COURS

DE

MINÉRALOGIE.

Atlas.

.

IRIS - LILLIAD - Université Lille 1

COURS

DB

MINÉRALOGIE

Par M. DELAFOSSE.

EXPLICATION DES PLANCHES.

ATLAS

PARIS

A LA LIBRAIRIE ENCYCLOPÉDIQUE DE RORET, rue hautefeuille, 12.

.

.

EXPLICATION DES PLANCHES

DU PREMIER VOLUME

DE LA

MINÉRALOGIE.

GÉNÉRALITÉS SUR LA CRISTALLISATION.

PLANCHE I.

- Fig. 1. Réseau plan de molécules, à mailles carrées, page 26.
- Fig. 2. Réseau plan de molécules, à mailles rhombes.
- Fig. 3. Assemblage réticulaire de molécules à trois dimensions.
- Fig. 4. Molécule tétraédrique formée de quatre atomes, page 31.
- Fig. 5. Molécule octaédrique à six atomes composants.
- Fig. 6. Molécule en prisme triangulaire, à six atomes.
- Fig. 7. Molécule parallélipipédique, à huit atomes.
- Fig. 8. Molécule en prisme hexagonal, à douze atomes.
- Fig. 9. File moléculaire sex-latérale, ou à symétrie sénaire, page 32.
- Fig. 10. File moléculaire quadrilatérale, ou à symétrie quaternaire.
- Fig. 11. File moléculaire trilatérale, ou à symétrie ternaire.
- Fig. 12. File bilatérale, ou à symétrie binaire.
- Fig. 43. Axe quadrilatéral, à côtés alternativement inverses.
- Fig. 14. Axe sexlatéral, à côtés alternes.
- Fig. 15. Axe trilatéral, hétéropolaire, page 32.
- Fig. 16. Lame de molécules, à deux faces semblables, page 31.
- Fig. 17. Lame de molécules, à deux faces dissemblables, id.
- Fig. 18. Réseau à mailles cubiques, formé de molécules cubiques à trois axes quadrilatéraux isopolaires, page 34.
- Fig. 19. Idem, formé de molécules tétraédriques et dont les quatre axes trilatéraux sont hétéropolaires.
- Fig. 20. Idem, formé de molécules dodécaédriques, et dont les axes rectangulaires sont isopolaires et bilatéraux, page 35.

PLANCHE II.

Fig. 24, 22 et 23. Le goniomètre ordinaire ou d'application, dont les parties composantes sont représentées séparément, et réunies ensemble, page 48.

- Fig. 24. Le même, appliqué sur un cristal, pour mesurer l'un de ses angles.
- Fig. 25. Le goniomètre de Wollaston, à limbe vertical, page 50.
- Fig. 26. Le même, avec l'addition d'un miroir.
- Fig. 27. Le même, avec une lunette à fil horizontal.
- Fig. 28. Le goniomètre de Mohs, à limbe horizontal, page 58.
- Fig. 29 et 30. Le goniomètre de Babinet, page 59.
- Fig. 31. Trapézoïde symétrique, page 37.
- Fig. 32 et 32 bis. Trapézoïdes non symétriques.
- Fig. 33 à 37. Représentant le passage graduel du cube à l'octaèdre régulier.

PLANCHE III.

- Fig. 38. Servant à expliquer la loi de dérivation des faces, par les multiples ou les parties aliquotes des axes.
- Fig. 39. Forme parallélipipédique, tangente ou circonscrite à une forme octaédrique.
- Fig. 40 et 41. Faisant voir que les signes de la dérivation restent les mêmes, qu'on rapporte la face secondaire aux axes de l'octaèdre ou aux arêtes du parallélipipède correspondant.
- Fig. 42 et 43. Servant à établir la réalité de la loi des troncatures rationnelles.
- Fig. 44. Forme primitive du quarz, avec la notation qui convient à sa structure, page 143.
- Fig. 45. Idem, montrant la disposition rotatoire des files moléculaires homologues.
- Fig. 46. Rhomboèdre, avec la symétrie ordinaire, page 144.
- Fig. 47. Le même, basé.
- Fig. 48. Plagièdre ou trapézoèdre trigonal du quarz, page 143.
- Fig. 49. Le même, basé ou tronqué sur les sommets.
- Fig. 50. Molécule à six atomes, représentant un prisme droit triangulaire, pages 145 et 174.
- Fig. 51. Molécule tétraédrique, à base triangulaire équilatérale, page 145.
- Fig. 52. Molécule cubique, dont le caractère hémiédrique est accusé par la structure, page 173.
- Fig. 53. Molécule rhomboédrique, dont la structure accuse l'hémiédrie, page 174.
- Fig. 54 et 55. Polyèdres atomiques, pouvant représenter les molécules de la pyrite ordinaire, pages 174 et 175.

DÉVELOPPEMENT DES SYSTÈMES CRISTALLINS.

PLANCHE IV.

- Fig. 1. Forme fondamentale du système cubique, avec sa notation, page 111.
- Fig. 2. Le Cube.

- Fig. 3. Passage du cube au rhombododécaèdre.
- Fig. 4. Le rhombododécaèdre.
- Fig. 5. Passage du cube à l'hexatétraèdre.
- Fig. 6. L'hexatétraèdre.
- Fig. 7. Passage du cube à l'octaèdre régulier.
- Fig. 8. L'octaèdre régulier.
- Fig. 9. Passage du cube au trapézoèdre.
- Fig. 10. Le trapézoèdre.
- Fig. 11. Passage du cube à l'octatrièdre.
- Fig. 12. L'octatrièdre.
- Fig. 13. Passage du cube au scalénoèdre.
- Fig. 14. Le scalénoèdre à 48 faces.
- Fig. 15. Passage de l'octaèdre au rhombododécaèdre.
- Fig. 16. Passage de l'octaèdre à l'octatrièdre.
- Fig. 17. Passage de l'octaèdre au cube.
- Fig. 18. Passage de l'octaèdre au trapézoèdre.
- Fig. 19. Passage de l'octaèdre à l'hexatétraèdre.
- Fig. 20. Passage de l'octaèdre au scalénoèdre.

PLANCHE V.

- Fig. 21. Passage du dodécaèdre au trapézoèdre.
- Fig. 22. Passage du dodécaèdre à l'octaédre.
- Fig. 23. Le cube, avec la notation qui convient à la symétrie du système tétraédrique, page 118.
- Fig. 24. Passage du cube au tétraèdre régulier.
- Fig. 25. Le tétraèdre régulier, avec ses axes rectangulaires.
- Fig. 26. Le tétraèdre régulier, considéré comme forme fondamentale, avec sa notation, page 424.
- Fig. 27. Passage du tétraèdre au cube.
- Fig. 28. Le cube du système tétraédrique, avec ses stries caractéristiques.
- Fig. 29. Passage du tétraèdre au tétratrièdre direct.
- Fig. 30. Le tétratrièdre direct.
- Fig. 31. Passage du tétraèdre à l'octaèdre.
- Fig. 32. L'octaèdre du système tétraédrique.
- Fig. 33. Passage du tétraèdre au dodécaèdre trapézoïdal.
- Fig. 34. Le dodécaèdre trapézoïdal.
- Fig. 35. Passage du tétraèdre au tétratrièdre inverse.
- Fig. 36. Le tétratrièdre inverse.
- Fig. 37. Passage du tétraèdre au tétrahexaèdre.
- Fig. 38. Le tétrahexaèdre.
- Fig. 39. Le cube du système hexadiédrique, avec sa notation, page 123.
- Fig. 40. Le même, avec ses stries caractéristiques.

PLANCHE VI.

Fig. 41. Passage du cube à l'hexadièdre ou dodécaèdre pentagonal.

- Fig. 42. L'hexadièdre.
- Fig. 43. Passage du cube au dodécadièdre.
- Fig. 44. Le dodécadièdre.
- Fig. 45. Le triacontaèdre.
- Fig. 46. L'icosaèdre symétrique.
- Fig. 47. Le dodécaèdre pentagonal, considéré comme forme primitive, avec sa notation, page 128.
- Fig. 48. Passage du dodécaèdre pentagonal à l'octaèdre.
- Fig. 49. Passage du dodécaèdre au cube.
- Fig. 50. Passage du dodécaèdre à un autre dodécaèdre du même genre.
- Fig. 51. Passage du dodécaèdre au dodécadièdre.
- Fig. 52. Autre modification, menant encore à un dodécadièdre.
- Fig. 53. Le prisme hexagonal avec ses quatre axes, page 130.
- Fig. 54. Le même, avec la notation qui convient au système dirhomboédrique.
- Fig. 55. Passage du prisme hexagonal au dihexaèdre alterne.
- Fig. 56. Le dihexaèdre alterne.
- Fig. 57. Passage du prisme hexagonal au didodécaèdre.
- Fig. 58. Le didodécaèdre.
- Fig. 59. Passage du prisme hexagonal au prisme alterne.
- Fig. 60. Le prisme hexagonal alterne.

- -

PLANCHE VII.

- Fig. 61. Passage du prisme hexagonal au prisme dodécaèdre symétrique.
- Fig. 62. Le prisme dodécaèdre symétrique.
- Fig. 63. Passage du prisme hexagonal au dihexaèdre direct.
- Fig. 64. Le dihexaèdre direct.
- Fig. 65 et 66. Passage du dihexaèdre au prisme hexagonal.
- Fig. 67. Le prisme hexagonal, avec la notation qui convient au système rhomboédrique, page 133.
- Fig. 68. Passage du prisme hexagonal au rhomboèdre.
- Fig. 69. Le rhomboèdre, considéré comme forme primitive, avec sa notation, page 134.
- Fig. 70. Rhomboèdre obtus.
- Fig. 71. Passage du rhomboèdre primitif au rhomboèdre tangent.
- Fig. 72. Passage du rhomboèdre au scalénoèdre, par des biseaux sur les arêtes culminantes.
- Fig. 73. Idem, par des biseaux sur les arêtes latérales.
- Fig. 74. Le scalénoèdre.
- Fig. 75. Passage du rhomboèdre à un prisme hexagonal, par une troncature sur les arêtes latérales.
- Fig. 76. Le rhomboèdre basé.
- Fig. 77. Passage du rhomboèdre primitif, à un autre rhomboèdre de même position.
- Fig. 78. Idem, à un rhomboèdre de position inverse.

EXPLICATION DES PLANCHES.

- Fig. 79. Passage du rhomboèdre au scalénoèdre, par des pointements sur les sommets.
- Fig. 80. Idem, par des biseaux sur les angles latéraux.

PLANCHE VIII.

- Fig. 81. Passage du rhomboèd.e primitif à un rhomboèdre de position inverse, par une troncature oblique sur les angles latéraux.
- Fig. 82. Passage du rhomboèdre à un prisme hexagonal, par une troncature verticale sur les angles latéraux.
- Fig. 83. Prisme hexagonal, avec hémiédrie rotatoire horizontale, page 140.
- Fig. 84. Le même, avec la notation qui convient à sa symétrie.
- Fig. 85 et 86. Prisme hexagonal, avec hémiédrie rotatoire oblique, produisant un trapézoèdre hexagonal droit ou gauche.
- Fig. 87 et 87 bis. Les deux trapézoèdres hexagonaux.
- Fig. 88. Le prisme hexagonal, avec la notation qui convient à son caractère hémiédrique.
- Fig. 89. Forme du quarz, avec hémiédrie rotatoire oblique, page 142.
- Fig. 90. Le plagièdre, ou trapézoèdre trigonal.
- Fig. 91. Variété rhombifère du quarz, menant à un ditrièdre.
- Fig. 92. Le ditrièdre, ou double pyramide triangulaire.
- Fig. 93. La forme du quarz, avec hémiédrie latérale conduisant à un prisme ditrigonal.
- Fig. 94. Le prisme hexagonal, avec la notation qui se rapporte à la symétrie du quarz.
- Fig. 95. Forme primitive de la tourmaline, avec la notation qui convient à sa symétrie.
- Fig. 96. Prisme droit, triangulaire, considéré comme forme fondamentale.
- Fig. 97. Le prisme tétragonal, avec son système d'axes et sa notation.
- Fig. 98. Le prisme carré droit.
- Fig. 99. Le même, passant au quadroctaèdre inverse.

PLANCHE IX.

- Fig. 100. Le quadroctaèdre inverse.
- Fig. 101. Le prisme carré, passant au dioctaèdre.
- Fig. 102. Le dioctaèdre.
- Fig. 103. Le prisme carré, passant à un autre prisme en position diagonale.
- Fig. 104. Le prisme en position diagonale.
- Fig. 105. Le prisme carré, passant au prisme octogonal symétrique.
- Fig. 106. Le prisme octogonal symétrique.
- Fig. 107. Le prisme carré passant au quadroctaèdre direct.
- Fig. 108. Le quadroctaèdre direct.
- Fig. 109. Le prisme tétragonal, avec la notation qui convient au système sphénoédrique, page 149.

Fig. 110. Le même, passant au sphénoèdre.

- Fig. 111. Le sphénoèdre, ou tétraèdre à triangles isoscèles.
- Fig. 112. Le scalénoèdre du système sphénoédrique.
- Fig. 113. Trapézoèdre tétragonal.
- Fig. 114. Cristal de schéelite, avec hémiédrie rotatoire horizontale.
- Fig. 115. Le prisme rectangle droit, avec ses axes et sa notation caractéristique, page 152.
- Fig. 116. Le prisme rectangle droit.
- Fig. 117. Le même, passant au prisme rhombique.
- Fig. 118. Le prisme rhombique droit.
- Fig. 119. Dôme ou prisme rhomboïdal, à axe horizontal, dirigé de gauche à droite.

PLANCHE X.

- Fig. 420. Second dôme ou prisme horizontal, dirigé d'avant en arrière.
- Fig. 121, 122 et 123. Octaèdres droits, rectangulaires, dont les axes correspondent à ceux de la forme primitive.
- Fig. 124. Octaèdre cunéiforme.
- Fig. 125. Le prisme rectangle, passant au rhomboctaèdre.
- Fig. 126. Le rhomboctaedre.
- Fig. 127. Le prisme rectangle, avec le caractère de symétrie propre aux formes du système klinorhombique.
- Fig. 128. Le même, avec le caractère de symétrie qui convient aux formes du système klinoédrique.
- Fig. 129. Le prisme rectangle oblique, avec ses axes et sa notation particulière, page 155.
- Fig. 130. Le prisme rectangle oblique.
- Fig. 131. Le même passant au prisme klinorhombique.
- Fig. 132. Le prisme klinorhombique.
- Fig. 133. Le même, passant à l'octaèdre rectangle oblique.
- Fig. 134. L'octaèdre rectangle oblique.
- Fig. 135. Le prisme rectangle oblique, passant à l'octaèdre klinorhombique.
- Fig. 136. L'octaèdre klinorhombique.
- Fig. 137. Le prisme klinorhombique considéré comme forme fondamentale et avec sa notation propre.
- Fig. 138. Le même, passant au prisme rectangle oblique.
- Fig. 139. Le même, avec ses arêtes antérieure et postérieure, modifiées par des biseaux.

PLANCHE XI.

- Fig. 140. Le prisme klinorhombique, modifié par des biseaux sur les arêtes latérales, droite et gauche.
- Fig. 141. Le même, modifié par des troncatures sur les arêtes inférieures des bases.
- Fig. 142. Le même, modifié par des troncatures sur les arêtes supérieures des bases.

EXPLICATION DES PLANCHES.

- Fig. 143. Le même, modifié par une facette sur l'angle inférieur des bases.
- Fig. 144. Idem, sur l'angle supérieur.
- Fig. 145. Idem, sur les angles latéraux.
- Fig. 146. Le même modifié par deux facettes sur l'angle inférieur.
- Fig. 147. Idem, sur l'angle supérieur.
- Fig. 148. Le prisme bioblique, à base de parallélogramme et section rhombique, avec la notation qui convient au système diklinoédrique.
- Fig. 149. Le prisme bioblique, à section rectangulaire.
- Fig. 150. Octaèdre bioblique, dont les deux sections verticales sont à angles droits.
- Fig. 151. Prisme bioblique à base rhombe, avec sa notation.
- Fig. 152. Prisme bioblique à base rectangle.
- Fig. 153. Octaèdre bioblique à base rhombe.
- Fig. 154. Prisme bioblique, à base et section transverse parallélogrammiques.
- Fig. 155. Octaèdre bioblique, à base parallélogrammique.
- Fig. 156, 157, 158 et 159. Prismes biobliques, modifiés par des troncatures sur deux de leurs angles ou arêtes.

GROUPEMENT RÉGULIER DES CRISTAUX.

PLANCHE XII.

- Fig. 1. Variété de quarz plagièdre et rhombifère, servant à l'explication de la méthode des zônes.
- Fig. 2. Figure de démonstration relative à la même méthode.
- Fig. 3. Représentation graphique du cristal, d'après la méthode de Quenstedt.
- Fig. 4. Figure montrant la déformation des cristaux groupés, par l'effet de l'accroissement qui a lieu après le groupement.
- Fig. 5 et 6. Exemple d'une hémitropie avec angle rentrant, dans la variété de calcaire prismatique.
- Fig. 7 et 8. Exemple d'une hémitropie sans angle rentrant, dans la variété de calcaire dodécaèdre.
- Fig. 9, 10 et 11. Exemple d'un groupement par entrecroisement, dans la staurotide.
- Fig. 12. Autre exemple d'un pareil groupement dans la même substance.
- Fig. 13. Groupement par pénétration de deux octaèdres réguliers, dans le fer magnétique.
- Fig. 14. Idem, de deux cubes, dans la fluorine.
- Fig. 15. Idem, de deux tétraèdres réguliers, dans le cuivre gris.
- Fig. 16. Idem, de deux rhomboèdres, dans la chabasie.
- Fig. 17. Autre groupement par entrecroisement de deux tétraèdres réguliers.
- Fig. 18. Idem, de deux tétraèdres épointés.

MINÉRALGIE. TOME 1.

- Fig. 19. *Idem, de* deux tétraèdres modifiés par les facettes d'un tétrahexaèdre.
- Fig. 20. Groupement de deux dodécaèdres de pyrite.
- Fig. 24. Groupement de deux cubedodécaèdres de pyrite, avec stries caractéristiques.
- Fig. 22. Groupement semblable de deux cubes de pyrite.

PLANCHE XIII.

- Fig. 23. Cristal de schéelite, avec facettes hémiédriques.
- Fig. 24. Groupement par entrecroisement de deux cristaux de cette forme.
- Fig. 25. Groupement par pénétration, de deux cristaux de quarz de Jærischau.
- Fig. 26 et 27. Variétés de feldspath orthose, dans deux positions inverses, autour de la verticale.
- Fig. 28 et 29. Groupement par pénétration partielle des deux cristaux, donnant lieu à deux groupes inversement semblables.
- Fig. 30. Groupement analogue du gypse trapézien.
- Fig. 31. Groupement répété, en série rectiligne.
- Fig. 32. Idem, en série circulaire.
- Fig. 33. Groupement analogue dans l'aragonite cunéolaire.
- Fig. 34. Idem, dans la sperkise péritome.
- Fig. 35. Groupe géniculé de cristaux de rutile.
- Fig. 36. Groupe en gerbe de cristaux de tétradymite.
- Fig. 37. Idem, de cristaux d'argent rouge.
- Fig. 38. Idem, de cristaux de hausmannite.
- Fig. 39 et 40. Groupes cruciforme et étoilé de cristaux de céruse.
- Fig. 41, 42, 43 et 44. Montrant les imperfections ou déformations les plus ordinaires d'un cristal, le spinelle octaèdre.

PLANCHE XIV.

- Fig. 45, 46 et 47. Variété du quarz pyramidé, et ses principales déformations.
- Fig. 48. Stries penniformes.
- Fig. 49. Les faces octaédriques de la pyrite, avec leurs stries caractéristiques.
- Fig. 50. Stries des prismes d'harmotome.
- Fig. 51. Stries croisées des cristaux de fer oligiste.

THÉORIE DE LA STRUCTURE CRISTALLINE.

- Fig. 1, 2, 3 et 4. Montrant les subdivisions du prisme hexagonal, par des clivages parallèles à ses faces.
- Fig. 5, 6 et 7. Subdivisions de l'octaèdre régulier.
- Fig. 8, 9 et 10. Idem, du dodécaèdre rhomboïdal.
- Fig. 11. Noyau ou solide de clivage du calcaire spathique.

- Fig. 12. Clivage du calcaire prismatique, menant au noyau rhomboédrique.
- Fig. 13. Idem, du calcaire équiaxe.
- Fig. 14. Idem, du calcaire inverse.
- Fig. 15. Idem, du calcaire contrastant.

PLANCHE XV.

- Fig. 16. Clivage du scalénoèdre métastatique.
- Fig. 17 et 18. Clivage de deux autres scalénoèdres, dans l'espèce du calcaire spathique.
- Fig. 19. Relative aux décroissements sur les bords.
- Fig. 20. Idem, aux décroissements ordinaires sur les angles.
- Fig. 24 et 22. Idem, aux décroissements intermédiaires.
- Fig. 23. Structure du dodécaèdre rhomboïdal.
- Fig. 24. Le dodécaèdre rhomboïdal.
- Fig. 25. Structure du dodécaèdre pentagonal.
- Fig. 26. Le dodécaèdre pentagonal.
- Fig. 27. Structure du scalénoèdre métastatique.
- Fig. 28, 29 et 30. Développement de la structure de l'octaèdre régulier.
- Fig. 31. Montrant l'effet d'un décroissement par trois rangées en largeur.
- Fig. 32. Idem, d'un décroissement par deux rangées en hauteur.
- Fig. 33 et 34. Idem, d'un décroissement mixte.
- Fig. 35, 36 et 37. Montrant l'effet initial de divers décroissements sur les angles.

PLANCHE XVI.

- Fig. 38. Prisme hexagonal provenant d'un décroissement sur les angles latéraux du rhomboèdre.
- Fig. 39. Rhomboèdre secondaire, produit par un décroissement sur les angles plans des sommets.
- Fig. 40 et 41. Rhomboèdres secondaires, produits par un décroissement sur l'angle inférieur du rhomboèdre primitif, et tournés en sens inverse. La figure 40 représente la variété *mixte* de Haüy, et la figure 41, sa variété *inverse*.
- Fig. 42. Le rhomboèdre primitif, considéré comme le rhomboèdre tangent de l'inverse.
- Fig. 43. L'inverse, considéré comme rhomboèdre tangent du contrastant.
- Fig. 44, 45 et 46. Décroissements intermédiaires sur les angles d'un cube de pyrite, produisant le dodécadièdre.
- Fig. 47. Parallélipipède irrégulier, avec sa notation d'après Haüy.
- Fig. 48 et 49. Relatives aux signes des décroissements, ordinaires et intermédiaires.
- Fig. 50, 51, 52 et 53. Indiquant la génération de l'équiaxe, du contrastant, du métastatique et du scalénoèdre de la variété pa-

MINÉRALOGIE. TOME I.

radoxale de calcaire, d'après le rhomboèdre inverse, pris pour noyau hypothétique.

Fig. 54 et 55. Les faces de décroissement, transformées en faces de troncature.

PLANCHE XVII.

- Fig. 56. Génération des formes eristallines par les axes.
- Fig. 57 à 62. Montrant les divers modes de structure du réseau cristallin, dans le système cubique.
- Fig. 63 et 64. Appareil aux tourmalines.
- Fig. 65. Expliquant l'effet produit par le prisme de Nicol.
- Fig. 66. Relative à la loi de la réfraction simple.
- Fig. 67 et 68. Se rapportant à la détermination des indices de réfraction par la mesure de la déviation *minima*.
- Fig. 69. Relative à la théorie de la double réfraction.
- Fig. 72. Lame biréfringente de spath, avec prismes de verre.

PLANCHE XVIII.

- Fig. 70. Anneaux colorés et croix noire des cristaux à un axe optique.
- Fig. 71. Anneaux supplémentaires, avec croix blanche.
- Fig. 73. Anneaux colorés avec ligne noire, des cristaux à deux axes.
- Fig. 74. Lemniscates des cristaux à deux axes.
- Fig. 75 à 78. Diverses apparences du phénomène des anneaux, dans les lames de nitre ou de céruse, taillées perpendiculairement à la ligne moyenne.
- Fig. 79. Le chalumeau et la lampe.
- Fig. 80. La pince à bouts de platine.
- Fig. 81. Le fil de platine servant de support.
- Fig. 82 à 87. Relatives aux questions et aux calculs cristallographiques de l'appendice au premier volume.

.

EXPLICATION DES PLANCHES

DU SECOND VOLUME

de là

MINÉRALOGIE.

PLANCHE 19 (ou XIX).

- Fig. 1. Diamant octaèdre (forme de clivage).
- Fig. 2. Diamant cubique (noyau hypothétique) : p.
- Fig. 3. Diamant sphéroïdal sextuple (Haüy).
- Fig. 4. Diamant sphéroïdal conjoint (H).
- Fig. 5. Diamant triforme.
- Fig. 6. Diamant plan-convexe, hémitrope.
- Fig. 7. Soufre octaédrique.
- Fig. 8. Le prisme tangent à l'octaèdre (noyau hypothétique) : pmm.
- Fig. 9. Soufre basé $(H^y) : p a^1$.
- Fig. 10. Soufre unitaire $(H_r): t a^1$.
- Fig. 11. Soufre prismé (H^{y}) : $a^{1}g^{1}$.
- Fig. 12. Soufre émoussé (H¹) : a¹ c¹.
- Fig. 13. Soufre dioctaèdre (H^s) : a¹ a³.
- Fig. 14. Soufre prismatique, cristallisé par fusion : pmm.
- Fig. 15. Soufre prismatique, forme secondaire décrite par Mitscherlich.
- Fig. 16. Arsenic natif, en rhomboèdre, p.
- Fig. 17. Arsenic réalgar, en prisme klinorhombique, pmm.
- Fig. 48. Réalgar bisdécimal (H^{y}) : $p m g^{1} h^{3} e^{1}$.
- Fig. 19. Réalgar octoduodécimal (HY): pmh1g1h3 e1a1/2 b1.
- Fig. 20. Arsenic orpiment, en prisme orthorhombique : pmm.
- Fig. 24. Idem, forme secondaire : $g^3 g^1 a^1 b^1$.
- Fig. 22. Telluze feuilleté, en prisme quadratique : pmm.
- Fig. 23. Idem, forme secondaire... $p b^1 a^2$.

PLANCHE XX.

- Fig. 24. Tellure sylvane en prisme orthorhombique : pmm.
- Fig. 25. Idem, forme secondaire : $p m g^{1} h^{1} e^{3} b^{2} a^{1}$.
- Fig. 26. Antimoine sulfuré (stibine), en octaèdre orthorhombique : b^1 .

- Fig. 27. Prisme orthorhombique : noyau hypothétique de la stibine : pmm.
- Fig. 28. Stibine sexoctonale $(H^y) : m h^1 b^1$.
- Fig. 29. Le même genre de forme, avec un sommet plus surbaissé : mh^1b^3 .
- Fig. 30. Stibine sexoctonale, plus les faces i, i produites par un décroissement intermédiaire : $m h^{t} b^{1} i$.
- Fig. 31. Bournonite primitive : pmt.
- Fig. 32. Bournonite secondaire : $pmt g^1 b_{1/2} c_{1/2}$.
- Fig. 33. Étain oxydé (cassitérite) en prisme quadratique, pmm.
- Fig. 34. Cassitérite dodécaèdre, b¹ g¹.
- Fig. 35. Cassitérite quadrioctonale (H_{y}) : at g_{I} .
- Fig. 36. Cassitérite dioctaèdre (H^{y}) : $a^{1}g^{1}m$.
- Fig. 37. Cassitérite récurrente $(H_{i}): b^{1} g^{1} i$.
- Fig. 38. Cassitérite distique (Hr): $a^1b^1g^1i$.
- Fig. 39. Cassitérite bissexdécimale (Hr): a1 b1 m g1 g2.
- Fig. 40. Cassitérite annulaire $(H^y): pmg^1 a^1 b^1$.
- Fig. 41. Cassitérite hémitrope.
- Fig. 42. Tantalite de Bavière, en prisme orthorhombique, pmm.
- Fig. 43. Idem, forme secondaire.
- Fig. 44. Fergusonite primitive, en prisme quadratique, pmm.
- Fig. 45. Idem, forme secondaire hémiédrique.

BAR-SUR-SEINE. - IMP. SAILLARD.

EXPLICATION DES PLANCHES

DU SECOND VOLUME

DE LA

MINÉRALOGIE.

PLANCHE XXI.

- Fig. 46. Rutile en prisme quadratique : pmm.
- Fig. 47. Rutile dioctaèdre (Hy): $a^1 h^2$.
- Fig. 48. Rutile bissexdécimal (Hy): mh1 h2 a1 b1.
- Fig. 49. Rutile géniculé simple.
- Fig. 50. Rutile géniculé double.
- Fig. 51. Brookite en prisme orthorhombique : pmm.
- Fig. 52. Idem, forme secondaire : mh^1b^1 .
- Fig. 53. Anatase octaèdre, b¹.
- Fig. 54. Anatase basé (Hy): pb1.
- Fig. 55. Anatase dioctaèdre (Hy) : b¹ b⁵.
- Fig. 56. Anatase prominule (Hy): b' i.
- Fig. 57. La variété dioctaèdre, plus l'octaèdre a1.
- Fig. 58. La variété basée, émarginée sur les arêtes obliques : $p b^{1} a^{2}$.
- Fig. 59. Sphène en prisme klinorhombique : forme primitive pmm.
- Fig. 60. Idem, forme secondaire, d'après G. Rose : pxyl.
- Fig. 61. Idem, forme secondaire : pxys.
- Fig. 62. Sphène ditétraèdre (Hy): pyn.
- Fig. 63. Autre forme de la variété dite titanite : pxynr.
- Fig. 64. Sphène décaèdre (H^{y}) : xnr.
- Fig. 65. Les variétés 60 et 61 combinées entre elles.
- Fig. 66. Autre forme secondaire, plus compliquée.
- Fig. 67 et 68. Sphènes canaliculés, dits sphènes en gouttière.
- Fig. 69. Polymignite, en prisme orthorhombique : pmm.
- Fig. 70. Idem, forme secondaire : $mg^2g^1b^1e^1$.

Minéralogie. Atlas.

PLANCHE XXII.

- Fig. 74. Molybdénite, en prisme hexagonal régulier : pm.
- Fig. 72. Molybdénite trihexaèdre (H³).
- Fig. 73. Schéelite primitive : pmm.
- Fig. 74. Schéelite octaèdre : a².
- Fig. 75. Schéelite dioctaèdre : b¹ a².
- Fig. 76. Hausmannite primitive : pmm.
- Fig. 77. Hausmannite octaèdre : b¹
- Fig. 78. Hausmannite dioctaèdre : b¹b³.
- Fig. 79. Braunite octaèdre : b1.
- Fig. 80. La même, basée.
- Fig. 84. Braunite dioctaèdre : $b^{1/2}b^{1}$.
- Fig. 82. La même, basée.
- Fig. 83. Combinaison de l'octaèdre b1 et d'un scalénoèdre i.
- Fig. 84. Manganite en prisme orthorhombique : pmm.
- Fig. 85. Idem, en prisme droit octogone : pmg^{4} .
- Fig. 86. Manganite quadrioctonale $(H^{y}): a^{2} m g$.
- Fig. 87. Idem, forme secondaire plus compliquée : h³m g³b¹/₂i i'.
- Fig. 88. La même, en cristaux géniculés.
- Fig. 89. Pyrolusite en prisme orthorhombique : pmm.
- Fig. 90. Idem, en prisme hexagonal : $p m h^1$.
- Fig. 94. Forme secondaire, d'après M. Haidinger : pmh^1g^1a .
- Fig. 92. Mispickel unitaire $(H^{y}): me^{4}$.
- Fig. 93. Mispickel, en prisme droit rhombique : pmm.
- Fig. 94. Mispickel ditétraèdre (Hy): me⁴.

PLANCHE XXIII.

- Fig. 95. Mispickel unibinaire $(H_y) : m e^1 e^2$.
- Fig. 96. Mispickel quadrioctonal (H³): m e¹ e⁴.
- Fig. 97. Mispickel équivalent (H^{y}) : $mg^{1}e^{1}b^{1}/2$.
- Fig. 98. Pyrite cubique : p.
- Fig. 99. Pyrite icosaèdre : $1/2(b^2)a^1$.
- Fig. 100. Pyrite pantogène (H^y): 1/2 (b¹ b¹/2 b¹/3), 1/2 (b²).
- Fig. 101. Pyrite cubo-icosaèdre.
- Fig. 102. Pyrite quadriépointée (Hy): pa1i.
- Fig. 103. Pyrite biforme : a¹ i.
- Fig. 104. Pyrite triforme : a1 b2 i.
- Fig. 105. Pyrite quadriforme : a1 b1 b2 i.
- Fig. 106. Pyrite octaèdre, avec un pointement à six faces sur les angles.
- Fig. 107. La même, avec les faces i en plus.
- Fig. 108. Pointement de la variété surcomposée (H¹).
- Fig. 109. Pyrite mégalogone (H^y).
- Fig. 110. Pyrite parallélique (donnée par Mohs).
- Fig. 111. Pyrite parallélique (d'après Haüy).

Fig. 112. Marcassite orthorhombique : pmm.

Fig. 113. Marcassite quaternaire $(H^y) : m e^x$.

Fig. 114. Marcassite quadrihexagonale (Hr): pmet.

Fig. 115. Marcassite quadrioctonale (H_y) : $ma^1e^{5/4}$.

Fig. 116. Marcassite bisunitaire (H^r) : $p m a^1 e^1$.

PLANCHE XXIV.

- Fig. 117. Marcassite équivalente $(H^{y}): pm a^{1} e^{1} b^{1}/_{2}$.
- Fig. 118. Marcassite en prisme à sommets cunéiformes ; élément de la variété péritome.
- Fig. 119. Marcassite péritome (H_y).
- Fig. 120. Fer oligiste, en rhomboèdre primitif : p.
- Fig. 121. Oligiste binaire $(H_{7}): a^{2}$.
- Fig. 122. Oligiste basé (H^y) : $p a^1$.

Fig. 123. Oligiste birhomboïdal $(H^{y}) : pa^{2}$.

Fig. 124. Oligiste trapézien $(H^{y}): e^{3} a^{4}$.

Fig. 125. Oligiste divergent (Hy) : a1 i.

- Fig. 126. Oligiste uniternaire (H^{y}) : $p a^{1} e^{3}$.
- Fig. 127. Oligiste binoternaire (H^{y}) : $p a^{2} e^{3}$.
- Fig. 128. Oligiste équipollent (H¹) : $p e^5 e^3 a^2 a^2/s$.
- Fig. 129 et 130. Oligiste imitatif (H^y) : $p a^1 e^{1/2}$.
- Fig. 131. Oligiste progressif $(H^{y}) : e^{2} e^{3} a^{4}$.
- Fig. 132. Oligiste equivalent (H^{y}) : $p d^{1} a^{1} e^{1}/2$.
- Fig. 133. Oligiste basé lamelliforme : a1 p z.
- Fig. 134. Idem, en lames hémitropes.
- Fig. 135. Craitonite primitive : p.
- Fig. 136. Craïtonite basée (H^y) : a^1p .
- Fig. 137. Craïtonite unitaire (H1) : p a1 b1.
- Fig. 138. Craïtonite basée lamelliforme : a¹ p.
- Fig. 139. Autre forme secondaire, basée : $a^1 d^1 p e^{1/2}$.
- Fig. 140. Fer titané de Gastein : $a^1 p e^3$.

PLANCHE XXV.

- Fig. 141. Forme secondaire de l'Ilménite : pai ei bi e3.
- Fig. 142. Goethite primitive : pmm.
- Fig. 143. Gathite (forme secondaire) : $g^{1}mh^{3}b^{1}e^{2}$.
- Fig. 144. Mélantérite primitive : pmm.
- Fig. 145. Mélantérite épointée : pmt.
- Fig. 146. Autre forme secondaire (d'après Naumann): pmtvzog.
- Fig. 147. Vivianite en prisme oblique rectangulaire : $p g^{1} h^{1}$.
- Fig. 148. Vivianite (forme secondaire) : $pg^{1}mh^{1}e^{2}$.
- Fig. 149. Sidérose primitive : p.
- Fig. 150. Sidérose basée (var. mixte, de H¹) : $a^1e^3/2$.
- Fig. 151. Sidérose bisunitaire : p b1 e1.
- Fig. 152. Liévrite primitive : pmm.
- Fig. 153. Liévrite en prisme cunéiforme : $m a^2$.

MINÉRALOGIE. TOME II.

Fig. 154. Liévrite quadrioctonale (H¹): m b¹.

- Fig. 155. Liévrite quadriduodécimale (Hy): ma² b¹.
- Fig. 156. La même, plus le prisme vertical g^3 .
- Fig. 157. Liévrite monostique (H^{y}) : $p m h^{3} a^{2} b^{1} e^{1}$.
- Fig. 158. Autre forme secondaire, d'après Naumann.
- Fig. 159. Achmite primitive : pmm.
- Fig. 160. Achmite (forme secondaire).
- Fig. 161. Scorodite primitive : pmm.
- Fig. 162. Scorodite triunitaire : $h^4 g^4 b^4$.
- Fig. 163. La même, plus la modification g^3 .

PLANCHE XXVI.

- Fig. 164. Wolfram primitif : pmm.
- Fig. 165. Le même, en prisme oblique rectangulaire : $p h^1 g^1$.
- Fig. 166. La forme primitive, plus les faces h^3 .
- Fig. 167. Autre forme secondaire, plus compliquée : pm h3h1a2e3i.
- Fig. 168. Allanite, forme secondaire d'après Mohs.
- Fig. 169. Blende tétraèdre : $\frac{1}{2}$ (a¹).
- Fig. 170. Blende cubo-octaèdze alterne (H^{r}) : pa^{1} .
- Fig. 171. Blende biforme : 1/2 (a^1) b^1 .
- Fig. 172. Blende triforme: 1/2 (a^1) $b^1 p$.
- Fig. 173. Blende didodécaèdre (H^{y}) : 1/2 (a^{3}) b^{1} .
- Fig. 174. Zinc silicaté primitif : pmm.
- Fig. 175. Zinc silicaté trapézien : mg^1e^4 .
- Fig. 176. Zinc silicaté bisunitaire : $m g^{i} h^{i}$.
- Fig. 177. Forme secondaire à hémiédrie polaire : $mg^1 a^{1/3} a^1 e^{1/3} e^4$.
- Fig. 178. Willémite primitive : p.
- Fig. 179. Willémite secondaire, d'après Lévy : pe2.
- Fig. 180. Uranite primitive : pmm.
- Fig. 181. La même, en quadroctaèdre basé : $p b^{t}/_{2}$.
- Fig. 182. Autre forme, de même genre, plus surbaissée : p b².
- Fig. 183. Le prisme fondamental, émarginé sur ses bases : $pmb^{3}/_{2}$.

PLANCHE XXVII.

- Fig. 184. Smaltine triforme : $pa^{1}b^{1}$.
- Fig. 185. Chalkosine primitive : p mm.
- Fig. 186. Chalkosine en prisme hexagonal : pmg^{1} .
- Fig. 187. Chalkosine trapézienne : $p b^2 e^{1/3}$.
- Fig. 188. Chalkosine, en prisme hexagonal, modifié sur les arêtes des bases : $pmg^4 e^1 b^4 b^3$.
- Fig. 189. Chalkosine, en prisme octogone, semblablement modifié.
- Fig. 190. Chalkosine en cristaux croisés.
- Fig. 191. Chalkopyrite octaèdre : b¹.
- Fig. 192. La même, sous l'aspect d'un tétraèdre épointé.
- Fig. 193. Chalkopyrite en octaèdre émarginé : $a^{1} b^{1}$.
- Fig. 194. La même, avec l'aspect tétraédriforme.

EXPLICATION DES PLANCHES.

- Fig. 195. Tétraédrite triépointé : $1/2(a^1)$, $1/2(a^2/8)$.
- Fig. 196. Tétraédrite triforme : $p b^1$, $1/2(a^1)$.
- Fig. 197. La même, avec le dodécaèdre pour forme dominante.
- Fig. 198. Tétraédrite apophane $(H^{y}): b^{1}, \frac{1}{2}(a^{1}), \frac{1}{2}(a^{2}).$
- Fig. 199. Autre combinaison ternaire : b^1 , $\frac{1}{2}(a^2/3)$, $\frac{1}{2}(a^2)$.
- Fig. 200. Cuprite cubo-dodécaèdre : pb1.
- Fig. 201. Cuprite triforme : $p b^1 a^4$.
- Fig. 202. Azurite primitive : pmm.
- Fig. 203. La même, modifiée sur les arêtes inférieures des bases : $pmd^{1}/2$.
- Fig. 204. Azurite sexoctonale (Hy) : $pmd^{1}/2e^{3}$.
- Fig. 205. Azurite dihexaèdre (H¹) : $p m g^1 e^2$.
- Fig. 206. Autre forme secondaire : $p m h^1 b^1 a^2 d^1/2$.

PLANCHE XXVIII.

- Fig. 207. Azurite (forme secondaire) : $pm h^1 a^2 a^3 b^4 d^4/_2$.
- Fig. 208. La même; autre forme plus compliquée.
- Fig. 209. Malachite primitive : pmm.
- Fig. 210. Malachite, forme secondaire, hémitrope, d'après Lévy.
- Fig. 211. Atacamite primitive : pmm.
- Fig. 212. Idem, forme secondaire : mh^1a^1 .
- Fig. 213. Cyanose primitive : pmt.
- Fig. 214. Cyanose péridécaèdre (H^y) : $pmth^1g^1$.
- Fig. 215. Cyanose triunitaire (H^{y}) : $p m t h^{1} g^{1} c^{1}$.
- Fig. 216. Cyanose sous-triple : $p^{i}mth^{1}g^{1}a^{2}e^{2}i^{2}g^{3}$.
- Fig. 217. Cyanose complexe (Hy) $pmtg^1h^1b^1e^2e^2/_3i$.
- Fig. 218. Brochantite primitive : pmm.
- Fig. 219. Idem, forme secondaire, d'après Lévy : $p m a^1 e^{1/4}$.
- Fig. 220. Libéthénite primitive : pmm.
- Fig. 221. Idem, forme secondaire : $mb^1e^{1/2}$.
- Fig. 222. Hypoleimme, forme secondaire : $p m h^{i} b^{i}$.
- Fig. 223. Olivénite, forme secondaire : $m h^1 e^{1/2}$.
- Fig. 224. Euchroïte, forme secondaire : $p m g^1 g^3 g^5 e^4$.
- Fig. 225. Aphanèse, forme primitive : pmm.
- Fig. 226. Idem, forme secondaire, d'après Lévy : $pm o^{1}a^{3}/4$.
- Fig. 227. Chalkophyllite primitive : p.
- Fig. 228. Idem, basée : pa1.
- Fig. 229. Liroconite, forme secondaire : $m a^1$.

PLANCHE XXIX.

- Fig. 230. Dioptase primitive : p.
- Fig. 231. Idem, forme secondaire : $pe^{1}d^{1}$.
- Fig. 232. Galène primitive : p.
- Fig. 233. Galène uniternaire $(H^{y}) : p a^{1} a^{3}$.
- Fig. 234. Galène pentacontaèdre (H⁷) : $p b^1 a^1/_2 a^1$.
- Fig. 235. Céruse primitive : pmm.

Fig. 236. Céruse octaèdre : m e¹.

Fig. 237. Céruse dodécaèdre : e¹ b¹.

Fig. 238. Céruse quadrihexagonale $(H_y) : mg^1 e^2$.

Fig. 239. Céruse trihexaèdre (Hy) : $m g^1 e^1 b^1$.

Fig. 240. Céruse ambi-annulaire (H^{j}) : $p m g^{i} e^{i} b^{2}$.

Fig. 241. Céruse sexocionale (H): $mg^1e^2a^4$.

Fig. 242. Céruse trioctonale $(H^{y}) : m h^{1} g^{i} e^{i} b^{i}$.

Fig. 243. Céruse octovigésimale (H^{y}) : $p m g^{1} e^{1} e^{2} b^{1}$.

Fig. 244. Anglésite primitive : pm.

F1g. 245. Idem, en octaèdre rectangulaire : $m a^{1/2}$.

Fig. 246. La même, plus les faces verticales g^1 .

Fig. 247. Anglésite, forme secondaire, d'après Naumann : mg1a1/2b1e1/2.

Fig. 248. Idem, autre forme plus compliquée : mh¹g¹b¹e¹/₂ii'.

Fig. 249. Leadhillite hexagonale : $p m h^1$.

Fig. 250. Calédonite, forme secondaire : mti.

Fig. 251. Linarite, forme secondaire : mtacb.

Fig. 252. Pyromorphite primitive : pm.

Fig. 253. Pyromorphite trihexaèdre : mb^1 .

PLANCHE XXX.

- Fig. 254. Pyromorphite annulaire (H^{y}) : pmb^{4} .
- Fig. 255. Pyromorphite basée (H^y) : $p b^4$.

Fig. 256. Crocoïse primitive : pmm.

Fig. 257. La même, terminée par un klinodome : $m d^2$.

Fig. 258. La précédente, avec un second klinodome : $m d^2 d^1/_3$.

Fig. 259. Crocoïse quadrioctonale : $m d^2 e^4$.

Fig. 260. Autre forme secondaire, d'après Naumann : $mg^3 d^2 a^3/4$.

Fig. 261. Mélinose octaèdre : b¹.

Fig. 262. Mélinose basée (H^{y}) : $b^{1}p$.

Fig. 263. Mélinose biforme (H^y) : $b^1 a^2$.

Fig. 264. Mélinose sexoctonale (Hy): pmb¹.

Fig. 265. Mélinose épointée (H^y) : $b^1 h^1 p$.

Fig. 266. Mélinose décioctonale (H^y) : $p a^1 b^1$.

Fig. 267. Mélinose péridodécagone (triunitaire, H¹) : pmh².

Fig. 268. Mélinose triforme (H^{j}) : $ph^{j}a^{j}b^{j}$.

Fig. 269. Schéelitine primitive : pmm.

Fig. 270. Idem, forme secondaire : $b^{1/2}b^{1}a^{2}$.

Fig. 271. Mercure argental triforme (H): p b1 a2.

Fig. 272. Autre variété triforme, d'après G. Rose : b¹a²s.

Fig. 273. Mercure argental sextiforme $(H^y): p b^1 a^1 a^2 s t$.

Fig. 274. Cinabre primitif : p.

Fig. 275. Cinabre octoduodécimal (Hy): $p a^{i} a^{2} a^{5}/_{2}$.

Fig. 276. Cinabre progressif $(H^y) : p a^1 a^3 e^2$.

BAR-SUR-SEINE. --- IMP. SAILLARD.

18

SUITE DE L'EXPLICATION DES PLANCHES

DES II^e ET III^e VOLUMES

DE LA

MINÉRALOGIE.

PLANCHE XXXI.

Fig. 277. Forme primitive du Calomel : pm.

Fig. 278. Forme secondaire : $m g^4 b^4$.

Fig. 279. Forme primitive du discrase : pmm.

Fig. 280. Forme secondaire, variété annulaire : $p m g^4 b^4 e^2$.

Fig. 281. Forme primitive de la pyrargyrite : p.

Fig. 282. Pyrargyrite prismée (Hy): $p d^{1}$.

Fig. 283. Pyrargyrite prismatique (Hy) : $a^4 d^4$.

Fig. 284. Forme hémiédrique : $p d^{1/2}(e^2)$.

Fig. 285. Autre forme, du même genre : d1 b1 1/2(e1).

Fig. 286. Pyrargyrite disjointe (Hy) : $p d^4 d^2 b^4$.

Fig. 287. Autre forme composée : $d^4 d^4/_3 d^2 b^3$.

Fig. 288. Pyrargyrite apophane (Hy) : $d^{4}/_{3}b^{3}$.

Fig. 289. Forme secondaire de Proustite : $a^4 d^2 e^4/s$.

Fig. 290. Psathurose, forme primitive : p.

Fig. 291. Idem, forme secondaire : $p b^4 e^4$.

Fig. 292. Autre forme, plus compliquée : pmg⁴ e⁴ b⁴ b³.

Fig. 293. Cristal de miargyrite : p mo.

Fig. 294. Quarz primitif : p.

Fig. 295. Quarz dodécaèdre : $p e^{1/2}$.

Fig. 296. Quarz prismé pyramidé : p e¹/2 e².

Fig. 297. Le prisme, avec le rhomboèdre primitif : p e².

Fig. 298. Variété mombifère (H) : $p e^{1/2} e^2 s$.

PLANCHE XXXII.

Fig. 299. Quarz plagio-rhombifère droit.

Fig. 300. Quarz plagio-rhombifère gauche.

Minéralogie. Atlas.

MINÉRALOGIE. TOMES IL ET III.

Fig. 301. Forme secondaire du quarz : $p e^{1/2} e^2 e^3 a$.

- Fig. 302. Quarz : forme secondaire fusiforme : p e1/2 e3 e7/8 e2 s.
- Fig. 303. Autre forme, avec plusieurs plagièdres : pe¹/2 s xy uv d e² am b.
- Fig. 304. Forme de la Haytorite : $p m h^4$.
- Fig. 305. Corindon primitif : p.

20

- Fig. 306. Forme secondaire du corindon : $p a^4 d^4 e_8$.
- Fig. 307. Corindon fusiforme : e₃ d⁴ e⁴ l.
- Fig. 308. Fluorine octaèdre : a⁴.
- Fig. 309. Variété hordée (Hy) : px.
- Fig. 310. Variété hexatétraèdre : x.
- Fig. 311. Apatite primitive : pm.
- Fig. 312. Apatite émarginée : $p m g^4 r$.
- Fig. 313. Apatite unihinaire (Hy).
- Fig. 314. Forme secondaire hémiédrique.
- Fig. 315. Nitre primitif : pm.
- Fig. 316. Forme secondaire, en table rectangle.
- Fig. 317. Variété bisannulaire.
- Fig. 318. Nitre dodécaèdre.
- Fig. 319. Nitre trihexaèdre.

PLANCHE XXXIII.

- Fig. 320. Spinelle octaèdre : p.
- Fig. 324. Idem transposé.
- Fig. 322. Cymophane primitive : pmm.
- Fig. 323. Cymophane hexagonale : $p m g^4$.
- Fig. 324. Cymophane annulaire (Hy) : $p m g^4 b^{1/2} e^{1/2} a^4$.
- Fig. 325. Autre variété plus compliquée : pmg⁴ b¹/₂ b⁴ e¹/₈ e₃.
- Fig. 326. Groupement ordinaire des cristaux de Haddam.
- Fig. 327. Groupement des cristaux de l'Oural.
- Fig. 328. Cordiérite primitive : pmm.
- Fig. 329. Cordiérite émarginée : $p m h^4 g^4 g^2 b^2 e^2$.
- Fig. 330. Topaze primitive : pmm.
- Fig. 331. Topaze quadrioctonale (Hy): $mg^{3}b^{2}$.
- Fig. 332. Topaze sexoctonale (Hy) : $m g^3 b^2 e^2$.
- Fig. 333. Topaze trédécioctonale (Hy) : $p m g^3 e^4 e^2 b^2 b^3$.
- Fig. 334. Axinite primitive : pmt.
- Fig. 335. Idem, forme secondaire : $p m t h^4 f^2 i^2$.
- Fig. 336. Tourmaline primitive : p p'.
- Fig. 337. Tourmaline isogone (H^{1}) : $\frac{1}{2}(e^{2}) d^{1} p p' \frac{1}{2}(e^{4})$.
- Fig. 338. Autre forme secondaire : $p b^4 p^{-1}/_2(e^4) \frac{1}{2}(e^2) d^4$.
- Fig. 339. Forme des cristaux d'indicolithe : $d^4 b^4 a^4 p'$.
- Fig. 340. Forme des cristaux de rubellite : $\frac{1}{2}(e^2) d^4 a^4 p' d^2$.
- Fig. 341. Phénakite de l'Oural : p d⁴.
- Fig. 342. Phénakite des Vosges : d⁴ b².

PLANCHE XXXIV.

Fig. 343. Phénakite rhombifère : $d^4 b^2 p$.

- Fig. 344. Phénakite en cristaux croisés : $p d^4 p'$.
- Fig. 345. Emeraude primitive : pm.
- Fig. 346. Emeraude rhombifère : $p m b^2 a^2$.
- Fig. 347. Forme secondaire plus compliquée : $p m h^4 b^4 b^2 a^2$.
- Fig. 348. Euclase primitive : pmm.
- Fig. 349. Idem, forme composée : g⁴ m h⁵ h³. d⁴ b⁴ i i 'i''.
- Fig. 350. Zircon primitif : pmm.
- Fig. 354. Zircon octaèdre : b4.
- Fig. 352. Zircon prismé (Hy) : mb^4 .
- Fig. 353. Zircon dodécaedre (H^g) : $h^4 b^4$.
- Fig. 354. Autre forme, plus compliquée : $m h^4 b^4 b^{1/3} a_2$.
- Fig. 355. Grenat dodécaèdre triémarginé : a² b⁴ (b⁴ b¹/2 b⁴/s).
- Fig. 356. Grenat épointé : $p a^{1} b^{1}$.
- Fig. 356 bis. Idocrase primitive : pm.
- Fig. 357. Idem, forme secondaire : p m b² b¹ b¹/₃ h² h¹ a₃ a¹ i.
- Fig. 358. Macle polygramme (Hy).
- Fig. 359. Staurotide unibinaire : $pm g^1 a^{1/2}$.
- Fig. 360. Disthène primitif : pmt.
- Fig. 361. Epidote primitive : pmm.
- Fig. 362. Idem, forme secondaire : $p m h^{1} b^{1}/_{2} a^{1}$.
- Fig. 363. Idem, combinaison : $p h^1 a^1 b^1/_2$.
- Fig. 364. Idem, combinaison : $p m o^1 h^1 a^{1/2} a^1 b^{1/2} e^1$.

PLANCHE XXXV.

- Fig. 365. Forme primitive du triphane.
- Fig. 366. Idem de l'orthose.
- Fig. 367. Orthose bibinaire $(H^y) : p m g^1$.
- Fig. 368. Orthose imitatif $(Hy) : m a^1$.
- Fig. 369. Orthose unitaire (H^y) : $p m g^1 a^2$.
- Fig. 370. Orthose ditétraèdre (Hy) : $p m a^{i}$.
- Fig. 371. Forme secondaire composée : $p m g^2 g^1 b^{1/2} e^{1/2} a^{1/2} a^$
- Fig. 372. Groupement des cristaux de Baveno.
- Fig. 373. Forme primitive de l'albite : PMT.
- Fig. 374. Forme secondaire de l'albite : PMTlo.
- Fig. 375. Groupement des cristaux d'albite du Dauphiné : PMT e1/2.
- Fig. 376. Cristaux de la variété dite périkline : PMT lx.
- Fig. 377. Cristal d'oligoclase : PMTlxy.
- Fig. 378. Groupement des cristaux de lévyne.
- Fig. 379. Chabasie trirhomboïdale : $p e^{t} b^{t}$.
- Fig. 380. Harmotome partiel (H^y).
- Fig. 381. Harmotome cruciforme, avec les stries caractéristiques.
- Fig. 382. Heulandite, variété anamorphique (H).

MINÉRALOGIE. TOMES 11 ET 111.

Fig. 383. Mésotype sexoctonale (Hy) : $m h^1 b^1$.

Fig. 384. Forme primitive du Péridot.

Fig. 385. Péridot quadruplant (Hy) : $p m g^1 g^3 h^1 a^i e^i e^{i/2} b^{1/2}$.

Fig. 386. Forme primitive de la llumite.

Fig. 387. Représentant l'un des types de la Humite.

PLANCHE XXXVI.

Fig. 388. Pyroxène primitif : pmm.

Fig. 389. Pyroxène périoctaèdre : $p m h^1 g^1$.

- Fig. 390. Pyroxène triunitaire (Hy) : $m h^1 g^1 e^1$.
- Fig. 391. Le même, hémitrope.

Fig. 392. Pyroxène séno-bisunitaire (Hy) : $p m h^1 g^1 b^{1/6}$.

Fig. 393. Pyroxène soustractif (Hy) : $m h^{i} g^{i} e^{i} a^{2}$.

Fig. 394. Pyroxène sténonome (H^{y}) : $p m h^{1} g^{1} e_{3} e^{1} a^{1} a^{3}$.

Fig. 395. Amphibole primitif : pmm.

Fig. 396. Amphibole ditétraèdre : m e¹.

Fig. 397. Amphibole dihexaèdre $(Hy) : p m h^{1} e^{1}$.

Fig. 398. Amphibole dodécaèdre (H^{y}) : $p m g^{1} b^{1/2}$.

Fig. 399. Le même, hémitrope.

Fig. 400. Amphibole trioctonal (Hy) : $p m g^1 b^{1/2} d^{1/2} e^{1/2} i$.

Fig. 401. Babingtonite, forme primitive : pmt.

Fig. 402. Boracite primitive, avec sa notation particulière.

Fig. 403. Boracite défective (Hy) : $p b^{1/2}(a^{1})$.

Fig. 404. Boracite surabondante (Hy) : $p b^1 a^1 d^{1/2} (a^2)$.

- Fig. 405. Calcaire spathique, forme primitive : p.
- Fig. 406. Le rhomboèdre de même angle, en position inverse : $e^{1}/_{2}$.
- Fig. 407. Calcaire équiaxe : b¹.
- Fig. 408. Calcaire en rhomboèdre aigu (inverse de Haüy) : e¹.

Fig. 409. Calcaire contrastant (Hy) : e^3 .

PLANCHE XXXVII.

- Fig. 410. Calcaire mixte (Hy) : $e^{3}/_{2}$.
- Fig. 411. Calcaire contracté (Hy) : $e^{3}/_{4}b^{1}$.
- Fig. 412. Calcaire cuboïde (Hy) : $e^{4}/_{5}$.
- Fig. 413. Calcaire prismatique : $e^2 a^1$.
- Fig. 414. Le prismé alterne : d'a'.
- Fig. 415. Calcaire scalénoèdre (variété métastatique, Hy) : d2.

Fig. 416. Calcaire axigraphe (Hy): $d^{5}/_{4}$.

Fig. 417. Calcaire paradoxal (H) : $e^{1/2} d^2 e^1$.

Fig. 418. Calcaire leptomorphique (Hy) : $(d^2 d^1/_5 b^1/_4)$.

Fig. 419. Calcaire sténonome (Hy) : $b^2b^3d^2e^2e^{1/2}$.

. Fig. 420. Calcaire trihexaèdre (Hy) : $p e^{1/2} e^{2}$.

- Fig. 421. Calcaire imitatif (Hy) : $e^{7}/_{3} b^{3} e^{2} d^{4} (d^{4}/_{2} d^{4}/_{8} b^{4}/_{7})$.
- Fig. 422. Calcaire ambigu (Hy) : $e^1 e^2 (d^1/_2 d^1/_5 b^1/_4)$.

22

Fig. 423. Calcaire dodécaèdre (Hy) : e² b¹.

- Fig 424. Calcaire analogique $(Hy) : e^2 d^2 b^1$.
- Fig. 425. Le métastatique transposé.
- Fig. 426. La variété analogique, hémitrope (spath en cœur).
- Fig. 427. Arragonite primitif : pmm.
- Fig. 428. Arragonite en prisme à sommets dièdres : $m e^{1/2}$.
- Fig. 429. Arragonite quadrihexagonal $(H^{y}): m g^{1} e^{1}$.
- Fig. 430. La variété précédente, plus l'octaèdre : b1/2.

PLANCHE XXXVIII.

- Fig. 431. Arragonite apotome : $e^{1}/_{12} b^{1}/_{12}$.
- Fig. 432. Macle de deux cristaux, de la variété quadrihexagonale.
- Fig. 433. Macle de deux cristaux semblables à ceux de la figure 428.
- Fig. 434. Macle composée de trois cristaux complets.
- Fig. 435. Macle symétrique, composée de deux cristaux complets, et de deux demi-cristaux.
- Fig. 436. La coupe de la variété symétrique basée de Haüy.
- Fig. 437. Withérite primitive : pmm.
- Fig. 438. Withérite dodécaèdre : $b^{1/2}e^{1/2}$.
- Fig. 439. Withérite triannulaire (Hy) : $p m g^1 b^1/2 b^1 b^2 e^1/2 e^1 e^2$.
- Fig. 440. Macle de cristaux de Withérite.
- Fig. 441. Apatite didodécaèdre : m h1 b1.
- Fig. 442. Apatite quadratifère (H) : $p m a^{4} b^{4}$.
- Fig. 443. Apatite triémarginée : $p m g^1 b^1/2 b^1 b^2 a^{1/2} (a^2)$.
- Fig. 444. Autre forme secondaire, compliquée.
- Fig. 445. Idem.
- Fig. 446. Forme secondaire de Wolfram, d'après Descloizeaux.
- Fig. 447. Autre forme, d'après le même savant.
- Fig. 448. Idem.
- Fig. 449. Forme primitive du gypse, d'après Descloizeaux.
- Fig. 450. Forme secondaire de gypse, d'après le même.
- Fig. 451. Autre forme dérivée, de la même espèce.

PLANCHE XXXIX.

- Fig. 452. Epsomite primitive : p m m.
- Fig. 453. Epsomite pyramidée : mb1.
- Fig. 454. La même, bémiédrique, à sommets dièdres croisés.
- Fig. 455. Epsomite équivalente (Hy) : $m b^1 g^1 h^1 a^2 e^2$.
- Fig. 456. Epsomite dioctaèdre : $m h^1 b^1$.
- Fig. 457. Autre forme d'epsomite : $m g^1 g^3 h^1 b^1$.
- Fig. 458. Gypse en prisme oblique rectangulaire : TMP.
- Fig. 459. Gypse trapézien (Hy) : Pfl.
- Fig. 460. Gypse équivalent (Hy) : Plf.
- Fig. 461. Autre forme secondaire du gypse : Pofle.

- Fig. 462. Idem, combinaison : Pfoirls.
- Fig. 463. Idem : P f l ..
- Fig. 464. La variété précédente, hémitrope.
- Fig. 465. Gypse bilenticulaire, en fer de lance.
- Fig. 466. Karsténite primitive : pmt.
- Fig. 467. Karsténite progressive (Hy): pmtonf.
- Fig. 468. Célestine primitive : pm.
- Fig. 469. Célestine unitaire : m e1.
- Fig. 470. Célestine émoussée (Hy) : pmei.
- Fig. 471. Célestine dodécaèdre (Hy) : $me^{1}a^{2}$.
- Fig. 472. Célestine épointée (Hy) : pme¹a².
- Fig. 473. Célestine entourée (Hy) : $p m e^{t} a^{s} b^{t}/_{2}$.
- Fig. 474. Célestine anamorphique (Hy): $p h^1 e^1 a^2 b^1/_2$.

PLANCHE XL.

- Fig. 475. Célestine apotome (Hy): et i.
- Fig. 476. Célestine dioxynite (Hy) : $a^2 e^1 i$.
- Fig. 477. Barytine primitive : pmm.
- Fig. 478. Barytine rétrécie (Hy) : pmh¹.
- Fig. 479. Barytine raccourcie (Hy): $p m g^1$.
- Fig. 480. Barytine apophane (Hy) : $p m a^2$.
- Fig. 481. Barytine binaire $(HY) : ma^2$.
- Fig. 482. Barytine unitaire (Hy) : $m e^4$.
- Fig. 483. Forme donnée par Lévy : $e^{1/2} e^{1} a^{2}$.
- Fig. 484. Barytine dodécaèdre (H^{y}) : $m a^{2} e^{4}$.
- Fig. 485. Barytine trapézienne (Hy) : p e¹ a².
- Fig. 486. Barytine sexoctonale (Hy) : p e¹ a¹ a².
- Fig. 487. Barytine progressive (Hy) : $p m e^1 a^2 a^4 b^1/_2$.
- Fig. 488. Glaubérite primitive : pmm.
- Fig. 489. Glaubérite secondaire, autre prisme klinorhombique : pf.
- Fig. 490. Idem : p m f.
- Fig. 491. Alunite primitive : p.
- Fig. 492. Alunite basée : $p a^1$.
- Fig. 493. Giobertite primitive : p.
- Fig. 494. Idem, variété basée : pa^{1} .
- Fig. 495. Idem, variété uniternaire.

FIN DE L'EXPLICATION DES PLANCHES.

BAR-SUR-SEINE. - IMP. SAILLARD.

24

Imp. Roret rue Hautejeuille, 12, Paris.

.

٠

~

Minéralogie. Pl. 9.

.

Imp. de Roret rue Hautefeuille, 12, à Paris.

· ,

٠

IRIS - LILLIAD - Université Lille 1

÷. . `,

.

Minéralogie. Pl. 18.

.

Imp Roret, rue llautefeuille, 18 Paris.

IRIS - LILLIAD - Université Lille 1

Minéralogie. Pl. 22.

· ·

.

Minéralogie. Pl. 27.

•

2

.

Imp.Rovet, r. Hautefeuille 12

.

.

.

IRIS - LILLIAD - Université Lille 1

.

τ.

•

Pierres.

Minéralogie. Pl. 54.

۰.

