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PREFACE

THE present volume consists substantially of a course of

lectures which, by special invitation of the authorities,
I delivered in the University of Calcutta during parts of January
and February, 1918. The invitation was accompanied by a
stipulation that the lectures should be published.

As regards choice of subject for the course, I was allowed
complete freedom. It was intimated that the class would be
mainly or entirely of a post-graduate standing. What was
desired, above all, was an exposition of some subject that, later
on, might suggest openings to those who had the will and the
skill to pursue research.

Accordingly I selected a subject, which may be regarded as
being still in not very advanced stages of development, and into
the exposition of which I could incorporate some results of my
own which had been in my possession for some time. Owing
to the limitations of the period over which the course should
extend, it was not practicable to make the lectures a systematic
discussion of the whole subject; and I therefore had to choose
portions, in order to discuss a variety of topics and to indicate
some paths along which further progress might be possible. Thus,
instead of concentrating upon one particular issue, I preferred to
deal with several distinct lines of investigation, even though
their treatment had to be relatively brief.
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vi PREFACE

Wherever it was possible to refer to books or to memoirs,
I duly referred my students to the authorities. In particular,
I urged them to prepare themselves so that they could proceed
to the study of algebraic functions of two variables; because
happily, in that region, there is the treatise by Picard and
Simart, Fonctions algébriques de deux variables indépendantes,
which includes an account of the researches made by Picard
and others in the last thirty years. As this treatise is so full,
I made no attempt to give to my students what could only
have been a truncated account of the elements of that theory;
but, as will be seen, what I did was to restate some of its
problems from a different (and, as I think, a more general)
point of view.

At several stages in my lectures, I deviated from the almost
usual practice of dealing with only a single uniform function
of two complex variables. I thought it preferable to deal
with two dependent variables as functions of two independent
variables. Characteristic properties of the variation of uniform
analytic functions of two variables are brought into fuller
discussion, when two such functions are regarded simultaneously.
The combination of at least two such functions is necessary
when the general theory of quadruply-periodic functions is under
review. The same combination of two functions seems to me
desirable in the general discussion of the theory of algebraic
functions of two variables whether these occur, or do not occur,
in connection with quadruply-periodic functions; the considera-
tion of relations between independent variables and dependent
variables is thereby made more complete, and illustrations will
be found in the course of the book. Xven in the simplest case
that has any significance, when these algebraic relations are
nothing more than the expression of the lineo-linear substitutions,
it 1s of course necessary to have two new variables expressible in
terms of the variables already adopted.
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The following is a summary outline of the whole course of
lectures.

The first Chapter deals with the various suggestions that have
been made for the geometrical representation of two complex
variables. The intuitive usefulness of the Argand representation,
when we are concerned with functions of a single independent
complex variable, 1s universally recognised; but there seems
to be a deficiency in the usefulness of each of the geometrical
representations when more than a single indepeﬁdent complex
variable occurs.

The second Chapter is devoted to the consideration of the
analytical properties of the lineo-linear substitution, defining two
variables in terms of two others, each uniquely by means of the
others. It is a generalisation of the homographic substitution
for a single variable; some of the properties of the latter are
extended to the case when there are two variables. In particular,
insistence is laid upon certain invariantive properties of such
substitutions.

The third Chapter is concerned with the expressibility of
uniform analytic functions in power-series. The limitation of
the range of convergence of such series leads to the notion of
the various kinds of singularity which, under the classification
made by Weilerstrass, uniform analytic functions can possess.

The fourth Chapter is devoted to the consideration of the
form of a uniform analytic function in the immediate vicinity
of any assigned place in the field of variation. The central
theorem 1s due to Weierstrass, and was established by him for
functions of n variables; I have developed it in some detail when
there are only two variables; and it is applied to the description
of the behaviour of a function in the vicinity of any one of its
various classes of places, whether ordinary or singular.

The fifth Chapter is occupied with two constructive theorems,
both of them originally enunciated (without proof) by Weierstrass,
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as to the character of functions either entirely devoid or almost
devoid of essential singularities. A function, entirely devoid of
essential singularities, is expressible as a rational function of the
variables ; the proof given is a modification of the proof first
given by Hurwitz. A function, which has essential singularities
only in the infinite parts of the field of variation, is expressible
as the quotient of two functions which are regular in all finite
parts of the field; the proof, which is given, follows Cousin’s
investigations for the general case of n variables.

The next Chapter is devoted to integrals. The earlier
paragraphs are concerned with double integrals of quantities
which are uniform functions of two variables; after an exposition
of Poincaré’s extension of Cauchy’s main integral theorem, these
paragraphs are mainly occupied with simple examples of a subject
which awaits further development. The later paragraphs are
concerned with integrals, whether single or double, of algebraic
functions, a theory to which Picard’s investigations have made
substantial contributions. In restating the problems for the sake
of students, I took the line of introducing a couple of algebraic
functions, instead of only a single algebraic function, of two
variables, so that there may be complete liberty of selection of
two independent variables. The geometry of surfaces has led
to valuable results connected with integrals of algebraic functions
of two variables, just as the geometry of curves led to valuable
results connected with integrals of algebraic functions of one
variable. But my own view is that the development of the
theory, however much it has been helped by the geometry, must
(under present methods) ultimately be made to depend completely
upon analysis. This will be more complicated when two alge-
braic equations are propounded than when there is only a
single equation; but its character will be unaltered. And so
I have stated the problem for what seems to me the more
general case.
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In Chapter VII I have discussed the behaviour of two uniform
analytic functions considered simultaneously. In particular, when
the functions are independent and free (in the sense that they
have no common factor), it is shewn that their level places are
isolated; and the investigations in Chapter IV are used to obtain
an expression for the multiplicity of occurrence of such a level
place, when it is not simple. )

The last Chapter is devoted to the foundations of the theory
of uniform periodic functions of two variables. In the early part
of the chapter, I have worked out the various kinds of cases that
can occur. The method may be deemed tedious; it certainly
could not be used for the functions of n variables with not more
than 2n sets of periods; but it brings into relief the discrimination
between the cases which, stated initially only from the point of
view of periodicity, are degenerate or resoluble or impossible or
actual. The theta-functions are then introduced on the basis of
a result in Chapter V; and the discrimination between functions
with three period-pairs and those with four period-pairs is indicated.
Later, some theorems enunciated (but not proved) by Weierstrass
are established for functions of two variables, together with some
extensions, all these being concerned with algebraic relations
between homoperiodic uniform functions devoid of essential sin-
gularities in the finite part of the field of variation. The Chapter
concludes with some simple examples belonging to the simplest
class of hyperelliptic functions. But I have not attempted, in
these lectures, to expound the details of the theory of quadruply-
periodic functions of two variables; it can be found in specific
treatises to which references are given in the text.

My whole purpose, in the Calcutta course, was to deal with
a selection of principles and of generalities that belong to the
initial stages of the theory of functions of two complex variables.
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Often before, I have had to thank the Staff of the Cambridge
University Press for their efficient help during the progress of
proof-sheets of my books. This volume has made special demands
upon their patience; throughout, as is their custom within my
experience, they have met my wishes with readiness and skill.
To all of them, once again, I tender my grateful thanks.

A. R. FORSYTH.

IMPERIAL COLLEGE OF SCIENCE
ANp TecHNoOLOGY, LoNpowN, S.W.
February, 1914.
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CHAPTER 1
GEOMETRICAL REPRESENTATION OF THE VARIABLES

IN regard to functions of a single complex variable, reference may generally be made,
for statements of results and for quoted theorems, to the author’s Theory of Functions.
No reference is made to the ultimate foundations of the theory of functions of a single
real variable ; a full discussion will be found in Hobson’s Functions of a real variable.

For a large part of the contents of the first two chapters, reference may be made to
two papers by the author*; and particular references to memoirs will be made from
time to time as they are quoted.

But in addition, reference should be made to a papert by Poincaré, who discusses
groups, classes of invariants, and conformation of space, when the representation of the
two complex variables is made by means of four-dimensional space.

1. This course of lectures is devoted to the theory of functions of two
or more complex variables. It will be assumed that the substantial results
of the theory of functions of a single complex variable are known; so that
references to such results may be made briefly or even only indirectly, and
suggestions, especially in regard to the extensions of ideas furnished by
that theory, can be discussed in their wider aspect without any delay over
preliminary explanations.

My intention is to deal with some of the principles and the generalities
of the selected subject. Special illustrations and developments will be given
from time to time; but limitations forbid the possibility of attempting an
exposition of the whole range of knowledge already attained. Moreover,
my hope is to establish some new results, and suggest some problems;
in order to make that hope a reality within this course, some developments
must be sacrificed. The sacrifice, however, need only be temporary, in one
sense; because references to the important authorities will be given, and
their work can be consulted and studied in amplification of these lectures.

* ¢Simultaneous complex variables and their geometrical representation,” Messenger of
Math., vol. x1 (1910), pp. 113—134 ; ‘‘ Lineo-linear transformations of two complex variables,”
Quart. Journ. Math., vol. xliii (1912), pp. 173—207.

+ ¢ Les fonctions analytiques de deux variables et la représentation conforme,” Rend. Cire.
Mat. Palermo, t. xxiii (1907), pp. 185—220.

F. 1
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2 FUNCTIONS OF TWO VARIABLES [cm. 1

Usually, it will be assumed that the number of independent variables is
two. In making this restriction, a double purpose is proposed.

Not a few of the propositions for two variables, with appropriate changes,
can justly be enunciated for n variables; and sometimes they will be
enunciated explicitly. In such cases, they usually are true for functions
of a single variable also; and they become generalisations of the last-
mentioned and simplest form of the corresponding proposition. Results of
this type have their importance in the body of the theory. But it is
desirable to have other results also, which may be called characteristic of
the theory for more than a single variable, in the sense that they have no
corresponding counterpart in the theory for a single variable.

Again, 1t is desirable, wherever possible, to obtain results equally character-
istic of the theory in another direction, that is to say, results which are not
mere specialisations of results for the case of three or more variables. Such
a result is provided in the case of the quadruply-periodic functions of two
variables and their association with single integrals involving the quadratic
radical of a quintic or sextic polynomial. The case might be taken as the
appropriate specialisation of 2n-ply periodic functions of » variables and
their proper association with single integrals involving the quadratic radical
of a polynomial of order 2rn+1 or 2n+2. These latter functions, however,
are notoriously not the most general multiply-periodic functions for values
of » from 3, inclusive and upwards. Consequently, it is sufficient to develop
the association with quadratic radicals of a quintic or sextic polynomial;
the formal generalisations of the results so obtained are only limited and
restricted forms of the results belonging to the wider, but not most com-
pletely general, theory.

These combined considerations constitute my reason for dealing mainly
with the theory of functions of two independent complex variables.

The two variables will be denoted by z and 2.

2. One illustration of real generalisation from the theory of functions
of a single variable arises as follows. In that theory, when a variable w is
connected with a variable z by a relation f(w,z) =0 of any form, we frequently
consider that w is defined as a function of z by the relation. But frequently
also there is a necessity for regarding z as a function of w; and important
results, especially in connection with periodic functions, are obtained by using
this dual notion of inversion. A question naturally suggests itself :—what is
the general form of this notion of inversion when there are two independent
variables ?

A function w of z and 2’ can be regarded as given by a relation
f(w,2,2")y=0,any precision as to the form of f being irrelevant to the immediate
discussion. A limited use of the notion of inversion can be applied at once
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2] RECIPROCAL ASPECT OF EQUATIONS 3

to the relation. Just as in the Cartesian equation of a surface in ordinary
space it is often a matter of indifference which of the three coordinates is to
be regarded as expressed by the equation in terms of the other two, so now
we may regard the relation f(w,z 2)=0 as defining any one of the three
variables w, 2, 2/ in terms of the other two. Such an interpretation of the
relation does not imply the complete process of inversion in the simpler case,
whereby the quantity initially regarded as independent is expressed in terms
of the quantity initially regarded as dependent. In the present case, the
initially independent variables z and 2’ are not expressible in terms of the
single initially dependent variable w.

The limitation in the use of the notion, however, disappears when two
functionally distinct quantities w and w’ occur. This occurrence might arise
through the existence of two functional relations

J(w,2,2)=0, g,z 2)=0,
or of two apparently more general functional relations
F(w, w2 2)=0, Gw, v,z 2)=0.
We assume that the equations #=0, G=0, do actually define distinct

- functions w and «’ in the sense that they are independent equations; that
is, we assume that their Jacobian

F
7 ()
w, w
does not vanish identically. Moreover, for our purpose, w and @’ are not

merely to be distinct from one another; they are to be independent functions
of z and 2, so that the Jacobian

7(27)

does not vanish identically. Now

w, w XAN
J(z, z')J<w, 'w’)_l’

S(EE) ()1 (E2)

w, w 2,2 2, 7

always; hence neither of the Jacobians

/ 4 F G
s3D). o)
w, W 2,z
can vanish identically. In other words, we can interpret the two relations

F=0 and G=0 in a new way; they define z and 2 as two distinct and
independent functions of the two independent variables w and w'.

Ez. Thus the equations
witwitty2=a, w—wd4B8-23=0,
satisfy both conditions; the quantities w and «' are iudependent functions of zand 7. And
conversely for z and 2’ as independent functions of w and .

1—2
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4 GEOMETRICAL [cH. 1

On the other hand, the equations
ww' —z—72=0, wi-w-1=0,
being independent equations, determine w and #’ as distinct functions of the variables, for

J (%g,) does not vanish identically. But these distinct functions are not independent
)
w, W

functions of z and 2, for J < p Z) vanishes identically. As a matter of fact, both w and

>

w' are functions solely of the combination z+2 of the variables, and therefore w and »' are
expressible in terms of each other alone; the actual relation of expression is the second of
the two equations.

Thus, by the introduction of a second and independent function w’, we
are in a position to adopt completely the notion of inversion, as distinct from
any precise expression of inversion, for the case of two complex independent
variables*. The inversion will be equally possible from any two relations,
which are the exact and complete equivalent of F =0 and G =0 in
whatever form these relations may be given. In particular, if # and G
are algebraical in w and w’, they have an exact equivalent in relations of
the type f=0 and g =0, obtained by eliminating " and w in turn between
F=0and G=0.

Finally, we could regard any two of the four variables z, 2/, w, w’' as
independent and the remaining two as dependent. The necessary and
sufficient condition is that no Jacobian of F and G with regard to any two
of the variables shall vanish identically.

Accordingly, for many purposes, we shall find it desirable to consider
simultaneously two independent functions w and w’ of the two independent
variables z and 2.

Geometrical Representation of the Variables.

3. Next, it proves both convenient and useful in the theory of functions
of one variable to associate a geometrical representation of the variables
with the analysis. It happens that this representation is simple and
complete while full of intuitive suggestions; and thought the notion of
geometrical interpretation has not been adopted by all investigators and has
occasionally been deliberately avoided by the sterner analytical schools, it
has acquired importance because of the character of the results to which 1t
hasled. The representation, initiated by Argand, is obtained by the customary
association of a point upon a plane with one variable, and of a point upon

* When there are n independent variables zy, ..., 2,, then n functions w,, ..., w, are required
for the corresponding complete use of inversion.

+ There is a wide diversity of practice, in regard to the extent of the adoption of geometrical
notions in the development of the analysis of the theory of functions. As an indication of this

variety, it is sufficient to note the different relations to the subject as borne in the work of
Caunchy, Hermite, Kronecker, Poincaré, Riemann, and Weierstrass.
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5] REPRESENTATION 5

another plane with the other variable; and the functional relation between
the two variables is exhibited as a conformal representation of either plane
upon the other.

An adequate geometrical representation of two independent complex
variables is a more difficult problem than the representation of a single
complex variable; at any rate, there is as yet no unique solution of the
problem which has been found quite so satisfactory as the Argand solution
of the problem for a single variable.

In order to let the full variation appear, we resolve each of the complex
variables into its real and its imaginary parts; so we write

e=g+1y, =4 +1y.
Here z,y, «/, y are real; when z and 2’ are independent in every respect,
each of these four real quantities admits of independent variation through
the,range of reality between — oo and + . Thus a four-fold set of

variations is required for the purpose; and such a set cannot be secured
simply among the facilities offered by the ordinary space of experience.

4. Several methods have been proposed. No method has been adopted
universally. The respective measures of success are attained through some
greater or smaller amount of elaboration; but each increase of elaboration
causes a decrease of simplicity, and therefore also a decrease of intuitive
suggestiveness, in the geometrical representation.

Among the methods, there are three which require special mention. In
one of them, four-dimensional space is chosen as the field of variation. In
the second, a line (straight or curved) is taken as the geometrical entity
representing the two variables simultaneously. In the third, each of the
variables is represented by a point in a plane (the planes being the same
or different), so that two points are taken as the geometrical entity repre-
senting the two variables simultaneously.

5. Of these methods, the simplest (in a formal analytical bearing) is
based upon the use of four-dimensional space; and applications to the
theory of functions of two complex variables have been made by Poincaré*,
Picardt, and others. The four real variables =, y, #’, ¥ are associated with
four axes of reference. Sometimes they are taken as the ultimate variables;
sometimes they are made real functions of other ultimate real variables,
from one to three in number according to the dimensions of the continuum

* ¢Sur les fonctions de deux variables,” Acta Math., t. ii (1883), pp. 97—113; ** Sur les
résidus des intégrales doubles,” dcta Math., t. ix (1887), pp. 321—380; * Analysis situs,” Journ.
de VEcole Polyt., Sér. 2, t. i (1895), pp. 1—123; ‘¢ Analysis situs,” Rend. Circ. Mat. Palermo,
t. xiii (1899), pp. 285—345, t. xviii (1904), pp. 45—110, and elsewhere.

Y Traité d’dnalyse, t. ii, ch. ix; Théorie des fonctions algébriques de deux variables in-
dépendantes, t. i, ch. ii, in the course of which other references are given.
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6 SPACE OF FOUR DIMENSIONS [cH. 1

to be represented. Thus a single relation between «, y, 2/, ' provides a
hypersurface (or an ordinary space) in the quadruple space; and, along the
hypersurface, each of the four variables can be conceived as expressible in
terms of three variable parameters. Two such relations provide a surface
in the quadruple space; along the surface, each of the variables can be
conceived as expressible in terms of two variable parameters. Similarly,
three such relations provide a curve along which each of the variables can
be conceived as expressible in terms of a single variable parameter. Lastly,
four such relations provide a point or a number of points. The intersection
of a hypersurface and a surface is made up of a curve or a number of
curves. Two surfaces intersect in points; two hypersurfaces intersect in a
surface or surfaces. We consider only real surfaces, curves, and points, in
such intersections; because what is desired is a representation of the four
real variables, from which the complex variables are composed.

The representation, by itself, does not seem sufficiently definite vand
restricted. There is no preferential combination in geometry among the
four coordinate axes, which compels a combination of # and y for one of the
complex variables, while 2" and ¥’ must be combined for the other. But
this original lack of restriction is supplied, so far as concerns functions of z
and 2/, by retaining the partial differential equations of the first order, which
are satisfied by the real and the imaginary parts of any function w. Writing
w=u+w=f(z 2'), where u and v are real, we have

u_d  Gu_ v tu_ u_ @
oz oy’ oy oz’ o oY’ oy  oa’
so that u satisfies (as does v also) the equations
P Bu_o Bu o Pu o Pu pu_
ox* " 0y* owdd  oyoy 0 9y
Qu P
oxdy  0yoa’
From a value of u, satisfying these equations, the value of v to be associated

with it in the value of w can be obtained by quadratures. Thus we have a
geometry, tempered implicitly by differential equations.

0,

The comparative difficulty of dealing with the ideas of four-dimensional
geometry tends to prevent this mode of representation from being intuitively
useful, at least to those minds who regard the stated results to be analytical
relations merely disguised in a geometrical vocabulary. In particular, the
method fails to provide (as the other methods equally fail to provide) a
representation of quadruple periodicity which serves the same kind of purpose
as is served by the plane representation of double periodicity; and a
Jortiors there is an even graver lack, when divisions of multiple space are
required in connection with functions of two variables that are automorphic
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7] REPRESENTATION BY A+ LINE 7

under lineo-linear transformations. Still, it is the fact that certain results
have been obtained through the use of this method in the extension of one
of Cauchy’s integral-theorems, in the formation of the residues of double
integrals, in the topology of multiple space, and in the conformation of
spaces.

6. The second of the indicated methods of representation of the four
variable elements in two complex variables is based upon the fact that four
independent coordinates are necessary and sufficient for the complete
specification of a straight line in ordinary space. Such a line would be
determined uniquely by the two points (and, reciprocally, would uniquely
determine the two points) at which it meets a couple of parallel planes; and
therefore, if one variable z is represented by a variable point in one plane
and the other variable 2’ is represented by a variable point in the other
plane, we might regard the line joining the points z and Z in the respective
planes as a geometrical representation of the two variables z and 2’ con-
jointly. (It can also be determined by a point, and a direction through the
point ; again, the determination requires four real variables in all.)

We must, however, bear in mind that the two points on the line are the
ultimate representation of the two variables. When the whole line* (with
the assistance of the two invariable parallel planes of reference) is taken to
represent the two variables, a question at once arises as to the geometrical
relations between a line z, 2/ and a line w, «/, which correspond to two
analytical relations between the variables. Does the whole line 2, 2, under
any transforming relation, become the whole line w, w’?

7. It is only a specially restricted set of transforming relations, which
admat such a transformation of a whole line. The result can be established
as follows.

For simplicity, we assume that the planes for z and 2’ are at unit distance
apart, and likewise that the planes for w and w’ are at unit distance apart;
and we write

w=u+w, w=u +1
The Cartesian coordinates of any point on the z, 2’ line are
ox+(l—a)2, cy+(1—-0)y, 1-o,
and those of any point on the w, w’ line are
Pu+(1 _P)ul» P/v'l'(l—P)v,’ 1 =P
where p and o are real quantities, each parametric along its line. Let two
relations

F(w, o', 2 2)=0, G(w, v,z 2)=0,
be such as to give a birational correspondence between w, w’ and z, 2’. If

* For the following investigation reference may be made to the first of the author’s two
papers quoted on p. 1.
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8 REPRESENTATION BY A [cH. 1

then, in connection with these relations, the whole z, 2z’ line is transformed-
uniquely into the whole w, w’ line, and vice-versa, some birational corre-
spondence between the current points upon the lines must exist; and so the
coordinates of the current point upon one line must be connected, by functional
relations, with the coordinates of the current point upon the other line.

Because of the independent equations F =0, G'=0, the quantities u, v,
u’, v are functions of @, y, 2/, 9" alone; and these functions do not involve o.
Similarly «, y, &/, y" are functions of u, v, «/, v" alone; and these functions do
not involve p. Hence p is a function of o only, such as to take the values
0 and 1 (in either order) when o has the values 0 and 1; and, for the
current points, we must have

put+(d—p)u' =f(§n, 1-0),
pr+QQ—p)'=9(n 1-0),
where f and g are appropriate functions of their arguments, and
E=cz+(1—-0)a, n=0y+(1—0a)y.
As p is some function of ¢ alone, the former relation gives

PoetA-p G =ck,  pimtl-pi=0-0%)
a”+(1 >?;; 2{: a“,+<1— >ay—<1— aff

and therefore

fpora-pgosrra-nil
{a +(1- P)%Z;HP?,+(1 ”)ax}

The relation holds for all values of p, and the quantities % and & do not
involve p; hence
ou du _ ou o
a‘z ay/— ay aw/)
duow o e _oudd o on
oz oy ' ox 0y 0Oyoad ' Oy oz’
ol ol _oud o
ox 8y oy ox’"
Similarly, the second relation requires the conditions
ov v v dv
dzdy oy ox’
ov ov’ +8_d?_q_8_vf)l+av ov
dwdy " 0w oy Oyoa' " oy ox
o o _u' o
oz oy oy ox'’

2
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8] STRAIGHT LINE IN SPACE 9

Moreover, because both u + 7w and u’+ 1 are functions of z and 2/, we have
the permanent relations

ou _ov a_u o B_u ov ou ov

ox oy’ Oy o« o oy’ oy  oa”’

w_o o a a W al_

oz oy’ oy oz’ o oy’ oy 0
By using these relations, the three equations involving the derivatives of »
and ¢’ can be transformed into the three equations involving the derivatives
of u and %’; and therefore, as the permanent relations exist for all functional

relations, we need retain only the three equations involving the derivatives of
w and u as the essential independent equations for our problem.

8. The complete integral of the first of these three retained equations—

it involves u only—is

u=ar— By +daz — LY +«,
where a, B, o, 8, « are any real constants, provided the condition

af —ad'B=0

is satisfied. The permanent relations then give

v=PRBzx+ay+ B2 +dy +«,
where &' is any real constant; and so

w=1u+ 1
=(a+1B)z+(d +18) 2 + «k + 1K'

The presence of the term «+ i« in w merely means a change of origin in the
w-plane ; neglecting this temporarily, we have

w=(a+18)z+(a' +18) 7.

Now let
o418 =Ade*, o + 18 = A'er?,
where 4, A’, u, 4’ are real; then the condition a8’ — o/3 =0 becomes
AA sin (u—-p)=0,
so that either A =0, or A"=0, or u= ', giving three possibilities.
Similarly, the complete integral of the third of the retained equations—

it involves u’ only—is

W =gz —8y+q4a -8y +1,
where vy, 8, o/, &, \ are any real constants, provided the condition

¥ —4'8=0

is satisfied. The permanent relations then give

'=3.1:+'yy+5'w’+'y'y'+)\.',
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10 TWO COMPLEX VARIABLES [cH. 1

where A\’ is any real constant; and so *
w =u +
=(y+8)z+(y +38) 7 + X+ 1N

The presence of the term X4\’ in @’ merely means a change of origin in
the w'-plane ; neglecting this temporarily, as before for w, we have

w=(y+10)z+(y +18)7.
Now let

v+ 8= Ce o +18'=C"¢e",
where C, (', v, ¥ are real ; then the condition & — '8 =0 becomes

CC'sin (v — V') =0,
so that either =0, or (" =0, or v=17/, giving three possibilities.
The second of the three retained equations still has to be satisfied; it

involves derivatives of % and of «’, and it is satisfied identically by the fore-
going values of u and «/, provided

ad —a'd =By — By,

or (what is the equivalent condition) provided
AC sin (p—v')= A'Csin (4’ — v).

9. Nine cases arise for consideration, because the three possibilities
from the first of the retained equations must be combined with the three
possibilities from the third of the retained equations. Each combination
is governed by the last condition ; and the expressions obtained must satisfy
the conditions holding between p and o. Moreover, in the end, w and w’
are to be independent functions of the variables; and, for the present
purpose of geometrical representation by a line, we manifestly may inter-
change 2z with 2/, and w with w'".

Of the nine combinations, two are impossible under these requirements,
vizz. A =0, C=0; and 4'=0, C"=0. Four of them are equivalent to one
another under these requirements, viz. 4 =0, v=v"; A'=0, v=2"; p=y/,
C=0; p=pu', C"=0; and they lead to the expressions

w=(4z+A'Z)er, w =C'Ze
Two of them are equivalent to one another under these requirements, viz.
A=0,0"=0; and 4’=0, C=0; and they lead to the expressions
w= Aze*, w = (C'7e.
The remaining combination, viz. w=u’, v="1', under the requirements leads

to the expressions
w=(Az+ A’2)ert, w' = (Cz+ C'z)er.

All these expressions must still satisfy the terminal condition applying to p
and ¢, viz. that p must be 0 or 1 when o is 0 or 1. When these expressions
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9] REPRESENTED IN SPACE . 11

are inserted for the functions f and g in the earliest equations in § 7, the
latter lead to the relations

pat+(l—p)y _pad+(1—p)y

o l—0o ’
pB+(1=p)8 _p8+(1—p)¥
o l—-0 ?

and therefore
pAer+(1—p)Ce” pA'e+(1—p)C'e

o 1-¢

For the first of the expressions, this becomes
p_A _pA'+(A-p)C
s l-0o '
In order that p may be 1 when o is 1, we must have A’=0 and the

necessity, that then p mnst be 0 when o is 0, imposes no further condition ;

the expression becomes
w=Aze”, w =C"7e,

which is the same as the second.

For the second of the expressions, the relation is satisfied without any
further condition.

For the third of the expressions, the relation becomes
pA+(1—-p)C &
pd'+(1-p)C" " 1-0¢"
In order that p may be 1 when o is 1, we must have A'=0; and in order
that p may be 0 when o is 0, we must have C'=0; the expression becomes

w=Azer, w=C"7er,
the same as before.
In obtaining this result, we neglected temporarily an arbitrary change
of origin in each of the planes; and we assumed that z can be interchanged
with 2/, and w with @/. Thus we have the result :—

The only relations which give a birational transformation of the straight
line, joining z and 2’ in two parallel planes, into a straight line, joining w and
w’ also tn two parallel planes, either are

w=aze* + bef!, W =a'ze* + ce¥’,
where a, &', b, ¢, a, B, v are real constants, or can be changed into this form by
interchanging z and 2, or w and w', or both.

These relations, as equations in a general theory, are so trivial as to be

negligible; and so we can assert generally that two functional relations
F(w,w', 2 2)=0 and G (w, v, z,Z)=0, which transform the variables 2
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12 REPRESENTATION OF [cH. I

and 2 in their respective parallel planes into the variables w and ' likewise
in their respective parallel planes, do not (save in the foregoing trivial cases)
admit a birational transformation of the whole straight line joining z and 2/
into the whole straight line joining w and w'.

10. Manifestly, therefore, we need not retain the suggested geometrical
representation of two variables by the whole straight line joining the two
points z and 2/, because the only effective part of the representation is
provided by the two points in which the line cuts the planes.

Nor would any other method of selecting the four real variables for the
specification of the straight line be more effective. For example, the line
would be uniquely selected by assigning a point where it cuts a given plane
and assigning its direction relative to fixed axes in space; and then we
could take

z=xz+1y, Z=e%tand,

with the usual significance for 2, y, 6, ¢. It is easy to see that, when we
take a plane at unit distance from the given plane, and we write 2"’ =2+ 2/,
the former representation by the straight line arises for z and 2”. As
before, the whole straight line is not an effective representation of the two
complex variables; the only effective part of the representation is the
point in the given plane and the direction relative to fixed axes.

11. Another method of constructing a straight line to represent two
complex variables z and 2’ has been propounded by Vivanti*, whereby it is
given as the intersection of the two planes

2 X +yZ=1 Y +yZ=1,

where X, Y, Z are current coordinates in space. The immediate vicinity of
a line 2, z, is assumed to be the aggregate of all lines such that

(@— 2o+ (y—yo) <y (@ —a'Y+(y —y)r<r,

where » and ' are arbitrary small quantities; and the boundary of the
vicinity is made up of the lines

(@—af+ @ —gf =7, @ —aP+ @ g ="

It is easy to see that, as before, the whole straight line as a single
geometrical entity is not an effective representation of the two complex
variables z and z’; the only effective part of the representation depends
upon the coordinates of the two points in which the line cuts the planes of
reference ¥ =0, X =0 (or any two of the coordinate planes).

* Rend. Cire. Mat. Palermo, t. ix (1895), pp. 108—124,
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12. The preceding investigation suggests cognate questions which will
only be propounded. Two functional relations, F(w,w’, z, 2)=0 and
G (w, w', 2z, 2) =0, transform a pair of points z and 2/, in parallel planes,
into a pair (or into several pairs) of points w and w’, also in parallel planes.
Let z and 2 be connected by any analytical curve; let a corresponding pair
of points w and ' also be connected by any analytical curve; and suppose
that the two analytical curves have a birational correspondence with one
another. Then

(1) How are the equations of this correspondence connected, if at all,

with the original functional relations? and what are these
equations when the two analytical curves are assigned ?

(1) What functional relations are possible if, under them, the whole
z, 2 curve is to be transformed into the whole w, w’ curve ?

(ii1) When functional relations are given and an analytical z, 2’ curve
is assigned, what are the equations of the w, w’ curve, if and
when the whole curves are transformed into one another ?

13. One warning must be given before we pass away from the con-
sideration of a line, straight or curved, as a geometrical representation of a
couple of complex variables. The preceding remarks refer to the possibility
of this geometrical representation; they do not refer to functions of two
complex variables which are functions of a line. Functions of a real line
occur in mathematical physics; thus the energy of a closed wire, conveying
a current in a magnetic field, is a function of the shape of the wire. This
notion has been extended by Volterra* on the basis of Poincaré’s general-
isation of one of Cauchy’s integral-theorems. In the case of the integral
of a uniform function of one complex variable, we know that the value is
zero round any contour, which does not enclose a singularity of the function,
and that the integral between two assigned points is (subject to the usual
proviso as to singularities) independent of the path between the points;
that is, the integral can be regarded as a function of the final point. So
also (as we shall see) the integral of a function of two complex variables over
a closed surface in four-dimensional space is zero if the surface encloses no
singularity of the function; and when the surface is not closed, the integral
(subject to a similar proviso as to singularities) depends upon the boundary
of the surface; that is, the integral can be regarded as a function of the
boundary-line.

This property has nothing in common with the line-representation of
two complex variables which has been discussed.

14. The third of the indicated methods of representation of two complex
variables is the effective relic of the discarded line-representation. It is the
simple, but not very suggestive, method of representing the two variables 2

* dcta Math., t. xii (1889), pp. 233—286.
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and 2’ by two points, either in the same plane or in different planes, the two
points always being unrelated. It is the method usually adopted by Picard
and others. For quite simple purposes, it proves useful; thus it is employed
by Picard* in dealing with the residues of the double integrals of rational
functions, and it is important in his theory of the periods of double integrals
of algebraic functions.

Let me say at once that the point-representation of z and 2’ is not
completely satisfactory, in the sense that it does not provide a representation
which gives a powerful geometrical equivalent for analytical needs. One
illustration will suffice for the moment. It is a known theoremt, due
originally to Jacobi in a simpler form, that a uniform function of two
variables cannot possess more than four pairs of periods. The point-
representation of two variables admits of an effective presentation of simple
periodicity for either variable or for both variables, of double periodicity for
either variable or for both variables separately, of triple periodicity for both
variables in combination; but (as will be seen later in these lectures) it
does not lend itself to a presentation of quadruple periodicity for both
variables in combination, a presentation which is much needed for functions
so fundamental as the quotients of the double theta-functions. An attempt
to circumvent the latter difficulty will be made later for one class of
quadruply-periodic functions. But the general difficulty remains. There
are other limitations also upon the effectiveness of the method of repre-
sentation by points; they need not be emphasised at this stage.

New ideas, or some uniquely effective new idea, can alone supply our
needs. In the meanwhile, we possess only two fairly useful methods,
viz., the method of four-dimensional space, and the method of two-plane
representation.

Properties of the two-plane representation.

15. As the principal use of the representation of two variables in four-
dimensional space occurs in connection with double integrals, illustrations
can be deferred until that subject arises for discussion. We proceed now
to make a few simple inferences from the two-plane representation of two
variables?.

We shall use the word place to denote, collectively, the two points in
the z-plane and the 2/-plane respectively which represent the values of 2z and

* See the reference to the second treatise by Picard, quoted on p. 5.

1 The general theorem is that a uniform function of » independent variables cannot possess
more than 2n independent sets of periods. The simplest case, when n=1, was originally estab-
lished by Jacobi, Ges. Werke, t. ii, pp. 27—382. For the general theorem, see the author’s Theory
of Functions, § 110, § 239, where some references are given.

% For much of the investigation that follows, reference may be made to the author’s paper,
quoted on p. 7.
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of 2. Let w and «’ be two independent functions of z and #/, so that their
Jacobian J, where

J=J (% ’“,") ,
2, 7
does not vanish identically; and let the places z, 2/ and w, w' be associated
by functional relations. Any small variation from the former place, repre-
sented by dz and dz/, determines a small variation from the latter place,
which may be represented by dw and dw’; the analytical relations between
these small variations are of the form

dw= Adz+ Bds, dw' =Cdz+ Dd7,
where A, B, C, D are free from differential elements, and AD — BC' =J.

Next, let d;z and d,2, d,z and d,z” denote any two small variations from
the z, 2/ place; and let d,w and dw’, dyw and d,w’ denote the consequent
small variations from the w, " place. Then

dyw, dw |=| Add,z+ Bd,Z, Cdz+Dd,2
‘ dyow, dyw’ ’ Adyz+ Bd,s, Cd,z+ Dd,2
=J' dz, dz |.
dyz, dy2

Manifestly, if d,2d,2’ —dyzd,7 vanishes, then dywd,w' — d,wd,w' also
vanishes; and the converse holds, because J is not zero. Hence if, at the
place z 2/, two similar infinitesimal triangles are taken in the planes of z
and of 2’ respectively, the corresponding infinitesimal triangles at the place
w, w in the planes of w and of w’ respectively also are similar; and
conversely.

This property holds for all pairs of similar infinitesimal triangles; and
therefore, when the z-plane and the 2'-plane are put ‘into conformal relation
with one another, the w-plane and the «/'-plane are also put into conformal
relation with one another. This result is the geometrical form of the
analytical result that, when the two equations

F(uw w2 2)=0, G(w w,zz)=0,
determine w and w' as independent functions of z and 2/, a relation
¢ (2, 2’)=0, involving z and Z only, leads to some relation + (w, w') =0,
involving w and w’ only.
Another interpretation of the relation
= vl( dlz, dl 2,
dyz, d,7

is as follows:—When w and «’ are two independent functions of two
independent complex variables z and 2/, and when d,2, d,7/, d,w, d,w’ are

dyw, dyw

dow, dyw’
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16 RIEMANN’S DEFINITION OF A FUNCTION [cH. I
any one set of simultaneous small variations, while dyz, d,2', dyw, d,w’ are
any other set of simultaneous small variations, the quantity
| dyw, dyw dz, d2
' dyw, d,w’ dyz, d,2

is independent of differential elements and depends only upon the places
z, 2 and w, w'

16. The converse also is true, viz.:—
Let z and 2’ be two complex variables, such that
z=a+ry, Z=a+1,

where x,y, ', y' are four real tndependent variables ; and let w and w' be
other two complex variables, such that

w=u+w w=u+w,

where u, v, ', V' are four real independent quantities, being functions of z, v,
y'; then, if the magnitude

’ 7

dyw, dyaw d,z, d,z
!

dow, d,u' dyz, dy2

for all infinitessmal variations, is tndependent of these variations, w and w’
are independent functions of z and Z alone.

’

This property, which for two independent complex variables corresponds
to Riemann’s definition-property* for functionality in the case of a single
complex variable, can be established as follows. Let

ow ow ow ow

a_w—"(’ a_y=Bx a_xi—rYy a_yl_s)

ow’ ’ ow’ , ow' ’ ow’ ;-

W T W =Y
so that

dw =ade+ Bdy +vyde' +8dy’
dw' =ddz + B'dy +y'da’ + S'dy’}'
Then
dyw, du
dyw, d,w
ad,x + Bdyy +yd,a’ +8dy, ddx+Bdyy +/dia’ + 8dyy

adyz + Bdyy + ydy' + 8oy, ddoz+B'dyy + y'dyx + 8'dyy

=| a, o dlwy dly +| a, o dlw, dlw’ a, o dlml dly’ [
B, B dyz, dyy ] 'Y, dz"” d,a | 8, & d.z, doyf’ [
+ ‘ 18) Bl dlyy dlw’ B B 1% dlx/l dly/ ('
Ly o || day, oo | |8, 8 || dy, dgy 3 5’ dya!, dyy

* Riemann’s Ges. Werke, p. 5.
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16] EXTENDED TO TWO VARIABLES 17

Also
dz, d2
I d.2, d,2'
=| diz+idy, d+idy
dow + 2dyy, dod’ +vd,y
=|dax da |+ dy, da |+i| de, dy | =] dy, dy |
dyz, d,x' dy, d.a’ dyz, dyy dyy, oy’

These two quantities are to stand to one another in a non-vanishing ratio,
which is independent of the arbitrarily chosen differential elements that
occur in them, Consequently, when we denote this ratio by J, we must
have

af —dB =0,
ay —dy =J,
ad —dd =1,
By —By=1il,
BY - B&=-J,
v =8 =0;

and these necessary conditions also suffice to secure the property.
The first of these conditions shews that a quantity m exists such that

B=ma, B =md,

and the sixth shews that a quantity n exists such that
d=ny, &=ny.
The third condition then gives
WJ=ad—ad'8=n(ay —dy)=nJ;
the fourth and the fifth conditions similarly give
wW=mJ, —J=mnJ;

and the second condition gives the value of J. Thus all the conditions are
satisfied if

m=1, n=1, J=oy —a.
But now

ow . Oow  ow . .ow
A== =1 =1,
0z

oy = oy
and these are the only equations affecting w alone. The theory of partial
differential equations of the first order shews that their most general in-
tegral is any function of # + 4y and of &’ 4 4y alone, that is, w is a function
of z and 2/ alone. Similarly
ow'  ow ow .ow
' oy '
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18 GEOMETRICAL [cH. 1

and these are the only equations affecting w’ alone; hence, as before, w'
also 1s a function of z and 2’ alone. Moreover, we now have

o _ow_ w _ow _

0z oz 0 9 0w P
aw’_aw'_a, ow' _ow .
0z w97 aw

and therefore

Also J is a non-vanishing quantity. Hence w and w’ are independent
functions of z and 2/ alone—which is the result to be established.

17. The Riemann definition-property for a function of a single complex
variable leads to a relation
dw 8z
§w &2’
this relation, when interpreted geometrically, gives the conformal repre-
sentation of the w-plane and the z-plane upon one another. The property
just established in connection with the quantity

diz.dy? —dyz.d 2
has a corresponding geometrical interpretation.

For simplicity, let 2 and 2 be represented in the same plane. At any
point O in the plane, take 04, OB, OC, OD to represent d,z, d,7, d.z, d,7.
Along the internal bisector of the angle between O4 and 0D, take OP
a mean proportional between the lengths OA and OD; and along the
internal bisector of the angle between OB and OC, take 0@ a mean
proportional between the lengths OB and OC. Complete the parallelo-
gram of which OFP and OQ are adjacent sides; let M denote the product
of the lengths of its diagonals, and let § denote the sum of the inclinations
of those diagonals to the positive direction of the axis of real quantities;

then
diz.dy,2 — dyz.d,2 = Me®.

Constructing a similar parallelogram in connection with the variations of
w and w’, we should have

dyw . dyw' — dyw . dyw’ = Nett,
Consequently
Nett = J Me?.
Now let two sets of pairs of small variations of z and 2z be taken,
one of them leading to a quantity Me®, the other of them leading to a
quantity M’e®*; and let the corresponding quantities, arising out of the
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18] INTERPRETATION 19

two sets of pairs of the consequent small variations of w and w', be Ne#
and N'e¢*?. Then
Nepi = JMe¥, N'e¥i=JM' e,

and therefore

N M , ,

you ¢$e=0-0
which is the extension, to two functions of two variables, of the conformation
property for a function of one variable. Moreover, the extension is deter-
minate; for the parallelogram, constructed to give the representation of
dyz.dy,2 — dyz.d, 7, is unique in magnitude and orientation.

18. While a geometrical interpretation of functionality can thus be
provided at any place in the two planes of the independent variables,
a limitation upon the general utility of the method is found at once when
we proceed to the transformation of equations. It does not, in fact, provide
any natural extension of the transformation of loci and of areas which occurs
when there is only one complex variable.

Thus consider the periodic substitution
2N2=w+w, Z\N2=w—w,
which gives
wa2=z+2, wy2=z-2.
Corresponding to any z, z° place, there exists a unique w, w' place. But
the combination, of a definite locus in the z plane unaffected by variations
of 2/ with a definite locus in the 2’ plane unaffected by variations of z, does

not lead to similar loci in the planes of w and of w’. Thus suppose that z
and 2z’ describe the circles

z=qe¥ 2 =a'e"
in their respective planes; the corresponding ranges in the w and w’ planes
are given by the equations
(u+ur+ w+vyP=20% (u—-u)y+@—v)==2a"%

neither of which gives a locus in the w plane alone or in the «’ plane
alone. The z circle and the 2z’ circle, which can be described by the
respective variables independently of each other, determine ? places in
the w and w' planes combined, but there is no locus either in the w plane
alone or in the w’ plane alone corresponding to the two circles.

Again, the content of the field of variation represented by
| 2120, |#]<d,
can be described very simply; it consists of the ¢ places given by com-
bining any point within or upon the z circle with any point within or
2—2
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20 ANALYTICAL EXPRESSION OF {cH. 1

upon the 2z circle. When this field of variation is transformed by the

periodic substitution, the new field of variation is represented by
lw+w|<av2, 'w—w'|<adV2;

it consists of o0 4 places in the w and w’ planes, each corresponding uniquely

to the appropriate one of the owo* places in the 2 and 2’ planes; but there

is no verbal description of the w, w’ field so simple as the verbal description

of the z, 2 field which has been transformed.,

Analytical expression of frontiers of two-plane regions.

19. One consequence emerges from even the foregoing simple illus-
tration, and it is confirmed by other considerations.

When we have a four-fold field of variation such that places in it are
represented by a couple of relations

¢ (=, ¥, , ]//) 20, Y¥(z,y 7, 9)<0,
the three-fold boundary of the field consists of two portions, viz. the range
represented by

¢y, 2, y)=0, ¥(zy )0,
and the range represented by

¢ (2 y 2, y)<0, Y(z, 9 4,y)=0.
These two portions of the three-fold boundary themselves have a common
frontier represented by the equations

¢@yd,y)=0 ¥@y o y)=0
which give a two-fold range of variation. This last range is a secondary or
subsidiary boundary for the original four-fold field; to distinguish it from
the proper boundary, we shall call it the frontier of the field.

Accordingly, we may regard the frontier of a field of the suggested kind
as given by two equations

¢(@y . y)=0, ¥(2ya, y)=0.
(The simpler case of unrelated loci in the planes of z and of 2’ arises when
¢ does not contain #’ or ¥y, and Y- does not contain x or y; and, at least
when ¢ and 4 are algebraic functions of their arguments, the foregoing
relations can be modified into relations of the type

0(ay,)=0, 0(zy1y)=0,
or into relations of the type
X (w’ x,) y,) = 07 X (y) w/) y’) = 0’
which are equivalent to them.) Now this form of the equations of the

frontier of the field possesses the analytical advantage that, when the
variables are changed from z and 2’ to w and w’ by equations

Fww, 2 2)=0, G(w o2 2)=0,

IRIS - LILLIAD - Université Lille 1



19] FRONTIERS 21
the equations of the frontier of the w, w' field are of the same type as
before, being of the form

D (u, v, w,v)=0, V(uuvu,v)=0

It is necessary to find some analytical expression of the doubly-infinite
content of these equations. In the special example arising out of the
periodic substitution in § 18, we at once have the expressions

us2=acosf@+a'cosd, wr2=acosf—a cosé,
vy2=asinf+a'sind, viy2=asinf —a'sin @,

giving the doubly-infinite range of variation for u, v, 4, ¥', when 8 and €' vary
independently. But when the equations of the frontier do not lead, by
mere inspection, to the needed expressions, we can proceed as follows.

Let @, 9, «, y=a, b, @/, b" be an ordinary place on the frontier given
by the equations ¢ =0 and =0, in the sense that no one of the first
derivatives of ¢ and of 4 vanishes there; and in its vicinity let

z=a+§ y=b+n a=d+¥, y=bt+7.
Then we have

0= en 2 g e gt

0=E%%'+ A R SN R

there being only a finite number of terms when ¢ and  are algebraic in
form. Introduce two new parameters s and ¢, and take

s=Fa +9B8 + &y +73,
t=Ed+n8 +EY +7'¢,

where a, 8, v, 8, o, B, v, & are constants such that the determinant

op 09 0p 09
oa’ 0b’ 0a’ ob
N oy oy Ay

da’ 0b° 0a” OV
a, B, v, @
a, ) B, ) 'y, 3 8’
does not vanish. Then the four equations can be resolved so as to express
£ 9, £, 7 in terms of s and ¢; owing to the limitations imposed, the deduced
expressions are regular functions of s and ¢, vanishing with them; and so we

have each of the variables @, y, #, y', expressed as functions of two real
variables s and ¢, regular at least in some non-infinitesimal range.
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22 EQUATIONS OF A FRONTIER fon. 1

In order to indicate the two-fold variation in the content of the frontier,
it now is sufficient to consider regions of variation in the plane of the real
variables s and ¢ Thus, corresponding to a region in that plane included
within a curve % (s, t) =0, there are frontier ranges of variation in the z
and the 7 planes, determined respectively by the equations

z—a=p(st) x’—a"=p'(s,t)]
:l/—b=q(.5‘,t) ’ yr—bl=q,(s)t) s
0=2k(st) 0>k(s,t)J

that 1s, by the interiors of curves
flz—a,y—0)=0, g(wl_ @, y/—bl)= 0,
the current deseriptions of these interiors being related.

Moreover, the equations =0 and G = 0 potentially express u, v, v/, v’ in
terms of #, y, «', ¥'; and so the frontier range of variation in the w and '
planes would be given by substituting the obtained values of =, y, #, v/,
as regular functions of s and ¢, in the expressions for u, v, «/, ¢, that is, the
frontier range of variation is defined by equations of the form

u, v, %, v = functions of two real variables s and ¢.

But, in dealing with the geometrical content of the frontier, whether with
the variables z and 2’ or with the variables w and w’, care must be exercised
as to what 1s justly included. We are not, for instance, to include every
point within the curve f(z — a, ¥ — b) = 0 conjointly with every point within
the curve g(@—a,y—b)=0, even if both curves are closed; we are to
include every point within either curve conjointly with the point within the
other curve that is appropriately associable with it through the values of s
and ¢.

Ex. 1. The method just given for the expression of , ¥, #', %’ is general in form ; but
there is no necessity to adopt it when simpler processes of expression can be adopted.
Thus in the case of the equations

P2 tat=1, 2—yi=y,
a complete representation of the variables is given by
z=sinscost, y=sinssin¢, 2’=coss, y =sin’scos2z.
A full range of variation in the plane of s and ¢ is
0Zs2m, 0Zt<2m.
When we select, as a portion of this range, the area of the triangle bounded by the lines

§—~t=0, 8+t=%rr, t=0,
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the limiting curves corresponding to f=0 and g=0 are a curvilinear figure made up
of a straight line and two quarter-circles in the z-plane, and another curvilinear figure
in the 7Z-plane made up of a parabola and arcs of the two curves

yY=1-a?) (222-1), y=-(1-22%)(222-1)
Ez. 2. For the periodic substitution’
wJ2=z4+7, wi2=2-7,
a z, 7 frontier defined by the equations
2*+a?=1, ¥ 4y?=1,
is transformed into a w, «’ frontier defined by the equations
wtu?2=1, v+v2=1;
that is, the frontier is conserved unchanged.
Ex. 3. To shew how a field of variation can be limited, consider the four-fold field
represented by the equations
22+y2+a?<1, 224+3y24y7%< 1.
As regards the z-plane, the first equation allows the whole of the interior of the circle
#%2+y?=1. The second equation allows the whole of the interior of the ellipse 222+ 3y2=1.

The region common to these areas is the interior of the ellipse ; hence the content in the

z-plane is the interior of the ellipse 22%+3y2=1, so that 22 ranges from O to %, and y2
ranges from O to }.

As regards the #-plane, we have
Bri—y?=2—-2% 22%-y?=14y%

Because of the range of #2, the first of these equations gives the region between the two
hyperbolas
322 —y?=2, 3x%i-y?=3%

Because of the range of 32, the second of these equations gives the region between the two
hyperbolas
2 - y2=4, 2?-y?=1.

The required content in the z'-plane is the area common to these two regions ; that is, it
is the interior of two crescent-shaped areas between the hyperbolas

20t —y?=1, 3?2-y?=2.
The whole field of four-fold variation of the variables z and 7 is made by combining

any point within or upon the first ellipse with any point within or .upon the contour of
each of the crescent-shaped areas.

Ez. 4. Discuss the four-fold field of variation represented by the equations
B2+y2+2a (v +yy') € A2,
224y 4 2 (xy' —yal) € 1%
20. The last two examples will give some hint as to the process of
estimating the field of variation when it is limited by a couple of frontier

equations in the form
O0(z,y,2)=0, ©O(z9y)=0,

or in the equivalent form

x(z o,y)=0, X(y,y)=0.
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24 FIELD OF VARIATION [cH. 1

We draw the family of curves represented by =0 for parametric values
of #'; for limited forms of 6, there will be a limited range of variation for
« and y, bounded by some curve or curves. Similarly, we draw the family
of curves represented by ® =0 for parametric values of y'; as for 6, so for ®,
there will be a limited range of variation for # and y, bounded by some other
curve or other curves. Further, the equations ¥ =0 and X = 0 may impose
restrictions upon the range of #’ and the range of %/, which are parametric
for the preceding curves. In the net result for the z-range, when subject to
the equations 6 =0 and ® =0, we can take the internal region common to all
the interiors of these closed curves.

The same kind of consideration would be applied to the equations ¢ =0
and X =0, so as to obtain the range in the z’-plane as dominated by these
equations.

And the four-fold field of variation for z and 2’ is obtained by combining
every point in the admissible region of the z-plane with every point in the
admissible region of the 2-plane.

Note. In the preceding discussion, a special selection is made of the four-fold fields of
variation which are determined by a couple of relations ¢ € 0, 4+ £ 0.

It is of course possible to have a four-fold field of variation, determined by a single
relation ¢ €0. The boundary of such a field is given by the single equation ¢=0; there
is no question of a frontier,

It is equally possible to have a four-fold field of variation, determined by more than
two relations, say by ¢ €0, <0, y€0. The boundary then consists of three portions,
given by ¢=0, <0, x<0; ¢<0, 4+ =0, xZ0; ¢<£0, y+<0, x=0. The frontier
consists of three portions, given by ¢ €0, ¥=0, x=0; ¢=0, ¢ <0, x=0; ¢$=0, y=0,
x< 0. And there could arise the consideration of what may be called an edge, defined by
the three equations ¢ =0, 4»=0, y=0.

Sufficient illustration of what is desired, for ulterior purposes in these lectures, is
provided by the consideration of four-fold fields determined by two relations.
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CHAPTER 1II
LINEO-LINEAR TRANSFORMATIONS: INVARIANTS AND COVARIANTS

Lineo-linear transformations.

21. WHATEVER measure of success may be attained, great or small, with
the geometrical representation, the analytical work persists; the geometry
1s desired only as ancillary to the analysis. So we shall leave the actual
geometrical interpretation at its present stage.

The fundamental importance of the lineo-linear transformations of the
type
w=2F0
cz+d
in the theory of automorphic functions of a single variable is well-known.
We proceed to a brief, and completely analytical, consideration of lineo-
linear transformations of two complex variables*, shewing the type of
equations that play in the analytical theory the same kind of invariantive
part as does a circle or an arc of a circle in the geometry connected with
a single complex variable.

These lineo-linear transformations between two sets of non-homogeneous
variables have arisen as a subject of investigation in several regions of
research. Naturally, their most obvious analytical occurrence is in the
theory of groups. When the groups are finite, they have been discussed
for real variables by Valentinert, Gordan}, and others; they are of special
importance for algebraic functions of two variables and for ordinary linear
equations of the third order which are algebraically integrable§. Again,
and with real variables, they arise in the plane geometry connected with
Lie’s theory of continuous groups||. They have been discussed, with complex

* For much of the following investigation, as far as the end of this chapter, reference may
be made to the second of the author’s papers quoted on p. 1.

t Vidensk. Selsk. Skr., 6 Rakke, naturvid. og math. 4fd., v., 2 (1889).

1 Math. Ann., t. 1zi (1905), pp. 453—526.

§ See the author’s Theory of Differential Equations, vol. iv, ch. v.

|| Lie-Scheffers, Vorl. . cont. Gruppen, (1893), pp. 13—82.
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26 LINEO-LINEAR TRANSFORMATIONS [CH. Ir

variables, by Picard* in connection with the possible extension, to two in-
dependent variables, of the theory of automorphic functions. And a memoir
by Poincaré has already been mentioned+-.

22. We take the general lineo-linear transformation (or substitution)
between two sets of complex variables in the form
w _ w _ 1
az+b+¢ dz+V7+¢ ad’z+ b7+
where all the quantities a, b, ¢, @/, ¥, ¢/, a”, b”, ¢’ are constants, real or
complex. The first step in the generalisation of the theory for a single
variable is the construction of the canonical form; and this can be achieved
simply by using known results} in the linear transformations of homogeneous
variables. For our purpose, these are
o =az, + bz, + oy,
Yo =0z, + b'a, + i,
Ys=a" @+ b2, + ¢"'z;,

so that we have
_f,_ 1 u_;_'w' 1

Ty h ;'3 ’ @1 Y B il )
The quantities w and w’ are independent functions of z and 2’; and there-
fore the determinant

z
&

a, b, ¢,
o, b, ¢
all’ bl/’ c//

denoted by A, is not zero. As a matter of fact,

(fw, fw’> _ A
2, Z/ - (a:/z + b”Z' + cl/)3 .
a— 0, b , ¢ =0

a , V-6, ¢
a’ , b , ¢ — 0

The equation

is called the characteristic equation of the substitution. This characteristic
equation is invariantive when the two sets of variables are subjected to the
same transformation ; that is to say, if we take
w _ w’ _ 1
aw+Bw +y aw+Bw +y dw+Bw 4y
Z _ z _ 1
wz+B7+y dz+B7+y Qe+ +y"

* Acta Math., t. i (1882), pp. 297—3820; ib., t. ii (1883), pp. 114—135.

+ See the reference on p. 1.
T Jordan, Traité des substitutions, Book ii, ch. ii, § v; Burnside, Theory of groups, (2nd ed.,

1911), ch. xiii.
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and express W and W’ in terms of Z and Z’, the characteristic equation of
the concluding substitution between W, W', Z, Z’ is the same as the above
characteristic equation of our initial substitution between w, «/, z, 7.

There are three cases to be discussed, according as the characteristic
equation, which is of the form
6°— AG+ 2,0 —A=0,

has three simple roots, or a double root and a simple root, or a triple root.

Case I. Let all the roots of the characteristic equation be simple;
and denote them by 6, 6, §;. Then quantities a, : 3, : v,, determined as
to their ratios by the equations

aa, + a'B, + a’y, = b,a,,
ba’r + blBr + b”'Yr = grB'r;

. cay+ By + c”')"r = 07')’1' p
are such that, if

Y, = Y+ Bryz + ¥ Ys, X, =az + B2, + YrZ3,
Y. =60.X,.

The canonical form of the homogeneous substitution is
Y,=60X, Y,=6X, Y,= 93X3§
and so the canonical form of the lineo-linear transformation is
qw + Blw, + 7 _y % + Blzl + 7|
aw + Bw’ + Vs o,z + 3,2 + s
o + Bow’ + v, _ o,z + 3,2 + Yo
agw + B’ + v, I 032 + 332 + 7,
where the quantities A and g, called the multipliers of the transformation,
are

we have

o 0

- 03’ /‘/ - 93)

being the quotients of roots of the characteristic equation. The multipliers
are unequal to one another, and neither of them is equal to unity.

A

This canonical form can be expressed by the equations

W=x\Z W =uZ.

Case II. Let one root of the characteristic equation be double and
the other simple; and denote the roots by 6., 8,, §;. The canonical form
of the homogeneous substitution is

Yl = 01X1) Y2= /"X1+ 01X2, Y3= 03X3,

where the forms of the variables X and Y are the same as in the first case;
and the constant «, in general, is not zero.
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The canonical form of the lineo-linear transformation is of the type
W=z, W =\Z'+oZ,

where
6,
A=
and the constant o, in general, is not zero. The repeated multiplier X is
not equal to unity.

Case III. Let the characteristic equation have a triple root . The
canonical form of the homogeneous substitution is

Y,=0X,, Y,=aX,+6X,, Y,=8X,+vX,+0X,;
and the canonical form of the lineo-linear transformation is of the type
W=Z+p, W=Z+0cZ+m,
where the repeated multiplier is unity, and the constants p, o, 7, in general,

do not vanish.

23. Any power of the transformation can at once be derived from its
canonical form. Let the transformation be applied m times in succession,
and let the resulting variables be denoted by w,, and w,,; then

04 W, + Byt + Y Am a2 + ,812, +7n

W + B + s oz + B + s’
0 Win, 4 BaWm' + 2 =, m %Z + 87 + v
W+ BsW' + s oz + B2 + s’

expressing w,, and w,,” in terms of z and 2.

When A =1 and p™=1, the mth power of the transformation gives
an identical substitution. For then
W + Biwm + N _ W + Bewm' + 72 _ OWm + BsWm' + s

az+ B+ ez B+, a3z + Bs2 +

When each of these three equal fractions is denoted by p, we have
oy (Wi — p2) + By (W' — pz) + 41 (1= p) =0,
% (Wi — p2) + B (Wi’ — p2) + 92 (1 = p) =0,
ty (Wi — p2) + By (wa' — pz’) + 95 (1 = p) = 0.
The determinant of the coefficients a, 8, ¢ is not zero, because otherwise

the canonical form of the original transformation would contain only one
independent equation; hence

Wm—pz =0, wy—pZ=0, 1—p=0,
that is,
W =2, Wy =2,

shewing that the mth power of the original transformation gives an identical
substitution, if Am =1 and p™=1.
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Invariant centres.

24. Certain places are left unaltered by the lineo-linear transformation
between the 2, 2/ field and the w, w' field. On the analogy with the
corresponding points in the homographic transformation w (cz+d)=az+b,
these unaltered places may be called double places or (because repetitions
of the transformation still leave them unaltered) they will be called the
invariant centres of the transformation.

Returning to the initial form of the transformation, and denoting any
invariant centre by ¢ and ¢, we have
af + b¢' + ¢ = 6¢,
aE+ b8 + ¢ =6,
all§+b/1§1+cll=0 ;
with our preceding assumptions, # manifestly is a root of the characteristic
equation. Hence when all the roots of this equation are simple, we generally
have three invariant centres, say & and &, & and &', & and &/, associated
with 6, 6,, 6, respectively. It is easy to verify that
0 (6 + Bo8) + 7s)
=(at+a'By+a"y) &+ (Ba+ 0B +b") &'+ cay + ¢/ By + ¢y
=0, (6 + B2§l’ + ')’2),

so that, as 6, and @, are unequal, we must have

.8+ B8 +9.=0.
Similarly
28+ B8 + =0,
asi+8.4 +mn+0.
Thus the invariant centres are given by the equations
a8+ Bl + 7 =0
b+ Bl + = O} ’
sl + Bl + 7= 0}
b+ Bl +yn=0J"
ol +BG +m= 0}
als + Bl +4.=0)°

a result which can be inferred also from the canonical form of the trans-
formation.

while

In deducing this result, certain tacit assumptions have been made as to the exclusion
of critical relations. It will easily be seen that the transformation

wa2=z4+7, Wi 2=z-7,

is not an example (for the present purpose) of the general transformation.
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Manifestly, we can take

w, w,1l |+ w, v, 1]|= z, 2,1 |+ z, 2, 1],
& &, 1 &, §1,1 1 } Lo G 1 &, &, 1
& &, 1 &, &, 1 | & & 1 L &)1
w, w, 1 +‘w w,l|\=ul|l 2z, 2,1 |+| 2 2,1],
& &1 &, &1 & &1 &, &)1
&, 61 & 6,1 G, 41 & &1

as a canonical form of the lineo-linear transformation.

This canonical form leads at once to an expression of the relations
between the two sets of variables in the immediate vicinity of the invariant
centres. Near § and &, we have

z=8+82, /=4 +87, w= L+ 8w, w=§ +3d8w,

e e E

S,w _ S’ _K o2 &7 }
C3—§1 g’i’—é‘ll 7‘-{::3_;1 {s'—é’l' )

Near &, and &, we have

where

z=8+08,2 2=0+687, w=86L+8w w=§& + 3w,

where
Sw S _ j }
Cs - Ce Cs {, M ( ; - Q’ ’
Syw S’ 1( 82 8,2 |
Cl_gd Cl—é’z ;{§—§2—§1/_§2/S..

Near & and ¢/, we have

2=8+82 2= &+ 8.2, w= G+ 8w, w =& + 8w,

where
S,w S’ 32 0,2
§1— Cs_ §1’_ {3,=,u, {4'1— Cs— Cl/— g.s'}’
8310 Sqw’ { 82 &L }
§2 - §3 gz é’:z ;; Cs tz' - gsl ’

Moreover this new canonical form, involving explicitly the places of the
invariant centres in their expressions, shews that the assignment of three
invariant centres and two multipliers is generally sufficient for the con-
struction of a canonical form of a lineo-linear transformation of the first

type.
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Ezx. 1. Some very special assignments of invariant centres may lead to equations that
do not characterise lineo-linear transformations. The resulting equations, in that event,
belong to the range of exceptions.

Thus, if we take
G1=1 } {a=a } (s=a? }
b ) b
§1,= -1 {2’=—a ('3'=—a2

where a is neither zero nor unity, and if we assign arbitrary multipliers A and p different
from unity and different from one another, the canonical equations can be satisfied
only by

w+w'=0, z24+7=0,
which is not a lineo-linear transformation of the z, 2 field into the w, «' field.

Other special examples of this exceptional class can easily be recognised. One
inclusive example is given by the relations

(2';(3'=§2;§3=§2(s';(3§2" G Gy 1 |=o0;
2, Y, 1
6=t = _ by =, i 2 .

and then the equations acquire the unsuitable form
Aw—-Bw +C=0, Az—B/+C=0.

Ex. 2. When neither point in any one of the three invariant centres is at infinity,
we can (by unessential changes of all the variables that amount to change of origin,
rotation of axes, and magnification, in each of the planes independently of one another)
give a simplified expression to the canonical form.

Suppose that no one of the quantities i, {1, (s, (2, (3, {5’ then is zero; alternative
forms, when this supposition is not justified, are left as un exercise. We then transforn
the z-plane and the w-plane by the congruent relations

==L~ 4, w-4a=(G-G) W;
and we transform the Z-plane and the «'-plane by the congruent relations
Z=G'=(G =002, ©=G=(E-G) W
All of these are of the type just described ; they require the same change of origin, the
same magnification, and the same rotation, for the z-plane and the w-plane; and likewise

for the 7-plane and the w'-plane. The effect of the transformation is to place, in the
Z, Z' field and the W, W’ field, two of the invariant centres at 0, 0 and 1, 1.

The third invariant centre then becomes a, a’, where
Il SO C Gl O
To- TG
The equations, in a canonical form, of the lineo-linear transformations of the Z, Z’ field
into the W, W’ field, baving 0, 0; 1, 1; @, d’; for the invariant centres, are

w, W, 1 Z, Z', 1

1, 1, 1 1, 1, 1

a d, 1 -l ad, 1
W~ W’ - zZ-z

Woa' = Wa_  Zd=Za
W= W =p Z_72
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where X and p are different from one another and where (so far as present explanations
extend) neither A nor p is equal to unity.

But it must be remembered, in taking these equations as the canonical form, that
definite (if special) identical modifications of the z-plane and the w-plane have been made
gimultaneously, and likewise for the 2-plane and the w'-plane. The result of these
modifications, in so far as they affect the original lineo-linear transformation, is left for
consideration as an exercise.

Invartantive Frontiers,

25. In the theory of automorphic functions of a single complex variable,
it proves important to have bounded regions of variation of the independent
variable which are changed by the homographic substitutions into regions that
are similarly bounded. Thus we have the customary period-parallelogram for
the doubly-periodic functions; any parallelogram, under the transformations

w=z+ w, W=2-+ w,,

remains a parallelogram and—with an appropriate limitation that the real
part of w,/w, is not zero—the opposite sides of the parallelogram correspond
to one another. Similarly a circle or a straight line, under a transformation
or a set of transformations of the type
(cz+d)yw=uaz+b,

remains a circle or sometimes becomes a straight line; and so we can
construct a curvilinear polygon, suited for the discussion of automorphic
functions. These boundary curves—straight lines and circles—are the
simplest which conserve their general character throughout the trans-
formations indicated; they are the only algebraic curves of order not
higher than the second which have this property. They are not the only
algebraic curves, which have this property, when we proceed to orders higher
than the second; thus bicircular quartics are homographically transformed
into bicircular quartics.

For the appropriate division of the plane of the variable, when auto-
morphic functions of a single complex variable are under consideration so
as to secure an arrangement of polygons in each of which the complete
variation of the functions can take place, other limitations—such as relations
between constants so as to secure conterminous polygons—are necessary.
They need not concern us for the moment. What is of importance is
the conservation of general character in the curve or, what is the same
thing, conservation of general character in the equation of the curve, under
the operation of a homographic transformation.

26. Corresponding questions arise in the theory of functions of two
complex variables. We have already seen that, when a 2, 2’ field is determined
by two relations, its frontier is represented by a couple of equations between
the real and the imaginary parts of both variables; and therefore what
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18 desired, for our immediate illustration, is a determination of the general
character of a couple of equations which, giving the frontier of a z, 2’ field,
are changed by the lineo-linear transformation into a couple of equations
which, giving the frontier of a corresponding w, w’ field, are of the same general
character for the two fields. The invariance of form of such equations, at
any rate for the most simple cases, must therefore be investigated.

We shall limit ourselves to the determination of only the simplest of
those frontiers of a field of variation which are invariantive in character
under a lineo-linear translation. Also, we shall consider only quite general
transformations ; special and more obvious forms may occur for special trans-
formations, such as those contained in the simplest finite groups. Accordingly,
in the equations

w _ w' _ 1
az+ b +c az+ b7+ a2+ b7+’

we resolve the variables into their real and imaginary parts, viz.
s=x+1y, Z=ad+1, w=u+w, w=u+w;
-and we require the simplest equations of the form

¢y, y)=0, ¥ (zy 2, y)=0,
which, under the foregoing transformation, become
D (u, v, w,v)=0, V(uvu,v)=0,

where ® and ¥ are of the same character, in degree and combinations of
the variables, as ¢ and . Moreover, the constants in the transformation
may be complex ; so we write

a=a +1ta,, b=2>b + 1, c¢c=c + 1,

o =a’+1a), ¥ =b"+1b, ¢ =c¢ +1c,

a// = a]l/+ ’L'a2”, bll= blfl + ibzll, C/I = clll + 7:62”’
in order to have the real and imaginary parts. Lastly, let

Ny=az+ ba' —ay —by + 6, No=ax +ba'+ay+by +ec,
N]/____ a,l'.'c + bllx/ _ a2/y _ b‘;y, + cl,) Ng’ — 6L2/x + bg/xl + a]/y + b;'!/' + c2/,

N'=a2+b"d-a"y-b"y +¢", N'=a z+b"a+a"y+b"y+c,
D=N/""+N,*
then the real equations of transformation are
Du =N,N"+ N,N,,
Dv = N,N,”"— N,N,”,
Du'=N/N,)"+ N,/N,,
Dv' = N,/N,"= N/N,".
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Further, we have
D(w+v)= N+ N,
D (wu' +w')=N,N/+ N,N,,
D (wv’ —uw'v)=N,N, — N,N/,
D W +v*) =N+ N,

These equations express each of the quantities u, v, u, v/, u* + 9% ww' + v,
wy’ — w'v, w* 497 In the form of a rational fraction that has D for its de-
nominator. The denominator D and each of the numerators in the eight
fractions are linear combinations (with constant coefficients) of the quantities
L,z y o, 9, @+, ad + yy, oy — 2y, a* +y™

The same form of result holds when we express «, y, «, ¥ in terms of
w, v, w, v'; any quantity, that is a linear combination of 1, z, y, «, ¥/
2+, ad’ +yy, xy —a’y, 2% +y”, comes to be a rational fraction the
numerator of which is a linear combination of 1, u, v, v/, ¥/, u®+ %, uu’' 4+ v,
wv' — v, w?+9*; the denominator is a linear combination of the same
quantities, and is the same for all the fractions that represent the values
of o, y, &, v, @+ 9 ad’ +yy', zy — ya', 2 +y”. Consequently, any equation

4@ +y)+ C (e’ +yy)+ D (wy — yo') + B (2" + y*)
+EBz+Fy+ G+ Hy =K
is transformed into an equation

A’ (W +?) + C' (uu' + v’y + D (wv’ — w'v) + B’ (u”® + v*)
+ Eu+Fo+Gu+Hv=K,
where all the quantities 4, ..., K are constants, as also are 4/, ..., K,

each member of either set being expressible linearly and homogeneously
in terms of the members of the other set.

27. Thus the transformed equation is of the same general character,
concerning combinations and degree in the variables, as the original equation;
and there is little difficulty in seeing that it is the equation of lowest degree
which has this general character of invariance. Further, two such simul-
taneous equations are transformed into two such simultaneous equations of
the same character.

This is the generalisation of the property that the equation of a circle
is transformed into the equation of another circle by a homographic sub-
stitution in a single complex variable.

Accordingly, when a z, 2° field having a frontier given by two equations
of the foregoing character is transformed by a lineo-linear transformation into
a w, w’ field, the frontier of the new field is given by two similar equations.
We define such a frontier as quadratic, when it is given by equations
of the second degree in the variables; and therefore we can sum up the
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whole investigation by declaring that a z, 2’ field, which has a quadrotic
Sfrontier, vs transformed by a lineo-linear transformation into a w, w’ field,
which also has a quadratic frontier.

28. One special inference can be made, which has its counterpart in
homographic substitutions for a single variable, viz., when all the coefficients
in a lineo-linear transformation are real, the axes of real parts of the com-
plex variables in their respective planes are conserved. For when all the
constants are real, we have

vD = (a"b — ab”) (zy’ — &'y) + (ac” — a”c) y + (bc” — b"¢) ¥/,

v'D = (a"t' — a'b”) (wy' — 2'y) + (a'c” — a"¢y y + (b'c" = b"¢) v
and therefore the configuration given by y =0 and y =0 becomes the
configuration given by v=0 and v'=0. The converse also holds, owing
to the lineo-linear character of the transformation.

These axes of real quantities in the planes of the complex variables
are, of course, an exceedingly special case of the general quadratic frontier,
which can be regarded as given by the two equations

A, (@ + ) + By («" + y*) + Oy (a2 + yy) + Dy (ay — a'y)
+Ez+Fy+Ga+ Hy=K,,
Ao (@ +9) + By (a7 + %) + O, (22" + yy') + Dy (ay’ — &'y)
+ Eyo+ Foy+ Qoo + Hyy = K,.
Let z and 7’ be the conjugates of z and 2’ respectively, so that
Z=x—1y, Z=a—1y;
then the general quadratic frontier can also be regarded as given by the
equations
A2z + BZZ2 + 027 + D)2’z + K2+ F)z2+ G2+ H/': = K,,
A,ez+ B,27 + C25 + D)7+ Bz + F)z+ Q2+ Hyz = K,,
where 4., B,, K, 4., B,, K, are real constants, while C;/ and D/, C, and D,
E/ and FY, E, and F), G and H/, G, and H,, are pairs of conjugate
constants.

" Manifestly any equation of this latest form is transformable by the
lineo-linear substitution into another equation of the same form.

29. Another mode of discussing the frontier of a 2z, 2° field, which
is represented by two equations that have an invariantive character under
a lineo-linear transformation, is provided by the generalisation of a special
mode of dealing with the same question for a single complex variable.

The general homographic substitution affecting a single complex variable

has the canonical form
w—a z—a
-K ,
w— LB z— 83
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where a and S are the double points of the substitution, and K is the
multiplier. Let

w=u+w, z=z+wy, a=a+ia, B=b+1b, K=«
where w, v, z, ¥, @, &, b, V', &, k are real; then

u—a+i(w-a) Lx—a+i(y—a)
u—b+i(w=b) " T—bti(y-b)’

and therefore

@=b)(v—a)— (u=a) (=)

(w—a)(u—b)y+ (@w—2a)(v-10)

(@=b (=)= @=a)(y=b) _,
(z—a)(z-b)+(y—a)(y=V) )

tan—!

— tan™?

Hence the circle

@=a) @=b)+ @y —a) (y = ¥) =m (@) (y— @) - (@ — ) (y ~ B},
which passes through the double points (a, ¢) and (b, b") of the substitution,
is transformed into the circle

w—a)y(u—=b)+@w—a)(w=0)=M{u->b)(v—-0a)—(u—-a)@-0)},

which also passes through those common points. The constants m and M
are connected by the relation

m—M = (14+ mM) tan k.
At a common point, the two circles cut at an angle k, which depends only
upon the multiplier; thus when an arbitrary circle is taken through the
common points, it is transformed by the homographic substitution into

another circle through those points cutting it at an angle that depends only
upon the constants of the substitution.

This process admits of immediate generalisation to the case of two
complex variables, Let the lineo-linear transformation in two variables be
taken in its canonical form ; and write

az+ B + =l +d", aw+pBiw +y,=L +iL",

0,z + 3,7 + Y= I+, aw+ B + Y= L) +4L",

a2 + Bs2 + Y= I+, aqw+ Byw' +vyy= L + oLy,
where I, ", 1), ,”, I, l;” are real linear functions of z, y, &, ¥ and L,, L,”,
L), L), L, L, are respectively the same real linear functions of w, », v/, v'.
The three invariant centres are the places given by the equations

I, =0 I =0 L'=0
/=0 L'=0 K=o
L'=0|" =0 &'=0["
L"=0 L”=0 =0
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and they are also the same places given by what are effectively the same
equations

L/ =0 L/ =0 L/ =0
L/ =0 L/=0 L"=0
Li=0[" L/'=0[" L/=0
L=0 L'=0 L=

The canonical form of the lineo-linear transformation now is

L1/+ ,L-Llu _ l1’+ 7-ll//
L3/+ 7:L3” - ls/ + z‘lsll )
L 4L/ _ I+l

-le + iLsI/ - ,LL l3/ + Z'lslly

and therefore, among other inferences, we have

L/L//_LIL/I l/l//_l/lll
t —_1 1 ™3 Lt SR —1 1% 3“1 — oy
al LllLs/ + L]”-L;;” tan llllsl + ll’/l3,, d’rg ]
L/L/I_LIL// l/lll_l/lll
1 — 32 23 —1 Y32 2 Y3 —
an .L_o,/ Lg’ + L3// Lg” tan ls’ 52, + tgﬂlgl/ a’rg 2
L/LII_L/LI/ l/ll/_l/l//
tan—1 21 140 1 2’ 1 1he _ .
aln L21L1/ + L2/rLl/I t’a‘n l2 lll + tg”tlﬂ a’rg x arg M

Accordingly, the frontier configuration, represented by any two of the three
equations

L — L =p L + 17",

W =L = q (L + 1),

LU =L =r (L1 + 1,7,

where the three constants p, ¢, » are subject to the relation

p+q+r=pgr,

so that the three equations are really equivalent to only two independent
equations, is changed by the transformation into the frontier configuration
represented by any two of the three equations

L/L)—-L,/L=P(L/L/ + L"L,"),
L/'Ly — L/L" =Q (L/Ly + L"Ly"),
L/L"—-L/L”=R(L/L + L,"L,"),
where the three constants P, , R are subject to the relation
P+Q+R=PQR,

so that these three equations are really equivalent to only two independent
equations. Moreover, if

w= Ge%, A= Heh
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where g, k, G, H are real constants while G and H are positive, we have
P—p=(1+Pp)tanyg,
Q—g=—-(1+Qq)tanh,
R—r=QQ+ Rr)tan (h—g).
It is easy to verify that, if either of the relations
' P+Q+R=PQR, p+q+r=pqr
is satisfied, the other also is satisfied in virtue of these last equations.

The quadratic frontier of the 2, 2 field and the quadratic frontier of
the transformed w, w’ field both pass through the three invariant centres of
the lineo-linear transformation.

Ez. 1. In connection with the homographic substitution in a single variable

w—a zZ—a
=K

w—f3 z—f
(in the preceding notation), shew that the constant m in the equation of the circle
(#-a)(@=b)+(y - ) y—b)=m{(z-b) (y-a) - (z-a) (y -b)}

is the tangent of the angle at which the circle cuts the straight line joining the double
points of the substitution.

Prove also that, if 2d is the distance between the double points,  is the radius of the
foregoing circle, and R the radius of the circle into which it is transformed,

1 2cosk 1 sin2k
B™ R TR @
Ex 2. Shew that the circle
(o=at (g = b=t (o=t (= ¥
is transformed, by the homographic substitution, into the circle
(w—ay+@w—bP=N*{(u-a)+(v-b)%,
N=«n.

where

Interpret the result geometrically.

Ez. 3. Construct a lineo-linear transformation which has 0, 0; 1, 1; % —¢ for its
invariant centres; and shew that there are quadratic frontiers of the z, 2/ field, which
pass through these invariant centres and are represented by any two of the three
equations

2242422+t — 2 (22 +yy) — 2 (xy —2y) -2 (y—7)
=a{z?+y2— (2 +y?)+2 (z-2)},
22+ yt Y2+ 2 (v +yy) -2 (ay —2y)— 2 (+ &)
=B{F+y* - (2 +yH) -2 +y )
@ty - (@ +y?) =y (zy - 2y),
provided the constants a, 8, ¥ satisfy the relation
y{a+B)=2a+28-y.
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Verify that the lineo-linear transformation changes these equations into equations in
u, v, %', v of the same form but with different constants o', 8, ¥ satisfying the relation

_y/ (a1+6/>=2“1+2ﬁ1_7/‘

Shew that, at the invariant centre 0, 0, small variations dz and dz’ cause small variations
dw and dw' such that

o —df = ;\ (do—d7),

dw+dw’=z")—t(dz+dz’);

and obtain the relations between the small variations at each of the other two invariant
centres.

Invariants and Covariants of quadratic frontiers.

30. Owing to the importance of the quadratic frontier, because it is
given by two equations of the second order that are invariantive in general
character under any lineo-linear transformation, we shall briefly consider
those combinations of the coefficients which are actually invariantive under all
such transformations. The proper discussion of the invariants and covariants,
which belong to two equations of any order that are invariantive in general
character under the transformations, requires an elaboration of analysis that
will take us far from the main purpose into what really is the full theory of
invariants and covariants. It will be sufficient to give the elements of that
theory as connected with the fundamental procedure. Moreover, we shall
take a general quadratic frontier and not merely the special class which
pass through the invariant centres of an assigned transformation; and we
require the quantities which are invariantive under all lineo-linear trans-
formations and not merely under one particular transformation. We further
shall only deal with such invariantive quantities as are algebraically
independent of one another.

31. There are several modes of procedure; in all of them, it is con-
venient to use homogeneous variables, as was done in establishing the
canonical form of the lineo-linear substitution. So we take

| &

| w_w 1

=", =
2 X

N B B Ys’

Also, as the variables respectively conjugate to z, 2, w, w’ have been intro-
duced, we shall require variables respectively conjugate to @, @, @3, %1, Y2, Ys;
denoting these by &, &, sy %1, Yas Js» We take

Bin
8
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For the present purpose, we take a z, 2 field determined by two relations
Q< 0, Q' <0, where
Q = Ay + By, + Cp¥s + Dy + By, + Fy.y,
+ Gf/s.??l + Hy:;:% +K3/3773,
Q’ = A';%??l + Bl,% Yot 0"3/1?3 + Dl?/e?% + E,Z/2Z72 + F,ysgs
+ Gy + HyGo + K'ysGs;
its quadratic frontier is given by the equations
@=0, =0,
which, on division by the non-vanishing quantity y,%,, acquire the form of

our earlier equations. In @ the coefficients 4, &, K are real, while B and D,
C and G, F and H, are conjugates in the stated pairs; and similarly for the
coefficients in @',

The method of procedure that we shall use is based upon an application
of Lie’s theory of continuous groups to these quantities ¢ and @ ; and the
application proves fairly simple in detail when we use umbral forms
simultaneously with the expressed forms. Accordingly, we introduce
umbral coefficients oy, o, a3, 6y, &2, oy, with their conjugates oy, 7, &,
&, @, o5 ; we take

H=0'13/1+0'2y2+ U'.Sys} HI=0'1,?/1+0'2/92+0'3,3/3}
I =675+567+5%] =3+ %+ %)
and we write B .
Q=TIII, @ =TI
We then both define and secure the umbral character of these new
coefficients by imposing the customary condition that the only combinations
of the umbral constants which have significance are those leading to the
expressed coefficients in the form
A=ao90, D=o070, G=0¢7d,
B= 0,0y, K=0,0,, H=o0,0,,
C=0,G,, F=0,6;,, K=0,6;;
and likewise for the coefficients of ¢.
When the lineo-linear transformation, in the form
1= az, +bx, + cx,
Yo=0a'm +bz, +cas p,
ys=a"z, + bz, + c”wgJ
and its conjugate, in the form
=07, +b% +70%; )
Yo=0'F + 0T +0T5 1)

Yy =0T+ Ty + Ty
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are applied to @ and (), these become P and P’ respectively, so that
we take

Q=P, Q=P,
and then
P =A,2% + Bz, + C.x,Z; + Dy2,@, + B 2,7, + Fy2,7,
+ Gi@@y, + H 2%, + K2, T,
P’ =A/x7 + Bz, @, + O/ 2,y + D, 2,7, + K2, %y + F) 2,7,
+ Gz, + H) 2,7, + K| 2,75

We take
$18y + 8oy + S3y, S =82 + 8%, + 85 ws,

S=
S=387 + 587+ 5%, S =87 +57+577,
where s,, s,, 83, 8/, 85, 8 are new umbral coefficients, while 3,, 3,, 5,, 5/, 8/, &
are their conjugates; and we write

P=8S Q=87%,
regarding II as transformed into 8, IT into S, II” into S’, and II' into S".
Then the laws of relation between the umbral coefficients in II and S, and
in IT and S, are

si=ac, +do,+ a’o, 5, =00, + 0, + a5, 1
=ba, + b, + 00y }, 5, =bo, + bo, + b5, };
ss=coy + o, +c'oy S, =¢co, +¢5, +¢'G,

and the same laiws of relation hold between the umbral coefficients in I1’
and S, and in II' and S". Finally, in connection with our transformation,

we write

all

A=la, b, ¢ , A=|a, , ¢ |,
o, b, ¢ a, b, ¢
a//, bll’ c// d/l’ b/ /’ (—7!/

where A has the same significance as before, A is its conjugate, and neither
A nor A vanishes.
32. As an example of an invariant, consider the quantity
I=|4, B, C
D, E, F
G, H, K,
To express it in umbral symbols, three sets of these are required because it

is of degree three in the non-umbral coefficients. Denoting these by
81, 52, 83, i, by, b3, Uy, Up, Uy, With their conjugates, we easily find that I is

equal to
%‘ S1, S, 8 S, &, & ,
tl > t2 ’ t3 tl ’ t2 ’ t3
Uy, Uy, Ug Uy, Uy, Uy
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42 INFINITESIMAL [cH 11

that is, to
3 o, ou o3 a, b, ¢ G, O, O, a, b, ¢ ',
T, Te, T3 a, b, ¢ T, Ta T a, B', ¢
vy, U, Us a”’, b, Vi, Uy, U a”, i)", ¢’
that is, to
%AL—X o, O3 O Ty, 0, 03 |;
Ti, T2, T3 T, Ta, T
Ui, Ugy Uy v, Uy, Uy

and therefore
4,, B, C |=AA| A, B, C |,
D,, E, F D, E, F
G, H, K, G, H K

a relation which establishes the invariantive property of the quantity I
which is a function of the non-umbral coefficients of P alone.

The same combination of the coefficients of P’ alone is easily seen to be
an invariant. The simplest covariants are P and P’; for we have

Q=P, @=P.

33. Passing now to the consideration of invariants and of covariants
that belong to the general quadratic frontier, we define any quantity

¢(yu Yas Yss Yu> Yar Ys» A4,..., K 4, ..., K,) ‘
to be such a function if 1t satisfies a relation
d = ArArg,

where ® is the same function of @, ., 23, T, T, &s, 44, ..., K, 4/, ..., K
as ¢ 1s of its own arguments. We shall deal only with integral (not with
fractional) homogeneous combinations of the variables and the coefficients;
and we assume that, in the foregoing relation which defines an invariant
or a covariant, the index of A is the same as that of A because we are
limiting ourselves to the properties of real frontiers as defined by two
real equations. And we retain the customary discrimination, by the occur-
rence or the non-occurrence of variables, between a covariant and an
invariant.

By Lie’s theory of continuous groups*®, it is sufficient to retain the
aggregate of the most general infinitesimal transformations of a continuous
transformation in order to construct the full effect of the finite continuous

* For proofs of this fundamental theorem, see Campbell, Theory of continuous groups,
chap. iii.
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transformation. Accordingly, for our immediate purpose, it is sufficient to
obtain an algebraically complete aggregate of integrals of the set of partial
differential equations which characterise the full tale of the infinitesimal
transformations in question. To obtain these, we take

a =1+¢, b =¢, C =6

a =e, bV =1+4e¢, ¢ =¢ ,
a’ = ¢, b = ¢, ¢'=1+ GJ
d=1+%, b =g, ¢ =5

a =%, V=1+%, ¢ =5

a’ =g, b =7, '=1+5

For the most general infinitesimal transformation, all the quantities e and &
are small, arbitrary, and independent of one another, subject to the condition
that e, and &,, for the nine values of n, are conjugate to one another.

The laws of relation among the umbral coefficients now are

8§ — 0= €0, + €0, + €03 8§, —0,=¢€0, + €0, + §0;
8y — Oy = €,07 + €0, + €03 [, 8 — Ty = €,0, + €;0; + €0;
83— 03 = €301 + €503 + €03 83— 03 = €,0, + €0, + €03

Consequently the infinitesimal variations of the coefficients in the equations

of the quadratic frontier are given by the equations
84A=4,—-A=e¢Ad+eD+e6G@+8d4d+6B+5C
8B=B,—B=¢B +el+eH+64 +6B+&C
3C =0,-C=¢C+eF +e¢K+6A4 +6B+5C
0D =D,—D=eA+e&D+ eG+6D+6,E+6F
Ok =E,—E=eB+el+e¢H+6D+eH+6F ¢
SF=F, —F=6C+eF + 6K +5D+6&E+&F
F=G—-G=6A+eD+e,G+eG@+e, H+6K
O0H=H,—H=¢e¢B+e¢E +e6H+6G+6H+6K
K=K, —K=¢C+eF +eK+&G+6&H+6K

with a corresponding set of nine expressions for the infinitesimal variations
of the coefficients 4/, ..., K.

The infinitesimal variations of the variables are given by the relations

Y1— T = %, + €2, + €25 ?1—571=E@1+32@+3353
Yo — %y = €,%) + €%, + %3 1, Yo — Ty = €T, + &y + €T3 1
Y3 — X3 = €10, + €&, + €23 Yy — X3 = &, + &Tp + €T
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and therefore, so far as small quantities up to the first order are concerned,

we have
—1/1=—61y1—62y2—€33/3l x —3—/1=_§1?71 —52@72—?3373
— Y2 = — €Y — &Yy — €Ys — Yo = — €Yy — & — &Ys
Xg— Ys=— €Y1 — €Yy — €Y3 J — Yy =— €Y — €Y — 59?3

And, lastly, we have
AA =14 e+ e+ ¢+ & +8+5.

34. Now any covariant or invariant satisfies the equation
()b (mly T X3, ﬁl: §2y ‘@37 Al) L Kl’ AI/: ey Kll)
= (AA)9¢ (yb %; ?/3> 371: 372) ?_/m A; veey K} -A,r erey K’)'

Substitute i_n this defining equation the values of 4,, ..., K, 4/
3/1, Yos Ys» AA) ‘Vrite

8 0 0 0 0

1) oee

f,=A4 +BaB+O + 4 T BaB'+OaO'
9.=D 2 E’ +F Y R
s=Pspt Doy + aE' aF' ;
? 2 o 9 B
b=G 56 +Hyp+ KE)K+G6G’+H8H’+K8K/
a a a 7 a 4 a 4
0‘A§Z +DaT)+GaG+AaA’+DaD’+G aG’
) ., , ,
Z ‘Ba_B +E8E+HaH+ B aB’+E aE'+H aH' -
b,=0 2 srl vk sl s g0
b =Cog tFpt Kop+Use + ¥ 55 oK’
. a a a ’ v a ’ a
bo=4 55 +B.7 08F+A D’+BaE’+C o
9=Ai+p G+ A o oy O i
2= 4 3B Et aH B aE' aH'
¢9=Ai+19a 02 v v % sl
=4 56 3K aG' BH’ aK'
~ ) 0 , 0 , 0 , 0 |
03=A2TC+D3F+G87{+A aC’+DaF' + @G T
8 2 5 ., 9 , 0 g 0
O=D g+ Esp+ Fog+ Do+ B g+ Fam
5 _p 0 2 , 0 , 0 , 0 |’
9“‘BaA+EaD+HaG+BaA'+EaD'+H 3G
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34] INVARIANCE 45

0 , 0 , , D
b= D8G+E8H+F8K+D6G'+E +F

8H’ oK’ }
6;=B 380“’1 0 +Ha§{+B'z%'+E’a;,, H'aK, ,
i G31+H8+K680+G' Z'J“H'a%' I\”a%,

gl 0 0 .  ® , 0 , 0
GB—G@+H8—E+K6—IP+G8T,+H a—E,-i—K OF"
= 0 0 0 0

0=CoptFop+t Kop+Cop+ F

aE’ +K 8H’

and expand both sides of the equation in powers of the small quantities e
and & Equating the coefficients of these small quantities on the two sides,
and denoting our covariantive function

¢(y1y 3/2, y.’s: yl; 372) y:b A» RN K; Aly ey K/)
by ¢, we have the partial differential equations
0
6,61 "’—pqs, b~ 150 =

3d>

05 — y2 =pp,  bip— Y25 —qu
Oy — ysg;)— é, 99¢—ysgif_p¢
Oup — 3128;)—0’ 0.4 — %a—;f—o
bp-pse =0, Bp-ngl=0
€4¢—ylg—¢=0, 8,¢— y,a;’ 0
O — 933;—0, 96¢—y3gi’5=0>’
b:¢ — 9la;b=0, ;¢ — ylg;s 0

0 = _ 0d
b5 — 92¢ 0, 08¢_?/2&7“3=0
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46 COMPLETE SYSTEM OF [cH. 11

as equations satisfied by the function ¢. Moreover, by Lie’s theory, any
function ¢, which satisfies all these equations, is a covariant (or invariant)
of the required type.

35. Having regard to the fact that ultimately we are dealing with
quadratic frontiers and with transformations between w, w’ and z, 2/, we
shall consider only those integral functions ¢, which are homogeneous (say
of order m) in #,, 4,, ¥; and homogeneous (also then of order m) in %, %,, %s.
We also shall consider only such functions ¢ as are homogeneous (say of
degree n) in the coefficients 4, ..., K and homogeneous (say of degree »’)
in the coefficients A’, ..., K’. Then, from the first set of equations and by
means of Euler’s theorem on homogeneous functions, we have

n+n' —m=3p.

It follows that every integral invariant of a quadratic frontier has its degree
in the coefficients of the boundary a multiple of 3.

When the index p is taken as equal to the foregoing value, and when we

note the equality between the indices of A and A in the relation which
defines the covariants, the first six equations can be replaced by the four

o
0 — iy, ¢ 054’_%—2 Oy — %ad)
6 - ylgf_m Bt =0 - 50

and we then retain the other twelve equations, so that we have a set of
sixteen partial equations of the first order.

It is easy to verify that the conditions of co-existence of these sixteen
equations are satisfied, either identically or in virtue of the equations in
the set. Hence the set of equations constitutes a complete Jacobian system
of partial equations of the first order. The possible arguments in any
solution ¢ are twenty-four in number, viz, the nine coefficients 4, ..., X,
the nine coefficients 4, ..., K’, and the six variables v, ¥, ¥ ¥, Yo U
consequently, by the customary theory of such systems*, the number of
algebraically independent integrals is eight, the excess of the number of
possible arguments over the number of equations in the complete system.

36. After the limitations that have been imposed, every integral ¢ of
the system is homogeneous of degree m in i, y;, ¥s, and also homogeneous
of degree m in 7y, ¥», ;- Let it be represented by

2Up,q,0,¢ " PTIYLYSI T TIYL Y
* See my Theory of Differential Equations, vol. v, chap. iii.
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37] CHARACTERISTIC PARTIAL EQUATIONS 47

then, in order that it may satisfy the equations, we must have the relations
(among others) .
s Upgpig — (0 +1) Upriyg ¢ =0
0. Upge — (0" +1) Up g1, =0 &
0. Up,gp,0 = (4 +1) Up,gir,p,¢ =0 )
0. Up, g0 = (¢ +1) Upgp,¢+1=0

By the continued use of these equations, all the coefficients Up 4,4 can be
obtained when once U o, (say U)is known; and therefore, as usual in the
theory of homogeneous forms, the whole covariant can be regarded as known
when its leading term Uy,™y,~™ is known.

Again, and just as in the ordinary theory, the leading coefficient U of the
covariant satisfies the equations

0,U=0, 6,U=0, 6,U=0, 6,U=0,
8,U=0, 6,U=0, 8,U=0, 6,U=0,
0,U—6,U=0, 8,U—-8,U=0.

These ten equations also are a complete Jacobian system of partial diffe-
rential equations of the first order. Each integral can involve the eighteen
possible arguments, constituted by the constants in the two equations of the
quadratic frontier; and therefore the system of equations possesses eight
algebraically independent integrals which are the leading coefficients of the
eight covariants constituting the algebraically complete set of integrals of
the full system of equations. It follows that, in this method of proceeding,
we have to obtain eight algebraically independent integrals of the preceding
set of ten equations in the second complete Jacobian system.

37. The actual process of solving the equations is the customary process
that applies to complete Jacobian systems that are linear and homogeneous.
The algebra required in the manipulation is long and tedious for the present
set of equations; so the results will merely be stated, especially as they can
be obtained by another method (or combination of methods) applicable to
the equations of the quadratic frontier. The summary of the final integra-
tion of the ten equations, which are to possess eight algebraically independent
integrals, is as follows :—

Every integral of the system is expressible algebraically in terms
of the eight independent integrals 4, 4", I, J, J', I', T, T', where I is
the invariant of @, I’ the similar invariant of @',

Lol N L
J=2A ﬂ’ J—EAaj,,

(the summation being extended over all the coefficients of @ and ),
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and where 7' and 7" are the coefficients of A and u respectively in the

expression
B, C G, D
KA—I— Ar | ) 3
( F’ ) B’, 0/ l G,, D/
OB+ pE) 4, C | A, @
A4, ¢ A, G’
A, B A, D
+ (MK + pK’ ’ ’ l
( /l’ ) Al’ BI J J AI) DI
A, B G, 4
+ )\F + F/ > ’ )
R T G,Aw
+OH+umy| L D104
A, D|C, 4

Moreover, A determines a covariant A%, + ..., that is, @; A’ deter-
mines a covariant A’y,%,+..., that is, '; 7' determines a covariant
Ty*y2+ ..., say R; 1" determines a covariant 7"y,*%,*+ ..., say R’; and
I, J, J', I’ are invariants. Finally, any quantity connected with the
quadratic frontier that is invariantive under the lineo-linear trans-
formation is expressible in terms of @, @', B, R, I, J, J', I

38. Had our quest been for invariants alone, the preceding analysis
shews that they must satisfy the equations
6,-6,=0, 6,—6,=0, 6,—6,=0, 8,-6,=0,
0,=0, 6,=0, 6,=0, 6,=0, 6,=0, 6,=0,
.=0, 6,=0, 6,=0, 8,=0, 6,=0, 6,=0.

But always 0,+ 0, +6,=6,+ 6+ 8,,
so that, in virtue of the first four we have
61 = 91:

and therefore 8, =8,, ,=0,. The two equations
8,—0,=0 and 8,—8,=0
are therefore satisfied in virtue of
6,—0,=0, 6;,—6,=0;
and so the system for the invariants contains fourteen independent equations.
They are a complete Jacobian system, and involve the eighteen arguments
constituted by the coefficients of  and @'; hence there are four algebraically
independent invariants.
They can be obtained simply as follows. We have seen that

4, B, C
D, E, F
G, H, K
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is an invariant of @; the same function for a@+ B¢’, where a and B are
arbitrary parameters, also is an invariant of the system. Let

ad +BA’, aB+BB, aC +BC" |=al+e*BJ+aBJ +81';
aD+BD', aE+BE', oF +BF
aG@ +B8@', aH+pBH', aK+BK’

then I, J, J’, I" are four invariants, independent of one another, and there-
fore suitable for the aggregate of the four algebraically independent invariants.
They manifestly agree with the four invariants in the earlier aggregate of
invariants and covariants.

Ez. Prove that the complete system for a single equation =0 is composed of @ and /.

39. The detailed consideration of the invariantive forms will not be con-
sidered further. What has actually been done should suffice to shew the
march of a general method of proceeding for the particular problem.

But one warning must be given if this general method is to be applied to
a wider problem, viz. the determination of all the covariantive concomitants
of all kinds whatever that are to be associated with any single form or with
any couple of forms that are integral and homogeneous in ¥, ¥, ¥s, and also
integral and homogeneous of the same order in Z, s, s, where we still assume
the lineo-linear transformation for v,, v,, y; and its conjugate for 7, %, ¥,
as the transformations under which the concomitants are to be invariantive.
For this problem, it is necessary to introduce variables contragredient to the
variables @, @, z; and ¥, ¥, ¥5, according to the customary law of variation in
the theory of forms; that is, if we denote these further variables by &, &, &,
71> M2, M, and their conjugates, they are subject to the lineo-linear trans-
formations

Ei=am+an+dy, Z:l =+ ah,+ &' 7
E=0bm+ Una4b"n, ¢, E=bn+ b0+ b’
E,=cm+ ¢+ ¢y E,=chi+cn+ [

It will be noticed (as is to be expected) that the umbral coefficients, used to
express a given homogeneous form symbolically, are themselves contragredient
to the variables, Manifestly we have

Yih + Yatis + Yss = 2, E 4 BE + 25,

Pl + Yoy + Yol = By + Loy + T
It need hardly be pointed out that, while the complex variables @, 2,, a5

correspond to the point-variables in the ordinary theory of ternary forms, the
complex variables &, &, & correspond to the line-variables in that theory.

In order to obtain the most general concomitant of any kind, we should
apply the preceding method to a function of the type

¢ (yl’ y2) 3/3, ?1, yh g.‘b 771: 772; 773’ 7_)1: 7_72’ ﬁ:&; -A’ "'))
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involving all the variables and the coefficients of any or all of the initial
given system of forms whose aggregate of concomitants is wanted. There is
plenty of room and opportunity for research; but the investigations would
take us into the wider pure algebra of the theory of homogeneous forms, and
they will not be pursued in these lectures.

Ez. 1. Let Uand V be any two covariants that belong to a form or to a system of
homogeneous forms ; and let

_2UdV Auv
Y02 0ys Oys Oya
_3Uav _ouav
POy o O oys (7
_aUav_aUav
3=0y 992 092 1
- dUaV UV,
1707, 075 Y5 09
y,o0U 0y _oUov
PT0%, 00 i dys [°
7, 0UdV _oUdV

3707, 092 042 O
Prove that ¥;, ¥,, ¥; are cogredient with 71, ¥2, ¥3, and that ¥y, ¥,, ¥;are cogredient
with 7, %2, %3 ; and shew that
U(Ifla YZ’ Ir3’ Yla 72, T73) a’nd V(Yly Yz, Y:"b 717 ?21 ?3)
are covariants of the system.

In particular, when U and V are the two initial quantities @ and @ belonging to
a quadratic frontier, determine the two covariants which are thus constructed.

Ez. 2. Shew that when a quartic frontier, generally covariantive under a lineo-linear
transformation, is given by equations @=0 and § =0, where symbolically
@=I2I1> and @ =I72117
the algebraically complete set of invariants and pure covariants belonging to the system
consists, in addition to @ and €', of sixty functions.

40. One other matter is left for investigation outside the range of
these lectures. We have already dealt with the canonical form to which the
expression of a lineo-linear transformation can be reduced. Also we have seen
that there are quadratic frontiers, represented by the two equations of lowest
degree, which keep a general invariantive character under such a trans-
formation. It remains to consider what is the simplest canonical form to
which two simultaneous equations representing such a quadratic frontier
can be reduced, where there no longer is a question of invariance under a
single transformation only* This more general problem has some analogy
with the problem of reducing to canonical forms the equations of two conics.

* The simplest examples of forms, invariant under a single given trausformation, have

already been given; they are the equations of the frontier which passes through the three
invariant centres of the transformation.
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In that solved problem, certain invariants of the system are necessarily
conserved ; in this propounded problem, the four invariants of the system of
two equations, which already have been obtained, must also be conserved.

One appropriate form is suggested almost at once by the known result in
the case of two conics referred to their common self-conjugate triangle. It is
natural to enquire whether two forms

P = Ax,#, + Bx,7,+ Cx,% + Dx,%, + Ex,%, + Fr,%y + Q% + Ha,#y + Ky T,
P'=A'n,& +Bxz,+Cui,+ Dot +EaZ,+ Fa,%y + G xy%y, + H %, + K'3,7,,
can simultaneously, by homogeneous linear transformation of the variables,
be changed to forms

P=XX,+X,X,+X,X,,
P'=A"X,X,+B"X,X,+C"X,X,,
where no two of the three quantities 4”, B”, C" are equal to one another,
and no one of them is equal to unity. With these last restrictions, we have
IT+aJ+at) +o*l' =1+ ad”)(1+aB")(1+aC"),
for arbitrary values of a; consequently, the three invariants J/I, J'[I, I'/]
(which are absolute invariants) are independent of one another, and no one
of them vanishes. Thus the general condition as regards conservation of
invariants is satisfied.

Now all the quantities 4, K, K, A’, E’, K’ are real ; hence a requirement
that they shall respectively acquire the values 1, 1, 1, 4", B”, C”, where
A4”, B”, 0" are real, imposes six conditions. Also B and D, B’ and D',
Cand G,C" and @', F and H, F' and H', are (in each combination) conjugate
constants; hence a requirement that all these coefficients shall vanish
imposes twelve conditions. In order, therefore, that the suggested canonical
forms shall be possible, eighteen conditions of the specified kind must be
satisfied.

Suppose, then, that the variables are transformed by the relations
o= 60X+ ¢X,+ v X,
rn=0X, + ¢,X2+ ¥ X,
r,=0"X,+¢" X, +¢"X,,
where the complex constants are at our disposal. Let

V=16, ¢, v |, V=[8, ¢, ¥ |;
o, ¥ ¥ v, ¥ ¥
v, 8 v v, ¥
then 1=VVI,

A"+ B"+ 0" =VVJ,
B//Cﬂ + C//AI/ + AUB// = VVJ/,
A/IBIIC/I = VVI’,
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so that the values of A”, B”, C” are given by means of the quantities
J/I,J'|I, I'|1, three real quantities. Also, as each of the nine arbitrary
constants 0, ..., ¥ is complex, we have effectively eighteen constants at our
disposal, formally sufficient to satisfy the eighteen conditions which take the
form of linear equations.

It therefore may be inferred that a couple of general forms P and P’ can
be transformed so that they acquire forms of the suggested type.

Periodic transformations.

41. These results, as regards lineo-linear transformations, are general.
Simple forms occur when the transformations are periodic, that is, are such
that after a finite number of repetitions in succession we return to the initial
variables; and these provide the generalisation of finite groups of homo-
graphic transformations in a single variable.

The requirement of periodicity will impose conditions upon the unequal
multipliers X and p in the first type (§ 22).

The second type cannot be periodic unless ¢ vanishes. But if o does
vanish, the type can be periodic when an appropriate condition is imposed
upon the repeated multiplier A. '

The third type cannot be periodic unless all the constants p, o, T vanish.
But if all these constants vanish, we have merely the identical transformation
at once. There is no modification of the variables, and consequently there is
no question of periodicity.

When therefore we deal with periodic substitutions, we have to consider
only the first type of transformation which has unequal multipliers A and pu,
and a limited form of the second type which has a repeated multiplier A.

42. A multiplier is the quotient of two roots of the characteristic
equation; hence the equation, which is satisfied by a multiplier, is the
eliminant of

60— A0+ A0 —A=0,
06— A6+ At — A =0.

The eliminant is of degree nine in ¢; but there is a factor (£ — 1)%, which is
irrelevant to the present issue and must therefore be rejected. One of the
simplest ways of obtaining the residual equation is to proceed by the method
of Bezout and Cayley for constructing the eliminant ; it leads to the result

1+t48, A1 +1¢) , A, =0,
At (L+18), AQ+t+8)+A0,A8 AAA+10)
A A1+t AQ+E+E)
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which, when the determinant is expanded, becomes
A2(1F + 1) + (3A2— A A, A) (B +- 1)
+ (6A2 — 50, 0,A + APA + AR (B + 8?)
+ (TA? — 6AAA — A2A2 +2A2A + 2472 # = 0.
This is a reciprocal equation, as is to be expected from the mode of occurrence

of the multipliers in the canonical form of the transformation.

For the first type of transformation, the six roots of this multiplier

equation are
S
and the solution of the equation effectively involves the two quantities
A,A~% and A,A~3, which are homogeneous (of order zero) in the coefficients
of the original transformation.

For the second type, the six roots of the multiplier equation are

1 1

>“> )\’; X; x:

1, 1;
and we rﬁust have
27A2 — 18A,A,A — A2A? + 4A2PA + 4A3 =0,
being the discriminant condition for the equality of two roots of the charac-
teristic equation.
When the lineo-linear transformation is periodic of order n, then
=1, ur=1;

and » must be the lowest integer for which both the conditions are satisfied.
Thus, for the first type,
A = ezm‘rl-n, p= eﬁn’is[’n’

where r and s are unequal positive integers, greater than zero, less than n,
and such that 7, s, n have no common factor other than unity. Then

A] —_ 03 (1 + emirin + e?m's’n)’
A2 . 032 {eﬂn-ir/n 4- g2misin 4 el (r+s)m}’
A= 933 ezm' (r+s8)in ;
and the conditions for periodicity of order n are
Als {1 + ezm‘rln + ezm'g/n}_g — Aa {emrir/n + ezm‘a/n + eam‘(r+s)/n}—1,
Als {1 + eznir/'n + ez«;ris/n}—s — Ae—m (r+38) /n_

The conditions thus imposed upon 7 and s require that n should be greater than 2
and so lineo-linear transformations, of which the characteristic equation has three unequal
roots, cannot possess quadratic periodicity.
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As a matter of mere algebra, it is easy to verify that the original transformation

w _ w _ 1
az+bi+c¢ az4b7+c¢ a2+ b7 +c"

is of quadratic periodicity in the two cases settled by the relations

b-1_¢_ o

b ¢ a-1

@ b =1 1-ai—db
a-1 ¥ ¢ c(a-1)

b4l ¢ d

b ¢ a+l ]
o YV _+1_1-d’-ab
a+l ¥ ¢ e(a+l)

In each case four parametric constants, which may be taken to be a, b, ¢, &, are left
unrestricted by the limitation of quadratic periodicity.

For the second type of transformation, the characteristic equation of
which has a double root and a simple root, the discriminant condition has to
be satisfied by all forms. If the transformation is to be periodic, another
condition (the vanishing of the quantity o) must also be satisfied whatever
the order; and then the order of periodicity is the lowest value of A\ such
that

so that we can take
A= eemir /'n,

where r is any integer between 0 and n, which is prime to =.

Ez. 1. The simplest example of such a transformation is
w=DMAz, w=M\7.
The z plane can be divided into » triangular wedges, bounded by lines through the origin
inclined at successive angles 2w /n to one another ; and similarly for the 2’ plane. The
whole z, # configuration is then transformed into itself by a double rotation of each plane
through an angle 277/n about an axis through the origins perpendicular to the planes ; and
the 2z, 7 field, made up of two such wedges in the z and 7 planes, is transformed into
. the w, w' field, made up of two similar wedges in the w and «' planes.
Ex. 2. When the original transformation is linear and has the form
w=az+bd+e¢, wW=az+b7+c,
a factor 6—1 can be dropped from the characteristic equation which then becomes
02— (a+¥)8+ab —a'db=0.
Let the roots of this equation be v and »'; the canonical form of the substitution is
aw+ Buw' +y =v (az + BZ+7v),

dw+Bw +y' =v' (d2+87 +y),
where
aa + aB=va, ba+dB=v8, ca+cB=(v-1)y,
ad+a'f=v'd, ba+bB=v'g, cd+cf=01-1)7y.
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Ez. 3. Find a canonical form of the periodic transformation
w2=z+7, w\2=z-7.

Ez. 4. Prove that all transformations of the linear type, which have quadratic
periodicity, belong either to the form
w=—z+¢, wW=-7+4¢,
or to the form

—a?
w=az+bZ +c, 'w’=1 ba z—az’——l%zc,

where a, b, ¢, ¢ are arbitrary constants.
Exz. 5. Prove that all cubic linear transformations have either the form
w=0z+¢, W=67+;
or the form w=az+b7 +¢, with either
W=~ (@ alt+6) 2= (a+ ) 7 = (=),
or
1

=-3 (@®+a+1)z—(a+1)7 +7,

where ¢ and ¢’ are imaginary cube-roots of unity, and a, b, ¢, ¢ are unrestricted constants.

Ex. 6. Shew that, if
w _ 7 _ 1
az+bd +¢  az+b7+¢ a’z+b"7 4"’

then
z 7 1

Awt AW+ A"~ Bu+Bw+B" Cw+Cw +C"’

where 4, 4', 4", ..., C, C', C" are the respective minors of a, a', a”, ..., ¢, ¢, ¢” in the non-
vanishing determinant A, where

all’ bll’ cll

and prove that
", 1" /7\3 w, w' =

(a"z2+b"7 + ") J<—z, 7 A.

Prove that the roots of the characteristic equation.for this inverse transformation,
expressing z and 7 in terms of w and o', viz.
A-¢, 4, A" |=0,
B, B—-¢, B
c, ¢, C-¢
are connected with the roots of the characteristic equation of the original transformation

by the relation
6p=A;

and verify that the invariant centres for the inverse transformation are the same as those
for the original transformation.

Ez. 7. Obtain for a lineo-linear transformation, between two sets of = variables,
results corresponding to those in the preceding example.
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Ezx. 8. Prove that the invariant centre {; and ¢’ of the general lineo-linear trans-
formation is given by the equations

G _ & _ 1
A4 oB B 4+76, - O —(a+¥) 0,162’

the denominator in the third fraction being distinct from zero. Prove also that, for the

quantities a; : By : y1,

) 03— 6;) (6, — 0
a1 +B:1G +n=n C’Ei(ai-+)361+1gl2

Ez. 9. Shew that, when n is a prime number, all the periodic substitutions

w=az+bd+c¢
we_%"2 (a_esn-i/'n)z_ (@—1 _esm}/n)z/_ % (a_esm'/n)

for s=2, ..., n—1, are powers of the same periodic substitution for s=1.
Shew that all the substitutions
w=az+e¢, wW=d7+c,
where a and o' are primitive nth roots of unity, are periodic.

Do the two preceding classes contain all the purely linear substitutions which are
periodic ?
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CHAPTER III

UNIFORM ANALYTIC FUNCTIONS

43. WE now proceed to the more immediate and direct consideration of
the properties and the characteristics of functions of two independent complex
variables, beginning with the simplest fundamental propositions. Not a few
of these can be considered as well known ; they are included for the sake of
completeness, and also for the sake of reference. Some among them are
expressed in forms that appear more comprehensive than the customary
enunciations. Others of them appear to be new, such as those which deal
with the characteristic relations and the properties of two functions of a
couple of variables considered simultaneously ; and these, as being more novel
than the others, are expounded at fuller length (Chaps. viI and vi).

Though the exposition is restricted to the case when there are only two
independent complex variables, it should be noted that many of the theorems
belong, mutatis mutandis, also to functions of n independent variables. For
others, however, further ideas are needed before a corresponding extension
can similarly be effected.

We begin with definitions and explanations of the more frequent terms
adopted, many of which are obvious extensions of the corresponding usages
for functions of one complex variable.

The whole range of the variables z and 2’ is often called the field of
variation. The extent of the field sometimes depends upon the properties of
the functions concerned ; otherwise, it implies the four-fold range of variation
between — w0 and + .

A restricted portion of a field of variation is called a domain, the range of
a domain being usually indicated by analytical relations. Thus we may have
the domain of a place a, @', given by relations

|z—a|gr, |Z—d |27,
we may have a Jomain given by relations

4)(‘”—“: y_/gy a:'—a', y’-B')S% ’\!I‘({E—a, 3/"/8, x'—a’, Z/ _Bl)gclr

where a =a+ 18, ¢’ =a' +13/, the equations being such as to secure a finite
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range of values of z and a finite range of values of 2. When r and + (or ¢
and ¢/, in the alternative case) are small, the domain of @ and @’ is sometimes
called the vicinity, or the vmmediate vicinity, of the place a, o'

In these definitions we substitute |1_| for |z ~ a| when @ is at infinity, and

1 \ . . .
— for |2/ — a’| when a’ is at infinity.
7] d

44. A function of z and 2/, say w=f(z, 2'), is said to be uniform, when
every assigned pair of values of z and 2’ gives one (and only one) value
of w. Through familiarity with properties subsequently established, the
notion that z and 2 may attain their assigned values in any manner
whatever sometimes comes to be associated with the definition; but the
notion is not part of the definition.

The function w is said to be multiform, when every assigned pair of
values of z and 2’ gives a finite number of values of w, the finite number
being the same for all 2, 2’ places where the function exists. Sometimes it
1s convenient to specify the number in the definition ; when there are m values,
and no more than m values, w is sometimes called m-valued.

A function w may have an infinite number of values for given values of
z and 7. Among such functions, each class can be specified by its own
general property. Thus one simple class of this kind arises from integrals
of functions that have additive periods.

Just as with uniform functions, so with multiform and other functions,
familiarity with properties subsequently established leads to the notion that
a specification of the path or range by which z and 2’ attain their values
will lead to the acquisition of some definite one among the m values; again,
the notion is not part of the definition.

Even in this matter of the description of the range of z and of 2/, care must be
exercised ; it may become necessary to take account, not merely of the actual range of z
and of 7, but also of the mode of description of those actual ranges. Consider, for
example*, the function

’l/}=(22—z’+1)%.

Take z=0 and #=0 as the initial place; and consider the branch of w which has the
value +1 at that place.

We make 2z vary from O to +1 by describing (in the direction indicated by the arrow)
a simple curve 04 B which, when combined with the axis OB of real quantities, encloses
the point 47 and does not enclose the point 7.
* The example was suggested to me by Prof. W. Burnside. Another example, viz.
w=(z—z’+1)’k,

is given by Sauvage, dnn. de Marseille, t. xiv (1904), section 1, a particular path being specified.
Obviously any number of special examples of the same type can be constructed.
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We make # vary from 0 to +1 by describing the straight line 0’C” in the direction
indicated by the arrow; the point D’ on that line is given by 7=3.

Consider two different descriptions of these paths.

In the first description, keep 2’ at O’, while z describes the whole path O4B; and then
keep z at B, while # describes its whole path 0’C". For this description, the final value
of w is manifestly +1.

o) B o' —_— N Cy

In the second description, keep z at O, while 2/ describes the part 0'D’ of its whole

path ; then keep 7 at 2’, thus making w=(2%+ 1)} for that value of 2, and now make
z describe its whole path O4B. When 2z arrives at B by this path, the value of w is
— ()3, that is, when 2 is at B and # at D' by this description of paths, the value of
(2-72+ 1)% has become —(§)5. Now keep z at B, and let Z describe D’(C’, the remainder
of its path; the final value of w is manifestly —1.

It thus appears in the case of the special function that, even when the range for each
varjable is perfectly precise, the final value can depend upon the mode of description of
the precise ranges. The matter belongs, in its simplest form, to the theory of algebraic
functions.

45. A function f(z, 2’) is said to be continuous if, when the real and
imaginary parts of z and of 2’ are substituted and the function is expressed in
its real and imaginary parts u + vi, both the functions u and v of @, y, 2/, ¥’
are continuous.

Let the function f(z, 2’) be uniform and continuous, everywhere within
a field of z 2 variation. It is said to be analytic, when it possesses
derivatives of all orders with regard to both variables

f(z,2) 9f(z2)
5 RTINS ,

which are uniform and continuous everywhere within that field; or what is
equivalent, it is said to be analytic if f(z, #') is an analytic function of 2 when
any arbitrary fixed value is assigned to 2’ and is also an analytic function of
Z when any arbitrary fixed value is assigned to 2. But it need hardly be
pointed out that, while f(z, ) is—under this definition—expressible as a
power-series of z alone having functions of the parametric 2* for coefficients,
and also as a power-series of 2’ alone having functions of the parametric z
for coefficients, an expansion in powers of z and 2z simultaneously is a
matter of proof, to be considered later.
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It is a known proposition that an absolutely converging double series can
be rearranged in any manner and can be summed in any order, the sum
being the same in all arrangements and for all orders of summation.
Suppose, then, that the double power-series

S30m,m (2 —a)y™ (2 —a’y™,

where m and m’ are positive whole numbers (including zero), and where, the
coefficients ¢y, »y are constants, converges absolutely at every place within some
domain of the place a, a’. The series, within' the domain, defines a function ;
and the function is said to be regular, or to behave regularly, everywhere
in the domain of the place @, a. The domain must not be infinitesimal in
extent; and the place a, o’ is said to be an ordinary place for the function.
When it is desired to indicate specifically that the double series contains
only positive powers of z — @ and 2’ —a’ in accordance with the definition, we
call the series integral, or whole, or holomorphic; and sometimes the function
is called integral or holomorphic within the domain of the place a, a’. -

When the power-series 1s finite in both sequences of indices, the function
is a polynomial in z and 2. When it is infinite in either sequence or in both
sequences, the function represented is usually called transcendental, unless it
can be represented by algebraic forms.

When the function is transcendental, the question arises as to the
range of the domain over which the power-series converges. When the
domain is limited, a question arises as to whether the power-series,
representing the function within the domain, can be continued analytically
beyond the limits of the domain.

Perhaps the simplest example of a multiform function w of z and 2/ occurs,
when the three variables are connected by an algebraic equation

A(w, 2 2)=0, -

where A is a polynomial in each of its arguments. As already explained, it
sometimes proves desirable in this connection to consider two multiform
functions w and w/, defined by algebraic equations

C(w, w2 2)=0, D(w w,z2)=0,

where C and D are polynomial in each of their arguments. In this event, the
ordinary processes of elimination enable us to substitute equations

Aw, 2z 7)=0, B,z 2)=0,

for the equations C'=0, D=0; but care must be exercised to secure that the
separate roots of 4 =0 and of B=0 must be grouped so as to give the
simultaneous roots of C =0, D=0.
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For example, we shall have (Chap. vI) to consider an expression
R(w, w2 2)
J C, D\
w, W
where R (w, o/, z, Z) denotes an integral polynomial in w and w/, and where the double
finite summation extends over the simultaneous roots of C=0, D=0. In the method

adopted for its evaluation, we are led to introduce terms which arise from combinations
of the roots of 4 =0, B=0, that do not provide simultaneous roots of C=0, D=0.

33

In the first case, to the function w: and, in the second case, to the
functions w and w’: the epithet algebraic is assigned. Manifestly, among
the four variables w, @', 2, 2/, any two can be described as algebraic functions
of the other two, unless (in limited cases) elimination should lead to a single
relation between two variables alone.

In this initial stage, 1t is not necessary to state the definitions of terms
pole, accidental (or non-essential) singularity, essential singularity. New and
modified definitions are required, because functions of two variables possess
properties which have no simple analogue in the properties of functions of
a single variable. These definitions will be given later (§§ 57, 58), when
the properties are under actual consideration. As will be seen, a dis-
crimination between functions of two variables and functions of more than
two variables can be made, so as to give a classification proper to functions
of two variables. We may, however, mention in passing that, in the vicinity
of any non-essential singularity @, a’, a uniform analytic function is expressible
in a form

Qiz—a, 7 —da)
P(z—a,z—a)’

where @ and P are functions, which are regular in a domain of @ and a'.
Such a function is sometimes called meromorphic in the vicinity of the
place a, a'.

The simplest example of a meromorphic function occurs when both @ and
P are polynomial functions of their arguments; in that case, the function is
called rational.

Some properties of regular functions.
46. Consider functions that are regular everywhere in some finite domain

of an assigned place a, «’. By writingz—a=¢ or l,according as |a Isfinite

g
. . . , , , 1 . , s . .
or infinite, and by writing 2 — o’ =¢" or & according as |a’| is finite or is

infinite, we can take the assigned place as 0, 0, without any loss of generality.
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We then have a theorem* connected with the definition of the analytic
property, as follows :—

When a function f(z, 2'), for values of |z|< r and of |2’ |27, is a reqular
Junction of z everywhere within the assigned z-circle for every value of 2’ within
its assigned circle, and also is a regular function of 2 everywhere within the
assigned 2 -circle for every value of z within its assigned circle, it s a reqular
Junction of z and 2’ everywhere within the indicated field of z, 2 variation.

Let the function f(z, #) be represented by a series
f@ =3 gn@)em,

as 1s possible under the first hypothesis. If M, denote the greatest value of
| f(z, 2)| for any assigned value 2, of 2* within the 2’-circle, and for all the
values of z within its circle, our series gives

F@z)= 2 gua)am

and then by a well-known theorem+, we have

7
0

rm "

| gm (2) | <
Consequently, if M denote the greatest value of |f(z, Z/)| within the
whole z, 7 field considered, we have
MOI 2 M)
and therefore

ny M
Lgm (20) | < i
for all values of m, for any value of 2, such that |z, |<€ #. Consequently, for
all values of 2 in question, we have
Ny M
lgm(z) | < g
Now f(z, 2) is a regular function of 2’ for every value of z for which
| z| € r; hence g, (¢'), being the value of f (2, ) when z=0, and

1 jom ,
gm0 )]

m!
for all values of m, are regular functions of 2. Accordingly, we can write
/ o g
Imn(Z)= 2 cun?™,
n=0
* The theorem is true under even less restricted conditions. See two papers by Osgood,
Math. Ann., t. lii (1899), pp. 462—464, ib., t. liii (1900), pp. 461—464 ; and a paper by Hartogs,

ib., t. 1xii (1906), pp. 1—88.
+ Theory of Functions, § 22.
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where the series represents a regular function of 2’ ; and as | g (¢") throughout
the whole range of variation of 2 is less than M/r™ we have, again by the

theorem already quoted,

On these results, consider the double series

F(z,2)= s s Conyn 2™ 2™

m=0 n=0

if it converges absolutely, we can take it in the form

ao a0
\(2 Cm,n 7 }z”‘,

n= 0 (m=0
that 1s,

2 gm () 2™,
n=90
and so we shall have

F(z, 2)y=f (2 2)

for the field of variation within which F(z, 2) converges absolutely.

we have just proved that
M

| c’ms’"l < Tmr’n )
and therefore we have

| F (2, 2)| = § §, Cmyn 2™ 2™
n=0

m=0

8

oo
€2 2 |omallem|"
=0 n=0

A
™3

2 gl 2712

M

-

for all values of | z| < r and all values of | 2'| < 7.

m

I

have

fz, )= 5 3 Cm,n 2™ 2™,

m=0 n=0

But

This result establishes the absolute convergence of F(z, 2'); and so we

where the double series converges absolutely in a field |z 2k<r, 27 €k <7,

while k& and %’ are not infinitesimal,

Consequently the function f(z, 2’), under the postulated conditions, i1s a

regular function of the variables z and 2.
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47. Now let f(z, #) be a regular function of z and 2’ everywhere in the
domain
|z—al|gr, |Z—a'|27,
and within this domain let M be the greatest value of | f(z, z')|. Then, if the
power-series for f(z, 2') is

f(z,2)= 2 T cpa(z—a)ym(d—a),
m=0 n=0
we have

bmn= o int

_ 1 am+nf(z z )1
9zm 0z’ ™ Jz=a, ot ’
and also

Icmn| < — ympn?

{am+n Fa 2)
0z™oz'™ 2=a,2=0'

Another expression for ¢,,, can be obtained by a simple extension of
Cauchy’s well-known integral-theorems for a single variable. Denoting by
g(2) a function that is uniform, continuous, and analytic, within a range
[z—a|Zr, we have

shewing that

z2mlin!

g’ n’

9@ =5 [£D a,

2mi) z—a

{dn“igzy(f)}z_u ~om [ (z— f;n+1 dz

for all values of =, the integrals being taken positively round any simple
closed curve which lies entirely within the region and encloses the point a.
The extension indicated can be established in exactly the same way as these
theorems just quoted ; the analysis and the reasoning are so similar to those
for the simple case that they can be stated very briefly.

For our function f(z, 2/) which is uniform, continuous, and analytic, and
therefore regular, everywhere in the domain

lz—a|2r, |Z—d|z7,

f(a, z’)=%l.ff—z(—z_52—,) dz,
o™ f (2, Z)] Sz 7)
{ r=a 27@/( dz,

oz™ z— gyt
the integrals being taken pos1t1vely round any simple closed curve which lies
entirely within the region bounded by |z—a|=1r and encloses the point a,
and holding for every value of 2’ for which f(z, 2') is defined. Again, f(a, 2')
and {a””f(z Z)l
0z™ z=a
of variation, are regular functions of 2’ throughout the z’-region bounded by

we have

, owing to the character of f(z, z’) within the z, 2/ field
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|7 —a’|=1"; hence, by a repeated application of Cauchy’s integral-theorems,

we have
fndym g [L8D s,

[z"f( L - ‘%J(z I j")“d '

the integrals being taken positively round any simple closed curve which lies
entirely within the region bounded by |z’ —a’|=17" and encloses the point «'.
The variations of z and 2’ are independent of one another, as also are the
integrations in the two planes of the variables; combining the results, we

have P
’ 1 ) (Z) Z/) ’
(@ d)= (2m')2f J - ay@ - E”

i/ (z—ftnn(;(zz )— deds’
{a"ﬁ”f(z, z’)} __min! ﬁ( / <Z’Z> dzd?,
2=a,2=a’ Z—a

azmaz'n )m-H (Z’ — a')n+1

the integrals being taken round sunple closed curves in the z-plane and the
Z-plane, the z-curve lying entirely within the region |z — a |=r and enclosing
the point @, and the z’-curve lying entirely within the region |z’ —a’| =7 and
enclosing the point o',

We thus have expressions, in the form of double contour integrals, for the
value of f(z, 2') and of every derivative of f(z, ) at the place a, @',

Again, let M denote the greatest value of | f(z, 2)| for places within the
whole z, 2/ domain of variation represented by |z—a|<Zr, |2'—a’|<7; then
at every place on the double contour integral we have

|f(z2)|< M.
Proceeding exactly as in the case of a single variable, we can shew that

] f f G _J;()Z& 5 )_ ded? | < 4w,

and therefore

|f (@, a’)|< M,
which is merely a statement that the value of | f(z, )| at a particular place
in the field is not greater than its greatest value in the field; and we can

also shew that
 f 4 ,
Uf G=ay (7 —aypn Tl

! {am+nf(z’ Zlﬂ

0zmoz' " jz=a, Z=a

which 1s the former result.

2_4_772_11[’
r

7
mr n

and therefore

2
zmlini—
'rmr’n’

F. 9
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Another method of stating these results is as follows. Let 2, 2’ be any
place within the field of variation where f(z, 2) is regular; in the z-plane,
take any simple closed curve lying within the field and enclosing the point 2,
say a circle of centre z, and let ¢ denote the complex variable of a current
point on this curve; and in the 2'-plane, take any simple closed curve lying
within the field and enclosing the point 2/, say a circle of centre 2/, and let ¢’
denote the complex variable of a current point on this curve. Then

, 1 [ G t)
fed)==, ﬁ(t 2)(t —
omn £z, I t,t )
mtnf(z,8)__min U(t f( ) dtdt.

0zm3zr 4wt | =2y (= )y

Ez. Prove that, for the foregoing function f(z, 2/) and with the foregoing curves of
integration, the value of each of the integrals

o] Lt [ e

for all positive integer values (including zero) of m and =, is zero.

48. We shall come later (Chap. vi) to a fuller discussion of double
integrals involving complex variables ; meanwhile, it will be sufficient to state
that integrals of the foregoing type, in which the integrations with regard to
z and to 2" are completely independent of one another, belong to a very
special and limited class of double integrals. They may even be regarded as
merely iterated simple integrals; and many of their properties can be deduced
as mere extensions of corresponding properties for simple integrals.

Thus we know that the value of the integral
1
S ff (2)dz,

taken positively round the whole boundary of any region within which f(z)
is uniform, continuous, and analytic, is zero, even if the region is multiply
connected ; and it follows, as a corollary, that the value of the integral taken
round any simple closed curve is unaltered if the curve is deformed without
crossing any point where f(z) ceases to have any one of the three specified
qualities. This result can at once be generalised, merely through a double
use of the result, into the following theorems:—

I Let F(z 2') denote a function which, over a limited region in the
z-plane with a complete boundary unaffected by variations of 2/, and over a
limited region in the /-plane with a complete boundary unaffected by variations
of z,1s uniform, continuous, and analytic. Then* zero is the value of the
integral

1 ’ /
472[ F(z, #)dsdz,
* The constant — 1/4w? is inserted here merely for the purpose of formal expression.
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taken positively round all parts of the complete boundary* of the z-region,
and positively over all parts of the complete boundary of the 2/-region, when
these boundaries are entirely unrelated to each other.

II. For the same type of function, and with the same type of range of
integration, the value of an integral

1 / /
—mffﬁ'(z,z)dzdz

is unaltered when the z-boundary and the #/-boundary are deformed separately
or together in any continuous manner which, while leaving them unrelated,
does not cross a place where the function # (z, 2) does not possess each of
the three specified qualities.

It is to be noted that the theorems are exclusive and not inclusive,
The function F (2, z") might cease to possess the property of being continuous
(thus it might be 2722/~? in a region round 0, 0), without causing the integral

1 , ,
—mffﬁ'(z,z)dzdz

to be different from zero as in the first theorem, and without preventing the
deformation contemplated in the second theorem. For the moment, we are
concerned with the theorems as enunciated.

49. As an illustration of the use of all the preceding theorems, we shall
establish the following proposition :—

Let f(2, 7) denote a function which 1is regular everywhere in a z, 2’ field
represented by the relations
lz|€r, |27,
and let t and ¢ be current variables in that field. Then the magnitude
f(t t ) [ gmtl piatl pmtlatl ,
JACA Z>+47r2f[(t + - dtdt’,

2)(t —72) 1tm+1 1T gt
when the double integral is taken positively round a simple closed curve
enclosing the z-origin and the point z tn the z-plane, and positively round
a svmple closed curve enclosing the z'-origin and the point 2’ in the z'-plane, is
a polynomial P (z, ') of order m in z and of order n in 2’, such that

"8 P (2, 2) _ j ot f (2, )
0z"07'* 2=0,2=0 B t 0z70z"¢ 2-0,2'=0

for the values r=0, ..., m and s=0, ..., n n all sstmultaneous combinations,

the descriptions of the two curves being unrelated.

* That is, with the customary convention as to the positive direction of any portion of the
boundary when the included area is multiply connected ; see my Theory of Functions, § 2.
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The result can also be stated in the form

P(s,7)=— f /(t _J; ;t(tt) {1 _ @mﬂ} {1 - (%/)nﬂ} dtd,

and can easily be established from this form by inserting the values of

{1 - (g)"m} + (1 —?) and {1 —G)Ml} + (1 - ?) and using the preceding

theorems as they stand.

The derivation of the result from the first form requires a different use of
the theorems: it is set out as an exercise in integrals, as follows.

As our function f(z, 2/) is everywhere regular within the specified field,
the only places where the subject of integration ceases to be regular within
the selected domain are

1) att=z =7, @i1) att=2z =0;

(i) att=0, ¢=2; and (v) at¢=0, t'=0.
After the preceding theorems, it is sufficient to take the double integral
positively along small curves round these places.

For a double integral, taken positively round small circles, one in the
z-plane round the point 2z and one in the z’-plane round the point 2/, so that
we should have

t—z=pe¥, t —2 =pe
where p and p’ are small, while § and 6 vary independently each from 0 to
2m, the value of the integral

’u+1 m+1Z/n+1 /
ff(tt) o4l _ s dtdf /
477.2 tm 1 n+1 tm,-f-lt n+1 (t — Z) (t — Z)

1s the value of
Zmtl Znt1 Zm+1 Z’"“H}

f(t t){tmﬂ PR gmagnh

when t=2, t'=2/; that is, the value of the integral for the double small
contour round z and 2’ is £ (z, 2).

For a double integral, taken positively round small circles, one in the
z-plane round the point 2z, and one in the z’-plane round the origin, we have

t—z=pe¥, t =pedT,
where p and p’ are small. We then expand (¢ —2)™ in ascending powers
of /7, and obtain the subject of integration in the form
S ) [amir g zm“z'”“} A

t—2 1'tm+1 foh T pnhigne oo P

Let integration be effected first along the path in the z-plane; on the
completion of the path the value of the integral is

-5 jf(z, t)(1+ ::: t:::) (Ej—+) dt,
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o[£ 1) (3 o)

This integral is to be taken along a small closed path in the z’-plane round
t'=0, and f(z, t') is regular; hence the value of the integral is zero. Thus
the double integral, taken round the place ¢ =2, ¢'=0, contributes zero to
the value of the general double integral.

that is,

Similarly the double integral, taken round the place ¢ =0, ¢’ = 2/, contributes
zero to the value of the general double integral.

For a double integral, taken positively round small circles, one in the
z-plane round the z-origin and one in the z’-plane round the z’-origin, we
have . ]

t=pe¥, ' =pe?
where p and p’ are small. We then expand {(t—2)(t'—2')}~? in ascending
powers of t/z and ¢'/z/, the expansion being
3 3 tetrpei vt
w=0v=0
and so the subject of integration becomes
Zm+l ntl amAl g/t ety
f(t t) {tm-f—l Pl prrigndl }u=0 Syt

The value of the part

1 et
fff(t t) tm+l —o Zn+12/v+1 dtdt

taken round the contour as indicated, is zero (Ex., § 47), because there are no
negative powers of ¢'. Simila,rly the value of the part

~ g [ 70 0% 3 3 0 vt

is zero. Again, the value of the integral

1 N dtdt
g [[ 1€ 0 g

is
1 o+f(¢, t)
{fr!s! O Jpo o’
for all integers » =0, 1, ..., and all integers s =0, 1, .... When either of the

integers r and s is negative, and when both of the integers are negative, the
value of the integral is zero. Hence, taken positively along the small contour
that encloses the z-origin in the z-plane and the z’-origin in the z’-plane, we
have

(t t’) PianY oz ,
4772 ff (t - Z) (t Z’) {1 £ dtdt
= — 2 g: [zr 28 {a'r+8f(t, t’)} j| '
t=0,t'=0

r=0s=0 LT !8! ot oL’
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We thus have the full value of the integral
f( t t ) gmHl gntl pml il ,
T A ff (t —2)({t' =7) e + R ! didt’,
taken positively round our contour in the z-plane enclosing the z-origin and
the point 2, and our contour in the z-plane enclosing the z-origin and the

point 2’; it is
, m n T /8 ar+sf(t’ t’)}
I .
f(z, Z) r§0 §s=0 [7’ ! 8 ! { at”at’s t=o’t’=0
Consequently our magnitude .

[z, z)+ il f(_t__i(_tL,) {imj+z’n+l_M} dide’

Z) (t tm+1 t'n+1 tm+1 t"n+1

is equal to the polynomlal

m n e /8 gar-&—sf(t t/} .
rzo szo [7 ls! 1 0ot Jimoypmo ]’

and when this polynomial is denoted by P (2, ), we manifestly have

7P, z’)} o £, ¢
aZTaZ’s 2=0,2'=0 { (,t’rat 8 It_o’ t'=0

The proposition is thus established.
The result, in either form, shews that it is possible to construct an ex-

pression the value of which shall be a polynomial approximation to the value
of a function f(z, 2’) in a field where it is a regular function of its arguments.

Ez. Evaluate the integral

f(t t) gm+l e+l
47r f/(t Z)p+1(t - q+1 gm+1 g+l dtdt”

with the same suppositions as to the function f (7, 2’) and the range of integration.

50. In connection with the function f(z, 7), which is regular within
the field |z—a|<€r and |7 —a'|€ 7, and for which |f(z, )| is never greater
than M for places in the field, consider a function ¢ (z, 2’) defined by the
relation

M

(l_z—;a> (1_2'-;,(1')'

Evidently ¢ (2, 2/) can be expanded in a double power-series in z —a and
# — o/, which converges absolutely for values of z and 2’ such that

b(z,7)=

|z—a|2p<r, |Z—d|gp <r;
and it has the form

b(z,2)y=M = E(Z a)m—’—-—(z—a)n

'n
m=0n=0 T 7
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Hence

ot (2, z’)_m!n!M s s (p+m)! (g +n)(z—a)(d—a'),

02™ 0™ TR s0g=0  m!plnlg! TP re

and therefore

o™t (2, 2) _m!n!
z=a,z=a TT e

{ 02m0z" T pmy/
for all values of m and n. It therefore follows that
fla )< b (o)

0z™ 07"

\ {8"‘“‘}‘(2, ?)

oz az’n }z=a, 2Z=a

The function ¢ (2, Z), related in this manner to a function f(z, ') from
some characteristics of which 1t is constructed, is called a domznant function.
Manifestly the result can be extended to any number of independent complex
variables by a precisely similar process.

These dominant functions prove to be of great importance in various
regions of analysis; thus, for example, they are of general use in the present
methods of establishing many theorems concerning the actual existence of
integrals of whole classes of differential equations, particularly in connection
with certain broad external assigned conditions under which those integrals’
exist.

A dominant function ¢ (2, 2’) is not necessarily unique. In the same
circumstances as before, consider a function yr (2, 2’) defined by the relation

M

7 d

zZ—a4 zZz-—a

1-— - 7
T r

\If (Z> Z,) =

which also is expressible as a double power-series in z—a and 2'—a’, con-

lz—a| |£-d]|_

verging absolutely for the region e €k<1. Proceeding as

for ¢ (2, 2), we find, for all integer values of m and n,

I A (2, Zl)i _(m+mn)!
02m 07" | g, e YT

M.

Now (m + n)! >m!n!; hence

{a"‘*" ¥ (2 Z’)} S {a’”"" b (2, 7 )}

0z™ 0z'™ 02™9z'™

S {am+nf(z’ Z’)} ’
z=a,z=a

PP

so that v (z, #) also 1s a dominant function*.

* Poincaré uses the term majorante.
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51. During the foregoing investigations, particular series in suitable
circumstances have been declared to converge; and it will be noted that, in
such series as have occurred, the convergence has been absolute. We do not
propose to consider, in detail, the general theory of convergence of double
series. When convergence 1s absolute, no other kind of convergence need be
considered specially ; and such series, as will be discussed in these lectures,
will be discussed with a view to absolute convergence. What is wanted here
1s a knowledge of some non-infinitesimal region of variation of the variables
in which the respective series converge absolutely*.

In this regard, one warning must be given. Both in what precedes and
in what will follow, a region of variation, in which a double series converges
absolutely, is usually defined by a couple of relations of the form |z|< p <,
|2 |€p’ <7/, where p, p’, r, ¥’ are positive constants, while » and # are not
infinitesimal. It must not therefore be assumed—and it is not the case in
fact—that the whole region, within which a double series converges absolutely,
must be determined by two (and only two) relations of the preceding form;
thus the whole region of absolute convergence of the double series, that
represents the dominant function yr (z, 2) of § 50, is determined by the

single relation

le—al, Z-d|_,
r r

as there stated .

To repeat the substance of what has just been said, what is mainly
wanted at the initial stage is a knowledge of some non-infinitesimal region
of absolute convergence of the series, not necessarily a knowledge (however
desirable) of the whole region of convergence.

52. Three simple propositions relating to uniform analytic functions can
be established at once.

I. A uniform analytic function must acquire infinite values somewhere
in the whole z, 2/ field, unless it reduces to a mere constant.

Suppose that a uniform analytic function f(z, z’) does not acquire infinite
values anywhere in the 2z, 2/ field. In that event, there must be some
greatest value for |f(z, 2') | in the field, say M, where M is finite; and no
matter how the field is extended, this value of M for |f(z,2)| cannot be
exceeded.

Accordingly, we take a domain in the field, determined by the relations
|2|<R, | F|<E;
* For the theory of absolute convergence of double series, readers may consult Bromwich,

An introduction to the theory of infinite series.
t Other examples of the same type are given by Bromwich, p. 504 of his treatise just quoted.
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and, under the hypothesis, we can make R and R’ as large as we please. We
still shall have, over this domain, M as the greatest value of f(z, 2’) .

In the domain thus chosen, let f(z, 2') be represented by a double power-
series, as in §47 ; and let the series be

% S O d™2™
m=0 n=0

By our preceding results, we have u
|Cmyn| € Rm R

for all values of m and of n, independently of one another. We can increase
the domain of the field to any extent; so that, by increasing R and R’
sufficiently, we can make

| Cm,n | = 0’
for all values of m and n except simultaneous zero values. Hence, under
the hypothesis that f(z, 2’) does not acquire infinite values, every term
in the series vanishes except the first, which is a constant; the proposition
therefore is established.

Note. It is obvious that the place, where a function acquires an infinite
value, does not lie within the domain over which the function is regular nor
(to anticipate the explanations connected with the continuation of series
representing regular functions) does such a place lie within the region of
continuity of the function. Every such place lies on the boundary of the
region of continuity of the function.

Thus consider the function
24z
z—272"

For all places other than z=0, z/=0, which lie in the field and are given by
z=2, the function is infinite; such places do not lie within the region of
continuity of the function. At the place z=0, 2=0, the value of the
function is indeterminate; near z=0, 2 =0, say such that

z=ré% =1,
where 7 and " are small, we have
_ (2" + 27 cos (6 — 6) E
T+t —2r cos (6 - 6))
which as r and 7’ tend to zero independently of one another can be made to
acquire any value. Thus at z=0, 2/= 0, the function is not regular; the
place does not lie within the region of continuity of the function.

247
z—2

II. If two functions, both of them regular within one and the same
domain, acquire the same value at every place within any region of that
domain, they acquire the same value at every place within the whole
domain, the region (like the domain) being one of four-fold variation.
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Firstly, suppose that the origin of the domain lies within the region
considered ; and round that origin, take a smaller domain given by |z|<k<p
and |2 €k < p’, lying entirely within the region.

Let the two regular functions be f(z, 2’) and g (2, 2); and suppose that
the double power-series representing them in the whole domain are

J(z2)= 3 3 cpaam2™

m=0n=0

gz, 2)= 3 5 ky 2™

m=0n=0

both series converging absolutely within that domain. Then the difference
of the functions f(z, ') — g (z, 2’) is represented by the absolutely converging

double series

S 2 (Cuyn — Kom,n) 2™ 2™
m=0n=0

Now this function is everywhere zero within the smaller domain, so that its
(greatest) modulus M, never differs from zero; accordingly we have

Icmﬂf_k%un < Tgéﬁ
PP
=0,
so that
cm,n==kmnh

for all values of m and n. Consequently, the coefficients in the power-series
representing the functions are the same; and so the two functions are the
same within the whole domain.

Secondly, when the origin of the domain does not lie within the region
considered, we take an origin within that region; and proceed as before.
The coefficients in the power-series, representing the two functions in the
smaller domain round the new origin, are the same. There, these coefficients
determine the functions uniquely; and so, when the process of analytical
continuation (§ 56) is adopted in exactly the same way for the two functions
so as to cover the whole of the original domain in which they are regular, the
two functions remain everywhere the same within the whole of that domain.

III. If f(s #)isa regular function of z and 2 for all finite values of
the variables, and if there exists a finite positive quantity M such that, no
matter how | z| and | 2’| are increased, there exist integers m and n for which

fG2)|

2™

then f(z, 2’) is a polynomial in z and 2/, of degree m in 2z and of degree n
in 2/, when m and n are the smallest integers satisfying the condition.

Let f (2, 2') be expressed as a double power-series
f(z,2)= 2 = ¢, ,2779;
p=0g=0
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then
c _ 11 (ortef(z 2)
“—p@l 9P 07T | 0,00
_ JA(R2)
__W j o g 9 4,

where the double integral is taken round any simple closed contour (say
a circle) enclosing the origin in the z-plane, and any simple closed contour
(also say a circle) enclosing the origin in the 2’-plane. Let the former circle
be of radius R and the latter of radius R’, so that we can take

t=Re% =R,

]Cp,q (%{2 [-f ftgtt’i)

Now no matter how || and |#'| increase, we have

ALY

then
dé de’.

o g < 11[,
and therefore
F@ )| M M
tree | | t7—m ¢'a-n | < Rpm Ran
Consequently
. 1 ,
|nl < 305 ——RH, — f d6 dé
M
< B R

By hypothesis, we can increase R and R’ without limit; hence, for all values
of p that are greater than m, or for all values of ¢ that are greater than =,
and for both sets of values simultaneously, we have
1Cpql=0
and therefore e
p,q =0,
for those values. Accordingly, when we remove from the series those terms
which have vanishing coefficients, the modified expression for £ (2, 2') becomes
§ § Cp,q 2P 2,
p=0g9=0
shewing that f(z, #) is a polynomial in 2z and Z/, of degree m in 2z alone and
of degree n in 2’ alone.

53. It follows, from the first investigation in § 52, that a uniform analytic
function must acquire infinite values. In particular, a general polynomial in
z and 7’ acquires infinite values, when | z| is infinite while |2 is not zero,
or when |Z’| is infinite while |z is not zero, or when both |z and |2| are
infinite, though in the last event conditions may have to be satisfied*.

* For example, the function 1+ z+2’ does not become infinite when 2z is infinite and |2’ | is
infinite unless |z + 2’| also is infinite,
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The questions then arise:—Must a uniform analytic function of z and 2’
acquire a zero value within the whole field of variation? And, what is a
subsidiary question governed by the answer to this preceding question, must
a uniform analytic function of z and 2’ acquire any assigned value within the
whole field of variation? Naturally, in considering the questions, we assume
that we are dealing with functions that do not reduce to a mere constant.

First, a brief proof will justify the answer that a uniform analytic function
of z and 7 must acquire a zero value somewhere within the whole field of
variation. Let f(z, Z) be a function of z and 2/, which is uniform; con-
sequently, if

, 1
¢(Z,Z) f(z’z’)’
the function ¢ (z, 2') is uniform. Further, ¢ (2, ') is continuous, unless f(z, 2')
has zero values. Let f(z, 7)) be analytic; then ¢ (2, 2) also is analytic.
Thus, assuming that f(z, 2) is a regular function, that has no zero within
the whole field of variation, its reciprocal ¢ (2, 2’) is uniform, continuous, and

analytic throughout the domain where f(z, 2’) is regular. Consequently,
¢ (2, 7) is a function that is regular throughout the whole field.

Now we have seen that a uniform analytic function must acquire an infinite
value or infinite values somewhere in the field of variation of the variables;
hence our function ¢ (2, z’) must acquire an infinite value somewhere, that
is, the regular function f(z, 2’) must acquire a zero value somewhere and
therefore the hypothesis, that f (z, 2) has no zero, is untenable. But as was
the case with the place where the function acquires an infinite value, so that
the function is not regular there and the place does not belong to the region
of continuity of the function, so it may happen that a place where a function
acquires a zero value does not belong to the region of continuity of the function.

Thus the function ¢**+# is regular over a domain given by finite values of |z| and finite
values of | 2’| ; it is not regular for infinite values of |z| alone and of |2/| alone, because it

cannot be expanded in powers of ; and ; ‘When z is real, infinite, and negative, while

|#| is finite, the function e**#=0; and so for other places. No one of these places
belongs to the region of continuity of the regular function e**7.

The corresponding question, as to the acquisition of an assigned value a,
would similarly be answered in the affirmative after a consideration of the
function f(z, ) — a which, under the foregoing argument, would have to
acquire a zero value; so f(z, 2) would have to acquire an assigned value.

The difficulty, that the zero of the function perhaps will not occur in the
domain of regularity, may be illustrated by returning to the corresponding
question in the theory of functions of a single complex variable; indeed, it
would be raised directly, for example, by taking 2= 0, in the case of a
regular function.

IRIS - LILLIAD - Université Lille 1



54] ZERO VALUES 77

54 It is a result, in Weierstrass’s theory of uniform functions of a
single variable*, that, in the vicinity 2z, of an essential singularity of a uni-
form function f(z), there always is at least one point within a circle
|2—2,|=¢, where ¢ is any assigned small quantity, such that

|f(2)—eal<e
where a is any assigned quantity. But the specified point does not need
to be distinct from the point z,.

Picardt discriminates between essential singularities according as the
value a is, or is not, actually acquired at a point inside the circle |z — z,| = €
which is not its centre, the centre being the essential singularity. As
examples, illustrating the discrimination, he adduces the two functions

L, -
sinl, ’
z
considering both of them in the vicinity of their essential singularity at
the z-origin.

The function} 1 / sin (%) has any number of poles in the immediate

vicinity of the origin; they are given by z= kl , where k is any integer
™

sufficiently large to keep z within the suggested vicinity. The function
does not vanish for any value of z (other than z= 0) within that vicinity].
But consider a range of 2z near z=0 along the positive part of the axis
of y, so that we can write ’
z=1r,
where the small positive quantity r is at our disposal; we have
1 2

1 1 1
sin r e
z e (4

The denominator can be made as large as we please by making » as small
as we please; my own view is that, when » is made zero, so that z
approaches the origin along the axis of y and falls into the origin, the
function in question does actually acquire the value zero at the origin.
But the value is acquired only at the essential singularity 2=0, and at
no point in the vicinity of z=0, other than the centre itself.

Similarly for the other function.

* Weierstrass, Ges. Werke, t. ii, p. 124; see my Theory of Functions, § 33.

4 His valuable, and far-reaching, ideas were expounded in some memoirs to which reference
is given in his Traité d’Analyse, t. ii, ch. v. See also, for further investigations, Borel, Lecons
sur les fonctions entieres, (1900), ch. 1; b., ch. v; ib., Note 1.

I Picard, L. c., p. 126, p. 128; in the second sentence, I have added the words “other than
z =0.”
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The difference between Picard’s statement and my own is obvious.
Picard considers the vicinity of z,=0, and does not include the actual
point z,=0, not regarding it as a point where the value or a value of
the function can be stated. I do include the actual point z,=0 and do
regard it as a point where, if the function nowhere else acquires some
assigned value, it must there acquire that assigned value; and that assigned
value can then be stated as a value that can be acquired there. But the
point z,= 0 is actually merged in the essential singularity.

And, it need hardly be added, all the valuable investigations* of Picard,
Hadamard, Borel, and others, are unaffected by these considerations. The
discrimination is between functions, that acquire an assigned value in the
vicinity of the essential singularity at a point which does not coincide with
the singularity, and functions that acquire the assigned value only at the
essential singularity.

The whole discussion thus suggests, even for functions of a single variable,
the idea of places where our function, regular within a domain, ceases
(at the boundary of the domain, or elsewhere) to maintain its character
of regularity. To the consideration of these possibilities we now proceed.

55. First, however, in connection with the earlier remarks, a reference
to a theorem by Picard must be made.

It may happen that an integral function f(z) cannot acquire a finite
value a for a finite value of 2z, so that the equation f(2)=a then has no
finite root; thus ¢?=0 has no finite root. Picard shews that an integral
function f(z), which for finite values of z cannot acquire a finite value a and
cannot acquire another distinct finite value b, reduces to a constantt.

The similar question would then arise for an integral function G (z, 2’) of
two variables. Suppose that there are no values of z and 2/, which are
simultaneously finite, such that G (2, ) can acquire a special finite value a;
and similarly suppose that there are no values, also restricted to be simul-
taneously finite, such that G (2, z') can acquire another special finite value b,
where b is different from a. To 2" assign a finite value ¢'; as G'(z, ¢') is
an integral function of z and 2/, being regular for finite values of z and 2,
then @ (7, ¢') is an integral function of z. By the suggested postulate about
G (z, 7), the integral function G (2, ¢’) cannot acquire for finite values of 2
either the finite value a or the different finite value b; accordingly, by
Picard’s theorem, G (2, ¢’) can only be a constant, which must necessarily
be a finite constant because |G (2, 2’); is finite for finite values of z. As
this holds for any assigned value ¢’ of 2, it follows that F (2, 2) is constant

* See the lectures by Borel, already cited.

t Picard’s proof depends upon the theory of modular functions (Traité d’ Analyse, t. ii, 2nd ed.,
pp. 251—254). Borel, (Legons sur les fonctions entiéres, Note 1, pp. 103—106) gives a direct
proof of this theorem without the intervention of any theory of special functions.
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for each assigned finite value of 2’; but .the constant values of G (2, 2°)
are not necessarily one and the same. Now G (z, z) is an integral function
of Z/, because it is an integral function of z and 2’; hence all the requirements
will so far be met by taking

G(z2)=9 ()

an integral function of 2" alone.

Again, by the suggested postulate about G (z, 2’), there is no finite value
of 7—simultaneously with a finite value of z—for which G (z, 2) can acquire
the finite value a or the different finite value b; and therefore there is no
finite value of 2’ for which the integral function ¢ (') can acquire the finite
value a or the different finite value b. By a repeated application of Picard’s
theorem, it follows that g (2) can only be a constant, and therefore G (z, 2°)
can only be a constant.

It therefore follows that, if an tntegral function G (z, 2’) cannot, for any
finite value of z and any finite value of z' taken simultaneously, acquire
a finite value a; and also cannot, for any finite value of z and any finite
value of 2 taken simultaneously, acquire a finite value b different from a;
then G (z, 2') is a constant.

The result is manifestly the merest generalisation of Picard’s theorem.
It is specially important to note that the limitation about the non-acquisition
of the finite values ¢ and b is confined to finite values of zand of 2. A variable
function may be unable to acquire a finite value a for finite values of z and
z’, but could acquire that value for infinite values of 2z and finite values of 2,
or for finite values of z and infinite values of 2/, or for infinite values of z and

of 7; such is the case, for the value zero, of the variable integral function
eP(z, z’),

where P (z, 2°) is a polynomial in z and 2"

Analytical Continuation.
56. Now let us consider a function f(z, 2’), which is regular everywhere
in a domain round a place a, @’ determined by
lz—ajgr, |z —ad'|2r;
it can be represented by a double series of powers of z—a and 2’ —a’, the
series converging absolutely for values of z and 2’ such that
lz—a 2p<r, |7—a <p <7
Denoting the series by P (2 —a, 2/ — a'), we have
flz,2)=P(z—a, 7z —a)
for values of z and 2 thus defined. The values of the constant coefficients

in the double series are determined by the values, at the place @, a’, of the
derivatives of the function f(z, 2’) of the appropriate orders.
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Such a series* may be capable of the process called analytical continuation
outside a given domain within which the series represents a regular function.
Let z2=0b and 2z/=0b" be any place within the domain; at this place b, ', the
values of the function f(z, 2’) and of its derivatives are unique and finite,
and they can depend upon the origin a, @’ of the domain.

Because the place b, b’ lies within the domain of @, ', where f(z, 2') 1s
regular, there is a definite domain, actually lying within the domain of «, o/,
appertaining to the place b, b’, and providing a region over which f(z, 2')
is regular ; this domain is given by the relations

lz—b|gr—|b—al|, |Z-b|gr—- V-d|
Let the double power-series be constructed to represent f(z, 2’) within this
definite domain. The coefficients in this new double series are determined
by the values, at the place b, ', of the function f(z, ) and of its derivatives;
and these may depend for their expression upon the initial double series
P(z—a, 7 —a’). Denote this new double series by
Q(z=b,72 -0"; a,a).

Within the specified domain round b, b, which belongs also to the domain
round a, a', we have two power-series representing one and the same
regular function f(z, 2); accordingly, (II, § 52) for all places 2, 2 within that
specified limited domain, the new series @ provides no expression for the
function f(z, 2’) which, in significance, is additional to the expression for the
function f(z, #') provided by the old series P.

But now consider the range of absolute convergence of the double series
@, which will be the general domain of the place b, . It certainly
includes the preceding specified domain, which lies within the general
domain of the place a, ¢’ in connection with the absolute convergence of
the series P. It may extend beyond the boundary of that preceding
specified domain; if it does, then it includes places 2, 2 not included
within the domain of a, . For all such places, the series @ converges
absolutely and therefore has a unique significance whereas, for them, the
series P has no significance.

Accordingly, when some of the general domain of b, b’ as connected
with the absolute convergence of the series @ lies outside the general domain
of a, @’ as connected with the absolute convergence of the series P, our new
series () provides an expression for a regular function of z and 2° which is not
provided by the old series P, while over the region common to the two general
domains the series @ represents the regular function which is represented by

* For many of the investigations which are given at this stage, reference can be made to the
memoir by Weierstrass, * Einige auf die Theorie der analytischen Functionen mehrerer Verin-
derlichen sich beziehende Sitze,” Ges. Werke, t. ii, pp. 135—188. A doctor’s thesis by Dautheville,
Etude sur les séries entidres par rapport & plusieurs variables imaginaires indépendantes,”
Gauthier-Villars (1885), may also be consulted.
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the series P over the domain of a, a’. Using the term adopted for the
corresponding result in the similar event for functions of a single variable,
we say that (in the supposed circumstance of the more extensive character
of the general domain of b, b’) the series @ is a continuation, sometimes an
analytical continuation, of the series P; and we call each of the two series
an element of the regular function which they help to represent.

The process may be repeated by selecting a new place ¢, ¢, lying
within the general domain of b, & and not within the general domain of
a, @. When a definite domain of ¢, ¢’ is constructed lying within the
domain of b, ¥, and when we form a new double series for the function
represented by Q(2—b, 2 —b’; a, a’) by taking the value of the function
and of its derivatives at ¢, ¢ as determining the coefficients for this new

series, we can denote this series by
R(z—c,2—~¢; a,a; b 0).

Within the specified domain round ¢, ¢/, the new series B represents the
same regular function as is represented by ¢ within that domain.

Again, now consider the range of convergence of the double series R,
which range will be the general domain of ¢, ¢". It certainly includes the
specified domain round ¢, ¢. It may extend beyond the boundary of that
specified domain ; and then it includes places 2z, 2z’ not included in the general
domain of b, b” and, when ¢, ¢’ is properly chosen, not included in the general
domain of a, @. For all such places 2, 2/, within the general domain of ¢, ¢’
and outside the general domains of b, b’ and of @, @/, the series R provides
a regular representation of the function which is not provided either by the
series @ or by the series P, while over the part of the domain of ¢, ¢’ that
belongs to the domain of b, b’ it represents the same function as is repre-
sented by the series @. In this event, the series R provides a continuation
of the series @ and it is another element of the function, now represented
by the series P, @, R.

And so on, from domain to domain. The ultimate aggregate of all the
series, each providing a new element, is the combined analytical expression
of a function. The ultimate aggregate of the 2, 2’ field, provided by all the
domains, is called the region of continuity of that function.

It is clear, after earlier explanations, that one of the simplest instances
is provided by an integral function, that is, a double series converging for all
finite values of z and 2'; and its region of continuity consists of the part of
the 2, 7 field given by finite values of z and 7',

Ez. Consider the double series
f= S 3Tz

r=0 3=0

F. 6
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which converges for values of [2|€k<1 and |Z|€F <1. At the place z=-%,
7= - %, we have
1 2\2
fumr—r—=(2)
s 1 ’ 1 3 ’
(1) (1+3)
fmn 1 P\m+n+2
minl 1\m+1 1 “+1=<§> ’
(1+3)" (1+3)

‘When we form a series in powers of z+% and z’+%, g0 that —% and —; is the new origin

for a new domain, the series converges for values of z and 2 such that

-i-l‘/l<§
Frg Xty

1 3
Z+§‘<l<§.
fm,n l m ln
22 tal z+2) “+3)

9 m+n+2 1\ ™ 1\*
2,2,6) 7 (re) (#4a)

For values of | 2| € £ <1 and |2/ | € ¥ < 1, the series gives no representation of f which is

The series is

that is, it is

_ 3
<l<2

< l’<é, the second series does give a representation of f which

not given by the first series. For values of | 2| > 1 such that

1
.z+2

, and values of

|Z| > 1 such that z'+%

is not given by the first series.
The first series is the expansion, within a domain round 0, 0, of the function
I
1-2)(1-7)"

When we sum the second series, we have, as the sum,
9\ 2
G)

27 N [« 2/, .1\
-3l -3 ()
N S
(1-2)(1=-2)

verifying the property that the two series, within their respective domains, are elements
of one and the same function.

that is,

Stngularities of uniform functions.

57. Any region of continuity of a function that is uniform, continuous,
and analytic has for its boundary a place or an aggregate of places (whether
these are given by values of the variables that are continuous in succession
or are given by discrete sets of variables) where the function ceases to be
regular. Such a place is called singular by Weierstrass*.

Let k&, & be a singular place for a uniform function f(z, #); then in the
immediate vicinity of &, &, the function cannot be expanded as a converging

* See the memoir cited (§ 56) above, p. 156.
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series of powers of z—k and 2 —k'. Two alternative possibilities present
themselves as to the behaviour of functions in the vicinity of such a place.

Under the first of these alternatives, it can happen that a power-series
Py(z—k, 2 — k'), representing some function regular at %, ¥* and vanishing
there, exists such that the product

Py(z—k, 2 =Kk) f(z 2)
is regular in the immediate vicinity of ¥ and 4. Denote this product by
F(2,2"). Then F(z, ), being a regular function of z and 2’ in the immediate
vicinity of k and ¥, can be expanded in a double series of powers of z — £ and
2 —Fk which converges absolutely within non-infinitesimal regions round &
and k. Denote this new series by P,(2—k, 2 —k'); then we have
n Pi(z—k Z-F)

&= Gh 7=k
Following Weierstrass*, we call such a place an unessential singularity of
the function.

Under the second of the alternatives indicated, it can happen that no
power-series P, (z—k, 2/ — k'), representing some function of z and 2’ regular
in the immediate vicinity of %, &, exists such that the product

Py(z—k, 2 —K) f(z2)
i8 regular in the immediate vicinity of k, . TFollowing Weierstrass*, we
call such a place k, &’ an essential singularity of the function f(z, 2').

It is to be noted, in passing, that, for the occurrence of an unessential
singularity, it is sufficient to have a single power-series P, such that the
product P, f is regular in the immediate vicinity of the place. But there is
no assumption (and it is not universally the fact) that only a single power-
series exists having this property or that all such power-series, as exist
having this property, are expressible in terms of P, alone. When two
different expressions for the uniform function f(z, 2) are obtained in the
vicinity of the place k, &', they must be equivalent; and we should then
have a relation

Qiz—k Z-Fk) P (z2-k-Fk)

Q(z—k, 2 —K) Py(z—k 7 -kK)"
We shall assume that, while P, (0, 0) and P, (0, 0) vanish, the power-series
P, and P, possesst no common factor vanishing at &, ¥, whether it takes
the form of a regular power-series or a mere polynomial which is a special
case of a regular power-series. Similarly, we shall assume that @, and @,
possess no common factor vanishing at- k, . Now
' Pz—Fk 2 —F)

Qe—k, 2 —K)=

* L ec., p. 156.
+ This matter will be considered later, so as to obtain the conditions necessary and sufficient
to justify the assumption.

QGz—Fk 2 —FK)

62
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Here @, is regular in the immediate vicinity of %, &, while P, and P, have
no common factor vanishing at %, &' ; hence ), must contain P, as a factor.
Let F denote the quotient of @, by P,, so that F is regular at &, &’ ; then

Qo'—"PoF’ Q1= PlF-

_Qi(z—=k -k
T Q(z—k, 2 =K)
Here P, is regular in the immediate vicinity of %, k', while @, and @, have

no common factor vanishing at &, ¥’; hence P, must contain @, as a factor.
But

Again,

Pi(z—k, 7 — k) Py(z—k & — k).

1
P0=Q0-F;

and therefore 1/F is regular at k, k. Consequently both F and 1/F are
regular at k, ' ; and therefore F' does not vanish at &, ¥. It is not difficult
to see that we then may choose a domain round %, ¥, which may be small
but is not infinitesimal, such that F' does not vanish in that domain; and
then the behaviour of ), in the immediate vicinity of the place k, k" is
effectively the same as the behaviour of P, in that immediate vicinity.

Likewise for P, and @, if they vanish at £, . When either does not
vanish, the other will not vanish; they are different from zero at k, %
together.

It follows that, in discussing the behaviour of f(z, 2’) in the immediate
vicinity of k, &, any representation of f(z, 2’) by a quotient P,/P, can be
used, if P, and P, have no common factor*.

58. In the case of functions of a single variable, it is known that there
are different types of essential singularities, whether these occur at isolated
points, or along lines, or over continuous areas. Special kinds of essential
singularities are considered in that theory, and they furnish partial charac-
teristics of some classes of functions; for example, not a few definite results
have been achieved when the essential singularities in question can be
approached as the limits of groups of particular points of a function; but
the theory is far from easy or complete. A fortior:, it is to be expected that
even greater difficulties will arise in the consideration of the types of
essential singularities of uniform functions of a couple of variables.

But when we deal with unessential singularities of uniform functions,
there is a real divergence between the theory of functions of a single
variable, and the theory of functions of two variables or more than two
variables. In the case of functions of one variable, there is only one type
of unessential singularities, the only variation in the type being the variety
of the order; such a point @ is said to be an unessential singularity (or a

* The relation between two such functions as P, and @, will be considered fully in Chapter 1v:
in particular, see § 64.
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pole) of a function f(2), and of order = for the function, when there is a
positive integer n such that

(z—a)* f(2)
is finite and not zero at the point.

In the case of uniform functions of two variables, we arrange the un-
essential singularities in two distinct types or classes. After the explanatory
definition we know that, in the immediate vicinity of 4, %', the function
f(2,2) can be expressed in the form

Pi(z=k 2 k)
n_41 s
/@ z)_Po(z-k‘, 2 =Ky’
where P, and P, are converging double series in powers of z—£ and 2/~ £/,
of which P, vanishes at &, £'.

Two different cases then can occur as alternatives, discriminated according
to the value acquired by P, at k, ¥'.

In the one case, leading to one of the two types of unessential singular-
ities, it is the fact that P, does not vanish at %, £’. It then follows that,
no matter how z tends to the value & and 2/ to the value ¥, the quantity
|f(z, 2)| can, for sufficiently small values of |z—~kj and |2 —%" , be made
larger than any assigned magnitude, however large: that is to say, this large
magnitude is assigned at will, and the appropriate small values of |z—k|
and |2’ — &'| are determined subsequently to the assignment. We therefore
can take infinity as the limit for the assignment; and the place %, " then
gives a definite and unique value to f(z, 2'), this value being infinite.

This type of unessential singularity is one of the two kinds of un-
essential singularity considered by Weierstrass. It is convenient to use
for functions of two variables, the same name as 1s used, for functions of on
variable, when the place gives a definite and unique infinity of the function.
Accordingly we shall call this type of unessential singularity the polar type;
and a place %, ¥, being an unessential singularity of the polar type for the
uniform function, will be called a pole of the function f(z, 2').

In the other case, leading to the other of the two types of unessential
singularities, it is the fact that P, does vanish at k, k. The place k, £’ then
does not give a definite and unique infinite value for the function f(z, 2').
Subsequent explanations may so far be anticipated here as to declare that
particular modes of approach of z to k& and of 2z’ to £’ can be selected, so as
to make f(z, 2') tend towards any assigned value near k, £ and acquire that
assigned value at k, k’; thus the function f(z, 2’) does not acquire a definite
unique value at the place.

This type of unessential singularity is the other of the two kinds
of unessential singularity considered by Weierstrass. We have given a
definite name to the other type of unessential singularity that can belong
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to uniform functions of two variables; to the type just indicated, we shall
give simply the general name unessential singularity and, so far as concerns
functions of two variables, there need be no confusion in taking this un-
restricted name*.
Thus, for the function
242
z-2"
the place z=1, Z=1is a pole ; the place z=0, z/=0 is an unessential singularity.
For the function
2
z—7
the place z=1, 7= —1 is a zero ; the place 2=1, 7=1is a pole ; the place 2=0, =0 is an
essential singularity.

’

For a function
Pz 2)
Q(z 2)’
where P (z, 2) and @ (2, 7) are polynomials in z and 2 having no common factor, all places
satisfying the equation

@ (5 #)=0
are poles unless they also satisfy the equation
P(z2)=0;
and all places satisfying the two equations
. L. Q(z 2)=0, P(z 2)=0,
are unessential singularities.

As a summary conclusion, we see that there are four kinds of places
for a uniform analytic function of two variables, viz. ordinary places, poles,
unessential singularities, essential singularities. The first set of these
constitute the region of continuity of the function; the remainder constitute
the boundary of the region of continuity of the function.

Egxtension of Laurent’s Theorem.

59. As a last theorem for the present, we proceed to an extension of
Laurent’s theorem on functions of a single variable; in order to make the
establishment simpler, we shall restate Cauchy’s theorem concerning the

* Corresponding considerations arise for functions of n variables. Weierstrass arranges their
unessential singularities in two kinds. One kind includes places that, as in the text, may be
called poles; at such a place, the function definitely and uniquely acquires an infinite value.
The other kind includes all unessential singularities which are not poles. Now it is conceivable
that an unessential singularity of this second kind for a uniform function of n variables might

be ranged in one or other of n—1 classes, according as there are m, wl, ©2 ..., ©*~2 ways
(where m is finite) in which 2y, 2, ..., 2, could be made to approach the unessential singularity
aj, a3, ..., @, 80 as to make the function

Py(z1—ay, 29— Qg ...y 2,-ay)

Py(s1-ay, 22—ag, ..., 2,—ay,)

acquire an assigned value at the place.
The question manifestly does not arise when there are only two independent variables; hence
the adoption of the names pole and unessential singularity in the text.
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expansion of a function in a double series of positive powers. Consider a
function f(z, 2z’) within a region where it is continuous, uniform, and
analytic. 'Within that region (assumed to include 0, 0) consider the domain
defined by

lz|gp<r, |Z|<p' <7

Then we have the result

N AURD) ,
fG Z)‘(27)ﬂﬁ(t—z) t—2) didt,
when the double integral is taken round circles in the domain such that

zl<ltlcp<r |2]<|t|<p <7

Z\m+1
2m <E>

Moreover, taking

1 1 2z 2
Era AR AT A
[
Z’n+l
e e o ld)
t,—-Z’ _t/ t/g t/s LER] t/n ] —{ )
t/

we obtain an expression for f(z, 2) in the form
f(z,2)= 2 2 ¢, q2P71
p=04g=0

The forms for the coefficients c,, 4 have already been given; the upper values
of the limits of | ¢,, 4| for all positive integer values of p and ¢ have already
been given also, when the function f(z, z’) has the assigned properties; the
series can be continued to infinity for both sets of indices, and it converges
absolutely within the z, 2/ domain¥*.

Now consider a corresponding extension of Laurent’s theorem, which
may be enunciated as follows:—

Let f(z, 2) denote a function, which is uniform, continuous, and analytic,
within a region in the field of variation defined by relations
R,>R2>|z—a
Denote by t and by s current variables (or points) on the circumferences of
the outer circle of radius Ry and the inner circle of radius r, in the z-plane;
and stmilarly for ¥ and for s on the circumferences of the outer circle of
radius Ry and the inner circle of radius ry' in the z-plane. Then the function
f(z, 2) can be expressed as a series of wntegral powers of z—a and 2’ —a’;
the indices of those powers can range from —oo to + o for each of the

zr>r, R/>R2|7-d >7r>n).

* The analytical work, needed to establish the result, is so similar to the corresponding
analysis for functions of a single variable (see my Theory of Functions, § 28) that it need not be
set out in detail.
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variables; and the double series converges absolutely for values of z and 2/

gwen by _
R>|z—al|>r, R'>|/—d|27.

By the generalisation of the first part of Cauchy’s theorem, we have
fz &)= (27”)2 f f = A gt(;) b

~amp oDy e - (2;-)2[/ ey

+amrlfa Lo i

Now, for our values of a, @/, 2, 2/, £, ¢/, we have

t-a_=1+z—_z I (t}a)"‘ L t=a (z_—9>’"+

t—z t— a t—z \t—a

tl_al Zz_al z'—a' n t/_ar z'—a' n+1
’ /=1 A ses /——/> /( /> s
t—2 +t’—a+ +(t —-a +t’—z t —a ’

and so the integral

(2m Iz f / G —C()t(tt L dta

is expressible as a double series of terms
33 cpq(z—a)P(d —a')
for p=0,1, ..., mand ¢=0,1, ..., n, where

S t) /.
Cp,g = (271"&)2_/,/-(15 a)p+1 (t a')q-ﬂ dtdt b)

together with a single series of terms

%(271”')2/ s ?(t-a)mﬂ (: —a> ddt,

forg=0,1,...,n; and a single series of terms
» (2'm)2

f(t t) n+1 'z —
[ 722 (Za) o) e
for p=0,1, ..., m; and a term

(27rz)2f / (¢ ];()t(tt)_ Z) \f — a)m+1 (:/I ___ Z:)nﬂ dtdt'.

To consider the coefficients in the double series, let M denote the
greatest value of |f(z, 2')| within the whole region considered; then, as
before,

0| oy
l Pa?l ROpRoq
though nothing can be declared as to a relation between c,, and the

Pt f(z, 2')
02P02"
domain |z—a|<r, |Z'—a’'|<r

derivative at a, a’, for our function is not defined within the
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As regards the second series of terms, say S, we have

812 3 UGOI Ry (R gy

- Ry
< 3 MRR /R)mﬂ(R’l)qﬂ’
a0 B,— R \R R,

as R < R,, indefinite increase of m makes each term in the series on the
right-hand side as small as we please; and R'< R/': that is, by taking m
indefinitely large, we can make S=0.

Next, as regards the third series of terins, say S’, we have

181< 3 /@ t)l(R’>"+‘ <R>P+1 R,R/

o By — R'\R/ R,
mn lW R n+1 R p+1 ,.
< w-rlw) @ B

as R'< R/, indefinite increase of n makes each term in the series on the
right-hand side as small as we please; and R< R,; that is, by taking n
indefinitely large, we can make 8'=0.

Lastly, as regards the modulus of the single term, it is

MR R 4 mt1 s R/ \n+1
<R, —R)(R/—F) (E ) (RJ) ’
which, with the assumptions made concerning m and %, can be made less

than any assigned quantity, however small; that is, we can make the term
zero.

In these circumstances, the expression for the first of the four integrals
becomes

m n

2 Z¢ pq(z_ Q) (& —a')e.

e M
As |z—a|2R<R,, |7/ —da|2R <R/, and as icp,qlzRopRo,q, this double
series converges absolutely when m and n increase indefinitely and inde-
pendently of one another. Thus the first integral is expressible as an
absolutely converging series of positive powers of z—a and 2/ —a’.

To obtain an expression for the second integral, which is

S (s, t)
(2#1)2,{/ (s—2)({t — ds dt,

we note that [z —a|>r>r;>|s—a], while t—z'|< t'—a’ ; so we take
z—a s—a —o\* | z—a [s—a\*P!
ey, (mep e ey
s—z z2—a z—a z—s \z—a

V—d Z~a !

- ! Z=a\* t'—da (2 —a\""
— =14+ 4... .
U —27 +t’—a’+ + (t’—-a') +t’—z’<t’—a'>
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We proceed as in the last case. It is possible to increase u without limit
and n without limit; and we obtain, as the expression for the integral,

3 2eaz—ay*(Z-a),

r=0q=0

Cp,q= (27”)2[[( f<sat)3+1 (s —a)P~dsdt’.

|Cp,q| € Mr# R/~7;

where

Also

and the double series converges absolutely for the retained range of values
for z and 2.

Similarly, as the expression for the third of our double integrals,

which is
S 8) ,
(2m)Jf(t —2)(s—7) deds,
we obtain
3 Zepg(z—ay(d—a),
=0
where
t, s ' ,
Cp,q= (2m) f G ';p)+1 —a) dids’.
Also

|Cp,q| € MRP1,?;

and this double series converges absolutely for the retained range of values
for z and 2.

Lastly, as the expression for the fourth of our double integrals, which is

f6.6)_
arip e

we obtaln
5 See(z—ay?(d—a),
»=09=0
where
1 ’ 7 N\g— U
Cp,q=(27i)2fff(8, §)(s—a)P2 (s —a')1 1 dsds’.
Also

| cp:‘] I < MTOPTOIQ;
and this double series converges absolutely for the retained range of values
for z and 7.

Gathering these results together, we see that, in the circumstances as
stated in the extended Laurent’s theorem, the function f(z, ') is expressible
in the form

f(2,2)=2 Zcun (z—a)y* (e —a’)",
- —w
the summation being for all integer values of m and of n between o and
— o0} also
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| em,n| € MR,~™R/—™, when m is positive and n is positive,
lCmn| € MR™r™  veeeee ... positive ..... .... negative,
| Cnym | € Mry™Ry™ ... e negative ......... positive,
| Cmyn | € Mrg™r™ e negative ......... negative ;

and the double series converges absolutely for values of z and 2’ given by
R,>R2\|z—a|2r>r, R/>Rz|Z-d |2r">r)
It follows as an immediate corollary that when a function ¢(z, 2') is

untform, continuous, and analytic for all the z, 2 region of variation repre-
sented by the relations

[z—a|2r>r, |Z—d|27>71),
1t 18 expressible as a double series of negative powers in the form

(2, 2)= S emn(z—a)y™(d —a')y™,
[

where [ Cm,n | Z Mri™ry™,
M being the greatest value of | (2, 2') within the foregoing region; and the
series converges absolutely for the specified range of values for z and 2'.

The result is at once derivable from the extension of Laurent’s theorem
by making R, and R, increase without limit; and it can of course be
established independently in the same manner as the general theorem.

Ez. 1. The function

1,1
eP(z’;’z'?),
1 1\. C 1,1 . .

where P | z, > 7, 7)is a8 polynomial in z, 1 %> can be expanded in a series

o @

S 2 Oy pi™2™,
for finite values of |z| and |Z'| such that

lz 2r>e 7 21>¢€,

where e and ¢ are positive non-zero quantities.

Ez. 2. Shew that the coefficient of zmz'™ (where m and n are positive in the Laurent
expansion of
1 1\,1 /., 1
2¢ (=2 (s ';'),

| €| and |9 | being finite and independent of z and of 2/, is

o (€) Ju (),
where J,, and J, are Bessel’s functions of order m and n; and obtain the coefficient of

ZmZ™ in the same expansion (i) when either m or = is negative, (ii) when both m and » are
negative.
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CHAPTER 1V
UN1roRM FUNcCTIONS IN RESTRICTED DOMAINS

A theorem due to Wererstrass.

60. AFTER these preliminary results relating to expansions of a uniform
function, which converge absolutely and are valid over the appropriate
domains, it is important to take account of the detailed behaviour of the
function in the immediate vieinity of each of its several kinds of places.

Accordingly, let @, &’ be an ordinary place for a uniform, continuous,
analytic function f(z, 2’); the preceding investigations shew that f(z, 2’),
regular in some domain of that place, can be represented within the domain
by a double series of positive powers of z—a and 2’ —a’ which there con-
verges absolutely. No generality, for our present purpose, is lost by assuming
that ¢ =0 and a’=0, for the assumption can be secured by taking z —a =172,
2 —a'=27'. Hence we write

F(2,2)=f(2,7)—f(0,0)=3Zcy, 2",

where the summation is for positive integer values of m and of n save only
simultaneous zero values. Also, | /(0, 0)| is finite and may be zero.

The detailed behaviour of the function F (z, 2') in the immediate vicinity
of the place 0, 0 is governed by an important theorem, originally due to
Weierstrass. After the analysis has been given, the principal results will be
enunciated in a form that differs from Weierstrass’s, because the limitation
to two variables renders greater detail possible* than when » is the number
of variables.

* The theorem is proved by Weierstrass for functions of n variables, Ges. Werke, t. ii,
pp. 135—142. Another proof, due to Simart, is given by Picard, Traité d’dnalyse, t. ii,
pp. 243—245.

The theorem is discussed here for the special case when there are only two variables. For
this case, a proof (which follows Weierstrass’s proof for the general case) is given in my Theory
of Functions, § 297; it is modified in the proof given in the text, because the theorem is not
regarded from the point of view of establishing the existence of implicit functions of a single
variable.
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Our function F(z, 2), which is regular in a domain round 0, 0, can be
expressed in a form

F(z,2)=¢(2)+ 7 b1 (2) + 2%, (2) + ...
Two cases arise according as F' (2, 0) does not vanish, or does vanish, identically
for all values of z within the domain.

61. TFirst, suppose that F (2 0) does not vanish for all values of z.
Denoting F'(z, 0) by F,(z), which is equal to ¢,(z), and introducing a new
function F, (2, ') defined by the equation

F(z,2)=F,(2) - F, (2, 7'),
we have a function F,(z, 2) which, when 2'= 0, vanishes for all values of z.
Now F,(2) is independent of 2’ and does not vanish for all values of z; hence
we can choose places z, 2’ in the vicinity of 0, 0, which lie within the region
of convergence of F (z, 2’) and are such that
| Fo| > | F|.
It is to be remembered that ¥, vanishes when z=0; and so there may be
some lower limit for | z| below which this inequality is not satisfied. As|z
increases, a zero of F, may be attained, and then the inequality would not be
satisfied. Also as | 2’| increases, the value of | F' (2, z’) | may increase ; and so
there may be some upper limit for |2’| above which the inequality is not
satisfied. Accordingly, we suppose that, for places satisfying the relations
p<l|zl<p |Z]|<ps
the inequality | .| >|F,| holds. For all such places we have, on taking
logarithmic derivatives of the equation
F,

F=F,(1- E) ,

the relation
1oF 10F, 0,3 1F}
Fo: F, oz —a_‘é'(A:le_o)\)'
Now F,(z) is a regular function of z in a domain round z =0, and it vanishes
when z=10; hence the lowest exponent in its expansion must be a positive
integer greater than zero, say m. Thus
Fo(2)=2"h(2),

where h(2) is a regular function of z in the selected domain and has a
constant term; consequently

where G (2) is a converging series of positive powers of 2z in the selected
domain. Similarly

@
L= gmmAtR GA,M (zl)>
=0

Fa=
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where Gy, . (), the coefficients of the powers of z,are converging series of positive
integral powers of 2'; and because F, (z, 2') vanishes when 2'= 0 for all values
of z, each of these coefficients () . (2) vanishes when 2/ =0. Take each power
of z, and collect all the terms which involve that power of z in the expansion

0 1 F)\
AW X
then we have
1 Fl)\_ n=w ,
R I

while each of the coefficients G, (), being a linear combination of the
coefficients (5, (2"), vanishes when 2'=0. Thus

10F _ m . b=t Aol
S G()——{E Gn(z)z},

n=-w

and the only term on the right-hand side, which involves the power z71, is

the term — .
z

Now let &, ..., & denote the zeros of F(z, {’), regarded as a function of z,
when we consider a range of values of z such that | z| < p, and when we assign
to 2 a parametric value ¢’ such that |¢'| < p;. Repeated zeros of F(z, ¢)
are given by repetition in the quantities &, so that s denotes the tale of zeros
of F (2, ¢') within the range. Then, as F (2, {’) is regular for all such values
of z, the function

1dF(z §) $ 1

F dz p=1%— Cp,
is finite for those values; it can therefore be expanded as a converging series
of positive powers of z, say P (2), so that

1dF (2, &) 1
Fdr p21 s + P (2).

Choose values of z, such that |z| is still less than p and is now greater than
the greatest of the quantities | & |, ..., |&]. The fractions on the right-hand
side of the equation can, for suech values of 2z, be expanded in descending
powers of z; and the equation, after such expansions, becomes
1dF (s, ¢)
F dz

=P(z)+ —:— + % Sz,

where

Sr=86"+... + &~
As this result is valid for all values of ¢’ within the selected z’-range, {’ being
independent of z, we have

@+G(z)--a-{"=z°° Gn(g')zn}
§+P(z)+ S 8,0,
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identically for all values of z; and therefore, among other results, we have
s=m, S,=1G_. (),

for all values of 7.

The first result shews that, for any given value of 2’ such that |2'| < p,,
the function ¥ (z, 2’) has m zeros in the range | z | < p, where the number m
is the index of the lowest exponent in F (2, 0) when expressed as a regular
series of positive powers of 2.

The second result then shews that, for all the positive values of T, the
quantity

O P g
is expressible as a regular function of & which vanishes when ¢ is zero.
Hence all integral symmetric functions of &, ..., §, are regular functions of

¢’ which vanish with {’; and as {’ is a parametric value of 2/, we may (within
our range) substitute 2’ for . It therefore follows that, if

9z 2d)=(z~8§)...(2—tn)
=2"+0,2"+ ... + Y,

the coefficients g,, ..., gm are regular functions of 2* within the selected range,
each of them vanishing when 2’ = 0.

Further, from the same equation, we have
P(5)=G @)= £ (n+1)Con(2)
where all the functions are regular. Thus, if
T (2, )= f @ (2) dz -Eo PG (7)),

where I" (2, 2’) manifestly is a regular function of z and 2/, and vanishes when
3=0and 2 =0, we have

P()=2 (I (s 2))

Thus
10F m 3 —
75 =P(z)+;+f§1 N
0 , 1 29 N1.
=5 0@ D+ co—n 5 192 )
and therefore
F=Ug(z 2)ers?,
where U is independent of 2.

As U is the same for all values of 2z, and as F and g (2, 2') and I" (¢, 2’) are
regular functions of z and 2’ for the range considered, it follows that U (if
variable) is a regular function of 2. When 2 =0, let the first term in the
expansion of the regular function F,, which is all of F (z, z°) that then survives,
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be Cz™; then g (z, 2’) becomes 2™; and I (7, 2’) is then a regular function of
z alone. Thus, when z'=0, we have U=C; and U, at the utmost, is a
regular function of 2’; hence
U= C (1 + positive powers of 2’)

= Cev,

where u is a regular function of 2 which vanishes when 2/ =0. Let
R(z, 2)=u+T(z 2),
where again R (z, 2') is a regular function of z and 2" which vanishes when
z=0and 7 =0; and we then have
F (2, 2)=Cg (2, 2) eB®%),

with the defined significance of g (2, z), R (7, 2'), and C.

The new expression is valid within the assigned range of 2, 2’ in the
immediate vicinity of 0, 0. But it must not be assumed—and usually it is
not the case in fact—that the new expression is valid over the whole domain
where f (2, 2) is initially taken as regular.

‘We thus have the result :—

I  When a function f(z, 2') is regular in some domain of 0, 0, and s
such that f(z, 0) —f (0, 0) does not vanish for all values of z wn that domain,

we have
f(2,2)=£(0, 0) + Cg (2, 2’) e&=?),

g (5 ) =2"+ @2 4 o+ G,
the quantities g,, ..., gm being functions of 2, each of which is regular in the
tmmediate vicimity of 2’ =0 and vanishes when 2 =0; where Cz™ is the lowest
power in the expansion of f(z,0)—f(0,0) in positive powers of z; and where
R(z, 2') 1s a function of z and 2/, which is regular in the vmmediate vicinity
of 0, 0 and vanishes when z=0 and 2’ =0.

where

62. One important corollary can be at once derived from the preceding
result.
Suppose that 0, 0 is a non-zero place for the function f(z, 2’), so that
(0, 0) is not zero; then we have
f(z, 2) Cc , ,
70,0 =1 70,07 & D
Now R(z, 2') is a regular function of z and 2z, vanishing when z=0 and
2 =0, so that |¢R&2) | is finite throughout some definite domain round 0, 0.
Also | C[f(0, 0)] is finite; and g (z, 2'), while polynomial in z and regular in
Z in the immediate vicinity of 2/ = 0, vanishes at the place 0, 0. It therefore
is possible, owing to the regularity of g (2, 2') and R (z, 2'), to choose a non-
infinitesimal domain given by

lz|€r, 12|27,
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such that, for all the included values of z and 2/,

lg (z 2)||F& [ M <1,

f (0 7(0,0)
where M is a real positive quantity. For all such values of z and 2/, we have
C _
NI 2, Z’ eR(z,z’) = eR(z,z’),
. 70,09
where R (z, ) is a regular function of z and 2/, given by the expansion

(2, 2') elt®?)

2 (Z, z’) e?R(z,z’) —

C C?
70,09 ~ 170,07
that is, B (z, #) is a regular function in a domain of z and 2’ and vanishes
when z=0 and 2’ =0. This domain does not include any place that is a zero
of f(z, 2'), because at a zero-place z, 2’ of f(z, ') we should have

f_((?—O)g(Z, ZI) eR5?) = — 1,
and therefore ’

a possibility which is excluded. Hence we must have

f(z Z) eR(zz)
f(0,0)

f(z, 2)=1(0, 0) eR&?,

Our corollary can therefore be stated as follows : —
When f(z, 2') vs reqular within a finite domain round 0, 0, and f (0, 0) does
not vanish, then there is a domain round 0, 0—usually more limited than the
Jormer domain within which f(z, 2') s reqular—such that f(z, 2") can be

expressed in the form B
S (2, 2)=7(0, 0) ef&®),

where R (z, 2') is a function of z and 2, which vanishes when z =0 and 2’ = 0
and 1s reqular within the second domain.

and therefore

In particular, this expression is valid in the immediate vicinity of 0, 0, on
the supposition adopted.

63. In precisely the same manner and with exactly similar analysis, we
can establish the following result which therefore needs only to be stated :—

II. When a function f(z, 2') is regular in some domain of 0,0, and is
such that f(0, 2’) —f (0, 0) does not vanish for all values of 2’ in that domain,
we have

f(2,2)=£(0,0) + Kh (z, 2) 52,
h(z, 2)=2™+ h7" + .o + by,

the quantities hy, ..., hy being functions of z, each of which is regular in the
tmmediate vicinity of z=0 and vanishes when z=0; where Kz™ 1s the lowest

where

-~

F. [
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power in the expansion of f(0,2") —£(0,0) in positive powers of z'; and where
8 (2, 2') is a function of z and 2, which is reqular in the vmmediate vicinity of
0, 0 and vanishes when z=0 and z° = 0.

The postulated circumstances are not the same in these two theorems.
If it should be the case that £ (2, 0)—f (0, 0) does not vanish for all values of
z within the range, and also the case that f(0, z')—f(0, 0) does not vanish
for all values of 2 within the range, then both theorems hold. In that event,
we have two different expressions for f(z,2’) — £(0, 0) which must be equivalent
to one another. This equivalence will be illustrated by an example, that will
be given after we have discussed the alternative to the initial hypothesis.

64. Secondly, suppose that the function F(z, 0), where
F(z,7)=f(22)-f(0,0),
vanishes identically for all values of z. Now F(z, 2') is a regular function of

z and 2/, within the range considered; as before, it can be expressed, by
summation of the uniformly converging series which represents it, in the form

Fz,2)=¢o(2) +2' ¢ (2) + 2, (2) + ...,
which itself is a converging series within the range. (As already stated,
$o(2) is the F;(2) of the preceding investigation). If then F (s, 0) vanishes
identically for all values of 2, them ¢,(z) vanishes identically. It may
happen that other coefficients ¢, (2), ¢ (2), ..., vanish identically; let ¢;(z)
be the first that does not thus vanish, ¢ being a finite integer because F (z, 2')
is presumably not a constant zero. Consequently

Fo, d) = () + 7 b @)+ ..,
be(2)+ 2 e (2) + ...

is a regular function of z and 2’; that is, in the suggested circumstance when
the function F (z, 0) vanishes identically for all values of 2z, our function
F (2, 7) has some power of 2" as a factor. Let this factor be z%; then ¢ is a
positive integer greater than zero, and it is assumed to be the largest positive
integer which allows ¥ (z, 2') 2~ to be a regular function of z and 2’ in the
vicinity of the place 0, 0.

and the series

The first of the two preceding theorems does not hold as an expression
for f(z, 2). But if the function F (0, z") does not vanish identically for all
values of 2/, the second of the preceding theorems does hold as an expression
for f(z, 2). There are, however, limitations upon the forms of the quantities
hn, Ap_y, ... ; in particular,

ho=0, hpy=0,..., hpy,=0.
But the momentarily important result is that
Fo &)= F(0,0)= 4G (s, ),
where G (2, 2) is regular in the vicinity of 0, 0, and & (z, 0) does not vanish
identically for all values of 2.
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Next, suppose that the function F (0, 2') where (as before)
F(z,2)=f(2 2)—1(0,0),

vanishes identically for all values of 2. Then an argument precisely similar
to the preceding argument shews that the function F (2, 2) has some power
of z as a factor. Let this factor be 2*; then s is a positive integer greater
than zero, and it is assumed to be the largest positive integer which allows
F (2, 2) 2~ to be a regular function of z and 2" in the vicinity of 0, 0.

The second of the two preceding theorems does not now hold as an
expression for £(z,2"). But if the function F (2, 0) does not vanish identically
for all values of 7 the first of the preceding theorems does hold as an
expression for f(z, 2'). As before, there are limitations upon the forms of
the quantities ¢gm, gm-1, ... in particular,

IGn=0, gna1=0, ..., Fmsu=0.
But the momentarily important result is that

f(z,2)—f(0,0)=22H (2, 2),
where H (z, 2') is regular in the vicinity of 0, 0, and H (0. 2) does not vanish
identically for all values of 2'.

Next, again taking
F(s, ) =f(z #)=£(0, 0),
suppose that the function F (z, 0) vanishes identically for all values of z and
that the function ¥ (0, 2') vanishes identically for all values of 2. Asin the
preceding cases, ' (z, z’) has a factor which is now of the forin 222", where s
and ¢ are positive integers each greater than zero; and it is assumed that
each of them, independently of one another, is the largest positive integer

which allows F (¢, 2) 222" to be a regular function of z and 2’ in the vicinity
of 0, 0.

Neither of the two theorems already proved now holds as an expression
for f(z, 2). The momentarily important result is that

Sz, 2)—=f(0,0)=2%21 (2, &),
where I (z, 2’) is regular in the vicinity of 0, 0, while I (z, 0) does not vanish
identically for all values of z and I (0, 2) does not vanish identically for all
values of 7',

Thus in each of the cases contemplated, we have
f(2,2)~f(0,0)=2°2"TU (s, 2),
where s and ¢ are positive integers that are not simultaneous zeros, and
U (2, 7) is regular in the vicinity of 0, 0, while neither U (z, 6) nor U (0, 2’)
vanishes identically for all values of z or of 2’ respectively. The alternatives
are as follows.
7—2
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() When U (0, 0) is not zero, then, within the sufficiently small domain

round 0, 0, we have
Uz, 2)=U(0,0) 7@,

where 7'(z, 2’) is a regular function of z and 2/, vanishing at 0, 0.

Then we have
(2, 2)=£(0, 0) + Cz* 26T,

where the constant C is the non-zero value of U (0, 0).

(B) When U (0, 0) is zero, the conditions attaching to U (2, 2) require
that U (2, 0) does not vanish identically for all values of 2z and that U (0, )
does not vanish identically for all values of 2",

As U(z, 0) does not vanish identically for all values of z and as U (z, )
is a regular function, the first of our two earlier theorems applies to U (2, 7');
we have an expression of the form

Uz, 2)=Ag (2, 2) B2,

where A is a constant ; g (z, 2') is a polynomial in z having, as its coefficients,
regular functions of 2/ which vanish with 2/ ; and where R (z, ) is a regular
function of z and 2’ which vanishes when 2 =0 and 2=0. Then

f(2,2)=F(0,0) + Az22"g (2, 2') eB®2),

Also U (0, 2') does not vanish identically for all values of 2/, and U (z, 2')
is a regular function; hence the second of our two earlier theorems applies
to U(z,2/). We have an expression of the form

Uz, 2)=Bh(z, ) eS5%9,

where B is a constant ; k(z, 2’) is a polynomial in 2’ having, as its coefficients,
regular functions of z which vanish with z; and where S(z, 2) is a regular
function of 2 and 2’ which vanishes when z=0 and 2’=0. Then

Sz, 2)Y=1(0, 0)+ Bzr2th (2, 2') 5%,
Summarising these results, we have the theorem :—

III. When a function f(z, 2') @s regular in some domain of 0, 0, and
1s such that either (1) f(z, 0) —f(0, 0) vanishes identically for all values
of z while f(0, z')—f(0, 0) does not vanish identically for all values of 2/,
or (i) f(0,2)—f(0,0) vanishes identically for all values of 2 while
f(z,0)—f(0,0) does not wanish identically for all values of 2, or (iii)
f(2,0) = f(0,0) vanishes identically for all values of z and f(0,2)—f(0,0)
vanishes tdentically for all values of Z/, then expressions for f(z,2") in the
tmmediate vicinity of the place 0, 0 are '

[z 2)=F£(0,0)+ Az52"g (2, 2) B,
f(z,2)=f(0, 0) + Bz*z"*h (z, 2') 5@,
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where s and t are posttive integers such that s= 0, t >0 for the first hypothesis;
s >0, t = 0 for the second hypothesis; and s> 0, t > 0 for the third hypothesis.
The quantities A and B are constants ; the functions R (2, 2') and S (z, 2) are
Sfunctions of z and 2, each of which is regular in the tmmediate vicinity of 0, 0
and vanishes when z=0 and 2’ =0; the function g (2, 2') s a polynomial in z
of the form

40,2+ L+ Gy
where the coefficients gy, ..., gm are functions of z' which are regular in the
tmmediate vicinity of z'=0 and vanish with 2’ ; and the function h (2, 2') is a
polynomial in 2 of the form

PAT Wi e B Y
where the coeﬁicienté by, ..., by are functions of z which are regular in the
vmmediate vicinity of z and vanish with z. There s @ limiting case when both
m and n are zero; the expression for f(z,2')in the tmmediate vicinity of 0,0 is

f(2,2) = £(0,0) + CarzteT21,
where C 1s a constant, while T (2, 2') is a function of z and 2" which is regular
in the immediate vicinity of 0, 0 and vanishes when z =0 and 2/ = 0*.

Note. We saw before that, in certain circumstances, both Theorem I and
Theorem II are valid, thus providing for the regular function f(z, z) two
expressions, which are formally distinet from one another, and must be
equivalent to one another.

In Theorem III it follows that, in certain circumstances, the regular
function f(z, 2) can have two expressions, which are formally distinct from
one another and must be equivalent to one another.

In the former case, the two expressions for f(z, 2) — f(0, 0) are

Cg (2, 2) ek®?)  Kh(z, 2')eS@?),
where g (2, 2’) is polynomial in z with coefficients that are regular functions
of 2’ vanishing with 2, while A (2, 2’) is polynomial in 2’ with coefficients that
are regular functions of z vanishing with z. Thus

9z 2) K son-res - Leves),

h(z 2)
where L is a constant and V (2, 2) is a regular function of z and z* which
vanishes when 2=0 and 2z’ = 0; hence

9 (2, 2)=Le">? h(z, 2),

h(s )= (s, ),
Similar relations hold in the latter case.

* This theorem is quite distinct from Weierstrass’s second preliminary theorem (p. 141 of his
memoir already quoted) for the case n=2; the latter will come hereafter (§ 65).
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It follows that, for a regular function f(2, z), when it is not expressed as
a power-series valid over a domain round 0, 0, but is expressed for con-
sideration in the immediate vicinity of 0, 0, we usually can obtain two
different expressions according as 2 or 2’ is taken as the variable for simplifying
the representation. Each of the expressions is unique in its form; the two
expressions are equivalent to one another.

Ex. Consider an ordinary place of a regular function f(z #), and let it be 0, 0 ; and
take the general power-series for f, in that domain, in the form

(2, 2)=£(0, 0)
=(a12+a0 7))+ (ag2®+ay 27 + ag %)
+ (@308 + a9 2% + 10222+ @37/3) +- ...

First, assume that neither a,y nor a4 vanishes. It is not difficult to establish the
following results* :—

£ (5 £)=F(0, 0)=(aroz+bun? +bog?+ bug?® + ...) 107 + Kon?' + koo 2Bt 22’ 4 hiop2 ...

where
by =agy,

1
= 2
boy= e (@oga10® = @11 A19 001 + A0 001 2),
Boa 1 3 2 2 3
97 g% (@03210° = @12@10% @01 + Fey @10 A0n 2 — A0 ;%)

1
" ot (@oz10% = @11 10 @01 + B @0y 2) (2090 Ay ~ @11 y0),

a
]clf) =2 H
@10
1
kn= — (@ @0— axnaq)
%10
30 1 (1202

=20 — = 20
ap 2 a?’
k11=—1' (ag1 10— @30 %01) = =2 (11 @10 — @ n)
a’? a® s
1 2 2
]foz=m (@12010% = A1 @10 o1 + 30 Bor%)
20 2 o 1 1
— —= (@og 0% — a1 @10 @0y + A0 A1) — = — (@11 @y — 2
aw4( 0210 11210901 + X320 %01 ) 3 a104( 11%10 = Q20 o1)%,
which is the expression for f(z, ) under Theorem I.
Similarly, as the expression for f(z, /) under Theorem II, we have
4 2 ’ 2
fla 2)=f(0, O)=(a01z'+cmz+cmz2+cmz3+...)elw“’l‘“z 2+l 22"+ o2 o

* The expressions suggest that the theory of invariantive forms can be applied to the
expansions, in all the cases stated.
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where
Clo=0ayp9,

1
= 2
20 o (@02 @10% ~ 11 O30 01 + 0 tr2),

1
= 3
€30 K (@30@01® = @ @012 1o+ A2y A1 — Ag3a10%)

1
- ;1? (@02010% — Ay gy + A0 012) (29210 — A11 Fo1)

l = (a )
10 11 @1 — A @
ane2 10/

Iy =22
01 ao]’

1
lyy= e (@91 Q0% — AraGon Q10+ Qo3 @10?)
Qo2 11
— =2 (aog 102 — @11 @10 By + Q20001 — 5 —5 (@180 — e tr0)?
ot ) 2%14( 1901 — G 10)%

1 Ay,
D= — (1o — B3 y0) — —= ( -
12 %01 = @3 X10 @y @01 — Aga A10)
ttor? ag® ’

Qo3 1 0»022
loo= — — = —=
?2 Qo1 2 a012 !

And it is easy to verify that

102+ a7 + b2+ b ? ... (1o — ko) 2+ (lor = ko) £/ + ..
Q102+ a0 7 +Cnz2+ e3P+ ... ’

Secondly, when ay vanishes but not ay, the first expression is effective for

f(z9 Z/) —f (0’ 0)7
but the second is ineffective. When ay, vanishes but not ag, the second expression is
effective but the first is ineffective.

Thirdly, when ay and aq; both vanish, neither of the expressions is effective. Then
[z 2)-f(0, 0)=ayn2?+ay 27 +ag?? + a2’ + 09222 + @122+ a3+ ... ;
and we find

Sz 7)=f(0,0)

— {2+ (allz,+b12z;2+'")+zlg (aoz+b032/+---)} ek102+k01z'+...,

where

1 .
bie= o {219 @a0? — g a1 G0+ Q30 (A1 — 02 20)}s
20

1 ’
boa = F {aggagoz — (g1 Ap2 A20 + asoauam}:
20

ko= b (@21 a0 — @30 011)s
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We also find
f(z, z’)—f((), O)

={aps?+7 (anst+em+...)+2 (an+cpz+...)} dortlnz'+ )
where

_1 2 2
Cy= T {0 @os? — @200 oz + g (a11% — A0z},

1
- 2
C3= . {@30 @02® — 12090 099+ Q3211 A0},

lo= ——1 5 (o19009 — A3 1),
Qg

Iy =—
01 )
Aoz

The first expression is effective when ¢s does not vanish ; but it is ineffective when ay

does vanish. The second expression is effective when @y does not vanish; but it is
ineffective when agy does vanish.

When both ag and @y, vanish and when ¢;, then does not vanish, another expression
must be obtained. In that case, we have

Sz 2)Y—f(0,0) =au—z.’/+a30z3+a2152z’+ 19272 4 g3+ ...,
and then we find that
S5 2)=f(0,0)
= {0523 +22 (byr? + b4 ...) +2 (bu? + b2 +...) + s 73+ by 74+ ...} eF0Z T '+
where
ho=32,

b= 1 2 2
oL= Ta? (@31 0507 — @21 Oy B30 — Ay A3y Gisp + A1 Fag?),

1
kyp= m (@350 —%“402),

1
k30 - ﬁ (am2 Qg — Q3040 A50 +% “403) ’
30
> 1
by =kiokoy +a—30 {a41 — agi ki — aao kor — aor (koo — 3 10%) — ana (Bap — oo kro + 3 k10%)},

bu=ay,
ba1 = a2y — @11 kyoy
bia=a13— an ko1,
bos = tto3,

bog = gy — Aygkyg — Ay koy — @1y (Byy — krokin),

There is a corresponding expression for f (2, #) — 7(0, 0), in which 7 is made the dominating
variable ; it has the form

f(&#)=f(0,0)
={a03z’3+z’2 (0212+62222+ ...)+Zl (CIIZ+01222+ ...)+030Z3 +04034+...} el102+1012 + "y
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where

1
o= o (@13 005% — 190004 A3 — 11 A3 o5 + @11 Aoy

lp= e (@03 905— & ape2),
1 2
loa=a73§ (@os? 06 — 03 oa o5 + § t0s®),

1 "
ln=boln+ @ {01 = arglor — aoalio— ayg (log — $ln® —ay (s — loolon + 3},

=021,
€30 @305
cg1 =gy — ay by,
Cra=012 — 1lpy,

oo = pa— g1 Loy — araloy ~ Ay (b1 — Lyolon),

The first of these is effective when az does not vanish. The second is effective when ay;
does not vanish.

The general form of expression for f(z, 2)—f (0, 0), when both f(0,2’)—f(0, 0) and
f(z, 0)=7(0, 0) vanish identically, has been indicated. It then is possible to isolate a
factor #52"t, where _

S (5 2)=f (0, 0)=2"f(z, 7),
such that both F(z 0) and 7(0, #) do not vanish identically; and expressions, similar to
those which precede, can be obtained for £(z, 2).

65. When the function F(z 0), =f(z 0)—f(0, 0), vanishes for all
values of z, another method of proceeding was given by Weierstrass*. It
was devised for functions of n variables (when n >2) and some method is
needed for them other than the method for functions of two variables, because
with n variables it is not generally possible to extract an aggregate factor
such as 22" from the function corresponding to f(z, 2’) —f(0, 0). Applied
to functions of two variables, the Weierstrass method is as follows.

In the double-series expansion of f(z, 2')—f(0, 0), valid in a domain
round 0, 0, let the terms be gathered together into groups, each group con-
taining all the terms of the same order in z and 2’ combined; and suppose
that the group of lowest order is of order u, so that we have

f(z,2)=f(0,0)=(2, )+ (2, 2 Yppr + +...
Change the variables from z and 2’ to w and u’ by relations of the form
z=au+Bu, Z=qu+du,

where a, B, v, 8 are constants such that ad — By is not zero, so that » and «’
are new independent variables. Then f(z, 2')—f(0,0) becomes a regular

* See p. 140 of his memoir already quoted.
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function of  and ', say @ (u, «’), the lowest terms in which are of order p;
and

G (u’ 0) = (a: ’Y)# ut + (a’ 'Y)IH-I u"’-ﬂ + ooy
so that, choosing (a, ). to be different from zero, G (u, 0) does not vanish
for all values of w.

The first of the preceding theorems can therefore be applied to G (u, w');
the result is of the form

G (1, W) = (@ ) fur - us gy (W) + o4 g (W) 1),
where (a, 7). is the non-vanishing coefficient, g,, ..., g. are regular functions
of 4/ which vanish with «’, and I(u, ') is a regular function of » and o
which vanishes when u=0 and »' =0; moreover, as the lowest terms in

G (u, v’) are of dimensions u, the regular series for g, («') begins with a term
inu™, for r=1, ..., u.
When retransformation to the original variables z and 2/ is effected,
we have
Sz 2)=f(0,0)

=G (u, v)

=[{z, Y+ {2 Ffun+...] ¢’ = z’):
where J (2, 2') is a regular function of z and 2" which vanishes when 2=0
and 2 =0; and by expanding ¢’ &
the new expression, we have

#) 50 as to have the complete series for

{2 Z’}u= (2, 2 )us
so that, as is to be expected, the first term in g (2, 2), where

f(z2)=f(0,0)=g(z,2)e’ &),
is the aggregate (z, 2'), in the original double series for f(z, 2’)— (0, 0).

Note 1. It may be pointed out that the preceding method is effective,
even if f(z, 0)—f(0, 0) does not vanish. Thus for a function it might
happen that, in the regular function f(z, 0) — (0, 0) when it does not vanish
for all values of z identically, the term of lowest order is Az", while, in
f(2,2)=f(0,0), the terms of lowest order are of dimensions less than n.
(As a matter of fact, each of these terms of lowest order will then contain
some positive power of 2/ as a factor). The application of the method will
then lead to an expression of the preceding form.

Note 2. In the method, the limitations upon a, B, ¢, § are merely ex-

clusive; they are
ad — 18"/+ 0, (o 'Y)IJ-+ 0.

Thus a certain amount of arbitrary element will appear in the result; by
varying these constants a, 83, v, 8, different expressions will be obtained which
are equivalent to one another.
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Ez. 1. Consider the function*
f=2'+} B+ +d (F )+,
the unexpressed terms being of order higher than 4. We take

that =u, Z=u+u,
so tha
S=uttuu' + 3 (208 + 3Py + Buu?4-u?)

+ 2 Qut+4ude’ + 6w ul+duuB 4 ut) + ...,
This must be equal to

’ 9 ’ ]
(u2+glu+gz) ea1u+b1u + agu? + boun’ + cou +,..,

where
G1=Fkyw' +kgw?+ ksu®+ ..,

Jo=law?+ Lyu3 + Lyt + ...
Expanding, and equating coefficients, we find
k=1, k=% k==, ..;
l,=0, la=%, L=+ ..
a=3%, b=%;
a=vg5, b=0, co=r%;
and thus the expression for our function becomes g (u, ') P

g w)=v24+u (' +3u?— Jpul+ .. )+ 3u+ w4+,

’
%) where

and
I (u, w)=3u+tw +7 (4 + 542 +....

When we retransform to the variables z and 2 by the relations
u=z u=7—z
the terms of the lowest order in g (%, %’) become z7/, as is to be expected.

But the completely retransformed new expression for f is less effective than the
original expression ; and the discussion of f in the vicinity of O, 0 is more effectively
made in connection with the expression in terms of z and 2.

Ez. 2. Obtain an expression for the function in the preceding exaﬁple, when the
transformed variables are given by the relations
z=u+tatt, Z'=u+pu,

where the constants a and 8 are unequal ; and prove that, when retransformation takes
place, the terms of the first order in I (u, %') become z+7.

This last method of Weierstrass has been outlined, because of its
importance when the number of variables is greater than two. When the
number of variables is equal to two, the general case for which it was devised
falls more simply under the comprehensive results of Theorem III.

We may therefore summarise the results of the whole investigation
briefly as follows. Whatever be the detailed form of any function f(z, z'),
regular in a domain round 0, 0, its general characteristic expression in the
immediate vicinity of 0, 0 is

f(Z’, z’) _f(O, 0) =27t P (Z, ZI) eI (2 z’),

* The expansions under Theorem I and Theorem II arise as special cases of the result given
above, p. 104.
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where I(z,2) is a function of z and 2' which is regular in the immediate
vicinity of 0, 0 and vanishes when z=0 and z/=0. The quantities s and ¢
are positive integers, which may be zero separately or together. When
either of these integers is zero, or when both of them are zero, P (0, 0) can
be different from zero for special functions; for all other functions, P (¢, 2")
is polynomial in one of its variables, the coefficients of the powers of which
are regular functions of the other variable within a limited domain, each such
coefficient vanishing when that other variable vanishes.

Level values of a regular function.

66. One immediate deduction of substantial importance can be made

from the expression for f(z, z') which has just been obtained, viz.
F(z,2)=f(2, 2)—f(0,0)=22"* A (2, /) B & ),

as to the places where f(z, z) acquires the same value as at 0,0. When

f(0, 0) vanishes, we shall call the place a zero for f(z, 2’). When f(0, 0)

does not vanish, we shall call the value f(0, 0) a level value for all the

places z, 2 such that f(z, 2")=/(0, 0); all these places are therefore zeros

of F(z, 7). o

As B(z, 7) is a regular function of 2, 2 within a limited domain of 0, 0, the
quantity ¢ @ #) cannot vanish at any place in the domain. Consequently
the zero-places of F(z, 2’) within the domain are given by three possible sets.

When the positive integer s does not vanish, zero-places of F(z, 2') arise
when

2=0, 7 =any value within the domain.

When the positive integer ¢ does not vanish, zero-places of F(z, 2') arise
when - '

z=any value within the domain, 2/ =0.

When 4 (z, 2’) is not merely the constant 4 (0, 0), all the places in the
domain such that

A(z,2)=0
are zero-places for # (z, 2°).

As regards the first set, we obtain an unlimited number of zero-places
of F(z,7) within the domain of 0, 0; they constitute a continuous two-
dimensional aggregate, the continuity being associated with the plane of 2/
alone.

" As regards the second set, we obtain also an unlimited number of zero-
places of F(z, ) within the domain of 0, 0; they too constitute a continuous
two-dimensional aggregate, the continuity now being associated with the
plane of z alone.

For the third set, there is no additional zero-place for F(z, '), if A (0, 0)
is a non-vanishing constant; in that event, either s, or ¢, or both s and ¢,
must be different from zero. When A (0, 0) does vanish, the function
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A (2, 7’) either is polynomial in z and (usually) transcendental in 2/, or is
polynomial in 2’ and (usually) transcendental in z; and these alternatives
are not mutually exclusive. In the former case, for any assumed value of 2/
within the domain, there is a limited number (equal to the polynomial
degree of A) of values of 2z, which vanish with 2z’ and usually are trans-
cendental functions of 2’; hence, taking a succession of continuous values of 2/
in the domain, we have, with each value of 2/, a limited number of associated
values of z. All these places taken together constitute a continuous two-
dimensional aggregate; the continuity now is associated with both planes,
each value of 2" having a definite value of z or a limited number of definite
values of z associated with it, all within the assigned domain of 0, 0.
Similarly, in the latter case, as regards 4 (2, z’); the same result holds when
the appropriate interchange of z and 2’ is made in the statement; and the
two-dimensional aggregate is unaltered.

Ez. 1. Among the simplest examples that occur, are those when A4 (z 2) can be
expressed in a form '

az+ P (7),
where a is a constant and P (2’) is a regular function of 2’ given by
P(Z)=bd +c?+...,
b not being zero. Then A4 (z, 2’), with an appropriate change in B (z, 2z’) which is the
function in the exponential, can also be expressed in the form
b7+ R (2),
where the regular function R (z) is given by
R(2)=az+C2+...,
with suitable values of the constants C, .... The zero-values are given by the two-
dimensional aggregate
~az=P (), —b/=R(2)
The result is the generalisation of the known property whereby, in the vicinity of
a real non-singular point £ 7 on an analytical curve f(z, y¥)=0, we have
z—(=P(y-n), y-n=R(z-§);
the linear term in P (y —n) combined with 2 — £, and the linear term in R (z —§£) combined
with y — 7, give the tangent to the curve at the real ordinary point £, 5 on the curve.

Ez. 2. In both cases that arise out of the alternative forms of 4, the actual determi-
nation of the set of values of z in terms of 2 (or of the set of values of 2 in terms of z) can
be made as in Puiseux’s theory of the algebraical equation f(w, z)=0, the governing terms
being selected by the use of Newton’s parallelogram. For example, in the case of the
zeros of the function

S (& 2)=f(0, 0)=ay22' + 03023 + a9, 2% + 10222+ 2373+ ...
within a small domain round 0, 0, we find three values for z in terms of 2/, viz.

= (i 1 - ’
2= ( a30> 2 +2a302(“40a11 amaso)"*‘-")

_ 203
an

(Ao —agag) 7 +... & ;

2(1302

1
7= +a—2 (@12003— A11004) 22+ ...
1
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and there are three corresponding values for 2’ in terms of z, viz.

a 1
7= ( - —’1>% L W(amall_aﬂa“ﬁ) ...

Qo3 a3
an\% 1 1
’ 11 .
d=— ——=)"z2 4+ (o111 — A12003) 2+ ...
( aos) 2ap3?
a. 1
’ 30
= —22+—2 (a21a03 —ana@) 53+ s
an an

If ag is zero, the first two series in the earlier pair are not valid ; if @y is zero, the first
two series in the later pair are not valid. If all the coefficients a,, vanish so that
f(z, 0)~£(0, 0) vanishes for all values of z, only the third expression in the earlier pair
survives. If the first coefficient @,y, which does not vanish, is a,, there is a set of
r—1 expansions in a cycle corresponding to the above two which exist when ag does
not vanish. And so on, for the respective cases.

Ez. 3. Quite generally, it may be stated that the detailed determination of the
behaviour of F (2, Z) in the vicinity of 0, O, so as to obtain the nature of its zeros as
well as the actual positions of its zero-places, has a close resemblance to the method
of proceeding in the consideration of an equation f(w, z)=0, which is algebraical both
in w and in z and in the determination of the associated Riemann surface¥,

67. All the results relating to the zeros of F(z, 2') can apply, in
descriptive range, to a determinate finite level value (say a) of a uniform
function f(z, 7) in a domain where it is regular. Let a, ' be a place
where f acquires the value a; so that

f(a, d)=a
For places a + Z, ' + Z' near a, o/ within the domain of a, a’, we have
: fz,2)y=f(a+Z,a +2)
=f(a, &)+ 2 cpnZ™Z™,
that is,
fz, 2)—a=2Z cppnZmZ™,
Thus the places within the domain of a, @’ where f acquires the level value «
are given by the zeros of the double series which itself vanishes when Z=0,
Z'=0.

Hence the level places which give a determinate finite value a to a
function f(z, 2’) form a continuous aggregate within the domain of any one
such level place.

Manifestly, as we are dealing with properties of a uniform function of f
which is regular within the domain of an ordinary place, the values of f must
be finite (for poles do not occur within such a domain) and they must be
determinate (for singularities, whether unessential or essential, do not occur
within such a domain). The behaviour of a function in the vicinity of a pole
and in the vicinity of an unessential singularity will be discussed separately.

* For this subject, see Chapter viit of my Theory of Functions for the discussion of the
algebraical equation and Chapter xv for the construction of the associated Riemann surface.
Reference should also be made to the early chapters of Baker’s dbelian Functions.
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68. Not because of any immediate importance for a single function of
two variables but mainly because of the need of estimating the multiplicity
of a common zero-place or a common level-place of two functions of two
variables, it is worth while assigning integers that shall represent the orders,
in z and 2 respectively, of the zero of f(z, 2’)—f(a, a’) at the place (a, a).
By the preceding proposition, for a place z=a+u, 2’=a +% in the im-
mediate vicinity of a, a’, we have

Sz, )Y—f(a, ) =wu' G (u, u),
where @ is regular in the domain, and the integers s and ¢ can be chosen so
that G (u, 0) does not vanish for all values of u and G (0, »’) does not

vanish for all values of 4. The positive integers s and ¢ can be zero, either
separately or together.

As G (u, 0) does not vanish for all values of u, there exists a series

Qu, wy=umr+um™q (u)+ ... + gum (W),
where ¢, (%), ..., ¢m (%) are regular functions of #’ vanishing with «, such
that _
G (u, u')= KQ (u, w)e@ (4 %),
where K is a constant and @ (u, %) is a regular function of  and «’ vanishing
with » and . Thus for any small value of «/, there are m small values of u,
making G (u, u) zero.
As G (0, v') does not vanish for all values of «/, there exists a series
R(u, W)y=u+ w17 (w) + ... + ra(u),
where 7, (u), ..., r,(w) are regular functions of w vanishing with u, such
that _
G (u, W)= LR (u, w') ef @ ¥),
where L is a constant and R (¥, «) is a regular function of  and »’ vanishing
with 4 and %". Thus for any small value of u, there are n small values of w’,
making G (u, «’) zero.

In both of these cases, G (u, u’) vanishes when w=0, »'=0; and then
neither of the integers m and n is zero. There remains a third case, when
G (0, 0) is not zero; then .

G (u, w) = G (0, 0) e & %),
where I (u, «’) is a regular function of » and %’ vanishing when =0 and
w'=0. Thus no small values of v and « make G (u, ') vanish; and then
both of the integers m and n are zero.

With these explanations, we define the orders of the zero of the function
Sz 2)—f(a, a)

at a, a’ as s+m for the variable z and as ¢+ n for the variable 2. But it
must be pointed out that the zero of the function at @, @’ is not an isolated
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zero, for it is only a place in a continuous aggregate of zeros; still, a
settlement of an order in each variable at a place a, @’ is convenient as a
preliminary to the settlement of the multiple order (Chap. vir) of such a place
when it is a simultaneous and isolated zero of two functions considered
together.

Relative divisibility of two regular functions near a common zero.

69. Before proceeding to obtain the expression of any uniform analytic
function in the vicinity of a singularity, it is important to consider the
behaviour of two uniform functions f(z, 2') and g (z, 2) simultaneously, both
being regular within a common domain which will be taken round 0, 0.

First, suppose that g (0, 0) is not zero; then we have seen that a uniform
function S(z, z’) exists, which vanishes when z=0 and 2z’ =0 and is regular
in a domain in the immediate vicinity of 0, 0, and is such that

g(z 2)=g(0,0) S 2)
for that domain. Also, we know that we can take
f(z, Z’) =f(07 0) + A¢ (Z, Z,) Zsz'teR (2, z'),

where s and ¢ are non-negative integers, ¢ (2, z') is polynomial in z and
regular in Z, and R(z, 2’) is a uniform function of z and 2z’ which vanishes
when z=0 and 2/=0 and is regular in a domain in the immediate vicinity
of 0, 0. Consequently

L2 5y P00+ A o £) 16 5 )=S0

_f(O, 0) -8, 2) 4 ’ it R (2, 2') - 8 (2, 2')
=700 Ta@0bEele '

The right-hand side, whether f(0, 0) vanishes or not, can be expressed as
a regular double series U(z, 2'); that is,

VACE NP
L=U(z 2').
g2~ Ve
When a uniform function f(z, 2') is expressed as a double series P (z, 2'), and
another uniform function ¢ (2, 2’) is expressed also as a double series @ (z, 2'),
and when a third uniform function U (z, #') exists such that

Pz 7)

Q (2, 2)
all the functions being regular in a domain round 0, 0, we say, following
Weierstrass*, that the series P (2, 7’) is divisible by the series @ (2, 2).

=U(z 7),

* Ges. Werke, t. ii, p. 142.
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It therefore follows that, when g (0, 0) is not zero, the regular function
f (2, 2) is divisible by the regular function g (z, #), the regularity of both
functions extending over a domain round 0, 0; and the result is true whether
£(0, 0) is zero or is not zero.

70. Next, suppose that g (0, 0) is zero; then we know that we can
take
g(z, 2)=Bzz7el %) x (2, 2),
where B is a constant; o and 7 are non-negative integers; 7'(z, 2') is a
function of z and 2/, regular in the immediate vicinity of 0, 0 and vanishing
when z=0 and 2/=0; and x (2, 2') is a function which is a polynomial in 2
having functions of 2 for its coefficients, these coefficients being regular in the
immediate vicinity of 2= 0 and vanishing when 2/=0. The form of f(z 2)
is the same as before. It at once follows that, when £(0, 0) is not zero, we
cannot express
f(z2)
; (2 2)
in the form of a regular function; in that case, the function f(z, z’) is not
divisible by g (z, 2).

But when f(0, 0) is zero, as also is g (0, 0) under the present hypothesis,

then we have

f(z,2) Az2'¢(2 2) eB (&%)

g(2,2) B x(z, 2)el®?)

_ 4 Zsz’td) (2, 2') B (z,2) =Tz, 2")
T Briy )’ ’

Now R (2,2)—T(2,7) is regular in the immediate vicinity of 0, 0 and
vanishes when z=0 and 2’ =0; hence the exponential factor in the last
expression admits the divisibility of £ (z, ') by g (2, /). Also this divisibility
is admitted, so far as powers of z are concerned, if s > o and, so far as powers
of 7z are concerned, if £> . There remains therefore the divisibility of
& (2, 7) by x(z, 2'), where (for the present purpose) we shall assume that
both ¢ (2, 2') and x (2, 2’) are polynomials in z the coefficients in which are
regular functions of 2/ in the immediate vicinity of z’=0 and vanish when
Zz =0. Manifestly the degree of ¢ (z, 2") in z cannot be less than that of
x (2, 7), if divisibility is to be possible; accordingly, we suppose that

(2, 2)y=2"+2"g1+ ... + Gm,

x(2,2)=2"+2""hy + ...+ Dy,
where m >n, and all the coefficients g, ..., gm, A, ..., hy are regular
functions of 2 in the immediate vicinity of 2 =0 and vanish when 2/ = 0.

When ¢ (2, 2) is divisible by x(z, #), the quotient is manifestly of the
form

g 4 Mt b+ ...+ km—nr

x

F.
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where the coefficients %;, ..., £m—n are functions of 2/, Also
9= by + k,
gz=h2 + bk + ks,

.....................

Im = hokm -
From the first, it follows that the function &, is regular and vanishes when
Z =0; from the second, that the function %, is regular and vanishes when
2 =0; and so on, In succession from the first m —n of these relations.
Also all the relations are to be satisfied, by appropriate values of %, ...,
ko, for all values of 2’ in the immediate vicinity of Z =0. The conditions,
necessary and sufficient to satisfy the last requirement, are that, when we form
the n independent determinants each of m — n rows and columns from the array

gl_hl; 92—52, gs—hs: cens gn"‘hn, Iny1s -o+5 Im—1, Gm s
1, h, , hy ..., o , 0,..., 0, 0
0o , 1, hh ..., o , 0,..., 0, O
0o , 0o , 0 oty e yeens  hu, hag
o , o , 0 i, i s eeny 0, h,

each of these n determinants must vanish identically for all such values of 2'.

Thus there are n conditions. The form of the conditions should, however,
be noted. As all the functions g and h are regular functions of 2’ in the
immediate vicinity of 2/ =0 and vanish when 2'=0, each of the n deter-
minants is also a regular function of 2/ in the immediate vicinity of 2'=0
and vanishes when 2/ =0. Each determinant is to vanish identically for
all values of 2/ in the range round 2’ =0; and therefore every coefficient, in
the power-series which is the expression of the determinant, must vanish.
Thus in practice, when the power-series are infinite, the number of relations
among the constants would be infinite for each of the conditions; the
arithmetic process could not be carried out in general*. But the =
analytical conditions among the functions would still remain, in the form of
determinants that are to vanish identically.

Thus, in particular, the conditions, that the function

B+22g1 295+ g3
should be divisible by the function
Z2tzhy+ Ry,

are that the two independent determinants from the array
1=t ga—ts g3
1 ’ kl ’ k‘Z

* In particular cases, it might be feasible, e.g. when there are known scales of relation
governing all the coefficients.
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shall vanish identically. When the two conditions are satisfied, the quotient is
gs
z+ e

The general argument shews that the function g;/%; is to be regular and to vanish with #;
a limit upon the orders of the lowest powers of 7 in 4, and g; is thereby imposed.

Relative reductbility of functions.

71. Further, it is important to discover whether, even in the case
when a function ¢ (z, z’) is not actually divisible by a function y (2, 2'),
both being of the foregoing type, each of them is actually divisible by a
function 4 (z, 2) also of the same type: that is to say, if yr(z, 2') exists,
it is to be a polynomial in z the coefficients of which are regular functions
of # in the immediate vicinity of 2/ = 0 and vanish when 2/ =0.

A method of determining the fact is as follows. Both ¢ (z, 2') and y (2, 2')
must vanish for all the places where (2 2’) vanishes, if  exists. We
therefore regard

¢(2,7)=0, x(z2)=0,

as two simultaneous algebraical equations in 2. We eliminate z between
these two equations, adopting Sylvester’s dialytic process. The resultant is
a determinant of m+n rows and columns, every constituent in the deter-
minant (other than the zero constituents) being divisible by 2/; and therefore
this resultant is of the form
2+ 0 (2),

where p s a positive integer not less than the smaller of the two integers
m and n, and where ®(¢') is a regular function of 2z in the immediate
vieinity of 2/=0, when it is not an evanescent function.

When @ (2) does not become evanescent, the values of 2’ different from
2’ =0 which make the resultant vanish are given by the equation

0 ()=0;

and these values of 2 form a discrete and not a continuous succession. In
that event, for each such value of 2/ and for the specially associated values
of z, both ¢ and y vanish. But their simultaneous zero values are limited
to these isolated places; there is no function (2, 2') possessing a continuous
aggregate of zero-places in the vicinity of 0, 0.

When @O (2') is evanescent, the functions ¢(z, 2) and y(z, 2’) become
zero together, not merely at the place 0, 0, but at all the continuous
aggregate of places where some function v (2, 2'), as yet unknown, vanishes;
for there is no equation ® (2")=0 limiting the values of 2’ and requiring
associated values of z.

8—9
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In the latter case, ¢ (2, ') and (2, 2/) possess a common factor - (z, 2),
which necessarily will be a polynomial in z of degree less than n; and the
polynomial will have functions of 2’ for its coefficients, all of which are
regular in the immediate vicinity of 2/=0 and vanish when 2'=0. Let

Y(2,2)=2+ 22 I+ ...+ ky;

as ¥ is a factor of ¢ by hypothesis, and also a factor of x by hypothesis,
our earlier analysis shews that (as already stated) k,, ..., k, are regular
functions of 2’ in the immediate vicinity of /=0 and vanish when 2/ =0.

Accordingly, let

¢(Z’ ZQ — m—p m—p—1
vz 2) - e Gi oot G
X(Z, Z/) — NP n—p—1 H
‘\P\(Z, Z,) -4 + z 1+-.. +Hn_p,
where all the coefficients G, ..., Gm—p, Hi, ..., H,—, are regular functions

of 2 in the immediate vicinity of 2/ = 0 and vanish when z/=0. Consequently
the relation

(g™ + 2" g4 et gm) (PP H .+ Hy )
="+ h+ o ) (@ P+ PTG+t Gp)

must be satisfied identically for all values of z and 2 within the im-
mediate vicinity of 0, 0, the common value of the equal expressions being
¢ (2, Z)x (2, Z)+ Y (2, 7). Equating the coefficients of the same powers of 2
in the expressions, we have m + n — p relations, linear in the (n —p) + (m — p)
unknown functions H,, ..., H,_,, G4, ..., Gm—p. When these are eliminated
determinantally, we have m +n — p — (n — p) — (m — p), that is, we have p,
equations in 2’ which, being satisfied for all values of 2z, must become
evanescent. The conditions for this evanescence, which are thence derived
as existing between the coefficients of ¢ and v, are the conditions necessary
and sufficient for the existence of (2, 2’).

When these conditions are satisfied, the actual expression of yr(z, 2’) can
be obtained by constructing the algebraical greatest common measure of
¢ (2, 2) and x (2, 2’), regarded as polynomials in z.

We thus have analytical tests determining whether two functions ¢ (z, 2)
and x (z, 7), each polynomial in z and having for the coefficients of powers
of z regular functions of z* which vanish when 2’ =0, are or are not divisible
by a common factor of the same type as themselves. To these tests, the
same remark applies as in§ 70 ; each condition usually would, in practice with
infinite power-series, require an infinite number of arithmetical relations
among the constants. Still, the analytical tests remain in the form indicated.

When the tests are satisfied, the two functions are said to be relatively
reducible ; each of them is said to be reducible by itself.
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Note 1. The processes connected with finding the conditions are those
connected with constructing eliminants in algebra. Thus, in order that the
functions .

2B+ gt gzt g, 22+t R,

should have a common factor linear in 2, all the coefficients of powers of 2’
in the final expansion of the determinant
‘ 91 - hl» 1 ) 1 ) 0 ) 0
g2 - h’21 91; hl) 1 1) 0
j 93 > 92’ h?) hlx 1
9s > Gs» 0, hz, }1'1
0 b 94) O ) 0 > h2
must vanish identically.

Note 2. In the preceding investigations, we are concerned with the
possession by ¢ (z, 2’) and y (2, 2’) of a common factor of the same type as
themselves; that is to say, ¢ (2, 2), x (2, 2'), and the common factor (if it
exists) are polynomial in 2. We are not concerned with the comparison of
expressions

(l)(z) z,) aand ¢ (Z’ Z’) eR (Za Z’),

where R (z, #') is regular in the immediate vicinity of 0, 0 and vanishes when
z=0and & =0; the latter expression, when expressed in a double series, is
no longer polynomial in z. The case, when K (z, 2’) can be such as to make
the second expression polynomial in 2’ alone, has already been discussed

§ 63).
Ez. When two functions
(a0, a1, ag¥z, #)2+(bo, by, by, bsYz, 2P +...,
(a0, ay'y @' Wz, )2 +(bY, by, by, b5’ Wz, 2P+ ...,

possess a common factor of the type .
2+ R (7),

where R (7) is regular in the immediate vicinity of 7 and vanishes when Z=0, we can
approximate to its expression as follows. (The algebra will illustrate the distinction
between the finite number of analytical tests and the infinite number of arithmetical
relations between the constants; the latter, of course, cannot be set out explicitly.)

The first function is expressed (§ 64) in the form
{mpz2+2 (17 + a4 ...) + ag 2+ B33+ ...} ozt Mt
b

_ao,

where

1
XO k] =a—02 (ao bI -y bo). ooy

1
ag=— (agby—asby) — a%(aobl—albox

0]

a
B3=b3— a‘:‘g (agby —a, by),
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and so on ; and the second function is expressed in the similar form

{ay2+2 (a7 +ag??+...)+ay 72+ 8573 +...} etz +"‘,
where
’ bO’ )\ 2 1 /b ’ rb r
A =—3, 1=a72(“0 P —a'by)y e

/

1 N,
ag = a_o' (ag'bs’ — ag'by) — %_12 (@9'by’ — ay'by),
’ a?’ ’
Bs'=by — a—o,g (ag'dy — ay'by’),

and so on. We then must have the condition or conditions that

a2 +2 (07 +ap??+ .. )+ g2+ B328 4.
and
g +z ()7 +ad?+.. )t a2+ 873+ ...

should possess a common factor of the type

2+ R(?),
say
2 L VTA VT LR

Let these two expressions, which are quadratic in z, be denoted by
202 +2bi &, @R+t

They both will vanish, if they possess a common factor linear in z and if that factor
vanishes. When they vanish, we have

apP?+2€1+£:=0, ag?+zn+1,=0,
simultaneously; and therefore the relations
22 z 1
Eina—bamy - £:00 —naao = ma— E1%

will be satisfied for the value of z, in terms of 2/, which makes the common factor vanish.
Thus we must have

(E1m9— Eamy) (m a0 — E10¢") = (Esa0' — n20)?,

satisfied identically for all values of #; and the value of z, which would make the common
factor vanish, is given by

&ra) — 200

mao—=£rag”

Now
Eime— bam=72{(a107 — ay'ag) + (. B — @/'Bs +agaty — agas) 7 +...},

Eaag —naa=22 {(ag'az — ag'ag) +(agBs — aBs) 7 + ..},
mag =10y =7 {Goay — aray’ +(agay — agaz) 7 +...} ;
and therefore, disregarding the factor 24, the expression
{agas— agay+(agBs— 20Bs) 7 +...}%
—{(a1a)' - ay/ag) + (185 — ay'Bs + azag’ — ay/ag) 7 + ..} {(@0 @) — ey ) + (@00 - ag'az) & + ...}
must vanish identically, for all values of 7. Let the expression be denoted by

00+ 012,+... N
then we must have
Co = 0, 01 = 0,

orey

as the arithmetical relations between the constants.
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Also the value of z, which makes the common factor vanish, is
_ &a00' — 200
Mo — &1
, '@y — @'+ (ay By — anBy) 2 + ...
=7 aoa) —ayag + (apay — agar) 7+ ...
Consequently, when all the relations between the constants are satisfied, the common
factor is

s+yd 2%+,

where
_a 0 @y — oy
B agay— agay’’
_{ag'ay— agay) (apay’ — ay'ag) — (@eay’ — ayay’) (@gBs— o Bs)
2= (a9 ay— agay')? ’
and so on.

It is clear that, in the absence of general laws giving relations between the coefficients
in each of the two functions, we cannot set out the aggregate of relations C=0 and the
aggregate of constants 4.

Erpressions of functions near a pole or an accidental singularity.

72. The non-ordinary places of a uniform function have been sorted into
three classes, the poles (or accidental singularities of the first kind), the
unessential singularities (or accidental singularities of the second kind),
and the essential singularities. "

The simplest of these, in their analytical character and in their effect
upon the function, are the poles. Let p, p’ be a pole of a uniform function
f(2,7); then, after the definition, some series of positive powers of z—p,
7 —p’ exists, say F (2—p, 2 —p'), which is regular in the immediate vieinity
of p, p’ and vanishes when z=p and 2 =p’, and is such that the product

f (% 2)F(z—p, 2 - p)
is regular in the vicinity of p, p’ and does not vanish when z=p, 2/ =p"
Thus the function f(z, 2) acquires a unique infinite value at a pole;
that is, the infinite value is acquired no matter by what laws of variation
the variables z and 2’ tend towards, and ultimately reach, the place p, p'.
Further, the pole-annulling factor F (z — p, 2’ — p’) is not unique; a factor
F(z—p, o —p)et =27,

where R (z—p, 2 —p’) is any regular function of z — p and 2’ — p, would have
the same effect. All such factors we shall (for the present purpose) regard
as equivalent to one another; they can be represented by F(z— p, 2’ —p).
Moreover, there cannot be more than one such representative factor for
S (z,2) at a pole; if there were two, say F(z~p, 2 — p") and G(z—p, 2 —p),
we should have

f (2, #)F (2—p, # —p’)=regular function, not vanishing when z=p and 2'=p/,
(2, 2)Q(2=D, 2 =P )= i et riraraaa ,
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and therefore p, p’ would be an ordinary non-zero place for the quotient
F(z-p, 7 -p)
G(z—p, 2 =p)’

which is impossible unless F' is divisible by @, and it would be an ordinary

non-zero place for the reciprocal of this function, which is impossible unless
G is divisible by F.

Hence, denoting the representative factor by F, we have
f(2,2)F(z—p, 7 —p)=bw+ko(z—p)+ka(Z -p)+ ...,
the series on the right-hand side being a regular function in a domain of
p, p’; and therefore
1 _ Flz—p 7 —9p)
f(2,2) kptkolz—p)+ka(Z—p)+...

=a regular function (§ 69) of z and 2’ in a domain of p P,

’

vanishing when z=p, 2/=p"

It therefore follows that a pole of f(z, 2') is a zero of _}ﬁ' so that the

f(—zlz_’) Hence, in the

vicinity of a pole of f(z, 2’), it is convenient to consider the reciprocal
function, say

'place p, p’ 1s an ordinary place for the function

b=
and then the behaviour of f(z, 2’) in the vicinity of the pole p, p’ can be
described by the behaviour of ¢ (2, #) which is regular in the vicinity of
its zero there. Moreover, any zero of f(z 2’) in a domain of p, p’ 1s a
pole of ¢ (z, 2’); hence the domain of p, p’, within which ¢ (2, 2) is regular,
does not extend so far as to include any zero of f(z, 7).

s ¢ (z, 2') is regular in this domain of p, p', and as it vanishes at p, p’,
it has an unlimited number of zero-values in the immediate vicinity of
p,p, and these occur at places forming a continuous two-dimensional
aggregate that includes p, p’. Hence in the tmmediate vicinity of any pole
of a umiform analytic function, there is an unlvmited number of poles formmg
a continuous two-dimensional aggregate that includes the given pole

Further, we have definite integers as the orders of the zero of ¢(z, 2)
in the two variables at p, p’, the integer being derived from the equivalent
expressions of ¢ (2, 2’) in the immediate vicinity of p, p’; these integers will
be taken as the orders of the pole of f(z, 2') in the two variables at p, p'. .

Cor. Manifestly, a pole of f(z, z') of any order is a pole of f(z, 2V—n
of the same order, where |a]| is finite.
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73. An unessential singularity (an accidental singularity of the second
kind, to use Weierstrass’s fuller phrase) of a uniform function f(z, 2') at a
place s, s’ is defined by the property that there exists a power-series
F(z—s,7 —¢), which is a regular function of z and 2z in the immediate
vicinity of s, s’ and vanishes at s, §’, and is such that the product

f(z,2)YF(z—s 7 —¢)

is a regular function in the immediate vicinity of s, §’, and vanishes at
s, 8. Let this latter regular function be denoted by H(z—s, 2 —¢). No
generality is lost by assuming that the functions #’ and H have no common
factor vanishing when z=s, 2’=¢. We then have a fractional expression
for f, viz. :
N H(z—s,7—5%)
S )= F(z—s,2—5)"

As in the case of a pole of f(z, 2') at p, 9/, the function F(z—-p, 2’ — ')
was representative and unique, so here each of the functions H (z—s, 2 — §')
and F (z—s, 2 —¢') is representative and unique, when H and F have no
common factor vanishing when z=s, 2’ =s. The functions H and F can
of course have any number of exponential factors, each exponent being a
regular function of z—s, 2/ —&s"; but no factor of that type affects the
characteristic variations of f in the immediate vicinity of that place. Thus,
in our expression for f(z, 2), we can regard the representative functions H
and F as unique.

To consider the behaviour of f at, and near, the accidental singularity,
write
z—-s=a, Z—§=d;

then we have expressions of the form
H(z—-s7 —8§)=Eama™ (gl 4+ a1 b () + ... + by (')} €15 7,
F(z—s 7 —§)= Do" o™ {o.k_*_a.k—lfl(a_/)_‘_ +ﬁ(0”)} eF(o’, a'),

where £ and D are constants: m, m/, n, n’ are positive integers, each zero
in the simplest cases: ! and % are positive integers, each greater than zero
in the simplest cases; hy, ..., hy, fi, ..., fi are regular functions of ¢’ in the
immediate vicinity of ¢'=0 and vanish with ¢’; and H, F are regular
functions of ¢ and ¢’ in the immediate vicinity of o =0, ¢/ = 0 and vanish
with ¢ and ¢’, so that neither H nor F' can acquire a zero value or an infinite
value from the factors ¢!’ and ef. Moreover, H and F are devoid of any
common factor: so that either m or n (or both) must be zero, and m’ or »’
(or both) must be zero. Also

o+ a2 (o) + o+ (), F+ L)+ + fi(0)
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have no common zero in the immediate vicinity (defined as a region round
a’ of radius less than the modulus of the smallest root of the resultant of
these two polynomials) of =0, ¢'=0 save actually at 0, 0; for their
eliminant is a function ¢’* ® (¢’) which does not vanish for small values of ¢’
other than ¢’ =0.

Manifestly, the value of f(z, 2') at s, s’ is not defintte; it can be made to
acquire any value by assigning appropriate laws for the approach of z to s
and of 2 to s. In the immediate vicinity of s, &, f(z, 2) possesses

(1) an unlimited number of zeros, given by zero-values, other than at
0,0, of !+ by (') + ... + by (o)

(i1) an unlimited number of poles, given by zero-values, other than at 0, 0,
of a¥ + c* 1 fi(d) + ... + i ();

(1i1) an unlimited number of places at which it assumes a level value of
finite modulus;

but ¢ =0 and ¢’=0 is the only place in the immediate vicinity of 0, 0,
where the value of f(z, 2’) is not unique and definite. Hence we have the
result :—

The unessential singularities of a uniform function f(z,2') are vsolated
places in the domain of existence of f (2, 2); the value of f at an unessential
singularity is not definite; and, in the immediate vicinity of any unessential
singularity, there is an unlimited number of places where f can assume any
assigned definite value, zero, finite, or infinite.

Further, let the unessential singularities (each of them being an isolated
place) of a uniform analytic function be represented by a,, a’m, where
m=1,2,.... They may be finite in number or infinite in number. When
they are infinite in number, the places a, @', must have one or more limit-
places; let such a limit-place be b, b. As regards the function in a small
domain round b, ¥, it cannot be represented by any of the different foregoing
expressions, suitable to the respective vicinities of an ordinary place, a pole,
and an isolated unessential singularity. The limit-place must therefore be
an essential singularity of the function.

Expression near an essential singularity.

74. The definition of an essential singularity of a uniform function, that
has been adopted after Weierstrass, is mainly of an uninforming character—
to the effect that, in the immediate vicinity of such a place, no power-series
U (z, 2') representing a regular function and vanishing at the place can be
obtained such that the product

f(2) Uz %)
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is a regular function of z and 2. But, as is known to be the fact with
uniform functions of a single variable, essential singularities cannot effectively
be sorted together in one class: there can be points, or lines, or spaces, of
essential singularity for a uniform function of a single variable. The con-
ception of added complications, when we deal with uniform analytic functions
of more than one variable, needs no argument for postulation, though it
gives no substantial assistance towards analytical formulation.

It may however be added that one large question dealing with the
essential singularities of a uniform analytical function has occupied a
number of memoirs published in recent years.

We have seen that the zeros of an analytical function of two variables
constitute a two-dimensional aggregate, and likewise that its poles con-
stitute a two-dimensional aggregate. We have also seen that its unessential
singularities are isolated places.

The question just mentioned relates to the aggregate constituted by
the essential singularities of a uniform analytical function; for its dis-
cussion, as well as for other matters, we shall refer to the memoirs indicated *.

* The chief memoirs are those by Hartogs, viz. Math. 4dnn., t. Ixii (1906), pp. 1—88 ; Miinch.
Sitzungsb., t. xxxvi (1906), pp. 223—242; Jahresb. d. Deutscher Math. Vereinigung, t. xvi (1907),
Pp. 223—240; Acta Math., t. xxxii (1909), pp. 57—79; Math. Ann., t. 1xx (1911), pp. 207—222.

See also a memoir by E. E. Levi, Annali di Mat., Ser. iii, t. xvii (1910), pp- 61—87.
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CHAPTER V

Two THEOREMS ON THE EXPRESSION OF A FUNCTION WITHOUT ESSENTIAL
SINGULARITIES IN THE FINITE PART OF THE FIELD

75. WE now come to the consideration of a couple of theorems relating
to the expression of a uniform analytic function of two variables. In the
first of them, we have to deal with a function that has no essential
singularities within the whole range of the field of variation of z and 2’; the
function then has the form of a rational function of the variables. In the
second of them, we have to deal with a function that has no essential
singularities within the range of the field of variation of z and 2’ such
that | 2|2 R, |2/| € R', where R and R’ can be taken as large as we please;
the function then has the form of the quotient of two functions, each of which
is a regular function of z and 7’ for the values of z considered *.

76. First of all, consider a polynomial in 2 and 2/, say

p(z, Y=+ G 4+ 8y,

where &, &, ..., §, are themselves polynomials in 2. Then we at once have
the results :—

(i) every finite place 1is ordinary for p(z, 2');
(i) with every finite value 2/, that is not a zero of &, can be associated
n finite values of 2, such that each of the n places thus constituted

is a zero for p (2, 2’), repetition of values of z causing multiplicity
of zero-places for p (2, #);

(ili) with every finite value 2/, that is a zero of § and is such that
& (r > 0) is the first coefficient of powers of z in p (z, 2") which
does not vanish, can be associated n — r finite values of z, such
that each of the n — r places thus constituted is a zero for p (z,2);

(iv) the poles of p (2, 2) are given by infinite values of |z| and finite
values of 2/ other than the roots of ¢, and by infinite values
of | 2| and finite values of z other than the roots of the coefficient

* Both theorems were enunciated by Weierstrass for n variables, but without proof ; references
will be given later.
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of the highest power of 2’ in p (2, 2’) arranged in powers of 2/, and
by infinite values of | z| and of 7 |;

(v) the unessential singularities of p (2, 2’), if any, are given by infinite
values of |z| and by the roots of &, but each such place is an
unessential singularity only if other conditions are satisfied; and
similarly for infinite values of |2'| and by the finite values of z
excepted in (iv), but each such place is an unessential singularity
only if other conditions are satisfied : so that, in general, p (z, 2’)
has no unessential singularities; and

(vi) there are no essential singularities of p (z, 2).

77. In the next place, consider an irreducible rational function of z
and 7, say

NP (2 2)
R(‘z’z)_q(z’zj),

where p (2, 2') and q (¢, Z) are polynomials in z and 2,
P )= + 6277 + ..+ G,
q (2, 2') = 2™ + ™+ .+ Y,

while &, ..., &, 7, ..., 7m are polynomials in z" alone. Then it is easy to
infer the following results:—

(i) every finite place, that is not a zero of ¢(z, z’), is ordinary for

R(z 7);

(i) every zero of p(z, 2'), that is not a zero of ¢ (z, 2’), is a zero of
R (2, 7);

(iil) every zero of g (z, 2’), that is not a zero of p(z, ), is a pole of
R (2, 7);

(iv) every place, that is a simultaneous zero of p (2, 2') and of ¢ (z, 2')
which have no common factor because our rational function is
irreducible, is an unessential singularity of R (z, 7);

(v) the behaviour of R (z, #') for infinite values of z or of |2/| or of
both |z| and | #/ |, depends upon the degrees of p (2, 2') and ¢ (z, 2')
in z and in 2/, while every such place is either a zero, or ordinary,
or a pole, or an unessential singularity ; and

(vi) the rational function R (z, z’) has no essential singularities.

Functions entirely devord of essential singularities.

78. Now we know that not a few of the important properties of uniform
analytic functions of a single variable are deduced from those expressions of
the function which arise when special regard is paid to its singularities; and
occasionally some classification of functions can be secured according to the
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number and nature of these points*. In particular, we know that a uniform
function, devoid of essential singularities throughout the whole field of
variation of the variable z, is a rational function of z. Of this result, there is
the generalisation, given by the theoremt:—

A uniform analytic function of two complex variables z and 2/, having no
essential singularity in the whole field of their variation, is a rational function
of zand 2.

To establish this theorem, we proceed as follows.

Let f (2, 2') be a uniform function of 2 and 2/, entirely devoid of essential
singularities; and let any ordinary place (say O, 0) be chosen which is a
non-zero place of the function. In the vicinity of 0, 0, let the expansion of

f(z, 7)be
fz2)= § §‘, Cm, n2™2™;

m=0 n=0
and suppose that this series converges absolutely within a domain |z|< 7,
Z'|< 7. Manifestly, after the supposition as to f(0, 0), the quantity c,, is
not zero.

Within the domain, we have

00 0
fz,2)= % ( 3 Cm,n z’“) ",
0

m=0 \n=

because the double series converges absolutely; so, writing

@
In(Z) =2 cn 2™,
7=0

we have
f(z2)= %oz”” Im (2).
Consequently, for all values 0, 1, ... of m, and for all values of 2/ within the
domain, we have
1 (o™ f(z,2) _ ,
m { az;m }z:O_ gm (Z ).

Now f (2, 2') is everywhere a uniform analytic function without essential
singularities; constquently every derivative of f(z, 2’), at every place in the

* Of course, there are other classifications, such as those connected with the kinds of aggregate
of the zeros of a uniform analytic function of a single variable, leading to the class (genre)
question that has been the subject of many investigations in recent years, initiated by Laguerre,
Poincaré, Hadamard, Borel, and others,

+ It is the first of the two theorems which, as already stated, were enunciated by Weierstrass
without proof. His enunciation, given for n variables instead of two only, is to be found Ges.
Werke, t. ii, p. 129.

A proof is given by Hurwitz, Crelle, t. xev (1883), pp. 201—206, for n variables; and this
proof is followed by Dautheville, Etude sur les séries entieres par rapport a plusieurs variables
imaginaires indépendantes (Thése, Paris, 1885). Hurwitz’s proof, modified for the case of two
variables, and amplified, is substantially adopted in my text.
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field, also is a uniform analytic function without essential singularities. At
the places 0, 2 within the domain, the converging series denoted by g (2")
represents a derivative of f(z, 2'); it is therefore an element of a function of
a single variable 2/, which is uniform, analytic, and devoid of essential
singularities. But we know* that such a function of a single variable is a
rational function of the variable; and therefore g,(2") is an element of a
rational function of 2. Denoting this rational function by 4, (2'), or by Ay,
for all values of m, we have

Im (2) = An (7),
for all values of 2’ within the domain ; and so, within that domain, we have
flz,2)=A,+ A2+ 4,22+ ...,

where now A4,, 4,, 4,, ... are rational functions of 2 which have no pole
anywhere within our domain.

Moreover, when z=0, 2/ =0, the quantity c,, is not zero, so that 4,(0) is
different from zero. Hence we can choose a more restricted domain given
by lz|< & and |2'|< &, where & and & are not infinitesimal, such that the

uniform analytic function f(z, 2") is everywhere regular and different from
zero.

Assign an arbitrary value a’ to 2’ in this restricted domain, that is, such
that |a’[€ 8. Then f(2, &) is a function of a single variable only; it is
uniform ; and it possesses no essential singularity; it is therefore a rational
function of 2, so that we may write

W By+Biz+...+ Bz
J@ ) =t G
As a rational function of z has a limited number of zeros and of poles, the
highest index of z in the numerator and the denominator combined is finite :
that is, » is a finite integer. No generality is lost by assuming that B, and
C, are not zero together. If B, were zero, then z=0 and 2 = a’ would be
a zero of f(z, 2), contrary to the supposition that f does not vanish within
the selected domain; if () were zero, then 2=0 and 2/ = a’ would be a pole
of f(z, 2’), contrary to the supposition that f is regular within the selected
domain ; hence neither B, nor C, is zero.

Let K,, K,, K,, ... respectively denote the values of the rational functions
4,, A,, 4,, ... when z’=a’. Then a converging series for f(z, a’) is given by

f(z,a)=K,+ Kjz+ K,z + ...,
80 that, from the two expressions of f(z, a'), we have
Ko+ Kiz+ K22+ ..)(Co+ Ciz+ ...+ Co2"y= B+ Bz + ... + B,z

holding for all values of z such that z|<€d8. The two coefficients of each
power of z on the two sides must be equal to one another; and therefore, as

* See my Theory of Functions, § 48.
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2" (for n >1) does not occur on the right-hand side, we have the coefficient
of zr+» on the left-hand side equal to zero. Thus all the determinants

K , K, , K, ,.....

Kr+1, Kr—|—27 Kr+3: ------

must vanish.

With each value of ¢/, some finite integer r must be associated because
f(z, @) is rational in z. But with at least one value (and, it may be, with
more than one value) of r, an infinite number of values of & must be
associated ; for otherwise, if with each value of r only a finite number of
values of &' could be associated and as every admissible integer r is finite,
there would in all be only a finite number of values of @', contrary to the
fact that a’ is any place in the domain |2 | < &".

Consequently, taking r to be the greatest integer for any value of a in
the domain determined by &, all the preceding determinants vanish for the
infinite number of values of @’ in the domain. Hence there must exist
functions of 2’ (to be denoted by F,, F,, ..., F,), such that the equations

FTAI + FT—IA‘Z +...o+ F0A7'+1 =0,
F,A+F,_ A, +...+ F,A,,,=0,

are satisfied for an infinite number of values of z'; and not all the functions
F can vanish. Moreover, the functions A4 are rational and, at most, only
some of them (limited in number) are evanescent; hence, as the functions
F, F,, ..., F, can be taken as equal to determinants the constituents of which
are rational functions of 2, they are themselves rational functions of 2.

Consider the function

(Fo+zF+...+27F) f(z,2)— (G + 2G, + ... + 27 (G,),
where

G,=A4,F,, Gi=A4,F,+ A\, ..., G,=AF, + A, F,,+...+ A, F,;

and denote it by P (2, 2'), which may or may not vanish identically. The
quantities G,, ..., (., being lineo-linear in the rational functions 4 and F, are
themselves rational functions of 2”; and not all the functions G can vanish.
Then the function P (z, 2) is a regular function of z and 2 within the
domain |z|< 8 and |2/ |< &, because all its components are regular within
that domain. The foregoing analysis shews that, for all values of z in the
range |z|< 8, there is an infinite number of values of 2’ in the range [2/|< &
for which ® (z, 2’) vanishes. If ® (z, 2’) does not vanish identically, we take
any special value of z within the range |2|< 8§, say z=c; then ® (c, ¢) is
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a regular function of 2/ within the range |z'| 2 &, and (after what precedes)
there is an infinite number of values of 2 within that range where ® (c, )
vanishes. It is a known property* of regular functions of one variable
that the number of its zeros, within any finite region where the function is
regular, is necessarily finite; and the preceding result, based immediately
upon the hypothesis that @ (z, 2) does not vanish identically, does not
accord with this requirement. Accordingly, the hypothesis must be
abandoned ; the function @ (z, 2) vanishes identically; and therefore, for
all values of z and 2/ within the selected domain, we have
Fo+ e+ ...+ 2 F) f(2,2)=0CG+ 2G, + ... + 27 G,
where F,, F,, ..., F,, Gy, G4, ..., G, are rational functions of 2z
The function F, and the function G, do not vanish under our initial
hypothesis that the ordinary place 0, 0 is not a zero of f(z, 2); some (but
not all) of the other functions F,, ..., F,, (1, ..., G, may vanish,
We thus have o o o
’ o+ 20+ .+ 276,
ACER A S ) A
that is, (2, #’) is a rational function of z and 2. The proposition is thus
established.

79. One provisional remark will be made at this stage. Let f(z, 2) be
a uniform function which, within some limited region of its existence, has no
essential singularities and, within that region, does possess zeros, and poles,
and unessential singularities.

Suppose that a uniform function exists, which has those zeros, those poles,
and those unessential singularities, all in precisely the same fashion as f(z,2),
and which possesses no others within the region; and suppose that this
function has no essential singularity anywhere in the whole field of variation
of z and 2. The preceding proposition shews that it must be a rational
function of z and 2. (Examples can easily be constructed, in the case of
definite simple assignments of such places). We shall, for the moment,
assume the possible existence of such a rational function; and then, denoting
it by r (2, 2’), we write

WACKD,

9(2d)= r(z )

Within the region, the function ¢ (2, 2’) has no zeros and it has no
singularities of any kind; hence, within the domain of every place in that
region, the two functions g, and g,, where
10 10
.(]1 = - ’\;q_ > = g
g 0z

can be expressed as absolutely converging power-series, which are elements

* See my Theory of Functions, § 317.
F. 9
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of two regular functions. Moreover, as regards these two power-series for g,
and g¢,, we obviously must have

09, _ 99
07 0z
identically ; so we denote the common value of these two quantities by
*P (2, 7)
0207
where P (z,7) is itself a double series converging absolutely in the domain,
and is an element of a single regular function, which may be denoted by
Q(z 7). Then
1og 9P(s,2) 10dg 0P(2.2)
gaz= e’ ga~ a7

and therefore
g= eP(z,z’),

within the domain. Now g (z, #) is regular throughout the region; and, for
each domain within the region, P (2, ) is the element of the regular function
Q (2,7). Consequently, on the assumption that the rational function r (2, 2')
exists, we have

r(z, 7') e?@2)
as a representation of f(z, 2’) within the region, @ (2, z') denoting a function
that is regular within the region.

The definite existence of the function, denoted by r (z, 2’), has not been
established in general. The assumption that has been made raises the
question as to whether rational functions exist, defined by the possession
solely of assigned zeros, assigned poles, and assigned unessential singularities.
Also, that question raises the further question as to what are the limitations
(if any) upon the arbitrary assignment of zeros, poles, and unessential singu-
larities, in order that it may lead to the existence of a rational function.

These questions initiate a subject of separate enquiry which will not be
pursued here.

Functions having essential singularities only in the infinite part
of the field.

80. The other of the theorems already mentioned relates to the expression
of a uniform analytic function, of which all the essential singularities arise
for infinite values of one or other or both of the variables. It was adumbrated
by Weierstrass*; the following proof is based upon a memoir by Cousint.
We have to establish the theorem :—

A uniform analytic function of two variables, all the essential singu-
larities of which arise for infinite values of either of the variables or of

* Ges. Werke, t. ii, p. 163.
+ dcta Math., t. xix (1895), pp. 1—62; it applies to n variables.
It may be added that a proof is given by Poincaré, dcta Math., t. ii (1883), pp. 97—113;

IRIS - LILLIAD - Université Lille 1



81] _ SPECIAL INTEGRAL 131

both of the variables, can be empressed as the quotient of two jfunctions
which are everywhere regular for finite values of the variables.

For this purpose, Cousin uses the Cauchy method of contour integrals.

81. Consider an integral, the variable of integration Z’ being taken in
the plane of 7/, as given by

D
Fig.1. ™ E Fig. 2.

, 1 (B dZ’
0 =5 ) 77—
where the integration extends along an arc AB from 4 as the lower limit to
B as the upper limit. When we take a closed contour of which AB is a
portion, AB is the positive direction of description in figure 1 and is the
negative direction of description in figure 2.

Now in figure 1, we have

0(5)—1+—f 47

271 AMBA -2z

for all points 2 within the contour AEBM 4, and

az'
0(2)—2—7” anp 2 — 7
for all points 7 without the same contour. For all points within the contour,
and for all points without the contour, 8 (z) is a regular function of 2’.
Consequently the line 4 £B is a section* for the function; the continuation
@ (D), taken from the inside point C to the outside point D across the section
AB when the latter is described positively for the area, is — 1 + 8 (0).

In the same way for figure 2, the continuation 8 (D), taken from the inside
point C to the outside point D across the section 4B when the latter is
described negatively for the area, is 1+ 6(C).

it is based upon the properties of potential functions. The following memoirs may also be
consulted:—
Poincaré, Acta Math., t. xxii (1899), pp. 89—178; ib., t. xxvi (1902), pp. 43—98.
Baker, Camb. Phil. Trans., vol. xviii (1899), p. 431; Proc. Lond. Math. Soc., 2nd Ser., vol. i
(1903), pp. 14—36.
Hartogs, Jahresh. d. deutschen Mathematikervereinigung, t. xvi (1907), pp. 223—240 ; and the
memoir by Dautheville already (p. 126) quoted.
* See my Theory of Functions, § 103 ; the notion is due to Hermite, who called such a line a
coupure.

92
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The general value, of course, is
0() =5 log =2,
where a’ and b" are the variables of 4 and B. Clearly the quantity
A 1 / /
G(z)-g’;ilog(b -2)
is regular in the immediate vicinity of B, and the quantity
ny 1 ‘L
0(z)+%log(a -2
is regular in the immediate vicinity of 4.

Next, let g (2, 7) denote a function of z and 2/, which is regular for ranges
of z and 2’ that have finite values ; and consider an integral

9(s 2 ) :
X (% %)= 271"1,./ Zz' - oz,
taken precisely as for the preceding integral 8 (z’). Then y (2, 2’) is a regular
function of z and 2/, except when 2’ lies upon the line AXB; and AEB isa
section for the function y (2, 2'). Now let

Gz, 7, Z,)=g(z ZA), 9(57).

as g (z, 2') is a regular function of z and 2/, it is easy to see* that G'(z, ¢, Z")
is a regular function of 2, #, Z’. Hence

N LB g(sd) (B dZ
x(z,z)_ﬁ_[AG(z,z,Z)dZ+ el f

=H(z,Z)+0()g (2 ),

where H (2, 2') 1s a regular function of z and 2’ for all the values of z and 2’
included, and 6 () is the preceding integral already considered. Consequently
X (2, ) is a regular function of z and 2 for all points 2z’ that do not lie upon
the section ALB; and the change in the analytical continuation of  (z, £')

* If we take
gz, Z)=gy(2)+ 2Z'g1 (2) + 2?93 (2) + ...,
then
Gz 2y Z')=g1(2)+(Z'+2) g2 () + ...,
so that

|Gz, 2, Z) | = | g1(2) | +21 | g92(2) | +3r% | g3(2) | + ...,
for values of 2/ and Z’ such that
|2 <7, [Z'|<7 <R,
With the properties of a regular function such as g (2, z’), which have been established earlier,
the series on the right-hand side converges absolutely; hence G (z, 2/, Z’) is regular.
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across the section AEB is —g (2, 2) or +g (2, 2) according as AEB, when
crossed, is being described negatively or positively. Moreover, the function

1 ’ / !
x (2, z’)—%g(z,z)log(b —2)

is regular in the immediate vicinity of &', and the function

/ 1 ’ ’ 4
x (2, z)+§;ig(z, Z)log (@' — 2')
is regular in the immediate vicinity of .

Next, take in order a finite number of lines 4, B, 4,B, ... in the plane of

#, such that they have a common extremity B,
do not meet except at B, and all lie within Az A,
the z, 2’ domain considered. Associated with
each of the lines A,B, we take a regular A,
function g, (2, #'), occurring precisely as g (2, 2°)
occurred in the preceding discussion of the
function 7y (2, 2) over its section ; and write

1 By (5 2)
ot a4, 4 —7

x-(2,2) = dz’,
the integral being taken from A, to B. The character of y (2, 2) is known
from the earlier investigation.

Let a new function ® (z, 2’) be defined by the equation
D(z,2)= 3 x: (2, 2).
r=1

For all places not lying upon any one of the lines, the function ® (z, 2’) is
regular. In the immediate vicinity of the place B common to all the lines,
the function
(2, #) = 5 log (¢ = )} = gz, 2)
is regular; hence, if ®(z, 7’) is regular in the immediate vicinity of B, it s
necessary and sufficient that
El 9r (2, 2")

should vanish at B. Moreover, if
2 gr (2, 2") = 2kme
r=1

at B, where k is a constant, then
D (z,2)—klog (' - 2)

is regular at B.

82. We are to deal with a uniform analytic function f(z, 2’), which has
no essential singularity in the finite part of the z, 2’ field. In this field, take
any finite domain. Within the selected domain, f (2, 2’) deviates from regu-
larity at or in the immediate vicinity of poles, and at or in the immediate
vicinity of unessential singularities. At a pole and in its vicinity, there is

IRIS - LILLIAD - Université Lille 1



134 FUNCTIONS AND [cH. v

one definite type of representation of f (z, z’) which is valid for some region
round the pole. At an unessential singularity and in its vieinity, there is
another definite type of representation of f(z, 2) which likewise is valid for
some region round the unessential singularity. At an ordinary place and
within some limited region of the place, f(z, 2’) is regular; within that region,
there is another definite type of representation of f (z, /) which likewise is
valid for the limited region.

When any two of these respective regions have any area in common, the
respective representations of our uniform function f (s, ) are equivalent to
one another over that area. Moreover, we have selected a finite domain in the
z, 2 field ; so that the total number of these regions in this domain is finite.

Now let the whole selected domain in the z, 2’ field be divided up in
different fashion. Let the whole region in one of the two planes (say the
2 -plane) belonging to this domain in the field be divided into » regions,
where n is finite. Each of these regions is to be bounded by a simple
contour. With each of these n regions in the 2'-plane, we combine the
whole of the z-plane that belongs to the selected domain; so that we now
have n domains within the single selected finite domain in the z, 2’ field. At
every place in each of these n domains, our function f (z,2’) is defined. Let
Ji(z, 2) denote the whole representation of f(z, 2) in one domain, f; (z, #) the
whole representation in another domain; and so on for the n domains, up to
Ju(2,2). With each region in the Z-plane, we associate the function £, (z, z')
giving the representation of f(z, 2') for the domain which includes that
particular z’-region.

It may happen that two such regions have a common area, so that the
respective functions belonging to the regions coexist over that area; we
shall assume that, if deviations from regularity occur within the area, such
deviations are the same for the two functions, say f; (s, ) and fi(z, 7)),

so that
Ji(2, 2) = fi (2, )
is a regular function over the area.

When two functions are such that their difference over an area is a regular
function, they are said* to be equivalent over the area; if their difference is a
regular function in the immediate vicinity of a point, they are said to be
equivalent at the point.

Denote the regions in the #/-plane by R,, R,, ..., R, with which f(z, 2'),
Sz, 2), ..., fu(2,2') are respectively associated. Further, denote by I, the
boundary between R, and R,, such that when 2/ passes from R, to R, by
crossing l,, this line is described positively for the boundary of R,; and
similarly for the boundary between any two contiguous regions. Lastly,
there will be points where three or more boundary lines are concurrent.

* Cousin, L c., p. 10.
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When a point P’ lies within the region Ry, then f;(z, 2') is the function
associated with P, When a point @' lies on the boundary between two
contiguous regions By and Ry, then either of the functions f; (2, 2") and f; (¢, 2')
1s the function associated with @’. When a point S’ is a point of concurrence
of more than two boundary lines of regions R;, Ry, R;, ..., then any one of
the functions f; (z, 2), fi (2, 2'), f1 (2, 2), ..., is the function associated with S”.

83. Consider the integral

Ikm ffm<z Z) ﬁ(Z Z,)le

2mre
taken along the line l, between two contlguous regions, the order of the
suffixes in [y, being the same as their order in {;,,. Manifestly

Ikm = mke .

As the function f, (2, Z°) — fi (2, Z') is regular everywhere along the path of
integration, the integral is of the same character as the integral previously
denoted by (2, 2°); the line li, is a section for the function Jy.

Now take all these integrals I, which arise for contiguous regions, and
write
D (2, 2) =32 Iim,
where the summation is for all pairs of suffixes that correspond to contiguous
regions. The function ® (z, 2') has each line l;, as a section; at every
place that does not lie upon a section, ® (z, ') is regular.

Next, we take a set of functions ¢, (z, 2'), ¢y (2, 2), ..., ¢n (2, 2), associated
with the respective regions R,, R,, ..., R,; and we define ¢, (2, 2') as the
value of @ (z, ') within the region R,. A point P’ in the z-plane may lie
within a region; it may lie upon the boundary of two contiguous regions ;
and it may be a point of concurrence of several such boundaries.

When the point P’ lies within the region R,, the function ¢, (z, 2’) as
defined is regular, because the sections of ® (z, 2) are only the boundaries of
regions.

When the point P’ lies on a boundary of the region R, say on the line
l,q so that R, is the contiguous region, and when P’ does not lie at either
extremity of l,4, the analytical continuation of ¢, (2, 2) through the point
P’ remains regular. For, writing

Yrg (2, Z’) =fq (2, zl) _fp (2, 2),

so that g, (2, ) is regular for all the values of z and 2’ considered, the earlier
investigation shews that, in crossing the section l,,, the change in the
analytical continuation of Ip, is — gpq (2, 2) When [y, as it is crossed, is being
described positively. For this position of P’, every element in the sum of the
functions Iy, is regular except [, ; and therefore the change in the analytical
continuation of ® (z, 2) is — g,, (2, #).  But the new function ¢, (z, 2) is the
value of P (z, 2/) in the region R,; hence

¢9 (z’ Z/) = ¢P (Z, z,) — 9pq (Z: z,)’
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and therefore
bg (2, 2+ fq (2, 2)=¢p (2 2) + [, (2, &),

where R, and R, are contiguous regions.

When the point P’ is a pomt of concurrence of several boundaries, the
regions may be taken as in the ﬁgure Our
function @ (z, 2’) can be rearranged in its sum-
mation. We group together all the integrals Iy,
which have no section passing through P’; and
we call this group ®,(z, 2’). We group together
all the remaining integrals, the section of each of
which passes through P’; and we call this group
D,(2, 7). Thus

D (2, 7) =D, (2, 2)+ Dy (2, 7).
The sum &, (z, 2) is regular at P’, because every element / in the sum

is regular.

As regards the sum ®,(z, 7), our earlier investigation shews that the
function

P, (s, )~ g llog (P'— )} 3¢ (5, 7)

is regular at P’. But the functions g (z, '), for the various elements I in
®,(z, 2') taken as in the figure, are

Ja(2, 2)—f.(2 7),

Sy (2 2)—fa(z, &),

fs(2, 2) = £, (2 2),

Je(2,2) =[5 (2, 2),

Ja(z 2) = fe (2 2),
that s, the quantity Z¢ (z, 2’) is identically zero. Hence the sum ®,(z, 2) is
regular at P’.

Consequently, the function @ (z, 2) is regular at P’, in this third case;
and therefore all the functions ¢ (z, 2'), equivalent to one another at P’, are
regular at that point.

We thus have a set of functions ¢ (z, 2’). Each of them is regular within
its own region. Each of them is regular at any point of concurrence of the
boundaries of several regions. The change in the analytical continuation,
from the function ¢, (2, 2) belonging to a region R, to the function ¢, (z, z')
belonging to a contiguous region R,, is known; we have

$q(2,2) = by (2, 2) = fo (2, &) = fo (2, 2).
The last relation gives
$p (2, 2)+ [ (2, 2) =g (2, ') + fo (2, 7))
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as a relation holding between two contiguous regions R, and R;. Let R, be
a region contiguous to R, and distinct from R,; then

bq (2, 2" +.ﬁ] (2: )= Pr (2 2) +f7 (2, 7).

And so on, for each region in succession, until the whole domain considered
1s covered.

Accordingly, we define a new function F (2, 2’), by the relation

F (2, 2)= ¢, (2, 2) + fr (2 )
for every region R,. But all these different expressions for F (z, 2') are the
same, because the relation

b1(z, )+ fi(2, 2) = bn (2, 2) + fu (2, 7)
holds for any two contiguous regions within the domain. This final function
F(z 2'), at every place within the domain, is equivalent to the assigned
function f, (2, 2’) belonging to the region which, within that domain, in-
cludes the place ; and the expression for this function F (z, 2) is

F(Z: Z’) =fm (Z’ Z’) + ¢m (Z’ 2,)’
where ¢, (2, 2") is regular in the domain of the place. The expression for
F (2, 7) is valid over the domain considered; and the argument establishes
the existence of the function F(z, 2°), possessing the property that it is
equivalent to each of the functions fj, ..., f;, in their respective domains.

84. The result can be extended. We can substitute a single function
F (2, 2) for the aggregate of functions f, (2, 2’) within the aggregate of
regions R,, ..., R,. When this aggregate of regions is denoted by S,
we infer that a function F (2, 2) exists which, within this aggregate
region 8, possesses all the characteristics of the functions fn (2, 2); it is
subject to an additive function ¢(z, 2z") which is regular throughout the
region S.

Now take a number of these corporate regions 8. It is not difficult to see
that all the conditions for the individual functions f, (2, 2') can be transferred,
in each such region 8, to the function (2, #’) for these regions. The functions
F (2, ') for the different regions S are then taken as the elements for the
composition of a new function which may be denoted by ff (2, 2'); and this
new function {f (z, 2') is equivalent, over the whole aggregate of these cor-
porate regions, to the functions f (2, ') which exist in any part of it. Thus
we infer the existence of a function ff (2, z’) which is such that, in the vicinity
of any place in the finite part of the field of variation where a uniform analytic
function f, (2, ) is not regular, the quantity

2, 2)—fn (2, 2)

is a regular function of the variables. But it must be remembered that only
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a finite part of the field is considered and that the whole number of
functions fn (2, 2’) 1s finite.

85. In the establishment of the preceding result, which is of the nature
of a summation theorem, all the functions f,(z 2") were assumed to be
uniform and analytic. There is a corresponding result, which is of greater
importance for our investigation ; it is of the nature of a product theorem,
and the associated functions are logarithms of regular functions.

The 2’-plane is divided into regions R,, ..., R, as before ; with each region
Ry we associate a regular function ug (2, ), and we take

Ji (2, 2)=log u (2, 2),
so that the value of f;(z, 2') is subject to additive integer multiples of 2,
and otherwise is a regular function of 2z and 2" except at places which are
zero-places of u (2, 7).

As regards the functions w, (2, 2'), ..., uy (2, 2'), we assume that, over any
area common to two contiguous regions R and R, or, if no area is common,
along the part of their boundary which is common to them, the function

Uk (Z’ Z,)
U (2, 7))
is regular and different from zero. Consequently the function
Ji (2, 2) = fm (2 2)

1s regular for the same range of the variables, subject to a possible additive
integer multiple of 2.

We now proceed as before. We again form the integrals

fn (2, Z) f(Z Z" ..,
T = 27”[ E iz,

taken along the line I, which is the boundar_y common to two contiguous
regions; the order of the suffixes in Iy, is the same as their order in Iy, and
clearly
Ikm = Imk-

The function f (2, Z') — fi (2, Z') is regular along the line I;,, and there is
nothing to cause a change in the additive multiple of 27¢ when once this
multiple has been assigned; thus the integral is of the same character as
the integral previously denoted by x (¢, 2), and the line lin is a section for
the integral Jpq.

Again, as before, we take
® (2, 2) =21 im,

where the summation is for all pairs of suffixes that correspond to contiguous
regions. The function @ (z, z’) has each line /s, as a section.
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At any point P’ lying within a region, the function ® (z, 2’) is regular.

At any point P’, which lies on a boundary of the region R, (say on the
line l,, so that R, is the contiguous region) and does not lie at either
extremity of 7,4, the analytical continuation of ® (z, 2') from R, to R, through
7 is regular, the function in R, being

D (2 2)—{fa(2 ) = fp (2 2},

where the additive multiple of 27¢ is the same as in the integral Ip,.

When the point P’ is at b, a point of concurrence of several boundaries
which may be taken as before, it is again necessary to rearrange the sum-
mation of ®(z, 2). We group together all the integrals having no section
passing through &', and call the sum of this group ®,(z, 2’). We then group
together all the remaining integrals, the section of each of which passes
through &' ; and we call the sum of this group ®, (2, z). Thus

D (2, 2)=D, (2, 7) + D, (2, 2).

Each element 7 in the first sum ®, (2, 2’) is regular at b'; and therefore
D, (¢, 7) itself is regular at b'.

As regards ®,(z, ), our earlier investigation shews that the function
1 ;. ,
D, (2, ) — 5 {log (b —2)} 29 (2, 7)

is regular at b/, the summation being over all the lines ! which meet at b’
Now these functions g (2, #), for the various elements I in ®,(z, 2’) taken as
in the former figure (§ 83), are

Jo (2, 7) = fa(z 2),
fr (2 2)=fa (2 2),
Jo (2. 2) = f (2, 2),
Je (2, 2) = fi (2 2),
ACEIEIACED)
respectively, subject—for each of the functions g (2, z’)—to an additive integer

multiple of 27¢. Accordingly, the quantity g (2, 2") is some integer multiple
of 277 ; let it be denoted by k. 2wi. It follows that the function

D, (2, 2')— klog (b' - 2)
is regular at the place b’.
We have seen that ®, (2, 2/) is regular at b'; hence
D(z,2)—klog(b'—2)

is regular at the place b'.
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At any point of concurrence of boundaries b”, other than ¥, the function
log (' — #) is regular, subject to an added multiple of 27i. Consequently,
the function

D (2, 2') — = {klog (V' = 2)},
where the summation is taken over all the points of concurrence of the
boundaries of regions, is regular for all places 2’ in the range considered ; its
expression being always subject to an additive integer multiple of 27i. Let
this function be denoted by 4 (2, 2’); then
V(2 2)=D (2, 7)- 2 {klog (b’ — 2)}.

Subject to the added multiple of 27r¢, the function ¥ (2, 2) is regular for the
¢-region considered : and its sections are the lines /.

Having constructed this function + (z, 2’), we now take functions 4, (2, 2'),
V. (2, 2), ..., vrn(z, ), associating them with the regions R,, R,, ..., R,
.respectively, and defining them by the condition that the relation

Ym (2, 2) = (2, )
is satisfied within and on the boundary of B, for all the values of m. When
we pass across the boundary of R, into a contiguous region R,, we change
to another function v, (7, 2’). But, as we have seen, the analytical change
in 4 (z, 2') in passing over a line I, is
—{fo (2 &)= fu (2, 2},

and so the analytical continuation of ¥, (2, 2') is

"!"m (Z’ Z/) - {fp (Z’ Z’) _fm (Z’ zl)}'

As this is the function ¥, (2, 2’), we have

‘I’p (Z’ Z/) =Ym (2, Z,) - {fp (2, Z’) _fm (Z, Z/)},
there always being an additive multiple of 27¢ on the right-hand side.
Hence, subject to this additive multiple, we have

V(o 2) +fon (2 ) =y (5, 2) + i (5, 2),
for contiguous regions R,, and R,,.

Now pass from B, to another contiguous region R,, distinct from Rj;
then, again subject to an additive multiple of 27, we have

Vo (2 2) + fp (2, 4) = ¥4 (2, 2) + /4 (2, 2).

And so on, for the full succession of contiguous regions, until the whole
Z'-range is covered. It follows then that, for any two regions R,, and R,, we
have the relation

Y¥m (2, 2) +fm (2, 2)=Yu(z 2) +fﬂ~ (s, ),

always subject to an additive integer multiple of 2u7; and each of the
functions ¥ 1s regular within its own region.
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Accordingly, we define a new function G (2, 2') by the equation

G (2 2)=Ym (2 2) + fu (2 2),
for every region R,. But all these different expressions for G (2, 2’) are the

same as one another (save for an additive multiple of 274 which may change
from region to region), because the relation

Y (2, 2) +fm (2, 2')= Vu (2 Z’) +fu (2 2')
is satisfied for all values of m and wu.
Finally, take a new function U (z, z) defined by the equation
Uz, &) =eG®2),
The added integer multiple of 27¢ in G (2, 2') does not affect the character of
U (z 2'); and so we have
Uz, 2')=¢%@%

= g¥m @2+ m2,2)

= Uy, (2, 2) ¥m®?)
within the region R,,. We thus have established the result :—

A function U (2, 2') exists, reqular throughout the whole fiiite region con-
stdered, such that the quotient
Uz, ")
U (2, 2)
18 a regular function of z and 2 within the region Ry, and is different from
2610, U (2, 2') being itself a regular function within that region ; and this holds
Jor all the n values of m.

Again it must be remembered that », the number of functions uy, (2, 2),
is finite.

The general theorem.

86. After these two propositions, which are general in character and the
second of which is immediately useful for our purpose, we can proceed to the
establishment of the general theorem, stated by Weilerstrass, as to the
expression of a function of two variables, of which the essential singularities
occur only for infinite values of either or of both the variables,

It has been proved that, in the immediate vicinity of a zero-place of a
uniform analytic function f(z, z’), we have
S (2, 2') = Pek,
where P is a polynomial in 2z having, as coeflicients of powers of z, regular
functions of Z, or conversely as between z and 2z, and where R is a regular
function of z and 2’ which vanishes when z=0 and 2" =0.

We have defined a pole of a uniform analytic function F (z, z’) as a place,
where a function f (2, 2’) of the preceding form exists such that

F (2, 7)f (2 2)
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is a regular function of z and 2/, which does not vanish at the supposed pole
or in its immediate vicinity.

We have defined an unessential singularity of a uniform analytic function
F (2, 2’) as a place, where two functions f(z, 2') and g (s, 2/) of the preceding
type, and irreducible relatively to one another, are such that

e

is a regular function of z and 2’ which does not vanish at the supposed
singularity.

Suppose, then, that a function P (z, 7) is defined as being uniform and
analytic over the whole field of variation: that it has poles and unessential
singularities of defined type within that field: that it has no essential singu-
larities except within the infinite parts of the field of variation of the two
complex variables: and that, except for the poles, and for the unessential
singularities, the function otherwise is regular for finite values of the variables
z and 7.

For the expression of the function, we need take account only of functions
f(z, 2') which give rise to poles, and of functions f(z, 2) and g (z, 2) which
give rise to unessential singularities. We range these functions in two
classes. In one class, we include all the denominator functions f(z,2); in
the other class, we include all the numerator functions g (z, 2).

Let f(z, 2) be typical of all the denominators, which occur in the
expression of the function at a pole and its immediate vicinity; and let
f(z, 2) be typical of all the denominators, which occur in the expression of
the function at an unessential singularity. We proceed to construct a
function G (2, 2') such that, in the immediate vicinity of any of these places,
the quotient

G(z 7) or G (z )

f@?) " Fad)
is regular and different from zero; the function G (z, #') exists, and is regular,
in the whole finite part of the field of variation.

Again, let g (2, 2) be typical of all the numerators which occur in the
expression of the function at an unessential singularity. Analysis, precisely
similar to that used for the establishment of the function @ (2 2), enables us
to establish the existence of a function G (z, 2’) such that, in the immediate
vicinity of any such place, the quotient

G (z ?)

9z 2)
is regular and different from zero ; the function G (2, #) exists, and is regular,
in the whole finite part of the field of variation.
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Accordingly, we consider the possibility of the existence of the functions

Gz 72), G(z, 7).

87. Imagine a succession of regions in the field of variation, each region
enclosing the one before it in the succession. We shall take, as the boundaries
of the regions, concentric circles in the respective planes; and these may be
denoted by (Ci, CY), (C,, CY), ..., which may be unlimited in number, as we
proceed to cover the whole field of variation. We also take the common
centres of the circles at the respective origins.

For the first region, there is only a limited number of functions f, (2, 2'),
each of which is regular at, and in the immediate vicinity of, its place of
definition. Hence, by §85, there is a function, say U,, which is regular
throughout the region and is such that the quotient

U,
Jn(2,7)
is a regular function of z and 2’ within the region and is different from zero;
and this holds for each of the functions f,, (2, 2") defined within the region.

For the second region, there are all the functions f, (2, 2'), which are
defined for places in the first region; and there are the additional functions,
which lie in the belt between the two regions (including the boundary of the
first region). Then, again by §85, there is a function U, which is regular

throughout the second region and is such that, (i) the quotient 11:7[2 is a
1

regular function throughout the region and is different from zero, and
(ii) the quotient

G

(2, )
where f, (2, #) is any one of the newly included additional functions, is a

regular function of z and 2’ within the region and is different from zero; and
this holds for each of these functions f, (z, 2').

And so on, from each region to the region next in succession; we obtain
a gradual succession of functions Uy, U,, ..., U,, ..., each regular in its

U

U,
out the region (C,, ;') and is different from zero, and (ii) that, for each of
the functions f; (2, 2’) defined for the region (), 1) but not for the
region (C,, C,), the quotient

region, and having the properties, (1) that 1s a regular function through-

UT+1
fi (2 7)

is regular for the region (Cyr41, C’,,) and is different from zero.
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88. Take a converging series of positive quantities ay, a, ..., &y, ...,
associating them in order with the successive regions, so that a, is associated
with the region (C,, ;). Also, let
% =pPr;

then the regular functions U,, U,, ... can be chosen so as to give
|pr| < e,

for each value of r.

Suppose that Uy, ..., U, have been chosen so as to satisfy this relation
forr=1,...,s—1. The function U,/ U, is regular throughout the region
(Ce, C;) and is different from zero there; and therefore

log Uy, —log U,
Is (save as to an additive integer multiple of 2#¢) a regular function of
z and 2’ throughout the region. This regular function, save as to the
additive multiple of 2w, can be expressed as a double power-series in z and
7 converging absolutely within the region. Let this series be denoted by

S 3 Cmn ™2,

m=0n=0

let M be the (finite) greatest value of its modulus within the region ; and let
R and R’ be the radii of the circles C, C;. Choose values, u; of m, and v,
of m, sufficiently large to secure that

N

L

::lw

t- ﬁ - }{’%}””<%%
(
g T e

the third of the inequalities being satisfied when the first two are satisfied.
Then, writing

[t ] Vg ’
Py,= 3 3 cppoma™,

m=0 n=0
so that P; is a polynomial in z and 2’ ; and also
@® @ W @ o 0
Q=% 2+ 33 3 )cmnz’”z'n,
m=p,n=0 m=0n=y, m=p;+1ln=v,+1 ’
so that
| Q8|<3'as+ as+§as< O ;
we have

log Ugyy — log U = P, + Qs,
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save as to an additive integer multiple of 27i. Consequently

Uspre®s — o
U, ’
where now the multiple of 277 no longer affects the functions concerned. Let
U’s-l-l = Usgn e Ps,
so that
U _ o,

8
The function U'sy,, within the region (Cs, Cy), possesses all the properties of
Uy4a, because e~Ps within that region is a regular function of z and 2z° which
vanishes nowhere in the finite part of the field ; thus U'sy./ Us is everywhere
regular in that region and nowhere vanishes there, and the quotient
U s
fi(2, 2')’
for each of the functions f; (2, 2’) defined for the region between (Cyy,, C'yyy)
and (C,, CY), is everywhere regular for the region (Cyy., C's11) and vanishes
nowhere in the region. Accordingly, we substitute U’sy, for Usy,; we write

eQs = Ps>
so that

|ps|< €™
and we now have

U(Jg:—l = ps’

with the condition | p, | < €% satisfied.
89. For any region (C,, C,), we define a function Gy (2, 2') by the form
Gq(z, 2)= Uy t]°=_°[l Pg+t-
The function Uy is regular everywhere within the region. The product

@
L pgis
41

is regular there ; for its modulus
@
= 11| pgys |
t+1
< ez“qﬂ,

which is a finite quantity because of the convergence of the series of positive
quantities ai, o, ...; and, within the region, no one of the quantities py.,,
Pg+2s --. vanishes, while each of them is regular there. Thus within the
region, the function

Gq (2, 2)

f q (Z’ z/)
is everywhere regular, and nowhere zero, within the region (G, Cy), for each
of the functions f; (2, 2') defined within the region.

F. 10
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Next, take a function Gy (2, 2), defined for the region (Cyip, CVgyp).
We have

a0
a 4
Gosp (2, 2)=U'gyp tl—]l Pg+p+t-

Also
Gqy(z, )= Uq,tEIPqH'

» ®
’

=Uy 1 pgse I ppygie
¢=1 =1

7’ 7
U’ U4 U'gip ﬁp ,
= g T v s 7 p+q+
Uq U g+p—1 t=1
!
=Ugtp (Z’ 2 )

Thus all the functions 4 are one and the same; let this function, the same
for all the regions, be denoted by G (2, 2'). Then the function @ (z, 2) exists ;
it is regular everywhere over the field of variation considered, that is, for all
finite values of the variables z and z'; and it is such that at, and in the
immediate vicinity of, any place where a typical function f(z, 2’) is defined,

the quotient
G (z, 2)

ACED

is regular and different from zero.

We thus have established the existence of the function denoted by
G (2 7).

In precisely the same way, we can establish the existence of the function
denoted by G (z, 2").

90. Now take the quotient
O (s, 2)

_ G (s 7)
T G(z )
This function @ (z, z') has unessential singularities at all the places where @
and G vanish simultaneously, that is, at all the places where associated
functions ¢ (2, 2’) and f(z, 2') vanish simultaneously; in other words, ® (z, 2')
possesses, in exact and precise form for each of them, all the unessential
singularities possessed by the function P (z 2') of § 86. Again O (z, z) has
poles at all the places where G (z, 2') is zero while @ (2, #') is different from
zero, that is, at all the places, where the functions f(z, z') vanish while the
functions g (2, 2’) do not vanish: in other words, ® (z, z') possesses, in exact
and precise form, all the poles possessed by the function P (z, 2’). Neither
® (2, 2') nor, by hypothesis, I’ (z, 2) has any essential singularity for finite
values of z and 2z'; and at all places, other than isolated unessential singu-
larities and other than the continuous aggregates of poles, both @ (z, 2”) and
P (2, £') are regular functions. Hence

Pz 7)

B (z 2)
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is a function that is regular everywhere in the domain constituted by all
finite values of z and 2'; denoting this regular function by R (z, 2'), we have

P(z,2)=0(z,7) R (2, 7)

_ G (2, 7)R (2 2)

T G(n2)
Now @ (z, 2') is a function that is regular for all finite values of z and 7 ;
consequently the product @ (z, 2’) R (z, 2) is a function that is regular for all
finite values of z and 2. Denoting this product by H (2, 2'), we have
_H(z 2)
TG (s 7)
as the final expression of our function; and, in this expression, the functions

H(z 7) and ( (2, 2') are regular for all finite values of z and 2. We thus
have the theorem :—

P(z,72)

When a uniform analytic function of two variables possesses only un-
essential singularities for finite values of the variables, it can be expressed
as the quotient of two functions, each of which s reqular for all finite values
of the variables ; and the quotient is irreducible.

The last statement in the theorem follows from the construction of the
functions @ (z, /) and G (2, 7). A quotient g (z, 2') + f(z, #) is irreducible
at an unessential singularity; there is no question of the reducibility of a
function {f (2, 2')}~ in the vicinity of any pole; and R (z, 2’) is regular for all
finite values of z and 2.

Note. In the particular case where the uniform analytic function has no
essential singularity within the whole field of variation of z and 2, both the
functions H (z, 2/) and G (z, 2') are devoid of essential singularities within
that whole field; that is, they must be polynomials in z and 2. We thus
again have the earlier theorem already (§ 78) established.

For further developments from the results now proved, reference should
be made to Cousin’s memoir.

Appell’'s Examples.

91. Such is the general existence-theorem, obtained in the product-
form. There is a corresponding theorem, in a sum-form. Simpler expressions
may be obtainable in particular cases, when the functions £, (2, #') or u; (2, ')
are known.

As an example of the sum-theorem, for a particular class of functions,
Appell* proceeds as follows, in a generalisation of Weilerstrass’s proof of
Mittag-Leffler’s theorem on functions of a single variablet. The set of

* Acta Math., t. ii (1883), pp. 71—80.
+ For references, see my Theory of Functions, ch. vii.
10—2
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uniform analytic functions £ (z,2), fi(2 7),... is supposed to have the
property that for all integers m, greater than some definite integer N, we
can assign a magnitude 7, such that f, (2, z') is holomorphic for all values
of z and 7 given by |z|<m,, |2 |<r,, and such also that 7, increases
indefinitely with «.

Let ¢, €, ..., €, ... be a converging series of positive quantities, and let
¢ denote a positive quantity less than unity. Take first the sum of the
functions fi(z, 2), f3(2, 2), ..., fx (2, Z); and write

N
Fi(z2,7)= 2 fu(z 7).
m=1
Next, consider the functions f, (2, z’) such that » > N; as each of them is
regular for values of z and 2’ such that
| 2| < erp, |2'|<erm
we can express f,(z, 2’) in a form
fa(2,7)= 2 3 cp,™2?29,
»=0 g=0
where the double series converges absolutely. As in §88, we can assign a

positive integer u,, taking u, to be the greater of the two integers u; and v,
there assigned, such that

{E >tz % - = § }cp,q(mzpzlqiéen,
P=pn q=0 p=0g=pn p=ltp, g=ltun

for all the values of z and 2’ considered. Hence, denoting by ¢, (2, 2') the
polynomial

n_ ALnE—l Mng“l
bn (2, 2)= Cp,q
p=0 ¢g=0

) gzp Z"I’

and constructing a function

B )= 3 (fule )= a(a 2,

N+1

we have, on the right-hand side, a series which converges absolutely for the
values of z and 2z’ considered.

Now consider the sum

F(z,2y=F\(z, 2) + F, (2, 2.
The function

F(z,2)y—fin(z &)

is regular at all the singularities of f,(z, #'); and so the function F(z, 2) is
regular at all places in the field of variation which are not singularities of
any of the functions f] (z, 2), £, (2, &), ...; and F (z, 2'), at places which are
singularities of a function f(z, 2), is non-regular in the same way as f(z, 2').
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92. As a special instance of this sum-theorem, Appell adduces the case

when
1

(z+my + (2 +n)+au*f®’

S (2, )= {

where s is a positive integer, @ is a constant, and the different functions
Jfmn (2, 2) arise by assigning to m and to n, independently of one another, all
integer values from — o to + .

‘We have
|t (7 4 @] > (o + mp+ (0] =l

Also
(z+mp+ (2 +np=(z+17 + m+m)(z—12 + m—1n).
But
fz++m+in|>|m+in|—|z+12|
>(m2+n2)%—]z|—|z' ,
and
|z—i + m—in|>(m2+n)t —|2]|—|2 |
Hence, if
l21< 4 {(m* +n)E —|a| -},
12712 % {(m* + n)t — | a| - o},
we have

[(z +m) + (' +np > {|a]+c};
and therefore
[(z+m)P+(Z +n)+a*|>{|a|+cp— al?
>2 al+c.

Consequently, for all values of z and 2/ within a range that increases in-
definitely with m and n, as given by the foregoing limits, | fma (2, 2')| remains
smaller than an assigned quantity; and so for those values, fn, (2, #') is a
regular function. Thus the set of conditions for the function f, (2, 2) is
satisfied. '

When the integer s is greater than unity, the series

o _2; (Z+myP+ (2 +np+a*f
converges absolutely. We therefore take

, _m=:o n=o 1
Fz )= _Ew _2,,, {z+m)P+ (2 +np+a*

The function F (z, z’) has poles at all the places

z=—m+1acosf, z'=—n+1iasinb,

for the continuous succession of values of 6 and for all values of m and of n.
Elsewhere, at all places in the field of variation, the function F(z, 7') is
regular. In this case, there is no need to take polynomials corresponding to
the functions ¢, (z, 2') in the general investigation.

IRIS - LILLIAD - Université Lille 1



150 APPELL’S [cH. V
When the integer s is equal to unity, the expression of the function is not
so simple, because the series, of which the general term is

1
(z4+my+ (2 +nP+a*’

does not converge absolutely. We then take all the values of m and n, which
are finite in number and are such that

(m*+ ) < a|+c;
selecting all the functions fu, (2, 2) given by these values of m and n, we
denote their sum by F,(z 2').
Next, take the values of m and n which are such that
(m2+n2)% >lal+ec,
and expand fnx (2, #), for any such pair of values, in powers of z and 2/, valid
in a range
|2l (4= lal =c], |21 (mt+ )= |a]~c)
Thus

1 2mz + 2n2'
m2+n2+a2 (ﬁli+n2+a2)2 e

f’”m (Z) z’) =

For our purpose, it is sufficient to take the desired polynomial ¢, (2, 2) as
equal merely to the constant term in the expansion ; for the series

/ 1 1
Fi(s #)=22 {(z-{-m)2+ (7 +n)+a? _m?+n2+a’} ’
for all such values of z and 2/, and for the doubly infinite set of values of m
and n, converges absolutely. Our required function is

F(z,2)=F,(2,7) + Fy(2, 7).
It has poles at all the places
z=—m-+1acosf, Z=—mn+1iasinfb,

for the continuous succession of values of 6, and for all integer values of m
and n. At all other places in the finite part of the field of variation, the
function F (2, 2') is regular.

93. As an example of the product-theorem, let u,(z, 2'), (2, 2'), ...
denote a set of regular functions of z and 2/, and let them have the property
that for all integers n, greater than some definite integer NN, we can assign a
magnitude 7, so that u, (2, 2') is distinct from zero for values of z and 2’
such that | z| < 7y, | 2/ | <7, and such also that r, increases indefinitely with =.
Then denoting by ky, &,, ... a succession of positive integers, we can form
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a regular function (F(z, 2°), vanishing for all the values of z and 2 which
make g, (2, 2) vanish, and vanishing in such a way as to make the quotient
G (z 2)

{gm (2, 2)[km
finite and different from zero for those values.

This function G (z, 2’) is of the form

Gl (27 Z,) Gﬁ (Z: Z’):
where

N
Gi(2,2) = 11 {gm (3, 2)}*m,
fm

=1
G2 (Z, Z’) = ﬁ {gn (Z, z’)}kne\l‘n(z,f),
N4l
while ¥, (2, z') is an appropriate polynomial in z and 7.

FEz. 1. Shew that, when
Gmn (2, 7) =(z+m)2+(z' +n)2+a?,

where m and = vary independently of one another through all integer values from —w to
+®, a function G (z, ), regular everywhere in the finite part of the field and vanishing
like gy (2, #), can be constructed as follows. Take all the values of m and =, finite in
number, such that

(m2+a¥ < |a|+e,
where @ is any assumed finite quantity ; and write
Gy (2, #) =TI {(z+ m)? + (2 + )+ 0,
where the product extends over all these values of m and n.
Take all the values of m and », doubly infinite in number, such that

(m2+n2)5 >la|+e
and write

Gy (z, 7)=TII {(Z+m)2+(z’ +n)2+a2e_ Yorm (25 z,)}’

m?+n?+a?
where the product extends over all these values of m and =, and where

Qmz+2nd + 2472 1 27nz+2nz’+zz+z’2)2
m2+n2+a? 2 m2 41 4 o *

‘I’mn (zv Z,)=

The required function is given by
G (2 7)=01(z 7) G2 (5 7).

Exz. 2. Verify that, when a is zero, the function G (z, 7) can be expressed by means of
two Weierstrass’s o-functions.
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CHAPTER VI

INTEGRALS; IN PARTICULAR, DOUBLE INTEGRALS

As regards the matter of this chapter and, above all, as regards integrals of algebraic
functions of two variables, the student should pay special attention to various sections in
the treatise (which usually is quoted here in Picard’s name) Picard et Simart, Théorie des
Jonctions algébriques de deux variables indépendantes, t. i (1897), t. ii (1906). Other
references will be found in the course of this chapter.

It may be noted initially, as regards algebraic functions of two variables, that I have
chosen, for reasons already stated, to take two fundamental equations defining two
independent algebraic functions of the variables, instead of only a single equation
defining only a single algebraic function. If three (or more) equations were taken
defining the same number of algebraic functions, these would not be independent; so
it is sufficient to take not more than two fundamental equations.

94. In the theory of functions of a single variable, many important
results are derived through the use of Cauchy’s theorems concerning contour
integrals. It is natural to attempt some extension of theorems so as similarly
to derive results in the theory of functions of more than one variable.
Here we shall restrict the discussion to the case of a couple of complex
variables.

The integral of a function of two independent complex variables may be
single or may be double. The definition of a single integral is the same as
in the customary theory of functions of one complex variable; but there is
the added complication through the occurrence of two complex variables.
Either there is variation, within the range of the integral, of only one of the
two variables; or within that range, there is a definitely connected and
simultaneous variation of both variables.

Of double integrals, there are two classes. In one class, the integration
with regard to each variable is entirely independent of the integration with
regard to the other, so that the integrations can be performed in either order.
In each integration, only one variable is subject to variation. Thus the
double integral is effectively only a double operation of single integration.
We have already had some examples, at an earlier stage, of this class of
double integrals.
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Ex. A function f(¥, 6) is periodic in v, with period 2, and is also periodic in 6,
with period 2 ; and it is regular for all values of the variables within the ranges of two
complete respective periods. Let u (r, 7, ¢, ¢') denote the integral

- (2 1= 72 (] —p2
= [ 70 (= :
4x? o Jo {L—2rcos (Y—p)+7r% {L -2 cos (6 — ') +7'%}
Prove that, when 7 <1 and 7' <1, the function u(r, #, ¢, ¢') is regular ; and that, in the
limit when =1 and 7 =1, the function «(r, 7, ¢, ¢') is equal to f (¢, ¢").

Shew also that, if

dyrdé.

.0

z=ré®, Z=pe®?

u(r, 'y ¢, ¢') is expressible as the real part of a regular function of the complex variables

z and 2'.

Note. This result will be noted as the extension of the simplest result, relating to
potential functions of two real variables, in Schwarz’s establishment of the existence of
a function of one complex variable satisfying conditions of specified assigned types*.

95. In the other class of double integrals, the variations are not inde-
pendent of one another; if either can be performed alone, usually the range
of variation for the variable is affected by the other variable; and, in the
general case, such integration cannot be performed for one variable alone.
It then becomes imperative to define precisely what is the meaning assigned
to the double integral. For this purpose, we adopt the procedure initiated
by Poincaré t, using space of four dimensions in real variables.

As usual, we take
z=z+1y, Z=a+y,
where z, v, #, y’ are real and are the coordinates of a point in this space.
Without further limitation, the variables z, y, ', " are independent of one
another.

For our immediate purpose, we now make two successive suppositions
consistent with one another, so as to secure a working definition of a double
integral.

First, let X, ¥, Z be real variables of a point in ordinary space; and
suppose that z, y, «, ' are limited in variation so as to be expressible in
forms

z=F(X,Y,Z), y=F,(X,Y,2), #=F,(X,Y.2), v=F,(X,Y, 2),
where (for purposes of description) we assume that F,, F,, F;, F, are rational

functions of X, ¥, Z not becoming infinite for real values of these variables.
Eliminating X, ¥, Z, we shall have an (algebraical) relation

D(z,y, o, y)=0,

* See my Theory of Functions, chap. xvii.

+ Acta Math., t. ix (1887), pp. 321—380. It is followed, in part, by Picard who has made
great extensions, as also by other methods, of the properties of double integrals specially
connected with algebraic functions; see his Traité d’dnalyse, t. ii, ch. ix, and his Théorie des
JSonctions algébriques de deux variables indépendantes, already quoted.
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which represents a three-dimensional continuum in the four-dimensional
space.

Next, let X, ¥, Z describe a surface S, or a portion of a surface S, in
ordinary space. Again for purposes of illustration, we shall assume S, or the
selected portion of S, to be devoid of singularities. We can take X, ¥, Z as
functions of two real parameters p and ¢, valid over the surface S or the
portion of it; and we then have equations

v=0(p 9 ¥y=0P 9, =09, ¥=9.( 9
These relations imply two equations, say
Uz, y,2,y)=0, V(x, o, y,y)=0,

which represent a two-dimensional continuum (the surface S, as in § 5) in
our four-dimensional space. We take a simple closed area in the plane of
the variables p and ¢, represented by an equation

F(p, ¢)=0;

and for the double integral, we allow all values of p and ¢ within this area,
representing them by the relation

F(p. 9<0.

Then the limit of the range of integration on the surface S is given by
F (p,q)=0; and this limit will lead to three equations of the form

Py(z,y. o, y)=0, (s=1,2,38),
representing a curve in the four-dimensional space.

Now let f(z, ') be the function, to be “ doubly integrated ” in the sense
that a meaning has to be assigned to the double integral

I= f f F(z, 7y dede.

As f(z, 7) is a complex function, we resolve it into its real and imaginary
parts; let
f(z) Z,)= P +1Q,

where P and @ are real functions of z, ¥, ', ¥'. Then
I- f f(P +4Q) (do + idy) (da’ + idy)

= ff{(P + Q) dzda’ + (1P — Q) dzdy + (1P — Q) dydz’ — (P +1Q) dydy'}.

Manifestly I, whatever its value, can be a complex variable ; so writing

I=1 +1l,,
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where I, and I, are real, we have

I= f f (P (doda’ — dydy')} — [ f (Q(dwdy + dyda')),

I,= f f (Q(dede — dydy')} + f f (P (dody + dydd)).

And now, I, and I, are ordinary double integrals involving only real
variables, for the real quantities @, y, #’, ¥/ are functions of only the real
variables p and ¢; and these double integrals are taken over the limited area
F(p, 9) 20 in the plane of the variables p and q.

Both integrals are of the form
f f (Adwds’ + Bdody + Cdyds + Ddydy),

where all the quantities concerned are real—there being, of course, limitations
upon the forms of 4, B, C, D and also of their differential relations to one
another. When we give explicit expression to the functionality of «, y, #, ¥
in terms of p and ¢, the integral becomes

ff{AJ (ﬂ) +BI(2L) 07 <Zﬁ) +DJ <u)} dpdg;
p g P9 p9q b, q
but for our purposes it will suffice to take the first form.

Our object is the generalisation, if generalisation be possible, of the
fundamental theorem of Cauchy which asserts that, under appropriate con-

ditions as to (), the integral f f(2) dz taken round a closed contour is zero:

it is a consequence that the integral f f(2)dz, between two points in the

plane, has a value independent (subject to restrictions) of the z-path between
the points. Suppose that, instead of the former values of z, y, &/, ¥/, we take

z=h(p,q), y=h(p, q), & =hs(p,q), ¥ =h(p, q),

so that we could have a new surface 7' different from S; and suppose that,
corresponding to the former equation F (p, ¢)=0 limiting the range of
integration, the range of integration in 7' is still limited by F (p, ¢)=0, and
that the limiting curve connected with 7' in our four-dimensional space is
given by the same equations

P,(z,y, o, 4)=0, (s=1,2,3),

as the limiting curve connected with S. We thus should have two different
surfaces passing through the same contour. Then the generalisation would

be that the integral f f f (2, 7) dzd2’ should remain invariable if only the

surface over which the integration extends is made to pass through an
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assigned fixed contour; or, if we take a completely closed surface through
the fixed contour, the integral f f f (2, 2) dzds taken over the whole of this

surface vanishes.

96. Accordingly, we consider an integral

EszAmnda:mdw,,,

where the summation is taken over all pairs of values m, n =1, 2, 3, 4, and
where @, 2,, #;, #, take the place of #, y, 2/, ¥ We define the integral for
the four-dimensional space as above; consequently, because

ffAmndwmdxn / Am,,J Lm) x") Az, Ay,

'IL; x’m

with the foregoing interpretation, we have

/fAmndxm d‘/'vn = _f Am'n dx'ndxm’

f fAnmdxndxm= - f fAnmdwmdxn;

that is, taking account of the whole integral and of the combinations of m
and n instead of the permutations, we shall assume that

-A'Irm = Anm’

and

so that we need only consider the combination / A, dz, dz,. Moreover, this

process of regarding the integral obviously involves the additional assumptions
Apm =0,
for all the values of m.

Next, we take* x,, @,, 43, 2, as expressed In terms of the three variables
X, Y, Z, so that our double integral becomes

33 [A,,,,,{J(Y Z)deZ+J(‘Z’;ﬂ)dZdX+J( >dXdYH

that is,
[ f (£dYdZ +ndZdX + (X dY),

where

E=SSA,.J (‘”)";’ 2)

xm, xn
n—EEA,,mJ<Z X)
-’E

£=334..7 (7).

* Here Picard’s proof (T'raité d’Analyse, t. ii, p. 270) is followed exactly.
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The integral is to extend over the surface in the X, ¥, Z ordinary
space.

We therefore require the condition necessary and sufficient that such an
integral

f f(gd YdZ +ndZdX +£dXdY),

over any surface which passes through an assigned contour in the p, ¢ plane,
shall depend solely upon the contour. This condition is well known; we
must have*

0t  on  0f
axtoy tiz="

Accordingly, the condition is

0 [Ty &y 0 Ty Tn
W{EEAW,J Y,Z)}*TY{EEA"’"JKZ X)}
'ﬂm; w’n —_
{zidmn% 3 Y)}_o.

In this expression the coefficient of 4,4, is

xt D rar  (FE) vz (R )

which vanishes identically.

As regards the derivatives of 4,,,, we have
0 n _ & 0dmn Oy
0oX 5 Ox 0X’
and so for the others. Hence, in the foregoing expression, the coefficient of

aA"m, and the coefficient of 0Amn
02 < 0z,

vanishing coefficients are the sum of terms of the form

aAmn aAnl afllm Ziy Tms> Tn
( 0m; | Oy Bm,,)J<X, Y,Z>'

, both vanish identically; and the non-

Consequently, the condition becomes

0Amn  0An | 04m Ly, Tmy | _
121 mzl n21 {( oz, + 0%, + 0zy ) d (X, YTZ—)} =0,

‘When the condition is satisfied, we can take
£= gy _08 _Oa Oy (= 98 _Oa
ay "3z’ "TozZ  ax’ 9x "5y’
and then the integral can be expressed in the form

(-

taken round the contour in the p, ¢ plane. The result was first enunciated as a problem by
Stokes, in the old examination for the Smith’s Prizes at Cambridge in the year 1854; see Stokes,
Math. and Phys. Papers, vol. v, p. 320, with a note by Prof. Sir J. Larmor.
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a condition which must be satisfied identically, whatever be the surface
over which the integration extends, subject to its passing through the
contour.

The quantities @, @m, @, 2, are functions of X, ¥, Z such that, away
from the contour, any three of them are independent of one another; and

therefore the quantities
Zy, Tmy Xn
I

except along the contour and individually at special places in space, are
different from zero. It follows that we must have
04 mn aAnl aAlm

ox; 0% + oz,

=0,

for all the combinations {, m, n=1, 2, 3, 4. Moreover, it is easy to see that
this set of four conditions is sufficient, as well as necessary, to secure that the
value of the integral

33 [ Apndande,
depends only upon the contour.

97. Now let us apply all the conditions to the integrals I, and I,. We
have

1= f f(Pdwdx' — Qdady — Qdydal — Pdydy),

and we take
/ !
z, :% w; y = '”1} T2, ‘T.‘h Ty,

respectively. We have
A12=0> A13= P’ A14=_'Q> A23=_Q: A24=_P1 Am=0
Consider the conditions

aA mn a A nl a A im
oz o0xy, 0y

=0,

for the combinations I, m, n=1, 2, 8, 4. They require the relation

0Q _oP_

ox oy
for [, m, n =1, 2, 3; the relation

0Q  oP _

Ty Yo ="
for I, m, n=2, 3, 4; the relation

0Q oP

aw/ + ay 0’
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for I, m, n =3, 4, 1; and the relation
oP  0Q
~ % + —a—y =0,
forl, m,n=4,1, 2.

Similarly, we have
I,= / f {Qdeda’ + Pdady + Pdyda’ — Qdydy),

so that we can take
A12=0; A13=Q; A14=P: AZS=P7 Amz_Q, A34=0.

The general conditions require the relation

oP 99 _,
ox oy
for the combination I, m, n =1, 2, 3; the relation
oP 0
a—y— + P 0,
for the combination I, m, n =2, 3, 4; the relation
oP 0Q
s + 3? =0,
for the combination [, m, n =3, 4, 1; and the relation
P_20_,
T2y ox

for the combination I, m, n =4, 1, 2.

Thus all the conditions are satisfied if only

oP_2Q oP__0Q oP_dQ

oP _0Q or oQ
ow Oy’ oy ox’ od oy’ Oy or’
But, by definition, we have
P+iQ=f(z, 2)=f(z+1y, £ + 1),
where P, @, z, y, &', ¥ are real; and so these four relations are satisfied.

It follows, then, that 7, and 7, depend solely upon the contour; and
therefore I, = I, +,, also depends solely upon the contour. And we have,
throughout, assumed that the quantities P and @,—that is, also the function
f(z, Z)—are free from singularities. Hence we have Poincaré’s extension of
Cauchy’s theorem :—

If, within the closed surface S, which is taken in the space of three
dimensions X, ¥, Z, and points on which are given by equations of the form

X =/; (p! 9)! Y=f2(p: Q)’ Z=f3(]0: g)’
so that, along the surface,

e=F(X,Y,D)=9:(p,q), y=F(X,7Y,2)=09.(p, q),
=F(X,Y,2)=9,(p,Q, ¥=F(X,Y,2)=g.p,9q),
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there s no place X, Y, Z, where the function f(z, 2) ceuses to be regular,
the value of the tntegral [ f f(z, 7)) dzdd taken over the whole of the closed

surface ts zero.

Again, for such a function and over such a space, the value of the integral
f Sz, 2"y dzd2 taken over any portion of any such surface S bounded by a

contour, the surfuce and the contour lying within the domain, depends only
upon the contour.

Further, it follows that the value of the integral f [ Sz, 2)dzdz, taken

over any such closed surface, remains unaltered during deformations of the
surface provided they occur in the domain of X, ¥, Z, and cross no place
giving rise to no singularity of £(z, 7).

98. Now consider the singularities, or other deviations from regularity,
of a function f(z 2). We take the preceding surface S existing, as in § 95,
in an ordinary space of three dimensions, the representation of the variables
being

2=N(X,Y,2), y=F,(X, Y, 2), «=F,(X, Y, 2), y=F (X, 7, 2).
The singularities of f(z, 2’) may be given by a set of single equations, typified
for each of them by

0 (z,2)=0,
or by sets of two independent equations, typified for each set by
0(2,2)y=0, ¢(s2)=0.
The former will lead to two equations, say
Nz y 2, y)=0, % (z 9 ,y)=0;

so, in our X, ¥, Z space, they will be given by equations

0,X,7,2)=0, 0,(X,Y,2Z)=0.
These two equations represent a curve C in that space; at every point on
the curve there is a singularity of f (z, 7).

The latter will lead to four equations, which may be regarded as defining
an isolated place or an aggregate of isolated places determined by the values
of , y, ', y. Such places may or may not exist in our X, ¥, Z space.

Take a closed surface S in the space, containing no place or places
X, Y, Z, giving rise to an isolated singularity of f (2, #), to any curve C, or
to any part of such a curve. The integral | | (2, 2’)dzdz’ taken over S is zero.

Take two closed surfaces S and S° in the space X, Y, Z, such that
S can be continuously deformed into §’, without passing over any place
giving rise to an isolated singularity of f(z, 2'), or over any curve C, or any

part of such a curve C. The value of the integral taken over the surface
S 1s equal to its value taken over the surface S’.
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Take two closed surfaces S and S’ in the space X, Y, Z, such that they
enclose places giving rise to exactly the same isolated singularities of f(z, ),
to exactly the same curves (' and to exactly the same portions of curves C.
The value of the integral taken over the surface S is equal to its value taken
over the surface S’.

Thus the value of the double integral / f f (2, 2) dedZ, taken over the

closed surface S, is zero when the surface encloses no place X, ¥, Z, where
f (2, 2) ceases to be regular. When the surface does enclose places X, Y, Z,
where f (2, 2') ceases to be regular, the value of the integral depends upon
these enclosed places; we cannot assert that its value is zero.

99. The theorem can be enunciated in similar terms when a two-plane
representation of 2z and 2’ is adopted. Thus, very specially, within a circular
ring in the z-plane and within a circular ring in the z-plane, let a function

f(z,2') be everywhere regular; then the value of fff(z, Z')dzdZ is the same,

whether the integral be taken positively round the outer circles in the two
planes, or be taken positively round the inner circles in the two planes. But
such a case is exceedingly special ; and, as was indicated earlier in the lectures
(§ 19), the frontier of a domain of variation for z and 2’ is of a more com-
plicated character than in the result just enunciated.

100. We proceed to consider some of the simplest cases when the subject
of integration in a double integral [/f(z, Z') dzdz’ possesses either isolated

singularities or any continuous aggregate of singularities within an assigned
domain. In passing to these examples, it may be remarked that the whole
subject of double integrals of uniform analytic functions, possessing singu-
larities of the known types, offers a field of research, in which many of the
results already obtained are of a tentatively exploratory character.

In the examples that will be considered, we shall use the two-plane
representation of z and 2/, and we shall deal only with a finite part of the
whole field of variation of z and 2’; that is, for all the variations, |z | and | 2’}
will be kept finite. To these examples*, all of which involve only rational
functions of z and 7/, we now proceed in order.

ExampLE 1. Let F(z, #) denote a function that is regular everywhere
within an assigned finite domain; let a, o’ denote any place within that
domain. Then we consider the integral

/ { 2 _F;()Z(ZZ ) dzd7,

* In this connection, reference should be made to Picard, Fonctions algébriques de deux
variables, t. i, ch. iii.

F. 11
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taken over the closed frontier given by the equations z—a|=R
|7 —a'|=R', so that it encloses the place a, o'
The singularities of the subject of integration are given by
(i) z=a, Z=any enclosed value of /;
(i) z=any enclosed value of 2, 2'=d’.
By our general theorem, we can deform the closed frontier without changing
the value of the double integral, provided the deformation causes no transition

through any of these places. Accordingly, let the closed frontier be deformed
until it encloses only the small domain, composed of the interior of the circles

z—a=re% 7 —a =re",
where r and 7’ are small real positive constant quantities. Then
f f F, Z) 5 deds’ = - / F(a+re% o +r'e®) d0d8,
(z—a) (' —
the integration extendmg over a @-range from 0 to 27 and over a ¢'-range
from 0 to 2. Now F (2. 2’) is regular throughout the domain; hence
1 o™ F(a,a)

M /N o (MO+NE)E
monom'n' samaa™ | ¢ )

F(a+re®, a' + r'e¥) =
But for positive integer values of m and n, such that either m or n is greater
than zero, we have

f f o mo+n9)i 4O 10 =0 ;
and
[[26a6 = 4z
Hence
/ Fa+re¥ o +r'e?) d8d0 = 4n* F (a, a');

and therefore, with our hypothesis as to the regular character of F (2, 2')
within the domain, we have

F(z, z)
4772”(.2—(1,) (2 —

taken over the closed frontier of mtegra,tlon |z—a|=R,|7—d|=PR.

d dZ =F (a, o),

Corollary. With the preceding assumptions concerning the regular
function F(z, z'), we have

J’fF(z z’)d 1 =0

T 4

- iffﬁv(z’z)olzdz'=0
dm2)] 2 —a’ ’

taken over the closed frontier of integration |z —a|=R, |7 —a’ |= R

Note. When the integrals are taken over a closed frontier of integration
which does not enclose the place a, d/, all the three integrals have a zero value.
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ExampLE II. As before, let F (2, 2') be regular everywhere within an
assigned finite domain; and let a, @’ be any place within that domain. We

consider the integral
F(z, 2) ,
ff(Z— a)m_H (Z, _ a,')"+1 dZdZ y

taken over the same closed frontier in that domain, the frontier enclosing the
place a, @, and the quantities m and n denoting positive integers, zero included.

We proceed exactly as in the preceding example. Because
f f emmMRIGF =01 JOJG = (),

for the range 0 to 27 for 8-and for &', except only when m = u and n =, we

find
1 F (e 7) 1 (o F (s, 2)
_w?ff(z — @)™+ (2 — g/ yntt dzds = mln !1 02™moz™ }z 0, 7Z=a

for all integer values of m and n that are not negative.

ExampLE III. Let @, B, v, 6 denote four constants such that ad — By is
not zero; and consider the double integral

f f dzds’
(224 B2) (yz + 87')’
taken over a frontier that encloses the place 0, 0.

For a given value of Z/, the quantity az + Bz vanishes if z = z,, and the
quantity yz 4 82’ vanishes if 2z = z,, where

The values of z and 2z, are unequal except only when 2’ =0.

First, let integration with regard to z be effected before integration with
regard to 2. Take in the z-plane a small simple curve enclosing 2z, and
excluding z,, say a circle centre z, and of radius < 2z, —2, ; and effect the

integration round this circle in the z—pla,ne while 7/ is supposed invariable.
Then, as
1 1

(az+ B2) (yz+ 82') = oy (2 —2)(z—2,)

1 ( 11
S -8y \e—a z-z)
we have (when the indicated integration is effected)

dz _ 27
(az +B2) (y2+82) (a8—PBy)2”’

because

11—-2
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taken round the z-circle. Now let the integration with respect to 2’ be
effected round a small circle, the circumference of which passes through 2’
and the centre of which is at 2/ =0; then, as

[dzz = 2m1

for this integration, we have

1 4” dzdz _ 1
dm?])(az + B2 )(yz+067) ad— By’

Writing
{=0z+pB7, =qz+87,
75 =r @ r=ab-pr,
we have
J‘ dzdz 1
@G

when integration is effected, first with regard to 2 round a small simple z-curve
enclosing a root of ¢ for a given value of 2 but not a root of ¢’, and then with
regard to 2 round a simple Z-curve through that value of 2" enclosing the
origin z'=0.

Similarly, we have
_ L frdedd 1
dr J & JEY
when integration is effected, first with regard to z round a small simple z-curve
enclosing a root of ¢’ for a given value of 2’ but not a root of ¢, and then with

regard to 2z’ round a simple z'-curve, passing through that value of 2’ and
enclosing the origin 2z’ =0.

Similarly, we have

(fdzdzZ
- 4_7;-2J &
when integration is effected first with regard to z round a z-curve enclosing
both a root of ¢ and a root of ¢’ for a given value of 2/, and then with regard
to 2’ round a z’-curve passing through that value of 2’ and enclosing the origin
z'=0. For we then have

] % _om f L _om
z2—2z z—2,

=0’

so that

1 f dz _ dz_
(az+Bz)(ryz+8z) ~ (@b — By) 7 (z—z1 z—z)
=0.
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Next, let integration with regard to 2’ be effected before integration with
regard to 2. Indicating this order in the same way as before, we consider

f f (az + ﬁ’(jz) ‘(i; + 82')

and then, from the definition of the significance of a double integral, we have

dzdz de'dz
ol (@ +B) (y2+82) [ B7) (72 +87)
__[[dddz
=lle
Take in the 2’-plane a small simple z’-curve enclosing a root 2, of ¢ but not a
root 2, of &, for a given value of z, where

zl'=—%z, z{:—%
effect the integration with regard to 2’ round this curve; and then effect the
integration with regard to z round a simple curve through the given value of
z enclosing the z-origin; then

z;

f dz'dz 1
T JEYy

and so

f J‘ dzde’
(az+ BZ)(yz+82) J(é’ &)
in this case also.

Similarly, when integration with regard to 2/ is effected first, round a
small simple z/-curve enclosing a root of ¢ but not a root of ¢ for a given
value of z, and then integration is effected with regard to z round a simple
curve through the value of z enclosing the z-origin, we find

1 f dzdz _ 1
- 4—772] (az+B7) (yz+82)  J(, O’

Lastly, when integration with regard to 2° is effected first, round a small
simple 7/ -curve enclosing both a root of { and a root of &’ for a given value of
2z, and afterwards integration is effected with regard to z round a simple
curve, passing through the value of z and enclosing the z-origin, we find

_ 1 J dzdz —0

dm ]| (az+ B7) (yz + 82)
Summing up, we can say that the value of the double integral

f f dzdz’
(az + B2) (yz + &7)
1
1s independent of the order of integration ; that it is J&?e)
J(§ L) =ad— By,

where
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when integration s effected round a curve enclosing a root of §, where {=az+ 87,

. 1 1
but not a root of &', where ¢’ =z + 82’ ; that it 18 oz , = — , when
S & where &=z 4 8 TGO T TIEn
untegration s effected round a curve enclosing a root of ¢’ but not @ root of ¢;
and that it is zero when integration s effected round a curve enclosing both a

root of & and a root of {'.

And, of course, the value is zero when the integration is effected round a
region that does not enclose any zero of £ or of {'.

ExaMpLE IV. The preceding result cannot be applied when the initial
assumption, viz. that a8 — By is different from zero, is not satisfied. In that

case, we have to deal with
f f dzdz
(az+ B2y’

When the integral is taken round the place 0, 0, in either of the ways
indicated in the construction of the last result, the value of the double
integral is zero.

ExampLe V. From III and IV, we infer the following results relating to
the double integral

f f dzdz
TAx) a2+ Quzz + pz E
There are two cases, according as u? is not, or is, equal to Ap.

(i) Suppose that u*— Ap isnot zero. When integration is effected in either
plane, round a small simple curve enclosing the root of Az + {u+ (u?— )2 =0

but not the root of Az + {x— (u2— Ap)}} 2 =0, and then round a small simple
curve enclosing the origin in the other plane, the value of the double integral is

~3 (@ -xp)h
When integration is effected in either plane, round a small simple curve
enclosing the root of Az + {u — (u? —Ap)}} 2 =0 but not the root of

Az + {u+ (w2 —p)¥} 2 =0, and then round a small simple curve enclosing
the origin in the other plane, the value of the double integral s

(w2 —2p)~h
And when integration is effected in either plane, round a small simple curve
enclosing both roots of A2+ 2uzz’ + pz? =0, and then round a small simple
curve enclosing the origin in the other plane, the value of the double integral
is zero.

(i) Suppose that u?—Ap=0. When the integral is taken round the
place 0, 0 in any of the ways indicated for the preceding case, the value of the
double integral 1s zero.

IRIS - LILLIAD - Université Lille 1



100] DOUBLE INTEGRALS 167

ExamMpLE VI. Let
P=2m(p4+m2' +...), Q=278 +87 +...),

where vy, and &, are different from zero and (for the immediate purpose) m and
n are positive real quantities, not necessarily integers. We require the

value of
—1— [/J (v, v) dzdz
2 Uy ’

where u=az+ P, v= 32+ @, when the integration is effected, first, with
regard to z round a small simple closed z-curve enclosing a root of u (but not
a root of v) for a value of 2/, and, then, with regard to 2’ round a small simple
closed curve, passing through that value of 2 and enclosing the z"-origin.
We also assume that a@Q) — BP does not vanish identically. Now

J=aZ"1{(n8+(n+1)8,2" + ...} = BZ™  {my, + (m+ D y2" + ...}

Thus, if m < n, the lowest power in J is — mBy,z™; if m > n, the lowest
power is nad,2"1; if m =n, =1 say, the value of J is

17 (a8, — ) + (14 1) 2™ (38— By) + ...

For any small value of 2, such that |2’| is less than the modulus of the
smallest root of P or  other than 2z =0, let

az,+ P=0, Bz+Q=0.
Then the double integral

=T 4 ffaﬁ (2 jl’:l)iz_ 25) 7

J
-=1, Q-pP~

When m < n, the value of the right-hand side is n.
When m > n, the value of the right-hand side is m.

When m =n, =, the value of the right-hand side is I +k, where ad; — Bvyi
is the first of the coefficients a8, — Bry,, a8, — By, ... which does not vanish.

In each of the three alternatives, the value of the integral is the degree of
the lowest power of 2z in the eliminant of az+ P and Bz + Q, when z is
eliminated. Moreover, when m and n are integers, the value of the integral is
then the multiplicity of 0, 0, as the sole vsolated simultaneous zero of the uniform

JSunctions
az+P, Bz+Q,

enclosed by the frontier of integration.

ExampLE VII. Next, let

u=2"+ " f() ot (2),
v=2"+2""9() + ... +ga(?),
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where the functions « and v are independent and have no common factor of
their own form, and all the coefficients f;, ..., fim, g1, ..., gn are functions
of 2 which are regular in the vicinity of z/=0 and vanish with 2. We
require the value of the double integral

o

taken (as have been the preceding integrals) round a frontier, which encloses
the place 0, 0, and encloses no other simultaneous zero of v and v. Let

u=(@—2)(z—-2)...... (z—2m), v=(0@=8)(==-8)...... (z— &),

where each of the quantities z, ..., 2m, &, ..., & is a regular function of
positive powers of z*; where u is a positive rational fraction; and where
each of these quantities vanishes with 2. The eliminant of  and v is

m n

Imu (Zr - gs);

r=1s=1
if, when 2z, —§; is arranged in ascending (fractional or integral) powers of 2/,
the lowest power of z* has an index u,,,, and if

m %
2 p /"r,s=M,
the eliminant of v and v is
M ¢ (2),
where ¢ (0) is not zero. The magnitude M is an integer, manifestly finite :
1t is the measure of the multiplicity of 0, 0, as an isolated zero common to
and .

For the range of integration, first take a value 2’ of modulus smaller than
the root of ¢ (2") which has the smallest modulus. In the z-plane mark all
the quantities zy, ..., zm, &, -.., &, which are functions of this value of 2’; and
draw a simple closed z-curve, enclosing all the places z, ..., 2y and none of
the places &, ..., {,. We take the integral round this z-curve; when this
first integration has been effected, we integrate with regard to 2’ along a
small simple closed z'-curve, through the place for the assigned value of 7/
and enclosing the 2’-origin.

We have Fomow / )
un~ %1 321 (%
where z,” = g ;and &/ = Z—C’,", hence
g [ dzar = e R

But the lowest power of 2/ in 2z, — § is 2#rs, Hence

J (u, v) ©
-~ ff deds = § 3 4, =M;

r=1s=1
that is, the value of the double mtegral, taken over the range indicated, is the
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measure of the multiplicity of 0, 0, as an isolated simultaneous zero of the,
functions u and v, which are supposed to be independent and to be devoid of
any common factor of their own form.

Corollary. Two or more of the quantities z,, ..., 2, may be equal, or they
may be equal in groups; and, similarly, two or more of the quantities &, ..., &,
may be equal, or they may be equal in groups; while, after the hypothesis
as to the functions » and v, no one of the quantities { is equal to any of the

quantities z,, ..., zm. The value of the double integral over the indicated range
still is M.

Note 1. If the range of integration, enclosing 0, 0 and no other simul-
taneous zero of u and v, is chosen so that the z-curve (for a value of 2’)
encloses all the places &, ..., {&» and no one of the places z, ..., 2y, and the
#'-curve is drawn as before, the value of the double integral becomes — M.

Note 2. We have

1 J (u, v) , 1 J(u,v) ,,
—mff - dZdZ_LL—-n-?,U._uv dz'dz.

When integration is effected first with regard to 2/, round a curve enclosing
all the roots of =0 and no root of v =0 for an assigned value of 2z, and then
round a z-curve through this value and enclosing the z-origin, we still have

1 J (u, v) ;
—m[/ dZdZ—lW.

uy

In other words, the value of the double integral is independent of the order
of integration.
ExampLE VIIL. Let a and B be non-variable quantities, of finite module;
let ¢, ¢’ be a level place for two regular functions, f and g, such that
fl,¢)—a=0, g(cc)—B=0;
and let f(z,7)—a, g (2, 2')— B, be independent, and have no common factor

which vanashes at ¢, ¢’.  Then the place ¢, ¢’ is isolated; its multiplicity is the
value of the double integral

1 S 9) /
“w /| ey g -8y 5
taken first round a small simple closed curve in the z-plane which, for an
asstgned small value of 7, encloses all the roots of f(z, 2')= a and none of the
roots of g (2, 2)= B, and then round a small simple closed curve, through that
value of 2" and enclosing the z'-origin.
The result follows from the last example by writing
u=f(z, Z/)—a’ ’l):g(z, zl)—B;
the wultiplicity of ¢, ¢’ as a level place for f and g is its multiplicity as a zero
for w and v*.

* In connection with double integrals of the preceding types and taken over such ranges of
integration, the reader should consult Picard’s treatise, t. i, ch. iii, quoted p. 161.
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Algebraic functions in general.

101. Hitherto, all the subjects of integration in the double integrals that
have been considered, have been uniform functions. Bearing in mind the
extraordinary importance of Riemann’s investigations connected with the
simple integrals of algebraic functions, we should naturally seek the general-
isation of that work for algebraic functions of two variables.

Into that theory I do not propose to enter in detail. In one sense, 1t is
enough for me to refer to the long series of valuable researches by Picard *.
All that will be done here is to submit one or two simple propositions, when
there is a single dependent variable, partly from the standpoint of the general
theory of functions and without regard to the theory of the singularities of
surfaces, partly also to state the corresponding propositions when we have
to deal with the case when the fundamental algebraic equations provide
two dependent variables and not one alone, the number of independent
variables always being two.

Suppose then that we have, in the first place, a single irreducible algebraic

equation
Jf(w, 2,2)=0,

expressing w as an algebraic function of z and 2’; and assume that the equation
is of order m in w, so that w is m-valued. Any rational function in the field
of variation is of the form R (w, z, #), where R is the quotient of two poly-
nomials in all the variables w, z, 2. To this rational function R (w, 2, ) a
canonical and recognisable form can be given; the proposition, stating its
form, can be established in the same kind of way as for the corresponding
proposition when there is only a single independent variable.

Let the m roots of the fundamental equation f(w, z, z') =0 be denoted
by wy, w,, ..., wy. Then, for any positive integer n, the quantity
wR(w,, 2, 2) + W R (w,, 2, 2') + ... + Wy R (wpy, 2, 2)
is a symmetric function of the roots w,, ..., w,, of the fundamental equation,
having rational functions of z and 2’ for the various symmetric combinations
of the roots; it is therefore a rational function of z and 2. Denoting this
rational function by P, (2, 2’), we have

g w,"R (w,, z, 2)=P,(z, 7).
r=1

This result holds for all integers n; hence, taking it for n =0,1,...,m—1, we
have m equations, each linear in the m quantities R (w;, 2, 2"), ..., R (wn, 2, 2).

* They are expounded fully in his treatise already quoted (pp. 161, 169) ; and in that treatise
full references will be found to the work of Neether, Enrigues, Castelnuovo, Severi, Humbert,
Berry, and others, in especial connection with the analytical developments associated with
surfaces in ordinary real space.
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Solving these m linear equations for the m functions R (w,, 2, Z), we have

1, 1,.. 1 R(wn, 2, 2)= Py(z,7), 1 ,..., 1
wl ’ w, , > wm Pl (Z! Z) ’ we , ’ Win
wlm—l’ w2m_l: sy w’mm_l ] P m—1 (Z’ z ,)1 w2m_1’ sy wmm—l

The determinant on the left-hand side is the product of the differences of all
the roots of the fundamental equation f(w, z, 2’) = 0 regarded as an equation
in w, and is usually denoted by

g(wl; ’wz, ey w’m)’
so that, from this definition of {, we have
+ & (W, Wiy -ens Wiy) = (w1 — wo) (W, — W) ... (wy, — W) E(ws, ..\ Wiy).

On the right-hand side, each of the quantities P, (z, 2’) has, as its coefficient,
a determinant of the roots w,, ..., Wy ; and in each case, this determinant can
be expressed as a product of ¢(w,, ..., wy) and a symmetric function of
Way «ovy Wy Thus the coefficient of P, (z, 2’) is wyw; ... w,(Ww,, ... w,);
g 1

the coefficient of P,(z, z) is —w,w; ... fwm( ) ¢ (w,, ..., W) and so on.

r=2 Wy
Hence dividing out by {(w,, ..., w,), we have
(wy — wy) (W, — wy) ... (w,— w,) R (wy, 2, 2')
=P+ Pisi+ oo + PyiSins
where §, &, ..., Sy are the symmetric functions of w,, ..., Wy.
Now by the algebraic equation f(w, z, £’) = 0, each symmetric function of
Wy, ..., Wy can be expressed as a polynomial in w,, having rational functions
of z for its coefficients. Also
A (w,— w,) (wy, — wy) ... (W — wy) = <g€}) R
w=w,
where 4 is the coefficient of w,™ in f(w, 2, /). Hence

where © is a polynomial in w,, which can always be made of degree €m —1
by use of the equation f(w, 2, z/)=0; and the coefficients in this polynomial
are rational functions of z and 7.

A corresponding expression holds for each of the functions R(w,, z, 2),
vors R (wm, 2, 2'), all the polynomials @ (w, z, 2') having the same coefficients in
the form of rational functions of z and 2. Consequently, when we denote any
root of our algebraic equation

f(w, 2 2)=0
simply by w, any rational function R (w, 2, z’) of all the variables can be
expressed in the form
B (w, 2, 2)
% R

ow

R(w, 2, 2)=
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where © (w, z, 2') is a polynomial in w of degree €m —1, the degree of
f(w, z,2)=0 in w being m, and where the polynomial has rational functions
of z and 2’ for the coefficients of the powers of w.

This is the generalisation of. the well-known theorem of Riemann on the
expression of functions that are uniform functions of position on a Riemann
surface *.

Ez. 1. Let the fundamental equation be
w2 +7i=1;
and let
Az A7 + Cw
T artd7 ¥ow
There are two values of R, viz. the expressed value, and &', where
R,=Az+ A7 - Cw
az+a'?d —ow ©
Hence, following the general argument, we have
(dz+ A'?)(0z+a'd) —cOw?_
(az+a'7)? - cPuw?
where P is a rational function of z and 2’ ; and
o (dz+4"2)—C(az+a%)
(az+a'?)? — cPu?
where @ is a rational function of z and 2. Hence
wP+ ¢
w M

R+R.'=2 2P,

wR—-whR' = —2w =2¢,

R=
which establishes the proposition.

Ez. 2. When the fundamental equation is
w+B+73=1,
obtain canonical expressions for
Az+ B +Cw
az+bd +cw
(i) az? 4+ bzw +cw?
a2 w

(i)

Note. There are of course particular methods better adapted to particular cases than
is the general method which applies to all cases.

Thus the function

A2+ 47 + Cw
R(w, 5= A2t 47400
az+ b7 +cw

when w?+28+23=1 is the governing algebraic equation, gives
(Az+ A7 +0w) {(a2+b2)2 ~ (az +b2) cw+ P} |

(az+ b2+ cud ’

’

R (w, z)=

and so°

°R (1, 2)= L4+ Mw+ Nuw?
WL, T (az+ b P+ 3 (1 23— 23)
where Z, M, N are polynomials in z and 2’ of degrees five, four, three respectively.

102. When we have to deal with the case, in which there are a couple
of algebraic functions w and w’ given by two algebraic equations

fw,w,z22)=0, g(w w,z27)=0,
* See my Theory of Functions, § 399.
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it is desirable to have a canonical form of the most general rational
function; we shall prove that this canonical form is

O (w, w, z, 7)
(fg) ’

where © is a polynomial in w and ', having rational functions of z and 2 for
its coefficients:

Let f be of degree m in w and w' combined, and ¢ of degree » in w and w’
combined : that is to say, if w and w’ were Cartesian plane réal coordinates, and
if /=0 and g = 0 were loci in that w, @’ plane, f=0and g =0 would be plane
curves of degrees m and n respectively. Construct the w-eliminant of fand
g by eliminating w’ between f= 0 and g = 0, and denote it by W'; then from
the ordinary processes of algebra, we know that

W=Af+ By,
where A is a polynomial in w of degree mn — m, and in @’ of degree n—1; Bis
a polynomial in w of degree mn —n, and in w’ of degree m —1;and W, not

containing v, is of degree mn in w. Similarly, the w’-eliminant of fand g,
obtained by eliminating w between =0 and g =0, can be put into the form

W’ = Cf + Dy,
where W’ is of degree mn in w’ alone, and does not involve w.
There are mn roots of W =0, expressing each w as one of mn functions of

z and 2’; and there are likewise mn roots of W =0. The mn combinations
of one root of W =0 with one root of W’ = 0, which make

. f=07 .9=0

simultaneously, arc called the congruous pairs: the combinations are deter-
mined by the ordinary processes of algebra. The remaining mn (mn —1)
combinations of roots of W =0 and W’'=0 are called the non-congruous
pairs; they all satisfy A =0, where

A=A4D - BC.

Now take a congruous pair of roots, say w, and w,’; they satisfy /=0,

g=0, W=0. We have
W=Af+ Bg

identically ; hence differentiating with respect to w and w/, and inserting the
pair of congruous roots after differentiation, we have

oW, of | ,dg of
a—wl—Aawl Ba_w,’ 0= Aaw1 awl

Similarly we have
o-cZLip, T c¥ ip?

a 1 aw) awl wl

IRIS - LILLIAD - Université Lille 1



174 CANONICAL FORM OF A [cH. v1

Hence, for the congruous pair of roots, we have

W o \=|aX il 4 ¥ |
ow, ow,

ow,’ I 7™ ow,’
oW’ of o9 of o9
O For |l 1%t 5w Couwr Py
that is,
ﬂ a_z = AlJ <_é’27> = AIJI’
Bwl a'wl Wy, Wy

say, where A, is the value of A for the congruous pair of roots w, and wy,
and likewise for J,.

Similarly for each congruous pair.

Let our rational function of w, w’, 2, 2/, which is to be expressed in a
canonical form as stated, be denoted initially by R (w, v/, z, 2); and let its
value, for a congruous pair of roots w, and w,., be denoted by R,. Then,
taking all the congruous pairs of roots, we have

mn
3wy R, =a rational function of z and 2’

p=1
=P, (2 7),
say ; the value of P, (z, 2’) is obtainable by the usual processes of algebra ; and

the result holds for all integer values of r. Hence, taking » =0, 1, ..., mn—1
in succession, we have

R] + R2 F oeenes + Rmn =P, 0>
wl Rl + w2R2 + e + wmn Rm/n, = 1s
wlmn—lRl + w,m 1 _R2 R + W1 Rmn =P mn—1«

These equations can be solved for the mn — 1 quantities R,, R,, ... which
occur linearly. Proceeding as before in § 101, we find
D (wy, 2, 2')

ow ’

ow,

where ® is a polynomial in w,, having rational functions of z and 2’ for its
4

R,=

coefficients. Multiplying the denominator and the numerator by T Ve
1

have
oW’
ow,

oWow’

w, ow,

D (wy, 2, )
R, =

_ S(wly wl’) Z) Z’)
~Tawaw
ow, ow,’
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where S is a polynomial in w, and w,’, having rational functions of z and 2’ for
its coefficients. But -
owow’
a_wl W =J, 1 Al ’
and therefore s ) )1
wy, w', 2, &
R = — A
Now
AA, . Ay
is a symmetric function of w; and w,’, w, and w,), ..., the pairs of congruous
roots; and 1t is therefore expressible as a rational function of z and 2/, say
A, ... A =T (2 2.
Similarly
VA VA W
is a symmetric function of all the congruous pairs of roots other than the pair
w, and w,"; hence 1t is expressible as a polynomial function of w,;, w,, having
rational functions of z and 2’ for its coefficients, say
Ao D= Q (W, Wy, 2, 2').
Consequently
1 Q(w, w2 2)
A T (z 2)
Hence
R S (wy, wy, 2, 2') Q (wn, wy', 2, 2)
! T(z 7)),
_ O, w, 2 2)
===y
on multiplying the polynomials S and @, and absorbing the rational function
T (z, Z) into the coefficients of the product.

The same conclusion holds for every congruous pair of roots. We there-
fore infer that every function, rational in the algebraic field of w, w', 2, 2,
where w and w’ are given by algebraic equations

flw,w,22)=0, gw w,z 2)=0,
can be expressed in the form
O (w, w, 2 2")
/()
w, w
where © is polynomial in w and ', having rational functions of z and 2" for
its coefficients.

Modifications in the degree of ® in w and of its degree in %’ may some-
times be effected by the use of the equations f=0 and g=0. These
modifications, when they are possible, do not affect the denominator J, and
only give equivalent expressions for the polynomial @ ; it is for this reason
that the form is called canonical, even though the expression for ® may
happen to be not unique.
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Note. In establishing the preceding form for the rational function, two theorems
concerning symmetric functions have been quoted. In actual practice, we can proceed
as follows.

Take

t=Aw+Aw;
eliminate w from f and g, so that they become
F(t,w,2 2)=0, Gt W,z 7)=0,

of the same degrees in ¢ and «' combined as are f and g respectively. Eliminate v’
between F'=0 and G'=0, so as to give an equation

T=0,
of degree mn in ¢, having rational functions (frequently olynomial functions) of z and 2
for its coefficients.

In the product A A;...Au, we have symmetric functions of the congruous pairs of
roots ; let such an one be
Sw™w, Maw™ wy M, ..,
where the summation is over all the like terms obtained by perwnuting the congruous
pairs in all possible ways. We then form the symmetric function of the roots of the
equation 7'=0 represented by
stMEmg et

In its expression we select the coefficient of
+ .y
At A g+ ,
and remove the multinomial numerical factor

(my+ny)! (mg+mng)!

mlng! T omg! my!

the result is the symmetric function required,

Again, in the product A;...A,,, we have symmetric functions of all the congruous
pairs of roots except only the pair «y and w,’. Let

T= (¢— tl) T,
80 that g, ..., ty, are the roots of 7"'=0. The coefficients in 7’ are linear in the
coefficients of 7' and are polynomials in ¢ ; thus, if

T=Bytmm 4 0 gmn=1 4 Gy pmn-2
T’=0Ot"m'l+¢1t"m—2+¢2fmn_3+...,

Pr1—116,=01, Pa—tipy=6s, P3—ti=6;, ..,

b1="6,+1,6,,
Pa=02+12,0,60+4,26%
3 =03 +¢,0;00+1,%6, 6,2 + 1,383,

we have

and therefore

and so on.

As was the case with A;4A,... Ap,, which is a sum of coefficients in a polynomial
function of the coefficients of 7' divided by a power of 8, so also the symmetric product
Ag... Apy i3 a sum of coefficients of powers of A and X" in a polynomial function of the
coefficients of 7" divided by a power of 8,; that is, A;... Ay, is a polynomial function of
the coefficients of 7", itself also polynomial in ¢; (that is, in @, and w,’) divided by a power
of 6,.

These are the two theorems used.
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Ez. For particular equations, a given rational function is most easily discussed in an
injtial form, not in a canonical form ; it is for the general theory that a canonical form
is required, as it includes all rational functions. We may however take an example, to
shew the outline of the reduction to a canonical form; but the process is only an
exercise in algebra.

Let the two fundamental equations be
f=wP-w3-4=0, g=w+w?- B=0,

where 4 and B are given functions of z and # only. Their Jacobian J/, on the omission of a
factor 6, is

J=ww' (w+w).
We take the simple rational function
1
E=uiz

where Z is any rational function of z and 2/; and we proceed to express it in a canonical
form

Pw, v, 57)
J )
where P is a polynomial in w and ', having rational functions of z and 2’ for its
coefficients.
The W-eliminant of f and g is

W=2uf—- 2443+ A2 = 3Buw*+3B%w? - B3=0.
Let
w+Z=t;

then the six values of ¢ are given by the equation
2(=-2ZY¥-3B(t-Z)—-24 (t—ZpP+3B%(t-Z)*+ 42~ B*=0.

et ©=22Z%-3BZ*+2423+ 3822+ A2 - B3,

being the term independent of z in the last equation ; then

o wb— Z6 A w3+ Z3 w2— 272
_7_2 w+Z 8 wt+Z w42 +35 w+Z

=2ub — 22wt + (222 - 3B) wP+ (3BZ - 24 — 223) w?
+(8B—3BZ+24Z+2Z*%) w+3BZ3-3BZ—~242%-225
=&, say.

Consequently
- iZl-el-_Z wy (W +wy)=(wi+ww) &;.
All terms in the right-hand side, which are of degree six and higher, can be removed by
using the equation W;=0. These terms are
2wy + (2w, — 22) wy®.
The term 2w,” is to be replaced by
3Bw+ 24wt — 3B2w,3 — (A%~ B3) wy,
and the terms (2w’ —2Z2) w,% by
(w) = Z) {3Buny* + 24w3 - 3B2wy% — A%+ B3},
When these changes are made, let the expression for @, be
@1 =po W1°+ prwt + paw + pywid+ pyw; + ps,
F

. 12
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where the coefficients p are polynomial in «/, and are rational in z and . Then finally,

absorbing the rational function of 2z and 2’ represented by —é into the coefficients of &,
we have

Lo _ % (po,s Plos P g P3 o, P, . P5
wyZ- ./<9w5+eu’4+eu+§w+6w+6 ’

which is of the required type.

Equivalent forms are obtained for the numerator by using the equations f=0, g=0.

Integrals of algebraic functions.

103. The development of the theory of integrals, whether single or double,
of algebraic functions when there are two independent complex variables,
owes its main foundations to Picard*. Here I shall only restate one or two
of the simplest results for the case when there are two initial fundamental
algebraic equations

Sfw, w, 2 2)=0, g(w,w,z 2)=0,

defining two dependent variables w and w’ as algebraic functions of z and 2/,
the quantities f and g being polynomial in all their arguments.

Writing
N_Of %9 _9f dg _ ﬁg)
J (w, w)—% ow’ %’E)TU_J<'LU, wl/’
we have seen that any rational function of all the variables can be expressed
in the form
O (w, W',z 72)
J(w, w)
where O (w, w', 2, 2) is a polynomial in w and w’ having rational functions of
z and 2’ for its coefficients.

Accordingly, following Picard, we take our most general single integral
of algebraic functions in the form

Zds —Z'dz
J (w, w)

where Z and Z’ possess the same general form as the preceding function @.

Integrals of this form are said to be of the first kind when, on the analogy
of Abelian integrals, they have no infinities anywhere in the whole field of
variation. Picard provest that no integral of the first kind exists in
connection with a single equation F (w, 2z, )= 0, when this single equation
is quite general; and he shews] that, when such an integral does exist in
connection with a less general single equation F (w, z, 7’) =0, the form of

* A full and consecutive account of his researches is contained in his treatise already quoted.
+ His treatise, vol. i, p. 113. 1 Ib., p. 118.
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the subject of integration must satisfy special preliminary relations, even
-though these necessary relations are not of themselves sufficient to secure the
existence of the integral. Here I shall proceed only so far as to obtain the
corresponding necessary preliminary relations affecting the form of the
subject of integration in the foregoing single integral, if it is to exist in
_connection with the two equations f=0, g=0.

The quantities Z and Z’ are polynomial in w and «'; we proceed to shew
that, if the integral is everywhere finite, they must be polynomial also in
z and 2/, of limited order. The coefficients of the various combinations of
powers of w and w’ are certainly rational functions of z and z’; let any such
coefficient be

S (z, 2)
R(z, 7)’

where R and S denote polynomials in z and 2/, and consider the integral

Zd7
[%7-
Assigning any parametric value to z, let z’=c¢ be a zero of R (z, ") for that
value of 2. (If there is no such zero, ie., if R is a function of z only, the
zeros of R would make the integral infinite: so that, for our purpose, B would
then have to be constant). For that parametric value of z, let the subject of
integration be expanded in powers of 2/ —¢’; then, whether 2’ =¢’ does or

does not give a zero value to J, the subject of integration is—for every set
of values of w and w'—of the form

A, A

(Z=cy (=)
in the immediate vicinity of 2z’= ¢/, the positive integer s being >1. The
integral would be infinite at 2 = ¢/, unless all the quantities 4,, ..., 4, vanish.
These quantities involve the parametric value of z; they can only vanish for
all parametric values by vanishing identically, that is, by having no powers
of 2/—¢" with negative indices. Hence the polynomial R (z, '), for any
parametric value of z, can have no zero for a value of 2. It thus cannot
involve z'; we have seen that it cannot be a function of z alone; hence
R(z,2) is a constant. The coefficient in question is a polynomial in
z and 7.

y:| .
+...+ z’—lo’ + regular function of 2’ — ¢/,

Stmilarly for every coefficient in either Z or Z’ in the integrals
ZdZ Z'dz
J’ J
Consequently the quantities Z and Z’ are polynomial in all four arguments
w, w, z, 2. And we know that J is polynomial in those four arguments.

Next, as regards the limitations upon the orders of these polynomials
Z and Z', we shall assume that f (w, w', 2, 2) is a quite general polynomial
12—2
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of order m in the four arguments combined, and that g(w, w’, z, 2’) is a
similar polynomial of order n. Then J is a polynomial of order m +n—2.
It is easy to see, by an argument similar to the preceding argument, that
integrals cannot be finite for infinite values of z and of 2/, if the order of the
polynomials Z and Z' in all the four arguments combined is greater than
m+n—4

We therefore infer, as a first condition, that if the integral is to be finite
at all places in the whole field of variation, Z and Z’ must be polynomial in
all the four variables of order € m + n — 4, when f is the most general poly-
nomial of order m and g is the most general polynomial of order .

104. The independent variables for the integrals have been taken to be z
and 2’; but any two of the variables may thus be chosen, and the integral must
still remain finite. We proceed to give the corresponding and equivalent
expressions. We have

of

ow

dw + 9]—0—, dw’ + aIolz + a—f, dz'=0,
ow 0z 07
oz

so that, on the elimination of dw’, dw, dz, dz’ in turn,
J(w, w)dw+J (2, w')dz +J (¢, w)ds =0,
J(w,wydw+ J(z,w)dz +J (7, w)ds =0,
J(w, z)dw+J (W, z)dw' + J (¢, z )d =0,
J(w, 2" ydw+ J (w',2)dw' + J (2,2 )dz =0.

Using the first of these relations to substitute dw for d2’ in the differential
element, we have

Zdz —Z'dz Z'dz Z
- _ _ { ’ ’
J (w, w') J(w,w) J(w,w)JE,w)  (w, w) dw +J (2, ') dz}

—Zdw Z'J (¢, )+ ZJ (s, ) iz
J(, w) J(w, w') S (2, w) )
The differential element now is to be

Wdz— Zdw

J (Z/, ’LU/) >
where W is a polynomial in all the four variables; we therefore take
ZJ (z, W'Y+ Z'J (2, w') + WJ (w, w')=0.
Similarly, when we make z and w’ the independent variables, the differential

element of the integral of the first kind is

Zdw' — W'dz

JE wy

aialw+ %,dw’+a—g-dz + gg,dz’=0,
ow ow 0z

IRIS - LILLIAD - Université Lille 1



104] THE FIRST KIND 181
where W' is a polynomial in all the four variables, and
ZJ(z, )+ Z'J (7, w)+ WJ (v, w)=0.

In the same way, we can take any pair out of the four as the independent
variables, and thus obtain six expressions in all for the subject of integration.
The six expressions are

Zde ~Z'dz Wdz — Zdw Z'dw— Wdzs

J(w, w') ’ JE,w) J(z,w')
Zdw —W'dz W dw—Wdw' Widz—Z'dw
JE,w)y NECH ) J(z,w) ’

and the relations connecting the polynomials are
ZJ (2, W+ Z'J (2, w')y+ WJ (w, w') =0,
ZJ (z,w)+ Z'J (7, w) + WJ (', w)=0,
Z'J (7, z)+ WI (w,2) + WJ(w', 2)=0,
ZJ (2, 2)+ WJ (w, 2) + WJ (', 2') =0,
which are always subject to the two fundamental equations
f=0 9=0,

and are equivalent to only two independent equations. Writing

=22 7%  w¥ ,w¥
0z 07 ow ow

_ 799 9% 09 , w 09
N_Za—z+Z az,+ W%+W e

we can express the first of the four equations in the form

(u-w o _(v-w )T _,,

ow ow'/) ow'
that is,
%9 o _
M v N 5= 0.
The others similarly give
o9 _y¥_
M S N = 0,
o9 N _
Moz Va=0
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The fundamental equations f=0 and g=0 are independent of one another;
hence we must have

M=0, N=0,
that is, the polynomials Z, Z’, W, W' are such that

of , of al ,%_
Wt Wayt 2514 5570

og , 0g og , E_)_g_ _
WE)TU-'-W 5 T Z az+Z a5,—0.
But these equations are not satisfied necessarily as identities ; they need only
be satisfied in virtue of the permanent equations

=0, g=0.

These relations impose limitations upon the forms of the polynomials
Z,7Z', W, W, which oceur in the differential element of an integral of the
first kind.

105. Limitations arise from two other causes. The first of these causes lies
in the requirement that the condition of exact integrability shall be satisfied.
As regards this condition, we shall take it for one of the forms of the integral,
and shall reduce it to an expression symmetrical in all the variables.

" The condition, that
Zdd —Z'dz
J (w, w')
shall be a perfect differential, is

TOR

Now since
I Yow o ow
9z  owoz  ow 0z
2, g w o0 0
9z owoz ow 0z
we have

T, ) 4T o) =0, T, w) 4T (2 w) = 0;

and similarly
T, w) 2 (&, w) =0, T (W, 0) 2+ T (4, w)=0.
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The condition of integrability is therefore

J (w, w') ( %f) { ZJ(Z, w') + %TZ”’J(Z'> wl)}

{00 w5 T @ )

7 {BJ(w, w') _ J (z, w') oJ (w, w") + J (2, w) 3J (w, w')}
0z J(w,w)  ow J(w,w)  ow

_ zf{aJ(w, w)_ J (& w) o (w,w) | I (& w) o (w, w,)} =0

07 J (w, w) ow J(w, w') ow
and it suffices that this condition should be satisfied in virtue of the governing
equations f=0 and g = 0.
Now, for appropriate polynomials A and B, we have
ZJ (2, W)+ 2Z'J (7, w')+ WJ (w, w')= Af + By,

identically ; and so for our purpose, where the governing equations persist,
we can take

ow _ 0Z J (2, w’) 0Z'J (2, w) zZ oJ(z,w')  Z' oJ(<,w)
o wd(ww) owd(w,w) J(ww) ow J(w,w) ow
ZJ(Z wY+ Z'J (7, w)oJ (w, w') A %_}_ B 99
J? (w, w') ow J (w, w)ow " J (w, w)ow’

the omitted terms vanishing in virtue of /=0 and g =0.
Similarly, for appropriate polynomials (' and D, we have
ZJ (z, wy+Z'J (¢, wy— WJ (w, w)=Cf+ Dg;
and we similarly infer the corresponding relation
oW’ 0Z J (s, w) 0Z'J (¢, w) Z  oJ (2, w) Z' (7, w
w  ow J(w,w) ' ow ow + J(w,w') ow J(w, w') ow

_ZJ (s wy+Z J (2, w)od (w, w') ¢ o D o
J2(w, w) ow' J(w,w)ow J(w,w)ow’

the omitted terms vanishing for the same reason as before.

Also we have
oJ (w, w) oJ (w', z) 8J(z w) _
0z ow ow’
identically, together with three similar relations by omitting z, w, @' in turn
from the set of four variables. Moreover

J(z, w)J (, w)+J (&, w) J(w', 2) + T (W', w)J (2, 2) =0,
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also identically. Using the foregoing relations, we have

~(0Z 0z oW oW of og of 1 99|
J(w, ){ o Tt aw} {Aaw + 855~ Cow Doy
0J (w, w) oJ (z, w) | oJ (W, z)}
+
{ 0z ow' ow
, (0 (w, ’) oJ (7, w) oJ (w', 7)) _
07’ ow'’ ow 0
that is, the relation
aZ oz" oW oW’ 1 of f ag}
tor Yow T ow T J(w,w){A +B’ ~ O D sw
is satisfied in connection with the governing equations

=0, g=0.
Now we know that, in virtue of the governing equations, the quantities
of o9
37 55 3Z Y

vanish ; hence polynomials F, E, H, G (any one or more of which may be
zero) exist such that the equations

zaf+z' af+Waf+W, Y prsmy,
Z29+Z’39,+W39+W’ag = Hf + Gy,

are satisfied identically. These equations give

’ 1 o N ai _ af Va_g af
21 (s w)+ 2T @)+ W) = (FL - L) p (B2 -6 L)y
satisfied identically. But the left-hand side is identically equal to
Af + Bg;

hence, subject to the goveming equations, we must have

A= Fag g? B_r? _q¥,
ow’ ow ow ow

Similarly, subject to the governing equations, we have

o=r% _g¥% p_ Ea‘q o
ow ow’ ow

Consequently

af of g
5 O’ —FJ( w'), Ba Da = GJ (w, w

always subject to the governing equations f=0, g = 0.
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Thus the equations become

of . of o w O
Za_z+za_z’+WaTu+WaT,/_Ff+Eg

0z 07
0Z 0z oW oW’
2T wt wmt W

99  , 99 %9 w99 _
Z=+7Z +Waw+Waw’_Hf+G9 .
=F+@G

The first two of these equations are satisfied identically; the third only
needs to be satisfied in connection with f=0, g=0.

They are the extension of Picard’s equations* which are given for the
case when there is only a single equation

Sf(w, z,2)=0.
Picard’s equations are derived from the foregoing set, by taking
g=w=0
as the second of our fundamental equations, together with
W'=0, E=0, H=0, G=0;
and then, owing to the order of F, the third of the equations is satisfied
identically.

It thus appears that, when there are two equations f=0 and g =0, the
exact differential can be presented in six forms; that four quantities
Z,Z', W, W', each polynomial in all the four variables, occur in these forms;
and that there are other four polynomials E, F, G, H, such that the foregoing
three equations exist, the first two being satisfied identically, while the third
only needs to be satisfied concurrently with the governing equations f=0
and g=0.

106. It can easily be seen that, when f=0 is a quite general equation
of order m and ¢ =0 is a quite general equation of order =, the conditions
required cannot be satisfied.

Let N (p) denote the number of terms in the most general polynomial,
which is of order p in w, w', 2, #/, so that

Np)=d(@+1)(p+2)(p+3) (p+4).

We have seen (§ 102) that the polynomial Z, which (§103) can be of order
m + n— 4, is subject to modification by use of the equations f=0 and g =0:

* Lo, ti,ch. v, §4
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that 1s, 1t is subject to an additive quantity Af+ Bg, where A and B are quite
general polynomials of orders n — 4 and m — 4 respectively. Hence the number
of disposable constants in Z effectively is

N(m+n—4)—N(m—-4)—N(n-4)
Similarly as regards Z’, W, W".
Again, E, F, @, H are polynomials of order €2m — 5, m + n— 5, m +n -5,
2n—5 respectively. The expression Ff+ Eg is unaltered by changing F

into F'+Jg and & into E —Jf, where J is a quite general polynomial of
order m — 5 ; hence the number of disposable constants in F' and E together is

N(m+n—5)+ N(2m —5)— N(m—5).
Similarly the number of disposable constants in G- and H together is
N(m+n—5)+ N2n—-35)— N(m—-25).

The modifications in F and G do not affect the third condition, which
has to be satisfied only concurrently with f=0 and g =0. Thus the total
number of disposable constants is

4{N(m+n—4)— N(m—4) — N(n-4)}
+N(m+n—5)+ N2m—-5)— N(m-25)
+N(m+n-5)+ N(2n—5)— N(n—5).

The number of conditions to be satisfied in connection with the first
identity is N (2m+n —5), and the number in connection with the second
identity is N (m + 2n— 5). The third relation, which affects the polynomials
F and @, only needs to be satisfied subject to the equations =0 and g =0;
that is, subject to an additive quantity Cf'+ Dg on the right-hand side, where

C and D are quite general polynomials of order n — 5 and m — 5 respectively ;
consequently, the third relation requires

N(m+n—-5)—N(n-5)—N(m->5)

conditions. Thus the total number of conditions is

N@2m+n—-5)+ N(m+2n~5)+ N(m+n-5)— N(n—>5) - N(m-5)

The excess of the number of conditions to be satisfied, above the number

of disposable constants, is

N@2m+n-58)+ Nm+2n-5)+N(@m+n—5)— N{n—-5)— N(m=35)

—4{Nm+n—-4)— N(m—4) — N(n—4)}
—{N(m+n-5)+ N(2m—5) — N(m—5)}
—{N(m+n~-5)+ N(2rn—5) — N(n—5)].
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When the values of the different numbers N are inserted, this excess is easily
found to be

Fmn{20(m —1)(m—2)+18(m —=1)(n — 1) +20(n — 1) (n — 2) + 24} — 1,

which manifestly is positive when m >1 and n>1. Accordingly, in general,
the relations cannot be satisfied by the disposable constants, and so we infer
the result:—

When f=0 and g =0 are quite general equations, no single integral of the
first kind connected with them exists: a result which obviously corresponds
to the theorem of Picard already (§ 103) mentioned.

It follows that, if an integral of the first kind is to exist in connection
with two equations f=0 and g =0, these equations must have special
forms.

Ez. Shew that all the preceding conditions for the existence of an integral of the first
kind, in connection with the equations
Sf=az+bw+cd + dwzd + ew'22 + fu?s + guww'z+ hw?w' =0,
g=a7 +VW + 22 +d'wWad + wd+ frwe+ guww'd + K ww?=0,
where the coefficients @, ..., &, @, ..., &’ are constants, are satisfied when

Z=2 Z'=-7, W=w, W=—u.

107. The second class of conditions, mentioned at the beginning of
§ 105 as required to be satisfied in order that the single integral may be
everywhere finite, depends upon the places where we have

J(ﬁ9,>=o,

w, w

which is not an identity, simultaneously with

/=0, g=0.

As already indicated (§ 103), I do not propose here to enter upon any
discussion of these conditions. The discussion will be difficult, but it is of
supreme importance as regards even the existence of these integrals of the
first order, as well as for all other single integrals. It can be initiated
analytically on the lines of Picard’s investigations in his treatise already
quoted. It will involve the algebraical singularities of w and w’ as algebraic
functions defined by the two fundamental equations.

Double Integrals.

108. The discussion of double integrals follows a different trend. There
is no limitation corresponding to the condition that must be fulfilled if the

element of the integral is to be a complete differential element, as in
§ 105.

IRIS - LILLIAD - Université Lille 1



188 DOUBLE [cH. vI

We have seen (§ 102) that, when two algebraic functions of z and 2’ are
simultaneously given by two algebraic equations

f=f(w: wl’ 2, Z')_—' 0, g=9 (’LU, w/, Z, ZI) =0,

the most general rational function of the variables can be expressed in the
form
O (w, W', 2, 2')

@)
w, w’
where ©® is a polynomial in w and w’, the coefficients in this polynomial

being rational functions of z and 2. Thus the typical double integral, con-
nected with the algebraical equations f=0 and g =0, is of the form

®(w’ w) Z’ Z)dzdzl;
e
w, w
the integration extends over a two-fold continuum. To express the integral

more definitely, we take z and 2’ as functions of two real variables p and g,
as in §95; and then the expression of the integral becomes

O (w, W', 2, z)J(z, Z)dpdq,
J ( X ) P q
w, w
where the integration can be regarded as extending over an area in the
P, q plane, limited initially by a fixed curve (or curves) in that plane and
finally by a variable curve (or curves) in that plane. The simplest case

arises, when we have a single simple closed curve as the fixed initial limit and
a single simple closed curve as the variable final limit.

The first form of the preceding definition takes z and 2’ as the independent
variables for integration. As we have already suggested that it may be
convenient to take any two of the four variables as the independent variables
for integration, we proceed to give the equivalent forms.

For this purpose we assume that, in order to express the quantities
w, w', 2, 2 in terms of real variables p and ¢, we take two algebraic equations

F= F(w’ wl’ 2,7, b, Q) =0, G = G(w’ w’) 2, Z,; ]’:Q) =0,

forms which will prove useful in attempting an extension of Abel’s theorem
for the sum of any number of algebraic integrals of a single variable. The
simultaneous roots of the four equations

=0, g=0, F=0, G=0,
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are functions of p and ¢; so we have

BFaw_I_BFBw E)_F’Qf_l_BFaz_*_EE’
ow.op ow Op o0zop 0Z op  op’
8G8w+8G6w 8_(_?@{_'_6(?82 oG
dwiop Towdp T azop o2 op  op’
0= of ow  of ow' af 0z  of 0
Towdp owop 0z op 07 0p’

0=

0=

0g dw 09 0w’ g 0z  0g o7
0= ow Bp+8w op t 8p+8z op’
and therefore

H

1)

Z2,Z,W,w

FGf!))

2w, w

0.

oz

op
1) = Ga)
Similarly

0

<Fqu> <Fny

2,2, w,w q,2 ww)
T () 5T () =

Now, by the properties of determinants, we have

J<F0f!7> (F,G,ﬁ9)=J<I’Lﬁ9> (fq> (F’G);

P, 2, W, w q, 2, w, W, 2,2, w,w w, w P, q

I (Cmatid) 7 G- (657 (o)

and therefore

hence

1 z, 2 -1 F @

At () (9).

(fq) P, J(ﬁ,(x,f,g> (p,q

w, w 2z, ww

The right-hand side is symmetrical, save as to signs, for the four variables
z, 2/, w, w'; hence it is equal to each of the six expressions

1D ) G- (B ()G,
(e (Eh). 1G) - (48) (G- (5D):
Accordingly, when the variables of integration in the double integral are

taken to be p and ¢, there are six equivalent expressions of the integral;
one of them is the form first taken, and the other five are similarly constructed
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from a comparison of the six foregoing quantities; and each of the six
expressions so obtained is (save as to sign) equal to the double integral *

O (w,w', 2 2) (F, G
- J dpdyq.
J<F, G, 1, 9\ p,q) P
2,7, w,uw

Double integrals of algebraic functions may be divided into various
classes, following the analogy of the division of simple integrals of algebraic
functions of a single variable; but the analogy is little more than a sug-
gestion, because (as has been seen in Chap. 1v) a definite infinity of a function
of two variables can be a one-fold continuum in the immediate vicinity of
any one definite place of infinite value, and because unessential singularities
(when the term is used in the sense defined in § 58) have no limited analogue
even in the case of uniform functions of only a single variable. One class, how-
ever, survives naturally in spite of the deficiencies in the analogy; it is
composed of those integrals of algebraic functions which never acquire an
infinite value, no matter how the two-fold continuum of integration is
deformed. Such integrals are formally styled double integrals of the first
kind.

109. The conditions, which must be satisfied by the double integral of
an algebraic function connected with two given algebraic functions if it is to
be of the first kind, are of four categories, according to the character of a
place z, 2 in relation to the subject of integration; and the four categories
can be grouped in two pairs.

It is manifest that a finite place 2, 2/, which is ordinary for the equations
f=0and g=0, and is also ordinary for the subject of integration, cannot give
rise to an infinity of the integral. For near such a place w=a, w' =d,
z=a, 2 =a’, we have

w=a+W, w=d+W, z=a+2Z 2=a+2,

* This integral can also be expressed in the form

(w, w', 2, 2’)
ff T, (,j,(’ dFdaG,
z 2, w, w

which is the natural extension of the single integral

R (w, 2) i
~ d¢.
f" ¢,4f)
2, w

The latter integral is fundamental in one of the proofs of Abel’s theorem for the sum of a

number of integrals
R (w, 2)
e
ow

when the upper limits of the integrals are given by the simultaneous roots of a permanent
algebraic equation f (w, z)=0 and a parametric algebraic equation ¢ (w, z)=0.
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the equations f=0, g =0, then give relations of the form
W=(Z, 2"+ (Z, Z')s + ...,
W=(Z2Z%+(Z Z)+ ...,
and no one of the quantities
KA
ow’ ow'’ 0z’ 07

9 o9 29 %
| ow’ ow’ 0z’ 07

f

vanishes at o, a’, @, @. As the place is ordinary also for ® (w, ', 2, Z), the
form of
O (w, v, 2 2)
&)
w, w

in the vicinity of the place becomes

0,+0,(Z,ZYV+0,(Z,Z")+ ...

Jo+ L (Z, ZY+ I (Z, Z)+...°

and so the integral, in the vicinity of the place, becomes equal to

0, +8,(Z Z)+0,(Z, Z') + ... ,
f T+ T2 )+ 1,4 Z) +... 2

which is finite at the place and in its immediate vicinity*.

In the first category, there are the conditions to be satisfied at a place
z, 7, which is ordinary for the equations f=0, g =0, but is not ordinary for
the subject of integration. In the second category occur the conditions that
must be satisfied for infinite values of z and 2', when these constitute ordinary
places for the equations f=0 and g =0. These two categories form one
group, containing all the conditions which arise in connection with all the
ordinary places of the two fundamental equations.

In the third category occur the conditions that must be satisfied at a
non-ordinary finite place of the two fundamental equations; all such non-
ordinary places are such as to satisfy some one or more than one of the six

Jacobian equations

/

J (K —%\\\ =0,

\w, w', 2, 2/
concurrently with the fundamental equations themselves. In the fourth
category occur the conditions that must be satisfied for infinite values
of z and 7 when these constitute non-ordinary places for the equations
f=0 and g=0. These two categories form one group, containing all the

* The symbols (Z, Z');, ©1(Z, Z'), J1(Z, Z’) denote the aggregate of terms of the first order;

the symbols (Z, Z')s, ©2(Z, Z'), Jo(Z, Z') denote the aggregate of terms of the second order;
and so on.
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conditions which arise in connection with all the non-ordinary places of
the two fundamental equations.

110. As regards the first of these categories of places which, while
ordinary finite places for the equations f=0 and g =0, provide an infinite
value for the subject of integration, this infinite value can arise only through
the coefficients of the powers of w and %' in the polynomial ®. These
coefficients are rational functions of z and 2. If then the double integral
is not to have an infinity, the existence of these rational functions of z and 2/
must not compel such an infinity. Accordingly, the rational functions of 2
and 7z must be integral functions: that is, they must be polynomials in
z and Z. Thus © (w, w', 2, 2’) becomes a polynomial in all its four arguments;
consequently, as a first condition that our double integral may be everywhere
finite, it follows that the quantity © (w, w', 2z, 2’) must be a polynomial in the
Sfour variables w, w', z, 7.

The similar consideration of the second category of places, constituted of
infinite places (supposed ordinary) for /=0 and g =0, leads to a limitation
upon the order of the polynomial ® (w, w', 2, 2) if the double integral is to be
not infinite for such places. For simplicity, suppose that f and g are quite
general polynomials of aggregate orders m and n respectively, so that we
may take

f=Qw, w, 2,2/, 1), g=Jw, v, 2 2, 1)~
Then

f’ 9 ) — 4 4 m+n—2
J <w,w' =®Qw, w, 2 2, 1) :

in the quite general case. In order that the double integral may be not
infinite for infinite values of z and Zz/, the order of

O(w, w', 2, 7)
g
7 (5)

must be equal to, or be less than, — 3; and therefore the aggregate order of
the polynomial © (w, @, z, ) must be not greater than m +n —-5. Thus in
order that the double integral may remain finite for infinite values of z and
Z, when these are ordinary places of f=0 and g =0, the aggregate order of
the polynomaal O (w, w', z, 2') must be € m + n — 5, where m and n denote the
respective aggregate orders of f and g.

As regards the second group of conditions indicated above, they are
concerned with the places where the equations

9
f=0 9=0 "(z{,—w)=°’

are simultaneously satisfied. Their discussion will involve the consideration
of the singularities of w and w’ as algebraic functions of the variables. As
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before for single integrals (§ 107), so here for double integrals, the whole
subject is left for investigation; a beginning can be made on the lines of
Picard’s discussion of the matter when there is only a single equation f=0
defining a single algebraic function*.

111. Tt is possible to obtain an extension of Abel’s theorem for the sum
of a number of integrals of algebraic functions of a single variable, by con-
structing an expression for the sum of a number of double integrals of the

type
'l ®(w: %;)gzx Z)dzdz/,
d (w, w')
where f and g are polynomials of aggregate orders m and n respectively.
We shall assume that the aggregate order of the polynomial ® is not
greater than m +n—5.

"As before (§ 108), we define w, w’, 2, 2 as functions of two real variables
p and ¢ by means of the permanent equations

flw, ', 2,2)=0, g(w, ',z 2)=0,
and associated parametric equations
Fww,z2,pq=0, Gww,z7, pq=0;

and we shall assume that F' and G are quite general polynomials in w, w', 2, 2/,
of aggregate orders k and [ respectively. As these are four algebraical
equations in w, W', 2, 2/, of orders m, n, k, [ respectively, they determine kimn
(= p) sets of roots, each root in each set of roots being a function of p and q.
Denoting any such set by w,, w,, 2, 2, the double integral can as before
be transformed to

@ (wrv w’l'/) ZT; Z?'I) (FT; Gr

— J - ) dpdg,

J[J(Fr’(fryjr’gr) . p;q ) p q
Zry Zr,’ Wy, wrl

or, if we write

D, =© (w,, w,, 5, 2') J (%, f) =@ (wy, W, 29, 7,

JT=J’ Fr’ G,T!ﬁ)g"")’
rs &r s Wy, W/
so that ® is a polynomial of aggregate order € k + {4+ m + n— 5, the integral
(for this set of roots) becomes
o,
ff 7. dpdyg.

We assume the integral taken over any finite simple closed region in the
P, q plane.
* le,, t. 1, ch. vii.
F. 13
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Let W denote the result of eliminating w’, z, 2/ between f=0, g =0,
F=0, G=0; the quantities w;, ..., w, are the roots of W=0. The theory
of elimination shews that we have a relation of the form

W=Kf+Lg+ MF + NG.

Similarly, eliminating w, z, 2/, and denoting the eliminant by W', we have a
relation of the form

W =K'f+Lg+MF+NG,

and the quantities wy, ..., w,’ are the roots of W’=0. Likewise eliminating
w, w', 7, and w, w', z in turn, and denoting the respective eliminants by Z and
Z', we have relations of the form

Z =Pf+ Qg+ RF + 8G,
Z'=Pf+Qg+RF+8G,
the quantities z, ..., 2, are the roots of Z =0, and the quantities 2, ..., 2.’
are the roots of Z'=0. And the quantities XK, L, M, N, K', I/, M’, N',

P, Q R, 8 P, Q, R, 8 are polynomials of the respective appropriate
orders. In particular, if we write

A=K, L, M, N |,
K, L M N
P, Q, R, S
P, Q, R, &
A is a polynomial of aggregate order
(mnpg — m) + (mnpg — ) + (mupgq — k) + (mnpq — D),
=4du—m-—n—k—lI

The simultaneous combinations w,, w,’, z., 2/ (for r =1, ..., p) are the simul-
taneous roots of

f=0, g=0, F=0, G=0;
these we call the congruous roots. All other combinations of the roots of
W=0, W =0,Z=0, Z' =0, are called non-congruous roots; they are not
simultaneous roots of f=0,g=0, F=0, G=0; but, for each such combina-

tion, we have
A=0.

For the sake of simplicity, we shall assume that each of the roots of
W=0 W =0, Z=0, Z' =0, is simple.

Now consider the quantity

D (w, w', z, 2') A
WW'zZz’
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It can be expressed in a partial-fraction series of the form

A
2 ; Irr’ss’ _ _ ,
] TR | AT YERPAT )
the summation being for r, v, s, ', =1, ..., u, independently of one another;
and

A _ D (w,, W'y, 2y, 2'y) Bypsy
T oW oW o4 04

w, oW’y 0z, 07y

When r =7 =s =4, we can denote the coefficient A by 4,; then

P4,
~SWaW iZ oz

ow, ow, 0z, 0z,

4,

Unless all the equalities » =7"= s = s’ are satisfied, we have

so that all the coefficients 4 other than A4,, for »=1, ..., u, vanish. Thus
we have the identity
D(w, w,z7)A & A,
WW'Z2Z' 2 (w—w.)(w —wp)(z—2,) (2 —2)

Let both sides be expanded in ascending powers of 1/w, 1/w’, 1/z,1/2. On
the left-hand side, the index of the term of highest order in w, w’, 2, 2’ in the
numerator is

k+l4+m+n—-5+(Au—m—n—F~k-1)

Z4p-—5;

the index of the term of highest order in w, w/, z, 2 in the denominator is
4y ; hence the index of the first term in the expansion 5. On the right-
hand side, the index of the first term in the expansion is —4, and its
coefficient 1s

"

2 A4,.

r=1
No such term can occur in the left-hand side under the assigned conditions ;
hence

that is,

*

oA,
10W oW’ 0Z o2’
ow, ow,’ 0z, 0z,

= (.

r
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From the expression for W, we have
BW_ of ag oF oG
ow, K, ow, + L, + Mo ow, + X ow,’
_r ; 06
O—K’ra /+L7-a +-Mra l\"a’w/’
¥ o9 oF oG
O_K’ZE'*'L’E)?"'Ma N’azr
of oF oG
0= Kra ,+L,a MTa 7 Nra;;:y
and similarly from the expressions for W', Z, Z’. Thus
BW, o, 0, O
ow,
o, " o, o
ow,
oZ
0 ) 0 ’ a_Z«r )
o, o, o, &
02,
of o9 OF 3G
= Kr; Lr; Mr: Nr awr: M‘: awr’ aw’_ ’
’ ’ ’ ’ af ag E oa
Kr; Lr; Mr; -Nr W; awr/ aw,” awr/
of 99 oF gg
Pr ; Qr, Rr; Sr 8—27’ a_zr a?‘r » azy
S o o 8 eF e
Pr, Qr: RT) Sr aZ»,-I’ 5}7: az/’ aZr’

that 1s,

Consequently, we have

and therefore

[ (I)T
1‘51 fj;Tr dpdq - 0’

when the double integration is taken over any simple closed region in the

plane of the real variables p, g.
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This is a restricted extension of a part of Abel's general theorem on the
sum of integrals. The result is true, even if the integral

b
ﬁ;@@

is not everywhere finite, that is, if the integral is not of the first kind*. The
conditions, which have been imposed upon the integral, are that it is to be
finite for all places which are ordinary for the equations f=0, g =0, all
infinite places being supposed included among these ordinary places.

* Tt should be added that, by a different method, Picard (I.c., t. i, p. 190) obtains this
extension for double integrals of the first kind (that is, integrals which are everywhere finite)
when there is a single fundamental equation f(w, 2, 2')=0.
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CHAPTER VII

LevEL Praces oF Two UNnirorM FUNCTIONS

112. HiTHERTO, save for rare exceptions, only individual functions of two
variables have been considered at any one time; and we have seen that there
exist continuous aggregates of places where a function has an assigned level
value or a zero value. This property precludes us from establishing definite
relations of inversion between a single function of more than one variable
and the variables of that function. Such relations are highly important in
various branches of the theory of functions of a single variable; they are no
less important when functions involve several independent variables. To
establish them, it is necessary to have as many functions, independent of one
another, as there are variables; and therefore, for the present purpose, we
shall consider two independent functions of z and 2. Moreover, quite apart
from reasons that make inversion a possible necessity, we have seen that it is
desirable to consider simultaneously two independent functions of z and 2.

We still shall limit ourselves throughout to uniform analytic functions ;
and we shall begin with the discussion of the relations between two functions
that are regular everywhere in the finite part of the field of variation. As
we know, every such function can be expressed as a series of positive integral
powers of z and 2/, which (if an infinite series) converges absolutely for finite
values of |z|and |z , and has all its essential singularities outside the finite
part of the field of variation. We know (§ 53) that such a function must
possess zeros somewhere in the field of variation; but it may happen that the
zeros do not occur in the finite part of the field*, and then they occur at the
essential singularities.

We proceed to establish the following theorem :—

Two independent functions, reqular throughout the finite part of the
Jield of variation, vanish simultaneously at some place or places within the
whole field.

* For example, the function e?+# cannot vanish for finite values of z and of 2’; all its zeros,
a continuous aggregate, occur for those values of z and 2’ which make the real part of z+2
negative and infinite.
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113. Let the two functions, everywhere regular, be denoted by f(z, #)
and g (2, 2'); and let a, ' be any place in the finite part of the whole field of
variation for z and z. In view of the proposition to be established, it is
reasonable to assume that neither f(z, z') nor g (z, 2') vanishes at a, a’; if
both should vanish at a, @, the proposition needs no proof; if one of them
should vanish at @, @, but not the other, the following proof will be found
to cover the case.

We consider the immediate vicinity of a, &, and take
z=a+u, 2Z=a+u.

Because f(z, ) and g (2, 2') are regular everywhere in the finite part of the
field of variation, we have expressions for them in the form

iz, 2)=f(a, &)+ [, W)m + (8 W)mia+ ...,
9z 2)=g(a, &)+ (u, W)+ ft, W)Ipa + ...,

where #(u, u'),, represents the aggregate of terms of combined dimension m
in u and ' as contained in the power-series for f; and similarly for the other
homogeneous sets of terms in £, and for the homogeneous sets of terms in g.
In the simplest cases, the integer m is unity and the integer n is unity; in
all cases, both the positive integers m and n are finite.

When m =1 and n=1, the quantities
f(u: u’)ly g(u’) 'u/)l»

are usually independent linear combinations of 4 and «"; their determinant is

the value, at a, a/, of
7 (L9),

z,z

2

which does not vanish everywhere, because the functions f and g are inde-
pendent. If it should happen that J vanishes at a, @', so that there

o o9_2of .09 _

it i
then we have
Sfla+u, o +u)—f(a, a) =pu,u'n+ ...,
fle+u, d+vw)=f(a,ad)—«clg@+u,a +u)—g(a, a')} = (u,u)+ ...,
where the first set of terms ,(u, '), is of order higher than the first set
7w, u'), and usually is not the square of f(u, u'),. If, however,

A g(u, W)} = {5(u, w3
where A 1s a constant, then we should take a new combination

fla+u,a +u)—f(a,a)—«c{g(a+u a +u)—g(a, a’)l
M flat+u, a +u)—f(a, o)
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Similarly for other cases.

We proceed until, at some stage, we obtain two series in u and 4/,
such that the lowest set of terms in one series cannot be expressed solely by
means of the lowest set of terms in the other series; and this stage is
attained after steps that are finite in number, because

7(27)
2, 2
does not vanish identically.

Similarly, if m is greater than unity and n=1; and if m =1, while n is
greater than unity; and if both m and n are greater than unity. In each
case, we obtain a couple of series, the aggregate of terms of lowest dimensions
in the two series not being expressible solely in terms of one another. And
then, because of this independence, the equations

A =f(u) u,)m; B =g(u; ul)n’

where 4 and B are assigned quantities independent of » and «’, determine a
limited number of values of « and «. In particular, let { be the greatest
common measure of m and n, and write

m=pul, n=vl,
and let & be the eliminant of ;(u, u'), and ,(u, u'),, so that
E=ance™+....
Then the equation giving values of u is
(Ume™Con™ + o)™ + .o + {(— Aegn)” — (— Bag,e ¥} =0,

and therefore, if
A=gPm=xP B=AP"=AP"

each value of u is of the type
u=kP,

or, for sufficiently small values of [u|, |4, [, | B, and so of | P|, we have
u=kP, W =FKP,

where | k| and |#| are finite, while some of the quantities £ and %" can be
zero. Manifestly,
&=k, K)m, N=g(k K n;

and, in general, we shall have

u=kP+ P+ ...
w=kP+k'P+ }’
from the relations
A = (u, W)y + 78, UWmyr + }
B =y(“’ W + y(u) Wlpgr + oo '
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After these explanations and inferences, we proceed to shew that it is
possible to choose quantities w and %’ of small moduli, so that the place
a+u, @+ 1s in a small domain of a, @, and so also that

[f(a+u a + )| <|f(a )],
lg(a+u d+u)|<|g(aa)l,
simultaneously. Let
fla,ay=Q+1iR, g(a, a')=8+:T,

where @, R, S, T are real quantities, and neither |Q +<R| nor |S + iT'|
vanishes. Now choose M a small positive quantity, in every case less than
|Q+ 1R |, unless | @ + 7R | happens to be zero and then we take M zero; and
choose an argument 4» such that @ and M cos r have opposite signs and, at
the same time, R and M sin+ have opposite signs. (If R be zero, we can
take 4r equal to either 0 or = and should choose the value giving opposite
signs to @ and M cos+r. Similarly, if @ be zero, with a choice of 4 or §m
for ). Again, choose N a small positive quantity, in every case less than
| S+ T, unless | S + <7 | happens to be zero and then we take N zero; and
choose an argument y such that S and N cosy have opposite signs and, at
the same time, 7' and N sin i have opposite signs. (Arrangements as to
choice of y can be made similar to those for v, if either S or 7' should vanish).
Then evidently

F(@, @)+ Me¥i| < | £(a, @),

lg(a, &)+ Next|<|g(a, ).

Now we have seen that, for sufficiently small values of M and of N, the
relations
Me¥i = (uy W) + £, W)pr + -,

Nexi= (u, W)y + (U, W)pts + ...,
give a limited number of sets of values of the form
u=kP + kP + }
w=KP+k/P+...|°
where | P| is a small magnitude such that
Me¥i=xP", Nexi=rPm™;

thus |« | and |’ | are small, of the same magnitude as P|, while &P+ ...]|,
| k/P? + ...|, are small compared with | P|. For such values, we have

fla+u, o +u)|<|f(a, a)l,
lg(@a+u o +u)|<|g(a, a)l,

which was to be proved.
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Accordingly, we infer that it is possible to pass from a place @, a’ to a
place z, 2, which may be called a place adjacent to a, @’, and which is such as

to give the relations
If (2 7)< | f(a, a)l,
19(z 7)1 <lg (a @),
simultaneously.

Within the finite part of the field of variation, the functions f(z, 2’) and
g (2, 2') are everywhere regular, so that no singularities are encountered in
transitions from a place to an adjacent place. We therefore can pass from
place to place within the finite part of the field of variation, always choosing
the passage so as to give successively decreasing values of | f(z, 2/)| and
19 (2 2).

If at any place ¢, ¢/, one of the two functions (but not both of them)
should vanish—say f (¢, ¢’)=0—then we choose the next place ¢+ u, ¢’ +u/,
so that M is zero, that is, so that « is zero, and such that

Sle+u d+u)=0, ]g(c+u, d+u)|<|g(e )
The choice is always possible for finite values of z and 2/, because the functions
f(z, ) and g (2, 2) are regular for those finite values and consequently can
be expressed as regular power-series.

114. It thus follows that, by an appropriately determinate choice of
successive places at every stage, each place being adjacent to its predecessor,
the moduli of f(z, #) and g (2, #) can be continually decreased so long as
they differ, either or both, from zero. Thus they tend to zero in value, as the
successive places are chosen ; and continued decrease can be effected, so long
as they are not zero.

Moreover, we know that every regular function possesses a zero value or
zero values somewhere within the whole field of variation. If the zero value
does not occur at some ordinary place, then (§ 53) it occurs at the essential
singularity or singularities, as e.g. for the function eP®?!, where P (z, 7') is a
polynomial in z and 2z, when the places for the zero values belong to the
non-finite part of the field.

Hence ultimately, either for finite values of z and #, or for infinite values
of either of them or of both of them, a place will be attained at which both
the moduli | f(z, 2)| and | g (2, 2)| are zero. Such a place is a common zero
of f(2,7) and g(z, 2'); and therefore our theorem—that two functions
f(z, 2) and g(z, #'), regular everywhere in the finite part of the field of
variation, vanish simultaneously somewhere in the whole field—is established.

Ez. Consider the functions

flo )y=e*%, g (a)=a0"*),
both of which are regular for all finite values of z and 7.
Let 247 =log (rmeméi),

z=reft
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where 7, 8, m, n are real constants ; then

Sz, Z)=rremti,

g (2, 2)=rll—mel=m)8i
When 0 < » < 1, we manifestly have

Sz 2)=0, g(57)=0,

when 7 is zero : that is, the two suggested functions acquire zero values for some specified
values of Z (even when z=0) which do not lie in the finite part of the field of variation of
the two variables.

115. Next, consider the case of two uniform analytic functions, each of
them devoid of essential singularities in the finite part of the field of variation,
and each of them possessing continuous aggregates of poles and isolated
unessential singularities. We know, from an earlier proposition (§ 90), that
the functions can be expressed in the forms

Pz ?) ) _R(z 7)
f(zyz/)_m)’ g(z’zl)—s(z’zz),

where P (z, 2), Q (2, 2°), R(z, #/), S(z, #) are functions of z and 2’, which are
regular everywhere in the finite part of the field of variation.

The zero-places of f(z, /) are those of P (z, 7); it may happen that a zero-
place of P (z, 7) is also a zero-place of @ (2, 7), and then the place is an
unessential singularity of f (2, 2) which, among its unlimited set of values there,
can acquire the value zero: that is, the zeros of £ (2, ) are given by the zeros
of P(z, 7). Similarly for g(z, ) and R(z, 7). Hence f(z, 7) and g (2, #)
will vanish simultaneously somewhere in the field of variation, if the functions
P (2, #) and R (2, 7), everywhere regular in the finite part of the field, vanish
simultaneously somewhere in the whole field. But we have proved that these
regular functions P (z, 2) and R (z, 2) must vanish simultaneously at some
place or at some places in the whole field. ~Hence we infer the following
theorem :—

Two independent functions f(z, 2) and g (z, 2), which are uniform and
analytic, and all the essential singularities of which occur only in the non-finite
part of the field of variation, must vanish together at some place or some places
in the whole field of variation.

We infer also, as an immediate corollary, the following further theorem :—

Two independent functions f(z, 2) and g(z, Z), which are uniform and
analytic, and all the essential singularities of which occur only in the non-finite
part of the field of variation, must acquire assigned level values at some place
or some places in the whole field of variation.

For if the assigned level values be a for f(z, 2) and B for g(z, ), the
functions f(z, 2) — a and g (2, 2’) — B satisfy all the conditions imposed upon
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the functions f(z, ') and g (¢, ¢) in the earlier theorem ; the application of
that earlier theorem leads to the result just stated.

A corresponding result holds as regards simultaneous poles for f(z, 2)
and g (2, 7).

In general, a corresponding result does not hold as regards the occurrence
of simultaneous unessential singularities of (z, #/) and g (2, 2').

116. When two functions f(z, z') and g (2, 2’) have a common zero-place,
we need to consider their relations to one another in its immediate vicinity ;
we need also, if possible, to assign an integer which shall represent its multi-
plicity as a common zero-place. Let a, a’ be such a place, so that

fa,ad)=0, g(a, a)=0;
for places in its immediate vicinity, represented by a + u, a’ 4+, we have
f(z, 2)= Kuwu' P (u, «') ePtsw)
= Lusu Q (u, u') eQ)
g (2 2)=K'wu" R (u, w)eBwv)
=Lwut S (u, ) S
Here K, L, K', L’ are constants; s, ¢, §, t are positive integers which can
be zero separately or together; P (u,uw’), Q (u, «), R (u, w’), S (u, w’) are regular
functions of # and 4/, which vanish with » and ». The functions P (u, v)
and R (u, v") are polynomials in «, having as their coefficients regular functions
of «’ which vanish with »”; the functions @ («, u") and S (u, v’) are polynomials
in v/, having as their coefficients regular functions of « which vanish with «.
When w=u"~?f (2, #/) does not vanish with » and «’, we substitute unity for

each of the functions P and @; and similarly when w—*u"~* g (2, Z) does not
vanish with « and 4/, we substitute unity for each of the functions R and 8.

The order of a zero-place for a single function in each variable has already

been defined. For the function f(z, ), it is

s+minz t+ninz,
where m and n are the positive integers, which are the degrees of P and
regarded respectively as polynomials in  and in «’; and m and n are zero, only
when w=su'~t f(z, ) does not vanish with  and «". For the function g (2, ),
it is similarly

S+m'inz ¢ +nin 7,
where m’ and n” are the positive integers, which are the degrees of R and S
regarded respectively as polynomials in % and in #"; and m’ and »’ are zero,
only when u=#u~t g (2, 2’) does not vanish with « and «".

Beyond the factors w*u and w*u”, the relations of f(z, Z) and g (2, ) in
the vicinity of @, o’ depend upon the relations of the functions P or @ (as
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representative of f) and the functions B or S (as representative of g) to one
another. Consider, in particular, the functions

Pu, w)y=um+ ump (W) + ... + pn (@),
where p,, ..., p, are regular functions of «’, vanishing with «’, and
Ru, v)=u™ +umr, (W) + ...+ 1y (&),
where 7y, ..., ryy are regular functions of «’, vanishing with «’. To determine

whether there are common sets of values of » and «/, in the vicinity of » =0
and «' =0, where P and R vanish together, we take

P=0, R=0,

as simultaneous equations, algebraical in ». Eliminating u between them, we
have (save in one case) a resultant which is a function of u’ only ; also, as each
of the quantities p,, ..., Pm, T, ..., I 18 & regular function of «’ vanishing
with 4/, this resultant is of the form

wM b (),
where M 1is a positive integer, chosen so that ¢ (u), a regular function of «/,
does not vanish when %' =0. To the exact determination of M we shall
return later.

The excepted case arises when the resultant vanishes identically. When
the resultant does not vanish identically, the necessary values of %', making P
and R vanish together, are given by

u¥ ¢ (w)=0,

where ¢ (0) is not zero and ¢ (u’) is a regular function. We at once have
u' =0, as a possibility; the associated value of u is u=0. The alternative
possibilities would arise through zeros of the regular function ¢ (u’): but as
¢ (0) is not zero, it is possible to assign a finite positive quantity e, less than
the smallest among the moduli of the zeros of ¢ (u”). In that case, there is
no value of u’ within the range |u’'|< e such that ¢ (') vanishes; and then
the resultant vanishes for no value of 4’ other than »'=0: that is to say,
there is no zero-place for f and g in the immediate vicinity of a, a, other than
a, o 1itself.

117. When the resultant of the two equations P =0 and R =0, which
are algebraical in u, vanishes identically, the inference is that these two
equations in % have common roots, one or more. Let the number of these
common roots be I, and let them be the roots of an equation

U=d+u W)+ ...+ (w)=0,

where %, ..., k; manifestly are regular functions of «' vanishing with '
Then U is a factor of P save as to possible multiplication by a factor e*®,
where a(«") is a regular function of %’ that vanishes with «’; and similarly U
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18 a factor of R, save as to a similar possible limitation. Let the quotient of

P by U be

w4 w™ A (W) e+ (W)
and let the quotient of B by U be

um’—l + um’—l—l 5 (u’) + ...+ It (u')’

where all the quantities f, ..., fn—t, G1, .-+, G- are regular functions of o/
vanishing with «". The conditions, necessary and sufficient to secure this
result, are those which render the relation

@ wm I ) (W UG 4+ Q)
=@ w4t ) (W™ U it D),
an identity: viz. we must have the [ independent determinants, each of

m+m —20—1 rows and m+ m' — 2] — 1 columns (we assume m>m’ for
purposes of statement), which can be formed out of the array

Pr— T, Pe—Ts Ps— T3 eves P — Tm!s Pmidas coveennns s Pms 0 ’ ’ ) 0 s
L 1, Ty e, Tmren s Ty eesseenns ,0, 0, 0, ......
O b ]- > Ty > ) "Tw— > Tm'—1, "'m’: ’ 0 > 0 H] 0 > eereee
L 1 1 N -
1 ) YL P2 3 Pm —1 Pm’ 3 sesees ] Pm—x ) Pm ) 0 b )
O , 1, P, s Pm—2s Prne1s Pms +++»
0, 0, 0 e , Pm

vanishing identically for all values of .

In actual practice with two given functions, we should in general experi-
ence the same arithmetical difficulty as before (§§ 70, 71). Here we are
concerned with the effect of the relative reducibility of the functions; the
foregoing are the / analytical conditions for this reducibility.

When all the conditions for the identical evanescence of these ! deter-
minants are satisfied, P and B have a common factor U: and then all the
zeros of U within the domain are also zeros of P and B. Now these zeros of
U form a continuous aggregate, since U is a regular function; for ! values of
u can be associated with any value of ' in the domain so as to make U

vanish.

118. It thus appears on the one hand that, when the resultant of P and
R, regarded as polynomials in #, does not vanish identically, the zero-place
a, o’ is isolated : that is to say, simultaneous zero-values of P and R cannot
be found, except at @, &, in a region given by

z—aj<e —a'|€¢€,
| |<e | —d'[<e
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where ¢ and ¢ are assigned positive quantities made as small as we please.
And it appears on the other hand that, when the resultant of P and R,
regarded as polynomials in u, does vanish identically, the zero-place a, a’ is
not isolated.

Moreover, in the case when P and R have a common factor U, we can

write
P=Up(u,v), R=Uq(u v),
where all the functions P, R, U, p, q are regular functions of » and %' ; each
of them vanishes when # =0 and ' =0; and each of them is a polynomial in
%, having unity as the coefficient of the highest power of u and, as coefficients
of the succeeding powers of u, regular functions of w which vanish when
' =0. From the construction of U, we may assume that p and ¢ have no
common factor; so that the zero-place of p and ¢ at =0 and »'=0 is
isolated. Now
J(P’ ,>=RJ( : 7)+PJ(U;9,)+U=J(1”'—9, :
U, u, U u, U u, u')

Hence the Jacobian of P and R vanishes for all the aggregate of places
making U vanish, because all these places make P and R vanish. But this
Jacobian does not vanish (except at a, a’) for places in the domain of a, o/,
which make P and R vanish but leave U different from zero. Also, as

f(z, z’) = Kusu'tP (71, w) P, w) }
g (Z, Z/) = LuSu*R (u, u’) B, |

it follows that the Jacobian of the independent regular functions f and g

vanishes for all the aggregate of places making U vanish, while it does not

vanish (except at a, a’) for places in the domain of @, @’ that make fand ¢
vanish but leave U different from zero.

>

These results have followed upon the selection of P (u, w') as the sig-
nificant factor of f in the immediate domain of a, a’, and of R (u, «’) as the
significant factor of g in the same domain. The same results follow upon a
selection of @ (u, w’) and R (u, w’) as the significant factors of f and ¢; like-
wise upon a selection of P (u, u’) and S (u, u’) as these factors, and upon a
selection of @ (u, w') and S (u, ¥ as these factors.

Gathering together all the results, we can summarise them as follows :—

(1) Any two independent functions, uniform, analytic, and devoid of
essential singularities in the finite part of the field of variation of the two
variables z and 2/, possess common zero-places somewhere within the field
of variation :—

(1) In general, each common zero-place of two independent functions,
which are uniform, analytic, and devoid of essential singularities in the
Jinite part of the field of variation of z and 2, is an isolated place, so far
as concerns the vanishing of the two functions —
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(ii1) Less generally, when two such independent functions possess a
common factor, which s necessarily of the same character throughout the
Jinate part of the field of variation and which itself vanishes at the common
zero-place of the two functions, then the common zero-place of the two
Sunctions s mot tsolated ; in s vmmediate vicinaty, the two functions
possess a continuous aggregate of zero-places which belong to the common
Jactor —

(iv) The Jacobian J, of two independent functions f and g, does not
vanish tdentically. It may vanish at a zero-place common to the two
Sunctions. When the common zero-place s vsolated, then f, g, and J do
not stmultaneously vanish at any other place in the immediate vicinity of
that place. When the common zero-place is not vsolated, then f, g, and J
vanish simultaneously at a continuous aggregate of places in the immediate
victnaty of the common zero-place.

119. In the preceding consideration of two functions f(z, ) and g (2, 7')
discussed simultaneously, there has been the fundamental assumption that
the two functions are analytically independent of one another in the sense
that neither of them can be expressed, either implicitly or explicitly, by any
functional relation which, save for the occurrence of f and g, is otherwise free
from variable quantities. Were the assumption not justified, the Jacobian of
the two functions would vanish identically; we then should not possess
sufficient material for the consideration of the common characteristic pro-
perties of £ and g as simultaneous functions of two variables.

But, after the preceding explanations, two limitations can be introduced
as regards a couple of functions. One of these affects them simultaneously:
the other affects them individually: yet neither of them imposes limitations
upon generality, for the purposes of this investigation.

Our discussions will deal with any pair of regular functions, which are not
merely independent in the general sense, but which possess the further
quality that they have no common factor, itself a regular function and
vanishing at places within the domain considered. For any such pair of
regular functions, each simultaneous zero-place is isolated. The zero-place
may be simple or it may be multiple; when it is multiple, the multiplicity is
represented by a definite positive integer.

It will be convenient to use some epithet to imply that two independent
regular functions, existing together in the domain of a place where they
vanish, do not possess a common factor, which is itself a regular function in
that domain and vanishes at the centre of the domain. When a common
factor of that type is not possessed by a couple of such functions, they will be
called free. If on the contrary they do possess a common factor of that type,
they will be called #ted. Accordingly, when we deal with a couple of regular
functions simultaneously, they will be assumed to be both independent and free.
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The other limitation aims at the exclusion of unessential complications,
and 1s suggested by the most general form of a function f(z, 2’) in the
immediate vicinity of a zero a, &', viz.

f(z,2)=K(@—ay(Z —a)YP(z—a,z —a)ePews—a),

Thus (z — a)* is a factor of f(z, z’): at another zero ¢, ¢, it could have another
factor (2 —c)”; that is, it would have a factor (z —a)* (z—¢)°. And so on, for
other zeros. We shall assume that, if f(z, 2’) initially possesses a factor which
is a function of z alone, then f(z, #’) is modified by the removal of that factor
in z alone. Similarly, of course, if it initially possesses a factor which is a
function of # alone, then we shall assume it to be modified by the removal of
that factor also. Any such factor of either variable alone can only contribute
properties characteristic of a function of a single variable. Thus, for instance,
we should not consider p(2) @ (), where the periods of g (z) are unaftfected
by the periods of g (¢'), as a proper quadruply-periodic function; we should
not consider @ (z)sinz’ as a proper triply-periodic function; we should not
consider sin zsin 2’ as a proper doubly-periodic function.

It seems unnecessary to introduce an epithet to indicate the non-composite
character of a function f(z, 2’); in what follows, we shall assume that we are
dealing with functions which are of this non-composite character.

Accordingly we can enunciate the theorem :—

The common zero-places of two functions of z und 2, which are uniform,
unalytic, and devoid of essential singularities in the finite part of the field of
variation, and which are independent and free, ure isoluted places in the field
of variation.

120. An indication has been given of the determination of the integer
which shall represent the multiplicity of an isolated simultaneous zero-place
of two regular functions. In the vicinity of such a place a, o/, we take

z=a+u, Z=d+v;

and then, after the preceding explanations, we can assume that the integers
s and ¢ are zero for f(z, 2’), and that the integers s’ and ¢’ are zero for g (z, 7).
Thus —

f(z, 2)y=KP (u,uw)ePwv),  g(z,2)=LR (u, w)eR ®v),

in the immediate vicinity of u=0, «'=0; and

P(u,w)=um+ w1 p, (W) +... 4+ pu (&),

R(u, w)y=w" +u™ 2 r (&) + ... + 1 (&),
where all the coefficients p,, ..., pm, 7, ..., 7w are regular functions of «’ and
vanish when »"=0. When the eliminant of P (u, ') and R (u, «’), regarded

as polynomials in w, is formed, it is a regular function of « which vanishes
when %’ =0; and so it can be expressed in a form

WA p (i),
F. 14
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where ¢ (0) does not vanish, and where M is a positive integer. This integer
M measures the multiplicity of @, ¢’, as a simultaneous zero of f and g. -

The detailed determination of M can be effected as follows. Let
Pu, v')y=w—p)(u—ps) ... (16— pm),

R(u, w)=u—o0)(U—03) ey, (4~ ony),

where py, ..., pm; 01, ..., o are functions of «’ (regular functions of fractional
or integer powers of u’) all vanishing when «'=0. Their governing terms—
that is, the lowest power of " in each of them, with its appropriate coefficient
——can be determined as in Puiseux’s treatment of algebraic functions. Now,

except as to a constant factor that is of no importance here, the eliminant of
Pand R is

Y

11 (P’I‘ —ay).
r=1

s=1

=

When p,— o, is expressed in terms of «’, every occurring power having a
positive index, let u,.s be the index of the lowest power it contains; then we
see that

M,

m
M= 3 Horss
r=1 1

I

8

which thus gives an expression for the multiplicity M. It is easily established
that the quantity M, thus obtained, is an integer.

The simplest case occurs when, in the expansions

fz,2)=an(z—a)+ay (7 —a)+...
gz )=cy(z—a)+cun(@—a)+...|’

no one of the quantities @y, @, i, Cor, @o Cor — Ci Ay vanishes: the value of

M, for the zero a, &, is unity in this case.

Note. 1If, instead of the functions P and R, we take @ and S, as repre-
sentative of f and g, and construct the eliminant of ¢ and S regarded as
polynomials in «/, the eliminant is

w A (),
where 4 is a regular function of u such that y» (0) is not zero, and M is the
same integer as before. The proof is a simple matter of pure algebra.

121. All the preceding remarks apply to the simultaneous zero-places of
two regular functions f(z, 2') and g(z, 2'). It applies equally to the level
values of two regular functions f(z, 2’) and g (2, 2), say a and B respectively,
where |a and |B] are finite. The functions f(z, #) and g(z, 2') are inde-
pendent, as before. The functions f (z, 2’) —a and g (z, z’) — 8 will be supposed
free, that is, we shall extend the significance of the epithet ¢free,” as applied
to f(z 7) and g(z, 2'), so that it applies to this case also. The functions
Sz 2)—a and g(z, 2/)— B will also be supposed non-composite as regards
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factors which are functions of z alone or functions of 2 alone, as was the case
with f(z, Z) and g(z, #). And, now, we can enunciate the theorem :—

The common level places of two regular functions, which exist together in a
domain of the variables, and which are independent and free, are isolated ; and
the multeplicity of any level place, giving values a and B to f(z, 2) and g (2, 2')
respectively, s the multiplicity of the place, as o simultaneous zero of the

Sunctions f(z,2)—a, g(2,2)- 8.

122.  Further, consider two functions f(z, z’) and g (z, '), independent of
one another, not tied, and existing in a common domain; and suppose that
f(z, 2) has a pole at a place p, p/, which is an ordinary place for g (z, 2), say
a level place for g (2, 2'), (zero being a possible level value there). Then the
place is a common level place for the functions ¢ (z, /) and g (2, #/); and
we know that, if ¢ (z, 2/) and g(z 2') are free, that is, if ¢(z 2') and
g (2, 2)~g (p, p’) possess no common factor which is a regular function of
z, 7 vanishing at p, p’, then the common level place at p, p’ for ¢ (2, 2’) and
g (2, 7) is isolated, and its multiplicity is the index of the lowest power of 2
in the z-eliminant of ¢ (2, 2') and g (2, 2') — g (p, P').

It is convenient to extend the significance of the terms tied and free as
applied to a couple of independent uniform functions f and g. We shall say
that they are tied if, for any constant quantities a and [, either f—a and
g—B; or f—a and (9—B)*; or (f—a)? and g—B; or (f—a)™ and
(g —B)™* (being really two alternatives) possess a common factor which is a
regular function of z and 2z’ having a zero (and so an infinitude of zeros) in
the domain ; and we shall say that the two independent functions f and g are
free, when no commeon factor of that type exists for any one of the combina-
tions. Moreover, we shall also assume that neither f—anor (f— )= nor g — 8
nor (g — B)~* contains any factor, which is a regular function of z alone or of
z' alone and vanishes for one (or for more than one) finite value of the
variable.

On the basis of earlier results, we can now enunciate the following
theorems :—

@) Let f(z,2) and g (2, 2') be two functions, which are unigform, analytic,
und devoid of essential singularities in the finite part of the field of variation of
z and 2, and which are independent and free. The places where one of the
Junctions acquires a level value and where the other has a pole, are isolated;
and the multiplicity of the place for the two functions conjointly is the multi-
plicity of the place as a level-and-zero place for one of the functions and the
reciprocal of the other.

(1) The common poles of two uniform functions, which exist together in «
domain of the variables, and which are independent and free, are isolated;
and the multeplicity of the common pole for the two functions conjointly is the

14—2
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multeplicity of the place as a common zero for the reciprocals of the two
Sunctions jointly.

The theorems follow at once from an earlier theorem by considering the
behaviour of the reciprocal of a function in the immediate vicinity of any pole
of the function.

When we extend the term level value of a uniform function to include

(i) a zero value of the function, this being a unique zero, independent
of the way in which the variables reach the place giving the zero
value :

(i1) a level value a of the function, where |a| is finite, this being a
similarly unique level value of the function:

(ii1) an infinite value of the function, this being a unique infinity of
the function arising at a pole:

then all the theorems, already enunciated concerning two functions, can be
summarised in the one theorem :—

The common level places of two uniform functions, which are uniform,
analytic, and devord of essential singularities in the finite part of the field of
variation of z and 2, and which are independent and free, are isolated ; and
the multiplicity of the level place for the two functions conjontly 1s the index of
the lowest term in the eliminant of the two functions or of their reciprocals or
of either unth the reciprocal of the other, expressed in the vicunity of the place.

Combining this result with the investigation, which settled the order of
multiplicity of the place a, @’ as a level place of the functions f and g and
therefore as a zero of the functions

f(z,z')—a, g(z:z/)_lg;
we have the following corollary :—
Let a, a’ be an isolated common zero of multiplicity M of the functions
F@d)-a, gG2)—B:

then, for values of o and |8 sufficiently small, there are common zeros,
stmple or multiple, of aggregate multeplicity M, of the functions

fld)—a=d, g(z7)-B-5,

which coalesce into the single common zero of multiplicity M of

f(z:z/)_a’ g(zrzl)—B’

when & and B’ vanish.
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UxirorMm PERIODIC FUNCTIONS

123. WE now proceed to consider the property, of such functions as
possess the property, which customarily is called periodicity. Limitation
will be made at this stage to periodicity of the type that is linear and
additive, though the type is only a very particular form of the general
automorphic property, mentioned in Chapter II

In conformity with general usage, we say that two constant quantities w
and o are periods, or a period-pair, or a period, of a function f(z, 2') of two
complex variables, when the relation

fle+ o 2 +0)=f(z27)

1s satisfied for all values of z and of 2. In such an event, the relation

f(z+50,2 +s0')=f(2,7)
is satisfied for all integer values, positive and negative, of s. Moreover, it is
assumed implicitly that o and o' constitute a proper period-pair; that is to
say, a relation

fz+ko, 7+ FEo)=[(2 7)
is not satisfied for all values of z and 2z’ except when k=%, both %k and %
being integers, and that the same relation is not satisfied, even if & =#’, when
the common value of & and &’ is the reciprocal of an integer.

In dealing with periodic functions of a single complex variable, infinitesimal
periods are excluded. Speaking generally, we could say* that, if a uniform
function of a single variable possessed an infinitesimal period, then within
any finite region, however small, round any point, however arbitrary, the
function would acquire the same value an unlimited number of times. The
possibility of the existence of such functions may not be denied; but they
cannot belong to the class of analytic functions. In the case of analytic
functions which are not mere constants, the result of the possession of
infinitesimal periods would be to make practically any point and every point
an essential singularity. Accordingly, so far as concerns functions of a single
variable, the possibility of infinitesimal periods is excluded.

124, We likewise exclude the possibility of infinitesimal periods for
functions of two variables; but the exclusion can be based on different

* See my Theory of Functions, § 105.
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grounds also. For the present purpose, we shall limit ourselves to uniform
analytic functions* of two variables; and we then have a theoremt, due to
Weierstrass, as follows :—

A uniform analytic function of two independent complex variables z and 2’
possesses infinstesimal periods only if @t can be expressed as a function of
az + a'z', where a and &' are any constants.

First, suppose that our function f(z, ) can be expressed in a form
f(z, 2)=F(az +a'?).
Then if we take any two quantities P and P’ such that
aP +a'P =0,
we have
f@+P, 7+ P)=F(az+d'z +aP +a'P’)

=F(az+a'7)

=f(z7);
and therefore when P and P’ are constants, we may regard P and P’ as a
period-pair for f(z, 2’), supposed expressible in the given form. The only
relation between P and P’ is aP +a/P’=0; hence either of them can be
taken infinitesimally small, and the other then is infinitesimally small also.
It follows that, when a function of z and 2’ can be expressed in the form of a
function of az+ a’z’ alone, where @ and @’ are any constants, then it possesses

infinitesimal periods.
Further, writing az + ¢’z = v, we have
of _oF o _oF
0z ov’ 07 ov’
and therefore

Hence when the function is of the form f(az-+a’z’), so that it possesses
infinitesimal periods, the foregoing relation is satisfied. Conversely, by the
theory of equations of this form, the most general integral equation equivalent
to this differential equation is

flz 2)=F(az+a?),
where F is any function whatever of its single argument ; and therefore, when
a function f (z, 2') satisfies the relation

in general (and not merely for an arithmetical pair, or for sets of arithmetical
pairs, of values for z and 2’), it possesses infinitesimal periods.

* The result holds for multiform functions and, under conditions not yet established, possibly
even for functions that have an unlimited number of values for any assigned values of the

variables; see Weierstrass, Ges. Werke, t. ii, p. 69, p. 70.
1 It is established for the case of n variables, Weierstrass, Ges. Werke, t. ii, pp. 62—64.
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Next, suppose that our uniform analytic function is not expressible in a
form F(az+ a'2) for any constants ¢ and o’ whatever; and consider a region
in the field of variation where the function f(z, 2) is regular. No relation

for non-vanishing values of @ and ¢/, is satisfied over the whole of this region;
hence we can take places 2 and 2/, z, and z,” within the region, such that

| Ji2|, where
J' _ af(zla zll) af(zh Zl,)
2 — aZl b aZ]/ >
of (23, 20)  0f (22, 2))
0z, 0z,

is finite and not zero. Also when we take places z; +u, and 2" + u/, 7, + u,
and 2z, +u,, z+v, and 2/ +9), 2, +9, and 2z, +v,, where all the quantities
lun], ' |, T ], (%0 [, |00, |9, [0a], |0 | are infinitesimally small, the quantity
| Ji7, | where

of (&1 +w, 2" +uy ) of (21 + vy, &1+ v))

Jiw' =

02 0z, ’
af(zz + Uy, 2, + uzl) a_f (ZQ + Vs, Zzl + '02/)
02, ’ 0z,

differs from | J3, | only infinitesimally, and therefore its modulus is finite and
not zero.

Consider the possibility of the existence of two periods h and A’. What-
ever these quantities may be, we have generally

2+h, 2 +h
fetn 2+ £ =" Laer Lar),
because the subject of integration is a perfect dlfferentlal. Take a combined
¢-path from z to z+ /% and a ¢-path from 2’ to 2/ + /A, and let
C=z+ht, =2 +Mt,

so that the range of integration is represented by variations of ¢ from 0 to 1;
and then generally

1 4 s

fe+h 2 +b)=f(z z')=hj af(z+hg,zz + R g
0

Lof (z+ht, 2 +h
0 0z’
Suppose now that A and A" are infinitesimal, so that the derivatives of
f(z, 2) differ only infinitesimally in the ¢-range from O to 1 from their values
at £=0; then we have a relation of the form
ofz+u, 2’ +u)  ,,0f (240,72 +7)

+ h’ / ]

0z 0z

Y D as.

S@E+h 2+ H)~f(z2)=h
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where |u/|, |%'], |v],|v"| are infinitesimal of the same order as [A|and |}|,
and may depend upon z and 2. Accordingly, returning in particular to our
two places #z and 2", 2, and 2z, we have

P c o Of (s, 5 w) LOf (i + vy, 2 + )
fla+h 2/ +0)=f(z,2)=h o, +h 207

K

IO WY ACLUE S L AC A

02, 0z,
and so on for any number of places; two will suffice for our purpose.

When ~ and A’ are periods (whether infinitesimal or not), the left-hand
sides vanish. As the equations are valid, when the periods are infinitesimal,
the right-hand sides also vanish ; so that we have

hJ)/ =0, KJy =0

Now J,,/ i1s not zero; hence both A and A’ are zero. In other words, our
uniform analytic function of two variables cannot have infinitesimal periods,
unless it is expressible as a function of a single argument az + o'z, where a
and o are two constants.

125. Next, let o, and o,’, w, and w,, w; and 3, ... be period-pairs for a
uniform analytic function f(z, ); then we have

f+rno +rw+ o+ .., 2+ 10] + 10 + 05 +...) =f (2, 2),

where 7, 1y, 75, ... are any integers, positive or negative, and independent of
one another.

In the case of a uniform analytic function of one variable, it is known
that there are not more than two independent periods and that the ratio of
these pericds for a doubly periodic function cannot be real* ; the last property
can be expressed by saying that if the periods are w, = a+ 18, and o', = o’ + 443,
the determinant

is not zero.

The corresponding theorem+ in the case of uniform analytic functions of
two variables is as follows :—

A uniform analytic function of two variables z and 2’ cannot possess more
than four independent period-pairs w, and o), w, and @y, w; and ws', w, and
w,; and of

ws =05 +18;, o) =a +1f],

* When the ratio is real and commensurable, both periods are integer multiples of one and

the same period ; when the ratio is real and incommensurable, there are infinitesimal periods.

1 It is partly due to Jacobi, Ges. Werke, t. ii, pp. 25—50.
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Jfor all four values of s (the parts a, B, o, B’ being real), the determinant
&, O, a3, a,

/81 2 B2> 1837 64

! ’ / 7
ay, %, &, o

Blt) B 2,’ BSI: B-i,

must not vanish.

126. As a preliminary lemma, we require the following proposition: if
relations

0, = ko, +lw, +mw3}

o) = ko, +lo, + mo,

are satisfied among four period-pairs, where k, [, m are real quantities, then
either there are not more than three linearly independent period-pairs or
there are infinitesimal periods,

First, suppose that k£, [, m are commensurable, and that then each of
them is expressed in its lowest terms. Let d denote the highest common
factor of their numerators, and let M denote the least common multiple of
their denominators; and write

d ., _d ., _d
lﬁ=1—u.k, Z—El, m—M’m,
where &/, I’, m’ are integers; then we have
M

T = Fo, +l'w, + mo,,

M

E 604} = k/(l)l/ =+ l/&)2, + m/ws'.

Now M/d is a fraction in its lowest terms, being an integer only if d is unity;
change M/d into a continued fraction and let p/q be the last convergent
before the final value; then

M p 1
d ¢ Ay
so that
M 1

Now Z:i—lm and u w, manifestly are a period-pair, and therefore also q% w,

d

and ¢ %I o, ; consequently
M M ,
(q?—p>w4 and (q;}l—-—p>m4
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also are a period-pair, that is, »,/d and o,’/d are a period-pair. Let*

’
on

d

@y

E‘=Q4’ =Q4,;

then
MO =Ko, + 1w, +meo;,, MO =kKo+ 1w, +mae,
where the integers M, ¥, I/, m’' have no factor common to all.
Moreover, we can assume that any two of the four quantities have no

common factor. For if two of them, say £” and !’ had a common factor u, the
quantities

/4 U K o, U,

—ot+ —w;, —0 +—w
K w I

are period-pairs, integral in w, and w,’, , and w,’; hence

M m M, , m
4
;94—*&’3, —‘94—7(03,
are a period-pair, say o, and o, ; then as
M m' M m’
’ ’ ’
— Q- —wy=0;, — Q) —— w) = w5,

7
where M, m/, u are integers and Q,, w;, ws, O/, 0y, @, are constituents of
pairs. But we know+ that, in such an event there are two integral com-
binations of w;, w;, {,, and the same two integral combinations of wy, @;, 0,

’

. M . .
because the coefficients m and % are the same in the two relations, such
that w;, w;, , are expressible as integral combinations of the first and
ws, w5, £, are integral combinations of the second ; that is, we have

k; w, + f: w, = linear function of two periods , and Q,,

J 7
S, F — W) = SAME ettt Q/ and Q,,
n

7 ’

and now, in our equations, the integral coefficients ; and ; have no common
factor.
Similarly for the other cases; we can assume, in our relations
MO =Ko, + Ve, +me,, MY =Fo,+w, +mw,,
that no two of the integers M, &, I’, m’ have a common factor.

Accordingly, we have &'/l’ a fraction in its lowest terms. Expressing it
as a continued fraction, and denoting by r/s the last convergent before the
final value, we have

LA
U s Tsl

* Obviously, if d=1, the period-pair w; and w;’ is unchanged.
+ See my Theory of Functions, § 107.
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Then
to, =0,k —rl)y= sMQ, -1’ (ro, + sw, ) —smw;,,
+w = sMQ =1 (reo) + sw,) — sm'wy,
tw =, (s —rl)y=—rMQ, + ¥ (ro, + sw,) + rm’o;,
+ w, = —rMQ, + K (ro, + sw)’) + rm’wy’;
and so the four period-pairs are expressible in terms of three period-pairs
Q,, Q) w;, w; 70+ 50, Te) + S,
Thus there are not more than three linearly independent period-pairs.

Next, suppose that one of the three quantities &, [, m, say k, is incom-
mensurable, while the other two are commensurable. When [, m are expressed
in their lowest terms, let the integer D be the least common multiple of their
denominators, so that we can write

l/
=5

l m=%.
Then

Do, —l'w, —m'w;, =kDo,,
Do/ —l'ew, — Mo, = kDo,

Now kD, like %, is incommensurable; hence, expressing it as an infinite
continued fraction, and denoting two consecutive convergents by p/g and

p'lg, we have

kp=Py 9
¢ 9

where the real quantity 8 is such that 1 >8> —1. Thus

<£+i,> o; and (]—9+i,> ®,
9 99 7 99

are a period-pair, and therefore also

0 4 ,
q<§+ﬁ> Wy — Py, 9(2'*'_/) w, — pw,,

that is,
0 ,

— and ~ @

are a period-pair. We may take ¢’ as large as we please, for the continued
fraction is infinite; and the circumstances thus give rise to infinitesimal
periods.

Next, suppose that two of the three quantities k, [, m are incommensurable,
say k and !, and that m is commensurable, equal to A/u, where A and u are
integers. Then our relations can be taken in the form

B, — Ay = ko, + lpw,,  po, — Aoy = bpo,” + luw,.
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But, writing
’ ’ ’
W5 = po;— Aw;, @5 = pw,; — Ay,

and denoting ku and Iy by k" and I’ respectively, we have

ws=kFo,+ 1w, o =Fo' +!'o)
where %' and !’ are incommensurable, while w; and o, are a period-pair.
Again it is known* that, by successive linear combinations of the period so

always as to give a period, we can change w, into £, (and w,” into ," by the
same algebraic relations) so that

Ia’le%[Qzl; |w2'|<1}|ﬂz,ly
and at the same time have relations
ws=k'o,+1"Q,, o =k +1"0;,
where both %” and [” are incommensurable. The process can be continued

to any extent, by successive combinations of the period-pairs; so ultimately,
we can construct an infinitesimal period-pair.

Lastly, we have the case when all the quantities k, !, m are incom-
mensurable ; and we assume that the ratiosk :/:m also are incommensurablet.
Then we express % as a continued fraction, which of course will be infinite;
taking any convergent r/s, we have

where always » and s are integers, and « is a real quantity such that
1>2>—1. Also let ¢, be the integer nearest to the incommensurable
quantity sl, and ¢, be the integer nearest to the incommensurable quantity
sm; then we have

sl—t, =04, sm—t,=A4,,
where A, and A; are incommensurable quantities, each in numerical value

being less than 4. Thus

z
8w, — 1w, — biw, — Low; = ;@ + Ao, + A0,

x
sw/ —rw, —tw, —t,w; = o) + Mo + A,

Again, as A, is an incommensurable quantity, let it be expressed as a con-
tinued fraction; taking any convergent p/s, where always p and o are
integers, we have

A= P + % ’
o o
* See my Theory of Functions, § 108.

1 The alternative suppositions, for the last case, and for the present case, are left as an
exercise.
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where y is a real quantity such that 1 >y >—1. Also let #; be the integer
nearest to the value of ¢A;, and write

cA; =14V,

where V is an incommensurable real quantity less than 4. We then have
z y°®
o (sw, — 71w, —to, —bw; ) — pw, — L, =0'§(01 +;_(02 +Va,,

Y

z
o (3‘%’ —re) —hw) —t ) - P("z' — bwy = a'g o+ w) + Vay';
g

the quantities on the left-hand side are a period-pair, which can be denoted
by Q, and (.

Now take an advanced convergent for A,; we have ¢ very large, and so
the values of yw,/o and yw, /o are infinitesimal. Take a much more advanced
convergent for k, so that s is very large compared with o; the values of
czw,fs and ocxw//s are infinitesimal. We thus have a new period-pair £,
and £, such that

@x
10 |= 020 +Z @, +Vay| <30 ,
8 g
(
st’|=’a§wl'+;l_/w{+Vw3' <4 ol

Our relations now have the form
=Ko, +Vw, +m'Qs, w0 =Fw,+ Uw,+m'Q),
where the quantities #’, I, m’ fall under one or other of the cases already
considered. Either we have not more than three period-pairs; or we have
infinitesimal periods; or all the quantities %', I’, m’ are incommensurable,

while
[ Qs < dews], 1Q[<d]wf]

In the last event, the same kind of transformation can be adopted ; and by
appropriate choice, we can form a new period-pair Q,, Q, such that

105 < 310Q), Q<300
And so on, in succession. By taking a sufficient number n of transformations,

each of the preceding type, we ultimately can construct a period-pair @, and
®,, such that

EXREAPAREE SPEA P
that is, by taking = sufficiently large, we should have an infinitesimal
period.
It therefore follows that, if we have two relations
Aw, + Bw, + Cw; + Do, =0,
Aw, + Bw, + Cw; + Dw/ =0,
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between four period-pairs, where the coefficients 4, B, C, D are real quantities,
either there are not more than three period-pairs, or there are infinitesimal
periods for the variables.

Accordingly, when we have to deal with uniform analytic functions of
two variables, there is nothing in the preceding analysis to exclude the
possession of even four period-pairs, when these pairs are linearly independent
in respect of combinations between their respective members.

127. For the remainder of the proposition in § 125, it is necessary to
consider the possibility of the existence of five period-pairs: if this be ex-
cluded, then a fortiori we need not consider the existence of more than four
period-pairs.

For this purpose, let there be four period-pairs of the kind postulated in
the theorem such that, if

w0y =0 +18;, @) =a +106y,
(for s =1, 2, 3, 4), the determinant
4, O, O, 0

Bl > B2 ’ BS ’ B4

7 4 / /’

al; aﬂ) as; ad
7 7 Ve 7
ﬂl: B2> 183) Bd
does not vanish. When this last condition is satisfied, we cannot have

relations
My & + My 0y + My 0 +my a, =0,

m By +mafs +myB; +mB, =0,

my o) +my oy + mg a5’ +m, a] =0,

m By + muBy + my By +myB =0,
for any set of real quantities my, m,, m,, m, other than simultaneous zeros.
The exclusion of the first pair of these relations excludes a relation

My @0, + Moy + My a;3 + myw,=0,
and conversely ; and the exclusion of the second pair excludes a relation

Mm@, + My, + mywy + mew, =0,
and conversely. Hence, after the preceding lemma, we infer that our uniform
analytic functions may possess four periods, or fewer than four periods; and

they do not possess, as they cannot be allowed to possess, infinitesimal
periods.

Now suppose that a uniform analytic function f (2, z’) possesses, in addition
to four given linearly independent period-pairs e,, @,"; @;, @5 ; @3, @5 ; w,, ©/;
also a fifth period-pair, say w;, w;. Let

‘ 4 ’ . 7
w5 =5 +1f35, @ =a; + 5.

IRIS - LILLIAD - Université Lille 1



127] PAIRS OF PERIODS 223

Then, with the preceding hypothesis of the non-evanescence of the determi-
nant (&, B, a3, B/) in the customary notation, the equations

as =N, a; +Nn,0, +n30; +n,0,,
Bs =mpBy + 1B +n58; + 0,0,
oy =m0 + ny 0 +ng 0 +n, a
By =m By + nfBy +ny By +n, B,

determine uniquely four real finite quantities n,, n,, n;, n,; and they are such
as to secure and to require the equations

W; = Mo, + Nw, + Nw; + N0,
’__ ’ ’ ’ e
Ws; =MW, + Nowy + Nywy + Ny,

It therefore is necessary to consider the conditions, under which these
equations are possible.

The analytical consideration of the conditions follows a general march
similar to that followed in the establishment of the preceding lemma. The
results therefore will only be stated, without further proof. They will relate
only to the most general case when no one of the six ratios n;:m,:n;: n,, as
determined by the elements of the four period-pairs is an integer; the
alternative is to provide only less general cases. We find

(1) when all the real quantities n,, n,, ns, n, are commensurable,
the formally five period-pairs can be expressed in terms of not more
than four period-pairs:—

(ii) when one (and only one) of these quantities is incommensurable,
then an infinitesimal period-pair exists:—

(iii) when two of these quantities are incommensurable, then cer-
tainly one infinitesimal period-pair exists, and possibly two such pairs
exist :—

(iv) when three of these quantities are incommensurable, then one
infinitesimal period-pair certainly exists, and three such pairs may
exist :—

(v) when four of these quantities are incommensurable, then one

infinitesimal period-pair certainly exists, and four such pairs may
exist.

It therefore follows that for any uniform analytic function, which is really a
function of two (and only two) independent complex variables so that it
cannot possess infinitesimal periods, there may be four period-pairs, and
there cannot be more than four linearly independent period-pairs*.

* It is a tacit assumption, throughout the preceding investigation, that an infinitesimal
period-pair @ and @’ for z and 2’ means a period-pair for which both |w| and |’ are infinitesimal.
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128. Now that we have established the result that a uniform analytic
function of two complex variables cannot possess more than four linearly
independent pairs of periods, so that we should have

f(z + My @, + My, + My + My, 2+ Mo, +myw, + mywy + ’m4w4l) =f(23 2’),
for all integer values of m,, m,, m,, m,, positive or negative, we proceed to
consider the various possible cases that can arise, under the significance of
the result and within the alternatives admitted by the analysis leading to
the result.

For the present purpose, the case when there are no periods needs only
to be mentioned. We then have the customary theory of the uniform
analytic functions of two variables, which has been previously discussed in
some detail.

The remaining cases will be considered in succession.

One pawr of pertods.

129. Let the variables 2z and 2 have the periods a and o, and no other
periods. Take new variables  and «/, where

z=au, a7 —dz=adu,
which is an effective transformation of variables unless (i) both a and o
vanish—a possibility that can be excluded—or (ii) either a or a’ vanishes.

If o vanishes, we take u and 2’ as new variables. If a vanishes, we take
z and v as the variables, where Z=qa'v. In all the cases, denoting the
variables by 4 and v/, we can now take 1, 0 as the pair of periods. Hence
the field of variation of the variables is composed of a strip in the u-plane of
breadth unity, measured parallel to the axis of real variables, and the whole
of the «’-plane; and the uniform function in question can be expressed as a
uniform function of em and ',

Two pairs of periods.
130. Let the periods be

for z, =a =,8}
s, =df’ =gJ’

respectively, in bracketted pairs; manifestly it may be assumed that a and o’
do not simultaneously vanish, and likewise that 8 and 8" do not simultaneously
vanish.

Choose quantities %, I, m, n, such that
ka+ ld=1, kB8+ I8 =0,
ma+nad =0, mB+nf =1
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When one of the two quantities « and o« vanishes, say o/, and neither of the
two quantities B and B vanishes, we take m =0; and when one of the two
quantities 8 and B’ vanishes, say 8, and neither of the two quantities a and
o' vanishes, we take k= 0. As will be seen, all the other possible special
cases are included in the one special case that is to be considered.

The values of k, I, m, n are given by
k(@B -dB)= g, m@aB -aBf)=—d,
l(af —odB)=—8, n(af —dB)= a;
and these values are determinate and finite unless
af —a'B=0,
First, suppose that a8’ — /8 is not zero—which, of course, is the more
general case. Introduce new variables » and ¥/, such that

u=ke+1Z, o =mz+ns;

and then the period-pairs of these new variables are

for u, =1 =0
u’, =0 g =1 ’

respectively, in bracketted pairs. The tield of variation of the variables is
composed of a strip of unit breadth in the u-plane and of a strip of unit
breadth in the w’-plane, the breadth of each of the strips being measured
parallel to the axes of real quantities in the planes. The uniform function in
question can be expressed as a uniform function of ¢ and ¢"%,

Next, suppose that a3 — a’8 is zero—which, of course, is a special case.
As a and o” may not be zero simultaneously, let a be different from zero; and
as B and B may not be zero simultaneously, let B be different from zero.
Then there are two alternatives

(1) when both & and B’ vanish:
(11) when neither o/ nor 8 vanishes, and then we have

a g 0
a'__B_’ =0

say, where ¢ is not zero nor infinite.

As regards (i), the variable z has periods a and B, while the variable 2’ is
devoid of periods: and in order that a and B may be effective distinct periods
for z, we must as usual have the real part of ¢a/8 distinet from zero. The
field of variation of the variables is composed of the customary a-83 parallel-
ogram in the z-plane, and of the whole of the z’-plane; and the uniform
function in question can be expressed as a uniform function of g (2), p’(2),
and 2, where @ (z) is the customary Weierstrassian doubly-periodic function
with periods a and 3.

F. 15
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As regards (ii), we keep the original variable z; and we introduce a
variable v such that
v=27"—cz

When 2z and 2’ have the periods a and «, then v has zero for its period; and
when 2 and 2’ have the periods 8 and @', then again v has zero for its period.
Accordingly, when we take z and v for variables, the periods of z are « and 83,
while the variable v is devoid of periods. The uniform function in question
can be expressed as a uniform function of @ (2), ¢’ (2), and v, with the same
significance as before for p(z) and the same requirement as to the real part

of 1a/B.

Should the requirement as to the real part of va/8 not be satisfied, either
there is an infinitesimal period, or the two pairs are equivalent to one pair
only. In the former case, there is no proper uniform function with the
periods; in the latter, the periods are not effectively two pairs of periods.

Three pairs of periods.

131. Taking the variables to be z and 2’ as before, let the periods be
for 2z, =a} =8\ ='Y}
zl, —a - BI J — ryl
where manifestly no pair of quantities in a column can vanish simultaneously.
Thus a can vanish, and &’ can vanish; as they may not vanish together, there
are three possibilities for the a, o’ pair. Similarly for each of the other two

pairs; so that there are twenty-seven possibilities in all. They can be set out
as follows.

A. When all the quantities o, 8, v’ vanish, the period-tableau is

<gi gi o). (4);

no one of the quantities a, B, v can vanish: there is one case.

B. Let two of the three guantities ', 8, 4’ vanish, but not the third of
them; there are three possibilities. When o' is the one which
does not vanish, then neither a nor 8 can vanish; and we can have
two alternatives, viz. y vanishing, or v not vanishing. The period-
tableaux are

(a, B, 0) (a, B, 7)
0,0, «/, (By; \0,0, v/, (By;
each is typical of three cases.
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C. Let one of the three quantities o, B, 4’ vanish, but not the other
two; there are three possibilities. When o vanishes, then a cannot
vanish: and as 8" and " do not vanish in that event, we can have
four alternatives, viz., 8 and ¢, either vanishing or not vanishing,
independently of one another. The period-tableaux are

G 7). @ ©am, ();

a,B,O) (a,0,0)

(0) B’; 'Yl 3 (03); 0, B,’ ')’, > (04)7
each 1s typical of three cases.

D. Let no one of the three quantities ', 8, ¥" vanish; there is only a
single possibility. But as regards a, B, v, there are eight alter-

natives, viz., they may either vanish or not vanish, independently
of one another. The period-tableaux are

» B 0,8, v
<:” Bl’ z’> H (Dl), al: B/: z,) ’ (D'Z);

(O, 0, fy> (0, 0, 0)

o, B, 9/, (Ds); \d, B, v/, (D).

Among these, (D;) and (D,) are one case each; (D,) and (D,) are,
each of them, typical of three cases.

132. As regards the kinds of functions considered, no generality can be
lost by assuming that a function is substantially unaltered

(i) when one period-pair is interchanged with another period-pair: or

(i) when linear transformations are effected upon the variables, coupled
with corresponding linear transformations upon the period-pairs:
and, in particular, when the variables are interchanged provided
that the periods are interchanged at the same time, each combined
period-pair being conserved.

Under the first of these assumptions, the three cases typified by (B,)
become one case only, of which (B,) will be taken as the tableau of periods.
The same applies to (By), (C), (C2), (Cs), (Cy), (D,), and (D), in succession.

As regards (B,), when we replace the variable z by u, where

’

u=z-"Lz,

(g g g) ;

the case becomes (B,), and therefore needs no separate discussion,

the periods for u and 2" are

15—2
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It is convenient to consider next the case (D). Let four quantities
k, I, m, n be chosen so that
ka+ ld=1, kB+ I8'=0)
ma+na' =0, mB+nB =1

their values are given by

k(@B —aB)y= g, m@B—aB)=—a }

l(ap —dB)=—B, n(@B—-adB)= af’
When a8’ — '8 does not vanish, the values of &, I, m, n are determinate and
finite ; when it does vanish, the selection cannot be made.

Accordingly, in the first place, suppose that a8 —a'3 does not vanish.
No generality is then lost by assuming that y8’—«'8 does not vanish and
also that ay’ — a'y does not vanish; for the alternative hypothesis as to each
of these magnitudes leads, by the permissible interchange of period-pairs, to
the case when aB’ —a'B vanishes—a case yet to be considered. Now write

u=lkz+1z, v =mz+ns,
p=ky + ly'=(y8' —+'B) + (a8 — dB),
p=my+ny' =(ay —dy)+ (@B —dp),
where the new variables w and u’ are independent of one another because

kn —Im, =(af’ —a’B)™, is not zero. Thus the uniform function in question
becomes a uniform function of u and «’, with the tableau of periods

<1, 0, M)
0,1, u'/.

In the second place, suppose that a8’ — «’8 does vanish. Then

a' 4
-
a B
say. Introduce two new variables » and «’, defined by the relations
’ ’
u=ﬁ——'yi , W=7 —cz
’ Y —cy

which are definite and provide independent variables when " —cy does not
vanish. The period-tableau for u and «’ is

(a) B’ 0 >

0, 0, v —cv/;

and so the case is inclusible in (B,), provided ' — ¢y does not vanish. If
however ¢ — ¢y does vanish, so that

’

=/3;’=
B

=C,

QR
2R
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we retain the variable z and take a new independent variable v, where
v=u'— cu; the period-tableau for z and v is

(a, B, 'y>

0, 0, 0/,

and so the case is inclusible in (4). Thus no new kind of function, other
than those already retained, arises out of (D,) when a8’ —a’/8=0.

Now consider the cases under (C). The case (C)) is included in (D))
unless By — B’y vanishes. When this quantity does vanish, we have

B_~o
o= = k,
B
say; we take a new variable u, where u =2z — k2, and then the period-tableau

for v and 72’ 1s
(a, 0, 0)
0, 8,9/,

that is, the case is inclusible in (B:). Thus no new kind of function, other
than those already retained, arises out of (C)).

The case (C,) is inclusible in (D,).

The case (C;), by interchange of period-pairs, becomes (C:) and so is
inclusible in (D).

The case (C,), by interchange of variables together with the proper inter-
change of periods, becomes (B,).

Similarly for the cases under (D). The case (D,), by interchange of
variables together with the proper interchange of periods, becomes (C,) and
so provides no new kind of function, In the same way, the case (D;) becomes
(B,), which is inclusible in (B,); it therefore provides no new kind of function.
And, in the same way also, the case (D,) becomes (4).

Hence the surviving independent cases are (4); (B,); and the case which
has emerged from (D;). These will be considered now in succession.

133. We can dismiss the case (4) very briefly. There are no periods
for 2. There are three periods for z; so that, in effect, the uniform function
is periodic in & single variable only. But, in such an event, there cannot be
more than two periods at the utmost*; hence the case either is impossible,
or is degenerate by falling into a class of doubly periodic functions of two
variables already considered.

The case (B,) can also be dismissed briefly. In all the functions which it
provides, the double periodicity in z alone and the single periodicity in 2/
alone are independent of one another. Even when the double periodicity

* Theory of Functions, § 108,
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does not degenerate, the function in question is a uniform function of
9 (2, a, B)—with @’ (2, ¢, B)—and e™¥77'; its triple periodicity in the two
variables combined is not a proper triple periodicity, for it is resoluble into
the double periodicity in one variable alone and the independent single
periodicity in the other variable alone.

It remains to consider the case which has emerged from (D,). This case
provides uniform triply periodic functions, for which the triple periodicity is
proper and not resoluble as it is in the case (B,). We have seen that, without
any loss of substantial generality, the tableau of periods for the variables z
and 2’ can be taken in the form

where neither w nor u’ vanishes.

Further, both x4 and p' cannot be purely real. If, for instance, w were
real and commensurable (equal to p/q, say, where p and ¢ are integers), then
a set of perlods is

(1: 0> q,M—P)
O, 1’ qﬂ', >

(07 a)

which is an instance of (B,). Similarly, if u’ were real and commensurable.

that is,

If pand ' were real and, after the foregoing cases, were incommensurable,
then the functiom would have infinitesimal periods. Thus let the supposed
incommensurable quantity u be expressed as a continued fraction and take
an advanced convergent to its value, say p/q; then

p, €
=—+——,
| » g ¢

where 0 <|e| <1, so that
€
qur P—q-

Thus a set of periods is

L0, -
q .
0, 1, gu’
As p is incommensurable, so also is qu’; let it be expressed as a continued

fraction and take a convergent r/s to its value, so that

s _T .M
qp —;+sz’

where 0 < {7 <1; thus

sqp.’—r=£’.
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Accordingly, a set of periods is

1, 0, e§
q

0, 1, n%

When we take s very large and ¢/s also very large, the quantities
8 1
€ é , and n ‘; ’

are infinitesimal: that is, we should have an infinitesimal period-pair—a
possibility that is excluded. Thus x and ' cannot be simultaneously real.

The most general case arises when neither u nor w’ is real : and we shall
assume that, henceforward, we are dealing with this case. It is to be remem-
bered that, in effecting the linear transformation upon the variables so that
1,0; and 0, 1; are two period-pairs, we have used the constants of relation.

Moreover, as the periods in the tableau can be linearly combined in
simultaneous pairs, we have

p+p.14¢.0, p'+p.0+4¢q.1,
that is,
P Bt
as a period-pair, p and ¢ being any independent integers; and this period-
pair can replace p and u’in the tableau, for any values of p and ¢. Let
these integers be chosen so that the real parts of w+p and p'+gq, say
R(u+p) and R (u' +q), satisfy the conditions

0ZR(p+p)<l, 0ZR(w+q)<L

Assuming this done it follows that, without any loss of generality in the period-

tableau
(0,7 %)
0,1, /)’

0zR(u)<1, 02R(p)<1,

while neither of the quantities p and w' is purely real; moreover, this s
effectively the general tableau for the proper triple periodicity of uniform
JSunctions of two variables.

we can assume that

134. The field of variation of the two independent variables occurring in
uniform triply periodic functions can be assigned in two ways, which can be
used in complementary fashion and will leave open an element of arbitrary
choice. Let ¢ and ¢’ denote simultaneous values of the variables z and 2’ for
purposes of convenience we shall assume that they are a pair of ordinary non-
zero places of two uniform triply periodic functions with which we may have
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to deal. Moreover, we shall assume at once that the functions in question
possess no essential singularities for finite values of the variables; and we

shall take
1, 0, /1,)
(0, 1,

as the tableau of the periods, with the due restrictions on w and wx’.

Owing to the period-pair 1, 0, we can reduce any point in the z-plane to
a point in, or upon the boundary of, a strip enclosing ¢, without thereby
affecting the position of 2/ in its plane. Similarly owing to the period-pair
0, 1, we can reduce any point in the z’-plane to a point in, or upon the
boundary of, a strip enclosing ¢, without thereby affecting the position of z
in its plane. Accordingly construct in the z-plane a parallelogram having
¢ c+1,¢+u, ¢+ 1+ pasits angular points; and produce, to infinity in both
directions, the side joining ¢ to ¢+ x and the side joining ¢+ 1 to c+1 + p.
Similarly construct in the z-plane a parallelogram having ¢, ¢’ + 1, ¢ + g/,
¢+ 1+ 4 as its angular points: and produce, to infinity in both directions,
the side joining ¢’ to ¢’ + 4’ and the side joining ¢’+ 1 to ¢+ 1 + u'.

Then, for our triply periodic functions, we can choose a complete field of
variation in two ways. By the first choice, we allow 2z to vary over the
parallelogram constructed in its plane, while we allow 2" to vary over the
strip between the two infinite lines drawn in its plane. By the second choice,
we allow 2/ to vary over the parallelogram constructed in its plane, while we
allow z to vary over the strip between the two infinite lines drawn in its
plane. For special purposes, it may prove convenient to contemplate both
the fields simultaneously, even though each field by itself is complete for the
triply periodic functions.

But we do not obtain a complete field if we limit the simultaneous
variations of z and 2/ to the two parallelograms drawn in the two planes.
For, in effect, such a field would give

1, u, O, 0>
(0, 0,1,

as the period-tableau; and then there would emerge a repeated double
periodicity, one in z alone, the other in 2’ alone; that is, we should have a
degenerate quadruply periodic function, instead of a triply periodic function.

Four pairs of periods.
135. Again denoting the variables by z and 2/, let the periods be
for z, =a} =B]‘ =ry} =8}
Z’, —d ’ =B;J’ =ryl > =8’ 4
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where manifestly no pair of quantities in a column can vanish simultaneously.
Thus there are three possibilities for each pair of periods; and each possi-
bility for a pair is unaffected by the possibilities for any other pair. Hence
there are eighty-one possibilities in all; they can be set out in a scheme, as
follows.

A. When all the quantities @, &, 4/, 8 vanish, the period-tableau is

@%&&mx

no one of the quantities a, B3, v, 8 can vanish ; there is one case.

B. Let three of the quantities o, &, 4/, 8 vanish, but not the fourth;
there are four possibilities. When & is the one which does not
vanish, then neither a nor 8 nor 4 can vanish; while § may or
may not vanish. Thus the period-tableaux are

<a5 B! Y, 0) (a: B’ v, 8)
0! O; 07 8, H (-Bl)a 01 O) 0) 8’ H (BZ)!
each is typical of four cases.

C. Let two of the quantities o, 8, ', &’ vanish, but not the other two.
The period-tableaux are

@ﬁygwm@ﬁygm%

<a, B 0, 8> (a, B0, 0>
01 0: 'YI; 8/ > (03); 07 0! 'Y/: 8, ) (04),
each is typical of six cases.

D. Let one, but only one, of the quantities o, &, v, & vanish. The
period-tableaux are

@?%me&?kgwm;
G5 v, 0 @& %)
&y e) oy 6 ars),
(8 v 8) s (8 v 8), on:

each 1s typical of four cases.
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E. Let no one of the quantities o', 8', v, § vanish. The period-tableaux
are

(v y ) (B; @5y 5 &gy ) (E;

(0, 0, 0, 8> <0, 0, 0, 0)

a’) B,: '7', 8/ 3 (E4); a”: B’) 'YI, 8, 3 (E’i);
of these, (X)) and (F;) are each one case; (E,) and (E,) are each
typical of four cases; and (Zj) is typical of six cases.

136. As regards the kinds of functions considered, the same assumptions,
as to the interchangeability of period-pairs and as to the linear transformations
of the variables without detriment to the generality of the functions, will be
made as were made (§ 132) in the discussion of the triple periodicity.

Consequently all the cases, of which each tableau is typical, become
merged into a single case.

The cases (4) and (E;) are impossible, or else the periods degenerate ;
there cannot be uniform functions, periodic in a single variable and having
four distinet periods for that variable.

The cases (B,), (By), (Ds), (E,) are impossible, or else the periods degene-
rate; there cannot be uniform functions, periodic in a single variable and
having three distinct periods in that variable.

By taking a variable u instead of 2z, where
u=2z— 1, 2,
Y

the tableau of periods in (C,) is changed to a tableau of periods for » and 2z’
represented by (Cs) or (C,). Also by interchange of period-pairs, (C;) becomes
(Cy); hence (0,) and (C,) are the only cases under (C) that require con-
sideration.

By interchange of variables and the proper interchange of periods, (Dj),
(Ds), (D7) become ((,), and so require no separate discussion; and similarly
(Z;) becomes (0), and can therefore be omitted.

By interchange of period-pairs, (D,) and (D,) become (D,) and so they
require no separate discussion.

By interchange of variables and the proper interchange of periods, (£,)
becomes (D,) and can therefore be omitted.

Consequently, the cases that survive for further consideration are (C)),
(CL), (Do), (D), (Ey).
As regards (D,), change the variables to « and «’ by the relations
z=au, 2 =R,
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and write 8 =0\, d=au, v =B\, §=8y"; the period-tableau for the

variables # and ' is
(1, 0, A, ,u)
0’ 1’ XI, /"/ )

which temporarily will be called (F).
As regards ((,), a similar change of variables, viz.,
z=au, 2 =384,
leads to a special form of the period-tableau (F) in which A’ is zero.
Assuming this included in (#), we have no new case out of (Cb).

As regards (C,), we have a function, which is doubly periodic in z alone
with periods @ and B, and is also doubly periodic in 2" alone with periods v’
and &. The functions thus provided are undoubtedly quadruply periodic,
but the periodicity has an isolated distribution; they will therefore be
omitted, as not belonging to the class of functions having proper quadruple
periodicity.

As regards (D,) and (E,), we effect linear transformations of the variables
of the type

u=kz+1lZ, uw=mz+n7,
where the quantities %, I, m, n are determined by relations

ky+ly'=1, my+ny =0,

k6+18=0, md+nd=1.

Different cases arise as under (D,) in the discussion of triple periodicity: and
we find either

(1) a period-tableau, with new variables, represented by (F); or
(i1) cases already decided; or
(ill) cases that are impossible or degenerate.

Consequently it follows that properly quadruply periodic functions, which
are uniform and involve only two variables, can be modified as to their
variables so that they have

(1, 0, A\, ,u.)
0, 1, N, o
for their period-tablean.

137. Now it is a property of quadruply periodic uniform functions, on
the Riemann theory, that (for this tableau) the relation
N=p
(or else A=p) holds. Further, Appell * has proved, by analysis and reasoning
quite different from those adopted for the discussion of functions on a Riemann

* Liouville, 4m¢ Sér., t. vii (1891), pp. 157 sqq.
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surface, that this relation holds in general for a properly quadruply periodic
uniform function, that is, by change of the variables and by the association of
appropriate factors, the function can be made to depend upon others which
possess this property. But under both theories, the property emerges from
the discussion of the functions themselves, whereas the preceding investigation
deals only (or mainly) with the mere transformation of the periods; the
property apparently cannot be deduced at this stage solely from the preceding
considerations.

Just as was the case with the triple periodicity when the period-tableau
bad been rendered canonical, so here also we can infer (without any reference
to a property A'=pu or A= u’) that all the quantities A, X', u, u’ cannot be
wholly real; and in the most general case they will be complex and such that
neither of the quantities \'/u, My, is real. The course of the argument for
the inference and its details are so similar to those in the earlier discussion
that no formal exposition will be made. Moreover, the quantity A/u is not
real, nor is the quantity A'/u’; both statements can be established by shewing
that the contrary event would lead to a zero-period for commensurable reality
and to an infinitesimal period for incommensurable reality.

138. One difficulty, however, now arises; it is connected with the
geometrical representation of two independent complex variables, which
has already been discussed. Putting aside for the moment the method of
representation in four-dimensional space, partly because of the difficulty of
framing mental pictures in such a region, and partly because the representation
does not by itself seem to retain sufficiently the individuality of the variables,
we have the representation by means of the combined points in the z-plane
and the z-plane.

But we cannot construct a region in the z-plane and a region in the
Z-plane that shall suffice for the field of variation of z and 2" within their

0 u A

periods. Take any origins in those planes; in the z-plane, let the points
a, b, ¢ represent the values 1, \, u; and in the z’-plane, let the points o/, ', ¢
represent the values 1, N, u'; and complete the parallelograms as in the
figures, so that the points a, B3, , 8 respectively represent the values A + g,
14+ 4,14\ 14X+, and similarly in the 2'-plane. No one parallelogram
such as OaBc0 is sufficient for the representation of z; for there is a portion
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of the parallelogram ObacO not included, and there is a portion of the paral-
lelogram OaybO not included. The double parallelogram OaybacO is not
sufficient, because there is a portion of the parallelogram OaBcO not included ;
moreover, the whole plane could not be covered once and once only by
repetitions of the double parallelogram keeping unchanged the orientations
of the sides. In the figure, the parallelogram OaBcO is partly excessive and
partly deficient; for the interior of the small parallelogram between ab, by,
aB, Bc is reducible to another part of OaBcO. The triple parallelogram
OaydacO is excessive ; for much of its area (the part outside the parallelogram
0OaBc0) is “reducible” to the area within that parallelogram, and also the
whole plane could not be covered, once and once only, by repetitions of the
triple parallelogram keeping unchanged the orientations of its sides.

The same remarks apply to the z/-plane, in connection with the figure as
drawn.

Thus, neither by means of parallelograms, nor by means of strips in
the two planes of reference, is it possible to obtain definite unique and
complete limited fields of variation for z and 2/, that shall discharge for
quadruply periodic functions of two variables the same duty as is discharged
for doubly periodic functions of a single variable by the customary period-
parallelogram,

But by taking an associated two-plane variation of the real variables
z,vy, #,y, the deficiency can be supplied for one purpose. This representation
1s as follows*. For a quadruply periodic function, with the period-tableau

1, 0, A, p
(0, 1, N, ;/«') ’
we resolve A, u, N/, 1’ into their real and imaginary parts, say
A=a+1b, p=c+id, N=d +d, p=c+d;

then every place, differing from 2z, 2’ only by multiples of the periods, can be
represented by

z+y+pt+r(a+b)+s(c+id),

&+t +q+r(a +b)+s(c +id).
Take two planes, one of them to represent the variations of y and g with
reference to O’y and Oy’ as rectangular axes, the other of them to represent
the variations of « and 2’ with reference to Oz and O’ as rectangular axes.
In the y, ¥ plane, let B be the point b, ¥’ and D the peint d, d’; and com-
plete the parallelogram DO'BF. In the z, «" plane, let 0OA =1 and OC=1;
and complete the square COAE.

Then the integers » and s can be chosen, say equal to 7 and ¢, so that
the point

y+rb+sd, y+rv+sd,

* For this suggestion I am indebted to Professor W. Burnside, who communicated it to me

in a letter dated 14 January 1914.
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lies within or on the boundary of the parallelogram O’'BFD ; let this point
be Q. Then every point, which is equivalent to ¥, %/, in the sense that its
coordinates are y + rb+sd, ¥’ + b’ +sd’, is equivalent to @ and lies outside
the selected parallelogram.

Y z
D F c E
Q
P
B
o’ Yy 0 A z

Again the integers p and ¢ can be chosen, say equal to p” and ¢’, so that
the point
x+p +ra+sc, y+q +ra+5¢
lies within or on the boundary of the square OAEC; let this point be P.
Then every point, which is equivalent to z+7'a+8c, y+r'a’+ ¢, in the
sense that its coordinates are z+p+r'a+sc, y+q+r'a’ + ¢, is equivalent
to P, and lies outside the selected square.

It follows that, in connection with a place 2z, 2/, and with all places
equivalent to 1t in the form

z+p+rait+su, 2+ q+rN +sy

we can select a unique point @ within the y, y’ parallelogram, and then
associate with it another unique point P within the z, 2" square. We take
the point-pair QP as representative of the whole set of places that, in
the foregoing sense, are equivalent to 2, z’; it is given by the specially
selected place

2+p +rAtsu, g +N 4w

Uniform triply periodic functions in generol.

139. It is known (Chap. v) that a uniform function f(z, '), which can
have poles and unessential singularities but which has no essential singularity
lying within the finite part of the field of variation, can be expressed in the

form
nN_9(2)
f(z’z)_\p(z,z’)’

where ¢ (2, 2’) and ¥ (2, 2') are everywhere regular within the finite part of
the field of variation.
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We shall therefore proceed from this result, specially for the purpose of
deducing* some initial properties of triply periodic functions that are uniform.
We denote the period-pairs by the tableau

1, 0, u
<0, 1, ,u,'>'
flz+1,2)=f(z2),

and because the functions ¢ (z, 2) and + (z, 2") are regular, each of the equal
fractions

Now because

p(z+1,2) Y(z+1,7)

$a2) — V@)
derived from the equation expressing the 1, 0 periodicity of f, is devoid of
zeros and of poles and of unessential singularities for finite values of the
variables: hence, as in § 79, the common value of the fractions is of the form

e0®7),

where g (z, 2') is a regular function of the variables. Consequently
d(z+1,2)=¢(z,7) e
¢@+Lﬂ=v@¢wwm}

Similarly, through the 0, 1 periodicity of f, we have the relations
b(z,2+1)=¢(z 2') et&®
w@%+n=¢@/nwm}’

where also A (2, 2') is a regular function of the variables.
In order that the two sets of relations may coexist, we must have
bd(z+1, 2 +1)=¢ (2 2)evn7Tthaz,
b (z+1, 7 +1)=(z &) er@rhienna,
and similarly for 4 (2, 2’); therefore

gz, 2 +1)—g (2, 2)=h(z+1,2)=h (2, 7), (mod. 2m).
Let
92,2 +1)—g(2,2)—2kmi=h(z+1, 2)—h (2, 2) - 2lms,

where k— ! is an integer: manifestly, either & or I could be taken equal to
zero without loss of generality. Now suppose a function X (2, z') determined

such that
Az+1,2)—N(2,2)=g (2, 2') — 2kme JL

Az, 2+ 1)— A (2, 2)=h (2, ¢) — 2lmwiz

which two equations are consistent because of the foregoing relation between
gand k. If then

b (2, 2Y=¢p (2, 2)e @2, A (2,2)=Y (s 2) e B2,

* This particular investigation follows the earlier sections of Appell’s memoir already quoted,
§ 137.
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we have

/ _gb,(z, Z/)
f(z,z)_WZZ')’

where the functions ¢, and , satisfy the relations
$(z+1,2)=i (2, 2) e”‘”’} Yi(z+ 1, 2) =, (2, 7' ) e
951 (Z’ Z" + 1) = 4)1 (Z: Z’) e‘_’ln-iz ’ '\1’1 (Z; Zl + ].) = \Ifl (Z, Z/) 621"”.5 )
The function f(z, 2") under consideration has u and u’ for a third pair of
periods. Proceeding as with the other pairs 1, 0 and 0, 1, we have
4)1 (Z + My Zl + /"'I) — \”'l (Z-I— M, 2, + /"1) — em(z,;,/)
¢ (2, 2) Vi (2, &) ’
where m (z, 2') is a regular function throughout the domain. By the earlier
relations which are satisfied by ¢, and +,, and from the relation
$r(z+1+p, 2 +u)
di(z+1,7)

m(z+1,2)=m(z &)+ 2mi(a+ky');

= em(z+1,z’l,

we find
and similarly

m(z, 2 +1)=m(z 2)+ 2w (B +un);
where a and 3 are integers. Let

m(z,2)y=M (2, 2) +2mi (a + kp') 2 + 2 (B + lun) 2,
so that
Mi+1,2)Y=M(z2,2), Mz 2+1)=M(z 7);

then both ¢, and +, satisfy the relations
Y(z+1, 2)=N(z, 2') e
Y (2, 2 + 1) =N (2, 2) ¥ )
N (z + p, Z+ “’) =9 (2, Z/) ermilatku)ztamtB+Hu) 2 + Mz, 7)
where M (z, ) is periodic with 1, 0 and 0, 1 for period-pairs, and a, 8, k—1

are integers.

The triple theta-functions.

140. The formally simplest cases arise when we take
k=0, 1=0, a=—2, B=—=2 Mz )= —2mi(u+ ),

and when we require that the functions shall be only triply periodic and
must not be quadruply periodic. Then

Y(z+1,2)=9(s 2),
S(z, 2 +1)=%(z, 7)),
S (z + u, 2+ F,’) =9 (z, z’) e-eri(?z+2Z')—21r‘i(y.+u'),

which (as will appear presently) are equations characteristic of functions that
are triply periodic actually (or save as to a factor).
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Without enquiring into the comprehensiveness of this set of functions
Y (2, 2°), we see that a large class of functions, which are strictly periodic in
three pairs of periods, can be expressed as quotients of these pseudo-periodic
functions. Even at the risk of a little confusion (because the title “triple
theta-function” has hitherto been assigned to uniform functions of three
variables which are similarly pseudo-periodic in six period-pairs), it will be
convenient to call certain functions, satisfying relations similar to those
satisfied by © (z, 2'), triple theta-functions.

We now proceed to a more detailed consideration of their simplest
properties, obtaining the above characteristic equations in a different manner.

141. We denote by 1,0; 0, 1; p, ¢'; the period-pairs in the variables
z, 2. Owing specially to the first two period-pairs, we are led to consider
functions expressible in extended Fourier-series in the form

0(z, 7)) = E § Ay, €20V iz (20 iz

Here ¢ and ¢’ are constants, taken to be integers; m and n are integers,
ranging from — o to + oo independently of one another; and the constant
coefficients a,, are supposed to be such as to secure the absolute convergence
of the double series.

We cannot at once declare, from the indices, that ¢ and ¢’ are 0 or 1,
each of them. Thus, if o were 2, we could substitute zero for it by changing
m into m— 1, so far as the variable part of the term is concerned; but the
change could not necessarily be made in the coefficient, for there is no know-
ledge of the way (if any) in which an, contains o or ¢’. But we have

6(z+1,2)=(=1) 0(s, 2,
0(z,7 +1)=(=1)0(z ?);
and so we can infer that, so far as o and ¢’ are concerned, all the possibilities

are covered by taking o, o' =0,1 in any combination: that is, four cases
arise through this source alone.

142. Our function 6 (z, 7/) is to have p and u’ as periods or pseudo-
periods; so we form 6(z+ p, 2+ p), which is

§ § amne(2m+(r)m+ en+e’) mie'+ @m-to)wizt @nto)miz|
Adopting the usual process for dealing with the periodicity (actual, or save
as to a factor) of a uniform function, we compare the coefficients of terms in
0(z,2) and 6(z+p, 2+ p'); and different possibilities oceur, according to
the different methods of grouping the terms. We definitely choose (for
reasons that will appear very soon) to group the term in 6 (z+u, 2 +u'),
which involves @y, with the term in 8 (z, z), which involves @mi1,n1- AS

6 (z, z,) — 22 Umtr,nat e(2m+0)1riz+ (en+o’) m’z’+2ni(z+z')’

F. 16
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we have
. 0 (z+p & +p)=Be*me+9 0 (z, 7),
if Amn elemta)min+ @nto')min’ — Ba,, 1,041
where B is taken to be a constant, independent of m and n. Let
q=eirin, g' = edri;
and take new quantities cmn, connected with the quantities amn by the

relation

2 7 2,
G = Cmn q(2m+cr) q (en+0o’) ;

then
mn = Bq4q,4 Comt1,n4+1
= Acmia,nt1s
say. The pseudo-periodicity of 8 (z, 2°) is now exhibited in the property

0 (Z +u, 7+ /I/I) = 4 e rmietd)—mipte) (Z, ZI).
Further, let
A= =(=1)"%;

the difference-equation for the quantities ¢,,, becomes
Comp, = €™ Cmti,n410
Having regard to the form of this relation, we take

Conm = ettmilpm-tp'n) +ay m—n) +ag m—n)+...

— erri (pm--p'n) ¢ (,m — n);
the difference-equation then is satisfied if
prp =X\
and there is no restriction, beyond the requirements that secure the con-

vergence of @(z, 2’), upon the function ¢. Accordingly, the form of
0(z,7) is

0 (Z, Z’) =3 (__ 1)mp+np' q(?m+o')z q’(211+vr')’ 4) (’m _ n) plemAo) izt @nto')ymid
Also, p and p" always will be made integers—either 0 or 1; hence
A= (1 = (= 1o = (= 1y

and so the characteristic equations, connected with period-increments of the

variables, are

0(z+1,2)=(=1)8(z 7) L
0(z, 2 +1)=(=1)Y0(s %)

0(2+u, 7 + @)= (— L+ gmi)—riwtu) g (4, z))

These results, and all results connected with period-increments of the variables,
are included n the formula

0(z+au+pB, 2 +ap' + 1)
— (_ 1)ﬁ¢r+ya"+a p+p") 6—21ria(z+z')—7ria2 ) 0 (Z, Z/),

where a, 3, v are independent integers.
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Manifestly, the integers p and p’ can be restricted to the values 0 and 1
independently of one another. When it is necessary to put p, p’, o, ¢’ in
evidence as magnitudes occurring in 4 (z, 2'), we shall denote the function by

o( 8 7).
o, 0, 2
143. Before proceeding with any development of the properties of these
functions 6, it is convenient to indicate the reason for the selected grouping
of the terms in the comparison of 8 (z + u, 2 + u') and 6(z, 2’). As already
stated, some grouping of terms has to be made under the method adopted ;
and the simplest grouping would compare the term in 8 (24 u, 2/ + '), which

involves @,,,, with either one or other of the terms in 8 (z, 2'), which involve
Am4a1,n OF Qip, pyr -
Suppose that a difference-equation is established between a,,, and

@m1,n: all the following argument, mutatis mutandis, holds for the alternative
supposition of a difference-equation between @y, and dm nyi. Let it be

Bamn e(2m+u-)m+(2n+a-’)m = Qmt1,n-

When there is no other difference-equation between the coefficients, (in
particular, when there is no relation between @y, and @m, ns1), We take

Qmn = Conm ot tm+o)iniutm@nto) wi! :
and then
Cmt1,n = CmnBe_ivz il = chm

Cmn = O™ (0).

so that

The function becomes

SS (= Lymetns’ yr (m) O™ g} tmA-0)2 mintmen+o) mi'+ @mt-o) miz+ en-to') wiz

The aggregate of all the terms in the double series for one and the same
value of n is (with the restrictions as to integer values of p and o) a single
theta-function of z alone : and so it becomes

00(2) /o (2) + 6.(2) 1 () + 0. (2) 2(2) + 85 (2) /3 (2),
where f; (2), f1(?), 2 (2), f:(¢) are functions of 2" alone. It thus becomes the
sum of four resoluble products, each of two factors: and each factor involves
only one variable. The case is limited in generality.

A similar result ensues when we assume a grouping which compares @y,
with @m4r,n and excludes at the same time a grouping which compares @y
With @m, nis, Where r and s are any integers.

Further, we cannot have two distinct sets of periods for the case when
there is only a single grouping of terms. For otherwise, we should have

Ba e(}m-{—a')m+(2n+0')m = am+l n
=B W elam+oa) mA+ (-m+a-’)n'4\"
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for all values of m and n: hence
A =p(mod. 1), A =p'(mod. 1),

so that, when account is taken of 1, 0 and 0, 1 as period-pairs, X and A’ are
effectively the same as p and p'.

On the other hand, when there is a double grouping of terms, so that @y,
is compared with @, » in one of the groupings and with @, a4, in the other,
we have one period-pair for the first and another period-pair for the second:
this is the case with the double theta-functions, which are quadruply periodic
(actually so, or save as to a period). Let the difference-equations be

Bamn e @MTo) mipt ento)wip Umims
s

em+o) ria+ (2 i
Capp e Hinta)mi' = Am,n41s

for all values of m and n. Then
Omt1,n1= By, 4 @2m+oimin+ @n-tote’)min’

= BC iy e@mto)mi N+ Cntoywi o +X) +omin’
and
A1 nt1 = Clpyya, g @Emt2ro)mint @nto’ymid

= BCa,,, e@ntolmit+u + @nto’)miN-+p) +amin
for all values of m and n; hence
27N = 2mrip’ (mod. 27r),
or, having regard to the existence of the period-pairs 1, 0 and 0, 1, we infer
the relation
A=y,
the well-known condition in the Riemann theory.

Any other double grouping of terms gives rise to.quadruply periodic
functions. Consequently when there is a question of dealing only with triply
periodic functions, there can be only a single grouping. When the grouping
is such as to affect only one of the suffixes in @, we have seen that the
resulting function is composite and can be resolved into a finite number of
sums of products of simpler functions. Accordingly the grouping must be
such as to affect both the suffixes in @y,. The simplest difference-equation
of this kind connects @yi1,nt1 With @, ,: and so this is the grouping which
has been chosen.

144. We have taken our triply periodic function in the form
0 (Z, Z') —- 22 (__ 1)mp+np’ g1zm+a-)z ql (en+o')3 4) (m _ n) elam+a) wiz+ @n+o') iz’ ;

and we know that, save as to a simple factor, at the utmost, €(z, 2’) has
1,0; 0,1; p, u'; for its period-pairs, whatever be the form of the coefficient
¢ (m—mn). The preceding discussion has indicated the reason for the choice
that ultimately leads to the construction of the coefficient: but some special
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cases have to be noted and rejected from the class of triply (and only triply)
periodic functions.
I Let ¢(m—n)=1. Then
0 (2, 2) = [S (= 1)me glm+or? glm+oimiz} (3 (_ 1w’ g/ tnto)? gun+o)miz),
that is, 8 (z, #) is the product of two single theta-functions; and the period-

pairs are .
for z, 1, u, 0, Ol

Z, 0,0, 1, )’
that is, 8 (2, 2’) becomes a resoluble, but quadruply periodic, function.
II. Let ¢ (m—n) =¢mm—n_ Then
0 (z, 2') = S (= 1)me+e) glmta)? gem+aimiz) (S, (] ynia'—al g/ tmta)? glanto)miz ) .
we have the same conclusion as in the preceding case. The function 6 (z, 2')

is not a proper triply periodic function.

II1. Let
¢ (m - n) = gixml(zm-i-w—m_al)z’

where « is independent of m and n. Then it is easy to prove that, save as
to a factor, 8 (2, ) has four period-pairs, viz.
for 2, 1,0, p+x, —«
Z, 0,1, —x, +x)’
the addition of the third and the fourth of the pairs giving the period-pair
i, . In that case, (2, 2) is a proper quadruply periodic function, being a
non-degenerate, double theta-function; it is not a function which is triply
(but only triply) periodic.
Accordingly, ¢ (m —n) may not have any one of the three preceding
forms, nor any combination such as
gmiaim—n) +4kmi gm+o—an—0) 2
in order that the function may be only triply periodic. But any other form
of ¢ (m-—n) is admissible provided, of course, that it is such as to secure the
absolute convergence of 6 (z, 2').
If, in particular, for any one of these admissible forms, ¢ involves ¢ and ¢’

so that
¢ (m —n) =a function of 2m + o — (2n + o),

then it is easy to prove that

(205 )mcre 2

c+2 o, 7 o, o, 7
’ /
N A A TR [ z>
o (0’, O-’+2a Z’) ( l)p 0 (0', 0", 2/’
thus furnishing an additional reason for restricting the values of ¢ and ¢’ to
0 and 1, independently of each other.
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145. One remark may be made at this stage as to the so-called addition-
theorem for the theta-functions. Thus it is possible to express the product
of four double theta-functions in terms of sums of products of four double
theta-functions of other arguments: and it is possible to express the product
of a double theta-function of z + z,, 2z, + 2z, and a double theta-function of
2, — 25, 2 — 2, in terms of double theta-functions of z, 2" and of 2,, 2. In
the purely arithmetical establishment of this theorem, relations

B =% (pn+ pha+ s + ps) — pr
= +rtr,+v)—v

} , (r=1, 2,3, 4),

for arguments, parameters, and integer-indices of terms, are adopted (requiring
that, for parameters, o, + o, + o3+ o, is an even integer, and so on): and
then
Su'=3u, v =232y,
Sur=3u ZSuv =3uy, =312

The last equations allow the transformation of a product of four coefficients
such as

er(m—n-+c)?
into the product of other four like coefficients: and so renders the addition-
theorem possible. But except for coefficients that have this quadratic index,
the transformation cannot be effected: for instance, it could not be effected
for coefficients such as

gx (m—n-tet
Consequently, we are not to expect an addition-theorem for our triply periodic
function similar to that possessed by the double theta-functions.

The sixteen triple theta-functions.

146. Coming now more specially to the detailed properties of the
functions denoted by
o(" k%),
o, o, 7

we have seen that, when p and p’ are restricted to be integers, it is sufficient
to take for each of them either 0 or 1. Further, the actual values of ¢ and
¢’ in the coefficients of the variable parts of the exponential terms would not
be of importance as, 6wing to their linear occurrence, they would (if changed)
affect only a factor common to the whole series; but they occur in the
coefficient in each term and the occurrence is not linear. We have seen that
a large class of these functions 6 is selected from the whole body, by assigning
to o and o’ the values 0 or 1 independently of one another; but it must be
noted that such an assignment of value is a distinct limitation upon the full
generality of the functions.
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Suppose then that the values indicated are assigned to p, p’, o, 0’; as
there are two possibilities for each of the four parameters, there are sixteen
functions in all. It is convenient to shorten the symbols of the functions:
and so we write*®

0 (O: 0, z}) =6, = SSa, q4m2 q/4n2 p2mmiz + 2nmiz!

RS
o

SN
L L
O HO OO
N &
N’

[

5

— Zza,,. q(2m+ 1)2 qf4n2 6(2m +1) iz + 2narid

N

-
N
S———
I
o

5

2 +1)2 2mmi 9 io!
X =22arq4m q/(2n-,-1) g2mmiz + (2n 4 1) wiz

S
L

— 2211,. q(2m+ 1)2 q/(2n +1)2 e(2m+ 1) wiz+ (2n+1)wiz’

s
N
S—
Il
o

>

5~
e N e s T e s N U i T S

=35 (1) a, gt g4 s+ 2
= r

“Ovl—l
oo
NN
N—
[
N

1,0, 2 ) =8, =35 (= 1" a, g@n+ 1P gn [(Bn+ 1) wiz-+ 2nrie’
1, 0, 7
0 (1), (;’ z’) =6, = ss (_ 1)m a, q4m2 q/(2n+ 1)% e2m1riz+ (2n+1) miz’
9 i 0, ;) —6, =53 (= 1" a, g+ 12 2+ 1)2 o@mt 1 wis + (20 +1) i
6 8’ ’ j/) =0y =S5 (= 1)" a, g*" g Prmis 2w |

5%

09 =33 (_ l)na,. g(2m+ 1)2 q/4n2 e(2m+ 1) wiz +2nwiz’

k=)
NN

S—
[

6,0 = ss (_ l)n a, q‘.‘:m2 q/(2n,+ 1)2 e2m1riz+ (2n+1) wiz’

(S oY
o
HH O O
SR
>
]

K

~

S
I

=e

6= 35 (= 1)" a, gom + 1P g Bra 1P plomr izt (Bt 1) i

(ST

/

—

-

2 2 . .
0, =353 (- 1)m+ L q4m q/4n g2mmiz +2nwid

.v
N &
N
I

—_ O
=S

-

913 = 22 (‘— 1)m +n ay q(2m'+ 1)2 q’4n2 6(2m+ 1) wiz +2nmwiz’

5

-
-

NN

=0,= 33 (_ 1)7" +n ar q4m2 q:(2n+ 1)2 eQmm'z+(2n+ 1) iz’

5~ >
TN TN TN TN TN TN T
u’_‘vo,_‘

A

5

=
e O O
NN

-

j}) =0,,=37%, (- 1)m+" ar q(2m+ 1)2 q/(2n+ 1)? e(2m+ 1) wiz+(2n+1) wiz’

\!—l

* The symbols adopted agree with the symbols used for the double theta-functions in a
memoir by the a.llthor, Phil. Trans. (1882), pp. 783—862 ; the reason is that, as indicated above,
the functions actually become double theta-functions when the proper value is assigned o the
coefficients a,.
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where, throughout, » denotes m — n, and the coefficient @, is an abbreviation
for ¢ (m —n, o, ¢’) in the respective cases.

The law that m and n, when they occur in the coefficients, must occur in
the combination m — n, secures the periodicity (actual, or save as to a factor)
of the functions: thusitis essential. As will be seen later, another limitation
will be imposed so as to secure the oddness or the evenness of each of the
sixteen functions; but the limitation is conventional, not essential. In the
meanwhile, we note that ¢ and ¢’ are the same for the set 8,, 8,, &, 05;
likewise for the set 6,, s, 8,, 6,5; for the set 6, 85, 6y, 6,,; and for the set
0;, 0, 0, 0. Let

¢(m—mn,0,0)=Ff(m—n)=F(r)
¢(m—mn,1,0)=g(m—n)=g(r)
$p(m—mn,0,1)=h(m—n)=h(r)
p(m—mn,1,1)=k(m—n)=k(r)
then the typical coefficient a, is

f (@), for 6, 6,, 6, 6,

g(r), ... 6, 05 6,, 04

Ch(r), ... 0., 6, 6y, O,

k(r), ... 0, 6,, 8,, 6,

3

Even functions: Odd functions.

147. It is important to know the conditions that will allow any (and, if
so, which) of these functions to be either odd or even in their arguments.
We have

2] (_ z, — z’) =33 (_ l)mp+np’ arq(2m+cr)2q'(2n+o/)2e—(2m+w) wiz— (2n+o’) m:t’

where
a,=¢ (m—mn, g, o).

Let new integers m’ and =’ be chosen so that

m+m +o0=0, n+n +7=0;
then

0(-z, — 2/) - (_ 1)pa'+p'u"22 (- 1 )me+ne’ arq(m'wﬂq'(zn'w’)e £@m o) wizton/ 4o wiZ

But

2] (z, Z') — 22 (__ 1)1n'p-‘-ﬂ'p'c,r q(zm.’+a-)2 q/(m'+u-')2 e +o)miz+ (2n'+a’)1riz"
where
er=¢(m' —n, o, o).

In order to compare 6 (— 2, —2') with € (z, ), we take

d(m -7, 0 0)=¢d(m—n, s d);
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and then

¢ (_ 2, — Zl) = (— l)pﬁ-plq'e (Z, Z,):
that is, 6 (2, 7/) then is even when po + p's’ is even, and 8 (z, 2/) then is odd
when po + p'a’ is odd.

Thus the imposition of the condition upon ¢ secures the evenness or the
oddness of the functions. As regards the expression of the condition, let
m —n =—r
so that
m—n=r—oc+ad;

the condition is

¢(—7,0,0)=¢p(r—c+d,0,d).
To modify the expression of the condition, let

d(t o, d)=v2t+c—d, 0, d),
where + is a new form of coefficient ; then the condition is

VY (=2r+0—0,0,0)=%2r—c+d, 0, d)

shewing that v is an even function of the first of its three arguments. This
is the necessary and sufficient condition, that each of the functions € (2, 2)
should be either odd or even.

One very important class of functions is provided by limiting the co-
efficients 4 still further. Let it be assumed that the function 4 is a
function of its first argument only, so that the typical coefficient, which
was ¢ (m—n, g, &), i8

Y (2m —2n + o — '),

where Y is now an even function of its only argument 2m —2n+ ¢ — ¢’ : the
parameters o and o’ enter into the coefficient solely through their occurrence
in this argument. If then by any change in the function @ (z, #), such as an
increment of the arguments, the parameters o and ¢’ are increased or are
decreased by the same integer, the coefficient yr is unaltered.

It may be noted that the double theta-functions arise from one particular
case of this last law, viz.
"P — p(m—2n+a-—a1)‘=_

Other simple laws can be constructed, subject always to the requirement of

convergence ; for our immediate purpose, we have also the requirement of
merely triple periodicity.

148. Before the final postulation of the aggregate of conditions and
limitations upon the coefficients, consider any function 6 (z, ), which is triply
periodic but not ttherwise limited, so that it is mixed as to a quality of
oddness or evenness. Let

E(z2,7)=0(2,7)+0(~2—-7), 0(2,7)=0(z,2)—0(—2 —27),
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so that E (z, 7) is certainly an even function, and O (z, 2’) is certainly an odd
function ; and let the series-expressions for £ and O be

E (2, Z)y=33(- l)WLp+np' km,n q(mn+a)2 qf(m+a-r)2 o em+o)wiz+ n-to) wiz Jl,

0 (Z, Z’) — 22 (_ 1)mp+np’ lm,n q(zm—Hr)ﬂ q’ en+o')2 e(2m+o)1riz+ (en-+o’) miz’

Then substituting for 8 in the definition of the function Z, and denoting by
@m,n (as at first) the customary part of the coefficient of the typical term in 6,
we find
km,n = O, n+ (— 1)pcr+p’u’ A_mp—g,—n—0’«
Consequently
km—v,n—a’ = Ao, n—o’ + (“ 1)‘°0+p'°" A, —n 5
k—dm, —n = Oy, —n + (— l)p‘ﬂ-p/ay Up—a,n—o’ 3
and therefore
k—m, —n= (_ 1)‘”4—9’“' km—a, n—o’+
Similarly, we have
l—'m,—n = <_ 1)p7+91” lm—v,n—o’-

Moreover, by analysis that is similar to the analysis used in establishing
the earlier condition that a function should be odd or even (and not mixed),
we have

E(—2-2)

— (_ l)pﬂ'-l-p'cr’ s (_ l)m'p—m’p' bt —mror q(2m'+a')5 q' @' +0))? g (@m'+0) miz+ (n/+0') miz

= 35 (= 1)Wetne ko o qH0? of BrHa) gl +o)miz (on' +o')mi!

=E(z 7).
Similarly, we have

O0(—2—-2)==00( 7).

Consequently, even when the initial function 6 (2, 2’) is mixed as regards its
quality of oddness or evenness, we can deduce (by appropriate combinations)
triply periodic functions which definitely are odd or definitely are even. We
therefore have said that the limitations imposed upon the coefficients in 6, to

secure the oddness or the evenness of the function, are conventional and are
not essential.

Effect of half-period increments of variables.

149. The law of reproduction of the general function 6 (¢, 2’), when the
arguments are increased by any combination of integer multiples of.the
periods, has already been given. We proceed to consider the laws of changes
among the functions € (z, 2), when the arguments are increased by linear
combinations of half-periods: and these have two forms according as the
typical coefficients in the series are taken to be ¢ (m —n, &, ¢”) in general or
¥ (2m + o — 2n — ¢’) less generally, excepting from the latter the single case
when the expression for 4 gives quadruply periodic functions.
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I Let the coefficient in € be ¢ (m —n, o, o'). We have

9('0’ P:’ Z+%>=io’0<P+]" P:: Z)

o, o, 7 c ,d,7

o(mﬂ: Z) pﬁ(ﬂﬂ+LZ)
g, 0, 7+% ’

G(P’ P» z +é)=ia+o'0<p+1’ Y +1) Z’).

o, o ,Z
7 ’ !
g, 0,2 +1%

a ? g 2 z /
With these half-period increments, the members of the set
607 94’ 987 012

are interchanged among one another, as also are the members of each of
the sets

0, 6, 6,, 6s;

Oy, Os, O, Ou;

0, 0,, bn, 0y

the law of interchange being the same as that given in the first four columns
of the table on p. 254.

Further, let & (P’ P, Z) denote the value of 6 (P’ P Z) when, in the

o, o, 7 o, 0d,7
latter, we take ¢ (m —n, o — 1, 6’ — 1) as the typical coefficient in place of
¢ (m—n, g, d’). Also, let
N=m(z+2)+3m (u+p).
Then we have

o(PFETIRY L (R e

P> )
<0', a, 7 +3u o+1l, o +1, 7

’ 1 ’
(P: P,Z+%l"+z>=7"g e—NS,<p+1’ P !Z)
a-)
(@ )
a,

5~

o, 2 +iy c+1, ¢ +1, 72
P,z +ipn
o, &+ b +1)

0(9’ PI) z +’}:”' +%)=ic+a'e_NS<P+1> P,+]> Z)
g, 0,7 +ip +% o+1, ad'+1, 7/

(/] g e‘Ng( p P+l oz

c+1, d+1, 2

It therefore follows that, with the general coefficients adopted, there is no
interchange of the functions @ (¢, ) among one another; they change into
other triply periodic functions % (2, ') with different general coefficients.

There are corresponding laws of change for the functions % (z, 2’), when
the arguments are increased by linear combinations of half-periods, into the
functions 6 (z, 2’): this reciprocal property being, of course, due to the
periodicity of 8 (z, 2’) and of & (z, 2').
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252 HALF-PERIOD INCREMENTS [cH. Vi

It is to be noted that, in all these changes, the quantity ¢ —o' is
unchanged : so that, when the coefficient ¢ (m —n, o, ¢’) is specialised into
¥ (2m + o — 2n — o’), the functions % (z, 2’) are the same as the functions
0 (2, 2"). The functions 6 (2, 2’) would then interchange for all these half-
period combinations; these laws of interchange will be given in the table

(p. 254).

Again, we have

g(p, e, Z+I%/i> — g—wiz—}min g+( P p:, Z )

g, o, =z c+1, &,
P> P; Z — _i P/ y 2
0(0 o, 7 +1 ) g TG (0',0'+1 z)
> P; _ (P P)
0 o+ 2, ) =(-1r® (a‘, a, z) ’

5~

P> — P P;
o, 0'+2 z) (= 1)P®+<o‘ o, z>

(-
0(0’ 2, o +2 Z)_(_l)ﬁ-p 6(5, S, z)

where 6+(p’P’ > g- (p, P, 2,), @"(P’ P’ > 0+ (P’ p,’ Z,) are derived

g,0,72 g, d, 2 g, 0,2 0,0,2

from 6 (p P ; Z,) by changing its typical coefficient ¢ (m —mn, o, o) into

g, 0,2
¢(m—n0o-10) ¢(m—n0,6-1),¢p(m—n—10,0),¢(m—n+1,q,d),
respectively, all these functions 8+, §—, ®+, @~ being triply periodic. Also

0(”’ P Z'H‘) (= Lpe-tric—rin @ (’p, o, z)

o, d, 2 o, o, 7
ps Py 2 >= S N +(P’ P 2
0 (a, o, 7 +u =1y ® a, o, 7

II.  Let the coefficient in 8 be ¥» (2m + o — 2n — '), where ¥ is any even
function of its argument except a constant or
P @em+o-2n—a’) “’

always provided that the series converges. Then the sixteen functions

0 (2, 2’) range themselves into two sets, the members of each set interchanging

with one another for half-period increases of arguments, as in the first eight
columns of the table (p. 254).

ITI, Let the coefficient in € be a special case of the last, so chosen that
Y (2m + o — 2n — ¢’) = plmte—m—o)?

— plemigmto—2n—d’)?
= gaxmil o a’) A

where there are limitations upon the real parts of u + «, u' + r, pp' + (1 + p')
necessary to secure the convergence of the functions 6.
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The sixteen functions are now quadruply periodic (being the double
theta-functions): when we write

7
an=p+K, Qp=—£K, Ax=p +k,

the four pairs of periods and pseudo-periods are

for z, 1, 0, ay, am}

Z, 0, 1, an, ax

The three pairs of periods for the triple theta-functions are
for z, 1, 0, (eu+au=)p }

’

Z, 0, 1, (alz + Qo =) l",

As already stated, the first four columns in the table give the laws of
interchange for half-period increments when the coefficients in the triple
theta-functions are quite general; the first eight columns give the laws of
interchange for half-period increments when these general coefficients are
limited so as to secure that the triple theta-functions are, each of them, either
an odd function or an even function of its arguments; and now we add the
result that the sixteen columns give the laws of interchange for half-period
increments when the coefficients are further specialised so as to give rise to
double theta-functions.

150. With the definitions just given for ay,, a5, @, We write
L=miz+}mi(u+r)=miz+ }miay,
M=maid + i (W + k) =7 + iy, l,
N=ai(¢+2)+im(p+p)=mi(z+2)+1me(ay + 20, + aw)J
and then the table is as on the next page.

151. Of the sixteen functions, whether they are the general properly
triply periodic functions or the more special quadruply periodic functions, six
are odd, viz. 0;, 0y, 05, Oy, 0y, 6,,; and the remaining ten are even.

The table enables us to deduce a number of irreducible zero-places for
the functions, whether triply periodic or quadruply periodic, from the fact
that the odd functions vanish at 0, 0. These zero-places are given, say for
any function 6,, by noting that

0(z+3u+4, 7 +3p)=0(2 2),

so that z=4u+3, 2 =%u 1s a zero of 6, (2, 2'), and so for the others in turn.
The whole set thus deducible is given in the succeeding table (p. 255): the
first eight lines give the zeros when the functions are triply periodic and not
quadruply periodic; the last eight lines give the further zeros when the
functions are further specialised so as to become quadruply periodic.
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But it must be remembered that each such picked zero is, for a single
function, only a place in a continuous aggregate of zero-places: for any pair
of functions, any simultaneous picked zero (such as 0, 0 for 6, and 6;) is an
isolated simultaneous zero.

The table* of picked zeros is as follows :—

2,2 = Bo | 61 | 0y | O3 | 04 | 65 ) 6§ 67 | Og | 69 | 610 | 611 | O12 | 613 | O1a
0,0 X x X | % X | X
3,0 % X x | x X
0,1 X | x x | x X
1,4 X | % X | x X x
s B X x x | x x | x
Tetd X X x | % x | x
g +% x| X X | X X X
utd, ' +d X | % X | x X x
3ay, don X X X | x| x
tayn+d, $ae X X X X x
Yay, fas+d x | x| x x < y
o+, fantd | % X X | X | x X
$are, $ag X X X X X
tan+3, g X X X XXX
fage, 3asn+3 x | X X X X
Sap+d, fan+l| x X | x| x X x

Construction of functions that are strictly periodic.

152. The results of § 142 shew that each of the sixteen §-functions is
periodic in 1 and 0, save possibly as to sign; also in 0 and 1, save possibly as
to sign; also in w and p’/, save as to the factor exp (— 2miz — 2712’ — mip — wip’)
and save possibly as to sign. The actual periods (except for multiples of x and

* Both the tables may be compared with the table given by Konigsberger, Crelle, t. Ixiv (1865),
p. 23.
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#, when the variable exponential factor occurs) for the functions are as
follows :—
1,0; 0,1; pu, u'; for 6,and fs;
1,0; 0,1; 2u, 2u; for 6,and 6s ;
2,0; 0,2; u, p; for 6;and Oss;
2,0; 0,2; 2u, 24'; for 8, and Oyu;
2,0; 0,1; w, p'; for 6,and 6:s;
2,0; 0,1; 2u,2u; for 6;and 0, ;
1,0; 0,2; u, u'; for 6,and f.;
1,0; 0,2; 2u, 2u'; for 6;and -
Hence the fifteen quotients of any fifteen of the functions by the remaining
sixteenth function are actually triply periodic (save possibly as to sign) in
1,0; 0,1; u, p'; the squares of these quotients are actually triply periodic
in the three pairs of periods. And it may be noted that the eight quotients
6. 6 6 6 6 6 6 6
012 ’ 613 ’ 614 ’ 015 ’ 68 ’ 09 ’ 610 ’ 011
are actually triply periodic in 1, 0; 0, 1; u, p'.

The analogy of the quadruply periodic functions which arise out of the
double theta-functions suggests that, for the triply periodic functions, we
should take the quotients

0, + b,

where r has all the values 0, 1, ..., 15 except »=12. Triply periodic
functions thus are secured without doubt: but it must at once be noted that
the functions are tied as to their infinities. In the simplest case, when the
f-functions are regular for all finite values of the variables, the infinities of
each of the fifteen quotients are the zeros of 6,, and are these alone. But
such zeros are a continuous aggregate; and so the simultaneous poles of the
fifteen quotients, taken in pairs anyhow, are not isolated points: the fifteen
quotients are tied, through the common occurrence of 6,, in the denominator.
The simultaneous zeros of any two of the fifteen quotients are isolated places,
being the simultaneous zeros of the @-functions which occur in their nume-
rators: and these constitute the whole of the zeros simultaneously belonging
to two quotients for finite values of the variables.

But, of course, the quotients indicated are, initially at any rate, not a
potential aggregate of actually periodic functions. Thus, for any one of the
f-functions, it is clear that the quantities

o+slog 0
02702’
for integers r and s, such that r + s > 2, will provide periodic functions: and
so for other possible derivatives and combinations.
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Later (§161), we shall return to the “double” theta-functions which arise
as a particular set of these “ triple ” theta-functions.

A property of uniform quadruply periodic functions tn combination.

163. We proceed to consider the level places of two uniform quadruply
periodic* functions f(z, 7) and g (2, '), having four pairs of pertods in

the form
<1> 0: x) /“’)
0, 1, N, p'/°

Let a and B be two level values for f and g, so that
fd)=0a g(z7)=p

If z=a,, 7 =a, be a place where f and g acquire the values a and 8
respectively, they will acquire these respective values at the whole set
of places

a+p+ra+sp, @' +q+rN s,
for all integer values of p, ¢, r, s.

We have seen, in § 138, that, by taking an associated two-plane repre-
sentation for the real variables «, y, «, i/, we can choose a unique point-pair
Q. P,, where @, lies in a parallelogram in the y, 3’ plane and P, in a square
in the #, 2 plane, such that the point-pair @ P, may represent the whole
foregoing set of values equivalent to a,, a/. We shall say that the whole
set of values is expressible by the point-pair @, P;.

Let z=a,, Z =a, be another place, not belonging to the set expressible
by the point-pair @, P,, where f and g acquire the respective values a and 3;
and let the whole set of places, equivalent to a,, @, by the addition of
periods, be expressible by the point-pair @,P;.

And so on in succession, for places and sets of places equivalent to them,
each new set containing no place belonging to any of the preceding sets.
Each new set will be expressible by a point-pair, in the associated two-plane
representation of the real variables «, y, «,¥’. We thus obtain a succession of
different point-pairs @ P, @, P, ..., expressing the succession of distinct sets
of places where the functions f and g acquire the respective level values
aand B. Each such set can be denoted by any one of the members of the
set; and from the construction of the sets, each set contains finite places in
the field of variation. Let these finite places be denoted by a,, a)'; a,, @, ...,
in succession, corresponding to the point-pairs @, P, Q,P,,.... We shall say
that such a finite place 2, 2" 18 the irreducible level place for its set.

* An attempt to establish the property for triply periodic functions, similar to that which
follows for quadruply periodic functions, did not meet with success.

F. 17
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If the number of point-pairs @ P;, Q. Ps, ..., which thus arise, is finite,
then the number of irreducible level places z, 2/, giving level values a and 8
to the functions f and g, is finite.

If the number of point-pairs Q,P;, @, Ps, ..., which thus arise, is infinite,
then within the finite y, y" parallelogram and the finite », «’ square, there
must be at least one (and there may be more than one) limiting point-pair
QP such that its immediate vicinity contains an infinite number of such
point-pairs. We then, for all such point-pairs in that immediate vicinity,
have an infinite number of finite places a, «’, at which the functions f and ¢
acquire the level values @ and 3 respectively.

Now suppose that, for finite places in the field of variation, our functions
S and g possess no essential singularities. On this hypothesis, we know
(§ 121) that the level places are isolated, so that there cannot be an infinite
number of those level places in the immediate vicinity of any one of them.

The second alternative must therefore be rejected; and so we infer the
theorem :—

The number of trreducible level places, giving level values a and B to two
ndependent free uniform quadruply pertodic functions, s finite.

154. It has been established for a couple of independent uniform
functions in general, and therefore for a couple of independent uniform
quadruply periodic functions in particular, that the level places are isolated
pair-places. Any such pair-place may be simple or multiple. Whether
simple or multiple, it is isolated, provided the two functions are independent
and free.

Further, if o, ¢’ is a simple level place for two independent and free
functions f(z, #') and ¢ (z, #), such that

fd)=a0 g()=58
so that 1t is an isolated level place of those functions for those values a and 8,
then there is one (and there is only one) simple level place in the immediate
vicinity of a, a'—say at a +b, o'+ ', where |b| and | b’ | are small—such that
fd)=atd, g(z2)=B+p,
where |« | and | 8| are sufficiently small, and
la+d|<]al, [B+B[<|B].

For, by the theorems in Chapter 1v and Chapter viL, if z=a+b, 2 =a 4+,
then we can write

f@2)y—a=f(a+b d +b)—a
= b + and’ + ...,

9@ 2)—B=9(a+ba+b)-8
=cpb+cnd + ...}
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and therefore, as the level place a, @ is simple, the equations

b + anb +...=0d

Cuob + cud + ... =,6"} ’
for sufficiently small values of |a’| and | 8’|, provide a single pair-value for
b, b, where |b| and || are small.

Similarly, from the theorems in §§ 113, 120—122, we infer that, when
a, @' is a multiple level place of multiplicity M for two independent and
free functions f(z,2") and g (2, 2’), such that

f(Z, 2)=1, g(z7)=5,
so that it is an isolated level place of those functions of multiplicity M for
those values, there are level pair-places (some perhaps simple, some perhaps
multiple), in the immediate vicinity of @, ¢'—say at a+ b, a' + b where b]
and | b’ | are small,—of the same multiplicity M in additive aggregate for

fz,2)=a+d, g(z2)=B+7,
where {a’| and B’| are sufficiently small, and
la+a <|a|, |B+B < B.

155. Now consider the total finite number of irreducible level places such
that the uniform quadruply periodic functions f and g acquire the values a
and 8. The propositions just quoted shew that we can proceed from these
values of the two functions to other values having smaller moduli: to any
aggregate of level places at or near any one place a, o’ for the values « and g,
there corresponds another aggregate of level places for the values a + a" and
B+ B, the corporate multiplicity of one aggregate being the same as the
corporate multiplicity of the other. We can thus proceed from one pair of
level values to another pair of level values for f and g—in the argument, we
have chosen a succession with decreasing moduli—without, at any step,
affecting the corporate multiplicity of the level places. Moreover, in this
succession, it is necessary to have only a finite range for z, and only a finite
range for 2/, because the ranges in the y, ¥’ plane and in the 2, ' plane in
the two-plane representation described in § 138, giving the finite irreducible
places z, 2/, of § 153, are finite. Hence we infer the theorem :—

The number of wrreducible level places, at which two independent and

Jree uniform quadruply periodic functions f and g, having no essential

sengularity for finite values of the variables, acquire finite values a and B,

so that
f(d)=a g(2)=p
regard being paid to possible multiplicity of each such level place, vs inde-
pendent of the actual level values acquired by the functions. In particular,
the number of level places is the same as the number of simultaneous zero
places of two such functions, regard always being paid to possible multr-
plicity of occurrence at a level place or a zero place.
17—2
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The property also holds when the level value for either of the functions
or for both of the functions is a unique infinity so that the level place is a
pole (an unessential singularity of the first kind) for either of the functions or
for both of the functions, as the case may be; it follows at once by con-
sidering the reciprocal of the function or of the functions having the place
for a pole. But care must always be exercised to make certain that the
functions are free as well as independent: thus the theorem would not
apply to the poles of functions, such as 6, + 6,, and 8, + 6, of § 152, because
the poles, so far from being 1solated, are the continuous aggregates of zeros
of the function 6,,.

But the unessential singularities (the unessential singularities of the
second kind) of a single function are isolated; and when two functions are
considered simultaneously, their unessential singularities are not necessarily
(and are not usually) the same places. Hence the theorem does not apply
to unessential singularities.

And the theorem does not apply to essential singularities.

If, then, we adopt a more comprehensive definition of level places and level
values, the first including ordinary places and poles, and the second including
zeros, finite values, and unique infinite values, we can say that the number of
wrreductble level places of two independent and free uniform quadruply periodic
JSunctions, having no essential singularity for finite values of the variables, is
independent of the actual level values, regard being paid to possible multiplicity.

This integer, being the number of irreducible level places of the two
functions when regard is paid to possible multiplicity, will, after Weierstrass*,
be called the grade of the pair of functions.

Algebraic relations between functrons.

156. Now consider two uniform quadruply periodic functions f(z, 2')
and g (z, 2’)—say f and g—which are independent and free; and let them be
of grade m, so that there are n irreducible places giving level values a and 8
to fand g.

Let h (2, 2') be another uniform function, homoperiodic with fand g. At
each of the n irreducible level places of f and g, the uniform function 4 has a
single definite value; and therefore, at the aggregate of those places, there
are n values of A in all. Hence there are n values of h corresponding to
assigned values of fand g; and these n values arise solely from the values of
f and g, without any intervention of the variables z and 2 beyond their
occurrence in f and g. Consequently, there 1s a relation between f, g, A,

* Crelle, t. 1xxxix (1880), p. 7; Ges. Werke, t. ii, p. 132.
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which is of degree n in h; the coefficients in this relation are functions of
f and g alone.

Next, suppose that f and &, being uniform quadruply periodic functions
of z and 7/, are independent and free; and let them be of grade m. Also
suppose that g and A are independent and free; and let them be of grade /.
Then an argument, similar to the argument just expounded, leads to the con-
clusion that the relation between f, g, h, already known to be of degree n in
h, is of degree I in fand of degree m in g: it is an algebraic relation.

Of the n values of h, corresponding to assigned values of fand g, it can
happen that several may coincide for some not completely general assignment
of values. But if this coincidence occurs for completely general values of
f and g, the values of h coincide in groups of equal numbers; and the
number of values of &, corresponding to assigned values of f and g, is a
factor of n. Hence we have the theorem*:—

L Between any three untform functions, which are homoperiodic in
the same four period-pairs and which taken in pairs are independent
and free, there subsists an algebraic equation : the degree of this equation
wm each of the functions either is equal to the grade of the other two
functions or is equal to some integral factor of that grade.

It is assumed explicitly that the functions, in pairs, are independent and
free; and the only level places that have been used for the functions are
such as give finite level values to the functions. But it may happen that
two functions, independent of one another, and free for all finite values
(including zero), are tied as regards infinite values. Thus the quadruply
periodic functions, which arise as the quotients by ), of the quadruple
theta functions other than 6, cannot be estimated for grade by their
infinities ; their infinities are given by the zeros of 6, and (except for the
irreducible isolated unessential singularities, limited in number) they are
the same for all the quadruply periodic functions so framed. These functions
therefore, while they are independent, are tied as regards their infinities.

The foregoing theorem is still true for these uniform functions : there is
nothing to traverse the argument at any of its stages. But the effect of the
tie, in connection with the infinities, is to simplify the form of the algebraic
equation. We can suppose that the latter has been made rational and
integral. The three functions £, g, h are infinite together and only together;
and therefore the terms of the highest aggregate order in all the functions
combined will, by themselves, give relations among the parts of £, g, & that
govern their infinities.

* This theorem, and several of the theorems that follow, were enunciated by Weierstrass for
2n-ply periodic uniform functions of n variables. The enunciations, in most instances, are not
accompanied by proofs; theyare to be found in his memoirs, Berl. Monatsb. (1869), pp. 853—857,

ib. (1876), pp. 680—693, and Crelle, t. lxxxix (1880), pp. 1—8; see also his Ges. Werke, t. ii,
pp. 45—48, 55—69, 125—133. See also Baker, Multiply periodic functions, ch. vii.
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157. Among the functions related to any given uniform quadruply
periodic function of two variables are its two first derivatives, which mani-
festly are homoperiodic with the function. Moreover, all the infinities of the
original function are infinities (as to place, but in increased order) of the
derivatives; and they provide all the infinities of these derivatives.

The foregoing theorem, when applied to a single function, leads to the
result, practically a corollary :—

II.  Any uniform quadruply periodic function f(z, 2') and its first
derivatives g{ and g—{, are connected by an algebraical equation. When
the equation is made rational and integral, the aggregate of the terms
of highest order gives relations among the constants of the infinities of
f and dts derwvatives.

Thus a quadruply periodic uniform function of two variables satisfies a partial
differential equation of the first order, just as a doubly periodic uniform
function of one variable satisfies an ordinary differential equation of the
first order.

158. We return to homoperiodic functions. For purposes of reference
among them, we select three uniform functions f, g, h, of the character
prescribed in theorem I.

Now let k (2, 2')—say k—be another uniform function, homoperiodic with
/s 9, k; and let it be untied with any of them. Then between f, g, k there
subsists an algebraical equation, the degree of which in & is either n oris a
factor of n: taking the degree as n, we can denote the equation by

A(f, g, k)=0.

Also, between £, h, & there subsists an algebraical equation, the degree of
which in % is either m or is a factor of m: taking the degree as m, we can
denote the equation by

B(f, h, k)=0.

Similarly, there is an algebraical equation
C (9, h, k) =0,

which is of degree [ in k; and there is the original algebraical equation
D(f 9, m)=0,

which is of degree [ in f, of degree m in g, and of degree n in h. These
equations are necessarily consistent with one another; thus the k-eliminants
of A=0 and B=0,0of B=0 and C=0,0f C=0 and 4 =0, all vanish in
virtue of D=0,
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These k-eliminants can be formed by Sylvester’s dialytic process, because
all the equations are algebraic; and an added use of the process leads to
another important result. The equations

FA(f g k)=0 forr=0,1, ..., n—2
BB (f hk)=0, , s=01,...,0 —2

are a set of m + n — 2 equations, linear and not homogeneous in the m+n —2
quantities k, &% ..., k™*"~2. When these are resolved for the m + n —2 quan-
tities, we have expressions for the various powers of & (in particular, for k
itself) rational in the quantities £, g, b and reducible, by means of D=0, so
as to contain either f to no degree higher than { -1, or g to no degree higher
than m —1, or A to no degree higher than n—1. Paying no special regard
to these degrees, but noting the assumption made as to the degree of the
equation 4 =0, we have the theorem:—

ITII.  When f and g are uniform functions, quadruply periodic wn the
same periods, and are of grade n, and when h is another uniform function,
which is homoperiodic with f and g, and which takes n distinct values at
the reduced point-pairs determined by given values of f and g ; then any
other uniform function, which is homoperiodic with f and g, can be expressed
rationally in terms of f, g, and h, provided every two of the four functions
are independent and free, and provided also no one of the functions has
an essential singularity for finite values of the variables.

And, as before, we have a corollary to the theorem, as follows:—

IV. When two uniform quadruply periodic functions f(z,2") and
g(2,2) are independent and free, and when neither of them has an essential
singularity for finite values of the variables, then g (z, ") can be expressed
o .

rationally <n terms of f, 3’ 37 and f(z, 2’) can be expressed rationally

in terms of g, %g R g—zg, .

Note. But just as there was possible degeneration of degree in the
equation D (f, g, h)=0, so it might conceivably happen that, owing to the
equation D (f, g, h) =0, the actual expression for £ might not be deter-
minate. But this indeterminateness would not occur for every power of & ; and
so we should then only be able to infer that some power of k is rationally
expressible in terms of f, g, k. Such cases occur when the fundamental
periods of the functions considered are only commensurable with one another
and are not exactly the same for all the functions. The exceptions may be
wider than the exceptions of the same kind in the case of doubly periodic
functions of one variable, though they will cover the generalisation of such
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apparent (but only apparent) exceptions to Liouville’s well-known theorem
which might imply that cn z and dn 2z are expressible* in the form

d
P+Q T (sn 2),
where P and @ are rational functions of sn z.

159. Next, consider two uniform functions f(z, 7) and g (2, 2'), homo-
periodic in the same four pairs of periods; and, as usual, assume that they
are independent and free, their grade being =, and that they have no
essential singularities for finite values of the variables. Their Jacobian .J,
with respect to the independent variables, is

_o(f 9
d(s, 2)"

It is a uniform function, homoperiodic with and ¢; consequently it satisfies
an algebraical equation, which has rational functions of f and g for its co-
efficients, and the degree of which in J is either n or a factor of n. Moreover,
as fand g are uniform, infinities of J can arise only through infinities of f or
of g or of both; and no infinity of J can arise from finite values of f or of
g, or from any integral relation between f and g satisfied by finite values of
f and g. Hence, when the algebraic relation between .J, £, g is completely
freed from fractions, the coefficient of the highest power of J is a constant ;
and the degrees in f and g of the succeeding powers of J are limited. To
indicate the limits, take the simplest forms of two extreme cases:

(i) when fand g are completely free as to infinities:

(i) when they are completely tied as to infinities—in such a way as are
e.g. the periodic functions indicated in § 152.

In the former case, consider the vicinity of a simple simultaneous pole
of fand g; then we can take, in that vicinity,

U R
f=7’ 9=g;

where V and S have a simple simultaneous zero at the place. Then
1
Ak
where 7 is a uniform function, regular, and usually not vanishing at the place.
The place thus is an infinity of J, as is to be expected: manifestly it is of
order 4. Hence in this case, the algebraic equation (taken to be of order n in
J) must be such as to provide infinities of order 4 for J; hence the coefficient

J T,

* The explanation, of course, is that snz, enz, dnz do not possess the same fundamental
periods.
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of J»—' js a polynomial in f and g of order not greater than 4»’, while for

some value or values of n/, among 1, 2, ..., n, it must be of order 4x'.
In the latter case, we can take
U R
f = v’ g= v

where the infinities of the functions (now tied) are given by V=0, then
J=: T,

where W is a uniform function, regular, and usually not vanishing with V.
The place thus is an infinity of J, as again is to be expected ; manifestly it is
of thrice the order for f and g. As in the preceding case, the coefficient of
J™ " is a polynomial in £ and g of order not greater than 3»’, while for some
value or values of #/, among 1, 2, ..., n, it must be of order 3n'.

Other orders of infinities belonging to f and g will lead to other degrees
for the polynomial coefficients in the equation. In all instances, we have the
theorem :—

V. The Jacobian J of two unyform quadruply periodic functions
f and g, which are independent and free, and which have no essential sin-
gularities for finite values of the variables, satisfies an algebraic equation ;
when this equation is of degree n, the coefficient of J™ us unity and the
coeffictent of J™ is a polynomial in f and g, of degree not greater
than 4n/, for n'=1,2,...,n.  Also, n is either equal to the grade of
S and g, or is a factor of that grade.

160. Combining this result with the earlier theorems I and III, we have
the further theorem :—

VI. When f and g are umform functrons, quadruply pertodic in the
same pertods and of grade n, and when the algebraic equation satisfied by
their Jacobian J is of degree m, any uniyform function, which s homo-
pertodic with them, can be expressed rationally in terms of f, g, and J,
provided no two of the functions are tied asto level values, and provided
netther of the functions has an essential singularity for finite values of
the variables.

In particular, for such functions £ and g, we have the relations

3
£=EM%H %=&M9H

o _ 39 _
az/‘Fz(,f;g’J); 'OTZI_G2(f;g, J)7

where F,, F,, G,, G, are rational functions of the arguments. The algebraic

relation .
J=F@G,— F,G,

must be satisfied in virtue of the algebraic equation between f, g, and J.
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The quadruply periodic functions which arise out of the double
theta-functions.

161. It is desirable to have some special illustrations of the foregoing
general propositions relating to periodic functions of two variables.

Accordingly, we assume that the coefficients ¢ (m —n, o, o) of the triple
theta-functions are so specialised as to yield the double theta-functions,
periodic or pseudo-periodic in four pairs of periods, always limited so as to
secure the convergence of the double series. Moreover, we shall assume that
our functions have no essential singularity for finite values of the variables—
an assumption which requires the theta-functions to be finite (as usual) over
the whole field of variation given by these finite values. We thus have ten
even functions, viz, 6, 6., 6,, 0,, 8,, 6,, 6, 8,, 0,,, 6,5; and six odd functions,
viz., 0;, 8;, 0y, 6y, Oy, 0, all these being functions of z and 2.

When z=0 and 2'=0, the six odd functions vanish. The ten even
functions then acquire finite constant values which are denoted by ¢,, c;, ¢,
Cs, Cs, Cs, Cs, Gy, Cray Cip TESpECtively.

The effects upon any function € (Z ’ Z ) z’) of a period-increment in the

b 3

various cases are given by the relations

g(P’ P,’Z"'l) =(_1)09(P) PI’2>

7 7
g, 0,72 g, 0,7

P P2 1\ P,p',2>
e(a, O'I,z’+1> -( 1) 6(0'7 0',)2,

[/ <P, P,a z+ all) — (_ 1),, e—?wiz—m'a,, 8 (p’ P/’ z \‘\ >.
.

7 ’ ’ 7
T, 0,2 4+ Ay, ,O',z/

0 <P; P, 2 + (1/12) - (_ 1)?’6—2"‘52'—7"5‘122 0 (P; P> Z>

0,0, 2 + ay o, 0,7

and by derivatives from these relations. The effects upon the sixteen
functions, by way of interchanges consequent upon half-period increments of
the arguments, are given in the full table on p. 254.

Among the even theta-functions, the simplest relations* are as follows :
¢ 02— 01 015 = ¢,2 02 + ¢ 02 = ¢,* 02 + ¢ 6
6202 — ¢ 02 =c 02+ c2 O =cl 02+ ¢ 07,
02— Ci? Ot =0C2 02+ c? O =c? 02+ ¢2 6,2

* These are taken from my memoir, Phil. Trans. (1882), pp. 783—862; they occur in many
of the memoirs there quoted, and in others, relating to the subject, as well as in treatises such as
those of Prym and Krause. Much algebraical discussion of the properties of the functions will
be found in Brioschi’s memoir, Ann. di Mat., 23 Ser., t. xiv (1887), pp. 241—3844, and Opere
Matematiche, t. ii, pp. 345—454. Reference also may be made to Baker, Abelian Functions,
ch. xi, and Multiply Periodic Functions, ch. ii, and notes, p. 327.
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and others derived from these by linear combinations. The simplest relations
among the constant values of the even functions when the arguments are
made zero are the sets:

' — =0t =c'+ Cg‘l
Cl— et =cited=ct ot
o —ot=ctt+ot=c'+ ¢t
and others derived from them: as well as the sets of simple biquadratic
relations,
0’ Cie* = ¢ G + ¢5° 01521
Cf e’ =cf ¢ + 0 ¢ s
Gl et = ¢’ + 6P 6y J
€’ €2 = € Cg + G ¢
o’ ¢’ = ¢’ ¢+ 6 0 } s
C2 €2 = €2 G52 + g2 ¢y?
C2 = ¢ ¢g* + % ¢p”
C*Cs = C* "+ o ¢
€’ G = 6 ¢ + ¢ ¢
o Cd = ¢l e + ¢ ¢ ‘
el =cledtodos 1,
022 0122 = 062 082 + 012 c152 j
G Cs = ¢ €y + g cuf]
e =c’cl el p.
6’ 6’ = €2 ¢’ + 6F 0f J

Among the simplest relations, expressing the squares of the odd functions in
terms of the even functions, are the set

G207 =—c? 02 + ¢ 0.2+ ¢ 0,
202 =—cf 02+ ¢ 02+ c2 6,y
e Ot= ¢ 02— 0 —cg 122\
¢ On= ' 02— ¢t 0, — ¢
¢ 0= 202+ c2 02—
¢ 0= 207 —c? 02—,

as well as others derived from the relations, among the even theta-functions
above given, by using the table on p. 254 for interchanges among all the
functions for half-period increments.
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Lastly, for the present purpose, it is sufficient to give the three relations

6?07 = ¢f 02+ ¢ 0 —c 0142\
b= o OF—cd 0. +c 0, ,
¢ O = — Ci? B + ¢ 0% +c2 0,2

connecting the squares of odd functions alone. They can be derived from the
relations connecting the squares of the even functions alone, by using the
same table of interchanges for half-period increments of the variables.

As regards the odd functions, we write
O=kozt+ k)2 + ...,

where the expressed terms are the terms of the first order, and p has the
values 5, 7, 10, 11, 13, 14; and we have

CoCyCraks = C3C5C15h10 + €1CoCs King
C2CsCrok; = €10,Co5krg + C5CsCs Koig

H
CoCaCy Ky = 103G Koyg + 0406015]":]3}

CoCaCrolng = C4CoCs Koo — €103C15Koss

with exactly the same relations when &' is substituted for .

162. All the relations thus far given, connecting the theta-functions, and
connecting the quotients of the theta-functions, are quadratic in form. In
each relation, there are three such quotients. Every function involves two
independent variables z and 2 ; and therefore it is to be expected that each
of the functions is expressible algebraically in terms of two new independent
variables. This expectation is justified by the detailed results and properties
of the double theta-functions which give rise to the hyperelliptic functions of
order two, being quadruply periodic functions; and the actual forms can be
expressed as follows.

We take five constants a,, @, a5, ¢4, @,, unequal to one another; and we
write

Ay — Q= MM,

for all the five values of m and of n, avoiding equal values, avoiding also some
other similar limitations that obviously are to be avoided. Two variables
¢ and ¢’ are introduced; and we write

T ={({—a) (§—a) (E— @) (E—a) (C—a)},
T = {(CI_ ) (§'- a)(§'— a) (§'—ay) (§'— as)}%,

P={(p—a)(p— ) (p—as)(p— as) (p— as)}E.
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Two other variables » and ' are introduced, being defined by the equations

u—-%/ 2% ap +%f 2 dp |

S )

The variables ¢ and &’ are, in general, uniform quadruply periodic functions
of w and «’; for sufficiently small values of » and v, we have

13.14.15

Z:—Clxl—T 2+...!
, 23.24.95 , f
¢ —a,= 91 Ut

where the unexpressed terms are of even orders (beginning with the order 4)
in u and u’ combined.

The fifteen quadruply periodic functions of z and 2/, arising from the
quotients of the double theta-functions, are algebraically expressible as
follows :—

b5+ 61, = (12.13.14.15) "3 p,
b + 61, =(21.28.24.25) " p,
6, + 6,,=(—81.32.34.35)"1p,
h + 0= (—41.42.43.45) ¥p,

=)

6, + 0,,=(51.52.53.54) " p,
O+ 0= (13.14.15.23.24.25) " p,,
8 + 0,=(12.14.15.32.34.35) ¥ p,,

S

+0,=(12.13.15.42.43.45)"1p, |
+0,=(—12.13.14.52.53.54) " %p,
s = 0, =(21.24.25.81.34.35)"1p,

> D

6, ~6,=(21.23.25.41.43.45)"1p,
05 + 6, =(—21.23.24.51.53.54)"1p,
0, +6,=(31.32.85.41.42.43)"%p, -
0, +0,=(31.32.34.51.52.54) % p,
O + 0, = (41.42.43.51.52.53) % p,

where
= (ar —§)(a- = §),
forr=1,2, 3,4, 5; and
Prs _ ! T _ o \( 1
po (E o a) - @ —a), T

for all the ten combinations of » and s from the set 1, 2, 3, 4, 5.

IRIS - LILLIAD - Université Lille 1



270 INITIAL TERMS IN THE

[cH. vIn

The constant values of the even theta-functions for zero values of the

variables are related as follows:

Co = Crp =
Cy = Cp =
Cy = Cg
6 = G
C; +~ Cp=
Cy ~Cp=
Cs ~ Cig
Cy + Cg =

31.24.25\%
Cl5+c]2=<——> ]

The lowest terms in the odd theta-functions are as follows :—

95_<13.15.23

32.14.15)*
12.34.35

21.34.35

.25>i 14 24
M)

0., 43 .45 “127% 12

6, _ 13.14.23.24)2% 15 ,25>+
12—<—_—_53.54 (tlﬁ—uﬁ
b _ (32.42.52\}

p;—\T—/) U+ ...

0. w—u
6—;(13.14.15.23.24.25)* ot
61, (81.41.51\%

(e ) vt

6 /15.14.25.240\%/ 13 23
*=< __—> <u_—u— + ...
01 34.35 12 12

The relations between the two variables » and «/, and the two variables

2z and 2’| are
k k'
Ci2 C1e

:
Sy (32 .42, 52) o ]

12

/ [
l"_wz+]£13z,=(31.41.51\ . J

Ciz Ciz
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The quadruply periodic functions of z and 2 are quadruply periodic functions
of w and ': and conversely.

Finally, derivatives of any function, of the first order with regard to » and
«,are linear combinations (with constant coefficients) of its derivatives of the
first order with regard to z and 2.

Examples of the theorems in § 156—160.

163. Adequate illustrations of the first theorem, in § 156, are provided
through the homogeneous relations among the theta-functions which have
just been stated. Each of them, when divided throughout by the appropriate
power of 0., gives a relation among strictly periodic functions. Many other
such relations are given in the memoir by Brioschi already quoted (p. 266,
note); and many can be deduced from the algebraical expressions for the
functions p in terms of the variables ¢ and . Among them, we select the
following, as being of particular use in the succeeding investigation:—

P’ ps b

rs.rt ' sr.st tr.ts

where rs=a, —a;, and so on, and 7, s, t are any three of the integers
1,2, 3, 4, 5; also

1
P+ v (prs* — Pty =rl.rm,

(st) prpr+ (t7) Psps + (18) pepu =0,

where 7, s, ¢, I, m are the integers 1, 2, 3,4, 5, in any order. These examples
will suffice for the present requirement.

164. We now proceed to give an example of theorem II, in § 157, by
forming the partial differential equation of the first order which is satisfied
by the uniform quadruply periodic function p;.

From the values of u and v/, expressed in terms of { and ¢’ by means of

.. ot of ot ot .
definite integrals, we have the values of S0’ 34 3 T Using the ex-
pression for p? in terms of & and ¢, we find
20, _ 1 0 1 ot
pou E—aou ¢ —a, ou

1
= e o) — g - e,
2 op, 1 27
b T e €~ g el
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272
and therefore
1 op,
T 1 apl _ v 1laop
é,/_al—( aﬁ)p au+(§ au
Now, for the values r = 3, 4, 5 in particular, we have
P _ 1 { T _ ' }
mpr C=¢¢—-am)(&—a) (§—a) & —a))’
so that
Pro _ gl 0100
p plT (27')p] au ( )p a 7
on substituting the foregoing values of v and 7. Thus, if we write
0 0
a]:: = 91 > a_pl = 9’1 )
we have
a=—p:ps=(23) ¢+ (13) ¢/
B=—ppu=02Hq+(14) ¢ ¢,
y=—p:pis=(25) ¢ + (15) ¢/

where a, B, v are temporarily used to denote the combinations of ¢, and g

Again, from the values of the functions in terms of ¢ and ¢/, we have
1
+ 34 (pr® — pu®) = 12. 15,

1
p]2 + 574 (_pmz _p142) = 12 . 13,

and therefore

;‘— §—-34(12 15 — p?) = C, say,
v s
Y _ 2 _54(12.13-p) =4, sa
P péd ( P = v

Also

P’ ps P
13.14731.34 741,43 "

so thas
34
pi=381. 34+14p12+ lp,

+4‘_1 p42)
say ; and similarly
54
p2=51. 54+14p1’ qPe

51
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say. Thus

_""_ B¢
0+——p4 p4
_r _F_y
+51 pi '
atg s

These two quadratic equations satisfied by ps® can be written
(L= = ) pi+ B =0,

pi—(N=B—Ad)pi+ B =0;
where

, 4, 4l 41 41
W=ag, C=cgy, L=dgy, N=og.

Eliminating p? between the two equations, we find
{(L=p=Chad —(N=B—Aa')} (N-B—Aa')C —(L— B - (') A}
= B (A¢ - Ca'y,
which is a form of the partial differential equation of the first order satisfied
by p..

It is desirable that the equation should be simplified; the varions re-
ductions are mere ecxercises in algebra. We find

A—-C=53(12.14-py),
so that

(4—Oyare=="403 (19 14— 5 (1314 - pi) (14.15 - p):

also
, ., 14.385 . N
(1—0=1§]5(]3.1-)—1).~),
so that
. 14.34.45.53 . N .
@ —c)AC:W (12,13~ )(12.15—])1')(13.]5—2),').
And
, , 34.45.53
Co’ — A¢ =22 TR (12.13. 4. 15 = p/*).

As regards the parts involving derivatives, we have
(L=BYa —(N—8)¢
14
~ i35 B4 15 = p) e +35 (13,15 — p7) B+ 43 (13. 14 —p) o’
_14.384.45.53 | . ,
13.15 1207 = p (g + @),

F. 13
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on substitution for @, B, «; and, similarly,

(N - /32)0 L-p4
P23 pe+ P 02 4 py g ! SN CERER -9y

IAY) 12 242
=_12'14"34'45'53{(%-*-%)‘_]3.]—4._—152)1-{[1 }

Hence the differential equation for p, takes the form

X,
93 1¢ 2
12715 142.15 (Q‘ 12. 142)<Q2 ]2.13.15)
=24.q.+14.¢/»2 X2
where the various symbols in the equation (which manifestly is of the first
order, and of the fourth degree, in the derivatives of p,) have the values

1 o N9
h=q - 1—221’1' (n+q')y }

7\9 12 a9 ’
Q= (g + ¢y — 137 14.15 Pl‘(]lzf
X, =(12.14-p*)(13.14 - p?) (14.15 — %)
X,=(12.13 = p) (12.15— p;?) (13.15 — p2)
X,=12.13.14.15 — p;s
The infinity of p, at any place being of order «, that of ¢, at the place and
that of ¢," at the place are x +1; from the terms of highest order in the
mnfinities, as they occur in the differential equation, we have (as these orders)
8x+4 10k+2, 12, 10k +2,
which are the same when «=1: that is, any infinity of p, is simple. The
result is to be expected because p, is a constant multiple of 6,;6,,7: so that
an infinity of p, is a zero of €, that is, it is simple. The terms of highest
order also provide relations among the constants connected with any such
infinity : but these are not our present concern.

165. The partial differential equation of the first order for any other of
the functions p can be constructed in the same manner; in particular, the
equation satisfied by p, can be derived from the equation satisfied by p,, throngh
interchanging p, and p., ¢; and ¢,, ¢’ and ¢,, &, and a,, where

apq , 8])2
=5, T T

Note. Another proof can be framed, by noting the relations
€630, 0, + ¢y 01061 = cy0,0,6,; \
et 0it = 10 0° = 0201 — ¢,° 0,
¢ 00 = 0? 0.2 — 620, — ¢2 6,
¢l =c? 02— 20 — 0,
€20 =cf 02— 0t — ¢t 0122)
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among the theta-functions, by using the cxpressions for the constants ¢ and
the quotients of the theta-functions, and by observing that 6,6,6,,7 is a con-
stant multiple of the quantity denoted by ¢ and that 6,0,0,,7° is a constant
multiple of the quantity denoted by B.

A third proof can be framed by noting the fact that

1 _ayiw
p— - 12) + (P )pl o’

1s satistied by p=¢and p={¢’, so that the quartic equation

(z—(02)(2—as)(z—c¢4)(z—tt5)—(z—(Ll){(z——(12) 1 op, P4 (s - a) L al;f ~0

has & and ¢ for its roots. The analytical conditions for this property of the
quartic equation ultimately lead to the partial differcntial equation of the first
order satisfied by p;.

166. The analysis in the preceding investigation leads to a simple
llustration of theorems IIT and IV, in § 158. It must, however, be borne in
mind that those theorems refer to functions that are homoperiodie.

Now the functions p, and p, are not homoperiodic: their periods are only
commensurable. But the functions p? and p,* are homoperiodic: and there-
fore by the theorem IV, we must have p? expressible rationally in terms of
p® and its first derivatives, that is, expressible rationally in terms of
Pu 91 q;-

The two quadratics that occur in the investigation give

peé_ Ac — A'c
TR (N-F—-Ad)C=(L—-=-0d)d’

or, with the preceding notation,

(24q: +14¢.) X,
12.13.142<Q2+ —XL)

2

pPe=

12.13.15
the required expression.
Also
’

—PsPu= 24-‘?1 + 14% s
so that we can deduce at once a rational expression for p,* I terms of
P ¢ ¢i . Expressions for ps, p;, pis, pis can be detived by interchange of the
constants oy, dy, «;; and cxpressions for the remaining functions can be
derived by simultaneous interchanges of the variables « and o and of the
constants «;, and «,.

As an illustration of theorem V in § 159, consider the Jacobian of any two
functions p,, ps: and let
s bmn=12345
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in any order. We have
o(u,w) 1
£ &) drr

9 (
o(peps) _ 1 L
&) Apps (&) (as—uy),

a " ).\'
I (pr o) = a%,‘i'))

(&= ) (= w),

and therefore

s
= 21 PP
Consequently
2 sr ? P 3 )
U (w0 = (5, ) pipwp

/ s

2
= \21> s ome s e ons, Py,

where
2 2 g 2 2 2 ne
P,,8=<1_ 2 _p8>(1__1’f__£_><1_ YL >,
rl.rs  sl.sr rm.rs  Sn. St PR.PS SN SP

so that the square of the Jacobian of p, and p, 1s an even polynomial in » and
s of joint degree six.

Similarly, we find
1
{J (pr: ])rs\)}z = 1_2‘2 p:'t2pl‘1n2_p1'17,2

= Tlf P+ p2. st—rm.rn. st} {p.2+p2.sm—rn.rt.sm}

X+ pl.osn—rt.rm.sn;
and so for other instances of Jacobians. So long as the Jacobians are formed
from any two of the fifteen functions, the algebraical equation between two
functions and their Jacobian is of even degree in the Jacobian. It is easy to
verify that

{7 (Prms pra)}?
1s an even polynomial in p,,, and p,, of degree six; and from general con-
siderations (but without having constructed the respective equations) I infer
that
J(pm pst), J(Prm; pat)
each of them satisfy an equation, quartic in its own Jacobian and of the
degrec twelve in the term free from the Jacobian.

As a last illustration, consider a special case of theorem VI in § 160.
The derivative of p, with respect to u, already denoted (§164) by gy, is quadruply
periodie. It is homoperiodic with p,; but it is not homoperiodic with p.,

IRIS - LILLIAD - Université Lille 1



166] GENERAL THEOREMS 277

their periods being only commensurable. But ¢ p. p;* are homoperiodic:
and therefore, by the theorem, g, is rationally expressible in terms of pg2, p2,
and the Jacobian of p,? and p,?; that is, ¢, is rationally expressible in terms of
P sy and J (py, p,).  The actual expression can be obtained in a variety of
ways, requiring mere algebra for the purpose. Proceeding from the relation

o PR R LR Rl
already obtained for ¢;, we find ultimately the following result, Let 12, 17, ...
denote @, = a,, @, — @,, ... as usual ; write
A=(p’—psy—2.12(p*+p7) +12%
Ky =p2t—p2+12(1r+2r), forr=1,2, 3,4, 5;
and, for any quantity £, let
(& + r2) (E+ 1) (E+ 1) (£ + 15)
=E+ 8,8+ 8.8+ 8,8+ 8.
Then a rational expression for ¢.? is
64. 2127, A +128.127p32p,J (py, p2)
=(8,+ 8,4+ A?) 3,4 + %) — (854 8,A) (B2 A + A2),

Other examples can easily be indicated: these will suffice for the present
purpose.

18—3
IRIS - LILLIAD - Université Lille 1



INDEX

(The mumbers refer to the pages.)

Abel’s theorem partially extended to double
integrals involving a couple of algebraic
functions of two independent variables,
193-197.

Accidental singularity, 61; (see unessential
singularity).

Algebraic functions in general, 61, 170 et seq.;
rational functions, involving one algebraic
variable, 171, and two algebraic variables,
173; integrals of, 178 et seq.

Algebraic relations between homoperiodic
functions, 261 et seq. ; illustrations of, from
hyperelliptic functions, 265 et seq.

Analytic function, 59.

Analytical eontinuation, 60, 80.

Appell, 147, 235, 259.

Baker, H. F., 110, 131, 261, 266.
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Boundaries of a region for certain fields of
variation, and their frontier, 20, 24.

Brioschi, 266.

Bromwich, 72.

Burnside, W., 26, 58, 237.

Campbell, 42,

Canonical form of lineo-linear transformations,
26; leads to powers of the transformation,
28

of equations for quadratic frontier, 51;
of rational functions which involve
algebraic variables, 171, 173.

Castelnuovo, 170.

Cauchy, 4.

Cauchy’s theorem as to the integral of a
function of a single complex variable ex-
tended by Poincaré to functions of two
complex variables, 13, 159.

Conformal representation with one variable
extended to two variables, 18.
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Continuation of regular functions, analytical,
80.

Continuity of a function, region of, 81, 82, 86.

Continuous function, 59.

Continuous groups, Lie’s theory of, applied to
determine invariants and covariants of
quadratic frontiers, 40, 42.

Contour integrals, as used by Cousin, 131 et
seq.

Cousin, 130, 147.

Dautheville, 80, 126.

Dependent variables, number of, 2; used for
a kind of inversion, 4.

Divisibility (relative) of two regular functions,
112.

Domain, 57.

Dominant function, 71.

Double-integral expressions connected with
coefficients in the expansion of regular
functions, 64.

Double integral for real variables, application
of theorem by Stokes on, 157.

Double integrals, defined for two complex
variables, 154; Poincaré’s extension of
Cauchy’s theorem for functions of a single
variable, 159; residues of, with examples,
160 et seq.

Double integrals of rational functions in-
volving two algebraic variables, 187;
equivalent forms of, 189; conditions that
they should be of the first kind, 190;
Abel’s theorem partially extended to,
193.

Double theta-functions, 249, 253 et seq.

Enriques, 170.

Equivalent functions, 134, 141.

Essential singularity, 61, 83, 119, 123; be-
haviour of a function at and near an, 77,
83 ; functions devoid of, 125.
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Field of variation, in general, 57 ; for periodic
functions, with one pair of periods, 224;
with two pairs of periods, 225; with three
pairs of periods, 231; with four pairs of
periods, 236, together with a modified two-
plane representation of the variables, 237.

First kind of double integrals, conditions for,
190; extension of Abel’s theorem to,
193.

First kind of single integrals of algebraic fune-
tions of two variables, 178; initial condition
as to form of subject of integration, 180;
equivalent forms of, 180, with the necessary
relations, 185; do not exist for general
equations, 187.

Four-dimensional space, used to represent two
variables, 5; used by Poincaré in connection
with double integrals, 153.

Free funections, 208; properties of two, 209-
212,

Frontier of a region in certain fields of
variation, 20, 24; its analytical expression,
21; invariantive, for lineo-linear transforma-
tions, 32; quadratic, 34.

Functions devoid of essential singularities,
everywhere, 125; in the finite part of the
field, 130 et seq.

Geometrical representation of two variables,
Chapter I; in four-dimensional space, §; by
means of a line in ordinary space, 7; by
means of two planes, one for each of the
variables, 13.

Gordan, 25.

Grade of two uniform quadruply periodic
functions, 260.

Hadamard, 126.

Hartogs, 62, 123, 131.

Hermite, 4, 131.

Hobson, 1.

Homoperiodic functions, algebraic relations
between, 261 et seq.

Humbert, 170.

Hurwitz, 126.

Hyperelliptic functions of order two used to
illustrate algebraic relations between homo-
periodie functions, 265 et seq.

Independent functions, 208.

Infinitesimal periods excluded, 213-216,

Integral function, 60.

Integrals, of functions of two variables
(Chapter VI); of algebraic functions, 178
et seq.
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Invariant centres of lineo-linear transforma-
tions, 29.

Invariantive frontiers for lineo-linear trans-
formations, 32; simplest forms of, 34, 37.

Invariants and covariants of quadratic frontiers,
39; invariants alone, 48.

Inversion, a kind of, 4.

Irreducible places of quadruply periodic fune-
tions, 257; any set expressible by a single
place in an associated two-plane representa-
tion, 257 ; their number for level values of
two functions is finite, 258, and is indepen-
dent of those level values, 259,

Jacobi, 14, 26.

Jacobian of two homoperiodic functions, 264 ;
used, in connection with the two functions,
for the rational expression of other homo-
periodic functions, 265; equation satisfied
by, when they are hyperelliptic, 275.

Jordan, 26.

Konigsberger, 253,
Krause, 266.
Kronecker, 4.

Laguerre, 126.

Larmor, 157.

Laurent’s theorem extended to functions of
two variables, 87-91.

Level places of two uniform functions
(Chapter VII); must exist for assigned
values of the functions, 203.

Level values of a regular function, 108; order
of, 111.

Levi, E. E., 123,

Lie, 25, 40, 42.

Line in space used to represent two complex
variables simultaneously, 7; limitations
upon use of whole line, 11; by means of
the points where it cuts two parallel
planes, 12.

Lineo-linear transformations, Chapter II;
canonical form of, 26; powers of, 28; in-
variant centres for, 29; invariantive frontiers
for, 32; property of, when coefficients are
real, 85; periodie, 52.

Lines, Volterra’s functions of, 13.

Meromorphic function, 61.

Multiform function, 58.

Multiplicity, of a simultaneous zero of two
uniform functions, 168; expressed as a
double integral, 169; of a level value of
two functions, as a double integral, 169.
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Nether, 170.
Non-essential singularity, 61; (see unessential
singularity).

Order of multiplicity, of a common zero of
two uniform analytic funetions, 205, 209;
of level values of two uniform analytic
functions, 212,

Order, of zero of a regular function, 111; of
pole of uniform function, 119.

Ordinary place, 60.

Osgood, 62.

Pairs of periods for uniform funections of two
variables (see period-pairs).

Periodic functions in two variables (Chapter
VIII).

Periodic lineo-linear transformations, 19, 28,
52,

Period-pairs, if infinitesimal, are excluded,
213 ; may not be more than four for
uniform funetion of two variables, 216-223;
one, 224 ; two, 224, with the different cases;
three, 226, with the different cases, and the
general result, 231; four, 232, with the
different cases, 235.

Picard, Preface, 5, 14, 26, 77, 78, 92, 152,
153, 156, 161, 169, 170, 178, 193, 197.
Picard’s theorem, on functions that cannot
acquire assigned values, extended to func-

tions of two variables, 78.

Picard’s theorem concerning single integrals
of rational functions involving one algebraic
variable extended to integrals of rational
functions involving two algebraic variables,
180-187.

Poincaré, Preface, 1, 4, 5, 13, 26, 71, 126,
131, 153.

Poincaré’s extension of Cauchy’s theorem to
double integrals, 159 ; with inferences, 160 ;
extension to the residues of double integrals,
160, 161, with examples, 161 et seq.

Pole, 61, 85 (see unessential singularity); ex-
pression for uniform function in the vicinity
of, 119 ; sequence and order of, 120.

Polynomial, when a regular function is a,
74 ; properties of, as regards singularities,
124,

Prym, 266.

Quadratic frontiers, 84; invariants and co-
variants of, 89; suggested canonical form
for, 51.

Quadruply periodic functions, 253 et seq.;
level places of two, 257 ; satisfy an algebraic
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partial differential equation of the first
order, 262, with example, 273.

Rational, any uniform function entirely devoid
of essential singularities must be, 126.

Rational function connected with algebraic
equations in two independent variables,
most general form of: (i) when there is
one equation, 171; (ii) when there are two
equations in two algebraic variables, 173;
integrals of, 178 et seq.

Rational function, singularities of, 125.

Reducibility (relative) of two regular functions,
115,

Region of continuity of a function, 81; its
boundary, 82, 86.

Regular functions, any uniform funetion having
essential singularities only in the infinite
part of the field is expressible as the
quotient of two, 147.

Regular functions, 60; fundamental theorem
relating to, 62; double integral expression
for the coefticients in the expansion of, 64;
one property of, 73; condition that it is a
polynomial, 74 ; analytical continuation of,
80; level values of, 108 ; relative divisibility
of, 112,

Relative, divisibility of two regular functions,
112; reducibility of functions, 115.

Riemann, 4, 16.

Riemann’s definition of a function extended
to two functions, 16.

Sauvage, 58.

Severi, 170.

Simart, Preface, 92, 152.

Simultaneous poles of two uniform analytic
functions exist, 204; usually is an isolated
place, 211.

Simultaneous unessential singularities of two
uniform functions do not exist in general, 204.

Simultaneous zero, of two regular functions,
must exist, 202; likewise for two uniform
analytic functions, 203 ; usually is an
isolated place, 207, 209, but there may be
exceptions, 208.

Single integral, 152.

Single integrals of algebraic functions in-
volving two algebraic variables, 178;
equivalent forms of, 180, with necessary
relations, 185; first kind do not exist for
general equations, 187.

Singularities, 61, 82, 119; of a rational
funetion, 125.

Stokes, 157.
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Theta-functions, triple, 240 et seq.; even
functions and odd functions, 2£8; double,
249, 253 et seq.

Tied functions, 208.

Transcendental funetion, 60,

Triple theta-functions, 240; effect on, caused
by increments of periods, 242, by half-period
increments, 250; two sets of, 251 et seq.

Triply periodic functions, 238.

Two functions, everywhere regular in the
tinite part of the field, must vanish at some
common place, 202 ; likewise, when they are
upiform and analytic, 203.

Two-plane representation of the real parts of
the variables used for quadruply periodic
functions, 237, 257.

Two-plane representation of two variables, 13 ;
some properties of, 1f; limitations of, 19.

Umbral symbols introduced for coefficients in
homogeneous forms, 41.

Unessential singularity, 61, 83, 11Y; ex-
pression of uniform function in the vicinity
of, 121; is an isolated place, 122.

Uniform analytie function must acquire an
infinite value, 72, and a zero value, 76,
and an assigned finite value, 76.

Uniform function, 38.

Uniform periodic functions (Chapter VIII).
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Valentiner, 25,
Vicinity of a place, 58.
Vivanti, 12.

Volterra, 13.

Weierstrass, Prefuce, 4, 77, 80, 82-86, 92,
101, 105, 112, 122, 124, 141, 214, 260,
261.

Weierstrass’s theorem on the behaviour of a
uniform continuous analytic function in the
vicinity of an ordinary place, 92; various
cases of, 96, 97, 100; example of, 102;
alternative method of proceeding in one
case, 105.

Weierstrass’s theorem on functions entirely
devoid of essential singularities, 126 ; proof
of, 126-129; on fuuctions having essential
singularities only in the infinite part of
the field, 130, with Cousin’s proof, 130
et seq.

Weierstrass’s theorem on infinitesimal periods,
214.

Wejerstrass’s theorems on algebraic relations
between homoperiodic functions, 261 et seq.;
illustrated by hyperelliptic functions, 265
et seq.

Zeros (selected) of the theta-functions of two
variables, 253.
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