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PREFACE 

present volume consists substantially of a course of 
T H t c t u r e s  whicb, by special invitation of the authorities, 
1 delivered in the University of Calcutta during parts of January 
and February, 1913. The invitation was accompanied by a 
stipulation that the lectures should be published. 

As regards choice of subject for the course, 1 was allowed 

complete freedom. It was intimated that the class would be 
mainly or entirely of a post-graduate standing. What was 
desired, above all, was an exposition of some subject that, later 
on, might snggest openings to those who had the will and the 
ski11 to  pursue research. 

Accordingly 1 selected a subject, which may be regarded as 
being still in not very advanced stages of development, and into 
the exposition of which 1 could incorporate some results of my 
own which had been in my possession for some tirrie. Owing 
to the limitations of the period over which the course should 
extend, i t  was not practicable to make the lectures a systematic 
discussion of the whole subject; and 1 therefore had to choose 
portions, in order to discuss a variety of topics and to indicate 
some paths along which further progress might be possible. Thus, 
instead of concentrating upon one particular issue, 1 preferred to  
deal with several distinct lines of investigation, even though 
their treatment had to be relatively brief. 
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Vi  PREFACE 

Wherever it was possible to refer to books or to memoirs, 
1 duly referred my students to the authorities. I n  particular, 
1 urged them t o  prepare themselves so that they could proceed 
to  the study of algebraic functions of two variables; because 
happily, in that region, there is the treatise by Picard and 
Simart, Fonctions algébriques de deux variables inddpendantes, 
which includes an account of the researches made by Picard 
and others in the last thirty years. As this treatise is so full, 
1 made no attempt to give to my students what could only 
have been a truncated account of the elements of that theory; 
but, as will be seen, what 1 did was to restate some of its 
problems from a different (and, as 1 think, a more general) 

point of view. 
A t  several stages in my lectures, 1 deviated froni the almost 

usual practice of dealing with only a single uniform function 
of two complex variables. 1 thought i t  preferable to deal 
with two dependent variables as functions of two independent 
variables. Characteristic properties of the variation of uniform 
analytic functions of two variables are brought into fuller 
discussion, when two such functions are regarded simultaneously. 
The combination of a t  least two such functions is necessary 
when the general theory of quadruply-periodic functions is under 
review. The same combination of two functions seems to  me 
desirable in the general discussion of the theory of algebraic 
functions of two variables whether these occur, or do not occur, 
in connection with quadruply-periodic functions; the considera- 
tion of relations between independent variables and dependent 
variables is thereby made more coinplete, and illustrations will 
be found in the course of the book. Even in the simplest case 
that has any significance, when these algebraic relations are 
nothing more than the expression of the lineo-linear substitutions, 
i t  is of course necessary to have two new variables expressible in 
terms of the variables already adopted. 
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The following is a summary outline of the whole course of 
lectures. 

The first Chapter deals with the various suggestions that have 
been made for the geometrical representation of two complex 
variables. The intuitive usefulness of the Argand representation, 
when we are concerned with functions of a single independent 
complex variable, is universally recognised; but there seems 
t o  be a deficiency in the usefulness of each of the geometrical 
representations when more than a single independent complex 
variable occurs. 

The second Chapter is devoted t o  the consideration of the 
analytical properties of the lineo-linear substitution, defining tmro 
variables in terms of two others, each uniquely by means of the 
others. It is a generalisation of the hornographic substitution 
for a single variable; some of the properties of the latter are 
extended to the case when there are two variables. In  particular, 
insistence is laid upon certain invariantive properties of such 
substitutions. 

The third Chapter is concerned with the expressibility of 

uniform analytic functions in power-series. The limitation of 
the range of convergence of such series leads t o  the notion of 
the various kinds of singularity which, under the classification 
made by Weierstrass, uniform analytic functions can possess. 

The fourth Chapter is devoted to the consideration of the 
form of a uniform analytic function in the immediate vicinity 
of any assigned place in the field of variation. The central 
theorem is due to Weierstrass, and was established by him for 
functions of n variables; 1 have developed i t  in some detail when 
there are only two variables; and it is applied to the description 
of the behaviour of a function in the vicinity of any one of its 
various classes of places, whether ordinary or singulür. 

The fifth Chapter is occupied with two constructive theorems, 
both of them originally enunciated (without proof) by Weierstrass, 
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as to  the character of functions either entirely devoid or almost 
devoid of essential singularities. A function, entirely devoid of 
essential singularities, is expressible as a rational function of the 
variables; the proof given is a modification of the proof first 

given by Hurwitz. A function, which has essential singularities 
only in the infinite parts of the field of variation, is expressible 
as the quotient of two functions'which are regular in al1 finite 
parts of the field; the proof, which is given, follows Cousin's 
investiga,tions for the general case of n variables. 

The next Chapter is devoted to integrals. The earlier 
paragraphs are coiicerned with double integrals of quantities 
which are uniform functions of two variables; after an exposition 
of Poincaré's extension of Cauchy's main integral theorem, t8hese 
paragraphs are mainly occupied with simple examples of a subject 
which awaits further development. The later paragraphs are 
concerned with integrals, whether single or double, of algebraic 
functions, a theory to  which Picard's investigations have made 
substantial contributions. In  restating the problerns for the sake 
of students, 1 took the line of introducing a couple of algebraic 
functions, instead of only a single algebraic function, of two 
variables, so that there may be complete liberty of selection of 
two independent variables. The geometry of surfaces has led 
to valuable results connected with integrals of algebraic functions 
of two variables, just as the geometry of curves led to  valuable 
results connected with integrals of algebraic functions of one 
variable. But my own view is that  the development of the 
theory, however much i t  has been helped by the geometry, must 
(under present methods) ultimately be made to depend completely 
upon analysis. This will be more complicated when two alge- 
braie equations are propounded than when there is only a 

single equatioii; but its character will be unaltered. And so 
1 have stated the problem for what seems to me the more 
general case. 
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PREFACE ix 

In  Chapter VI1 1 have discussed the behaviour of two uniform 
analytic functions considered simultaneously. I n  particular, when 
the functions are independent and free (in the sense that they 
have no common factor), it is shewn that their level places are 
isolated; and the investigations in Chapter IV  are used to obtain 
an expression for the multiplicity of occurrence of such a level 
place, when it is not simple. 

The last Chapter is devoted t o  the foundations of the theory 
of uniform periodic functions of two variables. I n  the early part 
of the chapter, 1 have worked out the various kinds of cases that 
can occur. The method may be deemed tedious; it certainly 
could not be used for the functions of n variables with not more 
than Zn sets of periods; but i t  brings into relief the discrimination 
between the cases which, stated initially only from the point of 
view of periodicity, are degenerate or resoluble or impossible or 
actual. The theta-furictions are then introduced on the basis of 
a result in Chapter V ; and the discrimination between functions 
with three period-pairs and those with four period-pairs is indicated. 
Later, some theorems enunciated (but not proved) by Weierstrass 
are established for functions of two variables, together with some 
extei-isions, al1 these being concerned with algebraic relations 
between homoperiodic uniform functions devoid of essential sin- 
gularities in the finite part of the field of variation. The Chapter 
concludes with some simple examples belonging to the simplest 
class of hyperelliptic functions. But 1 have not attempted, in 
these lectures, to expound the details of the theory of quadruply- 
periodic functions of two variables; i t  can be found in specific 
treatises to whiçh references are given in the test.  

My mhole purpose, in the Calcutta course, was to deal with 
a selection of principles and of generalities that belong to  the 
initial stages of the theory of functions of two complex variables. 
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Often before, 1 have had to thank the Staff of the Cambridge 
University Press for their efficient help during the progress of 
proof-sheets of my books. This volume has made special demands 
upon their patience; throughout, as is their custom within my 
experience, they have met my wishes with readiness and skill. 
To al1 of them, once again, 1 tender my grateful thanks. 

A. R. FORSYTH. 

IMPERIAL COLLEGE OF SCIENCE 

AND TECHNOLOGY, LONDON, S.W. 

Febebruary, 1914. 
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CHAPTER 1 

IN regard to functions of a single complex variable, reference may generally be made, 
for statements of results and for quoted theorems, to the author's Theory of Functions. 
No reference is made to the ultimate foundations of the theory of functions of a single 
real variable ; a full discussion will be found in Hobon's Funetions of a real variable. 

For a large part of the contents of the first two chapters, reference may be made to 
two papers by the author*; and particular references to memoirs will be made from 
time to time as they are quoted. 

But in addition, reference should be made to a papert by Poincaré, who discusses 
groups, classes of invariants, and conformation of space, when the representation of the  
two complex variables is made by means of four-dimensional space. 

1. This course of lectures is devoted to the theory of functions of two 
or more complex variables. I t  will be assiirued that the substantial results 
of the theory of functions of a single complex variable are known; so that 
references to such results may be made briefly or even only indirectly, and 
suggestions, especially in regard to the extensions of ideas furnished by 
that theory, can be discussed in their wider aspect without any delay over 
preliminary explanations. 

My intention is to deal Mth sotne of the principles and the generalities 
of the selected subject. Special illustrations and developments will be given 
from time to time; but limitations forbid the possibility of attempting an 
exposition of the whole range of knowledge already attained. Moreover, 
my hope is to establish some new results, and siiggest some problems ; 
in order to make that hope a reality within this course, some developments 
must be sacrificed. The sacrifice, however, need only be temporary, in one 
sense; because references to the important authorities will be given, and 
their work can be consulted and studied in amplification of these lectures. 

"Simultaneous complex variables and their geometrical representation," Messengcr of 
Math., vol. xl (1910), pp. 113-134 ; " Lineo-linear transformation8 of two compler variabl~s," 
Quart. Journ. Math., vol. xliii (1912), pp. 178-207. 

.t "Les fonctions analytiques de deux variables et la représentation conforme," Rend. Circ. 
Mat.  Palernio, t .  xxiii (1907), pp. 185-220. 
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2 FUNCTIONS OF TWO VARIABLES [CH. I 

Usually, i t  will be assumed that the number of independent variables is 
two. In making this restriction, a double purpose is proposed. 

Not a few of the propositions for two variables, with appropriate changes, 
can justly be enunciated for n variables; and sometimes they will be 
enunciated explicitly. I n  such cases, they usually are true for functions 
of a single variable also; and they become generalisations of the last- 
mentioned and simplest form of the corresponding proposition. Results of 
this type have their importance in the body of the theory. But i t  is 
desirable to have other results also, which may be called characteristic of 
the theory for more than a single variable, in the sense that they have no 
corresponding counterpart in the theory for a single variable. 

Again, i t  is desirable, wherever possible, to obtain results equally character- 
istic of the theory in another direction, that is to Say, results which are not 
mere specialisations of results for the case of three or more variables. Such 
a result is provided in the case of the quadruply-periodic functions of two 
variables and their association with single integrals involving the quadratic 
radical of a quintic or sextic polynomial. The case might be taken as the 
appropriate specialisation of 2n-ply periodic functions of n variables and 
their proper association with single integrals involving the quadratic radical 
of a polynomial of order 2n + 1 or 2n + 2. These latter functions, however, 
are notoriously not the most general multiply-periodic functions for values 
of n from 3, inclusive and upwards. Consequently, i t  is sufficient to develop 
the association with quadratic radicals of a quintic or sextic polynomial; 
the forma1 generalisations of the results so obtained are only limited and 
restricted forms of the results belonging to the wider; but not most com- 
pletely general, theory. 

These combined considerations constitute my reason for dealing mainly 
with the theory of functions of two independent complex variables. 

The two variables will be denoted by z and z'. 

2. One illustration of real generalisation from the theory of functions 
of a single variable arises as follows. I n  that theory, when a variable w is 
connected with a variable z by s relation f (w, z) = O of any form, we frequently 
consider that w is defined as a function of z by the relation. But frequently 
also there is a necessity for regarding z as a function of w ;  and important 
results, especially in connection with periodic functions, are obtained by using 
this dual notion of inversion. A question naturally suggests itself :-what is 
the general form of this notion of inversion when there are two independent 
variables ? 

A function w of z and z' can be regarded as given by a relation 
f (w, Z, z') = 0, any precision as to the form off being irrelevant to the immediate 
discussion. A limited use of the notion,of inversion can be applied a t  once 
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2l RECIPROCAL ASPECT OF EQUATIONS 3 

to the relation. Just as in the Cartesian equation of a surface in ordinary 
space i t  is often a matter of indifference which of the three coordinates is to 
be regarded as expressed by the equation in terms of the other two, so now 
we may regard the relation f (w, z, z') = O as defining any one of the three 
variables w, z, z' in terms of the other two. Such an interpretation of the 
relation does not iinply the complete process of inversion in the simpler case, 
whereby the quantity initially regarded as independent is expressed in terms 
of the quantity initially regarded as dependent. In the present case, the 
initially independent variables z and z' are not expressible in terms of the 
single initially dependent variable W. 

The limitation in the use of the notion, however, disappears when two 
functionally distinct quantities w and w' occur. This occurrence might arise 
through the existence of two functional relations 

f (w, 2, 2') = 0, g (w', Z, 2') = 0, 
or of two apparently more general functional relations 

S(w,w',z,zf)=O, G(w,w',z,zf)=0. 

We assume that the equations F = O, G  = 0, do actually define distinct 
functions w and w' in the sense that they are independent equations; that 
is, we assume that their Jacobian 

does not vanish identically. Moreover, for our 
merely to be distinct from one another ; they are 
of z and z'. so that the Jacobian 

purpose, w and w' are not 
to be independent functions 

does not vanish identically. Now 

always ; hence neither of the Jacobians 

can vanish identically. I n  other words, we can interpret the two relations 
F = O  and G=O in a new way; they define z and z' as two distinct and 
independent functions of the two independent variables w and w: 

Ex. Thus the equations 

w2+~'2+22+~'2=a,  w3-w'3+9-I3=b, 

satisfy both conditions ; the quantities w and w' are idependent functions of z and z'. And 
conversely for z and z' as independent functions of w and w'. 

1-2 
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On the  other band, the equations 

wwf-2-zt=0, w 2 - u . ' - 1 4 ,  

being independent equations, determine w and w' as distinct functions of the variables, for 

J 2- does not vanish identically. Bu t  these distinct functions are not indepeiident (: i) . .  , 

functions of z and z', for -7 + vanisheti identically. As a matter of fact, both w and (:, Y )  
w' are functions solely of the combination z + i of the  variables, and therefore w and w' are 
expressible in terms of each other alone ; the actual relation of expression is t he  second of 
the two equations. 

Thus, by the introduction of a second and independent function w', we 
are in a position to adopt completely the notion of inversion, as distinct from 
any precise expression of inversion, for the case of two complex independent 
variables*. The inversion will be equally possible from any two relations, 
which are the exact and complete equivalent of F =  O and G = 0 in 
whatever form these relations rnay be given. In particular, if F and G 
are algebraical in w and w', they have an exact equivalent in relations of 
the type f = O and g = O, obtained by eliminating w' and w in t u m  between 
F = O  and G=O. 

Finally, we could regard any two of the four variables z, z', w, w' as 
independent and the remaining two as dependent. The necessary and 
sufficient condition is that no Jacobian of F and G with regard to any two 
of the variables shall vanish identically. 

Accordingly, for many purposes, we shall find i t  desirable to consider 
simultaneously two independent functions w and w' of the two independent 
variables z and z'. 

Geometrica,l Bepresentation of the Variables. 

3. Next, i t  proves both convenient and useful in the theory of functions 
of one variable to associate a geometrical representation of the variables 
with the analysis. I t  happens that this representation is simple and 
complete while full of intuitive suggestions; and thoughj- the notion of 
geometrical interpretation has not been adopted by al1 investigators and has 
occasionally been deliberately avoided by the sterner analytical schools, i t  
has acquired inlportance because of the character of the results to which i t  
has led. The representation, initiated by Argand, is obtained by the customary 
association of a point upon a plane with one variable, and of a point upnn 

* When there are n indepeiident variables 21, ..., z,, then n functions w l ,  .. ., w, are required 
for tlie corresponding complete use of inversion. 

t There is a wide diversity of practice, in regard to the extent of the adoption of geometrical 
notions in the development of the analysis of the tbeory of functions. As an indication of this 
variety, i t  is sufficient to note the different relations to the subject as borne in the work of 
Cauchy, Hermite, Kronecker, Poincaré, Riemann, and Weierstrass. 
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51 REPREsENTATIoN 5 

another plane with the other variable ; and the functional relation between 
the two variables is exhibited as a conforma1 representation of either plane 
upon the other. 

An adequate geometrical representation of two independent complex 
variables is a more difficult problem than the representation of a single 
complex variable; a t  any rate, there is as yet no unique solution of the 
problem which has been found quite so satisfactory as the Argand solution 
of the problem for a single variable. 

I n  order to let the full variation appear, we resolve each of the complex 
variables into its real and its imaginary parts ; so we write 

Here x, y, x', y' are real; when z and z' are independent in every respect, 
each of these four real quantities admits of independent variation through 
the ,  range of reality between - m and + m .  Thus a four-fold set of 
variations is required for the purpose; and such a set cannot be secured 
simply among the facilities offered by the ordinary space of experience. 

4. Several methods haYe been proposed. No method has been adopted 
universnlly. The respective measures of success are attained through some 
greater or smaller amount of elaboration; but each increase of elaboration 
causes a decrease of simplicity, and therefore also a decrease of intuitive 
suggestiveness, in the geometrical representation. 

Among the methods, there are three which require special mention. In  
one of them, four-dimensional space is chosen as the field of variation. In 
the second, a line (straight or curved) is taken as the geometrical entity 
representing the two variables siniultaneously. I n  the third, each of the 
variables is re~resented by a point in a plane (the planes being the same 
or different), so that two points are taken as the geometrical entity repre- 
senting the two variables simultaneously. 

5. Of these methods, the simplest (in a forma1 analytical bearing) is 
based upon the use of four-dimensional space; and applications to the 
theory of functions of two complex variables have been made by Poincaré*, 
Picardt, and others. The four real variables x, y, d, i are associated with 
four axes of reference. Sometimes they are taken as the ultimate variables ; 
sometimes they are made real functions of other ultimate real variables, 
from one to three in number according to the dimensions of the continuum 

* "Sur les fonctions de deux variables," Acta Math., t .  ii (1883), pp. 97-113; '< Sur les 
résidu8 des inthgrdes doubles," Acta Math., t. ix (1887), pp. 321-380; " Analysis situs," Journ. 
d e  l'kcole Polyt. ,  Sér. 2 ,  t. i (1895), pp. 1-123; 6'Analysis situs," Rend. Cire. Mat. Palermo, 
t .  xiii (1899), pp. 285-345, t. xviii (1904), pp. 45-110, and elsewhere. 

t Traité d'Analyse, t .  ii, ch. i x ;  Théorie des fonctions algébriques de deux variables in- 
dépendantes, t .  i, ch. ii, in the course of which other references are given. 
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to be represented. Thus a single relation between x, y, x', y' provides a 
hypersurface (or an ordinary space) in the quadruple space; and, along the 
hypersurface, each of the four variables can be conceived as expressible in 
terms of three variable parameters. Two such relations provide a surface 
in the quadruple space; along the surface, each of the variables can be 
conceived as expressible in terms of two variable parameters. Similarly, 
three such relations provide a curve along which each of the variables can 
be conceived as expressible in terms of a single variable parameter. Lastly, 
four such relations provide a point or a number of points. The intersection 
of a hypersurface and a surface is made up of a curve or a number of 
curves. Two surfaces intersect in points; two hypersurfaces intersect in a 
surface or surfaces. We consider only real surfaces, curves, and points, in 
such intersections; because what is desired is a representation of the four 
real variables, from which the complex variables are composed. 

The representation, by itself, does not seem sufficiently definite *and 
restricted. There is no preferential combination in geometry among the 
four coordinate axes, which compels a combination of x and y for one of the 
complex variables, while s' and y' must be combined for the other. But 
this original lack of restriction is supplied, so far as concerns functions of z 
and z', by retaining the partial differential equations of the first order, which 
are satisfied by the real and the imaginary parts of any function W. Writing 
w = u + iv = f (z, z'), where u and v are real, we have 

so that u satisfies (as does v also) the equations 

From a value of u, satisfying these equations, the value of v to be associated 
with i t  in the value of w can be obtained by quadratures. Thus we have a 
geometry, tempered implicitly by differential equations. 

The comparative difficulty of dealing with the ideas of four-dimensional 
geometry tends to prevent this mode of representation from being intuitively 
useful, a t  least to those minds who regard the stated results to be analytical 
relations merely disguised in a geometrical vocabulary. I n  particular, the 
method fails to provide (as the other methods equally fail to provide) a 
representation of quadruple periodicity which serves the same kind of purpose 
as is served by the plane repre~ent~ation of double periodicity; and a 
fortiori there is an even graver lack, when divisions of multiple space are 
required in connection with functions of two variables that are automorphic 
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71 REPRESEXTATION BY A* LINE 7 

under lineo-linear transformations. Still, i t  is the fact that certain results 
have been obtained through the use of this method in the extensiori of one 
of Cauchy's integral-theorems, in the formation of the residues of double 
integrals, in the topology of multiple space, and in  the conformation of 
spaces. 

6. The second of the indicated methods of representation of the four 
variable elements in two complex variables is based upon the fact that four 
independent coordinates are necessary and sufficient for the complete 
specification of a straight line in ordinary space. Such a line would be 
determined uniquely by the two points (and, reciprocally, would uniquely 
determine the two points) at  which i t  meets a couple of parallel planes; and 
therefore, if one variable z is represented by a variable point in one plane 
and the other variable z' is represented by a variable point in the other 
plane, we might regard the line joining the points z and z/ in the respective 
planes as a geometrical representation of the two variables z and z' con- 
jointly. (It  can also be determined by a point, and a direction through the 
point; again, the determination requires four real variables in all.) 

We must, however, bear in mind that the two points on the line are the 
ultimate representation of the two variables. When the whole line* (with 
the assistance of the two invariable parallel planes of reference) is taken to 
represent the two variables, a question at  once arises as to the geometrical 
relations between a line z, z' and a line w, w', which correspond to two 
analytical relations between the variables. Does the whole line z, z', under 
any transforming relation, become the whole line w, w' ? 

7. It is only a specially restricted set of transforming relations, which 
admit such a transformation of a whole line. The result can be established 
as follows. 

For simplicity, we assume that the planes for z and z' are a t  unit distance 
apart, and likewise that the planes for w and w' are at  unit distance apart ; 
and we write 

w=u+iv ,  w'=u'+io'. 

The Cartesian coordinates of any point on the z, z' line are 

ulç + (1 - o) x', uy +- (1 - o) y', 1 - u, 

and those of any point on the w, w' line are 

where p and cr are real quantities, each parametric along its line. Let two 
relations 

F(w, w', z, zl)=O, G(w, w', 2, zl)=O, 

be such as to give a birational correspondence between w, w' and z, z'. If, 

For the foilowing investigation referenoe may be made to the first of the author's two 
papers quoted on p. 1. 
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then, in connection with these relations, the whole z. z' line is transforined. 
uniquely into the whole w, w' line, and vice-versa, some birational corre- 
spondence between the current points upon the lines must exist ; and so the 
coordinates of the current point upon one line must be connected, by functional 
relations, with the coordinates of the current point upon the other line. 

Because of the independent equations F = O, G = 0, the quantities u, v, 
u', v' are functions of a, y, x', y' alone; and these functions do not involve m. 
Similarly x, y, x', y' are functions of u, v, u', v' alone ; and these functions do 
not involve p. Hence p is a function of a only, such as to take the values 
O and 1 (in either order) when a has the values O and 1 ;  and, for the 
current points, we must have 

pu + (1 - P) u' =f (t, .î7,1- a), 
pv+(1--p)v'=g(t, rl,l-a), 

where f and y are appropriate functions of their arguments, and 

f:=ax+(l -a)xf, r]=uy+(l-u)yf. 

As p is some function of a alone, the former relation gives 

au au/ af au auf 
p-+(l-p)- =m., p-/+p-p)-/=(l-a) - ax ax ax ax "f) at , 

and therefore 

The relation holds 
involve p ; hence 

for al1 values of p, and the quantities u and u' do not 

Similarly, the second relation requires the conditions 
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Moreover, because both u + iv and u' + id are functions of z and z', we have 
the permanent relations 

By using these relations, the three equations involving the derivatives of n 

a ives and v' can be transformed into the three equations involving the deriv t' 
of u and u'; and therefore, as the permanent relations exist for al1 functional 
relations, we need retain only the three equations involving the derivatives of 
u and 21' as the essential independent equations for our problem. 

8. The complete integral of the first of these three retained equations- 
i t  involves u only-is 

u = ux - p y  + a'x' - @'y' + K,  

where a, 6, a', @', K are 3ny real constants, provided the condition 

a@' - a'B= O 

is satisfied. The permanent relations then give 

v = Bx + ay + @'x' + dy' + K', 

where 12 is any real constant ; and so 

= (a + ifl) z + (a' + i f l )  z' + IC + id. 

The presence of the term IC + in' in w merely means a change of origin in the 
w-plane ; neglecting this ternporarily, we have 

w = (a + ip) z + (a' + ip) z'. 
Now let 

a' + ip' = dfec'i  a + ip = Aepz ,  

where A, A', p, are real ; then the condition a@ - a'p = O becomes 

A A' sin (p - p') = 0, 

so that either A = O, or A' = O, or p = p', giving three possibilities. 

Similarly, the complete integral of the third of the retained equations- 
i t  involves u' only-is 

u' = v a  -' 6 y + -/a' - 6'3' + h, 
where y, 6, ?', 8, h are any renl constants, provided the condition 

yG' - 'y'6 = O 

is satisfied. The permanent relations then give 

v' = 6x + yy + 6'a' + ?'y' + h', 
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where X' is any real constant; and so ' 

w' = u' + iv' 
= ( y + i 8 ) z + ( j + i s ' ) z ' + ~ + i ~ ' .  

The presence of the term X + i X '  in w' merely means a change of origin in 
the w'-plane; neglecting this temporarily, as before for w, we have 

w' = ( y  + i8)  z + (y' + i6') d.  
Now let 

.y + i S  = Ce"<, y' + i6' = ( l 'eu ' i ,  

where C, Cr, Y, v' are real ; then the condition ?ô' - y'6 = O becomes 

CC' sin ( v  - Y ' )  = 0,  

so that either C = O, or C' = O, or v = v', giving three possibilities. 

The second of the three retained equatio~is still has to be satisfied; i t  
involves derivatives of u and of u!, and i t  is satisfied identically by the fore- 
going values of u and u', provided 

~ 8 '  - a'6 = &' - fl?, 
or (what is the equivalent condition) provided 

AC' sin ( p  - v') = A'C sin (p' - v). 

9. Nine cases arise for consideration, because the three possibilities 
from the first of the retained equations must be combined with the three 
possibilities from the third of the retained equations. Each combination 
is governed by the last condition ; and the expressions obtained must satisfy 
the conditions holding between p and a. Moreover, in the end, w and w' 
are to be independent functions of the variables ; and, for the present 
purpose of geometrical representation by a line, we manifestly may inter- 
change z with z', and w with w'. 

Of the nine combinations, two are impossible under these requirements, 
viz. A = O, C =  0 ; and A' = O, C' = O. Four of them are equivalenf to one 

' .  another under these requirements, viz. A = O, v = v' ; A' = O, v = v , p = p', 
C = O ; p = P', C' = O ; and they lead to the expressions 

w = ( A z  + A'z') epi, w' = C'z'epi. 

Two of them are equivalent to one another under these requirements, viz. 
A = O, G' = 0 ; and A' = O, C = 0 ; and they lead to the expressions 

w = A ze ~i ,  w' = C'z'e pi. 

The remaining combination, viz. p = =', u = v', under the requirements leads 
to the expressions 

w = ( A z  + A'z') epi, W' = (CZ + C'z') epi. 

Al1 these expressions must still satisfy the terminal condition applying to p 
and CJ, viz. that p must be O or 1 when a is O or 1. When these expressions 
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are inserted for the functions f and g in the earliest equations in § 7, the 
latter lead to the relations 

and therefore 

For the first of the expressions, this becomes 

In  order that p may be 1 when a is 1, we must have A'= O and the 
necessity, that then p miist be O when cr is O, imposes no further condition ; 
the expression becomes 

w=Azepi, W'=Cf,g'e"i, 

which is the saine as the second. 

For the second of the expressions, the relation is satisfied without any 
further condition. 

For the third of the expressions, the relation becomes 

In  order that p may be 1 when u is 1, we must have A'= 0 ;  and in order 
that p may be O when a is O, we must have C = O ; the expression becomes 

w=Azepi, W'=C'Z'e~i, 
the same as before. 

In obtaining this result, we neglected temporarily an arbitrary change 
of origin in each of the planes; and we assumed that z can be interchanged 
mith z', and w with w'. Thus we have the result :- 

The only relations which give a birational transformation of the straight 
line, joining z and z' in two parallel planes, into a straight line, jo.ining w and 
w' also in two parallel planes, either are 

where a, a', b, c, a, ,û, y are real constants, or can be changed into this forrn by 
interchanging z and zf, o r  w and w', o r  both. 

These relations, as equations in a general theory, are so trivial as to be 
negligible; and so we can assert generally that two functional relations 
B(w, w', z, 2') = O  and G (w, w', z, z') = O, which transform the variables z 
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and d in their respective parallel planes into the variables w and w' likewise 
in their respective parallel planes, do not (save in  the foregoing trivial cases) 
admit a birational transformation of the whole straight line joining z and z' 
into the whole straight line joining w and w'. 

10. Manifestly, therefore, we need not retain the suggested geometrical 
representation of two variables by the whole straight line joining the two 
points z and z', because the only effective part of the representation is 
provided by the two points in which the line cuts the planes. 

Nor would any other method of selecting the four real variables for the 
specification of the straight line be more effective. For example, the line 
would be uniquely selected by assigning a point where i t  cuts a given plane 
and assigning its direction relative to fixed axes in space; and then we 
could take 

z = x + i y ,  zr=e@tanO, 

with the usual significance for x, y, 8, +. It is easy to see that, when we 
take a plane at  unit distance from the given plane, and we m i t e  z" = z + z', 
the former representation by the straight line arises for z and z". As 
before, the whole straight line is not an effective representation of the two 
complex variables; the only effective part of the representation is the 
point in the given plane and the direction relative to fixed axes. 

11. Another method of constructing a straight line to represent two 
complex variables z and z' has been propounded by Vivanti*, whereby i t  is 
given as the intersection of the two planes 

where X, Y, Z are current coordinates in space. The immediate vicinity of 
a line z,, z,,' is assumed to be the aggregate of al1 lines such that 

(. - xo)9 + (y - y$ < re, (x' - x;)2 + (y' - y;)) r'=, 

where r and r' are arbitrary small quantities; and the boundary of the 
vicini t~ is made up of the lines 

(X - xoc,)a + (y - yo)2 = rz, (LE' - + (y' - yo)e = rr2. 

It is easy to see that, as before, the whole straight line as a single 
geometrical entity is not an effective representation of the two complex 
variables z and 2'; the only effective part of the representation depends 
upon the coordinates of the two points in which the line cuts the planes of 
reference I'= O, X = O  (or any two of the coordinate planes). 

* Rend. Circ. Mat. Palermo, t. ix (1895), pp. 108-124. 
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12. The preceding investigation suggests cognate questions which d l  
only be propounded. Two functional. relations, P(w,  w', z, 2') = 0 and 
G (w, w', z, 2') = 0, transform a pair of points z and 8, in parallel planes, 
into a pair (or into several pairs) of points w and w', also in parallel planes. 
Let z and .d be connected by any analytical curve ; let a corresponding  air 
of points w and w' also be connected by any analytical curve; and suppose 
that the two analytical curves have a birational correspondence with one 
another. Then 

(i) How are the equations of this correspondence connected, if a t  all, 
with the original functional relations ? and what are these 
equations when the two analytical curves are assigned ? 

(ii) What functional relations are possible if, under them, the whole 
z: z' curve is to be transformed into the whole w, w' curve ? 

(iii) When functional relations are given and an analytical z, z' curve 
is assigned, what are the equations of the w, w' curve, if and 
when the whole curves are transformed into one another ? 

13. One warning must be given before we pass away from the con- 
sideration of a line, straight or curved, as a geometrical representation of a 
couple of complex variables. The preceding remarks refer to the possibility 
of this geometrical representation; they do not refer to functions of two 
complex variables which are functions of a line. Functions of a real line 
occur in mathematical physics; thus the energy of a closed wire, conveying 
a current in a magnetic field, is a function of the shape of the wire. This 
notion has been extended by Volterra* on the basis of Poincaré's general- 
isation of one of Cauchy's integral-theorems. In  the case of the integral 
of a uniforrn function of one complex variable, we know that the value is 
zero round any contour, which does not enclose a singularity of the function, 
and that the integral between two assigned points is (subject to the usual 
proviso as to singularities) independent of the path between the points; 
that is, the integral can be regarded as a function of the final point. So 
also (as we shall see) the integral of a function of two complex variables over 
a closed surface in four-dimensional space is zero if the surface encloses no 
singularity of the function; and when the surface is not closed, the integral 
(subject to a similar proviso as to singularities) depends upon the boundary 
of the surface; that is, the integral can be regarded as a function of the 
boundary-line. 

This property has nothing in common with the line-representation of 
two complex variables which has been discussed. 

14. The third of the indicated methods of representation of two complex 
variables is the effective relic of the discarded line-representation. I t  is the 
simple, but not very suggestive, method of representing the two variables z 

* Acta Math., t. xii (1889), pp. 233-286. 
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and z' by two points, either in the same plane or in different planes, the two 
points always being unrelated. I t  is the method usually adopted by Picard 
and others. For quite simple purposes, i t  proves useful; thus i t  is employed 
by Picard* in dealing with the residues of the double integrals of rational 
functions, and i t  is important in his theory of the periods of double integrals 
of algebraic functions. 

Let me say at  once that the point-representation of z and z' is not 
completely satisfactory, in the sense that i t  does not provide a representation 
which gives a powerful geometrical equivalent for analytical needs. One 
illustration will suffice for the moment. I t  is a known theoremt, due 
originally to Jacobi in a simpler form, that a uniforin function of two 
variables cannot possess more than four pairs of periods. The point- 
representation of two variables admits of an effective presentation of simple 
periodicity for either variable or for both variables, of double periodicity for 
either variable or for both variables separately, of triple periodicity for both 
variables in combination; but (as will be seen later in these lectures) i t  
does not lend itself to a presentation of quadruple periodicity for both 
variables in combination, a presentation which is miich needed for functions 
so fundamental as the quotients of the double theta-functions. An attempt 
to circumvent the latt,er difficulty will be made later for one class of 
quadruply-periodic functions. But the general difficulty remains. There 
are other limitations also upon the effectiveness of the method of repre- 
sentation by points ; they need not be emphasised at  this stage. 

New ideas, or some uniquely effective new idea, can alone supply Our 
needs. I n  the meanwhile, we possess only two fairly useful methods, 
viz., the methori of four-dimensional space, and the method of two-plane 
representation. 

Properties of the two-plane representation. 

15. As the principal use of the representation of two variables in four- 
dimensional space occurs in connection with double integrals, illustrations 
can be deferred until that subject mises for discussion. We proceed now 
to make a fem simple inferences from the two-plane representation of two 
variables:. 

We shall use the word place to denote, collectively, the two points in 
the z-plane and the /-plane respectively which represent the values of z and 

1. 
more 

See the reference to the second treatise hy Picard, quoted on p. 5. 
The general theorem is that a uniform function of n independent variables cannot possess 
than 2n independent sets of periods. The simplest case, when n=l, was originally estab- 

lished by Jacobi, Ges. Werke, t. ii, pp. 27-32. For the general theorem, see the author's Theory 
of Funcliom, 5 110, .$ 239, where some references are given. 

:: For much of the investigation that follows, reference may be made to the author's paper, 
quoted on p. 7. 
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of z'. Let w and w' be two independent functions of z and zl, so that their 
Jacobian J, where 

Ul, w' 
J=J( - ) ,  2, z 

does not vanish identically; and let the places z, d and w, w' be associated 
by functional relations. Any srnall variation from the former place, repre- 
sented by dz and dz', determines a small variation from the latter place, 
which may be represented by dw and dw'; the analytical relations between 
these small variations are of the form 

dw = A dz + Bdz', dw' = G'dz + Ddz', 

where A, B, C, D are free frorn differential elements, and AD - BC= J. 

Next, let dlz and d1z1, d,z and &z' denote any two smnll variations from 
the z, z' place; and let dlw and d,wf, d,w and d,w' denote the consequent 

1 ,  w' place. Then 
- 

small variations from the u 

Manifestly, if dlzd,z' - d,zd1z1 vanishes, then dlwd,w' - d,w d1wf also 
vanishes; and the converse holds, bemuse J is not zero. Hence if, a t  the 
place z, z', two similar infinitesimal triangles are taken in the planes of z 
and of z' respectively, the corresponding infinitesimal triangles at  the place 
w, w' in the planes of w and of w' respectively also are similar ; and 
conversely. 

This property holds for al1 pairs of similar infinitesin-ial triangles; and 
therefore, when the z-plane and the 2'-plane are put 'into conforma1 relation 
with one another, the w-plane and the w'-plane are also put into conforma1 
relation with one another. This result is the geometrical forrn of the 
analytical result that, when the two equations 

determine w and w' as independent functions of z and z', a relation 
+ (z, z') = O, involving z and z' only, leads to some relation + (w, w') = 0, 
involving w and w' only. 

Another interpretation of the relation 

dl,w' = .J d,z, dlzl 1 d w  1 1 d 2 ,  d 2 i  1 
is as fo1lows:-When w and w' are two independent functions of two 
independent complex variables z and z', and when dlz, dlz1, dlw, d,w' are 
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any one set of simultaneous small variations, while d,z, d,z', d,w, d,w' are 
any other set of sirnultaneous small variations, the quantity 

I d,w, d,wt d,z, dlzl 

/ d2w, d2wg / +  1 d2z, d2z' / 
is independent of differential elements and depends only upon the places 
Z, z' and w, w'. 

16. The converse also is true, viz. :- 

Let z and z' be two cornples variables, sucli that 

z = x + i y ,  d = x' + iy', 
where a!, y,  x', y' are four real independent variables; and let w and w' be 
other two cornplex variables, such that 

w = u + iv, w' = u' + iv', 

where u., v, u', v' ure four real independent quantities, being functions of x ,  y, 
x', y'; then, i f  the magnitude 

d , ~ ,  d , ~ '  d l 4  dlz' , 
d2w, d2wr 1 i 1 d ,  4;' 1 

for al1 injînitesimal variations, i s  independent of these variations, w and w' 
are independent functions of z and Z' ulone. 

This property, which for two independent complex variables corresponds 
to Riemann's definition-property* for functionality in the case of a single 
complex variable, can be established as follows. Let 

so that 

Then 

awt -- - awl awr , awt 
- a', - = P', - ax ay a$t= Y ,  ---A', ayt - 

dw = a d m + / 3 d y + y d x ' + S d y '  
dw' = a'dx + P d y  + y'dlç' + S'dy' 

IRIS - LILLIAD - Université Lille 1 



161 

Also 

EXTENDED TO TWO VARIABLES 

dl 2, dl 2' 

= I dl$ + i d , y ,  d,x' + i d ,  y' 

d,m + id,y, d2x' + i d2y i  

= dis, d,xf +i  dly ,  4s' + i  d,x, dly' 4 %  &y' 1 2 ,  d i  1 / 4 y ,  6s' 1 1 d2x,  dpyl  1 - 1 d.y, dzy' / 
These two quantities are to stand to one another in a non-vanishing ratio, 
which is independent of the arbitrarily chosen differential elernents that 
occur in them. Consequently, when we denote this ratio by J, we must 
have 

ap' - u'p = O, 

ay' - aiy = J, 
a6' - ai& = iJ, 
Br' -$'y = iJ, 
,a' - pls = -J, 
yô' - y'6 = O ;  

and these necessary conditions also suffice to secure the property. 

The first of these conditions shews that a quantity m exists such that 

fi = ma, ,@ = mu'; 

and the sixth shews that a quantity n exists such that 

6 = n y ,  6'=ny1. 

The third condition then gives 

i J = a a i - a ' B = n ( a y i - a J Y ) = n J ;  

the fourth and the fifth conditions similarly give 

i J =  d, - J =  m n J ;  

and the second condition gives the value of J. Thus al1 the conditions are 
satisfied if 

m=.i, n = i ,  J=ayi -a '? .  
But now 

and these are the only equations affecting w alone. The theory of partial 
differential equations of the first order shews that their most general in- 
tegral is any function of x + iy and of x' + +' alone, that is, w is a function 
of z and z' alone. Similarly 

au, - .aw! awl .awi 
- % - ,  -- 5 a~ a y r - Z ~ 3  

IRIS - LILLIAD - Université Lille 1 



18 GEOMETRICAL [CH. I 

and these are the only equations affecting w' alone; hence, as before, .wf 
also is a function of c and z' alone. Moreover, we now have 

aw' awl -- -- a ~ '  a ~ /  
= a', - = - = y' ; a ~  ax azT axf 

and therefore 

Also J is a non-vanishing quantity. Hence w and w' are independent 
functions of z and z' alone-which is the result to be established. 

17. The Riemann definition-property for a function of a single complex 
variable leads to a relation 

6w 62. -=- 
#w 6'2 ' 

this relation, when interpreted geometrically, gives the confornial repre- 
sentation of the w-plane and the z-plane uyon one another. The property 
just established in connection with the quantity 

has a corresponding geometrical interpretation. 

For simplicity, let z and B be represented in the same plane. At any 
point O in the plane, take OA, OB, OC, OD to represent dlz, d l / ,  d,z, ci,/. 
Along the internal bisector of the angle between OA and OD, take O P  
a mean proportional between the lengths OA and OD; and along the 
internal bisector of the angle between OB and OC, take O& a mean 
proportional between the lengths OB and OC. Coinplete the parallelo- 
gram of which O P  and O& are adjacent sides; let M denote the product 
of the lengths of its diagonals, and let 9 denote the sum of the inclinations 
of those diagonals to the positive direction of the axis of real quantities; 
then 

dlz . d2z1 - d,z . d,z' = Meoi. 

Constructing a similar parallelograiri in connection with the variations of 
w and w', we should have 

dlw . d2w1 - d2w. dlwt = Ne+i. 
Consequently 

Nebi = JMdi. 

Now let two sets of pairs of small variations of z and z' be taken, 
one of them le~ding  to a quantity Mee", the other of them leading to a 
quantity Nee"; and let the corresponding quantities, arising out of the 
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l81 INTERPRETATION 19 

two sets of pairs of the consequent small variations of w and w', be Neei 

and r e g i .  Then 
Ne+i = JM&, re+'i = JM'$'", 

and therefore 

which is the extension, to two functions of two variables, of the conformation 
property for a function of one variable. Moreover, the extension is deter- 
rninate; for the parallelograrn, constructed to give the representation of 
d ,z .  d?zf - d,z. d,zf, is unique in magnitude and orientation. 

18. While a geometrical interpretation of functionality can thus be 
provided a t  any place in the two planes of the independent variables, 
a limitation upon the general utility of the rnethod is found at  once when 
we proceed to the transformation of equations. I t  does not, in fact, provide 
any natural extension of the transformation of loci and of areas which occurs 
when there is only one complex variable. 

Thus consider the periodic substitution 

z J 2 = w + w f ,  z f J 2 = w - w ' ,  

which gives 
w J 2  = z + z', w'42 = z -2'. 

Corresponding to any z, z' place, there exists a unique w, w' place. But 
the combination, of a definite locus in the z plane unaffected by variatiorls 
of z' with a definite locus in the z' plane unaffected by variations of z, does 
not lead to similar loci in the planes of w and of w'. Thus suppose that z 
and z' describe the circles 

= z' = a'evi 

in their respective planes; the corresponding ranges in the w and w' planes 
are given by the equations 

neither of which gives a locus in the w plane alone or in the w' plane 
alone. The z circle and the z' circle, which can be described by the 
respective variables independently of each other, determine a places in 
the w and w' planes combined, but there is no locus either in the w plane 
alone or in the w' plane alone corresponding to the two circles. 

Agnin, the content of the field of variation represented by 

i ~ l e a ,  lz'1<af, 

c,an be described very simply ; i t  consists of the a places given by com- 
bining any point within or upon the z circle with any point within or 

2-2 
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20 ANALYTICAL EXPRESSION OF [CH. 1 

upon the z' circle. When this field of variation is transformed by the 
periodic substitution, the new field of variation is represented by 

1tu+wfI<a1/2, !w-wf I<a 'd2 ;  

it consists of co places in the w and w' planes, each corresponding uniquely 
to the appropriate one of the co places in the z and z' planes; but there 
is no verbal description of the w, w' field so simple as the verbal description 
of the z, z' field which has been transformed. 

Analytical expression. of frontiers of two-plane regions. 

19. One consequence emerges from even the foregoing simple illus- 
tration, and i t  is confirmed by other considerations. 

When we have a four-fold field of variation such that places in it are 
represented by a couple of relations 

+ ( 4  y, xf, y') < O ,  + (4 y, x', y') < O, 
the three-fold boundar~ of the field consists of two portions, viz. the range 
represented by . + (x, y, x' , y') = O, 1L. (a, y, x', y') < 0, 

and the range represented by 

+ (a, y, "', y') < O, + (x, y, "', y') = 0. 
These two portions of the three-fold boundary themselves have a common 
frontier represented by the equations 

+ (x, y, x', y') = O, 1L. (x, y, x', y') = O, 
which give a two-fold range of variation. This last range is a secondary or 
subsidiary boundary for the original four-fold field; t'o distinguish i t  from 
the proper boundary, we shall cal1 i t  the frontier of the field. 

Accordingly, we may regard the frontier of a field of the suggested kind 
as given by two equations 

+ (x, y, xr, yf> = 0, 1L. (x, y, x', y') = O. 
(The simpler case of unrelated loci in the planes of z and of 2' arises when 
+ does not contain x' or y', and + does not contain x or y ;  and, at  least 
when + and 9 are algebraic functions of their arguments, the foregoing, 
relations can be modified into relations of the type 

- 
e (8, y, XI) = O, e (a,  y, Y') = O, 

or into relations of the type 

x ( 4  "', y') = O, x (y, XI, y') = O, 
which are equivalent to them.) Now this form of the equations of the 
frontier of the field possesses the analytical advantage that, when the 
variables are changed from z and z' to w and w' by equations 

B (w, w', Z, z') = 0, G (w, w', 2, zf) = 0, 
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191 FRONTIERS 21 

the equations of the frontier of the w, w' field are of the same type as 
before, being of the form 

aJ (u, v, u', v') = O, 'P ((u, v, u', v') = o. 
I t  is necessary to find some analytical expression of the doubly-infinite 
content of these equations. I n  the special example arising out of the 
periodic substitution in § 18, we at  once have the expressions 

v 1/2 = a sin 0 + a' sin ü, v' 2/2 = a sin 8 - a' sin 8', 

giving the doubly-infinite range of variation for u, v, u', v', when b' and 8' Vary 
independently. But when the equations of the frontier do not lead, by 
mere inspection, to the needed expressions, we can proceed as follows. 

Let x, y, x', y'= a, b, a', b' be an ordinary place on the frontier given 
by the equations C# = O and + = O, in the sense that no one of the first 
derivatives of + and of + vanishes there ; and in its vicinity let 

x = a + f ,  y = b + q ,  x' = a' + F), y' = b' + 7'. 

Then we have 

there being only a finite number of terms when + and + are algebraic in 
forin. Introduce two new parameters s and t, and take 

where a, p, y, 6, a', B: y', 6' are constants such that the determinant 

does not vanish. Then the four equations can be resolved so as to express 
5, q, F, q' in terms of s and t ; owing to the limitations imposed, the deduced 
expressions are regular functions of s and t ,  vanishing with them ; and so we 
have each of the variables x, y, m', y', expressed as functions of two real 
variables s and t, regular at  least in some non-infinitesimal range. 
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In  order to indicate the two-fold variation in the content of the frontier, 
it now is sufficient to consider regions of variation in the plane of the real 
variables s and t. Thus, corresponding to a region in that plane included 
within R curve k (s, t )  = O ,  there are frontier ranges of variation in the z 
and the z' planes, deterrnined respectively by the equations 

x -a=p( s ,  t )  1 x' - a = p' (s,  t )  

Y - b = q ( s , t )  , y' - b' = q' (s, t )  , 
O 2 k (s,  t )  O 2 Ic (s, t )  1 

that is, by the interiors of cnrves 

f (x - a, y - 6 )  = 0, g (x' - a', y' - b') = O, 

the current descriptions of these interiors being related. 

Moreover, the equations F = O and G = O potentially express u, v, u', v' in 
terms of x, y, x', y ' ;  and so the frontier range of variirtion in the w and w' 
planes would be given by substituting the obtained values of x, y, x', y', 
as regular functions of s  and t, in the expressions for u, v, PG', v', that is, the 
frontier range of variation is defined by equations of the form 

u, v, u', v' = functions of two real variables s and t. 

But, in dealing with the geometrical content of the frontier, whether with 
the variables z and z' or with the variables w and w', care must be exercised 
as to what is justly included. We are not, for instance, to include every 
point within the curve f ( x  - a, y  - b)  = O conjointly with every point within 
the' curve g (x' - a', y' - b') = O, even if both curves are closed ; we are to 
include every point within either curve conjointly with the point within the 
other curve that is appropriately associable with it through the values of s 
and t. 

Ex. 1. The method just given for the expression of x, y, x', y' is general in form ; but 
there is no necessity to adopt it  when simpler processes of expression can be adopted. 
Thus in the case of the equations 

a complete representation of the variables is given by 

x=sinscost,  y=sinssint,  d=coss, y'=sin2scos2t. 

A full range of variation in the plane of s and t is 

O<sQlr, O<t<27r. 

When we select, as a portion of this range, the area of the triangle bounded by the lines 
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the limiting curves corresponding to f=O and g=O are a curvilinear figure made up 
of a straight line and two quarter-circles in the z-plane, and another curvilinear figure 
in the z'-plane made up of a parabola and arcs of the two curves 

Ex. 2. For the periodic substitution 

~J2=z+z ' ,  w1JZ=z-I', 

a z, z' frontier defined by the equations 

d+x'"l, y2+y'8=l, 

is transformed into a w, w' frontier defined by the equations 

u2+u12=1, v2+v12=1; 

that is, the frontier is conserved unchanged. 

Ex. 3. To shew how a field of variation can be limited, consider the four-fold field 
represented by the equations 

xZ+y2+d2<1, 2x2+3y2+yf2<1. 

As regards the z-plane, the first equation allows the whole of the interior of the circle 
x2+y2=1. The second equation allows the whole of the interior of the ellipse 2x2+ 3y2= 1. 
The region commori to  these areas is the interior of the ellipse ; hence the content in the 
8-plane is the interior of the ellipse 2x2+3y2=1, so that 4 raiiges from O to 3, and y2 
ranges from O to  4. 

As regards the 2'-plane, we have 
3ye-y2=2-2, 2~ '2-y '2=l+y~.  

Because of the range of xz, the h t  of theve equations gives the region between the two 
hyperbolas 

32'2 - y'2 = 2, 3.99 - y'z = B. 
Because of the range of y2, the second of these equations gives the region between the two 
h y perbolas 

2.@-512=4, 2~~2-y12=1. 

The required content in the 2'-plane is the area common to these two regions ; that is, i t  
is the interior of two crescent-shaped areas between the hyperbolas 

2.~~2 1, b 1 2  -y = 2. 

The whole field of four-fold variation of the variables z and z' is made by combining 
any point within or upon the first ellipse with any point within or-pon the contour of 
each of the crescent-shaped areas. 

Ex. 4. Discuss the four-fold field of variation represented by the equations 

x2+y2 + 2a (xx' + yy') e k2, 

2% yi2 + 2e (q' - yx') < 12. 

20. The last two examples will give some hint as to the process of 
estimating the field of variation when i t  is limited by a couple of frontier 
equations in the form 

8 (x, y, x') = O, 0 (x, y, y') = O, 

or in the equivalent form 

(x, x ,  y') = O X (y, x', y') = o. 
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We draw the family of curves represented by 8= 0 for parametric values 
of x'; for limited forms of 8, there will be a limited range of variation for 
x and y, bounded by some curve or curves. Similarly, we draw the family 
of curves represented by 0 = 0 for parametric values of y' ; as for 8, so for 0, 
there will be a limited range of variation for x and y, bounded by some other 
curve or other curves. Further, the equations x = O and X = O may impose 
restrictions upon the range of x' and the range of y', which are parametric 
for the preceding curves. I n  the net result for the z-range, when subject to 
the equations B = O and O = O, we can take the interna1 region common to al1 
the interiors of these closed curves. 

The same kind of consideration would be applied to the equations x = 0 
and X = O, so as to obtain the range in the 2'-plane as dominated by these 
equations. 

And the four-fold field of variation for z and z' is obtained by combining 
every point in the admissible region of the z-plane with every point in the 
admissible region of the 2'-plane. 

Note. I n  the preceding discussion, a special selection is made of the four-fold fields of 
variation which are determined by a couple of relations + Q 0, + < 0. 

I t  is of course possible to have a four-fold field of variation, determined by a single 
relation + < 0. The boundary of such a field is given by the single equation 4 =O ; there 
is no question of a frontier. 

It is equally ~ossible to have a four-fold field of variation, determined by more than 
two relations, say by + Q O, + < 0, x < O. The boundary then consists of three portions, 

, x 4 0 ; + Q 0, + < 0, x=O. The frontier given by +=O, +<O, xQO; +<O, + = O  ' 

-0 ; +=O, +<O, x=o; $=O, +=O, consists of three portions, given by @ < 0, +=O, ,y - 
X < O. And there could arise the consideration of what may be called an edge, defined by 
the three equations +=O,  JI = O, x = 0. 

Sufficient illustration of what is desired, for ulterior purposes in these lectures, is 
provided by the consideration of four-fold fields determined by two relations. 
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CHAPTER II 

Lineo-linear transformations. 

21. WHATEVER measure of success may be attained, great or small, with 
- 

the geometrical representation, the analytical work persists; the geometry 
is desired only as ancillary to the analysis. So we shall leave the actunl 
geometrical interpretation at  its present stage. 

The fundamental importance of the lineo-linear transformations of the 

in the theory of automorphic functions of a single variable is well-known. 
We proceed to a brief, and completely analytical, consideration of lineo- 
linear transformations of two complex variables*, shewing the type of 
equations that play in the analytical theory the same kind of invariantive 
part as does a circle or an arc of a circle in the geometry connected with 
a single complex variable. 

These lineo-linear transformations between two sets of non-homogeneous 
variables have arisen as a subject of investigation in several regions of 
research. Naturally, their most obvious analytical occurrence is in the 
theory of groups. When the groups are finite, they have been discussed 
for real variables by Valentiner t, Gordanf , and others ; they are of special 
importance for algebraic functions of two variables and for ordinary linear 
equations of the third order which are algebraically integrables. Again, 
and with real variables, they arise in the plane geometry connected with 
Lie's theory of continuous groupsi/. They have been discussed, with complex 

* For much of the following investigation, as î'ar as the end of this chapter, reference may 
be made to the second of the author's papers quoted on p. 1. 

t Vzdensk. Selsk. Skr., 6 R ~ k k e ,  naturuid. oy math. Afd., v., 2 (1889). 
f Math. Ann., t. lxi (1905), pp. 453-526. 
§ See the author's Theory of Differential Equations, vol. iv, ch. v. 
II Lie-Scheffers, Vorl. il. cont. Gnippen, (1893), pp. 13-82. 
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26 LINEO-LINEAR TRANSFORMATIONS [CH. II 

variables, by Picard* in connection with the possible extension, to two in- 
dependent variables, of the theory of automorphic functions. And a mernoir 
by Poincarh has already been mentionedt. 

22. We take the general lineo-linear transformation (or substitution) 
between two sets of complex variables in the form 

w - - w ' - 1 
az + bz' + c a'z + b'z' + c' - a"z b"z' + c" ' 

where al1 the quantities a, b, c, a', b', cf, a", b", c" are constants, real or 
complex. The first step in the generalisation of the theory for a single 
variable is the construction of the canonical form ; and this can be achieved 
simply by using known results: in the linear transformations of homogeneous 
variables. For our purpose, these are 

y, = axl + bx2 + ccz,, 
yP = n'xi + b'x2 + c'x,, 
y3 = Ü x ,  + b " ~ ,  + c"x3, 

so that we have 
z 2' 1 - - ----- w w' 1 - - 

X l  4 ~3~ y1 y2 y3 

The quantities w and w' are independent functions of z and z' ; and there- 
fore the determinant 

a ,  b ,  c 

a', b', c' 

a", bu, c" 

, 

denoted by A, is not zero. As a matter of fact, 

A 
J ("5) = + '+ c..Y. 

The equation 
a - 0 ,  b , c 

a' , b' - 0, c' 

d ' ,  b " ,  c"-8  

= O  

is called the characteristic equation of the substitution. This characteristic 
equation is invariantive when the two sets of variables are subjected to the 
same transformation ; that is to say, if we take 

W - - W' -- 1 
aw+pw'+ y a ' w + ~ ' ~ ' + ~ ' ' - a " w + ~ " w ' + ~ " '  

Z - - 2' - - 1 
az + pz' + y a'z + ,@zf + y' a"z + @"z' + y" ' 

* Acta math., t. i (1882), pp. 297-320; ib. ,  t. ii (1883), pp. 114-135. 
t See the reference on p. 1. 
f Jordan, Traité des substitutions, Book ii, oh. ii, § v ;  Burnside, Throry of groups, (2nd ed., 

1911), ch. xiii. 
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and express W and W' in terms of Z and Z', the characteristic equation of 
the concluding substitution between W ,  W', 2, 2' is the same as the above 
characteristic equation of our initial substitution between w, w', z, 2'. 

There are three cases t o  be discussed, according as the characteristic 
equation, which is of the form 

83 - Alea + A,% - h = 0, 

has three simple roots, or a double root and a simple root, or a triple root. 

Case 1. Let al1 the roots of the characteristic equation be simple; 
and denote them by %,, 8,. 8,. Then quantities a, : P, : y,, determined as 
to their ratios by the equations 

a a, + d B ,  + a'o/, = 8, a, , 
bar + b'P, + b"y, = Br&, 

c a, + c ' A  + c" yr = 8, y,, 
are such that, if 

Yr=a,y1+Ay2+y,y , ,  Xr=a,.xl+Prx2+~,.x, ,  
we have 

Y, = %,X,. 
The canonical form of the homogeneous substitution is 

and so the canonical form of the lineo-linear transformation is 

where the quantities A and p, called the multipliers of the transformation, 
are 

being the quotients of roots of the characteristic equation. The multipliers 
are unequal to one another, and neither of them is equal to unity. 

This canonical form can be expressed by the equations 

W = XZ, W' = 

Case II .  Let one root of the characteristic equation be double and 
the other simple; and denote the roots by %,, e l ,  8,. The canonical form 
of the homogeneous substitution is 

Y*=B,X, ,  Y,=ICX,+B,X,, Y3=8,X3, 

where the forms of the variables X and Y are the same as in the first case ; 
and the constant IC, in general, is not zero. 
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The canonical form of the lineo-linear transformation is of the type 

where 

and the constant CT, in general, is not zero. The repeated multiplier k is 
not equal to unity. 

Case III. Let the characteristic equation have a triple root 8. The 
canonical form of the homogeneous substitution is 

Y 1 = 8 X 1 ,  Y ,=aXl+BX, ,  Y 9 = B X 1 + y X , + 0 X s ;  

and the canonical form of the lineo-linear transformation is of the type 

W = Z + p ,  W f = Z ' + o Z + r r  

where the repeated multiplier is unity, and the constants p, a, T, in general, 
do not vanish. 

23. Any power of the transformation can at  once be derived from its 
canonical form. Let the transformation be applied rn times in succession, 
and let the resulting variables t e  denoted by w, and wml; then 

%w,+ P2wm1+n - + P2z' + %a 

a3 wm + P3wm' + y3 - " a32 + p3z1 +y$, 

expressing wm and wm' in terms of z and z'. 

When hm = 1 and p = 1, the mth power of the transformation gives 
an identical substitution. For then 

aiw,  + PiWn' + ri - a 2 w ~  + &w,' + 7 2  = ~3wm + P3wm1 + y.3 
- - 

a12 + 612' + 71 .IZ + Pzz' + 7.2 a32 + Paz' + y3 
When each of these three equal fractions is denoted by p,  we have 

a, (wm - pz) + Bi (w,' - pz') + y1 (1 - p )  = O, 
a, (w, - pz) + P2 (wml - pz') + y2 (1 - P )  = 0, 

a3 (wm - pz) + P s  (wm' - pz1) + Y B  (1 - P )  = 0. 
The determinant of the coefficients a, B, y is not zero, because otherwise 
the canonical form of the original transformation would contain only one 
independent equation ; hence 

w,-pz=o, W ~ ' - ~ Z ' = O ,  1 - p = o ,  
that is, 

Wm = Z, w,' = z', 

shewing that the mth power of the original transformation gives an identical 
substitution, if Lm = 1 and pm = 1. 
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Invariant centres. 

24. Certain places are left unaltered by the lineo-linear transformation 
between the z, z' field and the w, w' field. On the analogy with the . . 

corresponding points in the homographie transformation w (cz + d)  = az + b, 
these unaltered places may be called double places or (because repetitions 
of the transformation still leave them unaltered) they will be called the 
invariant centres of the transformation. 

Returning to the initial form of the transforination, and denoting any 
invariant centre by r and  c', we have 

with our preceding assumptions, O manifestly is a root of the characteristic 
equation. Hence when al1 the roots of this equation are simple, we generally 
have three invariant centres, say cl and f;', 5., and c;, r3 and r,', associated 
with O,, O,, O3 respectively. I t  is easy to verify that 

so that, as O, and 0, are unequal, we must have 

Similarly 

while 

Thus the invariant centres are given by the equations 

a result which can be inferred also from the canonical form of the trans- 
formation. 

In deducing this result, certain îacit assumptions have been made as tn the exclusion 
of critical relations. I t  will ewily be seen that the transformation 

is not an exarnple (for the present purposc) of the general transformation. 
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Manifestly, we can take 

2' , 
cs: 
cl', 

as a canonical form of the lineo-linear transformation. 

This canonical form leads a t  once to an expression of the relations 
between the two sets of variables in the immediate vicinity of the invariant 
centres. Near cl and S;', we have 

Near G and c,', we have 

Near c3 and t;:,', we have 

Moreover this new canonical form, involving explicitly the places of the 
invariant centres in their expressions, shews that the assignment of three 
invariant centres and two multipliers is generally sufficient for the cori- 
struction of a canonical form of a lineo-linear transformation of the first 

type. 
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Ex. 1. Some very special assignments of invariant centres may lead to equations that 
do not characterise lineo-linear transformations. The revulting eqiiations, in that everit, 
belong to the range of exceptions. 

where a is neither zero nor unity, and if we assign arbitrary multipliers X and p different 
from unity and different from one another, the canonical equations can be satisfied 
only by 

w+w1=0, z+d=O, 

which is not a lineo-linear transformation of the z, z' field into the w, w' field. 

Other special examples of this exceptional class can easily be recognised. One 
inclusive example is given by the relations 

and then the equations acquire the unsuitable form 

Ex. 2. When neither point in any one of the three invariant centres is at  infiuity, 
we can (by unessential changes of al1 the variables that amount to change of origin, 
rotation of axes, and magnification, in each of the planes independently of one another) 
give a simplified expression to the canonical form. 

Suppose that no one of the quantities cl, ci, Sz, (4, c3, 6; then is zero ; alternative 
forrnm, when this supposition is not justified, are left as an exercise. We theii transforin 
the z-plane and the w-plaue by the congruent relations 

.-t=(t-Tdz, w-t=(<z- i l )  w ;  
and we transform tho &plane and the w'-plane by the congruent relations 

d-Ci'=(&'-[i')z', w1-[i'=([ii'-[i') w: 
AU of these are of the type just deucribed ; they require the same change of origin, the 
same magnification, and the same rotation, for the z-plane and the w-plane ; aud likewiue 
for the 2'-plane and the w'-plaue. The effect of the transformation is to place, in the 
2, 2' field and the W, W' field, two of the invariant centres a t  O, O and 1, 1. 

The third invariaut centre then becomes a, a', where 

The equations, in a canonical form, of the lineo-liriear transformations of the Z, 2' field 
into the W, W' field, having O, 0 ;  1, 1 ; a, a'; for the invariaut centres, are 

N; N", 1 2, Z', 1 

1, 1, 1 

W - W '  - 
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where X and p are different from one another and where (so far as present explanations 
extend) neither X nor p is equal to unity. 

But it  must be remembered, in taking these equations as the canonical form, that 
definite (if special) identical modifications of the e-plane and the w-plane have been made 
simultaneoiisly, and likewise for the 2'-plane and the d-plane. The result of these 
modifications, in so far as they affect the original lineo-linear transformation, is left for 
con~ideration as an exercise. 

Invariantive Frontiers. 

25. In the theory of automorphic functions of a single complex variable, 
i t  proves important to have bounded regions of variation of the independent 
variable which are changed by the homographic substitutions into regions that 
are similarly bounded. Thus we have the customary period-parallelogram for 
the doubly-periodic functions ; any parallelogram, urider the transformations 

remains a parallelogram and-with an appropriate limitation that the real 
part of o,/* is not zero-the opposite sides of the parallelogram correspond 
to one another. Similarly a circle or a straight line, under a transformation 
or a set of transformations of the type 

(cc + d )  w = az + b, 

remains a circle or sornetimes becomes a straight line; and so we can 
construct a curvilinear polygon, suited for the discussion of automorphic 
functions. These boundnry curves-straight lines and circles-are the 
simplest which conserve their general character throughout the trans- 
formations indicated; they are the only algebraic curves of order not 
higher than the second which have this property. They are not the only 
algebraic curves, which have this property, when we proceed to orders higher 
than the second ; thus bicircular quartics are homographically transformed 
into bicircular quartics. 

For the appropriate division of the plane of the variable, when auto- 
morphic functions of a single complex variable are under consideration so 
as to secure an arrangement of polygons in each of which the complete 
variation of the functions can take place, other limitations-such as relations 
between constants so as to secure conterminous polygons-are necessary. 
They need not concern us for the moment. What is of importance is 
the conservation of general character in the curve or, what is the same 
thing, conservation of general character in the equation of the curve, under 
the operation of a hornographic transformation. 

26. Corresponding question? arise in the theory of functions of two 
complex variables. We have already seen that, when a z, z' field is determined 
by two relations, its kontier is represented by a couple of equations between 
the real and the imaginary parts of both variables; and therefore what 
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is desired, for Our immediate illustration, is a determination of the general 
character of a couple of equations which, giving the frontier of a z, z' field, 
are changed by the lineo-linear transformation into a couple of equations 
which, giving the frontier of a corresponding w, w' field, are of the same general 
character for the two fields. The invariance of form of such equations, a t  
any rate for the most simple cases, must therefore be investigated. 

We shall limit ourselves to the determination of only the simplest of 
those frontiers of a field of variation which are invariantive in character 
under a lineo-linear translation. Also, we shall consider only quite general 
transformations ; special and more obvious forms may occur for special trans- 
formations, such as those contained in the simplest finite groups. Accordingly, 
in the equations 

W - - w' - 1 
az + b z  + c a'z + b'z' + c' - a"z + b"z' + c" ' 

we resolve the variables into their real and imaginary parts, viz. 

z = x + iy, Z' = x' + iy', w = u + iv, w' = u' + iv' ; 

and we require the s im~lest  equations of the form 

which, under the foregoing transformation, become 

<P (u, v, u', vl) = O, Yî ( u ,  21, ut, v') = O, 

where @ and Yî are of the same character, in degree and combinations of 
the variables, as + and +. Moreover, the constants in the transformation 
may be complex ; so we write 

a = a, + ia,, b = 6, + ib,, c = c, + ic2 ,  
1 a' = a,' + ia,', b' = b,' + ib,', c' = c,' + ZC, , 

a'' = al" + ia,/', bt' = b," + ib/, = c " + ic/, 

in order to have the real and imaginary parts. Lastly, let 

then the real equations of transformation are 

Du = NIN," + A',N[, 

DV = IV* N," - ATIN,", 
Du' = N,'N," + bbiN,", 
Dv' = N,'Nl" - lV,'N,''. 
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Further, we have 
D (u" v2) = N; + Na2, 

D (UU' + UV') = NIN: + NaN2', 
D (UV' - U'V) = NIN,' - AT2N:, 

D (ut' + v") = ATl" + 3,". 

These equations express each of the quantities u, v, u', v', ,u2 + v2, UU' + vv', 
UV'- U'V, u4+wf2, in the form of a rational fraction that has D for its de- 
nominator. The denominator D and each of the numerators in the eight 
fractions are linear combinations (with constant coefficients) of the quantities 
1, x, y, x', y', xa + y2, xx' + yy', xy' - x'y, xP" yu. 

The same form of result holds when we express x, y, m', y' in ternis of 
U, V, u', v'; any quantity, that is a linear combination of 1, x, y, x', Y', 
z2 + y: 8s' + yy', xy' - dy, x" + y'', comes to be a rational fraction the 
numerator of which is a linear combination of 1, u, v, u', v', u2+ va, UU' + vu', 
UV' - u'v, un+ v"; the denominator is a linear combination of the same 
quantities, and is the sarne for al1 the fractions that represent the values 
of x, y) x') y', x2 + y2, xx' + yy', xyf - YS', xf2 + 9''. Consequently, any equation 

A (x2 + ya) + C (xx' + yyf) + D (xy' - yx') + B (de + y") 
+ EZ + J'y + Gx'+ Hy'= K 

is transformed into an equation 

A' (ua + v2) + C' ( U U  + vu') + Dr (UV' - u'v) + BI (u" + vfP) 

+ E'u + B'v + e u ' +  H'v'= Kt, 

where al1 the quantities A, ..., K are constants, as also are A', ..., K', 
each member of either set being expressible linearly and homogeneously 
in ternis of the members of the ot,her set. 

27. Thus the transformed equation is of the same general character, 
concerning combinations and degree in the variables, as the original equation; 
and there is little difficulty in seeing that i t  is the equation of lowest degree 
which has this general character of invariance. Further, two such simul- 
taneous equations are transformed into two such simultaneous equations of 
the same character. 

This is the generalisation of the property that the equation of a circle 
is transformed into the equation of another circle by a homographic sub- 
stitution in a single complex variable. 

Accordingly, when a z, z' field having a frontier given by two equations 
of the foregoing character is transformed by a lineo-linear transformation into 
a w, w' field, the frontier of the new field is given by two similar equations. 
We define such a frontier as quadratic, when i t  is given by equations 
of the second degree in the variables; and therefore we can sum up the 
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whole investigation by declaring that a z, z' Jield, which has a quadrntic 
front&, i.s transformed by a Eineo-linear transformation into a w, w' Jield, 
which also has a quadratic frontier. 

28. One special inference can be made, which has its counterpart in 
homographic substitutions for a single variable, viz., when al1 the coefficients 
in a lineo-linear transformation are real, the axes of real parts of the com- 
plex variables in their respective planes are conserved. For when al1 the 
constants are real, we have 

vD = ( d b  - ab") (xy' - x'y) + (ac" - a"c) y + (bc" - b"c) y', 
v'D = (d'b' - a'b'') (xy' - x 5 )  + (a'c" - a%') y + (b'c" - Vd) y'; 

and therefore the configuration given by y = O and y' = O becomes the 
configuration given by v = O and v' = O. The converse also holds, owing 
to the lineo-linear character of the transformation. 

These axes of real quantities in the planes of the complex variables 
are, of course, an exceedingly special case of the general quadratic frontier, 
which can be regarded as given by the two equations 

Al  (aa + ya) + B, (x" + y") + Cl (xm' + yy') + Dl (xy' - x'y) 
+ E 1 x + F l y +  G 1 x + H l y = K l ,  

A2  (9 + ya) + B, (3" + y'') + Cz (EX' + YY') + D2 (xy' - X'Y)  

+ E 2 x  +F2y + G2x + f 2 y  = Kz. 

Let z and Z' be the conjugates of z and z respectively, so that 

2 = E - iy,  a' = x' - iy' ; 

then the general quadratic frontier can also be regarded as given by the 
equations 

A1zz  + B,zfa' + Clf2z' + Dlfz'z + E,'z + F,'z + G,'z + H,S = K,, 
A,zx + B2zf2' + Cizd + D,'z's + E,'z + FlZ + G,'z + Hi2 = K2, 

where A,, B,, K1,  A,, B,, K, are real constants, while C,' and D,', C,' and D,', 
E,' and P;, E,' and P. ,  G,' and H;, G,' and H,', are pairs of conjugate 
constants. 

Manifestly any equation of this latest form is transformable by the 
lineo-linear substitution into another equation of the same form. 

29. Another mode of discussing the frontier of a z, z' field, which 
is represented by two equations that have an invariantive character under 
a lineo-linear transformation, is provided by the generalisation of a special 
mode of dealing with the same question for a single complex variable. 

The general homographic substitution affecting a single complex variable 
has the canonical form 

w - a  2 - a  
; j  = K z y Ç 1  * 

3-2 
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where a and f i  are the double points of the substitution, and K is the 
multiplier. Let 

2~ = u + iv, z = x + iy, OL = a + ia', /3 = b + ib', K = !ceki, 

where u ,  v, x, y, a, a', b, b', IC, k are real; then 

and therefore 

(U - b) (v - a') - (u  - a )  (v - 6') 
tan-' 

( u - a ) ( u -  b)+ ( v -  a ' ) ( v -  b') 

( z  - b) (y - a') - ( z  - a )  (y - b') - tan-' = k. 
( x  - a )  ( x  - b )  + (y - a') (y - b') 

Hence the circle 

( x - a )  (z- b )  + ( y - a ' )  ( y  - b') = m {(x- b) ( y -  a') - (x-a) ( y  - b')}, 

which passes through the double points (a, a') and (b, b') of the substitution, 
is transformed into the circle 

(u - a)  (U - b) + (v - a') (v - b') = M {(u - b) (v - a') - (u - a )  (v - b')}, 

which also passes through those comrnon points. The constants m and M 
are connected by the relation 

m - M  =( l+ mM) tan Ic. 

At a common point, the two circles cut a t  an angle k, which depends only 
upon the multiplier; thus when an arbitrary circle is taken through the 
common points, i t  is transforined by the homographie substitution into 
another circle through those points cutting i t  a t  an angle that depends only 
upon the constants of the substitution. 

This process admits of immediate generalisation to the case of two 
complex variables. Let the lineo-linear transformation in two variables be 
taken in its canonical form; and write 

a,z + P,z' + n = 1,' + il,", a, w + fi1wr + y, = L; + iL,", 

a,z + P,z' + y2 = 2; + ,il/, a,w + P,w' + y2 = Ld + iL:, 

a3z + P@' + YQ = 1; + il3", a3w + &w' + y.? = L3' + iL3I1, 

where l,', l,", l,', l,", l,', 1," are real linear functions of x, y, x', i and L,', L,", 
L,', L,", L l ,  L," are respectively the same real linear functions of u, v, u', v'. 
The three invariant centres are the places given by the equations 

1,' = O 1,' = O 

1,' = O 1,' = O 

z / =  O 1," = O 4"= O 
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and they are also the same places given by what are effectively the saine 
equations 

L,' = O 

L; = O  L,' = O  

The canonical form of the lineo-linear transformation now is 

L,' + iLIM 1,' + dlf' = h ---- 
L,' + iL," 1; + i l /  ' 

and therefore, among other inferences, we have 

L,'L," - L,'L," 1, ' l~ - 1.7 !' 
t an-' ,, - tan-l 

L;L; + LIVL, l,, = - arg X, 
1;&' + l;13 

LZL," - LIfL?" 
tan+ 

lZ111)1 - l,ll;l ,, - tan-l 
LiL,' + L:' L, 1,'11, + 1,"1," = 

arg h - arg p. 

Accordingly, the frontier configuration, represented by any two of the three 
equations 

1;z; - z;z/ = p  (1;l; + l / l / ) ,  

1111/ - lJ11)1= q (1,'l; + l /Z/) ,  

1;1: - 1;za' = r + l;l:), 
where the three constants p, q, r are subject to the relation 

so that the three equations are really equivalent to only two independent 
equations, is changed by the transformation into the frontier configuration 
represented by any two of the three equations 

L,'L," - LiL," = P ( L i  L,' + LQ'La'), 

L,'L," - L,'L," = Q (L,'L,' + L,"LY'), 

L,'L," - L,'La' = R (L,'L,' + L,"L,"), 

where the three constants P, Q, R are subject to the relation 

so that these three equations are really equivalent to only two independent 
equations. Moreover, if 

p = Ge@, A = H e h i ,  
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where y, h, G, H are real constants while G and H are positive, we have 

I t  is easy to verify that, if either of the relations 

is satisfied, the other also is satisfied in virtue of these last equations. 

The quadratic frontier of the z, z' field and the quadratic frontier of 
the transformed w, w' field both pass through the three invariant centres of 
the lineo-linear transformation. 

Ex. 1 In  connection with the homographic substitution in a single variable 

(in the preceding notation), shew that the constant m in the equation of the circle 

is the tangent of the angle a t  which the circle cuts the straight line joining the double 
points of the substitution. 

Prove also that, if 2d is the distance between the double points, r is the radius of the 
foregoing circle, and R the radius of the circle into which i t  is transformed, 

1 2 cos k 1 sin2 k --- +-=- 
R2 P b  PZ di . 

Ex. 2. Shew that the circle 

is transformed, by the homographic substitution, into the circle 

where 
(u - a)" (v - b)2 = 3 2  {(u - d)2 + (V - r)2}, 

N= rn. 

Interpret the result geometrically. 

Ex. 3. Construct a lineo-linear transformation which hm O, 0 ; 1, 1 ; i, - i for its 
invariant centres; and shew that there are quadratic frontiers of the z, z' field, which 
pass through these invariant centres aud are represented by any two of the three 
equations 

~ + ~ ~ + ~ + 2 / ~ - 2 ( ~ . d + y y ' ) - 2 ( . ~ y - ~ ' y ) - 2  @-y') 

= a  {xz + y2 - (d2  + yt2) + 2 (x - d)), 

provided the constants a, 8, y satisfy the relation 
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Verify that the lineo-linem transformation changes these equations into equations in 
u, v, u', v' of the same form but with different constants u', $, y' satisfying the relation 

y' (O' +pl )  = 2'1' + 2b' - y'. 

Shew that, a t  the invariant centre O, O, small variatioris dz and dz' cause smitll variations 
dw and dw' such that 

1 dzo - dw' = - (dz - dz'), 
X 

and obtain the relations between the small variations at each of the other two invariant 
centres. 

invariants and Covariants of qUadratic frontiers. 

30. Owing to the importance of the quadratic frontier, because i t  is 
given by two equations of the second order that are invariantive in geiieral 
character under any lineo-linear transformation, we shall briefly consider 
those combinations of the coefficients which are actually invariantive under al1 
such transformations. The proper discussion of the invariants and covariants, 
which belong to two equations of any order that are invariantive in general 
character under the transformations, requires an elaboration of analysis that 
will take us far from the main purpose into what really is the full theory of 
invariants and covariants. I t  will be sufficient to give the elements of that 
theory as connected with the fundatnental procedure. Moreover, we shall 
take a general quadratic frontier and not merely the special class which 
pass through the invariant centres of an assigned transformation; and we 
require the quantities which are invariantive under al1 lineo-linear trans- 
formations and not merely under one particular transformation. We further 
shall only deal with such invariantive quantities as are algebraically 
independent of one another. 

31. There are several modes of procedure; in al1 of them, i t  is con- 
venient to use homogeneous variables, as was done in establishing the 
canonical form of the lineo-linear substitution. So we take 

Also, as the variables respectively conjugate to z, z', w, w' have been intro- 
duced, we shall require variables respectively conjugate to x,, x2, x3, yl, ys, y3; 
denoting these by %, x,, E3, il, y,, y,, we take 
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For the present purpose, we take a z, z' field determined by two relations 
Q < 0, Q' < O, where 

& = Aylyl + BylgZ + C . l Y 3  + Ey2s +9238 
+ GysYi + Hy8jjz + Kyajjû, 

Q'= dfylYi + Bi,% + CJy15J3+D'y2ii + E'y2&+ Fj15?i3 
+ G '~3% + + Kfy3~3; 

its quadratic frontier is given by the equations 

& = O ,  q = o ,  
mhich, on division by the non-vanishing quantity y,y3, .acquire the form of 
our earlier equations. I n  Q the coefficients A, E, K are real, while B and D, 
C and G, B and H, are conjugates in the stated pairs; and similarly for the 
coefficients in Q'. 

The method of procedure that we shall use is based upon an application 
of Lie's theory of continuous groups to these quantities Q  and &; and the 
application proves fairly simple in detail when we use umbral forms 
simultaneously with the expressed forms. Accordingly, we introduce 
umbral coefficients a,, u2, a,, a,', u,', ai, with their conjugates cr,, 6, ü3, 
- f  - /  

ai ,  a, ,  ü,' ; we take 

We then both define and secure the umbral character of these new 
coefficients by imposing the customary condition that the only combinations 
of the umbral constants which have significance are those leading to the 
expressed coefficients in the form 

A=a,ü , ,  D=a2ül,  G=u3ül ,  
B=alü , ,  E=u2&, H=u3&, 
C=u,ü,, P=u,ü3, K = u 3 & ;  

and likewise for the coefficients of Q'. 

When the lineo-linear transformation, in the forrn 

yl = axl + bxz + cx3 

y2 = a'x, + Vx, + c1x3 I , 
y3 = atfs1 + bffz2 + /;i, J 

and its conjugate, in the form 
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are applied to Q and Q', these become P and P' respectively, so that 
we take 

Q = P ,  Q f = P ' ,  
and then 

where s,, s2, s,, s,', si, s,' are new umbral coefficients, while g l ,  S,, g,, S,', s,', 9,' 

are their conjugates ; and we write 

P =  SS, Q =  S'X', 

regarding II as transformed into S, n into s, II' into S', and n' into sr. 
Then the laws of relation between the umbral coeficients in Ii and S, and 
in and g, are 

s1 = au, + a'u, + a"u, 3, = iZ, + U'ü, + E"ü, 
+ - 6- 

~3 = CU, + C'U~ + c"u3 S3 = Ca1 + C'a2 + ë"ü3 

4 = bc1 + b'u, + Vu3 , , - a, + PZ, + b1'ü3 

where A has the same significance as before, is its conjugate, and neither 
A nor A vanishes. 

and the same laws of relation hold between the umbral coefficients in  ii' 
and S', and in II' and 3'. Finally, in connection with our transformation, 
we write - 

A =  

32. As an example of an invariant, consider the quantity 

a ,  b ,  c , A =  

a' , b' , cf 

a", b", c" 

I= 

To express i t  in umbral symbols, three sets of these are required because i t  
is of degree three in the non-umbral coefficients. Denoting these by 
a, s,, sa, t l ,  t2, ta, u,, ~ ' 2 ,  u3, with their conjugates, we easily find that 1 is 
equal to 

A,, BI, Cl . 
Dl, El, FI 

( 7 1 ,  Hi, KI 

& 

a ,  b ,  ë 
- 

(n', 6', Cf 
- 

a", b': 2" 

, 

81 , s2 , 83 

1 2 2 9 8 

%, ' I ls, u3 

31 , g2 9 33 , 
6 9 6 , 6 
- - - 
u1, u2> u3 
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that is, to 

a relation which establishes the invariantive property of the quantity I 
which is a fuiiction of the non-umbral coefficients of P alone. 

The same combination of the coefficients of P' alone is easily seen to be 
an invariant. The simplest covariants are P and P' ; for we have 

Q = P ,  Q'=P'. 

33. Passing now to the consideration of invariants and of covariants 
that belong to the general quadratic frontier, we define any quantity, 

to be such a function if it satisfies a relation 

where @ is the same function of x,, x,, xa, Z1, g, g ,  A,, ..., K,, A,', ..., K,' 
as 4 is of its own arguments. We shall deal only with integral (not with 
fractional) homogeneous combinations of the variables and the coefficients ; 
and we assume that, in the foregoing relation which defines an invariant 
or a covariant, the index of A is the same as that of A because we are 
limiting ourselves to the properties of real frontiers as defined by two 
real equations. And we retain the customary discrimination, by the occur- 
rence or the non-occurrence of variables, between a covariant and an 
invariant. 

By Lie's theory of continuous groups*, i t  is sufficient to retain the 
aggregate of the most general infinitesimal transformations of a continuous 
transformation in order to construct the full effect of the finite continuous 

* For proofs of this fundamelital theorem, see Campbell, Tlwory of continuous groups, 
chap. iii. 
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transformation. Accordingly, for Our immediate purpose, i t  is sufficient to 
obtain an algebraically complete aggregate of integrals of the set of partial 
differential equations which charncterise the fiil1 tale of the infinitesimal 
transformations in question. To obtain these, we take 

a = l + e l ,  b =ez ,  G = e 3  
, a = c d ,  b' = 1 + e 5 ,  G' = E s  

a" = e,, 6 , C" = 1 + eg 

For the most general infinitesimal transformation, al1 the quantities e and T 
are small, arbitrary, and independent of one another, subject to the condition 
that en and en, for the nine values of n, are conjugate to one nnother. 

The laws of relation among the umbral coefficients now are 

1 
- - 

S1 - Ul = €1 Ul + € 4 ~ ~  + €7 C3 si - cl = EIÜi + E,Ü2 + T7Ü3 
S 2 - U ~ = f 2 c l + f g ~ 2 + € 8 6 3  , S2-Ü2=T2Ül+E,&+T8Z3 . 
S3 - U3 e3c l  + f6ff2 + € g o 3  3 - ? -  - 3ff1-k TsÜ2 + TgÜ3 

of the quadratic frontier are given by the equations 

1 
Consequently the infinitesimal variations of the coefficients in the equations 

with a corresponding set of nine expressions for the infinitesimal variations 
of the coefficients A', . . . , K'. 
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and therefore, so far as small quantities up  to the first order are concerned, 
we have 

And, lastly, we have 
na = 1 + ,, + ,, + t.,, +?, + T5 + F9. 

34. Now any covariant or invariant satisfies the equation 
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and expand both sides of the equation in powers of the small quantities e 

and f. Equating the coefficients of these small quantities on the two sides, 
and denoting our covariantive function 

by +, we have the partial differential equations 
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as equations satisfied by the function +. Moreover, by Lie's theory, any 
function +, which satisfies al1 these equations, is a covariant (or invariant) 
of the required type. 

35. Having regard to the fact that ultimately we are dealing with 
quadratic frontiers and with transformations between w, w' and z, z', we 
shall consider only those integral functions 4, which are homogeneous (say 
of order m)  in y,, y,, y, and homogeneous (also then of order m) in y,, Yz, y3. 
We also shall consider only such functions 4 as are homogeneous (say of 
degree n) in the coefficients A,  ..., K and homogeneous (say of degree n') 
in the coefficients A', . . . , K'. Then, from the first set of equations and by 
means of Euler's theorem on homogeneous functions, we have 

I t  follows that every integral invariant of a quadratic frontier has its degree 
in the coefficients of the boundary a multiple of 3. 

When the index p is taken as equal to the foregoing value, and when we 
note the equality between the indices of A and in the relation which 
defines the covariants, the first six equations can be replaced by the four 

and we then retain the other twelve equations, so that we have a set of 
sixteen partial equations of the first order. 

It is easy to verify that the conditions of co-existence of these sixteen 
equations are satisfied, either identically or in virtue of the equations in 
the set. Hence the set of equations constitutes a complete Jacobian system 
of partial equations of the first order. The possible arguments in any 
solution + are twenty-four in number, viz., the nine coefficients A, ..., K, 
the nine coefficients A', ...., K', and the six variables y,, y,, y,, y,, y,, Y,; 
consequently, by the customary theory of such systems*, the number of 
algebraically independent integrsls is eight, the excess of the number of 
possible arguments over the number of equations in the complete system. 

36. After the limitations that have been imposed, every integral + of 
the system is homogeneous of degree m in y,, y,, y,, and also homogeneous 
of degree m in y,, g2, y,. Let i t  be represented by 

See my Theory of Differential Epuatiom, vol. v, chap. iii. 
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then, in order that i t  may satisfy the equations, we must have the relations 

By the continued use of these equations, al1 the coefficients Up,q,pJ,g can be 
obtained when once Uo,o,o,o (say U) is known; and therefore, as usual in the 
theory of homogeneous fornis, the whole covariant can be regarded as known 
when its leading term UY;~~,-" is known. 

Again, and just as in the ordinary theory, the leading coefficient U of the 
covariant satisfies the equations 

These ten equations also are a complete Jacobian system of partial diffe- 
rential equations of the first order. Each integral can involve the eighteen 
possible arguments, constituted by the constants in the two equations of the 
quadratic frontier; and therefore the systenl of equations possesses eight 
algebraically independent integrals which are the leading coefficients of the 
eight covariants constituting the algebraically complete set of integrals of 
the full system of equations. I t  follows that, in this method of proceeding, 
we have to obtain eight algebraically independent integrals of the preceding 
set of ten equations in the second cornplete Jacobian system. 

37. The actual process of solving the equations is the customary process 
that applies to complete Jacobian systems that are linear and hornogeneous. 
The algebra required in the manipulation is long and tedious for the present 
set of equations ; so the results will merely be stated, especially as they can 
be obtained by another method (or combination of methods) applicable to 
the equations of the quadratic frontier. The summary of the final integra- 
tion of the ten equations, which are to possess eight algebraically independent 
integrals, is as follows :- 

Every integral of the system is expressible algebraically in terrns 
of the eight independent integrals A, A', I,  J, J', 1', T, T', where I is 
the invariant of Q, I' the similar invariant of Q', 

(the suinmation being extended over al1 the coefficients of Q and Q'), 

IRIS - LILLIAD - Université Lille 1 



THE FOUR INVARIANTS [CH. II 

and where T and T' are the coefficients of h and p respectively in the 
expression 

A C 
+ ( L E + ~ E ' )  1 

A', C' A', G' 1 

Moreover, A determines a covariant Ay,y, S- . . . , that is, Q ; A' deter- 
mines a covariant A'y,g,+ ..., that is, Q'; T determines a covariant 
Ty,Z y: + . . . , say R ; 1" determines a covariant ! l ' 'y ,2~,2 + , . , , Say R' ; and 
1, J, J', 1' are invariants. Finally, any quantity connected with the 
quadratic frontier that is invariantive under the lineo-linear trans- 
formation is expressible in terms of Q, Q', R, R', 1; J ,  J', I'. 

38. Had Our quest been for invariants alone, the preceding analysis 
shews that they rnust satisfy the equations 

6,-&=O, 0,-e,=o, 3,-&=O, 8,-ë,=O, 

e2= O,  = O, = O,  e6 = 0, e7 = O ,  es = O, 
- - - - - - 
e2=o, B,=o, e4=0, e6=o, @,=O, B,=o. 

But always 8, + 8, + 8, = 8, + 8, + 8,, 
so that, in virtue of the first four we have 

8, = e,, 
and therefore 8, = e,, 8, = 8,. The two equations 

8,-8,=0 and 8,-8,=0 
are therefore satisfied in virtue of 

el - e, = O, 0, - e, = O ; 
and so the system for the invariants contains fourteen independent equations. 
They are a complete Jacobian system, and involve the eighteen arguments 
constituted by the coefficients of & and Q'; hence there are four algebraically 
independent invariants. 

They can be obtained simply as follows. 

8, B ,  C 
D, E ,  F 
G, H, K 

We have seen that 
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is an invariant of Q ;  the same function for aQ+PQ', where a and j3 are 
arbitrary parameters, also is an invariant of the system. Let 

then 1, J, J', If are four invariants, independent of one another, and there- 
fore suitable for the aggregate of the four algebraically independent invariants. 
They manifestly agree with the four invariants in the earlier aggregate of 
invariants and covariants. 

aA +PAf,  aB + P B ' ,  aC +BQ' 
aD + BD',  a E  + BEf,  aF + PF' 

aG + PGf, aH+ PH', aK + B K 1  

Ex. Prove that the complete system for a single equation &=O is compoved of Q and I. 

= a 3 1 + a 2 ~ J + a p 2 J 1 + t 9 1 ' ;  

39. The detailed consideration of the invariantive forms will not be con- 
sidered further. What has actually been done should sufice to shew the 
march of a general method of proceeding for the particular problem. 

But one warning must be given if this general method is to be applied to 
a wider problem, viz. the determination of al1 the covariantive concomitants 
of al1 kinds whatever that are to be associated with any single form or with 
any couple of forms that are integral and homogeneous in y,, y,, y,, and also 
integral and homogeneous of the same order in Y,, y,, y,, where we still assume 
the lineo-linear transformation for y,, y,, y, and its conjugate for y,, iy,, 3, 
as the transformations under which the concomitants are to be invariantive. 
For this problem, i t  is necessary to introduce variables contragredient to the 
variables XI, x2, x3 and y,, y,, y,, according to the customary Iaw of variation in 
the theory of forms ; that is, if we denote these further variables by El, &, &, 
771,  qg ,  q3,  and their conjugates, they are subject to the lineo-linear trans- 
formations 

tl = aq1 + afr12 + a"r13 1 g, = cfl + a'q, + df7j, 
- - 

& = 67, + blqz + b " ~ ,  , f 2  = bq, + b'f2 + b"% - t3 = cql+ cf% + ~ ' ' 7 7 ~  Es = C i j l  + EffZ + Gf1rj, 1 a 

I t  will be noticed (as is to be expected) that the umbral coefficients, used to 
express a given homogeneous form syrnbolically, are themselves contragredient 
to the variables. Manifestly we have 

Yi% + Yi?'% + ~ 3 ' % = ~ 1 5 1 + % ~ 2 +  ~ 3 f . 7 ,  

?Aiil + 92% +Y,% = &!l+ @2 +GGs3. 
It need hardly be pointed out that, while the complex variables xl, x2, z, 
correspond to the point-variables in the ordinary theory of ternary forms, the 
complex variables El, &, 6 correspond to the line-variables in that theory. 

I n  order to obtain the most general concomitant of any kind, we ehould 
apply the preceding method to a function of the type 
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involving al1 the variables and the coefficients of any or al1 of the initial 
given system of forms whose aggregate of concomitants is wanted. There is 
plenty of room and opportunity for research; but the investigations would 
take us into the wider pure algebra of the theory of homogeneous forms, and 
they will not be pursued in these lectures. 

Ex. 1. Let U and V be any two covariants that belong to a form or to a system of 
homogeneous forms ; and let 

Y -  auav acav 

auav auav y3= - -- - - 
ayl a?,, ~ Y Z  

- auav auav 
-=- -3 fi ) 

Y ,  ay3 a? a- 
- auav auav l pz = - - - - - 

ai, a i ,  ayl a j ,  1 ' 
- auav auav ) y,=- -=- - - - 

ayl ay2 ~ Y Z  - - 
Prove that Y,, Y,, Y3 are cogredient with yl, y,, y3, and that YI ,  Y2, Y3 are cogredient 
with 5 ,  y,, y, ; and shew that 

U(Y1, y,, y,, 71 ,  y,, p,) and V(Y1, y,, Ys, 71, 7 2 ,  F3) 

are covariants of the system. 

In particular, when U and V are the two initial quantities Q and Q' belonging to 
a quadratic frontier, determine the two covariants which are thiis constructed. 

Ex. 2. Shew that when a quartic frontier, generally covariantive under a lineo-linear 
transformation, is giren by equations &=O and &'=O, where symbolically 

Q=n2p and Q'=n12C2, 

the algebraically complete w t  of invariants and pure covariants belonging to the system 
consista, in addition to Q and Q', of sixty functions. 

40. One other matter is left for investigation outside the range of 
these lectures. We have already dealt with the canonical form to which the 
expression of a lineo-liriear transformation can be reduced. Also we have seen 
that there are quadratic frontiers, represented by the two equations of lowest 
degree, which keep a general invariantive character under such a trans- 
formation. I t  remains to consider what is the simplest canonical form to 
which two simultaneous equations representing such a quadratic frontier 
can be reduced, where there no longer is a question of invariance under a 
single transformation only*. This more general problem hm some analogy 
with the problem of reducing to canonical forms the equations of two conics. 

The simplest examples of forms, invariant under a single given traiisformation, have 
already been given; they are the equations of the frontier which passes through the three 
invariant aentres of the transformation. 
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In that solved problem, certain invariants of the system are necessarily 
conserved ; in this propounded problem, the four invariants of the system of 
two equations, which already have been obtained, must also be conserved. 

One appropriate form is suggested almost at once by the known result in 
the case of two conics referred to their common self-conjugate triangle. I t  is 
natural to enquire whether two forms 

can simultaneoiisly, by homogeneous linear transformation of the variables, 
be changed to forms 

P = xlX1 + x,X, + x3x3, 
PT= AUX,Pl + B"x,X, + C"X8X3, 

where no two of the three quantities A", B", Cu are equal to one another, 
and no one of them is equal to unity. With these last restrictions, we have 

I + aJ + a2J' + a31f = (1 + UA") (1 + aB") (1 + aC"), 

for arbitrary values of a ; consequently, the three invariants JII, J'lI,  1'11 
(which are absolute invariants) are independent of one another, and no one 
of them vanishes. Thus the general condition as regards conservation of 
invariants is satisfied. 

Now al1 the quantities A, E, K, A', E', K' are real ; hence a requirement 
that they shall respectively acquire the values 1, 1, 1, A", BIf, Cu, where 
A", B", C" are real, imposes six conditions. Also B and D, B' and D', 
C and G, C' and Gf, P and H, F' and Hf, are (in each combination) conjugate 
constants; hence a requirement that al1 these coefficients shall vanish 
imposes twelve conditions. In order, therefore, that the suggested canonical 
forms shall be possible, eighteen conditions of the specified kind must be 
satisfied. 

Suppose, then, that the variables are transformed by the relations 

x,= ex, + +x,+ q x , ,  
x2= ax, + +fx,+ q 1 x 3 ,  

x3 = ex1 + + q t f x 3 ,  
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so that the values of A", Bu, C" are given by means of the quantities 
J / I ,  JJ'/I, 1'11, three real quantities. Also, as each of the nine arbitrary 
constants 8, ..., +11 is cornplex, we have effectively eighteen constants a t  our 
disposal, formally sufficient to satisfy the eighteen conditions which take the 
form of linear equations. 

I t  therefore may be inferred that a couple of general forms P and P' can 
be transformed so that they acquire forms of the suggested type. 

Periodic transformations. 

41. These results, as regards lineo-linear transformations, are general. 
Simple forms occur when the transformations are periodic, that is, are such 
that after a finite number of repetitions in succession we return to the initial 
variables; and these provide the generalisation of finite groups of homo- 
graphie transformations in a single variable. 

The requirement of periodicity will impose conditions upon the unequal 
multipliers h and p in the first type ( 5  22). 

The second type cannot be periodic unless a vanishes. But if rr does 
vanish, the type can be periodic when an appropriate condition is imposed 
upon the repeated multiplier X. 

The third type cannot be periodic unless al1 the constants p, c, T vanish. 
But if al1 these constants vanish, we have merely the identical transformation 
at once. There is no modification of the variables, and consequently there is 
no question of periodicity. 

When therefore we deal with periodic substitutions, we have to consider 
only the first type of transformation which has unequal mmiiltipliers and p, 
and a limited form of the second type which has a repeated multiplier X. 

42. A multiplier is the quotient of two roots of the characteristic 
equation; hence the equation, which is satisfied by a multiplier, is the 
eliminant of 

83-A,8a+A,t'-A=0, 

t3d3 - Alt28' + A2tB - A = O. 

The eliminant is of degree nine in t ; but there is a factor ( t  - l)3, which is - 
irrelevant to the present issue and must therefore be rejected. One of the 
simplest ways of obtaining the residual equation is to proceed by the method 
of Bezout and Cayley for constructing the eliminant ; i t  leads to the result 

1 l + t + t 2 ,  & ( l + t )  9 A2 1 = O ,  

A,t (1 + t ) ,  A (1 + t+t2) + A,A,t, LIA (1 + t )  

Aita , A,t (1 + t) , A ( l +  t + f2) 
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which, when the determinant is expanded, becomes 

This is a reciprocal equation, as is to be expected from the mode of occurrence 
of the multipliers in the canonical form of the transformation. 

For the first type of transformation, the six roots of this multiplier 
equation are 

1 1 S p .  ' " h .  ;> p >  

and the solution of the equation effectively involves the two quantities 
A,A-g and AzA-8, which are homogeneous (of order zero) in the coefficients 
of the original transformation. 

For the second type, the six roots of the multiplier equation are 

and we must have 

27A2 - 18Al&A - A:A: + 4A:A + 4AP = O, 

being the discriminant condition for the equality of two roots of the charac- 
teristic equation. 

When the lineo-linear transformation is periodic of order n, then 

and n must be the lowest integer for which both the conditions are satisfied. 
Thus, for the first type, 

1 , e2"irtn, = eziris/n 
J 

where r and s are unequal positive integers, greater than zero, less than n, 
and such that r, s, n have no common factor other than unity. Then 

A, = 8, (1 + eariTln + 
>J 

Aa = ds2 {,ymr/n + e2&ln + ezrri (r+s)ln 1) 
A = d83 e%i(~+8>/n . 

and the conditions for periodicity of order n. are 

The conditions thus imposed upon I. and r require that n should be greater than 2 ; 
and so lineo-linear transformations, of which the characteristic equation has three unequal 
roots, cannot possess quadratic periodicity. 
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As a matter of mere algebra, it is easy to verify that the original transformation 

w d - 1 
az + bz' + c - a'z + 6'2' + c' - a"z + b"d + C" 

is of quadratic periodicity in the two cases settled by the relations 

In  each case four parametric constants, which may be taken to be a, b, c, a', are left 
unrestricted by the limitation of quadratic periodicity. 

For the second type of transformation, the characteristic equation of 
which has a double root and a simple root, the discriminant condition has to 
be satisfied by al1 forms. If the transformation is to be periodic, another 
condition (the vanishing of the quantity o) must also be satisfied whatever 
the order; and then the order of periodicity is the lowest value of h such 
that 

xn = 1, 
so that we can take x = ezmr ln 

> 

where r is any integer between O and n, which is prime to n. 

Ex. 1. The simplest example of such a transformation is 

The z plane can be divided into n triaugular wedges, bouuded hy lines through the origin 
inclined a$ successive angles 2 w / n  to one another ; and similarly for the d plane. The 
whole z, d configuration is then transformed into itself by a double rotation of each plane 
through an angle 2arln about an axis through the origins perpendicular to the planes ; and 
the 2, z' field, made up of two such wedges in the z and d planes, is transformed into 

, the w, w' field, made up of two sirnilar wedges in the w and w' planes. 

Es. 2. When the original transformation is linear a,nd h w  the form 

w=az+bz'+c, w'=afz+b'd+d, 

a factor 8-1 can be dropped from the characteristic eqwtion which then becomes 

62-(a+b') 8+ab'-alb=O. 

Let the roots of this equation be v and v'; the canonical form of the substitution is 

alw+@to'+ Y'= v'(afz +@z'+yr), 
where 

aa +a1,9=va, ba+b'P=v@, ca+dfi=(v - l ) y ,  

a d +  alB) = v'a', bat + b1j3' = v1j3', cal +CI@' = (v' - 1) y'. 
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Ex. 3. Find a canonical form of the periodic transformation 

w J~=B+z ' ,  wfJ2=û-2'. 

Ex. 4. Prove that al1 transformations of the linear type, which have quadratic 
periodicity, belong either to the form 

w= -z+c; w'= -d+cl, 
or to the form 

1 - a2 
w=az+bz'+c, w ' - -  l+a Z-ud--c, b 

where a, 4 c, c' are arbitrary constants. 

Ex. 5. Prove that al1 cubic linear transformations have either the forni 

or the form w=az+bz'+c, mith either 

where 8 and 8' are imaginary cube-roots of unity, and a, b, c, c' are unrestricted constants. 

Ex. 6. Shew that, if 
W -- w' - 1 

az+bz'+c - a'z+6'z'+cr-a"z+bd+c"' 
then 

z 7! 1 

where A, A', A", ..., C, C', C are the respective minors of a, a', a", ..., c, c', c" in the non- 
vanishing determinant A, where 

Prose that the roots of the characteristic equation.for this inverse transformation, 
expressing z and d in terms of w and w: via. 

are connected with the roots of the characteristic equation of the original transformation 
by the relation 

&#=A ; 

and verify that the invariant centres for the inverse tran~formation are the same as t h w  
for the original transformittion. 

Ex. 7. Obtain for a lineo-linear transformation, between two sets of n variables, 
results corresponding to those in the preceding example. 

IRIS - LILLIAD - Université Lille 1 



56 EXAMPLES [CH. II 

Ex. 8. Prove that the invariant centre cl and 5: of the general lineo-linear trans- 
formation is given by the equatious 

the denominator in the third fraction being distinct from zero. Prove also that, for the 
quaritities al : pi : yl, 

Ex. 9. Shew that, when n is a prime number, al1 the periodic substitutions 

w=az+ bd+c 

for s=2, ..., n- 1, are powew of the same periodic substitntion for s=1. 

Shew that al1 the substitutions 

where a and a' are primitive nth roots of unity, are periodic. 

Do the two preceding classes contain al1 the purely linear substitutions which are 
periodic 1 
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43. WE now proceed to the more immediate and direct consideration of 
the properties and the characteristics of functions of two independent complex 
variables, beginning with the simplest fundamental propositions. Not a few 
of these can be considered as well known; they are included for the sake of 
completeness, and also for the sake of reference. Some among them are 
expressed in forms that appear more comprehensive than the customary 
enunciations. Others of them appear to be new, such as those which deal 
with the characteristic relations and the properties of two functions of a 
couple of variables considered simultaneously ; and these, as being niore novel 
than the others, are expounded at  fuller length (Chaps. VII and VIII). 

Though the e~position is restricted to the case when there are only two 
independent complex variables, i t  sliould be noted that many of the theorems 
belong, mutatis mutandis, also to functions of n independent variables. For 
others, however, further ideas are needed before a corresponding extension 
can similarly be effected. 

We begin with definitions and explanations of the more frequent terms 
adopted, inany of which are obvious extensions of the corresponding usages 
for functions of one complex variable. 

The whole range of the variables z and z' is often called the fîeld of 
variation. The extent of the field sometimes depends upon the properties of 
the functions concerned ; otherwise, i t  ituplies the four-fold range of variation 
between - ca and + W .  

A restricted portion of a field of variation is called a domain, the range of 
a domain being usually indicated by analytical relations. Thus we niay have 
the domain of a place a, a', given by relations 

1.z-al<r, I d - a ' \ < r J ;  

we may have a Ctomain given by relations 

+($ -a ,  y-@, xJ-a', y'-B')sc, +(x-a,  y-B, XI-a', y' -B')<cr, 
where a = a + iR,  a' = a' + i p ,  the equations being such as to secure a finite 

IRIS - LILLIAD - Université Lille 1 



58 DEFINITIONS [CH. III 

range of values of z and a finite range of values of 2'. When r and r' (or c 
and c', in the alternative case) are small, the domain of a and a' is sometimes 
called the vicinity, or the immediate vicinity, of the place a, a'. 

1 
In  these definitions we substitute -- for Iz -ai when a is at  infinity, and 

IzI 
1 
- for / z' - a' 1 when a' is at  infinity. 
lz'l 

44. A function of z and z', say w = f (z, z'), is said to be uniform, when 
every assigned pair of values of z and z' gives one (and only one) value 
of W. Through familiarity with properties subsequently established, the 
notion that z and z' may attain their assigned values in any manner 
whatever sometimes cornes to be associated with the definition; but the 
notion is not part of the definition. 

The function w is said to be rnultiform, when every assigned pair of 
values of z and z' gives a finite number of values of w, the finite number 
being the same for al1 2, z' places where the function exists. Sometimes i t  
is convenient to specify the number in the definition ; when there are m values, 
and no more than m values, w is sometimes called m-valued. 

A funotion w may have an infinite number of values for given values of 
z and z'. Among such functions, each class can be specified by its own 
general property. Thus one simple class of this kind arises from integrals 
of functions that have additive periods. 

Just as with uniform functions, so with multiform and other functions, 
familiarity with properties subsequently established leads to the notion that 
a specification of the path or range by which z and z' attain their values 
will lead to the acquisition of some definite one among the m values ; again, 
the notion is not part of the definition. 

Even in this matter of the description of the range of z and of z', care must be 
exercised ; it may become necessary to take account, not merely of the actual range of z 
and of z', but also of the mode of description of those actual ranges. Consider, for 
example*, the function 

w = (22 - z'+ 1)s. 

Take z = 0  and $=O as the initial place; and consider the branch of w which hau the 
value + 1  a t  that place. 

We make z Vary from O to $1 by descrihing (in the direction indicated by the arrow) 
a simple curve OAB which, when combined with the axis OB of real quantities, encloses 
the point +i and does not enclose the point i. 

* The example was suggested to me by Prof. W. Burnside. Another example, viz. 

w = ( z - d + l ) + ,  

is given by Sauvage, A m .  de Marscille, t. xiv (1904), section 1, a particular path being specified. 
Obviously any number of special examples of the same type can be constructed. 
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We make d Vary from O to  + 1 by describing the straight line O'C' in the direction 
indicated by the m o w ;  the point D' on that line is given by a'=$. 

Consider two different descriptions of these paths. 

I n  the first description, keep z' a t  0', while z describes the whole path OAB ; and then 
keep z at  B, while z' describes its whole path O'C: For this description, the final value 
of w is manifestly $- 1. 

In the second description, keep z a t  O, while z' describes the part O'D' of its whole 

path;  then keep z' a t  Dr, thus making w=(z2+f)i for that value of z', and now make 
z describe its whole path OAB. When z arrives a t  B by this yath, the value of w is 

- (q)&,  that is, when z is a t  B and 2 a t  D' by this description of paths, the value of 
( 9 -  d+ 1)h has become -({)a. Now keep z at  B, and let z' describe D'Cf,  the remainder 
of its path ; the final value of w is manifestly - 1. 

It thus appears in the case of the specinl function that, even when the range for each 
variable is perfectly precise, the final value can depend upon the mode of description of 
the precise ranges. The matter belongs, in its simplest form, to the theory of algebraic 
functions. 

45. A function f (z, 2') is said to be c o n t i n u o ~  if, when the real and 
irnaginary parts of z and of 2' are substituted and the function is expressed in 
its real and imaginary parts u + vi, both the functions u and v of x, y, x', y' 
are continuous. 

Let the function f (z, 2') be uniform and continuous, everywhere within 
a field of z, z' variation. It is said to be analytic, when i t  possesses 
derivatives of al1 orders with regard to both variables 

which are uniform and continuous everywhere within that field; or what is 
equivalent, i t  is said t o  be analytic if f (z, z') is an analytic function of z when 
any arbitrary fixed value is assigned t o  z' and is also an analytic function of 
z' when any arbitrary fixed value is assigned to z. But i t  need hardly be 
pointed out that, while f(z, i) is-under this definition-expressible as a 
power-series of z alone having functions of the parametric z' for coefficients, 
and also as a power-series of z' alone having functions of the parametric z 
for coefficients, an expansion in powers of z and z' simultaneously is a 
matter of proof, to be considered later. 

IRIS - LILLIAD - Université Lille 1 



60 DEFINITIONS [CH. III 

I t  is a known proposition that an absolutely converging double series can 
be rearranged in any manner and can be summed in any order, the sum 
being the same in al1 arrangements and for al1 orders of summation. 
Suppose, then, that the double power-series 

Zdc, , ,  (Z  - a)" (z' - a')m', 

where m and rn' are positive whole numbers (including zero), and where the 
coefficients are constants, converges absolutely at every place within some 
domain of the place a, a'. The series, within the domain, defines a function ; 
and the function is said to be regular, or to behave regularly, everywhere 
in the domain of the place a, a'. The domain must not be infinitesimal in 
extent; and the place a, a' is said to be an ordinary place for the function. 
When i t  is desired to indicate specifically that the double series contains 
only positive powers of z - a and a' - a' in accordance with the definition, we 
cal1 the series integral, or whole, or holornorphic; and sometimes the function 
is called integral or holomorphic within the domain of the place a, a'. 

When the power-series is finite in both sequences of indices, the function 
is a polynomial in a and z'. When i t  is infinite in either sequence or in both 
sequences, the function represented is usually called transcendental, unless i t  
can be represented by algebraic forms. 

When the function is transcendental, the question arises as to the 
range of the domain over which the power-series converges. When the 
domain is limited, a question arises as to whether the power-series, 
representing the function within the domain, can be continued analytically 
beyond the limits of the domain. 

Perhaps the simplest example of a niultiform function w of z and .d occurs, 
when the three variables are connected by an algebraic equation 

where A is a polynomial in each of its arguments. As already explained, i t  
sometimes proves desirable in this connection to consider two multiform 
functions w and w', defined by algebraic equations 

C (w, w', z, 2') = O, D (w, w', z, z') = O, 

where C and D are polynomial in each of their arguments. I n  this event, the 
ordinary processes of elimination enable us to substitute equations 

A (w, Z, z') = O, B (w', z, z') = 0, 

Por the equations C = O, D = 0 ; but care must be exercised to  secure that the 
separate roots of A = O  and of B = O must be groupeA so as to give the 
simultaneous roots of C = 0, D = 0. 
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For example, we shall have (Chap. VI) to  consider an expression 

where R (w, w', z, z') denotes an intepal polynomial in  w and w', and where the double 
finite summation extends over the simultaneous roots of C=O, D-0. In  the method 
adopted for its evaluation, we are led to introduce terms which arise from combinations 
of the roots of A=O, B=O, that do not provide simultaneous roots of C=O, D=0. 

In  the first case, to the function w :  and, in the second case, to the 
functions w and w': the epithet algebraic is assigned. Manifestly, among 
the four variables w, w', z, z', any two can be described as algebraic functions 
of the other two, unless (in limited cases) elimination should lead t o  a single 
relation between two variables alone. 

I n  this initial stage, i t  is not necessary to state the definitions of terms 
pole, accidental (or non-essential) singularity, essential singulan'ty. New and 
modified definitions are required, because functions of two variables possess 
properties which have no simple analogue in the properties of functions of 
a single variable. These definitions will be given later (§§ 57, 58), when 
the properties are under actual consideration. As will be seen, a dis- 
crimination between functions of two variables and functions of more than 
two variables can be made, so as to give a classification proper to functions 
of two variables. We may, however, mention in passing that, in the vicinity 
of any non-essential singularity a, a', a uniform analytic function is expressible 
in a form 

Q(z-a, d-a') 
P (Z - a, z' - a') ' 

where Q and P are functions, which are regular in a domain of a and a'. 
Such a function is sometimes called rneromorphic in the vicinity of the 
place a, a'. 

The simplest example of a meromorphic function occurs when both & and 
P are polynomial functions of their arguments ; in that case, the function is 
called rational. 

Some properties of regular functions. 

46. Consider functions that are regular everywhere in some finite domain 
1 of an assigned place a, cc'. By writing z - a = or - , according as 1 a is finite r 

1 
or infinite, and by writing z' - a' = ?,' or - according as 1 a'] is finite or is r ' 
infinite, we c m  take the assigned place as O, O, without any loss of generality. 
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We then have a theorem* connected with the definition of the analytic 
property, as follows :- 

When a junction f (z, z'), for values of / z i 2 r and of 1 z' 1 < r', is  a regular 
function of z everywhere within th.e assigned z-circle for every value of z' withi,n 
its assigned circle, and also is a regular function of z' everywhere within the 
assigned 2'-circle for every value of z within its assigned circle, it is a regular 
function of z and 2' everywhere within the indicated Jield of z, 2' variation. 

Let the function f (2, z') be represented by a series 
m 

f (2, 2') = 2 gm (2') zm, 
m=o 

as is possible under the first hypothesis. If M,' denote the greatest value of 
1 f (2, 2') 1 for any assigned value z,' of z' within the 2'-circle, and for al1 the 
values of z within its circle, our series gives 

and then by a well-known theoremt, we have 

Consequently, if M denote the greatest value of 1 f (z,  z') i within the 
whole z, d field considered, we have 

M,' 2 M,  
and therefore 

M 
IYm(2o') 

for al1 values of m, for any value of z,' such that 12,' 

al1 values of Z' in question, we have 

Now f (z, 2') is a regular function of z' for ev 

< r', Consequently, for 

ry value of z for which 
1 z 1 2 r ; hence y, (z'), being the value off (2, z') when z = 0, and 

for al1 values of nz, are regular functions of z'. Accordingly, we can write 

+ The theorem is true under even less restricted conditiona. See two papers by Osgood, 
Nath. Ann., t .  lii (1899), pp. 462-464, ib., t. liii (1900). pp. 461-464 ; and a paper by Hartogs, 
ib., t .  lxii (1906), pp. 1-88. 

1. Theory of Functions, § 22. 
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where the series represents a regular function of z' ; and as 1 grn (2') throughout 
the whole range of variation of z' is less than M/rVn, we have, again by the 
theorem already quoted, 

On these results, consider the double series 

if it converges absolutely, we can take i t  in the form 

that is, 
m 

Z gm (2') zm, 
n=O 

and so we shall have 
F (2, 2') = f (2, 2') 

for the field of variation within which F ( z ,  a') converges absolu tel^. But 
we have just proved that 

and therefore we have 
CO m 

q Z ,  z l ) /  = 1 z 2 Dm,nzmzln 
m=O n=O 

for al1 values of 1 z 1 < r ;md al1 velues of 1 z'I < r'. 

This result establishes the absolute convergence of F ( z ,  2'); and so we 
have 

where the double series converges absolutely in a field ( z < rE < r, z' < li' < 7.'. 
while le and k' are not infinitesimal. 

Consequently the function f (z ,  z'), under the postulated conditions, iu a 
regular function of the variables z and z'. 
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47. Now let f (z, z') be a regular function of z and z' everywhere in the 
domain 

I z - a I < r ,  Id -a f l< r ' ,  

and within this domain let M be the greatest value of 1 f (z,zl) 1. Then, if the 
power-series for f (2, z') is 

shewing that 

Another expression for cm., can be obtained by a simple extension of 
Cauchy's well-known integral-theorems for a single variable. Denoting by 
g(z) a function that is uniform, continuous, and analytic, within a range 
l z - a k r .  we have 

for al1 values of n, the integrals being taken positively round any simple 
closed curve which lies entirely within the region and encloses the point a. 
The extension indicated can be established in exactly the same way 8s these 
theorems just quoted; the analysis and the reasoning are so similar to those 
for the simple case that they can be stated very briefly. 

For our function f (z, z') which is uniform, continuous, and analytic, and 
therefore regular, everywhere in the domain 

we have 

the integrals being taken positively round any simple closed curve which lies 
entirely within the region bounded by 1 z - a 1 = r and encloses the point a, 
and holding for every value of z' for which f (z, z') is defined. Again, f (a, zf) 

and y-'$ d)l , owing to the character off  (z, zf) vithin the z, zf field 1 =-a 
of variation, are regular functions of z' throughout the 2'-region bounded by 
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1 z' - a' ) = r' ; hence, by a repeated application of Cauchy's integral-theoreins, 
we have 

the integrals being taken positively round any simple closed curve which lies 
entirely within the region bounded by / z' -a' 1 = rf and encloses the point a'. 
The variations of z and z' are independent of one another, as also are the 
integrations in the two planes of the variables; combining the results, we 
have 

dzdz' 
(Z - u) (d - a') 

f (z,z') 
47r2 ( Z  - u)rn+1(z1 - a1)n+1 

- - II dzdz', 
z-n, $-a' 

the integrals being taken round simple closed curves in the z-plane and the 
2'-plane, the z-curve lying entirely within the region j z - a 1 = r and enclosing 
the point a, and the 2'-curve lying entirely within the region 12'- a') = r' and 
enclosing the point a'. 

We thus have expressions, in the form of double contour integrals, for the 
value off (2 ,~ ' )  and of every derivative off (z, z') a t  the place a, a'. 

Again, let M denote the greatest value of 1 f (z, 2') 1 for places within the 
whole z, z' domain of variation represented by / z - a 1 < r, 1 z' - a' 1 < r' ; then 
at  every place on the double contour integral we have 

Proceeding exactly as in the case of a single variable, we can shew that 

1 A;li) d) dzdd 1 < 47r2M, 

and therefore 

which is merely a statement that the value of 1 f (z, 2') 1 at  a particular place 
in the field is not greater than its greatest value in the field; and we c m  
also shew that 

which is the former result. 
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Another method of stating these results is as follows. Let z, z' be any 
place within the field of variation where f (2, 2') is regular ; in the z-plane, 
take any simple closed curve lying within the field and enclosing the point z, 
Say a circle of centre z, and let t denote the complex variable of a current 
point on this curve ; and in the 2'-plane, take any simple closed curve lying 
within the field and enclosing the point d ,  Say a circle of centre z', and let t' 
denote the complex variable of a current point on this curve. Then 

Ex. Prove that, for the foregoing function f (2, 2') and with the foregoing curves of 
integration, the value of each of the integrals 

for al1 positive integer values (including zero) of m and n, is zero. 

48. We sliall corne later (Chap. VI) to a fuller discussion of double 
integrals involving complex variables ; meanwhile, i t  will be sufficient to state 
that integrals of the foregoing type, in which the integrations with regard to 
z and to z' are conipletely independent of one another, belong to a very 
special and limited class of double integrals. They may even be regarded as 
merely iteribted simple integrals ; and many of their properties can be deduced 
as mere extensions of corresponding properties for simple integrals. 

Thus we know that the value of the integral 

1 

taken positively round the whole boundary of any region within which f (z )  

is uniform, continuous, and analytic, is zero, even if the region is multiply 
connected ; and it follows, as a corollary, that the value of the integral taken 
round any simple closed curve is unaltered if the curve is deformed without 
crossing any point where f (z )  ceases to have any one of the three specified 
qualities. This result can at  once be generalised, merely through a double 
use of the result, into the following theorems :- 

1. Let F(z ,  z') denote a function which, over a limited region in the 
z-plane with a complete boundary unaffected by variations of z', and over a 

liniited region in the 2'-plane with a complete boundary unaffected by variations 
of z, is uniform, continuous, and analytic. Then* zero is the value of the 
integral 

- 

* The constant - 1/4n9 is inserted here merely for the piirpose of formd expression. 
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taken positively round al1 parts of the complete boundary* of the z-region, 
and positively over al1 parts of the complete boundary of the d-region, when 
these boundaries are entirely unrelated to each other. 

II. For the same type of function, and with the same type of range of 
integration, the value of an integral 

is unaltered when the z-boundary and the 2'-boundary are deformed separately 
or together in any continuous manner which, while leaving them unrelated, 
does not cross a place where the function P(z,  z') does not possess each of 
the three specified qualities. 

It is to be noted that the theorems are exclusive and not inclusive. 
The function F (2 ,~ ' )  might cease to possess the property of being continuous 
(thus it might be z-%+ in a region round O, O), without causing the integral 

to be different from zero as in the first theorem, and without preventing the 
deformation contemplated in the second theorem. For the moment, we are 
concerned with the theorems as enunciated. 

49. As an illustration of the use of al1 the preceding theoreins, we shall 
establish the following proposition :- 

Let f (z ,  d )  denote a function which i s  regiclar everywhere i n  a z, z'$eld 
represented by the relations 

I z I  ST, I z '  I Q T ' ;  
and let t and t' be current variables in that field. Then the magnitude 

when the double integral i s  taken positively round a simple closed curve 
enclosing the z-origin and t h  point z i n  the z-plane, and positively round 
a simple closed curve enclosing the 2'-o~igin a,nd the point z' i n  the 2'-plane, is 
a polynomial P (z, z') of order m in z and of order n i n  z', such that 

,for the values r = 0,  . . . , m and s = 0, . .. , t ~ .  i n  a21 simultaneous co?nbinatiorls, 
fhe descriptions of the two curves being anrelated. 

That is, with the custornary convention as to the positive direction of any portion of the 
ùouiidary mhen the included area is multiply connected ; see my Tlieory of Functions, § 2. 

5-2 
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The result can also be stated in the form 

and can easily be established from this form by inserting the values of 

{l - 
(1 -;) and {1 + (1 - $) and using the preceding 

theorems as they stand. 

The derivation of the result frorn the first form requires a different use of 
the theorems: i t  is set out as an exercise in integrals, as follows. 

As our function f (z, z') is everywhere regular within the specified field, 
the only places where the subject of integration ceases to be regular within 
the selected domain are 

(i) a t t = z ,  t '=zf ;  (ii) a t  t = z, t' = O ; 

(iii) a t  t = 0, t' = z' ; and (iv) a t  t = 0, t' = O. 

After the preceding theorems, i t  is sufficient to take the double integral 
positively along emall curves round these places. 

For a double integral, taken positively round small circles, one in the 
z-plane round the point z and one in the 2'-plane round the point z', so that 
we should have 

t - z = pee< t' - z' = p'ee'i 

where p and p' are small, while 8 and 8' Vary independently each from O to 
27r, the value of the integral 

dt dt' 
( t  - z) (t' - Zr) 

is the value of 

when t = z, t'= z'; that is, the value of the integral for the double small 
contour round z and z' is f (z, 2'). 

For a double integral, taken positively round small circles, one in the 
z-plane round the point z, and one in the 2'-plane round the origin, we have 

t - z = peei t' = p'eé'i, 

where p and p' are small. We then expand ( t ' -  z')-l in ascending powers 
of t'Id, and obtain the subject of integration in the form 

Let integration be effected first along the path in the z-plane; on the 
completion of the path, the value of the integral is 
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thnt is, 

This integral is to be taken along a small closed path i n  the 2'-plane round 
t'= 0, and f (z, t') is regular; hence the value of the integral is zero. Thiis 
the double integral, taken round the place t = z, t' = O, contributes zero to 
the value of the general double integral. 

Similarly the double integral, taken round the place t = O, t' = z', contributes 
zero to the value of the general double integral. 

For a double integral, taken positively round small circles, one in the 
z-plane round the z-origin and one in the 2'-plane round the 2'-origin, we 

where p and p' are small. We then expand ((t - z) (t' - z')}-1 in ascending 
powers of t/z and t'lz', the expansion being 

and so the subject of integration becomes 

The value of the part 

taken round the contour as indicated, is zero (Ex., 5 47), because there are no 
negative powers of t'. Similarly the value of the part 

is zero. Again, the value of the integral 

for al1 integers r  = 0, 1, ..., and al1 integers s = 0, 1, ... . When either of the 
integers r  and s is negative, and when both of the integers are negative, the 
value of the integral is zero. Hence, taken positively along the small contour 
that encloses the z-origin in the z-plane and the 2'-origin in the 2'-plane, we 
have 

1 jl f (t, t') z&'z'"- 
--- 

4 2  (t - z) (t' - 2') t'"tlt'"+' 
dt dt' 

=- z ;  p f ~ f ( t , t ' ) }  ~ r ! s !  atratfs ] 
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We thus have the full value of the integral 

taken positively round our contour in the z-plane enclosing the z-origin and 
the point z, and our contour in the 2'-plane enclosing the z'-origin and the 
  oint z' ; it is 

Consequently our magnitude 

is equal to the polynomial 

and when this polynomial is denoted by P (2, z'), we manifestly have 

The proposition is thus established. 

The result, in either form, shews that i t  is possible to construct an ex- 
pression the value of which shall be a polynomial approximation to the value 
of a function f (z, z') in a field where it is a regular function of its arguments. 

Ex. Evaluate the integral 

with the same suppositions as to the function f (z, 2') and the range of integration. 

50. In connection with the function f (z, z'), which is regular within 
the field ( z - a 1 < r and 1 z' - a' 1 =? r', and for which 1 f (z, z') 1 is never greater 
than M for places in the field, consider a function +(z ,  z') defined by the 
relation 

M + (2, 4 = 

Evidently 4 (z, z') can be expanded in a double power-series in z - a  and 
8' - a', which converges absolutely for values of z and z' such that 

and it has the form 
(Z - a)* (d - a')" + (2, 2') = M C. C - 

m = o n = ~  rm ' 
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51. During the foregoing investigations, particular series in suitable 
circumstances have been declared to converge; and i t  will be noted that, in 
such series as have occurred, the convergence has been absolute. We do not 
propose to consider, in detail, the general theory of convergence of double 
series. When convergence is absolute, no other kind of convergence need be 
considered specially; and such series, as will be discussed in these lectures, 
will be discussed with a view to absolute convergence. What is wanted here 
is a knowledge of some non-infinitesimal region of variation of the variables 
in which the respective series converge absolutely*. 

1 

In  this regard, one warning must be given. Both in what precedes and 
in what will follow, a region of variation, in which a double series converges 
absolutely, is usually defined by a couple of relations of the fortn 1 z 1 < p < r ,  

! z' 1 < p' < r', where p, p', r ,  r' are positive constants, while r and r' are not 
infinitesimal. I t  must not therefore be assumed-and i t  is not the case in 
fact-that the whole region, within which a double series converges absolutely, 
must be determined by two (and only two) relations of the preceding form; 
thus the whole region of absolute convergence of the double series, that 
represents the dominant function y!r (z, 2') of 5 50, is determined by the 
single relation 

as there statedt. 

To repeat the substance of what has just been said, what is mainly 
wanted at  the initial stage is a knowledge of some non-infinitesimal region 
of absolute convergence of the series, not necessarily a knowledge (however 
desirable) of the whole region of convergence. 

52. Three simple propositions relating to uniform analytic functions can 
be established a t  once. 

1. A uniform analytic function miist acquire infinite values somewhere 
in the whole z, z' field, unless i t  reduces to a mere constant. 

Suppose that a uniform analytic function f (2, 2') does not acquire infinite 
values anywhere in the z, z' field. I n  that event, there must be some 
greatest value for 1 f (z, 2') ( in the field, Say M, where 1I1 is finite; and no 
matter how the field is extended, this value of M for 1 f (z,zf) 1 cannot be 
exceeded. 

Accordingly, we take a domain in the field, determined by the relations 

jzI<R, ~2'~eR' ;  

* For the theory of absolute convergence of double series, readers may consult Bromwich, 
An introduction to the theory of infinite series. 

t Other examples of the same type are given by Bromwich, p. 504 of his treatise just quoted. 

IRIS - LILLIAD - Université Lille 1 



521 PROPERTIES OF REGULAR FUNCTIONS T 3 

and, under the hypothesis, we can make R and R' as large as we please. We 
still shall have, over this domain, M as the greatest value of f (2, z') . 

In the domain thus chosen, let f (z, z') be represented by a double power- 
series, as in fi 47 ; and let the series be 

C C c,,,zmzrIL. 
m=O a=O 

By our preceding results, we have 
M 

Icm,nIeR"R'nj 

for al1 values of m and of n, independentl~ of one another. We can increase 
the domain of the field to any extent; so that, by increasing R and R' 
sufficiently, we can make 

Icm,,I =O, 
for al1 values of m and n except simultaneous zero values. Hence, under 
the hypothesis that f (2, z') does not acquire infinite values, every term 
in the series vanishes except the first, which is a constant; the proposition 
therefore is established. 

Note. It is obvious that the place, where a function acquires an infinite 
value, does not lie within the domain over which the fiinction is regular nor - 

(to anticipate the explanations connected with the continuation of series 
representing regular functions) does such a place lie within the region of 
continuity of the function. Every such place lies on the boundary of the 
region of continuity of the function. 

Thus consider the function 

For al1 places other than z = 0, z' = O, which lie in the field and are given by 
z =z', the function is infinite; such places do not lie within the region of 
continuity of the function. At the place z =  0, z'= 0, the value of the 
function is indeterminate; near z = 0, z'= 0, say such that 

where r and r' are small, we have 

which as r and r' tend to zero independently of one another can be made to 
acquire any value. Thus a t  z = 0, z' = 0, the function is not regular ; the 
place does not lie within the region of continuity of the function. 

II. If two functions, both of them regular within one and the same 
domain, acquire the sanle value at  every place within any region of that 
domain, they acquire the same value at  every place within the whole 
domain, the region (like the dornain) being one of four-fold variation. 
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Firstly, suppose that the origin of the domain lies within the region 
considered ; and round that origin, take a sinaller domain given by 1 z 1 < k < p 
and 1 z' < Ic' < p', lying entirely within the region. 

Let the two regular functions be f (z, z') and g (z ,  z') ; and suppose that 
the double power-series representing them in the whole domain are 

both series converging absolutely nithin that domain. Then the difference 
of the functions f (z, z') - g (z, z') is represented by the absolutely converging 
double series 

f, 2 ( ~ , , , - k , , ~ ) z r " z " ?  
m=O n=O 

Now this function is everywhere zero within the smaller domain, so that its 
(greatest) modulus Mo never differs from zero ; accordingly we have 

so that 

for al1 values of m and n. Consequently, the coefficients in the power-series 
representing the functions are the sarne; and so the two functions are the 
same within the whole domain. 

Secondly, when the origin of the domain does not lie within the region 
considered, we take an origin within that region; and proceed as before. 
The coefficients in the power-series, representing the two functions in the 
smaller domain round the new origin, are the same. There, these coefficients 
determine the functions uniqbely; and so, when the process of analytical 
continuation (§ 56) is adopted in exactly the same way for the two functions 
so as to cover the whole of the original domain in which they are regular, the 
two functions remain everywhere the same within the whole of that domain. 

III. If f (2, 2') is a regular function of z and z' for al1 finite values of 
the variables, and if there exists a finite positive quantity M such that, no 
matter how / z 1 and 12' 1 are increased, there exist integers nz and n for which 

then f (z,zl) is a polynomial in z and z', of degree m in z and of degree n 
in z', when m and n are the smallest integers satisfying the condition. 

Let f (z ,  z') be expressed as a double power-series 
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where the double integral is taken round any simple closed contour (say 
a circle) enclosing the origin in the z-plane, and any simple closed contour 
(also say a circle) enclosing the origin in the 2'-plane. Let the former circle 
be of radius R and the latter of radius R', so that we can take 

Now no matter how 1 t 1 and 1 t' 1 increase, we have 

and therefore 
f (t, 0 d l  M 1 1 ' 1 tp-  ( q - n  1 < RP-' R'q-n 

Consequently 
1 I j d 6 d 6 '  

1 'P, il < Rpln Big-n 

By hypothesis, we can increase B and R' without limit ; hence, for al1 values 
of p that are greater than m, or for al1 values of q that are greater t h m  n, 
and for both sets of values simultaneously, we have 

; c P , A = O '  
and therefore 

Cp,  = 0, 
for those values. Accordingly, when we reniove from the series those terms 
which have vanishing coefficients, the modified expression for f (z, z') becomes 

shewing that f (z, z') is a polynomial in z and z', of degree m in z alone and 
of degree n in z' alone. 

63. It follows, from the first investigation in § 52, that a uniform analytic 
function must acquire infinite values. I n  particular, a general polynomial in 
z and z' acquires infinite values, when 1 z 1 is infinite while / z' is not zero, 
or when 1 z' 1 is infinite while 1 z is not zero, or when both 1 z and 1 z' 1 are 
infinite, though in the last event conditions may have to be satisfied*. 

* For example, the function 1 +z +z' does not become icfinite when z is infinite and 1 z' 1 is 
infinite anless 1 z + z' 1 al80 is infinite. 
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The questions then arise :-Must a uniform analytic function of z and z' 
acquire a zero value within the whole field of variation? And, what is a 
subsidiary question governed by the answer to this preceding question, must 
a uniform analytic function of z and z' acquire any assigned value within the 
whole field of variation ? Naturally, in considering the questions, we assume 
that we are dealing with functions that do not reduce to a mere constant. 

First, a brief proof will justify the answer that a uniform analytic function 
of z and 2' must acquire a zero value somewhere within the whole field of 
variation. Let f (2, zf) be a function of z and z', which is uniform ; con- 
sequently, if 

the function 4 (2, z') is uniform. Further, + (z,z') is continuous, unless f (z,zl) 
has zero values. Let f (z, z') be analytic; then + (2, z') also is analytic. 
Thus, assuming that f (2, z') is a regular function, that has no zero within 
the whole field of variation, its reciprocal + (2, 2') is uniform, continuous, and 
analytic throughout the domain where f (z, z') is regular. Consequently, 
+(z, z') is a function that is regular throughout the whole field. 

Now we have seen that a uniform analytic function must acquire an infinite 
value or infinite values somewhere in the field of variation of the variables ; 
hence our function + (z, z') inust acquire an infinite value somewhere, that 
is, the regular function f (z, z') must acquire a zero value somewhere and 
therefore the hypothesis, that f (z, z') has no zero, is untenable. But as was 
the case with the place where the function acquires an infinite value, so that 
the function is not regular there and the place does not belong to the region 
of continuity of the function, so it mny happen that a place where a function 
acquires a zero value does not belong to the region of continuity of the function. 

Thus the function @+"' is regular over a domain given by finite values of 1 z 1 and finite 
values of 1 z' 1 ; it is not regular for infinite values of 1 z 1 alone and of l z' / alone, because it 

1 1  
cannot be expanded in powers of - and 7 .  When z is real, infinite, and negative, while 

I d  1 is finite, the function @+@=O; and so for other places. No one of these places 
belongs to the region of continuity of the regular function @+$. 

The corresponding question, as to the acquisition of an assigned value a, 
would similarly be answered in the affirmative after a consideration of the 
function f (z, z') - a which, under the foregoing argument, would have to 
acquire a zero value ; so f (z, z') would have to acquire an assigned value. 

The difficulty, that the zero of the function perhaps will not occur in the 
domain of regularity, inay be illustrated by returning to the corresponding 
question in the theory of functions of a single complex variable; indeed, i t  
would be raised directly, for example, by taking z'= O,  in the case of a 
regular function. 
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54 I t  is a result, in Weierstrass's theory of uniform functions of a 
single variable*, that, in the vicinity z, of an essential singularity of a uni- 
form function f (z), there always is at  least one point within a circle 
1 z - zo 1 = ê, where 6 is any assigned small quantity, sixch that 

I f ( z > - ~ I < e ,  

where a is any assigned quantity. But the specified point does not need 
to be distinct from the point 2,. 

Picard? discriminates between essential singularities according as the 
value a is, or i s  not, actually acquired a t  a point inside the circle 1 z - z, 1 = Ê 

which is not its centre, the centre being the essential singularity. As 
examples, illustrating the discrimination, he adduces the two functions 

- 1 l - 
1 ' ff , 

sin - 
z 

considering both of them in the vicinity of their essential singularity a t  
the z-origin. 

The funetion: 1 sin - has any number of poles in the immediate 1 (3 
1 

vicinity of t h e  origin; they are given by z =  , where k is any integer 
k7T 

sufficiently large to keep z within the suggested vicinity. The function 
does not vanish for any value of z (other than z = 0) within that vicinityf. 
But consider a range of z near z=O along the positive part of the axis 
of y, so that  we can write 

z = Zr, 

where the small positive quantity r is at Our disposa1 ; we have 

The denominator can be made as  large as we please by making r as small 
as we please; my own view is that, when r is made zero, so that z  
approaches the origin along the axis of y and falls into the origin, the 
function in question does actually acquire the value zero a t  the origin. 
But the value is acquired only at  the essential singularity z =  O, and at  
no point in the vicinity of r = O, other than the centre itself. 

Similarly for the pther function. 

* Weierstrass, Grs. Werke, t. ii, p. 124 ; see my T h e o y  of Punctioiu, 33. 
+ His valuable, and far-reaching, ideas were expounded in some memoirs to which reference 

is given in his Traité d'Analyse, t. ii, ch. v. See also, for further investigations, Borel, Leçons 
sur les fonctions entières, (1900), ch. i ;  ib., ch. v ;  ib., Note I.  

2 Picard, 2. c., p. 126, p. 128 ; in the second sentence, 1 have added the aords "other than 
2 =O." 
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The difference between Picard's statement and my own is obvious. 
Picard considers the vicinity of z, = 0, and does not include the actual 
point z, = 0, not regarding i t  as a point where the value or a value of 
the function can be stated. 1 do include the actual point z,= 0 and do 
regard i t  as a point where, if the function nowhere else acquires some 
assigned value, i t  must there acquire that assigned value; and that assigned 
value can then be stated as a value that can be acquired there. But the 
point z,= 0 is actually nlerged in the essential singularity. 

And, it need hardly be added, al1 the valuable investigations' of Picard, 
Hadamard, Borel, and others, are unaffected by these considerations. The 
discrimination is between functions, that acquire an assigned value in the 
vicinity of the essential singularity a t  a point which does not coincide with 
the singularity, and functions tlïat acquire the assigned value only iit the 
essential singularity. 

The whole discussion thus suggests, even for functions of a single variable, 
the idea of places where our function, regular within a domain, ceases 
(at the boundary of the dornain, or elsewhere) to maintain its character 
of regularity. To the consideration of these possibilities we now proceed. 

55. First, however, in connection with the earlier remarks, a reference 
to a theorem by Picard nlust be made. 

I t  may happen that an integral function f (z) cannot acquire a finite 
value a for a finite value of z, so that the equation f ( z ) = a  then has no 
finite root ; thus tf = O hax no firiite root. Picard shews that an integral 
function f (z), which for finite values of z cannot acquire a finite value a and 
cannot acquire another distinct finite value b, reduces to a constantf-. 

The similar question would then arise for an  integral function G (2, z') of 
two variables. Suppose that there are no values of z and z', which are 
simultaneously finite, such that G (z, z') can acquire a special finite value a ; 
and similarly suppose that there are no values, also restricted to be simul- 
taneously finite, such that G (z, 2') can acquire another special finite value b ,  
where b  is different from a. To z' assign a finite value c'; as G(z, z') is 
an integral function of z and z', being regular for finite values of z and z', 
then G (z, c') is an integral function of z. By the suggested postulate about 
G (z, z'), the integral function G (2, c') cannot acquire for finite values of z 
either the finite value a or the different finite value b ;  accordingly, by 
Picard's theorem, G (z, c') can only be a constant, which must necessarily 
be a finite constant because 1 G (z, z ' ) ~  is finite for finite values of z. As 
this holds for any assigned value cf of z', i t  follows that G (z, 2') is constant 

See the lectures by Borel, already cited. 
t Picard's proof depends upon the theory of modular functions (Traitéd'Analyse, t. ii, 2nd ed., 

pp. 251-254). Borel, (Leçoils sur les fonctions etrtières, Note 1, pp. 103-106) gives a direct 
proof of this theorem without the intervention of any theory of speaial functions. 
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for each assigned finite value of 2'; but ,the constant values of G (z, z') 
are not necessarily one and the same. Now G (z, z') is an integral function 
of z', becnuse i t  is an integral function of z and z'; hence al1 the requirements 
will so far be met by taking 

G (2, 2') = g ( 4 ,  
an integral function of z' alone. 

Again, by the suggested postulate about G (2, z'), there is no finite value 
of 2'-simultaneously with a finite value of z-for which G (z, z') can acquire 
the finite value a or the different finite value b ;  and therefore there ie no 
finite value of z' for which the integral function y (2') can acquire the finite 
value a or the different finite value b. By a repeated application of Picard's 
theorein, i t  follows that g (2') can only be a constant, and therefore G (z, z') 
can only be a constant. 

I t  therefore follows that, if an integral function G (2, z') camot,  for any 
finite value of z und any Jinite value of z' talcen simultaneoz~sly, acquire 
a Jit~ite value a ;  and also cannot, for any jnite value of z and any Jinite 
value o f  z' taken simultaneously, acquire a Jinite value b &$el-ent froin a ;  
then G (2, z') i s  a constant. 

The result is manifestly the merest generalisation of Picard's theorem. 
I t  is specially important to note that the limitation about the non-acquisition 
of the finite values a and b is confined to finite values of z and of z'. A variable 
function may be unable to acquire a finite value a for finite values of z and 
z', but could acquire that value for infinite values of z and finite values of z', 
or for finite values of z and infinite values of z', or for infinite values of z and 
of d ; such is t,he case, for the value zero, of the variable integral function 

eP (i, 2') , 
where P (z, z') is a polynomial in z and z' 

Analytical Continuation. 

56. Now let us consider a function f (z, a'), which is regular everywhere 
in a doinain round a place a,  a' deterniined by 

i ~ - a l < r ,  I Z ' - ~ ' ~ < I . ' ;  
i t  c m  be represented by a double series of powers of z - u and z' - a', the 
series converging absolutely for values of z and z' such that 

I z - a  < p < r ,  12'-a' 2p1<r ' .  

Denoting the series by P ( z  - a, z' - a'), we have 

f (2, 2') = P (Z - a, Z' - a') 

for values of z and z' thus defined. The values of the constant coefficients 
in the double series are determined by the values, at  the place a, a', of the 
derivatives of the function f (z, z') of the appropriate orrlers. 
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Such a series* may be capable of the process called analytical continuation 
outside a given domain within which the series represents a regular function. 
Let z = b and a'= b' be any place within the domain ; at  this place b, b', the 
values of the function f ( z ,  2') and of its derivatives are unique and finite, 
and they can depend upon the origin a, a' of the domain. 

Because the place b, b' lies within the domain of a,  a', where f ( z ,  z') is 
regular, there is a definite domain, actually lying within the domain of a, a', 
appertaining to the place b, b', and providing a region over which f (2, z') 
is regular ; this domain is given by the relations 

Let the double power-series be constructed to represent f ( z ,  2') within this 
definite domain. The coefficients in this new double series are determined 
by the values, at  the place b, b', of the function f (2, a') and of its derivatives ; 
and these may depend for their expression upon the initial double series 
P ( z  - a, z' - a'). Denote this new double series by 

Q (z - b, z' - b' ; a, a'). 

Within the specified domain round b, b', which belongs also to the domain 
round a, a', we have two power-series representing one and the same 
regular function f (z ,  z') ; accordingly, ( I I ,  3 52) for al1 places z, z' within that 
specified limited doniain, the new series Q provides no expression for the 
function f (z ,  z') which, in significance, is additional t o  the expression for the 
function f (2, z') provided by the old series P. 

But now consider the range of absolute convergence of the double series 
Q, which will be the general domain of the place b, b'. I t  certainly 
includes the preceding specified domain, which lies within the general 
domain of the place a, a' in connection with the absolute convergence of 
the series P. I t  rnay extend beyond the boundary of that preceding 
specified domain; if i t  does, then i t  includes places z,  z' not included 
within the domain of a, a'. For al1 such places, the series Q converges - 
absolutely and therefore has a unique significance whereas, for them, the 
series P has no significance. 

Accordingly, when some of the general domain of b, b' as connected 
with the absolute convergence of the series Q lies outside the general dornain 
of a, a' as connected with the absoliite convergence of the series P, Our new 
series Q provides an expression for a regular function of z and z' which is not 
provided by the old series P, while over the region conimon to the two general 
domains the series Q represents the regular function which is represented by 

* For many of the investigations which are given a t  this stage, reference can be made to the 
memoir bg Weierstrass, '' Einige auf die Theorie der analytisclien Functiouen mehrerer Verin- 
derlicheii sich beziehende Satze," Ges. U7erke, t. ii, pp. 135-188. A doctor's thesis by Dautheville, 
" Etude sur les séries entières par rapport à plusieurs variables imaginaires indépendantes," 
Gauthier-Villars (1885), mag also be consulted. 
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the series P over the domain of a, a'. Using the term adopted for the 
corresponding result in the similar event for functions of a single variable, 
we say that (in the supposed circumstance of the more extensive character 
of the general domain of b, b') the series Q is a continuation, sometimes an 
analytical continuation, of the series f '; and we cal1 each of the two series 
an element of the regular function which they help to represent. 

The process may be repeated by selecting a new place c, c', lying 
within the general domain of b, b' and not within the general domain of 
a, a'. When a definite domain of c, c' is constructed lying within the 
domain of b, b', and when we form a new double series for the function 
represented by Q(z- b, 2'- b'; a, a') by taking the value of the function 
and of its derivatives at  c, c' as determining the coefficients for this new 
series, we can denote this series by 

R (Z - C, Z' - C' ; a, a' ; b, b'). 

Within the specified domain round c, cf, the new series R represents the 
same regular function as is represented by Q within that domain. 

Again, now consider the range of convergence of the double series R, 
which range will be the general domain of c, c'. I t  certainly includes the 
specified domain round c, c'. I t  may extend beyond the boundary of that 
specified domain ; and then i t  includes places z, z' not included in the general 
domain of 6 ,  b' and, when c, c' is properly chosen, not included in the general 
domain of a, a'. For al1 such places z, z', within the general domain of c, c' 
and outside the general domains of b, b' and of a, a', the series R provides 
a regular representation of the function which is not provided either by the 
series Q or by the series P ,  while over the part of the domain of c, cf that  
belongs to the domain of b, B' i t  represents the same function as is repre- 
sented by the series Q. In this eveut, the series R provides a continuation 
of the series Q and i t  is another element of the function, now represented 
by the series P, Q, R. 

And so on, from domain to domain. The ultimate aggregate of al1 the 
series, each providing a new element, is the combined analytical expression 
of a function. The ultimate aggregate of the z, z' field, provided by al1 the 
domains, is called the region of continuity of that function. 

It is clear, after earlier explanations, that one of the simplest instances 
is provided by an integral function, that is, a double series converging for al1 
finite values of z and 2 ' ;  and its region of continuity consists of the part of 
the z, z' field given by finite values of z and z', 

Ex. Consider the double series 
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1 which converges for values of IzI < k < l  and Id ( < V < 1. At the place z= - - 
2 ' 

1 
z' = - s ,  we have 

1 1 1 
When we form a series in powers of z+- and z l + - ,  so that - - and -l is the new origin 

2 2 2 2 
for a new domain, the series converges for values of z and z' such that 

3 

The series is 

that  is, i t  is 

For values of 1 z 1 < k < 1 and 1 z' 1 C k' < 1, the series gives no representation off  which is 

not given by the first series. For values of 12 1 2 1 such that 

3 11 1 2 1 such that  1 if 1 < 1. < g ,  the second series does give a representation of f which 

is not given by the first series. 

The first series is the expausion, within a domain round O, O, of the function 
1 

(1-z)(l-2'). 
When we sum the second series, we have, as the sum, 

0' 
-; (2.9) {l-; (i+S)}' 

tha t  is, 
1 

(1 - 2) (1 - 2') ' 
verifying the property that the two series, within their respective domains, are elernents 
of one and the sanie function. 

Singdarities of unqornz f~~nctions. 

57. Any region of continuity of a function that is uniform, continuous, 
and analytic has for its boundary a place or an aggregate of places (whether 
these are given by values of the variables that are continuous in succession 
or are given by discrete sets of variables) where the function ceases to be 
regular. Such a place is called singulnr by Weierstrass*. 

Let k, k' be a singular place for a uniform function f (2, 2') ; then in the 
immediate vicinity of Ic, Ic', the function cannot be expanded as a converging 

* See the memoir cited (5 56) above, p. 156. 
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series of powers of z - k and 2'- k'. Two alternative possibilities present - 
themselves as to the behaviour of functions in the vicinity of such a place. 

Under the first of these alternatives, i t  can happen that a power-series 
Po (z - k, 8'- k'), representing some function regular at  k, k' and vanishing 
there, exists such that the product 

Po (2 - k, 2' - Icl) f (2, 2') 

is regular in the immediate vicinity of k and kt. Denote this product by 
F(z, 2'). Then F(z ,  z'), being a regular function of z and z'in the immediate 
vicinity of k and Id, can be expanded in a double series of powers of z - k and 
2'-lc' which converges absolutely within non-infinitesimal regions round k 
and k'. Denote this new series by P, (z - k, z' - k') ; then we have 

P, (z - k, z' - k') 
f (4  2') = P,(z-k, 2'-k') 

Following Weierstrass*, we call such a place an unessential singularity of 
the function. 

Under the second of the alternatives indicated, i t  can happen that no 
power-series Po (z - k, z' - Ic'), representing some function of z and z' regular 
in the immediate vicinity of k, k', exists such that the product 

Po (z - k, z' - k') f (z, 2') 

is regular in the immediate vicinity of k, Ic: Following Weierstrass*, we 
call such a place k, Id an essential singularity of the function f (z,zl). 

It is to be noted, in passing, that;, for the occurrence of an unessential 
singularity, i t  is sufficient to have a single power-series Y, such that the 
product Po f is regular in the immediate vicinity of the place. But there is 
no assumption (and i t  is not universally the fact) that only a single power- 
series exists having this property or that al1 such power-series, as exist 
having this property, are expressible in terms of Po alone. When two 
different expressions for the uniform function f (2, z') are obtained in the 
vicinity of the place k, k; they must be equivalent; and we should then 
have a relation 

We shall assume that, while P, (O, 0) and Po (O, 0) vanish, the power-series 
P, and Po possessj- no common factor vanishing a t  k, k', whether i t  takes 
the form of a regular power-series or a mere polynomial which is a special 
case of a regular power-series. Similarly, we shall assume that Q, and Q, 
possess no common factor vanishing ab k, K. Now 

P, (z - k, Zr - k;') 
QI(.- k, 2'-k')= Qo (Z - k, 2' - k'). 

Y0(z- k, 2'- k') 
* 1. c., p. 156. 
t This metter will be considered lster, so as to obtain the conditions necessary and mfficient 

to juatify the assumption. 

6- 2 
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Here Ql is regular in the immediate vicinity of k, Ic', while Pl and Po have - 

no common factor vanishing at  k, IG ; hence Qo must contain Po as a factor. 
Let P denote the quotient of Q, by Po,  so that P is regular a t  Ic, Ic' ; then 

Q,=P,E: Q,= PIE: 
Again, 

Q, (Z - k, z1 - kt) 
P1(z-k, zl-#Y)= Po (2 - k, 2' - hi). 

Q,(z-k, 2'-lc') 

Here Pl is regular in the immediate vicinity of k, ic', while Q, and Q, have 
no common factor vanishing at  k, L'; hence Po must contain Qo as a factor. 
But 

1 
Po=&,.- P ;  

and therefore 1/F is regular at  Ic, k'. Consequently both .F and l / F  are 
regular at  k, hi; and therefore F does not vanish nt k, K. I t  is not difficult 
to see that we then may choose a domain round k, k', which may be small 
but is not infinitesimal, such that F does not vanish in that domain; and 
then the behaviour of Q, in the immediate vicinity of the place Ic, k' is 
effectively the same as the behaviour of Po in that immediate vicinity. 

Likewise for Pl and Q, if they vanish at  k, k: When either does not 
vanish, the other will not vanish; they are different from zero a t  Ic, Ic' 
toget her. 

It follows that, in discussing the behaviour of f  (2, 2') in the immediate 
vicinitty of k, kt, any representation off (2, 2') by a quotient Pl/P, can be 
used, if Pl and Po have no common factor*. 

58. I n  the case of functions of a single variable, i t  is known that there 
are different types of essential singularities, whether these occuï a t  isolated 
points, or along lines, or over continuous areas. Special kinds of essential 
singularities are considered in that theory, and they furnish partial charac- 
teristics of some classes of functions ; for example, not a few definite results 
have been achieved when the essential singularities in question can be 
approached as the limits of groups of particular points of a function; but 
the theory is far from easy or complete. A fortiori, i t  is to be expected that 
even greater difficulties will arise in the consideration of the types of 
essential singularities of uniform functions of a couple of variables. 

But when we deal with unessential singularities of uniform functions, 
there is a renl divergence between the theory of functions of a single 
variable, and the theory of functions of two variables or more than two 
variables. I n  the case of functions of one variable, there is only one type 
of unessential singularities, the only variation in the type being the variety 
of the order; such a point a is said to be an unessential singularity (or a 

* The relation between two such functions as Po and Q, will be considered fully in Chapter N : 
in particular, see J 64. 
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581 TWO TYPES OF UNESSENTIAL SINGULARITY 85 

pole) of a function f (z), and of order n for the function, when there is a 
positive integer n such that 

(2 - 4"f (2) 
is finite and not zero a t  the point. 

I n  the case of uniform functions of two variables, we arrange the un- - 
essential singularities in two distinct types or classes. After the explanatory 
definition we know that, in the immediate vicinity of k, K,  the function 
f (z, z') can be expressed in the form 

where Po and Pl are converging double series in powers of z - k and z' - Ic', 
of which Po vanishes a t  k, L'. 

Two different cases then can occur as alternatives, discriminated according 
to the value acquired by P, a t  k, K. 

I n  the one case, leading to one of the ~ W O  types of unessential singular- 
ities, it is the fact that Y,  does not vanish a t  k, 12'. I t  then follows that, 
no matter how z tends to the value li: and z' to the value IC, the quantity 
/ f (z,zl) / can, for sufficiently small values of / z - k j and 1 z' - k' , be made 
Iarger than any assigned magnitude, however large : that is to say, this large 
magnitude is assigned at will, and the appropriate small values of 1 z - k j 
and 1 2'- k' 1 are determined subsequently to the assignment. We therefore 
can take infinity as the limit for the assignment ; and the place k, k' then 
gives a definite and unique value to f (z, z'), this value being infinite. 

This type of unessential singularity is one of the two kinds of un- 
essential singularity considered by Weierstrass. I t  is convenient to use 
for functions of two variables, the sanle name as is used, for functions of on 
variable, when the place gives a definite and unique infinity of the function. 
Accordingly we shall cal1 this type of unessential singularity the polar type ; 
and a place k, K, being an unessential singularity of the polar type for the 
uniform function, will be called a pole of the function f (z, 2'). 

I n  the other case, leading to the other of the two types of unessential 
singularities, i t  is the fact that P, does vanish a t  k, K. The place k, k' then 
does not give a definite and unique infinite value for the function f (z, 2'). 
Subsequent explanations may so far be anticipated here as to declare that 
particular modes of approach of z to k and of z' to V can be selected, so as 
to make f (z, 2') tend towards any assigned value near Ic, k' and acquire that 
assigned value at  L, L'; thus the function f (z, k )  does not acquire a definite 
unique value at  the place. 

This type of unessential singularity is the other of the two kinds 
of unessential singularity considered by Weierstrass. We have given a 
definite name to the other type of unessential singularity that can belong 
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86 UNESSENTIAL SINGULARITY [CH. 111 

to uniform functions of two variables; to the type just indicated, we shall 
give simply the general name unessential singdarity and, so far as concerns 
functions of two variables, there need be no confusion in taking this un- 
restricted naine*. 

Thus, for the  function 
z+z l  - 
2-z" 

t he  place z=1,  z'= 1 is  a pole ; t he  place z=0, z'=O is a n  ~ n e ~ w e n t i a l  singularity. 

For t he  function 

t h e  place z = 1 ,  z'= - 1 is a zero ; t he  place z =  1, z'=1 i s  a pole ; t he  place z = 0 ,  z'=0 is  a n  
essential singularity. 

For a function 

where P(e, z') and Q (2, d )  are polynomials in z and 8' having no  common factor, al1 places 
satisfying the  equation 

Q (z, 2') =O 

are pole6 unless they also satisfy the  equation 

P (z, 2') =O ; 

and al1 places satisfying the  two equations 

Q (z, 2') =O, P (2, 2') = O, 
are unessential singularities. 

As a summary conclusion, we see that there are four kinds of places 
for a uniform analytic function of two variables, viz. ordinary places, poles, 
unessential singularities, essential singularities. The first set of these 
constitute the region of continuity of the function; the remainder constitute 
the boundary of the regioq of continuity of the function. 

Extension of  Laurent's Theorem. 

59. As a last theorem for the present, we proceed to an extension of 
Laurent's theorem on functions of a single variable; in order to nmke the - 
establishment simpler, we shall restate Cauchy's theorem concerning the 

* Corresponding considerations arise for functions of n variables. Weierstrass arranges their 
unessential singularities in two kinds. One kind includes places that, as in the text, may be 
called poles ; a t  such a place, the function definitely and uniquely acquires an infinite value. 
The other kind iucludes al1 unessential aingularities which are not poles. Now it is conceivable 
that an unessential singularity of this second kind for a uniform function of n variables might 
be ranged in one or otlier of n - 1 classes, according as there are m, m 1, m 2, .. . , m "-2 ways 
(where m is finite) in   hi ch zl, z,, ... , z, could be made to approach the unessential singularity 
a l ,  az, ..., a, 80 a8 to make the function 

acquire an assigned value at the place. 
The question manifestly does not arise when there are only two independent variables ; hence 

the adoption of the names pole and unesstntial singularity in the text. 

IRIS - LILLIAD - Université Lille 1 



expansion of a function in a double series of positive powers. Consider a 
function f (z ,  2') within a region where i t  is continuous, uniform, and 
analytic. Within that region (assumed to include O, O) consider the domain 
defined by 

Izl=?p<r, Iz'l=?p'<r'. 

Then we have the result 

when the double integral is taken round circles in the domain such that 

[ z l < l t l < p < r ,  lz '<It ' I<p'<rf .  
Moreover, taking 

($"" 
1 1 . 2  za - =- Z* + - +  -+...+-+- t - z  t ta t" tn Z '  1 - -  

t 

we obtain an expression for f ( z , z l )  in the form 

The forms for the coefficients c,,, have already been given; the upper values 
of the limits of 1 c,,, 1 for al1 positive integer values of p and q have already 
been given also, when the function f (z, 2') has the assigned properties ; the 
series can be continued to infinity for both sets of indices, and i t  converges 
absolutely within the z, zr domain*. 

Now consider a corresponding extension of Laurent's theorem, which 
may be enunciated as follows :- 

Let f (z, z') denote a function, which is ufziform, continuous, and analytic, 
within a region in  the jield of variation dqfined by qnelations 

R o > R a ] z - a l a r > r o ,  R,'>R'>lz'-a' >,rJ>r,'. 

Denote by t and by s cuwent variables (or points) on the circumferences of 
the outer circle of radius R, and the inlzer circle of radius ro in the z-plane; 
and similarly for tr and for s' on the circumferences of the outer circle of 
radius R,' and the inner circle of radius r,' in the 2'-plane. Then the function 
f (z, z') can be expressed as a series of integral powers of z - a and z' - a'; 
the indices of  those powers can range from - m to + m for eacli. of the 

* The analytioal work, needed to establish the result, is so similar to the corresponding 
analysis for funetion8 of a single variable (see my Theory of Functiom, § 28) that it need not be 
set out in detail. 
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variables; and the double series converges absolutely for values of z and z' 
given by 

R ~ i z - a l à r ,  R'zIz'-a'làr'.  

By the generalisation of the first part of Cauchy's theorem, we have 

Now, for our values of a, a', z, z', t, t', we have 

t - a  z - a  -=1+-  
t - z  t - a  

and so the integral 
f (t? t') dt dt' 
- z)  (t' - 2') 

is expressible as a double series of terms 
22 cp, rl ( z  - a)p (2' - a' )q 

for p = 0, 1, ... , m and q = O, 1, . . . , n, where 

together with a single series of terms 

for q = 0, 1, . . . , n ; and a single series of terms 

t - a  
for p = 0, 1, . . . , m ; and a term 

1 f ( t ,  t ') ( z  - a w1 2' - a' (z+l?(t - z> <tT - i> (-1 dt dt'. 

To consider the coefficients in the double series, let 211 denote the 
greatest value of 1 f (2, 2') 1 within the whole region considered; then, as 
before. 

though nothing can be declared as to a relation betmeen c,,, and the 

derivative (': '' at a, d, for our function i~ not defined within the 
azPaz q 

domairi 2-a l<  r,, 12'-arI<r; 
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As regards the second series of terms, say S,  we have 

as R < R,, indefinite increase of m makes each term in the series on the 
right-hand side as small as we please; and R'< R,': that is, by taking m 
indefinitely large, we can make S= 0. 

Next, as regards the third series of terins, say SI, we have 

( f  (t, t l )  RI p+l 
IS'I< S - - R - R )  ) ROR,' 

as R'< R,', indefinite increase of n makes each term in the series on the 
right-hand side as small as we please; and R < R,; that is, by taking n 
indefinitely large, we can make SI= 0. 

Lastly, as regards the modulus of the single term, i t  is 

MRo R,' < 

which, with the assurnptions made concerning m and 11, can be made less 
than any assigned quantity, however small ; that is, we can make the term 
zero. 

I n  these circumstances, the expression for the first of the four integrals 
becomes 

nr n 
2 Z c,, , (z  - a)P (2' - a y .  

p=o q=o 

As I z -a l<R< R,, Id-all<R'<R,', and as j ~ ~ , ~ l <  this double 
RoP &'q ' 

series converges absolutely when m and n increase indefinitely and inde- 
pendently of one another. Thus the first integral is expressible as an 
absolutely converging series of positive powers of z - u and z' - a'. 

To obtain an expression for the second integral, which is 

- / (  f ( ,jSdtr, 
(27ri)" s - z)  (t' - 2') 

we note that Iz-aI>r>ro>Is-al ,  while t '-z'I< t'-a1 ; so $1-e take 

z -a  -- 6 - a  
= 1 +  -- 

S-z 2- a 
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We proceed as in the last case. I t  is possible to increase p without limit 
and n without limit ; and n7e obtain, as the expression for the integral, 

where 

Also 

and the double series converges absolutely for the retained range of values 
for z and z'. 

Similarly, as the expression for the third of our double integrals, 
which is 

Also 

and this double series converges absolutely for the retained range of values 
for z and z'. 

Lastly, as the expression for the fourth of our double integrals, which is 

we obtain 

dsds', 

C 2 Cp, (z - a)-' (2' - a')-, 
p=o q=o 

where 
1 

c,, , = wljf(s, 8') (s - a)p-l (SI - d)q-l ds<ls: 

Also 

and this double series converges absolutely for the retained range of values 
for z and 2'. 

Gathering these results together, we see that, in the circumstances as 
stated in the extended Laurent's theorem, the function f (z, z') is expressible 
in the form 

m m 

f (2, z') = 2 C Cm, (Z - a)m (z' - a')", 
-cc - m  

the summation being for al1 integer values of m and of TZ between co and 
- co ; also 
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1 < MRo,nR,,'-n, when m is positive and n is positive, 

......... ( < MR,mr,'n ,............ positive negative, 

......... ,............ negative positive, 

............ ......... I cm, ( < Mrom r P  , negative negative; 
and the double series converges absolutely for values of z and z' given by 

R , > R > ( z - a 1 2 r > r o ,  R, '>R'>lzl-a'l>r'><. 

I t  follows as an immediate corollary that when a function I$ (z,  z') i s  
uniform, continuous, and analytic for al1 the z, z' regiolz of variation repre- 
sented by the relations 

~ z - a I > r > r , ,  12'-a'l>r'>ri, 

it is ezpressible as a double series of negative powers in the form 

wh ere 1 cm, n 1 Q Mromron, 
M being the greatest value of 1 $I (z ,z l )  within the foregoing region; and the 
series converges absolutely for the speciJied range of values for z and z'. 

The result is a t  once derivable from the extension of Laurent's theorein 
by making R, and Rl increase without limit; and i t  can of course be 
established independently in the same manner as the general theorem. 

Ex. 1. The function 
1 1  

P (2, ; 9 d l  2), 

1 1  
a polynomial in z, -, a', , , can be expaiided in a series 

z e 

for finite values of 1 z 1 and 1 z' / such that 

I Z  a r > e ,  d 2r'>cf ,  

where F and c' are positive non-zero quaritities. 

Ex. 2. Shew that the coefficient of zmzfn (where m and n are positive iu the Lauretit 
expansion of 

1 [ 1 and 17 1 being finite and indepeudent of z and of z', is 

Jm (8 Jn (d, 
where J, and J, are Bessel's functions of order m m d  n ;  and obtain the coefficient of 
zmd* in the same expansion (i) when either m or n is negative, (ii) when both 7n and n are 
negative. 
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CHAPTER I V  

A theorern due to Weierstrass. 

60. AFTER these preliminary results relating to expansions of a uniform 
function, which converge absolutely and are valid over the appropriate 
domains, i t  is important to take account of the detailed behaviour of the 
function in the immediate vicinity of each of its several kinds of places. 

dccordingly, let a, a' be an ordinary place for a uniform, continuous, 
analytic function f jz, 2'); the preceding investigations shew that f (z, z'), 
regular in some domain of that place, can be represented within the domain 
by a double series of positive powers of z -  a and z' - a' which there con- 
verges absolutely. No generality, for our present purpose, is lost by assuming 
that a = O and a' = 0, for the assumption c m  be secured by taking z - a = 2, 
Z' - a' = 2'. Hence we write 

B(z,  z') = f (2, z') - f (O, O) = ZZc ,,,, zmzjn, 

where the summation is for positive integer values of rn and of n save only 
simultaneous zero values. Also, 1 f (O, O) 1 is finite and may be zero. 

The detailed behaviour of the function P(z,  2') in the inimediate vicinity 
of the place O, O is governed by an important theorem, originally due to 
Weierstrass. After the analysis has been given, the principa.1 results will be 
enunciated in a f'orm that differs from Weierstrass's, because the limitation 
to two variables renders greater detail possible* than when n is the number 
of variables. 

* The theorem is proved hy Weierstrass for functions of n variables, Ges. Werke, t. ii, 
pp. 135-142. Another proof, due to Simart, is given by Picard, Traité d'Analyse, t. ii, 
pp. 243-245. 

The theorem is discussed here for the special case when there are only two variables. For 
this case, a proof (which follows Weierstrass's proof for the general case) is given in my Theory 
of Functions, 3 297; i t  is  modified in the proof given in the text, because the theorem is not 
regarded from the point of view of establishing the existence of implicit functions of a single 
variable. 
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Si] A THEOREM OF WEIERSTRASS 93 

Our function F(z, z'), which is regular in a domain round O, 0, can be 
expressed in a form 

F(z,  ~ ' ) = + ~ ( z ) + Z I ~ ~ ( z ) + ~ ~ ~ ~ ( z )  + .... 
Two cases arise according as F (a, O) does not vanish, or does vanish, identically 
for al1 values of z within the domain. 

61. First, suppose that F(z ,  O )  does not vanish for al1 values of z. 
Denoting F(z,  O )  by Po (z), which is equal to +, (z), and introducing a new 
function FI (z, z') defined by the equation 

P (z, z') = Fo (z) - FI (z, z'), 

we have a function FI (z, z') which, when z'= O, vanishes for al1 values of z. 
Now F,, (z) is independent of z' and does not vanish for al1 values of z ;  hence 
we can choose places z, z' in the vicinity of O, O, which lie within the region 
of convergence of F(z, z') and are such that 

I F 0 1  > l F l l .  
It is to be remembered that Fo vanishes when z =  0 ;  and so there may be 
some lower limit for 1 z j below which this inequality is not satisfied. As 1 z 
increases, a zero of PO may be attained, and then the inequality would not be 
satisfied. Also as 1 z' 1 increases, the value of F (z, z') / rnay increase ; and so 
there may be some upper limit for 1 z' 1 above which the inequality is not 
satisfied. Accordingly, we suppose that, for places satisfying the relations 

Po< IzI< pl Iz'I<pl> 
the inequality 1 Eo j > 1 F, ',l holds. For al1 such places we have, on taking 
logarithmic derivatives of the equation 

the relation 

Now Po (z) is a regular function of z in a domain round z = 0, and i t  vanishes 
when z = 0 ; hence the lowest exponent in its expansion must be a positive 
integer greater than zero, Say m. Thus 

Fo (2) = zmh (z), 
where h (z) is a regular function of z in  the selected domain and has a 
constant terin ; consequently 

1 aFo nt h' (z) -- +- Fo ' , az -z  h(z) 

where G (z) is a converging series of positive powers of z in the selected 
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where GA+($), the coefficients of the powers of z,are converging series of positive 
integral powers of 2'; and because ( 2 , ~ ' )  vanishes when z'= O for al1 values 
of a, each of these coefficients GA,, (a') vanishes when d = O. Take each power 
of z, and collect al1 the ternis which involve that power of z in the expansion 

1 FIA 2 - -. 
A=I  h F$' 

then we have 

while each of the coeflicients G, ( d ) ,  being a linear combination of the 
coefficients (z'), vanishes when z' = 0. Thus 

and the only term on the right-hand side, which involves the power z-l, is 
rn 

the term - . 
z 

Now let cl, . . . , r, denote the zeros of P(z, r ) ,  regarded as a function of z, 
when we consider a range of values of z such that I z 1 < p, and when we assign - 
to  z' a pararnetric value such that r'I < pl. Repeated zeros of F (z ,  5') 
are given by repetition in the quantities 5, so that s denotes the tale of zeros 
of P (2, Y) within the range. Then, as F(z, 5') is r egu l~ r  for al1 such values 

is finite for those values ; i t  can therefore be expanded as a converging series 
of positive powers of z, Say P (z), so that 

Choose values of z, such that / z / is still less than p and is now greater than 
the greatest of the quantities 1 cl 1 ,  . . . , 1 r, 1. The fractions on the right-hand 
side of the equation can, for suoh values of z, be expanded in descending 
powers of z ; and the equation, after such expansions, becomes 

where 
8, = 51' + . . . + 5 8 r b  

As this result is valid for al1 values of f;' within the selected 2'-range, 5' being 
independent of z, we have 
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identically for al1 values of z ; and therefore, among other results, we have 

s = rn, S, = T G - ~  (r), 
for al1 values of 7. 

The first result shews that, for any given value of z' such that lz' 1 < pl, 
the function F(z, d )  has m zeros in the range 1 a 1 < p, where the number m 
is the index of the lowest exponent in F(z, O) when expressed as a regular 
series of positive powers of B. 

The second result then shews that, for al1 the positive values of T, the 
quantity 

Gr+ ... + fnl 
is expressible as a regular function of which vanishes when r' is zero. 
Hence al1 integral symmetric functions of f;,, . . . , c?, are regular functions of 
(' which vanish with r ;  and as is a parametric value of z', we may (within 
our range) substitute z' for y. I t  therefore follows that, if 

the coefficients g , ,  ..., g,  are regular functions of z' within the selected range, 
each of them vanishing when z' = 0. 

Further, from the same equatiori, we have 
m 

P (z) = G (z) - Z (n + 1) zn Gn+i (z'), 
n=O 

where al1 the functions are regular. Thus, if 

where I' (2, z') manifestl~ is a regular function of z and z', and vanishes when 
s = O  and z'=O, we have 

- a 1 a 
- {F (2, zf)l + 

and therefore 
3' = Ug (2, z') er (zl ='), 

where U is independent of z. 

As U is the same for al1 values of z, and as F ' and g (z,zl) and r (z,zl) are 
regular functions of z and z' for the range considered, i t  follows that U (if 
variable) is a regular function of z'. When 2'= 0, let the first terin in the 
expansion of the regulslr function Fo, which is al1 of F (z,zl) that then survives, 
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be Czm; then g (z,zl) becomes z* ; and I' (z, z') is then a regular function of 
z alone. Thus, when z'= 0, we have U = C ;  and U, a t  the utmost, is a 
regular function of z' ; hence 

U = C (1 + positive powers of a') 
= Ceu, 

where u is a regular function of a' which vanishes when z' = O. Let 
R (2, 2') = 21 + r (2, z'), 

where again R (2, z') is a regular function of z and z' which vanishes when 
z = O and z' = 0 ; and we then have 

F (2, z') = Cg (z, z') eE(ZIZ'), 
with the defined significance of g (2, z'), R (2, z'), and C. 

The new expression is valid within the assigned range of z, z' in the 
immediate vicinity of O, O. But it must not be assumed-and usually i t  is 
not the case in fact-that the new expression is valid over the mhole domain 
where f (2, z') is initially taken as regular. 

We thus have the result :- 

1. When a function f (z, z') i s  regular in sonze domain of O, O, and is 
such that f (z, O) - f (O, O) does not vanish for al1 values of z in that domain, 
we have 

f (z, 2) = f (O, O )  + Cg (2, z') eR@ld), 
where 

'y (2, 2') = zm + glzm-l + ..- +g,,, 
the qucntities g,, ... , g, being functions qf z', each of which is  t*egular i n  the 
immediate vicinity of z' 5 O and vanishes when a'= O; where Czm is the lowest 
power i n  the expansion o f f  (z, O) - f (O, O) in  positive powers of z ; and where 
R (z, z') is  a function of z and z', which is regular in the immediate vicinity 
of O, O and vanishes when z = O and z' = 0. 

62. One important corollary can be a t  once derived froni the preceding 
result. 

Suppose that O, O is a non-zero place for the fimction f (z, z'), so that 
f (O, O) is not zero ; then we have 

Now R (z, 8') is a regular function of z and z', vanishing when z=  0 and 
z' = O, so that / eR@~'l 1 is finite throughout some definite domain round O, 0. 
Also 1 Clf(0, O) 1 is finite; and g (2, z'), while polynomial in  z and regular in 
z' in the immediate vicinity of d = O, vanishes at  the place O, O. It therefore 
is possible, owing to the regularity of g (z, z') and R (2, z'), to choose a non- 
infinitesimal domain given by 

I z I e r ,  Iz f l<r ' ,  
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such that, for al1 the included values of z and z', 
C 1 g (z, 2') 1 1 eR(Z+'J 1 < M < 1, 

where M is a real positive quantity. For al1 such values of z and z', we have 

where (z, z') is a regular function of z and z', given by the expansion 

that is, R (z, 2') is a regular function in a domain of z and z' and vanishes 
when z = O and z' = O. This domain does not include any place that is a zero 
of f  (z, z'), because at  a zero-place z, z' off (z,zl) we should have 

a possibility which is excluded, Hence we must have 

and therefore 
f (z, 2') = f (O, O) ez(zsz'). 

Our corollary can therefore be stated as follows :- 

When f (2, z') is regular within n$nite domain. round O, O, and f (O, O) does 
not va.nish, then there is a domain round O, O-usually more limited than the 
former donzain within which f (z, z') is regulnr-such thut f (z, z') can be 
eqressed in  the fornz 

f (2, z') = f (O, O) eR(zzz'), 
where (z, 2') is a function of z and z', which vanishes when z = O  and z' = O 
and 2S regular within the second domain. 

I n  particular, this expression is valid in the immediate vicinity of O, O, on 
the supposition adopted. 

63. In  precisely the same manner and with exactly similar analysis, we 
can establish the following result which therefore needs only to be stated :- 

II. When a functim f (z, z') is regular i n  some don~ain of O,  O, and is 
such that f (O, z') - f (O, O) does not vanish for al1 values of z' in  that domain, 
we have 

f (z, z') = f (O, O) + Kh (z, z') eSiGz'), 
where 

h ( z ,  z')=z'"+hlz'n-'+ ... +ha, 

the quantities hl,  . . . , h, bez'ng functions of z, each of which is regular in the 
immediate vicinity of z = 0 and vanishes when z = O ; where Kz', is the lowest 

F. 
" 

IRIS - LILLIAD - Université Lille 1 



98 SECOND THEOREM [CH. IV 

power in  the expansion o f f  ( 0 , ~ ' )  - f (O, O) in positive powers of z'; and where 
S (z,zl) is afunction of z and z', which is regular in  the immediate vicinity of 
0, O and vanishes when z = O and a' = 0. 

The postulated circumstances are not the same in these two theorerns. 
If i t  should be the case that f (z, O) - f (O, O) does not vanish for al1 values of 
z within the range, and also the case that f (O, 2')- f (O, O) does not vanish 
for al1 values of z' within the range, then both theorems hold. In  that event, 
we have two different expressions for f (z,zr) - f (O, O) which must be equivalent 
to one another. This equivalence will be illustrated by an example, that will 
be given after w e have discussed the alternative to the initial hypothesis. 

64. Secondly, suppose that the function F(z, O), where 

J'(% 2,) = f  (2, 4 -f (O, O), 
vanishes identically for al1 values of z. Now F (z, 2') is a regular function of 
z and z', within the range considered; as before, i t  can be expressed, by 
summation of the uniformly converging series which represents it, in the forin 

which itself is a converging series within the range. (As already stated, 
4, (z) is the 8 (2) of the preceding investigation). If then P (z, O) vanishes 
identically for al1 values of z, then +, (z) vanishes identically. I t  tnay 
happen that other coefficients #I, (z), +, (z), . . . , vanish identically ; let +t (2) 
be the first that does not thus vanish, t being a finite integer because F (z,zl) 
is presumably not a constant zero. Consequently 

is a regular function of z and z'; that is, in the suggested circumstance when 
the function F(z ,  O) vanishes identically for al1 values of z, our function 
P(z ,  z') hns some power of z' as a factor. Let this factor be zJt; then t is a 
positive integer greater than zero, and it is assumed to be the largest positive 
integer which allows P(z ,  z') z'-~ to be a regular function of z and z' in the 
vicinity of the place O, 0. 

The first of the two preceding theorems does not hold as an expression 
for f (z, 2'). But if the function F(0 ,  z') does not vanish identically for al1 
values of z', the second of the preceding theorems does hold as an expression 
for f (2, 2'). There are, however, limitations upon the forms of the quantities 
hn, h,,, ... ; in particular, 

hn=O, = O, ... , h,-t+i - O. 

But the momentarily important result is that 
f (z, 2') - f (O, O) = zft G (z, z'), 

mhere G (z, 2') is regular in the vicinity of O, 0, and G (z, O) does not vanish 
identically for al1 values of z. 
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Next, suppose that the function P ( 0 ,  2') where (as before) 

P(z, 2') =f (2, 2') -f (O, O), 

vanishes identically for al1 values of z'. Then an argument precisely similar 
to the preceding argument shews that the function F (z, z') has some power 
of z as a factor. Let this factor be z 8 ;  then s is a positive integer greater 
than zero, and it is assumed to be the largest positive integer which allows 
P (2, z') z - ~  to be a regular function of z and z' in the vicinity of O, 0. 

The second of the two preceding theorems does not now hold as an 
expression for f (z, 2'). But if the function F (z, O) does not vanish identically 
for al1 values of z, the first of the preceding theorems does hold as an 
expression for f (z, 2'). As before, there are limitations upon the forms of 
the quantities g,, g ,-,, ... ; in particular, 

g m = o ,  y,-,=O ,..., Sm-s+i = o. 
But the momentarily important result is that 

f (2, 4 -f (0, 0) = z*H (2, 4 ,  

where H (2, 2') is regular in the vicinity of O, 0, and H (O: 2') does not vanish 
identically for al1 values of z'. 

Next, again taking 
P ( z ,  2') =f (2, 2') -f (O, O), 

suppose that the function P (z, O) vanishes identically for al1 values of z and 
that the function F (O, z') vanishes identically for al1 values of 2'. As in the 
preceding cases, F(z,  z') has a factor which is now of the forin z8z1t, where s 
and t are positive integers each greater thnn zero; and i t  is assumed that 
each of them, independently of one another, is the largest positive integer 
which allows F(z, z') to be a regular function of z and z' in the vicinity 
of O, 0. 

Neither of the two theorems already proved now holds as an expression 
for f (z, 2'). The momentarily important result is that 

f (2, 2') - f (O, O )  = z8z't I (2, z'), 

where I ( z ,  z') is regular in the vicinity of O, O, while I (z ,  O) does not vanish 
identically for al1 values of z and I ( 0 ,  z') does not vanish identically for al1 
values of z'. 

Thus in each of the cases contemplated, we have 

f (2, 2') - f (O, 0) =zsz" U(Z, z'), 

where s and t are positive integers that are not simultaneous zeros, and 
U ( 2 ,  z') is regular in the vicinity of O, O, while neither U (z, 0) nor U (O, z') 
vanishes identically for al1 values of z or of z' respectively. The alternatives 
are as follows. 

7-2 
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(a) When U(0, O) is not zero, then, within the sufficiently small domain 
round O, O, we have 

U(z, 2') = U (O, O) eT@J'), 

where T(z, z') is a regular function of z and z', vanishing a t  O, 0. 

Then we have 
f (z, z') = f (O, O) + Cz8zlt eTIzJ'), 

where the constant C is the non-zero value of V(0, 0). 

(B) When U(O, O) is zero, the conditions attaching to U(z, z') require 
that U (z, O) does not vanish identically for al1 values of z and that U(0, z') 
does not vanish identically for al1 values of z'. 

As U(z, O) does not vanish identically for al1 values of z and as U(z, z') 
is a regular function, the first of our two earlier theorems applies to F(z, 2'); 
we have an expression of the form 

where A is a constant ; g (z ,~ ' )  is a polynomial in z having, as its coefficients, 
regular functions of z' which vanish with 2'; and where R (z, z') is a regular 
function of z and z' which vanishes when z = O and z'= O. Then 

f (2, z') = f (O, O) + A ~ ~ z ' ~ g  (z, z') eR(GZ'). 

Also U (O, z') does not vanish identically for al1 values of z', and U(z, z') 
is a regular function ; hence the second of our two earlier theorems applies 
to U ( ~ ~ 2 ' ) .  We have an expression of the form 

U (z, z') = Bh (z, z') eS(zlz'), 

where B is a constant; h (z, z') is a polynomial in z' having, as its coefficients, 
regular functions of z which vanish with z ;  and where 8(z,z1) is a regular 
function of z and z' which variishes when z = O and z'= O. Then . 

f (2, zf)= f (O, O) + B z ~ z ' ~ ~  (z, z') eS(29~'). 

Summarising these results, we have the theorem :- 

III. Whew a function f (2, z') is regular in some domain of O, O, and 
i s  such that either (i) f (2, O) - f (O, 0) vanishes identically for al1 values 
of z while f (O, z') - f (O, O) does not vanish identically for al1 values of z', 

or (ii) f (0,s') - f (0, 0) vanishes identically for al1 values of z' while 
f (z, O) - f (O, O) does not vanish, identically for al1 values of z, or (iii) 
f (z, O) - f (O, O) vanishes identically for al1 values of z and f (O, 2') - f (O,  O) 
vanishes identically for al1 values of z', then expressions for f (2, z') i n  the 
immediate vicinity of the place O, O are 

f (z, z') = f (O, 0) + Azsz'tg (z, z') eR@>z'), 

f (2, 2') = f (O, O) + Bz8zrth (z, 2') eS(zJ'), 

IRIS - LILLIAD - Université Lille 1 



641 THEOREM 101 

where s and t are positive integers such that s = O, t > O for the first hypothesis; 
s >O, t = O for the second hypothesis ; and s > O, t > O for the third hypothesis. 
The quantities A and B are constants; the functions R (2, z') and S ( z ,  d )  are 
functions of z and a', each of which is  regular in  the immediate vicinity of O, O 
and vaîlishes when z = O and z' = 0 ; the function g (2, z') is a polynomial in z 
of the forw~ 

zm+glz-l + ... +gm, 
where the coeficients g,, ..., gm are functions of z' which are regular in the 
imrnedinte vicinity of z' = O and vanish with z' ; and the function h ( z ,  2') is a 
polynomial i n  z' of the form 

Z1n + hl Zf9a- l  + ... +hm, 

where the c o ~ c i e n t i  h,, ..., h are functions of z which are regular in  the 
immediate vi~ini ty  of z and vanish with z. There is .a limiting case when both 
m and n are zero; the expression for f ( 2 , ~ ' )  b the immediate vicinity of O, O is  

f ( z ,  2') = f (O, 9) + eT(6 Z't, 

where C is a constant, while T(z, z') is a function of z and z' which is regular 
in  the immediate vicinity of O, O and vanishes when z = O and z'= O*. 

Note. We saw before that, in certain circumstances, both Theorem 1 and 
Theorem II are valid, thus providing for the regular function f (z, 8') two 
expressions, which are formally distinct from one another, and must be 
equivalent to one another. 

. .  

I n  Theorem III i t  follows that, in certain circumstances, the regular 
function f (z, z') can have two expressions, which are formally distinct from 
one another and must be equivalent to one another. 

I n  the former case, the two expressions for f (z, z') - f (O, 0) are 

Cg (2, 2') eR W J Z ' ) ,  K h  (z, z') e S ( ~ ? ~ ' ) ,  

where g (z, 2') is polynomial in z with coefficients that are regular functions 
of z' vanishing with z', while h (z, z') is polynomial in z' with coefficients that 
are regular functions of z vanishing with z. Thus 

where L is a constant and V(z, z') is a regular function of z and z' which 
vanishes when z = O and z' = O ; hence 

g (2, z') = Lev@*") h (2, z'), 

Siniilar relations hold in the latter case. 

This theorem is quite distinct £rom Weierstrass's second preliminary theorem (p. 141 of his 
memoir already quoted) for the case n = 2  ; the latter will corne hereaftar (S  65). 
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I t  follows that, for a regular function f (2, z'), when it is not expressed as 
a power-series valid over a domain round O, 0, but is expressed for con- 
sideration in the immediate vicinity of O, O, we usually can obtain two 
different expressions according as z or z' is taken as the variable for simplifying 
the representation. Each of the expressions is unique in its form ; the two 
expressions are equivalent to one another. 

Ex. Consider an ordinary place of a regular function f (2, z'), and let i t  be O, 0 ; and 
take the general power-series for f, in that domain, in the form 

.First, assume that neither nor a,,, vanishes. I t  i s  not difficult to establish the 
following results* :- 

am 1 1  - - (ao2aio2-a~~a~oaoi+amaoi~! - - - ( 
alo4 2 a10 4 Cdllalo- a20%1)~, 

which is the expression for f (z, z') under Theorem 1. 

Similarly, as the expression for f ( z , z l )  under Theorem II, we have 

* The expressions suggest that the theory of invariantive forms can be applied to the 
expansions, in al1 the cases stated. 
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where 

EXAMPLE 

And it  is easy to verify that 

Secondly, when q,l vmishes but not alo, the first expression is effective for 

f ( z , 4  -f (0, 01, 

but the second is ineffective. When a, vanivhes but not sol, the second expression is 
effective but the iirst is ineffective. 

Thirdly, when alo and ao1 both vanish, neither of the expressions is efective. Then 

f (z, d)- f (O, ~ ) = a ~ z ~ + a ~ ~ z z ' + ~ ~ d ~ + a ~ ~ ~ + a ~ ~ ~ ~ z ' + ~ ~ z ~ ~ ~ + ~ ~ ~ ~ +  ... ; 
and we find 

f (2, 2') -f (0, 0) 
=(amz2+z (allz'+b12z'2+ ...)+ zt2 (%+b03d+ ... )} ekiozf kolz'+'.', 

where 
1 

blz= {a12azo2-aZlallam+a3~ (al? - %2aa)}, 
am 
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The first expression is effective when u, does not vanish ; but it  is ineffective when a20 
does vanish. The second expression is effective when does not vanish ; but it  is 
ineffective when a, does vanish. 

When both am and ao2 vanish and when all then does not vanish, another expression 
must be obtained. In that case, we have 

f (z, d )  - f (O, 0) =allzz'+a30t3+azlz2z'+ a l z z z ' ~ ~ 3 z ' 3 +  .. ., 
and then we find that 

f (2, 2') -f (0, 0) 

={amz3+z2(b21z1+b~~z'2+ ...)+z( blltf+bll$2+ ...)+ bmd3+bMzr4+ ...)ekloz+kolz'f ..., 
where 

There is a corresponding expre~ision for f (8, 2') - f (O, O), in which z' is made the dominating 
variable ; i t  has the form 

f (2, 2') - f (0, 0) 
= { a o 3 E + ~ ' ~ ( c ~ ~ z + c ~ ~ z 2 +  ...)+ d(cllz+c12t2+ . . . ) + C ~ ~ Z ~ + C ~ + + . . . } ~ ~ ~ O ~ ~  blz'+ ..., 
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The firvt of tliese is effective when a% does not vanish. The second is effective when a, 
does not vanish. 

The general form of expression for f (2, 2') -f (O, O), when both f (O, 2') - f (O, 0) and 
f (z, O) - f (O, O) vanish identically, has been indicated. It then is possible to isolate a 
factor eez't, where 

f (z ,  2') - f (O, O)=ZBZ'~ J<z, z'), 

such that both y(z, 0) and f (O, z') do not vanish identically; and expressions, similar to 
those which precede, can be obtained for y(z, 2'). 

65. When the function F(z, O), = f (z, O) - f (O, O), vanishes for al1 
values of z, another method of proceeding was given by Weierstrass*. I t  
was devised for functions of n variables (when n > 2) and some method is 
needed for them other than the method for functions of two variables, because 
with n variables i t  is not generally possible to extract an aggregate factor 
such as z8dt from the function corresponding to f (z, z') - f (O, O). Applied 
to functions of two variables, the Weierstrass method is as follows. 

In the double-series expansion of f (2, z') - f (O, O), valid in a domain 
round O, O, let the terms be gathered together into groups, each group con- 
taining al1 the terms of the same order in z and z' combined; and suppose 
that the group of lowest order is of order p, so that we have 

f (2, 2') -f (O, 0) = (2, z'),' + (2, z'),+~ + . . . . 
Change the variables from z and Z' to u and u' by relations of the form 

where a, p, y, 6 are constants such that a6 -Pr  is not zero, so that u and u' 
are new independent variables. Then f (z, z') - f (O, O) becomes a regular 

See p. 140 of his memoir already quoted. 
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function of u and uf, Say G(u, u'), the lowest terms in which are of order p ;  
and 

G (u, O) = (a, y), ur + (a, ~ + l +  . . . , 
so that, choosing (a, y), to  be different from zero, G(ic, O) does not vanish 
for al1 values of u. 

The first of the preceding theorems can therefore be applied to G (il, u') ; 
the result is of the fornl 

where (a, y), is the non-vanishing coefficient, g,, . . . , y, are regular functions 
of u' which vanish with u', and I ( u ,  u') is a regular function of u and u' 
which vanishes when u =  O and uf = O ; moreover, as the lowest terms in 
G(u, u') are of dimensions p, the regular series for g, (u') begins with a term 
in ut", for r = 1, . . . , p. 

When retransformation to the original variables z and z' is effected, 
we have 

f (2, 4 -f (09 0) 
= G (u, ul) 

= [{z, zl}, + {z, zf + . . .] eJ ('9 "9, 

where J(z,  z') is a regular fiinction of 2 and z' which vanishes when z =  O - 
and z1 = 0 ;  and by expanding eJ('? "3 so as to have the complete series for 

~ - 

the new expression, we have 
{z,  zl],'=(z, zl),', 

so that, as is to be expected, the first term in g(z, z'), where 

f (2, 2') - f (O, 0) =g(z, z') eJ('> "1, 
is the aggregate (2, z'), in the original double series for f (2, 2') - f (O, O). 

Note 1. I t  may be pointed out that the preceding method is effective, 
even if f (2, O )  - f (O, O) does not vanish. Thus for a function it might 
happen that, in the regular function f (z, 0) - f (O, O) when i t  does not vanish 
for al1 values of z identically, the term of lowest order is Azn, while, in 
f (2, 2') - f (O, O), the terms of lowest order are of dimensions less than n. 
(As a matter of fact, each of these terrns of lowest order will then contain 
some positive power of zf as a factor). The application of the method will 
then lead to an expression of the preceding forru. 

Note 2. In the method, the limitations upon a, B, y, 6 are merely ex- 

Thus a certain amount of arbitrary element will appear in the result; by 
varying these constants a, P, y, 6, different expressions will be obtained which 
are equivalent to one another. 
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Ex. 1. Consider the function* 

f=zzf++ (e3+d3)+& (&+d4)+ ..., 
the unexpressed ternis being of order higher than 4. We take 

z=u, zf=u+u', 
so that 

+UZ+ UU'+ ( 2 ~ 3    WU^+ 3 ~ ~ ~ 5 + ~ ~ 3 )  

+& ( 2 ~ ~ + 4 ~ 3 ~ ' + 6 z i ~ ~ ' ~ + 4 u u ' ~ + ~ ' ~ ) +  .... 
This must be equal to 

(u2+g1u+gz) e a l u + b l u ' + a z u ~ b 2 ~ d + ~ z ~ ' 2 +  ... 
9 

where 
gi= klu'+k2d~+k3u'3+ ..., 
gz=zz~ '2+  Z3uf3 + Z 4 d 4 +  .... 

Expanding, and equating coefficients, we firid 

kl=l ,  k2=3, k3= -A, ... ; 
l2=O1 &=il Z4=&, ...; 
al=$,  b , = & ;  
az=&, bz=O, s=$; 

and thus the expression for our function becornes y (u, u') eI(U' where 

g(u,  u')=u'2+~.(u'+gu'2-&~'3+ ...)+& u ' ~ + ~ u ' ~ + . . . ,  
and 

I ( u ,  u')=3u+&u'+,$ (4uz+51112)+.... 

When we retransform to the variables z and z' by the relations 

the terms of the lowest order in g (IL, u') become zz', as is to be expected. 

But the completely retransformed new expression for f is less effective than the 
original expfession ; and the discussion of f  in the vicinity of O, O is more effectively 
made in connection with the expression in terms of z and 2'. 

Ex. 2. Obhin an expression for the function in the preceding example, when the 
transformed variables are given by the rehtious 

where the constants a and B are unequal; and prove that, wheu retransformation takes 
place, the terms of the first order in I ( u ,  u') become z+z1. 

This last method of Weierstrass has been outlined, because of its 
importance when the number of variables is greater than two. When the 
number of variables is equal to two, the general case for which i t  was devised 
falls more simply under the comprehensive results of Theorem III. 

We may therefore sunimarise the results of the whole investigation 
briefly as follows. Whatever be the detailed form of any function f (2, z'), 
r e p l a r  in a domain round O, 0, its general characteristic expression in the 
immediate vicinity of O, O is 

f (5, z') - f (O, O) = ~ z ' t  P (2, zl) er ('9 ''), 

The expansions under Theorem 1 and Theorem II arise as epecial cases of the result given 
above, p. 104. 
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where l ( z ,  z') is a function of z and B which is regular in the immediate 
vicinity of O, O and vanishes when z =  O and zt= O. The quantities s and t 
are positive integers, which may be zero separately or together. When 
either of these integers is zero, or when both of them are zero, P (0 ,  0) can 
be different from zero for special functions ; for al1 other functions, P (z, 2') 
is polynoinial in one of its variables, the coefficients of the powers of which 
are regular functiohs of the other variable within a limited domain, each such 
coefficient vanishing when that other variable vanishes. 

Levd valt~es of u regular function. 

66. One immediate deduction of substantial importance can be made 
from the expression for f (z, z') which has just been obtained, viz. 

F(z, 2') = f (z, z') - f (O, O) = z ~ z ' ~  A (z, z') eB "), 

as to the places where f (z, z') acquires the same value as a t  O, O. When 
f (O, 0) vanishes, we shall call the place a zero for f (z, 2'). When f (O, O) 
does not vanish, we sha.11 call the value f (O, O) a level value for al1 the 
places z, z' such that f (2, z')= f (O, O); al1 these places are theref'ore zeros 
of F(2, 2'). ' ' 

As 3 (z, z') is a regular function of z, z' within a limited domain of O, 0, the 
quantity eB ('I ''1 cannot vanish at any place in the domain. Consequently 
the zero-places of P(z, z') within the domain are given by three possible sets. 

When the positive integer s does not vanish, zero-places of F(z,  z') arise 
when , 

z = 0, z' = any value within the domain. 
When the positive integer t does not vanish, zero-places of P(z, z') anse 

when ' 

z = any value within the domain, z' = 0. 
When A (z, z') is not merely the constant A (O, O), al1 the places in the 

domain such that 
A (2, 2') = O 

are zero-places for F (z, 2'). 
As regards the first set, we obtain an unlimited number of zero-places 

of F(z,  2') within the doniain of O, O; they constitute a continuous two- 
dimensional aggregate, the continuity being associated with the plane of z' 
alone. 

As regards the second set, we obtain also an unlimited number of zero- 
places of F(z, d )  within the domain of O, O ;  they too constitute a continuous 
two-dimensional aggregate, the continuity now being associated with the 
plane of z alone. 

For the third set, there is no additional zero-place for F(z,  z'), if A (0, 0) 
is a non-vanishing constant; in that event, either s, or t, or both s and t, 
must be different from zero. When A(O, O) does vanish, the function 
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A (2, z') either is polynomial in z and (usually) transcendental in z', or is 
polynomial in z' and (usually) transcendental in z ;  and these alternatives 
are not mutually exclusive. I n  the former case, for any assumed value of z' 
within the domain, there is a limited number (equal t o  the polynomial 
degree of A )  of values of z, which vanish with z' und usually are trans- 
cendental functions of 2 ' ;  hence, taking a succession of continuous values of z' 
in the domain, we have, with each value of z', a limited number of associated 
values of z. Al1 these places taken together constitute a continuous two- 
dimensional aggregate; the continuity now is associated with both planes, 
each value of z' having a definite value of z or a limited number of definite 
values of z associated with it, al1 within the assigned domain of O, 0. 
Similarly, in the latter case, as regards A (2, 2'); the same result holds when 
the appropriate interchange of z and z' is made in the statement; and the 
two-dimensional aggregate is unaltered. 

Ex. 1. Among the simplest examples that occur, are those when A(z, 2') can be 
expressed in a form 

az + P ( 4 ,  
where a is a constant and P (2') is a regular function of z' given by 

P(d)=bz '+c~ '~+  ..,, 
b not beiiig zero. Then A (z, z'), with an appropriate change in B (2, z') which is the 
function in the exponential, can a.1~0 be expressed in the form 

bz' + R (z), 
where the regular function R (2) is given by 

R (z)=az+Czz+ ..., 
with suitable values of the constants C, .... The zero-values are given by the two- 
dimensional aggregate 

-az=P(z'), -bz'=R(z). 

The resnlt is the gerieraliuation of the known property whereby, in the vicinity of 
a real non-singular point [, 9 on an analytical curve f ( x ,  y)=O, we have 

X - & = P h - q ) ,  Y - ~ = R ( X - & ) ;  
the linear term in P (y - ?) combined with x - [, and the linear term in R (x - 5 )  combined 
with ,y -7 ,  give the tangent to the curve a t  the m l  ordinary point [, q on the curve. 

Ex. 2. In both cases that arise out of the alternative forms of A, the actual determi- 
nation of the set of valnes of z in terms of 2' (or of the set of values of z' in ternis of z) can 
be made as  in Puiseux's theory of the algebraical equation f (w, B) =O, the governing terms 
being selected by the use of h'ewtods parallelogram. For euample, in the case of the 
zeros of the function 

.f (z,  z') - f (O, O)= aL1zz1+ ~~~2~ + a 2 1 ~ 2 z ' + a 1 2 ~ z ' 2 + u ~ ~ ~ 3  + . .. 
within a small dornain round O, O, we find three values for z in terms of a', vis. 
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and there are three corresponding values for z' in terrns of z, viz. 

If a3,, is zero, the first two series in the earlier pair are not valid; if am is zero, the firut 
two series in the later pair are not valid. If al1 the coefficients ad vanish so that 
f (2, O)- f (O, O) vanishes for al1 values of z, only the third expression in the earlier pair 
survives. If the first coefficient ana, which does not vanish, iu ad,  there is a set of 
r -  1 expansions in a cycle corresponding to the above two which exist mhen aSo does 
not vanish. And so on, for the respective cases. 

Ex. 3. Quite generally, i t  may be stated that the detailed determination of the 
behaviour of P(z,  z') in the vicinity of O, O, so as to obtain the nature of its zeros as 
well as the actual positions of its zero-places, has a close resemblance to the method 
of proceeding in the consideration of an equation f (w, %)=O, which is algebraical both 
in w and in z, and in the determination of the associated Riemann surface*. 

67. Al1 the results relating to the zeros of P(z, z') can apply, in 
descriptive range, to a determinate finite level value (say a) of a uniform 
function f (2, z') in a domain where i t  is regular. Let a, a' be a place 
where f acquires the value a ;  so that 

f (a, a') = a. 
For places a + Z, a' + Z' near a, a' within the domain of a, a', we have 

f (2, 2') = f (a  + 2,  a' + 2') 
= f (a, a') + 22 c,ZmZfn, 

that is, 
f (z, z') - a = Z 3  c,,Z"Z'~. 

Thus the places within the domain of a, a' where f acquires the level value u 
are given by the zeros of the double series which itself vanishes when Z =  0, 
2' = O. 

Hence the level places which give a determinate finite value a to a 
function f (z,zl) form a continuous aggregate within the domain of any one 
such level place. 

Manifestly, as we are dealing with properties of a uniform function o f f ,  
which is regular within the domain of an ordinary place, the values off must 
be finite (for poles do not occur within such a domain) and they must be 
determinate (for singularities, whether unessential or essential, do not occur 
within such a domain). The behaviour of a function in the vicinity of a pole 
and in the vicinity of an unessential singularity will be discussed separately. 

* For this subject, see Chapter VIII of my Theory of Functions for the discussion of the 
algebraical equation and Chapter xv for the construction of the associated Biemann surface. 
Reference should al80 be made to the early chapters of Baker's dbelian Fimctions. 
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68. Not because of any immediate importance for a single function of 
two variables but mainly because of the need of estitnating the multiplicity 
of a common zero-place or a common level-place of two functions of two 
variables, it is worth while assigning integers that shall represent the orders, 
in z and z' respectively, of the zero off (2, z') - f (a, a') a t  the place (a ,  a'). 
By the preceding proposition, for a place z = a + u, z' = a' + u' in the im- 
mediate vicinity of a, a', we have 

f (z, 2') - f (a,  a') = u8 l i t  G (u, d) ,  

where G is regular in the domain, and the integers s and t can be chosen so 
that G (26, O) does not vanish for al1 values of u and G (O, u') does not 
vanish for al1 values of u'. The positive integers s  and t can be zero, either 
separstely or together. 

As G (u,  O )  does not vanish for al1 values of u, there exists a series 

& (21, u') = um + u-' q 1  (u') + . . . + qm (u'), 

where q, (ur),  . . . , q, (u') are regular functions of u' vanishing with u', such 
that 

C f  (u, ut )  = KQ (u, ut) eQ ("9 4, 
where K is a constant and 0 (u, u') is a regular function of u and u' vanishing 
with u and u'. Thus for any small value of u', there are nz small values of il, 

making G (u, u') zero. 

As G (O, u') does not vanish for al1 values of u', there exists a series 

R (u, u') = u ' ~  + ufn-l r, (16) + . . . + r, (u),  

where r ,  (u): . . . , r, (uj are regular functions of 16 vanishing with u, such 
that 

G (u, u') = LR (u, u') ex (us u'), 

where L is a constant and R (u, d )  is a regular function of u and u' vanishing 
with and u'. Thus for any small value of u, there are n small values of u.', 
making G (u,  u') zero. 

In both of these cases, G (u, u') vanishes when u = O ,  u'= O ; and then 
neither of the integers m and n is zero. There remains a third case, when 
@ (O, O) is not zero ; then 

G (u ,  u') = G (O,  O )  er('' "7, 

where I(u,  u') is a regular function of u and u' vanishing when u =  O and 
u' = O. Thus no small values of u and u' make G (u, u') vanish ; and then 
both of the integers m and n are zero. 

With these explanations, we define the orders of the zero of the function 

f (2, 2') -f (a, a') 
at  a, a' as s+  rn for the variable z and as t + n for the variable z'. But i t  
must be pointed out that the zero of the function a t  a, a' is not an isolated 
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zero, for i t  is only a place in a continuous aggregate of zeros; still, a 
settlement of an order in each variable at a place a, a' is convenient as a 
preliminary to the settlement of the multiple order (Chap. VII) of such a place 
when it is a simultaneous and isolated zero of two functions considered 
together. 

Relative divisibility of two regular functions near a commoa zero. 

69. Before proceeding to obtain the expression of any uniform analytic 
function in the vicinity of a singularity, i t  is important to consider the 
behaviour of two uniform functions f (z, z') and g (z, z') simultaneously, both 
being regular within a common domain which will be taken round O, 0. 

First, suppose that g (O, O) is not zero ; then we have seen that a uniform 
function S (z, z') exists, which vanishes mhen z = 0 and z' = O and is regular 
in a domain in the immediate vicinity of O, 0, and is such that 

for that domain. Also, we know that we can take 

f (z, 2') = f (O, O) + A+ (z, 2') 3z'teR ('9 "), 

where s and t are non-negative integers, +(z, z') is polynomial in z and 
regular in z', and R (z, z') is a uniform function of z and z' which vanishes 
when z = O and z' = 0 and is regular in a domain in the immediate vicinity 
of O, O. Consequently 

f (2, 2') 1 
I -- { f (O, O) + A +  (z, z') z8z'teR ('9 z')} e - ('v "1 

Y ( 4  ) Y (0, 0) 

The right-hand side, whether f (O, O) vanishes or not, can be expressed as 
a regular double series U ( z ,  z') ; that is, 

When a uniform function f (z, 2') is expressed as a double series P (z, z'), and 
another uniform function g (z, 2') is espressed also as a double series Q (z, z'), 
and when a third uniform function U ( z ,  z') exists such that 

al1 the functions being regular in a domain round O, O, we say, following 
Weierstrass*, that the series P (z, z') is divisible by the series Q (z, 2'). 

Ges. Werke, t. ii, p. 142. 
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I t  therefore follows that, when g (O, O) is not zero, the regular function 
f (z, z') is divisible by the regular function g (z, d) ,  the regularity of both 
functions extending over a domain round 0, 0; and the result is true whether 
f (O, O) is zero or is not zero. 

70. Next, suppose that g(0, O) is zero; then we know that we can 
take 

g (z, z') = ~ z ~ z ' ~ e ~  (2* x (2, Z'), 
where B is a constant; a and T are non-negative integers ; T (z, z') is a 
function of z and z', regular in the imniediate vicinity of O, O and vanishing 
when z = O and z' = 0 ; and x (z, z') is a function which is a polynomial in z 
having functions of z' for its coeflicients, these coefficients being regular in the 
immediate vicinity of z'= O and vanishing when z'= O. The form off (z, z') 
is the same as before. I t  a t  once follows that, when f (O, O) is not zero, we 
cannot express 

in the form of a regular function; in that case, the function f (z,zl) is not 
divisible by g (z, 2'). 

But when f (O, O) is zero, as also is y (O, O) under the present hypothesis, 
then we have 

f (2, 2') - - A z ~ z ' ~  + (z, 2') eR ( ~ 9  z') 

g (z, z') Bfz17 x (2, z') el'  (Z* "') 

Now R (z, z') - T (z, z') is regular in the immediate vicinity of O, O and 
vanishes when z = 0 and z' = O ; hence the exponential factor in the last 
expression admits the divisibility off (z, z') by g (z, 2'). Also this divisibility 
is adrnitted, so far as powers of z are concerned, i f s  2 o and, so fttr as powers 
of z' are concerned, if t 2 T. There rernains therefore the divisibility of 
4 (z, z') by x (2, z'), where (for the present purpose) we shall assume that 
both + (z, 2') and x (z, z') are polynomials in z the coefficients in which are 
regular functions of z' in the immediate vicinity of z'= 0 and vanish when 
z' = O. Manifestly the degree of $ (z, 2') in z carinot be less than that of 
x (z, $), if divisibility is to be ~ossible;  accordingl~, we suppose that 

X (2, 2') = fim + Zn-' h, + . . . + h,,, 
where m >n,  and al1 the coefficients g,, ..., y,,, h,,  ..., h, are regiilar 
funchions of z' in the immediate vicinity of 2 = O and vanish when z' = 0. 

When $I (2, z') i u  divisible by x (z, z'), the quotient is manifestly of the 
hrm 

pn-n + zm-la-' Ic, + . . . + k ,n-,,, 
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where the coefficients Ic,, ... , Ic,-, are functions of 2'. Also 

g,=h, +-,, 
gz = h2 + h,kl + -t2, 
..................... 

gm = hnbn-n- 
From the first, i t  follows that the function hl is regular and vanishes when 
z' = O ; from the second, that the function k, is regular and vanishes when - 

z'= 0 ;  and so on, in succession from the first nt - n of these relations. 
Also al1 the relations are to be satisfied, by appropriate values of k,, ..., 
k,,, for al1 values of z' in the immediate vicinity of z' = O. The conditions, 
necessary and sufficient to satisfy the last requirement, are that, when we form 
fhe n independent determinants each of m - n rows and columns £rom the array 

Thus there are n conditions. The form of the conditions should, however, 
be noted. As al1 the functions g and h are regular functions of z' in the 
immediate vicinity of $= O and vanish when Z' = 0, each of the n deter- 
minants is also a regular function of z' in  the immediate vicinity of z'= O 
and vanishes when d = 0. Each determinant is to vanish identically for 
al1 values of 2' in the range round z' = 0 ; and therefore every coefficient, in 
the power-series which is the expression of the determinant, must vanish. 
Thus in practice, when the power-series are infinite, the number of relations 
among the constants would be infinite for each of the conditions; the 

. 

- 

arithmetic process could not be carried out in general". But the n 
analytical conditions among the functions would still remain, in the form of 
determinants that are to vanish identically. 

~ I - ~ I ,  gz -h ,  g s - h , , . . . ,  gn-hn, gn+i , - - ->  9-17 gm 
1 ,  h l ,  h ,,..., O ,  O ,  ..., O ,  0 

0 , 1 9 hl , a . . ,  O , O , ..., O ,  0  
.............................................................................. 
O 0  O , ................... - An, hn-I 

0 0  O , ...,...............,..., 0 , hm 

Thus, in particular, the conditions, that the function 

~ + ~ 2 g l + ~ g 2 + g 3  
should be divisible by the function 

z+zh l+hz ,  
are that the two independent determinants from the array 

g1-4, 92-hz, I I  1 ,  h , n ,  g3 II 

each of these n determinants must vanish identically for al1 such values of 2'. 

* In  particular cases, it might be feasible, e.g. when there are known scales of relation 
goveming al1 the coefficients. 

IRIS - LILLIAD - Université Lille 1 



711 RELATIVE REDUCIBILITY 

shall vanish ideiitically. When the two conditions are satisfied, the quotient is 

The general argument shews that the function g 3 / b  is to be regular and to vanish with z'; 
a limit upon the orders of the lowest powers of z' in h, and g3 is thereby imposed. 

Relative reducibility of  functions. 

71. Further, i t  is important to discover whether, even in the case 
when a function 4 (z, z') is not actually divisible by a function ~ ( z ,  z'), 
both being of the foregoing type, each of them is actually divisible by a 
function + (z, z') also of' the same type : that is to Say, if + (2, zf) exists, 
i t  is to be a polynomial in z the coefficients of which are regular functions 
of z' in the immediate vicinity of z' = O and vanish when z' = 0. 

A method of determining the fact is as follows. Both C$ (2, zf) and x (2, z') 
must vanish for al1 the places where +(z, 2') vanishes, if + exists. We 
therefore regard 

as two simultaneous algebraical equations in z. We eliminate z between 
these two equations, adopting Sylvester's dialytic process. The resultant is 
a determinant of rn+n rows and columns, every constituent in the deter- 
minant (other than the zero constituents) being divisible by d ;  and therefore 
this resultant is of the form 

2" 0 (z'), 

where p is a positive integer not less than the smaller of the two integers 
m and n, and where O (2') is a regular function of z' in the immediate 
vicinity of z'= O, when it is not an evanescent function. 

When O (2') does not become evanescent, the values of z' different from 
z'= O which make the resultant vanish are given by the equation 

O (2') = O ; 

and these values of z' form a discrete and not a continuous succession. In  
that event, for each such value of zf and for the specially associttted values 
of z, both + and x vanish. But their simultaneous zero values are limited 
to these isolated places ; there is no function + (z,zl) possessing a continuous 
aggregate of zero-places in the vicinity of O ,  0. 

When O (2') is evanescent, the functions +(z, z') and ~ ( z ,  z') become 
zero together, not merely at  the place O, 0, but at  al1 the continuous 
aggregate of places where some function + (z, z'), as yet unknown, vanishes ; 
for there is no equation O (2') = O  limiting the values of z' and requiring 
associated values of z. 

8-3 
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In the latter case, C#I (z, z') and x (2 ,  z') possess a common factor + (2, z'), 
which necessarily will be a polynomial in z of degree less than n; and the 
polynomial will have functions of z' for its coefficients, al1 of which are 
regular in the immediate vicinity of d = O and vanish when z' = O. Let 

+(z, zt)= ZP + z P 1  k l+  ... +hl; 
as is a factor of Q by hypothesis, and also a factor of x by hypothesis, 
oui earlier analysis shews that (as already stated) k,, ... , kp are regular 
functions of z' in the immediate vicinity of z'= O and vanish when z' = 0. 

Accordingly, let 

where al1 the coefficients G,, ..., G m-p, Hl ,  ..., HnPp are regular functions 
of z' in the immediate vicinity of B' = O and vanish when z' = O. Consequently 
the relation 

(zqn + zm-l ,yl + . . . + g,) (zn-p + zn-P-l Hl + . . . + H,,) 
= (zn + zn-l hl + . . . + h,) (zm-p + zm-- 'G1+ ...+ G-) 

must be satisfied identically for al1 values of z and z' within the im- 
mediate vicinity of O, 0, the common value of the equal expressions being 
Q (z, 2') x (2, z') i + (2, 2'). Equating the coefficients of the same powers of z 
in the expressions, we have nb + n -p relations, linear in the (n - p )  + (m  -p) 
unknown functions Hl,  ..., Hn+, Ci, ..., When these are eliminated 
determinantally, we have rn + n - p - (n -p)  - (na -p) ,  that is, we have p, 
equations in z' which, being satisfied for al1 values of z', must become 
evanescent. The conditions for this evanescence, which are thence derived 
as existing between the coefficients of Q and X, are the conditions necessary 
and sufficient for the existence of + (z, 2'). 

When these conditions are satisfied, the actual expression of $(z, 2') cari 
be obtained by constructing the algebraical greatest common measure of 
Q (2 ,  z') and x (2 ,  z'), regarded as polynomials in z. 

We thus have analytical tests determining whether two functions C#I (2 ,  z') 
and x (z, z'), each polynomial in z and having for the coefficients of powers 
of z regular functions of z' which vanish when z' = 0, are or are not divisible 
by a common factor of the same type as themselves. To these tests, the 
same remark applies as in § 70 ; each condition usually would, in practice with 
infinite power-series, require an infinite number of arithmetical relations 
aniong the constants. Still, the analytical tests remain in the form indicated. 

When the tests are satisfied, the two functions are said to be relutively 
reducible; each of them is said to be reducible by itself. 
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Note 1. The processes connected with finding the conditions are those 
connected with constructing eliminants in algebra. Thus, in order that the 
functions 

z ' + g , ~ ~ + g , z ~ + g ~ ~ + g ~ ,  z a + b 2 + h 2  

should have a common factor linear in z, al1 the coefficients of powers of z' 
in the final expansion of the determinant 

Note 2. In the preceding investigations, we are concerned with the 
possession by + (2, 2') and x (2, z') of a common factor of the same type as 
themselves ; that is to Say, + (2, z'), x (z, z'), and the comnlon factor (if i t  
exists) are polynomial in z. M7e are not concerned with the cornparison of 
expressions 

+ (2, z') and 4 (2, z') eR ('$ '3, 

where R (z, z') is regular in the immediate vicinity of O, O and vanishes when 
z  = O and z' = 0 ; the latter expression, when expressed in a double series, is 
no longer polynomial in z. The case, when R (2, 2') can be such as to make 
the second expression polynomial in z' alone, has already been discussed 

(5  63). 

Ex. When two functions 

@O, al, az% +@O, 61, b2, b3Tz, z')~+ ..., 
(4, al', a2'3[zi O+(bo', b;, b;, bicilz, z')~+. .., 

possess A common factor of the type . 
z+R (4, 

where R (2') is regular in  the iinmediate vicinity of d and vanishes when d =O, we can 
approximate to its expression as follows. (The algebra wiil illustrate the distinction 
between the finite number of analytical tests and the infinite number of arithmetical 
relations between the constants; the latter, of course, cannot be set out explicitlg.) 

The first function is expressed ($ 64) in the form 

{aor2+t(alz'+a~z'2+ ...)+ az$2+P3d3+ ...) eXoz+'lz'+..., 
where 
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and so on ; and the second function is expressed in the similar form 

and so on. We then must have the condition or conditions that 

aoz2+z (alz '+a2i2+ . . .)+a2d2+83z'3+.. .  
and 

should possess a common factor of the type 

Let these two expressions, which are quadratic in z, be denoted by 

They both will vanish, if they possess a common factor linear in z and if that factor 
vanishes. When they vanish, we have 

simultaneously ; and therefore the relations 

22 z __-- 1 
E l r l ~ - € z r l ~  ~ Z % ' - W Q - W ~ O - & % '  

will be satisfied for the value of z, in terms of z', which makes the common factor vaniah. 
Thus we must have 

(ht12-brli)(~iao-Ei%')=(hd-t~~~)~, 
satisfied identically for al1 values of z' ; and the value of z, which would make the common 
factor vanish, is given by 

Ez%'-t~zao=d~ {(%'a2- ai%) +(a,,'& - ad,') z'+ . . . f ,  

91%-<1ao'=z' { a o a , ' - a l a ~ + ( ~ a i  -a(az)z '+. . . )  ; 

and therefore, disregarding the factor 2'4, the expression 

must vanish identically, for aii values of z'. Let the expression be denoted by 

then we must have 
c',=O, c;=o, ..., 

as the arithmetical relations between the constants. 
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Also the value of r, which makes the common factor vanish, is 

Consequently, when al1 the relations between the constants are satisfied, the couinion 
factor is 

z+ylz'+yz~'~+..., 
where 

and so on. 

It is clear that, in the absence of geueral laws giving relations between the coefficienb 
in each of the two functions, we cannot set out the aggregate of relations C=0 and the 
aggregate of constants y. 

Expressions of functions near a pole or an accidentd singularity. 

72. The non-ordinary places of a uniform function have been sorted into 
three classes, the poles (or accidental singularities of the first kind), the 
unessential singularities (or accidental singularities of the second kind), 
and the essential singulârities. 

The simplest of these, in their analytical character and in their effect 
upon the function, are the poles. Let p,  p' be a pole of a uniform function 
f (z, d ) ;  then, after the definition, some series of positive powers of z -p ,  
z' -p' exists, say F (z-p, z' -pf), which is regiilar in the immediate vicinity 
of p, p' and vanishes when z = p  and z' =p>  and is such that the product 

f (2, 2') F (z - p, d - p') 
is regular in  the vicinity of p, p' and does not vanish when z = p ,  z' =pf. 
Thus the function f (2, 2') acquires a unique infinite value a t  a pole; 
that is, the infinite value is acquired no matter by what laws of variation 
the variables z and z' tend towards, and ultimately reach, the place p, p'. 
Further, the pole-annulling factor F (z - p, z' - p') is not unique ; a factor 

F (z - p, $ - p') eR (2  -P9 2' -PI) 

where R (z -p, z' -pf) is any regular function of 2 - p  and zf -pl, would have 
the same effect. Al1 such factors we shall (for the present purpose) regard 
as equivalent to one another ; they can be represented by P (z - p, z' - p'). 
Moreover, there cannot be more than one such representative factor for 
f (z, z') at a pole ; if there were two, Say F ( z  -p, z' - p') and G (z - p ,  z' -p l ) ,  
we should have 

f (2, al)F(z-p, z'-pr)=regular function, not vanishing when z = p  and z'=pr, 

f(z, z')G(z-p, 2'-pf)= ....... ..................................,..................... , 
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and therefore p, p' would be an ordinary non-zero place for the quotient 

P (2  - p, 2' -p') 
G ( 2  - p, z' - p') ' 

which is impossible unless P is divisible by G, and i t  would be an ordinary 
non-zero place for the reciprocal of this function, which is impossible unless 
G is divisible by E: 

Hence, denoting the representative factor by F, we have 

the series on the right-hand side being a regular function in a domain of 
p, p' ; and therefore 

= a  regular function (5 69) of z and z' in a domain of p, p', 
vanishing when z = p, z' =pl. 

I t  therefore follows that a pole off (z, z') is a zero of - so that the 
f (2, 2') ' 
1 , .  # 

place p ,  p' is an ordinary place for the function - 
f (2, i)' 

Hence, in the 

vicinity of a pole of f (z ,  z'), it is convenient to consider the reciprocal 
function, say 

and then the behaviour off  (z,zl) in the vicinity of the pole p, p' can be 
described by the behaviour of 4 (2, z') which is regular in the vicinity of 
its zero there. Moreover, any zero of f (z, a') in a domain of p, p' is a 
pole of 4 (2, 2'); hence the domain of p, p', within which 4 (2, 2') is regular, 
does not extend so far as to include any zero off (z, 2'). 

As 4 (z, 2') is regular in this domain of p, p', and as i t  vanishes a t  p, p', 
i t  has an unlimited number of zero-values in the immediate vicinity of 
p,p', and these occur a t  places forming a continuous two-dimensional 
aggregate that includes p, p'. Hence in  the imrnediate vicinity of any pole 
of a unz fo~m anaiytic function, there is an unlimited number of poles f o r k g  
a contiwuous two-dimensional aggregate thut includes the given pole. 

Further, -ive have definite integers as the orders of the zero of +(z, 2') 

in the two variables a t  p,  pl, the integer being derived from the equivalent 
expressions of + (z, 2') in the immediate vicinity of p, p1 ; these integers wjll 
be taken as the orders of the pole off (z, 2') in the two variables at  p, p'. . 

Cor. Manifestly, a pole of f(z, z') of any order is a pole off  (z, 2')- n 

of the same order, where 1 a 1 is finite. 
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73. An unessential singularity (an accidental singularity of the second 
kind, to use Weierstrass's fuller phrase) of a uniform function f (z ,  z') at  a 
place s, s' is defined by the property that there exists a power-series 
F(z  - s, 2'- s'), which is a regular function of z and z' in the immediate 
vicinity of s, sr and vanishes at s, sr, and is such that the product 

is a regular function in the immediate vicinity of s, s', and vanishes at  
s, s'. Let this latter regular function be denoted by H ( z  - s, z' - s'). No 
generality is lost by assuming that the functions F and H have no comnion 
factor vanishing when z = s, z' = s'. We then have a fractional expression 
for J; vie. 

H ( z  - s, z - s') 
f (2, 2') = (z - s, - s,) 

As in the case of a pole off (z ,  2') nt p, pt, the function F ( z  - p ,  z' - p') 
was representative and unique, so here each of the functions H ( z  - s, z' - s') 
and F (z - s, z' - s') is representative and unique, when H and P have no 
common factor vanishing when z=  s, z' = s'. The functions H and F can 
of course have any number of exponential factors, each exponent being a 
regular function of z - s ,  2'- s'; but no factor of that type affects the 
characteristic variations off  in the immediate vicinity of that place. Thus, 
in our expression for f (2, z'), we can regard the representative functions H 
and F as unique. 

To consider the behavjour off  at, and near, the accidental singularity, 
write 

z - s = g ,  Z I - S ' = o f .  

then we have expressions of the form 

H ( Z  - S, Z' - SI) = Eumalm' {az + oJ-' hl (a ' )  + . . . + hl (u ' )]  eH(u3 "), 

F ( Z  - S, 2' - 8') = Dun ntn' {uE + uk-l fi (4 + . . . + fk (u t )}  e F (u, u') , 

where E and D are constants: m, m', n, n' are positive integers, each zero 
in the simplest cases: Z and k are positive integers, each greater than zero 
in the simplest cases; h,, ... , hl, f,, ... , fk are regular functions of a' in the 
inimediate vicinity of m' = O  and vanish with cr'; and g, P are regular 
functions of a and a' in the immediate vicinity of u = 0, U' = O and vanish 
with u and a', so that neither H nor F can acquire a zero value or an infinite 
value froin the factors e H  and eF Moreover, H and F are devoid of any 
common factor: so that either m or n (or both) must be zero, and m' or n' 

(or both) niust be zero. Also 
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have no common zero in the immediate vicinity (defined as a region round 
a' of radius less than the modulus of the smallest root of the resultant of 
these two polynomials) of u = O, o' = O Save actually a t  O, 0 ; for their 
eliminant is a function cr'p O (Q') which does not vanish for sniall values of u' 
other than of = 0. 

Manifestly, the value of f(z, 2') a t  s, s' is not dejnite; it can be made to 
acquire any value by assigning appropriate laws for the approach of z to s 

and of z' to s'. I n  the immediate vicinity of s, d,f (2, 2') possesses 

(i) an unlimited number of zeros, given by zero-values, ,other than at  
0, O, of a" + oz-' h, (or) + . . . + hl (a') ; 

(ii) an unlirnited number of poles, given by zero-values, other than at  O, 0, 
of gk + okpl f i  (0') + . . . +h (a') ; 

(iii) an unlimited number of places at which i t  assumes a level value of 
finite modulus ; 

but a = O and o'= O is the only place in the immediate vicinity of O, 0, 
where the value off  (z, 2') is not unique and definite. Hence we have the 
result :- 

The unessential singularities of a uniform function f (2, z') are isolated 
pla.ces in the domain of existence o f f  (2, 2 ) ;  the value o f f  ut an zraessential 
singularity is not definite; and, in  the imrnediute vicinity of any unessential 
singularity, there is an unlimited number of places where f can assume any 
assigned definite value, zero, jnite, or injînite. 

Purther, let the unessential singularities (each of them being an isolated 
place) of a uniform analytic function be represented by a,, a',, where 
m = 1, 2, . .. . They may be finite in number or infinite in number. When 
they are infinite in number, the places a,, a', must have one or more limit- 
places; let such a limit-place be b, b'. As regards the function in a small 
domain round b, b', i t  caniot be represented byany of the different foregoing 
expressions, suitable to the respective vicinities of an ordinary place, a pole, 
and an isolated unessential singularity. The limit-place must therefore be 
an essential singularity of the function. 

Expression near an essential singularity. 

74. The definition of an essential singularity of a uniforin function, that 
has been adopted after Weierstrass, is mainly of an uninforming character- 
to the effect that, in the immediate vicinity of such a place, no power-series 
U(z, d )  representing a regular function and vanishing at  the place can be 
obtained such that the product 

f (4 4 u (2, 2') 
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is a regular function of z and 2'. But, as is known to be the fact with 
uniform functions of a single variable, essential singularities cannot effectively 
be sorted together in one class: there can be points, or lines, or spaces, of 
essential singularity for a uniform function of a single variable. The con- 
ception of added complications, when we deal with uniforrn analytic functions 
of more than one variable, needs no argument for postulation, though i t  
gives no substantial assistance towards analytical formulation. 

It may however be added that one large question dealing with the 
essential singularities of a uniform analytical function has occupied a 
number of memoirs published in recent years. 

We have seen that the zeros of an analytical function of two variables 
constitute a two-dimensional aggregate, and likewise that its poles con- 
stitute a two-dimensional aggregate. We have also seen that its iinessential 
singularities are isolated places 

The question just mentioned relates to the aggregate constituted by 
the essential singularities of a uniform analytical function; for its dis- 
cussion, as well as for other matters, we shall refer to the memoirs indicated*. 

* The chief memoirs are those by Hartogs, via. Math. Ann., t .  lxii (1906), pp. 1-88 ; Münch. 
Sitzungsb., t, xxxyi (1906), pp. 223-242; JahresO. d. Deutscher Nath.  Verrinigung, t. xvi (1907), 
pp. 223-240; Acta Math., t. xxxii (1909), pp. 57-79; Math. Ann., t. Ixx (1911), pp. 207-222. 

See also a memoir by E. E. Levi, Annuli di  Mat., Ser. iii, t. xvii (1910), pp. 61-87. 
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CHAPTER V 

Two THEOREMS ON THE EXPRESSION OF A FUNCTION WITHOUT ESSENTIAL 
SINGULARITIES IN THE FIKITE PART OF THE FIELD 

75. WE now come to the consideration of a couple of theorems relating 
to the expression of a uniform analytic function of two variables. In  the 
first of them, we have to deal with a function that has no essential 
singularities within the whole range of the field of variation of z and 2'; the 
function then has the form of a rational function of the variables. In  the 
second of them, we have to deal with a function that has no essential 
singularities within the range of the field of variation of z and z' such 
that ( z / < R, ( z' i < R', where R and R' can be taken as large as we please ; 
the function then has the form of the quotient of two functions, each of which 
is a regular function of z and z' for the values of z considered*. 

76. First of all, consider a polynoniial in z and z', say 

p (2, 2') = c,,zn + f Zn- + . . . + r,, 
where to, rl, . .. , cm are themselves polynomials in z'. Then we a t  once have 
the results :- 

(i) every finite place is ordinary for p (2, 2') ; 

(ii) with every finite value z', that is not a zero of go, can be associated 
n finite values of z, such that each of the n places thus constituted 
is a zero for p (z, z'), repetition of values of z causing multiplicity 
of zero-places for p (z,z l )  ; 

(iii) with every finite value z', that is a zero of Co and is such that 
5, (r > O )  is the first coefficient of powers of z in p (z, z') which 
does not vanish, can be associated n - r finite values of z, such 
that each of the n - r places thus constituted is a zero for p (z, z') ; 

(iv) the poles of p (z, z') are given by infinite values of 1 z 1 and finite 
values of z' other than the roots of go, and by infinite values 
of / a f !  and finite values of z other than the roots of the coefficient 

* Both theorems were enunciated by Weierstrass for n variables, but without proof; referenoes 
will be given later. 
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of the highest power of z' in p (2, a') arranged in powers of z', and 
by infinite values of 1 z and of Z' ( ; 

(v) the unessential singularities of p (2, z'), if any, are given by infinite 
values of Iz /  and by the roots of Co, but each such place is an 
unessential singularity only if other conditions are satisfied ; and 
similarly for infinite values of 1 z' 1 and by the finite values of z 
excepted in (iv), but each such place is an unessential singularity 
only if other conditions are satisfied : so that, in general, p (2, 2') 
hm no unessential singularities ; and 

(vi) there are no essential singularities of p (2, a'). 

77. I n  the next place, consider an irreducible rational function of z 
and z', say 

where p (z, z') and q (2, 2') are polynomials in z and z', 

p (2, 2') = (ozn + S;zn-l + ... + Cn, 

Q (2, 2') = qozTn + q,zm-' + o a + qm, 

while Co, ..., c,, 70, ..., T m  are polynomials in a' alone. Then i t  is easy to 
infer the following results :- 

(i) every finite place, that is not a zero of q(z, z'), is ordinary for 
x (2, 2') ; 

(ii) every zero of p (2, z'), that is not a zero of q (z, z'), is a zero of 
R (2, d )  ; 

(iii) every zero of q (2, z'), that is not a zero of p (2, z'), is a pole of 
R (2, 2') ; 

(iv) every place, that is a simultaneous zero of p (z, z') and of q (z, z') 
which have no common factor because our rational function is 
irreducible, is an unessential singularity of R (2, d ) ;  

(v) the behaviour of R (2, zl) for infinite values of z or of / z 'I  or of 
both 1 z 1 and 1 z' 1, depends upon the degrees of p (z ,z l )  and q (z, z') 
in z and in z', while every such place is either a zero, or ordinary, 
or a pole, or an unessential singularity ; and 

jvi) the rational function h! (z, a') has no essential singularities. 

Fwnctions entirely devoid of essential singulam'ties. 

78. Now we know that not a few of the important properties of unihrm 
analytic functions of a single variable are deduced from those expressions of 
the function which arise when special regard is paid to its singularities ; and 
occasionally some classification of functions can be secured according to the 
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number and nature of these points*. I n  particular, we know that a uniform 
function, devoid of essential singularities throughout the whole field of 
variation of the variable z, is a rational function of z. Of this result, there is 
the  generalisation, given by the theoremt :- 

A uniform analytic function of two complex variables z and z', having no 
essential sinplarity i n  the whole jield of their variation, i s  a rational function 
of z and z'. 

To establish this theorem, we proceed as follows. 
Let f (2 ,  z') be a uniform function of z and z', entirely devoid of essential 

singularities; and let any ordinary place (say O, O) be chosen which is a 
non-zero place of the function. In the vicinity of O, O, let the expansion of 
f (4 4 be 

and suppose that this series converges absolutely within a domain 1 z l <  r,  
z' 1 c T'. Manifestly, after the supposition as to f (O, O), the quantity c,,, is 

not zero. 

Within the domain, we have 

because the double series converges absolutely; so, writing 

we have 

Consequently, for al1 values O, 1, . . . of m, and for al1 values of z' within the 
dornain, we have 

Now f (2, 2') is everywhere a uniform analytic function without essential 
singularities ; consbquently every derivative off  (z, z'), a t  every place in the 

Of course, there are other c!assifications, such as thoseconnected with the kinds of aggregate 
of the zeros of a uniform analytic function of a single variable, leading to the c lms  (genre) 
question that has been the subject of many investigations in recent jeara, initiated by Laguerre, 
Poincaré, Hadamard, Borel, and others. 

7. I t  is the first of the two theorems which, as aiready stated, were enunciated by Weierstrass 
without proof. His enunciation, given for n variables instead of two only, is to be found Ges. 
Werke,  t. ii, p. 129. 

A proof is given by Hurwitz, Crelle, t. xcv (1883), pp. 201-206, for n variables; and this 
proof is followed by Dautheville, Étude sur les séries entières par Tapport à plusieurs variables 
imaginaires indipendantes (Thèse, Paris, 1885). Hurwitz's proof, modified for the case of two 
variables, and amplified, is substantially adopted in my text. 
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field, also is a uniform analytic function without essential singularities. At  
the places O, z' within the domain, the converging series denoted by gm(z') 
represents a derivative off ( z ,  z') ; i t  is therefore an element of a function of 
a single variable z', which is uniform, analytic, and devoid of essential 
singularities. But we know* that such a function of a single variable is a 
rational function of the variable; and therefore gm(zJ) is an element of a 
rational function of z'. Denoting this rational function by A, (z'), or by A,, 
for al1 values of rn, we have 

Sm (2') = A m  (2') 

for al1 values of z' within the doinain; and so, within that domain, we have 

f ( 2 ,  z ' ) = A o + A l z + A z z 2 +  ..., 
where now A,, A,, A,, ... are rational functions of z' which have no pole 
anywhere within our domain. 

Moreover, when z  = 0, z' = 0, the qiiantity c,, is not zero, so that A, (O) is 
different from zero. Hence we can choose a more restricted domain given 
by ! z 1 < 6 and 1 z' 1 < 6', where 6 and 6' are not infinitesimal, such that the 
uniform analytic function f ( z ,  a') is everywhere regular and different from 
zero. 

Assign an arbitrary value a' to z' in this restricted domain, that is, such 
that 1 a' 1 < ô'. Then f (z, a') is a function of a single variable only ; i t  js 
uniform; and i t  possesses no essential singularity ; i t  is therefore a rational 
function of a, so that we may write 

Bo + B,z + ... + BrzT 
f (2, a') = C', + c:z + ... + (:,zT- 

As a rational function of z  has a liniited number of zeros and of poles, the 
highest index of z  in the numerator and the denominator combined is finite : 
that is, T is a finite integer. No generality is lost by assuming that B, and 
Cr are not zero together. If Bo were zero, then z  = O and z' = a' would be 
a zero of f ( z ,  z'), contrary to the supposition that f does not vanish within 
the selected domain; if Co were zero, then z  = O and z' = a' would be a pole 
off  (z,  z'), contrnry to the supposition that f is regular within the selected 
domain ; hence neither Bo nor Co is zero. 

Let K,, K I ,  K,, ... respectively denote the values of the rational functions 
A,,, A,,  A,, . .. when z' = a'. Then a converging series for f ( z ,  a') is given by 

f ( z ,  a')= K o + K l z + K , z 2 +  ..., 
so that, from the two expressions off (2, a'), we have 

(K,+ K l z + K 2 z a +  .,.)( Co+Clz+ ...+ C,.zr)=Bo+ B,z+ ... +B,zr, 

holding for al1 values of z  such that z  14 6. The two coefficients of each 
power of z  on the two sides must be equal to one another ; and therefore, as 

See my Theory of Funetions, $ 48. 
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zT+n (for n > 1) does not occur on the right-hand side, we have the coefficient 
of zr+la on the left-hand side equal to zero. Thus al1 the determinants 

must vanish. 

With each value of a', some finite integer r must be associated because 
f (z, a') is rational in z. But with at  least one value (and, i t  may be, with 
more than one value) of r ,  an infinite number of values of a' must be 
associated; for otherwise, if with each value of r only a finite number of 
values of a' could be associated and as every admissible integer r is firiite, 
there would in al1 be only a finite number of values of a', contrary to the 
fact that a' is any place in the domain 1 z' 1 < 6'. 

Consequently, taking r to be the greatest integer for any value of a' in 
the doinain determined by 6', al1 the preceding determinants vanish for the 
infinite number of values of a' in the domain. Hence there must exist 
functions of z' (to be denoted by BO, FI, ..., Fr), such that the equations 

FrAl+ Fr-,A, + - m .  + FoAT+, = 0, 

FJ,+Fr-lA,+ + FoAV+,=0, 

are satisfied for an infinite number of values of z'; and not al1 the functions 
P can vanish. Moreover, the functions A are rational and, a t  most, only 
some of them (limited in number) are evanescent ; hence, as the functions 
PO, F I ,  ..., F, can be taken as equal to determinants the constituents of which 
are rational functions of z', they are themselves rational functions of 2'. 

Consider the function 

(Fo ++FI + ... + zrFr)f (z ,  2') - (Go + zG, + ... + zrGr), 
where 

Go=AoFo, G,=AIFO+A,Fl,  ..., Gr=AoFr+A,FT - , + . . .  +A,F,;  

and denote i t  by (z,  z'), which may or may not vanish identically. The 
quantities Go, ..., Gr, being lineo-linear in the rational functions A and F, are 
themselves rational functions of z'; and not al1 the functions G can vanish. 
Then the function @ (5 z') is a regular function of z and z' within the 
domain 1 z 1 4 6 and / z' / < S', because al1 its components are regular within 
that domain. The foregoing analysis shews that, for al1 values of z in the 
range 1 z 1 6, there is an infinite number of values of z' in the range ( z' 1 < 6' 
for which @ (2, 2') vanishes. If (2, z') does not vanish identically, we take 
nny special value of z within the range / z 1 2 6, say z = c ; then cf> (c, z') is 
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a regular f~mction of z' within the range 12'1 < ô', and (after what precedes) 
there is an infinite number of values of d within that range where @ ( c ,  z') 
vanishes. I t  is a known property* of regular functions of one variable 
that the number of its zeros, within any finite region where the function is 
regular, is necessa,rily finite; and the preceding result, based immediately 
upon the hypothesis that @ (z, 2') does not vanish identically, does not 
accord with this requirement. Accordingly, the hypothesis must be 
abandoned ; the function @ (z, d )  vanishes identically ; and therefore, for 
al1 values of z and z' within the selected domain, we have 

( F o + z F l +  ... +zrFr) f(z,z')=G,+zG,+ ... +zrGr, 

where Fa,  FI, ..., Fv, Go, Gl, ..., Gr are rational functions of z'. 
The function Po and the function Go do not vanish under Our initial 

hypothesis that the ordinary place O, O is not a zero of f (2 ,~ ' ) ;  some (but 
not all) of the other functions FI, ..., F,, G,, ..., G, may vanish. 

We thus have 

that is, f (z, z') is a rational function of z and z'. The proposition is thus 
established. 

79. One provisional remark will be made a t  this stage. Let f (z, 2') be 
a uniform function which, within some limited region of its existence, has no 
essential singularities and, within that region, does possess zeros, and poles, 
and unessential singularities. 

Suppose that a uniform function exists, which haa those zeros, those poles, 
and those unessential singularities, al1 in precisely the same fashion as f (z, z'), 

and which possesses no others within the region; and suppose that this 
function has no essential singularity anywhere in the whole field of variation 
of z and 2'. The preceding proposition shews that i t  must be a rational 
function of z and z'. (Examples can easily be constructed, in the case of 
definite simple assignments of such places). We shall, for the moment, 
assume the possible existence of such a rational function; and then, denoting 

Within the region, the function y (z, z') has no zeros and i t  has no 
singularities of any kind; hence, within the domain of every place in that 
region, the two functions y, and y,, where 

can be expressed as absolutely converging power-series, which are elements 

See mg Theory of Fzcnctions, 5 37. 

9 
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of two regular functions. Moreover, as regards these two power-series for g, 
and g,, we obviously must have 

identically; so we denote the common value of these two quantities by 

aZp (z, z/) 
az a ~ /  * 

where P (z,zl) is itself a double series converging absolutely in the domain, 
and is an element of a single regular function, which may be denoted by 
Q(z, z'). Then 

1 ag - ap (z,zl) 1 a.q ap (z.z1) 
g a2 az ' az/- azl 

and therefore 
g = eP(z,z'i 

within the domain. Now g (z, z') is regular throughout the region ; and, for 
each domain within the region, P (z, z') is the element of the regular function 
Q (z, z'). Consequently, on the assumption that the rational function r ( 2 , ~ ' )  
exists, we have 

r (z, z') eQ(z,z'J 

as a representation of f  (z, z') within the region, Q (2 ,~ ' )  denoting a function 
that is regular within the region. 

The definite existence of the function, denoted by r (z, z'), has not been 
established in general. The assumption that has been made raises the 
question as to whether rational functions exist, defined by the possession 
solely of assigned zeros, assigned poles, and assigned unessential singularities. 
Also, that question raises the further question as to what are the limitations 
(if any) upon the arbitrary assignment of zeros, poles, and unessential singu- 
larities, in order that i t  may lead to the existence of a rational function. 

These questions initiate a subject of separate enquiry which will not be 
pursued here. 

finctions having essential singularities only i n  the infinite part 
of the jield. 

80. The other of the theorems already mentioned relates to the expression 
of a uniform analytic function, of which al1 the essential singularities arise 
for i d n i t e  values of one or other or both of the variables. I t  was adumbrated 
by Weierstrass*; the following proof is based upon a memoir by Cousin?. 
We have to establish the theorem :- 

A uniform analytic function of two variables, al2 the essential singu- 
lurities of  which arise for injinite values of either of the variables or o f  

Ges. W e ~ k e ,  t. ii, p. 163. 
t Acta Math., t. xix (1895), pp. 1-62; it spplies to n variables. 
It mag be added that a proof is given by PoincarB, Acta Math., t. ii (1883), pp. 97-113; 
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both of the variables, cun be expressed as the quotient of two functions 
which are everywhere regulur for $nite values of the variables. 

For this purpose, Cousin uses the Cauchy method of contour integrals. 

81. Consider an integral, the variable of integration Z' being taken in 
the plane of z', as given by 

Fig. 1. .fLD F -  Fig.2.  

A A 

where the integration extends along an arc AB from d as the lower limit to 
B as the upper limit. When we take a closed contour of which A B  is a 
portion, AB is the positive direction of description in figure 1 and is the 
negative direction of description in figure 2. 

Now in figure 1, we have 

for al1 points z' within the contour AEBMA, and 

for al1 points B without the same contour. For al1 points within the contour, 
and for al1 points without the contour, 8 (2') is a regular function of 2'. 

Consequently the line AEB is a section * for the function ; the continuation 
8 (D), taken from the inside point C to the outside point D across the section 
AB when the latter is described positively for the area, is - 1 + 0 (C). 

I n  the sanie way for figure 2, the continuation 8 (D), taken from the inside 
point C to the outside point D across the section AB when the latter is 
described negatively for the area, is 1 + B (0. 

it is based upon the properties of potential functions. The following memoirs may also be 
consulted :- 

Poincaré, Acta Math., t. xxii (1899). pp. 89-178; i b . ,  t. xxvi (1902), pp. 43-98. 
Baker, Camb. Phil. Tram. ,  vol. xviii (1899), p. 431 ; PTOC. Lond. Nath.  SOC., 2nd Ser., vol. i 

(1903), pp. 14-36. 
Hartogs, Jahresb. d. deutschen Mathematikentereinigung, t .  xvi (1907), pp. 223-240 ; and the 

memoir by Dautheville already (p. 126) quoted. 
See my Theory of Functions, 5 103 ; the notion is due t o  Hermite, who called such a line a 

coupure. 
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The general value, of course, is 

1 b'-z' 0 (2') = -. log --- 
2 m  a - z "  

where a' and b' are the variables of A and B. Clearly the quantity 

is regular in the immediate vicinity of B, and the quantity 

1 0 (2') + . log (a' - z') 
27rz 

is regular in the immediate vicinity of A. 

Next, let g (2, z') denote a f~inction of z and z', which is regular for ranges 
of z and z' that have finite values ; and consider an integral 

taken precisely as for the preceding integral 0 (2'). Then x (z,  z') is a regular 
function of z and z', except when z' lies upon the line AEB; and A E B  is a 
section for the function x (z,  2'). Now let 

as g ( z ,  z') is a regular function of z and z', it is easy to see * that G (z ,  z', 2') 
is a regular function of z, z', 2'. Hence 

= H (z ,  z') + 8 (2') g (z,  d) ,  

where H (2, z') is a regular function of z and z' for al1 the values of z and z' 
included, and 6 (2') is the preceding integral already considered. Consequently 
x (z ,  z') is a regular function of z and z' for al1 points z' that do not lie upon 
the section AEB; and the change in the analytical continuation of x (z ,  a') 

With the properties of a regular function such as g (2, z ' ) ,  which have been established earlier, 
the series on the right-hand side converges absolutely; hence G (z, z', Z') is regular. 
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across the section AEB is - g  (z, 2') or + g  (z, z') according as AEB, when 
crossed, is being described negatively or positively. Moreover, the function 

1 x (2, 8)  - G~ g (2, 2') log (b' - z') 

is regular in the immediate vicinity of b', and the function 
1 x (z, 2') + -. y (z, 2') log (a' - z') 27rz 

is regular in the immediate vicinity of d. 
Next, take in order a finite number of lines A, B, A,& . . . in the plane of 

z', such that they have a common extremity B, 
do not meet except a t  B, and al1 lie within 
the z, z' domain considered. Associated with 
each of the lines A,B, we take a regular 
function g,  (z, z'), occurring precisely as g (z, z') 
occurred in the preceding discussion of the 

GAI 
B 

function x (2,  z') over its section ; and write 

the integral being taken from A, to B. The character of ~ ( z ,  z') is known 
from the earlier investigation. 

Let a new function (z, z') be defined by the equation 

@ (2, 2') = 2 x, (2, 2'). 
r=l 

For al1 places not lying upon any one of the lines, the function @ (z, z') is 
regular. In  the immediate vicinity of the place B common to al1 the lines, 
the function 

1 
@ (z, z') - - {log (b' - z')] X gr (2, 2') 

2 m  r=l  

is regular ; hence, if (z, z') is regular in the immediate vicinity of B, it is 
necessary and suficient that 

gr (2, 2') 
r= l  

should vanish at  B. Moreover, if 
C gr (z, 2') = 2k7ri 

r =l 

a t  B, where k is a constant, then 
cP (2, 2') - k log (b' - 2') 

is regular a t  B. 

82. We are to deal with a uniform analytic function f (2, z'), which has 
no essential singularity in the finite part of the z, a' field. In  this field, take 
any finite domain. Within the selected domain, f (z, 2') deviates from regu- 
larity a t  or in the immediate vicinity of poles, and a t  or in the immediate 
vicinity of unessential singularities. At a pole and in its vicinity, there is 
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one definite type of representation off (2,~ ' )  which is valid for some region 
round the pole. At an unessential singularity and in its vicinity, there is 
another definite type of representation off (z, z') which likewise is valid for 
some region round the unessential singularity. At an ordinary place and 
within some limited region of the place, f ( z , z l )  is regular ; within that region, 
there is another definite type of representation of f (2, z') which likewise is 
valid for the limited region. 

When any two of these respective regions have any area in common, the 
respective representations of Our uniform function f (a, z') are equivalent to 
one another over that area. Moreover, we have selected a finite domain in the 
z, z' field ; so that the total nun~ber of these regions in this domain is finite. 

Now let the whole selected domain in the a, a' field be divided up in 
different fashion. Let the whole region in one of the two planes (say the 
8-plane) belonging to this domain in the field be divided into n regions, 
where n is finite. Each of these regions is to be bounded by a simple 
contour. With each of these n regions in the 2'-plane, we combine the 
whole of the z-plane that belongs to the selected domain; so that we now 
have n, domains within the single selected finite domain in the z, z' field. At - 
every place in each of these n domains, Our function f (z,zl)  is defined. Let 
f, (z, 2') denote the whole representation off (z,zl) in one domain, f, (a, z') the 
whole representation in another domain ; and so on for the n domains, up to 
fn (z, 2'). With each region in the /-plane, we associate the function f, (2 ,~ ' )  
giving the representation of f (a, 2') for the domain which includes that 
particular k-region. 

I t  may happen that two such regions have a common area, so that the 
respective functions belonging to the regions coexist over that area; we 
shall assume that, if deviations from regularity occur within the area, such 
deviations are the same for the two functions, Say (2, a') and fi (2, zl), 

is a regular function over the area. 

When two functions are such that their difference over an area is a regular 
function, they are said* to be equivalent over the area; if their difference is a 
regular function in the immediate vicinity of a point, they are said to be 
equivalent a t  the point. 

Denote the regions in the 2'-plane by R,, R,, ..., Rn with which f ,(z,  z'), 

(a, z'), . . . , fiL (2, a') are respectively associated. Further, denote by E,,  the 
boundary between R,  and B,, such that when z' passes from R, to A, by 
crossing Z,,, this line is described positively for the boundary of 11,; and 
similarly for the boundary between any two contiguous regions. Lastly, 
there will be points where three or more boundary lines are conc'urrent. 

* Cousin, 1. c., p. 10. 
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When a point P' lies within the region Rk, then fk (z, 2') is the function 
associated with P'. When < point Q' lies on the boundary between two 
contiguous regions Rk and Rl, then either of the functions fk (2,~ ' )  and fi (z, 2') 
is the function associated with Q'. When a point S' is a point of concurrence 
of more than two boundary lines of regions Rj, Rk, RE, . .. , then any one of 
the functions fj (2, z'), fk (2, z'), fi (2, z'), . . . , is the function associated with S'. 

83. Consider the integral 

taken dong the line lk, between two contiguous regions, the order of the 
suffixes in Ikm being the same as their order in lkm. Manifestly 

r* = Imk. 
As the function fm (2, 2') - fk (z, Zr) is regular everywhere along the path of 
integration, the integral is of the same character as the integral previously 
denoted by X ,  (2, 2'); the line Ekm is a section for the function Ik,. 

Now take al1 these integrals Ikm which arise for contiguous regions, and 
write 

@ (2, 2') = 2 I h ,  
where the summation is for al1 pairs of suffixes that correspond to contiguous 
regions. The function @ (2, 2') has each line lEm as a section; a t  every 
place that does not lie upon a section, @ (z, z') is regular. 

Next, we take a set of functions +, (2, z'), +, (z, z'), . .., 4,  (z, z'), associated 
with the respective regions RI, R,, ..., Rn; and we define cPp (2, z') as the 
value of @ (2, 2') within the region Rp. 9 point P' in the 2'-plane may lie 
within a region; it may lie upon the boundary of two contiguous regions ; 
and it may be a point of concurrence of several such boundaries. 

When the point P' lies within the region Rp, the function +, (z, z') as 
defined is regular, because the sections of <P (z, 2') are only the boundaries of 
regions. 

When the point P' lies on a boundary of the region R,, Say on the line 
Zpq so that Rq is the contiguous region, and when P' does not lie a t  either 
extremity of lpq, the analytical continuation of & (z, 2') through the point 
P' remains regular. For, writing 

Y,, (2, 4 =fq (2, 2') - f p  (z,zf), 
so that gN (2, z') is regular for al1 the values of z and z' considered, the earlier 
investigation shews that, in  crossing the section l,,, the change in the 
analytical continuation of Ipq is - gpq (2, z') when lpq ,  as i t  is crossed, is being 
described positively. For this position of P', every element in the sum of the 
functions Ih is regular except Ipq ; and therefore the change in the analytical 
continuation of @ (2, z') is - gpq (2, 2'). ' But the new function 4,  (2, 2') is the 
value of @ (2, z') in the region Rq; hence 

+q (2, z') = O P  (29 2') - 9pq (89 z'), 
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and therefore 
4q ( 4  4 +fp (2, 4 = +p (2, 2') +fp ( 4  4 ,  

where Rp and R, are contiguous regions. 

When the point P' is a point of concurrence of several boundaries, the 
regions may be taken as in the figure. Our 
function (2, 2') can be rearranged in its sum- 
mation. We group together al1 the integrals .Th, 
which have no section passing through P' ; and 
we call this group @, (2, 2'). We group together 
al1 the remaining integrals, the section of each of R a  

which passes through P' ; and we call this group 
a, (2, 2'). Thus 

@ (2, 2') = cP1 (2, 2') + cPL> (2, 2'). 

The sum @, (2, 2') is regular a t  P', because every element 1 in the sum 
is regular. 

As regards the sum a , @ ,  z'), Our earlier investigation shews that the 
function 

1 
@, (z, z') - - (log (P' - z')} Zg (2, 2') 

27i-i 

is regular at  Pt. But the functions g (2, z'), for the various elements I in 
@,(z, z') taken as in the figure, are 

that is, the quantity Zg (2, 2') is identically zero. Hence the sum @, (2, 2') is 
regular at  P'. 

Consequently, the function (z, 2') is regular at  P', in this third case ; 
and therefore al1 the functions +(z, z'), equivalent to one mother a t  P', are 
regular at that point. 

We thus have a set of functions +(z, 2'). Each of them is regular within 
its own region. Each of them is regular at  any point of concurrence of the 
boundaries of several regions. The change in the analytical continuation, 
from the function (z, z') belonging to a region R,, to the function +q (2, 2') 
belonging to a contiguous region Bq, is known ; we have 

The last relation gives 
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as a relation holding between two contiguous regions Rp and Rp. Let Rr be 
a region contiguous to R, and distinct from Rp ; then 

And so on, for each region in siiccession, until the whole domain considered 
is covered. 

Accordingly, we define a new function P(z,  z'), by the relation 

3' (2, 2') = +, (2, 2') + fT (2, 2') 

for every region R,. But al1 these different expressions for F (z, 2') are the 
same, because the relation 

$1 (2, 2') +fi (2, 2') = +m (2, 2') f f m  (2, d )  

holds for any two contiguous regions within the domain. This final function 
F(z,  z'), a t  every place within the domain, is equivalent to the assigned 
function j,(z, 2') belonging to the region which, within that domain, in- 
cludes the place ; and the expression for this function F (2, z') is 

F(z1 4 =fm ( 4  2') + Q, (2, 20, 

where +, (z, 2') is regular in the domain of the place. The expression for 
P (z,z') is valid over the domain considered ; and the argument establishes 
the existence of the function F(z, z'), possessing the property that i t  is 
equivalent to each of the functions f,, ..., f, in their respective domains. 

84. The result can be extended. We can substitute a single function 
F(z, 2') for the aggregate of functions f,(z, 2') within the aggregate of 
regions R,, . . . , R,. When this aggregate of regions is denoted by S, 
we infer that a function F (z, z') exists which, within this aggregate 
region 8, possesses al1 the characteristics of the functions f, (2, 2'); i t  is 
subject to an additive function 4(z, 2') which is regular throughout the 
region S. 

Now take a number of these corporate regions S. It is not difficult to see 
that al1 the conditions for the individual functions f, (z,zl) can be transferred, 
in each such region 8, to the function F(z,  z') for these regions. The functions 
F(z, z') for the different regions S are then taken as the elements for the 
composition of a new function which may be denoted by jJ (z, 2'); and this 
new function -$ (z, z') is equivalent, over the whole aggregate of these cor- 
porate regions, to the functions f, (z, 2') which exist in any part of it. Thus 
we infer the existence of a function # (z,zl) which is such that, in the vicinity 
of any place in the finite part of the field of variation where a uniforin analytic 
function f, (z, z') is not regular, the quantity 

jJ (2, 2') - f i B .  ( 2 , ~ ' )  

is a regular function of the variables. But i t  must be reinembered that only 
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a finite part of the field is considered and that the whole nuinber of 
functions fm (z, z') is finite. 

85. I n  the establishment of the preceding result, which is of the nature 
of a sunimation theorem, al1 the functions f,(z, z') were assiirned to be 
uniform and analytic. There is a corresponding result, which is of greater 
importance for Our investigation ; ic is of the nature of a product theorem, 
and the associated functions are logarithms of regular functions. 

The 2'-plane is divided into regions R,, ..., R, as before ; with each region 
Rk we associate a regulilr function uk (2, z'), and we take 

so that the value of fk(z, 2') is subject to additive integer multiples of 27ri, 
and otherwise is a regular function of z and z' except at  places mhich are 
zero-places of uk (2, z'). 

As regards the functions u, (2, z'), . . . , un (z, z'), we assume that, over any 
area common to two contiguous regions Rk and Rm or, if no area is common, 
along the part of their boundary mhich is common to them, the function 

is regular and different from zero. Consequently the function 

is regular for the same range of the variables, subject to a possible additive 
integer multiple of 27ri. 

We now proceed as before. We again form the integrals 

taken along the line lh which is the boundary common to two contiguous 
regions; the order of the suffixes in Ikm is the same as their order in lkm, and 
clearly 

Ikm = Id .  

The function fm (2, 2') -fk (z, 2') is regiilar along the line lh, and there is 
nothing to cause a change in the additive multiple of 2 ~ i  when once this 
multiple has been assigned; thus the integral is of the same character as 
the integral previously denoted by x (z, z'), and the line Ekm is a section for 
the integral ih. 

A g a i ~ ~ ,  as before, we take 

@ (2, 2') = Si*, 

where the sunimation is for al1 pairs of suffixes that correspond to contiguous 
regions. The function @ (z, z') has each line lh as a section. 
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At any point P' lying within a region, the function @ (z, d )  is regular. 

A t  any point P', which lies on a boundary of the region Rp (say on the 
line lpq so that Rq is the contiguous region) and does not lie at  either 
extremity of Zpq, the analytical continuation of iP (z, a') from R, to R, through 
z' is regular, the function in  R, being 

where the additive multiple of 2z-i is the same as in the intepal I,,. 

When the point P' is a t  b', a point of concurrence of several boundaries 
which may be taken as before, i t  is again necessary to rearrange the suni- 
mation of @(z, 2'). We group together al1 the integrals having no section 
passing through b', and call the sum of this group al (z, 2'). We then group 
together al1 the remaining integrals, the section of each of which passes 
through b' ; and we call the Qum of this group a, (z, a'). Thus 

Each element 1 in the 6rst sum @, (a, z') is regular at b'; and therefore 
al (z, a') itself is regular a t  b'. 

As regards @,(z, a'), our earlier investigation shews that the function 

1 a, (2, 2') - -. {log (b' - z')] xg (2, 2') 
2 m  

is regular a t  b', the summation being over al1 the lines Z which meet a t  b'. 
Now these functions g (2, z'), for the various elements 1 in a, (z, a') taken as 
in the former figure (5 83), are 

respectively, subject-for each of the functions g (z,zl)-to an additive integer 
multiple of 2.lri. Accordingly, the quantity Ig (2 ,~ ' )  is some integer multiple 
of 27ri; let i t  be denoted by k. 27ri. I t  follows that the function 

a, (2, 2') - k log (6' - 2') 

is regular a t  the place b'. 

We have seen that @, (2, d )  is regular at b' ; hence 

@ (a, a') - k log (b' - 2') 

is regular at  the place b'. 
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At any point of concurrence of boundaries bu, other than b', the function 
log (6' - d )  is regular, subject to an added multiple of 27ri. Consequently, 
the function 

@ (z, 2') - 2 Ik log (L' - z')}, 

where the summation is taken over al1 the points of concurrence of the 
boundaries of regions, is regular for al1 places z' in  the range considered ; its 
expression being always subject to an additive integer multiple of 2m'. Let 
this function be denoted by + (2, 2') ; then 

+ (2, 2') = @ (2, 21) - C {k log (b' - 2')). 

Subject to the added multiple of 27ri, the function .3f (2, z') is regular for the 
2'-regjon considered : and its sections are the lines lpq. 

Having constructed this function + (z, z'), we now take functions +, (z, z'), 
+ n ( ~ ,  z'), ..., +,(z, z'), associating them with the regions R,, R,, ..., R n  
respectively, and defining them by the condition that the relation 

+m (2, 2') = + (2, 2') 

is satisfied within and on the boundary of R,, for al1 the values of m. When 
we pass across the boundary of R, into a contiguous region Rpi we change 
to another function qP (z, 2'). But, as we have seen, the analytical change 
in + (z, 2') in passing over a line lm, is 

As this is the function Ilr, (z, z'), we have 

+p (2, 2') = Srm (2, 2') - Ifp (2, 2') -fm (2, z')), 

there always being an additive multiple of 2 ~ i  on the right-hand side. 
Hence, subject to this additive multiple, we have 

Now pass from R, to another contiguous region Rq, distinct from a; 
then, again subject to an additive multiple of 27ri, we have 

+p (2, 2') +fp (2, 2') = Srg ( 4  2') +fp (2, 2'). 

And so on, for the full succession of contiguous regions, until the whole 
,c'-range is covered. I t  follows then that, for any two regions Rm and RF, we 
have the relation 

#m (2, 2') +fm (2, 2') = Sr,& (4  2') +fF ( 4  z'), 

always subject to an additive integer multiple of 27ri; and each of the 
functions + is regular within its own region. 
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Accordingly, we define a new function G (z ,  z') by the equation 

G ( 4  2') = ljrm (2, 2') +fm (4 z'), 
for every region R,. But al1 these different expressions for G (z,  z') are the 
same as one another (save for an additive multiple of 271-i which may change 
from region to region), because the relation 

+m (4  2') f f m  (4 4 = +w (2, 4 + f w  (2, 4 
is satisfied for al1 values of nz and p. 

Finally, take a new function U(z ,  z') defined by the equation 

U (z,  2') = eQ@>"). 

The added integer multiple of 271-i in G (z,  z') does not affect the character of 
U (2,  2') ; and so we have 

u (2, 2') = eG(z,") 
= e9m(z,z') +fm(z,& 

- - U. (Z, z') eGmW."> m 

within the region R,. We thus have established the result :- 
A function U (z ,  z') exists, regular throughout the whole $,rite region con- 

sidered, such that the quotient 
U(z ,  2') - - 

is a regular fumt ion  of a and z' within. the region R, and i s  diferent from 
zero, u, (z ,z l )  being itself a regulur function within t l ~ a t  region; and this holds 
for al1 the n values of m. 

Again it must be remembered that m, the number of functions u,(z, z'), 
is finite. 

The general theorem. 

86. After these two propositions, which are general in character and the 
second of which is immediately useful for our purpose, we can proceed to the 
establishment of the general theorem, stated by Weierstrass, as to the 
expression of a function of two variables, of which the essential singularities 
occur only for infinite values of either or of both the variables. 

It has been proved that, in the immediate vicinity of a zero-place of a 
uniform analytic function f (z ,  z'), we have 

f (2, z') = PeR, 
where P is a polynomial in z having, as coefficients of powers of z, regular 
functions of z', or conversely as between z and z', and where R is a regular 
function of z and z' which vanishes when z = O and z' = 0. 

We have defined a pole of a uniform analytic function F (2, z') as a place, 
where a function f (z, 2') of the preceding form exists such that 

(2, 2') f (2, 2') 
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is a regular function of z and z', which does not vanish a t  the supposed pole 
or in its immediate vicinity. 

We have defined an unessential singularity of a uniform analytic function 
P (z, z') as a place, where two functions f (2, z') and g (2, z') of the preceding 
type, and irreducible relativelg to one another, are such that 

is a regular function of z and z' which does not vanish at  the supposed 
singularity. 

Suppose, then, that a function P (z ,  z') is defined as being uniform and 
analgtic over the whole field of variation: that i t  has poles and unessential 
singularities of defined type within that field: that i t  has no essential singu- 
larities except within the infinite parts of the field of variation of the two 
complex variables: and that, except for the poles, and for the unessential 
singularities, the function otherwise is regular for finite values of the variables 
z and z'. 

For the expression of the function, we need take account only of functions 
f (z, 2') which give rise to poles, and of functions f (z, z') and g (z, z') which 
give rise to unessential singularities. We range these functions in two 
classes. I n  one class, we include al1 the denominator functions f (2, 2'); in 
the other class, we include al1 the numerator functions g (2, 2'). 

Let f (z, z') be typical of al1 the denominators, which occur in the 
expression of the function a t  a pole and its immediate vicinity; and let 
f (u, 2') be typical of al1 the denominators, which occur in the expression of 
the function a t  an unessential singularity. We proceed to construct a 
function G (2, z') such that, in the immediate vicinity of any of tshese places, 
the quotient 

G ( 4  2') G (2, 2)) or y 

f (2, 2') f (2, 2') 

is regular and different from zero ; the function G (z,zl) exists, and is regular, 
in the whole finite part of the field of variation. 

Again, let g (2, 2') be typical of al1 the numerators which occur in the 
expression of the function at  an unessential singiilarity. hnalysis, precisely 
similar to that used for the establishment of the function G (2, z'), enables us 
to establish the existence of a function (2, 2') such that, in the immediate 
vicinity of any such place, the quotient 

G (2. 2') 

is regular and different from zero ; the function G (z,zl)  exists, and is regular, 
in the whole finite part of the field of variation. 

IRIS - LILLIAD - Université Lille 1 



SV] UNIFORM ANALYTIC FUNCTION 143 

Accordingly, we consider the possibility of the existence of the functions 
G (z, zl), G (z, z'). 

87. Imagine a succession of regions in the field of variation, each region 
enclosing the one before i t  in the succession. We shall take, as the boundnries 
of the regions, concentric circles in the respective planes ; and these may be 
denoted by (Cl,  C;'), (C,, Ci) ,  . . . , which may be unliinited in number, as we 
proceed to cover the whole field of variation. We also take the common 
centres of the circles at  the respective origins. 

For the first region, there is only a limited number of functions fm (z, z'), 
each of which is regular at, and in the immediate vicinity of, its place of 
definition. Hence, by 5 85, there is a function, say U,, which is regular 
throughout the region and is such that the quotient 

UI 
fm (2, 2') 

is a regular function of z and z' aithin the region and is different.from zero; 
and this holds for each of the functions fm (z, z') defined within the region. 

For the second region, there are al1 the functions f,(z,zl), which are 
defined for places in the first region; and there are the additional functions, 
which lie in the belt between the two regions (including the boundary of the 
first region). Then, again by § 85, there is a function U, which is regular 

u, throughout the second region and is such that, (i) the quotient is a u, 
regular function throughout the region and is different from zero, and 
(ii) the quotient 

where f, (2, 2') is any one of the newly included additional functions, is a 
regular function of z and z' within the region and is different from zero ; and 
this holds for each of these functions f, (2, 2'). 

And so on, from each region to the region next in succession; we obtain 
a gradua1 succession of functions U,, U,, ..., U,., ..., each regular in its 

Ur+, . region, and having the properties, (i) that - 1s a regular function through- 
Ur 

out the region (C,, C,') and is different from zero, and (ii) that, for each qf 
the functions f, (2, z') defined for the region (G;+,, Cf,.+,) but not for the 
region (Cr, Crr), the quotient 
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88. Take a converging series of positive quantities a,, a,, ..., a,, ..., 
associating them in order with the successive regions, so that a, is associated 
with the region (Cr, G,'). Also, let 

then the regular functions U,, U,, . . . can be chosen so as to give 

j Pr I < car, 
for each value of r. 

Suppose that U,, . . . , U, have been chosen so as to satisfy this relation 
for r = 1 . . , s - 1 The function U,+,/ U, is regular throughout the region 
(Cs, C,') and is different from zero there; and therefore 

log U8+, - log 0, 
is (save as to an additive integer niultiple of 2 7 4  a regular function of 
z and z' throughout the region. This regular function, Save as to the 
additive multiple of 2ri, can be expressed as a double power-series in z and 
2' converging absolutely within the region. Let this series be denoted by 

let M be the (finite) greatest value of its modulus within the region ; and let 
R and R' be the radii of the circles C8, C,'. Choose values, p, of m, and v, 
of n, sufficiently large to secure that 

the third of the inequalities being satisfied when the first two are satisfied. 
Then, writing 

Ps va 

P8 = 2 C Cm,n Zm zfn, 
m=O n=O 

so that P, is a polynomial in z and z' ; and also 
a: 

QS= ( X z + z  2 - 5  2 ) cm, ", zm ztn, 
m = k n = O  m=O n=v8 m = p 8 + l  n=v8+l  

so that 
1 &8 1 < + 4% + &as < a8 ; 

we have 
log u,+, - log U = P, + Q,, 
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Save as to an additive integer multiple of 2 ~ i .  Consequently 

where now the multiple of 2n-i no longer affects the functions concerned. Let 

+, = Us+] e%, 
so that 

The function Ut,+,, mithin the region (C,, Ci) ,  possesses al1 the properties of 
U,,,, because e ë Y 8  within that region is a regular function of z and z' which 
vanishes nowhere in the finite part of the field ; thus U',+,/ U, is everywhere 
regular in that region and nowhere vanishes there, and the quotient 

for each of the functions fk (z, z') defined for the region between (Cs+,, Cl,,) 
and (C,, Cl), is everywhere regular for the region (Cs+,, C',,,) and vanishes 
nowhere in the region. Accordingly, we substitute U1,+, for Us+,; we wnte 

so that 

and we now have 

with the condition p ,  < ea8 satisfied. 

89. For any region (C,, C,'), we define a function Gq (2, 2') by the form 
m 

The function U,' is regular everywhere within the region. The product 

. - 
is regular there ; for its modulus 

m 

= l Pq+t / 
t+l 

which is a finite quantity because of the convergence of the series of positive 
quantities al, a,, . .. ; and, within the region, no one of the quantities pq+,, 
p,+,, ... vanishes, while each of them is regular there. Thiis within the 
region, the function 

Gq (Z,) 
f n  (4 2') 

is everywhere regular, and nowhere zero, within the region (Cg, C,'), for each 
of the functionsfi (2, 2') defined within the region. 

F. 1 O 
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Next, take a function Ggfp (2, z'), defined 
We have 

m 

[CH. V 

for the region (CqfP. C'Q+P). 

= Gq+p (2, 4. 
Thus al1 the functions GQ are one and the same; let this function, the same 
for al1 the regions, be denoted by G (2,~'). Then the function G (2 ,~ ' )  exists ; 
i t  is regular everywhere over the field of variation considered, that is, for al1 
finite values of the variables z and 2'; and i t  is such that at, and in the 
immediate vicinity of, any place where a typical function f (z, 2') is defined, 
the quotient 

G (2, zl) fm 
is regular and different frorn zero. 

We thus have established the existence of the function denoted by 
G (z, 2'). 

I n  precisely the same way, we can establish the existence of the function 
denoted by (2, z'). 

90. Now take the quotient 
(2, 2 )  O (2, a') = -- 

G (2, 2') ' 

This function O (2, 2') has unessential singularities at al1 the places where O 
and G vanish simultaneously, that is, a t  al1 the places where associated 
functions g (2, 2') and f(z, 2') vanish simultaneously ; in other words, O (2, zl) 
possesses, in exact and precise form for each of them, al1 the unessential 
singularities possessed by the function P (2, 2') of § 86. Again O (2, 2') has 
poles a t  al1 the places where G (2, i) is zero while O (2, z') is different from 
zero, that is, a t  al1 the places, where the functions f (2, 2') vanish while the 
functions g (2, z') do not vanish: in other words, O (2 ,~ ' )  possesses, in exact 
and precise form, al1 the poles possessed by the function P (2, 2'). Neither 
O (2, 2') nor, by hypothesis, P (z, 2') has any essential singularity for finite 
values of z and 2'; and at  al1 places, other than isolated unessential singu- 
larities and other than the continuous aggregates of poles, both O (2, a') and 
P (2, 2') are regular functions. Hence 

p (2, 2') 
O (2, al) 
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is a function that is regular everywhere in the domain constituted by al1 
finite values of z and z' ; denoting this regular function by R (z ,  z'), we have 

Now #(z, 2') is a function that is regular for al1 finite values of z and z' ; 
consequently the product G (z, 2')  R (z,  2') is a function that is regular for al1 
finite values of z and 2'. Denoting this product by H ( z ,  z'), we have 

as the final expression of our function ; and, in this expression, the functions 
H(z,  z') and G (z ,  z ' )  are regular for al1 finite values of z and z'. We thus 
have the theorem :- 

When a uniform analytic function of two variables possesses only un- 
essential singularities for jnite values of the variables, i t  can be expressed 
as the quotient of two functions, each of which is regular for al1 Jinite values 
of the variables; and the quotient is irreducible. 

The last statement in the theorem follows from the construction of the 
functions G (z,  z') and G (z ,  d). A quotient g (5, z') s f ( z ,  z') is irreducible 
at  an unessential singularity; there is no question of the reducibility of a 
function { f (z,  z')]-l in the vicinity of any pole ; and R (z, d )  is regular for al1 
finite values of z and z'. 

Note. I n  the particular case where the uniform analytic function has no 
essential singularity within the whole field of variation of z and z', both the 
functions H ( z ,  2') and G ( z ,  z') are devoid of essential singularities within 
that whole field; that is, they must be polynomials in z and z'. We thus 
again have the earlier theorem already (5 78) established. 

For further developments £rom the results now proved, reference should 
be made to Cousin's memoir. 

Appell's Examples. 

91. Such is the general existence-theorem, obtained in the product- 
form. There is a corresponding theorem, in a sum-form. Simpler expressions 
may be obtainable in particular cases, when the functions f, (z, z') or uk (2, z') 
are known. 

As an example of the sum-theorem, for a particular class of functions, 
Appell* proceeds as follows, in a generalisation of Weierstrass's proof of 
Mitiag-Leffler's theorem on functions of a single variable?. The set of 

* Acta Math., t. ii (1883), pp. 71-80. 
t For references, see my Theory of Functiom, ch. vii. 

10-2 
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uniform analytic functions f, (z, z'), f, (z, z'), . . . is supposed to have the 
property that for al1 integers n, greater than some definite integer IV, we 
can assign a magnitude rn such that fn (z, 2') is holomorphic for al1 values 
of z and z' given by ( z 1 c r,, 1 z' 1 < r,, and such also that rn increases 
indefinitely with a. 

Let q, e,, ... , ê,, . . . be a converging series of positive quantities, and let 
e denote a positive quantity less than unity. Take first the sum of the 
functions f, (z, z'), f, (2, z'), . . . , fN(z, d )  ; and write 

Next, consider the functions fn (z, 2') such that lz > N ;  as each of them is 
regular for values of z and z' such that 

we can express f,, (2, z') in a form 

where the double series converges absolutely. As in 5 88, we can assign a 
positive integer h, taking pn to be the greater of the two integers p8 and v, 
there assigned, such that 

I 5 ;+: % -: Z } c p , , ~ ~ ~ z p z ~  <en, 
p=h q=O p=O q-pt, p=l+pn q=l+pn i 

for al1 the values of z and z' considered. Hence, denoting by 4, (s, z') the 
polynomial 

and constructing a function 

F2 (z, 2') = r '{hb (2, 2') - & (2, z')], 
n = N + l  

we have, on the right-hand side, a series which converges absolutely for the 
values of z and z' considered. 

Now consider the sum 

P (z, z') = E; (z, z') + F2 (z, 2'). 
The function 

F (2, 2') -fm (2, 2') 

is regular a t  al1 the singularities of f,(z, 2'); and so the function F(z, z') is 
regular a t  al1 places in the field of variation which are not singularities of 
any of the functions f, (z, z'), f, (z, z'), . . . ; and F (z, z'), a t  places which are 
singularities of a function f (z, z'), is non-regular in the same way as f (z, 2'). 
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92. As a special instance of this sum-theorem, Appel1 adduces the case 
when 

1 
fmn (29 2') = ((1 + m y  + (zl + ,,y + 

where s is a positive integer, a is a constant, and the different functions 
f,, (z, 2') arise by assigning to m and to n, independently of one another, al1 
integer values from - m to + m .  

We have 

Also 

But 

and 

Hence, if 

we have 

and therefore 
( ( ~ + ~ n ) l + ( z ' + n ) l + a ~ I > ( I a I + ~ } ~ -  a l2  

> 2c a 1 + c2. 

Consequently, for al1 values of z and z' within a range that increases in- 
definitely with m and n. as given by the foregoing limits, 1 f,, (z, z') 1 remains 
smaller than an assigned quantity ; and so for those values, f,, (z, z') is a 
regular function. Thus the set of conditions for the function f,nn (2, z') is 
satisfied. 

When the integer s is greater than unity, the series 

converges absolutely. We therefore take 
m-m n-;o 

F(z,  2') = x C 1 
- , - , {(z + m>2 + (z' + 1 ~ ) ~  + a2js ' 

The function F(z, 2') has poles at  al1 the places 

for the continuous succession of values of 0 and for al1 values of nL and of n. 
Elsewhere, a t  al1 places in the field of variation, the function F(z ,  z') is 
regular. I n  this case, there is no need to take polynomials corresponding to 
the functions +, (z, z') in the general investigation. 
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When the integer 8 is equal to unity, the expression of the function is not 
so simple, because the series, of which the general term is 

does not converge absolutely. We then take al1 the values of m and n, which 
are finite in niimber and are such that 

(m9+ n2)&< I a 1 + c ;  

selecting al1 the functions f,, (z, z') given by these values of m and n, we 
denote their sum by FI (z, 2'). 

and expand 
in a range 

Thus 

Next, take the values of m and n which are such that 

(m2 + n2)6 > 1 a 1 + c, 

I Jmn (z, z'), for any such pair of values, in powers of z and z', valid 

For our purpose, it is sufficient to t'ake the desired polynomial +,, (z, z') as 
equal merely to the constant term in the expansion; for the series 

for al1 such values of z and z', and for the doubly infinite set of values of m 
and n, converges absolutely. Our required function is 

F (z, 2') = Fl (z, 2') + F2 (z, d) .  

It has poles at  al1 the places 

a = -  m + ia cos 8, z' = - n + ia sin 8, 

for the continuous succession of values of 8, and for al1 integer values of m 
and n. At al1 other places in the finite part of the field of variation, the 
function P (2, z') is regular. 

93. As an example of the product-theorem, let u1 (z, z'), % (2, z'), . . . 
denote a set of regular functions of z and z', and let them have the property 
that for al1 integers n, greater than some definite integer IV, we can assign a 
magnitude r, so that .un (z, z') is distinct from zero for values of z and z' 
such that 1 z / < r,, 1 z' 1 < r, and such also that rn increases indefinitely with n. 
Then denoting by A,, k,, ... a succession of positive integers, we can form 
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a regular function Q (2, z'), vanishing for al1 the values of z  and z' which 
make g, ( z , z l )  vanish, and vanishing in such a way as to make the quotient 

finite and different from zero for those values. 

This function G (2, 2') is of the form 

where 

while +, (2, 2') is an appropriate polynomial in z and 2'. 

Ex. 1. Shew that, when 

where m and n Vary independently of one another through al1 integer values from - w to 
+a,, a function O (2, z'), regular everywhere in the finite part of the field and vanishing 
like gm(z, a'), can be constructed as follows. Take al1 the values of m and n, finite in 
number, such that 

(m~+n2)+<1al+c,  

where a is any wsumed finite quantity ; and write 

G, (2,  2') = nn {(z + m)" ((d + n),+ a'}, 

where the product extends over al1 these values of m and n. 

Take al1 the values of m and n, doubly infinite in number, siich that 

and write 

G, (z, z') = rrn 
rn2+n2+a2 

where the product extends over ali theae values of m and n, and where 

The required function is given by 

a (z, z') = G~ (z, z') a2 ( 2 , ~ ~  j. 

Ex. 2. Verify that, when a is zero, the function G (2, z') can be evpressed by means of 
two Weierstrass's r-functions. 
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CHAPTER VI 

As regards the mittter of this chapter and, above all, as regards integrals of algebraic 
functions of two variables, the student should pay special attention to various sections in  
the treative (which uaually is quoted here in Picard's name) Picard et  Simart, Théorie des 
fonctions algébriques de deux variables inde)endantes, t. i (1897), t. ii (1906). Other 
references will be found in the course of this chapter. 

I t  may be noted initially, as regards algebraic functions of two variables, that 1 hare 
chosen, for reasons already stated, to take two fundamental equations defining two 
independent algebraic functions of the variables, instead of only a single equation 
defining only a single algebraic function. If three (or more) equations were taken 
defining the sanie number of algebraic functions, these would not be independent; so 
it  is  suficient to take not more than two fundamental equations. 

94. I n  the theory of functions of a single variable, many important 
results are derived through the use of Cauchy's theorems concerning contour 
integrals. It is natural to attempt some extension of theorems so as similarly 
to derive results in  the theory of functions of more than one variable. 
Here we shall restrict the discussion to the case of a couple of complex 
variables. 

The integral of a function of two independent complex variables may be 
single or may be double. The definition of a single integral is the same as 
in the customary theory of functions of one complex variable ; but there is 
the added complication through the occurrence of two complex variables. 
Either there is variation, within the range of the integral, of only one of the 
two variables; or within that range, there is a definitely connected and 
simultaneous variation of both variables. 

Of double integrals, there are two classes. I n  one class, the integration 
with regard to each variable is entirely independent of the integration with 
regard to the other, so that the integrations can be performed in either order. 
In  each integration, only one variable is subject to variation. Thus the 
double integral is effectively only a double operation of single integration. 
We have already had some examples, at  an earlier stage, of this class of 
double integrals. 
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Ex. A function f (JI, 8) is periodic in JI, with period Z r ,  and is also periodic iii 0, 
with period 2 r  ; and it  is regular for d l  values of the variables within the ranges of two 
complete respective periods. Let u (Y, d ,  +, $') denote the integral 

Prove that, when r < 1 and r' < 1, the function u (r, r', @, +') is regular ; and that, in the 
limit when r=1 and T'=l, the function u (r, T', 6, +') is equal to f (+, +'). 

Shew also that, if 
= Te+i = rleQ'i 

u (14, T', 6, r$') is expressible as the real part of a regular function of the cornplex variable8 
z and 2'. 

*Vote. This result will be noted as the extension of the simplest reaiilt, relating to 
potential functions of two real variables, in Schwarz's establishment of the existence of 
a function of one complex variable satisfying conditions of specified assigned types*. 

95. In  the other class of double integrals, the variations are not inde- 
pendent of one another; if either can be performed alone, usually the range 
of variation for the variable is affected by the other variable; and, in the 
general case, such integration cannot be performed for one variable alone. 
It then becomes imperative to define precisely what is the meaning assigned 
to the double integral. For this purpose, we adopt the procedure initiated 
by Poincaré t, using space of four dimensions in real variables. 

As usud, we take 
z = x + iy, 8 = x' + iy', 

where x, y, d, y' are real and are the coordinates of a point in this space. 
Without further limitation, the variables X, y, x', y' are independent of one 
another. 

For our immediate purpose, we now make two successive suppositions 
consistent with one another, so as to secure a working definition of a double 
integral. 

First, let X, Y, Z be real variables of a point in ordinary space; and 
suppose that x, y, x', y' are limited in variation so as to be expressible in 
forms 

x = FI ( X ,  Y, Z), y = E; (X, Y, Z), x' = F3 (X, Y, Z), y' = F4 (X, Y, Z), 

where (for purposes of description) we assume that FI,  P2, F3, F4 are rational 
functions of X, Y, Z not becoming infinite for real values of these variables. 
Eliminating X, Y, Z, we shall have an (algebraical) relation 

* See my Tlleory of Fz~nctions, chap. xvii. 
+ Acta Math., t .  in (1887), pp. 321-380. It is followed, in  part, by Picard who has made 

great extensions, as also by other methods, of the properties of double integrals speciallv 
connected with algebraic functions; see his Trazt6 d'Analyse, t. ii, ch. ix, and his Théorie dea 
fonctions algébriques de deux variables indépendantes, already quoted. 
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which represents a three-dimensional continuum in the four-dimensional 
space. 

Next, let X, Y, Z describe a surface S, or a portion of a surface 8, in 
ordinary space. Again for purposes of illustration, we shall assume S, or the 
selected qortion of S, to be devoid of singularities. We can take X, Y, Z as 
functions of two real parameters p and q, valid over the surface S or the 
portion of i t  ; and we then have equations 

x = g, (p ,  q), y = g2 (p ,  q), x' = .93 (P ,  q), Y' = 9 4  ( ~ 7  q). 

These relations imply two equations, say 

which represent a two-dimensional continuum (the surface S, as in 5 5) in 
our four-dimensional space. We take a simple closed area in the plane of 
the variables p and q, represented by an equation 

T(p3 q)=O; 

and for the double integral, we allow al1 values of p and q within this area, 
representing them by the relation 

J' ( p ;  9)  < o. 
Then the limit of the range of integration on the surface S is given by 
F (p, q) = 0 ; and this limit will lead to three equations of the form 

P ,  (x, y, a', y') = 0, (s = 1, 2, 3), 

representing a curve in the four-dimensional space. 

Now let f (2, 2') be the function, to be " doubly integrated" in the sense 
that a meaning has to be assigned to the double integral 

As f (2, 2') is a complex function, we resolve i t  into its real and imaginary 
parts; let 

f ( 2 , ~ ' )  = P + iQ, 

where P and Q are real functions of g, y, XI, y'. Then 

I = ( P  + iQ)  ( d x  + i d y )  (dx' + idy') II 

Manifestly 1, whatever its value, can be a complex variable; so writing 

1 = I l  +d2, 
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where 1, and 1, are real, we have 

1, =II{& (dzdx' - dydy')] + l f i ~  (dxdy' + dydx')). 

And now, 1, and 1, are ordinary double integrals involving only real 
variables, for the real quantities a, y, x', y' are functions of only the real 
variables p and q; and these double integrals are taken over the limited area 
P (p ,  q) 2 0 in the plane of the variables p and q. 

Both integrals are of the form 

J(A&M + B ~ X ~ Y '  + m y d i  + D ~ ~ ~ Y I ) ,  

where al1 the quantities concerned are real-there being, of course, limitations 
upon the forms of A, B, C, D and also of their differential relations to one 
another. When we give explicit expression to the functionality of x, y, x', y' 
in terms of p and q, the integral becomes 

but for our purposes it will suffice to take the first form. 

Our object is the generalisation, if generalisation be possible, of the 
fundamental theorem of Cauchy which asserts that, under appropriate con- 

ditions as to f (z), the integral f (2) dz taken round a closed contour is zero: I 
it  is a consequence that the integral f (z)dz, between two points in the I 
plane, has a value independent (subject to restrictions) of the z-path between 
the points. Suppose that, instead of the former values of x, y, x', y', we take 

x = hl (p, q), y = h, (p, q), 2' = h, (p, q), y' = h4 (P, q), 

so that we could have a new surface T different from 8 ;  and suppose that, 
corresponding to the former equation F (p, q)= O limiting the range of 
integration, the range of integration in T is still limited by P (p, q)  = 0, and 
that the lirniting curve connected with T in Our four-dimensional space is 
given by the same equations 

P, (x, y, x', y') = O, (s = 1, 2, 3), 

as the limiting curve connected with S. We thus should have two different 
surfaces passing through the same contour. Then the generalisation would 

be that the integral f (2, z') dzdz' should remain invariable if only the li 
surface over which the integration extends is made to pass through an 
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assigned fixed contour; or, if we take a completely closed surface through 

the fixed contour, the integral f (2, 2') dzdz' taken over the whole of this ii 
surface vanishes. 

96. Accordingly, we consider an integral 

~ ~ / ~ m n d x r n ~ n ,  

where the summation is taken over al1 pairs of values nz, 11 = 1, 2, 3, 4, and 
where x,, x,, xs, x4 take the place of x, y, x', y'. We define the integral for 
the four-dimensional space as above ; consequently, because 

with the foregoing interpretation, we have 

and 

that is, taking account of the whole integral and of the combinations of rn 
and n instead of the perinutations, we shall assume that 

so that we need only consider the combination Amndx,dxn. Moreover, this II 
process of regarding the integral obviously involves the additional assumptions 

A m ,  = O, 
for al1 the values of m. 

Next, we take* x,, x2, a,, x., as expressed in terms of the three variables 
X, Y, 2, so that our double integral becomes 

that is, 

\ f i ~ d ~ d ~ +  l l d ~ d ~  + r d X d  Y ) ,  

where 

Here Picard's proof ( T ~ a i t ë  d'Analyse, t. ii, p. 270) is followed exactly. 
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The integral is to extend over the surface in the X, Y, Z ordinary 
space. 

We therefore require the condition necessary and sufficient that s ~ c h  an 

over any surface which passes through an assigned contour in the p, q plane, 
shall depend solely upon the contour. This condition is well known we 
must have* 

Accordingly, the condition is 

I n  this expression, the coefficient of A,, is 

which vanishes identically. 

As regards the derivatives of A,,, we have 

and so for the others. Hence, in the foregoing expression, the coefficient of 

and the coefficient of aAmn - both vanish identieally ; and the non- a% . axn 
vanishing coefficients are the sum of terms of the forrn 

Consequently, the condition becomes 

When the condition ia astiafied, we can take 

and then the integral can be expressed in the form 

taiien round the contour in  the p, q plane. The result was first enunciated as a problem by 
Stokes, in the old examination for the Smith's Prizes a t  Cambridge in the year 1854; see Stokes, 
Math. and Phys. Pupers, vol. v, p. 320, with a note by Prof. Sir J. Larmor. 
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a condition which must be satisfied identically, whatever be the surface 
over which the integration extends, subject to its passing through the 
contour. 

The quantities xz, x,, x,, xp are functions of X, Y, Z such that, away 
from the contour, any three of them are independent of one another; and 
therefore the quantities 

except along the contour and individually a t  special places in space, are 
different from zero. I t  follows that we must have 

for al1 the combinations 1, m, n= 1, 2, 3, 4. Moreover, it is easy to see that 
this set of four conditions is sufficient, as well as necessary, to secure that the 
value of the integral 

2 A,, dxm dx, li 
depends only upon the contour. 

97. Now let us apply al1 the conditions to the integrals 1, and I,. We 
have 

1, = (Pdxdx' - Qdxdy' - Qdydx' - Pdydy') ,  II 
and we take 

$7 y, x', y' = Xl, x2, Ta, x4, 

respectively. We have 

A 1 2 = 0 ,  d,,=P, A,,=-&, A,=-&,  A,=-P, A,=O 

Consider the conditions 

for the combinations 6, m, n = 1, 2, 3, 4. They require the relation 

for 1, m, n = 1, 2, 3 ; the relation 

for 1, m, n = 2, 3, 4 ; the relation 
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for 1, m, n = 3, 4, 1 ; and the relation 

for 1, m, n = 4, 1, 2. 
Similarly, we have 

I,= {Qdxdx' + Pdxdy' + Pdydxl - Q d y d ~ ' } ,  ll 
so that we can take 

The general conditions require the relation 

for the combination 2, m, n = 1, 2, 3 ; the relation 

for the combination 1, m, n = 2, 3, 4 ; the relation 

for the combination Z, m, n = 3, 4, 1 ; and the relation 

for the combination 2, m, n = 4, 1, 2. 

Thus al1 the conditions are satisfied if only 

But, by definition, we have 

P + iQ = f (2, 2') = f (z + iy, x' + if), 
where P, Q, x, y, x', y' are real ; and so these four relations are satisfied. 

It follows, then, that 1, and I2 depend solely upon the contour; and 
therefore 1, = Il + ii,, also depends solely upon the contour. And we have, 
throughout, assumed that the quantities P and Q,-that is, also the function 
.f (2, 2')-are free from singularities. Hence we have Poincaré's extension of 
Cauchy's theorem :- 

If, within the closed surface S, which is taken in  the space of th~ee 
dimensions X ,  Y, 2, and points on which are given by equations of  the . f o m  

x =fi ip7 q), y =f2 ( P, 9)) = f 3  ( P, q), 

IRIS - LILLIAD - Université Lille 1 



there is  no place X ,  Y, Z, where the function f (2 ,  z') ceuses to be regular, 

the ?)due of the integral z, d )  dzdz' taken ouer the whole of the closed 

surface is zero. 

Again, for such a function and uver such a space, the value of the integral 

/\ f ( z ,  z') dzdd taken over any portion of any such surface S bounded by u 

contour, the surfuce and the contour lying within the domain, depends only 
upon the contour. 

Further, it follows that the value of the integral \,/ f (z,  2') dzdz', taken 
. . 

over any such closed surface, remains unaltered during deformations of the 
surface provided they occur in the domain of X, Y, 2, and cross no place 
giving rise to no singularity off (2, 2'). 

98. Now consider the singularities, or other deviations from regularity, 
of a function f (2, 2'). We take the preceding surface S existing, as in 5 95, 
in an ordinary space of three dimensions, the representation of the variables 
being 

cc = F, (X, Y, Z), y = F2 (X, Y, Z), x' = F3 (X, Y, Z), y' = P4 ( X ,  Y, 2). 
The singularities off (z,  5') may be given by a set of single equations, typified 
for each of them by 

e (2, 2') = O, 
or by sets of two independent equations, typified for each set by 

The former will lead to two equations, Say 

% (x, y, x', y') = 0, % (x, y, x', y') = 0 ; 
so, in Our X, Y, Z space, they will be given by equations 

@(X,  Y,Z)=O, O,(X, Y,Z)=O. 
These two equations represent a curve C in that space; a t  every point on 
the curve there is a singularity off (z, 2'). 

The latter will lead to four equations, which may be regarded as defining 
an isolated place or an aggregate of isolated places determined by the values 
of x, y, x', Such places may or may not exist in our X, Y, Z space. 

Take a closed surface S in the space, containing no place or places 
X, Y, 2, giving rise to an isolated singularity off (z,  z'), to any curve C, or 

P "  

to any part of such a curve. The integral f (z ,  zf)dzdz' taken over S is zero. II 
Take two closed surfaces S and S' in the space X,  Y, Z, such that 

S' cnn be continuously deformed into &", without passing over any place 
giving rise to an isolated singularity of f (2, z'), or over any curve C, or any 
part of such a curve C. The value of the integral taken over the surface 
S i o  equal to its value taken over the surface S'. 
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Take two closed surfaces X and 8' in the space X, Y, 2, such that they 
enclose places giving rise to exactly the same isolated singularities off {z, z'), 
to exactly the same curves C and to exactly the same portions of curves C. 
The value of the integral taken over the surface X is eqnat to its value taken 
over the surface 8'. 

Thus the value of the double integral f (z, 2') dzdz', taken over the II 
closed surface S, is zero when the surface encloses no place X, Y, 2, where 
f (z, 2') ceases to be regular. When the surface does enclose places X, Y, 2, 
where f (z, z') ceases to be regular, the value of the integral depends upori 
these enclosed places ; we cannot assert that its value is zero. 

99. The theorem can be enunciated in similar terms when a two-plane 
representation of z and z' is adopted. Thus, very specially, within a circular 
ring in the a-plane and within a circular ring in the 2'-plane, let a function 

f (z, 2') be everywhere regular; then the value of z, z') d z d z  is the same, /Jf ( 
whether the integral be taken positively round the outer circles in the two 
planes, or be taken positively round the inner circles in the two planes. But 
such a case is exceedingly special ; and, as was indicated earlier in the lectures 
( 5  19), the frontier of a domain of variation for z and z' is of a more com- 
plicated character than in the result just enunciated. 

100. We proceed to consider some of the simplest cases when the subject 

of integration in a double integral f (2, z') dzdz' possesses either isolated II 
singularities or any continuous aggregate of singularities within an assigned 
domain. I n  passing to these examples, i t  may be rernarked that the whole 
subject of double integrals of uniform analytic functions, possessing singu- 
larities of the known types, offers a field of research, in which many of the 
results already obtained are of a tentatively exploratory character. 

I n  the examples that will be considered, we shall use the two-plane 
representation of z and z', and we shall deal only with a finite part of the 
whole field of variation of z and 2'; that is, for al1 the variations, 1 z 1 and I z ' )  

will be kept finite. To these examples*, al1 of which involve only rational 
functions of z and z', we now proceed in order. 

EXAMPLE 1. Let F ( z , z l )  denote a function that is regulnr everywhere 
within an assigned finite domain; let a, a' denote any place within that  
domain. Then we consider the integral 

* In this connection, reference should be made to Picard, Fomtior~s algébriques de dotg 
variables,  t .  i, ch. iii. 

F. 11 
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taken over the closed frontier given by the equations z -  a 1 =R, 
1 z'- a' 1 = R', so that i t  encloses the place a, a'. 

The singularities of the subject of integration are given by 

(i) z = a, 8 = any enclosed value of z' ; 

(ii) z = any enclosed value of z, z' = a'. 

By our general theorem, we can deform the closed frontier without changing 
the value of the double integral, provided the deformation causes no transition 
through any of these places. Accordingly, let the closed frontier be deformed 
until i t  encloses only the small domain, composed of the interior of the circles 

8 - a = re> z' - a' = r'e@'i 

where r and r' are small real positive constant quantities. Then 

the integration extending over a &range from O to 2 7 ~  and over a d'-range 
from O to 27~. Now F (2.2') is regular throughout the domain; hence 

But  for positive integer values of m and n, such that either n b  or n is greater 
than zero, we have 

and 

Hence 

/ k ( a  + reei, d + r'eefi) dddû' = 411% F (a, a') ; 

and therefore, with our hypothesis as to the regular character of F ( z ,  z') 
within the domain, we have 

- di dzf = F (a, al), 
47r2 (Z - u)  (z' - a') 

taken over the closed frontier of integration 1 z - a 1 = R, 1 z' - a' 1 = R' 

Corollary. With the preceding assumptions concerning the regular 
function F ( z ,  z'), we have 

taken over the closed frontier of integration 1 z - a 1 = R, 1 z' - a' 1 = R'. 
Note. When the integrals are taken over a closed frontier of integration 

which does not enclose the place a, a', al1 the three integrals have a zero value. 
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EXAMPLE II. AS before, let F(z,  z') be regular everywhere within an 
assigned finite domain; and let a, a' be any place within that domain. We 
consider the integral 

taken over the same closed frontier in that domain, the frontier enclosing the 
place a, a', and the quantities nz and n denoting positive integers, zero included. 

We proceed exactly as in the preceding example. Because 

for the range O to 2 7  for Band for û', except only when m = and n = v, we 
find 

for al1 integer values of m and n that are not negative. 

EXAMPLE III. Let a, 6, y, 6 denote four constants such that a6 - Dy is 
not zero; and consider the double integral 

taken over a frontier that encloses the place O, 0. 

For a given value of z', the quantity CU + pz' vanishes if z = z,, and the 
quantity yz + 82' vanishes if z = z,, where 

The values of z, and z, are unequal except only when z' = 0. 

First, let integration with regard to z be effected before integration with 
regard to zf. Take in the z-plane a small simple curve enclosing z, and 
excluding z,, say a circle centre z, and of radius < 2,-zz ; and effect the - 
integration round this circle in the z-plane while z' is supposed invariable. 
Then. as 

1 1 
(az + PZ') (VZ + 62') = ay (z - zl) ( z  - z,) 

we have (when the indicated integration is effected) 

dz 21ri 
/<CU + &zl) (yz + W )  = (a8 - BY) 2' ' 

because 
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taken round the z-circle. Now let the integration with respect to z' be 
effected round a small circle, the circumference of which passes through z' 
and the centre of which is at  z' = 0 ; then, as 

for this integration, we have 

when integration is effected, first with regard to z round a small simple z-curve 
enclosing a root of f; for a given value of z' but not a root of c', and then with 
regard to z' round a simple 2'-curve through that value of z' enclosing the 
origin z' = 0. 

Similarly, we have 

when integration is effected, first with regard to z round a small simple z-curve 
enclosing a root of for a given value of z' but not a root of 5, and then with 
regard to z' round a simple 2'-curve, passing throiigh that value of z' and 
enclosing the origin z' = 0. 

Similarlv. we have 

when integration is effected first with regard to  z round a z-curve enclosing 
both a root of r a n d  a root of for a given value of z', and then with regard 
to z' round a 2'-curve passing through that value of z' and enclosing the origin 
z' = O. For we then have 
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Next, let integration with regard to z' be effected before integration with 
regard to z. Indicating this order in the sanie way as before, we consider 

dz'dz 
!hW + ,8z1) (, + 62') 

and then, from the definition of the significance of a double integral, we have 

Take in the 2'-plane a small simple 2'-curve enclosing a root zi of !:but not a 
root 2,' of y, for a given value of z, where 

effect the integration with regard to z' round this curve ; and then effect the 
integration with regard to z round a simple curve through the given value of 
z enclosing the z-origin ; then 

and so 
dzdz' 1 

az + , ~ Z ' ) ( ~ Z  + 6.2') = v) ' 
in this case also. 

Similarly, when integration with regard to z' is effected first, round a 
small simple 2'-curve enclosing a root of f: but not a root of r for a given 
value of z, and then integration is effected with regard to z round a simple 
curve through the value of z enclosing the z-origin, we find 

Lastly, when integration with regard to z' is effected first, round a small 
simple 2'-curve enclosing both a root of and a root of r for a given value of 
z, and afterwards integration is effected with regard to z round a simple 
curve, passing through the value of z and enclosing the z-origin, we find 

dzdz' 
(ac + Bi) (yz + Si )  

Summing up, we can Say thad the value of the double integral 

1 
i s  independent of the order of integration ; that i t  is J r g l )  where 

J (C, C') = a6 - By, 
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when integration is efected round a curve enclosing a root of c, where c= az+ pz', 

1 
but not a root of cf,  where = yz + Sz'; that i t  i s  - = - l 

when 
J(4",5)' J(t,t')' 

integration i s  efected round a curve enclosing a root o f  c' but not a root of c; 
and that it i s  zero when integration i s  efected round a curve enclosing both a 
root of 3 afid a root of 5'. 

And, of course, the value is zero when the integration is effected round a 
region that does not enclose any zero of r or of r. 

EXAMPLE IV. The preceding result cannot be applied when the initial 
assumption, viz. that a6 - f iy is different from zero, is not satisfied. In  that 

When the integral is taken round the place O, O, in either of the ways 
indicated in the construction of the last result, the value of the double 
integral is zero. 

EXAMPLE V. From III and IV, we infer the following results relating to 
the double integral 

dz dz' 
47r"z2 f 2pzz1 + pz'=. -'JI 

There are two cases, according as p2 is not, or is, equal to hp. 

(i) Suppose that p" k p  is not zero. When integration is effected in either 
plane, round a small simple curve enclosing the root of kz + {p  +($-XP)~} z'= O 

but not the root of kz + {/.L - (p2 - Xp)3j z' = 0, and then round a small simple 
curve enclosing the origin in the other plane, the value of the double integral i s  

When integration is effected in either plane, round a small simple curve 
enclosing the root of Xz + ( p  - (pz - hp)i} Z' = O but not the root of 
Xz + {p + (pz - A~)$} Z' = 0, and then round a small simple curve endosing 
the origin in the other plane, the value of the double integral is 

And when integration is effected in either plane, round a small simple curve 
enclosing both roots of X$ + 2pzz' + = 0, and then round a small simple 
curve enclosing the origin in the other plane, the value of the double integral 
i s  zero. 

(ii) Suppose that pa - Xp =O.  When the integral is taken round the 
place O, O in any of the ways indicated for the preceding case, the value uf the 
double integral i s  zero. 
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EXAMPLE VI. Let 

where y. and 8, are different from zero and (for the immediate purpose) m and 
n are positive real quantities, not necessarily integers. We require the 
value of 

where u = az + P, v =pz + Q, when the integration is effected, first, with 
regard to z round a small simple closed z-curve enclosing a root of u. (but not 
a root of v) for a value of z', and, then, with regard to z' round a small simple 
closed curve, passing through that value of z' and enclosing the 2'-origin. 
We also assume that aQ -PP does not vanish identically. Now 

Thus, if m < n ,  the lowest power in J is - m,ûy,z'm-l; if m > 7 4  the lowest 
power is n~i8,z'~-l ; if m = n, = 1 Say, the value of J is 

For any small value of z', such that lz'l is less than the nlodulus of the 
smallest root of P or Q other than z' = O, let 

azl+P=O, &,+&=O. 

Then the double integral 

When m < n, the value of the right-hand side is n. 

When m. > n, the value of the right-hand side is m. 

When m = n, = 1, the value of the right-hand side is 1 + k, where a& - ,ûyk 
is the first of the coefficients US,  - By0, ah', - pyl, . .. which does not vanish. 

I n  each of the three alternatives, the value of the integral is the degree of 
the lowest power of z' in the eliminant of uz + P and pz + &, wlren z i s  
eliminated. Moreover, when m und n are infegers, the value of the integral i s  
then the rnultipbicity of O. O, as the sole isolated sinzultnneous zero of the uniform 
f unctions 

+P, pz + Q, 
enclosed by the frontier of integration. 

EXAMPLE VII. Next, let 
U = z* + z--1 fi (4 + .. - +fm (zf), 

= Zn + ,Zn-, gl (z f )  + . . . +Sn (d), 
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where the functions u, and v are independent and have no common factor of 
their own form, and al1 the coefficients f,, ..., fm, g,, ..., g, are functions 
of z' which are regular in the vicinity of z' = O and vanish with z'. We 
require the value of the double integral 

taken (as have been the preceding integrals) round a fiontier, which encloses 
the place O, 0, and encloses no other simultaneous zero of u and v.  Let 

where each of the quantities z,, ..., z,, rl, ..., {,, is a regular function of 
positive powers of z'p; where y is a positive rational fraction; and where 
each of these quantities vanishes with z'. The eliminant of u and v is 

if, when z, -Cs is arranged in ascending (fractional or integral) powers of z', 
the lowest power of z' has an index p,,,, and if 

'm R 

2 p,,,=M, 
r=l s=l 

the eliminant of u and v is 
dM 4 (4 

where + (O) is not zero. The magnitude M is an integer, rnanifestly finite: 
i t  is the measure of the multiplicity of O, O, as an isolated zero common to IL 

and v. 

For the range of integration, first take a value z' of modulus smaller than 
the root of r#~ (2') which has the smallest modulus. I n  the z-plane mark al1 
the quantities z,, ..., z,, Cl, ..., f;,, which are functions of this value of z'; and 
draw a simple closed z-curve, enclosing al1 the places z,, . . . , zm and none of 
the places Cl, . . . , f;,. We take the integral round this z-curve ; when this 
first integration has been effected, we integrate with regard to z' along a 
small simple closed 2'-curve, through the place for the assigned value of z' 
and enclosing the 2'-origin. 

We have 

dCs . where .q.' = %' and 5' - - hence 
dzr ai - dz" 

But the lowest power of z in z, - r8 is zC.8. Hence 

that is, the value o f  the double integral, taken ove?. the range indicated, is the 
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measure of the multiplicity of O ,  O, as an isolated simultaneous zero of the. 
functions u and v, which are supposed to be independent and to be devoid of 
any common factor of their own form. 

Corollary. Two or more of the quantities z,, . . . , z, may be equal, or they 
nlay be equal in groups ; and, similarly, two or more of the quantities f;,. . . . , 
niay be equal, or they may be equal in groups; while, after the hypothesis 
as to the functions u and v, no one of the quantities I; is equal to any of the 
quantities z,, ... ,z,. The value of the double integral over the indicated range 
still i s  M. 

~Votti 1. If the range of integration, enclosing O, O and no other simul- 
taneous zero of u and v, is chosen so that the z-curve (for a value of z') 
encloses al1 the places f;, ..., 5, and no one of the places z,, . .., z,, and the 
2'-curve is drawn as before, the value of the double integral becomes - M. 

Note 2. We  have 

When integration is effected first with regard to z', round a curve enclosing 
al1 the roots of u = O and no root of v = O for an assigned value of z, and then 
round a z-cixrve through this value and enclosing the z-origin, we still have 

I n  other words, the value of the double integral is  independent of the order 
of integration. 

EXAMPLE VIII. Let a and 6 be non-variable puantities, of Jinite moduli; 
let c, c' be a level place for two regulnr functions, f and g, such that 

f (c, cf) - a = O, g (c, c') - p = O ; 
and let f ( z ,  z') - a, y (z, z') - p, be independent, and huve no common factor 
which vanishes at c, c'. Then the place c, c' i s  isolated; its multiplicity i s  the 
value of the double integral 

J ( J  9 )  -LI/ -- dz dz', 
4r2 ( f  (2, 2') - al { y  ( 2 , ~ ' )  - 61 

taken Jirst rorind a sn~all  simple closed curve i n  the z-plane which, for a n  
assigned small value o f  z', encloses al1 the roots o f f  ( z ,  2') = a and none of the 
T O O ~ S  of g (2, z') = P, and then round n small simple closed curve, through thut 
value of z' and enclosing the 2'-origin. 

The result follows from the last example by writing 
u = f ( z : z ' ) - a ,  v = g ( z , z l ) - p ;  

the inultiplicity of c, c' as a level place for f and g is its multiplicity as a zero 
for u and v *. 

* In connection with double integrals of the preceding types and taken over such rangea of 
integration, the reader should consult Picard's treatise, t. i ,  ch. iii, quoted p. 161. 
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Akebraic fu?hctions in general. 

101. Hitherto, al1 the subjects of integration in the double integrals that 
have been considered, have been uniform functions. Bearing in mind the 
extraordinary importance of Riemann's investigations connected with the 
simple integrals of algebraic functions, we should naturally seek the general- 
isation of that work for algebraic functions of two variables. 

Into that theory 1 do not propose to enter in detail. I n  one sense, it is 
enough for me to refer to the long series of valiiable researches by Picard*. 
Al1 that will be done here is to submit one or two simple propositions, when 
there is a single dependent variable, partly frorn the standpoint of the general 
theory of functions and without regard to the theoryof the singularities of 
surfaces, partly also to state the corresponding propositions when we have 
to deal with the case when the fundamental algebraic equations provide 
two dependent variables and not one alone, the number of independent 
variables always being two. 

Suppose then that we have, in the first place, a single irreducible algebraic 
equation 

f (w, 2, a') = 0, 

expressing w as an algebraic function of z and z'; and assume that the equation 
is of order m in w, so that w is m-valued. Any rational function in the field 
of variation is of the form R (zu, z, z'), where R is the quotient of two poly- 
nomials in al1 the variables w, z. 2'. To this rational function R (w, a, a') a 
canonical and recognisable form can be given ; the proposition, stating its 
form, can be established in the same kind of way as for the corresponding 
proposition when there is only a single independent variable. 

Let the nt roots of the fundamental equation f (w, z, z') = 0 be denoted 
y w w . W .  Then, for any positive integer n, the quantity 

wln R (w, , Z, z') + wzn R (w, , z, z') + . . . + wm7& R (w, , a, z') 

is a symmetric function of the roots w,, . . . , w, of the fundamental equation, 
having rational functions of z and z' for the various symmetric combinations 
of the roots; it is therefore a rational function of z and 2'. Denoting this 
rational function by P, (2, z'), we have 

'm 

C w r  R (w,, Z, z') = P, (2, z'). 
T = l  

This result holds for al1 integers n ;  hence, taking i t  for n = 0,1, . . . , m - 1, we 
have m equations, each linear in the m quantities R (w,, z, z'), . . . , R (w,, z, 2'). 

* They are expounded fully in his treatise already quoted (pp. 161, 169) ; and in that treatise 
full references will be found to the work of Nœther, Enriques, Castelnuovo, Severi, Humbert, 
Berry, and others, in especial connection with the analytical developments assooiated with 
surfaces in ordinary real space. 
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Solving these m linear equations for the m functions R (w,, z, z'), we have 

1 1 , 1 , ..-, 1 J R (w,, Z ,  i) = Po (z ,  i) , 1 , . . . , 1 

1 wl-1, wiR-1, . . . , w2- '  1 , Pm-l (2, z'), wZm-', . . . , w m +  

The determinant on the left-hand side is the product of the differences of al1 
the roots of the fundanlental equation f (w, z ,  z') = O regarded as an equation 
in w, and is usually denoted by 

C(w1, wz, a - . ,  wm), 
so that, from this definition of f; we have 

+ ( ( ~ 1 ,  W Z ,  ... > ~ r n ) = ( ~ i - ~ z > ( ~ i - ~ 3 )  - . - . m .  ( ~ 1 - w m )  r(wz, . . - i  wm). - 
On the right-hand side, each of the quantities Pr (z,  z') has, as its coefficient, 
a, determinant of the roots w,, . . . , w, ; and in each case, this determinant can 
be expressed as a product of c(w2,  ..., w 3  and a s p m e t r i c  function of 
w2, . . . , w,. Thus the coefficient of Po (2, z') is w,w, . . . wm r (w,, . . . w,,,) ; 

111 

the coefficient of Pl (2,  2') ia - w,w, . . . w, ( 5 l) f (w,, . .. , y$ ; and so on. 
r=z Wr 

Hence dividing out by c(w,, ..., w,), we have 

(wl - ~ 2 )  (wl - w S )  . . . ( ~ 1 -  tu,,,) R ( ~ 1 ,  2, 2') 

=Pos,+P,s,+ ... + Pm-,s,,, 
where s,, sl, ..., s,, are the symmetric functions of w,, . .., w,. 

Now by the algebraic equation f (w, z, z') = O, each symmetric function of 
w,, . . . , W ,  can be expressed as a polynomial in w,, having rational functions 
of z for its coefficients. Also 

where A is the coefficient of wlm in f (w, z, 2'). Hence 

where O is a polynomial in w,, which can alwnys be made of degree < nz  - 1 
by use of the equation f (w, z, 2') = 0 ;  and the coefficients in this polynomial 
are rational functions of z and 2'. 

A corresponding expression holds for each of the functions R\w,, z ,  z'), 

. . . , R (w,, z, z'), al1 the polynomials O (w, z, 2') having the same coefficients in 
the form of ratcional functions of z and z'. Consequently, when we denote any 
root of Our algebraic equation 

f (w ,  Z ,  2') = O 

simply by w, any rational function R (w, z, z') of al1 the variables can be 
ex~ressed in the form 

R (w,  Z, z') = 
O (w,  Z,  2') 

af 
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where O (w, z, 2') is a polynomial in  w of degree < m - 1, the degree of 
f (w, z, 2') = O in  UI being m, and where the polynomial has rational functions 
of z and z' for the coefficients of the powers of W. 

This is the  generalisation of: the well-known theorem of Riemann on the 
expression of functions that are uniform functions of position on a Riemann 
surface *. 

Ex. 1. Let the fundametital equation be 
w2+z2+zf" 1 ; 

and let 

There are two values of R, viz. the expressed value, and El', where 

Rt=  A z + A f d - C w  
az + a'z' - cw 

' 

Hence, following the geueral argument,, we have 

R + R 1 = 2  ( Az + A'z') (az +a's1)  - cCwZ =2P, 
(az + a'z')z - C Z W ~  

where P is a rational funûtion of z  and z' ; and 
c (Az  + A'z') - C (az t a'z') 

, W R  - WB'= - 2w2 = 2 Q ,  
(az + a ' ~ ' ) ~  - c2& 

where & is a rational function of z  and z'. Hence 

wP+ & R=-- 
w '  

which establishes the proposition. 

Ex. 2. When the fundamental equation is 
w3+z3+i3=1,  

obtain canonical expressions for 
Az+ Bz'f CIO 

(i) 
az+bzf+cw ' 

(ii) 
az2 + bzw +cw2 

a'z'2 + Uz'w + dw2 ' 

Note. There are of course particular methods better adapted to particular cases than 
is the general method which applies to  al1 cases. 

Thus the function 

R (w, z) = 
Az+A'd+Cu 
az+bz1+m ' 

when d+z3+2 '3=  1 is the governing algebraic equation, gives 

(As+ A%'+ Cw) {(az + bz1)2-. (az+ bz') cw + c2w2} . 
R ( w ,  z )=  - - -- 

(az + b?)3 + 2LL;I 9 

and so 
L+Mw+NwZ 

w2R (w, Z )  = 
( a z + b ~ ' ) ~ + $ ( l  - z3-d3) '  

where L, M, N are polynomials in z  and z' of degrees five, four, three respectively. 

102. When we have to deal with the  case, in  which there are a couple 
of algebraic functions w and w' given by two algebraic equations 

f (w, w', 2, 2') = O, g (w, w', z, 2') = 0, 
See my Theory of Funetiom, a 399. 
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it is desirable to  have a canonical form of the  most general rational 
function; we shall prove that  this canonical form is 

63 (w, w', 2, 2') 

J (&)  w, w ' 

where O is a polynomial in  w and w', having rational functions of z and z' for 
its coefficients'. 

Let f be of degree m in  w and w' combined, and ,q of degree n in w and w' 
combined : that is to say, if w and w' were Cartesian plane real coordinates, and 
if f = O and y = O were loci in that  w, w' plane, f = O and g = O would be plane 
curves of degrees m and n respectively. Construct the  w-eliminant o f f  and 
g by eliminating w' between f = O and y = 0, and denote i t  by W;  then from 
the ordinary processes of algebra, we know that  

w= Af + Bq, 
where A is a polynomial in w of degree m n  - m, and in w' of degree n - 1 ; B i s  
a polynomial in w of degree mn - n, and i n  w' of degree nz - 1 ; and W, not 
containing. w', is of degree mn in W. Similarly, the w'-eliminant o f f  and y, 
obtained by eliminating w between f = O and g = 0, can be put into the form 

W' = Cf + Dg, 

where W' is of degree mn in  w' alone, and does not involve W. 

There are nzn roots of W = O, expressing each w as  one of mn functions of 
z and z'; and there are likewise mn roots of W'= O. The n m  combinations 
of one root of W = O with one root of W' = O, which make 

simultaneously, are called the  congruous pairs : the combinations are deter- 
mined by the ordinary proceeses of algebra. The remaining n m  (v in  - 1) 
combinations of roots of W = O and W' = O are called the non-congruous 
pairs; they al1 satisfy A = O, where 

Now take a congruous pair of roots, say w, and w,'; they satisfy f = O ,  
g=O,  W=O. Wehave  

W = A f + B g  

identically; hence differentiating with respect to w and w', and inserting the 
pair of congruous roots after differentiation, we have 

Similarly we have 
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Hence, for the congruous pair of roots, we have 

a w f  Caf ,+& 
a.wl aw,/ 

that is. 

say, where A, is the value of A for the congruous pair of roots w1 and w,', 
and likewise for JI.  

Similarly for each congruous pair. 

Let our rational function of w, w', z, z', which is to be expressed in a 
canonical form as stated, be denoted initially by R (w, w', z, 2 ) ;  and let its 
value, for a congruous pair of roots w, and w,,', be denoted by R,. Then, 
taking al1 the congruous pairs of roots, we have 

rnn 

C WC R, = a rational function of z and z' 

say ; the value of P, (z,zl) is obtainable by the usual processes of algebra; and 
the result holds for al1 integer values of r. Hence, taking r = 0,1, ... , mn - 1 
in succession, we have 

...... RI + R2 + + R,, = Po, 
wlR,+wzRz + ...... + wrnnR17m =Pi, 

These equations can be solved for the mn - 1 quantities R,, R,, ... which 
occur linearly. Proceeding as before in § 101, we find 

where @ is a polynoinial in w,, having rational functions of z and z' for its 
a w' coefficients. Multiplying the denominator and the numerator by -- we 
awlf 

have 
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where S is a polynomial in w, and w,', having rational functions of z and z' for 
its coefficients. But 

awawl --= 
aw, aw; JI A, ; 

and therefore 

R, = 8 1 1 ,  9 ' - 1 
JI . A, 

Now 
A,A, ... A,, 

is a symmetric function of w, and w,', w, and w,', ..., the pairs of congruous 
roots ; and i t  is therefore expressible as a rational function of z and z', say 

Al AB . . . Amri = T (z, 2'). 
Similarly 

A2 ... Arnn 
is a symmetric function of al1 the congruous pairs of roots other than the pair 
w, and wi ; hence i t  is expressible as a polynomial function of w,, w,', having 
rational functions of z and z1 for its coefficients, Say 

A4 . . . Amn = & (w,, wl', Z, 2'). 
Consequently 

1 Q (wu 1~1', 2, 4 -- - 
Al T (2, 2') 

Hence 

R, = X(w1, w1', 2, z') Q w', 2, 2') 
T (z, z') JI 

- O Qu1, wl', 2, 2') - 
J, 

, 

on multiplying the polynomials S and Q, and absorb~ng the rational function 
T (2 ,  zl) into the coefficients of the product. 

The same conclusion holds for every congruous pair of roots. We there- 
fore infer that every function, rational in the algebraic field of w, w', z, z', 

where w and w' are given by algebraic equations 
f (tu, w', Z, d )  = 0, y (w, w', 2, 2') = 0, 

can be expressed in the form 
6) (w, w', 2, 2') 

J (a') ' 
w, w 

where O is polynomial in w and w', having rational functions of z and z' for 
its coefficients. 

Modifications in the degree of O in w and of its degree in w' may some- 
times be effected by the use of the equations f = O and y = O. These 
modifications, when they are possible, do not affect the denominator J, and 
only give equivalent expressions for the polynomial O ; i t  is for this reason 
that the form is called canonical, even though the expression for O inay 
happen to be not unique. 
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Note. I n  establishing the preceding form for the rstional function, two theorems 
concerning symmetric functions have been quoted. In  actiial practice, we can proceed 
as follows. 

Take 
t=Xw+X'w'; 

eliminate w from f and g, so that thcy become 

of the same degrees in t and w' combined as are f and g respectively. Eliminate tu' 
hetween F=O and G=O, so its to  give an eqimtion 

T=O, 
of degree mn in t, havirig rntional functions (frequent1y~)olynon~ial fimctions) of z and z' 

for its coefficients. 

In the yroduct A,& ... A,,, we have symmetric functions of the congruous pairs of 
roots ; let such an one be 

2wIm1 U I ; ~ ~  min2. .  . , 
where the summation is over al1 the like terms obtained by perinuting the congruous 
pairs in al1 possible ways. We then form the symmetric function of the roots of the 
equation T=O represented by 

2 tlmlfn, . . . 
In its expression we select the coefficient of 

and remove the multinomid numerical factor 

the result is the symmetric function required. 

Again, in the product A2 ... A,,,,, we have symmetric functions of d l  the congruous 
pairs of roots except only the pair w1 and w;. Let 

T= (t  - t]) T ', 
so that tg, ..., t,, are the roots of T'=O. The coeficients in T' are linear in the 
coefficients of T and are polynomials in t,; thus, if 

As was the case with A,A, ... A,,, which is a sum of coefficients in a polynomial 
f~inction of the coefficients of T divided by a power of Oo, so also the symmetric product 
A~ ... A,, is a siim of coefficients of powers of h and X' in a polynomial function of the 
coefficients of T' divided by a power of Bo ; that is, A, ... A,, is a polynomial function of 
the coefficients of T', itself also polynomial in tl (that is, in w, and tu,') divided hy a power 
of 8,. 

These are the two theorems used. 
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Ex. For particular equations, a given rational function is most easily discussed in an 
initial form, not in a canonical form ; i t  is for the general theory that a canonical form 
is required, as it includes aii rational functions. We may however take an example, to 
shew the outline of the reduction to a canonical form; but the process is only an 
exercise in algebra. 

Let the two fundamental equations be 

f=&-&-A=0, g=&+wf2- B=O, 

where A and B are given functions of z and d only. Their Jacobian J, on the omission of a 
factor 6, is 

J=ww1(w +d). 

We take the simple rational function 

where Z is any rational function of z and 2 ' ;  and we proceed to express i t  in a canonical 
form 

P (20, w', z, 2') 

J ' 
where P is a polgnomial in w and w', having rational functions of z and z' for its 
coefficients. 

The W-eliminant o f f  and g is 

Let 

then the six values of t are given by the equation 

2 ( t - Z ) 6 - 3 B  ( t - Z ) 4 -  2A ( t -Z)3+3p  ( t  - Z)2+A2- B3=0. 
Let 

8- 226- 3BZ4+2AZ3+3B2Z"A2- B3, 

being the term independent of t in the last equation ; then 

= @, Say. 
Consequently 

Al1 terms in the right-hand side, which are of degree six and higher, can be remored by 
uving the equation Wl = O. These terrns are 

2w17 + (2wi - 2 2 )  w?. 

The term 21q7 is to be replaced by 

3Bw15+2Aw14 - 3B2w13 - (A2-  B3) wl, 

and the terms (2wi -  2 2 )  w,e by 

(w,'-Z) (3Bw14+ 2 8 ~ ~ 3 -  3 P  ml2 - Aa+ B3}. 

When these changes are made, let the expression for a1 be 
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where the coefficients p are polynomial in PU', and are rational in z and z'. Then finally, 
1 .  absorbing the rational function of 2 and z' represented by - - into the coefficients of %,, 
8 

we have 
1 w' 

which is of the required type. 

Equivalent forms are obtsiued for the numerator by using the equations f=O, g=O. 

Integrals of algebraic functions. 

103. The development of the theory of integrals, whether single or double, 
of algebraic functions when there are two independent complex variables, 
owes its main foundations to Picard*. Here 1 shall only restate one or two 
of the simplest results for the case when there are two initial fundamental 
algebraic equations 

f (w, w', 2, 2') = 0, g (w, w', z, 2') = 0, 

defining two dependent variables w and w' as algebraic functions of z and z', 

the quantities f and g being polynomial in al1 their arguments. 

we have seen that any rational function of al1 the variables can be expressed 
in the form 

0 (w, w', Z, 2') 

J (w ,w ' )  ' 
where O (w, w', z, a') is a polynomial in w and w' having rational functions of 
z  and z' for its coefficients. 

Accordingly, following Picard, we take Our most general single integral 
of algebraic functions in the forin 

Zdz' - Z'dz 
J ( w ,  w') 

where Z and Z' possess the same general form as the preceding function O. 

Integrals of this form are said to be of the first kind when, on the analogy 
of Abelian integrals, they have no infinities anywhere in the whole field of 
variation. Picard provest that no integral of the first kind exists in 
connection with a single equation F(w,  z, z') = O, when this single equation 
is quite general; and he shews: that, when such an integral does exist in 
connection with a less general single equation F (w, z, 2') = 0, the form of 

A full and consecutive account of his researches is contained in hi8 treatise already quoted. 
+ His treatise, vol. i, p. 113. $ Ib., p. 118. 
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the subject of integration must satisfy special preliminary relations, even 
. though these necessary relations are not of themselves sufficient to secure the 
existence of the integral. Here 1 shall proceed only so far as to obtain the 
corresponding necessary preliminary relations affecting the form of the 
subject of integration in the foregoing single integral, if i t  is to exist in 

, connection with the two equations f = O, g = 0. 

The quantities Z and Z' are polynomial in w and w' ; we proceed to shew 
that, if the integral is everywhere finite, they must be polynomial also in 
z and z', of limited order. The coefEicients of the various combinations of 
powers of w and w' are certainly rational functions of z and z'; let any such 
coefficient be 

s (2, 2') 
R(z,' 

where R and S denote polynomials in z and z', and consider the integral 

Assigning any parametric value to z, let z' = c' be a zero of R (z, 2') for that 
value of z. (If there is no such zero, i.e., if R is a function of z only, the 
zeros of R woùld make the integral infinite : so that, for our purpose, R would 
then have to be constant). For that parametric value of z, let the subject of 
integration be expanded in powers of z' -cJ; then, whether z'=c' does or . 

does not give a zero value to J, the subject of integration is-for every set 
of values of w and w'-of the form 

A* A,, A 1 

(Zt - cly + (z) - cl)*l +... +- + regular function of Z' - cf, 
z' - cf 

in the immediate vicinity of z'= c', the positive integer s being 2 1. The 
integral would be infinite a t  zf = c', unless al1 the quantities A,,  . . . , A, vanish. 
These quantities involve the parametric value of z ;  they can only vanish for 
al1 parametric values by vanishing identicnlly, that is, by having no powers 
of 2'- c' with negative indices. Hence the polynomial R (z, z'), for any 
parametric value of z, can have no zero for a value of 2'. I t  thus cannot 
involve 2'; we have seen that i t  cannot be a function of z alone; hence 
R ( z ,  2') is a constant. The coefficient in question is a polynomial in 
z and z'. 

Sirnilarly for every coe6cient in either Z or Z' in the integrals 

Zdz' IT, 17. 
Consequently the quantities Z and 2' are polynomial in al1 four arguments 
w, w', z, 2'. And we know that J is polynomial in those four arguments. 

Next, as regards the limitations upon the orders of these polynomials 
Z and Z', we shall assume that f (w, w', z, z') is a quite general polynomial 

12-2 
IRIS - LILLIAD - Université Lille 1 



180 SINGLE INTEGRALS OF [CH. VI 

of order m in the four arguments combined, and that g(w, w', z, z') is a 
similar polynornial of order n. Then J is a polynomial of order m + n - 2. 
I t  is easy to see, by an argument similar to the preceding argument, that 
integrals cannot be finite for infinite values of z and of z', if the order of the 
polynomials Z and Z' in al1 the four arguments combined is greater than 
772 + 7% - 4. 

We therefore infer, as a first condition, that if the integral is to be finite 
at  al1 places in the whole field of variation, Z and 2' must be polynomial in 
al1 the four variables of order < m + n - 4, when f is the most general poly- 
nomial of order rn and g is the most general polynornial of order n. 

104. The independent variables for the integrals have been taken to be z 
and z'; but any two of the variables may thus be chosen, and the integral muvt 
still remain finite. We proceed to give the corresponding and equivalent 
expressions. We have 

so that, on the elirnination of dw', dw, dz, dz' in turn, 

J (tu, w') dw + J (z, w') dz + J (z', w') dz' = 0, 
J (w', W) dw'+ J (z, w ) dz + J (z', w ) dz' = 0, 

J ( w ,  z )dw + J (wf ,  z)dwl+ J(z', z )dz' = O ,  . 

J ( w , z l ) d w +  J(wf,z')dw'+ J ( z ,  z i )dz  =O. 

Using the first of these relations to substitute dw for dz' in the differential 
element, we have 

Zdz' - Z'dz - Z'dz --  -- 2 
J (w, w') J (w, w') J (w, w') J (z', w') { J ( w ,  w') dw + J ( z ,  w') dzj 

- Zdw Z'J (z', w') + Z J  (z, w') dz. = -- 
J (z', w') J (w, w') J (2' , w' ) 

The differential element now is to be 

Wdz - Zdw 
J (z', w') ' 

where W is a polynomial in al1 the four variables ; we therefore take 

ZJ (z, w') + Z'J (z', w') + W J  (w, w') = o. 
Similarly, when we make z and w' the independent variables, the differential 

element of the integral of the first kind is 

Zdw' - W'dz 
J(zl, W) ' 
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where W' is a polynomial in al1 the four variables, and 

Z J  (z ,  w)  + Z'J  (z', w )  + W ' J  (w', w )  = O. 

In the saine way, we can take any pair out of the four as the independent 
variables, and thus obtain six expressions in al1 for the subject of intepation. 
The six expressions are 

Zdz' - Z'dz W d z  - Zdw Z'dw - Wdz' 
J (w,  w') ' J ( z ' ,  tu') ' J(z ,  w') ' 

Zdw' - W'dz W'dw - W dw' W'dz - Z'dw 

and the relations connecting the polynomials are 

Z J ( z ,  w') + Z'J(z', w') + W J  (w, w') = O, 

Z J  ( z ,  w )  + Z'J(z l ,  tu) + W'J(wl ,  w )  = O, 

Z'J (z', z )  + W J  (w,  z )  + W'J (tu', z)  = O, 

Z J  (z ,  z') + W J  (w, z') + W'J (w', 2') = O, 

which are always subject to the two fundamental equations 

f=O, g = o ,  

and are equivalent to only two independent equations. Writing 

we can express the first of the four equations in the form 

that is, 
a9 af M - , - N 7 = 0 .  
aw aw 

The others similarly give 

a9 af - M - - N - - 0 ,  a~ aw 

a9 3f M - - N - = O ,  a~ az 
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The fundamental equations f = O and g = O are independent of one another ; 
hence we must have 

M - O ,  N=O, 

that is, the polynomials Z, Z', W, W' are such that 

But these equations are not satisfied necessarily as identities ; they need only 
be satisfied in virtue of the permanent equations 

These relations impose limitations upon the forrns of the polynomials 
2, Z', W,  W', which occur in the differential element of an integral of the 
first kind. 

105. Limitations arise from two other causes. The first of these causes lies 
in the requirement that the condition of exact integrability shall be satisfied. 
As regards this condition, we shall take i t  for one of the forms of the integral, 
and shall reduce i t  to an expression symmetrical in al1 the variables. 

The condition, that 
Zdz' - Z'dz 

J (w, wf ) 
shall be a perfect differential, is " (2) + " (E) = ,,, 

dz S dz' J 
Now since 

we have 

and similarly 
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The condition of integrability is therefore 

,J(z1, w') aJ (w ,  w') J ( d ,  W )  aJ (w ,  w') -- +- = O ;  J(20, w/ )  aw J ( W ,  w/ )  awl 
and it suffices that this condition should be satisfied in  virtue of the governing 
equations f = O and y = 0. 

Now, for appropriate polynomials A and B, we have 

ZJ(z ,  w') + Z/J(z ' ,  w') + W J  (w,  w') = A f + Bg, 

identically ; and so for our purpose, where the governing equations persist, 
we c m  take 

a w az J (z, ZL") azt J (Z) ,  wo -=- Z ~ J ( z ,  w') - Z' aJ(z l ,  w') 
aw aw J (w, w') aw J (w, w') - J (w, w/ )  aw J (w, wr)  aw 

Z J  (z, w') + ZIJ ( z ' ,  w')  aJ (w,  w') A + J2 (w, w') + a s +  B ag 
aw J(W, w') aw J ( W ,  w') a2ù > 

the omitted terms vanishing in virtue off = O and g = 0. 

Similarly, for appropriate polynomials C and D, we have 

and we similarly infer the corresponding relation 

- ZJ(Z,  M) + Z'J (z/, W) a~ (w, W ' )  c af D ag -- -- 
J' (w, w') a d  J ( W ,  w') a ~ '  J(W, w') aw' ' 

the omitted terms vanishing for the same reason as before. 

Also we have 
aJ (w, w') a.J(w', Z )  aJ (2, W )  - 

az +-- aw + 7 - O  aw 
identically, together with three similar relations by oinitting z, w, w' in turn 
from the set of four variables. Moreover 

J (2, w )  J (z', w') + J(z1  , w) J ( w f  , z )  + J (wr ,  211) J (z ,  2') = O ,  
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also identically. Using the foregoing relations, we have 

la~;;w3 a q z f , w ) + a J ( w : i )  - Z' -- +- awt aw 
that is, the relation 

is satisfied in connection with the governing equations 

Now we know that, in virtue of the governing equations, the quantities 

af a9 2 -  CZ- az az 

vanish; hence polynomials F,  E, H, G (any one or more of whicli may be 
zero) exist such that the equations 

are satisfied identically. These equations give 

satisfied identically. But the left-hand side is identically equal to 

Af + Bg; 
hence, subject to the governing equations, we must have 

Similarly, subject to the governing equations, we have 

Consequently 

always subject to the governing equations f = 0, 9 = O. 
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Thus the equations become 

The first two of these equations are satisfied identically; the third only 
needs to be satisfied in connection with f = O, g  = 0. 

They are the extension of Picard's equations* which are given for the 
case when there is only a single equation 

f (w, 2, 2') = 0. 

Picard's equations are derived from the foregoing set, by taking 

g=w'=O 

as the second of our fundamental equations, together with 

W'=O, E=O, H=O, &=O; 

and then, owing to the order of F, the third of the equations is satisfied 
identically. 

It thus appears that, when there are two equations f = O and g =O,  the 
exact differential can be presented in six forms; that four quantities 
Z, Zr,  W, W', each polynomial in al1 the four variables, occur in these forms ; 
and that there are other four polynomials E, F, G, H, such that the foregoing 
three equations exist, the first two being satisfied identically, while the third 
only needs to be satisfied concurrently with the governing equations f = O 
and g = 0. 

106. It can easily be seen that, when f = O is a quite general equation 
of order m and g = 0  is a quite general equation of order n, the conditions 
required cannot be satisfied. 

Let N ( p )  denote the number of terms in the most general polynomial, 
which is of order p  in w, w', z, k, so that 

N i p ) = 2 z ( p + l )  ( P + 2 )  ( P +  3) ( ~ + 4 ) .  

We have seen (5 102) that the polynomial 2, which ($103) can be of order 
m + n- 4, is subject to modification by use of the equations f = O and g = 0 : 
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that is, it is subject to an additive quantity Af + Bg, where A and B are quite 
general polynomials of orders n  - 4  and m  - 4 respectively. Hence the number 
of disposable constants in Z effectively is 

N ( m + n - 4 ) - N ( m - 4 ) - N ( n - 4 ) .  

Similady as regards Z', W, W'. 

Again, E, F, G, H are polynomials of order < 2m - 5, m  + n  - 5, m + 77 - 5, 
2n - 5  respectively. The expression Ff + Eg is unaltered by changing P 
into F+ Jg and E into E-Jf ,  where J is a quite general polynomial of 
order m  - 5  ; hence the number of disposable constants in P and E together is 

Similarly the number of disposable constants in C- and H together is 

f l ( r n + n - 5 ) + N ( 2 ~ - 5 ) -  N ( n - 5 ) .  

The modifications in B and G do not affect the third condition, which 
has to be satisfied only concurrently with f = O and g =O. Thus the total 
number of disposable constants is 

The number of conditions to be satisfied in connection with the first 
identity is N ( 2 m + n  - 5), and the nnmber in connection with the second 
identity is N ( m  + 2n - 5). The third relation, which affects the polynonlials 
F and G, only needs to be satisfied subject to the equations f = O and g = 0 ; 
that is, subject to an additive quantity Cf + Dg on the right-hand side, where 
C and D are quite general polynornials of order n - 5  and m  - 5  respectively ; 
consequently, the third relation requires 

conditions. Thus the total number of conditions is 

The excess of the number of conditions to be satisfied, above the number 
of disposable constants, is 

N ( 2 m + n - 5 )  + N ( m + 2 n - 5 ) +  h T ( m + n - 5 )  - N ( n - 5 )  - N ( m - 5 )  

- 4 { N ( m + n . - 4 )  - N ( m - 4 )  - N ( n - 4 ) }  

- { N ( m + n - 5 ) +  N ( 2 m - 5 )  - N ( m - 5 ) }  

- { N ( m + n - 5 )  + N ( 2 n - 5 )  - N ( n - 5 ) ] .  
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When the values of the different numbers IV are inserted, this excess is easily 
found to be 
~ ~ m n { 2 0 ( m - 1 ) ( m - 2 ) + 1 8 ( w ~ - l ) ( n - 1 ) + 2 0 ( n - 1 ) ( n - 2 ) + 2 4 } - 1 ,  

which manifestly is positive when m > 1 and n > 1. Accordingly, in general, 
the relations cannot be satisfied by the disposable constants, and so we infer 
the result :- 

When f = O and y = O are quite gerieral equations, no single integrnl of the 
jïrst lcind conl~ected with them exists : a result which obviously corresponds 
to the theorem of Picard already (§ 103) mentioned. 

I t  follows that, if an integral of the first kind is to exist in connection 
with two equations f = O and g =O, these equations must have special 
forms. 

Ex. Shew that al1 the preceding conditions for the existence of an integral of the first 
kind, in connection with the equations 

f =az+ bw +cz2z' i dzuzzl+ ew'z2 + fw2d +gww'z+hz$w'=O, 

g = a'd + b'w' + ~ ' z z ' ~  + d 'W'ZZ' + e1wd2 + f ' d 2 z  + g'ww'd + h' ~ w ' 2  = 0,  

where the coefficients a, ..., h, a', . .., h' are constants, are satisfied when 

Z=Z, Z'= -d, W=W, W' = - TC'. 

107. The second class of conditions, mentioned at  the beginning of 
§ 105 as required to be satisfied in order that the single integral may be 
everywhere finite, depends upon the places where we have 

which is not an  identity, simultaneously with 

f=O, g=o. 

As already indicated (5 103), 1 do not propose here to enter upon any 
discussion of these conditions. The discussion will be difficult, but i t  is of 
supreme importance as regards even the existence of these integrals of the 
first order, as well as for al1 other single integrals. I t  can be initiated 
analytically on the lines of Picard's investigations in his treatise already 
quoted. It will involve the algebraical singularities of w and w' as algebraic 
functions defined by the two fundamental equations. 

108. The discussion of double integrals follows a different trend. There 
is no limitation corresponding to the condition that must be fulfilled if the 
element of the integral is to be a complete differential element, as in 
5 105. 
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We have seen (§ 102) that, when two algebraic functions of z and a' are 
simultaneously given by two algebraic equations 

f =f (w, w', 2, 2') = O, g = g (w, w', z, z') = 0, 

the most general rational function of the variables can be expressed in the 
form 

O (w, tu', Z, 2') 

J (a,) ' 
w, w 

where O is a polynomial in w and w', the coefficients in this polynomial 
being rational functions of z and 2'. Thus the typical double integral, con- 
nected with the algebraical equations f = O  and g = O, is of the form 

O (w, w', 2, 2') 
dz dz'; il ~($5) 

the integration extends over a two-fold continuum. To express the integral 
more definitely, we take z and z' as functions of two real variables p and q, 
as in 5 95; and then the expression of the integral becomes 

O (w, w', z, 2') 
J -- dpdq, Il J (;iuJ (P, 3 

mhere the integration can be regarded as extending over an area in the 
p, q plane, limited initially by a fixed curve (or curves) in that plane and 
finally by a variable curve (or curves) in that plane. The simplest case 
arises, when we have a single simple closed curve as the fixed initial limit and 
a single simple closed curve as the variable final limit. 

The first form of the preceding definition takes z and z' as the independent 
variables for integration. As we have already suggested that i t  may be 
convenient to take any two of the four variables as the independent variables 
for integration, we proceed to give the equivalent forms. 

For this purpose we assume that, in order to express the quantities 
w, w', z, z' in terms of real variables p and q, we take two algebraic equations 

fornis which will prove useful in attempting an extension of Abel's theorem 
for the sum of any number of algebraic integrals of a single variable. The 
simultaneous roots of the four equations 
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are functions of p and q ; so we have 

and therefore 

Similarl y 

Now, by the properties of determinants, we have 

hence 

and therefore 
1 -1  

J (q w, zu 
2, Z ,7U, W 

The right-hand side is symmetrical, Save as to signs, for the four variables 
z, z', w, w'; hence i t  is equal to each of the six expressions 

Accordingly, when the variables of integration in the double integral are 
taken to be p and q, there are six equivalent expressions of the integral; 
one of them is the form first taken, and the other five are similarly constructed 
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from a comparison of the six foregoing quantities; and each of the six 
expressions so obtained is (save as to sign) equal to the double integral* 

Double integrals of algebraic functions may be divided into various 
classes, following the analogy of the division of simple integrals of algebraic 
functions of a single variable ; but the analogy is little more than a sug- 
gestion, because (as has been seen in Chap. IV) a definite infinity of a function 
of two variables can be a one-fold continuum in the immediate vicinity of 
any one definite place of infinite value, and because unessential singularities 
(when the term is used in the sense defined in 58) have no limited analogue 
even in the case of uniform functions of only a single variable. One class, how- - 
ever, survives naturally in spite of the deficiencies in the analogy; it is 
composed of those intepals of algebraic functions which never acquire an 
infinite value, no matter how the two-fold continuum of integration is 
deformed. Such integrals are formally styled double integrels of the jirst 
Kind. 

109. The conditions, which must be satisfied by the double integral of - 
an algebraic function connected with two given algebraic functions if it is to 
be of the first kind, are of four categories, according to the character of a 
place z, z' in relation to the subject of integration ; and the four categories 
can be grouped in two pairs. 

It is manifest that a finite place z, z', which is ordinary for the equations 
f = O  and g = 0, and is also ordinary for the subject of integration, cannot give 
rise to an infinity of the integral. For near such a place w = a, w' = a', 
z = a ,  z'= a', we have 

w = a + W ,  w ' = u l +  W', z = a + Z ,  .z f=a'+Z' ;  

* This integral can also be expresaed in the form 

e (w, w', 2 ,  2 ' )  
d F d G ,  

b', G ,  f, </ I L ( >  
which is the natural extension of the single integral 

The latter integral is fundamental in one of the proofs of Abel's theorem for the sum of a 
number of inteerals - 

R (w7 4 d2, 

j E 
when the upper limits of the integrala are given by the aimultaneoua roots of a permanent 
algebraic equation f (w, z ) = 0  and a parametric algebraic equation @ (w ,  z ) = O .  
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the equations f = 0, g = O, then give relations of the form 

w= (2, Z'),+ (2, Z'),+ ... , 
w' = (2, Z'), + (2, Z'), + . . . , 

and no one of the quantities 

vanishes at  a, a', a, a'. As the place is ordinary also for O (w, w', z, z'), the 
form of 

in the vicinity of the place becomes 

O,+O,(Z, z r ) + o 2 ( z ,  Z')+ ... 
JO+ Jl(Z, Z')+ J2 (Z ,Zr )+  ... ' 

and so the integral, in the vicinity of the place, becomes equal to 

which is finite at  the place and in its immediate vicinity*. 

In  the first category, there are the conditions to be satisfied at  a place 
z, z', which is ordinary for the equations f = 0, g = 0, but is not ordinary for 
the subject of integration. I n  the second category occur the conditions that 
must be satisfied for infinite values of z and z', when these constitute ordinary 
places for the equations f = O and g = O. These two categories form one 
group, containing al1 the conditions which arise in connection with al1 the 
ordinary places of the two fundamental equations. 

I n  the third category occur the conditions that must be satisfied at a 
non-ordinary finite place of the two fundamental equations; al1 such non- 
ordinary places are such as to sat,isfy Rome one or more than one of the six 
Jacobian equations 

concurrently with the fundamental equations themselves. In  the fourth 
category occur the conditions that must be satisfied for infinite values 
of z and z' when these constitute non-ordinary places for the equations 
f = O and g = O. These two categories form one group, containing al1 the 

* The symbols (Z, Z')l, 8, (2, Z'), JI (Z, Z') denote the aggregate of terms of the firat order ; 
the symbols ( Z ,  Z')z, e2 (2, Z'), Jz (2, 2') denote the aggregate of terms of the second order ; 
and so on. 
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conditions which arise in connection with al1 the non-ordinary places of 
the two fundamental equations. 

110. As regards the first of these categories of places which, while 
ordinary finite places for the equations f = O and g = O, provide an infinite 
value for the subject of integration, this infinite value can arise only through 
the coefficients of the powers of w and w' in the polynomial O. These 
coefficients are rational functions of z and z'. If then the double integral 
is not to have an infinity, the existence of these rational functions of z and z' 
niust not compel such an infinity. Accordingly, the rational functions of z 

and z' must be integral functions: that is, they must be polynomials in 
z and z'. Thus O (w, w', z, z') becomes a polynomial in al1 its four arguments ; 
consequently, as a first condition that Our double integral may be everywhere 
finite, i t  follows that the quantity O (w, w', z, z') must be a polynomial in the 
four variables w, w', z, d. 

The similar consideration of the second category of places, constituted of 
infinite places (supposed ordinary) for f = O and g = O, leads to a limitation 
upon the order of the polynomial O (w, w', a, 2') if the double integral is to be 
not infinite for such places. For simplicity, suppose that f and g are quite 
general polynomials of aggregate orders m and ~t respectively, so that we 
may take 

in the quite general case. In order that the double integral may be not 
infinite for infinite values of z and z', the order of 

must be equal to, or be less thitn, - 3 ; and therefore the aggregate order of 
the polynomial O (w, w', z, z') must be not greater than m + n - 5. Thus in 
order that the double integral may remain finite for infinite values of z and 
z', when these are ordinary places off = O and g = 0, the aggregate order of  
the polynomial O (w, w', z, z') must Be < m + n - 5, where m and n denote the 
respective aggreyate orders o f f  and y. 

As regards the second group of conditions indicated above, they are 
concerned with the places where the equations 

A.(? - f = O ,  9 - 0 ,  J -- 
(W, W.) - O7 

are simiiltaneously satisfied. Their discussion will involve the consideration 
of the singularities of w and w' as algebraic functions of the variables. As 
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before for single integrals (5 loi'), so here for double integrals, the whole 
subject is left for investigation; a beginning can be made on the lines of 
Picard's discussion of the matter when there is only a single equation f = O 
defining a single algebraic function*. 

111. I t  is possible to obtain an extension of Abel's theorem for the sum 
of a number of integrals of algebraic functions of a single variable, by con- 
structing an expression for the sum of a number of double integrals of the 

O (w, w', z, 2') 
dzdd, II J (&J 

where f and g are polynomials of aggregate orders m and n respectively. 
We shall assume that the aggregate order of the polynomial 8 is not 
greater than m + n  - 5. 

'As before (§ 108), we define w, w', z, d as functions of two real variables 
p and q by means of the permanent equations 

.f(w, w', 2, zl)=O, g(w, w', z, / ) = O ,  

and associated parametric equations 

F (w, w', 2, z', p, q )  = O, Q (w, w', z, zl, p, q)  = 0 ; 

and we shall assume that J' and G are quite general polynomials in w, w', z, z', 
of aggregate orders k and 1 respectively. As these are four algebraical 
equations in w, w', z, z', of orders nl, n, k, 1 respectively, they determine klmn 
(= p )  sets of roots, each root in each set of roots being a function of p and q. 
Denoting any such set by wT, w,.', z,, z,', the double integral can as before 
be transformed to 

or, if we write 

<"; y.> Qr = O (wr, w,!, zr, 2;) J - -- = (w,., w:, z,, z,I), 

so that 6 is a polynomial of aggregate order < k + 1 + m + n - 5, the integral 
(for this set of roots) becomes 

We assume the integral taken over any finite simple closed region in the 
p, q plane. 

Lc . ,  t. i, eh. vii. 

F. 13 
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Let W denote the result of eliminating w', z, z' between f  = O, g = 0, 
F = O, G = 0 ; the quantities wi, ..., w, are the roots of W= O. The theory 
of elimination shews that we have a relation of the form 

W=Kf+Lg+ M F + N G .  

Similarly, eliminating w, z, z', and denoting the eliminant by W', we have a 
relation of the form 

W' = K 'f+ L'y + M'P + N'G, 

and the quanidies w,', . . . , w,' are the roots of W' = O. Likewise eliminating 
w, w', z', and w, w', z in turn, and denoting the respective eliminants by Z and 
Z', we have relations of the form 

the quantities z,, . . . , z, are the roots of Z = 0, and the quantities z,', . . . , 2,' 
are the roots of Zr= O. And the quantities K, L, LW, N, Ki,  L', M' ,  N',  
P, Q, R, S, P', Q', R', 8' are polynomials of the respective appropriate 
orders. In particular, if we write 

A is a polynomial of aggregate order 

The simultaneous combinations w,, w,', z,, z,' (for r = 1, . . . , P )  are the simul- 
taneous roots of 

f=O,  g = o ,  F=O,  G = 0 ;  

, A =  

these we cal1 the congruous roots. Al1 other combinations of the roots of 
W = O, W' = 0, Z = 0, Z' = 0, are called non-congtuous roots ; they are not 
simultaneous roots of f = O, g = O, F = O, G = 0 ; but, for each such combina- 

K ,  L ,  N ,  N 
K', L', M', N' 

P, Q ,  R ,  S 
P', Q', R', S' 

tion, we have 
A =  o. 

For the sake of simplicity, we shall assume that each of the roots of 
W = O, W' = 0, Z = 0, Z' = O, is simple. 

Now consider the quantity 

IRIS - LILLIAD - Université Lille 1 



I t  can be expressed in a partial-fraction series of the form 

the summation being for r, r', s, s', = 1,  ... , p, independently of one another ; 
and 

When r = Y' = s = s', we can denote the coefficient A by A , ;  then 

Unless al1 the equalities r = rr= s = s' are satisfied, we have 

so that al1 the coefficients A other than A,, for Y =  1, ..., p, vanish. Thus 
we have the identity 

Let both sides be expanded in ascending powers of l / w ,  l/wl, 112, l /zl .  On 
the left-hand side, the index of the terrn of highest order in w, w', z, z' in the 
numerator is 

the index of the term of highest order in w, w', z, z1 in the denominator is 
4 p  ; hence the index of the d r s t  term in the, expansion < 5. On the right- 
hand side, the index of the first term in the expansion is - 4, and its 
coefficient is 

P x A,.. 
r = l  

No such term can occur in the left-hand side under the sssigned conditions ; 
hence 

that is, 
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From the expression for W, we have 

aw -= af a9 aF G 
Kr -  + L , c + M , - + N r -  

3% 8% dw, aw, a ~ ,  
af 29 a~ a G O= K 7 y + L r  -,+MT-,+Ar,- aw, awr awT a u  
af as a~ aG O=K, - + L, - +MT -.+If, - ,  
32, 32, a ~ ,  
?f a9 a~ . O= Kr-/+ L7-, + Mr-/+N,-, , 

82, azr azr a ~ ,  
and similarly from the expressions for W', Z, 2'. Thus 

that is, 

Consequently, we have 

and therefore 

when the double integration is taken over any simple closed region in the 
plane of the real variables p, q. 
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This is a restricted extension of a part of Abel's general tlieorem on the 
sum of integrals. The result is true, even if the integral 

is not everywhere finite, that is, if the integral is not of the first kind*. The 
conditions, which have been imposed upon the integral, are that it is to be 
finite for al1 places which are ordinary for the equations f = O, g = O, al1 
infinite places being supposed included among these ordinary places. 

* It should be added that, by a different method, Picard (1.  c . ,  t. i, p. 190) obtains this 
extension for double integrals of the first kind (that is, integrals which are everywhere finite) 
when there is  a single fundamentel equation f (w, z ,  n' )=O.  
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CHAPTER VI1 

112. HITHERTO, Save for rare exceptions, only individual functions of two 
variables have been considered a t  any one time; and we have seen that there 
exist continuous aggregates of places where a function has an assigned level 
value or a zero value. This property precludes us from establishing definite 
relations of inversion between a single function of more than one variable 
and the variables of that function. Such relations are highly important in 
varioua branches of the theory of functions of a single variable; they are no 
less important when functions involve several independent variables. To 
establish them, it is necessary to have as many functions, independent of one 
another, as there are variables; and therefore, for the present purpose, we 
shall consider two independent functions of z and z'. Moreover, quite apart 
from reasons that make inversion a possible necessity, we have seen that i t  is 
desirable to consider simultaneously two independent functions of z and z'. 

We still shall limit ourselves throughout to uniform analytic functions; 
and we shall begin with the discussion of the relations between two functions - 
that are regular everywhere in the finite part of the field of variation. As 
we know, every such function can be expressed as a series of positive integral 
powers of z and z', which (if an infinite series) converges absolutely for finite 
values of 1 z 1 and 1 z' , and has al1 its essential singularities outside the finite 
part of the field of variation. We know (§ 53) that such a function must 
possess zeros somewhere in the field of variation; but i t  may happen that the 
zeros do not occur in the finite part of the field*, and then they occur at  the 
essential singularities. 

We proceed to establish the following theorem :- 

Two independerat functions, regular throughout the Jinite purt of the 
jield of variation, vanish simultaneously at some place or places within the 
whole jield. 

* For example, the function e*~' cannot vanish for finite values of z and of z ' ;  al1 its zeros, 
a continuous aggregate, occur for those values of z and z' which make the real part of z+z' 
uegative and infinite. 
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113. Let the two functions, everywhere regular, be denoted by f ( 2 , ~ ' )  
and g (2, 2') ; and let a, a' be any place in the finite part of the whole field of 
variation for z and 2'. I n  view of the proposition to be established, i t  is 
reasonable to assume that neither f (2, 2') nor y (2, 2') vanishes a t  a,  a' ; if 
both should vanish at  a,  a', the proposition needs no proof; if one of theni 
should vanish a t  a, a', but not the other, the following proof will be found 
to cover the case. 

We consider the imrnediate vicinity of a, a', and take 

= a + U, 2' = a' + u'. 

Because f (2, 2') and y (2, 2') are regular everywhere in the finite part of the 
field of variation, we have expressions for them in the form 

Y (2, 2') = y (a, a') + ,(% ut), + ,(u, ut),+, + . . . , 
where f(u, represents the aggregate of terms of cornbined dimension rn 
in u and u' as contained in the power-series for f ;  and sirnilarly for the otheï 
homogeneous sets of terms inf ,  and for the homogeneous sets of terms in y. 
In  the simplest cases, the integer m is nnity and the integer n is unity; in 
al1 cases, both the positive integers rn and n are finite. 

When m = 1 and n = 1, the quantities 

are usually independent linear combinations of u and u' ; their determinant is 
the value, a t  a, a', of 

which does not vanish everywhere, because the functions f and y are inde- 
pendent. If i t  should happen that J vanishes a t  a, a', so that there 

then we have 
f (a+u,  a '+uf)  - f (a, a') =f(u,u')l+ ..., 

f (a + u, a' + u') - f (a, a') - K {g (a + u, a' + u') - g (u, a')} =,(u, u'), + ... , 
where the first set of terms ,(u, u'), is of order higher than the first set 
f(u, d ) ,  and usually is not the square of f(u, u')~. If, however, 

MU> 4 2 1  = { f (u, 4i12, 
where X is a constant, then we should take a new combination 

f (a + u, a' + u') - f (a, a') - K {g (a + U: a' + u') - y (a, a')] 

- 1 { f (a + u, a' + u') - f (a, s')la. 
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Similarly for other cases. 

We proceed until, a t  soine stage, we obtain two series in u and IL', 

such that the lowest set of terms in one aeries cannot be expressed solely by 
means of the lowest set of terms in the other series; and this stage is 
attained after steps that are finite in number, because 

does not vanish identically. 

Similarly, if m is greater thnn unity and n = 1 ; and if m = 1, while n is 
greater than unity; and if both m and TL are greater than unity. In each 
case, we obtain a couple of series, the aggregàte of terms of lowest dimensions 
in the two series not being expressible solely in terms of one another. And 
then, because of this independence, the equations 

where A and B are assigned quantities independent of u and u', determine a 
limited number of values of u and ut. I n  particular, let Z be the greatest 
common measure of rn and n, and write 

and let E be the eliminant of ,(u, u'), and g(u, ut),, so that 

Then the equation giving values of u is 

each value of u is of the type 
u=IcP; 

or, for sufficiently small values of 1 u 1, 1 A 1, 1 uf 1, 1 B 1, and so of ( P 1, we have 

U =  EP, u f=  k!P, 

where 1 Ic 1 and 1 K 1 are finite, while some of the quantities Ic and Ic' can be 
zero. Manifestly, 

~ = ~ ( k , k / ) m ,  h=g(Ic,k)n; 

and, in general, we shall have 

u = k P + k , P +  ... 
uf=KP+k,'P2+ ... 

from the relations 

A = Au, 4, + f (2 ' ,  thf),+, + . . . 
B = Q(u, uf)n + Ju, u/ )~+= + . . . 
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After these explanations and inferences, we proceed to shew that i t  is 
possible to choose quantities u and u' of small moduli, so that the place 
a + u, a' + u' is in a small domain of a, a', and so also that 

( g ( a + u ,  a'+ u') ( < Ig(a,a')I, 

simultaneously. Let 

where Q, R, S, T are real quantities, and neither 1 Q + i R  1 nor 1 S + iT 1 
vanishes. Now choose dl a small positive quantity, in every case less than 
1 Q + i R  1 ,  unless 1 Q + iR 1 happens to be zero and then we take M zero ; and 
choose an  argument + such that Q and Mcos + have opposite signs and, at 
the same time, R and Msin* have opposite signs. (If R be zero, we can 
take 9 equal to either O or T and should choose the value giving opposite 
signs to Q and M cos +. Similarly, if Q be zero, with a choice of &T or QT 

for 9). Again, choose N a small positive quantity, in every case less than 
1 X t iT 1 ,  unless 1 S + iT 1 happens to be zero and then we take N zero ; and 
choose an argument x such that S and Ncos x have opposite signs and, at 
the same time, T and N sin x have opposite signs. (Arrangements as to 
choice of x can be made similar to those for 9, if either S or T should vanish). 
Then evidently 

If (a, d)+Me"l< <f(a, a')/, 

1 g (a, a') + Nexi I c 1 g (a, a') 1. 

Now we have seen that, for sufficiently small values of M and of N, the 
relations 

Me*{ = f ( ~ ,  u'), + f ( ~ ,  P&+, t . . . , 

give a limited number of sets of values of the form 

u =  kP+  k,P2 + ... 
ut= Ic'P+lc,'P2 + ... 

where 1 P 1 is a small magnitude such that 

MeG=&'", Nexi=hPm; 

thus 1 u 1 and 1 u' / are small, of the same magnitude as P 1, while Fc,P + . . . 1, 
1 k,'Pa + ... 1, are small compared with 1 P 1. For such values, we have 

which was to be proved. 
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Accordingly, we infer that it is possible to pass from a place a, a' to a 
place z, 4 which may be called a place adjacent to a, a', and which is such as 
to give the relations 

If h.') I < If (a ,  a') 1, 
Iy(4 d)I < l y ( a ,  af>L 

simultaneously. 
Within the finite part of the field of variation, the functions f (z, 2') and 

y (z, 2') are everywhere regular, so that no singularities are encountered in 
transitions from a place to an adjacent place. We therefore can pass from 
place to place within the finite part of the field of variation, always choosing 
the passage so as to give successively decreasing values of 1 f (z, zf) 1 and 

I Y (2, 2') I 
If a t  any place c, c', one of the two'functions (but not both of them) 

should vanish-say j (c, c') = O-then we choose the next place c + u, c' + u', 

so that M is zero, that is, so that K is zero, and such that 
f(c+u,cf+uf)=O, Ig(c+u,c '+u ' ) I<Iy(c ,d)J .  

The choice is always possible for finite values of z and z', because the functions 
f ( z ,  k )  and g (z, z') are regular for those finite values and consequently can 
be expressed as regular power-series. 

114. I t  thus follows that, by an appropriately determinate choice of 
successive places a t  every stage, each place being adjacent to its predecessor, 
the moduli off  (2, z') and g (2, z') c m  be continually decreased so long as 
they differ, either or both, from zero. Thus they tend to zero in value, as the 
successive places are chosen ; and continued decrease can be effected, so long 
as they are not zero. 

Moreover, we know that every regular function possesses a zero value or 
zero values somewhere within the whole field of variation. If the zero value 
does not occur at sonle ordinary place, then (§ 53) it occurs a t  the essential 
singularity or singularities, as e.g. for the function eP@9a'), where P (z, 2') is a 
polynomial in z and z', when the places for the zero values belong to the 
non-finite part of the field. 

Hence ultimately, either for finite values of z and d,  or for infinite values 
of either of them or of both of them, a place will be attained a t  which both 
the moduli 1 f (z,  d )  1 and g (z,zl) 1 are zero. Such a place is a common zero 
of f (2,~') and g (2, 2') ; and therefore our theorem-that two functions 
f (z, 2') and g(z, z'), regular everywhere in the finite part of the field of 
variation, vanish simultaneously somewhere in the whole field-is established. 

Ex. Consider the functions 
f ( z ,  g(z,d)=ae-(#+Hl, 

both of which are regular for al1 finite values of a and z'. 
Let z f .d =log (rn em&), 
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where 9., 8, In, n are real constants ; then 

f (2, z') = rn emei, 
g (2, z')=d1-4,(1-4 O< 

When O < n < 1, we manifestly have 

f (2, s')=O, g (2, 4=0,  
when 1. is zero : that is, the two suggested functions acquire zero values for some specified 
values of z' (even when z=0) which do not lie in the finite part of the field of mriation of 
the tmo variables. 

115. Next, consider the case of two uniform analytic functions, each of 
them devoid of essential singularities in the finite part of the field of variation, 
and each of them possessing continuous aggregates of poles and isolated 
unessential singularities. We know, from an earlier proposition (5 go), that 
the functions can be expressed in the forms 

where P (2, z'), Q (2, z'j, R (z, z'), S(z, z') are functions of z and z', which are 
regular everywhere in the finite part of the field of variation. 

The zero-places off (2, z') are those of P (2, d) ; i t  may happen that a zero- 
place of P (2, z') is also a zero-place of Q (2, z'), and then the place is an 
unessential singularity of f (z, d )  which, among its unlimited set of values there, 
can acquire the value zero: that is, the zeros off (2, z') are given by the zeros 
of P (2, 2'). Similarly for g (2, k )  and R (2, 2'). Hence f (2, d )  and g (z, 8) 
will vanish simultaneously sornewhere in the field of variation, if the functions 
P (2, z') and R (2, z'), everywhere regular in the finite part of the field, vanish 
siinultaneously somewhere in the whole field. But we have proved that these 
regular functions P (z, 2') and R (2, z') must vanish simultaneously at some 
place or a t  some places in the whole field. Hence we infer the following 
theorem :- 

Two independent functions f (z, z') and g (2, z'), which are uniform. and 
analytic, and al1 the essential singularities of which occur only in the non-finite 
part of the Jield of variation, nmst vanish together ut some ÿluce or some places 
in the whole Jield of variation. 

We infer also, as an immediate corollary, the following further theorem :- 

Two independent functions f (2, z') and g (2, z'), which are uniform and 
analytic, and al1 the essential singularities of wkich occur only in  tlie non-finite 
part of the field of variation, must acquire assigned level values ut some place 
or sorne places in the whole field of variation. 

For if the assigned level values be a for f (z, 2') and @ for g (z, z'), the 
functions f (2 ,  z') - a and y (2, 2') - /3 satisfy al1 the conditions imposed upon 
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the functions f (2, 8) and g (z, d )  in the earlier theorem ; the application of 
that earlier theorem leads to the result just stated. 

A corresponding result holds as regards simultaneous poles for f (2,  z') 
and g (z, 2'). 

I n  general, a corresponding result does not hold as regards the occurrence 
of simultaneous unessential singularities off (z, d )  and g (z,'~'). 

116. When two functions f (2, z') and g (z, 2') have a common zero-place, 
we need to consider their relations to one another in its immediate vicinity ; 
we need also, if possible, to assign an integer which shall represent its multi- 
plicity as a common zero-place. Let a, a' be such a place, so that 

f (a, a') = O, g (a, a') = 0 ; 
for places in its immediate vicinity, represented by a + u, a' + u', we have 

Here K, L, K', L' are constants ; s, t, sr, t' are positive integers which can 
be zero separately or together ; (u, u'), 0 (u, u'), R (u, u'), S (u, u') are regular 
functions of u and u', which vanish with u and u'. The functions P(u ,  u') 
and R (u, u') are polynomials in u, having as their coefficients regular functions 
of u' which vanish with u'; the functions Q (u, u') and S (u, u') are polynomials 
in  u', having as their coefficients regular functions of u which vanish with u. 
When u-8u'-t f (2, z') does not vanish with u and u', we substitute unity for 
each of the functions P and Q ;  and similarly when U-~U'-~ g (z, d )  does not 
vanish with u and u', we substitute unity for each of the functions R and S. 

The order of a zero-place for a single function in each variable has already 
been defined. For the function f (z, z'), i t  is 

where nz and n are the positive integers, which are the degrees of P and Q 
regarded respectively as polynomials in u and in 26' ; and m and n are zero, only 
when u-*u'-~ f (z, z') does not vanish with u and u'. For the function g(z, d), 
i t  is similarly 

s' + m' in z, t' + n' in z', 

where m' and n' are the positive integers, which are the degrees of R and S 
regarded respectively as polynomials in u and in u'; and m' and n' are zero, 
only when ZL-8'~'-t'y (z, z') does not vanish with u and d. 

Beyond the factors ?dWt and us'u'? the relations of f  (z, d )  and g (z, 2') in 
the vicinity of a, a' depend upon the relations of the functions P or Q (as 
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representative o f f )  and the functions R or S (as representative of g) to one 
another. Consider, in particular, the functions 

where pl ,  . . . , p,  are regular functions of uf, vanishing with u', and 

R (u, u') = una. + um'-1 rl (11.') + . . . + rm, (u'), 

where r,, . .., r,, are regular functions of u', vanishing with u'. To determine 
whether there are common sets of values of u and u', in the vicinity of u = O  
and u' = O, where P and R vanish together, we take 

P = O ,  R=O, 

as simultaneous equations, algebraical in u. Eliminating u between them, we 
have (save in one case) a resultant which is a function of u' only ; also, as each 
of the quantities p l ,  ..., pm, rl, ..., r , ~  is a regular function of u' vanishing 
with u', this resultant is of the form 

u'Jf + (d), 

where M is a positive integer, chosen so that $J (u'), a regular function of u', 
does not vanish when d = O .  To the exact determination of M we shall 
return later. 

The excepted case arises when the resultant vanishes identically. When 
the resultant does not vanish identically, the necessary values of u', making P 
and R vanish together, are given by 

ulH + (u') = O, 

where C$ (O) is not zero and + ( u t )  is a regular function. We at  once have 
u' = O, as a possibility ; the associated value of u is u = O. The alternative 
possibilities would arise through zeros of the regular function $J (u') : but as 
+ (O) is not zero, i t  is possible to assig-n a finite positive quantity e, less than 
the smallest among the moduli of the zeros of I#I (u'). In that case, there is 
no value of ZL' within the range 1 u'l e such that + (u') vanishes; and then 
the resultant vanishes for no value of u' other than u'= O: that is to say, 
there is no zero-place for f and g in the immediate vicinity of a, a', other than 
a, a' itself. 

117. When the resultant of the two equations P = O  and R = O, which 
are algebraical in u, vanishes identically, the inference is that these two 
equations in u have common roots, one or more. Let the number of these 
common roots be Z, and let them be the roots of an equation 

where Fc,, . .. , hl manifestly are regular functions of u' vanishing with u'. 
Then U is a factor of P save as t o  possible multiplication by a factor ea(u'), 

where a (u') is a regular function of u' that vanishes with u' ; and simiiarly U 
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is a factor of R, save as to a similar possible limitation. Let the quotient of 
P by U b e  

Um-l + lLm-l-i (u') + * .  . +fd (4 ; 
and let the quotient of R by U be 

um'-z + , p ' - L - 1  y1 (u') + ... + y,,-z (su'), 

where al1 the quantities f,, ..., fm-1, y,, ..., ~ ~ 1 - l  are regular functions of u', 

vanishing with u'. The conditions, necessary and sufficient to secure this 
result, are those which render the relation 

(@+z+  p - -~ f, + .. . + fm-1) (urn' + um'-l 91 + . . .  + qmf) 

- - (um'-l + um'-z-l y1 + -.- + ymLJ (um + um-=pl + ... + p,), 

an  identity : viz. we must have the 1 independent deterininants, each of 
rn + .na' - 21 - 1 rows and m + m' - 21 - 1 columns (we assume m 2 m' for 
purposes of statement), which can be formed out of the array 

pl-ri, p2-r2,ps-r3, . . . ,  pmr-rmf, P,,+~, ........., pm, 0 , O , ..., O 

...... 1 , rl , r, ,..., r,,-, , rm, ,  ........., O ,  O , 0 ,  

. ...... O > 1 > Tl > ..> Tm*+ , r,~,, r,~, ... , 0 , O , 0 , 
.......................................................................................... 

O ,  0 , o  , ........................................................., qm, 
...... 1 > Pl > p.2 > ' O . ,  , pml , ,Pm-1, Pm > 0 , . S . ,  0 

................................. O , 1 , pl , ,p,,,p ,,- 1, p,, ..., O 
.......................................................................................... 

......................................................... O ,  0 , O  , J P m  

vanishing identically for al1 values of ut. 

I n  actual practice with two given functions, we should in general experi- 
ence the ssme arithmetiml difficulty as before (5s '10, 71). Here we are 
concerned with the effect of the relative reducibility of the functions; the 
foregoing are the 1 analytical conditions for this reducibility. 

When al1 the conditions for the identical evanescence of these 1 deter- 
minants are satisfied, P and R have a common factor U :  and then al1 the 
zeros of U within the domain are also zeros of P and R. Now these zeros of 
U form a continuous aggregate, since U is a regular function ; for 1 values of 
u can be associated with any value of d in the domain so as to make U 
vanish. 

118. I t  thus appears on the one hand that, when the resultant of P and 
B, regarded as polynomials in 21, does not vanish identically, the zero-place 
a, a' is isolated : that is to Say, simultaneous zero-values of P and R cannot 
be found, except at a, a', in a region given by 

l z - a l < e ,  1 2 ' - a t ( < e ' ,  
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where e and e' are assigned positive quantities made as small as we please. 
And i t  appears on the other hand that, when the resultant of P and R, 
regarded as polynomials in u, does vanish identically, the zero-place a, a' is 
not isolated. 

Moreover, in the case when P and R have a common factor U, we can 
write 

P = Up (u, ut), R = Uq (u, ut), 

where al1 the functions P, R, U, p, q are regular functions of u and u' ; each 
of them vanishes when .u = O and u' = 0 ; and each of them is a polynomial in 
u, having unity as the coeûicient of the highest power of u and, as coeficients 
of the suçceeding powers of u, regular functions of u' which vanish when 
u' = O. From the construction of U, we may assume that p and q have no 
common factor; so that the zero-place of p and q at u = 0 and u'= O is 
isolated. Now 

Hence the Jacobian of P and R vanishes for al1 the aggregate of places 
making U vanish, because al1 these places make P and R vanish. But this 
Jacobian does not vanish (except at  a, a ' )  for places in the domain of a, a', 
which make P and R vanish but leave U different from zero. Also, as 

f (z, d )  = KusurtP (v, u') eP(lll u') 
g (2, z') = Lus'uft'R (26, u') eE(uJu') 

it follows that the Jacobian of the independent regular functions f and g 
vanishes for al1 the aggregate of places rnaking U vanish, while i t  does not 
vanish (exce.pt at  a, a') for places in the domain of a, a' that make f and g 
vanish but leave U different from zero. 

These results have followed upon the selection of P (u, u') as the sig- 
nificant factor off in the immediate domain of a, a', and of R (u, u') as the 
significant factor of g in the same domain. The same results follow upon a 
selection of Q (u,  u') and R (u, u') as the significant factors off and y ;  like- 
wise upon a selection of P (u, u') and S (u, ut) as these factors, and upon a 
selection of Q (u, u') and S (u, u') as tliese factors. 

Gathering together al1 the results, we can summarise them as follows :- 

(i) Any two independent functions, unzyomz, analytic, and devoid of 
essential singularities in the jïnite part of the $eld of variation of the two 
variables z and d ,  possess common zero-places somewhere within the jîeld 
of variation :- 

(ii) I n  general, ench cornmon zero-place of two independent functions, 
which are uniform, analytic, and deuoid of essential singularities in  the 
jïnite part of the $eld of variation of z and d,  is  an isolated place, so fur 
as concerns the vanishing of the two functions :- 
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(iii) Less generally, when two such independent functions possess a 
common factor, which is necessarily of the same churacter throughout t h  
finite part of the jeld of variation and which itself vanishes at the common 
zero-place of the two functions, then the common zero-place of the two 
fundions is not isolated; in its imntediate vicinity, the two functions 
possess a continuous aggregate of zero-places which belong to the cornmon 
factor :- 

(iv) The Jacobian J, of two independent functions f and y, does not 
vanish identically. It rnuy vanish at a zero-place cwmrnon to the two 
functiolzs. When the common zero-place is  isolated, then f, y, and J do 
not simultaneously vanish at any other place i n  the immediate wicinity of 
that place. When the comrnon zero-place is not isolated, then f, g, and J 
vanish simultaneously ut a continuous aggregate of places i n  the immediate 
vicinity of the common zero-place. 

119. In  the preceding consideration of two functions f (z ,  2') and y (z, 2') 
discussed simultaneously, there has been the fundamental assumption that 
the two functions are analytically independent of one another in the sense 
that neither of them can be expressed, either implicitly or explicitly, by any 
functional relation which, save for the occurrence off and g, is otherwise free 
fkom variable quantities. Were the assumption not justified, the Jacobian of 
the two functions would vanish identicaily; we then should not possess 
sufficient material for the consideration of the coinmon characteristic Dra- 

L 

perties off and g as simultaneous functions of two variables. 

But, after the preceding explanations, two limitations can be introduced 
as regards a couple of functions. One of these affects them simultaneously : 
the other affects them individually : yet neither of them imposes limitations 
upon generality, for the purposes of this investigation. 

Our discussions will deal with any pair of regular functions, which are not 
merely independent in the general sense, but which possess the further 
quality that they have no common factor, itself a regular function and 
vanishing a t  places within the domain considered. For any such pair of 
regular functions, each siinultaneous zero-place is isolated. The zero-place 
inay be simple or it may be multiple ; when i t  is multiple, the multiplicity is 
represented by a definite positive integer. 

It will be convenient to use some epithrt to imply that two independent 
regular functions, existing together in the domain of a place where they 
vanish, do not possess a common factor, which is itself a regular function in 
that domain and vanishes a t  the centre of the domain. When a common 
factor of that type is not possessed by a couple of such functions, they will be 
called free. If on the contrary they do possess a common factor of that type, 
they will be called tied. Accordingly, when we deal with a couple of regular 
functions simultaneously, they will be assumed to be both independent and free. 
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The other limitation aims at  the exclusion of unessential complications, 
and is suggested by the most general form of a function f (z, z') in the 
iinmediate Mcinity of a zero a, a', viz. 

Thus ( z  - a)S is a factor off (z, z') : at another zero c, c', i t  could have anotlier 
factor ( z -  c)"; that is, i t  would have a factor ( z  - ( z  - c)". And so on, for 
other zeros. We shall assume that, if f (2, z') initially possesses a factor which 
is a function of z alone, thenf (z ,  d )  is modified by the reinoval of that factor 
in z alone. Similarly, of course, if it initially possesses a factor which is a 
function of k alone, then we shall assume i t  to be modified by the renloval of 
that factor also. Any such factor of either variable alone can only contribute 
properties characteristic of a function of a single variable. Thus, for instance, 
we should not consider p (2) p (z'), where the periods of p ( z )  are unatkcted 
by the periods of p (d),  as a proper quadruply-periodic function; we should 
not consider y ( z )  sinz' as a proper triply-periodic function; we should not 
consider sin z sin z' as a proper doubly-periodic function. 

It seems unnecessary to introduce an epithet to indicate the non-composite 
character of a function f (2, 2'); in what follows, we shall assume that we are 
dealing with functions which are of this non-composite character. 

Accordingly we can enunciate the theorem :- 

The conzmon zero-places of t,wo fumtions of z ccnd z', (tuhich are unifowrr, 
analytic, and devoid of  essential singularities in the jhzite pcwt of the jield of 
variation, and which are independent und free, cwe isohcted places in the field 
o f  variation. 

120. An indication has been given of the determination of the integer 
which shall represent the multiplicity of an isolated simultaneous zero-place 
of two regular functions. I n  the vicinity of such a place a, d, we take 

and then. after the preceding explanations, we can assume that the integers 
s and t are zero for f (2, z'), and that the integers s' and t' are zero for y (z,  2'). 

Thus 
f (z,  z') = KP (u, d) eP'u,u'~, g ( z ,  z') = LR (u, u') eR tL,u'J, 

in the immediate vicinity of u = O, u'= 0 ;  and 

R (u, u') = .um' + um'-l r, (u') + . . . + rm, (d), 

where al1 the coefficients pl, . . . , p,, r,, . . . , r,t are regular functions of u' and 
vanish when IL' = O. When the eliminant of P (u, u') and R (IL, u'), regarded 
as polynominls in u, is formed, i t  is a regular function of u' which vanishes 
when u' = 0 ; and so i t  can be expressed in a form 
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where + (O) does not vanish, and where M is a positive integer. This integer 
M measures the multiplicity of a, a', as a simultaneous zero off and g. 

The detailed determination of M can be effected as follows. Let 

R (u, u') = (U - al) (U - a,) . , , (U - o,,), 
where p,, . .. , p,, u,, . . . , cm! are functions of u' (regular functions of fractional 
or integer powers of 16') al1 vanishing mhen u' = O. Their governing terms- 
that is, the lowest power of u' in each of them, with its appropriate coefficient 
-can be determined as in Puiseux's treatment of algebraic functions. Now, - 
except as to a constant factor that is of no importance here, the eliminant of 
P and R is 

m nd 
(pl. - CS). 

r=l 8 = l  

When p,- as is expressed in terms of u', every occurring power having n 
positive index, let p,, be the index of the lowest power i t  contains ; then we 
see that 

which thus gives an espression for  the multiplicity M. I t  is easily established 
that the quantity M, thus obtained, is an integer. 

The simplest case occurs when, in the expansions 

f (z, z')=a,,(z- a) +ao, ($-ar) + ... 
g (z, 2') = cl, (z  - a) + col (z' - a') + . . . 

no one of the quantities a,,, a,,, cl,, col, al, col - cl, a,, vanishes : the value of 
AI, for the zero a, a', is unity in this case. 

Note. If, instead of the functions P and R, we take Q and 8, as repre- 
sentative off  and g, and construct the eliminant of Q and S regarded as 
polynornials in u', the eliminant is 

UM + (u), 
where + is a regular function of u such that 9 (O) is not zero, and M is the 
same integer as before. The proof is a simple matter of pure algebra. 

121. Al1 the preceding remarks apply to the simultaneous zero-places of 
two regular functions f (z, 2') and g (z, 2'). I t  applies equally to the level 
values of two regular functions f (z, 2') and g (z, z'), say a and ,û respectively, 
where ( a and 1 p 1 are finite. The functions f (z, $) and y (z, z') are inde- 
pendent, as before. The functions f (2, z') - a and g (z, 2') - will be supposed 
free, that is, we shall extend the significance of the epithet 'free,' as applied 
to f (2, z') and g(z, z'), so that it applies to this case also. The funckions 
f ( z , ~ ' )  - a and g (z, 2') - ,B will also be supposed non-composite as regards 
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factors which are functions of z alone or functions of z' alone, as was the case 
with f (z, z') and y (2, 2'). And, now, we can enunciate the theorem :- 

The common level places of two regular functions, whkh exist together i n  a 
donzuin of the variables, and which are independent and free, are isolated; and 
the rtdtiplicity of any level place, giving values a and P to f (z, z') and y (2, 2') 
~espectively, is the multiplicity of the place, as a simultaneous zero of the 
functims f (z, 2') - a, y (2, z') - 6. 

122. Further, consider two functions f (2,  z') and y (2 ,  z'), independent of 
one another, not tied, and existing in a common domain ; and suppose that 
f (z, e') has a pole at  a place p, p', which is an ordinary place for g'(z, z'), Say 
a level place fbr y (2, z'), (zero being a possible level value there). Then the 
place is a coinmon level place for the functions + (z,  z') and g(z, 2'); and 
we know that, if 4 (z, z') and g(z, z') are free, that is, if + (z,  z') and 
g (2, 2') -9 (p ,  1.7') possess no common factor which is a regular function of 
z, z' vanishing at  p, p', then the common level place a t  p, p' for + (2,~ ' )  and 
g (z, z') is isolated, and its multiplicity is the index of the lowest power of z' 
in the z'-eliminant of 4 (z, z') and y (z,  z') -y  (p ,  p'). 

I t  is convenient to extend the significance of the terms tied and free as 
applied to a couple of independent unifom functions f and g. We shall Say 
that they are tied if, for any constant quantities a and f i ,  either f - a and 
y-@;  or f - a  and (y-@)-'; or ( f -a) - l  and y - P ;  or ( f -a)- '  and 
(g - ,k?)-' (being really two alternatives) possess a common factor which is a 
regular function of z and z' having a zero (and so an infinitude of zeros) in 
the domain; and we shall Say that the two independent functions f and y are 
free, when no common factor of that type exists for any one of the combina- 
tions. Moreover, we shall also assume that neither f - a nor ( f  - a)-1 nor g - 
nor (g - P)-' contains any factor, which is a regular function of z alone or of 
z' alone and vanishes for one (or for more than one) finite value of the 
variable. 

On the basis of earlier results, we can now enunciate the following 
theorems :- 

(i) Let f (z, z') alzd y (2, z') be two functions, which are unifomh, analytic, 
und devoid of essential siny.rclaritiea in the$nite part of theJield of variation of 
z and z', and which are independent and free. Tha places where one of the 
functions acpuires a leuel value and where the other has apole, are isolated; 
and the multiplicity of the place for the two functions conjointly is the rnulti- 
plicity of the place as a level-and-zero place for one of the fuactiolîs and the 
recipocal of the other. 

(ii) The conmon poles of two zcn~xornh functione, which exist together il1 11 

domain of the variables, and which are independent and free, are isolated; 
and the mu,ltiplicity of the common pole for the two junctions conjointly is the 

14-2 
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rtmltiplicity of the place as a cornmon zero for the reciprocals of the teuo 
functions joint1 y. 

The theorems follow at  once from an earlier theorem by considering the 
behaviour of the reciprocal of a function in the immediate vicinity of any pole 
of the function. 

When we extend the term level value of a uniform function to include 

(i) a zero value of the function, this being a unique zero, independent 
of the way in which the variables reach the place giving the zero 
value : 

(ii) a level value a of the function, where / al is finite, this being a 
similarly unique level value of the function: 

(iii) an infinite value of the function, this being a unique infinity of 
the function arising at  a pole: 

then al1 the theorems, already enunciated concerning two functions, can be 
summarised in the one theorem :- 

The common level places of two uniforln functions, which are uniform, 
unulytic, and devoid of essential singularities in  the $nite part of the jield of 
variation of z and z', and which are independent und free, are isolated; and 
the rnultiplicity of the level place for the two functiotts conjointly is the index of 
the lowest term in the eliminant of the two functions or of their reciprocals or 
of either with the rec@rocul of the other, expressed i n  the vicinity of the place. 

Combining this result with the investigation, which settled the order of 
multiplicity of the place a, a' as a level place of the functions f and g and 
therefore as a zero of the functions 

f (2, z') - a, 9 ( 4  4 - S> 
we have the following corollaiy :- 

Let a, a' be an isolated common zero of n~ultiplicity M of the functions 

f (4 2') - a, g (4 z') - B : 
then, for values of a' and 1 P' szcficiently sn~all, there are cornmon z e m ,  
simple or  multiple, of aggregate multiplicity M, of the functions 

f (2, 2') - - a', y (2, z') - S - @, 
which coalesce iwto the single common zero of multiplicity M of 

f (4 2') - a, g ( 4 2 ' )  - p, 
when a' und P' vanish. 
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123. WE now proceed to consider the property, of such functions as 
possess the property, which customarily is called periodicity. Limitation 
will be made a t  this stage to periodicity of the type that is linear and 
additive, though the type is only a very particular form of the general 
automorphic property, mentioned in Chapter II. 

In conformity with general usage, we Say that two constant quantities o 
and w' are periods, or a period-pair, or a period, of a function f (2, 2') of two 
complex variables, when the relation 

is satisfied for al1 values of z and of 2'. I n  such an event, the relation 

is satisfied for al1 integer values, positive and negative, of S. Moreover, it is 
assumed implicitly that o and o' constitute a proper period-pair ; that is to 
say, a relation 

f (Z + km, z' + k'w') = f (z, z') 

is not satisfied for al1 values of z and z' except when I c =  E', both Ic and rc' 
being integers, and that the same relation is not satisfied, even if k = k', when 
the common value of Ic and Ic' is the reciprocal of an integer. 

In  dealing with periodic functions of a single complex variable, infinitesimal 
periods are excluded. Speaking generally, we could say* that, if a uniform 
function of a single variable possessed an infinitesimal period, then within 
any finite region, however srnall, round any point, however arbitrary, the 
function would acquire the same value an unlimited number of titiles. The 
possibility of the existence of such functions may not be denied; but they 
cannot belong to the class of analytic functions. I n  the case of analytic 
functions which are not mere constants, the result of the possession of 
infinitesimsl periods would be to make practically any point and every point 
an essential singularity. Accordingly, so far as concerns functions of a single 
variable, the possibility of infinitesimal periods is excluded. 

124. We likewise exclude the possibility of infinitesimal periods for 
functions of two variables; but the exclusion can be based on different 

* See my T h e o ~ y  of Functions, 5 105. 
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grounds also. For the present purpose, we shall limit ourselves to uniforin 
analytic functions* of two variables; and we then have a theoremt, due to 
RTeierstrass, as follows :- 

A uniform analytic function of two independent cornplex variables z und z' 
possesses injinitesimcd periods only if it can be expressed as a function qf 
az + a'z', where a and a' are any constants. 

First, suppose that our function f (z ,  z') can be expressed in a forin 

f (2, z') = P (az + a'z'). 

Then if we take any two quantities P and P' such that 
a P  + a'P' - 0, 

we have 
f (Z + P ,  z' + P') = B (az + a'z' + a P  + a'P') 

= F (az  + a'z') 

= f  (2, 2') ; 
and therefore when P and P' are constants, we may regard P and P' as a 
period-pair for f (z, z'), supposed expressible in the given form. The only 
relation between P and P' is a P  + a'P'= O ; hence either of them can be 
taken infinitesimally small, and the other then is infinitesimally small also. 
It follows that, when a function of z and z' can be expressed in the form of a 
function of az + a'z' alone, where a and a' are any constants, then i t  possesses 
inhitesimal periods. 

Furtlier, writing az + a'z' = v, we have 

and therefore 

Hence when the function is of the form f (az + a'z'), so that i t  possesses 
infinitesimal periods, the foregoing relation is satisfied. Conversely, by the 
theory of equations of this form, the most general integral equation equivalent 
to this differential equation is 

f (2, z') = F (az + a'z'), 
where F is any function whatever of its single argument ; and therefore, when 
a function f (z,  z') satisfies the relation 

in general (and not merely for an arithmetical pair, or for sets of arithmetical 
pairs, of values for z and z'), i t  possesses infinitesimal periods. 

The result holds for multiform functions and, under conditious not yet established, possibly 
even for functions that have an unlimited number of values for any assigned values of the 
variables ; see Weierstrass, Ges. Werke, t. ii, p. 69, p. 70. 

f It is established for the case of n variables, Weierstrass, Ges. Werke, t. ii, pp: 62-64. 
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Next, suppose that Our uniform analytic function is not expressible in a 
form F(az+ n'z') for any constants a and a' whatever ; and consider a region 
in the field of variation where the function f (z ,z l )  is regular. No relation 

for non-vanishing values of a and a', is satisfied over the whole of this region ; 
hence we can take places zl and z,', 2, and 2,' within the region, such that 

is finite and not zero. Also when we take places zl + u1 and 2,' + u,', z, + u, 
and z,' + u,', z1 + v1 and z,' + v,', z, + v, and za + v,', where al1 the quantities 
/ ui 1, 1 W' 1, 1 u2 1, 1 ~ 2 '  1 ,  vl 1, 1 v,' 1, 1 v, 1, v,' / are infinitesimally small, the quantity 
1 Ji;, 1 where 

J,,' = 1 w1 + ;ilz~ + u;) 
a f c 1  + s, s' + v;) 

9 az; 

differs from 1 JI ,  j only infinitesimally, and therefore its modulus is finite and 
not zero. 

Consider the possibility of the existence of two periods h and h'. What- 
ever these quantities may be, we have generally 

z+h,z'+h' af 
f ( Z  + h, z' + h') - f (z, z') = , ( ~ d C + , 5 , d 5 ' ) p  a f  

becanse the snbject of integration is a perfect differential. Take a combinetl 
r-path from z to z + h and a c'-path from z' to z' + h', and let 

so that the range of integration is represented by variations of t from O to 1 ; 
and then generally 

f ( Z  + h, z' + h') - f (z, z') = h l1 ? f ( z  + ht, 2' + h't) & 
O az 

Suppose now that h and h' are infinitesimal, so that the derivatives of 
f (z ,  d )  differ only infinitesimally in the t-range froin O to 1 from their values 
a t  t = O ; then we have a relation of the form 

IRIS - LILLIAD - Université Lille 1 



216 NUMBER OF [CH. VI11 

where 1 u 1, 1 u' 1 ,  1 v 1, ( v' 1 are infinitesimal of the same order as 1 h 1 and 1 IL' 1, 
and may depend upon z and 2'. Accordingly, returning in particular to our 
two places z, and z,', z, and 2,: we have 

and so on for any number of places ; two will suffice for our purpose. 

When h and IL' are periods (whether infinitesimal or not), the left-hand 
sides vanish. As the equations are valid, when the periods are infinitesimal, 
the right-hand sides also vanish ; so that we have 

h JI,' = O, h'J,' = O. 

Now J,,' is not zero; hence both h and h' are zero. In  other words, our 
uniform analytic function of two variables cannot have infinitesimal periods, 
unless i t  is expressible as a function of a single argument az + a'z', where a 
and a' are two constants. 

125. Next, let o, and w,', w, and w,', w, and w,', ... be period-pairs for a 
uniform analytic function f (z, 2');  then we have 

where r,, Y,, r,, . .. are any integers, positive or negative, and independent of 
one another. 

I n  the case of a uniforin analytic function of one variable, i t  is known 
that there are not more than two independent periods and that the ratio of 
these pericds for a doubly periodic function cannot be real* ; the last property 
can be expressed by saying that if the periods are o, = a + iP, and w', = a' + iB', 
the determinant 

is not zero. 

The corresponding theorem-f- in the case of uniform analytic functions of 
two variables is as follows :- 

A uniform analytic .fu)zction o f  two vam'ables z and z' cannot possess moye 
than four independent pel-iod-pairs o, and a,', o, and o,', w, and o,', CD, and 
w,l ; and if 

W ~ = C ( S + ~ @ ~ >  w;=ugl +ipQI, 

* When the ratio is real and commensurable, both periods are integer multiples of one and 
the same period ; when the ratio is real and incommensurable, there are infinitesimal periods. 

t It is partly due to Jacobi, Ges. Werke, t. ii, pp. 25-50. 
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for al1 four values of s (the parts a, p, a', ,%' beiq~g real), the determiliunt 

a,, a,, a3, a4 

Bl ,  P*,  63, P4 

ai), a2/, a3', a: 

8.. Pi ,  d. 8: 
rnust not vanish. 

126. As a preliminary lemma, we require the following proposition: if 
relations 

o, = km, + lm, + mm, 

0: = ho1' + 10; + m m 3 /  l- 
are satisfied among fonr period-pairs, where k, Z, m are real quantities, then 
either there are not more than three linearly independent period-pairs or 
there are infinitesimal periods. 

First, suppose that k, 1, rn are commensurable, and that then each of 
them is expressed in its lowest terms. Let d denote the highest common 
factor of their numerators, acd let M denote the least common multiple of 
their denominators; and write 

where &, l' ,  m' are integers ; then we have 

Now M/d is a fraction in its lowest terms, being an integer only if d is unity ; 
change M/d into a continued fraction and let p / q  be the last convergent 
before the final value; then 

90 that 

M M M 
Now - o, and - w,' manifestly are a period-pair, and therefore also q - w, 

d d d 
M 

and q - o,' ; consequently 
d 
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also are a period-pair, that is, w4/d and o,'/d are a period-pair. Let* 

where the integers M, lc', E l ,  m' have no factor common to all. 

Moreover, we can assume that any two of the four quantities have no 
common factor. For if two of them, Say Ic' and 1' had a common factor p, the 
quantities 

are period-pairs, integral in o, and w,', o, and a,'; hence 

are a period-pair, say o, and w,' ; then as - 

where M, m', p are integers and Cl,, o,, w,, Cl,', o,', w,' are constituents of 
pairs. But we knowt that, in such an event there are two integral com- 
binations of o,, w,, fi4, and the same two integral combinations of w,', w,', a,', 

M m' 
because the coefficients - and - are the same in the two relations, such 

P CL 
that w,, o,, fl, are expressible as integral combinations of the first and 
w,', o,', 9,' are integral combinations of the second ; that is, we have 

Ic' 1' 
- o, + - w, = linear function of two periods a, and Cl,, 
P P 
Ic' , 1' 
- o1 + - w i  = same .. . . . . . . .. . . .... . . . . . . . . . . . . . . 9,' and a,', 
P P 

k;.' Z '  
and now, in Our equations, the integral coefficients - and - have no common 

P P 
factor. 

Similarly for the other cases ; we can assume, in our relations 

M a r  = Idw, + E'o, + do3,  MO,' = Ku,' + l'w,' + m'w,', 

that no two of the integers M, k', Z', m' have a common factor. 

Accordingly, we have kl/l' a fraction in its lowest terms. Expressing i t  
as a continued fraction, and denoting by r/s the last convergent before the 
final value. we have 

* Obviously, if d = l ,  the period-pair w4 and w4' is unahanged. 
t See my Theoy of Functions, § 107. 
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Then 
+ W ,  = o, ( s k  - rl') = sMn, - 1' (ru, + so, ) - srn'w, , 

f w;= sivfl: - 1' (1.011 + s o i )  - sm1w3/, 

+ w, = o, (sh' - -1') = - rMn, + Ic' (rw, + SW, ) + rm'w, , 

and so the four period-pairs are expressible in terms of three period-pairs 

Thus there are not more than three linearly independent period-pairs. 

Next, suppose that one of the three quantities k, Z, m, say k, is incom- 
mensurable, while the other two are commensurable. When 1, m are expressed 
in their lowest terms, let the integer D be the least common multiple of their 
denominators, so that we can write 

Now kD, like k, is incommensurable; hence, expressing i t  as an infinite 
continued fraction, and denoting two consecutive convergents by p /q  and 
pl/q', we have 

where the real quantity 0 is such that 1 > 0 > - 1. Th~is  

( 1 0 + 8 / ) w ,  and r+<)q' 
9 PP P PQ 

are a period-pair, and therefore also 

that is. 

are a period-pair. We may take q' as large as we please, for the continued 
fraction is infinite; and the circumstances thus give rise to infinitesimal 
periods. 

Next, suppose that two of the three quantities k, 1, m are incommensurable, 
Say L and 1, and that m is commensurable, equal to hlEL, where h and p are 
integers. Then our relations can be taken in the form 
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But, writing 
W6 = pu4 - xo3> Co5' =/La; - l a ; ,  

and denoting k p  and lp by k' and 1' respectively, we have 

o5 = Km1 + l ' ~ ~ ,  05 = I c ' ~ 1 )  + 1'021, 

where Ic' and 1' are incommensurable, while ta, and o,' are a period-pair. 
Again it is known* that, by successive linear combinations of the period so 
always as to give a period, we can change o, into 0, (and a,' into SZ,' by the 
same algebraic relations) so that 

and a t  the same time have relations 

06 = val + zw,, ,,I = va; + zw;, 

where both V' and 1" are incommensurable. The process can be continued 
to any extent, by successive combinations of the period-pairs ; so ultimately, 
we can construct an infinitesimal period-pair. 

Lastly, we have the case when al1 the quantities E, 1, m are inconi- 
mensurable ; and we assume that the ratios k : 1 : m also are incommensurablet. 
Then we express Ic as a continued fraction, which of course will be infinite; 
taking any convergent r/s,  we have 

where always r and s are integers, and x is a real quantity such that 
1 > x > - 1. Also let t, be the integer nearest to the incommensurable 
quantity sl, and t, be the integer nearest to the incommensurable quantity 
sm ; then we have 

sl - t, = A,, srn - t, = A,, 

where A, and A, are incommensurable quantities, each in numerical value 
being less than +. Thus 

Again, as A, is an incommensurable quantity, let i t  be expressed as a con- 
tinued fraction; taking any convergent where always p and a are 
integers, we have 

* See my Tlieory of Functions, 5 108. 
t The alternative suppositions, for the last case, and for the present case, are left as an 

exerüise. 
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where y is a real quantity such that 1 > y > - 1. Also let t, be the integer 
nearest to the value of UA,, and write 

QA3 = t, + v, 
where V is an incommensurable real quantity less than 4. We then have 

the quantities on the left-hand side are a period-pair, whicli can be denoted 
by fl, and Cl;. 

Now take an advanced convergent for A, ; we have u very large, and so 
the values of yo,/o and ywila are infinitesimal. Take a much more advanced 
convergent for Ic, so that s is very large compared with <r; the values of 
cxw,/s and oxw~/s  are infinitesimal. We thus have a new period-pair Cl, 
and a,', such that 

x Y 
1 0 3  I= f <&lm3 r 

O- 

Our relations now have the form 

where the quantities k', 1', m' fa11 under one or other of the cases already 
considered. Either we have not more than three period-pairs ; or we have 
infinitesimal periods; or al1 the quantities k*, 1') m' are incommensurable, 
while 

I f l 3 1 < & 1 ~ ~ 1 ,  IfVl<*1~;1. 

In  the last event, the same kind of transformation can be adopted; and by 
appropriate choice, we can form a new period-pair fi,, In;, such that 

Ifi31<+lf131, lfl;1<31%'. 

And so on, in succession. By taking a sufficient number n of transformations, 
each of the preceding type, we ultimately can construct a period-pair @, niid 
@A such that 

1 1 l %l<,lwsl, l%'i<F1wal: 

that is, by taking lz sufficiently large, we should have an infinitesiinal 
period. 

I t  therefore follows that, if we have two relations 

Aw, + Bo, + Co, +Do, = 0, 

Am,' + Bo; + Co; + Do,' = 0, 
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between four period-pairs, where the coefficients A, B, C, D are real quantities, 
either there are not more than three period-pairs, or there are infinitesimal 
periods for the variables. 

Accordingly, when we have to deal with uniform analytic functions of 
two variables, there is nothing in the preceding analysis to exclude the 
possession of even four period-pairs, when these pairs are linearly independent 
in respect of combinations between their respective members. 

127. For the remairider of the proposition in 5 125, i t  is necessary to 
consider the possibility of the existence of five period-pairs: if this be ex- 
cluded, then a fo r t io r i  we need not consider the existence of more than four 
period-pairs. 

For this purpose, let there be four period-pairs of the kind postulated in 
the theorem such that, if 

mg = mg + i&> w; = a; $ 

(for s = 1, 2, 3, 4), the determinant 

a1 2 a2, a3, a4 

P l> Pz, P 3 ,  64 
a,', a;, ai, a: 

Pl', Pz', P3, P,' 
does not vanish. When this 'last condition is satisfied, we cannot have 
relations 

na, a, + m, a, + nz, a, + rn, a, = 0, 

ml Pl + % P z  + m3p3 + nz4 Pa = 0, 
ml a,'+m, a,'+m, a,'+m4 a,'=O, 

n21@11 + m,B; + m,P,' + m4P: = 0, 

for any set of real quantities ml, m,, m,, m, other than simultaneous zeros. 
The exclusion of the first pair of these relations excludes a relation 

mlol + nz,w, + m,w3 + ~ ~ ~ 4 0 4  = 0, 

and conversely ; and the exclusion of the second pair excludes a relation 

mlo,' + m,oa + m,w,'+ m4a,' = 0, 

and conversely. Hence, after the preceding lemma, we infer that our uniform 
analytic functions may possess four periods, or fewer than four periods ; and 
they do not possess, as they cannot be allowed to possess, infinitesimal 
periods. 

Now suppose that a uniform analytic fiinction f (2, 2') possesses, in addition 
to four given linearly independent period- airs w,, w,' ; o,, w i  ; w,, w a  ; o,, w: ; 
also a fifth period-pair, Say o,, a,'. Let 
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Then, with the preceding hypothesis of the non-evanescence of the determi- 
nant (a,, &, ai, P l )  in the customary notation, the equations 

determine uniquely four real finite quantities n,, n,, n,, n, ; and they are such 
as to secure and to require the equations 

It therefore is necessary to consider the conditions, under which these 
equations are possible. 

The analytical consideration of the conditions follows a general march 
similar to'that followed in the establishment of the preceding lernma. The 
results therefore will only be stated, without further proof. They will relate 
only to the most general case when no one of the six ratios n,: n,: n,: n,, as 
determined by the elements of the four period-pairs is an integer; the 
alternative is to providc only less general cases. We find 

(i) when al1 the real quantities n,, n,, n,, n, are commensurable, 
the formally five period-pairs c m  be expressed in terms of not more 
than four period-pairs :- 

(ii) when one (and only one) of these quantities is incommensurable, 
then an infinitesimal period-pair exists :- 

(iii) when two of these quantities are incommensurable, then cer- 
tainly one infinitesimal period-pair exists, and possibly two such pairs 
exist :- 

(iv) when three of these qnitntities are incommensurable, then one 
infinitesimal period-pair certainly exists, and three such pairs may 
exist :- 

(v) when four of these quantities are incommensurable, then one 
infinitesimal period-pair, certainly exists, and four such pairs niay 
exist. 

I t  therefore follows that for any uniform analytic function, which is really a 
function of two (and only two) independent complex variables so that i t  
cannot possess infinitesimal periods, there may be four period-pairs, and 
there cannot be more than four linearly independent period-pairs*. 

* It is a tacit assumption, throughout the preceding investigation, that au infiniteaimal 
period-pair G and G' for z and z' means a period-pair for which both 1 w 1 and 1 w' are infinitesimal. 
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128. Now that we have established the result that a uniform analytic 
function of two complex variables cannot possess more than four linearly 
independent pairs of periods, so that we should have 

for al1 integer values of m,, m,, m,, m,, positive or negative, we proceed to 
consider the various possible cmes that can arise, under the significance of 
the result and within the alternatives admitted by the analysis leading to 
the result. 

For the present purpose, the case when there are no periods needs only 
to be mentioned. We then have the customary theory of the uniform 
analytic functions of two variables, which has been previously discussed in 
sorne detail. 

The remaining cases will be considered in succession. 

One pair of periods. 

129. Let the variables z and z' have the periods a and a', and no other 
periods. Take new variables 16 and u', where 

z = au, az' - a'z = aa'u', 

which is an effective transformation of variables unless (i) both a and a' 
vanish-a possibility that can be excluded-or (ii) either a or a' vanishes. 

If d vanishes, we take u and z' as new variables. If a vanishes, we take 
z and v as the variables, where z'= a'v. I n  al1 the cases, denoting the 
variables by u and u', we can now take 1, O as the pair of periods. Hence 
the field of variation of the variables is composed of a strip in the u-plane of 
breadth unity, measured parallel to the axis of real variables, and the whole 
of the u'-plane ; and the uniform function in question can be expressed as a 
uniform function of eniu and u'. 

Two pairs of periods. 

130. Let the periods be 

for z ,  = a  

d ,  = ci 

respectively, in bracketted pairs ; manifestly i t  nlay be assumed that a and a' 
do not simultaneously vanish, and likewise that t9 and /3' do not simultaneously 
vanish. 

Choose quantities k, 2, m, n, such that 

ka + la' = 1, kB+ &Y = 0, 
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When one of the two quantities a and a' vanishes, say a', and neither of the 
two quantities t3 and vanishes, we take m = O  ; and when one of the two 
quantities B and p' vanishes, say ,&, and neither of the two quantities a and 
a' vanishes, we take k =  O. As will be seen, al1 the other possible special 
cases are included in  the one special case that is to be considered. 

The values of h, 1, m, n are given by 

and these values are determinate and finite unless 

afl - a'P = 0. 

First, suppose that aP' - a'P is not zero-which, of course, is the more 
general case. Introduce new variables u and u', such that 

u = kz + lz', u' = rnz + nz'; 

and then the period-pairs of these new variables are 

for u ,  =l}, = y }  , 
- u', = O - 

respectively, in bracketted pairs. The field of variation of the variables is 
composed of a strip of unit breadth in the u-plane and of a strip of unit 
breadth in the u'-plane, the breadth of each of the strips being measured 
parallel to  the axes of real quantities in the planes. The uniform function in 
question can be expressed as a uniform function of emu and eriu'. 

Next, suppose that a@ - a'P is zero-which, of course, is a special case. 
As a and a' may not be zero simultaneously, let a be diflerent from zero; and 
as /3 and ,B' may not be zero simultaneously, let /3 be different from zero. 
Then there are two alternatives 

(i) when both a' and t3' variish : 

(ii) when neither a' nor f l  vanishes, and then we have 

Say, where c iu not zero nor infinite. 

As regards (i), the variable z hm periods a and ,8, while the variable 2' is 
devoid of periods : and in order that a and /3 may be effective distinct periods 
for z, we must as usual have the real part of ia/P distinct from zero. The 
field of variation of the variables is composed of the customary a-@ parallel- 
ogram in the z-plane, and of the whole of the 2'-plane; and the uniform 
function in question can be expressed as a uniform function of p (z), p' (z), 
and z', where p (z) is the customary Weierstrassian doubly-periodic function 
with periods a and P. 

F. 15 
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As regards (ii), we keep the original variable z ;  and we introduce a 
variable v such that 

v = 2' - cz. 

When z and d have the periods a and d, then v has zero for its period ; and 
when z and z' have the periods and /3', then again v has zero for its period. 
Accordingly, when we take z and v for variables, the periods of z are a and P ,  
while the variable v is devoid of periods. The uniform function in question 
can be expressed as a uniform function of p (z), p' (z), and v, with the sarne 
significance as before for p (z) and the same requirement as to the real part 
of ialp. 

Should the requirement as to the real part of i a /P  not be satisfied, either 
there is an infinitesimal period, or the two pairs are equivalent to one pair 
only. I n  the former case, there is no proper uniform function with the 
periods ; in the latter, the periods are not effectively two pairs of periods. 

Three paim of periods. 

131. Taking the variables to be z and z' as before, let the periods be 

where manifestly no pair of quantities in a column can vanish simultaneously. 
Thus a can vanish, and a' can vanish ; as they may not vanish together, there 
are three possibilities for the a, a pair. Similarly for each of the other two 
pairs ; so that there are twenty-seven possibilities in all. They can be set out 
as follows. 

A. When al1 the quantities a', @', y' vanish, the period-tableau is 

no one of the quantities a, /3, y can vanish : there is one case. 

B. Let two of the three quantities a', p', y' vanish, but not the third of 
them; there are three possibilities. When y' is the one which 
does not vanish, then neither a nor /3 can vanish ; and we can have 
two alternatives, viz. y vanishing, or y not vanishing. The period- 
tableaux are 

each is typical of three cases. 
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C. Let one of the three quantities d,  , B I ,  y' vanish, but not the other 
two ; there are three possibilities. When a vanishes, then a cannot 
vanish : and as /3' and y' do not vanish in that, event, we can have 
four alternatives, viz., ,kl and y, either vanishing or not vanishing, 
independently of one another. The period-tableaux are 

D. Let no one of the three quantities a', P', y' vanish; there is only a 
single possibility. But as regards a, ,û, y, there are eight alter- 
natives, viz., they may either vanish or not vanish, independently 
of one another. The period-tableaux are 

Among these, (D,) and (D,) are one case each; (D,) and (D,) are, 
each of them, typical of three cases. 

132. As regards the kinds of functions considered, no generality can be 
lost by assuming that a function is substantially unaltered 

(i) when one period-pair is interchsnged with another period-pair : or 

(ii) when linear transformations are effected upon the variables, coupled 
with corresporiding linear transformations upon the period-pairs : 
and, in particular, when the variables are interchanged provided 
that the periods are interchanged a t  the same time, each combined 
period-pair being conserved. 

Under the first of these assumptions, the three cases typified by (B,) 
become one case only, of which (B,) will be taken as the tableau of periods. 
The saine applies to (B,), (C,), (C& (C,), (C,), (D,), and (D,), in succession. 

As regards (B,), when we replace the variable z by u, where 

the periods for u and z' are 

(0, O: :J ; 

the case becomes (B,), and therefore needs no separate discussion. 

15-2 
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It is convenient to consider next the case (Dl). Let four quantities 
k, 1, rn, n be chosen so that 

their values are given by 

When ap' - a'B does not vanish, the values of lc, 2, nz, n are determinate and 
finite; when i t  does vanish, the selection cannot be made. 

Accordingly, in the first place, suppose that aB'- or'p does not vanish. 
No generality is then lost by assuming that y@ - +y'P does not vanish and 
also that ay' - aly does not vanish ; for the alternative hypothesis as to each 
of these magnitudes leads, by the permissible interchange of period-pairs, to 
the case when a/3' - a'p vanishes-a case yet to be considered. Non- write 

where the new variables u and u' are independent of one another because 
kn - lm, = (ap' - a'P)-l, is not zero. Thus the uniform function in question 
becoriies a uniform function of u and u', with the tableau of periods 

In the second place, suppose that ap' - a'b does vanish. Then 

say. Introduce two new variables u and a', defined by the relations 

r'z - yz' u = ---- , u' = 2' - Ci?, 
+yl-cy 

which are definite and provide independent variables when y' - cy does not 
vanish. The period-tableau for u and u' is 

and so the case is inclusible in (B,), provided +y'- cy does not vanish. If 
however y' - wy does vanish, so that 
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we retain the variable z and take a new independent variable v, mhere 
v = 2 ~ '  - C U  ; the period-tableau for z and v is 

and so the case is inclusible in ( A ) .  Thus no new kind of function, other 
than those already retained, arises out of (Dl) when ap' - a'p = 0. 

Now consider the cases under (C). The case (Cl) is included in (DI) 
iinless @y' - P'y vanishes. When this quantity does vanish, we hqve 

Say ; we take a new variable u, where u = z - Icz', and then the period-tableau 
for u and z' is 

(8 ;1: :J , 

that is, the case is inclusible in (B,). Thus no new kind of funçtion, other 
than those already retained, arises out of (C,). 

The case (Ca) is inclusible in (Dl). 

The case (C,), by interchange of period-pairs, becomes (CZ) and so & 
inclusible in (D,). 

The case (Cd), by interchange of variables together with the proper inter- 
change of periods, becomes (B,). 

Similarly for the cases under (D). The case (D,), by interchange of 
variables together with the proper inberchange of periods, becomes (Cl) and 
so provides no new kind of function. I n  the same way, the case (D,) becomes 
(B,), which is inclusible in (B,); it therefore provides no new kind of function. 
And, in the same way also, the case (D,) becomes (A).  

Hence the surviving independent cases are ( A )  ; (B,); and the case which 
has emerged fiom (D,). These will be considered now in succession. 

133. We can dismiss the case ( A )  very briefly. There are no periods 
for z'. There are three periods for z; so that, in effect, the uniform function 
is periodic in a single variable only. But, in such an event, there cannot be 
more than two periods a t  the utmost*; hence the case either is impossible, 
or is degenerate by falling into a class of doubly periodic functions of two 
variables already considered. 

The case (B,) can also be dismissed briefly. In  al1 the functions which it 
provides, the double periodicity in z alone and the single periodicity in z' 
alone are independent of one another. Even when the double periodicity 

Thewy of Functiom, § 108. 
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does not degenerate, the function in question is a uniform function of 
p (2, a, 8)-with p' (2, a, /3)-and ewi2'/y' ; its triple periodicity in the two 
variables combined is not a proper triple periodicity, for it is resoluble into 
the double periodicity in one variable alone and the independent single 
periodicity in the other variable alone. 

I t  remains to consider the case which has emerged from (Dl). This case 
provides uniform triply periodic functions, for which the triple periodicity is 
proper and not resoluble as it is in the case (B,). We have seen that, without 
any loss of substantial generality, the tableau of periods for the variables z 
and z' can be taken in the form 

(i: !: ;J , 
where neither p nor p' vanishes. 

Further, both p and cannot be purely real. If, for instance, ,IL were 
real and commensurable (equal to plq, say, where p and p are integers), then 
a set of periods is 

l, qp7p) 
(0, 1, qp 

that is, 

G: L ;J . 
which is an instance of (B,). Similarly, if were real and commensurable. 

If p and p! were real and, after the foregoing cases, were incommensurable, 
then the function would have infinitesimal periods. Thus let the supposed 
incommensurable quantity p be expressed as a continued fraction and take 
an advanced convergent to its value, Say p/q ; then 

P e  p = -  +- 
Y q2' 

where O < 1 e j < 1, so that 

Thus a set of periods is 

i t  be expressed as a continued As is incommensurable, so also is qp' ; let 
fraction and take a convergent r/s to its value, so that 

where O < j 7 < 1 ; thus 
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Accordingly, a set of periods is 

When we take s very large and q/s  also very large, the quantities 

S 1 
E - ,  and q - ,  
4 S 

are infinitesimal: that is, we should have an infinitesimal period-pair-a 
possibility that is excluded. Thus p and t.~' cannot be simultaneously real. 

The most general case arises when neither ,u nor is real : and we shall 
assume that, henceforward, we are dealing with this case. I t  is to be remem- 
bered that, in eflecting the linear transformation upon the variables so that 
1, 0 ; and 0, 1 ; are two period-pairs, we have used the constants of relation. 

Moreover, as the periods in the tableau can be linearly combined in 
simultaneous pairs, we have 

p + p . l + q . O ,  p 1 + p . 0 + q . l ,  
that is, 

P + P >  d + %  
as a period-pair, p and q being any independent integers; and this period- 
pair can replace p and p1 in the tableau, for any values of p and q. Let 
these integers be chosen so that the real parts of ,u + p  and $+ q, Say 
R (,u + p) and R ($ + q), satisfy the conditions 

Assuming this done it follows that, withoztt any loss ojs generality i n  theperiod- 
tableau 

we can assume that 
(0: y; 

O <  R ( p ) < l ,  O e R ( p l ) c  1, 

while neither of the quantities p and is purely real; moreover, this is 
e$ectively the general tableau for the proper triple periodicity of uniform 
functions of two variables. 

134. The field of variation of the two independent variables occurring in 
uniform triply periodic functions can be assigned in two ways, which can be 
used in complementary fashion and will leave open an element of arbitrary 
choice. Let c and cf denote simultaneous values of the variables z and d ; for 
purposes of convenience we shall assume that they are a pair of ordinary non- 
zero places of two uniform triply periodic functions with which we may have 
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to deal. Moreover, we shall assume a t  once that the functions in question 
possess no essential singularities for finite values of the variables; and we 
shall take 

as the tableau of the periods, with the due restrictions on p and p'. 

Owing to the period-pair 1, O, we can reduce any point in the z-plane to 
a point in, or upon the boundary of, a strip enclosing c, without thereby 
affecting the position of z' in its plane. Similarly owing to the period-pgir 
0, 1, we can reduce any point in the 2'-plane to a point in, or upon the 
boundary of, a strip enclosing c', without thereby affecting the position of z 
in its plane. Accordingly construct in the z-plane a parallelogram having 
G, c + 1, c + p ,  c + 1 + p as its angular points; and produce, to infinity in both 
directions, the side joining c to c + p and the side joining c + 1 to c + 1 +IL. 
Similarly construct in the 2'-plane a parallelogram having c', c' + 1, c' + p', 
cf+ 1 + as its angular points: and produce, to infinity in both directions, 
the side joining cf to c' + ,uf and the side joining c f +  1 to c'+ 1 + p'. , , . 

Then, for our triply periodic functioris, we can choose a complete field of 
variation in two ways. By the first choice, we allow z to Vary over the 
parallelogrnm constructed in its plane, while we allow zf to vary over the 
strip between the two infinite lines dramn in its plane. By the second choice, 
we allow z' to Vary over the parallelogram constructed in its plane, while we 
allom z to varg over the strip between the two infinite lines drawk in its 
plane. For special purposes. it may prove convenient to contemplate both 
the fields simultaneously, even though each field by itself is complete for the 
triply periodic functions. 

But we do not obtain a complete field if we limit the simultaneous 
variations of z and z' to the two parallelograms drawn in the two planes. 
For, in effect, such a field would give 

as the period-tableau; and then there would emerge a repeated double 
periodicity, one in .p alone, the other in z' alone ; that is, we should have a 
degenerate quadmply periodic function, instead of a triply periodic function. 

Four pairs of periods. 

135. Again denoting the variables by z and z', let the periods be 

for z, a }  = B I  = y  

zf ,  = a' 
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where manifestly no pair of quantities in a column can vanish simultaneously. 
Thus there are three possibilities for each pair of periods; and each possi- 
bility for a pair is unaffected by the possibilities for any other pair. Hence 
there are eighty-one possibilities in all; they can be set out in a scheme, as 
follows. 

A. When al1 the quantities a', P', y, 6' vanish, the period-tableau is 

no one of the quantities a, fi, y, 6 can vanish ; there is one case. 

B. Let three of the quantities a', B', 6' vanish, but not the fourth ; 
there are four possibilities. When 8 is the one which does not 
vanish, then neither a nor /3 nor y can vanish; while 6 may or 
may not vanish. Thus the period-tableaux are 

each is typical of four cases. 

C. Let two of the quantities a', /3', y', 6' vanish, but not the other two. 
The period-tableaux are 

each is typical of six cases. 

D. Let one, but only one, of the quantities a', /Y, y', 6' vanish. The 
period-tableaux are 

each is typical of four cases. 
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E. Let no one of the quantities a', p', -y', 6' vanish. The period-tableaux 
are 

of these, (El)  and (E,) are each one case; (E,) and (E, )  are each 
typical of four cases ; and ( E3) is typical of six cases. 

136. As regards the kinds of functions considered, the same assumptions, 
as to the interchangeability of period-pairs and as to the linear transformations 
of the variables without detriment to the generality of the functions, will be 
made as were made (5 132) in the discussion of the triple periodicity. 

Consequently al1 the cases, of which each tableau is typical, become 
merged into a single case. 

The cases ( A )  and (E,) are impossible, or else the periods degenerate ; 
there cannot be uniform functions, periodic in a single variable and having 
four distinct periods for that variable. 

The cases (B,), (B,), (D,), (E,) are impossible, or else the periods degene- 
rate; there cannot be uniform functions, periodic in a single variable and 
having three distinct periods in that  variable. 

By taking a variable u instead of z, where 

the tableau of periods in (Cl) is changed to a tableau of periods for u and z' 
represented by (C,) or (C,). Also by interchange of period-pairs, (Cs) becomes 
(C,); hence (C,) and (C,) are the only cases under (C) that require con- 
sideration. 

By interchange of variables and the proper interchange of periods, (D,), 
(D,), (4) become (C2), and so require no separate discussion ; and siniilarly 
(E,) becomes (C,), and can therefore be omitted. 

By interchange of period-pairs, (D,) and (D,) become (D,) and so they 
require no separate discussion. 

By interchange of variables and the proper interchange of periods, (E,) 
becomes (D,) and can therefore be omitted. 

Consequently, the cases that survive for fiirther consideration are (C,), 
<Dl)> (DA (El). 

As regards (D,), change the variables to u and 2bI by the relations 
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and write j3 = aX, 6 = ap, y' = P'x', 6' = /3',d; the period-tableau for the 
variables u and u' is 

which temporarily will be called (F). 

As regards (CJ, a similar change of variables, viz., 

Z = au, z' = 8'u1> 

leads. to a special form of the period-tableau (F)  in which A' is zero. 
Assuming this included in (F), we have no new case out of (C,). 

As regards (Cd), we have a function, which is doubly periodic in z alone 
with periods a and 6, and is also doubly periodic in z' alone with periods y' 

and 6'. The functions thus provided are undoubtedly quadruply periodic, 
but the periodicity has an isolated distribution; they will therefore be 
omitted, as not belonging to the class of functions having proper quadruple 
periodicity. 

As regards (Dl) and (El), we effect linear transformations of the variables 
of the type 

u = kz + ZZ) u' = ntz + nz', 

where the quantities k, 1, rn, n are determined by relations 

Different cases arise as under (D,) in the discussion of triple periodicity : and 
we find either 

(i) a period-tableau, with new variables, represented by ( F )  ; or 

(ii) cases already decided ; or 

(iii) cases that are impossible or degenerate. 

Consequently i t  follows that properly quadruply periodic functions, which 
are uniforin and involve only two variables, can be modified as to their 
variables so that they have 

for their period-tableaii. 

137. Now i t  is a property of quadruply periodic uniform functions, on 
the Riemann theory, that (for this tableau) the relation 

h' = p 

(or else X = $) holds. Further, Appel1 * has ~roved,  by analysis and reasoning 
quite different from those adopted for the discussion of functions on a Riemann 

' Liouville, 4me Sér., t. vii (1891), pp. 157 W. 

IRIS - LILLIAD - Université Lille 1 



IRIS - LILLIAD - Université Lille 1 



1381 QUADRUPLE PERIODICITY 237 

of the parallelogram ObacO not included, and there is a portion of the paral- 
lelogram OnybO not included. The double parallelogram Oaybac0 is not 
sufficient, because there is a portion of the parallelogram OaficO not included ; 
moreover, the whole plane could not be covered once and once only by 
repetitions of the double parallelogram keeping unchanged the orientations 
of the sides. In the figure, the parallelogram OaBcO is partly excessive and 
partly deficient; for the interior of the small parallelogram between ab, by, 
ap ,  fit is reducible to another part of Oafic0. The triple parallelograrn 
OnyGacO is excessive ; for much of its area (the part outside the parallelogram 
OnpcO) is " reducible " to the area within that parallelogram, and also the 
whole plane could not be covered, once and once only, by repetitions of the 
triple parallelogram keeping unchanged the orientations of its sides. 

The same remarks apply to the &plane, in connection with the figure as  
drawn. 

Thus, neither by means of parallelograms, nor by means of strips in 
the two planes of reference, is i t  possible t o  obtain definite unique and 
complete liuiited fields of variation for z and z', that shall discharge for 
quadruply periodic functions of two variables the same duty as is discharged 
for doubly periodic functions of a single variable by the customary period- 
parallelogram. 

But  by taking an associated two-plane variation of the real variables - - 

x, y, x', y', the deficiency can be supplied for one purpose. This representation 
is as follows*. For a quadruply periodic function, with the period-tableau 

;; ?, 3 
we revolve X, p, A', p' into their real and imaginary parts, say 

then every place, differing from z, z' only by multiples of the periods, can be 
represented by 

x + i y + p + r ( a  + i b ) + s ( c  +id) ,  
x' + iy' + p + r ( u  + ib') + s (c' + id'). 

Take two planes, one of them to represent the variations of y and y' with 
reference to O'g and 05' as rectangular axes, the other of them to represent 
the variations of x and x' with reference to Ox and Oz' as rectangular axes. 
In the y, y' plane, let B be the point 6, b' and D the point d, d'; and com- 
plete 'the parallelogram DO'BF. In  the x, x' plane, let OA = 1 and OC = 1 ; 
and complete the square COAE. 

Then the integers r and s can be chosen, say equal to r' and s', so that 
the point 

y+rrb+s 'd ,  yf+r'b'+s'd', . 
For thig suggestion 1 am indebted to Professor W. Burnside, who communicated it to me 

in a letter dated 14 Januery 1914. 
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lies within or on the boundary of the parallelogram O'BFD ; let this point 
be Q. Then every point, which is equivalent to y, y', in the sense that its 
coordinates are y + rb + sd, y' + rb' + sd', is equivalent to Q and lies outside 
the selected parallelogram. 

Again the integers p and q can be chosen, sny equal top '  and q', so that 
the point 

x + p' + r'a + s'c, y + q' + r'a' + s'c' 
lies within or on the boundary of the square OAEC'; let this point be P. 
Then every point, which is equivalent to x + d a  + s'c, y + r'a' + s'c: in the 
sense that its coordinates are x + p  + r'a + s'c, y + q + r'a' + s'cf, is equivalent 
t o  P, and lies outside the selected square. 

I t  follows that, in connection with a place z, z', and with al1 places 
equivalent to i t  in the form 

we can select a unique point Q within the y, y' parallelogram, and then 
associate with it another unique point P within the x, x' square. We take 
the point-pair QP as representative of the whole set of places that, in 
the foregoing sense, are equivalent to z, z'; it is given by the specially 
selected place 

z +p' + r'X + stP, z' + q' + r'X' + s'p'. 

Uniform triply periodic functions in general. 

139. I t  is known (Chap. V) that a uniform function f ( z ,  z'), which can 
have poles and unessential singularities but which has no essential singularity 
lying within the finite part of the field of variation, can be expressed in the 
form 

wl~ere 4 {z, z') and -Jr (2, a') are everywhere regular within the finite part of 
the field of variation. 
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We shall therefore proceed from this result, specially for the purpose of 
deducing* some initial properties of triply periodic functions that are uniform. 
We denote the period-pairs by the tableau 

Now because 
f ( 2  + 1 ,  2') = f (2, z'), 

and because the functions + (z, z') and # ( z ,  z') are regular, each of the equal 
fractions 

derived from the equation expressing the 1 ,  O periodicity o f f ,  is devoid of 
zeros and of poles and of unessential singularities for finite values of the 
variables: hence, as in 5 79, the common value of the fractions is of the form 

where g ( z ,  z') is a regular function of the variables. Consequently 

+ ( a + l , i ) = + ( s t ) e g ( z ~ ~ [ .  

Similarly, through the 0, 1 periodicity off ,  we have the relations 

where nlso h (a, z') is a regular function of the variables. 

In order that the two sets of relations may çoexist, we niirst have 

9 ( Z  + 1, zf + 1 )  = + (z ,  Z') e B ( z , ~ ' f l )  +htz,d! 

and similarly for + ( z ,  a ');  therefore 

g (z ,  z' + 1 )  -y (z ,  z') h (1.; + 1, z') - h ( z ,  z'), (mod. 2 4 .  
Let 

g (z ,  z' + 1) - 9 ( z ,  z') - 2 k r i  = h ( z  + 1, z') - h ( z ,  z ' )  - 2 h i ,  

where k -  1 is an integer: manifestly, either k or Z could be taken equal to 
zero without loss of generality. Now suppose a function X ( z ,  z ' )  determined 
such that 

( z  + 1, z') - A (2, 2') = g (a, z') - Zkaiz' '1 

which two equations are consistent because of the foregoing relation between 
g and h. If then 

+i (2, z f )  = 4 (2, z') e-A(zzi!, +\ (2,  a') = + (z, z') e-A(Z,d),  

* This particular investigation folloms the earlier sections of Appell's memoir already quoted, 
137. 
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we have 

where the functions $, and 3, satisfy the relations 

$, (2 + 1, 2') = $i (5, z') elkrriz' 1 +1 (z + 1, z') = ykl (z, z') e2kd 
+1 (2, z' + 1) = +l (z, z') eStrriz ql (z, z' + 1) = +, (z, z') e21rriz 

The function f (2, 2') under consideration has p and p' for a third pair of 
periods. Proceeding as with the other pairs 1, O and 0, 1, we have 

where m (z, z') is a regular function throughout the domain. By the earlier 
relations which are satisfied by +l and $,, and from the relation 

+ l ( ~  + 1 + P, z' + P' - - ein (s+~, $1 

$1 (2 + 1 , ~ ' )  
3 

we find 
m ( z + l ,  z')=m(z, z ' ) t  2=i(a+kPf) 

and similarly 
m (z, z' + 1) = m (2, z') + 27ri (p  + Ep) 

where a and /3 are integers. Let 

m (z, z') = M (z, z') + 27~i (a + kp') z + 2 ~ i  (P + lp) z', 
so that 

M (z + 1, 2') = M (2, z'), M (2, z' + 1) = M (2, 2') ; 

then both +, and +, satisfy the relations 

2J (2 + 1, z') = 9 (2, z') elk* 

9 (z, Z' + 1) = 9 (z, 2') ezZriz 

4 (z + p, zz' = 9 (z, z t ~  e~~i(a ikp' )z+zs i@+lw)z '+M(z , I )  

are integers. 

1 ) 
where M (2, 2') is periodic mith 1, O and 0, 1 for period-pairs, and a, B, k - 1 

The tripte theta-functions. 

140. The formally siniplest cases arise when we take 

and when we require that the functions shall be only triply periodic and 
must not be quadruply periodic. Then 

9 (z + 1, 2') = 4 (2, z'), 

2J (2, 2' + 1) = 9 (2, z'), 
9 (Z + p, 2' + P') = 23 (2, z/) e-2~i@z+2z'i-2&@+& 

which (as will appear presently) are equations characteristic of functions that 
are triply periodic actually (or Save as to a factor). 
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Without enquiring into the comprehensiveness of this set of functions 
4(z, z'), we see that a large class of functions, which are strictly periodic in 
three pairs of periods, can be expressed as quotients of these pseudo-periodic 
functions. Even a t  the risk of a little confusion (because the title "triple 
theta-function" has hitherto been assigned to uniform functions of three 
variables which are similarly pseudo-periodic in six period-pairs), it will be 
convenient to cal1 certain functions, satisfying relations similar to those 
satisfied by 9 (2, z'j, triple theta-functions. 

We now proceed to a more detailed consideration of their sirnplest 
properties, obtaining the above characteristic equations in a different manner. 

141. We denote by 1, 0 ;  0, 1 ; p, p'; the period-pairs in the variables 
z, 2'. Owing specially to the first two period-pairs, we are led to consider 
functions expressible in extended Fourier-series in the form 

Here u and u' are constants, taken to be integers; m and n are integers, 
ranging from - ai to + ca independently of one another; and the constant 
coefficients a,, are supposed to be such as to secure the absolute convergence 
of the double series. 

We cannot at once declare, from the indices, that cr and a' are O or 1, 
each of them. Thus, if u were 2, we could substitute zero for i t  by changing 
m into m - 1, so far as the variable part of the term is concerned; but the 
change could not necessarily be made in the coefficient, for there is no know- 
ledge of the way (if any) in which a,, contains u or a'. But we have 

e (Z + 1, Z ' )  = (- 1)" e (z, z'), 

e (z, Z'+ i ) = ( -  iy e ( ~ ,  z'); 

and so we can infer that, so far as u and cf are concerned, d l  the possibilities 
are covered by taking a ,  a' = O ,  1 in any combination: that is, four cases 
arise through this source alone. 

142. Our function 8 (2, d )  is to have /I and /I' as periods or pseudo- 
periods ; so we forn~ B (z + p, z' + p'), which is 

m oc 
2 amn (zrn+u) a@+ (zn+of) +'+ (m+u)mz+ (m+ff')aiz'. 
-a -m  

Adopting the usual process for dealing with the periodicity (actual, or save 
as to a factor) of a uniform function, we compare the coefficients of terms in 
0 (2, z') and 8 (z + p, Z' + ; and different possibilities occur, according to 
the different methods of grouping the ternis. We definitely choose (for 
reasons that will appear very soon) to group the term in 8 (z -k L(., z' + p'), 
which involves a,,, with the term in 8 (2, z'), which involves am+l,n+i- As 

6 (2, z') = ZCa,+l,,+, e (zm+u) riz+ @n+d) rit+zai (z+z') 
2 

F. 16  
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we have 
0 (z + p, z' + p') = Be-2"i'z+") û (z, z'), 

if 
amn e(m+d++ ( m + d + '  = Ba,+,, ,,, , 

where B is taken to be a constant, independent of m and n. Let 

and take new quantities cm,, connected with the quantities hn by the 
relation 

amn = Cm, q (m+œI (m+dP . 
then 

cmn = Bq4qt4 Cm+i,n+i 

= A cm+,, n+l, 

Say. The pseudo-periodicity of 0 (z, 2') is now exhibited in the property 

the difference-equation for the quantities cm, becomes 

Having regard to the form of this relation, we take 

the difference-equation then is satisfied if 

and there is no restriction, beyond the requirements that secure the con- 
vergence of 8 (2, z'), upon the function +. Accordingly, the form of 
û (z, z') is 

0 (Z, = ZC (- l )w+np'  q (m+dz  '(m+dP + (m - %) e[zmfaidz+im+d)riz'rriz' Q 
Also, p and p' almays will be made integers-either O or 1 ; hence 

A = (- 1)-A = (- 1)-b+~'i  = (- ~ ) P + P '  ; 

and so the characteristic equations, connected with period-increments of the 
variables, are 

e (Z + 1 ,  Z)) = (- i y  e (z, z ~ )  

e (z, z1 + 1) = (- i y  e (z, ZI) I- 
6 (z + p, É + d )  = (- ~ Y + P ,  e - ~ ~ ( z + ~ ) - ~ C + ~ * ~  8 (z, $)J 

These results, and al1 r e s u l t s  connec ted  with p e r i o d - i n c r e m e n t s  o f  the variables, 
are i n c l z ~ d e d  in t h e  formula 

where a, B, y are independent integers. 
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Xanifestly, the integers p and p' can be restricted to the values O and 1 
independently of one another. When i t  is necessary to put p, p', o, a' in 
evidence as magnitudes occurring in 6' (z ,  z'), we shall denote the function by 

143. Before proceeding with any developn~ent of the properties of these 
functions 8, it is convenient to indicate the reason for the selected grouping 
of the terms in the comparison of 6' (a  + p, a' + and 8 (2, a'). As already 
stated, some grouping of terms has to be made under the inethod adopted; 
and the simplest grouping would compare the term in 0 (a  + p, z' + which 
involves a,,,, with either one or other of the terms in 6' ( z ,  z'), which involve 
am+i,n Or am, n+i. 

Suppose that a difference-equation is established between a,, and 
a,,,,, : al1 the following argument, mutatis mutandis, holds for the alternative 
supposition of a difference-equation between a ,  and a,,,+,. Let it be 

When there is no other difference-equation between the coefficients, (in 
particular, when there is no relation between a,, and a,,,+,), we take 

amn = Cmn e $ l z ~ n + ~ ) ~ r i ~ + m [ % ~ + d ] ~ ~ ~  . , 
and then 

cm+,,, = cm, ~ e - * " ' ~ p  = Ccrn, 
so that 

cm, = Cm+ ( n ) .  
The function becomes 

The aggregate of al1 the terms in the double series for one and the same 
value of 12 is (with the restrictions as to integer values of p and O )  a single 
theta-function of z alone : and so i t  becomes 

0 0  (z)fo (4 + 4 (2) f, (2') + 6 2  (4f  2 (4 + 4 (4 (2' ), 
wheref, ( z l ) , f ,  (z'), f, (z ' ) ,  f, (2') are functions of z' alone. I t  thus becomes the 
sum of fobr resoluble products, each of two factors : and each factor involves 
only one variable. The case is limited in generality. 

A similar result ensues when we assume a grouping which compares a,, 
with a,+,;, and excludes a t  the same time a grouping which compares a,, 
with a,,,,,, where r and s are any integers. 

Further, we cannot have two distinct sets of periods for the case when 
there is only a single grouping of terms. For otherwise, we should have 
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for al1 values of rn and n :  hence 

x p (mod. l), xf p f  (mod. l ) ,  

so that, when account is taken of 1, O and 0 , l  as period-pairs, h and h' are 
effectively the same as p and p'. 

On the other hand, when there is a double grouping of terms, so that a,, 
is compared with a,,,,, in one of the groupings and with a,,,+, in the other, 
we have one period-pair for the first and another period- air for the second: 
this is the case with the double theta-functions, which are quadruply periodic 
(actually so, or Save as to a period). Let the difference-equations be 

Barnn e(m+'J)rrii++<2n+d>+' = arn+l, nr  

Ca,, e@~n+~>riA+(zn+d)aih' = 

for al1 values of m and n. Then 

for al1 values of m and n ; hence 

2 r i h  %rip' (mod. 2m.), 

or, having regard to the existence of the period-pairs 1, O and 0, 1, we infer 
the relation 

X = /A', 

the well-known condition in the Riemann theory. 

Any other double grouping of terms gives rise to'quadruply periodic 
functions. Consequently when there is a question of dealing only with triply 
periodic functions, there can be only a single grouping. When the grouping 
is such as to affect only one of the suffixes in am,, we have seen that the 
resulting function is composite and can be resolved into a finite number of 
surns of products of simpler functions. Accordingly the grouping must be 
such as to affect both the suffixes in a,,. The simplest difference-equation 
of this kind connects u,+~,,+~ with a,,,: and so this is the grouping which 
has been chosen. 

144. We have taken our triply periodic function in the form 

6 (z, Z f )  = (- l)mp+np' qizm+a)ï qf <2n+a'I' 4 (m - n) e(2m+a)~+(an+a')~iz' 9 . 
and we know that, Save as to a simple factor, a t  the utmost, 6 (z, 2') has 
1, 0 ; 0, 1 ; p, ; for its period-pairs, whatever be the form of the coefficient 
C#I (m - n). The preceding discussion has indicated the reason for the choice 
that ultimately leads to the construction of the coefficient: but some special 
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cases have to be noted and rejected froin the class of triply (and only triply) 
periodic functions. 

1. Let #I ( m  - n)  = 1. Then 

6 (z, 21) = 12 (- 1 )w (>m+ul2 , (zm+u>ni2. } 12 (- 1 ) l l p '  qf lwz+dP e(~n+dlht' 1, 
that is, 0 (2, 2') is the product of two single theta-functions ; and the period- 

that is, 0 (2, 2') becornes a resoluble, but quadruply periodic, function. 

we have the same conclusion as in the preceding case. The function B (2, 2') 
is not a proper triply periodic function. 

III. Let 
4 (m - n) = e~~m(zm+u-2n-u')" 

where K is independent of m and n. Then i t  is easy to prove that, Save as 
to a factor, 8 (2, z') has four period-pairs, viz. 

f o r a ,  l , O , p + ~ ,  -tc 

z', O, 1, - t c ,  , d + K  l-* 
the addition of the third and the fourth of the pairs giving the period-pair 
p p .  I n  that case, 8 (2, 2') is a proper quadruply periodic function, being a 
non-degenerate, double theta-function; i t  is not a functiori which is triply 
(but only triply) periodic. 

Accordingly, 4 (rn - f i )  may not have any one of the three preceding 
forms, nor any combination such as 

,rria (m-n) +f rni (am+-m-u') 2 
9 

in order that the function may be only triply periodic. But any other form 
of + (m.- n) is admissible provided, of course, that i t  is such as to secure the 
absolute convergence of 0 (2, 2'). 

If, in particular, for any one of these admissible forms, C#I involves a and O' 

so that + ( m  - n) = a  function of 2nz + a - (2n + a'), 
then i t  is easy to prove that 

P , pt> pi pf, 
(a + 2 , 0 ,  i) = (- (a, J, i) 

thus furnishing an additional reason for restricting the values of a and o' to 
O and 1, independently of each other. 
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145. One remark may be made at  this stage as to the so-called addition- 
theorem for the theta-functions. Thus i t  is possible to express the product 
of four double theta-functions in terrns of sums of products of four double 
theta-functions of other arguments : and i t  is possible to express the product 
of a double theta-function of z, + z,, z,' + z,' and a double theta-function of 
z, - z,, z,' -z,', in terms of double theta-functions of z,, z,' and of z,, 2,'. In  
the purely arithmetical establishment of this theorem, relations 

for arguments, parameters, and integer-indices of terms, are adopted (requiring 
that, for parameters, a, + a, + cr, + a, is an even integer, and so on) : and 
then 

2pf=Z,U, Zu'=%J, 

The last equations allow the transformation of a product of four coefficients 

into the product of other four like coefficients: and so renders the addition-. 
theorem possible. But except for coefficients that have this quadratic index, 
the transformation cannot be effected: for instance, i t  could not be effected 
for coefficients such as 

6 (nz-n+e)+. 

Consequently, we are not to expect an addition-theorem for our triply periodic 
function similar to that possessed by the double theta-functions. 

The sixteen triple theta-functions. 

146. Coming now more specially to the detailed properties of the 
functions denoted by 

we have seen that, mhen p and p' are restricted to be integers, i t  is sufficient 
to take for each of them either O or 1. Further, the actual values of o and 
of in the coefficients of the variable parts of the exponential terms would not 
be of importance as, owing to their linear occurrence, they would (if changed) 
affect only a factor common to the whole series; but they occur in the 
coefficient in each term and the occurrence is not linear. We have seen that 
a large class of these functions 9 is selected from the whole body, by assigning 
to cr and a' the values O or 1 independently of one another; but i t  must be 
noted that such an assignment of value is a distinct limitation upon the full 
generality of the functions. 
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Suppose then that the values indicated are assigned to p, p', a, cr'; as 
there are two possibilities for each of the' four parameters, there are sixteen 
functions in all. It is convenient to shorten the symbols of the functions : 
and so we write* 

* The symbols adopted agree with the symbols used for the double theta-functions in a 
memoir by the azthor, Phil. Trans. (1882), pp. 783-662 ; the reason is that, as indicated above, 
the fonctions actually become double theta-funetions when the proper value is assigned to tha 
coefficients a,. 
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where, throughout, r denotes m - n, and the coefficient a, is an abbreviation 
for # (m - n, a, ut) in the respective cases. 

The law that m and n, when they occur in the coefficients, must occur in 
the combination WL - n, secures the periodicity (actual, or Save as to a factor) 
of the functions : thus it is essential. As will be seen later, another limitation 
will be imposed so as to secure the oddness or the evenness of each of the 
sixteen functions; but the limitation is conventional, not essential. I n  the 
meanwhile, we note that u and a' are the same for the set 8 0 ,  BA, O,, dl,; 
likewise for the set 4 ,  O,, O,, 4,; for the set O,, e,, O,,, el,; and for the set 
83, 4 ,  41, 615. Let 

+(m-n, O, O)=f (m-n)=f (r) 

#(m-n, LO)=g(m-n)=g( r )  
#(m-n, O, l ) = h ( m - n ) = h ( r )  

#(m-n, 1, l )=Ic(m-n)=k(r)  

then the typical coefficient a, is 

Even functions : Odd functions. 

147. It is important to know the conditions that will allow any (and, if 
so, which) of these functions to be either odd or even in their arguments. 
We have 

where 
a,. = # (m - n, u, u'). 

Let new integers m' and n' be chosen so that 
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and then 
6 (- z, - d )  = (- l)PD+P,d6 (z, Z')> 

that is, 8 (2, d) then is even when pu + is even, and 0 (2, 2') then is odd 
w hen p a  + p'a' is odd. 

Thus the imposition of the condition upon + secures the evenness or the 
oddness of the functions. As regards the expression of the condition, let 

- %' = - 
"-9 

so that 
r n - n = r - a + a ' ;  

the condition is 
r# (- r, a, u') = c$ (r  - u + a', a ,  a'). 

To modify the expression of the condition, let 

# ( t ,  a ,  a') = + (2t + a - a', a, a), 
where y5 is a new form of coefficient ; then the condition is 

Ijr (- 2~ + u - a', u, a') = + (2r - u + u', a, u') 

shewing that + is an even function of the first of its three arguments. This 
is the necessary and sufficient condition, that each of the functions 6 (2, z') 
should be either odd or even. 

One very important class of functions is provided by lirniting the co- 
efficients q still further. Let i t  be assumed that the function q is a 

function of its first argument only, so that the typical coefficient, which 
was $J (m - n, u, a'), is 

q ( 2 m - 2 n + r - c f ) ,  

where -t,b is now an even function of its only argument 2m - 2n + u -af : the 
parameters u and a' enter into the coefficient solely through their occurrence 
in thiv argument. If then by any change in the function 6 (2, zt), such as an 
increment of the arguments, the parameters cr and a' are incrensed or are 
decreased by the same integer, the coefficient + is unaltered. 

It may be noted that the double theta-functions srise from one particular 
case of this last law, viz. 

,+ r,,p(nn-rm-Cu-d)q 

Other simple laws can be constructed, subject always to the requirement of 
convergence; for our immediate purpose, we have also the requirement of 
merely triple periodicity. 

148. Before the final postulation of the aggregate of conditions and 
limitations upon the coefficients, consider any function 6 (2, z'), which is triply 
periodic but not btherwise limited, so that i t  is mixed as to a quality of 
oddness or evenness. Let 

E (z, z') = 6 (z, 2') + 6 (- z, - z'), O (z, 2') = û (z, z') - 6 (- z, - z'), 
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so that E (2, J )  is certainly an even function, and O (2, zf) is certainly an odd 
function ; and let the series-expressions for E and O be 

Then substituting for 8 in the definition of the function E, and denoting by 
a,,, (as at first) the customary part of the coefficient of the typical term in 8, 
we find 

km,m = CL,,, + (- l ) p u + p ' d  a-m-u , -n -~ .  
Consequently 

ICrn-c,n-s' = awm, n-s' + (- l y + ~ ' ~  a-m, -n, 

Moreover, by analysis that is similar to the analysis used in establishing 
the earlier condition that a function should be odd or even (and not mixed), 
we have 

= E (2,J). 

Similarly, we have 
O (- 2, - 2') = - 0 (2, 0 

Consequently, even when the initial functioii 8 (2, 2') is rnixed as regards its 
quality of oddness or evenness, we can deduce (by appropriate combinations) 
triply periodic functions which definitely are odd or definitely are even. We 
therefore have said that the limitations imposed upon the coefficients in 8, to  
secure the oddness or the evenness of the function, are conventional and are 
not essential. 

Efect o f  halfperiod incrernents o f  variables. 

149. The law of reproduction of the general function 6 (2, zf), when the 
arguments are increased by any combination of integer multiples of. the 
periods, has already been given. We proceed to consider the laws of changes 
among the functions 8 (z, zf), when the arguments are increased by linear 
combinations of half-periods: and these have two forms according as the 
typical coefficients in the series are taken to be 4 (m - n, G, cf) in general or 
+ (2m + o - 2n - of) less generally, excepting from the latter the single case 
when the expression for + gives quadruply periodic functions. 
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1. Let i;he coefficient in 8 be 4 (m - n, o, u'). We have 

, ( P ,  Pl, z + l )  = iu 8 (P + L  p', 2 )  

0, O ,  2' G , u', $ ' 

0 (P. P;. " + 4) = ,p+d (P + 1, P' + 1, 2 

u> u, d + +  u > 0' , z', 

With these half-period increments, the members of the set 

are interchanged among one another, as also are the members of each of 
the sets 

4, 8 6 ,  8 9  , 4 3 ;  

8 2 ,  8 6 ,  4 0 ,  4 4  ; 

83, 6, 811, 4 6 ;  

the law of interchange being the same as that given in the first four columns 
of the table on p. 254. 

latter, we take + (m - n, <r - 1, u' - 1 )  as the typical coefficient in place of 
+ (m - n, u, c'). Also, let 

N = r r i ( z + z l ) +  ~ ~ i ( p + p ' ) .  
Then we have 

It therefore follows that, with the general coefficients adopted, there is no 
interchange of the functions B (z, 2') among one another; they change into 
other triply periodic functions % (2, z') with different general coefficients. 

There are corresponding laws of change for the functions 9 (2, z'), when 
the arguments are increased by linear combinations of half-periods, into the 
functions B (z, d ) :  this reciprocal property being, of course, due to  the 
periodicity of 8 (z, z') and of 9 (2, 2'). 
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I t  is to be noted that, in al1 these changes, the quantity u -  u' is 
unchanged : so that, when the coefficient Q, (m - n, a ,  d) is specialised into 
+ (2m + a - 2n - a'), the functions 9 (z,zl) are the same as the functions 
0 (z, z'). The functions 0 (2,  2') would then interchange for al1 these half- 
period combinations; these laws of interchange will be given in the table 

(P. 254)- 
Again, we have 

u + 2, a', z' 

0 ( p . p' . z,) = (- 1)" fj (P. p; 
u + 2 ,  0'+2, z a, O- ,  ' )  2' I 

where & ',), 6- ( P  ',), @- ( P  PI ') @+ (P' P' ') d&ved 
C,QlZ a, a ,  2 a, a ,  2' ' a ,  a', 2' 

from 0 4)  by changing its typical coefficient Q, (ni. - n, a, a') into 
a , a , z  

4 ( m - n , a -  l , a l ) ,  +(m-n,a,a ' - l ) ,  +(m-n- l ,a ,a l ) ,+(m-n+l ,a ,d) ,  
respectively, al1 these functions 0+, O-, @+, O- being triply periodic. Also 

=(-1~e-2~z2-rripp~+ 
4, u', z' + p' 

II. Let the coefficient in 0 be + (2m + a - 2n - a'), where $r is any even 
function of its argument except a constant or 

(mi+u- a&-u') 

always provided that the series converges. Then the sixteen functions 
0 (2,'') range themselves into two sets, the members of each set interchanging 
with one another for half-period increases of arguments, as in the first eight 
columns of the table (p. 254). 

III. Let the coefficient in 0 be a special case of the last, so chosen that 
+ + - 2n - ,+) = (2m-C~-2n-de 

- e&ri (z.m+u-z1~-d)~ - , 
where there are limitations upon the real parts of p + IC, p' + K, pp' + ( p  + p') 
necessary to secure the convergence of the functions 8. 
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The sixteen functions are now quadruply periodic (being the double 
theta-functions) : when we write 

ail = p + IC, ail = - K ,  an = pu./ + IC, 

the four pairs of periods and pseudo-periods are 

for z ,  1, O, 61, 
a n }  . 

z', 0, 1, a1.2, an, 

The three pairs of periods for the triple theta-functions are 

for 2 ,  1, O, (al1 + a,, =) p 

zg, O, 1, (ais + a 2 ~  =) P I  ). 
As already stated, the first four columns in the table give the laws of 
interchange for half-period increments when the coefficients in the triple 
theta-functions are quite general ; the first eight columns give the laws of 
interchange for half-period increments when these general coefficients are 
limited so as to secure that the triple theta-functions are, each of them, either 
an odd function or an even function of its arguments ; and now we add the 
result that the sixteen columns give the laws of interchange for half-period 
increments when the coefficients are further specialised so as to give rise to 
double theta-functions. 

150. With the definitions just given for a,,, a,,, a,, we write 

L = r i z  +*ri ( p  +IC)=T;Z+ t r i a , ,  

M =  rrid+)m'(pf+ ~ ) = n - i z ' + ~ r r i ~ ~  

N=rri(z+z1)+t7n ( p + p t ) = ~ i ( z + z i ) + f i i i ( a , ,  + 2a,,+an)J 

and then the table is as on the next page. 

151. Of the sixteen functions, whether they are the general ~roperly 
triply periodic functions or the more special quadruply periodic functions, six 
are odd, viz. O,, O,,, O,, O,,, O,,, O,,; and the remaining ten are even. 

The table enables us to deduce a number of irreducible zero-places for 
the functions, whether triply periodic or quadruply periodic, from the fact 
that the odd functions vanish a t  O, O. These zero-places are given, say for 
any function O,, by noting that 

so that z = + p  + *, z' = Bllu./ 1s ' a zero of 8,(z, z'), and so for the others in turn. 
The whole set thus deducible is given in the succeeding table (p. 255) : the 
first eight lines give the zeros when the functions are triply periodic and not 
quadruply periodic; the last eight lines give the further zeros when the 
functions are further specialised so as to become quadruply periodic. 
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m +=l 

Cs? m O 1 r i ? % %  I 

AX AX 
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But it must be remembered that each such picked zero is, for a single 
function, only a place in a continuous aggregate of zero-places : for any pair 
of functions, any simultaneous picked zero (such as O, O for 8, and 8,) is an 
isolated simultaneous zero. 

The table* of picked zeros is as follows :- 

Construction o f  functiona that are strictly periodic. 

152. The results of 3 142 shew that .each of the sixteen 8-functions is 
periodic in 1 and 0, save possibly as to sign; also in O arid 1, save possibly as 
to sign ; also in  p and p', save as to the factor exp (- 27riz - 27riz' - 7rip - m.p') 
and Save possibly as to sign. The actual periods (except for multiples of p and 

* Both the tmbles may be oompared with the table given by Konigsberger, Crrlle,  t. lxiv (1865), 
p. 25. 
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p', when the variable exponential factor occurs) for the functions are as 
follows :- 

O O 1 p, pl;  for doand BI*; 

1, 0 ; 0, 1 ; 2p, 2p' ; for O, and B8 ; 

2, 0 ; 0, 2 ; p, pl ; for 9, and 015 ; 
2, 0 ; 0, 2 ; 2p, 2p'; for 9, and ; 

2, 0 ; 0, 1 ; p, p' ; for 9, and BI3 ; 
2, 0 ; 0, 1 ; 2 t~ ,  2,u1 ; for and Bg ; 
1,O; 0 , 2 ;  p, p'; for 9,and8,,; 

1, 0 ; 0, 2 ; 2p, 2p1 ; for 9, and BIo 
Hence the fifteen quotients of any fifteen of the functions by the remaining 
sixteenth function are actually triply periodic (save possibly as to sign) in 
1, 0 ; 0, 1 ; p, the squares of these quotients are actually triply periodic 
in the three pairs of periods. And it may be noted that the eight quotients 

are actually triply periodic in 1, 0 ; 0, 1 ; p,  p'. 

The analogy of the quadruply periodic functions which arise out of the 
double theta-functions suggests that, for the triply periodic functions, we 
should take the quotients 

eT +- eI2, 
where r has al1 the values O, 1, . . . , 15 except r = 12. Triply periodic 
functions thus are secured without doubt,: but i t  must at  once be noted that 
the functions are tied as to their infinities. In the simplest case, when the 
0-functions are regular for al1 finite values of the variables, the infinities of 
each of the fifteen quotients are the zeros of O,, and are these alone. But 
such zeros are a continuous aggregate ; and so the simultaneous poles of the 
fifteen quotients, taken in pairs anyhow, are not isolated points : the fifteen 
quotients are tied, through the common occurrence of O,, in the denominator. 
The simultaneous zeros of any two of the fifteen quotients are isolated places, 
being the sirnultaneous zeros of the O-functions which occur in their nume- 
rators : and these constitute the whole of the zeros simultaneously belonging 
to two quotients for finite values of the variables. 

But, of course, the quotients indicated are, initially a t  any rate, not a 
potential aggregate of actually periodic functions. Thus, for any one of the 
9-functions, i t  is clear that the quantities 

log 9 
azTazls 

for integers r and s, such that r + s 2 2, will provide periodic functions : and 
so for other possible derivatives and combinations. 
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Later (§ 161), we shall return to the "double " theta-functions which arise 
as a particular set of these " triple" theta-functions. 

A property of uniform quudruply periodic functions i n  combination. 

153. We proceed to consider the level places of two uniform quadruply 
periodic* functions f (z,  z') and g (z,  z'), having four pairs of periods in 
the form 

Let a and /3 be two level values for f and g, so that 

If z = q, Z' = a,' be a place where f and g acquire the values a and ,d 
respectively, they will acquire these respective values a t  the whole set 
of places 

n,+p+rh+sp, ql+q+r)L'+sp', 

for al1 integer values of p, p, r, S. 

We have seen, in 5 138, that, by taking an associated two-plane repre- 
sentation for the real variables x, y, d, y', we can choose a unique point-pair 
&,Pl, where Q, lies in a parallelogram in the y, y' plane and Pl in a square 
in the x, x' plane, such that the point-pair &,Pl may represent the whole 
foregoing set of values equivalent to a,, ai.  We shsll say that the whole 
set of values is expressible by the point-pair &,Y,. 

Let z = a,, z' = a: be another place, not belonging to the set expressible 
by the point-pair Q,P,, wheref and g acquire the respective values a and 6 ;  
and let the whole set of places, equivalent to %, a,' by the addition of 
periods, be expressible by the point-pair &,Pz. 

And so on in succession, for places and sets of places equivalent to them, 
each new set containing no place belonging to any of the preceding sets. 
Each new set will be expressible by a point-pair, in the associated two-plane 
representation of the real variables x, y, x', y'. We thus obtain a succession of 
different point-pairs &,Pl, Q,P,, ..., expressing the succession of distinct sets 
of places where the functions f and g acquire the respective level values 
a and p. Each such set can be denoted by any one of the members of the 
set;  and from the construction of the sets, each set contains finite places in 
the field of variation. Let these finite places be denoted by a,, &'; G, a,'; ..., 
in succession, corresponding to the point-pairs &,Pl, &,Y,, . . . . We shall say 
that such a finite place z,, z,' is the iryedz~cible level place for its set. 

* An attempt to establiah the property for triply periodic functions, similar to that which 
foiiows for quadruply periodic functions, did not meet with success. 

F. 1 7  
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If the number of point-pairs QIP, ,  Q,P,, . . . , which thus arise, is finite, 
then the number of irreducible level places z, z', giving level values a and ,f3 
to the functions f and g,  is finite. 

If the number of point-pairs &,Pl, &,Pz, ... , which thus arise, is infinite, 
then within the finite y, y' parallelogram and the finite x, x' square, there 
must be a t  least one (and there may be more than one) liiniting point-pair 
QP such that its inimediate vicinity contains an infinite number of such 
point-pairs. We then, for al1 such point-pairs in that immediate vicinity, 
have an infinite number of finite places a, a', at  which the functions f and g 
acquire the level values a and f i  respectively. 

Now suppose that, for finite places in the field of variation, Our functions 
f and g possess no essential singularities. On this hypothesis, we know 
(5 121) that the level places are isolated, so that there cannot be an infinite 
number of those level places in the immediate vicinity of any one of them. 

The second alternative must therefore be rejected ; and so we infer the 
theorern :- 

The nuniber o f  irreducible leuel places, giving Eevel values a and ,i3 t o  two 
independent free uniform quudrz~ply periodic functions, is finite. 

154. I t  has been established for a couple of independent uniform 
functions in gerieral, and therefore for a couple of independent uniform 
quadruply periodic functions in particular, that the level places are isolated 
pair-places. Any such pair-place may be simple or multiple. Whether 
simple or multiple, i t  is isolated, provided the two functions are independent 
and free. 

Further, if a ,  a' is a simple level place fbr two independent and free 
functions f (z, z') and g (2, z'), such that 

f (2, 2') = a, g (2, 2') = P, 
so that it is an isolated level place of those functions for those values a and ,û, 
then there is one (and there is only one) simple level place in the immediate 
vicinity of a, a'-say a t  a + b, a '+  b', where / b ( and / b'/ are small-such that 

f (2, 2') = a + a', g (2, 2') = p + pl, 
where 1 a' j and 1 6' 1 are sufficiently small, and 

I ~ + U / I < I U I ,  la+PfI<IPI .  
For, by the theorems in Chapter IV and Chapter VII, if z = a + b, z' = a' + O', 
then we can write 

f (z, z') - a = f ( a  + b, a' + b') - a 

= n,,b + aolb'+ ..., 
g (2, 2') - B = g (a + b, a' t- b') - f i  

= clOb + c,, b' + . . . ; 
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and therefore, as the level place a, a' is simple, the equations 

q 0 b  + a0,bf + ... = a  
clOb+ coibf+ ... =@'  '} y 

for sufficiently small values of 1 a' 1 and ,B' 1, provide a single pair-value for 
b, b', where 1 b 1 and 1 b'l are small. 

Similarly, from the theorems in $5 113, 120-122, we infer that, when 
a, a' is a multiple lerel place of multiplicity M for two independent and 
free functions f (z, z') and g (z, z'), such that 

f (z,z ')  = 'l, g (2,~ ' )  = 6, 
so that i t  is an isolated level place of those functions of multiplicity M for 
those values, there are level pair-places (some perhaps simple, some perhaps 
multiple), in the iminediate vicinity of a, a'-say at a + b, a' + b' where b 
and / b' 1 are small,-of the same multiplicity M in additive aggregate for 

f (z, z') = a + a', g (z,  z') = /3 + P', 
where 1 a' / and p' 1 are sufficiently small, and 

la+a' ,< l a ] ,  I P + P f  < B .  
155. Now consider the total finite number of irreducible level places such 

that the uniform quadruply periodic functions f and g acquire the values a 
and p. The propositions just quoted shew that we can proceed from these 
values of the two functions to other values having smaller moduli: to any 
aggregate of level places at or near sny one place a, a' for the values a and P, 
there corresponds another aggregate of level places for the values a + a' and 
p + p, the corporate multiplicity of one aggregate being the same as the 
corporate multiplicity of the other. We can thus proceed from one pair of 
level values to another pair of level values for f and y-in the argument, we - 

have chosen a succession with decreasing moduli-without, at any step, 
affecting the corporate multiplicity of the level places. Moreover, in this 
succession, i t  is necessary to have only a finite range for z, and only a finite 
range for zt, because the ranges in the y, y' plane and in the x, x' plane in 
the two-plane representation described in 3 138, giving the finite irreducible 
places z, z', of $ 153, are finite. Hence we infer the theorem :- 

The number of irredmible level places, at which two indepetdent and 
free untyorm quudri~ply periodic functions f a d  y, having no essential 
singularity forjnite values of the variables, acquire Jinite values a und B, 
so that 

f (2, 2') = a. g (2, 2') = B, 
regard being paid to possible multiplicity of each such level place, is i ~ ~ d e -  
pendent of the actual level values acquired by the functions. I n  particular, 
the number of level places is the same as the nurnber of si~nultaneous zero 
places of two such functions, regard always being paid to possible multi- 
plicity of occul-rence at a level place or a zero place. 

17-2 
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The property also holds when the level value for either of the functions 
or for both of the functions is a unique infinity so that the level place is a 
pole (an unessential singularity of the first kind) for either of the functions or 
for both of the functions, as the case may be; it follows a t  once by con- 
sidering the reciprocal of the function or of the functions having the place 
for a pole. But care must always be exercised to inake certain that the 
functions are free as well as independent: thus the theorem would not 
apply to the poles of functions, such as 8, + O,, and 8,; 8,, of 5 152, because 
the poles, so far from being isolated, are the continuous aggregates of zeros 
of the function dl,. 

But the unessential singularities (the unessential singularities of the 
second kind) of a single function are isolated; and when two functions are 
considered sin~ultaneously, their unessential singularities are not necessarilp 
(and are not usually) the same places. Hence the theorem does not apply 
to unessential singularities. 

And the theorem does not apply to essential singularities. 

If, then, we adopt a more comprehensive definition of level places and level 
values, the first including ordinary places and poles, and the second including 
zeros, finite values, and unique infinite values, we can say that the number of 
irreducible level places of two independent and free uniform quadruply periodic 
functions, having no esseîatial singularity for  Jinite values of the vuriables, is 
independent of the actual level valu,es, regard being paid to possible multiplicity. 

This integer, being the number of irreducible level places of the two 
functions when regard is paid to possible multiplicity, will, after Weierstrass*, 
be called the grade of the pair of functions. 

Algebraic relations betuleen functions. 

156. Now consider two uniform quadruply periodic functions f (2, 2') 
and g (2, 2')-say f and g-which are independent and free ; and let them be 
of grade n, so that there are n irreducible places giving level values a and ,û 
to f and g. 

Let h ( 2 , ~ ' )  be another uniform function, homoperiodic with f and y. At 
each of the n irreducible level places off and g, the uniform function h has a 
single definite value; and therefore, a t  the aggregate of those places, there 
are n values of h in d l .  Hence there are B values of h corresponding to 
assigned values off and g ; and these n values arise solely from the vdues of 
f and g, without any intervention of the variables z and z' beyond their 
occurrence in f and y. Consequently, there is a relation between f, g, h, 

Crelle, t. lxxxix (1880), p. 7; Ges. Werke, t. ii, p. 132. 
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which is of degree n in h ;  the coefficients in this relation are functions of - 
f and g alone. 

Next, suppose that f and h, being uniform quadruply periodic functions 
of z and z', are independent and free; and let them be of grade m. Also 
suppose that g and h are independent and free ; and let them be of grade 1. 
Then an argument, sinlilar to the argument just expounded, leads to the con- 
clusion that the relation between $, g, h, already known to be of degree n in 
h, is of degree 1 in f and of degree m in g : i t  is an algebraic relation. 

Of the n values of h, corresponding to assigned values off  and g, i t  can 
happen that several may coincide for some not completely general assignment 
of values. But if this coincidence occurs for completely general values of 
f and g, the values of h coincide in groups of equal numbers; and the 
number of values of h, corresponding to assigned values of f and y, is a 
factor of m. Hence we have the theorem*:- 

1. Between any three uniform functions, which are homoperiodic in 
the same four period-pairs and which taken in pairs al-e independent 
und free, there subsists an algebraic equation: the degree of this equation 
in each of the functions either is equal to the grade of the other two 
fwnctions or is equal to  some integral factor of that gmde. 

I t  is assumed explicitly that the functions, in pairs, are independent and 
free; and the only level places that have been used for the functions are 
such as give finite level values to the functions. But i t  may happen that 
two functions, independent of one another, and free for al1 finite values 
(including zero), are tied as regards infinite values. Thus the quadruply 
periodic functions, which arise as the quotients by O,, of' the quadruple 
theta functions other than 8,,, cannot be estimated for grade by their 
infinities ; their infinities are given by the zeros of O,,, and (except for the 
irreducible isolated unessential singularities, limited in number) they are 
the same for al1 the quadruply periodic functions so framed. These functions 
therefore, while they are independent, are tied as regards their infinities. 

The foregoing theorem is still true for these uniform functions : there is 
nothing to traverse the argument at any of its stages. But the effect of the 
tie, in connection with the infinities, is to sinlplify the forni of the algebrsic 
equation. We can suppose that the latter has been made rational and 
integral. The three functionsf, g, h are infinite together and only together; 
and therefore the ternis of the highest aggregate order in al1 the functions 
conibined will, by themselves, give relations among the parts off ,  y, h that 
govern their infinities. 

* This theorem, and several of the theorems that follow, were enunciated by Weierstrass for 
2n-ply periodic uniform functions of n variables. The enunciations, iu most instances, are not 
accompanied hy proofs; they are to be found in his memoirs, Berl. Monatnb. (1869), pp. 853-857, 
ib .  (1876), pp. 680-693, and Grelle, t, lxxxix (ISEO), pp. 1-8; see also hi8 Ges. Werke, t. ii, 
pp. 45-48, 55-69, 125-133. See also Baker, MuZtiply periodic functions, ch. vu. 

IRIS - LILLIAD - Université Lille 1 



262 ALGEBRAIC RELATIONS BETWEEN [CH. VIII 

157. Among the functions related to any given uniform quadruply 
periodic function of two variables are its two first derivatives, which mani- 
festly are homoperiodic with the function. Moreover, al1 the infinities of the 
original function are infinities (as to place, but in increased order) of the 
derivatives; and they provide al1 the infinities of these derivatives. 

The foregoing theorem, when applied to a single function, leads to the 
result, practically a corollary :- 

II. A n y  unqorm quadruply periodic function f (2, 2') and i ts  jbs t  

af af derivatives - and -! are connected by an algebraical equation. Tl'hen az az 
the equation i s  made rational and integral, the aggregate of the t e m s  
of highest order gives relcrtions anzong the constants of the infinities of 
. f and its derivatives. 

Thus a quadruply periodic uniform function of two variables satisfies a partial 
differential equation of the first order, just as a doubly periodic uniform 
function of one variable satisfies an ordinary differential equation of the 
first order. 

158. We return to homoperiodic functions. For purposes of reference 
among them, we select three uniform functions f, y, h, of the character 
prescribed in theorem 1. 

Now let k (2, 2')-say k-be another uniform function, homoperiodic with 
f, g, h ; and let i t  be untied with any of them. Then between ,f, g, Ic there 
subsists an algebraical equation, the degree of which in k is either n or is a 
factor of n :  taking the degree as n, we can denote the equation by 

Also, between h, k there subsists an algebraical equation, the degree of 
which in k is either m or is a factor of m:  taking the degree as nt, we can 
denote the equation by 

B (f, IL, I c )  = 0. 

Similarly, there is an algebraical equation 

C (y, h, k) = 0, 

which is of degree 1 in F c ;  and there is the original algebraical equation 

which is of degree 1 in J of degree m in y, and of degree n in h. These 
equations are necessarily consistent with one another ; thus the Ic-eliniinants 
of A - O  and B=O,of B = O  and C=O,of C=O and A=O,allvanish in 
virtue of D = 0. 

IRIS - LILLIAD - Université Lille 1 



1581 HOMOPERIODIC FUNCTIONS 263 

These Ic-eliminants can be formed by Sylvester's dialytic process, because 
al1 the equations are algebraic; and an added use of the process leads to 
another important result. The equations 

are a set of m + n - 2 equations, linear and not homogeneous in the m + 12 - 2 
quantities k, k2, . . . , When these are resolved for the nL + n - 2 quan- 
tities, we have expressions for the various powers of Ic (in particular, for k 
itself) rational in the quantities y, h and reducible, by means of D =O, so 
as to contain either f to no degree higher than 1 - 1, or y to no degree higher 
than m - 1, or h to no degree higher than n - 1. Paying no special regard 
to these degrees, but noting the assumption made as to the degree of the 
equation A =O, we have the theorem :- 

III. When f and g are uniforrn functions, quadruply periodic in the 
same periods, and are of grade n, and when h is aq~other uniform functîon, 
which is homoperiodic with f and g, and which takes n disti,nct values at 
the reduced point-pairs deternzined by giuen ualues o f f  and g ;  then any 
o thr  uniform fzinction: which is homoperiodic with f and y, can be expressed 
rationally i n  terrns o f f ,  y, and h, provided every two of the four functions 
are independent and free, and provided also no one of the functions h m  
an essential singularity for Jinite values of the uariabb. 

And, as before, we have a corollary to the theorem, as fo1lows:- 

IV. When two uniform quadruply periodic functions f (2, 2') and 
g (2 ,~ ' )  are indepedent and free, and when neither qf them has an essential 
singularity f o ~  jîfilaite values of the variables, then y (2, 2')  can be expressed 

af af rationally in  ternu of - -, - and f (2, 2') can be expressed rationally 
a2 a;, 

aY 9 i n  terms of g, -- a~ a ~ '  ' 

Note. But just as there was possible degeneration of degree in the 
equation D (f, g, h) = O, so i t  might conceivably happen that, owing to the 
equation D (f, g, h)  = O ,  the actiial expression for k: might not be deter- 
minate. But this indeterminateness would not occur for every power of k ;  and 
so we should then only be able to infer that some power of Ic is rationally 
expressible in terrns of f, y, 15. Such cases occur when the fundamenta1 
periods of the functions considered are only commensurable with one another 
and are not exactly the same for al1 the functions. The exceptions may be 
wider than the exceptions of the same kind in the case of doubly periodic 
functions of one variable, though they will cover the generalisation of siich 
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apparent (but only apparent) exceptions to Liouville's well-known theorem 
which might imply that cn z and dn z are expressible* in the form 

where P and Q are rational functions of snz. 

159. Next, consider two uniforrn functions f (z, z') and y (2, z'), homo- 
periodic in the same four pairs of periods; and, as usual, assume that they 
are independent and free, their grade being n, and that they have no 
essential singularities for finite values of the variables. Their Jacobian J, 
with respect to the independent variables, is 

It is a uniform function, homoperiodic with f and g ; consequently it satisfies 
an algebraical equation, which has rational functions off  and g for its co- 
eEcients, and the degree of which in J  is either n or a factor of n. Moreover, .- 
as f and g are uniform, infinities of J can arise only through infinities off or 
of y or of both ; and no irifinity of J can arise from finite values off or of 
g, or from any integral relation between f and y satisfied by finite values of 
f and y. Hence, when the algebraic relation between J , f ,  y is completely 
freed from fractions, the coefficient of the highest power of J  is a constant; 
and the degrees in  f and g of the succeeding powers of J  are limited. To 
indicate the limits, take the simplest forms of two extreme cases : 

(i) when f and y are con~pletely free as to infinities: 

(ii) when they are conipletely tied as to infinities-in such a way as are 
e.g. the periodic functions indicated in § 152. 

In  the former case, consider the vicinity of a simple simultaneous pole 
of f and g ; then we can take, in that vicinity, 

where V and S have a simple simultaneous zero at  the place. Then 

where T is a uniform function, regular, and usually not vanishing a t  the place. 
The place thus is an infinity of J, as is to be expected : manifestly i t  is of 
order 4. Hence in this case, the algebraic equation (taken to be of order n in 
J )  must be such as to provide infinities of order 4 for J; hence the coefficient 

+ The explanation, of course, is that sn z, on z, dnz  do not possess the same fundamental 
periods. 
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of Jn-' is a polynomial in f and g of order not greater than 4n', while for 

some value or values of n', anlong 1, 2, . .. , n, i t  must be of order 4n'. 

I n  the latter case, we c m  take 

where the infinities of the functions (now tied) are given by V = O ; then 

where W is a uniform function, regular, and usually not vanishing with V. 
The place thus is an infinity of J, as again is to be expected ; manifestly i t  is 
of thrice the order for f and g. As in the preceding case, the coefficient of 
J**' is a polynomial in f and g of order not greater than 3nf,  while for some 
value or values of n', among 1, 2, ..., n, i t  must be of order 3n'. 

Other orders of infinities belonging to f and g will lead to other degrees 
for the polynomial coefficients in the equation. In al1 instances, we have the 
theorem :- 

V. The Jacobian J of two zcniform qrmdruply periodic functions 
f and g, which are independent and free, and which have no essential sin- 
gularities for Jinite vulues of the variables, satisjies an algebraic equation; 
when th& equation is of degree n, the coeficient of Jn is  unity and the 
coejicient of Jn-' is a polynomial i n  f and g, of degree not greater 
thalz 4nt, for n'= 1,2, . .. , n. Also, n is either equal to the grade of 
f and g, or is a factor of that grade. 

160. Combining this result with the earlier theorems 1 and III, we have 
the fiirther theorem :- 

VI. When f and g are uniform fmctiom, quadruply periodic in  the 
same pe~iods and of grade lz, and when the algebraic equation satisjed by 
th& Jncobian J is  of degree n, uny uniform function, which is homo- 
periodic with them, can be expressed rationa2Zy in  terms o f f ,  g, and J,  
provided no two of the functions are tied as to level values, und provided 
neither of the functions has an essential singirlarity for jinite values of 
the variables. 

I n  particular, for such functions f and y, we have the relations 

af 
- = FI (f; g, J ) ,  2 = QI (f, 9, J), a~ 

where FI,  F2, G,, G2 are rational functions of the arguments. The algebraic 
relation 

J =  FlG2- F2Gl 

must be satisfied in virtiie of the algebraic equation betweenf, g, and J. 
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The quadruply periodic functions which am'se out of  the double 
thta-fumctions. 

161. I t  is desirable to have some special illustrations of the foregoing 
general propositions relating to periodic functions of two variables. 

Accordingly, we assume that the coefficients C$ (m - 71, a ,  o') of the triple 
theta-functions are so specialised as to yield the double theta-functions, 
periodic or pseudo-periodic in four pairs of periods, always limited so as to 
secure the convergence of the double series. Moreover, we shall assume that 
our functions have no essential singularity for finite values of the variables- 
an assumption which requires the theta-functions to be finite (as usual) over 
the whole field of variation given by these finite values. We thus have ten 
even functions, viz., O,, 4 ,  O,, O,, d,, 8,, O,, O,, el,, O,,; and six odd functions, 
viz., O,, B,, el,, el,, el,, B,,: al1 these being fiinctions of z and z'. 

When z = 0 and z l =  0, the six odd functions vanish. The ten even 
functions then acquire finite constant values which are denoted by c,, cl, c,, 
cg, c4, CG, CS, cs, c12, CIE respectively. 

The effects upon any function B of a period-increment in the 

various cases are given by the relations 

and by derivatives froni these relations. The effects upon the sixteen 
functions, by way of interchanges consequent upon half-period increments of 
the arguments, are given in the full table on p. 254. 

Among the even theta-functions, the siinplest relationsf are as follows 

CO 8: - claa BllS = cl2 0: + c: 8: = C: 8: + cg eO2 

* These are taken from my memoir, Phil. Trans. (1882), pp. 783-862; they occur in many 
of the memoirs there quoted, end in others, relating to the subject, as well as in treatises such as 
those of Prym and Krause. Much algebraioal discussion of the properties of the functions will 
be fonnd in Brioschi's memoir, Ann. di Mat., 2da Ser., t. xiv (1887), pp. 241-344, and Opere 
Matematiche, t. ii, pp. 345-454. Reference d s o  may be made to Baker, dbelian Functions, 
ch. xi, and Multiply Periodic Functimzs, ch. ii, end notes, p. 327. 
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and others derived from these by linear combinetions. The simplest relations 
among the constant values of the even functions when the arguments are 
made zero are the sets : 

~ , 4  - cl: = C$ + C: = cZ4 + CQ 

c:-cl:=,+cg=c14+c~ 

1 CO-c: =c,4+c;=c:+cQ , 

J 
and others derived from them : as well as the sets of simple biquadratic 
relations, 

col cl: = c42 cgZ + c: cl," 

c~~ = c: cg2 + cc , 
cos C? = C: ci2 + cl? ci5' 

c: c: = c: c: + c: cl: 

C: C: = c~~ C: + C ~ Z  c,: , 
c,zc,z= c,"c:+ c:cy 

6-02 CS = cl2 cg2 + cJa cl? 

1 
c~cg2=c~cgl+cg2~, :  , 
c: ca = c,z c,2 + cd2 c: 

cz2 c: = c: cg2 + cg2 clS2 

1 
I c,2 cJa = cl2 C: + ci1 cl: , 

ca ci: = cg2 cg2 + c: c , ~ ~  

c: cg2 = cgZ cg2 + c: cl: 

I 
cg2 cg2 = c: cy + c i  cl: . 
ciS cl: = c42 c: + c: c152 

terms of the even functions, are the set 

1 
Among the simplest relations, expressing the squares of the odd functions in 

cl," 8; = - c,Z 82 + c,Z eg2 + C: 8,; 

c,: 0," - C C , ~  eg2 + C: e: + c~~ eIaZ 
c,2 8,: = cg2 8: - c3  81 - c~~ 

C: el12 = cl: e,z - 0; - C: 8: 

1 
\ >  

c,,"~~~ = c,," 8," + c4 8: - C: 8,; 

c 3  8,: = cl? 8,' - c," 8: - C: 81531 

as well as others derived from the relations, among the even theta-functions 
above given, by using the table on p. 254 for interchanges among al1 the 
functions for half-period increments. 
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Lastly, for the present purpose, it is sufficient to give the three relations 

connecting the squares of odd functions alone. They c m  be derived from the 
relations connecting the squares of the even functions alone, by using the 
same table of interchanges for half-period increments of the variables. 

As regards the odd functions, we write 

where the expressed terms are the terms of the first order, and p has the 
values 5, 7, 10, 11, 13, 14 ; and we have 

162. Al1 the relations thus far given, connecting the theta-functions, and 
connecting the quotients of the theta-functions, are quadratic in form. In 
each relation, there are three such quotients. Every function involves two 
independent variables z and 2'; and therefore i t  is to be expected that each 
of t,he functions is expressible algebraically in terms of two new independent 
variables. This expectation is justified by the detailed results and properties 
of the double theta-functions which give rise to the hyperelliptic functions of 
order two, being quadruply periodic functions ; and the actual forms can be 
expressed as follows. 

We take five constants a,, a,, a,, a,, a,, unequal to one another; and we 
write 

am - an = mn, 

for al1 the five values of rn and of n, avoiding equal values, avoiding also some 
other similar limitations that obviously are to be avoided. Two variables 
r and are introduced; and we write 
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Two other variables rc and u' are introduced, being defined by the equations 

The variables r and are, in general, uniform quadruply periodic functions 
of u and u'; for sufficiently stnall values of u and u', we have 

where the unexpressed terms are of even orders (beginning with the order 4) 
in u and u' combined. 

The fifteen quadriiply periodic functions of z and z', arising frorn the 
quotients of the double theta-functions, are algebraically expressible as 
follows :- 

O,,+ O,, = (12.13.14. 15)-dp1 

O,, t O,, = (21.23.24.25)-+JI, 

O, + 8,, = (- 31.32.34.35) -4p, 

O, +- 8,, = (- 41 . M .  43.  45)-tp, 

O, + O,, = (51 .52 .53 .  54)-ip, 

i 
s , l + e , , = ~ 1 3 . 1 4 . 1 5 . P 3 . 2 4 . 2 5 ) - t p l ,  
B, t O,,= (12.14.15.32.34.  35)-ip,, 

6, + O,, = (12 -13 .15 .42 .43 .45)  

O, + 8,, = (- 12.13 .14 .52 .53 .  54)-ip,, 

6,, + el,= (21.24.25.31.34,.  35)-ip, 

8. t RI, = ( 2 1 2 3 . 2 5  4 1  43. 45)-ip, 1 
8, + @,, = (- 21.23.24.51.53.  54)-tp,, 1 
6, + O,, = (31.32.35.41.42. 4.5)-àp, . 

O, t O,, = (31.32.34.51.52.  54)-iy,5 1 
I el,+ e,,=(4i.42.43.51.52.53)-fp, , 

where 
p? = (ar - r )  (% - r), 

for T = 1, 2, 3, 4, 5 ; and 

for al1 the ten combinations of r and s from the set 1, 2, 3, 4, 5. 
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The constant values of the even theta-functions for zero values of the 
variables are related as follows: 

The lowest terrns in the odd theta-functions are as follows :- 

The relations 
z and z', are 

between the two variables u and u', and the two variables 
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The quadruply ~eriodic functions of z and z' are quadruply periodic functions 
of u and u' : and conversely. 

Finally, derivatives of any function, of the first order with regard to u and 
LL', are linear combinations (with constant coefficients) of its derivatives of the 
first order with regard to z and z'. 

Ezamples of the theorems in §§ 156-160. 

163. Adequate illustrations of the first theorem, in !$ 156, are provided 
through the homogeneous relations among the theta-functions which have 
just been stated. Each of them, when divided throughout by the appropriate 
power of O,, gives a relation among strictly periodic functions. Many other 
such relations are giren in the memoir by Brioschi already quoted (p. 266, 
note); and many can be deduced from the algebraical expressions for the 
functions p in ternis of the variables 5 and y. Amoiig them, we select the 
following, as being of particular use in the succeeding investigation:- 

PT= $ PS= + pta = 
rs . rt sr. st tr . ts 1, 

where rs =a,  - a,, and so on, and r, s, t are any three of the iiitegers 
1, 2, 3, 4, 5 ;  also 

( ~ t )  prprt + ( t r )  pspsl+ ( Y S )  ptptl= 0, 

where r, s, t, 1, 7n are the integers 1, 2 ,3 ,4 ,5 ,  in any order. Tliese examples 
will suffice for the present requirement. 

164. We now proceed to give an exaniple of theorein II, in § 157, by 
forming the partial differential equation of the first order which is satisfied 
by the uniform quadruply periodic function p,. 

Froin the values of u and u', expressed in ternis of r and by means of 

?C 3 % Using the ex- definite integrals, we have the values of - 
au, au au1' aup .  

pression for p: in terms of and c', we find 
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and therefore 

Now, for the values r = 3, 4, 5 in particular, we have 

so that 

on substituting the foregoing values of T and 7'. Thus, if we write 

where a, 8, y are temporarily used to denote the combinations of pi and 

Again, from the values of the functions in terms of (and r, we have 

and therefore 

Also 

so that 

say ; and similarly 
54 51 

p:= 5 1 . 5 4 +  - p i s + - p n 2  14 41 
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say. Thus 
a" 8' q - / - 
31 pi" 

c + &ïp,2 

Tliese twn qiindratic equntions satisfied by p) can be writtcn 

cpr - (L-p-Cc')p,2+pc1=0, 
Ap2- (N-p"Ad)l);+P2a'= O ;  

where 

Eliniinnting y: between the two eqiiatioris, we find 

{ ( L  - /3 - Cc') a' - ( N  - p2 - Aa') c'} { (N - 62 - Au') C - ( L  - ,@ - Cc1) A\ 

= 8" (Ac' - Cd)',  

which is a form of the partial differentinl erluation of the first order sntisficd 

I.~Y Pl. 
It is desirable thnt the equation shoiiltl be simplified ; the vivioiis 1.e- 

tliictions are inere cxercises in algebi-a. WC fintl 

A - C =  53 ( 1 2 .  14 -plz), 
so t h t  

nlso 

As rcprds thc pnrts involviiig dcrivnt,ivcs, wc Imvc 

(L- - )a ' - ( (N-B' )c l  
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or1 siibstitiition for tu, /?, y ;  and, siinilarly, 

( N - p ) C - ( L - p "  A 

Herice tlie diffcrential eqiiation for 21, takes the forni 

= (24. ql + 14 . q;)? X;, 
where the vxi-iiniis sgnibols in the equxtion (which ïnnnifestly is of the first 
oiulci., and of the foiii.tli degree, in the clerivativcs o f p l )  h n ~ e  the valiws 

XI = (12.14 -p l2)  (13.14 -p,2) (14.15 -p l9)  

X ,  = (12.13 -p:) (12.15 -p l2 )  (13. Ili -pl9)  . 
X,=12 .13 .14 .15 -p ,4  1 

The infinity of pl at  nny place being of order K, that of q, a t  the place and 
that of q,' a t  the place are tc + 1 ; fronl the ternis of highest order in the 
infinities, as they occiir in the differential equation, we have (as these ortlers) 

8rc +4 ,  1 O / c +  2, 12/c, 10rc+2, 

which are the same when IC = 1 : that is, any infinity of pl is siinple. The 
result is to be expected because p, is a constant multiple of 8,,81,-1 : so thnt 
an infinity of pl is a zero of el,, that is, i t  is simple. The ternis of higliest 
nrder also provide relations ainong the constants connected with any siich 
infinity : but these are not oui- present concern. 

165. The partial diffcrcntial equation of the first order for any other of 
the fiinctions p can be constructed in the same manrier; in particulai; the 
equation satisfied byp ,  can be derived from the equation satisfied byp,, throiigli 
interchanging pl and pz,  qi and q,', q,' and q2, a, and a,, where 
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aiiiong the theta-fhnctions, by using the cxprcssioiis for the constants c and 
1s a con- the quotients of the theta-fiinctions, and by observing that 818,,8,,-' ' 

stant iii~ltiplc of the quantity ~lcnotcd by y aiicl that 828,8,,-2 is a constant 
iiiiiltiple of the quantity clenotcd by P. 

A third proof cm be fiainecl by notiag the filet that 

a ion is satisfiecl by p = r ancl p = 1;') so tliat the quartic cqu t' 

lias 5 and 5' for its roots. The analytical cvnditions for this propcrty of the 
quartic equation ultimately lead to the partid differcntial ecluation of the fiist 
order satisfied by pl. 

166. The analysis in the preceding investigation lcads to CL siiiiple 
illustration of theoreins III and IV,  in 5 158. I t  inust, liowever, be borric in 
niincl that those theoreins refer to fiinctions tliat are lioiiioperiodic. 

Now the functiuns p, and p, are not honloperiodic: tlieir pcriods are only 
corninensurable. But the fiinctions pi2 and pi2 are honioperiadic : and there- 
foie by the theoreiii IV ,  we iiiust lmve p,S expressible iationally in terms uf 

plZ and its first dcrivi~tivcs, that is, expressible r;~tioidly in tcrnis of' 
pl, y1> q1'. 

The two yudratics that occur in the iiivestigation give 

or, with the preuecling riotation, 

su that we cari deduce at  once ;L ratiurd exprcssioii foi p,," iii tciiiih of' 

pl ,  y ,  y,'. Expressioiis for p,, p j ,  pl:;, plj can Lc! tletivetl by iritercharige of the 
constants u,, a,, u 5 ;  and cxprussions f~w the rciiii~iiiiiig fiinctions caii be 
derived by siinultaneoiis intcrch;~iigcs of the variddes I I  aii(1 16' aiid uf the 
constants CL, and CL,. 

As an illiistratiori of theoreiii V in 5 1.59, coiisirlcr the Jacobi;rii of'iiiiy t~ O 

f~~nctions p,., p, : and let 
Y,S, l , 7 1 1 J  l L = l )  2) 3, 4, 5,  
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in any order. We have 

JI2 pS2 ' ~ - L - L  p ?  " )(( -  35 i2 ~2 ) 
" - ( i ' l  . Y'S s1.sY') ! T>iL . 1 1  SVL.  s1- 1 . YS Si2 . S?' ' 

so that the square of the Jacobiari of pl. and p, is an even polynoiiiial in T ancl 
s of joint clegree six. 

Siinilarly, we firitl 

1 
= 12J (p,?'+p;. st - P I I L .  r..n . s t ]  {pl,;' + p T a .  srth - rn. r t  . s n ~ ]  

aiid so for othei iristmces of Ji~cobiaiis. 80 long as the Jacobians are foriiicd 
froiil itriy twu of' the fifteen fiinctions, the algebraical equation between two 
fiirictioiis ;ind theii  Jacobian is of even d e p e e  in the Jacobian. It is ektsy to 
verify that 

1 J (~rrn ,  pvn)lZ 

is  an  even polyiiuiiiiul in p,.,, ancl p l ,  of degree six ; and froiii generul cuu- 
üidemtioiis (but withoiit havirig constructed the respuctive uyu:ttioiis) 1 irifUr 
that 

J ( p r ,  pst), J (prm, p,t) 
each of theni sntisfy aii eyuatioii, quaitic in its owri Jacubiui m d  of the 
degrec! twelve iii tlic teriii fi-ee frorn the Jacobian. 

As a. last illustration, consider a special case of theorem VI  in  § 160. 
The derivative of y, with respect t u  u, alieady dcnoted ($164) by q,, is quadrupl? 
pcriodic. I t  is hoiiioperiudic with p,; but it is not hoinopeiiodic with p., 
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their periods being only coinn~ensurable. But q:, pi: % h r e  hoiiioperiodic : 
and therefore, by the theorem, q,Z is rationally expressible in terrils of p:, p2, 
and the Jacobian of p,8 and p2; that is, qlGs rationally expressible in terms of 
pl, p,, and J ( p l ,  pJ. The actual expression can be obtained in a variety of 
ways, requiring mere algebra for the purpose. Proceeding from the relation 

already obtained for q,, we find ultirnately the following resiilt. Let 12, Ir, ... 
tlenote al - a,, a, - a,, . .. as usnal ; write 

A = ip,2-p:)?- 2 .  1 2 2 ( p 1 1 + p ? )  + l S J ;  

K,. =pz2  - pl2 + 12 ( I r  + 2r), for r = 1, 2, 3, 4, 5 ; 

and, for any quantity 4; let 

i f  + 4 < 5: + 4 ( E  + lc4) ( f  + 4 
= p + s l f 3 + & p + s 3 f + S 4 .  

Then a rational expression for q,2 is 

64.p,1127.A+128.127p,3p,J(p1,p2) 

= (fi4 + &A + A') ( ~ A c , A  + x13) - (S3 + &A)  (31c12A + A'). 

Other examples can easily be indicated: these will suffice for the pi.esent 
purpose. 
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(The nustbevs refer to the puges.) 

Abel's theorem partially extended to double 
integrals involving a couple of algebraic 
functions of two independent variables, 
193-197. 

Accidental singularity, 61 ; (see unessential 
singularity). 

Algebraic functions in general, 61, 170 et seq. ; 
rational functions, involving one algebraic 
variable, 171, and two algebraic variables, 
173; integrals of, 178 et seq. 

Algebraic relations between homoperiodic 
functions, 261 et seq. ; illustrations of, from 
hyperelliptic functions, 265 et seq. 

Analytic function, 59. 
Analytical continuation, 60, 80. 
Appell, 147, 235, 239. 

Baker, H. F., 110, 131, 261, 266. 
Berry, 170. 
Borel, 77, 78, 126. 
Boundaries of a region for certain fields of 

variation, and their frontier, 20, 24. 
Brioschi, 266. 
Bromwich, 72. 
Burnside, W., 26, 58, 237. 

Campbell, 42. 
Canonical form of lineo-linear transformations, 

26;  leads to powers of the transformation, 
28 ; 

of equations for quadratic frontier, 51; 
of rational functions which involve 

algebraic variables, 171, 173. 
Castelnuovo, 170. 
Cauchy, 4. 
Cauchy's theorem as to the integral of a 

function of a single complex variable ex- 
tended by Poincaré to functions of tmo 
complex variables, 13, 159. 

Conforma1 representation with one variable 
extended to tmo variables, 18. 

Continuation of regular functions, analytical, 
80. 

Continnity of a function, region of, 81, 82, 86. 
Continuous function, 59. 
Continuous groups, Lie's theory of, applied to 

determine invariants and covariants of 
quadratic frontiers, 40, 42. 

Contour integrals, as used by Cousin, 131 et 
seq. 

Cousin, 130, 147. 

Dautheville, 80, 126. 
Dependent variables, number of, 2 ;  used for 

a kind of inversion, 4. 
Divisibility (relative) of two regular functions, 

112. 
Domain, 57. 
Dominant function, 71. 
Double-integral expressions connected a i th  

coefficients in the expansion of regular 
functions, 64. 

Double integral for real variables, application 
of theorem by Stokes on, 157. 

Double integrals, defined for two complex 
variables, 154 ; Poincaré's extension of 
Cauchy's theorem for functions of a single 
variable, 159 ; residues of, with examples, 
160 et seq. 

Double integrals of rational funotions in- 
volving two algebraic variables, 187 ; 
equivalent forms of, 189 ; conditions that 
they should be of the first kind, 190 ; 
Abel's theorem partially extended ta, 
193. 

Double theta-functions, 249, 253 et seq. 

Enriqnes, 170. 
Equivalent functions, 134, 141. 
Essential singularity, 61, 83, 119, 123 ; be- 

haviour of a function at and near an, 77, 
83; functions devoid of, 125. 
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Field of variation, in general, 57 ; for periodic 
functions, with one pair of periods, 224; 
with two pairs of periods, 225; with three 
pairs of periods, 231; with four pairs of 
periods, 236, together with a modified tmo- 
plane representation of the variables, 237. 

First kind of double integrals, conditions for, 
190; extension of Abel's theorem to, 
193. 

First kind of single integrals of algebraic func- 
tions of tvo variables, 178 ; initial condition 
as to form of subject of integration, 180; 
equivdent forms of, 180, with the necessary 
relations, 185 ; do not exist for general 
eqnations, 187. 

Four-dimensional space, used to represeut two 
variables, 5 ; used by Poincaré in connection 
with double integrals, 153. 

Free functions, 208; propertiea of two, 209- 
212. 

Frontier of a region in certain fields of 
variation, 20, 24 ; its analytical expression, 
21 ; invariantive, for lineo-linear transforma- 
tions, 32 ; quadratic, 34. 

Functions devoid of essential singularities, 
everywhere, 125; in the finite part of tlie 
field, 130 et seq. 

Geometrical representatiou of two variables, 
Chapter 1 ; in four-dimensional space, 5 ; by 
means of a line in ordinary space, 7 ;  by 
means of two planes, one for each of the 
variables, 13. 

Gordan, 25. 
Grade of two uniform qoadruply periodic 

functions, 260. 

Hadamard, 126. 
Hartogs, 62, 123, 131. 
Hermite, 4, 131. 
Hobson, 1. 
Homoperiodic functions, algebraic relations 

between, 261 et seq. 
Humbert, 170. 
Hurwitz, 126. 
Hyperelliptic fonctions of order two used to 

illustrate algebraic relations between homo- 
periodic functions, 265 et seq. 

Independent functions, 208. 
Infinitesimal periods excluded, 213-216. 
Integral function, 60. 
Inteprals, of functions of two variables 

(Chapter VI) ; of algebraic functions, 178 
et seq. 

Invariant centres of lineo-linear transforma- 
tions, 29. 

Invariantive frontiers for lineo-linear trans- 
formations, 32; simplest forms of, 34, 37. 

Invariants and covariants of quadratic frontiers, 
39; invariants alone, 48. 

Inversion, a kind of, 4. 
Irreducible places of quadruply periodic func- 

tions, 257 ; any set expressible by a single 
place in an associated two-plane representa- 
tion, 257; their number for level values of 
two functions is finite, 258, and is indepeu- 
dent of those level values, 259. 

Jacobi, 14, 26. 
Jacobian of two homoperiodic functions, 264 ; 

used, in connection with tlie two functions, 
for the rational expression of other homo- 
periodic functions, 265 ; equation satisfied 
by, when they are hyperelliptic, 275. 

Jordan, 26. 

Konigsberger, 255. 
Krause, 266. 
Kronecker, 4. 

Laguerre, 126. 
Larmor, 157. 
Laurent's theorem extended to functions of 

two variables, 87-91. 
Level places of two uniform fuuctions 

(Chapter VII) ; must exist for assigned 
values of the functions, 203. 

Level values of a regular function, 108; order 
of, 111. 

Levi, E. E., 123. 
Lie, 25, 40, 42. 
Line in space used to represent two complex 

variables simultaneously, 7 ; limitation6 
upon use of whole line, 11; by means of 
the points where i t  cuts two parallel 
planes, 12. 

~ineo-linear transformations, Chapter II ; 
canonical form of, 26 ; powers of, 28 ; in- 
variant centres for, 29; invariantive frontiers 
for, 32 ; property of, when coefficients are 
real, 35; periodic, 52. 

Lines, Volterra's functions of, 13. 

Meromorphie function, 61. 
Multiform function, 58. 
Multiplicity, of a simultaneous zero of two 

uniform functions, 168; expressed as a 
double integral, 169; of a level value of 
two functions, as a double integral, 169. 
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Nœther, 170. 
Non-essential singularity, 61 ; (see unessential 

singularity). 

Order of multiplicity, of a common zero of 
two uniform analytic functions, 205, 209 ; 
of level values of two uniform analytio 
functions, 212. 

Order, of zero of a regular function, 111; of 
pole of uniform function, 119. 

Ordinary place, 60. 
Osgood, 62. 

Pairs of periods for uniform functions of two 
variables (see period-pairs). 

Periodic functions in two variables (Chapter 
VIII). 

Periodic lineo-linear transformations, 19, 28, 
52. 

Period-pairs, if infinitesimal, are excluded, 
213 ; may not be more than four for 
uniform function of two variables, 216-223; 
one, 224 ; two, 224, with the different cases; 
three, 226, with the different cases, and the 
g e n e d  result, 231; four, 232, with the 
different cases, 235. 

Picard, Prejace, 5, 14, 26, 77, 78, 92, 152, 
153, 156, 161: 169, 170, 178, 193, 197. 

Picard's theorem, on functions that cannot 
acquire assigned values, extended to func- 
tions of two variables, 78. 

Picard's theorem concerning single integrals 
of rational functions involving one algebraic 
variable extended to integrals of rational 
functions involving two algebraic variables, 
180-187. 

Poincaré, Prrfuce, 1, 4, 5, 13, 26, 71, 126, 
131, 153. 

Poincaré's extension of Cauchy's theorem to 
double integrals, 159 ; with inferences, 160 ; 
extension to the residues of double integrals, 
160, 161, with examples, 161 et seq. 

Pole, 61, 85 (see unessential singularity); ex- 
pression for uniform function in the vicinity 
of, 119 ; sequence tuid order of, 120. 

Polynomial, when a regular function is a, 
74 ; properties of, as  regards singularities, 
124. 

Prym, 266. 

Quadratic frontiers, 34 ; invariants and co- 
variants of, 39; suggested canonical form 
for, 51. 

Quadruply periodic functions, 253 et seq. ; 
level places of two, 257 ; satisfy an  algebraic 

partial differential equation of the first 
order, 262, with example, 273. 

Rational, any uniform function entirely devoid 
of essential singularities must be, 126. 

Rational function connected with algebraic 
equations in two indepeudent variables, 
most general form of :  (i) when there is 
one equation, 171; (ii) when there are two 
equations in two algebraic variables, 173 ; 
integrals of, 178 et seq. 

Rational function, singularities of, 125. 
Reducibility (relative) of two regular functioi~s~ 

115. 
Region of continnity of a function, 81 ; its 

boundary, 82, 86. 
Regular functions, any uniform function having 

essential singularities only in the infinite 
part of the field is expressible as the 
quotient of two, 147. 

Regular funotions, 60 ; fundamental theorem 
relating to, 62 ; double integral expression 
for the coeîlicients in the expansion of, 64; 
one property of, 73; condition that it is a 
polynomial, 74; analytical continuation of, 
80; level values of, 108 ; relative divisibility 
of, 112. 

Relative, divisibility of two reguiar functions, 
112 ; reducibility of functions, 115. 

Riemann, 4, 16. 
Riemann's definition of a function extended 

to two functions, 16. 

Sauvage, 58. 
Severi, 170. 
Simart, Prefnce, 92, 152. 
Simultaneous poles of two uniform analytic 

functions exist, 204; usually is an isolated 
place, 211. 

Simultaneous unessential aingularities of two 
uniform funotions do not exist in general, 204. 

Simultaneous zero, of two regular functions, 
must exist, 202; likewise for two uniform 
analytic functions, 203 ; usually is  an 
isolated place, 207, 209, but there may be 
exceptions, 208. 

Single integral, 152. 
Single integrals of algebraic functions in- 

volving two algebraic variables, 178 ; 
equivalent forms of, 180, with necessary 
relations, 185 ; first kind do not exist for 
general equations, 187. 

Singularities, 61, 82, 119; of a rational 
function, 125. 

Stokes, 157. 
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Tlieta-functions, triple, 240 et seil.; even 
functiouo and udd fuiictious, 4L8; cloullc, 
249, 253 et seq. 

Sied functioiis, 208. 
Transeendental functioii, 60. 
Triple theta.functions, 240 ; efïect ou, causod 

by inorements of periods, 242, by half-period 
incre~nents, 250; two sets of, 251 et seq. 

Triply periodic functions, 238. 
T!vo functioiis, everywhere regular iii the 

finite part of the field, must vanish at some 
corninon plaoe, 202 ; likemise, when they are 
uniforrn and analytic, 203. 

Tivo-plane representation of the real parts of 
the variables used for quadruply periodic 
functions, 237, 257. 

Two-plane representatiou of two variables, 13 ; 
soine properties of, 14 ; limitations of, 19. 

Umbral symbols introduced for coefficients in 
liomogeneous forms, 41. 

Unessential singularity, 61, 83, 119 ; ex- 
pression of uniform function iu tlie vicinity 
of, 121 ; is an isolated place, 122. 

Uniforni annlytic function rnust acquire an 
infinite vnlue, 78, and a zero vt~lue, 76, 
and an assigned finite value, 76. 

Uniform fuiietion, 58. 
Uniform periodic functions (Chapter WU). 

Valentiner, 25. 
Vicinity of il plaoe, 58. 
Vivanti, 14. 
Volterra, 13. 

Weierstrass, P ~ C ~ U C C ,  4, 77, SU, 88-86, 92, 
101, 105, 1l2,  124, 134, 141, 314, 260, 
861. 

Weierstrass's theoreln on tlie beliaviour of n 
uniform coutinuous analytic function in the 
viciuity of an ordinary place, 9 2 ;  vnrious 
cases of, 96, 97, 100; ex'~nip1e of, 10'2; 
alternative method of proceeding in oiie 
case, 105. 

Weierstrass's theorem on functions eiitirely 
devoid of essential siiigularities, 126 ; proof 
of, 126-12'3 ; on functions Laving essential 
singnlarities only in the iniinite part of 
the field, 130, witli Cousin's proof, 130 
et seq. 

Weierstrass's theorem ou iiifiniteuiilial periods, 
218. 

IVeierstrsss's theoreins on algebraic relations 
between homoperiodic functions, 261 et seq.; 
illustrated by hyperelliptic functions, 265 
et seq. 

Zeios (selected) of the tlistit-functions of two 
variables, 2;;. 
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BIT THE SAME AUTHOR 

THEORY OF FUNCTIONS OF A 
COMPLEX VARIABLE 

Second editioii. Large Royal 8vo. 21s net 

"Dr Forsyth lias again undertaken n laborious tnsk and executed it with liis nsnal nbility nncl 
success. Anlong the nnnierous branches of the nlreacly enornlous, yet still rapidly gowing 
science .of Mntheniatics not the least interesting and not the lenst iinporhiit is the Theoiry of 
Functions. To this tlie sutlior devotes over six liundred large size pnges; yet, with the end 
wliich lie hns in view, we cmnot say there is a page too niany." ilthejiceioii 

"The wi~,iit of n treatise on this subject lias too long caused a serious gap in oui. inatlieinnticnl 
literature; nnd it niny be t ~ t  once snid thnt Dr Forsytli's book supplies thnt wnnt so completel-j 
tliat it is not likely to be felt agaiii for a long tinie to corne. Dr Forxyth lias aimed at  giring fi 
coinplete introduction to the theoiy; and it niny snfely be snid tliat, witli liis book as n guide, 
the tnsk of the stncleat wlio wishes to enable hiinself to follow its vnrions recent der el op ment^ 
will have lost half its difficiilty." Sfltiire 

LECTURES ON THE DIFFERENTIAL 
GEOMETRY O F  CURVES AND SURFACES 

Large Royal Svo. 21s net 

"There are two well-knoivn and excellent trentises on tlie subject, by Darhoux nnd Binnclii 
respectirely; but hitlierto there has been nothing correspondinfi to thein in Englisli .... The 
author's unrirnlled pomer of denling witli coinplicnted analysis is adiniri~bly illiistrnterl by the 
section on differentinl invariants. It \vould be rery dificuit to improve upon this. ... On e v e l  one of 
these points Dr Forsgth vrites with coniplete ninsteiy, nnd gives a niost \al~ii~ble set of exainples .... 
Dr Forsyth mny be congmtiilatecl on pro<lucing a work of grent interest nnd vnlue, wliich is  
perhaps the best trentise tlint lie lins ever eomposed." ~Vntccrc. 

"Le présent ouvrage vient donc conibler une leeune .... Les démonstrntion~ de M. Forfiyth sont 
présentées avec beaucoup de clnrté et de préciuion. Selon la trndition, fort bonne, des nntenrs 
anglais, le texte est iwcompagné de nonibreux exeniples et de problthies .... Il coiistit~ie iin guide 
ntile non seulenient pour ceux qui veulent s'initier nux iiiétliocles de la, Géom$trie intinitesiiiiale, 
niais nussi pour tous ceux q ~ i i  enseignent cette blanche." 

Ilcc'iic l ~ i t e ~ i i c ~ t i o t i ~ i l ( ~  tlc 1'Kiisci.qiwiiir,it , l I tr t l~6i1i t i t i~~t i~~ 

THEORY OF DIFFERENTIAL EQUATIONS 
Demy Svo. I n  four parts 

P n r t  1. Exact Equa t ions  a n d  Pfaff'fi Probleni. 10s ilet 
P n r t  II. Ord ina ry  Equat ions ,  i iot  liiiear. In two  voluines. 30s n e t  
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