£ + m2) 

Z / _ «1 + A_ b Z a ' _ «2 + « _ _ b 
~ *I + / 3 ' ~Za a _ 

.(117) 

where 
« 2 + # 

.(118) 

Z 2 a 

From these equations we have 

\ sin2 2j = A2 + Z 2

2 + 2Z 1Z 3 cos [(«! - «2) * + ™I - MJ 

^ sin2 2% = A' + Z 2 ' + 2Z1'Z2'cos [(*I - O ' + m ! - m j 

From this we see that sin 2j oscillates between 2 (Z 2 + Z 2) and 2 (A ~ Z2), 
and sin 2i between 2 (Z/ + Z2') and 2 (Z/ Z2')-
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Let us change the constants introduced by integration, and write 
L1 = ^ sin 2j„, Li = \ sin 2i 0 

Then our solution is 

sin 2j cos iV = sin 2j0 cos (tc^ + nij) -— sin 2i„ cos (/c2t + m2) 
/C% -f" CI 

sin 2 j sin iV = sin 2j„ sin + m^ sin 2i„ sin (« ai + m2) 
K.2 + a 

sm 2i cos i|r = - - 1

 8in 2 j 0 cos (K-J, + m^ + sin 2 i 0 cos (*:2t + m2) 

# -4- Qt 
sm 2 J sin i f r = 5 sin 2j0 sin («!* + m^ + sin 2i0 sin (KJ + m2) 

I...(119) 

From this it follows that 

sin 2i sin 2j cos ( N - y } r ) = - ^_±i! s j n 2 2j 0 . 
AC 2 + a 

sin2 2 i 0 

1 + — J sin 2i0 sin 2/0 cos [(«! — «2) £ + m1 — m2] 
/ c 2 ~\- ct/ 

in 2 i sin 2 j sin (JV_ - i / r ) = (l - / c L ± J * N j s i n 2 i D sin 2ja sin [(*, - «2) i + m t - m2] sm 

Now (*! + a) (/c2 + a) = — («j + a) (^ 4 - /3) = — ab 
«i + « 2 + 2 a = a — 8 

Therefore 

sin 2i sin 2j cos (W — ^jr) • 
K2 + a 

[a sin2 2 i „ — b sin2 2j0 1 
— (a — 8) sin 2i„ sin 2y0 cos [(«! — k 2 ) £ + m, — m2]} [· 

sin 2 i sin 2 j sin (iV — t|t) = — -—— sin 2i0 sin 2j0 sin [(«! - k 2 ) t + m t - m„] 
fC2 ~\~ CL 

• ( 1 2 0 ) 

From ( 1 2 0 ) it is clear that the nodes of the lunar orbit will oscillate about 
the equinoctial line, if 

a sin2 2ia ~ b sin2 2ja be greater than (a — 8) sin 2i0 sin 2j0 

but will rotate (although not uniformly) if the former be less than the latter. 
With the present configuration of the earth and moon 
a sin2 2 i 0 ~ b sin2 2j0 is very small compared with (a — ,S)sin 2i„sin 2j0 

and the nodes of the lunar orbit revolve very nearly uniformly on the ecliptic; 
also the inclination of the orbit varies very slightly, as the nodes revolve. 

In the investigation in Part II . the secular rate of change in the inclina
tion of the lunar orbit has been found, on the assumption that the nodes of 
the lunar orbit rotate uniformly. 
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It is intended to trace the effects of tidal friction on the earth and moon 
retrospectively. In the course of the solution the importance of the solar 
perturbation of the moon, relatively to the influence of the earth's oblateness, 
will wane; the nodes will cease to revolve uniformly, and the inclination of 
the lunar orbit and of the equator to the ecliptic will be subject to nutation. 
The differential equations of Part II. will then cease to be applicable, and 
new ones will have to be found. 

The problem is one of such complication, that I have thought it advisable 
only to attempt to obtain a solution on the hypothesis of the smallness both 
of the obliquity and of the inclination of the orbit to the plane of reference or 
the ecliptic. I t seems best however to give the preceding investigation, 
although it is more accurate than the solution subsequently used*. 

The first step towards this further consideration is to obtain a clear idea 
of the nature of the motions represented by the analytical solutions (118) or 
(119) of the present problem. 

Assuming then i and j to be small, we have from (112) and (115) 
a = a\ + a2, & = a1, /3 =&!+&;,, b = \ (121) 

j cos N = Xj cos (*!*• + m,) + L2 cos (x2t + m 2 ) ' 
j sin iV = Zj sin (^t + m,) + Z 2 sin («2f + m2) n 

i cos ifr = cos (^t + mx) + Z2' cos (AC2£ + m3) 

i sin yfr = L{ sin («,< + m,) + L- sin (K2£ + ma) . 
Take a set of rectangular axes; let the axis of x pass through the fixed 

point in the ecliptic from which longitudes are measured, let the axis of z' be 
drawn perpendicular to the ecliptic northwards, and let the rotation from x 
to y be positive, and therefore consentaneous with the moon's orbital motion. 

A is the longitude of the ascending node of the lunar orbit, and there
fore the direction cosines of the normal to the lunar orbit drawn northwards 
are, 

sinjcos(A r — ^ T T ) , sinj sin (A7" — %TT), cosj 
or since j is small, jsinN, —jcosN, 1 

And \ / r is the longitude of the descending node of the equator, and there
fore the direction cosines of the earth's axis, drawn northwards are, 

sin i cos (yfr + \ 7 r ) , sin i sin (•>r

r + i71"). c o s ^ 
or since i is small, — i sin i | r , i cos i / r , 1 

Draw a sphere of unit radius, with the origin as centre; draw a tangent 
plane to it at the point where the axis of z' meets the sphere, and project 
on this plane the poles of the lunar orbit and of the earth. We here in fact 

* See the foot-note to g 18 for a comparison of these results with those ordinarily given. 

D. ii. 17 
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map the motion of the two poles on a tangent plane to the celestial sphere. 
Let x', y' be a pair of axes in this plane parallel to our previous x', y'\ and 
let x', y' be the coordinates of the pole of the lunar orbit, and f', 97' be the 
coordinates of the earth's pole, so that 

x' =jsin N, y' = —jcosN; (?' = — isinyfr, 77' = 1 cos ^ „.(123) 
Let x, y, f, 77 be the coordinates of these same points referred to another 

pair of rectangular axes in this plane, inclined at an angle cp to the axes x, y'. 
Then x = x' cos cf> 4 y' sin cp, f = £' cos <f> + */' sin cp 

y = — x' sin (f> + y' cos cf>, 77 = — £' sin (p + y cos cp 
From (123) and (118) we have therefore 

x = Li sin (*i£ + m2 — cf>) + Z 2 sin (KJ, 4- m2 — <£) 
2/ = — Z , cos («!* + m t — r£) — Z 2 cos (K.^ + m 2 — </>) 

f = — Z / sin («!< 4- nii — cf>) — Z 2 ' sin («2f 4- m a — 0) 

77 = Z / cos (KJ + ni! — cp) 4- Z A ' cos (/c2i 4- m a — $) 
Now suppose the new axes to rotate with an angular velocity K2, and that 

cp = K.2t 4- m2. 
Then x = Z ! sin [(«x — /fa) £ 4- nil — m 2] 

y + L2 = — Li cos [(KI — «a) 14- mj — m 2] 
f = — Li sin [(K, — *:2) < 4- im — m 2] 

77 — Z / = Z / cos [(/Cj — K2) t 4- in, — m 2] 
These four equations represent that each pole describes a circle, relatively 

to the rotating axes, with a negative. angular velocity (because «x — K2 is 
negative). The centres of the circles are on the axis of y. The ratio 

distance of centre of terrestrial circle Z / _/c24-o_ b 
distance of centre of lunar circle — Z A a «a 4-/3 

the distances being measured from the pole of the ecliptic. And the ratio 
radius of terrestrial circle Z / _ KY 4- a _ b 

radius of lunar circle L y a KX+ /S 
According to the definitions adopted in (117) of KI and K2, («i4-a)/a is 

negative and (*24- «)/a is positive; hence Li has the same sign as Z / , and Z 2 

has the opposite sign from Z 2 \ When t= — (mj — m2)/(«i — * z ) , we have 

* = 0, y = ( - / * ) - £ „ £ = 0, T , = Z 2 ' 4 - Z I ' 
In fig. 6 let 0«, Oz/ be the rotating axes, which revolve with a rotation 

equal to /c2, which is negative. Let M be the centre of the lunar circle, 
and Q of the terrestrial circle. Then we see that Z and P must be 
simultaneous positions of the two poles, which revolve round their respective 
circles with an angular velocity K2— in the direction of the arrows. 

.(124) 
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M and Q are the poles of two planes, which may be appropriately called the 
proper planes'of tlie moon and the earth. 
These proper planes are inclined at a con
stant angle to one another and to the ecliptic, 
and have a common node on the ecliptic, and 
a uniform slow negative precession relatively 
to the ecliptic. 

The lunar orbit and the equator are in
clined at constant angles to the lunar and ter
restrial proper planes respectively, and the 
nodes of the orbit, and of the equator regrede 
uniformly on the respective proper planes. 

In the Mécanique Céleste (livre vii., chap. 2, 
sec. 20) Laplace refers to the proper plane 
of the lunar orbit, but the corresponding 
inequality of the earth is ordinarily referred 
to as the 19-yearly nutation. I t will be proved later, that the above results 
are identical with those ordinarily given. 

Suppose that 

I = the inclination of the earth's proper plane to the ecliptic 
J = the inclination of the lunar orbit to its proper plane 
I, = the inclination of the equator to the earth's proper plane 
J, = the inclination of the moon's proper plane to the ecliptic 

Then 

F I B . 6. 

\ (127) 

J — Llt I — X3', I, = A , J, A 
and by (125-6) 

T = _ Î L ± F J = . 
« 1 + 0 J ; J ,= - ' l = *L+F3J 

Thus I and J are the two constants introduced in the integration of the 
simultaneous differential equations (116). ' 

It is interesting to examine the physical meaning of these results, and to 
show how the solution degrades into the two limiting cases, viz.: where the 
planet is spherical, and where the sun's influence is evanescent. 

Let It be the speed of motion of the nodes, when the ellipticity of the 
planet is zero. 

Let I be the purely lunar precession, or the precession when the solar 
influence is nil. 

17—2 
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Let TIL be the ratio of the moment of momentum of the earth's rotation to 
that of the orbital motion of the two bodies round their cofnmon centre of 
inertia. 

MI. I T ' * TZ kn 

Then N - i j j , 1 = - , TN = T 

and by (121) and (115) we have A = ML + N, a = ML, FT = L + ~, b = I 

First suppose tltat IT is large compared with I. 

S 
This is the case at present with the earth and moon, because the speed of 

motion of the moon's nodes is very G T C A T compared with the speed of the 
purely lunar precession. 

Then a, ft, b are small compared with a. 
Therefore by (117) 

«I — «S = — A + ft, «1 + «A = — « — ft 

and K-i = — A., K2 = — FT 
Therefore 

b b I I . , , 
T = ~ approximately «1 + FT A-FT N _ ( 1 _ M ) L _ R L £ N 

a a I . , 
M - approximately KS + A A — FT It 

T + T 

E, IT2 — *r, = IT approximately 

And by (127) L = - J, J, = M-I 
' IT It 

We have shown above that — K2 is the common angular velocity of 
the pair of proper planes, and the above results show that it is in fact the 
luni-solar precession. 

the angular velocity of the two nodes on their proper planes, and 
it is nearly equal to It. 

The ratio of the amplitude of the 19-yearly nutation to the inclination of 
the lunar orbit is L/lt. 

The ratio of the inclination of the lunar proper plane to the obliquity of 
the ecliptic is ML/N. 

In this case, therefore, the lunar proper plane is inclined at a small angle 
to the ecliptic, and if the earth were spherical would be identical with the 
ecliptic. 
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Secondly, suppose that n is small compared with 1 . 

Then d fortiori is small compared with I. Hence we may put 8 = ^ 

Therefore 

- ^ = V(a - BY + 4ab = a + b + n, nearly 

/c2 + /e, = - ( m + i ) l - n 

N / - I M M n 

« a + j 8 = 1 _ i n + 1 L . ! T \ 

b m + i l ' a ~ m \ M + IL) 
Therefore 

From the last of these, 

I - J > * » 1 
' m + i I 

— *2 is the precession of the system of proper planes, and the above results 
show that the solar precession of the planet and satellite together, considered 
as one system, is one (itl + l)th of the angular velocity which the nodes of the 
satellite would have, if the planet were spherical. 

/ca — Ki is the lunar precession of the earth which goes on within the 
system, and it is approximately the same as though the sun did not exist. 
(Compare the second and fourth of (107) with N=ijr, and use (108).) 

It also appears that the lunar proper plane is inclined to the planet's 
proper plane at a small angle the ratio of which to the inclination of the 
earth's proper plane to the ecliptic is equal to one ( m + l)th part of n / I . 

If IX and I are of approximately equal speeds the proper plane of the moon 
will neither be very near the ecliptic, nor very near the earth's proper plane. 
The results do not then appear to be reducible to very simple forms; nor are 
the angular velocities K2 and «A — SO easily intelligible, each of them being 
a sort of compound precession. 

If the solar influence were to wane, M and Q, the poles of the proper 
planes, would approach one another, and ultimately become identical. The 
two planes would have then become the invariable plane of the system; and 
the two circles would be concentric and their radii would be inversely pro
portional to the two moments of momentum (whose ratio is t i l ) . 
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Now in the problem which is to be considered here the, solar influence 
will in effect wane, because the effect of tidal friction is, in retrospect, to 
bring the moon nearer and nearer to the earth, and to increase the ellipticity 
of the earth's figure; hence the relative importance of the solar influence 
diminishes. 

We now see that the problem to be solved is to trace these proper planes, 
from their present condition when one is nearly identical with the ecliptic 
and the other is the mean equator, backwards until they are both sensibly 
coincident with the equator. 

We also see that the present angular velocity of the moon's nodes on the 
ecliptic is analogous to and continuous with the purely lunar precession on 
the invariable plane of the moon-earth system; and that the present luni-
solar precession is analogous to and continuous with a slow precessional 
motion of the same invariable plane. 1 1 

Analytically the problem is to trace the secular changes in the constants 
of integration, when a, a, ,8, b, instead of being constant, are slowly variable 
under the influence of tidal friction, and when certain other small terms, also 
due to tides, are added to the differential equations of motion. 

§ 14. On the small terms in the equations of motion due directly 
to tidal friction. 

The first step is the formation of the disturbing function. 
As we shall want to apply the function both to the case of the earth and 

to that of the moon, it will be necessary to measure longitudes from a fixed 
point in the ecliptic; also we must distinguish between the longitude of the 
equinox and the angle x , as they enter in the two capacities (viz.: in the 
X'Y' and functions); thus the N and N' of previous developments must 
become N — y , N' — y ' ; e, e' must become e — y , e — y ' ; and 2 (x — x') 
must be introduced in the arguments of the trigonometrical terms in the 
semi-diurnal terms, and X~X in the diurnal ones. 

The disturbing function must be developed so that it may be applicable 
to the cases either where Diana, the tide-raiser, is or is not identical with the 
moon; but as we are only going to consider secular inequalities, all those 
terms which depend on the longitudes of Diana or the moon may be dropped. 

In the previous development of Part II . we had terms whose arguments 
involved e — e'; in the present case this ought to be written 

(M + e - y) - (n't + e - y') 
for which it is, in fact, only an abbreviation. 

A term involving this expression can only give rise to secular inequalities, 
in the case where Diana is identical with the moon; and as we shall 
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never want to differentiate the disturbing function with regard to O', we 
may in the present development drop the ILT and OFT. 

Having made these preliminary explanations, we shall be able to use 
previous results for the development of the disturbing function. The work 
will be much abridged by the treatment of t, j , i', j as small. 

Unaccented symbols refer to the elements of the orbit of the tide-raiser 
Diana, or (in the case of i, %, YJR) to the earth as a tidally distorted body; 
accented symbols refer to the elements of the orbit of the perturbed satellite, 
or to the earth as a body whose rotation is perturbed. 

Since i, i' and are to be treated as small, (22) becomes 

.(128) 

The same quantities when accented are equal to the same quantities when 
i, j , N, YJR are accented. 

Referring to the development in § 5 of the disturbing function, we 
see that, for the same reasons as before, we need only consider products of 
terms of the same kind in the sets of products of the type X'Y r x 
Hence the disturbing function W is the sum of the three expressions (3?-9) 
multiplied by T T ' / J . N O W since we only wish to develop the expression > as 
far as the squares of i and j , we may at once drop out all those terms in these 
expressions, in which * occurs raised to a higher power than the second. 
This at once relieves us of the sidereal and fast semi-diurnal terms, the fast 
diurnal and the true fortnightly term. We are, however, left with one part 
°f I (i ~~ Cs — J2>3)> which is independent of the moon's longitude and of 
the earth's rotation; this part represents the permanent increase of ellipticity 
of the earth, due to Diana's attraction, and to that part of the tidal action 
which depends on the longitude of the nodes, in which the tides are assumed 
to have their equilibrium value. I shall refer to it as the permanent tide. 

As before, it will be convenient to consider the constituent parts of the 
disturbing function separately, and. to indicate the several parts of W by 
suffixes as in § 5 and elsewhere; as above explained, we need only consider 
W : , Wlt W2, and W„. 

Semi-diurnal term. 
From (37) we have 

W x / — =• $ [ F y g ' V - * - " ' + F 1 ^ / ' ' e - i ! , e ' - 9 ) + 2 , \ ] 
/ fl 

To the indices of these exponentials we must add + 2 (x — x'), and for 8 
write e — YJR, and for 6', e — T]T. 
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By (128) •er* = 1 - ^ - £j 2 - ije 

= l _ - $p - i'j'e-iN'~W 
Hence 

Wj / ^ = | F , {(1 - - ij» - - ij'=) cos [2 ( X - x ' ) + 2 (*' - «) 

- 2 ( t ' - t ) - 2 f 1 ] 
- t j c o s [2 ( x - x ' ) + 2 ( e ' - e ) - 2 ( ^ ' - - f ) + ( i v r - Y - ) - 2 f i ] 

- i'j' cos [2 ( x - x ' ) + 2 (e' - e) - 2 (i|r' - ^) - (N'~V) ~ 2 f i])• • - ( 1 2 9 ) 

iSZow diurnal term. 
From (38) we have 

= G, [w"*wVd»»-«>-». + ^»« O T '^ 'e- 2^"" 8 ) + B l] 

To the indices of the exponentials we must add + ( X ~"x)'> 'a'3 m a v 

be obviously put equal to unity, and by (128) 
«*' = £ [H' + i'je^-» + ij'e-^-*') + jfe^'^""'^ 

Hence 

W l / T = *G l c o s [ { x ~x' ) + 2 ( e ' " e ) " 2 (*' ~ * } g l ] 

+ cos [ ( x - x') + 2 («' - e) - 2 ( f - yfr) + (tf- ^) - gJ 
+ tj" cos [ ( x - x') + 2 (<•' - 0 - 2 - rfr) - (N' - +') - gJ 
+J»7 cos [(x - x') + 2 (e' - e) - 2 (i// - yjr) + (N ~ N ' ) - ~ ~ 8Jl 

(130) 

Sidereal diurnal term. 
From (38) we have 

/

/ 
T T -g- = G [CT/C ('075' — *«) (w's'' — «'«') e _ g 

+ CTK (OTCT - KK) -of'*' ( ^ V - *'*') e8] 
To the indices of the exponentials must be added ±(X~ x')- 'EJ'» w ' m a y 

be treated as unity. Hence the expression becomes 

G [KK'ex-x'-* + K*'e- (x-x'1 + 1 !] 

and W j " y = £ G {n COS ( X - x' - g) 

+ cos [(x - x') - (N - yjr) - g] 

+ V* cos [(x - x') + (JJT' - ^') - g] 
+jf cos [(x - x') - { N - N') + (yfr-^ "f) ~ gll • • -( 1 3 1) 
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Permanent term. 

From (39) we have 

W 0 / — = § ( i - 2 N R W / £ / E ) ( I - 2 = r V « V ) 

~ ^ ~ K K — K'K to our degree of approximation 
Now 

KK = I [ > ' • + j* + ij ( E * - + + e-w-V)] = Ì [ I ' 2 + J A + 2ij C O S (iV - I / R ) ] 

Hence 

£ - i [*' + j 2 + 2 y c ° 9 (A7 - ^ ) ] - I [>"A +P + cos (AT - ^')] 
( 1 3 2 ) 

W2 and W0 are the only terms in W which can contribute anything to the 
secular inequalities, unless Diana and the satellite are identical; for all the 
other terms involve e— e', and will therefore be periodic however differentiated, 
unless E = e. 

We now have to differentiate W with respect to i', IFR, j ' , E , N'. The 
results will then have to be applied in the following cases. 

For the moon: 
(i) When the tide-raiser is the moon. 
(ii) When the tide-raiser is the sun. 

For the earth: 

(iii) When the tide-raiser is the moon, and the disturber the moon. 
(iv) When the tido-raiser is the sun, and the disturber the sun. 
(v) When the tide-raiser is the moon, and the disturber the sun. 
(vi) When the tide-raiser is the sun, and the disturber the moon. 

The sum of the values derived from the differentiations, according to 
these several hypotheses, will be the complete values to be used in the 
differential equations (13), (14) and (18) for dj/dt, dNjdt, dijdt, dyfr/dt. 

A little preliminary consideration will show that the labour of making 
these differentiations may be considerably abridged. 

In the present case i andy are small, and the equations ( 1 1 0 ) which give 
the position of the two proper planes, and the inclinations of the orbit and 
equator thereto, become 

k dt 
— Tti sin (N — IFR) 

— Tti COS (N — L / R ) 

> (133) 
di 

ndt 

. . D-DR 
n sin i ~ 

- ( T £ + T'Z) i — RTJ cos (N - YJR) 

rtj sin (A7" — I ^ R ) 
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We are going to find certain additional terms, depending on frictional 
tides, to be added to these four equations. These terms will all involve T 8 , 
T ' ' 2 , or T T ' in their coefficients, and will therefore be small compared with 
those in (133). If these small terms are of the same types as the terms in 
(133), they may be dropped; because the only effect of them will be to 
produce a very small and négligeable alteration in the position of the two 
proper planes*. 

In consequence of this principle, we may entirely drop W 0 from our 
disturbing function, for W, only gives rise to a small permanent alteration 
of oblateness, and therefore can only slightly modify the positions of the 
proper planes. 

' Analytically the same result may be obtained, by observing that W0 in 
(132) has the same form as W in (105), when i and j are treated as small. 

In each case, after differentiation, the transition will be made to the case 
of viscosity of the planet, and the proper terms will be dropped out, without 
further comment. 

First take the perturbations of the moon. 

For this purpose we have to find dW/dj' and 

dW , ., dW dW , ., dW 
m , + tnn^j - or + i j 

Sinj'dN'^—*J de j'dN'^^ de' 
By the above principle, in finding dW/dj' we may drop terms involving 

j and i cos (N — Y), and in finding dW/j'dN' + ^j'dW/de', we may drop 
terms involving i sin (Ar — Y). 

We may now suppose X = X', Y = Y'• 

Take the case (i), where the tide-raiser is the moon. As the perturbed 
body is.also the moon, after differentiation we may drop the accents to alb 
the symbols. 

From (129) 

wl i = i F i {" j c o s 2 f i ~ *cos ( i Y _ f + 2 f i ) } 

= \i sin (N - Y) sin 4f3 (134) 

£ dN 
* For example, we should find the following terms in v s i n j — , viz.: H DT 

cos (N- ^) s in 2 g y + J [ j + i c o s [N-^ [ s in a 21! - s in 2 g t - s in 2 g] ^ 

which may be all coupled up with those in the second of (133). 

If the viscosity i>e small, B O that the angles of lagging are small, it will be found that all the 
terms of this kind Danish in all four equations, excepting the first of those just written down, 
viz.: - 4 j ' r T ' / g . * , 
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FROM (130) 
dW AT8 

-d/V g =
 1 ° · I* c o s

 + + SO + 3
 c o s S>i 

=*-i*'Bin(iV"-̂ )Bin2g1 (135) 
From (131) and symmetry with (135) 

dW IT* 

^ 7 - y ^ i i s i n ( ^ - ^ ) s i n 2 g (136) 
Adding these three (134-6) together, we have for the whole effect OF the 

lunar tides on the moon 
dW IT' 

... .̂ 7 / - = \i sin (N - ^ ) [sin 4f, - sin 2 g l + sin 2g] (137) 
NOW take the case (ii) where the tide-raiser is the sun. 
Here we need only consider W», but although we may put X = %,-ty = 

i = i', we must not put j=j', N = N', because the tide-raiser is distinct from 
the MOONI 

From (131) 
' ..dWJrr 

df I 8 = ^ G ^ C°'S ^ ~ ~ G ) + J ( N ~ N > + 8 ) ] 

Here accented symbols refer to the moon (as perturbed), and unaccented 
to the sun (as tide-raiser). As we refer the motion to the ecliptic j = 0, and 
the last term disappears. Also we want accented symbols to refer to the sun 
and unaccented to refer to the moon, therefore make T and T interchange 
their meanings, and drop the accents to N' and YFR'. Thus as far as important 

^ / y = ^ s i n ( ^ - f ) s i n 2 g (138) 

This gives the whole effect of the solar tides on the moon. 
Collecting results from (137-8), we have by (14) 

g . . dN . ·. — (sin 4fx — sin 2gj + sin 2g) -f- — sin 2g 
.5 9 

(139) 
This gives the required additional terms due to bodily tides in the 

equation for dN/dt, viz.: the second of (133). 
If the viscosity be small 

sin 4fj — sin 2gi + sin 2g = s in4 f | (140) 
sin 2g = ^ sin 4f J 

Next take the secular change of inclination of the lunar orbit. 
For this purpose we have to find dW/j'dN' + ydWjde',. and may drop 

terms in i sin (N — i|r). 
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.-, d N , i G = I F , isin (N-+ + 2F2) = \i cos (N- +) sin 4F,. . . (141) 

\ j ' = I F I J S I N 2 F > = I J sin 4F2 (142) 

From (130) 
1 dW, IT* 

Y dN' i g = _ ^ s i n ^ ~ ^ + g t ^ + ; a i n g i j l = ~M + I COS ^ S I N 2GI 

(143) 
dW /r 2 

\J ^-r1J — = 0 to present order of approximation (144) 
From (131) 

1 dW / T 3 

div"7 g = ~~ ^ ° ^ a i n W-^-GI-J s i n g} = I U +I c o s ( ^ - "¥)\ s i n 2 g 
(145) 

WW / T 2 

i = 0 a b s o h l t e l v (146) 
Collecting results from the six equations (141-6), we have for the whole 

perturbation of the moon by the lunar tides 
1 dW dW\ A- 2 

J DW' + TI'L£)/q=l [ j + { c o s {N~ * ) ] ( s i n 4 f l ~ s i n 2 g l + s i n 2 g ) i 1 - ( 1 4 7 ) 

Next take the case (ii), and suppose that the sun is the tide-raiser. 
Here wo need only consider W 2. Noting that dW2/de' = 0 absolutely, we 
have from (131) 

{}DW+IJ' = - i G
 [ I

 s i n
 { N '

 s i n
 (N-N'+g)j 

Accented symbols here refer to the moon (as perturbed), unaccented to 
the sun (as tide-raiser). Therefore j = 0. Then reverting to the usual 
notation by shifting accents and dropping useless terms, this expression 
becomes 

+ \i cos (N — YFR) sin 2g (148) 

Collecting results from (147-8), we have by (13) 

| % = ~ I [j + i
 c o a

 ~ ^ (ain 4fi - s i n 2g> + sin 2g) 

- ii cos (N-YJR) — sin 2g .. .(149) 

This gives the additional terms due to bodily tides in the equation for 
dj/dt, viz.: the first of (133). 

First take the case (i), where the tide-raiser is the moon. 
From (129) 

1 d WT /V 
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If the viscosity be small 
sin 4f, — sin 2gi + sin 2g = sin 4f 1 . . Y (150) 

sin 2g = ^ sin 4f J 
Before proceeding further it may be remarked that to the present order 

of approximation in case (i) 
dW , . .„ 
-~J~R = sin 4ij 

and in case (ii) it is zeroj thus by (11) 

T ^ £ = i - ah*! ; (151) 

We now turn to the perturbations of the earth's rotation. 

Here we have to find dW/di' and 
dW dW „ . .,, dW dW 

i ^R~I — ; — • i . / o r (1 — sl ) -=-t~i — • j , I 

tan i ay^ sin i ai|r i 0,% i ffi-yr 
and in the former may drop terms in i and j cos (Ar — ty), and in the latter 
terms in j sin (iV — i/r). 

First take the case (iii), where the moon is tide-raiser and disturber. 
Here we may take JV = N', e = e, j =j' throughout, and after differentiation 
may drop the accents to all the symbols. 

From (129) 

JYJT 11 
^ , r = - *F, {i cos 2f, + j cos (iV - i/r + 2f0| = i j sin (N - i/r) sin 4f, 

(152) 
From (130) 

d W / T 2 

~dF / g = ^ C 0 S g l + J ' c o a ~ ~ gOi = i j sin (A7- - sin 2gj 
(153) 

From (131) 
dW ' T 2 

^~y-= iG { t ' c o s g + j c o s ^ - ^ + g)} =- i Js in( iV--uV)s in2g 
(154) 

Therefore from (152-4) we have for the whole perturbation of the earth, 
duo to attraction of the moon on the lunar tides, 

dW !T* 

=̂7/g - Ij sm (N-[sin 4f, + sin 2 g l - sin 2g] (155) 
The result for case (iv), where the sun is both tide-raiser and disturber, 

may be written down by symmetry; and since j = 0 here, therefore 

- ^ / i = 0 <156) 
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n sin i = \j mn (N-^ \jr) T 2 T T ' 

— (sin 4fj + sin 2gx — sin 2g) sin 2g 
_S 9 

(158) 
This gives the additional terms due to bodily tides in the equation for 

dy/dt, viz.: the last of (133). 
If the viscosity be small 

sin 4ft + sin 2gj — sin 2g = sin 4f (1 — 2\) 
sin 2g = ^ sin 4f 

•where \ = — 
n 

.(159) 

Next consider the change in tlie obliquity of the ecliptic; for this purpose 
we must find (1 — JIA) dW/idx — dW/idi]r', and may drop terms involving 
j sin (N— \/r). 

First take the case (iii), where the moon is both tide-raiser and disturber. 
From (129) 

dW / T 2 

-3^/g = - F, {(1 - »" - j 2 ) sin 2f, + ij sin (N- y - 2Q 
- ij sin (N - y + 21,)} ... (160) 

- = Fi {(1 - -i 2)sin2f x + ij s i n ( J V - ^ - 2f,)-tfjsin(JV- + 2i\)} 

rfW\ /T' 
- ^ ^ I / ^ = F 1 ^ 2 s m 2 f 1 

l~ = £F, {i sin 2f, sin (iV - y + 2fJ} 
Z5 

Therefore 

= i [i 4- j cos {N - y)] sin 4f, (161) 
From (130) 

dW IT2 

j^^-l^ {i'2 sin g, - ij sin (N - y - g,) + 1/ sin (JV - + g,) 
' + j 2 sing,}...(162) 

Next take the cases (v) and (vi), where the tide-raiser and disturber are 
distinct. Here we need only consider W a . 

/ T T > 

From (131) j - = \G \i cos g +jcos (N-y+ g)} 
When the moon is tide-raiser and sun disturber, this becomes 

- \j sin (N - y) sin 2g (157) 
When sun is tide-raiser and moon disturber it becomes zero. 
Collecting results from (155-7), we have by (18) 
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DYL g 

5 DX I 9 

= £G, {2T3 sin gi - 2ij sin (N - ^ - g,) 4- y sin (iV - YJR 4- g0 

+ j z sin gi} 

Therefore 

"1 ... ^ d V ^ 1 d W x l / T S

 I R I R . ; . • • / , T , M 1 

_ ï ( 1 - ^ D 7 - 7 d ^ J /g = i G { l 8 m g l ~J B1D ( l V" * " g l ) } 

= i [» + j c o s - * ) ] sin 2g, (163) 
From (131) 

<*X7 8 

dW, IT3 

•I 

DYJR'/ g 
; d W 3 / V 

d* ' / 8 

Therefore 

1 

= — JG } I a sin g 4- ij sin ( JV— I/R 4- g) — IJ' sin (N — — g) 4- j - sin g} 

(164) 

= èG{ - IJ ' s i n ( iV R - I /R -g )4 - i s s ing} 

^ * l - ) d x ' i d ^ - j / E - = - JG [i sin g 4-j sin (2V - I/R + g)} 

= - i 0' + J c °s ( ^ - TFR)] sin 2g.. .(165) 

Collecting results from (161-3-5), we have for the whole perturbation 
of the earth due to the attraction of the moon on the lunar tides, 

"J 0 - W a^'~\ = * [ l + J C ° S { M ~ (8i° 4 f l + 2gl~~ 2 g ) 

(166) 
The result for case (iv), where the sun is both tide-raiser and disturber, 

may be written down by symmetry; and since j = 0 here, therefore 

l n , . r t d W ldW" 
' — = ii sin 4f • (167) 

d^ * d ^ ' J / 8 

It is here assumed that the solar slow diurnal tide has the same lag as the 
sidereal diurnal tide, and that the solar slow semi-diurnal tide has the same 
lag as the sidereal semi-diurnal tide. This is very nearly true, because 12' is 
small compared with n. 

Next take the cases (v) and (vi), where the tide-raiser and disturber are 
distinct. Here we need only consider W 2 . 

FFTF ITT> 
2 ' • = - ^G {i2 sin g 4- ij sin (iV - 4- g) - ij' sin (N' - I/R' — g) 

+jj' am (iY (168) 

d%7 8 
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272 ADDITIONAL TERMS IN RETARDATION OF EARTH'S ROTATION. [6 

= iG { - if sin (iT - Y F R ' - g ) +jj' sin (N- N' + g)} 

<*X I 8 
Therefore 

• = — ^G [i sin g + j sin (JV — i/r + g)} 

When the moon is tide-raiser and the sun disturber, this becomes 
- i [i + j cos (N - )] sin 2g (169) 

When the sun is tide-raiser and the moon disturber, this becomes 
-J-i'sin2g (170) 

Collecting results from (166-7-9, 170), we have by (18), 
di (sin 4fi + sin 2gj — sin 2g) sin 2g 

9 
T T 

sin 4f sin 2g + 
(171) 

This gives the additional terms due to bodily tides in the equation for 
dijdt, viz.: the third of (133). 

If the viscosity be small 
sin 4ft + sin 2g, - sin 2g = sin 4f (1 — 2\) \ 

sin 2g = ^ sin 4f 

n yhere 
.(172) 

Also we have from (160-2-4-8) to the present order of approximation, 

I — = — * sin 4i, 
DX I 8 

and by symmetry, 

Therefore by (18) 

Now let 
K R 

5 x 7/ i = S- isin4f 

dn — sin 4f, + — sin 4f 1 (173) 
.8 9 J 

r = \ -r -~ (sin 4f, - sin 2g, + sin 2g) 

G = i r3 

A = 
f 
1 \F 
4w 

-r (sin 4fj — sin 2gj + sin 2g) + — sin 2g 
» 5 

(sin 4fi + sin 2gi - sin 2g) + ^ sin 4 f - 2 ~ sin 2g 
L-(174) 

1 pr T T ' 
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Then the four equations (139), (149), (158), and (171) may be written 

j ^ = G t - s i n ( ^ - ^ ) 

.(175) 

.(176) 

- = - Tj - Gi cos (A R - L/R) 

I ^ = D/ B i n ( JV-^ r ) 

di 

-j- = Ai + Dy cos (JV - -uV) 

Also from (151) and (173) 

— -T7 = i - s i n 4 t + 4 — B i n 4f 
dt * g ^ 8 

These six equations (175-6) contain all the secular inequalities in the 
motions of the moon and earth, due to the bodily tides raised by the sun and 
moon, as far as is material for the present investigation. The terms which 
are omitted only represent very small displacements of the proper planes and 
of the inclinations of the planes of motion of the two parts of the system to 
those proper planes. 

Reverting to the earlier notation in which 
y = j sin N , t] = i sin -̂ r 
z = j cos JV, £ = i c o s - ^ \ 

dz 

.(177) 

we easily find dt 
dy _ 
dt' 

dt 
dr\ 
dt'' 

•Tz-GZ 

•Ty-Gr, 

A£ + I)z 

An + ~Dy 

.(178) 

' These equations contain the additional terms due to tides, which are to 
he added to the equations (116), in order to find the secular displacements of 
the proper planes. 

The first application, which will be made hereafter, will be to the case 
where the viscosity is small, and it will be more convenient to make the 
transition to that hypothesis at present, although the greater part of what 
follows in this part will be equally applicable whatever may be the viscosity. 

D I I . 18 
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274 THE EQUATIONS OF MOTION. [6 

In the case of small viscosity the functions T, A, G, D will be indicated by 
the corresponding small letters y, 8, g, d. 

By (140), (150), (159), (172) we have 

. K sin4f r 

S = i _ s H L i f

[ T 2 ( l _ 2 x ) + T ' 2 - r r ' ] , 4n. ¿ = ¿ ^ ( 1 - 2 * ) - ^ ] 

where \ = — 

(179) 
In the present case where i and J are small, we have by (112) and (121) 

K 
T /3 = ^ ± T - £ 

K b = I-£ 

n 
where t = jf — , the permanent ellipticity of the earth 

.(180) 

These equations (180) are the same whether the viscosity be supposed small 
or not. 

The complete equations are 
dz . *\ 
-jt= ay + ny - (yz + gf) 
dy 
dt 
d? 
dt 
dy 
~dt 

= - (as + at) - (yy + GV) 

= FIV + by + Sf + dz 

= -08f+b*)+ Si; +dy 

.(181) 

If the viscosity be not small we have V, G, A, D in place of y, g, 8, d. As 
it is more convenient to write small letters than capitals, in the whole of the 
next section the small letters will be employed, although the same investiga
tion would be equally applicable with T, G, &c, in place of y, g, &c. 

The terms in 7, g, 8, d are small compared with those in a, a, /3, b, and 
may be neglected as a first approximation. Also a, a, j3, b vary slowly in 
consequence of tidal reaction, tidal friction, and the consequent change of 
ellipticity of the earth, but as a first approximation they may be treated as 
constant. 

If we put 
zx — Z, cos {jcj, + m,), 
y, = Li sin fat + rm), 
f, = Z / cos fat + m,), 
»7, = Li sin fat + m,), 

z2 = Z 2 cos fat + m2) 
y2 = Z 2 sin (K2« + m2) 
f3 = Z 3 ' cos fat •+ m2) 
172 = L2' sin fat + m2) 

.(182) 
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and integrating, 

.(186) 

This is the equation of conservation of moment of momentum of the 
moon-earth system, as modified by solar tidal friction. From it we obtain n 
in terms of 

§ 15. On the secular changes of the constants of integration. 

It is often found difficult on first reading a long analytical investigation 
to trace the general method amidst the mass of detail, and it is only at the 
end that the ruling idea is perceived; in such circumstances it has often 
appeared to me that a preliminary sketch would be of great service to the 
reader. I shall act on this idea here, and consider some simple equations 
analogous to those to be treated. 

Let the equations be ^ = ay, ^ = — az 

If a be constant, the solution is obviously 

z = L cos (at + m), y = — L sin (at + m) 

Now suppose a to be slowly varying; put therefore A + a't for A, and treat 
A, A' as constants. 

18—2 

by (122) or (118) the first approximation is 

z = zi + zt, y = y1 + yi, + v^Vi + v*) 

where Ll'= * 1 + g = ^ _ = K' + a_= k _ | ( 1 8 3 ) 

¿1 a + ft' X2 a «2 + ft J 
Before considering the secular changes in the constants L of integration, 

it will be convenient to take one other step. 
The equation of tidal friction (173) may be written approximately 

dn T2 + T ' ! . . i . n i l 

-dt=*—f S l n 4 f l ( 1 8 4 ) 

because sin 4f will be nearly equal to sin 4^ as long as T ' 2 is not small com
pared with T 2 . (See however § 22, Part IV.) 

Also the equation of tidal reaction (151) is 

s s - * ^ ( 1 8 5 ) 

Dividing one by the other and putting T 2 = T 0

2 f ~ l a , we have 

, dn . / T V 
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276 SIMPLE CASE OF THE VARIATION OF CONSTANTS. [6 

1 hen ^ = ay + a ty, -~ = — az — atz 

By differentiation ^ + a.2z = — a't (az — + ay 

dfy , /. / dz\ , J2+A.Y = -at(«y + T t ) - a z 

The terms on the right-hand side of these equations are small, because 
they involve a', and therefore we may substitute in them from the first 
approximation. 

d2z 
Hence + a2z= — a'L sin (at + m) — 2a atL cos (at + m) 

and a similar equation for y. 
The solution of this equation is 

z=Lcos(at + m ) + ^ Lt cos (at + m) — £ ^Zicos(ai + m) — J a'Zi2sin(a£ + m) 

The terms depending on t cut one another out, and 
z = L cos (at + m) — 4 a' Lt2 sin (at + m) 

Similarly we should find 
y = — L sin (at + m) — \ a' Lt" cos (at + m) 

The terms in t2 are obviously equivalent to a change in m, the phase of 
the oscillation; but the amplitude L is unaffected. We might have arrived 
at this conclusion about the amplitude if, in solving the differential equations, 
we had neglected in the solutions the terms depending on t2, as will be done 
in considering our equations below. In those equations, however, we shall 
not find that the terms in t annihilate one another, and thus there will be a 
change of amplitude. 

That this conclusion concerning amplitude is correct, may be seen from 
the fact that the rigorous solution of the equations 

dz dy 

is z = L cos (fadt + m„), y = — L sin (fadt + m0) 
= L cos (at + m0— Ja'tdt), = — Lsin(at + m0—Ja'tdt) 

Whence L is unaffected, whilst 
m = m0 — fa'tdt 

~ ,, . dm . da 
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d*y , „ (dy \ 

If we neglect 7, we have the first approximation 

z = L cos (of + m), y — — L sin (at + m) 

Substituting these values for z, y on the right, we have 

d2z 
-y^ + o?z = 2 7 aL sin (at + m) 

And a similar equation for y. 
The solutions are 

z= L cos (at + m) — yLt cos(af + m) 
y = — L sin (at + m) + yLt sin (at + m) 

From this we see that, if we desire to retain the first approximation as 
the solution, we must have 

1 dL , -,w 

T.S — '* ( 1 8 7 ) 

This will be true if 7 varies slowly ; hence 

and the solution is z=* £0e~frd'cos(a*.-f in) 

y = — L„e-hdt sin (a* + m) 
It is easy to verify that these are the rigorous solutions of the equations, 

when a is constant but 7 varies. 

The equation (187) gives the rate of change of amplitude of oscillation. 

The cases which we have now considered, by the method of variation of 
parameters, are closely analogous to those to be treated below, and have been 
treated in the same way, so that the reader will be able to trace the process. 

They are in fact more than simply analogous, for they are what our equa
tions (181) become if the obliquity of the ecliptic be zero and £ = 0, y = 0. 
In this case L =j, and dj/dt = —jy. 

Next consider the equations 
dz dy 

where a is constant, but 7 is a very small quantity compared with «, which 
may vary slowly. 

Treat 7 as constant, and differentiate, and we have 
d?z ; „ idz 
~dl? 

IRIS - LILLIAD - Université Lille 1 



278 VARIATION OF CONSTANTS OF INTEGRATION. [6 

This shows that the secular change of figure of the earth, and the secular 
changes in the rate of revolution of the moon's nodes do not affect the rate of 
alteration of the inclination of the lunar orbit to the ecliptic, so long as the 
obliquity is zero. This last result contains the implicit assumption that the 
perturbing influence of the moon on the earth is not so large, but that the 
obliquity of the equator may always remain small, however the lunar nodes 
vary. In an exactly similar manner we may show that, if the inclination of 
the lunar orbit be zero, dijdt = i§. This is the result of the previous paper 
" On the Precession of a Viscous Spheroid," when the obliquity is small. 

According to the method which has been sketched, the equations to be 
integrated are given in (181), when we write a + a't for a, a •+- at for a, /3 + B't 
for j3, h + b't for b, and then treat a, a, &c, d, a', &c, 7, g, &c, as constants. 

Before proceeding to consider the equations, it will be convenient to find 
certain relations between the quantities oc, a, &c, and the two roots K, and K2 

of the quadratic (K + o) (K + /3) = ab. 

We have supposed the two roots to be such that 

«1 - «2 = — V(ac — ßf + 4ab 
KiK2 = («/3 — ab) 

(188) 

Then (189) 

(190) 
KX

2K? = (a2 + ab) (ß2 + ab) - ab (a + ßf 

ß2 + ab - «!2 = (*, + K i ) (*3 + a ) 

ß2 + ab - KÌ = (KX + Ä2) («j + a) 
(191) 

oc2 + ab - KÌ1 = ( Ä 1 + * 3) (K„ + ß) 

«2 + ab - K} = (*! + KS) (*! + ß) 

K l + a = - (*S + ß)\ (192) 

ab (oc + /S) = (*, + a) (*„ + O.)(K1 + KS) 

Now suppose our equations (181) to be written as follows: 

(193) 

">y t, , ~ = —az — ag + u 
(194) 

/ = ßv+hy + o-

where s, u, a, v comprise all the terms involving a', a', &c, 7, g, &c. 
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If we write (z) as A type of z, y,Z,-n; (A) as a type of A, a, /3, b ; («') 
as a type of A', a, 8', b ' ; (7) as a type of 7, g, 8, d; and (s) as a type of s, u, 
Q , V \ it is clear that (s) is (z) (a!) t + (7) (z). 

Differentiate each of the equations (194), substitute for a f t e r 

differentiation, and write 

o = ^ + AU + au 1 

The result is 

TT du 
U = - , , — as — acr 

dt 

v da- _ , 

(aa + a b ) ^ - a ( a + /3) f + S 

(a? + ab)y-a(a+ ß)v + V 

di? ~~ 

d?y 
dt2 ~~ 

^f=- ( /3 2 + a b ) ? - b ( a + /3 )^+S 

^ = - ( / 3 2

 + a b ) ^ - b ( a + /3) 2 / + T 

.(195) 

.(196) 

From the first of these 
d?z 

- (/3s + ab) a (A + ,9) F = (£• + ab) ^ + (a2 + ab) 08" + ab) * - S (B2 + ab) 

Therefore from the third 

A («+5) 5 = ( p + A B ) £ + K A A + A B > + A B ) - A B ( « + ß y \ z 

- S (ß2 + ab) + Sa (a + 0) 
and by (190) 

d?z 
a(a + /3) ^ | = ( / 3

2 + ab) g + - S {B* + ab) + Sa (« + /?) 

Similarly 

a (« + /8) ̂  = (,5" + ab) J| + - U (ß? + ab) + Ta (a + ,9) 

b (A + ß) ^ = (H« + ab) g + ? - S («a + ab) + Sb (A + /3) 

b (A + £) ^ = (a- + ab) + - T (A* + ab) + ü b (a + ß)) 

L.(197) 
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Differentiate the first of (196) twice, using the first of (197), and we have 

G ^ ^ + a ^ G - ^ + a ^ G - ^ + ^ + ab + G S - S a ^ ^ ) 

Therefore by (190) 
d d* 

*=(/9» + ab + ^ , ) S - S a ( a + /B) 

di Writing (S) as a type of S, 2 , U, T, 

(S) is of the type (*) (a) («') t + (a) ( 7 ) (*) + («') (*) + ^ (a') t + (7) ^ 

Hence every term of (S) contains some small term, either ( A ' ) or ( Y ) . 
Therefore on the right-hand side of the above equation we may substitute 

for (z) the first approximation, viz.: (z±) + (z3) given in (182-3). 

WThen this substitution is carried out, let (SJ, (S2) be the parts of (S) 
which contain all terms of the speeds «j and «2 respectively. 

By (191) and (193) the right-hand side in the above equation may be 
written 

2 / d \ («i + Ka) (K2 + A ) Sj - ~ ( « ! + A ) (K2 + A ) ( ^ + K2) -I- (K^ + S1 

+ the same with 2 and 1 interchanged d4
 d2 

Now let D 4 stand for the operation ^ + (K,2 + K 2

2) ^ + K?K£, and we have 

I K B = ( * 1 4 . « A ) ( * . + « H S 1 - * 1 + A 2 ^ + 
df2 

(198) 

-f the same with 2 and 1 reversed 

D42/ = ( « , + « 2 ) ( K 2 + a) jUi - " J J " TJ + (W + * ) U, + &c. 

D4£ = («, + *,) (*, + 8) J 2 , - *' ^ S x J + + 2 T + &c 

D 4^ = ( K L + K2) («2 + 8) | T , - UJ + (*x« + ~ ) T x + &c. _ 

The last three of these equations are to be found by a parallel process, or 
else by symmetry. 

If the right-hand sides of (198) be neglected, we clearly obtain, on inte
gration, the first approximation (183) for z, y, f, t). This first approximation 
was originally obtained by mere inspection. 

We now have to consider the effects of the small terms on the right 
on the constants of integration //,, L2, Z/, X2' introduced in the first ap
proximation. 

IRIS - LILLIAD - Université Lille 1 



cos 
sin 

i ted + t S m [ K,T + the same with 2 for 1 J cos] 

Now consider the differential equation 

^ + (a 2 + J2) ^ + a?b*x = A cos (at + y) + Bt cos (at + y).. .(199) 

First suppose that B is zero, so that the term in A exists alone. 

Assume x= Ct sin (at + y) as the solution. 

Then ^ = G {- aH sin (at + y) + 2a cos (at + v)} 

d4x 
— = G [art sin (at + y) — 4a 3 cos (at + v)i 

By substitution in (199), with B = 0, we have 
C {- 4a s + 2a (a2 + 62)} = A 

Therefore the solution is 

X-~2LH^V)TSIN(AT + V) 

By writing y — \ir for y, we see that a term A sin (at + y) in the differential 
A 

equation would generate ^ -^- a - cos (at + y) in the solution. 

From this theorem it follows that the solution of the equation 

tF z 
is z = ^—, \ 1 —^ + the same with 2 and 1 interchanged 

and the solution of F)4z = F ^ , + F2y2 

tF £ 
is z = -— -—~—^ + the same with 2 and 1 interchanged 

Also (writing the two alternatives by means of an easily intelligible 
notation) the solutions of 

TF, 2/i 
are y = — ~—-——^ — the same with 2 and 1 interchanged 

The similar equations for D4f, D 477 may be treated in the same way. The 
general rule is that: 

The small terms on the right are, by means of the first approximation, 
capable of being arranged in one of the alternative forms 
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4*, 2 (* 1

2 -« 2 *) 2 1^ 
The similar equations for D'y, D4JJ, D 4 £ may be treated similarly. The 

general rule is that : 
tz and t% in the differential equations are reproduced, but with an opposite 

sign in the solution; and similarly ty and tn are reproduced with the opposite 
sign ; and in the solution the terms are to be multiplied by 

5K," — K.2 5K.,2 — K,2 

y and V in the differential equations generate in the solution tz and t£ 
respectively; and z and £" generate — ty and — trj respectively; and the terms 
are to he divided by 2«, (X? — K2

2) or 2K? (/e3

2 — K?) as the case may be. 
Next suppose that A = 0 in the equation (199), and assume as the 

solution 
w = Ct2 sin (at + IF) + Dt cos (at + RF) 

Then 
d2x 
-j^= G{- a2t2 sin (at + v) + 4a* cos (at + rf) + 2 sin (at + N)} 

+ D {- a2t cos (at + N) — 2a sin (at + V)} 
^ = C\aH2 sin (at + N) - 8aH cos (at + ·>?)- 12a2 sin (at + V)} 

+ D {aH cos (at + y) + 4a 3 sin (at + N)} 
Substituting in (199), we must have 

4aC(« s +& 9 ) -8a 3 t7 = JB 
and 2(C-aD)(a2+¥)-l2asC+4asD = 0 

Whence C- B = - -—B 
Wnence 0 - 4 a ( o , _ 6 a ) . »~ 4 f t 2 ( f t 2 _ b j » 
Hence the solution of (199), when A = 0, is 

* = ~ Jl2~-b2)2 B t C°S { a t + ^~ iaj<h¥) Bt*Sin (at + V) 

If t be very small, the second of these terms may be neglected. 
By writing JJ — \IR for N, we see that a term Bt sin (at + N) in the differential 

equation, would have given rise in the solution to 

* = -Jt~-b2yBtsin(at + r , ) 

t being very small. 
By this theorem we see that the solutions of the two alternative differential 

equations 

are, when t is very small, 
5K 2 — K

 2 (z 
1 \ 1 — the same with 2 and 1 interchanged 
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For the purpose of future developments it will be more convenient to 
write these factors in the forms 

1 F 2*! 1 ) 1 _ f 2K2 

2/C, (TEF — * 2

2 ) — /CA

S 2/CJ 2K 2 (K? — K?) ) « 2

2 — K? 2K. 

By means of these two rules we see that the solutions of the two 
alternative differential equations 

D 4s = A, \ Y I + *B, \LL + the same with 2 for 1 (200) 

are, so long as t is very small, 

Z = ZX + -
2«, 1 

? 1 2 * i ( * l * — 2 K 1 ( K 1

2 — K 2

2 ) 

4- the same with 2 and 1 interchanged ...(201) 

Putting for ZI, Çi, &c, their values from (182), these solutions may be 
written 

z = cos («,£ + ra,) j i ] + -
<At 

Li 
L' 

Li 

.(202) + the same with 2 for 1, 

Hence we may retain the first approximation 

z = Li cos (^t + rm.) + L2 cos (*2£ + m 2) 

as the solution, provided that L± and L2 are no longer constant, but vary in 
such a way that 

A L {L/ B L {L} dLi 
dt 

2KJ 
2KX 

.(203) 
2 K 1 ( * 1

2 - * 2

2 ) 2KI(K?-K?)\ 

and a similar equation for L2 

It will be found, when we come to apply these results, that the solution 
of the equation for D*y will lead to the same equations for the variation of 

and X2 as are derived from the equation for T>*z. 

A similar treatment may be applied to the equations for D4£ or T>4v, and 
we find similar differential equations for dL^jdt and dL2'/dt. 

These equations will be the differential equations for the secular changes 
in Lj and L2, which are the constants of integration in the first approximation. 

We will now apply these theorems to the differential equations (181); 
but as the analysis is rather complex, it will be more convenient to treat the 
variations of a, a, 8, b and the terms in 7, g, S, d independently. 

We will indicate by the symbol A the additional terms which arise, and 
will write the symbol out of which the term arises as a suffix—e.g., we shall 
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D«V 1 v 1 ' eft 
SI - " 2I = a' {j/! + î I («! - a)} + a't («I + a) z1 

= a' [yl + 2TKlz1] (204) 

Thus the equation for z is 

^ 7 I¥z = («I + K2) (K2 + a) (y2 + 2£K1 z^) — 2*I («a — a) yx 4- the same with 2 for 1 

Hence by the rules found above for the solution of such an equation 

a\ = 2 « 2 ( J _ ^ ) {(K> + *2> ^ + A ) ~ 2 " ' ~ «> 

N 

K 1 - a + 

- 2Xl + *,) (*2 + a) [ K I 3

2 F^ 2 + ¿ 1 

2«I («2 + a)' 

+ &c. 

(«1 K2) 
+ &C. 

_ «I 4- a /c 2 4- a 

WThence 

/ 1 _ DXA = _ A» «I+ g /2_ _ _ , «2 + « C205') 

\/>l dt Jo. (K1—K2)
2' \ L 2 dt Ja («1 — Hlf ' " ' 

If we form U and T, and solve the equation for D 4i/ ; we obtain the same 
results. 

Again (K-? + J^) 2I = - 2a'b ̂  = 2a'BKIJ/I 

' B (YI + 2**,*,) by (204) 
« 2 + /3 

write Aza for the additional terms in the complete value of z, which arise from 
the variation of a. Also (dLjdt)^ will be written for the terms in dL/dt which 
arise from the variation of a. 

Terms depending on the variation of a. 

We now put for a in (181) a + at. 

Hence in (194) 

s = a'ty, v. = — atz, a- = 0, v = 0 

Therefore S = a' J y - t (az - ^ ) J , 2 = - a'btz 

And by substitution from (182-3) 

SI = a' {y1 + tz-l («! — a)}, '21 = — arbtzl 

S2, 2 2 have similar forms with 2 for 1 

Then F *,« + S SI = 2a' (*, - «) ̂  = - 2*'*I (*, - «) 9 L 
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ec'BT ^ 2 * 1 ( K A

2 - * 2

2 ) 

1 - + &c. 

(KI K'TF (/£J /CA)
A 

_ 1 <E2 + A ^ _ 1 + A 

b (*! — K2)
2 1 b («1 — «2)

2 I 

The last transformation arises from 
_ / C a 4 L A « . _ KX + A 

Hence 

V d t ) - (Kl - « 2)
2 • U ; dt ) a ~ a(Kl- 0 2 · · A Z U B ; 

If we form U and T, and solve the equation for D4??, we obtain the same 
result. 

Terms depending on the variation of ¡8. 

The results may be written down by symmetry. 

z and y are symmetrical with f and n, and therefore unaccented L's are 
symmetrical with accented ones, and vice-versd; A is symmetrical with /3, 
and vice-versd. 

The suffixes 1 and 2 remain unaffected by the symmetry. 

By (192) on writing — FA + A) for «:2 + J3, and — FA + A) for K1 + J3, we 
have by symmetry with (206), 

fl_ dLf\ _ «i + A /JL_ A A A _ R , «2 + « , 2 F M 

U I dt)?-13 (*,-«,)" \L2dt)P

 p fa-K2y
k u 

And by symmetry with (205), 

F JL dLl'\ - R> *2 + A F I - /?' . ^ F L 9̂08̂1 
W * / * ~ * («1 - *.)· • W *

 p (*. - * o - ; 

Terms depending on the variation of a. 

We now put for a in (181) a + &'T. 
In (194) s = n'ty, u = - a7f, o- = 0, v = 0 

Hence the equation for f is 

— D 4? = («i + K2) fa + 2£K1,Z1) + 2«! iji + the same with 2 for 1 
a. b 

And by the rules of solution 

+ *, + 2Kl - 2/c, fa + «2) j — + A-} + &c. 

2«-! 
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« ! + A . 

Hence the equation for z is 

\ T>*z = - 2«: ( * A - A ) 77, + + * 2 ) ( « 2 + A ) fa + 2 * 1 < £ I ) 
A 

+ the same with 2 for 1 

— 2KI fa — A ) + («i + K2) ( « 2 + A ) 

2«! 

— A * = -

a'* a 2 K l fa
2
 - / C 2

2 ) L 
- 2 « ! f a + * 2 ) ( # 2 + A ) F - -

 K L + J ~ ) 
W-fc? 2KJ 

2 « I ( K J + A ) 

S I / „ „ \ 2 5A 

^ 1 ^ 2 

« 2 + A 

+ &C. 

' f a " ^ ) 2
 S 2 ( « I - * 2 ) 2 

3 + A 

— &C. 

* 2 + A 

1 fa — / C 2 ) 2 * 2 + « 2 ( « I — * 2 ) 2 + A ' 

B 

Therefore 

since f 

« 2 + A « I + A 

( 1 _ * ' H

 = _ ^ _ 5 ^ _ £ » ± F F C O - M I 

A G A I N S , B - 5 . = ^ I - Ä I + A

6 5 ' « A + / H 1 B ' J 

/ C 2 + / 3 

Also 

Therefore the equation for f is 

^ D 4 f = fa + K2)fa + 2 M F I ) + 2«^ ! + the same with 2 for 1 

Therefore 

+ & C 

fa - K2Y fa - K2Y 

Therefore S = A ' I J + at - A ? ) , S = - A ^ 

S, = A ' + - a ) } , S x - . - A ' B T F C 

S 2 , 2a have similar forms with 2 for 1 

« I 2 + ^ - J S x = 2a' («! - A ) —^ = - 2a'«! <>! - A ) ^ 
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S 

S 1 = y(*i-a)i/i> 2 1 = - 7 b y 1 

S a , S 3 have similar forms with 2 for 1 

Obviously (*», + S) S , = 0 

S i - / C ^ F L T 2 I = 2 7 * 1 y 1 (214) 

Hence the equation for z is 

- L>« = 2«, («j + «2) (« 2 + a) 2/1 + the same with 2 for 1 
7 

mi r 1 * tf2 + a « , + a 
1 heref ore — As y = ^ •—f- 2 2 — 

yt «1 — « A « 2 — « ! 

~^N^ ( A dt\ ^ K , — «A' (ZA rfi ) y ^Ki — Kz(215) 

M-«R "I 
1 _ B Z L J 

Again 
\ - at'j ' 

* . - i - R h R 
S 

v + b 

And the equation for f is 
1 

= B 7 « T + > 

^ D 4 T ; = 2 « 1 ( K 1 + K2) yi + the same with 2 for 1 

Therefore 
/ 1 dLA a'b (IDLL) = ^ , 9 M 

W dt ) t (*!-«,)· ' W ( Ä , - * , ) " ; 

The same results might have been obtained from the equations to D'y, D JT;. 

Terms depending on the variation of b. 

By symmetry with (211) 

(1 dLA b'a / 1 _ b'a 
UI Ä A (*! - K2f' U . <*« A (*i - * 2 ) 2 k ; 

By symmetry with (210), and putting — (K2 + a.) for + ß) and — («, + a) 
for (/e„ + /?) 

. / 1 DI/̂ J _ b'a /t2 + a rfZ,A _ b'a ^ + g 
VZi' D£ A (*! —/FA)

S *I + a ' \Li dt A («J — «2)
2/F2 + a" 

We now come to a different class of terms, viz.: those depending on 
7, g, 8, d. 

Terms depending on y. 

Here s = — yz, u = — yy, o- = 0, u = 0 
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yht y
 KL — K2 K2— KX 

FI K., + a f, KI + a . „ K2 4-« , . KJ 4- a 
= t F , since ^ = £ , z2-^2 — r — 

B K, — K2 O « I — K2 B B 
Hence - J. = 7 _* = _ 7 (216) 

\LX at Jy «I — « 2 1 4 A£ / R *, — *A 

Terms depending on 8. 

These may be written down by symmetry. 

— 8 is symmetrical with 7. Hence writing — (K2 4- a) for « 2 4- /3, and 
— («A4-a) for (KI 4-/8), we have by symmetry with (216) 

( L ^ ) = _ S " I + ° ( 2 1 7 ) 

//I <K / 5 «I — «2 \Z 2 RM /S «I — K2 

And by symmetry with (215) 
1 dZ/ \ _ g « I 4- a ( 1 d.£„'\ ^ K2 4- a 1) = _ S ^ ± I L ( 2 1 8 ) 

/ Ô KI /£, ¿ 1 ' d£ / 5 «i — K 2 ' V^A' df /« KL — « 2 

Terms depending on g. 

Here s = - g£, u = — gn, a = 0, u = 0 

S = -g(f+a,) ; 2 ^ - g b , 

Si = g (*i - a ) »7l. Si = - gb^i 
S 2, 2 a have similar forms with 2 for 1 

Clearly (*» 4- —) S t = 0 

S I - ' ^ S i = 2 g ^ i (219) 

Therefore the equation for z is 

- D 4 2 - 2«, (KJ 4- K2) («» 4- a) ?7I 4- the same with 2 for 1 

Thence 

gi S
 KI - « 2 *A - « 1 

b b . „ b „ 
= î - since a= ft, £ = £2 • — K2 KI — K2 K2 4- a « 1 4- a 

Again (V + ^ ) 2j = 0 

Therefore 
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1 _ b ^ 1 

Therefore the equation for f is 

-y- D4£ = 2«! («! + *,) ?h + the same with 2 for 1 
gb 

Hence 

b / 1 dZ ' 

The same results may be obtained by means of the equations for D 4y, D4r/. 

Terms depending on d. 

These may be written down by symmetry. 

— d is symmetrical with g. Therefore by symmetry with (221) 

1 dZA 1 dZA _ ^ a / 
>! dt Jd *! — * 2 ' V 

1 dZ,\ = ( i a 
Z2 dt Ja Ki — 2̂ 

.(222) 

and by symmetry with (220) 

/ 1 dZ/N , a / 1 dZ 2 '\ , a 
I 7·-, - j j - = - d • — , r , = d (223) 

This completes the consideration of the effects on the constants of integra
tion ZJ, Z2, ZI', Z2' of all the small terms. 

Collecting results from (205-8, 210-13, 215-18, 220-23), 

1 d A 
Zj dt (#! = ( ^ { - ^ + « ) ( i , - ^ - a , b ^ - b ' a 

l d i 
Lt dt ~ ( 

Z/ dt 

1 d i 2 ' 

+ ( ^ ~ ) ^ +--) + ^ +«) + g b - d a l 

T-~y, {- (*>. + «) («' - ,9') - a b *+J? - b'al 

~ ^ ^ + «) + + a ) + gb - da} 

: OT^* \ ~ ^ + «) <*' - /3 ' ) - a'b - b'a *±-» 

+ ~ ~ T {7 (*« + a) + S ( K J + a) + gb - da} 
1̂ /f 2 

I' di - {- + a ) - 0') - a'b - b'a G ± J 

1 
¡7 («l + a) + S (*, + a) + gb - da] J 

.(224) 

D. II. 
19 

and 
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290 THE FOUR EQUATIONS EQUIVALENT TO TWO ONLY. [6 

We shall now show that these four equations are equivalent to two only, 
and in showing this shall verify the correctness of the results. 

To prove that the four equations (224) are equivalent to two. 

In (118) we showed that 
LI _ Ki + a 
Xj a 

Therefore we ought to find that 

_ i dJ±. _ 1 ^ = 1 d tK + a) _ -
dt Li dt ~~ Ki + OL dt^ 1 a 

Ki + 8 d , a' 
= — ~ n (*i + °0 

ab dt a 
By (188) 

2 (Kl + a) = a - 8 - V(a - 8f+4ab 
, «d. . , o l , ( g - f f ) ( « ' - f f ) + 2(a'b + ab') 

and 2 -v (*! + a) = a - p + — 
Cut/ /CJ /FG 

d (a - 8') (a, + a) + a'b + ab' 
so that (Ki + a) = 

Thus we ought to find that 

L^ dt Li dt _ 
If we subtract the first of equations (224) from the third we shall 

find this relation to be satisfied. Hence the first and third equations are 
equivalent to only a single one. , 

Similarly it may be proved that the second and fourth equations are 
similarly related. 

To prove that the four equations (224) reduce to those of§6, when the nodes 
revolve with uniform velocity. 

I t appears from § 13 that when a and b are small compared with a. — 8, 
the nodes revolve with approximate uniformity, and the nutations of the 
system are small. 

If this be the case, we have approximately 
^ = — A, K2 = - ft 

I t will appear later that (A' — /3')/(A — ft), a'/a, b'/b are quantities of the 
same order of magnitude as y, g, S, d. 

Now Li = J, the inclination of the lunar orbit to its proper plane, and 
X3' = I, the inclination of the earth's proper plane to the ecliptic. 

(«i — 2̂) = a' — ft' (*! + a) - r- («„ + a) 
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Therefore, the first and last of equations (224) become 

1 dJ 
J dt' gb — da 

1 dl _ gb - da 
I dt — + a - 3 

But since the nodes revolve uniformly, b/(a — ft) and a/(a — ft) are small, 
and therefore the latter terms of those equations are négligeable compared 
with the former. 

1 dJ 
Hence 

ldl_ 
J dt y' Idt 

These results in no way depend on the assumption of the smallness of the 
viscosity of the planet, and therefore we may substitute T and A (see (174)) 
for y and 8. 

A comparison of the expressions for T and A, with those given in Part II. 
for dj/dt and in my previous paper for dijdt, will show that our present 
equations for dJ/dt and dl/dt are what the previous ones reduce to, when i 
and j are small. But this comparison shows more than this, for it shows that 
what the equation (61) § 6 really gives is the rate of change of the inclination 
of the lunar orbit to its proper plane, and that the equation (66) of the paper 
on "Precession" really gives the rate of change of the inclination of the 
earth's proper plane (or mean equator) to the ecliptic. 

To show how the equations (224) reduce to those o/§ 10. 

We now pass to the other extreme, and suppose the solar influence 
infinitesimal compared with that of oblateness. 

Here a = a, /3 = b, y = g, S = d 

*i = - ( a + b), K 2 = 0 

The equations (224) reduce to 
1 dLt . a'b — b'a \ 
r i"dT = _ g + + a ( a + b ) 
1 dL( _ a'b — b'a . 

Z7 ~dt g + b(à~+b) r 
1 dL2 

L„ dt = 0, Li dt = 0 

.(225) 

Therefore L2 and L2' are constant. Also from the relationship between 
them 

L2' = _ (KS_+ a) _ _ 
X2 a 

19—2 
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Hence it follows that the two proper planes are identical with one another, 
and are fixed in space. They are, in fact, the invariable plane of the system, 
as appears as follows: 

If we use the notation of § 10, X2 =j, LI = i, and L-[\LX = — fa 4- a)/a = b/a; 
so that ai = by. 

Now a = hrt)^, b = rt/n, and i and j are by hypothesis small, therefore we 
may write the relationship between a, b, i,j in the form 

| SINJ = N SM I 

This proves that the two coincident planes fixed in space are identical 
with the invariable plane of the system (see 108). 

But the identity of equations (225) with (71) of § 10 and (29) of the 
paper on " Precession " remains to be proved. 

If i and j be treated as small, those equations are in effect 

! = - G ( ^ J ) 

di , ,. 
dt= d ( ^ > 

(or with G and D in place of g and d if the viscosity be not small). 
Hence if (225) are identical with (71) and (29) of " Precession," we must 

have 
i . a'b — ab' 

— g - = d 4 — T ^ 

e ? a(a + b) 
j j _ a'b — ab' 

t _ _ g ~ b ( a + b) 
But i/j = b/a; therefore the condition for the identity of (225) with (71) 

and (29) of " Precession " is that 
(a + b) (gb + ad) 4-a'b - ab '= 0 (226) 

Or if the viscosity be not small, a similar equation with G and D for 
g and d. 

We cannot prove that this condition is satisfied until a' and b' have been 
evaluated, but it will be proved later in § 16. 

This discussion shows that the obliquity of the earth's equator (X/) to the 
invariable plane of the moon-earth system, when the solar influence, is 
infinitesimal, degrades into the amplitude of the nineteen-yearly nutation, 
when the influence of oblateness is infinitesimal. The one quantity is strictly 
continuous with the other. 

This completes the verification of the differential equations (224) in the 
two extreme cases, 
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§ 16. Evaluation of a.', a', &c, in the case of the earth's viscosity. 

The preceding section does not involve any hypothesis as to the con
stitution of the earth, but it will now be supposed to be viscous, and the 
various functions, which occur in (224), will be evaluated. 

By (184-5) we have 

LFT=*TIS[«M> <227) 
dn 
di = ̂ 'sin4f1{l+^)j (228) 

The last equation is approximate, for by writing it in this form we are 
neglecting T ' 2 (sin 4f- sin 4f 1)/r ! sin 4^ compared with unity. 

This is legitimate, because when (sin 4f- sin 4fj)/sin 4^ is not very small, 
T'^ 'T 2 is very small, and vice-versd; see however § 22. 

Hence (228) may be written 

dn 
dt '' 

Let 

1 df 
k dt 

m =' 
.(229) 

kn 
.(230) 

lit is the ratio of the moment of momentum of the earth's rotation to that 
of the orbital motion of moon and earth round their common centre of inertia. 
(The fj. of my paper on " Precession" is equal to the reciprocal of llt0, where 
ttl0 is the value of m when t = 0.) 

By (121) and (112) we have 
k 

Now t — 4n2/g, the ellipticity of the earth due to rotation; and as T = IJ^IM/C3 

and f = Vc/c0, therefore T = T 0 / f " . 
kr„ n2 

Hence a 

Differentiating logarithmically 
28 F 

a 
a 

2 dn _ 
n dt f dt 

tl d£\ 1 

7 d f = _ / i d A |2 : 
\k dt) \n _ 

;~(íS)¿Hi+g) 
1 + 

+ 7m 

+ 

Also since 

a ~ \k dt 1 dg\ (ri 
a = m 

TO 2 

Te 

i + + 7m 

.(231) 

.(232) 

.(233) 
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a' - a' 3 dP (I dg\ 1 -AM-. 
\ k dt) : 

3 M 

Now — = A., hence 

a. — a F dt 
T I T V 1 \ 

L -\ /

, RF\ T ' 3 M 
riV T 2XE Therefore *< - a = ( J J ) 

From (233-4) 

1 d£\ / T £ 

Also a = 

By (121) and (112) 

Therefore 

_ 3 _ T ' 

2\E T 
2 1 + + 7M 

L 
2 \E 

+ M 

b = — = T" n 

n 2G F6 

V _ 1 dri _ 6 d | 
b r; d£ £ 

By (121) and (112) 

P — b = — == — M n 2G 

* B - 2 G ^ - U & M L VF. 

1 dj\ FIT\ (T' 
k dt 

Therefore 

.(234) 

.(235) 

.(236) 

.(237) 

.(238) 

B ' = - A S E ) I I + ( 7 ) ' + 8 M } < 2 3 9> 

From (231) and (238) 
a' b ' 

. (241) 

* - - ( L $ © K + ® , + $ , + , , » } < 2 4 2> 

L a s % /8 = ^ ( L + ^ (243) 

By (121) and (112) 

Since N- = Il 0/FA, and r is constant (or at least varies so slowly that we 
may neglect its variation), we have 
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\k dt) 2n 

G = 
L dj\ IM 
k dt) 2n 

sin 4fi 

T 

(sin 4f, — sin 2g, + sin 2g) 1— sin 2g 

sin 4f, 

-I JF I (sin 4fj + sin 2g ; — sin 2g) — 2 — sin 2g+f—) sin4f 
A _ (\ — I 111 

\kdtJ2n sin 4^ 

/ld!;\ 1 ( s i n 4 f i + s i n 2 gi ~ S i n 2g) - ^ sin 2g 

^ _ \Jc dt) 2n sin 4fi 

If the viscosity be small we have by (179), (227), and (230) 

1 D£\ M 1 
K DT 2N 1 - A. 

V (244) 

g = 

1 1 

/L M + 

U dt) 2n l-X 

1 ^ 1 
k dt) 2n 

L _ 2 X - ^ + ('T-' 
T \ T 

d = 141)1 1 - 2 X ~ * T 

k dt) 2n 1 — A. 

.(245) 

I think no confusion will arise between the distinct uses made of the 
symbol g in (244) and (245); in the first it always must occur with a sine, in 
the second it never can do so. 

[If T' be zero 

a + b = —(1 + M) 

and by (232), (237), (240) 

Therefore we have 

(bG + aD) (a + b) + a'b - b'a = 0 

This was shown in (226) to be the criterion that the differential equations 
(224) should reduce to those of (71) and of (29) of " Precession," when the 
solar influence is evanescent, and the above is the promised proof thereof.] 

By (174), (227), and (230), when the viscosity is not small, we have 

1 dÇ \ M (sin 4f, — sin 2g, + sin 2g) 
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From (244), (237), and (232) we have 

2 ^ 1 + ^ sin 2g - 2 sin 2g, 

vk dt 

and.i .ni lari , bg - ad - (> g) (£) ( 5 ) , 2 « , 

§ 17. Change of independent variable, and formation of equations 
for integration. 

In the equations (224) the time t is the independent variable, but in 
order to integrate we shall require f to be the variable. I t has been shown 
above that these equations are equivalent to only two of them; henceforth 
therefore we shall only consider the first and last of them. I t will also serve 
to keep before us the physical meaning of the L's, if the notation be changed; 
the following notatioii (which has been already used in (127)) will be adopted : 

J = Lx = the inclination of the lunar orbit to the lunar proper plane. 
I = Li = the inclination of the earth's proper plane to the ecliptic. 
I, = Li = the inclination of the equator to the earth's proper plane. 
Jt = — L2 = the inclination of the lunar proper plane to the ecliptic. 
Since J, I, &c, are small, we may write 

^ = d. log tan* J, ^ - = d . log tan £1 (248) 

This particular transformation is chosen because in Part II., where j and 
i were not small, dj/sinj seemed to arise naturally. 

. Li *i + a Li K2 + a Also since T = , T = — 1j\ a -Z>2 a 

we have sin 1 = sin J 
a 

sin J = —-— sin I 
« 2 + a 

These equations will give I ( and J ( , when J and I are found. 
Suppose we divide the first and last of (224) by d^jnkdt, then their 

left-hand sides may be written 

m&ĵ logtan̂ J and n&ĵ logtan Î 
In the last section we have determined the functions a, a', &c, and have 

them in such a form that T, G, A, D (or y, g, 8, d) have a common factor 
d^/nkdt. 

But this is the expression by which we have to divide the equations in 
order to change the variable. 

.(249) 
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1880] THE EQUATIONS TO BE INTEGRATED. 297 

Therefore in computing V, G, &c. (or 7 , g, &c.), we may drop this common 
factor. 

Again A, A, /3, b were so written as to have a common factor rZ/n; 
therefore *j and tcs also have the same common factor. 

Also a\ A', ft, B ' have A common factor (d%jkdt) (TT/n2). 
From this it follows that when the variable is changed, we may drop the 

factor TT/n from a, a, /8, b, K U K2 and the factor (d^/kdt)(TT/n") from a, A', 
b'. 
Hence the differential equations with the new variable become" 

kn ^ log tan J J = 

+ 

- " 2) a 

- « 2 ) 

1 
( * 1 

1 
( « 1 - *) 

1 i - (K 1 + A ) ( A ' - / 3 ' ) - a ' b ' ^ t a - b ' a ( X-2 "r A 

7 ( « 2 + A) + 8 (/E, + A ) + gb - da} 

r.. 1 _ \ / _ ' O ' \ „'1, -U'„ *i "F A 

(250) 

{ 7 ( « ! + A) + S (K2 + A ) + gb - da} 

or similar equations with R , G, A, D in place of 7 , g, S, d if the viscosity be 
not small. 

But we now have by (232-3-5-6-7-9, 242-3-4-5-6-7) 

A = M + 

A' = M 

T 1 
T 2Ae ' 

T 3 
T 2\e 

A = ILL, (8 = 1 + b = 1 

2-h -f + 7 M + 7 M 

sin 4 F T - s i n ggij-jsin 2g 

A = 

T /T'V (sin 4fj + sin 2g2 — sin 2g) — 2 — sin 2g + f — 1 sin 4f 

2 sin 4ft 

1 - 2 \ - — + [— 

2 ( 1 - X ) ' " 2 ( l - \ ) 

2 ^1 + ^ sin 2g - 2 sin 2gx 

B G - A D = I M -

bg - ad = • '(
2^ +7) 

2 ( 1 - X ) 

sin 4^ 

.(251) 
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.(253) 

N — 1 

Also «! + * 2 = — « — /S 
*i - Ks = - V(«̂ 7̂+ 4abJ 

Lastly we have by (186) 

^{(WHAg)V-P)} (254) 
which gives parallel values of n and f, 

These equations will be solved by quadratures for the case of the moon and 
earth in Part IV. 

If T'/T be so small as to be négligeable, and T ' / 2 \ E Y small compared with 
unity, the equations (250) admit of reduction to a simple form. 

With this hypothesis it is easy to find approximate values of KX and K2, 
and then by some easy, but rather tedious analysis, it may be shown that 
(250) reduce to the following : 

, d , A 1 T m + 1^ . T ' 1 l+liiin 
kn -jz los tan i J = — — Ci H ^ r — yz -

dp,
 e

 s m T 2M (l + m)s 

. d , , , T T l l + Urn 
fcw log tan 41 = — —— — -

DP 5 2 T 2\e (i. + MF 
These equations would give the secular changes of J and I, when the solar 

influence is very small compared with that of the moon. Of course if G be 
replaced by g, they are applicable to the case of small viscosity. 

I t is remarkable that the changes of I are independent of the viscosity ; 
they depend in fact solely on the secular change in the permanent ellipticity 
of the earth. 

.(255) 

IV. 

INTEGRATION OF THE DIFFERENTIAL EQUATIONS FOR CHANGES IN THE 
INCLINATION OF THE ORBIT AND THE OBLIQUITY OF THE ECLIPTIC. 

§ 18. Integration in the case of small viscosity, where the nodes 
revolve uniformly. 

I t is not, even at the present time, rigorously true that the nodes of the 
lunar orbit revolve uniformly on the ecliptic and that the inclination of the 
orbit is constant ; but it is very nearly true, and the integration may be 
carried backwards in time for a long way without an important departure 
from accuracy. 

In these equations we have, recapitulating the notation, 
kn _ I! , 

IRIS - LILLIAD - Université Lille 1 



The integrations will be carried out by the method of quadratures, and 
the process will be divided into a series of " periods of integration," as 
explained in § 15 and § 17 of the paper on " Precession." These periods will 
be the same as those in that paper, and the previous numerical work will be 
used as far as possible. It will be found, however, that it is not sufficiently 
accurate to assume the uniform revolution of the nodes beyond the first two 
periods of integration. For these first two periods the equations of § 7, 
Part II., will be used; but for the further retrospect we shall have to make 
the transition to the methods of Part III . It is important to defer the 
transition as long as possible, because Part III. assumes the smallness of i 
and j , whilst Part II . does not do so. 

By (104) and (86) of Part II. we have, when / = 0, and fl'/re is 
neglected, 

di s i n 4 f , . . . , 
- 7 7 = i B i n t c o s i i dt ng 4 1 T 2 ( 1 - | sin2j) + T •'a _ 

211 
T- s e c i c o s j 

-TT'(I - f sin 2j) 

DN sin 4f 
DI = |(1 - i sin2 i) (T 8 + T'2) - i (1 - f sin2 i) T 2 sin2 j 

— T2 ^ cos i cos j + ^TT' sin2 i (1 — | sin2 j ) | 

If we put 1 — i sin2 i = cos i, 1 — f sin2 j = cos3 j , and neglect sin2 i sin2 j , 
these may be written 

di sin 4f . . . . f < 2 , 2fl a . 2 .1 \ i s i n i cos i cosJ
 i r + T s e c 3 i — TT r s e c i s e c 2 7 

ng 4 17 I J n J dt 
dn _ sin 4f 
dt ng 

cos i cos ·/ | T 3 + T' 2 sccj — T 2 — + | T T ' sin z tan i cos2 jj-
(256) 

If we treat sec j and cos j as unity in the small terms in T'2, T T , and il/n, 
(256) only differ from (83) of "Precession" in that dijdt has a factor cos3-; 
and dn/dt has a factor cosj. 

Again by (64) and (70) 

1 sin 4f 

1 df sin 4f 

ldj 
k dt' T 2 \ cos i sin j 

&d£ T2 ^ cos i cos j ^1 — ~ sec t SECJJ j 
.(257) 

If we divide the second of (256) by the second of (257) we get an equation 
for dnjdP,, which only differs from (84) of " Precession" in the presence of 
secj in place of unity in certain of the small terms. Now j is small for the 
lunar orbit; hence the equation (88) of " Precession " for the conservation of 
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moment of momentum is very nearly true. The equation is, with present 
notation, 

* 7 ? , kna + 1 V? / V? &»o + 1/ 

In this equation we attribute to i, as it occurs on the right-hand side, an 
average value. 

By means of this equation, I had already computed a series of values of n 
corresponding to equidistant values of £. 

On dividing the first of (256) by the second of (257) we get an expression 
which differs from the d log tan 2 \ ijdP of (84) of " Precession " by the presence 
of a common factor cos2 j , and by secj occurring in some of the small terms. 
Hence we may, without much error, accept the results of the integration for 
i in § 17 of " Precession." 

Lastly, dividing the first of (257) by the second, we have 

A log sin j = — T ( 2 5 9 ) 
2£ f 1 sec i sec^j 

This equation has now to be integrated by quadratures. 
All the numerical values were already computed for § 17 of " Precession," 

and only required to be combined. 
The present mean inclination of the lunar orbit is 5° 9', so t h a t j 0 = 5° 9'. 

I then conjecture 5° 12' as a proper mean value to be assigned to j , as 
it occurs on the right-hand side of (259) for the first period of integration, 
which extends from f = 1 to '88. 

First period of integration. 
From £ = 1 to "88, four equidistant values were computed. 
From the computation for § 17 of " Precession " I extract the following: 

f = 1 -96 -92 -88 

log - sec t " + 10 = 8-59979 8-57309 856411 8'56746 

Introducing j = 5° 12', I find 
f = 1 - 9 6 -92 -88 

2 | ^1 — ^ sec i secj^j = •5208 -5412 '5643 "5901 
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= •06641 

sec I secy 

This is equal to log„ siny — loge sin y0. Taking y0 = 5° 9', I find j = 5° 30'. 

Second period of integration. 

From f = 1 to "76, four equidistant values were computed. 

From the computation for § 17 "Precession," I extract the following: 

f = 1 -92 '84 -76 
log^seci"+10 = 8'56746 8-59743 8'65002 8"72318 

Assuming 5° 55' as an average value for j" , I find 

f = 1 - 9 2 "84 -76 

2f ^1 — — sec i secy^ 

Combining these, we have 

P- dP 

' = •5193 -5660 -6232 -6948 

76 
( LI . \ 

2M1 sec I secy 1 

= 14345 

This is equal to log esiny — loge siny0. Taking j 0 = 5° 30' from the first 
period, we find j = 6° 21'. 

This completes the integration, so far as it is safe to employ the methods 
of Part II. 

In Part III. it was proved that, in the case where the nodes revolve 
uniformly, equations (224) reduce to those of Part II. But it was also shown 
that what the equations of Part II. really give is the change of the inclination 
of the lunar orbit to the lunar proper plane; also that the equations of 
" Precession " really give the change of the inclination of the mean equator 
(that is of the earth's proper plane) to the ecliptic. 

The results of the present integration are embodied in the following 
table, of which the first three columns are taken from the table in § 17 of 
" Precession." 

Combining these four values by the rules of the calculus of finite differences, 
we have 

IRIS - LILLIAD - Université Lille 1 



Sidereal day in ra.s. 
hours and minutes 

Moon's sidereal 
period in m.s. days 

Inclination of 
mean equator to 

ecliptic 

Inclination of 
lunar orbit to lunar 

proper plane 

h. m. 
Initial 23 56 

Days 
27 32 23 28 

o * 
5 9 

15 28 18-62 20 28 5 30 

Final 9 55 8-17 17 4 6 21 

We will now consider what amount of oscillation the equator and the 
plane of the lunar orbit undergo, as the nodes revolve, in the initial and final 
conditions represented in the above table. 

I t appears from (119) that sin 2j oscillates between sin 2j„ ± asin 2{0/(/e2+a), 
and that sin 2i oscillates between sin 2i'0 + (K, + a) sin 2j„ja, where i0 and_yo are 
the mean values of i and j . 

With the numerical values corresponding to the initial condition (that is 
to say in the present configurations of earth, moon, and sun), it will be found 

/ f t ' \ a / ft'\ 

on substituting in (115) and (112), with a 2 = § f (1 — § -̂ -J ft instead of 
simply £ jj- , that 

a =-341251, ft = "000318, a =-000059, b = "000150 
when the present tropical year is the unit of time. 

Since 4ab is very small compared with (a — BY, it follows that we have to 
a close degree of approximation 

Ki = — a, K 3 — -~ ft 
Since (KJ + a)/a = b / ^ + ft), it follows that sin 2j oscillates between 

sin 2ja ± a sin 2i„/(a — ft), and sin 2i between sin 2i0 + b sin 2j0/(a — B)-
Let Sj and Si be the oscillations of j and i on each side of the mean, then 

8 sin 2j = a sin 2i'/(a — ft) and 8 sin 2i = b sin 2j/(U — FT). 
Hence in seconds of arc 

.(260) 

_ 648000 __a_ sin_2t' x 

•* ~~ IT * a - ft cos 2j 

g . _ 648000 , JB_ sin2/ 
7R * a — ft cos 2i , 

Reducing these to numbers with j = 5° 9', i'= 23° 28', we have 8/= I3"-13, 
8t = ll"-86*. 

* The formulas here used for the amplitude of the 19-yearly nutation and for the inclination 
of the lunar proper plane to the ecliptic differ so much from those given by other writers that it 
will be well to prove their identity. 

TABLE I. 
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1880] LAPLACE'S FORMULA FOR THE PROPER PLANE OF THE MOON. 303 

Hence, if the earth were homogeneous, at the present time we should 
have 87 as the inclination of the proper plane of the lunar orbit to the 

Laplace (MSc. C£l., liv. v i i . , chap. 2) gives as the inclination of the proper plane to the 
ecliptic 

ap — A atb D 2 . 
— — V - ^ —a sin \ cos A 

g - 1 a2• 

Here ap is the earth's ellipticity, and is my e; aip is the ratio of equatorial centrifugal force t o 
gravity, and is my n2a/<?, i t i s therefore when the earth i s homogeneous. 

Thus his ap - JA0=my fe. His g -1 is the ratio of the angular velocity of the nodes to that 
of the moon, and is therefore my (a-/3)/f i . His D is the earth's mean radiua, and is my a. His 
a is the moon 's mean distance, and is my c. His X is the obliquity, and is my i. Thus his 

til a 2 

formula is I s -= sin i cos i in my notation. 
o - p ci 

Now my T = 3 / i m / 2 c 3 , and ^a?—C\M. 

Therefore the formula becomes 

4 —B IFLC) - sin 2i 
But by (5) CQclv.Um.~k. 

Therefore it becomes I —%• sin 2i 

By (115) and (112), when f = 1 , a = fa-e oosj cos2j". 

Therefore in my notation Laplace 's result for the inclination of the lunar proper plane to the 
ecliptic i s 

a sin 2I 
This agrees with the result (260) i n the text, from which the amount of oscillation of the 

lunar orbit was computed, save as t o the sec J. Since J is small the discrepancy is slight, and 
I believe my form to be the more accurate. 

Laplace states that the inclination is 20"-023 (centesimal) if the earth be heterogeneous, and 
41"-470 (centesimal) i f homogeneous. Since 41"-470 (centes.) = 13"'44:p this result agrees very 
closely with mine. The difference of Laplace 's data explains the discrepancy. 

If it be desired t o apply my formula to the heterogeneous earth we must take \ o f my k, 
because the $ of the formula (6) for s will be replaced by J nearly. AIBO E, which is must 
be replaced by the processional oonstant, which is '003272. Hence my previous result in the text 
must be multiplied by i o f 232 x '003272 or -6326. This factor reduces the 13"-13 of the text to 
8"'31. Laplace 's result (20"'023 centes.) i s 6"-49. Hence there is a small discrepancy in the 
results; but i t must be remembered that Laplace 's value o f the actual ellipticity (1/334 instead 
of 1/295) of the earth was considerably in error. The more correct result is I think 8"'31. The 
amount o f this inequality was found by Burg and Burckhardt from the combined observations 
of Bradley and Maskelyne t o be 8" (Grant 's Hist. Phys. Astr., 1852, p. 65). 

For the amplitude of the 19-yearly nutation, Airy gives (Math. Tracts, 1858, article "On 
Precession and Nutation," p. 214) 

6TT2B r 

T z [d (n +1) 4x 

B is the precess. o o n B t . = my I; his T' = my 2IRJSL ; his n = my V; h is a = my n; his I = m y i; 

his i = my j ; and his r is the period of revolution of the nodes, and therefore = my 2TT/(O - p). 

Then since my T = 3 H 2 / 2 (l + »), the above in my notation is 

TE 1 . . . 
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log + 10 = 8-76472, log - n + 10 = 8-69606 
& * 2 + a KT + ft 

Substituting in the formula? 

= x _J±_ «in_2i = _ b _ s i n j / 
J 1 K2+a cos2j ' 2 K L + ftcos2i 

I find 87 = 57' 31", SI = 22' 42" 

- b 

TT 
Now by (115) and (112) h = — cos i cos 2t, when f = 1. 

Therefore his result in my notation is 

b sin 2J 
* a - p cos 2t 

This is the result used above (in 260) for computing the nutations of tho earth. 

I f my formula is to be used for the heterogeneous earth, I must be replaced by the preces 
sional constant, and therefore the result in the text must be multiplied by 232 x '003272 or 759. 
Hence for the heterogeneous earth the 1I"'86 must be reduced to 9"'01. Airy computes it as 
10" 33, but says the observed amount is 9"'15, but he takes the precessions! constant as '00317, 
and the moon's mass as l - 7 0 t h of that of the earth. I believe that '00327 and l - 8 2 n d are more 
in accordance with the now accepted views of astronomers. 

ecliptic, and SI as the amplitude of the 19-yearly nutation. These are very 
small angles, and therefore initially the method of Part II . was applicable. 

Now consider the final condition. 

Since the integrations of the two periods have extended from f = 1 to '88, 
and again from £ = 1 to -76, 

T = T„(-88 X-76)-«, XÎ=n0(-88 x-76)- 3, k = ka (
-88 x - 76) - 1 

also the value of n which gives the day of 9 hrs. 55 m. is given by 
log 7i = 374451, and log g + 10 = T21217, when the year is the unit of time. 

We now have i = 17° 4', j = 6° 21'. 

Using these values in (115) and (112), I find 

« = •10872, 3= -00627, a = -00563, b = 00510 

ab is still small compared with (a — ft), but not négligeable. 

By (117) 

«i — KS = - V(a - ft)2 + 4ab = - (a - ft) - . also ^ + K2 = - (a + ft) 

Now 2ab /(a-/3) =-00056. 

Hence we have 

K l + K s = - -11499 I whence «! = -•!0900 

K l - K 2 = - -10301 ) * a = - -00599 

KY and «2 have now come to differ a little from — a and — ft, but still not 
much. With these values I find 

IRIS - LILLIAD - Université Lille 1 



1880] TRANSITION TO METHOD OF PART III. 305 

Thus the oscillation of the lunar orbit has increased from 13" to nearly a 
degree, and that of the equator from 12" to 23'. 

It is clear therefore that we have carried out the integration by the 
method of Part II., as far back in retrospect as is proper, even for a specu
lative investigation like the present one. 

We shall here then make the transition to the method of Part III . 

Henceforth the formulae used regard the inclination and obliquity as 
small angles; the obliquity is still however so large that this is not very 
satisfactory. 

§19. Secular changes in the proper planes of the earth and moon 
when the viscosity is small. 

We now take up the integration, at the point where it stops in the last 
section, by the method of Part III . The viscosity is still supposed to be 
small, so that 7, B, g, d (as defined in (251)) must be taken in place of 
T, A, G, D, which refer to any viscosity. The equations are ready for the 
application of the method of quadratures in (250), and the symbols are 
defined in (251-4). 

The method pursued is to assume a series of equidistant values of f, and 
then to compute all the functions (251-4), substitute them in (250), and 
combine the equidistant values of the functions to be integrated by the rules 
of the calculus of finite differences. 

The preceding integration terminates where the day is 9 hrs. 55 m., and 
the moon's sidereal period is 817 m.s. days. If the present tropical year 
bo the unit of time, we have, at the beginning of the present integration 
logw„ = 374451, l o gN O = 244836, and logK + 10 = 6"20990, K being SCLJ* 
of (7). 

The first step is to compute a series of values of n/n,, by means of (254). 
As a fact, I had already computed njn„ corresponding to f = 1, '92, "84, '76 for 
the paper on " Precession," by means of a formula, which took account of the 
obliquity of the ecliptic; and accordingly I computed n/n0, by the same 
formula, for the values of f = -96, '88, '80, instead of doing the whole operation 
by means of (254). The difference between my results here used and those 
from (254) would be very small. 

The following table exhibits some of the stages of the computation, The 
results are given just as they were found, but it is probable that the last 
place of decimals, and perhaps the last but one, are of no value. As however 
we really only require a solution in round numbers, this is of no importance. 

D. 11. 20 
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TABLE II. 

1 1- •96 •92 •88 •84 •80 •76 

NLNA= 1 00000 1-04467 1-08931 1-13392 1-17852 1-22308 1-26763 

L O G E + 1 0 = 8-40016 8-43812 8-47446 8-50932 8-54284 8-57507 8-60614 

LOG t ' / t + 1 0 = 8-61867 8-51230 8-40140 8-28557 8-16435 8-03721 7-90350 

LOG A + 1 0 = 8-70384 8-73805 8-77533 8-81581 8-85966 8-90712 8-95841 

r'/2Xfr= 16-3546 10-8418 7-0889 4-5647 2-8895 1-7947 1-0914 

M = A = •90035 •97976 1-06603 1-16014 1-26320 1-37648 1-50172 

L O G Y + 1 0 = 9-67591 9-71452 9-75343 9-79287 9-83307 9-87430 9-91693 

I O G A + I O = 9-65551 9-65745 9-65824 9 -65788 9-65631 9 6 5 3 4 1 9-64900 

LOG ( G B - A D ) + 10 = 8-83030 8-86665 8-91307 8-96946 9-03549 9-11080 9-19,510 

a — 3 6 6 9 6 23-186 12-583 4-144 - 2-747 - 8-605 -13 -873 

A ' = - 7-4782 - 8-6811 - 1 0 - 0 8 8 3 - 1 1 - 7 4 2 6 - 1 3 - 6 9 6 6 - 1 6 0 1 6 3 -18-7899 

ß' = - 6-4455 - 6-9122 - 7-4220 - 7-9805 - 8 -5940 - 9 2 6 9 9 -10-0184 

b ' = - 6-4038 - 6-8796 - 7-3968 - 7-9612 - 8 -5794 - 9-2590 -10-0104 

LOG - < > 1 + a) + 10 = 8-74306 8-95453 9-16587 9-37077 9-55751 9-71146 9-82404 

L O G ( K 2 + a) = 1-21135 1-03659 •86190 •69374 •54396 •42731 -35255 

LOG ( k s - k i ) = 1-21283 1-04017 •87056 •71393 •58660 •50372 •46520 

The further stages in the computation, when these values are used to 
compute the several terms of the expressions to be integrated, are given in 
the following table. 

TABLE III . 

f 1· •96 •92 • 8 8 •84 •80 •76 

- ( A ' - / 3 0 ( K A + A ) / ^ ( K Z - K L ) 2 = •00995 •02395 •05424 10413 13350 •03053 - -26438 

A ' b ( M + a)/hi ( k 2 + a) (ic2 - k j ) z = •00011 •00064 •00376 •02041 •08937 •27505 •57228 

A ' b / & 7 * ( K 2 — k i ) 2 = - -03117 - • 0 7 6 7 1 - • 1 8 6 7 0 - -42945 - -86628 - 1 - 4 2 9 7 5 -1 -93250 

b ' A ( K i + A ) / f a ( K 2 + a ) ( K 2 ~ k i ) ' 2 = •00008 •00049 •00294 •01606 •07072 -21887 •45786 

- 0 2 4 0 3 - -05970 - • 1 4 5 9 3 - 33778 - 68546 - 1 - 1 3 7 7 0 -1 -54610 

Y ( k i + " ) / £ ™ ( * 2 - k i ) = - - 0 0 1 7 9 - -00452 - -01141 - • 0 2 7 5 9 - -06001 - -10969 - -16534 

Y < > 2 + " ) / * » ( * a - « i ) = •52483 •54645 •56651 •58035 •58167 •57020 •55832 

S ( K l + a ) / ^ N ( K 2 - K 1 ) = - -00170 - -00397 - - 0 0 9 1 6 - -02022 - -03995 - '06596 - -08922 

8 ( « 2 + O ) / I N ( K 2 - K i ) = •50075 •47916 •45501 •42530 •38719 •34288 •30127 

(BG-&À)JKN(K1-KL)= 00460 •00713 01124 -01764 •02649 •03675 •04704 
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The method pursued in the integration of the preceding section pro
ceeds virtually on the assumption that the term 7 ( « A + a)/kn («j — is 
the only important one in the expression for d log tan | Jjdg, and that 
the term 8 (K2 + a)/kn (K2 — K J is the only important one in the expression for 
d log tan . 

Now when £ = 1, at the beginning of the present integration, we see from 
Table III. that the said term in 7 is about 22 times as large as any other 
occurring in d log tan £J, and that the said term in 8 is about 16 times 
as large as any other which occurs in d log tan Jl. Hence the preceding 
integration must have given fairly satisfactory results. But after the first 
column these terms in 7 and 8 fail to maintain their relative importance, so 
that when f = '76, they have both become considerably less important than 
other terms—notably h'&jkn ( * A — KJ.)5 and a'b/fcw («2 — z^)2. This is exactly 
what is to be expected, because the equations are tending towards the form 
which they would take if the solar influence were nil, and an inspection of 
(225) shows that these terms would then be prominent. 

If we combine these values of the several terms together according to (250), 
we obtain the seven equidistant values of d log tan \ J/dl; and dlogtan^I/cZf 
exhibited in the following table: 

TABLE I V . 

1· •96 •92 •88 •84 •80 •76 

(2 log tan J J / d £ = 

d log tan %IJD£= 
- '49386 

+ •54460 

- -46660 

+ •58194 

- • 3 7 2 1 8 

+ •69284 
• 

- • 1 5 6 2 7 

+ •93287 

+ -16138 

+ 1-28273 

+ -35219 

+ 1-51135 

+ -19330 

+ 1-39323 

By interpolation it appears that DJ/D!J vanishes when £ = "8603. This 
value of £ corresponds with 8 hrs. 36 m. for the period of the earth's rotation, 
and 5'20 m. s. days for the period of the moon's revolution. 

Since dg is negative in our integration, we see from these values that 
I, the inclination of the earth's proper plane to the ecliptic, will continue 
diminishing, and with increasing rapidity. On the other hand, the incli
nation J of the lunar orbit to its proper plane will increase at first, but at a 
diminishing rate, and will finally diminish. This is a point of the greatest 
importance in explaining the present inclination of the lunar orbit to the 
ecliptic, and we shall recur to it later on. 

Now combine the first four values by the rule of finite differences, viz.: 
[ « „ + « 3 + 3 (WJ + M S ) ] F/s. 

and all seven by Weddle's rule, viz.: 
[u„ + u2 + «a + ut + «6 + 5 («, + u3 + %)] fah 

2 0 — 2 
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where h is our di;, and the u's are the several numbers given in the above 
Table IV.; then we have, on integration from 1 to '88, 

loge tan = loge tan £J„ + -04750 
loge tan £1 = loge tan p o - -07953 

and on integration from 1 to "76 
loge tan £ J = log„ tan £ J„ + "02425 
loge tan p = log6 tan ^L. - "23972 

If we take J 0 = 6°, Io = 17°, which are in round numbers the final values 
of J and I derived from the first method of integration, we easily find, 

when f = -88, J =6° 17', I = 15° 43' 
and when f = -76, J = 6° 9', I = 13° 25' 

Next we have by (249) 
. T + a . T b . T 

sin I = sin J = sin J 
' a «a+ a 

t a . T * ! + a . T sin J, = sin 1 = ;— sin 1 
' K2 + a b 

Now b is always unity, and the logarithms of («2 + a ) and — ( K ^ + a ) are 
given in Table I I . ; from this we find 

when f = -88, I, = 1° 16', J, = 3° 39' 
when f = -76, I, = 2° 43', J, = 8° 54' 

By the same formula, when f = 1 initially, we have I, = 22', J, = 56'. These 
two results ought to be identical with the results from (260) of the last 
section; and they are so very nearly, for at the end of the integration we had 
SI = 22' 42", <y=57'31". The small discrepancy which exists is partly due 
to the assumed smallness of I and J in the present investigation, and also to 
our having taken the values 6° and 17° for J„ and I„ instead of 6° 21', 17° 4'. 

The value f = -88 gives the length of day as 8 hrs. 45 m., and the moon's 
sidereal period as 5'57 m. s. days. 

The value f = "76 gives the day as 7 hrs. 49 m., and the moon's sidereal 
period as 3'59 m. s. days. This value of f brings us to the point specified as 
the end of the third period of integration in § 17 of the paper on " Precession." 

There is one other point which it will be interesting to determine,—it is 
to find the rate of the precessional motion of the node of the two proper 
planes on the ecliptic, and the rate of the motion of the nodes of the equator 
and orbit upon their respective proper planes. By means of the preceding 
numerical values, it will be easy to find these quantities at the epochs specified 
by £ = 1 , "88, 76. 
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The period of the precession of the two proper planes is — 2TT/K„ and that 
of the precession of the two nodes on their proper planes is 2TT/(K, — KI). 

In the preceding computations we omitted a common factor T t / n from 
a, a, b, * i , * a ; this factor must now be reintroduced, T is a constant and 
log T' = 177242, then by means of the numerical values given in the first 
table I find 

f = 1 - -88 -76 
log TT/n + 10 = 7-80940 819708 8-62750 

Also log - * „ + 1 0 = 999401 9-89462 9-53295 
and log (/c 2 — * i ) is given before in Table II . 

Introducing the omitted factor TT/n, I find 
£ = 1 · -88 -76 

- 2TT//<:2 = 988 yrs. 509 yrs. 434 yrs. 
2 7 r / ( « a — «,) = 60 yrs. 77 yrs. 51 yrs. 

Thus both precessional movements on the whole increase in rapidity 
(because of the increasing value of TT/n), but the rate of the precession of the 
pair of proper planes increases all through, whilst that of the precession on 
the proper planes diminishes and then increases. It was pointed out towards 
the end of § 13 that K2 is, so to speak, the ancestor of the luni-solar precession, 
and K2 — KI the ancestor of the revolution of the moon's nodes. Hence the 
988 years has bred (to continue the metaphor) the present 26,000 years of 
the precessional period, and the 60 years has bred the present 18^ years of 
the revolution of the moon's nodes. 

We see that the « 2 — «j precession attains a minimum at a certain period, 
being more rapid both earlier and later. 

All the above results will be collected and arranged in a tabular form, 
after further results have been obtained by means of an integration, carrying 
out the investigation into the more remote past. 

The tidal and precessional effects of the sun's influence have now become 
exceedingly small, and the only way in which the sun continues to exert a 
sensible effect is in its tendency to make the nodes of the lunar orbit revolve 
on the ecliptic. In the analysis therefore we may now treat T as zero every
where, except where it occurs in the form T'/XZT. Since X and E are both 
pretty small, these terms in T'/T rise in importance. 

The equation of conservation of moment of momentum now becomes 

na ^ kn„ ^ ^ 
Here kn„ is equal to the value of ill in the preceding integration when 

f = -76 ; and hence 1 /kn0 = "665903. 
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TABLE V . 

i 1 - • 9 6 • 9 2 • 8 8 

«/%= 1 - 0 0 0 0 0 1 - 0 2 6 6 4 1 - 0 5 3 2 7 1 0 7 9 9 1 

LOG e + 1 0 = 8 - 6 0 6 1 4 8 - 6 2 8 9 8 8 - 6 5 1 2 2 8 - 6 7 2 9 2 

LOG T'/T + 1 0 = • 7 - 9 0 3 5 6 7 - 7 9 7 1 8 7 6 8 6 2 8 7 - 5 7 0 4 5 

LOGX + 1 0 = 8 - 9 5 8 4 1 9 - 0 0 0 1 8 9 - 0 4 4 5 1 9 - 0 9 1 5 7 

L O G R ' / 2 X e 7 - + 1 0 = 1 0 - 0 3 7 9 8 9 - 8 6 6 9 9 9 - 6 8 9 5 2 9 - 5 0 4 9 3 

m = A = 1 - 5 0 1 7 1 - 6 0 6 0 1 - 7 1 9 3 1 - 8 4 2 9 

LOGG+ 1 0 = 9 - 9 1 6 9 3 9 - 9 5 0 4 9 9 - 9 8 5 3 1 1 0 - 0 2 1 7 0 

LOGD + 1 0 = 9 6 5 3 2 2 9 - 6 4 7 8 0 9 6 4 1 1 8 9 - 6 3 3 0 3 

a = - 1 3 - 8 7 3 - 1 7 - 7 1 9 - 2 1 - 6 0 7 - 2 5 - 6 9 2 

A' = - 1 8 - 7 9 0 - 2 I - 2 G G - 2 4 1 3 0 - 2 7 - 4 6 0 

(?=V = - 1 0 - 0 1 0 - 1 0 - 6 3 6 - 1 1 - 3 1 6 - 1 2 - 0 5 7 

LOG-(K! + a ) + 1 0 = 9 - 8 2 2 8 5 9 - 8 8 2 4 7 9 - 9 2 4 0 1 9 - 9 5 2 0 3 

LOG( K 2 + a ) + 1 0 = • 3 5 3 7 4 • 3 2 3 2 7 • 3 1 1 3 3 • 3 1 3 4 7 

LOG(LCJ-|CI) + 1 0 = • 4 6 5 8 6 • 4 5 7 5 8 • 4 6 0 5 2 • 4 7 0 3 5 

TABLE V I . 

1 · • 9 6 • 9 2 • 8 8 

- (A' - 0 ' ) («I +a)¡kn (K 2 - K L ) * = - - 1 9 9 8 - - 4 2 6 1 - - 6 5 5 1 - - 8 6 3 0 

A'B(K 1 + A)/IM(K 2 + A ) ( ' £ 2 - K I ) I ! = • 4 3 1 2 • 6 0 7 7 • 7 5 0 0 • 8 4 4 5 

ah/in (K„ — K ! ) 2 = - 1 - 4 6 4 3 - 1 - 6 7 7 0 - 1 - 8 2 9 7 - 1 - 9 4 1 0 

B'A (K, + O ) / I N (K, + O) ( i c a - KI) 2 = • 3 4 5 0 • 4 8 8 2 • 6 0 4 7 • 6 8 3 3 

B ' A / M ( K 2 - K , ) 2 = - 1 1 7 1 4 - 1 - 3 4 6 9 - 1 - 4 7 5 2 - 1 - 5 7 0 6 

G(K 1 + A V * ™ ( K ! - * i ) = - - 1 2 5 1 - - 1 5 4 0 - - 1 7 7 7 - - 1 9 6 5 

G ( ic 2 +A)/*» (« , -«! )= • 4 2 4 8 - 4 2 4 8 • 4 3 3 5 • 4 5 1 7 

D(K, + a)/IRE(K2 — KI) = - - 0 6 8 2 - - 0 7 6 7 - - 0 8 0 5 - - 0 8 0 3 

D ( i c 2 + A ) / I » ( K 2 - I C 1 ) = • 2 3 1 5 • 2 1 1 6 • 1 9 6 3 • 1 8 4 6 

(BG - AD)/te (K¡¡ — KI) = • 0 3 4 2 • 0 4 0 4 • 0 4 6 9 • 0 5 4 2 

Wo now have 8 = b, y = g, 8 = d, 8' = b', 7' = g', 8' = d', but a and a' are 
not equal to a and a'. 

It is proposed to carry the new integration over the field defined by f = 1 
to "88, and to compute four equidistant values. 

The following tables give the results of the computation, as in the previous 
case. 
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TABLE VII. 

1- •96 •92 •88 

rfIogtan^J/c?£= + -1496 - -0754 - -3298 - • 5 6 2 5 

d log tan il/fl?£ = + 1-0601 + •8607 + '6354 + -4370 

By interpolation it appears that dJ/d^ vanishes when f = '9679. This 
value of f corresponds with 7 hrs. 47 m. for the period of the earth's rotation, 
and 3'25 m. s. days for the period of the moon's revolution. 

By the rules of the calculus of finite differences, integrating from f = 1 
to -88, 

loge tan 3fJ = log,, tan ^J 0 + "0244 
log„ tan -JI = loge tan |I„ — "0898 

With J 0 = 6° 9', I 0 = 13° 25' from the previous integration, we have 
J=6 °18 ' , I = 12° 16'. 

When f = "88, the length of the day is 7 hrs. 15 m., and the moon's sidereal 
period is 2-45 m. s. days. Also I = 3° 3', J, = 10° 58'. 

Thus we have traced the changes back until the inclination of the proper 
planes to one another is only 12° 16' - 1 0 ° 58' or 1° 18'. 

In the same way as before it may be shown that, when f = "88, the period 
of the precession of the proper planes is 609 years, and the period of the 
revolution of the two nodes on their moving proper planes is 22 years. The 
former of the two precessions is therefore at this stage getting slower, whilst 
the latter goes on increasing in speed. 

The physical results of the whole integration of the present section are 
embodied in the following table. 

TABLE VIII. Results of integration in the case of small viscosity. 

Day in 
m. a. 
hours 

and 
min. 

Moon's 
sidereal 
period 

in m. s. 
days 

Inclination 
of earth's 

proper 
plane to 
ecliptic 

Inclination 
of equator 
to earth's 

proper 
plane 

Inclination 
of moon's 

proper 
plane to 
ecliptic! 

Inclination 
of lunar 
orbit to 
moon's 
proper 
plane 

Precea-
sional 
period 
of the 
proper 
planes 

Period of 
revolution of 

the two nodes 
on their moving 

proper planes 

h. m. Days a / O i o * Years Years 
9 55 8-17 17 0 0 22 0 57 6 0 988 60 

8 45 5-57 15 43 1 16 3 39 6 17 509 77 

7 49 3 5 9 13 25 2 43 8 54 6 9 434 51 

7 15 2 4 5 12 16 3 3 10 58 6 18 609 22 

Combining these terms according to the formula? (250), we have 
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If the integration is to be carried still further back, the solar action may 
henceforth be neglected, and the motion may be referred to the invariable 
plane of the system. This plane undergoes a precessional motion due to the 
sun, which will not interfere with the treatment of it as though fixed. It is 
inclined to the ecliptic at about 11° 45', because, at the time when we suppose 
the solar action to cease, the moment of momentum of the earth's rotation is 
larger than that of orbital motion, and therefore the earth's proper plane 
represents the invariable plane of the system more nearly than does the 
moon's proper plane. 

The inclination i of the equator to the invariable plane must be taken as 
about 3°, and j that of the lunar orbit as something like 5° 30'. The ratio of 
the two angles 5° 30' and 3° must be equal to 1'84, which is tit, the ratio of 
the moment of momentum of the earth's rotation to that of orbital motion, at 
the point where the preceding integration ceases. 

Then in the more remote past the angle i will continue to diminish, until 
the point is reached where the moon's period is about 12 hours and that of 
the earth's rotation about 6 hours. The angle j will continue increasing at 
an accelerating rate. 

This may be shown as follows: 

The equations of motion are now those of Part II., which may be written 

kn^=-g(i + j) 

k n % = d ^ + ^ 

But since i/j= — 1/m, they become 
, d l+m 
fa»^logtanij = — g 

An ^ l o g tan = (1 + til) d 

(Compare with the first of equations (255) given in Part III., when 
T' = 0.) 

These equations are not independent, because of the relationship which 
must always subsist between i and j . 

Substituting from (251) we have for the case of small viscosity 

* 4 ~ - = - 2 ^ ) 
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From this we see that j will always decrease as f increases at a rate which 
tends to become infinite when X. = 1; and i increases as f increases so long as 
X is less than -5, but decreases for values of \ between '5 and unity at a rate 
which tends to become infinite when X. = 1. If we consider the subject retro
spectively, £ decreases, j increases, and i decreases, except for values of X 
between '5 and unity. 

This continued increase (in retrospect) of the inclination of the lunar orbit 
to the invariable plane is certainly not in accordance with what was to be 
expected, if the moon once formed a part of the earth. For if we continued 
to trace the changes backwards to the initial condition in which (as shown in 
" Precession") the two bodies move round one another as parts of a rigid 
body, we should find the lunar orbit inclined at a considerable angle to the 
equator; and it is hard to see how a portion detached from the primeval 
planet could ever have revolved in such an orbit. 

These considerations led me to consider whether some other hypothesis 
than that of infinitely small viscosity of the earth might not modify the above 
results. I therefore determined to go over the same solution again, but with 
the hypothesis of very large instead of very small viscosity of the planet. 

This investigation is given in the next section, but I shall not retraverse 
the ground covered by the integration of the first method, but shall merely 
take up the problem at the point where it was commenced in the present 
section. 

§ 20. Secular changes in the proper planes of the earth and moon 
when the viscosity is large. 

Let P = 2gaw/19v, where v is the coefficient of viscosity of the earth. 

By the theory of viscous tides 

. 2 ( B - n ) 2n n - 2 I i n tan2i ,=— P , t a n 2 f = ^ - , tan gx = — - — , tan g = - ...(261) 

If the viscosity be very large P is very small, and the angles ^ 7 R —2fls 

\TT — 2f, \IR — gi, \ T — g are small, so that their cosines are approximately 
unity and their sines approximately equal to their tangents. Hence 

• A C P • AT 9 • O 2 P • O 2 P 

sin4f, = — i - j - , s m 4 f = ? : , s in2g,= r ^ sin2g = -^ 
n — I L n n — 211 n 

Introducing X = fi/w, we have 

sin4f sin2g! 2 ( 1 - X ) sin 2g 
S I N 4 F R

 1 ~ X - S H T 4 F T
 = T ^ 2 X ' s i r^f ," 2 ( 1 ~ X ) - ( 2 6 2 ) 
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Introducing the transformations (262) into (251), we have 

r = i m 

bG 

1 + 

aD = 

4 \ (1 - \ ) ' 
1 -2X 

4Ml_-_\) _ 
1 - 2 \ 

, 4 \ (1 - X.) 

4 ( l - x ) ^ + (l-x)g)r] 
- 2 ( 1 - X ) ^ ] 

.(263) 

1-2X 
All the other expressions in (251) remain as they were. 
The terms in T, A, G, D in (250) are the only ones which have to be re

computed, and all the other arithmetical work of the last section will be 
applicable here. Also all the materials for calculating these new terms are 
ready to hand. 

The results of the computation are embodied in the following tables. 

TABLE I X . 

1· • 9 6 • 9 2 • 8 8 • 8 4 • 8 0 • 7 6 

l o g r + 1 0 = 9 - 5 4 9 0 1 9 5 7 5 2 9 9 - 5 9 9 1 4 9 - 6 1 9 9 4 9 - 6 3 6 6 3 9 - 6 4 7 9 1 9 6 5 0 9 2 

• l o g A = • 5 2 8 7 6 • 5 5 5 1 7 • 5 8 0 2 3 • 6 0 4 8 4 • 6 3 0 0 5 • 6 5 7 0 8 • 6 8 7 3 9 

l o g ( a D - b G ) + 1 0 = 9 - 0 8 3 8 1 9 - 2 2 3 5 6 9 - 3 4 4 1 6 9 - 4 5 4 3 3 9 - 5 5 9 3 1 9 - 6 6 2 5 9 9 - 7 6 5 7 4 

TABLE X. 

1 - • 9 6 • 9 2 • 8 8 • 8 4 • 8 0 • 7 6 

r ( K ! + a ) / f c ( K 2 - < ] ) = - 0 0 1 3 3 - - 0 0 3 2 8 - - 0 0 8 0 0 - • 0 1 8 5 3 - - 0 3 8 1 8 - - 0 6 5 1 3 - - 0 8 9 6 1 

R{K.2 + a)/KN(K2-Ki) = • 3 9 1 8 5 • 3 9 6 5 7 • 3 9 7 1 2 • 3 8 9 7 3 • 3 7 0 0 3 • 3 3 8 5 6 • 3 0 2 6 0 

A (Kl + a)/,foi (K2 - KI) ^ - - 0 0 1 9 9 - - 0 0 4 8 5 - • 0 1 1 6 8 - - 0 2 6 8 8 - - 0 5 5 5 3 - - 0 9 6 2 7 - • 1 3 7 6 1 

A (K2 + a)/KN ( < 2 - « i ) = 
• 5 8 5 2 9 • 5 8 5 4 1 • 5 7 9 9 4 • 5 6 5 5 4 • 5 3 8 2 6 • 5 0 0 4 4 • 4 6 4 6 8 

( b G - a D ) / > b i ( * : 2 - K i ) = - - 0 0 8 2 5 - - 0 1 6 2 2 - 0 3 0 3 4 - - 0 5 3 8 8 - - 0 8 8 5 0 - - 1 3 0 9 2 - - 1 7 5 0 4 

Combining these terms with those given in Table III., according to the 
formulae (250), (with T, &c, in place of 7 , &c), we have the following equi
distant values. 

TABLE XI. 

1 - • 9 6 • 9 2 • 8 8 • 8 4 • 8 0 • 7 6 

l o g t a n \ J/D£= - - 3 4 7 7 - • 2 9 2 5 - • 1 5 8 7 + - 1 1 2 5 + - 5 0 3 6 + - 7 8 1 8 + - 7 1 9 5 

l o g t a n J I / d £ = + • 6 1 6 8 + • 6 6 6 1 + ' 7 7 9 6 + 1 - 0 1 0 7 + 1 - 3 4 0 6 + 1 - 5 4 5 8 + 1 - 4 1 0 3 
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By interpolation it appears that DJ/D^ vanishes when F = '89(36. This 
value of F corresponds with a period of 8 hrs. 54 in. for the earths rotation, 
and 5'89 m. s. days for the moon's revolution. 

Integrating as in the last section, from F = 1 to '88, we have 

log, tan ^J = loge tan £J 0 + '0238 

loge tan ^1 = loge tan ̂ I 0 — 0895 

Taking I 0 = 6°, J 0 = 17°, we have I = 15° 34', J = 6° 9'. 

These values correspond to I ,= l 0 15 ' , J, = 3° 37'. 

Again integrating from F = 1 to '76, we have 

loge tan J J = loge tan \ J0 — '0461 
log« tan £1 = loge tan ^ I 0 — '2552 

These give J = 5° 44', 1 = 13° 13', which correspond to I, = 2° 33', J = 8° 46'. 
The integration will now be continued over another period, as in the last 

section. The following are the results of the computations. 

TABLE XII. 

1' •96 •92 •88 

L O G ( R = G ) + 1 0 = 9 - 6 5 0 9 2 9 - 6 4 4 9 1 9 - 6 2 7 8 3 9 - 5 9 2 9 9 

LOG(A = D ) + 1 0 = 9 - 8 4 6 2 9 9 - 8 6 0 4 0 9 - 8 7 6 8 6 9 - 8 9 6 2 2 

TABLE XIII. 

È 1- - 9 6 •92 •88 

G ( K ! + A)/IRE(JC2 — « i ) = - • 0 6 7 8 1 - - 0 7 6 1 7 - - 0 7 8 0 2 - - 0 7 3 2 3 

G((C 2 + a ) / f e ( K 2 - < i ) = • 2 3 0 2 6 • 2 1 0 1 8 • 1 9 0 3 3 • 1 6 8 3 2 

D ( « i + a ) / ^ ( K 2 - * i ) = - - 1 0 6 3 4 - • 1 2 5 1 1 - • 1 3 8 4 3 - - 1 4 7 2 0 

D ( i c j + A ) / I R A ( i e 2 - i c 0 = • 3 6 1 0 6 - 3 4 5 2 1 • 3 3 7 7 1 • 3 3 8 3 5 

( B G - A D ) / £ W ( > C 2 - M ) = - - 1 3 8 1 5 - - 1 6 3 5 2 - • 1 9 0 5 7 - - 3 5 0 5 4 

Substituting these values in the differential equations (250), we have the 
following equidistant values: 

TABLE XIV. 

1- - 9 6 •92 • 8 8 

D\OG TAN £J/c££ = + - 5 5 4 7 + • 3 9 1 5 + - 2 0 8 8 + • 1 9 2 5 

RFLOGTAN|I/c?F= + 1 - 0 7 4 6 + - 8 6 8 2 + • 6 3 9 1 + • 3 0 9 3 
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TABLE XV. Results of integration in the case of large viscosity. 

Day in 
m. a. hours 

and 
minutes 

Moon's 
sidereal 

period in 
m. s . days 

Inclination 
of earth's 

propor plane 
to ecliptic 

Inclination 
of equator 
to earth's 

proper plane 

Inclination 
of moon's 

propor plane 
to ecliptic 

Inclination 
of lunar orbit 

to moon's 
proper plane 

h. m. 
9 55 

Days 
8-17 17 Ò 0 22 6 57 è b 

8 45 5-57 15 34 1 15 3 37 6 9 
7 49 3-59 13 13 2 33 8 46 5 44 
7 15 2-45 12 6 2 40 10 49 5 30 

If we compare these results with those in Table VIII. for the case of small 
viscosity, we see that the inclinations of the two proper planes to one another 
and to the ecliptic are almost the same as before, but there is here this 
important distinction, viz.: that the inclinations of the two moving systems 
to their respective proper planes are less (compare 5° 30' with 6° 18', and 2° 40' 
with 3° 3'). 

And besides, if we had carried the integration, in the case of small 
viscosity, further back we should have found the inclination of the lunar 
orbit increasing. 

I t will now be shown that, in the present case of large viscosity, the 
inclinations of the equator and the orbit to their proper planes will continue 
to diminish, as the square root of the moon's distance diminishes, and at an 
increasing rate. 

Suppose that, in continuing the integration, the solar influence be entirely 
neglected, and the motion referred to the invariable plane of the system. 
This plane will be in some position intermediate between the two proper 
planes, but a little nearer to the earth's plane, and will therefore be inclined 
to the ecliptic at about 11° 45'. 

Then integrating from f = 1 to '88 we have 

loge tan \J = ioge tan | J 0 — -0382 

LOGE tan | I = loge tan — "0886 

Putting I 0 = 1 3 ° 1 3 ' and J 0 = 5° 44', from the previous integration, we 
have J - 5° 30', I = 12° 6'. 

These values of J and I give J, = 10° 49', I, = 2° 40'. 

The physical meaning of the results of the whole integration is embodied 
in the following table. 
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1880] MORE REMOTE RETROSPECT. 317 

The equations of motion are now those of § 10, Part II., which may be 
written 

kn^=-G(i+j) 

. di 
h n d \ = D ( i + j ) 

But since i/j = f/in = 1/ttl, they become 

kn ~ log tan \i = — ^ + m G d% 6 2 J M 

&ra-^.logtan^i = ( L + M ) D 

(compare with the first of equations (255) given in Part III., when r = 0). 

These equations are not independent of one another, because of the 
relationship which must always subsist between i and j . 

Substituting from (263) (in which T is put zero, and G, D written for 
P, A) we have for the case of large viscosity 

kn J | LOG tan \j = - £ (1 + M) 

I R A L O G tan \i= ^ ( L + M ) 

1 -

1 + 

4 X ( 1 - X ) " 

1 - 2 X 

4 X ( 1 - X ) " 

1 — 2A7 

When X = ^, 4 X ( 1 — X ) / ( l — 2 X ) is infinite, and therefore both djjdl; and 
di/dl; are infinite. This result is physically absurd. 

The absurdity enters by supposing that an infinitely slow tide (viz.: that 
of speed n — 2 1 1 ) can lag in such a way as to have its angle of lagging nearly 
equal to 90°. The correct physical hypothesis, for values of X nearly equal 
to ^, is to suppose the lag small for the tide n— 2 f i , but large for the other 
tides. Hence when X is nearly = J, we ought to put 

P - o 2 P v . • o 2 ( n - 2 0 ) 
6 n 

sin 4fj = -n-Sl' 
Then we should have 

G = im 

but sin 2 g , = 

2 w 5 

1 + 2 ( 1 - X ) _ ^ - ( 1 - X ) ( 1 - 2 X ) 

1 - 2 ( 1 - X ) + ^ ( 1 _ X ) ( 1 - 2 X ) 

The last term in each of these expressions involves a small factor both in 
numerator and denominator, viz.: 1 — 2 X because X = ^ nearly, and p , because 
the viscosity is large. The evaluation of these terms depends on the actual 
degree of viscosity, but all that we are now concerned with is the fact that 
when X = ^ the true physical result is that D changes sign by passing through 
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At the point where the above retrospective integration stopped, the 
moon's period was 2'45 days or 59 hours, and the day was 7'25 hours; hence 

zero and not infinity, and that G does the same for some value of X not far 
removed from J. 

Now consider the function _ j ppî  f 0 n o w ] n g results are not 

stated retrospectively, and when it is said that i or j increase or decrease, it 
is meant increase or decrease as t or f increases. 

(i) From X = 1 to X = '5 the function is negative. 
Hence for these values of X the inclination j decreases, or zero inclination 

is dynamically stable. 
When A = -5 it is infinite; but we have already remarked on this case. 
(ii) From A = '5 to X = -191 it is positive. 
Therefore for these values of X the inclination j increases, or zero incli

nation is dynamically unstable. I t vanishes when X = '191. 
(iii) From X = -191 to X = 0 it is negative. 
Therefore for these values of X the inclination j decreases, or zero incli

nation is dynamically stable. 

Next consider the function 1 + ŝ — -̂
1 — xX 

(iv) From X = 1 to X = -809 it is positive. 
Therefore for these values of X the obliquity i increases, or zero obliquity 

is dynamically unstable. I t vanishes when X = -809. 
(v) From X = '809 to X = -5 it is negative. 
Therefore for these values of X the obliquity i decreases, or zero obliquity 

is dynamically stable. 
When X= -5 it is infinite; but we have already remarked on this case. 
(vi) From X — '5 to X = 0 it is positive. 
Therefore for these values of X the obliquity i increases, or zero obliquity 

is dynamically unstable. 
Therefore from X = 1 to '809 the inclination j decreases and the obliquity 

i increases. 
From X = '809 to '5 both inclination and obliquity decrease. 
From X = 5 to '191 both inclination and obliquity increase. 
From X = '191 to 0 the inclination decreases and the obliquity increases. 
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1880] DISCUSSION OF THE INTEGRATION. 319 

at this point X = '123, which falls between -191 and '5. Hence both incli
nation and obliquity decrease retrospectively at a rate which tends to become 
infinite when we approach X = '5, if the viscosity be infinitely great. For 
large, but not infinite, viscosity the rates become large and then rapidly 
decrease in the neighbourhood of X = -5. 

From this it follows that by supposing the viscosity large enough, the 
obliquity and inclination may be made as small as we please, when we arrive 
at the point where X = -5. 

It was shown in § 17 of " Precession " that X = '5 corresponds to a month 
of 12 hours and a day of 6 hours. 

Between the values X = '5 and '809 the solutions for both the cases of 
small and of large viscosity concur in showing zero obliquity and inclination 
as dynamically stable. But between X = -809 and 1 the obliquity is dynamically 
unstable for infinitely large, stable for infinitely small viscosity; for these 
values of X zero inclination is dynamically stable both for large and small 
viscosity. 

From this it seems probable that for some large but finite viscosity, both 
zero inclination and zero obliquity would be dynamically stable for values of 
X between '809 and unity. 

It appears to me therefore that we have only to accept the hypothesis 
that the viscosity of the earth has always been pretty large, as it certainly is 
at present, to obtain a satisfactory explanation of the obliquity of the ecliptic 
and of the inclination of the lunar orbit. This subject will be again discussed 
in the summary of Part VII. 

§ 21. Graphical illustration of the preceding integrations. 

A graphical illustration will much facilitate the comprehension of the 
numerical results of the last two sections. 

The integrations which have been carried out by quadratures are of course 
equivalent to finding the areas of certain curves, and these curves will afford 
a convenient illustration of the nature of those integrations. 

In §§ 19, 20 two separate points of departure were taken, the first pro
ceeding from f = 1 to "76, and the second from f = 1 to '88. I t is obvious 
that f was referred to different initial values c0 in the two integrations. 

In order therefore to illustrate the rates of increase of log tan ^ J and 
log tan J I from the preceding numerical results, we must either refer the 
second sets of £'s to the same initial value c0 as the first set, or (which will be 
simpler) we may take »Jc as the independent variable. 
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For the values between f = 1 and '76, the ordinates of our curves will 
be the numerical values given in Tables IV. and XL, each divided by Vc0. 
By the choice of a proper scale of length, c0 may be taken as unity. 

For the values in the second integration from f = 1 to '88, the \/ca is the 
final value of Vc in the first integration. Hence in order to draw the ordinates 
in the second part of the curve to the same scale as those of the first, the 
numbers in Tables VII. and XIV. must be divided by '76. 

Also the second set of ordinates are not spaced out at the same intervals 
as the first set, for the d >Jv of the second integration is '76 of the d>fco£ the 
first integration. 

Hence the ordinates given in the four Tables, IV., VII., XL, and XIV., 
are to be drawn corresponding to the abscissa? 

0, 1, 2, 3, 4, 5, 6, 676, 7-52, 8-28 
In fig. 7 these abscissa? are marked off on the horizontal axis. 
The first integration corresponds to the part 0 0 ' , and the marked points 

correspond to the seven values of f from 1 to -76 inclusive. The second in
tegration corresponds to the part O'O", and the values computed in Tables VII. 
and XIV. were divided by '76 to give the ordinates. 

The value for f = '76 of the first integration is identical with that for f = 1 
of the second. 

The integrations, which have been carried out, correspond to the deter
mination of the areas lying between these curves and the horizontal axis, 
areas below being esteemed negative. 

The two curves for d log tan ^I/d \Jc lie very close together, and we thus 
see that the motion of the earth's proper plane is almost independent of the 
degree of viscosity. 

On the other hand, the two curves for d log tan ^JJd \jc differ considerably. 
For large viscosity the positive area is much larger than the negative, whilst 
for small viscosity the positive area is a little smaller than the negative. 

If the figure were extended further to the right, the two curves for the 
variation of I would become identical, and the ordinates would become very 
small. The two curves for the variation of J would separate widely. That 
for large viscosity would go upwards in the positive direction, so that its 
ordinates would be infinite at the point corresponding to X = \ ; the curve 
for small viscosity would go downwards in the negative direction, and the 
ordinates would be infinite at the point where X = 1. 

In this figure 0 0 ' is 6 centimetres, 0 0 " is 8'28 centimetres, and the 
point corresponding to X = \ would be 15'2 centimetres from O, and the point 
corresponding to X = 1 would be 17-4 centimetres from O. 
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1880] GRAPHICAL ILLUSTRATION OF THE RESULTS. 321 

We thus see that the degree of viscosity makes an enormous difference in 
the results. 

In the figure, portions of these further parts of the two curves for the 
variation of J are continued conjecturally by a line of dashes. 

The whole figure is to be read from left to right for a retrospective 
solution, and from right to left if we advance with the time. 

\ 
\ 

\ 
\ 

\ 

'Ilústrate the motion of the proper planes c-f the rnoon and earth. 

D. II. 
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§ 22. The effects of solar tidal friction on the primitive condition of 
the earth and moon. 

In the paper on " Precession," § 16,1 found, by the solution of a biquadratic 
equation, the primitive condition in which the earth and moon moved round 
together as a rigid body. 

Since writing that paper certain additional considerations have occurred 
to me, which seem to be important in regard to the origin of the moon. 

It was there remarked that, as we approach that critical condition of 
dynamical instability, the effects of solar tidal friction must have become 
sensible, because of the slow relative motion of the moon and earth. I did 
not at that time perceive the full significance of this, and I will now consider 
it further. 

If the moon is moving orbitally nearly as fast as the earth rotates, 
the tidal reaction, which depends on the lunar tides alone, must be very 
small, and therefore the moon's orbital motion must increase retrospectively 
very slowly. On the other hand, the relative motion of the earth and sun is 
great, and therefore if we approach the critical condition close enough, the 
solar tidal friction must have been greater than the lunar, however great the 
viscosity of the planet. The manner in which this will affect the solution of 
the previous paper may be shown analytically as follows. 

If we neglect the obliquity, and divide the equation of tidal friction by 
that of tidal reaction, and suppose the viscosity small, we have from (176) 

. dn / V y n , / T ' V „„ / T V fi 
- ^ = 1 + l 7 J »-3n = 1 + U

 + U n^n dÇ 
Integrating we have 

1 
n = n0 + k (w>+ A(0(i-p)]+i0y^ 

If we do not carry the integration to near the critical phase, where n is 
equal to D,, the last integral is small, but it tends to become large as n 
becomes nearly equal to 11; it has always been neglected in our integration. 
When however we wish to apply this equation to find the values for which n 
is equal to 12, it cannot be neglected. 

Suppose the integral to be equal to K. Then in the first part of the 
above expression we may put n = D. = XS and we may neglect ^ (T' /T 0 ) 2 (1 — f13). 
Hence the equation for finding the angular velocity of the two bodies at the 
critical phase, when n = O, is 

x 3 = n0+Y hK 

K sx 
or 3,_(Mo + i + K ) , + s

1 = o 

IRIS - LILLIAD - Université Lille 1 



The root of this equation, which gives the required phase, is nearly equal 
to the cube-root of the second coefficient, hence 

XS = n = fl = ^n0 + ^ + K ̂  nearly 

Now in the paper on " Precession " we found the initial condition, on the 
hypothesis that K was zero. Hence the effect of solar tidal friction is to 
increase the angular velocity of the two bodies when their relative motion is 
zero. Since K may be large, it follows that the disturbance of the solution 
of § 16 of " Precession " may be considerable. 

This therefore shows that it is probable that an accurate solution of our 
problem would differ considerably from that found in " Precession," and that 
the common angular velocity of the two bodies might have been great. 

If Kepler's law holds good, the periodic time of the moon about the 
earth, when their centres are 6,000 miles apart, is 2 hrs. 36 m., and when 
5,000 miles apart is 1 hr. 57 m.; hence when the two spheroids are just in 
contact, the time of revolution of the moon would be between 2 hrs. and 
2£ hrs. 

Now it is a remarkable fact that the most rapid rate of revolution of a 
mass of fluid, of the same mean density as the earth, which is consistent with 
an ellipsoidal form of equilibrium, is 2 hrs. 24 m. Is this a mere coincidence, 
or does it not rather point to the break-up of the primaeval planet into two 
masses in consequence of a too rapid rotation* ? 

It is not, however, possible to make an adequate consideration of the 
subject of this section without a treatment of the theory of the tidal friction 
of a planet attended by a pair of satellites. 

It was shown above that if the moon were to move orbitally nearly as fast 
as the earth rotates, the solar tidal friction would be more important than 
the lunar, however near the moon might be to the earth. I find that the 
consequence of this is that the earth's rotation continues to increase retro
spectively, and the moon's orbital motion does the same; but the difference 
between the rotation and the orbital motion continually gets less and less. 
Meanwhile, the earth's orbital motion round the sun is continually increasing, 
and the distance from the sun decreasing retrospectively. Theoretically this 
would go on until the sun and moon (treated as particles) revolve as though 
rigidly connected with the earth and with one another. This is the con
figuration of maximum energy of the system. 

* [But the instability of a homogeneous ellipsoid seta in for a considerably leas rapid rate of 
rotation. Hence the argument in the text is inexact, and it would appear that the rupture of the 
primaval planet must have occurred when the rotation was less rapid. The whole subject is 
full of difficulties, and the conclusions roust necessarily remain very speculative.] 

21—2 
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The solution is physically absurd, because the distance of the two bodies 
from the earth would then be very much less than the earth's radius, and 
& fortiori than the sun's radius. 

I t must be observed, however, that in the retrospect the relative motion 
of the moon and earth would already have become almost insensible, before 
the earth's distance from the sun could be sensibly affected. 

V. 

SECULAR CHANGES IN THE ECCENTRICITY OF THE ORBIT. 

§ 23. Formation of the disturbing function. 

We will now consider the rate of change in the eccentricity and mean 
distance of the orbit of a satellite, moving in an elliptic orbit, but always 
remaining in a fixed plane, namely, the ecliptic; and the rate of change of 
the obliquity of the planet's equator when perturbed by such a satellite will 
also be found. 

Up to the end of Part I. the investigation for the formation of the dis
turbing function was quite general, and we therefore resume the thread at 
that point. 

In the present problem the inclination of the satellite's orbit to the 
ecliptic is zero, and we have 

•—• = •— = P = cos \i, K = K = Q = sin \i 
We thus get rid of the •— and K functions, and henceforth M will indicate 

the longitude of the perigee. 
By equations (24-8), 

Mj3 - M2

2 = P 4 cos 2 (x - 8) + 2P 2Q 2 cos 2 X + Q4 cos 2 ( X + 8) 
— 2Mj Ma = The same with sines for cosines 

M 2M 3 = - P 3 Q cos (x - 20) + P Q ( P 2 - Q2) cos X + P Q > cos ( X + 26) 
MjM., = The same with sines for cosines 

i - M3

2 = J ( P 1 - 4P 2 Q 2 + QL) + 2P 2 Q 2 cos 28 
By the definitions (29) 

X c ( l - e 2 ) ' ' v r c ( l - e 2 ) p , T Mx, Y = — M 2 , 
L r J 

c (1 - e2)' 
r 

Now let 
*(«) = 

¥(«) = 

C - ^ - — c o s (28 + a) 
r J 

"c(l - e2)' 
cos a, R = 

c ( l - e 2 ) 
r 

-•J 

M, 

.(264) 
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Then 
X« - Y» = P*<P (_ 2X) + 2 P a Q 2 ¥ (2X) + Q«P (2X) 

2XY = The same when X + \IR is substituted for x 

YZ = -P*Q<S>(-X) + PQ (P* -Q^VIXJ+PQ3® (X) } (265) 
XZ = The same when X — %TT is substituted for X 

X (x« + Y* _ 2ZJ) = £ (P* - P 'Q 2 + Q 4)R + 2 P 2 Q 2 $ (0) 
Hence all the terms of the five X-Y-Z functions belong to one of the 

three types <$>, or R. 
The equation to the ellipse described by the satellite Diana is 

C ( 1 ~ e a ) = 1 + e cos (9 - «•) (266) 
Hence 

R = 1 + $ e* 4- 3e (1 + £e2) cos (9 - VR) 4- f e2 cos 2 (0 - W) + ^e 3 cos 3 (9 - ZR)\ 
$ (a) = R cos (26 + A) = (1 -f | e : ) cos (29 + a) 

4- fe (1 + {E1) [cos (30 + a - CT) + cos (t9 + a + «•)] }>. 

4- £e2 [cos (40 + a - 2ra-) + cos (a + 2w)] 
+ ^e3 [cos (50 + a — 3or) + cos (6 — a — 3^·)] J 

(267) 
and (a) = R cos a. 

By the theory of elliptic motion, 8 the true longitude may be ex
pressed in terms of CLT + E and -OR, in a series of ascending powers of e the 
eccentricity, Hence <I> (a), R, and (a) may be expressed as the sum of a 
number of cosines of angles of the form I (ILT + E) + MM + NA, and in using 
these functions we shall require to make a either a multiple of X or zero, or 
to differ from a multiple of X by a constant. Therefore the X-Y-Z functions 
are expressible as the sums of a number of sines or cosines of angles of the 
form I (QT + E)+ M-AR + n^. 

Now X increases uniformly with the time (being equal to NT 4- a constant); 
hence, if we regard the elements of the elliptic orbit as constant, the X-Y-Z 
functions are expressible as a number of simple time-harmonics. But in § 4, 
where the state of tidal distortion due to Diana was found, they were assumed 
to be so expressible; therefore that assumption was justifiable, and the 
remainder of that section concerning the formation of the disturbing function 
is applicable. 

The problem may now be simplified by the following considerations:— 
The equation (12) for the rate of variation of the ellipticity of the orbit 
involves only differentials of the disturbing function with regard to epoch and 
perigee. I t is obvious that in the disturbing function the epoch and perigee 
will only occur in the argument of trigonometrical functions, therefore after 
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326 EACH SATELLITE MAY BE TREATED BY ITSELF. [6 

the required differentiations they only occur in the like forms. Now the 
epoch never occurs except in conjunction with the mean longitude, and the 
longitude of the perigee increases uniformly with the time (or nearly so), 
either from the action of other disturbing bodies or from the disturbing action 
of the permanent, oblateness of the planet, which causes a progression of the 
apses. Hence it follows that the only way in which these differentials of the 
disturbing function can be non-periodic is when the tide-raiser Diana is 
identical with the moon. Whence we conclude that— 

The tides raised by any one satellite can produce no secular change in the 
eccentricity of the orbit of any other satellite. 

The problem is thus simplified by the consideration that Diana and the 
moon need only be regarded as distinct as far as regards epoch and perigee, 
and that they are ultimately to be made identical. 

Before carrying out the procedure above sketched, it will be well to con
sider what sort of approximation is to be made, for the subsequent labour 
will be thus largely abridged. 

From the preceding sketch it is clear that all the terms of the X - Y - Z 
functions corresponding with Diana's tide-generating potential are of the 
form 

(a + be + ce2 + de3 + /e* + &c.) cos [ty + m (D,t + e) + nts- + S] 
From this it follows that all the terms of the functions are of the 
form 

F (a + be + ce1 + de3 + fc* + &c.) cos [1% + m (D,t + e) + n*r + S -/] 
Also by symmetry all the terms of the X ' - Y ' - Z ' functions are of the form 

(a + be + ce* + de3 + / e 4 + &c.) cos [1% + m (D,t + e) + mx' + S] 
and in the present problem the accent to ^ may be omitted. 

The products of the X- |9 ->S functions multiplied by the X ' - Y ' - Z ' functions 
occur in such a way that when they are added together in the required 
manner (as for example in Y ' Z ' ^ S S + X ' Z ' X J S ) only differences of arguments 
occur, and % disappears from the disturbing function. Also secular changes 
can only arise in the satellite's eccentricity and mean distance from such 
terms in the disturbing function as are independent of iWt + e and -cr, when 
we put e = e and = m. Hence we need only select from the complete 
products the products of terms of the like argument in the two sets of 
functions. 

Whence it follows that all the part of the disturbing function, which is 
here important, consists of terms of the form 

F (a + be + ce" + de3 + fe* + Sac.)2 cos [m (e - e') + n (•sr - OT') -f] 
or 

F [a 2 + 2a6e + (2ac + b2) e2 + (2ad + 26c) e s + (2a /+ 2bd + c2) e* + &c] 
cos [m(e — e') + n(CT — ts) —f] 
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Now it is intended to develop the disturbing function rigorously with 
respect to the obliquity of the ecliptic, and as far as the fourth power of the 
eccentricity. 

The question therefore arises, what terms will it be necessary to retain in 
developing the X-Y-Z functions, so as to obtain the disturbing function 
correct to e4. 

In the X-Y-Z functions (and in their constituent functions 4> (a), ^ (a), R) 
those terms in which a is not zero will be said to be of the order zero ; those 
in which a is zero, but 6 not zero, of the first order ; those in which a = b = 0, 
but c not zero, of the second order, and so on. 

By considering the typical term in the disturbing function, we have the 
following— 

Rule of approximation for the development of the X-Y-Z functions and 
of 5> (a), ¥ (a), R: develop terms of order zero to e 4; terms of the first order 
to e3; terms of the second order to e2; and drop terms of the third and fourth 
orders. 

To obtain further rules of approximation, and for the subsequent develop
ments, we now require the following theorem. 

Expansion of cos (k9 + B) in powers of the eccentricity. 

6 is the true longitude of the satellite, l lZ+e the mean longitude, and 
BT the longitude of the perigee. For the present I shall write simply 11 in 
place of £Lt + e. 

By the theory of elliptic motion 

Í1 = 9 - 2e sin (9 - IS) + f ea (1 + ¿e2) sin 2(6-IS)- ¿e 3 sin 3 (6 - IS) 
+ FYE* sin 4(0 — IS) 

If this series be inverted, it will be found that 

6 = A + 2e (1 - ie s ) sin (SI - TS) + | e 2 ( l - ^ e 2 ) sin 2(H - «*) 

+ i | e s sin 3(n-nr) + e4 sin 4(11 - «r) 

By differentiation we find that, when e = 0, 

+ 2 cos 4(11 — ·=>-) 
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d£d?6 
de de ^ 5 = f cos (II - in-) - f cos; 

— f sin4(fl — XJ) 

(^=^-^008 4 ( 0 - ^ ^ ^ = - | + 8 c o s 2 ( f l - O T ) - ^ c o s 4 ( n - O T ) 

To expand cos (ka •+ ft) by means of Maclaurin'a theorem, we require the 
values of the following differentials when e = 0 and 0 = £1: 

^ cos (k6 + ft) = - k sin (k6 + ft) ^ 

de2 

d»_ 
de 3 

de 

cos (k0 +ft)=-k? cos (M + FT) (^J- k sin (k0 + ft) ^ 

/dB,3 „ ^d6d26 , . ,,n ^d?8 
cos (¿0 +/8) = f sm(k0+ft) (^J - 34« cos(M + /8) ^ ^ - *Bin(¿0 +ft) ̂  

'* /d0V „ ,x fd0V d2d 
- cos (k6 + ft) = ¥ cos 4- ft) + 64 s sin (kd + ft) J dg2 

- 3k2 cos (Afl + /8) (̂ J - 4A2 cos Qc8 + ft) ^ ^ - A sin (¿0 + £) ^ 

When e = 0, k9 + ft = kD, + ft, and the values of the differentials and 
functions of differentials of e are given above. If we substitute for these 
functions their values, and express the products of sines and cosines as the 
sums of sines and cosines, and introduce an abridged notation in which 
Ml + ft + s(X2 — TB-) is written (k + s), we have 

®,=̂ co8 (k9+ft) 

= — k cos (k — 1) + k cos (k + 1) 

0 2 = ^ c o s ( ^ + /3) 

= (k2 -1&) cos (k - 2) - 2fc2 cos k + (k* + ffc) cos (k + 2) 

0 s = j p c o s (kd + ft) 

= - {k3 - Jj6-P + JJ-A)cos(k — 3) + 3(k3 — \k* + \k)cos (k—1) [...(268) 

- 3 (1c3 + f/c2 + \k) cos (A + 1) + (k3 + ifk2 + ^k) cos (k + 3) 

®* = ^°s(M + ft) 

= (¥ - ^k3 + k2 + 13k2 - i§ajfc) cos (fc - 4) 

- (4A4 - 15k3 + 16P - ^k) cos (A - 2) 

+ 3 ( 2 ^ - ^k2 + 2k2) cos (k) - (4A4 + 15A3 + 16/fc2 + Ĵ A:) cos (¿4-2) 

+ (k* + Yfc3 + r$k> + 13A2 4- ^k) cos (A; + 4) 

where the ®'s are merely introduced as an abbreviation. 
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Then by Maclaurin's theorem 

C O H (k6 + /8) = cos (kil 4- /9) +• e0 , + ^e 2 0 a + £e 3© 3 4- ^ e 4 ^ . . . ( 2 6 9 ) 

In order to obtain further rules of approximation we will now run through 
the future developments, merely paying attention to the order of the co
efficients and to the factors by which ft* + e will be multiplied in the results. 
From this point of view we may write 

<J> (a) = (e°) cos (20) + (e) [cos (30) 4- cos (8)] + (e2) [cos (40) + cos (0)] 
+ (e3) [cos (59) + cos (9)] 

* (a) = R = (e») cos (0) + (e) cos (9) + (e2) cos (29) + (e3) cos (30) 

The cosines of the multiples of 6 have now to be found by the theorem 
(269) and substituted in the above equations. 

In making the developments the following abridged notation is adopted; 
a term of the form cos [(k + s) ft + /S — SOT] is written [k + s}. 

Consider the series for <E> (a) first. 

We have by successive applications of (269) with k = 1, 2, 3, 4, 5 : 

(e°) cos (20) = (e») {2} + (e) [{1} + {3}] + (e2) [{0} + {2} + {4}] 

+ (e8) [ { - 1} + {1} + {3] + {5]] +(V) [{ - 2} + {0} 4- {2} 4- (4) 4- {6}] 

(e) cos (30) = (e) {3} 4- (e2) [{2} 4- {4}] 4- (e3) [{1} 4- {3} 4- (5]] 
4-(V)[{0}4-{2j4-{4J4-{6}] 

(e) cos (0) = (e) {1} + (e2) [{0) + [2}] 4- (e3) [{ - 1} 4- {1} 4- {3}] 
4-(e')[i-2}4-}0}4-{2}4-{4}] 

(e») cos (40) = (e2) {4} 4- (e3) [{3} 4- {5}] 4- (e<) [{2} + {4} + ¡6]] 

(e2) cos (0) = (e2) [0} 

(es) cos (50) = (e8) {5} + (e<) [{4} 4- {6}] 

(c')cos(0) = (e3){l}4-(e^)[{O}-r{2}] 

In these expressions we have no right, as yet, to assume that {— 2} and 
{—1} are different from [2} and [1}; and in fact we shall find that in the 
expansion for <£> (a) they are different, but in that for R they are the same. 

Adding up these, and rejecting terms of the third and fourth orders by 
the first rule of approximation, we have 

* («) = [(e°) + (e2) 4- (e«)] [2} + [(e) 4- (e3)] [{1} 4- {3}] + [(e2) 4- (e<)] [{0} 4- {4}] 
+ ( e ' ) ! - l l + ( e < ) { - 2 ) 

It will be observed that {5} and {6} are wanting, and might have been 
dropped from the expansions. Also {0} and {4} are terms of the second order, 
therefore wherever they are multiplied by (e4) they might have been dropped. 
Hence (e3) cos (50) need not have been expanded at all. A little further con
sideration is required to show that (e3) cos (8) need not have been expanded. 
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(e3) cos (8) is aii abbreviation for ^e:i cos (8 — a — 3m), and therefore in this 
case {1} = cos (CI — a — 3m) and [2} = cos (2fX — a — 4 m ) ; but in every other 
case {1} = cos (£1 + a. + m) and {2} = cos (2X1 4- a). Hence the terms {1} and 
{2J in (e3) cos (6) are of the third and fourth orders and may be dropped, and 
{0} may also be dropped. Thus the whole of (e3) cos (8) may be dropped. 

With respect to {—2} and {—1}, observe that {2} in the expansion of 
cos (A, 0 + Bi) stands for cos [211 + (k1~2)m + /3J; and {— 2} in the expansion 
of cos (k20 +/3 2) stands for cos [211 — (k2 + 2) m — /3J; and klt k2 are either 
1, 2, 3, or 4 ; and Blt fi2 are multiples of + a constant. Hence {2} and 
{— 2} are necessarily different, but if Bi a n d B2 were multiples of m they might 
be the same, and indeed in the expansion of R necessarily are the same. 

In the same way it may be shown that {— 1} and {1} are necessarily 
different. 

Therefore {—1} and {— 2} being terms of the third and fourth orders may 
be dropped. 

It follows from this discussion that, as far as concerns the present problem, 
(e») cos (28) = (e») {2} + (e) [[1 j + {31] + (e2) [{0J + [2j + {4}] 

+ (e3)[{l} + {3]]4-(e')[{2}] 
(e)cos (38) = (o) [3] + (c>) [{2} + [4]] + (e3) [{1} + {3]] + (e*) [2] 

(e) cos (8) = (e)[1} 4- (e') [[0} 4- [2}] 4- (e3) [{1} 4- {3}] 4- (e*)[2} 
(e2) cos (46») = (e2) {4} 4- (e3) [3} 4- (e4) [2} 

(e2)cos (0) = (e2)(0} 
And the sum of these expressions is equal to $ (a). 
We thus get the following rules for the use of the expansion (269) of 

cos (k8 + B) for the determination of $ (a) : 
When k = 2, omit in ® 3 terms in cos (k — 3), cos (k + 3) 

in @4 terms in cos (k — 4), cos (k — 2), 
cos (k + 2), cos (k + 4) 

When k = 3, omit in ® a term in cos (k + 2) 
in & s terms in cos (k — 3), cos (k + 1), cos (k + 3) 
all of ®4 

When k=l, omit in ©2 term in cos (k — 2) 
in ©3 terms in cos (k — 3), cos (k — 1), cos (k 4- 3) 
all of 

When k = 4, omit in ©! term in cos (k 4-1) 
in ©2 terms in cos (k), cos (k 4- 2) 
all of © 3, © 4 
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FOLLOWING THESE RULES WE EASILY FIND, 
WHEN k = 2, B = i 

COS (2t9 + A) = (1 - 4e2 + |$e 4) COS (212 + A) - 2e (1 - |E2) COS (11 + A + IS) 

+ 2e(L - COS (312 + A - IS) + F E2 COS (A + 2 or) 

+ J^e2 COS (412 + A - 2*r).. .(270) 
WHENK=3,/3 = a - « r 

COS (3(9 + A - isr) = (1 - 9E2) COS (312 + A - or) - 3E(L - \'-E2) COS (212 + A) 
+ 3E COS (412 + A - 2^) + ^-e 2 COS (12 4- A + or).. .(271) 

WHEN A=L,/8 = a + *T 

COS («9 + A + or) = (1 - E2) COS (Q, + A + or) + e (1 - F e2) COS (212 + A) 
- E COS (A + 2or) + |eaCOS (312 + A - or)...(272) 

WHEN « = 4 , /3 = a - 2or 
COS (4T9 + a — 2 or) = COS (412 + a -2or) — 4ECOS (312 + A — IS) 

+ ĴE2COS (212 +A)...(273) 
THESE ARE ALL THE SERIES REQUIRED FOR THE EXPRESSION OF <& (A), SINCE 

COS (A + 2CT) DOES NOT INVOLVE (9, AND BY WHAT HAS BEEN SHOWN ABOVE 
COS (5(9+ A — SIS) AND COS ((9 — A — 3or) NEED NOT BE EXPANDED. 

WE NOW RETURN AGAIN TO THE SERIES FOR R OR (̂A), AND CONSIDER THE NATURE 
OF THE APPROXIMATIONS TO BE ADOPTED THERE. 

WITH THE SAME NOTATION 
(E»)COS (0) = (e°) }0] 
(e) COS (6) = (e) {1} + (e2) [[0} + {2}] + (E-) [{-1} + {1} + {31] 

+ (*)[{-2}+{0} + {2} + {4}] 

(e2) COS (20) = (e2) {2} + (e2) [{1} + {3}] + (E4) [{0} + {2} + [4}] 

(e*)COS(30) = (EO{3}+(e<)[{2I+{4}] 
SINCE R IS A FUNCTION OF (9 — or, THEREFORE AFTER EXPANSION IT MUST BE A 

FUNCTION OF 12 — IS, AND HENCE {1} MUST BE NECESSARILY IDENTICAL WITH {— 1}, 
AND {2} WITH {- 2}. 

ADDING THESE UP, AND DROPPING TERMS OF THE THIRD AND FOURTH ORDERS, 
R = [(e°) + (E2) + (e4)] {0} + [(e) + (*)] {1] + (e3) {- 1} 

+ [(e2) + (e4)] {2} + (e 4 ){-2} 

HERE {0} IS A TERM OF THE ORDER ZERO, {1] OF THE FIRST ORDER, AND {2} OF THE 
SECOND. THEREFORE BY THE FIRST RULE OF APPROXIMATION (2J AND {— 2} MAY BE 
DROPPED WHEN MULTIPLIED BY (e4). 

ALSO {3} AND {4} MAY BE DROPPED. 
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Hence as far as concerns the present problem 

(e°) cos (0) = (e°) {0} 

(e) cos (6) = (e) {1} + (e2) [{0} + {2}] + (e-) [{ - 1] + [1}] + (e«) {0} 

(e2) cos (20) = (e2) ¡2} + (e3) {1} + (e4) {0} 

and (e3) cos (36) need not be expanded. 

And the sum of these expressions is equal to R. 

We thus get the following rules for the use of the expansion of cos (kd + 8) 
for the determination of R. 

When k = \, omit in ©2 term in cos (k + 2) 

in © 3 terms in cos (k — 3), cos (k + 1), cos (k + 3) 

all of ©4 

When k = 2, omit in ©j term in cos (k + 1) 

in ©2 terms in cos (k), cos (k + 2) 

all of © 3, ©4 

Following these rules, we find 

When k=l, B = — *r 

cos (6 - m) = (1 - e2) cos (XI - m) - e + e cos 2 (XI - m) (274) 

When k = 2, B = - 2m 

cos 2(9-m) = cos 2 (£1 - m) - 2e cos (£1 - m) + f e2 (275) 
These are the only series required for the expansion of K or ? (a), since 

by what is shown above, cos 3 (9 — •sr) need not be expanded. 

Now multiply (270) by 1 + FE2; (271) by FE (1 + ^e 2); (272) by | e (1 4- {e3); 
and (273) by FE2; add the four products together, and add FE2 cos (a 4- 2m), 
and we find from (267) after reduction 

* (A) = (1 - -V-e2 + I|LE*) cos (2X1 + a) - \ & ( 1 - -2^e2) cos (fl + A + TR) • 
+ I-e (1 - WE2)COS (3A + A - •O-) + T T e 2 cos (4fl 4- A - 2m).. .(276) 

Next multiply (274) by 3e (1 4- Je 2 ) ; (275) by F o 2; add the two products, 
and add 1 4-f e2, and we find from (267) after reduction, 

R = 1 - f e2 4- FE4 4- 3e (1 - Ĵ e2) cos (XI - m) + FE2 cos 2 (XI - m ) . . .(277) 

Now let 

E 3 = f e ( l - ^ e 2 ) ; E 4 = V-e2 I (278) 

J 0 = l - | e 2 4 - f e ' ; J 1 = | e ( l - - ^ e 2 ) ; J 2 = FE2J 
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And we have 
* (a) = E ! cos (H + a + zr) + E 2 cos (2H + a) 4- E 3 cos (3Q + a - TO-) 

+ E 4cos (411 4- a - 2or) 
R = J 0 4- 2 J x cos (H - or) 4- 2 J 3 cos 2 (II - or) 

whence 
^ (a) = J 0 cos a 4- Ji [cos (fl 4- a — TO-) + cos (H — a — sr)] 

4- J 2 [cos (211 4- a — 2 or) 4- cos (211 - a — 2sr)] , 
(279) 

These three expressions are parts of infinite series which only go as far as 
terms in e2, but the terms of the orders e° and e have their coefficients 
developed as far as e4 and e s respectively. 

Substituting from (279) for <I>, SP, and R their values in the expressions 
(265), we find 

X 2 - Y 2 = P 4 [EI cos (2X - N - or) 4- E , cos (2X - 211) 4- E 3 cos (2X - 311 + w) > 

4- E 4 cos (2X - 4X14- 2or)] 
4- 2P 2Q 2 [J 0 cos 2X 4- J t {cos ( 2 X - II 4- or) 4- cos ( 2 X 4- H - or)} 

4- J 2 {cos (2X - 2X1 4- 2ar) 4- cos (2X 4- 211 - 2or)|] 
4- Q4 [E! cos ( 2 X 4- i l 4- OT) 4- EA cos ( 2 X 4- 211) 4- E 3 cos (2^ 4- 311 - or) 

4- E 4 cos (2X 4- 4Q - 2w)] 
— 2XY = The same, with sines for cosines L 

YZ = The same as X 2 - Y2, but with - P3Q for P 4 , PQ{P>-Q>) for 
2P 2Q 2, PQ3 for Q4 and with x for 2^ 

XZ = The same as the last, but with sines for cosines 
i ( j 2 + y 2 _ 2Z2) = $(Pi- 4P 2Q 2 4- Q4) [J„4- 2J l C os (II - or) 4- 2J 2 cos 2 (II - «•)] 

4- 2P 2Q 1 [E, cos (II 4- or) 4- EJ cos 211 4- E 3 cos (3H - or) 
4- E 4 cos (411 - 2 B T ) ] , 

(280) 
If we regard or as constant, and remember that x = nt, and that II stands 

for Sit 4- e, and if we look through the above functions we see that there 
are trigonometrical terms of 22 different speeds, viz.: 9 in the first pair all 
involving 2nt, 9 in the second pair all involving nt, and 4 in the last. 

Since these five functions correspond to Diana's tide-generating potential, 
we are going to consider the effects of 22 different tides, nine being semi
diurnal, nine diurnal, and the last four may be conveniently called monthly, 
since their periods are \ , ^, \ of a month and one month. 

We next have to form the functions. We found that in the 
X-Y-Z functions there were terms of 22 different speeds; hence we shall now 
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have to introduce 44 symbols indicating the reduction in the height of tide 
below its equilibrium height, and the retardation of phase. The notation 
adopted is analogous to that used in the preceding problem, and the following 
schedule gives the symbols. 

Semi-diurnal tides. 
speed 2 w - 4 Q 2n-3n 2n-2Q 2n-a 2n 2n + a 2n+2n 2n + 3I2 2n + 4 n 

height F " F l u F B F 1 F F , F „ F u l F l T 

lag 2f" 2f" 2f" 2 f 2f 2f, 2 f u 2 f m 2f„ 

Diurnal tides. 
speed n-AS. n-ZQ. n-2a n-Q n n + a n+2Q n + 3Q n+4a 
height G l T Gm G " G 1 G G , G u G m G „ 
lag g " g 1 " g " g 1 g & g a g m g w 

Monthly tides*. 
speed S2 212 3S2 411 
he ight H' H" Hm H " 
lag h1 2h" 3,h™ 4 h " 

The 3£-|9-JS functions might now be easily written out; for each term of 
the X-Y-Z functions is to be multiplied, according bo its speed by the corre
sponding height, and the corresponding lag subtracted from the argument 
of the trigonometrical term. For example, the first term of 3£2 — ^ a is 
F 'E jP 4 cos (%x — 12 — vr — 2fi). It will however be unnecessary to write out 
these long expressions. 

In order to form the disturbing function W, the £-§9-SS functions have 
to be multiplied by the X'-Y'-Z' functions according to the formula (31). 
Now the X'-Y'-Z' functions only differ from the X-Y-Z functions in the 
accentuation of 12 and m, because Diana is to be ultimately identical with 
the moon. 

In the X-^-iS functions 12 is an abbreviation for Sit + e, and in the 
X'-Y'-Z' functions 12' for Sit + e'; hence wherever in the products we find 
12 —12', we may replace it by e — e. 

Again, since we are only seeking to find the secular changes in the 
ellipticity and mean distance, therefore (as before pointed out) we need only 
multiply together terms whose arguments only differ by the lag. Secular 
inequalities, in the sense in which the term is used in the planetary theory, 
will indeed arise from the cross-multiplication of certain terms of like 
speeds but of different arguments,—for example, the product of the term 

F ^ E , cos (2X - 212 - 2^) in £ 2 - | 9 2 

multiplied by the term 
2P*Q*J2 cos (2x - 212' + 2«-') in X ' 2 - Y ' 2 

* With periods of J, &, J, and one month. 
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when added to the similar cross-product in 4X'Y'X3? (which only differs in 
having sines for cosines) will give a term 

2F i lP f iQ 2E 2 J 2 cos [2 («' - e) - 2«r' - 2f»] 

This term in the disturbing function will give a long inequality, but it is of 
no present interest. 

The products may now be written down without writing out in full either 
the X-^ß-'Z functions or the X'-Y'-Z' functions. In order that the results 
may form the constituent terms of W, the factor | is introduced in the first 
pair of products, the factor 2 in the second pair, and the factor f in the last. 
Then from (280) we have 

X'2 - Y'« X 3 -
2 ^ - 2 - " + 2X'Y'X|9 

= AP8 {F J Ex3 cos [(V - E) + fa' - » ) - 2f] + F«E 2

2 cos [2 (e - e) - 2f»] 

+ F M i E 3

2 cos [3 ( / - e) - fa' - o-) - 2fm] 
+ F ] T E 4

2 cos [4 (e' _ 6 ) _ 2 (W' - «r) - 2fT]] 

+ 2P 4Q 4 {FJ 0

a cos 2f 

4- F 'J j 2 cos [(e' - E) - fa' - • * ) - 2f] 

+ F ; Ji» cos [( e' - e) - (•=/ - W) + 2f,] 

4- F"J 2

2 cos [2 fa - E) - 2 f>' - w ) - 2f ! i] 

4- F f l J a

2 cos [2 («?' - «) - 2 ( V - w ) + 2f„]] 

4- IQ 8 [FJEJ 2 cos [fa - E) + - W) + 2fJ 4- F Ü E 2

2 cos [2 fa -e) + 2fu] 

4- FjüEs2 cos [3 fa - E) - fa' - * ) 4- 2fm] 

4- F i vE 4» cos [4 (E' - E) - 2 (« ' - W) + 2fiT]} (281) 

2Y'Z'P"Z 4-2X'Z'X^S = the same, when 2PBQS replaces fP B ; 2P 2Q 2 (P 2 - Q2)2 

replaces 2 P V ; äP'Q 6 replaces JQ 8; and G's and 
g's replace F's and 2fs (282) 

X / 3 + Y / a _ 2 Z ' » & + m . _ 2SS 2 

3 _Vr» _ 
* 3 3 

= i (P 4 - 4P 2Q 2 4- Q4)2 {J0

a 4- 2H' J? cos [(E' - e) - fa' - « ) + h1] 

4- 2H" J 2

3 cos [2 (e' - e) - 2 (*r' - *r) 4- 2h"]} 

4- 3P 4Q 4 {ffE, 2 cos [(e' - e ) + fa' - *r) 4- h1] 4- ff'E./ cos [2 fa - e) 4- 2h i j] 

+ H U 1 E S ' cos [3 (e' - s) - fa' - W) + 3h ! i i] 

4- H i vE 4» cos [4 (E' -e)-2fa'-*r) + 4h i T]] (283) 

The sum of these three last expressions (281-3) when multiplied by 
T2 1 
— — i s equal to W the disturbing function. 
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§ 24. Secular changes in eccentricity and mean distance. 

Before proceeding to the differentiation of W, it is well to note the 
following coincidences between the coefficients and arguments, viz.: occurs 
with (e'-e) + (or'-or), K? with 2 (e'-e), E s

2 with 3 (e ' -e) - (or'-or), E 4

2 with 
4 {e - e) - 2 (or' - or), J\ 2 with (e' - e) - (or' - or), J,» with 2 (e- e) - 2 (or'- or), 
and the terms in J 0

2 do not involve e, e', or, or'. In consequence of these 
coincidences it will be possible to arrange the results in a highly symmetrical 
form. 

By equations (11) and (12) 

- I l l 0 g , ? =
 ( d 7 + ' y ^ ) W ' w h e n ^ = 1 

a n d \ft = ( ^ ' + 7 ^ ) w ' w h e n 7 = 0 

Hence the single operation djde + yd/dis' will enable us by proper choice 
the value of 7 to find either £d log v/kdt or d^jkdt. 
Perform this operation; then putting e' = e, or' = or, and collecting the 

terms according to their respective E's and J's, we have 

fdW dW\ _ T 2 1 
Ue' + 7 dor') : 8 ( 1 -e2)« 

= Ei2 (1 + Y) { ^ F 1 sin 2f* + 2P6(22G I sin g 1 - 2PiQsGi sin g i 

- ^Q»Fi sin 2f, - SP^R1 sin h'j 
+ E 2

2 (2) {the same with ii for i, and 2h" for h1] 
+ E 3

2 (3 — 7) {the same with iii for i, and 3h m for h1} 
+ E4

B (4 - 27) {the same with iv for i, and 4h i T for h1} 
+ Ji2 (1 - 7) { 2 ^ 0 * ( F sin 2P - F s sin 2fs) 

+ 2P 2Q 2 (P 2 - QJ (G1 sin g* - Gi sin g ;) - £ (P 4 - 4P 2Q 2 + Q4)2 H 1 sin h j] 

+ J 2

2 (2 - 2 7 ) {the same with ii for i, and 2h" for h1} (284) 

The functions of P and Q, which appear here, will occur hereafter so 
frequently that it will be convenient to adopt an abridged notation for them. 
Let x represent either i, ii, iii or iv, and let 

cp ( x ) = ipsF*sin 2f* + 2P6Q2G* sin g* - 2P 2Q 6G I sin g x - $ Q F T sin 2fT 

- 3 P 4 Q 4 H * sin (xh*) 

>/r (x) = 2PiQi (F* sin 2F - F x sin 2fx) + 2P2<? ( P 2 - Q2)2 (G 1 sin g* - G x sin g x) 
_ 1 (P< _ 4P=Q2 + Q 4) 2HX sin (xh x) 

(285) 
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(286) 

Since V 1 — e 3 = 1 — 7j, 

e2 = 2v - 7f and (1 - e 2 )^ = (1 - i,)"12 = 1 + 12t, + 78t,2 

Then by (278) 

Tf. 3 
i v ( l - v ) 

E 1

2 = i e 2 ( l - ^ e 2 ) = ^ (1-131,) , and 

E a

2 = 1 - l i e 2 + A|ae* = 1 _ 22v + i^rf, and 

E 3

2 = ^ - e 2 ( l - i ^ - e 2 ) = \Ml--T-'7) . and 

E4' = 2fSe4
 = 289t,2 , and 

J 0

2 = l - 3 e 2 + 3e 1 = l - 67/ + 157/2 , and 

Ji' = |c«(l—¥c') = fi,(l-8i,) , and 

J s

2 = f|e* = ^ ^ , and 

E12 

(1 - v T 
E 2

2 

d ~ v ) u 

E 3

2 

(1" - v T 
E4" 

(1 - v T 
Jo2 

(1 - v T 
J, 2 

( 1 - v r 

Jt—1 

•- 1 - 10r/ + -yV 

•• 289t,2 

•1 + 6V + 21n* 

.(287) 

When 7 is put equal to - we shall also require the following: 
E 7 ( l + ^ ) -2(1-10,) * 

v (i -
J.2(?-D 1,(1-1;)» • - 1 ( 1 + 3 ? , ) 

1 . 

(1 - , )» 
E 4

2 (4t? - 2) 
, , ( l - r , ) 1 2 

J-1 (2i, - 2) 
V ( 1 -

= - 578t, 

= - ¥ ' 7 

j- (288) 

Therefore by putting 7 = - in equation (284) we have 
V 

J | | t log 1? = i<P (i) + 2 (1 - 10,) cf> (ii) - ^ (1 - 7̂,) * (iii) - 57 87,0 (iv) 
- f ( l + 3 i , ) f ( i ) - - V - ^ (ii) 

D. 11. 2 2 

The generalised definition of the F's, G's, H's, &c., is contained in the 
following schedule 

speed 2n — xfl, n — xfl, xfi, u + xfl, 2n + xSl 

height F 1 G 1 H* G x F x 

lag 2f* g* (xh*) g x 2f, 
We must now substitute for the E's and J's their values, and as the 

ellipticity is chosen as the variable they must be expressed in terms of 77 
instead of e. Also each of the E 2 's and J 2 's must be divided by (1 — c2)6. 
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§ 25. Application to the case where the planet is viscous. 

If the planet or earth be viscous, we have, as in § 7, F 1 = cos 2P, 
G x = cosg r , H x = cos(xhx), G x = cosg x, Fx = cos 2fx. 

When these values are substituted in (289) we have the equation giving 
the rate of change of ellipticity in the case of viscosity. The equation is 
however so long and complex that it does not present to the mind any 
physical meaning, and I shall therefore illustrate it graphically. 

The case taken is the same as that in § 7, where the planet rotates 15 times 
as fast as the satellite revolves. 

The eccentricity or ellipticity is supposed to be small, so that only the first 
line of (289) is taken. 

I took as five several standards of viscosity of the planet, such viscosities 
as would make the lag f" of the principal slow semi-diurnal tide, of speed 
2n - 212, equal to 10°, 20°, 30°, 40°, 44°. (The curves thus correspond to the 
same cases as in §§ 7 and 10.) Values of sin if*, sin 2g x, sin 2xhx, sin 2gx, 
sin4fx, when x = i, ii, iii were then computed, according to the theory of 
viscous tides. 

These values were then taken for computing values of 0 (i), 0 (ii), 0 (iii), 
\}r (i) with values of i = 0°, 15°, 30°, 45°, 60°, 75°, 90°. The results were then 
combined so as to give a series of values of dlogv/dt or dejedt, and these 
values are SET OUT graphically in the accompanying fig. 8. 

and by putting 7 = 0 in (284) 

J I ^ = & (1 ~ * (i) + 2 (1 - 10* + W ) 0 (n) + - VvWim) 
+ 115657»0 (iv) + *»7 (1 + 417) 1^ (i) + W i / " (ii) 

The equations may be also arranged in the following form: 

+ v[~ 2 0^> (ii) + 301$ (iii) - 5780 (iv) - *f ^ (i) - f (ii)]- • -(289) 

$\%-**<® 
+ v [¿0 (i) - 200 (ii) + i j 1 0 (iii) + f ^ (i)] 
+ [- ¿0 (i) + 730 ( i i ) - i 4 p 0 (iii) +11560 (iv) + 1 8 ^ (i) + ^ (ii)] 

(290) 

The former of these apparently stops with the first power of rj, but it will 
be observed that we have d log ij/dt on the left-hand side so that dnjdt is 
developed as far as if. 

These equations give the required solutions of the problem. 
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1880] ILLUSTRATION OF THE RATE OF CHANGE OF THE ECCENTRICITY. 339 

f "= 30° — 

In the figure the ordinates are proportional to de/edt, and the abscissae to 
i the obliquity; each curve corresponds to one degree of viscosity. 

From the figure we see that, unless the viscosity be so great as to approach 
rigidity (when f1 = 45°), the eccentricity will increase for all values of the 
obliquity, except values approaching 90°. 

The rate of increase is greatest for zero obliquity unless the viscosity be 
very large, and in that case it is a little greater for about 35° of obliquity. 

It appears from the paper on " Precession " that if the obliquity be very 
nearly 90°, the satellite's distance from the planet decreases with the time. 
Hence it follows from this figure that in general the eccentricity of the orbit 
increases or diminishes with the mean distance; this is however not true if 
the viscosity approaches very near rigidity, for then the eccentricity will 
diminish for zero obliquity, whilst the mean distance will increase. 

If the viscosity be very small, the equations (289-90) admit of reduction 
to very simple forms. 

In this case the sines of twice the angles of lagging are proportional to 
the speeds of the several tides, and we have (as in previous cases)— 

FIG. 8. Diagram showing the rate of change in the eccentricity of the orbit 
of the satellite for various obliquities and viscosities of the planet 

( - ~ , when e is sruall^ . 

sin4f* 
sin 4f 
sin 4fx 

= 1 - JxX, 
sin 2g x 

sin 4f 
sin 2gi 
sin 4f 

= l-|x\, 
sin 2xhx 

= £xX-sin 4f 

sin 4f = 1 

22—2 
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340 THE CASE OF SMALL VISCOSITY. [6' 

Therefore 
$ (x) = I sin 4f [P 8 + 2P 6 Q2 - 2P2Q" - Qa 

- £x\ (P 8 + 4P 6Q 2 + 4P 2Q 8 + Q8 + 6P4Q*)] 
= J sin 4f (cos i — ixX) 

i/r (x) = £ sin 4f [- 2P 4 Q 4 x\ - 2P 2Q 2 (P 3 - Q2)2 x \ - £x\ (P 4 - 4P 2Q 2 + tyf] 
= - i s i n 4 f y x \ ) ( | ) 

And 
0 (i) + 4·$ (ii) - 490 (iii) - 9f (i) = - sin 4f (11 cos i - 18\) 

- 20<£ (ii) 4- 3010 (iii) - 5780 (iv) - (i) - ^ (ii) 
= - J sin 4f (297 cos i - 756A.) 

Whence from (289) 

" T 2 I ̂  ]°g * = ~ * 4 f 1 1 1 C°S * ( 1 + "V ) ~ 1 8 X ( 1 + 2 1 V ) ] 

°r ! I i o g v = I ( i + ¥ 7 ? ) ^ s i n 4 f | c o s »- w £ ( i + w } " - ( 2 9 1 ) 

From this we see that, in the case of small viscosity, tidal reaction is in 
general competent to cause the eccentricity of the orbit of a satellite to 
increase. But if 18 sidereal days of the planet be greater than 11 sidereal 
months of the satellite the eccentricity will decrease. Wherefore a circular 
orbit for the satellite is only dynamically stable provided a period of 18 such 
days is greater than 11 such months. 

Now if we treat the equation (290) for in the same way, we find— 
The first line = \ sin 4f (cos i — X). 
The second =\i) sin 4f (27 cos i — 46\). 
The third = \rf sin 4f (273 cos i - 697\). 

Therefore 

^ J ^ = i sin 4f [(1 + 27i? + 273^) cos i - \ (1 + 46*, + 697T, 2)] 

c o s i - ^ ( l + 1997-89jf) 
(292) 

°r \^N=h- (1 + 27^ + 273^) sin4f 

From this it follows that the rate of tidal reaction is greater if the orbit 
be eccentric than if it be circular. Also for zero obliquity the tidal reaction 
vanishes when 

- = 1 - 19T? + 450y 
n 

Hence if a satellite were to separate from a planet in such a way that, at 
the moment after separation, its mean motion were equal to the angular 
velocity of the planet, if its orbit were eccentric it must fall back into 

IRIS - LILLIAD - Université Lille 1 



H-FTSIN 2111 

* Bee Appendix (p. 374) for further considerations on this subject. 

the planet; but if its orbit were circular an infinitesimal disturbance would 
decide whether it should approach or recede from the planet*. 

Now suppose that the viscosity is very large, and that the obliquity 
is zero. 

Then 

~ i k a T t h 8 v = * (sin 4f 1 + 4 sin 4f" ~49 sin 4f 111 + 6 sin 2h') 
and the sines are reciprocally proportional to the speeds of the tides, from 
which they take their origin. As to the term in sin 2B.1, which takes its 
origin from the elliptic monthly tide, the viscosity must make a close approach 
to absolute rigidity for this term to be reciprocally proportional to the speed 
of that tide; for the present, therefore, sin 2H' will be left as it is. 

The equation becomes, on this hypothesis, 

8 £ d 1 , • / L R , , 4 4 - 6 3 \ + 20\ 2 . . .._„, 

The numerator of the first term on the right is always positive for values 
of X less than unity, and the denominator is always positive if X be less than 
F. Hence if the viscosity be not so great but that the last term is small, the 
eccentricity always increases if X lies between zero and F. 

IF however X be not small, then even though the viscosity be not great 
enough to approach perfect rigidity, we must have sin 2H' = 2 (1 - X) sin 4F I I / \ . 
And OF course, by supposing the viscosity great enough, this relation may be 
fulfilled whatever be X. 

Then our equation becomes 

S F d I„„ 1 · , , N 1 2 - 8 0 X + 96A S -29X S 

7°k d t = - *S I N 4F" -X-(I 3 T X Y ( R _ F X R (2M) 
The numerator on the right-hand side is always positive for values of X 

less than unity, and the denominator is positive for values of X less than F. 

SINCE Z A H G * ^ 

we have F * log , = - 412 ~ 80X+ 9 ^ - 2 9 X 3 
* X ( L - I X ) ( L - | X ) 

From this we see that, for very large viscosity,— 
For values of X between 1 and '6667, the eccentricity increases per unit 

increase of f, and the rate of increase tends TO become infinite when X = 0667. 
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3 4 2 SECULAR CHANGES OF OBLIQUITY A N D PLANETARY ROTATION. [6 

The remarks concerning the physical absurdity of this class of result in 
§ 2 1 may be repeated in this case. 

For values of X between "6667 and 0, the eccentricity diminishes. 

A similar treatment of the case of small viscosity shows that— 
For values of X. between 1 and ' 6 1 1 1 the eccentricity decreases, and for 

values of X. between ' 6 1 1 1 and 0 the eccentricity increases. 
Thus it is only between \ = ' 6 1 1 1 and ' 6 6 6 7 that the two cases agree. 

Hence in the course of evolution of a satellite revolving about a purely 
viscous planet:— 

For small viscosity the orbit will remain circular until 1 1 months of the 
satellite are equal to 1 8 days of the planet, then the eccentricity will increase 
until this relationship is again fulfilled, when the eccentricity will again 
diminish *. 

And for very large viscosity the orbit will at once become eccentric, and 
the eccentricity will increase very rapidly until two months of the satellite 
are equal to three days of the planet. The eccentricity will then diminish 
until this relationship is again fulfilled, after which the eccentricity will again 
increase. 

We shall consider later which of these views seems the more probable 
with regard to the history of the moon. 

§ 26 . Secular change in the obliquity and diurnal rotation of the planet, 
when the satellite moves in an eccentric orbit. 

The method of treating this problem will be the same as that of § 12, to 
which the reader is referred. 

In the complete development of the disturbing function x — % would 
occur wherever the F's and G's occur, but never with the H's. 

If we put 7 = 1 in ( 2 8 4 ) , wo have 
dW dW 2T 2

 2 

1 7 + a ? = s o ^ r 2 E * * ( x ) ( 2 9 5 ) 

where 2 means summation for i, ii, iii, iv. 
This result follows from the fact that in all the E-terms of W, e and m' 

enter in the form le + mur', where I + m = 2. 
In the F*-terms enters in the form 2^ ' , and is of the opposite sign from 

l + m; in the Fj-terms it enters in the form 2%, and is of the same sign as 
l + m; in the Gx-terms it enters in the form and is of the opposite sign 

* See " On the Analytical Expressions, &c," Proc. Roy. Soc., No. 202, 1880. [Paper 7 below.] 
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1880] SECULAR CHANGES OF PLANETARY ROTATION. 343 

from I + m ; in the Gx-terms it enters in the form x ' , and is of the same 
sign as I + m . 

Hence as far as regards the E-terms of W, we have 

• ™. dW /dW dW\ in the h x-terms -¡—7 = — —TT + T -J) dX \ de d-ar I 
. t , 4 dW dW in the b x-terms = + 

de d' •ST 

• t u nx . 1 A*W dW\ in the Gx-terms = - A —7-p + - = — 7 

V «e dro- / • ,v n . 1 d W \ in the U.-tertns = + —=-? + -r—. 

\de dor J 

in the H-terms = 0 
In the J-terms of W, X enters with coefficient 2 in the F x - and Fx-terms, 

and with the coefficient 1 in the Gx- and Gx-terms, and is always of the same 
sign as the corresponding lag. 

Hence for the J-terms 
dW ^ /dW dW\ 
dx'

 = U P + d g * J 
where 2 means summation for the cases where x is zero and both upper and 
lower i and ii. 

From this we have 
dn_dW 
dt ~~ dx' 

= - T ' ^ [£E X

2 {P*FX sin 2fx + 2P e Q2GX sin g* 

+ 2P 2Q 6GX sin g x + (?F X sin 2fx} 

+ J 0

2 ( 4 P ^ F sin 2f + 2P 2Q 2 (P 2 - Q2)2 G sin g} 

+ 2J X

2 {4P4Q* (F x sin 2 f x + F x sin 2fx) + 2P 2 Q 2 (P 2 -Q 2 ) 2 (G x sin g x +G x sing x ) j ] 

(296) 
the first 2 being from iv to i, and the last only for ii and i. 

This is a partial solution for the tidal friction, and corresponds only to the 
action of the moon on her own tides; that of the sun on his tides may be 
obtained by symmetry. 

It is easy to see that for the joint effect of the two bodies we have 

(297) 

From (296-7) and (287-8) the complete solution may be collected. 

In order to find the secular change in the obliquity, we must consider how 
T / / would enter in W. 
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In the development of W, il't + e' stands for il't + e — ifr', and or' stands 
for or' — y. Hence from (295) 

dy ~ \de * d*r') 

2T2 1 

Now by (18) 

8 (1-v)1 

. di dW 
n sin i = -=—; cos i — , , , di d% dy 

, 2 E , ^ ( x ) (298) 

dW 

dW 
Substituting for ——7 from (296) and for ——-. from (298), we find dX d^jp 

di T 2 l 
N S=I (i _ , ) . » i S E - 2 [ p 7 Q F x s i n

 2FI+PSS ( - p * + G * s i n g* 

- PQ? (3P 2 + Q2) G x sin g x - PQ ? F X sin 2fx - 3P 3 Q 3 H X sin (xhx)] 

- J„2 [2P*Q> (P 2 - Q2) F sin 2f + PQ (P 2 - Q2)3 G sin g] 

- SJ X

2 [2P*Q* (P 2 - Q') ( F 1 sin 2f1 + F x sin 2fx) 

+ P Q ( P 2 - Q2)3 (G 1 sin g* + G x sin gx)]}...(299) 

the first £ being from iv to i, and the last only for ii and i. 
This is only a partial solution, and gives the result of the action of the moon 

on her own tides ; that for the sun on his tides may be obtained by symmetry. 
It is easy to see that for the joint effect 

" dt = - X ( W ( l - rff J°J»' ^ ~ « F 2 f 

+ P Q ( P 2 - Q 2 ) 3 G s i n g ] (300) 
From (299, 300) and (287-8) the complete solution may be collected. 

If these solutions be applied to the case where the earth is viscous and 
where the viscosity is small, it will be found after reduction as in previous 
cases that 

dn sin 4f [ 
dt 2g T 2 (1 - 1 sin2 i) (1 + 15TJ + i f ^ 2 ) 

+ T' 2(1 - ¿ sin2 Ï) (1 + 15V + i f V 2 ) 

- T 2 ^ cos i (1 + 21 v + 273V) - T' 2 " cos i (1 + 27V + 273V2) 

+ T T ' \ sin2 i (1 + 3r¡ + 3V + 6V + 9rçV + 6Va) 
.(301) 

di sin 4f . . 
n -y = - .— sin i cos % 

dt 4g 
T 2 (1 + 1 ñv + if&V) + T'2 (1 + 15V + V a ) 

- 2T2 ~ sec i (1 + 27T; + 273V) - 2T'2 ^ see i (1 + 27V + 273V2) 

- r / í l +3 IJ + 3 V + 6 V + 9 I J V + 6 V ) .(302) 
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1880] EFFECT OF EVECTIONAL TIDES. 345 

These results give the tidal friction and rate of change of obliquity due 
both to the sun and moon; 17 is the ellipticity of the lunar orbit, and r\ of the 
solar (or terrestrial) orbit. 

If v and y' be put equal to zero they agree with the results obtained in 
the paper on " Precession." 

§ 27. Verification of analysis, and effect of evectional tides. 

The analysis of this part of the paper has been long and complex, and 
therefore a verification is valuable. 

The moment of momentum of the orbital motion of the moon and earth 
round their common centre of inertia is proportional to the square root of the 
latus rectum of the orbit, according to the ordinary theory of elliptic motion. 
In the present notation this moment of momentum is equal to Cf (1 — y)jk. 
If we suppose the obliquity of the ecliptic to be zero, the whole moment of 
momentum of the system (supposing only one satellite to exist) is 

C { | < ! - „ ) + » } 

Therefore we ought to find, if the analysis has been correctly worked, that 

f dy 1 d£ dn 
kdt=^• V>kdt + dt 

This test will be only applied in the case where the viscosity is small, 
because the analysis is pretty short; but it may also be applied in the 
general case. 

When { = 0, we have from (292), after multiplying both sides by 1 — y, 

sinTf 5 ( 1 - *> 11 = 1 +

 26r> + ̂  " M l + 4 5 , + 651,·) 

And when ¿ = 0 and T '= 0, from (301) 

- s O T 7 f t - 1 + 1*1 + 4 V - X<1 + 27, + 273,=) 

Hence 

(1 -v) I ft+IT=*SIN 4F
 I [ U V ( 1 + ^ > - 18XR>(1+21,»M 

Thus the above formulas satisfy the condition of the constancy of the 
moment of momentum of the system. 

The most important lunar inequality after the Equation of the Centre is 
the Evection. The effects of lagging evectional tides may be worked out on 
the same plan as that pursued above for the Equation of the Centre. 
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I will not give the analysis, but will merely state that, in the case of small 
viscosity of the earth, the equation for the rate of change of ellipticity, inclusive 
of the evectional terms, becomes 

! S L O G ^ = V ( L + ¥ , ) - N 4 F | { L - I F § - F T T ( G ) ' . 

where 12' is the earth's mean motion in its orbit round the sun. 
From this we see that, even at the present time, the evectional tides will 

only reduce the rate of increase of the ellipticity by g'gth part of the whole. 
In the integrations to be carried out in Part VI. this term will sink in 
importance, and therefore it will be entirely neglected. 

The Variation is another lunar inequality of slightly less importance than 
the Evection; but it may be observed that the Evection was only of any 
importance because its argument involved the lunar perigee, and its coefficient 
the eccentricity. Now neither of these conditions are fulfilled in the case of 
the Variation. Moreover in the retrospective integration the coefficients will 
degrade far more rapidly than those of the evectional terms, because they 
will depend on (O'/il) 4. Hence the secular effects of the variational tides will 
not be given, though of course it would be easy to find them if they were 
required. 

VI. 

INTEGRATION FOR CHANGES IN THE ECCENTRICITY OF THE ORBIT. 

§ 28. Integration in the case of small viscosity. 

By (291-2), we have approximately 

| | log v = Y sin 4f | (1 + [cos i - # X ] 

1 dP T 2 

k ~it= * s i n 4 f I ( 1 + 2 1 n ) [ c o s * ~ x ] 

Therefore 
/i , .<7 \ & , 1 1 1 -\i>- seci 

= — 7 ^ sec i approximately 

The last transformation assumes that \ or iljn is small compared with 
unity; this will be the case in the retrospective integration for a long way 
back. 

As a first approximation we have 

V = V,ta 
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= 7M1„ sec I — sec 1 log 2— 

In the last term n has been written for (/c — f-)/k. 
If we write 

K = [ I {F - L ) + L IF - 0 + H (r ' ) ] 7 m » s i ; c 1 + ( 1 - *u ) 

7kaa then ^=%pC-ZL\ - 8 6 0 1

 E K ( 3 0 4 ) 

V ' o £ / 

This formula will now be applied to trace the changes in the eccentricity 
of the lunar orbit. 

The integration will be made over a series of " periods " which cover the 
same ground as those in the paper on "Precession"; and the numerical 
results of that paper will be used for assigning the values to n and I. 

kn0 is equal to 1/fa of that paper, and therefore K is (1 4- /"•)//"• 

First period of integration. 

From f = 1 to -88. 

I is taken as 22°. In " Precession " fi was 4'0074, therefore kn0 = '24954 
and K = 1-24954. Also kil0 = kn0£l0/n0, and iljrio = 1/27-32. 

In computing for § 17 of " Precession " I found at the end of the period 
log n/n,, = -18971. 

Therefore 

J *j-r)d log v = (r, - V o ) = - (1 - p) approximately 

And for a second approximation 

l°g. (^s) = (1 - P ) - 7 n 0 / J df (303) 

The integral in this expression is very small, and therefore to evaluate it 
we may assign to % an average value, say I, and neglect the solar tidal friction 
in assigning a value to n, so that we take 

Let kn0 + 1 = K ; whence n = j (K — f) 

Hence the last term in (303) is approximately equal to 

- 7 M l 0 s e c l / i

f

F ( M - F ) / 
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Using these values I find 
Ik 

( 71 \ ~T Bo sec I 
_ ) < =-00692 

Also K = -01980 + y-r/o (1 - I") 

Now e0, the present eccentricity of the lunar orbit, is -054908. 

Whence ,„ = 1 - V l ^ e 7 = -001509, and 3f, 0 (1 - £») = -015375 

Using these values I find 
log 1 07i = 6-59007 — 10, and the first approximation gave log ] 0 , = 6'56788 — 10 

Therefore , = -00038911, and e = -02789, at the end of the first period of 
integration. 

Second period of integration. 

From £ = 1 to '76. I was taken as 18° 45'. 

A similar calculation gives 

The first part of K = -06998, and ^/-,„ (1 - £") = '00500 
Whence 

l og , = 5-31758 — 10, and the first approximation gave log , = 5'27902 — 10 

Therefore , = '000020777 and e = '006446, at the end of the second period 
of integration. 

Third period of integration. 

From | = 1 to "76. I was taken as 16° 13'. 

Then a similar calculation gave 

The first part of K = -12355, and 3/-, 0 (1 - f") = '00027 

Whence 

log , = 4'06584 — 10, and the first approximation gave l o g , = 4'00653 — 10 

Therefore , = "0000011637, and e = 001526 at the end of the third period 
of integration. 
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Fourth period of integration. 
The procedure is now changed in the same way, and for the same reason, 

as in the fourth period of § 17 of " Precession." 

Let iV = — (as in that paper). Then the equation of tidal friction is 
7&o 

- ^ = i s i n 4 f - r - ( l - X ) dt a grc0

v 

and the equation for the change in y may be written approximately 
d , n0k 11 — 18 \ 

Since A. or fl/n is no longer small, this expression will be integrated by 
quadratures. 

Using the numerical values given in § 17 of " Precession," I find the 
following corresponding values: 

2V= l'OOO 1-107 1-214 1-321 

l l n * 8 * = 15-469 17-665 19"465 11994 f 1 — \ 
Integrating by quadratures with the common difference dN equal to "107, 

we find the integral equal to 5'5715. 

Whence y = 44"273 x 10- 1 0, and e = -00009411. 
The results of the whole integration are given in the following table, of 

which the first two columns are taken from the paper on " Precession." 

TABLE XVI. 

Days in m. a. hours 
and minutes 

Moon's sidereal 
period in m. s. days 

Eccentricity of 
lunar orbit 

h. in. D a y s 
2 3 56 27 32 •054908 

15 28 18-62 •027894 

9 55 8-17 •006446 

7 49 3 5 9 •001526 

5 55 12 hours •000094 

Beyond this the eccentricity would decrease very little more, because this 
integration stops where \ is about ^, and the eccentricity ceases to diminish 
when \ is fjf. 

The final eccentricity in the above table is only ^g^th of the initial 
eccentricity, and the orbit is very nearly circular. 
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§ 29. The change of eccentricity when the viscosity is large. 

I shall not integrate the equations in the case where the viscosity is 
large, because the solution depends so largely on the exact degree of 
viscosity. 

If the viscosity were infinitely large, then in the retrospective integration 
the eccentricity would be found getting larger and larger and finally would 
become infinite, when \ is equal to •§•. This result is of course physically 
absurd. If on the other hand the viscosity were large, we might find the 
eccentricity diminishing, then stationary, and finally increasing until \ = §, 
after which it would diminish again. Thus by varying the viscosity, supposed 
always large, we might get a considerable diversity of results. 

VII. 

SUMMARY AND DISCUSSION OF RESULTS. 

§ 30. Explanation of problem.—Summary of Parts I. and II. 

In considering the changes in the orbit of a satellite due to frictional 
tides, very little interest attaches to those elements of the orbit which are to 
be specified, in order to assign the position which the satellite would occupy 
at a given instant of time. We are rather here merely concerned with those 
elements which contain a description of the nature of the orbit. 

These elements are the mean distance, inclination, and eccentricity. 
Moreover all those inequalities in these three elements, which are periodic in 
time, whether they fall into the class of "secular " or "periodic" inequalities, 
have no interest for us, and what we require is to trace their secular changes. 

Similarly, in the case of the planet we are only concerned to discover the 
secular changes in the period of its rotation, and in the obliquity of its 
equator to a fixed plane. 

I t has unfortunately been found impossible to direct the investigation 
strictly according to these considerations. Amongst the ignored elements 
are the longitudes of the nodes of the orbit and equator upon the fixed 
plane, and it was found in one part of the investigation, viz.: Part III., that 
secular inequalities (in the ordinary acceptance of the term) had to be taken 
into consideration both in the five elements which define the nature of the 
orbit, and the planet's mode of motion, and also in the motion of the two 
nodes. 

In the paper on " Precession " I considered the secular changes in the 
mean distance of the satellite, and the obliquity and rotation-period of the 
planet, but the satellite's orbit was there assumed to be circular and confined 
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1880] SUBDIVISION OF THE PROBLEMS TO BE SOLVED. 351 

to the fixed plane. In the present paper the inclination and eccentricity are 
specially considered, but the introduction of these elements has occasioned a 
modification of the results attained in the previous paper. For convenience 
of diction I shall henceforth speak of the planet as the earth, and of the 
satellites as the moon and sun; for, as far as regards tides, the sun may be 
treated as a satellite of the earth. The investigation has been kept as far as 
possible general, so as to be applicable to any system of tides in the earth; 
but it has been directed more especially towards the conception of a bodily 
distortion of the earth's mass, and all the actual applications are made on the 
hypothesis that the earth is a viscous body. A very slight modification 
would however make the results applicable to frictional oceanic tides on a 
rigid nucleus (see §1 immediately after (15)). 

I thought it sufficient to consider the problem as divisible into the two 
following cases:— 

1st. Where the moon's orbit is circular, but inclined to the ecliptic. 
(Parts I., II., III., IV.) 

2nd. Where the orbit is eccentric, but always coincident with the ecliptic. 
(Parts I., V., VI.) 

Now that these problems are solved, it would not be difficult, although 
laborious, to unite the two investigations into a single one; but the additional 
interest of the results would hardly repay one for the great labour, and besides 
this division of the problem makes the formulae considerably shorter, and this 
conduces to intelligibility. 

For the present I only refer to the first of the above problems. 
It appears that the problem requires still further subdivision, for the 

following reasons i— 
It is a well-known result of the theory of perturbed elliptic motion, that 

the orbit of a satellite, revolving about an oblate planet and perturbed by a 
second satellite, always maintains a constant inclination to a certain plane, 
which is said to be proper to the orbit; the nodes also of the orbit revolve 
with a uniform motion on that plane, apart from " periodic " inequalities. 

If then the moon's proper plane be inclined at a very small angle to the 
ecliptic, the nodes revolve very nearly uniformly on the ecliptic, and the 
orbit is inclined at very nearly a constant angle thereto. In this case the 
equinoctial line revolves also nearly uniformly, and the equator is inclined at 
nearly a constant angle to the ecliptic. 

Here then any inequalities in the motion of the earth and moon, which 
depend on the longitudes of the nodes or of the equinoctial line, are har
monically periodic in time (although they are " secular inequalities "), and 
cannot lead to any cumulative effects which will alter the elements of the 
earth or moon. 
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Again, suppose that the moon and earth are the only bodies in existence. 
Here the axis of resultant moment of momentum of the system, or the normal 
to the invariable plane, remains fixed in space. The component moments of 
momentum are those of the earth's rotation, and of the moon's and earth's 
orbital revolution round their common centre of inertia. Hence the earth's 
axis and the normal to the lunar orbit must always be coplanar with the 
normal to the invariable plane, and therefore the orbit and equator must have 
a common node on the invariable plane. This node revolves with a uniform 
precessional motion, and (so long as the earth is rigid) the inclinations of the 
orbit and equator to the invariable plane remain constant. 

Here also inequalities, which depend on the longitude of the common 
node, are harmonically periodic in time, and can lead to no cumulative effects. 

But if the lunar proper plane be not inclined at a small angle to the 
ecliptic, the nodes of the orbit may either revolve with much irregularity, or 
may oscillate about a mean position* on the ecliptic. In this case the in
clinations of the orbit and equator to the ecliptic may oscillate considerably. 

Here then inequalities, which depend on the longitudes of the node and 
of the equinoctial line, are not simply periodic in time, and may and will lead 
to cumulative effects. 

This explains what was stated above, namely, that we cannot entirely 
ignore the motion of the two nodes. 

Our problem is thus divisible into three cases :— 
(i) Where the nodes revolve uniformly on the ecliptic, and where there 

is a second disturbing satellite, viz. : the sun. 
(ii) Where the earth and moon are the only two bodies in existence. 

(iii) Where the nodes either oscillate, or do not revolve uniformly. 
The cases (i) and (ii) are distinguished by our being able to ignore the 

nodes. They afford the subject matter for the whole of Part II . 
I t is proved in § 5 that the tides raised by any one satellite can produce 

directly no secular change in the mean distance of any other satellite. This 
is true for all three of the above cases. 

I t is also shown that, in cases (i) and (ii), the tides raised by any one 
satellite can produce directly no secular change in the inclination of the orbit 
of any other satellite to the plane of reference. This is not true for case (iii). 

The change of inclination of the moon's orbit in case (i) is considered in 
§ 6. The equation expressive of the rate of change of inclination is given in 
(61) and (62). In §7 this is applied in the case where the earth is viscous. 
Fig. 4 illustrates the physical meaning of the equation, and the reader is 

* It is true that this mean position will itself have a slow precessional motion. 
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referred to §7 for an explanation of the figure. From this figure we learn 
that the effect of the frictional tides is in general to diminish the inclination 
of the lunar orbit to the ecliptic, unless the obliquity of the ecliptic be large, 
when the inclination will increase. The curves also show that for moderate 
viscosities the rate of decrease of inclination is most rapid when the obliquity 
of the ecliptic is zero, but for larger viscosities the rate of decrease has a 
maximum value, when the obliquity is between 30° and 40°. 

If the viscosity be small the equation for the rate of decrease of inclina
tion is reducible to a very simple form; this is given in (64) § 7. 

In §§ 8, 9, is found the law of increase of the square root of the moon's 
distance from the earth under the influence of tidal reaction. The law differs 
but little from that found and discussed in the paper on " Precession," where 
the plane of the lunar orbit was supposed to be coincident with the ecliptic. 
If the viscosity be small the equation reduces to a very simple form ; this is 
given in (70). In § 10 I pass to case (ii), where the earth and moon are the 
only bodies. The equation expressive of the rate of change of inclination of 
the lunar orbit to the invariable plane is given in (71). Fig. 5 illustrates the 
physical meaning of the equation, and an explanation of it is given in §10. 
From it we learn that the effect of the tides is always to cause a diminution 
of the inclination—at least so long as the periodic time of the satellite, as 
measured in rotations of the planet, is pretty long. The following considera
tions show that this must generally be the case. It appears from the paper 
on "Precession" that the effect of tidal friction is to cause a continual trans
ference of moment of momentum from that of terrestrial rotation to that of 
orbital motion; hence it follows that the normal to the lunar orbit must 
continually approach the normal to the invariable plane. I t is true that the 
rate of this approach will be to some extent counteracted by a parallel 
increase in the, inclination of the earth's axis to the same normal. It will 
appear later that if the moon were to revolve very rapidly round the earth, 
and if the viscosity of the earth were great, then this counteracting influence 
might be sufficiently great to cause the inclination to increase*. This 
possible increase of inclination is not exhibited in fig. 5, because it illustrates 
the case where the sidereal month is 15 days long. 

In §11 it is shown that, for case (ii), the rate of variation of the mean 
distance, obliquity, and terrestrial rotation follow the laws investigated in 
" Precession," but that the angle, there called the obliquity of the ecliptic, 
must be interpreted as the angle between the plane of the lunar orbit and 
the equator. 

In §12 I return again to case (i) and find the laws governing the rate of 
increase of the obliquity of the ecliptic, and of decrease of the diurnal rotation 

* See the abstract of this paper, Proc. Roy. Sac., No. 200, 1879 [Appendix A, p. 380 below], 
for certain general considerations bearing on this case. 

D, II. 23 
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of the earth. The results differ so little from those discussed in " Precession " 
that they need not be further referred to here. 

Up to this point no approximation has been admitted with regard to 
smallness either in the obliquity or the inclination of the orbit, but mathe
matical difficulties have rendered it expedient to assume their smallness in 
the following part of the paper. 

§ 31. Summary of Part III. 

Part III . is devoted to case (iii) of our first problem. It was found 
necessary in the first instance to consider the theory of the secular in
equalities in the motion of a moon revolving about an oblate rigid earth, and 
perturbed by a second satellite, the sun. The sun being large and distant, 
the ecliptic is deemed sensibly unaffected, and is taken as the fixed plane of 
reference. 

The proper plane of the lunar orbit has been already referred to, but I 
was here led to introduce a new conception, viz. : that of a second proper 
plane to which the motion of the earth is referred. It is proved that the 
motion of the system may then be defined as follows :— 

The two proper planes intersect one another on the ecliptic, and their 
common node regredes on the ecliptic with a slow precessional motion. The 
lunar orbit and the equator are respectively inclined at constant angles to 
their proper planes, and their nodes on their respective planes also regrede 
uniformly and at the same speed. The motions are timed in such a way that 
when the inclination of the orbit to the ecliptic is at the maximum, the 
obliquity of the equator to the ecliptic is at the minimum, and vice versa. 

Now let us call the angular velocity with which the nodes of the orbit 
would regrede on the ecliptic, if the earth were spherical, the nodal velocity. 

And let us call the angular velocity with which the common node of the 
orbit and equator would regrede on the invariable plane of the system, if the 
sun did not exist, the precessional velocity. 

If the various obliquities and inclinations be not large, the precessional 
velocity is in fact the purely lunar precession. 

Then if the nodal velocity be large compared with the processional velocity, 
the lunar proper plane is inclined at a small angle to the ecliptic, and the 
equator is inclined at a small angle to the earth's proper plane. 

This is the case with the earth, moon, and sun at present, because the 
nodal period is about 18^ years, and the purely lunar precession would have a 
period of between 20,000 and 30,000 years. I t is not usual to speak of a 
proper plane of the earth, because it is more simple to conceive a mean 
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equator, about which the true equator nutates with a period of about 
18j- years. 

Here the precessional motion of the two proper planes is the whole luni-
solar precession, and the regression of the nodes on the proper planes is 
practically the same as the regression of the lunar nodes on the ecliptic. 

A comparison of my result with the formula ordinarily • given will be 
found at the end of § 13, and in a note to § 18. 

Secondly, if the nodal velocity be small compared with the precessional 
velocity, the lunar proper plane is inclined at a small angle to the earth's 
proper plane. 

Also the inclination of the equator to the earth's proper plane bears very 
nearly the same ratio to the inclination of the orbit to the moon's proper 
plane as the orbital moment of momentum of the two bodies bears to that of 
the rotation of the earth. 

In the planets of the solar system, on account of the immense mass of the 
sun, the nodal velocity is never small compared with the precessional velocity, 
unless the satellite moves with a very short periodic time round its planet, or 
unless the satellite be very small; and if either of these be the case the ratio 
of the two moments of momentum is small. 

Hence it follows that in our system, if the nodal velocity be small com
pared with the precessional velocity, the proper plane of the satellite is 
inclined at a small angle to the equator of the planet. The rapidity of motion 
of the satellites of Mars, Jupiter, and of some of the satellites of Saturn, and 
their smallness compared with their planets, necessitates that their proper 
planes should be inclined at small angles to the equators of the planets. 
A system may, however, be conceived in which the two proper planes are 
inclined at a small angle to one another, but where the satellite's proper 
plane is not inclined at a small angle to the planet's equator. 

In the case now before us the regression of the common node of the two 
proper planes is a sort of compound solar precession .of the planet with its 
attendant moon, and the regression of the two nodes on their respective 
proper planes is very nearly the same as the purely lunar precession on the 
invariable plane of the system. Thus there are two precessions, the first of 
the system as a whole, and the second going on within the system, almost as 
though the external precession did not exist. 

If the nodal velocity be of nearly equal speed with the precessional 
velocity, the regression of the proper planes and that of the nodes on those 
planes are each a compound phenomenon, which it is rather hard to disentangle 
without the aid of analysis. Here none of the angles are necessarily small. 

It appears from the investigation in " Precession " that the effect of tidal 
friction is that, on tracing the changes of the system backwards in time, we 
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find the moon getting nearer and nearer to the earth. The result of this is 
that the ratio of the nodal velocity to the precessional velocity continually 
diminishes retrospectively; it is initially very large, it decreases, then becomes 
equal to unity, and finally is very small. Hence it follows that a retro
spective solution will show us the lunar proper plane departing from its 
present close proximity to the ecliptic, and gradually passing over until it 
becomes inclined at a small angle to the earth's proper plane. 

Therefore the problem, involved in the history of the obliquity of the 
ecliptic and in the inclination of the lunar orbit, is to trace the secular 
changes in the pair of proper planes, and in the inclinations of the orbit and 
equator to their respective proper planes. 

The four angles involved in this system are however so inter-related, that 
it is only necessary to consider the inclination of one proper plane to the 
ecliptic, and of one plane of motion to its proper plane, and afterwards the 
other two may be deduced. I chose as the two, whose motions were to be 
traced, the inclination of the lunar orbit to its proper plane, and the inclina
tion of the earth's proper plane to the ecliptic ; and afterwards deduced the 
inclination of the moon's proper plane to the ecliptic, and the inclination of 
the equator to the earth's proper plane. 

The next subject to be considered (§ 14 to end of Part III.) was the rate 
of change of these two inclinations, when both moon and sun raise frictional 
tides in the earth. The change takes place from two sets of causes :— 

First because of the secular changes in the moon's distance and periodic 
time, and in the earth's rotation and ellipticity of figure—for the earth must 
always remain a figure of equilibrium. 

The nodal velocity varies directly as the moon's periodic time, and it will 
decrease as we look backwards in time. 

The precessional velocity varies directly as the ellipticity of the earth's 
figure (the earth being homogeneous) and inversely as the cube of the moon's 
distance, and inversely as the earth's diurnal rotation; it will therefore 
increase retrospectively. The ratio of these two velocities is the quantity on 
which the position of the proper planes principally depends. 

The second cause of disturbance is due directly to the tidal interaction of 
the three bodies. 

The most prominent result of this interaction is, that the inclination of 
the lunar orbit to its proper plane in general diminishes as the time increases, 
or increases retrospectively. This statement may be compared with the 
results of Part II., where the ecliptic was in effect the proper plane. The 
retrospective increase of inclination may be reversed however, under special 
conditions of tidal disturbance and lunar periodic time. 
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Also the inclination of the earth's proper plane to the ecliptic in general 
increases with the time, or diminishes retrospectively. This is exemplified 
by the results of the paper on " Precession," where the obliquity of the ecliptic 
was found to diminish retrospectively. This retrospective decrease may be 
reversed under special conditions. 

It is in determining the effects of this second set of causes, that we have 
to take account of the effects of tidal disturbance on the motions of the nodes 
of the orbit and equator on the ecliptic. 

After a long analytical investigation, equations are found in (224), which 
give the rate of change of the positions of the proper planes, and of the 
inclinations thereto. 

It is interesting to note how these equations degrade into those of case (i) 
when the nodal velocity is very large compared with the precessional velocity, 
and into those of case (ii) when the same ratio is very small. 

In order completely to define the rate of change of the configuration of 
the system, there are two other equations, one of which gives the rate of 
increase of the square root of the moon's distance (which I called in a 
previous paper the equation of tidal reaction), and the other gives the rate of 
retardation of the earth's diurnal rotation (which I called before the equation 
of tidal friction). For the latter of these we may however substitute another 
equation, in which the time is not involved, and which gives a relationship 
between the diurnal rotation and the square root of the moon's distance. It 
is in fact the equation of conservation of moment of momentum of the moon-
earth system, as modified by the solar tidal friction. This is the equation 
which was extensively used in the paper on " Precession." 

Except for the solar tidal friction and for the obliquity of the orbit and 
equator, this equation would be rigorously independent of the kind of frictional 
tides existing in the earth. If the obliquities are taken as small, they do not 
enter in the equation, and in the present case the degree of viscosity of the 
earth only enters to an imperceptible degree, at least when the day is not 
very nearly equal to the sidereal month. When that relation between the day 
and month is very nearly fulfilled, the equation may become largely affected 
by the viscosity; and I shall return to this point later, while for the present 
I shall assume the equation to give satisfactory results. 

This equation of conservation of moment of momentum enables us to 
compute as many parallel values of the day and month as may be desired. 

Now we have got the time-rates of change of the inclinations of the lunar 
orbit to its proper plane, and of the earth's proper plane to the ecliptic, and 
we have also the time-rate of change of the square root of the moon's distance. 
Hence we may obtain the square-root-of-moon's-distance-rate (or shortly the 
distance-rate) of change of the two inclinations. 
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The element of time is thus entirely eliminated; and as the period of 
time required for the changes has been adequately considered in the paper on 
" Precession," no further reference will here be made to time. 

In a precisely similar manner the equations giving the time-rate in the 
cases (i) and (ii) of our first problem, may be replaced by equations of distance-
rate. 

Up to this point terrestrial phraseology has been used, but there is 
nothing which confines the applicability of the results to our own planet and 
satellite. 

§32. Summary of Part IV. 

We now, however, pass to Part IV., which contains a retrospective in
tegration of the differential equations, with special reference to the earth, 
moon, and sun. The mathematical difficulties were so great that a numerical 
solution was the only one found practicable*. The computations made for 
the paper on " Precession " were used as far as possible. 

The general plan followed was closely similar to that of the previous 
paper, and consists in arbitrarily choosing a number of values for the distance 
of the moon from the earth (or what amounts to the same thing for the 
sidereal month), and then computing all the other elements of the system by 
the method of quadratures. 

The first case considered is where the earth has a small viscosity. And 
here it may be remarked that although the solution is only rigorous for in
finitely small viscosity, yet it gives results which are very nearly true over a 
considerable range of viscosity. This may be seen to be true by a comparison 
of the results of the integrations in §§15 and 17 of " Precession," in the first 
of which the viscosity was not at all small; also by observing that the curves 
in fig. 2 of " Precession " do not differ materially from the curve of sines 
until e (the f of this paper) is greater than 25°; also by noting a similar 
peculiarity in figs. 4 and 5 of this paper. The hypothesis of large viscosity 
does not cover nearly so wide a field. 

That which we here call a small viscosity is, when estimated by terrestrial 
standards, very great (see the summary of " Precession "). 

To return, however, to the case in hand:—We begin with the present 
configuration of the three bodies, when the moon's proper plane is almost 
identical with the ecliptic, and when the inclination of the equator to its 
proper plane is very small. This is the case (i) of the first problem :— 

It appears that the solution of " Precession" is sufficiently accurate for 
this stage of the solution, and accordingly the parallel values of the day, 

* An analytical solution in the case of a single satellite, where the viscosity of the planet is 
small, is given in Proc. Roy. Soc, No. 202, 1880. [Paper 7, below.] 
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month, and obliquity of the earth's proper plane (or mean equator) are taken 
from §17 of that paper; but the change in the new element, the inclination 
of the lunar orbit, has to be computed. 

The results of the solution are given in Table L, § 18, to which the reader 
is referred. 

This method of solution is not applicable unless the lunar proper plane is 
inclined at a small angle to the ecliptic, and unless the equator is inclined at 
a small angle to its proper plane. Now at the beginning of the integration, 
that is to say with a homogeneous earth, and with the moon and sun in their 
present configuration, the moon's proper plane is inclined to the ecliptic at 
13", and the equator is inclined to the earth's proper plane at 12" (for the 
heterogeneous earth these angles are about 8"'3 and 9"0) ; and at the end 
of this integration, when the day is 9 hrs. 55 m. and the month 8'17 m.s. days, 
the former angle has increased to 57' 31", and the latter to 22' 42". These 
last results show that the nutations of the system have already become con
siderable, and although subsequent considerations show that this method of 
solution has not been overstrained, yet it here becomes advisable to carry out 
the solution into the more remote past by the methods of Part III . 

It was desirable to postpone the transition as long as possible, because 
the method used up to this point does not postulate the smallness of the 
inclinations, whereas the subsequent procedure does make that supposition. 

In § 19 the solution is continued by the new method, the viscosity of the 
earth still being supposed to be small. After laborious computations results 
are obtained, the physical meaning of which is embodied in Table VIII-
The last two columns give the periods of the two precessional motions by 
which the system is affected. The precession of the pair of proper planes is, 
as it were, the ancestor of the actual luni-solar precession, and the revolution 
of the two nodes on their proper planes is the ancestor of the present revolu
tion of the lunar nodes on the ecliptic, and of the 19-yearly nutation of the 
earth's axis. 

This table exhibits a continued approach of the two proper planes to one 
another, so that at the point where the integration is stopped they are only 
separated by l 3 18 ' ; at the present time they are of course separated by 
23° 28'. 

The most remarkable feature in this table is that (speaking retrospectively) 
the inclination of the lunar orbit to its proper plane first increases, then 
diminishes, and then increases again. 

If it were desired to carry the solution still further back, we might with
out much error here make the transition to the method of case (ii) of the first 
problem, and neglecting the solar influence entirely, refer the motion to the 
invariable plane of the moon-earth system. This invariable plane would have 
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to be taken as somewhere between the two proper planes, and therefore in
clined to the ecliptic at about 11° 45'; the invariable plane would then really 
continue to have a precessional motion due to the solar influence on the 
system formed by the earth and moon together, but this would not much 
affect the treatment of the plane as though it were fixed in space. 

We should then have to take the obliquity of the equator to the invariable 
plane as about 3°, and the inclination of the lunar orbit to the same plane as 
about 5° 30'. 

In the more remote past the obliquity of the equator to the invariable 
plane would go on diminishing, but at a slower and slower rate, until the 
moon's period is 12 hours and the day is 6 hours, when it would no longer 
diminish; and the inclination of the orbit to the invariable plane would go 
on increasing, until the day and month come to an identity, and at an ever 
increasing rate. 

It follows from this, that if we continued to trace the changes backwards, 
until the day and month are identical, we should find the lunar orbit inclined 
at a considerable angle to the equator. If this were necessarily the case, it 
would be difficult to believe that the moon is a portion of the primeval planet 
detached by rapid rotation, or by other causes. But the previous results are 
based on the hypothesis that the viscosity of the earth is small, and it therefore 
now became important to consider how a different hypothesis concerning the 
constitution of the earth might modify the results. 

In § 20 the solution of the problem is resumed, at the point where the 
methods of Part III . were first applied, but with the hypothesis that the 
viscosity of the earth is very large, instead of very small. The results for any 
intermediate degree of viscosity must certainly lie between those found before 
and those to be found now. 

Then having retraversed the same ground, but with the new hypothesis, 
I found the results given in Table XV. 

The inclinations of the two proper planes to the ecliptic are found to be 
very nearly the same as in the case of small viscosity. But the inclination of 
the lunar orbit to its proper plane increases at first and then continues 
diminishing, without the subsequent reversal of motion found in the previous 
solution. 

If the solution were carried back into the more remote past, the motion 
being referred to the invariable plane, we should find both the obliquity of 
the equator and the inclination of the orbit diminishing at a rate which tends 
to become infinite, if the viscosity is infijiitely great. Infinite viscosity is of 
course the same as perfect rigidity, and if the earth were perfectly rigid the 
system would not change at all. The true interpretation to put on this 
result is that the rate of change of inclination becomes large, if the viscosity 
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be large. This diminution would continue until the day was 6 hours and the 
month 12 hours. For an analysis of the state of things further back than 
this, the reader is referred to § 20. 

From this it follows, that by supposing the viscosity large enough we may 
make the obliquity and inclination to the invariable plane as small as we 
please, by the time that state is reached in which the month is equal to twice 
the day. 

Hence, on the present hypothesis, we trace the system back until the 
lunar orbit is sensibly coincident with the equator, and the equator is 
inclined to the ecliptic at an angle of 11° or 12°. 

It is probable that in the still more remote past the plane of the lunar 
orbit would not have a tendency to depart from that of the equator. I t is 
not, however, expedient to attempt any detailed analysis of the changes further 
back, for the following reason. Suppose a system to be unstable, and that some 
infinitesimal disturbance causes the equilibrium to break down ; then after 
some time it is moving in a certain way. Now suppose that from a know
ledge of the system we endeavour to compute backwards from the observed 
mode of its motion at that time, and so find the condition from which the 
observed state of motion originated. Our solution will carry us back to a 
state very near to that of instability, from which the system really departed, 
but as the calculation can take no account of the infinitesimal disturbance, 
which caused the equilibrium to break down, it can never bring us back to 
the state which the system really had. And if we go on computing the pre
ceding state of affairs, the solution will continue to lead us further and further 
astray from the truth. Now this, I take it, is likely to have been the case 
with the earth and moon; at a certain period in the evolution (viz.: when 
the month was twice the day) the system probably became dynamically 
unstable, and the equilibrium broke down. Thus it seems more likely that 
we have got to the truth, if we cease the solution at the point where the 
lunar orbit is nearly coincident with the equator, than by going still further 
back. 

In §21, fig. 7, is given a graphical illustration of the distance-rate of 
change in the inclinations of the lunar orbit to its proper plane, and of the 
earth's proper plane to the ecliptic; the dotted curves refer to the hypothesis 
of large viscosity, and the firm-curves to that of small viscosity. 

The figure is explained and discussed in that section; I will here only 
draw attention to the wideness apart of the two curves illustrative of the rate 
of change of the inclination of the lunar orbit. This shows how much influence 
the degree of viscosity of the earth must have had on the present inclination 
of the lunar orbit to the ecliptic. 

It is particularly interesting to observe that in the case of small viscosity 
this curve rises above the horizontal axis. If this figure is to be interpreted 
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retrospectively, along with our solution, it must be read from left to right, 
but if we go with the time, instead of against it, from right to left. 

Now if the earth had had in its earlier history infinitely small viscosity, 
and if the moon had moved primitively in the equator, then until the 
evolution had reached the point represented by P, the lunar orbit would 
have always remained sensibly coincident with its proper plane. In passing 
from P to Q the inclination of the orbit to its proper plane would have 
increased, but the whole increase could not have amounted to more than a 
few minutes of arc. At the point P the day is 7 hrs. 47 m. in length, and 
the month 3"25 m. s. days in length; at the point Q the day is 8 hrs. 36 m., 
and the month 5'20 m. s. days. From Q down to the present state this small 
inclination would have always decreased. 

If then the earth had had small viscosity throughout its evolution, the 
lunar orbit would at present be only inclined at a very small angle to the 
ecliptic. But it is actually inclined at about 5° 9', hence it follows that while 
the hypothesis of small viscosity is competent to explain some inclination, it 
cannot explain the actually existing inclination. 

It was shown in the papers on "Tides" and " Precession" that, if the earth 
be not at present perfectly rigid or perfectly elastic, its viscosity must be very 
large. And it was shown in " Precession " that if the viscosity be large, the 
obliquity of the ecliptic must at present be decreasing. Now it will be 
observed that in resuming the integration with the hypothesis of large 
viscosity, the solution of the first method with the hypothesis of small 
viscosity was accepted as the basis for continuing the integration with large 
viscosity. This appears at first sight somewhat illogical, and to be strictly 
correct, we ought to have taken as the initial inclination of the earth's proper 
plane to the ecliptic, at the beginning of the application of the methods of 
Part I I I . to the hypothesis of large viscosity, some angle probably a little less 
than 23^°* instead of 17°. This would certainly disturb the results, but I 
have not thought it advisable to take this course for the following reasons. 

It is probable that at the present time the greater part, if not the whole 
of the tidal friction is due to oceanic tides, and not to bodily tides. If the 
ocean were frictionless, it would be low tide under the moon; consequently 
the effects of fluid friction must be to accelerate, not retard, the ocean 
tides f. In order to apply our present analysis to the case of oceanic tidal 

* In the present configuration of the earth, moon, and sun, the obliquity will decrease, if the 
viscosity he very large. But if we integrate backwards this retrospective increase of obliquity 
would soon be converted into a decrease. Thus at the end of " the first period of integration," 
the obliquity would be a little greater than 23J°, but by the end of the "second period" it 
would probably be a little less than 23^°. It is at the end of the " second period" that the 
method of Part III. is first applied. 

t Otherwise the lunar attraction on the tides would accelerate the earth's rotation—a clear 
violation of the principles of energy. 
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friction, that angle which has been called the lag of the tide must be inter
preted as the acceleration of the tide. 

We know that the actual friction in water is small, and hence the tides of 
long period will be less affected by friction than those of short period; thus 
the effects of fluid tidal friction will probably be closely analogous to those 
resulting from the hypothesis of small viscosity of the whole earth and bodily 
tides. On the other hand, it is probable that the earth was once more plastic 
than at present, either superficially or throughout its mass, and therefore it 
seems probable that the bodily tides, even if small at present, were once more 
considerable. I think therefore that on the whole we shall be more nearly 
correct in supposing that the terrestrial nucleus possessed a high degree of 
stiffness in the earliest times, and that it will be best to apply the hypothesis 
of small viscosity to the more modern stages of the evolution, and that of 
large viscosity to the more ancient. 

At any rate this appears to be a not improbable theory, and one which 
accords very well with the present values of the obliquity of the ecliptic, and 
of the inclination of the lunar orbit. 

§ 33. On the initial condition of the earth and moon. 

It was remarked above that the equation of conservation of moment of 
momentum, as modified by the effects of solar tidal friction, could only be 
regarded as practically independent of the degree of viscosity of the earth, so 
long as the moon's sidereal period was not nearly equal to the day; and that 
if this relationship were nearly satisfied, the equation which we have used 
throughout might be considerably in error. 

Now in the paper on " Precession " the system was traced backwards, in 
much the same way as has been done here, until the moon's tide-generating 
influence was very large compared with that of the sun; the solar influence 
was then entirely neglected, and the equation of conservation of moment of 
momentum was used for determining that initial condition, where the month 
and day were identical, from which the system started its course of develop
ment*. The period of revolution of the system in its initial configuration 
was found to be about 5^ hours. I now however see reason to believe that 
the solar tidal friction will make the numerical value assigned to this period of 
revolution considerably in error, whilst the general principle remains almost 
unaffected. This subject is considered in §22. 

The necessity of correction arises from the assumption that because the 
moon is retrospectively getting nearer and nearer to the earth, therefore the 

* See also a paper on " The Determination of the Secular Effects of Tidal Friction by a 
Graphical Method," Pros. Ray. Soc, No. 197, 1879. [Paper 5.] 

IRIS - LILLIAD - Université Lille 1 



effects of lunar tidal friction must more and more preponderate over those of 
solar tidal friction, so that if the solar tidal friction were once négligeable it 
would always remain so. But tidal friction depends on two elements, viz. : 
the magnitude of the tide-generating influence, and the relative motion of the 
two bodies. Now whilst the tide-generating influence of the moon does 
become larger and larger, as we approach the critical state, yet the relative 
motion of the moon and earth becomes smaller and smaller ; on the other 
hand the tide-generating influence of the sun remains sensibly constant, 
whilst the relative motion of the earth and sun slightly increases*. 

From this it follows that the solar tidal friction must ultimately become 
actually more important than the lunar, notwithstanding the close proximity 
of the moon to the earth. 

The complete investigation of this subject involves considerations which 
will require special treatment. In § 22 it is only so far considered as to show 
that, when there is identity of the periods of revolution of the moon and earth, 
the angular velocity of the system must be greater than that given by the 
solution in § 18 of " Precession." 

When the earth rotates in 5 | hours, the motion of the moon relatively to 
the earth's surface would already be pretty slow. If the system were traced 
into the more remote past, the earth's rotation would be found getting more 
and more rapid, and the moon's orbital angular velocity also continually 
increasing, but ever approximating to identity with the earth's rotation. 

When the surfaces of the two bodies are almost in contact, the motion of 
the moon relatively to the earth's surface would be almost insensible. This 
appears to point to the break-up of the primeval planet into two parts, in 
consequence of a rotation so rapid as to be inconsistent with an ellipsoidal 
form of equilibrium +. 

§ 34. Summary of Parts V. and VI. 

I now come to the second of the two problems, where the moon moves in 
an eccentric orbit, always coincident with the ecliptic. 

In § 23 it is shown that the tides raised by any one satellite can produce 
no secular change in the eccentricity of the orbit of any other satellite ; thus 
the eccentricity and the mean distance are in this respect on the same 
footing. 

I t was found to be more convenient to consider the ellipticity of the orbit 
instead of the eccentricity. In § 24 (289) and (290), are given the time-rates 

* In the paper on " Precession " it was stated in Section 18 that this must be the case, but 
I did not at that time perceive the importance of this consideration, 

t [See a footnote to § 2 2 on p. 3 2 3 . ] 
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of increase of the ellipticity and of the square root of mean distance. In § 25 
the result for the ellipticity is applied to the case where the earth is viscous, 
and its physical meaning is graphically illustrated in fig. 8, 

This figure shows that in general the ellipticity will increase with the 
time; but if the obliquity of the ecliptic be nearly 90°, or if the viscosity be 
so great that the earth is very nearly rigid, the ellipticity will diminish. 
This last result is due to the rising into prominence of the effects of the 
elliptic monthly tide. 

If the viscosity be very small the equation is reducible to a very simple 
form, which is given in (291). From (291) we see that if the obliquity of the 
ecliptic be zero, the ellipticity will either increase or diminish, according as 
18 rotations of the planet take a shorter or a longer time than 11 revolutions 
of the satellite. From this it follows that in the history of a satellite re
volving about a planet of small viscosity, the circular orbit is dynamically 
stable until 11 months of the satellite have become longer than 18 days of the 
planet. Since the day and month start from equality and end in equality, it 
follows that the eccentricity will rise to a maximum and ultimately diminish 
again. 

It is also shown that if a satellite be started to move in a circular orbit 
with the same periodic time as that of the planet's rotation (with maximum 
energy for given moment of momentum), then if infinitesimal eccentricity be 
given to the orbit the satellite will ultimately fall into the planet; and if, the 
orbit being circular, infinitesimal decrease of distance be given the satellite 
will fall in, whilst if infinitesimal increase of distance be given the satellite 
will recede from the planet. Thus this configuration, in which the planet and 
satellite move as parts of a single rigid body, has a complex instability; for 
there are two sorts of disturbance which cause the satellite to fall in, and one 
which causes it to recede from the planet*. 

If the planet have very large viscosity the case is much more complex, and 
it is examined in detail in § 25. 

It will here only be stated that the eccentricity will diminish if 2 months 
of the satellite be longer than 3 days of the planet, but will increase if the 
2 months be shorter than 3 days; also the rate of increase of eccentricity 
tends to become infinite, for infinitely great viscosity, if the 2 months are 
equal to the 3 days. 

These results are largely due to the influence of the elliptic monthly tide, 
and with most of the satellites of the solar system, this is a very slow tide 

* ThiB passage appeared to the referee, requested by the R. S. to report on this paper, to be 
rather obscure, and it has therefore been somewhat modified. To further elucidate the point 
I have added in an appendix [p. 874] a graphical illustration of the effects of eccentricity, similar 
to those given in No. 197 of PTOC. Roy. Soc, 1879. [Paper 5.] 

See also the abstract of this paper in the Proe. Roy. Soc, No. 200, 1879 [Appendix A, p. 380], 
for certain general considerations bearing on the problem of the eccentricity. 
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compared with the semi-diurnal tides; therefore it must in general be supposed 
that the viscosity of the planet makes a close approximation to perfect rigidity, 
in order that this statement may be true. 

The infinite value of the rate of change of eccentricity is due to the speed 
of the slower elliptic semi-diurnal tide being infinitely slow, when 2 months 
are equal to 3 days. The result is physically absurd, and its true meaning is 
commented on in § 25. 

In § 26 the time-rates of change of the obliquity of the planet's equator, 
and of the diurnal rotation are investigated, when the orbits of the tide-raising 
satellites are eccentric; the only point of general interest in the result is, that 
the rate of change of obliquity and the tidal friction are both augmented by 
the eccentricity of the orbit, as was foreseen in the paper on " Precession." 

In § 27 it is stated that the effect of the evectional tides is such as to 
diminish the eccentricity of the orbit, but the formula given shows that the 
effect cannot have much importance, unless the moon be very distant from 
the earth. 

In Part VI. the equations giving the rate of change of eccentricity are 
integrated, on the hypothesis that the earth has small viscosity. 

The first step is to convert the time-rates of change into distance-rates, 
and thus to eliminate the time, as in the previous integrations. 

The computations made for the paper on " Precession" were here made 
use of, as far as possible. 

The results of the retrospective integration are given in Table XVI., § 28. 
This table exhibits the eccentricity falling from its present value of y gth down 
to about TGfianth, so that at the end the orbit is very nearly circular. 

The integration in the case of large viscosity is not carried out, because 
the actual degree of viscosity will exercise so very large an influence on the 
result. 

If the viscosity were infinitely large, we should find the eccentricity getting 
larger and larger retrospectively, and ultimately becoming infinite, when 
2 months were equal to 3 days. This result is of course absurd, and merely 
represents that the larger the viscosity, the larger would be the eccentricity. 
On the other hand, if the viscosity were merely large, we might find the 
eccentricity decreasing at first, then stationary, then increasing until 2 months 
were equal to 3 days, and then decreasing again. 

I t follows therefore that various interpretations may be put to the present 
eccentricity of the lunar orbit. 

If, as is not improbable, the more recent changes in the configuration of 
our system have been chiefly brought about by oceanic tidal friction, whilst 
the earlier changes were due to bodily tidal friction, with considerable 
viscosity of the planet, then, supposing the orbit to have been primevally 
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circular, the history of the eccentricity must have been as follows: first an 
increase to a maximum, then a decrease to a minimum, and finally an increase 
to the present value. There seems nothing to tell us how large the early 
maximum, or how small the subsequent minimum of eccentricity may have 
been. 

VIII. 

REVIEW OF THE TIDAL THEORY OF EVOLUTION AS APPLIED TO THE EARTH 

AND THE OTHER MEMBERS OF THE SOLAR SYSTEM. 

I will now collect the various results so as to form a sketch of what the 
previous investigations show as the most probable history of the earth and 
moon, and in order to indicate how far this history is the result of calculation, 
references will be given to the parts of my several papers in which each point 
is especially considered. 

We begin with a planet, not very much more than 8,000 miles in diameter*, 
and probably partly solid, partly fluid, and partly gaseous. This planet is 
rotating about an axis inclined at about 11° or 12° to the normal to the 
eclipticf, with a period of from 2 to 4 hoursj, and is revolving about the sun 
with a period not very much shorter than our present year§. 

The rapidity of the planet's rotation causes so great a compression of its 
figure that it cannot continue to exist in an ellipsoidal form|| with stability; 
or else it is so nearly unstable that complete instability is induced by the 
solar tides II. 

The planet then separates into two masses, the larger being the earth and 
the smaller the moon. I do not attempt to define the mode of separation, or 
to say whether the moon was initially more or less annular. At any rate it 
must be assumed that the smaller mass became more or less conglomerated, 
and finally fused into a spheroid—perhaps in consequence of impacts between 
its constituent meteorites, which were once part of the primeval planet. Up 
to this point the history is largely speculative, [for although we know the 
limit of stability of a homogeneous mass of rotating liquid, yet it surpasses 
the power of mathematical analysis to follow the manner of rupture when the 
limiting velocity of rotation is surpassed.] 

* "Precession," Section 24 [p. 115]. 
t This at least appears to be the obliquity at the earliest stage to which the system has been 

traced hack in detail, but the effect of solar tidal friction would make the obliquity primevally 
less than this, to an uncertain and perhaps considerable amount. 

X "Precession," Section 18 [p. 101], and Part IV., Section 22 [p. 322; but see footnote 
on p. 323]. 

§ "Precession," Section 19 [p. 105]. 
|| "Precession," Section 18 [p. 101], and Part IV., Section 22 [p. 322, and footnote on p. 323]. 
IT Summary of " Precession " [p. 132]. 
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We now have the earth and the moon nearly in contact with one another, 
and rotating nearly as though they were parts of one rigid body. 

This is the system which has been made the subject of the present dyna
mical investigation. 

As the two masses are not rigid, the attraction of each distorts the other; 
and if they do not move rigorously with the same periodic time, each raises a 
tide in the other. Also the sun raises tides in both. 

In consequence of the frictional resistance to these tidal motions, such a 
system is dynamically unstable *. If the moon had moved orbitally a little 
faster than the earth rotates she must have fallen back into the earth ; thus the 
existence of the moon compels us to believe that the equilibrium broke down 
by the moon revolving orbitally a little slower than the earth rotates. Perhaps 
the actual rupture into two masses was the cause of this slower motion; for 
if the detached mass retained the same moment of momentum as it had 
initially, when it formed a part of the primeval planet, this would, I think, 
necessarily be the case. 

In consequence of the tidal friction the periodic time of the moon (or the 
month) increases in length, and that of the earth's rotation (or the day) also 
increases; but the month increases in length at a much greater rate than the 
day. 

At some early stage in the history of the system, the moon has con
glomerated into a spheroidal form, and has acquired a rotation about an axis 
nearly parallel with that of the earth. We will now follow the moon itself 
for a time. 

The axial rotation of the moon is retarded by the attraction of the earth 
on the tides raised in the moon, and this retardation takes place at a far 
greater rate than the similar retardation of the earth's rotation f. As soon as 
the moon rotates round her axis with twice the angular velocity with which 
she revolves in her orbit, the position of her axis of rotation (parallel with the 
earth's axis) becomes dynamically unstable]:. The obliquity of the lunar 
equator to the plane of the orbit increases, attains a maximum, and then 
diminishes. Meanwhile the lunar axial rotation is being reduced towards 
identity with the orbital motion. 

Finally her equator is nearly coincident with the plane of her orbit, and 
the attraction of the earth on a tide, which degenerates into a permanent 
ellipticity of the lunar equator, causes her always to show the same face to 

* " Secular Effects, 4 c , " Proc. Hoy. Soc, No. 197, 1879 [Paper 5, p. 204] ; and " Precession," 
Section 18 [p. 101]. 

t " Precession," Section 23 [p. 113]. 
X " Precession," Section 17 [p. 93]. It is of course possible that the lunar rotation was very 

rapidly reduced by the earth's attraction on the lagging tides, and was never permitted to be 
more than twice the orbital motion. In this case the lunar equator has never deviated much from 
the plane of the orbit. 

IRIS - LILLIAD - Université Lille 1 



the earth *. Laplace has shown that this is a necessary consequence of the 
elliptic form of the lunar equator. 

All this must have taken place early in the history of the earth, to which 
I now return. 

As the month increases in length the lunar orbit becomes eccentric, and 
the eccentricity reaches a maximum when the month occupies about a rotation 
and a half of the earth. The maximum of eccentricity is probably not large. 
After this the eccentricity diminishesf. 

The plane of the lunar orbit is at first practically identical with the earth's 
equator, but as the moon recedes from the earth the sun's attraction begins 
to make itself felt. Here then we must introduce the conception of the two 
ideal planes (here called the proper plaues), to which the motion of the earth 
and moon must be referred]:. The lunar proper plane is at first inclined at a 
very small angle to the earth's proper plane, and the orbit and equator coincide 
with their respective proper planes. 

As soon as the earth rotates with twice the angular velocity with which 
the moon revolves in her orbit, a new instability sets in. The month is then 
about 12 of our present hours, and the day is about 6 of our present hours in 
length. 

The inclinations of the lunar orbit and of the equator to their respective 
proper planes increase. The inclination of the lunar orbit to its proper plane 
increases to a maximum of 6° or 7°§, and ever after diminishes; the incli
nation of the equator to its proper plane increases to a maximum of about 
2° 45'||, and ever after diminishes. The maximum inclination of the lunar 
orbit to its proper plane takes place when the day is a little less than 9 of our 
present hours, and the month a little less than 6 of our present days. The 
maximum inclination of the equator to its proper plane takes place earlier 
than this. 

Whilst these changes have been going on, the proper planes have been 
themselves changing in their positions relatively to one another and to the 
ecliptic. At first they were nearly coincident with one another and with 
the earth's equator, but they then open out, and the inclination of the 
lunar proper plane to the ecliptic continually diminishes, whilst that of the 
terrestrial proper plane continually increases. 

* [At the time when thia was written I thought that HelmhoHz had been the first to suggest 
the reduction of the moon's axial rotation by means of tidal friction. But the same idea had been 
advanced both by Kant and Laplace, independently of one another, at much earlier dates. Soe 
Chapter 16 of The Tides and Kindred Phenomena in the Solar System, by Or. H. Darwin.] 

t Parts V. and VI. The exact history of the eccentricity is somewhat uncertain, because of 
the uncertainty as to the degree of viscosity of the earth. 

J See Parts III. and IV. (and the summaries thereof in Part VII.) for this and what follows 
about proper planes. 

§ Table XV., Part IV. [p. 316]. 

|[ Found from the values in Table XV. [p. 316], and by a graphical construction. 

D . i i . 2 4 
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At some stage the earth has become more rigid, and oceans have been 
formed, so that it is probable that oceanic tidal friction has come to play a 
more important part than bodily tidal friction*. If this be the case the 
eccentricity of the orbit, after passing through a stationary phase, begins to 
increase again. 

We have now traced the system to a state in which the day and month 
are increasing, but at unequal rates; the inclinations of the lunar proper plane 
to the ecliptic and of the orbit to its proper plane are diminishing ; the incli
nation of the terrestrial proper plane to the ecliptic is increasing, and of the 
equator to its proper plane is diminishing; and the eccentricity of the orbit 
is increasing. 

No new phase now supervenes f, and at length we have the system in its 
present configuration. The minimum time in which the changes from first 
to last can have taken place is 54,000,000 years j . 

In a previous paper it was shown that there are other collateral results of 
the viscosity of the earth; for during this course of evolution the earth's mass 
must have suffered a screwing motion, so that the polar regions have travelled 
a little from west to east relatively to the equator. This affords a possible 
explanation of the north and south trend of our great continents §. Also a 
large amount of heat has been generated by friction deep down in the earth, 
and some very small part of the observed increase of temperature in under
ground borings may be attributable to this cause||. 

The preceding history might vary a little in detail, according to the degree 
of viscosity which we attribute to the earth's mass, and according as oceanic 
tidal friction is or is not, now and in the more recent past, a' more powerful 
cause of change than bodily tidal friction. 

The argument reposes on the imperfect rigidity of solids, and on the in
ternal friction of semi-solids and fluids ; these are verm causae. Thus changes 
of the kind here discussed must be going on, and must have gone on in the 
past. And for this history of the earth and moon to be true throughout, it is 
only necessary to postulate a sufficient lapse of time, and that there is not 
enough matter diffused through space to resist materially the motions of the 
moon and earth in perhaps several hundred million years. 

I t hardly seems too much to say that granting these two postulates, and 
the existence of a primeval planet, such as that above described, then a system 

* Compare with " Precession," Section 14 [p. 69], where the present secular acceleration of the 
moon's mean motion is considered. 

t Unless the earth's proper plane (or mean equator) be now slowly diminishing in obliquity, 
as would be the oase if the bodily tides are more potent than the oceanic ones. In any case this 
diminution must ultimately take place in the far future. 

X "Precession," end ol Section 18 [p. 105]. 
§ "Problems," Part I. [p. 151 and p. 188]. 
|| " Problems," Part II. [p. 155 and p. 193]. 
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would necessarily be developed which would bear a strong resemblance to our 
own. 

A theory, reposing on verm causae, which brings into quantitative corre
lation the lengths of the present day and month, the obliquity of the ecliptic, 
and the inclination and eccentricity of the lunar orbit, must, I think, have 
strong claims to acceptance. 

But if this has been the evolution of the earth and moon, a similar 
process must have been going on elsewhere. The present investigation has 
only dealt with a single satellite and the sun, but the theory may of course 
be extended, with some modification, to planets attended by several satellites. 
I will now therefore consider some of the other members of the solar system. 

A large planet has much more energy of rotation to be destroyed, and 
moment of momentum to be redistributed than a small one, and therefore a 
large planet ought to proceed in its evolution more slowly than a small one. 
Therefore we ought to find the larger planets less advanced that the smaller 
ones. 

The masses of such of the planets as have satellites are, in terms of the 
earth's mass, as follows: Mars = T ^; Jupiter = 301; Saturn = 90; Uranus = 1 4 ; 
Neptune = 16. 

Mars should therefore be furthest advanced in its evolution, and it is here 
alone in the whole system that we find a satellite moving orbitally faster than 
the planet rotates. This will also be the ultimate fate of our moon, because, 
after the moon's orbital motion has been reduced to identity with that of the 
earth's rotation, solar tidal friction will further reduce the earth's angular 
velocity, the tidal reaction on the moon will be reversed, and the moon's 
orbital velocity will increase, and her distance from the earth will diminish. 
But since the moon's mass is very large, the moon must recede to an enormous 
distance from the earth, before this reversal will take place. Now the satellites 
of Mars are very small, and therefore they need only to recede a short distance 
from the planet before the reversal of tidal reaction*. 

The periodic time of the satellite Deimos is 30 hrs. 18 m."f, and as the 
period of rotation of Mars is 24 hrs. 37 m.j:, Deimos must be still receding 
from Mars, but very slowly. 

The periodic time of the satellite Phobos is 7 hrs. 39 in.; therefore Phobos 
must be approaching Mars. I t does not seem likely that it has ever been 
remote from the planet. 

* In the graphical method of treating the subject, " t h e line of momentum" will only just 
intersect " the curve of rigidity." See Proc. Roy. Soc, No. 197, 1879. [Paper 5, p. 201.] 

t Observations and Orbits of the Satellites of Mars, by Asaph Hall. Washington Govern
ment Printing Office, 1878. 

% According to Kaiser, as quoted by Schmidt. Ast. Nach., Vol. L X X X I I . p. 333. 

24—2 
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The eccentricities of the orbits of both satellites are small, though some
what uncertain. The eccentricity of the orbit of Phobos appears however to 
be the larger of the two. 

If the viscosity of the planet be small, or if oceanic tidal friction be the 
principal cause of change, both eccentricities are diminishing; but if the 
viscosity be large, both are increasing. In any case the rate of change must 
be excessively slow. As we have no means of knowing whether the eccentri
cities are. increasing or diminishing this larger eccentricity of the orbit of 
Phobos cannot be a fact of much importance either for or against the present; 
views. But it must be admitted that it is a slightly unfavourable indication. 

The position of the proper plane of a satellite is determined by the periodic 
time of the satellite, the oblateness of the planet, and the sun's distance. The 
inclination of the orbit of a satellite to its proper plane is not determined by 
anything in the system. Hence it is only the inclination of the orbit which 
can afford any argument for or against the theory. 

The proper planes of both satellites are necessarily nearly coincident with 
the equator of the planet; but it is in accordance with the theory that the 
inclinations of the orbits to their respective proper planes should be small *. 

Any change in the obliquity of the equator of Mars to the plane of his 
orbit must be entirely due to solar tides. The present obliquity is about 27°, 
and this points also to an advanced stage of evolution—at least if the axis of 
the planet was primitively at all nearly perpendicular to the ecliptic. 

We now come to the system of Jupiter. 
This enormous planet is still rotating in about 10 hours, its axis is nearly 

perpendicular to the ecliptic, and three of its satellites revolve in 7 days or 
less, whilst the fourth has a period of 16 days 16 hrs. This system is obviously 
far less advanced than our own. 

The inclinations of the proper planes to Jupiter's equator are necessarily 
small, but the inclinations of the orbits to the proper planes appear to be 
very interesting from a theoretical point of view. They are as follows+:— 

Inclination of orbit 
Satellite to proper plane 

a I 11 

First 0 0 0 
Second 0 27 50 
Third 0 12 20 
Fourth ' 0 14 58 

* For the details of the Martian system, see the paper by Professor Asaph Hall, above quoted. 
With regard to the proper planes, see a paper by Professor J. C. Adams read before the 

R. Ast. Soc. on Nov. 14, 1879, R. A . S. Monthly Not. There is also a paper by Mr Marth, 
Asl. Nach., No. 2280, Vol. xov., Oct. 1879. 

t Herschel's Astron., Synoptic Tables in Appendix. 
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Now we have shown above that the orbit of a satellite is at first coincident 
with its proper plane, that the inclination afterwards rises to a maximum, 
and finally declines. If then we may assume, as seems reasonable, that the 
satellites are in stages of evolution corresponding to their distances from the 
planet, these inclinations accord well with the theory. 

The eccentricities of the orbits of the two inner satellites are insensible, 
those of the outer two small. This does not tell strongly either for or against 
the theory, because the history of the eccentricity depends considerably on the 
degree of viscosity of the planet; yet it on the whole agrees with the theory 
that the eccentricity should be greater in the more remote satellites. I t 
appears that the satellites of Jupiter always present the same face to the 
planet, just as does our moon*. This was to be expected. 

The case of Saturn is not altogether so favourable to the theory. The 
extremely rapid rotation, the ring, and the short periodic time of the inner 
satellites point to an early stage of development; whilst the longer periodic 
time of the three outer satellites, and the high obliquity of the equator 
indicate a later stage. Perhaps both views may be more or less correct, for 
successive shedding of satellites would impart a modern appearance to the 
system. It may be hoped that the investigation of the effects of tidal friction 
in a planet surrounded by a number of satellites may throw some light on 
the subject. This I have not yet undertaken, and it appears to have peculiar 
difficulties. It has probably been previously remarked, that the Saturnian 
system bears a strong analogy with the solar system, Titan being analogous 
to Jupiter, Hyperion and Iapetus to Uranus and Neptune, and the inner 
satellites being analogous to the inner planets. Thus anything which aids us 
in forming a theory of the one system will throw light on the other+. 

The details of the Saturnian system seem more or less favourable to the 
theory. 

The proper planes of the orbits (except that of Iapetus) are nearly in the 
plane of the ring, and the inclinations of all the orbits to their proper planes 
appear not to be large. 

Ilerschel gives the following eccentricities of orbit:— 
Tethys -04(?), Dione -02(?), Rhea -02 (?), Titan -029314-, Hyperion "rather 

large " ; and he says nothing of the eccentricities of the orbits of the remaining 
three satellites. If the dubious eccentricities for the first three of the above 
are of any value, we seem to have some indication of the early maximum of 
eccentricity to which the analysis points; but perhaps this is pushing the 

* Herschel's Astron., 9th ed., § 546. 
t Another investigation [Paper 8] seems to show pretty conclusively that tidal friction cannot 

be in all cases the most important feature in the evolution of such systems as that of Saturn and 
his satellites, and the solar system itself. I am not however led to reject the views maintained 
in this paper. 
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argument too far. The satellite Iapetus appears always to present the same 
face to the planet*. 

Concerning Uranus and Neptune there is not much to be said, as their 
systems are very little known; but their masses are much larger than that of 
the earth, and their satellites revolve with a short periodic time. The retro
grade motion and high inclination of the satellites of Uranus are, if thoroughly 
established, very remarkable. 

The above theory of the inclination of the orbit has been based on an 
assumed smallness of inclination, and it is not very easy to see to what results 
investigation might lead, if the inclination were large. I t must be admitted 
however that the Uranian system points to the possibility of the existence of 
a primitive planet, with either retrograde rotation, or at least with a very 
large obliquity of equator. 

I t appears from this review that the other members of the solar system 
present some phenomena which are strikingly favourable to the tidal theory 
of evolution, and none which are absolutely condemnatory. Perhaps by 
further investigations some light may be thrown on points which remain 
obscure. 

APPENDIX. 

(Added July , 1880.) 

A graphical illustration of the effects of tidal friction when the orbit 
of the satellite is eccentric. 

In a previous paper (Paper 5f) a graphical illustration of the effects of 
tidal friction was given for the case of a circular orbit. As this method 
makes the subject more easily intelligible than the purely analytical method 
of the present paper, I propose to add an illustration for the case of the 
eccentric orbit. 

Consider the case of a single satellite, treated as a particle, moving in an 
elliptic orbit, which is co-planar with the equator of the planet. 

Let Ch be the resultant moment of momentum of the system. Then 
with the notation of the present paper, by § 27 the equation of conservation 
of moment of momentum is 

* Hersohel's Astron., 9th ed., § 547. 
f The last sentence of [Paper 5, p. 207] contains an erroneous statement [which I unfortunately 

omitted to correct in passing this reprint for the p r e B s ] . It will b e seen from the figure on p. 378 
that the line of zero eccentricity on the energy surface is not a ridge as there stated. 
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1880] TIDAL FRICTION WITH AN ECCENTRIC ORBIT. 375 

Here CN is the moment of momentum of the planet's rotation, and 
Cf(l— 7I)/K IS the moment of momentum of the orbital motion; and the 
whole moment of momentum IS the sum of the two. 

By the definitions of £ and K in § 2, C ^ = F1 ^M_^ / where A is the 
' S K S/FI (M + M) 

attraction between unit masses at unit distance. 

By a proper choice of units we may make FIMMJ^JP. (M + M) and C equal 
to unity*. 

Let x be equal to the square root of the satellite's mean distance c, and 
the equation of conservation of moment of momentum becomes 

N 4- X(L —N)=H (a) 

If in (a), the ellipticity of the orbit 77, be zero, we have equation (3) of 
Paper 5, p. 197. 

It IS well known that the sum of the potential and kinetic energies in 
elliptic motion IS independent of the eccentricity of the orbit, and depends 
only on the mean distance. 

Hence if CE be the whole energy of the system, we have (as in equations 
(2) and (4) of Paper 5), with the present units 

2E = w 2 - - i or 
If z be written for 2E, and if the value of n be substituted from (a), we 

have 

, = { A - « ( 1 - , ) } . - ! (/9) 

This is the equation of energy of the system. 

* In the paper above referred to, and in Paper 7, below, the physical meaning of the units 
adopted is scarcely adequately explained. 

The units are such that C, the planet'S moment of inertia, IS unity, that /j.{M+m) is unity, 
and that a quantity called i and denned in (6) of this paper is unity. 

From this IT may be deduced that the UNIT length IS such a distance that the moment of 
inertia of planet and satellite, treated as particles, when at this distance APART about their 
common centre of inertia is equal to the moment of inertia of the planet about its own axis. 

If 7 BE THIB unit of length, this condition gives JF™ 7 A =C, or Y= \ / ^ ^ + · 
' M + m' ' ' V Mm 

The unit of time IS the time taken by the satellite to describe an are of 57 Q , 3 in A circular 

orbit at distance 7: IT IS therefore ( ft Y(C ^.T™ p . The unit of mass is JF™ . 
" \uMmJ \ Mm J M+m 

From this IT follows that the UNIT of moment of momentum is the moment of momentum of 
orbital motion when the satellite moves in a circular orbit at distance 7. The critical moment 
of momentum of THE system, referred to in those two papers and below in this appendix, is 

4/3? of this unit of moment of momentum. 
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In whatever manner the two bodies may interact on one another, the 
resultant moment of momentum h must remain constant, and therefore (a) 
will always give one relation between n, x, and y; a second relation would 
be given by a knowledge of the nature of the interaction between the two 
bodies. 

The equation (a) might be illustrated by taking n, x, y as the three 
rectangular co-ordinates of a point, and the resulting surface might be called 
the surface of momentum, in analogy with the " line of momentum " in the 
above paper. 

This surface is obviously a hyperboloid, which cuts the plane of nx in 
the straight line n + x = h ; it cuts the planes of ny and r) = I in the straight 
line determined by n = h; and the plane of xy in the rectangular hyperbola 
x (1 — 77) = h. 

The contour lines of this surface for various values of n are a family of 
rectangular hyperbolas with common asymptotes, viz.: y = 1 and x = 0. It 
does not however seem worth while to give a figure of them. 

If the satellite raises frictional tides of any kind in the planet, the system 
is non-conservative of energy, and therefore in equation x and y must so 
vary that z may always diminish. 

Suppose that equation (/3) be represented by a surface the points on 
which have co-ordinates x, y, z, and suppose that the axis of z is vertical. 
Then each point on the surface represents by the co-ordinates x and y one 
configuration of the system, with given moment of momentum h. Since 
the energy must diminish, it follows that the point which represents the 
configuration of the system must always move down hill. To determine the 
exact path pursued by the point it would be necessary to take into con
sideration the nature of the frictional tides which are being raised by the 
satellite. 

I will now consider the nature of the surface of energy. 
It is clear that it is only necessary to consider positive values of y lying 

between zero and unity, because values of y greater than unity correspond to 
a hyperbolic orbit; and the more interesting part of the surface is that for 
which 77 is a pretty small fraction. 

The curves, formed on the surface by the intersection of vertical planes 
parallel to x, have maxima and minima points determined by dzjdx — 0. 

This condition gives by differentiation of (/3) 

From the considerations adduced in Paper 5 and in the next following 
Paper 7, it follows that this equation has either two real roots or no real roots. 
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When 7j = 0 the equation has real roots provided h be greater than 
4/3^, and since this case corresponds to that of all but one of the satellites of 
the solar system, I shall henceforth suppose that h is greater than 4/3^. It 
will be seen presently that in this case every section parallel to x has a 
maximum and minimum poirit, and the nature of the sections is exhibited in 
the curves of energy in the two other papers. 

Now consider the condition n = fi, which expresses that the planet rotates 
in the same period as that in which the satellite revolves, so that if the orbit 
be circular the two bodies revolve like a single rigid body. 

With the present units £1 = ljx3, and by (a), n = h — x (1 — TJ). 
Hence the condition n = fl leads to the biquadratic 

x*-—— ^ 4 - — L = 0 (5 ) 
1 — 77 1 — 77 

If 17 be zero this equation is identical with (7), which gives the maxima 
and minima of energy. 

Hence if the orbit be circular the maximum and minimum of energy 
correspond to two cases in which the system moves as a rigid body. If how
ever the orbit be elliptical, and if n = SI, there is still relative motion during 
revolution of the satellite, and the energy must be capable of degradation. 
The principal object of the present note is to investigate the stability of the 
circular orbit in these cases, and this question involves a determination of the 
nature of the degradation when the orbit is elliptical. 

In Part V. of the present paper it has been shown that if the planet be a 
fluid of small viscosity the ellipticity of the satellite's orbit will increase if 18 
rotations of the planet be less than 11 revolutions of the satellite, and vice 
versa. Hence the critical relation between n and fl is n — \\XI. This leads 
to the biquadratic 

' h ( o 1 - 7 7 1 1 1 - 7 7 
This is an equation with two real roots, and when it is illustrated 

graphically it will lead to a pair of curves. For configurations of the system 
represented by points lying between these curves the eccentricity increases, 
and outside it diminishes,—supposing the viscosity of the planet and the 
eccentricity of the satellite's orbit to be'small. 

In order to illustrate the surface of energy (8) and the three biquadratics 
(7), (6"), and (e), I chose h = 3, which is greater than 4/3^. 

By means of a series of solutions, for several values of »7, of the equations 
(7)· (8), (e), and a method of graphical interpolation, I have drawn the 
accompanying figure. 
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The horizontal axis is that of x, the square root of the satellite's distance, 
and the numbers written along it are the various values of x. The vertical 
axis is that of rjt and it comprises values of 77 between 0 and 1. The axis of 
z is perpendicular to the plane of the paper, but the contour lines for various 
values of z are projected on to the plane of the paper. 

The numbers written on the curves represent the values of z, viz., 
s = 0 , 1, 2, 3, 4, 5. 

The ends of the contour lines on the right are joined by dotted lines, 
because it would be impossible to draw the curves completely without a very 
large extension of the figure. 

The broken lines ( ) marked " line of maxima," terminating at A, 
and "line of minima," terminating at B, represent the two roots of the 
biquadratic (7). 

The lines marked n = Q represent the two roots of (S), but computation 
showed that the right-hand branch fell so very near the line of minima, that 
it was necessary somewhat to exaggerate the divergence in order to show it 
on the figure. 

1 3 3 4 0 0 7 

Fi». 9. Contour lines of surface of energy. 

The chain-dot lines ( - ) C, C, marked n = - L | f l , represent the two 
roots of (e). For configurations of the system represented by points lying 
between these two curves, the ellipticity of orbit will increase ; for the 
regions outside it will decrease. This statement only applies to cases of 
small ellipticity, and small viscosity of the planet. 
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Inspection of the figure shows that the line of minima is an infinitely 
long valley of a hyperbolic sort of shape, with gently sloping hills on each 
side, and the bed of the valley gently slopes up as we travel away from B. 

The line of maxima is a ridge running up from A with an infinitely deep 
ravine on the left, and the gentle slopes of the valley of minima on the right. 

Thus the point B is a true minimum on the surface, whilst the point A 
is a maximum-minimum, being situated on a saddle-shaped part of the 
surface. 

The lines n = H start from A and B, but one deviates from the ridge of 
maxima towards the ravine; and the other branch deviates from the valley 
of minima by going up the slope on the side remote from the origin. 

This surface enables us to determine perfectly the stabilities of the 
circular orbit, when planet and satellite are moving as parts of a rigid body. 

The configuration B is obviously dynamically stable in all respects; for 
any configuration represented by a point near B must degrade down to B. 

It is also clear that the configuration A is dynamically unstable, but the 
nature of the instability is complex. A displacement on the right-hand side 
of the ridge of maxima will cause the satellite to recede from the planet, 
because x must increase when the point slides down hill. 

If the viscosity be small, the ellipticity given to the orbit will diminish, 
because A is not comprised between the two chain-dot curves. Thus for this 
class of tide the circularity is stable, whilst the configuration is unstable. 

A displacement on the left-hand side of the ridge of maxima will cause 
the satellite to fall into the planet, because the point will slide down into the 
ravine. But the circularity of the orbit is again stable. 

This figure at once shows that if planet and satellite be revolving with 
maximum energy as parts of a rigid body, and if, without altering the total 
moment of momentum, or the equality of the two periods, we impart in
finitesimal ellipticity to the orbit, the satellite will fall into the planet. This 
follows from the fact that the line n = D, runs on to the slope of the ravine. 

If on the other hand without affecting the moment of momentum, or the 
circularity, we infinitesimally disturb the relation n = Q, then the satellite 
will either recede from or approach towards the planet according to the 
nature of the disturbance. 

These two statements are independent of the nature of the frictional 
interaction of the two bodies. 

The only parts of this figure which postulate anything about the nature 
of the interaction are the curves n = if li . 
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The following considerations (in substitution for the analytical treatment 
of the paper) will throw some light on the general effects of tidal friction :— 

Suppose the motions of the planet and of its solitary satellite to be 
referred to the invariable plane of the system. The axis of resultant moment 
of momentum is normal to this plane, and the component rotations are that 
of the planet's rotation about its axis of figure, and that of the orbital motion 
of the planet and satellite round their common centre of inertia; the axis of 
this latter rotation is clearly the normal to the satellite's orbit. Hence the 
normal to the orbit, the axis of resultant moment of momentum, and the 
planet's axis of rotation, must always lie in one plane. From this it follows 
that the orbit and the planet's equator must necessarily have a common node 
on the invariable plane. 

If either of the component rotations alters in amount or direction, a 
corresponding change must take place in the other, such as will keep the 
resultant moment of momentum constant in direction and magnitude. 

It appears from the previous papers that the effect of tidal friction is to 
increase the distance of the satellite from the planet, and to transfer moment 
of momentum from that of planetary rotation to that of orbital motion. 

If then the direction of the planet's axis of rotation does not change, it 
follows that the normal to the lunar orbit must approach the axis of resultant 
moment of momentum. By drawing a series of parallelograms on the same 
diameter and keeping one side constant in direction, this may be easily seen 
to be true. 

The above statement is equivalent to saying that the inclination of the 
satellite's orbit will decrease. 

But this decrease of inclination does not always necessarily take place, for 
the previous investigations show that another effect of tidal friction may be 
to increase the obliquity of the planet's equator to the invariable plane, or in 
other words to increase the inclination of the planet's axis to the axis of 
resultant moment of momentum. 

I have not thought it worth while to illustrate the case where h is less 
than 4/3^, or the negative side of the surface of energy; but both illustrations 
may easily be carried out. 

APPENDIX A . 

An extract from the abstract of the foregoing paper, Proc. Roy. Soc, 
Vol. xxx. (1880), pp. 1—10. 
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Now if a parallelogram be drawn with a constant diameter, it will easily 
be seen that by increasing the inclination of one of the sides to the diameter 
(and even decreasing its length), the inclination of the other side to the 
diameter may also be increased. 

The most favourable case for such a change is when the side whose incli
nation is increased is nearly as long as the diameter. From this it follows 
that the inclination of the satellite's orbit to the invariable plane may increase, 
and also that the case when it is most likely to increase is when the moment 
of momentum of planetary rotation is large compared with that of the orbital 
motion. The analytical solution of the problem agrees with these results, for 
it shows that if the viscosity of the planet be small the inclination of the orbit 
always diminishes, but if the viscosity be large, and if the satellite moves 
with a short periodic time (as estimated in rotations of the planet), then the 
inclination of the orbit will increase. 

These results serve to give some idea of the physical causes which, 
according to the memoir, gave rise to the present inclination of the lunar 
orbit to the ecliptic. For the analytical investigation shows that the incli
nation of the lunar orbit to its proper plane (which replaces the invariable 
plane when the solar attraction is introduced) was initially small, that it 
then increased to a maximum, and finally diminished, and that it is still 
diminishing. 

The following considerations (in substitution for the analytical treatment 
of the paper) throw some light on the physical causes of these results [as to 
the eccentricity of the orbit]. 

Consider a satellite revolving about a planet in an elliptic orbit, with a 
periodic time which is long compared with the period of rotation of the 
planet; and suppose that frictional tides are raised in the planet. 

The major axis of the tidal spheroid always points in advance of the 
satellite, and exercises a force on the satellite which tends to accelerate its 
linear velocity. 

When the satellite is in perigee the tides are higher, and this disturbing 
force is greater than when the satellite is in apogee. 

The disturbing force may, therefore, be represented as a constant force, 
always tending to accelerate the motion of the satellite, and a periodic force 
which accelerates in perigee and retards in apogee. The constant force causes 
a secular increase of the satellite's mean distance and a retardation of its 
mean motion. 

The accelerating force in perigee causes the satellite to swing out further 
than it would otherwise have done, so that when it comes round to apogee it 
is more remote from the planet. The retarding force in apogee acts exactly 
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inversely, and diminishes the perigeean distance. Thus, the apogeean distance 
increases and the perigeean distance diminishes, or in other words, the eccen
tricity of the orbit increases. 

Now consider another case, and suppose the satellite's periodic time to 
be identical with that of the planet's rotation. When the satellite is in 
perigee it is moving faster than the planet rotates, and when in apogee it is 
moving slower; hence at apogee the tides lag, and at perigee they are 
accelerated. Now the lagging apogeean tides give rise to an accelerating 
force on the satellite, and increase the perigeean distance, whilst the accelerated 
perigeean tides give rise to a retarding force, and decrease the apogeean 
distance. Hence in this case the eccentricity of the orbit will diminish. 

I t follows from these two results that there must be some intermediate 
periodic time of the satellite, for which the eccentricity does not tend to 
vary*. 

But the preceding general explanations are in reality somewhat less 
satisfactory than they seem, because they do not make clear the existence of 
certain antagonistic influences. 

Imagine a satellite revolving about a planet, and subject to a constant 
accelerating force, which we saw above would result from tidal reaction. 

In a circular orbit a constant tangential force makes the satellite's distance 
increase, but the larger the orbit the less does the given force increase the 
mean distance. Now the satellite, moving in the eccentric orbit, is in the 
apogeean part of its orbit like a satellite moving in a circular orbit at a 
certain mean distance, but in the perigeean part of the orbit it is like a 
satellite moving in a circular orbit but at a smaller mean distance; in both 
parts of the orbit it is subject to the same tangential force. Then the distance 
at the perigeean part of the orbit increases more rapidly than the distance at 
the apogeean part. Hence the constant tangential force on the satellite in 
the eccentric orbit will make the eccentricity diminish. I t is not clear from 
the preceding general explanation, when this cause for decreasing eccentricity 
will be less important than the previous cause for increasing eccentricity. 

* The substance of the preceding general explanation was suggested to me in conversation by 
Sir William Thomson, when I mentioned to him the results at which I had arrived. 
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ON THE ANALYTICAL EXPRESSIONS WHICH GIVE THE 
HISTORY OF A FLUID PLANET OF SMALL VISCOSITY, 
ATTENDED BY A SINGLE SATELLITE. 

[Proceedings of the Royal Society, Vol. xxx. (1880), 'pp. 255—278.] 

IN a series of papers read from time to time during the past two years 
before the Royal Society*, I have investigated the theory of the tides raised in 
a rotating viscous spheroid, or planet, by an attendant satellite, and have also 
considered the secular changes in the rotation of the planet, and in the 
revolution of the satellite. Those investigations were intended to be especially 
applicable to the case of the earth and moon, but the friction of the solar 
tides was found to be a factor of importance, so that in a large part of those 
papers it became necessary to conceive the planet as attended by two 
satellites. 

The differential equations which gave the secular changes in the system 
were rendered very complex by the introduction of solar disturbance, and I 
was unable to integrate them analytically; the equations were accordingly 
treated by a method of numerical quadratures, in which all the data were 
taken from the earth, moon, and sun. This numerical treatment did not 
permit an insight into all the various effects which might result from frictional 
tides, and an analytical solution, applicable to any planet and satellite, is 
desirable. 

In the present paper such an analytical solution is found, and is interpreted 
graphically. But the problem is considered from a point of view which is at 
once more special and more general than that of the previous papers. 

The point of view is more general in that the planet may here be con
ceived to have any density and mass whatever, and to be rotating with any 
angular velocity, provided that the ellipticity of figure is not large, and that 
the satellite may have any mass, and may be revolving about its planet, 
either consentaneously with or adversely to the planetary rotation. On the 
other hand, the problem here considered is more special in that the planet IS 

* [The previous papers of the present volume.] 
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••'4 — , since M 4- m, is unity, m 

supposed to be a spheroid of fluid of small viscosity; that the obliquity of the 
planet's equator, the inclination and the eccentricity of the satellite's orbit to 
the plane of reference are treated as being small, and, lastly, it is supposed 
that the planet is only attended by a single satellite. 

The satellite itself is treated as an attractive particle, and the planet is 
supposed to be homogeneous. 

The notation adopted is made to agree as far as possible with that of 
Paper 5, in which the subject was treated from a similarly general point of 
view, but where it was supposed that the equator and orbit were co-planar, 
and the orbit necessarily circular*. 

The motion of the system is referred to the invariable plane, that is, to 
the plane of maximum moment of momentum. 

The following is the notation adopted :— 
For the planet:— 
M = mass; a = mean radius; g = mean pure gravity; 0 = moment of 

inertia (neglecting ellipticity of figure); n = angular velocity of rotation; 
i = obliquity of equator to invariable plane, considered as small; g = § g/a. 

For the satellite :— 
m = mass; c = mean distance; fl = mean motion; e = eccentricity of orbit, 

considered as small; j = inclination of orbit, considered as small; r = fm/c3, 
where m is measured in the astronomical unit. 

For both together:—-
v = M/m, the ratio of the masses ; s = § [(av/g)2 (1 + j>)]^; h = the resultant 

moment of momentum of the whole system; E — the whole energy, both 
kinetic and potential, of the system. 

By a proper choice of the units of length, mass, and time, the notation 
may be considerably simplified. 

Let the unit of length be such that M + m, when measured in the astro
nomical unit, may be equal to unity. 

Let the unit of time be such that s or f [(av/g)2 ( 1 4- may be unity. 
Let the unit of mass be such that C, the planet's moment of inertia, may 

be unity+. 
Then we have = M + m = l (I) 
Now, if we put for g its value M/a?, and for v its value M/m, we have 

- { . ' 
and since s is unity, m = |» 2 , when m is estimated in the astronomical unit. 

* "Determination of the Secular Effects of Tidal Friction by a Graphical Method," Proc. 
Roy. Soc, No. 197, 1879. [Paper 5.] 

+ [See a footnote on p. 375 for a consideration of the nature of those units .] 
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Again, since C = §Afa", and since C is unity, therefore M = f/re2, where M 
is estimated in the mass unit. 

Therefore Mmj(M + m) is unity, when M and m are estimated in the mass 
unit, with the proposed units of length, time, and mass. 

According to the theory of elliptic motion, the moment of momentum of 
the orbital motion of the planet and satellite about their common centre of 

inertia is J)fm LIE 2 VL — E2. Now it has been shown that the factor involving M+m 6 

M is unity, and by (1) He2 = 12 " * = ck 
Hence, if we neglect the square of the eccentricity e, the moment of 

momentum of orbital motion is numerically equal to 12 _ ^ or c^. 

Let x = 12 ~ ^ = c*. 
In this paper x, the moment of momentum of orbital motion, will be taken 

as the independent variable. In interpreting the figures given below it will 
be useful to remember that it is also equal to the square root of the mean 
distance. 

The moment of momentum of the planet's rotation is equal to Cn; and 
since C is unity, n will be either the moment of momentum of the planet's 
rotation, or the angular velocity of rotation itself. 

With the proposed units T = fm/c3 = fa2;*;-6, since m = fa 2 ; and 

8 = \9la = lMla3 = I m> M!m<^ = A vla 

Also T 2 / g (a quantity which occurs below) is equal to 
Let t be the time, and let 2 / be the phase-retardation of the tide which 

I have elsewhere called the sidereal semi-diurnal tide of speed 2n, which 
tide is known in the British Association Report on Tides as the faster of the 
two K tides. 

If the planet be a fluid of small viscosity, tin; following are the 
differential equations which give the secular changes in the elements of the 
system: 

£= ( 3 ) 

^ ' = - i ^ s i n 4 / ( ^ ' ) (5) 
dt % S J \ x 1 

= I L % I N 4 / . I ( I I - ^ ) (6) 
e dt * 8 X ^ N 1 
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The first three of these equations are in effect established in equation (80) 
of Paper 3, p. 91. The suffix m2 to the symbols i and N there indicates that 
the equations (80) only refer to the action of the moon, and as here we only 
have a single satellite, they are the complete equations. N is equal to njn,,, 
so that « 0 disappears from the first and second of (80); also fi— l/sn0fl0^, and 
thus n0 disappears from the third equation. P = cos i, Q = sin i, and, since we 
are treating i the obliquity as small, P = 1, Q = i; also \ = fl/w; the e of that 
paper is identical with t h e / o f the present one; lastly f is equal to n„^fl-^, 
and since with our present units s = 1, therefore fidg/dt = d£l ~^/n0dt = dx\n„dt. 

With regard to the transformation of the first of (80) into (4) of the 
present paper, I remark that treating i as small \PQ — JXQ = \i(1 — 2H/n), 
and introducing this transformation into the first of (80), equation (4) is 
obtained, except that i occurs in place of (i Now in Paper 3 the inclina
tion of the orbit of the satellite to the plane of reference was treated as zero, 
and hence j was zero; but I have proved on pp. 292, 295 of Paper 6 that 
when we take into account the inclination of the orbit of the satellite, the P 
and Q on the right-hand sides of equation (80) of " Precession " must be taken 
as the cosine and sine of i + j instead of i. Equations (5) and (6) are proved 
in § 10, Part II, p. 238 and § 25, Part V, p. 338, of Paper 6. 

The integrals of this system of equations will give the secular changes in 
the motion of the system under the influence of the frictional tides. The 
object of the present paper is to find an analytical expression for the solution, 
and to interpret that solution geometrically. 

From equations (2) and (4) we have 
» 

.dn di . T 2 . .,[ .. .. „ . / , fi\~ 

»d* + " s , = i a B m 4 / r ( , + j ) + 2 j ( 1 " » ) . 
Eut from (3) and (5) xdj/dt +jdx/dt is equal to the same expression; 

hence 
. dn di dj . dx 

l d i + n d t = a:dt+3dt 

The integral of this equation is in =jx, 

or l. = - (7) 
j n 

Equation (7) may also be obtained by the principle of conservation of 
moment of momentum. The motion is referred to the invariable plane of the 
system, and however the planet and satellite may interact on one another, 
the resultant moment of momentum must remain constant in direction and 
magnitude. Hence if we draw a parallelogram of which the diagonal is h 
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(the resultant moment of momentum of the system), and of which the sides 
are n and x, inclined respectively to the diagonal at the angles i and j , we see 
at once that 

sin i x 
sinj n 

If i and j be treated as small this reduces to (7). 

Again the consideration of this parallelogram shows that 

h2 = n2 + x14- 2nx cos (i 4- j) 

which expresses the constancy of moment of momentum. If the squares and 
higher powers of i + j be neglected, this becomes 

h = n + x (8) 

Equation (8) may also be obtained by observing that dnjdt 4- dx/dt = 0, 
and therefore on integration n + x is constant. I t is obvious from the prin
ciple of moment of momentum that the planet's equator and the plane of the 
satellite's orbit have a common node on the invariable plane of the system. 

If we divide equations (4) and (6) by (3), we have the following results :— 

1 eft 
i dx 

1 de 
e dx 

2n\ 
1 4-' 

n-2il 
n - i l 

1_ llw - 18Í1 
2x 77. — Í1 

..(9) 

.(10) 

But from (7) and (8) 

: 1 4 ^ J 
x x 

Also Í1 = x~3, and n=h — x. 

Hence (9) and (10) may be written 

d_ 
dx 

d 

logi-. 
£A xi(h-x) — 2 

x(h — x)' x3(h — x) — l 

_ 1 liar3 (A —a) - 18 
dx ge~2œ' x*(h-xj^l 

.(11) 

Now 

Therefore 

Also 

Therefore 

h{xt(h~x)-2) 
2x(h-x) {x3(h-x)~l} 

h ^hx2 

1 I L O f . - 1 I 
dx ° x h — x 

lia?(h — x) - 18 _ 

x (h — x) x* — hx3 

2x{x3 (h-x)~l 

d 
dx 

+ tf-hxï+l 

9 _ \x2 (x - h) 
x x* — hx3 + 1 

.(12) 

. 9 lx*(x-h) 

These two equations are integrable as they stand, except as regards the 
last term in each of them. 

25—2 
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It was shown in (4) of Paper 5, p. 197 that the whole energy of the 
system, both kinetic and potential, was equal to ^ [na — a; - 2]. 

Then integrating (12) and (13), and writing down (7) and (8) again, and 
the expression for the energy, we have the following equations, which give the 
variations of the elements of the system in terms of the square root of the 
satellite's distance, and independently of the time:—• 

x f doc 
l°Si= l o g / T ^ + ^ ¿ ^ + 1 + c o u s t -

l o g e = l o g ^ - J j const 

h — x . 
J x 

n — h — x 

2E = (h-xf 
1 

.(14) 

When the integration of these equations is completed, we shall have the 
means of tracing the history of a fluid planet of small viscosity, attended by 
a single satellite, when the system is started with any given moment of 
momentum h, and with any mean distance and (small) inclination and (small) 
eccentricity of the satellite's orbit, and (small) obliquity of the planet's 
equator. It may be remarked that h is to be taken as essentially positive, 
because the sign of h merely depends on the convention which we choose to 
adopt as to positive and negative rotations. 

These equations do not involve the time, but it will be shown later how 
the time may be also found as a function of x. I t is not, however, necessary 
to find the expression for the time in order to know the sequence of events in 
the history of the system. 

Since the fluid which forms the planet is subject to friction, the system 
is non-conservative of energy, and therefore x must change in such a way 
that E may diminish. 

If the expression for E be illustrated by a curve in which E is the vertical 
ordinate and x the horizontal abscissa, then any point on this " curve of 
energy " may be taken to represent one configuration of the system, as far as 
regards the mean distance of the satellite. Such a point must always 
slide down a slope of energy, and we shall see which way x must vary for any 
given configuration. This consideration will enable us to determine the 
sequence of events, when we come to consider the expressions for i, e,j, n in 
terms of x. 
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We have now to consider the further steps towards the complete solution 
of the problem. 

The only difficulty remaining is the integration of the two expressions 
involved in the first and second of (14). From the forms of the expressions 
to be integrated, it is clear that they must be split up into partial fractions. 
The forms which these fractions will assume will of course depend on the 
nature of the roots of the equation x* — ha? + 1 = 0 , 

Some of the properties of this biquadratic were discussed in a previous 
paper, but it will now be necessary to consider the subject in more detail. 

It will be found by Ferrari's method that 

\%-h \*-h) 

where A.3 - 4X - A2 = 0. 
4 2X> 4 + 2X* I 

By using the property (X^ — h) (X^ + h) = 4X, this expression may be 
written in the form 

[\x + i ( X * - A)}2 + [ i (X ? - h) Vl + 2AX~^ 2] 

x [\x -1 (\« + A)}2 + {£ (X s + h) V l _ 2h\~ 2 } 2 ] 

which is of course equivalent to finding all the roots of the biquadratic in 
terms of h and X. 

Now let a curve be drawn of which A2 is the ordinate (negative values of 
A2 being admissible) and X the abscissa; it is shown in fig. 1. Its equation is 
A2 = X (X2 - 4). 

•il-l 

B' 

FIG. 1. 

N.B. The ordinates are drawn to one-third of the scale to 
which the abscissae are drawn. 
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It is obvious that OA = OA' = 2. 

The maximum and minimum values of h 2 (viz., B6, B'6') are given by 
3V = 4 o r X = ±2/3*. 

Then Eb = B'6' = - 2 3/3^ + 4 .2 /3* = (4/3*)a. 

Since in the cubic, on which the solution of the biquadratic depends, h 2 is 

necessarily positive, it follows that if h be greater than 4/3^ the cubic has one 
real positive root greater than OM, and if h be less than 4/3^, it has two real 
negative roots lying between O and OA', and one real positive root lying 
between OA and OM. 

To find OM we observe that since h 2 is equal to (4/3^)2, and since the root 
of X3— 4X — A 2 =0 which is equal to —2/3* is repeated twice, therefore, if e 
be the third root (or OM) we must have 

( 2 V lfi 

+ < ^ e ) = X 3 - 4 X . - 3 | 

whence (2/3*)2 e = (4/3*)2, and e or OM = 4/3*. 

Now OA = 2; hence, if h be less than 4/3^, the cubic has a positive root 
between 2 and 4/3*, and if h be greater than 4/3^, the cubic has a positive 
root between 4/3* and infinity. 

I t will only be necessary to consider the positive root of the cubic. 

Suppose h to be greater than 4/3^. 

Then it has just been shown that A. is greater than 4/3* and hence 
(X being positive) 3X3 is greater than 16X, or 4 (X3 — 4X) greater than X3, or 4sh2 

greater than X3, or 2 h \ 2 greater than unity. 

Therefore 

{I (X* + h) Vl -2AX~2j* = _ {| (\i + h) v 2 h \ ~ % - l } 2 

Thus the biquadratic has two real roots, which we may call a and b, 

where a = \ (X^ + h) [1 + 

b = £ ( X 2 + h) [1 - v W " * - 1] 
I t will be proved that a is greater and b less than f h. 

Now a > or < \h 
as (X^ + A)[l W 2 / i X ^ - l ] > or < 3/t 

IRIS - LILLIAD - Université Lille 1 



1880] PREPARATION FOR INTEGRATION. 391 

X* 

as \% + h> or < \ W 2 i - \ ^ 

as \'+2h\% + h2> or < 2h\%-\3 

as 2X"-f-A ! ,> or < 0 

Since the left-hand side IS essentially positive, a is greater than |A. 

Again b > or < %h 

as (\$+ h)[l-J2h\~$-1] > or < Sh 

- < ^ + I > / ^5TT^>OR<2fc-X* 
X * 

Since the left-hand side IS negative and the right positive, the left is less than 
the right, and therefore b IS less than \h. 

If, therefore, h be greater than 4/3^, we may write 

xi-hx> + l=(x-a)(x-b) [(x - a)2 + ft2] 

where a — \h, \h — b are positive, and where a IS negative. 

We now turn to the other case and suppose h less than 4/3^. All the 
roots of the biquadratic are now imaginary, and we may put 

xt-hx> + 1 = [{x-a)2+ft] [(x - 7) 2 + S 2] 

If A be taken AS — \ (X2* — h), then 7 is \ (X^ + h). 

It only remains to prove that 7 is greater than f A. 

Now 7 > or < %h 

as X$ > or < 2h 

as X S > or < 4 / I S = 4 ( X 3 - 4 X ) 

as 16 > or < 3X 2 

as 4/3^ > or < X 

but it has been already shown that in this case, X is less than 4/3^, wherefore 
7 is greater than £h. 

We may now proceed to the required integrations. 

First case where h is greater than 4/3^. 

Let ^ - A a ? - M = ( « - a ) ( * - b ) [ ( « - a ) S - R - / 3 2 ] 

so that the roots are a, b, a ± /ST. 
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. ( I B ) 4aj x — a 4b4 x — b 
If the pair of fractions corresponding to the roots a + B i be formed and 

added together, we find 
1 - « 1 ( a - « ) + ff! 

2 ( a 1 + £ 2 ) r > - a ) 2 + / 8 2 ] ; 

a? 
The sum of (15) and (16) is equal to — — j - - — = - , and 

fzr-^S-^i = J - log (<* ~ a ) - l°g O ~ b) - . , f1

 Q,N log R> - a)2 + S2] J x* - hx3 +1 4a! 5 ; 4bi B v 7 4 (o^ + B2) 8 LV 7 J 

+ 2 ( t t l

2

 + / 3 2 ) a r C t a n - ^ - ( l 7 > 

Substituting in the first of (14) we have 
h 

(x ~ a)8"1 exp 
i = A X 

hB x — a arc tan 
.(18) 

(« ~ b) s l 3 ' [(x - af + B2] "W+^l 

where A is a constant to be determined by the value of i, which corresponds 
with a particular value of x. 

From the third of (14) we see that by omitting the factor xj(h — x) from 
the above, we obtain the expression for j . 

To find the expression for e we have to integrate ^ + \ ' 

Now x2{x — h) = \ (4>a? - Shx2) - \ha? 
and therefore 

f t ^ r ^ t ^ i i o g ^ - ^ + i ) - ^ MS -r 
Jxt-hx' + l 4 5 V ' ? J a4 - ha? +1 

Also let a be the root which is greater than J A-, b that which is less, 
and let 

a = a! + |/i , b = |/i —bj, a = | A — 

To find the expression for i we have to integrate — — j — — = . 

' 3(j thOtj ~\~ -L 

Let/(a?) = (x - a) -uV (x), and let x^f(x)=A/(x-a) + cf> (x)/ifr(x). 

Then « 2 (a; - a) = A f (x) + (x- a)2 cf> (x) 

Hence A = a 2 / / ' (a) 

If, therefore, f{x) = xi-hx' + l, A = 1 /(4a - 3A) = 1/4»! 

Thus the partial fractions corresponding to the roots a and b are 

1 1 1 1 
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The integral remaining on the right hand has been already determined 
in (17). Substituting in the «econd of (14), we have 

e = (xi-hx3 + 1)5 

(x ~ a) 8 8 ' exp. hß 

4 (A,3 + ß>) 
arc tan x — A 

•(19) 

(a; ~ b)*5"1 [(a; - A)5 + £»] 

where 5 is A constant to be determined by the value of e, corresponding to 
some particular value of x. 

From this equation we get the curious relationship 

e = 
B 

' (xi-hx3 +1)« 

. 7 
.(20) 

This last result will obviously be equally true even if all the roots of 
- ha? + 1 = 0 arc imaginary. 

In the present case the complete solution of the problem is comprised in 
the following equations :— 

j = A 
(x a ) 8 0 1 exp. hß x — GL 

4 l ^ M ^ ) a r C t a n ~ß 

ha-i (x ~ b)sb> [{x - of + ^ « ( « I ' + P 

i = 

e = • 

h - x-

B Xs 

AÌiat-hf + lfi 

n — h — x 

. 7 

2E=(h-xf 1 

Ö2 

.(21) 

It is obvious that the system can never degrade in such a way that x 
should pass through one of the roots of the biquadratic x* — hx3 + 1 = 0 . 
Hence the solution is divided into three fields, viz., (i) x = + oo to x — a ; 
here we must write x — a, x — b for the x ~ a, x ~ b in the above solution ; 
(ii) x = a to x = b ; here we must write a — x, x — b (this is the part which has 
most interest in application to actual planets and satellites) ; (iii) x = b to 
x = — oo ; here we must write a — x, b — x. When x is negative the physical 
meaning is that the revolution of the satellite is adverse to the planet's 
rotation. 

By referring to (4) and (6), we see that i must be a maximum or 
minimum when 71 = 20 , and e a maximum or minimum when n = {ffi. 
Hence the corresponding values of x are the roots of the equations 

— hx3 + 2 = 0, and — hx3 + = 0 respectively. 
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Now 
a? = J_ _ J 1 1_ · 1 - a J ( x - a ) + &' 

xi-hx3+l~ l^x-a 4b, a; - b + 2 (a,2 + ft) [(x - of + /32] 
therefore 

+ 2 ( « / + f f ) [ ~ a i ( a ! - « ) + ^ ] ( ^ - a ) ( a : - D ) 

Hence the coefficient of a? on the right-hand side must be zero, and 
therefore 

A_JL L = 0 

4a, 4b, 2(« 1

2 +/3 2 ) 
, , A _ A Aa, 

8a7 ~~ 8b, + 4 (a? + £2) 
Now when a; = 4- oo , arc tan X ^ A = %TT, and when x = — oo , it is equal 

to — \TT. 

Hence when x= ± oo ,j = A exp. [+ 7r/t/3/8(a1

2 4-/S2)], i = —j', the upper 
sign being taken for 4- oo and the lower for — oo . 

Then since j tends to become constant when x = 4 oo , and since 9 — £ = 
therefore when x is very large e tends to vary as x^. 

If x be very small j has a finite value, and i varies as x, and e varies as of. 

j , i, and e all become infinite when x = b, and i also becomes infinite when 
x = A. 

This analytical solution is so complex that it is not easy to understand 
its physical meaning; a geometrical illustration will, however, make it in
telligible. 

The method adopted for this end is to draw a series of curves, the points 
on which have x as abscissa and e, n, E as ordinates. The figure would 
hardly be intelligible if all the curves were drawn at once, and therefore a 
separate figure is drawn for i, j , and e; but in each figure the straight line 
which represents n is drawn, and the energy curve is also introduced in order 
to determine which way the figure is to be read. The zero of energy is of 
course arbitrary, and therefore the origin of the energy curve is in each case 
shifted along the vertical axis, in such a way that the energy curve may clash 
as little as possible with the others. 

I t is not very easy to select a value of A which shall be suitable for drawing 
these curves within a moderate compass, but after some consideration I chose 
A= 2'6, and figs. 2, 3, and 4 are drawn to illustrate this value of A. If the 
cubic \ 3 — 4Y —(2'6)2 = 0, be solved by Cardan's method, it will be found that 
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\ = 2-5741, and using this value in the formula for the roots of the biquadratic 
we have 

x* - 2'6x> + 1 = (x - 2539) (x - -826) [(x 4- -382)* + (-575)2] 
Hence a = 2-539, b = -826, a = -"382, 8 = "575, f/i = 1-95, and 4 ^ = 2356, 

4b, = 4496, a, = 2-332, a* + & = 5-771. 
Then we have 

. (2-539 ~ a:)-"3 exp. [-Q62 arc tan (l'740a; + -665)] ~) 
J (a;~-826)' s89(ar i+-765a;4--477)-'3" 1 

e-

'2-6-a;" 
B XS .(22) 
A$ (x*-2-6x* + lf 

n=26-x 

2E = (2-6-xy-~ 

The maximum and minimum values of % are given by the roots of the 
equation xA — 2Qx* 4-2 = 0, viz., x = 2'467 and x — 1103. The maximum and 
minimum values of e are given by the roots of the equation X* — 2dxs + | f = 0, 
viz., «= 2-495 and x= 10095. The horizontal asymptotes for ijA and 
HA are at distances from the axis of x equal to exp. ("062 x %TT) and 
exp. ( - '062 x ^TT), which are equal to 1-102 and "908 respectively. 

Fig. 2 shows the curve illustrating the changes of i, the obliquity of the 
equator to the invariable plane. 

The asymptotes are indicated by broken lines; that at A is given by 
x - '826, and is the ordinate of maximum energy; that at B is given by x = 2'6, 
and gives the configuration of the system for which the planet has no rotation. 
The point C is given by x = 2*539, and lies on the ordinate of minimum energy. 
Geometrically the curve is divided into three parts by the vertical asymptotes, 
hut it is further divided physically. 

The curve of energy has four slopes, and since the energy must degrade, 
there are four methods in which the system may change, according to the way 
in which it was started. The arrows marked on the curve of obliquity show 
the direction in which the curve must be read. 

Since none of these four methods can ever pass into another, this figure 
really contains four figures, and the following parts of the figure are quite 
independent of one another, viz.: (i) from - c o to O; (ii) from A to O; 
(iii) from A to C; (iv) from 4- oo to C. The figures 3 and 4 are also similarly 
in reality four figures combined. For each of these parts the constant A must 
be chosen with appropriate sign; but in order to permit the curves in fig. 2 
to be geometrically continuous the obliquity is allowed to change sign. 
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The actual numerical interpretation of this figure depends on the value of 
A. Thus if for any value of x in any of the four fields the obliquity has an 
assigned value, then the ordinate corresponding to that value of x will give a 
scale of obliquity from which all the other ordinates within that field may be 
estimated. 

Fia. 2 . Diagram for Obliquity of Planet's Equator.—First ease. 

As a special example of this we see that, if the obliquity be zero at any 
point, a consideration of the curve will determine whether zero obliquity be 
dynamically stable or not; for if the arrows on the curve of obliquity be 
approaching the axis of x, zero obliquity is dynamically stable, and if receding 
from the axis of x, dynamically unstable. 

Hence from x = + ao to B, zero obliquity is dynamically unstable, from 
— oo to 0 and A to 0 dynamically stable, and from A to B, first stable, then 
unstable, and finally stable. 

The infinite value of the obliquity at the point B has a peculiar sig
nificance, for at B the planet has no rotation, and being thus free from what 
Sir William Thomson calls "gyroscopic domination," the obliquity changes 
with infinite ease. In fact at B the term equator loses its meaning. The 
infinite value at A has a different meaning. The configuration A is one of 
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maximum energy and of dynamical equilibrium, but is unstable as regards 
mean distance and planetary rotation ; at this point the system changes 
infinitely slowly as regards time, and therefore the infinite value of the 
obliquity does not indicate an infinite rate of change of obliquity. In fact if 
we put w = fi in (1) we see that dijidt = — \ (T S/C1) sin 4f. However, to con
sider this case adequately we should have to take into account the obliquity 
in the equations for dn/dt and dxjdt, because the principal semi-diurnal tide 
vanishes when n = fl. 

Similarly at the minimum of energy the system changes infinitely slowly, 
and thus the obliquity would take an infinite time to vanish. 

We may now state the physical meaning of fig. 2, and this interpretation 
may be compared with a similar interpretation in [Paper 5]. 

A fluid planet of small viscosity is attended by a single satellite, and the 
system is started with an amount of positive moment of momentum which is 
greater than 4/3^, with our present units of length, mass and time. 

The part of the figure on the negative side of the origin indicates a 
negative revolution of the satellite and a positive rotation of the planet, but 
the moment of momentum of planetary rotation is greater (by an amount h) 
than the moment of momentum of orbital motion. Then the satellite ap
proaches the planet and ultimately falls into it, and the obliquity always 
diminishes slowly. The part from O to A indicates positive rotation of both 
parts of the system, but the satellite is very close to the planet and revolves 
round the planet quicker than the planet rotates, as in the case of the inner 
satellite of Mars. Here again the satellite approaches and ultimately falls in, 
and the obliquity always diminishes. 

The part from A to C indicates positive rotation of both parts, but the 
satellite revolves slower than the planet rotates. This is the case which has 
most interest for application to the solar system. The satellite recedes from 
the planet, and the system ceases its changes when the satellite and planet 
revolve slowly as parts of a rigid body—that is to say, when the energy is a 
minimum. The obliquity first decreases, then increases to a maximum, and 
ultimately decreases to zero*. 

The part from infinity to C indicates a positive revolution of the satellite, 
and from infinity to B a negative rotation of the planet, but from B to C a 
positive rotation of the planet, which is slower than the revolution of the 
satellite. In either of these cases the satellite approaches the planet, but the 
changes cease when the satellite and planet move slowly round as parts of a 

* According to the present theory, the moon, considered as being attended by the earth as a 
satellite, has gone through these changes. 
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Fio . 3. Diagram for Inclination of Satellite's Orbit.—First case. 

Fig. 3 illustrates the changes of inclination of the satellite's orbit, and 
may be interpreted in the same way as fig. 2. I t appears from the part of 
the figure for which x is negative, that if the revolution of the satellite 
be negative, and the rotation of the planet positive, but the moment of 
momentum of planetary rotation greater than that of orbital motion, then, as 
the satellite approaches the planet, the inclination of the orbit increases, or 
zero inclination is dynamically unstable. In every other case the inclination 
will decrease, or zero inclination is dynamically stable. 

This result undergoes an important modification when a second satellite 
is introduced, as appeared in Paper 6. 

Fig. 4 shows a similar curve for the eccentricity of the orbit. The 
variations of the eccentricity are very much larger than those of the obliquity 
and inclination, so that it was here necessary to draw the ordinates on a 

rigid body—that is to say, when the energy is a minimum. If the rotation 
of the planet be positive, the obliquity diminishes, if negative it increases. 
If the rotation of the planet be nil, the term obliquity ceases to have any 
meaning, since there is no longer an equator. 
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much reduced scale. I t was not possible to extend the figure far in either 
direction, because for large values of x, e varies as a high power of x (viz., J^). 
The curve presents a resemblance to that of obliquity, for in the field com
prised between the two roots of the biquadratic (viz., between A and C) the 
eccentricity diminishes to a minimum, increases to a maximum, and ultimately 
vanishes at C. This field represents a positive rotation both of the planet 

axis of orbital 

momentum [x) 

F I G . 4. Diagram for Eccentricity of Satellite's Orbit.—First case. 

and satellite, but the satellite revolves slower than the planet rotates. This 
part represents the degradation of the system from the configuration of 
maximum energy to that of minimum energy, and the satellite recedes from 
the planet, until the two move round slowly like the parts of a rigid body. 

In every other case the eccentricity degrades rapidly, whilst the satellite 
approaches the planet. 

The very rapid rate of variation of the eccentricity, compared with that of 
the obliquity would lead one to expect that the eccentricity of the orbit of a 
satellite should become very large in the course of its evolution, whilst the 
obliquity should not increase to any very large extent. But it must be 
remembered that we are here only treating a planet of small viscosity, and 
it appeared, in Paper 6, that the rate of increase or diminution of the 
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eccentricity is very much less rapid (per unit increase of x) if the viscosity 
he not small, whilst the rate of increase or diminution of obliquity (per unit 
increase of x) is slightly increased with increase of viscosity. Thus the 
observed eccentricities of the orbits of satellites and of obliquities of their 
planets cannot be said to agree in amount with the theory that the planets 
were primitively fluids of small viscosity, though I believe they do agree with 
the theory that the planets were fluids or quasi-solids of large viscosity. 

We now come to the second case, where h is less than 4/3^. The biquad
ratic having no real roots, we may put 

xi-ha?+l = [(x-aY + /¥] [(x - yf + B2] 
I t has already been shown that o is negative, and 7 greater than f A,. 

Let o=JA — aj, 7 = 7 i + |A 

By inspection of the integral in the first case we see that 
A y , 

[(x - if + S*]8^+8'> 

[(x-af + p^'+M 
x exp. 

A/3 
4 ( V + /82) 

x — a. arc tan — 1- hS 
0 4 ( 7 l

s + ^ ) arc tan x — y 
The rest of equations (21), which express the other elements in terms of 

j and x , remain the same as before. 

By comparison with the first case, we see that 
a? _ 1 - or, (x - a) + ft 1 7 , (x - 7 ) + S2 

x^-hx^Tl ~ 2~(a? + ft2} IJ^afTft2' + 2 (7,= +J2) (x - yfTi2 

On multiplying both sides of this identity by x* — hot? + 1, and equating the 
coefficients of x 3 , we find 

0 = - a. 7 i 

Therefore 

2 ( ^ + ^ ) ^ 2 ( 7 ^ + 8 = ) 

Aa, hyx 

8 K + /32) 8 ( 7 l

2 + S 2 ) 

Thus when x is equal to + co 

j = A exp. •7rhj3 TrhS 
± 8 X a i

2 + > ) ± 8 " ( 7 1

2 + 6 2 j 

the upper sign being taken for + °o , and the lower for — 0 0 . This expression 
gives the horizontal asymptotes for y and i. 
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In order to illustrate this solution, I chose h = 1, and found by trigono
metrical solution of the cubic Xs — 4 \ — 1 = 0, \ = 2-1149, and thence 

J - A i ^ m ^ m T e x p - [ 0 8 1 arc tan (1'500*+'m> 
+ -346 arc tan (1659« - 1-691)] 

1-x' 
B a? 

(xi-x3+ 1)* 
n = 1 — x 

2E = (l-xy 

When 

2 
a? 

and when 

« = + j/A = 1-956 =-ifA 
x=-oc, j/A= -512 =-i/A 

(23) 

F w . S. Diagram for Obliquity of Planet's Equator.—Second case. 

These solutions are illustrated as in the previous case by the three 
figures 5, 6, 7. There are here only two slopes of energy, and hence these 
figures each of them only contain two separate figures. 

Fig. 5 illustrates the changes of i, the obliquity of the equator to the 
invariable plane. 

a. ir. 26 
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In this figure there is only one vertical asymptote, viz., that corresponding 
to x=l. For this value of x the planet has no rotation, is free from 
"gyroscopic domination," and the term equator loses its meaning. 

The figure shows that if the rotation of the planet be negative, but the 
moment of momentum of planetary rotation less than that of orbital motion, 
then the obliquity increases, whilst the satellite approaches the planet. 

This increase of obliquity only continues so long as the rotation of the 
planet is negative. The rotation becomes positive after a time, and the 
obliquity then diminishes, whilst the satellite falls into the planet. In the 
corresponding part of fig. 2 the satellite did not fall into the planet, but the 
two finally moved slowly round together as the parts of a rigid body. 

If the revolution of the satellite be negative, and the rotation of the 
planet positive, but the moment of momentum of rotation greater than that 
of revolution, the obliquity always diminishes as the satellite falls towards 
the planet. 

Figs. 2 and 5 only differ in the fact that in the one there is a true maxi
mum and a true minimum of obliquity and energy, and in the other there is 
not so. In fact, if we annihilate the part between the vertical asymptotes of 
fig. 2 we get fig. 5. 

F I G . 6. Diagram for Inclination of Satellite's Orbit.—Second case. 

Fig. 6 illustrates the changes of inclination of the orbit. I t does not 
possess very much interest, since it simply shows that however the system be 
started with positive revolution of the satellite, whether the rotation of the 
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planet be positive or not, the inclination of the orbit slightly diminishes as 
the satellite falls in. 

And however the system be started with negative revolution of the 
satellite, and therefore necessarily positive rotation of the planet, the incli
nation of the orbit slightly increases. Fig. 6 again corresponds to fig. 3, if in 
the latter the part lying between the maximum and minimum of energy be 
annihilated. 

Fig. 7 illustrates the changes of eccentricity, and shows that it always 
diminishes rapidly however the system is started, as the satellite falls towards 
the planet. This figure again corresponds with fig. 4, if in the latter the 
parts between the maximum and minimum of energy be annihilated. 

These three figures may be interpreted as giving the various stabilities 
and instabilities of the system, just as was done in the first case. 

The solution of the problem, which has been given and discussed above, 
gives merely the sequence of events, and does not show the rate at which the 
changes in the system take place. It will now be shown how the time may 
be found as a function of x. 

FIG. 7. Diagram for Eccentricity of Satellite's Orbit.—Second oase. 

26—2 
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Kdt-- xi-hx? + l 

„ A f x?sdx or K.t = — ——=—;—r + a const. 
J ar4 - hx3 + 1 

The determination of this integral presents no difficulty, but the analytical 
expression for the result is very long, and it does not at present seem worth 
while to give the result. The actual scale of time in years will depend on 
the value of K, and this is a subject of no interest at present. 

I t will, however, be possible to give an idea of the rate of change of the 
system without actually performing the integration. This may be done by 
drawing a curve in which the ordinates are proportional to dt/dx, and the 
abscissae are x. The equation to this curve is then 

K dt _ -x15 

dx~ x* — lix3 + 1 

The maximum and minimum values (if any) of dt/dx are given by the real 
roots of the equation 

1 1 ^ - 1 2 A ^ + 1 5 = 0 
One of such roots will be found to be intermediate between a and b, and the 
other greater than a. 

* " On the Bodily Tides of Viscous and semi-elastio Spheroids," &o. [Paper 1, § 5.] 

Consider the equation 
dx , T 2 . - /„ II — = i — sin 4 / 1 dt 2 g J \ n 

f is here the angle of lag of the sidereal semi-diurnal tide of speed In. 
By the theory of the tides of a viscous spheroid, tan 2 /= 2ra/P, where P is a 
certain function of the radius of the planet and its density, and which varies 
inversely as the coefficient of viscosity of the spheroid*. 

Since by hypothesis the viscosity is small, f is a small angle, so that sin 4 / 
may be taken as equal to 2 tan 2f. Thus, sin 4f/n is a constant, depending on 
the dimensions, density, and viscosity of the planet. 

I t has already been shown that T 2 varies as ar 1 2, and g is a constant, which 
depends only on the density of the planet. Hence, the above equation may 
be written 

where K is a certain constant, which it is immaterial at present to evaluate 
precisely. 

Since n = h— x and 12 = ar 3, we have 
— a?*dx 
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Fig. 8 shows the nature of the curve when drawn with the free hand. It 
was not found possible to draw this figure to scale, because when h = 2"6 it 
was found that the minimum M was equal to '85, and could not be made 
distinguishable from a point on the asymptote A, whilst the minimum m was 
equal to about 900,000, and could not be made distinguishable from a point 
on the asymptote C. 

FIG. 8 . Diagram illustrating the Rate of Change of the System. 

The area intercepted between this curve, the axis of x, and any pair of 
ordinates corresponding to two values of x, will be proportional to the time 
required to pass from the one configuration to the other. 

When dt/dx is negative, that is to say, when the satellite is falling into 
the planet, the areas fall below the axis of x. This is clearly necessary in 
order to have geometrical continuity in the curve. 

The figure shows that the rate of alteration in the system becomes very 
slow when the satellite is far from the planet; this must indeed obviously be 
the case, because the tidal effects vary as the inverse sixth power of the 
satellite's mean distance. 
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8. 

ON THE TIDAL FRICTION OF A PLANET ATTENDED BY 
SEVERAL SATELLITES, AND ON THE EVOLUTION OF 
THE SOLAR SYSTEM. 

[Philosophical Transactions of the Royal Society, Vol. 172 (1881), 
pp. 491—535.] 
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Introduction. 
IN previous papers on the subject of tidal friction* I have confined my 

attention principally to the case of a planet attended by a single satellite. 
But in order to make the investigation applicable to the history of the earth 
and moon it was necessary to take notice of the perturbation of the sun. In 

* [The previous papors in the present volume.] 
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consequence of the largeness of the sun's mass it was not there requisite to 
make a complete investigation of the theory of a planet attended by a pair of 
satellites. 

In t h e first part of this paper t h e theory of t h e tidal friction of a central 
body attended by any number of satellites is considered. 

In the second part I discuss the degree of importance to be attached to 
tidal friction as an element in the evolution of the solar system and of the 
several planetary sub-systems. 

The last paragraph contains a discussion of the evidence adduced in this 
part of the paper, and a short recapitulation of the observed facts in the solar 
system which bear on the subject. This is probably the only portion which 
will have any interest for others than mathematicians. 

I. 

THE THEORY OF THE TIDAL FRICTION OF A PLANET ATTENDED BY ANY 
NUMBER OF SATELLITES. 

§ 1. Statement and limitation of the problem. 
Suppose there be a planet attended by any number of satellites, all 

moving in circular orbits, the planes of which coincide with the equator of 
the planet; and suppose that all the satellites raise tides in the planet. Then 
the problem proposed for solution is to investigate the gradual changes in 
the configuration of the system under the influence of tidal friction. 

This problem is only here treated under certain restrictions as to the 
nature of the tidal friction and in other respects. These limitations however 
will afford sufficient insight into the more general problem. The planet is 
supposed to be a homogeneous spheroid formed of viscous fluid, and the only 
case considered in detail is that where the viscosity is small; moreover, in 
the tidal theory adopted the effects of inertia are neglected. I have however 
shown elsewhere that this neglect is not such as to vitiate the theory mate
rially*. The satellites are treated as attractive particles which have the 
power of attracting and being attracted by the planet, but have no influence 
upon one another. A consequence of this is that each satellite only raises a 
single tide in the planet, and that it is not necessary to take into considera
tion the actual distribution of the satellites at any instant of time. We 
are thus only concerned in determining the changes in the distances of the 
satellites and in the rotation of the planet. 

If the mutual perturbation of the satellites were taken into account the 
problem would become one of the extremest complication. We should have 

* [Paper 4.] 
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408 THE MUTUAL PERTURBATION OP SATELLITES IMMATERIAL. [8 

all the difficulties of the planetary theory in determining the various in
equalities, and, besides this, it would be necessary to investigate an inde
finitely long series of tidal disturbances induced by these inequalities of 
motion, and afterwards to find the secular disturbances due to the friction of 
these tides. 

It is however tolerably certain that in general these inequality-tides will 
exercise a very small influence compared with that of the primary tide. 
Supposing a relationship between the mean motions of two, three, or more 
satellites, like that which holds good in the Jovian system, to exist at any 
epoch, it is not credible but that such relationship should be broken 
down in time by tidal friction. General considerations would lead one to 
believe that the first effect of tidal friction would be to set up amongst the 
satellites in question an oscillation of mean motions about the average values 
which satisfy the supposed definite relationship; afterwards this oscillation 
would go on increasing indefinitely until a critical state was reached in which 
the average mean motions would break loose from the relationship, and the 
oscillation would subsequently die away. I t seems probable therefore that 
in the history of such a system there would be a series of periods during 
which the mutual perturbations of the satellites would exercise a considerable 
but temporary effect, but that on the whole the system would change nearly 
as though the satellites exercised no mutually perturbing power. 

There is however one case in which mutual perturbation would probably 
exercise a lasting effect on the system. Suppose that in the course of the 
changes two satellites came to have nearly the same mean distance, then 
these two bodies might either come ultimately into collision or might coalesce 
so as to form a double system like that of the earth and moon, which revolve 
round the sun in the same period. In this paper I do not make any attempt 
to trace such a case, and it is supposed that any satellite may pass freely 
through a configuration in which its distance is equal to that of any other 
satellite. 

§ 2. Formation and transformation of the differential equations. 

In this paper I shall have occasion to make frequent use of the idea of 
moment of momentum. This phrase is so cumbrous that I shall abridge it 
and speak generally of angular momentum, and in particular of rotational 
momentum and orbital momentum when meaning moment of momentum of 
a planet's rotation and moment of momentum of the orbital motion of a 
satellite. I shall also refer to the principle of conservation of moment of 
momentum as that of conservation of momentum. 

The notation here adopted is almost identical with that of previous papers 
on the case of the single satellite and planet; it is as follows :— 
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For the planet let : 

M = mass; a — mean radius ; g = mean pure gravity ; w = mass per unit 
volume; v = viscosity; <H, = %g/a; n = angular velocity of rotation; C= moment 
of inertia about the axis of rotation, and therefore, neglecting the ellipticity 
of figure, equal to $Ma\ 

For any particular one of the system of satellites, let: 

m = mass; c = distance from planet 's centre; i l = orbital angular velocity. 

Also / A being the attraction between unit masses at unit distance, let 
T = |/xm/c3; and let p = M/m. 

These same symbols will be used with suffixes 1, 2, 3, &c., when it is 
desired to refer to the 1st, 2nd, 3rd, &c, satellite, but when (as will be usually 
the case) it i s desired simply to refer to any satellite, no suffixes will be used. 

Where it i s necessary to express a summation of similar terms, each cor
responding to one satellite, the symbol X will be used; e.g., XKC^ will mean 

+ KjC^ + &c. 
Now consider the single satellite in, c, fi, &c. 

If this satellite alone were to raise a tide in the planet, the planet would 
be distorted into an ellipsoid with three unequal axes, and in consequence of 
the postulated internal friction, the major axis of the equatorial section of the 
planet would be directed to a point somewhat in advance of the satellite in 
its orbit. 

Let f be the angle made by this major axis with the satellite's radius 
vector; f i s then a symbol subject to suffixes 1, 2, 3, &c, because it will be 
different for each satellite of the system. 

It is proved in (22) of my paper on the " Precession of a Viscous 
Spheroid*," that the tidal frictional couple due to this satellite's attraction 

is G\ — sin 4f. 

Now it appears from Sec. 14 of the same paper that the tidal reaction, 
which affects the motion of each satellite, is independent of the tides raised 
by all the other satellites. 

Hence the principle of conservation of momentum enables us to state, 
that the rate of increase of the orbital momentum of any satellite is equal to 
the rate of the loss of rotational momentum of the planet which is caused by 
that satellite alone. The rate of loss of this latter momentum is of course 
equal to the above tidal frictional couple. 

WThen the planet is reduced to rest the orbital momentum of the satellite 

* [Paper 3, p. 49.] 
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dt 
Mm _ „ X2C2 

= C | - s i n 4 f (1) 
M + m 

A similar equation will hold true for each satellite of the system. 

This equation will now be transformed. 

By Kepler's law X22c3 = p (M + m) and therefore 

M m P.c2 = J M m c* 
M + m * (M+m)% 

By the theory of the tides of a viscous spheroid (Paper 1) 

„ . 2(n —12) , „ Iqaw t an2f= —K—- , where 2p = f — 2p r 19v 

TT - A C 2 ( t i -12 ) / I ] , , / , . ,w 2 m 2 

Hence s i n 4f = — \ — „ 7 - , . a l s o i" = (4) 
1 + (n — 12)2/p2 y j > c" 

Hence (1) becomes 
^Mm_ d£ = C (/ZM)2 (W-fl)/P 

(M + m)* d« 2 g c6 1 + (n - 12)2/pa 

Now let Ch be the angular momentum of the whole system, namely that 
due to the planet's rotation and to the orbital motion of all the satellites. 
And let CE be the whole energy, both kinetic and potential, of the system. 
Then h is the angular velocity with which the planet would have to rotate in 
order that the rotational momentum might be equal to that of the whole 
system; and E is twice the square of the angular velocity with which the 
planet would have to rotate in order that the kinetic energy of planetary 
rotation might be equal to the whole energy of the system. By the principle 
of conservation of momentum h is constant, and since the system is non-
conservative of energy E is variable, and must diminish with the time. 

The kinetic energy of the orbital motion of the satellite m is ^fj.Mm/c, 
and the potential energy of position of the planet and satellite is — p.Mm/c; 
the kinetic energy of the planet's rotation is \Cn2. Thus we have, 

Ch^Cn+X ^ M m

i C h (3) 
(M + my 

2CE=Cn2-llfjJTrn (4) 

In the equations (3) and (4) we may regard G as a constant, provided we 
neglect the change of ellipticity of the planet's figure as its rotation slackens. 

in the circular orbit is £lc2Mm/(M + m). Hence the equation of tidal reaction, 
which gives the rate of change in the satellite's distance, is 

d 
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Let the symbol 3 indicate partial differentiation; then from (3) and (4) 

dn _ 1 fj^Mm 

d(c*) C(M+mf 

dE _ 1 /J Mm 1 ixMm 

~S(c*)~ C(M+mf- ~G c* 

_ 1 u.Mm 1 u^Mm 
But - = — c

 r 12 

, C(M + m)i dE _ 
and therefore ^-T r =n — il (o) 

fJMm 3(c*) 

From equations (2) and (5) we may express the rate of increase of the 
square root of any satellite's distance in terms of the energy of the whole 
system, in the general case where the planet has any degree of viscosity. A 
good many transformations, analogous to those below, may be made in this 
general case, but as I shall only examine in detail the special case in which 
the viscosity is small, it will be convenient to make the transition thereto at 
once. 

When the viscosity is small, p, which varies inversely as the viscosity, is 
large. Then, unless n — O be very large, (n — fl)/p is small compared with 
unity. Thus in (2) we may neglect (n — fl)'/pa in the denominator compared 
with unity. 

Substituting from (5) in (2), and making this approximation, we have 

^Mm_dc^_ G (m,T> C(M + m^ dE 

Now let 

(M+m)* dt g c8 t^Mml) d (c^) 

H^ntf » 
where a is any constant length, which it may be convenient to take either as 
equal to the mean radius of the planet, or as the distance of some one of the 
satellites at some fixed1 epoch, f is different for each satellite and is subject 
to the suffixes 1, 2, 3, &c. 

The equation (6) may be written 

7 , * L _ ( , r X 49 X X f* +̂ * d\ 
M+J dt iHgp ^ M ' 7c*9(c*) 

'S 

BP Now let 4 = ® 2 x 4 9 x ^ a p ( 8 ) 

And we have dì~ ~ df 

IRIS - LILLIAD - Université Lille 1 



M X^fc^) (11) 
^KMVJ U J 

ml i&Mm i J . ¥ » m a i 1 hen r = c x 
(M + my {M + mf 

Let ^ . ^ W 
C(Jl/ + mF 

K is different for each satellite and is subject to suffixes 1, 2, 3, &c. 

Thus (3) may be written 

h = n + %icx (13) 

. . uMm uifim 1 
Again <- = —- T 

c (if + m)f a x2 

Let X = ^ J ^ - L ( 1 4 ) 

C{M + /«)'« 
X is different for each satellite and is subject to suffixes 1, 2, 3, &e. 

On comparing (12) and (14) we see that 

-=Q,x? (15) 
K 

This is of course merely a form of writing the equation 

p (M + m) = 11V 
Then (4) may be written 

2E = n*-X± (16) 
In order to compute K and X we may pursue two different methods. 

In order to calculate A it may be convenient to develop its expression 
further. 

and A - a r < . l ) t » i ! j ' , w h e r e j - * ™ ? (10) 

Since p is an angular velocity A is a period of time, and A is the same 
for all the satellites. 

In (9) f is the variable, but it will be convenient to introduce an auxiliary 
variable x, such that 
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First, suppose a = a, the planet's mean radius. 

Then ^ = ^ - 3 ; i P V = ( ^ ; - X ± - = (-LJ)' 

K = 5 [v>
 (1 +

 VY] ~ ̂  > °f same dimensions as an angular velocity. 

X = \ [ v " (1 4- v)]~^ (^j , of same dimensions as the square of an angular 

velocity. 

If v he large compared with unity, as is generally the case, the expressions 
become 

5m 
" 2M v 7 ! . < » · 

Secondly, suppose J/ large compared with all the m's, and suppose for 
example that the solar system as a whole is the subject of investigation. 
Then take a as the earth's present radius vector, and a> as its present mean 
motion, and 

m i . . uMm K = --\ /j.Ma, and X = Qa 

or * = m\-Q~)> \~C~ ) ^ ) 
C is here the sun's moment of inertia. 

Collecting results from (9), (13), (16), the equations which determine the 
changes in the system are 

aj dE 
alt a f 

and a similar equation for each satellite 
n = h — %/cx 

X 

y a s ) 

2E = ri>-%-

where «' = f; A is a certain time to be computed as above shown in (10); 
K an angular velocity to be computed as above shown in (17) and (18); 
and X the square of an angular velocity to be computed as above in (17) 
and (18). 

If v be large compared with unity, f is very approximately proportional 
to the seventh power of the square root of the satellite's distance. 
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The solution of this system of simultaneous differential equations would 
give each of the f's in terms of the time; afterwards we might obtain n and 
E in terms of the time from the last two of (19). 

These differential equations possess a remarkable analogy with those which 
represent Hamilton's principle of varying action (Thomson and Tait's Nat, 
Phil., 1879, § 330 (14)). 

The rate of loss of energy of the system may be put into a very simple 
form. This function has been called by Lord Rayleigh (Theory of Sound, 
Vol. I. § 81) the Dissipation Function, and the name is useful, because this 
function plays an important part in non-conservative systems. 

In the present problem the Dissipation Function or Dissipativity, as 
dE 

it is called by Sir William Thomson, is — C . 

XT dE dE dP 
N°W T t = H p f t 
From (19) the dissipativity is therefore either 

This quantity is of course essentially positive. 

I t is easy to show that Y^s (n ~ ^) 

On substituting for the various symbols in the expression for the 
dissipativity their values in terms of the original notation, we have 

dE „ T 2 . N 

IT = ̂  — (W — ilf 
dt 8PV > 

Or if N be the tidal frictional couple corresponding to the satellite m, 

-<7^=2JV(»-N) 
This last result would be equally true whatever-were the viscosity of the 

planetary spheroid. 
The dissipativity, converted into heat by Joule's equivalent, expresses the 

amount of heat generated per unit time within the planetary spheroid. This 
result has been already obtained in a different manner for the case of a single 
satellite in a previous paper [Paper 4, p. 158]. 
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§ 3. Sketch of method for solution of the equations by series. 

It does not seem easy to obtain a rigorous analytical solution of the system 
(19) of differential equations. I have however solved the equations by series, 
so as to obtain analytical expressions for the f's, as far as the fourth power of 
the time. This solution is not well adapted for the purposes of the present 
paper, because the series are not rapidly convergent, and therefore cannot 
express those large changes in the configuration of the system which it is the 
object of the present paper to trace. 

As no subsequent use is made of this solution, and as the analysis is 
rather long, I will only sketch the method pursued. 

If ^ A be taken as the unit of time ^ = — ^ 5 S i^^j -

Differentiating again and again with regard to the time, and making con
tinued use of this equation, we find d^E/df, dsE[dts, &c, in terms of dE/d^. 

It is then necessary to develop these expressions by performing the 
differentiations with regard to £. 

a, b" 
An abridged notation was used in which 

•hnk or 

P J 
«(ALI-BRI)""1 

represented 

With this notation the whole operation may be shown to depend on the per
formance of 3/9 f on expressions of the form 

2 7 
AJ, bj \ , b 2 

. P: 
." k« fa,, b r 

- " l Pr . 
where y is independent of but may be a function of the mass of each 
satellite. 

Having evaluated the successive differentials of E we have 
/dE\ J=_ (d^E_\ ^ t3 (d?E 

0

 + 1 . 2 . 3 
VE\ 
di? /„ + &C 

where the suffix 0 indicates that the value, corresponding to t = 0, is to be 
taken. 

It is also necessary to evaluate the successive differentials of dEjdg with 
regard to the time, and then we have 

V3£A 1.2lSf dt J „ " l . 2 . 3 ^ di? J0

 & C " 

The coefficient of P was found to be very long even with the abridged 
notation, and involved squares and products of S's. 
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§ 4. Graphical solution in the case where there are not more than 
three satellites. 

Although a general analytical solution does not seem attainable, yet the 
equations have a geometrical or quasi-geometrical meaning, which makes a 
complete graphical solution possible, at least in the case where there are not 
more than three satellites. 

To explain this I take the case of two satellites only, and to keep the 
geometrical method in view I change the notation, and write z for E, x for 
and y for f2, also I write £lx for illt and £ly for I22. The unit of time is chosen 
so that A = 1. 

Then the equations (19) become 

dx _ dz dy _ dz 
dt~~dx' dt^~dy ' 

and 2z = { h - - K2yr)'--\--\ (21) 
x* y1 

Suppose a surface constructed to illustrate (21), x, y, z being the co 
ordinates of any point on it. Let the axes of x and y be drawn horizontally, 
and that of z vertically upwards. The z ordinate of course gives the energy 
of the system corresponding to any values of x and y which are consistent 
with the given angular momentum /*. 

We have for the dissipativity of the system 

dz fdz\2 /dz 
~dt~ \dx) + \dy 

dz dz 

Whence ^ dlJ ft (22) 

Let (X — x)/\ = (Y — ?/)//* = Z — z be the equations to a straight line 
through a point x, y, z on the surface. If this line lies in the tangent plane 
at that point 

^ dz dz , „ 
X ? T +rt.---l=0 

dx dy 
The inclination of this line to the axis of z will be a maximum or minimum 

when X2 + fj? is a maximum or minimum. In other words if this straight line 
is a tangent line to the steepest path through x, y, z on the surface, X2 4- /x 2 

must be a maximum or minimum. 
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Hence for this condition to be fulfilled we must have 

\ 5 \ + rf/ji = 0 
Idz Idz 

And therefore ~ ^ld~y' am^ ^ e s e a r e both e o , u a , l to 
1 

Therefore the equation to the tangent to the steepest path is 
X - x _ Y-y _ _ Z - z .(23) 
dzjdx Bz/dy (dz/dxf + {dzldyf 

If this steepest path on the energy surface is the path actually pursued 
by the point which represents the configuration of the system, equation (23) 
must be satisfied by 

X = x + d

r

VSz, Y^y + ^Sz, Z=z + Sz dz J dz 
And therefore we must have 

dz dz 
dx _ dx dy _ By 

\dxj \dyl \dxj \dyj 
But these are the values already found in (22) for dxjdz and dyjdz. 

Therefore we conclude that the representative point always slides down a 
steepest path on the energy surface. Hence it only remains to draw the 
surface, and to mark out the lines of steepest slope in order to obtain a 
complete graphical solution of the problem. Since the lines of greatest slope 
cut the contours at right angles, if we project the contours orthogonally on to 
the plane of xy, and draw the system of orthogonal trajectories of the contours, 
we obtain a solution in two dimensions. This solution will be exhibited below, 
but for the present I pass on to more general considerations. 

A precisely similar argument might be applied to the case where there 
are any number of satellites, but as space has only three dimensions, a 
geometrical solution is not possible. If there be r satellites, the problem to 
be solved may be stated in geometrical language thus:— 

It is required to find the path which is inclined at the least angle to the 
axis of E on the locus 

This locus is described in space of r + 1 dimensions. One axis is that of 
E, and the remaining r axes are the axes of the r different f's. The solution 

D . n. 27 

IRIS - LILLIAD - Université Lille 1 



may be depressed so as to merely require space of r dimensions, for we may, 
in space of r dimensions, construct the orthogonal trajectories of the contour 
loci found by attributing various values to E. 

Thus we might actually solve geometrically the case of three satellites. 
The energy locus here involves space of four dimensions, but the contour loci 
are a family of surfaces in three dimensions. If such a system of surfaces 
were actually constructed, it would be possible to pass through them a 
number of wires or threads which should bo a good approximation to the 
orthogonal trajectories. The trouble of execution would however be hardly 
repaid by the results, because most of the interesting general conclusions 
may be drawn from the case of two satellites, where we have only to deal 
with curves. 

If the case of a single satellite be considered, we see that the energy 
locus is a curve, and the transit along the steepest path degenerates merely 
into travelling down hill. Now as the slopes of the energy curve are not 
altered in direction, but merely in steepness, by taking the abscissai of points 
on the curve as any power of £, the solution may still be obtained if we take 

x (or PJ) as the abscissa instead of f. This reduces the solution to exactly 
that which was given in a previous paper, where the graphical method was 
applied to the case of a single satellite*. 

§ 5 . The graphical method in the case of two satellites. 

I now return to the special case in which there are only two satellites. 
The equation to the surface of energy is given in (21). The maxima and 
minima values of z (if any) are given by equating dz/dx and dz/dy to zero. 
This gives 

h — KXX^ — K.2y^ = 

h - Kxx^ — Kjß = — 
.(24) 

K2y% 

By (15) and (19) we see that these equations may be written 

They also lead to the equations 

.(25) 

A - * ^ ( ^ ) 3 + ^ = 0 

AT, 

[Paper 5, p. 195.] 

.(26) 
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M+m^1 M + m, 72 Q 
Or in words—let 7 1 be such a distance that the moment of inertia of the 
planet (concentrated at its centre) and the first satellite about their common 
centre of inertia may be equal to the planet's moment of inertia about its 
axis of rotation; and let 7 ^ be a similar distance involving the second satellite 
instead of the first. 

And let o)u coa be two angular velocities determined by the equations 
< " I V = (JL(M + m0, <o2

272

3 = f*(M + ma) 

Or in words—let &>! be the angular velocity of the first satellite when 
revolving in a circular orbit at distance 7 ^ and w,2 a similar angular velocity 
for the second satellite when revolving at distance y2. 

N. ow i 1 , f Mm.! 
O , 7 I 2 A N A -rrrrr ; 

1 / 1 | _ C ( I L F + 771J 

Mrn^ 3 

: 7 I 

G (M + m,) 
so that ^"^CiT+m^ 

[Paper 6, pp. 890-1.] 
2 7 — 2 

Now an equation of the form Y* — aY3 + 8 = 0 may be written 

And I have proved in a previous paper* that an equation x4, — hx3 + 1 = 0 has 
two real roots, if h be greater than 4/3^, but has no real roots if h be less than 
4/3^. Hence it follows that this equation in Y has two real roots, if a be 
greater than 4/3^/3^, but no real roots if it be less. 

If we consider the two equations (26) as biquadratics for x^ and 
respectively, we see that the first has, or has not, a pair of real roots, 
according as 

h — K^y1 is greater or less than ^ - ^ X ^ * ^ 

and the second has, or has not, a pair of real roots, according as 

h — K^X1 is greater or less than 

If we substitute for the X's and K 'S their values, we find that 

^ ^(Mnhf 
^ = the same with m2 in place of rrh 

Now let 7 , and y2 be two lengths determined by the equations Mm-x Mm2 
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and similarly X 2 ^ « 2 * = the same with the suffix 2 in place of 1. Hence the 
first of the two equations (26) has, or has not, a pair of real roots, according 
as 

i 4 Rim 
G (h — K,2y ) is greater or less than —= o > , 7 i a 

3* M + m, 
and the second has, or has not, a pair of real roots, according as 

n/i \ \ • . i , i 4 Mm„ 
O (ft - K^X1 ) is greater or less than —-„ ft>272 

3* M + raj 
I t is obvious that Mm1a>1yilj(M + m,) is the orbital momentum of the first 

satellite when revolving at distance ylt and similarly Mm^^i'jiM + m,) is 
the orbital momentum of the second satellite when revolving at distance 7 3 · 

If the second or y-satellite be larger than the first or ^-satellite the latter 
of these momenta is larger than the first. 

Now Ch is the whole angular momentum of the system, and in order that 
there maybe maxima and minima determined by the equations dz/dx — 0, 
dz/dy = 0, the equations (26) must have real roots. Then on putting y equal 
to zero in the first of the above conditions, and x equal to zero in the second 
we get the following results :— 

First, there are no maxima and minima points for sections of the energy 
surface either parallel to x or y, if the whole momentum of the system be less 
than 4/3*1 times the orbital momentum of the smaller or ^-satellite when 
moving at distance 7 ^ 

Second, there are maxima and minima points for sections parallel to x, 
but not for sections parallel to y, if the whole momentum be greater than 
4/3 4 times the orbital momentum of the smaller or ^'-satellite when moving 
at distance 7 ^ but less than 4/31* times the orbital momentum of the larger 
or y-satellite when moving at distance 7 2 . 

Third, there are maxima and minima for both sections, if the whole 
momentum be greater than 4/3* times the orbital momentum of the larger 
or i/-satellite when moving at distance 7 2 . 

This third case now requires further subdivision, according as whether 
there are not or are absolute maximum or minimum points on the surface. 

If there are such points the two equations (24) or (25) must be simul
taneously satisfied. 

Hence we must have n = ilx = Qy, in order that there may be a maximum 
or minimum point on the surface. 

But in this case the two satellites revolve in the same periodic time, and 
may be deemed to be rigidly connected together, and also rigidly connected 
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with the planet. Hence the configurations of maximum or minimum energy 
are such that all three bodies move as though rigidly connected together. 

The simultaneous satisfaction of (24) necessitates that 

xi = —1 y* or y* = a" 
Hence the equations (24) become 

n - K, 4- «S I I 
7 

These equations may be written 

-F- /c2 (XÜAFI/XI/E2)J 
(**)3 + X-l/*l 

(y}Y ~T--(yry + — 
«1 (X,«,/X2ACI)* 4- « 2 K, ( X ^ / X ^ ) * + *, 

= 0 

= 0 
.(27) 

Treating these biquadratics in the same way as before, we find that they 
have, or have not, two real roots, according as h is greater or less than 

| [ ( W ) * + ( A 2 ^ ) * ] * 

NOV + 

Therefore there is, or there is not, a pair of real solutions of the equations 
n =S1X = ily, according as the total momentum of the system is, or is not, 
greater than 

3* pi cimi + 

And this is also the criterion whether or not there is a maximum, or 
minimum, or maximum-minimum point on the energy surface. 

In the case where the masses of the satellites are small compared with 
the mass of the planet, we may express the critical value of the momentum 
of the system in the form 

—2 u * — • j -

3* (M+m1 + m2)t 

A comparison of this critical value with the two previous ones shows that 
if the two satellites be fused together, and if 7 be such that 

M (m, + m2) C 
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and if a be the orbital angular velocity of the compound satellite when 
moving at distance y , then the above critical value of the momentum of the 
whole system is 

4 M (mx + mi) 
- 3 wy> 
3* M+m^ + ms 

and this is 4/3^ times the orbital momentum of the compound satellite when 
revolving at distance 7 . 

Hence if the masses of the satellites are small compared with that of the 
planet, there are, or are not, maximum or minimum or maximum-minimum 
points on the surface of energy, according as the total momentum of the 
system is greater or less than 4/3^ times the orbital momentum of the com
pound satellite when moving at distance 7 . 

In the case where the masses of the satellites are not small compared 
with that of the planet, I leave the criterion in its analytical form. 

There are thus three critical values of the momentum of the whole system, 
and the actual value of the momentum determines the character of the surface 
of energy according to its position with reference to these critical values. 

In proceeding to consider the graphical method of solution by means of 
the contour lines of the energy surface, I shall choose the total momentum of 
the system to be greater than this third critical value, and the surface will 
have a maximum point. From the nature of the surface in this case we shall 
be able to see how it would differ if the total momentum bore any other 
position with reference to the three critical values. I t will be sufficient if 
we only consider the case where the masses of the two satellites are small 
compared with that of the planet. 

By (17) we have, with an easily intelligible alternative notation, 

mil
 mA 

*i\ _ , Ig \) = B mi) 
K 2 \ * M \/ a' \J * M a 

9 
Now K , is an angular velocity, and if wo choose 1/KL as the unit of time, 

we have 
- I -

mx 

M M also \ = I — xi, = I — K 2

A 

If we choose the mass of the first satellite as unit of mass, then mx = 1, 
and we have 

KI = 1, K 2 = m2, \ 1 = |Jf, Xi = %Mm2 

The unit of length has been already chosen as equal to the mean radius 
of the planet. 
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Substituting in (21) we have as the equation to the energy surface 

2*={h-J- m2y*Y - | M (j + ™j) 

Since we suppose and rn2 to be small compared with M, we have 

·-©'• 
On account of the abruptness of the curvatures, this surface is extremely 

difficult to illustrate unless the figure be of very large size, and it is therefore 
difficult to choose appropriate values of h, M, m2, so as to bring the figure 
within a moderate compass. 

In order to exhibit the influence of unequal masses in the satellites, 
I choose wij = 2, the mass of the first satellite being unity. I take M. = 50, 
so that f i f = 2 0 . 

With these values for M and rn, the first critical value for h is 3711, the 
second is 6'241, and the third is 8'459. 

I accordingly take h = 9, which is greater than the third critical value. 
The surface to be illustrated then has the equation 

2* = ( 9 - a * - 2 j , * ) ' - 2 0 + ^ 

There is also another surface to be considered, namely 

n = 9 - x1 - 2if 
which gives the rotation of the planet corresponding to any values of x 
and y. 

The equations n = Llx, n = H.y 

have also to be exhibited. 
The computations requisite for the illustration were laborious, as I had to 

calculate values of z and n corresponding to a large number of values of x 
and y, and then by graphical interpolation to find the values of x and y, 
corresponding to exact values of z and n. 

The surface of energy will be considered first. 
Fig. 1 shows the contour-lines (that is to say, lines of equal energy) in 

the positive quadrant, z being either positive or negative. 
I speak below as though the paper were held horizontally, and as though 

positive z were drawn vertically upwards, 
The numbers written along the axes give the numerical values of x 

and y. 
The numbers written along the curves are the corresponding values of 

— 2z. Since all the numbers happen to be negative, smaller numbers indicate 
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greater energy than larger ones ; and, accordingly, in going down hill we pass 
from smaller to greater numbers. 

FIG. 1. Contours of the surface 2z = (9 - z+ - 2y^ -2o(~ + ~') when x and y are both positive. 

N.B. The values of 2z indicated by the numbers on the contour-lines are all negative, so that 
the smaller numbers indicate higher contours. 

The full-line contours are equidistant, and correspond to the values 9, 8 | , 
8, 7£, 7, 6J, and 6 of — 2z; but since the slopes of the surface are very 
gentle in the central part, dotted lines ( ) are drawn for the contours 7 | 
and 7\. 

The points marked 5529 and 7-442 are equidistant from x and y, and 
therefore correspond to the case where the two satellites have the same 
distance from the planet, or, which amounts to the same thing, are fused 
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together. The former is a maximum point on the surface, the latter a 
maximum-minimum. 

The dashed line ( ) through 7'442 is the contour corresponding to 
that value of — 2z. 

The chain-dot lines ( ) through the same point will be explained 
below. 

An inspection of these contours shows that along the axes of x and y the 
surface has infinitely deep ravines; but the steepness of the cliffs diminishes 
as we recede from the origin. 

The maximum point 5'529 is at the top of a hill bounded towards the 
ravines by very steep cliffs, but sloping more gradually in the other 
directions. 

The maximum-minimum point 7'442 is on a saddle-shaped part of the 
surface, for we go up hill, whether proceeding towards 0 or away from O, and 
we go down hill in either direction perpendicular to the line towards O. 

If the total angular momentum of the system had been less than the 
smallest critical value, the contour lines would all have been something like 
rectangular hyperbolas with the axes of x and y as asymptotes, like the outer 
curves marked 6, 6 \ , 7 in fig. 1. In this case the whole surface would have 
sloped towards the axes. 

If the momentum had been greater than the smallest, and less than the 
second critical value, the outer contours would have still been like rectangular 
hyperbolas, and the branches which run upwards, more or less parallel to y, 
would still have preserved that character nearer to the axes, whilst the 
branches more or less parallel to x would have had a curve of contrary 
reflexure, somewhat like that exhibited by the curve 7£ in fig. 1, but less 
pronounced. In this case all the lines of steepest slope would approach the 
axis of x, but some of them in some part of their course would recede from 
the axis of y. 

If the momentum had been greater than the second, but less than the 
third critical value, the contours would still all have been continuous curves, 
but for some of the inner ones there would have been contrary reflexure 
in both branches, somewhat like the curve marked 7^ in fig. 1. There 
would still have been no closed curves amongst the contours. Here some of 
the lines of greatest slope would in part of their course have receded from 
the axis of x, and some from the axis of y, but the same line of greatest slope 
would never have receded from both axes. 

Finally, if the momentum be greater than the third critical value, we 
have the case exhibited in fig. 1. 
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orthogonal trajectories of the contours of equal energy. The dashed line 
( ) is the contour corresponding to the maximum-minimum point 7'442 
of fig. 1. The chain-dot line (- ) will be explained later. 

One set of lines all radiate from the maximum point 5'529 of fig. 1. 
The arrows on the curves indicate the downward direction. I t is easy to see 
how these lines would have differed, had the momentum of the system had 
various smaller values. 

Fig. 2 exhibits the lines of greatest slope on the surface. It was con
structed by making a tracing of fig. 1, and then drawing by eye the 
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FIG. 3. Contour lines of the surface « = 9 -x'-

The computations for the energy surface, together with graphical inter
polation, gave values of x and y corresponding to exact values of n. 

The axis of n is perpendicular to the paper, and the numbers written on 
the curves indicate the various values of n. 

These curves are not asymptotic to the axes, for they all cut both axes. 
The angles, however, at which they cut the axes are so acute that it is 
impossible to exhibit the intersections. 

None of the curves meet the axis of x within the limits of the figure. 

Fig. 3 exhibits the contour lines of the surface 
n = 9 - x< - 2yi 

It is drawn on nearly the same scale as fig. 1, but on a smaller scale than 
fig. 2. 
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The curve n = 3 meets the axis of y when i/ = 2150, and that for n = 3^ 
when y = 1200, but for values of n smaller than 3 the intersections with the 
axis of y do not fall within the figure. The thickness, which it is necessary 
to give to the lines in drawing, obviously prevents the possibility of showing 
these facts, except in a figure of very large size. 

On the side remote from the origin of the curve marked 0, n is negative, 
on the nearer side positive. 

Since M = 50, 
nx = 20^ and X\ = 2 0 / / 

Hence the lines on the figure, for which iWx is constant, are parallel to 
the axis of y, and those for which Qv is constant are parallel to the axis of x. 

The points are marked off along each axis for which ilx or ily are equal 
to 3^, 3, 2^, 2, 1^, 1. The points for which they are equal to \ fall outside 
the figure. 

Now, if we draw parallels to y through these points on the axis of x, and 
parallels to x through the points on the axis of y, these parallels will intersect 
the n curves of the same magnitude in a series of points. For example, 
ilx= 1^, when x is about 420, and the parallel to y through this point 
intersects the curve n = 1^, where y is about 740. Hence the first or 
^-satellite moves as a rigid body attached to the planet, when the first 
satellite has a distance (420)^, and the second a distance (740)^. In this 
manner we obtain a curve shown as chain-dot ( ) and marked i~lx = n 
for every point on which the first satellite moves as though rigidly connected 
with the planet; and similarly there is a second curve ( • —) marked 
flj, = n for every point on which the second satellite moves as though rigidly 
connected with the planet. This pair of curves divides space into four regions, 
which are marked out on the figure. 

The space comprised between the two, for which iWx and ily are both less 
than n, is the part which has most interest for actual planets and satellites, 
because the satellites of the solar system in general revolve slower than their 
planets rotate. 

If the sun be left out of consideration, the Martian system is exemplified 
by the space ilx > n, fiv <'/;, because the smaller and inner satellite revolves 
quicker than the planet rotates, and the larger and outer one revolves slower. 

The little quadrilateral space near O is of the same character as the 
external space L~lx > n, ily > n, but there is not room to write this on the 
figure. 

These chain-dot curves are marked also on figs. 1 and 2. In fig. 1 the 
line iWx — n passes through all those points on the contours of energy whose 
tangents are parallel to x, and the line ily = n passes through points whose 
tangents are parallel to y. 
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The tangents to the lines of greatest slope are perpendicular to the 
tangents to the contours of energy; hence in fig. 2 D,x = n passes through 
points whose tangents are parallel to y, and ily = n through points whose 
tangents are parallel to x. 

Within each of the four regions into which space is thus divided the lines 
of slope preserve the same character; so that if for example, at any part of 
the region they are receding from x and y, they do so throughout. 

This is correct, because dx/dt changes sign with n — ilx and dyjdt with 
n — Qy; also either n — Clx or n — H,, changes sign in passing from one region 
to another. In these figures a line drawn at 45° to the axes through the 
origin divides the space into two parts; in the upper region y is greater 
than x, and in the lower x is greater than y. Hence configurations, for which 
the greater or ^-satellite is exterior to the lesser or ^-satellite, are represented 
by points in the upper space and those in which the lesser satellite is exterior 
by the lower space. 

F I G . 4. 

In the figures of which I have been speaking hitherto the abscissae and 
ordinates are the £ power of the distances of the two satellites; now this is 
an inconvemently high power, and it is not very easy to understand the 
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physical meaning of the result. I have therefore prepared another figure in 
which the abscissae and ordinates are the actual distances. In fig. 4 the 
curves are no longer lines of steepest slope. 

The reduction from fig. 2 to fig. 4 involved the raising of all the ordinates 
and abscissae of the former one to the f power. This process was rather 
troublesome, and fig. 4 cannot claim to bo drawn with rigorous accuracy; it 
is, however, sufficiently exact for the hypothetical case under consideration. 
If we had to treat any actual case, it would only be necessary to travel along 
a single line of change, and for that purpose special methods of approxi
mation might be found for giving more accurate results. 

In this figure the numbers written along the axes denote the distances of 
the satellites in mean radii of the planet—the radius of the planet having 
been chosen as the unit of length. 

The chain-dot curves, as before, enclose the region for which the orbital 
angular velocities of the satellites are less than that of the planet's rotation. 
The line at 45° to the axes marks out the regions for which the larger 
satellite is exterior or interior to the smaller one. 

Let us consider the closed space, within which flx and £lv are less than n. 

The corner of this space is the point of maximum energy, from which all 
the curves radiate. 

Those curves which have tangents inclined at more than 45° to the axis 
of x denote that, during part of the changes, the larger satellite recedes more 
rapidly from the planet than the smaller one. 

If the curve cuts the 45'' line, it means that the larger satellite catches up 
the smaller one. Since these curves all pass from the lower to the upper 
part of the space, it follows that this will only take place when the larger 
satellite is initially interior. According to the figure, after catching up the 
smaller satellite, the larger satellite becomes exterior. In reality there would 
probably either be a collision or the pair of satellites would form a double 
system like the earth and moon. After this the smaller satellite becomes 
almost stationary, revolves for an instant as though rigidly connected with 
the planet, and then slower than the planet revolves (when the curve passes 
out of the closed space); the smaller satellite then falls into the planet, whilst 
the larger satellite maintains a sensibly constant distance from the planet. 

If we take one of the other curves corresponding to the case of the larger 
satellite being interior, we see that the smaller satellite may at first recede 
more rapidly than the larger, and then the larger more rapidly than the 
smaller, but not so as to catch it up. The larger one then becomes nearly 
stationary, whilst the smaller one still recedes. The larger one then falls in, 
whilst the smaller one is nearly stationary. 
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If we now consider those curves which are from the beginning in the 
upper half of the closed space, we see that if the larger satellite is initially 
exterior, it recedes at first rapidly, whilst the smaller one recedes slowly. 
The smaller and inner satellite then comes to revolve as though rigidly 
connected with the planet, and afterwards falls into the planet, whilst the 
distance of the larger one remains nearly unaltered. 

Either satellite comes into collision with the planet when its distance 
therefrom is unity. When this takes place the colliding satellite becomes 
fused with the planet, and the system becomes one where there is only a 
single satellite; this case might then be treated as in previous papers. 

The divergence of the curves from the point of maximum energy shows 
that a very small difference of initial configuration in a pair of satellites may 
in time lead to very wide differences of configuration. Accordingly tidal 
friction alone will not tend to arrange satellites in any determinate order. 
It cannot, therefore, be definitely asserted that tidal friction has not operated 
to arrange satellites in any order which may be observed. 

I have hitherto only considered the positive quadrant of the energy 
surface, in which both satellites revolve positively about the planet. There 
are, however, three other cases, viz.: where both revolve negatively (in which 
case the planet necessarily revolves positively, so as to make up the positive 
angular momentum), or where one revolves negatively and the other positively. 

These cases will not be discussed at length, since they do not possess 
much interest. 

Fig. 5 exhibits the contours of energy for that quadrant in which 
the smaller or ^-satellite revolves positively and the larger or y-satellite 
negatively. This figure may be conceived as joined on to fig. 1, so that the 
x-axes coincide*. The numbers written on the contours are the values of 
1z; they are positive and pretty large. Whence it follows that these contours 
are enormously higher than those shown in fig. 1, where all the numbers on 
the contours were negative. 

The contours explain the nature of the surface. I t may, however, be well 
to remark that, although the contours appear to recede from the ic-axis for 
ever, this is not the case; for, after receding from the axis for a long way, 
they ultimately approach it again, and the axis is asymptotic to each of them. 
The point, at which the tangent to each contour is parallel to the axis of x, 
becomes more and more remote the higher the contour. 

The lines of steepest slope on this surface give, as before, the solution of 
the problem. 

* [The reduction of the figures from the originals for the purpose of this reprint has unfor
tunately not been made on exactly the same scale. Fig. 5 would have to be increased in linear 
scale by the fraction \ ^ ths in order to fit exactly on to Fig. 1.] 
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If we hold this figure upside down, and read x for y and y for x, we get a 
figure which represents the general nature of the surface for the case where 
the a>satellite revolves negatively and the ^-satellite positively. But of 
course the figure would not be drawn correctly to scale. 

0 FQOO LEW Z000 2S0O ^P°x 

and y negative. 

The contours for the remaining quadrant, in which both satellites revolve 
negatively, would somewhat resemble a family of rectangular hyperbolas with 
the axes as asymptotes. I have not thought it worth while to construct 
them, but the physical interpretation is obviously that both satellites always 
must approach the planet. 
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II. 

A DISCUSSION OF THE EFFECTS OF TIDAL FRICTION WITH REFERENCE TO 
THE EVOLUTION OF THE SOLAR SYSTEM. 

§ 6. General consideration of the problem presented by the solar system. 

In a series of previous papers I have traced out the changes in the manner 
of motion of the earth and moon which must have been caused by tidal 
friction. By adopting the hypothesis that tidal friction has been the most 
important element in the history of those bodies, we are led to coordinate 
together all the elements in their motions in a manner so remarkable, that 
the conclusion can hardly be avoided that the hypothesis contains a great 
amount of truth. 

Under these circumstances it is natural to inquire whether the same 
agency may not have been equally important in the evolution of the other 
planetary sub-systems, and of the solar system as a whole. 

This inquiry necessarily leads on to wide speculations, but I shall 
endeavour to derive as much guidance as possible from numerical data. 

In the first part of the present paper the theory of the tidal friction of a 
planet, attended by several satellites, has been treated. 

It would, at first sight, seem natural to replace this planet by the sun, 
and the satellites by the planets, and to obtain an approximate numerical 
solution. We might suppose that such a solution would afford indications as 
to whether tidal friction has or has not been a largely efficient cause in 
modifying the solar system. 

The problem here suggested for solution differs, however, in certain points 
from that actually presented by the solar system, and it will now be shown 
that these differences are such as would render the solution of no avail. 

The planets are not particles, as the suggested problem would suppose 
them to be, but they are rotating spheroids in which tides are being raised 
both by their own satellites and by the sun. They are, therefore, subject to 
a complicated tidal friction; the reaction of the tides raised by the satellites 
goes to expand the orbits of the satellites, but the reaction of the tide raised 
in the planet by the sun, and that raised in the sun by the planet both go 
towards expanding the orbit of the planet. I t is this latter effect with which 
we are at present concerned. 

I propose then to consider the probable relative importance of these two 
causes of change in the planetary orbits. 

But before doing so it will be well as a preliminary to consider another 
point. 

D . I I . 28 
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And in the latter 
9 a w = ^ a w = 4 ^ 3 1 *y 

5 , a W = 4 7 ^ ^ X 7 2 

•Ai-m 

Hence if the planet be heterogeneous and the tidally-disturbed matter 
superficial, p must be a coefficient of the form 

3 g* 
4STT^ x 19 u / v 

If f be unity this reduces to the form gawJIQu, as it ought; but if the 
tidally-disturbed matter be superficial and of less than the mean density, 

a* 
then p must be a coefficient which varies as -^-y (1 — §//). The exact form 

of the coefficient will of course depend upon the nature of the tides. If 
* I leave out of account the case of " large" viscosity, because as shown in a previous paper 

that could only be true of a planet which in ordinary parlance-would be called a solid of great 
rigidity.^—See Paper 3, p. 126. 

In considering the effects of tidal friction the theory has been throughout 
adopted that the tidally-disturbed body is homogeneous and viscous. Now 
we know that the planets are not homogeneous, and it seems not improbable 
that the tidally-disturbed parts will be principally more or less superficial— 
as indeed we know that they are in the case of terrestrial oceans. The 
question then arises as to the extent of error introduced by the hypothesis of 
homogeneity. 

For a homogeneous viscous planet we have shown that the tidal frictional 
couple is approximately equal* to 

T 2 n — SI , qaw 
C— , where p = ,̂-. -

B P 19« 
Now how will this expression be modified, if the tidally-disturbed parts 

are more or less superficial, and of less than the mean density of the planet ? 
To answer this query we must refer back to the maimer in which the 

expression was built up. 
By reference to my paper "On the Tides of a Viscous Spheroid" (Paper 1, 

p. 13), it will be seen that p is really (!igaw — %gaw)jl9v, and that in both 
of these terms w represents the density of the tidally-disturbed matter, but 
that in the former g represents the gravitation of the planet and in the 
second it is equal to ^ir^aw, where w is the density of the tidally-disturbed 
matter. Now let f be the ratio of the mean density of the spheroid to the 
density of the tidally-disturbed matter. 

Then in the former term 
1 
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• 
/ b e large the term 3/5/will be négligeable compared with unity. Again, if 
we refer to Paper 3, p. 46, it appears that the G in the expression for the 
tidal frictional couple represents § (J7RA 3w) a2, where w is the density of the 
tidally-disturbed matter ; hence G should be replaced by G(f. 

If we reconstruct the expression for the tidal frictional couple, we see 
that it is to be divided by f, because of the true meaning to be assigned 
to C, but it is to be multiplied by / on account of the true meaning to be 
assigned to P . 

From this it follows that for a given viscosity it is, roughly speaking, 
probable that the tidal frictional couple will be nearly the same as though 
the planet were homogeneous. The above has been stated in an analytical 
form, but in physical language the reason is because the lagging of the tide 
will be augmented by the deficiency of density of the tidally-disturbed matter 
in about the same proportion as the frictional couple is diminished by the 
deficiency of density of the tide-wave upon which the disturbing satellite has 
to act. 

This discussion appeared necessary in order to show that the tidal 
frictional couple is of the same order of magnitude whether the planet be 
homogeneous or heterogeneous, and that we shall not be led into grave errors 
by discussing the theory of tidal friction on the hypothesis of the homogeneity 
of the tidally-disturbed bodies. 

We may now proceed to consider the double tidal action of a planet and 
the sun. 

Let us consider the particular homogeneous planet whose mass, distance 
from sun, and orbital angular velocity are m, c, il. For this planet, let 
O' = moment of inertia; <z' = mean radius; w' = density; g'= gravity; tf = %g'/a'; 
v = the viscosity ; P ' = g'd'w'j'19v = •f^ÏVg''jir/iv ; and n' — angular velocity of 
diurnal rotation. 

The same symbols when unaccented are to represent the parallel quantities 
for the sun. 

Suppose the sun to be either perfectly rigid, perfectly elastic, or per
fectly fluid. Then mutatis mutandis, equation (2) gives the rate of increase 
of the planet's distance from the sun under the influence of the tidal friction 
in the planet. I t becomes 

I Mm d£ ,,,G'UMyri-n 

fjj = ( | ) 2 _ _ i 

(M + my dt g' c6
 P ' 

If the planet have no satellite the right-hand side is equal to — C'dn'/dt, 
because the equation was formed from the expression for the tidal frictional 
couple. 

28—2 
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Hence, if none of the planets had satellites we should have a series of 
equations of the form 

, , i . Mm 1 

C' n + fi2
 T c = h 
(M + mp 

with different h'a corresponding to each planet. 
We may here remark that the secular effects of tidal friction in the case 

of a rigid sun attended by tidally-disturbed planets, with no satellites, may 
easily be determined. For if we put c' = x, and note that il varies as x~3, 
and that ri has the form (h — kx)/C, we see that it would only be necessary 

rx exwdw to evaluate a series of integrals of the form I — . This integral is 
J xa& p3y ~r~ yX^ 

in fact merely the time which elapses whilst x changes from xa to x, and the 
time scale is the same for all the planets. I t is not at present worth while 
to pursue this hypothetical case further. 

Now if we suppose the planet to raise frictional tides in the sun, as well 
as the sun to raise tides in the planets, we easily see by a double application 
of (2) that 

Mm dc$ X. 1 r^my ^ ( n _ n ) + ,^Mf ( n . _ n)"| _ _(28) 

CM g ' d ' J 

, — - ™. _ = ( f ) 2 

(M + m)S dt 
The tides raised in the planet by its satellites do not occur explicitly in 

this equation, but they do occur implicitly, because ri, the planet's rotation, 
is affected by these tides. 

The question which we now have to ask is whether in the equation (28) 
the solar term (without accents) or the planetary term (with accents) is the 
more important. 

In the solar system the rotations of the sun and planets are rapid com
pared with the orbital motions, so that II may be neglected compared with 
both n and n'. 

ratio 

Hence the planetary term bears to the solar term approximately the 
!f2C"w'ejp m2CnY$'' 

n o w ^ Y O ' ^ ^ - Y A - ^ ^ Y - ' . A i « , 4 = F ^ 
\mj U g m\aj g a \g J a p \g / v 

Therefore the ratio is ( — — — 
Kg J a n v 

Solar gravity is about 26"4 times that of the earth and about 10'4 
times that of Jupiter. The solar radius is about 109 times that of the earth 
and about 10 times that of Jupiter. The earth's rotation is about 25'4 times 
that of the sun, and Jupiter's rotation is about 61 times that of the sun. 
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Combining these data I find that the effect of solar tides in the earth is about 
113,000 v'[v times as great as the effect of terrestrial tides in the sun, and 
the effect of solar tides in Jupiter is about 70,000 v'/v times as great as the 
effect of Jovian tides in the sun. I t is not worth while to make a similar 
comparison for any of the other planets. 

It seems reasonable to suppose that the coefficient of tidal friction in the 
planets is of the same order of magnitude as in the sun, so that it is im
probable that v'/v should be either a large number or a small fraction. 

We may conclude then from this comparison that the effects of tides 
raised in the sun by the planets are quite insignificant in comparison with 
those of tides raised in the planets by the sun. 

It appears therefore that we may fairly leave out of account the tides 
raised in the sun in studying the possible changes in the planetary orbits as 
resulting from tidal friction. 

But the difference of physical condition in the several planets is probably 
considerable, and this would lead to differences in the coefficients of tidal 
friction to which there is no apparent means of approximating. I t therefore 
seems inexpedient at present to devote time to the numerical solution of the 
problem of the rigid sun and the tidally-disturbed planets. 

§ 7. Numerical data and deductions therefrom. 

Although we are thus brought to admit that it is difficult to construct 
any problem which shall adequately represent the actual case, yet a discussion 
of certain numerical values involved in the solar system and in the planetary 
sub-systems will, I think, lead to some interesting results. 

The fundamental fact with regard to the theory of tidal friction is the 
transformation of the rotational momentum of the planet as it is destroyed 
by tidal friction into orbital momentum of the tide-raising body. 

Hence we may derive information concerning the effects of tidal friction 
by the evaluation of the various momenta of the several parts of the solar 
system. 

Professor J. C. Adams has kindly given me a table of values of the 
planetary masses, each with its attendant satellites. The authorities were as 
follows: for Mercury, Encke; for Venus, Le Verrier; for the Earth, Hansen; 
for Mars, Hall; for Jupiter, Bessel; for Saturn, Bessel; for Uranus, 
Von Asten; for Neptune, Newcomb. 

The masses were expressed as fractions of the sun. The results, when 
earth plus moon is taken as unity, are given in the table below. The mean 
distances, taken from Herschel's Astronomy, are given in a second column. 
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The unit of mass is earth plus moon, the unit of length is the earth's 
mean distance from the sun, and the unit of time will be taken as the mean 
solar day. 

Masses (m) Mean Distances (c) 

Sun . . . 315,511-
Mercury . . •06484 •387098 
V e n u s •78829 •723332 
Earth . . . 1'00000 1-000000 
Mars . . . •10199 1-523692 
Jupiter . . 301-0971 5-202776 
Saturn 90-1048 9-538786 
Uranus . . 14-3414 19-18239 
N e p t u n e . . 16-0158 3 0 0 5 6 6 0 

Then /A being the attraction between unit masses at unit distance, M 
being sun's mass, and 36525 being the earth's periodic time, we have 

V ^ f = 365^25 = 1 0 ^ 
The momentum of orbital motion of any one of the planets round the sun 

is given by m . \ffiM. *Jc. 
With the above data I find the following results*. 

TABLE I. 
Planet 

Mercury 
Venus 
Earth 
Mars 
Jupiter 
Saturn 
Uranus 
Neptune 

Total 

Orbital momentum 

•00079 
•01309 
•01720 
•00253 

13-469 
5-456 
1-323 
1-806 

22-088 
We must now make an estimate of the rotational momentum of the sun, 

so as to compare it with the total orbital momentum of the planets. 
I t seems probable that the sun is much more dense in the central portion, 

than near the surfacef. Now if the Laplacian law of internal density were 
* These values are of course not rigorously accurate, because t h e attraction of Jupiter and 

Saturn on the internal planets is equivalent to a diminution of the sun's mass f o r them, and 
the attraction of the internal planets o n the external ones is equivalent t o an increase of the 
sun's mass. 

t I have elsewhere shown that there is a strong probability that this is the case with Jupiter, 
and that planet probably resembles the sun more nearly than d o e B the earth.—See Ast. Soc. 
Month. Not., D e c , 1876. [See Vol. in . ] 
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to hold with the sun, but with the surface density infinitely small compared 
with the mean density, we should have 

6" Ma? 

If on the other hand the sun were of uniform density we should 
have C = | M a 2 * . 

* These considerations lead me to remark that in previous papers, where the tidal theory 
was applied numerically t o the case of the earth and moon, I might have chosen more satisfactory 
numerical values with which to begin the computations. 

It was desirable to use a consistent theory of frictional tides, and that founded on the 
hypothesis of a homogeneous viscous planet was adapted. 

The earth had therefore to be treated as homogeneous, and since tidal friction depends on 
relative motion, the rotation of the homogeneous planet had to be made identical with that of 
the real earth. A consequence of this is that the rotational momentum of the earth in m y 
problem bore a larger ratio 'to the orbital momentum of the moon than is the case in reality. 
Since t h e consequence o f tidal friction is to transfer momentum from one part of the system to 
the other, this treatment somewhat vitiated subsequent results, although not to such an extent 
as could make any important differcnco in a speculative investigation o f that kind. 

If it had occurred t o me, however, it would have been just as easy to replace the actual 
heterogeneous earth by a homogeneous planet mechanically equivalent thereto. The mechanical 
equivalence referred to lies in t h e identity of mass, moment of inertia, and rotation between the 
homogeneous substitute a n d the r e a l earth. These identities of course involve identity of rota
tional momentum a n d of rotational energy, a n d , as will be seen presently, other identities 
are approximately satisfied at the s a m e time. 

Suppose that roman l e t t e r s apply to the real earth and italic letters to the homogeneous 
substitute. 

By Laplace's theory o f the earth's figure, with Thomson and Tait's notation {Natural Philo
sophy, § 824) 

where / is t h e ratio o f mean t o surface density, and 6 is a certain angle. 

Also C = lMa?(l + %e) 
where e is the ellipticity of the homogeneous planet's figure. 

By the above conditions o f mechanical identity 

M = K and C = C 

(i)W-M{i--'^ y 

Now put m = n 2 a / g , m = n 2 a/g; where g, g are mean pure gravity in the two cases. Then the 
remaining condition g i v e B n = « . 

Therefore m ga 

But e = f m = £ m (^j 

©•-•r-«-G)rr- >> I 
This is an equation which gives the radius of the homogeneous substituted planet in terms of 

«(^-Dl 
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The former of these two suppositions seems more likely to be near the 
truth than the latter. 

Now j|(l-67r-2)= -26138, so that G may lie between ("26138)Ma? and 
(•4) Ma\ 

The sun's apparent radius is 961"'82, therefore the unit of distance being 
the present distance of the earth from the sun, a = 961'82TT/648,000 ; also 
ilf = 315,511. 

Lastly the sun's period of rotation is about 25'38 m.s. days, so that 
n = 2TT/25-38. 

Combining these numerical values I find that Gn (the solar rotational 
momentum) may lie between -444 and -679. The former of these values 
seems however likely to be far nearer the truth than the latter. 

I t follows therefore that the total orbital momentum of the planetary 
system, found above to be 22, is about 50 times that of the solar rotation. 

In discussing the various planetary sub-systems I take most of the 
numerical values from the excellent tables of astronomical constants in 
Professor Ball's Astronomy*, and from the table of masses given above. 

that of the earth. It may be solved approximately by first neglecting | m (a/a) 3 , and afterwards 
using the approximate value of a/a for determining that quantity. 

The density of the homogeneous planet is found from 

where w is the earth's mean density. 

To apply these considerations to the earth, we take 8 = 142° 3 0 ' , / = 2 - 0 5 7 , which give as 
the ellipticity of the earth's surface. 

With these values (Thomson and Tait's Natural Philosophy, § 824, table, ool. vii., they give 
however -835) 

Hence the radius of the actual earth 6,370,000 metres becomes, in the homogeneous sub
stitute, 5,817,000 metres. 

Taking 5'67 as the earth's mean specific gravity, that of the homogeneous planet is 7'44. 
The ellipticity of the homogeneous planet is '00329 or 3ls, which differs but little from that 

of the real earth, viz.: yĵ . 

The precessional constant of the homogeneous planet is equal to the ellipticity, and is there
fore -00329. If this be compared with the precessional constant '00327 of the earth, we see that 
the homogeneous substitute has sensibly the same precession as has the earth. 

If a similar treatment be applied to Jupiter, then (with the numerical values given in a pre
vious paper, Ast. Soc. Month. Not., Dec. 1876 [sec Vol. in.]) the homogeneous planet has a radius 
equal to -8 of the actnal one ; its density is about half that of the earth, and its ellipticity is ^ . 

* Text Book of Science.: Elements of Astronomy. Longmans. 1880. 

The first approximation gives - = '9143, and the second - = '9133. 
a a 
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Mercury. 
The diameter at distance unity is about 6""5; the diurnal period is 

24h 0 m 50* (?). The value of the mass seems very uncertain, but I take 
Encke's value given above. Assuming that the law of internal density is 
the same as in the earth (see below), we have G = •33438ma2, and n — 2-rr 
very nearly. Whence I find for the rotational momentum 

-34 
^ = 1 0 ^ · 

Venus. 
The diameter at distance unity is about 16""9; the diurnal period is 

23 h 2 1 m 22" (?). Assuming the same law of internal density as for the earth, 
I find 

r 28'6 

Herschel remarks (Outlines of Astronomy, § 509) that "both Mercury and 
Venus have been concluded to revolve on their axes in about the same time 
as the Earth, though in the case of Venus, Bianchini and other more recent 
observers have contended for a period of twenty-four times that length." 
He evidently places little reliance on the observations [and now, in 1908, it 
seems perhaps more probable that the periods of rotation of both planets are 
the same as their periods about the sun]. 

The Earth. 
I adopt Laplace's theory of internal density (with Thomson and Tait's 

notation), and take, according to Colonel Clarke, the ellipticity of surface to 
be -^g. This value corresponds with the value 2057 for the ratio of mean to 
surface density (the f of Thomson and Tait), and to 142° 30' for the auxiliary 
angle 6. 

The moment of inertia is given by the formula 

f» J 
i 6 (£- i r 

f* J 
Whence G = -33438ma2 

The numerical coefficient is the same as that already used in the case of 
the two previous planets. 

The moon's mass being ^ n d of the earth's, the earth's mass is f § in the 
chosen unit of mass. 

With sun's parallax 8"'8, and unit of length equal to earth's mean distance 
_ 8-8TT 

a ~~ 648000 

G — 2 ma' 

These values of 8 and f give § = -83595 
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The angular velocity of diurnal rotation, with unit of time equal to the 
mean solar day, 

n ~ -99727 
Combining these values I find for the earth's rotational momentum 

37-88 
C N = I O » -

Writing m' for the moon's mass, and neglecting the eccentricity of the 
lunar orbit, the moon's orbital momentum* is 

m m ' X l c * 

m + m 
Taking the moon's parallax as 3422""3 (which gives a distance of 60'27 

earth's radii), and the sun's parallax as 8"'8, we have 
8-8 

C ~~ 34223 
Taking the lunar period as 27 3217 m.s. days we have 

2TT 
n = 27-3217 

As above stated, m is | | , and m' is g1^; whence it will be found that the 

moon's orbital momentum is _ 

This is 4-7 8 times the earth's rotational momentum. 
The resultant angular momentum of the system, with obliquity of ecliptic 

216 

23° 28', is 5'7l times the earth's rotational momentum, and is J Q T 0 • 

Mara. 
The polar diameter at distance unity is 9"'352 (Hartwig, Nature, June 3, 

1880). With an ellipticity this gives 4"-686 as the mean radius. The 
diurnal period is 24 h 37 m 23". Assuming the law of internal density to be 
the same as in the earth I find 

n 1-08 
C r i = 1 0 ^ 

The masses of the satellites are very small, and their orbital momentum 
must also be very small. 

* If we determine fi from the formula 
\ 3 

~ V27-3217 J 
and observe that pM = (27R/365-25)2, we obtain 329,000 as the sun's mass. This disagrees with 
the value 315,511 used elsewhere. The discrepancy arises from the neglect of solar perturbation 
of the moon, and of planetary perturbation of the earth. 
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Jupiter. 
The polar and equatorial diameters at the planet's mean distance from 

the sun are 35"170 and 37""563 (Kaiser and Bessel, Ast. Nach. vol. 48, p. 111). 
These values give a mean radius 52028 x 18"'383 at distance unity. 

The period of rotation is 9 h 55^ m , or '4136 m.s. day. 

I have elsewhere shown reason to believe that the surface density of 
Jupiter is very small compared with the mean density. I t appeal's that we 
have approximately 

0 = % x - -}an ma' = '2637 ma 2 * 3 2-528 
The numerical coefficient differs but little from that which we should 

have, if the Laplacian law of internal density were true, with infinitely small 
surface density ( / infinite, 6 = 180°); for, as appeared in considering the 
sun's moment of inertia, the factor would be in that case '26138. 

With these values I find 

C n = 2^94,000 = . 0 0 Q 2 5 9 4 

The distances of the satellites referred to the mean distance of Jupiter 
from the sun are 

I. I I . III . IV. 
l l l"-74 l77"-80 283"61 498"87 

Taking Jupiter's mean distance to be 5'20278, the logarithms of the 
distances in terms of the earth's distance from the sun are 

I. II. III . IV. 
7-45002 - 10 7-65174 - 10 7-85453 - 10 8-09980 - 10 

The periodic times are in m.s. days (Herschel's Astronomy, Appendix) 

I. II. III . IV. 
1-76914 3-55181 7-15455 16 6888 

The masses given me by Professor Adams + from a revision of Damoiseau's 
work are in terms of Jupiter's mass 

I. I I . III . IV. 
2-8311 23236 8-1245 2-1488 
•"TO"" 10s ~10* 10» . 

Combining these data according to the formula mile*, where m is the 

* Ast. Soc. Month. Not., Dec. 1876, p. 83. [See Vol. nr.] 
t He kindly gave me these data for another purpose.—See Ast. Soc. Month. Not., Dee., 1876, 

p. 81. 
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1010 1010 101 0 101 0 

The sum of these is 19745/1010 and is the total orbital momentum of the 
satellites. It is j 3 o t h of the rotational momentum of the planet as found 
above. 

The whole angular momentum of the Jovian system is - '^y^f^ • 

Saturn. 
There seems to be much doubt as to the diameter of the planet. 
The values of the mean radius at distance unity given by Bessel, 

De La Rue, and Main (with ellipticities 1/102, 1/11 (?), 1/9-227 respect
ively) are 79", 82", and 94" respectively*. 

The period of rotation is 10 h 2 9 | m or "437 m.s. day. 

Assuming (as with the sun) that the surface density is infinitely small 
compared with the mean density, we have C = -26147«a2. I find then that 
these three values give respectively, 

497,000 , 535,000 , 703,000 

The masses of the satellites are unknown, but Herschel thinks that Titan 
is nearly as large as Mercury. 

If we take its mass as '06 in terms of the earth's mass, its distance as 
176"'755 at the planet's mean distance from the sun, and its periodic time as 
15'95 m.s. days, we find the orbital momentum to be 16,000/1010. The whole 
orbital momentum of the satellites and the ring is likely to be greater than 
this, for the ring has been variously estimated to have a mass equal to T^yth 
to ff^(jth of the planet. 

I t is probable therefore that orbital momentum of the system is ^ t h , or 
thereabouts, of the rotational momentum of the planet. 

Nothing is known concerning the rotation of Uranus and Neptune, and 
but little of their satellites. 

The results of this numerical survey of the planets are collected in the 
following table. 

* Deduced from values of the equatorial diameter found by these observers, referred to the 
planet's mean distance from the sun, as given by Ball. 

mass of the satellite, I find for the orbital momenta of the satellites expressed 
in terms of the chosen units— 

I. II. III . IV. 
2406 2489 10993 3857 
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TABLE II. 

Planet 

i 
Rotational 

momentum of 
planet x 10 l D 

ii 
Orbital 

momentum of 
satellites x 10 1 0 

iii 

Ratio of ii to i 

iv 
Total momentum 
of each planet's 

system x 10 1 0 

Mercury . . 
V e n u s . . . 
Earth . . . 
Mars . . . 
Jupiter . . 

Saturn . . 

•34? 
2 8 6 1 
37-88 

1-08 
2,594,000 

( 500,000 
to 

I 700,000 

181 
very small 

20,000 

f 16,000 
( or more 

4-78 
very small 

\io 
& | 

or more ) 

•34? 
2 8 6 1 

216 
1-08 

2,614,000 
( 520,000 ] 

to 
I 720,000 1 

The numbers marked with queries are open to much doubt. 

If the numbers given in column iv. of this table be compared with those 
given in Table I., it will be seen that the total internal momentum of each of 
the planetary sub-systems is very small compared with the orbital momentum 
of the planet in its motion round the sun. This ratio is largest in the case 
of Jupiter, and here the internal momentum is '00026 whilst the orbital 
momentum is 13 ; hence in the case of Jupiter the orbital momentum is 
50000 times the sum of the rotational momentum of the planet and the orbital 
momentum of its satellites. From this it follows that if the whole of the 
momentum of Jupiter and his satellites were destroyed by solar tidal friction, 
the mean distance of Jupiter from the sun would only be increased by ^ ^ ^ t h 
part. The effect of the destruction of the internal momentum of any of the 
other planets would be very much less. 

If therefore the orbits of the planets round the sun have been considerably 
enlarged, during the evolution of the system, by the friction of the tides 
raised in the planets by the sun, the primitive rotational momentum of the 
planetary bodies must have been thousands of times greater than at present. 
If this were the case then the enlargement of the orbits must simultaneously 
have been increased, to some extent, by the reaction of the tides raised in 
the sun by the planets. 

But it does not seem probable that the planetary masses ever possessed 
such an enormous amount of rotational momentum, and therefore it is not 
probable that tidal friction has affected the dimensions of the planetary 
orbits considerably. 

I t is difficult to estimate the degree of attention which should be paid to 
Bode's empirical law concerning the mean distances of the planets, but it 
may perhaps be supposed that that law (although violated in the case of 
Neptune, and only partially satisfied by the asteroids) is the outcome of the 
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446 THE TERRESTRIAL AND OTHER SUB-SYSTEMS CONTRASTED. [8 

laws governing the successive epochs of instability in the history of a 
rotating and contracting nebula. Now if, after the genesis of the planets, 
tidal friction had affected the planetary distances considerably, all appear
ance of such primitive law in the distances would be thereby obliterated. 
If therefore there be now observable a sort of law of mean distances, it to 
some extent falls in with the conclusion arrived at by the preceding numerical 
comparisons. 

The extreme relative smallness of the masses of the Martian and Jovian 
satellites tends to show the improbability of very large changes in the 
dimensions of the orbits of those satellites; although the argument has not 
nearly equal force in these cases, because the distances of the satellites from 
these planets are small. 

The numbers given in column iii. of Table II. show in a striking manner 
the great difference between the present physical conditions of the terrestrial 
system and those of Mars, Jupiter, and Saturn. These numbers may perhaps 
be taken as representing the amount of effect which the tidal friction due to 
the satellites has had in their evolution, and confirms the conclusion that, 
whilst tidal friction may have been (and according to previous investigations 
certainly appears to have been) the great factor in the evolution of the earth 
and moon, yet with the satellites of the other planets it has not had such 
important effects. 

In previous papers the expansion of the lunar orbit under the influence 
of terrestrial tidal friction was examined, and the moon was traced back to an 
origin close to the present surface of the earth. The preceding numerical 
comparisons suggest that the contraction of the planetary masses has been 
the more important factor elsewhere, and that the genesis of satellites 
occurred elsewhere earlier in the evolution. 

I t has been shown that the case of the earth and moon does actually 
differ widely from that of the other planets, and we may therefore reasonably 
suppose that the history has also differed considerably. 

Although we might perhaps leave the subject at this point, yet, after 
arriving at the above conclusions, it seems natural to inquire in what manner 
the simultaneous action of the contraction of a planetary mass and of tidal 
friction is likely to have operated. 

The subject is necessarily speculative, but the conclusions at which I 
arrive are, I think, worthy of notice, for although they involve much of mere 
conjectural assumption in respect to the quantities and amounts assumed, 
yet they are deduced from the rigorous dynamical principles of angular 
momentum and of energy. 
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§ 8. On the part played by tidal friction in the evolution of 
planetary masses. 

To consider the subject of this section, we require— 

(a) Some measure of the relative efficiency of solar tidal friction in 
reducing the rotational momentum and the rotation of the several planets. 

(/9) We have to consider the manner in which the simultaneous action 
of the contraction of the planetary mass and of solar tidal friction co-operates. 

( 7 ) We have to discuss how the separation of a satellite from the 
contracting mass is likely to affect) the course of evolution. 

It is not possible to treat these questions rigorously, but without some 
guidance on these points further discussion would be fruitless. 

The probable influence of the heterogeneity of the planetary mass on 
tidal friction has been already discussed, and it has been shown that the case 
of homogeneity will probably give good indications of the result in the true 
case. I therefore adhere here also to the hypothesis of homogeneity. 

I will begin with (a) and consider— 

The relative efficiency of solar tidal friction. 

The rate at which the rotation of any one of the planets is being reduced 
is T s (n —fl)/gp, where n, g, p refer to the planet, and are the quantities which 
were previously indicated by the same symbols accented. 

T is \M-jc3, and therefore varies as LV. With all the planets (excepting, 
perhaps, Mercury and Venus, according to Herschel) fl is small compared 
with n, and we may write n for n — D,. 

It has been already shown that p = - , - Q — — T ~ — » and 8 =
 75 ~ • 

2 x 3 (f 2 x 3 u?m* Hence pet = ' - n 

5 x 19 x 4 T FTAV 0 x 19 x 47r alv 

Therefore the rate of reduction of planetary rotation is proportional to 

The coefficient of friction v is quite unknown, but we shall obtain 
indications of the relative importance of tidal retardation in the several 
planets by supposing V to be the same hi all. If we multiply this expression 
by ma2, we obtain an expression to which the rate of reduction of rotational 
momentum is proportional. By means of the data used in the preceding 
section I find the following results. 
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448 RELATIVE EFFICIENCY OF THE SOLAR TIDES IN THE SEVERAL PLANETS. [8 

TABLE III . 

Number to which 
Number to which rate of destruction 

Planet tidal retardation of rotational 
is proportional momentum is is proportional 

proportional 

Mercury. 1000- (?) 9-1 (!) 
* Venus . . . 11· (?) CO

 

Earth . . . 1- 1-0 
Mars . . . . •80 •026 
Jupiter . . . •00005 2-3 

( -000020 •11 ] 
Saturn . . . \ to to \ 

I -000066 •54 J 

This table only refers to solar tidal friction, and the numbers are computed 
on the hypothesis of the identity of the viscosity for all the planets. 

The figures attached to Mercury and Venus are open to much doubt. 
Perhaps the most interesting point in this table is that the rate of solar tidal 
retardation of Mars is nearly equal to that of the earth, notwithstanding the 
comparative closeness of the latter to the sun. The significance of these 
figures will be commented on below. 

I shall now consider— 

(8) The manner in which solar tidal friction and the contraction of the 
planetary nebula work together. 

It will be supposed that the contraction is the more important feature, 
so that the acceleration of rotation due to contraction is greater than the 
retardation due to tidal friction. 

Let h be the rotational momentum of the planet at any time; then 

Cn = h or w = # — (29) 
' ma1 

In accordance with the above supposition A is a quantity which diminishes 
slowly in consequence of tidal friction, and a diminishes in consequence of 
contraction, at such a rate that dn/dt is positive. 

i i 7 i r. 2x3 (f 
We also have D Q = = j — -— 

r n 19 x 5 x 4TT fiva 
The rate of change in the dimensions of the planet's orbit about the sun 

remains insensible, so that T and 12 may be treated as constant. 
Then the rate of loss of rotational momentum of the planetary mass 
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ia ^ r a ^p — ^ ^ e a ^ o v e transformations we see that this expression 

vanes as _ (JL _ | _ A _ j . 

But m = | 7 r w a 3 , and therefore a = ( J w * Also = p,m\d?. 

On substituting this expression for g, and then replacing a throughout 
by its expression in terms of w, we see that, on omitting constant factors, the 

rate of loss of rotational momentum varies as — — , where k = § (—-) Qnfi, 

a constant. 

From (29) we see that if h varies as a?, or as w - ^ , n the angular velocity 
of rotation remains constant. 

If therefore we suppose h to vary as some power of a less than 2 (which 
power may vary from time to time) we represent the hypothesis that the 
contraction causes more acceleration of rotation than tidal friction causes 
retardation. Let us suppose then that h = Hw~%+p where 3 is less than \, 
and varies from time to time. 

Then the rate of loss of momentum varies as 
vw~3 (Hiy0 — k) 

In order to determine the rate of loss of rotation we must divide this 
expression by C, which varies as w~~%. 

Therefore the rate of loss of angular velocity of rotation varies as 

vw~^ (Hw0 — k) 

In order to determine how tidal friction and contraction co-operate it is 
necessary to adopt some hypothesis concerning the coefficient of friction v. 

So long as the tides consist of a bodily distortion, the coefficient of friction 
must be some function of the density, and will certainly increase as the 
density increases. 

Now if, as regards the loss of momentum, v varies as a power less than 
the cube of the density, the first factor vur* diminishes as the density 
increases; and if, as regards the loss of rotation, v varies as a power less than 
I of the density, the first factor vw~% diminishes as the density increases. 

As the cube and \ powers both represent very rapid increments of the 
coefficient of friction with increase of density, it is probable that the first 
factor in both expressions diminishes as the contraction of the planetary mass 
proceeds. 

D. II. 29 
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Now consider the second factor Hw ? — k, which corresponds to the factor 
n — SI in the expression for the rate of loss of rotational momentum; Hw' is 
large compared with k so long as the rotation of the planet is fast compared 
with the orbital motion of the planet about the sun, and since this factor is 
always positive, it always increases as the contraction increases. 

For planets remote from the sun, where contraction has played by far the 
more important part, ¡8 will be very nearly equal to f, and for those nearer to 
the sun /3 will be small (or it might be negative if the tidal retardation 
exceeds the contractional acceleration). 

We thus have one factor always increasing and the other always 
diminishing, and the importance of the increasing factor is greater for 
planets remote from than for those near to the sun. 

If /3 be small it is difficult to say how the two rates will vary as the 
contraction proceeds. But if /3 does not differ very much from | both rates 
are probably initially small, rise to a maximum and then diminish. 

Hence it may be concluded as probable that in the history of a contracting 
planetary mass, which is sufficiently far from the sun to allow contraction 
to be a more important factor than tidal friction, both the rate of loss of 
rotational momentum and of loss of rotation, due to solar tidal friction, were 
initially small, rose to a maximum and then diminished. 

These considerations are important as showing that the efficiency of solar 
tidal friction was probably greater in the past than at present. 

We now come to (7 )— 

The effect of the genesis of a satellite on the evolution. 

This subject is necessarily in part obscure, and the conclusions must be, 
in so far, open to doubt. 

When a satellite separates from a planetary mass, it seems probable that 
that part of the planetary mass, which before the change had the greatest 
angular momentum, is lost by the planet. Hence the rotational momentum 
of the planet suffers a diminution, and the mass is also diminished. An 
inspection of the expressions in the last paragraphs shows that it is probable 
that the loss of a satellite diminishes the rate of loss of planetary rotational 
momentum, but slightly increases the rate of loss of rotation due to solar 
tidal friction. 

Now if the satellite be large the effect of the tides raised by the satellite 
in the planet is to cause a much more powerful reduction of planetary rotation 
than was effected by the sun The rotational momentum thus removed from 
the planet reappears in the orbital momentum of its satellite. And the 
reduction of rotation of the planet causes a reduction of rate of solar tidal 
effects, by diminishing the angular velocity of the planet's rotation relatively 
to the sun. 

IRIS - LILLIAD - Université Lille 1 



The first and immediate effect of the separation of a satellite is no doubt 
highly speculative, but the second effect seems to follow undoubtedly, what
ever be the mode of separation of the satellite. 

From these considerations we may conclude that the effect of the separa
tion of a satellite is to destroy planetary rotation, but to preserve angular 
momentum within the planetary sub-system. 

Hence we ought to find that those planets which have large satellites 
have a slow rotation, but have a relatively large amount of angular momentum 
within their systems. 

A proper method of comparison between the several planets is difficult of 
attainment, but these ideas seem to agree with the fact that the earth, which 
is large compared with Mars, rotates in the same time, but that the whole 
angular momentum of earth and moon is large*. 

* A method of comparing the various members of the solar system has occurred to me, but 
it is not founded on rigorous argument. 

It seems probable that the small density of the larger planets is due to their not being so far 
advanced in their evolution as the smaller ones, and it is likely that they are continuing to 
contract and will some day be as dense as the earth. 

The proposed method of comparison is to estimate how fast each of the planets must rotate 
if, with their actual rotational momenta, they were as condensed as the .earth, and had the same 
law of internal density. 

The period of this rotation may be called the " effective period." 

With the data used above, taking the earth's mean density as unity, the mean density of 
Mars is -675, that of Jupiter '235, that of Saturn -125 or -111 or -074, according to the data used. 

To condense these planets we must reduce their radii in the proportion of the cube-roots of 
these numbers. 

Their actual moments of inertia must be reduced by multiplying by the ^rd power of these 
numbers, and as we suppose the law of internal density to be the same as in the earth, the 
moments of inertia of Jupiter and Saturn must be also increased in the proportion -33438 to 
•26138. 

Then the "effective period" will be the aatual period reduced by the same factors as have 
been given for reducing the moments of inertia. 

In this way I find that the Martian day is to be divided by 1-3; the Jovian day by 2 ; and the 
Saturnian day by 3 1 1 to 4 4 4 according to the data adopted. The earth's day of course remains 
unchanged. 

The following table gives the results. 

T A B L E IV. 

P l a n e t A c t u a l pe r iod o f 
rotation 

.Effective period of 
rotation 

Earth 23" 56" 23" 5 l> 
24» 37™ 19" 

9 h 55™ 5 h 

10" 2 9 m 3 h 2 0 m t o 2 h 2 0 m 

29—2 
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§ 9. General discussion and summary. 
According to the nebular hypothesis the planets and the satellites are 

portions detached from contracting nebulous masses. In the following 
discussion I shall accept that hypothesis in its main outline, and shall 
examine what modifications are necessitated by the influence of tidal friction*. 

In § 7 it is shown that the reaction of the tides raised in the sun by the 
planets must have had a very small influence in changing the dimensions of 
the planetary orbits round the sun, compared with the influence of the tides 
raised in the planets by the sun. 

From a consideration of numerical data with regard to the solar system 
and the planetary sub-systems, it appears improbable that the planetary orbits 
have been much enlarged by tidal friction, since the origin of the several 
planets. But it is possible that part of the eccentricities of the planetary 
orbits is due to this cause. 

We must therefore examine the several planetary sub-systems for the 
effects of tidal friction. 

From arguments similar to those advanced with regard to the solar system 
as a whole, it appears unlikely that the satellites of Mars, Jupiter, and Saturn 
originated very much nearer the present surfaces of the planets than we now 
observe them. But the data being insufficient, we cannot feel sure that the 
alteration in the dimensions of the orbits of these satellites has not been 
considerable. I t remains, however, nearly certain that they cannot have first 

This seems to me to illustrate the arguments used above. For there should in general he a 
diminution of effective period as we recede from the sun. 

It will be noted that the earth, although ten times larger than Mars, has a longer effective 
period. The larger masses should proceed in their evolution slower than the smaller ones, and 
therefore the greater proximity of the earth to the sun does not seem sufficient to account for 
this, more especially as it is shown above that the efficiency of solar tidal friction is of about the 
same magnitude for the two planets. It is explicable however by the considerations in the text, 
for it was there shown that a large satellite was destructive of planetary rotation. 

If we estimate how fast the earth must rotate in order that the whole internal momentum of 
moon and earth should exist in the form of rotational momentum, then wo find an effectivo 
period for the earth of 4 h 12™. This again illustrates what was stated above, viz.: that a large 
satellite is preservative of the internal momentum of the planet's system. 

The orbital momentum of the satellites of the other planets.is so small, that an effective 
period for the other planets, analogous to the 4 b 1 2 m of the earth, would scaroely differ sonsibly 
from the periods given in the table. 

If Jupiter and Saturn will ultimately be as condensed as the earth, then it must be admitted 
as possible or even probable that Saturn (and perhaps Jupiter) will at some future time shed 
another satellite; for the efficiency of solar tidal friction at the distance of Saturn is small, and 
a period of two or three hours gives a very rapid rotation. 

* [Sinoe the date of this paper the nebular hypothesis has been much criticised, and it is now 
hardly possible to accept it in the form which was formerly held to be satisfactory. It has not, 
however, been thought expedient to modify this discussion.] 
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originated almost in contact with the present surfaces of the planets, in the 
same way as, in previous papers, has been shown to be probable with regard 
to the moon and earth. 

The numerical data in Table II., § 7, exhibit so striking a difference 
between the terrestrial system and those of the other planets, that, even 
apart from the considerations adduced in this and previous papers, we should 
have grounds for believing that the modes of evolution have been considerably 
different. 

This series of investigations shows that the difference lies in the genesis 
of the moon close to the present surface of the planet, and we shall see below 
that solar tidal friction may be assigned as a reason to explain how it 
happened that the terrestrial planet had contracted to nearly its present 
dimensions before the genesis of a satellite, but that this was not the case 
with the exterior planets. 

The numbers given in Table III., § 8, show that the efficiency of solar 
tidal friction is very much greater in its action on the nearer planets than on 
the further ones. But the total amount of rotation of the various planetary 
masses destroyed from the beginning cannot be at all nearly proportional to 
the numbers given in that table, for the more remote planets must be much 
older than the nearer ones, and the time occupied by the contraction of the 
solar nebula from the dimensions of the orbit of Saturn down to those of the 
orbit of Mercury must bB very long. Hence the time during which solar 
tidal friction has been operating on the external planets must be very much 
longer than the period of its efficiency for the interior ones, and a series of 
numbers proportional to the total amount of rotation destroyed in the several 
planets would present a far less rapid decrease, as we recede from the sun, 
than do the numbers given in Table III. Nevertheless the disproportion 
between these numbers is so great that it must be admitted that the effect 
produced by solar tidal friction on Jupiter and Saturn has not been nearly so 
great as on the interior planets. 

In § 8 it has been shown to be probable that, as a planetary mass contracts, 
the rate of tidal retardation of rotation, and of destruction of rotational 
momentum increases, rises to a maximum, and then diminishes. This at 
least is so, when the acceleration of rotation due to contraction exceeds the 
retardation due to tidal friction ; and this must in general have been the case. 
Thus we may suppose that the rate at which solar tidal friction has retarded 
the planetary rotations in past ages was greater than the present rate of 
retardation, and indeed there seems no reason why many times the present 
rotational momenta of the planets should not have been destroyed by solar 
tidal friction. But it remains very improbable that so large an amount of 
momentum should have been destroyed as to affect the orbits of the planets 
round the sun materially. 
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454 THE DISTRIBUTION OF SATELLITES IN THE SOLAR SYSTEM. [8 

I will now proceed to examine how the differences of distance from the 
sun would be likely to affect the histories of the several planetary masses. 

According to the nebular hypothesis a planetary nebula contracts, and 
rotates quicker as it contracts. The rapidity of the revolution causes its form 
to become unstable, or, perhaps a portion gradually detaches itself; it is 
immaterial which of these two really takes place. In either case the separation 
of that part of the mass, which before the change had the greatest angular 
momentum, permits the central portion to resume a planetary shape. The 
contraction and increase of rotation proceed continually until another portion 
is detached, and so on. There thus recur at intervals a series of epochs of 
instability or of abnormal change. 

Now tidal friction must diminish the rate of increase of rotation due to 
contraction, and therefore if tidal friction and contraction are at work 
together, the epochs of instability must recur more rarely than if contraction 
acted alone. 

If the tidal retardation is sufficiently great, the increase of rotation due to 
contraction will be so far counteracted as never to permit an epoch of instability 
to occur. 

Now the rate of solar tidal frictional retardation decreases rapidly as we 
recede from the sun, and therefore these considerations accord with what we 
observe in the solar system. 

For Mercury and Venus have no satellites, and there is a progressive 
increase in the number of satellites as we recede from the sun. Moreover, 
the number of satellites is not directly connected with the mass of the planet, 
for Venus has nearly the same mass as the earth and has no satellite, and the 
earth has relatively by far the largest satellite of the whole system. Whether 
this be the true cause of the observed distribution of satellites amongst the 
planets or not, it is remarkable that the same cause also affords an explanation, 
as I shall now show, of that difference between the earth with the moon, and 
the other planets with their satellites, which has caused tidal friction to be 
the principal agent of change with the former but not with the latter. 

In the case of the contracting terrestrial mass we may suppose that there 
was for a long time nearly a balance between the retardation due to solar 
tidal friction and the acceleration due to contraction, and that it was not 
until the planetary mass had contracted to nearly its present dimensions that 
an epoch of instability could occur. 

I t may also be noted that if there be two equal planetary masses which 
generate satellites, but under very different conditions as to the degree of 
condensation of the masses, then the two satellites so generated would be 
likely to differ in mass; we cannot of course tell which of the two planets 
would generate the larger satellite. Thus if the genesis of the moon was 
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deferred until a late epoch in the history of the terrestrial mass, the mass of 
the moon relatively to the earth, would bo likely to differ from the mass of 
other satellites relatively to their planets. 

If the contraction of the planetary mass be almost completed before the 
genesis of the satellite, tidal friction, due jointly to the satellite and to the 
sun, will thereafter be the great cause of change in the system, and thus the 
hypothesis that it is the sole cause of change will give an approximately 
accurate explanation of the motion of the planet and satellite at any subse
quent time. 

That this condition is fulfilled in the case of the earth and moon, I have 
endeavoured to show in the previous papers of this series. 

At the end of the last of those papers the systems of the several planets 
were reviewed from the point of view of the present theory. I t will be well 
to recapitulate shortly what was there stated and to add a few remarks on 
the modifications and additions introduced by the present investigation. 

The previous papers were principally directed to the case of the earth and 
moon, and it was there found that the primitive condition of those bodies was 
as follows:—the earth was rotating, with a period of from two to four hours, 
about an axis inclined at 11° or 12° to the normal to the ecliptic, and the 
moon was revolving, nearly in contact with the earth, in a circular orbit 
coincident with the earth's equator, and with a periodic time only slightly 
exceeding that of the earth's rotation. 

Then it was proved that lunar and solar tidal friction would reduce the 
system from this primitive condition down to the state which now exists by 
causing a retardation of terrestrial rotation, an increase of lunar period, an 
increase of obliquity of ecliptic, an increase of eccentricity of lunar orbit, and 
a modification in the plane of the lunar orbit too complex to admit of being 
stated shortly. 

I t was also found that the friction of the tides raised by the earth in the 
moon would explain the present motion of the moon about her axis, both as 
regards the identity of the axial and orbital revolutions, and as regards the 
direction of her polar axis. 

Thus the theory that tidal friction has been the ruling power in the 
evolution of the earth and moon completely coordinates the present motions 
of the two bodies, and leads us back to an initial state when the moon first 
had a separate existence as a satellite. 

This initial configuration of the two bodies is such that we are almost 
compelled to believe that the moon is a portion of the primitive earth 
detached by rapid rotation or other causes. 

There may be some reason to suppose that the earliest form in which the 
moon had a separate existence was in the shape of a ring, but this annular 
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condition precedes the condition to which the dynamical investigation leads 
back. 

The present investigation shows, in confirmation of preceding ones*, that 
at this origin of the moon the earth had a period of revolution about the sun 
shorter than at present by perhaps only a minute or two, and it also shows 
that since the terrestrial planet itself first had a separate existence the length 
of the year can have increased but very little—almost certainly by not so much 
as an hour, and probably by not more than five minutes j . 

With regard to the 11° or 12° of obliquity which still remains when the 
moon and earth are in their primitive condition, it may undoubtedly be 
partly explained by the friction of the solar tides before the origin of the 
moon, and perhaps partly also by the simultaneous action of the ordinary 
precession and the contraction and change of ellipticity of the nebulous 
mass]. 

In the review referred to I examined the eccentricities and inclinations of 
the orbits of the several other satellites, and found them to present indications 
favourable to the theory. In the present paper I have given reasons for 
supposing that the tidal friction arising from the action of the other satellites 
on their planets cannot have had so much effect as in the case of the earth. 
That those indications were not more marked, and yet seemed to exist, agrees 
well with this last conclusion. 

The various obliquities of the planets' equators to their orbits were also 
considered, and I was led to conclude that the axes of the planets from 
Jupiter inwards were primitively much more nearly perpendicular to their 
orbits than at present. But the case of Saturn and still more that of Uranus 
(as inferred from its satellites) seem to indicate that there was a primitive 
obliquity at the time of the genesis of the planets, arising from causes other 
than those here considered. 

The satellites of the larger planets revolve with short periodic times; 
this admits of a simple explanation, for the smallness of the masses of these 
satellites would have prevented tidal friction from being a very efficient cause 
of change in the dimensions of their orbits, and the largeness of the planets' 
masses would have caused them to proceed slowly in their evolution. 

* " Precession," § 19 [p. 105], 
f If t h e change has been as m u c h as an hour the rotational momentum of the earth destroyed 

by solar tidal friction must have been 33 times the present total internal momentum of moon 
and earth. For the orbital momentum of a planet varies a B the cube root of its periodic time, 
and if we differentiate logarithmically we obtain the increment of periodic time in t e r m B of the 
inorement of orbital momentum. Taking the numerical data from Tables I. and II. we see that 
this statement is proved by the fact that 3 x 33 times [216-=-01720 x 10 1 0 ] x 365'25 x 24 is very 
nearly equal to unity. 

J See a paper *' On a Suggested Explanation of the Obliquity of Planets to their Orbits," 
Phil. Mag., March, 1877. [See Vol. in . ] See however § 21 " Precession " [p. 110]. 
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If the planets be formed from chains of meteorites or of nebulous matter* 
the rotation of the planets has arisen from the excess of orbital momentum 
of the exterior over that of the interior matter. As we have no means of 
knowing how broad the chain may have been in any case, nor how much it 
may have closed in on the sun in course of concentration, we have no means 
of computing the primitive angular momentum of a planet. A rigorous 
method of comparison of the primitive rotations of the several planets is thus 
wanting. 

If however the planets were formed under similar conditions, then, 
according to the present theory, we should expect to find the exterior planets 
now rotating more rapidly than the interior ones. It has been shown above 
(see Table IV., note to § 8) that, on making allowance for the different degrees 
of concentration of the planets, this is the case. 

That the interior satellite of Mars revolves with a period of less than a 
third of its planet's rotation is perhaps the most remarkable fact in the solar 
system. The theory of tidal friction explains this perfectly*, and we find 
that this will be the ultimate fate of all satellites, because the solar tidal 
friction retards the planetary rotation without directly affecting the satellite's 
orbital motion. 

The numerical comparison in Table III. shows that the efficiency of solar 
tidal friction in retarding the terrestrial and Martian rotations is of about the 
same degree of importance, notwithstanding the much greater distance of the 
planet Mars. 

From the discussion in this paper it will have been apparent that the 
earth and moon do actually differ from the other planets in such a way as to 
permit tidal friction to have been the most important factor in their history. 

By an examination of the probable effects of solar tidal friction on a 
contracting planetary mass, we have been led to assign a cause for the 
observed distribution of satellites in the solar system, and this again has itself 
afforded an explanation of how it happened that the moon so originated that 
the tidal friction of the lunar tides in the earth should have been able to 
exercise so large an influence. 

* It is proper to remark that the rapid revolution of this satellite might perhaps be referred 
to another cause, although the explanation appears very inadequate. 

It has been pointed out above that the formation of a satellite out of a chain or ring of matter 
must be accompanied by a diminution of periodic time and of distance. Thus a satellite might 
after formation have a shorter periodic time than its planet. 

If this, however, were the explanation, we should expect to find other instances elsewhere, 
but the case of the Martian satellite stands quite alone. 

[Since the date of this paper the work of several investigators seems to indicate that the 
earliest form of a satellite may not be annular. The papers which will be reproduced in Vol. i n . 
tend also in this direction.] 
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In this summary I have endeavoured not only to set forth the influence 
which tidal friction may, and probably has had in the history of the system, 
but also to point out what effects it cannot have produced. 

The present investigations afford no grounds for the rejection of the 
nebular hypothesis, but while they present evidence in favour of the main 
outlines of that theory, they introduce modifications of considerable im
portance. 

Tidal friction is a cause of change of which Laplace's theory took no 
account*, and although the activity of that cause is to be regarded as mainly 
belonging to a later period than the events described in the nebular hypothesis, 
yet its influence has been of great, and in one instance of even paramount 
importance in determining the present condition of the planets and their 
satellites. 

* Note added on July 28, 1881. 
Dr T. R. Mayer appears to have been amongst the first to draw attention to the effects of tidal 

friction. I have recently had my attention called to his paper on "Celestial Dynamics" [Transla
tion, Phil. Mag., 1863, Vol. xxv., pp. 241, 387, 417], in which he has preceded me in some 
of the remarks made above. He points out that, as the joint result of contraction and tidal 
friction, " the whole life of the earth therefore m a y b e divided into three periods—youth with 
increasing, middle age with uniform, and old age with decreasing velocity of rotation." 
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ON THE STRESSES CAUSED IN THE INTERIOR OF THE 
EARTH BY THE WEIGHT OF CONTINENTS AND 
MOUNTAINS. 

[Philosophical Transactions of the Royal Society, Vol. 173 (1882), pp. 187— 
230, with which is incorporated " Note on a previous paper," Proc. 
Roy. Soc. Vol. 38 (1885), pp. 322—328.] . 

[Anour a year after the publication of this paper in the Transactions, an 
essay was submitted to me at Cambridge by Mr Charles Chree, now Director 
of the Kew Observatory, in which an error in my procedure was pointed out. 
As Mr Chree's treatment of the problem was quite different from mine I 
wrote a " Note" for the Proceedings to correct my mistake in accordance 
with his criticism. The investigation and the correction are now fused 
together. This has necessitated the re-writing of certain portions of the 
paper, and the new matter is indicated by square parentheses. Parts of the 
" Note" are also inserted in their proper places so as to make good the 
defects in the original investigation.] 
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In this paper I have considered the subject of the solidity and strength of 
the materials of which the earth is formed, from a point of view from which 
it does not seem to have been hitherto discussed. 

The first part of the paper is entirely devoted to a mathematical investi
gation, based upon a well-known paper of Sir William Thomson's. The 
second part consists of a summary and discussion of the preceding work. In 
this I have tried, as far as possible, to avoid mathematics, and I hope that 
a considerable part of it may prove intelligible to the non-mathematical 
reader. 

I. 

MATHEMATICAL INVESTIGATION. 

[§ 1. On the state of internal stress of a strained elastic sphere. 
In this section it is proposed to find the solutions of two closely analogous 

problems. 
(i) Consider a homogeneous elastic sphere of density w and radius a, for 

which io — ^v is the modulus of incompressibility and v the modulus of 
rigidity*. Let the system be referred to rectangular axes x, y, z with origin 
at centre, and let r be radius vector. It is required to find the state of strain 
of the sphere when it is subject to superficial normal traction defined by 
WiO^/r*, where Wi is a solid harmonic of degree i. 

(ii) Consider the same sphere, and let it be free from any superficial 
forces but subject to forces acting throughout the whole mass such that the 
force acting on unit volume is that due to a gravitation potential Wi. I t is 
required to determine the state of strain. 

I begin with the first problem. 
Lord Kelvin (Sir William Thomson) has shown that the component 

strains a, 8, 7 of such a sphere, when subject to superficial tractions whose 
three components are At, Bit C* (being surface harmonics of order i), are 
given by 

1 F A a v d ^t- i ( I + 2 ) A - ( 2 i - i ) v ^ d _Ji 

a~v^\2K{a ~ T ) dx + (i-l)(2i+l)K ^ dx^i-ir } 

1 d<&i+, 1 . . 
^ 2 I ( I - L ) ( 2 I + L) dx ^ i - l 1 + ( 1 ) 

* The phraseology adopted by Thomson and Tait (Natural Philosophy, first edition) and 
others seems a little unfortunate. One might be inclined to suppose that compressibility and 
rigidity were things of the same nature; but rigidity and the reciprocal of compressibility are of 
the same kind. If one may give exact meanings to old words of somewhat general meanings, 
then one may pair together compressibility and " pliancy," and call the moduli for the two sorts 
of elasticity the " incompressibility " and rigidity. 

t Thomson and Tait's Natural Philosophy, § 737 (5a). 
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where for brevity we write K for ( 2 I 3 + 1) w — (2i — 1) v, and where M?, «I> are 
auxiliary functions defined by 

^ = S ^ + É ( ^ ) + A < 0 I R < ) 

The components /3, 7 are found from a by cyclical changes of letters. 

In the case of problem (i) the three components of superficial force are 
xWiO*-1/^, yWia

i-1lr\ zWia^1/^. 

Since 

ri+l~2i + l l dx J 2» + L | _ d a k 1 ; 

and since these two terms are surface harmonics of orders i — 1 and 1 + 1> and 
since x, y, z is a point on the surface of the sphere, we have 

r 
where 

¿ 1 - 1 = 
2i + l T I * 

- 4 ; + ! — 
a? 

" 2 T + I 

with similar expressions for £ ¿ + 1 , C^, Ci+l. 

The corresponding auxiliary functions are easily found to be 

These must be substituted in (1), and a is the sum of the two values 
found when i of the formula becomes i — 1 and i+ 1. I t will be noticed that 
the function K will only occur in the form in which the i of (1) becomes 
i + 1; thus henceforth I write 

K = [2 (i + If + 1] m - (2i + l)v\ 

and as a further abbreviation write I ( 2 ) 

I = 2(i+lf + l J 

On completing the substitutions indicated, we find the solution to be 

d W- d 
a = (Ea? - Fr*) a ~ l - Gr*+a ~ (T^r""" 1 ) 

where 

„ i(i + 2)io-v „ (i+l)(2i+3)a> r =iw + (2i+l)u 
2(i-l)Kv' 2(2i + l)Kv ' (2i + l)Kv ' 
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Throughout the greater part of the present paper the elastic solid will be 
treated as incompressible, and it will be convenient to proceed at once to 
arrange this solution in such a form that the portion of the whole in which 
compressibility plays a part shall be separated from the rest. This may be 
effected as follows :— 

By means of (2) we have 

to = j[K+(2i+l)v] 

Thus a> may be eliminated, except in so far as it is involved in K. 

On substitution in (3) we find 

2Iv 
ï(t + 2_) , (i + l ) (2 i + 3) , 
(i-l) 

+Ml+ì) 
(2» + 1 ) 

.dWt 

dWi_ 
dai (2i + l)Iu 

_ _ d 
Cbiß 

(a2 - r2) - 2 r 2 i + 3 -f - ( Wir-*-1) 
dx dx 

.(4) 

Another and more useful form may be obtained from (4) by completing 
the differentiations in the second terms of each line; thus we find 

+ 

2Iv 
1 

2K 

i(i + 2) 

1 +í) 

-'- a2 + 3) r 2 
dWi i _ 

dx IV 

dWi 
(a2 - Srs) d x

 1 + 2 (2i + l)xWi . ( 5 ) 

When the solid is incompressible a becomes infinite compared with v, 
and K also becomes infinite. Thus the second line, which represents the 
effect of compressibility, will disappear. 

Let P, Q, R, S, T, U be the six stresses, across three planes mutually at-
right angles to one another at the point x, y, z, estimated as is usual in works 
on the theory of elasticity ; and let P, Q, R be tractions and not pressures. 

Then if we write 
g ¿a dß ^_ dy 

dx dy dz 
.(6) 

so that 8 is the dilatation, we have by the usual formula* 

da] 
F = (m-v)8 + 2v 

\dz dx 

da 
•0) 

and the other four stresses are expressed from these by the proper cyclic 
changes of letters. 

* Thomson and Tait's Natural Philosophy, § 693. 
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R7S W- d 
a = (La' - Mr*) - Nr*+* ~ ( ^V"" - 1 ) 

where 

T _ i (i + 2) co - iv (i+l)(2i + S) w-(2i + l)v „ _ 

2(i-\)Kv ' 2(2i + l)Kv ' (2i+l)Kv 

* Thomson and Tait's Natural Phihmphy, § 834, (8) and (9). 

In order to determine the stresses it is necessary to find the differential 
coefficients of the displacements with respect to x, y, z, and thence to 
determine 8. 

By means of the properties of harmonic and of homogeneous functions 
we find 

dx dy dz 

Ji±R® + B) Wi (8) 

We also have as — v = -j- — j v 

The final results of the processes indicated are as follows :— 

l f r » ( t + 2) , Jd'Wc . d W : . t . . T . w [ 

+ J ( l + j ) { ( B P - 3 0 ^ + 4 ( I - L ) . ^ - « ( I - L ) L F I } 

l f T i ( i + 2) (i.^J\d?Wi _/ dWt, dWA) 

+ ^ (L + j) ) K - 3 0 ^ + 2 (. - 1) + , -^)\ (9) 

The other four stresses are determinable by cyclic changes of letters. 

When the solid is incompressible the second l i n e s in these f o r m u l B e dis
appear. 

This is the required solution when the sphere is subject only to superficial 
normal stresses defined by Wiai\ri. 

We now turn to the second problem where there are no superficial stresses, 
but where there is a force acting throughout the whole sphere defined by the 
potential Wi. 

This problem has been solved by Lord Kelvin*, and the result is 
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464 ELASTIC SPHERE UNDER BODILY FORCE. [9 

If this solution be transformed in the same way as the last, and if we 
form S and P, T as before, we find 

21 v 

Ä Gr) - + 2 < s " + a > * ̂  
J= 2 (I + I) 2 + 1 ' (2*+ 1)" 

d'Wi 0_dWt 

+ i ( i ) { ( « ° ~ ^ d ^ + ^ - v * d * 

CM? J 

- 2i (i - 1) 

a " 2 F * 

dxdz 
3 [a? - 7 (-2 

(¿2 
dWA 
dx J 

+ ^ ( 7 ) { ( » , - 3 , ' ) S ^ + 2 ( * " 1 H ' , " 3 . " + '-SR 

As before when the solid is incompressible the second lines in the 
expressions for a, P and T vanish. 

On comparison between (5), (9) and (10) we see that for an incompressible 
solid a, 8, ry and S, T, U are the same for both problems, and P - Wit Q - Wt, 
R — Wt of the first problem are the same as P, Q, R of the second. In other 
words the solution of the first problem may be derived from that of the 
second by the addition of a hydrostatic pressure — Wt. 

For the immediate object in view we adopt the solution of the second 
problem when the solid is incompressible, and we then have 

dWt dWi 

.(10) 

dx* dx 

dWi 
dx 

.(11) 

The expressions for Q, R, S, U may be written down from these by means 
of cyclic changes of the symbols. 

In order to find the magnitudes and directions of the principal stresses at 
any point it would be necessary to solve a cubic equation. The solution of 
this equation appears to be difficult, but the special case in which it reduces 
to a quadratic equation will fortunately give adequate results. I t may be 
seen from considerations of symmetry that if Wi be a zonal harmonic, two of 
the principal stress-axes lie in a meridional plane and the third is perpendicular 
thereto. 
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I shall therefore take Wi to be a zonal harmonic, and as the future develop
ments will be by means of series (which though finite will be long for the 
higher orders of harmonics) I shall attend more especially to the equatorial 
regions of the sphere.] 

§ 2. The determination of the stresses when tlie disturbing potential is an 
even zonal harmonic. 

[In this section the stresses are found from the solution of the second 
problem of § 1. As pointed out, we are at the same time determining the 
stresses arising from the solution of the first problem.] 

If 8 be colatitude the expression for a zonal surface harmonic or Legendre's 
function of order i is 

cos* 9 - ^ c o s - 8 BIN- B + * ~ ^ ~ -3-> c o s - 6 sin* 6-... 

or if we begin by the other end of the series, and take i as an even number, 
the expression is 

¿2 i 2 (i — 2V 
sin* 9 - JT, sin*-2 8 cos2 8 + - A —-L s i n i - 4 g coa* g . 

2! 4! 2* FTI!}" 

This latter is the appropriate form when we wish to consider especially 
the equatorial regions, because cos 8 is small for that part of the sphere. 

There is of course a similar formula when t is odd, but of this I shall 
make no use. 

Let p 3 = a? + if, so that sin 8 = p/r, cos 8 = zjr. 

Then we may put 

w, , < - * • + * & = p r * . * a = i ^ = * t ...(12) 

Wi is a solid zonal harmonic of degree i; but r~* W{ requires multiplication 

by a factor (—)^l'i!/2* {^t!ja in order to make it a Legendre's function. 

The factors by which Wi must be deemed to be multiplied in order that 
it may be a potential, will be dropped for the present, to be inserted later. 
Or we may, if we like, suppose that the units of length or of time are so 
chosen as to make the factor equal to unity. 

Let 

A = I . A 4 , A = ^ > ^ = ^ | ^ & , . . . ( I 3 ) 

Then, dropping the suffix to W for brevity, we may write 

W = Bop' - Bzp'-'z* + Brf-** - fa*-** + (14) 

D . II . . 3 0 
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I shall now find P, Q, R, T at any point in the meridional plane which is 
determined by y = 0. 

In evaluating the first differential coefficients of W we must not put y = 0, 
in as far as these coefficients are a first step towards the determination of the 
second differential coefficients. But in as far as those first coefficients are 
directly involved in the expressions for P, Q, R, and T, and in the second 
coefficients in the same expressions, we may put y = 0, and thus write x in 
place of p. We have further 

Then 

dp dp dp . 2 ^ l 2 

PTx = X' Pdy = y' £ = °> = + & 

dW 
dx 

•- x [i/30p
l'-a - (·£ - 2) ftpi-'z* + (i - 4) piP^z*- ...] 

dW 

—j^j »= y [same series 

dW 

] 

d z - z [ - 2/8,p«- + 4 /V~ 4 * 2 - + ...] 

In differentiating a second time we may treat p as identical with x, 
because y is to be put equal to zero. Thus 

d2W 
-j— = i (i - l)^^-2 - (i - 2)(i - 3) fax^z* + (i - 4)0' - 5) Bix

i^zi - .. 

dfW 
dy 

dz2 

- = I ' / S O ^ - 2
 - 0 '- 2)fax^z* + (i - 4) Six

i~6zi - ... 

= - 1.2/3 2a
i- a + 3 . 4 / V * - V - 5.Qftx^z 1 + ... 

d2W 
dxdz 
d*W 
dxdy 

.(15) 

= xz [ - 2 (i - 2) fta*-* + 4 ({ - 4) ¡3^-"z> - 6 (i - 6) ̂ a ? - 8 ^ + ... ] 

D 2 F 
= 0, dydz = 0 

Also treating p as identical with x, and putting 2/ = 0, 

xi[x i / 9 o a ! l " ( { ~ ^ P*^'2*2 + - 4 ) ft**"*** • 

^ dy 

2^=-2B^~2z2 + 4/848*-««* - 6/8,«^«· + ..· 

.(16) 

. ( 17 ) 

dW dW 
+ [ (»-4) A - 6 / 5 , ] 

D)f DM 
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da; 

- 2y -,— + 117 = ift a* - iB^x^z* + iBtX^z* 
dy 

dW 
+ iW = ipox* - (i - 4 ) f t ^ - 2 ^ + ( i - 8 ) f t a ; ^a* -

y...(20) 

d2W 
r2 ^ = xx [ - 2 (i - 2) ftaf-' - [2 (i - 2) ft - 4 (i - 4) ft] x^z2 

+ [4 ( I - 4) ft - 6 (i - 6) ft] x™z* -...} ...(21) 

Then multiplying (19) by - (i + 3), (20) by 3, and (15) by Ja2, and adding 
them each to each, we get the expressions for P, Q, R. 

Also multiplying (21) by - ( ¿ + 3), (18) by - 3 , and (16) by Ja? and 
adding, we get the expression for T. The results are 

7P = - [(i + 3) i (i - 1) + 3i] ft xi 

+ [{(* + 3) (i - 2) (i - 3) + 3 ( I - 4)} ft - (t + 3) i (i - 1) ft] 
-[{(» + 3) (i - 4) (i - 5) + 3 (i - 8)} ft - <t + 3) (i - 2) (i - 3) ft] a ^ V 
+ [{(i + 3) (. - 6) ( I - 7) + 3 (i - 12)} ft 

- (i + 3) (i - 4) (i - 5) ft] x^s? - ... 
+ Ja2 [i (i -1) fta;^ - (i - 2) (i - 3) fta^2 + (i - 4) (i - 5) ft^-6*4 - ...] 

/R = [(t + 3). 1. 2ft + 3ift] a,* - [(i + 3). 3. 4ft - {(i + 3). 1.2 - 3 (i - 4) | ft] 

+ [(%'+ 3) .5 .6f t -{(» + 3 ) . 3 . 4 - 3 (t - 8)} ft] a;*-** 
- [(i + 3 ) . 7 . 8 f t - { ( I + 3).5.6 - 3 ( t - 12)} ft] «*-·«·+... 
- 7a 2 [ 1 . 2fta;'-a - 3 . 4fta; i- 1^ + 5 . ef t .^" 6 ^ - ...] 

30—2 

These various results have now to be introduced into the expressions (11) 
for P, Q, R, S, T, IT. 

In performing these operations it will be convenient to write J for 
i (i + 2)/(i - 1). Also r3 = p 3 + z2 = a? + z2, when y = 0. 

From these formulae we see that S = 0, U = 0; which shows that a 
meridional plane is one of the three principal planes, a result already observed 
from principles of symmetry. 

Now 

d2W 
7*~dtf=i(-i~ l ) ^ x i + V<*' - a>& - (* - 2 ) (* - 3> ft) 

- [ ( i - 2) (» - 3) ft - (» - 4) (i - 5) ft] ^ " V + ... 

d2W 
^~ay= ilS°xi + ~ ( l ' " 2 ) ^ ~[ (l""2) ^ ~(*" 4 ) A ] +•' · 

r" - j — = - 1.2ft a;'" - [1. 2ft - 3. 4ft] a;1'-**2 + [3. 4ft - 5 . 6ft] a^* 4 - ... 

(18) 
dW 

- 2x -j- + iW=- iBax
l + (i- 4 ) f t ^ - V - ( « ' - 8 ) f t a ^ z 4 + .. 
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468 THE STRESSES WHEN THE DISTURBING FORCES ARE ZONAL. [9 

/Q = - [ ( * + 3) i - Si] ft a* + [{(» + 3) (* - 2) - Si} ft - (i + 3) iftc] x^'z* 

- [ [ ( { + 3) (i - 4) - Si} 04 - 0' + 3) (i - 2) ft] a;*-V 

+ tl(i + 3) (i - 6) - 3i} /8. - (i" + 3) (t - 4)ft] ar** - ... 

+ / a 2 [l'a;*-8 - (i - 2) fta;*-^2 + (i - 4) ftaj'-V - ...] 

/T 
— = [{({ + S) 2 (i - 2) + 3 . 2} ft, - Sift,] a — 

- [[({ + 3) 4 (i - 4) + 3 . 4] ftt - {(i + 3) 2 (i - 2) + 3 (i - 2)} ft] a*-4*2 

+ [{(i + 3) 6 (z - 6) + 3 . 6) ft - {(i + 3) 4 (* - 4) + 3 (i - 4)} ft] x^z* 

- [[(i + 3) 8 (t - 8) + 3 . 8) ft - {(i + 3) 6 (i - 6) + 3 (i - 6)} ft] xi~V+... 
- Ja? [2 (i - 2) fta*"4 - 4 (i - 4) fta—z2 + 6 (i - 6) fta;—^ - ...] 

The general law of formation of the successive coefficients is obvious, and 
it is easy to write down the general term in each of the eight series involved 
in these four expressions ; the best way indeed of obtaining the formula? 
given below is to write down and transform the general term. 

The semi-polar coordinates used hitherto are not so convenient as true 
polar coordinates ; I therefore substitute r, radius vector, and I, latitude, for 
the x , z system, and putting x = r cos I, z = r sin I write 

P = r*cos* I ( A 0 + A 2 tan 21 + Attan* 1 + ...) s 
+ a 2 r* - 2 cos*- 2 l (B Q + B2tan21 + B i tan 4 1 + ...) 

K, = r* cos* I (C0 + C2 tan 2 1 + (\ tan 1 1 + ...) 
+ aV" 2 cos*- 2 1 (D„ + D 2 t an 2 1 + D 4 t a n 4 1 + ...) 

y-(22) 
T = r* sin I cos*-11 ( E 0 + E 2 tan 2 1 + # 4 tan4 / + ...) 

+ t iV" 2 sin I cos*-31 (F„ + F2 tan 21 + Ft t a n 4 1 + . . . ) 

Q = r* cos* I(G0 + G2tan21 + G 4 t w H + ...) 

Introducing for J and for the fts their values in terms of i, I find that 
the coefficients A , B , &c, are reducible to the forms given in the following 
equations :— 
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1882] THE STRESSES WHEN THE DISTURBING FORCES ARE ZONAL. 

/ Λ = -5-1{»(» + 2)(»-0)-3.0.(» + 1)} + 0.(»-Γ-3) (» + 2)(i + l)ì 
= -*(! + 2) 

IAt = £{{i (i - 0) (í - 2) - 3.2 (i - 1)} - ì ({ + 3) (i + 0) (i -1 ) 

IAk = - *-^p£ {l- (t- _ 2) (» - 4) - 3 .4 (i - 3)] 

+ £¡<; + 3)(.-2)(i-3) 

, = Ü Ü ^ L ^ C ^ ) 2 Í¿(¿-4)(»-6)-3.6 (i-5)J 

_ι1(ΐ_-2)2

(. + 3 Κ . _ 4 ) ( . _ 5 ) 

&c. = &e. 

&c. = &c. 

.(23) 

IC* = o, {0+ 3) i* - [i (1 {- 2} - 1) + 3 . 0.1]} = i [{i + 1) (i + 2) + 1] ¡ 

ICt = - 2 , {(i + 3) (i - 2)' - [i (3 .0 - 1) + 3.2 .3]| 

IC< = *-^^ ((i + 3) (i - 4)* - [I (5 .2 - 1 ) + 3 . 4.5]} 

IC, = - ilStL2yi^ï {(i + 3) (i - 6)» - [i (7.4 - 1) + 3. β . 7]} 
&c. = &c. 

τη - l > ' ± 2 ) t 
° ~ _ t - 1 0! 

L ~ I - Γ ~ 2 T ~ 
τη - i(i+2)it(i-2)t(i-iy 
&c. = &c. 

h - ( 2 4 ) 
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I E " = ~ f ! * [ 1 ( 3 ' + 3 ) ~ * ( l ' ~ 0 ) ( * + 1 ) ] = * ( * + 1 ] ( * " ~ 3 ) ^ 

IEt = ~ ( i - 2) [3 (5i + 3 ) - » ( i - 2) (t - 1)] 

= - (i - 4) [5 (1i + 3 ) - 1 ( i - 4) (» - 3)] 

IE. = » ' ( * - 2 y ( * z i ) ; ( » _ 6 ) [ 7 ( 9 i + 3 ) - 1 (» - 6) (i - 5)] 

fee. = &c. 

IFa = - i3 (i2 - 4) 

7 ^ 1 3 ! 

7 ^ 4 = 
i 3 ( ^ 2 - 4 ) ( i - 2 ) ( i - 4 ) 2 ( * ' - 6 ) 

i - 1 
r „ _ i ' ( t » - 4) (i - 2) (i - 4) 2(i - 6)2 (i - 8) 

&c. = &c. 

.(25) 

10, = - 0 , {i (i - 0) - 3 .0} + 0 . ( t + 3) (i + 2) = - i* 

IG, 1 
= - { t ( i _ 2 ) - 3 . 2 } - ^ ( i + 3 ) i 

I G i = - [. (* - 4) - 3 . 4} + ~ (i + 3) (i - 2) 

&c. = &c. 
_ t ( » + 2 ) 1 

J / i o ~ t - 1 " 0 ! ' 

7 i 7 , = -
t ( i + 2 ) * » 

i - 1 
&c. = &c. 

4 ! 

.(26) 

These sets of coefficients are all written down in such a form that the 
laws of their formation are obvious, and the general terms may easily be 
found. I have computed their values from these formula! for the even zonal 
harmonics of orders 2, 4, 6, 8, 10, 12; the results are given in the following 
tables both in the form of fractions and of decimals approximately equal to 
those fractions. 

The 67's and II's were not computed because their values were not required 
for subsequent operations. 
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TABLE I. The coefficients for expressing the stress P. 

i ^ 0 ^ 2 Ai to
 

P-2 B 4 

2 
1 9 

- -8421 

_ 2 2 
1 » 

- 1 - 1 5 7 9 

+ tt 
+ -8421 

4 " f t 

- 1 - 8 8 2 4 

5 1 

+ -5490 

+ tf 
+ 2-8235 

+ Î* 
+ 1-8824 

_ J _ 2 8 
5 1 

- 2 - 5 0 9 8 

6 
_ 3.2 

1 1 

- 2 - 9 0 9 1 

+ 18 

+ 1 8 - 0 0 0 0 

4 . J 8 A 
T 1 1 

+ 16-7273 

_ 2 7_2_ 
5 5 

- 4 - 9 4 5 5 
+ Î Î 

+ 2-9091 

- 1 1 5 ! 
5 6 

- 2 0 - 9 4 5 5 

4 - 2 5 6 
' 5 5 

+ 4-6545 

8 
- m 

- 3-9264 + 63-3620 

- w 
- 1 2 - 9 5 7 1 - 74-6012 

+ îtë 
+ 3-9264 

_i.booü 
1 1 4 1 

- 6 7 - 3 0 9 4 

4_S_2JtLD 
• 1 1 4 1 

+ 80-7713 

_ H 1 9 2 
1 1 4 1 

- 7 - 1 7 9 7 

10 - w 
- 4-9383 +148-6831 - 2 8 4 - 7 7 3 7 

_ 5 _ 6 U O O 
2 4 3 

- 2 3 0 - 4 5 2 7 

+ A Û U 
' 8 1 

+ 4-9383 

_ U J L O J I P 
721) 

- 1 5 3 - 6 3 5 2 

+ aa^o da. 

+ 438-9561 

2 4 3 

- 210-6996 

12 - l i t 
- 5 - 9 4 6 9 + 285-9823 

_ î a & D ^ a 

- 1 2 2 1 - 2 3 8 9 

T 1 1 3 

+ 212-3894 
+ Ì H 

+ 5-9469 

_ a f i ? 8 8 f l 
1 2 4 3 

- 2 9 1 - 9 3 8 9 

4 - i 8 _ 8 j j m a 
' 1 2 4 3 

+ 1513-7570 

_ 2 ^ 5 0 4,00. 
1 2 Ï 3 

- 1 7 3 0 - 0 0 8 0 

TABLE II. The coefficients for expressing the stress E. 

i Co C 2 Ci c 6 ih Di D „ 

2 
+ ÏS 

+ 1-3684 
+ Î * 

+ 1-6842 
-H 

- 1 - 6 8 4 2 

4 
4 - 1 2 A 
' 5 1 

+ 2-4314 

_ 1 1 a 
5 1 

- 2 - 1 9 6 1 

_ 2 5J1 
5 ] 

- 5 - 0 1 9 6 

_ 1 2 S 
5 1 

- 2-5098 

4 - 2 A « 
5 1 

+ 5-0196 

6 
+ 38 

+ 3 4545 

- 2 4 

- 2 4 0 0 0 0 

_ 2JL8 
1 1 

- 1 8 - 9 0 9 1 

4 - A J a 

+ 9-3091 

5 5 

- 3-4909 

T 5 5 

+ 27-9273 

_ A l 2. 
fi 5 

- 9 - 3 0 9 1 

8 + H I 

+ 4-4663 
- w 

- 7 5 - 7 7 9 1 

+ W 
+ 25-9141 

4 . 1 4 2 8 & 
+ 8 1 5 

+ 93-6049 

_ 5 1 2 0 
1 1 4 1 

- 4 - 4 8 7 3 

4 . Ä 2 L 6 0 
' 1 1 4 1 

+ 80-7713 

_ 1 2 2 8 S 0 
1 1 4 1 

- 1 0 7 - 6 9 5 0 

4 . 1 8 3 8 4 
T 1 1 4 1 

+ 14-3593 

10 + W 
+ 5-4733 

2 4 3 

- 1 6 9 - 5 4 7 3 

+ a î ! F 
+ 348-9712 

+ W 
+ 247-5720 

_ 4 0 0 0 
" T 2 Û 

- 5-4870 

4 . i^sjjoa 

+ 175-5830 

- zafQgQ 
- 5 2 6 - 7 4 9 0 

+ ï^4_&po 

+ 280-9328 

12 
T 1 1 5 

+ 6-4779 

l i s 

- 3 1 7 - 3 0 9 7 

T 1 I l i 

+ 1401-7700 

_ a a t o a 
1 1 3 

- 3 3 9 8 2 3 0 

_ .80.114, 
1 2 4 3 

- 6-4875 

4 - t.oaapfl 
T 1 2 4 a 

+ 324-3765 

_ 2150^4^111 

- 1 7 3 0 - 0 0 8 0 

~ 1 2 4 3 

+ 2076-0097 
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TABLE I I I . The coefficients for expressing the stress T. 

i Eo E 2 * 2 Fs 

2 
+A 

+ 3 1 5 8 

4 
+ !? 51 

4 
+ 5 - 0 9 8 0 + 4 - 7 0 5 9 - 5 - 0 1 9 6 

6 
+ 14 _ Ai 

1 1 
_ m a s 

5 6 
4.122.4. 
I 5 5 

6 
+ 1 4 - 0 0 0 0 - 5 - 0 9 0 9 - 1 8 - 3 2 7 3 - 1 3 - 9 6 3 6 + 1 8 - 6 1 8 2 

CO
 

I ¿ 4 4 2 2 4 
' 5 7 0 5 

_ 3Q7JZA 
1 1 4 1 

_ 4JUL5 2 
1 U 1 

CO
 

+ 2 6 - 9 4 4 8 - 8 1 - 2 7 6 1 - 6 3 6 0 7 4 + 4 2 - 8 0 8 8 - 2 6 - 9 2 3 8 + 1 0 7 6 9 5 0 - 4 3 - 0 7 8 0 

1 0 
+ 1 « t t a -HW 4 . 5 7 ZHOU 

^ 1 7 0 1 7 2 9 T 7 2 0 - W 
1 0 

+ 4 3 - 9 0 9 5 - 3 0 7 - 8 1 8 9 + 7 2 - 4 2 8 0 + 3 3 9 - 3 7 6 9 - 4 3 - 8 9 5 8 + 3 5 1 - 1 6 6 0 - 4 2 1 - 3 9 9 2 + 8 0 - 2 6 6 4 

1 2 
+ 1\WD 

_ ISO 6_4FL 
1 2 4 3 

_2JIAI)4AFL 
1 2 4 3 ^ 1-243 

1 2 
+ 6 4 - 8 8 5 0 - 8 0 0 - 7 0 8 9 + 1 2 1 4 - 8 6 7 3 + 8 8 3 - 5 3 9 8 - 6 4 - 8 7 5 3 + 8 6 5 - 0 0 4 0 - 2 0 7 6 - 0 0 9 7 + 1 1 8 6 - 2 9 1 2 

If be a 2nd, 4th, or 6th harmonic these tables give the complete 
expressions for P, R, and T; if W be an 8th harmonic the only further 
coefficients required are As and Cg. 

For the cases of the 10th and 12th harmonics the values in the tables are 
sufficient to give the stresses approximately over a wide equatorial belt, 
because the series for P, R, T proceed by powers of the tangent of the 
latitude, and the omitted terms involve high powers of that tangent. I t 
would hardly be safe however to apply the formula—at least as regards the 
12th harmonic—for latitudes greater than 15°, because the coefficients are 
large. 

§ 3. On the direction and magnitude of the principal stresses in 
a strained elastic solid. 

Let P, Q, R, S, T, U specify the stresses in a homogeneously stressed and 
strained elastic solid. Let I, TO, n be the direction cosines of a principal 
stress axis. 

The consideration, that at the extremity of a principal axis the normal to 
the stress quadric is coincident with the radius vector, gives the equations 

(P - X) I + Urn + Tn = 0 

Ul + (Q-\)m + Sn = 0 

T/ + S/« + ( R - \ ) n = 0 
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These equations lead to the discriminating cubic for the determination of 
X, and the solution for I, m , n is then 

l" m2 n" 
(Q-^xj(R- A . ) - = ( T ^ X Y P ^ X Y ^ = ( T ^ M C Q ^ O ^ T ? 

In the case considered in the preceding sections S and U vanish, and the 
cubic reduces to the quadratic 

(P - X) (R - \ ) - T 2 = 0 
of which the solution is 

2X = P + R ± V ( P - R ) 2 + 4T 2 

ni is obviously zero and I, n are determinable from 

Z 2 ( P - X ) = n 2 ( R - X ) 
Let I = cos SJ, n = sin ^ 

Then it is easily proved that · 

co t2^ = P

2 ~ R (27) 

This equation gives the directions of the principal stress-axes. 

The two principal stresses N„ N 3 are the two values of X, so that 

N, = j (P + R) + j V ( P ^ R ) 2 + 4T2 \ • 
N 3 = J (P + R) - 1 V(P - R)2 + 4T 2 J 

and the third principal stress is of course Q. 
When an elastic solid is in a state of stress it is supposed, in all probability 

with justice, that the tendency of the solid to rupture at any point is to be 
estimated by the form of the stress quadric. At any rate the hypothesis is 
here adopted that the tendency to break is to be estimated by the difference 
between the greatest and least principal stresses. For the sake of brevity 
I shall refer to the difference between the greatest and least principal stresses 
as " the stress-difference." This quantity I shall find it convenient to indicate 
by A. 

We may also look at the subject from another point of view:—It is a 
well-known theorem in the theory of elastic solids that the greatest shearing 
stress at any point is equal to a half of the stress-difference. I t is difficult to 
conceive any mode in which an elastic solid can rupture except by shearing, 
and hence it appears that the greatest shearing stress is a proper measure of 
the tendency to break. This measure of tendency to break is exactly one-
half of the stress-difference, and it is therefore a matter of indifference 
whether we take greatest shearing stress or stress-difference. For the sake 
of comparison with experimental results as to the stresses under which wires 
and rods of various materials will break and crush, I have found it more con-
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venient to use stress-difference throughout; but the results may all be reduced 
to shearing stresses by merely halving the numbers given. 

[In the case where N a is the mean of the principal stresses we have 
from (28)] 

A = V(P - R) a + 4T 2 (29) 

[If however N 2 is the least of the stresses we have 
A = N 1 - N 2 (30)] 

§ 4. The application of previous analysis to the determination of the 
stresses produced by the weight of superficial inequalities. 

[In this section I shall in the first instance consider the formula? for the 
stresses when the solid is supposed to be compressible, and shall afterwards 
proceed to the limit when the solid is treated as incompressible. This is the 
plan already followed above in § 1. 

Suppose that r = a + hst is the equation to an harmonic spheroid of the 
ith order, forming inequalities on the surface of the sphere, whose density 
is w. 

There are two causes of stress in the interior of the sphere; the first of 
these is the weight of the inequalities, acting only on the surface; the second 
is the attraction of the inequalities acting throughout the whole sphere. 
These two causes correspond to the two problems solved in § 1. 

The weight of the inequalities gives rise to a superficial normal traction 
equal to — gwh^. Hence in using the solutions (5) and (9) of the first 
problem we must put — gwhri^i/ai for Wi. 

As regards the second cause (the attraction of the inequalities), the 
potential of the layer of matter h<a in the interior of the sphere is 
3gwhr{(>i/(2i + 1) a1; this is the value which must be attributed to Wi when 
we use the solution (10) of the second problem. 

We see then that the potential to be used in the solution of the second 
problem is — 3/(2i + 1) times the potential to be used in the solution of the 
first problem, 

The solution of the first problem for a, P, T is the same as that for the 
second with certain additional terms. In so far as the two solutions are the 
same the two problems may be fused together, when the two causes cooperate, 
by using the solution of the second problem with 
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In as far as concerns the additional terms arising from the solution of the 
problem in its first form, if we adopt the definition that 

2 (»'-!>,»,. J,1"** 

the value of W{ to be used in these additional terms is 

r \ ; 2i + l w 

In this way we see that the complete solution of the problem is 

1 

(31) 

a = 2Iv 

1 
2K 

dW{ , i fjr 
ax lv 

2i+l i 
L 2 ( ^ - l ) + 7 ] 

dW-
(a*-3r*)Cb£ï + 2(2i + l)œWi 

' - 7 ¿ - 1 
a1 - (i + 3) r 2 

dx* b dx + 2(i-l) W l 

+ 

T: 

K 

i 

1 
V 

2 i + l % 
+ 

2 (i - 1 ) 7 

i (i + 2) 

(a 2 - 3r 2) 4- 4 (i - 1) x ^ - 2i (i - 1 ) W, 

i-1 
- ( i + 3 ) r 2 

d'W _ / 

2 i '+ l *' 

K [ 2 ( 1 - 1 ) ^ 7 
^-^dxdz + 2 ( - l - l ) ( X - ^ + Z dz dx 

.(32) 

where Wi has the value defined above in (31), and where the other com
ponents of displacement and the other stresses are to be found by cyclic 
changes of letters. 

If now we proceed to the limit when the solid is incompressible, K becomes 
infinite and (32) becomes 

7 P - * ± 1 F< = 
2 ( t - l ) 

7T 

i £ + 2 ) 0 . _ ( i + 3 ) » -
i — l 

^ ^ + 2 _ ) a S - ( t - + 3)r 2 

i — l 

d'Wi dWt,„.w 

- ^ - 6 x ~ d x + 3 l W i 

d*Wj 3(xdWt dWj 
dxdz \ dz dx 

.(33) 

These are the quantities which are tabulated in § 2 under the headings 

P, Q, R. T. 

If we write = sinf 0 - ~ sin*"2 9 cos2 6 + &c. 

where 6 is the colatitude, h is the height above the mean sphere of the 
elevation at the equator. 

Now Wi was put equal to r 1 ^ iu § 2.] 
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§ 5*. The state of stress due to ellipticity of figure or to 
tide-generating forces. 

When the potential W{ is a solid harmonic of the second degree, the 
solution found will give the stresses caused by oblateness or prolateness of 
the spheroid. It will also serve for the case of a rotating spheroid with more 
or less oblateness than is appropriate for the equilibrium figure. When an 
elastic sphere is under the action of tide-generating forces, the disturbing 
potential is a solid harmonic of the second degree, and therefore the present 
solution will apply to this case also. 

If we extract the case i = 2 from Tables I, II, IIT, and put i = 2 in (33), 
and substitute colatitude 9 for latitude I, we have after some simple 
reductions 

1 9 ( P - | T T a ) = 16aa - (19 + 3 cos 2t9) r s ^ 
19 (R — f W2) = - 32a2 + (29 + 3 cos 26) r2 

19 (Q - %WS) = 16a2 - (13 + 9 cos 26) r2 

19T = 3sin26»r2 , 
Let Nj, N 2 , N 3 , be the three principal stresses, each diminished by § W2, 

so that 
N -t- s W ) 

N ; + » w i = * ( P + R ) 1
 * V { ( P - R ) 2 + 4 T H 

Then 
19N 1 •> = - 8a2 + 5r* + 3 -/[64 (a2 - r 2 ) 2 + r* - 16r2 (a2 - r2) cos 29} ] 

19N2 = 16a2 - 13r2 - 9r 2 cos 26 j 

Now let us find the surfaces, if any, over which N 2 = Nj or N 3 . They are 
obviously given by 

24a2 - 18?-2 - Qr2cos 26 = ± 3 V(64(a 2 - r2)2 + ... &c.} 

* This section in its present form is extracted from " Note on a previous paper," Proc. Roy. 
Soc, 1885. 

Thus in order to apply the preceding results to finding the stresses caused 
in a sphere, possessing the power of gravitation, by the weight and attraction 
of surface inequalities expressed by 

r = a + h<a (34) 
we must multiply the preceding results for P, R, T, Q by 

_ 2 J * - 1 ) ^ 
2% + 1 a1 K ' 
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This easily reduces to 
r 2 (1 - cos 28) [32a2 - 20r2 - 9r 2 (1 4- cos 20)] = 0 

Thus the solutions are 
r = 0 \ 
0 = 0 and 7T (36) 

and 3 2 a 2 - 20 (x*-+ y*) - 38^2 = oJ 
By trial it is easy to see that at the centre and all along the polar axis 

N a = N j , and that inside the ellipsoid 10 (a;2 + y2) + 19^2 = 16a2, N 2 is greater 
than N,, and outside it is less. 

Hence inside the ellipsoid N 2 — N 3 and outside it N \ — N 3 is the stress-
difference. N 2 — N 3 vanishes nowhere so long as N 2 is not equal to N 1 ; 

and N x — N 3 vanishes where r = \ \j2 . a = "9428a and 8 = 0, which is inside 
the region for which N i — N 3 is the stress-difference. This is the only point 
in the whole sphere for which the stress-difference vanishes. 

The ellipsoid of separation cuts the sphere in colatitude sin^ 1^ or 35° 16'. 
If we put A for stress-difference, between the centre and the ellipsoid 

19 A = 24a2 - 18r-2 - Qr2 cos 28 
+ 3 V{64 (a2 - r 2) 2 + r 4 - 16 (a2 - r 2) r* cos 28] (37) 

and between the polar surface regions and the ellipsoid 
19A = 6 V(64 (a2 - r 2 ) 2 + r* - 16 (a2 - r 2) r 2 cos 28] (38) 

This last also holds for the whole polar axis, along which 
19 A = 6 (8a2 - 9r2) or 6 (9>-2 - 8a2) 

In order to find the actual value of A in any special case, we have to 
multiply the expression for A by appropriate factors, to be determined here
after. For the present it will be convenient to omit these factors. 

We may now from (37) and (38) determine the distribution of stress-
difference throughout the sphere. 

By computation and graphical interpolation I have drawn the figure (1), 
showing the curves of equal stress-difference throughout a meridional section 
of the sphere. The numbers written on the curves give the values of 19A, 
when the radius of the sphere is unity. The point marked 0 is that where A 
vanishes. 

The dotted curve is the ellipse of separation cutting the circle in colatitude 
35° 16'. 

Over the polar cap and at the surface 19A is constant and equal to 6; at 
the surface from colatitude 35° 16' to the equator 19A increases from 6 to 18, 
varying as the square of the sine of the colatitude. 
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If this figure be made to rotate about the polar axis, the several curves 
will of course generate the surfaces of equal stress-difference throughout the 
sphere. 

Writing 5- for the inclination of one of the principal axes to the equator, 
wc have by means of the formula (27) 

cot 2^ = = 8 \—v - 1 j cosec 28 - cot 26 21 [r2 ) 
It would be easy to trace out the changes of direction of the principal 

stress-axes throughout the sphere, but I will only now make the observation 
that all over the surface they are parallel to and perpendicular to the surface, 
and that at the centre they are polar and equatorial, the stress-quadric being 
of course an ellipsoid of revolution. 

We have next to find the actual amount of stress-difference which arises 
from given ellipticity of form of the spheroid. Putting i = 2 we have 

?i = sin2 6-2 cos2 9 = 3 - cos2 6] 
The equation to the spheroid is 

r = a + h<a 

l + 3 - ( i - cos2 6) a a [1 + e (i - cos2 6)] 

Thus 3h/a is the ellipticity of the spheroid, which we may put equal to e. 
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a' a4 

A = - A W ^ { 6 4 ( l - £ ) ' + £ - 1 6 ( l - £ cos 20 

y...(39) 

/ 
Throughout the polar caps the latter is greater, and throughout the rest 

of the ellipsoid the former is greater. 
If we estimate the forces in gravitation units the factor g must be 

omitted. 
Over the polar cap at the surface, the stress-difference 

4ewa A = nlr-, a constant 95 
Over the rest of the surface it increases as the square of the sine of the 

colatitude and is given by the formula 
12wa . -

The stress-difference at the centre is 
32wa 

A = — 95 
In these formulae the negative sign has clearly no significance and may be 

omitted.] 
To apply this to the case of the earth, take a = 637 x 10 s cm., and w = 5 66, 

and we find the polar and equatorial stress-differences at the surface to be 
respectively 152e and 456e metric tonnes per square centimetre ; the central 
stress-difference is 1214e metric tonnes per square centimetre. 

If these numbers be multiplied by 6'34, we get the same results expressed 
in tons per square inch. Thus in British units these three stress-differences 
are 962e, 2887e and 7698e. 

If then the ellipticity e be T r j o i j t h , at the pole and equator on the surface 
and at the centre, the stress-differences will be nearly 1 ton, 3 tons, and 
nearly 8 tons to the square inch respectively. 

[It was shown in (31) § 4 that the results for P -§W3, Q - f W2, K, - f Wa, 

T are to be multiplied by — § , and this will of course also be the factor 

for the stress-difference A. 
Substituting e for 3h/a, and introducing the factor -fe, which has been 

omitted in considering the distribution of stress-difference throughout the 
sphere, we see that ellipticity e gives a stress-difference represented by the 
greater of the two expressions 

A = - ^ egw 8 - 6 - 3 -° cos 26 
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From the Table VII. in § 9 it will appear that cast brass ruptures with a 
stress-difference of about 8 tons to the square inch. 

Thus a spheroid, made of material as strong as brass, and of the same 
dimensions and density as the earth, would only just support an excess or 
deficiency of ellipticity equal to jcVoth, above or below the equilibrium 
ellipticity adapted for its rotation. 

The following is a second example :—If the homogeneous earth (with 
ellipticity were to stop rotating, the stress-difference at the centre would 
be 33 tons per square inch. 

Now suppose the cause of internal stress to be the moon's tide-generating 
influence, and let m = moon's mass, and o = moon's distance. 

Then the potential under which the earth is stressed is 

- t 5 a - « M » 6) wr* 

or according to the notation of § 4 
- 4 R I O T ' S , 

If we took into account the elastic yielding of the earth and the weight 
and attraction of the tidal protuberance, this potential would have to be 
diminished. To estimate the diminution we must of course know the amount 
of elastic yielding, but as there is no means of approximating thereto, it will 
be left out of account. 

Then it is obvious that the factor by which A, as given in (39), must be 
multiplied in order to give the stress-difference is ^-mw/c3. Thus the surface 
stress-difference at the polar cap is -fa. | (m/c3) wa? in absolute force units. 

Putting M for the earth's mass, and dividing by gravity, we have 
Y§ (ma?jM&) wa as the polar surface value of A in gravitation units. The 
central value of A is of course eight times as great. 

With the numerical data used above, wa = 3r>05 metric tonnes per 
square cm., and mjM = a/'c— whence the polar surface stress-difference 
is 32 grammes, and the central stress-difference 257 grammes per square 
centimetre. 

But this conclusion is erroneous for the following reason. If we suppose 
the moon to revolve in the terrestrial equator, and imagine that the meridian 
from which longitudes are measured is the meridian in which the moon 
stands at the instant under consideration, the tide-generating potential is 

- f - ^ [ i - s i n ^ c o s ' <p] 
0 

This expression may be written 
7)1, 

\ ~ ? e (̂  - cos2 6 + sin2 6 cos 2cp) 
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The former of these terms produces a permanent increase of the earth's 
ellipticity, and is confused and lost in the ellipticity due to terrestrial 
rotation, and can produce no stress in the earth. The second term is the true 
tide-generating potential, but it is a sectorial harmonic, and I have failed to 
treat such cases. Now the first of these terms causes ellipticity in a homo
geneous earth equal to (%ajg) (fm/c3) according to the equilibrium-tide theory. 
This ellipticity is equal to '1039 x 10 - 6 , an excessively small quantity. If 
however this permanent ellipticity does not exist (and the above investigation 
in reality presumes it not to exist), then there will be a superficial stress-
difference at the poles equal to 152 x '1039 x 1 0 - 6 metric tonnes per square 
centimetre, and a central stress-difference of eight times as much. 

Since a metric tonne is a million grammes this polar surface stress-
difference is 16 grammes, and the central 128 grammes per square centimetre. 
These stress-differences are exactly the halves of those which have been com
puted above. Thus the remaining stress-difference which is due to the moon's 
tide-generating influence is 16 grammes at the surface and 128 grammes at 
the centre per square centimetre. 

A flaw in this reasoning is that stress-difference is a non-linear function 
of the stresses, and therefore the stress-difference arising from the sum of two 
sets of bodily stresses is not the sum of their separate stress-differences. 

I conceive however that the above conclusion is not likely to be much 
wrong. 

These stresses are very small compared with those arising from the weights 
of mountains and continents as computed below, nevertheless they are so 
considerable that we can understand the enormous rigidity which Sir William 
Thomson has shown that the earth must possess in order to resist considerable 
tidal deformations of its mass. 

§ 6. On the stresses due to a series of parallel mountain chains. 

Having considered the case of the second harmonic, I now pass to the 
other extreme and suppose the order of harmonics i to be infinitely great, 
whilst the radius of the sphere is also infinitely great. 

The equatorial belt now becomes infinitely wide, and the surface inequali
ties consist of a number of parallel simple harmonic mountains and valleys. 

If i be infinitely large, we have from (12) 

Now let f be the depth below the surface of the point indicated in the 
sphere (now infinitely large) by x, y, z. 

As the formula? given above apply to the meridional plane for which 
y = 0, we have p = a — 

D . I I , 31 
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Let b = a/i, then when both i and a are infinite 

and since in the limit pji = a/i = b, 

= (a*) e~*6 cos | 

This expression for TT involves the infinite factor a1, and in order to get 
rid of it we must now consider the factor by which it is to be multiplied, in 
introducing the height of the mountains and gravity. 

This factor is computed in § 4 ; it is there shown that if r = a + hti be a 
harmonic spheroid, the factor is — 2 (i — 1) gwh/(2i + 1) a*. 

Now if the harmonic i be of an infinitely high order, ?f becomes simply 
cos z\b, and the equation to the surface is 

f = — h cos | 

f being measured downwards. Thus the harmonic spheroid hst now represents 
a series of parallel harmonic mountains and valleys of height and depth h, and 
wave-length 27rfe. 

The factor becomes — gwhja1, when i is infinite. 
Thus the effective disturbing potential W, which is competent to produce 

the same state of stress and strain as the weight of the mountains and valleys, 
is given by 

W=— gwhe~t'b cos | (40) 

Now revert to the expressions (33) for the stresses. 
When i is infinite I = 2i2, and they become, on changing x into (a — f) 

„ 1 w 1 , , r,d*W Q(a-^)dW 3 „ 
P " M i W = S < ° - r ) W + W + 2i W i 

1 ri*W din 
2 i v ' d f d s 2i 2 

As shown above a a — r 1 = 2a!1, and a/i = 6 in the limit; making these 
substitutions, and dropping the terms which become infinitely small when i 
is infinite, we have 

„ „, d2W „ d?W\ 

and by a similar process }• (41) 
d2W 

Q = o 

a c 
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Then from (40) and (41) we have 

P = 
gwh I e~Clb cos ^ 

gwh | e - ^ cos ^ \ 

gwh j e~£>b sin % J 

R = (42) 

T = 

Since the stress-difference 

A = V(P - Rf + 4T2 

we have A = 2gwh~ e t i b ... (43) 

The directions of the stress-axes are given by 
p |^ 

cot 2*5 = - ^7=— = cot 5 
z 

so that Ä = \ (44) 

Equation (43) gives the stress-difference at a depth f below the mean 
surface, and is very remarkable as showing that the stress-difference depends 
on depth below the mean horizontal surface and not at all on the position of 
the point considered with reference to the ridges and furrows. 

Equation (44) shows that if we travel uniformly and horizontally through 
the solid perpendicular to the ridges, the stress-axes revolve with a uniform 
angular velocity. 

They are vertical and horizontal when we are under a ridge, and they have 
turned through a right angle and are again vertical and horizontal by the 
time we have arrived under a furrow. 

Since the function xe"" is a maximum when x = l, the stress-difference A 
is a maximum when f =6,—that is to say, at a depth equal to 1/27T of the 
wave-length—and is then equal to 2gwhe~~1 or in gravitation units of force to 
'736wh. I t is interesting to notice that the value of this maximum depends 
only on the height and density of the mountains, and does not involve the 
distance from crest to crest. The depth at which this maximum is reached 
depends of course on the wave-length. 

Fig. 2 shows the distribution of stress-difference, the vertical ordinates 
representing stress-difference, and the horizontal ones depth below the surface. 
The numbers written on the horizontal axis are multiples of b ; the distance 
OL on this scale is equal to 6'28, and is therefore equal to the wave-length 
from crest to crest, and the distance OH is the semi-wave-length from crest 
to furrow. 

31—2 
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484 PARALLEL CHAINS OF MOUNTAINS. [9 

In the case of terrestrial mountains w is about 2"8, and if we suppose h to 
be 2000 metres, or a little over 6000 feet, we have the case of a series of lofty 

3?io. 2. Diagram showing the difference between the principal stresses due to harmonic 
mountains and valleys on a horizontal plane. 

mountain chains—for it must be remembered that the valleys run down to 
2000 metres below the mean surface, so that the mountains are some 
13,000 feet above the valley-bottoms. 

Then h = 2 x 105, w = 2'S, and the maximum stress-difference is 
"736 x 2"8 x 2 x 10" = '412 x 10e grammes per square centimetre. 

This stress-difference i s , in British measure, 2-6 tons per square inch. 

If we suppose (as i s not unreasonable) that it i s 314 miles from crest to 
crest of the mountains, the maximum stress will be reached at 50 miles below 
the surface. 

From Table VII., § 9, it will be seen that if the materials of the earth at 
this depth of 50 miles had only as much tenacity as sheet lead, the mountain 
chains would sink down, but they would just be supported if the tenacity 
were equal to that of cast tin. 

| 7. On the stresses due to the even zonal harmonic inequalities. 

Having considered the two extreme cases where i is 2, and infinity, I pass 
now to the intermediate ones. As the odd zonal harmonics were not required 
for the investigation in the following section I have only worked out in detail 
the even ones. 

The surface of the sphere is now corrugated by a series of undulations 
parallel to the equator, and the altitude of the corrugations increases towards 
the poles. The form of the undulation in the neighbourhood of the equator 
is exhibited in Fig. 3. 

As in the case of the second harmonic there are regions within which 
N 2 — N 3 is the proper measure of stress-difference, and others in which 
N t — N 3 is the proper measure. The complete determination of these regions 
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might be difficult, but as these harmonics are only used for the determination, 
of stress-difference in the equatorial regions, it is sufficient to find the 
boundary of the regions for that part of the sphere. 

FIG. 3. Diagram showing the profile of the even harmonics near the 
Equator. Radius of sphere 18 inches. 

We see from (22) that V{(P - R) 2 + 4T2} only differs from P — R by terms 
which depend on the square of the sine of the latitude. 

llence as far as the first power of sin I we have 
2 » ' + l w XT 2i + l m _ „ 2i+± 

1) * - p - s ^ r , * . * - * - £ ^ T , * . 

Therefore if we neglect terms depending on the square of the sine of the 
latitude, we have from (22), 
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j = 2 , r 
a 

= 0, as we already know 

t = 4 , r = 0-8944 
a 

i — 6 , r = 0-9562 
a 

¿ = 8 , r = 0-9759 
a 

i = 10, r = 0-9847 
a 

We see that even when i = 4, the region is very thin in which N 2 — N 3 is 
the proper measure. For the higher harmonics it soon becomes négligeable*. 

[I shall then only consider the stress-difference N\ — N„ and this] is as 
before given by 

A = V ( P ^ R y + 4 T a 

To form this expression the series in (22) for R must be subtracted from 
the series for P. Since the C's and D'a of Table II. have always the opposite 

* As far as this point, this section is taken from a "Note on a previous paper" referred 
to above. 

Substituting, for A0, B0, &c, their values from (23), (24), (26), and 
effecting some easy reductions, we find, 

* 2 ( * ' + 2 ) ( a

2 - r 2 ) 

= - [i (i + 1) (i + 2) + 1 ] (tf - r 2) - -W-j^ a? 

From this we see that N x is always positive but vanishes at the surface, 
N 2 is always positive but does not vanish at the surface, and N 3 is always 
negative. 

Hence at the surface and for some distance beneath it, the stress-difference 
is N 2 — N 3 ; but below the surface at which N, becomes equal to N 2 , we have 
Ni — N 3 as the stress-difference. 

This surface is determined by 

i" (i + 2) (a 3 - r>) = i2 (a2 - r') + a? 

rpl ¿3 4 
whence — = -r-—-

a 2
 i* — 1 

Solving for the successive even values of i, we find, when 
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signs from the A's and B'B of Table I., this algebraic subtraction becomes a 
numerical addition of the numbers in these two tables. 

The results are given in the following table. 

TABLE I V . The coefficients for expressing P — R. 

i A0-C0 A2-G2 Ae-Ce B o - D 0 
B2-D2 -Be-A> 

2 - 2-2105 - 2-8421 + 2-5263 

4 - 4-3137 + 2-7451 + 7-8431 + 4 3 9 2 2 - 7-5294 

6 - 6-3636 + 42 + 35-6364 - 14-2545 + 6-4 - 48-8727 + 13-9636 

8 - 8-3926 + 139-1411 - 38-8712 - 168-2061 + 8-4137 - 1 4 8 - 0 8 0 6 + 188-4663 - 21-5390 

10 - 1 0 - 4 1 1 5 + 318-2304 - 633-7449 - 4 7 8 - 0 2 4 7 + 10-4252 - 3 2 9 - 2 1 8 2 + 965-7051 - 4 9 1 - 6 3 2 4 

12 - 1 2 - 4 2 5 + 603-292 - 2623-009 + 552-212 + 12-434 - 6 1 6 - 3 1 5 + 3243-765 - 3 8 0 6 - 0 1 8 

Then we have 

P — R = r-* cos* I [ ( A 0 - C0) + ( A , - G2) tan 2 1 + ...] 
+ a V " 2 cos*"21 [ ( B 0 - D 0 ) + ( B , - A ) tan 2 1 + ...] 

The materials for computing T have been already given in Table I I I . 

The series for P — R and for 2T should now be squared and added 
together, but the result would be so complex that it is not worth while 
to proceed algebraically. 

At the equator T = 0, and A = P — R, and P — R reduces to only two 
terms, whatever be the order of harmonic. 

By reference to (23) and (24) we see that at the equator 

or 

A = 

A = 

i (i + 2) (2i - 1 ) 
2(i + iy+i L 1 
t ( i + l)(2^ + 3 ) a V -

( * + l ) ( 2 T + 3 ) - » 
1 _ 

a2 + (i 

tt2-(i + l )(2i + 3)r 2 

3 
.(45) 1 ) 0 + 3 ) 

This value for A requires of course multiplication by appropriate factors 
involving the height of the continents and gravity. 

Even when i is no larger than 6, (45) differs but little from i r i _ 2 ( a 2 — r2) 
at least for values of r not very nearly equal to a. 

A clearly reaches a maximum when 

r 2 _ i - 2 
a?~ i 1 + ( i 2 - l ) ( 2 i + 3)J 

For large values of i this maximum is nearly equal to 2 j(i — 2)/ij ^ ' ~ l a i 

From these formula? the following results are easily obtained. 

IRIS - LILLIAD - Université Lille 1 



TABLE Y (a). 

i= 2 4 6 00
 10 12 

M a x i m u m value of A . 
Value of rja when A is max™ . 

2-526 
0 

1-118 
•714 

•959 
•819 

•894 
•867 

•859 
•895 

•836 
•913 

[If we compare these values of rja with the values found for the limit of 
the region in which N, — N s is the proper measure of stress-difference, we see 
that it always falls far within that region. I t appears then that in these 
cases it suffices to use only the form for A which has furnished these 
numbers.] 

of Sphere of Sphere 
P I G . 4. Diagram showing the difference of the prinoipal stresses at the equator, due to 

inequalities represented by the even zonal harmonics. 

Fig. 4 shows graphically the law of diminution of the stress-difference 
Nj — N 3 for the even zonal harmonics, the vertical ordinates representing 
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stress-difference and the horizontal ones the distances from the surface or 
from the centre of the globe. 

In order to find a numerical value of these maximum stress-differences 
which shall be intelligible according to ordinary mechanical ideas, I will 
suppose the height of each of the harmonics at the equator to be 1500 metres. 
On account of the small density of the superficial layers in the earth, this is 
very nearly the same as supposing that in the earth the maximum height of 
the continents above, and the maximum depth of the depressions below the 
mean level of the earth are each about 3000 metres. In the summary at the 
end I shall show that there is reason to believe that this is about the 
magnitude of terrestrial inequalities. 

Then by (35) we have to multiply the maximum stress-differences in the 
above table by 2(i— 1) wh/(2i + 1), in order to obtain the stress-differences 
for the supposed continents in grammes or tonnes per square centimetre. 

Now w = 5'66 and h = T5 x 10° according to the above hypothesis as to 
height of continent; and the coefficient in i is of course different for each 
harmonic. 

By performing these multiplications I find the following results. 

TABLE V(6). Maximum stress-differences due to harmonic continents 
and seas. 

O r d e r o f h a r m o n i c 2 4 6 8 1 0 1 2 

M a x . s t r e s s - d i f f e r e n c e , i n m e t r i c t o n n e s 

p e r s q . c m . d u e t o c o n t i n e n t s 1 5 0 0 

D i t t o i n B r i t i s h t o n s p e r s q . i n c h , f o r 

D e p t h i n B r i t i s h m i l e s a t w h i c h t h i s 

• 8 5 8 

5 - 4 3 

f C e n t r e 1 

\ o f e a r t h J 

• 6 3 3 

4 - 0 1 

1 1 4 6 

• 6 2 6 

3 - 9 7 

7 2 5 

• 6 2 5 

3 - 9 6 

5 3 2 

• 6 2 5 

3 9 6 

4 2 0 

• 6 2 5 

3 - 9 6 

3 4 7 

N.B.—The continents referred to are supposed to be of the earth's mean density and are 

equivalent to actual continents of double the height. 

Thus far we have only considered the stress-differences at the equator 
immediately underneath the centres of the continents, but we must now see 
how they differ as the latitude of the place of observation increases. In order 
to attain this result a good deal of computation was necessary. 

For this purpose I calculated P — R and 2T for a number of points and 
found the square root of the sum of these squares. As the computations 
were laborious, and as the results given in the following table are amply 
sufficient for the purpose in hand, I did not think it worth while to trace the 
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changes to a greater depth than r- = '7. Moreover the correctness of the last 
significant figures given cannot be guaranteed, although I believe that it is 
correct in most cases. 

TABLE V I . Showing the stress-difference N, — N 3 due to the several 
harmonic inequalities at various depths and in various latitudes. 

i Equator Lat. 6 D Lat. 12° i Equator Lat. 6° Lat. 12° 

fr = l . •316 •316 •316 cr = \ . •021 Ό15 •000 
J r = - 9 •736 •732 •721 Q J r = - 9 •859 •853 •853 

Ji |T- = -8 1-112 1-108 1Ό97 Ο •798 •795 •797 
I;- — - 7 1-443 1-440 1-431 Vr = -7 •506 •505 •507 

r = i . Ό79 •074 •061 (r=\. Ό14 Ό08 •007 
Λ •727 •719 - •700 Λ ΓΪ lr = -9 •857 •854 •860 

l r = - 8 1-044 1-038 1-025 1U •631 •630 •635 
U=-7 1-116 1-113 1-104 l r = 7 •307 •307 •309 

( r = l . 036 •031 Ό16 fr=l. -010 •003 019 
η •817 •810 •800 1 9 l / -=-9 •827 •824 •835 
Ο V = -8 •953 •949 •945 1 r = - 8 •481 •481 •486 

ir =-7 •788 •786 •785 U-=-7 179 •179 •181 

The numbers given in the column marked " equator " might be computed 
from (45), and are those exhibited graphically in fig. 4 ; they are here given 
as a means of comparison with the numbers corresponding to latitudes 6° 
and 12". 

The result to be deduced from this table is that the lines of equal stress-
difference are very nearly parallel with the surface, and that it is for all 
practical purposes sufficient to know the stress-difference immediately under 
the centre of the continents. 

We have already seen in § 6 that for harmonics of infinitely high orders 
the lines of equal stress-difference are rigorously parallel with the mean 
surface. 

§ 8. On the stresses due to the weight of an equatorial continent. 

The actual continents and seas on the earth's surface have not quite 
the regular wavy character of the elevations and depressions which have been 
treated hitherto. The subject of the present section possesses therefore a 
peculiar interest for the purpose of application to the earth. Had I however 
foreseen, at the beginning, the direction which the results of this whole 
investigation would take, it is probable that I might not have carried out the 
long computations which were required for discussing the case of an isolated 
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continent. But now that that end has been reached, it seems worth while to 
place the results on record. 

The function exp. [— cos2 o-y'sin2 a] (where 9 is colatitude) obviously repre
sents an equatorial belt of elevation, and I therefore chose it as the form of 
the required equatorial continent. This function has to be expanded in a 
series of zonal harmonics in order to apply the analytical solutions for the 
stresses produced by the weight of the continent. 

It is obvious by inspection that the odd zonal harmonics can take no part 
in the representation of the function, and it was on this account that I have 
above only worked out the cases of the even zonal harmonics. 

The multiplication of this function by the successive Logendre's functions, 
and integration over the surface of the sphere, are operations algebraically 
tedious, and wholly uninteresting, and I therefore simply give the results. 

I find that if a = 10°, and 

<H = sin* 6 - ~ sin*"2 6 cos2 9 +l* -Vr— s in^4 0 cos* 0 - &c-2 ! 4! 
then 

2e-oo*»/Mn«. _ 8 o = ft?2 + ft?4 + ft?. +ft?s + A.Sic + &,*„+... 
where 

ft = -3078, ft = -3673, ft = -3339, ft = -2829, ft = "2252, 
ft0 = *1688, ft, = -1193 

ft is put on the left-hand side in order that the mean value of the function 
may be zero. The B's obviously decrease very slowly, and as I stop with the 
12th harmonic, the representation of the function is very imperfect. 

Fig. 5 illustrates the results of the representation, the portion of a circle 
marked " mean level of earth " represents a meridional section of the earth ; 
the dotted curve marked " inequality to be represented " shows the true value 
of the function 2 exp. [— cos2 fc?/sina a] — ft ; the curve marked " representation" 
shows the right-hand side of (46) stopping with the 12th harmonic; the 
second curve is the same without the 2nd harmonic constituent ft?a, and it 
is introduced for the reasons explained in the discussion and summary at 
the end. 

The equatorial value of the exponential function is 1*792, that of the 
"representation" is 1*497, and that of " the representation without the 2nd 
harmonic " is 1*130. 

The polar value of the exponential is — *3078, that of the "representation" 
is — *0830, and that of " the representation without 2nd harmonic " is + ,6516. 
This latter function thus gives us an equatorial continent and a pair of polar 
continents of less height. 

(46) 
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The extreme difference of height in the% (representation " between the 
elevation at the equator and the depression at the pole is (l -497 + 083) h or 
1'58/t. I do not know exactly the extreme difference in the case where the 
2nd harmonic is omitted, because I have not traced the inequality throughout, 
but it is probably about 1"3 or V&h. 

Fio . 5. Diagram showing the profile of isolated equatorial continents. 
Radius of sphere 18 inches. 

Let A£ be the numerical value, as computed for § 7, of the stress-
difference Nj — N 3 due to the harmonic spheroid ?i. Then it has been shown 
above that the stress-difference due to the spheroid whose equation is 
r = a + A?i is — 2 (i — 1) gwhAi/(2i + 1). 

Now stress-difference is a non-linear function of the component stresses 
P, R, T, and therefore the stress-difference due to a compound harmonic 
spheroid is not in general the sum of the stress-differences due to the con
stituent harmonic spheroids. At any point, however, where the principal 
stress-axes are all coincident in direction and where all the greater stress-axes 
coincide, and not a greater with a less, and where T = 0, the stress-difference 
is linear and is the sum of the constituent stress-differences. This is the 
case at the equator for the present equatorial continent. 
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Hence, if A be the stress-difference N1 — N„ at the equator due to the 
spheroid, 

r = a + h (#„?a + Biti + ... + Ba<ta) 
We have 

A = -gwh [§&A3 + |/3 4A 4 + |g/36A6 + if/3 8A 8 + | ff t„A 1 0 + | |/3 1 2A 1 2]...(47) 

In this formula the A;'s are the numbers which were computed for 
drawing fig. 4, from the formula (45), namely 

2"(i + l)» + l U a2 + (i 2 l ) (2 i + 3) 

By using these computations I have drawn Fig. 6. The vertical ordinates 
are — A gwh, and the horizontal are the distances from surface or centre of 
the sphere. 

Surface ^ 
of Earth 

1 Centre 
of Earth 

Fia. 6. Diagram showing the difference of principal stresses at thB equator due to isolated 
equatorial continents. 

The maxima in the two curves are merely found graphically, and the 
distances where the maxima are reached (viz.: 660 and 590 miles from the 
surface) are written down on the supposition that the radius of the sphere is 
4000 miles. 

In the discussion in the second part of this paper, I have endeavoured to 
make an estimate of the proper elevation to attribute to these isolated con
tinents ; so as to make the case, as nearly as may be, analogous to the earth. 

Although it appears impossible to make an accurate estimate, I conclude 
that it will not be excessive if we assume that the greatest difference of 
height, between the highest point in the equatorial elevation and the 
approximately spherical remainder of the globe, is 2000 metres. 

Accordingly for the representation I put 1'58A = 2000, and for the second 
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curve l-4/i= 2000; these give h = 127 x 106 cm. and h = 1"4 x 10° cm. 
respectively. 

Taking w= 5"66, then for the representation we have wh= -72 tonnes per 
square centimetre, and for the other curve wh = '79 of the same units. The 
maximum stress-differences are 'Qlwh and

 mfJQwh respectively. 

Therefore for the equatorial table-land (called above the representation) 
we have a maximum stress-difference of '66 metric tonne per square cm. or 
4'1 British tons per square inch; and for the equatorial table-land balanced 
by a pair of polar continents (2nd harmonic omitted) we have a maximum 
stress-difference of '60 tonne per square cm. or 3'8 tons per square inch. 

I therefore conclude that our great continental plateaus produce a stress-
difference of about 4 tons per square inch at a depth of 600 or 700 miles 
from the; earth's surface. 

[The whole of this calculation was made at a time when I wrongly sup
posed that Nj — N 3 was always the correct expression for the stress-difference. 
Now it has been shown above that for each harmonic term there is a region 
in which N a —N, is larger than Nj — N 3 . Hence this calculation ought 
strictly to be revised with the object of attributing to each term its corre
sponding proper expression. The revision would be very laborious, and it 
seems clear that it would not materially alter the general physical conclusion. 
I do not therefore propose to attempt to make the calculation on this more 
logical basis.] 

§ 9. On the strength of various substances. 

In order to have a proper comprehension of the strength which the 
earth's mass must possess in order to resist the tendency to rupture produced 
by the unequal distribution of weights on the surface, it is necessary to 
consider the results of experiment. 

Rankine* gives a large number of results obtained by various experi
menters, and Sir William Thomson also gives similar tables in his article 
on "Elasticityt" 

Amongst other constants Sir William gives Young's modulus and the 
greatest elastic extension. If the materials of a wire remain perfectly elastic 
when the wire is just on the point of breaking under tension, then the 
product of Young's modulus into the greatest elastic extension should be 
equal to what is called the tenacity, which is defined as the breaking tension 

* Useful Rules and TabUs: Griffin, London, 1873, p. 191, et >eq. 
t "Elasticity": Black, Edinburgh, 1878. This is the article from the Encyclopedia Britan-

niea, but it is also published as a separate work. 
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per square centimetre of the area of the wire. If however a permanent set 
begins to take place before the wire breaks, this product should be less than 
the tenacity. I do not see how it can ever be greater, unless there be a 
marked departure from Hooke's law " ut tensio sic vis "; or different sets of 
experiments with the same class of material might make it seem greater. In 
some of the results given by Sir William Thomson the product of modulus 
and elastic extension is however greater than tenacity. 

Ordinary experience would lead one to suppose that such materials as 
lead and copper would undergo a considerable stress beyond the limits of 
perfect elasticity, before breaking. It is surprising therefore to see how 
nearly identical this product is to the tenacity—indeed in the case of lead 
absolutely identical, as may be seen in the table below. 

Writh regard to the earth we require to know what is the limiting stress-
difference under which a material takes permanent set or begins to flow, 
rather than the stress-difference under which it breaks; for if the materials 
of the earth were to begin to flow, the continents would sink down and the 
sea bottoms rise up. 

I t will be seen from the definition of tenacity given above that it is the 
rupturing stress-difference for tensional stresses. There is no word specially 
applied to rupturing stress-difference under pressure. 

I am inclined to think that for the purposes of this investigation these 
tables in most cases rate the strength of materials somewhat too highly ; for 
it seems probable that a permanent set would bo taken, if a material were 
subjected for a long time to a stress-difference, which is a considerable 
fraction of the limiting value. We are likely to know more on this point in 
some years' time when the wires hung by Sir William Thomson in the tower 
of Glasgow University have been subjected to several years of tension. 
However this may be I give the results of some of the experiments as 
collected and quoted by Sir William Thomson and the late Professor Rankine. 
The first table of tenacity, except the results denoted by the letter R, are 
taken from Sir William Thomson. The second table of crushing stress-
difference is taken entirely from Rankine. The multiplications and reductions 
to different units I have done myself. 
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The only cases in these two tables in which we have the opportunity of 
comparing the strength for resisting the stress-difference, when produced in 
the two manners, are for the materials cast brass and ash; in both cases we 
see that the substance is considerably weaker for crushing than for tension. 

I should be inclined to suppose that the crushing strength is more nearly 
the datum we require for the case of the stresses in the earth. 

In the first half of the table we probably see the effect of permanent set 
in the cases of copper and pianoforte wire (compare 4 -00 with 4"10, and 23'56 
with 23'62), but it is surprising that the contrast between the two columns is 
not more marked. 

It appears desirable to know how far the results of the preceding investi
gation may differ, if the elastic solid be compressible. According to the views 
of Dr Ritter, referred to in the summary, this may be the case, perhaps to a 
large extent. 

[In the paper as originally presented to the Royal Society I had failed to 
notice that, as pointed out in § 1 as revised for the present volume, there 
are really two distinct problems under discussion. Accordingly the present 
section has been rewritten. 

The effects of compressibility will now be considered in the two limiting 
cases of harmonics of the second and of infinite orders. Preparations for this 
have already been made in the revision of § 4. 

For the case of the second harmonic, we have to put i = 2 in the definition 
(2) of § 1 and in equation (9). The analysis will be much abbreviated if we 
write 

§ 10. On the case when the elastic solid is compressible. 

99 

Then since K = 19co 5v, we have 

Thus (9) becomes 

P = f ^ 2 + i 3 g (8a?-5r ' ) d*W2 dWt + 6W, 
daß dx 

d*W, 
+ 4« dW, 

dx -4,Wt da? 
Also T has a similar form. 

D . I I . 32 
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19T = [ ( 8 + X ) a

2 - ( 5 + 3 X ) ^ 

- ( 3 - 2 X ) ( . - l - . - g - l ) 

These formulas, and others derived from them by cyclical changes of 
letters, are to be applied in the case where 

Wt = - Igwh ~ ?2 

r 2 9 2 = a? + y* — 2z* 
As in § 5 it is more convenient to substitute e, the ellipticity of the 

ellipsoid, for h, so that h has the value \ea. 
Thus we are to take 

For the present the factor — -fsgwe/u may be omitted, to be reintroduced 
at a later stage. 

We find then 
^9-P - \ (107 - 8\) W„= (8 + X) a2 - (5 + 3X) r 2 - 2 (3 - 2X) a 2 

J ^ Q - i : ( l 0 7 - 8 ^ ) ^ = (8 + X ) a 2 - (5 + 3X) r 2 - 2 (3 - 2X) y' 
V R - i (107 - 8X) TT2 = - 2 (8 + X) a 2 + 2(5 + 3X) r 2 + 4 (3 - 2X) z* 
^T = {3-2\)xz; ±£-S = (3 - 2\) yz ; -^U = (3 - 2X) xy 

It will suffice to consider only the case when y — 0, and we may use polar 
coordinates with x = r sin 0, y = r cos 6. 

Thus 
\ a -P - I (107 - 8X) Wa = (8 + X ) (a 2 - r 2) + (3 - 2X) r* cos 2(9 
J r Q - i ( 1 0 7 - 8 X ) H 7

2 = (8+X)(a 2 - r - ! ! ) - f (3 - 2X) r 2 

^ R - J (107 - 8X) Wa = - 2 (8 + X) (a2 - r 2) + 2 (3 - 2X) r 2 cos 2(9 
-V- · 2T = (3 - 2X) r 2 sin 26 ; S = U = 0 

It may be well, before proceeding further, to consider what range of values 
is legitimately attributable to X. 

Navier and Poisson maintained that the modulus of rigidity in a solid was 
| of that of incompressibility, but Stokes showed that this was very far from 

We thus obtain 

19P - J (107 - 8X) W, = [(8 + X) a 2 - (5 + 3X) r 2] 

(iW 
- 2 ( 3 - 2 X ) a ; C t f F - 2 
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being the case for many solids*. Although then Poisson's contention is not 
well founded, yet it gives a value for the ratio which is more or less correct 
for some solids and perhaps for many; and it is curious that in the case now 
under consideration Poisson's theory gives the dividing line which separates 
solutions of one kind from those of another kind. 

According to Navier and Poisson the modulus of rigidity v is \ of that of 
compressibility, which is w — \v\ hence GO — 2v. This makes X = f , and 
3 — 2 X vanishes. 

Thus according to Poisson's theory, with \ = | , we obtain the following 
curious result:— 

P - | F 2 = Q - | F 2 = a*-r> 
R _ %WS = - 2 (a2 - r 2) 

T = 0 
Our coordinate axes are therefore principal stress-axes; one being parallel 

to the polar axis of the globe, and the other two (being equal inter se) any
where mutually at right angles in a small circle of latitude. 

The stress-difference is 3 (a2 — r 2). 
Thus on introducing the omitted factors and changing the sign (as is 

clearly permissible) the stress-difference is given throughout the sphere by 

For a homogeneous sphere of the size and mean density of the earth this 
gives 

A = 1442e ^1 — ^ metric tonnes per square cm. 

It vanishes at the surface and at the centre is 1442e. In the case of 
incompressibility we found in § 5 the central stress-difference to be 1214e in 
the same units. Thus this degree of compressibility entirely relieves the 
superficial stress-difference and only augments the central stress-difference 
by a sixth part. 

Returning to the consideration of the range of values of X :— 
We know that X = 0 corresponds to complete incompressibility. The 

modulus of incompressibility &>— vanishes when ea = \ v , and this furnishes 
the other limit. In this case X = 3 7 j . I t would not be very interesting to 
obtain numerical results for these large values of X , but it is well to determine 
the limit of values permissible. 

In the general case the procedure to be followed is exactly parallel to 
that of § o. I t will be found that, if for brevity we write 

la* = 64(1 + ^X)2 (a 2 - r 2) 2 + (1 - £ X ) 2 r * - 1 6 ( l +£X)(1 - f X ) ( a 2 - r2)?-2 cos 20 
* Thomson and Tait's Natural Philosophy, § 684. 

3 2 — 2 
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The stress-difference A is equal to the greater of the two following 
expressions: 

(i) A = ft» 

(ii) A = ^ [8 (1 + -tX) (a- - r 2) + 2 (1 - §X) r 2 - 3 (1 - fX) r 2 cos 2d + <K.] 

When X = 0, these of course reduce to the results of § 5. 

When X. = -J the forms (i) and (ii) become identical, and we come back on 
the simple case corresponding to Poisson's hypothesis. 

The equation to the ellipsoid, which separates the regions in which the 
forms (i) and (ii) are respectively applicable, is 

(10 - 2X) (a-2 + ys) + 19z* = (16 + 2\) a? 
When \ is greater than -| this ellipsoid entirely encloses the sphere, and 

the separation becomes nugatory. It appears then that— 
When X is less than f, the form (ii) holds inside the ellipsoid, and the 

form (i) outside. 

When X is greater than §, the form (i) is applicable everywhere. 

I have not reduced these results to numbers in any specific cases, because 
it suffices to learn that compressibility affects the result largely in the case of 
the second harmonic, although for moderate values of X the maximum value 
of A is not changed very much in amount. 

I t will now be shown that whatever may be the compressibility of the 
solid, we get the same solution in the case when the harmonic is of an 
infinitely high order. If SP, ST denote the additional terms introduced by 
compressibility, when i is very large we have from (32) 

5P = 2k i1
 + s ) fc' - ^ ^ + ^ -

ro 

In a similar manner we find ST = 0. 

I t is clear then that SP = SQ = SR = — — W%. I t follows that the difference 

of stresses is unaffected, and our former result is unaffected. 

It may be concluded that except for the lower harmonic inequalities 
compressibility introduces but little change in our results.] 
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I I . 

SUMMARY AND DISCUSSION. 

The existence of dry land proves that the earth's surface is not a figure of 
equilibrium appropriate for the diurnal rotation. 

Hence the interior of the earth must be in a state of stress, and as the 
land does not sink in, nor the sea-bed rise up, the materials of which the earth 
is made must be strong enough to bear this stress. 

We are thus led to inquire how the stresses are distributed in the earth's 
mass, and what are their magnitudes. These points cannot be discussed 
without an hypothesis as to the interior constitution of the earth. 

In this paper I have solved a problem of the kind indicated for the case 
of a homogeneous incompressible elastic sphere, and have applied the results 
to the case of the earth. 

I t may of course be urged that the earth is not such as this treatment 
postulates. 

The view which was formerly generally held was that the earth consists 
of a solid crust floating on a molten nucleus. It has also been lately main
tained by Dr August Bitter in a series of interesting papers that the interior 
of the earth is gaseous*. A third opinion, contended for by Sir William 
Thomson, and of which I am myself an adherent, is that the earth is through
out a solid of great rigidity; he explains the flow of lava from volcanoes 
either by the existence of liquid vesicles in the interior, or by the melting of 
solid matter, existing at high temperature and pressure, at points where 
diminution of pressure occurs. 

There is another consideration, which is consistent with Sir William 
Thomson's view, and which was pointed out to rne by Professor Stokes. I t 
may be that underneath each continent there is a region of deficient density; 
then underneath this region there would be no excess of pressure "f\ 

For the present investigation it is to some extent a matter of indifference 
as to which of these views is correct, for if it is only the crust of the earth 
which possesses rigidity, or if Professor Stokes's suggestion of the regions of 

* " Anwendung der mechauigchen Warrnetheorie auf kosmologische Probleme." CarlRiimpler, 
Hannover, 1879. This is a reprint of six p a p e r H in Wiedemann's Annalen. 

Dr Ritter contends that the temperature in the interior of the planet is above the critical 
temperature and that of dissociation for all the constituents, so that they can only exist as gas. 
Data are wanting with regard to the mechanical properties of matter at, say 10,000° Fahr., and 
a pressure of many tons to the square inch. Ia it not poasible that such " g a s " may have the 
density of mercury and the rigidity and tenacity of granite? Although such a conjectural 
"gaseous" solid might possess high rigidity, it would [presumably] have great compressibility, 

t [We may regard this view as now (1906) established by the modern results of geodesy.] 
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502 THE NATURE OF THE PROBLEM TO BE SOLVED. [9 

deficient density be correct, then the stresses in the crust or in the parts near 
the surface must be greater than those here computed—enormously greater 
if the crust be thin*, or if the region of deficient density be of no great 
thickness. 

With regard to the property of incompressibility which is here attributed 
to the elastic sphere, it appears from § 10 that even if we suppose the elastic 
solid to be compressible, yet [for inequalities of moderate extension on the 
surface of the globe] the results with regard to the internal stresses are 
almost the same as though it were incompressible; [but this is not so for 
such an inequality as is represented by a harmonic of the second order]. 
I think the hypothesis of great incompressibility is likely to be much nearer 
to the truth than is that of great compressibility; I shall therefore adhere to 
the supposition of infinite incompressibility. 

I take then a homogeneous incompressible elastic sphere, and suppose it 
to have the power of gravitation and to be superficially corrugated. In con
sequence of mathematical difficulties the problem is here only solved for the 
particular class of surface inequalities called zonal harmonics, the nature of 
which will be explained below. 

Before discussing the state of stress produced by these inequalities, it will 
be convenient to explain the proper mode of estimating the strength of an 
elastic solid under stress. 

At any point in the interior of a stressed elastic solid there are three lines 
mutually at right angles, which are called the principal stress-axes. Inside 
the solid at the point in question imagine a small plane (say a square centi
metre or inch) drawn perpendicular to one of the stress-axes; such a small 
plane will be called an inter-face f. The matter on one side of the ideal 
inter-face might be removed without disturbing the equilibrium of the elastic 
solid, provided some proper force be applied to the inter-face; in other words, 
the matter on one side of an inter-face exerts a force on the matter on the 
other side. Xow a stress-axis has the property that this force is parallel 
to the stress-axis to which the inter-face is perpendicular. Thus along a 
stress-axis the internal force is either purely a traction or purely a pressure. 
Treating pressures as negative tractions, we may say that at any point of a 
stressed elastic solid, there are three mutually perpendicular directions along 
which the stresses are purely tractional. The traction which must be applied 
to an inter-face of a square centimetre in area, in order to maintain equi
librium when the matter on one side of the inter-face is removed, is called a 
principal stress, and is of course to be measured by grammes weight per square 
centimetre. 

* The evaluation of the stresses in a crust, with fluid beneath, would be tedious, but not 
more difficult than the present investigation. I may perhaps undertake this at some future time, 

t This term is due to Professor James Thomson. 
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If the three stresses be equal and negative, the matter at the point in 
question is simply squeezed by hydrostatic pressure, and it is not likely that 
in a homogeneous solid any simple hydrostatic pressure, absolutely equal in 
all directions, would ever rupture the solid. The effect of the equality of the 
three stresses when they are positive and tractional is obscure, but at least 
physicists do not in general suppose that this is the cause of rupture when a 
solid breaks. 

If the three principal stresses be unequal, one must of course be greatest 
and one least, and there is reason to suppose that tendency of the solid to 
rupture is to be measured by the difference between these principal stresses. 

In one very simple case we know that this is so, for if we imagine a 
square bar, of which the section is a square centimetre, to be submitted to 
simple longitudinal tension, then two of the principal stresses are zero 
(namely, the stresses perpendicular to the faces of the rod), and the third is 
equal to the longitudinal traction. The traction under which the rod breaks 
is a measure of its strength, and this is equal to the difference of principal 
stresses. 

If at the same time the rod were subjected to great hydrostatic pressure, 
the breaking load would be very little, if at all affected; now the hydrostatic 
pressure subtracts the same quantity from all three principal stresses, but 
leaves the difference between the greatest and least principal stresses the 
same as before. 

Difference of principal stresses may also be produced by crushing. 
In this paper I call the difference between the greatest and least principal 

stresses the " stress-difference," and I say that, if calculation shows that the 
weight of a certain inequality on the surface of the earth will produce such 
and such stress-difference at such and such a place, then the matter at that 
place must be at least as strong as matter which will break when an equal 
stress-difference is produced by traction or crushing. 

I shall usually estimate stress-difference by metric tonnes (a million 
grammes) per square centimetre, or by British tons per square inch. 

In Table VII., § 9, are given the experimentally determined values of the 
breaking stress-difference for various substances. The table is divided into 
two parts, in the former of which the stress-difference was produced by ten
sion, and in the latter by crushing. It is not necessary here to advert to the 
difference in meaning of the numbers given in the first column and those 
given in the two latter columns in the first half of the table. 

The cases of wood and cast brass are the only ones where a comparison is 
possible between the two breaking stress-differences, as differently produced. 
It will be seen that the material is weaker for crushing than for tension. 
For the reasons given in that section, I am inclined to think that these tables 
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rate the strength of the materials somewhat too highly for the purposes of 
this investigation. I conceive that the results derived from crushing are 
more appropriate for the present purpose than those derived from tension; 
and fortunately the results for various kinds of rocks seem to have been 
principally derived from crushing stresses. 

This table will serve as a means of comparison with the numerical results 
derived below, so that we shall see, for example, whether or not at 500 miles 
from the surface the materials of the earth are as strong as granite. 

We may now pass to the mathematical investigation. I t appears there
from that the distribution of stress-difference is quite independent of the 
absolute heights and depths of the inequalities. Although the questions of 
distribution and magnitude of the stresses are thus independent, it will in 
general be convenient to discuss them more or less simultaneously. 

The problem has only been solved for the class of superficial inequalities 
called zonal harmonics, and their nature will now be explained. 

A zonal harmonic consists of a series of undulations corrugating the sur
face in parallels of latitude with reference to some equator on the globe; the 
number of the undulations is estimated by the order of the harmonic. The 
harmonic of the second order is the most fundamental kind, and consists of a 
single undulation forming an elevation round the equator, and a pair of 
depressions at the poles of that equator; it may also be defined as an elliptic 
spheroid of revolution, and the absolute magnitude is measured by the 
ellipticity of the spheroid. 

If the order of the harmonic be high, say 30 or 40, we have a regular 
series of mountain chains and intervening valleys running round the sphere 
in parallels of latitude. 

For the sake of convenience I shall always speak as though the equator 
were a region of elevation, but the only effect of changing elevations into 
depressions, and vice versd, is to reverse diametrically the directions of all the 
stresses. 

The harmonics of the orders 2, 6, 10, &c, have depressions at the poles of 
the sphere; those of orders 4, 8, 12, &c, have elevations at the poles. 

The harmonic of the fourth order consists of an equatorial continent and 
a pair of circular polar continents, with an intervening depression. That of 
the sixth order consists of an equatorial continent and a pair of annular 
continents in latitudes (about) 60° on one and the other side of the equator. 
The 8th harmonic brings down these new annular continents to about lati
tude 45°, and adds a pair of polar continents; and so on. 

By a continuation of this process the transition to the mountain chains 
and valleys is obvious. 
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In § 5 the case of the 2nd harmonic is considered. As above explained 
the sphere is deformed into a spheroid of revolution. The investigation also 
applies to the case of a rotating spheroid, such as the earth, with either more 
or less oblateness than is appropriate for the figure of equilibrium. 

The lines throughout a meridional section of the spheroid along which the 
stress-difference is constant are shown in fig. 1, and the numbers written on 
the curves give the relative magnitudes of the stress-difference. 

[At the surface the stress-difference is constant over two polar caps which 
extend southward from the north pole and northward from the south pole 
as far as latitudes 54° 44' north and south. Between these latitudes and the 
equator the stress-difference increases until at the equator it is three times 
as great as over the polar caps.] In the polar regions the stress-difference 
diminishes as we descend into the spheroid and then increases again; in the 
equatorial regions it always increases as we descend. The maximum value is 
at the centre, and there the stress-difference is eight times as great as at the 
[poles]. 

If the elastic solid be compressible the stress-difference [at the surface is 
much less than] on the hypothesis of incompressibility. [For a certain value 
of the compressibility the superficial stress-difference vanishes all over the 
surface. In this case the stress-difference at the centre of the globe is only 
greater than that found on the hypothesis of complete incompressibility by 
one-sixth part of itself. I t would thus seem as if compressibility would not 
make a very great difference in the actual strength of the globe.] 

On evaluating the stress-difference, on the hypothesis of incompressibility, 
arising from given ellipticity in a spheroid of the size and density of the earth, 
it appears that if the excess or defect of ellipticity above or below the equi
librium value (namely for the homogeneous earth) were y o V t y . then the 
stress-difference at the centre would be 8 tons per square inch, and accordingly, 
if the sphere were made of material as strong as brass (see Table VII.), it 
would be just on the point of rupture. Again if the homogeneous earth, with 
ellipticity ^ } ^ , were to stop rotating, the central stress-difference would 
be 33 tons per square inch, and it would rupture if made of any material 
excepting the finest steel. 

A rough calculation* will show that if the planet Mars has ellipticity ^ 
(about twice the ellipticity on the hypothesis of homogeneity) the central 
stress-difference must be 6 tons per square inch. I t was formerly supposed 
that the ellipticity of the planet was even greater than and even if the 

* The data for the calculation are: Ratio of terrestrial radius to Martian radius V878. Ratio 
of Martian mass to terrestrial mass '1020. Whence ratio of Martian gravity to terrostrial gravity 
•3596. Central stress-difference, due to ellipticity e, 996e tons per square inch. "Homogeneous" 
ellipticity of Mars ; and f£ f equal to 6. 
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latest telescopic evidence had not been adverse to such a conclusion, we should 
feel bound to regard such supposed ellipticity with the greatest suspicion, in 
the face of the result just stated. 

The state of internal stress of an elastic sphere under tide-generating forces 
is identical with that caused by ellipticity of figure*. Hence the investiga
tion of § 5 gives the distribution of stress-difference caused in the earth by 
the moon's attraction. In fig. 1, the point called " the pole " is the point 
where the moon is in the zenith. 

Computation shows that the stress-difference at the [polar] surfaces, due 
to the lunar tide-generating forces, is 16 grammes per square centimetre, and 
at the centre eight times as much. These stresses are considerable, although 
very small compared with those due to terrestrial inequalities, as will appear 
below. 

In § 6 the stresses produced by harmonic inequalities of high orders are 
considered. This is in effect the case of a series of parallel mountains and 
valleys, corrugating a mean level surface with an infinite series of parallel 
ridges and furrows. [In this case compressibility makes absolutely no differ
ence in the result, as shown in § 10.] 

I t is found that the stress-difference depends only on the depth below the 
mean surface, and is independent of the position of the point considered with 
regard to ridge and furrow; the direction of the stresses does however depend 
on this latter consideration. 

In fig. 2 is shown the law by which the stress-difference increases and 
then diminishes as we go below the surface. The vertical ordinates of the 
curve indicate the relative magnitude of the stress-difference, and the hori
zontal ones the depth below the surface. The depth OL on the figure is 
equal to the distance between adjacent ridges, and the figure shows that 

the stress-difference is greatest at a depth equal to of OL. 

The greatest stress-difference depends merely on the height and density 
of the mountains, and the depth at which it is reached merely on the distance 
from ridge to ridge. 

Numerical calculation shows that if we suppose a series of mountains, 
whose crests are 4000 metres or about 13,000 feet above the intermediate 
valley-bottoms, formed of rock of specific gravity 2'8, then the maximum 
stress-difference is 2"6 tons per square inch (about the tenacity of cast tin); 
also if the mountain chains are 314 miles apart the maximum stress-differ
ence is reached at 50 miles below the mean surface. 

I t may be necessary to warn the geologist that this investigation is 
approximate in a certain sense, for the results do not give the state of stress 

* This is subject to certain qualifications noticed in § 5. 
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actually within the mountain prominences or near the surface in the valley-
bottoms. The solution will however be very nearly accurate at some five or 
six miles below the valley-bottoms. The solution shows that the stress-
difference is nil at the mean surface, but it is obvious that both the mountain 
masses and the valley-bottoms are in some state of stress. 

The mathematician will easily see that this imperfection arises, because 
the problem really treated is that of an infinite elastic plane, subjected to 
simple harmonic tractions and pressures. 

To find the state of stress actually within the mountain masses would 
probably be difficult. 

The maximum stress-difference just found for the mountains and valleys 
obviously cannot be so great as that at the base of a vertical column of this 
rock, which has a section of a square inch and is 4000 metres high. The 
weight of such a column is 7'1 tons, and therefore the stress-difference at the 
base would be 7'1 tons per square inch. The maximum stress-difference 
computed above is 2'6, which is about three-eighths of 7 -l tons per square 
inch. Thus the support of the contiguous masses of rock, in the case just 
considered, serves as a relief to the rock to the extent of about five-eighths of 
the greatest possible stress-difference. This computation also gives a rough 
estimate of the stress-differences which must exist if the crust of the earth 
be thin. I t is shown below that there is reason to suppose that the height 
from the crest to the bottom of the depression in such large undulations as 
those formed by Africa and America is about 6000 metres. The weight of a 
similar column 6000 metres high is nearly 11 tons. 

In § 7 I take the cases of the even zonal harmonics from the 2nd to the 
12th, but for all except the 2nd harmonic only the equatorial region of the 
sphere is considered. 

Fig. 3 shows an exaggerated outline of the equatorial portion of the 
inequalities; it only extends far enough to show half of the most southerly 
depression, even for the 12th harmonic. It did not seem worth while to trace 
the surfaces of equal stress-difference throughout the spheroid, but the 
laborious computations are carried far enough to show that these surfaces 
must be approximately parallel to the surface of the mean sphere. I t is 
accordingly sufficient to find the law for the variation of stress-difference 
immediately underneath the equatorial belt of elevation. I t requires com
paratively little computation to obtain the results numerically, and the results 
of the computation are exhibited graphically in fig. 4. 

Table V. (&), § 7, gives the maximum stress-differences, resulting from 
these several inequalities, computed under conditions adequately noted in the 
table itself. I t will be convenient to postpone the discussion of the results. 

In § 8 I build up out of these six harmonics an isolated equatorial conti
nent. The nature of the elevation is exhibited in fig. 5, in the curve marked 
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" representation "; no notice need be now taken of the dotted curve. This 
curve exhibits a belt of elevation of about 15° of latitude in semi-breadth, 
and the rest of the spheroid is approximately spherical. This kind of eleva
tion requires the 2nd as one of its harmonic constituents, and this harmonic 
means ellipticity of the whole globe. Now it may perhaps be fairly contended 
that on the earth we have no such continent as would require a perceptible 
2nd harmonic constituent. I therefore give in fig. 5, a second curve which 
represents an equatorial belt of elevation counterbalanced by a pair of polar 
continents in such a manner that there is no second harmonic constituent. 

I have not attempted to trace the curves of equal stress-difference arising 
from these two kinds of elevation, but I believe that they will consist of a 
series of much elongated ovals, whose longer sides are approximately parallel 
with the surface of the globe, drawn about the maximum point in the interior 
of the sphere at the equator. The surfaces of equal stress-difference in the 
solid figure will thus be a number of flattened tubular surfaces one within 
the other. 

At the equator however the law of variation of stress-difference is easy to 
evaluate, and fig. 6 shows the results graphically, the vertical ordinates 
representing stress-difference and the horizontal the depths below the surface. 
The upper curve in fig. 6 corresponds with the " representation curve" of 
fig. 5, and the lower curve with the case where there is no 2nd harmonic 
constituent. 

The central stress-difference, which may be observed in the upper curve, 
results entirely from the presence of the 2nd harmonic constituent in the 
corresponding equatorial belt of elevation. 

The maximum stress-differences in these two oases occur at about 660 
and 590 miles from the surface respectively. 

We now come to perhaps the most difficult question with regard to the 
whole subject—namely, how to apply these results most justly to the case of 
the earth. 

The question to a great extent turns on the magnitude and extent of the 
superficial inequalities in the earth. As the investigation deals with the 
larger inequalities, it will be proper to suppose the more accentuated features 
of ridges, peaks and holes to be smoothed out. 

The stresses caused in the earth by deficiency of matter over the sea-beds 
are the same as though the seas were replaced by a layer of rock, having 

1"02 
everywhere a thickness of about ^ or nearly ^ 0 f the actual depths 

of sea. 
The surface being partially smoothed and dried in this manner, we require 

to find an ellipsoid of revolution which shall intersect the corrugations in 
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such a manner that the total volume above it shall be equal to the total 
volume below it. 

Such a spheroid may be assumed to be the figure of equilibrium 
appropriate to the earth's diurnal rotation; if it departs from the equilibrium 
form by even a little, then we shall much underestimate the stress in the 
earth's interior by supposing it to be a form of equilibrium. 

Professor Bruns has introduced the term " gcoid " to express any one of 
the " level" surfaces in the neighbourhood of the earth's surface, and he 
endeavours to form an estimate of the departure of the continental masses 
and sea-bottoms from some mean geoid*. From the geodesic point of view 
the conception is valuable, but such an estimate is scarcely what we require 
in the present case. The mean geoid itself will necessarily partake of the 
contortions of the solid earth's surface, even apart from disturbances caused 
by local inequalities of density, and thus it cannot be a figure of equilibrium. 

Thus, even if we were to suppose that the solid earth were everywhere 
coincident with a geoid—which is far from being the case—a state of stress 
would still be produced in the interior of the earth. 

An example of this sort of consideration is afforded by the geodesic results 
arrived at by Colonel Clarke, R.E.f, who finds that the ellipsoid which best 
satisfies geodesic measurement, has three unequal axes, and that one equatorial 
semi-axis is 1524 feet longer than the other. Now such an ellipsoid as this, 
although not exactly one of Bruns' geoids, must be more nearly so than any 
spheroid of revolution ; and yet this inequality (if really existent, and Colonel 
Clarke's own words do not express any very great confidence) must produce 
stress in the earth. Colonel Clarke's results show an ellipticity of the equator 
equal to T^TST:'

 a n d this in the homogeneous elastic earth will be about 
equivalent to ellipticity ^RO~O~5 '>

 s u c h ellipticity would produce a central stress-
difference of FFIG-fo or nearly one-third of a British ton per square inch. 

From this discussion it may, I think, be fairly concluded that if we assume 
the sea-level as being the figure of equilibrium and estimate the departures 
therefrom, we shall be well within the mark. 

The average height of the continents is about 350 metres (1150 feet), 
and the average depth of the great oceans is in round numbers 5000 metres 
(16,000 feet); but the latter datum is open to much uncertainty}. When 
the sea is solidified into rock the 5000 metres of depth is reduced to 3200 
metres below the actual sea-level. Thus the average effective depression 
of sea-bed is about nine times as great as the average height of the land. 

* Die Figur der Erde. Von Dr H. Bruns. Berlin: Stankiewiez, 1878. 
t Phil. Mag., Aug., 1878. 
X In a previous paper, "Geological Changes, &c." Phil. Trans., Vol. 167, Part i., p. 295, 

I have endeavoured to discuss this subject, and references to a few authorities will be found 
there. [This paper will probably be included in Vol. i n . of this collection.] 
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I shall take it as exactly nine times as great, and put the depth as 3150 metres ; 
but it is of course to be admitted that perhaps eight and perhaps ten might 
be more correct factors. 

In the analytical investigation of this paper the outlines of the vertical 
section of the continents and depressions are always sweeping curves of the 
harmonic type, and the magnitudes of the elevations and depressions are 
estimated by the greatest heights and depths, measured from a mean surface 
which equally divides the two. 

We have already supposed the outlines of continents and sea-beds to have 
been smoothed down into sweeping curves, which we may take as being, 
roughly speaking, of the harmonic type. The smoothing will have left the 
averages unaffected. 

The averages are not however estimated from a mean spheroidal surface, 
but from one which is far distant from the mean. 

The questions now to be determined are as follows :—WThat is the proper 
greatest height and depression, estimated from a mean spheroid, which will 
bring out the above averages estimated from present sea-level, and what is 
the position of the mean spheroid with reference to the sea-level. 

From the solution of the problem considered in the note below*, it 

* Conceive a series of straight harmonic undulations corrugating a mean horizontal surface, 
and suppose them to he flooded with wator. This will represent fairly well the undulations on 
the dried earth, and the water-level will represent the sea-level. 

Suppose that the average heights and depths of the parts above and below water are known, 
and that it is required to find the position of the mean horizontal surface with reference to the 
water-level, and the height of the undulations measured from that mean surface. 

Take an origin of coordinates in the wateT - l eve l , the axis of x in the water-level and perpen
dicular to the undulations, and the axis of y measured upwards. 

Let y — h (cos x — cos a) 

be the equation to the undulations. 
1 f+a h 

The average height of the dry parts is clearly — / ydx or - (sin a-a cos a). Similarly the 
' • I A J -A ° 

average depth below water is — — [sin ( ir — a) — (x — a) cos (ir - a)] or * - [sin a + (ir - a) cos a] . 
',7 (I 7T LL 

If the latter average be p times as great as the former 

phooB a tan a - 1^ = 7i cos a ^ * a * a n a + • 

This is an equation for determining a. 

Now I find that a = 34°30' gives jp = 8'983, which corresponds very nearly with p = 9 of the 
text above. 

This value of a corresponds with an average equal to 'HQSh for the height above water, and 
1-0469A for the depth below water. Now if we put 

l-04697i = 3150 metres 

which gives -1165/i==350 metres very nearly, 

we have A=3009 metres. 
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appears that, if the continents and sea-beds have sections which are harmonic 
curves, then if we take,— 

The mean level bisecting elevations and depressions as 2480 metres 
(8150 feet) below the sea-level, and the greatest elevation and depression 
from that mean level as 300!) metres (9840 feet), it results that the average 
height of the land above sea-level is 350 metres and the average depression of 
dried sea-bed is 3150 metres. 

It thus appears that 3000 metres would be a proper greatest elevation 
and depression to assume for the harmonic analysis of this paper, if the earth 
were homogeneous. But as the density of superficial rocks is only a half of 
the mean density of the earth, I shall take 1500 metres as the greatest 
elevation and depression from the mean equilibrium spheroid of revolution. 

I t is proper here to note that the height of the undulations of elevation 
and depression in the zonal harmonic inequalities is considerably greater towards 
the poles than it is about the equator; it might therefore be maintained 
that by making 1500 metres the equatorial height, we are taking too high an 
estimate. But the state of stress caused in the sphere at any point depends 
very much more on the height of the inequality in the neighbourhood of a 
superficial point immediately over the point considered, than it does on the 
inequalities in remote parts of the sphere. 

Now in all the inequalities, except the 2nd harmonic, I have considered 
the state of stress in the equatorial region, and it will therefore I think be 
proper to adhere to the 1500 metres for the greatest height and depression. 

We have next to consider, what order of harmonic, inequalities is most 
nearly analogous to the great terrestrial continents and oceans. The most 
obvious case to take is that of the two Americas and Africa with Europe. 
The average longitude of the Americas is between 60° and 80° W., and the 
average longitude of Africa is about 25° E., hence there is a difference of 
longitude of about a right-angle between the two masses. These two great 
continents would be more nearly represented by an harmonic of the sectorial 

The depth below water-level of the mean level is h cos 34° 30' or 2480 metros. 
The greatest height of the dry part above the water-level is 3009 - 2480 or 429 metres, and the 

greatest depth of the submerged part below water-level is 3009 + 2480 or 5489 metres. 
After the proof-sheets of this paper had been corrected, Professor Stokes pointed out to me 

that, according to Rigaud (Cam. Phil. Soc.t vol. 6), the area of land is about four-fifteenths of 
the whole area of the earth's surface. Now, in the ideal undulations we are here considering the 
area above water is about one-tenth of the whole area; hence in this respect the analogy is not 
satisfactory between these undulations and the terrestrial continents. If I have not considerably 
over-estimated the average depth of the sea (and I do not think that I have done so), the dis
crepancy must arise from the fact that actual continents and sea-beds do not present in section 
ourves which conform to the harmonic type j there must also be a difference between corrugated 
spherical and plane surfaoes. 

The geological denudation of the land must, to some extent, render our continents flat-topped. 
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class*, rather than by a zonal harmonic, nevertheless I think the solution for 
the zonal harmonic will be adequate for the present purpose. 

Now it has been explained above that the harmonic of the fourth order 
represents an equatorial continent and a pair of polar continents. In the case 
of the 4th harmonic therefore there is a right angle of a great circle between 
contiguous continents. We may conclude from this that the large terrestrial 
inequalities are about equivalent to the harmonic of the fourth order. 

Table V. (b), § 7, gives the maximum stress-differences under the centre 
of the equatorial elevation of the several zonal harmonics, the height of each 
being 1500 metres. The point at which this maximum is reached is given in 
each case, and fig. 4 illustrates graphically the law of variation of stress-
difference. 

The second harmonic cannot be said to represent a continent, and the 
table shows that in each of the other cases the maximum stress-difference is 
very nearly 4 tons per square inch. The depths of the maximum point are 
of course very different in each case. 

We have concluded above that Africa and America are about equivalent 
to an harmonic of the fourth order, hence it may be concluded that the stress-
difference under those continents is at a maximum at more than 1100 miles 
from the earth's surface, and there amounts to about 4 tons per square inch. 
A comparison with Table VII. shows that marble would break under this 
stress, but that strong granite would stand. 

The case of the isolated continent investigated in § 8 appeared likely to 
prove the most interesting one, for the purpose of application to the case of 
the earth. But unfortunately I have found it difficult to arrive at a satis
factory conclusion as to the proper height to attribute to the continent. 

The average height of the American eontinent is about 1100 feet above 
the sea, and the average depth of the Pacific Ocean about 15,000 feet. If the 
water of the Pacific be congealed into rock, it will have an effective depth of 
10,000 feet. The greatest height of the American continent above the bed 
of the dried Pacific when smoothed down must be fully 12,000 feet or 3700 
metres. The height of the great central Asian plateau above the average 
bed of the southern ocean (after drying) must be considerably more than this. 

Now in the application to the homogeneous planet the heights are to be 
halved to allow for the smaller density of surface rock. 

* The sectorial harmonic of the fourth order s in 4 6 cos 4 0 would represent these two great 
continents well. It would represent China and Australia fairly; but would annihilate the 
Himalayan plateau, and place another great continent in mid-l'acific. It is not at all difficult to 
find the stress-difference under the centre of a sectorial inequality, but to find it generally 
involves the solution of a cubic equation. 
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I therefore take 2000 metres as the height of the top of the equatorial 
table-land above the remaining approximately spherical portion of the sphere. 

The investigation of § 8 then shows that the equatorial table-land will 
give rise to a stress-difference of 4'1 tons per square inch at a depth of 
660 miles; and that the equatorial table-land counterbalanced by the pair of 
polar continents (the second harmonic constituent being absent) gives a stress-
difference of about 3'8 tons per square inch at a depth of 590 miles. 

This estimate of stress-difference agrees in amount, with singular exact
ness, with that just found from the case of the 4th zonal harmonic, but the 
maximum is reached 400 or 500 miles nearer to the earth's surface. 

I think there can be no .doubt but that there are terrestrial inequalities of 
much greater breadth than that of my isolated continent; thus this investi
gation for the isolated continent will give a position for the maximum stress-
difference too near the surface to correspond with the largest continents. On 
the other hand, I do not feel at all sure that I have not considerably under
estimated the height of such a comparatively narrow plateau. 

In the present paper it has been impossible to take any notice of the 
stresses produced by the most fundamental inequality on the earth's surface, 
because it depends essentially on heterogeneity of density. 

It is well known that the earth may be divided into two hemispheres, one 
of which consists almost entirely of land, and the other of sea. If the south 
of England be taken as the pole of a hemisphere, it will be found that 
almost the whole of the land, excepting Australia, lies in that hemisphere, 
whilst the antipodal hemisphere consists almost entirely of sea. This proves 
that the centre of gravity of the earth's mass is more remote from England, 
than the centre of figure of the solid globe. 

A deformation of this kind is expressed by a surface harmonic of the first 
order, for such an harmonic is equivalent to a small displacement of the 
sphere as a whole, without true deformation. Now if we consider the surface 
forces produced by such a deformation in a homogeneous sphere, we find of 
course that there is an unbalanced resultant force acting on the whole sphere 
in the direction diametrically opposed to that of the equivalent displacement 
of the whole sphere. 

The fact that in the homogeneous sphere such an unbalanced force exists 
shows that in this case the problem is meaningless; it is in fact merely 
equivalent to a mischoice in the origin for the coordinates. But in the case 
of the earth such an inequality does exist, and the force referred to must of 
course be counterbalanced somehow. The balance can only be maintained by 
inequalities of density, which are necessarily unknown. The problem there
fore apparently eludes mathematical treatment. 

D . ii. 3 3 
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514 CONCLUSION. [9 

It is certain that so wide-spreading an inequality, even if not great in 
amount, must produce great stress within the globe. And just as the 2nd 
harmonic produces a more even distribution of stress than the 4th, so it is 
likely that the first would produce a more even distribution than the 2nd. 

It is difficult to avoid the conclusion that the whole of the solid portion 
of the earth is in a sensible state of stress. 

I would not however lay very much emphasis on this point, because we 
are in such complete ignorance as to the manner in which the equilibrium of 
the solid part of the earth is maintained. 

From this discussion it appears that if the earth be solid throughout, then 
at a thousand miles from the surface the material must be as strong as 
granite. If it be fluid or gaseous inside, and the crust a thousand miles 
thick that crust must be stronger than granite, and if only two or three 
hundred miles in thickness much stronger than granite. This conclusion is 
obviously strongly confirmatory of Sir William Thomson's view that the earth 
is solid throughout. 
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