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"PREFACE.

In the work, of which the present volume is an instal-
ment, my endeavour has been to lay before the reader
a connected exposition of the theory of sound, which
should include the more important of the advances made
in modern times by Mathematicians and Physicists.
The importance of the object which I have had in view
will not, I think, be disputed by those competent to
judge. At the present time many of the most valuable
contributions to science are to be found only in scattered
periodicals ‘and transactions of societies, published in
various parts of the world and in several languages, and
are often practically inaccessible to those who do mnot
happen to live in the neighbourhood of large public
libraries. In such a state of things the mechanical
impediments to study entail an amount of unremunera-
tive labour and consequent hindrance to the advance-
ment of science which it would be difficult to over-
estimate. '

Since the well-known Article on Sound in the Ency-
clopedio. Metropolitana, by Sir John Herschel (1845),
no complete work has been published in which the
subject is treated mathematically. = By the premature
death of Prof. Donkin the scientific world was deprived
of one whose mathematical attainments in combination
with a practical knowledge of music qualified him in a

R. b
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vi PREFACE.

special manner to write on Sound. The first part of his
Acoustics (1870), though little more than a fragment, is
sufficient to shew that my labours would have been un-
necessary had Prof. Donkin lived to complete his work.

In the choice of topics to be dealt with in a work
on Sound, I have for the most part followed the example
of my predecessors. To a great extent the theory of
Sound, as commonly understood, covers the same ground
as the theory of Vibrations in general ; but, unless some
limitation were admitted, the consideration of such sub-
jects as the Tides, not to speak of Optics, would have to
be included. As a general rule we shall confine ourselves
to those classes of vibrations for which our ears afford a
ready made and wonderfully sensitive instrument of in-
vestigation. Without ears we should hardly care much
more about vibrations than without eyes we should care
about light.

The present volume includes chapters on the vibra-
tions of systems in general, in which, I hope, will be
recognised some novelty of treatment and results, fol-
lowed by a more detailed consideration of special systems,
such as stretched strings, bars, membranes, and plates.
The second volume, of which a considerable portion is
already written, will commence with aérial vibrations.

My best thanks are due to Mr H. M. Taylor of
Trinity College, Cambridge, who has been good enough
to read the proofs. By his kind assistance several errors
and obscurities have been eliminated, and the volume
generally has been rendered less imperfect than it would
otherwise have been.

Any corrections, or suggestions for improvements, with
which my readers may favour me will be highly appre-
ciated.

TerLiNe Prace, WiTHAM,
April, 1877.

IRIS - LILLIAD - Université Lille 1



CONTENTS.

CHAPTER 1.
PAGE
§§1—27 . . . . . . . . . .1

Sound due to Vibrations. Finite velocity of Propagation, Velocity inde-
pendent of Pitch. Regnault’s experiments. Sound propagated in water.
‘Wheatstone’s experiment. Enfeeblement of Sound by distance. Notes
and Noises. Musical notes duse to periodic vibrations, Siren of Cagniard
de la Tour. Pitch dependent upon Period. Relationship between
musical notes. The same ratio of periods corresponds to the same
interval in all parts of the scale. Harmonie scales. Diatonie scales.
Absolute Pitch, Necessity of Temperament. Equal Temperament.
Table of Frequencies. Analysis of Notes. Notes and Tones. Quality
dependent upon harmonic overtones. Resolution of Notes by ear un-
certain,. Simple tones correspond to simple pendulous vibrations.

CHAPTER II.
8§28—42 . . . .. .18

Composition of harmonic motions of like period. Harmonic Curve. Com-
position of two vibrations of nearly equal period. Beats. Fourier's
Theorem. Vibrations in perpendicular directions, Lissajous’ Cylinder.
Lissajous’ Figures. Blackburn’s pendulum. Xaleidophone, Optical
methods of composition and analysis. The vibration microscope. In.
termittent Illumination,

IRIS - LILLIAD - Université Lille 1



viil CONTENTS,

CHAPTER IIL.
. PAGE
§§43-68 . . . . . . . . . .85

Systems with one degree of freedom. Independence of amplitude and
period. Frictional force proportional to velocity. Forced vibrations.
Principle of Superposition. Beats due to superposition of forced and
free vibrations, Various degrees of damping. String with Load. Me-
thod of Dimensions, Ideal Tuning-fork. Forks give nearly pure tones.
Forks as standards of pitch. Scheibler’s methods of tuning. Scheib-
ler's Tonometers. Compound Pendulum., Forks driven by electro-
magnetism. Fork Interrupter. Resonance, General solution for one
degree of freedom. Terms of the second order give rise to derived
tones.

CHAPTER IV.
§8690—95 . . . . . . . . . . er

Generalized co-ordinates. Ezpression for potential energy. Statical thoo-
rems. Initial motions. Ezpression for kinetic emergy. Reciprocal
theorem. Thomson’s theorem. Lagrange’s equations. The dissipation
function. Coexistence of small motions, Free vibrations without fric-
tion. Normal co-ordinates. The free periods fulfil & stationary condi-
tion. An accession of inertia increases the free periods. A relaxation
of gpring increases the frce periods. The greatest free period is an
absolute maximum. Hypothetical types of vibration. Example from
string. Approximately simple systems. String of variable density.
Normal functions. Conjugato property. Determination of constants to
suit arbitrary initial conditions, Stokes’ theorem.

CHAPTER V.
§96—117 . . . . . . . . . .o

Cases in which the three functions T, F, ¥ are simultaneously reducible to
sums of squares. Generalization of Young’s theorem on the nodal
points of strings, Equilibrium theory. Systems started from rest as
deflected by a force applied at one point. Systems started from the
equilibrium configuration by an impulse applied at one point. Systems
started from rest as deflected by a force uniformly distributed. Influ-
ence of small frictional forces on the vibrations of a system. Solution of
the general equations for free vibrations. Impressed Forces. Principle
of the persistence of periods. Inexorable motions. Reciprocal Theo-
rem, Application to free vibrations, Statement of reciprocal theorem
for harmonic forces. Applications. Extension to cases in which the
constitution of the system is a function of the period. Equations for
two degrees of freedom. Roots of determinantal equation. Intermit-
tent vibrations. March of periods as inertia is gradually increased.
Reaction of a dependent system.

IRIS - LILLIAD - Université Lille 1



CONTENTS. ix

CHAPTER VI
PAGE
8§ 118—148 . I TV

Law of extension of a string. Transverse vibrations. Solution of the pro-
blem for a string whose mass is concentrated in equidistant points. De-
rivation of solution for continuous string. Partial differential equation.
Expressions for ¥ and . Most general form of simple harmonic mo-
tion. Strings with fixed extremities. General motion of a string peri-
odic. Mersenne’s Laws. Sonometer. Normal modes of vibration.
Determination of constants to suit arbitrary initial circumstances. Case
of plucked string., Ezpressions for T and ¥ in terms of normal co-ordi-
nates. Normal equations of motion. String excited by plucking.
Young’s theorem. String excited by an impulse. Problem of piano-
forte string. Frietion proportional to velocity, Comparison with equi-
librium theory. Periodic force applied at one point. Modifications due
to yielding of the extremities. Proof of Fourier's theorem. Effects
of a finite load. Correction for rigidity. Problem of violin string.
Strings stretched on curved surfaces. Solution for the case of the
sphere. Correction for irregularities of density. Theorems of Sturm
and Liouville for a siring of variable density, Propagation of waves
along an unlimited string. Positive and negative waves. Stationary
Vibrations. Reflection at a fixed point. Deduction of solution for
finite string. Graphical method. Progressive wave with frietion.,

CHAPTER VIL
§§149—159. . . . . . . . . .188

Classification of the vibrations of Bars., Differential equation for longitu-
dinal vibrations. Numerical values of the constants for steel. Solu-
tion for a bar free at both ends. Deduction of solution for a bar with
one end free, and one fixed. Both ends fixed, Influence of small load.
Solution of problem for bar with large load attached. Correetion for
lateral motion. Savart’s ¢son rauque.” Differential equation for tor-
sional vibrations. Comparison of velocities of longitudinal and tor-
sional waves, )

CHAPTER VIII
§§160—192 . . . . . . . . .20

Potential energy of bending. Expression for kinetic energy. Derivation
of differential equation., Terminal conditions. General solution for
2 harmonie vibration, Conjugate property of the normal functions.
Values of integrated squares. Expression of ¥ in terms of normal co-

IRIS - LILLIAD - Université Lille 1



. CONTENTS.

ordinates. Normal equations of motion. Determination of constants
to suit initial conditions, Case of rod started by a blow. Rod started
from rest as deflected by a lateral force. In certain cases the series of

" normal funetions ceases to converge. Form of the normal functions for
a free-free bar. Laws of dependence of frequency on length and thick-
ness, Case when both onds are clamped. Normal functions for a
clamped-free bar, Calculation of periods. Comparisons of piteh. Dis-
cussion of the gravest mode of vibration of a free-free bar, Three
nodes. Four nodes. Gravest mode for clamped-free bar, Position of
nodes. Supported bar. Caleulation of period for clamped-free bar from
hypothetical type. Solution of problem for a bar with a loaded end.
Effect of additions to a bar, Influence of irregularities of denmsity.
Correction for rotatory inertia. Roots of funections derived linearly from
normal functions, Formation of equation of motion when thero is per-
manent tension. Speecial terminal conditions. Resultant of two trains
of waves of nearly equal period. Fourier’s solution of problem for infi-
nite bar.

CHAPTER IX.
§§193—213. . . . .

Tension of a membrano. Equation of motion. Fixed rectangular bound-

ary. Iixpression for ¥ and T in terms of normal co-ordinates. Normal
equations of vibration. Examples of impressed forces. Frequency for
an elongated rectangle depends mainly on the shorter side. Cases in
which different modes of vibration havo the same period. Derived
modes thence arising. Effect of slight irregularities. An irregularity
may remove indeterminateness of normal modes. Solutions applicable
to a triangle. Expression of the general differential equation by polar
co-ordinates. Of the two functions, which occur in the solution, one is
excluded by the condition at the pole. Expressions for Bessel’s func-
tions, Formule relating thereto. Table of the first two functions,
Fixzed circular boundary. Conjugate property of the normal functions
without restriction of boundary. Values of integrated squares. Ex-
pressions for 7' and V in terms of normal functions. Normal equa-
tions of vibration for circular membrane. Special case of free vibra-
tions, Vibrations due to a harmonic force uniformly distributed.
Pitches of the various simple tones. Table of the roots of Bessel’s func-
tions, Nodal Figures. Circular membrane with one radius fized.
Bessel’s functions of fractional order. Effect of small load. Vibrations
of a membrane whose boundary is approximately circular. In many
cases the pitch of a membrane may be calculated from the area alone.
Of all membranes of equal area that of circular form has the gravest
pitch, Pitch of a membrane whose boundary is an ellipse of small
eccentricity, Method of obtaining limits in cases that cannot be doalt
with rigorously. Comparison of frequencies in various cases of mem-
branes of equal area. History of the problem. Bourget's experi-
mental investigations.

IRIS - LILLIAD - Université Lille 1

PA

10



CONTENTS. xi

CHAPTER X.

PAGE

§§ 214—235 .. .203

Vibrations of Plates. Potential Energy of Bending, Transformation of V.
Superficial differential equation. Boundary conditions. Conjugate
property of mormal functions. Transformation to polar co-ordinates.
Form of general solution continuous through pole. Equations deter-
mining the periods for a free circular plate. Kirchhoff’s caleulations.
Comparison with observation. Radii of nodal circles. Irregularities
give rise to beats. Generalization of solution, Case of clamped, or
supported, edge. Disturbance of Chladni‘s figures, History of problem,
Mathiew’s criticisms. Rectangular plate with supported edge. Rect-
angular plate with free edge. Boundary conditions. One special case
(v =0) is amenable to mathematical treatment. Investigation of nodal
figures. Wheatstone’s application of the method of superposition,
Comparison of Wheatstone’s figures with those really applicable to a
plate in the case u = 0. Gravest mode of a square plate. Calculation
of period on hypothetical type. Nodal figures inferred from consider-
ations of symmetry. Hexagon. Comparison between circle and square.
Law connecting pitech and thickness. In the case of a clamped edge
any contraction of the boundary raises the pitech. No gravest form for
a free plate of given area. In similar plates the period is as the linear
dimension. Wheatstone’s experiments on wooden plates. Keenig's
experiments. Vibrations of cylinder, or ring. Motion tangential as
well ag normal. TRelation between tangential and normal motions, Ix-
pressions for kinetic and potential energies, Equations of vibration.
Frequencies of tones. Comparison with Chladni. Tangential friction
excites fangential motion. Experimental verification. Beats due to
irregularities.

IRIS - LILLIAD - Université Lille 1



IRIS - LILLIAD - Université Lille 1



CHAPTER 1.

INTRODUCTION,

1. THE sensation of sound is a thing sui generis, not com.-
parable with any of our other sensations. No one can express
the relation between a sound and a colour or a smell. Directly
or indirectly, all questions connected with this subject must
come for decision to the ear, as the organ of hearing; and
from it there can be no appeal. But we are not thercfore to -
infer that all acoustical investigations are conducted with the
unassisted ear. 'When once we have discovered the physical
phenomena which constitute the foundation of sound, our ex-
plorations are in great measure transferred to another field lying
within the dominion of the principles of Mechanics. Important
laws are in this way arrived at, to which the sensations of the ear
cannot but conform.,

2. Very cursory observation often suffices to shew that
sounding bodies are in a state of vibration, and that the phe-
nomena of sound and vibration are closely connected. When a
vibrating bell or string is touched by the finger, the sound ceases
at the same moment that the vibration is damped. But, in order
to affect the sense of hearing, it is not cnough to have a vibrating
instrument ; there must also be an uninterrupted communication
between the instrument and the car. A bell rung in vacuwo, with
proper precautions to prevent the communication of motion,
remains inaudible. In the air of the atmosphere, however,
sounds have a universal vehicle, capable of conveying them
without break from the most variously constituted sources to
the recesses of the ear.

3. The passage of sound is not instantancous. When a gun
is fired at a distance, a very porceptible interval separates the
/ R. 1
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2 INTRODUCTION. [3.

report from the flash, This represents the time occupied by
sound in travelling from the gun to the observer, the retardation
of the flash due to the finite velocity of light being altogether
negligible. The first accurate experiments were made by some
members of the French Academy, in 1738, Cannons were fired,
and the retardation of the reports at different distances observed.
The principal precaution necessary is to reverse alternately the
direction along which the sound travels, in order to eliminate the
influence of the motion of the air in mass. Down the wind, for
instance, sound travels relatively to the earth faster than its
proper rate, for the velocity of the wind is added to that proper
to the propagation of sound in still air. For still dry air at a
temperature of 0°C., the French observers found a velocity of 337
metres per second. Observations of the same character were
made by Arago and others in 1822; by the Dutch physicists Moll,
van Beek and Kuytenbrouwer at Amsterdam; by Bravais and
Martins between the top of the Faulhorn and a station below;
and by others. The gencral result has been to give a somewhat
lower value for the velocity of sound—about 332 mctres per
second. The effect of alteration of temperature and pressure on the
propagation of sound will be best considered in connection with
the mechanical theory.

4. Tt is a direct consequence of observation, that within wide
limits, the velocity of sound is independent, or at least very nearly
independent, of its intensity, and also of its pitch. Were this
otherwise, a quick piece of music would be heard at a little
distance hopelessly confused and discordant. But when the dis-
turbances are very violent and abrupt, so that the alterations of
density concerned are comparable with the whole density of the
air, the simplicity of this law may be departed from.

5. An elaborate series of experiments on the propagation of
sound in long tubes (water-pipes) has been made by Regnault'.
He adopted an automatic arrangement similar in principle to that
used for measuring the speed of projectiles. At the moment when
a pistol is fired at one end of the tube a wire conveying an electric
current is ruptured by the shock. This causes the withdrawal of a
tracing point which was previously marking a line on a revolving
dram. At the further end of the pipe is a stretched membrane so
arranged that when on the arrival of the sound it yields to the

1 Démoires de UAcadémie de France, t. XXxvII,
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5.] VELOCITY OF SOUND. 3

impulse, the circuit, which was ruptured during the passage of the
sound, is recompleted. At the same moment the tracing point
falls back on the drum. The blank space left unmarked corre-
spouds to the time occupied by the sound in making the journey,
and, when the motion -of the drum is known, gives the means of
determining it.  The length of the journey between the first wire
and the membrane is found by direct measurement. In these
experiments the velocity of sound appeared to be not quite inde-
pendent of the diameter of the pipe, which varied from 07108
to 1™100. The discrepancy is perhaps due to friction, whose
influence would be greater in smaller pipes.

6. Although, in practice, air is usually the vchicle of sound,
other gases, liquids and solids are equally capable of conveying
it. In most cases, however, the means of making a direct measure-
ment of the velocity of sound are wanting, and we are not yet in
a position to consider the indirect methods. But in the case of
water the same difficulty does not occur. In the year 1826,
Colladon and Sturm investigated the propagation of sound in the
Lake of Geneva. The striking of a bell at one station was
simultaneous with a flash of gunpowder. The observer at a
second station measured the interval betwecr the flash and the
arrival of the sound, applying his ear to a tube carried beneath
the surface. At a temperature of 8°C., the velocity of sound in
water was thus found to be 1435 metres per second.

7. The conveyance of sound by solids may be illustrated by a
pretty experiment due to Wheatstone. One end of a metallic wire
is connected with the sound-board of a pianoforte, and the other
taken through the partitions or floors into another part of the
building, where naturally nothing would be audible. If a reso-
nance-board (such as a violin) be now placed in contact with the

. wire, a tune played on the piano is easily heard, and the sound
seems to emanate from the resonance-board.

8. In an open space the intensity of sound falls off with great
rapidity as the distance from the source increases. The same
amount of motion has to do duty over surfaces ever increasing as the
squares of the distance. Anything that confines the sound will
tend to diminish the falling off of intensity. Thus over the flat
surface of still water, a sound carries further than over broken
ground; the corner between a smooth pavement and a vertical wall

_1s still better ; but the most effective of all is a tube-like enclosure,
1—2
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4 INTRODUCTION., (8.

which prevents spreading altogether. The use of speaking tubes
to facilitate communication between the different parts of a building
is well known. If it were not for certain effects (frictional and
other) due to the sides of the tube, sound might be thus conveyed
with little loss to very great distances.

9. Before procecding further we must consider a distinction,
which is of great importance, though not free from difficulty.
Sounds may be classed as musical and unmusical ; the former for
convenience may be called motes and the latter noises. The
extreme cases will raise no dispute; every one rccognises the
difference between the note of a pianoforte and the creaking of a
shoe. But it is not so easy to draw the line of separation. In the
first place few notes are free from all unmusical accompaniment.
With .organ pipes especially, the hissing of the wind as it escapes
at the mouth may be heard beside the proper note of the pipe.
And, secondly, many noises so far partake of a musical character as
to have a definite pitch. This is more easily rccognised in a
sequence, giving, for example, the common chord, than by continued
attention to an individual instance. The experiment may be made
by drawing corks from bottles, previously tuned by pouring water
into them, or by throwing down on a table sticks of wood of suitable

~dimensions.  But, although noises are somctimes not entirely
unmusical, and notes are usually not quite free from noise, there is
no difficulty in recognising which of the two is the simpler pheno-
menon, There is a certain smoothness and continuity about the
musical note. Moreover by sounding together a varicty of notes—
for cxample, by striking simultaneously a number of consecutive
keys on a pianoforte—we obtain an approximation to a noise;
while no combination of noises could ever blend into a musical note.

10. We are thus led to give our attention, in the first instance,
mainly to musical sonnds. These arrange themselves naturally
in a certain order according to pifch—a quality which all can
appreciate to some extent. Trained ears can recognise an enormous
number of gradations—more than a thousand, probably, within
the compass of the human voice. These gradations of pitch are
not, like the degrees of a thermometric scale, without special
mutual relations. Taking any given note as a starting point,
musicians can single out certain others, which bear a definite
relation to the first, and are known as its octave, fifth, &ec. The
corresponding differences of pitch are called dntervals, and are
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10.] PITCII. 5

spoken of as always the same for the same relationship. Thus,
wherever they may occur in the scale, a note and its octave are
separated by the interval of the octave. It will be our object later
to explain, so far as it ¢an be done, the origin and nature of the
consonant intervals, but we must now turn to consider the physical
aspect of the question.

Since sounds are produced by vibrations, it is natural to suppose
that the simpler sounds, viz. musical notes, correspond to periodic
vibrations, that is to say, vibrations which after a certain interval
of time, called the period, repeat themselves with perfect regularity.
And this, with a limitation presently to be noticed, is true.

11. Many contrivances may be proposed to illustrate the
generation of a musical note. One of the simplest is a revolving
wheel whose milled edge is pressed against a card. Each
projection as it strikes the card gives a slight tap, whose regular
recurrence, as the wheel turns, produces a note of definite pitch,
rising in the scale, as velocity of rotation tnereases. But the most
appropriate instrument for the fundamental experiments on notes
is undoubtedly the Siren, invented by Cagniard de la Tour. It
consists essentially of a stiff dise, capable of revolving about its
centre, and pierced with one or more sets of holes, arranged at
‘equal intervals round the circumference of circles concentric with
the disc. A windpipe in connection with bellows is presented
perpendicularly to the disc, its open end being opposite to one of
the circles, which contains a set of holes. When the bellows are
worked, the stream of air escapes freely, if a hole is opposite to the
end of the pipe; but otherwise it is obstructed. As the disc turns,
a succession of puffs of air escape through it, until, when the
velocity is sufficient, they blend into a note, whose pitch rises
continually with the rapidity of the puffs. We shall have occasion
later to describe more elaborate forms of the Siren, but for our
immediate purpose the present simple arrangement will suffice,

12. One of the most important facts in the whole science is
exemplified by the Siren—namely, that the pitch of a note depends
upon the period of its vibration. The size and shape of the holes,
the force of the wind, and other elements of the problem may be
varied ; but if the number of puffs in a given time, such as one
second, remains unchanged, so also does the pitch, We may even
dispense with wind altogether, and produce a note by allowing the
corner of a card to tap against the cdges of the holes, as they
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6 INTRODUCTION, [12.

- revolve ; the pitch will still be the same. Observation of other
sources of sound, such as vibrating solids, leads to the same con-
clusions, though the difficulties are often such as to render
necessary rather refined experimental methods,

But in saying that pitch depends wupon period, there
lurks an ambiguity, which deserves attentive consideration,
as it will lead us to a point of great importance. If a
variable quantity is periodic in any time 7, it is also periodic
in the times 2t, 87, &. Conversely, a recurrence within a given
period 7, does not exclude a more rapid recurrence within
periods which are the aliquot parts of 7. It would appear
accordingly that a vibration really recurring in the time v (for
example) may be regarded as having the period =, and therefore by
the law just laid down as producing a note of the pitch defined by
7. The force of this consideration cannot be entirely evaded by
defining as the period the least time required to bring about a
repetition. In the first place, the necessity of such a restriction is
in itself almost sufficient to shew that we have not got to the root
of the matter ; for although a right to the period = may be denied
to a vibration repeating itself rigorously within a time %7, yet it
must be allowed to a vibration that may differ indefinitely little
therefrom. In the Siren experiment, suppose that in one of the
circles of holes containing an even number, every altérnate hole is
displaced along the arc of the circle by the same amount. The
displacement may be made so small that no change can be detected
in the resulting note; but the periodic time on which the pitch
depends has been doubled. And secondly it is evident from the
nature of periodicity, that the superposition on a vibration of period
7, of others having periods }, 7...&c., does not disturb the period r,
while yet it cannot be supposed that the addition of the new ele-
ments has left the quality of the sound unchanged. Moreover, since
the pitch is not affected by their presence, how do we know that
clements of the shorter periods were not there from the beginning?

13. These considerations lead us to expect remarkable relations
between the notes whose periods are as the reciprocals of the
natural numbers. Nothing can be easier than to investigate the
question by means of the Siren. Imagine two circles of holes, the
inner containing any convenient number, and the outer twice as
many. Then at whatever speed the disc may turn, the period of
the vibration engendered by blowing the first sct will necessarily
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13.] - MUSICAL INTERVALS. 7

be the double of that belonging to the second. On making the
experiment the two notes are found to stand to each other in
the relation of octaves; and we conclude that in passing from any
note to its octave, the frequency of vibration is doubled. A similar
method of experimenting shews, that to the ratio of periods 8 : 1
corresponds the interval known to musicians as the twelfth, made
up of an octave and a fifth; to the ratio of 4 : 1, the double
octave; and to the ratio 5 : 1, the interval made up of two octaves
and a major third. In order to obtain the intervals of the fifth
and third themselves, the ratios must be made 3 :2 and 5 : 4
respectively.

14. From these experiments it appears that if two notes
stand to one another in a fixed relation, then, no matter at what
part of the scale they may be situated, their periods are in a
certain constant ratio characteristic of the relation. The same
may be said of their frequencies’, or the number of vibrations
which they execute in a given time, The ratio 2:1 is thus
characteristic of the octave interval. If we wish to combine
two intervals,—for instance, starting from a given note, to take
a step of an octave and then “another of a fifth in the same
direction, the corresponding ratios must be compounded :

2.8 3

i%z=71
The twelfth part of an octave is represented by the ratio /2 : 1,
for this is the step which repeated twelve times leads to an
octave above the starting point. If we*wish to have a measure
of intervals in the proper sense, we must take not the character-
istic ratio itself, but the logarithm of that ratio. Then, and then
only, will the measure of a compound interval be the sum of the
measures of the components.

15. From the intervals of the octave, fifth, and third con-
sidered above, others known to musicians may be derived. The
difference of an octave and a fifth is called a jfourth, and has the

. 3 4 . . .
ratio 2 +5=73 This process of subtracting an interval from
the octave is called ‘nverting it. By inverting the major third

1 A single word to ‘denote the number of vibrations executed in the unit of time
is indispensable : I know no better than ¢ frequency,” which was used in this sense

by Young. The same word is employed by Prof, Everett in his excellent edition
of Deschanel’s Natural Philosophy. ’
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8 INTRODUCTION. [15.

we obtain the minor sixth. Again, by subtraction of a major
third from a fifth we obtain the minor third; and from this by
inversion the major sixth. The following table exhibits side by
side the names of the intervals and the corresponding ratios of
frequencies :

Octave ..ovvvrevrivivnineinnns 2:1
Fifth ...covovvinininiinns 3:2
Fourth ...ooovvvvivininninnnns 4:3
Major Third .......c...ouvnnen. 5:4
Minor Sixth............ e 8:5
Minor Third ....cccevvevvennns 6:5
MajorSixth ...ovvvvvvinnnnnns 5:3

These arc all the consonant intervals comprised within the
limits of the octave. It will be remarked that the corresponding
ratios are all expressed by means of small whole numbers, and
that this is more particularly the case for the more consonant
intervals.

The notes whose. frequencies are multiples of that of a given
one, are called its harmonics, and the whole series constitutes
a harmonic scale. As is well known to violinists, they may all
be obtained from the same string by touching it lightly with the
finger at certain points, while the bow is drawn.

The establishment of the connection between musical intervals
and definite ratios of frequency—a fundamental point in Acoustics
—is due to Mersenne (1636). It was indced known to the
Greeks in what ratios the lengths of strings must be changed
in order to obtain the octave and fifth; but Mersenne demon-
strated the law connecting the length of a string with the period
of its vibration, and madc the first determination of the actual
rate of vibration of a known musical note.

16. On any note taken as a key-note, or fonic, a diatonic
scale may be founded, whose derivation we now proceed to ex-
plain. If the key-note, whatever may be its absolute pitch, be
called Do, the fifth above or dominant is Sol, and the fifth below
or subdominant is Fa. The common chord on any note is pro-
duced by combining it With its major third, and fifth, giving the
'3 g or 4:5:6, Now if we take the
common chord on the tonic, on the dominant, and on the sub-
dominant, and transpose them when necessary into the octave

ratios of frequency 1
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16.] . NOTATION. 9

lying immediately above the tonic, we obtain notes whose fre-
quencies arranged in order of magnitude are:
Do Re Mi TFa Sol ILa Si Do
9 5 4 3 5 15
1’ g » I ’ g ’ § ’ g ’ 'g' s 2.
Here the common chord on Do is Do—Mi—Sol, with the

ratios 1 : g :—g; the chord on Sol is Sol—Si—Re, with the ratios

315 .9 .53 g
3'F .2><§—1 P305 and the chord on Fa is Fa—La—Do,

still with the same ratios. The scale is completed by repeating
these notes above and below at intervals of octaves. '

If we take as our Do, or key-note, the lower ¢ of a tenor
voice, the diatonic scale will be

¢ d e f g a b c.

Usage differs slightly as to the mode of distinguishing the
different octaves; in what follows I adopt the notation of Helm-
holtz. The octave below the one just referrcd to is written with
capital letters—C, D, &c.; the next below that with a suffix—
C,, D, &c.; and the one beyond that with a double suffix—C,, &e.
On the other side accents denote elevation by an octave—c/, ¢,
&c. The notes of the four strings of a violin are written in this
notation, g—d'—a'—e"”. The middle ¢ of the pianoforte is ¢,

17. 'With respect to an absolute standard of pitch there has
been no uniform practice. At the Stuttgard conference in 1834,
¢’ =264 complete vibrations per second was recommended. This
corresponds to a’'=440. The French pitch makes a'=435. In
Handel’s time the pitch was much lower. If ¢’ were taken at 256
or 2% all the ¢'s would have frequencies represented by powers
of 2. This pitch is usually adopted by physicists and acoustical
instrument makers, and has the advantage of simplicity.

The determination ab wnitio of the frequency of a given note is
an operation requiring some care. The simplest method in prin-
ciple is by means of the Siren, which is driven at such a rate as to
give a note in unison with the given one. The number of turns
effected by the disc in one second is given by a counting apparatus,
which can be thrown in and out of gear at the beginning and end
of a measured interval of time. This multiplied by the number of
effective holes gives the required frequency. The consideration of
other methods admitting of greater accuracy must be deferred.
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10 INTRODUCTION, [18.

18. So long as we keep to the diatonic scale of ¢, the notes above
written are all that are required in a musical composition. But it
is frequently desired to change the key-note. Under these circum-
stances a singer with a good natural ear, accustomed to perform
without accompaniment, takes an entirely fresh departure, con-
structing a new diatonic scale on the new key-note. In this way,
after a few changes of key, the original scale will be quite departed
from, and an immense variety of notes be used. On an instrument
with fixed notes like the piano and organ such a multiplication is
impracticable, and some compromise is necessary in order to allow
the same note to perform different functions. This is not the
place to discuss the question at any length; we will therefore take
as an illustration the simplest, as well as the commonest case—
modulation into the key of the dominant.

By definition, t}gd{ia‘conic“ scale of ¢ consists of the common
chords founded on ¢, g and . In Jike manner the scale of g con-
sists of the chords founded on g, d and ¢. The chords of ¢ and g
are then common to the two scales; but the third and fifth of d
introduce new notes. The third of d written fg has a frequency

gx Z =;%, and is far removed from any note in the scale of c.

But the fifth of d, with a frequency %x§=?—é,

little from a, whose frequency is g In ordinary keyed instruments

the interval between the two, represented by %, and called a

differs but

comma, is neglected, and the two notes by a suitable compromise
or temperament are identified.

19. Various systems of temperament have been used; the
simplest and that now most gencrally used, or at least aimed at, is
the equal temperament. On referring to the table of frequencies for
the diatonic scale, it will be seen that the intervals from Do to Re,
from Re to Mj, from Fa to Sol, from Sol to La, and from La to Si,

10

are nearly the same, being represented by g or o while the

intervals from Mi to Fa and from Si to Do, represented by %-g , arc

about half as much. The equal temperament treats these ap-
proximate relations as exact, dividing the octave into twelve equal

IRIS - LILLIAD - Université Lille 1



19.] EQUAL TEMPERAMENT. , 11

parts called mean semitones. From these twelve notes the diatonic
scale belonging to any key may be selected according to the fol-
lowing rule. Taking the key-note as the first, fill up the series
with the third, fifth, sixth, eighth, tenth, twelfth and thirteenth
notes, counting upwards. In this way all difficulties of modulation
are avoided, as the twelve notes serve as well for one key as for
another. But this advantage is obtained at a sacrifice of true in-
tonation. The equal temperament third, being the third part of
an octave, is represented by the ratio /2 :1, or approximately
1-2599, while the true third is 1'25. The tempered third is thus
higher than the true by the interval 126 : 125. The ratio of the
tempered fifth may be obtained from the consideration that seven
semitones make a fifth, while twelve go to an octave. The ratio is

therefore 277 ; 1, which = 14983, The tempered fifth is thus too
low in the ratio 14983 : 1'5, or approximately 881 :882. This
error is insignificant; and even the error of the third is not of
much consequence, in quick music on instruments like the piano-
forte. But when the notes are Aeld, as in the harmonium and
organ, the consonance of chords is materially impaired.

20. The following Table, giving the twelve notes of the chro-
matic scale according to the system of equal temperament, will be
convenient for reference’, The standard employed is a'= 440 ; in
order to adapt the Table to any other absolute pitch, it is only
necessary to multiply throughout by the proper constant.

4 4 773 Vi
C, C, C ¢ c c ¢’ ¢

C | 16353270 (6541 | 130-8 | 261-7 | 523:3 | 10466 | 20932
C# 17-32 | 34:65 | 69-30 | 1386 | 2772 | 544-4 | 1108-8 | 22177
18-35 | 3671 | 73-42 | 1468 { 293'7 | 5874 | 1174'8 | 23496
19-44 | 3889 | 7779 | 1556 | 3112 | 6223 | 12446 | 24893
2060 | 41-20 | 82-41 | 164'8 | 329-7 | 659:3 | 13186 | 2637°3
21-82 [ 43-65 | 87-31 | 1746 | 349-2 | 6985 | 1397-0 | 27940
2312 | 4625 | 92:50 | 1850 | 370:0 | 740-0 | 1480-0 | 29601
2450 | 49-00 | 98:00 | 1960 | 392-0 | 7840 | 15680 | 31360
25-95 | 51-91 | 1038 | 207:6 | 4153 | 8306 | 1661-2 | 33225
27-50 | 55:00 | 110-0 | 220-0 | 440-0 | 8800 | 17600 | 35200
#2913 | 5827|1165 | 233-1 | 4662 | 9323 | 1864°6 | 37292
30-86 | 61-73 | 123-5 | 246-9 | 493-9 | 9877 | 19755 | 39510

QREEYY

]

1 Zamminer, Die Musik und dic musikalischen Instrumente, Giessen, 1855,
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12 INTRODUCTION. [20.

The ratios of the intervals of the equal temperament scale are
given below (Zamminer) :—

Note,  Frequency. Note. Frequoney.
¢ - =100000 4 9% — 141491
£ 2 977 _ 105946 g 9T7 = 1-49831
4 217 = 119246 gh 217 = 158740
ag 1—3‘ — 118921 a 997 = 168179
o 21‘4‘ 1:25992 o 21% = 178180
£ 977 _ 133484 b ol¥ - 188775
¢’ = 2000

21. Returning now for a moment to the physical aspect of the
question, we will assume, what we shall afterwards prove to be
true within wide limits,—that, when two or more sourccs of sound
agitate the air simultaneously, the resulting disturbance at any
point in the external air, or in the ear-passage, is the simple sum
(in the extended geometrical sense) of what would be caused by
each source acting separately. Let us consider the disturbance
due to a simultaneous sounding of a note and any or all of its
harmonics. By definition, the complex whole forms a note having
the same period (and thercfore pitch) as its gravest element. We
have at present no criterion by which the two can be distinguished,
or the presence of the higher harmonics recognised. And yet—in
the case, at any rate, where the component sounds have an inde-
pendent origin—it is usually not difficult to detect them by the-
ear, so as to effect an analysis of the mixture. This is as much as
to say that a strictly periodic vibration may give rise to a sensa-
tion which is not simple, but susceptible of further analysis. In
point of fact, it has long been known to musicians that under
certain circumstances the harmonics of a note may be heard along
with it, cven when the note is due to a single source, such as a
vibrating string ; but the significance of the fact was not under-
stood. Since attentwn has been drawn to the subject, it has been
proved (mainly by the labours of Ohm and Helmholtz) that almost
all musical notes are highly compound, consisting in fact of the
notes of a harmonic scale, from which in particular cases one or
more members may be missing. The reason of the uncertainty
and difficulty of the analysis will be touchod upon presently.
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22.] | NOTES AND TONES. 13

22. That kind of note which the ear cannot further resolve is
called by Helmholtz in German a ‘fon.” Tyndall and other recent
writers on Acoustics have adopted ‘tone’ as an English equivalent,
—a practice which will be followed in the present work. The
thing is so important, that a convenient word is almost a matter
of necessity. MNotes then are in gencral made up of tones, the
pitch of the note being that of the gravest tone which it contains.

28. In strictness the quality of pitch must be attached in the
first instance to simple tones only; otherwise the difficulty of dis-
continuity before referred to presents itself. The slightest change
in the nature of a note may lower its pitch by a whole octave, as
was exemplified in the case of the Siren. We should now rather
say that the effect of the slight displacement of the alternate
holes in that experiment was to introduce a new feeble tone an
octave lower than any previously present. This is sufficient to
alter the .period of the whole, but the great mass of the sound
remains very nearly as before.

In most musical notes, however, the fundamental or gravest
tone is present in sufficient intensity to impress its character on
the whole. The' effect of the harmonic overtones is then to
modify the quality or character* of the note, independently of pitch,
That such a distinction exists is well known. Thenotes of a violin,
tuning fork, or of the human voice with its different vowel sounds,
&c., may all have the same pitch and yet differ independently of
loudness; and though a part of this difference is due to accompany-
ing noises, which are extraneous to their nature as notes, still there
is a part which is not thus to be accounted for. Musical notes may
thus be classified as variable in three ways : First, petch. This we
have already sufficiently considered. Secondly, character, depend-
ing on the proportions in which the harmonic overtones are com-
bined with the fundamental: and thirdly, loudness. This has to be
taken last, because the ear is not capable of comparing (with any
precision) the loudness of two notes which differ much in pitch or
character. We shall indeed in a future chapter give a mechanical
measure of the intensity of sound, including in one system all
gradations of pitch; but this is nothing to the point. We are here
concerned with the intensity of the sensation of sound, not with a
measure of its physical cause, The difference of loudness is,
however, at once recognised as onc of more or less; so that we

1 German, ‘Klangfarbe’ —French, ‘timbre.” The word ‘charncter’ isused in this
sense by Bverett,
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14 . INTRODUCTION. [23.

have hardly any choice but to regard it as dependent ceileris
poribus on the magnitude of the vibrations concerned.

24. We have seen that a musical note, as such, is due to a
vibration which is necessarily periodic; but the converse, it is
evident, cannot be true without limitation., A periodic repetition
of a noise at intervals of a second—for instance, the ticking of a
clock—would not result in a musical note, be the repetition ever
so perfect. In such a case we may say that the fundamental tone
lies outside the limits of hearing, and although some of the
harmonic overtones would fall within them, these would not give
rise to a musical note or even to a chord, but to a noisy mass of
sound like that produced by striking simultaneously the twelve
notes of the chromatic scale. 'The experiment may be made with
the Siren by distributing the holes guite irregularly round the
circumference of a circle, and turning the disc with a moderate
velocity. By the construction of the instrument, everything re-
curs after each complete revolution,

25. The principal remaining difficulty in the thecory of notes
and tones, is to explain why notes are sometimes analysed by the
ear into tones, and sometimes not. If a note is really complex,
why is not the fact immediately and certainly perceived, and the
components disentangled ? The feebleness of the harmonic over-
tones is not the reason, for, as we shall see at a later stage of our
inquiry, they are often of surprising loudness, and play a prominent
part in music. On the other hand, if a note is sometimes perceived
as a whole, why does not this happen always? These questions
have been carefully considered by Helmholtz!, with a tolerably
satisfactory result. The difficulty, such as it is, is not peculiar to
Acoustics, but may be paralleled in the cognate science of Physio-
logical Optics.

The knowledge of external things which we derive from the
indications of our senses, is for the most part the result of inference.
When an object is before us, certain mnerves in our retine are
excited, and certain sensations are produced, which we are
accustomed to associate with the object, and we forthwith infer its
presence. In the case of an unknown object the process is much
the same. We interpret the sensations to which we are subject so
as to form a pretty good idea of their exciting cause. Irom the
slightly different perspective views received by the two eyes we
infer, often by a highly elaborate process, the actual relief and

1 Tonempfindungen, 8rd edition, p. 98.
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25.] ANALYSIS OF NOTES. 15

distance of the object, to which we might otherwise have had no
clue. These inferences are made with extreme rapidity and quite
unconsciously. The whole life of each one of us is a continued
lesson in interpreting the signs presented to us, and in drawing
conclusions as to the actualities outside. Only so far as we succeed
in doing this, are our sensations of any use to us in the ordinary
affairs of life. This being so, it is no wonder that the study of our
sensations themselves falls into the background, and that subjective
phenomena, as they are called, become exceedingly difficult of
observation. As an instance of this, it is sufficient to mention the
‘blind spot’ on the retina, which might & priori have been
expected to manifest itself as a conspicuous phenomenon, though
as a fact probably not one person in a hundred million would find
it out for themselves. The application of these remarks to the
question in hand is tolerably obvious. In the daily use of our ears
our object is to disentangle from the whole mass of sound that
may reach us, the parts coming from sources which may interest
us at the moment. When we listen to the conversation of a friend,
we fix our attention on the sound proceeding from him and
endeavour to grasp that as a whole, while we ignore, as far as
possible, any other sounds, regarding them as an interruption.
There are usually sufficient indications to assist us in making this
partial analysis. When a man speaks, the whole sound of his
voice rises and falls together, and we have no difficulty in recog-
nising its unity. It would be no advantage, but on the contrary
a great source of confusion, if we were to carry the analysis further,
and resolve the whole mass of sound present into its component
tones. Although, as regards sensation, a resolution into tones
might be expected, the necessities of our position and the practice
of our lives lead us to stop the analysis at the point, beyond
which it would cease to be of service in deciphering our sensa-
tions, considered as signs of external objects’.

But it may sometimes happen that however much we may
wish to form a judgment, the materials for doing so are absolutely
wanting. When a note and its octave are sounding close together
and with perfect uniformity, there is nothing in our sensations to
enable us to distinguish, whether the notes have a double or a
single origin. In the mixture stop of the organ, the pressing down
of each key admits the wind to a group of pipes, giving a note and

1 Most probably the power of attending to the important and ignoring the
unimportant part of our sensations is to a great extent inherited—to how great an
oxtent we shall perhaps never know,
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its first three or four harmonics. The pipes of each group always
sound together, and the result is usually perceived as a single
note, although it docs not procecd from a single source.

26. The resolution of a note into its component tones is a
matter of very different difficulty with different individuals, A
considerable effort of attention is required, particularly at first ;
and, until a habit has been formed, some external aid in the shape
of a suggestion of what is to be listened for, is very desirable.

The difficulty is altogether very similar to that of learning to
draw. From the machinery of vision it might have been expected
that nothing would be easier than to make, on a plane surface, a
representation of surrounding solid objects ; but experience shews
. that much practice is generally required.

We shall return to the question of the analysis of notes at a
later stage, after we have treated of the vibrations of strings, with
the aid of which it is best elucidated; but a very instructive
experiment, due originally to Ohm and improved by Helmholtz,
may be given here. Helmboltz' took two bottles of the shape
represented in the figure, one about twice as large as the other.
These were blown by streams of air directed across
the mouth and issuing from gutta-percha tubes,
whose ends had been softencd and pressed flat,
50 as to reduce the bore to the form of a narrow FI1G. /.
slit, the tubes being in connection with the same
bellows. By pouring in water when the note is too
low and by partially obstructing the mouth when
the note is too high, the bottles may be made to
give notes with the exact interval of an octave,
such as b and b’. The larger bottle, blown alone, gives a somewhat
muffled sound similar in character to the vowel U; but, when both
bottles are blown, the character of the resulting sound is sharper,
resembling rather the vowel O. For a short time after the notes
had been heard separatcly Helmholtz was able to distinguish them
in the mixture; but as the memory of their separate impressions
faded, the higher note seemed by degrecs to amalgamate with
the lower, which at the same time became louder and acquired

Y a sharper character. This blending of the two notes may take
place even when the high note is the louder.

27. Sceing now that notes are usually compound, and that
only a particular sort called tones are incapable of further analysis,

1 Tonempfindungen, p. 109,
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27.] PENDULOUS VIBRATIONS, 17

we are led to inquire what is the physical characteristic of tones,
to which they owe their peculiarity ? What sort of periodic vibra-
tion is it, which produces a simple tone? According to what
mathematical function of the time does the pressure vary in
the passage of the ear ¢ No question in Acoustics can be more
important. '

The simplest periodic functions with which mathematicians are
acquainted are the circular functions, expressed by a sine or
cosine ; indeed there are no others at all approaching them in
simplicity. They may be of any period, and admitting of no
other variation (except magnitude), seem well adapted to produce
simple tones. Moreover it has been proved by Fourier, that the
most gencral single-valued periodic function can be resolved into
a series of circular functions, having periods which are submultiples
of that of the given function. Again, it is a consequence of the
general theory of vibration that the particular type, now suggested
as corresponding to a simple tone, is the only one capable of
preserving its integrity among the vicissitudes which it may
have to undergo. Any other kind is liable to a sort of physical
analysis, one part being differently affected from another. If the
analysis within the ear proceeded on a different principle from that
effected according to the laws of dead matter outside the ear,
the consequence would be that a sound originally simple might
become compound on its way to the observer. There is no reason
to suppose that anything of this sort actually happens, When it
is added that according to all the ideas we can form on the subject,
the analysis within the ear must take place by means of a physical
machinery, subject to the same laws as prevail outside, it will be
seen that a strong case has been made out for regarding tones as
due to vibrations expressed by circular functions. We are not
however left entirely to the guidance of general considerations like
these. In the chapter on the vibration of strings, we shall see
that in many cases theory informs us beforehand of the nature of
the vibration executed by a string, and in particular whether any
specified simple vibration is a component or not. Here we have
a decisive test. It is found by experiment that, whenever according
to theory any simple vibration is present, the corresponding tone
can be heard, but, whenever the simple vibration is absent, then
the tone cannot be heard. We are therefore justified in asserting
that simple tones and vibrations of a circular type are indissolubly
connected. This law was discovercd by Ohm.

R. 2
IRIS - LILLIAD - Université Lille 1



CHAPTER IL

HARMONIC MOTIONS.

28, THE vibrations expressed by a circular function of the
time and variously designated as simple, pendulous, or harmonic,
are so important in Acoustics that we cannot do better than devote
a chapter to their consideration, before entering on the dynamical
part of our subject. The quantity, whose variation constitutes
the ‘vibration,’ may be the displacement of a particle measured
in a given direction, the pressure at a fixed point in a flnid
medium, and so on. In any case denoting it by », we have

U =@ cos (2—:_T—"'—e> ..................... (1),

in which @ denotes the amplitude, or extreme value of u; 7 is
the pertodic time, or period, after the lapse of which the values
of w recur; and e determines the phase of the vibration at the
moment from which ¢ is measured.

Any number of harmonic vibrations of the same period affect-
ing a variable quantity, compound into another of the same type,
whose clements are determined as follows :

u=2acos(2£t—e)
T

2 .2 .
= C0S§ ?Ea cos e+s1nT7TtZas1ne

- L YR 2),

=7008 (2= ). (
if r={(Sacose)’+ (Sasin e)t....ccererrmmerrere (3
and tAn 0= A SIN € = DB COSErrvvrrrevanasnrrrnessrsrss? (4)-
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For example, let there be two components,
2t ) . 27t
u=acos(—— +a cos(———e ;
T T

then r={a'+ a” + 200 cos (e~ )Perreeiiniiniinnn, (5),
asinetdsine e (©).
@ cos €+ a’ cos €

Particular cases may be noted. If the phases of the two com-
Pponents agree,

tan 0 =

n (2wt
u=(a + a') cos (T—e) .

If the phases differ by half a period,
u=(a—a’) cos (gﬂ—e),
T

8o that if ' =a, u vanishes. In this case the vibrations are often
said to nferfere, but the expression is rather misleading. Two
sounds may very properly be said to interfere, when they together
cause silence; but the mere superposition of two vibrations
(whether rest is the consequence, or not) cannot properly be so
called. At least if this be interference, it is difficult to say what
non-interference can be. It will appear in the course of this
work that when vibrations exceed a certain intensity they no
Jonger compound by mere addition; #ids mutual action might
more properly be called interference, but it is a phenomenon
of a totally different nature from that with which we are now
dealing.

Again, if the phases differ by a quarter or by three-quarters of
a period, cos (e—¢) =0, and

r={a*+a?}

Harmonic vibrations of given period may be represented
by lines drawn from a pole, the lengths-of the lines being pro-
portional to the amplitudes, and the inclinations to the phases
of the vibrations. The resultant of any number of harmonic
vibrations is then represented by the geometrical resultant of
the corresponding lines. For example, if they are disposed
symmetrically round the pole, the resultant of the lines, or
vibrations, is zcro. -

29. If we mcasure off along an axis of x distances pro-
portional to the time, and take u for an ordinate, we obtain the
harmonic curve, or curve of sincs,

2—2
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20 HARMONIC MOTIONS [29.

=@ cos (2—75? - e)
X »
where A, called the wave-length, is written in place of 7, both
quantities denoting the range of the independent variable corre-
sponding to a complete recurrence of the function. The harmonic
curve is thus the locus of a point subject at once to a uni-
form motion, and to a harmonic vibration in a perpendicular
direction. In the next chapter we shall see that the vibration
of a tuning fork is simple harmonic; so that if an excited tuning
fork is moved with uniform velocity parallel to the line of its
handle, a tracing point attached to the end of one of its prongs
describes a harmonic curve, which may be obtained in a permanent
form by allowing the tracing point to bear gently on a piece of
smoked paper. In Fig. 2 the continuous lines are two harmonic
curves of the same wave-length and amplitude, but of different

phases; the dotted curve represents half their resultant, being
the locus of points midway between those in which the two
curves are met by any ordinate,

30. If two harmonic vibrations of different periods coexist,

%= @ oS (@—e)+a'cos (ﬁ—e’) .
T T

The resultant cannot here be represented as a simple harmonic
motion with other elements. If = and 7" be incommensurable, the
value of u never recurs; but, if 7 and 7 be in the ratio of two
whole numbers, u recurs after the lapse of a time equal to the
least common multiple of 7 and 7; but the vibration is not
simple harmonic. For example, when a note and its fifth are
sounding together, the vibration recurs after a time equal to
twice the period of the graver.
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One case of the composition of harmonic vibrations of different
periods is worth special discussion, namely, when the difference
of the periods is small. If we fix our attention on the course
of things during an interval of time including merely a few
periods, we see that the two vibrations are nearly the same as
if their periods were absolutely equal, in which case they would,
as we know, be equivalent to another simple harmonic vibration
of the same period. For a few periods then the resultant
motion is approximately simple harmonic, but the same har-
monic will not continue to represent it for long. The vibration
having the shorter period continually gains on its fellow,
thereby altering the difference of phase on which the elements
of the resultant depend. For simplicity of statement let us
suppose that the two components have equal amplitudes, fre-
quencies represented by m and n, where m—n is small, and
that when first observed their phases agree. At this moment
their effects conspire, and the resultant has an amplitude doublo
of that of the components. But after a time 1 + 2 (1 —n) the
vibration m will have gained half a period relatively to the
other; and the two, being now in complete disagreement, neu-
tralize each other. After a further interval of time equal to
that above named, m will have gained altogether a whole vibra-
tion, and complete accordance is once more re-established. The
resultant motion is therefore approximately simple harmonie,
with an amplitude not constant, but varying from zero to twice
that of the components, the frequency of these alterations being
m—n. If two tuning forks with frequencies 500 and 501 be
equally excited, there is every second a rise and fall of sound
corresponding to the coincidence or opposition of their vibrations.
This phenomenon is called beats. We do not here fully discuss
the question how the ear behaves in the presence of vibrations
having nearly equal frequencies, but it is obvious that if the motion
in the neighbourhood of the ear almost ceases for a considerable
fraction of a second, the sound must appear to fall. For reasons
that will afterwards appear, beats are best heard when the in-
terfering sounds are simple tones. Consecutive notes of the
stopped diapason of the organ shew the phenomenon very
well, at least in the lower parts of the scale. A permanent inter-
ference of two notes may be obtained by mounting two stopped
organ pipes of similar construction and identical pitch side
by side on the samc wind chest. The vibrations of the two
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22 HARMONIC MOTIONS. [30.

pipes adjust themselves to complete opposition, so that at a
little distance nothing can be heard, except the hissing of the
wind. If by a rigid wall between the two pipes one sound
could be cut off, the other would be instantly restored. Or the
balance, on which silence depends, may be upset by connecting
the ear with a tube, whose other end lics close to the mouth of
one of the pipes.

By means of beats two notes may be tuned to unison with
great exactness. The object is to make the beats as slow as
possible, since the number of beats in a second is equal to the
difference of the frequencies of the notes. Under favourable
circumstances beats so slow as one in 30 seconds muy be re-
cognised, and would indicate that the higher note gains only
two vibrations a minute on the lower. Or it might be desired
merely to ascertain the difference of the frequencies of two notes
nearly in unison, in which case nothing more is necessary than
to count the number of beats. It will be remembered that the
difference of frequencics does not determine the tnterval between
the two notes; that depends on the ratio of frequencies. Thus
the rapidity of the beats given by two notes nearly in unison
is doubled, when both arc taken an exact octave higher.

Analytically

w = a cos (2mmt — €) + &' cos (2wnt — ¢,
where m —n is small.

Now cos (27nt — €) may be written

cos {2mmt — 2w (m —n) t — €},
and we have
w=7rcos (2mmt —0) ...o.ooeiiiiiiniin, 0,

where r=a’+a”+ 2aa’ cos {2m (m—n) t+ € — ¢} ...... (2),
_asine+a sin {27 (m—n)t + €}
" acose+a cos {27 (m—n)t+ €}

tan d

The resultant vibration may thus be considered as harmonic
with elements r and 8, which are not constant but slowly varying
functions of the time, having the frequency m —n. The amplitude
7 is at its maximum when

cos{2r(m—n)t+e—e=+1,
and at its minimum when
cos (2m(m—n)t+e —ef=—1,
the corresponding values being @ + o’ and ¢ — o' respectively.
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31. Another case of great importance is the composition of
vibrations corresponding to a tone and its harmonies. It is known
that the most general single-valued finite periodic function can
be expressed by a series of simple harmonics—

U= a,+ 2, @, o8 (—QWTM - e") ............... (1),

a theorem usually quoted as Fourier’s, Analytical proofs will be
found in Todhunter’s Integral Colculus and Thomson and Tait’s
Natural Philosophy ; and a line of argument almost if not quite
amounting to a demonstration will be given later in this work,
A few remarks are all that will be required here.

Fourier’s theorem is not obvious. A vague notion is not un-
common that the infinitude of arbitrary constants in the series
. of necessity endows it with the capacity of representing an arbi-
trary periodic function., That this is an error will be apparent,
when it is observed that the same argument would apply equally,
if one term of the series were omitted ; in which case the expan-
sion would not in gencral be possible.

Another point worth notice is that simple harmonics are not
the only functions, in a serics of which it is possible to expand
one arbitrarily given. Instead of the simple elementary tcrm

(27rnt )
cos (———¢, ),
T

we might take

(‘27rnt ) 1 4mrnt
Cos|———¢, +—COS( —e),
T 2 T "

formed by adding a similar one in the same phase of half the
amplitude and period. It is evident that these terms would
serve as well as the others; for

2mrnt ) { 2rnt > 1 dernt
coS ( —e€, | ={cos ( —¢€, ) +3 cos ( = - €n>}
T T 2 T
{ <4m-nt > 1 8mnt
—z{eos ([—— —¢, +—cos<*_e)}
T 2 T »
{ (87rnt ) 1 (167rnt }
cos{ — —e¢, ) +5 cos ——e>
T 2 T n

so that each term in Fourier's serics, and therefore the sum of
the serics, can be expressed by means of the double clementary
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terms now suggested. This is mentioned here, because students,
not being acquainted with other expansions, may imagine that
simple harmonic functions are by nature the only ones qualified
to be the elements in the development of a periodic function.
The reason of the preeminent importance of Fourler’s series in
Acoustics is the mechanical one referred to in the preceding
chapter, and to be explained more fully hereafter, namely, that,
in general, simple harmonic vibrations are the only kind that are
propagated through a vibrating system without suffering decom-
position.

32. As in other cases of a similar character, e.g. Taylor's
theorem, if the possibility of the expansion be known, the co-
cfficients may be determined by a comparatively simple process.

We may write (1) of § 31
u=A,+3._; 4, cos 27;1—# 4+ 3.2 B, sin Znmt (1).

T

Multiplying by cos?t—m or singngj, and integrating over

a complete period from ¢=0 to t=r, we find

A"=g/7u cosg@dt

7o T } ................. (2).
B,=2[usin 2™ 2 ’

TJo T

n

An immediate integration gives
4,= 1f’udt ........... et (3),
T 0

indicating that 4, is the mean value of u throughout the period.

The degree of convergency in the expansion of » depends in
general on the continuity of the function and its derivatives.
The series formed by successive differentiations of (1) converge
less and less rapidly, but still remain convergent, and arithmetical
representatives of the differential coefficients of u, so long as
these latter are overywhere finite. Thus (Thomson and Tait,
§ 77), if all the derivatives up to the m™ inclusive are free
from infinite values, the series for % is more convergent than

one with
1 1

1
]') om> gm? 4_”,, ------

for coefficionts.
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33. Another class of compounded vibrations, interesting from
the facility with which thoy lend themselves to optical observa-
tion, occur when two harmonic vibrations affecting the same par-
ticle are executed in perpendicular directions, more especially
when the periods are not only commensurable, but in the ratio

~of two small whole numbers. The motion is then completely
periodic, with a period not many times greater than those of the
components, and the curve described is re-entrant, If w and v
be the co-ordinates, we may take

u=q cos (Zmnt —e), v=>0co82mnt....c0rv.... (1).

First let us suppose that the periods are equal, so that »'=n;
the elimination of ¢ gives for the equation of the curve described,

w P Quw

2Te- Eb—cose—sin”e:O ............... (2),
representing in general an ellipse, whose position and dimensions
depend upon the amplitudes of the original vibrations and upon
the difference of their phases. If the phases differ by a quarter
period, cose= 0, and the equation becomes

2 v?

w +Z_;§=1.

a?
In this case the axes of the ellipse coincide with those of
co-ordinates. If further the two components have equal ampli-
tudes, the locus degenerates into the circle
W t=al,
which is described with uniform velocity. This shews how a
uniform circular motion may be analysed into two rectilinear
harmonic motions, whose directions are perpendicular.
If the phases of the components agree, e=0, and the ellipse
degenerates into the coincident straight lincs

or if the difference of phase amount to half a period, into

w v\
(a + Z> =0,
‘When the unison of the two vibrations is exact, the elliptic
path remains perfectly steady, but in practice it will almost

always happen that there is a slight difference between the
periods. The consequence is that though a fixed ellipse represents
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26 HARMONIC MOTIONS. [33.

the curve described with sufficient accuracy for a few periods,
the ellipse itself gradually changes in correspondence with the
alteration in the magnitude of e It becomes therefore a matter
of interest to consider the system of ellipses represented by (2),
supposing @ and b constants, but e variable.

Since the extreme values of » and v are +a, + b respectively, -
the ellipse is in all cases inscribed in the rectangle whose sides
are 2a, 2b. Starting with the phases in agreement, or e=0, we

.have the ellipse coincident with the diagonal g—%=0. As

¢ increases from 0 to 3, the ellipse opens out until its cquation

becomes
2 2

w v
atpE=t
From this point it closes up again, ultimately coinciding with the
other diagonal g + ;—j = 0, corresponding to the incrcase of e from 7

to o After this, as e ranges from 7 to 2, the cllipse retraces
its course until it again coincides with the first diagonal. The
scquence of changes is exhibited in Fig. 3.

F/G.3.

The ellipse, having already four given tangents, is completely
dcetermined by its point of contact P (Fig. 4) with the line v=20.

F/6G. 4.
A p A
& j
B’ B
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33.] LISSAJOUS’ CYLINDER. 27

In order to connect this with e, 1t is sufficient to observe that
when v=0"0, cos 27nt=1; and therefore u=acose. Now if the
elliptic paths be the result of the superposition of two harmonic
vibrations of nearly coincident pitch, e varies uniformly with the
time, so that P itself executes a harmonic vibration along 44’
with a frequency equal to the difference of the two given fre-
quencies.

.84. Lissajous’ has shewn that this system of ellipses may be
regarded as the different aspects of one and the same ellipse
deseribed on the surface of a transparent cylinder. In Fig 5

F/G. 8.

AA'D'B reprosents the cylinder, of which 4B’ is a plane section.
Scen from an infinite distance in the direction of the common
tangent at 4 to the plane sections, the cylinder is projected into a
rectangle, and the ellipse into its diagonal. Suppose now that the
cylinder turns upon its axis, carrying the plane scction with it.
Tts own projection remains a constant rectangle in which the pro-

F/6G. 6.

jection of the cllipse is inscribed. Fig. 6 represents the posi-
tion of the cylinder after a rotation through a right angle. It
appears therefore that by turning the cylinder round we obtain in
succession all the ellipses corresponding to the paths described by
a point subject to two harmonic vibrations of equal period and fixed
amplitudes. Moreover if the cylinder be twurned continuously

1 Annales de Climie (3) L1 147.
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28 HARMONIC MOTIONS. [34.

with uniform velocity, which insures a harmonic motion for P,
we obtain a complete representation of the varying orbit
described by the point when the periods of the two components
differ slightly, each complete revolution answering to a gain or
loss of a single vibration'. The revolutions of the cylinder are
thus synchronous with the beats which would result from the
composition of the two vibrations, if they were to act in the same
direction.

35. Vibrations of the kind here considered are very easily
realized experimentally. A heavy pendulum-bob, hung from a
fixed point by a long wire or string, describes ellipses under the
action of gravity, which may in particular cases, according to the
circumstances of projection, pass into straight lines or circles.
But in order to see the orbits to the best advantage, it is necessary
that they should be described so quickly that the impression
on the retina made by the moving point at any part of its course
has not time to fade materially, before the point comes round again
to renew its action. This condition is fulfilled by the vibration
of a silvered bead (giving by reflection a luminous point), which is
attached to a straight metallic wire (such as a knitting-needle),
firmly clamped in a vice at the lower end. When the system is set
into vibration, the luminous point describes ellipses, which appear
as fine lines of light. These ellipses would gradually contract in
dimensions under the influence of friction until they subsided
into a stationary bright point, without undergoing any other
change, were it not that in all probability, owing to some want
of symmetry, the wire has slightly differing periods according to
the plane in which the vibration is executed. Under these cir-
cumstances the orbit is secen to undergo the cycle of changes
alrcady explained.

36. So far we have supposed the periods of the component
vibrations to be equal, or nearly equal; the next case in order of
simplicity is when one is the double of the other. We have

u=q cos (dnmt—e), v =0 cos2nxt.

The locus resulting from the elimination of £ may be written

%
a:cose(Zb—z +2s1ne \/I—F ............ 1),

1 By a vibration will always be meant in this work a complele cycle of
changes.
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which for all values of e represents a curve inscribed in the rect-
angle 2a, 2b, If e=0, or m, we have ’

b u
2 = g
v=3 (1 + a) ’
represenﬁng parabolas. Fig. 7 shews the various curves for the
intervals of the octave, twelfth, and fifth,

Fr6.7

R3O 3X
22285
IR

To all these systems Lissajous’ method of representation by
the transparent cylinder is applicable, and when the relative
phase is altered, whether from the different circumstances of
projection in different cases, or continuously owing to a slight de-
viation from exactness in the ratio of the periods, the cylinder will
appear to turn, so as to present to the eye different aspects of the
same line traced on its surface.

37. There is no difficulty in arranging a vibrating system so
that the motion of a point shall consist of two harmonic vibrations
in perpendicular planes, with their periods in any assigned ratio.
The simplest is that known as Blackburn’s pendulum. A wire
ACB is fastened at 4 and DB, two fixed points at the same level.
The bob P is attached to its middle point by another wire CP.
For vibrations in the plane of the diagram, the point of suspension -
is practically C, provided that the wires are sufficiently stretched ;
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30 HARMONIC MOTIONS. [37.

-but for a motion perpendicular to this plane, the bob turns about
D, carrying the wire 4 0B with it. The periods of vibration in

F/G.8.
A D B

Oe

the principal planes are in the ratio of the square roots of CP and
DP. Thus if DC=3CP, the bob describes the figures of the
octave. To obtain the sequence of curves corresponding to
approximate unison, 4CB must be so nearly tight, that CD is
relatively small,

38. Another contrivance called the kaleidophone was origin-
ally invented by Wheatstone. A straight thin bar of steel carrying
a bead at its upper end is fastened in a vice, as explained in a
previous paragraph. If the section of the bar is square, or circular,
the period of vibration is independent of the plane in which it is
performed. But let us suppose that the section is a rectangle
with unequal sides. The stiffness of the bar—the force with
which it resists bending—is then greater in the plane of greater
thickness, and the vibrations in this plane have the shorter period.
By a suitable adjustment of the thicknesses, the two periods of
vibration may be brought into any required ratio, and the cor-
responding curve exhibited.

The defect in this arrangement is that the same bar will give
only one set of figures. In order to overcome this objection
the following modification has been devised. A slip of stecl is
taken whose rectangular section is very clongated, so that as
regards bending in one plane the stiffness is so great as to amount
practically to rigidity. The bar is divided into two parts, and the
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broken ends reunited, the two pieces being turned on one another
through a right angle, so that the plane, which contains the small
thickness of one, contains the great thickness of the other. When
the compound rod is clamped in a vice at a point below the junc-
tion, the period of the vibration in one direction, depending almost
entirely on the length of the upper piece, is nearly constant; but
that in the second direction may be controlled by varying the
point at which the lower piece is clamped.

39. In this arrangement the luminous point itself executes
the vibrations which are to be observed; but in Lissajous’ form of
the experiment, the point of light remains really fixed, while its
image ‘is thrown into apparent motion by means of successive
reflection from two vibrating mirrors. A small hole in an opaque
screen placed close to the flame of a lamp gives a point of light,
which is observed after reflection in the mirrors by means of a
small telescope. The mirrors, usually of polished steel, are attached
to the prongs of stout tuning forks, and the whole is so disposed
that when the forks are thrown into vibration the luminous point
appears to describe harmonic motions in perpendicular directions,
owing to the angular motions of the reflecting surfaces. The
amplitudes and periods of these harmonic motions depend upon
those of the corresponding forks, and may be made such as to give
with enhanced brilliancy any of the figures possible with the
kaleidophone. By a similar arrangement it is possible to project
the figures on a screen. In either case they gradually contract as
the vibrations of the forks die away.

40. The principles of this chapter have received an important
application in the investigation of rectilinear periodic motions.
When a point, for instance a particle of a sounding string, is
vibrating with such a period as to give a note within the limits of
hearing, its motion is much too rapid to be followed by the eye;
so that, if it be reqilired to know the character of the vibration,
some indirect method must be adopted. The simplest, theo-
retically, is to compound the vibration under examination with a
uniform motion of translation in a perpendicular direction, as when
a tuning fork draws a harmonic curve on smoked paper. Instead
of moving the vibrating body itself, we may make use of a revol-
ving mirror, which provides us with an image in motion. In this
way we obtain a reprosentation of the function characteristic of
the vibration, with the abscissa proportional to time.
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But it often happens that the application of this method would
be difficult or inconvenient. Tn such cases we may substitute for
the uniform motion a harmonie vibration of suitable period in the
same direction. To fix our ideas, let us suppose that the point,
whose motion we wish to investigate, vibrates vertically with a
period 7, and let us examine the result of combining with this a
horizontal harmonic motion, whose period is some multiple of ,
say, nt. Take a rectangular piece of paper, and with axes parallel
to its edges draw the curve representing the vertical motion (by
setting off abscissee proportional to the time) on such a scale that
the paper just contains n repetitions or waves, and then bend the
paper round so as to form a cylinder, with a re-entrant curve run-
ning round it. A point describing this curve in such a manner
that it revolves uniformly about the axis of the cylinder will
appear from a distance to combine the given vertical motion of
period 7, with a horizontal harmonic motion of period #r. Con-
verscly therefore, in order to obtain the representative curve of
the vertical vibrations, the cylinder containing the apparent path
must be imagined to be divided along a gencrating line, and
devcloped into a plane. There is less difficulty in conceiving the
cylinder and the situation of the curve upon it, when the adjust-
ment of the periods is not quite exact, for then the cylinder
appears to turn, and the contrary motions scrve to distinguish
those parts of the curve which lie on its nearer and further face.

41. The auxiliary harmonic motion is generally obtained
optically, by means of an instrument called a vibration-microscope
invented by Lissajous. One prong of a large tuning fork carries
a lens, whose axis is perpendicular to the direction of vibration ;
and which may be used either by itself, or as the object-glass of
a compound microscope formed by the addition of an eye-piece
independently supported. In either case a stationary point is
thrown into apparent harmonic motion along a line parallel to
that of the fork's vibration.

The vibration-microscope may be applied to test the rigour
and universality of the law connecting pitch and period. Thus
it will be found that any point of a vibrating body which gives
a pure musical note will appear to describe a re-entrant curve,
when examined with a vibration-microscope whose note is in
strict unison with its own. By the same mecans the ratios of
frequencics characteristic of the consonant intervals may be
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verified; though for this latter purpose a more thoroughly
acoustical method, to be described in a future chapter, may be
preferred,

42. Another method of examining the motion of a vibrating
‘body depends upon the use of intermittent illumination. Suppose,
for example, that by means of suitable apparatus a series of
electric sparks are obtained at regular intervals =, A vibrating
body, whose period is also 7, examined by the light of the sparks
must appear at rest, because it can be seen only in one position,
If, however, the period of the vibration differ from T ever so
little, the illuminated position varies, and the body will appear
to vibrate slowly with a frequency which is the difference of that
of the spark and that of the body. - The type of vibration can
then be observed with facility.

The series of sparks can be obtained from an induction-coil,
whose primary circuit is periodically broken by a vibrating fork,
or by some other interrupter of sufficient regularity. But a better
result is afforded by sunlight rendered intermittent with the aid of
a fork, whose prongs carry two small plates of metal, parallel to
the plane of vibration and close together. In each plate is a slit
parallel to the prongs of the fork, and so placed as to afford a
free passage through the plates when the fork is at rest, or passing
through the middle point of its vibrations. On the opening so
formed, a beam of sunlight is concentrated by means of a burning-
glass, and the object under examination is placed in the cone of
rays diverging on the further side’. When the fork is made to
vibrate by an electro-magnetic arrangement, the illumination is cut
off except when the fork is passing through its position of equi-
librium, or nearly so. The flashes of light obtained by this method
are not so instantaneous as electric sparks (especially when a
jar is connected with the secondary wire of the coil), but in my
experience the regularity is more perfect. Care should be taken
to cut off extraneous light as far as possible, and the effect is then
very striking, -

A similar result may be arrived at by looking at the vibrating
body through a series of holes arranged in a circle on a revolving
disc. Several series of holes may be provided on the same
disc, but the observation is not satisfactory without some pro-
vision for securing uniform rotation.

1 Tépler, Phil, Mag. Jan. 1867.

R. 3
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Except with respect to the sharpness of definition, the result is
the same when the period of the light is any multiple of that of
the vibrating body. This point must be attended to when the
revolving wheel is used to determine an unknown frequency.

When the frequency of intermittence is an exact multiple of
that of the vibration, the object is seen without apparent motion,
but generally in more than one position. This condition of things
is sometimes advantageous.

Similar effects arise when the frequencies of the vibrations
and of the flashes are in the ratio of two small whole numbers. If,
for example, the number of vibrations in a given time be half
as great again as the number of flashes, the body will appear
stationary, and in general double.
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CHAPTER III

SYSTEMS HAVING ONE DEGREE OF FREEDOM.

[

43. THE material systems, with whose vibrations Acoustics is
concerned, are usually of considerable complication, and are sus-
ceptible of very various modes of vibration, any or all of which
may coexist at any particular moment.. Indeed in some of the
most important musical instruments, as strings and organ-pipes,
the number of independent modes is theoretically infinite, and
the consideration of several of them is essential to the most prac-
tical questions relating to the nature of the consonant chords.
Cases, however, often present themselves, in which one mode is
of paramount importance ; and even if this were not so, it would
still be proper to commence the consideration of the general pro-
blem with the simplest case—that of one degree of freedom. It
need not be supposed that the mode treated of is the only one
possible, because so long as vibrations of other modes do not occur
their possibility under other circumstances is of no moment.

44. The condition of a system possessing one degree of free-
dom is defined by the value of a single co-ordinate u, whose origin
may be taken to correspond to the position of equilibrium. The
kinetic and potential encrgies of the system for any given position
are proportional respectively to 4* and 4* :—

where m and u are In general functions of 4. But if we limit our-
selves to the consideration of positions in the wmmediate neigh-
bourhood of that corresponding to equilibrium, u is a small quantity,
and m and p are sensibly constant, On this understanding we

3—2
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now proceed. If there be no forces, either resulting from internal
friction or viscosity, or impressed on the system from without, the
whole energy remains constant. Thus

T 4+ V = constant.

Substituting for 7' and ¥ their values, and differentiating with
respect to the time, we obtain the equation of motion

M+ p=0..ccc0inennn. Cevveeanes e (2) 3
of which the complete integral is
U= COS (NE = &) eevrrenrrnriniiniennenns (3),

where #° = u + m, representing a harmonic vibration. It will be
seen that the period alone is determined by the nature of the
system itself; the amplitude and phase depend on collateral cir-
cumstances, If the differential equation were exact, that is to
say, if T' were strictly proportional to %% and V to % then, without
any restriction, the vibrations of the system about its configuration
of equilibrium would be accurately harmonic. But in the majority
of cases the proportionality is only approximate, depending on an
assumption that the displacement u is always small—how small
depends on the nature of the particular system and the degree of
approximation required ; and then of course we must be careful
not to push the application of the integral beyond its proper
limits,

But, although not to be stated without a limitation, the prin-
ciple that the vibrations of a system about a configuration of
equilibrium have a period depending on the structure of the
system and not on the particular circumstances of the vibration,
is of supreme importance, whether regarded from the theoretical
or the practical side. If the pitch and the loudness of the note
given by a musical instrument were not within wide limits in-
dependent, the art of the performer on many instruments, such
as the violin and pianoforte, would be revolutionized.

The periodic time
=2 on \/ L ),
n p

so that an increase in m, or a decrease in u, protracts the duration
of a vibration. By a generalization of the language employed in
the case of a material particle urged towards a position of equili-
brium by a spring, m may be called the inertia of the system, and
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u the force of the equivalent spring. Thus an augmentation of
mass, or a relaxation of spring, increases the periodic time. By
means of this principle we may sometimes obtain limits for
the value of a period, which cannot, or cannot easily, be calculated
exactly,

45. The absence of all forces of a frictional character is an
ideal case, never realized but only approximated to in practice.
The original energy of a vibration is always dissipated sooner or
later by conversion into heat. But there is another source of loss,
which though not, properly speaking, dissipative, yet produces
results of much the same nature. Consider the case of a tuning-
fork vibrating in vacuo. The internal friction will in time stop
the motion, and the original energy will be transformed into
heat. But now suppose that the fork is transferred to an open
space. In strictness the fork and the air surrounding it consti-
‘tute a single system, whose parts cannot be treated separately.
In attempting, however, the exact solution of so complicated a
problem, we should generally be stopped by mathematical diffi-
culties, and in any case an approximate solution would be de-
sirable, The effect of the air during a few periods is quite insig-
nificant, and becomes important only by accumulation. We are
thus led to consider its effect as a disturbance of the motion which
would take place in vacuo. The disturbing force is periodic (to
the same approximation that the vibrations are so), and may be
divided into two parts, one proportional to the acceleration, and
the other to the velocity. The former produces the same effect as
an alteration in the mass of the fork, and we have nothing more
to do with it at present. The latter is a force arithmetically pro-
portional to the velocity, and always acts in opposition to the
. motion, and therefore produces effects of the same character as
those due to friction. In many similar cases the loss of motion by
communication may be treated under the same head as that due
to dissipation proper, and is represented in the differential equa-~
tion with a degree of approximation.sufficient, for acoustical pur-
poses by a term proportional to the velocity. Thus

Ly Y T | BN (1)

is the equation of vibration for a system with one degree of
freedom subject to frictional forces. The solution is

w=Aetcos (P — 3. t—a} curireireennnn, 2).
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If the friction be so great that }«* > #% the solution changes its
form, and no longer corresponds to an oscillatory motion; but in
all acoustical applications « is a small quantity. Under these
circumstances (2) may be regarded as expressing a harmonic vibra-
tion, whose amplitude is not constant, but diminishes in geo-
metrical progression, when considered after equal intervals of
time. The difference of the logarithms of successive extreme
excursions is nearly constant, and is called the Logarithmic Decre--
ment. It is expressed by fer, if 7 be the penodlc time.

The frequency, dependirig on'n® — 1% involves only the second
power of «; so that to the ﬁrsf order of approximation the friction
has no eﬂ"ect on the period,~—a prlnClp]e of very general application.

The vibration here considercd is called the free vibration. It
is that executed by the system, when disturbed from equilibrium,
and then left to itself.

46. 'We must now turn our attention to another problem, not
less important,—the behaviour of the system, when subjccted to a
* force varying as a harmonic function of the time. In order to save
repetition, we may take at once the more general case including
friction. If there be no friction, we have only to put in our results
k=0. The differential equation is

u+/cu+nu L'cospt...i....~ ......... (1).
’ .

Assume ,
' ' U=0C0S (Pb—€)rrirrriirinirinreiens (2),

and substitute : . - .
a (n* — p*) cos  pt — €) — kpa sin (pt — e)
= F cos e cos (pt — ¢) — Lsin esin (pt—€);
whence, on equating coefficients ef cos (pt — €), sin ( pt — ¢),
“(”2‘1’.2)=E°?S?}.........;.a ......... 3,
a.pc=Esine
so that the solution may be written

=E;1:€cos(pt—e) ..... eerrrineaeaes ),
where tan e= 7—2271{ gertaeneniirieairainene veees(B)e

This is called a jforced vibration; it is the response of the system
to a force imposed upon it from without, and is maintained by the
continued operation of that force. The amplitude is proportional
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46.] FORCED VIBRATIONS. 39

to Z—the magnitude of the force; and the period is the same
as that of the force.

Let us now suppose E given, and trace the effect on a given
system of a variation in the period of the force, The effects
produced in different cases are not strictly similar; because the
frequency of the vibrations produced is always the same as that of
the force, and therefore variable in the comparison which we are
about to institute. We may, however, compare the energy of the
system in different cases at the moment of passing through the
_position of equilibrium. It is necessary thus to specify the moment
at which the energy is to be computed in each case, because the
total energy is not invariable throughout the vibration. During
one part of the period the system receives energy from the
" impressed force, and during the remainder of the period yields it

back again,
. . %an{-‘():%!
From (4), if u=0, w1+ h
energy o %’ oc sin’e,
and is thercfore a maximum, when sine=1, or, from (%), p=n. If
the maximum kinetic energy be denoted by T, we have

The kinetic energy of the motion is therefore the greatest possible,
when the period of the force is that in which the system would
vibrate freely under the influence of its own elasticity (or other
internal forces), without friction. The vibration is then by (4)
and (5),

E .

Y= — sln nt,

nK
and, if £ be small, its amplitude is very great, Its phase is a
quarter of a period behind that of the force.

The case, where p=n, may also be treated independently.
Since the period of the actual vibration is the same as that
natural to the system,

% + n’u =0,
so that the differential equation (1) reduces to

. ) &% = F cos pt,
whence by integration

_E E
u—;c—fcospt dt=27€ sin pt,
as before,
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If p be less than n, the retardation of phase relatively to the
force lies between zero and a quarter period, and when p is greater
than n, between a quarter period and a half period.

In the case of a system devoid of friction, the solution is

When p 1s smaller than n, the phase of the vibration agrees with
that of the force, but when p is the greater, the sign of the vibra-
tion is changed. The change of phase from complete agreement
to complete disagreement, which is gradual when friction acts,
here takes place abruptly as p passes through the value n. At the
same time the expression for the amplitude becomes infinite. Of
course this only means that, in the case of equal periods, friction
must be taken into account, however small it may be, and however
insignificant its result when p and » are not approximately equal.
The limitation as to the magnitude of the vibration, to which we
are all along subject, must also be borne in mind.

That the excursion should be at its maximum in one direction
while the generating force is at its maximum in the opposite
direction, as happens, for example, in the canal theory of the tides,
is sometimes considered a paradox. Any difficulty that may be
felt will be removed by considering the extreme case, in which the
“spring” vanishes, so that the natural period is infinitely long. In
fact we need only consider the force acting on the bob of a com-
mon pendulum swinging freely, in which case the excursion on one
side is greatest when the action of gravity is at its maximum
in the opposite direction., When on the other hand the inertia of
the system is very small, we have the other extreme case in which
the so-called equilibrium theory becomes applicable, the force and
excursion being in the same phase.

When the period of the force is longer than the natural period,
the effect of an increasing friction is to introduce a retardation
in the phase of the displacement varying from zero up to a quarter
period. If, however, the period of the natural vibration be the
longer, the original retardation of half a period is diminished by
something short of a quarter period; or the effect of friction is to
accelerate the phase of the displacement estimated from that corre-
sponding to the absence of friction, In cither case the influence
of friction is to cause an approximation to the state of things that
would prevail if friction were paramount.

oo rr
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46.] PRINCIPLE OF SUPERPOSITION. 41

If a force of nearly equal period with the free vibrations
vary slowly to a maximum and then slowly decrease, the dis-
placement does not reach its maximum until after the force has
begun to diminish, Under the operation of the force at its
maximum, the vibration continues to increase until a certain limit
is approached, and this increase continues for a time even although
the force, having passed its maximum, begins to diminish. On
this principle the retardation of spring tides bchind the days of
new and full moon has been explained’,

47. TFrom the linearity of the equations it follows that the
motion resulting from the simultaneous action of any number of
forces is the simple sum of the motions due to the forces taken
separately. Each force causes the vibration proper to itself,
without regard to the presence or absence of any others. The
peculiarities of a force are thus in a manner transmitted into the
motion of the system. For example, if the force be periodic in
time 7, so will be the resulting vibration. Each harmonic ele-
ment of the force will call forth a corresponding harmonic vibration
in the system. But since the retardation of phase ¢ and the ratio
of amplitudes a : Z, is not the same for the different components,
the resulting vibration, though periodic in the same time, is dif-
ferent in character from the force. It may happen, for instance,
that one of the components is isochronous, or nearly so, with the
free vibration, in which case it will manifest itself in the motion
out of all proportion to its original importance. As another
example we may consider the case of a system acted on by two
forces of nearly equal period. The resulting vibration, being com-
pounded of two nearly in unison, is intermittent, according to the
principles explained in the last chapter.

To the motions, which are the immediate effects of the im-
pressed forces, must always be added the term expressing free
vibrations, if it be desired to obtain the most general solution.
Thus in the case of oné impressed force,

P cos (pt — €) + Ae™* cos Wni— 36 b=} o 1),

where 4 and a are arbitrary.

Esine
U=

48. The distinction between forced and free vibrationsis very
1 Airy’s Tides and Waves, Art. 328,
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42 - ONE DEGREE OF FREEDOM. [48.

iraportant, and must be clearly understood. The period of the
former is determined solely by the force which is supposed to act
on the system from without; while that of the latter depends only
on the constitution of the system itself. Another point of differ-
ence is that so long as the external influence continues to operate,
a forced vibration is permanent, being represented strictly by a
harmonic function; but a free vibration gradually dies away, be-
coming negligible after a time. Suppose, for example, that the
system is at rest when the force £ cos pt begins to operate. Such
finite values must be given to the constants 4 and a in (1) of § 47,
that both # and < are initially zero. At first then there is a
free vibration not less important than its rival, but after a time
friction reduces it to insignificance, and the forced vibration is left
in complete possession of the field. This condition of things will
continue so long as the force operates. When the force is removed,
there is, of course, no discontinuity in the values of % or %, but
the forced vibration is at once converted into a free vibration,
and the period of the force is exchanged for that natural to the
systenl.

During the coexistence of the two vibrations in the earlier part
of the motion, the curious phenomenon of beats may occur, in
case the two periods differ but slightly. For, n and p being ncarly
equal, and « small, the initial conditions are approximately satis-
fied by '

w=acos (pt—e) —ae ¥ cos Wn = 1* . t —€].

There is thus a rise and fall in the motion, so long as ¢~ * remains -
sensible. This intermittence is very counspicuous in the earlier
stages of the motion of forks driven }oy electro-magnetism (§ 63).

49. Vibrating systems of one degree of freedom may vary in
two ways according to the values of the constants = and «. The
distinction of pitch is sufficiently intelligible; but it is worth while
to examine more closcly the consequences of a greater or less
degree of damping. The most obvious is the more or less rapid
extinction of a free vibration. The effect in this direction may be
measured by the number of vibrations which must elapse before
the amplitude is reduced in a given ratio. Initially the amplitude

may be taken as unity; after a time ¢, let it be . Then 6 = ¢™*",

: /:
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49.] VARIOUS DEGREES OF DAMPING. 43.

If t = 27, we have o = — % logd. In a systém subject to only a

moderate degree of damping, we may take approximately,

T=2T+n;

so that B=— 21080 tererererrirenanns (1).
. KT

(=]

This gives the number of vibrations which are performed, before-
the amplitude falls to 6.

The influence of damping is also powerfully felt in a forced
vibration, when there is a near approach to isochronism. In the
case of an exact equality between p and n, it is the damping alone
which prevents the motion becoming infinite. We might easily
anticipate that when the damping is small, a comparatively slight
deviation from perfect isochronism would cause a large falling off
in the magnitude of the vibration, but that with a larger damping,
the same precision of adjustment would not be required. From
the equations

Kp

T=1T sin®e, tane=
0 i n2_p2’

" — p? T =7 ‘
we get . Kpp = «/ 0 /TR TR (2);
so that if # be small, p must be very nearly equal to #, in order to
produce a motion not greatly less than the maximum.,

The two principal effects of damping may be compared by
eliminating « between (1) and (2). The result is

10_&9=.n-<1‘_’_7_‘> S T ®),
@ nop 0—
where the sign of the square root must be so chosen as to make
the right-hand side negative.
If, when a system vibrates freely, the amplitude be reduced in
_the ratio @ after « vibrations; then, when it is acted on by a force
(p), the energy of the resulting motion will be less than in the
case of perfect isochronism in the ratio I': T\, It is a matter of
indifference whether the forced or the free vibration be the higher;
all depends on the interval.
In most cases of interest the interval is small; and then, putting
p =n+ 3n, the formula may be written,
logf _2mdn T

@ n T,=7 e ().
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The following table calculated from these formulz has been
given by Helmholtz' :

. . Number of vibrations after which the
Interval corresponding to a reduction . . § . . .
intensity of a free vibration is re-
of the resonance to one-tenth,
duced to one-tenth,
T: Ty=1:10. 2 1
2 =1
& tone. 38-00
1 tone. 19-00
1 tone. 9:50
2 tone. 6-33
‘Whole tone. 495
£ tone. 3:80
$ tone = minor third. 317
T tone. 271
Two whole tones =major third. 2-37

Formula (4) shews that, when on is small, it varies ceeterds
aribus as 1
p 2

50. From observations of forced vibrations due to known

forces, the natural period and damping of a system may be deter-
mined. The formulz are

___Esmecos (pt—0),
pK .
where tane= 2;0 ud 2
n—p

On the equilibrium theory we should have
u= cos pt
= 008 Pl

The ratio of the actual amplitude to tﬁis is

Esine E n’sine

pe W p
If the equilibrium theory be known, the comparison of ampli-
n’sin e

tudes tells us the value of

n'sin e
pe
1 Tonempfindungen, p. 221

td

IRIS - LILLIAD - Université Lille 1



50.] ' . STRING WITH LOAD. 45

and e is also known, whence

2 2. [y _ COSE __psine
n’=p .(1 a),and/c Z—doss T (1).

1

51. As has been already stated, the distinction of forced and
free vibrations is in;portant; but it may be remarked that most of
the forced vibrations which we shall have to consider as affecting
a system, take their origin ultimately in the motion of a second
system, which influences the first, and is influenced by it. A
vibration may thus have to be reckoned as forced in its relation
to a system whose limits are fixed arbitrarily, even when that
system has a share in determining the period "of the force which pa/
acts upon it. On a wider view of the matter embracing both the
systems, the vibration in question will be recognized as free. An
example may make this clearer. A tuning-fork vibrating in air
is part of a compound system including the air and itself, and
in respect of this compound system the vibration is free, But
although the fork is influenced by the reaction of the air, yet the
amount of such influence is small. For practical purposes it is
convenient to consider the motion of the fork as given, and that of
the air as forced. No error will be committed if the actual motion
of the fork (as influenced by its surroundings) be taken as the
basis of calculation. But the peculiar advantage of this mode of
conception is manifested in the case of an approximate’ solution
being required. It may then suffice to substitute for the actual
motion, what would be the motion of the fork in the absence of
air, and afterwards introduce a correction, if necessary.

52. Illustrations of the principles of this chapter may be
drawn from all parts of Acoustics,. We will give here a few
applications which deserve an early place on account of their
simplicity or importance.

A string or wire ACB is stretched between two fixed points
A and B, and at its centre carries a mass M, which is supposed to
be so considerable as to render the mass of the string itself negli-
gible. When M is pulled aside from its position of equilibrium,
and then let go, it executes along the line CM vibrations, which
are the subject of inquiry, AC=CB=¢a, CM=g The tension
of the string in the position of equilibrium depends on the amount
of the stretching to which it has been subjected, In any other
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46 ONE DEGREE OF FREEDOM. [52.

position the tension is greater ; but we limit ourselves to the case
of vibrations so small that the additional stretching is a ncgligible
fraction of the whole. On this condition the tension may be
treated as constant, We denote it by 7'

F1Q.9.
Thus, kinetic energy = 3 M4?,
- 2
and potential cnergy=27{/a*+ & —a}="T z approximately.
a

The equation of motion (which may be derived also inde-
pendently) is therefore

Méé+2T§=0 ........................ ),

from which we infer that the mass M oxecutes harmonic vibra-

tions, whose period
2T
T=27r + N/m ........................ (2).

The amplitude and phase depend of course on the initial cir-
cumstances, being arbitrary so far as the differential equation is
concerned.

Equation (2) expresses the manner in which 7 varies with each
of the independent quantities 7, M, a: results which may all be
obtained by consideration of the démensions (in the technical sense)
of the quantities involved. The argument from dimensions is so
often of importance in Acoustics that it may be well to consider
this first instance at length.

In the first place we must assure ourselves that of all the
quantities on which ¢ may depend, the only ones involving a
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reference to the three fundamental units—of length, time, and
mass—are a, M, and T. Let the solution of the problem be
written

This equation must retain its form unchanged, whatever may,
be the fundamental units by means of which the four quantities
are numerically expressed, as is evident, when it is considered
that in deriving it no assumptions would be made as to the mag-
nitudes of those units. Now of all the quantities on which f
depends, T'is the only one involving time; and since its dimen-
sions are (Mass) (Length) (Time)?, it follows that when @ and M

are constant, 7 oc T} ; otherwise a change in the unit of time

would necessarily disturb the equation (3). This being admitted,
it is easy to see that in order that (3) may be independent of the

unit of length, we must have roc T3, a3, when M is constant ; and
finally, in order to secure independence of the unit of mass,

ree TF, MY, o
To determine these indices we might proceed thus:—assume
T T%. M*¥. o;

then by considering the dimensions in time, space, and mass, we
obtain respectively

1=-2x, 0=x+z O=a+y,
whence as above

p=-1i .1 1
- 5 y'—é, 2—2.

There must be no mistake as to what this argument does and
does mot prove. We have assumed that there is a definite
periodic time depending on no other quantities, having dimen-
sions in space, time, and mass, than those above mentioned. For
example, we have not proved that T is independent of the ampli-
tude of vibration. That, so far as it is true at all, is a conse-
quence of the linearity of the approximate differential equation.

From the necessity of a complete enumeration of all the
quantities on which the required result may depend, the method
of dimensions is somewhat dangerous; but when used with proper
care it is unquestionably of great power and value.
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53. The solution of the present problem might be made the
foundation of a method for the absolute measurement of pitch.
The principal impediment to accuracy would probably be the
difficulty of making 2/ sufficiently large in relation to the mass of
the wire, without at the same time lowering the note too much in
the musical scale.

3>
7
w

Flag. 10 v

The wire may be stretched by a weight M’ attached to its
further end beyond a bridge or pulley at B, The periodic time
would be calculated from

aM
= L vreeerrareeitteaae, 1),
T 277.«/29]%,.... 1)

The ratio of M’ : M is given by the balance. If ¢ be measured
in feet, and g = 32'2, the periodic time is expressed in seconds.

54. In an ordinary musical string the weight, instead of being
concentrated in the centre, is uniformly distributed over its length.
Nevertheless the present problem gives some idea of the nature of
the gravest vibration of such a string. Let us compare the two
cases more closely, supposing the amplitudes of vibration the same
at the middle point.

/M\
A c B8
Fle. I

When the uniform string is straight, at the moment of passing
through the position of equilibrium, its different parts are ani-
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mated with a variable velocity, increasing from either end towards
the centre. If we attribute to the whole mass the velocity of the
centre, it is evident that the kinetic energy will be considerably
over-estimated. Again, at the moment of maximum excursion,
the uniform string is more stretched than its substitute, which
follows the straight courses AM, MB, and accordingly the poten-
tial energy is diminished by the substitution. The concentration
of the mass at the middle point at once increases the kinetic
energy when #=0, and decreases the potential energy when &= 0,
and therefore, according to the principle explained in § 44, prolongs
the periodic time. For a string then the period is less than that
calculated from the formula of the last section, on the supposition
that M denotes the mass of the string. It will afterwards appear
that in order to obtain a correct result we should have to take in-

stead of 2{ only 7—% M. Of the fa,ctor;2 by far the more import-
ant part, viz. %, is due to the difference of the kinetic energies.

55. As another example of a system possessing practically but
one degree of freedom, let us consider the vibration of a spring, onc
end of which is clamped in a vice or otherwise held fast, while the
other carries a heavy mass.

In strictness, this system like the last has
an infinite number of independent modes of vi- Q
bration; but, when the mass of the spring is
relatively small, that vibration which is nearly
independent of its inertia becomes so much the F/¢ /2.
most important that the others may be ignored.
Pushing this idea to its limit, we may regard the
spring merely as the origin of a force urging the
attached mass towards the position of equilibrium,
and, if a certain point be not exceeded, in simple ;_—f'
proportion to the displacement. The result is a
harmonic vibration, with a period dependent on 2 F
the stiffness of the spring and the mass of the
load.

56. In consequence of the oscillation of the centre of inertia,
there is a constant tendency towards the communication of motion
to the supports, to resist which adequately the latter must be
very firm and massive. In order to obviate this ineonvenience,

R. 4

Yo
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two precisely similar springs and loads may be mounted on
the same frame-work in a symmetrical manner.

If the two loads perform vibrations of equal ampli- Q Q
tude in such a manner that the motions are always .
- opposite, or, as it may otherwise be expressed, with
a phase-difference of half a period, the centre of
inertia of the whole system remains at rest, and
there is no tendency to set the frame-work into
vibration. We shall see in a future chapter that
this peculiar relation of phases will quickly esta-
blish itself, whatever may be the original disturb-
ance. In fact, any part of the motion which does B A
not conform to the condition of leaving the centre
of inertia unmoved is soon extinguished by damp-

ing, unless indeed the supports of the system are \/\/\

more than usually firm, j41, .

&0/

57. Asin our first example we found a rough illustration of
the fundamental vibration of a musical string, so here with the
spring and attached load we may compare a uniform slip, or bar,
of elastic material, one end of which is securely fastened, such for
instance as the fongue of a reed instrument. It is true of course
that the mass is not concentrated at one end, but distributed
over the whole length; yet on account of the smallness of
the motion near the point of support, the inertia of that part
of the bar is of but little account. We infer that the fundamental
vibration of a uniform rod cannot be very different in character
from that which we have been considering. ~ Of course for pur-
poses requiring precise calculation, the two systems are sufficiently
distinct ; but where the object is to form clear ideas, precision may
often be advantageously exchanged for simplicity.

In the same spirit we may regard the combination of two
springs and loads shewn in Fig. 13 as a representation of a
tuning fork. This instrument, which has been much improved
of late years, is indispensable to the acoustical investigator. On
a large scale and for rough purposes it may be made by welding
a cross piece on the middle of a bar of steel, so as to form a T, and
then bending the bar into the shape of a horse shoe. On the
handle a screw should be cut. But for the better class of tuning
forks it is preferable to shape the whole out of one piece of steel.
A division running from one end down the middle of a bar is first
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made, the two parts opened out to form the prongs of the fork,
and the whole worked by the hammer and file into the required
shape. The two prongs must be exactly symmetrical with respect
to a plane passing through the axis of the handle, in order that
during the vibration the centre of inertia may remain unmoved,
—unmoved, that is, in the direction in which the prongs
vibrate,

The tuning is effected thus, To make the note higher, the
equivalent inertia of the system must be reduced. This is done
by filing away the ends of the prongs, either diminishing their
thickness, or actually shortening them. On the other hand, to
lower the pitch, the substance of the prongs near the bend may
be reduced, the effect of which is to diminish the force of the
spring, leaving the inertia practically unchanged; or the inertia
may be increased (a method which would be preferable for tem-
porary purposes) by loading the ends of the prongs with wax, or
other material. Large forks are sometimes provided with move-
able weights, which slide along the prongs, and can be fixed in
any position by screws. As these approach the ends (where the
velocity is greatest) the equivalent inertia of the system increases.
In this way a considerable range of pitch may be obtained from
one fork, The number of vibrations per second for any position
of the weights may be marked on the prongs.

The relation between the pitch and the size of tuning forks is
remarkably simple. In a future chapter it will be proved that,
provided the material remains the same and the shape constant,
the period of vibration varies directly as the linear dimension.
Thus, if the linear dimensions of a tuning fork be doubled, its
note falls an octave.

58, The note of a tuning fork is a nearly pure tone. Imme-
diately after a fork is struck, high tones may indeed be heard,
corresponding to modes of vibration, whose nature will be subse-
quently considered; but these rapidly die away, and even while
they exist, they do not blend with the proper tone of the fork,
partly on account of their very high pitch, and partly because
they do not belong to its harmonic scale. In the forks examined
by Helmholtz the first of these overtones had a frequency from 5-8
to 66 times that of the proper tone.

Tuning forks are now generally supplied with resonance cases,
whose effect is greatly to augment the volume and purity of the

4-—2
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sound, according to principles to be hereafter developed. In
order to excite them, a violin or cello bow, well supplied with
rosin, is drawn across the prongs in the direction of vibration.
The sound so produced will last a minute or more.

59. As standards of pitch tuning forks are invaluable. The
pitch of organ-pipes varies with the temperature and with the
pressure of the wind; that of strings with the tension, which can
never be retained constant for long; but a tuning fork kept clean
and not subjected to violent changes of temperature or magnet-
ization, preserves its pitch with great fidelity.

By means of beats a standard tuning fork may be copied with
very great precision. The number of beats heard in a second is
the difference of the frequencies of the two tones which produce
them; so that if the beats can be made so slow as to occupy half
a minute each, the frequencies differ by only 1-30th of a vibra-
tion.  Still greater precision might be obtained by Lissajous’
optical method.

Very slow beats being difficult of observation, in consequence
of the uncertainty whether a falling off in the sound is due to
interference or to the gradual dying away of the vibrations,
Scheibler adopted a somewhat modified plan., He took a fork
slightly different in pitch from the standard—whether higher or
lower is not material, but we will say, lower,—and counted the
number of beats, when they were sounded together. About four
beats a second is the most suitable, and these may be counted for
" perhaps a minute. The fork to be adjusted is then made slightly
higher than the auxiliary fork, and tuned to give with it precisely
the same number of beats, as did the standard. In this way a
copy as exact as possible is secured. To facilitate the counting
of the beats Scheibler employed pendulums, whose periods of
vibration could be adjusted. -

60. The method of beats was also employed by Scheibler to
determine the absolute pitch of his standards. Two forks were
tuned to an octave, and a number of others prepared to bridge
over the interval by steps so small that each fork gave with its
immediate ncighbours in the series a number of beats that could
be easily counted. The difference of frequency corresponding to
each step was observed with all possible accuracy. Their sum,
being the difference of frequencies for the interval of the octave,
was equal to the frequency of that fork which formed the starting
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point at the bottom of the series. The pitch of the other forks
could be deduced.

If consecutive forks give four beats per second, 65 in all will
be required to bridge over the interval from ¢’ (256) to ¢’ (512).
On this account the method is laborious; but it is probably the
most accurate for the original determination of pitch, as it is liable
to no errors but such as care and repetition will eliminate. It
may be observed that the essential thing is the measurement of
the difference of frequencies for two notes, whose ratio of frequen-
cies is independently known. If we could be sure of its accuracy,
the interval of the fifth, fourth, or even major third, might be sub-
stituted for the octave, with the advantage of reducing the number
of the necessary interpolations. It is probable that with the aid
of optical methods this course might be successfully adopted, as
the corresponding Lissajous’ figures are easily recognised, and
their steadiness is a very severe test of the accuracy with which
the ratio is attained.

The frequency of large tuning forks may be dctermined by
allowing them to trace a harmonic curve on smoked paper, which
may conveniently be mounted on the circumference of a revolving
drum. The number of waves executed in a second of time gives
the frequency.

In many cases the use of intermittent illumination described
in § 42 gives a convenient method of determining an unknown
frequency.

61. A series of forks ranging at small intervals over an octave
is very useful for the determination of the frequency of any
musical note, and is called Scheibler's Tonometer. It may also
be used for tuning a note to any desired pitch. In either case
the frequency of the note is determined by the number of beats
which it gives with the forks, which lie nearest to it (on each
side) in pitch.

For tuning pianofortes or organs, a set of twelve forks may be
used giving the notes of the chromatic scale on the equal tempe-
rament, or any desired system. The corresponding notes are
adjusted to unison, and the others tuned by octaves, It is better,
however, to prepare the forks so as to give four vibrations per
second less than is above proposed. Each mnote is then tuned a
little higher than the corresponding fork, until they give when
sounded together exactly four beats in the second. It will be
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observed that. the addition (or subtraction) of a constant number
to the frequencies is not the same thing as a mere displacement
of the scale in-absolute pitch,

In the ordinary practice of tuners o’ is taken from a fork, and
the other notes determined by estimation of fifths, It will be
remembered that twelve true fifths are slightly in excess of seven
octaves, so that on the equal temperament system each fifth is a
little flat. The tuner proceeds upwards from a' by successive
fifths, coming down an octave after about every alternate step, in
order to remain in nearly the same part of the scale. -Twelve
fifths should bring him back to @. If this be not the case, the
work must be readjusted, until all the twelve fifths are too flat by,
as nearly as can be judged, the same small amount. The inevita-
ble error is then impartially distributed, and rendered as little
sensible as possible. The octaves, of course, are all tuned true.
The following numbers indicate the order in which the notes may
be taken:

af b ¢ c'# ddtef f ’# g 9%a a'# V¢ ddd d"# e’
1351681911314 6 17 9 1 12 415 '7 18 10 2

In practice the equal temperament is only approximately at-
tained; but this is perhaps not of much consequence, considering
that the system aimed at is itself by no means perfection.

Violins and other instruments of that class are tuned by true
fifths from o',

62. In illustration of forced vibration let us consider the case
of a pendulum whose point of support is subject to a small hori-
zontal harmonic motion. @ is
the bob attached by a fine wire
to a moveable point £. OP =
x,, PQ =1, and z is the horizon-
tal co-ordinate of Q. Since the
vibrations are supposed small,
the vertical motion may be
neglected, and the tension of
the wire equated to the weight
of (). Hence for the horizontal F1C 14,

0 P

motion & + % + '%(x —-z,)=0.
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Now x, & cos pt; so that putting g+ =n? our equation takes
the form already treated of, viz,
&+ kx -+ n'e = I cos pt.

If p be equal to n, the motion is limited only by the friction.
The assumed horizontal harmonic motion for P may be realized by
means of a second pendulum of massive construction, which carries
P with it i its motion. An efficient arrangement is shewn in
the figure. 4, B are iron rings screwed into a beam, or other firm

F1QJ5.

support; C, D similar rings attached to a stout bar, which carries
equal heavy weights £, F, attached near its ends, and is supported
in a horizontal position at right angles to the beam by a wire
passing through the four rings in the manner shewn. When the
pendulum is made to vibrate, a point in the rod midway between
C and D executes a harmonic motion in a direction parallel to
OD, and may be made the point of attachment of another pen-
dulum P@. If the weights £ and F be very great in relation
to @, the upper pendulum swings very nearly in its own proper
period, and induces in @ a forced vibration of the same period.
When the length PQ is so adjusted that the natural periods of the
two pendulums are nearly the same, @ will be thrown into violent
motion, even though the vibration of P be of but inconsiderable
amplitude. In this case the difference of phase is about a quarter
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of a period, by which amount the upper pendulum is in advance.
If the two periods be very different, the vibrations ‘either agree
or are completely opposed in phase, according to equations (4)
and (5) of § 46.

63. A very good example of a forced vibration is afforded by
a fork under the influence of an intermittent electric current,

Fl1G. 16

= —— E %

whose period is nearly equal to its own. 4CB is the fork; Ea
small electro-magnet, formed by winding insulated wire on an iron
core of the shape shewn in Z (similar to that known as ¢ Siemens’
armature’), and supported between the prongs of the fork. When
an intermittent current is sent through the wire, a periodic force
acts upon the fork. This force is not expressible by a simple cir-
cular function; but may be expanded by Fourier’s theorem in a
serics of such functions, having periods 7, 4 7, 3 7, &c. If any of
these, of not too small amplitude, be nearly isochronous with the
fork, the latter will be caused to vibrate; otherwise the effect is
insignificant. In what follows we will suppose that it is the com-
plete period 7 which nearly agrees with that of the fork, and con-
sequently regard the series expressing the periodic force as reduced
to its first term.

In order to obtain the maximum vibration, the fork must be
carefully tuned by a small sliding piece or by wax*, until its natural
period (without friction) is equal to that of the force. This is best
done by actual trial. When the desired equality is approached,
and the fork is allowed to start from rest, the forced and com-
plementary free vibration are of nearly equal amplitudes and
frequencies, and therefore (§ 48) in the beginning of the motion
produce beats, whose slowness is a measure of the accuracy of

1 For this purpose wax may conveniently be soficned by melting it with a little
turpentine,
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the adjustment. It is not until after the free vibration has had
time to subside, that the motion assumes its permanent character.
The vibrations of a tuning fork properly constructed and mounted
are subject to very little damping; consequently a very slight
deviation from perfect isochronism occasions a marked falling off
in the intensity of the resonance. :

The amplitude of the forced vibration can be observed with
sufficient accuracy by the ear or eye; but the experimental verifi-
cation of the relations pointed out by theory between its phase
and that of the force which causes it, requires a modified arrange-
ment, .

Two similar electro-magnets acting on similar forks, and in-
cluded in the same circuit, are excited by the same intermittent
current, Under these circumstances it is clear that the systems
will be thrown into similar vibrations, because they are acted on
by equal forces. This similarity of vibrations refers both to phase
and amplitude, Let us suppose now that the vibrations are
effected in perpendicular directions, and by means of one of
Lissajous’ methods are optically compounded. The resulting figure
is necessarily a straight line. Starting from the case in which the’
amplitudes are a maximum, viz. when the natural periods of both
forks are the same as that of the force, let one of them be put a
little out of tune. It must be remembered that whatever their
natural periods may be, the two forks vibrate in perfect unison
with the force, and therefore with one another. The principal
effect of the difference of the natural periods is to destroy the
synchronism of phase. The straight line, which previously repre-
sented the compound vibration, becomes an ellipse, and this
remains perfectly steady, so long as the forks are not touched.
Originally the forks are both a quarter period behind the force,
When the pitch of one is slightly lowered, it falls still more behind
the force, and at the same time its amplitude diminishes. Let the
difference of phase between the two forks be €, and the ratio of
amplitudes of vibration a: @, Then by (6) of § 46

a=a,cos¢.
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The following table shews the simultaneous values of a o
and €,

7

€

0
25° 50’
36° 52’
45° 34/
537
60°

66° 25’
72° 82
78° 27
84° 15

aQ
1

R

g G SCIRt S g -

It appears that a considerable alteration of phase in either
direction may be obtained without very materially reducing the
amplitude. When one fork is vibrating at its maximum, the
other may be made to differ from it on either side by as much as
60° in phase, without losing more than half its amplitude, or by as
much as 45°, without losing more than half its energy. By allow-
ing one fork to vibrate 45° in advance, and the other 45° in arrear
of the phase corresponding to the case of maximum resonance, we
obtain a phase difference of 90° in conjunction with an equality of
amplitudes. Lissajous’ figure then becomes a circle.

64. The intermittent current is best obtained by a fork-
interrupter invented by Helmholtz. This may consist of a fork
and electro-magnet mounted as before. The wires of the magnet
are connected, one with one pole of the battery, and the other with
a mercury cup. The other pole of the battery is connected with
a second merdury cup. A TU-shaped rider of insulated wire is
carried by the lower prong just over the cups, at such a height
that during the vibration the circuit is alternately made and
broken by the passage of one end into and out of the mercury.
The other end may be kept permanently immersed. By means
of the periodic force thus obtained, the effect of friction is com-
pensated, and the vibrations of the fork permanently maintained.
In order to set another fork into forced vibration, its associated
electro-magnet may be included, either in the same driving-circuit,

1 Tonempfindungen, p. 190,
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or in a second, whose periodic interruption is effected by another
rider dipping into mercury cups’,

The modus operands of this kind of self-acting instrument is
often imperfectly apprehended. If the force acting on the fork
depended only on its position—on whether the circuit were open
or closed—the work done in passing through any position would
be undone on the return, so that after a complete period there
would be nothing outstanding by which the effect of the frictional
forces could be compensated. Any explanation which does not
take account of the retardation of the current is wholly beside the
mark., The causes of retardation are two: irregular contact, and
self-induction. When the point of the rider first touches the mer-
cury, the electric contact is imperfect, probably on account of
adhering air. On the other hand, in leaving the mercury the
contact is prolonged by the adhesion of the liquid in the cup to
the amalgamated wire. On both accounts the current is retarded
behind what would correspond to the mere position of the fork.
But, even if the resistance of the circuit depended only on the
position of the fork, the current would still be retarded by its self-
induction. However perfect the contact may be, a finite current
cannot be generated until after the lapse of a finite time, any
more than in ordinary mechanics a finite velocity can be suddenly
impressed on an inert body. From whatever causes arising®, the
effect of the retardation is that more work is gained by the fork
during the retreat of the rider from the mercury, than is lost
during its entrance, and thus a balance remains to be set off
against friction. -

If the magnetic force depended only on the position of the fork,
the phase of its first harmonic component might be considered to
be 180° in advance of that of the fork's own vibration. The re-

1 T have arranged several interrupters on the above plan, all the component
parts being of home manufacture. The forks were made by the village blacksmith.
The cups consisted of iron thimbles, soldered on one end of copper slips, the
further end being screwed down on the base board of the instrument. Some
means of adjusting the level of the mercury surface is necessary. In Helmholtz’
interrupter a horse-shoe electro-magnet embracing the fork is adopted, but I am
inclined to prefer the present arrangement, at any rate if the pitch be low. In
some cases a greater motive power is obtained by a horse-shoe magnet acting on &
soft iron armature carried horizontally by the upper prong and perpendicular to it,
I have usually found a single Smee cell sufficient battery power,

2 Any desired retardation might be obtained, in default of other means, by
attaching the rider, not to the prong itself, but to the further end of a light
straight spring carried by the prong and set into forced vibration by the motion of
its point of attachment.
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tardation spoken of reduces this advance. If the phase-difference
be reduced to 90° the force acts in the most favourable manner,
and the greatest possible vibration is produced.

It is important to notice that (except in the case just referred
to) the actual pitch of the interrupter differs to some extent from
that natural to the fork according to the law expressed in (5) of
§ 46, ¢ being in the present case a prescribed phase-difference
depending on the nature of the contacts and the magnitude of the
self-induction, If the intermittent current be employed to drive
a second fork, the maximum vibration is obtained, when the fre-
quency of the fork coincides, not with the natural, but with the
modified frequency of the interrupter.

The deviation of a tuning-fork interrupter from its natural -
pitch is practically very small; but the fact that such a deviation
is possible, is at first sight rather surprising. The explanation (in
the case of a small retardation of current) is, that during that half
of the motion in which the prongs are the most separated, the
.electro-magnet acts in aid of the proper recovering power due to
rigidity, and so naturally raises the pitch. Whatever the relation
of phases may be, the force of the magnet may be divided into
two parts respectively proportional to the velocity and displace-
ment (or acceleration). To the first exclusively is due the sustain-
ing power of the force, and to the second the alteration of pitch,

65. The general phenomenon of resonance, though it cannot
be exhaustively considered under the head of one degree of free-
* dom, is in the main referable to the same general principles.
When a forced vibration is excited in one part of a system, all
the other parts are also influenced, a vibration of the same period
being excited, whose amplitude depends on the constitution of the
system considered as a whole. But it not unfrequently happens
that interest centres on the vibration of an outlying part whose
connection with the rest of the system is but loose. In such a case
the part in question, provided a certain limit of amplitude be
not exceeded, is very much in the position of a system possessing
one degree of freedom and acted on by a force, which may be
regarded as given, independently of the natural period. The
vibration is accordingly governed by the laws we have already
investigated. In the case of approximate equality of periods to
which the name of resonance is generally restricted, the ampli-
tude may be very considerable, even though in other cases it
might be so small as to be of little account; and the precision
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required in the adjustment of the periods in order to bring out
the effect, depends on the degree of damping to which the system
is subjected.

Among bodies which resound without an extreme precision of
tuning, may be mentioned stretched membranes, and strings asso-
ciated with sounding-boards, as in the pianoforte and the violin,
‘When the proper note is sounded in their neighbourhood, these
bodies are caused to vibrate in a very perceptible manner. The
experiment may be made by singing into a pianoforte the note
given by any of its strings, having first raised the corresponding
damper. Or if one of the strings belonging to any note be plucked
(like a harp string) with the finger, its fellows will be set into
vibration, as may immediately be proved by stopping the first,

The phenomenon of resonance is, however, most striking in
cases where a very accurate equality of periods is necessary in
order to elicit the full effect. Of this class tuning forks, mounted
on resonance boxes, are a conspicuous example. When the unison
is perfect the vibration of one fork will be taken up by another
across the width of a room, but the slightest deviation of pitch
is sufficient to render the phenomenon almost insensible. Forks
of 256 vibrations per second are commonly used for the purpose,
and it is found that a deviation from unison giving only one beat
in a second makes all the difference. When the forks are well
tuned and. close together, the vibration may be transferred back-
wards and forwards between them several times, by damping them
alternately, with a touch of the finger.

Illustrations of the powerful effects of isochronism must be
within the expemence of every one. They are often of importance
in very different fields from any with which acoustics is concerned.
For example, few things are more dangerous to a ship than to lie
in the trough of the sea under the influence of waves whose period
is nearly that of its own natural rolling.

66, The solution of the equation for free vibration, viz.
Gt rt+nu=0.cciriiiiiniininn, (1)

may be put into another form by expressing the arbitrary con-
stants of integration 4 and a in terms of the initial values of u
and %, which we may denote by v, and 4, We obtain at once

__-&K!'?_lE,n_ L)
u=e 0 poc +u(cosnt+—2—77,smnt)} ...... (2),

’
where n=nF = 1s

IRIS - LILLIAD - Université Lille 1



62 ONE DEGREE OF FREEDOM. [G6.

If there be no friction, =0, and then

. sin nt

u =1, + %, COSNtueuiriiiiireiinnne (3).

These results may be employed to obtain the solution of the

complete equation
R R e Y U 4,
where U is an explicit function of the time; for from (2) we see
that the effect at time ¢ of a velocity du communicated at time
¢ is
w = Su ¥ sin n’ (f -t .
n

The effect of U'is to generate in time dt’ a velocity Udt, whose
result at time ¢ will therefore be

u= 7% Udt e 3 sinw’ (¢ — 1),
and thus the solution of (4) will be
u= 1%, f ze'é"‘“" sine’ ¢ —¢) Udt ............ (5)-
If there be no friction, we have simply

u= %}fsin n@E—t)Udt .occoonniniinis (6),

U being the force at time ¢'.
The lower limit of the integrals is so far arbitrary, but it will
generally be convenient to make it zero.

On this supposition » and % as given by (6) vanish, when
t=0, and the complete solution is

~ 4K . si ,t ’ . '
u=e$‘{u bl +ua(cosnt+i,sm nt)}

° 2n

1 ¢
+o f ¥ sin ! =) U dt......(T),

[}

or if there be no friction
. sinnt | 1. ,
u=uﬁsn;’n + U, cosnt+?—zf sinn(t—¢) Udt......... (8).
o

When ¢ is sufficiently great, the complementary terms tend to
vanish on account of the factor ¢, and may then be omitted.
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67. For most acoustical purposes it is sufficient to consider
the vibrations of the systems, with which we may have to deal,
~as infinitely small, or rather as similar to infinitely small vibra-
tions. This restriction is the foundation of the important laws
of isochronism for free vibrations, and of persistence of period
for forced vibrations, There are, however, phenomena of a sub-
ordinate but not insignificant character, which depend essentially
on the square and higher powers of the motion. We will therefore
devote the remainder of this chapter to the discussion of the
motion of a sytem of one degree of freedom, the motion not being .
so small that the squares and higher powers can be altogether
neglected.

The approximate expressions for the potential and kinetic
energies will be of the form '

T—§ (my b m) iy V= (g ) o
If the sum of 7" and V be differentiated with respect to the
time, e find as the equation of motion

myih + pu + mu i + %mﬂf + g wu’ = Impressed Force,

which may be treated by the method of successive approximation.
For the sake of simplicity we will take the case where m,=0,
a supposition in no way affecting the essence of the question.
The nertia of the system is thus constant, while the force of
restitution is a composite function of the displacement, partly pro-
portional to the displacement itself and partly proportional to
its square—accordingly unsymmetrical with respect to the position
of equilibrium. Thus for free vibrations our equation is of the
form

U+ rutar’=0.cconiiiinniiennnin. (1),
with the approximate solution
U= COSNEeurererraieirarriinaninnns (2),

where A—the amplitude—is to be treated as a small quantity.
Substituting the value of u expressed by (2) in the last

term, we find
2

'&3+n"’u=—aA—§ (1 + cos 2nt),

whence for a second approximation to the value of u
2 2

ad®  ad
u=Acosnt—W+G—n, COS 2nEiuvirvenransans 3);
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shewing that the proper tone (n) of the system is accompanied
by its octave (2r), whose relative importance increases with the
amplitude of vibration. A trained ear can generally perceive the
octave in the sound of a tuning fork caused to vibrate strongly by
means of a bow, and with the aid of appliances, to be explained
later, the existence of the octave may be made manifest to any
one. By following the same method the approximation can
be carried further ; but we pass on now to the case of a system
in which the recovering power is symmetrical with respect to
the position of equilibrium. The equation of motion is then
approximately
%+ n'u+ Bu’=0...... Cerereernrieeaes (4),

which may be understood to refer to the vibrations of a heavy
pendulum, or of a load carried at the end of a straight spring.

If we take as a first approximation w= A cosnt, corresponding
to B8=0, and substitute in the term multiplied by B, we get

3 ]
%+ n'u= —% cos 3nt — SiA

Corresponding to the last term of this equation, we should
obtain in the solution a term of the form ¢ sinn#, becoming
greater without limit with ¢ This, as in a parallel case in the
Lunar Theory, indicates that our assumed first approximation
is not really an approximation at all, or at least does mot continue
to be such. If, however, we take as our starting point u =4 cos mt,
with a suitable value for m, we shall find that the solution may
be completed with the aid of periodic terms only. In fact it is
evident beforehand that all we are entitled to assume is that the
motion is approximately simple harmonic, with a period ap-
prozimately the same, as if 8=0. A very slight examination
is sufficient to shew that the term varying as «° not only may,
but must affect the period. At the same time it is evident
that a solution, in which the period is assumed wrongly, no
matter by how little, must at length cease to represent the motion
with any approach to accuracy.

We take then for the approximate equation

3 3
U+ nu=— ?% cos mt — %4 cos3mt......... (5),

of which the solution will be

cos ni.

BA® cos Smt
U = .A_ cos mt + T S_)Tnt'r;’ .................. (6),
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provided that m be taken so as to satisfy
_3p4
4! B 4

A{—m*+7°) =

or m =0t

The term in @ thus produces two effects. It alters the pitch
of the fundamental vibration, and it introduces the fwelfth as
a necessary accompaniment. The alteration of pitch is in most
cases exceedingly small—depending on the square of the amplitude,
but it is not altogether insensible. Tuning forks generally rise
a little, though very little, in pitch as the vibration dies away.
It may be remarked that the same slight dependence of pitch
on amplitude occurs when the force of restitution is of the
form n’w +au’, as may be seen by continuing the approximation
to the solution of (1) one step further than (3). The result in that
case is

atA°®

2_ ,2
M =1 ey s QUL (8).

The difference m* —»* is of the same order in 4 in both cases;

but in one respect there is a distinction worth noting, namely,

that in (8) m* is always grcater than »% while in (7) it depends

on the sign of B whether its effect is to raise or lower the pitch.

However, in most cases of the unsymmetrical class the change

of pitch would depend partly on a term of the form au® and
partly on another of the form 8 v’, and then
' a’4® 3B4*
L 3847

m’=n' + o G e 9).

68. We now pass to the consideration of the vibrations
forced on an unsymmectrical system by two harmonic forces

I cospt, I cos (gt —e).
The equation of motion is
U+ n*u = —aw’ + Ecospt+ Fcos (gt —¢) ...... (1).

To find a first approximation we neglect the term contain-
ing . Thus

1 =€ 08 Pt + fCOS (Qf — €)rarererervrenenens 2),
E F
== e TTTTTETRITOPIO 3
where e w— ]72 ’ f e — gz ( )
R. 5
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Substituting this in the term multiplied by a, we get
1 + n*u = F cos pt+ F cos (gt — €)
2
5 08 2pt+'l;— cos 2(qt —¢€) +efcos {(p—¢q) ¢+ ¢}

refeos (p+0) =4

eﬁ_‘_'fﬁ eﬂ
—a[ g T

whence as a second approximation for u

w=ecos pt + fcos (gt — ) — 2 (";;:;f’ ) _ 5 (n:fépg) cos 2pt
af” aef
_mcosﬂqt—e)—mcos{(p—g) t-+ (:‘}
_ rf—_?g_*_—q),cos{(p+g) b cerreerereran. @).

The additional terms represent vibrations having frequencies
which are severally the doubles and the sum and difference of
those of the primaries, Of the two latter the amplitudes are
proportional to the product of the original amplitudes, shewing
that the derived tonmes incrcase in relative importance with
the intensity of their parent tones.

In a future chapter we shall have to consider the important
consequences which Helmholtz has deduced from this theory.
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CHAPTER 1IV.
VIBRATING SYSTEMS IN GENERAL,

69. WE have now examined in some detail the oscillations
of a system possessed of one degree of freedom, and the results,
at which we have arrived, have a very wide application. But
material systems enjoy in general more than one degree of
freedom. In order to define their configuration at any moment
several independent variable quantities must be specified, which,
by a generalization of language originally employed for a point,
are called the co-ordinates of the system, the number of indepen-
dent co-ordinates being the index of freedom. Strictly speaking,
the displacements possible to a natural system are infinitely
various, and cannot be represented as made up of a finite number
of displacements of specified type. To the elementary parts of
a solid body any arbitrary displacements may be given, subject
to conditions of continuity. It is only by a process of abstraction
of the kind so constantly practised in Natural Philosophy, that
solids are treated as r,lgld fluids as incompressible, and-other sim-
plifications introduced, so that the position of a system comes to
depend on a finite number of co-ordinates. It is not, however,
our intention to exclude the consideration of systems possessing
infinitely various freedom; on the contrary, some of the most
interesting applications of the results of this chapter will lie in
that direction. But such systems are most conveniently conceived
as limits of others, whose freedom is of a more restricted kind.
We shall accordingly commence with a system, whose position
18 specified by a finite number of independent co- ordmafoes Yys

Vo "l’s’ &e.

70. The main problem of Acoustics consists in the investi-
gation of the vibrations of a system about a position of stable
equilibrium, but it will be convenient to commence with the
statical part of the subject. By the Principle of Virtual Ve-

. 5—2
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locities, if we reckon the co-ordinates y,, ¥,, &c. from the
configuration of equilibrium, the potential energy of any other
configuration will be a homogeneous quadratic function of the
co-ordinates, provided that the displacement be sufficiently small.
This quantity is called V, and represents the work that may be
gained in passing from the actual to the equilibrium configuration.
We may write

V= %011\1"12 + 12"022\P‘22 +... 4 612'4’1‘!’2 + czs"’z‘!’s Feennes (1)'

Since by supposition the equilibrium is thoroughly stable, the
quantities ¢,;, ¢,,, €,,, &c. must be such that ¥V is positive for
all real values of the co-ordinates.

71. If the system be displaced from the zero configuration
by the action of given forces, the new configuration may be
found from the Principle of Virtual Velocities. If the work done
by the given forces on the hypothetical displacement Syr,, 8y,
&c. be

Vo + W, i (1),
this cxpression must be equivalent to 87 so that since 3‘1’1» Ny,
&c. are independent, the new position of equlhbrlum is deter-
mined by

% =7, % =W, & ),
or by (1) of § 70,
eV + ¥y F Cry s =7,
Coa¥ry + Cog¥y + Vg + ennee =7, } ............ (3),

where there is no distinction in value between ¢, and c,,.

From these equations the co-ordinates may be determined in
terms of the forces. If v be the determinant

V= 011’ 012’ 013’ e

L (4),
csu Csa> csa’ .

...................

the solution of (3) may be written

212

V.Y, = *I' + ;’ZZV V...

JE—)

---------------------------------------
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These equations determine 4, 4, &c. uniquely, since v does
not vanish, as appears- from the consideration that the equations
av
iy
co-ordinates, provided only that the rafios were suitable, which is
contrary to the hypothesis that the system is thoroughly stable
in the zero configuration.

=0, &c. could otherwise be satisfied by finite values of the

72. If 4y, ... P, .o and 4, L P, L be two sets of dis-
placements and corresponding forces, we have the following re-
ciprocal relation,

T + T+ =T/ T, e (1),

as may be seen by substituting the values of the forces, when each
side of (1) takes the form,

cu\!':\l"l, + 022\P\2\lfﬁ’ +...
0 (‘Pz‘h’ + \b‘sl‘l"x) ¢y (‘1’3‘!’; + "’a"!’g) + e

Suppose in (1) that all the forces vanish except ¥, and ¥;
then
Wb, =W, i (2).

If the forces ¥, and ¥, be of the same kind, we may suppose
them equal, and we then recognise that a force of any type acting
alone produces a displacement of a second type equal to the
displacement of the first type due to the action of an equal force
of the second type. For example, if 4 and B be two points
of a rod supported horizontally in any manner, the vertical de-
flection at 4, when a weight W is attached at B, is the same as
the deflection at B, when TV is applicd at 4%

73. Since V is a homogeneous quadratic function of the co-
ordinates,

2V=(;'Z%Vl \pl+%«p2+...1 ................. (1),

or, if ¥, ¥,, &c. be the forces necessary to maintain the dis-
placement represented by ¥, ¥,, &c.,

2V =T, + T, 4o (2).

If N, + Ay, A, + A, &c. ropresent another displacement for
which the necessary forces are ¥, + AV, ¥, + AV, &c, the cor-

1 On this subject, see PLil. Mag., Dec., 1874, and March, 1875,

IRIS - LILLIAD - Université Lille 1



70 VIBRATING SYSTEMS IN GENERAL, [73.
responding potential energy is given by
2(V4+AV)= (T, +AT) (Y, + AY) +...
=2V +V A, + VA, +...
+ AV A+ AT, A,

+ AT Ay, + AT, A, + ..,
so that we may write

2QAV=3V. AP+ S AV A+ ZATV. Ao (3),

where AV is the difference of the potential energies in the two
cases, and we must particularly notice that by the reciprocal
relation, § 72 (1),

SUAM=SAV A correererneens e (4).

From (3) and (4) we may deduce two important theorems,
relating to the value of ¥ for a system subjected to given dis-
placements, and to given forces respectively.

74. The first theorem is to the effect that, if given displace-
ments (not sufficient by themselves to determine the configuration)
be produced in a system by forces of corresponding types, the re-
sulting value of V for the system so displaced, and in equilibrium,
is as small as it can be under the given displacement conditions;
and that the value of ¥ for any other configuration exceeds this
by the potential encrgy of the configuration which is the difference
of the two. The only difficulty in the above statement consists
in understanding what is meant by forces of corresponding types.’
Suppose, for example, that the system is a stretched string, of
which a given point P is to be subject to an obligatory displace-
ment; the force of corresponding type is here a force applied
at the point P itself. And generally, the forces, by which the
proposed displacement is to be made, must be such as would do
no work on the system, provided only that that displacement
were not made.

By a suitable choice of co-ordinatcs, the given displacement
conditions may be expressed by ascribing given values to the first
r co-ordinates Yr,, ¥, ... ¥, and the conditions as to the forces
will then be represented by making the forces of the remaining
types V..., V,,,, &c. vanish. " If 4+ A4yr refer to any other con-
figuration of the system, and W 4 AW be the corresponding forces,
we are to suppose that Ay, A, &c. as far as A4y, all vanish.
Thus for the first » suffixes Ayr vanishes, and for the remaining
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suffixes ¥ vanishes. Accordingly 3 W.A4r is zero, and therefore
3 AW is also zero. Hence

ZAV=SAT.AY overerrerereirennens ),

which proves that if the given displacements be made in any
other than the prescribed way, the potential energy is increased
by the energy of the difference of the configurations.

By means of this theorem we may trace the effect on ¥ of any
relaxation in the stiffness of a system, subject to given displacement
conditions. For, if after the alteration in stiffness the original equi-
librium configuration be considered, the value of V corresponding
thereto is by supposition less than before; and, as we have just
seen, there will be a still further diminution in the value of ¥
when the system passes to equilibrium under the altered con-
ditions. Hence we conclude that a diminution in ¥V as a function
of the co-ordinates entails also a diminution in the actual value
of ¥V when a system is subject to given displacements. It will
be understood that in particular cases the diminution spoken of
may vanish?,

For example, if a point P of a bar clamped at both ends be
displaced laterally to a given small amount by a force there ap-
plied, the potential energy of the deformation will be diminished
by any relaxation (however local) in the stiffness of the bar.

75. The second theorem relates to a system displaced by given
Jforces, and asserts that in this case the value of V in equilibrium
is greater than it would be in any other configuration in which
the system could be maintained at rest under the given forces, by
the operation of mere constraints. We will shew that the removal
of constraints increases the value of V.

The co-ordinates may be so chosen that the conditions of con-
straint are expressed by '

We have then to prove that when ¥, V¥,,,, &c. are given, the
value of V is least when the conditions (1) hold. The second
configuration being denoted as before by Yr, + A, &c., we see
that for suffixes up to = inclusive 4 vanishes, and for higher
suffixes AY¥ vanishes. Hence

S AT =5 AT =0,
1 Seo a paper on General Theorems relating to Equilibrium and Initial and

Steady Motions, Phril, Mag., March, 1875.
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72 VIBRATING SYSTEMS IN GENERAL. [75.

and therefore
2AV=SAVAY ccooviivierrnerineen, (2),

shewing that the increase in 7 due to the removal of the con-
straints is equal to the potential energy of the difference of the two
configurations.

76. We now pass to the investigation of the initial motion of
a system which starts from rest under the operation of given
impulses. The motion thus acquired is independent of any
potential energy which the system may possess when actually
displaced, since by the nature of impulses we have to do only
with the initial configuration itself. The initial motion is also
independent of any forces of a finite kind, whether impressed on
the systcm from without, or of the nature of viscosity.

If P, @, R be the component impulses, parallcl to the axes, on
a particle m whose rectangular co-ordinates are z, y, 2, we have by
D’Alembert’s Principle

Sm @9z + 58y + 282) =3, (Poz + Q8y + RS2)...... (1),

where &, 9, z denote the velocities acquired by the particle in virtue
of the impulses, and 8z, 8y, &z correspond to any arbitrary dis-
placement of the system which does not violate the connection of its
parts. It is required to transform (1) into an equation expressed
by the independent generalized co-ordinates.

For the first side,

2m(w’8a:+;z)8y+z'8z)=8\[r12m( o +yd(f;’/+ d‘f;)
. 1 1

+8‘k22m( dl[f‘ g\%+é‘?—‘;)+ ......
=3 dy dz
v, Em( d‘/’x+ i = d‘h d‘h) e
=0y, %Emzi—.(a/ +P )+ .. .
=0 1 +8 s T e 2,.
by ay ‘I'd«h ®)

where 7, the kinetic energy of the system, is supposed to be ex-
pressed as a function of ¥, v, &c.
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On the second side,

dz
S (PSz + Q3y+]?8z)=8«]f12m< T+ Ofg +Rd«p) ......

=£ S, + 52 L T 3,
; dz _
if Em( d‘h-l_Q ‘;, \h)_fl, &e
The transformed equation is therefore
- T E NS =0 4),
(5.~ &) o+ (G- &) ot =0, )

where &y, &Y, &c. are now completely independent. THence to
determine the motion we have

aT ar
—_— = 1 — =&y & e ssssavransereisenebinnay 5 y
ALl Tt ©)

where £, £, &c. may be considered as the generalized components

of impulse.

77. Since T is a homogeneous quadratic function of the gene-
ralized co-ordinates, we may take

T = %all"l}l? + %a22,\if\22 + """ + alZ‘I"l“P? + a23‘i/‘2’\if8 + ...... (1>’
whence
aT
gl d’\P‘l 11)\#1 + alZ"r2 + als‘!f}} """" l
dT : ; L e 2),
=gy = bbbt J ®

where there is no distinction in value between a,, and a,,.

Again, by the nature of 7

. dT
‘P‘l(El'l"\P‘zd\pz

= N E Tt i 3).

The theory of initial motion is closely analogous to that of the
displacement of a system from a configuration of stable equilibrium
by steadily applied forces. In the present theory the initial kinetic
energy 7T’ bears to the velocities and impulscs the same relations
as in the former V bears to the displacements and forces respect-
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74 VIBRATING SYSTEMS IN GENERAL, [77.

ively. In one respect the theory of initial motions is the more
complete, inasmuch as T is exactly, while ¥ is in general only
approximately, a homogeneous quadratic function of the variables.

If oy Yo voos €, £,y oo denote one set of velocities and impulses
for a system started from rest, and ¥, ¥, ..., £/, £/, ... a second
set, we may prove, as in § 72, the following reciprocal relation :

f{‘h + Ezl‘pz +o= El\i"x' + fg\Pg' Faeniann (4)1'

This theorem admits of interesting application to fluid motion.
It is known, and will be proved later in the course of this work,
that the motion of a frictionless incompressible liquid, which
starts from rest, is of such a kind that its component velocities
at any point are the corresponding differential coefficients of a
certaih function, called the velocity-potential. Let the fluid be
set in motion by a prescribed arbitrary deformation of the surface
S of a closed space described within it. The resulting motion is
dctermined by the normal velocities of the elements of S, which,
being shared by the fluid in contact with them, are denoted by
du
dn’ :
notes the impulsive pressure. Hence by the theorem, if » be the
velocity-potential of a second motion, corresponding to another

if u be the velocity-potential, which interpreted physically de-

set of arbitrary surface velocities % ,

[[u f W 18= ff AT T e ®),

—an equation immedlately following from Green’s theorem, if
besides S there be only fixed solids immersed in the fluid. The
present method enables us to attribute to it a much higher gene-
rality. For example, the immersed solids, instead of being fixed,
may be free, altogether or in part, to take the motion imposed -
upon them by the fluid pressures.

78. A particular case of the general theorem is worthy of
special notice. In the first motion let

"1’1=A: \i/’z=0, §3=§4=Es """ =0;

and in the second,

W =0, /=4, E=t =F ..=0
Then Bl =, vnrsienreesiienenenesinnns (1),

1 Thomson and Tait, § 318 (f)
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In words, if, by means of a suitable impulse of the correspond-
ing type, a given arbitrary velocity of one co-ordinate be impressed
on a system, the impulse corresponding to a second co-ordinate
necessary in order to prevent it from changing, is the same as
would be required for the first co-ordinate, if the given velocity
were impressed on the second.

As a simple example, take the case of two spheres 4 and B
immersed in a liquid, whose centres are free to move along certain
lines. If A4 be set in motion with a given velocity, B will
- naturally begin to move also.. The theorem asserts that the
impulse required to prevent the motion of B, is the same as if
the functions of 4 and B were exchanged : and this even though
there be other rigid bodies, 0, D, &c., in the fluid, either fixed, or
free in whole or in part.

The case of electric currents mutually influencing each other by
induction is precisely similar. Let there be two circuits 4 and B,
in the neighbourhood of which there may be any number of other
wire circuits or solid conductors. If a unit current be suddenly
developed in the circuit 4, the electromotive impulse induced in
B is the same as there would have been in 4, had the current been
forcibly developed in B.

79. The motion of a system, on which given arbitrary velocities
are impressed by means of the necessary impulses of the corre-
sponding types, possesses a remarkable property discovered by
Thomson. The conditions are that , ¥, V..., are given,
while £, &,,... vanish, Let 4, ¥, ... &, &, &c. correspond to
the actual motion; and

\P1+A\1}‘1’ '\!./‘2+A'\1;'2,... g1+AE1’ Ez+AE2"'°
to another motion satisfying the same wvelocity conditions. For
each suffix either Ay or £ vanishes. Now for the kinetic energy -
of the supposed motion, :
2(T+AT) = (§+AE) (b, +A,) +
=27+ E A, + EAY, +
+ AE). 4 \i"1 + AE2 ' '\p‘z Feeet A‘flA'\l"l-l- Asz\i’fi—
But by the reciprocal relation (4) of § 77

‘fo‘[}H + ... =A§1.’\if1 +
of which the former by hypothesis is zero; so that
QAT = AEAY, + AEAYr, +.vvveeinnnnnnns (1),
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76 VIBRATING SYSTEMS IN GENERAL. [79.

shewing that the energy of the supposed motion exceeds that of
the actual motion by the energy of that motion which would have
to be compounded with the latter to produce the former. The
motion actually induced in the system has thus less energy than
any other satisfying the same velocity conditions. In a subsequent
chapter we shall make use of this property to find a superior limit
to the energy of a system set in motion with prescribed velocities.

If any diminution be made in the inertia of any of the parts of
a system, the motion corresponding to prescribed velocity conditions
will in general undergo a change. The value of T’ will necessarily
be less than before; for there would be a decrease even if the
motion remained unchanged, and therefore a jfortior: when the
motion is such as to make 7I' an absolute minimum. Conversely
any increasc in the inertia increases the initial value of 7.

This theorem is analogous to that of § 74. The analogue for
initial motions of the theorem of § 75, rclating to the potential
encrgy of a system displaced by given forces, is that of Bertrand,
and may be thus stated :—If a system start from rest under the
operation of given impulses, the kinetic energy of the actual motion
exceeds that of any other motion which the system might have
been guided to take with the assistance of mere constraints, by the
kinetic energy of the diffcrence of the motions®,

80. We will not dwell at any greater length on the mechanics
of a system subject to impulses, but pass on to investigate
Lagrange’s equations for continuous motion. We shall suppose
that the connections binding together the parts of the system
are not explicit functions of the time; such cases of forced
motion as we shall have to consider will be specially shewn to
be within the scope of the investigation,

By D’Alembert’s Principle in combination with that of Virtual
Velocities,

S (&8 + YOy + 502) =3, (X8x + Y8y + Z82)...... ),
where 8z, 8y, 8z denote a displacement of the system of the most
general kind possible without violating the conmnections of its
parts. Since the displacements of the individual particles of
the systém are mutually related, 8z, ... are not independent. The
object now is to transform to other variables 4r,, ", ..., which
shall be independent. We bave

. a,. .2
&z = 7 (#dx) — 1 847

1 Thomson and Tait, § 311, Phil. Mag. March, 1875.
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so that
S (#8z + ySy + 282) = Em (& + 58y + 282) — &6 T.
But (§ 76) we have already found that

Zm (#0z + 8y + £82) = \[f 8\#2
if T be expressed as a quadratlc functlon of \h, Afr,, v, Whose
coefficients are in general functions of 4, \]/-2, - Also
d dT d
dt (Zz;l 8‘1’) dt (d\p) it 8""’
. d
inasmuch as & Y, = 8 FAZS
Accordingly
, " sy _(ddT
Zm (#8x + §8y + 582) = {c?t <d‘#) o } Sy,

d/ar\ 4T
2 -2 R )8
+ {dt (d\;}e) d\h} Bt e (2)
Thus, if the transformation of the second side of (1) be

3 (X8 + Yoy + Z82) =¥, 0yr, + V.00, +...eenn. (3),
we have equations of motion of the form
d (dT\ dT
b <@) ik R ().

Since P&y denotes the work done on the system during a
displacement &, ¥ may be regarded as the generalized com-
ponent of force.

In the case of a conservative system it is convenient to
separate from ¥ those parts which depend only on the configura-
tion of the system. Thus, if 7 denote the potential energy, we
may write

d (dT dT av
(Tt (d’\i,‘) d ’\P‘ W—W .................. (5);

where P is now limited to the forces acting on the system which

. |4
are not already taken account of in the term -
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81. There is also another group of forces whose existence
it is often advantageous to recognize specially, namely those
arising from friction or viscosity. If we suppose that each
particle of the system is retarded by forces proportional to its
component velocities, the effect will be shewn in the fundamental
equation (1) § 80 by the addition to the left-hand member of
the terms

3, (k% 8z + 5,9 8y + 1,2 82),
where «,, #,, &, are coefficients independent of the velocities,
but possibly dependent on the configuration of the system. The
transformation to the independent co-ordinates r,, ¥, &c. is
effected in a similar manner to that of

Zm (&dz + 8y + 25z)
considered above (§ 80), and gives

dF dF
J\E&h+z\£8\h+ .................. (1),

where F=13 (k4" + 65" + £.2°)
= Jz"bu‘l’lz + %bm‘l}: + ot bxz‘i’f‘l’z"’ Z’sa‘i’a"i’s"" """ (2)

F, it will be observed, is like 7' a homogeneous quadratic
function of the velocities, positive for all rcal values of the.
variables. It represents half the rate at which energy is dissipated.

The above investigation refers to retarding forces proportional
to the absolute velocities ; but it is equally important to consider
such as depend on the relative velocities of the parts of the
system, and fortunately this can be done without any increase
of complication. For example, if a force act on the particle z,
proportional to &, —d#,, there will be at the same moment an
equal and opposite force acting on the particle #;,. The additional
terms in the fundamental equation will be of the form

Ky (d71 - d;a) 0z, +, ("i’z — &) O,
which may be written

Ky (d71_d72) ) (wl - w2) = S\Pld%;‘— {12"’% (mx —d;2)2} +.

and so on for any number of pairs of mutually influencing
particles. The only effect is the addition of new terms to F,
which still appears in the form (2)). We shall see presently that

1The differences referred to in the text may of course pass into differential
coefficients in the case of a body continuously deformed,
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the existence of the function F, which may be called the Dis-
sipation Function, implies certain relations among the coefficients
of the generalized equations of vibration, which carry with them
important consequences®,

But although in an important class of cases the effects of
viscosity are represented by the function F, the question remains
open whether such a method of representation is applicable in all
cases. I think it probable that it is so; but it is evident that we
cannot expect to prove any general property of viscous forces
in the absence of a strict definition which will enable us to deter-
mine with certainty what forces are viscous and what are not. In
some cases considerations of symmetry are sufficient to shew
that the retarding forces may be represented as derived from a
dissipation function. At any rate whenever the retarding forces
are proportional to the absolute or relative velocities of the
parts of the system, we shall have equations of motion of the form

d dT dT dF dV
) at i a

82. We may now introduce the condition that the motion
takes place in the immediate neighbourhood of a configuration
of thoroughly stable equilibrium ; 7' and F are then homogeneous
quadratic functions of the velocities with coefficients which are
to be treated as constant, and V is a similar function of the
co-ordinates themselves, provided that (as we suppose to be
the case) the origin of each co-ordinate is taken to correspond
with the configuration of equilibrium., Moreover all three

functions are essentially positive. Since terms of the form g_\[r
are of the second order of small quantities, the equatlons of motion
. become linear, assuming the form .
d dT) dF  dV

78 —+ 5=
dt (d«p * djp

where under ¥ are to be included all forces acting on the system
not already provided for by the differential coefficients of F and V.

1 The Dissipation Function appears for the first time, so far as I am aware, in

& paper on General Theorems relating to Vibrations, published in the Proceedings
of the Mathematical Society for June, 1873,
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The three quadratic functions will be expressed as follows :—

T= %au\‘hﬂ'i' %an‘l};'l' P alz‘Pl‘i’z + ..
F=%b11\1’12+ %622‘1’22"' cee blz'\l'ﬂl’z'{' (
V= %011‘1’12'*' %022‘1’224' cee 012\1"1'\[’2 + ..

where the coefficients a, b, ¢ are constants.

)
~—
-

From equation (1) we may of course fall back on previous
results by supposing F and V, or F and T, to vanish.

A third set of theorems of interest in the application to Elce-
tricity may be obtained by omitting ' and ¥V, while F is retained,
but it is unnecessary to pursue the subject here.

If we substitute the values of 7, F and V, and write D for c% ,

we obtain a system of equations which may be put into the form

611"1’1 + 612\!’2 + els‘!"s +oo= \Irl
321‘1’\1 + 022\1’2 + ezs‘[’s +o. = \Ifz _____________ (3),
391‘[’1 + esz‘l’z + ess\l’\s +... = \I,a

......................................

where ¢,, denotes the quadratic operator

6, = D"+ b, D4 Cpprreniniiiinniiininns (4).
It must be particularly remarked that since
a’rl = acr’ bn = bnr) C,.' = C”,
it follows that
C €T €y reriiereiiiiiiieearaeeaeas eenn (B).

83. Before procecding further, we: may draw an important
inference from the linearity of our equations. If corresponding
respectively to the two sets of forces W, ¥, ..., ¥/, ¥/, ... two
motions denoted by ¥, ¥, ..., ¥, ¥, ... be possible, then must
also be possible the motion yr, + 4/, ¥, +1,, ... in conjunction
with the forces ¥, 4+ ¥/, ¥, +¥),... Or, as a particular case,
when there are no impressed forces, the superposition of any two
natural vibrations constitutes also a natural vibration. This is the
celebrated principle of the Coexistence of Small Motions, first
clearly enunciated by Daniel Bernoulli. It will be understood
that its truth depends in general on the justice of the assumption
that the motion is so small that its square may be neglected.
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84. To investigate the frec vibrations, we must put ¥, ¥,,...
equal to zero; and we will commence with a system on which no
frictional forces act, for which therefore the coefficients e,,, &ec. are
even functions of the symbol D. We have

ey tey,t... =0

e e, ... = }

From these equations, of which there are as many (m) as the

system possesses degrees of liberty, let all but one of the variables

be climinated. The result, which is of the same form whichever be
the co-ordinate retained, may be written

V=0 cciiniinnn, FTTTTPR (2),
where y denotes the determinant

e
e

1 G 15 o0
217 Gggr Cogs voe

..... reveeereeinenns (3),

eBl’ eaz’ eaa’ b

and is (if there be no friction) an even function of D) of degree 2m.

- Let £, £2,, ..., £, be the roots of y=0 considered as an
equation in D. Then by the theory of differential equations the
most general value of r is

Y= AN 4 A'e™™ L Be™t 4 Be ™ +
where the 2m quantities 4, 4, B, B, &ec. are arbitrary constants.
This form holds good for each of the co-ordinates, but the constants

in the different expressions are not independent. In fact if a
particular solution be

At At
Y=Ae", Y,=4,", &,

the ratios A, : 4, : A,... are completely determined by the
equations

e A, +e, A, +e, 4, +...... =0
ep A, te,d,ve A, +...... =0 }

where in each of the coefficients such as e,, A, is substituted for D.

Equations (5) are necessarily compatible, by the condition that A,

is a root of y=0. The ratios 4,: 4, : 4, ... corresponding to

the root — A, arc the same as the ratios A, : 4,: 4,:..., but for

the other pairs of roots A, —A,, &ec. there are distinct systems of

ratios,

R. -6
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85. The nature of the system with which we are dealing
imposes an important restriction on the possible values of A. If ),
were real, either A, or —\, would be real and positive, and we
should obtain a particular solution for which the co-ordinates, and
with them the kinetic energy denoted by

AM{a, 42+, a,d A +..] e*,

increase without limit. Such a motion is obviously impossible for
a conservative system, whose whole energy can never differ from
the sum of the potential and kinetic energies with which it was
animated at starting. This conclusion is not evaded by taking A,
negative ; because we are as much at liberty to trace the motion
backwards as forwards, It is as certain that the motion never was
infinite, as that it never will be. The same argument excludes the
possibility of a complex value of A.

We infer that all the values of A are purely imaginary, cor-
responding to real negative values of A%, Analytically, the fact that
the roots of v =0, considered as an equation in D? are all real and
negative, must be a consequence of the relations subsisting between
the coefficients a,, a,;, «++; €,;5 €y)... in virtue of the fact that for
all real values of the variables T'and V arc positive. The case of
two degrees of liberty will be afterwards worked out in full.

86. The form of the solution may now be advantageously
changed by writing in, for A,, &c. (where ¢ =,/—1), and taking
new arbitrary constants, Thus
Y, =4, cos (nt—a) + B, cos (nt—B) + C, cos (nt —«) +...

Y, =4, cos (nt—a)+ B, cos (nt—B)+ C,cos (nt—9) +... (1)
Yy = 4, cos (n,t —a) + B, cos (nt — B) + O, cos (nt — ) + ... ’

R N R T
3

where n? n’, &c. are the m roots of the equation of m™ degree
in »* found by writing —#* for D*in v =0. For each value of n
the ratios 4, : 4, : 4,... are determinate and real.

This is the complete solution of the problem of the free vibra-
tions of a conservative system. We see that the whole motion
may be resolved into m normal harmonic vibrations of (in general)
different periods, each of which is cntircly independent of the
others. If the motion, depending on the original disturbance, be
such as to reduce itself to one of these (n,), we have

Y. =4, cos (nt—a), Y,=4,cos (nt—-a), &c....... 2),
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where the ratios 4, : 4,: 4, ... depend on the constitution of the
system, and only the absolute amplitude and phase are arbitrary.
The several co-ordinates are always in similar (or opposite) phases
of vibration, and the whole system is to be found in the configura-
tion of equilibrium at the same moment.

We perceive here the mechanical foundation of the supremacy
of harmonic vibrations. If the motion be sufficiently small, the
differential equations become linear with constant coefficients ;
while circular (and exponential) functions are the only ones which
‘retain their type on differentiation.

87. The m periods of vibration, determined by the equation
v = 0, are quantities intrinsic to the system, and must come out
the same whatever co-ordinates may be chosen to define the con-
figuration. But there is one system of co-ordinates, which is
especially suitable, that namely in which the normal types of
vibration are defined by the vanishing of all the co-ordinates but
one. In the first type the original co-ordinates v, Y, &ec. have
given ratios ; let the quantity fixing the absolute values be ¢, so
that in this type each co-ordinate is a known multiple of ¢,. So
in the second type each co-ordinate may be regarded as a known
multiple of a second quantity ¢, and so on. By a suitable deter-
mination of the m quantities ¢,, ¢,, &c., any configuration of the
‘system may be represented as compounded of the m configurations
of these types, and thus the quantities ¢ themselves may be looked
upon as co-ordinates defining the configuration of the system.
They are called the normal co-ordinates:

When expressed in terms of the normal co-ordinates, 7' and V'
are reduced to sums of squares; for it is easily seen that if the
products also appeared, the resulting equations of vibration would
not be satisfied by putting any m —1 of the co-ordinates equal to
zero, while the remaining ene was finite,

‘We might have commenced with this transformation, assuming
from Algebra that any two homogeneous quadratic functions can
be reduced by linear transformations to sums of squares. Thus

T=%a1¢;12 + -}a2¢'>22+ oo
V=1}01¢12 + %ng);} + ... }

where the coefficients (in which the double suffixes are no longer
required) are necessarily positive.

6—2

IRIS - LILLIAD - Université Lille 1



84 VIBRATING SYSTEMS IN GENERAL, [87.

Lagrange’s equations now become
a$, +cd, =0, ab,+cp,=0,&c.......... (2),
of which the solution is
¢, =Ad cos (nt—a), ¢,=DBcos(nt-pB), &e....... (3)
where 4, B..., a, B... are arbitrary constants, and

)

2_ ., 2, .
nl=c,+a, n'=c,+a, & ... (4).

88. The interpretation of the equations of motion leads to a
theorem of considerable importance, which may be thus stated®.
The period of a conservative system vibrating in a constrained type
about a position of stable equilibrium is stationary in value when
the type is normal. We might prove this from the original equa-
tions of vibration, but it will be more convenient to employ the
normal co-ordinates. The constraint, which may be supposed to
be of such a character as to leave only one degree of freedom, is
represented by taking the quantities ¢ in given ratios.

If we put

$, =40, ¢,=4,0, &e. ..ovovinnnnnnn. (1),
0 is a variable quantity, and 4,, 4,, &c. arc given for a given con-
straint.

The expressions for 7 and 7 become

T={}ad’+%a,4}+...... ) 6,
V={}cd?+%cd} +...... 1 6%
whence, if 8 varies as cos pt,
_odirody e ds (2).

r= ad’+adl+.. . +ad,’

This gives the period of the vibration of the constrained type ;
and it is evident that the period is stationary, when all but onc of
the coefficients 4, 4, ... vanish, that is to say, when the type
coincides with one of those natural to the system, and no constraint
is needed.

By means of this theorem we may prove that an increase in
the mass of any part of a vibrating system is attended by a pro-
longation of all the natural periods, or at any rate that no period
can be diminished. Supposc the increment of mass to be infi-
nitesimal. After the alteration, the types of free vibration will in
general be changed ; but, by a suitable constraint, the system may

1 Proceedings of the Mathematical Society, June 1873,
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be made to retain any one of the former types. If this be done,
it is certain that any vibration which involves a motion of the part
whose mass has been increased will have its period prolonged.
Only as a particular case (as, for example, when a load is placed at
the node of a vibrating string).can the period remain unchanged.
The theorem now allows us to assert that the removal of the con-
straint, and the consequent change of type, can only affect the
period by a quantity of the second order ; and that thercfore in the
limit the free period cannot be less than before the change. By
integration we infer that a finite increase of mass must prolong the
period of every vibration which involves a motion of the part
affected, and that in no case can the period be diminished; but in
order to see the correspondence of the two sets of periods, it may
be necessary to suppose the alterations made by steps.

Conversely, the effect of a removal of part of the mass of a
vibrating system must be to shorten the periods of all the free
vibrations.

In like manner we may prove that if the system undergo such
a change that the potential energy of a given configuration is
diminished, while the kinetic energy of a given motion is unaltered,
the periods of the free vibrations are all increased, and conversely.
This proposition may sometimes be used for tracing the effects of
a constraint; for if we suppose that the potential energy of
any configuration violating the condition of constraint gradually
increases, we shall approach a state of things in which the
condition is obscrved with any desired degree of completeness.
During each step of the process every free vibration becomes
(in general) more rapid, and a number of the free periods (equal
to the degrees of liberty lost) become infinitely small. The
same practical result may be reached without altering the po-
tential energy by supposing the kineftc energy of any motion
violating the condition to increase without limit. In this case
one or more periods become infinitely large, but the finite
periods are ultimately the same as those arrived at when the
potential energy is increased, although in one case the periods
have been throughout increasing, and in the other diminishing.
This example shews the nccessity of making the alterations by
steps; otherwise we should not understand the correspondence
of the two scts of periods. Further illustrations will be given
under the head of two degrees of frecdom.
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By means of the prineiple that the value of the free periods
is stationary, we may easily calculate corrections due to any
deviation in the system from theoretical simplicity. If we take
as a hypothetical type of vibration that proper to the simple
system, the period so found will differ from the truth by quan-
tities depending on the squares of the irregularities. Several
examples of such calculations will be given in the course of
this work.

8). Another point of importance relating to the period of a
system vibrating in an arbitrary type remains to be noticed.
It appears from (2) § 88, that the period of the vibration cor-
responding to any hypothetical type is included between the
greatest and least of those natural to the system. In the case
of systems like strings and plates which are treated as capable
of continuous deformation, there is no lcast natural period;
but we may still assert that the period calculated from any hy-
pothetical type cannot exceed that belonging to the gravest
normal type. When therefore the object is to estimate the
longest proper period of a system by means of calculations
founded on an assumed type, we know a prior: that the result
will come out too small,

In the choice of a hypothetical type judgment must be
used, the object being to approach the truth as nearly as can
be done without too great a sacrifice of simplicity. Thus the
type for a string heavily weighted at one point might suitably
be taken from the extreme case of an infinite load, when the
two parts of the string would be straight, A& an example of
a calculation of this kind, of which the result is known, we
will take the case of a uniform string of length I, stretched
with tension T}, and inquire what the period would be on
certain suppositions as to the type of vibration.

Taking the origin of 2 at the middle of the string, let the
curve of vibration on the positive side be

22\"

y =cospt {1 - (T } ............. veeree(1),

and on the negative side the image of this in the axis of z,
n being not less than unity. This form satisfies the condition
that y vanishcs when 2=+ 4l We have now to form the ex-
pressions for 7' and V, and 1t will be sufficient to consider the
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positive half of the string only. Thus, p being the longitudinal
density,

l
4 [? ey pnilptsin’pt
T—%fop'ydx_2(n+l)(2n+l)’

12
_ 2 rdy\' , _ n*T cos’pt
and V--M’Jo (%) do =Tl d
2 2m+1)(@2n+1) T,
Hence p= o1 Pog s ween (2).

If n=1, the string vibrates as if the mass were concentrated
in its middle point, and

12T
2 _. 1

, A

If n =2, the form is parabolic, and
10T,

==

2

The true value of p* for the gravest type is 7:);7', so that

the assumption of a parabolic form gives a period which is too
small in the ratio 7 : 410 or ‘9936 : 1. The minimum of p"

as given by (2), occurs when n=VG2 1 172474, and gives
T
2 _ . 1
p°="98990 o

The period is now too small in the ratio

@ /98990 =-99851 : 1.

It will be seen that there is considerable latitude in the
choice of a type, even the violent supposition that the string
vibrates as two straight pieces giving a period less than ten
per cent. in error. And whatever type we choose to take, the
period calculated from it cannot be greater than the truth.

90. The rigorous determination of the periods and types of
vibration of a given system is usually a matter of great difficulty,
arising from the fact that the functions necessary to express the
modes of vibration of most continuous bodies are not as yet recog-
nised in analysis. It is therefore often nccessary to fall back on
methods of approximation, referring the proposed system to some
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‘other of a character more amcnable to analysis, and calculating
corrections depending on the supposition that the difference be-
tween the two systems is small. The problem of approximately
simple systems is thus one of great importance, more especially
as it is impossible in practice actually to realise the simple forms
about which we can most easily reason.

Let us suppose then that the vibrations of a simple system are
thoroughly known, and that it is required to investigate those
of a system derived from it by introducing small variations in
the mechanical functions. If ¢, ¢,, &c. be the normal co-ordi-
nates of the original system,

T=%al¢lg+%a2(ﬁﬂz+""
V=%ed +3ed’+...,

and for the varied system, referred to the same co-ordinatcs,
which are now only approximately normal,

T4+8T=%(a,+8a )} +... + Sa b, +...
V+8V=4% (¢, +8¢,) p >+ ... + Sc b, + }

in which 8a,, 8a,, Oc,, éc,, &c. are to be regarded as small
quantities. In certain cases new co-ordinates may appcar, but
if so their coefficients must be small. From (1) we obtain for the
Lagrangian equations of motion,

(al + Ba’u Dg + cl + 8011) ¢1 + (8a12'D2 + 8012) ¢2 ql
"+ (8a,, D+ 8c,y) Pyt ... =0
(8a, D* +8¢c,) ¢, + (a,+ 8y, D* +c,+8¢,)p, [ (2).
+ (8(128.02 -+ 8023) ¢9 +...= 0

..................................................................

In the original system the fundamental types of vibration
are those which correspond to the variation of but a single co-
ordinate at a time. Let us fix our attention on one of them,
involving say a variation of ¢, while all the remaining co-
ordinates vanish. The change in the system will in general
entail an alteration in the fundamental or normal types; but
under the circumstances contemplated the alteration is small.
The new normal type is expressed by the synchronous variation
of the other co-ordinates in addition to ¢,.; but the ratio of any
other ¢, to ¢, is small. When these ratios are known, the normal
mode of the altered system will be determined.
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Since the whole motion is simple harmonic, we may suppose
that each co-ordinate varies as cosp,f, and substitute in the
differential. equations —p* for D®% In the s™ equation ¢, occurs
with the finite coefficient

—a,p’—8a,p’+c,+ 3¢,
The coefficient of ¢, is
—8a,,p’+ 8¢,
The other terms are to be neglected in a first approximation,

since both the co-ordinate (relatively to ¢,) and its coefﬁment are
small quantities. Hence

801'3 — przsara . .
b, b=~ Topla S (3).
Now - —a,ptte,=0,
—3c,,
and thus : p i e 4),
bos b= (;0. =r3) @
the required result.
If the kinetic energy alone undergo variation,
8+ ¢ =L 2 (5
P pr PR seerene (B).

The corrected value of the period is determined by the rth
cquation of (2), not hitherto used. We may write it,

4),- {_ _pr2 @, _pr2 Sarr + C,.+ 86rr} + 2 ¢a (— pr2 Saﬂ + Scw) = 0'
Substituting for ¢, : ¢, from (4), we get
. 2 c +80 2 (Scm —przga’rﬁ)z
b= a, +8a - 0,3, (psz_prz) “.
- The first term gives the value of p,? calculated without allow-
ance for the change of type, and is sufficient, as we have already
proved, when the square of the alteration in the system may
be neglected. The terms included under the symbol 3, in
which the summation extends to all values of s other than 7,
give the correction due to the change of type and are of the
second order. Since @, and @, are positive, the sign of any term
depends upon that of pf—p” If p’>p? that is, if the mode
s be more ‘acute than the mode r, the correction is negative,
and makes the calculated note graver than before; but if the
mode s be the graver, the correction raises the note. If r refer
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90 VIBRATING SYSTEMS IN GENERAL. [90.

to the gravest mode of the system, the whole correction is
negative; and if r refer to the acutest mode, the whole correction
is positive, as we have already seen by another method.

91. As an example of the use of these formul®, we may
take the case of a stretched string, whose longitudinal density p
18 not quite constant. If x be measured from one end, and
be the transverse displacement, the configuration at any time ¢
will be expressed by

cy=¢, sin 22 + ¢, sm gt ¢, sin :17;— F e ),

! being the length of the string. ¢é,, ¢,,... are the normal
co-ordinates for p=constant, and though here p is not strictly
constant, the configuration of the system may still be expressed
by means of the same quantities. Since the potential energy
of any configuration is the same as if p=constant, §¥V'=0. For
the kinetic energy we have

T+8T=1}f ((j)‘sm +¢zsm l . )dx
. L 2o
=%¢l’flpsin‘zlgfdw+§¢:fpsin’%q'dm+...

0 L]

. l .
+¢‘¢’J psin—'"—-l’2 sin 27;? dz+ ...
0

If p were constant, the products of the velocities would dis-
appear, since ¢,, ¢,, &c. are, on that supposition, the normal
co-ordinates. As it is, the integral coefficients, though not actually
evanescent, are small quantities. Let p=p,+ 6p; then in our
previous notation

a,=%1pys Sa, —f 8p sin? - "L dw, Sa,,= f 8p sin l_sm sl;ﬁdx

Thus the type of vibration is expressed by

roe . Swx
¢, .= , 17" fB sm—l——sm 7 dx;

3 . — . o®
or, since Pl ipi=r s,

128 .
¢, : ¢'=s’—1‘f lp:) nTsm'—SZ—;icdx.... ..... (2).
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Let us apply this result to calculate the displacement of the
nodal point of the second mode (= 2), which would be in the
middle, if the string were uniform. In the neighbourhood of
this point, if @ =} I + dx, the approximate value of y is

y=,sin + ¢, sin o + ¢, sin 37

g Tt

-}-8.7(:{'7ll-<j>1cos"'2r 2m ¢gcos227r+_.,}

=4>1 R A Bx{ 26, + 24, + ...
Hence when y=0,

So=o ¢{¢> A S L 3)

approximately, where

123p . 2mx .
¢ 2 b= s_4f Pln—ﬂf (—W—mdx ......... (4).

To shew the application of these formule, we may suppose
the irregularity to consist in a small load of mass p situated
at z =11, though the result might be obtained much more easily
directly. We have

20 ( 2 2 2 2
wz{12—4“32—4‘52—4+72-4 }’

from which the value of 8z may be calculated by approximation.
The real value of 8x is, however, very simple. The series within
brackets may be written

Ox =

111 1 1
1+g—5—rz+g+ﬁ—&c.
which is equal to
f11+w
ol4a

The value of the definite integral is

7r—:-4sing*,
and thus
sy 2N T2

w2 A T2

* Todhunter's Int. Cale. § 255,
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as may also be readily proved by equating the periods of vibra-
tion of the two parts of the string, that of the loaded part being
calculated approximately on the assumption of unchanged type.

As an example of the formula (6) § 90 for the period, we
may take the case of a string carrying a small load p at its
middle point. - We have

s
8a,_, = p\ sin 77 sin 27

a,=%lp,, &a, -pohsm 3 5

2 3
and thus, if Pr be the value corresponding to A =0, we get when
ris even, p, =P, and when » is odd,

1 49 A2 .
= Pf{ o 2 Tr.z -l—” } ............... (O),

S
1+T

where the summation is to be extended to all the odd values
of s other than . If r=1,

o\ | 4 4 2
2 __ 2 - = - - =
PI‘PI{I AR 12}

Now
o 1 _s 1 51
sf—1 s—1 s+1°
in which the values of s are 8, 5, 7, 9'... Accordingly
Q 11

29—1_1’
! 2
and p:‘=1’1’{ 2—? + 3;‘ Foen } ............ (6),

giving the pitch of the gravest tone accurately as far as the
square of the ratiod : L
In the gencral case the value of p? correct as far as the
first order in 8p, will be
pr2 = 'Prx {1 - —8&"}

Q,

v

8p in2 TR
- P? {1_Z 2 sine 12 .z} ............ 7).

92. The theory of vibrations throws great light on expansions
of arbitrary functions in series of other functions of specified
types. The best known cxample of such expansions is that
generally called after Fourier, in which an arbitrary periodic
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function is resolved into a series of harmonics, whose periods
are submultiples of that of the given function. It is well known
that the difficulty of the question is confined to the proof of the
possibility of the expansion ; if this be assumed, the determination
of the coefficients is easy enough. What I wish now to draw
attention to is, that in this, and an immensc variety of similar
cases, the possibility of the expansion may be inferred from
physical considerations.

To fix our ideas, let us consider the small vibrations of a
uniform string stretched between fixed points. We know from
the general theory that the whole motion, whatever it may
be, can be analysed into a serics of component motions, each
represented by a harmonic function of the time, and capable
of existing by itself. If we can discover these normal types,
we shall be in a position to represent the most gencral vibration
possible by combining them, assigning to each an arbitrary
amplitude and phase.

Assuming that a motion is harmonic with respect to time,
we get to determine the type an equation of the form

d2
T H Ry =0,

whence it appears that the normal functions are

. TE . 2wz . dma
y=sin—, y=sin——, y=sin——, &e.
We infer that the most general position which the string can

assume is capable of representation by a series of the form

Alsinzrlf+A2 sing%a—:+ Assin3—ﬂl-§+ ...... ) .
which is a particular case of Fourier’s theorem. There would

be no difficulty in proving the theorem in its most general form.

So far the string has been supposed uniform. But we have
only to introduce a variable density, or even a single load at
any- point of the string, in order to alter completely the cx-
pansion whose possibility may be inferred from the dynamical
theory. It is unnecessary to dwcll here on this subject, as
we shall have further examples in the chapters on the vibrations
of particular systems, such as bars, membrancs, and confined
masses of air.
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93. The determination of the coefficients to suit arbitrary
initial conditions may always be readily effected by the funda-
mental property of the normal funetions, and it may be convenient
to sketch the process here for systems like strings, bars, mem-
branes, plates, &c. in which there is only one dependent variable
¢ to be considered. If wu, u,... be the normal functions, and
¢,, ¢, ... the corresponding co-ordinates,

E=du, + u,+ Pyt conenennnn. tereernee (¥).
The equations of free motion are
¢, +nt, =0, ¢, +07p,=0 & .oeeee. (2),

of which the solutions are

¢,=4,sinnt+ B, cosnt
b, =A,sinng+ B,cosnt) covrrnennnnn, (3).

The initial values of £ and ¢ are therefore

&= B, + B, + Bu, + ... } v (&)
§0=nAu+nAu+naA8us+-.- ........... )

b it e | 277272
and thé problem is to determine 4, A?, ...B, B,... so as to
correspond with arbitrary values of &, and &.

* If pda be the mass of the element dz, we have from (1)
T=% f p&da

=é<ﬁl’fp uldx + HS;fp u,’d:c—i-;.. + qﬁ,@fpulugdx +...

But the expression for T in terms of ¢,, $,, &c. cannot contain
the products of the normal generalized velocities, and therefore
every integral of the form

f punde=0.cociiiiiiiinnnn. (5)

Hence to determine B, we have only to multiply the first
of equations (4) by pu, and integrate over the system. We thus
obtain

B, f o ulde = f PULAD v, ).
Similarly,
n ArfP u, dx =[p TR -/ NSO (M
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The process is just the same whether the element dx be a 11ne,
area, or volume.

The conjugate property, expressed by (5), depends upon the
fact that the functions » are normal. As soon as this is known
by the solution of a differential equation or otherwise, we may
infer the conjugate property without further proof, but the pro-
perty itself is most intimately connected with the fundamental
variational equation of motion § 94.

94. If V be the potential energy of deformation, ¢ the
displacement, and p the density of the (line, area, or volume)
element dz, the equation of virtual velocities gives immediately

8V+fp§agdx=o... .................. (.

In this equation 8V is a symmetrical function of ¢ and &%,
as may be readily proved from the expression for ¥ in terms
of generalized co-ordinates. In fact if

V= % cu‘[";2 +oot 012‘1"1‘!"2 +

8 V= Cll"lrls\lrl + 02211’284,2 +
+ 012 (‘IIIS\P2 + ’\[’28‘\1’1)

Suppose now that ¢ refers to the motion corresponding to
a normal function u, so that E+n J¢=0, while 8¢ is identified
with another normal function u,; then

8V=nl f p uudz.

Again, if we suppose, as we are equally entitled to do, that ¢
varies as u, and & as u,, we get for the same quantity 8V,

8V = nffp umde ;

and therefore

from which the conjugate property follows, if the motions re-
presented respectively by w_ and u, have different periods.

A good example of the connection of the two methods of
treatment will be found in the chapter on the transverse vibrations

of bars.
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95. Professor Stokes® has drawn attention to a very general
law connecting those parts of the free motion which depend
on the initial displacements of a system not subject to frictional
forces, with thosc which depend on the initial welocities. If
a velocity of any type be communicated to a system at rest,
and then after a small interval of time the opposite velocity
be communicated, the effect in the limit will be to start the
system without velocity, but with a displacement of the corre-
sponding type. We may readily prove from this that in order
to deduce the motion depending on initial displacements from .
that depending on the initial velocities, it is only necessary to
differentiate with respect to the time, and to replace the arbitrary
constants (or functions) which express the initial velocities by
those which express the corrcsponding initial displacements.

Thus, if ¢ be any normal co-ordinate satisfying the equation

¢ +n'p=0,
the solution in terms of the initial valucs of ¢ and ¢ is

¢ =, cosnt +%¢;0 3107 RN (1),

of which the first term may be obtained from the sccond by
Stokes’ rule.

1 Dynamical Theory of Diffraction, Cambridge Trans. Vol, IX,

IRIS - LILLIAD - Université Lille 1



CHAPTER V.

VIBRATING SYSTEMS IN GENERAL
CONTINUED.

96. WHEN dissipative forces act upon a system, the character
of the motion is in general more complicated. If two only of the
functions T, F, and V be finite, we may by a suitable linear trans-
formation rid ourselves of the products of the co-ordinates, and
obtain the normal types of motion. In the preceding chapter we
have considered the case of =0. The same theory with obvious
modifications will apply when I'=0, or V=0, but these cases
though of importance in other parts of Physics, such as Heat and
Electricity, scarcely belong to our present subject.

The presence of friction will not interfere with the reduction of
T and V to sums of squares; but the transformation proper for
them will not in general suit also the requirements of F. The
general equation can then only be reduced to the form

l(l)l + bll ¢1 + b12 (P? + + cl(ﬁl &C . (1)’

and not to the simpler form apphcable to a system of one degree
of freedom, viz.

a,b +bp, +ep =, & ....... R (2).

We may, however, choose which pair of functions we shall
reduce, though in Acoustics the choice would almost always fall on
T and 7.

97. There is, however, a not unimportant class of cases in
which the reduction of all three functions may be effected ; and
the theory then assumes an exceptional simplicity. Under this head
the most important are probably those when F'is of the same form
as Tor V. The first case occurs frequently, in books at any rate,
when the motion of each part of the system is resisted by a re-
tarding force, proportional both to the mass and velocity of the

R. 7
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part. The same exceptional reduction is possible when F is a
limear function of 7" and V, or when 7 is itself of the same form as
V. In any of these cases, the equations of motion are of the same
form as for a system of one degree of freedom, and the theory
possesses certain peculiarities which make it worthy of separate
consideration,

The equations of motion are obtained at once from 7, F
and V:— .
a1¢;x + bqu_;1 + cl¢l = q)l’ } (1)
B S D P e (1),

in which the co-ordinates are separated.

For the free vibrations we have only to put ®, =0, &ec., and
the solution is of the form

—8K ;s lt [/ : ’
¢ =e t{‘posﬂi{" + ¢, (cosnt+2——'; sin nt)} (2),

where x=2, n’=§, n' =40 —}«%),

and ¢, and ¢, are the initial values of ¢ and .

The whole motion may therefore be analysed into component
motions, each of which corresponds to the variation of but one
normal co-ordinate at a time. And the vibration in each of these
modes is altogether similar to that of a system with only. one
degree of liberty. After a certain time, greater or less according
to the amount of dissipation, thé free vibrations become insignifi-
cant, and the system returns sensibly to rest.

Simultaneously with the free vibrations, but in perfect inde-
pendence of them, there may exist forced vibrations depending on
the quantities @. Precisely as in the case of one degree of free-
dom, the solution of

ad + b+ =Doerirerrrrrrrreernnnnn, 3),

may be written

1 —yelt—t) 2 ' r ’
= oe ‘sinn (=)Dt .n.onn.n.s 4),
where as above
" k=b+ta, wW=cta, W =4(n -1}
To obtain the complete expression for ¢ we must add to the
right-hand member of (4), which makes the initial values of ¢
and ¢ vanish, the terms given in (2) which represent the residue
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at time ¢ of the initial values ¢, and ¢, If there be no friction,
the value of ¢ in (4) reduces to

1
1

; :
- sinn (-t Pdt'enni, (5).
0

(’{) =
98. The complete independence of the normal co-ordinates
leads to an interesting theorem concerning the relation of the
subsequent motion to the imitial® disturbance. For if the forces
which act upon the system be of such a character that they do no
work on the displacement indicated by 8¢,, then @ =0. No such
forces, however long continued, can produce any effect on the
motion ¢,. If it exist, they cannot destroy it; if it do not exist,
they cannot generate it. The most important application of the
theorem is when the forces applied to the system act at a node of
the normal component ¢,, that is, at a point which the component
vibration in question does not tend to set in motion. Two extreme
cases of such forces may be specially noted, (1) when the force is
an impulse, starting the system from rest, (2) when it has acted so
long that the system is again at rest under its influence in a dis-
turbed position. So soon as the force ceases, natural vibrations
set in, and in the absence of friction would continue for an in-
definite time. We infer that whatever in other respects their
character may be, they contain no component of the type ¢,. This
conclusion is limited to cases where T, I, V admit of simultancous
reduction, including of course the case of no friction.

99. The formul® quoted in § 97 are applicable to any kind of
force, but it will often happen that we have to deal only with the
effects of impressed forces of the harmonic type, and we may then
advantageously employ the more special formule applicable to such
forces. In using normal co-ordinates, we have first to calculate the
forces ®,, ®,, &c. corresponding to each period, and thence deduce
the values of the co-ordinates themselves. If among the natural
periods (calculated without allowance for friction) there be any
nearly agreeing in magnitude with the period of an impressed
force, the corresponding component vibrations will be abnormally
large, unless indeed the force itself be greatly attenuated in the
preliminary resolution. Suppose, for example, that a transverse
foree of harmonic type and given period acts at a single point of
a stretched string. All the normal modes of vibration will, in
general, be excited, not however in' their own proper periods, but

7—2
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100 VIBRATING SYSTEMS IN GENERAL. [99.

in the period of the impressed force; but any normal component,
which has a node at the point of application will not be excited.
The magnitude of each component thus depends on two things:
(1) on the situation of its nodes with respect to the point at which
the force is applied, and (2) on the degree of agreement between
its own proper period and that of the force. It is important to
remember that in respounse to a simple harmonic force, the system
will vibrate in general in all its modes, although in particular
cases 1t may sometimes be sufficient to attend to only one of them
as being of paramount importance.

100. When the periods of the forces operating are very long
relatively to the free periods of the system, an equilibrium theory
.is~ sometimes adequate, but in such a case the solution could
generally be found more easily without the use of the normal
co-ordinates. Bernoulli’s theory of the Tides is of this class, and
proceeds on the assumption that the free periods of the masses of
water found on the globe are small relatively fo the periods of the
operative forces, in which case the inertia of the water might be
left out of account. As a matter of fact this supposition is only
~very roughly and partially applicable, and we are consequently
still in the dark on many important points relating to the tides.
The principal forces have a semi-diurnal period, which is not suffi-
ciently long in relation to the natural periods concerned, to allow
of the inertia of the water being neglected. But if the rotation of
the earth had been much slower, the equilibrium theory of the
tides might have been adequate.

A corrected equilibrium theory is sometimes useful, when the
period of the impressed force is sufficiently long in comparison
with most of the natural periods of a system, but not so in the
case of one or two of them. It will be sufficient to take the case
where there is no friction. In the equation

ap+cp=>, or <ﬁ+n2¢>=%(1>,

suppose that the im'pressed force varies as cos pt. Then
d=P+a(®—p°) e, e (1),

The equilibrium theory neglects p* in comparison with z?,
and takes
=D =an’i.ciiiiiiiiririrennnn (2).
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Suppose now that this course is justifiable, except in respect
of the single normal co-ordinate ¢. We have then only to add
to the result of the equilibrium theory, the difference between
the true and the there assumed value of ¢,, viz.

The other extreme case ought also to be noticed. If the
forced vibrations be extremely rapid, they may become nearly
independent of the potential energy of the system. Instead
of neglecting p* in comparison with %% we have then to neglect
#* in comparison with p?, which gives

If there be one or two co-ordinates to which this treatment
is not applicable, we may supplement the result, calculated on
the hypothesis that V' is altogether negligible, with corrections
for these particular co-ordinates.

101. Before passing on to the general theory of the vibrations
of systems subject to dissipation, it may be well to point out
some peculiarities of the free vibrations of continuous systems,
started by a force applied at a single point. On the suppositions
and notations of § 93, the conﬁgura’mon at any time is deter-
mined by

E=u, + du, + gty +oveveenninnniarnnes (1),
where the normal co-ordinates satisfy equations of the form
0P, + 6,5, =P orrreerrivrrnes oarre (2).

Suppose now that the system is hcld at rest by a force applied
at the point ¢, The value of ®, is determined by the considera-
tion that ® 8¢, represents the work done upon the system by the
impressed forces during a hypothetical displacement 6&= 8¢, u,,
that is

8¢r f Zu, dx;
thus
@, = [Zud5=u.Q) [Zd;

so that inifiully by (2)
o =u (@ dex ..................... (3).

IRIS - LILLIAD - Université Lille 1



102 VIBRATING SYSTEMS IN GENERAL. [101.

If the system be let go from this configuration at ¢ =0, we
have at any subsequent time ¢,

u, (Q)dex

, ¢, = cos nt

At particular points =, (P) and «, (Q) vanish, but on the
whole

a, (P)u, (@) + f pulde

neither converges, nor diverges, with». The series for ¢ therefore
converges with n ™

_ Again, suppose that the system is started by an impulse
from the configuration of equilibrium, In this case initially

a$.=[@dt=u(Q) [Zdn
whence at time ¢

sin n, ¢
-4,
an,

¢, =

(@ [Zdn

smn t.u

_sinnt.u(Q) f Zdecsrienrnrinn, (©).
n, f pu,’dx
This gives ‘

o,

shewing that in this case the series converges with n ™, that
is more slowly than in the previous case.

§=Esinnt
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In both cases it may be observed that the value of ¢ is
symmetrical with respect to P and @, proving that the displace-
ment at time ¢ for the point P when the force or impulse is ap-
plied at @, is the same as it would be at @ if the force or impulse
had been applied at P. This is an example of a very general
reciprocal theorem, which we shall consider at length presently.

As a third case we may suppose the body to start from rest
as deformed by a force uniformly distributed, over its length,
area, or volume. We readily find

u (P).Z. |udx

r ¥

P).Z.
t=3cosnt ——————...coel e (8).
n,’ f pudx '

The series for ¢ will be more convergent than when the force
is concentrated in a single point.

In exactly the same way we may treat the case of a con-
tinuous body whose motion is subject to dissipation, provided

that the three functions 7, F, V be simultancously reducible,
but it is not necessary to write down the formule.

102. If the three mechanical functions 7, F and V of any
system be not simultaneously reducible, the natural vibrations
(as has already been observed) are more complicated in their
character. When, however, the dissipation is small, the mecthod
of reduction is still useful; and this class of cases besides being
of some importance in itself will form a good introduction to
the more general theory. We suppose then that 7 and V are
expressed as sums of squares

=} a1¢;12+ % az(i;: + .
V=bo,d2+do, b+ R ()

while Z still appears in the more general form

F=3b,b+30,0" + o + byt onnn. )
The equations of motion are accordingly

lé.l + bll(i)l + bl?‘ﬁZ + blS(ﬁR + + 61¢1
2¢2 + b21¢2 + b22¢2 + b23¢8 + + cz¢2

in which the coefficients b,, b,,, &c. are to be treated as small.

If therc were no friction, the above system of equations would
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be satisfied by supposing one co-ordinate ¢, to vary suitably,
while the other co-ordinates vanish. In the actual case there
will be a corresponding solution in which the value of any other
co-ordinate ¢, will be small relatively to ¢,.

Hence, if we omit terms of the second order, the + equation
becomes,
ad +b.b.ted, =0 ciiiiiiiiininn, 4),

from which we infer that ¢, varies approximately as if there
were no change due to friction in the type of vibration. If ¢,
vary as e?, we obtain to determine p,
api+d.p.+0=0.ccoiiiiinininnn. (5).
The roots of this equation are complex, but the real part
is small in comparison with the imaginary part.

From the s™ equation, if we introduce the supposition that
all the co-ordinates vary as e?”, we get

(p1'2a8 + cs) ¢s + brsp1'¢r = 0?
terms of the second order being omitted ; whence

= lupe __ b.p,
Pt 8= “pla,te, a(pi-pd)t” (6)-
This equation dctermines approximately the altered type
of vibration. Since the chief part of p, is imaginary, we see
that the co-ordinates ¢, are approximately in the same phase,
but that that phase differs by a quarter period from the phase
of ¢, Hence when the function F does not reduce to a sum
of squares, the character of the elementary modes of vibration
is less simple than otherwise, and the various parts of the system
are no longer simultaneously in the same phase.

We proved above that, when the friction is small, the value
of p, may be calculated approximately without allowance for
the change of type; but by means of (6) we may obtain a still
closer approximation, in which the squares of the small quantities
are retained. The 7™ equation (3) gives

P,
a,(p,'=Pp,)

The leading part of the terms included under 3, being real,
the correction has no effect on the real part of p, on which
the rate of decay depends.

ap’+e +0b,p.+3% =0 .ereeerenrennn (7).
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103. We now return to the consideration of the general
equations of § 84.

If 4, ¥, &c. be the co-ordinates and ¥,, V,, &c. the forces,
we have

611’\”1+312‘P‘2+-..=‘P1 }“_”_“"”..“"(1)’
e21‘\P‘1 +e,t+... =Y, &e.
where 6, =0, D" +b . Dtc,viiiinireninninnninn. (2).

For the free vibrations ¥,, &c. vanish. If ¥ be the de-
terminant

€19 €gseee
V =|€y5 €y e

............

Since ¢ now contains odd powers of D, the 2m roots of the
cquation v =0 no longer occur in equal positive and negative
pairs, but contain a real as well as an imaginary part. The
complete integral may however still be written

Y= Aot + 4’ ¢4t Bert + Bett + ooenienenenn. (%),

where the pairs of conjugate roots are w,, p,'; g, &, ; &c. Corre-
sponding to each root, there is a particular solution such as

=AM A=At A=A et &,

in which the ratios 4, : 4,: 4,... are determined by the equa-
tions of motion, and only the absolute value rcmains arbitrary.
In the present case however (where y contains odd powers of D)
these ratios are not in general real, and therefore the variations
of the co-ordinates yr, Y, &c. are not synchronous in phase. If
we put p,=a,+18,, p, =a,—if3, &c., we see that none of the
quantities @ can be positive, since in that case the energy of
the motion would increase with the time, as we know it cannot
do.

Enough has now been said on the subject of the free vibra-
tions of a system in general. Any further illustration that it
may require will be afforded by the discussion of the case of two
degrees of freedom, § 112, and by the vibrations of strings and other
special bodies with which we shall soon be occupied. We resume
the equations (1) with the view of investigating further the
nature of forced wibrations.

IRIS - LILLIAD - Université Lille 1



106 VIBRATING SYSTEMS IN GENERAL. [104.

104. In order to eliminate from the equations all the co-
ordinates but one (Y), operate on them in succession with the
minor determinants

AL A A

de,’ de,’ de,
and add the results together; and in-like manner for the other
co-ordinates. We thus obtain as the equivalent of the original

system of equations

dy dv dy )

v, = du‘I’ o \I’+:JZ T+ ...
dy dV ” v

V=7 T +§ v, +2ll Vokod L,
d

v, = dV\I' +deV~1f +dV\1r

in which the differentiations of y are to be made without re-
cognition of the equality subsisting between ¢, and ¢,,.

The forces W, ¥, &c. arc any whatever, subject, of course,
to the condition of not producing so great a displacement or
motion that the squares of the small quantities become sensible.
If, as is often the case, the forces operating be made up of two
parts, one constant with respect to time, and the other periodic,
it is convenient to separate in imagination the two classes of
effects produced. The effect due to the constant forces is exactly
the same as if they acted alone, and is found by the solution
of a statical problem. It will thercfore generally be sufficient
to suppose the forces periodic, the cffects of any constant forces,
such as gravity, being merely to alter the configuration about
which the vibrations proper are executed. We may thus without
any real loss of generality confine ourselves to periodic, and
therefore by Fouricr’'s theorem to harmonic forces.

We might thercfore assume as expressions for ¥,, &e. circular
functions of the time; but, as we shall have frequent occasion
to recognise in the course of this work, it is usually more .con-
venient to employ an imaginary exponcntial function, such as
I ¢, where E is a constant which may be complex. When the
corresponding symbolical solution is obtained, its real and
imaginary parts may be scparated, and belong respectively to
the real and imaginary parts of the data. In this way the

IRIS - LILLIAD - Université Lille 1



104.] FORCED VIBRATJONS. 107

analysis gains considerably in brevity, inasmuch as differentiations
and alterations of phase are expressed by merely modifying
the complex coefficient without changing the form of the function.
We therefore write

v, =B V,=Eg¢" &ec

The minor determinants of the type Ay are rational integral

de

r8

functions of the symbol D, and operate on ¥, &c. according to
the law '

F(D) € =F(@p) € ovvrvrrrareanrnnnn 2).
Our equations therefore assume the form
V¥, =4 v, =46 &cnnnnnn, (3),

where 4,, 4,, &c. are certain complex constants. And the sym-
bolical solutions are

=4 v, &,
or by (2),

int
eﬂ

‘\Il‘1 = Al W B &C vevrrrriiinireana (4!),

where ¥ (ip) denotes the result of substituting 4p for D in v.

Consider first the case of a system exempt from friction. v
and its differential coefficients are then ewven functions of D,
so that v (ip) is real. Throwing away the imaginary part of
the solution, writing B ¢® for 4,, &c. we have
«p,=.‘7_1(?@37)00s (pt+0), & e . (5)

If we suppose that the forces ¥,, &c. (in the case of more
than one generalized component) have all the same phase, they
may be expressed by

B cos (pt+a), E,cos(pt+a), &ec;

and then, as is easily seen, the co-ordinates themselves agree
in phase with the forces:

The amplitudes of the vibrations depend among other things
on the magnitude of v (¢ép). Now, if the period of the forces
be the same as one of those belonging to the free vibrations,
v (¢p) =0, and the amplitude becomes infinite. This is, of
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course, just the case in which it is essential to introduce the
consideration of friction, from which no natural system is really
exempt.

If there be friction, v (¢p) is complex; but it may be divided
into two parts—one real and the other purely imaginary, of which
the latter depends entirely on the friction. Thus, if we put

V (68) =V, () + 3 V(D) cvvrvvenereon (1),

V.» V, are even functions of 4p, and therefore real. If as before
A, = Re™, our solution takes the form '

e R eitieivgint
Cv @) F e Gp) [
or, on throwing away the imaginary part,
pm S RO ) L (s),
(v, @) [ +p'v, ()}

where
_P%) (9).

Vi)

We have said that v,(¢p) depends entirély on the friction ; but
it is not true, on the other hand, that v, (fp) is exactly the same,
as if there had been no friction. However, this is approximately
the case, if the friction be small ; because any part of v (ip), which
depends on the first power of the coefficients of friction, is neces-
sarily imaginary. Whenever there is a coincidence between the
period of the force and that of one of the free vibrations, v, (ip)

tany =

vanishes, and we have tany =— o, and therefore
R, sin (pt+0,)
= e 10),
V=T @) (10)

indicating a vibration of large amplitude, only limited by the
friction.

On the hypothesis of small friction, 8 is in general small, and
so also is ¢, except in case of approximate equality of periods.
With certain exceptions, therefore, the motion has nearly the
same (or opposite) phase with the force that excites it.

When a force expressed by a harmonic term acts on a system,
the resulting motion is everywhere harmonic, and retains the
original period, provided always that the squares of the displace-
ments and velocities may be neglected. This important principle
was cnunciated by Laplace and applied by him to the theory of
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the tides. Its great generality was also recognised by Sir John
Herschel, to whom we owe a formal demonstration of its truth®.

If the force be not a harmonic function of the time, the types
of vibration in different parts of the system are in general different
from each other and from that of the force: The harmonic
functions are thus the only ones which preserve their type un-
changed, which, as was remarked in the Introduction, is a strong
reason for anticipating that they correspond to simple tones.

105. We now turn to a somewhat different kind of forced
vibration, where, instead of given forces as hitherto, given inexora-
ble motions are prescribed.

If we suppose that the co-ordinates yr,, v, ... Y, are given
functions of the time, while the forces of the remaining types
V0o V,ues -oo ¥, vanish, the equations of motion divide them-
selves into two groups, viz.

e "1’1 + 612‘1"2 +..+ 61m"[’Qm = \Pl
€ 1#1 + 622‘\!’2 +...+ ezm‘P‘m = \1’2

.......................................

erl,llrl—"- e"2‘l’2 + b + erm\lfm = \I’r J
and
€511 \Pl + er+1,2‘[’2 +...+ er+1,m"1b‘m =0

.............................................

6 Vite, Yot .ot ¥, =0

In each of the m —r equations of the latter group, the first »
terms are known explicit functions of the time, and have the same
effect as known forces acting on the system. The equations of
this group are therefore sufficient to determine the unknown
quantities; after which, if required, the forces necessary to main-
tain the prescribed motion may be determined from the first
group. It is obvious that there is no essential difference between
the two classes of problems of forced vibrations.

106. The motion of a system devoid of friction and executing
simple harmonic vibrations in consequence of prescribed variations
of some of the coordinates, possesses a peculiarity parallel to those
considered in §§ 74, 79. Let

Yry=A, cos pt, ,=4,cospt, &c.
in which the quantities 4,...4, are regarded as given, while the
1 Encyc. Metrop. art, 323. Also Outlines of Astronomy, § 650,
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remaining ones are arbitrary. We have from the expressions for
Tand V, § 82,

2(T+V)=%(c +pa) A+ ...+ (cu+pa )4, 4, +...

+ {3 (e, — pla ) A2+ ... + (¢, — pla,) 4,4, + ...} cos 2pt,
from which we see that the equations of motion express the con-
dition that %, the variable part of 7'+ V, which is proportional to

% (Cu - pzan) A12 +...F (012 - p2a1z) A1A2 Faee e (1)’
shall be stationary in value, for all variations of the quantities
4 A4,,. Let p” be the value of p* natural to the system when

L0
vibrating under the restraint defined by the ratios

A 4,004, 4, ... 4

m )

then

= e, dl+ .+, d A+ .} Ra A0+ v a, 44,4 .,
so that

E=(p"-p") fo,dl+ o ta,d 4,4+ .. @.
From this we see that if p* be certamly less than p®; that is,
if the prescribed period be grecater than any of those na.tural to
the system under the partial constraint represented by

4,:4,...4,

then % is necessarily positive, and the stationary value—there can
be but one—is an absolute minimum. For a similar reason, if the
prescribed period be less than any of those natural to the partially
constrained system, & is an absolute maximum alcrebralcally, but
arithmetically an absolute minimum. But when p* lies within the
range of possible values of p® E may be positive or negative, and
the actual value is not the greatest or least possible. Whenever a
natural vibration is consistent with the imposed conditions, that
will be the vibration assumed. The variable part of 7+ ¥V is then
zero.

For convenience of treatment we have considered apart the
two great classes of forced vibrations and free vibrations ; but there
is, of course, nothing to prevent their coexistence. After the lapse
of a sufficient interval of time, the free vibrations always dis-
appear, however small the friction may be. The case of abso-
lutely no friction is purely ideal.

There is one caution, however, which may not be superfluous
in respect to the case where given motions are forced on the
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system. Suppose, as before, that the co-ordinates 4, ¥,,... 4, are
given. Then the free vibrations, whose existence or non-existence
is a matter of indifference so far as the forced motion is concerned,
must be understood to be such as the system is capable of, when
the co-ordinates r ...\, are not allowed to vary from zero. In
order to prevent their varying, forces of the corresponding types
-must be introduced ; so that from one point of view the motion in
question may be regarded as forced. But the applied forces are
mercly of the nature of a constraint; and their effect is the same
as a limitation on the freedom of the motion.

107. Very remarkable reciprocal relations exist between the
forces and motions of different types, which may be regarded as
extensions of the corresponding theorems for systems in which
only Vor T has to be considered (§ 72 and §§ 77, 78). If we sup-
pose that all the component forces, except two—¥, and ¥,—are
zcro, we obtain from § 104,

d d
v, = V*I’+ Vy

de': Zeg ......... R (1).
V¥, = dem‘l’ Rl

‘We now consider two cases of motion for the same system ; first
when ¥, vanishes, and secondly (with dashed letters) when ¥’
vanishes, If ¥, =0,

Similarly, if ¥,'=0,

In these equations v and its differential coefficients are rational
integral functions of the symbol D; and since in every case
e, =¢€,, V is a symmetrical determinant, and therefore

: dy dvy
e, e, e 4).

Hence we see that if a force ¥, act on the system, the co-
ordinatc ), is related to it in the same way as the co-ordinate
is related to the force W,’, when this latter force is supposed to act
alone.

In addition to the motion here contemplated, there may be
free vibrations dependent on a disturbance already existing at the

8
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moment subsequent to which all new sources of disturbance are
included in ¥; but these vibrations are themselves the effect of
forces which acted previously. However small the dissipation
may be, there must be an interval of time after which free vibra-
tions die out, and beyond which it is unnecessary to go in taking
account of the forces which have acted on a system. If therefore
we include under ¥ forces of sufficient remoteness, there are no
independent vibrations to be considered, and in this way the
theorem may be extended to cases which would not at first sight
appear to come within its scope. Suppose, for example, that the
system is at rest in its position of equilibrium, and then begins to
be acted on by a force of the first type, gradually increasing in
magnitude from zero to a finite value W,, at which point it ceases
to increase. If now at a given epoch of time the force be sud-
denly destroyed and remain zero ever afterwards, free vibrations of
the system will set in, and continue until destroyed by friction.
At any time ¢ subsequent to the given epoch, the co-ordinate +,
has a value dependent upon ¢ proportional to ¥,. The theorem
allows us to assert that this value 4, bears the same relation to ¥,
as ¥ would at the same moment have borne to W), if the original
cause of the vibrations had been a force of the second type in-
creasing gradually from zero to ¥, and then suddenly vanishing
at the given epoch of time. We have already had an example of
this in § 101, and a like result obtains when the cause of the
original disturbance is an impulse, or, as in the problem of the
pianoforte-string, a variable force of finite though short duration.
In these applications of our theorem we obtain results relating to
free vibrations, considered as the residual effect of forces whose
actual operation may have been long before.

108. In an important class of cases the forces ¥, and ¥, are
harmonie, and of the same period. We may represent them by
Ae™, A, where A, and 4, may be assumed to be real, if the
forces be in the same phase at the moments compared., The
results may then be written

\P2=A d log V ("p) el‘pt

S T (1),
. g dlogw (ip) .,
¥ =4, T de, e’
where 4p is written for D. Thus,
A=A e, (2)
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Sinece the ratio 4, : 4, is by hypothesis real, the same is
true of the ratio o : ¥, ; which signifies that the  motions
represented by those symbols are in the same phase. Passing
to real quantities we may state the theorem thus:—

If o force W, = A, cospt, acting on the system give rise to
the motion Y, =0A, cos (pt—ce); then will a force' ¥, =A. cospt
produce the motion yr,'= A, cos (pt — ¢).

If there be no friction, e will be zero.

If 4,=A4,, then 4o/ =+, But it must be remembered that
the forces ¥, and ¥, are not necessarily comparable, any more
than the co-ordinates of corresponding types, one of which for
example may represent a linear and another an angular dis-
placement.

The reciprocal theorem may be stated in several ways, but
before proceeding to these we will give another investigation,
not requiring a knowledge of determinants.

It ¥, ¥,... ¥, ¥, and T/, ¥ 4/, 4. be two sets
of forces and corresponding displacements, the equations of
motion, § 103, give

'\Ill’\],l’ + \Iiz 2, to.= "”’1, (ell’\Pl + em‘h} + em\"z + )
' + ‘l’z’ (621'\1’1 + 622‘1"2 + ezs\l’a + "‘) toeeee
Now, if all the forces vary as ¢”,the effect of a symbolic
operator such as ¢, on any of the quantities 4 is merely to
multiply that quantity by the constant found by substituting
tp for D in e,. Supposing this substitution made, and having
regard to the relations e, =¢,,, we may write '

‘Pll‘#‘ll + \I,z“’fz’ + e = ell‘!’l“l’ll + 622"1,2‘\”‘2' + v

Fo, (PP YY) e ().
Hence by the symmetry
T, + V) + =T T Y (4),

which is the expression of the reciprocal relation.

109. In the applications that we are about to make it
will be supposed throughout that the forces of all types but
two (which we may as well take as the first and second) are
zero, Thus

. \I,‘ \Il‘ll +\Ir2\pzl — \I'l"‘,b‘l +\I’2’ ‘hz ............... (1)
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114 VIBRATING SYSTEMS IN GENERAL. {109.

The consequences of this equation may be exhibited in three
different ways. In the first we suppose that

T, =0, ¥ =0,

Vot U= W (2),
shewing, as before, that the relation of +, to ¥, in the first
case when ¥,=0 is the same as the relation of 4 to ¥, in
the second case, when W,/ =0, the identity of relationship ex-
tending to phase as well as amplitude,

whence

A few examples may promote the comprehension of a law,
whose extreme generality is not unlikely to convey an impression
of vagueness.

If P and @ be two points of a horizontal bar supported in
any manner (e.g. with one end clamped and the other free), a
given harmonic transverse force applied at P will give at any
moment the same vertical deflection at @ as would have been

-found at P, had the force acted at Q:

If we take angular instead of linear displacements, the
theorem will run :—A given harmonic couple at P will give the
same rotation at @ as the couple at @ would give at P.

Or if one displacement be linear and the other angular, the
result may be stated thus:—Suppose for the first case that a
harmonic couple acts at P, and for the second that a vertical
force of the same period and phase acts at ¢, then the linear
displacement at @ in the first case has at every moment the
same phase as the rotatory displacement at P in the second,
and the amplitudes of the two displacements are so related that
the maximum couple at P would do the same work in acting
over the maximum rotation at P due to the force at @, as the -
maximum force at ¢ would do in acting through the maximum
displacement at @ due to the couple at P. In this case the
statement is more complicated, as the forces, being of different
kinds, cannot be taken equal.

If we suppose the period of the forces to be excessively long,
the momentary position of the system tends to coincide with
that in which it would be maintained at rest by the then acting
forces, and the equilibrium theory becomes applicable. Our
theorem then reduces to the statical one proved in § 72..

As a second example, suppose that in a space occupied by
air, and either wholly, or partly, confined by solid boundaries,
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there are two spheres 4 and B, whose centres have one degree
of freedom. Then a periodic force acting on 4 will produce
the same motion in B, as if the parts were interchanged; and
this, whatever membranes, strings, forks on resonance cases, or
other bodies capable of being set into vibration, may be present in
their neighbourhood. . .

Or, if 4 and B denote two points of a solid elastic body
of any shape, a force parallel to OX, acting at 4, will produce
the same motion of the point B parallel to OY as an equal force
parallel to OY acting at B would produce in the point 4,
parallel to OX.

Or again, let A and Bbe two points of a space occupied by
air, between which are situated obstacles of any kind. Then a
sound originating at 4 is perceived at B with the same intensity
as that with which an equal sound originating at B would be per-
ceived at 4. The obstacle, for instance, might consist of a rigid
wall pierced with one or more holes. This example corresponds
to the optical law that if by any combination of reflecting or re-
fracting surfaces one point can be seen from a second, the second
can also be seen from the first. In Acoustics the sound shadows
are usually only partial in consequence of the not insignificant
value of the wave-length in comparison with the dimensions of
ordinary obstacles: and the reciprocal relation is of considerable
interest.

A further example may be taken from electricity. Let there
be two circuits of insulated wire A and B, and in their neigh-
bourhood any combination of wire-circuits or solid conductors
in communication with condensers. A periodic electro-motive
force. in the circuit 4 will give rise to the same current in B
as would be excited in A if the electro-motive force operated
in B.

Our last example will be taken from the theory of conduction
and radiation of heat, Newton’s law of cooling being assumed
as a basis. The temperature at any point 4 of a conducting and
radiating system due to a steady (or harmonic) source of heat
at B is the same as the temperature at B due to an equal source
at A. Moreover, if at any time the source at B be removed, the
whole subsequent course of temperature at 4 will be the same
as it would be at B if the parts of B and A4 were interchanged.

1 Helmholtz, Crelle, BA. Lvir, The sounds must be such as in the absence of
obstacles would diffuse themselves equally in all directions.

8—2
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116 VIBRATING SYSTEMS IN GENERAL. [1 10.

110. The second way of stating the reciprocal theorem is
arrived at by taking in (1) of § 109,

"1’1 =0, "!"2, =0;
whence Tl =T/, v, D),

or W, oo, =Tt seseenees (@),
shewing that the relation of ¥, to 4, in the first case, when r, =0,
is the same as the relation of ¥, to v, in the second case,
when "= 0.

Thus in the example of the rod, if the point P be held at
rest while a given vibration is imposed upon @ (by a force there
applied), the reaction at P is the same both in amplitude and
phase as it would be at @ if that point were held at rest and
the given vibration were imposed upon P,

So if 4 and B Dbe two electric circuits in the neighbourhood
of any number of others, €, D, ... whether closed or terminating
in condensers, and a given periodic current be excited in 4 by
the necessary electro-motive force, the induced electro-motive
force in B is the same as it would be in 4, if the parts of 4
and B wcere interchanged.

The third form of statement is obtained by putting in (1)

of § 109, '
\I’1=OJ "[’2,=O;

whence WA AP Ay =0 (3),
or Ay d,==T s P, ),
proving that the ratio of 4, to 4, in the first case, when ¥, acts
alone, is the negative of the ratio of ¥, to ¥, in the second
case, when the forces are so related as to keep 4, equal to zero.

Thus if the point P of the rod be held at rest while a
periodic force acts at @, the reaction at P bears the same numeri-
cal ratio to the force at @ as the displacement at @ would bear
to the displacement at P, if the rod were caused to vibrate by
a force applied at P.

111, The reciprocal theorem has been proved for all systems
in which the frictional forces can be represented by the function F,
but it is susceptible of a further and an important generalization.
‘We have indeed proved the existence of the function F for
a large class of cases where the motion is resisted by forces
proportional to the absolute or relative velocities, but there are
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other sources of dissipation not to be brought under this head,
whose effects it is equally important to include; for example, the
dissipation due to the conduction or radiation of heat. Now
although it be true that the forces in these cases are not for all
possible motions in a constant ratio to the velocities or displace-
ments, yet in any actual case of periodic motion (7) they are
necessarily periodic, and therefore, whatever their phase, ex-
pressible by a sum of two terms, one proportional to the dis-
placement (absolute or relative) and the other proportional to the
velocity of the part of the system affected.. If the coefficients
be the same, not necessarily for all motions whatever, but for all
motions of the period =, the function I exists in the only sense
required for our present purpose. In fact since it is exclusively
with motions of period = that the theorem is concerned, it is
plainly a matter of indifference whether the functions T, F, V
are dependent upon 7 or not. Thus extended, the theorem is
perhaps sufficiently general to cover the whole field of dissipative
forces.

It is important to remember that the Principle of Reciprocity
is limited to systems which vibrate about a configuration of equi-
ltbrium, and is therefore not to be applied without reservation to
such a problem as that presented by the transmission of sonorous
waves through the atmosphere when disturbed by wind. The
vibrations must also be of such a character that the square of the
motion can be neglected throughout; otherwise our demonstra-
tion would not hold good. Other apparent exceptions depend on
a misunderstanding of the principle itself. Care must be taken
to observe a proper correspondence between the forces and dis-
placements, the rule being that the action of the force over the
displacement is to represent work done. Thus couples correspond
to rotations, pressures to increments of volume, and so on.

112. In Chapter III. we considered the vibrations of a
system with one degree of freedom. The remainder of the pre-
sent Chapter will be devoted to some details of the case where the
degrees of freedom are two.

If # and y denote the two co-ordinates, the expressions for T'
and V are of the form

2T = La* + 2 My + Ng)’}
oV = A+ 2Bay + Oy | rervererie,
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s0 that, in the absence of friction, the equations of motion are
Li+ Mij+ Ax+ By=X 9
Mi+ Ny + Bat Oy= T (2).
When there are no impressed forces, we have for the natural
vibrations

(LDQ“LA)“(MD%B)Z/:O} .................. ®)
(MD*+ B)w +(ND'+ C)y =0 ’
D being the symbol of differentiation with respect to time,

If a solution of (3) be w=1¢", y=me", A* is one of the

roots of
(D»2 + A) (NN +C)—~(UN+B=0..ccocennninn. (4),

or
M(LN = M)+ 7\ (LO+ NA —2MB)+ AC—- B =0...... (5).
The constants L, M, N; A, B, C, are not entirely arbitrary.
Since 7' and V are essentially positive, the following inequalities
must be satisfied :—
LN >M AC>DB ccicivviieiviiriinnnnnn (6).
Moreover, L, N, 4, C must themselves be positive.
We proceed to examine the effect of these restrictions on the

roots of (5).

In the first place the three coefficients in the equation are
positive. For the first and third, this is obvious from (G). The
coeflicient of A?

= (VIO -/ N4)* + 2/LNAC — 2MB,
in which, as is seen from (G), /ZIVAC is necessarily greater than
MB. We conclude that the valucs of A% if real, are both negative.

It remains to prove that the roots are in fact real. The con-
dition to be satisfied is that the following quantity be not nega-
tive :—

(LO+NA —-2MB)*— 4(LN — M*) (4C— B).
After reduction this may be brought into the form
4(WJIN.B—J4C. M)

+ (JLC ~ JNAY {(JLC—JNAY + 4(JINAC - MB)},
which shews that the condition is satisficd, since /LNAC — MB
is positive. 'This is the analytical proof that the values of A* are
both real and negative; a fact that might have been anticipated
without any analysis from the physical constitution of the system,
whose vibrations they serve to express,
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The two values of A? are different, unless both
VIN.B- JAC.M =0 }

JLC-JNA=0
which require that

The common spherical pendulum is an example of this case.

By means of a suitable force Y the co-ordinate ¥ may be pre-
vented from varying. The system then loses one degree of free-
dom, and the period corresponding to the remaining one is in
general different from either of those possible before the introduc-
tion of Y. Suppose that the types of the motions obtained by
thus preventing in turn the variation of y and x are respectively
e“?, ¢¢, Then p?, p are the roots of the equation

(I 4+ 4) (NN +C) =0,
being that obtained from (4) by suppressing M and B. Hence
(4) may itself be put into the form
LN (N —p’) WV =)= (MN + B coeveennnn, (8),
which shews at once that neither of the roots of A’ can be inter-
mediate in value between p’ and w,” A little further examina-

tion will prove that one of the roots is greater than both the quan-
tities p.% % and the other less than both. For if we put

FOO) = LN (0 — ) (8 = ) = (A0 + B,
we see that when W\ is very small, £ is positive (40— B*); when
A* decreases (algebraically) to p?, f changes sign and becomes
negative. Between O and u” there is therefore a root; and also
by similar reasoning between p,* and — . We conclude that the
tones obtained by subjecting the system to the two kinds of con-
straint in question are both intermediate in pitch between the
tones given by the natural vibrations of the system. In particular

cases u.%, u’, may be equal, and then
)\,2=@M2iB=_@i B
JLNF M JLN T M
This proposition may be generalized. Any kind of constraint
which leaves the system still in possession of one degree of free-
dom may be regarded as the imposition of a forced relation

between the co-ordinates, such as
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Now if az+ By, and any other homogeneous linear func-
tion of # and y, be taken as new variables, the same argument
proves that the single period possible to the system after the
introduction of the constraint, is intermediate in value between
those two in which the natural vibrations were previously per-
formed. Conversely, the two periods which become possible
when a constraint is removed, lie one on each side of the original
period.

If the values of A? be equal, which can only happen when
L:M:N=4:B:C(,

the introduction of a constraint has no effect on the period ; for
instance, the limifation of a spherical pendulum to one vertical
plane.

113. As a simple example of a system with two degrees of
freedom, we may take a stretched string of length I, itself with-
out inertia, but carrying two equal masses m at distances @ and
b from one end (Fig. 17). Tension = 7.

Fig, 17.

If x and y denote the displacements,
o7 = m (& + 57,

O A ) A
o= T+ G20 L)
Since T and V are not of the same form, it follows that the
two periods of vibration are in every case unequal,

If the loads be symmetrically attached, the character of the
two component vibrations is evident. In the first, which will have
the longer period, the two weights move together, so that « and »
remain equal throughout the vibration. In the second x and y are
numerically equal, but opposed in sign. The middle point of the
string then remains at rest, and the two masses are always to
be found on a straight line passing through it. In the first case
x—y=0, and in the second z+y=0; so that z—y,and z +y
are the new variables which must be assumed in order to reduce
the functions 7"and V simultaneously to a sum of squares.
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For example, if the masses be so attached as to divide the
string into three equal parts,

2T =3 {(&+9)° + (& — §))
3T N LLLLLLITITI IS 1),
2V=3 {(fv+3/)’+3(x_y)2}J

fron which we obtain as the complete solution,
b+ a)

w+y=Acos(«/3

7,
im

m—y:Bcos(M%.t+,8)

where, as usual, the constants 4, a, B, 8 are to be determined by
the initial circumstances.

114. When the two natural periods of a system are nearly
equal, the phenomenon of intermittent vibration sometimes pre-
sents itself in a very curious manner. In order to illustrate this,
we may recur to the string loaded, we will now suppose, with twe
equal masses at distances from its ends equal to one-fourth of the
length. If the middle point of the string were absolutely fixed,
the two similar systems on either side of it would be completely
independent, or, if the whole be considered as one system, the two
periods of vibration would be equal. We now suppose that
instead of being absolutely fixed, the middle point is attached to
springs, or other machinery, destitute of inertia, so that it is
capable of yielding slightly. The reservation as to inertia is to
avoid the introduction of a third degree of freedom,

From the symmetry it is evident that the fundamental vibra-
tions of the system are those represented by z+y and z—y.
Their periods are slightly different, because, on account of the
yielding of the centre, the potential energy of a displacement
when @ and y are equal, is less than that of a displacement
when @ and y are opposite; whereas the kinetic energies are
the same for the two kinds of vibration. In the solution

zt+y=A4 cos(n1t+a)} ’ (1)

w—y =B cos(ng+ ) )
we are therefore to regard n, and n, as nearly, but not quite, equal,
Now let us suppose that initially # and & vanish. The condi-
tions are

A cosa+ Bcos,B:O}
nAsina+nBsinB=0)’
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:which give approximately
A+B=0, a= B.

Thus z=A sinn2;n‘t sin(n‘;n2t+a>

y=4 cos%;n‘t cos (n‘;n2t+a)

The value of the co-ordinate « is here approximately ex-
pressed by a harmonic term, whose amplitude, being proportional

. n,—n
to sin—2 1
2

t, is a slowly varying harmonic function of the time.

The vibrations of the co-ordinates are therefore intermittent, and
s0 adjusted that each amplitude vanishes at the moment that the
other is at its maximum.

This phenomenon' may be prettily shewn by a tuning fork of
very low pitch, heavily weighted at the ends, and firmly held by
screwing the stalk into a massive support. When the fork vibrates
in the normal manner, the rigidity, or want of rigidity, of the
stalk does not come into play; but if the displacements of the two
prongs be in the same direction, the slight yielding of the stalk
entails a small change of period. If the fork be excited by striking
one prong, the vibrations are intermittent, and appcar to transfer
themselves backwards and forwards between the prongs. Unless,
however, the support be very firm, the abnormal vibration, which
involves a motion of the centre of inertia, is soon dissipated ; and
then, of course, the vibration appears to become steady. If the
fork be merely held in the hand, the phenomenon of intermittence
cannot be obtained at all.

115. The stretched string with two attached masscs may be
used to illustrate some general principles. For example, the period
of the vibration which remains possible when one mass is held
at rest, i3 intermediate between the two free periods. Any in-
crease in either load depresses the pitch of both the mnatural
vibrations, and conversely. If the new load be situated at a point
of the string not coinciding with the places where the other loads
are attached, nor with the node of one of the two previously
possible free vibrations (the other has no node), the effect is still
to prolong both the periods already present. With regard to the
third finite period, which becomes possible for the first time after
the addition of the new load, it must be regarded as derived from
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one of infinitely small magnitude, of which an indefinite number
may be supposed to form part of the system. It is instructive
to trace the effect of the introduction of a new load and its gradual
increase from zero to infinity, but for this purpose it will be
simpler to take the case where there is but one other. At the
commencement there is one finite period 7,, and another of in-
finitesimal magnitude =,. As the load increases 7, becomes finite,
and both =, and 7, continually increase. Let us now consider
what happens when the load becomes very great. One of the .
periods is necessarily large and capable of growing beyond all
limit. The other must approach a fixed' finite limit. The first
belongs to a motion in which the larger mass vibrates nearly as
if the other were absent; the second is the period of the vibration
of the smaller mass, taking place much as if the larger were fixed.
Now since 7, and 7, can never be equal, 7, must be always the
greater; and we infer, that as the load becomes continually larger,
it is 7, that increases indefinitely, and 7, that approaches a finite
limit.

‘We now pass to the consideration of forced vibrations.

116. The general equations for a system of two degrees of
freedom including friction are ‘
LD*+aD +A)yx+(MD*+BD+B)y=X
(MD*+BD+B)a+ (ND*+ yD+C)y= Y}
In what follows we shall suppose that Y'=0, and that X=¢"%,
The solution for y is

_ (B—p*HM + 1 Bp) &” @)

I T @ =pL+iap) (C—p'N+iop) = B=p M +ifp) "
If the conncction between « and y be of a loose character, the
constants M, 8, B arc small, so that the term (B- p*M + ¢Bp)*
in the denominator may in general be neglected. When this
is permissible, the co-ordinate y is the same as if = had been pre-
vented from varying, and a force Y had been introduced whose
magnitude is independent of &V, , and €. But if, in consequence
of an approximate isochronism between the force and one of the
motions which become possible when x or y is constrained to be
zero, either A — p*L+tap, or C— p’N+<yp be small, then the
term in the denominator containing the coefficients of mutual
influence must be retained, being no longer relatively unimportant ;

and the solution is accordingly of a more complicated character,
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Symmetry shews that if we had assumed X =0, Y=¢", we
should have found the same value for  as now obtains for . This
is the Reciprocal Theorem of § 108 applied to a system capable
of two independent motions. The string and two loads may again
be referred to as an example,

117. So far for an imposed force. We shall next suppose
that it is a motion of one co-ordinate (z = ¢*) that is prescribed,
while ¥'=0; and for greater simplicity we shall confine ourselves
to the case where 8=0. The value of y is

(B — ﬂ[pﬁ) el'Dt
T O—DNp+ivp

Let us now inquire into the reaction of this motion on .

‘We have

(B— Mp*)* e
C—Np'+iyp

If the real and imaginary parts of the coefficient of ¢* be re-
spectively 4' and ¢a’p, we may put '

(MD*+Byy=A'e+d® covoveinrnienranss (3),
__(B=Mp'} (C— Np*)
and A = O N g e 4,
(__(B—Mp*)y
oa= C= )it T (5).

It appears that the effect of the reaction of y (over and above
‘what would be caused by holding y = 0) is represented by changing
A into A+ A4', and a into a4+, where 4’ and o' huve the above
values, and is therefore equivalent to the effect of an alteration in
the coefficients of spring and friction. These alterations, however,
are not constants, but functions of the pertod of the motion con-
templated, whose character we now proceed to consider.

Let n be the value of p corresponding to the natural frictionless
period of y (# being maintained at zero); so that C—n*’N=0,
Then
N (p*—n?)

A'=B—M2222‘22 2 %
( p>N(p—n)+fyp

) v
-NY (pi_n2)2+ryﬁ-p2
In most cases with which we are practically concerned r is
small, and interest centres mainly on values of p not much differ-
ing from n. We shall accordingly leave out of account the
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variations of the positive factor (B — Mp*/®, and in the small term
v'p?, substitute for p its approximate value n. When p is not
nearly equal to n, the term in question is of no importance,

As might be anticipated from the general principle of work,
o' is always positive. Its maximum value occurs when p=n

nearly, and is then proportional to ;}?, which varies inversely with

“ry. This might not have been expected on a superficial view of the
matter, for it seems rather a paradox that, the greater the friction,
the less should be its result. But it must be remembered that vy
is only the coefficient of friction, and that when ¢ is small the
maximum motion is so much increased that the whole work spent
against friction is greater than if ¢ were more considerable,

But the point of most interest is the dependence of 4’ on p.
If p be less than n, 4’ is negative. As p passes through the value
n, A’ vanishes, and changes sign. When A4’is negative, the in-
fluence of ¥ is to diminish the recovering power of the vibration ,
and we see that this happens when the forced vibration is slower
than that natural to y. The tendency of the vibration y is thus
to retard the vibration w, if the latter be already the slower, but to
accelerate 1t, if it be already the more rapid, only vanishing in the
critical case of perfect isochronism. The attempt to make x -
vibrate at the rate determined by = is beset with a peculiar
difficulty, analogous to that met with in balancing a heavy
body with the centre of gravity above the support. On which-
ever side a slight departure from precision of adjustment may
occur the influence of the dependent vibration is always to increase
the error. Examples of the instability of pitch accompanying a
strong resonance will come across us hereafter; but undoubtedly
the most interesting application of the results of this section is to
the explanation of the anomalous refraction, by substances possess-
ing a very marked selective absorption, of the two kinds of light
situated (in a normal spectrum) immediately on either side of the
absorption band®. It was observed by Christiansen and Kundt,
the discoverers of this remarkable phenomenon, that media of the
kind in question (for example, fuchsine in alcoholic solution) refract
the ray immediately below the absorption-band abnormally ¢n
excess, and that above it in defect. If we suppose, as on other
grounds it would be natural to do, that the intense absorption is

-1 Phil, Mag., May, 1872. Also Sellmeier, Pogg. Ann. t. exliii. p. 272,
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the result of an agreement between the vibrations of the kind of
light affected, and some vibration proper to the molecules of the
absorbing agent, our theory would indicate that for light of some-
what greater period the effect must be the same as a relaxation of
the natural elasticity of the ether, manifesting itself by a slower
propagation and increased refraction. On the other side of the
absorption-band its influence must be in the opposite direction.

In order to trace the law of connection between A’ and p, take,
for brevity, yn=a, N (p®— n’) =g, so that
v
£+a

A«

‘When the sign of @ is changed, 4’ is reversed with it, but pre-
serves 1ts numecrical value. When 2=0, or + ©, 4" vanishes.

Fig. 18,
'e

T
\,/0 x'

Hence the origin is on the representative curve (Fig. 18), and the
axis of « is an asymptote. The maximum and minimum values of
A’ occur when  is respectively equal to + @, or —a; and then

e .1
@ +a " 2a°
The corresponding values of p are given by

‘ pi=nt 3{; ................ fererreenes (7).

Hence, the smaller the value of a or v, the greater will be the
maximum alteration of 4, and the corresponding value of p will
approach nearer and nearer to n. It may be well to repeat, that in
the optical application a diminished v is attended by an tncreased
maximum absorption. When the adjustment of periods is such as
to favour 4’ as much as possible, the correspondmg value of o is
one half of ¢fs maxiraum,
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CHAPTER VI.

TRANSVERSE VIBRATIONS OF STRINGS.

118. AmoxaG vibrating bodies there are none that occupy a
more prominent position than Stretched Strings. From the
earliest times they have been employed for musical purposes,
and in the present day they still form the essential parts of such
important instruments as the pianoforte and the violin. To the
‘mathematician they must always possess a peculiar interest as the
battle-field on which were fought out the controversies of D’Alem-
bert, Euler, Bernoulli and Lagrange, relating to the nature of the
solutions of partial differential equations. To the student of
Acoustics they are doubly important. In consequence of the com-
parative simplicity of their theory, they are the ground on which
difficult or doubtful questions, such as those relating to the nature
of simple tones, can be most advantageously faced ; while in the
form of a Monochord or Sonometer, they afford the most gene-
rally available means for the comparison of pitch.

- The ‘string’ of Acoustics is a perfectly uniform and flexible
filament of solid matter stretched between two fixed points—in
fact an ideal body, never actually realized in practice, though
closely approximated to by most of the strings employed in music.
We shall afterwards see how to take account of any small devia-
tions from complete flexibility and uniformity.

The vibrations of a string may be divided into two distinct
classes, which are practically independent of one another, if the
amplitudes do not exceed certain limits. In the first class the
displacements and motions of the particles are longitudinal, so
that the string always retains its straightness, The potential
energy of a displacement depends, not on the whole tension, but
on the changes of tension which occur in the various parts of the
string, due to the increased or diminished extension. In order to
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128 TRANSVERSE VIBRATIONS OF STRINGS. [118.

calculate it we must know the relation between the extension of
a string and the stretching force. The approximate law (given by
Hooke) may be expressed by saying that the extension varies
as the tension, so that if ! and ! denote the natural and the
stretched lengths of a string, and 7' the tension,

where £ is a constant, depending on the material and the section,
which may be interpreted to mean the tension that would be
necessary to stretch the string to twice its natural length, if the
law applied to so great extensions, which, in general, it is far
from doing.

119. The vibrations of the second kind are ¢ransverse; that is
to say, the particles of the string move sensibly in planes perpen-
dicular to the line of the string. In this case the potential energy
of a displacement depends upon the general tension, and the
small variations of tension accompanying the additional stretching
due to the displacement may be left out of account. It is here
assumed that the stretching due to the motion may be neglected
in comparison with that to which the string is already subject in
its position of equilibrium. Once assured of the fulfilment of this
condition, we do not, in the investigation of transverse vibrations,
require to know anything further of the law of extension.

The most general vibration of the transverse, or lateral, kind
may be resolved, as we shall presently prove, into two sets of com-
ponent normal vibrations, executed in perpendicular planecs.
Sincs it is only in the initial circumstances that there can be any
distinction, pertinent to the question, between one plane and
another, it is sufficient for most purposes to regard the motion as
entnely confined to a single plane passing through the line of the
string.

In treating of the theory of strings it is usual to commence
with two particular solutions of the partial differential equation,
representing the transmission of waves in the positive and nega-
tive directions, and to combine these in such a manner as to suit
the case of a finite string, whose ends are maintained at rest;
neither of the solutions taken by itself being consistent with the
existence of nodes, or places of permanent rest. This aspect of the
question is very important, and we shall fully consider it; but it
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seems scarcely desirable to found the solution in the first instance .
on a property so peculiar to a untform string as the undisturbed
transmission of waves. We will proceed by the more general
method of assuming (in conformity with what was proved in the
last chapter) that the motion may be resolved into normal com-
ponents of the harmonic type, and determining their periods and
character by the special conditions of the system.

Towards carrying out this design the first step would naturally
be the investigation of the partial differential equation, to which
the motion of a continuous string is subject. But in order to
throw light on a point, which it is most important to understand
clearly,—the connection between finite and infinite freedom, and
the passage corresponding thereto between arbitrary constants
and arbitrary functions, we will commence by following a some-
what different course.

120. In Chapter IIL. it was pointed out that the fundamental
vibration of a string would not be entircly altered in character,
if the mass were concentrated at the middle point. Following
out this idea, we see that if the whole string were divided into a
number of small parts and the mass of each concentrated at its
centre, we might by sufficiently multiplying the number of parts
arrive at a system, still of finite freedom, but capable of represent-
ing the continuous string with any desired accuracy, so far at
least as the lower component vibrations are concerned. If the
analytical solution for any number of divisions can be obtained,
its limit will give the result corresponding to a uniform string.
This is the method followed by Lagrange.

Let 7 be the length, pl the whole mass of the string, so that
p denotes the mass per unit length, 7, the tension.

Fig. 19.

The length of the string is divided into m +1 equal parts (a),
so that '

m+Da=l.. ., (),
R. 9
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At the m points of division equal masses (u) are supposed con-
centrated, which are the representatives of the mass of the por-
tions (a) -of the string, which they severally bisect. The mass of
each terminal portion of length 1a is supposed to be concentrated
at the final points. On this understanding, we have

(M4 L) p=plceeeiiiiiiriinniinininn. 2.

We proceed to investigate the vibrations of a string, itself
devoid of inertia, but loaded at each of m points equidistant
(@) from themselves and from the ends, with a mass pu.

If A, Yy eeeees Ve denote the lateral displacements of the
loaded points, including the initial and final points, we have the
following expressions for 7' and V,

T=3u{d Pt P 0] e (3),

V= %:; { (“lb‘z— '\1’1)2+ (‘l’\s - "l’z)z‘l' eoe (\ll‘m+2 - "Ifmﬂ)?} __,(4),

with the conditions that 4, and 4, vanish. These give by
Lagrange’s Method the m equations of motion,

B"l’x + A‘I’z + B‘l’a 0
B‘Pz + 'A\"\a -+ B‘IQ =0
0

B+ Ay, +DBys =0 (5),
B‘l’m+A\I’m+1+‘B\!rm+2=0
where a=prr+ 2, BT (6).

Supposing now that the vibration under consideration is one
of normal type, we assume that yr,, ¥, &c. are all proportional to
cos (nt — €), where n remains to be determined. 4 and B may
then be regarded as constants, with a substitution of —n® for D%

If for the sake of brevity we put

the determinantal equation, which gives the values of #? assumes
the form
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¢ 1, 0, 0, 0...... m Tows

1, ¢ 1, 0, O......

0,1, C 1, 0......

0,0, 1, C L. [=0urrverrrrrnnns (8)
0,0 0, 1, C......

From this equation the values of the roots might be found.
It may be proved that, if C'= 2 cos 6, the determinant is equivalent
to sin (m + 1) 6 +sin @ ; but we shall attain our object with greater
ease directly from (5) by acting on a hint derived from the known
results relating to a continuous string, and assuming for trial a
particular type of vibration. Thus let a solution be

=P sin(r—1)B cos(nt—€).ccrrrerrerens ),
a form which secures that +», =0. In order that 4, may
vanish,
(M4 1) B=8Turirieiiiiirrinonrenens 10),

where s is an integer. Substituting the assumed values of v in the
equations (5), we find that they are satisfied, provided that

2Bcos B+ A =0 ....ccooeuriiniiinnne (11);

so that the value of » in terms of B is
9B «/T
n=2sing ”—c: ....................... (12).

A normal vibration is thus represented by

S
=P, sin r +)1 Teos(Mt—=¢) vovenran. (13),
where n, = 2,\/ ! sin ST (m+ e (14),

and P,, ¢, denote arbitrary constants independent of the general
constitution of the system. The m admissible values of = are
found from (14) by ascribing to s in succession the values 1, 2,
3...m, and are all different. If we take s=m + 1, 4, vanishes,
so that this does not correspond to a possible vibration. Greater
values of s give only the same periods over again. If m+1 be
even, one of the values of n—that, namely, corresponding to
9—2
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s=4% (m + 1),—is the same as would be found in the case of only
a single load (m =1). The interpretation is obvious. In the kind
of vibration considered every alternate particle remains at rest, so
that the intermediate ones really move as though they were
attached to the centres of strings of length 2a, fastened at
the ends.

The most general solution is found by putting together all the
possible particular solutions of normal type

=3 Poin C T s (g e (15),
s=1 .

and, by ascribing suitable values to the arbitrary constants, can.be
identified with the vibration resulting from arbitrary initial cir-
cumstances.

Let  denote the distance of the particle » from the end of the
string, so that (r—1)a==; then by substituting for x and a
from (1) and (2), our solution may be written,

V(@) =P, 5in 8 T2 08 (et = €).rrrrreerrrens (16),
!
2(m+1) /T, . s
\ ; t S T D) (17). .

In order to pass to the case of a continuous string, we have
only to put m infinite. The first equation rctains its form, and
specifies the displaccment at any point @. The limiting form of
the second is simply '

whence for the periodic time,

271' 2l
ar_z T ELIIIITR IRV (19).

The periods of the component tones are thus aliquot parts of
that of the gravest of the series, found by putting s=1. The

whole motion is in all cases periodic; and the period is 27 \/ 7'07

This statement, however, must not be understood as excluding
a shorter period; for in particular cases any number of the
lower components may be absent. All that is asserted is that the
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above-mentioned interval of time is sufficient to bring about a com-
plete recurrence. We defer for the present any further discussion
of the important formula (19), but it is interesting to observe the
approach to a limit in (17), as m is made successively greater and
greater. . For this purpose it will be sufficient to take the gravest
tone, for which s=1, and accordingly to trace the variation of
2(m+1) o R
™ 2(m+1)°

The following are a series of simultaneous values of the func-
tion and variable :—

m (1.2\34919|39

Bm+l) . T
7z 0 3m+ )

00039549

-9745):9836/:9959(-9990(-9997

It will be seen that for very moderate values of m the limit is
closely approached. Since m is the number of (moveable) loads,
the case m =1 corresponds to the problem investigated in Chap-
ter IIL, but in comparing the results we must remember that we
there supposed the whole mass of the string to be concentrated at the
centre. In the present case the load at the centre is only half as
great; the remainder being supposed concentrated at the ends,
where it 1s without effect,

From the fact that our solution is general, it follows that any
initial form of the string can be represented by

§==00
(@) =2 (Peose), sins T v (20).
s=1
And, since any form possible for the string at all may be
regarded as initial, we infer that any finite single valued function
of z, which vanishes at =0 and &=1, can be expanded within

those limits in a series of sines of W—lx and its multiples,—which
is a case of Fourier’s theorem. We shall presently shew how the

more general form can be deduced.

121. We might now determine the constants for a continuous
-string by integration as in § 93, but it is instructive to solve the
problem first in the general case (m finite), and afterwards to
proceed to the limit. The initial conditions are
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1],(a)=AlsinW—;' +A2sin27r—la +...+A,,,sinmzl(—t,

¥(20) = 4,50 272 +A,5n4"" .. 4+4 sin2m T,

l

Y (ma) =4, sin mvrTa + .4, sin 2m7rTa + .ot A, sin mm
where, for brevity, 4,=P, cos &, and Y (a), ¥ (20a) ...... Y (ma)

are the initial displacements of the m particles,

To determine any constant A,, multiply the first equation by
&c.," and add the rcsults, Then,

sin s =, the second by sin 25 22

l ’ l ’
by Trigonometry, the coefficients of all the constants, except 4,,
vanish, while that of 4,= % (m +1). Hence

2

A‘=m+1 =1

\[/‘('ra,) smrs—; ......... vernennaa (1)
We need not stay here to write down the values of B, (equal
to P, sin¢,) as depending on the initial velocities. When a becomes
infinitely small, r¢ under the sign of summation ranges by infi-
‘ a

m+1 1’

nitesimal stéps from zero to . At the same time

so that writing ra =, & = dw, we have ultimately

4,=2 [ : ¥ (@) sin (”T‘”) T eereererreesnes @),

expressing 4, in terms of the initial displacements.

122. We will now investigate independently the partial differen-
tial equation governing the transverse motion of a perfectly flexible
string, on the suppositions (1) that the magnitude of the tension
may be considered constant, (2) that the square of the inelination
of any part of the string to its initial direction may be neglected.
As before, p denotes the linear density at any point, and 7, is the
constant tension. Let rectangular co-ordinates be taken parallel,
and perpendicular to the string, so that « gives the equilibrium
and z, ¥, z the displaced position of any particle at time . The
forces acting on the element dx are the tensions at its two ends,
and any impressed forces Ypdw, Zpdx. By D’Alembert’s Prin-

1 Todhunter's Int, Cale., p. 267.
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ciple these form an equilibrating system with the reactions
2, 2
against acceleration, — p%g » —p ‘fl—tf At the point # the com-

ponents of tension are

dy dz
Law Tz
. dy dz - .
if the squares of 75 dm be neglected; so that the forces acting

on the element dz arising out of the tension are

74 (d_?/) &, T2 (@) da.

da \dz da \dz
Hence for the equations of motion,
Ty L0y .y
at*  p do )
Fs T, g ,
¢ p do’

from which it appears that the dependent variables ¥ and z are
altogether independent of one another.

The student should compare these cquations with the corre-
sponding equations of finite differences in § 120. The latter may
be written

d T
rEVE =7 e—a)+¥@+ae) - 24 ()
Now in the limit, when & becomes infinitely small,
V(@ —a) + 4@ +0) - 24(z) =¥ () o,
while = pa; and the equation assumes ultimately the form
a T, &
d—tz"!' (@) = Fl I ¥ (),
agreeing with (1).

In like manner the limiting forms of (8) and (4) of § 120 are

T=3} fp (%) B2 orerererenressnsasnses @),
V=1T, f (%) F PR 3),

which may also be proved directly.
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The first is obvious from the definition of 7. To prove the
second, it is sufficient to notice that the potential energy in any
configuration is the work required to produce the necessary
stretching against the tension 7. Reckoning from the configura-
tion of equilibrium, we have

SRS

and, so far as the third power of Z—Z,
ds _ dy)“’
w-1=1(%)-
123. In most of the applications that we shall have to make,
the density p is constant, there are no impressed forces, and the

motion may be supposed to take place in one plane. We may
then conveniently write

i P PP 1),
P
and the differential equation is expressed by
dy _dy
Tlaf R gl e 2).
Ty A (2) .

If we now assume that y varies as cosmat, our equatlon
becomes

of which the most general solution is
y = (A4 sin mz + C cos mx) oS MaAb .uvvvvsevninennen. 4).

This, however, is not the most ‘general harmonic motion of
the period in question, In order to obtain the latter, we must
assume

Y=y,c08mat+ Y, SInMAL +evvverrvinriniininnnnn. (3),

where ¥,, ¥, are functions of @, not necessarily the same, On
substitution in (2) it appears that y, and y, are subject to equa~
tions of the form (3), so that finally

y = (4 sin mz + C cos mux) cos mat
+ (B sin ma + D cos mx) sin mat |

an expression containing four arbitrary constants. For any con-
tinuous length of string satisfying without intcrruption the differ-
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ential equation, this is the most general solution possible, under
the condition that the motion at every point shall be simple har-
monic. But whenever the string forms part of a system vibrating
freely and without dissipation, we know from former chapters
that all parts are simultaneously in the same phase, which
requires that '

and then the most general vibration of simple harmonic type is

y = {a sinmz + B cos ma} cos (mat —e) ......... (8).

124. The most simple as well as the most important problem
connected with our present subject is the investigation of the free
vibrations of a finite string of length [ held fast at both its ends.
If we take the origin of # at one end, the terminal conditions are
that when x =0, and when =1, y vanishes for all values of ¢.
The first requires that in (6) of § 123

C=0, D=0correreerevrrerrereerr., (1);
and the second that

or that ml=sm, where s is an integer. We learn that the only
harmonic vibrations possible are such as'make

&
| = e, 3),
and then .
y =sin szac (A cos 8—7%“ + Bsin sl;ﬁf) ............ (4).

Now we know a priort that whatever the motion may be, it
can be represented as a sum of simple harmonic vibrations, and
we therefore conclude that the most general solution for a string,
fixed at 0 and [, is

Y= 2‘:“ sinsl;E (A, cos‘—s‘"—rl@ + B, sin srﬂ)

s=1 l

The slowest vibration is that corresponding to s=1. Its
period (r,) is given by

The other components have periods which are aliquot parts
of 7 i —
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so that, as has been already stated, the whole motion is under all
circumstances periodic in the time 7,, The sound emitted con-
stitutes in general a musical note, according to our definition of
that term, whose pitch is fixed by 7, the period of its gravest
component. It may happen, however, in special cases that the
gravest vibration is absent, and yet that the whole motion is not
periodic in any shorter time, This condition of things occurs, if
A?+ B} vanish, while, for example, 47+ B and 4.7+ B} are
finite. In such cases the sound could bardly be called a note;
but it usually happens in practice that, when the gravest tone is
absent, some other takes its place in the character of fundamental,
and the sound still constitutes a note in the ordinary sense,
though, of course, of elevated pitch. A simple case is when all
the odd components beginning with the first are missing. The
whole motion is then periodic in the time },, and if the second
component be present, the sound presents nothing unusual.

The pitch of the note yielded by a string (6), and the character
of the fundamental vibration, were first investigated on mechanical
principles by Brook Taylor in 1715 ; but it is to Daniel Bernoulli
(1755) that we owe the general solution contained in (5). He
obtained it, as we have done, by the synthesis of particular solu-
tions, permissible in accordance with his Principle of the Co-
existence of Small Motions, In his time the generality of the
result so arrived at was open to question; in fact, it was the
opinion of Euler, and also, strangely enough, of Lagrange’, that
the series of sines in (5) was not capable of representing an
arbitrary function; and Bernoulli’s argument on the other side,
drawn from the infinite number of the disposable constants,
was certainly inadequate®

Most of the laws embodied in Taylor’s formula (6) had been
discovered experimentally long before (1636) by Mersenne. They
may be stated thus :—

1 See Riemann’s Particlle Differential Gleichungen, § 78.

? Dr Young, in his memoir of 1800, seems to have understood this matter quite
correctly. He says, ¢ At the same time, as M, Bernoulli has justly observed, since
every figure may be infinitely approximated, by considering its ordinates as
composed of the ordinates of an infinite number of trochoids of different magni-
tudes, it may be demonstrated that all these constituent curves would revert to
their initial state, in the same time that a similar chord bent into a trochoidal
curve would perform a single vibration ; and this is in some respects a convenient
and ecompendious method of considering the problem.”
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(1) For a given string and a given tension, the time varies as
the length, '

This is the fundamental principle of the monochord, and ap-
pears to have been understood by the ancients’.

(2) - When the length of the string is given, the time varies
inversely as the square root of the tension,

(3) Strings of the same length and tension vibrate in times,
which are proportional to the square roots of the linear density.

These important results may all be obtained by the method of
dimensions, if it be assumed that 7 depends only on [, p, and T'.

For, if the units of length, time and mass be denoted re-
spectively by [L], [T}], [#], the dimensions of these symbols are
given by

I=[L], p= [(ML™], T,=[MLT,
and thus (see § 52) the only combination of them capable of re-
presenting a time is 7% p*. . The only thing left undetermined
is the numerical factor.

125. Mersenne’s laws are exemplified in all stringed instru-
ments. In playing the violin different notes are obtained from
the same string by shortening its elficient length. In tuning the
violin or the pianoforte, an adjustment of pitch is effected with
a constant length by varying the tension; but it must be re-
membered that p is not quite invariable.

To secure a prescribed pitch with a string of given material, it is
requisite that one relation only be satisfied between the length, the
thickness, and the tension; butin practice there is usually no great
latitude. The length is often limited by considerations of con-
venience, and its curtailment cannot always be compensated by
an increase of thickness, because, if the tension be not increased
proportionally to the section, there is a loss of flexibility,
while if the tension be so inereased, nothing is effected towards
lowering the pitch. The difficulty is avoided in the lower strings
of the pianoforte and violin by the addition of a coil of fine wire,
whose effect is to impart inertia without too much impairing
flexibility.

1 Aristotle ‘““knew that a pipe or a chord of double length produced a sound of
which the vibrations oceupicd a double time; and that the properties of concords

depended on tho proportions of tho times occupied by the vibrations of the
separate sounds.”—Young’s Lectures on Natural Philosophy, Vol, 1. p, 404,
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For quantitative investigations into the laws of strings, the
sonometer is employed. By means of a weight hanging over a
pulley, a catgut, or a metallic wire, is stretched across two bridges
mounted on a resonance case. A moveable bridge, whose position
is estimated by a scale running parallel to the wire, gives the
means of shortening the efficient portion of the wire to any
desired extent, The vibrations may be excited by plucking, as
in the harp, or with a bow (well supplied with rosin), as in the
violin,

If the moveable bridge be placed half-way between the fixed
ones, the note is raised an octave; when the string is reduced to
one-third, the note obtained is the twelfth.

By means of the law of lengths, Mersenne determined for the
first time the frequencies of known musical notes. He adjusted the
length of a string until its note was one of assured position in the
musical scale, and then prolonged it under the same tension until
the vibrations were slow enough to be counted.

For experimental purposes it is convenient to have two, or
more, strings mounted side by side, and to vary in turn their
lengths, their masses, and the tensions to which they are subjected.
Thus in order that two strings of equal length may yield the in-
terval of the octave, their tensions must be in the ratio of 1 : 4,
if the masses be the same; or, if the tensions be the same, the
masses must be in the reciprocal ratio.

The sonometer is very useful for the numerical determination
of pitch. By varying the tension, the string is tuned to unison
with a fork, or other standard of known frequency, and then by
adjustment of the moveable bridge, the length of the string is
determincd, which vibrates in unison with any note proposed for
measurernent. The law of lengths then gives the means of
effecting the desired comparison of frequencics.

Another application by Scheibler to the determination of
absolute pitch is important. The principle is the same as that
cxplained in Chapter 1L, and the method depends on deducing
the absolute pitch of two notes from a knowledge of both the
ratio and the difference of their frequencies. The lengths of the
sonometer string when in unison with a fork, and when giving with
it four beats per sccond, are carefully measured. The ratio of the
lengths is the inverse ratio of the frequencies, and the difference
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of the frequencies 1s four. From these data the absolute pitch of
the fork can be calculated.

The pitch of a string may be calculated also by Taylor’s for-
mula from the mechanical elements of the system, but great pre-
cautions are necessary to secure accuracy. The tension is produced
by a weight, whose mass (expressed with the same unit as p) may be
called P; sothat 7', = g P, where g = 82-2, if the units of length and
time be the foot and the second. In order to secure that the whole
tension acts on the vibrating segment, no bridge must be inter-
posed, a condition only to be satisfied by suspending the string
vertically. After the weight is attached, a portion of the string
is isolated by clamping it firmly at two points, and the length is
measured. The mass of the unit of length p refers to the stretched
state of the string, and may be found indirectly by observing the
elongation due to a tension of the same order of magnitude as 7T,
and calculating what would be produced by 7, according to
Hooke’s law, and by weighing a known lengthi of the string in its
normal state. After the clamps have becn secured great care
is required to avoid fluctuations of temperature, which would
seriously influence the tension. In this way Seebeck obtained very
accurate results.

126, When a string vibrates in its gravest normal mode, the
. . ) . . TT . .
excursion 13 ab any moment proportional to sin -, Increasing

numerically from either end towards the centre; no intermecdiate
point of the string remains permanently at rest. But it is othor-
wise in the case of the higher normal components. Thus, if the
" vibration be of the mode expressed by
smat

7 + B,sin——]),

y=sin‘?ﬂ(A,cos ]

swat)
.

s . ! . STE . .
the excursion is proportional to sin T which vanishes at s —1

points, dividing the string into s equal parts. These points of no
motion are called nodes, and may evidently be touched or held
fast without in any way disturbing the vibration. The produc-
tion of ‘harmonics’ by lightly touching the string at the points of
aliquot division is a well-known resource of the violinist. All
component modes are excluded which have not a node at the
point touched ; so that, as regards pitch, the cffect is the same as
if the string were securely fastcned there.
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127. The constants, which occur in the gencral value of ¥, § 124,
depend on the special circumstances of the vibration, and may be
expressed in terms of the initial values of ¥ and 3.

Putting ¢ =0, we find

T2 55 sBysin ... (1),

. smx
$=w0
= 2s=1 Agsin —= ]

l;ye_l

Multiplying by sin '57;—90, and integrating from 0 to #, we obtain

1
zf yosin 72 da B8=%foy'osin§1;—xdm.....(2).

These results exemplify Stokes’ law, § 95; for that part of y, which
depends on the initial velocities, is
=0 2 . smw . swat (1. . smx
Y= g S sin—— fo% sin —l-dx,

and from this the part depending on initial displacements may be
inferred, by differentiating with respect to the time, and sub-
stituting y, for 7,

When the condition of the string at some one moment is
thoroughly known, these formule allow us to calculate the
motion for all subsequent time. For example, let the string be

initially at rest, and so displaced that it forms two sides of a
triangle. Then B,=0; and

Fig. 20,
r .
T
A b B
b
AS=QT'Y{[0 %csins%xdw+f: ;:Z’Sini?dm}
_ 29l . Smh
—m sin TT e 3),

on integration,

We see that 4, vanishes, if sin lb=0’ that is, if there be a

node of the component in question situated at P. A more com-
prehensive view of the subject will be afforded by another mode
of solution to be given presently.
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128. In the expression for y the coefficients of sin SWTx are

the normal co-ordinates of Chapters 1v. and v. We will de-
note them therefore by ¢, so that the configuration and motion
of the system at any instant are defined by the values of ¢, and
¢, according to the equations

2
y= ¢1sm—+4>ssln Tr. +¢>ssm—l—

2
y= qblsm +¢2s1n i “1. +¢ss1n—l—+ .

We proceed to form the expressions for 7 and ¥, and thence
to deduce the normal equations of vibration,

(1),

For the kinetic energy,

v .
T=%Pfyd‘”=%f’f{ s1¢s inﬁwTw} dx
_"}Pf Znds szﬂd.v,

the product of every pair of terms vapishing by the gemeral
property of normal co-ordingtes. Hence

Tn like manner,

V=3T, [(dy) de=3T, f { o, iszcossig—c}zdx

These expressions do not presuppose any particular motion, either
natural, or otherwise ; but we may apply them to calculate the
whole energy of a string vibrating naturally, as follows:—If M
be the whole mass of the string (pl), and its equivalent (a’p) be
. substituted for T', we find for the sum of the energies,

T4V =} 57 {¢3 £ ¢s} .............. (4,
or, in terms of 4, and B, of § 126,
-w As + By )
T+ V_"ITM E:—l T..u ....... cesesae (5),
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If the motion be not confined to the plane of zy, we have
merely to add the energy of the vibrations in the perpendicular
plane.

Lagrange’s method gives immediately the equation of motion

5+ (”“) b= % Dyevoevrrreererenn. (©),

which has been already considered in § 66. If ¢, and ¢, be the
initial values of ¢ and ¢, the general solution is

sin nt

b= gf)o + ¢, cosnt

by

2 [t . , .
+zp_nfo sinn(f—)P .o (7),

sTa
where n is written for -

By definition ®; is such that @, 8¢ represents the work done
by the impressed forces on the displacement 8¢, Hence, if the
force acting at time ¢ on an element of the string p dz be p Yda,

In these equations ¢, is a lincar quantity, as we see from (1); and
D, is therefore a force of the ordinary kind.

129. In the applications that we have to make, the only
impressed force will be supposed to act in the immediate neigh-
bourhood of one point #=>, and may usually be reckoned as
a whole, so that

If the point of application of the force coincide with a node of
the mode (s), ¥, =0, and we learn that the force is altogether
without influence on the component in question. This principle
is of great importance; it shews, for example, that if a string be
at rest in its position of equilibrium, no force applied at its centre,
whether in the form of plucking, striking, or bowing, can generate
any of the even normal components’. If after the operation of
the force, its point of application be damped, as by touching it

1 The observation that a harmonic is not gencrated, whén ono of its nodal
points is plucked, is due to Young.
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with the finger, all motion must forthwith cease; for those com-
ponents which have not a node at the point in question are
stopped by the damping, and those which have, are absent from
the beginning®’. More generally, by damping any point of a
sounding string, we stop all the component vibrations which have
not, and leave entirely unaffected those which have a node at the
point touched.

The case of a string pulled aside at one point and afterwards
let go from rest may be regarded as included in the preceding
statements, The complete solution may be obtained thus. Let
the motion commence at the time ¢=0; from which moment
®,=0. The value of ¢, at time ¢ is

¢, = (¢), cos nt + % (), Sin ntuveenene... veveeen(2),

where (¢,), (¢.), denote the initial values of the quantities
affected with the suffix s. Now in the problem in hand (¢,),= 0,
and (¢,), is determined by
2 2 smwh
2 = — = - 7 8in —— Cieresesrrenne .....3,
7 ($= 7, @ =7, ¥'sin ., @)
if Y" denote the force with which the string is held aside at the
point b. Hence at time ¢

2 . 8mh
=-—Y o COSMleererrenannensnsannns 4),
b, o Y’ sin 7 cos nt 4)
and by (1) of §128
2 ., <i=e . STD . Smx cOS Nt .
y—z)Y.Z,:l Sin = 80 == g e (5),

where n =sma : 1.

The symmetry of the expression (5) in # and b is an example
of the principle of § 107.

The problem of determining the subsequent motion of a string
set into vibration by an impulse acting at the point b, may be
treated in a similar manner. Integrating (6) of § 128 over the
duration of the impulse, we find ultimately, with the same nota~

tion as before,
; 2 . swh
(o= ST Y,
1 A like result ensues when the point which is damped is at the same distance
from one end of the string as the point of excitation is from the other end.

R. 10
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if f Y'dt be denoted by Y,. At the same time (¢,), =0, so that by

(2) at time ¢
2Y, == . smh . smx sinnt
=1 —_— —_—
Y Ir 3, sin S (6).
The series of component vibrations is less convergent for a struck
than for a plucked string, as the preceding expressions shew,
The reason is that in the latter case the initial value of y is

continuous, and only Z‘l discontinuous, while in the former it is

y itself that makes a sudden spring. See §§ 32, 101.

The problem of a string set in motion by an impulse may also
be solved by the general formulee (7) and (8) of § 128. The force
finds the string at rest at ¢ =0, and acts for an infinitely short
time from t=0 to ¢t=17. Thus (¢,), and ($,), vanish, and (7)
of § 128 reduces to

2 . v '
¢, = In sin 7t f . P dt,
while by (8) of § 128

f7 O, dif —smﬂr—bf Yd¢ —sme Y,
0

Hence, as before,

2 . smwb .
¢, =7 Y, sin 7 SRR e (7).
Hitherto we have supposed the disturbing force to be con-
centrated at a single point. If it be distributed over a distance 8
on either side of b, we have only to integrate the expressions (6)
and (7) with respect to b, substituting, for example, in (7) in
place of ¥, sin ﬂ,

{

Y’sm s_*:r_ﬁdb

b—
If Y, be constant between the limits, this reduces to
— sm 7 B

Y' 877,8 97rb ®).

The principal effect of the distribution of the force is to render
the series for ¥ more convergent,
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130. The problem which will next engage our attention is
that of the pianoforte wire. The cause of the vibration is here
the blow of a hammer, which is projected against the string, and
after the impact rebounds. But we should not be justified in
assuming, as in the last section, that the mutual action occupies
so short a time that its duration may be neglected. Measured by
the standards of ordinary life the duration of the contact is indeed
very small, but here the proper comparison is with the natural
periods of the string. Now the hammers used to strike the wires
of a planoforte are covered with several layers of cloth for the
express purpose of making them more yielding, with the effect of
prolonging the contact. The rigorous treatment of the problem
would be difficult, and the solution, when obtained, probably too
. complicated to be of use; but by introducing a certain simplifica-
tion Helmholtz has obtained a solution representing all the
essential features of the case. He remarks that since the actual
yielding of the string must be slight in comparison with that of
the covering of the hammer, the law of the force called into play
during the contact must be nearly the same as if the string were
absolutely fixed, in which case the force would vary very nearly as
a ctrcular function. We shall therefore suppose that at the time
t =0, when there are neither velocities nor displacements, a force
Fsin pt begins to act on the string at =10, and continues through
half a period of the circular function, that is, until = 7= p, after
which the string is once more free. The magnitude of p will
depend on the mass and elasticity of the hammer, but not to any
great extent on the velocity with which it strikes the string.

The required solution is at once obtained by substituting for
®, in the general formula (7) of § 128 its valuc given by

P, =F sin 8—72'—1-) SIN P iieneininiannns 1),
the range of the integration being from 0 to Z. We find
iy
(>3)
p

2K sin smb f ? Sinn (t—1") sin pt' dt’

¢3 = l"nf; 1. 0
4p cos % 7 ain ST 'n') ......... (2)
) =lpﬂ?/(1'—32——-7;2—)' sm7 .Slnn( 21)

10—2
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and the final solution for y becomes, if we substitute for n and p
their values,
g b
cos 0 sin T2
_4aplF == 2pl I . swx . swaf w) (3)

Y TS (O — s*d*®) == sm Tkt - Z)

We see that all components vanish which have a node at the
point of excitement, but this conclusion does not depend on any
particular law of force. The interest of the present solution lies
in the information that may be elicited from it as to the depend-
ence of the resulting vibrations on the duration of contact. If
we denote the ratio of this quantity to the fundamental period of
the string by », so that v = wa : 2pl, the expression for the ampli-
tude of the component s is

8Fl wvecos (smv) . swb
7—137,,1 mz) sin _l .................. (4).

We fall back on the case of an impulse by putting » =0,
and

Y1=f5 Fsinptdi=2F
0 P

When » is finite, those components disappear, whose periods
are %, 2, %,... of the duration of contact; and when s is very
great, the series converges with s Some allowance must also
be made for the finite breadth of the hammer, the effect of which
will also be to favour the convergence of the series.

The laws of the vibration of strings may be verified, at least
in their main features, by optical methods of observation—either
with the vibration-microscope, or by a tracing point recording the
character of the vibration on a revolving drum. This character
depends on two things,—the mode of excitement, and the point
whose motion is selected for observation. Those components do
not appear, which have nodes either at the point of excitement, or
at the point of observation. The former are not generated, and
the latter do not manifest themselves. Thus the simplest motion
is obtained by plucking the string at the centre, and observing
one of the points of trisection, or vice verse. In this case the
first harmonic which contaminates the purity of the principal
vibration is the fifth component, whose intensity is usually in-
sufficient to produce much disturbance. In a future chapter we
shall compare the results of the dynamical theory with aural
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observation, but rather with the view of discovering and testing
the laws of hearing, than of confirming the theory itself,

131. The case of a periodic force is included in the general
solution of § 128, but we prefer to follow a somewhat different
method, in order to make an extension in another direction. We
bave hitherto taken no account of dissipative forces, but we will
now suppose that the motion of each element of the string is resisted
" by a force proportional to its velocity. The partial differential
equation becomes

dy e dy _ d 4’y

e T A A
by means of which the subject may be treated. But it is still
simpler to avail ourselves of the results of the last chapter, re-
marking that in the present case the friction-function F is of
the same form as 7. In fact

F=3ul 2 .l ennecnrincrennenns (2),

where ¢, ¢,,... are the normal co-ordinates, by means of which
T and V are reduced to sums of squares. The equations of
motion are therefore simply

AR ),

of the same form as obtains for systems with but one degree of
freedom. It is only necessary to add to what was said in Chap-
ter 111., that since « is independent of s, the natural vibrations
subside in such a manner that the amplitudes maintain their rela-
tive values,

If a periodic force F cos pt act at a single point, we have

@, = Fsin %Lb COS Pluvenrnrrnrnanrnreninns (4),
and § 46 )
¢, = 2—1[’%1;6 sin 3726 COS (Pf —~ €)rrririeinienn (5),
where
= b=
tan ¢s—n2__p2 .......................... (6)

If among the natural vibrations there be any one nearly
isochronous with cos pt, then a large vibration of that type will
be forced, unless indeed the point of excitement should happen to
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fall near a node. In the case of exact coincidence, the component
vibration in question vanishes; for no force applied at a node can
generate it, under the present law of friction, which however, it
may be remarked, is very special in character If there be no

friction, # = 0, and

p¢ = —,—2 sin ._s;r_b COB Pl uinriiianiiirninns ("),

which would make the v1b1at10n infinite, in the case of perfect
i1sochronism, unless sin s%b =0,

The value of y is here, as usual,

y=¢, sin 22 +¢, 2 Ty ¢, si 'ngllr— F o, (8).

132. The preceding solution is an example of the use of
normal co-ordinates in a problem of forced vibrations. It is of
course to free vibrations that they are more especially applicable,
and they may generally be used with advantage throughout,
whenever the system after the operation of various forces is
ultimately left to itself. Of this application we have already had
examples.

‘In the case of vibrations due to periodic forces, one advantage
of the use of normal co-ordinates is the facility of comparison with
the equilibrium theory, which it will be remembered is the theory
of the motion on the supposition that the inertia of the system
may be left out of account. If the value of the normal co-or-
dinate ¢, on the equilibrium theory be 4, cos pt, then the actual
value will be given by the equation

2

wA,
¢’=n2 — co§pt ....................... wenn (1),

so that, when the result of the equilibrium theory is known and
can readily be expressed in terms of the normal co-ordinates, the
true solution with the effects of inertia included can at once be
written down.

In the present instance, if a force Fcos pt of very long period
act at the point b of the string, the result of the cquilibrium
theory, in accordance with which the string would at any moment
consist of two straight portions, will be

lod, = };smslb COS Pl vunirivnriinrneerines (2),
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from which the actual result for all values of p is derived by simply
writing #* — p* in place of »’.

The value of y in this and similar cases may however be
expressed in finite terms, and the difficulty of obtaining the
finite expression is usually no greater than that of finding the
form of the normal functions when the system is free. Thus in
the equation of motion

suppose that Y varies as cos maf. The forced vibration will then
satisfy
d2y+m’ ——lY ; 3
. T Y=— g Yo (3).
If Y=0, the investigation of the normal functions requires the
solution of

2,
%;1/2 +mly =0,

and a subsequent determination of m to suit the boundary con-
ditions. In the problem of forced vibrations m is given, and we
have only to supplement any particular solution of (3) with the
complementary function containing two arbitrary constants. This
function, apart from the value of 7 and the ratio of the constants,
is of the same form as the normal functions; and all that remains to
be effected is the determination of the two constants in accordance
with the prescribed boundary conditions which the complete
solution must satisfy. Similar considerations apply in the case
of any continuous system.

183. If a periodic force be applied at a single point, there are
two distinct problems to be considered; the first, when at the
point =, a given periodic force acts; the second, when it is the
actual motion of the point & that is obligatory. But it will be
convenient to treat them together.

The usual differential equation

dy

dy _ )
EF-*-M_ Q55 ceeiiiiiireriiiianae, (1),

dt = da?

is satisfied over both the parts into which the string is divided at
b, but is violated in crossing from one to the other.

IRIS - LILLIAD - Université Lille 1



152 TRANSVERSE VIBRATIONS OF STRINGS. [133.

In order to allow for a change in the arbitrary constants, we
must therefore assume distinet expressions for y, and afterwards
introduce the two conditions which must be satisfied at the point
of junction. These are

(1) That there is no discontinuous change in the value of y;

(2) That the resultant of the tensions acting at & balances the
impressed force.

Thus, if F cos pt be the force, the second condition gives

TA (g‘/) +Feospt=0......... RN (2),

where A (le ) denotes the alteration in the value of j’x incurred

in crossing the point # =10 in the positive direction.

We shall, however, find it advantageous to replace cospt by
the complex exponential ¢, and finally discard the imaginary
part, when the symbolical solution is completed. On the assump-
tion that y varies as €™, the differential equation becomes

dy
dﬂ

where A’ is the complex constant,

The most general solution of (3) consists of two terms, pro-
portional respectively to sin Az, and cos Az ; but the condition to
be satisfied at « = 0, shews that the second does not occur here.
Hence if ¢ ¢ be the value of y at =10,

sin Az

— vl =
y=vzr33 ¢ T (8),

is the solution applying to the first part of the string from =0
to #=>5. In like manner it is evident that for the sccond part we
shall have

sin A (I —a) o
=t m ........................ (6)-

If o be given, these equations constitute the symbolical solution
of the problem; but if it be the force that be given, we require
further to know the relation between it and +.
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Differentiation of (5) and (6) and substitution in the equation
analogous to (2) gives

F sinAb sin A (] — D)

')’=T1 NSO AL rrereeeresressenees .(7)
Thus
_ I sin\z sinA(I—-b) -
'?/_7’1 A sin Al
fromz=0tox=> -~
_Fsinn(l~2) sm?\b ROE
y—T A sin Al

fromw:btow:l )

These equations exemplify the general law of reciprocity
proved in the last chapter; for it appears that the motion at =
due to the force at b is the same as would have been found at b,
had the force acted at =.”

In discussing the solution we will take first the case in which
there is no friction. The coefficient £ is then zero; while A is
real, and equal to p +a. The real part of the solution, correspond-
ing to the force F cos pt, is found by simply putting cos pt for ¢
in (8), but it seems scarcely necessary to write the equations again
for the sake of so small a change. The same remark applies to
the forced motion given in terms of «,

It appears that the motion becomes infinite in case the force
is isochronous with one of the natural vibrations of the entire
string, unless the point of application be a node; but in practice
it is not easy to arrange that a string shall be subject to a force
of given magnitude. Perhaps the best method would be to attach
a small mass of iron, attracted periodically by an electro-maguet,
whose coils are traversed by an intermittent current. But unless
some means of compensation were devised, the mass would have to
be very small in order to avoid its inertia introducing a new com-
plication.

A better approximation may be obtained to the imposition of
an obligatory motion. A massive fork of low pitch, excited by
a bow or sustained in permanent operation by €lectro-magnetism,
executes its vibrations in approximate independence of the re-
actions of any light bodies which may be connected with it. In
order therefore to subject any point of a string to an obligatory

1 Donkin’s 4coustics, p. 121.

IRIS - LILLIAD - Université Lille 1



154 TRANSVERSE VIBRATIONS OF STRINGS. [133.

transverse motion, it is only necessary to attach it to the extremity
of one prong of such a fork, whose plane of vibration is perpendicular
to the length of the string. This method of exhibiting the forced
vibrations of a string appears to have been first used by Melde,

Another arrangement, better adapted for aural observation,
has been employed by Helmholtz. The end of the stalk of a
powerful tuning-fork, set into vibration with a bow, or otherwise,
is pressed against the string. It is advisable to file the surface,
which comes into contact with the string, into a suitable (saddle-
shaped) form, the better to prevent slipping and jarring.

Referring to (5) we see that, if sin Ab vanished, the motion
(according to this equation) would become infinite, which may be
taken to prove that in the case contemplated, the motion would
really become great,—so great that corrections, previously insigni-
ficant, rise into importance: Now sin Ab vanishes, when the force
is isochronous with one of the natural vibrations of the first part
of the string, supposed to be held fixed at 0 and b.

When a fork is placed on the string of a monochord, or other
instrument properly provided with a sound-board, it is easy to
find by trial the places of maximum resonance. A very slight
displacement on either side entails a considerable falling off in the
volume of the sound. The points thus determined divide the
string into a number of equal parts, of such length that the
natural note of any one of them (when fixed at both ends) is
the same as the note of the fork, as may readily be verified. The
important applications of resonance which Helmholtz has made to
purify a simple tone from extraneous accompaniment will occupy
our attention later,

134. Returning now to the general case where M is complex,
we have to extract the real parts from (5), (6), (8) of § 133. For
this purpose the sines which occur as factors, must be reduced to
the form Ee’, Thus let

with a like notation for the others. From (5) § 133 we shall thus
obtain

R,
y=ryEcos(pt+em—e,,) ........... Ceesenias (2),

from =0 to 2=,

IRIS - LILLIAD - Université Lille 1



134.] FRICTION PROPORTIONAL TO VELOCITY. 155

and from (6) § 133
y = 'Rl—z
"R,

— el—b):

from x=btox=1,

corresponding to the obligatory motion y=r¢cospt at b,

" By a similar process from (8) § 133, if

we should obtain

F R,
T T, N/oz+,82

A
cos (pt+e + - b—e;—tan‘;)

from 2=0to x="> & '
F R_,.R, .. (4),
TN/«-;-B‘ COS(Pt-FEz-x—!-eb—el—tan‘B)

from =5 to x=1 J

corresponding to the impressed force Fcos pt at b. It remains to
obtain the forms of B, ¢, &c.

The values of a and B are determined by

9 . %
- =L, 2up=-Lh (5),
and sin M = sin az cos 453z + cos ax sin 1Bz
. ef* 4 ¢=F* 44 cosa i
= sin az 5 x 5 s
so that . . o pons
2 -8 — p—Bx
R} =sin’ ax (€—+—6—) + cos® ax (e——e——> ... (6),
” : 2 2
Bt — g—Bx
ta:n Gx = m COt AL sevsvonssnssensssssnnans (7),
while
N+ B = Jp F P e, .. (8)-

This completes the solution.

If the friction be very small, the expressions may be simpli-
fied. For instance, in this case, to a sufficient approximation,

=P =_F s _P
=y B=gg NIHB=,
. gﬁ-l‘_l_ e—ﬂ'_z_' _ 1 eﬁrl'_ 6—-3#’ KT .

5 b T g
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so that corresponding to the obligatory motion at & y =1y cospt the
amplitude of the motion between z = 0 and x = b is, approximately
st po | O ki Izp;ﬂ 5
b} R )

Y
1 2}71) & 2 PO
Lsm +4! , COS

which becomes great, but not infinite, when sin %b=0, or the

point of application is a node.

If the imposed force, or motion, be not expressed by a single
harmonic term, it must first be resolved into such, The preceding
solution may then be applied to each component separatcly, and
the results added together. The extension to the case of more than
one point of application of the impressed forces is also obvious.
To obtain the most general solution satisfying the conditions, the
expression for the natural vibrations must also Le added; but
these become reduced to insignificance after the motion has been
in progress for a sufficient time.

The law of friction assumed in the preceding investigation is
the only one whose results can be easily followed deductively, and
it is sufficient to give a general idea of the effects of dissipative
forces on the motion of a string. But in other respects the con-
clusions drawn from it possess a fictitious simplicity, depending on
the fact that F—the friction function—is similar in form to 7,
which makes the normal co-ordinates independent of each other.
In almost any other case (for example, when but a single point of
the string is retarded by friction) there are no normal co-ordinates
properly so called. There exist indeed elementary types of vibra-
tion into which the motion may be resolved, and which are
perfectly independent, but these are essentially different in cha-
racter from those with which we have been concerned hitherto, for
the various parts of the system (as affected by onc elementary
vibration) are not simultaneously in the same phase. Special cases
excepted, no linear transformation of the co-ordinates (with real
coefficicnts) can reduce T, F, and V together to a sum of squares.

If we suppose that the string has no inertia, so that 7'=0,
F and V may then be reduced to sums of squares. This problem
is of no acoustical importance, but it is interesting as being
mathematically analogous to that of the conduction and radiation
of heat in a bar whose ends are maintained at a constant tem-
perature,
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135. Thus far we have supposed that at two fixed points,
=0 and @ =1, the string is held at rest.” Since absolute fixity
cannot be attained in practice, it is not without interest to inquire
in what manner the vibrations of a string are liable to be modified
by a yielding of the points of attachment; and the problem
will furnish occasion for one or two remarks of 1mportance
For the sake of simplicity we shall suppose that the system is
symmetrical with reference to the centre of the string, and that
each extremity is attached to a mass M (treated as unextended in
space), and is urged by a spring (u) towards the position of equi-
librium. If no frictional forces act, the 'motion is necessarily
resolvable into normal vibrations. Assume

y={xsin ma + B cos mx} cos (mat — e)(l)

The conditions at the ends are that

when =0, My+py= T, ?/]

fd S

when a=1 MJ'/"FMI—‘TxZiJ

which give
a_Btanml—a _ p— Ma'm? 3
B atanml ¥R I, e (3),

two equations, sufficient to determine m, and the ratio of 8 to a.
Eliminating the latter ratio, we find

tan ml = I %_V 5 ererreneeees eerrena. (4),
p — Ma’m?

6 v We Wil
if for brevity we write v for o

1

Equation (3) has an infinite number of roots, which may be
found by writing tan € for v,s0 that tan ml = tan 26, and the result
of adding together all the corresponding particular solutions, each
with its two arbitrary constants a and e, is nccessarily the most
general solution of which the problem is capable, and is therefore
adequate to represent the motion due to an arbitrary initial dis-
tribution of displacement and velocity. We infer that any function
of 2 may be expanded between 2 =0 and =1 in a series of terms

¢, (v,sin m@ + cos mx) + ¢, (v, sin m,z + cos mz) + ...... (5),

m,, m,, &c. being the roots of (3) and »,, »,, &c. the corresponding
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values of ». The quantities ¢,, ¢,, &c. are the normal co-ordinates
of the system,

From the symmetry of the system it follows that in each
normal vibration the value of y is numerically the same at points
equally distant from the middle of the string, for example, at the
two ends, where #=0 and =10, Hence v, sinmJl+ cosml=+1,
as may be proved also from (4).

The kinetic encergy 7' of the whole motion is made up of the
energy of the string, and that of the masses M. Thus
i, '
T=1% pf {2 ¢ (vsinma + cos ma)}* do
0

+IM {p,+ ¢, + ..+ 1M (b, (v, sin m I+ cosm D)+ ...}%
But by the characteristic property of normal co-ordinates, terms
containing their products cannot be really present in the expres-
sion for 7, so that

1
p f (v, sinm,z + cos m,x) (v, sinmz + cos ma) da
0

+ M+ M (v, sinml+cosm,l) (v,sinm]+cosm]l)=0...... (6),
if r and s be different.

This theorem suggests how to determine the arbitrary con-
stants, so that the series (5) may represent an arbitrary function
y. Take the expression

’
pf y (v,5in m,@+cos m@) do+ My, + My, (v, sin m I+ cos m,0)...(7),
0

and substitute in it the series (5) expressing y. The result is a
series of terms of the type

1
p f oqb, (v, sin m,x 4 cos m,x) (v, sin m gz + cos mx) dz -

+ Mp,+ M, (v, sin m,l + cosm,l) (v,sin m? + cos m]),

all of which vanish by (6), except the one for which » =s. Hence
$, is equal to the expression (7), divided by

l N .
p f (v,sin mz + cosm)’ da + M+ M (v sin ml + cosm1)%...(8),
0

and thus the coeficients of the series are determined. If M =0,
even although u be finite, the process is of course much simpler,
but the unrestricted problem is instructive. So much stress is
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often laid on special proofs of Fourier’s and Laplace’s series, that
the student is apt to acquire too contracted a view of the nature
of those important results of analysis.

We shall now shew how Fourier’s theorem in its general form
can be deduced from our present investigation. Let M =0; then
if w =0, the ends of the string are fast, and the equation de-
termining m becomes tan ml= 0, or ml=sm, as we know it must
be. In this case the series for y becomes

. 2 .
y=A1sinw—lx+A2s1n —7”+A.ssm37—x

which must be general enough to represent any arbitrary functions
of z, vanishing at 0 and /, between those limits, But now suppose
that u is zero, M still vanishing. The ends of the string may be
supposed capable of sliding on two smooth rails perpendicular to

its length, and the terminal condition is the vanishing of dy

dx’
The equation in m is the same as before; and we learn that any
function 3" whose rates of variation vanish at z=0 and z=1, can
be expanded in a series

y =D, cos = +B cos 27; +Bc 3__7l"13_|_ ...... (10).

This serics remains unaffected when the sign of  is changed,
and the first series merely changes sign without altering its
numerical magnitude. If therefore 3 Le an even function of «,
(10) represents it from — 7 to + 7. And in the same way, if y be
an odd function of x, (9) represents.it between the same limits.

Now, whatever function of # ¢ (x) may be, it can be divided
into two parts, one of which is even, and the other odd, thus:

NERICELICE I IOETICE ]

so that, if ¢ () be such that ¢ (— ) = (+ 1) and ¢’ (— 1) =¢' (+ 1),
it can be represcnted between the limits + { by the mixed series

A, 50T B cos T+ A,sin 274 Byeos T4 ... (1),

This series is periodic, with the period 21 If therefore ¢ (z)
possess the same property, no matter what in other respects itg
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character may be, the series is its complete equivalent. This is
Fourier’s theorem®.

‘We now proceed to examine the effects of a slight yielding of
the supports, in the case of a string whose ends are approximately
fixed. The quantity » may be great, either through wu or through
M. We shall confine ourselves to the two principal cases, (1)
when pu is great and M vanishes, (2) when g vanishes and M is
great.

In the first case V= T’i" o
and the equation in m is approximately
tanml=—2=_2_Tﬂ_
v p

Assume ml = s+, where x is small ; then

z=tang=— 2_T;L'l87r approximately,
2T,
and ml=sm (1 - _,u,—l) ........................ (12).

To this order of approximation the tones do not cease to form
a harmonic scale, but the pitch of the whole is slightly lowered.
The effect of the yielding is in fact the same as that of an increase
. . . 27T, N
in the length of the string in the ratio 1:1+ m‘, as might
have been anticipated.

The result is otherwise if x vanish, while M is great. Here

_ Ma*m
==
and tan ml = Jja_“’;n approximately.
Hence
2Tl
ml = 8+ ﬂ[am ..................... (13)
The effect is thus equivalent to a decrease in 7 in the ratio
) 2Tl
Vel =g e

1 The best *system’ for proving Fourier's theorem from dynamical considers-
tions is aw endless chain stretched round a smooth cylinder (§ 189), or a thin
re-entrant column of air enclosed in a ring-shaped tube.
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and consequently there is a rise in pitch, the rise being the
greater the lower the component tone. It might be thought
that any kind of yielding would depress the pitch of the string,
but the preceding investigation shews that this is not the case.
Whether the pitch will be raised or lowered, depends on the
sign of v, and this again depends on whether the natural note of
the mass M urged by the spring p is lower or higher than that of
the component vibration in question.

136. The problem of an otherwise uniform string carrying
a finite load M at =101 can be solved by the formule investigated
in § 183. For, if the force F cos pt be due to the reaction against
acceleration of the mass M,

Fogp M ooeeoierenensnenni(1),

which combined with equation (7) of § 133 gives, to determine the
possible values of A (or p : a),

&M AsinAb sinh ({—0) =T, sinAl............ (2).

The value of y for any normal vibration corresponding to \ is
y = Psin Az sin A (I — D) cos (art — ¢€)
from =0 to z=> (3)
y=Psin A (I —x) sinAbcos(art—¢) [ WY
fromoz=0btox=1

where P and ¢ are arbitrary constants.

It does not rcquire analysis to prove that any normal com-
ponents which have a node at the point of attachment are un-
affected by the presence of the load. For instance, if a string be
weighted at the centre, its component vibrations of even orders
remain unchanged, while all the odd components are depressed in
pitch. Advantage may sometimes be taken of this effect of a
load, when it is desired for any purpose to disturb the harmonic
relation of the component tones.

If M be very great, the gravest component is widely sepa-
rated in pitch from all the others. We will take the case when
the load is at the centre, so that b=I—b=1I. The equation in

A then becomes
.M (M Ao pl
Sln§.{§tan~2——j—yi}=0 ..................... (4),

where pl : M, denoting the ratio of the masses of the string and
the load, is a small quantity which may be called o®, The first

R. 11
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162 TRANSVERSE VIBRATIONS OF STRINGS. [136.

root corresponding to the tone of lowest pitch occurs when IAlis
small, and such that '

G {1+3 (3 M)} =a® nearly,

and the periodic time is given by

_ Ml pl .
T=T7 T (1+6M> ..................... (5).

whence

The second term constitutes a correction to the rough value
obtained in a previous chapter (§ 52), by neglecting the inertia of
the string altogether. That it would be additive might have
been expected, and indeed the formula as it stands may be ob-
tained from the consideration that in the actual vibration the two
parts of the string are nearly straight, and may be assumed to be
exactly so in computing the kinetic and potential energies, with-
out entailing any appreciable error in the calculated period. On
this supposition the retention of the inertia of the string increases
the kinetic energy corresponding to a given velocity of the load in
the ratio of M ; M + § pl, which leads to the above result. This
method has indeed the advantage in one respect, as it might be
applied when p is not uniform, or nearly uniform. All that is
necessary is that the load M should be sufficiently predominant,

Fig. 21.

\//6\\/
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There is no other root of (4), until sin {M =0, which gives
the second component of the string,—a vibration independent of
the load. The roots after the first occur in closely contiguous
pairs; for one set is given by $\l=sw, and the other approxi-
- mately by N =sm +‘;pjl—lz, in which the second term is small.
The two types of vibration for s =1 are shewn in the figure.

The general formula (2) may also be applied to find the effect
of a small load on the pitch of the various components.

137. Actual strings and wires are' not perfectly flexible.
They oppose a certain resistance to bending, which may be divided
_into two parts, producing two distinct effects. The first is called
viscosity, and shews itself by damping the vibrations. This part
produces no sensible effect on the periods. The second is con-
servative in its character, and contributes to the potential energy
of the system, with the effect of shortening the periods. A com-
plete investigation cannot conveniently be given here, but the
case which is most interesting in its application to musical instru-
ments, admits of a sufficiently simple treatment.

When rigidity is taken into account, something more must be
specified with respect to the terminal conditions than that y
vanishes. Two cases may be particularly noted :—

(1) When the ends are clamped, so that dy =0 at the ends.

dx
(2) When the terminal dircctions are perfectly free, in which
Ty_,
case 55=0.

It is the latter which we propose now to consider.
If there were no rigidity, the type of vibration would be

. ST o -
y o sin——, satisfying the second condition.

The effect of the rigidity might be slightly to disturb the type;
but whether such a result occur or not, the peiiod calculated
from the potential and kinetic energies on the supposition that
the type remains unaltered is necessarily correct as far as the first
order of small quantities (§ 88).

Now the potential energy due to the stiffness is expressed by

1 dzy P
8V=%x/o (d?) ABeevinreririiriannanans ),
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where « is a quantity depending on the nature of the material
and on the form of the section in a manner that we are not now
prepared to examine. The form of 8V is evident, because the force
required to bend any element ds is proportional to ds, and to the
amount of bending already effected, that is to ds+p. The whole
work which must be done to produce a curvature 1+p in ds
is therefore proportional to ds-<p?; while to the approximation to

which we work ds=duz, and 1_d ‘Z .
p ax

Thus, if y = 4) sins-? ,

2.2 2__2
T=fplds V=L ¢ (1475 ),
1

and the period of ¢ is given by

K &’
T=T, (1 - 2—1“71 T—) ........................ (2),

if 7, denote what the period would become if the string were
endowed with perfect flexibility. It appears that the effect of the
stiffncss increases rapidly with the order of the component vibra-
tions, which cease to belong to a harmonic scale. However,in the
strings employed in music, the teusion is usually sufficient to
reduce the influence of rigidity to insignificance.

‘The method of this section cannot be applied without modifi-
cation to the other case of terminal condition, namely, when the
ends are clamped. In their immediate neighbourhood the type of
vibration must differ from that assumed by a perfectly flexible
string by a quantity, which is no longer small, and whose square
therefore cannot be neglected. We shall return to this subject,
when treating of the transverse vibrations of rods.

138. There is one problem relating to the vibrations of strings
which we have not yet considered, but which is of some practical
interest, namely, the character of the motion of a violin (or cello)
string under the action of the bow., In this problem the modus
operandi of the bow is not sufficiently understood to allow us to
follow exclusively the a@ priori method : the indications of theory
must be supplemented by special observation. By a dexterous
combination of evidence drawn from both sources Helmholtz has
succeeded in determining the principal features of the-case, but
some of the details are still obscure,
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Since the note of a good instrument, well handled, is musical,
we infer that the vibrations are strictly periodic, or at least that
strict periodicity is the ideal. Moreover—and this is very import-
ant—the note elicited by the bow has nearly, or quite, the same
pitch as the natural note of the string. The vibrations, although
forced, are thus in some sense free. They are wholly dependent
for their maintenance on the energy drawn from the bow, and yet
the bow does not determine, or even sensibly modify, their periods.
We are reminded of the self-acting electrical interrupter, whose
motion is indeed forced in the technical sense, but has that kind
of frecdom which consists in determining (wholly, or in part) under
what influences it shall come.

But it does not at once follow from the fact that the string
vibrates with its natural periods, that it conforms to its natural
types. If the coefficients of the Fourier expansion

y=¢1sin7r7a"+qbzsin2%w+ ..... .

be taken as the independent co-ordinates by which the configura-
tion of the system is at any moment defined, we know that when
there is no friction, or friction such that 7 ¢ T, the natural vibra-
tions are expressed by making each co-ordinate a simple harmonic
(or quasi-harmonic) function of the time; while, for all that has
hitherto appeared to the contrary, each co-ordinate in the present
case might be any function of the time periodic in time 7. But a
little examination will shew that the vibrations must be sensibly
natural in their types as well as in their periods.

The force exercised by the bow at its point of application may
be expressed by

Y=34,cos (&:Ef - e,) ;

so that the equation of motion for the co-ordinate ¢, is

. . 32 2 . 2‘
¢>B+Ic¢3+‘?7er“ b, = l%sms—zb.EA,cos (—7—':—1—-?—67),

b being the point of application. Each of the component parts of
®, will give a corresponding term of its own period in the solu-
tion, but the one whose period is the same as the natural period
of ¢, will rise enormously in relative importance. Practically then,
if the damping be small, we need only retain that part of ¢,
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which depends on 4, cos (2—?—25— es) , that is to say, we may regard

the vibrations as natural in their types,

Another material fact, supported by cvidence drawn both from
theory and aural observation, is this. All component vibrations
are absent which have a node at the point of excitation. “In
order, however, to extinguish these tones, it is necessary that the
-coincidence of the point of application of the bow with the node
should be very ezact. A very small deviation reproduces the
missing tones with considerable strength®.”

The remainder of the evidence on which Helmholtz’ theory
rests, was derived from direct observation with the vibration-
microscope. As explained in Chapter 11., this instrument affords
a view of the curve representing the motion of the point under
observation, as it would be seen traced on the surface of a trans-
parcnt cylinder. In order to deduce the representative curve in
its ordinary form, the imaginary cylinder must be conceived to
be unrolled, or developed, into a plane.

The simplest results are obtained when the bow is applied at a
node of one of the higher components, and the point observed is
one of the other nodes of the same system. If the bow works
fairly so as to draw out the fundamental tone clearly and strongly,
the representative curve is that shewn in figure 22; where the
abscisse correspond to the time (AB being a complete period),
and the ordinates represent the displacement. The remarkable

Fig, 29,

y e

H

fact is disclosed that the whole period T may be divided into two
parts 7, and 7— 7, during each of which the velocity of the ob-
served point is constant; but the velocities to and fro are in
gencral unequal.

We have now to represent this curve by a series of harmonic
terms, If the origin of time correspond to the point 4, and

! Donkin's Acoustics, p. 151,
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AD=FC=¢, Fourier's theorem gives

2yt =1 . swr, . 2sm )

= =) z @5 T sin ( =g Jreeeee (1).

With respect to the value of 7, we know that all those com-

872% =0 (x, being the
point of observation), because under the circumstances of the case
the bow cannot generate them. There is therefore reason to
suppose that 7,:7==,:7; and in fact observation proves that
AC: CB (in the figure) is equal to the ratio of the two parts into
which the string is divided by the point of observation.

Now the free vibrations of the string are represented in
general by
o . ST 2s7rb in 28t
y==77 sin T4, c0n 24 B sin 2T
-
and this at the point # =z, must agree with (1). For convenience
of comparison, we may write

Acos——+B i ~—-—O' W(t—%’)
T T

-~

+.D, sin%—w(t—;"),
T 2

and it then appears that ¢, =0.
We find also to determine D,

. 8w, 297 1. smz,
™ l ’ WZTO(T—To)gs 7
whence .-
YT 1
.D‘ = m 9 ......... “sevestenscene (2),
sTa,
l -_— .

In the case reserved, the comparison leaves D, undetermined,
but we know on other grounds that D, then vanishes. However,
for the sake of simplicity, we shall suppose for the present that
D, is always given by (2). If the point of application of the bow
do not coincide with a node of any of the lower components, the
error committed will be of no great consequence.

On this understanding the complete solution of the problem is
27 = 1 2sm Ty
)

oy e g T S = (-3

:[/:
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The amplitudes of the components are therefore proportional to s,
In the case of a plucked string we found for the corresponding
swb
2
be plucked at the middle, the even components vanish, but the
odd ones follow the same law as obtains for a violin string. The
equation (8) indicates that the string is always in the form of two
straight lines meeting at an angle. In order more conveniently
to shew this, let us change the origin of the time, and the constant
multiplier, so that

8P 1. smex . 2wt
=? Eéﬁsm—l—— sin _'T— ..................... (4),

will be the equation expressing the form of the string at any time.

function ssin ——, which is somewhat similar. If the string

Now we know (§ 127) that the equation of the pair of lines
procecding from the fixed ends of the string, and mecting at a
point whose co-ordinates are a, 3, is

. ST .
y=ﬁf—a> 2;1251ns-7;~ s1ns—7flf.
Thus at the time ¢, (4) represents such a pair of lincs, meeting at
the point whose co-ordinates are given by

B =+ 4P
a(l—a) — 77’
sin 272 = 4 sin 22,

i - T

These equations indicate that the projection on the axis of
of the point of intersection moves uniformly backwards and
forwards between £=0 and =1, and that the point of inter-
section itself is situated on one or other of two parabolic arcs,
of which the cquilibrium position of the string is a common
chord. ’

Since the motion of the string as thus defined by that of the
point of intersection of its two straight parts, has no especial
relation to #, (the point of observation), it follows that, according
to these equations, the same kind of motion might be observed at
any other point. And this is approximately true. But the theo-
retical result, it will be remembered, was only obtained by as-
suming the presence in certain proportions of component vibrations
having nodes at @, though in fact their absence is required by
mechanical laws.  The presence or absence of these components is
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a matter of indifference when a node is the point of observation,
but not in any other case. When the node is departed from, the
vibration curve shews a series of ripples, due to the absence of
the components in question. * Some further details will be found
in Helmholtz and Donkin,

The sustaining power of the bow depends upon the fact that
solid friction is less at moderate than at small velocities, so that
when the part of the string acted upon is moving with the bow
(not improbably at the same velocity), the mutual action is greater
than when the string is moving in the ‘opposite direction with
a greater relative velocity. The accelerating effect in the first
part of the motion is thus not entirely neutralised by the sub-
sequent retardation, and an outstanding acceleration remains
capable of maintaining the vibration in spite of other losses of
energy. A curious effect of the same peculiarity of solid friction
has been observed by Mr Froude, who found that the vibrations
of a pendulum ‘swinging from a shaft might be maintained or
even increased by causing the shaft to rotate.

139. A string stretched on a smooth curved surface will in
equilibrium lie along a geodesic line, and, subject to certain con-
ditions of stability, will vibrate about this configuration, if dis-
" placed. The simplest case that can be proposed is when the
surface is a cylinder of any form, and the equilibrium position
of the string is perpendicular to the generating lines. The student
will easily prove that the motion is independent of the curvature
of the cylinder, and that the vibrations are in all essential respects
the same as if the surface were developed into a plane. The case
of an endless string, forming a necklace round the cylinder, is
worthy of notice,

In order to illustrate the characteristic features of this class of
problems, we will take the comparatively simple example of a
string stretched on the surface of a smooth sphere, and lying,
when in equilibrium, along a great circle. The co-ordinates to
which it will be most convenient to-refer the system are the
latitude 6 measured from the great circle as equator, and the
longitude ¢ measured along it. If the radius of the sphere be g,
we have .

| T=%fp(aé)2ud¢=2;—p Fdpeeneane weeenee (1),
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The extension of the string is denoted by

f(ds—ad¢)=af( 5" )d4>

Now
= (adf)® + (a cos 0 dp)*;
s0 that
2 2

E(_tlzl%) ~-1= {(ji) + cos e}é -1= %G—%) —-—92— , approximately.

" Thus
V=1%aT, f {( fli) - 02}dqs ..................... @)
and )

dé (a0
SV=aT,. so[d¢] an se\d¢,+9>d¢
If the ends be fixed,
dé
36 l: ] =0,
dé
and the equation of virtual velocities is
apf 650 d an se(d%e)d(p 0,
whence, since 86 is arbitrary,

apl= T(d2$+9) ............ SO (3).

This is the equation of motion,

If we assume 6 o cos pt, we get

‘é£2+o+“f’ 00 covoreereessrrennn oo (),

of which the solution, subject to the condition that 6 yanishes
with ¢, is

0= Asm!L P +1} B COS Pt wrrnrerriernnnna(D)-

The remaining condition to be satisfied is that @ vanishes when
ap=Lorp=a,ifa=1+a.

This gives
T, (m'n* T (m*n® 1
2 __ 1 — 1
P ——a”p( = —-1)— - ( i _a,”) ............ (6),

where m is an integer.

1 Cambridge Mathematical Tripos Examination, 1876.
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The normal functions are thus of the same form as for a
straight string, viz.

0 =4 sin m%du cos pt ..... TP M,

but the series of periods is different. The effect of the curvature
is to make each tone graver than the corresponding tone of a
straight string. If a>mr, one at least of the values of p®is nega-
tive, indicating that the corresponding modes are unstable. If
a=m, p, is zero, the string being of the same length in the dis-
placed position, as when 6 =0.

A similar method might be applied to calculate the motion of
a string stretched round the equator of any surface of revolu-
tion.

140. The approximate solution of the problem for a vibrating
string of ncarly but not quite uniform longitudinal density has been
fully considered in Chapter 1v. § 91, as a convenient example of
the general theory of approximately simple systems. It will be
sufficient here to repeat the result. If the density be p,+ 8p, the
period 7, of the 7 component vibration is given by

—.,-‘A’_é[_p"{ 2[ SP n2777'.70 } ............ (1),

>

If the irregularity take the form of a small load of mass m
at the point # =), the formula may be written
Tf=4l1, {1 + ‘Z’: i 2’"7’} .................. @).
These values of 7% are correct as far as the first power of the
small quantities 8p and m, and give the meauns of calculating a cor-
rection for such slight departures from uniformity as must always
occur in practice.

As might be expected, the effect of a small load vanishes at
nodes, and rises to a maximum at the points midway between
consecutive nodes. When it is desired merely to make a rough
estimate of the effective density of a nearly uniform string, the
formula indicates that attention is to be given to the nelghbour-
hood of loops rather than to that of nodes.

141. The differential equation determining the motion of a
string, whose longitudinal density p is variable, is

d* d’
P =T i, (1),

t
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from which, if we assume y oc cosnf, we obtain to determine the
normal functions

where »* is written for n*+ I'. This equation is of the second
order and linear, but has not hitherto been solved in finite terms.
Considered as defining the curve assumed by the string in the
normal mode under consideration, it determines the curvature at
any point, and accordingly embodies a rule by which the curve
can be constructed graphically. Thus in the application to a
string fixed at both ends, if we start from either end at an arbitrary
inclination, and with zero curvature, we are always directed by the
equation with what curvature to proceed, and in this way we
may trace out the entire curve.

If the assumed value of »* be right, the curve will cross
the axis of # at the required distance, and the law of vibration
will be completely determined. If »* be not known, diffcrent
values may be tried until the curve ends rightly; a sufficient
approximation to the value of »* may usually be arrived at by a
calculation founded on an assumed type (§§ 88, 90).

Whether the longitudinal density be uniform or not, the
periodic time of any simple vibration varies cwteris paribus as the
square root of the density and inversely as the square root of the
tension under which the motion takes place.

The converse problem of determining the density, when the
period and the type of vibration are given, is always soluble. For
this purpose it is only necessary to substitute the given value of z,
and of its sccond differential coefficient in equation (2). Unless
the density be infinite, the extremities of a string are points of
zero curvature,

When a given string is shortened, every component tone is
raised in pitch. For the new state of things may be regarded as
derived from the old by introduction, at the proposed point of
fixture, of a spring (without inertia), whose stiffness is gradually
increased without limit. At each step of the process the potential
energy of a given deformation is augmented, and therefore (§ 88)
the pitch of every tone is raised. In like manner an addition to
the length of a string depresses the pitch, even though the added
part be destitute of inertia.
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142. Although a general integration of equation (2) of § 141
is beyond our powers, we may apply to the problem some of the
many interesting properties of the solution of the linear equation
of the second order, which have been demonstrated by MM. Sturm
and Liouville’, It is impossible in this work to give anything
like a complete account of their investigations; but a sketch, in
which the leading features are included, may be found interest-
ing, and will throw light on some points connected with the
general theory of the vibrations of continuous bodies. I have not
thought it necessary to adhere very closely to the methods adopted
in the original memoirs.

At no point of the curve satisfying the equation

d; .
can both y and Zi% vanish together. By successive differentiations

of (1) it is easy to prove that, if y and gg vanish simultaneously,

all the higher differential coefficients 53{, ZEZ’ &c., must also
vanish at the same point, and therefore by Taylor’s theorem the
curve must coincide with the axis of . '

Whatever value be ascribed to % the curve satisfying (1) is
sinuous, being concave throughout towards the axis of z, since
p is everywhere positive. If at the origin y vanish, and d—‘Z
be positive, the ordinate will remain positive for all values of «
below a certain limit dependent on the value ascribed to %
If +* be very small, the curvature is slight, and the curve will
remain on the positive side of the axis for a great distance.
We have now to prove that as »* increases, all the values of @
which satisfy the equation y =0 gradually diminish in magnitude.

Let 3 be the ordinate of a second curve satisfying the equa-
tion

as well as the condition that " vanishes at the origin, and let us
suppose that »”* is somewhat greater than »*. Multiplying (2) by v,

1 The memoirs referred to in the text are contained in the first volume of
Liouville’s Journal (1836).
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and (1) by %/, subtracting, and integrating with respect to a
between the limits 0 and &, we obtain, since 7 and y* both vanish

with «,
,d a ! / 2 " 4
yd_g—yc;;:(va—y) PYY dz .oveenne. (3).

If we further suppose that  corresponds to a point at which
y vanishes, and that the difference between »™ and +* is very small,
we get ultimately

The right-hand member of (4) being essentially positive,

we learn that % and % are of the same sign, and therefore that,

d " . . .
whether a—‘i be positive or negative, 5’ is already of the same sign

as that to which y is changing, or in other words, the value of @
for which g vanishes is less than that for which y vanishes.

If we fix our attention on the portion of the curve lying
between # =0 and x = I, the ordinate continues positive through-
out as the value of »* Increascs, until a certain value is attained,
which we will call »* The function y is now identical in form
with the first normal function u, of a string of density p fixed
at 0 and [, and has no root except at those points. As »* again
increases, the first root moves inwards from z=1[ until, when a
second special value v, is attained, the curve again crosses the
axis at the point z=1, and then represents the second normal
function w,. This function has thus one internal root, and one
only. In like manner corresponding to a higher value v;'fwe
obtain the third normal function u, with two internal roots, and
so on. The n" function w, bas thus exactly % — 1 internal roots, and
since its first differential coefficient never vanishes simultaneously
with the function, it changes sign each time a root is passed.

From equation (3) it appears that if », and w, be two different
normal functions,

7
fopm.,dx=o et (5).

A beautiful theorem has been discovercd by Sturm relating
to the number of the roots of a function derived by addition
from a finite number of normal functions. If v, be the component
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of lowest order, and u_ the component of highest order, the function

J@=¢u,+ o, %+ . ot B, e e (6),

where ¢, ¢,.,, &c. are arbitrary coefficients, has at least m—1
internal roots, and at most n — 1 internal roots. The extremities
at =0 and at #=1[ correspond of course to roots in all cases.
The following demonstration bears some resemblance to that given
by Liouville, but is con51de1ably simpler, and, I believe, not less
rigorous.

If we suppose that f(z) has exactly p internal roots (any
number of which may be equal), the derived function f*(#) cannot
bave less than p + 1 internal roots, since there must be at least
one root of f'(x) between each pair of consecutive roots of f(z), and
the whole number of roots of f(«) concerned is x4+ 2. In like
manner, we see that there must be at least p roots of f'(z),
besides the extremities, which themselves necessarily correspond
to roots; so that in passing from f(z) to f”(x) it is impossible
that any roots can be lost. Now

f " (Z‘) ¢m m” + ¢m+1 u”'m+1 + """ + ¢71. uﬂ
== P (1/,,, ¢mum + V2m+1 ¢m+1 u'm-H. RaERIRIE + V ’ ¢1| u) (7))

as we see by (1); and therefore, since p is always positive, we
infer that

1] 2
Y ¢m um + V m+l ¢m+l m+1 """ + v, d)n Up veveeeonns (8)!
has at least g roots.

Again, since (8) is an expression of the same form as f(z),
similar reasoning proves that

4 4 [
Vm ¢m um + 4 m+l ¢m+1 um+1 + """ . + V ¢n (3

has at least p internal roots; and the process may be continued
to any extent. In this way we obtain a series of functions, all
with g internal roots at least, which differ from the original
function f(x) by the continually increasing relative importance of
the components of the higher orders. When the process has been
carried sufficiently far, we shall arrive at a function, whose form
differs as little as we please from that of the mnormal function of
highest order, viz. u,, and which has therefore n — 1 internal roots,
It follows that, since no roots can be lost in passing down the
series of functions, the number of internal roots of f(z) cannot
exceed n — 1.
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The other half of the theorem is proved in a similar manner
by continuing the series of functions backwards from f(z). In
this way we obtain

qu. um + ¢m+l umﬂ. + """ + ¢n Uy
-2 -2 -2
ym ¢m um +v m+1 T mtl u’m+1 F oo + v, ¢n. u’n
—4 —4 -4
vm ¢'m um + v m+1 (Ibm+l um+1 + """ + Vn (3 un

arriving at last at a function sensibly coincident in form with the
normal function of lowest order, viz. w , and baving therefore
m — 1 internal roots. Since no roots can be lost in passing up the
series from this function to f (), it follows that f(z) cannot have
fewer internal roots than m —1; but it must be understood that

any number of the m — 1 roots may be equal.

We will now prove that f(«) cannot be identically zcro, unless
all the coefficients ¢ vanish. Suppose that ¢, is not zero.
Multiply (6) by pu,, and integrate with respect to  between the
limits 0 and I Then by (5)

f:p u f(x)de=¢, f :p uldr o 9);

from which, since the integral on the right-hand sidc is finite, we
see that f(#) cannot vanish for all values of # included within the
range of integration.

Liouville has made use of Sturm’s theorem to shew how a
series of normal functions may be compounded so as to have an
arbitrary sign at all points lying between =0 and xz=1I His
method is somewhat as follows,

The values of = for which the function is to change sign being
a, b, ¢ ..., quantities which without loss of gencrality we may
suppose to be all different, let us consider the series of determi-
nants,

u, (@), u,(b), v, ()
u,(a), (D), u,()
’ u (@), 4, (b), uy(@) |, &e.

The first is a linear function of %, () and u,(z), and by Sturm’s
theorem has therefore one internal root at most, which root is
evidently a. Moreover the determinant is not identically zero,
since the coefficient of u,(x), viz. u,(a), does not vanish, whatever
be the value of @. We have thus obtained a function, which
changes sign at an arbitrary point g, and there only internally.

u, (a), u, ()
u,(a), u,(x)
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The second determinant vanishes when # =a, and when =0,
and, since it cannot have more than two internal roots, it changes
sign, when & passes through.these values, and there only, The
coefficient of w, () is the value assumed by the first determinant
when &=, and is therefore finite. Henee the second determinant
is not identieally zero.

Similarly the third determinant in the series vanishes and
changes sign when = a, when =0, and when = = ¢, and at these
internal points only. The coefficient of w,(z) is finite, being the
value of the second determinant when z=c.

It is evident that by continuing this process we can form
functions compounded of the normal functions, which shall vanish
and change sign for any arbitrary values of z, and not elsewhere
internally ; or, in other words, we can form a function whose sign
is arbitrary over the whole range from z=0 to 2 =1.

On this theorem Liouville founds his demonstration of the
possibility of representing an arbitrary function between 22 =0 and
z =1 by a series of normal functions. If we assume the possibility
of the expansion and take

J() = by, (@) + by, () + Py (@) + vvvreneee X (10),
the necessary values of ¢,, ¢,, &c. are determined by (9), and we
find

fl@)== {u,,(x) [ :pu, @f(e)do- [ :pu:<x) do } (11),

If the series on the right be denoted by F(z), it remains to
establish the identity of f(x) and F(x).

If the right-hand member of (11) be multiplied by pu, (x) and
integrated with respect to z from =0 to & =, we see that

[ou(e) Fla e = [ pu, (@) f(w)
or, as we may al;o write it, °

| :{F(m) — (@)} o, @) 2= 0 e v (12),
where u_(x) is any normal function. From (12) it follows that
f:{F(x) —f(@)} (A, @)+ du, @)+ A (@) +...) pde=0....(13),

where the coefficients 4,, 4,, &ec. are arbitrary. .
R. 12
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Now if F(z)—f(«) be not identically zero, it will be possible
so to choose the constants 4, 4,, &c. that 4 u, (z) + 4,u,(z) + ..
has throughout the same sign as F(z) — f(x), in which case every
element of the integral would be positive, and equation (18) could
not be true. It follows that F'(z) — f(x) cannot differ from zero, -
or that the series of normal functions forming the right-hand
member of (11) is identical with f(z) for all valucs of # from =0
to x=1. :

The arguments and results of this section are of course ap-
plicable to the particular case of a uniform string for which the
normal functions are circular.

143. When the vibrations of a string are not confined to ono
plane, it is usually most convenient to resolve them into two sets
executed in perpendicular planes, which may be treated inde-
pendently. There is, however, one casc of this description worth
a passing notice, in which the motion is most easily conceived and
treated without resolution.

Suppose that
sre 28wt

y=sin —7cos—
........................ 1).
. SmTXL 2smt )

2=sIn —— sin
A T
Then
T=Jy‘+z2—51n—7rlic ........................ (2),
28Tt
-and Ly = e e tereereriaetereearraas

n z :y=tan — 3),

shewing that the whole string is at any moment in one plane,
which revolves uniformly, and that each particle describes a circle

with radius sin®"%, In fact, the whole system turns without

{
relative displacement about its position of equilibrium, completing
each revolution in the time 7-+s. The mechanics of this case is
quite as simple as when the motion is confined to one planc, the
resultant of the tensions acting at the extremities of any small
portion of the string’s length being balanced by the centrifugal
force.
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144. The general differential equation for a uniform string

viz, . d
@4 _ 2%y
g = O e Cerrereeaireneaiaes L),
may be transformed by a change of variables into
d*y
) =0 e s e @),
where u =2z — at, v=ax +af. The general solution of (2) is
y=flu)+ F@)=f(x—at) + Fz+ af).......... (3),

Js I being two arbitrary functions,

Let us consider first the case in which # vanishes, When
¢ has any particular value, the equation

Y=f@—at) oeiviiiiineieninn (4),
expressing the relation between x and y, represents the form of the
string. A change in the value of ¢ is merely equivalent to an
alteration in the origin of z, so that (4) indicates that a certain
Jform is propagated along the string with uniform velocity @ in the
positive direction. Whatever the value of y may be at the point
z and at the time ¢, the same value of y will obtain at the point
x + a At at the time ¢ + A

The form thus perpetuated may be any whatever, so long as it
does not violate the restrictions on which (1) depends.

When the motion consists of the propagation of a wave in the
positive direction, a certain relation subsists between the inclina-
tion and the velocity at any point. Differentiating (4) we find

[/
Yool )

Initially d'/ and C—Z— may both b bitraril t if th

) 7, May both be given arbitrarily, but if the

above relatxon be not satisfied, the motion cannot be represented
by (4).
In a similar manner the equation

y=F@+at).....c.coviviiniinnn (6),
denotes the propagation of a wave in the negative direction, and
the relation bct'ween %‘{ and Z— corresponding te (5) is

dy_ Y .
Et- =a (—Z-ﬁ ................................ (()
12—2

IRIS - LILLIAD - Université Lille 1



180 _TRANSVERSE VIBRATIONS OF STRINGS. [144.

In the general case the motion consists of the simultaneous
propagation of two waves with velocity @, the one in the positive,
and the other in the negative direction; and these waves are

entirely independent of one another. In the first dg‘% =—q Zy, and
in the second 4 _ ad‘y . The initial values of dy and d— must be
dt dz dt

conceived to be divided into two parts, which satisfly respectlvely
the relations (5) and (7). The first constitutes the wave which
will advance in the positive direction without change of form ; the
second, the negative wave. Thus, initially,
, d7
S'@+ F @) =g

1 dy

F@) = F(n) =~ -

r@=4 (=35
@ >—7(d”+1"’y)j

whence

..(8),
a dt

equations which determine the functions #” and F’ for all values
of the argument from 2 =— o to = oo, if the initial values of

Z—Z and %-Z be known.

If the disturbance be originally confined to a finite portion of
the string, the positive and negative waves separate after the
interval of time required for each to traverse half the disturbed
portion.

Fig. 2.

q A 0 A P

Suppose, for example, that 4B is the part initially disturbed.
A point P on the positive side remains at rest until the positive
wave has travelled from 4 to P, is disturbed during the passage
of the wave, and ever after remains at rest. The negative wave
never affects P at all. Similar statements apply, mutatis mutandis,
to a point Q on the negative side of 4B, If the character of the

original disturbance be such that Z—Z - c—lz 0—% vanishes initially, there
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is no positive wave, and the point P is never disturbed at all;
and if gg + %L %—Z vanish initially, there is no negative wave. If %
vanish initially, the positive and the negative waves are similar
and equal, and then neither can vanish. In cases where either
‘wave vanishes, its evanescence may be considered to be due to the
mutual destruction of two component waves, one depending on
the initial displacements, and the other on the initial velocities.
On the one- side these two waves conspire, and on the other
they destroy one another. This explains the apparent paradox,
that P can fail to be affected sooner or later after 4B has been

disturbed.

The subsequent motion of a string that is initially displaced
without velocity, may be readily traced by graphical methods.
Since the positive and the negative waves are equal, it is only
necessary to divide the original disturbance into two equal parts,
to displace these, one to the right, and the other to the left,
through a space equal to af, and then to recompound them. We
shall presently apply this method to the case of a plucked string
of finite length,

145. Vibrations are called stationary, when the motion of each
particle of the system is proportional to some function of the time,
the same for all the particles. If we endeavour to satisfy

d* d™
Y - CTTTR—, (1),
by assuming y = XT, where X deunotes a function of z only, and
T a function of ¢ only, we find
1 &T 14X
Td@y X de = m®  (a constant),
so that
T = A cosmat + B sin mat
X=C cosmx + D sinmz
proving that the vibrations must be simple harmonic, though of
arbitrary period. The value of y may be written
y=Pcos (mat — €) cos (mx —a)
=} Pcos (mat + mz — € —a) + 4 P cos (mat — max— € + @).....(3),
shewing that the most general kind of stationary vibration may
be regarded as due to the superposition of equal progressive vibra-
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tions, whose directions of propagation are opposed. Conversely,.
two stationary vibrations may combine into a progressive onc.

The solution y=j(x— at)+ F (x+ at) applies in the first in-
stance to an infinite string, but may be interpreted so as to
give the solution of the problem for a finite string in certain
cases. Let us suppose, for example, that the string terminates
at #=0, and is held fast there, while it extends to infinity in
the positive direction only. Now so long as the point =10
actually remains at rest, it is a matter of indifference whether
the string be prolonged on the mnegative side or not. We
are thus led to regard the given string as forming part of one
doubly infinite, and to seck whether and how the initial displace-
ments and velocities on the negative side can be taken, so that on
the whole there shall be no displacement at = = 0 throughout the
subsequent motion. The initial values of # and 7 on the positive
side determine the corresponding parts of the positive and negative
waves, into which we know that the whole motion can be resolved.
The former has no influence at the point #=0. On the negative
side the positive and the negative waves are initially at our disposal,
but with the latter we are not concerned. The problem is to
determine the positive wave on the negative side, so that in
conjunction with the given negative wave on the positive side
of the origin, it shall leave that point undisturbed.

Let OPQRS... be the line (of any form) representing the
wave in OX, which advances in the negative direction. It is

Fig. 24.
v

oW @

evident that the requirements of the case are met by taking on
the other side of O what may be called the contrary wave, so that
O 1is the geometrical centre, bisecting every chord (such as PP)
which passes through it. Analytically, if y =f(x) is the equation
of OPQRS...... ,—y=f(—a) is the equation of OP'Q'R'S'......
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When after a time ¢ the curves are shifted to the left and to
the right respectively through a distance af, the co-ordinates
corresponding to z =0 are necessarily equal and opposite, and
therefore when compounded give zero resultant displacement.

The effect of the constraint at O may therefore be represented
by supposing that the negative wave moves through undisturbed,
but that a positive wave at the same time emerges from O. This
reflected wave may at any time be found from its parent by the
following rule: )

Let APQRS... be the position of the parent wave. Then the
reflected wave is the position which this would assume, if it were

Fig. 25.
’e
P
— \e__ & —F
A 0 x

turned through two right angles, first about OX as an axis of
rotation, and then through the same angle about OY. In other
words, the return wave is the image of APQRS formed by
successive optical reflection in OX and O, regarded as plane

mirrors.

The same result may also be obtained by a more analytical
process. In the general solution '

y=f(@—at)+F(z+at),
the functions f(2), F (z) are determined by the initial circumstances
for all positive values of z. The condition at # =0 requires that

Fl—at)+ (F(at)=0
for all positive values of ¢, or

f=2)==T(2)

for positive values of 2. The functions f and F are thus de-
termined for all positive values of z and ¢

There is now no difficulty in tracing the course of events when
two points of the string 4 and B are held fast. The initial dis-
turbance in AB divides itself into positive and negative waves,
which are reflected backwards and forwards between the fixed
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points, changing their character from positive to negative, and
vice versd, at each reflection. After an even number of reflec-
tions in each case the original form and motion is completely
recovered. The process is most easily followed in imagination
when the initial disturbance is confined to a small part of the
string, more particularly when its characler is such as to give rise
to a wave propagated in one direction only. The pulse travels with
uniform velocity (a) to and fro along the length of the string, and
after it bas returned & second time to its starting point the
original condition of things is exactly restored. The period of
the motion is thus the time required for the pulse to traverse
the length of the string twice, or

The same law evidently holds good whatever may be the character
of the original disturbance, only in the general case it may
happen that the shortest period of recurrence is some aliquot part
of 7.

146. The method of the last few sections may be advantage-
ously applied to the case of a plucked string. Since the initial
velocity vanishes, half of the displacement belongs to the positive
and half to the negative wave. The manner in which the wave
must be completed so as to produce the same effect as the con-
straint, is shewn in the figure, where the upper curve represents

Fig. 26.

/I&As r /1<(1
A 7
;}"QVAa \QWAE \/-43
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P
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\ds L \a7
CEEER O
—
the positive, and the lower the negative wave in their initial
positions. In order to find the configuration of the string at any
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future time, the two curves must be superposed, after the upper
has been shifted to the right and the lower to the left through a
space equal to at.

The resultant curve, like its components, is made up of straight
Pieces. A succession of six at intervals of a twelfth of the period,

Fig, 27,

shewing the course of the vibration, is given in the figure (Fig. 27),
taken from Helmholtz. From G the string goes back again to 4
through the same stages.

It will be observed that the inclination of the string at the
points of support alternates between two constant values,

147. If a small disturbance be made at the time ¢ at the
point 2 of an infinite stretched string, the effect will not be felt at
O until after the lapse of the time # <+ a, and will be in all
respects the same as if a like disturbance had been made at
the point « + Az at time ¢ — Az ~-o. Suppose that similar disturb-
ances are communicated to the string at intervals of time 7 at
points whose distances from O increase each time by adr, then

1 This method of treating the vibration of a plucked string is due to Young.
Phil. Trans., 1800. The student is recommended to make himself familiar with it
by actually construeting the forms of Fig. 27.
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it is evident that the regult at O will be the same as if the dis-
turbances were all made at the samne point, provided that the time-
intervals be increased from T to T + &r. This remark contains the
theory of the alteration of pitch due to motion of the source of
disturbance; a subject which will come under our notice again
in connection with aerial vibrations.

148. When one point of an infinite string is subject to a forced
vibration, trains of waves proceed from it in both directions ac-
cording to laws, which are readily investigated. We shall suppose
that the origin is the point of excitation, the string being there
subject to the forced motion y=Ade*; and it will be sufficient to
consider the positive side. If the motion of each clement ds be
resisted by the frictional force xyds, the differential equation is

d2y d N7k )
an e dZ @ dwy ........................ 1);
or since y o« €™,
d’y _ (ikp _p 2
A= ( o — a“) Y= A Y errnriiiriiiiniiaiins (2),

if for brevity we write A® for the coefficient of y.
The general solution is
y={Ce 24 Det e  ......ccooeinnni. (3).

Now since y is supposed to vanish at an infinite distance, D
must vanish, if the real part of A be taken positive. Let

A=a+106,
where « is positive.
Then the solution is
y=de-GriBetipt ... S (4),
or, on throwing away the imaginary part,
y="de % cos (Pt—Px) ceverieiiininnnn. (5),
corresponding to the forced motion at the origin
Y=ACoSPleviivininniniiininian.n.. (6).

An arbitrary constant may, of course, be added to &

To determine « and 3, we have
2%

¢-g=-0; 2a/3=’22 ................... (.
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If we suppose that « is small,

_Pp =2
B= 0’ a=g nearly,
and y=Ae 2" cos (pt - g a;) ................... (8).

This solution shews that there is propagated along the string
a wave, whose amplitude slowly diminishes on account of the
exponential factor. If k=0, this factor disappears, and we have
simply

This result stands in contradiction to the general law that,
when there is no friction, the forced vibrations of a system (due
to a single simple harmonic force) must be synchronous in phase
throughout. According to (9), on the contrary, the phase varics
continuously in passing from one point to another along the string.
The fact is, that we are not at liberty to suppose x=0 in (8),
inasmuch as that equation was obtained on the assumption that
the real part of A in (3) is positive, and not zero. However long
a finite string may be, the coefficient of friction may be taken so
small that the vibrations are mot damped before reaching the
further end. After this point of smallness, reflected waves begin
to complicate the result, and when the friction is diminished
indefinitely, an infinite series of such must be taken into account,
and would give a resultant motion of the same phase throughout.

This problem may be solved for a string whose mass is supposed
to be concentrated at equidistant points, by the method of § 120.
The co-ordinate +f,, may be supposed to be given (= Ae™), and
it will be found that the system of equations (5) of § 120 may all
be satisfied by taking

\p‘fr = er—-lwpl ’

where 0 is a complex constant determined by a quadratic equa-
tion. The result for a continuous string may be afterwards de-

duced.
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CHAPTER VIL

LONGITUDINAL AND TORSIONAL VIBRATIONS OF BARS,

149.. THE next system to the string in order of simplicity
is the bar, by which term is usually understood in Acoustics a
mass of matter of uniform substance and elongated cylindrical
form. At the ends the cylinder is cut off by planes perpendicular
to the generating lines. The centres of inertia of the transverse
sections lie on a straight line which is called the ais.

The vibrations of a bar are of three kinds—Iongitudinal,
torsional, and lateral. Of these the last arc the most important,
but at the same time the most difficult in theory. They are
considered by themsclves in the next chapter, and will only be
referred to here so far as is necessary for comparison and contrast
with the other two kinds of vibrations.

Longitudinal vibrations are those in which the axis remains
unmoved, while the transverse sections vibrate to and fro in the
direction perpendicular to their planes. The moving power is
the resistance offered by the rod to extension or compression.

One peculiarity of-this class of vibrations is at once evident.
Since the force necessary to produce a given extension in a bar
is proportional to the area of the section, while the mass to be
moved is also in the same proportion, it follows that for a bar of
given length and material the periodic times and the modes of
vibration are indopendent of the area and of the form of the
transverse section. A similar law obtains, as we shall presently
see, in the case of torsional vibrations.

It is otherwise when the vibrations are lateral. The periodic
times are indeed independent of the thickness of the bar in the
direction perpendicular to the plane of flexure, but the motive power
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149.7 CLASSIFICATION OF VIBRATIONS, 189

in this case, viz. the resistance to bending, increases more rapidly
than the thickness in that plane, and therefore an increase in
thickness is accompanied by a rise of pitch.

In the case of longitudinal and lateral vibrations, the mechan-
ical constants concerned are the density of the material and the
value of Young’s modulus, For small extensions (or compressions)
Hooke’s law, according to which the tension varies as the extension,
actual length — natural length

natural length

be called ¢, we have T'=ge, where ¢ is Young’s modulus, and T
is the tension per unit area necessary to produce the extension e.
Young’s modulus may therefore be defined as the force which would
have to be applied to a bar of unit section, in order to double its
length, if Hooke’s law continued to hold good for so great exten-
sions ; its dimensions are accordingly those of a force divided by an
area.

holds good. If the extension, viz.

b

The torsional vibrations depend also on a second elastic con-
stant u, whose interpretation will be considered in the proper
Place.

Although in theory the three classes of vibrations, depending
respectively on resistance to extension, to torsion, and to flexure
are quite distinct, and independent of one another so long as the
squares of the strains may be neglected, yet in actual experiments
with bars which are neither uniform in material nor accurately
cylindrical in figure it is often found impossible to excite longi-
tudinal or torsional vibrations without the accompaniment of some
measure of Jateral motion. In bars of ordinary dimensions the
gravest lateral motion is far graver than the gravest longitudinal
or torsional motion, and consequently it will generally happen that-
the principal tone of either of the latter kinds agrees more or less
perfectly in pitch with some overtone of the former kind. Under
such circumstances the regular modes of vibrations become
unstable, and a small irregularity may produce a great cffect. The
difficulty of exciting purely longitudinal vibrations in a bar is
similar to that of getting a string to vibrate in one plane.

With this explanation we may proceed to counsider the threce
classes of vibrations independently, commencing with longitudinal
vibrations, which will in fact raise no mathematical questions
beyond those already disposed of in the previous chapters,
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190 LONGITUDINAL VIBRATIONS OF BARS. [150.

150. When a rod is stretched by a force parallel to its length,
the stretching is in general accompanied by lateral contraction in
such a manner that the augmentation of volume is less than if
the displacement of every particle were parallel to the axis. In the
case of a short rod and of a particle situated near the cylindrical
boundary, this lateral motion would be comparable in magnitude
with the longitudinal motion, and could not be overlooked without
risk of considerable error. But where a rod, whose length is great
in proportion to the linear dimensions of its section, is subject to
a stretching of one sign throughout, the longitudinal motion accu- -
mulates, and thus in the case of ordinary rods vibrating longi-
tudinally in the graver modes, the inertia of the lateral motion
may be neglected. Moreover we shall sce later how a correction
may be introduced, if necessary.

Let 2 be the distance of the layer of particles composing any
section from the equilibrium position of one end, when the rod is
unstretched, cither by permanent tension or as the result of
vibrations, and let & be the displaccment, so that the actual
position is given by « + £ The equilibrium and actual position

of a neighbouring layer being x40z, x+dz+ £+ gf: Sz re-

spectively, the elongation is gg ; and thus, if 7' be the tension per

unit arca acting across the section,
d&
T =g iiiiiiiiiiiniiniinnn, ).

Consider now the forces acting on the slice bounded by «
and @ + 6x. If the area of the section be o, the tension at z is

by (1) g g—i, acting in the negative direction, and at -+ Ox

the tension is

dg &'
qw (a’—x + d:f; Sar;),

acting in the positive direction; and thus the force on the slice

due to the action of the adjoining parts is on the whole

gwgw—%Bx.

The mass of the clement is pw 8z, if p be the original density,
and thercfore if X be the accelerating force acting on it, the cqua-
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tion of equilibrium is

In what follows we shall not require to consider the operation
of an impressed force. To find the equation of motion we have
only to replace X by the reaction against acceleration — £ and
thus if ¢ : p=a®, we have

This equation is of the same form as that applicable to the
transverse displacements of a stretched string, and indicates the
undisturbed propagation of waves of any typc in the positive and
negative directions. The velocity a 1s relative to the unstretched
condition of the bar; the apparent velocity with which a disturb-
ance is propagated in space will be greater in the ratio of the
stretched and unstretched lengths of any portion of the bar. The
distinction is material only in the case of permanent tension.

151. For the actual magnitude of the vclocity of propagation,

we have
a’=q:p=qo:po,

which is the ratio of the whole tension necessary (according to
Hooke’s law) to double the length of the bar and the longitudinal
density. If the same bar were stretched with total tension 7,
and were flexible, the vclocity of propagation of waves along it
would be /(1': pw). In order then that the velocity might be
the same in the two cases, 7' must be qw, or, in other words, the
tension would have to be that theoretically necessary in order to
double the length. The tones of longitudinally vibrating rods
are thus very high in comparison with those obtainable from
strings of comparable length.

In the case of steel the value of ¢ is about 22 x 10° grammes
welght per square centimetre. To express this in absolute units
of force on the ¢.6.8' system, we must multiply by 980. In
the same system the density of steel (identical with its specific
gravity referred to water) is 7'8.  Hence for steel

0] < 99 w 18
0= «/ 980 x X;g * 10" 530,000

1 Centimetre, Gramme, Second. This system is recommended by a Committee
of the British Association. Brit. Ass. Report, 1873.
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192 LONGITUDINAL VIBRATIONS OF BARS. [151.

approximately, which shews that the velocity of sound in steel is
about 530,000 centimetres per second, or about 16 times greater
than the velocity of sound in air. In glass the velocity is about
the same as in steel.

It ought to be mentioned that in strictness the value of ¢ deter-
mined by statical experiments is not that which ought to be used
here. As in the case of gases, which will be treated in a subsequent
chapter, the rapid alterations of state concerned in the propaga-
tion of sound are attended with thermal effects, one result of
which is to increase the effective value of ¢ beyond that obtained
from observations on extension conducted at a constant tempera-
ture. But the data are not precise enough to make this correction
of any consequence in the case of solids.

152. The solution of the general equation for the lengitudinal
vibrations of an unlimited bar, namely

E=f(x—at)+ F(x+ at),

being the same as that applicable to a string, need not be further
considered here.

When both ends of a bar are free, there is of course no perma-
nent tension, and at the ends themselves there is no temporary
tension. The condition for a free end is therefore

dg

d_-’.v S T T T R R PP R T PR T I (1).
To determine the normal modes of vibration, we must assume

that £ varies as a harmonic function of the time—cosnat. Then

as a function of x, & must satisfy

E

T T 2 | eeans (2),
of which the complete intcgral is
E=Acosns + BSin nk..ccoevireeereenns (3),
where 4 and I are independent of .
Now since % vanishes always when x =0, we get B=0; and

.. d .
again since d_f: vanishes when a=I—the natural length of the

bar, sin nl =0, which shews that » is of the form

% being integral.
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Accordingly, the normal modes are given by equations of the
form

mw
E=Acos - €08 ——

in which of course an arbitrary constant may be added to ¢, if
desired.

The complete solution for a bar with both ends free is there-
fore expressed by

E= 2::: o8 Tlf {A, cos llr—;i?+ B, sinzflﬁé } eeeens(6),
where 4, and B, are arbitrary constants, which may be determined
in the usual manner, when the initial values of £ and £ are
given.

A zero value of 7 is admissible; 1t gives a term representing a
displacement £ constant with respcet both to space and time,
and amounting in fact only to an alteration of the origin.,

The period of the gravest component in (6) corresponding to
1=1, is 2]+ a, which is the time occupied by a disturbance in
travelling twice the length of the rod. The other tones found
by ascribing integral values to ¢ form a complete harmonic scale ;
so that according to this theory the note  given by a rod in
longitudinal vibration would be in all cases musical,

In the gravest mode the centre of the rod, where z=14l,isa
place of no motion, or node; but the periodic elongation or com-

pression (%: 13 there a maximum,

153. The caSe of a bar with one end free and the other fixed
may be deduced from the general solution for a bai with both
ends free, and of twice the length. For whatever may be the
initial state of the bar free at a=0 and fixed at =1, such dis-
placements and velocities may always be ascribed to the sections
of a bar extending from 0 to 2/ and free at both ends as shall
make the motions of the parts from O to [identical in the two
cases. It is only necessary to suppose that from ! to 2! the dis-
placements and velocities are initially equal and opposite to those
found in the portion from 0 to { at an equal distance from the
centre =10 Under these circumstances the centre must by
the symmetry remain at rest throughout the motion, and then the

R. 13
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194 LONGITUDINAL VIBRATIONS OF BARS. [153.

portion from 0 to I satisfies all the required conditions. We con-
clude that the vibrations of a bar free at one end and fixed at the
other are identical with those of one half of a bar of twice the
length of which both ends are free, the latter vibrating only in the
uneven modes, obtained by making ¢ in succession all odd integers.
The -tones of the bar still belong to a harmonic scale, but the
even tones (octave, &c. of the fundamental) are wanting.

The period of the gravest tone is the time occupied by a pulse
in travelling four times the length of the bar.

154, When both ends of a bar are fixed, the conditions to
be satisfied at the ends are that the value of £ is to be invariable.
At =0, we may suppose that £=0. At =1, £ is a small
.constant «, which is zero if there be no permanent tension. In-
dependently of the vibrations we have evidently §=axa+1, and
we should obtain our result most simply by assuming this term
at once. But it may be instructive to proceed by the general
method,

Assuming that as a function of the time & varies as

A cosnat + B sin nat,
we see that as a funetion of # it must satisfy
dE | oy
Gt rE= O
of which the general solution is

E=Ccosnz+Dsinnz ....... veeeeneen (1),

But since £ vanishes with  for all values of ¢ C - 0, and thus
we may write

& = 3 sin nw {4 cos nat + B sin nat}.
The condition at @ =1 now gives
S sinnl {4 cos nat + B sinnat} = o,

from which it follows that for every finite admissible value of n

sinnl=0, or n=1lZ .
But for the zero value of n, we get .

4, sinnl=a,
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and the corresponding term in £ is

sin nx x

E=d sinnr=a 5
sin nl

The complete value of § is accordingly

g=a+Zsn T0 {A co s“fli“— + B, sir '“””} (2).

The scries of tones form a complete harmonic scale (from
which however any of the members may be missing in any
actual case of vibration), and the period of the gravest com-
ponent is the time taken by a pulse to travel twice the length
of the rod, the same therefore as if both ends were free. It
must be observed that we have here to do with the wnstretched
length of the rod, and that the period for a given natural length
is independent of the permanent tension,

The solution of the problem of the doubly fixed bar in the
case of no permanent tension might also be derived from that
of a doubly free bar by merc differentiation with respect to .

For in tho latter problem ‘% satisfies the necessary differential

¢ <dé) d (leoi)

inasmuch as £ satisfies

equation, viz,

PE_ AL
de dx‘ g

dE dt

and at both ends Tn vanishes. Accordingly T in this problem

satisfies all the conditions prescribed for & in the case when
both ends are ﬁxgd. The two series of tones are thus identical.

155. The effect of a small load M attached to any point of
the rod is readily calculated approximately, as it is sufficient
to assume the type of vibration to be unaltered (§ 88). We
will take the case of a rod fixed at =0, and free at z=1[. The
kinetic encrgy is proportional to

%f pe sin® d:c + 3 M sin®

pwl (1 21 ., zmv)

or to e pol sin 2]

13—

L9
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196 LONGITUDINAL- VIBRATIONS OF BARS. [155.

Since the potential energy is unaltered, we see by the prin-
ciples of Chapter 1v., that the effect of the small load M at a
distance @ from the fixed end is to increase the period of the
component tones in the ratio

M ., irx
1:1 + ;J;l s —2_l— . .

The small quantity M : pwl is the ratio of the load to the
whole mass of the rod.
it
21
effect is to depress the pitch of every tone by the same small
interval., It will be remembered that ¢ is here an uneven integer.

If the load be attached at the free end, sin? =1, and the

If the point of attachment of M be a node of any component,
the pitch of that component remains unaltered by the addition.

156, Another problem worth notice occurs when the load at
the free end is great in comparison with the mass of the rod.
In this case we may assume as the type of vibration, a condition
of uniform extension along the length of the rod.

If £ be the displacement of the load 27, the kinetic encrgy is
x2

T=3ME+38 f :pw 5 da = 18 (M4} pol)......... (1.

The tension corresponding to the displacement £ is qw %: )
and thus the potential energy of the displacement is
V=228 (@)
The equation of motion is
M+ ppal) E+ T2 £=0,
and if £ occospt
(0]
p'= qT+(M+ .7 0) I (3).

The correction due to the inertia of the rod is thus equivalent
to the addition to M of one-third of the mass of the rod.

157. Our mathematical discussion of longitudinal vibrations
may close with an estimate of the error involved in neglecting
the lateral motion of the parts of the rod not situated on the
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axis. If the ratio of lateral contraction to longitudinal extension
be denoted by u, the lateral displacement of a particle distant-
r from the axis will be ure, in the case of equilibrium, where € is
the extension. Although in strictness this relation will be modi-
fied by the inertia of the lateral motion, yet for the present pur-
pose it may be supposed to hold good.

The constant  is a numerical quantity, lying between 0 and 4.
If u were negative, a longitudinal tension would produce a lateral
swelling, and if p were greater than 1, the lateral contraction
would be great enough to overbalance the elongation, and cause
a diminution of volume on the whole. The latter state of things
would be inconsistent with stability, and the former can scarcely
be possible in ordinary solids. At one time it was supposed
that pu was necessarily equal to }, so that there was only one
independent elastic constant, but experiments have since shewn
that u is variable. For glass and brass Wertheim found experi-
mentally u = 3.

If % denote the lateral displacement of the particle distant »
from the axis, and if the section be circular, the kinetic energy
due to the lateral motion is : :

8T=7rpfl f:ﬁ’dw. rdr
0
e [y
- 4 ) 0<d$> d-l?.

Thus the whole kinetic energy is

_po ?, Pa’l‘}?"fl d_f 2
T+ 8T = 5 fo Edx + 7 o(dx) dx.

In the case of a bar free at both ends, we have

e dE T, T
EOCCOS'T, d—xOC—Tsln—l—,
and thus
- ut® o8
T+8T.T—1+—2"‘Z§.

The effect of the inertia of the lateral motion is therefore to
increase the period in the ratio
2 Mz,n_n e
i T
This correction will be nearly insensible for the graver modes of
bars of ordinary proportions of length to thickness.

1:14
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198 LONGITUDINAL VIBRATIONS OF BARS. [158.

158. Experiments on longitudinal vibrations may be made
with rods of deal or of glass. The vibrations are excited by
friction, with a wet cloth in the case of glass; but for metal or
wooden rods it is necessary to use leather charged with powdered
rosin. “The longitudinal vibrations of a pianoforte string may be
excited by gently rubbing it longitudinally with a piece of india
rubber, and those of a violin string by placing the bow obliquely
across the string, and moving it along the string longitudinally,
keeping the same point of the bow upon the string. The note is
unpleasantly shrill in both cases.”

“If the peg of the violin be turned so as to alter the pitch of
the lateral vibrations very considerably, it will be found that the
pitch of the longitudinal vibrations has altered very slightly. The
reason of this is that in the case of the lateral vibrations the
change of velocity of wave-transmission depends chiefly on the
change of tension, which is considerable, But in the case of the
longitudinal vibrations, the change of velocity of wave-transmis-
sion depends upon the change of cxtension, which is comparatively
slight.”

In Savart’s experiments on longitudinal vibrations, a peculiar
sound, called by him a “son rauque,” was occasionally observed,
whose pitch was an octave below that of the longitudinal vibra-
tion. According to Terquem? the cause of this sound is a trans-
verse vibration, whose appearance is due to an approximate
‘agreement between its own period and that of the sub-octave of the
longitudinal vibration. If this view be correct, the phenomenon
would be one of the second order, probably referable to the fact
that longitudinal compression of a bar tends to produce curvature.

159. The sccond class of vibrations, called torsional, which
depend on the resistance opposed to twisting, is of very small
importance. A solid or hollow cylindrical rod of circular section
may be twisted by suitable forces, applied at the ends, in such a
manner that each transverse section remains in its own plane.
But if the section be not circular, the ecffect of a twist is of a
more complicated character, the twist being necossarily attended
by a warping of the layers of matter originally eomposing the
normal sections, Although the effects of the warping might pro-

¥ Donkin’s 4coustics, p. 154.
2 Ann. de Chimie, uvi, 120—190,
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bably be determined in any particular case if it were worth
while, we shall confine ourselves here to the case of a circular
section, when there is no motion parallel to the axis of the rod.

The force with which twisting is resisted depends upon an
elastic constant different from ¢, called the rigidity. If we de-
note it by n, the relation between ¢, #, and x4 may be written

”=§@%Fﬁ' .......................... (1)1,

shewing that = lies between }¢ and 3¢. In the case of u=1,
n=4q.
Let us now suppose that we have to do with a rod in the form

of a thin tube of radius » and thickness dr, and let € denote the
angular displacement of any section, distant 2 from the origin, .

The rate of twist at @ is represented by %g, and the shear of the

material composing the pipe by frf'z—e. The opposing force per

dx
unit of area is nr(%g; and since the area is 2zrdr, the moment
round the axis is
2nmr® dr—@ .
dx

Thus the force of restitution acting on the slice dx has the

moment ,

a0

8 et

2narr® dr de el

Now the moment of inertia of the slice under consideration

is 2mrdr.dz.p.7% and therefore the equation of motion assumes
the form

a0 a0 :
pW=nW..... ........................ (2).

Since this is independent of », the same equation applies to a
cylinder of finite thickness or to one solid throughout,

The velocity of wave propagation is \/ :—:, and the whole theory

is precisely similar to that of longitudinal vibrations, the condition

1 Thomson and Tait, § 683. This, it should be rcmarked, applies to isotropie
material only,
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200 LONGITUDINAL VIBRATIONS OF BARS. [159.

for a free end being d—g=0, and for a fixed end =0, ér, if a
permanent twist be contemplated, § = constant.

The velocity of longitudinal vibrations is to that of torsional
vibrations in the ratio 4/¢ : 4/n or »/(2+2u) : 1. The same ratio
applies to the frequencies of vibration for bars of equal length
vibrating in corresponding modes under corresponding terminal
conditions, If u =14, the ratio of frequencies would be

Mg i An=4/8: 43 =163,
corresponding to an interval rather greater than a fifth.

In any case the ratio of frequencies must lie between

N2 :1=1414, and /3 :1=1732

Longitudinal and torsional vibrations were first investigated by
Chladni.
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CHAPTER VIIL
LATERAL VIBRATIONS OF BARS.

160. IN the present chapter we shall consider the lateral
vibrations of thin elastic rods, which in their natural condition are
straight. Next to those of strings, this class of vibrations is per-
haps the most amenable to theoretical and experimental treatment.
There is difficulty sufficient to bring into prominence some im-
portant points connected with the general theory, which the fami-
liarity of the reader with circular functions may lead him to pass
over too lightly in the application to strings; while at the same
time the difficulties of analysis are not such as to engross attention
which should be devoted to general mathematical and physical
principles. .

Daniel Bernoulli' seems to have been the first who attacked
the problem. Euler, Riccati, Poisson, Cauchy, and more recently
Strehlke?, Lissajous®, and A. Seebeck*® are foremost among those
who have advanced our knowledge of it.

161. The problem divides itself into two parts, according to
the presence, or absence, of a permanent longitudinal tension.
The consideration of permanent tension entails additional compli-
cation, and is of interest only in its application to stretched
strings, whose stiffness, though small, cannot be neglected al-
together. Our attention will therefore be given principally to the
two extreme cases, (1) when there is no permanent tension,
(2) when the tension is the chief agent in the vibration.

1 Comment. dcad. Petrop. t. xuur. 2 Pogg. Ann. Bd, xxviI.

3 4nn. d. Chimie (8), xxx. 385.

1 Abhandlungen d. Math. Phys. Classe d. K, Sdchs, Gesellschaft d. Wissen-
schaften. Leipzig, 1852, ’
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With respect to the section of the rod, we shall suppose that
one principal axis lies in the plane of vibration, so that the bending
at every part takes place in a direction of maximum or minimum
(or stationary) flexural rigidity. For example, the surface of the
rod may be one of revolution, each section being circular, though
not necessarily of constant radius. Under these circumstances the
potential energy of the bending for each element of length is pro-
portional to the square of the curvature multiplied by a quantity
depending on the material of the rod, and on the moment of
inertia of the transverse section about an axis through its centre of
inertia perpendicular to the plane of bending. If  be the area
of the section, <’ its moment of inertia, ¢ Young’s modulus, ds the
element of length, and V" the corresponding potential energy for
a curvature 1 < 22 of the axis of the rod,

ds
dV=%g/c"‘w1—z;, ........................ (1).

This result 1s readily obtained by considering the extension of
the various filaments of which the bar may be supposed to be
made up. Let n be the distance from the axis of the projection
on the plane of bending of a filament of section dw. Then the
length of the filament is altered by the bending in the ratio

(142
1.1+R9

R Dbeing the radius of curvature. Thus on the side of the axis for
which 7 is positive, viz. on the outward side, a filament is extended,
while on the other side of the axis there i3 compression. The

force necessary to produce the extension - is ¢ % dw by the defini-

B
tion of Young’s modulus; and thus the whole couple by which the
bending is resisted amounts to

f_q%.n .dw=%x"w,

if @ be the area of the section and « its radius of gyration about
a line through the axis, and perpendicular to the plane of bending.
The angle of bending corresponding to a length of axis ds is ds+ B,
and thus the work required to bend ds to curvature 1 + R is

g0 %ﬁ ,
since the mean is half the final value of the couple.
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For a circular section x is one-half the radius.

That the potential energy of the bending would be proportional,
ceeteris paribus, to the square of the curvature, is evident before-
hand, If we call the coefficient 3, we may take

v=3[B%,

or, in view of the approximate straightness,

in which y is the lateral displacement of that point on the axis of
the rod whose abscissa, measured parallel to the undisturbed posi-
tion, is . In the case of a rod whose sections are similar and
similarly situated B is a constant, and may be removed from under
the integral sign.

The kinetic energy of the moving rod is derived partly from
the motion of translation, parallel to ¥, of the elements composing
it, and partly from the rotation of the same elements about axes
through their centres of inertia perpendicular to the plane of vibra-
tion. The former part is expressed by

if p denote the volume-density. To express the latter part, we have
only to observe that the angular displacement of the element dx is
dy dy
dz’ dz*
quantity must be multiplied by half the moment of inertia of the
element, that is, by 3 <*pw dz. We thus obtain

d dy\?
T=%waJd$+lprw <dt a’w> dZ vrreriniennnns (4).

4 and therefore its angular velocity (Zt The square of this

162. In order to form the equation of motion we may avail
ourselves of the principle of virtual velocities. If for simplicity we
confine ourselves to the case of uniform section, we have

SV_de?/“Jd

=B T4 - B oy B G 8y i),

IRIS - LILLIAD - Université Lille 1



204 . LATERAL VIBRATIONS OF BARS. [162.

where the terms free from the integral sign are to be taken between
the limits. This expression includes only the internal forces due
to the bending. In what follows we shall suppose that there are
no forces acting from without, or rather none that do work upon
the system. A force of constraint, such as that necessary to hold
any point of the bar at rest, need not be regarded, as it does no
work and therefore cannot appear in the equation of virtual velo-
cities,

The virtual moment of the accelerations is

f (gﬁ Sydx“Lf"“”‘ a (d ) 8 (gi)d

_ d*y &’y
._fpa) (EF - dx‘dt?) Sydw + pwx® 8y TR (2).

Thus the variational equation of motion is

d'y Py _ 2 2y
f {B d T Pe (dt’ PR )} Oy du

&y dz/) dy diy} =
+Bd28( {pw BT Sy=0 ®),

in which the terms free from the integral sign arc to be taken
between the limits, From this we derive as the equation to be
satisfied at all points of the length of the bar

d'y dy P dy
BL+po (dt* dx*dt‘) 0,
while at each end

dy dy "y dy
dQS( ) {Pw’cdtzd - B }Sy 0;

or, if we introduce the value of B, viz. gx’w, and write ¢ + p= 0%,

d’ 0 o 4 d*
b - S = 0 4),
and for each end
g d"y dy d’y d’y
b52 8 (@) + {dt"dx b” } Sy=0..cccuv.n. (5).

In these equations & cxpresses the velocity of transmission of
longitudinal waves.
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The condition (5) to be satisfied at the ends assumes different
forms according to the circumstances of the case. It is possible to

conceive a constraint of such a nature that the ratlo ) (d ) 3y has

a prescribed finite valtte, The second boundary condition is then
obtained from (5) by introduction of this ratio. But.in all the
cases that we shall have to consider, there is either no constraint

or the constraint is such that either o (%) or 8y vanishes, and

then the boundary conditions take the form

dy dy dy _1.d%
s(dx) {dtgd ~ By =0 (6).

We must now distinguish the special cases that may arise. If

an end be free, 8y and & (%) are both arbitrary, and the conditions
become

Py_o Ty _pdv

dx ' dfdx da’
the first of which may be regarded as expressing that no couple
acts at the free end, and the second that no force acts.

S, S ™,

If the direction at the end be free, but the end itself be con-
strained to remain at rest by the action of an applicd force of the
necessary magnitude, in which case for want of a better word the
rod is said to be supported, the conditions are

. &y
da?
by which (5) is satisfied.

=0, =0 .oererrrirererinnn. ..(8),

A third case arises when an extremity is constrained to main-
tain its direction by an applied couple of the necessary magnitude,
but is free to take any position. We have then

dy\ _ By Y
| 5(dw)_o, T s N ).

Fourthly, the extremity may be constrained both as to
" position and dircction, in which case the rod is said to be clamped.
The conditions are plainly

d,
8 (d‘Z) ' O’ Byﬁo --------------- (10).
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Of these four cases the first and last are the more important ;
the third we shall omit to consider, as there are no experimental
means by which the contemplated constraint could be realized.
Even with this simplification a considerable variety of problems
remain for discussion, as either end of the bar may be free,
clamped or supported, but the complication thence arising is not
so great as might have been expected. We shall find that
different cases may be treated together, and that the solution
for one case may sometimes be derived immediately from that of
another.

In experimenting on the vibrations of bars, the condition
for a clamped end may be realized with the aid of a vice of
massive construction. In the case of a free end there is of course
no difficulty so far as the end itself is concerned ; but, when both
ends are free, a question arises as to how the weight of the bar
is to be supported. In order to interfere with the vibration
as little as possible, the supports must be confined to the neigh-
bourhood of the nodal points. It is sometimes sufficient merely
to lay the bar on bridges, or to pass a loop of string round the bar
and draw it tight by screws attached to its ends. For more exact
purposes it would perhaps be preferable to carry the weight of
the bar on a pin traversing a hole drilled through the middle of
the thickness in the plane of vibration,

‘When an end is to be ¢supported,’ it may be pressed into
contact with a fixed plate whose plane is perpendicular to the
length of the bar,

163. Before proceeding further we shall introduce a sup-
position, which will greatly simplify the analysis, without seriously
interfering with the value of the solution. We shall assume that
the terms depending on the angular motion of the sections of
the bar may be neglected, which amounts to supposing the
wnertia of each section concentrated at its centre. We shall
afterwards (§ 186) investigate a correction for the rotatory in-
ertia, and shall prove that under ordinary circumstances it is
small, The equation of motion now becomes

d d*
7 &;{= Ouevreerrereereiness (1),
and the boundary conditions for a free end
d’ d’
(j;z = O, El;z =0 iiviiiiiiiiierenn, (2).
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The next step in conformity with the general plan will be
the assumption of the harmonic form of y. We may conveniently
take

b,

g/‘=ucos(l2 mt) ..................... 3),

where [ is the length of the bar, and m is an abstract number,
whose value has to be determined. Substituting in (1), we
obtain

du _ mt

%‘=7;u sedesisseesraseriessrrrane (4).

If u=e ' be a solution, we see that p is one of the fourth
roots of wunity, viz. +1, —1, +4, —%; so that the complete
solution is

mx

g’+Bsinm%’+(3’e_'+De_',

u=Acosml

containing four arbitrary constants.

We have still to satisfy the four boundary conditions,—two
- for each end. These determine the ratios 4 : B : ¢ : D, and
furnish besides an equation which = must satisfy. Thus a series
of particular values of m are alone admissible, and for each m
the corresponding u is determined in everything except a constant
multiplier. We shall distinguish the different functions u be-
longing to the same system by suffixes.

The value of y at any time may be expanded in a series of

the functions = (§§ 92, 93). If ¢,, ¢,, &c. be the normal co-
ordinates, we have

Y=+ P+ i vrieireninniaan, (5),
and T=1%po f($1u1+<f>2u2+ o)t de |
T_—%pw {(f)l“fufdx + iz’fufdx + } errerirens (6).

We are fully justified in asserting at this stage that each
integrated product of the functions vanishes, and therefore the
process of the following section need not be regarded as more
than a wertfication. It is however required in order to determine
the value of the integrated squares,
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164. Let u,, u, denote two of the normal functions cor-

responding respectively to m and m’. Then
d'u, mt du,y m'
—dx—4=7 Wy Ti.;{ =7A’!Lml ..... sererreaas (1) H

@

or, if dashes indicate differentiation with respect to m 79

mt He
U= Uy U S U eveeeraieniiiann (2).

m

If we subtract equations (2) after multiplying them by w,.,
u,, respectively, and then intcgrate over the length of the bar,

mn

we have

3 4 4 4
m* —m d*u,, du,,
2 U, Uy de = f (um da* — Uy a dx

dS,u/ / dau’m dum' dzum éum d2um' . (3),

=u, gy s, O ..
L » dz dz’ dz dx?

the integrated terms being taken between the limits.

Now whether the end in question be clamped, supported, or
free!, each term vanishes on account of one or other of its
factors. We may therefore conclude that, if w,, u, refer to two

modes of vibration (corresponding of course to the same terminal
conditions) of which a rod is capable, then

fu,,,u,,.dx-——-o.......... ...... RN )8

provided m and m’ be different.

The attentive reader will perceive that in the process just
followed, we have in fact retraced the steps by which the funda-
mental differential equation was itself proved in § 162. . It is the

1 The reader should observe that the cases here specified are particular, and
that the right-band member of (3) vanishes, provided that
d3u, ddu,
Uy Eé”:u,w : Tx:‘nl’
L T LT
and e W @ T e
These conditions include, for instance, the case of a rod whose end is urged
towards its position of equilibrium by a foree proportional to the displacement, as
by a spring without inertia.
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original variational equation that has the most immediate con-
nection with the conjugate property. If we denote y by u and 3y
by v,

d’u IZQU

SV = de o d

and the equation in question is

2 :
Bfg“chlx%Dwfuvdx Oceiiniininnnnes (5).

Suppose now that u relates to a normal component vibration,
so that 4 4- n*» = 0, where n is some constant’; then

2, 2,
n?pwfuvdw=]3fd—@i dv

By similar reasoning, if » be a normal function, and u represent
any displacement possible to the system,

2 2
npwfuvdw ijuz sdx.

We conclude that if u and v be both normal functions, which
have different periods,

fuvdx=o ............................. 6);

and this proof is evidently as direct and general as could be de-
sired.

The reader may investigate the formula corresponding to (6),
when the term representing the rotatory inertia is retained.

By means of (6) we may verify that the admissible values of »*
are real. For if n* were complex, and w = a + {8 were a normal
function, then a—i8, the conjugate of u, would be a mormal
function also, corresponding to the conjugate of %% and then the
product of the two functions, being a sum of squares, would not
vanish, when integrated .

If in (3) m and m’ be the same, the equation becomes iden-
tically true, and we cannot at once infer the value of [u,’dw.
1 This method is, I believe, due to Poisson.

R. 14
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We must take m’. equal to m + &m, and trace the limiting form of
the equation as &m tends to vanish. In this way we find

3
ii;—?— u, de =

d duy dudu du d du du d du

Yimde " dn &t det dm do ~ dx dm A’
the right-hand side being taken between the limits.

du m,&c, du m,&c’

Now —-— =
de 1 dm
and thus
4m® 3m? mixe ., mx
gdm = u 11t . uu'”l_ T u/u”l
{ {
m? msx 2m: ,, mz i

I s, 01 J 1 \9 u'u »
r v ( ) I3 A
in which «"” = U, BO that

%nlfumzdm=3u ulll+ ";w w— 277;27 wu'’ — 'u,”+ l (u")’... (7):

between the limits.

Now whether an end be clamped, supported, or free,

uu" =0, wu' =0,

and thus, if we take the origin of « at one end of the rod,
t 2 __ :f 2 _ 1, 1 "
fou da = {4 (u* — 2u'u" +u 2)}0
=H (@ — 20U +u"),_ liiiinnen o0 (8).

The form of our integral is independent of the terminal condi-
tion at z=0. If the end =1 be free, ¥ and 4" vanish, and ac-
cordingly

!
f WAz =318 (D) eeoreeeereeerrsennen, o),
0

that is to say, for a rod with one end free the mean value of u* is
one-fourth of the terminal value, and that whether the other end

be clamped, supported, or free.
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Again, if we suppose that the rod is clamped -at 2 =1,  and '
vanish, and (8) gives

folzfdw _ MO

Since this must hold good whatever be the terminal condition at
the other end, we see that for a rod, one end of whlch is fixed and
the other free, :

f w'dx =31 (free end) = L1u"” (fixed end),
0

shewing that in this casc %* at the free end is the same as »" at
the clamped end.

The annexed table gives the values of four times the mean of «'
in the different cases.

clamped, free......... u? (free end), or w'™ (clamped end)
free, free .............. u’ (free end)

clamped, clamped ... | «"* (clamped end)

supported, supported | — 2uw'u" (supported end) = 2u

"

supported, free ...... u* (free end), or — 2u'w” (supported end)

supported, clamped | %" (clamped end), or — 2u w" (supported end)

By the introduction of these values the expression for T'
assumes a simpler form. In the case, for example, of a clamped-
free or a free-free rod,

=P (G20t )+ 2l B+ o oo (10),

where the end =1 is supposed to be free.

165. A similar method may be applied to investigate the
values of f w*dz,and f w"*dz. In the derivation of equation (7) of the

preceding section nothing was assumed beyond the truth of the
equation 4"’ =w, and since this equation is equally true of any
of the derived functions, we are at liberty to replace » by «’ or w’,-
Thus

4m ma mze mx o
"dm Su'u + — u?—- 2 Zwu—uw ]

T)J, ; 1
=3uu’+m—t—"’ﬂu/2 u’ '"+’mf u’?,

14—2

IRIS - LILLIAD - Université Lille 1



212 . LATERAL VIBRATIONS OF BARS. T165.

taken between the limits, since the term ‘wu” vanishes in all three
cases,

For a free-free rod
?
4Tm f u?de =3 (uw), — 8(ww’), + m (W'?),
0

=06 (uw),+m (W)reeerirenniinnnenn. (1),

for, as we shall see, the values of u % must be equal and opposite
at the two ends. Whether u be positive or negative at 2 =1, ww’
is positive.

For a rod which is clamped at =0 and free at 2 =1
4
%n f . wde =3 (uu),+ mu* + (W),

We have already seen that 4,” = u,, and it will appear (§ 173) that

"0 __

u,” =—u,/, so that
1
4—l—m f wide =2 (uu'),+ mu? eooeriiiiniiniinn. (2),
0

a result that we shall have occasion to use later.

By applying the same equation to the evaluation of f u"dz, we
find

4 117
_Z”Z f u*de = 3u'y + an_m u?—2 "ﬁl"_’ wu'—uu+ 'I? u®

) = m (u’/ﬂ — 2u'ullf + uﬂ)',
since »'w” and uu" vanish.

Comparing this with (8) § 164, we see that

f u"de= f (720" - vrevaeiireens (3),

whatever the terminal conditions may be.

The same result may be arrived at more directly by integrating
by parts the equation

m' = d'u
r daz*’
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166. We may now form the expression for ¥V in terms of the
normal co-ordinates.

Y= b2xpw/{§b1dm2+qb2d ...}zdx
=bz"f""{¢1f( )d +¢2f( )dw+ }

_ V"o

—5E {m b, fu f Zdx+mid .t ulde + } ......... (1).

If the functions u be those proper to a rod free at « =1, this expres-
sion reduces to

Vo : ' ' '
V=55 {mf [ OF'd, +myf [, ()T, + } ......... ).
In any case the equations of motion are of the form

f *dz ¢, + e pw m, f Jdz ¢ =D, ..cuuenn. (3){'

and, since ® 8¢, is by definition the work done by the impressed
forces during the displacement d¢,, .

@, = f Yt p0QT 1vrerereerererenn ),

if Ypwdz be the lateral force acting on the element of mass pwdz.
If there be no impressed forces, the equation reduces to

b*c*m *

Bit Tt =0 s ),

as we know it ought to do.

167. The significance of the reduction of the rintegrals‘
f w’dz to dependence on the terminal values of the function and

its derivatives may be placed in a clearer light by the following
line of argument. To fix the ideas, consider the case of a
rod clamped at x=0, and free at =1, vibrating in the normal
mode expressed by . If a small addition Al be made to the
rod at the free end, the form of % (considered as a function of
@) is changed, but, in accordance with the general principle
established in Chapter 1v. (§ 88), we may calculate the period
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under the altered circumstances without allowance for the change
of type, if we are content to neglect the square of the change.
In consequence of the straightness of the rod at the place where
the addition is made, there is no alteration in the potential
energy, and therefore the alteration of period depends entirely
on the variation of 7. This quantity is increased in the ratio

l 1+Al
f wde : / w'd.e,

0 0

2
or 1:1+4 —%’Al s
_/0u2dw

which is also the ratio in which the square of the period is
augmented. Now, as we shall see presently, the actual period
varies as !, and therefore the change in the square of the period

is in the ratio

1. 1+4‘%“.

A comparison of the two ratios shews that
v} :ju’d.r=~1« : L

The above reasoning is not insisted upon as a demonstration,
but it serves at least to explain the reduction of which the in-
tegral is susceptible. Other cases in which such integrals occur
may be treated in a similar manner, but it would often require
care to predict with certainty what amount of discontinuity in the
varied type might be admitted without passing out of the range
of the principle on which the argument depends. The reader
may, if he pleases, examine the case of a string in the middle
of which a small piece is interpolated.

168. In treating problems relating to vibrations the usual
course has been to determine in the first place the forms of the
normal functions, viz. the functions representing the normal
types, and afterwards to investigate the integral formule by
means of which the particular solutions may be combined to
suit arbitrary initial circumstances. I have preferred to follow
a different order, the better to bring out the geunerality of the
method, which does not depend upon a knowledge of the mormal
Junctions. In pursuance of the same plan, I shall now investigate
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the connection of the arbitrary constants with the initial circum-
stances, and solve one or two problems analogous to those treated
under the head of Strings. :

The general value of ¥ may be written

y = (A1 cos KTE m.% + B, sin KTI; fm;"t) u,

+ (A2 cos %Z-) m,'t + B, sin ';—? m,’t) u,
e e (1),
so that initially
Yo=Au + A+ e e @),
b, .
Yo = F{m‘ By, + m2Ba, + ...} ceeeniinnnnns (8).

If we multiply (2) by », and integrate over the length of the
rod, we get

[yt o= 4, fujdx .................. @),
and similarly from (3)

: /czb f yu,dz = mB, f UAZ veiiiiniiiianas (5),

formulee which determine the arbitrary constants 4,, B,.

It must be observed that we do not need to prove analytically
the possibility of the expansion expressed by (1). If all the
particular solutions are included, (1) necessarily represents the
most general vibration possible, and may therefore be adapted
to represent any admissible initial state.

Let us now suppose that the rod is originally at rest, in its
position of equilibrium, and is set in motion by a blow which
imparts velocity to a small portion of it. Initially, that is, at
the moment when the rod becomes free, y,=0, and 7, differs from
zero only in the neighbourhood of one point (= ¢).

From (4) it appears that the coefficients 4 vanish, and from
(5) that :

. P .
m B, f u*de = 5% (c) f ¥ .
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Calling f Yopw dz, the whole momentum of the blow, ¥, we

have
Y u, (c)

whpw mf J udx

B == —" ... creeneeans . (6),

and for the final solution

Ry {u (c) u, (=) . sin (—.mft) + ..

i fu g 2
+ u, (0) u, (@) sin (’;f) m t> + e } ...... M.
m, f w, de

In adapting this result to the case of a rod free at =1, we
may replace

fufdx by 31[s, DT

If the blow be applied at a node of one of the normal com-
ponents, that component is missing in the resulting motion. The
present calculation is but a particular case of the investigation
of § 101,

169. As another example we may take the case of a bar,
which is initially at rest but deflected from its natural position
by a lateral force acting at z=¢. Under these circumstances
the coefficients B vanish, and the others are given by (4), § 168.

Now
14 g
Jypoa- e i e
and on integrating by parts

f _, du_dy, du,
‘/od“ °d3 de da?

d’y, du, d’y,
do* dxz  di

11 l
,+J P u,da,

in which the terms free from the integral sign are to be taken
between the limits; by the nature of the case y, satisfies the
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same terminal conditions as does u,, and thus all these terms
vanish at both limits. If the external force initially applied
to the element da be Ydz, the equation of equilibrium of the
bar gives

4
pw x’ﬁ% =T e (1),

and accordingly

! I 1
fo you,doc = PRy fo Yu (z)da.

If we now suppose that the initial displacement is due to
a force applied in the immediate neighbourhood of the point

x = ¢, we have
fyo = Tb(C) f)'dx,
and for the complete value of y at time ¢,

y=23 {;,@ri::?(j),):iﬁ) cos m ’t} f Ydz ooonnnnn. (2).

In deriving the above expression we have not hitherto made
any special assumptions as to the conditions at the ends, but
if we now confine ourselves to the case of a bar which is clamped
at =0 and free at x =1/, we may replace

f udz by 2 [u, ()T

If we suppose further that the force to which the initial deflection
is due acts at the end, so that ¢ =1, we get '

_ Pu, (z) 2
y= 4 2 {Wm COS b t}flrd.l}' ...... (3).

When ¢=0, this equation must represent the initial displace-
ment. In cases of this kind a difficulty may present itsclf as
to how it is possible for the series, every term of which satisfies
the condition y” =0, to represent an initial displacement in
which this condition is violated. The fact is, that after triple
differentiation with respect to @, the series no longer converges
for =10, and accordingly the value of 3 is not to be arrived
at by making the differentiations first and summing the terms
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afterwards. . The truth of this statement will be apparent if
we consider a peint distant df from the end, and replace
u’' (I—dl) by «" ()= (I)dl,

in which «™ (I) is equal to

For the solution of the present problem by normal co-ordinates
the reader is referred to § 101.

170. The forms of the normal functions in the various par-
ticular cases are to be obtained by determining the ratios of the
four constants in the general solution of

d'v _m

d‘ Z;‘ W,

If for the sake of brevity ' be written for —=, the solution may

l )
be put into the form
u = A (cos ' + cosh ) + B (cos & — cosh &)

+ O (sin @ + sinh &') + D (sin &’ —sinh &) ....... 1.
cosh z and sinh & are the hyperbolic cosine and sine of @, defined by
the equations

coshz=3(¢"+¢™), sinhaw=34E—€"). i 2).

I have followed the usual notation, though the introduction of
a special symbol might very well be dispensed with, since

coshz=cosx, sinhax=—1giniz
where 1=,/—1; and then the connection between the formulze of

circular and hyperbolic trigonometry would be more apparent. The
rules for differentiation are expressed in the equations

% cosh z = sinh z, Zi% sinh # = cosh x

2 d?
cosh & = cosh z, sinh & = sinh «.

dzs* do*

In differentiating (1) any number of times, the same four com-
pound functions as there occur are continually reproduced. The
only one of them which does not vanish with «’ is cos &’ 4 cosh &/,
whose value is then 2.
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Let us take first the case in which both ends are free. Since

3,
Zz—;ﬁ and g;qf vanish with z, it follows that B =0, D=0, so that

u=2A (cosa’+cosh #') + C (sin 2’ + sinh &)......... (4).

We have still to satisfy the necessary conditions when z=1, or
2’ =m. These give

A (= cos m + cosh m) + C (— sinm + sinh m) =0 5
A ( sinm+sinhm)+ 0(—cosm+cosh_m)=0} """ (5),
equations whose éompatibility requires that
(cosh m — cos m)* = sinh* m — sin® m,
or in virtue of the relation
cosh®m —sinh®m =1...cc.covnvennvnnrennn. (6),
€057 cosh 7 =L..eveevreeenririnennns, (7).

This is the equation whose roots are the admissible values of m.
If (7) be satisfied, the two ratios of 4 : C given in (5) are equal,
and either of them may be substituted in (4). The constant multi-
plier being omitted, we have for the normal function

u = (sin m — sinh m) {cos —+co osh —l—}

+ (cos m — cosh m) {sin _ml_m + sinh 1?} .......... (8),
or, if we prefer it,

u = (cos m — cosh m) {COb Tt cosh ~}

. . . . )
+ (sin 7 + sinh m) {sm W% + sinh @le ......... (9);
and the simple harmonic component of this type is expressed by
y = Pucos (l,b mt + e) .................. (10).

171. The frequency of the vibration is 5 [Z‘ , in which & is

a velocity depending only on the material of which the bar is
formed, and m is an abstract number. Hence for a given material
and mode of vibration the frequency varies directly as x—the
radius of gyration of the section about an axis perpendicular to the
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plane of bending—and inversely as the square of the length, These
results might have been anticipated by the argument from dimen-
sions, if it were considered that the frequency is necessarily
determined by the value of {, together with that of «b—the
only quantity depending on space, time and mass, which occurs in
the differential equation. If everything concerning a bar be given,
except its absolute magnitude, the frequency varies inversely as
the linear dimension.

These laws find an important application in the case of tuning
forks, whose prongs vibrate as rods, fixed at the ends where they
join the stalk, and free at the other ends. Thus the period of vibra-
tion of forks of the same material and shape varies as the linear
dimension. The period will be approximately independent of the
thickness perpendicular to the plane of bending, but will vary in-
versely with the thickness in the plane of bending. When the
thickness is given, the period is as the square of the length.

In order to lower the pitch of a fork we may, for temporary
purposes, load the ends of the prongs with soft wax, or file away
the metal near the base, thereby weakening the spring. To raise
the pitch, the ends of the prongs, which act by inertia, may be
filed.

The value of b attains its maximum in the case of steel, for
which it amounts to about 5237 metres per second. For brass
the velocity would be less in about the ratio 1'5:1, so that a
tuning fork made of brass would be about a fifth lower in pitch
than if the material were steel.

172. The solution for the case when both ends are clamped
may be immediately derived from the preceding by a double dif-
ferentiation. Since y satisfies at both ends the terminal con-
ditions

dy_, &y

&= W=
it is clear that y” satisfies

N d ’7

g’ =0, 73;_= ,

which are the conditions for a clamped end. Moreover the general
differential equation is also satisfied by 3”. Thus we may take,
omitting a constant multiplier, as before,

u = (sinm — sinh gn) {cos &’ — cosh &'}
— (cos m — cosh m) {sin &' — sinh &} ......i0n(1)

?
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-while m is given by the same equation as before, namely,
cosmcoshm=1 . ....cooveiiiininnininnn, (2).

We conclude that the component tones have the same pitch in the
two cases,

In each case there are four systems of points determined by
the evanescence of y and its derivatives. When y vanishes, there
is a node; where ¥’ vanishes, a loop, or place of maximum displace-
ment; where y” vanishes, a point of inflection; and where y"
vanishes, a place of maximum curvature. Where there are in the first
case (free-free) points of inflection and of maximum curvature, there
are in the second (clamped-clamped) nodes and loops respectively;
and wvice versd, points of inflection and of maximum curvature for
a doubly-clamped rod correspond to nodes and loops of a rod whose
ends are free.

173. We will now consider the vibrations of a rod clamped at
2=0, and free at wx=1. Reverting to the general integral (1)
§ 170 we sce that 4 and C vanish in virtue of the conditions at
z =0, so that

% =B (cos &' — cosh &) + D (sin & —sinh &) vueeennnninnn. (1).
The remaining conditions at z =1 give

B ( cosm+ cosh m)+ D (sin m + sinh m) =0 }
B (—sinm +sinh m) +.D (cos m + coshm) =0 )’

whence, omitting the constant multiplier,

% = (sin m + sinh m) {cos m_?a_: — cosh an_oc}
— (cos m + coshm) {sin "% _ sinh m—l-x} ......... @),
or
% = (cos m + cosh m) {cos me — cosh m_lx }
+ (sin m — sinh m) {sin fqliv — sinh n_;a: } ......... 3,
where m must be a root of ‘
cosm coshm +1=0 ..ccocvverrnennnes .(4).

The periods of the component tones in the present problem are
thus different from, though, as we shall see presently, nearly re-
lated to, those of a rod both whose ends are clamped, or free,
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222 LATERAL VIBRATIONS OF BARS. [173.

If the value of w in (2) or (3) be differentiated twice, the re-

sult (v”’) satisfies of course the fundamental differential equation.
) 2 3

Ai? =0, _d%‘u”’ dd—xs 1" vanish, but at x =1 «”and C—%C »” vanish,
The function «” is therefore applicable to a rod clamped at I and
free at 0, proving that the points of inflection and of maximum
curvature in the original curve are at the same distances from the
clamped end, as the nodes and loops respectively are from the free

end.

174.  In default of tables of the hyperbolic cosine or its loga-
rithm, the admissible values of m may be calculated as follows.
Taking first the equation

cosm coshm=1.............. ereenavnenns (1),

we see that m, when large, must approximate in value to
$(2¢+ 1) m, ¢ being an integer. If we assume

m=%21+ 17— (—1)B rirrrrirniennn (2>
B will be positive and comparatively small in magnitude.
Substituting in (1), we find
Cob 1B — gn o ¢ HE I~ (DB,

or, if ¢***I7 be called g,

an equation which may be solved by successive approximation after

expanding tan 38 and " iy ascending powers of the small
quantity 8. The result ig

2 4 34 112
B.__+ —~ 1) 2 i 1
a ( ) ] t 3 3 } ( 1) 3 4+ ............... (4),

which is sufficiently accurate, even when 7=1.
By calculation
B, ="0179666 — 0003228 + * 0000082 — 0000002 =017G518.

B,, B, B, B; are found still more easily. After 5; the first term of
the serics gives 3 correctly as far as six significant figures. The

1 This process is somewhat similar to that adopted by Strehlke,
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table contains the value of 3, the angle whose circular measure is
B, and the value of sin §3, which will be required further on.

Free-Free Bar.

d in d Sy .
B oimatos, and scoonde sinfy.
1 107t x *176518 1° 0" 40794 1072 x 88258
2 1072 % -777010 2' 40”2699 107% x -38850
3 107 x -335505 692029 1074 % -16775
4 107° x *144989 299062 107° x 72494
5 1077 % -626556 0129237 1077 x -31328
The values of m which satisfy (1) are
m, = 47123890 + B, = 47300408
m, = 78539816 — B, = 78532046
m, = 109955743 + B, = 109956078
m, = 141371669 — B, = 141371655
m, = 172787596 + B, = 172787596
after which m=3(2: + 1) m to seven decimal places.
We will now consider the roots of the equation
cosm coshm=—=1 ...ocerrrureriniiniins (5).
Assuming ~
m=%Ri—1)m—(—Loniiriiiiininnn. (6)
we obtain the same result as before
"= cot Ja=a’e” "
where however o =gt® I,

From this it appears that the series of values of a is the same
as that of B, though the corresponding suffixes are not the same.

In fact
a2=181: a3=32, ...... ai+1=18¢1,

so that we have nothing further to calculate than «,, for which
however the series (4) is not sufficiently convergent. The value

1 This connexion between a and B docs not appear to have been hitherto
noticed. .
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224 LATERAL VIBRATIONS OF BARS. [174.

of @, may be obtained by trial and error from the equation
log,, cot 3o, — "6821882 — 43429448 a, = 0,
and will be found to be
o, = ‘3043077

Another method by which m, may be obtained directly will be
given presently.

The values of m, which satisfy (3), are
m, = 15707963 + a, = 1:875104
my = 47123800 — a, = 4694737
m,= 78539816 + a, = 7-854758

2
8

m, = 100955743 — a, = 10995541

4

m, = 141371669 + «, = 14137168
m, = 172787596 — g, = 17278759, -

after which m =4(2¢ — 1) sensibly. The frequencies are propor-
tional to m? and are therefore for the higher tones nearly in the
ratio of the squares of the odd numbers. However, in the case of
overtones of very high order, the pitch may be slightly disturbed
by the rotatory incrtia, whose effect is here neglected.

175. Since the component vibrations of a system, not subject
to dissipation, are necessarily of the harmonic type, all the values
of m®, which satisfy

cosmeoshm=41.ceeerrirrriiiriennnn, @,
must be real. We see further that, if m be a root, so are also

—m, myJ =1, —mJ=1. Hence, taking first the lower sign, we
have :

mt m®

1—‘2 + m T sereen
m mt
= (1 - 7714) (1 - ﬁ> rrarerrererieeanns 2).

2

%(cos mcoshm+1)=1-—

If we take the logarithms of both sides, expand, and equate co-
cfficients, we get

s1_1 1 1 33

W18 T T iz 35
This is for a clamped-frec rod.
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From the known value of Zm8, the value of m, may be derived

with the aid of approximate values of my, ny,,...... We find
St =-006547621,
and 1712'8 =-000004287

my = ‘000000069
m = 000000005,
whence m,”®= 006543310
giving , m, = 1875105, as before.

In like manner, if both ends of the bar be clamped or free,

mt mt mt
l-m'l"“:(l—m)(l—;n?) &e. ..o, (4),

1 .
=1933 &c, where of course the summation is exclu-
v 35

sive of the zero value of m.

whence 3, ;71—4

176. The frequencies of the series of tones are proportional to
m’. The interval between any tone and the gravest of the series
may conveniently be expressed in octaves and fractions of an
octave. This is effected by dividing the difference of the logarithms
of m? by the logarithm of 2. The results are as follows:

1-4629 2:6478
2:4358 41332
31590 51036
37382, &o. 5-8288, &e.

where the first column relates to the tones of a rod both whose
ends are clamped, or free; and the second column to the case of a
rod clamped at one end but free at the other. Thus from the
second column we find that the first overtone is 2:6478 octaves
higher than the gravest tone. The fractional part may be reduced
to mean semitones by multiplication by 12. The interval is then
two octaves+ 77736 mean semitones. It will be seen that the
rise of pitch is much more rapid than in the case of strings.

If a rod be clamped at one end and free at the other, the pitch
of the gravest tone is 2 (log 47300 — log 1-8751) +1log 2 or 2:6698
octaves lower than if both ends were clamped, or both free.
R. 15
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226 LATERAL VIBRATIONS OF BARS. [17v.

177. In order to examine more closely the curve in which the
rod vibrates, we will transform the expression for % into a form
more convenient for numerical calculation, taking first the case
when both ends are free. Since m=3}(2¢+1)7— (—1)5,

cosm=sinB, sinm=costmw x cosB; and therefore, m being a
root of cosm coshm =1, coshm = cosecp.

Also .
sinh®m = cosh® m — 1 = tan®* m = cot’ 5,

or, since cot B is positive,

sinh m = cot B.
Thus

sinm —sinhm 1 — cos¢wsin B
Cos M — cosh m cos 3

_ (cos 4 B — cos t7r sin 3 B)*
" (cos 8 — cosimr sin ) (cos 4 8 + cos v sin § B)

__cos 3B cos i —sin B
~cos §B3 cosumr+sin$B°

We may therefore take, omitting the constant multiplier,

u = (cos 33 cos % + sin £ 8) {sin m_l:c + sinh ﬁ;x}

— (cos %8 cos ¢ — sin ) {cos 2% tcosh @}

1 l
e i fmE T B
_.,\/2cosz7rsm{l 4"‘( 1) 2}
+sin 18 e’ — Ccos im CoS B € Y (1).

If we further throw out the factor /2, and put I=1, we
may take

u=F +F + I,
where
F, = cos im sin {mx — }w+3(~1)'8}

log F,= maxloge+logsin{B—log,/2 ¢...........(2),
log + F,=—mx log e 4 log cos $ B —log o/2

from which « may be calculated for different values of ¢ and .
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177.] GRAVEST MODE FOR FREE-FREE BAR. 227

At the centre of the bar, # =14, and F,, F, are numerically
equal in virtue of ¢"=cot £ 8. When ¢ is even, these terms cancel.
For F,, we have F, =(—1)'sin4 ¢m, which is equal to zero when
¢ is even, and to + 1 when ¢ is odd. When ¢ is even, therefore,
the sum of the three terms vanishes, and there is accordingly a
node in the middle.

‘When #=0, w reduces to —2 (—1)'sin {1 = — % (- 1)*8}, which
(since B is always small) shews that for no value of ¢ is there a
node at the end, If a long bar of steel (held, for example, at the
centre) be gently tapped with a hammer while varying points of
its length are damped with the fingers, an unusual deadness in
the sound will be noticed, as the end is closcly approached.

178. We will now take some particular cases.
Vibration with two nodes. 1=1,

If =1, the vibration is the gravest of which the rod is capable,
Our formule become

F,=—sin {z (270°+ 1° 0’ 40" *94) — 45° — 30’ 20"47}
log F.= 2054231 &+ 37952391
log F,=—2:054231  + 1-8494681,

from which is calculated the following table, giving the values of
u for = equal to 00, 05, '10, &c. ’

The values of w:%("5) for the intermediate values of  (in the
last column) were found by interpolation formule. 1f o, p, ¢, 7, s,¢
be six consecutive terms, that intermediate between ¢ and r is

9;T+Q+T—4§p+s)+g;{2[q+r-(p+s)]—(p+s) +o+t}.

15—2
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228 LATERAL VIBRATIONS OF BARS. [178.

@ F, i F, % % : %(5)

‘000 | +-7133200 | + 0062408 | +-7070793 | +1-4266401 | + 1:645219

025 1454176
050 | +5292548| -0079059| -5581572)| 1-0953179| 1-263134

075 1-072162
100 | -3157243] -0100153| -4406005 7663401 -8837528
-125 e 6969004
150 | +°0846166 | 0126874 -3478031 4451071 5133028
‘175 Y 3341625
200 | --1512020 | -0160726| -2745503|+ -1394209 |+ -1607819
235 - 0054711
250 | -3786027 | -0203609| -2167256 |~ -1415162| -1631982
275 *3109982
300 | 5849255 | -0257934| -1710798| -3880523| 4475066
-325 . 5714137
350 | 7586838 | -0326753| ‘1350477 5909608 | 6815032
375 71766629
400 | -8902038] -0413934) ‘1066045 | 7422059 8559210
425 0184491
450 | -9721635| -0524376| 0841519 ‘8355740 | 49635940
475 9908730
500 | —1-000000 | +-0664285| -0664282 |— -8671433 | —1-0000000

Since the vibration curve is symmetrical with respect to the
middle of the rod, it is unnecessary to continue the table beyond
2='5. The curve itself is shewn in fig, 28,

Fig, 28.

/

To find the position of the node, we have by interpolation

‘1607819

v="200+ ) 663530

x 025 = 22418,

IRIS - LILLIAD - Université Lille 1



178.] FREE-FREE BAR WITH THREE NODES. 229

which is the fraction of the whole length by which the node is
distant from the nearer end.

Vabration with three nodes. <= 2,
F,=sin { (450° — 2' 40" *27) x — 45° +- 1" 20" 185}
log F,= 8410604« + 44388816
log (- F,) = — 8410604 4 1-8494850.

x u:—u(0) % % —u(0)
000 ~1-0000 *250 + 5847
025 *8040 275 6374
050 6079 - +300 6620
075 4147 325 6569
‘100 2274 -350 6245
125 —~ -0487 375 6652
‘150 + 1175 400 4830
‘175 2672 425 *3805
200 3972 450 2627
225 5037 475 1340

500 -0000

In this table, as in the preceding, the values of u were calcu-
lated directly for & =000, ‘050, 100 &c., and interpolated for the
intermediate values. For the position of the node the table gives
by ordinary interpolation z='132., Calculating from the above
formulse, we find

v ("1321) =—-000076,

u (11322) = 4000881,
whence = = 132108, agreeing with the result obtained by Strehlke.
The place of maximum excursion may be found from the derived
function. We get

v’ (:3083) =+ 0006077, ' (308%) =— 0002227,
whence u' (308373) =0,
Hence u is a maximum, when z='308378; it then attains

the value 6636, which, it should be observed, is much less than the
excursion at the end.
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The curve is shewn in fig. 29.

Fig. 29,

/

Vibration with four nodes. <=3.
F, = —sin { (630° 4 6"92) = — 45° — 346},
log F,= 4775332+ 50741527,
log F, = — 4775332 z 4 1-8494850.

From this w (0) =141424, u (}) =1'00579. The positions of
the nodes are readily found by trial and error. Thus

% ('3538) =—"000037 % (-3559) = +-001047, .
whence w (-855803) =0. The value of & for the node near the end
is "0944, (Seebeck).

The position of the loop is best found from the derived
function. It appears that ' =0, when z=-2200, and then
u=—'9349, There is also a loop at the centre, where however
the excursion is not so great as at the two others.

Fig. 30.

~ N

We saw that at the centre of the bar F, and F, are numerically
equal. In the neighbourhood of the middle, F, is evidently very
small, if ¢ be moderately great, and thus the equation for the nodes
reduces approximately to

n being an integer. If we transform the origin to the centre of
the rod, and replace m by its approximate value §(27+1) =, we
find

m_i_?n—[
I 2041
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shewing that near the middle of the bar the nodes are uniformly
spaced, the interval between consecutive nodes being 2{ =+ (2¢+1).
This theoretical result has been verified by the measurements of
Strehlke and Lissajous.

For methods of approximation applicable to the nodes near
the ends, when ¢ is greater than 3, the reader is referred to the
memoir by Seebeck already mentioned § 160, and to Donkin’s
Acoustics (p. 194).

179. The calculations are very similar for the case of a bar
clamped at one end and free at the other. If w« F, and
F=F+F,+F, we have in general

P, = cos {mz + }m + §(— 1)},

13
F’__-(J;) sinda ™ Fs=—~/iécos%a e,

If 7 =1, we obtain for the calculation of the gravest vibration-
curve

Iy = cos {? ma® +45° — 8° 43"0665} )

log (— F)=maloge-+ 10300909,
log (— F,) =—maloge +1-8444:383.

These give on calculation

F (0) =+000000, F(6)= "T43452,
F(-2) =-102974, F( -8)=1169632,
F (-4) = 370625, F (10) = 1612224,

from which fig. 31 was constructed.

Fig. 81.
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The distances of the nodes from the free end in the case of a

rod clamped at the other end are given by Seebeck and by Donkin.

2™ tone 2261, |

8 tone 1321, 4999,

4% tone 0944, -3558, '0439.

13222 49820 90007 45— 3 47 —109993 4770175
4 -2 747 —-2 44— 27 44 -2’ 49—2 7 452

+® tone

“The last row in this table must be understood as meaning

that ij 3 may be taken as the distance of the j™ node from the

free end, except for the first three and the last two nodes.”

When both ends are free, the distances of the nodes from the
nearer end are
1* tone '2242.
2" tone 1321 ‘5.
3™ tone ‘0944 ‘8558,
1-3222 49820 90007 45-—3

*th
VIWne TS Hre dix2 dive

The points of inflection for a free-free rod (corresponding to
the nodes of a clamped-clamped rod) are also given by Seebeck ;—

1st point. 2nd point. &t point.
1st tone ...... No inflection point,
204 tone...... 5000
3rd tone ...... *3593 .
i tone 50175 8:9993 dre+1
""" 4t +2 4i+2 4i+2 -

Except in the case of the extreme nodes (which have no cor-
responding inflection-point), the nodes and inflection-points always
occur in close proximity.

180. The case where one end of a rod is free and the other sup-
ported does not nced an independent investigation, as it may be
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referred to that of a rod with both ends free vibrating tn an even mode,
that is, with a node in the middle. For at the central node
y and y" vanish, which are precisely the conditions for a supported
end. In like manner the vibrations of a clamped-supported rod
are the same as those of one-half of a rod both whose ends are
clamped, vibrating with a central node.

181. The last of the six combinations of terminal conditions
occurs when both ends are supported. Referring to (1) § 170, we
see that the conditions at =0, give 4 =0, B =0 so that

u=(C+ D)sina’ + (C — D)sinh &'

‘

Since « and %" vanish when &' =m, 0 — D =0, and sinm = 0.
Hence the solution is

T ared

y =sin T ST b oo 1),

where 7 is an integer. An arbitrary constant multiplier may of
course be prefixed, and a constant may be added to ¢.

It appears that the normal curves are the same as in the case
of a string stretched between two fixed points, but the sequence of
tones is altogether different, the frequency varying as the square
of 7. The nodes and inflection-points coincide, and the loops
(which are also the points of maximum curvature) bisect the dis-
tances between the nodes. )

182. The theory of a vibrating rod may be applied to illustrate
the general principle that the natural periods of a system fulfil the
maximum-minimum condition, and that the greatest of the natural
periods exceeds any that can be obtained by a variation of
type. Suppose that the vibration curve of a clamped-free rod is
that in which the rod would dispose itself if deflected by a force
applied at its free extremity. The equation of the curve may be

taken to be
y=—3l"+ &,

4

which satisfies Z_xz = 0 throughout, and makes y and ¥ vanish at

0, and " at . Thus, if the configuration of the rod at time ¢ be
Y= (=38l +2°) cospt .ecovirrnirinnniiis @),

the potential energy is by (1) § 161, 6 ¢«” wl® cos’ pt, while the
p 8y q p
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e . 33 . 273
kinetic energy is g PO U p*sin’p¢; and thus p*= % x—lf)—

Now p, (the true value of p for the gravest tone) is equal to
KT? x (1-8751)%
so that

N S
p, i p= (18731) \/140 =98556,

shewing that the real pitch of the gravest tone is rather (but
comparatively little) lower than that calculated from the hypotheti-
cal type. It is to be observed that the hypothetical type in
question violates the terminal condition 3" =0. This circumstance,
however, does not interfere with the application of the principle,
for the assumed type may be any which would be admissible as an
initial configuration; but it tends to prevent a very close agree-
ment of periods.

We may expect a better approximagtion, if we found our calcu-
lation on the curve in which the rod would be deflected by a force
acting at some little distance from the free end, between which
and the point of action of the force (z=¢) the rod would be
straight, and therefore without potential energy. Thus

potential energy = 6 g«*wd® cos® pt.
The kinetic energy can be readily found by integration from
the value of .
From 0 to ¢ y=—8ca’® + 2°;
and from ¢ to 7 y=c*(c~— 3u),
as may be seen from the consideration that y and 3 must not

suddenly change at z=¢. The result is

kinetic energy = po p? sin® pt [;% C+3ct(l—c) (@ + 3l2)] )

whence
1 1 733
N
The maximum value of 1+ p* will occur when the point of
application of the force is in the neighbourhood of the node of the
sccond normal component vibration. If we take ¢ =321, we obtain
a result which is too high in the musical scale Dy the interval

REEDICE 3z*)] ............... @).
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expressed by the ratio 1 :'9977, and is accordingly extremely near
the truth., This example may give an idea how nearly the period
of a vibrating system may be calculated by simple means without
the solution of differential or transcendental equations.

The type of vibration just considered would be that actually
assumed by a bar which is itself devoid of inertia, but carries a
load M at its free end, provided that the rotatory inertia of A could
be neglected. We should have, in fact, :

V=6qcol’ cos’pt, 1= 2MI'p* sin® pi,
3qi’w
e s 3).

Even if the inertia of the bar be not altogether negligible in
comparison with M, we may still take the same type as the basis of
an approximate calculation :

so that pr=

V= 6g*ol’ cos2pt

T= (’)MlG +55 pwl’)p sin? pt,

whence \ .
. 1 l 33
5 (M+ o pwl> ..................... ),

that is, M7 is to be increased by about one quarter of the mass of
the rod. Since this result is accurate when J/ is infinite, and does
not diffor much from the truth, even when M =0, it may be re-
garded as generally applicable as an approximation. The error
will always be on the side of estimating the pitch too high,

183. But the neglect of the rotatory inertia of M could not
be justified under the ordinary conditions of experiment. It is as
easy to imagine, though not to construct, a case in which the inertia
of translation should be negligible in comparison with the inertia of
rotation, as the opposite extreme which has just been considered.
If both kinds of inertia in the mass M be included, even though
that of the bar be neglected altogether, the system possesses two
distinct and independent periods of vibration.

Let z and @ denote the values of y and Z—z at =1 Then the

cquation of the curve of the bar is

o190 , 19—2
y—3*7ﬁ o
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and
29£°0 (o 4 -
V= P (32" = 82l0 + '] ................ (1);
while for the kinetic energy
T=3ME+ LM ooooeiiveveeereerennan, 2),

if " be the radius of gyration of A/ about an axis perpendicular to
the plane of vibration. :

The equations of motion arc therefore

Mi + 29" o

(62— 3816) =

2q/c w

Mg+ 2152 (— 812+ 2160) = 0

whence, if 2 and 8 vary as cos pf, we find

2q/c () /\/ .3/c" Ot
2 ——
p ﬂ{[ [ {1 l + 1 A } ............ (41),

corresponding to the two periods, Which are always different.

If we neglect the rotatory inertia by putting &' =0, we fall
back on our previous result
2 3qx’w
ToMPE

The other value of p® is then infinite.
If &' : I be merely small, so that its higher powers may be neg-

lected,
2 4‘(]/6(0 9,612
p= Jl[l 72 (1+4l‘) ,
2 3gk' 1_9’ff ................... (3).
P="w ( 3 z")

If on the other hand «” be very great, so that rotation is pre-
vented,

12 gc’w Ko
2 _ jg,;” or j%[l/c'z ........................ (6),

the latter of which is very small, It appears that when rotation -
is prevented, the pitch is an octave higher than if there were no
rotatory inertia at all. These concluslons might also be derived

IRIS - LILLIAD - Université Lille 1



183.] EFFECT OF ADDITIONS. 237

directly from the differential equations; for if k' =, 8= 0, and
then

Mé+—1333’“l’z=o;

but if «' =0, 6‘=%z, by the second of equations (3), and in

that case
. 8gk’w
184. If any addition to a bar be made at the end, the period
of vibration is prolonged. If the end in question be free, suppose
first that the piece added is without inertia. Since there would be
no alteration in either the potential or kinetic energies, the pitch
would be unchanged ; but in proportion as the additional part ac-
quires inertia, the pitch falls (§ 88).

In the same way a small continuation of a bar beyond a
clamped end would be without effect, as it would acquire no
motion. No change will ensue if the new end be also clamped ;
but as the first clamping is relaxed, the pitch falls, in consequence
of the diminution in the potential energy of a given deformation.

The case of a ¢ supported’ end is not quite so simple. Let the
" original end of the rod be 4, and let the added piece which is at
first supposed to have no inertia, be 45. Initially the end 4 is
fixed, or held, if we like so to regard it, by a spring of infinite stiff-
ness. Suppose that this spring, which has no inertia, is gradually
relaxed. During this process the motion of the new end B
diminishes, and at a certain point of relaxation, B comes to rest.
During this process the pitch falls. B, being now at rest, may be
supposed to become fixed, and the abolition of the spring at 4
entails another fall of pitch, to be further increased as 4 B acquircs
inertia.

185, The case of a rod which is not quite uniform may be
treated by the general method of § 90.. We have in the notation
there adopted

d’u, 3 3 dQu,. 2
o= fzg( a’x2> dr, 8c,= faB( dx,) dis

a, = f pwt,*dz, Sa, = f Spwu,*da,
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whence, P, being the uncorrected value of p,

5 faB 7Y o fapwu
b fB( )dx fpqude

fwu"fdx f Spou d
=P 1+ — Ce— e (1).

B, f w'ds  pw, f ulds

For example, if the rod be clamped at 0 and free at [,

Bgn* ' 3B Spw
2 _ 14 = w'd J opw wdz }
P y{ +z 0 B T o

The same formula applies to a doubly free bar,
The effect of a small load dJ/ is thus given by

. B,m wrd
TR

e, pw, It
where A" denotes the mass of the whole bar. If the load be at

the end, its effect is the same as a lengthening of the bar in the
ratio M’ : M'+dIL. (Compare § 167.)

186. The same principle may be applied to estimate the
correction due to the rotatory inertia of a uniform rod. We have
only to find what addition to make to the kinetic energy, supposing
that the bar vibrates according to the same law as would obtain,
were there no rotatory inertia,

"Let us take, for example, the case of a bar clamped at 0 and
free at [, and assume that the vibration is of the type,

Y = u cosPt,

where u 1s one of the functions investigated in § 179, The kinetic
energy of the rotation is

d*y \* por'mp® . f b

o a4 =""""L qin’ d

pwrk (dw dt) dx g Sin Pt Ou z
__ poKimp’

37 sin?pt (2uw’ + mu”),

hv (2) R 1A%
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To this must be added

1
%" p° sin® pt f u’ dx, or ’%Z pPsin’ pt u?;
0
so that the kinetic energy is increased in the ratio

mi® fow
1 . 1+—?‘ (2 -rl;-l-mﬁ)l.

The altered frequency bears to that calculated without allow-
ance for rotatory inertia a ratio which is the square root of the
reciprocal of the preceding. Thus

2 ' 2
P13 (o)
p:P=1-1 Z 2u+mu21 ............... (1).
By use of the relations cosh m = — se¢ m, sinh m=cos ¢m.tanm,

we may express ¥ : w when =1 in the form

w __ —sinm cos a

u  cosim+cosm 1—cosimwsina’

if we substitute for m from
m=%2{-1)7—(-1)a

In the case of the gravest tone, a=3043, or, in degrees and
minutes, a=17° 26, whence .
]

Y3413, 2% 4mZ, =24789.
u U w
Thus

2

prP=1-28241 % i (2),

which gives the correction for rotatory inertia in the case of the
gravest tone.

When the order of the tone is moderate, a is very small,
and then '

w:u=1 sensibly,

2
and p: P=1_(1+”§>”% .................. 3),

shewing that the correction increases in importance with the
order of the component,

In all ordinary bars « : I is very small, and the term depending
on its square may be neglected without sensible error.

IRIS - LILLIAD - Université Lille 1



240 LATERAL VIBRATIONS OF BARS. [187.

187. When the rigidity and density of a bar are variable
from point to point along it, the normal functions cannot in
general be expressed analytically, but their nature may be investi-
gated by the methods of Sturm and Liouville explained in § 142.

If, as in § 162, B denote the variable flexural rigidity at any
point of the bar, and pw dz the mass of the clement, whose length
is de, we find as the general differential equation

& ody L dy
m(L’d )+ 0% =0 (1),

the effects of rotatory inertia being omitted. If we assume that
y oc cos vt, we obtain as the equation to determine the form of the
normal functions

a [ dYy
< d.L) =1pwy.. N 65 8
in which »* is limited by the terminal conditions to be one of an
infinite series of definite quantities »? v}, v......

Let us suppose, for example, that the bar is clamped at both

ends, so that the terminal values of y and g— vanish. The first

normal function, for which »* has its lowest value »’, has no
internal root, so that the vibration-curve lies entirely on one side
of the equilibrium-position. The second normal function has one
internal root, the third function has two internal roots, and,
generally, the ™ function has » — 1 internal roots.

Any two different normal functions are conjugate, that is to
say, their product will vanish when multiplied by pwdr, and
integrated over the length of the bar.

Let us examine the number of roots of a function f(x) of
the form

S (@) =, (@) + Gy Wi (@) + - +4>n N CORPRPNG

compounded of a finite number of normal functions, of which the
function of lowest order is % (z) and that of highest order is
u, (x). If the number of internal roots of £ (%) be g, so that there
are p+ 4 roots in all, the derived function f' (z) cannot have less
than u+ 1 internal roots besides two roots at the extremities, and
the sccond derived function cannot have less than pu+ 2 roots
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"No roots can be lost when the latter function is multiplied by B,
and another double differentiation with respect to = will leave at
least p internal roots. Hence by (2) and (3) we conclude that

vm2 Sbmum (x) + Vm+12 n+1 um+1 (.’L') + Lo + 1}: ¢nun (.%‘)..(4!)

has at least as many roots as f(»). Since (4) is a function of the
same form as f (), the same argument may be repeated, and a
series of functions obtained, every member of which has at least
as many roots as f(z) has. When the operation by which (4) was
derived from (8) has been repcated sufficiently often, a function is
arrived at whose form differs as little as we please from that of the
component normal function of highest order u, (x); and we con-
clude that f(x) cannot have more than »—1 internal roots. In
like manner we may prove that £ (x) cannot have less than m —1
internal roots.

The application of this theorem to demonstrate the possibility
. of expanding an arbitrary function in an infinite scrics of normal
functions would proceed exactly as in § 142.

188. When the bar, whose lateral vibrations are to be considered,
is subject to longitudinal tension, the potential energy of any con-
figuration is composed of two parts, the first depending .on the
stiffness by which the bending is directly opposed, and the second
on the reaction against the extension, which is a necessary accom-
paniment of the bending, when the ends are nodes. The second
part is similar to the potential energy of a deflected string; the
first is of the same nature as that with which we have been
occupied hitherto in this Chapter, though it is not entirely inde-
pendent of the permanent tension.

Consider the extension of a filament of the bar of section dw,
whose distance from the axis projected on the plane of vibration
is ». Since the sections, which were normal to the axis originally,
remain normal during the bending, the length of the filament
bears to the corresponding element of the axis the ratio B4 : &,
R being the radius of curvature. Now the axis itself is extended
in the ratio ¢: ¢+ T, reckoning from the unstretched state, if
Tw denote the whole tension to which the bar is subjected.

Hence the actual tension on the filament is {T+%(T + g)}clw.
R. 16

IRIS - LILLIAD - Université Lille 1



242 LATERAL VIBRATIONS OF BARS. [188.

from which we find for the moment of the couple acting across the
section

f{T+ (T+q)}ndw=ﬁR—Tx2w,

and for the whole potential energy due to stiffness

3 (g+T) rc"’wf <g;"%>2 AZeereriireninoreerinnnees (1),

an expression differing from that previously used (§ 162) by the
substitution of ¢+ T for ¢.

Since ¢ is the tension required to stretch a bar of unit area to
twice its natural length, it is evident that in most practical cases
T would be negligible in comparison with ¢.

The expression (1) denotes the work that would be gained
during the straightening of the bar, if the length of each element
of the axis were preserved constant during the process. But
when a stretched bar or string is allowed to pass from a displaced
to the natural position, the length of the axis is decreased. The

: 2
amount of the decrease is § f (%) dz, and the corresponding gain

} To f (%’c)gdx.

V=%(q+T)x2wf< )dx+%wa(§y) Lo (2).

The variation of the first part due to a hypothetical displace-
ment is given in § 162. For the second part, we have

pf(%) fd“wyd _{ggsy}_fg—;zgydx ...... 3).

In all the cases that we have to consider, 8y vanishes at the
limits. The general differential equation is accordingly
d 1/ - Y, dy % d'y
R @+ T) g T P g =¥ s p =0

or,ifweputq+T—bp, T=ap, .
(b’ _diL) %Y Ty
dt” dirde) % dt T dr
For a more detailed investigation of this equation the reader is

referred to the writings of Clebsch! and Donkin.
Y Theorie der Elasticitiit fester Korper. Leipzig, 1862,

of work is

Thus
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189. 1If the ends of the rod, or wire, be clamped, % =0, and

the terminal conditions are satisfied. If the nature of the support

be such that, while the extremity is constrained to be a node, there
2

is no couple acting on the bar, gy% must vanish, that is to say, the

end must be straight. This supposition is usually taken to repre-
sent the case of a string stretched over bridges, as in many musical
instruments; but it is evident that the part beyond the bridge
must partake of the vibration, and that therefore its length cannot
be altogether a matter of indifference.

If in the general differential equation we take y proportional
to cos nt, we get

4 2 2,
K ( b? %34 + n? Z—;{) —a?i%gz -y =0.vciinivinnn. (1),
which is evidently satisfied by
y =sin z%” COSTE vevravinivesanrnsnsnns (2),

if » be suitably determined. The same solution also makes
y and ¥’ vanish at the extremities. By substitution we obtain
for m,

o v P4 Ol

” =7— W ..................... (3),

which determines the frequency.

If we suppose the wire infinitely thin, #*="7"¢’+I% the same
as was found in Chapter V1, by starting from the supposition of
perfect flexibility, If we treat « :1 as a very small quantity, the
approximate value of n is

n=}1la{l+f'%’§ (g:— 1) }
For a wire of circular section of radius r, «*=1}+% and if we
replace b and a by their values in terms of ¢, T, and p,
' _iTa Tt g

n——l{1+——8— z‘j} ..................... ),

which gives the correction for rigidity'. Since the expression
within brackets involves 1, 1t appears that the harmonic relation
of the component tones is disturbed by the stiffness.

1 Donkin's Acoustics, Art. 184,
16—2
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190. The investigation of the correction for stiffness when the
ends of the wire are clamped is not so simple, in consequence of
the change of type which occurs near the ends. In order to pass
from the case of the preceding section to that now under con-
sideration an additional constraint must be introduced, with the
effect of still further raising the pitch. The following is, in the
main, the investigation of Seebeck and Donkin.

If the rotatory inertia be neglected, the differential equation
becomes

QL P 1)
2b2 b2/c2 y = Uereescocosonsonnses ’
‘where D stands for (% . In the equation
a 2
n _WDE_E??:O’

one of the values of D® must be positive, and the other negative.
We may therefore take
Dt — /c_?l; D*— bl:% =D =) (DP+ ) cininnennn (@),
and for the complete integral of (1)
y =4 cosh ax + Bsinh ax
+CcosBr+DsinBr cccvvieinninnnn.. (3),
where a and B are functions of n determined by (2).

The solution must now be made to satisfy the four boundary
conditions, which, as there are only three disposable ratios, lead
to an equation connecting @, 8, . This may be put into the form

sinhal sin B 213
1= coshal cos ﬁl iy =0 .t (4).

The value of

/1‘02_31 , determined by (2), is 27;2” , 8o that

sinh al sin Bl 2nbr
1—ooshal cos,8l+ &= 0 i (5).

Trom (2) we find also that
2 T
- A
[ ().
2 _ _
F —2b”x*{\/1+4° 1}
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Thus far our equations are rigorous, or rather as rigorous as
the differential equation on.which they are founded; but we shall
now introduce the supposition that the vibration considered is but
slightly affected by the existence of rigidity. This being the case,
the approximate expression for y is

et g
y=sin—= cos(l a)
and therefore ’

nearly.

The introduction of these values into the second of equations
2 .2 2 2
24 = is a small quantity under the cir-

cumstances contemplated, and therefore that '’ is a large quantity.
Since cosh al, sinhal are both large, equation (5) reduces to

2nb/c

an Bl =

or, on substitution of the approximate value for 8 derived from

(6),

The approximate value of %l is tw. If we take %l =17 + 0, we get

tan (i + 6) =tan 6= =2 "% = 2im 2%,

so that
n=iT <1+29§> ........................ (8)-

According to this equation the component tones are all raised in
pitch by the same small interval, and therefore the harmonic rela-
tion is not disturbed by the rigidity. It would probably be other-
wise if terms involving «* : I were retained ; it does not therefore
follow that the harmonic relation is better preserved in spite of
rigidity when the ends are clamped than when they are free, but
only that there is no additional disturbance in the former case,
though the absolute alteration of pitch is much greater, It should
be remarked that b:a or v/(¢+ T) : 4T, is a large quantity,
and that, if our result is to be correct, x : ! must be small enough
to bear multiplication by b : @ and yet remain small,
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The theoretical result embodied in (8) has been compared with
experiment by Seebeck, who found a satisfactory agreement. The
constant of stiffness was deduced from observations of the rapidity
of the vibrations of a small piece of the wire, when one end was
clamped in a vice.

191. It has been shewn in this chapter that the theory of bars,
even when simplified to the utmost by the omission of unimportant
quantities, is decidedly more complicated than that of perfectly
flexible strings. The reason of the extreme simplicity of the
vibrations of strings is to be found in the fact that waves of the
harmonic type are propagated with a velocity independent of the
wave length, so that an arbitrary wave is allowed to travel without
decomposition. But when we pass from strings to bars, the con-

. Cd? d*
stant in the differential equation, viz 3%+/cgbzd—fg=0, is no

longer expressible as a velocity, and therefore the velocity of
transmission of a train of harmonic waves cannot depend on the
differential equation alone, but must vary with the wave length.
Indeed, if it be admitted that the train of harmonic waves can
be propagated at all, this consideration is sufficient by itself to
prove that the velocity must vary inversely as the wave length.
The same thing may be seen from the solution applicable to

. . . . 2
waves propagated in one direction, viz. ¥ = cos % (Vt — @),
which satisfies the differential equation if

27 «h
YRR EITPRP PP PSR (D).

Let us suppose that there are two trains of waves of equal
amplitudes, but of different wave lengths, travelling in the same
direction. Thus

V=

1 1 1 1 1.1 1 1
=2 cos W{t(; —17>—.’D (X—T>}Cosﬂ{t<; + ;,) —-.’E(X-l- Xi)}...(2).
If ¥ — 7, A —\ be small, we have a train of waves, whose ampli-
tude slowly varies from one point to another between the values
0 and 2, forming a series of groups separated from one another by

regions comparatively free from disturbance. In the case of a
string or of a column of air, A varies as 7, and then the groups move
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forward with the same velocity as the component trains, and there
is no change of type. It is otherwise when, as in the case of a bar
vibrating transversely, the velocity of propagation is a function
of the wave length. The position at time ¢ of the middle of the
group which was initially at the origin is given by

1 1 1 1
t(?"—?)"‘”(i“i’)“o’

which shews that the velocity of the group is

B3y BB -s()e).

If we suppose that the velocity ¥ of a train of waves varies as

A", we find
) i)
d—(—}—)= d(T) ===1V it (3)
A A
In the present case n=— 1, and accordingly the velocity of the

groups is fwice that of the component waves®,

192. On account of the dependence of the velocity of propaga-
tion on the wave length, the condition of an infinite bar at any
time subsequent to an initial disturbance confined to a limited
portion, will have none of the simplicity which characterises the
corresponding problem for a string; but nevertheless Fourier’s
investigation of this question may properly find a place here.

It is required to determine a function of # and ¢, so as to
satisfy '
dy d'y ,
a—t;, + C-l;‘;= O i, (].) )
and make initially y = ¢ (2), y=1 (2).
A solution of (1) is
Y=C08¢" COSG(T—)ererirnerreniinnnrenanrs (),

where ¢ and « are constants, from which we conclude that

400 +90
y=f dxF(a)f dyg cos ¢*t cos g (x—a)

1 In the corresponding problem for waves on the surface of deep water, the
velocity of propagation varies directly as the square root of the wave length, so
that n=34. The velocity of a group of such waves ig therefore one half of that of
the component trains,
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is also a solution, where F'(2) is an arbitrary function of a. If
now we put ¢ =0,

yo=fiw dx F(«) fjw dgcos g (« — a),

which shews that F (2) must be taken to be —2}7—1- ¢ (a), for then by

Fourier's double integral theorem z,=¢ (2). Moreover, y=0;
hence

+o0 -+ 30
y= 21—7,_[ da (=) f dgcos gt cos g (L —a) verenn.n. (3)
satisfies the differential equation and malkes initially,
y=¢ (@), g=0.

By Stokes’ theorem (§ 95), or independently, we may now
supply the remaining part of the solution, which has to satisfy the
differential equation while it makes initially y =0, 7= (2); it is

1 [* o1 L, 4
y=§rf_mdm[r'(a)/—wdg§;smgt oS (X — %) uuiunen. (4).
The final result is obtained by adding the right-hand members
of (3) and (4).

In (3) the integration with respect to ¢ may be effected by
means of the formula

+00 g 2
f dq cos ¢°t cos gz = «/ 7{ sin (Z Zt) ............... %),

which may be proved as follows. If in the well-known integral
formula
f e —0T Jo \/ m™

we put 4+ b for x, we get
f+fn e_az (2 + 25a) do = ~/a_7reaﬂbs.

Now suppose that a*=4¢=¢"", where ¢=#—1, and retain
only the real part of the equation. Thus

[+ COS(:C’+26.’E) dx=J:n_-sin (b’_}.%),

0
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whence

40 -
f cosa? cos 2bx dx = Jor sin (b’ + E) )

from which (5) follows by a simple change of variable. Thus
equation (3) may be written

1 . (z—a)f
y=mf_wd1¢(a)S1n{z+T}’
: if a-—x= :
or, I 2,Jt 122

y= N/%rfi: du (cos p* + sin p°) ¢ (2 + 2ut) oo (6).
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CHAPTER IX.
VIBRATIONS OF MEMBRANES,

193. THE theoretical membrane is a perfectly flexible and in-
finitely thin lamina of solid matter, of uniform material and thick-
ness, which is stretched in all directions by a tension so great as to
remain sensibly unaltered during the vibrations and displacements
contemplated. If an imaginary line be drawn across the mem-
brane in any direction, the mutual action between the two portions
separated Ly an element of the line is proportional to the length of
the element and perpendicular to its direction. If the force in
question be T, ds, T, may be called the tension of the membrane;
it is a quantity of one dimension in mass and — 2 in time.

The principal problem in connection with this subject is the
investigation of the transverse vibrations of membranes of different
shapes, whose boundaries are fixed. Other questions indeed may
be proposed, but they are of comparatively little interest; and,
moreover, the methods proper for solving them will be suffi-
ciently illustrated in other parts of this work. We may therefore
proceed at once to the consideration of a membrane stretched over
the area included within a fixed, closed, plane boundary.

194. Taking the plane of the boundary as that of ay, let w
denote the small displacement therefrom of any point P of the
membrane. Round P take a small area S, and consider the forces
acting upon it parallel to 2. The resolved part of the tension is
expressed by

dw
Tlf% dS,

where ds denotes an element of the boundary of S, and dn an
element of the normal to the curve drawn outwards. This is
balanced by the reaction against acceleration measured by pSjy,
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p being a symbol of one dimension in mass and — 2 in length
denoting the superficial density. Now by Green’s theorem, if
& &
V dxz + dyZ H

‘—Z-QE ds = f f vwdS = vyw.S ultimately,

and thus the equation of motion is
dw T, (d”w d’w

A T p \dd 2)

The condition to be satlsﬁed at the boundary is of course w = 0.

The differential equation may also be investigated from the
expression for the potential energy, which is found by multiplying
the tension by the superficial stretching. The altered area is

ff 1+(%§>2+(%”>2dxdy;
V= %Tff{(d”j ( >}dxdy (@),

from which 8V is easily found by an integration by parts.

and thus

If we write 7T, + p=2¢*, then ¢ is of the nature of avelocity, and
the differential equation is
dw _ ,(d'w 4 d*w )
det (dx dy”
195. We shall now suppose that the boundary of the mem-
brane is the rectangle formed by the coordinate axes and the lines

xz=a, y=>. For every point within the area (8) § 194 is satisfied,
- and for every point on the boundary w=0.

A particular integral is evidently

. mTe . N -
w=sin sin 73 COS P vvrrenanrnnns 1,
where p*=clar (m Z‘) ........................... @),

and m and n are integers ; and from this the general solution may be
derived. Thus

m=w RN=w®
w=3 3 sin%gin _n_7brz_/ {An €08 pt + B, sin pi}......... (3).
m=1 =a=1 a
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That this result is really general may be proved a posteriors,
by shewing that it may be adapted to express arbitrary initial
circumstances.

Whatever function of the co-ordinates w may be, it can be ex-
pressed for all values of # between the limits 0 and a by the series

Ysin ™4 ¥, sin 2T 4

where the coefficients Y, Y, &c. are independent of = Again
whatever function of y any one of the coefficients ¥ may be, it can
be expanded between 0 and & in the series

2t
C, sin =7 A Y10 sm—Ty+ creees,
where C, &c. are constants. From this we conclude that any
function of @ and y can be expressed within the limits of the rect-
angle by the double series

2 s A sm—ﬂm n'n-y,
m=1 =1 @ b
and therefore that the expression for w in (3) can be adapted to
arbitrary initial values of w and w. In fact

bfffwosm—sm ydxdy,

B, abpf f w, sin 2% gin -b— Y i dy,

The character of the normal functions of a given rectangle,

mwr . nwwy
sin —— sin—¢ |
a b
as depending on m and n, is easily understood. If m and » be both
unity, w retains the same sign over the whole of the rectangle,
vanishing at the edge only; but in any other case there are
nodal lines running parallel to the axes of coordinates. The

number of the nodal lines parallel to # is n—1, their equations
being
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"In the same way the equations of the nodal lines parallel to y
are

_e 2a (m — 1) a

“m’ om m
being m —1 in number. The nodal system divides the rectangle
into mn equal parts, in each of which the numerical value of w is
repeated.

196. The expression for w in terms of the normal functions
is
w=2% ¢, sin m%@sinnlby ............... (1),

where ¢, &c. are the normal coordinates. We proceed to form
the expression for V'in terms of ¢,,., We have

(Z—;U) =t {22 qS,,m cos @;T—x sin ﬂbﬂf/} ,

aw\® _ sin T os MTY
(d—y) W {22¢mn b s T COs T} .

In integrating these expressions over the area of the rectangle
the products of the normal coordinates disappear, and we find

r= 3 [{@) + (G) e

-L ab: >3 ( bz) B <ererrsenereenes @),

the summation being extended to all integral values of m and =.

The expression for the kinetic energy 1s proved in the same
way to be

from which we deduce as the normal equation of motion

bz)% ip S (4).

2

Gt (T
In this equation
= f f Zsin "2 gin bydx AYernivennnns (5),

if Z da dy denote the transverse force acting on the element d dy.
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Let us suppose that the initial condition is one of rest under
the operation of a constant force Z, such as may be supposed to
arise from gaseous pressure. At the time =0, the impressed

- force is removed, and the membrane left to itself. Initially the
equation of equilibrium is

m 4
dr (a? + gé) (Brn)o= 2k
whence (¢,,.), is to be found, The position of the system at time ¢

is then given by

in conjunction with (1).

In order to express @, , we have merely to substitute for Z its
value in (5), or in this case simply to remove Z from under the
integral sign. Thus

—fo sin ™2 sin 7Y gz,

ab
=7 — P (1 — cos mw) (1 — cos nr).

We conclude that @, vanishes, unless m and n are both odd, and

that then
4ab

mnar*

mn

Accordingly, m and n being both odd,

16 Z cos pt
b, = = Tmpt T, (8),

where f= ﬂj + n_’
P T 9).

This is an example of (8), § 101.

If the membrane, previously at rest in its position of equili-
brium, be set in motion by a blow applied at the point a 8, the
solution is

P = EI;—}—) sin —— ma wn-B f f wdz dy . sin pt ....(10).
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197. The frequency of the natural vibrations is found by
ascribing different integral values to m and » in the expression

For a given mode of vibration the pitch falls when either
side of the rectangle is increased. In the case of the gravest
mode, when m=1, n=1, additions to the shorter side are the
more effective; and when the form is very elongated, additions
to the longer side are almost without effect.

When o* and 8* are incommensurable, no two pairs of values
of m and n can give the same frequency, and each fundamental
mode of vibration has its own characteristic period. But when
o® and b® are commensurable, two or more fundamental modes
may have the same periodic time, and may then coexist in any
proportions, while the motion still retains its simple harmonic
character. In such cases the specification of the period does
not completely determine the type. The full consideration of
the problem now presenting itself requires the aid of the theory
of numbers; but it will be sufficient for the purposes of this
work to consider a few of the simpler cases, which arise when
the membrane is square. The reader will find fuller information
in Riemann’s lectures on partial differential equations.

If a=p,

A .
5 2aJm F e, (2).

The lowest tone is found by putting m and = equal to unity,
which gives only one fundamental mode :—

i ™ gin ™Y
w =sin -~ sin — cos 272, (3).

_ Next suppose that one of the numbers m, n is equal to 2, and
the other to unity. In this way two distinct types of vibration
are obtained, whose periods are the same. If the two vibrations
be synchronous in phase, the whole motion is expressed by

w= {Osin QLmsin 7Y + Dsin ™% sin 212/} cos pt...(4) ;
a a a a

so that, although every part vibrates synchronously with a
harmonic motion, the type of vibration is to some extent arbitrary,
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Four particular cases may be especially noted. First, if D=0,

27 o -
w=Cs1n7s1nz'zcosPt ............ .(8),

which indicates a vibration with one node along the line z=1a.
Similarly if C'=0, we have a node parallel to the other pair of
edges. Next, however, suppose that C and D are finite and

equal. Then w is proportional to
sin 2 sin 7 + sin T2 sin gﬂ
a a a

b
which may be put into the form

2 sin 7% gin L (cos <+ cos 'n-y)
a a a a

This expression vanishes, when

. TR o Y,
sin — =0, or sin Y
. a a
or again, when
L )
cos 72 4 cos 2 =0.
a a

The first two equations give the edges, which were originally
assumed to be nodal ; while the third gives y + « = @, representing
one diagonal of the square.

In the fourth case; when O'=-— D, we obtain for the nodal
lines, the edges of the square together with the diagonal y=ua.
The figures represent the four cases.

Fig. 32,
D=0, O=0. C—-D=0, C+D=0.

For other relative values of C and D the interior nodal line
is curved, but is always analytically expressed by

Ceos ™ + D cos ?g 0 vrervirieriienes (6),

and may be easily constructed with the help of a table of logarith-
mic cosines.
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The next case in order of pitch occurs when m=2, n=2,
The values of m and n being equal, no alteration is caused by
their interchange, while no other pair of values gives the same
ﬁequency of v1brat1on The only type to be considered is
accordingly "

. 2wy . 27y
W =510 — = SIB ——< €08 juz

whose nodes, determined by the equation

' T . T T L
sin — sm-—‘z €08 — €08 -'—y=0,
o a o a

are (in addigion to the edges) the straight lines
r=%a y=}la

Tig. 53.

’

The next case which we shall consider is obtained by ascribing
to m, n the values 3, 1, and 1, 3 successively, We have

<in 3y
101-{0'31n—(—1—- sm—~+Ds1nﬂ ” }cospt
The nodes are given by
sin 7r—msin’n-—y{C’ (44 cos? ¥ 1) +D (4 cos* 7Y 1} =0,
a @ a a
or, if we reject the first two fa‘ctors, which correspond to the edges,
0(4cqs”i”—1)+D(4cosﬂ'iy—1)=o ......... ).
@ o

If C=0,wehave y=}la, y=3a.

If D=0, z=}%a, x=3a
If C=-0D, cosfix:icos'ﬂ/,

a e

whence, y=x, Yy=0-

which represent the two diagonals.

17

R.
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Lastly, if C= D, the equation of the node is

T T
cos’ I= 4 cos* "L = 3
o a

2
or 1+ cos —2 + cos 2my _ =0, (8),
a a :
Fig. 34, '
=0, D=0. C+D=0. C-D=0.
~\\\‘ ’/l'
\\“»:’/ /"m\y
______ — /’I ‘\\ l\\__/
,,/" ™,

In case (4) when x=4%a, y=1%a, or $a; and similarly when
y=%a, #=1a, or§a. Thusone half of each of the lines joining
the middle points of opposite edges is intercepted by the curve.

It should be noticed that in whatever ratio to one another
C and D may be taken, the nodal curve always passes through
the four points of intersection of the nodal lines of the first two
cases, (=0, D=0. If the vibrations of these cases be com-
pounded with, corresponding phases, it is evident that in the
shaded compartments of Fig. (35) the directions of displacement

Fig. 35.

nmwm.mmw
I
i

are the same, and that therefore no part of the nodal curve
is to be found there; whatever the ratio of amplitudes, the
curve must be drawn through the unshaded portions. When
on the other hand the phases are opposed, the nodal curve will
pass exclusively through the shaded portions.

When m =3, n=3, the nodes are the straight lines parallel
to the edges shewn in Fig. (36).

Tig. 36.
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The last case which we shall consider is obtained by putting
m=3, n=2 or m=2, n=3.
The nodal system is

Csinsﬂsingw—y+Dsin—TL 31n37ry 0,
o a - a

or, if the factors corresponding to the edges be rejected,
0(4 cost Zw 1) cos +Dcos 2 (4 cos? 4 —1) =0...... 9).

If C or D vanish, we fall back on the nodal systems of the
component vibrations, consisting of straight lines parallel to the
edges. If C=.D, our equation may be written

(cosw—+cos "/) (4scosﬂcos7—rﬂ— )=O ...... (10),
a o a a

of which the first factor represents the diagonal y+ax=a, and
the second a hyperbolic curve. :

If C=-— D, we obtain the same figure relatively to the other
diagonal®,

198. The pitch of the natural modes of a square membrane,
which is nearly, but not quite uniform, may be 1nvest1crated by
the general method of § 90.

We will suppose in the first place that m and » are equal.
In this case, when the pitch of a uniform membrane is given,
the mode of its vibration is completely determined. If we now
conceive a variation of density to ensue, the natural type of
vibration is in general modified, but the period may be calculated
approximately without allowance for the change of type.

We have

T=3 [+ 86) 2 sin 0% sins ™Y 1z

i a* L. o .
=% o {P"Z +ff3p sm"’—;r—slna z’%r‘—?/dacdy} ,

of which the second term is the increment of 7" dque to 8p. Hence
if w oc cos pt, and P denote the value of p previously to variation,
we have
pmm2 : mm =1- _f“ " 8‘0 Sl 2 mwy dxd/ ...... ( ),
0 Po
1 Lamé, Legons sur Vélasticité, p. 129,

17—2
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2
where P,l= 2 %ﬁ , and =T+ p,
For example, if there be a small load M attached to the middle of
the square,

Pt Ppi=1 —c%%{ sin‘m g ............... (2),

. in which sin* {ms vanishes, if m be even, and is equal to unity, if
m be odd. In the former case the centre is on the nodal line of
the unloaded membrane, and thus the addition of the load pro-
duces no result. '

‘When, however, m and n are unequal, the problem, though re-
maining subject to the same general principles, presents a pecu-
liavity different from anything we have hitherto met with, The
natural type for the unloaded membrane corresponding to a speci-
fied period is now to some extent arbitrary; but the introduction
of the load will in gencral remove the indeterminate element. In
attempting to calculate the period on the assumption of the undis-
turbed type, the question will arise how the selection of the undis-
turbed type is to be made, secing that there are an indefinite
number, which in the uniform condition of the membrane give
identical periods. The answer is that those types must be chosen
which differ infinitely little from the actual types assumed under
the operation of the load, and such a type will be known by the
criterion of its making the period calculated from it a maximum
or minimum,

As a simple example, let us suppose that a small load M is
attached to the membrane at a point lying on the line « = }a, and
that we wish to know what periods are to be substituted for the
two equal periods of the unleaded membrane, found by making

m=1,n=2 or m=2 n=1.
It is clear that the mormal types to be chosen, are those whose
nodes are represented in the first two cases of Fig. (82). In the
first case the increase in the period due to the load is zero, which
is the least that it can be; and in the second case the increase
is the greatest possible. If B be the ordinate of M, the kinetic
energy is altered in the ratio

P q_g . 2’7TB )
555 4 +§ Pk
and thus
4
7)122 . Pm =1 + Ji[ ——alB ................. (3)
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while : pu=DPl=DP

The ratio characteristic of the interval between the two natural
tones of the loaded membrane is thus approximately

1+ 2M aﬁ ........................ ().

If B8 =1a, neither period is affected by the load.

As another example, the case, where the values of m and n
are 8 and 1, considered in § 197, may be referred to. With a load
in the middle, the two normal types to be selected are those
corresponding to the last two cases of Fig. (34), in the former
of which the load has no effect on the period.

The problem of determining the vibration of a square mem-
brane which carries a relatively heavy load is more difficult, and
we shall not attempt its solution, But it may be worth while to
recall to memory the fact that the actual period is greater than
any that can be caleulated from a hypothetical type, whlch differs
from the actual one.

199. The preceding theory of square membranes includes a
good deal more than was at first intended. Whenever in a vibrat-
ing system certain parts remain at rest, they may be supposed to
be absolutely fixed, and we thus obtain solutions of other questions
than those originally proposed. For .example, in the present case,
wherever a diagonal of the square is nodal, we obtain a solution
applicable to a membrane whose fixed boundary is an isosceles
right-angled triangle. Moreover, any mode of vibration possible to
the triangle corresponds to some natural mode of the square, as
may be seen by supposing two triangles put together, the vibra-
tions being equal and opposite at points which are the images of
each other in the common hypothenuse. Under these circum-
stances it is evident that the hypothenuse would remain at rest
without constraint, and therefore the vibration in question is in-
cluded among those of which a complete square is capable.

The frequency of the gravest tone of the triangle is found by
putting m =1, n=2 in the formula

L - \/m 4R e 1),
27

J

and is therefore equal to 35—
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The next tone occurs, when m =38, n =1, In this case

p _a/10
- @,
Fig. 37.

|
|
|
|

as might also be seen by noticing that the triangle divides itself
into two, Fig. (87), whose sides are less than those of the whole
triangle in the ratio 4/2 ; 1 '

For the theory of the vibrations of a membrane whose bound-
ary is in the form of an equilateral triangle, the reader is referred
to Lamé’s ‘Lecons sur I'élasticité. It is proved that the frequency
of the gravest tone is ¢+ %, where k is the height of the triangle,
which is the same as the frequency of the gravest tone of a square
whose diagonal is A.

200. When the fixed boundary of the membrane is circular,
the first step towards a solution of the problem is the expression
of the general differential equation in polar co-ordinates. This
may be effected analytically ; but it is simpler to form the polar
equation de novo by considering the forces which act on the polar
clement of area » df dr. As in § 194 the force of restitution acting
on a small area of the membrane is

—Tlf%ds=—Tl{jr(dwrd0)d + (8 ;Uedr)dﬁ}

L Fw  1dw  1dw
- Tl.rdedo{d2+”r 2d92},
and thus, if T, + p = ¢® as before, the equation of motion is
dw_ ,(dw 1 dw 1 d*w
7= {dr" 4= - dr dﬁ‘} ............... (D).

The subsidiary condition to be satisfied at the boundary is that
w=0, when r=aq. :

In order to investigate the normal component vibrations we
have now to assume that w is a harmonic function of the time.
Thus, if wcc cos (pt—¢), and for the sake of brevity we wiite
p + ¢ =k, the differential equation appears in the form
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dw 1dw  1dw
W-F;w'l-?@g-l-lgl[):o ............... (2),

in which & is the reciprocal of a linear quantity.

Now whatever may be the nature of w as a function of 7 and 8,
it can be expanded in Fourier’s series

w=w,+w, cos (0 +a)+ w,cos 2 (0 +a,)+.......(3),

in which w,, w,, &c. are functions of 7, but not of §. The result
of substituting from (3) in (2) may be written
12,
s {d w, , 1dw

n’ :

the summation extending to all integral values of n. If we
multiply this equation by cosn (6 + «,), and integrate with respect
to @ between the limits 0 and 27, we see that each term must
vanish separately, and we thus obtain to determine w, as a
function of

dr* " r dr n
in which it is a matter of indifference whether the factor
cosn (0 +a,) be supposed to be included in w, or not.

dgw,, 1 dwn 2 n® —
A (,c __Tg>w R ),

The solution of (4) involves two distinet functions of 7,
each multiplied by an arbitrary constant. But one of these
functions becomes infinite when » vanishes, and the corresponding
particular solution must be excluded as not satisfying the pre-
scribed conditions at the origin of co-ordinates. This point may
be illustrated by a reference to the simpler equation derived from
(4) by making « and n vanish, when the solution in question
reduces to w=logr, which, however, does not at the origin

satisfy y'w =0, as may be seen from the value of f %%ds, inte-

grated round a small circle with the origin for centre. In like
manner the complete integral of (4) is too general for our
present purpose, since it covers the case in which the centre of
the membrane is subjected to an external force.

The other function of #, which satisfies (4), is the Bessel’s
function of the #™ order, denoted by J, (kr), and may be expressed
in several ways. The ascending serics (obtained immediately
from the differential equation) is
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2" 2 2t
S ) = i D) {1"272n+"2 Ty dontc.nt 4

ZG

&
T2.4.6. 9+ 2. kI g 6T } """"" ©,
from which the following relations between functions of consecu-
tive orders may readily be deduced :

Iy (2) =—=J, (&) ceierininiiiinniininenin, (6),
2J () =d,_; (2) =y (2) eeviviviiiiininnnnn(7),
2n

Z (@D =T (D) F Ty (B) e 8).

When n is an integer, J, {z) may be expressed by the definite
integral

n

J)= f 0 008 (3 SIE © = 116) e vvnverrveens (9),

which is Bessel’s original form. From this exptession 1t is evident
that J, and its differential coefficients with respect to z arc always
less than unity.

The ascending scries (5), though infinite, is convergent for all
valucs of # and z; but, when z is great, the convergence does not
begin for a long tlme and then the scries becomes useless as a basis
for numerical C‘Llculamom In such cascs another series proceeding
by descending powers of z may be substituted withi advantage.
This series is

2 (1P —4w?) (37— 4?) i f)-
Jn(z)—\/ﬁ{l— 1.3.(8 T cos(z i~ "3
+ «/—2 I~ 40t (1'— &) (3~ 40") (0"~ 4o") |
'n-_z{l.Sz - 1.2.8.(82° UV
. ™ m
X sin (z —3 n§> .......................................... (10);

it terminates, if 2n be cqual to an odd integer, but otherwise, it
runs on to infidity, and becomes ultimately divergent. Nevertheless
when z is great, the convergent part may be employed in calcula-
tion; for it can be proved that the sum of auy number of terms
dlffers from the true value of the function by fess than the last
term included. We shall have occasion later, in connection with
another problem, to consider the derivation of this descending series.

As Bessel's functions are of considerable importance in theoreti-
cal acoustics, I have thought it advisable to give a table for the
functions J, and J, extracted from Lommel's' work, and duc

1 Lommel, Studien iiber die BessclUschen Funclionen, Leipzig, 1868,
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BESSEL'S FUNCTIONS.

265

The functions J; and J, arc connected by

the telstion Jo" =—d,

J,o(2) J,&) | 7R J,(2) | J,(3)
0-0 { 1-0000 45 | 3305 | -2311 | 90| -0903 | -2453
01| -9975 46| -2961 | -2566 || 91| -1142 | -2394
0-2 | -9900 47| -2698 | 2791 | 92| -1367 | -2174
03| -9776 48| -2404 | 2985 | 93| ‘1577 | -2004
0-4 | -9604 49| 2097 | -3147 || 94| -1768 | "-1816
05 | 9385 50| 17761 32761 95| -1939 | -1613
06 ] -9120 51| 1443 | 3371 [ 96| -2090| -1395
07| -8812 59 | -1103 | -3432 | 97| -2218 | -1166
0-8 | -84G3 531 0758 -3460 || 98| -2323 | -0928
09| -8075 54 | -0419 | -3453 | 99| -2403 | -0684
10 | 7652 55 |— 0068 | -3414 || 10:0 | 2459 | -0435
11| 7196 56 |+-0270 | 3348 || 101 | -2490 |+ -0184
12| -6711 57 | 0599 | 3241 || 102 | 2496 |- -0066
1'3 | +6201 58 | -0917 | 3110 || 103 | -2477 | -0313
14| 5669 59 | -1920 | -2051 || 104 | -2434 | -0555
15| 5118 60 | -1506 | -2767 || 105 | -2366 | -0789
16 | -4554 61| 1773 | 2559 : 9976 | <1012
17 | +3980 62| 2017 | -2329 9164 | 1224
1-8 | 3400 63| -2238 | -2081 2032 | 1422
19 | 2818 64 | 2433 | ‘1816 1881 | -1604
2:0 | -2239 65 | -2601 | -1538 1712 | <1768
211 -1666 66 | 2740 | -1250 1528 | 1913
2:2 | -1104 67 | 2851 | -0953 1330 | -2039
2:3 | -0555 68| -2931 | -0652 1121 | -2143
2-4 |+ -0025 69 | -2981 | -0349 0902 | 2225
2:5 |—-0484 70 | 3001 |—-0047 0677 | 2284
26 | 0968 7.1 | 2991 |+°0252 ‘0446 | 2320
27 | 1424 7-9 | -92051 | -0543 --0213 | 2333
28 | -1850 73| 2882 | 0826 0020 | 2323
2:9 | 2243 74 | 2786 | -1096 0250 | -2290
3:0 | -2601 75 | 2663 ] -1352 0477 | 2234
31! -2991 76 | 2516 | <1592 0697 | 2157
32 -3202 77 | 2846 | ‘1813 0908 | 2060
3:3 | 3443 78 | 2154 | 2014 1108 | 1943
34| 3643 79 | -1944 | -2192 1296 | 1807
35 | 3801 80 | -1717 | 2346 1469 | -1655
36 | -8918 81 | <1475 | -2476 1626 | 1487
37| 3992 89 | 1222 | 2580 1766 | 1307
38 | 4026 83 | 0060 | ‘2657 1887 | 1114
39 +4018 84 | 0692 | 2708 1988 | #0912
40| -3972 85 | 0419 | 2731 | 2069 | 0703
41| 3887 86 | +-0146 | 2728 9129 | 0489
42 | 3766 87 |- -0125 | -2607 2167 | 0271
43| +3610 88 | -0392 | -2d4l 2183 |-~ -0052
44| 3423 89| 0633 2559 -2177 |+ 0166
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201. In accordance with the notation for Bessel’s functions
the expression for a normal component vibration may therefore be
written

- w=PJ, («r) cosn (@+a) cos (pt+€).ervnnnnn Q);
and the boundary condition requires that
S, (k@) =0.oiiiniiiinnniiiian 2),

an equation whose roots give the admissible values of «, and
therefore of p.

The complete expression for w is obtained by combining the
particular solutions embodied in (1) with all admissible values of
« and m, and is necessarily general enough to cover any initial
circumstances that may be imagined. We conclude that any
function of » and § may be expanded within the limits of the
circle r=@ in the series

w=22%J, (k) {$ cosnd+rsinnb)..ccoerrrerrns (3).
For every integral value of n there are a series of values of &,
given by (2); and for each of these the constants ¢ and + are
arbitrary. :
The determination of the constants is effected in the usual
way. Since the energy of the motion is equal to

1p f . f:w LY @,

and when expressed by means of the normal co-ordinates can only
involve their squares, it follows that the product of any two of the
terms in (3) vanishes, when integrated over the area of the circle.
Thus, if we multiply (3) by J, («r) cosnf, and integrate, we
find

2m
faf w J, (er) cos nf rdr df
0Jo

—¢ f f [, ()] cos® nf rdr d0

—b.m f o A s (5),

by which ¢ is determined. The corresponding formula for 4 is
obtained by writing sinnf for cosnf. A method of evaluating
the integral on the right will be given presently. Since ¢ and yr
each contain two terms, one varying as cospt and the other as
sin pt, it is now cvident how the solution may be adapted so as to
agrec with arbitrary initial values of w and w.
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202. Let us now examine more particularly the character of
the fundamental vibrations. If n=0, w is a function of r only,
that is to say, the motion is symmetrical with respect to the centre
of the membrane. The nodes, if any, are the concentric circles,
whose equation is

When # has an integral value different from zero, w is a func-
tion of @ as well as of r, and the equation of the nodal system
takes the form

J, (kr) cosn(@—a)=0..ccorrnvinirnnn, 2.

The nodal system is thus divisible into two parts, the first con-
sisting of the concentric circles represented by

S, (er) =0 e, (3),
and the second of the diameters

O =at (@m+ 1) i, (4),

where m is an integer. These diameters are n in number, and
are ranged uniformly round the centre; in other respects their
position is arbitrary. The radii of the circular nodes will be in-
vestigated further on.

203. The important integral formula
| A LA T —— (1),
0

where « and &' are different roots of

T (KG) =0 crvrreevrerenn., S @),

may be verified analytically by means of the differential equations
satisfied by o, («r), J,(«'r); but it is both simpler and more
instructive to begin Wlth the more general problem, where the
boundary of the membrane is not restricted to be circular.

The variational equation of motion is

8V+pfffib8wdxdy=0 ...................... )

=3T, ff{(‘%’)g + (%;)2} Ay cvvreriesiinnin (4),
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and therefore

dw d8o | dw dw o
aV_dex o dJ}d By eorerrennns(3).

In these equations w refers to the actual motion, and dw to a hypo-
thetical displacement consistent with the conditions to which the
system is subjected. Let us now suppose that the system is exe-
cuting one of its normal component vibrations, so that w = u, and

G+ u=0.iiiiiiiiinin i, (6),
while 8w is proportional to another normal function .

Since x=p + ¢, we get from (3)

du dv du dy -
ffuvdxdy _U{dx T dg} @}dmdy ............. (M.

The integral on the right is symmetrical with respect to » and v,
and thus

(«* =) ffuvdde 0 i, (8),

where £ bears tlie same relation to » that &° bears to u.

Accordingly, if the normal vibrations represcnted by w and v
have different periods,

_qu dedy=0 ..coociviinnnnninninnnn. 9).

In obtaining this result, we have made no assumption as to the.
boundary conditions beyond what is implied in the absence of re-

actions against acceleration, which, if they cxisted, would appear
in the fundamental equation (3).

If in (8) we suppose & =, the equation is satisfied identically,

and we cannot infer the value of f f w'dady. In order to evaluate
this integral we must follow a rather different course.

If » and v be functions satisfying within a certain contour the
equations V'u +«"u= 0, y'v+«£“v =0, we have

(/c'g—/cz)ffuvdxJy=ff(vv”u—uv’v) de dy

- f (U% —u j%) S vereenennan, (10),
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by Green’s theorem. Let us now suppose that v is derived from
u by slightly varying «, so that

d
v=u+ 28, &=k + 8k;

dr
substituting in (10), we find
0 __(1dw du d*u ) ]
2xffudxdy—f<a;%—um R (11);
or, if % vanish on the boundary,
2% / f "o dy = d“ d“ ........ s (12).

For the application to a circular area of radius », we have

u=cos nf J, (kr) }
v =cosnd J, («')

and thus from (10) on substitution of polar co-ordinates and integra-
tion with respect to 8,

(€ — ) f :Jn (k1) J, (1) rdr

=0T, () 2 T, () = 1), () R A P (14).
Accordingly, if

d d
ar ¥ J (" r) (" r) = = dr Jn (’CT) : J.fl (),

and « and « be different,
f T () T, (€7) rdr =0 e, v (15),
0

an equation first proved by Fourier for the case when
J, (er) =7, (¢1)= 0.
Again from (12)

aJdJ _ &'J

2 - —
2;ch (kr) wdr = 7d 7~

= kT ] (J" J)
dashes denoting differentiation with respect to k7. Now
Je oy (1——.—>J 0,
Leh
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and thus
r nﬁ
2 f .2 (kr) v = 1%, (i) + 1* (1 S IR, (16).
0 /

This result is general; but if, as in the application to membrancs
with fixed boundaries,

J-u (Klr) = O’ .
then T f T3 (k) 1 =1 (K1) weeereronernes (17).
0 R

204. We may use the result just arrived at to simplify the
expressions for 7'and V. From

w =33 {¢,..J, (k1) cos nd + 4, J, (e,.7) sinnb}............ (1),
we find
T=%pma?S2J* (x,.0) {2+ VA TR 2),
V=1pma® 22,50, (£,,0) {2+, oo (8);
whence is derived the normal equation of motion
b 4p td =P ),

p'n-a J ,z (Kmna)

and a similar equation for .. The value of &, is to be found

mn mn

from the consideration that ® 64 denotes the work done by the

impressed forces during a hypothetical displacement 8¢, ; so that
if Z be the impressed force, reckoned p.er unit of area,
- f fz (e,,7) cosnfrdrdf............ (5).

These expressions and equations do not apply to the case n =0,
when ¢ and 4 are amalgamated. We then have

T=%pmwa®J*(k o) ‘}Smo }
V %pﬂ'a/ .p mo t]0 (’cmoa) ¢m02 ...............
2

M0 e (0.

¢m0 + p mo ¢mo m

As an example, let us suppose that the initial velocities are zero,
and the initial configuration that assumed under the influence of a
constant pressure Z; thus

® =22 f :Jo (e, ) v
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Now by the differential equation,

I, (er) == (]} (er) + - (k)

and thus
foJo (rer) rdr = — % Y N () RO 8);
so that b =—21aZJ’(,c %)
" " Icmo ° moms

mo 18

Substituting this in (7), we see that the initial value of'qS

o —-4Z
(¢m°)‘=0 - Kmopmozpa Jol (’Cmua)

For values of n other than zero, ® and the initial value of ¢
vanish, The state of the system at time ¢ is expressed by

¢mo = (¢1no)i=0 - CO8 pmot """"""""""" (10)’
(DN T I (. RN (11),

the summation extending to all the admissible values of «,,

nn

As an example of forced vibrations, we may suppose that Z, still
constant with respect to space, varies as a harmonic function of the
time. This may be taken to represent roughly the circumstances
of a small membrane set in vibration by a train of aerial waves.
If Z = cos gt, we find, nearly as before,

J, (1)
’Cmo (92 —.p 11102) Jol (Kmoa)

The forced vibration is of course independent of 8. It will be seen
that, while none of the symmetrical normal components are missing,
their relative importance may vary greatly, especially if there be a
near approach in value between ¢ and one of the series of quanti-
ties p,,. If the approach be very close, the effect of dissipative
forces must be included. :

4 :
w_;‘;cosqtz corervnnennn(12).

205. The pitches of the various simple tones and the radii of
the nodal circles depend on the roots of the equation

J, (k) = J, (2) = 0.

If these (exclusive of zero) taken in order of magnitude be
called 2%, 2%, 2®...... 29 .. , then the admissible values of p

n 2
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272 VIBRATIONS OF MEMBRANES. [205.

are to be found by multiplying the quantities 2% by ¢ +a. The
particular solution may then be written

1U=lemg{A“%%n9+B“kmnﬂc% O W —e ... (1),
9 n a n n a n 7 N

The lowest tone of the group n corresponds to 2,%; and since in
this case J, ( w a> does not vanish for any value of » less than q,

there is no interior nodal circle. If we puts=2, J, will vanish,
when

o T
~n(~) r_ z"“’,
a
1]
that is, when r=a 2y,

which is the radius of the one interior nodal circle. Similarly
if we take the root 2, we obtain a vibration with s—1 nodal
circles (exclusive of the boundary) whose radii are

2z 11} 2 2 z (a-1)

In En_ Tn__
QT Qe a o7 a

All the roots of the equation J, (ka) =0 are real. For, if
possible, let ka = A+ tu be a root; then «'a =\ —7u is also a root,
and thus by (14) § 203,

4“,7&;1,[ () I, (') vy =

Now J, (k»), J, (¢'7) are conjugatec complex quantities, whose
product is necessarily positive ; so that the above equation requires
that either A or g vanish. That A cannot vanish appears from
the consideration that if xa were a pure imaginary, each term of
the ascending series for J would be positive, and therefore the
sum of the series incapable of vanishing. We conclude that
=0, or that xis real’, The same result might be arrived at
from the consideration that only circular funetions of the time
can enter into the analytical expression for a normal component
vibration.

The equation J, (2) =0 has no equal roots (except zero). From
equations (7) and (8) § 200 we get

g, =2J, —J
P

n+1?

! Riemann, p. 260.
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whence we see that if J, J,' vanished for the same value of 2, J,,
would also vanish for that value. But in virtue of (8) § 200
this would require that all the functions J, vanish for the value

of z in question’.

206. The actual values of 2z, may be found by interpolation
from Hansen’s tables so far as these extend; or formule may be
calculated from the descending series by the method of successive
approximation, expressing the roots directly. For the important
case of the symmetrical vibrations (n =0), the values of 2z, may be
found from the following, given by Stokes®:

2 . 050661 053041 262051
7T T T oty 1y (D

For n =1, the formula is

zl“‘_ 95 ‘151982 + ‘015399 _ '_245835
—7;——s+ 5~ Ll T+ 1y sy iy ).

The latter series is convergent enough, even for the first root,
corresponding to s =1. The series (1) will suffice for values of s
greater than unity; but the first root must be calculated
independently. The accompanying table (A) is taken from
Stokes’ paper, with a slight difference of notation.

It will be seen either from the formula, or the table, that the
difference of successive roots of high order is approximately .
This is true for all values of n, as is evident from the descending
series (10) § 200.

M. Bourget has given in his memoir very elaborate tables of
the frequencies of the different simple tones and of the radii of
the nodal circles. Table B includes the values of 2, which satisfy
J, (2),forn=0,1,...5,8=1,2 ... 9.

1 Bourget, ‘ Mémoire sur le mouvement vibratoire des membranes circulaires,”
Ann. de Vécole normale, $. 111, 1866. In one passage M. Bourget implies that he
has proved that no two Bessel’s functions of integral order can have the same root,
but I cannot find that he has done go. The theorem, however, is probably true;
in the case of functions, whose orders differ by 1 or 2, it may be easily proved from
the formulse of § 200.

2 Camb. Phil. Trans. Vol. 1x. * On the numerical caleulation of a class of defi-
nite integrals and infinite series.”

R. 18
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274 VIBRATIONS OF MEMBRANES. [206.

TABLE A.

z . 2 .
- for J,(z)=0. | Diff. - for J,(z) = 0. Diff.
1 65 .

7655 9916 1-2197 1:0133

2 1-7571 i 2-2330
9975 1-0053

3 2-7546. 3-2383
x *9988 10028

4 37534 4-2411
9993 1-0017

5 47527 52428 .

9995 1-0011

6 57522 6-2439
9997 1-0009

( 6:7519 7-2448
9997 1-0006

8 77516 8-2454
9998 - 1:0005

9 87514 9-2459
- ‘9999 1:0004

10 97513 10-2463
9999 1-0003
11 10-7512 9999 11-2466 1-0003

12 11-7511 12-2469

When 7 is considerable the calculation of the carlier roots
becomes troublesome. For very high values of n, 2,” :n approxi-
mates to a ratio of equality, as may be seen from the consideration
that the pitch of the gravest tone of a very acute sector must tend
to coincide with that of a long parallel strip, whose width is equal
to the greatest width of the sector.

TaBLE B.

s n=0 n=1 7 =2 n=3 n=4 n=>5

2-404 3-832 5:135 6:379 7586 8-780
5520 7-016 8417 9760 | 11-064 | 12-339
8:654 | 10173 | 11-620 | 13-017 | 14373 | 15-700
11-792 | 13-323 | 14-796 | 16-224 | 17:616 | 18-982
14:931 | 16470 | 17-960 | 19-410 | 20-827 | 22-220
18071 | 19-616 | 21-117 | 22-583 | 24018 | 25-431
21-212 | 22:760 | 24-270 | 25-749 | 27-200 | 28-628
24-353 | 25003 | 27-421 | 28909 | 30-371 | 31-813
27494 | 29-047 | 30571 | 32050 | 33512 | 34-983

© o0 =T O Ot = O N =
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£.600 1.594 3.{35

2.29¢6 2,653
436

The figures represent the more important normal modes of
vibration, and the numbers affixed give the frequency referred to

18—2
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276 VIBRATIONS OF MEMBRANES. [206.

the gravest as unity, together with the radii of the circular nodes
expressed as fractions of the radius of the membrane. In the case
of six nodal diameters the frequency stated is the result of a rough
calculation by myself.

The tones corresponding to the various fundamental modes of
the circular membrane do not belong to a harmonic scale, but
there are one or two approximately harmonic relations which may
be worth notice. Thus

4 x 1594 = 21125 = 2136 nearly,
5 x 1'594 = 2657 = 2'653 nearly,
2 x 1594 = 3'188 = 3156 nearly;

so that the four gravest modes with nodal diameters only would
give a consonant chord.

The area of the membrane is divided into segments by the
nodal system in such a manner that the sign of the vibration
changes whenever a node is crossed. In those modes of vibration
which have nodal diameters there is evidently no displacement of
the centre of inertia of the membrane. In the case of symmetri-
cal vibrations the displacement of the centre of inertia is propor-
tional to

f T, () v =~ [ {Jo (kr) + L 7 (xa‘)} rdr = — &J (xa),

0 Jo Kr K

an expression which does not vanish for any of the admissible
values of «, since J (2) and J, (z) cannot vanish simultaneously.
In all the symmetrical modes there is therefore a displacement of
the centre of inertia of the membrane.

207. Hitherto we have supposed the circular area of the
membrane to be complete, and the circumference only to be
fixed; but it is evident that our theory virtually includes the
solution of other problems, for example—some cases of a mem-
brane bounded by two concentric circles. - The complete theory
for a membrane in the form of a ring requires the second Bessel’s
function,

The problem of the membrane in the form of a semi-circle
may be regarded as already solved, since any mode of vibration
of which the semi-circle is capable must be applicable to the
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complete circle also. In order to see this, it is only necessary
to attribute to any point in the complementary semi-circle the
opposite motion to that which obtains at its optical image in
the bounding diameter. This line will then require no constraint
to keep it nodal. Similar considerations apply to any sector
whose angle is an aliquot part of two right angles.

When the opening of the sector is arbitrary, the problem
may be solved in-terms of Bessel's functions of fractional order.
If the fixed radii are =0, 0 = B, the particular solution is

w = P,y (er) sin”"0 cos (pt—e) rrvrers (1),
g B
where v is an integer. We see that if 8 be an aliquot part of o,
vm <+ 3 is integral, and the solution is included among those already
used for the complete circle.

An interesting case is when B =2, which corresponds to the
problem of a complete circle, of which the radius =0 is con-
strained to be nodal.

Fig. 88.

‘We have
w=PJ,, (kr) sin §v0 cos (pt —e).

When » is even, this gives, as might be expected, modes of
vibration possible without the constraint; but, when » is odd,
new modes make their appearance. In fact, in the latter case
the descending series for J terminates, so that the solution is
expressible in finite terms. Thus, when v=1,

w= P G016 o8 (phm€) vrvrreens ).
KT
The values of x are given by

\

sin kg =0, or xa=mm.
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Thus the circular nodes divide the fixed radius into equal
parts, and the series of tones form a harmonic scale. In the
case of the gravest mode, the whole of the membrane is at any
moment deflected on the same side of its equilibrium position.
It is remarkable that the application of the constraint to the
radius 6 =0 makes the problem easier than before.

If we take y=3, the solution is

1
P
v Jrr

(sin Kr

o~ cos m‘) sin 30 cos (pt—€)..u..n. (3).

Fig. 39.

In this case the nodal radii are

2 4
€=—§, 0=?)

and the possible tones are given by the equation
tan ka =«a..... rererreatecte (4).
To calculate the roots of tan # =2 we may assume
z=(m+y)m—y=X—y,

where y is a positive quantity, which is small when « is large.

Substituting this, we find cot y = X — g,

whence

_1 y. ¥ ¥_ 2 17y
y=x(+ o)~k

This equation is to be solved by successive approximation.
It will readily be found that

2 13 146
N T e Nl o N i U
y=X +3A +15X +105X +
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so that the roots of tan 2=« are given by

w=X-X -2 X DX Iy 5),

where X=(m+)

In the first quadrant there is no root after zero since tan z >z,
and in the second quadrant there is none because the signs of
@ and tanx are opposite. The first root after zero is thus in
the third quadrant, corresponding to m=1. Even in this case
the series converges sufficiently to give the value of the root
with considerable accuracy, while for higher values of m it is
all that could be desired. . The actual values of z : 7 are 1'4303,
2:4590, 34709, 44747, 54818, 6-4844, &c.

208. The effect on the periods of a slight inequality in the
density of the circular membrane may be investigated by the
general method § 90, of which several examples have already
been given. It will be sufficicnt here to consider the case of a
small load M attached to the membrane at a point whose radius
vector is ¢,

We will take first the symmetrical types (n=0), which may
still be supposed to apply notwithstanding the presence of M. The
kinetic energy T'is () § 204 altered from

% P 7T(]42 J-l),2 (Icmoa) 4;771,02 tO é‘ P ’n-a’z J’(’)’Z (K’Imoa/) 4;m.02 + % M¢;17w2 J02 (’CmoT')»
and therefore
._._]'[__ J;)Q (meOT') 1
p7'ra2 Jolz (/Cmoa,) .................... ( ),

where P, ;" denotes the value of p,,,°, when there is no load.

m0

p mo2 : 'Z)mo2 = 1

The unsymmetrical normal types are not fully determinate for
the unloaded membrane; but for the present purpose they must
be taken so as to make the resulting periods a maximum or
minimum, that is to say, so that the effect of the load is the
greatest and least possible. Now, since a load can never raise
the pitch, it is clear that the influence of the load is the least
possible, viz. zero, when the type is such that a nodal diameter (it
is indifferent which) passes through the point at which the load is
attached. The unloaded membrane must be supposed to have two
coincident periods, of which one is unaltered by the addition of the
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load. The other type is to be chosen, so that the alteration of
period is as great as possible, which will evidently be the case
when the radius vector 7’ bisects the angle between two adjacent
nodal diameters. Thus, if 7" correspond to 8 = 0, we are to take

w= ¢mn Jﬂ (Kmnr) cos ne ;
so that (2) § 204

T=}pmd $,.2 I (ko) v 5 M b, 2T, ().
The altered p,,,’ is therefore given by

2M J,? (k")

2, z_1._ "
P 3 Pt =1 Py X s (Kmna)..................(2).

Of course, if ' be such that the load lies on one of the nodal
circles, neither period is affected.

For example, let A be at the centre of the membrane. J, (0)
vanishes, except when n=0; and J, (0)=1. It is only the
symmetrical vibrations whose pitch is influenced by a central load,

and for them by (1)

M
2. 2 _ B
Pl Pi=1 T o) g Cineriraeees (3).
By (6) § 200 J) (2) ==, (2),

so that the application of the formula requires only a knowledge of
the values of J, (2), when J, (2) vanishes, § 200. For the gravest
mode the value of J (x,.a) is 51903'. When «,,a is consider-
able,

)} (K,00) = 2+ Tk,
approximately ; so that for the higher components the influence of
the load in altering the pitch increases.

The influence of a small irregularity in disturbing the mnodal
system may be calculated from the formule of § 90. The most
obvious effect is the breaking up of nodal diameters into curves
of byperbolic form due to the introduction of subsidiary sym-
metrical vibrations. In many cases the disturbance is favoured
by close agreement between some of the natural periods.

209. We will next investigate how the natural vibrations of
a uniform membrane are affected by a slight departure from the
exact circular form.

1 The succeeding values are approximately 341, 271, 232, 206, 187, &e.
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Whatever may be the nature of the boundary, w satisfies the
equation

dw ldw 1dw
'JP'F; a7+P(—i—9—2+ICw=O ................ (1),

where « is a constant to be determined. By Fourier’s theorem w
may be expanded in the series
w=w,+w, cos (0 +a)+w,co82(0+a)+.....

+w,cosn (@+a,)+ .o,

where w,, w,, &ec. are functions of v only. Substituting in (1), we
see that w, must satisfy

dw, 1 dw, . ﬁ’) _
—W+;—dr—+(x—r2 w, =0,

of which the solution is
w,oc J, (kr);

for, as in § 200, the other function of » cannot appear.

The general expression for w may thus be written
w=A,J, (kr) +J (k1) (4, cos 6 + B, sin §)
+ .+, (1) (A, cosn0 + B, sinnld) + veuuvane. (2).

For all points on the boundary w is to vanish.

In the case of a pearly circular membrane the radius vector is
nearly constant. We may take r=a+ 0r, or being a small
function of 8. Hence the boundary condition is

0= 4, [V, (ka) + k87 T} (6)] - ...
+ [/, (k@) + k8r J, (ka)] [4, cos nf + B, sin nf]

which is to hold good for all values of 4.

Let us consider first those modes of vibration which are nearly
. symmetrical, for which therefore approximately

w=A4,J, (kr).

All the remaining coefficients are small relatively to 4,, since
the type of vibration can only differ a little from what it would
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be, were the boundary an exact circle. Hence if the squares of
the small quantities be omitted, (3) becomes

A, [J, (ka) + £8r T (ka)] + J, (xa) [4, cos § + B, sin ]
+ o+ J, (va) [4, cos nf + B, sinnf]+...=0...... (4).

If we integrate this equation with respect to @ between the
limits 0 and 27, we obtain

o
2, (ko) + 7 (ka) [ k8rd0 =0,
0

or Jo{/ca + /cf:’rSr;ZT?_} =0.iiriieernirinnenenn(8),

which shews that the pitch of the vibration is approximately the
same as if the radius vector had uniformly its mean value.

This result allows us to form a rough estimate of the pitch of
any membrane whose boundary is not extravagantly elongated.
If o denote the area, so that po is the mass of the whole mem-
brane, the frequency of the gravest tone is approximately

27 x 2404 x \/:ﬁ vererireeerenersenens (6).

In order to investigate the altered type of vibration, we may
multiply (4) by cosnf, or sinnf, and then integrate as before.
Thus

2 1
A, (ca) f kB cosnd A +m A, J, (k) =0 |
0
4,7, (a) f " e8r sinnd 46 + B, J, (xa) = 0 f
0

which determine the ratios 4, : 4, and B, : 4,
If Or=8r,+0r,+...+0r,+...
be Fourier’s expansion, the final expression for w may be written,

w:i A, =J, (kr)
, J, (xr) dr, J, (kr) or, -
—K«'e]o (IC(Z) {W'{--.. +—m—+...}......(8).

When the vibration is not approximately symmetrical, the
question hecomes more complicated. The normal modes for the
truly circular membranc are to some extent indeterminate, but the
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irregularity in the boundary will, in general, remove the indeter-
minateness. The position of the nodal diameters must_be taken,
so that the resulting periods may have maximum or minimum
values. Let us, however, suppose that the approximate type is

w=A,d, (kr)cosvl...c.coviiiiiniinn (9),

and afterwards investigate how the initial line must be taken in
order that this form may hold good.

All the remaining coefficients being treated as small in compa-
rison with 4,, we get from (4)

A, J, (ka) + ... + 4,[J, (ka) + xbrd, (ka)] cos vl

+ B, J, (ka) sin v0 +......

+J, (ka) [4, cosnf + B, cosnd] +... =0 ...... (10).
Multiplying by cos »8 and integrating,

ad, (ka)+ xJ,/ (lca)f:r dr cos®*»0d0 =0,

or .
2n
J, [/ca + fcf or cos? vl (—Zg] =0,
0 m
which shews that the effective radius of the membrane is

o+ fzw Or cos® v0 D (11).
0 ™

The ratios of 4, and B, to 4, may be found as before by in-
tegrating equation (10) after multiplication by cos nd, sin nf.

But the point of greatest interest is the pitch. The initial line
is to be so taken as to make the expression (11) a maximum or
minimum. If we refer to a line fixed in space by putting 8 —a

instead of 6, we have to consider the dependence on « of the
quantity

f " 81 costv (6 —a) d6),
0

which may also be written
ar 27
cos? v f &r cos® vdf + 2 cos ya sin va f Sr cos vf sin v6dh
0 0
21
+ sin® vx fo Orsin®vfdl . .covovvvninnnns (12),
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and is of the form

A cos*va+ 2B cosvasinva + Csin®ya,

4, B, C being independent of a. There are accordingly two
admissible positions for the nodal diameters, one of which makes
the period a maximum, and the other a minimum. The diameters
of one set bisect the angles between the diameters of the other
set.

There are, however, cases where the normal modes remain inde-
terminate, which happens when the expression (12) is independent
of @ This is the case when &r is constant, or when &r is propor-
tional to cosvd. For example, if &r were proportional to cos 26,
or in other words the boundary were slightly elliptical, the nodal
system corresponding to n =2 (that consisting of a pair of per-
pendicular diameters) would be arbitrary in position, at least to
this order of approximation. But the single diameter, correspond-
ing to n=1, must coincide with one of the principal axes of
the ellipse, and the periods will be different for the two axes.

210. We have seen that the gravest tone of a membrane,
whose boundary is approximately circular, is nearly the same as
that of a mechanically similar membrane in the form of a circle of
the same mean radius or area. If the area of a membrane be
given, there must evidently be some form of boundary for which
the pitch (of the principal tone) is the gravest possible, and this
form can be no other than the circle. In the case of approximate
circularity an analytical demonstration may be given, of which the
following is an outline.

* The general value of w being
w=4,J, (kr) + ... + J, (k) (4,cosnd + Bsinnb) + ...... (1),

in which for the present purpose the coefficients 4,, B, ,... are small
relatively to 4,, we find from the condition that w vanishes
when r=a+ o,

A J, (ka) + kA, J,) (ka) &r + L £°4, T, (ka). (1) + ......
+ = [{J, (ka)+ &J, (ka) &r + ...}{4, cosnd + B, sin nf}]=0... (2).
Hence, if

Or~ 1, cos0+B,sin 0+ ... + a, cos nb + B, sinnf + ...... (3),
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we obtain on integration with respect to 6 from 0 to 2,

24,7, +§ 4TS (1248

n=ow

+x3  [(a,d,+B,B)JT=0 o (),

from which we see, as before, that if the squares of the small
quantities be neglected, o/, (ka) =0, or that to this order of ap-
proximation the mean radius is also the effective radius. In
order to obtain a closer approximation we first determine 4, : 4,
and B : A4, by multiplying (2) by cosnf, sinnf, and- then in-
tegrating between the limits 0 and 2. Thus

AJ, == ka, ATl ByJ,=~ kB, AT, evrvennn. (5).

Substituting these values in (4), we get

T (ka) = § o8 [(a +B* {J:]J' %J"H ...... (6).

n

Since J; satisfies the fundamental equation
14 1 ’ A
Jy+ P gy Fy =00 (0,

and in the present case J,=0 approximately, we may replace

J,’ by ";1;'70" Equation (6) then becomes

Tk =§ RS l-(a +/32>{~-+i}] ......... ).

Let us now suppose that @ + da is the equivalent radius of the
membrane, so that
J, [« (@ + da)] = J (xa) + J (xa) kda= 0.
Then by (8) we find

da=—}k3 f[(a:m:) {-+%H ......... (9).

Again, if @ 4+ da’ be the radius of the truly circular membrane
of equal area,

s a2+ B crerrriinerenne. (10) 5

‘Lanl
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286 ' VIBRATIONS OF MEMBRANES. [210.

so that

, 1T, 2 J, (xa)
do ~da=215" [(a,, + 8.7 {1 #ra'p (m)}] ...... (1),

The question is now as to the sign of the right-hand member.
If n=1, and z be written for xa,
J, (2)

A

vanishes approximately by (7), since in general J, =—J/, and
in the present case J (z) =0 nearly. Thus da —da=0, as should
evidently be the case, since the term in question represents merely
a displacement of the circle without an alteration in the form of
the boundary. When n =2, (8) § 200,

2
Jz = z Jx - J;v
from which and (7) we find that, when J, =0,
J, -4
At PRRUEIE RN (12),
whence
da—da——( +B)(_-1) ............ as),

which is positive, since z= 2'404.

‘We have still to prove that

J, (@)

J. (2)

is positive for integral values of n greater than 2, when z = 2404.
For this purpose we may avail ourselves of a theorem given in
Riemann’s Partielle Differentialglevchungen, to the effect that
neither J, nor J has a root (other than zero) less than n. The
differential equation for J, may be put into the form

142

d’J, (2 +(g_n2)J’(7) 0;

d (log z)2

dJ A .d
while initially J, and J, (as well as 777 oz > are positive. Accord-

d(liJ begins by increasing and does not cease to do so
before 2z =n, from which it is Clear that within the range 2= 0 to

ingly
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210.] ' ELLIPTICAL BOUNDARY. 287

z=m, neither J, nor J can vanish. And since J, and J, are
both positive until z = n, it follows that, when n is an integer greater
than 2404, da’ — da is positive. We conclude that, unless a,, B,
0 ... all vanish, da’ is greater than da, which shews that in the
case of any membrane of approximately circular outline, the circle
of equal area exceeds the circle of equal pitch.

‘We have seen that a good estimate of the pitch of an approxi-
mately circular membrane may be obtained from its area alone,
but by means of equation (9) a still closer approximation may be
effected. We will apply this method to the case of an ellipse,
whose semi-axis major is I and eccentricity e.

The polar equation of the boundary is
r=R{1-}—Fe+.... + 1 cos 20 +....} e, (14);
so that in the notation of this section
a=R(1—-1— %), ao,=}R.
Accordingly by (9)
N AN
2z

32 J, (2)
or by (12), since xR =z = 2404,
2779 &
64

Thus the radius of the circle of equal pitch is

1, 9779

in which the term containing ¢* should be correct.

The result may also be expressed in terms of ¢ and the area o.

We have
R—\/qr(l I 3739

a+da=\/_(1—§%;oe) ............ .. (16),

from which we see how small is the influence of a moderate eccen-
tricity, when the area is given.

and thus
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211. When the fixed boundary of a membrane is neither straight
nor circular, the problem of determining its vibrations presents
difficulties which in general could not be overcome without the
introduction of functions not hitherto discussed or tabulated. A
partial exception must be made in favour of an elliptic boundary ;
but for the purposes of this treatise the importance of the problem
is scarcely sufficient to warrant the introduction of complicated
analysis. The reader is therefore referred to the original investi-
gaticn of M. Mathieu®. It will be sufficient to mention here that
the nodal system is composed of the confocal ellipses and hyper-
bolas.

Soluble cases may be invented by means of the general
solution

w=A,J, (kr) +...+ (4, cos n0 + B, sinnb) J, (kr) + ......
For example we might take
w=d, (kr) =\ J, (kr) cos b,

and attaching different values to A, trace the various forms of
boundary to which the solution will then apply.

Useful information may somectimes be obtained from the
theorem of § 88, which allows us to prove that any contraction of
the fixed boundary of a vibrating membrane must cause an eleva~
tion of pitch, because the new state of things may be conccived to
differ from- the old merely by the introduction of an additional
constraint. Springs, without inertia, are supposed to urge the
line of the proposed boundary towards its equilibrium position,
and gradually to become stiffer. At each step the vibrations
become more rapid, until they approach a limit, corresponding to
infinite stiffness of the springs and absolute fixity of their points
of application. It is not necessary that the part cut off should
have the same density as the rest, or even any density at all

For instance, the pitch of a regular polygon is intermediate
between those of the inscribed and circumscribed circles, Closer
limits would however be obtained by substituting for the circum-
scribed circle that of equal area according to the result of § 210.
In the case of the hexagon, the ratio of the radius of the circle of
equal area to that of the circle inscribed is 1-050, so that the mean

1 Liouville, 1868,
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211.] MEMBRANES OF EQUAL AREA. 289

of the two limits cannot differ from the truth by so much as 2% per
cent. In the same way we might conclude that the sector of a
circle of 60° is a graver form than the equilateral triangle obtained
by substituting the chord for the are of the circle,

The following table giving the relative frequency in certain
calculable cases for the gravest tone of membranes under similar
mechanical conditions and of equal area (o), shews the effect of a
greater or less departure from the circular form.

Circle. .uverreenreeeeeimnonensesesenennnne, 2404 . /7 = 4:261.
SQUATE. cvviriraeinsririirriieieri e N2 .1 = 4443.
Quadrant of a circle....cocveviiveivnnneans ch 135 N =4551.
Sector of a circle 60°%...ceunvirrennirniennse 6379 g =4-616.
Rectangle 83X 2..cveeiuvinnereiiinininnennens —16—3 7= 40624,
Equilateral triangle....coveaiiiinenninnn. 27 .o/ tan 30° = 4774,
Semicircle.....ouuuss Crerereasrrerersrinaaee 3832 «/. = 4803,
i e SV
Rectanglé L ' P aensaese w«/%_o =5'736.

For instance, if a square and a circle have the same area, the
former is the more acute in the ratio 4443 : 4261,

For the circle the absolute frequency is

27 x 2404 cﬂ, where c¢= T, ++/p.

In the case of similar forms the frequency is inversely as the
linear dimension,

212. The theory of the free vibrations of a membrane was
first successfully considered by Poisson'. His theory in the
case of the rectangle left little to be desired, but his treatment

1 Mém, de P Académie, t, vii, 1829,
R. 19
IRIS - LILLIAD - Université Lille 1



290 .VIBRATIONS OF MEMBRANES. [212.

of the circular membrane was restricted to the symmetrical
vibrations. Kirchhoff's solution of the similar, but much more
difficult, problem of the circular plate was published in 1850, and
Clebsch’s Theory of Elasticity (1862) gives the general theory of the
circular membrane including the effects of stiffness and of rotatory
inertia. It will therefore be seen that there was not much left
to be done in 1866 ; nevertheless the memoir of Bourget already
referred to contains a useful discussion of the problem accom-

panied by very complete numerical results, the Whole of which
howeve1 were not new.

213. In his experimental investigations M. Bourget made use
of various materials, of which paper proved to be as good as any.
The paper is immersed in water, and after removal of the superfluous
moisture by blotting paper is placed upon a frame of wood whose
edges have been previously coated with glue. The contraction of the
paper in drying produces the necessary tension, but many failures
may be met with before a satisfactory.result is obtained. Even
a well stretched membrane requires considerable precautions in
use, being liable to great variations in pitch in consequence of the
varying moisture of the atmosphere. The vibrations are cxcited
by organ-pipes, of which it is necessary to have a series proceeding
by small intervals of pitch, and they are made evident to the eye
by means of a little sand scattered on the membrane. If the
vibration be sufficiently vigorous, the sand accumulates on the
nodal lines, whose form is thus defined with more or less precision.
Any inequality in the tension shews itsclf by the circles becoming
elliptic.

The principal results of experiment are the following :—

A circular membrane cannot vibrate in unison with every sound.
It can only place itself in unison with sounds more acute than
that heard when the membrane is gently tapped.

As theory indicates, these possible sounds are separated by less
and less intervals, the higher they become.

The nodal lines are only formed distinctly in response to
certain definite sounds. A little above or below confusion ensues, °
and when the pitch of the pipe is decidedly altered, the membrane
remains unmoved. There is not, as Savart supposed, a continuous
transition from one system of nodal lines to another.
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The nodal lines are circles or diameters or combinations of
circles and diameters, as theory requires. However, when the
number of diameters exceeds two, the sand tends to heap itself
confusedly towards the middle of the membrane, and the nodes
are not well defined.

The same general laws were verified by MM. Bernard and
Bourget in the case of square membranes*; and these authors con-
sider that the results of theory are decisively established in oppo-
sition to the views of Savart, who held that a membrane was
capable of responding to any sound, no matter what its pitch
might be. But I must here remark that the distinction between
forced and free vibrations does not seem to have been sufficiently
borne in mind. When a membrane is set in motion by aerial
waves having their origin in an organ-pipe, the vibration is
properly speaking forced. Theory asserts, not that the membrane
is only capable of vibrating with certain defined frequencies, but
that it is only capable of so vibrating freely. When however the
period of the force is not approximately equal to one of the
natural periods, the resulting vibration may be insensible.

In Savart’s experiments the sound of the pipe was two or three
octaves higher than the gravest tone of the membrane, and was
accordingly never far from unison with one of the series of over
tones. MM. Bourget and Bernard made the experiment under
more favourable conditions. When they sounded a pipe somewhat
lower in pitch than the gravest tone of the membrane, the sand
remained at rest, but was thrown into vehement vibration as unison
was approached. So soon as the pipe was decidedly higher than the
membrane, the sand returned again to rest. A modification of the
experiment was made by first tuning a pipe about a third higher
than the membrane when in its natural condition. The membrane
was then heated until its tension had increased sufficiently to
bring the pitch above that of the pipe. During the process of
cooling the pitch gradually fell, and the point of coincidence
manifested itself by the viclent motion of the sand, which at the
beginning and end of the experiment was sensibly at rest.

M. Bourget found a good agreement between theory and obser-
vation with respect to the radii of the circular nodes, though the
test was not very precise, in consequence of the sensible width of

1 Adnn. de Chim, Lx. 449—479, 1860,
' 19—2
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292 VIBRATIONS OF MEMBRANES. [218.

the bands of sand; but the relative pitch of the various simple
tones deviated considerably from the theoretical estimates. The
committee of the French Academy appointed to report on
M. Bourget’s memoir suggest as the explanation the want of
perfect fixity of the boundary. It should also be remembered that
- the theory proceeds on the supposition of perfect flexibility—a
condition of things not at all closely approached by an ordinary
membrane stretched with a comparatively small force. But
perhaps the most important disturbing cause is the resistance of
the air, which acts with much greater force on a membrane than
on a string or bar in consequence of the large surface exposed.
The gravest mode of vibration, during which the displacement is
at all points in the same direction, might be affected very
differently from the higher modes, which would not require so
great a transference of air from one side to the other.
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CHAPTER X.

VIBRATIONS OF PLATES.

214. IN order to form according to Green’s method the equa-
tions of equilibrium and motion for a thin solid plate of uniform
isotropic material and constant thickness, we require the expression
for the potential energy of bending. It is easy to see that for each
unit of area the potential energy V is a positive homogeneous
symmetrical quadratic function of the two principal curvatures.
Thus, if p,, p, be the principal radii of curvature, the expression
for ¥ will be

1 1 2u
4 (—+—+——) PPN ¢ O R
Py Pr Pifa @)

where 4 and p are constants, of which A must be positive, and
p must be numerically less than unity. Moreover if the material
be of such a character that it undergoes no lateral contraction
when a bar is pulled out, the constant u must vanish. This
amount of information is almost all that is required for our
purpose, and we may therefore content ourselves with a mere
statement of the relations of the constants in (1) with those by
means of which the elastic properties of bodies are usually de-
fined.

From Thomson and Tait's Natural Philosophy, §§ 639, 642,
720, it appears that, if b be the thickness, ¢ Young’s modulus,
and u the ratio of lateral contraction to longitudinal elongation
when a bar is pulled out, the expression for V is
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b* 1 1 2
A {_ SRR }
24 (1=l " p; PP,
g {(1 1)2 2(1 —,u)} o1
= +—) -, 2%
(1 :“'2) Py P PiP 2 2

If w be the small displacement perpendicular to the plane
of the plate at the point whose rectangular coordinates in the
plane of the plate are «, g,

1,1 1 _fady_(Tuy
P A A =k riav T

and thus for a unit of area, we have

s [or-20-n (i 5= (Za)] o0

which quantity has to be integrated over the surface (S) of the
plate.

215. We proceed to find the variation of ¥, but it should be
previously noticed that the second term in ¥, namely [ /ﬂg )

represents the fotal curvature of the plate, and is therefore de-
pendent only on the state of things at the edge.

12

sTr 1
V= m[f{vw vow - (1 — u) sﬁ}ds ...... (13
so that we have to consider the two variations

ffvw viow.dS and ffa—Pds
13

1 The following comparison of the notations used by the principal writers may
save trouble to those who wish to consult the original memoirs,

Young’s modulus=E (Clebsch)=H (Thomson) =$"— (Thomson)
”__(3"_‘—") (Thomson)=g (Kirchhoff and Donkin)= 21{1+_‘°"’ (Kirchhoff).

Ratio of lateral contraction to longitudinal elongation
m-mn

[} .
(Thomson) 730 (Kirclhihoff).

—,u. (Clebsch and Donkin)=¢ (Thomson) = i

Poisson assumed this ratio to be 4, and Welthexm 3.
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Now by Green’s theorem . . -

ffv*w.V23w.43=ffv4w.3w.ds

fdl_ Sw. ds +fvw~——ds ............ (2),

in which ds denotes an element of the boundary, and g—z denotes
differentiation with respect to the normal of the boundary drawn
outwards.

The transformation of the second part is more difficult. We
have

f/‘ d'w d*dw d’w ddw _ d'w d’Sw} S
PiPa dz® dy* dgf dxt dxdy dxdy

.The quantity under the sign of integration may be put into
the form

d (dSw dw  déw d'w ) _dg_<d8w d'w  ddw dzw)
z

dy\dy dz* ~ dax dedy o dy*  dy dady)”

Now, if F be any function of 2 and y,
dF .
f/@dwdy =st1nl9ds

ff%dwdy:fﬁ'cos @ds

where @ is the angle between « and the normal drawn outwards,
and the integration on the right-hand side extends round the
boundary. Using these, we find

s _ . (dowdw  dbw dw
BU PP ‘f dssin {Ey‘ " dr dxd_y}

déw d®w  ddw d'w
+fdscos€{7 W—_@Wdy}
If we substitute for ddw , dow their values in terms @zﬁ
dz.’ dy dn’
ddS:) from the equations (see Fig. 40)

déw  ddw déw . .
= dn cos@——d—sme

X " . (4)
a’Sw ddw y B N X

= g Sin 0+ 5= cos
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Fig. 40.

we obtain

ddw o? dw igdw o . d*w
5 Plpz fd { A cos” 0 5% 2sm00050dwdy}

+ f ds {cos 0 sin 6 ((CZZ%S ley ) + (sin® @ — cos 9) } (5).

The second integral by a partial integration with respect to
s may be put into the form

fSw—{cos 0sn6(d it i%f)+(c0\s”0—-sin’0) ‘%:} ds.

Collecting and rearranging our results, we find

gt
14 12(1_ z)lif VwdwdS

_fSwds{ Y4 (- p)d (cosﬁsm@(dzw Cc%—‘;)

2 d*w
+ (cos® @ — sin? 0) - Tod )}

d*w
dz

+2cos @sin 0 dd“d )H . (6).

There will now be no diﬁiéulty in forming the equations of
motion. If p be the volume density, and ZpbdS the transverse
force acting on the element dS,

+f—~ds{,uvw+(1 ) (cos 0((11:6“’ + sin’ 0
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av_ffzpbawds +ffpbi68wdS=0 ............. @*

is the general variational equation, which must be true whatever
function (consistent with the constitution of the system) éw may
be supposed to be. Hence by the principles of the Calculus of
Variations

at every point of the plate.

If the edges of the plate be free, there is no restriction on the
ddw
dn
coefficients of these quantities in the expression for 8 V'must vanish,
The conditions to be satisfied at a free edge are thus

hypothetical boundary values of éw and —— , and therefore the

de dw dw) A

—Y—4+(1- p.)d {cos()smﬂ( T

. dw
+ (cos® @ —sin® 4) d dy} =
-z b e (9).

w1 —p) {cosﬁﬂé-2 + sin® 9—10

d'w
+..cos081-n0d1—_dy}=oj

If the whole circumference of the plate be clamped, w =0, ‘?—w =0,
and the satisfaction of the boundary conditions is already secured.
If the edge be ‘supported’?, Sw=0, but»dg%” is arbitrary. The

second of the equations (9) must in this case be satisfied by w.

216. The boundary equations may be simplified by getting
rid of the extrinsic element involved in the use of Cartesian co-
ordinates. Taking the axis of x parallel to the normal of the
bounding curve, we see that we may write

dw d'w . dw  d'w
2 2 iy A —_—— = ——
cos 0d2+sm de2+2cos6’sm0dxd T
dw  dw
2
Also VW= g+ e erreererrrerrieens (1),
1 The rotatory inerti;x is here neglected. 2 Compare § 162,
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where o is a fixed axis coincidind with the tangent at the point
under consideration. In genera,l P Y differs from d 5. Lo obtain
the relation between them, we may proceed thus. Expand w by
Maclaurin’s theorem in ascending powers of the small quantities

n and o, and substitute for » and ¢ their values in terms of 5, the
arc of the curve.

Thus in general

dw  dw dw ,, dw Jdw o,
w= 'w+d n+d +?zd ,n+d d a+§ma+..:,
while on the curve o =s+ cubes, n=—%%+..., where 'p is the

radius of curvature. Accordingly for points on the curve,

_ Ldw 8 dw dw ,
w=w, — Tdn p+da' +§-%—ogs + cubes of s,
and therefore
dw dw ldw .
ds = 3—07 —E dn ........................ (2) by

whence from (1)

dw ldw d*w
Vw_d7‘+pdn+ds .................. (3).

We conclude that the second boundary condmon in (9) § 215
may be put into the form

d*w 1dw dw
P (p}%‘“W):O .................. 4).

In the same way by putting 8 = 0, we see that

wo dw . d*w
cos()sm@( I a7 )+(cos 6 — sin® G)dw %

is equivalent to ﬁ_ , where it is to.be understood that the axes

of n and o are fixed. The first boundary condition now becomes

- d d [ d’w
S0+ (L= p) ds<dn da) 0 rererrereeenns ).
If we apply these equations to the rectangle whose sides are
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parallel to the coordinate axes, we obtain as the conditions to be
satisfied along the edges parallel to g,

d (d'w dw) )
Bl BP0
N SRR (6).
L R
da T

In this case the distinction between o and s disappears, and p, the
radius of curvature, is infinitely great. The conditions for the
other pair of edges are found by interchanging « and 7. These
results may be obtained equally well from (9) § 215 directly, with-
out the preliminary transformation.

217. If we suppose Z =0, and write

2
1~2—p(ql————b_m =0 i ),
the general equation becomes
WHEVW=0oeierrnnnrneeiininnnn, 2),
or, if w o cos (pt—e),
VW =K., (3),
where E=p et 4.

Any two values of w, w and v, corresponding to the same
boundary conditions, are conjugate, that is to say

| J.fz;vds=0 ........................... (5),

provided that the periods be different. In order to prove this
from the ordinary differential equation (3), we should have to
retrace the steps by which (3) was obtained. This is the method
adopted by Kirchhoff for the circular disc, but it is much simpler
and more direct to use the variational equation

SV +pb f@awds=o .................... ©),

in which w refers to the actual motion, and dw to an arbitrary
displacement consistent with the nature of the system. &V isa
symmetrical function of w and 8w, as may be seen from § 215, or
from the general character of V' (§ 94.)
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If we now suppose in the first place that w=u, dw=v, we
have :

8V = pbp’ fumZS;

and in like manner if we put w = v, dw = u, which we are equally
entitled to do,

V= pbp”ffuvds,
whence '

]| L AL E— @).

This demonstration is valid whatever may be the form of the
boundary, and whether the edge be clamped, supported, or free, in
whole or in part.

As for the case of membranes in the last Chapter, equation
(7) may be employed to prove that the admissible values of p* are
real; but this is evident from physical considerations.

218. For the application to a circular dise, it is necessary to
express the equations by means of polar coordinates. Taking
the centre of the disc as pole, we have for the general equation to
be satisfied at all points of the area

(V'=Hw=0.erririirirnrenen. vereeens ),
a 1d  1d .
V= dr“+rdr+ rde*”

To express the boundary condition (§ 216) for a free edge
(r = a), we have

d d d ( d*w) d d (dw) dw _ dw

2, —_ =2 = —_ —
m VY@ VY ds\dnde) = adb ar\rdd)’ dF = a8’

where (§ 200)

p = radius of curvature= g ; and thus

d(@w ldw\ d& 2-—pdw 3—p \

7(37"'?%)"‘%“( PR w)-" .
d?w 1dw ldz) 0 --------- ( ).
aa T (adr+ T

After the differentiations are performed, r is to be made equal
to a.
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If w be expémded in Fourier’s series
w=w,+w,+ ... +w, +...,
each term separately must satisfy (2), and thus, since
w, < cos (nf — a),
d (dw, ldw) . ,/2—pdw, 83—p. )_
E;(W+;W)_n ( @& ar & W =0

@_ﬂ_{_ 1‘1’%_22,“,)_0 I YTTOOS (3).
dr? ’ll'(adr a’r)

The superficial differential equaﬁoq may be written
(V' +6) (V' =#)w=0,
which becomes for the general term of the Fourier expansion

(d’ 1d o 2)(022 1d o )

J,;',z'*‘ pAte d—7"+'rdr r’

rdr ¥
shewing that the complete value of w, will be obtained by adding
together, with arbitrary constants prefixed, the general solutions of

¢ 1d 2o, .
(W+;E‘—%ix)w”=0 .................. 4).

‘The equation with the upper sign is the same as that which
obtains in the case of the vibrations of circular membranes, and
as in the last Chapter we conclude that the solution applicable
to the problem in hand is w, o« J, («r), the second function of r
being here inadmissible.

In the same way the solution of the equation with the lower
sign is w, « J, (ixr), where ¢=4/ —1 as usual.

The simple vibration is thus
w, = cosnb {ad, (kr) + BJ, (tkr)} +sin nd {ryJ, (xr) + 8J, (1xr)}.

The two boundary equations will determine the admissible
values of # and the values which must be given to the ratios
a: B and ¢ : 8. From the form of these equations it is evident
that we must have a:fB=g:54,

and thus w_ may be expressed in the form

w, =P cos (nf —a) {J, (¢r) + N J, (Zxr)} cos (Pt — €)rerrrunrenn, (5).
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As in the case of a membrane the nodal system is composed of
the n diameters symmetrically distributed round the centre, but
otherwise arbitrary, denoted by

cos (nB—a) =0 ...ccorrinriiiinannnnnns (6),
together with the concentric circles, whose equation is
S, () F AT, () =0eveiriinniinncnnnn, ().

219. .In order to determine A and « we must introduce the
boundary conditions. When the edge is free, we obtain from
(3) §218.
 (u—1) {ka J, (ka) — J, (ka)} — x%a®J, (ka)
n* (u— 1) {ixad, (ixa)—J, (tka)}+ i’a’J ] (ixa)

(p— 1) {xaJ, (ka) — n*J, (ka)} — £’ (k@)
(1 — 1) {oxad, (twa) — 2*J, (tka)} + K*a’J (ixa)
in which use has been made of the differential equations satisfied
by J, (), J, (ixr). In each of the fractions on the rlght the deno-
minator may be derived from the numerator by writing <« in place
of x. By elimination of N the equation is obtained Whose roots give
the admissible values of «.

‘When n = 0, the result assumes a simple form, viz.

., (ika) J,(ka)
2(1 ;b)+ucaJo,@ )+ T (ea) =0.ireiiinnene (2).
This, of course, could have been more easily obtained by neglecting
7 from the beginning. :

The calculation of the lowest root for each value of n is trouble-
some, and in the absence of appropriate tables must be effected
by means of the ascending series for the functions J, («r), J, (zer).
In the case of the higher roots recourse may be had to the semi-
convergent descending series for the same functions. Kirchhoff

finds

A=

_x=

B, ¢ _ D
tan (ka — ynm) = (81’;“) (Bm) ............ (3),
At g By T
where
A='Y=(1—f")—1’ .
B =ry(1—4n%) =8, \

O = (1 —4n?) (9 —4n%) 4+ 48 (1 + 4n"),
=—n3{l~ 4n®) (9 — 4n*) 13— 4P} + 8 (9 + 1860 + 802%).
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When «a is great,

tan (kg —4 nw) =0 approx.;
whence )
' k=3 (B+2h) cevrrirnrrininnieninnnn (4),

where £ is an integer.

It appears by a numerical comparison that A is identical with
the number of circular nodes, and (4) expresses a law discovered
by Chladni, that the frequencies corresponding to figures with a
given number of nodal diameters are, with the exception of the
lowest, approximately proportional to the squares of consecutive
even or uneven numbers, according as the number of the diameters
is itself even or odd. Within the limits of application of (4), we
see also that the pitch is approximately unaltered, when any
number is subtracted from h, provided twice that number be
added ton. This law, of which traces appear in the following table,
may be expressed by saying that towards raising the pitch nodal
circles have twice the effect of nodal diameters. It is probable,
however, that, strictly speaking, no two normal components have
exactly the same pitch.

h n=0 n=1
“lem [P W (o | P |W
1| Gis |Gis+ | A+ | b h- c—

2| gis'+ | b - b+ e+ '+ | fis"+
h n=2 n=23

CH. P. W. Ch. P. W.

0| C c C d dis— | dis—
1| g gis'+ | a'— | d".dis"| dis" +| &' —

The table, extracted from Kirchhoff’s memoir, gives the pitch
of the more important overtones of a free circular plate, the gravest
being assumed to be C'*. The three columns under the heads
Ch, P, W refer respectively to the results as observed by Chladni
and as calculated from theory with Poisson’s and Wertheim's
values of . A plus sign denotes that the actual pitch is a little
higher, and a manus sign that it is a little lower, than that written,

1 Gis corresponds to G# of the English notation, and & to b natural,
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The discrepancies between theory and observation are considerable,
but perhaps not greater than may be attributed to irregularity in
the plate.

220. The radii of the nodal circles in the symmetrical case
(n=0) were calculated by Poisson, and compared by him with
results obtained experimentally by Savart. The following numbers
are taken from a paper by Strehlke!, who made some careful mea-
surements, The radius of the dise is taken as unity.

Observation. Calculation,

One circle ... 067815 068062.

0:39133 0:39151.
084149 (0-84200.

025631 025679,
Three circles {0°59107 059147,
089360 0-89381.

Two cireles... {

The calculated results appear to refer to Poisson’s value of g, but
would vary very little if Wertheim’s value were substituted.
The following table gives a comparison of Kirchhoff’s theory
(n not zero) with measurements by Strehlke made on less accurate
discs.
Radiv of Circular Nodes.

Calculation.

p=i(®). |p=} (W)

Observation.

n=1, h=1 | 0781 0783 0781 0783 | 0-78136 0-78088
n=2 h=1]079 081 082 0-82194 0-82274
n=3, h=1 | 0838 0:842 0-84523 0-84681
n=l h=2 0-488 0-492 049774 049715

-0 e 0-869 0-869 087057 0-87015

221. When the plate is truly symmetrical, whether uniform
or not, theory indicates, and experiment verifies, that the position
of the nodal diameters'is arbitrary, or rather dependent only on
the manner in which the plate is supported. By warying the
place of support, any desired diameter may be made nodal. It is
generally otherwise when there is any sensible departure from
exact symmetry. The two modes of vibration, which originally,

1 Pogg. Ann. xov, p. 577. 1855.
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in consequence of the equality of periods could be combined in
any proportion without ceasing to be simple harmonic, are now
separated and affected with different periods. At the same time
the position of the nodal diameters becomes determinate, or rather
limited to two alternatives. The one set is derived from the other
by rotation through half the angle included between two adjacent
diameters of the same set. This supposes that the deviation from
uniformity is small ; otherwise the nodal system will no longer be
composed of approximate circles and diameters at all. The cause
of the deviation may be an irregularity either in the material or in
the thickness or in the form of the boundary. The effect of a small
load at any point may be investigated as in the parallel problem
of the membrane § 208, If the place at which the load is attached
does not lie on a modal circle, the normal types are made deter-
minate. The diametral system corresponding to one of the types
passes through the place in question, and for this type the period
is unaltered. The period of the other type is increased.

The most general motion of the uniform cireular plate is
expressed by the superposition, with arbitrary amplitudes and
phases, of the normal components already investigated. The
determination of the amplitude and phase to correspond to
arbitrary initial displacements and velocities is effected precisely
as in the corresponding problem for the membrane by the aid of
the characteristic property of the normal functions proved in § 217.

The two other cases of a circular plate in which the edge
is either clamped or supported would be easier than the preceding
in their theoretical treatment, but are of less practical interest on
account of the difficulty of experimentally realising the conditions
assumed. The general result that the nodal system is composed
of concentric circles, and diameters symmetrically distributed, is
applicable to all the three cases.

222. We have seen that in general Chladni’s figures as traced
by sand agree very closely with the circles and diameters of
theory; but in certain cases deviations occur, which are usually
attributed to irregularities in the plate. It must however be re-
membered that the vibrations excited by a bow are not strictly
speaking free, and that their periods are therefore liable to a
certain modification. It may be that under the action of the bow
two or more normal component vibrations coexist. The whole

R. 20
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motion may be simple harmonic in virtue of the external force,
although the natural periods would be a little different. Such an
explanation is suggested by the regular character of the figures
obtained in certain cases.

Another cause of deviation may perhaps be found in the
manner in which the plates are supported. The requirements of
theory are often difficult to meet in actual experiment. When
this is so, we may have to be content with an imperfect compari-
son ; but we must remember that a discrepancy may be the fault
of the experiment as well as of the theory.

223. The first attempt to solve the problem with which we
have just been occupied is due to Sophie Germain, who succeeded
in obtaining the correct differential equation, but was led to
erroneous boundary conditions. For a free plate the latter part of
the problem is indeed of considerable difficulty, In Poisson’s
memoir ‘Sur I'équilibre et le mouvement des corps élastiques’,’
that eminent mathematician gave three equations as necessary to be
satisfied at all points of a free edge, but Kirchhoff has proved that
in general it would be impossible to satisfy them all. It happens,
however, that an exception occurs in the case of the symmetrical
vibrations of a circular plate, when one of the equations is true
identically. Owing to this peculiarity, Poisson’s theory of the
symmetrical vibrations is correct, notwithstanding the error in his
view as to the boundary conditions. In 1850 the subject was
resumed by Kirchhoff?, who first gave the two equations appropriate
to a free edge, and completed the theory of the vibrations of a cir-
cular dise.

224. The correctness of Kirchhoff’s boundary equations has
been disputed by Mathieu®, who, without explaining where he
considers Kirchhoff’s error to lie, has substituted a different set of
equations. He proves that if % and ' be two normal functions, so
that w = u cos pi, w =u"cos p't are possible vibrations, then

(p*— p™) f f wu'dzdy

2 ’ 2,7 .
=c4fds{u'ddvnu—v”udu ry udv u} ......... (1).

ARSI Py hadh e
an V' t dn

1 Mém. de Vdcad. d. Sc. & Par., 1829,

2 Crelle, t. xu. p, 51, Ueber das .Gleichgowicht und die Bewegung einer elas-

tichen Scheibe,
3 Liowville, t. x1v. 1869,
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This follows, if it be admitted that u, u’ satisfy respectively
the equations

¢ Vu=pu, ¢ yu=p".
Since the left-hand member is zero, the same must be true of
the right-hand member; and this, according to Mathieu, cannot

be the case, unless at all points of the boundary both » and «'
satisfy one of the four following pairs of equations:

— 29 = = —-— =
w =0 vu =0 u =0 Tn 0
du_ |’ dve |’ o _al dv'u
%_OJ dn _OJ L vu=0 dn — Tl

The second pair would seem the most likely for a free edge, but
it is found to lead to an impossibility. Since the first and third
paivs are obviously inadmissible, Mathieu concludes that the fourth
pair of equations must be those which really express the condition
of a free edge. In his belicf in this result he is not shaken by the
fact that the corresponding conditions for the free end of a bar
would be

du a’

%=0’ z:=0,

da®
the first of which 1s contradicted by the roughest observation of
the vibration of a large tuning fork.

The fact is that although any of the four pairs of equations
would secure the evanescence of the boundary integral in (1), it
does not follow conversely that the integral can be made to vanish
in no other way; and such a conclusion is negatived by Kirchhoff’s
investigation, There are besides innumerable other cases in
which the integral in question would vanish, all that is really
necessary being that the boundary appliances should be either at
rest, or devoid of inertia.

225. The vibrations of a rectangular plate, whose edge is
supported, may be easily investigated theoretically, the normal
functions being identical with those applicable to a membrane of
the same shape, whose boundary is fixed. If we assume

. mTe
w = 8sin
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we see that at all points of the boundary,

dw d’w

=0 ap ="

which secure the fulfilment of the necessary conditions (§ 215),
The value of p, found by substitution in ¢* g*w = p*w,

w=0,

. m '
.18 _p=(;“-’7r2 (?_-[-I—F)... ........ Gesecenrrsrcaras (2), .
shewing that the analogy to the membrane does not extend to the
sequence of tones.

It is not necessary to repeat here the discussion of the primary
and derived nodal systems given in Chapter 1X. It is enough to
observe that if two of the fundamental modes (1) have the same
period in the case of the membrane, they must also have the same
period in the case of the plate. The derived nodal systems are
accordingly identical in the two cases.

The generality of the value of w obtained by compounding
with arbitrary amplitudes and phases all possible particular solu-
tions of the form (1) requires no fresh discussion,

Unless the contrary assertion had been made, it would have
seemed unnecessary to say that the nodes of a supported plate
have nothing to do with the ordinary Chladni’s figures, which
belong to a plate whose edges are free.

The realization of the conditions for a supported edge is
scarcely attainable in practice. Appliances are required capable
of holding the boundary of the plate at rest, and of such a nature
that they give rise to no couples about tangential axes. We may
conceive the plate to be held in its place by friction against the
walls of a cylinder circumseribed closely round it.

226. The problem of a rectangular plate, whose edges are
free, is one of great difficulty, and has for the most part resisted
attack. If we suppose that the displacement w is independent
of 7, the general differential equation becomes identical with that
with which we were concerned in Chapter viir. If we take the
solution corresponding to the case of a bar whose ends are free,
and therefore satisfying

d*w d’w
d = dz* =
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when =0 and when x =a, we obtain a value of w which satisfies
the general differential equation, as well as the pair of boundary
equations
2
%{%Hbmo‘%ﬁ}:ow} ®
P D SN ¢ ) §
d + @ @2 =0 ] \

which are applicable to the edges parallel to y; but the second
boundary condition for the other pair of edges, namely

dw dw
AN TR0 . @)

will be violated, unless w=0. This shews that, except in the
case reserved, it is not possible for a free rectangular plate to
vibrate after the manner of a bar; unless indeed as an approxima-
tion, when the length parallel to one pair of edges is so great
that the conditions to be satisfied at the second pair of edges
may be left out of account.

Although the constant x (which expresses the ratio of lateral
contraction to longitudinal extension when a bar is drawn out)
is positive for every known substance, in the case of a few sub-
stances—cork, for example—it is comparatively very small. There
is, so far as we know, nothing absurd in the idea of a substance
for which p vanishes. The investigation of the problem under
this condition is therefore not devoid of interest, though the results
will not be strictly applicable to ordinary glass or metal plates,
for which the value of u is about 1.

If u,, u,, &c. denote the normal functions for a free bar inves-
tigated in Chapter VIIL, corresponding to 2, 3, ..... . nodes, the
vibrations of a rectangular plate will be expressed by

w=u, (2) , w=1, (g), &e.,

or w=u, (%), w=ug(‘%), &e.

1 In order to make a plate of material, for which u is not zero, vibrate in the
manner of a bar, it would be necessary to apply constraining couples to the edges
parallel to the plane of bending to prevent the assumption of a contrary curvature,
The effect of these couples would be to raise the pitch, and thersfore the caleu-
lation founded on the type proper to u=0 would give a result somewhat higher in
pitch than the truth.
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In each of these primitive modes the nodal system is composed
of straight lines parallel to one or other of the edges of the
rectangle. When b = a, the rectangle becomes a square, and the

vibrations
. (e Yy
w=1u, (&)’ w=u, (E)’

having necessarily the same period, may be combined in any pro-
portion, while the whole motion still remains simple harmonic.
Whatever the proportion may be, the resulting nodal curve will of
necessity pass through the points determined by

u, (g) -0, u (%) 0.

Now let us consider more particularly the case of n=1.
The nodal system of the primitive mode, w=u, (Zf), consists

of a pair of straight lines parallel to 7, whose distance from the
nearest edge is 2242a. The points in which these lines are met

by the corresponding pair for w =1, (g) , are those through which

the nodal curve of the compound vibration must in all cases pass.
It is evident that they are symmetrically disposed on the diagonals
of the square. If the two primitive vibrations be taken equal,
but in opposite phases (or, algebraically, with equal and opposite
amplitudes), we have

w=1u (g) -, (%) ....................... (3),

from which it is evident that w vanishes when @ =g, that is along
the diagonal which passes through the origin. That w will also
vanish along the other diagonal follows from the symmetry of -
the functions, and we conclude that the nodal system of (8) com-

Fig. 41,

prises both the diagonals (Fig. 41). This is a well-known mode of
vibration of a square plate.
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A second notable case is when the amplitudes are equal and
their phases the same, so that

w=1u, (g) +u, (%) .......................... (4).

The most convenient method of constructing graphically
the curves, for which w=const, is that employed by Maxwell
in similar cases. The two systems of curves (in this instance

straight lines) represented by u, (g) = const.,, u, (g) = const., are

first laid down, the values of the constants forming an arith-
metical progression with the same common difference in the two
cases. In this way a network is obtained which the required
curves cross diagonally. The execution of the proposed plan
requires an inversion of the table given in Chapter vii, § 178,
expressing the march of the function u,, of which the result is as
follows :—

%, x:a ©, T a
+1-00 5000 | ~ 25 *1871
‘75 +3680 50 '1518
50 3106 ‘75 1179

25 2647 1-00 0846
00 ‘2242 1-25 0517
- 150 0190

The system of lines represented by the above values of  (com-
pleted symmetrically on the further side of the central line) and .
the corresponding system for y are laid down in the figure (42).
From these the curves of cqual displacement are deduced. At the
centre of the square we have w a maximum and equal to 2 on the
scale adopted. The first curve proceeding outwards is the locus of
points at which w=1. The next is the nodal line, separating the
regions of opposite displacement. The remaining curves taken in
order give the displacements —1,— 2,—3. The numerically great-
est negative displacement occurs at the corners of the square,
where it amounts to 2 x 1'645 = $:290.

1 On the nodal lines of a square plate. Phil. Mag. August, 1873,
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ad

The nodal curve thus constructed agrees pretty closely with the
observations of Strehlke®, His results, which refer to three care-
fully worked plates of glass, are embodied in the following polar

equations:
40143 -0171 00127)
r =40143 4 0172} cos 4¢ + '00127} cos 8¢,
4019  -0168 ‘0013
Fig, 42.
* /’
h% ! H
\\‘ /,/ 4 /
, P / \\‘\ "“ ) I“
: \ YA

the centre of the square being pole. From these we obtain for the
radius vector parallel to the sides of the square (¢=0) 41980,
‘41981, 4200, while the calculated result is *4154, The radius
vector measured along a diagonal is "3856, ‘3855, 3864, and by

calculation ‘3300,
} Pogg. Ann. Vol, exvvi. p. 819,
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By crossing the network in the other direction we obtain the
locus of points for which
' » 1
(@) ()

is constant, which are the curves of constant displacement for that
mode in which the diagonals are nodal. The pitch of the vibration
is (according to theory) the same in both cases.

Fig. 48.

The primitive modes represented by w =, (z) or w=1u, (g)

may be combined in like manner. Fig. 43 shews the nodal curve

for the vibration
i
w=u, (E) tu, (%) P IIPPPPPN () N

The form of the curve is the same relatively to the other diagonal,
if the sign of the ambiguity be altered.

IRIS - LILLIAD - Université Lille 1



314 VIBRATIONS OF PLATES. [227.

227. The method of superposition does not depend for its
application on any particular form of normal function. Whatever
the form may be, the mode of vibration, which when pw= 0
passes into that just discussed, must have the same period,
whether the approximately straight nodal lines are parallel to
x or to y. If the two synchronous vibrations be superposed,
the resultant has still the same period, and the general course
of its nodal system may be traced by means of the considera-
tion that no point of the plate can be nodal at which the
primitive vibrations have the same sign. To determine exactly
the line of compensation, a complete knowledge of the primitive
normal functions, and not merely of the points at which they
vanish, would in general be necessary. Doctor Young and the
brothers Weber appear to have had the idea of superposition as
capable of giving rise to new varieties of vibration, but it is to Sir
Charles Wheatstone® that we owe the first systematic application of
it to the explanation of Chladni’s figures. The results actually ob-
tained by Wheatstone are however only very roughly applicable to
a plate, in consequence of the form of normal function implicitly
assumed. In place of Fig. 42 (itself, be it remembered, only an
approximation) Wheatstone finds for the node of the compound
vibration the inscribed square shewn in Fig. 44.

Tig, 44.

/'// \\
K’ ™

This form is really applicable, not to a plate vibrating in virtue
of rigidity, but to a stretched membrane, so supported that every
point of the circumference is free to move along lines perpendi-
cular to the plane of the membrane. The boundary condition

applicable under these circumstances is %}g: 0; and it is easy

to shew that the normal functions which involve only one co-
)
a
at a corner of the square. Thus the vibration

. L v .
ordinate are w = cos (m E)’ Or W = COS (m ), the origin bcing

w=cosg7r—w+cos2—7r'—q ..................... (1)
a a

1 Phil. Trans. 1833.
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has its nodes determined by

osw(w-l_y) cos w(x—y)=0’
@ a

whence «+y=%4a or $a, or x—y=1% la, equations which
represent the inscribed square.

If w = cos e _ cos L (2),
a a

the mnodal system is composed of the two diagonals. This resuls,
which depends only on the symmetry of the normal functions, is
strictly applicable to a square plate.
‘When m = 3,
ST 3wy
W =08 —— -+ cos —*=
a )

and the cquations of the nodal lines are

x+g/=%, a, %?; w—y=i-§,

, Fig. 45.
//’ , R
4N /
AN
/ yd d

shewn in Fig.45. If the other sign be taken, we obtain a similar
figure with reference to the other diagonal.
When m = 4,

Az 4y
w = Cos o + Cos

giving the nodal lines

w+y=1, a4 4 3’ m*.y:iz, * 4 (Flg‘ 4:6)'
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With the other sign

W = oS dor_ cos ATY ooeereeeeirenees (5),
a a

we obtain

w+y=%b, a,%q, x—y=0, i%(Fig.‘W),

Fig. 47.

/

representing a system composed of the diagonals, together with the
inscribed square.

These forms, which are strictly applicable to the membrane, .
resemble the figures obtained by means of sand on a square plate
more closely than might have been expected. The sequence of
tones is however quite different. From §176 we see that, if x4 were
zero, the interval between the form (43) derived from three
primitive nodes, and (41) or (42) derived from two, would be

14629 octave ; and the interval between (41) or (42) and (46) or (47)
would be 24358 octaves. Whatever may be the value of w the
forms (41) and (42) should have exactly the same pitch, and the
same should be true of (46) and (47). With respect to the first-
mentioned pair this result is not in agreement with Chladni’s

" observations, who found a difference of more than a whole tone,

(42) giving the higher pitch. If however (42) be left out of

account, the comparison is more satisfactory. According to theory

(0=0), if (41) gave d, (43) should give g' —, and (46), (47)

should give g” +. Chladni found for (43) ¢'#+, and for (46),

(47) g”# and g"# + respectively.

228. The gravest mode of a square plate has yet to be consi-
dered. The nodes in this case are the two lines drawn through the
middle points of opposite sides. That there must be such a mode
will be shewn presently from considerations of symmetry, but
neither the form of the normal function, nor the pitch, has yet
been determined, even for the particular case of u=0. A rough
calculation however may be founded on an assumed type of
vibration,
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If we take the nodal lines for axes, the form w =y satisfies
V'w=0, as well as the boundary conditions proper for a free edge
at all points of the perimeter except the actual corners. This is
in fact the form which the plate would assume if held at rest by
four forces numerically equal, acting at the corners perpendicu-
larly to the plane of the plate, those at the ends of one diagonal
being in one direction, and those at the ends of the other diagonal
in the opposite direction. From this it follows that w=ay cos pt
would be a possible mode of vibration, if the mass of the plate
were concentrated equally in the four corners. By (3) § 214, we
see that

b*a?
=ﬁ(1(—17i-—p,) COS P venrrrrinvnrnrnnnrennnns 1),
‘inasmuch as
dw dw d’w

W=W=0’ d—xdy=co3pt'

For the kinetic energy, if p be the volume density, and M the
additional mass at each corner,

+ia
T= }p*sin’pt { f i ﬂapbx”y”dxdy + 1Ma‘}

g 2ane, | pbd®  a
—1p 51npt{16x9+4M} ..................... @.
Hence (142
1 _p(l+pa )
=g (1+36 T reeeeeersenseens 3),

where M’ denotes the mass of the plate without the loads. This

result tends to become accurate when M is relatively great; other-

wise by § 89 it is sensibly less than the truth. But even when

M =0, the error is probably not very great. In this case we

should have

. 24490”
p(l+p)a

giving a pitch which is somewhat too high. The gravest mode
next after this is when the diagonals are nodes, of which the pitch,
if =0, would be given by

n_ qb* (47300)*

;;G? ——_12_ ........................... (5),

=

(see § 174).
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We may conclude that if the material of the plate were such
that u=0, the interval betwecen the two gravest tones would
be somewhat greater than that expressed by the ratio 1'318.
Chladni makes the interval a fifth,

229. That there must exist modes of vibration in which
the two shortest diameters are nodes may be inferred from such
considerations as the following. In Fig. (48) suppose that GH

Fig. 48,

4 Fy D

is a plate of which the edges HO, GO are supported, and the
edges G'C, COH free. This plate, since it tends to a definite
position of equilibrium, must be capable of vibrating in certain
fundamental modes. Fixing our attention on one of these, let us
conceive a distribution of w over the three remaining quadrants,
such that in any two that adjoin, the values of w are equal and
opposite at points which are the images of each other in the line
of separation. If the whole plate vibrate according to the law
thus determined, no constraint will be required in order to keep
the lincs G, FH fixed, and therefore the whole plate may be
regarded as free. The same argument may be used to prove that
modes exist in which the diagonals are nodes, or in which both the
diagonals and the diameters just considered are together nodal.
The principle of symmetry may also be applied to other forms
of plate. 'We might thus infer the possibility of nodal diameters
in a circle, or of nodal principal axes in an ellipse. When the

TFig. 49. Fig. 50, Fig. 51.

boundary is a regular hexagon, it is easy to see that Figs. (49),
(50), (51) represent possible forms.
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It is interesting to trace the continuity of Chladni’s figures, as
the form of the plate is gradually altered. In the circle, for
example, when there are two perpendicular nodal diameters, it is a
matter of indifference as respects the pitch and the type of vibra-
tion, in what position they be taken. As the circle develops into
a square by throwing out corners, the position of these diameters
becomes definite. In the two alternatives the pitch of the vibra-
tion is different, for the projecting corners have not the same effi-
ciency in the two cases. The vibration of a square plate shewn in
Fig. (42) corresponds to that of a circle when there is one circular
node. The correspondence of the graver modes of a hexagon or
an ellipse with those of a circle may be traced in like manner.

230. For plates of uniform material and thickness and of
invariable shape, the period of the vibration in any fundamental
mode varies as the square of the linear dimension, provided of
course that the boundary conditions are the same in all the cases
compared. When the edges are clamped, we may go further
and assert that the removal of any external portion is attended
by a rise of pitch, whether the material and the thickness be uni-
form, or not.

Let AB be a part of a clamped edge (it is of no consequence
whether the remainder of the boundary be clamped, or not), and

let the piece 4C0BD be removed, the new edge ADB being also
clamped. The pitch of any fundamental vibration is sharper
than before the change. This is evident, since the altered
vibrations might be obtained from the original system by the
introduction of a constraint clamping the edge 4DDB. The effect
of the constraint is to raise the pitch of every component, and
the portion ACBD being plane and at rest throughout the motion,
may be removed. In order to follow the sequence of changes
with greater security from error, it is best to suppose the line
of clamping to advance by stages between the two positions
ACB, ADB. For example, the pitch of a uniform clamped plate
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in the form of a regular hexagon is lower than for the inscribed
circle and higher than for the circumscribed circle.

When a plate is free, it is not true that an addition to
the edge always increases the period. In proof of this it may
be sufficient to notice a particular case.

AB is a narrow thin plate, itself without inertia but carrying
loads at 4, B, . It is clear that the addition to the breadth

Fig, 53.

°A o Be

indicated by the dotted line would augment the stiffness of the
bar, and therefore Zessen the period of vibration. The same
consideration shews that for a uniform free plate of given area
there is no lower limit of pitch; for by a sufficient elongation
the period of the gravest component may be made to exceed
any assignable quantity, When the edges are clamped, the
form of gravest pitch is doubtless the circle,

If all the dimensions of a plate, including the thickness, be
altered in the same proportion, the period is proportional to the
linear dimension, as in every case of a solid body vibrating in
virtue of its own elasticity.

The period also varies inversely as the square root of Young's
modulus, if w be constant, and directly as the square root of the
mass of unit of volume of the substance.

231. Experimenting with square plates of thin wood whose
grain ran parallel to one pair of sides, Wheatstone® found that
the pitch of the vibrations was different according as the ap-
proximately straight nodal lines were parallel or perpendicular
to the fibre of the wood. This effect depends on a variation
in the flexural rigidity in the two directions. The two sets of
vibrations having different periods cannot be combined in the
usual manner, and consequently it is not possible to make such
a plate of wood vibrate with nodal diagonals. The inequality
of periods may however be obviated by altering the ratio of the
sides, and then the ordinary mode of superposition giving nodal
diagonals is again possible, This was verified by Wheatstone.

1 Phil. Trans. 1833,
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A further application of the principle of superposition is due
to Konig®. In order that two modes of vibration may combine,
it is only necessary that the periods agree. Now it is evident
that the sides of a rectangular plate may be tuken in such a
ratio, that (for instance) the vibration with two nodes parallel
to one pair of sides may agree in pitch with the vibration having
three nodes parallel to the other pair of sides. In such a case
new nodal figures arise by composition of the two primary modes
of vibration,

232, When the plate whose vibrations are to be considered
is naturally curved, the difficulties of the question are generally
much increased. But there is one case in which the complication
due to curvature is more than compensated by the absence of
a free edge; and this case happens to be of considerable interest,
as being the best representative of a bell which at present admits
of unalytical treatment.

A long cylindrical shell of circular section and uniform thick-
ness is evidently capable of vibrations of a flexural character
in which the axis remains at rest and the surface cylindrical,
whilc the motion of every part is perpendicular to the generating
lines. The problem may thus be treated as one of two dimensions
only, and depends upon the consideration of the potential and
kinetic energies of the various deformations of which the section
is capable. The same analysis also applies to the corresponding
vibrations of a ring, formed by the revolution of a small closed
area about an external axis.

The cylinder, or ring, is susceptible of two classes of vibrations
depending respectively on extensibility and flexural rigidity, and
analogous to the longitudinal and lateral vibrations of straight
bars. When, however, the cylinder is thin, the forces resisting
bending become small in comparison with those by which ex-
tension is opposed; and, as in the case of straight bars, the
vibrations depending on bending are graver and more important
than those which have their origin in longitudinal rigidity.
In the limiting case of an infinitely thin shell (or ring), the
flexural vibrations become independent of any extension of the
circumference as a whole, and may be calculated on the sup-
position that each part of the circumference retains its natural
length throughout the motion,

1 Pogg. Ann. 1864, CXEIL p. 238,
R. 21
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But although the vibrations about to be considered are
analogous to the transverse vibrations of straight bars in respect
of depending on the resistance to flexure, we must not fall into
the common mistake of supposing that they are exclusively
normal. It is indeed easy to see that a motion of a cylinder or
ring in which each particle is displaced in the direction of the
radius would be incompatible with the condition of no extension.
In order to satisfy this condition it is necessary to ascribe to
each part of the circumference a tangential as well as a normal
motion, whose relative magnitudes must satisfy a certain differ-
ential equation. Our first step will be the investigation of this
equation.

233. The original radius of the circle being a, let the equi-
librium position of any element of the circumference be defined
by the vectorial angle §. During the motion let the polar co-ordi-
nates of the element become

r=a+dr, ¢=0+2380.

If ds represent the arc of the deformed curve corresponding to ad®,
we have

(ds)* = (adB)t = (d5r)* +1° (40 + d5O)?;

whenee we find, by neglecting the squares of the small quantities
or, 86,

or doe
'; + dﬂ = 0 ........................... (1),

as the required relation.

In whatever manner the original circle may be deformed at
time ¢, or may be expanded by Fourier’s theorem in the series

dr=a{d, cos0+ DB sind+ A4,cos26 + B,sin 20 + ...
+.4,cosn0+ B sinnd+ ...} eonnien.... 2),

3

and the corresponding tangential displacement required by the
condition of no extension will be

80=—d, sin 8+ B cos0+... —%ﬁsinn€+%cosn€— N )

the constant that might be added to 80 being omitted.
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If cadf denote the mass of the element add, the kinetic
energy 7 of the whole motion will be

N Y
T=§<mfo {(d—t) +a (dt>}do
= toma® {2(A LB A BY

+ (1 + %) (A7 + B+ } .............. (4,

the products of the co-ordinates 4,, B, disappearing in the
integration.

‘We have now to calculate the form of the potential energy V.

Let p be the radius of curvature of any element ds, then for the
2

corresponding élement of ¥ we may take 1.Bds (8 %) , where Bis a

constant depending on the material and on the thickness. Thus

2rs 1 2
V=1Ba f (8 -) SR ).
e \ P
Now ‘
40
_u+d¢2r
and
1 1

u== =c-1,{1 —4,cos¢p—B sing—..]},
for in the small terms the distinction between ¢ and @ may be
neglected.
Hence

8- {(n —1) (4, cosng + B, sinng)},

le—‘

and

V= %.[2" {2 (n* —1) (4, cosnd + B, sin nd)}* d0

T LT I L SO (6)
2a
in which the summation extends to all positive integral valucs
of n.
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The term for which n=1 contributes nothing to the potential
energy, as it corresponds to a displacement of the circle as a whole,
without deformation.

We see that when the configuration of the system is defined as
above by the co-ordinates 4,, B,, &c., the expressions for 7’and V'
involve only squares; in other words, these are the normal co-
ordinates, whose independent harmonic variation expresses the
vibration of the system.

If we consider only the terms involving coszf, sin nf, we have
by taking the origin of 8 suitably,

&r =ad,cosnf, 80=-— ii—" SINAG ceeniniriiiiiinas ),

while the equation defining the dcpendence of 4, upon the
time is
3 1y - B, 2
oa (1+? Ayt 2 (=P A, =0 (8),

from which we conclude that, if 4, varies as cos (pt —¢),
' B n*@—1)
2 — —

D= S T L e ).

This result was given by Hoppe for a ring in a memoir pub-
lished in Crelle, Bd. 63, 1871. His method, though more complete
than the preceding, is less simple, in consequence of his not re-
cognising explicitly that the motion contemplated corresponds to
complete inextensibility of the circumference,

According to Chladni the frequencies of the tones of a ring
are as
F 579 .

If we refer each tone to the gravest of the scrics, we find for
the ratios characteristic of the intervals
2778, 5445, 9, 1344, &ec.

The corresponding numbers obtained from the above theoretical
formulee, by making n successively equal to 2, 3, 4, &c., are

2:828, 5423, 8771, 1287, &e,

agreeing pretty ncarly with those found experimentally.
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234. When n=1, the frequency is zero, as might have been
anticipated. The principal mode of vibration corresponds to n =2,
and has four nodes, distant from each other by 90°. These so-
called nodes are not, however, places of absolute rest, for the
tangential motion is there a maximum. In fact the tangential
vibration at these points is half the maximum normal motion.
In gencral for the n™ term the maximum tangential motion is

1 . .
" of the maximum normal motion, and occurs at the nodes of

the latter,

When a bell-shaped body is sounded by a blow, the point of
application of the blow is a place of maximum normal motion
of the resulting vibrations, and the same is true when the
vibrations are excited by a violin-bow, as generally in lecture-
room experiments. Bells of glass, such as finger-glasses, are
however more easily thrown into regular vibration by friction with
the wetted finger carried round the circumfcrence. The pitch of
the resulting sound is the same as of that clicited by a tap with
the soft part of the finger; but inasmuch as the tangential motion
of a vibrating bell has been very generally ignored, the production
of sound in this manner has been felt as a difficulty. It is now
scarcely necessary to point out that the effect of the friction is in
the first instance to excite tangential motion, and that the point
of application of the friction is the place where the tangential
motion is greatest, and therefore where the normal motion
vanishes,

235. The existence of tangential vibration in the case of a bell
was verified in the following manner, A so-called air-pump re-
ceiver was securely fastened to a table, open end uppermost, and set
into vibration with the moistened finger. A small chip in the rim,
reflecting the light of a candle, gave a bright spot whose motion
could be observed with a Coddington lens suitably fixed. As the
finger was carried round, the line of vibration was seen to re-
volve with an angular velocity double that of the finger; and
the amount of excursion (indicated by the length of the line of
light), though variable, was finite in every position. There was,
however, some difficulty in observing the correspondence between
the momentary direction of vibration and the situation of the point
of excitement. To effect this satisfactorily it was found neccssary
to apply the friction in the neighbourhood of one point. It then
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became evident that the spot moved tangentially when the bell was
excited at points distant therefrom 0, 90, 180, or 270 degrecs ; and
normally when the friction was applied at the intermediate points
corresponding to 45, 135, 225 and 315 degrees. Care is sometimes
required in order to make the bell vibrate in its gravest mode
without sensible admixture of overtones.

If there be a small load at any point of the circumference,
a slight augmentation of period ensues, which is different accord-
ing as the loaded point coincides with a node of the normal or
of the tangential motion, being greater in the latter case than
in the former. The sound produced depends therefore on the
place of excitation; in general both tones are heard, and by
interference give rise to Deats, whose frequency is equal to the
diffcrence between the frequencies of the two tones. This phe-
nomenon may often be observed in the case of large bells,
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PLES IN MATHEMATICS. With Answers. By H. A.
MoRrGAN, M.A., Sadlerian and Mathematical Lecturer of Jesus

- College, Cambridge, Crown 8vo. cloth. 6s. 64.

Newton’s Principia.—gto. cloth. 31s. 6d.
1t is a sufficient guaranitee of the veliability of this complete edition of
Newtor's Principia that it has been printed for and under the care
of Professor Sir William Thomson and Professor Blackburn, o
Glasgow University.

Parkinson.—A TREATISE ON OPTICS. By S. PARKIN-
soN, D.D., F.R.S., Fellow and Tutor of St. John’s College,
Cambridge. Third Edition, revised and enlarged. Crown 8vo.
cloth. 105 6d.

Phear..—ELEMENTARY HYDROSTATICS. ~With Numerous

Examples. By]. B. PIEAR, M. A., Fellow and late Assistant Tutor
of Clare Coll. Cambridge. Fourth Edition, Cr. 8vo. cloth. 5s 64.
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Pirrie.—~LESSONS ON RIGID DYNAMICS. By the Rev. G.
PirRrIE, M. A., Fellow and Tutor of Queen’s College, Cambridge.

Crown 8vo. 6s.

Pratt.—A TREATISE ON ATTRACTIONS, LAPLACE’S
FUNCTIONS, AND THE FIGURE OF THE EARTH.
By Joun H. PraTT, M.A., Archdeacon of Calcutta, Author of
‘“The Mathematical Principles of Mechanical Philosophy.” Fourth
Edition. Crown 8vo. cloth. 6s. 6d.

Routh.—AN ELEMENTARY TREATISE ON THE DYNA-
MICS OF THE SYSTEM OF RIGID BODIES. With
numerous Examples. By EpwWARD JouN Rourn, M.A., late
Fellow and Assistant Tutor of St. Peter’s College, Cambridge ;
Examiner in the University of London. Second Edition, enlarged.

Crown 8vo. cloth. 145,

Tait and Steele.—DYNAMICS OF A PARTICLE. With
numerous Examples. Dy Professor TAIT and Mr. STEELE. New

Edition. Crown 8vo. cloth. 10s5. 64.

Thomson,—PAPERS ON ELECTROSTATICS AND MAG-
NETISM. By Professor SIR WiLLiam Tuomson, F.R.S.
8vo. 18s.

“In the whole range of modern mental activity and research, there
is perkaps nowhere to be found any suck amonnt of purely scien-
tific maltter, free from all speculation whatever, as @s to be found
in these diversified and masterly papers on the nearly allied
subjects of dectricity and magnetism.  There is scarcely a paper in
all the forty-two in whick there is not somelhing interesting,
writien 1r a clear, unambiguous, and manly style.”’—Scotsman.

Todhunter.—Works by I ToDHUNTER, M.A., F.R.S.,, of

St. John’s College, Cambridge :—

“Mr. Todkunter is chiefly known to students of mathematics as the
author of a series of admirable mathematical text-books, whick
possess the yare gualities of being clear in style and absolulely jfree
[rom mistakes, typographical or other.”—Saturday Review,

A TREATISE ON SPHERICAL TRIGONOMETRY. Third
Edition, enlarged. Crown 8vo. cloth. 4s. 64.

PLANE CO-ORDINATE GEOMETRY, as applied to the Straight
Line and the Conic Sections. With numerous Examples. Fifth
Edition. Crown 8vo. cloth. 7s. 6d.

A TREATISE ON THE DIFFERENTIAL CALCULUS.
With numerous Examples. Seventh Edition. Crown 8vo. cloth.

108, 64.
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Todhunter—continued,

A TREATISE ON THE INTEGRAL CALCULUS AND ITS
APPLICATIONS. With numerous Examples. Fourth Edition,
revised and enlarged. Crown 8vo. cloth. 10s. 64.

EXAMPLES OF ANALYTICAL GEOMETRY OF THREE
DIMENSIONS., Third Edition, revised. Crown 8vo. cloth, 4s.

A TREATISE ON ANALYTICAL STATICS. With numerous
Examples. Third Edition, revised and enlarged. Crown 8ve.
cloth. 105 6d.

A HISTORY OF THE MATHEMATICAL TIIEORY OF
gROBABILITY, from the Time of Pascal to that of Laplace.

vo. 18s.

RESEARCHES IN THE CALCULUS OF VARIATIONS,
Principally on the Theory of Discontinuous Solutions: An Tssay
to which the Adams’ Prize was awarded in the University of
Cambridge in 1871. 8vo. 6s.

A HISTORY OF TIIE MATHEMATICAL THEORIES OF
ATTRACTION, and the Figure of the Earth, from the time ot
Newton to that of Laplace. Two vols. 8vo.  24s.
¢ Probably no man in England is so gqualified to do justice o the

theme as Ar. Todhunter.  To all mathematicians these volumes
will be deeply mtere:tmg‘, and to all succeeding investigators, of the
highest practical utility.”— Athenzeum.

AN ELEMENTARY TREATISE ON LAPLACE’'S, LAME'S,
AND BESSEL’S FUNCT I()‘\TS Crown 8vo., 105, 6d.

Wilson (W. P.) DYNAMICS. By
W. P, WiLsoN, M. A,, Fellow of St. John’s College, Cambridge,
and Professor of Mathematics in Queen’s College, Belfast. 8vo,
9s. 6d.

Wolstenholme.—A BOOK OF MATHEMATICAL
PROBLEMS, on Subjects included in the Cambridge Course.
By JosEpH WOLSTENUOLME, Fellow of Christ's College, some
time Fellow of St. Johnls College, and lately Lecturer in Mathe-
matics at Christ’s College Crown 8vo. cloth. 8s. 64.

Young.—SIMPLE PRACTICAL METIIODS OF CALCU-
LATING STRAINS ON GIRDERS, ARCHES, AND
TRUSSES. With a Supplementary Essay on Economy in suspen-
sion Bridges, By E. W. Young, Associate of King’s College,
London, and Member of the -Institution of Civil Engineers, 8vo.
7s. 6d.

A excellent combination of theoretical methods of finding strains
in beams and structures, as modified by practical experience,  1he
reasoning 15 clear, and the equations ave simple enough, and do not
require move than a knowledge of elementary algebra and trwona-
metry for their solution. I/u' diagrams are especzally clear.”—
Architect.
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- PHYSICAL SCIENCE.

Airy (G. B.)—POPULAR ASTRONOMY. With Illustrations.
By Sir G. B. A1ry, K.C.B., Astronomer Royal. Seventh Edition.
18mo. cloth, 4s. 64,

Bastian.—Works by H. CHARLTON BasTiaN, M.D., F.R.S,,
Professor of Pathological Anatomy in University College, London,
&e.i—

THE BEGINNINGS OF LIFE: Reing some Account of the Nature,
Modes of Origin, and Transformations of Lower Organisms. In
Two Volumes. With upwards of 100 Ilustrations. Crown 8vo. 28s.
“1t is a book that cannot be ignored, and must inevitably lead to

renewed discussions and repeated observations, and through these to
. the establishment of truth.”’—A. R. WALLACE ¢z Nature.

EVOLUTION AND THE ORIGIN OF LIFE. Crown 8vo,
6s. 6d.

““ Abounds in information of interest to the student of biological
science”’—Daily News.

Blanford (H. F.)—RUDIMENTS OF PHYSICAL GEO-
GRAPHY FOR THE USE OF INDIAN SCHOOLS. By
H. F. Branrorp, F.G.S. With numerous Illustrations and

Glossary of Technical Terms employed. New Edition. Globe
8vo. 25, 6d.

Blanford (W. T.)—GEOLOGY AND ZOOLOGY OF
ABYSSINIA. By W. T. BLANFORD. 8vo. 2Is.
With Colourved [llustrations and Geological Map. *“ The result of
his labours,” the Academy says, ““ts an important contribution
to the natural history of the mmztry., ”

Cooke (Josiah P., Jun.)—FIRST PRINCIPLES OF
CHEMICAL PHILOSOPHY. By Josiam P. CooxEk, Jun.,
Ervine Professor of Chemistry and Mineralogy in Harvard College.
Third Edition, revised and corrected. Crown 8vo. 12s.

The object of the author in this book is to present the philosophy of
Chemistry in suck a form that it can be made with profit the subject
of College recitations, and furnish the teacher with the means of
lesting the student’s faithfulness and ability.

Cooke (M. C.)—HANDBOOK OF BRITISH FUNGI,
with full descriptions of all the Species, and Illustrations of the
Genera. By M. C. CooxEg, M.A. Two vols. crown 8vo. 24s.

“ Will maintain its place as the standard English book, on the
subject of whick it treals, for many years to come.”’—Standard,
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Dawkins,—CAVE-HUNTING : Researches on the Evidence of
Caves respecting the Early Inhabitants of Europe. By W. BoyD
Dawkins, F.R.S,, &c., Lecturer in Geology at Owens College,
Manchester. With Coloured Plate and Woodcuts. 8vo. 21s.
¢ The mass of information ke has brought together, with the judicious

use ke has made of his materials, will be found to invest his book
with muck of new and singulay value.”—Saturday Review.,

Dawson (J. W.)—ACADIAN GEOLOGY. The Geologic
Structure, Organic Remains, and Mineral Resources of Nova
Scotia, New Branswick, and Prince Edward Island. By JoHN
WiLLiaM Dawson, M.A., LL.D., F.R.S., F.G.S., Principal and
Vice-Chancellor of M‘Gill College and University, Montreal, &c.
Second Edition, revised and enlarged. With a Geological Map
and numerous Illustrations. 8vo. 18s.

“The book will doubtless find a place in the library, not only of
the scientific geologist, but also of all who are desirous of the in-
dustrial progress and commercial prosperity of the Acadian pro-
vinces,”—Mining Journal.

Forbes,—THE TRANSIT OF VENUS. By GrorGE FORBES,
B.A., Professor of Natural Philosophy in the Andersonian Univer-
sity of Glasgow. With numerous Illustrations. Crown 8vo. 3s. 6d.
¢ Professor Forbes has done his work admirably.”—Popular Science

Review. ““d compact sketch of the whole matter in all its as-
pects,”—Saturday Review,

Foster and Balfour.—ELEMENTS OF EMBRYOLOGY.
By MicHAEL FosTER, M.D., F.R.8., and F. M. BALFOUR, M. A.,
Fellow of Trinity College, Cambridge. With numerous Illustra-
tions, Part I. Crown 8vo. %5 64,

Galton.—works by Francis GALToN, F.R.S. :—
METEOROGRAPHICA, or Methods of Mapping the Weather.
Illustrated by upwards of 600 Printed Lithographic Diagrams.
4to. 9s.
HEREDITARY GENIUS: An Inquiry into its Laws and Con-
sequences. Demy 8vo. 125,
The Times ca¥ls it ““a most able and most interesting book;” and
Mr. Darwin, i7 kés ¢ Descent of Man” (vol. 1. p. 111), says, ** We
know, through the admirable labours of Mr. Galton, that Genius
tends to be inherited.”’

ENGLISH MEN OF SCIENCE; THEIR NATURE AND
NURTURE. 8vo. 8s. 64.

¢ The book is cevtainly one of very great interest.”—Nature:
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Geikie (A.)—SCENERY OF SCOTLAND, Viewed in Connec-
tion with its Physical Geography, With Tllustrations and a new
Geclogical Map., By ARCHIBALD GEIKIE, Professor of Geology
in the University of Edinburgh. Crown 8vo. 10s. 64.

Gordon.—AN ELEMENTARY BOOK ON HEAT. By]J. E.
H. GorpoN, B.A., Gonville and Caius College, Cambridge.
Crown 8vo. 2s.

Guillemin.—THE FORCES OF NATURE: A Popular Intro-
duction to the Study of Physical Phenomena. By AMEDEE
GuiLLeMIN, Translated from the French by MRs. NoRMAN
LockyER ; and Edited, with Additions and Notes, by J. NORMAN
Lockyrr, F.R.S. Illustmted by 11 Coloured Plates and 455
Woogl;uts. Second Edition. Imperial 8vo. cloth, extra gilt.
315, 64,
¢ Translator and Editor have done justice to their trust. The

text has all the force and flow of original writing, combining
Saithfulness to the author's meaning with purity and independence
in vegard o idiom ; while the historical precision and accuracy
pervading the work throughout, speak of the watchful editorial
supervision whick has been given to every scientific detedl.  Nothing
can well exceed the clearness and delicacy of the illustrative wood-
cuts, borrowed from the French edition, or the purity and chro-
matic truth of the coloured plates. Altogether, the work may be
said to kave no paralld, cither in point of fulness or altraction,
as a popular manual of physical science. . . . . Whatwe
feely however, bound to say, and what we sqy with pleasure,
is, that among works of its class no publication can stand com-
parison either in lilerary completeness or in ariistic grace with
#2.”—Saturday Review.

Henslow.—THE THEORY OF EVOLUTION OF LIVING

THINGS, and Application of the Principles of Evolution to

Rellglon considered as Illustrative of the Wisdom and Benefi-

cence of the Almighty. By the Rev. GrorGE HENsLow,
M.A., F.L.S. Crown 8vo. 6s.

“The autﬁor is highly philosophical, profound, and accurate in
arguments. . , . His literary merits are of the kighest order. . . .
He has cevtainly written on the whole with muck force, brevity,
and to the point”—Morning Post. “‘Several previously accepted
axioms of Natural Theology are shown 2o be incompatible with
the existing position of bivlogical science, and their weakness is well
brought forward. . . . In one thing Mr. Henslow has done great
good : ke has shown that it is consistent with a _full dogmatic belief
to hold opinions very 'di ﬂermt Jrom those taught as Natuml
Theology some kalf-century ago.’—Nature.

IRIS - LILLIAD - Université Lille 1



10 SCIENTIFIC CATALOGUE.

Hooker.—wWorks by J. D. Hooxer, C.B.,, M.D.,, D.CL.,
President of the Royal Society :—

THE STUDENT'S FLORA OF THE BRITISH ISLANDS.

Globe 8vo. 10s. 64.

The object of this work is to supply students and field-botanists with a
Juller account of the Plants of the British Islands than the manuals
hitherto i use aim at giving. *‘ Certainly the fullest and most
accurate manual of the kind that has yet appeared. Dy, Hooker
kas shown his characteristic industry and ability in the care and
sktll whick ke has thrown inte the characters of the plants.  These
are to a great extent orviginal, and are really admirable for their
combination of clearness, brevity, and completeness,”—Pall Mall
Gazette.

PRIMER OF BOTANY., With Illustrations. 18mo. Is. New
Edition.

Huxley and Martin.—A COURSE OF PRACTICAL IN.
STRUCTION IN ELEMENTARY BIOLOGY. By T. H.
HuxLry, LL.D., Sec. R.S., assisted by H. N. MARTIN, B.A,,
gl.B., D.Sc., Fellow of Christ’s College, Cambridge. Crown 8vo.

5.

¢ This is the most thovoughly valuable book to teackhers and students
of biology which has ever appeared in the Ewnglish tongue) —

London Quarterly Review.

Huxley (Professor).~~LAY SERMONS, ADDRESSES,
AND REVIEWS., By T. H. HuxLey, LL.D., F.R.S. New
and Cheaper Edition. Crown 8vo. 7s. 64.

Fourteen Discourses on the following subjects:—(1) On the Advisable-
ness of Improving Natural Knowledge:—(2) Emancipation—
Black and White :—(3) A Liberal Education, and where to find
it :~—(4) Scientific Education :—(5) On the Educational Value of
the Natural History Sciences:—(6) On the Study of Zoology:—
(7) On the Physical Basts of Life:—(8) The Scientific Aspects of
LPositivism:—(9) On a Piece of Chalk:—(10) Geological Contem-
Doraneity and Persistent Types of Life:—(11) Geological Reform :—
(12) Zhe Origin of Species:—(13) Criticisms on the ‘“ Origin of
Species:”—(14) On Descartes’ ¢ Discourse louching the Method of
using Onds Reason rightly and of seeking Scientific Truth.”

ESSAYS SELECTED FROM “LAY SERMONS, AD-
DRESSES, AND REVIEWS.” Second Edition, Crown 8ve.
15,

CRITIQUES AND ADDRESSES. 8vo. 105 6d.

Contents —1. Administrative Nikilism, 2. The School Boards:
what they can do, and what they may do. 3. On Medical Edn-
cation. 4 Yeast. §. On the Formation of Cool, 6. Om Corel
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Huxley (Professor)—cntinued.
and Coral Reefs. 7. On the Methods and Results of Ethnology,
8. On some Fixed Points inn British Lthnology. 9. Paleonlology
and the Doctrine of Evolution. 10. Biggrnesis and Abiogenesis.
1. Mr. Darwids Critics. 12, The Genealogy of Animals.
13. Beshop Bevkeley on the Metaphysics of Sensation.

LESSONS IN ELEMENTARY PHYSIOLOGY. With numerous

Tllustrations, New Edition. 18mo, cloth, 4s. 6d.

Tis book describes and explains, in a series of graduated lessons, the
principles of {uman Fhysiology, or the Structure apd Functions
of the Human Body. ‘‘ Pure gold throughout.”—Guardian.
¢ Unguestionably the cleavest and most complete elemeniary treatise
;n this subject that we possess in any language.”—Westminster

Review.

Jellet (John H., B.D.)—— A TREATISE ON THE
THEORY OF FRICTION., By JounNn H. JeELLeEr, B.D,,
Senior Fellow of Trinity College, Dublin ; President of the Royal
Irish Academy. 8vo. 8s 6d.
¢ The book supplies @ want whick has hitherto existed in the science

of pure meckanics,”—Engineer.

Jones.—THE OWENS COLLEGE JUNIOR COURSE OF
PRACTICAL CHEMISTRY. By Francis Jones, Chemical
Master in the Grammar School, Manchester, With Preface by
Professor RoscoE. New Edition. 18mo. with Illustrations. 2s. 6d.

Kingsley.—GLAUCUS: OR, THE WONDERS OF THE
SHORE. By CHARLEs KINGSLEY, Canon of Westminster.
New Edition, revised and corrected, with numerous Coloured
Plates, Crown 8vo. 5.

Kirchhoff (G.)—RESEARCHES ON THE SOLAR SPEC-
TRUM, and the Spectra of the Chemical 'Elements. By G.
KIRCHHOFF, Professor of Physics in the University of Heidelberg,
Second ‘Part.  Translated, with the Author’s Sanction, from the
Transactions of the Berlin Academy for 1862z, by HENRY R.
Roscog, B.A., Ph.D., F.R.S., Professor of Chemistry in Owens
College, Manchester. Part II. 4to. s

Lockyer (]J. N.)—Works by J. NorMAN LOCKYER, F.R.S.—
ELEMENTARY LESSONS IN ASTRONOMY. With nu-
merous Illustrations. New Edition. 18mo. 5s. 64,
¢ The book is full, cleay, sound, and worthy of attention, not only as

a popular exposition, but as a scientific ‘Index.’ ” — Athenzum.
Y The most fascinating of elementary books on the Sciences.”’—
Nonconformist,
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12 SCIENTIFIC CATALOGUE. :

Lockyer (J. N.)—continued.

THE SPECTROSCOPE AND ITS APPLICATIONS. By J.
NorMAN LocKYER, F.R.S. With Coloured Plate and numerous
Illustrations, Second Edition. Crown 8vo. 35 6d.

This forms Volume One of “Nature Series,” a series of populayr
Scientific Works now in courseof publication, consisting of popular
and instructive works, on particular scientific subjects—Scientific
Discovery, Applications, History, DBiography—0by some of the
meost eminent scientific men of the day.  They will be so wrilten as
20 be interesting and intelligible even to non-scientific readers.

CONTRIBUTIONS TO SOLAR PHYSICS. By J. NORMAN
LockYER, F.R.S. I. A Popular Account of Inquiries into the
Physical Constitution of the Sun, with especial reference to Recent
Spectroscopic Researches. II. Communications to the Royal
Society of London and the French Academy of Sciences, with
Notes. Illustrated by 7 Coloured Lithographic Plates and 175
‘Woodcuts, Royal 8vo. cloth, extra gilt, price 31s. 64.

“The first parvt of the work, presenting the reader with a continuons
sketch of the history of the varions inguiries into the physical con-
stitution of the sun, cannotl fail to be of interest to all who care for
the revelations of modern science ; and the interest will be enhanced
by the excellence of the numerous illustrations by whick it is accom-
panied.’— Athenzeum, *“ The book may be taken as an authentic
exposition of the present state of science in connection with the ini-
portant subject of spectroscapic analysis. . . . Even the unscientific
public may dertve much information from it.”—Daily News.

Lubbock.—Works by SR Joun Lussock, M.P., F.R.S,
D.C.L, :—

THE ORIGIN AND METAMORPHOSES OF INSECTS.
With Numerous Illustrations. Second Edition. Crown 8vo. 3s. 64,
This volume is the second of “*Nature Series.” The Athenseum

says : ‘It ¥ written in a cear and pleasing style, like all the
author’s scientific treatises, and is nicely llustrated with outline
wood-cuts, We can most cordially vecommend it to all young
naturalists,” “As a summary of the phenomena of insect meta-
morphoses his little book is of great walue, and will be read with
interest and profit by all students of natural kistory. Thewhole
chapter on the origin of <insects is most interesting and valuable,
The dllustrations are numerous and good.”— W estminster Review.

ON BRITISH WILD FLOWERS CONSIDERED IN RELA-
TION TO INSECTS. With Numerous Illustrations, - Second
Edition. Crown 8vo. 4s. 64. (Nature Series).

Macmillan (Rev. Hugh).—For other Works by the same
Author, see THEOLOGICAL CATALOGUE, -
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Macmillan (Rev. Hugh)—continued.
HOLIDAYS ON HIGH LANDS ; or, Rambles and Incidents in
search of Alpine Plants. Globe 8vo. cloth, 6s.

The aim of this book is to impart a general idea of the ovigin, cha-
racter, and distribution of those rare and beantiful Alpine plants
whick occur on the British kills, and which are found alinost every-
where on the lofty mountain chains of Eurvope, Asia, Africa, and
America. The information the author has to give is conveyed in
a setting of personal adventure.  ** One of the most charming
books of its kind ever wriften.”—Literary Churchman. ¢4y,
Ms glowing pictures of Scandinavian scenery.”—Saturday Review.

FIRST FORMS OF VEGETATION. Second Edition, corrected
and enlarged, with Coloured Frontispiece and numerous Illustra-
tions. Globe 8vo. 6s.

The first edition of this book was published under the name o
“ Footnotes from the Page of Nature; or, First Forms of Vegeta-
tion.” This edition contains upwards of 100 pages of new
matier and deven new illustrations. ** Probably the best populay
guide to the study of mosses, lichens, and fungi ever written. Iis
practical value as a help to the student and collector cannot be
exaggerated.”—Manchester Examiner,

Mansfield (C. B.)—A THEORY OF SALTS. A Treatise
on the Constitution of Bipolar (two-membered) Chemical Com-
pounds. By the late CHARLES BLACHFORD MANSFIELD. Crown
8vo. 14s.

Miller.—THE ROMANCE OF ASTRONOMY. By R. KALLEY
MILLER, M.A., Fellow and Assistant Tutor of St. Peter's Col~
lege, Cambridge. Second Edition, revised and enlarged. Crown
8vo.  3s. 6d.

Mivart (St. George).—Works by ST. GEORGE MIvART, F.R.S,

&c., Lecturer in Comparative Anatomy at St. Mary's Hospital: —

ON THE GENESIS OF SPECIES. Crown 8vo. Second

Edition, to which notes have been added in reference and reply to

Darwin’s ““Descent of Man.” With numerous Illustrations. pp.

xv. 296, 9s.

“In no work in the English language has this great controversy
been treated at once with the same broad and vigovous grasp of
facts, and the same liberal and candid temper.’—Saturday
Review.

THE COMMON FROG. With Numerous Illustrations, Crown
8vo. 35. 64. (Nature Series.)

“ Jt is an able monogram of the Frog, and something more. It
throws valuable crosslights over wide portions of animated nature.

Y¢ Would that suck works were more plentiful.”—Quarterly Journal
of Science. T : :
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Murphy.—Works by Josept JoHN MURPHY :—

HABIT AND INTELLIGENCE, in Connection with the Laws of
Matter and Force : A Series of Scientific Essays. Two Vols.
8vo. 16s.

THE SCIENTIFIC BASES OF FAITI. 8vo. 14s.

Nature.—A WEEKLY ILLUSTRATED JOURNAL OF
SCIENCE. Published every Thursday. Price 44. Monthly
Parts, 1s. 4d. and 1s. 84. ; Half-yearly Volumes, 10s. 64. Casesfor
binding Vols. 1s. 64. .

‘¢ Backed by many of the best names among English philosophers, and
by a few equally valuable supporters in America and on the Conti-
nent of Europe.””—Saturday Review. ¢ This able and well-edited
Fournal, which posts up the science of “the day promptly, and
Promises to be of signal service to students and savants. . . . , .
Scarcely any expressions that we can employ would exaggerate our
sense of the moral and theological value of the work,”—DBritish
Quarterly Review,

Oliver.—Works by DANIEL OLIVER, F.R.S., F.L.S., Professor of
Botany in University College, London, and Keeper of the Herba-
rium and Library of the Royal Gardens, Kew :—

LESSONS IN ELEMENTARY BOTANY. With nearly Two
Hundred Illustrations. New Edition. 18mo cloth. 4s. 64.

This book is designed to teack the elements of Botany on Professor
Henslow's plan of selected Types and by the use of Scheduies. The
earlier chapiers, embracing the elements of Structural and Physio-
logical Botany, introduce us to the methodical study of the Qrdinal
Types.  The concluding chapters are entitled, ** How to Dry
Plants” and “ How to Describe Plants.” A valuable Glossary is
appended to the volume, In the preparation of this work free use
kas been made of the manuscript malerials of the late Professor
Henslow.

FIRST BOOK OF INDIAN BOTANY. With numerous

Illustrations. Extra fcap. 8vo. 6s. 64.

This [ is, in substance, the authoy’'s *¢ Lessons in Llementary
Botany,” adapted for use in India. In preparing it ke has khad in
view the want, often felt, of some handy résumé of Indian Bolany,
which might be serviccable not only to residents of India, but also
to anyone about to proceed thither, desivous of getting some pre-
lLiminary tdea of the botany of the country. 1t conlains a well-
digested summary of all essentinl Enowledge pertaining to Indian
Botany, wrought out in accordance with the best principles of
scientific arrangement.”—Allen’s Indian Mail,
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Penrose (F. C.)—ON A METHOD OF PREDICTING BY
GRAPHICAL CONSTRUCTION, OCCULTATIONS OF
STARS BY THE MOON, AND SOLAR ECLIPSES FOR
ANY GIVEN PLACE. Together with more rigorous methods
for the Accurate Calculation of Longitude. By F. C. PENROSE,
F.R.A.S. With Charts, Tables, &c. 4to. 125

Perry.—AN ELEMENTARY TREATISE ON' STEAM. By

OHN PERRY, B.E., Whitworth Scholar, &c., late Lecturer in Physics

at Clifton College. With numerous Woodcuts, Numerical Examples,
and Exercises. 18mo. 4s. 64,

“Mr. Perry has in this compact little volume brought together an
immense amount of information, new told, regarding steam and
its application, not the least of ils merits being that ¥ is suited fto
the capacities alike of the tyro in enginesring science or the better
grade of artisan.”—Iron.

Pickering. —ELEMENTS OF PHYSICAL MANIPULATION,
By E. C. PICKERING, Thayer Professor of Physics in the Massa-
chusetts Institute of Technology. Part I, medium 8vo. 10s. 6d.,

Y We shall look with interest for the apipearance of the second volume,
and when finished *Physical Manipulation’ will no doubt be
considered the best and most complele text-book an the subsect of
whick it treats.”—Nature,

Prestwich.—THE PAST AND FUTURE OF GEOLOGY.
An Inaugural Lecture, by J. PrEsrwicH, M.A., F.R.S, &c.,
Professor of Geology, Oxford. 8vo. 2s.

Rendu.—THE THEORY OF THE GLACIERS OF SAVOY.
By M. LE CHANOINE RENDU. Translated by A, WELLs, Q.C,
late President of the Alpine Club. To which are added, the Original
Memoir and Supplementary Articles by Professors TaAIT and Rus-
xIN. Edited with Introductory remarks by GEORGE FoRrBES, B.A.,
Professor of Natural Philosophy in the Andersonian University,
Glasgow. 8vo., 75 64,

Rodwell.—THE BIRTH OF CHEMISTRY. By G. F. Rop-
weLL, F.R.A.S,, F.C.S. With numerous. Illustrations, Crown
8vo. 3s. 6c.

“Mr, Rodwell has produced a thoughtful, suggestive, and decidedly
readable book,” —Quartexly Journal of Science.
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Roscoe.—Works by Henky E. Roscog, F.R.S., Professor of
Chemistry in Owens College, Manchester :—

LESSONS IN ELEMENTARY CHEMISTRY, INORGANIC
AND ORGANIC. With numerous Illustrations and Chromo-
litho of the Solar Spectrum, and of the Alkalies and Alkaline
Earths. New Edition, 18mo. cloth, 4s. 6d.

CHEMICAL PROBLEMS, adapted to the same by Professor
THORPE. 1Is. Key. 1s
¢ We unhesitatingly pronounce it the best of all our elementary

treatises on Chemistry.”-~Medical Times.

SPECTRUM ANALYSIS. Six Lectures, with Appendices, En-
gravings, Maps, and Chromolithographs. Royal 8vo. 21s.

A Third Edition of these popular Lectures, containing all the most
vecent discoveries and “several additional illustrations. *“The
lectures themselves furnish a most admirabdle elementary treatise
on the subject, whilst by the insertion in appendices to eack lecture
of extracts from the most important published memoirs, the author
has vendered it equally waluable as a text-book for advanced
students.”—Westminster Review.

Rumford (Count).—THE LIFE AND COMPLETE WORKS
OF BENJAMIN THOMPSON, COUNT RUMFORD. With
Notices of his Daunghter. By Groree Erris. With Portrait.
Five Vols. 8vo. £4 14s. 6d.

Schorlemmer.—A MANUAL OF THE CHEMISTRY OF
THE CARBON COMPOUNDS OR ORGANICCHEMISTRY.
By C. SCHORLEMMER, F.R.S., Lecturer in Organic Chemistry in
Owens College, Manchester, 8vo. 14
STt appears to us fo be as complete ¢ manual of the melamorphoses of
carbon as could be at present produced, and it must prove eminently
useful to the chemical student,” —Athenzum.

Smith.—HISTORIA FILICUM : An Exposition of the Nature,
Number, and Organography of Ferns, and Review of the Prin-
ciples upon which Genera are founded, and the Systems of Classifi-
cation of the principal Authors, with a new General Arrangement,
&c. By J. SMiTH. A.L.S., ex-Curator of the Royal Botanic
Garden, Kew, With Thirty Lithographic Plates by W. H. Frrch,
F.L.S. Crown 8vo. 12s. 6d.

“ No one anxious to work up a thorough knowledge of ferns can
afford to do without it.”—Gardener’s Chronicle,

?4 Spottiswoode.—POLARIZATION OF LIGHT. By W,
SroTTIsWoODE, F.R.S, With numerous Illustrations. Second
Edition, Crown 8vo. 3s 64. (Nature Series.)
& The illustrations arve exceedingly well adapted to assist in making
the text comprehensible’—Athenceum. ‘A clear, trustworthy
mannal,”—Standard,
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Stewart (B. F.R.S., Professor
of Natural Philosophy in Owens College, Manchester :—
LESSONS IN ELEMENTARY PHYSICS. With numerous
Illustrations and Chromolithos of the Spectra of the Sun, Stars,
and Nebulze. New Edition. 18mo. 4s. 64.

The active agents, heat, light, cectricity, ete., ave reparded as
varieties of energy, and the work is so arranged that their relation
to one another, looked at in this light, and the paramount import-
ance of the laws of energy, are clearly brought out. The volume

tains all the n. y tllustrations, The Educational Times
calls this the &mu idéal of @ scientific text-book, clear, accurate,

and thovough,’
PRIMER OF PHYSICS. With Illustrations. New Edition. 18mo.

15

Stewart and Tait.—THE UNSEEN UNIVERSE: or,
Physical Speculations on a Future State. By BALFOUK STEWART,
F.R.S., and P. G. TAlr, M.A, Fourth and Cheaper Edition,
revised and enlarged. Crown 8vo. 6s.
¢ The book is one whick well deserves the attention of thoughtful and

religious readers. . . . It is a perfectly sober inguiry, on scientific
grounds, into the possibilities of a future existence.”—Guardian,

Tait.—LECTURES ON SOME RECENT ADVANCES IN
PHYSICAL SCIENCE. By P. G. Tart, M.A., Professor of
Philosophy in the University of Edinburgh. Crown 8vo. 0.

Taylor.—SOUND AND MUSIC: A Non-Mathematical Trea-
tise on the Physical Constitution of Musical Sounds and Harmony,
including the Chief Acoustical Discoveries of Professor Helm-
holtz. By SEDLEY TAvLOR, M.A. late Fellow of Trinity Col-
ledge, Cambridge. Latge crown 8vo. 8s. 6d.

I no previous scientific treatise do we remember so exhaustive and
so richly illustrated a description of jforms of vibration and of
wave-motion irn fluids.”—Musical Standard.,

Thomson.—THE DEPTHS OF THE SEA : An Account of the
General Results of the Dredging Cruises of H.M.SS. ¢ Porcupine ”
and “‘Lightning” during the Summers of 1868-69 and 70, under
the scienttfic direction of Dr. Carpenter, F.R.S., J. Gwyn Jefireys,
F.R.S., and Dr. Wyville Thomson, F.R.S B Dr. WYVILLE
THOMSON, Director of the Scientific Staff of the ¢¢ Challenger,”
Expedition, With nearly 100 Illustrations and 8 .coloured Maps
and Plans. Second Edition. Royal 8vo. cloth, gilt. 31s. 64.
1t was the important and interesting results vecorded in this volume

that induced the Government to send out the great Expedition now
launched under the scientific guidance of Dr. Wyville Thomson.
B
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18 SCIENTIFIC CATALOGUE.

Thomson,.—continued.

The Athenceum says ! ¢ Professor Thomson's book is jfull of in-
teresting matter, and s wrilien by a master of the art of popular
exdosition. It is excellently illustrated, both coloured maps and
woodcuts possessing high merit, Those who have already become
interested in dredging operations will of course make a point of
reading this work ; those who wisk to be pleasantly introduced to the
subject, and rightly to appreciate the news whick arrives from time
to time from the * Challenger, should not fail to scek tnstruction
trom Professor Thomson.”

Thudichum and Dupré.—A TREATISE ON THE
ORIGIN, NATURE, AND VARIETIES OF WINE.
Being a Complete Manual of Viticulture and (Enology. By J. L.
‘W. THuDICcHUM, M. D., and AucusT DUPRE, Ph.D., Lecturer on
Chemistry at Westminster Hospital. Medium 8vo. clothgilt, 2§s.
“A treatise almost unique for its usefulness either to the wine-grower,

the wvendor, or the consumer of wine, The analyses of wine are
the most complete we kave yet seen, exkibiting at a glance the
constituent principles of nearly all the wines known in this country.”
—Wine Trade Review.

Wallace (A. R.)—Works by ALFRED RUSSEL WALLACE.
CONTRIBUTIONS TO THE THEORY OF NATURAL

SELECTION. A Series of Essays, New Edition, with

Corrections and Additions. Crown 8vo. 8 64.

Dr. Hooker, in his address to the British Association, spoke thus
of the author: ‘‘Of Mr. Wallace and his many contributions
to philosophical biology it is not easy to speak without enthu-
stasm; for, pulting aside their great merits, he, throughout kis
writings, with a modesly as rvare as I believe it 2o be uncon-
scious, forgels his own unquestioned claim to the honour of
having originated independently of My. Darwin, the theories
whick he so ably defends.” The Saturday Review says: “He
has combined an abundance of fresh and original facis with a
Liveliness and sagacity of reasoning whick are not often displayed

so effectively on so small a scale.”

THE GEOGRAPHICAL DISTRIBUTION OF ANIMALS,
with a study of the Relations of Living and Extinct Faunas as
Elucidating the Past Changes of the Earth’s Surface. 2 vols. 8vo,
with Maps, and numerous Illustrations by Zwecker, 42s.

Warington.—THE WEEK OF CREATION; OR, THE
COSMOGONY OF GENESIS CONSIDERED IN ITS
RELATION TO MODERN SCIENCE., By GEORGE WAR-
INGTON, Author of *° The Historic Character of the Pentateuch
Vindicated.” Crown 8vo. 4. 64, .
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Wilson.—Works by the late GEORGE WrLson, M.D., F.R.S.E,,
Regius Professor of Technology in the University of Edinburgh :—

RELIGIO CHEMICI. Witha Vignette beautifully engraved after
a design by Sir NoEL PaToN. Crown 8vo. 8s. 64d.
“Ad more fascinating volume,” the Spectator says, *‘ kas seldone
Jallen into our hands.”

THE PROGRESS OF THE TELEGRAPH. Fcap.8vo. 1s.

“ While a complete view of the progress of the greatest of human
inventions is obtained, all its suggestions are brought out with a
rare thoughtfulness, & genial humour, and an exceeding beauty of
utterance.”—Nonconformist.

Wilson (Daniel.)—CALIBAN : THE MISSING LINK. By
DanIEL WiLson, LL.D,, Professor of History and English Litera-
ture in University College, Toronto. 8vo. 10s. 62.
¢ The whole volume is most rick in the eloguence of thought and

timagination as well as of words. It is a choice contribution at
once to science, theology, religion, and Iiterature,” —British
Quarterly Review.

Winslow.—FORCE AND NATURE : ATTRACTION AND
REPULSION. The Radical Principles of Energy graphically
discussed in their Relations to Physical and Morphological De-
velopment. By C. F. WinsLow, M.D. 8vo. 14s.

““Deserves thoughtful and conscientious study.” —Saturday Review.

Wurtz.—A HISTORY OF CHEMICAL THEORY, from the
Age of Lavoisier down to the present time. By Ap. WuURrTz.
Translated by HENRY WATTS, F.R.S. Crown 8vo. 6s.
¢ The discourse, as a vésumé of chemical theory and research, uniles

singular luminousness and grasp. A few judicious notes ave added
by the transiator.”—Pall Mall Gazette. *‘ The treatment of the
subject is admirable, and the translator has evidently done his duty
maost efficiently.”’—Westminster Review.

WORKS ON MENTAL AND MORAL
PHILOSOPHY, AND ALLIED SUBJECTS.

Aristotle,— AN INTRODUCTION TO ARISTOTLE'S
RHETORIC. With Analysis, Notes, and Appendices. By E.
M. Corg, Trinity College, Cambridge. 8vo. 14,

ARISTOTLE ON FALLACIES ; OR, THE SOPHISTICI
ELENCHI. With a Translation and Notes by EDWARD PosTk,
M. A:, Fellow of Qriel College, Oxford.  8vo. - 8s. 6d.
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Birks.—Works by the Rev, T. R. Birks, Professor of Moral Philo-
sophy, Cambridge :—

FIRST PRINCIPLES OF MORAL SCIENCE; Or, a First
Course of Lectures delivered in the University of Cambridge.
Crown 8vo. 8. 6d.

¢ This work treats of three topics all preliminary to the divect exposi-
ton of Moral Philosophy. These are the Certainty and Dignily
of Moral Science, its Spiritual Geography, or relation to other
main subjects of kuman thought, and its Formative Principles, or
some elementary truths onm which §is whole development must
deperd.

MODERN UTILITARIANISM; or, The Systems of Paley,
Bentham, and Mill, Examined and Compared. Crown 8vo, 6s. 6.

Boole. — AN INVESTIGATION OF THE LAWS OF
TIIOUGHT, ON WIIICH ARLE FOUNDED THE
MATHEMATICAL THEORIES OF LOGIC AND PRO-
BABILITIES. By GEorRGE BooLg, LL.D., Professor of
Mathematics in the Queen’s University, Ireland, &c. 8vo. 14s.

Butler.—LECTURES ON THE HISTORY OF ANCIENT
PHILOSOPHY. By W. ARCEER BUTLER, late Professor of
Moral Philosophy in the University of Dublin. Edited from the
Author’s MSS., with Notes, by WiLLIaAM HEPWORTH THOMP-
soN, M.A., Master of Trinity College, and Regius Professor of
Greek in the University of Cam bridge. New and Cheaper Edition,
revised by the Editor. 8vo. 129,

Calderwood.—Works by the Rev, HENRY CALDERWOOD, M.A.,
LL.D., Professor of Moral Philosophy in the University of Edin-
burgh :(—

PHILOSOPHY OF THE INFINITE: A Treatise on Man’s
Knowledge of the Infinite Being, in answer to Sir W, Hamilton
and Dr. Mansel. Cheaper Edition. 8vo. 7s. 6d.

“A book of great ability . . . . written in a clear style, and may
be easily undersiood by even those who are not versed in such
discussions.”—British Quarterly Review.

A HANDBOOK OF MORAL PHILOSOPIIY. New Edition,

Crown 8vo, 6s.

“ It 15, we feel convinced, the best handbook on the subject, intellectually
and morally, and does infinite cvedit fo its author.”—Standard.
““d compact and wuseful work, going over a great deal of ground
i1 & manner adapted to suggest and Jacilitale further study. , . .
His book will be an assistance to many students outside his own
University of Edinburgh.”—Guardian.
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Fiske.—OUTLINES OF COSMIC PHILOSOPHY, BASED
ON THE DOCTRINE OF EVOLUTION, WITH CRITI-
CISMS ON THE POSITIVE PUHILOSOPHY. By Joun
Fiskg, M.A., LL.B., formerly Lecturer on Philosophy at
Harvard University. 2 vols. 8vo. 25s.

8 The work constitules a wvery effective encyclopaedia of the evolution-
ary philosophy, and is well worth the study of all who wish to see
at once the entive scope and purport of the scientific dogmatism of
the day.”—Saturday Review.

Green (J. H.)—SPIRITUAL PHILOSOPHY : Founded on
the Teaching of the late SAMUEL TAYLOR COLERIDGE. By the
late Josepd HEeNRY GREEN, F.R.S., D.C.L. Edited, with a
Memoir of the Author's Life, by Joun Simon, F.R.S., Medical
Officer of Her Majesty’s Privy Council, and Surgeon to St.
Thomas’s Hospital. Two Vols. 8vo. 25s.

Jardine.—THE ELEMENTS OF THE PSYCHOLOGY OF
COGNITION. By ROBERT JARDINE, B.D., D.Sc.,, Principal of
the General Assembly’s College, Calcutta, and Fellow of the Uni-
versity of Calcutta, Crown 8vo. 6s. 6d.

Jevons.—Works by W. STaNLEY JEVONS, M.A., Professor of
Logic in Owens College, Manchester.

THE SUBSTITUTION OF SIMILARS, the True Principle of
Reasoning. Derived from a Modification of Aristotle’s Dictum.
Fcap. 8vo. 25, 6d.

“Mr. Fevons' book is very clear and inlelligible, and quite worth con-
sulting.”—Guardian, :

THE PRINCIPLES OF SCIENCE. A Treatise on Logic and
Scientific Method. 2 vols. 8vo. 25w

¢ We believe that this will be recognized in the future as one of the most

valuable philosophical works of our time”’—Manchester Examiner.

Maccoll.—THE GREEK SCEPTICS, from Pyrrho to Sextus.
An Essay which obtained the Hare Prize in the year 1863, By
NorRMAN MaccoLL, B.A., Scholar of Downing College, Cam-
bridge. Crown 8vo. 3s. 64,

M¢Cosh._Works by JamEs M‘Coss, LL.D., President of Princeton
College, New Jersey, U.S.
¢ He certainly shows himselt skilful in that appiication of logic to
Psyckology, in that inductive science of the human mind whick is
the fine side of English philosophy. ~ His philosophy as a whole is
.worthy of atteniion.”—Revue de Deux Mondes.
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M<Cosh (J .)—mntinued.

THE METHOD OF THE DIVINE GOVERNMENT, Physical
and Moral, Tenth Edition. 8vo. 10s. 6d.

“ This work is distinguished from other similar ones by ifs beiny
based wpon a thorough study of physical science, and an accurate
knowledge of idts present condition, and by its enitering in a
deeper and more unfettered manner than its predecessors upon the dis-
cussion of the appropriate psychological, ethical, and theological ques-
tions. Theauthor keeps aloof at once from the & priori idealism and
dreaminess of German speculation since Schelling, and from the
onesidedness and narvowness of the empiricism and positivism
which have so prevailedin England,”—Dr, Ulricl, in ““Zeitschrift
fiir Philosophie.”

THE INTUITIONS OF THE MIND. A New Edition. 8vo.
coth, 105, 64,
¢ The undertaking to adjust the claims of the semsational and in-

tuitional philosophies, and of the 4 posteriori and & priori metods,
is accomplished in this work with a great amount of success,”—
Westminster Review. ‘7 walue it jor its large acquaintance
with English Philosophy, whick has not led him to neglect the
great German works. [ admive the moderation and clearness, as
well as comprehensiveness, of the author's views.”—Dr. Dérner, of
Berlin.

AN EXAMINATION OF MR. J. S. MILL’S PHILOSOPHY:
Being a Defence of Fundamental Trath. Crown 8ve. 7s. 6d.
““Such a work greatly needed to be done, and the author was the man

fododt. Thisvolume is important, not merely in reference to the
views of Mr. Mill, but of the whole school of writers, past and
present, British and Continental, ke so ablyrepresents.”—Princeton
Review.

THE LAWS OF DISCURSIVE TITOQUGIIT: Being a Text-

book of Formal Logic. Crown 8vo. 5.

“The amount of summarized information whickh it contains is very
great; and it is the only work on the very important subject with
which it deals. Never was such a work so much needed asin
the present day.”—London Quarterly Review,

CIIRISTIANITY AND POSITIVISM : A Series of Lectures to
the Times on Natural Theology and Apologetics. Crown 8vo.
7s. 6d.

THE SCOTTISH PHILOSOPHY FROM HUTCHESON TO
HAMILTON, Biographical, Critical, Expository. Royal 8vo. 16s.

Masson.—RECENT BRITISH PHILOSOPHY: A Review
with Criticisms ; including some Comments on Mr., Mill's Answer
to Sir William Hamilton. By Davip Masson, M. A., Professor
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Masson.—continud.

of Rhetoric and English Literature in the University of Edinburgh,

Crown 8vo. 6s.

e can nowhere point lo a work which gives so clear an exposi-
lion of the course of philosophical speculation in Britain during
the past century, or which indicales so instructively the mulnal in-
FHuences of philosophic and scientific thought.”—F ortnightly Review,

Maurice.—Works by the Rev. FREDERICK DENISON MAURICE,
M. A., Professor of Moral Philosophy in the University of Cam-
bridge. (For other Works by the same Author, see THEOLOGICAL
CATALOGUE.)

SOCIAL MORALITY. Twenty-one Lectures delivered in the
Unnéemty of Cambridge. New and Cheaper I:dltlon Crown 8vo.
10s. 64,
¢ Whilst reading zZ we are charned by the fmm’am  from exclusiveness

and ]Jrzyua’zte, the large chardly, the lofiiness of thought, the eager-
ness to pecognize and appreciate whatever there is af real worth
extant in the world, whick animates it from one end fo the other.
We gain new thoughts and new ways of viewing things, even more,
perhaps, from being brought for a time under the influence of so
noble and .gpzm‘ual a mind.”—Atheneum.

THE CONSCIENCE: Lectures on Casuistry, delivered in the

gmvelslty of Cambridge. New and Cheaper Edition, Crown

VO

¢ Saturds 3 1 hem_with_detestation
of all that is selfisk and mean, zma’ wu‘h @ Lving Tnpresswie vivae

there is such a thing as {rondne.v.f after all.”

MORAL AND METAPHYSICAL PHILOSOPHY. Vol I
Ancient Philosophy from the First to the Thirtcenth Centuries ;
Vol. IL the Fourteenth Century and the French Revolution, with
a glimpse into the Nineteenth Century. New Edition and
Preface. 2 Vols. 8vo. 25s.

Murphy.—THE SCIENTIFIC BASES OF FAITH. By
JosepH JoHN MurpaY, Author of “ Habit and Intelligence.”
8vo. 14s.,
¢ The book is not without substantial wzlue, the writer continues the

work of the best apologists of the last century, it may be with less
Jorce and clearness, but still with commendable persuasiveness and
lact ; and with an intelligent feeling for the changed conditions of
the pro&lem '—Academy.

Picton. -THE MYSTERY OF MATTER AND OTHER
ESSAYS, By]J. AvransonN PictoN, Author of ¢ New Theories
and the Old Faith,” Crown 8vo. 105, 64.

CONTENTS :— The Mystery of Matter—The Philosophy of Ipno-
rance—T he Antithesisof Faith and Sight—The Essential Nature
of Religion—Christian Pantheism.
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Sidgwick.——THE METHODS OF ETHICS. By HENRY
Sipgwick, M.A., Lecturér and late Fellow of Trinity Coliege,
Cambridge. 8vo. 14s.

¢ This excellent and very welcome volume. . . . . Leaving to meta-
physicians any further discussion that may be needed respecting the
already over-discussed problem of the origin of the moral faculty, ke
takes it for granted as readily as the geometrician lakes space for
& anted, or the physicist the existence of matter, But ke takes little
else for granted, and defining ethics as ¢ the science of conduct,’ re
carefully examines, not the various ethical systems that have been
propounded by Aristolle and Avristotle's followers downwards, but
the principles upon which, so far as they confine themselves to the
strict province of etkics, they ave based.”— Athenseum.

Thornton.—OLD-FASHIONED ETHICS, AND COMMON-
SENSE METAPHYSICS, with some of their Applications. By
WiLLIAM THOMAS THORNTON, Author of ‘A Treatise on Labour.”
8vo. 10s. 6d.

The present volume deals with problems whick are agitating the
minds of all thoughtful men. The jfollowing are the Contents :—
1. Ante-Utilitariamism. 11, History's Scientific Pretensions. 111,
David Hume as a Metaphysician. V. Huxleyism. V. Recent
Fase of Scientific Atheism. VI. Limits of Demonstrable Theism.

Thring (E., M.A.)—THIOUGHTS ON LIFE-SCIENCE,
By EpwarD THRING, M.A. (Benjamin Place), Head Master of
Uppingham School. New Edition, enlarged and revised. Crown
8vo. 7s. 6d.

Venn.—THE LOGIC OF CHANCE : An Essay on the Founda-
tions and Province of the Theory of Probability, with especial
reference to its logical bearings, and its application to Moral and
Social Science. By JoHN VENN, M.A., Fellow and Lecturer of
Gonville and Caius College, Cambridge Second Edition, re-
written and greatly enlarged. Crown 8vo. 10s. 64,

* One of the most thoughtful and philosoplical treatises on any sub-
Ject connmected with logic and evidence which has been produced in
this or any other country for many years.”—Mill’s Logic, vol. ii.
P. 77. Seventh Edition,

) «
,ONDQNT‘-' k./g‘u\ij sbns, AND TAMY{, PRINTERS.
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